
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Spectrum sharing in mobile cellular networks:
an alternative approach for efficient resource

utilization

PhD Program in CSE

XXIV Cycle

By

Luca Anchora

2012

http://www.imtlucca.it
mailto:luca.anchora@imtlucca.it




The dissertation of Luca Anchora is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Advanced
Studies, Lucca

Supervisor: Dr. Leonardo Badia, University of Padova

Tutor: Dr. Leonardo Badia, University of Padova

The dissertation of Luca Anchora has been reviewed by:

Prof. Dr.-Ing. Frank H.P. Fitzek, University of Aalborg, Denmark

Prof. Dr.-Ing. Eduard Jorswieck, Technische Universität Dresden, Ger-
many

Dr. Eleftherios Karipidis, University of Linköping, Sweden
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Abstract

Mobile cellular communications have been becoming the lead-
ing technology in data transmissions: trillions of devices will
serve billions of people in few years, not only for simple phone
calls but also for application data transfer. The rapid diffusion
of this technology goes with an increasing use of resources,
in particular of bandwidth, whose scarcity and expensiveness
make efficient management necessary. To this aim, a dynamic
allocation of the spectrum is preferred to an inefficient static
allocation. In this way, the waste of resources is reduced by
assigning the unused frequencies to nodes that need them.
Many flexible ways to use the resource can be thought of, pro-
vided that the quality of service requirements of each user are
respected.

In this thesis the problem of efficient spectrum usage is consid-
ered in a two-fold manner, namely considering the intra-cell
and the inter-cell context. In the former, the need for an ef-
ficient resource utilization in the downlink is traded-off with
fairness among the user flows, so a possible system model is
discussed and some allocation algorithms are proposed. Two
algorithms for the dynamic setting of a structural parameter
are proposed and validated thus showing the efficiency of the
operating point into which the radio resource manager is lead.
Regarding the inter-cell context, a particular type of scenario
is considered, a multi-operator cellular network. In this case,
an alternative to the classical static frequency allocation is pro-
posed: spectrum sharing. By allowing operators to share part
of the spectrum that they receive by the regulation body, a
gain in terms of cell throughput can be achieved thanks to a
better utilization of the shared resources. In this case, a crucial

xxii



issue is the access mechanism to the common spectrum. Two
algorithms that define the upper bound and the lower bound
on the system performance are given. Another possible mech-
anism that takes into consideration priorities on the access to
the common resources is analyzed as well. The main result is
that there is an asymptotic gain for the operators in sharing
their resources, which is a fundamental point for the diffusion
of this proposal. This opens the door to the implementation of
effective algorithms of spectrum sharing in scenarios with re-
alistic constraints. Moreover, the main factors that impact on
the value of such a gain have been identified and analyzed.

Most of the mathematical models considered all over this the-
sis are based on the Game Theory. Multi-agent systems per-
fectly fit such a framework, through which equilibrium points
and efficiency of solutions can be evaluated together with pos-
sible cooperative strategies. However, in many situations the
intrinsic complexity of the sytem or the consideration of realis-
tic scenarios may make the analytical treatment tough. There-
fore, the validation through simulations is important as well.
A modular framework, obtained through the extension of a
well-known simulation platform, has been developed for the
support to the scenarios of interest and has been used for the
validation of all the proposed algorithms. The details of its
software architecture are given as well.

xxiii



Chapter 1

Introduction

Mobile cellular networks have seen an incredible evolution in the last
two decades and have been changing our everyday life. Thanks to the
technological progress it has been possible to build devices always smaller
and smaller that we can easily carry and that enable us to be constantly
in contact with the rest of the world. Wherever we are, we can not only
make phone calls, but also browse the web, check our email, etc. The key
factors that have pushed the evolution of the cellular networks can be
identified in (i) the strong need of communication of people and (ii) the
ever increasing use of the web and of all the other network applications
based on the Internet, that have become an essential part of our lives. At
the very beginning there was a neat separation between voice and data
applications and the relative streams were kept separate and managed in
a different way. Since a few years ago, we have been witnessing a con-
vergence of the two types of flows, i.e., both started to exploit the same
infrastructure. Cellular networks can now be used as well as an access
network to the Internet, thus enabling people to use all the network ap-
plications they used to run on their PCs or laptops. This phenomenon has
lead to a proliferation of devices and a huge amount of data traffic that has
overloaded the network and has evidenced some fundamental problems
related to an inadequate infrastructure and the inefficient and expensive
resource management. According to some forecasts formulated by the
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Wireless World Research Forum (WWRF) in 2008 [40], 7 trillion wireless
devices will serve 7 billion people by 2017 and mobile users expect reli-
able high-data rate services with strict delay constraints and ubiquitous
and permanent access according to the paradigm anywhere anytime. Per-
vasive ubiquitous computing is the hot topic of the moment, not only
for voice traffic but also for an ever increasing application data traffic
(e.g., real-time streaming). Radio spectrum and physical infrastructures
must be used in a proper way by the network operators. Actually, as al-
most everything in life, resources are scarce and thus must be managed in
a proper way. Moreover, their cost is not negligible: currently, the trans-
mission frequencies are not for free while installation and maintenance of
the whole infrastructure (e.g., masts, antenna, backhauls) require a huge
investment of capitals. The challenge of future wireless networks design-
ers is the development of cost-, energy- and spectrum-efficient solutions
that enable the network operators to satisfy the increasing demand for
high-quality services yet keeping the amount of money and the neces-
sary effort at a reasonable level. This is to be considered as a key factor
for the evolution of cellular networks. The history of the technology is full
of examples of promising technologies that did not have a large diffusion
because of their cost. On the other hand, a cheap technology providing a
scarce quality of service would not have a great impact on the market be-
cause it would not be able to meet the current trend in consumers’ needs.

In this thesis the focus is on the problem of spectrum usage in a multi-
user cellular network, while the infrastructure management is left as fu-
ture work. Hereinafter, if not otherwise specified, the term resource is
used with reference to the sole spectrum component. It is mainly an ac-
cess problem, where several competitors (i.e., the users) try to access a
shared resource (i.e., the spectrum) for their transmission. An inefficient
situation might result if no arbitration is introduced because of the in-
terference problem. Even tough interference might not always prevent
a communication, in this thesis the focus is mainly on an orthogonal use
of the transmission channel, where no more than one user can access the
shared resource. Of course, this leads to the problem of the users schedul-
ing for the channel access. Some proposals are evaluated to improve the

2



(a) (b)

Figure 1: Single-cell (a) and multi-cell multi-operator (b) scenario

radio interface efficiency and are discussed in the following chapters. We
decided to tackle the problem at two layers, with a bottom-up approach.
First, we considered the downlink of a single cell (intra-cell resource allo-
cation), then we moved to a wider and more realistic scenario, i.e., several
adjacent cells managed by different network operators (inter-cell multi-
operator resource allocation). Figure 1 shows this double context. In both
cases, the reference technology considered was the Long Term Evolution
(LTE) of the 3GPP UTRAN [6].

For the intra-cell scenario a joint scheduling and resource allocation
solution has been evaluated which takes into account not only efficiency
but also fairness. All the users of the system are expected to receive a ser-
vice level conforming to their requirements, and thus the flows they gen-
erate need to be scheduled in a proper way so as to guarantee fairness and
a good service level. On the other hand, particularly for the case of wide-
band systems where the portion of the spectrum used for transmission
cannot be considered as a flat-fading channel, each user may experience
a different channel quality on different sub-carriers (so called multiuser
diversity effect). A smart resource allocation can improve spectrum effi-
ciency by exploiting such diversities, i.e., trying to give to each user the
best available resources, as long as this is possible. Of course, this requires
a cross-layer communication in the system. However, a trade-off between
efficiency and fairness may arise. If the resource allocation is driven only

3



by the efficiency goal, then this may result in an unfair situation from
the point of view of the system users because those experiencing a better
channel condition (e.g., closer to the base station) are given more service.
On the other hand, if the only objective is the fairness of the allocation,
then this may lead to an inefficient result due to a limited exploitation of
users’ different conditions. Starting from this trade-off, a two-layer repre-
sentation of the system is proposed in Chapter 3 and modeled in a game
theoretic perspective. The Resource Allocator and the Packet Scheduler
can be seen as the two players of a game. Game theory allows us to study
the existence and optimality of equilibrium points. Both non-cooperative
and cooperative approach are used, and in both cases a feasible algorithm
is proposed that leads the system in a (Pareto) efficient operating point by
the dynamic estimation of a structural parameter.

Although multi-operator coexistence is quite common in modern cel-
lular networks, few studies are available in the literature. Historically,
in cellular networks, resources have been allocated in a static manner in
order to avoid interference: each operator has its own portion and is en-
titled to use only it, without any overlapping. This type of allocation is
commonly referred to as orthogonal. Earlier radio transceivers were not
able to distinguish between different transmissions on a single frequency
and were also limited in memory and signal processing power, so the only
way for multiple users to share the radio spectrum was to divide it into
orthogonal slices. Each of these ones was assigned to an operator through
licensing, the so called command and control approach. Auction mecha-
nisms were (and are still) used for that purpose. The most important
shortcoming of this solution is its inefficiency. When a node has nothing
to transmit, its resources are unused while they could be assigned to other
nodes plenty of traffic to get through. Moreover, the cost for installing and
maintaining a complete infrastructure is remarkable and represents a big
barrier for accessing the market. The use of a unique shared infrastruc-
ture would be a possible solution to reduce costs for each one. For these
reasons, the operators, together with the scientific community, have been
starting considering the benefits of alternative and more flexible solutions
in the direction of both spectrum and physical infrastructures sharing. As
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already said before, in this work we focus only on the former research di-
rection. We explore the idea of spectrum sharing among cellular network
operators. A common pool of frequencies is created and can be seen as a
virtual extension of the initial spectrum they are given by the regulator
(see Figure 2). The aim is to show how this new paradigm of radio spec-
trum usage can increase the efficiency and the user satisfaction level if
the shared resources are properly used. This is an innovative idea whose
results are interesting not only from an academic but also an industrial
and regulatory point of view. Industrial partners may be attracted by the
potentials of such a paradigm and regulation bodies might decide to en-
courage operators in sharing their resources and to regulate this market.
Moreover, introducing this technique does not require a complete change
in the existing hardware either for the users or for the operators, and this
is important for its rapid diffusion on the market. In this thesis the prob-
lem of the access to the common set of frequencies is addressed. Two main
categories of schemes are identified, i.e., orthogonal and non-orthogonal. In
the former case the access is mutually exclusive while in the second case
several operators can exploit the same resource at the same time. In this
work we focus only on the former while the approach to the latter is only
touched and left as future work. The main challenge faced refers to the
arbitration of the access conflicts on the common pool of frequencies that
may arise. An upper bound and a lower bound algorithm are proposed
when the joint cell sum capacity is considered as the system performance
metric. The identification of a sharing gain for the network operators is
the most important achievement that justifies additional research activi-
ties in this field, maybe according to the lines given as future works in
last Chapter of this thesis.

Besides mathematical modeling, all the algorithms proposed in this
work for both intra-cell and inter-cell scenarios are validated by means of
simulations. The validation was done by using the well-known network
simulator ns-3 [2] with its module for LTE networks [1]. In particular,
for the spectrum sharing case we developed an extension able to support
such scenarios and flexible enough to permit the validation of many new
user-defined spectrum sharing algorithms that can be easily plugged in
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Figure 2: Spectrum sharing

[12]. The architecture, as described later on in this work, is completely
modular, free and also open source. It is publicly available, under the
GNU GPLv3 license, at the URL
http://code.nsnam.org/lanchora/ns-3-lte-SpectrumSharing/.
Therefore, another important achievement of this thesis work has been
the release to the research community of such a simulation framework
for spectrum sharing.

To sum up, the main contributions of this thesis go into three direc-
tions:

1. Intra-cell resource allocation. A game theoretic model for the trade-
off between resource allocator and packet scheduler is defined, ac-
cording first to non-cooperative and then to cooperative games. A
couple of algorithms for the dynamic estimation of a structural pa-
rameters are described;

2. Inter-cell multi-operator spectrum sharing. The orthogonal sharing
of the common resources is analyzed and several algorithms for the
conflicts resolution are proposed. In particular, an upper bound on
the sharing gain is identified;

3. NS-3 extension. A modular extension of the well-known network
simulator ns-3 has been designed and implemented to support multi-
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operator spectrum sharing scenarios.

The remainder of this thesis is organized as follows. Chapter 2 gives a
detailed overview of the state of the art regarding interference in wireless
networks and dynamic spectrum allocation in both intra-cell and inter-
cell perspective; moreover, a short introduction about the main game the-
ory concepts and about the LTE technology is given there as a support to
improve the clearness of the whole work. The intra-cell scenario is ana-
lyzed in Chapter 3 by using both non-cooperative and cooperative game
theory, while the inter-cell case is discussed in Chapter 4. In Chapter 5
some more information is given regarding the ns-3 extension developed
for the simulative support to this thesis. Conclusions and possible future
evolutions of this work are given in Chapter 6.

The chapters were written by exploiting the material published in the
papers reported in the section “Publications”, inserted at the beginning of
this thesis (and recalled also in the final Reference section). More specifi-
cally, the mapping is as follow:

1. Chapter 3 is based on the papers 1, 2 and 3;

2. Chapter 4 is based on the papers 3, 4, 5 and 6;

3. Chapter 5 is based on the papers 4 and 6.
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Chapter 2

State of the Art

In this chapter we give a review of the main works in the literature
that face the problem of efficient spectrum usage in multi-user wireless
networks. Both intra-cell and inter-cell scenarios can be framed within
this context.

The Interference Channel

The coexistence of multiple wireless systems in mobile environments
using the same spectrum in a non-orthogonal way (i.e., at the same time
and in the same geographical area) leads to interference at the air in-
terface, a problem typically analyzed within the context of interference
channels (IFC). Usually, an IFC is defined as a communication medium
shared by M sender-receiver pairs, where transmissions of information
from each transmitter to the corresponding receiver interfere with com-
munications between the other pairs. Information theory literature con-
tains several studies on the IFC, made by researchers since many years
ago, with interesting results. Many mathematical models are constructed
starting from different assumptions (e.g., memoryless channel, Gaussian
noise channel), and try to derive the maximum rate each sender can reach
in that situation. [7, 18, 21, 32] have provided various achievable rate re-
gions (i.e., the set of all the possible rates that the senders can jointly
reach), but the identification of the exact capacity region of the general
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(a) (b)

(c)

Figure 3: Examples of interference in bandwidth sharing [27]

IFC is still an open problem. The achievable rates depend also on the
amount of information available at the transmitter and on the co-operation
at the transmitter and at the receiver side. The more information is known,
the greater the rates that can be realized. A fundamental objective of re-
source sharing is to find a stable system operating point based on certain
fairness and efficiency criteria. In [16] authors model a system made of
two pairs of nodes by using game theory and then characterize the subset
of the interference channel capacity region that can be achieved as Nash
equilibria, giving also explicit coding schemes that permit to realize those
rates. An important conclusion is that in all the cases there are always
efficient Nash equilibria.

Figure 3 illustrates three common examples of interference due to
spectrum sharing [27]. This effect mainly depends on the transmission
power used by the sender and on the distance from it: the greater the
power, the larger the area covered; the lower the distance from another
transmitter, the lower the power needed to disturb communications. In
scenario (a) both systems have similar power capabilities but, due to the
locations of transmitters and receivers, one system receives large inter-
ference while the other does not. On the other hand, scenarios (b) and
(c) describe situations where a high power system shares spectrum with
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a low power one. In the first case all the gains are comparable, so, in-
tuitively, the weak system is in disadvantage; in the second case, due to
asymmetry in the gains, both systems can interfere with each other and
we can imagine that a more fair situation may result.

The simplest way for multiple users to share the spectrum without
any interference is to divide it into orthogonal slices and assign them to
each user. From a communications engineering perspective, the orthogo-
nality can be realized in different domains, i.e., frequency, time, physical
space and space of coding, depending on the type of interference that
characterizes the system. Users receive the available resources (i.e., slices)
according to some pre-defined allocation policy. Some well-known exam-
ples for users in a cellular network operated by one operator (intra-cell
interference avoidance) are: TDMA combined with FDMA in GSM sys-
tems, CDMA combined with TDMA/FDMA in 3G systems. A promis-
ing multiple-access technique for high data rate transmission is the Or-
thogonal Frequency Division Multiple Access (OFDMA), which is able to
exploit the multiuser diversity by adaptive resource allocation. Regard-
ing the multi-cell contexts, typically an operator uses different frequency
reuse factors to control inter-cell interference. However, an aggressive
(i.e., too low) reuse factor might still lead to some interference in cells
rather close to each other. Since OFDMA is the scheme used in the down-
link of LTE networks, which is the reference technology for the follow-
ing chapters,hereafter we discuss some literature related to that access
scheme. Moreover, in Section 2.1 we give a short overview of LTE as well,
just to introduce the main concepts and parameters that are used in the
other chapters.

OFDMA - Constrained Optimization Formulation

Many studies have been conducted to tackle the problem of resource
allocation in OFDMA cellular networks, for both the uplink and the down-
link. Most of them assume perfect knowledge of instantaneous Channel
State Information (CSI) at the base station, so as to exploit multiuser di-
versity and increase efficiency. Several formulations of the problem ex-
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ist and different mathematical tools have been used, stressing different
aspects. A first powerful tool is the constrained optimization, with the
objective function related to the (weighted) sum rate. For any fixed sub-
channel assignment, the optimum can be reached by multilevel water-
filling [35] for the continuous rate relaxation, or by greedy and bisection
allocation [44] for the discrete case. However, the sum rate maximization
may not result in a fair allocation, especially for non-symmetric chan-
nels and non-uniform traffic patterns [71]. Therefore, some studies tried
to consider a joint solution for an efficient yet fair allocation [8, 41, 71].
In general, exact optimization approaches suffer from the issue that the
optimal sub-channel assignment is a combinatorial problem whose com-
plexity increases exponentially with the number of sub-carriers. More-
over, typically the computation of an optimal solution is centralized and
requires complete knowledge of the network. In [35], an efficient subopti-
mal algorithm is found considering a convex relaxation. In [67] a solution
is found by using Lagrangian dual decomposition and considering that
the duality gap goes to zero when the number of sub-carriers tends to
infinity.

OFDMA - Game Theoretic Formulation

Another way to approach the problem of resource allocation is through
game theory. Terminals requesting access to the shared resources can be
seen as players of a game who compete in order to maximize their own
utility, e.g., their data rate. In this way, the efficiency and the evolution of
the game are analyzed together with schemes that force players to move
towards an efficient operating point. An overview of spectrum sharing
games is given in [27] and [42]. Many alternatives are described, from the
simple non-cooperative approach to the more sophisticated bargaining
and auction-based games. From a practical point of view, game theory
is also seen as a way to derive efficient distributed algorithms for dy-
namic spectrum sharing with agents having only local information. Such
solutions are easier to implement than a centralized one, which needs
complete knowledge, even though they might lead to a sub-optimal re-
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sult and involve an iterative process. As examples closely related to the
present work, we mention [74], where a second-price auction mechanism
is proposed to model user competition in a wireless fading channel, and
bids are posed based on the perceived channel quality. The existence of
a Nash equilibrium is proved, together with its Pareto optimality. The
Nash Bargaining Solution (NBS) and coalitions are employed in [33] to
formulate a problem of fair rate maximization and to find a sub-optimal
distributed algorithm for uplink access. NBS and coalitions are also used
in [60] for the case of OFDMA-based relay networks. The authors tackle
spectrum and power allocation among relay nodes within the same coali-
tion, and subsequently the inter-coalition coordination, and finally pro-
pose some greedy algorithms able to enhance the total system capacity
and maintain the user fairness. Some more details about the game theory
and its application to wireless networks are given in Section 2.2.

Multi-operator Scenarios

With reference to the multi-operator case, few works address that spe-
cific scenario. In [55] and [15] the concept of resource sharing among
cellular network operators is introduced and its impact on achievable ca-
pacity and total delay is evaluated. The main differences with the work
we present in Chapter 4 are that: (i) a time division duplexing radio ac-
cess is employed where operators are allocated slots in a super-frame;
(ii) operators share resources only as a “last resort” solution; (iii) sharing
algorithms are not distributed. An example of game theoretical perspec-
tive of inter-operator spectrum sharing has been given in [14]. A one-shot
Stackelberg game 1 is proposed to model a network where secondary op-
erators can use the frequencies of the primaries only as long as they do
not need them. In our research work no hierarchy is introduced and the
repetitive nature of the game is considered.

1In game theory, a Stackelberg game is a strategic game whose players are a leader and
a follower and they compete on quantity. The leader is the first to move, then the follower
decides its action accordingly.
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Cognitive Radio

With reference to the multi-cell context and, more in general, to multi-
transmitter networks, another recent technology must be mentioned as
well, for the sake of completeness: the Cognitive Radio (CR) . This as-
sumes that the nodes of the network have the possibility to adapt their
behavior according to the presence of other transmitters and decide on
the strategy to take. CR is made possible by the introduction of Soft-
ware Defined Radios (SDR) , where most of the radio interface parame-
ters are no longer fixed in the hardware but are decided by a controlling
software and can be tuned at runtime. According to the FCC (Federal
Communications Commission) definition, SDR encompasses any ”radio
that includes a transmitter in which operating parameters such as fre-
quency range, modulation type or maximum output power can be altered
by software without making any changes to hardware components that
affect the radio frequency emission”. Mitola [37] took the definition of
an SDR one step further, and envisioned a radio that could make deci-
sions as to the network, modulation, and/or coding parameters based
on its surroundings, and called this a ”cognitive radio”. Di Benedetto et
al. [25] defined it a new way of thinking and researching about wireless
communications; indeed, CR is currently one of the key candidates for the
fourth-generation (4G) wireless systems. The whole idea behind CR use is
that it should prompt effective spectrum use, since intelligence and learn-
ing processes aid the radio system to perform the access in an efficient
way. The system collects information about its operating environment
and uses them to adapt its internal state and its operating parameters in
such a way that highly reliable communication and efficient utilization of
the radio system can be achieved. Thus, the key words are awareness,
learning, adaptivity, reliability and efficiency [17]. All these capabilities
have been applied to the case of spectrum sharing among transmitters
in order to increase transmission rates by smartly using available infor-
mation. In [24] the authors present some results on the fundamental in-
formation and communication limits of CR by modeling the concept of
cognition in the form of nodes having side information about the wire-
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less environment. They explore a situation (see Figure 4) in which two
transmitters, say X1 and X2, can send their data to two distinct receivers,
say Y1 and Y2, at the same time and in the same band of frequencies just
supposing that one of them is a cognitive radio and has a priori knowl-
edge of what the other is going to transmit (by means of a certain “genie“).
Having this context in mind they explore the achievable region for such
channels, called cognitive radio channels.

Figure 4: The cognitive radio channel [24]

In [17, 37] the issue of coexistence of licensed and unlicensed users is
considered. Spectrum pooling is addressed as a mechanism where the cur-
rent spectrum owners allow portions of their spectrum to be utilized by
unlicensed users, which apply the CR system. As some portions of the
spectrum are rarely used by the owners, the other nodes can use them as
long as they are sensed free and release the resource when it is required
by the entitled node. In this case users are divided into two classes, li-
censed and unlicensed (also primary and secondary), with reference to the
spectrum access priority (see Figure 5 for an example); the latter use their
cognitive capabilities to detect holes in the spectrum and occupy them un-
til when they are needed by the former. This is the approach proposed in
many research projects about cellular networks, in opposition to the one
that we propose in Chapter 4, where an egalitarian system is considered
with all the nodes competing for the access to the common resources. In
that case the competitors are Base Stations of different cells who are not
supposed to have cognitive capabilities and bargain for the access to the
common medium.

In [65] Scutari et al. as well face the issue of hierarchical cognitive net-
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Figure 5: Hierarchical cognitive radio network [65]

works and provide a game theoretic model of the system, with secondary
users competing against each other to maximize their performance, un-
der the constraint on the maximum interference induced to the primary
users. They design decentralized algorithms able to reach the equilibrium
points with minimal coordination among nodes.

Another evidence of the increasing interest addressed to the problem
of resource sharing is represented by the significant number of projects
and research initiatives approved all over the world in the past few years.
Most of them aim at improving the efficiency in resource usage in order
to avoid wastes by resorting to some of the aforementioned techniques
(i.e., CR, SDR, advanced signal processing). Some examples are:

• SAPHYRE (Sharing Physical Resources), which investigates a vol-
untary physical resource sharing in cellular networks, with an in-
novative use of radio spectrum and network infrastructure under
economic and regulatory constraints. In particular, the use of game
theoretic models and cross-layering is proposed.
The topic generalizes what discussed in this thesis by extending the
definition of resource to the physical devices (e.g., antenna, masts).
Moreover, innovative signal processing techniques for interference
cancellation are developed.

• E3 (End-to-End Efficiency), which aims at integrating cognitive wi-
reless systems in the Beyond 3G (B3G) world, evolving current het-
erogeneous wireless system infrastructures into an integrated, scal-
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able and efficiently managed B3G cognitive system framework.
With respect to this thesis, the focus is on the cognitive paradigm.

• SOCRATES (Self-Optimization and self-Configuration in wireless
networks), which aims at the development of self-organization meth-
ods to enhance the operations of wireless access networks, by in-
tegrating network planning, configuration and optimization into a
single, mostly automated process requiring minimal manual inter-
vention.
With respect to this thesis, the focus of such project is on algorithms
for the self-configuration of the devices.

• PHYDYAS (Physical Layer for Dynamic Spectrum Access and Cog-
nitive Radio), which exploits an advanced physical layer to over-
come the lack of flexibility of the classical OFDM. In particular, a
filter bank-based multi-carrier transmission is used for the support
to dynamic access spectrum management and cognitive radio.
The main difference with this thesis is that we do not consider any
physical layer improvement.

• WINTSEC (Wireless Interoperability for Security), which explores
a mix of complementary solutions to overcome the barriers for wi-
reless interoperability across different security agencies, enabling
first responders with incompatible legacy radios to communicate in
a crisis situation. SDR is exploited.
The scenario taken into consideration in this case is quite different
from that of this thesis; the resource management is aimed at ad-
dressing particular situations of danger.

• AN P2 (Ambient Networks Phase Two), which aims at developing a
Multi-Radio Resource Management that provides an advanced joint
management of radio resources, including access advertisement, ac-
cess discovery, access selection and load sharing between different
radio accesses.
In this thesis all the functionalities of call admission are not consid-
ered.
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Cross-layer

Another important research topic related to the channel utilization ef-
ficiency is represented by the cross-layer approach. Breaking up the tra-
ditional way of handling interference requires a cross-layer optimization
too. Cross-layering is a new way to manage the division of functionalities
in the protocol stack that has been introduced few years ago. The tradi-
tional way to do that was the division of network functionalities among
layers, each one concerning with a particular problem and with a sharp
separation of one another. Cross-layering aims at increasing overall per-
formances by reducing this separation and introducing a flow of infor-
mation between different layers, even though not adjacent. In particular
situations and/or environments, these additional data can be exploited
by protocols to take more proper decisions. It was introduced with re-
gard to wireless systems because of three main reasons: the unique prob-
lems created by wireless links, the possibility of opportunistic commu-
nications on wireless links, and the new modalities of communication
offered by the medium. In such networks the channel creates many new
problems that cannot be handled in the framework of layered architec-
tures, so this new idea has been widely explored. With reference to the
area of spectrum sharing and interference management, for example, it
has been shown that interference can be efficiently reduced by jointly per-
forming signal processing and resource allocation (for example see the
SAPHYRE project [3]). Moreover, resource allocation can be more effi-
cient if adapted to the channel state information and link quality, that is
why a joint PHY/MAC design is often considered useful. The adaptation
of networking protocols is also a viable solution. A lot of work has been
done showing improvements with respect to the classical ISO/OSI mo-
del. Several algorithms have been proposed which operate using infor-
mation from other layers. In this way, some of the main points of strength
of the traditional model, i.e., modularity and de-coupling, are violated in
the name of efficiency and improvement of performances (see Figure 6).

This observation has led to criticism against the change of a consol-
idated paradigm. On the other side, considering the problems and the
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Figure 6: Different kinds of cross-layer design proposals [72]

new challenges introduced by the wireless channel with respect to the
wired case, on which the standard architecture was tailored, the intro-
duction of additional information flows is not so bad. Let’s think about
the fact that the bad performance of TCP protocol on wireless links is
mainly due to its association of packet losses with network congestion,
which is almost true in the wired (error-free) case but not for sure in the
wireless (error-prone) case. For example, knowledge about the channel
quality and the level of interference experienced by the receiver(s) may
be important for adapting transmitters’ behavior, e.g., by the variation
of the coding and modulation schemes or the reduction/increase of the
application data rate [19, 43]. In many cases, especially in presence of a
central base station deciding the scheduling and/or the resource alloca-
tion, more chances are given to stations seeing a better channel. In sev-
eral OFDMA systems proposals, the resource allocator assigns each sub-
channel to the user characterized by less fading on those frequencies, thus
requiring less power expenditure to transmit [80] (multiuser diversity). Of
course, this choice may result in a lack of fairness (both short-term and
long-term) for stations with strong persistent fading, so QoS parameters
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must be taken into account when associating a utility function to a node
as well. In this way, several proposals of channel-aware schedulers and
joint Scheduling/Resource Allocation have been evaluated. Badia et al.
in [13] describe the principles of joint scheduling and resource allocation
for IEEE 802.16 networks operating in AMC mode (Adaptive Modulation
and Coding), and discuss the critical role played by physical layer con-
siderations. The scheduler determines which packets must be passed to
the allocator and their order (according to an internal scheduling policy);
the allocator selects for transmission the subset of them which maximizes
the advantages of multiuser diversity. This is the same system model that
we have adopted for the work presented in Chapter 3 and that is summa-
rized in the papers [10, 11]. In our case, a game theoretical perspective is
presented. In [36, 41] a mathematical formulation of the problem is pro-
vided together with possible algorithms. Short-term fairness is difficult
to reach, but long-term fairness can be guaranteed. In [69] Song et al.
provide a theoretical framework for cross-layer optimization for OFDM
wireless networks with multiuser frequency-selective fading. They build
a bridge between the MAC and the PHY layers and balance the efficiency
and fairness of resource allocation. They formalize the problem as the
maximization of the average utility of all active users subject to certain
constraints due to resource allocation schemes. In [70] the same authors
depict possible algorithms for efficient and fair resource allocation in such
systems. Two surveys about cross-layer proposals are reported in [64,72],
with the latter giving also some hints on possible evolutions.

In all the analysis that we present in the next chapters, some cross-
layering is always exploited to help base stations in taking resource allo-
cation decisions. In particular, channel state information is used with the
aim to exploit the multiuser diversity.

2.1 Introduction to LTE

This section is meant to give some basic information about the LTE
standard as a support for understanding the other Chapters, where the
LTE cellular networks are used as the reference scenario. For more in-
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depth details the reader can refer directly to the standards [5, 6], or to
some books [22, 23, 68].

LTE is a set of improvements to the Universal Mobile Telecommu-
nications System (UMTS) introduced in the 3rd Generation Partnership
Project (3GPP) Release 8 [4]. It represents efficient packet-based radio ac-
cess networks allowing high throughput, low latency and low operating
costs. Small enhancements to LTE specifications have been introduced
in Release 9 [6]. The next step for LTE evolution is LTE-Advanced, cur-
rently standardized in Release 10 [5], the major candidate technology for
the so-called International Mobile Telecommunications (IMT)-Advanced.

In the LTE standard, the Base Station managing a cell is called eNodeB
(eNB) while all the registered devices are referred to as User Equipments
(UE). In the rest of this work we will use interchangeably the terms Base
Station (or BS) and eNB. Rel-8 LTE supports both Frequency Division Du-
plexing (FDD) and Time Division Duplexing (TDD) and uses multiple
transmission bandwidths (i.e., 1.4, 3, 5, 10, 15 and 20 MHz) and multi-
ple modulation schemes (i.e., QPSK, 16QAM and 64QAM) allowing peak
rates of 300 Mbps in downlink and 75 Mbps in uplink. In the uplink, in
order to maintain user orthogonality in frequency domain, a Single Car-
rier Frequency Division Multiple Access (SC-FDMA) is adopted. Uplink
and downlink are separated in frequency.

The physical layer for the downlink uses an OFDMA access scheme.
In this way, a multi-user transmission is possible by exploiting different
sub-carriers for different users. In particular, the frequency plane in LTE
is organized into groups of 12 adjacent sub-carriers. Hereinafter, these
groups will be referred to as (frequency) sub-channels. Sub-carriers have a
15 kHz spacing, for a total bandwidth of 180 kHz. The OFDMA scheme is
used in combination with Time Division Multiple Access (TDMA), such
that the resources are partitioned in the time-frequency plane, i.e., groups
of sub-carriers for a specific time duration. Such time-frequency blocks
are called Resource Blocks (RBs). The time-frequency resources are sub-
divided in the following way: the time is organized in radio frames of
10 ms, which are further subdivided into ten 1 ms sub-frames. Each sub-
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Figure 7: The LTE downlink physical resource [23]

Figure 8: Structure of an LTE frame

frame is split into two 0.5 ms slots. Each slot comprises 7 or 6 OFDM
symbols, depending on the cell configuration. Such a parameter configu-
ration makes LTE suitable for high mobility networks, up to 350 or even
500 km/h. Figures 7 and 8 show graphically the time-frequency organi-
zation.

The use of the OFDMA scheme in downlink enables OFDM to take
advantage of the multiuser diversity. Each UE sends periodically a feed-
back to the eNB with the indication of the frequency-selective channel
conditions it is perceiving. This feedback is called Channel Quality Indi-

21



Figure 9: Downlink channel-dependent scheduling in LTE [22]

cator (CQI) and can be exploited by the eNB to perform adaptive user-to-
subcarrier assignment, enhancing considerably the total system spectral
efficiency compared to single-user OFDM systems. This is called channel-
dependent scheduling and is represented in Figure 9. Actually, what hap-
pens is that the transmitter can adapt its modulation and coding scheme
(MCS) according to the receiver’s channel quality. As reported in Table 1,
LTE identifies 15 different values of CQI, where ECR stands for Effective
Code Rate and represents the robustness of the selected coding scheme.
Hence, the MCS determines the quantity of bits that can be actually trans-
mitted in the sub-frame on a certain sub-channel.

It is important to note that the resource allocation decision can be
taken also every sub-frame. This is the shortest time-scale introduced by
the standard, so as to exploit the multiuser diversity as much as possible
even in high mobility contexts (i.e., with a short channel coherence time).
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CQI Modulation ECR Spectral Efficiency
1 QPSK 0.0762 0.15
2 QPSK 0.1172 0.23
3 QPSK 0.1885 0.38
4 QPSK 0.3008 0.6
5 QPSK 0.4385 0.88
6 QPSK 0.5879 1.18
7 16QAM 0.3691 1.48
8 16QAM 0.4785 1.91
9 16QAM 0.6016 2.41

10 64QAM 0.4551 2.73
11 64QAM 0.5537 3.32
12 64QAM 0.6504 3.9
13 64QAM 0.7539 4.52
14 64QAM 0.8525 5.12
15 64QAM 0.9258 5.55

Table 1: LTE MCS and CQI

The main parameters for the downlink access are summarized in Table 2.

2.2 Game Theory applied to communication net-
works

In this section we introduce the main concepts of the game theory that
are used in the next chapters. Therefore, only a subset of all the possi-
ble concepts belonging to this discipline are described and also their pre-
sentation is rather divulgative and not technical. In particular, the focus
is mainly on static games in normal form with perfect information and
on the Nash Bargaining theory. The aim is to give just a rough idea to
the reader not confident with this theory. For a more thorough analysis
please refer to [28, 29, 58].

In recent years, communication networks researchers have devolved
an ever increasing interest towards game theory as a tool to analyze con-
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Parameter Value
Downlink bandwidth [2110, 2170] MHz
Possible transmission band-
widths

1.4, 3, 5, 10, 15 and 20 MHz

Subcarrier bandwidth 15 kHz
RBbandwidth 180 kHz
RBsub−carriers 12
RBOFDMsymbols 7 (or 6)
Frame duration 10 ms
TTI–Transmission Time Interval
(i.e., sub-frame duration)

1 ms

Table 2: Main LTE downlink parameters

flicts among agents. Game theory is a branch of mathematics that pro-
vides a tool set for analyzing optimization problems with multiple users
(players) having conflicting objective functions. Developed since the first
half of the 20th century, this discipline has been widely applied to eco-
nomics (both micro and macro), political science, psychology, logic and
biology. Starting from a few years ago it has also been considered in
Computer Science and Engineering, where several game theoretic mod-
els have been proposed for congestion control, routing, power control,
topology control, trust management and other issues in wired and wire-
less communication systems. The strength of this mathematical tool is
that it lets us to naturally model the interaction among interdependent
decision makers where no centralized control is present.

The fundamental elements of the theory are: Game, player, strategy
and payoff . A Game describes an interaction among a set of agents (not
necessarily humans), the players, which try to optimize their utility func-
tion, the payoff, by performing some choices, the strategies. Each player’s
payoff depends not only on its choices but also on the others’, and in
most cases there is a conflict, i.e., increasing one player’s utility implies
decreasing someone else’s. A fundamental assumption that is behind this
theory is the ”rationality“ of the players in performing their choices. In
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other words, each player does always the best action 2 that it can do to
optimize the prefixed payoff, according to the level of information it is
provided with.

A game G is typically formalized as a triple

G = (P,S,U)

where P is the set of players, S is the strategy space and U is the set of
payoffs, one for each player. We have:

• P = {1, . . . , N}, where N is the number of players;

• S = S1 × · · · × SN , with Si the strategy space of user i;

• U = (u1, . . . , uN ), where ui = ui(s1, . . . , sN ) is the payoff of user
i and is defined as ui : S → R (for what concerns this thesis we
can assume that payoff functions are real functions, without loss of
generality).

The game theory deals with the formulation and resolution of games,
where solving a game means identifying the strategy that in the end will
be played by each player and the related outcome that will be reached.
The formulation is not always an obvious operation since it depends on
the rules followed by the agents in their interactions. Such constraints
may be imposed by some regulator, the society, the nature itself, the tech-
nology or, in general, by the environment. This has led to the proliferation
of a big variety of games. Possible taxonomies are:

• static vs dynamic games. In the case of a static game all the players
do their choices independently without having any information on
each others, as if they were moving at the same time. On the other
hand, in the dynamic case moves are not simultaneous but ordered.

2In this simple treatment we use interchangeably the terms action and strategy. They
coincide in the case of static games, but not in general. An action is one of the choices (or
moves) that a player can perform at some point in the game. A strategy is something more
structured and indicates a complete plan of action for whatever situation might arise; this
fully determines the player’s behavior. A player’s strategy will determine the action the
player will take at any stage of the game, for every possible history of play up to that stage.
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A particular category of dynamic games is represented by the re-
peated games, i.e., a game GR where each step is the repetition of the
same static game G (called stage game).

• complete vs incomplete information games. In the case of complete
information everybody’s payoff is common knowledge, while in the
other situation there is some uncertainty;

• perfect vs imperfect information games. In the former case each player
has always a complete view of the moves of the others (e.g., the tic-
tac-toe game), while in the latter there is some knowledge lack (e.g.,
card games);

• non-cooperative vs cooperative games. In the former games players
strictly compete and cannot make deals, while in the latter they can
negotiate with one another and form joint strategies.

When a player has to choose its strategy, it has to take into considera-
tion the possible choices of the others and all the possible revenues it can
obtain. When referring to possible strategies, some typical definitions are:

• strictly dominated strategy. A strategy si ∈ Si of player i ∈ P is
strictly dominated by strategy s′i ∈ Si if, for each strategy of the
other players, s′i always makes him reach a better payoff than si;

• Nash equilibrium. The strategies (s∗1, s
∗
2, ..., s

∗
N ) are a Nash equilib-

rium if, for each player i, s∗i is the best choice (also best response) he
can make given the strategies played by the others, i.e.:

∀i ∈ P, ui(s∗i , . . . , s
∗
i−1, s

∗
i , s
∗
i+1, . . . , s

∗
N ) ≥

ui(s∗i , . . . , s
∗
i−1, si, s

∗
i+1, . . . , s

∗
N ) ∀si ∈ Si

(2.1)

In other words, no player has an interest in deviating from that sit-
uation;

• Pareto efficiency. The strategies (s1, s2, ..., sn) are Pareto efficient if no
player can improve its payoff without making another player worse
off.
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• mixed strategy. A mixed strategy for a player is defined as a prob-
ability distribution on the action space. It can be interpreted as a
player’s uncertainty about what the other players will do [29]. Each
single strategy si in the strategy space can be seen as a particular
mixed strategy where the probability associated to si is 1 while for
the others it is 0. This is referred to as a pure strategy.

A game can admit zero, one or more Nash equilibria if the only pure
strategies are considered. A Nash equilibrium, if present, is considered as
the natural evolution of the game even if it is not Pareto efficient. Actually,
in 1950 the famous mathematician John F. Nash proved a theorem about
the existence of a Nash Equilibrum.

Theorem 2.2.1 (Nash, 1950) In the n-player game, if n is finite and the action
space for each player is finite as well, then there exists at least a Nash equilibrium,
possibly involving mixed strategies.

There are several particular types of games for which some theoretical
results (not valid in general) have been derived. Among them there are
the zero-sum games [79] and the coordination games [20]. The former
include all those games where the sum of the payoffs for each strategy
set is always zero, i.e., a player’s gain (or loss) of utility is balanced by
the loss (or gain) of the utility of another player(s). Instead, coordination
games are a class of games with multiple pure strategy Nash equilibria
in which players choose the same or corresponding strategies. A typical
example is represented by the ”Battle of the sexes“, very well-known in
the literature [49].3

A generalization of the Nash equilibrium concept is represented by
the subgame perfect (Nash) equilibrium, which is used in the context of
dynamic games where the moves of the players are organized into steps
(i.e., first a player, then another, and so on). In this case it is important to
distinguish the concept of action from that of strategy: the former refers

3In game theory, battle of the sexes (BoS), also called Bach or Stravinsky, is a two-player
coordination game. It can be formulated as follows. Imagine a couple that want to go to the
cinema. The husband would most of all like to watch an action movie. The wife would like
to watch a romantic movie. Both would prefer to stay together and watch the same movie,
but which one?
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to the choice that a player can do in a certain situation, while the latter
is the set of choices that the player can perform according to the situa-
tion he has to deal with (i.e., according to what the others have chosen
before him). We say that a strategy profile is a subgame perfect equilib-
rium if it represents a Nash equilibrium of every subgame of the original
game. Roughly speaking, without going into the details of the definition
of the subgame concept, if (a) the players played any smaller game that
consisted of only one part of the larger game and (b) their behavior rep-
resents a Nash equilibrium of that smaller game, then their behavior is a
subgame perfect equilibrium of the larger game.

Game theory has been used to address a variety of interrelated re-
source allocation problems in communication networks. For example, it
has been applied to CDMA power control problems and medium access
control in ALOHA systems [51,52], in the analysis of ad hoc networks [73]
and of the Internet and its protocols [61]. A survey of its applications in
wireless communications is reported in a recent book of MacKenzie and
DaSilva [50].

As already mentioned in the previous section, there is a quite rich lit-
erature on applications of game theory to spectrum conflicts in wireless
systems. Preliminary studies of the spectrum sharing problem from a
game theoretic point of view have focused on the search for fair, effective,
and self-enforcing protocols, as in [27]. The authors argue that players
should be compelled to use proportional fair and Pareto efficient oper-
ating strategies. The strategy enforcement idea is backed by the use of a
repeated game where users can punish one another if deviating from a de-
sired strategy. Specifically, if a player defects from the proposed fair and
globally efficient power strategy, the other players would also defect by
punishing it with a lower utility corresponding to the Nash equilibrium
strategy. Consequently, no player has any incentive in defecting. In [46]
the authors characterize the conditions under which the Nash equilib-
rium is inefficient for a two player spectrum sharing game, and introduce
a distributed coordination algorithm in order to improve the performance
of the system by optimizing the frequency allocation among the users.

The spectrum sharing problem in the context of cognitive radio has
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been formulated as both a static and a dynamic (repeated) Cournot game
[57]. 4 Here, the setup is described as an oligopoly market, and the ob-
jective is to maximize the payoffs of the secondary users. In [77], a re-
peated game is analyzed for a spectrum sharing situation in cognitive
radio that can be described as a ”prisoner’s dilemma” game. 5 In order
to achieve higher outcomes, the iterated prisoner’s dilemma is used by
applying different decision rules, which indicate the moves of a player
in response to the actions of the others. A comparison of several algo-
rithms is performed. A further work is the power control game presented
in [31]. In this case, a pricing-based approach is used to obtain efficient
operating points. It is found that when a cost function is inserted into the
defined utility function, the players reduce their powers simultaneously
and achieve higher payoffs at the Nash equilibrium point.

Cooperative and non-cooperative schemes for power control optimiza-
tion in interference networks have been proposed [9]. Cooperation has
been used to agree on a fair allocation of the spectrum in [75] too. An
interesting application to the interference channel of the concepts of co-
operative game theory such as coalitions, co-ordination and Nash Bar-
gaining Theory is given in [45, 47, 48, 53]. In particular, in [45] Larsson et
al. discuss the application of both cooperative and non-cooperative game
theory to the flat-fading interference channel, and give some examples
for the SISO, MISO and MIMO case. In [47] and [48] Leshem and Ze-
havi address the case of a frequency-selective interference channel, with
both non-cooperative and cooperative perspective. They show how, un-
der some conditions about the orthogonality of the access, the Nash bar-

4A Cournot game is a game between two firms which are the only producer of a certain
good, i.e., in a duopoly condition. The price they receive is a decreasing function of the
total quantity of goods that the firms produce. That function is known to both firms. Each
chooses a quantity to produce without knowing how much the other will produce

5The prisoner’s dilemma is a canonical example of a game that shows why two individ-
uals might not cooperate, even if it appears that it is in their best interest to do so. It can
be formulated in the following way: << Two men are arrested, but the police do not possess
enough information for a conviction. Following the separation of the two men, the police offer both
a similar deal. If one testifies against his partner (defects/betrays), and the other remains silent (co-
operates/assists), the betrayer goes free and the cooperator receives the full one-year sentence. If both
remain silent, both are sentenced to only one month in jail for a minor charge. If each testifies against
the other, each receives a three-month sentence. Each prisoner must choose either to betray or remain
silent; the decision of each is kept quiet. >> [63].
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gaining solution can be modeled as a convex optimization problem and
solved through a proper algorithm. In Chapter 4, when discussing the
non-orthogonal spectrum sharing, we consider a system model similar to
this but without the assumption on the orthogonality of the access. In that
case, we show how the problem becomes non-convex and thus of tough
solution.

2.2.1 The Nash Bargaining Problem

Let P = {1, . . . , N} be the set of players of the game, and H denote
a closed and convex set of Rn representing the set of all feasible payoffs
that the players can get if they work together. We also assume that if
no agreement is reached, i.e., the players do not cooperate, they get a
payoff denoted by d = (d1, · · · , dN ) ∈ H, which is called disagreement
point. Suppose that the set {y ∈ H|yi ≥ di,∀i ∈ N} is non-empty and
bounded. Then, the pair (H,d) is called an n-person bargaining problem.

Within set H, we use Pareto optimality as a selection criterion for the
bargaining solutions. The number of Pareto optimal points might be infi-
nite. Among all of them, the Nash Bargaining Solution provides a unique
result under the following conditions, which represent the characteristics
that a solution is supposed to satisfy in Nash’s theory, and are thus con-
sidered as axioms.

Definition 1 A specific solution to the bargaining problem (H,d), denoted as
φ(H,d), is called a Nash Bargaining Solution (NBS), if the following axioms
are satisfied.

1. Weak Pareto Efficiency: there is no other vector y ∈ H such that ∀i ∈
P, yi > φi(H,d).

2. Individual Rationality: φ(H,d) � d (where � is ≥ element-wise).

3. Invariance: For any affine transformationψ ofH onto itself, ψ(φ(H,d)) =
φ(ψ(H), ψ(d)).

4. Independence of Irrelevant Alternatives: For any closed convex set G ⊆ H,
if φ(H,d) ∈ G, then φ(G,d) = φ(H,d). This means that if the solution
belongs to a subset of H, it is also the solution of the bargaining problem
restricted to that subset.
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5. Symmetry: If H is invariant under all exchanges of players, then ∀i, j ∈
P, φi(H,d) = φj(H,d).

Given the above axioms, there is only one NBS satisfying them, as
stated in the following theorem [59].

Theorem 2.2.2 (Existence and Uniqueness of NBS) There exists a unique
solution to the bargaining problem that satisfies all the axioms in Definition 1,
given by

φ(H,d) = argmax
h∈H,hi≥di∀i

N∏
i=1

(hi − di) (2.2)

Following these theoretical notions, the cooperative game in a multi-
player system can be seen as follows. Every player has its own payoff
function, which is upper bounded and has a nonempty, closed and con-
vex support. The NBS can be regarded as a way to maximize all these
functions at the same time, i.e., to find an operating point in H which is
optimal and fair (i.e., not good only for some players).

In this thesis work we resort to the Nash bargaining theory in Chap-
ters 3 and 4. In the former, we try to model the trade-off between end
users’ fairness and spectrum allocation efficiency as a bargaining problem
and apply this theory to find the solution. In the latter, we consider this
approach for studying the capacity region of the non-orthogonal spec-
trum sharing.
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Chapter 3

Intra-cell resource
allocation

As a first step for the analysis of efficient resource allocation we start
from the single cell scenario, where the Base Station (BS) managing the
cell has to serve a certain number of registered users trying to guarantee
a minimum level of service to each one of them and, at the same time, to
exploit the available resources as much as possible. In particular, in the
following the focus is on downlink transmissions.

Radio resource allocation on wireless channels is known to involve
several design choices from the algorithmic point of view. One key issue
involves the definition of the main allocation objective: since the channel
quality is perceived differently by different users, it may be thought of
allocating most of the resources to the users with the best channel condi-
tions. However, this choice leads to unfairness from the network users’
perspective since those with a bad channel (e.g., located further from the
BS) will starve. Alternatively, some form of fairness may be sought, which
imposes sometimes not to allocate the users with the best channel condi-
tions (and thereby potentially decreasing the allocation efficiency). Typi-
cally, this trade-off is solved with a priori choices, by fixing some param-
eters. However, these solutions are not easy to set up, nor they can be
dynamically adapted. Conversely, game theory can be used to solve this
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problem in a more efficient manner, by putting the burden of the trade-off
resolution on some preference utility definitions, which are much easier
to define from the operator’s standpoint, and also enable dynamic adap-
tation of the allocation.

A sample challenge of this kind arises in multiple access schemes us-
ing OFDMA, such as the downlink of LTE systems. Assume that several
users need to be served by allocating packets belonging to their flows on
the OFDMA resource block (i.e., a frequency sub-channel for a time slot).
Since their perceived channel quality is different (and, additionally, varies
from one sub-carrier to the other) the problem becomes a complex task
(combinatorial in nature), in view of the high number of possible alloca-
tions among which to choose. Additionally, the aforementioned trade-off
between maximizing the throughput and achieving fairness (at least in a
long term perspective) further complicates the problem. In the LTE stan-
dards, the design of policies for resource management is intentionally left
open to allow developers to implement their own strategy of choice.

To study the problem through a game theoretical approach, we follow
the model proposed in [13]. Here, a modular representation is introduced,
where the Radio Resource Management is split between two functional
entities, i.e., a packet scheduler and the actual Radio Resource Alloca-
tor (RRA) (see Figure 10). The former determines which packets, taken
from the different flows, are candidates to be served in the next alloca-
tion round. The latter associates the packets with the available resources.
In this choice, the RRA exploits a degree of freedom represented by the
number of packets selected by the scheduler, which is greater than the
number of available resources (i.e., time-frequency blocks). Indeed, the
allocator selects for transmission a subset of them with the aim of max-
imizing the advantages of multiuser diversity. In this case only a loose
cross-layer is introduced, guaranteeing a certain modularity between the
involved entities. The resulting allocation can be regulated according to a
trade-off between two contrasting objectives, i.e., that of throughput max-
imization, which is achieved by selecting the packets only according to a
channel quality rationale, and fairness among the flows, which requires
to pursue equity among the achieved rates. Indeed, this trade-off is re-
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Figure 10: High level view of the system model

flected by the number of packets selected by the scheduler: when it is
minimum, i.e., only the packets that fit the set of available OFDMA re-
sources are selected, all packets are allocated and the resource allocator
has no choice. Here the allocation is determined only by the credit-based
scheduler, which guarantees fairness. Conversely, if the number of se-
lected packets is high, the resource allocator can restrict the selection to
the packets of the users with the best quality, entirely neglecting any fair-
ness among flows.

Within this framework, in this chapter we propose a game theoretical
view of the system aimed at the resolution of this trade-off between con-
trasting objectives. In fact, the idea is to define two virtual players, one
representing the scheduler needs, i.e., to ensure fairness among the users,
and the other reproducing the resource allocator perspective, i.e., to select
those users which are experiencing better channel quality. A coordination
game is established between these two players, which leads to the deriva-
tion of simple yet effective algorithms to identify a Pareto-efficient trade-
off point. Both non-cooperative and cooperative models are used. In the
former, we suppose that the two players do not cooperate and act only
to optimize their own payoffs. In the latter, a cooperation is established
between the players, which aim at optimizing a common utility function
still being rational.
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Figure 11: Detailed view of the two layer system model for the RRM

3.1 System Model and Game Theoretical view

Call L the number of physical resource blocks that the resource alloca-
tor is entitled to assign. This is subject to the constraint L ≤ Lmax, where
Lmax is the maximum number of allocable resources. L = Lmax corre-
sponds to assigning every resource block (i.e., saturation condition). The
value assigned to L is communicated to the scheduler by the resource
allocator (cross-layer communication). Upon knowing L, the RRM de-
termines a number D of packets the scheduler can send to the resource
allocator, where in general D ≥ L. The exact choice of D influences the
entire allocation. As a matter of fact, if D = L the resource allocator has
no degree of freedom as to which packets to allocate (while, obviously, it
must allocate the packets to the best channels as perceived by the users).
By increasing D, the resource allocator can achieve a higher throughput
by selecting only L packets out of D, according to a channel-aware pol-
icy, although at the price of a possibly decreased fairness. A graphical
representation of the system is given in Figure 11 (whose PHY layer is
drawn from an LTE scenario, where the resources to be allocated are the
frequency sub-channels), while Figure 12 shows the qualitative impact of

35



Fairness Throughput
D = L Max Min
D > L ⇓ ⇑

Figure 12: Impact of D on fairness and throughput

D on fairness and throughput.
The communication between the two entities is realized through an

attempted list of candidate packets for transmission. The scheduler fills
it while the RRA empties it. The length of this buffer is exactly D. In
particular, the resource allocation in Figure 11 takes into account only the
frequency domain since it is implicitly assumed that the allocation algo-
rithm is run in every sub-frame, which corresponds to the finest granu-
larity possible according to the LTE standard.

The choice ofD determines a trade-off between the possible objectives
of throughput and fairness. Through a process of abstraction we can see
the scheduler-RRA as a two player game. The scheduler and the RRA
are the players of a game whose aim is the decision of the value for D.
Both players make a proposal sj , with j = 1, 2, respectively (i.e., s1 for
the scheduler and s2 for the RRA). The game is inspired by a particular
type of coordination games [20], where two players get non-zero payoff
only if they converge on a common agreement (see Section 2.2). 1 In our
case, if proposals s1 and s2 coincide, D is assigned their common value.
However, the choice of s1 and s2 is also done according to the utility of
the proposer, i.e., the fairness for the scheduler and the throughput for
the RRA, respectively.

Consider a network scenario with M , M > 2, network users (in this
case we assume one data flow per user); these are not to be confused with
the two “virtual” players of the game, i.e., the scheduler and the RRA. We
model the system as a static game in normal form, as follows:

• The players are the scheduler and the RRA.

1One can think of this situation as a generalization of the “battle of the sexes” game
described in Section 2.2.
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Resource Allocator

L L+1 . . . ML

L 1, Tmin 0, 0 0, 0 0, 0

Scheduler L+ 1 0, 0 . . . 0, 0 0, 0

. . . 0, 0 0, 0 . . . 0, 0

ML 0, 0 0, 0 0, 0 1
M , Tmax

Figure 13: Bi-matrix representation of the game.

• Their action spaces are the set of values of D that can be proposed,
i.e., S1 = S2 = {L,L+ 1, . . . ,ML}.

• Both payoffs are 0 if the proposals s1 and s2 do not coincide, i.e., there
is no agreement on the value of D. This assumption is drawn from
the more general theory about coordination games.

• When s1 = s2, the payoffs are assigned to the throughput T (s1, s2)
for the RRA and to fairness F (s1, s2) for the scheduler, the latter
calculated by using Jain’s index [38],

F =
(
∑M
i=1 xi)

2

(M ·
∑M
i=1 x

2
i )

(3.1)

where xi is the number of bytes transmitted of flow i. We can sim-
plify the notation by writing T (s, s) = T (s) and F (s, s) = F (s).

The last point is arbitrary, as other definitions can be used; the im-
portant requirement is that F (s) and T (s) are decreasing and increasing
in s, respectively. The resulting bi-matrix representation of the game is
given in Figure 13. The fairness is a decreasing function of D: accord-
ing to its definition, its maximum value is 1 while the minimum is 1/M .
On the other hand, the throughput is an increasing function of D vary-
ing in the range [Tmin, Tmax], where Tmin is achieved when no degree of
freedom is given to the allocator, while Tmax is obtained when the RRA
has enough freedom to allocate only the best L resources. Both maximum
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throughput and minimum fairness are reached for D = ML, under the
assumption that there are always at least L packets available for selection
by the scheduler from each queue. All the strategies along the diagonal
are Pareto efficient Nash equilibria. This means that improving the pay-
off of one player results in worsening the other’s outcome. Thus, once the
value of L is fixed, there is no unique evolution of the game and, in any
case, a trade-off is encountered.

In the following we discuss two game theoretical approaches to solve
the game and determine a proper value ofD. Our proposed methodology
enables a dynamic setup of D without any need for a preliminary evalua-
tion, e.g., where D is set to some arbitrary fixed value. The choice of D is
directly derived from the definitions of the contrasting utilities between
which a trade-off is sought (specifically, throughput and fairness). To-
gether with the separation of the resource management process into two
functional entities (scheduler and RRA), this is key to achieve a computa-
tionally efficient online allocation strategy. The approaches described in
the following sections refer to a non-cooperative and a cooperative view
of the system, according to what we presented in [11] and [10].

3.2 Non-Cooperative Approach

In this perspective, the two players are considered as two rational self-
ish entities which try to optimize their own utility function, without any
effort of cooperation among them. To determine a trade-off point, we pro-
pose an algorithm which tries to automatically estimate an efficient value
of D for each sub-frame. The value is chosen considering the entire his-
tory of the game, thus the model we propose is a repeated game with perfect
information. The aim is to reach an acceptable level for both payoffs after
a number of repetitions. The main steps are the following.
1) Both scheduler and RRA randomly pick a value for D within their ac-
tion spaces.
2) If the choices coincide, D is set and the game ends, otherwise an itera-
tive phase starts and goes on until a common value is chosen. Every time
the players disagree, both get zero payoff.
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(a) (b)

Figure 14: Movements in the bi-matrix

The goal of each repetition of the iterative phase is moving towards the
diagonal of the bi-matrix in Figure 13 step-by-step. Each player decides
whether or not to change its previous proposal based on its level of satisfac-
tion, i.e., the ratio between the payoff actually achieved and the maximum
achievable. The higher the satisfaction, the higher the probability that a
player changes its proposal with a value more convenient for the other. If
S D and RRA D are the proposals for D made by the scheduler and the
allocator, respectively, and S s and RRA s the respective levels of satis-
faction when the game is played, we select the changes as follows.

• If S D > RRA D, we are in the lower triangle of the matrix (Fig-
ure 14a). We can move towards the diagonal by going up (decre-
ment of S D), or right (increment of RRA D), or in both directions.
For both players, these options lead to higher values in their own
utility function to the detriment of the other’s, thus the willingness
to change should be a decreasing function of the respective satisfac-
tion level. Thus, we select

Prob{S D up} = 1− S s (3.2)

Prob{RRA D right} = 1−RRA s (3.3)

• If S D < RRA D, we are in the upper triangle of the matrix (Fig-
ure 14b). The diagonal can be reached by going down (S D incre-
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ment), or left (RRA D decrement), or in both directions. The sit-
uation is now reversed, as a deviation in its own action implies a
reduction in the payoff of each player in favor of the other’s. There-
fore, the probability of moving must be an increasing function of the
respective satisfaction, which is obtained for example by choosing

Prob{S D down} = S s (3.4)

Prob{RRA D left} = RRA s (3.5)

In this manner, we define an algorithm whose goal is to lead the choice
of D towards an intermediate value which offers both good through-
put and satisfactory fairness. The approach can still be considered non-
cooperative since there is no common (social) function to be optmized
and each player aims to optimize its own utility function. The algorithm
converges asymptotically towards the diagonal of the bi-matrix in a lim-
ited amount of time, as noted from the simulations run.

3.2.1 Simulation Model and Numerical Results

In this section we present numerical results obtained after a simula-
tion campaign for the validation of the algorithm presented above. We
used the independent run simulation method, with all the measured per-
formance indices characterized by a 95% confidence interval with a max-
imum relative error of 5%.

For these simulations we developed a simple asynchronous event-
driven simulator, written in C++, which reproduces a base station trans-
mitting to some users. The base station contains a packet scheduler man-
aging some flow queues (one for each flow), the RRA module and the ra-
dio channel. The scheduler is credit-based and tries to guarantee fairness
by selecting packets from the queues according to their residual credit.
We considered a simple scenario with two equal priority flows having
always backlogged traffic. The RRA manages the resource allocation ac-
cording to a greedy criterion: the match between resource blocks and
packets is done trying to maximize the total throughput given the channel
condition at each user.
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Parameter value
number of flows 2

packet size 500 bytes
Pr{GOOD → GOOD} 0.9
Pr{BAD → BAD} 0.8

number of sub-carriers 16
time slots per frame 24

frame duration 5 ms
transmission power per slot 1 mW

Table 3: Main system parameters for the non-cooperative approach

We considered an LTE-like access system, with an OFDMA/TDMA
access scheme. The number of frequency sub-channels is 16 while the
time slots for each time frame are 24, for a total of 384 resource allo-
cation blocks. With reference to the channel model, for each frequency
sub-channel we used a two-state Markov channel, a Gilbert-Elliot mo-
del [26,30]. The two channel states in this model are generelly referred to
as GOOD (or gap) and BAD (or burst). Each state has a different prob-
ability of transmitting a bit correctly, of course higher in the former. In
our scenario, a different average noise power has been associated with
each of the two states of the chain, thus different values of capacity can
be reached (according to the Shannon formula). For simplicity, when the
Gilbert-Elliot channel is in the state GOOD, interference and noise power
are treated as a random variable with uniform distribution between 1 and
2 mW; similarly, in case of channel in the state BAD, the interference plus
noise power is uniformly distributed among 1 and 200 mW. The transmis-
sion power per slot is fixed to 1 mW. The channel state is updated after
each time slot to take channel correlation over time into account. The
main system parameters are summarized in Table 3. The assumptions
made are quite simple since the aim of this first bunch of simulations
was just to confirm the relationship between fairness, throughput and the
value of D and to validate the effectiveness of the proposed algorithm.
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Figure 15: Fairness over time for different values of D - non-cooperative
approach

Nonetheless, they are not restrictive for the validity of the considerations
that can be drawn. The performance indices considered for the analysis
are the fairness (Jain’s index) and the normalized throughput, i.e., the ra-
tio between the actual value of cell sum throughput and the maximum
value reachable when D is set the its maximum ML.

In Figures 15– 16 the fairness and the normalized throughput as func-
tion of the time are shown for several values of D having fixed L to 300
packets. They confirm what expected from our analysis: the fairness is a
decreasing function of D while the throughput increases. When D = L,
we have that the fairness is always 1, the maximum value according to
Jain’s index. On the other hand, the normalized throughput has its min-
imum value because the resource allocator has no freedom in the choice
of the packets to transmit and the user diversity is limited.

When D is increased, the two performance indices considered have
contrasting behaviors, as already expressed in the previous analysis: the
fairness undergoes a decrease while the throughput starts to increase. The
introduction of a certain freedom in the allocation choice shows its effects
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Figure 16: Normalized throughput over time for different values of D -
non-cooperative approach

Figure 17: Pareto boundary and operating point of the non-cooperative
algorithm
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and the trade-off among the payoff of the two players becomes evident.
Figure 17 clearly shows this situation: the points along the curve are the
Pareto solutions of the game, one for each value of D, and there is no
possibility to reach a better solution for one player without worsening
the other’s.

In all the figures, the outcome of the game theoretic algorithm is shown
as well. Both in Fig. 15 and Fig. 16, the application of the proposed algo-
rithm for the automatic choice ofD leads to an intermediate value of both
performance indices. This means that each player reduces a little bit its
own payoff in the sake of a better joint solution. In Fig. 17 it is shown
that this new operating point is localized close to the Pareto boundary.
Moreover, the proposed algorithm is quite simple and the convergence to
a common value ofD is extremely fast, thus it is suitable for an online im-
plementation. Indeed, in Figs. 15–16 the warm-up period is quite short,
about 300 ms.

For completeness, we ran other tests by varyingL in the range [100, 350].
In all the cases we obtained that the fairness increased with the value of
D while the throughput decreased. The operating point reached by the
proposed algorithm always approximately lies on the Pareto boundary.

3.3 Cooperative Approach

In the cooperative version we consider the interaction scheduler-RRA
as a bargaining process. The goal is to achieve a balance between the two
interests, with a solution that does not favor either of the players. The two
players are still rational but aim at optimizing a kind of “social welfare”
function. According to this view, we can think of modeling this situation
by using the Nash bargaining theory [56, 59], whose solution represents
a Pareto-efficient fair point, where in this definition fair refers to an equal
distribution of the payoffs between the scheduler and the RRA (i.e., the
two players). According to what described in Section 2.2.1, this theory is
based on some axioms. In order to fit our problem within this framework,
we introduce some assumptions:

1. The payoff functions F (D) and T (D) are properly translated and
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Figure 18: Pareto boundary and NBS

scaled in the interval [0,1], which is admissible since the NBS is (by
axiom) independent of affine transformations. For ease of notation,
in the following we still refer to the transformed functions as F (D)
and T (D), and to the transformed set of joint payoffs (F (D), T (D))
as S .

2. D is treated as a continuous value.

3. F, T ∈ C1(R), i.e., F (D) and T (D) and their first-order derivatives
are continuous functions;

4. When the players propose different values of D, their payoffs vary
with continuity in [0,1] and are upper bounded by the Pareto fron-
tier of all the agreement points (see Figure 18). In this way, the set
of all feasible payoffs, S, is a closed and convex set. This is still sen-
sible since in the bi-matrix in Figure 13 the choice of giving payoff
zero for all the points out of the main diagonal is totally arbitrary.

5. The disagreement point is set to d = (0, 0).

According to the theory we have to find the point

(F̃ , T̃ ) = argmax
(F,T )∈S

(FT ) (3.6)
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Figure 19: Example of D̃ estimation

which means finding the value D̃ that generates (F̃ , T̃ ) = (F (D̃), T (D̃));
it is worth noting that the image of D̃ lies on the Pareto frontier and not
within the convex set S. From a geometric point of view, the NBS rep-
resents the unique point of tangency between the feasible convex set S
and the generic hyperbola FT = k, k > 0. These hyperbolas are the con-
tour lines of the function z(F, T ) = FT (see Figure 18). An advantage
of modeling the system as a Nash bargaining problem is that the theory
guarantees the existence and uniqueness of the solution, in addition to
the fact that this solution represents an equity point between the players.
Sometimes this is also referred to by saying that the NBS realizes the max-
imum utility transfer: by moving away from that point, the proportional
increment in the payoff of one user is less then the proportional decre-
ment sustained by the other user, thus the overall benefit is negative.

To determine the point D̃ we propose an effective yet efficient algo-
rithm. Note that the algorithm is run within the Base Station at every al-
location opportunity, thus it is always the same physical entity that calcu-
lates the value of D. In this way we enable the dynamic estimation of the
optimal value ofD (with respect to the NBS) based on the current network
state, instead of using a static value fixed a priori that could lead the sys-
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tem in an inefficient operating point because unable to adapt to the sys-
tem variations. The algorithm is iterative. The search interval is exponen-
tially reduced, so the complexity is logarithmic. We select some increas-
ing values of D in the initial interval, compute the corresponding points
through the Nash bargaining function z(F (D), T (D)) = F (D)T (D) and
measure the slope of the segments connecting them. Taking into account
that the derivative of a C1(R) function is positive before the point of max-
imum and negative after it, we can restrict the interval of interest (see
Figure 19). For example, if the slopes of the segments are all positive,
then D0 and D1 must be lower than the point of maximum. Thus, the
lower bound of the interest interval can be set to D1. Similar considera-
tions apply to the other combinations of signs, leading to the decision tree
in point 5) below. We iterate until the interest interval is small enough, be-
low a fixed precision ε > 0, meaning that we are sufficiently close to the
exact value. The steps are the following:

1. Set a = L, b = ML. Call I = b− a;

2. if(I ≤ ε) then return (int)(I/2 + a);

3. choose D0 < D1 < D2 in the interval [a, b] such that Di = a+ 1
4 (i+

1)I, i = 0, 1, 2;

4. find the point Pi = (Di, z(Di)), and determine the slopes λ1 and λ2

of the segments P1P0 and P2P1;

5. change the extremes a and b of the interval according to the sign of
the slopes. In particular:

• if(λ1 > 0) then a = D0;

• if(λ1 ≤ 0) then b = D1; jump to 6);

• if(λ2 > 0) then a = D1; jump to 6);

• if(λ2 ≤ 0) then b = D2;

6. update I ; jump to 2);

Note that the value of D is eventually rounded down to an integer.
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Proposition 1 The algorithm described above has complexity Θ(log2( I0ε )), where
I0 is the initial length of the interval of interest.

Proof For any choice of the three points D0, D1 and D2, the pairwise dis-
tance is 1

4I . According to point 4), at each iteration at least one of the ex-
tremes of the interval is changed and its total length is halved. Therefore,
after n steps the length of the interval is In = I0( 1

2 )n. From the inequality
In ≤ ε, we obtain the logarithmic complexity stated in Proposition 1.

3.3.1 Simulation Model and Numerical Results

We verified the effectiveness of the proposed solution by means of
simulation. All the performance indices shown hereafter are character-
ized by a 95% confidence interval with a maximum relative error of 5%.

To carry out our tests we used the ns-3 simulator with the extension
for LTE systems described in [1]. We modified the MAC layer by intro-
ducing our scheduler and RRA modules. The first one adopts a credit-
based policy and guarantees fairness by selecting packets from the flow
queues according to their residual credit. Flows are assumed to be al-
ways backlogged. The second module deals with resource allocation by
using a greedy criterion: blocks and packets are matched in order to max-
imize the total throughput given the channel condition. This informa-
tion is obtained by the base station through periodic feedbacks sent by
its UEs according to what indicated in the LTE standard. We assumed
a low mobility scenario such that the channel coherence time is greater
than the feedback interval, in our case equal to one sub-frame duration
(i.e., 1 ms). The radio propagation model takes into account the effects of
path loss, penetration loss, shadowing and multipath fading. The shad-
owing is modeled according to a log-normal distribution with parame-
ters µ = 0 dB and σ = 8 dB, while for the multipath Jakes’ model [39] is
considered with a number of scatterers between 6 and 12. The penetra-
tion loss is of 10 dB. Each resource unit allocable to users has a duration
of one sub-frame and is made of 12 adjacent sub-carriers with 15 kHz
spacing (equal to one sub-channel of 180 kHz). We considered 80 fre-
quency sub-channels for the downlink plus 20 for the uplink, for a total
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Parameter Value
number of flows 2

packet size 500 bytes
number of sub-channels for the downlink 80

number of sub-channels for the uplink 20
frame duration 10 ms

sub-frame duration 1 ms
downlink transmission power 43 dBm

Table 4: Main system parameters for the cooperative approach

of 20 MHz bandwidth. The scheduling and allocation decisions are made
at the beginning of each sub-frame and are immediately communicated
to the registered UEs. The values for the main system parameters are re-
ported in Table 4, with the air interface defined according to indications
of the LTE standard. The performance indices considered are, as in the
previous section, fairness and normalized throughput.

Figures 20 and 21 show the two normalized payoff functions versus
time for several values ofD. Like in the Figs. 15–16, also here the trade-off
expected from the theory is confirmed: once the value of L is fixed, Jain’s
fairness decreases in D while the throughput increases. From a quantita-
tive point of view, the variation depends on several factors, e.g., the num-
ber of users in the cell, the channel conditions, the transmission power,
the number of available sub-channels. For the sake of completeness, we
ran additional simulations by changing some of these parameters. We do
not report all the results which would not add any information since, in
every case, the mutual relations among the curves for different values of
D were found to be the same.

In both Fig. 20 and Fig. 21 we can note that the proposed algorithm for
the estimation of D leads to an intermediate value of both performance
indices. The two functions cannot be jointly maximized. Indeed, what is
maximized is a common utility function, represented by the product of
each player’s payoff. This situation is summarized in Fig. 22, where both
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Figure 20: Fairness over time for different values of D - cooperative ap-
proach

Figure 21: Normalized throughput over time for different values of D -
cooperative approach
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Figure 22: Pareto boundary of the game and operating point of the NBS
algorithm. The disagreement point is in (0,0)

the Pareto boundary and the NBS point are drawn. This point lies on the
frontier, as expected from the theoretical analysis.

We think it is worth stressing again that the strength of the proposed
solution is its adaptivity. One could think of fixing D a priori, after a
preliminary study, but the system performance is context dependent, thus
the value should be re-computed every time a change occurs, which is not
practical. On the other hand, the algorithm above discussed is able to to
determine at runtime the best value in an efficient way.

3.4 Applications of the Proposed Approach in a
Multi-Agent Context

The algorithms proposed above reach a Pareto efficient point, which
trades throughput for fairness in an efficient and tunable manner. How-
ever, this should not be seen just as a way to set the equilibrium between
contrasting needs. In fact, a direct extension may be identified to cases
where the multiple players of the game are not just virtual agents repre-
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senting different layers of the same entity, e.g., the radio resource manage-
ment procedure at one base station. Rather, the game may be extended
to a wider population of actors, where still coordination is sought but
among different classes of actors.

A first extension of this game theoretical setup involves the interaction
between multiple base stations, possibly belonging to different operators
(this may be also partially applied to the case where the operator is the
same, but the exchange of management policies among the base stations
is made difficult by some externalities). This case, which can be analyzed
in a practical scenario similar to those studied by [54] can be framed in the
context of games with incomplete information. A multitude of games may be
used to represent the different base stations, each one of them using two
virtual players to represent the contrasting needs of throughput and fair-
ness. In other words, the game discussed above, as well as some specific
procedure to solve it, is played several times at the same time. Under
the assumption of perfectly rational players, it may still be assumed that
a Pareto efficient equilibrium point is sought by all base stations. How-
ever, due to interference caused by neighboring cells, a repeated version
of this game may also be considered in order to reach a further equilib-
rium among the games played locally.

A further extension may involve the management of contrasting ob-
jectives among different operators. In this case, the game agents are not
only virtual players which are assumed to blindly pursue the task of find-
ing an efficient trade-off between throughput and fairness (or any other
objective). Rather, the operators also try to drive the whole allocation of
the system toward a favorable allocation for them, which is possibly re-
flected by the virtual players at one base station trying to influence the
outcomes of other games. The extension of such games, which involves
further utility modeling and possibly extension to Bayesian games, is a
possible direction for further study.
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Chapter 4

Inter-cell spectrum sharing

In this chapter we move one step ahead with respect to the previous
one and consider a wider scenario with several cells, each serving several
users. The focus is always on downlink transmissions. We consider the
LTE standard as the reference technology. The main technical details, or
at least those relevant to our treatment, are reported in Section 2.1.

A particular scenario of multi-cell network is hereafter considered, the
multi-operator case, i.e., a multi-cell network where cells are managed by
different operators. Such a situation is quite important and innovative.
Most of the telecommunication companies have their own Base Stations
close to those of other companies, thus a multi-operator context is quite
common. The main innovation of our research work is the exploration
of a concept which might change significantly the current market of this
sector: spectrum sharing among network operators.

Currently, in most countries each operator is allocated a separate por-
tion of the spectrum by the regulator (e.g., by an auction mechanism),
thus no inter-cell inter-operator interference can happen. So, when a BS
performs the resource allocation for its users it needs not to take into con-
sideration what the BSs belonging to the other operators are doing, even
when the cells overlap each other (e.g., think of a site sharing). Only
intra-operator interference needs to be managed, e.g., by setting a proper
frequency reuse factor. On one hand, an orthogonal allocation like that of
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the spectrum gives each operator a clear idea of the amount of spectrum it
is entitled to use, how many users it can serve and the quality of service it
can guarantee. On the other hand, it may result in an inefficient use of the
resource. First of all, operators experimenting a peak of requests cannot
exploit frequencies unused by other operators. Second, the exploitation
of multi-user diversity effects in the downlink of a BS is limited to the fre-
quencies it is assigned, even though it could reach a higher efficiency by
employing frequencies not used by other operators. These are some of the
classical drawbacks related to static allocation schemes. As for the case of
circuit commutation and packet commutation networks [76], in the same
way a fixed orthogonal resource allocation can lead to some flaws in the
efficiency and quality of service guaranteed to the users. The introduc-
tion of a certain (regulated) overlapping between the spectra assigned to
network operators seems a possible way to tackle the problem. Of course,
this solution requires a certain level of signaling/synchronization among
the involved operators to define which part of their spectrum they are
willing to share and how it can be accessed. In the literature, very few
studies have been presented so far that face such a situation. In this thesis
we do not consider the business and legal aspects of this operation, even
though they are interesting. What we investigate is the gain that the com-
panies operating in the telecommunications sector can obtain in terms of
increase of the QoS guaranteed to their users or in terms of higher number
of users served.

Once that a group of operators agree on sharing part of their initial
spectrum, the main problem that arises regards the access to the common
resource. It is important to develop efficient schemes in order to avoid the
“Tragedy of the Commons” problem, very well-known in the game the-
ory literature. 1 This issue is rather challenging from the point of view of
the research. Two directions are possible: orthogonal and non-orthogonal
sharing. In the former, the access to each common sub-channel is mutu-
ally exclusive, thus no inter-operator interference can happen. On the

1The “Tragedy of the Commons” is a classical example of inefficient competition among
selfish rational agents. It arises when multiple individuals, acting independently, selfishly
and rationally will ultimately deplete a shared limited resource even though this leads to a
non-optimal situation for each of them [34].
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contrary, in the latter more transmitters can contemporaneously exploit
the same resource and generate mutual interference provided that the
Signal to Interference-plus-Noise Ratio (SINR) to the respective intended
receivers is still acceptable.

For the orthogonal sharing, we have proposed and evaluated some
algorithms. In particular, an upper bound on the total sum capacity has
been identified that shows the existence of a sharing gain. In Section 4.1
we discuss extensively the main achievements done in this research di-
rection. The implementation and evaluation of the presented mechanisms
has been done by exploiting an ad-hoc extension of the ns-3 simulator that
we designed for the support to the spectrum sharing [12], as explained in
Chapter 5.

Regarding the non-orthogonal case, it basically adds the power con-
trol issue. We can frame it as the so-called frequency-selective interference
channel (FS-IFC) problem, which is still open since the capacity region
of such a channel has not been derived in the general case when power
constraints on each sub-channel and on the whole transmission are con-
sidered [48, 66]. A game can be identified among the BSs, which try to
optimize their payoffs (e.g., sum rates) by choosing an appropriate power
distribution on the sub-channels. The application of the Nash bargaining
theory is quite difficult in this case, since the resulting model is a non-
convex optimization problem, of difficult solution itself, whose rigorous
formalization is made harder as the Nash equilibrium, required in the
Nash product definition, might neither exist nor be unique. The situation
becomes even worse when the achievable rate region gets non-convex,
since in that case the NBS is not defined properly anymore. However, the
solution of this problem is out of the scope of this work.

For both classes of sharing policies, it is important to understand what
are the main factors impacting on the system performance and that are
worth to investigate. A first issue is the time granularity at which the re-
source allocation is performed. Short, intermediate and long time-scale
policies are possible, with the related advantages and drawbacks. Very
frequent allocation choices (short time-scale) are more adaptive to chan-
nel changes and thus make the system more flexible. However, since they
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Figure 23: Example of inter-operator spectrum sharing

are executed very often, a low complexity is a key issue together with the
signaling overhead for synchronization among BSs. On the other hand,
an algorithm run on a long time-scale has less constraints on the conver-
gence time but is less reactive to the channel variations. In our study we
have considered the shortest time scale, i.e., an allocation every LTE sub-
frame, so as to exploit all the channel fluctuations that arise mainly due
to the channel fading.

The number of UEs in the cell and, more in general, the traffic load
are important parameters to be taken into consideration. Some consider-
ations on their effect are made later on. Besides all, a fundamental ele-
ment necessary to justify the spectrum sharing is frequency diversity. If
the channel for each UE of a BS is almost flat, then there is no incentive
in using others’ frequencies since they have the same quality, and thus
there is no added value in resorting to the spectrum sharing solution.
Therefore, the greater the diversity among sub-channels the greater the
expected sharing gain [78].

All over this work, for the sake of simplicity, we consider only sce-
narios with two network operators, each one with its own Radio Access
Network (RAN), managing two adjacent cells. In every cell there is a
BS (called BS1 and BS2, respectively) which manages a certain number
of registered User Equipments (UE) (see Fig. 23). The discussion can be
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naturally extended to a generic number of involved operators.

The remainder of this chapter contains first a description of the work
done for the orthogonal sharing, including the simulation results obtained
after the validation of some algorithms. Then, the non-orthogonal shar-
ing is introduced together with the main issues that come with it.

4.1 Orthogonal Spectrum Sharing

According to the LTE radio interface definition for the downlink (see
Section 2.1), the spectrum is divided into bundles of adjacent sub-carriers,
called sub-channels, and each one of them is assigned to a single user for
an entire time sub-frame. We can model this situation as in Figure 24. We
assume that the original spectra assigned to each operator by the regu-
lation authority are adjacent. The orthogonal access hypothesis is not in
contrast with the sharing concept. We can still talk of a spectrum sharing
context since spectrum allocation is dynamic in time and, more impor-
tant, each operator can exploit additional frequencies out of the original
set it was assigned by the regulator. As a consequence of this assumption,
we have to consider the case when the same (common) resource is needed
by both the operators, i.e., there is an access contention.

In the following of this section, we give first a possible system model
that formalizes the situation under analysis, then we discuss some possi-
ble orthogonal sharing algorithms.

Call K and K respectively the set and the number of available sub-
channels for the downlink. These resources are divided into two subsets,
K1 and K2, of cardinality K1 and K2, assigned respectively to operator 1
and 2. Let αi ∈ [0, 1], i = 1, 2 be the sharing percentage for operator i, i.e.,
the percentage of spectrum it decides to share. Without loss of generality,
we assume that K1 = K2 = k and α1 = α2 = α. The k sub-channels are
split into a part ks = kα that is shared, and a part kp that remains private
to the operator, with k = ks + kp (see Fig. 24). In this way, each operator
i has a final set of kF available sub-channels that is made of its initial k
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Figure 24: Frequency sub-channels

plus the ks shared by the other,

kF = k(1 + α). (4.1)

We denote with kc the number of sub-channels in the common pool,
i.e., kc = 2ks.

Each BS first runs independently its resource allocation procedure,
then the trading for the common pool usage starts. Therefore, two phases
can be identified, (i) the proposal of resource allocation and (ii) the con-
tention resolution.

We assume that the BS manages a different flow for each UE regis-
tered to it, and these flows are always backlogged so that, every time
a flow is selected there is always a packet to be transmitted. Another
fundamental assumption that we do in our work is represented by the
fact that flows are scheduled for transmission according to a maximum
throughput criterion only, without taking into consideration the fairness
among the UEs. This assumption is due to the fact that in this study we
are interested in the fundamental limit of spectrum sharing among oper-
ators. If fairness were taken into consideration then the total throughput
reached by a BS would be reduced since the achievement of a fair situa-
tion could force the allocator to sub-optimal choices (as deeply discussed
in Chapter 3). Some results for a fair scheduling are given in Section 5.4
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of Chapter 5. Note that each operator exploits all the spectrum that it can
access, i.e., its kp private sub-channels plus the whole common pool, thus
the number of available resources is kF , which is greater than the original
k since a larger set of sub-channels is available. However, since the kc sub-
channels are to be shared with the other operator and in order to avoid
overbooking situations, we allow each BS to use only k of those resources
at maximum at the same time. In this way we are sure that no more than
K users can be scheduled for transmission, thus respecting the limit im-
posed by the maximum number of available resources. Note that, since
the downlink access is an OFDMA, no interference can occur among dif-
ferent sub-channels and thus the transmission power on each one of them
can be set to the maximum possible. At the end of the intra-cell alloca-
tion procedure, the BS determines a channel allocation map, i.e., a map
that determines for each sub-channel whether it is allocated and the user
it is assigned to. Since the problem of selecting the set of sub-channels
that maximizes the throughput is combinatorial in nature (and thus with
a high computational complexity), we opted for a greedy algorithm that
trades off efficiency with optimality. In particular, our algorithm puts the
couples <user, sub-channel> in decreasing order of channel state value
and selects the k best couples (with the constraint that no more than one
user can be scheduled per sub-channel because of the orthogonality of the
scheme).

Once each BS has determined its proposal of resource allocation, then
the trading phase starts in order to solve all the possible contentions for
resource access and determine the final allocation maps. Many algo-
rithms can be proposed to fix the conflicts. In Sections 4.1.1, 4.1.2 and 4.1.3
we discuss three of them and give some numerical results as well. An
important taxonomy relevant to the problem considered here indicates
two broad categories of algorithms, centralized and decentralized. The for-
mer are characterized by the presence of a central entity (a kind of “God”
or “Oracle”) having a complete information about the state of the whole
network and able to take in each moment the best decision (absolute op-
timum). Of course, this solution is in most cases impractical since would
require a lot of overhead for the communication with the central node,
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which could need a huge amount of memory and computational capabil-
ities to take every time the right decision. Moreover, in many cases exact
optimization algorithms are characterized by a non-trivial time complex-
ity (see Chapter 2 when discussing about the constrained optimization
applied to OFDMA) thus resulting not suitable for a real-time system like
a Base Station of a cellular network. In some cases it is also illegal to in-
troduce a controller. Nonetheless, centralized solutions are valid from a
theoretical point of view since can lead to the identification of limit per-
formance of the system. On the other hand, the distributed algorithms
exploit only an information local to each node, without anyone having a
complete view of the system. In this way, the decision taken by the al-
gorithm might not be the optimum but a sub-optimum, and an iterative
procedure might be required as well to reach a stable state. However,
they represent a more practical way to solve a problem and sometimes
are directly derived from a centralized algorithm.

As already said before, the reference scenario is an LTE cellular net-
work. The main system parameters considered for the simulation cam-
paigns are summarized in Table 5.

The performance indices used to evaluate the algorithms are:

• the Cell Sum Capacity, which represents the sum of the Shannon
capacity reached in a cell on each sub-channel. It is given by

C =
∑NUE

i=1

∑Nsubc

j=1 (B · log2(1 + SINRij · δij)) ,

δij =
{

1, UEi allocated to subchannelj
0, otherwise

(4.2)

where B is the sub-channel bandwidth, NUE and Nsubc are, respec-
tively, the number of UEs in the cell and and the number of avail-
able sub-channels, while SINRi,j is the SINR perceived by UE i on
sub-channel j;

• the Cell Sum Throughput T of the cell, i.e., the sum of the actual
data rate achieved on each sub-channel allocated to a UE. Of course,
this value is lower than the previous since it is calculated by taking
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Parameter Value
1st sub-channel frequency 2110 MHz

Downlink Channel Bandwidth 20 MHz
Sub-carrier Bandwidth 15 kHz

Doppler frequency 60 Hz
RBbandwidth 180 kHz
RBsubcarriers 12

RBOFDMsymbols 7
BS downlink TX power 43 dBm

Noise spectral density (N0) −174 dBm/Hz
Pathloss 128.1 + (37.6 · log10(R)) dB

Shadow fading log-normal (µ = 0, σ = 8 dB)
Multipath Jakes model with 6 to 12 scatterers

Wall penetration loss 10 dB
Frame duration 10 ms

TTI (sub-frame duration) 1 ms

Table 5: Main system parameters for the spectrum sharing simulations

into consideration the actual modulation and coding scheme (MCS)
used by the transmitter;

• the capacity gain (i.e., the sharing gain), calculated as the ratio be-
tween the capacity achieved by the algorithm and that achieved
without sharing;

• the total sum capacity of the two cells.

All the results shown hereinafter are characterized by a 95% confi-
dence interval with a maximum relative error lower tha 1%.

4.1.1 Upper Bound Algorithm

This is a centralized algorithm that we have introduced in order to
obtain an upper bound on the gain that can be achieved by resorting to
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the orthogonal spectrum sharing. Despite its inapplicability in a real sce-
nario, it is useful from a theoretical perspective since can be used for the
comparison with other effective schemes. In particular, the proposed so-
lution aims at maximizing the total cell sum capacity. To do that the oper-
ators behave as if they were a unique entity, a kind of monopolist having
a complete information on both cells, and allocate each sub-channel to the
best UE, i.e., the one having the greatest Channel Quality Indicator (CQI),
without taking into consideration any fairness constraint. The resulting
capacity is the maximum achievable, the theoretical limit.

Figure 25 shows the cell sum capacity reached by each BS, for a dif-
ferent number of UEs, when the sharing percentage increases. Since both
cells are statistically equivalent (for number of UEs, channel state, traffic
load), also the final performance is the same. First of all, a clear increment
of the capacity with the number of users can be noted, which is a direct
consequence of the multiuser diversity. The greater the number of UEs,
the higher the probability that for each sub-channel there is at least one
UE with a good channel quality. However, for a denser cell, the improve-
ment is quite low because for almost all the sub-channels there is at least
one user in a good situation. The second important observation that can
be done is that there is a neat sharing gain. The cell sum capacity increases
with the sharing percentage, thus there is an incentive for the network
operators to share part of their frequencies. For a small number of UEs
a 20% gain can be reached over the non-sharing case. The correspond-
ing capacity gain value is shown in Figure 26 for BS1 (for BS2 it is same).
As discussed above, it is greater for scenarios with few UEs, and tends
to reduce for denser situations where the effect of the multiuser diversity
is less apparent. Of course, a lot depends also on the intra-cell alloca-
tion policy adopted by the BS. In this example we are not considering at
all the fairness among the flows and for each sub-channel the best UE is
always chosen. By introducing some fairness the figures would change
significantly (in Chapter 5 some sample results for a fair algorithm are
shown).

In Figure 27 the cell sum throughput for the cell managed by BS1 is
shown (for BS2 is the same). As expected, the actual throughput value
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(a)

(b)

Figure 25: Cell sum capacity of BS1 (a) and BS2 (b) for the upper bound
allocation algorithm
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Figure 26: Cell Sum Capacity Gain of BS1

Figure 27: Cell Sum Throughput for BS1
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Figure 28: Upper bound on the joint sum capacity of the two cells

Figure 29: Total sum capacity of the two cells versus the number of UEs
per cell
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is significantly below the channel capacity, which represents a theoretical
limit. The actual amount of data transmitted depends on the Effective
Code Rate (ECR) (shown in Section 2.1, Table 1), which indicates the ro-
bustness of the selected coding scheme. However, the behavior of both
capacity and throughput as functions of the sharing percentage for dif-
ferent numbers of users is qualitatively similar, meaning that they differ
only by a scaling factor due to the use of a real MCS.

Figure 28 shows the joint sum capacity of both BSs that can be ach-
ieved for a different number of UEs per cell when the spectrum sharing
percentage increases. Since the cell sum capacities of both BSs increase in
the sharing percentage, also in this figure all the curves have an increasing
trend. In Fig. 29 the same results are depicted in a different perspective,
i.e., by considering the total sum capacity as a function of the number of
UEs in the cell. In this case the saturation effect for denser cells is more ev-
ident: after 18 UEs the improvement of the capacity is almost negligible,
as discussed above.

However, it is important to remind that these values were obtained
for a scenario under saturation. In the case of asymmetric cell traffic load,
a BS might have only few active flows and the other BS could oppor-
tunistically exploit most of the unused resources. Therefore, we can con-
sider the results presented in Figure 28 as the worst-case upper bound.
More significant results are expected by considering different and more
realistic scenarios. For example, it is quite difficult in a real situation to
have always both cells under saturation, while it is sensible to consider
cases in which one of the two operators has far more traffic than the other
and thus can opportunistically exploit the unused (common) resources to
serve some more UEs of its. This situation is analyzed in Section 4.1.4.

4.1.2 Safest Allocation Choice Algorithm

This algorithm represents a sort of lower bound on the system per-
formance with no resource waste. Together with the previous algorithm
they define a performance region (with an upper and a lower bound)
for all the many possible sharing mechanisms that do not realize any re-
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(b)

Figure 30: Cell sum capacity of BS1 (a) and BS2 (b) for the safest allocation
choice algorithm
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source waste, i.e., do not perform less than non-sharing case. Therefore,
they represent a sort of comparison meter.

It is an example of how the contention can be solved in an easy way,
but with a very poor gain. If the allocation maps proposed by each BS do
not overlap, i.e., there is no contention at all, then the common spectrum is
used according to the proposals. On the contrary, if there is contention on
at least one sub-channel then the BSs resort to the non-sharing solution.
The good point of this scheme is that it does not perform worse than the
non-sharing case; on the other hand, in most of the cases it does not intro-
duce any gain. Indeed, the probability of collision is not negligible, and
increases with the sharing percentage. Moreover, as already remarked, a
significant frequency diversity is an important factor for boosting spec-
trum sharing. If a channel is flat then it is less likely that a BS will resort
to others’ frequencies, so the average number of conflicts decreases.

In Figure 30 the cell sum capacities for both BS1 and BS2 are shown.
Since the two cells are statistically equivalent, also the result is the same.
We can still note the effect of the multiuser diversity, which leads to an in-
crease in the capacity with the number of UEs per cell. On the other hand,
it can be seen that there is no gain at all when the sharing percentage in-
creases, as expected. Indeed, all the curves are flat when the percentage
of shared spectrum increases, meaning that the influence of this factor is
almost negligible.

4.1.3 Algorithm with Priorities

In this section we show how spectrum sharing might lead to an in-
efficient outcome if not implemented in a proper way. In this case we
suppose that each operator keeps a higher access priority on the ks sub-
channels it shares so that, in case of contention for the access to one of
them, it has higher chances of using them. In particular, we use a de-
terministic priority mechanism where each operator has probability 1 of
winning the contention on its portion of the kc sub-channels and probabil-
ity 0 on the other part. Of course, a mechanism with probabilities (p, 1−p)
can be evaluated as well. In this way, in case of contention on the access
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Figure 31: Example of inefficiency for the allocation by priority

to one of the common resources, the original owner always wins. Such
a choice could seem interesting for telecommunication companies, which
can use their frequencies as long as they need them even if required by
the other competitors.

This way of managing contentions may lead to a resource waste, i.e., sit-
uations in which not all the sub-channels have been assigned. For exam-
ple, suppose that BS1 tries to use the part of the common pool shared
by BS2, while BS2 tries to use the whole common pool. According to
the sharing policy above described, BS2 would access the whole common
pool while BS1 would be prevented to access it. So BS1 should use only
its kp private resources, which are less than k, while some of BS2’s private
resources would remain unallocated. Figure 31 depicts such a situation,
and it is not difficult to imagine that the final sharing gain obtained after
the application of this algorithm for the conflicts resolution may be less
than 1, i.e., lower than the non-sharing solution. Moreover, also an unfair
allocation results from this example. Indeed, BS2 will win the contention
on the sub-channels 7 and 8 because it has greater priority, and it will
get also the sub-channels 5 and 6 since there is no contention on them.
So, BS2 will get 6 sub-channels (the whole common pool plus 2 private)
while BS1 will get only 4 resources.

Actually, the amount of wasted resources depends on the sharing per-
centage and on the frequency selectivity of the channel. Indeed, for a
flat-fading channel it is unlikely that a BS tries to access the resources of
the other (since their quality is almost the same of its ones) and thus it is
less probable to have situations in which one BS monopolizes the com-
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mon pool.
Some results are shown in 5.4, where the priority algorithm has been

used for the validation of the simulator.
The performance of this algorithm are meaningful since let us under-

stand in a clear way that spectrum sharing is not always positive for net-
work operators. It lets us see how an improper way of managing the com-
mon resources may lead to a performance loss. However, the amount of
this loss might be mitigated by other parameters, like the scarce frequency
diversity.

4.1.4 The case of asymmetric cell traffic load

In this section we consider a situation slightly different from what
done up to now. An asymmetric cell-load is evaluated, i.e., a situation
in which the amount of traffic the two BSs have to manage is different,
with one cell more loaded than the other. In this case, the BS having more
load can opportunistically exploit the common resources not used by the
other, and thus has the possibility to serve a number of UEs higher than
what it could do without any sharing.

We run some simulations for the upper bound algorithm by considering
the following scenario. Each BS guarantees to its UEs no more than two
sub-channels at each allocation opportunity (i.e., every sub-frame). The
UEs are always allocated according to their CQI, so as to exploiting the
multiuser diversity as much as possible. In particular, each BS tries to
give 2 resources to each of its users as long as there are free sub-channels
in the part of the spectrum it can access. Therefore, the asymmetric load
is generated by varying the number of users. Cell 1 is overloaded and has
40 UEs to serve, thus needs 80 sub-channels. For cell 2 we considered a
different number of UEs, ranging from 2 up to 40. When the sharing per-
centage is 0%, BS1 cannot use more than 50 sub-channels, independently
from the load of cell 2. This leads to an incredible resource waste when
the latter is underloaded. When the sharing percentage increases, BS1 is
entitled to use sub-channels of the other operator and thus a greater num-
ber of UEs can be served, taking into consideration that BS2 has to satisfy
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Figure 32: Total cell sum capacity upper bound for the asymmetric traffic
load scenario

its requests too and thus some contention may arise. Therefore, the per-
formance of BS1 are limited by the sharing percentage an by the load of
cell 2. Of course, when both cells have the same load, also the capacity
realized is the same since the distribution of the UEs in the coverage area
and the channel gains are statistically the same.

In Figure 32 the total cell sum capacity for the upper bound algorithm
is shown. The x-axis represents the number of UEs in cell 2, and three
values of spectrum sharing percentage α have been considered, i.e., 0, 50
and 100%. For α = 0% the curve is increasing due to the increasing num-
ber of UEs that are served in cell 2, while for cell 1 the capacity is constant
since all the 50 resources are always allocated. For the other values of α
the curves still increase in UE for the same reason aforementioned; more-
over, there is a joint increase due to the fact that BS1 is entitled to use a
higher portion of the spectrum and thus can serve more UEs. It should
be noted that after a certain number of UEs in cell 2 has been reached (in
this case 25 since the number of initial sub-channels per cell is 50), there
are no free resources that BS1 can exploit from cell 2 and any additional
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increment in the total sum capacity is only due to the multiuser diversity,
which still benefits from an increasing number of users (even though the
marginal improvement decreases for denser networks).

4.2 Non-orthogonal Spectrum Sharing

The non-orthogonal sharing case is expected to achieve a higher ca-
pacity gain since the constraint of mutual exclusion for the access to the
common resources is eliminated. Unlike the previous case, a more com-
plex signaling exchange is expected and this makes the development of
feasible distributed algorithms harder. However, also in this case it is
important to have a theoretical framework for the derivation of the limit
capacity.

Since the access to the common resource is no longer exclusive, both
the BSs can use contemporaneously the same sub-channel to transmit to
their UEs. This means that some interference may arise and may prevent
the intended receivers from detecting correctly the corresponding trans-
missions. This leads to the necessity to introduce a power control scheme
in order to guarantee that the SINR to the intended receivers is above a
certain threshold in order to have an acceptable QoS in reception. Such
a system represents an example of frequency-selective interference channel.
Since the choice of the power level to feed the sub-channels can be seen
as a bargaining process among the transmitters, we can think of using the
Nash bargaining theory (see Section 2.2.1) for a possible mathematical
formulation.

CallN = {1, 2} the set of transmitters (i.e., the BSs) andK = {1, . . . ,K}
the set of sub-channels.

• The players are the two BSs;

• The actions that player i ∈ N can take are represented by the power
levels pi,k ∈ [0, P ] that it can feed on sub-channel k ∈ K, subject to
a total power constraint P .

• The utility function for player i is the sum of the rates on each sub-
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channel, and is given by the following expression

RFS
i =

K∑
k=1

log2

(
1 +

Gkiipi,k
σ2
i,k +

∑
j 6=iG

k
jipj,k

)
(4.3)

where Gij = |hij |2 and hij is the cross-talk between transmitter i
and receiver j. The channel is Gaussian, σ2

i,k representing the noise
power on sub-channel k at user i, and the interference is treated as
noise by the receivers.

Call RFS, NE
i , i ∈ N , the payoffs at the Nash equilibrium for the non-

cooperative case (the disagreement point). In this case the Nash equilib-
rium point RFS, NE can be obtained by applying the iterative waterfilling
algorithm.

The formulation for the Nash Bargaining Solution with both the power
constraints can be posed as an optimization problem:

RFS, NBS = argmax
2∏
i=1

(
RFS
i −R

FS, NE
i

)
(4.4)

s.t. pi,k ≤ P ∀i ∈ N , k ∈ K (4.5a)
k=K∑
k=1

pi,k ≤ P ∀i ∈ N (4.5b)

P < KP (4.5c)

The main drawback of this formulation is the non-convexity of the
problem, both utilities and region. The Nash bargaining theory assumes
the satisfaction of some axioms and, more important, requires the convex-
ity of the problem. As observed in some studies, for example in [75], this
is not always true for the FS-IFC and in that case the treatment becomes
quite difficult. Moreover, in this particular type of system we do not have
a closed form expression for the Nash equilibrium in the non-cooperative
case, we only know that it can be reached by using the iterative water-
filling algorithm, whose convergence is not always guaranteed [66]. Suf-
ficient conditions exist, but the algorithm is not globally stable Another
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way to tackle to problem has to be found, but this is out of the scope of
this thesis.
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Chapter 5

NS-3 extension for
spectrum sharing

One of the main contributions of this thesis work regards the exten-
sion of the network simulator ns-3 for the support of multi-cell multi-
operator scenarios and of the inter-operator spectrum sharing, with the
related need for the introduction of a flexible structure to manage con-
tentions. The availability of a suitable simulation platform for testing
protocols and algorithms is quite important, in particular for all those
scenarios where the mathematical analysis becomes complex or cannot
produce a solution in closed form. The support of a valid simulation plat-
form is important for the execution of system-level simulation campaigns
where a complete and complex network scenario is considered.

5.1 Introduction

The network simulator-3 (ns-3) [2] is a very well known tool widely
used in the research community for the simulation of heterogeneous com-
munication networks. It is an event-driven asynchronous simulator en-
tirely open source, free and managed by an active community of deve-
lopers. It is written in C++, so its execution is quite efficient because
that programming language is compiled and not interpreted. The whole

75



TCP/IP protocol stack is implemented, with the most important protocols
at the transport, network, and datalink layers (e.g., TCP, UDP, IP, ARP,
IEEE 802.11, IEEE 802.16). Several types of applications are provided with
the basic version of the code (e.g., CBR, VBR) and many others can be im-
plemented just by extending the base classes. The transmission channel
is implemented as well, both wired and wireless. The level of detail in
the channel definition is not extremely deep (e.g., no symbol-level oper-
ations), even though it has been definitely improved with respect to the
previous version of the software, ns-2. The code includes as well built-in
data structures and functions to deal with several types of networks, from
sensors to satellite communications.

Besides its great flexibility, one of the main features of this simulator
is the modularity. The implementation is not monolithic at all and this
makes its extension simpler. This is particularly appealing for our pur-
poses, since the analysis of spectrum sharing, while involving physical
and datalink layers, implies important consequences in protocol design at
higher layers as well, thus being an inherently cross-layer problem. These
reasons motivated our choice to employ ns-3 as the system level simula-
tor. The extended version proposed in [62] was considered because of its
capability to support the Long Term Evolution of the UMTS. It was al-
ready possible to create Base Stations (called eNodeBs, or eNBs) and user
terminals (called UEs) which could communicate with the eNBs. Most of
the functionalities of the physical channel and medium access were im-
plemented, while some of them were still empty or a sample code was
provided, thus giving the programmer the opportunity to introduce and
test new algorithms. This is the starting point of the implementation and
validation work done in this thesis. The main contribution in this direc-
tion was the introduction of a novel software extension of this version
of ns-3 to simulate spectrum sharing scenarios where cooperation is es-
tablished among multiple operators, each with a considerable number of
nodes. To this aim, original software structures were introduced. First of
all, the support to multi-cell multi-operator networks with overlapping
spectra in the downlink was provided. Then, a class describing a vir-
tual frequency market was inserted in the simulator structure. This class
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implements the functionalities of a virtual arbitrator, and does not repre-
sent a physical entity of the network, but rather it determines the shar-
ing policy of the frequencies belonging to the common pool. In other
words, its role is to abstract the set of rules agreed by the operators when
determining the shared portion of the spectrum. Both orthogonal and
non-orthogonal policies can be implemented. In both cases, the arbitra-
tor structure is required to give an abstract representation of every other
sharing policy detail, such as priority rules among the operators in case
of conflicting assignments. Since for this thesis work we have mainly
focused on orthogonal sharing (as discussed in Chapter 4), the architec-
ture up to now implemented refers to that case. However, the extension
to the non-orthogonal case is under development. Some sharing poli-
cies were implemented and tested in order to assess the computational
performance of the proposed architecture and to show its effectiveness
in analyzing realistic scenarios. With reference to the software modifica-
tions, more details are given in [12]. The code is publicly available at the
URL http://code.nsnam.org/lanchora/ns-3-lte-SpectrumSharing/.

5.1.1 System model

We consider a short time-scale spectrum sharing, where the inter-
operator trading of the resources is done on a fine-grained basis, in our
case corresponding to the LTE sub-frame duration, i.e., 1 ms.

To have a complete system characterization, we need to consider the
spectrum management parameters, i.e., physical details such as center
frequencies, channel bandwidth, and sharing percentages. In particular,
the set of licensed frequencies that the operators are willing to share and
the access mechanism must be defined. The policy behind such a coop-
eration agreement is out of the scope of the present paper, as it is more
related to the economic agreement between the operators and to their
business models. However, along with different allocation and coordi-
nation techniques, it represents an interesting research topic and, thanks
to this contribution, various approaches can be quantitatively evaluated.
Our choice is to be fully compliant with the LTE standard and to treat
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Figure 33: Spectrum sharing

OFDMA resource blocks as perfectly fluidic and transferrable entities,
subject to licensing constraints (that is, they can be shared only if the legit-
imate owner agrees to it). Figure 33 shows the scheme adopted to define
the system sharing capabilities. According to the selected bandwidth per-
centage to be shared, the eNBs will allow partial access to UEs belonging
to other domains.

After these preliminaries, in the following subsections we describe
two original parts of our contribution which complete the system descrip-
tion. First, we need to discuss local scheduling and resource allocation
algorithms that must be executed in each eNB in order to generate an
allocation map (i.e., the association <sub-channel, UE>), the downlink
serving scheme, which will be detailed in Section 5.1.1. Moreover, we
consider a virtual market to be in charge of collecting this information and
deriving serving schemes that must be adopted by each eNB, according to
the chosen contention solving policy, which will be illustrated in Section
5.1.1.

Intra-cell allocation

The cell capabilities are fully characterized when the physical compo-
nents have been defined. Then, a joint scheduling and resource allocation
algorithm is needed to design a proper downlink transmission scheme.
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Figure 34: Intra-cell allocation
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The definition and the analysis of efficient schemes are not directly in-
vestigated here. However, the architecture of the simulator considered
here makes it simple to plug-in any of such algorithms and validate their
performance (an example is given in [10] and is discussed in Chapter 3).

For what concerns the scope of this discussion, which is explicitly on
the architecture of the simulator and not on the algorithms themselves,
two basic algorithms have been implemented and compared: on one
hand, max throughput that represents an allocation scheme for which the
resources are always allocated to the best UEs, without taking into ac-
count fairness among users (actually, this is the intra-cell algorithm con-
sidered in Chapter 4 when discussing the inter-cell coordination). On the
other hand, a fair approach is proposed, denominated fairness, where the
available system resources are distributed among the users in a Round
Robin way, thus lowering the overall throughput but increasing the av-
erage level of service received by each UE. Figure 34 depicts a sample
scenario, where 10 UEs and 10 resources, hereinafter referred to as allo-
cation tiles (ATs), are considered (note that an AT is made of two RBs, de-
fined in 2.1, in two consecutive time slots). For the particular case of LTE
networks, each AT lasts 1 ms and spans in frequency for 12 sub-carriers.
By selecting the first approach, i.e., max throughput, all the available re-
sources are allocated to the UEs with the best channel quality indicator
(CQI). Thus, by exploiting multiuser diversity, the system throughput can
be very high. However, UEs with lower CQIs will never be served. On
the contrary, the fairness mechanism will provide service to all the regis-
tered UEs, as visible in the figure. Indeed, each AT is still allocated to the
best UE, but each user will be given at least a certain amount of resources
thus preventing starvation. In particular, the distribution of the ATs hap-
pens in a Round Robin way starting from the UEs with the best CQI and
moving to those in a worse condition. During the first allocation round
each UE is given a number of ATs equal to

THmin =
⌊
NAT
NUE

⌋
, (5.1)

where NAT and NUE are, respectively, the total number of ATs and of
registered UEs in the cell. Then, once that this minimum threshold has
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been guaranteed to all the users, all the remaining ATs are distributed
again with a Round Robin policy by assigning 1 AT per UE starting again
from those with better channel conditions. In the proposed example, the
threshold in equation (5.1) is equal to 1, so all the UEs will be allocated a
single AT.

Inter-cell coordination

The sharing contention policy is implemented in a separate module,
here called virtual market. The relevant class (we refer to an Object-Oriented
Programming, or OOP, paradigm) implements an arbitration rule which
defines how the operators bargain the access to the common portion of
the spectrum. Any complex strategy can be implemented within this
class, possibly involving further extensions. In particular, this is the place
where to implement, in an entirely modular manner, some procedures
inspired by game theoretic principles.

Each eNB, after generating its own allocation map, sends it to the
virtual market who gathers all the cells’ allocation information and rear-
ranges the allocation maps according to the sharing policy (see Figure 35).
It is useful to point out that this class does not represent a real entity, i.e., a
kind of central node controlling the network. On the contrary, it is just an
implementation choice to separate the function of contention resolution
from the rest of the architecture. In a real context this function might be
implemented by each eNB, in a distributed way, or might be delegated to
a real central node, in the case of a centralized structure (even though the
latter proposal is rather impractical for cellular networks).

For the validation phase we propose immediate implementations of
scheduling and resource allocation algorithms, as well as a simple proce-
dure to handle the contentions among operators. Each eNB is assigned a
priority value per frequency sub-channel, defined as

PReNBj ,ATpool,i
=
{

p, ATpool,i ∈ FeNBj

1− p, otherwise , (5.2)

where j ∈ {1, ...,m} represents the eNB identifier, m is the total number
of eNBs involved in the sharing process, p ∈ [0, 1] is the priority level
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Figure 35: Inter-cell coordination
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given to the eNB, FeNBj =
{
ATj,1, ..., ATj,nj

}
, nj is the total number of

ATs available at eNBj , and ATpool,i ∈ FeNB1 ∩ ... ∩ FeNBm
. Contentions

on the shared resources are fixed according to these priority levels. The
proposed approach can be made even simpler if we assume p = 1 and
m = 2: an eNB will assign to its UEs the shared resources belonging to the
competitor eNB, referred to as eNBc, only if these are not allocated to UEs
belonging to eNBc. Therefore, when multiple players request the same
resource, only the one with the highest priority will get it. The others end
up with no assignment, which is in general inefficient.

We stress that this general strategy is not given as an optimal allo-
cation, which ought to be derived from a (game) theoretic perspective.
Rather, such an intentionally non-optimized (and actually inefficient) pol-
icy serves to show the effectiveness of our software implementation. More-
over, it can be thought of as a characterization of the inefficient Nash
equilibria in the games with competitive sharing, while the goal of spec-
trum sharing should rather be a collaborative assignment of frequencies.
Thus, our reference allocation policy correctly reflects that, if the whole
common pool is shared competitively, in the long run only inefficient and
unfair allocations will be achieved. However, we also remark that more
efficient solutions derived through game theory, either available in the
literature or originally developed, can be tested and validated within the
modular framework proposed, so as to determine the choice that better
suits the operator needs. Chapter 4 discusses the algorithmic aspect in
more details and the simulations there presented were run by using the
ns-3 extension described in this chapter.

5.2 NS-3 LTE extension

The reference implementation of LTE to which we have applied our
modifications is the one presented in [62] and included in the release ns-
3.9 of the simulator. Our extension introduced two main features, i.e., the
implementation of multi-cell multi-operator scenarios and the design of
the inter-operator downlink spectrum sharing infrastructure. In this way,
we have prepared a framework that can be used as is or extended again
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to simulate a broader category of scenarios. This is made possible by the
extreme modularity of ns-3. It is also worth mentioning that our extension
is entirely backward compatible with the previous releases of ns-3.

5.2.1 Multi-cell multi-operator scenario

The definition of a multi-cell scenario requires first of all the defini-
tion of a separate object of class LteHelper for each cell. Such an object
contains a reference (i.e., C++ pointers) to the eNB and to all its UEs and
therefore manages the creation and configuration of all the members of
a cell (e.g., registration of a UE). Different cells are managed by different
LteHelpers.

A further modification that was required with respect to [62] regards
the management of the time by each eNB. The class LtePhy is the base
class for modeling the physical layer of eNBs and UEs. Then EnbLtePhy
and UeLtePhy are derived classes that implement particular features of the
physical layer for the two types of nodes, such as transmission and recep-
tion of signals on the wireless channel. The LtePhy class has in its private
fields two static counters, one for the frame index and another for the sub-
frame index within the current frame. They are incremented every time
a new frame/sub-frame is started, a functionality that is implemented
by the EnbLtePhy class, methods StartFrame and StartSubFrame, since it
is up to the eNB to decide when to start the new frame/sub-frame. In
a multi-cell scenario there are many eNBs, each with its own EnbLtePhy,
and all these counters need to be incremented. Therefore, two possible
solutions are available: either only an eNB increments those counters or
each eNB has its own counter and increments it independently. In our
implementation we have chosen the latter, thus each eNB has its private
view of the time index. In our case they are all synchronized, hence they
start each (sub)frame at the same time, but this implementation choice
does not prevent further more realistic extensions where the eNBs are not
synchronized.
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5.2.2 Downlink spectrum sharing

Regarding the implementation of the inter-cell downlink spectrum
sharing, several modifications to the base model have been written. First
of all, we made eNBs aware of the additional sub-channels they can use
for downlink resource allocation. The original implementation assigns
to each EnbLtePhy and UeLtePhy a vector of sub-channels which repre-
sents the available resources they can use. In our implementation we
have associated to each node an extended vector containing not only the
sub-channels originally assigned to it, but also those that the other eNBs
are willing to share (calculated as a percentage of the original spectrum
size) together with the sub-channel priority access information. This vec-
tor is the set of frequencies that is actually used by the resource allocator
of the eNB. The way it is used depends on the scheduling and allocation
policy implemented. In particular, to customize these functionalities, it
is sufficient to write a new class which extends the PacketScheduler class,
thereby inheriting its methods, and to override the method DoRunPack-
etScheduler, i.e., the routine called by the eNB at the beginning of each
sub-frame when a new set of packets must be selected for transmission.

As a further point, we have implemented the communication and
trading mechanisms among the eNBs for the sharing of the common pool.
Each eNB calculates its allocation map independently, according to an in-
ternal scheduling and resource allocation policy. Then, a virtual entity
has been introduced to implement the exchange of the maps and the res-
olution of the conflicts. In a real system, this phase requires that the eNBs
communicate (e.g., through a backhaul) and agree on a final allocation
map to which all of them must adhere. This virtual entity is an object
defined as an instance of the class VirtualMarket; at the beginning of each
sub-frame, it receives the resource allocation maps proposed by all the
eNBs (competitors) and decides the final map according to some policy.
Developers can implement whatever policy they need, just by modifying
that class or by extending it and overriding the method GetAllocation-
Map() which deals with the contention resolution. The VirtualMarket has
a collection of eNB entities, which can communicate with it through its
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Figure 36: Sequence diagram for resource allocation conflicts resolution

public interface. In Figure 36 an example of such a communication is
shown by means of a sequence diagram, which is also able to catch the
temporal dimension of the activity. The particular sharing mechanism
shown is that based on priorities as described in the previous section.
An iteration is shown as well since every time a competitor cannot use
a sub-channel for some UEs (i.e., it loses the contention), it is invited to
reschedule those UEs on other free resources (if any).

5.3 Simulation scenario

In order to test the software architecture that we have implemented
and show its functionalities, we have run some simulations. The algo-
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Figure 37: Deployment of the UEs around the eNB

rithms used are meant to be just an example to show how things work, so
they are not expected to be the optimal solution. We are more interested
in the performance and the usability of the simulator itself. In the follow-
ing we present the results of a simulation campaign conducted with the
extended framework for spectrum sharing in ns-3.

The scenario consists of two co-located eNBs, both with a coverage ra-
dius of 1500 m. An increasing number of UEs, characterized by low mo-
bility, are registered to each station, and are uniformly distributed within
the eNB coverage area (Figure 37). Each user is supposed to be always
backlogged and so the network operates in saturation conditions. Each
user perceives a different quality of the channel according to its position
and to radio propagation effects (e.g., shadow and multipath fading). An
ideal uplink channel is established between each UE and the correspond-
ing eNB, used for the transmission of the CQIs associated to each AT. The
main system parameters are provided in Table 6.

The objective of the simulation campaign was twofold. On one hand,
we measured the performance of the proposed framework in terms of ex-
ecution time; on the other hand, we used the simulator to analyze some
spectrum sharing algorithms for LTE networks, in terms of cell sum ca-
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pacity and aggregate throughput, thus showing the effectiveness of the
proposed software and its flexibility for the implementation and compar-
ison of different algorithms. More specifically, the performance metrics
taken into consideration are:

• Cell Sum Capacity, which represents the sum of the Shannon ca-
pacity reachable in a cell on each sub-channel to each UE. It is given
by

C =
∑NUE

i=1

∑Nsubc

j=1 (B · log2(1 + SINRij · δij)) ,

δij =
{

1, UEi allocated to subchannelj
0, otherwise

(5.3)

where B is the sub-channel bandwidth, NUE and Nsubc are, respec-
tively, the number of UEs in the cell and and the number of available
sub-channels, while SINRi,j is the SINR perceived by UE i on sub-
channel j. Note that, since we are considering only the orthogonal
spectrum sharing and the downlink employs and OFDMA multi-
user access, each sub-channel can be allocated at 1 UE at maximum
and there is never interference. Thus, in this case the SINR becomes
an SNR (Signal-to-Noise Ratio).

• Cell Sum Throughput, which represents the aggregation of the ac-
tual data rates delivered to each UE by using the MCSs listed in
Table 1, Section 2.1. Of course, the Shannon capacity is the upper
bound of the troughput.

• Execution time, which represents the actual time required for the
execution of a simulation run. We expect an increasing behavior
in the number of UEs and in the sharing percentage because of the
higher computational complexity needed to perform a greater num-
ber of operations. The reference machine is a server with 48 Pen-
tium CPUs, 64 GB RAM and running GNU/Linux Ubuntu 11.04
as the operating system. It must be noted that, even though the
number of available processors is considerable, the ns-3 software is
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Parameter Value
1st sub-channel frequency 2110 MHz

Channel Bandwidth 20 MHz
Subcarrier Bandwidth 15 kHz

Doppler frequency 60 Hz
ATbandwidth 180 kHz
ATsubcarriers 12

ATOFDMsymbols 14
eNodeB TX power per sub-channel 26.98 dBm

Noise spectral density (N0) −174 dBm/Hz
Pathloss 128.1 + (37.6 · log10(R)) dB

Shadow fading log-normal (µ = 0, σ = 8 dB)
Multipath Jakes model with 6 to 12 scatterers

Wall penetration loss 10 dB
Frame duration 10 ms

TTI 1 ms

Table 6: Main system parameters for the validation of the simulator

inherently non-parallel and thus all the runs were always executed
on a single processor as if it were a single CPU machine. The only
advantage of having more CPUs derived from the possibility to ex-
ecute several simulations in parallel, one for each different combi-
nation of the input parameters (i.e., number of UEs and sharing per-
centage).

All the results shown hereinafter are characterized by a 95% confi-
dence interval with a maximum relative error lower tha 1%.

5.4 Simulation Results

Figures 38–39 show the performance in terms of sum capacity and
throughput achieved by each cell for both max throughput and fairness
intra-cell allocation algorithms for a different number of cell users. The
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Figure 38: Comparison of the Cell Sum Capacity for the max throughput
and the fairness allocation algorithms, with a sharing percentage of 100%

sharing percentage α was fixed to 100%. In this case we are considering a
symmetric cell load, thus both cells have the same number of UEs and are
statistically equivalent. For this reason, only the results for one of them
are reported. As expected, the actual throughput value is significantly
below the cell sum capacity, as defined in equation (5.3), which repre-
sents the upper bound on the data rate achievable for a given channel
condition. The actual amount of data transmitted depends on the ECR.
However, the behavior of both sum capacity and throughput as functions
of the sharing percentage for different numbers of users is qualitatively
similar, meaning that they differ only by a scaling factor due to the use of
real coding and modulation schemes.

In both figures the trade-off between the max-throughput and the fair-
ness allocation algorithms is clearly shown. The former always makes
the system reach a better performance because the application of a fair
scheduling policy requires the allocation of ATs also to the UEs with lower
CQI. This is true for all values of the number of UEs.
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Figure 39: Comparison of the Cell Sum Throughput for the max through-
put and the fairness allocation algorithms, with a sharing percentage of
100%

91



Another important effect that can be noted from Figures 38–39 is the
increment of both performance indices with the number of UEs. As ex-
pected, this is due to the multiuser diversity effect: the larger the number
of UEs, the higher the probability that for each sub-channel there is at
least one of them with a good CQI. Of course, this might lead to some
(short term) unfairness in favor of the users with a good channel quality.
On the contrary, if the fairness constraint must be taken into consider-
ation, then the effect of the multiuser diversity is significantly reduced.
That is the reason for which in both figures, the increment of the perfor-
mance indices for the fairness approach is almost negligible. For a possible
discussion of this trade-off from a game-theoretic perspective, see [10,11]
and Chapter 3. Moreover, the marginal increment of efficiency decreases
when a certain user density has been reached in the cell. When more users
are in the system, then for almost all the sub-channels there is a user with
good CQI. Thus, a saturation effect appears.

To sum up, the results validate the reliability of our simulator in spite
of an inefficient sharing policy, which was not the scope of this simu-
lation campaign. Thanks to the modularity introduced, the contention
technique can be adapted to different needs, and in particular to pursue
a cooperative sharing, where system capacity and throughput increase
when the spectrum sharing percentage becomes higher. A more thorough
discussion on the algorithms is reported in Chapter 4.

Finally, the execution time is analyzed. In Figure 40, as expected, an
increase in the number of UEs and in the spectrum sharing percentage can
be noted. A greater number of UEs requires more memory and computa-
tional resources to store and manage all the necessary objects and thus a
higher execution time. On the other hand, a greater number of shared re-
sources implies more contentions and thus more iterations of the conflict
resolution algorithm. The increment of the execution time in the sharing
percentage is also due to the higher degree of freedom that the allocation
algorithm has. Even though the values reported in the figure might seem
too large, we want to remark that the tracing option was enabled dur-
ing the simulation in order to log the performance indices and calculate
statistics. Disk accesses are quite time consuming and can slow down the
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Figure 40: Execution time

execution by more than 10 times the normal duration. However, in spite
of all these points, the computational complexity scales almost linearly
with the number of users and with the sharing percentage, and can thus
be considered acceptable for realistic and detailed simulation campaigns.
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Chapter 6

Conclusions and Future
Work

In the previous chapters we presented the main research directions
followed in our thesis and the results that have been achieved. Basically,
we have investigated the problem of efficient spectrum allocation in next
generation mobile cellular networks.

Nowadays, this is a very hot problem because of the increasing traffic
on cellular networks due to the enhancements in the technology and the
ever increasing services available to customers. To address this situation
one might think of increasing the bandwidth allocated to each network
operator. However, the spectrum is a scarce resource and is also very ex-
pensive. Moreover, several studies have shown that a high percentage
of the spectrum allocated for the telecommunications is not used, or at
least is not permanently used. Therefore, a more sensible solution to be
followed is the increase of the spectrum usage by a smarter allocation.
Several studies have been done in the field of Dynamic Spectrum Alloca-
tion, but only few of them have focused on the multi-operator case and
even fewer have considered the opportunity to change the current way to
distribute the resources among several competing operators.

The present thesis has faced the efficiency issue by following a bottom-
up approach. As a first step, we considered the allocation issue within a
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single cell and proposed some models and algorithms. Then, we moved
to a multi-operator multi-cell scenario where BSs are not isolated but in-
teract with each other. In this context we introduced, as a possible way to
improve the spectrum usage efficiency, the idea of multi-operator spec-
trum sharing. Therefore, the main contribution of this thesis work is
threefold and can be summarized as follows:

1. Intra-cell resource allocation. We have identified and discussed the
trade-off between allocation efficiency and fairness among the net-
work users that a BS faces every time it has to take an allocation
decision in its downlink. Starting from that consideration, we have
modeled the system in a game theoretic perspective and we have
given some efficient algorithms to lead the system into a Pareto ef-
ficient operating point, i.e., a good balance between fairness and
efficiency.

2. Multi-operator spectrum sharing in a multi-cell network. We have
introduced the innovative idea of spectrum sharing. Instead of keep-
ing separate the portion of spectrum allocated to each cellular net-
work operator, they could share part of them so that each one can
see a spectrum virtually larger than its original. Of course, this
mechanism implies problems related to the arbitration of the com-
mon resources usage in order to avoid wastes and unfair situations.
A deep discussion and classification about the possible algorithms
has been done, and some algorithms have been analyzed. In par-
ticular, an upper bound and a kind of lower bound on the system
performance have been identified. Moreover, the key factors that
impact on the success of the spectrum sharing have been discussed.

3. Simulator support to the previous two points. All the algorithms
presented in the previous two points have been validated by means
of simulations. It is important to have a simulator able to reproduce
realistic scenarios, in particular when the mathematical analysis be-
comes difficult to carry out because of the complexity of the sys-
tem. To this aim, we have enhanced a network simulator very well-
known and widely used in the research community, ns-3 [2]. We
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have introduced a modular framework for the multi-cell spectrum
sharing, thus making it a valid support for everyone doing research
in this field. The code has been tested and is publicly available.

We do not expect this work to be complete and exhaustive. Some ideas
have been introduced and evaluated, mainly by means of system level
simulations. Some others are just sketched. Future evolutions include:

• extension of the work presented for the intra-cell case to a wider
multi-cell scenario. In this case, some of the parameters used by
each BS must be bargained with the other adjacent BSs, in order to
reduce the interference and guarantee fairness;

• evaluation of some smart mechanisms for the orthogonal spectrum
sharing by using both mathematical analysis and simulations;

• analysis of the non-orthogonal approach for the spectrum sharing
case. In this thesis work only a few ideas and models have been
sketched, but a robust analysis is needed. We still plan to consider
a cooperative behavior of the players. However, we need to define
a proper utility function which should include also a punishment
for cheating players, in order to make the solution self-enforcing
(i.e., encouraging players in cooperating).

• enhancement of the ns-3 simulator by adding the inter-cell inter-
ference management. In this way the simulation platform will be-
come a complete and valuable support for the validation of spec-
trum sharing policies, both orthogonal and non-orthogonal.
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