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PhD Program Coordinator: Massimo Riccaboni, IMT School for
Advanced Studies Lucca

Advisor: Prof. Fabrizia Mealli, University of Florence

Co-Advisor: Prof. Irene Crimaldi, IMT School for Advanced Studies
Lucca

Co-Advisor: Prof. Laura Forastiere, Yale University

The dissertation of Costanza Tortú has been reviewed by:
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Abstract

This dissertation is a collection of articles that develop statisti-
cal methods for performing causal inference on network data.
In bridging these two themes, causal inference and complex
networks, the thesis develops four complementary method-
ological contributions in two main settings that often arise
in network data: (i) both the treatment and the outcome are
measured at the individual level but the treatment spills over
through the network connections; (ii) both the treatment and
outcomes are measured at dyadic level. In the first setting, it
elaborates innovative techniques for assessing the direct and
spillover effects of an intervention in a population of con-
nected units, where the potential outcome of an agent is af-
fected by the treatment status of other interfering agents. In
particular, the articles featured in the dissertation expand the
existing literature by developing methods that are useful for
(i) estimating the effect of an observational multi-valued in-
tervention in a sample of units connected through a weighted
network; (ii) detecting and estimating heterogeneous treat-
ment and spillover effects in presence of units who belong
to exogenous clusters, and whose interactions are described
by cluster-specific networks; (iii) accounting for hidden treat-
ment diffusion processes in a partially unobserved network.
In the second setting, the dissertation employs the potential
outcomes framework to analyze causal relationships in net-
work formation processes. Specifically, it develops an estima-
tor for the causal effect that the existence of links in a “treat-
ment network” has on the formation of links on an “outcome
network,” with both networks being directed.

xx



Chapter 1

Introduction

1



1.1 Motivation

Causal inference methods are widely used in the statistical literature, as
they provide frameworks and tools for assessing whether two variables
are linked by a cause-and-effect relationship. In recent years, the increase
in computing power has enabled researchers to manage big sources of
data, which often provide information about complex patterns of inter-
action between agents. For this reason, a growing community of statis-
ticians, economists and physicists have started to develop novel tech-
niques for handling these types of complex network data. In partic-
ular, statisticians working on causal inference methods have been de-
bating about how to extract causal information in the presence of con-
nected units and about how to understand the causal factors driving
the formation of interactions between units. The present dissertation in-
tends to contribute to these growing streams of literature, by proposing
novel methodologies for expanding the existing statistical tools towards
a broader ensemble of empirical applications.

1.2 Introduction on Causal Inference and Com-
plex Networks

The purpose of causal inference methods is to evaluate the effect that,
in a given population, results from some intervention. An issue with
these methods is that they are yet unsuited to handle populations whose
units interact with one another. Relationships of this sort are usually
depicted and analyzed through complex networks. In this section, I pro-
vide an introduction to the causal inference framework. In addition, I
discuss some basic conceptual aspects about complex networks, as well
as some motivating examples of real-world phenomena where units are
likely connected to one another. With regard to both topics, this prelimi-
nary introduction focuses especially on those aspects that are expanded
at length in the later chapters of this dissertation.

2



1.2.1 Causal Inference: Idea and Setting

In scientific research, a large proportion of analyses faces questions about
causality (Dempster, 1990; G. W. Imbens & Rubin, 2015). The objective
of these studies is to assess the existence of a cause-effect relationship
between two phenomena which can be measured in terms of statistical
variables. More technically, the general purpose of any causal inference
examination is to prove the validity of a causal statement, which pre-
sumes the existence of a causal relationship between a dependent vari-
able and an independent variable, which is suspected to explain a rel-
evant amount of the dependent variable’s variation (G. W. Imbens &
Rubin, 2015; Pearl et al., 2009; Wiedermann & Von Eye, 2016). Causal
statements are the basis of any scientific breakthrough in many empiri-
cal fields of science. For instance, epidemiologists may want to under-
stand whether a new drug is effective for a given disease, or whether an
experimental vaccine is safe and valid at protecting individuals from an
infection (Halloran & Struchiner, 1995; Hirano et al., 2000; Kleinberg &
Hripcsak, 2011; Muthén & Brown, 2009; VanderWeele & Tchetgen, 2011);
economists may want to evaluate the effects of incentives on the perfor-
mance of specific firms. (Arpino & Mattei, 2013; Bandiera et al., 2011;
Buss, 2001; Hoover, 2006, 2012); finally, political scientists may want
to assess whether a specific policy leads to the expected social benefits
or whether a political phenomenon bears positive changes on societies
(Bove & Böhmelt, 2016; Gilligan, Sergenti, et al., 2008; Keele et al., 2013;
A. K. Mayer, 2011).

The existence of a cause-effect relationship between two events is
usually assessed by studying their joint statistical variation (Wiedermann
& Von Eye, 2016). However, one must be careful: this naive approach
might lead to misleading conclusions (Goldthorpe, 2001; Holland, 1986).
Suppose for instance that a policy maker is examining the effect of a
given intervention Z upon an outcome variable Y in some reference pop-
ulation. Figure 1 represents the bi-dimensional scatter plot about these
two variables. The graph shows a positive association between the two
variables, in the sense that an increase in the “independent” variable Z
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corresponds with an increase in the “dependent” variable Y , and vice
versa.

Figure 1: Example: positive association between Z and Y. The blue dots
represent the reference population of units, while the red straight line de-
picts the linear fit between Y on Z obtained by the Ordinary Least Squares
method.

However, the presence of an association of this sort does not necessar-
ily imply that the two variables are actually linked by a cause-effect rela-
tionship (Grotzer, 2012). The positive association in question might have
been generated by a variety of either causal or spurious mechanisms,
which for the sake of illustration are graphically depicted in Figure 2. As
one can easily observe, the two variables may show a significant asso-
ciation because either (i) Z causes Y (direct causation), (ii) Y causes Z
(reverse causation), (iii) Z causes Y and Y causes Z (simultaneous cau-
sation), (iv) they are statistically associated due to coincidence (pure spu-
rious association), (v) they are both caused by an additional factor, which
is named confounding variable. Consequently, the empirical evidence dis-
played in Figure 1 is not sufficient to conclude that the intervention Z

has for sure a positive causal effect on the outcome Y .
It is worth to expand upon some of the mechanisms that might induce

to mistake a statistical association between two variables for a cause-
effect relationship. Reverse causality issues commonly arise when the
original intervention and its effect are confused: in this case, the two
variables are still linked by a causal relationship, but one whose direc-
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Figure 2: Causal or spurious relationships between Z and Y

tion is opposite to that which was originally hypothesized (Kramer et
al., 2011; Sattar & Preiss, 2017). For instance, epidemiologists have dis-
covered a negative causal relationship between breastfeeding and infant
size, stating that newborns who have not received extended breastfeed-
ing grow more rapidly during their first year of life than those who do.
However, it has been recently verified that the true causal link among
these two phenomena goes actually in the opposite direction: infants of
slower growth are typically in need of prolonged breastfeeding period
(Kramer et al., 2011). The economic relationship between health status
and employment status is a solid example of reverse causality: while on
the one hand an individual who suffers from diseases is less likely to
take up a high-status occupation, on the other hand a poorly paid job
may be at the onset of mental disorders or even health issues. Finally, a
spurious relationship between two variables can occur because of sheer
coincidence or even through some third factor which affects both vari-
ables. For instance, it has been shown that investment in science and
the number of reported suicides are positively associated in the United
States: these two mechanisms are clearly independent and the observa-
tion in question must be due to some pure coincidence. The observed
positive association between average ice cream consumption and the in-
cidence of house robberies is, instead, an example of spurious correlation
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due to a confounding factor. This statistical correlation emerges without
any causal link between the two variables: a third one – outdoor temper-
ature – comes here into play, as it leads to an increase in both ice-cream
consumption and in burglaries. This discussion clarifies how it is impos-
sible to conclusively detect the existence of a cause-effect relationship
without any further statistical investigation. In order to confidently con-
clude that a variable Z has a causal effect upon another variable Y , the
policy maker must implement a suitable statistical approach, which ef-
fectively allows to disentangle the effect in question from other causal or
spurious mechanisms linking Z with Y .

A statistical framework for performing causal inference has been in-
troduced by Donald Rubin (G. W. Imbens & Rubin, 2015; Rubin, 1974,
1980); thus, it is commonly known as the Rubin Causal Model (RCM). In
this framework, the individual characteristic of interest is named “out-
come” variable and commonly denoted as Y , while the intervention that
preasumibly affects the outcome is called the “treatment” variable and is
often labeled as Z. The latter is typically a binary statistical variable; the
presence of the intervention is expressed for an individual observation
as Z = 1, and is to be compared against the complementary “control”
treatment (Z = 0) which indicates the lack of treatment. Both treat-
ment and outcome variables need to be measurable, fully observable.
Thus, the RCM deals with a population of units N = {1, . . . , i, . . . , N},
where the generic unit i is exposed to a given exposure conditionZi, with
Zi ∈ Z = {0, 1}. With Z and Y obs I denote the corresponding vectors
of the whole sample N . Moreover, Xi denotes a vector of P covariates
(or pre-treatment variables) that are not influenced by the treatment as-
signment. For each unit i, it is theoretically possible to observe the indi-
vidual outcome Y obsi . The RCM is predicated on the thought experiment
of comparing the two alternative individual potential outcomes, that is the
outcome that would be observed if a given individual were exposed to
the active treatment (the intervention) and the one that would occur if
the same individual is exposed to the control treatment. The crucial is-
sue is that in reality, these two outcomes cannot be jointly observed for
the same unit of observation, because an individual can only be assigned

6



to either the treatment group or to the control group. The only outcome
which is observable is the one corresponding to the type of treatment
an individual is actually exposed to. Formally, I denote with Yi(z) the
potential outcome of a given individual i under the treatment z, where
z ∈ Z = {0, 1}. The only outcome the policy maker is able to observe
over i is the one that corresponds to the treatment he actually received
Zi, that is Y obsi = Yi(Zi).

Y obsi = Yi(Zi) =

{
Yi(0) if Zi = 0,

Yi(1) if Zi = 1.
(1.1)

Suppose that a doctor is willing to assess whether a new drug (Zi =

1) is effective against a eye disease by comparing it with the standard
medical treatment (Zi = 0). She tests the effect of the new drug over
her five patients, who have all developed such a disease, and measures
their diopters through an eye exam, after the first administration of the
medical dose. She randomly assigns the experimental drug to two out
of five patients, while the other three take the standard medicine. If she
were an omniscient perfect doctor, she would be able to observe potential
individual diopters both under the new drug and under the validated
standard therapy for each of her patients. However, a real doctor lacks
the possibility to inspect both outcomes for each personl: she is able to
monitor only the outcome corresponding to the medical treatment that
each patient has actually received. Table 1 displays some hypothetical
information that the “real” doctor is able to observe against the more
complete clinical picture that only a “perfect” omniscient doctor would
be able to evaluate.

This example highlights how a causal inference cannot be performed
only on the basis of a single individual i: instead, it must be implemented
over a sample of unitsN = {1, . . . , i, . . . , N}. In fact, a comparison based
on single individual would be limited by the impossibility to observe the
one of two potential outcomes which corresponds to the treatment level
that was not experienced by the individual. In this sense, causal infer-
ence is actually about solving a missing data problem; consequently, the
core idea behind every method of causal inference is about finding an
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Real Doctor

Unit Z Y(1) Y(0)

1 1 7 ?

2 0 ? 2

3 0 ? 3

4 1 9 ?

5 0 ? 0

Perfect Doctor

Unit Z Yi(1) Yi(0)

1 1 7 5

2 0 2 2

3 0 5 3

4 1 9 2

5 0 2 0

Table 1: Real Doctor vs Perfect Doctor: in both scenarios black numbers de-
note the realizations of the observed outcome. The real doctor is not able
to observe the individual outcomes which correspond to the treatment that
did not realize (whose value is replaced with the question mark “?”). Con-
versely, the perfect omniscient doctor has the power to monitor every as-
pects of reality, and the outcomes he only has the chance to observe are
red-colored.

efficient strategy to impute “missing” potential outcomes. Every impu-
tation strategy requires to deal with a consistent number of units which
can potentially experience both treatment levels (Petersen et al., 2012;
Rubin, 1974). Indeed, the individual missing potential outcome, that is
the treatment level that a unit has not experienced, is imputed from the
outcomes associated with the same treatment level but observed in other
units from the same population of reference.

The RCM is capable to solve the missing data problem and achieve
the desired policy evaluation objectives under a series of conditions that
are formalized in terms of statistical assumptions. One such assumption,
which is key, guarantees well-defined potential outcomes and hence that
the treatment effect can be correctly outlined and estimated. This as-
sumption, known as Stable Units Treatment Assumption (SUTVA) (Rubin,
1986), ensures that there are no multiple versions of the treatment and
rules out the possibility of “interference” among units.

Assumption 1 (Stable Units Treatment Assumption (SUTVA)). SUTVA is
made up by two different components:
(i) the Individualistic Treatment Response (ITR) (C. F. Manski, 2013) (or no
interference) states that there is no interference between units: every unit’s
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potential outcomes are defined only by that unit’s own treatment.
(ii) the consistency (or no multiple version of the treatment) states that there
are no different versions of the treatment levels. Formally, given two treatment
assignment vectors, Z and Z′, if Zi = Z ′i then Yi(Zi) = Yi(Z

′
i)

The assumption implies that the potential outcome of the unit i can be
uniquely indexed with respect to its own treatment status, that is Yi(z) :

z = {0, 1}.
An important feature of proper causal inference studies is that the

unit-level allocation to one of the two treatment levels cannot be ana-
lytically deducted from prior information. In other words, it should be
impossible to identify a deterministic rule which allows the researcher
to guess whether a given individual i is exposed to the “active” or, in-
stead, to the control level of the treatment, at least not before that the
actual treatment assignment (intervention) takes place. The individual
allocation to a given treatment level should thus not be the result of a de-
terministic principle; it rather follows a stochastic rule and relates to the
so-called treatment assignment mechanism (G. W. Imbens & Rubin, 2015;
Rubin, 1974, 1980). The treatment assignment mechanism is the stochas-
tic process governing which units receive the active level of treatment
and which ones receive the control level:

P (Z|X,Y (0),Y (1)) .

Each unit can receive the treatment or the control level depending on
which assignment vector Z will show up. Note that, in order to fairly
define and estimate the treatment effect, one needs to assume that, for
each unit i, the assignment probability πi(z) = P (Zi|Xi,Yi(0),Yi(1)

is strictly bounded between 0 and 1. This means that each unit has a
nonzero probability of being exposed to either treatment status. This
assumption is known as the Positivity Assumption, and can be formally
expressed as

Assumption 2 (Positivity). 0 < πi(z) < 1 for all z ∈ Z .

Under the SUTVA and the Positivity Assumption, it is possible to de-
fine the treatment effect, which represents the element of major interest in
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policy evaluation settings. Here, we express the Average Treatment Effect
(ATE) τ while adopting a “superpopulation” point of view, i.e. by as-
suming that the sampleN is a random draw from an infinite population.
Formally, the ATE is defined as follows:

τ = E [Yi(Zi = 1)− Yi(Zi = 0) ].

Randomized settings vs Observational Studies

The specific imputation strategy to be implemented in order to solve the
missing data issue is typically chosen after taking into account various
elements of the empirical setting at hand. The main aspect that a re-
searcher must consider while choosing such a strategy is the shape of
the treatment assignment mechanism which, as discussed above, is key
in the determination of individual treatment statuses. This mechanism
can be either known a priori by the researcher (this is the case if, for ex-
ample, the treatment is randomly assigned to units, according to some
randomization criteria and parameters) or it can be unknown (that is,
the treatment status depends in a non-deterministic way upon some ob-
servable and unobservables characteristics of the units; in this sense, the
units can possibly affect their very treatment status) (Benson & Hartz,
2000; Concato et al., 2000; Kovesdy & Kalantar-Zadeh, 2012). The first
scenario refers is that of a randomized study (Leuven et al., 2010; Man-
ning et al., 1987), while the second scenario is that of an observational
study (Agarwal et al., 2008; Segal et al., 2004; Victora et al., 2004). An
example of a randomized trial is the clinical evaluation of the effects of
a new drug, where the researcher has the opportunity to manipulate the
intervention by randomly assigning the experimental treatment to a spe-
cific sub-sample of the initial population (Gueyffier et al., 1997; Park et
al., 2012). Conversely, analyses about the effect of smoking on individ-
ual health are prime examples of observational studies, (C. F. Manski,
2013; Sandler et al., 1985). Since policy makers cannot force people to
smoke – for both ethical and practical reasons: they can only passively
observe which of the men and women included in the analysis usually
smoke cigarettes – a randomized control over the treatment assignment
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mechanism is impossible. In political science, assessing the social effect
of a local policy necessarily implies an observational approach, since ad-
ministrative entities independently choose whether to implement such
a policy or not (Johansson & Palme, 2002; Moore & Rhodes, 1973; Per-
otti, 2005). In summary, observational studies refer to all those empirical
scenarios where the treatment assignment mechanism cannot be manip-
ulated by the researcher (Rosenbaum & Rubin, 1983b).

From a statistical perspective a pure randomized setting is preferable,
as it ensures that the treatment and the control group are sufficiently
similar with respect of baseline covariates. Indeed the randomization
design, especially if it follows a stratified approach, usually guarantees a
perfect balance among treated and untreated units with respect to indi-
vidual baseline characteristics (whether these are observed or not). Oth-
erwise, a significant unbalance in the two treatment arms could cause a
dependence between potential outcomes and treatment variable, thereby
introducing a bias in the estimate of the treatment effect (Hansen & Bow-
ers, 2008; Morgan, Rubin, et al., 2012). However, the “specter of covari-
ate unbalance” can loom in the horizon in randomized settings too: if the
randomization plan has been compromised by an imperfect compliance
to the treatment assignment or, for whatever reason, has not succeeded
in generating sufficient covariate balance, the analysis requires a strategy
to addressing the unbalance (Hennessy et al., 2016; Senn, 1989). This is-
sue is even more crucial in observational studies: there, a randomization
plan does not even exist; and all the imputation criteria that are adopted
in those settings, are conceived for the sake of guaranteeing an adequate
balance between the baseline characteristics of the actively treated units
and the control group. In other words, their objective is to make the
observational study as close as possible to a randomized study (Rosen-
baum, 2002; Rosenbaum & Rubin, 1983b). In an observational setting,
conditioning for baseline covariates is essential to avoid predictable de-
pendencies between treatment and potential outcomes. This assumption
is known as Unconfoundedness Assumption (Rosenbaum & Rubin, 1983b,
1984) and it can be formally expressed as
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Assumption 3 (Unconfoundedness).

P (Zi = 1, |Yi(z),Xi) = P (Zi = 1, |Xi).

This assumption enables researchers to meaningfully and safely infer
causal effects even in observational settings. However, it can neither be
tested nor it has testable implications. Furthermore, it requires condition-
ing upon a (potentially) large set of unit-level covariates (Guo & Fraser,
2014; Rosenbaum & Rubin, 1983b). To avoid an high-dimensionality
problem, the general approach – which is well grounded in the statistical
literature for causal evaluation studies – consists in conditioning upon a
scalar synthesis of covariates, which is called the propensity score (Imai &
Van Dyk, 2004; Rosenbaum & Rubin, 1983b). This quantity represents the
individual probability of being exposed to the active treatment, condi-
tioning on baseline covariates. Formally, the propensity score is defined
as follows:

Definition 1 (Propensity Score).

φ(z,x) = P (Zi = z|Xi = x).

The propensity score can be formally shown to be a “balancing score:”
this means that conditioning upon the entire set of covariates is statisti-
cally equivalent to conditioning only upon the propensity score (Rosen-
baum & Rubin, 1984).

Nature of the treatments

So far we have discussed the causal inference framework assuming that
the treatment variable has a binary characterization. However, this needs
not be always the case. A relevant portion of policy evaluation stud-
ies involve more complex treatments, such as multi-valued treatments or
continuous treatments. Multi-valued treatments are interventions which
vary over more than two categories; while highly diffused in nature, they
are also widely employed in all those empirical studies whose aim is to
compare different characterization of the treatment variable (Linden et
al., 2016; Lopez, Gutman, et al., 2017; S. Yang et al., 2016). For instance,
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epidemiologists may need to compare different types of drug (Linden
et al., 2016). Other analysts may want instead to evaluate different sorts
of incentives for visiting museums that aimed at students (Forastiere et
al., 2019a). This types of treatment are also exploited to analyze more
complex types of treatment (such as, for example, institutional political
attitudes towards convoluted issues)(Tortù et al., 2020).

Continuous treatments are similarly widespread (Croxatto et al., 1993;
Del Prete et al., 2019; N. Wilson et al., 1995). They are related to all types
of interventions whose intensity varies over a continuous domain. For
instance, epidemiologists might need to test a drug by experimenting
over a (quasi) continuous ensemble of doses (Kondo & Togari, 2011). In
both cases of a multi-level and a continuous treatment, coercing the inter-
vention to a binary characterization implies a relevant informative loss:
in the multi-valued setting it averts from evaluating differential treat-
ment effects (Cattaneo, 2010), while in the continuous scenario it pre-
vents to meaningfully appreciate the consequences of variation to treat-
ment exposure. Figure 3 provides a graphical representation of the vari-
ous kinds of treatment discussed thus far.

Figure 3: Nature of the treatments: (Left) binary treatments varying over
a binary domain; (Center) multi-valued treatments characterized by more
than two categories; (Right) continuous treatments moving over a continu-
ous (or quasi-continuous) domain

13



Heterogeneous Causal Effects

In recent years, the statistical community dedicated to causal inference
methods and their applications has matured a growing interest towards
heterogeneous treatment effects, which concerns how the treatment ef-
fect varies across different sub-populations of units (Bargagli-Stoffi et al.,
2019; Cockx et al., 2019; K. Lee et al., 2018; Zhao et al., 2017). This fol-
lows from the recognition that treatment effects likely vary along the fea-
tures of the units themselves. Assessing the possible heterogeneity in
the treatment effect is especially relevant from the perspective of policy
makers, as it allows to understand on which sub-populations of units
the treatment is especially effective and what are the major individual
characteristics driving heterogeneity. For instance, one can imagine the
extreme case where the average effect of a treatment (i.e. a drug) is pos-
itive on the population (the drug is generally effective against a specific
disease), but for a sub-population of units with certain characteristics the
treatment is either ineffective or it even has a negative impact. Evaluat-
ing heterogeneous causal effects means, in a broader sense, conditioning
on a given partition of the covariate space. Formally, by denoting some
P -variate partition of the feature space (where P denotes the number
of observed characteristics) as x, we can define the Conditional Average
Treatment Effect which measured on those units i withXi = x) as:

τ(x) = E [Yi(Zi = 1|Xi = x)− Yi(Zi = 0|Xi = x) ].

Although the sub-populations with heterogeneous causal effects can
be externally specified using prior knowledge, these entail the risk that
are inherent in erroneous suppositions; in addition defining sub-populations
by relying on prior information implies that heterogeneity is evaluated
only on those specific sub-populations, preventing researchers from as-
sessing which characteristics drive heterogeneity in the treatment effect.
Thus, it can be preferable to use data-driven approaches instead. In this
regard, the general approach is to evaluate heterogeneous effects by run-
ning a data-driven machine learning algorithm tailored for causal in-
ference, which identifies the most significant drivers of heterogeneity
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(Athey & Imbens, 2016; Athey & Imbens, 2015; Athey et al., 2019; Fos-
ter et al., 2011; Hahn et al., 2020; Hill, 2011; Lechner, 2019; K. Lee et al.,
2020; Starling et al., 2019; Su et al., 2012; Wager & Athey, 2018). The intu-
ition behind these machine learning algorithms is that sub-populations
are partitioned by iteratively separating those groups whose estimated
conditional average treatment effect deviates the most from the average
treatment effect estimated in the population as a whole.

These algorithms are usually tree-based algorithms (Athey & Imbens,
2016; Athey & Imbens, 2015; Wager & Athey, 2018) and they all have
their roots in the the Classification And Regression Trees (CART) algo-
rithm (Friedman et al., 1984). CART is a widely used algorithm for the
construction of trees, and are typically such that each node is split into
only two branches (i.e. binary trees). Binary trees are sprouted by recur-
sively partitioning the observations from the root (the set containing all
the observations) into two child nodes. This procedure is iterated until the
tree reaches the final nodes, called leaves. The CART algorithm requires
two key elements: i. a criterion function, which determines the splitting
process of units and ii. a stopping rule, which establishes the conditions
under which the algorithm stops splitting. The standard CART identifies
heterogeneity in the relationship between the observed outcome and the
baseline characteristics so to accurately predicting the outcome variable.
Consequently the criterion function is defined such that at every step of
the splitting process the prediction error is minimized. Once that the al-
gorithm has met one of the stopping conditions it returns a tree Π , which
is a partition of the covariate space X into M non-overlapping regions:
Π = {`1, . . . , `M}, where

⋃M
m=1 `m = X , and with `(x,Π) : X → Π a func-

tion that maps each vector x of the covariate space into a region. Figure
4 shows how recursive partitioning works in a binary tree: in this simple
tree, there are only two continuous predictors that are bounded between
0 and 1, that isX1 ∈ [0, 1] andX2 ∈ [0, 1]. Units are mapped into the final
leafs according to their observed values of Xi1 and Xi2.

The counterpart of CARTs in the causal environment are the Causal
Trees (Athey & Imbens, 2016; Athey & Imbens, 2015). The intuition be-
hind causal trees is akin to that of CARTs, and is based on recursive parti-
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(a) Recursive partitioning (b) Mapping leafs according to the individ-
ual vector of characteristics

Figure 4: (Left) An example of a binary tree. The internal nodes are labelled
by their splitting rules and the terminal nodes. (Right) The corresponding
partition of the sample space.

tioning. The difference is that in the causal framework, the criterion func-
tion is defined to detect, at every step of the splitting process, the sub-
populations which exhibit the maximal heterogeneity in the treatment
effect, while also penalizing those subgroups displaying higher variance
in the estimated causal effects (Athey & Imbens, 2016).

1.2.2 Complex networks: idea and notation

Many real-world phenomena can be described in terms of interactions
among agents. Think at the huge amount of interactions which occur
everyday in the modern social networks, such as Facebook: users easily
become virtual friends, they share virtual content and react to the one
shared by their friends (Traud et al., 2012). In a similar vein, consider the
interactions among neurons that are found in our brain (Chua & Yang,
1988): they are numerous and dynamic. These simple examples points
out that in nature it is possible to observe very complex interactions be-
tween objects and that their complexity is due to both their shape and
amount. In recent years, also thanks to the growing computing power
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that has enabled researchers to manage complex and big data sources,
the interest about complex networks has been growing rapidly (Albert &
Barabási, 2002; Boccaletti et al., 2006; Caldarelli, 2007; Cimini et al., 2019;
Strogatz, 2001). Complex networks are used to represent a large variety
of natural phenomena of various sorts, while modeling the nature of the
agents they are representing. When connections concern human beings
and describe individuals interacting with one another, complex networks
are denoted with the term social networks (Catanzaro et al., 2004; Degenne
& Forsé, 1999; Mislove et al., 2007). Social networks help describe mul-
tiple aspects of human behavior: from friendship or parental ties (Cai et
al., 2015; Hendrickson et al., 2011; South & Haynie, 2004) to professional
collaborations (Ahuja, 2000; Becatti, Crimaldi, et al., 2019; Fowler, 2006a;
Newman, 2001a, 2001b). Interactions between agents are extremely rel-
evant: for example, several recent studies have demonstrated that social
networks are vehicles for the spread of information which is possibly in-
accurate or even malicious (Del Vicario et al., 2016; Quattrociocchi et al.,
2016). Figure 5 shows an example of a collaboration network. Specif-
ically, it depicts the “co-sponsorships” networks between legislators in
the U.S. House of Representatives (HoR) during the 111th legislature. In
this setting, the agents are the politicians elected at the U.S. HoR in that
Cycle, while ties between them signal the presence of a co-sponsorship
tie (i.e. that one of the two connected legislators has supported a bill
which is also sponsored by the other). This particular empirical setting
is expanded at length in a later chapter of this dissertation.

Figure 6 provides an example of a friendship network: it describes
friendship ties between pupils belonging to the same classroom.

Economic agents interact too. Firms are linked by economic or le-
gal relationships (M. O. Jackson, 2010; Schweitzer et al., 2009) such as
input/output ties (Blöchl et al., 2011; Contreras & Fagiolo, 2014), own-
ership and control relations (Conyon, Muldoon, et al., 2008; Rungi et al.,
2017) and more. Likewise, banks are connected through financial ties of
heterogeneous intensity; it has been observed that this plays a kay role
in the propagation of financial shocks (Battiston & Caldarelli, 2013; El-
liott et al., 2014; Gai & Kapadia, 2010). Finally, large institutions like as
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Figure 5: Collaboration network: co-sponsorship ties between politicians
in the US House of Representatives. Nodes are colored according to their
party membership (red nodes represents democrats, while blue vertexes are
republicans

national or local governments interact intensively. They may be linked
via explicit agreements and political alliances (H. Chen & Chen, 2002;
C. K. Jackson et al., 2015), though trade links (Furusawa & Konishi, 2007;
Squartini et al., 2011), or by their geographic position, defined in a broad
sense (Barthélemy, 2011; Crucitti et al., 2006; Del Prete et al., 2019). Fig-
ure 7 provides a simple example of a boundaries-based spatial network.
Nodes represent those OECD countries located in Europe, while links
between them highlight that the two countries share a boundary (this
particular network too is expanded in a later chapter).

Some Basic Notation

In the scientific literature the term “network” denotes a natural phe-
nomenon, while the word “graph” is used to discuss the mathematical
object that represents the given phenomenon. Hence, the relationships

18



Figure 6: Friendship network: friendship ties linking schoolchildren of a
given class. Edges’ width is proportional to the strength of the tie, while
nodes’ color signals whether scholars are more inclined to establish relation-
ship within their classroom (blue nodes) or outside their classroom (yellow
nodes)

that govern the dynamics of complex systems are graphically depicted
by a network where the observed nodes are the elements of the popula-
tion of interest, while the observed links represent the relationships that
relate nodes to one another. The mathematical tool used to describe such
relationships is a graph G = (N , E).

- N Nodes: this set represents the statistical units that appear to be
the nodes in the graph.

- E Edges: this set contains links between units.

The joint characterization of nodes and edges determines the type of net-
work. If edges are not characterized by a “structural direction” the net-
work is said to be an undirected one. This kind of network describes “re-
ciprocated” ties, which cannot be active only in a given direction, but not
in the other. Given two units i and j belonging to the population N , a
reciprocated tie between node i and node j is interpreted as a mutual
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(a) Geographical centrality (b) Geographical Communities

Figure 7: Spatial network: boundary-based network of OECD countries lo-
cated in Europe. (Left) Countries are colored according to their spatial cen-
trality: the darker is the blue shadow the higher is the number of countries
with which they share a boundary. (Right) Countries are grouped according
to spatial communities, which have been identified through a data-driven
for community detection (Clauset et al., 2004).

relationship that affects both nodes in a symmetric way and is neces-
sarily reciprocal; it is usually expressed as i ↔ j. To make an example,
Facebook ties are undirected, as (virtual) friendships must to be accepted
and reciprocated in order to exist. The boundary-based network connect-
ing European OECD countries is also an undirected network, as sharing
a boundary is necessarily a symmetric relationship involving a pair of
countries. Conversely, all those networks where links are possibly char-
acterized by an asymmetric orientation are said to be directed. Such net-
works might include both mutual ties, denoting that two units i and j

belonging toN are linked through a reciprocated relationship i↔ j, and
unilateral ties, such that either the tie goes from i to j (i.e i→ j), or the tie
goes from j to i (i.e that is j → i). The links in the social networks exam-
ples from the previous subsection are characterized by an explicit direc-
tion: cosponsorship ties among legislators are directed since a politician
can possibly support another but not vice versa; similarly, friendship re-
lationships between classmates as in Figure 6 are interpreted under a di-
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rectional perspective, since a scholar might regard another classmate as a
friend but not vice versa. Finally, networks describing the ownership ties
within a sample of firms are structurally directed: if a firm owns another,
one cannot possibly observe the same relationship going in the opposite
direction at the same time. The three types of networks I have just pre-
sented differ in the characterization of their edges. However, nodes can
also have different profiles: in particular,nodes can be divided into dis-
joint sets and the edges (E) connect nodes that belong to different sets..
A network of this sort is commonly said to be bipartite. (Barber, 2007;
Saracco et al., 2015; Shang et al., 2010; T. Zhou et al., 2007). In a bipartite
network GBip = {N1,N2, EN1,N2}, the entire set of nodesN is partitioned
into two separated subsets, respectively labeled asN1 andN2, and edges
connect nodes belonging to different sets. Bipartite networks are widely
diffused in nature. Consider for instance a variation of the previously
illustrated network about congressmen co-sponsorship: the network of
contributions that are directed from firms to politicians to support their
electoral campaigns. Such a network is evidently not only directed, but
also bipartite: politicians and firms belong to two separated layers and
network ties (representing the monetary transactions) can only connect
nodes from different layers.
Regardless of the specific joint characterization of nodes and edges, com-
plex networks can also be possibly characterized by information about
the “intensity” of individual edges. Networks of this sort are said to
be weighted (Newman, 2004; Squartini et al., 2013). Consider again the
networks from the previous examples: their edges all bear a specific
“weight.” To recall one such example, in a network of supply relation-
ships between firms the weight can represent the quantity of exchanged
products, or the value of the corresponding monetary transactions. While
the latter is an example of a network which both directed and weighted;
weighted networks can also be undirected or bipartite. For instance, rat-
ing networks where users evaluate products by assigning them a vote
(Becatti, Caldarelli, et al., 2019) are an example of a bipartite weighted
network. Figure 8 provides graphical illustration about the four types of
networks we have just discussed. Finally, there is a particular type of net-
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(a) Undirected network (b) Directed network

(c) Bipartite network (d) Weighted network

Figure 8: Types of Networks

work, known as multiplex network, which will be extensively employed
in the last Chapter of the dissertation. A multiplex is characterized by the
presence of a unique set of nodes, whose elements interact according to
two distinct networks. It may be regarded as a particular type of multi-
layer network. Figure 9 shows graphical rappresentation of a multiplex.

Any graph based on a monopartite network G(N , E) admits a unique
representation in terms of its adjacency matrixA = {aij : i, j ∈ N}. The
element aij characterizes the relationship between i and j. If ties are not
characterized by a specific weight, the adjacency matrixA is a binary ma-
trix, where the generic element aij equals 1 if units i and j are connected,
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Figure 9: Multiplex network: nodes are connected according to separated
networks; links of the first network are orange colored, while ties of the sec-
ond network are green colored

and 0 otherwise. If the corresponding network is undirected, the adja-
cency matrix is also symmetric. In the case of a directed network, aij and
aij might differ for some (i, j) ∈ N 2: there could be pairs of units char-
acterized by tie going from one node to the other, say i to j (aij > 0), but
the relation is not reciprocated (aji = 0). For each node i ∈ N it is possi-
ble to characterize the set of its immediate neighbors through G. This set,
that we denote by Ni, includes all the other nodes having an immediate
connection with i. If G is undirected, this set can be formally written as
Ni = {j : (i, j) = (j, i) ∈ E}. If otherwise ties feature an explicit direction,
we distinguish between the set of nodes that “deliver” an in-going link
to i N in

i = {j : (j, i) ∈ E} and the set of nodes which instead “receive”
an out-going tie originating from i, N out

i = {j : (i, j) ∈ E}. These sets
identify the first order neighborhood of unit i (i.e the nodes who have an
immediate connection with i). One can also easily identify, for each node
i, its kth order neighborhood, that is the set of nodes that are indirectly
connected to i by at least k subsequent links: for instance, the second or-
der neighborhood of node i includes its immediate neighbors as well as
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the neighbors of its immediate neighbors. Figure 10 represents first and
second order neighborhoods for a hypothetical node i.

(a) First Order Neighborhood (b) Second Order Neighborhood

Figure 10: kth order neighborhood of a given node. The node i (the yel-
low-colored node) is the vertex of interest: red nodes identify vertexes in the
immediate neighborhood of i; orange nodes represent nodes in a second or-
der neighborhood of i; blue nodes represent nodes who do not have at least
a second order connection with i

The cardinalities of these node-specific sets are variously named as
different types of degree of a node. In undirected networks, there is only
one degree measure for every node i, which counts the number of their
active connections: Ni = |Ni| =

∑
i<j aij . In directed networks one must

specify two different degree measures: the out-degree counts the number
of a node’s out-going connections, Nout

i = |N out
i | =

∑N
i:1 aij ; while the

in-degree measures the number of in-going ties, N in
i = |N in

i | =
∑N
i:1 aji.

1.3 Bridging the two themes

After having briefly and separately introduced causal inference and com-
plex networks, in what follows I discuss some statistical mechanisms that
connect both topics at hand. In fact, the interplay between the two is the
thread that unites all the contributions elaborated in the upcoming chap-
ters. This dissertation bridges causal inference and complex networks by
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developing two methodological innovations: (i) on the one hand, we ad-
dress issues that arise while evaluating the effect of a given intervention
on a population of interconnected units, by proposing new methods that
expand the growing statistical literature about causal inference under in-
terference; (ii) on the other hand, we present novel tools to employ the
potential outcomes framework in order to analyze the dynamics of net-
work formation in a multiplex. By introducing some conceptual points
that are extensively discussed in the following chapters, the upcoming
subsections provide some general intuition that help appreciate both the
methodological contributions of this thesis.

1.3.1 Causal inference under interference

Policy evaluation studies intend to estimate the effect of an intervention.
However, the causal evaluation might be complicated by the presence of
interactions between units. From the causal inference perspective, un-
derstanding these interactions and accounting for them in the analysis is
crucial. Interactions between units may generate an interference mecha-
nism, which formally occurs when the potential outcome of a given unit
is affected by the treatment assignment of other units (Cox, 1958) (the in-
terference mechanism is also known as spillover). Interference may arise
due to social, physical or virtual interactions among social and economic
agents (Crimaldi et al., 2020; Tortù et al., 2020). In epidemics, the intro-
duction of a new vaccine benefit also unprotected individuals, as their
probability to be infected decreases in the wake of an overall reduction
in the reservoir of infection (Bridges et al., 2000; Nichol et al., 1995). In
education, students that are assigned to a learning program may inter-
fere with their untreated peers through knowledge transmission paths
(Chin et al., 2013; de Heer et al., 2011). In political science, policies im-
plemented by administrative entities may impact also neighboring or al-
lied territories (Fang et al., 2019; Naranjo, 2010). In economics, incentives
targeted to firms affect also those firms which do not directly benefit of
the incentive but do have an economic or juridical relationship with fa-
vored companies (Chuang & Lin, 1999; Cohen et al., 2002). In finance,
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a monetary shock smashing into some financial institutions may prop-
agate over those entities involved in their transactions (Squartini et al.,
2011; G.-J. Wang et al., 2017; J. Yang & Zhou, 2013). In labor market, a
job placement assistance directly helps job seekers who decide to rely on
this service, but indirectly impacts the other job seekers who compete on
the same job market and are penalized by a competing disadvantage. In
marketing, individuals who are exposed to an advertisement may adjust
their consuming behavior and influence their friends.
In all these scenarios, the potential outcomes of units Y (z) are affected
by the treatment assignment of agents who interact with them. Figure
11 provides a graphical intuition of what interference is (Tortù et al.,
2020). When interference arises, the potential outcome framework, in its

(a) No interference (b) With interference

Figure 11: No interference scenario vs interference scenario: under no-
interference (left side figure) units’ potential outcomes (red dots) are af-
fected only by their own treatment level Zi (blue dots); in the presence of in-
terference (right side figure), the potential outcome of a given unit depends
by the treatment status of other units

standard formulation, is not valid anymore. The standard Rubin Causal
Model rules out the possibility of interference, by relying on SUTVA (As-
sumption 1): hence, the spillover mechanism constitutes a violation of
this key assumption, which sustains the entire potential outcomes frame-
work. This violation introduces a bias in the estimates and may lead to
inaccurate conclusions about the real effect of an intervention. As a con-
sequence, the RCM requires to be rearranged so to account for spillover
effects, while estimating the treatment effect. Furthermore, spillover ef-
fects may represent themselves the object of interest, as they may help in
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fully understanding the real impact of interventions. Moreover, under-
standing spillovers may be crucial in designing experiments (Angelucci
& Di Maro, 2015; Baird et al., 2018; Eckles et al., 2017; Kang & Imbens,
2016; Sinclair et al., 2012). The design phase of a given randomized in-
tervention would gain a significant advantage from knowing which in-
dividuals guarantee a beneficial spillover of the treatment. This infor-
mation would also allow the policy-maker to decrease the percentage of
agents assigned to the active treatment, relying on the fact that untreated
individuals will be exposed to the intervention anyway, due to their in-
teractions with their treated and influential peers.

To provide a solution for this methodological issue, researchers have
recently started to work on interference, by extending the standard po-
tential outcome framework so to account for the spillover mechanism.
Most of the existing works focus on the role of interference in randomized
trials (Aronow, 2012; Aronow & Samii, 2017; Athey et al., 2018b; Bow-
ers et al., 2013; Forastiere et al., 2019a; Hudgens & Halloran, 2008; Imai
et al., 2020; Kang & Imbens, 2016; Liu & Hudgens, 2014; Rosenbaum,
2007; VanderWeele et al., 2014). Just a few contributions explicitly deal
with observational settings (Forastiere et al., 2020; Forastiere et al., 2018;
Hong & Raudenbush, 2006; Sofrygin & van der Laan, 2017; Tchetgen &
VanderWeele, 2012; van der Laan, 2014) 1.

Types of interference

The interference mechanism can be classified in various types, accord-
ing to the shape of the interactions which drive spillovers. In a broader
sense, it is possible to distinguish among three types of interference: i)
agents belong to exogenous clusters and the spillover mechanisms occur
only within clusters, that is, units are equally exposed to the treatment
assignments of individuals referring to the same cluster (Basse & Feller,

1This is just preliminary literature review of the existing works on interference. Each of
the three upcoming chapters that focuses on spillovers will start with a detailed literature
about causal inference and interference presenting existing works which are particularly
related to the present contribution
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2018; Hudgens & Halloran, 2008; Sobel, 2006b) (clustered interference); ii)
agents belong to exogenous clusters and the spillover mechanisms occur
only within clusters, according to the links of a cluster-specific network
(clustered-network interference); iii) interactions are described by a complex
network (general (network) interference). Figure 12 provides a graphical in-
tuition about the different types of interference.
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(a) Clustered interference (b) Clustered network interference

(c) Network interference

Figure 12: Types of interference: (Top Left) interactions homogeneously
happens within exogenous clusters; (Top Right) interactions occur within
exogenous clusters, according to cluster-specific networks; (Bottom) inter-
actions are described by a complex network

Mechanisms of interference

So far I have discussed about interference, in its broader terms, and we
have classified the interference mechanism according to the shape of in-
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teractions between units. However, this phenomenon may arise as a re-
sult of various mechanisms. Indeed, there is a large variety of ways in
which the treatment of one unit can affect the outcomes of others: i) the
intervention affects the outcome of a given unit and the outcome spreads
to other individuals (outcome spreading); ii) the treatment received by one
individual has an indirect effect in determining the outcome of inter-
fering units (indirect effect); iii) treated units tangibly spread the active
treatment to interfering units (treatment diffusion). I will focus on the lat-
ter two mechanisms throughout this introduction: those exploited in the
contributions collected in this dissertation. Both mechanisms will be pre-
sented under the assumption of neighborhood interference: this assump-
tion limits the interference mechanism in the immediate neighborhood of
a given vertex and it remains valid in all articles of the present work 2.

In the presence of neighborhood interference the treatment assign-
ment of a given unit indirectly impacts the potential outcome of their
interfering units (Forastiere et al., 2020). The neighborhood of unit i is
labeled as Ni, while N−i denotes the complementary of this set, collect-
ing all those units who do not have a connection with node i. Under
first order interference, the no-interference component of the SUTVA is
replaced by the Assumption 4.

Assumption 4 (Neighborhood Interference). There exists a function gi :
{0, 1}Ni → G, with G⊂R such that, for all ZN−i ,Z

1
N−i and ZNi ,Z

1
Ni with

gi(ZNi) = gi(Z1
Ni), we have

Yi(Zi,ZNi ,ZN−i) = Yi(Zi,Z1
Ni ,Z

1
N−i).

This assumption admits first-order spillover effects, and they are mod-
elled through the function gi. This function operates on the treatment
assignment vector of units who are in the neighborhood of unit i: it
may count the number of treated neighbors, the proportion of treated
ties etc. In broader terms, it uniquely summarizes the information com-
ing from the treatment assignment vector of peers. The variable result-
ing from applying the g() function on the i’s neighbors’ treatment vec-

2The potential outcomes framework under neighborhood interference is presented here
and in Chapter 2 while particularly referring to Forastiere et al., 2020
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tor Gi = gi(ZNi) is interpreted as the neighborhood treatment and mea-
sures the extent of the indirect exposure. The neighborhood treatment is
treated as an additional treatment that characterizes the overall exposure
of a given unit i. Hence, each individual i is exposed to a joint treatment
(Zi, Gi), where the first component Zi represents the treatment assign-
ment she/he has actually received (individual treatment), and Gi the ex-
tent of their indirect exposure to the treatment (neighborhood treatment).
Under Neighborhood Interference and Consistency, potential outcomes
can be indexed only with respect to the joint treatment, that is Yi(Zi =

z,Gi = g) = Yi(z, g). By comparing individual potential outcomes, it is
possible to define individual causal effects. In this setting, the treatment
effect is defined while controlling for the neighborhood exposure. More-
over, it is feasible to outline individual spillover effects, measuring the
extent of the individual susceptibility with respect to the indirect expo-
sure. Formally, the direct effects result from the comparison of the two
individual treatment status, while maintaining the neighborhood expo-
sure fixed at a given level g, that is

τ(g) = E[Yi(Zi = 1, Gi = g)− Yi(Zi = 0, Gi = g)| i ∈ Ng],

where Ng = {i ∈ N : g ∈ Gi} collects units who have a nonzero proba-
bility of being characterized by the level g of the individual exposure 3.
On the contrary, spillover effects compare different values of the indirect
exposure, while keeping the individual treatment fixed at a certain status
z.

δ(z, g) = E[Yi(Zi = z,Gi = g)− Yi(Zi = z,Gi = 0)|i ∈ Ng]

Spillovers may also manifest in the tangible spreading of the interven-
tion (An, 2018). Such a phenomenon, known as treatment diffusion, may
occur when the intervention might be tangibly spread and it is consider-
able if the outcome becomes observable with a certain lag with respect
to the initial exposure. For instance, consider the case of a firm own-
ership network, in which researches aim to estimate the effect of extra

3For instance, suppose the gi() function counts the number of treated neighbors: an
agent who has a number of neighbors that is lower than g has no possibility to be exposed
to a given value g of the neighborhood exposure (thus having g treated friends in their
neighborhood)
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fundings given to some big firms on their future revenues: beneficiaries
may tangibly transfer a portion of extra money to the smaller firms they
own. A second example could be the study of the effects on smoking of a
prevention campaign using informative videos assigned to students.; in
this case it might be useful to consider students interactions (for instance
their friendship network) and the possibility that students share the link
of the video with their friends. If treatment diffusion arises, some in-
dividuals who have been originally assigned to the control group, and
were not provided with treatment by design, might have actually re-
ceived the intervention because of a link with treated users. The process
generates a relevant statistical issue, concerning the missclassification in
the treatment variable (Braun et al., 2014; Grandjean et al., 2004; Lew-
bel, 2007; McCaffrey et al., 2013; Vanderweele, 2012; Yanagi, 2018). The
treatment diffusion process is an important issue in causal inference but,
in general, exact information about its evolution are not easy to retrieve.
Sometimes the missing information also concerns the underlying diffu-
sion network on which the treatment propagates.

Formally, in the presence of a treatment diffusion process, the initial
treatment assignment vector Z does not truly represent the unit-level
allocation in the two treatment groups. The real treatment assignment
status is correctly represented byZ ′, which is usually unobservable. The
missclassification issue introduces a bias in the estimation of the treat-
ment effect: if diffusion plays a role, the treatment effect that is meaning-
ful to be estimated is τ∗, where

τ∗ = E [Yi(Z
′
i = 1)− Yi(Z ′i = 0) ],

If estimates rule out the possibility of a treatment spreading, then the ef-
fect that is evaluated is τ = E [Yi(Zi = 1) − Yi(Zi = 0) ]. The estimation
bias, given by the difference between τ∗ and τ constitutes a relevant is-
sue to be concerned with. Dependencies among the treatment diffusion
process and the potential outcomes or heterogeneous treatment effects in
the population might further complicate the analysis.

Although the diffusion process is not observed, it is possible to ad-
vance simplifying assumptions to characterize the process, by account-
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ing for the network information of data. A plausible assumption that
can be considered is that the diffusion spreading happens through edges
that are characterized by the presence of a treated node and an untreated
node. We call these edges treatment diffusion paths. Note that, in a directed
network the active diffusion paths correspond to the edges that treated
units deliver to their neighbors. Figure 13 signals the active diffusion
paths in an undirected network. Nodes are colored with respect to their
treatment status: red nodes identify treated individuals, the green color
characterize vertexes belonging to the control group (this rule will be fol-
lowed throughout this work, while dealing with binary interventions).

Figure 13: Active treatment diffusion paths in an undirected network

An example of what the diffusion process may generate can be found
in Figure 14. Consider a network of units, who have been randomly
assigned to either the active treatment or the control treatment. The situ-
ation that the policy maker observes right after the treatment assignment
(time t) is depicted in the leftsubfigure. At a subsequent point in time,
that I denote with t′, the situation appears as different (right subfigure):
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some of the initially untreated nodes (the orange nodes) have actually
received the active treatment through diffusion process.

(a) Time t (before the diffusion process) (b) Time t′ (after the diffusion process)

Figure 14: Treatment diffusion, before and after the occurrence of a ran-
dom diffusion process: red nodes represent individuals while green nodes
label untreated units; nodes who were initially untreated but have actually
received the treatment due to the diffusion process are colored in orange

1.3.2 Causal inference for network formation

Given the increasing variability of network data, the interest about inter-
actions among different objects has rapidly grown, and researchers have
started to analyze complex networks, by observing their patterns and
studying their topological characteristics (Falkowski et al., 2006; Routray
et al., 2015). However, the statistical approach towards network does not
limit to a passive observation of interactions, but it intends to understand
the mechanisms generate them. The analysis of the causes that play a role
in the formation of a network structure is called network formation analy-
sis. The standard statistical literature about network formation is based
on Exponential Random Graph Models (ERGM) (De Stefano & Zaccarin,
2012; P. Wang et al., 2016; Zaccarin & Rivellini, 2010), Stochastic Block
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Models (Y. J. Wang & Wong, 1987; Xu & Hero, 2014), Latent Space Mod-
els (Sewell & Chen, 2015; Zhao et al., 2017), Additive and Multiplicative
Effects models (Hoff, 2015; Minhas et al., 2019)(AMEN) (see Falk and
Kosfeld, 2012 and Chandrasekhar, 2016 for a review of network forma-
tion models). For instance, ERGMs model the probability that two nodes
are linked, with respect to their individual characteristics and to features
of the network (i.e attitude towards reciprocity, presence of triangles).
However, these approaches are usually seen as descriptive and cannot
be used to draw causal information.

Employing the potential outcome framework

To draw such a causal information, it is necessary to implement a proper
causal inference analysis, by reworking the potential outcomes frame-
work so to suitably model network data. In this setting, the network
itself represents the main outcome of interest. As a consequence the
sample over which the analysis is performed consists in dyads and the
outcome variable may be the presence, the strength or the direction of a
social tie. The treatment variable may be of various kinds, depending on
the empirical phenomenon of interest: it may be intrinsically dyadic or it
may result from the joint observation of individual treatments (Arpino et
al., 2017). Suppose a researcher intends to assess whether the individual
participation of a school-organized extra learning course has encouraged
friendship relationships among participants: in that case, students are
individually assigned to participate to the course, and the dyadic treat-
ment may be signal the simultaneous participation of the students iden-
tifying a given dyad. Conversely, while assessing the role of being as-
signed as deskmates in prompting social ties, one has to deal with a pure
dyadic treatment. In the last Chapter of this dissertation we will analyze
a dyadic treatment which is actually a mixture of these two sorts. Figure
15 suggests a type of network formation analysis that can be performed
by adapting the potential outcomes framework to networks. Here, the
researcher intends to assess whether the type of a social tie in a treat-
ment network (it can be either absent, asymmetric or symmetric) affects the
likelihood of observing another type of social tie in an outcome network
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(a) Treatment Network (b) Outcome Network

Figure 15: Network formation analysis, example: edges are colored accord-
ing to their type: red denotes symmetric edges, while orange denote asym-
metric ties

Regardless on the nature of the dyadic treatment, the potential out-
comes framework for network formation is exploited by considering a
dyadic populationDwhere the single pair (i, j) is characterized by a pair
specific treatment Zij , an observed outcome with Y obsij and by a vector of
covariates Xij , which may include both individual and dyadic covari-
ates. All the assumptions and tools of the standard RCM are rephrased
in the context of dyads and require additional discussions.

1.4 Outline of the thesis

The next chapters elaborate on the connection between causal inference
methods and complex networks from different statistical perspectives.
The first three chapters develop a discussion about methodological is-
sues that may arise while estimating the effect of an intervention in the
presence of connected units, while the last chapter makes use of the po-
tential outcome framework for estimating both unconditional and con-
ditional dyadic treatment effects in a multi-layer network. In this Section
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I summarize the contents discussed in each of these four chapters.

In recent years, researchers have proposed novel tools to account for
interference in observational studies. However, this existing works allow
for binary treatments only. Chapter 2 addresses this shortcoming and
develops a novel methodology for estimating treatment effects in obser-
vational studies under network interference, allowing for a multi-valued
treatment and an interference structure which is shaped by a weighted
network. The estimation strategy is based on a joint multiple general-
ized propensity score and allows the researcher to estimate direct effects,
controlling for both individual and network covariates. The proposed
methodology is employed in order to analyze the impact of the national
immigration policy on the crime rate. The contribution proposes a multi-
valued characterization of political attitudes towards migrants and as-
sumes that the extent to which each country can be influenced by another
country is modeled by an appropriate indicator, summarizing their cul-
tural and geographical proximity.

Chapter 3 represents the first attempt to unite these two of the most
popular streams of literature on causal inference: the literature about
causal effects in the presence of interference and the literature about
machine learning methods for detecting and estimating heterogeneous
causal effects. Recent studies have pointed out that, in those settings
where the effects of a treatment can spill from one unit to its neighbours,
assuming no interference can introduce large biases in the estimation of
causal effects while also neglecting spillover effects. On the other hand,
several recent contributions emphasize the importance of understand-
ing heterogeneity in the treatment effect. When interference takes place,
a policy maker may desire to account for the spillover mechanism and
to understand the heterogeneity both in the treatment effect and in the
spillover effect. Indeed, in some empirical studies it could be useful to
determine not only the sub-populations on which the treatment is more
effective, but also those who are characterized by highly influential and
susceptible individuals. This Chapter proposes a novel machine learning
algorithm - named Network Causal Tree(NCT) - to assess the heterogeneity
of treatment and spillover effects under clustered-network interference.
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The performance of the NCT is evaluated in series of Monte Carlo simu-
lations. Additionally, the Chapter provides an application on real-world
data from a randomized experiment aimed at assessing the effects of a
new weather insurance policy in rural China.

Chapter 4 focuses on the impact of a treatment diffusion process. This
issue may arise when the intervention can be tangibly diffused among in-
teracting units and when the outcome variable is observed with a certain
lag with respect to the initial exposure. In most scenarios, this process is
hidden. For instance, if the intervention of interest is an information cam-
paign realized through a video or a flyer, some treated units might share
the treatment with their friends though emails or social networks. If this
happens, a specter looms in the horizon: that of missclassifying the treat-
ment variable. In fact, some of the controlled units might have actually
received the treatment through diffusion from their treated neighbors.
Inspired by a recent experiment studying the effect of various types of
school-incentives for prompting students to attend museums, the Chap-
ter proposes a novel approach for dealing with the hidden diffusion pro-
cess, while also accounting for an incomplete network structure describ-
ing links among units. The proposed method addresses the missing links
issue by implementing a machine learning algorithm based on random
forests to multiply predict whether a missing tie is present or not. Sub-
sequently, the chapter develops a sensitivity analysis for assessing the
extent to which the estimates vary depending on the unknown diffusion
process, while also accounting for uncertainty in the network structure.
This procedure simulates various diffusion scenarios within a plausible
range of sensitivity parameters and compares the treatment effect which
is estimated in each scenario against the one obtained while ignoring the
diffusion process.

Chapter 5 develops an estimator for causal effects of the existence of
links in a “treatment” network on the formation of links in an “outcome
network,” with both networks being directed. The approach is based on
the definition of “conditional causal effects” concerning the effect on the
presence, symmetry and direction of links; the estimator is based on an
extension of the propensity score matching approach to simultaneously
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handle multi-valued treatments, network data and conditional effects.
The chapter showcases the methodological framework while assessing
the effect of lobbying pressure on legislators on their legislative collabo-
rations in the US House of Representatives. Firms and corporate compa-
nies support the electoral campaign of political candidates running for a
seat, trying to influence their future political agenda. Politicians willing
to achieve their political goals are encouraged to collaborate with those
colleagues who are pushed by common objectives. If these two mech-
anisms hold, we expect that two politicians who are supported by the
same lobbies are likely to collaborate. The work measures the extent of
this effect, while also defining conditional dyadic effects for investigating
the specific causal mechanisms playing a role in this setting.

Finally, Chapter 6 concludes with a discussion of results and with
potential lines for further research in the field of causal inference and
complex networks.
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Chapter 2

Modeling Network
Interference with
Multi-valued Treatments:
the Causal Effect of
Immigration Policies on
Crime Rates

This Chapter is a joint work with my supervisors Prof. Irene Crimaldi
and Prof. Fabrizia Mealli, and Prof. Laura Forastiere. The full text of
the article is also available from the arXiv repository, preprint number
arXiv:2003.10525v3.
The methodology presented in this Chapter is also employed by Irene
Crimaldi, Laura Forastiere, Fabrizia Mealli and Costanza Tortú in the
article named “The Causal Effect of Immigration Policy on Income In-
equality ,” forthcoming in Proceedings of the conference of the Italian Statis-
tical Society (SIS 2020).
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2.1 Introduction

2.1.1 Motivation

Policy evaluation studies aim to assess the effect of an intervention. So-
cial sciences such as economics or political science often evaluate com-
plex interventions, which have not been randomly assigned in the pop-
ulation. In some real-world settings, the analysis can be further compli-
cated by the presence of interference between units. This phenomenon
occurs because both economic and social agents are interconnected. Firms
are connected by a wide mixture of juridical or commercial relationships
including trading links, ownership or control ties and strategic alliances
(Reinert et al., 2009). On the other side, individuals also interact through
various mechanisms involving friendship or parental links, working col-
laborations or informative communications. In addition, even political
entities are linked by way of explicit or velled agreements, or according
to their specific geographical and cultural collocation with respect to a
reference environment. These relations are depicted by a network: the
observed nodes are the elements of the population of interest, while net-
work links represent the relations between them.

Causal inference on a population of agents who are connected through
a network faces some statistical challenges, including how to take into
account the spillover mechanism that may arise. The typical causal in-
ference framework (Rubin, 1980) relies on a key assumption, called Stable
Unit Treatment Value Assumption (SUTVA), which rules out the presence
of interference among units. However, if agents are linked, experiments
as well as observational studies may be affected by the presence of in-
terference, which formally occurs when the treatment of one unit has an
effect on the response of other units (in addition to the unit’s own out-
come) (Cox, 1958). In the presence of interference, the causal effect of
a treatment on one unit may be altered by the treatment received by
other interfering units. For example, incentives targeted to some firms
or companies may also benefit all those firms that are linked to them,
according to juridical or economic relationships. In addition, policies
implemented by single administrative entities also affect the outcomes
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of interfering territories. Dealing with interference is of paramount im-
portance: wrongly assuming SUTVA can introduce a significant bias in
the estimates and, consequently, lead to deceptive conclusions about the
real effect of an intervention.

2.1.2 Related Works

For this reason, in recent years, a growing community of statisticians has
started reasoning about interconnected units, developing novel methods
and techniques which allow to account for interference in causal infer-
ence studies. The existing works extend the standard framework to in-
clude the network information in the definition of individual potential
outcomes. Most of these works examine interference in randomized trials.
The limitations of the present statistical tools in dealing with possible
dependencies among units have been first pointed out by Rosenbaum,
2007, who has also developed non-parametric tests to evaluate treatment
and spillover effects in the presence of interference. This last study was
extended, after a few years, by Aronow, 2012, who presented a novel
method to detect interference, and by Bowers et al., 2013, who proposed
tools to model various dependency scenarios, also showing how to test
hypotheses about causal effects according to the specific model that is
supposed to depict interference. Recently, Aronow and Samii, 2017 re-
arranged the Horwitz-Thompson estimator allowing for the presence of
interference to obtain unbiased estimators for all the effects of interest,
main and spillovers. Athey et al., 2018b computed exact p-values for a
variety of sharp null hypotheses about treatment effect in an experimen-
tal design where units are connected in an observed network. Interfer-
ence may even play a role in the design of experiments. Having proved
that wrongly assuming SUTVA leads to biased results, Eckles et al., 2017
formalized a model of experiments in networks, proposing novel tech-
niques for reducing this bias directly through the experimental design it-
self. Some other works focus on a particular type of interference known
as partial (clustered) interference, where units belong to exogenous groups
and the spillover mechanism can occur only within clusters. The term
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”partial” is used here to counterpoise this scheme of clustered dependen-
cies with the ”general” interference scenario, where units interact accord-
ing to a network. The partial interference assumption was formally intro-
duced by Sobel, 2006b and it was further advanced also by Hudgens and
Halloran, 2008, who investigated the role of interference in the spread-
ing of infectious diseases, where the probability that a person becomes
infected is lower if the proportion of vaccinated individuals in his group
is high (Basse & Feller, 2018). Moreover, Barkley et al., 2017 addressed
the issue of a possible treatment selection among connected individu-
als and proposed causal estimands allowing for clustered dependence
in the treatment selection (Papadogeorgou et al., 2019). There are just a
few articles that explicitly deal with general interference in observational
studies. For instance, Hong and Raudenbush, 2006 evaluated the policy
of retaining low-achieving children in kindergarten rather than promot-
ing them to first grade, using a multilevel propensity score model. van
der Laan, 2014 and Sofrygin and van der Laan, 2017 proposed a targeted
minimum loss-based estimation (TMLE) estimator. A propensity score
approach under spillover effects was first introduced by Forastiere et al.,
2020, who presented a reworked formalization of the standard propen-
sity score, named joint propensity score (JPS), with the aim of estimating
the dose-response function in presence of interference. This work ana-
lyzes a binary treatment and models interference through an observed
binary network. This last framework was employed by Del Prete et al.,
2019 to explore trade distortions in agricultural markets: here, the au-
thors rearranged the JPS formulation in order to model a continuous in-
dividual treatment which in turn leads to a continuous characterization
of the indirect exposure to the treatment.

2.1.3 Contribution

The existing statistical literature tackling interference in observational
studies deals with binary or continuous treatments only. However, many
policy evaluation studies involve more complex treatments, as, for exam-
ple, treatments which are defined over more than two categories, known
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as multi-valued treatments. Multi-valued treatments are highly diffused
in nature. They are commonly used when the empirical aim consists in
comparing various characterizations of an intervention and, above all,
they are particularly employed in studies yearning to get the picture of
complex and many-faceted phenomena, which may vary across multi-
ple dimensions. For instance, evaluating the impact of different political
attitudes towards puzzling macro-themes (immigration, national health-
care, economy) often calls for a multi-valued approach and requires also
to account for interference, since the treatment may spill over to different
political entities. Since our empirical attempt is to evaluate the impact of
immigration policy, we expand the theoretical framework proposed by
Forastiere et al., 2020 to the case of an individual multi-valued treatment,
in observational studies.

Generalization of the standard techniques (such as subclassification
and propensity score methods) for binary treatments to the multi-valued
scenario is not straight-forward and requires additional assumptions (Lopez,
Gutman, et al., 2017; S. Yang et al., 2016; Linden et al., 2016). The method-
ological approach becomes even more complicated if we decide to allow
for the presence of interference, relaxing SUTVA and allowing for first-
order spillover effects. The key idea is that under a multi-valued treat-
ment, in the presence of interference, each unit is individually assigned
to a treatment level and, simultaneously, they can be exposed to all the
treatment levels, due to the interaction with their neighbors. Therefore,
units experiment a multiple neighborhood exposure, where each of their
neighbors contributes in increasing the exposure to her own individual
treatment level. In addition, the multiple neighborhood exposure map-
ping accounts for weights, which quantify the extent of dependencies, if
they are observable. Weighted networks are widely spread in real-world
data. For instance, networks of transactions between entities are usually
enriched by the information about transactions’ amount, social networks
sometimes are coupled with the strength of friendship between units,
scientific collaborations networks often provide the number of collabora-
tions, political networks frequently measure the strength of connections
between administrative and political entities by specific indicators. In
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settings with multi-valued treatments and weighted network, each unit
is exposed to an individual treatment, which is categorical with a given
number of categories, and to a neighborhood treatment, which is a multi-
variate continuous variable that measures the unit’s exposure to all treat-
ment levels, resulting from the interaction of their neighbors and given
the strength of these interactions. Since we move in an observational
study setting, where neither the individual treatment nor the neighbor-
hood treatment are randomly assigned in the population, we propose an
estimation strategy based on the usage of an extended version of the joint
propensity score proposed by Forastiere et al., 2020. We employ the JPS
approach for exploiting the direct effect of a multi-valued intervention,
while accounting for a multivariate continuous indirect exposure to the
treatment 1. Our definition of propensity score, that we call Joint Multi-
ple Generalized Propensity Score (JMGPS), allows to handle a multi-valued
treatment and a multiple neighborhood exposure. The JMGPS is a type
of generalized propensity score (Hirano & Imbens, 2004), where the es-
timation strategy relies on a three-stage approach: i) we first assume a
parametric distribution for both the individual and the neighborhood
treatment and for the outcome variable; ii) for all the possible values that
the joint treatment can assume, we use these models to predict missing
potential outcomes; iii) we estimate the effects of interest by comparing
potential outcomes, and we use bootstrap to compute the estimated stan-
dard errors.

We make use of this methodology for the analysis of the causal ef-
fect of immigration policies on crime rates. In the last decades, the rele-
vance of the immigration process has rapidly grown and shew the way
to the spreading of a wide and open debate about the effects of migra-
tion. Some political parties, single politicians and citizens all around the
world do believe that immigration represents a risk for national iden-
tity and, moreover, that it leads to a lower public safety. Consequently,
they support governments that implement restrictive immigration poli-

1The proposed estimation strategy finds its roots in Del Prete et al., 2019, but intends to
model the effect of a multi-valued intervention (instead of handling a continuous individ-
ual treatment), in the presence of a multivariate continuous exposure (instead of accounting
for a univariate continuous exposure
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cies. However, the causal effect of immigration policies on crime or so-
cial conditions in general has not been tested yet. In particular, there are
not quantitative studies that involve and compare many countries, over
a wide time frame. We analyze policies using the IMPIC (Immigration
Policies in Comparison) dataset that numerically measures all the immi-
gration policies that have been implemented in the OECD countries from
1980 and 2010 in terms of restrictiveness. We include in the analysis 22
OECD countries that are located in Europe over the whole time frame
covered by the IMPIC dataset. Our purpose is to investigate the impact
of a national towards migrants on the crime rate. In this application, the
treatment of interest represents the restrictiveness of immigration poli-
cies, which is measured in the IMPIC Dataset through the evaluation
of a series of single policies. Each policy refers to regulations or control
protocols. The former are all the binding legal provisions that create or
constrain rights (Helbling et al., 2017), while the latter refer to the direc-
tives that have been adopted with the aim of monitoring whether the
regulations are observed. Therefore, by aggregating items referring to
these two political dimensions, we obtain two indicators measuring the
country-year restrictiveness towards migrants, with respect to regula-
tions and control mechanisms separately. Using this information, we de-
fine a multi-valued treatment by looking at the joint value of the two in-
dicators, for each country-year profile. In this empirical setting, SUTVA
is unlikely to hold. The political strategy towards migrants that a single
country decides to implement may also affect crime rate of other coun-
tries. The possible spillover effect of the adopted political attitude to-
wards immigration arises because migrants try to avoid countries with
highly restrictive laws, and tend to move to states that appear to be more
welcoming. Since migrants tend to move to countries with specific char-
acteristics of their choice, the extent to which each country is affected
by other countries’ policies depends on their level of similarity. Follow-
ing this intuition, we derive an indicator summarizing the main factors
which may prompt the spillover mechanism. These factors refer to var-
ious measures of similarity, which we reasonably believe to be the pri-
mary mechanisms driving interference. Specifically, this index, that we
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call Influence Index (II), gives a measure of potential interference between
each pair of countries at a given year and combines information about ge-
ographical proximity and cultural similarity, which in turn are summarized
by specific indicators.

This work is organized as follows. In Section 2.2 we focus on method-
ology. We first summarize the existing causal inference framework under
interference in observational studies and then we present our method-
ological novelties: we introduce a multi-valued treatment and we pro-
pose a novel tool that allows one to model the neighborhood exposure
in the presence of multi-valued treatment and weighted interference. We
introduce the joint generalized multiple propensity score and we illus-
trate the estimation strategy. In Section 2.3 we motivate the importance
of the empirical application, giving a broad overview of the existing lit-
erature and briefly describing data. Moreover, we give a more detailed
characterization of the Influence Index and we provide a deeper explana-
tion on the definition of treatment nominal categories. In Section 2.4 we
present the main empirical results. Then, in the appendix, we collect the
proofs of the theoretical propositions we present in Section 2.2, we give
the precise definition of II also adding further details about the defini-
tion of the neighborhood treatment variable, and we present the detailed
results of all the models we implement, reporting some descriptives and
checking the robustness of the main findings with respect to alternative
definitions of the treatment variable.

2.2 Methodology

In this section we explain the main methodological developments. We
start from the existing causal inference framework under interference
and then we present the novel approach for multi-valued treatments
(Subsection 2.2.1). Finally, we define the Joint Multiple Generalized Propen-
sity Score (Subsection 2.2.2) together with its properties and we propose
the estimation strategy (Subsection 2.2.3).
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2.2.1 Causal Inference Under Network Interference

The main scope of causal inference is estimating the effect of a treat-
ment on some outcome variable in a population of units. Let us con-
sider a sample N composed of N units. Denote as K the number of
treatment levels and let Zi ∈ {1, . . . ,K} be a categorical variable repre-
senting the treatment assigned to unit i and Y obsi the observed outcome
for the same unit. By Z and Yobs we denote the corresponding vectors
of the whole sample N . Moreover, Xi denotes a vector of P covariates
(or pre-treatment variables) that are not influenced by the treatment as-
signment. Following Rubin, 1974, 1980, we postulate, for each unit, the
existence of K potential outcomes, one for each treatment vector, Yi(Z).
Most causal inference relies on the Stable Units Treatment Assumption
(SUTVA) (Rubin, 1986). SUTVA consists of two different components:
(i) the Individualistic Treatment Response (ITR) (C. F. Manski, 2013) (or
no interference) assumption, which states that there is no interference be-
tween units, each unit’s potential outcomes are defined only by the unit’s
own treatment; (ii) the consistency (or no multiple version of the treatment)
assumption, which states that there are no different versions of the treat-
ment levels. As a consequence, under SUTVA, potential outcomes can
be indexed only by Zi -i.e Yi(Zi)- and the observed outcome is the one
corresponding to the treatment that each unit i has actually received:
Y obsi = Yi(Zi).

SUTVA completely rules out the presence of interference among units.
However, in many real situations, this no-interference assumption is vio-
lated. This phenomenon can occur in various and heterogeneous frame-
works. For instance, in economics, firms assigned to a program of incen-
tives can be affected by incentives received by other firms. In epidemics,
vaccines are known to benefit the whole community, including unpro-
tected individuals, because they reduce the reservoir of infection and
the infectiousness. Finally, in political sciences, policies implemented in
some administrative regions may have an effect also on neighboring ter-
ritories. All these examples refer to empirical situations in which one
unit’s outcome may be influenced by other units’ treatment level.
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When the spillover mechanism comes into play, wrongly assuming
SUTVA leads to biased results and, consequently, to inaccurate or even
misleading conclusions about the effects of interest. In order to model in-
terference, we must look at the relationships between units. We consider
an observed undirected network G = (N , E), whereN is the set of nodes
(the population of interest) and E represents the set of edges indicating
links between nodes. For each node i, we identify a partition of N into
two subsets: i) the neighborhood of node i,Ni, that includes all the nodes
j with a link with node i, i ↔ j, and we denote by Ni the cardinality of
Ni; ii) the No-Neighborhood of node i, N−i, including all the nodes j
without a link with node i, i = j. According to these partitions, we de-
fine, for each node i, the following partitions of the treatment vector and
of the outcome vector, (Zi,ZNi ,ZN−i ), (Yi,YNi ,YN−i ). Figure 16 shows
the neighborhood of a given node.

Figure 16: Neighborhood of a given node: the figure shows a given unit
(yellow-colored unit) and highlights his own neighbors (red-colored units),
in a population of connected agents.

Admitting network interference in the analysis implies the replace-
ment of SUTVA by an assumption on the interference structure. Forastiere
et al., 2020 make a neighborhood interference assumption, which allows
for the existence of first-order spillover effects between neighbors, in the
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context of binary treatments. More precisely, using the notation Yi(Z)

for potential outcomes of unit i, we have:

Assumption 5 (Stable Unit Treatment on Neighborhood Value Assump-
tion (SUTNVA) ). SUTNVA is constituted by two components:

1. No Multiple Versions of Treatment (Consistency): Yi(Z) = Yi(Z1) ∀Z,Z1

such that Z = Z1, that is, the mechanism used to assign the treatments
does not matter.

2. Neighborhood Interference: There exists a function gi : {0, 1}Ni → G,
with G⊂R such that, for all ZN−i ,Z

1
N−i and ZNi ,Z

1
Ni with gi(ZNi) =

gi(Z1
Ni), we have

Yi(Zi,ZNi ,ZN−i) = Yi(Zi,Z1
Ni ,Z

1
N−i).

This assumption basically states that there is interference and it is mod-
elled by the function gi.

The variable Gi = gi(ZNi), called neighborhood treatment, represents
the unit’s exposure to the treatment, due to the influence of his neighbors.
The function gi can be defined in many different ways, according to the
interference mechanism that is assumed to take place. For instance, it
can simply count the number of treated neighbors or it can measure the
proportion of treated neighbors. Note that under SUTNVA interference
is assumed to arise only from neighborhood of each unit and that any
higher order interference is completely ruled out. This means that unit i
is not influenced by units other than their neighbors. This restriction over
the interference structure may appear to be strong in some scenarios, but
it seems to be plausible in many empirical applications.

In many real-world applications treatments are implicitly or explic-
itly multi-valued. In epidemics, researchers are interested in comparing
between drugs (Linden et al., 2016). In economics, firms are exposed to
different types of incentives. In training programs, participants receive
different types of coaching (Cattaneo, 2010). Finally, political scientists
evaluate political strategies towards highly complex and multi-faceted
issues which involve different sub-fields. In such scenarios, a common
practice is to collapse the multi-valued treatment into a binary variable,
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but this approach implies a relevant loss in terms of information and it
prevents the possibility of capturing differential effects across treatment
levels (Cattaneo, 2010). For this reason, researchers have started to study
how to extract causal information under multi-valued treatments, devel-
oping novel assumptions and techniques that extend to the multi-valued
scenario standard causal inference methods as matching, subclassifica-
tion, inverse probability weighting on the propensity score (Lopez, Gut-
man, et al., 2017). However, no existing work suggests how to deal with
interference in the multi-valued scenario. In this work we fill in this gap.

Under first-order spillover effects, each unit is exposed to a neighbor-
hood treatment, defined as a numerical synthesis neighbors’ treatment
status. In the binary setting, this synthesis is usually expressed by a sin-
gle value, Gi ∈ G⊂R, while when the individual treatment is defined
by multiple categories this definition of Gi is too simplistic. Categor-
ical treatments imply a more complex definition of the neighborhood
treatment exposure, as the neighborhood treatment must summarize the
individual network exposure to each treatment level. The mathemati-
cal tool that we introduce to model the neighborhood treatment under
multi-valued individual treatment is the Neighborhood Treatment Exposure
MatrixG:

Definition 2 (Neighborhood Treatment Exposure Matrix (NTEM), G).
The NTEM is an N × K matrix G that collects the unit neighborhood expo-
sure to all the treatment levels:

G =



G1,1 . . . G1,z . . . G1,K

...
...

...
...

...
Gi,1 . . . Gi,z . . . Gi,K

...
...

...
...

...
GN,1 . . . GN,z . . . GN,K

 .

Each elementGi,z ∈ G⊂R indicates the exposure of unit i to the treatment level
z ∈ {1, . . . ,K}. Each row is the neighborhood treatment vector for the unit i,
Gi ∈ GK⊂RK . Therefore, the neighborhood treatment is not a scalar measure,
as in the binary treatment setting. It is instead a K-dimensional vector whose
components describe the unit’s neighborhood exposure to each treatment level.
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The Neighborhood Treatment Exposure Matrix is essential for mod-
elling a multi-valued indirect exposure to the treatment. A discrete scalar
characterization of that exposure is not feasible in the multi-valued sce-
nario, as it does not allow to capture the categorical distribution of the
individual treatment over the neighborhood of each unit.

In the multi-valued scenario, the first component of the recalled SUT-
NVA for binary treatments, i.e. the no multiple versions of treatment as-
sumption, is confirmed as stated above; while the second component,
i.e. the neighborhood interference assumption, is here replaced by a more
general assumption, which handles the spillover mechanism generated
by a multi-valued individual treatment:

Assumption 6 (Multiple Neighborhood Interference). There exists a func-
tion gi : {1, . . . ,K}Ni → GK , with GK⊂RK , such that, for all ZN−i ,Z

1
N−i

and ZNi ,Z
1
Ni with gi(ZNi) = gi(Z1

Ni), we have

Yi(Zi,ZNi ,ZN−i) = Yi(Zi,Z1
Ni ,Z

1
N−i).

This assumption states that interference is modelled by the function gi (with
components gi,z , z ∈ {1, . . . ,K}) which maps the neighborhood exposure of
unit i over a K-variate domain, that isGi = gi(ZNi).

If interference is modeled through a weighted network, the function
gi must take into account the weights, Iij , measuring the strength of the
link between i and the neighbor j. For instance, given an individual
treatment with K categories, we can set Gi,z =

∑
j∈Ni Iijδzj , where δzj

is a dummy variable that equals 1 ifZj = z and 0 otherwise. Each unit i is
exposed to a joint treatment (Zi,Gi): the individual treatment Zi, which is
a categorical variable with K levels, and the neighborhood multi-treatment
Gi, which is a K-variate variable. Hence, potential outcomes, for each
unit i, are indexed by the joint treatment: Yi(Zi,Gi) = Yi(Zi = z,Gi =

g). The observed outcome is the one corresponding to the actual joint
treatment each unit is exposed to: Y obsi = Yi(Zi,Gi).

Regarding the effects of interest, the number of the possible compar-
isons is

(
K
2

)
= K!

(K−2)!2! . Under the multi-valued individual treatment,
the direct effect of a given treatment z′ with respect to the treatment z,
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keeping the neighborhood treatment as fixed, can be expressed as

τz′z(g) = E
[
Yi(z

′,g)− Yi(z,g)
]
. (2.1)

This quantity represents the individual causal effect of a direct exposure,
when the neighborhood treatment is set to g. The overall main effect can
be define averaging the individual treatment effect over the multivariate
probability distribution of the neighborhood treatment, that is

τz′z =
∑
g∈GK

τz′z(g)P (Gi = g). (2.2)

2.2.2 Joint Multiple Generalized Propensity Score (JMGPS)

In this work, we focus on observational studies, where neither the in-
dividual nor the neighborhood treatment are randomly assigned in the
population. The general strategy in observational studies is to control
for baseline covariates such that, conditioning on them, the treatment
assignment becomes as good as random. In other words, we can ex-
clude any dependence between treatment variable and potential out-
comes. This assumption is known as unxonfoundedness (Rosenbaum &
Rubin, 1983b). In some empirical applications, the number and nature
of covariates makes it hard to control for all of them without relying
on strong parametric assumptions and, extrapolating in these settings,
researchers, instead of conditioning on the set of covariates, prefer to
work with a scalar synthesis of them, called propensity score (Rosenbaum
& Rubin, 1983b). In the binary treatment setting with no interference,
propensity score is defined as the conditional probability of receiving
the treatment, given the values of the covariates. If the unxonfounded-
ness assumption is valid when conditioning on individual covariates, it
remains valid when conditioning on the propensity score. Using this
approach, researchers benefit from a relevant dimensionality reduction
in the analysis. This general approach, which is well grounded in the
standard causal inference literature, can be extended to the setting with
multi-valued treatment and interference. Here the unxonfoundedness
assumption must be related to the joint treatment and the joint potential
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outcomes. Following the motivations proposed by S. Yang et al., 2016,
we rely on the weaker version of unxonfoundedness with respect to the
individual multi-valued treatment. Hence, instead of considering the ac-
tual multi-valued treatment variable Zi, we refer to K treatment indicator
variables representing the presence ( or absence ) of a given treatment
level z, Di(z). Thus, we advance the following assumption:

Assumption 7 (Weak Unconfoundedness of the Joint Treatment).

P (Di(z) = 1, Gi = g |Yi(z, g),Xi) = P (Di(z) = 1, Gi = g |Xi)

∀z ∈ {1, . . . ,K} ∀g ∈ GK .

Note that, in presence of interference, Xi can include purely indi-
vidual covariates as well as neighborhood covariates. From now on, we
denote as Xindi the individual covariates and as Xneighi the neighborhood
covariates.

In the presence of interference, the propensity score is the joint prob-
ability of receiving a value z of the individual treatment and, simultane-
ously, being exposed to a value g of the neighborhood treatment, given
the unit’s baseline covariates. Forastiere et al., 2020 formally introduced
propensity score under network interference in the case of a binary treat-
ment. We expand their definition allowing for a multi-valued individual
treatment and a multivariate neighborhood treatment. Therefore, we in-
troduce the Joint Multiple Generalized Propensity score (JMGPS) as follows:

Definition 3 (Joint Multiple Generalized Propensity Score (JMGPS) ). The
Joint Multiple Generalized Propensity Score (JMGPS), labelled as ψ(z, g,x), is
the probability of being jointly exposed to aK-variate individual treatment equal
to z and to a K-dimensional neighborhood treatment equal to g, conditioning
on baseline covariates.

ψ(z, g;x) = P (Zi = z,Gi = g|Xi = x) (2.3)

As the standard propensity score, the Joint Multiple Generalized Propen-
sity Score is a balancing score, that is, it guarantees balance with respect
to neighborhood and individual covariates. JMGPS has the following
properties.
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Proposition 1 (Balancing Property of JMGPS ). The joint propensity score
is a balancing score, that is

P (Zi = z,Gi = g|Xi) = P (Zi = z,Gi = g|ψ(z, g;Xi)),

∀ z ∈ {1, . . . ,K} and ∀ g ∈ GK

Proof in Appendix A.1.1

Furthermore, conditioning on JMGPS, we can exclude any depen-
dency between the treatment variable and potential outcomes.

Proposition 2 (Conditional Unconfoundedness of Di(z) and Gi given
JMGPS ). Under Assumption 7, for all z ∈ {1, . . . ,K} and g ∈ GK

P (Di(z) = 1, Gi = g |Yi(z, g), ψ(z, g;Xi)) = P (Di(z) = 1, Gi = g |ψ(z, g;Xi)).

Proof in Appendix A.1.2

Following Forastiere et al., 2020, we rely on the factorization of the
joint propensity score in neighborhood propensity score and individual
propensity score.

Definition 4 (Factorization of the Joint Multiple Generalized Propensity
score (JMGPS)). JMGPS can be factorized as follows

ψ(z, g;x) = P (Zi = z,Gi = g|Xi = x)

= P (Gi = g|Zi = z,Xgi = xg)P (Zi = z|Xz
i = xz)

= λ(g; z,xg)φ(z;xz),

where λ(g; z,xg) is the neighborhood propensity score and φ(z;xz) is the indi-
vidual propensity score. Xz

i andXg
i are vectors collecting covariates that affect

the individual and the neighborhood treatment, respectively. Note that the two
sets corresponding to the covariates included inXz

i andXg
i may differ. In par-

ticular, Xgi , can collect individual covariates as well as neighborhood covariates,
whileXz

i includes individual variables only.

Using the factorization that we have just presented, we illustrate an-
other key property of JMGPS.
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Proposition 3 (Conditional Unconfoundedness of Di(z) and Gi given
individual and neighborhood propensity scores ). Under Assumption 7,
for all z ∈ {1, . . . ,K} and g ∈ GK , we have

P (Di(z) = 1, Gi = g |Yi(z, g), φ(z;Xz
i ), λ(g; z,Xi)) =

P (Di(z) = 1, Gi = g |φ(z;Xz
i ), λ(g; z,Xi)).

Proof in Appendix A.1.3

This property indicates that conditioning on the two components sep-
arately still guarantees the validity of the conditional unxonfoundedness
property.

2.2.3 Estimation Procedure

The JMGPS is the fundamental element of the estimation procedure that
we propose here in this section. Both its components can be seen as pe-
culiar characterizations of the generalized propensity score proposed by
Hirano and Imbens, 2004. This procedure follows a parametric approach
and imputes missing potential outcomes for all configurations of the joint
treatment and then compares them to estimate the direct effects of inter-
est 2. Standard errors and confidence intervals are computed using boot-
strap methods. The proposed estimation strategy can be summarized in
three main steps.
1) Model treatment and outcome variables
(1.a) Assume a distribution for Zi,Gi and Yi.
Formally:

Zi ∼ fz(Xz
i ; θ

z),

Gi ∼ fg(Zi,Xg
i ; θ

g),

Yi(z, g) ∼ fy(z, g, φ(z;Xi), λ(g; z,Xi); θ
y).

Of course, the multi-valued characterization of Zi demands for the defi-
nition of a statistical model for categorical responses, with respect to the

2The proposed estimation strategy find its roots in Del Prete et al., 2019, whose approach
has been rearranged to model a multi-valued treatment and a multiple neighborhood ex-
posure (Del Prete et al., 2019 deal with a continuous individual treatment and with a con-
tinuous and univariate neighborhood exposure.)
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individual propensity score model. Furthermore, Gi requires the defini-
tion of a multivariate model Note that this stage requires to rely on some
parametric assumptions about the distribution of Zi and Gi. The more
credible are these assumptions, the more accurate are the estimates of
the effects of interest. In this sense, a prior knowledge about the empir-
ical phenomenon that is object of study is of paramount importance. If
this knowledge lacks or it is imprecise, the researcher should perform the
whole procedure under various parametric assumptions, then checking
the robustness of results with respect to these assumptions.
(1.b) Predict actual individual and neighborhood propensity score
Estimate the parameters θz and θg of the models for Zi and Gi; Use
the estimated parameters in Step 1, θ̂z and θ̂g , to predict for each unit
i ∈ N the actual individual propensity score and the actual neighbor-
hood propensity score, that is, the probabilities of being exposed to the
individual treatment and the multivariate neighborhood treatment they
have actually being exposed to:

Φ̂i = φ(Zi;X
z
i ; θ̂

z),

Λ̂i = λ(Gi;Zi,X
g
i ; θ̂

g).

(1.c) Estimate parameters of the outcome model
Use the predicted propensity scores Φ̂i and Λ̂i, in order to estimate the
parameters θy of the outcome model Yi(z, g):

Y yi (Zi,Gi, Φ̂i, Λ̂i; θ
y).

2) Impute Missing Potential Outcomes
Consider the domain of the joint treatment (Zi = z,Gi = g). In par-
ticular, Gi is a K-dimensional continuous variable. For each possible
value of the joint treatment, that is, for each combination (Zi = z,Gi =

g) s.t z ∈ {1, . . . ,K}, g ∈ Γ 3, with Γ ⊂ GK , and for each unit i ∈ N ,
(2.a) Predict the individual propensity score corresponding to that level
of z, φ̂(z;Xz

i ).
3In order to explore a multivariate domain, one common practice is constructing a K-

dimensional discrete grid that scours the possible values of g, over its K components’
respective domain. Let us denote this grid as Γ, Γ ⊂ GK .
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(2.b) Predict the neighborhood propensity score corresponding to that
level of g, λ̂(g; z,Xg

i ).
(2.c) Use that estimated parameters to impute the potential outcome Ŷi(z, g),
that is,

Ŷi(z, g) ∼ fy(z, g, φ̂(z;Xz
i ), λ̂(g; z,Xg

i ); θ̂
y).

3) Estimate the effects of interest and their corresponding variance
(3.a) Estimate the final direct effects of interest, averaging potential out-
comes over λ(g; z,Xg

i ):

τ̂z′z =
1

N

N∑
i=1

[∑
g∈Γ

(
Ŷi(z

′, g)− Ŷi(z, g)
)] λ̂(g; z,Xg

i )∑
g′∈Γ λ̂(g′; z,Xg

i )
.

(3.b) Compute variance through bootstrap (Efron, 1992; Forastiere et al.,
2020). This procedure works as follows. Choose a large value R. For R
times, r : {1, . . . , R}, draw a random sample Nr with replacement from
N . Estimate the effects of interest over the subsample Nr, so getting
τ̂z′z(r). Consider the distribution of τ̂z′z(r) over the R repetitions T̂ rz′z .
The estimated standard error Std.Er(τ̂z′z) is the standard error of T̂ rz′z . 4

2.3 Empirical Application

In this section, we focus on the empirical application. We first explain the
relevance of our empirical research question with respect to the existing
literature about immigration (Subsection 2.3.1). Second, we describe the
different data sources that we have merged (Subsection 2.3.2). Finally,
we formalize and discuss the influence index (Subsection 2.3.3) and we
explain how we derive the treatment categories (Subsection 2.3.4) also

4The methodological setting makes it difficult to derive a closed-form estimator for vari-
ances. We are aware that the bootstrap methodology holds under the assumption of no
correlation among neighbors’ outcomes. We could experiment alternative sampling tech-
niques to explicitly account for the network information into data. However, graph par-
titioning methods are not easy to be applied on our data, due to the complexity of the
network structure. The network information has been directly included into the definition
of the neighborhood treatment, which we treat as an additional intervention. Then, we per-
form bootstrap by employing the standard unit-level sampling with replacement, similarly
to Del Prete et al., 2019 and Forastiere et al., 2020
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showing how to implement the estimation strategy we have presented
in the previous section (Subsection 2.3.5).

2.3.1 Empirical Research Question

In the last decades, interest about immigration has rapidly grown, so that
it has become a major topic both in academic and real life debates (Hel-
bling et al., 2017). Immigration flows significantly increased, since many
people attempted to move away from countries which have been suffer-
ing long periods of wars and bad economic conditions. The consequence
of this process is that the world has become multicultural: migrants have
started to be socially included into the hosting countries, searching for a
new job and establishing social relationships. Moreover, migrants have
diffused their own social and religious beliefs. However, immigration
has entailed not only positive outcomes. Some countries that have em-
braced a relevant number of migrants have experienced the rising of so-
cial tensions (Rudolph, 2003). Over the last decades, economic condi-
tions gradually get worse: unemployment rates rose up, and real wages
went down. In addition, people have noticed a relevant worsening in the
perception of individual security. The conviction that immigration may
have aggravated these negative processes has slowly taken root in the
public opinion. Politicians and common citizens have started to evaluate
problematic consequences about immigration and globalization. Con-
cerns about migration spread up in three main directions. First, native
people perceive immigration as a risk for the preservation of national
identity. Integration results to be not always easy and multiculturalism
tends to be perceived more as a threat than as an opportunity. Second,
as migrants move looking for better living conditions, they represent, in
the common belief, competitive profiles for job. Finally, people tend to
blame migrants for raising crime (Bigo, 2002).

In recent years, many researchers have started studying the effects
of the increasing migration flows. For instance, Bove and Böhmelt, 2016
has assessed the effect of migration on the diffusion of terrorism, while
Rudolph, 2006 has evaluated the effects on national security. Many epi-
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demiological studies as Polissar, 1980, Stillman et al., 2007 and Hilde-
brandt and McKenzie, 2005 have analyzed the consequences on the spread-
ing of some diseases and on public health, in general. Furthermore, Cole-
man, 2008 and Keely, 2000 have studied the causal effect of migration on
some demographic outcomes. Bianchi et al., 2008 Bianchi et al., 2012
and Stansfield, 2016 have studied the impact of flows on crime. The
existing works assessing the causal link between migration flows and
crime present findings which are conceptually in contrast to common
perception, suggesting that increasing immigration flows does not lead
to higher crime rates. Some of them also state that there is actually a
negative effect of immigration on crime.

The public discussion about migration has also involved the immi-
gration policies that national governments implement with the aim of
controlling and ruling the immigration process. Brochmann and Ham-
mar, 1999 defined immigration policies as the ”government’s statements of
what it intends to do or not do (including laws, regulations, decisions or orders)
in regards to the selection, admission, settlement and deportation of foreign citi-
zens residing in the country”. These policies can be more or less restrictive
and, therefore, can discourage or encourage migrants, respectively. Some
political parties of various countries all over the world support the idea
that implementing restrictive immigration policies limits the negative ef-
fects of migrations and, consequently, leads to better living and economic
conditions for the natives. On the other side, many politicians and intel-
lectuals argue that the legislative system of a country should encourage
immigrants and facilitate their settling.

In this work, we investigate the causal effect of immigration policies
on crime rates. Specifically, we study the effect of the restrictiveness of
the implemented immigration policy on one year lagged national crime
rate, expressed in terms of homicides every 10.000 inhabitants. We ap-
proach this research question from a country level perspective: in par-
ticular, we focus on the subset of OECD countries that are located in the
continental Europe and we inspect their policies towards migrants from
1980 and 2010. These policies have been measured in terms of restrictive-
ness in the IMPIC (Immigration Policies in Comparison) Dataset (Helbling
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et al., 2017, Schmid and Helbling, 2016), that properly conceptualizes
and quantitatively compares many national policies that affect migrants
(Munck & Verkuilen, 2002). Starting from the restrictiveness measures
supplied by the IMPIC Dataset and taking into account the conceptual-
ization of the observed policies that the same dataset proposes, we eval-
uate the national immigration policy over two political dimensions: re-
strictiveness of regulations and restrictiveness of control strategies. From
now on, we denote by Reg and Cont the two variables representing those
two dimensions. We present a treatment variable that qualitatively dis-
tinguishes country-year profiles with respect to these two measures and
we pairwise compare different political strategies.

Our empirical analysis covers 22 OECD countries that are situated
in the continental Europe 5. These countries are characterized by very
different immigration experiences: there are countries that have experi-
enced increasing immigration since one or two centuries (Great Britain,
Germany, France), countries that recently turned from emigration to im-
migration (Italy, Spain) and countries that have experienced very lim-
ited immigration (Finland) (Helbling et al., 2017). However, they are still
highly comparable from an institutional point of view, as they are all
fully developed democracies and are all located in Europe. In Figure 17
we show a map of the 22 countries included. We believe that this is an in-
novative contribution to the existing literature about migration. Indeed,
there are just some recent studies (Geddes and Scholten, 2016, Messina,
2007) about immigration policies but they look at particular behaviors of
individual countries or describe a small number of countries (Helbling
et al., 2017). Even if there are existing works that assess the effects of mi-
gration flows on crime rates, they focus on single countries comparing
subnational administrative entities and they do not take into account the
national political strategy towards migrants. Moreover, they all rule out
spillover effects.

In this empirical scenario, interference may play a relevant role. Mi-
grants may choose to avoid highly restrictive countries and to settle in

524 OECD countries are located in the continental Europe but we remove from the anal-
ysis Hungary and Estonia as they present extreme values of the crime rate.
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Figure 17: Included countries: red colored countries are the ones included in
our analysis. They are the 22 ORCD countries located in continental Europe

places where laws appear to be more welcoming. But we expect that
they try to preserve some characteristics of their settling choice. Thus,
the general idea is that dependence between two countries is related to
their level of similarity. We assume that two mechanisms may drive in-
terference: geographical proximity and cultural proximity. Thus, we build
a continuous indicator that analytically captures these driving mecha-
nisms of interference. Each component contributes according to a given
weight. We test various configurations of the influence weights in order
to check the robustness of our results with respect to different restrictions
about dependencies.
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2.3.2 Data

This work merges different data sources. First, we use the IMPIC (Im-
migration Policies in Comparison) Dataset (Helbling et al., 2017) that pro-
vides information about national immigration policies. In particular, this
dataset includes data on migration policies for all the OECD countries
over thirty years (from 1980 to 2010). Policies are measured with respect
to their restrictiveness, from 0 (less restrictive) to 1 (highly restrictive).
Data include more than 50 policies for each country-year profile and
items are aggregated in different indicators of the general restrictiveness
towards migrants with respect to the regulation and control protocols. The
former aspect is related to all the laws that discipline immigrants and
their life in the hosting country, while the latter is referred to the mech-
anisms that help in monitoring whether the regulations are abided by
(Schmid & Helbling, 2016).

Second, we handle different datasets to assemble the Influence In-
dex (II), which measures the extent of dependency between each pair of
countries at a given year, that is, the extent to which a country’s immi-
gration policy influences the crime rate of another country. As we will
fully discuss in the forthcoming section, this index is a convex combi-
nation of two complex indicators quantifying geographical proximity and
cultural similarity between two countries at a given year. We build up
the geographical proximity indicator starting from the CEPII Dist Dataset
(T. Mayer and Zignago, 2011) which includes different measures of bilat-
eral distances (in kilometers) and a dummy variable denoting pairwise
contiguity. Furthermore, we explore cultural similarity between each pair
of countries at a given year looking at the linguistic similarity through
the CEPII Language Dataset (Melitz & Toubal, 2014) and at the religious
similarity through CEPII Gravity Dataset (Fouquin, Hugot, et al., 2016).

Third, we make use of some datasets that provide country-year fea-
tures. Specifically, we collect information about crime rates relying on the
World Countries Homicide rate dataset which comprises information about
the country-year specific number of homicides per 10.000 inhabitants. In
addition, we manage the World Development Indicators dataset, provided

63



by the World Bank (Coppedge et al., 2018a, Lindberg et al., 2014 and
Coppedge et al., 2018b) which contains highly detailed country-year in-
dicators referring to various aspects of society: they quantitatively mark
out the economic situation, the demographic features, the state of the so-
cial welfare and democracy and even the level of equality, freedom and
justice.

The observed population is characterized by country-year observa-
tions: we deal with C = 22 countries observed over T = 30 years where
the initial time t = 1 is year 1980 while the ending time t = T is year
2010). 6. Therefore, the generic unit i is a pair (c, t) and the total num-
ber of units is N = C × T . We indicate as Yobs = {Y obsct } the (N × 1)

observed (country,year) outcome vector. Furthermore, we take into ac-
count of the pre-treatment covariates matrix X with dimension N × P

: each row of this matrix represents a country-year observation, while
each column refers to a specific baseline factor. The included covariates
can be grouped in four sets, according to the main issue they refer to:
i) Economy: GDP per capita, equal distribution of resources index, state
ownership of economy index; ii) Inequality: educational inequality index,
income inequality index, health equality index, power distributed to gen-
der index, equal access; iii) Freedom and Participation: civil participation
index, freedom of expression index, freedom of religion; iv) Demography:
life expectancy, fertility rate. We denote as X the set collecting these vari-
ables.

We point out that we assume that there is a one-year lag effect of base-
line covariates on treatment and of treatment on outcome variables. We
state that the covariates of one country c at time t affect its individual as
well as neighborhood treatment at time t+ 1 and that the joint treatment
in turn affects the outcomes at time t+ 2. Figure 18 provides an intuition
of this conceptual idea. There is no way to test this assumption, but a
lagged process of causation seems plausible in the considered empirical
scenario. In addition, in order to avoid reverse causality issues, in the

6Estonia starts to be included in the analysis from 1991, after its Independence. Czech
Republic and Slovak are instead considered only from 1993: they both became independent
countries after the Dissolution of Czechoslovakia which took effect on Jan 1, 1993.
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Figure 18: Temporal structure of effects: the covariates of one country c at
time t affect his individual as well as neighborhood treatment at time t + 1
and that the joint treatment in turn affects the outcomes at time t+ 2

propensity score estimation we control for no-lagged outcome variables.
For instance, we consider the baseline covariates of one country at time t
to model his joint treatment at time t + 1 and consequently his outcome
at time t + 2 and in the set of the pre-treatment variables at time t we
include the outcome at time t as well.

2.3.3 Modelling Interference: Influence Index (I)

Here, we must define the interference structure taking into account the
possible mechanisms that could make immigration policies in one coun-
try affecting the crime levels of other countries. The idea is that immi-
grants avoid highly restrictive countries and settle to areas that are simi-
lar to the first choice with respect to some characteristics, but more polit-
ically welcoming. Thus, the relevance of spillover between each pair of
countries depends on their pairwise similarity. We assume that the kind
of similarity that plays a role in this mechanism is the geographic prox-
imity ( meaning, the geographic distance between countries ) and the
cultural similarity. In some sense, we state that a migrant, who is willing
to move, chooses the most welcoming alternative among the countries
that are relatively near and culturally similar to the first choice option,
that though implements highly restrictive laws. Therefore, we build up
a composite indicator which numerically summarizes these two mech-
anisms which we reasonably believe are the key prompters of depen-
dency. The two components contribute to the determination of the global
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index according to some weights, α and β. This index, that we call Influ-
ence Index (I), gives a unique information about how much one country c
interfere with a country c′ at time t. Formally: [Influence Index (I)]

Icc′,t = α× IGcc′ + β × ICcc′,t

where IGcc′ ∈ [0, 1] is the geographic proximity indicator which measures
the geographical proximity between country c and country c′ and ICcc′,t ∈
[0, 1] is the cultural similarity indicator that measures the cultural similarity
between two countries time t. The constants α and β, with α+β = 1, are
the Influence Inputs Weights (IIW) that determine the extent to which
each component contributes to the global index. Note that, since the
Influence Index is a convex combination of two indicators bounded be-
tween 0 and 1, it is in turn bounded between 0 and 1, that is, Icc′,t ∈ [0, 1].
More details about the construction of the Influence index can be found
in the Appendix A.2. We test various allocations of II to check the ro-
bustness of our results with respect to different assumptions over the
interference structure. Following the same approach of many existing
works in economics and social sciences (Del Prete et al., 2019), we have
ruled out the presence of intertemporal links, that is we set I(ct),(c′t′) =

0 ∀c, c′, t, t′ with t 6= t′. This assumption rules out any form of intertem-
poral dependencies between country-year profiles. This means that the
potential outcome of a given country c observed at time t does not de-
pend on the treatment of any other country (included itself) observed at
a different point in time t′. The structure of between-countries depen-
dencies is uniquely ruled by the year specific influence index Icc′t. Con-
versely, within-country intertemporal dependencies are uniquely mod-
elled according to the temporal structure of effects that we have intro-
duced in the Subsection 2.3.2.

2.3.4 Treatment Categories

IMPIC dataset provides indicators which measure the country-year re-
strictiveness towards migrants with respect to regulations and control mech-
anisms. Let us denote as regi the reported value of the restrictiveness in

66



terms of regulations of the generic country-year profile i = (c, t) and
with conti the corresponding value in terms of control protocols. We de-
fine the nominal treatment categories looking at the joint distribution of
the two indicators. In particular, denoting as medReg and medCont the
median of the distribution of the regulations indicator and of the control
one, respectively, we define the treatment categories as follows

Definition 5 (Nominal Treatment Categories ). Individual treatment is ob-
tained by applying the following categorization criterion.

• Zi=LL if regi ≤ medReg and conti ≤ medCont: this category identifies
profiles that are barely restrictive with respect to the two mechanisms.

• Zi=HL if regi > medReg and conti ≤ medCont: this category detects pro-
files which implement restrictive regulations but weak control strategies.

• Zi=LH if regi ≤ medReg and conti > medCont: this category indicates a
welcoming attitude in terms of regulations but intense control protocols.

• Zi=HH if regi ≥ medReg and conti ≥ medCont: this category denotes an
highly restrictive policy towards migrants with respect to both regulations
and control.

These categories intend to summarize the country-year political strat-
egy towards migrants. They have been defined by following an approach
which ensures to have an accurate but still interpretable differentiation
of the examined political profiles. The two measures on which this cate-
gorization depends, regulations and control mechanisms, are considered
in the existing literature about immigration policies the two main de-
terminants of the (latent) overall political approach towards immigrants
(Helbling et al., 2017). Therefore, we can reasonably believe that the pro-
posed categorization plausibly represents the country-year’s attitude to-
wards migrants, while guaranteeing both accuracy and interpretability
7

Figure 19 provides a graphical idea of the previously described def-
inition procedure. The left subfigure shows the density distributions of
the regulation and control indexes, across the country-year profiles: their

7Since this categorization is arbitrary, we will check the robustness of results under var-
ious plausible definitions of the treatment variable.

67



corresponding median values are identified by dotted lines (Helbling et
al., 2017). The right subfigure shows the individual treatment collocation
based on their own values of the regulation and control indexes.

(a) Density distributions of regulation (vi-
olet line) and control (blue line) indexes,
and their respective medians (dotted
lines)

(b) Individual collocation in the treat-
ment categories according to the regula-
tion and control indexes

Figure 19: Treatment Categories: definition

Hence, we deal with a K-valued individual treatment, where K = 4.
Let us denote as Z = {Zct}, the (N × 1) multi-valued treatment vector
where Zct ∈ {LL,HL,LH,HH}. Following Definition 5 and assuming
the Influence Index as the ruling mechanism of dependencies, we explicit
the neighborhood treatmentGct as

Gct =


GctLL
GctHL
GctLH
GctHH

 =


∑
c′∈Nct Icc′,tδAc′t∑
c′∈Nct Icc′,tδHLc′t∑
c′∈Nct Icc′,tδLHc′t∑
c′∈Nct Icc′,tδHHc′t

 ,

where δLLc′t, δHLc′t, δLHc′t, , δHHc′t are dummy variables such that δLLc′t =

1 if Zc′,t = LL and 0 otherwise; δHLc′t = 1 if Zc′,t = HL and 0 otherwise;
δLHc′t = 1 if Zc′,t = LH and 0 otherwise; δHHc′t = 1 if Zc′t = HH

and 0 otherwise. Consequently, the potential outcomes are defined as
Yct(Zct,Gct). Figure 20 displays the distribution of the neighborhood
treatment variable under the hypothesis of equal contribution to the In-
fluence index of the cultural and geographical subcomponents, (α = β =
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1
2 ). The pre-treatment variables that we employ in this analysis are the

(a) Tridimensional scatterplot of the neigh-
borhood treatment variable

(b) Density distribution of the singular
components that constitutes Gct

Figure 20: Neighborhood treatment, under α = β = 1
2

: (left) tridimensional
scatterplot of the neighborhood treatment variable: the first three compo-
nents correspond to the three axes that are present in the figure, while the
value of the latter one is analyzed by looking at the color intensity; (right)
density distribution of the singular components that constitutes the multi-
variate neighborhood treatment variable

ones described and motivated in Subsection 2.3.2. They effectively sum-
marize four aspects that may impact both the country-year’s attitude to-
wards migrants and their expected crime rate: economy, inequality, free-
dom and participation and demography. Since covariates cover hetero-
geneous characteristics of countries and they refer to the year previous
to the realization of the treatment (as extensively motivated in Subsec-
tion 2.3.2), we can reasonably assume that, conditioning on these charac-
teristics, the weak unconfoundedness assumption holds and so that the
country-year’s attitude towards migrants and its potential crime rate are
independent.

In order to estimate the causal effects of interest, we follow the esti-
mation procedure described in Section 2.2.
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2.3.5 Joint Multiple Generalized Propensity Score (JMGPS)
Estimation

We estimate the two components of JMGPS (see Definition 3), that is the
individual propensity score and the neighborhood propensity score.

Individual Propensity Score

The individual propensity score φ(z;xz) is the individual probability of
receiving an individual treatment z conditioning on unit-level baseline
covariates. If the individual treatment is a categorical variable with K

nominal categories the estimation strategy consists in fitting a model for
categorical responses. Here we use the Multinomial Logit Model (Agresti,
2018; Long et al., 2006 and Menard, 2002), where the reference category
is set to ”LL”, that is,

P (Zi = LL) =
1

1 +
∑
z 6=LL expβzX

z
i

,

P (Zi = HL) =
expβHLX

z
i

1 +
∑
z 6=LL expβzX

z
i

,

P (Zi = LH) =
expβLHX

z
i

1 +
∑
z 6=LL expβzX

z
i

,

P (Zi = LH) =
expβHHX

z
i

1 +
∑
z 6=LL expβzX

z
i

.

Given the vector of estimated parameters θ̂z = {β̂HL ∪ β̂LH ∪ β̂HH},
we denote the estimated individual propensity score corresponding to the
actual treatmentZi as Φ̂i = φ(Zi;X

z
i ; θ̂

z). We include inXz
i the whole set

of covariates X we have described in Section 2.3.2. Figures 21 provides
a graphical intuition of the marginal and joint distribution of predicted
propensity scores.

Neighborhood Propensity Score

In the considered empirical scenario, the neighborhood treatment is a
quadrivariate continuous variable,Gct.
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(a) Histograms of propensity scores (b) Tridimensional scatterplot of
propensity scores: colors refer to
φ(HH;Xz

i ; θ̂HH)

Figure 21: Individual Propensity Score

We first apply a transformation on each component of the neighborhood
multi treatment (more details can be found in the Appendix A.3) so that,
after the transformation, we can state that the obtained variables G∗i,z
follow a normal distribution. This transformation allows us to fairly as-
sume a multivariate normal distribution over G∗i and, for this reason, we
do not take into account alternative distributions of G∗i .

Specifically, the four transformed components jointly follow a quadrivariate-
normal distribution:

G∗i ∼MN (µG∗i ,ΣG
∗),

where the vector of the means µG∗i depends on the individual treatment
and on units’ covariates through some parameters,

µG∗i =
[
µG∗i,LL , µG∗i,B1

, µG∗i,B2
, µG∗i,C

][
αG∗LL + βTG∗LLXgi + βTG∗LLZi, αG

∗
HL

+ βTG∗HLXgi + βTG∗HLZi,

αG∗LH + βTG∗LHXgi + βTG∗LHZi, αG
∗
HH

+ βTG∗HHXgi + βTG∗HHZi
]

and the variance-covariates matrix ΣG∗ is a (4 × 4) matrix such that the
diagonal embraces the elements σ2

G∗z
, which represent the variances of

each singular component, while the elements that are out of the diagonal
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represent the covariances between each pair of G∗z and G∗z′ , with z, z′ ∈
Z , that is, ρ(G∗z ,G

∗
z′ )
σG∗zσG∗z′

To estimate these quantities, we fit Multivariate Multiple Linear Regres-
sion Model, (Davis, 1982,Duchesne and De Micheaux, 2010), regressing
the (transformed) unit neighborhood treatment G∗i on the individual
treatment Zi and on the predictors that are candidate to influence the
neighborhood treatment, Xg

i . Here we include as explanatory variables
Xg
i the whole set of characteristics X , the individual treatment Zi and a

measure of vertex centrality. This procedure determines µ̂G∗i .
The variance-covariance matrix is estimated looking at the residuals of
the model. In particular, we first compute residuals of the model and,
then, we estimate the variance and covariance matrix of the residuals
Σ̂G∗ , that results to be an unbiased estimator of ΣG∗ . Therefore, the
neighborhood propensity score corresponds to the quantity

Λ̂(g; z,Xg
i ) =

1

(2π)
3
2

∣∣Σ̂G∗
∣∣ 12 exp

[
− 1

2

(
g − µ̂G∗

)T
Σ̂
−1

G∗
(
g − µ̂G∗

)T]
.

2.4 Empirical Results

In this section, we illustrate the main empirical findings of this work 8.
We evaluate the impact of immigration policies on crime rates evaluating
pairwise comparisons between the four treatment levels. To assess the
robustness of results with respect to different assumptions on the influ-
ence structure, we check the following configurations of the Influence In-
puts Weights (IIW): i) α = β = 1

2 , (gc): both geographical proximity and
cultural similarity shape dependencies between units, and contribute in
determining the influence index with equal weight; ii) α = 1, β = 0,
(g): only geographical proximity drives interference; iii) α = 0, β = 1,
(c): the influence structure depends on cultural similarity only and iv)
α = 0, β = 0, (noint): no interference mechanism comes into play.

8Here, we just present conclusions about the causal effects of interest, more detailed
results about the models we implemented in the whole analysis can be found in the Ap-
pendix A.6. Descriptives about included covariates are provided by Appendix A.4.
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Figures 22 graphically shows the main empirical results, which are nu-
merically reported in Table 2. The general conclusion is that severe ap-
proaches towards immigration imply higher crime rates, compared with
a welcoming political receipt. This finding holds when the comparison is
with strategies with restrictive regulations only (HL-LL), systems where
only control protocols are particularly strict (LH-LL) and profiles adopt-
ing a restrictive legislative plan in terms of both regulations and control
mechanisms (HH-LL). If we look at how results change with different def-
initions of the influence weights, we can state that ignoring the possible
spillover mechanism (noint) leads to a downward bias in the estimates.
This conclusion is stable in all the contrasts of interest. On the contrary,
allowing for the presence of interference increases the size of the effects.
In particular, introducing the cultural similarity in the mechanism of de-
pendencies enhances the effects’ intensities (c). Geographical proximity
mitigates the impact of interference on results, but also assuming that
geography is the only prompter of the spillover mechanism steers to
stronger conclusions, compared to the no-interference scenario (g and
gc). These considerations hold in all the considered comparisons.
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Figure 22: Direct treatment effects: point estimates and 95% Confi-
dence intervals. Colors signal the different assumption about interference:
gc(lightblue), g(green), c(red), noint(purple)

Table 2: Direct Treatment Effects for the contrasts of interest: point esti-
mates and 95% Confidence intervals

Effects of Interest

IIW HL-LL LH-LL HH-LL

(α, β)

( 1
2 ,

1
2 ) 0.17774 *** 0.24439 *** 0.21145 ***

(0.17501;0.18008) (0.24246;0.24618) (0.20907;0.21409)

(1, 0) 0.03281 *** 0.1867 *** 0.0451 ***

(0.02768;0.03721) (0.18308;0.19007) (0.04062;0.05006)

(0, 1) 0.17778 *** 0.25819 *** 0.20191 ***

(0.17483;0.1803) (0.2561;0.26012) (0.19934;0.20476)

(0, 0) 0.08228 *** 0.11245 *** 0.00647 ***

(0.07842;0.08657) (0.10927;0.11517) (0.00213;0.01038)
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As we fully discuss in Appendix A.5, these results are robust to dif-
ferent specifications of the multi-valued treatment ( we introduce an al-
ternative definition of the multi-valued treatment collapsing the LH and
HL categories into one M category).

2.5 Concluding Remarks and Discussion

This work extends the existing framework of causal inference under in-
terference allowing for a multi-valued treatment and for an interference
structure shaped through a weighted network. This is a very common
setting that can be found in a wide wide ensemble of applications. For ex-
ample, political science often deals with policy evaluation settings with
a multi-valued strategy, as treatments vary across multiple dimensions,
so calling for an high level of complexity. Here we evaluate the effect
of the national immigration policy on the crime rate. Given the multi-
valued nature of the individual treatment, the neighborhood exposure
cannot be summarized by a single measure, as in the binary setting. Our
idea is to introduce a multi-valued network exposure, where each unit
is exposed to their neighbors’ treatment, weighted by the strength of
their interaction. Information about the whole exposure mapping is de-
picted by the Neighborhood Treatments Exposure Matrix (NTEM). This
framework implies an extended definition of the joint propensity score,
called Joint Multiple Generalized Propensity Score (JMGPS), which mod-
els a multi-valued individual treatment and a multivariate neighborhood
treatment. Direct effects of interest are pairwise comparisons of all treat-
ment levels and they are computed comparing imputed potential out-
comes controlling for the multi-valued network exposure. Our empirical
results show that implementing a welcoming immigration policy causes
a reduction in the crime rate. These findings suggest that welcoming im-
migration policies may contribute in reducing the social unrest between
immigrants and natives. One possible explanation is that adopting a
legislative system, which allows migrants to be actively involved in the
hosting community, conceding them civil and social rights, encourages
the integration process and reduces frictions. Results also show that ig-
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noring multi-valued interference leads to weaker estimates.
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Chapter 3

Heterogeneous Treatment
and Spillover Effects under
Clustered Network
Interference

This Chapter is a joint work with my supervisor Prof. Laura Forastiere
and with my colleague Dr. Falco J. Bargagli-Stoffi. The full text of the
article will be soon available from the arXiv repository.
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3.1 Introduction

3.1.1 Motivation

According to Cox, 1958, there is interference between different units if
the outcome of one unit is affected by the treatment assignment of other
units. In the case of policy interventions or socio-economic programs,
interference may arise due to social, physical or virtual interactions. For
instance, in the case of infectious diseases, unprotected individuals can
still benefit from public health measures taken in the rest of the popu-
lation, such as vaccinations or preventive behaviors, because these re-
duce the reservoir of infection (Bridges et al., 2000; Nichol et al., 1995),
the vector of transmission (Binka et al., 1998; Howard et al., 2000) and
the number of susceptible individuals (Broderick et al., 2008; Kelso et
al., 2009; Kissler et al., 2020). In labor market, job placement assistance
can affect job seekers that use this service, but it can also have an effect
on other job seekers that are competing on the same job market. In ed-
ucation, learning programs may spill over to untreated peers through
knowledge transmission paths. In marketing, the exposure to an adver-
tisement might directly affect the consuming behaviour of the exposed
individuals, and indirectly affect other individuals that are influenced by
the consuming choices of people in their social network. If the exposure
to the advertisement takes place in social media, the spillover effect of
being targeted by a marketing campaign might also be explained by the
propagation of the advertisement to non-exposed users that are virtually
connected to the targeted ones.

In economics and social sciences there has been increasing interest in
estimating spillover effects on networks in many different contexts: Du-
flo and Saez, 2003 study the role of information and social interactions
in retirement plan decisions in the academic community; Cai et al., 2015
assess the spillover effect of training sessions on uptake of weather in-
surance in rural areas of China; Muralidharan and Sundararaman, 2015
study the aggregate effects of school choices while Imai et al., 2018 eval-
uate the effects of the Indian National health insurance. In the presence
of interference, the effect of the treatment status of other units on one’s
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outcome is usually referred to a spillover effect. Spillovers are a crucial
component in understanding the full impact of an intervention at the
population-level. In fact, the scale-up phase of an intervention requires
knowledge about the mechanism of spillover and how this would take
place in the population where the intervention will be rolled out. In-
formation about spillovers of public interventions can also support deci-
sions about how best to deliver interventions and could be used to guide
public funds allocation. Indeed, the presence of beneficial spillover ef-
fects allows treating a lower percentage of the population, because the
untreated individuals would still benefit from the treatment provided to
the targeted sample. The use of spillover effects to save resources could
be further improved if we were able to target specific individuals who
would increase the overall impact of the intervention. A targeting (or
seeding) strategy aims at delivering the intervention to certain individ-
uals such that the impact on the overall population is maximized (e.g.,
Kim et al., 2015; Montes et al., 2020; Valente, 2012; VanderWeele & Chris-
takis, 2019). Typically, seeding strategies are designed in settings where
either an element of the intervention (e.g., information, flyers or coupons
provided during the intervention) or the outcome (e.g., the adoption of
a behavior or a product) diffuse through the network. In these settings,
the goal is the identification of the set nodes in network that, if targeted,
would maximize contagion or diffusion cascades. To do so, seeding
strategies are designed using information on the network structure and
the dynamics of contagion or diffusion. This ‘influence maximization’
problem is NP-hard and computer scientist have developed approximate
algorithms that usually rely on simplified contagion processes (Kempe
et al., 2003a). Indeed, it is typically assumed that susceptibility to direct
treatment and to others as well as the influential power are homogeneous
across individuals.

Here we take a different perspective. First, we investigate spillover
effects of a unit’s treatment on other units’ outcome without specifying
the mechanism through which this might take place, Second, we focus on
the assessment of the heterogeneity of susceptibility to direct and indirect
treatment. In the field of personalized medicine it is well known that in-
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dividuals with different characteristics might respond differently to the
treatment (e.g., Chakraborty & Murphy, 2014; Kosorok & Laber, 2019;
Murphy, 2003). In the presence of interference, we also have that differ-
ent people might be more or less susceptible to the treatment received
by other units. This means that not only the treatment effect but also
spillover effects are heterogeneous. Understanding these heterogeneities
can help policy-makers in the scale-up phase of the intervention, it can
guide the design of targeting strategies with the ultimate goal of making
the interventions more cost-effective, and it might even allow generaliz-
ing the level of treatment spillover effects in other populations.

3.1.2 Related Work

In the past decade causal inference literature has experienced a grow-
ing interest in the mechanism of interference, leading to the assessment
of bias for causal effects estimated under the no-interference assump-
tion (Forastiere et al., 2020; Sobel, 2006a), the design of experiments to
either avoid or assess interference (Angelucci & Di Maro, 2015; Baird
et al., 2018; Kang & Imbens, 2016), and the estimation of casual effects
under interference. Estimators for treatment and spillover effects have
first been developed under the assumption of partial interference, allow-
ing interference within groups but not across different groups (Basse &
Feller, 2018; Forastiere et al., 2019a; Forastiere et al., 2016; Hudgens &
Halloran, 2008; Liu & Hudgens, 2014; Liu et al., 2016; Tchetgen & Van-
derWeele, 2012). However, the assumption of group-level interference
is often invalid. Hence, several works focus on the estimation of causal
effects in the context of units interconnected on networks, both in ran-
domized experiments (Aronow & Samii, 2017; Athey et al., 2018a; Le-
ung, 2020) and in observational studies (Forastiere et al., 2020; Forastiere
et al., 2018; Ogburn et al., 2017; Sofrygin & van der Laan, 2017). In the
context of social networks, even in randomized experiments where the
treatment is randomized at the unit-level, exposure to other units’ treat-
ment is not. Therefore the propensity of being exposed to different levels
of treatments among network contacts will depend on the network struc-
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ture. Aronow and Samii, 2017 developed an Horvitz-Thomson estimator
to adjust for the imbalance in this propensity across units under different
individual and contacts’ treatment status.

In parallel to this field of research on interference, in recent years,
thanks to the availability of increased computing power and large data
sets, researchers have started to think about advanced data-driven meth-
ods to assess the heterogeneity of treatment effects with respect to large
numbers of features. In fact, the standard methods for subgroup anal-
ysis to investigate heterogeneous effect has several drawbacks: (1) they
strongly rely on the subjective decisions on the specific variables defining
the heterogeneous sub-populations; and (2) they fail to discover hetero-
geneities other than the ones that are a priori defined by the researchers.
In addition, a data-driven method avoids potential problems related to
cherry-picking the subgroups with extremely high/low treatment effects
(Assmann et al., 2000; Cook et al., 2004). Hence, many data-driven algo-
rithms for the estimation of heterogeneous causal effects have been pro-
posed in recent years (Athey & Imbens, 2016; Athey et al., 2019; Foster
et al., 2011; Hahn et al., 2020; Hill, 2011; Lechner, 2019; Starling et al.,
2019; Su et al., 2012; Wager & Athey, 2018).1 The aim of these meth-
ods is to detect ‘causal’ rules defining subsets of the study population
where the treatment effect for that subgroup deviates from the average
treatment effect. This is done by selecting the most important features
and their values that define a partition of the covariate space (the tree)
where the treatment effect is ‘significantly’ heterogeneous. Among these
algorithms, many rely on extensions of the standard Classification and
Regression Trees (CART) (Breiman, 2001; Friedman et al., 1984), and are
adapted to different settings (Athey & Imbens, 2016; Athey & Imbens,
2015; Bargagli Stoffi & Gnecco, 2018, 2019; Guber, 2018; Johnson et al.,
2019; K. Lee et al., 2018; G. Wang et al., 2018; Zhang et al., 2017).

Causal trees have already been applied to various scenarios for the
discovery of heterogeneous effects of air pollution (K. Lee et al., 2018),
employment incentives (Bargagli Stoffi & Gnecco, 2019), job training pro-
grams (Cockx et al., 2019), development finance projects (Zhao et al.,

1For a recent review the reader can refer to Athey and Imbens, 2019.
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2017), cardiovascular surgeries (G. Wang et al., 2017), cancer treatments
(Zhang et al., 2017), and health insurance (Johnson et al., 2019). The wide
usage of tree-based algorithms is due, in particular, to their ability to
deal with non-parametric settings in an efficient and interpretable way.
Indeed, these algorithms do not assume any specific shape of the treat-
ment effect function. Causal trees and similar tree-based methodologies
built on the Classification and Regression Trees (CART) algorithm (Fried-
man et al., 1984) have been widely employed because of various attrac-
tive features: i.e., they can deal with a large number of variables that
are potentially responsible for the heterogeneity, they are simple to un-
derstand and visualize, easy to interpret, computationally scalable, and
they can deal with non-linear relationships in the covariates without the
need of data pre-processing. Nevertheless, tree-based methods for the
estimation of heterogeneous causal effect have been developed ruling
out the presence of spillover effects by assuming no-interference between
the units. On the other hand, the growing literature on spillover effects
has focused on the estimation of population average spillover effects, ne-
glecting potential heterogeneous spillover effects. There have been few
articles dealing with different types of heterogeneity in spillover effects.
Forastiere et al., 2019a; Forastiere et al., 2016 estimated the heterogeneity
of spillover effects with respect to principal strata defined by the com-
pliance behaviors in response to a cluster randomized treatment. How-
ever, the latent nature of these strata makes it difficult to effectively use
the detected heterogeneity to design targeting strategies or to generalize
the conclusions to a different population. Observed heterogeneity is in-
stead studied in Arduini et al., 2014 and Arduini et al., 2019 where the fo-
cus is on peer effects from other units’ outcomes and their heterogeneity
across two groups, and the estimation relies on linear-in-means models
and two-stage least squares. To the best of our knowledge there are no
studies dealing with the heterogeneity of spillover effects on networks.
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3.1.3 Contributions

In this paper, we bridge the gap between these two bodies of causal in-
ference literature by proposing a new algorithm for the discovery and
estimation of heterogeneous treatment and spillover effects with respect
to a large number of characteristics, including individual and network
features. Our method is designed for randomized experiments affected
by the presence of clustered network interference, that is, units are or-
ganized in a clustered structure, with no interactions between clusters
and a network of connections within clusters (e.g., friendship networks
within schools). Randomization is assumed at the individual-level, re-
sulting in treated and untreated units in the same cluster. Under this
setting, spillover effects are confined within clusters and are assumed to
take place on network interactions.

Our proposed method, network causal tree (NCT), builds upon the
causal trees proposed by Athey and Imbens, 2016, by modifying the split-
ting criterion to target treatment and spillover effects under interference.
Splits are made so as to maximize the heterogeneity of the targeted causal
effect(s), treatment and/or spillover effects, across the population. This
criterion relies on the unbiasedness of the estimator of the effect(s) within
each subset of the population. Therefore, we also contribute to the ex-
isting literature on interference by developing an unbiased estimator for
conditional treatment and spillover effects. We extend the Horvitz-Thomson
estimator in Aronow and Samii, 2017 to conditional causal effects under
clustered network interference and we prove its consistency under the
clustered network setting. This estimator is then used in our network
causal trees to decide the binary splits that maximize the heterogeneity
and to finally estimate the heterogeneous causal effects within the se-
lected sub-populations.

In order to use the selected partition of the covariate space and the
estimated treatment and spillover effects to guide policies, the heteroge-
neous sub-populations should be identified based on the causal effects
that will be part of the decision rule. For instance, a policy that assigns
the treatment to those who benefit the most from it requires the discov-
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ery of the subsets of the populations with heterogeneous treatment ef-
fect. Alternatively, a policy that is designed to target those who will
respond to both their own treatment and the neighbors’ treatment will
need to identify sub-populations with high treatment and spillover ef-
fects. Hence, the proposed network causal tree (NCT) is optimized to de-
tect the heterogeneity in treatment and spillover effects (i) either simulta-
neously, or (ii) separately. By reworking the criterion function of the sem-
inal causal trees algorithm to account for interference, we allow the al-
gorithm to spot heterogeneity in treatment and/or spillover effects. The
discovery of the causal rules (the variables and their values defining het-
erogenous sub-populations) representing the heterogeneity of one causal
effect (treatment or spillover) can be achieved by using a splitting crite-
rion minimizing the MSE of that causal effect. On the contrary, if our
goal is to identify a partition of the covariate space that can explain the
heterogeneity of multiple causal effects, we propose the use of a com-
posite splitting function that is designed to minimize the MSE of all the
effects. This flexibility allows scholars and policy-makers to customize
their investigations depending on their targeting goals. For instance, if a
policy-maker wants to target individuals with the highest treatment ef-
fect and the lowest spillover effect (with the motivation that those with
higher spillover effects can benefit from the treatment received by others)
the NCT algorithm would be implemented with the use of a compos-
ite splitting function, to detect specific subsets of the population where
both treatment and spillover effects are heterogenous and the decision
criterion can be applied. Conversely, if a targeting strategy is designed
to target just individuals who would benefit the most from receiving the
treatment, regardless of other people’s assignment, a tree would be build
using a single splitting criterion targeted to minimize the MSE of the
treatment effect. Similarly, a single criterion targeted to a spillover ef-
fect would be used in the case of targeting strategies only involving that
spillover effect.

It is important to note that the use of our algorithm to design imple-
mentation strategies is possible thanks to its high level of interpretability.
Our network causal trees provide interpretable inference on heteroge-
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neous treatment and spillover effects by discovering a set of causal rules
that can be represented through a binary tree. As argued by K. Lee et al.,
2018 and K. Lee et al., 2020 it is important to provide interpretable in-
formation on simple causal rules that can be targeted to improve policy
effectiveness and to ensure that stakeholders and policy-makers under-
stand (and, in turn, trust) the functionality of these models. Valdes et al.,
2016 argue that a learning algorithm is interpretable if one can explain
its classification by a conjunction of conditional statements (i.e., if-then
rules). In this regard, tree-based algorithms based on if-then rules, such
as the proposed NCT, are optimal for interpretability.

To assess the performance of the proposed NCT algorithm, we run a
series of Monte Carlo simulation. In particular, we investigate the per-
formance of the proposed algorithm with respect to two dimensions: its
ability (i) to correctly identify the actual heterogeneous sub-populations
and, (ii) to precisely estimate the conditional treatment and spillover ef-
fects. While the latter performance assessment is quite standard in the
literature, the former is critical for interpretable algorithms for heteroge-
neous causal effects (Bargagli-Stoffi et al., 2019).

Finally, we apply are NCT algorithm to a randomized experiment
conducted in China to assess the impact of information sessions on the
purchase of a new weather insurance policy (Cai et al., 2015). Besides
estimating the population average treatment and spillover effects (as al-
ready investigated in Cai et al., 2015), our aim is to detect the strata of
the population where one or both effects are heterogeneous and estimate
these effects within these strata.

The remainder of the paper is organized as follows. In Section 3.2
we introduce the notation, setting, and assumptions that we employ
throughout the paper. In Section 3.3 we define the conditional causal ef-
fects in a general partition of the covariate space and develop a Horvitz-
Thomson estimator. Section 3.4 presents the proposed network causal
tree algorithm, which is based on effect-specific or composite splitting
functions for causal effects under interference. We then conduct a sim-
ulation study to assess the performance of the algorithm and estimator
under different scenarios in Section 3.5 and we illustrate the application
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of the network causal tree on a randomized experiment in Section 3.6.
Section 3.7 concludes the paper with a discussion of the proposed algo-
rithm and directions for further research.

3.2 Clustered Network Interference and Unit-
Level Randomization

3.2.1 Notation and Setting

Let us consider a sample N of N units organized in K separate clusters
K. Let k (k = 1, . . . ,K) be the cluster indicator and let i = 1, . . . , nk be the
unit indicator in each cluster k. Let now consider a connection structure
such that units belonging to the same cluster might share a link whereas
units belonging to different clusters are not connected. This network
structure is represented by the graphG = (N, E), whereN defines the set
of nodes and E defined the set of edges, that is, the collection of links be-
tween each connected pair of nodes. In a clustered network G is in turn
an ensemble of K disjoint sub-graphs: Gk = (Nk, Ek), k = 1 . . .K. The
adjacency matrix A corresponding to the graph G, is a block-diagonal
matrix with K blocks, Ak, k : 1 . . .K, where each element aij,k is equal
to 1 if there is a link between unit i and unit j in cluster k, that is if the
edge εij,k ∈ Ek.

Let now Zik ∈ {0, 1} be a binary variable representing the treatment
assigned to unit i in cluster k and let Yik be the observed outcome. We
denote by Zk and Yk the treatment and outcome vectors in each cluster
k. Similarly, Z and Y denote the treatment and outcome vectors in the
whole sample. It worth noting that treatment status is not the same for
all units belonging to the same cluster. This treatment allocation corre-
sponds to a unit-level randomization where treatment is assigned to each
unit of a cluster independently (as in a Bernoulli trial) or with some level
of dependency (as in a completely randomized trial) based on a proba-
bility distribution P (Zk) (See Section 3.2.3 for further details. Moreover,
for each unit ik we observe a vector Xik of P covariates (or pre-treatment
variables) that are not influenced by the treatment assignment. The vec-
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tor of covariates might include individual characteristics (e.g., age, sex,
socio-economic status, ...), cluster-level characteristics (e.g., cluster size,
location, ...), as well as network characteristics representing aggregated
individual characteristics (e.g., average age or proportion of males and
females, ...) or the network topology (e.g., degree, centrality, transitiv-
ity, ...). Figure 23 provides a graphical intuition on the clustered network
structure and treatment assignments at the unit-level. Edges indicate
links between units, within each cluster. Colors refer to the individual
treatment assignment: red colored nodes represent treated units, while
green colored vertices signal individuals who have been assigned to the
control group.

Figure 23: Clustered Network Structure

3.2.2 Clustered Network Interference

Following the potential outcome framework (Holland, 1986; Rubin, 1974),
we denote by Yik(z), with z ∈ {0, 1} the potential outcome that unit i
in cluster k would experience if the treatment vector in the whole sam-
ple were z. Under the assumption of no-interference, the potential out-
come could be indexed only by the individual treatment assignment Zik,
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that is, Yik(Zik = z). In combination with the assumption of consis-
tency, this assumption is known as Stable Units Treatment Assumption
(SUTVA)(Rubin, 1986). The no-interference assumption is clearly vio-
lated in many real-world scenarios. For instance, the evaluation of the
effect of introducing vaccines against some disease can be affected by
the presence of unprotected individuals that remain healthy because they
have less probability to be in contact with other infected people.

Here, we focus on a particular type of interference: clustered network
interference. As we will show later, focusing on this type of interference
is critical to ensure asymptotic properties of the estimator for conditional
causal effects as well as to allow the network causal tree to divide the
sample into a training set and an estimation set (and a testing set, if ap-
plicable). 2 The assumption of clustered network interference implies
that: i) interference is restricted to nodes of the same cluster and interfer-
ence between clusters is ruled out, that is, one’s outcome is only affected
by the treatment received by units belonging to the same cluster; ii) in-
terference occurs through a function of the cluster treatment Zk, that is,
one’s outcome will depend on a summarizing function of Zk, not on the
whole vector.

Let Zk/i be the vector collecting the treatment status of all units in
cluster k except unit i. Let g(·) : {0, 1}nk−1 −→ ∆ik be a function that
maps a cluster assignment vector Zk/i to an exposure value. We define
it as a function of the dot product between the cluster assignment vector
and a vector of weights δi(Ak,Xk), which in turn depends on the adja-
cency matrix Ak and the covariate matrix Xk, i.e., g(Zk/i, δi(Ak,Xk)) =

f(Zk/i · δi(Ak,Xk)). For instance, the function g(·) could result in the
number or proportion of treated units in a cluster. In this case the weight
vector would be equal to δi(Ak,Xk)) = 1nk−1 or δi(Ak,Xk)) = ( 1

nk−1 )nk−1,
respectively. Alternatively we could use the adjacency matrix to com-
pute the geodesic distance d(i, j) between each pair of nodes in cluster k

2Alternatively, network causal trees could also be extended to the case of one single
network as long as the amount of dependency is limited (to ensure the consistency of the
estimator), and the network has a high level of clustering and could be approximated by
separate communities that could be identified using a community detection algorithm (to
divide the sample into the different sets needed for the causal tree algorithm)
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and let g(Zk/i, δi(Ak,Xk)) =
∑nk−1
j=1

Zjk
d(i,j) . The function (·) is similar to

the ‘effective treatments’ function in C. Manski, 2013 and the ‘exposure
mapping’ function in Aronow and Samii, 2017, although it applies to the
cluster treatment vector only. To ease notation, throughout we will omit
the weight vector δi(Ak,Xk)) in the function g(·). We can now formalize
the clustered network interference assumption as follows.

Assumption 8 (Clustered Network Interference). Given a function g(·) :
{0, 1}nk−1 −→ ∆ik, ∀k ∈ K, ∀i ∈ Nk, and ∀ Z,′ ∈ {0, 1}N such that Zik =
Z ′ik, g(Zk/i) = g(′k/i), the following equality holds: Yik(Z) = Yik(′).

Again, Assumption 8 states that the outcome of a unit i in cluster k de-
pends on the individual treatment Zik and a function of the treatment sta-
tus of the other members of cluster k, i.e., g(Zk/i), regardless of the spe-
cific treatment status of each member. This assumption can be viewed
as an intermediate assumption between (i) assuming no interference and
(ii) making no assumptions about the nature of interference. In a way, it
is similar to the partial interference or the stratified interference in Hudgens
and Halloran, 2008, which are special cases of the clustered network in-
terference assumption, with g(Zk/i) = Zk/i and g(Zk/i) =

∑nk
j=1 Zij .

Let Gik = g(Zk/i), referred to throughout as network exposure. Under
Assumption 8, each unit has |∆ik| × 2 potential outcomes, which we can
write in terms of the individual treatment and the network exposure ex-
posure as Yik(z, g), representing the potential outcome of unit ik under
Zik = z and Gik = g(Zk/i) = g.

We also assume the following consistency assumption:

Assumption 9 (Consistency).

Yik = Yik(Zik, Gik)

This assumption rules out different versions of the treatment and differ-
ent ways in which a value of the network exposure can affect the outcome
of a particular unit. Under a ‘finite sample perspective’, we assume the
potential outcomes of each unit to be fixed but unknown, except the ob-
served Yik(Zik, Gik). Therefore, the only source of randomness in the
potential outcomes is given by the random assignment to the treatment
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and the random network exposure induced by the random cluster as-
signment.

Assumptions 8 and 9 together are alternative to SUTVA when inter-
ference is present and is limited to within clusters. When the weight
function δi(Ak,Xk)) is such that elements δij(Ak,Xk)) = 0 if j ∈ Nk :

aij,k = 0, that is, units that are not directly connected to unit i receive a
weight equal to zero, then interference is limited to the neighborhoodNik
of each unit, withNik = {j ∈ Nk : aij,k = 1}. In this case, Assumptions 8
and 9 correspond to the SUTNVA Assumption in Forastiere et al., 2020.
We denote by N g

ik the set of units defining the network exposure, that is,
N g
ik = {j ∈ Nk : if Z ′jk 6= Zjk then g(′k/i) 6= g(Zk/i), ∀Z ′hk, Zhk, h 6= j} =

{j ∈ Nk : δij(Ak,Xk)) 6= 0}. In most of the literature on spillover effects
this is set is either a cluster k (Hudgens & Halloran, 2008) or the neigh-
borhood of unit i (Forastiere et al., 2020). Alternative specifications are
also possible and might involve higher-order neighbors. Here, we con-
sider an ‘exposure mapping’ function g(·) such that g(·) : {0, 1}nk−1 −→
∆ik ⊂ Z, where Z is the set of integers. In particular, we rely on the
following assumption:

Assumption 10 (Discrete Network Exposure). We assume thatGik ∈ ∆i ⊂
Z, that is, the network exposure is a discrete variable

For instance, we can define a binary network exposure based on a thresh-
old function applied to the number of treated neighbors:

Gik = 1(
( ∑
j∈Nik

Zjk) ≥ h
)
, (3.1)

where h is a threshold. Hence, the g(·) exposure mapping function be-
haves like a threshold function which sums the elements of its argu-
ment (i.e the treatment assignment vector that characterizes the neigh-
borhood of each unit) taking the value of 1 if the resulting value ex-
ceeds a certain threshold (e.g., at least one treated neighbor is treated,
the majority of the neighbors are treated, ...). In our simulation study
as well as in the application we have chosen the following definition:
Gik = 1(

(∑
j∈Nik Zjk) ≥ 1

)
, that is, the network exposure is 1 if at least
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one network neighbor is treated. As a consequence, both the individ-
ual treatment and the network exposure are defined as binary variables,
Zik ∈ {0, 1} and Gik ∈ {0, 1}. It follows that the support of the joint
treatment variable (Zik, Gik) is finite and comprises four possible real-
izations, given by the combination of the two marginal domains. Hence,
(Zik, Gik) ∈ {(z, g) = (0, 0), (1, 0), (0, 1), (1, 1)}. A discrete network ex-
posure is crucial for our causal tree algorithm, at least in the version
proposed in this paper. Indeed, the algorithm relies on the presence of
enough observations for each treatment and exposure value to allow the
estimation of the causal effects. Depending on the stopping rule that
might rely on the accuracy of the estimation of conditional effects or on
the number of observations (see Section 3.4), if the sample size is not
large enough with respect to the number of categories of the network
exposure and/or its distribution is non-uniform and highly skewed, the
network causal tree algorithm might result in a tree with low depth and
low granularity, that is, with highly heterogeneous causal effects even
within the terminal leaves. Therefore, the maximum number of cate-
gories for the network exposure depend on the sample size, the number
of covariates and their nature, as well as on the extent of the heterogene-
ity in the causal effects. It follows, that an eventual researcher, who in-
tends to apply this methodology under more complex definitions of the
joint treatment, should put his effort in credibly reducing the dimension-
ality of the problem. For instance, one could define a set of plausible
exposure thresholds and implement the proposed algorithm, after hav-
ing defined the binary network exposure variable, according to various
values of these thresholds. By following this strategy, the researcher is
also able to evaluate the robustness of results with respect to different
characterizations of the treatment variable.

3.2.3 Unit-Level Randomization and Induced Joint Dis-
tributions

In this work, we consider an experimental design with a unit-level ran-
domization of the treatment, which is independent between clusters but
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might dependent within them. Therefore, the treatment vector Z is a
random vector with probability distribution P (Z = z) and the following
assumption holds.

Assumption 11 (Independent treatment allocation between clusters).

P (Z = z) =

K∏
k=1

P (Zk = zk)

where Zk is the treatment vector in each cluster k.

We denote by πZik the unit-level probability that Zik is equal to 1, un-
der the experimental design in place. In a randomized experiment πZik
is known. In the case of a Bernoulli trial, where each unit is indepen-
dently assigned to the individual treatment, πZik is constant and equal to
α. 3 An example of a design with randomization independent between
clusters but dependent within clusters is that of a completely random-
ized experiment taking place in each cluster. In this case, πZik = would
be equal to m/nk, where m is fixed number of treated units, and the
treatment assignment for each unit does depend on the treatment sta-
tus of other units. Since the network exposure is a deterministic func-
tion g(·) of the cluster assignment vector Zk/i, then the randomization
distribution P (Z = z) induces, together with the definition of the func-
tion g(·), a probability distribution of the vector of network exposures
G in the whole sample. Hence, the probability for a unit of being ex-
posed to a specif value of the network exposure Gik = g given the in-
dividual treatment z, denoted by π

G|Z
ik (g|z), is known and can in prin-

ciple be computed from the probability distribution P (Z). Note that,
when the randomization is independent between units, we can drop
the dependency from the individual treatment and write πGik(g). Let
∆ = {0, 1} ×

⋃
ik∈N ∆ik be the domain of the joint individual and net-

work treatment status, that is, (z, g) ∈ ∆. Let πik(z, g) denote the marginal
probability for unit ik of being assigned to individual treatment z and be-
ing exposed to the network status g. This is equal to the expected pro-
portion of assignment vectors inducing an individual treatment z and a

3The unit-level assignment probability could also vary across clusters as in a two-stage
randomization
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network exposure g:

πik(z, g) =
∑

z∈{0,1}N
1(Zik = z,Gik = g)P (Z = z)

=(πzik)z(1− πzik)1−z × πG|zik (g|z)

This marginal probability is a crucial component of the Horvitz-Thomson
estimator for causal effects under network interference. If, for instance,
the experimental design is a Bernoulli trial with unit-level probability
α and the network exposure is defined by a threshold function on the
neighborhood as in Equation 3.1, then the joint probability could be com-
puted as follows:

πik(z, g) =αz(1− α)1−z ×
[
1−

h−1∑
l=0

(
Nik
l

)
pl(1− p)Nik−l

]g

×
[h−1∑
l=0

(
Nik
l

)
pl(1− p)Nik−l

]1−g

where Nik is the number of neighbors (‘degree’) of unit ik. To deal
with well-defined potential outcomes, we must assume that each unit
has a nonzero probability of being exposed to each (z, g):

Assumption 12 (Positivity). πik(z, g) > 0 ∀i ∈ N , k ∈ K and ∀(z, g) ∈
∆.

When πik(z, g) = 0 for some units, then the average potential outcomes
and causal effects involving these values z and g must be restricted to
the subset of units for which πik(z, g) > 0. For instance, if the network
exposure is defined as in Equation 3.1, then the positivity assumption is
violated for units who cannot be exposed to a value g, that is, those with
a degreeNik lower than the threshold h. Consequently, the analysis must
be restricted only to the subset of the population satisfying the positivity
criterion. The estimator that we propose below also requires the so-called
pairwise exposure probabilities, which describe the joint probability of pairs
of units being exposed to a given individual treatment and network sta-
tus. Hence, given specific exposure conditions (z, g) and (z′, g′) , a
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pairwise exposure probability, denote by πikjh(z, g; z′, g′), quantifies the
probability that the two events (Zik = z,Gik = g) and (Zjh = z′, Gjh =

g′) occur, i.e., πikjh(z, g; z′, g′) = P (Zik = z,Gik = g, Zjh = z′, Gjh = g′).
In general, this can be written as:

πikjk′(z, g, z
′, g′) =

∑
z∈{0,1}N

1(Zik = z,Gik = g, Zjk′ = z′, Gjk′ = g′)P (Z = z)

Under the event of both units being exposed to the same condition (z, g)

we denote the pairwise exposure probability by πikjh(z, g).
In the case of an experimental design assigning treatment indepen-

dently between clusters, under the clustered network interference the
two events (Zik = z,Gik = g) and (Zjh = z′, Gjh = g′), with k 6= h, are
independent and the pairwise exposure probability equals the product
of the two joint probabilities: πikjh(z, g; z′, g′) = πik(z, g)× πjh(z′, g′). In
the of a Bernoulli trial and the network exposure defined on the neigh-
borhood only, this is also true for units belonging to the same cluster,
i.e., k = h, but with neighborhoods Nik and Njk not overlapping, that is
when i and j are not connected and do not share any neighbors.

Note that if πik(z, g) or πjh(z′, g′) = 0 ⇒ πikjh(z, g; z′, g′) = 0, but
not the reverse. Indeed, the joint probability of the two events (Zik =

z,Gik = g) and (Zjh = z′, Gjh = g′) might be zero if the network expo-
sures Gik and Gjh are defined on two subsets of units that coincide or
include jh and ik, respectively. For example, if the network exposure is
defined as in Equation 3.1 with threshold equal to 1 (i.e., having at least
one treated neighbor) then, if unit ik is treated, with Zik and belongs to
the neighborhood Njh of unit jh, the network exposure Gjh cannot be 0.

3.3 Conditional Treatment and Spillover effects
and Horvitz-Thomson Estimator

3.3.1 Conditional Treatment and Spillover Effects

In this section we will define our causal effects of interests. Our ulti-
mate goal is to detect the regions of the covariate space exhibiting a high
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level of heterogeneity in the causal effects and estimate the causal effects
of interest in these heterogenous regions. In this section we will focus
on the definition and estimation of conditional treatment and spillover
effects and we will assume that the heterogenous regions that we want
to investigate have already been identified, either a priori according to
subject-matter knowledge or thanks to data-driven methods.

Let us denote with Π a partition of the covariate space X into M non-
overlapping regions : Π = {`1, . . . , `M}, where

⋃M
m=1 `m = X , and with

`(x,Π) : X → Π a function that maps each vector x of the covariate space
into a region. LetN(`m) be the size of each region `m, withm = 1, . . . ,M ,
and let Nk(`m) be the subset of units belonging to region `m in clus-
ter k, with k = 1, . . . ,K. In the machine learning literature on CART,
these non-overlapping regions are referred to as leaves. For consistency,
throughout we will use this terminology, regardless of whether the parti-
tion Π has been a priori defined or is the result of a tree-based algorithm.
In addition, to ease notation, we will drop the reference to the partition
Π from the mapping function `(·).

When units are organized in a network, it is worth noting that a
partition Π of the covariate space partitions the sample units into sub-
populations according to similarities in their characteristics, regardless
of their network distance. Hence, two units connected units might be-
long to different regions of the partition. However, in an homophilous
network, where the probability of forming a link depends on the simi-
larity in certain features and, hence, connected units are likely to share
similar characteristics,a partition of the covariate space is also likely to
cluster together connected units.

Given a partition Π, we now define conditional average potential
outcomes under each individual treatment and network exposure con-
dition (z, g) ∈ ∆. For the subset of units Sm with covariate vectors
x ∈ X that are mapped to the same region by the function `(x), i.e.,
Sm = {ik ∈ N : `(Xik) = `m}, we define the leaf-specific average po-
tential outcome under treatment and exposure condition (z, g) ∈ ∆ as
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Figure 24: Partition of the covariate space with connected units.

follows:

µ(z,g)(`(x)) =
1

N(`(x))

K∑
k=1

nk∑
i=1

Yik(z, g)1(Xik ∈ `(x)) (3.2)

Note that µ(z,g)(`(x)) is a sample average, that is, it is the average po-
tential outcomes for all units in the sample N with a covariate vector
mapped to the same region `(x).

Leaf-specific conditional average average causal effect (CACE) can be
defined by comparing average potential outcomes under two different
conditions:

τ(z,g;z′,g′)(`(x)) =
1

N(`(x))

K∑
k=1

nk∑
i=1

Yik(z, g)1(Xik ∈ `(x))−

1

N(`(x))

K∑
k=1

nk∑
i=1

Yik(z′, g′)1(Xik ∈ `(x))

=µ(z,g)(`(x))− µ(z′,g′)(`(x)). (3.3)

We denote by T the set of possible contrast we are interested in. For
instance if both the individual treatment and the network exposure are
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binary, then T ⊆ {(1, 0, 0, 0), (1, 1, 0, 1), (0, 1, 0, 0), (1, 1, 1, 0), (1, 1, 0, 0)}.
We define as leaf-specific treatment effects causal contrasts τ(z,g,z′,g′)(`(x))

that keep the network exposure fixed at a level g while changing the in-
dividual treatment from z′ to z, that is, when g = g′. These represent
causal effects of receiving the treatment while the treatment status of all
other units is kept fixed or is mapped to the same network exposure g.
On the contrary, we define as leaf-specific spillover effects causal contrasts
τ(z,g,z′,g′)(`(x)) that keep the individual treatment fixed at a level z while
changing the network exposure from g′ to g, that is, when z = z′. These
spillover effects can be seen as causal effects of a change in the treat-
ment status of other units such that the network exposure also changes,
while the individual treatment status is kept fixed. It should be empha-
sized that µ(z,g)(`(x)) corresponds to a unit-level intervention setting the
treatment and network exposure of each unit to specific values. The fo-
cus on these type of average potential outcomes, as opposed to the ones
based on population-level hypothetical interventions as in Hudgens and
Halloran, 2008, is due to our purpose of investigating heterogeneous re-
sponses to the individual treatment and network status across units with
different characteristics. If interested in assessing the heterogeneity of the
average response to the network exposure resulting from a hypothetical
treatment allocation, our approach could be extended to marginalized
causal effects as the ones in Forastiere et al., 2020.

3.3.2 Estimator for leaf-specific CACE

Here we develop an Horvitz-Thomson estimator for leaf-specific condi-
tional average causal effects. The derivation of the proposed estimator
builds upon the estimator for average causal effects under network in-
terference proposed by Aronow and Samii, 2017. Following Horvitz and
Thompson, 1952 and Aronow and Samii, 2017, a design-based estimator
for the leaf-specific average potential outcome under individual treat-
ment z and network exposure g, µ(z,g)(`(x)), can be expressed as:

µ̂(z,g)(`(x)) =
1

N(`(x))

K∑
k=1

nk∑
i=1

Yik
πik(z, g)

1(Zik = z,Gik = g,Xik ∈ `(x))
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where πik(z, g) denotes the probability of a given unit ik, that belongs to
the leaf `(x) (in the partition Π), to be exposed to the treatment condition
(z, g).

The variance estimator of µ̂(z,g)(`(x) can be expressed as:

V̂
(
µ̂(z,g)(`(x))

)
=

1

N(`(x))2

K∑
k=1

nk∑
i=1

1(Zik = z,Gik = g,Xik ∈ `(x))

[1− πik(z, g)]

[
Yik

πik(z, g)

]2

+
1

N(`(x))2
×[

K∑
k=1

nk∑
i=1

∑
j 6=i

1(Zik = z,Gik = g,Xik ∈ `(x))

× 1(Zjk = z,Gjk = g,Xjk ∈ `(x))

× πikjk(z, g)− πik(z, g)πjk(z, g)

πikjk(z, g)

Yik
πik(z, g)

Yjk
πjk(z, g)

]

This expression extends the variance estimator derived in Aronow
and Samii, 2017 (Equation 7) to the case of conditional average poten-
tial outcomes and clustered interference. In fact, the second term in the
previous equation includes the covariance between the individual treat-
ment and network exposure of two units belonging to the same leaf `(x).
Under an experimental design with independent treatment allocation
between clusters and under clustered interference such covariance be-
tween two units belonging to different clusters is zero and the second
term should be restricted to units j in the same cluster as i. In addition,
the covariance between the joint treatment of two units is non-zero if
the set of units defining the network exposure, i.e., N g

ik, (e.g., the whole
cluster or the unit’s neighborhood) is shared between them or includes
them. Formally, let Nwg

ik = N g
ik ∪ ik. Even under independent treatment

assignment, if Nwg
ik ∩ N

wg
jk′ 6= 0 the joint treatment of the units ik and jk′

will be dependent, that is, πikjk′(z, g) − πik(z, g)πjk′(z, g) 6= 0 . Hence,
two units belonging to the same leaf are more likely to have intersecting
sets Nwg

ik and Nwg
jk′ (e.g., shared neighbors) if the sets are homogeneous,
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that is, units belonging to these sets share similar characteristics. Set-
tings with homophilous networks are investigated in the appendix. An
estimator for the leaf-specific conditional average causal effect of the ex-
posure condition (z, g) compared with the configuration (z′, g′) can be
written as:

τ̂(z,g;z′,g′)(`(x)) = µ̂(z,g)(`(x))− µ̂(z′,g′)(`(x),Π). (3.4)

The estimated variance of the estimator τ̂(z,g;z′,g′)(`(x)) can be decom-
posed as follows:

V̂
(
τ̂(z,g;z′,g′)(`(x))

)
=V̂
(
µ̂(z,g)(`(x))

)
+ V̂

(
µ̂(z′,g′)(`(x))

)
− 2
[
Ĉ
(
µ̂(z,g)(`(x)), µ̂(z′,g′)(`(x))

)]
. (3.5)

with the covariance estimator taking the following expression for the
case when πikjk(z, g, z′, g′) > 0 ∀i, j, k:

Ĉ
(
µ̂z,g(`(x)), µ̂z′,g′(`(x))

)
=

1

N(`(x))2

K∑
k=1

nk∑
i=1

∑
j 6=i

1

πikjk(z, g; z′, g′)

× 1(Zik = z,Gik = g,Xik ∈ `(x))

× 1(Zjk = z′, Gjk = g′,Xjk ∈ `(x))

× [πikjk(z, g; z′, g′)− πik(z, g)πjk(z′, g′)]

× Yik
πik(z, g)

Yjk
πjk(z′, g′)

− 1

N(`(x))2

K∑
k=1

nk∑
i=1

∑
j 6=i

[
(3.6)

1(Zik = z,Gik = g,Xik ∈ `(x))Y 2
ik

2πik(z, g)

+
1(Zik = z′, Gik = g′,Xik ∈ `(x))Y 2

ik

2πik(z′, g′)

]
.

Further details about the variance estimator of leaf-specific CACE can
be found in Appendix B.2.
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Properties of the Horvitz-Thomson Estimator

Here we will describe the properties of the Horvitz-Thomson estimator
of leaf-specific causal effects. Asymptotic results will rely on a growth
process that is commonly assumed with cluster data. In particular, we
consider a sequence of nested samples N of size N , where N consists of
K separate clusters Nk of size nk, k = 1, . . . ,K. We let the sample size
N −→ ∞ by letting the number of clusters go to infinity, i.e., K −→ ∞,
while the cluster size nk, k = 1, . . . ,K remains fixed.

Proposition 4 (Unbiaseness).

E
[
µ̂(z,g)(`(x))

]
= µz,g(`(x))

and
E
[
τ̂(z,g,z′g′)(`(x))

]
= c(`(x))

Proof. Proof in Appendix B.1.

The unbiaseness of the estimator of leaf-specific CACE is conditional on
the partition Π and the function `(·). When building causal trees to as-
sess the heterogeneity of causal effects, we will rely on this property to
derive the splitting criterion and to estimate leaf-specific causal effects.
However, the unbiaseness of the estimator τ̂z,g,z′g′(`(x) does not ensure
the identification of subsets with the highest heterogeneity. The perfor-
mance of the causal tree in identifying heterogeneous regions depends
on the splitting criterion, the algorithm and the sample.

Proposition 5 (The variance estimator of µ̂(z,g) is unbiased). If πikjk(z, g) >
0 ∀i, j, k then

E
[
V̂
(
µ̂(z,g)(`(x))

)]
= V

(
µ̂(z,g)(`(x)

)
.

The proof follows directly from the unbiaseness of the Horvitz-Thomson
estimator. A conservative estimator for the case when πikjk(z, g) = 0 for
some units can be found in Appendix B.2.

Proposition 6 (The variance estimator of τ̂(z,g;z′,g′) is conservative).

E
[
V̂
(
τ̂(z,g;z′,g′)(`(x))

)]
≥ V

(
τ̂(z,g;z′,g′)(`(x))

)
.
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A proof follows from Aronow and Samii, 2017. The restriction on the
covariances does not change the proof.

Proposition 7 (Consistency). Consider the asymptotic regime where the num-
ber of clusters K go to infinity, i.e., K −→ ∞, while the cluster size remains
bounded, i.e., nk ≤ B(`(x)) ≤ B for some constant B. In addition, assume that
|Yik(z, g)|/πik(z, g) ≤ C < 1, ∀i, k, z, g. Then as K −→∞

τ̂(z,g;z′,g′)(`(x))
p−→ τ(z,g;z′,g′)(`(x)).

Proof. See Appendix B.1.

Note that cluster network interference and independent treatment alloca-
tion between clusters ensure that the amount of dependence across units
is limited. This limited independence is the condition required to ensure
consistency (Aronow & Samii, 2017). 4

Proposition 8 (Asymptotic Normality). Given an cluster independent de-
sign and the clustered network interference assumption, then:√
N(`(x))

(
τ̂(z,g;z′,g′)(`(x))−τ(z,g;z′,g′)(`(x))

)
d−→ N(0,V

(
τ̂(z,g;z′,g′)(`(x))

)
).

An independent treatment allocation between clusters and the clus-
tered network interference ensure the limited dependence condition re-
quired in Aronow and Samii, 2017. This condition allows us to rely on a
central limit theorem derived via Stein’s method (L. H. Y. Chen & Shao,
2004) to achieve the asymptotic normality of the estimator. The variance
estimators will depend on the size of the sample belonging to leaf `(x)

in each cluster, i.e., nk(`(x)) ≤ B(`(x)) ≤ B, k = 1 = . . . ,K, and the
maximum conditional degree D(`) = maxik∈N :Xik∈`(x)N

g
ik(`(x)), where

Ng
ik(`) = Ng

ik ∩ Nk(`(x)). Given that these quantities are bounded, we

can show that V
(
V
(
τ̂(z,g;z′,g′)(`(x))

))
= O(1/N(`(x))), that is, the rate

of convergence will be 1/
√
N(`(x)), withN(`(x)) ≤ KB(`(x)) (the proof

follows the one in Aronow and Samii, 2017).
4Note that for the variance of the estimator to go to zero as N −→ ∞ we must

have
∑
ik

∑
jk′ 1(Xik ∈ `(x),Xjk ∈ `(x))1

(
πikjk′ (z, g) − πik(z, g)πjk′ (z, g) 6= 0

)
=

o(N(`(x))2). This is guaranteed given that the joint treatment is independent between
units in different clusters, that is, πikjk′ (z, g) = πik(z, g)πjk′ (z, g), ∀k′, and given that the
cluster size is bounded.
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3.4 Network Causal Trees for Heterogeneous Causal
Effects under Clustered Network Interfer-
ence

In the previous section we have introduced and developed an estimator
for causal effects conditional on sub-populations of units defined by a
partition Π of the covariate space X . Here we develop a a data-driven
machine learning algorithm to identify the partition Π at the aim of in-
vestigating the heterogeneity in the effects of interest. Our proposed al-
gorithm, named Network Causal Tree (NCT), builds upon the Causal Tree
(CT) algorithm introduced by Athey and Imbens, 2016, which in turn
finds its roots in the Classification and Regression Tree (CART) algorithm
(Friedman et al., 1984). CART is a widely used nonparametric method to
partition the feature space. It relies on a tree-based algorithm which re-
cursively splits the sample. In particular, trees are constructed by recur-
sively partitioning the observations from the root (that contains all the
observations in the learning samples) into two child nodes. This proce-
dure is repeated until the tree reaches the final nodes which are called
leaves. Because each node is always split into two sub-nodes, these trees
are called binary trees. Binary trees are called regression trees when the
outcome is a continuous variable, while they are called classification trees
when the outcome is either a discrete or a binary variable. The aim of
the tree construction is to identify heterogeneities in the relationship be-
tween the observed outcome and the features to best predict the outcome
variable. Therefore, splits are made with the aim of minimizing the pre-
diction error. With this aim different splitting criteria could be specified
For additional details on CART, we refer to the seminal paper by Fried-
man et al., 1984. Figure 25 illustrates an example of binary partitioning
in a simple case with just two predictors x1 ∈ [0, 1] and x2 ∈ [0, 1].

Building on CART, Athey and Imbens, 2016 developed a causal de-
cision tree algorithm with the aim of detecting the of causal effects. In
particular, they modified the splitting function to minimize the estima-
tion error of conditional effects. Moreover, Athey and Imbens, 2016 intro-
duced honest inference by using a sub-sample to build the tree (discov-
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(a) Undirected Network (b) Directed Network

Figure 25: (Left) An example of a binary tree. The internal nodes are la-
belled by their splitting rules and the terminal nodes are labelled with the
corresponding parameters li.
(Right) The corresponding partition of the sample space.

ery sample) and a separate sub-sample to perform inference (estimation
sample). This sample-splitting approach is transparent and furthermore
even efficient in high-dimensional settings (K. Lee et al., 2020).

Our proposed NCT differs form the standard causal tree algorithm in
two critical aspects: (i) it estimates heterogeneous causal effects – both
treatment and spillover effects – in the presence of clustered network in-
terference, and (ii) it possibly models heterogeneity with respect to more
than one effect at the same time through a composite splitting criterion.
In this Section, we describe and motivate the splitting criteria for our
NCT algorithm (Subsection 3.4.1) and its detailed structure (Subsection
3.4.2).

3.4.1 Splitting Criteria

The NCT algorithm is built to detect and estimate heterogeneous treat-
ment and spillover effects, in the presence of clustered network interfer-
ence. Moreover, NCT is able to discover heterogeneity driven by more
than one estimand at the same time. Here, we present the three crite-
ria that rule the splitting procedure of NCT: the first two of them lead
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to trees targeted to single effects, while the last criterion sprouts a tree
which is targeted to multiple effects.

Let P be the space of partitions. Given a causal effect τ(z,g,z′,g′), we
can use recursive splitting to look for the best partition Π ∈ P with re-
spect to a splitting criterion Q(z,g,z′,g′)(Π). Formally:

Π = argmaxΠ∈PQ(z,g,z′,g′)(Π) (3.7)

Given our goal of describing the relationship between the causal effect
and the covariate space and detecting subsets that exhibit a high level
of heterogeneity, we can define a splitting criterion that maximizes accu-
racy in the prediction of conditional effects τ(z,g,z′,g′)(Xik) in the whole
sample N. This translates into the minimization of expected value of the
mean square error (MSE):

Q(z,g,z′,g′)(Π) = −EMSE
(
τ̂(z,g,z′,g′)(`(x),Π)

)
= −E

[(
τ(z,g,z′,g′)(x)− τ̂(z,g,z′,g′)(`(x,Π)

)2] (3.8)

the expected value is taken over the sampling distribution. When
this splitting criterion is used to select the partition Π, we maximize the
function in (3.8) evaluated in the sample used to build the tree, i.e., the
training set. In the machine learning literature in this case the objective
function is referred to as the in-sample splitting function and we denote
this by Qin(z,g,z′,g′)(Π). As opposed to the EMSE of the observed outcome
prediction, the true causal effect τz,g,z′,g′(x) is unknown. However, we
can use the training data to estimate the EMSE for the in-sample spit-
ting rule. Thanks to the unbiaseness of the estimator τ̂(z,g,z′,g′)(`(x),Π)

with respect to the population causal effect E[τ(z,g,z′,g′)(Xik)|Xik ∈ `(x)]

(Proposition 9 in the Appendix), following Athey and Imbens, 2016 we
can estimate the EMSE as follows:

Qin(z,g,z′,g′)(Π) = −ÊMSE
(
τ̂(z,g,z′,g′)(`(x),Π)

)
=

1

N tr

∑
k∈Ktr

nk∑
i=1

(
τ̂(z,g,z′,g′)(`(Xik,Π))

)2 (3.9)
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where Ktr is the subset of clusters belonging to the training set and
N tr is the sample size 5. Therefore, the maximization of this splitting
function results in the maximization of the heterogeneity across leaves.
In fact, if two sub-populations `1 and `2 have a different causal effect
τ(z,g,z′,g′), i.e., τ(z,g,z′,g′)(`1) 6= τ(z,g,z′,g′)(`2), a partition Π that splits them
would yield a higher Q(z,g,z′,g′)(Π) than the partition Πc that combines
the two sub-populations into one leaf `1+2 (a simple proof can be found
in the appendix). To avoid using the same information for selecting the
partition and for the estimation, Athey and Imbens, 2016 propose to es-
timate the effects in a separate sample than the one used to build the
tree. They call this an ‘honest’ causal tree. We denote by N est the es-
timation set and by N tr the training set (or discovery set) that is used
to build the tree (by evaluating the splitting function). The training set
and the estimation set are here obtained by taking two random sub-
sets Ktr and Kest of the clusters K. Hence, Nest =

⋃
k∈Kest Nk and

N tr =
⋃
k∈Ktr Nk = N/N est. This random split of the sample avoids

any dependencies between training and estimation sub-samples. In this
‘honest’ version, the splitting function can be estimated as follows:

Qin,H(z,g,z′,g′)(Π) =
1

N tr

∑
k∈Ktr

nk∑
i=1

(
τ̂(z,g,z′,g′)(`(Xik,Π))

)2
−
( 1

N tr
+

1

Nest

)∑
`∈Π

V̂
(
τ̂(z,g,z′,g′)(`; Π)

) (3.10)

where Nest = |N est|. The proof follows from Athey and Imbens,
2016. In (3.10) we can see that the splitting function is such that splits
will be chosen so to maximize the heterogeneity across leaves as well
as to minimize the average variance in the estimated effect. The idea is
to identify the most heterogeneous partitions while introducing a penal-
ization term which corrects the objective function to minimize the leaf-
specific variation in the estimated effect. This penalization term has also

5In standard CART the training set is a subset of the whole sample together with the
testing set, which is used to evaluate the objective function in order to choose the best
partition selected in the training set that maximizes out-of-sample prediction accuracy.
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the effect of reducing the depth of the tree depending on the sample size,
because leaves with a small number of observations N(`) will exhibit
a higher variance. In addition to this penalization we will also add a
stopping rule which is required to avoid having leaves where the effect
τ(z,g,z′,g′) cannot be estimated because there are no observations with ob-
served treatment (Zik, Gik) equal to the values (z, g) or (z′, g′) that we
are comparing.

We now introduce a composite splitting rule targeted to multiple causal
estimands. When interference is in place targeting strategies might in-
volve both treatment and spillover effects. For example, in settings with
limited resources the treatment should be provided to those who would
benefit from it, i.e., with a non-zero treatment effect, whereas we could
save resources by not giving the treatment to those who would benefit
from other people being treated, i.e., with high spillover effects. This
is the case in marketing interventions where we can provide advertise-
ments only to those who would be affected and who are less likely to get
the information from someone else. Another interesting example can be
found in the potential challenges of the COVID-19 vaccine distribution,
which represents an illustrative scenario where seeding strategies play a
role. Those at high risk of getting infected even if those in close contact
were immune.i.e., those with high treatment effect under treated neigh-
bors, should be targeted. On the contrary, those who are in contact with
a low number of people and can greatly gain from having one of these
contacts vaccinated could be left without the vaccine, at least in the early
stages of the distribution.

For these kind of targeting strategies involving more than one causal
effect we must partition the population into sub-groups that show high
level of heterogeneity in all estimands of interest. Building a separate
tree for each causal effect would provide us with different partitions that
cannot be used for the design of multi-effect strategies. Therefore, we
propose a composite splitting function that would result in a tree that
maximises heterogeneity in all the causal estimands of interest. This
composite objective function is a weighted average of the effect-specific
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splitting functions:

QT (Π) =
∑

(z,g,z′,g′)∈T

γ(z,g,z′,g′)Q(z,g,z′,g′)(Π)

with γ(z,g,z′,g′) =
ω(z,g,z′,g′)(
τ̂ (z,g,z′,g′)

)2 (3.11)

where ω(z,g,z′,g′) ∈ [0, 1] is a customized weight for each estimand and
τ̂(z,g,z′,g′) is the estimated effect in the whole sample. Each effect τ(z,g;z′,g′),
where (z, g; z′, g′) ∈ T , contributes to the global objective function ac-
cording to a specific weight γ(z,g;z′,g′). The element γ(z,g;z′,g′) is propor-
tional to a customized weight ω(z,g,z′,g′), which is set by the researcher
according to the extent to which the estimand τ(z,g,z′,g′) is of interest, and
is normalized by the the estimated effect in the whole sample to rule out
any dependence on the magnitude of the effect. The composite criterion
requires that at least two of the four weights are strictly greater than zero.
A similar composite objective function can be derived from the splitting
functions for the ‘honest’ causal trees:

QHT (Π) =
∑

(z,g,z′,g′)∈T

γ(z,g,z′,g′)Q
H
(z,g,z′,g′)(Π)

with γ(z,g,z′,g′) =
ω(z,g,z′,g′)(
τ̂ (z,g,z′,g′)

)2 (3.12)

3.4.2 Network Causal Tree Algorithm

Compared with the standard HCT algorithm, its main novelties are the
introduction of interference and the possibility of including more than
one effect. Specifically, the extent to which each effect τ(z,g;z′,g′), with
(z, g; z′, g′) ∈ T , contributes to the determination of the tree is speci-
fied by the weight w(z, g; z′, g′). Here we describe the key steps of the
NCT algorithm, including the recursive partitioning based on the split-
ting functions and the stopping rules.

Key steps of the NCT algorithm

The proposed algorithm takes mainly six elements as inputs.
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• The sample N , which collects for each unit ik the individual treat-
ment assignment status Zik, the observed outcome Yik and a vector
of characteristics Xik;

• The network information, which is fully described by the global
adjacency matrixA, including the cluster-specific blocksAk;

• The specification of the exposure mapping function g() which to-
gether with the adjacency matrix and possibly covariate matrix will
be translated in the computation of the observed network exposure
Gik for each unit;

• The experimental design which will determine the computation of
the probabilities πik(z, g) and πik(z, g, z′, g′).

• The fifth aspect pertains to the weight ωz,g,z′g′ for each causal effect;

• The specification of the two parameters: maximum depth, that is
the maximum depth of the tree, and the minimum size, that is the
minimum number of units falling in each exposure condition (z, g)

in each leaf.

After some preliminary steps, the algorithm consists of two main phases.
The first phase is focused on the selection of the partition, i.e. the tree,
while the second phase is concerned with the estimation of causal effects
and returns point estimates and standard errors of the conditional av-
erage causal effects, for all the comparisons of interest and within each
leaf of the detected partition. We report below the key steps of the NCT
algorithm:

0. Phase 0 (Preliminaries): In a preliminary stage the algorithm com-
putes some quantities and tools that will be used in the subsequent
steps.

(a) Given the adjacency blocks Ak and potentially the covariate
matrix X , for each unit the network exposure variable Gik is
computed according to the rule expressed in Assumption 10.
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(b) The joint exposure probabilities πik(z, g) and πikjk′(z, g, z′, g′)
(as in Subsection 3.2) or estimated (as in Aronow and Samii,
2017).

(c) Finally, the algorithm randomly splits the clusters between the
training set N tr and the estimation set Nest. 6

1. Phase 1 (Tree Discovery): the first step of the algorithm sprouts the
Network Causal Tree, that is, it detects the relevant heterogeneous
partitions. Note that this step is performed over the discovery set
only. In particular, the NCT algorithm works with the clusters be-
longing to the set Ktr and builds the tree using a binary recursive
partitioning.

(a) Recursive Partitioning. The algorithm grows a tree by maxi-
mizing the in-sample splitting criterion at each binary split.
At iteration r − 1The partition can be written as follows:

Πr−1 = {x ∈ X :

r−1⋂
m=1

xm ∈ Ahmm }h∈{L,R}r−1

where xm ∈ {xp}p=1,...,P is the feature that was split at itera-
tion m and ALm = {xm ≤ cm}, ALm = {xm cm} for some cutoff
point cm. The variable xm split at iteration m together with
the cutoff point cm compose a node of the tree. At iteration r,
the partition will be complemented with a split of a variable
xr ∈ {xp}p=1,...,P /{xm}m=1...,r−1 at some cutoff point cr:

Πr = {x ∈ X :

r−1⋂
m=1

xm ∈ Ahmm
⋂
xr ∈ Ahrr }h∈{0,1}r

Among all the candidate splits xr and cr, the algorithm will
choose the one that maximizes the in-sample splitting function
in (3.9) or (3.10).

6Following Athey and Imbens, 2016 we suggest to assign half of the clusters to the dis-
covery sample and another half to the estimation sample.
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(b) Stopping Rule. The recursive partitioning stops when at least
one stopping condition is met (i) the NCT has reached the spec-
ified maximum depth ; (ii) the current split r generate at least
one leaf ` where the set of units matchalN(`) (z, g) = {ik ∈
N tr : Xik ∈ `, Zik = z,Gik = g} with a number of observa-
tions |N(`)(z,g)| lower than the specified minimum size, for at
least one exposure condition (z, g).

This step generates a network causal tree which corresponds to a
partition Π of the feature space X into M leaves: Π = {`1, . . . , `M},
with

⋃M
m:1 `m = X and l(x,Π) : X → Π.

2. Phase 2 (Estimation): the second phase of the algorithm takes as
input the Network Causal Tree Π built in Phase 1 and computes
all the point estimates, the standard errors and the confidence in-
tervals of the leaf-specific causal effects of interest in all its nodes
`(x,Π). This is done using the Horvitz-Thomson estimator in Sec-
tion 3.3. In the ‘honest’ version, at this stage the NCT algorithm
works with the clusters belonging to the set Kest.

3.5 Simulation Study

Our algorithm provides an interpretable method to detect and estimate
heterogeneous effects in the presence of clustered network interference.
In this section we evaluate through a set of simulations the performance
of the proposed algorithm with respect to both discovery and estima-
tion. In particular, we investigate its ability to correctly identify the ac-
tual heterogeneous sub-populations, comparing the use of single or com-
posite splitting functions, and we assess the performance of the Horvitz-
Thomson estimator for leaf-specific treatment and spillover effects. While
the latter performance assessment is quite standard in the literature, the
former is critical for the development of interpretable algorithms for het-
erogeneous causal effects (Bargagli Stoffi & Gnecco, 2019; K. Lee et al.,
2020). We evaluate the performance of the algorithm and the estimator
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Algorithm 1 Overview of the NCT algorithm

• Inputs: i) Observed data {Zik, Yik,Xik}ik∈N ; ii) Global adjacency
matrix A, which comprises the cluster-specific blocks Ak; iii)
Experimental Design; iv) vector of weights ω(z, g; z′, g′), where
(z, g; z′, g′) ∈ T ; v) Tree parameters: maximum depth and mini-
mum size.

• Outputs: (1) a partition Π if the covariate space, and (2) point esti-
mates, standard errors and confidence intervals of the conditional
average causal effects:

1. Phase 0 (Preliminaries): compute Gik and both the marginal
and joint exposure probabilities πik(z, g) and πikjk′(z, g, z′, g′).
Then, randomly assign clusters to discovery and estimation
samples.

2. Phase 1 (Tree Discovery): build a tree according to the in-
sample splitting criterion and stop when either the tree has
reached its maximum depth or any additional split would
generate leaves, which are not sufficiently representative of
the four exposure conditions.

3. Phase 2 (Estimation) on the estimation sample): Use the
Horvitz-Thomson estimator to estimate the leaf-specific
CACE and their standard errors in each leaf.

in settings that differ with respect to three main factors: (1) the structure
of the heterogeneity, (2) the level of the effect heterogeneity, and (3) the
number of clusters. In Appendix B.3, we also consider two additional
factors: (4) the correlation structure in the covariate matrix and (5) the
presence of homophily in the network structure. Regarding the struc-
ture of the heterogeneity, we are particularly interested in settings where
the structure of the causal tree representing heterogeneity is different for
each causal effect. In particular, causal trees differ if they have different
nodes corresponding to the split of a feature, that is, if covariates driving
the heterogeneity are different, or if they have different terminal leaves
where the causal effect is heterogenous, i.e., non-zero. We call causal rule
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these heterogenous terminal leaves.
For each simulation scenario we simulated M = 500 samples and ap-

plied our NCT algorithm to detect sub-populations with heterogeneous
causal effects (or causal rules) and to estimate our causal effects of in-
terest. To evaluate the performance of our composite splitting function
under different settings, splits rely on either effect-specific splitting crite-
ria or on the composite function.

All simulations are performed under Bernoulli trials, that is treatment
is randomly assigned independently to each unit with a fixed probabil-
ity πWik = α. In our simulation study we also assume that interference
only takes place at the neighborhood level and we choose the following
definition of the network exposure:

Gik = 1(
( ∑
j∈Nik

Zjk) ≥ 1
)
, (3.13)

that is, the network exposure of unit ik is 1 if at least one neighbor is
treated. A binary network exposure together with a binary individual
treatment results in a joint treatment with four categories, i.e., (Zik, Gik) ∈
{(z, g) = (0, 0), (1, 0), (0, 1), (1, 1)}.

The binary definition of the network exposure is chosen to allow the
growth of deeper trees. Given that the minimum size requirement stops
the algorithm when the number of units in a child leaf is not enough to
estimate a conditional causal effect, a joint treatment with four categories
ensures that this stopping condition is unlikely to be met during the first
few splits. In addition, the assumption of neighborhood interference al-
lows the computation of the marginal and joint probabilities without the
need for intensive estimation procedures. In fact, the approximate al-
gorithm for estimating the marginal and joint probabilities proposed by
Aronow and Samii, 2017 is computationally demanding and could not be
incorporated in our simulation study. However, in the case of Bernoulli
trial and network exposure defined as in (3.13), the probability πik(z, g)

can be computed using the formula in (3.2.3) while the joint probabil-
ity πikjk′(z, g, z

′, g′) is simply the product of πik(z, g) and πjk′(z
′, g′) if

the two units ik and jk′ are independent. On the contrary, if Nwg
ik and
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Nwg
jk′ 6= 0 overlap the joint treatment of the units ik and jk′ will be depen-

dent, that is, πikjk′(z, g, z′, g′) 6= πik(z, g)πjk′(z
′, g′). In this case the joint

probability can still be readily computed using combinatorics formulas
on two overlapping sets.

3.5.1 Data generating process

For each simulation m = 1 . . . ,M we generated a K clusters and within
each cluster we simulate Erdos-Renyi Random Graph with nk = 100

nodes and a fixed probability (0.01) to observe a link. Given the defini-
tion of the network exposure we remove isolated nodes from the analysis
to make the Assumption 12 hold. Zik and any covariate Xip are sampled
from independent Bernoulli distributions with probability 0.5

Wi ∼ Ber(0.5) and Xip ∼ Ber(0.5)

. In the simulation study we focus on two main effects: the pure treat-
ment effect τ(1,0,0,0) and the pure spillover effect τ(0,1,0,0). To ease nota-
tion, We denote by τ the treatment effect and by δ the spillover effect.
Once these two effects are set depending on the simulation scenarios, we
generate the four different potential outcomes as follows:

Yik(0, 0) ∼ N (0, 1);

Yik(1, 1) ∼ N (0, 1);

Yik(1, 0) = Yik(0, 0) + τ(Xik);

Yik(0, 1) = Yik(0, 0) + δ(Xik);

Finally, the observed outcome is generated as:

Yik =

1∑
w=0

1∑
g=0

1(Zik = z,Gik = g)Yik(z, g).

We now detail how we varied the three factors (1), (2), and (3). We
simulated two different scenarios with respect to the heterogeneity struc-
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ture (1). In the first scenario we have:

τ(Xik) =


h if Xik ∈ `1 = {Xik1 = 0, Xik2 = 0}
−h if Xik ∈ `2 = {Xik1 = 1, Xik2 = 1}
0 otherwise

δ(Xik) =


h if Xik ∈ `1 = {Xik1 = 0, Xik2 = 0}
−h if Xik ∈ `2 = {Xik1 = 1, Xik2 = 1}
0 otherwise

Hence, in this scenario the heterogeneity driving variables (HDV), i.e.,
Xi1 andXi2, are the same for both the treatment effect τ and the spillover
effect δ and the two causal rules overlap. In the second scenario, we
introduce a change in the drivers of the heterogeneity in the following
way:

τ(Xik) =


h if Xik ∈ `τ1 = {Xik1 = 0, Xik2 = 0}

3h if Xik ∈ `τ2 = {Xik1 = 0, Xik2 = 1}
0 otherwise

δ(Xik) =


h if Xik ∈ `δ1 = {Xik1 = 1, Xik2 = 0}

3h if Xik ∈ `δ2 = {Xik1 = 1, Xik2 = 1}
0 otherwise

Hence, in the second scenario the heterogeneity drivers are different
for the two causal effects. Specifically, we have: Xi1 andXi2 for the treat-
ment effects, and Xi1 and Xi3 for the spillover effects. In addition, we
have two causal rules for the treatment effect, namely {Xik1 = 0, Xik2 =

0} and {Xik1 = 0, Xik2 = 1} and two different causal rules for the
spillover effect, namely {Xik1 = 1, Xik2 = 0} and {Xik1 = 1, Xik2 = 1}.
For each structural scenario we varied the effect size: (h · 0.1)10

k=1 with
h ∈ N Figure 26 graphically represents the two simulations’ scenarios.
Moreover, we changed the number of clusters keeping their size fixed to
K = (10, 20, 30). 7 For each scenario we construct three NCTs: one tree
implementing the composite splitting rule for the treatment and spillover

7Note that K/2 clusters will be assigned to the discovery sample and the remaining
clusters will be in the estimation set as in Athey and Imbens, 2016.
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(a) First scenario (b) Second scenario

Figure 26: Simulations’ scenarios

effects as in (3.12), one tree implementing the singular splitting rule for
the treatment effect Qin,H(1,0,0,0)(Π) as in 3.10, and one tree implementing

the singular splitting rule for the spillover effect Qin,H(0,1,0,0)(Π) as in (3.10).
We believe that the two examined simulated scenarios, together with

the additional two that will be presented in Appendix B.3, sufficiently
represent the ensemble of plausible scenarios that the researcher may ac-
tually face in real world data. Indeed, the illustrated scenarios not only
differ for the structure and the magnitude of heterogeneity but also ac-
count for the number of clusters, for the eventual statistical correlation
among predictors and for the network structure.

3.5.2 Performance measures

In all the scenarios the performance of the NCT algorithm is evaluated
using the following measured averaged over the M generated datasets:

• average number of correctly discovered heterogeneous causal rules
corresponding to the leaves of the generated NCTs (reported with
respect to the effect sizes in Figures 27 and 28) in the discovery
sample;

• average conditional treatment and spillover effects estimated for
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each correctly detected heterogenous terminal leaf (reported as τ̂
and δ̂ in Tables 3, 4, 5 and 6);

• average standard errors estimated for each correctly detected het-
erogenous terminal leaf (reported as ŝe(τ̂) and ŝe(δ̂) in Tables 3, 4,
5 and 6);

• Monte-Carlo Bias in the estimation sample:

Biasm(N est) =
1

N est

∑
k∈Kest

nk∑
i=1

(
τ(z,g,z′g′)(Xik)−

τ̂(z,g,z′g′)(`(Xik, ,Πm),N est)
)
,

Bias(N est) =
1

M

M∑
m=1

Biasm(N est);

where Πm is the partition selected in simulation m.

• Monte-Carlo MSE in the estimation sample:

MSEm(N est) =
1

N est

∑
k∈Kest

nk∑
i=1

(
τ(z,g,z′g′)(Xik)−

τ̂(z,g,z′g′)(`(Xik),Πm,N est)
)2

,

MSE(N est) =
1

M

M∑
m=1

MSEm(N est);

• Coverage, computed as the average proportion of units for whom
where the estimated 95% confidence interval of the causal effect in
the assigned leaf includes the true value:

Cm(N est) =
1

N est

∑
k∈Kest

nk∑
i=1

1
(
τ(z,g,z′g′)(Xik)

∈ ĈI95

(
τ̂(z,g,z′g′)(`(Xik,Πm),N est)

))
,

C(N est) =
1

M

M∑
m=1

Cm(N est);
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3.5.3 Results

We will first analyze the ability of the algorithm to correctly detect the
heterogeneous subgroups in the first simulation scenario, that is, when
the heterogeneity is the same for the two causal effects of interest. Fig-
ure 27 reports the average number of correctly discovered heterogeneous
causal rules with composite splitting rule or effect-specific splitting rules
targeted to the treatment effect or the spillover effect, in the case of 10,
20 and 30 clusters. As you can see from the three plots in the Figure the
algorithm is always able to detect all the 4 correct leaves for both effects
with all the splitting rules. As the number of cluster grows the minimum
effect size allowing the algorithm to optimally discover all the heteroge-
neous sub-populations gets lower.
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Figure 27: Simulations’ results for correctly discovered leaves in the first
scenario with 10, 20 and 30 clusters, respectively.

Tables 3, 4, 5 report the results for the first scenario 6 for the per-
formance of the estimator in the correctly detected leaves. We only re-
port the results of the estimation procedure on the tree built with the
composite splitting rule, as the spitting rule would only affect the iden-
tification of the heterogenous sub-populations but not the estimation of
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the causal effects once these sub-populations are correctly detected. The
estimator is able to estimate the heterogeneous treatment and spillover
effects without bias and its precision grows as the number of clusters
increases. Interestingly, NCT provides more accurate estimates of the
heterogeneous spillover effects than the treatment effects. This is partly
due to the larger number of units with (Zik = 0, Gik = 1) than those with
(Zik = 1, Gik = 0), by definition of the network exposure. Hence, this
reduces the standard error of the estimator for the spillover effects. The
higher precision in the estimation of the spillover effects is also reflected
in the identification of the heterogenous subgroups, which is more ac-
curate when splits are targeted to the minimization of the MSE of the
spillover effect (Figure 27).

Table 3: Simulations’ results for the first scenario (10 clusters)
Treatment Effects

Effect Size τ̂`1
ŝe(τ̂`1

) τ̂`2
ŝe(τ̂`2

) MSE Bias Coverage

0.1 0.353 0.416 -0.139 0.350 0.106 0.107 1.000
1.1 1.108 0.514 -1.132 0.515 0.261 -0.012 0.936
2.1 2.124 0.740 -2.156 0.741 0.570 -0.016 0.941
3.1 3.004 1.003 -3.050 0.997 0.934 -0.023 0.945
4.1 4.061 1.293 -4.179 1.287 1.843 -0.059 0.928
5.1 5.201 1.565 -5.197 1.585 2.297 0.002 0.946
6.1 6.179 1.889 -6.086 1.824 3.282 0.046 0.931
7.1 7.125 2.140 -7.110 2.128 4.276 0.007 0.921
8.1 8.011 2.378 -8.149 2.425 5.087 -0.069 0.931
9.1 9.153 2.729 -9.128 2.713 6.803 0.012 0.927
10.1 9.991 2.947 -9.916 2.974 8.007 0.038 0.934

Spillover Effects
δ̂`1

ŝe(δ̂`1
) δ̂`2

ŝe(δ̂`2
) MSE Bias Coverage

0.1 0.225 0.380 -0.249 0.322 0.082 -0.012 0.958
1.1 1.114 0.415 -1.103 0.402 0.155 0.005 0.960
2.1 2.085 0.542 -2.138 0.545 0.230 -0.026 0.967
3.1 3.047 0.716 -3.094 0.716 0.408 -0.023 0.972
4.1 4.098 0.892 -4.079 0.882 0.646 0.009 0.966
5.1 5.119 1.063 -5.054 1.057 0.862 0.032 0.958
6.1 6.090 1.250 -6.045 1.242 1.132 0.022 0.958
7.1 7.086 1.437 -7.099 1.442 1.542 -0.006 0.973
8.1 8.075 1.618 -8.019 1.618 1.986 0.028 0.961
9.1 8.936 1.811 -9.197 1.828 2.586 -0.130 0.957
10.1 10.078 2.023 -10.055 2.026 2.730 0.011 0.971
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Table 4: Simulations’ results for the first scenario (20 clusters)
Treatment Effects

Effect Size τ̂`1
ŝe(τ̂`1

) τ̂`2
ŝe(τ̂`2

) MSE Bias Coverage

0.1 0.053 0.286 -0.072 0.284 0.061 -0.010 0.929
1.1 1.120 0.382 -1.102 0.377 0.145 0.009 0.954
2.1 2.102 0.538 -2.114 0.538 0.270 -0.006 0.949
3.1 3.105 0.710 -3.140 0.721 0.468 -0.018 0.946
4.1 4.055 0.905 -4.198 0.947 0.848 -0.072 0.948
5.1 5.058 1.100 -5.034 1.108 1.132 0.012 0.940
6.1 6.155 1.332 -6.034 1.306 1.609 0.061 0.933
7.1 7.058 1.519 -7.036 1.521 2.000 0.011 0.954
8.1 8.141 1.737 -8.118 1.755 2.919 0.011 0.961
9.1 9.130 1.952 -9.160 1.949 3.313 -0.015 0.959
10.1 10.088 2.150 -10.071 2.142 4.021 0.008 0.947

Spillover Effects
δ̂`1

ŝe(δ̂`1
) δ̂`2

ŝe(δ̂`2
) MSE Bias Coverage

0.1 0.085 0.234 -0.139 0.255 0.064 -0.027 0.929
1.1 1.092 0.300 -1.106 0.297 0.075 -0.007 0.967
2.1 2.072 0.393 -2.083 0.396 0.132 -0.006 0.965
3.1 3.067 0.509 -3.084 0.511 0.208 -0.009 0.973
4.1 4.124 0.641 -4.088 0.639 0.296 0.018 0.971
5.1 5.118 0.772 -5.052 0.772 0.436 0.033 0.974
6.1 6.082 0.900 -6.154 0.915 0.611 -0.036 0.972
7.1 7.114 1.042 -7.101 1.040 0.802 0.007 0.968
8.1 8.023 1.183 -8.156 1.185 1.027 -0.067 0.975
9.1 9.106 1.312 -9.139 1.323 1.262 -0.017 0.979
10.1 10.210 1.465 -10.151 1.460 1.472 0.029 0.976

Table 5: Simulations’ results for the first scenario (30 clusters)
Treatment Effects

Effect Size τ̂`1
ŝe(τ̂`1

) τ̂`2
ŝe(τ̂`2

) MSE Bias Coverage

0.1 0.092 0.238 -0.068 0.230 0.016 0.012 1.000
1.1 1.083 0.311 -1.115 0.306 0.091 -0.016 0.950
2.1 2.101 0.435 -2.107 0.436 0.170 -0.003 0.949
3.1 3.104 0.584 -3.113 0.588 0.305 -0.005 0.953
4.1 4.086 0.754 -4.114 0.746 0.546 -0.014 0.946
5.1 5.168 0.921 -5.170 0.931 0.794 -0.001 0.956
6.1 6.110 1.091 -6.059 1.074 1.041 0.025 0.956
7.1 7.133 1.259 -7.135 1.251 1.422 -0.001 0.960
8.1 8.078 1.420 -7.952 1.409 1.729 0.063 0.946
9.1 9.199 1.618 -9.047 1.580 2.264 0.076 0.961
10.1 10.148 1.763 -10.171 1.765 2.862 -0.012 0.958

Spillover Effects
δ̂`1

ŝe(δ̂`1
) δ̂`2

ŝe(δ̂`2
) MSE Bias Coverage

0.1 0.022 0.208 -0.086 0.213 0.019 -0.032 0.967
1.1 1.082 0.249 -1.108 0.244 0.056 -0.013 0.964
2.1 2.080 0.322 -2.115 0.326 0.083 -0.017 0.974
3.1 3.094 0.423 -3.065 0.418 0.132 0.015 0.969
4.1 4.119 0.528 -4.083 0.525 0.209 0.018 0.973
5.1 5.092 0.634 -5.110 0.637 0.263 -0.009 0.983
6.1 6.085 0.745 -6.126 0.746 0.384 -0.020 0.975
7.1 7.061 0.857 -7.160 0.860 0.517 -0.050 0.977
8.1 8.101 0.974 -8.051 0.973 0.695 0.025 0.979
9.1 9.111 1.088 -9.103 1.091 0.827 0.004 0.984
10.1 10.184 1.215 -10.123 1.201 0.993 0.030 0.981

For the second scenario with different causal rules for each causal
effect, we only report the results for simulations with 30 clusters. Fig-
ure 28 depicts the average number of correctly discovered heterogeneous
causal rules with composite splitting rule or effect-specific splitting rules
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targeted to the treatment effect or the spillover effect. When we are inter-
ested in building a tree that can represent the heterogeneity of all causal
effects simultaneously (left panel), the composite splitting rule NCT is
able to correctly identify all the heterogeneous causal rules (four in this
example), while the other two NCT, targeted to either the treatment ef-
fect or the spillover effect, only detect the two leaves where the corre-
sponding causal effect is heterogeneous. This is even more clear from the
other two plots where we depict the ability to detect just the treatment
effect rules (central panel) and the spillover effect rules (right panel). In-
deed, when we are interested in subgroups that are heterogenous with
respect to only one causal effect, both the effect-specif spitting rule tar-
geted to that effect or the composite spitting function can be used and
perform similarly, while the use of the effect-specif spitting rule targeted
to the other effect results in a poor detection of the correct causal rules.
The results from this second scenario show the clear added value of the
composite splitting rule. Indeed, when the HDV are different for treat-
ment and spillover effects implementing this splitting rule enables the
researcher to correctly spot all the true causal rules simultaneously. Fi-
nally, Table 6 shows how the Horvitz-Thomson estimator performs well
in estimating the conditional treatment and spillover effects in the two
corresponding heterogenous leaves.
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Figure 28: Simulations’ results for correctly discovered leaves in the second
scenario with 30 clusters.

Table 6: Simulations’ results for second scenario (30 clusters)
Treatment Effects

Effect Size τ̂`τ1
ŝe(τ̂`τ1

) τ̂`τ2
ŝe(τ̂`τ2

) MSE Bias Coverage

0.1 0.194 0.254 0.351 0.241 0.059 0.072 0.964
1.1 1.103 0.310 3.239 0.607 0.223 -0.029 0.942
2.1 2.088 0.438 6.379 1.121 0.650 0.034 0.952
3.1 3.100 0.589 9.317 1.634 1.226 0.008 0.970
4.1 4.113 0.756 12.285 2.137 2.353 -0.001 0.945
5.1 5.120 0.917 15.418 2.708 4.106 0.069 0.944
6.1 6.106 1.074 18.263 3.159 5.469 -0.015 0.947
7.1 7.086 1.241 21.312 3.712 6.246 -0.001 0.955
8.1 8.167 1.433 24.257 4.209 8.790 0.012 0.949
9.1 9.028 1.569 27.099 4.671 9.975 -0.136 0.954
10.1 10.024 1.733 30.617 5.288 14.454 0.120 0.951

Spillover Effects
δ̂`δ1

ŝe(δ̂`δ1
) δ̂`δ2

ŝe(δ̂`δ2
) MSE Bias Coverage

0.1 0.086 0.187 0.281 0.209 0.041 -0.017 1.000
1.1 1.089 0.248 3.321 0.444 0.105 0.005 0.968
2.1 2.116 0.326 6.325 0.773 0.237 0.021 0.977
3.1 3.120 0.421 9.313 1.114 0.491 0.016 0.980
4.1 4.109 0.527 12.277 1.455 0.832 -0.007 0.972
5.1 5.123 0.637 15.407 1.816 1.441 0.065 0.976
6.1 6.119 0.746 18.341 2.159 1.990 0.030 0.972
7.1 7.074 0.858 21.393 2.516 2.177 0.033 0.979
8.1 8.095 0.976 24.312 2.854 3.168 0.003 0.974
9.1 9.048 1.090 27.264 3.210 3.953 -0.044 0.975
10.1 10.053 1.201 30.416 3.565 4.610 0.034 0.980

3.6 Empirical Application

In this section we provide an empirical application of the proposed method-
ology. We use data from a randomized experiment designed to assess
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the effectiveness of intensive information sessions to promote the uptake
of a new weather insurance policy among farmers in rural China. The
promoted policy is addressed to rice farmers, and it is aimed at protect-
ing their products from adverse weather shocks (Cai et al., 2015). The
sample consists of 4,569 households belonging to 47 different villages.
Households were randomly assigned to the intensive training session 8.
Households are linked according to an observed village-specific friend-
ship network, represented in Figure 29. Relationships between house-
holds belonging to different villages are negligible.

Figure 29: Friendship network between households living in rural villages
in China. Colors refer to different villages.

Here the individual treatment variable Zik ∈ {0, 1} for each house-
hold i living in village k represents the assignment to the intensive (Zik =

8The original experiment also includes a village-level randomization on price variation
and a second round of sessions Cai et al., 2015. Here we only consider the household-level
randomization to the first round of sessions.
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1 ) or simple (Zik = 0) information session. Friendship relationships be-
tween households in a given rural village k are fully described by the
adjacency matrix Ak, where the generic element Ak(i, j) equals 1 if the
household i in village k has nominated the household j in the same vil-
lage k. Therefore, the adjacency matrix is not symmetric. We denote with
Nik the set of nominated friends of unit ik, and with Nik the out-degree.
Figure 3.30(a) shows the overall degree distribution, while Figure 3.30(b)
represents the distribution of the number of treated neighbors. In this
setting interference could take place because the information received in
the intensive information session could be transferred to network con-
tacts. We assume here an exposure to the network treatments only at
the neighborhood level and, in particular, we define the network exp-
soure variable as in (3.13). Hence, Gik is equal to 1 if a unit has at least
one treated friend, and 0 otherwise. This definition of the network ex-
posure is justifiable by the fact that the decision of a farmer to buy the
weather insurance might depend only on the information either received
directly in the intensive session or indirectly by one of his friends. This
is also what has been found in Cai et al., 2015 where the only signifi-
cant spillover effect is from first neighbors. We drop from the analysis

(a) Number of neighbors (b) Number of treated neighbors

Figure 30: Degree and treated neighbors: distribution
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the 57 households without any friends. The total number of remaining
households is 4512, residing in 47 villages. Among them, 977 families
were assigned to the intensive training sessions, while 3535 belong to the
control group and, thus, they have undergone a less intensive session.
2075 households don’t have any treated friends, while 2437 of them un-
dertake friendship relationships with at least one treated household. The
joint distribution of the individual and neighborhood treatments is sum-
marized in the following Table 7.

Table 7: Distribution of the Joint Treatment

Gi = 0 Gi = 1
Zi = 0 1621 1914
Zi = 1 454 523

Figure 31 represent the treatment distribution in four villages. In the
left subfigure nodes are colored according to their individual treatment
assignment, while in right subfigure node colors refer to the joint treat-
ment status. The outcome variable Yik ∈ {0, 1} is a binary variable which

(a) Individual treatment in four villages (b) Joint treatment in four villages

Figure 31: Zoom on four villages

equals 1 if the household i residing in village k purchased the insurance
after the information session. At the end of the experiment, 2495 fami-
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lies chose not to accept the proposed insurance policy, while 2017 were
positively persuaded by the session and accepted the weather insurance.

In order to evaluate the heterogeneity of treatment and spillover ef-
fects, we include in the analysis all the observed characteristics that rea-
sonably prompt heterogeneity: three dummies representing the house-
hold’s location in the production areas 1, 2 and 3 (reg1, reg2 and reg3,
respectively); a dummy variable (age) which equals 1 if the household’s
head is at least 50 years old; a dummy variable which distinguishes
highly educated households (educ) being 1 if the household’s head has
successfully completed high school; a dummy variable representing fam-
ilies who are strongly worried about weather phenomena (prob dis),
which is marked as 1 if the household’s perceived probability of a rel-
evant weather disaster happening in the coming year exceeds 0.30; a
dummy variable which identifies families who declare to be risk averse
(averse).

In the remaining part of this section, we present the most relevant em-
pirical findings. The following Figures report the Network Causal Trees
targeted to single effects (Figure 32) and to multiple effects (Figure 33).
We also report the estimates of the principal treatment and spillover ef-
fects and the overall size of the selected sub-populations. Each tree has
been obtained according to the following rules: we have randomly as-
signed 20 clusters to the training set, while the remaining villages have
been allocated to the estimation set.9 Furthermore, we have set the max-
imum depth at 3 to maintain a high level of interpretability, while we
have set at 20 the minimum number of units that must be present in the
child leaves for each of the four exposure conditions.

We can see that, in the whole population, the treatment has a pos-
itive effect on insurance take up, while the spillover effect is negligi-
ble. The most relevant heterogeneity drivers result to be the perceived
probability of disaster and the production area (specifically, living in the
third area). However, the estimated tree slightly changes under differ-
ent specifications of the spitting rule. Figures 3.32(a) and 3.32(b) sep-

9The random assignment of the villages to the training and estimation samples has been
kept fixed in all the trees.
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arately represent the trees targeted to τ(1, 0, 0, 0) and τ(0, 1, 0, 0). The
most important variable driving the heterogeneity of the treatment ef-
fect is the perceived probability of disaster. The treatment appears to
be particularly effective in the sub-population which identify less con-
cerned and older households, with both a high or low level of education.
We can speculate that younger households who are more worried about
possible disasters benefit less from an intensive information session be-
cause even less information would prompt them to purchase a weather
insurance. On the contrary, living in the third region is the characteristic
which plays a prominent role in determining the spillover effect’s vari-
ation across sub-populations. In this region younger households with a
lower concern about a possible disaster are those who benefit the most
from receiving the information about the weather insurance from some
of their friends. Figure 33 depicts the partition selected using a compos-

(a) NCT targeted to τ(1, 0, 0, 0) (b) NCT targeted to τ(0, 1, 0, 0)

Figure 32: Network causal trees Targeted to single effects

ite splitting function targeted to both causal effects. Specifically, Figure
3.33(a) refers to the network causal tree targeted to both τ(1, 0, 0, 0) and
τ(0, 1, 0, 0), such that each component contributes in determining the ob-
jective function with equal weight (0.5). Figure 3.33(b) is related to the
tree which has been built assigning an equal weight to all the four ef-
fects in T . In this application, the composite tree which considers both
τ(1, 0, 0, 0) and τ(0, 1, 0, 0) coincides with the tree based on τ(1, 0, 0, 0)
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only. Therefore, the latter leads the composite variability across parti-
tions. Finally, the network causal tree that incorporates all the four effects
shows slightly different results: here the sub-population where the treat-
ment results to be more effective is the one including older households
who are currently settled in the second production area.

(a) NCT targeted to τ(1, 0, 0, 0) and
τ(0, 1, 0, 0)

(b) NCT targeted to all effects

Figure 33: Network causal trees Targeted to multiple effects

We can conclude that intensive training sessions encouraged Chi-
nese rural households to take up the insurance policy: the characteristics
which emerge as the main determinants of the heterogeneity are the pro-
duction area and age. Indirect effects do not have a significant impact in
this study, and, hence, composite criteria are mostly ruled by treatment
effects.

3.7 Conclusions

Depending on our characteristics we might respond differently to a treat-
ment or intervention. Similarly, we might be more or less susceptible to
the influence of other people who have experienced the treatment. Un-
derstanding the heterogeneity of the effect of a treatment with the aim of
targeting people who would benefit from it has been the focus of a recent
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field of research, especially applied to medicine. Investigating how dif-
ferent people respond differently to the treatment received by others can
be crucial, particularly in settings with limited resources where spillover
effects could be leveraged. In this paper, we have introduced a new al-
gorithm to estimate heterogeneous causal treatment and spillover effects
in the presence of clustered network interference. The proposed network
causal tree model bridges the gap between two streams of causal infer-
ence literature: estimators for causal effects under interference and tree-
based methods for the discovery of heterogeneous sub-populations. We
build upon the seminal algorithm proposed by Athey and Imbens, 2016
to account for clustered network interference through a rework of the cri-
terion function. Leaf-specific causal effects are then estimated using the
Horvitz-Thomson estimator proposed by Aronow and Samii, 2017.

The proposed NCT algorithm has enhanced interpretability and shows
an excellent performance in a set of Monte Carlo simulations. In particu-
lar, the algorithm is able both to spot the relevant sources of heterogene-
ity in the data and to consistently estimate the conditional treatment and
spillover effects.

Moreover, we introduce a composite splitting function that allows
the researchers to simultaneously detect the sub-populations where both
treatment and spillover effects are heterogenous. The identification of
these multi-effect heterogenous subgroups is crucial for the design of tar-
geting strategies that involve multiple effects. For instance, in marketing
campaigns a person might not be affected by an advertisement received
directly by a company but might be susceptible to the advertisement re-
ceived by her friends. In this case, resources could be saved by promot-
ing the product among people who are could be directly susceptible and
letting those who could be more influenced by their friends receive the
advertisement indirectly. Our simulation study shows that the use of
such composite splitting rule is able to correctly detect all the heteroge-
nous sub-populations defined by both treatment and spillover effects, as
well the ones defined by one effect only. Therefore, the selected parti-
tion of the population can be used to design strategies whose objective
function incorporates multiple effects, but can also be used a posteriori
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to target subgroups maximizing either a treatment or a spillover effect.

When applied to real-world data, the NCT algorithm provided useful
insights on the effectiveness of intensive training sessions among Chi-
nese rural households on the uptake of a weather insurance policy. We
found that the main characteristics responsible for the heterogeneity of
the effects are perception of a possible disaster, the production area, and
the age of the farmers. However, these heterogeneity drivers play a dif-
ferent role with respect to the two main treatment and spillover effects
and when the tree is built using composite splitting function. Neverthe-
less, the proposed algorithm may suffer from the limitations common to
tree-based methods: instability to the random allocation of units in the
training sample and the potential impact of outlier observations in the
node-specific estimations. Here, we propose an algorithm that selects a
single tree because of its high interpretability that plays a fundamental
role in policy relevant scenario. Indeed, the single tree algorithms are
suitable for the discovery of heterogenous sub-populations, which can
give useful insights into the main variables that drive the heterogeneity
and can be used to design targeting strategies. Moreover, we did not
find instability in neither the detection nor the estimation of heteroge-
neous effects in the Monte Carlo simulations. Nonetheless, the proposed
algorithm could be extended to tree-based ensemble methods, following
Wager and Athey, 2018 and Athey et al., 2019. By averaging the esti-
mates from many single trees, this extension could enhance estimation
precision at the cost of reduced interpretability (see K. Lee et al., 2020 for
a discussion on the trade-off between accuracy and interpretability).

In addition, our approach might be rearranged to deal with settings
where the network structure is known cannot be partitioned into well-
defined and pre-specified clusters. However, in some network struc-
tures, clusters could be detected by implementing a network-based com-
munity detection algorithm (Fortunato, 2010) and the NCT algorithm
could be applied on the detected communities, while the estimator should
take into account the uncertainty in group membership .

Furthermore, here we assume that the network exposure variable is
discrete, with the performance of the algorithm being affected by the
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number of categories resulting from the exposure mapping function. In
our simulation study and application we have used a binary neighbor-
hood exposure, which allowed us to grow deeper trees, reduce the num-
ber of possible causal effects, and have enough observations for each ex-
posure condition to maintain the variance in a reasonable range. How-
ever, alternative specifications could be use. For instance, the network
exposure could be defined as the proportion of treated neighbors, per-
haps categorized into few bins. A more complex definition of the net-
work exposure, possibly resulting in a continuous variable, would re-
quire some methodological adjustments in the estimation strategy, but it
would allow to model a wider ensemble of real-world interference mech-
anisms. We leave this extension to future work.Finally, further research
is needed to use the selected partition to actually design targeting strate-
gies involving both treatment and spillover effects. Furthermore, these
strategies should also rely on the average susceptibility of network con-
tacts as well as on heterogenous influential power.
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Chapter 4

Causal Effects with Hidden
Treatment Diffusion over
Partially Unobserved
Networks

This Chapter is a joint work with my supervisors Prof. Irene Crimaldi
and Prof. Fabrizia Mealli, and Prof. Laura Forastiere. The full text of the
article will be soon available from the arXiv repository.
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4.1 Introduction and motivation

Policy evaluation studies intend to estimate the effect of an intervention.
However, in a wide variety of real world scenarios, the treatment of in-
terest can be diffused among units (An, 2018; An & VanderWeele, 2019).
This phenomenon occurs when agents interact with one another and
when units have the possibility to actually spread the intervention with
their interfering neighbors, by means of real or virtual social ties. For
instance, promotional videos or advertising links can be shared on social
media, advertising flyers can be distributed by hand to interacting indi-
viduals, even monetary incentives can be transferred among economic
or social agents. It follows that in all those studies where the treatment
of interest is transferable by nature and it is not reasonable to completely
rule out the presence of interactions among agents, the researcher should
account for the possibility that a treatment diffusion process takes place.
If such a phenomenon happens, some individuals who have been orig-
inally assigned to the control group, and were not provided with treat-
ment by design, might have actually received the intervention because
of a link with treated users.
Treatment diffusion may be regarded as a specific mechanism of inter-
ference (also known as spillover). Indeed, a generic interference mecha-
nism takes place when the potential outcome of a given unit is affected
by the treatment assignment of other units (Cox, 1958). In the treatment
diffusion setting, the potential outcomes of one unit are affected by the
treatment assignment vector of her neighbors, as treated neighbors have
the chance to directly spread the intervention with her. As it is possi-
ble to grasp, treatment diffusion is not the only existing mechanism of
interference. Specifically, spillover effects mainly involve three different
types of mechanisms that occur in different stages of the causal process:
i) the direct effect of one’s treatment on their own outcome coupled with
the diffusion of the outcome to other individuals; ii) the indirect effect of
one’s treatment on the outcome of connecting units; iii) the diffusion of
the treatment to interacting individuals coupled with the effect of indi-
rectly receiving the treatment on one’s own outcome. Generic spillovers
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may arise in a wide ensemble of real applications. In epidemics, the in-
troduction of a new vaccine benefit also unprotected individuals, as their
probability to be infected decreases in the wake of an overall reduction
in the reservoir of infection (Bridges et al., 2000; Nichol et al., 1995). In
education, students that are assigned to a learning program may inter-
fere with their untreated peers through knowledge transmission paths
(Chin et al., 2013; de Heer et al., 2011). In economics, incentives targeted
to firms affect also those firms which do not directly benefit of the in-
centive but do have an economic or juridical relationship with favored
companies (Chuang & Lin, 1999; Cohen et al., 2002). In finance, a mone-
tary shock smashing into some financial institutions may propagate over
those entities involved in their transactions (Squartini et al., 2011; G.-J.
Wang et al., 2017; J. Yang & Zhou, 2013). In marketing, individuals who
are exposed to an advertisement may adjust their consuming behavior
and influence their friends.
The causal inference literature has developed a number of statistical meth-
ods to estimate spillover effects as a whole (Aronow & Samii, 2017; Aronow
et al., 2019; Forastiere et al., 2020; Loh et al., 2020; Miles et al., 2019;
Papadogeorgou et al., 2019; Tortù et al., 2020), without disentangling
among the specific interference mechanisms. However, investigating
the treatment diffusion process differs from simply exploring spillover
mechanisms as a whole. Indeed, the diffusion analysis focuses on ex-
ploiting the real treatment spreading among units, while examining spillovers
as a whole requires to account for the overall indirect exposure to the
intervention. When we are primarily concerned with assessing the ef-
fect of actually receiving the treatment, directly or indirectly, the main
mechanism of interest is the treatment diffusion process and the estima-
tion strategy should precisely account for treatment diffusion, and not
for spillovers as a whole.
Treatment diffusion produces an alteration in the original treatment as-
signment mechanism of a given experiment, where units have been ini-
tially randomly assigned to treatment and control groups. When the dif-
fusion process arises, some of the units, who have been assigned to the
control group, may have yet received the active treatment, by means of
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their interaction with treated neighbors. In some sense, the treatment dif-
fusion process might give rise to a measurement error in the treatment
variable. Measurement error issues have been widely discussed in the
recent statistical literature (Bound et al., 2001; R. J. Carroll et al., 2006;
Fuller, 2009; Grace, 2017) and some studies have also investigated the
role of measurement error in the causal inference framework, by explor-
ing the possible misclassification of the outcome variable (Grace, 2017;
Shu & Yi, 2019a, 2019b) and the treatment variable (Babanezhad et al.,
2010; Braun et al., 2014; Braun et al., 2016; Grandjean et al., 2004; Imai
& Yamamoto, 2010; Lewbel, 2007; McCaffrey et al., 2013; Vanderweele,
2012; Yanagi, 2018). These works have all pointed out that a misclassifi-
cation of the exposure might induce a bias in the estimate of the average
treatment effect both when the measurement error is independent on po-
tential outcomes, conditioning on the true value of the treatment and on
observed covariates (nondifferential scenario), and when the misspecifica-
tion of the treatment depends on potential outcomes and on individual
characteristics (differential measurement error). The direction of this bias
is difficult to be determined, as it results from various interacting mech-
anisms. However, Lewbel, 2007 states that if (i) misclassification is mean
independent on potential outcomes, conditioning on the true treatment
and the observed covariates and (ii) the sum of mis-classification proba-
bilities is less than one (that is, the individual probability of presenting
a misclassified treatment is not huge and the probability that the mis-
classified treatment coincides with the actual exposure is higher than
the probability that a pure random guess reflects the actual exposure),
the misspecified treatment effect underestimates the real treatment ef-
fect. This statement means that, when the misclassification is indepen-
dent on potential outcomes and it is mostly determined by a random
component, the observed effect actually under-estimates the real effect
of the intervention. Vice versa, in the presence of a measurement er-
ror which depends on potential outcomes, the missclassifcation process
may lead to both an overestimation and underestimation of the real treat-
ment effect, depending on the mechanism which drives the contingency
among the outcome variable and the missclassifcation process and on the
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expected potential outcomes characterizing those sub-populations who
have mostly experienced the diffusion process. This aspect is particularly
significant in the presence of a relevant heterogeneity in the treatment ef-
fect: if the diffusion process mostly impacts those sub-populations who
exhibit a particular responding behavior to the intervention, then the ef-
fects of the misclassification will reflect their specific attitude towards the
treatment.

As we have already hinted, the treatment diffusion setting represents
a framework, where a misclassification of the treatment variable might
potentially arise, especially if the outcome is observed with a certain lag
with respect to the treatment exposure. This kind of mis-classification of
the treatment variable introduces a bias in the estimates. In most cases a
correction for this type of bias cannot be performed because the diffusion
process is usually unobserved. Note that the treatment diffusion process
is sometimes the main object of interest: indeed, from the policy maker
perspective, it may be useful to investigate the real diffusion spreading,
using the acquired information to maximize the effectiveness of an in-
tervention. An additional issue that may arise in this setting is that the
network ties connecting treated and untreated individuals may not be
completely known. In this contribution, we point out that ignoring the
diffusion process, if present, can lead to overestimate or underestimate
the real effect of an intervention and we propose a novel approach to
deal with unknown treatment diffusion in a partially unknown network
structure. Specifically, we propose a sensitivity analysis to assess the ro-
bustness of the estimates with respect to different diffusion scenarios: the
analysis accounts for both the uncertainty in the network structure and
the uncertainty in the real individual treatment status.

This work has been inspired by a recent experiment, which was de-
signed to assess the effect of different kinds of school-incentives aimed at
promoting museums attendance among students (Forastiere et al., 2019b;
Lattarulo et al., 2017). In particular, this experiment was targeted to stu-
dents living in Florence, for encouraging them to attend the museum of
Palazzo Vecchio, which represents the administrative center of the city,
and for pushing long-term museums attendance. In this cluster random-
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ized experiment each class was randomly assigned to treatment or con-
trol. All students receive a flyer containing basic information about the
museum. Students belonging to classes assigned to treatment were pro-
vided with a video presentation, where an art expert from the museum
directly promotes the art exhibit. The outcome of interest is the number
of self-reported museum visits in the eight months between the baseline
and the follow-up survey. In this setting, the treatment diffusion might
potentially be plausible because students receiving the video could have
shared it with their friends. The presence of the treatment diffusion could
lead to a bias in the estimation of the actual effect of the treatment. Fur-
thermore, only intra-class ties are observable, while network links be-
tween students of different classes are not known. Here, we develop a
sensitivity analysis (Rosenbaum & Rubin, 1983a) to assess the robust-
ness of the estimated treatment effect against different diffusion scenar-
ios. The partially unknown network is reconstructed through multiple
imputation (Rubin, 1996, 2004): specifically, starting from the observa-
tion of known ties, we multiply predict the presence (or the absence) of
inter-class friendship ties using random forests with chained equations
(Buuren & Groothuis-Oudshoorn, 2010; Doove et al., 2014; Shah et al.,
2014). The key inputs of the algorithm are a batch of dyadic similarity in-
dicators, which measure the baseline degree of affinity between a given
pair of units, with respect to hobbies, school attitudes, cultural interests
and personal background. As a consequence, the sensitivity analysis pro-
cedure accounts for i) the missing inter-class network ties and for ii) the
hidden diffusion process, which plausibly can cause a switch in the treat-
ment status of the initially untreated students.

For ease of interpretation, we assume to deal with a three time step
process: at the initial time, the treatment is assigned in the population; at
an intermediate point in time, the treatment might diffuse over the net-
work and, finally, at the end of the process, the individual outcome be-
comes observed. The three-step temporal characterization of the process
implies that the treatment spreading is assumed to happen at a single
point in time. Here, we also make the assumption that one’s outcome
is not affected by other units’ treatment if not through the contagion of
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the treatment itself, that is, interference is manifest only in the form of
the treatment diffusion mechanism. Furthermore, we also advance the
hypothesis that the treatment might spread from a treated unit to an un-
treated neighbor according to a ”Bernoulli mechanism” with a diffusion
parameter, which does not vary across dyads. This strategy allows us to
detect the existence of an empirical threshold of the diffusion parameter,
above which estimates significantly vary: if the threshold represents a
plausible diffusion parameter, then the estimates obtained while ignor-
ing the diffusion process are not reliable; if instead the threshold corre-
sponds to an unrealistic empirical diffusion parameter, then ignoring the
diffusion process might not constitute a relevant issue for the study and
its major findings.
The paper is organized as follows. Section 4.2 presents the main aspects
of the used methodology: it characterizes the theoretical framework, for-
malizing the treatment diffusion process, discussing the direction of the
treatment diffusion bias and introducing the key steps of the applied
sensitivity analysis. Section 4.3 illustrates how the sensitivity analysis
can effectively reduce the treatment diffusion bias in some exemplifying
simulations’ scenarios. In Section 4.4, we focus on the application: we
motivate its empirical relevance, we describe the dataset and we provide
the main findings.

4.2 Sensitivity Analysis for Treatment Diffusion:
Methodology

4.2.1 Setup and Notation

We here give a formal characterization of the treatment diffusion mech-
anism and its resulting contamination of the treatment arms. Let us
consider a randomized experiment aimed of evaluating the effect of a
given intervention on an outcome in a given population. We denote
by N the population of interest, where the generic individual i, with
i = 1, . . . , card(N ) = N , can be randomly assigned to the active treat-
ment or to the control group. Let Zit ∈ {0, 1} be the binary variable
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representing the treatment assigned to unit i at time t and Yit′′ the indi-
vidual outcome, observed at the lagged time t′′, with t′′ > t. The symbols
Zt and Y t′′ denote the corresponding vectors associated to the entire
population N , while Z−it denotes the vector of the treatments to all the
units different from i. We assume that each unit has a non-zero proba-
bility of being initially allocated in each of the two treatment arms, that
is 0 < P (Zit = 1) = πit(1) < 1. According to the initial randomization
of treated and untreated individuals, Zt, we define two sets of nodes: i)
the set of treated units at time t, Tt = Tt(Zt) = {i ∈ N : Zit = 1}, with
cardinality Tt = Tt(Zt) = card(Tt) =

∑N
i=1 Zit) and ii) the set of un-

treated units at time t, Ct = Ct(Zt) = {i ∈ N : Zit = 0}, with cardinality
Ct = Ct(Zt) = card(Ct) = N − Tt). We possibly observe also a N × P
baseline covariate matrix,X , that are assumed not to change over time.

We denote by G = (N , E) the graph describing the relations among
units. We denote by A = {aij : i, j ∈ N} the adjacency matrix associ-
ated to G, where the generic element aij signals the presence of an edge
between unit i and unit j. Note that this matrix is not necessarily sym-
metric: that is, the relations between units could be not reciprocated,
and so there could have aij 6= aji. Therefore, we distinguish between
the set of nodes having an in-going link with i, N in

i = {j : (j, i) ∈ E}
with cardinality N in

i , and the set of nodes with an out-going tie to i,
N out
i = {j : (i, j) ∈ E} with cardinality Nout

i . When the matrix A is
symmetric, we have N in

i = N out
i and we will simply write Ni. Net-

work relations are assumed fixed. Here we work in a setting where the
connections in A are either fully or partially observed. For instance, in
our motivating application, we have just a partial information about the
network structure: we observe friendship ties between students who are
enrolled in the same class, but we do not measure inter-class links. We
will show one possible approach to predict the full network structure.

If the treatment spreads among individuals, then the initial treatment
assignment vector Zt does not truly represent the real allocation of units
among the treatment arms. The actual treatment status of units is rep-
resented by an unknown treatment vector Zt′ , which collects the indi-
vidual treatment indicators after the diffusion process. For ease of inter-
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pretation, we assume to deal with a simplified process, characterized by
three time points only:

1. At the initial time t, the treatment is randomly assigned over the
population, defining the treatment assignment vector Zt.

2. At time t′, treatment may spread in the network: treated nodes may
contaminate untreated neighbors, by sharing the intervention with
them. The new treatment status is represented by the treatment
variable Zit′ .

3. At time t′′, the outcome Y t′′ becomes observable.

This process is graphically represented in Figure 34. Figure 35 provides

Figure 34: Three-steps Diffusion Process: timeline

a graphical example of how the diffusion process looks like. As you can
see, in the example the population of interest includes ten units, linked
by some edges which remain unchanged over time. At time t, a half of
the population is assigned to the active treatment, while the remaining
half falls into the control group. At time t′, some of the initially con-
trolled individuals receive the active treatment by diffusion, due to their
interaction with treated neighbors. It is worthwhile to note that we have
assumed to have a complete knowledge about the graph G. However, in
many empirical scenarios this could not be the case. For instance, in our
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Figure 35: Treatment diffusion process: units numbered as 3 and 6 were
not initially assigned to the active treatment, but they have received the
treatment by diffusion .

motivating application, we have just a partial information about the net-
work structure: we perfectly observe friendship ties between students
who are enrolled in the same class, but we ignore inter-class links. We
will show one possible approach to predict the full network structure
and to use the reconstructed information in accounting for the diffusion
process.

4.2.2 The Diffusion Process: Assumptions and Prelimi-
naries

This study represents the first attempt to account for unobserved diffu-
sion in causal inference. It is worthwhile to note that we firstly consider
the entire network G known. Then, in Subsection 4.2.5 we will discuss
the case of a partially unknown network G.

We model the diffusion process under the following simplifying as-
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sumptions:

Assumption 13 (Single diffusion). For all the untreated units, diffusion can
occur only at the same single time point between t and t′.

This assumption permits not to consider multiple diffusion steps and
not to account for (eventual) spreadings of the intervention occurred af-
ter the fixed time step t′. Under this assumption, it is possible to uniquely
index the individual potential outcomes at time t′′ in terms of the real
treatment assignment vector (observed after the treatment diffusion pro-
cess)

Assumption 14 (Diffusion process with a fixed probability). Given the
graph G and the pre-treatment covariates X , an untreated node i may receive
the treatment only by a unit k in N in

i = {k ∈ N : aki = 1} with Zkt = 1
and, each of such units, say k, can diffuse the treatment to i with probability
pi = pi(Xi) (diffusion parameter associated to i), independently of the other
units k′ ∈ N in

i with Zk′t = 1.
Note that a particular case is when pi = p for all i and in this case we refer

to p as the diffusion parameter of the model.

By introducing this assumption, we simplify the modelling of the ac-
tual treatment diffusion, relying on the Bernoulli distribution, which has
been proved to suitably model a wide ensemble of real world scenarios.
In this setting, is essential to advance some parametric assumptions on
the treatment process. The proposed framework could effectively handle
with alternative and more flexible specifications, that might be employed
if data provide additional information or the researcher has a deep a pri-
ori knowledge on the diffusion phenomenon she is investigating. This
assumption also states that the event that any untreated nodes switches
its status due to the diffusion process occurs independently on the same
event affecting any other individual in the network (included neighbor-
ing individuals). By assuming independence, we are able to model the
treatment diffusion process as a result of independent events. In partic-
ular, we model the individual probability of gaining a tangible exposure
to the active treatment by adopting a simplified rearrangement of the In-
dependent Cascade Model (Kempe et al., 2003b; Saito et al., 2008; C. Wang et
al., 2012), where contagion may occur at only one time frame by means
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of a fixed probability of infection, treated units are all active spreaders
of the treatment and untreated nodes who have treated neighbors are
all susceptible of being infected. The possibility of a node to effectively
gain the treatment by second-order neighbors is ruled out. In this setting,
treatment propagates from treated to untreated friends. Nodes who have
initially been assigned to the active treatment cannot receive the treat-
ment by diffusion. In addition, an untreated node who does not have
treated friends in their neighborhood cannot get the treatment. Figure 36
provides a graphical example of this diffusion process: the color of the
nodes is related to their treatment status: red nodes are treated nodes,
while green nodes represents units, who have been initially assigned to
the control group. As you can see, units can receive the treatment by
diffusion if both the following conditions are met: i) they have been orig-
inally allocated to the control group and ii) they have at least one treated
friend among their direct neighbors.

Figure 36: Diffusion Process: who can propagate the treatment to whom?
The color of the nodes is related to their treatment status: red nodes are
treated nodes, while green nodes represent units, who have been initially
assigned to the control group. As you can see, units can receive the treat-
ment by diffusion if both the following conditions are met: i) they have been
originally allocated to the control group and ii) they have at least one treated
neighbor.
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Note that the simplified scenario considered here, with only three
time frames and time-invariant network structure, is reasonable in most
settings when the time interval between treatment assignment and follow-
up is small. All the assumptions that have been introduced in this sec-
tion contribute in characterizing the hidden treatment diffusion process,
by simplifying the structure of the process and by imposing a plausible
statistical parameterization on the actual treatment spreading. The pro-
posed batch of assumptions simplifies the methodological scenario, and
allows to partially reconstruct the hidden treatment diffusion process,
about which we do not have prior information. Note that these assump-
tions, even if they are strong, result to be plausible in a wide ensemble
of real-world phenomena and they have been conceived so to be both in-
formative and generalizable. When prior information about a real-world
diffusion process is available, these assumptions may be revisited so to
be more precise and targeted to the specific empirical phenomenon: the
more the researcher has valid prior information about the particular dif-
fusion process she is analyzing the better she is able to effectively char-
acterize this process.

Formally, given the graph G, we set Tit = Tit(Z−it) = {j : j ∈
N in
i and Zjt = 1} the set of treated in-neighbors of node i at time t and

we denote by Tit = Tit(Z−it) its cardinality, i.e. the number of treated
in-neighbors of i at time t. Moreover, according to the treatment status at
time t and the number of treated in-neighbors, we identify three different
sets of units, that inform about the nodes’ possible treatment status after
the diffusion process, with respect to their eventual eligibility to experi-
ence it:

• The set of surely treated nodes at time t′, that exactly coincides
with the set Tt = Tt(Zt) of units that have been randomly assigned
to treatment at time t (one node treated at t cannot subsequently
pass to a control status).

• The set of surely untreated nodes at time t′. These nodes have been
assigned to control at time t and it is impossible for them to receive
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treatment through diffusion at t′ because of two reasons

1. node i has not in-neighbors, that is N in
i = ∅

2. node i has not treated nodes in his in-neighborhood, that is
Tit = ∅

We denote this set by I = I(Zt) = {i : Zit = 0 ∧ (N in
i = ∅ ∨ Tit =

∅)}.

• The set of nodes whose treatment variable at time t′ is uncertain
is given by D = D(Zt) = {i : Zit = 0, Tit 6= ∅}. This set of
D = D(Zt) = card(D) nodes identifies the units that at time t
have been assigned to control but can receive the treatment at time
t′ through diffusion with a non-zero probability. We denote by
DT = DT (Zt,Zt′) the subset of units belonging to D that will re-
ceive treatment through diffusion, i.e., DT = DT (Zt,Zt′) = {i ∈
D : Zit′ = 1}, and by DC = DC(Zt,Zt′) the subset of units belong-
ing to D that will not receive treatment, i.e., DC = DC(Zt,Zt′) =

{i ∈ D : Zit′ = 0}.

As we can see from this characterization, the vector of treatment assign-
ments at time t′, Zt′ , is partially unknown, and we only have partial in-
formation about the units’ allocation in the two treatment arms. Specif-
ically, we are informed about the treatment status of units belonging to
Tt and I (who are surely treated and surely untreated, respectively) but
we do not know whether those individuals, who are eligible to gain the
treatment by diffusion, have effectively received it. Nevertheless, we can
compute units’ overall probability of being treated at time t′. Indeed,
each individual can be treated at time t′ because either he was initially
assigned to the active treatment or he has received the treatment by dif-
fusion. Therefore, given the graph G, we can express the conditional
probability of being treated at time t′, given the treatment vector at time
t in the rest of the network, i.e. Z−it, and the individual characteristics,
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i.e. Xi, by means of the law of total probabilities, that is

πit′(1; Z−it,Xi) = P (Zit′ = 1|Z−it,Xi)

= P (Zit′ = 1|Zit = 1,Z−it,Xi)P (Zit = 1|Z−it,Xi)+

P (Zit′ = 1|Zit = 0,Z−it,Xi)P (Zit = 0|Z−it,Xi)

= πit(1; Z−it,Xi) + ρi(1− πit(1; Z−it,Xi)),

where πit(1; Z−it,Xi) is the conditional probability that the unit i is
initially assigned to the treatment, given the treatment vector Z−it of the
other units and the characteristics Xi of the unit, and ρi = ρi(Z−it,Xi) =

P (Zit′ = 1|Zit = 0,Z−it,Xi) is the conditional probability for the unit
i of receiving the treatment by diffusion given that unit i has been not
assigned to the active treatment at time t and given the initial treatment
assignment vector Z−it referred to all units but i and on the vector of
characteristicsXi. Moreover, we can express the conditional probability
of being treated at time t′, given the covariate Xi, as

πit′(1; Xi) = P (Zit′ = 1|Xi) = P (Zit′ = 1|Zit = 1,Xi)P (Zit = 1|Xi)+

P (Zit′ = 1|Zit = 0,Xi)P (Zit = 0|Xi)

= πit(1; Xi) + P (Zit′ = 1|Zit = 0,Xi)(1− πit(1; Xi))

= πit(1; Xi) + E[ρi|Zit = 0,Xi](1− πit(1; Xi)),

where π(1; Xi) = P (Zit = 1|Xi) and E[ρi|Zit = 0,Xi] =
∑

z−i
ρi(z−i,Xi)P (Z−it =

z−i|Zit = 0,Xi). Finally, the overall individual probability of being
treated at time t′ is

πit′(1) = P (Zit′ = 1) = P (Zit′ = 1|Zit = 1)P (Zit = 1)+

P (Zit′ = 1|Zit = 0)P (Zit = 0)

= πit(1) + P (Zit′ = 1|Zit = 0)(1− πit(1))

= πit(1) + E[ρi|Zit = 0](1− πit(1)),

where πit(1) = P (Zit = 1) and E[ρi|Zit = 0] is the mean value of ρi given
Zit = 0 and, when Xi is a discrete random variable, we have E[ρi|Zit =

0] =
∑

x

∑
z−i

ρi(z−i,x)P (Z−it = z−i,Xi = x|Zit = 0).

145



In our setting, by Assumption 14, we have

ρi = ρi(Z−it,Xi) = P (Zit′ = 1|Zit = 0,Z−it,Xi) = P (Zit′ = 1|Zit = 0, Tit,Xi)

= 1− (1− pi)Tit = 1− (1− pi(Xi))
Tit(Z−it).

Remark:
Note that, if {Zit : i ∈ N} and {Xi : i ∈ N} are two independent
collections of independent random variables, we have

πit(1; Z−it,Xi) = πit(1; Xi) = πit(1)

and E[ρi|Zit = 0] = E[ρi].

So far we have defined the probability of receiving the treatment by
diffusion, and the overall probability of being treated at time t′, but we
have not characterized the exact subset of units who actually experiment
the diffusion process. If we denote by Si the random variable which
equals 1 if unit i switches his status by means of diffusion and 0 other-
wise, we have

Si = DiI{Zit=0} with Di ∼ Bernoulli(ρi) ,

where the random variables Di, i = 1, . . . , N , are conditional indepen-
dent, given Zt and X. Note that we have {Si = 1} = {Zit = 0, Di = 1} =

{Zit = 0, Zit′ = 1}, while {Si = 0} is the union of {Zit = 1} = {Zit =

1, Zit′ = 1} and {Zit = 0, Di = 0} = {Zit = 0, Zit′ = 0}. Summing up, af-
ter the diffusion process at time t′ the total number of treated units will be
the number of initially treated nodes plus the (random) number of units
that received the treatment by diffusion. Therefore, if we denote by S the
vector of the random variables Si and by Tt′ = Tt′(Zt,Zt′) = Tt′(Zt,S)

the set representing the total random number of treated units at time t′

and by Tt′ = Tt′(Zt,Zt′) = Tt′(Zt,S) its cardinality, we can state that
Tt′ = Tt ∪ DT and Tt′ = Tt +

∑N
i=1 Si.

4.2.3 Potential Outcomes and Causal Effects

The treatment diffusion process might heavily compromise the causal in-
ference setting. This unknown mechanism can introduce a relevant bias
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in the estimates, leading to inaccurate conclusions about the real effect
of an intervention. We here define the causal effects, under the potential
outcomes framework. Following the Rubin Causal Model (RCM) (Ru-
bin, 1974), we denote by Yit′′(Zt) the potential outcome of unit i at time
t′′ under the initial treatment vector assigned at time t.

By definition, the treatment status of unit i at time t′ is a function of
the entire treatment vector at time t: Zit′ = Zit′(Zt). This function is
stochastic and is determined by the diffusion process. In principle, we
should define the potential outcome as a function of the whole treatment
vector at time t and the whole potential treatment vector at time t′, i.e.,
Yit′′(Zt,Zt′(Zt)). We make three important assumptions: i) the treatment
status of unit i at time t has no effect on their outcome at time t′′ if not
through their treatment status at time t′ ii) the treatment status of other
units at time t has no effect on the outcome of unit i at time t′′ if not
through the treatment status of unit i at time t′; iii) the outcome of unit
i at time t′′ is not affected by the treatment status of other units at time
t′. This means that there is no interference between units if not trough
the diffusion process. These assumptions can be formally expressed as
follows:

Assumption 15 (Exclusion Restriction and No-interference of other units’
treatment at time t′). Given two different assignment treatment vector Zt and
Z′t, resulting in the same treatment status at time t′ for unit i, i.e., Zit′(Zt) =
Zit′(Z

′
t), but different treatment status for some of the other units, i.e.,Zkt′(Zt) 6=

Zkt′(Z
′
t) for some k 6= i, then

Yit′′(Zt,Zt′(Zt)) = Yit′′(Z
′
t,Zt′(Z

′
t)).

Under Assumption 15, we can index the potential outcomes by the
treatment status at time t′, that is Yit′′(Zt,Zt′(Zt)) = Yit′′(Zit′). Hence,
we postulate the existence of two potential outcomes for each unit, Yit′′(Zit′ =

0) and Yit′′(Zit′ = 1), representing the potential outcome that would be
observed for unit i at time t′′ under control and under (directly or in-
directly received) active treatment, respectively. As a consequence, the
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observed outcome can be expressed by

Yit′′ = Yit′′(Zit′ = z) =

{
Yit′′(0) if z = 0,

Yit′′(1) if z = 1.
(4.1)

Thanks to the randomization of the initial treatment and the assumed
diffusion process (Assumption 14), we can forward the following set of
assumptions:

Assumption 16 (Unconfoundedness).

Yit′′(Zit′ = z) ⊥⊥ Zt, Xi ∀z ∈ {0, 1}

Yit′′(Zit′ = z) ⊥⊥ Zit′ |Z−it, Zit = 0,Xi ∀z ∈ {0, 1}.

The first sub-assumption simply reflects the randomization of the ini-
tial treatment assignment, while the second sub-assumption states that
the treatment at time t′ is unconfounded, given that unit i is not treated
at time t, the treatment vector at time t of the other units and the vector of
characteristics Xi. The last two components drive the diffusion process:
in the hypothesized process described in Section 4.2.2 the probability of
receiving the treatment when initially assigned to control only depends
on the covariates of the unit and the number of its treated neighbors in
the network. We formally define the average treatment effect τ∗ as the
average comparison between the two potential outcomes:

τ∗ = E
[
Yit′′(Zit′ = 1)

]
− E

[
Yit′′(Zit′ = 0)

]
= E[Yit′′(1)]− E[Yit′′(0)].

The effect τ∗ represents the causal effect of receiving the treatment. In
the presence of diffusion, the actual treatment received Zit′ does not co-
incide with the assigned treatment Zit. In this case, τ∗ is a comparison of
the potential outcomes defined under the actual (but hidden) treatment
status Zt′ and it represents the causal effect of receiving the treatment
directly as assigned or indirectly through diffusion.
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Under the unconfoundedness assumption 16, we have that

τ∗ = E
[
Yit′′(1)|Zit = 1

]
P (Zit = 1)+∑

z−it

∑
x

(
E
[
Yit′′(1)|Zit′ = 1, Zit = 0,Z−it = z−it,Xi = x

]
−

E
[
Yit′′(0)|Zit′ = 0, Zit = 0,Z−it = z−it,Xi = x

])
P (Zit = 0,Z−it = z−it,Xi = x).

Proof can be found in Appendix C.3. Thus, if Zit′ were observed for all
units, the causal effect τ∗ would be identified from the observed data.
For example, when 0 < πit′(1; Z−it,Xi) < 1 (this happens, for instance,
when all the random variables Zit, Xi, with i ∈ N , are independent so
that the term πit(1; Z−it,Xi) in the expression for πit′(1; Z−it,Xi) coin-
cides with πit(1)) we could use the following Horvitz-Thomson estima-
tor:

τ̂? =
1

N

[ N∑
i=1

Zit′
Yit′′

πit′(1; Z−it,Xi)
−

N∑
i=1

(1− Zit′)
Yit′′

1− πit′(1; Z−it,Xi)

]
.

where πit′(1; Z−it,Xi) = P (Zit′ = 1|Z−it,Xi) is the conditional proba-
bility for i of receiving the treatment at time t′ conditional on the initial
treatment vector Z−it of the other units and the characteristics of unit i.
1 In Appendix C.3 we prove that the above estimator is unbiased under
Assumption 16.

The actual diffusion is usually unobserved. Therefore, one would be
tempted to neglect any diffusion mechanism, even if plausible, and esti-
mate the treatment effect relying on the initial treatment assignment We
denote by τ̂ bobs a naı̈ve estimator under the assumption of no-diffusion.
This can be written as

τ bobs = E
[
Yit′′ |Zit = 1

]
− E

[
Yit′′ |Zit = 0

]
. (4.2)

As its estimator, we can use the Horvitz-Thomson estimator (Aronow &
Middleton, 2013; Horvitz & Thompson, 1952) based on the initial treat-
ment variables Zit (see Subsection 4.2.6 below).

1In Section 4.2.6 we make use of this estimator after simulating the diffusion process.
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However, if a treatment diffusion arises, τ bobs does not represent the
real effect of the intervention, as the initial treatment allocation may have
been altered by the treatment spreading. Hence, τ̂ bobs will be a biased
estimate of the treatment effect τ∗.

Furthermore, because the presence of diffusion is one of the mecha-
nisms in which interference manifests, that is the outcome of unit i will
be affected by the treatment assigned to other units, then τ̂ bobs will not
even estimate an intent-to-treat effect, that is, the effect of the assignment
as defined in (4.2). Instead, in order to estimate the causal effect of the as-
signment to treatment, one would need to take into account interference
and consider the treatment assigned to other individuals. In a general
network setting, even if connections were measured, this could be hard,
because treatment diffusion does not restrict interference to the neigh-
boring units. The estimation of the intent-to-treat effect under treatment
diffusion is beyond the scope of this paper and we will leave this issue
to further works.

Our interest here is to deal with the bias with respect to the causal ef-
fect of the treatment receipt τ∗. In most scenarios, the treatment spread-
ing is completely unobserved. However, sometimes we do have some in-
formation on the relationships between units. In fact, some studies might
collect social interactions among participants, yielding a partial or a full
knowledge of the social network. Alternatively, oftentimes we have ge-
ographic information on participants or a partial information on the so-
cial structure (e.g. schools and classes, social groups, ...). Full or partial
knowledge of the social network G could be used to perform a sensitivity
analysis for treatment diffusion. The sensitivity analysis developed here
relies on full or partial information of the network to predict treatment
diffusion scenarios that might have plausibly occurred. For this purpose,
we must make a set of assumptions on the diffusion process.

4.2.4 Bias Analysis when Diffusion is Neglected

So far we have stated that ignoring the diffusion process, when present,
introduces a bias in the estimate of the treatment effect. In this subsec-
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tion, we illustrate the formula of the bias (the computations are collected
in Appendix C.4) and we discuss the direction of the bias by investi-
gating the possible settings which can generate either an underestima-
tion or an overestimation of the causal treatment effect. If the policy
maker neglected the possibility of any diffusion process playing a role
in the analysis, she would estimate the quantity τ bobs = E

[
Yit′′ |Zit =

1
]
− E

[
Yit′′ |Zit = 0

]
. Conversely, the average effect of the actual treat-

ment is defined as τ∗ = E
[
Yit′′(1)

]
− E

[
Yit′′(0)

]
. We define the bias

b as the difference between these two quantities, that is b = τ bobs − τ∗.
This is the difference between the two quantities targeted under either
the assumption of no-diffusion and, in turn, no-interference, or taking
into account the diffused treatment. Therefore, this bias is not affected
by the potential bias of the estimators used to estimate these quantities.
As proven in Appendix C.4, under the first part of Assumption 16, the
bias can be expressed as:

b = τ bobs − τ∗

= E
[
Yit′′(0)

]
− E

[
Yit′′(0)|Zit′ = 0, Zit = 0

]
(1− E[ρi|Zit = 0])

− E
[
Yit′′(1)|Zit′ = 1, Zit = 0

]
E[ρi|Zit = 0],

where E[ρi|Zit = 0] = P (Zit′ = 1|Zit = 0) is the average probability
of receiving the treatment by diffusion. If b > 0, neglecting the diffusion
process implies to over-estimate the real effect of the intervention and the
intervention appears to be more effective than it really is; while if b < 0

our analysis is affected by under-estimation and the intervention appears
less effective. Clearly, in the absence of the diffusion process (ρi = 0),
since we have E[ρi] = 0 and E[Yit′′(0)|Zit′ = 0, Zit = 0] = E[Yit′′(0)|Zit =

0] = E[Yit′′(0)] (by the first part of Assumption 16), we trivially have
b = 0. Moreover, we note that, if E

[
Yit′′(0)|Zit = 0, Zit′ = 0

]
= 0 and

E
[
Yit′′(0)

]
= 0, then:

• E
[
Yit′′(1)|Zit′ = 1, Zit = 0

]
< 0 leads to b > 0, that is an over-

estimation of the real effect;
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• E
[
Yit′′(1)|Zit′ = 1, Zit = 0

]
> 0 leads to b < 0, that is an under-

estimation of the real effect.

These are the cases that have inspired the simulations in Section 4.3 (al-
though in the simulations Assumption 16 is not verified).

When we have a constant potential outcome under control, we have
E
[
Yit′′(0)|Zit = 0, Zit′ = 0

]
= E[Yit′′(0)] and so

b = τ bobs − τ∗ =
(
E
[
Yit′′(0)

]
− E

[
Yit′′(1)|Zit′ = 1, Zit = 0

])
E[ρi|Zit = 0].

When the potential outcome under treatment is also constant, we have
E
[
Yit′′(1)|Zit′ = 1, Zit = 0

]
= E[Yit′′(1)] and so the bias becomes

b = (E[Yit′′(0)]− E[Yit′′(1)])E[ρi|Zit = 0] .

Therefore the over-estimation and the under-estimation depend on the
sign of the difference (E[Yit′′(0)]− E[Yit′′(1)]).

4.2.5 Dealing with a partially unknown network struc-
ture

In some situations, a full information about the network G = (N , E)

could not be possible. In particular, in our motivating example, we know
links between students belonging to the same class, while we ignore the
relationships among students in different classes. Generally, a wide va-
riety of empirical contexts provide an incomplete network information.
Link-prediction is a growing research topic within the network theory
and, in a broader sense, within the statistical literature of network data.
The key idea of link-prediction models is to use a snapshot of a network
to predict missing links. Figure 37 provides a graphical intuition con-
cerning the missing-links issue: given an observed network (left side
network), link-prediction models use various and heterogeneous statis-
tical techniques to impute missing links, generating a complete network
(right side network). Links are predicted (purple-dotted arcs) according
to a prediction model, which is determined by the specific setting.
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Figure 37: Observed Network vs Reconstructed Network

There are a variety of prediction models for link imputation. Predic-
tion models can be classified into the following broad classes: i) purely
statistical models, which use a parametric strategy for imputation, first
estimating each link probability, then imputing missing links according
to the estimated probability (Cranmer & Desmarais, 2011; Fellows &
Handcock, 2012); ii) network reconstruction models, mostly referring to
growing literature of statistical physics for complex networks: these ap-
proaches are highly flexible and impute missing links considering either
similarity-based methods, likelihood-based criteria or entropy-based strate-
gies (Liben-Nowell & Kleinberg, 2007; Lü & Zhou, 2011; T. Zhou et al.,
2009). These latter approaches do not focus on single dyads only, but
they impute missing links by taking into account the characteristics and
the link patterns observed in the entire network.

We decide to perform a slightly alternative approach, which could be
considered as a mixture of the two outlined strategies: we implement a
multiple imputation of missing links relying on a machine learning al-
gorithm, which predicts missing values using a more flexible approach,
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based on recursive partitioning (Buuren & Groothuis-Oudshoorn, 2010).
The idea is to consider the missing information about the presence (or
absence) of a given tie as a missing value, and to multiple impute all that
lacking values M times, so to generate M different reconstructed net-
work. Specifically, we use random forests (Breiman et al., 1984) to impute
missing values. Random forests derive from a theoretical extension of the
classification and regression trees (CART), which are predictive models
that recursively split data according to the values of the predictors. Mul-
tiple CARTs sprout a random forest: in fact, a random forest consists in
an ensemble of trees (CARTs), each generated over a distinct sample of
units and predictors (both selected randomly, using bootstrap). Random
forests are particularly flexible, perform well in managing with possible
nonlinearities or interactions, and do not require specific assumptions
(Doove et al., 2014; Shah et al., 2014). Multiple imputation techniques
(Rubin, 1996, 2004) are not specifically targeted for network data and
link prediction issues: they are usually implemented in all those circum-
stances, where data include variables, which for some reasons have not
been observed in some of the entries. However, they provide versatile
statistical tools, which perform well in dealing with heterogeneous miss-
ing data issues.

In our empirical scenario, an highly flexible approach like the one
that we have just described appears to be particularly appropriate: using
a machine learning algorithm saves us from advancing strong assump-
tions on the imputation model, while multiple imputation allows us to
efficiently handle the uncertainty over link predictions and to work with
an ensemble of reconstructed scenarios. From now on, we will denote by
G = (N , E) the initially observed network and by Gm = (N , Em), where
m = {1, . . . ,M}, the m reconstructed network. Reconstructed networks
are collected in the ensemble G.
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4.2.6 Sensitivity analysis for estimating causal effects in
the presence of an unknown diffusion process: Pro-
cedure

We propose a sensitivity analysis for the unobserved treatment diffusion
process, with the aim of assessing the degree of sensitivity of the naı̈ve
estimates τ̂ b of the treatment effect. The key idea is to simulate a set
of diffusion scenarios and compare estimates of the treatment effect ac-
counting for diffusion with the naı̈ve estimates under the assumption of
no-diffusion. This sensitivity analysis will allow us to assess whether
ignoring treatment diffusion would lead to an over-estimate or under-
estimate of the treatment effect or whether any hidden diffusion process
would not have a significant impact on results. In our specific applica-
tion, we must not only reconstruct the diffusion scenario, but also deal
with a partially unknown network structure. It follows, that the strategy
that we are going to describe accounts both for the variation in the dif-
fusion parameters and for the managing of the distinct M reconstructed
complete networks. Since we are handling a randomized setting, we
make use of the Horvitz-Thompson estimator (Horvitz & Thompson,
1952) to compute the estimate of the treatment effect, and its correspond-
ing standard error. Note that the sensitivity analysis that we propose
here implicitly assumes that (i) the model for imputing missing links ac-
curately predict hidden relationships among scholars of different classes
and (ii) the hidden diffusion process satisfies the assumptions that we
have advanced in Subsection 4.2.2. Relying on specific parametric as-
sumptions is unusual in a pure sensitivity analysis. However, we call this
approach a sensitivity analysis as it still allows to assess the robustness of
results, with respect to plausible realizations of the treatment diffusion
process (as pointed out by recent reviews of sensitivity analysis method-
ologies Hamby, 1994; Iooss and Lemaıtre, 2015, there exist sensitivity
approaches which implicitly rely on specific models).

The strategy that we propose accounts for the hidden diffusion pro-
cess, in the presence of a partially unknown network and consists in the
following steps (note that we assume pi = p for all units):
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1. Naı̈ve estimates under the assumption of no-diffusion. Estimate the
treatment effect under the assumption of no-diffusion τ̂ bobs by means
of the Horvitz-Thompson estimator, that is

τ̂ bobs = µ̂b(1) − µ̂
b
(0) =

1

N

[
N∑
i=1

Zit
Yit′′

πit(1)
−

N∑
i=1

(1− Zit)
Yit′′

1− πit(1)

]
,

where πit(1) denotes the probability of unit i to be initially assigned
to the treatment group (determined directly by the initial random-
ization plan) and compute also the corresponding estimated stan-
dard error σ̂(τ̂ bobs).

2. Dealing with the unknown diffusion process. Set the fixed diffusion
probability p, representing the probability that a treated node passes
the treatment to an untreated out-neighbor. If no a-priori knowl-
edge about this parameter is available, we will let p vary over a
grid of P values, thus p ∈ P = {p1, . . . , pP }.
For each p ∈ P , consider the M reconstructed networks and:

(a) For each of theM reconstructed networks Gm = (N , Em) with
m ∈ {1, . . .M}, and Gm ∈ G

• Compute for each node the number of treated neighbors
Tmit .

• Compute the elements of theN -dimensional vector ρp,m =

(ρp,m1 , . . . , ρp,mN ), where each element represents the unit-
level conditional probability to switch status due to the
diffusion process, according to the fixed probability p, in
the network m.

• Using the vector ρp,m, compute the unit level probability
of being exposed to the active treatment at time t′:

πp,mit′ (1; Z−it,Xi) = πit(1; Z−it,Xi) + ρp,mi (1− πit(1; Z−it,Xi)).

• The individual treatment status at time t′, for those units
who have been initially assigned to the control group, say
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Zp,m1t′|Zit=0, is obtained by sampling from a Bernoulli dis-

tribution with parameter ρp,mi , that is

Zp,mit′|Zit=0 ∼ Bernoulli(ρ
p,m
i ).

Initially treated units will remain treated, that isZp,mit′|Zit=1 =

1.

• Sample from Zp,mt′ several times, sayR, where r = 1, . . . , R,
and obtain a certain sample spaceZp,m = {Zp,m,1t′ , . . . ,Zp,m,Rt′ }.
In other words, Zp,m collects R different configurations
of treatment assignment vectors at time t′, given the fixed
diffusion probability p and the network structure m. For
each configuration Zp,m,rt′ ∈ Zp,m:

– Compute an estimate of the treatment effect τ̂p,m,r us-
ing the Horvitz-Thompson estimator, that is

τ̂p,m,r = µ̂p,m,r(1) − µ̂p,m,r(0) =
1

N

[
ŷp,m,rHT,(1) − ŷ

p,m,r
HT,(0)

]
=

1

N

[ N∑
i=1

Zp,m,rit′
Yit′′

πp,mit′ (1; ,Z−it,Xi)
−

N∑
i=1

(1− Zp,m,rit′ )
Yit′′

1− πp,mit′ (1; ,Z−it,Xi)

]
.

– Compute the standard error of the estimate σ̂(τ̂p,m,r).

• Obtain an entire set of estimates of the overall effect of
the treatment, under a specific configuration of the net-
work m and given a fixed diffusion probability p: Ψp,m =

{τ̂p,m,r : r = 1, . . . , R ;m = 1, . . . ,M}.

(b) The set Ψp =
⋃M
m:1 Ψp,m contains all the treatment effect esti-

mates, computed under a fixed probability p. These estimates
evaluate different topologies of the network and distinct ran-
dom realizations of the unknown after-diffusion treatment as-
signment vector. In other terms, the values in Ψp represent an
empirical distribution of the estimated effects, under diffusion
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probability p. Hence, we can compute the key quantities that
allow us to characterize the distribution of the effects, under
the diffusion parameter p:

• The average value of estimated effects, under p, τ̂ p, where

τ̂ p = Ψp =
1

R×M

M∑
m=1

R∑
r=1

τ̂p,m,r.

• The total variance in the estimated effects, that results from
the sum of two components, a within variance s2(W )

τ̂p
and

a between variance s2(B)

τ̂p
, that is

s2
τ̂p

= s2(T )

τ̂p
= s2(B)

τ̂p
+ s2(W )

τ̂p
,

where

s2(B)

τ̂p
=

1

R×M − 1

M∑
m=1

R∑
r=1

(τ̂p,m,r − τ̂ p)2 and

s2(W )

τ̂p
=

1

R×M − 1

M∑
m=1

R∑
r=1

(σ̂(τ̂p,m,r))2.

The between variance s2(B)

τ̂p
captures the estimates’ vari-

ance in the M × R joint realization of different (imputed)
networks and different realization of the treatment assign-
ment vector at time t′. Conversely, the within variance
component s2(W )

τ̂p
averages on the estimated standard er-

rors which have been computed within each joint realiza-
tion m, r. The composite the variance is introduced to ac-
count for both the variability that comes from the sensi-
tivity analysis and the intrinsic variability of the effect.

3. The key point of the sensitivity analysis stands in the compari-
son between the average value of the estimated effects under p,

i.e. τ̂ p, together with its corresponding total standard error, i.e.
sτ̂p , and the estimated treatment effect obtained while ignoring the
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possibility of treatment diffusion, i.e. τ̂ bobs, together with its esti-
mated standard error. For assessing the significance of the estima-
tion bias, due to the diffusion process, one strategy could be to as-
sume the estimated effects to be normally-distributed and to com-
pare the confidence intervals [τ̂ bobs − zα/2σ̂(τ̂ bobs), τ̂

b
obs + zα/2σ̂(τ̂ bobs)]

and [τ̂ p − zα/2sτ̂p , τ̂
p + zα/2sτ̂p ], where zα/2 represents the criti-

cal value of the Normal distribution, associated to the significance
level (1− α).

This procedure has to be repeated within the grid of possible values for
the diffusion parameter p. It is worthwhile to note that this approach can
be used also to identify a ”critical” threshold for the diffusion parameter:
that is, testing various values of p, it is possible to detect the value above
which diffusion has a relevant impact on the results. Therefore, if this
threshold is plausible in the specific empirical scenario, then researchers
cannot really trust in the no-diffusion estimates and must also keep into
account the simulated results in summarizing their findings. If instead
the threshold appears to be greater than the reasonable diffusion parame-
ters in the considered empirical framework, then no-diffusion hypothesis
can be fairly assumed to be valid.

4.3 Sensitivity Analysis for Treatment Diffusion:
Illustrative Simulations

In this section, we illustrate how the proposed procedure performs in
some simulated scenarios. In particular, we show how the sensitivity
analysis effectively succeeds in reducing the estimation bias due to the
hidden diffusion process. As extensively motivated in the last section,
the sensitivity analysis reconstructs an ensemble of plausible diffusion
scenarios, by relying on the assumptions that characterize the diffusion
process. Then, it inspects the robustness of results with respect to these
reasonable realizations of the process. If the treatment diffusion pro-
cess actually occurs, the researcher must front a miss-classification in the
treatment variable, so that the treatment assignment vector that she ac-
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tually observes does not truly represent the individual allocation in the
two treatment arms. In these illustrative scenarios, we simulate a real dif-
fusion process which introduces a bias in the estimates and leads to an
over-estimation or to an under-estimation of the treatment effect. Once
introduced the estimation bias, we observe how the sensitivity analysis
performs in shrinking this bias and in towing the estimates towards the
right treatment effect.
Here, we showcase the methodology under a simplified scenario, where
the network is supposed to be entirely known. This simplification im-
plies that the sensitivity analysis accounts for the hidden diffusion pro-
cess only, and not for the network structure.

4.3.1 Data Generating Process (DGP)

In this subsection we detail the data generating process. We consider a
sample made up by N = 1000 observations. We generate the structure
of interactions by simulating an Erdős-Rényi random graph (Erdős &
Rényi, 1959) G with N nodes and a fixed probability (0.01) to observe
a link. The initial individual treatment assignment at time t, Zit, and a
pre-treatment characteristic Xi are sampled from independent Bernoulli
distributions with probability 0.5. Hence,

Zit ∼ Ber(0.5) and Xi ∼ Ber(0.5).

Thus, the individual probability to be treated at time t is πit = πit(1) =

0.5. According to the network G and to the initial treatment assignment
vector Zt, we compute the number of treated neighbors Tit. Then, we
randomly generate a treatment diffusion process, which we assume to
be the one who truly realizes. The diffusion parameter p∗ is a function of
a fixed contagion parameter p∗ and of a parameter δ, which introduces a
statistical dependence between the diffusion parameter p∗ and the vari-
able Xi, that is

p∗i = p∗(Xi) =

{
p∗ + δ if Xi = 1;

p∗ if Xi = 0 .
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Once computed the real diffusion probability, we similarly compute the
real conditional probability of receiving the treatment by diffusion, ρ∗i =

ρ
p∗i
i = ρ

p∗i
i (Z−it, Xi), and the real conditional probability of being treated

at time t′, π∗it′ = π∗it′′(1; Z−it, Xi). Formally,

ρ
p∗i
i = ρ

p∗i
i (Z−it, Xi) = 1−(1−p∗i )Tit π∗it′ = π∗it′(1; Z−it, Xi) = πit+πit∗ρ∗i .

(Note that πit(1; Z−it, Xi) = πit by the initial independence of all the ran-
dom variables ZitXi, with i ∈ N .)

The real individual treatment status at time t′, for those units who
have been initially assigned to the control group, say Z

p∗i
1t′|Zit=0, is ob-

tained by uniquely sampling from a Bernoulli distribution with parame-
ter ρ∗i , that is

Z
p∗i
it′|Zit=0 ∼ Bernoulli(ρ

∗
i ).

As more extensively motivated in the last subsection, for those untreated
units who have not treated individuals in their neighborhood and those
units who have been treated at time t the treatment status remains un-
changed (to the control and to the active status, respectively). The vec-
tor Zp

∗
i

it′ , that, for ease of notation, we also denote by Z∗it′ , represents the
real individual treatment status after the real treatment diffusion process.
From Z∗it′ we can derive the dummy variable S∗i , which signals whether
the given unit i has really received the unit by diffusion (S∗i = 1), or not
(S∗i = 0).
Once that we have generated the real treatment diffusion process, we in-
troduce the estimation bias. In the Subsection 4.2.4, we have discussed
the causal mechanisms, which may lead to overestimate or underesti-
mate the real causal effect of the intervention. Following those considera-
tions, we have generated the real individual effect. The variable Yit′′(Z∗t′)
represents the potential outcome of unit i at time t′′ under the real treat-
ment status defined at time t′. In particular, the potential outcome of the
unit i under no real exposure to the intervention is sampled from a Stan-
dard Normal Distribution, Yit′′(Z∗it′ = 0) = Yit′′(0) ∼ N (0, 1), while the
potential outcome under an active exposure to the intervention after the
diffusion process includes the individual response to the intervention,
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say τ∗i , that is, Yit′′(Z∗it′ = 1) = Yit′′(1) = Yit′′(0) + τ∗i . Summing up, the
observed outcome is

Yit′′ = Yit′′(0)(1− Z∗it′) + Yit′′(1)Z∗it′ .

The quantity τ∗i = τ∗i (S∗i , Xi) depends on a fixed parameter k and
is a function of the switching indicator S∗i and of the variable Xi. More
precisely, given that qs,x denotes the proportion of individuals such that
S∗i = s and Xi = x, we introduce an over-estimation bias by setting the
real individual treatment effect τ∗i as

τ∗i = τ∗i (s, x) =


−2k; if S∗i = s = 1 & Xi = x = 1

−k; if S∗i = s = 1 & Xi = x = 0
+2k∗q1,1
q0,1

; if S∗i = s = 0 & Xi = x = 1
+k∗q1,0
q0,0

; if S∗i = s = 0 & Xi = x = 0 .

Conversely, we introduce an under-estimation bias setting

τ∗i = τ∗i (s, x) =


+2k; if S∗i = s = 1 & Xi = x = 1

+k; if S∗i = s = 1 & Xi = x = 0
−2k∗q1,1
q0,1

; if S∗i = s = 0 & Xi = x = 1
−k∗q1,0
q0,0

; if S∗i = s = 0 & Xi = x = 0 .

Note that in both scenarios the effect is normalized, so that the effect in
the whole population is equal to 0. Moreover, note that, since we have
E
[
Yit′′(0)|Zit = 0, Zit′ = 0, Xi = x

]
= E[Yit′′(0)] = 0 and E[Yit′′(1)] = 0,

by what said in Appendix C.4, we have:

• b > 0 when E
[
Yit′′(1)|Zit = 1, Xi = x

]
= τ∗i (0, x) > 0 and

E
[
Yit′′(1)|Zit′ = 1, Zit = 0, Xi = x

]
= τ∗i (1, x) < 0, that is in

the ”over-estimation scenario”;

• while b < 0 when E
[
Yit′′(1)|Zit = 1, Xi = x

]
= τ∗i (0, x) < 0 and

E
[
Yit′′(1)|Zit′ = 1, Zit = 0, Xi = x

]
= τ∗i (1, x) > 0, that is in the

”under-estimation scenario”.

162



At this stage, we can estimate the real treatment effect in the whole
population τ̂∗ (note that this measure is designed to be 0 from the DGP).
This estimate is primarily compared with the estimated treatment effect
under the assumption of no treatment diffusion, τ̂ b. The difference be-
tween these two estimates is the estimation bias b. The goal of the sim-
ulation design is to see whether the sensitivity analysis is able to reduce
this bias and to produce estimates which are closer to the real value (i.e.
0).

4.3.2 Results

Here we present the main simulations’ results. The simulated scenarios
differ in terms of i) the size of the effect k, ii) the heterogeneity parameter
δ, iii) the real fixed diffusion probability p∗ and the iv) direction of the
bias (overestimation or underestimation).
We start from the underestimation scenario. Here those units who have
received the treatment by diffusion exhibit a positive response to the in-
tervention. Figure 38 represents the simulations’ results for the under-
estimation setting, where k = 1. The matrix of plot needs to be read
as follows: from the top to the bottom the plots show the results under
increasing values of the real fixed diffusion probability p∗; from the left
to the right plots represents increasing values of the heterogeneity pa-
rameter δ. In all the plots are depicted: i) the line corresponding to the
estimated treatment effect under no diffusion (orange dotted line); ii) the
line corresponding to the estimated treatment effect under the real dif-
fusion process (blue dotted line); iii) the zero line, which signals the real
treatment effect generated by the DGP (black line); iv) the box-plots rep-
resenting the distribution of the estimated treatment effect obtained un-
der the R simulated diffusion processes, which are all ruled by the fixed
contagion probability p represented on the x-axis (colored box plots); v)
the mean estimated treatment effect, under a fixed contagion probabil-
ity p (red dots); vi) the corresponding confidence intervals of these esti-
mates (colored triangles). As we may observe in the figure, ignoring the
treatment diffusion process leads to an underestimation of the real treat-
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ment effect. When the analysis accounts for the possibility of a treatment
spreading, the estimation bias get reduced and the sensitivity analysis
leads to estimates, which are closer to the true value 0. The performance
of the proposed procedure increases as the heterogeneity shift increases,
as the algorithm predicts with more accuracy the real treatment alloca-
tion of units. Note that when the real treatment diffusion probability is
high and the heterogeneity parameter is small, the algorithm could even
lead to a switch in the sign of the estimation bias (so, it leads to overes-
timate the effect of the intervention). This phenomenon occurs because
the algorithm is less effective in differentiating between high values of
diffusion probabilities and in predicting which units actually receive the
treatment by diffusion. However, even in this scenario, the sensitivity
analysis leads to estimates that are nearer to the real value of the treat-
ment effect than the estimated effect under no diffusion. Globally, we
can state that in all scenarios the sensitivity analysis, when the treatment
diffusion process actually happens, performs well in reducing the esti-
mation bias and moves the estimates closer to the real effect.

Figure 39 shows the same underestimation scenario, but with the ef-
fect k set to 1.5. The general conclusions are similar to the ones that we
have advanced to the previous scenario. So, we can similarly observe
that i) the estimated effect under no diffusion really underestimates the
effect of the intervention and that ii) the sensitivity analysis contributes
in reducing the estimation bias, moving the estimates towards 0. More-
over, in the presence of an higher overall effect, the estimation bias in-
creases and the sensitivity analysis becomes even more accurate in catch-
ing the real treatment effect. Now, the sensitivity procedure allows to get
accurate findings even under relatively small values of the fixed diffu-
sion probability p. We pass now to the overestimation scenario. In this
setting, those units who have actually received the treatment through
the diffusion process, have a negative treatment effect. Figure 40 shows
the main results of the overestimation setting, under k = 1. As we notice
from the figure, the estimated treatment effect under no diffusion overes-
timates the real effect of the intervention. The sensitivity analysis causes
a downward shifting in the estimates, by moving them towards 0. As
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Figure 38: Underestimation, k = 1

before, the performance of the procedure increases as the heterogeneity
parameter δ increases. The algorithm is less performing when the real
diffusion probability is substantially high and the heterogeneity param-
eter is small. However, we can globally state that the procedure shows
a good capability of towing the estimates towards the true value, by re-
ducing the estimation bias due to having wrongly ignored the diffusion
process. Finally, Figure 41 depicts the simulations’ results for the over-
estimation scenario, where k = 1.5. As in the underestimation setting,
an increasing in the size of the overall effect leads to an higher initial
estimation bias. However, this estimation bias is effectively reduced by
the sensitivity analysis, which rapidly tows the estimates towards the
true value. We can definitely state that the sensitivity analysis, when
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Figure 39: Underestimation, k = 1.5

the treatment diffusion process occurs, helps the researcher in reducing
the estimation bias, by towing the estimates towards the real value. As
expected, the proposed procedure performs better when some a priori
information about the real process is actually known (i.e when the re-
searcher is aware that there is some heterogeneity in the diffusion prob-
abilities and/or in the treatment effect).
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Figure 40: Overestimation, k = 1

4.4 Encouraging students to visit museums: is-
sue and data

4.4.1 Empirical Motivation

The empirical application is taken from the field of Education Economics.
The school system plays a relevant role in the process of the cultural cap-
ital acquisition as it can help scholars in increasing their cultural capital,
encouraging them to approach the cultural and artistic heritage that sur-
rounds them. This can happen through the active involvement and par-
ticipation to theatrical performances, museum visits and art exhibitions.
Although several studies (Bourdieu, 2011) have pointed out that the fam-
ily represents the primary focal entity in transmitting the cultural capital
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Figure 41: Overestimation, k = 1.5

to children, other contributions (DiMaggio, 1982; DiMaggio & Useem,
1978) have highlighted the centrality of school as an institution, which
may heavily contribute to provide a cultural exposure to those children
who have not adequately benefited from it in their domestic environ-
ment. Recently, Kisida et al., 2014 has underlined that cultural exposure
of scholars sparks a real virtuous circle, according to which students be-
come active cultural consumers, who are always more motivated to ac-
quire extra cultural capital.

Although this issue is definitely relevant for the social development
of the societies, there is not a so wide literature about the effects of school-
promoted incentives to students (Forastiere et al., 2019b; Lattarulo et al.,
2017). The randomized experiment motivating this work contributes to
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filling this gap. The field experiment was a Cluster Randomized Encourage-
ment Designs (CEDs) implemented in Florence, Italy in 2014, with the aim
of assessing the effect of different kinds of school-promoted incentives on
encouraging students to visit art museums 2. The general goal of the ex-
periment was to detect the most effective strategy to increase the teens’
museum attendance and change their attitude towards art. In the study,
classes of a school in Florence were randomly assigned to experience two
different incentives: some of the classes received a flier about the impor-
tance of museum attendance, while the remaining classes received, in
addition to the flier, a video presentation about an art exhibition 3. The
experiment might be potentially altered by the diffusion of the video link
among students.

4.4.2 Data

Data involveN = 176 students, enrolled in C = 10 different classes, with
c = {1, . . . , C}, which are in turn afferent to high schools in the city of
Florence. A time t (Spring 2014) a set CT ofCT = 5 classes were randomly
assigned to the two types of cultural encouragement. Given the cluster
randomized design, all the students who are enrolled in a class were
then exposed to the treatment assigned to their own class. Therefore,
denotiong by C(i) the class membership of student i, the probability for
each student i of being assigned to the video presentation, i.e., Zit = 1, is
πit(1) = P (Zit = 1) = P (C(i) ∈ CT ) = CT /C = 0.5. At time t′′, 8 months
after the initial assignment, students were asked to report the number of
museum visits they had attended during those 8 months: this variable
represents our outcome variable Yit′′ .

At baseline, students were also asked to report their friendship ties.

2Data regarding this experiment have been collected and organized by Patrizia Lat-
tarulo (IRPET – Tuscany’s Regional Institute for Economic Planning,), Marco Mariani (IR-
PET – Tuscany’s Regional Institute for Economic Planning) and Laura Razzolini (University
of Alabama). An extensive discussion about data can be found in Lattarulo et al., 2017

3The original experiment by Lattarulo et al., 2017 includes a third type of encourage-
ment: extra-credit points towards their final school grade. To simplify the interpretation
of the impact of the plausible diffusion process, we decide to omit this third arm from the
analysis.
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Specifically, they were asked to declare who among their classmates they
consider as friends, also ranking the existing ties with respect to their
strength (however, here we do not consider the friendship rank, we just
gauge the presence or the absence of the friendship tie). The whole net-
work structure is described by the graph G = (N , E), which consists of
C disjointed subgraphs, Gc = (Nc, Ec), c = 1, . . . , C. The adjacency ma-
trix A corresponding to the graph G, is a block-diagonal matrix with C

blocks,Ac, c : 1 . . . C. We have that there are no links between units be-
longing to different clusters, that is Aij = 0 ∀i, j s.t C(i) 6= C(j). Figure
42 provides a graphical representation of the overall network structure.

Figure 42: Observed network: nodes are colored with respect to their treat-
ment status (red identifies treated nodes, while green untreated units; poly-
gons encircle classes (note that students belonging to the same classes are
characterized by an identical treatment status), while polygons’ color repre-
sents the school membership.

In our setting, relations between students in a given class c are fully
described by the adjacency matrixAc, where the generic elementAc(i, j)
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equals 1 if the student i, enrolled in the class c, has included the student
j, still enrolled in c, among his friends. Note that friendship may not
be symmetric: i may regard j as a friend, but not vice versa. We de-
note by N out

i the set of students that the unit i has nominated as friends,
and with Nout

i its corresponding cardinality (the out-degree). Instead, we
identify as N in

i the set of students that the have included i among their
friends, and with N in

i its corresponding cardinality (the in − degree).
Figure 4.43(a) shows the in-degree distribution, in the entire population,
while Figure 4.43(b) displays the out-degree distribution .

(a) In-Degree distribution (b) Out-Degree distribution

Figure 43: Degree Distribution

4.4.3 Reconstructing the Unknown Diffusion Network

The experiment does not consider the possibility of inter-class links. Al-
though they have not been explicitly reported in the survey, they are
likely to be present. Inter-class links might also have been vectors for
the spreading of the treatment. In fact, students belonging to different
classes, but enrolled in the same school for the same year, are likely to
know each other: they maybe are connected through social networks
and they share similar hobbies and activities. For this reason, we intend
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to reconstruct inter-class missing links through multiple imputation, as
exhaustively discussed in Subsection 4.2.5. Specifically, we use random
forests to multiply impute missing links, via chained equation. The im-
putation process takes as inputs a batch of dyadic covariates, which the
algorithm employs to recursively split data, until predicting the presence
(or absence) of the dyadic tie. These dyadic covariates represent four
measures of similarities that have been defined starting from unit-level
characteristics (the entire set of unit-level characteristics can be found
in Lattarulo et al., 2017). Specifically, we include in the analysis four
variables, which assess the baseline degree of similarity between two
given students with respect to hobbies, school attitudes, cultural inter-
ests and personal background (details about these similarity indicators
can be found in the Appendix C.1).

These similarities measures capture the key mechanisms that might
prompt a friendship tie between students belonging to different classes.
They are not affected by the treatment variable and they represent the
key inputs of multiple imputation algorithm. In addition to the simi-
larity measures, we have included in the multiple imputation algorithm
two individual-specific indicators: they measure their number of in-class
friends and the specific school environment where they are particularly
inclined to establish friendship ties (mostly within their class or mostly
outside their class). We generated M = 500 distinct imputed datasets,
which correspond to 500 (complete) reconstructed networks. Note that
these networks are identical with respect to the known links, but differ
in the imputed ties. Figure 44 shows the densities of the tie indicators
in the original (blue line) and imputed (red lines) datasets. As expected,
the percentage of present links is less in the imputed datasets. This find-
ing is in line with the general intuitive idea that it is easier to become
friends for students who belong to the same class and it demonstrates
that the algorithm has performed fairly in predicting the links. In fact,
the similarity measures that we have given to the algorithm as inputs are
intrinsically higher for pairs of students enrolled in the same class and
therefore, it makes sense that imputed inter-class links are (in percent-
age) fewer with respect to the intra-class observed ties. Therefore, even
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if observed ties and missing ties are intrinsically different, the dyadic co-
variates we account for allow to catch the diverse nature of links and
guarantee the empirical validity of the imputation algorithm. Figures 45

Figure 44: Densities of observed vs imputed links indicators. 1 denotes the
presence of the link, 0 means the absence of a relevant tie. Blue line shows
the density in the original dataset, while red lines depicts densities in the
imputed links

provides a graphical example of how a (complete) reconstructed network
looks like, in our setting. The plot refers to the first of the 500 generated
networks. Nodes are colored according to their initial assignment status
(red nodes are treated units, while green characterizes untreated units).
The figure displays two kinds of links: blue links denote observed intra-
class links, while violet edges depict inter-class links.

4.4.4 Sensitivity Analysis: Empirical Results

We here discuss the key empirical findings of our sensitivity analysis.
The multiple imputation procedure has generated M separated recon-
structed networks, which embrace the observed intra-class links as well
as the predicted inter-class ties. The ensemble of the M generated net-
works encompasses the variation boundary of the entire network struc-
ture and it represents one of the inputs of the sensitivity analysis algo-
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Figure 45: Reconstructed network: an example of the M generated net-
works

rithm we have introduced in Subsection 4.2.6. Here we set the grid of the
eligible values for the diffusion parameter p toP = {0.01, 0.05, 0.10, 0.20, 0.25}.
Finally, we fix the number of sampled configurations of the (unknown)
treatment vector at time t′ to R = 200.

Figure 46 gives an idea about the switching status process that hap-
pens in the presence of a plausible treatment spreading. In particular,
it depicts the distributions of the probability of receiving the treatment
by diffusion, for various configurations of the fixed diffusion parameter.
Under small values of p, very few units are eligible to gain the treatment
by diffusion. As the fixed diffusion parameter increases, the number of
initially untreated units who receive the treatment gets higher.
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Figure 46: Probability of receiving the treatment by means of the diffusion
process: histograms of the probabilities of receiving the treatment by diffu-
sion.

Figure 47 graphically summarizes the key finding of the sensitiv-
ity analysis. The procedure accounts both for the uncertain network
structure (multiply imputing the M reconstructed networks) and for un-
known after-diffusion treatment vector (generatingR different treatment
assignment vectors at time t′). In particular, Figure 47 shows the box-plot
of the treatment effect estimates, obtained under the various configura-
tions ofm and r. In addition, it shows the extremes of the 95% confidence
interval, that, in case of a positive treatment diffusion probability, have
been constructed so to incorporate both the between variation and the
within variation (as shown in Subsection 4.2.6). Distributions refer to
various possible characterizations of the diffusion parameter p. Under
the no-diffusion assumption, the intervention has a positive and signif-
icant impact on students’ museum visits (τ̂ b = 2.8295 with a 95% confi-
dence interval which equals

[
1.4863, 4.1727

]
) . The graphs suggest that
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ignoring the treatment diffusion process leads to an underestimation of
the treatment effect. In fact, even small values of the treatment diffusion
probability generate a significant upward shift in the distribution of es-
timated treatment effects. On the other hand, the presence of a strong
treatment diffusion process heavily increases the variability of the esti-
mates, so that even a very tiny shift in the specification of the fixed diffu-
sion parameter causes a relevant increase in the estimated total standard
errors.

Figure 47: Box-plots of estimated treatment effects and their corresponding
95% Confidence Intervals, under increasing treatment diffusion probabili-
ties.

According to the discussion we have in Section 4.2.4, the over-estimation
issue that we face in this empirical setting may be due to a positive effect
of the presentation on those students who have received it by diffusion,
so that their expected outcome under the active exposure to the presen-
tation is greater than the same expectation referred to initially treated
students.
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To summarize, we can state that treatment diffusion could have plau-
sibly affected the results of the experiment that we have revisited in this
work. However, as the direction of the possible bias caused by having
ignored treatment diffusion is positive, the sensitivity analysis is in sup-
port of the major finding of the experiment (the video-presentation has
a positive impact on students and encourages them to attend museums
visits).

4.5 Concluding Remarks and Future Develop-
ments

This contribution represents the first methodological attempt of handling
an unknown treatment diffusion process, in the presence of a partially
unknown network structure. The proposed approach, which is based on
a sensitivity analysis on the unknown after-diffusion treatment assign-
ment vector and on the multiple predictions of missing links, is highly
motivated by the specific case study we have analyzed, but it can be eas-
ily rearranged so to be suitable in a wide variety of empirical scenarios.
The assumed mechanism of the treatment diffusion process appears to
be reasonable for describing several real diffusion processes. Further-
more, the multiple-prediction of unobserved ties using random forests
and chained equations, represents an original strategy for addressing
missing links issues and it is particularly helpful when it is required to
account for the uncertainty of predictions.

Our findings suggest that ignoring the treatment diffusion process,
when it plausibly arises, paves the way to an inaccurate evaluation of
the causal effect of interest. Specifically, in our empirical application, the
effect of the intervention is larger when accounting for the treatment dif-
fusion mechanism. Under treatment spreading, the intervention is even
more effective that what it seemed from the initial estimates (obtained
under the no-diffusion assumption). We actually do not have enough
elements to state if diffusion really happens or not, but the threshold of
the fixed contagion probability, which leads to a significant bias in the
estimates, is quite small. This means that even an apparently minor dif-
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fusion probability heavily alters the final results. Consequently, we are
pretty confident that the real effect of the intervention is under-estimated.

Finally, the illustrated methodology might provide a lot of possible
theoretical extensions, as the issues related to the hidden treatment dif-
fusion process in program evaluation studies have not been explicitly
addressed in causal inference literature yet. Future developments might
involve a different temporal characterization of the treatment diffusion
process, different definitions of the diffusion probabilities (for instance,
they could be a function of the proportion of initially treated neighbors or
be dependent on specific dyadic covariates, which in turn could involve
individual and network characteristics) or an extended theoretical iden-
tification of the general estimating framework, which could be designed
for accounting for spillover mechanisms. It would be also interesting to
study how to account for treatment diffusion in designing experiments.
The acquired information about treatment spreading in a network may
be used in the experimental design, and the randomization strategy may
be planned with the aim of maximizing the total number of individuals
who can benefit from the intervention, either by the initial design or by
diffusion.
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Chapter 5

Dyadic Treatment Effect on
Network Formation using
Multi-valued Propensity
Score Matching:
Lobbying Activities and
Legislative Collaborations

This Chapter is a joint work with my supervisor Prof.Laura Forastiere
and with Prof. Davide Del Prete and Prof. Valerio Leone Sciabolazza,
my supervisors during the three months I spent as a vising student at
the University of Naples Parthenope. The full text of the article will be
soon available from the arXiv repository.
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5.1 Introduction

5.1.1 Motivation

Companies and firms usually strive to strengthen their political connec-
tions, at the aim of increasing their bargaining power with respect to
relevant political decisions, even conditioning the approval or the reject
of particular bills (Baron, 2006; Dekel et al., 2008; Denzau & Munger,
1986; Diermeier & Myerson, 1999; Groseclose & Snyder Jr, 1996; Help-
man & Persson, 2001; Persson, 1998; Snyder Jr, 1991). The lobbying
activity of firms towards politicians occurs through a variety of mech-
anisms. One possible way for firms to exert power over politicians is
related to campaign contributions: companies manifest their political con-
nections by choosing to officially support given candidates and to con-
tribute in financing their electoral campaign (Bertrand et al., 2018; Pow-
ell & Grimmer, 2016; Richter & Werner, 2017; Romer & Snyder Jr, 1994;
Teseo, 2020). Despite the share of lobbying companies is relatively small
(95% of U.S. public companies do not even participate in campaign fi-
nance (Fouirnaies & Hall, 2018)), donations from corporations may have
a relevant political impact, as they are only motivated by the desire of
firms to lobby over politicians (Teseo, 2020). Indeed, by means of cam-
paign contributions, companies intend to directly determine the political
agenda of supported politicians (Besley & Coate, 2001; Dixit, 1996; Dixit
et al., 1997; Grossman & Helpman, 1994; Stigler, 1971).

To more effectively fulfill their political agenda and advance their pri-
mary issues in the legislative body where they have been elected, politi-
cians are used to establish political collaborations, with those colleagues
who share similar objectives in their political agenda (Battaglini & Pat-
acchini, 2018; Battaglini et al., 2019; Volden et al., 2020). As a conse-
quence, if two politicians share a similar political agenda, because they
are pushed by common lobbying groups, we expect them to collaborate.
In other words, if campaign contributions truly play a role in shaping
the legislative agenda of politicians, then we should observe that con-
tributions have an impact also on their collaborations, by encouraging
those legislators, whose political conduct is pushed by similar lobbying
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interests, to team up.

This project focuses on the causal link between lobbying activities and
political behaviors of legislators: in particular, it examines the effect of a
pair of politicians sharing common supporting firms on their legislative
collaborations. Data refer to the US House of Representatives, specif-
ically to the 111th, 112th and 113th Congress, and include information
about Political Action Committees (PACs) and details about lawmaking
collaborations, measured in terms of the number of bills that each pair
of politicians has reciprocally cosponsored. The idea is that if campaign
contributions can be used as a form of lobbying activity to orientate the
political agenda of a legislator, and legislators use their connections to
advance their political agenda, then we expect that legislators are more
likely to cosponsor one another if they have been funded by the same
PACs. Furthermore, we expect that, after controlling for other variables
that have been identified as pushing factors for political collaborations,
the lobbying activity emerges to be determining in the decision to collab-
orate. If these hypotheses hold, we should observe that the direction of
the cosponsorship tie follows the direction of the tie of common PACs.
Finally, as a matter of investigation, we examine the heterogeneity of the
effects across different sub-populations of pairs of politicians, defined
by specific traits: factors that reasonably prompt heterogenity of results
the state of election of the two legislators, their political positioning in
the legislative chamber and the pair-specific collocation in terms of party
membership and ideological radicalism.

Results show that two legislators are more prone to collaborate with
each other if they share a significant amount of financing supporters.
Moreover, we observe that a strong link of common lobbies encourages
mutual cosponsorships, rather than unilateral cosponsorships and that
the cosponsorship tie follows the direction of the strong tie. These find-
ings hold also after controlling for other factors, which are known to
drive the cosponsorship activity: the common party membership, the
common geographical area and the joint connection to ethnic, religious
or gender minorities (Battaglini & Patacchini, 2018; Cranmer & Desmarais,
2011). Moreover, our findings suggest that the characteristics that mostly
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drive heterogeneity in the estimated effects are the party membership
and the state of election of the two legislators.

Lobbying activities are evaluated by monitoring PACs, following a
recent stream of literature on this field (Bertrand et al., 2018; Teseo, 2020).
Committees originally include not only firms and corporate groups, but
also political parties, associations and organizations: given that we in-
tend to focus on the political pressure exerted by companies, we isolate
them from the rest of the PACs through a novel string-matching algo-
rithm. Then, we remove from the analysis all those entities, which have
been not successfully detected by the algorithm. Furthermore, since com-
panies and corporate firms usually support not a unique candidate but
a batch of politicians running for a seat, we account only for those links
that we identify as statistically significant: for each politician, we look
at the distribution of the number of lobbies that she shares with each of
her colleagues and we detect those ties, which are statistically relevant
from her own point of view. This approach is consistent with the idea of
the strong ties in politics (Battaglini et al., 2019; Granoveter, 1973; Kirk-
land, 2011): in our setting, by applying this procedure, we are detecting
strong ties of common supporting companies. Note that, according to
the definition of the strong tie relationship, this relation is not necessarily
symmetric: a given politician may have a relevant tie of shared financiers
with one of her colleagues, but not vice versa.
It is important to point out that regarding PACs as a form of lobbying
activity is still debated in the literature (Teseo, 2020). The most arguable
aspect related to the usage of PACs records as measures for lobbying ac-
tivities concerns the relative relevance of PACs on the entire amount of
campaign contributions. Indeed, most of the donations in the US po-
litical campaign come from private citizens, parties or associations who
are commonly deemed as ideological donors (Ansolabehere et al., 2003).
However, this statement could be criticized according two main moti-
vations: i) as Teseo, 2020 points out, there are many individuals (- the
so-called corporate elites -) who contribute to the political campaign on
behalf of their company, while not being moved by an ideological intent;
ii) our contribution shows that the relative weight of corporate donations
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is anything but negligible (about one third of the total amount of funds
comes from real US companies).

Legislative collaborations are instead measured by looking at the cospon-
sorship networks (Baller, 2017; Bratton & Rouse, 2011; Fowler, 2006a, 2006b).
There is an open debate in the applied literature about how to exhaus-
tively measure the extent to which two politicians are connected each
to the other. Some studies have measured the intensity of a connection
among two politicians by looking at the frequency on agreements on roll
call votes (Rice, 1927; Truman, 1959). However, this kind of approach
allows to detect purely ideological affinities, without bringing out the
presence of social relationships between legislators. Moreover, some re-
searchers have also advanced some critiques about the usage of cospon-
sorship networks in explaining social and political relationships between
legislators. Indeed, each politician supports a large number of bills and
the decision whether to cosponsor a proposal presented by others does
not imply monetary costs (Kessler & Krehbiel, 1996). However, despite
the number of cosponsored bills is high, it still represents a very tiny frac-
tion of the total amount of proposals which are presented in the US HoR
during a given legislature (Fowler, 2006a). As a consequence, legislators
must face a significant search cost while deciding which acts are worth
to be supported. Therefore, it is reasonable to expect that the decision
of a legislator to cosponsor a bill is also motivated by the fact that she
shares the same political agenda of the bill’s sponsor. This lends further
support to the idea that cosponsorship networks are appropriate for de-
scribing relationships between politicians in our empirical setting. Note
that even the cosponsorship activity is not characterized by an intrinsic
reciprocity: one politician may have cosponsored some bills promoted
by another but not vice versa 1.

In this setting, the outcome of interest is related to the existence of a
cosponsorship tie between two members of the US House of Represen-
tatives in a given legislature. The intervention is instead related to the
presence of strong ties of common supporting companies between two

1In the US parliamentary system, a bill is presented by one primary sponsor and it can
be successively cosponsored by other officials
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politicians. We intend to assess whether sharing a significant amount of
common PACs impacts the likelihood of two politicians to collaborate.
To face this empirical research question, we extend the standard Rubin
Causal Model (RCM)(Angrist et al., 1996; Rubin, 1974, 1980) for policy
evaluation studies, to deal with dyadic treatments and outcomes on net-
work data.

5.1.2 Methodological Issues, Related Works and Contri-
butions

The traditional Rubin Causal Model was not designed to deal with net-
work data in that both the treatment and the outcome variable are de-
fined at an individual level. However, in many real world scenarios
units can be linked through a wide variety of relationships: for instance,
individuals may be connected by means of social relationships such as
friendships (Haynie, 2002; Hendrickson et al., 2011), collaborations (New-
man, 2001a, 2001b) or parental ties; firms are linked by economic or le-
gal relationships (M. O. Jackson, 2010; Schweitzer et al., 2009) such as
input/output ties (Blöchl et al., 2011; Contreras & Fagiolo, 2014), own-
ership and control relations (Conyon, Muldoon, et al., 2008; Rungi et
al., 2017). The natural tendency of describing real-world phenomena in
terms of interacting units, coupled with the increasing data availability,
has sparked a scientific debate about how to make the causal inference
framework suitable for connected units. In recent years the causal in-
ference literature on network data has dealt with two main issues: i) in-
terference, where the network is the mean through which an individual
treatment has an effect on the outcome of other; ii) network formation,
where the network is the outcome of interest and we wish to make infer-
ence on the causal determinants of the formation of links.

The recent literature of causal inference with interconnected units has
focused primarily on interference between units e.g (Aronow & Samii,
2017; Forastiere et al., 2020; Hudgens & Halloran, 2008), where the out-
come of one unit is also affected by the treatment assigned to the units in
their neighborhood (Cox, 1958). It has been pointed out that, neglecting
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interference, when it plausibly arises, introduces a significant bias in the
estimates (Forastiere et al., 2020; Sobel, 2006a) and may lead to inaccu-
rate conclusions about a real effect of an intervention. For this reason,
researchers have developed a novel framework and estimators allowing
to estimate treatment and spillover effects under interference, both when
the spillover mechanism occurs within groups (Barkley et al., 2017; Basse
& Feller, 2018; Forastiere et al., 2019b; Forastiere et al., 2016; Hudgens &
Halloran, 2008; Liu & Hudgens, 2014; Liu et al., 2016; Papadogeorgou et
al., 2019; Tchetgen & VanderWeele, 2012) or when interfering interactions
are described by an observed network (Aronow & Samii, 2017; Arpino &
Mattei, 2013; Forastiere et al., 2020; Forastiere et al., 2018; Ogburn et al.,
2017; Sofrygin & van der Laan, 2017).

On the other hand, there has been little work on causal inference for
network formation. Indeed, the issue of investigating determinants of
the formation of links has been one of the main research areas in the
social network literature. The social network literature on network for-
mation deals with assessing the individual and dyadic factors that might
have shaped the network we observe (Battaglini et al., 2019; De Stefano &
Zaccarin, 2012; Shumate & Palazzolo, 2010; P. Wang et al., 2016; Zaccarin
& Rivellini, 2010). In recent years, many researchers have started explor-
ing the causation of links by employing various econometric tools, such
as dyadic regression (see (Graham, 2019) for a detailed review. However,
these models are usually seen as descriptive and cannot be used to draw
causal conclusions. Arpino et al., 2017 made one of the first attempts to
extend the potential outcome framework to causal inference to answer
questions related to network formation. They used the propensity score
matching method to estimate the causal effect of the exposure of a dyad
to a binary treatment on the formation of a link.

In our setting, we have dyadic data, collecting information about the
presence of a strong tie of common financing companies and the presence
of cosponsorships between two legislators of the US HoR. We may regard
the strong tie network as a treatment network and the cosponsorship net-
work as an outcome network. These two networks are both directed. The
resulting setting consists in a multiplex, where the elements of the sam-
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ple are connected according to two distinct network and the aim of the
research is to assess whether the presence, symmetry, and direction of a
tie in a treatment network has an impact in determining the likelihood
of the presence, symmetry, and direction of a tie in an outcome network.
There are a variety of real-world scenarios where this framework may
be employed. For instance, economists may be willing to assess whether
ties in a input-output network of firms are motivated by existing agree-
ments among them; sociologists may be interested to investigate whether
social ties among scientists have prompted their scientific collaborations;
finally, political scientists may be yearning to assess whether the network
of political alliances among countries has shaped the network of bilat-
eral migration flows. In our setting, the treatment network is the net-
work describing strong relationships of common supporting companies
among politicians, while the outcome network is the network signaling
their legislative cosponsorships. Here, we disentangle the specific mech-
anisms driving the effect of the treatment network on outcome network
by defining conditional causal effects representing the effect on the pres-
ence, symmetry and direction of links. In particular, causal effects on the
symmetry and direction of links are defined conditioning on the poten-
tial presence of a link under each level of the dyadic treatment. Building
upon the literature on survival average causal effects (Comment et al.,
2019; Hernán & Robins, 2010; Tchetgen Tchetgen, 2014), we advance fur-
ther assumptions allowing to identify these effects. In addition, since the
treatment of interest has not been randomly assigned, the relationship
between the dyadic treatment and dyadic outcome might be confounded
by individual or dyadic covariates. To adjust for potential confounders,
we implement an estimation strategy based on propensity score (Hirano &
Imbens, 2004; Imai & Ratkovic, 2014; Rosenbaum & Rubin, 1983b, 1984).
In particular, we develop an estimator which is based on an extension
of the propensity score matching approach to handle multi-valued treat-
ments (S. Yang et al., 2016), in the presence of network data and condi-
tional effects.

This work is organized as follows. Section 5.2 exploits the main as-
pects of methodology, outlining the framework of the Rubin Causal Model
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in a dyadic population and discussing the structure and the properties of
the multi-level matching estimator for network data. The entire frame-
work is formalized so to be suitable for estimating both unconditional
and conditional average causal effects. Section 5.3 motivates the rele-
vance of the empirical research question, briefly describing the sources
of data. Section 5.4 presents the empirical strategy to face the empiri-
cal research question. Section 5.5 presents the main results. Section 5.6
concludes the paper with a discussion of results and potential lines for
future research.

5.2 Methodological Framework

5.2.1 Dyadic Set Up

In this section, we reformulate the causal inference framework, in par-
ticular the Rubin Causal Model also known as the potential outcome
framework (Rubin, 1974, 1980), to handle dyadic data. In Arpino et al.,
2017, who were the first to accomodate the potential outcomes frame-
work to dyadic data, the focus was on one undirected networks, the out-
come variable was defined by the presence of links and the treatment
was an attribute defined at the dyadic level. On the contrary, here we
focus on two distinct directed networks defining the treatment and the
outcome variables, and we assess the effect of a function of treatment
ties on a function of outcome ties. These functions may, for instance,
define the presence, symmetry or direction of a tie. The entire data struc-
ture may be regarded as a two-layer multiplex, such that the examined
nodes are linked by two disjoint networks. Formally, we consider a given
population of units N , where i : 1, . . . , N , over which we observe a di-
rected treatment-network Gz = (N , Ez) and a directed outcome-network
Gy = (N , Ey). The two sets of edges, Ez and Ey , collect links among units
in N . The data structure is represented in the multiplex G = (N , Ez, Ey).
In this setting, both the treatment and the outcome of interest are defined
at a dyadic level. Hence, the population of interest is the dyadic popula-
tionD : {(i, j) : 1, . . . , D}, which comprise all the pairs of units belonging
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toN 2. Let us denote with (ezij , e
z
ji) the pair of edges that describe the in-

teractions in the dyad (i, j) in the treatment network Gz : in particular, ezij
characterizes the relationship from i to j and it is strictly greater than 0
if i is connected to j in the treatment network, and it equals 0 otherwise;
the edge ezji describes instead the relationship from j to i and it is greater
than 0 if the node j is linked to i in the treatment network 3. Similarly,
we label as (eyij , e

y
ji) the pair of edges that give information about the

interactions of the dyad (i, j) in the outcome network Gy : specifically,
eyij explains the relationship from i to j and it is strictly greater than 0
if i is linked to j in the outcome network, and it equals 0 otherwise; the
edge eyji describes instead the relationship from j to i and it is greater
than 0 if the node j is linked to i in the outcome network. For each pair
(i, j), it is possible to define a dyadic treatment variable and a dyadic
outcome variable, which result from applying a function over their ties
in the treatment network, (ezij , e

z
ji) and in the outcome network (eyij , e

y
ji),

with ezij , e
z
ji ∈ Ez and eyij , e

y
ji ∈ Ey . In particular, the dyadic treatment

Zij results from applying f(·) function on the pair-specific ties, observed
in the treatment network, that is, Zij = f(ezij , e

z
ji). Similarly, the dyadic

outcome results from applying g(·) function on the pair-specific ties ob-
served in the outcome network Y obsij = g(eyij , e

y
ji). The functions f(·) and

g(·) take as input the edges (and their attributes, if present) observed
in the treatment network and in the outcome network, respectively, and
can be defined in various ways, according to the causal mechanism one
plans to assess. For instance, f(·) and g(·) may signal whether the rela-
tionship between i and j is symmetric (eij > 0, eji > 0), asymmetric
(eij + eji > 0 , eij × eji = 0), or absent (eij = eji = 0); they may generate
a discrete variable summing the weights of the two edges (eij + eji) or
may simply discern present links (of whatever kind) (eij + eji > 0) from

2Here we build up the dyadic population so that it includes unique pairs of units. Con-
sequently, the pair is defined so that it has not an explicit direction: for instance, the dyad
composed by units i and j, (i, j), with both i and j belonging toN , is conceptually identical
to the dyad (j, i). However, different empirical settings may require a direct characteriza-
tion of the dyadic population, that would not imply any relevant theoretical modification
in the methodological framework that we are going to propose.

3In case of binary networks the edges ezij and ezji equal 1 if the relationship is present, 0
otherwise.
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absent relationships (eij = eji = 0). Independently on the formulation of
these functions, we can state that they map ties in the treatment network
and in the outcome network so to uniquely define a pair-specific treat-
ment variable and outcome variable. These functions take values over
the sets Z and Y , which represent the domain of the treatment variable
and the outcome variable, respectively. Here, we allow Z for the possi-
bility to be not necessarily binary, and to embrace K distinct elements.
For each pair (i, j), we also observe a P -dimensional vector of baseline
dyadic covariates, Xij , such that X denotes the corresponding (D × P )

covariate matrix. Note that theX matrix can include both purely dyadic
covariates and features resulting from the joint distribution of individual
characteristics, which separately describe the two individuals belonging
to the pair.

Figure 48 suggests the idea of the setting we are handling in this
work, with a toy example. We deal with a given sample composed by
20 elements, who are connected according to two disjoint networks: the
treatment network and the outcome network. The elements of the sam-
ple are the nodes in the two graphs and they are labelled according to a
numeric ID going from 1 to 20. Edges in the two networks can be either
symmetric, asymmetric or absent. Note that the direction of asymmetric
interactions matters here. In this example, we interpret the edges’ direc-
tion according to the nodes’ IDs: ”ordinary” links are connections where
the vertex ID of the node who delivers the tie is lower than the vertex ID
of the node who receives the tie; ”opposite” ties are the ones where the
vertex ID of the node who delivers the tie is greater than the vertex ID of
the node who receives the tie. The dyadic treatment is defined according
to ties in the treatment network, while the dyadic outcomes is defined by
considering connections in the outcome network.

Following the Rubin Causal Model (RCM) (Rubin, 1974), we postu-
late the existence of dyadic potential outcomes. For each dyad (i, j), with
(i, j) ∈ D, we theorize the existence of Z potential outcomes, where K
denotes the number of the treatment levels. Given a dyadic multi-valued
treatment Zij ∈ Z , with |Z| = K, the potential outcome of the pair (i, j)

under a given treatment level z, with z : 1, . . . ,K, Yij(z), represents the
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(a) Treatment-network (b) Outcome-network

Figure 48: Causal inference for network formation over a directed multi-
plex: example. Nodes represent units in the population and are character-
ized by a numeric ID. Edges are colored according to the type of interaction
they describe: orange edges represent asymmetric ties going in the ”ordi-
nary” direction; blue edges represent asymmetric ties going in the ”oppo-
site” direction;red denotes mutual ties; missing ties are not represented in
the figure.

outcome that would have been observed, if the dyad (i, j) had been ex-
posed to the treatment level z. The vector Y (z) collects the dyadic po-
tential outcomes, under a dyadic treatment set to z.
The standard causal inference framework is based on a key assump-
tion, known as Stable Unit Treatment Value Assumption (SUTVA), which
allows to deal with well-defined potential outcomes and, consequently,
to properly estimate the effect of an intervention. SUTVA is composed of
two components that rule out the possibility of having multiple versions
of the treatment and the presence of interference among units. Here,
the SUTVA requires to be discussed with respect to the dyadic popula-
tion, leading to the Dyadic Stable Unit Treatment Value Assumption. This
assumption has still two components (i) Individualistic Treatment Re-
sponse (ITR) (No interference): there is no interference among dyads, that
is, each pair’s dyadic potential outcomes are not affected by the treat-
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ments received by the other dyads; (ii) No hidden versions of treatment:
there are no different versions of the treatment levels assigned to each
dyad, which may lead to different potential outcomes. In a network set-
ting, our proposed dyadic formulation of SUTVA implies that the dyadic
treatment is well-specified and that there are no hidden versions of the
intervention. Furthermore, dyadic SUTVA entails that the treatment, as-
signed to a given pair, does not affect the outcome of other dyads.

5.2.2 Average Dyadic Treatment Effects

We can define the dyadic average treatment effects as comparisons of dyadic
average potential outcomes, that outline the mean of the outcomes for
each given configuration of the dyadic treatment. Here, we formalize
the dyadic average treatment effects so that the proposed mathematical
definition may be suitable to model both conditional and unconditional
causal effects. Conditional causal effects are employed when one intends
to compare potential outcomes, while conditioning upon particular real-
izations of the treatment and the outcome: in such a setting, one must
consider that for some units a given potential outcome may be unde-
fined. This idea reflects the approach that is common in the literature on
survival average causal effects (Comment et al., 2019; Hernán & Robins,
2010; Tchetgen Tchetgen, 2014): in examining the effect of an interven-
tion in longitudinal studies, the researcher must keep into account that
individual potential outcomes at follow-up is undefined for those peo-
ple who die before attending the follow-up visit. This phenomenon is
known as truncation by death. The treatment effects estimated while ig-
noring the truncation by death issue might be biased (Tchetgen Tchet-
gen, 2014). A similar concern arises in cross-sectional studies, when the
causal effects are estimated while conditioning on specific values of the
actual treatment and the observed outcome. To account for that issue in
the analysis, we define the causal effects of interest only for those dyads,
over which both potential outcomes that are compared for outlining the
given effect exist and are well-defined. Formally, we introduce two con-
ditioning mapping functions, to identify those dyads with respect to that
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a given potential outcome exists. Let the variable Z∗ij = f∗(ezij , e
z
ji) result

from applying a conditioning mapping function f∗() on the treatment
values, such that for those dyads which satisfy a given conditioning on
their treatment values, (ezij , e

z
ji), we have that Z∗ij = 1. The function g∗()

maps instead a certain conditioning on the outcome values (eyij , e
y
ji), that

is Y ∗ij = g∗(eyij , e
y
ji): the g∗() function is defined such that if the resulting

variable equals 0, then the outcome variable Yij = g(eyij , e
y
ji) is unde-

fined. We can outline the average dyadic treatment effect of the treatment
z with respect to the treatment z′, while focusing only on those dyads
whose potential outcomes under both treatment levels, z and z′, exist:
this stratum of units is called always-defined principal stratum. The effect
of interest, that we call τ(z,z′), is formally defined as

τ(z,z′) =E
[
Yij(z)|Z∗ij = 1, Y ∗ij(z) = Y ∗ij(z

′) = 1
]
−

E
[
Yij(z

′)|Z∗ij = 1, Y ∗ij(z) = Y ∗ij(z
′) = 1

]
Potential outcomes cannot be jointly observed, because each dyad can be
exposed to one treatment level only. It follows, that the only outcome
that we can observe for the pair (i, j) is the one which corresponds to the
treatment level it is actually exposed to: Y obsij = Yij(Zij). The remaining
outcomes, which are related to a treatment level that the given pair has
not experienced, are not observable. Therefore, the statistical challenge
here consists in detecting the best strategy to impute dyadic missing po-
tential outcomes across treatment arms, then comparing them to extract
causal information, about the effect of the dyadic treatment on network
formation. Since we move in an observational setting, we propose to esti-
mate the dyadic average treatment effects by implementing a propensity
score matching across dyads, accounting for dyadic baseline characteris-
tics.

5.2.3 Multi-level Propensity Score Matching with Network
Data

Propensity score matching is a well-grounded statistical approach in pol-
icy evaluation studies. However, it is usually implemented with in-
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dividual data and with binary treatments, while we intend to let the
dyadic treatment the possibility to vary over a multi-valued domain.
A novel strategy for dealing with multi-valued treatments in propen-
sity score matching has been recently proposed by S. Yang et al., 2016.
We in turn expand their innovative framework so to handle network
data. As we move in an observational setting, we must account for base-
line (dyadic) covariates. Instead of conditioning on the entire batch of
available covariates, researchers sometimes prefer to work with the so
called propensity score, which represents a numerical synthesis of pre-
treatment covariates (Rosenbaum & Rubin, 1983b). In its standard for-
mulation, propensity score measures the individual probability of be-
ing exposed to the active treatment, given baseline characteristics. This
quantity embodies all the relevant information expressed by covariates
and it can be employed for covariate adjustment using different appraoches,
such as sub-classification and matching (Howard et al., 2000). In partic-
ular, propensity score matching represents one of the most widespread
statistical techniques for extracting causal information in observational
studies (Abadie & Imbens, 2016; Dehejia & Wahba, 2002; Rosenbaum &
Rubin, 1983b). The idea of any matching algorithm is to compare units
who exhibit similar values of propensity score, but differ in the actual
treatment status. Here we build upon the stardard approach to develop a
propensity score-based estimator for dyadic average causal effects, possi-
bly conditional on the always-defined principal stratum. Given the pos-
sibly multi-valued nature of the dyadic treatments we rely on the gener-
alized propensity scores (G. W. Imbens, 2000).

Definition 6 (Generalized Propensity Score (GPS) for network data). Gen-
eralized propensity score is defined as the dyadic conditional probability of re-
ceiving each treatment level, conditioning on the pre-treatment dyadic covari-
ates matrix and on not to have unspecified potential outcomes for that given
treatment level

πij(z|x, z∗, y∗) = P (Zij = z|Xij = x, Z∗ij = 1, Y obs,∗ij = 1)

In order to properly define and estimate the effects of interest, we
must assume that each dyad has a nonzero probability of being exposed
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to each of the treatment categories. Therefore, we advance the following
Assumption,

Assumption 17 (Positivity ). πij(z) > 0 ∀(ij) ∈ D, and ∀z ∈ Z

In addition, the necessary condition for GPS to be used for the esti-
mation of dyadic treatment effects is that the conditional probability for
a dyad of being exposed to each of the treatment level is strictly positive,
for all the pair-specific realization of dyadic covariates. This means, that
Assumption 18 must hold.

Assumption 18 (Overlap). For all values of x, the conditional probability of
receiving any level of the treatment is strictly positive

πij(z|x, z∗, y∗) > 0 ∀z, ∀x and ∀(i, j) ∈ D

The unconfoundedness assumption, readjusted to the network sce-
nario, would imply that the dyadic treatment and potential outcomes
are independent, conditioning on (dyadic) baseline characteristics. How-
ever, this assumption presents some peculiar implications in handling
multi-valued treatments: in fact, in the presence of a treatment defined
over multiple categories, the standard unconfoundedness assumption
would require the conditioning over aZ−1-dimensioned batch of propen-
sity scores. This aspect highly limits the benefits of the propensity score
approach in terms of dimensionality reduction, which is really the pri-
mary aspect that makes propensity score methods preferable, compared
to the strategy of managing the entire set of covariates. To achieve a di-
mensionality reduction of the analysis, S. Yang et al., 2016 suggests to rely
on a weaker version of unconfoundedness, which is formally presented
in the following assumption. Here we extend the weak unconfoundess
assumption to handle conditional causal effects as the ones we have pre-
sented in the previous subsection.

Assumption 19 (Weak Unconfoundedness for dyadic treatments and con-
ditional causal effects). The assignment mechanism is weakly unconfounded
if for all z ∈ Z and for all (i, j) ∈ D we have that[

Iij(z) ⊥⊥ Yij(z)|Xij , Z
∗ = 1, Y ∗ij(z) = Y ∗ij(z

′) = 1
]
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where

Iij(z)


1 if Zij = z,

0 if Zij 6= z,

unspecified otherwise

This assumption works with dyadic treatment indicators Iij(z), which
are dummy variables signaling the dyadic exposure to a given treatment
status z. If the assignment mechanism is weakly unconfounded condi-
tioning on baseline covariates, then it remains unconfounded if we con-
dition on the generalized propensity score evaluate at z. This means that
under Assumption 19 the following relation holds, for all z ∈ Z and for
all dyads (i, j) ∈ D for which potential outcomes are always defined.

Iij(z) ⊥⊥ Yij(Zij)|πij(z|x, z∗, y∗), Z∗ij = 1, Y ∗ij(z) = Y ∗ij(z
′) = 1

Because our average dyadic treatment effects are defined conditioning
on the principal stratum where the outcome is always defined, we make
two additional assumptions allowing to identify the causal effects from
the observed data.

Assumption 20 (Further assumptions for Conditional Average Causal
Effects). For each pair i, j ∈ D, the two following assumptions hold,
Conditional independence of Yij(z) and Y ∗ij(z

′), given Y ∗ij(z) and the propensity
score.

Yij(z) ⊥⊥ Y ∗ij(z′)|Y ∗ij(z), πij(z|x, z∗, y∗); with z′ 6= z

ii) Conditional independence of Y ∗ij(z) and Y ∗ij(z
′), given propensity score.

Y ∗ij(z) ⊥⊥ Y ∗ij(z′)|πij(z|x, z∗, y∗),with z′ 6= z

Under Assumptions 17,18,19 and 20, the Dyadic Average treatment
Effect τ(z,z′) is identified as:

E
[
Yij(z

′)− Yij(z)|Z∗ij = 1, Y ∗ij(z) = Y ∗ij(z
′) = 1

]
=

E
[
E[Y obsij |Zij = z′, πij(z

′|x, z∗, y∗), Z∗ij = 1, Y obs.∗ij = 1)]
]
−

E
[
E[Y obsij |Zij = z, πij(z|x, z∗, y∗), Z∗ij = 1, Y obs,∗ij = 1)]

]
Under Assumption 19 we can match dyads with similar generalized

propensity score and estimate the average causal effects comparing the
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observed outcomes of the matched pair of dyads. In particular, here we
perform a nearest-neighbor matching algorithm such that the matched
sets are obtained by solving the following minimization problem

mgps(z, πij(z|x, z∗ij = 1, y∗ij), Z
∗
ij = 1, Y obs,∗ij = 1) =

arg min
(kl)∈D:Zkl=z,Z∗kl=1,Y obs,∗kl =1

‖ πkl(z|Xkl = x, Z∗kl = 1, Y obs,∗kl = 1)

− πij(z|Xij = x, Z∗ij = 1, Y obs,∗ij = 1) ‖

The output of this function is the pair (k, l) (or multiple pairs in case of
multiple matches), who best satisfies the minimization criterion. It fol-
lows, that the imputed potential outcome for the dyad (i, j) with respect
to the dyadic treatment status z corresponds to the observed outcome of
their nearest match, conditioning on the existence of the potential out-
come under the treatment level z, for both (i, j) and its match 4. This
means that an estimator of the average treatment effect of the dyadic
treatment z with respect to the treatment z′ can be expressed as follows:

τ̂gps(z, z′) =
1

D

∑
(i,j):Z∗ij=1,Y obs,∗ij =1

[
Y obsmgps(z,πij(z|x,z∗ij=1,y∗ij))

−

Y obsmgps(mgps(z′,πij(z|x,z∗ij=1,y∗ij))

)]

The estimated variance of τ̂gps(z, z′) is derived in S. Yang et al., 2016 and
finds its roots in Abadie and Imbens, 2006.

4Note that the imputed potential outcome which corresponds to the treatment status the
dyad is actually exposed to coincides with its own observed potential outcome. Note also
that the number of selected matchesM can be greater than 1: this means that for each dyad
we can identify more than one matching pair, and, as a consequence, in the case of M > 1,
the imputed potential outcome for a given dyad is obtained by computing the mean of the
outcomes observed among detected matches. For estimating the effects of interest, we need
to compare dyadic potential outcomes.
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5.3 Political Lobbying and Collaborations: Is-
sue and Data

5.3.1 Background

Companies and firms intend to influence the political agenda of elected
politicians. From a broader point of view, they intend to monitor, stimu-
late, amend or prevent pubic policies, that are pertinent to their economic
exercise. The process of organizations and enterprises exerting power on
public servants is known as lobbying. The National Institute for Lobby-
ing and Ethics defined lobbying as follows (for Lobbying & Ethics, n.d.):
“Lobbying is a legitimate and necessary part of our democratic political pro-
cess. Government decisions affect both people and organizations, and informa-
tion must be provided in order to produce informed decisions. Public officials
cannot make fair and informed decisions without considering information from
a broad range of interested parties”. Therefore, according to the definition
of the NILE, lobbying is a constituent mechanism of a democratic polit-
ical competition. However, the presence of interactions between busi-
ness interests and public welfare introduces clear or masked distortions
in the legislative behavior of legislators: the lobbying pressure induces
politicians to work on issues which are believed to be considerable and
urgent by the lobbies, while overshadowing and postponing those acts
that are inspired by ideological and political priorities. In some cases,
the lobbying conduct may be also not easy to be detected: for instance,
if lobbies intend to block a particular proposal referred to a given issue,
an external observer is not able to perceive any political pressure, since
all that she/he is able to judge is the maintaining of a legislative status
quo (Drutman, 2011); moreover, sometimes business groups demand for
clauses pertained to very specific matters: therefore, the outcomes of the
lobbying behavior can be concealed into massive and complex legislative
acts (Bertrand et al., 2018).

There are relevant works examining how the interaction between gov-
ernment and business groups affects the national political attitude to-
wards key issues (Marsh & Lewis, 2014; Paster, 2018; Vogel, 2003), while
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other project focus on looking at the causal link between this interaction
and politicians’ individual behavior (see Battaglini and Patacchini, 2018
for a recent review). Influence occurs by means of heterogeneous mech-
anisms, such as informative agreements, employment opportunities or
campaign contributions (Bombardini & Trebbi, 2019). Campaign contri-
butions have recently been identified as powerful channels for firms to
apply a political pressures on candidates, who compete for a seat in a leg-
islative body (Powell & Grimmer, 2016; Richter & Werner, 2017; Teseo,
2020). All politicians running for a national electoral competition look for
external financiers willing to support their campaign and wealthy orga-
nizations are likewise disposed to strengthen their political connections
for future favors. As a matter of transparency, campaign contributions
have to be declared to national guaranteeing institutions, which super-
vise the fairness of any electoral competition. In the United States of
America, political candidates must notify the Federal Election Commision
(FEC) about their electoral funds and, for that reason, FEC now repre-
sents the primary source of data for contributions campaign. In particu-
lar, FEC collects any monetary transaction, which is made by single in-
dividuals or Political Action Committees (PACs) for financing candidates.
Given data availability, an intense scientific debate on the effects of lob-
bying activity has developed over the last decades. The recent economic
literature is actually discussing about whether PACs are valid instru-
ments for measuring the lobbying pressure over politicians (Teseo, 2020)
and whether lobbies effectively prevail in shaping the political agenda of
elected politicians.

It is reasonable to believe that politicians are inclined to collaborate
with colleagues that share a similar political agenda. A possible ap-
proach for measuring the intensity of legislators’ political connections
is analysing the cosponsorship network, in a given Congress (Battaglini
et al., 2019; Fowler, 2006a, 2006b; R. K. Wilson & Young, 1997). The US
Congress system states that each legislative proposal must be promoted
by one leading proponent and that it can be additionally explicitly sup-
ported by other members of the Congress. Legislator may choose to
support a legislative act promoted by a colleague either because they
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have participated in writing the proposal or because they are willing
to demonstrate their ideological approval to the act, by following either
their personal opinion or a political strategy. Those politicians who sign
a submitted bill, are called cosponsors, while the first signatory is the spon-
sor. Despite cosponsorship ties are likely to be observed, as each legis-
lator supports a large number of bills, they are nevertheless informative
in signaling the presence of a real collaborative tie between legislators.
Indeed, each politician faces a significant search cost in deciding which
acts might be worth supporting, among the huge amount of bills pre-
sented at the HoR (Fowler, 2006a). Therefore, cosponsorship networks
have become widely popular in the political research. The cosponsorship
network is a direct network, where the set of nodes represents elected
politicians, and the set of edges describes their cosponsorship links. In
particular, a present link starting from a node i and running out into the
node j signals that i has cosponsored at least one act, which has been
presented by his colleague j. In most empirical studies, this network
is also weighted, where the weight of the link measures the number of
cosponsored bills.

If companies and corporations succeed in influencing the political
agenda of elected politicians, by supporting their electoral campaign through
PACs, and if politicians are more likely to work together with colleagues
sharing similar political priorities, then it is reasonable to believe that
two politicians sponsored by common lobbies are more likely to collabo-
rate. In particular, we assess the effect of two politician having common
financing sponsors on their joint legislative behavior, that is, their leg-
islative collaborations. The idea is that sharing funding supporters leads
politicians to strengthen their working relation, inducing them to work
on similar issues and to co-operate about specific proposals, while being
implicitly or explicitly stimulated by lobbies. This mechanism may par-
tially tweak the role of the standard incentives of pairs of elected officials
to co-operate: the components that are commonly regarded as pushing
factors for collaborations are the common party membership, the com-
mon geographical area, where the two politicians have settled their polit-
ical roots, and the joint connection to ethnic, religious or gender minori-

199



ties (Battaglini & Patacchini, 2018; Cranmer & Desmarais, 2011; Fowler,
2006a). Additionally, since politicians who receive funds from firms are
likely to share at least one common financing firm, we identify strong
ties of common supporters, by detecting and isolating those links that
are statistically relevant. We assess whether the kind of the strong tie
relationship affects the legislative collaborations among legislator and
whether it encourages mutual cosponsorships rather then unilateral ties.
Furthermore, as both the common supporting companies networks and
the cosponsorship networks provide oriented ties, we test whether the
direction of the collaboration tie follows the direction of the strong tie,
hence directly identifying the role of sharing common lobbies in deter-
mining cosponsorships.

5.3.2 Data Description

Data refer to three legislative periods, namely the 111th., 112th. and 113th.

Congress. Consequently, the time-indicator t varies over a three-dimensional
domain, t = {1, 2, 3}, where each element corresponds to the first, second
and third period, respectively. The whole data structure can be repre-
sented as a temporal bipartite network Gt,BIP = (F t,Pt, EtFP , E

t,COSP
PP )

, where the first set F t = {1, . . . , N t
F } includes those firms, who have

financially supported any legislators at time t, while the second set Pt =

{1, . . . , N t
P } embraces the members of the Congress at time t. Politicians

are connected by cosponsorship ties, which are collected in Et,COSPPP . We
denote the cosponsorship network among elected members of the HoR
at time t by Gt,COSP

P = (Pt, Et,COSPPP ). Links between the two layers EtFP
represent financial contributions of firms to the benefit of politicians, dur-
ing their electoral campaign: thus links between the two networks are
weighted 5. These monetary transactions are characterized by specific
attributes, such as the date and the exact amount. Both firms and politi-
cians are characterized by attributes. The idea of the data structure is de-
picted in Figure 49. Some descptive statistics can be found in Appendix

5Data provide also connections among firms: they are connected by ownership ties.
However, this aspect is not addressed in the present work.
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Figure 49: Data Structure: bipartite network. First layer: firms (green
nodes). Second Layer: members of the Congress (red and blue nodes). Col-
ors refer to party-membership: red denotes democrats, while blue labels
republicans

D.2. In the remaining part of this section, we describe the sources of data
and we show how we have merged the different data repositories.

Committee Data

Campaign contributions data from the Federal Election Commission (FEC)
files are collected by the Center for Responsive Politics (CRP) (Stewart &
Woon, 2007). This data repository is extremely rich, as it collects the com-
plete lists of monetary transactions at the benefit of elected politicians.
In particular, data provide details of each single monetary transaction,
which has been made from a given Political Action Committee (PAC) to
the benefit of candidates, at the aim of supporting them during their elec-
toral campaign. In particular, each payment is characterized by the date
when it has been executed, by the type and industry with which the cor-

201



responding PAC is associated, by the exact amount of the transaction and
by the final beneficiary. PACs include associations, organizations, single
individuals, political parties and firms. Since the focus of this work is
on the lobbying activities of companies, we remove from the analysis all
those transactions involving PACs, which are not related to real US firms.
We detected companies-related PACs by performing a string-matching
algorithm, whose detailed steps can be found in the Appendix D.1. In the
111th, 112th and 113th Congress, we have found N1

F = 1007, N2
F = 970

and N3
F = 897 unique lobbying firms, respectively. Not all elected politi-

cians receive funds from companies: in the 111th Congress politicians
who were sponsored by firms were N1

P = 379 of the 439 members of the
HoR, in 112th Congress they were N2

P = 374 of 434 and, finally, in the
113th Congress, N3

P = 328 of 416. These contributions represent the links
between the two layers of the network, F t and Pt, EtFP . In all legislative
cycles, the proportion of transactions involving firms is about one third.
This means that contributions coming from firms represent an extremely
relevant quote of the total amount contributions registered in an elec-
toral campaign. Figure 50 shows the distribution of the total amount of
money (expressed in US dollars), which the HoR members have received
from firms and, furthermore, it depicts the distribution of the number of
unique supporting companies, per politician. As you may observe in the
figure, the amount of money received from firms is large, and there is a
large array of firms participating to campaign contributions.

Cosponsorship Network Data

In the US House of Representatives a bill is proposed by at most one
politician, and other members of the Congress may decide to support
it, officially cosponsoring it. Data about cosponsorships are collected by
the US Government and each potential user can access them for free, by
consulting the website GovTrack.us. In the recent decades, cosponsor-
ships data have been organized and widely employed in various em-
pirical studies (Battaglini et al., 2019; Fowler, 2006a; Kessler & Krehbiel,
1996; R. K. Wilson & Young, 1997). In our setting, cosponsorhip network
data provide information about the number of cosponsored bills between
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(a) Total amount (b) Unique firms

Figure 50: Box-plot: distribution of the total amount received by firms
and of the number of unique supporting companies, per politician, over the
three legislatures. Only those politicians who have received funds by firms
are shown

HoR members, in the 111th-113th Congress. The network Gt,COSP
P de-

scribes cosponsorships among elected officials during the period t. It ad-
mits an equivalent representation in terms of its adjacency matrix Ct =

{ctij : i, j ∈ Pt}. The generic element ctij counts how many times the HoR
member i has cosponsored a bill, which was promoted by his colleague j,
during the period t. Consequently, the matrix Ct is not necessarily sym-
metric. Figure 51 illustrates cosponsorship networks of the 111th, 112th

and 113th U.S Congress, where each node corresponds to each legisla-
tor, the color of each node is related to his/her own party membership
(democrats are red colored, while republicans are blue colored) and the
size is proportional to his/her in-degree in the cosponsorship network
(i.e the number of legislators who have cospoonsored his/her bills at
least once) 6.Note that cosponsorship networks are high density 7 net-
works (density is 0.3808469 in the 111th Congress, 0.3115282 in the 112th

Congress and 0.3392203 in the 113th Congress). It also depicts the his-
tograms and the corresponding box-plots related to distributions of the

6For ease of observation, we are plotting only those links ctij that are in the top 1% in
terms of weight

7density in a network measures the ratio between the number of present ties and the
number of feasible connections
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total number of politicians each member of the HoR has cosponsored
at least once during the legislative period and of the total number of
unique cosponsors, over the three legislative cycles we take into account
(i.e his/her out-deree and in-degree in the cosponsorship network, re-
spectively). This figure points out that collaborations in the U.S HoR are
intense, since each politician establish many collaborative ties with his
colleagues, by cosponsoring bills that they promote.

(g) 111th Congress (h) 112th Congress (i) 113th Congress

Figure 51: Cosponsorships, in the three legislative Cycles (111th − 113th):
cosponsorship network (top), distribution of the total number of cospon-
sors, per politician (middle) and distribution of the total number of cospon-
sored legislators, per politician (bottom).
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Politicians Data

Politicians data aggregate political, demographic and ideological char-
acteristics concerning those politicians, who have been elected at the US
House of Representatives (C & Wiseman, 2017; Stewart & Woon, 2007).
Political attributes include party membership, legislative seniority, ide-
ological collocation (in terms of distance with respect to the ideological
”center”(R. Carroll et al., 2011)). Politicians’ ideological collocation is a
continuous variable bounded between 0 (highly moderate) and 1 (highly
extreme): we employ this measure to classify legislators in moderate (ide-
ological distance lower or equal than 0.5) or extreme(ideological distance
greater than 0.5) . General and demographic features report the US state
they politically refer to and signal whether a given politician belongs to
ethnic or gender minorities. These factors are employed in our analysis
to control for alternative drivers of cosponsorships: indeed, some stud-
ies have recently pointed out that being of the same party, coming from
the same US State and being of the same gender represent significant
elements that prompt cosponsorships between legislators (Battaglini &
Patacchini, 2018; Cranmer & Desmarais, 2011). Moreover, Baller, 2017
has verified that the common party membership and the common state
origin drive collaborations in the US Parliament as well. Hence, as we
reasonably expect these factors to play a role in our setting, we control
for this information in order to identify the effect of lobbying activities
on political collaborations.

Firms Data

In our analysis we make use of the Orbis database (Van Dijk, 2013), a
large multi-country firm-level dataset that contains cross border owner-
ship information. The Orbis database, compiled by the Bureau van Dijk,
a Moody’s Analytics Company, is acknowledged as a reliable source of
firm-level data (Del Vicario et al., 2016; Kalemli-Ozcan et al., 2015), al-
beit not yet exploited in studies related to the economics of political con-
nections and cosponsorships. In particular, the Orbis database collects
general characteristics and financial information, about companies and
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firms that are officially recognized by United States of America. This is
a huge database, which is widely employed in the economic research,
because of its extensive information of all-size firms located in different
countries all over the world. Each company is uniquely identified by a
BVD ID number and the ORBIS Database provides information about its
exact location and the economic sector to which its business activity is
related. Moreover, the firm is monitored over time in terms of activities,
acquisitions and economic performances. We focus on data from 2010 to
2016, so to completely cover the whole time frame that has been taken
into account in the analysis. By handling this database, we can discern
which organizations among the ones included in the committee data are
real US companies.

5.3.3 Merging Data Sources

This work merges the four sources of data we have previously described:
(i) committee data, which provide information about the campaigns con-
tributions to the HoR candidates; (ii) cosponsorship network data, which
monitor the legislative collaborations among elected politicians; (iii) firms
data, which cover the most relevant US firms and yield general attributes
of the companies, also providing some financial indicators, and their
variation over time; (iv) politicians data, which give a unique portrait of
the members of the Congress, examining their physical, cultural, ide-
ological and political characteristics. These four data repositories are
merged according to the map that can be observed in Figure 52. Cospon-
sorship network data and politicians data are immediately merged through
an ID, which is assigned by the FEC for uniquely identifying the mem-
bers of the Congress. The same ID is also used to match politicians’
data together with committee data (which originally involve also can-
didates who have not been elected). Committee data and firms data are
instead matched using a pure string-matching algorithm, that is fully
described and discussed in Appendix D.1. This algorithm has been im-
plemented in order to isolate firms or corporate companies among all the
entities, whose supporting contributions are included in the committee
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data. We assume that all the organizations, which have financially sup-
ported elected candidates but have not been matched by the algorithm,
are not registered as US companies and, therefore, can be removed from
our analysis.

Figure 52: Data Map: four data repositories, perfectly merged through
unique IDs (black arch) or non-perfectly matched using a string-matching
algorithm (red arch)

5.4 Empirical Strategy

This work plans to assess the causal effect of the lobbying pressure ex-
erted by firms on politicians on their legislative cosponsorships. Indeed,
supposing that companies support politicians during their electoral cam-
paign in an attempt to sway their political agenda and that politicians es-
tablish legislative collaborations to persuade colleagues for the approval
of acts representing their political priorities, we expect that legislators
pushed by the same lobbying interests to collaborate. Specifically, this
project intends to appraise the exact mechanisms which may rule the
causal relationship between lobbying activities and cosponsorships ties,
by testing some empirical hypotheses. These hypotheses investigate whether
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the type of the strong tie among two politicians (absent, asymmetric or
mutual) encourages cosponsorships (unilateral or mutual) and whether
the direction of the cosponsorship tie follows the direction of the strong
tie. The methodological approach that we propose has been extensively
discussed in Section 5.2. The whole methodological architecture is fo-
cused on singular dyads (i, j), that is, unique pairs of politicians are
the units of interest. The treatment variable is defined starting from the
network describing strong ties of common lobbies between politicians
(which represent the treatment-network), while the dyadic outcome vari-
able is defined starting from ties observed in the cosponsorhip networks
(the outcome-network). We will provide different definitions of the treat-
ment and outcome variables according to different specifications of the
functions applied to the treatment and outcome network. In the upcom-
ing section, we present the empirical strategy that we have implemented
to define the treatment network, representing strong links of common
supporting firms among politicians.

5.4.1 Strong Links of Common Supporting Lobbies

Our treatment of interest concerns the presence of common financing
companies between pairs of politicians. To define the specific treatment
network we employ in this work, we first create a Shared Supporting Firms
(SF) network, Gt,SF

P = (Pt, Et,SFPP ), which is obtained by collapsing the
bipartite network Gt,BIP over Pt. Its edges Et,SFPP signal whether two
given politicians share at least one common supporting companies and
they are characterized by a specific edge-attribute that provides informa-
tion about the exact number of unique firms that two given members of
HoR both have among their financial supporters. However, since each
firm allocates money so to benefit a high number of elected politicians,
the number of zero-links in this network is negligible. Dyads which in-
volve politicians who have both received funds from firms, are likely to
present at least one shared sponsor. Figure 53 exactly pictures this phe-
nomenon: shared supporting firms networks are highly dense networks
(densities are 0.7327883, 0.7322932 and 0.6055723, respectively), where
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the isolated nodes gravitating around the gathered vertexes mostly rep-
resent units who have not been supported by companies. The distri-
bution of the recorded values of shared supporting firms, over the net-
work dyads, has a relevant peak at 0, but, this is due to the presence of
no-sponsored politician: the conditional dyadic probability of having a
common supporter, given the presence of both sponsored units, is about
0.98, in all the three legislative cycles. It is relevant to point out that this
particular aspect does not allow us to discern those ties that portrait a
real relevant connection among politicians, in terms of shared support-
ing companies.

(d) 111th Congress (e) 112th Congress (f) 113th Congress

Figure 53: Networks of shared supporting firms (top), in the three legisla-
tive Cycles (111th - 113th; edges signal that two nodes share at least one
supporting firms; colors refer to party membership: democrats (red) and re-
publicans (blue). Distribution of shared supporters (bottom) , per politician

As we have previously hinted, this phenomenon is induced by the
common practice of companies to allocate money among many political
candidates. Figure 54 shows the distribution of the number of sponsored
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politicians, per firm. The median number of sponsored members of the
Congress per company is about 9, in the three cycles. There are even
companies, which decide to distribute their lobbying budget over hun-
dreds of elected politician. This aspect is particularly relevant as it shows
the firms’ attitude to diversify their lobbying risk, by widening the cir-
cle of supported politicians so to minimize the possibility to support a
politician who will not be elected. For this reason, we decide to fur-

Figure 54: Density distribution of the number of supported politicians, per
firm, in the three legislative Cycles (111th - 113th)

ther examine the network Gt,SF , at the aim of detecting those links that
are statistically relevant, for each unit. Identified connections are con-
sidered to be strong links (Battaglini et al., 2019; Granoveter, 1973; Kirk-
land, 2011), in terms of common financiers, for each politician. Formally,
we consider the set of politicians Pt elected in the legislative period t,
with given units i and j both belonging to Pt. We denote with εt,SFij the
number of common financing firms between i and j (note that, by con-
struction, εt,SFij = εt,SFji ). Moreover, let εt,SFi· be the vector collecting the
number of financing firms that i shares with her colleagues. We state
that i has a strong link of sharing supporters with j in period t, Stij = 1,
if the observed value of shared supporters stays at the extreme of the
distribution, that is,

Stij = 1 if εt,SFij ≥
(
εt,SFi· + sd(εt,SFi· )

)
,

where εt,SFi· denotes the sampling mean of
(
εt,SFi· ) , while sd(εt,SFi· is the

corresponding standard deviation. Similarly, j has a strong link of sharing
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supporters with i if

Stji = 1 if εt,SFij ≥
(
εt,SFj· + sd(εt,SFj· )

)
.

where εt,SFj· denotes the sampling mean of εt,SFj· , while sd(εt,SFj· ) is the
corresponding standard deviation. This procedure allows to detect rele-
vant links, from the legislator’s perspective. Strong links are collected in
the edge set Et,SLPP , where Et,SLPP ⊂ Et,SFPP . Hence, the set Et,SL embraces
only those edges in Et,SF , that have been detected as strong, from the
politicians point of view. It follows that the network Gt,SL

P = (Pt, Et,SLPP )

is a sub-graph of the original shared supporting firm network Gt,SF
P . Fi-

nally we indicate as SLt the N t
P ×N t

P binary matrix representing strong
links of sharing supporting firms. Specifically, the element slti,j of this
matrix equals 1 if Stij = 1. It is a direct matrix, as i may have a strong
relation with j but not vice versa. This is due to our proposed character-
ization of a strong link relationship: the statistical relevance of each link
is measured with respect to each politician, by gauging his own distri-
bution of shared supporting firms. This means that the number of sup-
porters that two legislators i and j - both elected at time t -, stij , may be
statistically relevant i) from the i’s perspective only (Stij = 1 and Stji = 0),
ii) from the j’s perspective only (Stij = 0 and Stji = 1), iii) from both per-
spectives (Stij = 1 and Stji = 1) or iv) for neither i nor j (Stij = 0 and
Stji = 0) .

This procedure allows to identify, for each member of the HoR, those
colleagues with whom he shares a relevant number of financing firms.

5.4.2 Assessing the Effect of Lobbying Activities on Cospon-
sorships

The network that we have defined in the previous subsection, Gt,SL
P ,

represents the treatment network of our methodological design and de-
picts strong links of common supporting firms among politicians. while,
the outcome network is the cosponsorships network, Gt,COSP

P . In Sec-
tion 5.2, we have clarified that the dyadic treatment variable and the
dyadic outcome variable are defined by applying a function over edges
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collected in the treatment network and in the outcome network, respec-
tively. However, our motivating application provides networks, which
are characterized by a temporal variation. Before going deeper in de-
scribing the empirical strategy for assessing the effect of lobbying activ-
ities on legislative collaborations, we point out here how we deal with
the temporal dimension. We assume that observations come from one
cross-sectional study, developed in the three legislative periods that we
include in the analysis. We consider the whole set of politicians P , which
results by the union of the legislative specific sets: P =

⋃T
t:1 Pt, with

‖ P ‖= P . Hence, the entire dyadic population, that we denote byD, will
comprise all the pairs of politicians over the three periods, D =

⋃T
t:1Dt,

where the element Dt refers to the legislature-specific dyadic popula-
tion, Dt : {(i, j)t : 1, . . . , Dt}, with both i and j belonging to Pt. Some
politicians have run in more than one legislative cycle and will appear
in the data multiple times 8. Consequently, the dyadic population will
also contain duplicates.. We are assuming that a given politician i who is
in charge at time t is a different statistical unit with respect to the same
politician i who is elected at time t′, with t′ 6= t. The same assumption
holds for dyads: a pair of officials (i, j) can be defined over many leg-
islative periods, but identical pairs, which are considered in distinct time
frames, are assumed to be statistically different. This assumption seems
reasonable in our empirical setting. Indeed, the individual legislative
behavior of a legislator is analyzed with respect to a specific composi-
tion of the legislative arena, characterized by specific political equilibria.
As a result, we look at the same individual in two different congresses
as two different individuals to take into account the change of political
equilibria occurring when a different Congress is formed. This hypoth-
esis has been similarly advanced in many empirical studies (Battaglini
et al., 2019), and it is motivated exactly by the volatility of the political
scenario. Any adjustment in the political equilibrium leads to a change
in the legislators’ behavior. If we relaxed this assumption and admit-

8There are 244 politicians who are elected over the three legislative cycles. 334 politi-
cians among the ones who were in charge during the 111th Congress have been elected in
the 112th congress as well, while 324 among the ones who were in charge during the 113th

Congress have been elected in the 113th congress as well.
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ted time dependencies, we would still imposing a strong assumption
on data, namely we would implicitly assume that the political equilib-
rium remains unaltered during the three congresses (which cover more
12 years). Since this assumption is difficult to be justified and it is not
considered to be plausible by the existing literature on cosponsorships,
we prefer to rely on the independence assumption.

Under this assumption, it is possible to consider the network GSL
P =

(P, ESLPP ), whose edges describe strong ties of common supporting com-
panies among politicians, over the three congresses, ESLPP =

⋃T
t:1 E

t,SL
PP ,

and whose nodes represent the entire set of politicians P . It represents
the union of the three temporal sub-graphs Gt,SL

P , with t = 1, 2, 3, and its
corresponding adjacency matrix SL is a (P×P ) three block-diagonal ad-
jacency matrix with blocks SLt. The network GSL

P will be our treatment
network Gz , with ESLPP = Ez . Similarly, it is possible to define the net-
work GCOSP

P = (P, ECOSPPP ), whose edges signal cosponsorships among
politicians, over the three congresses ECOSPPP =

⋃T
t:1 E

t,COSP
PP , and whose

nodes still represent the entire set of politicians P . It represents the union
of the three temporal sub-graphs Gt,COSP

P , with t = 1, 2, 3 and its corre-
sponding adjacency matrixC is a (P×P ) three block-diagonal adjacency
matrix with blocksCt. The network GCOSP

P represents our outcome net-
work Gy , with ECOSPPP = Ey .

As specified in Section 5.2, for each pair politicians (i, j), the dyadic
treatment variable and the outcome treatment variable will be defined,
applying a mapping function over their observed ties in the treatment
network and in the outcome network, respectively. In particular, the
dyadic treatment Zij results from applying the f(·) function on the pair
specific ties observed in the treatment network, Zij = f(ezij , e

z
ji). The

dyadic outcome Yij results from applying the g(·) function on the pair
specific ties observed in the treatment network, Yij = g(eyij , e

y
ji).

Therefore, given Gz and Gy , we can define dyadic causal effects to
investigate the mechanisms which rule the causal link between lobbying
activities and cosponsorships. The first aspect that it is relevant to as-
sess is whether the presence of strong ties between two legislators affects
their likelihood to collaborate. The two variables Sij and Sji signal the
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presence and symmetry of a strong relationship of common supporting
lobbies between i and j. This strong tie may not be symmetric, as, for in-
stance, i may have a statistically relevant tie of common financiers with
j (Sij = 1) but not vice versa (Sji = 0). Consequently, we can state that
the strong relationship of common supporters between two politicians
may be of three types: i) symmetric (mutual), (ii) present and asymmetric or
iii) absent. The first dyadic causal effect we are interested in is the causal
effect of the type of strong tie of common supporters on the presence of
any co-sponsorded bills. Therefore, for the definition of this causal effect,
the treatment variable Zsymmij has a multi-valued characterization, and it
varies over three nominal categories. Formally,

Zsymmij =


= 0 if Sij = Sji = 0 (no strong tie)

= 1 if Sij + Sji = 1 (asymmetric strong tie)

= 2 if Sij = Sji = 1 (mutual strong tie)

To evaluate the effect of strong ties on cosponsorships, one needs to as-
sess the effect of Zsymmij on an outcome variable, which signals the pres-
ence of cosponsored bills in the dyad. Specifically, the outcome Y anyij is a
dummy, which signals if either i has cosponsored j at least one bill dur-
ing the legislature or j has cosponsored i. Denoting with Cij the number
of bills which have been promoted by j and successively supported by
i and with Cji the number of proposals cosponsored by j, after having
been fostered by i, we formally define the outcome variable as

Y anyij

{
= 0 if Cij = Cji = 0 (no cosponsorships)

= 1 if Cij + Cji > 0 (at least one cosponsorship)

Since the treatment variable Zsymmij varies over K = 3 nominal cate-
gories, assessing the effect of Zsymmij on Y anyij amounts to perform binary
comparisons between z and z′, with z andz′ ∈ {0, 1, 2}. These effects can
be formally written as,

τM1
(z,z′) =E

[
Y anyij (Zsymmij = z)

]
− E

[
Y anyij (Zsymmij = z′)

]
The effect of Zsymmij on Y anyij , τM1

(z,z′), represents the key causal inves-
tigation of our work, as it enables us to state whether strong ties do
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play a role in determining collaborations among legislators. The subse-
quent hypothesis that requires to be tested regards the type of cosponsor-
ships that are mostly encouraged by strong ties: in other words, we ask
whether strong ties encourage asymmetric cosponsorships rather than
mutual cosponsorships. Hence, conditioning on observing at least one
cosponsorship in the dyad, we test the effect of the strong common sup-
porters tie on the presence of mutual cosponsorhip (M2). We state that
two politicians i and j mutually cosponsor one each other if both the
numbers of legislative proposals that the two officials have reciprocally
supported is strictly greater than 0, that is, Cij > 0 and Cji > 0. Instead,
two members of the HoR are connected through a one-sided cosponsor-
ship tie if one politician belonging to the observed pair has officially sus-
tained at least one bill which has been submitted by the other, but not
vice versa. This analysis is restricted only on those dyads who have at
least a one-sided cosponsorship tie: consequently, pairs of politicians
who do not reciprocally support any bill during the given legislature
are excluded from this specific examination. Hence, this analysis is ad-
dressed to a subset of the entire population of dyads D: labelling as
D(M2), with D(M2) ⊂ D., the restricted sample of dyads we take into
account. Therefore, here the treatment variable is identical to the one
that we have introduced in the previous subsection (Zsymmij for all the
pairs (i, j) ∈ D(M2)), while the outcome is defined as a dummy which
equals 1 in case of mutual cosponsorship and 0 under one-sided cospon-
sorship and it is still defined only for those dyads who exhibit at least a
one-sided cosponsorship tie.

[
Y symmij | Y anyij = 1

]
=


= 0 if Cij + Cji > 0, Cij = 0 or Cji = 0

(one sided cosponsorships)

= 1 if Cij > 0 and Cji > 0

(mutual cosponsorship)

The effects of interest are conditional average causal effects as they are
defined while conditioning on those dyads that are characterized by at
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least a one-sided cosponsorship tie. They can be formalized as

τM2
(z,z′) =E

[
Y symmij (Zsymmij = z)|Y anyij = 1

]
−

E
[
Y symmij (Zsymmij = z′)|Y anyij = 1

]

After investigating the existence of a causal relationship between strong
ties and cosponsorships, we focus on the directions of those links: specif-
ically, we wish to assess whether the direction of the strong ties follows
the direction of the cosponsorship tie. To achieve this goal, we analyze
the direction of ties, under two different perspectives: i) focusing on
those dyads who exhibit asymmetric relationships both in the treatment
and in the outcome network, we test whether the presence of a strong
tie in a given direction increases the probability of observing the cospon-
sorship tie on the same direction (rather than in the opposite direction)
(MOD3); ii) focusing on those dyads who exhibit asymmetric behaviors
in the treatment network only, we test whether the presence of a strong
tie in a given direction determines the predominant direction of the total
cosponsorship activity (i.e the direction of the most relevant number of
cosponsored bills, in the pair)(MOD4).

In MOD3, we assess whether the direction of the present cosponsor-
ship tie reflects the direction of the strong link of common sponsors while
focusing on probabilities and conditioning on those dyads who exhibit
asymmetric relationships both in the strong common lobbies tie and in
the cosponsorship behavior. Hence, the empirical investigation is con-
fined on the subset of dyads, that show asymmetries both in the strong
tie relationship and in the cosponsorship activity. That is, we focus on
a subset, D(M3), with D(M3) ⊂ D, that can be formally described as
D(M3) = {(i, j) ∈ D : Sij + Sji = 1 and Cij + Cji > 0 Cij × Cji = 0}.
Here, the treatment variable Z(M3)

ij simply represents the direction of the
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asymmetric strong link, that is

[
Zdirij | Z

symm
ij = 1, Y symmij = 0

]
=



= 0 if Sij = 1 and Sji = 0

(i has a strong tie with j
but not vice versa)

= 1 if Sij = 0 and Sji = 1

(j has a strong tie with i
but not vice versa)

Similarly, the outcome variable Y (M3)
ij is defined as a binary indicator

expressing the direction of the cosponsorship behavior. Formally,

[
Y dirij | Z

symm
ij = 1, Y symmij = 0

]
=



= 0 if Cij > 0 and Cji = 0

(i has cosponsored j

at least once, but not vice versa)

= 1 if Cij = 0 and Cji > 0

(j has cosponsored i

at least once, but not vice versa)

Here, the effect of interest is a conditional average causal effect as it us
defined while conditioning on those dyads who are characterized by
an asymmetric behavior both in the strong tie relationship and in the
cosponsorship tie. It can be expressed as

τM3
(z,z′) =E

[
Y dirij (Zdirij = z)|Zsymmij = 1, Y symmij = 0

]
−

E
[
Y dirij (Zdirij = z′)|Zsymmij = 1, Y symmij = 0

]
In MOD4, we estimate the effect of the direction of the strong tie on
the predominant direction of the total cosponsorship activity, condition-
ing on observing asymmetric relationships in the strong link of common
supporting firms. Hence, we aim to assess whether the direction of the
strong link of common sponsors has an impact on whom of the two
politicians mostly supports the other, in his legislative attempts. This
issue is evaluated by focusing on those pairs of politicians, who exhibit
an asymmetric tendency with respect to the presence of a strong link
of shared financiers. This subset can be formally described as D(M4) =
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{(i, j) ∈ D : Sij + Sji = 1} 9. The treatment variable coincides, in
its mathematical formulation, with the one that we have proposed in the
previous examination, Zdirij . However, it is defined over a different sub-
sample of units (those showing asymmetries in the outcome network
only - and not in both the treatment network and in the outcome net-
work, as we have previously investigated -). The outcome, instead, mea-
sures the difference between the reciprocal cosponsored bills between i

and j, Y diffij = Cji − Cij . If this difference results to be greater then 0,
then we deduce that the politician who has mostly supported the other
was j. If, vice versa, the outcome is negative, then we can recognize i as
the most collaborative element in the pair. The effect is outlined in the
following expression,

τM4
(z,z′) =E

[
Y diffij (Zdirij = z)|Zsymmij = 1

]
−

E
[
Y diffij (Zdirij = z′)|Zsymmij = 1

]
5.4.3 Assessing Heterogeneities in the Effects of Interest

The effects we have described and motivated in the previous subsec-
tion, all outlined with the aim of investigating the causal relationship
between lobbying activities and legislative collaborations, are estimated
both in the entire dyadic sub-samples, in which they are respectively
defined, and in specific dyadic sub-populations, characterized by par-
ticular traits. This approach allows us to assess the heterogeneity of
results and to investigate i) the dyadic sub-populations whose legisla-
tive behavior is particularly ”responsive” to the presence of strong ties
and ii) the dyadic characteristics that mainly drive heterogeity. We de-
fine the dyadic sub-populations of interest by using prior information
about the phenomenon of interest and not relying on a data-driven ap-
proach. In particular, we suppose that factors that may prompt hetero-
geneities the state of election of the two legislators (state), their po-
litical collocation in the electoral chamber (majority), and their posi-

9Note that the set of dyads, which is employed in the previous examination (M3),
D(M3), is in turn a subset of D(M4), that is, the following relation holds: D(M3) ⊂
D(M4) ⊂ D
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tioning in terms of party membership and ideological extremism (party
and ideology). The latter aspect leads to the definition of the follow-
ing eight sub-populations of dyads: democrats, moderate-democrats,
extreme-democrats, mixed ideology-democrats, republicans, moderate-
republicans, extreme-republicans, mixed ideology-republicans. Specifi-
cally, moderate pairs are those whose ideological distance to the center
is lower than 0.5, extreme pairs are those whose ideological distance to
the center is greater to 0.5, mixed ideology profiles denote dyads who are
composed by one extreme legislator and one moderate legislator. Deal-
ing with heterogeneity of the effects yields to a meaningful interpreta-
tion about peculiar characteristics of those pairs of politicians whose co-
operation appears to be particularly motivated by the presence of com-
mon pushing companies.

5.5 Results

The effects of interest have been estimated by implementing a propensity
score matching for network data we have described in Section 5.2. In all
the four examinations, we include in the batch of pre-treatment covari-
ates some baseline dyadic features, which cannot be affected by the treat-
ment: in particular, we include a dummy variable which signals whether
the two elements of the pair are of the same gender (gender), a dummy
variable which signals whether the two elements of the pair are both re-
ferred to an ethnic minority (nowhite), a dummy variable which equals
1 if the two politicians belong to the same party (party), a dummy vari-
able which identifies those pairs where the two politicians have been
elected in the same US State (state) and, finally, a quantitative vari-
able measuring the absolute value of the difference between the two of-
ficials’ legislative seniority (expressed in terms of years spent in the US
HoR before the current legislature)(seniority) 10. These elements have
been included as they represent factors that the existing literature about

10Note that small values of this last variable denote pair of politicians, where both el-
ements are either similarly politically young officials or similarly politically experienced
officials
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cosponsorships have identified as variables that independently motivate
legislative collaborations (as motivated in Subsection 5.3.1. Moreover, by
conditioning on these variables, we may reasonably state that the dyadic
intervention is independent on the dyadic potential outcomes (thus, we
can presume the validity of the unconfoundedness assumption). Indeed,
the dyadic pre-treatment characteristics that we consider in the analysis
allow to control for those mechanisms which may have plausibly affect
both the likelihood of legislators to share an high number of financial
supporters and their legislative collaborations

The main examination of our work regards the effect of the type of the
strong tie on the presence of cosponsorships (MOD 1). As we have pre-
viously outlined, the strong tie of common supporting firms is defined
from the point of view of the single politician and, consequently, it is not
necessarily symmetric. The same entry concerning the number of shared
lobbies among two politicians may result to be statistically significant for
both of them, only one of them or nobody of them. As a consequence, the
strong tie can be mutual (Zsymmij = 2), asymmetric (Zsymmij = 1) or absent
(Zsymmij = 0). We test whether the type of the strong tie among politicians
affects the presence of cosponsored bills between them (Y anyij = 1).

Our findings show that the probability of forming a cosponsorship
tie (either asymmetric or mutual) is higher with respect to the probabil-
ity of not forming a cosponsorship tie if Congress members are linked
by a strong tie (either asymmetric or mutual). In particular, this effect
is stronger for mutual strong ties: a mutual strong tie leads to an in-
creasing of 0.13164 in the probability of establishing a cosponsorship tie,
with respect to an absent strong tie relationship. Instead, an asymmet-
ric strong tie increases the probability of establishing a cosponsorship tie
by 0.04063, with respect to an absent strong tie. Finally, a mutual strong
tie raises the probability of collaborations by 0.09101, compared with an
asymmetric strong tie. Details can be found in Table 8.
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Table 8: Effect of the type of the strong tie on the presence of a cosponsor-
ship tie (M1). Total Number of Dyads: D = 276422; Number of dyads per
treatment status: Dt = 0 (222330), 1 (46378), 2 (7714)

τ̂M1
(z,z′) ATE Y(1)-Y(0) Y(2)-Y(0) Y(2)-Y(1)

M1 Estimate 0.04063 *** 0.13164 *** 0.09101***

Std.Er (0.00293) (0.00671) (0.00713)

We now examine the heterogeneity of this effect. We perform a strati-
fied analysis building up sub-populations of dyads that are characterized
by given dydadic features. Results show that the effect is stronger on
those pairs of politicians where the two legislator have not been elected
in the same US State (different origin), compared with those where the two
legislators refer to the same state (common origin). Being both majoritar-
ian legislators (majoritarian dyad) leads to a decreasing in the effect, with
respect to the overall population. Party membership plays a relevant
role: specifically, the impact of the presence of strong ties of common
lobbies is particularly stronger on those dyads composed by republicans
only (republicans), especially if the two legislators are characterized by
a radical ideology (extreme-republicans). Democrats’ legislative behavior
is less affected by the presence of strong ties, and the effect is relevant
only on those pairs, whose ideological collocation is moderate (moderate-
democrats). Detailed results are shown in Table 9
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Table 9: Effect of the type of the strong tie on the presence of a cosponsor-
ship tie: Heterogeneity of the effect (M1)

τ̂M1
(z,z′) ATE Y(1)-Y(0) Y(2)-Y(0) Y(2)-Y(1)

State of Election Common origin (US state) 0.02832 *** 0.06384 *** 0.03553 ***
(0.00952) (0.01732) (0.01873)

Different origin (US state) 0.05417 *** 0.14750 *** 0.09333 ***
(0.00305) (0.00852) (0.00892)

Majority Majoritarian dyad 0.03248 *** 0.09847 *** 0.06599 ***
(0.00310) (0.00618) (0.00655)

Non-Majoritarian dyad 0.07673 *** 0.19022 *** 0.11349 ***
(0.00510) (0.01566) (0.01635)

Party and ideology Democrats 0.02473*** 0.07222*** 0.04749***
(0.00422) (0.00894) (0.00937)

Moderate - democrats 0.03610*** 0.09683*** 0.06073***
(0.00491) (0.00919) (0.00972)

Extreme - democrats 0.00928 -0.03944 -0.04872
(0.01947) (0.08512) (0.08624)

Mixed ideology - democrats -0.00431 0.04718*** 0.05149***
(0.00874) (0.02291) (0.02374)

Republicans 0.04144*** 0.12398*** 0.08253***
(0.00464) (0.01076) (0.01126)

Moderate - republicans 0.02816 -0.06285 -0.09102
(0.02523) (0.06002) (0.06351)

Extreme - republicans 0.03507*** 0.12922*** 0.09415***
(0.00574) (0.01058) (0.01133)

Mixed ideology - republicans 0.03459 *** 0.14172*** 0.10713***
(0.00842) (0.01620) (0.01740)

The second empirical examination we have implemented in this work
regards the effect of the type of the strong tie on mutual cosponsorships.
By means of the previous analysis, we have proved that having a strong
tie relationship (either asymmetric or multual) motivates politicians to
work together, establishing a cosponsorship tie. What we are testing now
is whether a strong tie mainly encourages pairs of officials to form a mu-
tual cosponsorship link (Y symmij = 1), rather than of an asymmetric one
(Y symmij = 0). A mutual cosponsorship tie is present in all those dyads
who have reciprocally cosponsored at least one bill in the legislative cy-
cle. Instead, this relationship is only asymmetric if only one of the two
politicians involved in the dyad has cosponsored a bill which was ini-
tially promoted by the other, but not vice versa. Note that the treatment
variable we employ in this analysis exactly coincides with the one we
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have defined for the previous examination, but this specific evaluation is
enacted only on those pairs of units who are characterized by the pres-
ence of at least a one-sided cosponsorship tie.

Our findings suggest that the probability of forming a mutual cospon-
sorship tie is higher with respect to the probability of forming an asym-
metric cosponsorship tie if Congress members are linked by an asym-
metric strong tie or a mutual strong tie. Specifically, the magnitude of
the estimated effect is higher for mutual strong ties: a mutual strong tie
leads to an increasing of 0.08725 in the probability of establishing a mu-
tual cosponsorship tie (instead of an asymmetric strong tie), with respect
to an absent strong tie. Similarly, an asymmetric strong tie increases the
probability of establishing a mutual cosponsorship tie by 0.01346, com-
pared with an absent strong tie. Finally, a mutual strong tie raises the
probability of collaborations by 0.07379, in comparison with an asym-
metric strong tie. Complete results are collected in Table 10.

Table 10: Effect of the type of the strong common supporters tie on the pres-
ence of mutual cosponsorhips (M2): Total number of Dyads :D = 144006;
Dyads per treatment status Dt = 0(108464), 1(29732), 2(5810)

τ̂M2
(z,z′) ATE EY(1)-EY(0) EY(2)-EY(0) EY(2)-EY(1)

MF2 Estimate 0.01346 *** 0.08725 *** 0.07379***

Std.Er (0.00341) ( 0.00726) (0.00768)

We now examine heterogeneity of this effect. The effect is stronger
on those pairs where the two politicians have been elected in different
US states (different origin) than on those where the two legislators share
a common political origin. The impact of strong ties is particularly rel-
evant on non-majoritarian dyads (non-majoritarian dyads). As in the pre-
vious examination, the effect is particularly stronger for dyads whose
members are republicans (republicans): however, in this examination, the
ideological collocation plays a less relevant role, conditioning on party
membership. Detailed results can be found in Table 11.
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Table 11: Effect of the type of the strong tie on the presence of a mutual
cosponsorship tie: Heterogeneity of the effect (M2)

τ̂M2
(z,z′) ATE Y(1)-Y(0) Y(2)-Y(0) Y(2)-Y(1)

State of Election Common origin (US State) 0.03722 *** 0.05675 *** 0.01953
(0.01269) (0.01872) (0.02026)

Different origin (US State) 6 0.01517 *** 0.08261 *** 0.06744 ***
(0.00343) (0.00829) (0.00871)

Majority Majoritarian dyad 0.00585 0.10178 *** 0.09593 ***
(0.00396) (0.00824) (0.00869)

Non-Majoritarian dyad 0.03261 *** 0.03250 *** -0.00011
(0.00640) (0.01622) (0.01723)

Party and ideology Democrats -0.00432 0.06203*** 0.06635***
(0.00549) (0.01177) (0.01233)

Moderate - democrats 0.01091 0.07686 *** 0.06595 ***
(0.00634) (0.01272) (0.01339)

Extreme - democrats 0.00748 0.04485 0.03738
(0.03722) (0.08397) (0.08902)

Mixed ideology - democrats -0.01501 0.11471 *** 0.12972 ***
(0.01175) (0.03283) (0.03390)

Republicans 0.01693 *** 0.13715 *** 0.12021 ***
(0.00579) (0.01237) (0.01305)

Moderate - republicans -0.02959 0.11928 0.14887*
(0.02730) (0.07823) (0.08069)

Extreme - republicans 0.01618 *** 0.12932*** 0.11314***
(0.00732) (0.01655) (0.01735)

Mixed ideology - republicans 0.02457 *** 0.16661*** 0.14204***
(0.01080) (0.02652) (0.02780)

The last two examinations intends to focus on the direction of links,
by assessing whether the direction of the strong ties follows the direc-
tion of the cosponsorship tie. The analysis is performed over under two
different perspectives. Specifically, the third causal evaluation (MOD3)
focuses on those dyads who exhibit asymmetric relationships both with
respect to the strong tie of common supporters and with respect to the
cosponsorship activity and tests whether the cosponsoring tie follows the
direction of the strong tie in terms of probabilities. Both the tretament
and the outcome variable are dummy variables signaling the direction of
the examined tie. The fourth causal examination (MOD4) intends to as-
sess whether the direction of the strong tie of shared lobbies determines
the most productive cosponsorship direction. The treatment of interest
still represents the direction of the strong tie relationship: the treatment
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variable equals 0 if i has a strong tie with j but not vice versa (Zij = 0),
and equals 1 if j has a relevant relationship with i, but not vice versa
(Zij = 1). We consider as outcome variable the difference in the number
of cosponsored bills between i and j: this difference results to be greater
than zero if j has cosponsored a larger number of bills promoted by i

than vice versa.

Our findings suggest that the cosponsorship tie reflects the direction
of the strong tie relationship, both in terms of probabilities and in terms
of the number of bills. This means that legislators are encouraged to sup-
port those politicians who they regard as particularly relevant in terms
of shared financiers. Formally, according to MOD3, the probability of
observing j cosponsoring i (Y dirij = 1) is 20% higher when j has a strong
tie with i (Zdirij = 1), with respect to the situation where i has a strong
tie with j (Zdirij = 0).. Results of MOD4 confirm the finding: the state-
ment that ”the direction of the cosponsorship tie follows the direction of
the strong tie relationship” holds even if we look at the difference in the
number of cosponsored bills between i and j, rather than using probabil-
ities. This means that j cosponsors a larger number of bills to i than vice
versa, if j has a strong tie with i, and i has not a strong tie to j. Specifi-
cally, dyads where j has a strong tie with i and not vice versa, experiment
an average increasing by 0.83250 in the difference between the number
of bills cosponsored by j to i and the number of proposals cosponsored
by i to j. Results are shown in Table 12.

Table 12: Effect of the direction of the strong common supporters tie on
the direction of cosponsorhip activity: i) (M3); Total number of dyads:
D = 18518; Dyads per treatment status Nt = 0(7681), 1(10837), ii) (MF4);
Total number of dyads: N = 46378; Dyads per treatment status: Nt =
0(18897), 1(27481);

τ̂M3
(z,z′) τ̂M4

(z,z′) ATE Y(1)-Y(0)

MF3 Estimate 0.195728 ***

Std.Er (0.01603)

MF4 Estimate 0.83250 ***

Std.Er ( 0.03268 )
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Estimated effects in the heterogeneous sub-populations confirm the
general finding, that is, the direction of cosponsorships goes after the
direction of the strong tie. According to both definitions of direction,
the effect is higher in sub-populations of dyads whose elements are both
referred to the parliamentary majority (majoritarian dyads) and republi-
cans (republicans) (especially if they both have a radical ideological opin-
ion). As in all the previous examinations, the legislative behavior of pairs
whose elements do not have a common political origin is particularly
affected by the presence of strong ties (different state origin) . Detailed
results can be observed in Table 13. These findings are statistically sig-
nificant.

Table 13: Effect of the type of the strong tie on the presence of a mutual
cosponsorship tie: Heterogeneity of the effect (M3) and (M4)

τ̂M3
(z,z′) τ̂M4

(z,z′) ATE Y(1)-Y(0) Y(1)-Y(0)
MOD 3 MOD 4

State of election Common origin (US state) 0.07948*** 0.73941
(0.03511) (0.19003)

Different origin (UD state) 0.19612*** 0.85996***
(0.00822) (0.03265)

Majority Majoritarian Dyad 0.22653*** 0.95490***
(0.00893) (0.03758)

Non-Majoritarian Dyad 0.11233*** 0.45490***
(0.01765) (0.06319)

Party and ideology Democrats 0.16760 *** 0.37488 ***
(0.01301) (0.03334)

Moderate - democrats 0.16491 *** 0.39943 ***
(0.01462) (0.03321)

Extreme - democrats -0.06275 0.62572
(0.14439) (0.60898)

Mixed - ideology 0.16070 *** 0.40789 ***
(0.03090) 0.09134

Republicans 0.28427 *** 0.69919 ***
(0.01283) (0.03100)

Moderate - republicans 0.02070 0.27951 *
(0.06755) (0.16867)

Extreme - republicans 0.29973 *** 0.78091 ***
(0.01662) (0.04076)

Mixed ideology - republicans 0.29320 *** 0.52139 ***
(0.02271) (0.05124)

Summing up, we can state that the presence of strong ties of common
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supporting companies motivate legislators to collaborate and, in particu-
lar, it encourages mutual cosponsorship ties, rather than asymmetric ties.
Moreover, the direction of the cosponsorship tie follows the direction of
the strong tie, both in terms of probabilities and in terms of cosponsored
bills. Dyads whose legislative behavior is particularly influenced by the
presence of strong ties are those where the two legislators have not been
elected in the same US state and are both republicans.

5.6 Concluding Remarks and Discussion

In this paper, we have explored the causal relationship between the lob-
bying pressure exerted by companies over politicians and their legisla-
tive behavior. In particular, we have investigated whether the presence
of a strong tie in terms of common supporting firms encourages legisla-
tive collaborations between two politicians. The political connections
of firms have been detected by observing the committee data, which
report the campaign contributions in favor of politicians. Instead, the
legislative collaborations among two politicians have been measured in
terms of the number of reciprocally cosponsored bills. The methodolog-
ical framework reworks the standard potential outcomes framework by
Rubin, 1974 so to model the dyanmics of network formation. In par-
ticular, the methodological contribution is the development of an esti-
mator for causal effects of the formation of links on a ’treatment’ net-
work on the formation of links on an ’outcome network’. Note that the
methodological approach that we propose here is suitable for scenarios
where treatments are intrinsically dyadic as well as for empirical stud-
ies, where the dyadic treatment variable results from joint observation of
interventions that are originally defined at individual level. We have esti-
mated the effects of interest by implementing a propensity score match-
ing algorithm for network data: in particular, in the specific empirical
evaluations, which have required a multi-valued characterization of the
treatment variable, we have implemented the innovative algorithm for
propensity score matching under multi-valued treatments (recently pro-
posed by S. Yang et al., 2016) on network data. Results point out that the
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presence of a strong tie relationship, either asymmetric or symmetric, en-
courages both asymmetric and mutual cosponsorships between the two
politicians. Moreover, we observe that the direction of the cosponsorship
tie reflects the direction of the strong tie, expressed in terms both of prob-
abilities and of the number of cosponsored bills.
This work adopts an innovative approach, which refers to the potential
outcome framework, for evaluating how the pressure exerted by lobbies
modifies the officials’ legislative behavior, by encouraging cosponsor-
ships among two politicians who are pushed by similar interests. From
the empirical point of view, our project contributes to the growing lit-
erature about the effects of lobbies interests on politicians (Battaglini &
Patacchini, 2018). However, the methodological approach that it pro-
poses partially deviates from the standard econometric techniques that
are usually implemented in previous studies. It is important to highlight
that this study is the first work which effectively detects the presence of
almost 1000 lobbying firms in the US electoral campaign. Moreover, it
points out that firms allocate money over various political candidates.
We have not identified which economic mechanisms drive the money
allocation of firms over candidates. Moreover, we have not proven the
existence of any type of coordination among firms, which are pushed by
similar business interests. Finally, we could expect that the findings that
we have obtained in this work would be even stronger, if we took into
account the matter of cosponsored bills. We leave this for future research.
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Chapter 6

Conclusions
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In this concluding Chapter I summarize the main objectives of this
dissertation alongside its main findings. In addition, I illustrate potential
directions for future research.

6.1 Discussion

The present dissertation proposes novel statistical methodologies and
tools for performing causal inference on network data. This work is
motivated by two major issues that arise while dealing with units that
are interconnected in a network: (i) social or economic connections in-
duce mechanisms of interference, meaning that the outcome of a unit is
affected by the treatment status of its interfering units; (ii) interactions
themselves are of intrinsic interest for researchers, who are often keen
on investigating the causal mechanisms driving the formation of links;
yet there is scant availability of methodologies suited for this purpose.
The first three chapters of this dissertation address the first of such is-
sues, thus contributing to expand the extant statistical literature about
causal inference under interference. In particular, they propose innova-
tive strategies to: (i) estimate the effect of an observational multi-valued
intervention in a sample of units connected through a weighted network;
(ii) detect and estimate heterogeneous treatment and spillover effects in
the presence of clustered-network interference; (iii) account for an hid-
den treatment diffusion process, where the intervention may spill over
according to partially unobserved links. The fourth chapter instead ad-
dresses the second aforementioned issue, and it employs the potential
outcomes framework to assess the causal effect that the presence links in
a “treatment network” has on the formation of links on an “outcome net-
work,” with both networks being directed. In what follows I summarize
the main purposes and findings of each chapter at once.

The first Chapter proposes a strategy to assess the direct effect of an
observational multi-valued intervention in a sample of units connected
through a weighted network. The proposed methodology, which is based
on a joint multiple generalized propensity score, allows the researcher
to estimate direct effects following a parametric approach, while con-
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ditioning on both individual and network features. This method is em-
ployed to investigate the causal effect of national immigration policies on
crime rates. In this framework, national political attitudes towards mi-
grants are expressed with a multi-valued characterization. The interfer-
ence structure is designed under the assumption that countries influence
one another as a function of their cultural and geographical proximity,
which is summarized through a composite indicator. The empirical find-
ings suggest that implementing highly restrictive immigration policies
leads to an increase in the national crime rate, and that ignoring multi-
valued interference leads to the estimation of an effect which, while still
positive, is weaker, thereby not allowing to appreciate the magnitude of
the effect in its full extent.

The second Chapter develops a novel framework to discover and es-
timate heterogeneous treatment and spillover effects under a particular
type of interference, known as “clustered network interference,” which
features units belonging to exogenously given clusters and interacting
in networks that are cluster-specific. The proposed algorithm, named
Network Causal Tree (NCT), allows to estimate treatment and spillover
effects that are both heterogeneous, as well as to identify the most hetero-
geneous sub-populations while considering multiple effects at the same
time. The NCT displays excellent performance in several simulated sce-
narios. Furthermore, the Chapter showcases the potential of the NCT
algorithm in a real-world application: the analysis of intensive training
sessions for Chinese rural households, where interest falls on the effect
of the training on the uptake of a weather insurance policy.

The third Chapter proposes a novel strategy to account for a hid-
den treatment diffusion process, where the intervention may spill over
in the population according to linkages that are partially unknown. I
address the issue of missing links by performing a machine learning al-
gorithm that multiply imputes the presence of links starting from ob-
served dyadic and individual characteristics. The characterization of the
treatment spreading process is based on a set of simplifying assumptions
which restrain the temporal dimension of the process to a three time step
process, while limiting the treatment spreading to immediate neighbors
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and assuming a fixed contagion probability among dyads. I formalize
the bias that can occur while neglecting the treatment diffusion process
and discuss the causal mechanisms that drive the bias to either direction.
Finally, I perform a sensitivity analysis to assess whether the conclusions
about the effect of an intervention are robust with respect to the (un-
known) treatment diffusion process.

All three chapters show that ignoring the mechanism of interference
in those scenarios when it can plausibly arise introduces a significant
bias in the estimates, thus leading to inaccurate conclusions about the
effect of an intervention. For instance, the first Chapter illustrates that
allowing for multi-valued interference leads to weaker estimates about
the effect of national immigration policies on crime rates. The second
Chapter highlights the importance of assessing heterogeneity in the treat-
ment and the spillover effects, so as to obtain powerful insights about
the total effect of an intervention and to identify those sub-populations
of units that are particularly responsive to the intervention as well as
those that are able to spark a positive spillover mechanism. The third
Chapter points out that the bias caused by neglecting a hidden treatment
diffusion process can pave the way to either overestimation or underesti-
mation of an intervention’s effect, depending on the causal mechanisms
that drive the spreading process and on the characteristics of the units
that experienced it. Taken together, all these contributions underline the
importance of taking into account spillover mechanisms in policy eval-
uation settings, for the sake of avoiding possible miss-interpretations
about the real effect of an intervention and of exploring the role of in-
teractions among agents in multiplying the consequences of a policy.
When interference is likely to arise, the policy maker should make an
effort into precisely characterizing interactions between units and con-
jecturing the possible mechanisms that may drive spillovers. Indeed, the
methodologies that are proposed in this dissertation (and all the other
existing strategies for estimating causal effects in presence of intercon-
nected units), can be applied to a huge variety of empirical scenarios and
can be exploited to further confirm (or to review) the validity of relevant
causal statements put forward by prior research that ignored issues of in-
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teraction. In addition, these methods allow to assess other causal effects
that have never been studied yet.

The fourth Chapter stands out, as it addresses instead the issue of
network formation. In so doing, it explores causal mechanisms in a set-
ting where the structure of interactions among units in a population can
be represented as a multiplex, where agents are connected by both a
treatment network and an outcome network. This contribution is cen-
tered on an estimator for the causal effects that the existence of links in
a treatment network has on the formation of links in an outcome net-
work. I define conditional effects to investigate the symmetry and the
direction of ties; the proposed estimator extends the established propen-
sity score matching approach so as to handle multi-valued treatments,
network data and conditional effects. I apply this framework to evaluate
the causal effect of firms’ lobbying activities on legislative collaborations
among politicians: in this setting, the treatment network is defined by
the existence of strong ties between legislators that are due to presence
of shared supporting companies, while the outcome network consists in
their co-sponsorship ties. The results show that the “treatment” strong
ties of common pushing encourage politicians to collaborate and that co-
sponsorship ties follow the direction of the strong ties. In this setting,
and unlike those about interference, the network is the main object of in-
terest, and interactions are more merely features to control for or to take
into account while explaining the overall effect of an intervention. The
contribution highlights the importance of drawing causal conclusions on
network formation processes and showcases the empirical potential of
the proposed methodology through a relevant application to the fields
of economics and political science.

To conclude, the four contributions all underline the importance of
dealing with interactions among units in policy evaluation settings. Even
if they approach issues about units connected in a network from different
perspectives, with distinct statistical objectives and by adopting different
methodologies, they all show how policy evaluation can gain meaning-
ful insights from handling issues of complexity in networked interac-
tions, whether these are (i) something to account for while assessing the
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effect of an intervention or (ii) the actual objective of the analysis.

6.2 Future Research

The interplay of causal inference and complex networks is a frontier topic
in the statistical literature. Thus, there is plenty of related outstanding
issues, both methodological and empirical, that are ripe for exploration
by the scientific community in the next future.

There is ample space for mode methodological contributions, with
respect to both the directions explored in this dissertation: the estima-
tion of treatment and spillover effects in the presence of connected units
and that of the causal effects on network formation. The extant statistical
literature about spillovers has focused primarily on randomized settings
(Aronow, 2012; Aronow & Samii, 2017; Athey et al., 2018b; Bowers et
al., 2013; Forastiere et al., 2019a; Hudgens & Halloran, 2008; Imai et al.,
2020; Kang & Imbens, 2016; Liu & Hudgens, 2014; Rosenbaum, 2007;
VanderWeele et al., 2014), while there are way less contributions explor-
ing spillover mechanisms in observational studies (Forastiere et al., 2020;
Forastiere et al., 2018; Sofrygin & van der Laan, 2017; Tchetgen & Van-
derWeele, 2012; van der Laan, 2014). In both cases, the literature has
largely focused on the analysis of first order spillover effects in clustered
dependencies: only few recent contributions have exploited networks to
represent the interference structure, and for the most part they only allow
for first-order interactions in binary network settings. The investigation
may be expanded to admit higher order spillover effects and to model in-
teractions in more complex network structures, such as hierarchical net-
works or multi-layer networks. In particular, analyzing interference in
multi-layer networks would contribute to expand the very recent stream
of literature that models interference in a bipartite network (Zigler & Pa-
padogeorgou, 2018), where units belong to two different sets: one con-
taining units to which the treatment is assigned and one featuring those
units displaying the outcome variable of interest.

Likewise, there is a similarly ample room for additional work about
heterogeneity under interference. The second Chapter of this thesis rep-
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resents the very first attempt to estimate heterogeneous treatment and
spillover effects in presence of interference and to simultaneously deal
with multiple effects for detecting the most heterogeneous sub-populations.
This is the first step towards addressing a methodological issue which,
in the upcoming years, is likely to raise an increasing interest in the
statistical community. As it is common when taking the initial steps
along a dark alley, the contribution featured in this dissertation lever-
ages much upon simplifying assumptions that,in future research need
to be overcome, so as to expand the ensemble of applications to which
this methodology is applicable. I believe that issues to be taken into
account, expanded and elaborated in future research are the following.
First, the present work focuses on a particular type of interference, clus-
tered network interference, which is aimed here at preserving the hon-
esty of the framework (Athey & Imbens, 2016; Athey & Imbens, 2015); in
future research however, one may want to extend the concept of inter-
ference to more general scenarios. Second, these contributions are based
upon a binary categorization of both the individual treatment and the
neighborhood treatment: in future work one could expand the feasible
characterizations of the joint intervention that can be exploited by the
algorithm. Third, this work models a randomized setting, while numer-
ous applied contributions may be interested into exploring heterogene-
ity under spillovers in an observational setting. Fourth, the presented
contributions assume perfect knowledge about clusters, which is unre-
alistic for many real-world applications; this framework can be mean-
ingfully expanded by allowing for individual group memberships to be
predicted via a data-driven approach (say, a community detection al-
gorithm), while also accounting for the uncertainty in the prediction of
groups. Fifth, and last, one contribution builds upon the causal tree and
is based on the construction of a single tree: addressing heterogeneity
and spillovers with more complex machine learning tools (such as ran-
dom forests (Wager & Athey, 2018), Bayesian random forests (Hill, 2011)
or Super Learner (Kreif & DiazOrdaz, 2019)) can be a worthwhile under-
taking of future work. Finally, another methodological issue that is worth
of future elaboration concerns imperfect compliance in randomized tri-
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als: in presence of interactions between units, the imperfect compliance
of agents might also be caused by the behavior and influence of those
other units that interact with them.

With regard to the network formation framework, future research
may expand upon the fourth Chapter of this dissertation by also exam-
ining (i) longitudinal, (ii) bipartite and (iii) multi-layer networks. The
first case concerns networks observed at different points in time, such
that, in each time interval, not only one can witness the establishment,
persistence or breakup of ties between agents, but nodes themselves can
also appear, disappear or reappear into and from the analysis. The sec-
ond case is about two distinct set of nodes, which are mutually connected
through inter-layers links, and that are also characterized by within-layer
interactions; one can envision modeling the formation of within-set ties
that are observed in the second set of nodes as a function of the inter-
layers links and of the within-layer ties that are observed in the first set
of nodes. The third case is one where agents are connected according
to multiple networks (note that in the contribution from this dissertation
there are just two such networks) and researchers aim to evaluate the
causal effect of links in one layer on the formation of links in all the other
layers..

On the empirical side, it is clear that the presented methodologies (re-
garding both the interference setting and the network formation setting)
may be applied to a wide variety of empirical scenarios. As it is discussed
at length in the introduction of the present dissertation, many real-world
phenomena can be described in terms of interactions among different
agents or objects. Consequently, applied researchers can utilize each of
the methodologies that are exposed throughout this dissertation in order
to address relevant research questions in various empirical fields, chiefly
among them epidemiology, economics and political science.
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Appendix A

Appendix

A.1 Proofs

A.1.1 Balancing property of JMGPS

We have to prove that

P (Zi = z,Gi = g|Xi) = P (Zi = z,Gi = g|ψ(z, g;Xi)).

The expression on the leften side exactly equals JMGPS, by definition,
that is

P (Zi = z,Gi = g|Xi) = ψ(z, g;Xi).

We focus now on the righten side. By iterated equation we have that

P (Zi = z,Gi = g|ψ(z, g;Xi)) = EX
[
P (Zi = z,Gi = g|Xi, ψ(z, g;Xi))|ψ(z, g;Xi)

]
= EX

[
P (Zi = z,Gi = g|Xi)|ψ(z, g;Xi)

]
= EX

[
ψ(z, g;Xi)|ψ(z, g;Xi)

]
= ψ(z, g;Xi)

The second equality holds as the joint multiple generalized propensity
score, by definition, is functionally related to the characteristics Xi. The
third equality follows from the definition of JMGPS.

Both above expressions are equal to the joint multiple propensity
score itself and, hence, they are also equal to each other.
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A.1.2 Conditional unconfoundedness ofDi(z) andGi given
JMGPS

We have to show that

P (Di(z) = 1,Gi = g|Yi(z, g), ψ(z, g;Xi)) = P (Di(z) = 1,Gi = g|ψ(z, g;Xi)).

Righten side. We first focus on the expression that lies at the righten
side. By the fact that (Di(z) = 1) = (Zi = z) and Proposition 1, we have

P (Di(z) = 1,Gi = g|ψ(z, g;Xi)) = P (Zi = z,Gi = g|ψ(z, g;Xi)) = ψ(z, g;Xi).

Leften side. By iterated equations, we have

P (Di(z) = 1,Gi = g|Yi(z, g), ψ(z, g;Xi))

= EX
[
P
(
Di(z) = 1,Gi = g|Xi, ψ(z, g;Xi), Yi(z, g)

)
|Yi(z, g), ψ(z, g;Xi)

]
= EX

[
P
(
Di(z) = 1,Gi = g|Yi(z, g),Xi

)
|Yi(z, g), ψ(z, g;Xi)

]
= EX

[
P
(
Di(z) = 1,Gi = g|Xi

)
|Yi(z, g), ψ(z, g;Xi)]

= EX
[
ψ(z, g;Xi)|Yi(z, g), ψ(z, g;Xi)] = ψ(z, g;Xi),

where the second equality is obtained taking into account that the joint
multiple generalized propensity score is a function of covariates, the
third equality results from applying the Assumption 7, while the forth
equality holds recalling that (Di(z) = 1) = (Zi = z) and Definition 3.

A.1.3 Conditional unconfoundedness ofDi(z) andGi given
individual and neighborhood propensity scores

We have to show that

P (Di(z) = 1,Gi = g|Yi(z, g), φ(z;Xz
i ), λ(g; z,Xg

i )) = P (Di(z) = 1,Gi = g|φ(z;Xz
i ), λ(g; z,Xg

i )),

where φ(z;Xz
i ) = P (Di(z) = 1|Xz

i ) and λ(g; z,Xg
i ) = P (Gi = g|Zi =

z,Xg
i ). We proceed showing that both sides of the equation are equal to

the joint multiple generalized propensity score.
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Righten side. By iterated equations, we have

P (Di(z) = 1,Gi = g|φ(z;Xz
i ), λ(g; z,Xg

i ))

= EX
[
P (Di(z) = 1,Gi = g|Xi, φ(z;Xz

i ), λ(g; z,Xg
i ))|φ(z;Xz

i ), λ(g; z,Xg
i )
]

= EX
[
P (Di(z) = 1,Gi = g|Xi)|φ(z;Xz

i ), λ(g; z,Xg
i )
]

= EX
[
ψ(z, g;Xi)|φ(z;Xz

i ), λ(g; z,Xg
i )
]

= ψ(z, g;Xi).

The above equalities result from the fact that both φ(z;Xz
i ) and λ(g; z,Xg

i )

are function ofXi (second equality) and from the factorizationψ(z, g;Xi) =

φ(z;Xz
i )λ(g; z,Xg

i ) (third equality).

Leften side. By iterated equations, we have

P (Di(z) = 1,Gi = g|Yi(z, g), φ(z;Xz
i ), λ(g; z,Xg

i ))

= EX
[
P (Di(z) = 1,Gi = g|Xi, Yi(z, g), φ(z;Xz

i ), λ(g; z,Xg
i ))|Yi(z, g), φ(z;Xz

i ), λ(g; z,Xg
i )
]

= EX
[
P (Di(z) = 1,Gi = g|Xi, Yi(z, g)|Yi(z, g), φ(z;Xz

i ), λ(g; z,Xg
i )
]

= EX
[
P (Di(z) = 1,Gi = g|Xi)|Yi(z, g), φ(z;Xz

i ), λ(g; z,Xg
i )
]

= EX
[
ψ(z, g;Xi)|Yi(z, g), φ(z;Xz

i ), λ(g; z,Xg
i )
]

= ψ(z, g;Xi),

where the second equality results from the fact that the two propensity
scores are function of the covariates, the third equality comes from As-
sumption 7, the fourth equality is obtained recalling Definition 3 and that
(Di(z) = 1) = (Zi = z) and, finally, the last equality follows from the fac-
torization of the JMGPS.

A.2 Influence Index detailed construction

The Influence index (I) is formally defined as

Icc′,t = α× IGcc′ + β × ICcc′,t

where IG denotes the geographical proximity indicator while IC states
for the cultural similarity indicator. The former is time invariant, while

239



the latter provides a temporal variation. Here, we discuss the detailed
construction of these two indexes, which determine the interference struc-
ture.

We build up the geographical proximity index taking into account of
two variables: a boundaries-related variable and a geographical distance-
related variable. The former, that we denote by Sp counts the minimum
number of states one needs to cross by, at the aim of reaching country c′

starting from country c. Thus, if we consider a graph collecting all the
national states, this variable represents the length of the shortest path
between c and c′ 1. The latter, that we denote as Diststd is a standard-
ized measure of geographic distance between the most populated cities
belonging to the two countries. Formally, the geographical proximity
indicator is computed as follows

IGcc′ = 0.5× 1

Spcc′
+ 0.5× (1−Diststdcc′ ) = 0.5× 1

Spcc′
+ 0.5× Proxstdcc′

On the other side, the cultural similarity indicator measures the level of
cultural similarity between two countries c and c′ at a given time t. We
summarize this aspect evaluating the linguistic similarity and the reli-
gious similarity, through the variables Ling and Relig. These measures
have been defined by the CEPII Linguistic Dataset Melitz and Toubal,
2014 and CEPII Gravidata Dataset (Fouquin, Hugot, et al., 2016), respec-
tively. The linguistic proximity indicator gives a unique measure of how
much the whole linguistic systems differ in the two countries, both in
terms of the distribution of spoken languages over the population and
in terms of the linguistic roots. The religious similarity indicator takes into
account of the distribution of practised religions: an high value of this
variable signals an high similarity in terms of prevalence of the various
religious communities at time t.

ICcc′,t = 0.5× Lingcc′,t + 0.5× Religcc′,t

1We assume that the pairs of countries France and Great Britain, Ireland and Great
Britain share a common boundary, as, even if they’re formally separated by the English
Channel and the Irish Sea, respectively, they are very near and connections are extremely
simple
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Figure 55 shows the density distributions of the two indicators that con-
tribute in determining the Influence Index, as well as of their respective
sub-components.

(a) Geographical proximity Indicator (b) Cultural similarity Indicator

Figure 55: Influence index components density distributions

A.3 Transformation of the NTEM components

We run some checks about the normality of the components Gi,z . The
Shapiro Tests for Normality (Shapiro and Wilk, 1965), separately con-
ducted on the four components, Gi,LL, Gi,HL, Gi,LH , Gi,HH , rejects the
Normality null-Hypothesis.
Hence, we decide to apply a transformation to each of the Gi,z . We con-
duct some tests experimenting various transformation methods and we
compare them selecting the best approach according to the Pearson P
statistic for Normality (divided by its degrees of freedom). We use re-
peated cross validation to estimate the out-of-sample performance of all
these methods. Figure A.56(a) shows the box plots of the out of sample
estimated normality statistics for all the techniques that we experiment,
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over the four variables of interest (under α = 1
2 and β = 1

2 ). We find out
that the method that performed better in handling the Gi,z variables is
the Ordered Quantile (ORQ) transformation, for all the various configura-
tions of the II input weights. Figure A.56(b) represents the tridimensional
scatterplot of transformed variables.

(a) Best Normalizing methods: compari-
son among different methods, through box
plots

(b) Tridimensional plot of transformed
variables

Figure 56: Best Normalizing method

Ordered Quantile trasformation (Bartlett, 1947,Van der Waerden, 1952)is
based on ranks. Essentially, the values of a variable, judged as a vector,
are mapped to their percentile, and then to the same percentile of the
Standard Normal Distribution. As long as the number of ties is negligi-
ble, this method guarantees that the transformed variable follows a Nor-
mal Distribution. Formally, each variable Gi,z is transformed according
to the following formula:

G∗i,z = Φ−1

(
rank(Giz)

N + 1

)
,

where Φ is the cumulative density function of a Standard Normal distri-
bution, N is the number of observations. We denote as G∗i,z the variable
resulting from the Ordered Quantile transformation.
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A.4 Descriptives

This paragraph provides some descriptives. Figure 57 shows the density
distributions of the indicators measuring the restrictiveness of regulations
(Reg) and control strategies (Cont), over years. Regulations have become
more welcoming over time while control strategies have turned to a more
severe attitude.

(a) Regulations (b) Control

Figure 57: Indicators measuring the restrictiveness of immigration policies
over years: the countries’ attitude towards migrants with respect to regula-
tions and control mechanisms observed at four points in time (over the 30
years time frame covered by data - 1980-2010 -)

Figure 58 consents to inspect the strictness of regulations and control
implemented policies in each country-year profile.
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(a) Regulations (b) Control

Figure 58: Indicators measuring the restrictiveness of immigration policies
over country year proriles: regulations and control protocols

Figure 59 represents the variation of the distributions of the Reg (vio-
let), Control (blue) and ImPol (yellow) indicators in the 22 countries that
we have included in the analysis.

Figure 59: Countries’ attitude towards migrants in terms of i) regulations
(violet), ii) control(blue) protocols and iii) both components (yellow).

Figure 60 shows the tridimensional plot of the two indicators measur-
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ing the restrictiveness towards migrants, and the corresponding crime
rate.

Figure 60: Tridimensional plot of the two indicators Reg and Cont, with
respect to the crime rate.

Table 14 shows the basic descriptives of all the variables we have in-
cluded in the analysis.

Table 14: Descriptive statistics

Variable Mean St. dev Min Pctl(25) Pctl(75) Max

Crime rate (every 10.000 inhab.) 1.326 0.636 0.000 0.910 1.560 3.430
Fertility rate 1.675 0.498 0.000 1.440 1.840 4.360
Power distributed to gender Index 1.876 0.973 −0.854 1.408 2.394 3.714
Health equality Index 2.418 0.588 0.612 1.972 2.775 3.792
Educational inequality Gini index (/60) 0.269 0.163 0.000 0.149 0.361 0.893
Income inequality Gini index (/60) 0.485 0.139 0.000 0.432 0.564 0.867
Equal access index 0.871 0.137 0.290 0.856 0.945 0.986
Equal distribution of resources index 0.924 0.070 0.588 0.908 0.964 0.986
Civil partecipation index 0.641 0.111 0.161 0.616 0.690 0.885
Access to justice index 0.940 0.121 0.165 0.944 0.989 0.995
State ownership of economy index 1.219 0.616 −0.536 0.890 1.636 2.731
Freedom of expression index 0.934 0.128 0.128 0.955 0.979 0.991
Freedom of religion index 1.958 0.751 −1.003 1.749 2.519 2.766
Life expectancy (/ 100) 0.746 0.126 0.000 0.749 0.785 0.824
GDP per capita (/ 10.000) 2.666 1.154 0.610 1.954 3.373 8.192
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A.5 Results under different configurations of the
treatment

This section shows results under alternative specifications of the treat-
ment variable of interest. In particular, as Definition 7 clarifies, we test
two secondary ways of detecting the treatment categories.

Definition 7. Alternative specifications of the treatment variable Let us indi-
cate ZKi a generic treatment variable defined overK categories. We consider the
following treatment classifications

1. Multi-valued treatment with three categories, Z(3)
i , which have been de-

fined collapsing the categories HL and LH of the original individual treat-
ment variable.

• Z3
i =L if regi ≤ medreg and conti ≤ medcont: this category identi-

fies profiles that are barely restrictive with respect to the two mecha-
nisms.

• Z3
i =H if regi ≥ medreg and conti ≥ medcont: this category denotes

an highly restrictive policy towards migrants with respect to both
regulations and control.

• Z3
i =M otherwise 2

2. Binary treatment with two categories, Z(2)
i defined as follows

• Z2
i =L if impoli ≤ medImPol

• Z2
i =H if impoli > medImPol

Figure 61 graphically represents these two alternative treatment char-
acterizations. Table 15 shows results under these two definitions of the
treatment variable. As it is immediate to observe, these results are robust
with the main findings of this paper.

2note that the A and C categories exactly coincide with the A and C categories of the
four-valued treatment
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(a) Multi-valued treatment with three cate-
gories, Z(3)

i

(b) Binary treatment, Z(2)
i

Figure 61: Alternative definitions of the treatment variable

Table 15: Results under alternative definitions of the treatment variable

Treatment categories

3 (L,M,H) 2 (L,H)

Effects of Interest Effects of Interest

IIW M-L H-L H-L

(α, β)

( 1
2 ,

1
2 ) 0.06648 *** 0.04986 *** 0.03875***

(0.06485;0.06815) (0.04774;0.05196) (0.01424;0.06133)

(1, 0) 0.04363 *** 0.01781 *** 0.04126 ***

(0.04203;0.04527) (0.01573;0.01987) (0.01686;0.06374)

(0, 1) 0.09282 *** 0.03523 *** 0.03587 ***

(0.09228;0.09338) (0.03452;0.03592) (0.01288;0.05705)

(0, 0) 0.0727 *** ’0.0008 0.03506***

(0.07027;0.07524) (-0.00386;0.00303) (0.01443;0.05789)

Taking into consideration of a binary treatment ( which we obtain
simply differentiating the country-year profiles whose observed value of
the general immigration policies indicator is above its reference median
) still leads to positive results, regardless of the assumption about inter-
ference. But in the last two scenarios, effects are significantly weaker.
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A.6 Models Results

A.6.1 Model for Z

Table 16: Model for the individual treatment Zi: multinomial logit

Dependent variable:

Zi

HL LH HH

(Intercept) 32.79243***(12.78648) -10.11091(15.25728) 80.91698(15.50048)

rate 0.16626(0.26154) 0.05287(0.2613) 0.69135(0.43628)

ferrate 2.58746***(0.96028) -1.67848(1.06485) 4.32561***(1.12471)

powgend -3.09196***(0.49015) 0.714(0.41834) -0.54734(0.51338)

eq health 0.10112(0.69408) 2.75906***(0.78272) 4.62427***(1.1305)

ineq educ -2.09696(2.33622) 5.29634***(2.39962) -10.3432***(2.70765)

ineq inc 5.32876***(2.59477) -9.08242***(2.35931) 10.89922***(3.40414)

eq access 28.56299***(5.5844) -5.09848(6.35618) 31.06497***(7.08197)

eq redist -40.91293***(12.89674) -38.18629***(16.62724) -114.90727***(19.31919)

civilpart -9.59618***(2.78319) 5.08124***(2.47201) -6.36655(4.05762)

accjust -1.89435(9.22897) -5.28742(10.20244) -75.66229***(12.17123)

ecocont 0.42103(0.29668) -0.02385(0.3009) -0.00473(0.41129)

freexp -15.37981**(7.11022) 45.12384***(11.12141) 46.82842***(10.41181)

freerelig 1.26604***(0.57401) 0.68092(0.62653) -0.2062(0.74503)

lifexp 2.02242(2.7095) 6.54206***(2.64635) 12.97523***(5.51876)

gdppc -0.8286***(0.21716) -0.14708(0.17659) -0.15251(0.2456)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.6.2 Model for G

Table 17: Models for the neighborhood treatment Gi: multivariate linear
model. Results are obtained while choosing different configurations of the
interference weights

Dependent variable:

G∗

Statistic Statistic Statistic

Omnibus Effect 35.31*** 38.27*** 41.42***

(Intercept) 21.63 *** 28.17*** 9.79***

Zi 12.09 *** 14.62*** 9.81***

rate 2.71 ** 4.80 ** 0.91

ferrate 18.01 *** 20.04 *** 14.95 ***

powgend 3.76 *** 6.22 *** 3.44 ***

eq health 6.61 *** 12.35*** 2.34 ***

ineq educ 0.38 0.07 5.43***

ineq inc 11.17 *** 11.28 *** 8.85***

eq access 7.81*** 12.64*** 3.32 ***

eq resdist 15.75 *** 24.51*** 4.97***

civilpart 16.13 *** 18.06*** 14.58 ***

accjust 20.43 *** 21.78 *** 12.37

econcont 16.66 *** 16.39 *** 20.85 ***

freeexp 15.85 *** 16.85 *** 9.86 ***

freerelig 14.43 *** 13.58 *** 18.86 ***

lifeexp 1.01 0.64 4.51 ***

gdppc 191.40 *** 196.56*** 180.59 ***

Vertex centr 72.79 *** 81.82 *** 124.79 ***

IIW

α 1/2 1 0

β 1/2 0 1

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.6.3 Models for Y

Table 18: Models for Y: linear model with time fixed effects. Results are
obtained while choosing different configurations of the interference weights

Dependent variable:

Y

Zi,HL 0.18591**(0.08543) 0.04817(0.09693) 0.1866**(0.07333)

Zi,LH 0.25183**(0.08896) 0.20069**(0.08139) 0.26622***(0.08028)

Zi,HH 0.20918*(0.11826) 0.04082(0.08269) 0.19946*(0.11675)

G∗i,LL -0.44931(0.32531) 0.46268(0.32837) -0.92524***(0.28568)

G∗i,HL -0.26138(0.35755) -1.4981**(0.58176) -0.00591(0.22521)

G∗i,LH 0.9401**(0.47619) 1.80662***(0.53027) 0.33123(0.3205)

G∗i,HH 1.46947***(0.36545) 0.55599(0.36047) 1.05639***(0.3828)

φ(zi;X
z
i ) -0.07777(0.06924) -0.14616**(0.07232) -0.08396(0.0706)

λ(gi; zi,X
g
i ) 0.33052(**0.16081) 0.36958**(0.15836) 0.05239(0.14535)

II w

α 1/2 1 0

β 1/2 0 1

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix B

Appendix

B.1 Proofs

Proposition 4 states that

E[µ̂(z,g)(`(x))] = µ(z,g)(`(x))

Proof.

E[µ̂(z,g)] =E
[

1

N

K∑
k=1

nk∑
i=1

1(Zik = z,Gik = g, )
Yik

πik((z, g))

]

=
1

N(`(x))

K∑
k=1

nk∑
i=1

E
[
1(Zik = z,Gik = g)

]Yik(z, g)

πik(z, g)

= µ(z,g)

(B.1)

where the expectation is over the randomization distribution of Zik and
the induced distribution on Gik and the first equality holds by consis-
tency.

Proposition 9 (Population Unbiaseness). The estimator is unbiased with
respect to the population mean of the potential outcomes:

E[µ̂(z,g)(`(x))] = E[Yik(z, g)|Xik ∈ `(x))] = µP(z,g)(`(x))
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and

E[τ̂(z,g,z′,g′)(`(x))] = E[Yik(z, g)− Yik(z′, g′)|Xik ∈ `(x))]

= E[τ(z,g,z′,g′)(Xik)|Xik ∈ `(x))] = µP(z,g)(`(x))

where the expected value is taken over the sampling distribution.

Proof.

E[µ̂(z,g)] =E
[

1

N

K∑
k=1

nk∑
i=1

1(Zik = z,Gik = g, )
Yik

πik((z, g))

]

=
1

N(`(x))

K∑
k=1

nk∑
i=1

E
[
1(Zik = z,Gik = g)Yik

]
πik(z, g)

=
1

N(`(x))

K∑
k=1

nk∑
i=1

E
[
Yik|Zik = z,Gik = g

]
πik(z, g)

πik(z, g)

=
1

N(`(x))

K∑
k=1

nk∑
i=1

E
[
Yik(z, g)

]
= E

[
Yik(z, g)

]
= µP(z,g)

(B.2)

The proof of the unbiaseness of τ̂(z,g,z′,g′) follows directly.

Recall Proposition 7
Consider the asymptotic regime where the number of clusters K go to infinity,
i.e., K −→ ∞, while the cluster size remains bounded, i.e., nk ≤ B for some
constant B. In addition, assume that |Yik(z, g)|/πik(z, g) ≤ C < 1, ∀i, k, z, g.
Then as K −→∞

τ̂(z,g;z′,g′)(`(x))
p−→ τ(z,g;z′,g′)(`(x)).

Proof. As in Proposition 4 µ̂(z,g))(`(x)) is unbiased. Hence, for consis-
tency to hold we need to prove that the variance goes to 0 as N goes to
infinity. Following Aronow and Samii, 2017, it is easy to show that the
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variance of µ̂(z,g))(`(x)) is given by:

V
(
µ̂(z,g)(`(x))

)
=

1

N(`(x))2

K∑
k=1

nk∑
i=1

1(Xik ∈ `(x))πik(z, g)[1− πik(z, g)]

[
Yik(z, g)

πik(z, g)

]2

+
1

N(`(x))2

K∑
k=1

nk∑
i=1

∑
j 6=i

1(Xik ∈ `(x),Xjk ∈ `(x))

× [πikjk(z, g)− πik(z, g)πjk(w, z)])
Yik(z, g)

πik(z, g)

Yjk(z, g)

πjk(z, g)
(B.3)

Since |Yik(z, g)|/πik(z, g) ≤ C < 1 and given that in each cluster the
sample size belonging to leaf `(x) is bounded, i.e., nk(`(x)) ≤ B(`(x)) ≤
B, we have

(K ×B)2V
(
µ̂(z,g)(`(x))

)
≤ C2 ×K ×B + C2 ×K ×B2

Consistency of µ̂(z,g)(`(x)) is therefore ensured since V
(
µ̂(z,g)(`(x))

)
−→

0 as K −→ ∞. Consistency of τ̂(z,g;z′,g′)(`(x)) follows by Slutsky’s Theo-
rem.

Proposition 10. The partition Π? such that

Π? = argmaxΠ∈PQ(z,g,z′,g′)(Π) =
1

N

K∑
k=1

nk∑
i=1

(
τ̂(z,g,z′,g′)(`(Xik,Π))

)2
maximizes the heterogeneity across leaves.

Proof. Let `1 and ` be two sub-populations with a different causal ef-
fect τ(z,g,z′,g′), i.e., τ(z,g,z′,g′)(`1) 6= τ(z,g,z′,g′)(`2). Let Π be a partition
that splits `1 and `2 into two leaves and let Πc be the partition that com-
bines the two sub-populations into one leaf `1+2. Then we have that
Q(z,g,z′,g′)(Π) > Q(z,g,z′,g′)(Π

c). The proofs follows from Jensen’s in-
equality. In fact, for partition Π the splitting function can be written as
follows:

Q(z,g,z′,g′)(Π) =
1

|`1|+ |`2|
∑

ik∈`1∪`2

(
τ̂(z,g,z′,g′)(`(Xik,Π))

)2
=

1

|`1|+ |`2|

( ∑
ik∈`1

(
τ̂(z,g,z′,g′)(`1)

)2
+
∑
ik∈`2

(
τ̂(z,g,z′,g′)(`2)

)2)
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For partition Πc we have:

Q(z,g,z′,g′)(Π
c) =

1

|`1|+ |`2|
∑

ik∈`1∪`2

(
τ̂(z,g,z′,g′)(`(Xik,Π

c))
)2 (B.4)

=
1

|`1|+ |`2|
∑

ik∈`1∪`2

(
τ̂(z,g,z′,g′)(`1+2)

)2
=

1

|`1|+ |`2|
∑

ik∈`1∪`2

[ 1

|`1|+ |`2|

( ∑
ik∈`1

τ̂(z,g,z′,g′)(`1) +
∑
ik∈`2

τ̂(z,g,z′,g′)(`2)
)]2

=
[ 1

|`1|+ |`2|

( ∑
ik∈`1

τ̂(z,g,z′,g′)(`1) +
∑
ik∈`2

τ̂(z,g,z′,g′)(`2)
)]2

where the second-last equality holds because of the properties of the
Horvitz-Thomson estimator. Thanks to Jensen’s inequality

1

|`1|+ |`2|

( ∑
ik∈`1

(
τ̂(z,g,z′,g′)(`1)

)2
+
∑
ik∈`2

(
τ̂(z,g,z′,g′)(`2)

)2) ≥
[ 1

|`1|+ |`2|

( ∑
ik∈`1

τ̂(z,g,z′,g′)(`1) +
∑
ik∈`2

τ̂(z,g,z′,g′)(`2)
)]2

Hence, Q(z,g,z′,g′)(Π) ≥ Q(z,g,z′,g′)(Π
c).

B.2 Further Details of the Variance Estimator of
Leaf-Specific CACE

If in the examined leaf `(x) there are some pairs of units (i,j) whose joint
probability of the exposure condition (z, g) is zero, that is, πikjk(z, g) =

0, the variance of ̂µ(z,g)(`(x)) can be estimated following a result from

Aronow and Samii, 2017. Such estimator, denoted by V̂c
(
µ̂(z,g)(`(x))

)
, is

the sum of two components: (i) the estimated variance of leaf-specific po-
tential outcomes, V̂

(
µ̂(z,g)(`(x)

)
in (3.3.2) for the case when πikjk(z, g) >

0 ∀i, j, k, and (ii) a correction term Â(z,g)(`(x)):

V̂c
(
µ̂(z,g)(`(x))

)
= V̂

(
µ̂(z,g)(`(x))

)
+ Â(z,g)(`(x)). (B.5)
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where

Â(z,g)(`(x))
1

N(`(x))2

K∑
k=1

nk∑
i=1

∑
j 6=i:πikjk(z,g)=0[

1(Wik = z,Gik = g,Xik ∈ `(x))Y 2
ik

2πik(z, g)

1(Wjk = z,Gjk = g,Xik ∈ `(x))Y 2
jk

2πjk(z, g)

]
.

Note that the correction term Â(z,g)(`(x)) is zero if the leaf does not
have pairs of units such that πikjk(z, g, z, g) = 0. Furthermore, as in

Aronow and Samii, 2017, V̂c
(
µ̂(z,g)(`(x))

)
is a conservative estimator of

the leaf-specific variance, as the following holds:

E

[
V̂c
(
µ̂(z,g)(`(x))

)]
= E

[
V̂
(
µ̂(z,g)(`(x))

)
+Â(z,g)(`(x))

]
≥ V

(
µ̂(z,g)(`(x))

)
.

We now explicit the covariance Ĉc
(
µ̂(z,g)(`(x)), µ̂(z′,g′)(`(x))

)
in the case

we have pairs of units (i, j), whose joint probability of experiencing the
conditions (z, g) and (z′, g′), respectively, is zero, that is, πikjk(z, g, z′, g′) =

0:
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Ĉ
(
µ̂z,g(`(x)), µ̂z′,g′(`(x))

)
=

1

N(`(x))2

K∑
k=1

nk∑
i=1

∑
j 6=i:πikjk(z,g,z′,g′)>0

1(Zik = z,Gik = g,Xik ∈ `(x))

πikjk(z, g, z′, g′)

1(Zjk = z′, Gjk = g′,Xjk ∈ `(x))

πikjk(z, g, z′, g′)

× [πikjk(z, g, z′, g′)− πik(z, g)πjk(z′, g′)]

× Yik
πik(z, g)

Yjk
πjk(z′, g′)

− 1

N(`(x))2

K∑
k=1

nk∑
i=1

∑
j 6=i:πikjk(z,g,z′,g′)=0[

1(Zik = z,Gik = g,Xik ∈ `(x))Y 2
ik

2πik(z, g)

+
1(Zik = z′, Gik = g′,Xik ∈ `(x))Y 2

ik

2πik(z′, g′)

]
.(B.6)

B.3 Additional Monte Carlo Simulations

We included in the simulation study two additional sets of simulations
where i) we introduce correlation between the covariates, and ii) we re-
place the Erdos-Renyi model for network formation with an exponential
random graph (ERGM) model introducing homophily within the clus-
ters. These two additional simulations are conducted with 30 clusters
and under the first scenario introduced in Section 3.5, where the hetero-
geneity is the same for the two causal effects of intetest.

B.3.1 Correlated covariates

In Figure 62 we report the number of correctly detected leaves under low
and high correlation (0.25 and 0.5), while in Tables 19 and 20 we report
the estimated treatment and spillover effects with their standard error in
the two heterogenous leaves, together with the MSE, bias and coverage
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of the average treatment and spillover effects in the sample. In Figure 62
we can see that the correlation between covariates compromises the abil-
ity of the algorithm to correctly identify the heterogeneous subgroups.
This is due to the fact that, as the covariates become more similar to each
other, it becomes harder for the algorithm to detect the true HDVs. Such
a problem is common to all tree-based algorithms. Hence, we argue that
one should carefully check the correlation patterns between the variables
to get a sense of the reliability of the discovered subgroups.
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Figure 62: Simulations’ results for correctly discovered leaves in the first
scenario with correlated covariates
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Table 19: Simulations’ results for the first scenario with correlated covari-
ates (0.25)

Treatment Effects
Effect Size τ̂l1

ŝe(τ̂l1
) τ̂l2

ŝe(τ̂l2
) MSE Bias Coverage

0.1 0.116 0.288 -0.230 0.225 0.071 -0.057 1.000
1.1 1.093 0.280 -1.078 0.288 0.080 0.008 0.946
2.1 2.084 0.403 -2.067 0.401 0.147 0.009 0.939
3.1 3.112 0.553 -3.134 0.555 0.273 -0.011 0.958
4.1 4.082 0.692 -4.140 0.699 0.400 -0.029 0.961
5.1 5.126 0.843 -5.162 0.852 0.673 -0.018 0.950
6.1 6.121 1.007 -6.157 1.008 1.000 -0.018 0.948
7.1 7.019 1.161 -7.067 1.165 1.214 -0.024 0.958
8.1 8.018 1.309 -8.085 1.309 1.557 -0.033 0.959
9.1 9.221 1.509 -9.088 1.491 2.014 0.066 0.953

10.1 10.214 1.655 -10.195 1.648 2.441 0.009 0.957
Spillover Effects

δ̂l1
ŝe(δ̂l1

) δ̂l2
ŝe(δ̂l1

) MSE Bias Coverage

0.1 0.069 0.185 -0.200 0.194 0.025 -0.065 0.944
1.1 1.102 0.227 -1.090 0.227 0.046 0.006 0.970
2.1 2.111 0.302 -2.117 0.302 0.078 -0.003 0.972
3.1 3.093 0.392 -3.116 0.393 0.112 -0.011 0.983
4.1 4.086 0.488 -4.093 0.490 0.169 -0.004 0.979
5.1 5.131 0.589 -5.078 0.587 0.246 0.026 0.971
6.1 6.071 0.692 -6.051 0.693 0.331 0.010 0.979
7.1 7.109 0.801 -7.087 0.802 0.458 0.011 0.980
8.1 8.092 0.906 -8.063 0.902 0.577 0.014 0.976
9.1 9.110 1.016 -9.060 1.010 0.659 0.025 0.990

10.1 10.122 1.123 -10.101 1.124 0.861 0.010 0.980

Table 20: Simulations’ results for the first scenario with correlated covari-
ates (0.50)

Treatment Effects
Effect Size τ̂l1

ŝe(τ̂l1
) τ̂l2

ŝe(τ̂l2
) MSE Bias Coverage

0.1 0.129 0.223 -0.101 0.217 0.050 0.014 0.909
1.1 1.093 0.268 -1.120 0.272 0.066 -0.014 0.972
2.1 2.140 0.392 -2.114 0.378 0.158 0.013 0.949
3.1 3.104 0.503 -3.065 0.505 0.241 0.019 0.946
4.1 4.123 0.652 -4.188 0.664 0.399 -0.033 0.960
5.1 5.081 0.795 -5.108 0.801 0.618 -0.013 0.953
6.1 6.138 0.960 -6.146 0.943 0.825 -0.004 0.959
7.1 7.154 1.110 -7.063 1.096 1.088 0.045 0.956
8.1 8.093 1.227 -8.174 1.257 1.388 -0.041 0.949
9.1 9.080 1.380 -9.116 1.389 1.637 -0.018 0.959

10.1 10.086 1.529 -10.122 1.520 1.952 -0.018 0.952
Spillover Effects

δ̂l1
ŝe(δ̂l1

) δ̂l2
ŝe(δ̂l1

) MSE Bias Coverage

0.1 0.144 0.190 -0.202 0.175 0.030 -0.029 0.864
1.1 1.091 0.214 -1.087 0.212 0.047 0.002 0.952
2.1 2.103 0.282 -2.137 0.285 0.064 -0.017 0.975
3.1 3.119 0.364 -3.072 0.365 0.097 0.024 0.977
4.1 4.098 0.458 -4.090 0.458 0.156 0.004 0.962
5.1 5.056 0.551 -5.101 0.553 0.218 -0.022 0.976
6.1 6.127 0.654 -6.093 0.649 0.302 0.017 0.980
7.1 7.093 0.750 -7.130 0.752 0.370 -0.018 0.988
8.1 8.162 0.852 -8.038 0.844 0.476 0.062 0.984
9.1 9.122 0.948 -9.026 0.943 0.571 0.048 0.982

10.1 10.043 1.046 -10.177 1.052 0.698 -0.067 0.982

Nevertheless, for both correlation levels (0.25 and 0.50) the estimator
seems to perform well within correctly detected leaves (see Tables 19 and
20).
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B.3.2 Network homophily within the clusters

Table 21 shows the results in the case of network homophily within the
clusters. In this case, We find larger standard errors than the original
scenario reported in 5 without homophily. As a consequence, the Monte-
Carlo MSE is also slightly larger.

Table 21: Simulations’ results for the first scenario with network homophily
within the clusters (30 clusters)

Treatment Effects
Effect Size τ̂l1

ŝe(τ̂l1
) τ̂l2

ŝe(τ̂l2
) MSE Bias Coverage

0.1 0.152 0.241 -0.108 0.259 0.045 0.022 1.000
1.1 1.069 0.312 -1.094 0.315 0.100 -0.013 0.953
2.1 2.130 0.454 -2.119 0.448 0.188 0.006 0.959
3.1 3.149 0.608 -3.083 0.606 0.335 0.033 0.955
4.1 4.099 0.775 -4.084 0.763 0.477 0.007 0.959
5.1 5.115 0.946 -5.116 0.943 0.736 0.000 0.961
6.1 6.162 1.127 -6.150 1.127 1.043 0.006 0.970
7.1 7.076 1.285 -7.175 1.289 1.377 -0.049 0.955
8.1 8.129 1.465 -8.000 1.446 1.752 0.064 0.957
9.1 9.029 1.621 -9.136 1.629 2.249 -0.053 0.953

10.1 10.163 1.814 -10.133 1.815 2.977 0.015 0.957
Spillover Effects

δ̂l1
ŝe(δ̂l1

) δ̂l2
ŝe(δ̂l1

) MSE Bias Coverage

0.1 0.084 0.221 -0.142 0.222 0.036 -0.029 0.971
1.1 1.082 0.268 -1.100 0.274 0.069 -0.009 0.957
2.1 2.102 0.370 -2.084 0.366 0.120 0.009 0.964
3.1 3.116 0.483 -3.112 0.486 0.172 0.002 0.974
4.1 4.065 0.603 -4.114 0.610 0.260 -0.025 0.976
5.1 5.101 0.740 -5.077 0.737 0.389 0.012 0.980
6.1 6.076 0.871 -6.045 0.869 0.538 0.015 0.979
7.1 7.088 1.004 -7.054 0.997 0.738 0.017 0.972
8.1 8.041 1.132 -8.150 1.142 0.936 -0.055 0.971
9.1 9.157 1.275 -9.030 1.263 1.070 0.064 0.976

10.1 10.066 1.408 -10.093 1.407 1.391 -0.014 0.982
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Appendix C

Appendix

C.1 Similarity Measures

In this section, we detail the four dyadic similarity measures that we em-
ployed for imputing missing links among dyads. They catch the baseline
degree of similarity between each pair of students with respect to hob-
bies, school attitudes, cultural interests and personal background. They
all have been derived starting from individual-level covariates and they
have been computed as follows:

1. Hobbies Similarity x1ij : Jaccard similarity between hobbies of units
i and j. : in particular, students were asked whether they are inter-
ested in politics, whether they practice sports, gymnastics or volun-
teering and whether they love painting, listening music, chatting
on social networks and watching TV.

2. School Attitudes Similarity x2ij : this variable represents a mea-
sure of similarity with respect to the school attitudes. This quan-
tity involves both an evaluation of the individual academic per-
formance, expressed in terms of grade point average (gpa), and
the attendance of specific extracurricular activities offered by the
school (music lessons, language lessons, humanities lessons). The
dyadic similarity in school performance between units i and j, that
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we call x2aij , is measured according to the formula x2aij = 1 −
|gpai−gpaj |

max(gpa)−min(gpa) . While, the variable x2bij quantifies the extent of
similarity between i and j in terms of school activities through a
Jaccard measure. The final x2ij value results from the mean of these

two measures, that is x2ij =
x2aij+x2bij

2 .

3. Cultural Interests Similarity x3ij : this variable indicates the level
of similarity with respect to the individual baseline attitude to-
wards culture. Students have been asked to grade the frequency
of how they practice the following interests: book reading, sym-
phony listening, theatrical shows watching, cinema going. Higher
values correspond to a more frequent accomplishment of that spe-
cific activity. The x3ij variable is obtained by computing the Eu-
clidean distance among these measures (then subtracting the re-
sulting value from 1, so to get a similarity measure, instead that a
measure of distance). This value has been in turn standardized, so
to get a measure which varies between 0 and 1.

4. Personal Background Similarity x4ij : this variable measures the
level of similarity among individual personal characteristics. For-
mally, given some students i and j, both belonging to N , x4ij is
defined as a Jaccard similarity of their respective personal features:
in particular, the personal characteristics that are included in this
evaluation are related to the gender, to the seniority, to the geo-
graphical origin of the individual (the survey asks the student to
declare if she/he is born abroad or not) and to the current living
area (the survey asks the student to declare if she/he is living in
suburban areas or not).

C.2 Multiple Imputation Algorithm: Stability

Figure 63 shows the trace plot concerning the mean and the standard
deviation of the link indicator variable. The algorithm multiply imputes
missing links after a given number of iterations (we have set this number
at 5, which is the default value) for making the prediction more stable. In

261



each iteration, the multiple imputation algorithm is based on a random
forest composed by five trees and recursively splits data to predict the
dyadic outcome (i.e the presence / absence of the link). The graph sug-
gests that the prediction is highly stable also after a very few number of
iterations.

Figure 63: Mean and standard deviation of the link indicator variable: trace
plot monitoring the trend of this values over the 5 iterations performed by
the algorithm, in the M = 500 distinct data-imputations.

C.3 Proofs for τ ∗ and its estimator

The causal effect of actually receiving the treatment, denoted with tau∗,
can be expressed as the average comparison of the two potential out-
comes,

τ∗ = E
[
Yit′′(1)

]
− E

[
Yit′′(0)

]
First, we want to prove that, under Assumption 16, it can be formally
written as

τ∗ = E
[
Yit′′(1)|Zit = 1

]
P (Zit = 1)+∑

z−it

∑
x

(
E
[
Yit′′(1)|Zit′ = 1, Zit = 0,Z−it = z−it,Xi = x

]
−

E
[
Yit′′(0)|Zit′ = 0, Zit = 0,Z−it = z−it,Xi = x

])
P (Zit = 0,Z−it = z−it,Xi = x).
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Proof.

τ
∗

=
∑
z

∑
x

(
E
[
Yit′′ (1)|Zt = z,Xi = x

]
− E

[
Yit′′ (0)|Zt = z,Xi = x

])
P (Zt = z,Xi = x)

=
∑
z−it

∑
x

E
[
Yit′′ (1)|Zit = 1,Z−it = z−it,Xi = x

]
P (Zit = 1,Z−it = z−it,Xi = x)+

∑
z−it

∑
x

E
[
Yit′′ (1)|Zit = 0,Z−it = z−it,Xi = x

]
P (Zit = 0,Z−it = z−it,Xi = x)−

∑
z−it

∑
x

E
[
Yit′′ (0)|Zit = 1,Z−it = z−it,Xi = x

]
P (Zit = 1,Z−it = z−it,Xi = x)−

∑
z−it

∑
x

E
[
Yit′′ (0)|Zit = 0,Z−it = z−it,Xi = x

]
P (Zit = 0,Z−it = z−it,Xi = x)

=
∑
z−it

∑
x

E
[
Yit′′ (1)|Zit = 1,Z−it = z−it,Xi = x

]
P (Z−it = z−it,Xi = x|Zit = 1)P (Zit = 1)+

∑
z−it

∑
x

E
[
Yit′′ (1)|Zit′ = 1, Zit = 0,Z−it = z−it,Xi = x

]
P (Zit = 0,Z−it = z−it,Xi = x)−

∑
z−it

∑
x

E
[
Yit′′ (0)|Zit′ = 0, Zit = 0,Z−it = z−it,Xi = x

]
P (Zit = 0,Z−it = z−it,Xi = x)

=E
[
Yit′′ (1)|Zit = 1

]
P (Zit = 1) +

∑
z−it

∑
x

(
E
[
Yit′′ (1)|Zit′ = 1, Zit = 0,Z−it = z−it,Xi = x

]
− E

[
Yit′′ (0)|Zit′ = 0, Zit = 0,Z−it = z−it,Xi = x

])
P (Zit = 0,Z−it = z−it,Xi = x).

Second, we intend to prove that, under Assumption 16, if the real
treatment assignment vector were fully observed over the population,
we would be able to identify it by means of the following Horvitz-Thompson
estimator

τ̂? =
1

N

[ N∑
i=1

Zit′
Yit′′

πit′(1; Z−it,Xi)
−

N∑
i=1

(1− Zit′)
Yit′′

1− πit′(1; Z−it,Xi)

]
.
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Proof.

E

[
Yit′′Zit′

πit′(1; Z−it,Xi)

]
= E

[
Yit′′I(Zit′ = 1)

πit′(1; Z−it,Xi)

]
= E

[
Yit′′(1)I(Zit′ = 1)

πit′(1; Z−it,Xi)

]

= E

[
E

[
Yit′′(1)I(Zit′ = 1)

πit′(1; Z−it,Xi)
|Z−it,Xi

]]

= E

[
1

πit′(1; Z−it,Xi)
E

[
Yit′′(1)I(Zit′ = 1)|Z−it,Xi

]]
.

Now, it is enough to observe that

E

[
Yit′′(1)I(Zit′ = 1)|Z−it,Xi

]
=

E

[
Yit′′(1)I(Zit′ = 1)|Zit = 1,Z−it,Xi

]
P (Zit = 1|Z−it,Xi)+

E

[
Yit′′(1)I(Zit′ = 1)|Zit = 0,Z−it,Xi

]
P (Zit = 0|Z−it,Xi) =

E

[
Yit′′(1)|Zit = 1,Z−it,Xi

]
πit(1; Z−it,Xi)+

E

[
Yit′′(1)|Zit = 0,Z−it,Xi

]
P (Zit′ = 1|Zit = 0,Z−it,Xi)(1− πit(1; Z−it,Xi)) =

E[Yit′′(1)]πit(1; Z−it,Xi) + E[Yit′′(1)]ρi(1− πit(1; Z−it,Xi)) =

E[Yit′′(1)]πit′(1; Z−it,Xi).

(For the second equality we have used that Zit = 1 implies Zit′ = 1, the
second par of Assumption 16 and the definition of πit(1; Z−it,Xi). For
the third equality we have used the first part of Assumption (16) and the
definition of ρi. Finally, for the last equality, we have used the definition
of πit′(1; Z−it,Xi).)
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Similarly, we have

E

[
Yit′′(1− Zit′)

(1− πit′(1; Z−it,Xi))

]
= E

[
Yit′′I(Zit′ = 0)

(1− πit′(1; Z−it,Xi))

]
=

E

[
Yit′′(0)I(Zit′ = 0)

(1− πit′(1; Z−it,Xi))

]
= E

[
E

[
Yit′′(0)I(Zit′ = 0)

(1− πit′(1; Z−it,Xi))
|Z−it,Xi

]]
=

E

[
1

(1− πit′(1; Z−it,Xi))
E

[
Yit′′(0)I(Zit′ = 0)|Z−it,Xi

]]
,

where

E

[
Yit′′(0)I(Zit′ = 0)|Z−it,Xi

]
=

E

[
Yit′′(0)I(Zit′ = 0)|Zit = 1,Z−it,Xi

]
P (Zit = 1|Z−it,Xi)+

E

[
Yit′′(0)I(Zit′ = 0)|Zit = 0,Z−it,Xi

]
P (Zit = 0|Z−it,Xi) =

E

[
Yit′′(0)|Zit = 0,Z−it,Xi

]
P (Zit′ = 0|Zit = 0,Z−it,Xi)(1− πit(1; Z−it,Xi)) =

E[Yit′′(0)](1− ρi)(1− πit(1; Z−it,Xi)) = E[Yit′′(0)](1− πit′(1; Z−it,Xi)).

Remark:
The estimator

τ̂?? =
1

N

[ N∑
i=1

Zit′
Yit′′

πit′(1)
−

N∑
i=1

(1− Zit′)
Yit′′

1− πit′(1)

]
is trivially unbiased if we have

Yit′′(Zit′ = z) ⊥⊥ Zt′ ∀z ∈ {0, 1}.

Note that we always have 0 < πit′(1) < 1 (since the term πit(1) in its
expression belongs to (0, 1) by assumption) and, moreover, it coincides
with the standard Horvitz-Thompson estimator when there is no possi-
bility of diffusion.
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C.4 Diffusion Bias

Here, we derive the bias due to the hidden treatment diffusion process.
If the policy maker neglected the possibility of any diffusion process
playing a role in the analysis, she would estimate the quantity τ bobs =

E
[
Yit′′ |Zit = 1

]
− E

[
Yit′′ |Zit = 0

]
, that is

τ bobs = E
[
Yit′′ |Zit = 1

]
− E

[
Yit′′ |Zit = 0

]
=

[
E
[
Yit′′ |Zit′ = 1, Zit = 1

]
P (Zit′ = 1|Zit = 1)+

E
[
Yit′′ |Zit′ = 0, Zit = 1

]
P (Zit′ = 0|Zit = 1)

]
−[

E
[
Yit′′ |Zit′ = 1, Zit = 0

]
P (Zit′ = 1|Zit = 0)+

E
[
Yit′′ |Zit′ = 0, Zit = 0

]
P (Zit′ = 0|Zit = 0)

]
= E

[
Yit′′(1)|Zit′ = 1, Zit = 1

]
− E

[
Yit′′(1)|Zit′ = 1, Zit = 0

]
E[ρi|Zit = 0]−

E
[
Yit′′(0)|Zit′ = 0, Zit = 0

]
(1− E[ρi|Zit = 0])

= E
[
Yit′′(1)|Zit = 1

]
− E

[
Yit′′(1)|Zit′ = 1, Zit = 0

]
E[ρi|Zit = 0]−

E
[
Yit′′(0)|Zit′ = 0, Zit = 0

]
(1− E[ρi|Zit = 0]) ,

where we have used that

P (Zit′ = 1|Zit = 1) =1,

P (Zit′ = 0|Zit = 1) =0 .

and ρi = P (Zit′ = 1|Zit = 0,Z−it,Xi) and, in the case of a discrete Xi,
we have

E[ρi|Zit = 0] =
∑
x

∑
z−i

ρi(z−i,x)P (Z−it = z−i,Xi = x|Zit = 0).
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Note that, when the random variables Zit and Xi, with i ∈ N , are all
independent, we simply have E[ρi|Zit = 0] = E[ρi]. Moreover, under the
first assumption included in Assumption 16, we have E

[
Yit′′(1)|Zit =

1
]

= E[Yit′′(1)].
The treatment diffusion bias can be obtained by computing the dif-

ference between the above quantity and τ∗ = E[Yit′′(1)]−E[Yit′′(0)] and,
under the first assumption included in Assumption 16, we have:

b = τ bobs − τ∗ = E
[
Yit′′(1)

]
− E

[
Yit′′(1)|Zit′ = 1, Zit = 0

]
E[ρi|Zit = 0]−

E
[
Yit′′(0)|Zit′ = 0, Zit = 0

]
(1− E[ρi|Zit = 0])−

E[Yit′′(1)] + E[Yit′′(0)]

= E
[
Yit′′(0)

]
− E

[
Yit′′(0)|Zit′ = 0, Zit = 0

]
(1− E[ρi|Zit = 0])−

E
[
Yit′′(1)|Zit′ = 1, Zit = 0

]
E[ρi|Zit = 0].

If the Assumption 16 is not satisfied (as in the above simulations), the
bias is given by the above quantity plus E[Yit′′(1)|Zit = 1]− E[Yit′′(1)].
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Appendix D

Appendix

D.1 String-Matching Algorithm

We perform a string-matching algorithm in order to merge committee
data and firms data. In other words, the goal of our procedure is to de-
tect which of the supporting entities are lobbying firms. Committee data
involve firms, parties, associations and private citizens and, since our
project focuses on the role of lobbying firms, we must detect them and
isolate them from the rest of the entities. In view of the fact that firms
collected in committee data are not characterized by a unique firm iden-
tifier (such as the BVD ID number) which can attest that they are official
companies, we must rely on a string-matching algorithm that catches
similarities between their reported names and the names of all certified
US companies. We assume that all the entities which are not identified
as firms by our string-matching algorithm are not real US firms. The
string-matching algorithm is organized in few steps and it takes as input
the list of organizations, which have financially supported at least one
elected politician in the three legislative cycles, and the list of the offi-
cial US companies, which are regularly registered in the US lists 1. The

1We do not consider all the existing US firms and companies, we take into account of a
sub-sample of official companies (about 2 millions) with respect to that we have sufficient
information in terms of location, operating sectors and financial reports. They plausibly
represent the most relevant US companies.
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structure of the string-matching algorithm is organized according to the
following steps.

1. Remove foreign entities: we remove from the list of political sup-
porters in committee data all the organizations which are not lo-
cated in the US.

2. Remove non-firms according to their code: remove from the com-
mittees all the entities whose code explicitly identifies them as par-
ties, associations or political organizations. Committees are char-
acterized by a five character code identifying their industry or ide-
ology. The fist digit of this code signals their operating sectors: we
delete from the analysis entities referring to sectors Z,X ,J or Y ,
which pertain to political parties and political organizations.

3. Remove non-firms according to their name: remove from the com-
mittee dataset all the entries whose name contains the words ”as-
sociation”, ”federation” or ”assn”. The presence of one of these
words clearly signal that the given organization is not a pure com-
pany.

4. Clean up the strings (preliminary cleaning): remove from the strings,
located both in committee data and in firms data, all the spuri-
ous elements (erroneous punctuation, special symbols, additional
final signs - such as, for instance, ”inc.” and ”co.”-). Then, imple-
ment all the string-adjustments for making the committee names’
nomenclature compatible with the one which characterizes com-
pany names in the ORBIS Database (for instance, the sign ”u.s” is
unrecognized in the ORBIS database and needs to be transformed
to ”us”).

5. Look for perfect matches: for each unique entry of the commit-
tee database (i.e for each name of a political supporting entity)
skim the firms database and grab whether the string spots per-
fect matches (i.e this happens if in the firms database there are one
or more firms which are named exactly like the given committee).
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Collect the perfectly merged committees of this step in A (together
with their corresponding match in the ORBIS Database).

6. Clean up the strings from recurrent terms (additional cleaning).
Consider all the entities which have not been successfully matched
at the previous step. Remove from their names all the recurrent
terms (such as ”corporation”, ”group”, ”company” etc.) that may
taint the matching-search procedure (for instance the entities ”Vita-
mingas company” and ”Vitamingas” clearly refer to the same com-
pany, but they would have not been matched in the previous step
because their names do not perfectly coincide).

7. Look for perfect matches: repeat the step 5, after the further clean-
ing in the strings (performed at the previous step). Collect the per-
fectly merged committees of this step in A1 (together with their
corresponding match in the ORBIS Database).

8. Look for fuzzy matches: consider all the entities (in both datasets)
which have not successfully matched at steps 5 and 7. Since any
attempt of perfect matching is failed for them, we perform a fuzzy
matching algorithm, where we pairwise compare strings and we
search for similar patterns. The fuzzy merged committees of this
step are collected in A2 (together with their corresponding match
in the ORBIS Database).

9. Manage multi-matches: the steps 5,7 and 8 may have generated
multiple matches, in the sense that a given entity in the committee
data may have been matched to more than one firm in the ORBIS
database (since at each step we remove matched firms, multiple
matches have occurred at the same step). Since we do not have el-
ements to discern the right match among the possible ones, we de-
cide to pair the multiply matched entity in the committee dataset,
with the most relevant of its matches (i.e the firm with the highest
number of employees at 2010 2). This step generates a complete list

2if we are not able to identify a unique most relevant firm among the candidate matches
we do not match that firm anyway
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of pairwise matches A, which do not contain multiple matches.

10. Collect all the matched entities: the matched organizations are col-
lected in A, so that now each committee, which has been identified
as a real US company by the algorithm, is characterized by its own
BVD firm identifier (that corresponds to the BVD of its correspon-
dent match).

These steps exhaustively describe the procedure that we have followed
to match committees with US official companies. It follows that all those
committees, which have not been identified as firms by the algorithm,
are removed from the analysis.
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D.2 Descriptive Analysis

This Section provides some descriptive statistics which refer to the data,
we have analyzed in Chapter 5. All the aspects are investigated with re-
spect to the three legislatures we have included in our analysis, namely
the 111th, 112th and 113th Congresses in the US House of Representa-
tives.
The first Table presents some main statistics. The key aspects that this ta-
ble points out are the following: i) the number of companies involved in
lobbying activities is extremely relevant in all the three Congresses and
transactions from firms are about one third of the total number of trans-
actions (with respect to both their number and their amount); ii) an high
quote of legislators has received funds from at least one firm, during the
electoral campaign and conditioning on having received funds from at
least one PAC, the probability of having been financed from at least one
firm is about 0.99.

Table 22: Main statistics

111th 112th 113th

Number of transactions 76434 68546 58137
Number of transactions involving firms 26715 23236 19285
Unique entities involved in transactions 3702 3668 3387
Unique firms involved in transactions 1007 970 897
Unique groups involved in transactions 798 768 718
Total amount of transactions 143761574 138910053 120496348
Total amount of transactions involving firms 44344588 43963589 33223769
Politicians who received funds 383 376 330
Politicians who received funds from firms 379 374 328
Politicians who didn’t receive funds 56 58 86
Total elected politicians 439 434 416

The following Table shows the distributions concerning the number
of transactions at the benefit of each politician, over the three legisla-
tures. It confirms the general intuition: the financing support coming
from firms is extremely relevant for legislators.
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Table 23: Number of transactions, per politician

Min. 1st Qu. Median Mean 3rd Qu. Max. N
Number of transactions, per politician 3

111th 1 125.00 176 199.56658 265.0 627 383
112th 1 121.00 160 182.30319 223.5 623 378
113th 1 119.25 155 176.17273 218.0 607 330

Number of transactions involving firms, per politician 4

111th 1 45.50 62 70.48813 90.0 258 379
112th 8 36.00 54 62.12834 78.0 252 374
113th 1 35.00 51 58.79573 74.0 243 328

The following Table investigates the number of unique financing sup-
porters, per politician. As it is possible to notice, a single politician is
supported by a huge amount of entities, during her electoral campaign.
About one third of these supporters are real US companies

Table 24: Unique supporters

Min. 1st Qu. Median Mean 3rd Qu. Max. N
Unique supporting entities, per politician 5

111th 1 124.5 175 197.62924 262.50 625 383
112th 1 120.0 160 180.86702 223.00 621 378
113th 1 118.0 153 174.64848 217.75 604 330

Unique supporting firms, per politician 6

111th 1 45.0 62 70.01583 89.50 255 379
112th 8 36.0 54 61.86096 77.00 250 374
113th 1 34.0 51 58.47256 73.00 243 328

The following Table shows the distribution of supported politicians,
for firm, in the three legislature. It points out that companies are used
not to concentrate their lobbying budget over a single politician only:
they prefer to differentiate their risk and to support a relevant number of
legislators.

273



Table 25: How many politicians each company supports

Min. 1st Qu. Median Mean 3rd Qu. Max. N
111th 1 3 10 26.52929 30.00 340 1007
112th 1 3 9 23.95464 26.75 287 970
113th 1 3 9 21.49944 24.00 249 897

The last Table focuses on the amount of transactions. It highlights
that PACs invest a huge amount of money in the US electoral campaigns
and companies save a relevant amount of funds for lobbying activities.

Table 26: Amount of Transactions

Min. 1st Qu. Median Mean 3rd Qu. Max. N
Mean amount received from transactions, per politician 7

111th 865 1475.403 1644.699 1806.176 1870.791 9081.00 383
112th 1000 1500.686 1698.479 2032.584 1996.976 20216.77 378
113th 1000 1510.387 1724.321 2102.864 2007.122 20216.77 330

Mean amount received from transactions involving firms, per politician 8

111th 1000.000 1432.671 1591.857 1665.778 1782.681 3533.20 379
112th 1052.833 1479.880 1682.338 2059.556 1956.589 83033.62 374
113th 1088.519 1481.391 1695.131 1821.320 1965.387 11176.19 328

Total amount received from transactions, per politician 9

111th 1000 195722.0 291139.0 375356.6 480150.5 1593409 383
112th 1000 205891.8 281096.5 369441.6 433709.2 3497501 378
113th 1000 207673.2 279846.5 365140.4 437193.2 3497501 330

Total amount received from transactions involving firms, per politician 10

111th 1000 69600.00 100850.0 117004.2 139878.0 664860 379
112th 11284 64468.50 90905.5 117549.7 129533.5 3072244 374
113th 1500 60801.75 86643.0 101292.0 123515.5 445176 328
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Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications, 390(6), 1150–
1170.

Manning, W. G., Newhouse, J. P., Duan, N., Keeler, E. B., & Leibowitz,
A. (1987). Health insurance and the demand for medical care:
Evidence from a randomized experiment. The American economic
review, 251–277.

Manski, C. F. (2013). Identification of treatment response with social in-
teractions. The Econometrics Journal, 16(1), S1–S23.

290

https://doi.org/10.1093/biomet/asw047


Manski, C. (2013). Identification of treatment response with social inter-
actions. Econometrics Journal, 16(1), S1–S23. https://doi.org/10.
1111/j.1368-423X.2012.00368.x

Marsh, D., & Lewis, C. (2014). The political power of big business: A
response to bell and hindmoor. New Political Economy, 19(4), 628–
633.

Mayer, A. K. (2011). Does education increase political participation? The
Journal of Politics, 73(3), 633–645.

Mayer, T., & Zignago, S. (2011). Notes on cepii’s distances measures: The
geodist database.

McCaffrey, D. F., Lockwood, J., & Setodji, C. M. (2013). Inverse proba-
bility weighting with error-prone covariates. Biometrika, 100(3),
671–680.

Melitz, J., & Toubal, F. (2014). Native language, spoken language, transla-
tion and trade. Journal of International Economics, 93(2), 351–363.

Menard, S. (2002). Applied logistic regression analysis (Vol. 106). Sage.
Messina, A. M. (2007). The logics and politics of post-wwii migration to west-

ern europe. Cambridge University Press.
Miles, C. H., Petersen, M., & van der Laan, M. J. (2019). Causal inference

when counterfactuals depend on the proportion of all subjects
exposed. Biometrics, 75(3), 768–777.

Minhas, S., Hoff, P. D., & Ward, M. D. (2019). Inferential approaches for
network analysis: Amen for latent factor models. Political Analy-
sis, 27(2), 208–222.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee,
B. (2007). Measurement and analysis of online social networks,
In Proceedings of the 7th acm sigcomm conference on internet mea-
surement.

Montes, F., Jaramillo, A. M., Meisel, J. D., Diaz-Guilera, A., Valdivia, J. A.,
Sarmiento, O. L., & Zarama, R. (2020). Benchmarking seeding
strategies for spreading processes in social networks: An inter-
play between influencers, topologies and sizes. Scientific Reports,
10(1), 3666.

Moore, B., & Rhodes, J. (1973). Evaluating the effects of british regional
economic policy. The Economic Journal, 83(329), 87–110.

Morgan, K. L., Rubin, D. B. Et al. (2012). Rerandomization to improve
covariate balance in experiments. The Annals of Statistics, 40(2),
1263–1282.

291

https://doi.org/10.1111/j.1368-423X.2012.00368.x
https://doi.org/10.1111/j.1368-423X.2012.00368.x


Munck, G. L., & Verkuilen, J. (2002). Conceptualizing and measuring
democracy: Evaluating alternative indices. Comparative political
studies, 35(1), 5–34.

Muralidharan, K., & Sundararaman, V. (2015). The aggregate effect of
school choice: Evidence from a two-stage experiment in india.
The Quarterly Journal of Economics, 130(3), 1011–1066.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 65(2),
331–355.

Muthén, B., & Brown, H. C. (2009). Estimating drug effects in the pres-
ence of placebo response: Causal inference using growth mixture
modeling. Statistics in medicine, 28(27), 3363–3385.

Naranjo, A. J. (2010). Spillover effects of domestic law enforcement poli-
cies. International Review of Law and economics, 30(3), 265–275.

Newman, M. E. (2001a). Scientific collaboration networks. ii. shortest
paths, weighted networks, and centrality. Physical review E, 64(1),
016132.

Newman, M. E. (2001b). The structure of scientific collaboration networks.
Proceedings of the national academy of sciences, 98(2), 404–409.

Newman, M. E. (2004). Analysis of weighted networks. Physical review E,
70(5), 056131.

Nichol, K. L., Lind, A., Margolis, K. L., Murdoch, M., McFadden, R.,
Hauge, M., Magnan, S., & Drake, M. (1995). The effectiveness
of vaccination against influenza in healthy, working adults. New
England Journal of Medicine, 333(14), 889–893.

Ogburn, E., Sofrygin, O., Diaz, I., & van der Laan, M. (2017). Causal in-
ference for social network data. arXiv:1705.08527.

Papadogeorgou, G., Mealli, F., & Zigler, C. M. (2019). Causal inference
with interfering units for cluster and population level treatment
allocation programs. Biometrics, 75(3), 778–787.

Park, W. B., Kim, N.-H., Kim, K.-H., Lee, S. H., Nam, W.-S., Yoon, S. H.,
Song, K.-H., Choe, P. G., Kim, N. J., Jang, I.-J., Et al. (2012). The
effect of therapeutic drug monitoring on safety and efficacy of
voriconazole in invasive fungal infections: A randomized con-
trolled trial. Clinical infectious diseases, 55(8), 1080–1087.

Paster, T. (2018). How do business interest groups respond to political
challenges? a study of the politics of german employers. New Po-
litical Economy, 23(6), 674–689.

Pearl, J. Et al. (2009). Causal inference in statistics: An overview. Statistics
surveys, 3, 96–146.

292



Perotti, R. (2005). Estimating the effects of fiscal policy in oecd countries.
Persson, T. (1998). Economic policy and special interest politics. The Eco-

nomic Journal, 108(447), 310–327.
Petersen, M. L., Porter, K. E., Gruber, S., Wang, Y., & Van Der Laan, M. J.

(2012). Diagnosing and responding to violations in the positivity
assumption. Statistical methods in medical research, 21(1), 31–54.

Polissar, L. (1980). The effect of migration on comparison of disease rates
in geographic studies in the united states. American journal of epi-
demiology, 111(2), 175–182.

Powell, E. N., & Grimmer, J. (2016). Money in exile: Campaign contribu-
tions and committee access. The Journal of Politics, 78(4), 974–988.

Quattrociocchi, W., Scala, A., & Sunstein, C. R. (2016). Echo chambers on
facebook. Available at SSRN 2795110.

Reinert, K. A., Rajan, R. S., Glass, A. J., & Davis, L. S. (2009). The princeton
encyclopedia of the world economy.(two volume set) (Vol. 1). Prince-
ton University Press.

Rice, S. A. (1927). The identification of blocs in small political bodies. The
American Political Science Review, 21(3), 619–627.

Richter, B. K., & Werner, T. (2017). Campaign contributions from corpo-
rate executives in lieu of political action committees. The Journal
of Law, Economics, and Organization, 33(3), 443–474.

Romer, T., & Snyder Jr, J. M. (1994). An empirical investigation of the dy-
namics of pac contributions. American journal of political science,
745–769.

Rosenbaum, P. R. (2002). Overt bias in observational studies, In Observa-
tional studies. Springer.

Rosenbaum, P. R. (2007). Interference between units in randomized ex-
periments. Journal of the American Statistical Association, 102(477),
191–200.

Rosenbaum, P. R., & Rubin, D. B. (1983a). Assessing sensitivity to an un-
observed binary covariate in an observational study with binary
outcome. Journal of the Royal Statistical Society: Series B (Method-
ological), 45(2), 212–218.

Rosenbaum, P. R., & Rubin, D. B. (1983b). The central role of the propen-
sity score in observational studies for causal effects. Biometrika,
70(1), 41–55.

Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational
studies using subclassification on the propensity score. Journal of
the American statistical Association, 79(387), 516–524.

293



Routray, S. K., Sahin, G., da Rocha, J. R. F., & Pinto, A. N. (2015). Sta-
tistical analysis and modeling of shortest path lengths in optical
transport networks. Journal of Lightwave Technology, 33(13), 2791–
2801.

Rubin, D. B. (1974). Estimating causal effects of treatments in random-
ized and nonrandomized studies. Journal of educational Psychol-
ogy, 66(5), 688.

Rubin, D. B. (1980). Randomization analysis of experimental data: The
fisher randomization test comment. Journal of the American Sta-
tistical Association, 75(371), 591–593.

Rubin, D. B. (1986). Comment: Which ifs have causal answers. Journal of
the American Statistical Association, 81(396), 961–962.

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the
American statistical Association, 91(434), 473–489.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81).
John Wiley & Sons.

Rudolph, C. (2003). Security and the political economy of international
migration. American Political Science Review, 97(4), 603–620.

Rudolph, C. (2006). National security and immigration: Policy development in
the united states and western europe since 1945. Stanford University
Press.

Rungi, A., Morrison, G., & Pammolli, F. (2017). Global ownership and
corporate control networks. IMT Lucca EIC WP Series, 7.

Saito, K., Nakano, R., & Kimura, M. (2008). Prediction of information dif-
fusion probabilities for independent cascade model, In Interna-
tional conference on knowledge-based and intelligent information and
engineering systems. Springer.

Sandler, D., Wilcox, A., & Everson, R. (1985). Cumulative effects of life-
time passive smoking on cancer risk. The Lancet, 325(8424), 312–
315.

Saracco, F., Di Clemente, R., Gabrielli, A., & Squartini, T. (2015). Ran-
domizing bipartite networks: The case of the world trade web.
Scientific reports, 5, 10595.

Sattar, N., & Preiss, D. (2017). Reverse causality in cardiovascular epi-
demiological research: More common than imagined? Am Heart
Assoc.

Schmid, S. D., & Helbling, M. (2016). Validating the immigration policies in
comparison (impic) dataset (tech. rep.). WZB Discussion Paper.

294



Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani,
A., & White, D. R. (2009). Economic networks: The new chal-
lenges. science, 325(5939), 422–425.

Segal, N. A., Hein, J., & Basford, J. R. (2004). The effects of pilates train-
ing on flexibility and body composition: An observational study.
Archives of physical medicine and rehabilitation, 85(12), 1977–1981.

Senn, S. (1989). Covariate imbalance and random allocation in clinical
trials. Statistics in Medicine, 8(4), 467–475.

Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic net-
works. Journal of the American Statistical Association, 110(512), 1646–
1657.

Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., & Hemingway, H.
(2014). Comparison of random forest and parametric imputation
models for imputing missing data using mice: A caliber study.
American journal of epidemiology, 179(6), 764–774.
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