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Abstract

This thesis’ main scope is the presentation of two different
methodologies for the analysis of contact problems involv-
ing morphologically complex or rough surfaces. Both ap-
proaches rely on the Finite Element Method (FEM) as the
chosen computational framework. They hinge on the defi-
nition of an interface finite element used to model the space
encompassed by two solids in contact. This kind of inter-
face element is shared with the field of non-linear fracture
mechanics, employed for the simulation of non-linear crack
growth according to Cohesive Zone Model (CZM). Here, for
the first time, the formulation is extensively applied to con-
tact mechanics. With no further modifications, the interface
element is suited for the solution of contact problems involv-
ing smooth and conformal interfaces, exploiting a node-to-
node approach and a penalty formulation for the enforcement
of the contact constraints. The element is enriched with spe-
cific characteristics that allow for the solution of rough con-
tact problems yet maintaining a very simple mesh discretisa-
tion, both using a single-scale and a multi-scale approach. In
the single-scale approach, a novel methodology is exploited
that considers an equivalent flat interface and accounts for
the actual geometry by a suitable correction of the standard
normal gap. In the multi-scale approach, the Boundary Ele-
ment Method (BEM) is exploited for solving, at a micro-scale,
the normal contact problem of a rough rigid indenter mak-
ing contact with an elastic half-space, according to a far-field
displacement determined by the deformation imposed at a
macro-scale. The solution in terms of averaged pressure and
mean separation is then passed back to the macro-scale.

xv



Chapter 1

Introduction

1.1 Motivation

Current technological trends require the production and the analysis of
structures down to the micro- and nano-scale. At this level of magnifica-
tion, phenomena related to the texture of the surfaces of components in
contact strongly affect their global physical response, which commonly
involves transferring pure mechanical stress across an interface through
normal and tangential contact forces. Relevant episodes concurrently
taking place at the interface and closely entwined with the transmission
of forces comprehend the transfer of heat and electrical potential, oxida-
tion, corrosion, change in optical properties and fluid percolation, which
in turn have relevant effects on the contacting surfaces wear, plasticity,
contamination by third bodies, lubrication and phase transformations,
to name the most relevant.

The deviation of a surface from perfect flatness at a certain magnifi-
cation could directly stem from the property of the material it is made
of, might be caused by local imperfections or even could be designed,
tailored and obtained through specific machining processes. A particu-
lar form of special texturing, roughness or waviness can be investigated
to obtain specific surface characteristics that enhance selected properties
like adhesion, hydrophobicity or hygroscopicity.
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1.2 State-of-the-art of rough contact mechanics

1.2.1 Analytical and statistical models

From a historical perspective, the probably most important outcome re-
lated to the awareness of the actual rough microscopical nature of sur-
faces resulted in the explanation given by Bowden and Tabor [1] of the ef-
fectiveness of the Coulomb friction law, which, in turn, is a direct conse-
quence of the linear relationship that in a contact problem holds between
the normal load and the actual contact area. This linear dependence
emerged from experimental evidence in cases where theory predicted a
non-linear relationship, e.g. in the context of the Hertz theory [2].

The first model that was capable of reproducing such linear depen-
dency tackling a contact problem that involved micro-textured surfaces
is due to Archard [3], where the author foresaw a characteristic that since
then became of capital importance in the context of tribology and sur-
face metrology in general, that most of engineered and natural surfaces
exhibit a self-affine fractal topology over several different length scales,
sometimes spanning from the atomic scale up to the characteristic length
of the object [4, 5].

From the pioneering work of Archard, that together with the model
of Greenwood and Williamson [6] paved the way for the theories whose
fundamental assumptions are still today accepted, a dense network of
increasingly accurate models came out. To name the most relevant, from
whom many other models have been derived, we might recall Bush,
Gibson, and Thomas [7] who treated the elastic contact between a rigid
rough surface and a plane considering each asperity as a paraboloid with
equal principal curvatures and applying the classical Hertzian solution
for their deformation; A. and Bhusan [8], who have been the firsts to ap-
ply the fractals theory to the elastoplastic problem of contacting rough
surfaces and Persson [9], who has developed a theory which, contrar-
ily to the preceding ones, is more and more accurate as of the load in-
creases, being exact for full contact. In between, many different formu-
lations have been developed on top of the fundamentals for increasing
their accuracy, enhancing their capabilities and overcome some of their
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shortcomings. The problem of nominally flat spheres has been thor-
oughly investigated, thus extending the domain of analysis to curved
nominally smooth interfaces, see Greenwood and Tripp [10], Pohrt and
Popov [11], Yastrebov [12]. Several improvements over the original mod-
els have been obtained in the course of the years. To name a couple of
them, Greenwood [13] obtained a simplified and more accurate version
of Bush, Gibson and Thomas’s theory using an approximate expression
for the peaks’ curvature instead of the exact one; Ciavarella, Delfine, and
Demelio [14] set up a discrete Greenwood and Williamson model* using
synthetic surfaces and accounting for first-order interaction between the
asperities, obtained considering the half-plane displacement outside a
single asperity contact area; later on Ciavarella, Greenwood, and Paggi
[15] obtained a further improved model which accounted for the elastic
displacement interaction between the asperities considering the average
constant displacement given by the mean nominal pressure caused by
the contact of a single peak.

The presented models deal with frictionless normal contact. Under
specific assumptions, frictional contact can also be analysed by knowing
the tangential load history without the need to directly addressing the
related tangential problem. This line of research started with Cattaneo
[16] and [17]; under the hypotheses of normal-tangential decoupling, lin-
ear displacements and half-space approximations, they proved that for
a constant normal load and a monotonic increasing tangential load, the
distribution of the tangential tractions could be expressed as the super-
position of two normal tractions distributions related to a specific nor-
mal load. Since then, the result has been extended to general oblique
load histories, see for example [18], Jäger [19], Jäger [20] and more com-
plex contacting geometries, also determining non-compact contact do-
mains, Ciavarella [21], Ciavarella [22], opening perspectives for the ap-
plication of what is now commonly referred to as the Ciavarella–Jäger the-
orem to the analysis of frictional rough contacts.

The micromechanical contact theories presented here have been the
basis for the analysis of rough surfaces and rough profiles contact prob-

*In contrast with the original one that relied on a continuous distribution of heights.
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lems for decades, with the capability to address additional features that
have not been properly enumerated here, being not part of the present
dissertation. Among these, a key role is played by adhesive phenomena.
For a complete survey of the range of application of micromechanical
contact theories, the interested reader is referred to the recent thorough
review paper by Vakis et al. [23] and to Müser et al. [24], where sev-
eral different methodologies have been tested against a reference contact
problem, and their results compared with a brute force numerical solu-
tion.

1.2.2 Numerical models

One of the main drawbacks of micromechanical contact theories is that
they only predict global quantities, e.g. the effective contact area and
the total reaction force, without providing punctual information on iso-
lated contact spots in such a way that is often difficult, if not impossible,
having exact pieces of information over the real distributions of contact
tractions and consequently contact zones. In this perspective, numeri-
cal methods gained importance over the past years, thanks to improved
computational power and efficiency. Among them, the most employed
computational frameworks are the Boundary Element Method (BEM) and
the Finite Element Method (FEM), with their special focus on contact me-
chanics.

The Boundary Element Method

The numerical framework referred to as BEM is a strategy for solving
initial boundary value problems, which is particularly suited for contact
mechanics since it only requires solving the problem at the frontier of
the definition domain. The first applications date back to Andersson [25]
and Andersson and Allan-Persson [26], where the method is formalised
for the solution of the contact between two elastic solids characterised by
a smooth boundary. A subset of the method has proven to be very effec-
tive for the solution of rough surfaces contact. Often, a synecdoche holds
between BEM applied to rough surface contact and the broader BEM for

4



computational contact mechanics. The former covers the cases of rigid
rough surfaces making contact at selected points with flat deformable
half-spaces. The latter can solve contact between two bodies, which can
be both elastic and have a general shape but are usually characterised
by smooth boundaries. A recent article by Xu and Jackson [27] sheds
light on this perhaps subtle nomenclature overlapping and rigorously
proves that the second strictly reduces to the first when the aforemen-
tioned hypotheses are formulated. For the avoidance of any doubt, in
the rest of the dissertation, the term BEM will be referred to the subset
of the numerical framework dealing with a rigid rough surface making
contact with an elastic half-space when 3D problems are addressed, or
a rough profile making contact with an elastic half-plane under plane
strain assumptions in the case of 2D geometries. The procedure is well
summarised in Johnson [28, Ch. 5, pg. 144–152]. The surface displace-
ments on the boundary, together with the related distribution of contact
pressures, can be expressed by a convolution of the tractions and the re-
lated influence function, representing the displacement of a point given
the action of a unitary load. This results in a boundary integral equa-
tion (BIE) discretised over the elastic frontier, obtaining a linear system
in which the displacements are linked to the interface tractions via an in-
fluence matrix. The problem is solved via the proper inversion of the re-
sulting system with the additional requirement of respecting the contact
constraints, making the problem strongly non-linear. The influence ma-
trix coefficients are available in the analytical form if the load is simply a
point force acting on a semi-indefinite boundary, thanks to the Flamant
and Boussinesq–Cerruti solution; if it is represented by a unitary distri-
bution of normal pressure acting over a rectangular area, the solution
obtained by Love [29] can be exploited; the results of Li and Berger [30]
can be used if a triangular patch of constant or linearly varying pressure
is assumed. More complex influence functions can be identified for the
common 2D case of a semi-indefinite elastic layer of finite thickness, for
which an analytical form can not be derived, see, e.g. [31], [32], [33] in
which the method is applied to the solution of contact problems involv-
ing simple contacting geometries.
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Exemplary instances of the application of BEM to frictionless contacts
involving complex rough surfaces can be found in [34], together with
a critical review of the most common non-linear solution algorithms,
and [35], in which optimised solution strategies are adapted to the solu-
tion of the system of equations thanks to the characteristic block structure
of the influence coefficients matrix.

The effects of friction can be taken into account using two principal
approaches. The first is the application of the Ciavarella–Jäger theorem,
which allows to solve the normal contact problem separately, and then
defines the tangential solution as a proper superposition of normal states,
an example of this application can be found in Paggi, Pohrt, and Popov
[36], for monotonically increasing loads. The mentioned theorem is very
powerful and allows to solve the frictional problem straightforwardly
but relies on rather strong assumptions, namely the decoupling between
normal and tangential tractions and the equality of the influence func-
tions in the two coordinate directions. The second approach is less el-
egant but allows to overcome these limitations. The problem is solved
iteratively; for each iteration, two active sets are defined for the tangen-
tial displacements, and the respect of Coulomb friction law is verified a
posteriori. If a violation is detected, the nodes are moved to the proper
active set according to a specific criterion. The procedure is repeated
until all the nodes belonging to the sets composing the contact domain
respect the tangential constitutive law. In this regard, an example is of-
fered by Pohrt and Li [37], which solve the uncoupled problem with a full
characterisation of the stick and slip separation zones under the action of
a monotonic tangential load.

Thanks to an innovative approach introduced by Carbone and Putig-
nano [38], the use of BEM has also been extended to linear viscoelas-
tic materials under the sliding action of rough indenters, the interested
reader is referred to the review by Putignano and Carbone [39]. The
method is perfectly suitable for the steady-state analysis of the distribu-
tion of the normal traction arising in these contexts, together with the
related side effects, one over the others, viscoelastic friction. This kind of
dissipative phenomena should not be confused with Coulomb friction.
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The asymmetry determines it in the distribution of normal contact forces
caused during sliding motion by the viscoelastic effect. It is of great im-
portance for quantifying bulk viscoelastic energy losses. However, to the
best of the author’s knowledge, the method is used in a frictionless sense
concerning the classic static Coulomb friction. When this framework is
validated with experimental results, the effects caused by classic friction
are depurated, see e.g. Putignano, Reddyhoff, and Dini [40].

In conclusion, the pros and cons of BEM can be summarised, stat-
ing that it is well suited for the solution of contact problems involving
rough surfaces given its pointwise input, which allows mapping com-
plex geometries with the desired level of resolution without the need of
also discretising the bulk. Given the characteristics of the problem, dif-
ferent strategies can be implemented for considering the effect of classic
Coulomb friction. Conversely, its main shortcomings are that it is lim-
ited to simple bulk geometries, mostly half-spaces and finite-thickness
layers. In general, it is subjected to the previous evaluation of a related
influence function. Considering the exclusion of the categories of excep-
tion presented, the method is limited to small displacements regime and
linear elastic materials. The overcoming of these limitations is difficult
but not impossible. Different strategies can be implemented in this re-
gard. An example is given in Zhao, Vollebregt, and Oosterlee [41], where
a complex bulk geometry is considered, and the related influence func-
tions are obtained separately via FEM.

The Finite Element Method

The Finite Element Method is today the most spread tool in the field of
computational mechanics. Several strategies have been developed and
refined in the course of the years for its successful application to contact
mechanics problems. Without the aim of providing an exhaustive liter-
ature review, the interested reader is referred to the works of Wriggers
[42] and Yastrebov and Breitkopf [43], for a general view of the subject;
to Popp [44] for a particular focus on mortar methods and to De Lorenzis,
Wriggers, and Hughes [45] for a comprehensive review of the isogeomet-
ric framework applied to contact problems.
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The main strength of the numerical approaches shown in the preced-
ing paragraph is its capability of ideally solving the problem in a deter-
ministic sense†, ideally with a one-to-one correspondence between the
analysed point and its contact state, thanks to the fact that real fractal
surfaces always present a high wavenumber cut-off which from the the-
oretical point of view is given by the breakdown of continuum mechan-
ics hypotheses, but in practice happens before, given the presence on the
surface of impurities, third bodies, fluid films etc. This important con-
sideration also holds for FEM.

Applying FEM to the solution of contact problems involving the con-
tact of fractal rough surfaces allows gaining a deeper understanding of
many key features of the subject which were once precluded using the
strategies exposed in the preceding paragraphs, prime examples being
the analysis of finite displacements, different constitutive behaviours and
more complex geometries. This comes with the cost of a remarkable in-
crease in computational resources needed, together with the higher care
required by a trustful discretisation of the surface. In this regard, it is
useful to draw a comparison with BEM. For what concerns the resources
needed, BEM only requires the discretisation of the interface without
considering the bulk, which is not true for FEM. If we consider regular
structured grids in 3D, doubling the resolution employed for sampling
the surface implies a quadratic increase in the mesh nodes, which is cu-
bic for FEM, thus rapidly leading to unbearable problems. For this rea-
son, the use of more complex meshing algorithms is required, capable of
grading the mesh discretisation from the required level of fine resolution
in correspondence of the contact surface to coarser element dimension in
correspondence of the bulk, which usually is interested by a constant or
slowly varying gradient of stress that does not require fine meshing. The
direct result would be an unstructured mesh, with the related issues, un-
less specific strategies are put in place, for example, with the application
of a specific mesh tying algorithm or limiting the changes of the finite
elements characteristic dimensions to specifically limited layers of the
mesh, a strategy whose employment is going to be reviewed in the lines

†Under the hypotheses of continuum mechanics, until the nanoscale threshold.
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below.

Besides the high requirement of computational resources, another
problem absent for BEM is the surface discretisation itself. In a pre-
vious numerical method, choosing an adequate number of grid points
could be seen enough for satisfactory modelling of the morphology; this
is true also for FEM, but with the additional caveat that the resulting
mesh should be free of highly distorted elements that lead to poor com-
putational efficiency or the end absence of convergence.

Given these considerations, the increase in computational resources
witnessed in the recent past has opened new perspectives for the solution
of contact problems involving fractal rough surfaces. To the best of the
author’s knowledge, the first instance of a rough surface contact prob-
lem solution via FEM can be found in Hyun et al. [46]. Here the rough
surface is modelled starting from a flat plane, discretised via a standard
regular mesh. After that, a heights field is assigned to each node. Simply
displacing the node in a direction normal to the flat boundary by the re-
quired height might result in a badly shaped element. To overcome the
issue, not only the surface nodes are displaced, but also the ones belong-
ing to the bulk, each by a proper fraction of the total height, to globally
obtain the desired rough surface,‡ Fig. 1;

(a) Starting condition. (b) Mesh nodes displacements.

Figure 1: Possible mesh discretisation of a rough surface.

‡This operation could be made difficult by the fact that the mesh in the direction normal
to the surface is not structured, given its gradation from finer to coarser. So it could not be
straightforward to assess which quote of displacement to apply to subsurface nodes.
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A different modelling approach has been followed by Bandeira, Wrig-
gers, and de Mattos Pimenta [47], who solved a rough frictionless contact
problem to derive specific contact interface laws. First of all, a flat plane
has been discretised with standard elements. All and only the surface
nodes have been displaced according to the surface roughness, but with
the roughness height limited to a specific bandwidth to keep a certain
limit aspect ratio for the elements. Moreover, an intermediate smoothing
step has been performed. The actual rough surface has been smoothed
via Bézier functions, this operation at the risk of filtering out roughness
features related to its original morphology.

A complementary approach can be followed. It also starts with a flat
interface as the first step. Then, on top of the flat boundary, another
mesh is defined, with a vertical discretisation proportional to the surface
height at that point, such to enforce a proper aspect ratio of the gener-
ated elements, Fig. 2. A drawback of the approach is that in the created
layer, the mesh is structured, and a potentially high number of degrees
of freedom is added to the problem. An example of this approach can be
found in Yastrebov et al. [48], and Couto Carneiro, Pinto Carvalho, and
Andrade Pires [49] in which the contact problem between deformable
rough surfaces and rigid flat planes is solved in the context of Represen-
tative Volume Elements (RVE) identification and also by Wang et al. [50],
which aims to provide a methodology for the deterministic solution of a
frictional rough contact problem.

A mention of works related to the presented issues can be made.
Thompson and Thompson [51] and Thompson [52] presents guidelines
for the inclusion of measured rough surfaces in a FEM framework and,
perhaps more relevant, to give an estimation of the goodness of the re-
sults obtained. As stated in the preceding paragraphs, FEM is a powerful
method that can push the analysis in terms of the resolution to the limit
but with a strongly increasing computational cost. In [53], an effective
post-processing framework is proposed, capable of refining and giving
an accurate estimation of the true contact area for relatively coarse dis-
cretisations, with the related gain in computational resources. In conclu-
sion, from the purely computational side, the scripts developed by Loth
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(a) Starting condition. (b) Additional elements.

Figure 2: Possible mesh discretisation of a rough surface.

et al. [54] and implemented in the mesh generator GMSH [55] provides
a handy tool for the synthetic generation of rough meshes, also in the
challenging scenario of curved nominally smooth interfaces, but with the
drawback of being limited to unstructured meshes, which perhaps make
the framework less attractive concerning more standard applications.

1.3 Scope of the dissertation

This thesis’s main scope is to present two different methodologies for
the analysis of contact problems involving morphologically complex or
rough surfaces. Both approaches rely on FEM as a chosen computational
framework. They hinge on the definition of an interface finite element
used to model the space encompassed by two solids in contact. This kind
of interface element is shared by the field of non-linear fracture mechan-
ics, where it is employed for the simulation of non-linear crack growth
according to the Cohesive Zone Model (CZM). Here for the first time,
the formulation is extensively applied to contact mechanics. With no fur-
ther modifications, this interface element is well-suited for the solution of
contact problems involving smooth and conformal interfaces, exploiting
a node-to-node approach and a penalty formulation for the enforcement
of the contact constraints. In this work, the element is enriched with spe-
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cific characteristics that allow for the solution of rough contact problems
yet maintaining a very simple mesh discretisation, both using a single-
scale and a multi-scale approach. A novel methodology is exploited in
the single-scale approach that considers an equivalent flat interface and
accounts for the actual geometry by a suitable correction of the standard
normal gap. In the multi-scale approach, BEM is exploited for solving,
at a micro-scale, the normal contact problem of a rough rigid indenter
making contact with an elastic half-space, according to a far-field dis-
placement determined by the deformation experienced by a macro-scale.
The solution in terms of averaged pressure and mean separation is then
passed back to the macro-scale.

1.4 Chapters overview

The content of the dissertation is organised as follows.

1.4.1 Interface finite element model

In this chapter, the formulation for an interface finite element is thor-
oughly derived, which constitutes the common support and basis for the
two different methodologies presented. The element is adapted from the
Cohesive Zone Model (CZM) employed in nonlinear fracture mechanics
and mimics the interface shared by two generic bodies in conformal con-
tact. Its variational formulation is thoroughly derived, starting from the
strong form of governing differential equilibrium equations, down to a
level adequate for its implementation inside a standard FEM software.

1.4.2 Mapping of a complex morphology into the finite
element

A new approach for rough surface discretisation is described on top of
the interface finite element presented in the previous chapter. It allows
to solve non-conformal contact problems involving complex textured or
rough surfaces by considering an equivalent flat interface and account-
ing for the actual geometry a correction of the standard normal gap. A
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benchmark test is provided for assessing the validity of the formulation
in the case of a reference problem for which the solution is known. Fi-
nally, the element is tested against a complex quasi-fractal surface under
varying load conditions, with a complete derivation of the evolution of
the vertical and horizontal traction fields. This chapter is part of [56]

1.4.3 A multi-scale formulation

A separation of the length scales is performed for examining the contact
of nominally smooth but microscopically rough surfaces. Two different
scenarios are coupled together. At the micro-scale, BEM is exploited for
solving the normal contact problem of a rough rigid indenter making
contact with an elastic half-space, according to a far-field displacement
determined by the deformation experienced by the macro-scale. The
solution in terms of averaged pressure and mean separation is finally
passed back to the macro-scale. Different scale coupling strategies are
discussed and compared. Part of the chapter can be found in [57].

1.4.4 Advanced applications

The versatility of the application proposed in Ch. 3 and its capability to
be extended for the study of more complex problems are examined in the
last chapter, where a 3D version of the implementation is considered to-
gether with instances concerning the indenting of non-elastic materials
and the presence of the additional features, such as finite sliding dis-
placements. This chapter is part of [58].
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Chapter 2

General framework for an
Interface Finite Element

In this Chapter, the derivation of an interface finite element employed in
the analysis of contact problems is addressed. 2D quad and 3D hex shell-
like elements, which so far have been extensively employed in non-linear
fracture mechanics, will be applied to the analysis of contact problems.
Some examples regarding the exploitation of this framework and its ef-
fectiveness and versatility in assessing reproducing complex interface
behaviour can be found in studies related to cohesive crack growth, see
for example Ortiz and Pandolfi [59] and Reinoso and Paggi [60], fracture
models involving interface micromechanical features [61], finite thick-
ness interfaces [62, 63], plasticity and fracture models with the concur-
rent use of a node-to-segment approach for enforcing non penetration con-
ditions [64, 65, 66], simulation of dynamic non-linear peeling tests, [67],
paper debonding, [68, 69], delamination of composite laminates and rubber-
like materials, [70, 71, 72]. The versatility of the method can be proven by
its application to simulate multi-physics phenomena involving heat ex-
changes across the interface [73] or, in general, the presence of more field
variables. Particularly relevant in this context is its use combined with
the phase field method for fracture mechanics, see for example Carollo,
Reinoso, and Paggi [74]. Here, the method will be extensively applied
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for the first time to the simulation of contact problems with complex ge-
ometrical characteristics.

The base configuration of the element is suitable for modelling the
interaction of two deformable bodies under the hypothesis of small dis-
placements. The following derivation relies on the strong differential
form describing the equilibrium and compatibility conditions of two lin-
ear elastic bodies coming into contact across a smooth, conformal interface.
This general condition is employed as a framework for the introduction
of the contact conditions and the element itself, while hereinafter will be
restricted. This because the contact typology investigated will deal with
rigid indenters acting over deformable bulks, a scenario that can be clas-
sified under the label of Signorini problem. The aforementioned restriction
allows extending and enriching the formulation of the interface element
to deal consistently with the topics discussed in Ch. 3 and 4, where appli-
cations regarding a multi-scale approach and a new concept in treating a
complex interface geometry will be discussed. It is good to pinpoint from
now that the restriction made, viz. the rigid assumption over one of the
bodies, is not a strict prerequisite, and a proper formalisation, which is
beyond the scope of this dissertation and left for further investigation
would allow for the relaxation of the mentioned restraint, resulting in a
broader range of application.

2.1 Strong form of governing equations

Assume that two deformable bodies define the domains Bi ∈ R3,i = 1, 2

in a reference configuration described by standard Cartesian basis e1, e2,
e3. In absence of contact interactions, the boundary ∂B =

⋃
i=1,2

∂Bi of the

domain can be split into two disjointed sets, Fig. 3:

(i) a region where displacements are imposed, i.e. the Dirichlet bound-
ary ∂BD

i ;

(ii) a region where tractions are imposed, i.e. the Neumann boundary
∂BN

i .
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In case of contact, specific boundary conditions must be specified at the
common interface ∂BC where contact might happen to enforce compat-
ibility conditions. The boundary configuration is so divided into three
mutually exclusive sets. Since the actual contact area is not known a pri-
ori, a further conceptual subdivision over ∂BC can be performed, distin-
guishing a region where contact actually occurs from the remaining part
of the expected contact area, which phenomenologically belongs to the
Neumann boundary*. The final boundary subdivision can be expressed
as:

∂B = ∂BD
1 ∪ ∂BD

2 ∪ ∂BN
1 ∪ ∂BN

2 ∪ ∂BC, (2.1)

∂BD
i ∩ ∂BN

i = ∂BN
i ∩ ∂BC

i = ∂BC
i ∩ ∂BD

i = ∅, for i = [1, 2] (2.2)

The initial boundary value problem (IBVP) can be formalised by in-
troducing a displacement field ui(x, t) = [ui(x, t), vi(x, t), wi(x, t)]

T. It

*So far this distinction could appear unnecessary since under the hypotheses of con-
formal contact the contact area is supposed to be known in advance. However, this is not
true for receding contact problems and for the case which will be treated in Ch. 3, where
conformal conditions only hold at the mesh level, while the actual contact geometries are
different.

Figure 3: Identification of the domains Ωi (i = 1, 2), together with the im-
posed boundary conditions and the contact interface.
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maps the displacements of the points of Bi, identifying ui, vi and wi the
displacements along e1, e2 and e3, respectively, and recalling continuous
and differentiable functions of the position vector x at time t. Further-
more, a small deformation strain tensor is defined as the symmetric part
of the deformation gradient, Ei(x, t) = ∇Sui(x, t), with ∇S standing for
the symmetric part of the gradient operator.

With no contact contributions, the linear momentum balance equa-
tion for both B1 and B2, along with Dirichlet and Neumann boundary
conditions on ∂BD

i and ∂BN
i , can now be recalled for obtaining the strong

form of equilibrium for the contacting bodies. Without taking into ac-
count contributions due to contact conditions, they read:

∇ ·T + b̂0 = ρ0ü inB, (2.3a)

T · n = t̂0 on ∂BN, (2.3b)

u = û0 on ∂BD. (2.3c)

This set of equations equally holds for both bodies, and in order to light
the notation, the dependency over the body index i has been suppressed,
together with the dependence of the field variables over the position vec-
tor x and time t. Nonetheless, since a second derivative for displace-
ments is present, a set of two initial conditions must be defined as well,
in the form:

u(x, 0) = û0 inB, (2.4a)

u̇(x, 0) = ˆ̇u0 inB. (2.4b)

2.2 Weak form of equations

The strong formulation expressed by Eq. (2.3) can be cast in a differ-
ent form which permits to seek for an approximate yet accurate solution
with weaker differentiability requirements. Multiplying it by a weight-
ing function δu, coincident with a virtual displacement, integrating over
the domain B, and finally integrating by parts the stress divergence term,
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leads to:

2∑
γ=1

[∫
Bγ

T(uγ) : Eγ(δu) dV +

∫
Bγ
ρ0üγ · δu dV

−
∫
∂BN

γ

t̂0 · δu dA−
∫
Bγ

b̂0 · δu dV

]
= 0. (2.5)

This equation is a formulation of the principle of virtual work that col-
lects the energetic contributions given by the elastic energy and the iner-
tial forces’ work, the body forces and the external forces applied to the
frontier. It can be observed that the original differential equation is still
satisfied, provided that δu is arbitrary everywhere except in correspon-
dence of ∂BD, where essential boundary conditions are provided and the
condition δu|∂BD= 0 must hold.

The normal and tangential contact conditions on ∂BC modify the
weak form expressed by Eq. (2.5) with respect to the classic elastostatic
variational equality, determining its modification into the following vari-
ational inequality, which from the energetic point of view takes into ac-
count the increase in stored elastic energy due to the presence of the con-
tact constraints, with respect to the equivalent contactless elastic prob-
lem:

2∑
γ=1

[∫
Bγ

T(uγ) : Eγ(δu) dV +

∫
Bγ
ρ0üγ · δu dV

−
∫
∂BN

γ

t̂0 · δu dA−
∫
Bγ

b̂0 · δu dV

]
≥ 0. (2.6)

If the extension of the contact domain is known, the equality can be re-
stored adding the energetic terms related to both normal and tangential
contact, obtaining:

2∑
γ=1

[∫
Bγ

T(uγ) : Eγ(δu) dV +

∫
Bγ
ρ0üγ · δu dV

−
∫
∂BN

γ

t̂0 · δu dA−
∫
Bγ

b̂0 · δu dV

]
−δΠn − δΠτ = 0 (2.7)
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2.3 Contact kinematics and contact constraints

A relative displacement field can now be introduced for the description
of the kinetics interaction between the two bodies in correspondence of
the common contacting boundary ∂BC. It is defined gap field across the
interface and expressed as g(x, t) = u2(x, t) − u1(x, t), whose compo-
nents describe the relative displacements of two corresponding nodes
across the interface, expressed in global coordinates:

g(x, t) =
[
∆u(x, t), ∆v(x, t), ∆w(x, t)

]T
, (2.8)

being ∆(·) the scalar difference between the corresponding quantities re-
lated to the two bodies. It has to be remarked that since the interface
is conformal, a direct correspondence holds for matching points across
it, with no need of setting up projection algorithms for the identification
of the gap vector. This, together with the assumption of small displace-
ments, makes it possible to define g(x, t) only in terms of the relative
corresponding points displacements. Once the gap field is known, an
inequality constraint can be set to define a non-penetration law that de-
scribes whether the interface is opening or the two bodies are coming
into contact. Defining n as the outward pointing unit vector normal to
∂B1, the contact constraint takes the form:

gn(x, t) = g(x, t) · n ≥ 0, (2.9)

being gn(x, t) the projection of the gap field along the normal direction.
The outward pointing normal n can be evaluated according to Eq. (2.28)
for the 2D case and with Eq. (2.33c) for what concerns 3D. When the
inequality is strictly equal to zero, the bodies are in contact and the forces
exchanged at the interface level are described by the traction vector t(γ),
equal and opposite for B1 and B2, that can be expressed according to
Cauchy’s stress theorem as:

T · n = t = pnn + q1τ 1 + q2τ 2, (2.10)

where the body-related superscript (γ) has been suppressed and τ j are
the surface unit tangent vectors in correspondence of the contact point.
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Consequently, the quantities pn, q1 and q2 represent the normal and the
tangential contact tractions.

2.3.1 Normal contact constraints, constitutive kinematics

If adhesive forces are neglected, the normal traction is always acting in-
ward concerning the boundary, and therefore negative. This allows us
to summarise the conditions for normal contact in the set of relations
known as Hertz-Signorini-Moreau conditions:

gn ≥ 0, pn ≤ 0, gnpn = 0 on ∂BC. (2.11)

Eqs. (2.11) are well known in the field of constrained optimisation as
Karush-Kuhn-Tucker (KKT) conditions. They correspond to a Linear
Complementary Program (LCP) whose solution coincides with a related
convex Quadratic Program (QP) optimality condition. Tackling the prob-
lem by treating normal contact as a unilateral constraint leads to accurate
results in terms of normal contact tractions, but this comes at the cost of
implementing a dedicated solution strategy.

While correct unilateral constraint enforcement will be retrieved in
Chap. 4, in the context of BEM application, the FEM-related implemen-
tations addressed in the dissertation rely on a more versatile yet approx-
imate approach. If the quantity addressed by the variable gn is allowed
to take negative values as well, a penetration function can be written re-
versing Eq. (2.9) as:

gn =

{
(u2 − u1) · n if (u2 − u1) · n < 0,

0 otherwise,
(2.12)

which gives the level of the reciprocal interpenetration of B1 and B2.
Starting from this definition, a displacement based normal contact con-
stitutive relation can be defined introducing a penalty parameter εn and
evaluating the normal contact traction as:

pn = εngn. (2.13)

It is evident from the equation above that, given the discontinuous na-
ture of the penetration function, traction different from zero will arise
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only for a certain level of penetration, and that an exact value of pn can
be retrieved only for εn →∞, restoring the enforcement of the KKT con-
ditions. This constraint enforcement method goes under the name of
penalty approach, Fig. 4, since it penalises every constraint violation by
associating the related displacement solution with a high energy level.

The penalty method is widely used thanks to its ease of implemen-
tation and efficiency. It has the great advantage of not introducing addi-
tional unknowns to the problem. Moreover, this constitutive normal law
for the interface represents outstanding support for introducing more
complex constitutive relations, the next chapters’ subject. Since in na-
ture there are no free meals, the method presents drawbacks as well.
As stated before, an exact solution is retrieved only for εn → ∞, but as
the parameter grows, the problem becomes increasingly ill-conditioned.
A trade-off must therefore be chosen between accuracy and well con-
ditioning of the related solution system of equations. Apart from these
considerations, the penalty parameter’s introduction makes the solution
problem-specific, and no general rules exist for its evaluation. For a given
penalty parameter, remarkable differences also hold between problems
solved under force control, for which equilibrium guarantees a more ac-
curate transmission of forces across the interface, and problems solved
under displacement control, where the interface stress depends on the
applied displacement field [42, Ch. 6 pag. 119]. Some guidelines for eval-
uating the penalty parameters can be found in [75, 76, 77].

2.3.2 Tangential contact constraints and constitutive rela-
tion

If the effect of friction is accounted, the response of the contact interface
can be further categorised in two different regions. The contact domain
is therefore expressed as:

∂BC,st ∪ ∂BC,sl = ∂BC,

∂BC,st ∩ ∂BC,sl = ∅. (2.14)
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Figure 4: Hertz-Signorini-Moreau conditions vs. penalty approach.

In the equation above, the two subscripts denote regions of stick and
slip respectively. The first is characterised by the absence of tangential
relative motion between the bodies in contact, the second by a relative
sliding which gives birth to tangential tractions that oppose the relative
movement. The solution of continuity in the contact subdomain fron-
tier is a direct consequence of the non-linearity of the Coulomb law em-
ployed for modelling friction, †. It can be expressed by the following set
of equalities and inequalities:

gτ = 0, ‖qτ‖ ≤ µpn on ∂BC,st, (2.15a)

qτ = −µ|pn|
ġτ
‖ġτ‖

, ġτ > 0 on ∂BC,sl, (2.15b)

in which ġτ is the sliding velocity, and µ is the friction coefficient. Ac-
cording to Eq. (2.15b), the tangential reaction can prevent relative sliding
up to a limit value coincident with µ|pn|, above which relative sliding be-
gins with a constant tangential reaction equivalent to the same threshold
value. The interface behaviour is depicted in Fig. 5, together with the
constitutive law employed for resolving the non-linearity in correspon-
dence of the origin:

tτ = −µ|pn|
ġτ
‖ġτ‖

tanh
‖ġτ‖
ε̇τ

(2.16)

†Coulomb law is still an excellent compromise between ease and accuracy, see com-
ments made over [1]
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Figure 5: Coulomb friction law vs. regularised friction law.

Equation (2.16) can be seen as the tangential analogous of Eq. (2.13).
Again a parameter ε̇τ is introduced for approximating a limiting case,
recovered for 1/ε̇τ → ∞, with considerations that are equivalent to the
ones drawn for the normal penalty. As the normal penalty introduces a
violation over the normal constraint, the assumptions defining the points
relative to kinematics in the stick domain are not respected. A zero tan-
gential traction is present only in combination with a null relative dis-
placement, while the increase of qτ up to its limit value happens without
a solution of continuity. It has to be remarked that the use of Eq. (2.16)
only represents a possibility among many others. Different regularisa-
tion curves can be found in [42, Ch. 5, pag. 79-83] concerning different
sets of material contacts.

2.4 Contact contribution to the weak form

According to the constitutive equations defined for the interface, the con-
tributions of the interface tractions to the principle of virtual work ex-
pressed by Eq. (2.7) can be stated, for normal and tangential directions
respectively, as:

δΠn =

∫
∂BC

pn(u)δglc,n(u) dA, δΠτ =

∫
∂BC

qτ (u)Tδglc,τ (u, u̇) dA,

(2.17)
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where glc,n(u) and glc,τ (u, u̇) are the normal and tangential gap field,
evaluated in the local reference system. The displacement field u, solu-
tion of the weak form is such that it corresponds to the minimum of the
energy for any choice of the virtual displacements δu.

2.5 Finite element discretisation

The numerical solution of the variational equality described by Eq. (2.7)
in the framework of the finite element method requires the geometrical
approximation of the two bulks, Bγ , and of the interface, ∂BC, and their
discretisation into finite elements, a process that can be formalised as:

Bγ ≈ Bh
γ =

nΩ⋃
e=1

Ω(e)
γ , ∂BC ≈ ∂Bh

C =

nΓ⋃
e=1

Γ(e), (2.18)

where Ω(e) represents the element that compose the geometric approx-
imation Bh of the bulk B, while Γ(e) is the interface element in which
∂Bh

C is divided, in its turn an approximation of ∂BC, Fig. 6. Throughout
the dissertation, in the numerical examples provided, the bulk has been
modelled using the following approach:

Figure 6: FEM approximation of the bulk and the interface.
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• for 2D problems:

– an unstructured mesh has been used for the simulation of infi-
nite domains, made of standard linear isoparametric tria and
quad elements. The need for simulating unlimited domains
came arose for validation purposes, viz. Sec. 3.2

– a structured mesh only made of quad elements has been used
for reproducing finite-size bulks, employed for practical ap-
plications;

• for 3D problems:

– an unstructured mesh has been used for the simulation of infi-
nite domains, made of standard linear isoparametric 5-nodes
pyramid, 4-nodes teth and 8-nodes hex elements, see Sec. 5.1.2

– a structured mesh made of 8-nodes hex elements only has been
used for reproducing finite-size bulks, employed for practical
applications.

There is no restriction on the finite element typology to be employed
for the bulk, provided that it is consistent with the interface discretisa-
tion. Since a contact strategy analogous to a node-to-node approach has
been chosen, a discretisation of the two bulks characterised by match-
ing nodes at the interface is necessary. Under the hypothesis of small
displacements, this requirement makes possible the analysis of frictional
effects due to relative nodal tangential displacements, since slip will be
infinitesimal too [78]. Upon these premises, a 4-nodes interface finite
element Γ(e) is introduced, as a special case of a collapsed 4-nodes quad
element, for 2D problems, together with its 3D extension, a 8-nodes shell-
like hex element.

The interface element is defined by two facets, each belonging to the
boundary of one of the two bodies, see Fig. 7, each facet characterised by
two or four nodes according to the problem dimension. Equation (2.8)
expresses the energetic contribution of the interface to the global weak
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(a) quad finite element. (b) hex finite element.

Figure 7: 2D and 3D interface finite elements.

form. This contribution explicitly reads:

δΠ ≈ δΠh =

∫
∂Bh

C

p(u) · δglc(u, u̇) dA =

nΓ⋃
e=1

∫
Γe

p̃(ûe)Tδg̃lc(ûe, ˆ̇ue) dA, (2.19)

where Eq. (2.17) has been condensed collecting the normal and tangen-
tial terms in the traction vector p = [qτ1, qτ2 , pn]T and local gap vector
glc = [gτ1, gτ2, gn]T. In the equation above, the symbol (̃·) denotes the
isoparametric form of the element displacements and their related quan-
tities, while (̂·) their respective nodal values, with the subscripts e span-
ning through the total number of elements nΓ employed for the interface
discretisation.

Consequently, the isoparametric finite element approximation of the
linear normal and tangential gaps g̃lc has the general expression:

g̃lc,e = QB(ξ)ûe, (2.20)

where ûe is the nodal displacement vector and B(ξ) a linear operator
which evaluates the proper relative nodal displacements and interpo-
lates them along the element Γ(e). For this purpose, a standard system of
parent coordinates is introduced for parametrising the value of the field on
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each interval across different nodes. In the present case, standard linear
shape functions for the quad element and bi-linear shape functions for
the hex element are chosen. The final step is the multiplication by the ro-
tation matrix Q, for moving from the global to the local reference system,
aligned to the interface element. The derivation will be specialised for a
plane strain case 2-dimensional case and a full 3-dimensional scenario in
the next two sections.

2.5.1 2D interface finite element formulation

In 2D problems, the vectors and matrix operators of Eq. (2.20) take the
following form. First, a nodal displacements vector is introduced, be-
ing ui and vi the horizontal and vertical displacements evaluated in the
global reference system, and numbered according to Fig. 7a:

ûe =
[
u1 v1 u2 v2 u3 v3 u4 v4

]T
, (2.21)

their relative difference is evaluated by pre-multiplying the previous by:

L =


−1 0 0 0 0 0 +1 0
0 −1 0 0 0 0 0 +1
0 0 −1 0 +1 0 0 0
0 0 0 −1 0 +1 0 0

 . (2.22)

Linear shape functions are employed for interpolating the values of the
gap field along with the element:

N =

[
N1(ξ) 0 N2(ξ) 0

0 N1(ξ) 0 N2(ξ)

]
, (2.23)

where, as usual, the two linear interpolating functions take the form:

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2
. (2.24)

Finally, the operator B(ξ) = N(ξ)L is introduced, and a rotation is ap-
plied for aligning the gap field to the element local reference system:

Q =

[
τx τy
nx ny

]
. (2.25)
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In Eq. (2.25), the entries of the rotation matrix are the unit vectors defin-
ing the local normal and tangential directions of the interface, such that
n = [nx, ny]T and τ = [τx, τy]T. They are evaluated in function of the
global coordinates of the four nodes. A centerline for the element is de-
fined, linking the points xm,i = [xm,i, ym,i]

T, i = (1, . . . , 2), each of them
located in the position sketched in Fig. 7a, and with expression:

xm,1 =
1

2
(x1 + x4), xm,2 =

1

2
(x2 + x3). (2.26)

A length l0 can be defined as l0 = ‖xm,2 − xm,1‖, and finally the unit
vectors as:

τx =
xm,2 − xm,1

l0
, τy =

ym,2 − ym,1

l0
, (2.27)

nx = −ym,2 − ym,1

l0
, ny =

xm,2 − xm,1

l0
. (2.28)

The explicit expression of p̃e and g̃lc,e in function of ûe allows to eval-
uate the energetic contribution of the interface elements to the system,
according to Eq. (2.19).

2.5.2 3D interface finite element formulation

An analogous approach can be followed for the derivation of the inter-
face element kinematics in 3D. The local gap field maintains the same
expressions, while the matrix operators can be re-defined according to
the element node numbering of Fig. 7b. In particular, the nodal displace-
ments are now stored as ûe = [u1, v1, w1, . . . , u8, v8, w8]T, where nodes 1

to 4 belong to the inferior facet, nodes 5 to 8 to the superior facet and ui,
vi andwi are the nodal displacements in the global reference system. The
matrix operator B(ξ) interpolates the tangential and normal gaps across
the interface:

B(ξ) =

[
−N1(ξ) 0 0 ... +N4(ξ) 0 0

0 −N1(ξ) 0 ... 0 +N4(ξ) 0
0 0 −N1(ξ) ... 0 0 +N4(ξ)

]
. (2.29)

28



In the present case, standard bilinear shape functions have been em-
ployed, with the expression:

N1(ξ) =
1

2
(1 + ξ)

1

2
(1 + η), (2.30a)

N2(ξ) =
1

2
(1− ξ)1

2
(1 + η), (2.30b)

N3(ξ) =
1

2
(1− ξ)1

2
(1− η), (2.30c)

N4(ξ) =
1

2
(1 + ξ)

1

2
(1− η), (2.30d)

The gap in the local reference frame can be evaluated by applying a
suitable rotation matrix Q, function of the coordinates xi = [xi, yi zi]

T ,
i = (i, . . . , 8) of the element nodes:

Q =

τ1x τ1y τ1z
τ2x τ2y τ2z
nx ny nz

 . (2.31)

The tangential and normal unit vectors τ 1, τ 2 and n are evaluated in
function of the global coordinates of the nodes xm,i = [xm,i, ym,i zm,i]

T,
i = (1, . . . , 4), each of them located on the mid-plane lying parallel to the
two opposite facets, sketched in Fig. 7b and with expression:

xm,i =
1

2
(xi + xi+4) for i = (1, . . . , 4) (2.32)

Given xm,i, the unit vectors read:

τ 1 =
(xm,1 + xm,4)− (xm,2 + xm,3)

‖(xm,1 + xm,4)− (xm,2 + xm,3)‖
, (2.33a)

τ 2 =
(xm,1 + xm,2)− (xm,3 + xm,4)

‖(xm,1 + xm,2)− (xm,3 + xm,4)‖
, (2.33b)

n = τ 1 ∧ τ 2. (2.33c)

2.6 Evaluation of the residual vector and effec-
tive dynamic tangent matrix

The contribution of a single interface element to Eq. (2.7) can now be
evaluated. Recalling the expression of the traction vector p̃e, it is possi-
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ble to express the variation of the normal penalty and tangential contri-
butions apported by each element as:

δΠ̃e =

∫
�
δg(ûe)Tp(ûe, ˆ̇ue)je(ξ) dξ, (2.34)

where the integral over the original domain Γ(e) has been converted,
via a change of the integration variable to an integral on the parent co-
ordinates domain defined by � = {ξ ∈ R2

∣∣(|ξ|, |η|) ≤ 1} in 3D and by
� = {ξ ∈ R

∣∣|ξ| ≤ 1} in 3D. The determinant of the transformation je(ξ)

mapping the change of coordinates from the global to the parent refer-
ence system reads, employing standard bi-linear shape functions:

je(ξ) =
∂x̃e

∂ξ

∂ỹe

∂η
− ∂x̃e

∂η

∂ỹe

∂ξ
(2.35)

and simply je(ξ) = ∂x̃e/∂ξ for the linear shape functions of the quad
element, where x̃e and ỹe represent the isoparametric form of the global
coordinates. The variation of the local gap is given, in matrix notation,
by:

δg(ûe) =
∂g̃

∂ûe
δûe = QB(ξ)δûe. (2.36)

Finally, the variation can be set to zero, and the residual vector obtained:

δΠ̃e = δûT
e

∫
�

BTQTp(ûe, ˆ̇ue)je(ξ) dξ = 0, (2.37)

which gives:

RΓ(ûe, ˆ̇ue) =

∫
�

BTQTp(ûe, ˆ̇ue)je(ξ) dξ = 0, (2.38)

where the subscript Γ specifies that the equation above refers to an ele-
ment belonging to the interface. A quadrature formula can be exploited
for evaluating the integral in R. This requires the sampling of the inte-
grand at specific locations. For the 2D quad element, a Newton-Cotes
integration formula has been used, with unitary weights wi and two
quadrature points set in correspondence of ξNC = ±1. For the 3D hex
element, a Gauß-Legendre integration scheme has been exploited, still
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with unitary weights wi, but sampling points (hereinafter Gauß points,
ξG,k, k = [1, . . . , 4]), located at:

ξG,1 =

(
+

√
3

3
,+

√
3

3

)
, ξG,2 =

(
−
√

3

3
,+

√
3

3

)
, (2.39)

ξG,3 =

(
−
√

3

3
,−
√

3

3

)
, ξG,4 =

(
+

√
3

3
,−
√

3

3

)
. (2.40)

The integral formulation of the residual becomes:

RΓ(ûe, ˆ̇ue) =

nnd∑
k=1

wkB(ξG,k)TQTpk(ûe, ˆ̇ue)je(ξG,k), (2.41)

being nnd the number of nodes of the element.

2.7 Assembly process and linearisation of the
residual vector

Given the constitutive laws employed, Eq. (2.41) represents a set of non-
linear transient equations, which can be addressed using a suitable nu-
merical scheme. A Newton-Raphson iterative algorithm has been em-
ployed in combination with a direct solver for the solution of the result-
ing linear system.

The elementwise quantities are assembled together via an assembly
operator for constructing the final set of equations:

nΓ+nΩ

A
e=1

[
RΓ(ûe, ˆ̇ue) + RΩ(ûe, ˆ̈ue)

]
= R(û, ˆ̇u, ˆ̈u) = 0, (2.42)

where nΓ and nΩ is the total number of elements, employed for the sub-
division of the interface and bulk. To light up the notation, hereinafter
the vector of nodal displacements ûe, velocities ˆ̇ue and accelerations ˆ̈ue

will be replaced by u, u̇, ü respectively. For every time step, a Newton-
Raphson algorithm is used for the iterative solution of Eq. (2.42). The
residual vector is linearised introducing the tangent matrix S, evaluated
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as the directional derivative of the global residual in correspondence of
a trial solution u(0). The resulting set of linear equations reads:

S(0)du = −R(0), (2.43)

where the tangent matrix is obtained as:

S = −∂R

∂u
− ∂R

∂u̇

∂u̇

∂u
− ∂R

∂ü

∂ü

∂u
= c1K + c2C + c3M, (2.44)

being K the stiffness matrix, C the damping matrix, M the mass matrix
and c1, c2 and c3 scalar coefficients which depends on the time step ∆t

and on the selected time integration scheme. The trial solution is updated
with the result coming from Eq. (2.43), such that at iteration (i + 1) we
have:

u(i+1) = u(i) + du(i). (2.45)

The procedure is repeated until a convergence criterion is met. In the
cases treated throughout the dissertation, the convergence condition is
issued defining a relative energy error which must lay below a specified
threshold:

E(i)

E(0)
=

du(i)TR(i)

du(0)TR(0)
≤ 1.0× 10−16. (2.46)

2.7.1 Evaluation of the stiffness and damping matrices

The stiffness and damping matrices appearing in Eq. (2.44), result from
the linearisation of the residual vector for a given iteration (i) and a sin-
gle element e and read:

K(i)
e =

nnd∑
k=1

wkB(ξG,k)TQTKk Q B je(ξG,k), (2.47a)

C(i)
e =

nnd∑
k=1

wkB(ξG,k)TQTCk Q B je(ξG,k), (2.47b)

where K and C are the linearised interface constitutive matrices coming
from the differentiation of the interface traction vector p with respect to
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the field variables, after the application of a chain differentiation with
respect to the gap field and recalling Eq. (2.20):

∂p(u, u̇)

∂u
=
∂p(u, u̇)

∂g

∂g

∂u
= KQB, (2.48a)

∂p(u, u̇)

∂u̇
=
∂p(u, u̇)

∂ġ

∂ġ

∂u̇
= CQB. (2.48b)

2D formulation

In the 2D formulation, the above operators read:

K =


∂pτ
∂gτ

∂pτ
∂gn

∂pn

∂gτ

∂pn

∂gn

 , C =


∂pτ
∂ġτ

∂pτ
∂ġn

∂pn

∂ġτ

∂pn

∂ġn

 , (2.49)

where K and C are derived by analytical differentiation if contact is de-
tected, while on the other hand, every term of the matrices is set equal
to zero if a positive gn, i.e. an opening gap, is detected. In contact, they
read:

K =

0 µεn tanh
(
ġτ
ε̇τ

)
0 µεn

 , C =


µpn

ε̇τ
sech2

(
ġτ
ε̇τ

)
0

0 0

 . (2.50)

3D formulation

In this case, RΓ(ûe, ˆ̇ue) can be derived in the same exact way with respect
to the former 2D case, provided that the constitutive matrices K and C
are suitably modified in accordance with the new expression for the reg-
ularised friction law, that results in a tangent vector qτ whose projections
along directions 1 and 2 are:

qτ1 = −µ|pn|
ġτ1

‖ġτ‖
tanh

‖ġτ‖
ε̇τ

, (2.51a)

qτ2 = −µ|pn|
ġτ2

‖ġτ‖
tanh

‖ġτ‖
ε̇τ

, (2.51b)
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while the expression for the normal traction pn is identical with respect
to the 2D formulation. By definition, the constitutive matrices are:

K =



∂pτ1

∂gτ1

∂pτ1

∂gτ2

∂pτ1

∂gn

∂pτ2

∂gτ1

∂pτ2

∂gτ2

∂pτ2

∂gn

∂pn

∂gτ1

∂pn

∂gτ2

∂pn

∂gn


, C =



∂pτ1

∂ġτ1

∂pτ1

∂ġτ2

∂pτ1

∂ġn

∂pτ2

∂ġτ1

∂pτ2

∂ġτ2

∂pτ2

∂ġn

∂pn

∂ġτ1

∂pn

∂ġτ2

∂pn

∂ġn


. (2.52a)

Their components can be derived by analytic differentiation. The only
non-zero elements of K occupy the last column of the matrix and read:

K1,3 = −µ εn cosϑv tanh
ρv

ε̇τ
, (2.53a)

K2,3 = −µ εn sinϑv tanh
ρv

ε̇τ
, (2.53b)

K3,3 = εn, (2.53c)

(2.53d)

where the slip velocity has been expressed through the polar coordinates:

ρv = ‖ġτ‖, (2.54a)

ϑv = tan−1 ġτ2

ġτ1
. (2.54b)

The elements of the damping matrix C which are different from zero are
localised in the 2× 2 top-left sub-matrix, since no dependency is present
between the interface constitutive law and the velocity of the normal
compenetration, nor between normal tractions and tangential slip. The
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components can be written as:

C1,1 = −µ|pn|
[

1

ρv
tanh

ρv

ε̇τ
sin2 ϑv +

1

ε̇τ

(
1− tanh2 ρv

ε̇τ

)
cos2 ϑv

]
,

(2.55a)

C2,2 = −µ|pn|
[

1

ρv
tanh

ρv

ε̇τ
cos2 ϑv +

1

ε̇τ

(
1− tanh2 ρv

ε̇τ

)
sin2 ϑv

]
,

(2.55b)

C1,2 = +µ|pn| sinϑv cosϑv

[
1

ρv
tanh

ρv

ε̇τ
− 1

ε̇τ

(
1− tanh2 ρv

ε̇τ

)]
,

(2.55c)

C2,1 = C1,2. (2.55d)

Care should be taken in the related code implementation since now, un-
like the 2D case, the matrix would result undetermined for a null slip
velocity. In the element implementation this last case must be treated
separately, but taking the limit of C for ρv → 0 a removable discontinuity
can be identified, resulting in:

C1,1 = −µ|pn|
ε̇τ

, C1,2 = 0, (2.56)

C2,1 = 0, C2,2 = −µ|pn|
ε̇τ

. (2.57)

2.8 Conclusions

In this Chapter, the general framework for an interface finite element
has been derived. It can be directly applied to investigate elastic bod-
ies’ contact response under small deformation and conformal contact hy-
potheses. In the next chapters, the element properties are going to be en-
riched with innovative features. In Ch. 3, a suitable modification of the
normal gap will be introduced, thus allowing for the simulation of the
non-conformal contact between a deformable bulk and a rigid indenter
characterised by an arbitrarily complex shape, without the need of ex-
plicitly discretising the complex boundary, as firstly addressed by Paggi
and Reinoso [79]. Later on, in Ch. 4, a multi-scale approach is explored
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for simulating the contact of the deformable bulk with a rough rigid in-
denter. For doing so, a scale separation is introduced. At the micro-scale,
a boundary element algorithm is used for exactly evaluating a contact
pressure field, which is homogenised and exploited at the macro-scale as
a non-linear contact law, following an approach introduced by Zavarise
et al. [80].
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Chapter 3

Analysis of fully coupled
normal and tangential
contact problems with
complex interfaces

In this chapter, an extension of the interface finite element derived in
Ch. 2 is proposed for solving the normal and tangential contact problem
between a rigid indenter of complex shape and an elastic body under
generic load conditions. The indenter’s actual shape is accounted as a
correction of the local normal gap field glc,n. The model is validated in
relation to challenging scenarios for standard finite element procedures
and analytical methods, such as the contact with wavy or rough profiles.

The original concept has been presented by Paggi and Reinoso [79]
for frictionless contact, while the results derived in the current chapter,
related to the accounting of friction, are presented in [56]. The present
framework makes it possible to investigate the response of the system
to tangential tractions, which is at the origin of important phenomena
such as wear and fretting fatigue, together with the analysis of the ef-
fects of coupling between normal and tangential contact tractions, which
is here investigated concerning challenging physical problems involving
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arbitrary loading histories. The proposed approach is detailed in Sec.3.1,
while its validation is carried out in Sec. 3.2, against the analytic solu-
tion of the Westergaard problem [81] and a Hertzian contact problem ob-
tained assuming the semi-coupling hypothesis between the normal and
the tangential directions under different load scenarios [82]. In Sec. 3.3,
the method is exploited to solve cases where no analytical solutions are
available and particularly challenging according to standard finite ele-
ment techniques. In particular, coupled normal and tangential frictional
contact problems with indenters characterised by Weierstrass profiles as
boundary and an increasing number of length scales, representative of
multi-scale waviness, are investigated, and results are given in terms of
the resulting interface tractions field. In conclusion of the chapter, a fric-
tionless contact problem involving the contact of a self-affine rough pro-
file against an elastic layer is solved. Its solution compared to the results
of the same problem solved exploiting a BEM routine. Good accordance
between the two sets of result is observed.

3.1 Interface finite element with embedded
rough profiles

The proposed approach’s innovation lies in an alternative definition of
the normal gap glc,n. In this framework, regardless of the actual topology,
the contact interface is assumed to be nominally smooth, with uniquely
defined normal and tangential unit vectors. In contrast, its exact height
field distribution is analytically taken into account as a correction to the
normal gap function. From the technical point of view, this could be
the case of two profiles in contact which share a complementary form
(or lay), but differ in terms of waviness and roughness, where the defini-
tion of these three quantities is made in accordance with standard sur-
face metrology arguments, see for example “Filtering in the Frequency
Domain” [83], Raja, Muralikrishnan, and Fu [84], De Chiffre et al. [85]
and Surface Texture (Surface Roughness, Waviness, and Lay) [86].
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3.1.1 Nominally flat rough indenter pressed against a de-
formable bulk

The method could be applied to the analysis of a deformable layer with
a flat interface that makes contact with a nominally flat rough rigid sur-
face, i.e. a rough surface with an overall flat form. This is the case, for
example, of a nominally flat surface characterised by roughness at the
micro-scale, Fig. 8a. The idea behind the proposed approach consists of
defining an equivalent framework in which the contact problem’s rele-
vant features can be maintained without explicitly modelling the related
geometric complexities. Let us assume that at t = 0 the two bodies make
contact without exchanging any contact force. A datum is set in corre-
spondence of the lowest point of elevation of the rough profile measured
from a zero reference value, coincident with the flat boundary. An op-
posite equivalent flat boundary is set at a distance from the datum point
equal to the root mean square elevation σ of the rough profile, dash-
dotted line of Fig. 8a, measured from the datum. Finally, the height field

(a) Actual rough contact.

(b) Equivalent FE interface.

Figure 8: Interface discretisation with embedded roughness.
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z(x) is measured from the reference flat plane and stored. Starting from
this data, an equivalent FEM approximation of the problem can be con-
structed, Fig. 8b. The two flat boundaries can be linked by a set of inter-
face finite elements Γ, with an equivalent depth defined by d − σ. The
height field can be represented in its isoparametric form as:

z(x) ≈
nΓ⋃
e=1

z̃e(ξ) =

nΓ⋃
e=1

nnd∑
k=1

Nk(ξ)ẑe,k. (3.1)

The value of z̃e(ξ) can be used to correct the local gap associated with
the equivalent flat boundary, to restore its exact variation from planarity
without the need of explicitly discretising the actual complex morphol-
ogy, cfr. Eq. (2.20):

g̃∗lc,e = QB(ξ)ûe + [0, z̃e(ξ)]T. (3.2)

The number of interface elements that are necessary to discretise the
rough profile properly is directly dependent on its morphology. The
use of linear interpolating shape functions implies a bijective correspon-
dence between a sampled height in the original profile and a nodal-
wise gap correction in the FEM discretisation of the equivalent flat in-
terface. According to this remark, the number of interface elements nΓ

employed should be high enough to guarantee that the related rough
surface heights sampling has the appropriate resolution level to capture
all the profile’s relevant geometric characteristics.

3.1.2 Curved rough indenter over deformable bulk

The same underlying idea can also be extended to curved surfaces con-
tact, provided that the two boundaries still share an overall common
form. If, for example, the conformal shape is cylindrical, a datum can
be set in correspondence of the rough profile point closest to the centre
of the cylinder, Fig. 9a. The root means square radius Rσ can be evalu-
ated through, for example, a standard least-squares minimisation. The
elevation field can then be mapped using a suitable curvilinear abscissa
s, with z[x(s)] evaluated along the normal n(s) of the curve that describes
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the boundary of B1. The same requirement already stated for the former
case also applies to this context for what concerns the number of interface
elements to be employed. Additionally, nΓ must also be high enough to
have R � Le, being Le the interface element length and R the radius of
the cylinder, or, in general, the local radius of curvature of the interface
lay. Which of these two conditions is stricter is problem-specific, depend-
ing on the ratios between the local radius of curvature of the rough pro-
file Rp and the local radius of curvature of the interface form Ri. Fig. 10
shows the two opposite extremes we might have when two rough pro-
files with a overall complementary curved shape make contact over the

(a) Contact on a curved interface. (b) Equivalent FE interface.

Figure 9: Framework for curved rough contact.

(a) Low ratio Rp/Ri. (b) High ratio Rp/Ri.

Figure 10: Distinct cases driving interface discretisation resolution.
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curved side. Again the problem can be recast considering an equivalent
simplified mesh discretisation with an embedded elevation field. The
limit conditions can be distinguished as:

• a contacting profile with an almost flat interface and a very rough
profile, in this case, we have Rp/Ri � 1 and the interface discreti-
sation refinement is ruled by the rough profile, Fig. 10a;

• an interface with a small radius of curvature and an only mildly
wavy profile, in this case might result Rp ∼ Ri and the discretisa-
tion of the wavy profile alone, filtered from the interface curvature,
would not require a fine discretisation, which is nevertheless de-
manded by the interface curvature, Fig. 10b.

The proposed approach could, indeed, treat this second instance. In
this case, an opportunity analysis should be carried out concerning the
use of a standard full discretisation of the contacting bodies, which in
this case would not be too demanding.

3.1.3 The Composite Topography

The instance presented in Sec. 3.1.1 can be regarded as the reformulation
of a broader class of problems. Let us assume to have two linear elastic
isotropic bodies in contact under the hypotheses of half-space approx-
imation, each of them characterised by a camplex or rough boundary.
Since the contact constraints only involve the relative vertical displace-
ments of the two bodies, and the normal tractions exchanged are equal
and opposite for B1 and B2, the elasticity equation related to a single
contact spot could be expressed as:

v1 − v2 =

(
1− ν2

1

E1
+

1− ν2
2

E2

)
P

πr
, (3.3)

where vi is the vertical displacement of the interface, r is the radial dis-
tance from the contact spot, P the force exerted, and Ei and νi are the
Young’s modulus and Poisson’s ratio of the two bodies. Given that, the
problem is equivalent to consider B2 rigid and B1 characterised by the
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composite elastic Young’s and shear moduli E and G, and by the compos-
ite Poisson’s ratio ν:

1− ν2

E
=

1− ν2
1

E1
+

1− ν2
2

E2
, (3.4a)

1− 2ν

4G
=

1− 2ν1

4G1
− 1− 2ν2

4G2
, (3.4b)

where G = E/[2(1 + ν)]. Thanks to the hypothesis of half space ap-
proximation, also the contacting geometry can be simplified. After the
re-cast of the problem mechanical properties, the situation is depicted in
Fig. 11a. A zero reference can be placed in correspondence of the lowest
valley of ∂B1, and an equivalent flat interface ∂B∗1 can be set in corre-
spondence of the root mean square σ1 of the elevation field. The resulting
composite rigid profile ∂B∗2 can be evaluated as z(x) = d−[h1(x)+h2(x)],
where h1(x) and h2(x) are the normal distances measured from the ref-
erence points of ∂B1 and ∂B2.

In this way, the case treated in Sec. 3.1.1 can be exactly recovered,
cfr. Fig. 8a and Fig. 11b. The problem of the contact of two dissimilar
isotropic elastic bodies with a boundary described by an arbitrary geom-
etry has been re-cast in the simplified one of a rigid shape indenting an
elastic bulk whose mechanical and geometric characteristics are inher-
ited from the two original bodies: the geometry of the rigid indenter is a
combination of the two original ones, and so are its elastic parameters.

3.1.4 Some considerations

• We operate under the hypothesis of small displacements, but the
simplifications added are significant. There is no need for projec-
tion algorithms with the related criticalities, see e.g. Wriggers [42,
Ch. 4, pag. 60].

• the approach is node-to-node, but extendible to other more general
contact approaches, e.g. node-to-segment, provided that a suitable
framework for the interface finite element is derived, see for exam-
ple Paggi and Wriggers [65].
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(a) Original configuration involving the contact of two
elastic rough surfaces.

(b) Equivalent problem consisting in rigid-rough over flat-
elastic contact.

Figure 11: Reformulation of the contact problem exploiting the concept of
composite topography.

• The model can be easily be extended to take into account multi-
physics phenomena invoking theorems that allow to draw analo-
gies between the electrical and mechanical or thermal and mechan-
ical fields, see, for example, Barber [87], Barber [88, Ch. 4, pag.
44-47], and Paggi and Barber [89]. The model is also suitable for
investigating wear phenomena that can be considered considering
degradation of the indenting profile determined by a selected wear
law. Implementation that might easily be taken into account are the
ones exposed, for example, in Andersson, Almqvist, and Larsson
[90], Pinto et al. [91], Zhang, McHugh, and Leen [92], and McColl,
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Ding, and Leen [93].

• The hypothesis of rigid to deformable contact can be relaxed. Both
bodies can be considered deformable, provided that z(x) is every-
where small compared to the bulks’ characteristic dimensions. This
would be equivalent to assuming that the profile’s deformations
are negligible concerning the bulks’ deformations (since the profile
shape is fixed). From the technical point of view, this assumption is
justified by the empirical evidence that a rough boundary presents
higher values of stiffness, in some cases several orders of magni-
tude, than the ones proper of the bulk, see for example Yovanovich,
Devaal, and Hegazy [94] and Yovanovich, Hegazy, and Devaal
[95].

3.2 Benchmark tests

In this section, the proposed approach is validated against reference so-
lutions found in literature, specifically for the 2D version of the interface
element with embedded roughness. While many closed-form solutions
are readily available for frictionless contact, the scenario for coupled fric-
tional problems is much more restricted.

3.2.1 The Westergaard problem

The framework is first validated against a frictionless problem, the con-
tact of a rigid profile with a sinusoidal shape pressed against an elastic
isotropic half-plane under the action of uniform pressure. The problem is
known in the literature as Westergaard’s problem [81] and the expression
for the normal tractions distribution at the interface is given by:

p(x) =
2πEg0

λ
cos
(πx
λ

)√
sin2

(πa
λ

)
− sin2

(πx
λ

)
, (3.5)

where g0 and λ are respectively the profile’s amplitude and wavelength;
E is the Young’s modulus of the half-plane and a is the semi-width of a
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Figure 12: Comparison between the analytical solution given by Wester-
gaard and the related FEM implementation for the frictionless indentation
problem between a sine wave and a elastic isotropic half-plane

contact strip, implicitly given by a relation involving the uniform pres-
sure p0 applied to the indenter and the geometrical and mechanical prop-
erties of the system:

sin2
(πa
λ

)
=

p0λ

πEg0
. (3.6)

Equation (3.5) is plotted in Fig. 12, together with results related to the
equivalent problem solved with the proposed approach. The numerical
simulation is performed under force control, applying a pressure linearly
increasing with time up to a value correspondent to incipient full contact,
a situation given by p0/E = 0.015. A square block of side 2λ mimics the
half-plane, meshed with standard bi-linear quadrilateral element. Peri-
odic boundary conditions have been applied to the vertical sides of the
mesh, while a perfect bond between the bottom side and a rigid bound-
ary holds. The embedded profile is stored inside a single layer of in-
terface finite elements, deployed over the upper side of the block and
perfectly matching its boundary nodes. At the interface, nΓ = 128 finite
elements have been used to discretise the sine wave and store its eleva-
tion field, measured from the flat boundary of the half-plane. Since the
attention is focused on the interface only, to obtain fast computational
times, the mesh has been graded starting from the interface, changing its
characteristic size h from h = 2λ/nΓ at the interface to h = λ in corre-
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spondence of the bottom.

3.2.2 Frictional Hertzian contact problem between a cylin-
der and a half-plane under a monotonic normal load

In order to assess the performance of the method concerning tangen-
tial tractions, a semi-coupled* Hertz contact problem is simulated. This
benchmark is found to be particularly suitable for testing the validity of
the proposed implementation for two specific reasons:

• despite its conceptual simplicity, the solution of this problem via
a standard FEM discretisation of the curved geometry usually re-
quires very refined meshes, especially at the edges of the contact
strips;

• the present problem is characterised by a closed-form solution in
terms of tangential tractions, thus providing an easy to implement
and fast way of comparison and verification†.

Analytical solution

For a given value of normal load and neglecting the influence of tangen-
tial tractions q(x) on the normal contact traction distribution p(x), the
analytic solution can be written as [82]:

q(x) =
µp0

K(c)

(√
1− x2

a2
F (θ, c)− x

2b
log

1−
√

1− x2/b2

1 +
√

1− x2/b2

)
, b ≤|x| ≤ a,

(3.7)

where p0 is the value of the vertical tractions, a and b are the extension of
the contact radius and slip zone respectively, c = b/a, sin(θ) = x/b and
K(c) and F (θ, c) are the first complete and incomplete elliptic integral of

*Hereinafter, the label semi-coupled will be referred to as a system in which the effect
of the tangential tractions over the vertical pressure is neglected but not the opposite. This
hypothesis has been introduced by Goodman [96].

†To the best of the author’s knowledge, even under the hypothesis of semi-coupling, a
closed-form solution in terms of tangential contact tractions can be found in literature only
for the flat punch and for the Hertz problem, both under purely normal load.
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the first kind, respectively. The extent of the slip zone can be evaluated
using Spence’s relation [97], which is valid for every initial contact gap
defined by a power law relation, and is given by:

µK(c) = βK(
√

1− c2), (3.8)

where β is the second Dundurs’ constant, expressed by:

β =

(
1− 2ν1

G1
− 1− 2ν2

G2

)/[
2(1− ν1)

G1
+

2(1− ν2)

G2

]
(3.9)

This parameter governs the level of coupling of the system: for β =

0, the problem is uncoupled, while its maximum admissible value is
0.5, proper of the highest degree of coupling and related to ν = 0, cfr.
Eq. (3.9): in the limiting case of a contact problem involving a rigid
parabolic profile (which is, as customary, the first-order approximation
of a cylindrical shape) indenting an elastic half-plane, we have β = (1−
2ν)/[2(1 − ν)], being ν the Poisson’s ratio of the half-plane. A value of
β = 0.286 is herein chosen, which corresponds to ν = 0.3. While this
value is kept constant, four different values for the friction coefficient
have been used to investigate the accuracy of the model predictions. The
comparison has been carried out in terms of normal and tangential trac-
tions, exploiting Eq. (3.7) and comparing our fully coupled numerical
approach with the semi-coupled analytical solution.

FEM implementation and results

In the present framework, the contact profile’s actual shape is embed-
ded in the interface finite element. The profile elevation is given by its
analytical form and evaluated at every Newton-Cotes integration point.
One of the contacting profile is flat, while the other is characterised by
the expression z(x) = x2/(2R). This defines a normal gap in the initial
undeformed condition given by g∗n,lc = z(x), being R the radius of the
cylinder. We analyze the problem under plane strain assumptions. The
mesh is structured on three different levels, Fig. 13:

• the lower models B1, which mimics a half-space approximated by
a circular sector clamped along the curved side and free to undergo
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vertical displacements in correspondence of the vertical boundary.
An extension of its radius of 2R is enough for mimicking the elas-
tic properties of a semi-infinite half-plane under plane strain as-
sumptions. A Young’s modulus E1 = 100 Pa and a Poisson’s ra-
tio ν1 = 0.3 have been assigned to the standard quad finite ele-
ments employed for the bulk discretization, to approach the semi-
coupling condition proper of Eq. (3.7);

• the interface ∂B∗C is modelled using a single layer of nΓ = 100

modified quad elements; the penalty stiffness has been set to εn =

102E1/R, a value considered sufficiently high as to give an accept-
able material compenetration.

• finally, the geometry of the indenting cylinder which represents B2

can be replaced by a regular array of standard quad linear finite el-
ements, with an assigned elastic modulus E2 = 103E1; Neumann
boundary conditions are applied as a uniform distribution of verti-
cal pressure p0 resulting in a unitary vertical force N .

The problem is solved considering normal loading only, with the load

Figure 13: The actual geometry of the benchmark contact problem together
with its finite element model, set up with the present approach based on the
MPJR interface finite element.
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Figure 14: Load path chosen for the validation in presence of friction.

path plotted in Fig. 14. The results of the simulations are shown in
Fig. 15a for β = 0.286, in terms of dimensionless tangential tractions√
R/(EN0)q(x)/µ, where a0 is the radius of contact related to the semi-

coupled case. Results of Fig. 15a are related to the normal force N0 be-
longing to the first branch of the loading path. Still, since they are self-
similar in the case of a monotonic load path, they are valid for any other
load level of the first branch of the loading path, provided that the cor-
respondent value of N and a is prompted. For both the analytical semi-
coupled and the FEM model, five different values of the coefficient of
friction, µ = [0.1, 0.2, 0.3, 0.4, 0.5] are applied. The solution related to
normal tractions is highlighted by circle markers only and not fully re-
ported for graphical purposes. The interested reader is referred to [79]
for a thorough analysis of the instance. For what concerns the tangential
tractions, excellent accordance can be observed for all the coefficient of
friction employed.

The coupling effect observed in the curve related to the numerical
approach is in line with the theory, which predicts a stiffening effect that
increases the maximum value of the tractions, compensated by a slight
decrease of the contact radius. The deviation between the two sets of q(x)

that can be observed in Fig. 15a can be ascribed to coupling. The FEM
model predicts smaller values for the ratio of b/a concerning the semi-
coupled approach, and the effect can be quantitatively analysed, with
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(a) Normal and tangential contact trac-
tions.

(b) Ratio between slip and stick contact
strips width.

(c) Tangential tractions distribution at
selected time steps of the unloading
branch.

(d) Phase state diagram for the
stick/slip regions.

Figure 15: Benchmark test with low values of coupling, β = 0.286.

results shown in Fig. 15b. In this figure, the black solid curve represents
the values of b/a for the semi-coupled case, as expressed by Eq. (3.8),
corresponding to the dashed black curves of Fig. 15a; the red diamonds
mark the values for the fully coupled case, evaluated using an asymp-
totic solution provided in Nowell, Hills, and Sackfield [82] and the blue
circles the outcomes of the simulation. Better accordance is found for the
ratio b/a calculated in the fully coupled case. The deviation between the
two sets of tangential tractions of Fig. 15a can be justified. The impor-
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tance of the outcome of Fig. 15a lies in the fact that, for some specific
instances, care should be taken in neglecting coupling effects since this
could lead to underestimating the maximum magnitude of tractions. As
a final remark, it can be noticed that even if a regularized friction law has
been used, an adequate choice of the stiffness parameter ε̇τ guarantees
results that are very close to the solution based on the Coulomb friction
law, which the semi-analytical model has exploited.

Figure 15c shows numerical results related to the descending branch
of the load path. This simulation have been performed with β = 0.5, µ =

0.2986 and Nmin/Nmax = 0.5. These particular values have been chosen
to match the results presented in [98], and provide a further means of
comparison, even if only qualitative. The interested reader is referred
to Fig. 4a and 4b of the reference for a confrontation. Finally, Fig. 15d
shows a phase state diagram that reports the variation of the stick/slip
domain during the whole loading path. Non-contact zones are shaded
in dark blue, stick regions in yellow and slip regions in light blue. As the
load increases from a null value up to Nmax, the contact area increases
and two slip regions grows to encompass a central strip where a stick
condition holds. As the load is reversed, the contact area recedes and
two bands of stick form on the edge of the contact zone, growing as the
normal load decreases, while the central one shrinks. As the load is rose
again during the last loading branch, the increase in normal tractions is
enough to instantly prevent any further slip and, for an instant, all the
section sticks. After the turning point, new regions of slip start to grow
in correspondence of the contact edge, reaching a maximum amplitude
in correspondence of Nmax.

3.2.3 Hertzian contact problem between a cylinder and a
half-plane under constant normal loading and cyclic
tangential loading

Compared to the previous test problem, now a downward displacement
is imposed on the cylinder, starting from zero and linearly increasing
up to a maximum value of ∆0. At this point, the vertical displacement
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(a) Load in the t∆ space. (b) Load in the ∆n∆τ space.

Figure 16: Tangential cycling load history.

is held constant, and a tangential load is applied, as a horizontal far-
field displacement which harmonically oscillates with amplitude ∆τ,0 =

0.8µ∆0. A normalized load history plot is shown in Fig. 16a, together
with the corresponding values of the total normal load N and tangen-
tial load Q, evaluated as the resultant of the interface tractions. The im-
posed displacements are also plotted in the load space ∆n∆τ , in which
the black solid curve represents the variation of the tangential load con-
cerning the normal one. At the same time, the blue dashed curves repre-
sent the limit of gross sliding. In the present case, the curve identifying
the load path consists of a straight line lying on the horizontal axis, from
the origin to point (a) and then becomes a collapsed ellipse with the ma-
jor axis bounded by the points (b) and (c), Fig. 16b. The results in term
of tractions distributions are shown in Fig. 17. In Fig. 17a, the normal
load is linearly increased from zero to its maximum value. A self-similar
symmetric central stick area encompassed by two regions of forwarding
slip (positive tangential tractions) and backward slip (negative tangential
tractions) develops. Then, Fig. 17b, the tangential load is applied (point
(a) of Fig. 16a and 16b), which results in:

(i) an increase in the tangential tractions at the leading edge of contact;

(ii) a reduction of the tangential tractions at the trailing edge of contact;
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(iii) a sudden change from backward slip to stick at the trailing edge,
from which tractions start increasing again, but with opposite sign.
Simultaneously, the stick zone shrinks, reaching its minimum at the
point (b) of the loading history.

If the far-field displacement is now reversed, an instantaneous stick
zone is created again. It shrinks to a minimum value in correspondence
of point (c), Fig. 17c. The system reaches a stationary state condition
after point (d), but with a steady-state value of the stick area, which is,
for a positive load, sensibly different from the one related to the first ap-
plication of the load Fig. 17d. It retains almost the same extension, but
it is shifted towards the centre of the contact zone. As a final remark,
the system maintains a significant difference between the positive and
negative stick areas, even though the steady-state is reached after one
loading cycle. It can be noticed that this is directly related to the level of
coupling. The current results are obtained with a high level of coupling,
corresponding to β = 0.5. The same load history, applied to a system
with β = 0.286, shows a greater similarity between the positive and neg-
ative steady stick area, Fig. 18, showing again that the degree of coupling
has an important effect on the contact response.
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(a) (b)

(c) (d)

Figure 17: Tangential cycling load history for high values of coupling, β =
0.50.
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(a) (b)

(c) (d)

Figure 18: Tangential cycling load history for low values of coupling, β =
0.286.
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3.3 Contact between a rough profile and an elas-
tic layer

The capability of the proposed approach is now tested in the case of a
more complex profile. The formulation’s strength is particularly evident
in contact problems involving profiles with complex shapes. Despite any
elevation field might be taken into consideration in the computational
framework, without any restriction, even rough profile or any numeri-
cally generated height field, a Weierstrass profile is herein used as a pos-
sible example. The height field is described by Eq. (5.2):

z(x) = g0

∞∑
i=0

γ(D−2)i cos

(
2π
γix

λ0

)
, (3.10)

wherein practical applications the summation is carried on up to a cer-
tain nw, thus obtaining a pre-fractal profile (see for example Ciavarella et
al. [99], and Ciavarella et al. [100]), which consists in the superposition
of nw sinusoidal functions, each of them presenting a decreasing wave-
length λi = λ0/γ

i and amplitude zi = z0γ
(D−2)i, with γ > 1 and fractal

dimension 1 ≤ D ≤ 2.
In this section, four different indentation problems are solved with

the aforementioned contacting profiles. Each of them is tested against a
rectangular elastic block with a height-to-width ratio hb/λ0 = 1. Such
a bulk is characterised by the same elastic parameters employed for the
model validation of Sec. 3.2, i.e. E1 = 100 Pa and ν1 = 0.3. Each inden-
ter profile can be considered rigid and is made of the superposition of
one, two, three and four terms, respectively, according to Eq. (5.2) and
reported in Fig. 19. As in the previous section, the lower boundary, i.e.
∂B∗1 , is flat, and the elevation field is coincident with a normal gap in the
initial undeformed condition given by g∗n,lc = z(x). Finally, to simulate
a contact problem indefinite in the x direction, periodic boundary condi-
tions have been applied to both the mesh’s vertical edges at a distance of
λ0. A classical ironing-type load history is applied for solving the con-
tact problem. First, a purely normal far-field displacement ∆n is applied,
starting from zero up to ∆0 = 2g0. Then, a horizontal tangential dis-
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Figure 19: Weierstrass quasi-fractal multi-scale profile, characterised by
γ = 5 and H = 2 −D = 0.8, unitary fundamental wavelength λ0 and fun-
damental amplitude g0 = 10−2λ. In function of nw, respectively 128, 512,
512 and 2500 interface finite elements have been employed in the meshing
process for discretising each profile.

placement ∆τ is applied, linearly varying from zero up to the maximum
of ∆τ,0 = 2µ∆0, a value that guarantees an incipient gross slip for the
single harmonics profile, given a friction coefficient µ = 0.2. For what
concerns the interface discretisation, the number of interface elements
employed has been a function of the shortest wavelength employed. To
adequately capture the profile’s geometric features, at least 20 elements
have been considered for modelling the shortest wavelength. This has
resulted in a minimum number of interface finite elements employed in
function of the number of terms in the Weierstrass series given by:

nΓ,min = 20γnw−1 (3.11)

A full parametric study of the problem should involve a thorough eval-
uation of the sensitivity of the system concerning the main governing
physical parameters, such as β, µ, λ0/hb, g0, γ, ∆τ and ∆n, but this is left
for further investigation since the main purpose is to show the feasibility
of treating complex interface problems within the present finite element
framework.
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(a) Purely normal load stage (b) Constant normal load, increasing
tangential load stage

Figure 20: Ironing test, single harmonic profile.

3.3.1 Single harmonics profile in full contact

The case of nw = 0 is shown in Fig. 20. The main difference with the re-
sults obtained for the previous Hertzian test problem is that now we are
dealing with an infinitely long profile that makes contact at an infinite set
of spots. Under purely normal loading, the vertical tractions p(x) present
two axes of symmetry, highlighted by the dash-dotted lines in the figure,
which correspond to anti-symmetry axes for the shearing tractions q(x).
In each of these points, shearing tractions must be strictly null. They
show the backward and forward slip zones typical of the Hertzian prob-
lem until the full contact condition is reached, which corresponds to a
value of p(x) highlighted by the blue dash-dotted curve in Fig. 20a.

After that point, a full stick condition holds, and q(x) remains con-
stant until the maximum value of the vertical far-field displacement is
reached. After that point, the horizontal displacement is applied, and
the tangential tractions grow until a condition of partial slip is reached;
see the blue dotted line in Fig. 20b. As expected, the last point of the
interface coming into contact is also the first one that undergoes partial
slip. After this point, the system’s state is such that there is an alternation
of shrinking stick islands bordered by increasing zones of full slip. When
the transient regime ends, a perfect overlapping between µp(x) and q(x)
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is observed.

3.3.2 Multiple harmonics profile contact

The addition of a length-scale in the Weierstrass function has the imme-
diate effect of increasing the peak values of the normal tractions, which
are localised in correspondence of the local maxima of the profile, and
of reducing the contact area for a given level of the external load: the
full contact condition is almost but completely achieved, see Fig. 21a.
The same considerations on the tangential tractions distribution can also
be made in this case, with the remark that now the contact domain is
multiply-connected.

(a) Purely normal load stage (b) Constant normal load, increasing
tangential load stage

Figure 21: Ironing test for double harmonics profile.

In this case, an approximated study of q(x) and of the extension of the
stick and slip areas can still be possible, exploiting, e.g. the Ciavarella-
Jäger theorem (Ciavarella [21], Ciavarella [22]), but under the limiting
assumptions of uncoupling and half-plane approximation. An interest-
ing feature that could be appreciated thanks to having taken into account
coupling effects is that if under purely normal loading, two asperities,
each of them generating a separate contact island, are characterised by a
severe gradient in terms of vertical tractions, the less loaded one might
experience a tangential tractions field which is very far from the typical
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anti-symmetric distribution proper of an isolated asperity. If the vertical
tractions in the leading asperity are high enough, the horizontal displace-
ment generated by them might be so high compared to the ones gener-
ated by the secondary asperity that the latter is negligible, thus resulting
in horizontal tractions which are all negative or positive valued from the
beginning. With suitable boundary conditions or values of µ, there might
also be a gross slip condition from the beginning of the contact process,
Fig. 22a.

At the same time, when the second asperity comes into contact, it
exerts a stiffening effect on the bulk, which reflects in a decrease of the
magnitude of the increment rate of the horizontal displacements towards
the high asperity, which in the final place determines a relaxing of the
tangential tractions at the level of the leading asperity. This characteristic
is depicted in Fig. 22a and 22b.

(a) The left contact island, highlighted
by the blue dash-dotted line, comes in
contact experiencing from the begin-
ning a condition of full backward slip,
a condition which can be appreciated
thanks to the coupling effect.

(b) After the instant the second minor
contact island comes in contact, the tan-
gential tractions magnitude decreases,
despite the applied normal load is still
increasing.

Figure 22: Evolution of contact tractions.

The tangential tractions over the leading asperity, green curves, in-
crease in extension and magnitude as long as the second asperity comes
into contact, where they reach their maximum value, see the blue dash-
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dotted line. After that moment, they continue growing in extension since
the contact area is still increasing, but they decrease in magnitude due to
the interaction between the different contact islands. Finally, when the
tangential far-field displacement is applied, they start growing in mag-
nitude again, gross slip starts, and the transition between full stick and
full slip takes place, see Fig. 21b. The same trend can also be observed for
the profile characterised by nw = 2, Fig. 23, where the same comments
apply for the increase in vertical tractions, reducing the contact area and
the evolution of the stick and slip zones. Finally, Fig. 24, the same prob-
lem is solved for nw = 3. In this final case, the reduction in the contact
area is so high that it is limited to half the fundamental wavelength of
the profile.
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(a) Purely normal load stage

(b) Constant normal load, increasing tangential load stage

Figure 23: Ironing test for a double harmonics profile.
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(a) Purely normal load stage

(b) Constant normal load, increasing tangential load stage

Figure 24: Ironing test for a triple harmonics profile.
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3.4 Comparison with BEM

In conclusion of the chapter, a preliminary test against a self-affine rough
profile is presented. The profile has been extracted from a rough surface
in correspondence of its highest peak. The surface has been generated
using a Random Midpoint Displacement algorithm (RMD), a numerical
procedure employed to generate fractal rough surfaces with self-affine
properties; see [89, 101] for more details. The parameters required by
the generation algorithm are limited to the desired surface fractal dimen-
sion, in the present case D = 2.2; a random number, the grid lateral size
2b and a grid spacing δ, the last chosen to generate a height distribution of
N = 2049 points equally spaced over a contact interface discretised with
nΓ = N − 1 interface finite elements. The obtained profile is considered
the boundary of a rigid body acting over an elastic layer of finite depth,
characterised by E = 100 Pa and ν = 0. The problem is solved under
displacement control, applying a downward imposed displacement lin-
early increasing from zero up to the value of ∆0 = 2g0, being g0 the max-
imum height of the profile measured from its lowest valley. The shape of
the profile can be appreciated in Fig. 25 (blue line), which also presents
the solution in terms of surface displacements obtained both within the
FEM framework, and a BEM algorithm specifically developed for the so-
lution of a 2D plane-strain problem under displacement control. Good

Figure 25: Indentation of the elastic frontier by the rigid profile.
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agreement is observed between the two vertical displacement fields. A
comparison is also made in terms of interface normal tractions p(x), with
results shown in Fig. 26. Here, the whole interface normal traction field
is plotted for the last time step of the analysis. A general good accor-
dance between the two different sets of results can be observed. If the
attention is focused on the top-right magnified window, some scatter in
the results can be observed. Still, given the very different assumptions
underlying the two numerical frameworks, this preliminary result can
surely be considered promising.

Figure 26: Resultant interface normal tractions field.
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Chapter 4

A multi-scale FEM-BEM
formulation for contact
mechanics between rough
surfaces

In this chapter, a multi-scale combined formulation for simulating contact
between nominally smooth but microscopically rough surfaces is proposed.
The approach integrates the interface finite element derived in Ch. 2
For modelling interface interactions at the macro-scale with the bound-
ary element method (BEM) for the solution of the contact problem at
the micro-scale. The use of BEM allows to exactly reconstruct the micro-
scopic rough surface geometry, without the necessity to adopt interpo-
lation techniques to discretise the interface, proper of FEM, which could
lead to an undesired smoothing of the fine-scale roughness characteris-
tics. On the other hand, the use of FEM permits to overcome some of the
limitations proper of BEM, which is usually restricted to linear elastic
isotropic materials and infinite geometries, with exceptions that are pos-
sible but not straightforward. The contents of this chapter are partially
extracted from Bonari et al. [57].
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4.1 General framework

The proposed method can solve the frictionless normal contact problem
of a rigid rough indenter and a deformable body.*

If the rough surface’s elevation field is small compared to the bulks’
characteristic dimension, a separation of the two scales can be performed.
This could be quantitatively assessed by comparing, for example, the
root mean square σ of the rough surface, measured from its lowest point,
with the deformable bulk’s depth hb, and imposing the condition:

(σp, σs)� hb, (4.1)

where the subscripts p and s stand for profile, if a 2D problem is ad-
dressed, or surface, for the 3D case. If Eq. (4.1) holds, a macro-scale can
be identified, consisting of the two bulks and the interface, which at this
level is considered to be perfectly smooth. At the same time, at the micro-
scale, the rough contact problem is restored. From the computational
perspective, the problem is tackled using FEM at the macro-scale and
BEM at the micro-scale. The coupling between the two different scales is
enforced by the interface contact law, which is shared between the macro-
and the micro-scale in terms of the compenetration function gn and is
used as input for the BEM routine. In turn, the traction field pµ(xµ), so-
lution of the micro-scale problem is homogenised over the rough surface
area and passed to the upper scale. At this level, the smooth interface
is discretised using a set of the interface finite elements derived in Ch. 2.
The tractions field pµ(xµ) defines the contact traction pn = 〈pµ(xµ)〉, eval-
uated at the element’s Gauß point, together with the related normal con-
tact stiffness ∂pn/∂gn.

The proposed pipeline characterises the method as a FE2 approach,
thus rather expensive concerning other multi-scale approaches exploit-
ing pre-computed contact laws that rely on statistical models. In this
regard, the interested reader is referred to Zavarise et al. [80] and Wrig-
gers and Reinelt [102], where modified interface contact laws based on

*As pointed out in Sec. 3.1.3, this scenario could also be exploited, under suitable as-
sumptions, for the solution of the contact problem of two elastic bodies, both characterised
by a rough contact boundary.
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micromechanical theories were proposed. These approaches involved
a statistical representation of the micro-scale roughness. The presented
framework allows for more versatility and accuracy since an actual rough
geometry can be taken into account without any simplifying assumption.
On the other hand, the computation cost associated with this problem is
much higher than in the reference above. Therefore, some possible ac-
celeration strategies are presented in Secs. 4.5.1, 4.5.2 and 4.5.3, and their
effect compared.

An analogous approach can be found in Waddad et al. [103], but
with a simplified semi-analytical approach for solving the problem at
the micro-scale and without explicitly specifying the strategy followed
in the derivation of the macro-scale system tangent matrix.

4.2 Micro-scale analysis

The unknown value of pn
† at each Gauss Point is herein computed by

solving the normal contact problem of a rigid rough surface indenting
an elastic half-space with suitable elastic parameters, using a BEM algo-
rithm. The framework could directly assess a rigid-deformable contact
problem as is or be seen as the recast of a contact problem involving two
linear elastic isotropic bulks with rough contacting interfaces. In the lat-
ter case, both the resulting boundary geometries and the half-space elas-
tic moduli must be regarded as composite quantities, i.e. functions of the
geometric and mechanical parameters of the original problem, following
the same procedure exposed in Sec. 3.1.3.

For each Gauß point of the interface elements, the following micro-
scale contact problem is solved under displacement control, where the
far-field displacement applied corresponds to −gn from the macro-scale
model. For gn = 0, we assume the surfaces touch only at the tallest height
of the composite topography, with a resulting zero normal traction. For
each gn > 0, a non-vanishing contact area has to be computed and the
corresponding total normal force equivalent to the integral of the normal
contact tractions obtained. To do so, the BEM implementation proposed

†Employing the same notation used in Ch. 2 is pn = p̃en(ξG,k).
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in Bemporad and Paggi [34] is employed. In particular, the Warm-Started
Non-Negative Least Squares (NNLS) algorithm is exploited.

For a given far-field displacement gn in the direction perpendicular
to the half-space frontier, the solution of the normal contact problem
in terms of vertical displacements wµ(xµ), and normal contact tractions
pµ(xµ) must satisfy the convolution integral equation:

wµ(xµ, gn) =
1− ν2

πE

∫
S

pµ(yµ)

‖xµ − yµ‖
dyµ, (4.2)

where xµ and yµ represent, in a micro-scale Cartesian reference system,
the coordinates at which displacements are evaluated and the points
where a pressure is applied, respectively. Eq. (4.2) must be equipped
with the unilateral Karush-Kuhn-Tucker (KKT) conditions:

wµ(xµ, gn) ≥ 0, pµ(xµ) ≥ 0, wµ(xµ, gn)pµ(xµ) = 0. (4.3)

The set of equalities and inequalities above have already been introduced
in Sec. 2.3.1. In contrast, a relaxation over this set of constraints has been
performed at the macro-scale during the interface finite element’s deriva-
tion. The contact problem is tackled rigorously by the BEM algorithm at
the micro-scale through a related optimisation problem.

In Eq. (4.3), wµ(xµ, gn) = vµ(xµ) − v̄µ(xµ, gn), where v̄µ(xµ, gn) de-
notes the known indentation of the half-space at the points in contact.
A 2D sketch is shown in Fig. 27, where the black solid line represents
the elastic half-spaces deformed configuration corresponding to the im-
posed far-field displacement. The red dash-dotted line represents the
rigid body motion of the elastic body under the imposed displacement.
The solution of the contact problem determines three possible states for
the rough indenter’s peaks. They could be:

(a) not in contact from the beginning;

(b) losing contact due to elastic interactions;

(c) in contact after considering elastic interactions.
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Figure 27: Contact sketch.

A routine for this continuous problem has been implemented by dis-
cretizing the rough surface with a square grid with lateral size l and res-
olution parameter n. The grid is composed of N2 cells with N = 2n

boundary elements per side. The lateral size of each boundary element
is dx1,µ = dx2,µ = l/2n. For the cases treated in the present chapter, a ran-
dom midpoint displacement (RMD) algorithm has been used to generate the
elevation field zi,jµ , (i, j) = [1, . . . , N + 1] of the selected rough surface,
although any data field obtained from experiments can be used in the
input, without any restriction, Fig. 28. For each microscopically rough
surface, the mean elevation z̄µ, the maximum elevation zµ,max, and the
root mean square roughness σ are also available from a preliminary sta-

Figure 28: Example of a discretised rough surface. The input rough surface
could be, without any restriction, analytical, numerical or only consist in a
sampled height field, like profilometric data.
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tistical characterization. The discretised matrix form of the problem thus
reads:

w + v̄ = Hp, w ≥ 0, p ≥ 0, wTp = 0, (4.4)

where w is the vector of elastic corrections, p the unknown average con-
tact forces, v̄ the vector of compenetrations and finally H the matrix col-
lecting the compliance coefficients in its approximated form as derived
in Love [29] with the notation borrowed from Pohrt and Li [37]:

Hij,kl =

{
1
πE if i = k and j = l,
1
πE arcsin 1

‖xi,jµ −xk,lµ ‖
if i 6= k, j 6= l,

(4.5)

Due to linear elasticity, H is symmetric and positive definite. This
guarantees that the contact problem has a unique solution for any gn ≥ 0.
The problem corresponds to the conditions for optimality of the convex
quadratic program:

min
p

1

2
pTHp− vTp, s.t. p ≥ 0. (4.6)

4.3 Macro-scale analysis

The solution of Eq. (4.6) determines the evaluation of the contact area at
the micro-scale, together with the distribution of the normal contact trac-
tions p. The final value to be passed to the macro-scale is evaluated as
its mean value, pn = 〈p〉, together with the related contact stiffness nec-
essary for the evaluation of the tangent matrix S, cfr. (2.7.1) and (2.7.1).
At the macro-scale, the underlying difference concerning the derivation
presented in Ch. 2 is that the normal contact traction is not linearly de-
pendent on the penalty parameter εn. Still, it is evaluated according to
the inner scale problem’s solution, together with the required contact
stiffness. This latter quantity requires a differentiation, and it can not
be evaluated in a single shot. Different strategies for its evaluation will
be treated in Sec. 4.5
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4.4 Computation of the contact pressure related
to roughness

The normal contact stiffness and the contact pressure predicted by the
boundary element algorithm account for two separate effects: one as-
sociated with the surface’s roughness, and another related to the defor-
mation of the half-space, see for example Paggi and Barber [89]. The
system’s overall compliance results from the superposed effects related
to the presence of roughness and the bulk elasticity.

In our framework, we need to extract only the effect of roughness
since the surrounding continuum’s elastic contribution is already com-
puted in the macro-scale model. Therefore, a correction to the resulting
pressure field is required. To this aim, as a preliminary step, we need to
compute the elastic deformation associated with our micro-scale contact
problem and subtract this contribution from the overall system.

If we consider the contact of a perfectly flat rigid indenter, with a
l × l square size, acting on an elastic half-space under a vertical force
P , an average uniform nominal pressure p = P/l2 will cause, under the
contact area, a uniform vertical displacement w0 equal to:

w0(p) = α
(1− ν2)

E
pl, (4.7)

where α is a numerical coefficient. Its exact value can not be derived for
a square punch, but different approaches for its approximate evaluation
can be found in Galin [104], Conway and Farnham [105] and Barber [88,
Ch. 4, pp. 48–50]. An accurate analysis permits us to conclude that an ex-
cellent approximation can be found simply considering the same relation
for an indenter with a circular section and equivalent area, characterised
by an analytical solution. This approach leads to α = 0.887.

This value is reliable for a continuum. If the same problem is solved
using a numerical approach, α will be influenced more and more as the
level of accuracy decrease. In our case, it is dependent on the half-space
boundary discretization, and to evaluate it for a given mesh resolution,
different BEM simulations have been performed, each with a different
number of square patches, all solving the problem of a perfectly flat rigid
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indenter with square section acting on the half-space. Since such a model
only includes linear elastic effects, the resulting displacement-pressure
relation is linear. The shape factors obtained are given in Tab. 1 for dif-
ferent resolutions. Their expression read:

α =
E

1− ν2

w0

l
p. (4.8)

Once the values are known for a given resolution level, we can use the
relation between the nominal pressure and the elastic indentation given
in Eq. (4.7) for computing the gap-pressure curve related to roughness
only. This curve can be obtained by evaluating the values of the pressure
p for a given set displacements ∆̄, considering both the elastic and the
roughness contributions through the BEM and then applying (4.7) for
computing the roughness related displacement gn = ∆̄ − w0(p) in order
to obtain the curve p = p(gn). The result of this correction procedure
is graphically shown in Fig. 29, where we can notice that the identified
roughness contribution (red curve) causes a stiffer response of the system
concerning the one resulting from the overall system (blue curve). It is
obtained by subtracting the elastic contribution (green line) from the nu-
merical simulation’s total curve. Conceptually, it is equivalent to assume
that for a given level of indentation gn, the correct value of p to be taken
into account for considering only the effect of roughness corresponds to
the one related to an imposed displacement of gn + w0(p), Fig. 29.

It must be underlined that this subtracting procedure is not directly
applicable to the multi-scale model since it requires knowing in advance
the evaluation of the entire pressure-gap curve without correction. At
the same time, the macro-scale model provides the micro-scale model
a single displacement gn for each Newton-Raphson iteration, at each

n 1 2 3 4 5 6 7 8

α 0.778 0.806 0.826 0.841 0.852 0.858 0.862 0.865

Table 1: Values of the coefficient α computed by solving the problem of a
rigid flat indenter in contact with an elastic half space with the BEM algo-
rithm, for different values of the surface resolution parameter n

74



Figure 29: Qualitative representation of pressure vs. imposed displacement
curve considering the elastic contribution, the roughness contribution, and
their combined effect.

Gauß point, for each time step. Since gn is meant to be related to rough-
ness only, a pressure p̄ higher than the one obtained by the unmodified
curve must be found, accordingly to Fig. 30. The required value can be
identified considering an augmented displacement ∆̄ = gn + w0 where
the value ofw0 can not be evaluated directly, depending on the unknown
pressure p̄. A fixed point iterative scheme has served the purpose.

The BEM algorithm takes gn as input from the macro-scale model and
computes the related pressure p(0)(gn), that allows for the computation of
a tentative correction w(0)

0 (p(0)). The input displacement is then updated
as g(1)

n,c = gn + w
(0)
0 and a new value of the pressure p(1) is computed.

The relative error on the average pressure is evaluated and eventually
the procedure is repeated. At the i-th generic iteration, the corrected
displacement reads:

g(i)
n,c = gn + w

(i)
0 (p(i)) (4.9)

corresponding to a pressure p(i). The relative error between two subse-
quent iterations is updated, and the iterative procedure stops when the
relative error is less than an imposed tolerance. The identified value of
pressure is the required value p̄ to be read by the macro-model at the
Gauß point.

The tolerance value has been obtained after a convergence study: the
iterative procedure has been tested for a set of imposed displacements,

75



Figure 30: Since point (b) is not directly derivable in the element routine,
starting from point (a) the iterative procedure evaluates the pressure in (c)
which guarantees equilibrium betweenw0, gn and δc and gives the corrected
pressure p̄ related to gn.

varying the value of the tolerance to achieve good accordance with the
corrected gap-pressure curve evaluated with the subtracting procedure.
As shown later in Sec. 4.6, perfect accordance has been found between
the two curves even for a loose tolerance for all the values of separation
taken into account, in line with the results shown in Ciavarella, Delfine,
and Demelio [14] and Ciavarella, Greenwood, and Paggi [15].

4.5 Multi-scale coupling

The coupling between the micro- and the macro-scales has been imple-
mented investigating three alternative approaches. Two of them foresee
a total embedding of the boundary element algorithm inside the finite
element routine. The third approach evaluates separately a pressure-
displacement curve, which is then fitted with an analytical function in
the last instance exploited at the macro-scale.

4.5.1 FBEM-QN

In the first approach, a full integration of FEM and BEM is proposed,
hereinafter referred to as FEM BEM Quasi-Newton (FBEM-QN) since a
numerical approximation of the Jacobian is used for the iterative solution
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scheme. The interface finite element has been coded according to Ch. 2.
At each time step and for each Gauß point, the contact pressure pn(gn)

and the contact stiffness ∂pn/∂gn are computed by calling the BEM sub-
routine, embedded in the finite element routine. Such BEM subroutine
reads the rough surface height field at the first time step from an input
file (the height field is stored in a standard x, y, z three columns format)
and saves it in a history variable for all the next time steps, to avoid con-
tinuous access to external files. The BEM subroutine is called once to
compute pn and then a second time to compute the normal contact stiff-
ness via a finite difference approximation obtained by a perturbation of
the initial value gn: [

∂pn

∂gn

](k)

' p
(k+1)
n − p(k)

n

g
(k+1)
n − g(k)

n

, (4.10)

where g(k)
n is the far-field displacement of the macro-scale model for the

current k-th Newton-Raphson iteration, and g
(k+1)
n = g

(k)
n + ∆g

(k)
n is a

small perturbation of its value, for which the pressure values p(k)
n and

p
(k+1)
n are computed by BEM.

4.5.2 FBEM-CQN

The approach presented is computationally demanding, and therefore a
second methodology is also proposed for the numerical evaluation of the
normal contact stiffness to save CPU time. In such an approach, referred
to as FEM BEM Cheap Quasi-Newton (FBEM-CQN), the contact stiffness
at the current Newton-Raphson iteration is computed using the displace-
ment and the pressure corresponding to the previous converged time
step as the reference values for the application of the finite difference for-
mula. The procedure requires using Eq. (4.10) only at the first time step,
and then the following equation is used subsequently:[

∂pn

∂gn

](k,t)

' p
(k,t)
n − p(t−1)

n

g
(k,t)
n − g(t−1)

n

, (4.11)

where t and t− 1 denote, respectively, the current and the previous time
steps. This procedure requires storing the values of gt−1

n and pt−1
n in

another appropriate history variable.
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4.5.3 FBEM-SAN

In the last approach, which is referred to as FEM-BEM semi-analytical
(FBEM-SAN), the normal contact problem at the micro-scale is solved
offline with BEM, based on the generated height field given in input, for
a sequence of far-field displacements. The solution of the problem in
terms of predicted average contact pressure vs the imposed far-field dis-
placement is finally fitted with a power-law continuous function of the
type:

pn(gn) = c1g
c2
n , (4.12)

which provides a closed-form expression for the normal tractions. Its
derivative ∂pn/∂gn entering the linearized interface stiffness matrix C is
also available in analytic form.

The choice of a power-law type fitting function is justified by the ar-
gument exposed in Paggi and Barber [89]. Let us assume to have two
rough surfaces in contact, with specific dimensionless contact conduc-
tance C̃, dimensionless mean plane separation d̃ and dimensionless nom-
inal contact pressure p̃. Making the hypothesis of incomplete similarity
on p̃, a power-law dependence can be postulated between C̃ and p̃, in the
form:

C̃ = Φp̃β , (4.13)

where Φ is a coefficient depending on the fractal geometry of the surface
and β is an exponent that real or numerical experiments can obtain. This
hypothesis holds for physical systems which are in an intermediate situ-
ation between two limit conditions, which in the present set are the high
and low separations regime, respectively. Together with the previous hy-
pothesis, the electrical-mechanical analogy (Barber [88, Ch. 4, pp. 44-47])
states that:

C̃ = −2
dp̃

dd̃
. (4.14)

By combining Eq.s (4.13) and (4.14), the result is an ordinary differential
equation with separable variables, with solution, for β 6= 1:

p̃1−β

1− β
= −Φ

2
(d̃0 − d̃), (4.15)

78



which is a power-law relation between the nominal pressure and the
plane separation. Following this formulation, the function (4.12) has
been chosen as fitting function.

A major drawback of this approach arises when the system’s state is
far from intermediate, i.e. for very high or very low separations. Scatter
in the contact pressures is usually observed in the first case. The con-
tact response is ruled by the statistics of extremes of the lower tail of
the asperity elevations distribution. An artificial smoothing is inevitably
introduced by fitting the data with a regular curve. The opposite con-
dition corresponds to very high pressures, where distinct asperities start
merging and form large contact islands. This condition is not reached
in the present case, where the maximum displacement imposed for ac-
quiring the curve employed in the SAN approach is 3σ, being σ the root
mean square value of the surface elevations field measured from its low-
est point and corresponds to a mean planes separation still far from the
region of very high pressures.

On the other hand, a great advantage of the FBEM-SAN is its speed.
It is expected to be the fastest of the three procedures if the representa-
tive rough surface is the same for all the integration points of the macro-
scale model (uniform spatial roughness) or when the same surface to-
pography is used in several load cases. In these conditions, the time
required by the BEM to solve the normal contact problem is spent only
once, during the off-line stage. However, it is not difficult to imagine
different scenarios where one method’s convenience concerning another
is not given for granted. For example, in the case of a realistic macro-
scale model where roughness is not homogeneous but depends on the
point, the semi-analytic method is still applicable, but fitting a different
curve for every required Gauß point is necessary. Furthermore, when a
different kind of topology is present, e.g. a complex or textured rough
surface, the power-law expression of the pressure-displacement relation
could reasonably fail in predicting the trend of the curve under exam-
ination. Therefore this kind of interpolation could introduce an unde-
sirable approximation to the problem. In such a different scenario, the
Semi-Analytic implementation can still be applied, provided that a more
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suitable and perhaps more complex interpolating function is determined.
The other two approaches are expected to be more competitive when the
gap-pressure range involved in the problem is unknown from the begin-
ning, and in general, when the off-line stage becomes expensive. Test-
ing the efficiency of the FBEM-SAN concerning the integrated FBEM-QN
and CQN in these and other different scenarios would be worthy of in-
terest and is left for further investigations.

4.6 Numerical examples

This section proposes a benchmark test to illustrate the proposed FEM-
BEM multi-scale approach’s capabilities and compare the different so-
lution strategies’ performances. Two square blocks of lateral size L =

10−2m‡ are discretised by a single finite element, see Fig. 31. An inter-
face finite element connects the common face of the two bodies.

The two materials have Young’s moduli E1 = E2 = 1012Pa and Pois-
son’s ratios ν1 = ν2 = 0.0, where the subscripts 1 and 2 identify the lower
and upper bodies, respectively. Choosing the same elastic properties for
the two blocks avoids the coupling between the normal and the tangen-
tial contact problems. A frictional constitutive response for the interface
is not specified in this chapter. Using Eqs. (3.4a) and (3.4b), we end up
with a composite Young’s modulus E = 0.5 × 1012Pa and a composite
Poisson’s ratio ν = 0.0 to be used as input parameters for BEM.

Horizontal and vertical restraints are applied at the top-left nodes of
both bodies and to the lower nodes of the lower blocks to avoid rigid
body motion. An imposed downward vertical displacement ∆ acts on
the upper side of body 1, monotonically increasing with a pseudo-time
variable to simulate the quasi-static normal contact problem, starting
from 0 up to a maximum value of 3σ, denoting σ the root mean square
of the surface roughness used to represent the rough surface.

The simulations have incorporated three different rough fractal sur-
faces generated using the RMD algorithm, see Paggi and Barber [89] and

‡Hereinafter, every length is expressed in metres, times in seconds and forces in New-
ton, unless differently specified.
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(a) (b)

Figure 31: Geometry and boundary conditions of the benchmark test in
uniaxial compression.

Peitgen, Saupe, and Barnsley [106]. The Hurst exponent has been set
equal to H = 0.7, while three resolutions corresponding to n = 6, 7 and 8

have been considered, which implies having 65, 129, and 257 heights per
side, respectively. The aim is to compare the computational complexity
by increasing the dimension of the contact problem solved by BEM at
each Gauß point and assessing how different coupling strategies affect
the accuracy of the contact predictions.

For applying the present method, which hinges on the assumption of
scale-separation between the micro and the macro scales, all the rough
surfaces input for BEM should be statistically representative of rough-
ness. Their lateral size l should be much smaller than the macroscopic
lateral size L. In the present case, the ratio l/L = 0.1 has been chosen.
The maximum height of the rough surface is zµ,max = 5 × 10−5 m. An
example of the generated surface is shown in Fig. 32.

The proposed tolerance value used to control the error in Eq. (4.9) is
equal to 10−2, which gives good accordance between the gap-pressure
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Figure 32: Example of a RMD rough surface (n = 6).

curves evaluated in the convergence study as shown in Fig. 33 for the
given dimensionless displacements ∆/σ and the example surface with
n = 6.

Figure 33: Comparison of the gap-pressure curves evaluated using two dif-
ferent procedures with tolerance set as 10−2.

The FBEM-QN, FBEM-CQN and FBEM-SAN solution strategies are
herein compared in terms of dimensionless force P/(EA) vs h/σ, where
P is the total normal load computed from the sum of the vertical reac-
tions forces at the constrained nodes of the macro-scale finite element
model, E is the composite Young modulus, A is the macro-scale nomi-
nal contact area, and h = zµ,max − σ + gn is the actual distance between
the flat plane and mean plane of the rough surface, i.e. the mean planes
separation. For the FBEM-QN approach, for each iteration, a value of the
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Table 2: Coefficients of the power-law function p(gn) = c1g
c2
n , together with

goodness of fit parameters.

n c1 [N/µm2] c2 SSE SSR SST R2

6 1.416 × 10−06 2.831 5.677 × 10−07 3.773 × 10−04 3.722 × 10−04 0.9985

7 1.240 × 10−06 2.862 4.073 × 10−07 3.576 × 10−04 3.537 × 10−04 0.9988

8 1.064 × 10−06 2.905 3.407 × 10−07 3.461 × 10−04 3.437 × 10−04 0.9990

perturbation ∆gn = 0.01gn has been chosen.
For the FBEM-SAN scheme, the curve used to fit the off-line BEM con-

tact predictions is chosen as a power-law function given by Eq. (4.12) and
the fitting has been performed employing MATLAB’s built-in fitnlm

function§ for performing non-linear regressions. The resulting curve co-
efficients are collected in Tab. 2 for the three different surface resolutions
distinguished by the value of n, together with the sum of squares due to
error (SSE), the sum of squares of the regression (SSR), the total sum
of squares (SST ) and finally the R-square (R2) coefficients. Improve-
ments in all the estimators can be observed as the resolution gets higher.
Another critical point regards the number of time steps n∆ to be em-
ployed during the off-line computation of the fitting coefficient. Fig. 34a
and Fig. 34b show, respectively, the variation of R2 and the CPU time
required by the off-line stage concerning the number of discretization
steps. The value of 102 steps, used in the present benchmark example,
represents a good trade-off between fitting accuracy and computational
time spent during the operation.

The P/(EA) vs. h/σ contact predictions are shown for rough surfaces
with resolution parameter n = 6, 7 and 8 in Figs. 35a, 35c and 35e, respec-
tively. The same results are collected for each value of n in Figs. 35b, 35d
and 35f to compare FBEM-QN, FBEM-CQN and FBEM-SAN schemes.
Overall, we notice that the three approaches provide almost coincident
results for the highest surface resolution (surface with n = 8). Simultane-
ously, the semi-analytical scheme leads to slightly different predictions
for lower resolutions (surfaces with n = 6 and n = 7). As anticipated

§See https://uk.mathworks.com/help/stats/fitnlm.html for documenta-
tion.
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(a) R-square coefficient. (b) Computational time.

Figure 34: Parametric study over the number of time steps used in the fit-
ting, for the same imposed far field displacement ∆.

before, the reason for that is related to the power-law function used to
approximate the contact response in the FBEM-SAN scheme, which does
not exactly reproduce the actual BEM contact response for coarse meshes
or large separations, being affected by a scatter induced by statistics of
extremes of the asperity height distribution.

This trend is even more evident by examining the dimensionless nor-
mal contact stiffness Cmatσ/E vs. the dimensionless normal tractions
pn/E depending on the resolution parameter n = 6, 7 and 8 shown in
Figs 36a, 36c and 36e, respectively. The same results are again collected
for each n in Figs 36b, 36d and 36f to compare FBEM-QN, FBEM-CQN
and FBEM-SAN schemes. Overall, we notice that the three approaches
provide almost coincident results for the highest surface resolution (sur-
face with n = 8) and the low-separations regime. The smoother response
predicted by the FBEM-SAN scheme for coarse surfaces and high sepa-
rations is primarily due to the artificial smoothing of the actual contact
response introduced by the power-law best-fitting equation. For large
separations, the actual contact behaviour is governed by few asperities
in contact. Therefore the contact response should present oscillations and
a non-smooth behaviour by increasing the number of contact spots (in-
creasing the pressure or the surface resolution). The power-law best-fit
approximation becomes much more reliable.
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(a) FBEM-QN (b) n = 6

(c) FBEM-CQN (d) n = 7

(e) FBEM-SAN (f) n = 8

Figure 35: Dimensionless contact pressure vs. dimensionless normal gap
predictions depending on the solution scheme and the surface resolution.
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(a) FBEM-QN (b) n = 6

(c) FBEM-CQN (d) n = 7

(e) FBEM-SAN (f) n = 8

Figure 36: Dimensionless contact stiffness vs. dimensionless normal gap
predictions depending on the solution scheme and the surface resolution.
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The evolution of the residual norm vs the number of iterations of
the numerical scheme used to solve the set of nonlinear algebraic equa-
tions is highlighted in Figs. 37b, 37d and 37f, for the FBEM-QN, FBEM-
CQN and FBEM-SAN solution strategies applied to surfaces with differ-
ent resolution parameter n. Furthermore, Figs. 37a, 37c and 37e com-
pare the three numerical strategies’ convergence rate for the same sur-
face resolution. These results correspond to the last time-step (∆ = 3σ),
with a convergence tolerance of 10−9. As expected, the FBEM-SAN dis-
plays a quadratic convergence, regardless of the resolution, since the tan-
gent stiffness is computed exactly from the derivative of the pressure-
separation relation, given in the analytic form. FBEM-QN and FBEM-
CQN display a slower convergence rate than FBEM-SAN, requiring at
least one iteration more than the semi-analytic approach due to the nu-
merical approximation of the tangent stiffness matrix.

The CPU time required to solve the contact problem is shown in
Figs. 38a, 38c and 38e for the FBEM-QN, FBEM-CQN and FBEM-SAN
solution strategies and in Figs. 38b, 38d and 38f for the three different
resolutions. The CPU time for the FBEM-SAN strategy includes only the
time required for FEM to solve the macro-scale contact problem without
the time for the off-line execution of BEM since this preparatory step is
very case-specific and depends not only on the maximum value of pres-
sure required but also on the accuracy requested to the fitting operation,
as already shown in Fig. 34b.

The FBEM-SAN is much faster than the other two strategies, espe-
cially for intermediate and low separations when the time required for
the micro-scale BEM computations spent to predict the contact pressure
and the contact stiffness in the QN and the CQN schemes is significant.
Both the integrated approaches become more expensive as the number
of contact points increases, for the higher resolution or the decreasing
separation between the surfaces. These last two strategies show almost
the same CPU time, with slight differences: the QN is faster at the begin-
ning for high separation while the CQN allows saving time in the low
separation range.

Compared to the semi-analytical approach, the fully integrated FEM-
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(a) FBEM-QN (b) n = 6

(c) FBEM-CQN (d) n = 7

(e) FBEM-SAN (f) n = 8

Figure 37: Residual norm vs. iteration step depending on the solution
scheme and the surface resolution.
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(a) FBEM-QN (b) n = 6

(c) FBEM-CQN (d) n = 7

(e) FBEM-SAN (f) n = 8

Figure 38: CPU time (s) vs. dimensionless normal gap predictions depend-
ing on the solution scheme and the surface resolution.
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BEM strategies are more expensive. Their versatility allows them to solve
a wider range of situations, e.g. more complex load cases involving con-
current normal and tangential loading. A pre-computation of the contact
response would be very expensive, given the infinite number of possible
case scenarios. In general, the proposed approach can be applied using
the algorithm best suited for the analysed system. Possible scenarios of
application of the three routines is an open issue for subsequent studies.

In addition to the three approaches’ examined computational perfor-
mance, it is important to notice that FBEM-QN and FBEM-CQN allow
extracting local information about the micro-scale contact problem. For
example, the pressure field and the free volume evolution can be easily
extracted at each time step from the model without any additional ef-
fort (see Fig. 39). Their values can benefit multi-field problems involving
heat transfer or reaction-diffusion phenomena and simulations, includ-
ing wear and friction, where the knowledge of contact islands and actual
pressure distribution plays a key role. On the other hand, in the FBEM-
SAN approach, the information about the percentage of contact area can
be easily recovered using an additional interpolating function during the
off-line stage to obtain the relation between the total contact area and the
average contact pressure.
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(a) Dimensionless overall reaction force
against the imposed displacement.
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(b) Point 1, A/An = 0.38%.
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(c) Point 2, A/An = 1.66%.
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(d) Point 3, A/An = 3.12%.

Figure 39: Evolution of the free volume of the real geometry at the micro-
scale for three different levels of imposed displacement, for the n = 7,
FBEM-QN case. For every one of the three contour plots the ratio between
the actual contact area A and the nominal one An is provided, while the
dark blue islands show the contact area, the deepest valleys are marked in
red.
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Chapter 5

Advanced applications

In this Chapter, two possible further applications of the previous chap-
ters’ computational methods are discussed to inspire further research di-
rections. The first is the solution of 3D contact problems using the em-
bedded surface geometry strategy. The second tackles the problem of
an inelastic bulk, more precisely the indentation of a linear viscoelastic
material by a rigid body that undergoes finite sliding.

5.1 Application to 3D surfaces

The concept exposed in Ch. 3 for 2D geometries is applied here to com-
plex contacting surfaces in 3D by considering an equivalent interface dis-
cretised by a structured mesh of 8-nodes hex elements in which the op-
posite facets belong one to the indenter and one to the deformable bulk.
First of all, a patch test consisting of three elements only is performed.
The lower one models the deformable bulk, the intermediate one con-
sists of the interface element and the upper one models the rigid inden-
ter. An ironing test is performed, first compressing the element and then
applying horizontal far field displacements along with the two horizon-
tal directions x and y. The stresses are transmitted along with the three
main directions, as highlighted by comparing the nodal reactions at the
restrained base nodes.
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Subsequently, the model is validated against a classic Hertz problem.
Some interesting considerations about the method’s applicability can be
drawn from this basic example for both the friction and frictionless case,
which are useful for the latter practical application.

Finally, the method is tested against complex surfaces under general
loading conditions. First, the frictionless normal contact considering a
set of RMD rough surfaces is considered. The contact between a rigid in-
denter characterised by a Weierstrass-Mandelbrot self-affine surface is set,
accounting for friction and an imposed tangential far-field displacement.
In both cases, the parameters that characterise the surface are compliant
with the ones that could be identified for a real surface obtained via pro-
filometer sampling. Also, the chosen level of discretisation is suitable for
a practical application. The analytical surface is discretised over different
square grids, made of 32× 32, 64× 64 and 128× 128 interface elements,
a choice that keeps computational times under a reasonable threshold
for the machine employed, whose characteristics are listed in Fig. 40. Of
course, this is just a design choice, being the proposed approach appli-
cable to any resolution desired. For example, this limit could be lifted,
employing specific HPC resources comprehensive of a dedicated itera-
tive solver instead of the direct one employed, together with code par-

Figure 40: Server properties.
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allelization rather than the sequential approach applied throughout the
dissertation. The results for both the RMD and the WM surfaces are com-
pared in terms of computational time required and convergence proper-
ties.

5.1.1 Patch test

A patch test is performed to assess the element’s capability to transfer
normal and tangential stresses across the interface under uniform load-
ing. To do so, a basic geometry is modelled, made of three staggered
8−nodes hex elements. The lower one is linear elastic, the upper one
mimics a rigid block, and finally, the central one coincides with a single
interface element. In this example, no correction is made on the normal
gap in such a way to simulate a flat interface. Friction is still accounted
for, with a friction coefficient µ = 0.2. The elastic and rigid blocks share
the same geometry. The height h is unitary, the horizontal cross-section is
square, and width-to-height ratio is 2. The thickness (height) of the inter-
face, nevertheless a dummy dimension according to the element formu-
lation, has been set equal to 0.1h. The base nodes have been restrained by
a proper set of Dirichlet boundary conditions. A uniform imposed dis-
placement is applied to the top facet, following a loading path sketched
in Fig. 41 in the displacement space ∆, parametrised in time and nor-
malised concerning the height of blocks and the friction coefficient. First,

Figure 41: Load path in ∆ space.
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a vertical displacement is applied, which is then held constant while two
non-concurrent horizontal displacements acting along x and y directions
complete a square loop.

The simulation results in terms of vertical displacements and normal
stress σz are qualitatively shown in Fig. 42. The results are relative to
the last time step of the simulation when only the vertical load acts.
The rigid body motion of the upper rigid block can be appreciated in
Fig. 42a, together with the displacements transfer across the interface
and the lower block’s linear deformation, characterised by a null Pois-
son’s ratio ν = 0 and Young’s modulus E = 100 Pa. Fig. 42b shows
the stress transfer across the interface, still concerning the simulation’s
last time step. The result is a uniform stress field as required by equilib-
rium considerations. Results in term of forces transfer across the inter-
face are shown in Fig. 43a. The normal force P and the horizontal forces
Q1 and Q1 are represented by a solid black, red and blue line, respec-
tively. All the quantities are scaled by EA, being A the cross-section of
the blocks. The horizontal forces only are further divided by µ to easily
spot a gross slip condition, which under the current imposed load does
not occur. For every time step, the forces are also evaluated as the sum
of the base nodal reaction forces, upward-pointing triangle marker, and
directly from the displacement field, applying the interface constitutive

(a) Displacements contour plot. (b) Stresses contour plot.

Figure 42: Patch test results (qualitative).
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equations, downward-pointing triangle marker, showing perfect accor-
dance between the three quantities of interest. Finally, Fig. 43b shows the
convergence rate of the Newton-Raphson iterative scheme for a selected
time step of integration, coincident with a point of concurrent applica-
tion of both horizontal displacements and considered more challenging
for the solver. The error related to the residual norm and the energy
norm are both depicted, solid blue and red line respectively, together
with their respective tolerance threshold above which convergence is as-
sumed. In all the two cases considered, convergence is achieved in six
iterations. The order of convergence q is shown related to the fifth it-
eration of the Newton-Raphson scheme. In both cases, it is superlinear,

(a) Applied load and reaction forces.

(b) Convergence analysis.

Figure 43: Patch test results (quantitative).
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almost quadratic, if the rate of convergence of the energy norm is consid-
ered.

5.1.2 Model validation

A 3D Hertzian contact is used for validating the presented implementa-
tion. In the classic formulation of the problem, a paraboloid is employed
as a first-order approximation of a rigid spherical surface with radius R,
which comes into contact with a deformable, linear elastic half-space, no
friction is assumed at the interface. The problem is radially symmetric,
and the solution is given in terms of contact radius a and ellipsoidal nor-
mal contact tractions distributions p(x), being P their resultant. Given a
vertical imposed displacement ∆n, the above quantities read:

a =
√
R∆n, P =

4

3

E

1− ν2

√
R∆3

n, (5.1)

being E and ν Young’s elastic modulus and Poisson’s ratio of the half-
space. The comparison is carried on under the application of a monoton-
ically increasing vertical displacement, starting from zero up to a value
of ∆0 = 5 × 10−5R with constant time steps. Finally, the values cho-
sen for the bulk’s characterisation are E = 1 Pa and ν = 0.0. Numerical
simulations are performed, assuming both frictionless and frictional in-
terfaces to highlight the differences that arise due to coupling and affect
the normal response in the absence of a direct tangential load.

A close up of the FEM implementation focused on the contact zone
can be seen in Fig. 44.

Since no parallelisation of the code has been performed yet, a con-
straint is present on both the contacting surface’s active set and the bulk’s
mesh discretisation for attaining reasonable computational time on the
machine whose specifications have been given in Fig. 40. The contact
active set comprehends a square patch of interface elements, discretised
using three different resolutions, with 23, 24 and 25 contact elements per
side, respectively. Given the problem symmetry, only a quadrant of the
problem has been actually modelled. The elastic bulk must reproduce
the behaviour of a half-space. It has been modelled with a cylinder, with
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(a) Bulk and interface discretisation, to
be replaced with ParaView.

(b) Contact patch magnification, to be
replaced with paraview.

Figure 44: Problem set up (a) and close look on the contact quarter patch
(b), with the parabolic profile embedded in the upper layer, characterised
by constant displacement.

constrained nodes on the base and a contact patch located at the top sur-
face’s centre. The cylinder’s radius and height have been increased until
the vanishing of their influence on the simulation results, thus guaran-
teeing the equivalence of the FEM model of the bulk with a half-space.
To reduce the problem degrees of freedom, the mesh has been graded
starting from the contact patch, where a single interface element has a
characteristic length hi = 21−ni , being n = [3, 4, 5] the resolution coeffi-
cient. The mesh elements reach a characteristic dimension of h = 20 in
correspondence with the bottom base and the lateral surface. The mesh
dimension gradient is determined by trial and error, seeking the highest
one still guaranteeing the absence of ill-shaped elements.

The solution in terms of contact reaction force, against the analytic
reference solution, can be observed in Fig. 45, for the finest resolution
employed. Both the frictionless (µ = 0.0) and frictional (µ = 0.4) nu-
meric solutions show a stiffer behaviour compared with the exact one.
As expected, the frictional case is the stiffest since the application of the
vertical load cause in-plane horizontal displacements, which are coun-
teracted by the presence of friction. The highest coupling effect can be
appreciated for ν = 0.0, while as Poisson’s ratio tends to 0.5, uncoupling
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Figure 45: Model validation.

conditions are met, and the effect is supposed to vanish. The differences
in percentage between the case for µ = 0.4 and µ = 0.0 are in line with the
theory. The interested reader is addressed to Barber [88, Ch. 7, pp. 129–
130] for a comparison between the presented application and the corre-
sponding coupled axisymmetric problem without slip, which represents
the opposite scenario concerning the absence of friction. An apprecia-
ble difference still holds between the frictionless case and the reference
solution. The relative error is plotted in Fig. 46 for every simulation per-
formed. A marker defines the resolution, while black solid lines depict

Figure 46: Variation of the relative error with the applied normal displace-
ment and the resolution. Triangle markers depicts a coarser mesh, star
markers a finer one.
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the frictional case and dashed red lines the frictionless case. As already
said, the shift between red lines and black lines can be ascribed to the
effect of coupling. Even if the error gets lower as the resolution increase,
non-negligible differences still hold, growing with the load. A possible
explanation for this could be found in the combination of the penalty
approach and a condition of imposed displacements. If the system is
loaded only by surface tractions, correct transmission of forces at the in-
terface is guaranteed by equilibrium, and the effect of displacements is
limited. If the surface, such in the present case, is loaded by a far-field
displacement, the stress transfer will be influenced by the displacements,
as can be evinced by Fig. 46.

As stated in Wriggers [42, Ch. 6, p. 119], the influence of the penalty
parameter is also affected by the mesh resolution. In the current sim-
ulations, for the finest mesh employed, the penalty has been chosen to
obtain εnh/E = 3.125, being h = 3.125 × 10−2 units the characteristic
mesh size, leading to an average relative error in terms of reaction forces
of about 3%. Unlike the 2D case presented in Ch. 3, numerical issues
are now found for sensibly lower values of εn, and the one chosen rep-
resents an upper threshold above which ill-conditioning is met*. Even if
the results of the validation test can be considered fully satisfactory since
they have been obtained with a rather coarse mesh, the use of a different
and more accurate contact strategy appears more appealing for future
systemic use of the method, for which the exploitation of the penalty ap-
proach is not a strict prerequisite.

The solution in terms of contact radius is also checked. For the finest
mesh, a relative error of 1.612% concerning the last loading step is found.
This result is shown in Fig. 47, where the exact value of the contact ra-
dius, thick solid red line, is superposed to the normal contact tractions’
contour plot.

*Actually, the system doesn’t seem to be ill-conditioned, and the Newton-Raphson al-
gorithm properly converges. However, the solution obtained is manifestly wrong, with
sharp spikes in the contact tractions distribution in the proximity of the frontier between
contact and non-contact region. An explanation of this is necessary to be investigated
but has not been found despite an intense effort. A solution to this problem would per-
mit increasing εn up to values leading to negligible errors and approaching the usual ill-
conditioning threshold.
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Figure 47: Contact radius.

In conclusion, the surface plot of the surface tractions is shown in
Fig. 48. The numerical simulation accurately reproduces the character-
istic ellipsoidal shaped distribution. The test is run considering a value
of the friction coefficient µ = 0.4, with a consequent stiffening effect due
to geometrical coupling that can be appreciated by comparing the ratio
between the maximum value predicted by the analytical model and the
one obtained by the simulation, p0/pmax = 0.8105.

In Fig. 49, the tangential contact tractions are shown. Fig. 49a and
Fig. 49b show the tangent vector’s projection over the coordinate direc-
tions x and y, respectively. Since only normal loading is involved, and
the profile is symmetric, they represent self equilibrated distributions,

Figure 48: Normal contact tractions.
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symmetrical to y = 0 and x = 0. Their magnitude ‖q‖ =
√
q2
1 + q2

2

is represented in Fig. 49c. Again, because of the loading conditions, the
distribution is characterised by polar symmetry, with a null value only in
correspondence with the origin. This point is the only one that does not
experience in-plane tractions. The remaining domain is split in the cir-
cumferential direction into two annular regions, an inner one for which
‖q‖ < µp which is therefore in a state of stick, and an outer one which
radially slips under the action of the load. The stick/slip region can be
determined by evaluating the ratio between the stick radius and the con-
tact radius, with result ra/rb = 0.9130. This implies that roughly 15% of
the contact area is in a partial slip state, even for this rather high coef-
ficient of friction and no application of tangential load. This fact might
be of relevance in cases where micro-slip related phenomena are consid-
ered, for example, in the study of fretting wear and fretting fatigue.
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(a) q1 contact tractions distribution.

(b) q2 contact tractions distribution.

(c) Resulting ‖q‖ distribution.

Figure 49: Surface plot of tangential tractions for the Hertz problem with
friction.
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5.1.3 Full-scale application

In this section, the contact of a rough surface over a thin elastic layer
bonded to a rigid substrate is performed. The indenter is discretised with
a mesh composed of 32× 32, 64× 64 and 128× 128 square elements. The
bulk is composed of a structured grid of standard tri-linear hex elements,
disposed over two layers of equivalent depth. The bulk elements have a
height-to-width ratio of 5, which, given the square nominal contact area
of unitary side L and the number of elements employed, gives an overall
depth of hb = 0.1563L. A single layer of interface elements is disposed
over the bulk elements, and, finally, a single layer of rigid elements on the
top of it complete the mesh. The rigid indenter has been modelled as a
linear elastic material with Young’s modulus E2, 3 orders of magnitude
higher concerning the bottom layer modulus, together with a penalty
parameter εn = E2/L. Fig. 50 shows the resulting mesh for the finest
case.

Surface heights field reading

The rough surface employed in the contact simulation is stored in an ex-
ternal file. An extract of the routine employed for the height field reading

Figure 50: FEM mesh, interface discretised with 128 × 128 interface finite
elements.
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is shown in Fig. 51. The routine inputs are the surface dimension in terms
of the number of subdivisions per side, and a tolerance value, stored in
the array d. The surface height field is provided in a .dat file where the
sampled points are stored column-wise accordingly to their x, y and z

coordinates. This format coincides with the output of surface property
acquirement instrumentation, as the Leica DCM confocal profilometer is
present in the laboratory research group.

When an interface element composing the active set is called for the
first time, the external surface file is read, and the points’ locations are
stored in a proper array, lines 352 to 356. Then, given the nodal coordi-
nates xm, cfr. Eq. (2.32) from Ch. 2, the matching points for each node are
identified and assigned to the history variable array hr, lines 358 to 372.
The nodes are supposed to match the surface points if a deviation less
than the imposed tolerance holds for the respective coordinate for each

Figure 51: Code snippet for external surface reading.
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of them. After the proper value of elevation has been assigned to each of
the four nodes, a flag is activated, line 374, which prevents the process
from being repeated in subsequent calculations, such that the external
surface is red only once for each element, and each element stores only
the four elevation values directly affecting it.† A surface plot showing
the heights distribution for the two cases is shown in Fig. 52, both plots
are related to the finest resolution employed. The latter case, Fig. 52b
is considered particularly interesting, since a contact problem involving
such surface, solved with standard computational contact mechanics ar-
guments appears very difficult, given the scatter in the heights distribu-
tion and the total lack of smoothness. The next two paragraphs present
all the details related to the geometrical features of the problem, for re-
peatability purposes.

Problem set up for the WM surface

The Weierstrass-Mandelbrot quasi-fractal surface is evaluated as:

z(x, y) = A

N∑
n=1

M∑
m=1

γ(D−3)(n−1)
[
cosφm,n

− cos
2πγn−1

λ0

(
x cos

πm

M
+ y sin

πm

M
+ φm,n

)]
, (5.2)

is characterised by the parameters in Tab. 3 and shown in Fig. 52a. The
matrix in Eq. (5.3) collects the random phase angles employed during the
surface generation process.

†A different approach, perhaps more efficient, could be tempted by assigning the ele-
vation to each node index-wise, but this would affect the robustness of the implementation
since care should be taken in the ordering of the entries of the external file, which would
be cumbersome in the current case of a 3D surface, and the situation would rapidly de-
generate considering interface elements where the heights are sampled in more than four
nodes.
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(a) Surface generated with the Weierstrass Mandelbrot function.

(b) Surface generated with the Random Midpoint Displacement algorithm.

Figure 52: Plots for the highest resolution surfaces tested.
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Φ =



5.9698 3.8669 0.3637 0.0960 5.2661 1.2154 3.1199 4.5686

1.4523 4.9759 2.2171 4.6922 0.1234 4.2865 5.6534 1.9433

3.8129 5.7919 5.1093 2.7966 4.2806 1.9023 5.1624 5.2684

3.0535 4.6383 0.0620 5.8548 2.3843 3.4034 4.0521 3.5693

5.6002 1.1075 0.8727 2.9279 5.2263 0.9480 5.1395 2.3274

4.7884 2.5491 1.2740 2.6305 3.1593 4.3850 4.1483 4.4154

2.8681 5.8777 1.2486 5.3170 4.4577 2.3774 2.1487 3.4342

0.1163 5.7611 3.7937 3.2996 2.6948 5.4036 1.8204 2.7953

5.1611 2.5778 1.7102 1.2733 1.9140 5.3637 2.1438 4.3641

2.7942 5.6150 1.2492 4.2232 1.1916 3.7295 3.3557 3.9038


The load is applied as a far-field displacement subdivided into three

different stages of equal duration. In the first one, a purely normal dis-
placement ∆n is imposed, starting from zero and reaching its final value
∆0 = 3.00× 10−3L at t1 = 1.00 s. The normal load is then held constant,
while the indenter is translated along x direction with constant positive
velocity, reaching a maximum value ∆τ,0 = µ∆0 at t2 = 2.00 s, being
µ = 0.2 the coefficient of friction. Finally, in the third phase, the indenter
is linearly shifted back to its original position, reached for t3 = 3.00 s.
Fig. 53 shows the applied far-field displacement history, together with
the resultant interface overall reactions, evaluated as the integral of the
interface normal and tangential tractions. The ratio between the normal
indentation and the elastic layer thickness is ∆0/hb = 1.92 %, in line with

Table 3: Weierstrass-Mandelbrot surface coefficients. The values of the ran-
dom phase angle matrix Φ can be found in Eq. (5.3).

z0 λ0 G D γ N M

[m] [m] [−] [−] [−] [−] [−]

1.00× 10−3 1.00× 100 3.00× 100 2.25× 100 1.30× 100 8 10
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the assumption of elastic deformation of the bulk. Still, the surface char-
acteristics have been tailored to obtain a high final actual contact area to
have the possibility of investigating the contact response from high to
low mean-planes separations.

Problem set up for the RMD surface

A self-affine rough surface obtained employing the same procedure ex-
posed in Sec. 3.4 is now used for testing the 3D implementation. Three
different magnifications are considered, defined on the same block of
Fig. 50, but discretised in turn with 32, 64 and 128 elements per side,
respectively. The mechanical properties of the bulk are the same em-
ployed for the former example, and so is the overall height of the surface,
measured from the lowest valley to the highest peak. For repeatability,
all the three surfaces tested are characterised by the same random seed
rnd = 5.4688 and the same Hurst exponent H = 0.75. The resulting ele-
vation field is shown in Fig. 52b for the highest resolution level. Since for
the RMD surface, only frictionless normal contact has been considered,
the load history is coincident with the first branch of Fig. 53, from t = 0

to t = t1.

Figure 53: Far field displacement and resultant load vs. time.
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Results

Considering the WM related simulations, the outcome in terms of forces
response is also shown in Fig. 53. The vertical reaction force P follows the
characteristic power-law behaviour as long as the load is incremented,
then remains constant. During the first stage, parasitic reaction forces
Q1 and Q2 arise due to the simulation’s displacement controlled nature
and the lack of symmetry of the indenting profile. During the second
stage, Q1 increases and a condition of full slip is almost reached, with
the maximum value obtained ed at t = t2 approximately equal to 0.85µP .
Over this point, the displacement is reversed, and the indenter is taken
back to its original position. We observe a residual horizontal negative
force, a function of the system hysteresis that can be directly linked to the
frictional energy dissipation.

The contour plot of the normal tractions p(x) at t1 is qualitatively
shown in Fig. 54. It can be seen that for the selected level of indentation,
the contact area ratio Ac/L

2 ' 45% is reached. A clear distinction holds
between the contact islands and the domain that does not experience
contact, homogeneous dark blue zones.

A quantitative analysis of the displacements and contact tractions
fields’ evolution can be performed if a section cut is considered along
a selected direction. The result of this operation at constant y/L = −0.65

is shown in Fig. 55, for three different time steps covering the normal
loading stage. The solid black lines represent the indenter, while the red
ones the elastic bulk, for t/t1 = 0.50, 0.75 and 1.00 respectively.

A quantitative evaluation of the error resulting from the relaxation
of the normal contact constraints resulting from applying the penalty
method can be observed in Fig. 56. The solid blue line shows the abso-
lute level of compenetration, evaluated for a point located in correspon-
dence of the highest pressure recorded at the end of the normal loading
stage. As expected, the value of compenetration grows with the normal
displacement almost linearly, but with a lower gradient concerning the
normal far-field displacement, such that the relative error, in terms of
the ratio between compenetration and imposed displacement, decreases
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with time, solid red line of the same figure.

The evolution of the tangential reactions along x direction can be
traced in Fig. 57. The green lines represent snapshots of q1|y for selected
time steps. The time window chosen in Fig. 57a spans from t = t1 to
t = t2, covering the tangential loading stage. Investigating the plot, it
can be seen how the tangential tractions grow, almost reaching a condi-
tion of full slip, where they overlap with the solid black line, representing
the normal tractions. The unloading phase is depicted in Fig. 57b, where

0

0.05

0.1

0.15

Figure 54: Contour plot of normal tractions p(x).
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Figure 55: Vertical displacements under the action of the indenter.

the imposed horizontal far-field displacement is reversed. The system
final traction distribution along y coincides with the bottom green line.

In conclusion, the performances of the framework are compared for
both the RMD and the WM surfaces, along the first load branch (fromt =

0 to t/t1 = 1). Fig. 58 shows the time employed by a complete run of all
the simulations performed. As expected, the most critical factor is the
number of degrees of freedom that characterises the different examples.
The 32×32 elements surface is characterised by a run time of the order of
seconds. For what concerns the finer scale problems, all the simulations
with an equivalent number of degrees of freedom have almost identical

Figure 56: Quantitative assessment of the compenetration error resulting
from the penalty contact enforcement.
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CPU times, regardless the surfaces’ smoothness. In contrast to the WM
surface, the RMD surface is made of a scattered elevation field, which
would result in very challenging scenarios for standard contact search
algorithms. In order to investigate how the presence of friction affects
the performances of the code, the same problem with the WM surface is
solved also setting µ = 0.0. Comparing the results, a slight difference
is encountered, but the effect is remarkable for the finest resolution only,
with an increase of about 12% concerning the overall computational time,
and convergence properties as well are not particularly affected.

In the conclusion of this section, Fig. 59 reports, for each time step of
each simulation, the total number of iterations of the Newton-Raphson

(a) Loading phase.

(b) Unloading phase.

Figure 57: Tangential traction distribution q1, evaluated at y = y.
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algorithm employed to solve the non-linear system of equations that
governs the problem. Again, no significant discrepancy is encountered
despite the remarkable differences in terms of smoothness characteris-
tics. Furthermore, in the case of the WM surface, not even friction sig-
nificantly alters the convergence properties, requiring at most two addi-
tional iterations for reaching convergence.

5.2 Application to inelastic materials

The proposed formulation is herein extended and applied to the analysis
of both the transient and steady-state sliding of a rigid indenter over a
viscoelastic bulk. It is shown that the chosen approach is capable of deal-
ing with arbitrarily complex profiles together with, thanks to the flexibil-
ity of the finite element method, different kinds of material constitutive

Figure 58: CPU time.
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Figure 59: Newton Raphson iterations required for each time step.
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behaviours. In this section, we propose a further possible exploitation of
the method, which comprehends the analysis of finite interface sliding
displacements.

A linear viscoelastic material has been chosen as a paradigm for more
general bulk constitutive behaviours. Real viscoelastic materials present
a time-dependent mechanical response that varies across several orders
of magnitude of time and intensity. Therefore, a simple model with a lin-
ear Hookean spring in series with a single Newtonian dashpot is far from
representative. For instance, for Ethylene Vynil Acetate (EVA) used as an
encapsulating material for photovoltaics, a power-law decay of Young’s
modulus with time has been reported Eitner et al. [107] and Eitner [108],
which can be well-modelled by a fractional viscoelastic model Paggi,
Kajari-Schröder, and Eitner [109], Paggi and Sapora [110], and Gagliardi,
Lenarda, and Paggi [111] as a limit of a Prony series representation with
several arms. Its approximation for engineering applications usually re-
quires at least three arms in the Prony series to provide meaningful stress
analysis predictions.

A representative contact problem involving a rigid indenter with har-
monic profile acting over a viscoelastic layer of finite depth, perfectly
bonded to a rigid substrate, is addressed to demonstrate the proposed
approach’s capabilities. The loading history includes an applied dis-
placement normal to the contacting interface during the first stage, with
a progressive increase in the contact area. Afterwards, normal displace-
ment is held constant. A horizontal far-field displacement in the sliding
direction is applied to simulate the stick-slip transition and the constant
sliding regime. Friction is considered along the interface, and it is math-
ematically treated with the same regularised friction law exploited in the
former chapters. Different sliding velocities, which are relevant for the
behaviour of a viscoelastic material, are examined. Numerical simula-
tions provide useful insight into the tangential tractions’ distribution in
all of the phases of the sliding process. When considering different Prony
series representations with several arms varying from one to three, the
computational approach quantifies the effect of refining the viscoelastic
constitutive model by introducing additional relaxation times. This sec-
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tion is part of the work presented in Bonari and Paggi [58].

5.2.1 Rheological Model

Three different Prony series models with a number of arms increasing
from one to three are examined in order to assess the effect of viscoelas-
ticity modelling on the overall contact mechanical response. The general
equation for the shear relaxation modulus reads:

G(t)

G∞
= µ0 +

3∑
n=1

µn exp
(
− t

τn

)
, (5.3)

where G∞ is the instantaneous shear modulus (evaluated at t = 0), µn
are the relaxation coefficients, and τn are the corresponding relaxation
times. Equation (5.3) has been tuned to fit the experimental values of
EVA Paggi and Sapora [110]. The model parameters for 1, 2 and 3 arms
are collected in Table 4. The identification of the above parameters has

Table 4: Rheological parameters for Ethylene Vynil Acetate (EVA), where n
is the number of Prony series’ arms.

n G∞ µ0 µn τn
[–] [Pa] [–] [–] [s]

1 568.498 0.421 0.579 0.817

2 674.606 0.306 0.398 0.212
0.296 2.458

3 749.386 0.254 0.310 0.102
0.226 0.545
0.210 4.104

been carried out through a regression over the experimental data, ac-
quired in the time range t = 10[−1,...,+1]. The following approach has
been pursued to attain a high degree of accuracy. Firstly, trial relaxation
times have been set, and a preliminary linear regression has been per-
formed involving G∞ and µi only. The objective function to be min-
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imised reads:

Π(x) =

N∑
k=1

(
gk · x−Gk

)2
, (5.4)

where, for the three arms model, gk =
[
1, e(−tk/τ1), . . . , e(−tk/τ3)

]
, Gk is

the value of the objective function at the sampling point and N is the
number of samplings. The global minimiser x∗ = arg minx Π(x) is eval-
uated and the constants µi and G∞ are obtained according to:

G∞


µ0

µ1

µ2

µ3

 = x∗, (5.5)

together with the condition
∑

i µi = 1, related to the shear modulus at
t = 0. The obtained coefficients, together with their respective relaxation
times, have been used to define a vector of guess values x0 for a second
nonlinear regression, in which the relaxation times were also included in
the optimisation vector x. The problem has been solved iteratively, up-
dating the starting vector x0 every cycle using the previous results. Con-
vergence is achieved within 5 iterations at most, considering a relative
error given by (x∗ − x0)/x0 and a tolerance ε = 10−15. This procedure
has been repeated in the same way for the 1 and 2 arms models.

Once the parameters are identified, the Young’s relaxation modulus
E(t) can be obtained from G(t), and the behaviour of the three mod-
els can be investigated in time and frequency domains. The analysis in
the frequency domain can be performed by defining a complex modulus
Ê(ω), obtained via the Fourier transform ofE(t), which can be expressed
as:

Ê(ω)

E∞
= µ0 +

n∑
i=1

µi
τ2
i ω

2

1 + τ2
i ω

2
+ ı

n∑
i=1

µi
τiω

1 + τ2
i ω

2
. (5.6)

In the expression above, ı denotes the imaginary unit and the index k
defines the number of arms being considered. It can be easily noticed
that, for the single-arm model, the maximum viscoelastic effect manifests
in correspondence to the critical excitation frequency ω? =

√
µ0/τ1.

Fig. 60a shows a plot of E(t). Figs. 60b,c show the values of the
loss modulus and the storage modulus, obtained as the imaginary part
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=Ê(ω) and the real part <Ê(ω) of the complex modulus Ê(ω), respec-
tively. Finally, Fig. 60d shows the loss tangent, given as the imaginary
part over the real part ratio. As a comparison, the same quantities are
also plotted for the relaxation modulus, obtained for a model that is
based on fractional calculus, which reads:

Ef(t) =
Ef,αt

−α

Γ(1− α)
. (5.7)

In Equation (5.7), Ef,α = 814.7 Pa sα and α = 0.226 have been chosen in
order to fit the experimental data of Paggi and Sapora [110], being Γ(·)
the Euler gamma function.

The simulation of the power-law viscoelastic response seen in the
experiments, which the fractional calculus model well approximates, is
progressively improved by increasing the number of terms in the Prony
series representation. It has to be remarked that, since the Fourier trans-
form of a power-law is a power-law itself, both loss and storage modu-
lus in the frequency domain are represented, on a logarithmic scale, as
straight lines.

Their trend can be satisfactorily modelled with the Prony series only
for a narrow band of the whole spectrum, based on the relaxation time(s)
employed. Therefore, the relaxation times entering the Prony series have
to be regarded as design parameters, to be chosen based on the loading
history experienced by the viscoelastic material, rather than material pa-
rameters. With the values chosen here, an accurate estimation of the ma-
terial response can be expected, at most, over two orders of magnitude,
centred on a frequency of 1 Hz.

5.2.2 Problem Set Up

The attention is focused on a displacement controlled problem under
plane-strain assumptions. Concerning the formulation presented in 3,
the profile fixed shape has been made time-dependent to account for the
indenter’s finite sliding. In presence of a flat interface, the result of the
indenter sliding with a given constant velocity v0 can be achieved by set-
ting h(ξ, t) = h(ξ − v0t). In the given test problem, the indenter profile is
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(a) Relaxation modulus. (b) Loss modulus.

(c) Storage modulus. (d) Tangent modulus.

Figure 60: Relaxation modulus in time and frequency domain.

analytically expressed by:

h(x, t)

g0
= 1− cos

[
2π

λ0
(x− vt)

]
(5.8)

In the first stage, a displacement linearly increasing with time is ap-
plied along the direction normal to the finite layer, up to a given final
value of ∆n,0 = 2g0, reached at t = t0, which is then held constant. At
this point, a tangential displacement with a constant horizontal velocity
is applied to the indenter, sliding.

While the velocity of the application of normal load is the same for
all the simulations and assumed to be quasi-static, for what concerns the
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horizontal load, different sliding velocities have been considered in the
range vi = 10(i−10)/3, i = [1, . . . , 10], with their numerical value being
summarised in Tab. 5.

Table 5: Range of horizontal velocities employed.

v
[m/s]

1.000× 10−03

2.154× 10−03

4.642× 10−03

1.000× 10−02

2.154× 10−02

4.642× 10−02

1.000× 10−01

2.154× 10−01

4.642× 10−01

1.000× 10+00

A friction coefficient of µ = 0.2 is considered. Fig. 61 lists the remain-
ing geometric parameters that describe the problem set, together with the
rheological model employed for modelling viscoelasticity, already dis-
cussed in Sec. 5.2.1: three different simulations are performed, each of
them characterised by one, two, or three terms of a Prony series used for
modelling a linear viscoelastic material. The model geometry, together
with the applied velocities, is the same in all cases considered. Finally,
periodic boundary conditions have been introduced in correspondence
with the two vertical sides of the domain to simulate a semi-indefinite
contact in the horizontal direction.

5.2.3 Results

Bulk Stresses

Fig. 62 shows the results of FEM simulations for the boundary value
problem shown in Fig. 61. They refer to the single-arm model, but from
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Figure 61: Sketch of the model, b = 1, λ0 = b, g0 = 5 × 10−4λ0.

a qualitative point of view, the considerations that are drawn below for
the bulk stress also apply to the other two models herein considered.

Fig. 62a,b display the stresses developing in the bulk at the end of
the normal loading stage, and they display three distinct areas with high
stresses where the harmonic profile comes into contact. Because of the
presence of friction and coupling effects, an anti-symmetric distribution
of τxz arises, even in the pure normal loading stage, see Fig. 62b. The fol-
lowing two figures represent the same quantities at a subsequent load
stage, where the normal imposed displacement has reached its maxi-
mum, and the indenter slides at a constant velocity. Fig. 62c,d show the
stresses during the next stage of sliding, corresponding to a lateral shift
of the harmonic profile of about half of its wavelength. The advantage of
the finite element method is evident from the possibility of considering
any finite-size problem geometry and boundary conditions. In this case,
the output automatically includes not only contact tractions but also bulk
stresses.

Interface Tractions

Fig. 63 highlights the evolution of contact tractions in time for the single-
arm model and selected contact simulation stages. The curves in Fig. 63a
correspond to the purely normal loading sequence, where normal con-
tact tractions progressively increase along with the value of the applied
normal displacement, which linearly rises from zero up to the final value
of 2g0. Black curves denote the symmetric distribution of normal con-
tact tractions pn(x) scaled by Ef,0, while red curves represent the anti-
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(a) σz , normal loading stage. (b) τxz , normal loading stage.

(c) σz , tangential loading stage. (d) τxz , tangential loading stage.

Figure 62: Model predictions: bulk stresses during the normal approach,
(a,b), and during full sliding, (c,d), all scaled by a reference elastic modulus
Ef,0 = 8.147 × 102 Pa.

symmetric distribution of tangential contact tractions q1(x), scaled by
µEf,0. Points along the interface, where |q1(x)|/(µEf,0) = pn(x)/Ef,0,
are in a state of slip. On the other hand, the inequality |q1(x)|/(µEf,0) <

pn(x)/Ef,0 is the condition that must be respected for having a state of
stick.

Fig. 63b refers to the next stage of the contact problem when, keep-
ing the normal displacement constant, a far-field displacement linearly
increasing with time is applied in the tangential direction. For the given
rheological model, the results shown in Fig. 63a are evaluated in a condi-
tion of zero tangential velocity, Fig. 63b–d are referred to v = 2.154×10−2.
This specific value has been chosen amid the other entries of Tab. 5, be-
cause it is in the middle of the range, determining the highest viscoelas-
tic effects, and it is also low enough for accurately capture the transition
from stick/slip to full sliding, Fig. 63b. Here, tangential traction distribu-
tions change their shape from the classical anti-symmetric form towards
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a state of increasing slip, which terminates in the full slip condition. The
transition from stick-slip to full slip is strongly affected by the velocity of
the horizontal displacement: the faster the slip, the more abrupt such a
transition.

Fig. 63c refers to the situation of sliding after full slip (gross sliding)
and, in particular, it shows the evolution over time of the normal contact
tractions. We assist to a transition from the symmetric contact tractions
distribution over the whole interface at the onset of full slip, as shown in
black, towards other distributions in different scales of grey shifted along
the interface to the right, as long as the tangential displacement increases.
A certain degree of relaxation is observed after the onset of full slip. As
the sliding proceeds in time, virgin material is perturbed, and stiffness’
recovery takes place.

Finally, Fig. 63d captures the first overlapping of a new contact zone
with a previously loaded portion of the interface. Here, the relaxation
time role is important since viscoelastic effects do alter the solution that
corresponds to a linear elastic material with no memory effects.

The resultant tangential force Q1, integral of tangential contact trac-
tions along the interface, is plotted vs time in Fig. 64a–c for the three
viscoelastic models herein investigated. Different curves correspond to
different far-field horizontal displacement velocities in each subfigure,
with darker curves corresponding to slower velocities.

In all of the cases, for t/t0 ≤ 1, tangential tractions are vanishing
since, in that stage, the imposed displacement is only acting in the nor-
mal direction. Therefore, tangential contact tractions are due to frictional
coupling effects, and their sum over the whole contact zones is vanish-
ing by definition since they correspond to self-equilibrated distributions.
For t/t0 > 1, the indenter starts sliding, and we assist to a transition from
stick-slip to full slip with an oscillatory behaviour when the contact profile
enters in contact with unrelaxed material portions. When the velocity is
low, no rate effects are evident, and the mechanical response is smooth.
On the other hand, by increasing the applied velocity, the importance of
viscoelasticity increases and oscillating responses do appear.

The integral of tangential tractions related to two linear elastic models
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(a) pz and qx during the normal loading
stage.

(b) Tractions in the partial-slip regime.

(c) Normal traction during full sliding. (d) Normal traction during interaction
with an already stressed portion of the
interface.

Figure 63: Selected distributions of normal and tangential contact tractions
during the different stages of loading.
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(a) Three arms. (b) Two arms.

(c) One arm. (d) Trend for the steady-state values at
t→∞.

Figure 64: Time evolution of the resultant tangential force Qx for different
rheological models.

characterised by short and long term modulus are also plotted in Fig. 64;
for comparison, see black dash-dotted lines. The elastic moduli are eval-
uated as:

Eel,∞ = lim
t→0

E(t) = E∞ Eel,0 = lim
t→∞

E(t) = E∞(1−
n∑
i=1

µi) (5.9)

The curves Qel,∞
1 and Qel,0

1 are evaluated under the assumption of lin-
ear elasticity, neglecting the dynamic effects. For this reason, they lead
to constant values as soon as the horizontal far-field displacement is ap-
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plied, without any oscillation. The only factor that plays a role is the
velocity, which governs the transition from stick/slip to full sliding. In
the figures, only the curves that correspond to the highest value of v are
plotted. In all three models, the instantaneous (higher) and long term
(lower) curves are extreme bounds to the values related to viscoelastic
simulations, with a gap increasing from the single-arm to the three arms
model, consistent with their respective stiffness.

The steady-state solution strongly depends on the rheological prop-
erties of the material, as shown in Fig. 64d. In general, for the present
case study, the higher the number of arms, the higher the total tangential
force. In all cases, the highest velocity determines the highest value of the
steady-state Q0

1. This follows that, in a condition of gross slip, Q1 = µP .
For high velocities, the material is excited in its high-frequency region,
resulting in a vertical response governed by the higher glassy Young’s
modulus. The increased stiffness leads to higher P 0 and, in turn, higher
Q0

1 values.
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Chapter 6

Conclusions and further
developments

The formulations proposed in the present dissertation provide a way to
overcome some of the shortcomings and difficulties encountered during
the definition and the solution of contact problems between rough or
generically complex profiles and surfaces.

In Ch. 2, the complete 2D and 3D formulations of an interface ele-
ment, initially employed in the context of non-linear fracture mechanics,
is presented. Starting from the strong form of equilibrium, the related
weak form has been derived, down to the non-linear system of equations
which could be directly embedded in a standard FEM software.

An extension of the interface element is exposed in Ch. 3. Following
the framework originally proposed in [79] and further extended in [56],
its capabilities have been enriched to deal with rough contact problems,
still maintaining a smooth interface that allows for a straightforward
meshing, requiring low-order linear finite elements. In contrast, the ac-
tual geometry is stored in terms of its analytical expression and passed to
the system as a correction of the initial gap function under the assump-
tion of having a rigid indenting body. The major advantages obtained
by exploiting this approach are the possibility of using a low-order finite
element discretisation scheme and a regular mesh at the interface, with
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a reduction of the number of nodal degrees of freedom and ease of mesh
definition. A classical benchmark test has been used for validating the
model, with excellent results obtained even for coarse interface discreti-
sations. The method has been successfully tested concerning the more
complex scenarios of contact problems involving quasi-fractal self-affine
Weierstrass profiles and surfaces with multiple harmonics, resulting in a
useful tool for investigating the behaviour of idealized 2D interfaces in
the presence of frictional forces.

The assumption which has been made a priori are rather strict if com-
pared to the current scenario of computational contact mechanics, and
they can be summarised here:

(i) requirement of a matching interface that results in the necessity of
a node-to-node approach;

(ii) small displacements;

(iii) one of the body is assumed to be rigid, where the complexities re-
lated to the geometry are supposed to be localised;

(iv) penalty strategy for contact.

Nevertheless, it has to be remarked that none of them represents a strict
prerequisite, thus leaving broad possibilities of extending the model and
its capabilities. Non-matching interfaces could be considered, for exam-
ple, defining, in analogy with [65], a node-to-segment based interface el-
ement. The hypothesis of small displacements could be lifted, easily for
what concerns frictionless contact, with a proper definition of the tan-
gent stiffness matrix, cfr. Eq. (2.7.1), taking into account the dependence
of Q on the interface displacements, resulting in an additional geomet-
ric term composing the linearised local gap vector. Also, the use of a
penalty approach is not cogent. It presents several features that make it
preferable concerning other techniques that guarantee the exact respect
of contact conditions. Above the others, its implementation is straight-
forward and does not add additional variables to the problem. Secondly,
it easily allows for the extension of the model towards studying multi-
physics phenomena, e.g. thermomechanical contact. Assumption (iv) is
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probably the most conceptually difficult to be relaxed, but some useful
considerations can be drawn here as well. As a starting point, it is good to
remark that in the context of rough surfaces contact analysis via FEM, the
use of two sets of materials, one of which is rigid, is a prevalent practice
thanks to the exploitation of the composite topography and composite
mechanical assumptions made in Sec. 3.1.3. Moreover, the rigidity re-
quirements only involve the surface’s shape, which is fixed and defined
initially. Thus, the remaining part of the bulk could be characterised by
a different constitutive law, with the confinement of the rigid part in the
interface’s correspondence. From the tribological perspective, this is a
reasonable assumption since surfaces manufacturing processes involve
plastic deformations that generate surface layers that can be orders of
magnitude harder than the rest of the bulk. Given all these considera-
tions, the proposed approach appears to be entitled to an accurate sys-
tematic analysis of several important engineering applications classes.

In Ch. 5, the model has also been successfully tested in the presence
of an inelastic material [58]. In the specific, the bulk has been modelled
using a linear viscoelastic material with three relaxation times. Com-
pared to many models available in the literature that neglect the effect
of Coulomb friction, focusing on viscoelastic dissipation only, here vis-
coelastic effects and frictional effects can be simultaneously investigated
since they are inherently coupled in the formulation. Neglecting inter-
face tangential tractions, together with their coupling effect, is reasonable
when a condition of incompressibility is approached since it determines
de-coupling between the normal and tangential directions. On the other
hand, several pieces of evidence can be found that, as Young’s modulus
of viscoelastic material changes with time, so does the Poisson’s ratio.
Since this latter quantity governs the coupling between normal and tan-
gential tractions, a fully coupled model is worth to be analysed for fine
precision engineering applications.

In addition to the embedded interface model, a multi-scale FEM-BEM
contact mechanics formulation [57] has been proposed to address fric-
tionless contact problems involving a nominally smooth surface at the
macro-scale and a microscopically rough topology at the micro-scale,
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Ch. 4. The assumption of scale separation is put forward, which assumes
that a statistically representative rough surface can be defined at each
point along the macroscopic contact surface. The coupling of the two
scales is enforced by passing the normal gap at each integration point of
the interface finite element to the boundary element code to solve the mi-
croscopical frictionless contact problem. In return to the macro-scale, the
homogenised normal contact traction and the related tangent stiffness
matrix are provided.

Compared to the previous literature, the approach does not exploit a
closed-form solution at the micro-scale which relies on a micromechan-
ical contact model that implies assumptions on the roughness statistics.
BEM can, in fact, be applied to any height field without any simplifying
assumption. The approach is only focused on linear elastic contact, and
the study of the effects of plasticity go beyond the scopes of the disser-
tation. Future developments might consider integrating the BEM, using
appropriate Green functions, and the FEM solutions considering a gen-
eral elastoplastic behaviour with a constant yielding strength.

In conclusion, two main different strategies have been presented in
this dissertation to solve contact problems involving complex contacting
interfaces. Rather than giving new insights over the problems addressed,
this work has aimed to provide a sound support scheme for easier and
straightforward implementation in the given context, together with the
perspectives of possible future developments, which are supposed to
add further value to the work that has been carried on so far.
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