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Abstract

Efficient first-order algorithms for large-scale distributed op-
timization is the main subject of investigation in this thesis.
The algorithms considered cover a wide array of applications
in machine learning, signal processing and control.
In recent years, a large number of algorithms have been in-
troduced that rely on (possibly a reformulation of) one of the
classical splitting algorithms, specifically forward-backward,
Douglas-Rachford and forward-backward-forward splittings.
In this thesis a new three term splitting technique is devel-
oped that recovers forward-backward and Douglas-Rachford
splittings as special cases. In the context of structured opti-
mization, this splitting is leveraged to develop a framework
for a large class of primal-dual algorithms providing a uni-
fied convergence analysis for many seemingly unrelated al-
gorithms. Moreover, linear convergence is established for all
such algorithms under mild regularity conditions for the cost
functions.
As another notable contribution we propose a randomized
block-coordinate primal-dual algorithm that leads to a fully
distributed asynchronous algorithm in a multi-agent model.
Moreover, when specializing to multi-agent structured opti-
mization over graphs, novel algorithms are proposed. In ad-
dition, it is shown that in a multi-agent model bounded com-
munication delays are tolerated by primal-dual algorithms
provided that certain strong convexity assumptions hold.
In the final chapter we depart from convex analysis and con-
sider a fully nonconvex block-coordinate proximal gradient
algorithm and show that it leads to nonconvex incremental
aggregated algorithms for regularized finite sum and sharing
problems with very general sampling strategies.
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Chapter 1

Introduction

One of the main goals of current distributed optimization research is
to develop easy-to-implement iterative schemes for structured problems.
To this end, proximal algorithms have become the standard tool; they
are suitable for large-scale, nonsmooth problems with different compu-
tational models. These methods operate by splitting the original problem
into simpler subproblems that involve one function at a time and can of-
ten be solved efficiently. The most widely used proximal algorithms are
the proximal gradient and Douglas-Rachford methods that are based on
the classical two term splittings, forward-backward splitting (FBS) and
Douglas-Rachford splitting (DRS).

Consider the structured convex optimization problem

minimize
x∈�n

ϕ(x) � f (x) + g(x) + h(Lx), (1.1)

where L is a linearmapping, g and h are extended-real-valuednonsmooth
functions, and f is continuously differentiable with Lipschitz continuous
gradient. The proximal gradient method solves (1.1) when h ◦ L ≡ 0, and
theDouglas-Rachford algorithm solves itwhen f ≡ 0 and L is the identity.
The idea here is that in many applications (1.1) is formulated such that
the proximal mappings (cf. to §1.2.6) of g and h are easy to compute
(refer to [14, §6 and §7], [49, 130] for extensive lists of common proximable
functions) but this is not the case for g+h◦L or f +h◦L. In fact, in general
even the proximal mapping of h ◦ L cannot be efficiently computed based
on that of h. Therefore, having algorithms for the sum of more terms
would allow us to effectively tackle larger classes of applications.

A recent trend for solving problem (1.1), possibly with the smooth
term f ≡ 0 or the nonsmooth term g ≡ 0, is to solve the monotone
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inclusion defined by the primal-dual optimality conditions [38, 67, 31, 50,
53, 170, 62, 96, 32]. The popularity of this approach is mainly due to the
fact that it results in fully split primal-dual algorithms, in the sense that
the proximal mappings of g and h, the gradient of f , the linear mapping
L and its adjoint are evaluated individually. In particular, there are no
matrix inversions or inner loops involved.

Different convergence analysis techniques have been proposed in
the literature for primal-dual algorithms. Some can be viewed as in-
telligent applications of classical splitting methods such as forward-
backward splitting (FBS), Douglas-Rachford splitting (DRS) and forward-
backward-forward splitting (FBFS), see for example [170, 53, 31, 27, 50],
while others employ different tools to show convergence [38, 84, 62, 39].
Convergence rates of primal-dual schemes have also been analyzed using
different approaches, see for example [104, 55, 113, 39].

Our approach here is a systematic one and relies on first introducing
a new three term operator splitting method, asymmetric forward-backward-
adjoint (AFBA) splitting that is designed for solving monotone inclusions
involving the sum of three terms, a maximally monotone, a cocoercive
and a bounded linear operator. While AFBA cannot be recovered from
existing operator splitting methods, classical splittings DRS and FBS are
its special cases. These are discussed in detail in Section 2.3. In Chapter
3 we develop a simple primal-dual framework (cf. Alg. 3.1) for problems
of the form (1.1) by solving the primal-dual optimality conditions using
the splitting method AFBA. Based on this approach one can obtain a
wide range of algorithms by selecting different values for two scalar
parameters θ and µ (cf. Alg. 3.1). Many of the resulting algorithms are
new, while some extend previously proposed algorithms and/or result
in less conservative stepsize conditions. Figure 1.1 provides an overview
of several prominent special cases. The function l, stepsizes and other
parameters are defined in Section 3.2 for the more general problem (3.1).
These special cases are implemented in the open-source Julia Package
ProximalAlgorithms1 as primal-dual AFBA solver.

Next, let us consider some motivating examples most of which are
revisited throughout this thesis. Many machine learning applications
involve solving empirical risk minimizations (ERM) of the form

minimize
x∈�n

1
N

N∑
i�1
L(bi , 〈ai , x〉) + λΩ(x), (1.2)

1https://github.com/kul-forbes/ProximalAlgorithms.jl
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Algorithm 3.1

IISPCAPPDCA

dual
PDCA

DCAPPCA

SDCADRS-type

dual

Vũ-Condat
[53,170] He-Yuan [84]

Chambolle-
 Pock [38]

Briceño-Arias
 Combettes [31]

Drori-Sabach-
 Teboulle [62]TriPD[95]

Figure 1.1: Algorithm 3.1 and its special cases

where Ω is a regularizer (e.g., `1 norm or `2 norm, elastic net, etc), λ
is a positive constant and the pair (ai , bi) represents the ith data. The
loss function denoted by L measures the mismatch of the model and
the observed data. This formulation includes many important problems
such as LASSO, logistic regression, SVM [83, 152]. Clearly, the ERMprob-
lem (1.2) can be written in the form of (1.1) by setting g(x) � λΩ(x),
h(u) � 1

N
∑N

i�1 L(Yi , ui) (where u � (u1 , u2 , . . . , uN )) representing the
loss function with the rows of L consisting of a>i , and f ≡ 0. When the
loss function is smooth onemay choose to represent it using f and setting
h ◦ L � 0.

Another popular example in machine learning is the dual support
vector machine problem [83]

minimize
α1 ,...,αN

1
2 ‖

N∑
i�1

αi bi ai ‖2 −
N∑

i�1
αi (1.3a)

subject to 0 ≤ αi ≤ C, i � 1, . . . ,N (1.3b)
N∑

i�1
αi bi � 0. (1.3c)

This problem can be written in the form of (1.1) by letting f represent
the quadratic cost, g the indicator of box [0, C]N , h the indicator of zero,
and L � b> where b � (b1 , . . . , bN ). This problem is used in Section 3.5 to
compare the performance of several primal-dual algorithms.
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Total variation denoising is another popular problem encountered in
image processing applications [145, 37, 54]:

minimize
x∈�n

1
2 ‖Ax − b‖2 + λ‖Dx‖1,2

subject to x ∈ C

where D is the discrete gradient operator, ‖ · ‖1,2 is the `1,2 norm, and C
enforces prior information on the target image, e.g., the pixels being in
the range [0, 255]. This problem is written in the form of (1.1) by setting
f (x) � 1

2 ‖Ax − b‖2, g the indicator function of the set C, h(x) � ‖ · ‖1,2,
and L � D.

Model predictive control (MPC) is another application that can be
formulated as in (1.1); the quadratic cost function may be represented by
the smooth term f , the input and state constraints by g as the indicator
function of the corresponding set, and the linear dynamics by h ◦ L.
Therefore, the resulting algorithm would involve simple matrix-vector
products, and projection onto boxes and points.

Note that in many of the applications considered in this thesis we
are interested in distributed algorithms in a multi-agent setting where a
group of “agents” solve a minimization problem cooperatively. For ex-
ample, in distributed MPC one may have several physically separate sys-
tems/agents each with its own dynamics who share a common goal, or
in an ERM problem the data may be stored across multiple machines. A
distributed algorithmwould entail local computations by the systems/a-
gents, and exchange of information with other agents.

Distributed algorithms are often derived by simply formulating a
given problem in the form of (1.1) in such a way that solving it using a
proximal algorithm (e.g., one of the special cases of Algorithm 3.1) results
in a desired distributed implementation. Let us clarify by considering as
an example the problem of minimizing a finite sum problem:

minimize
x∈�n

N∑
i�1

fi(x),

where fi are convex continuously differentiable functions with Lipschitz-
continuous gradient. In order to solve this problem in a distributed way
over a network of agents, one may consider the equivalent problem

minimize
x1 ,...,xN∈�n

N∑
i�1

fi(xi), subject to xi � x j (i , j) ∈ E ,
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where E denotes the edge set of an underlying graph structure. We have
effectively introduced slack variables for each agent in order to decou-
ple the cost. The two problems are equivalent as long as the graph
is connected. This problem can be written in the form of (1.1) with
f (x) � ∑N

i�1 fi(xi), and g ≡ 0, h the indicator of vector of zeros (of ap-
propriate dimension), and L � B> ⊗ In with B representing the oriented
node-arc incidence matrix (cf. §6.2 for details). Solving this problem with
any of the special cases of Algorithm 3.1 results in schemes where the ith
agent performs gradient operations on fi , as well as some consensus-type
updates using variables that it exchanges with relevant agents (neigh-
bors). In such an algorithm, fi (which may represent private data) does
not need to be shared with other agents. This type of problem is studied
in detail in Chapter 6.

Our focus so far has been on methods that split the cost function
as the sum of several functions, with iterations that involve gradient
or proximal operations on each function separately. However, in many
large-scale applications updating the variables only after a full gradient
or proximal update may be too costly, slow or physically infeasible. A
simple and powerful idea is instead to update a subset of coordinates at
every iteration. These methods are hereafter broadly referred to as block
coordinate (BC) methods. BCmethods have a long history and have been
studied under various settings [19, 163, 166, 125, 15, 25, 106, 51, 22, 14].

In the context of multi-agent optimization, randomized BC methods
admit updates that involve random activation of (subsets of) agents to
perform local updates. These are sometimes referred to as asynchronous
[88, 22, 134]. In this sense, occasionally, we also use the terminology
synchronous to emphasize that at each clock tick all agents must perform
their tasks and the iteration cannot proceed if any agent fails to do so.
Note that this notion of asynchrony is quite different from the notions of
partial and total asynchrony introduced in [20], since the information used
by each agent must be up to date. We defer further details about notions
of asynchrony and common computational models to Section 7.1.

Another interesting application of the BC framework is studied in
Chapter 8 in the context of nonconvex optimization. It is shown that BC
proximal gradient updates with a nonseparable nonsmooth term lead to
stochastic and incremental methods for regularized finite sum and shar-
ing problems. The analysis of this chapter is a departure from previous
chapters where monotone operator theory and Fejér monotonicity made
upmost of the narrative. The Lyapunov function typically used in the con-
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vergence analysis of the nonconvex proximal gradient method is the cost
function; however, in the BC setting with nonseparable nonsmooth term
even in expectation it does not necessarily decrease along the trajectories.
Instead we show that the forward-backward envelope (FBE) [132, 158] is
a suitable Lyapunov function.

1.1 Overview of the thesis

We briefly describe the structure and content of the chapters. In Chapter
2 a three term operator splitting method, asymmetric forward-backward-
adjoint splitting (AFBA) is introduced. Its convergence rate is studied
under different assumptions and some prominent special cases are dis-
cussed. As depicted in Figure 1.2 this splitting is instrumental in the
developments of the subsequent five chapters. In particular, as discussed
above, in Chapter 3 a general primal-dual framework is developed (see
Fig. 1.1) that relies on solving the primal-dual optimality conditions us-
ing AFBA. Moreover, in Section 3.4.1 linear convergence is established
for all the special cases under mild regularity assumptions for the cost
functions.

Chapters 2 and 3 are based on:
Latafat, P., and Patrinos, P. Asymmetric forward–backward–adjoint splitting
for solving monotone inclusions involving three operators. Computational Opti-
mization and Applications 68, 1 (Sep 2017), 57–93.

Latafat P., Patrinos P., Primal-Dual Proximal Algorithms for Structured Con-
vex Optimization: A Unifying Framework, in Chapter 5 of Large-Scale and
Distributed Optimization, (Giselsson P., and Rantzer A., eds.), vol. 2227 of
Lecture Notes inMathematics, Springer International Publishing, 2018, pp.
97-120.

In Chapter 4 a randomized block-coordinate primal-dual algorithm
is introduced. The proposed algorithm features linear convergence rate
when the functions involved are either piecewise linear-quadratic, or
when they satisfy certain quadratic growth conditions. The developed al-
gorithm is applied to the problemofmulti-agent optimization on a graph,
resulting in novel synchronous and asynchronous distributed methods.
The proposed algorithms are fully distributed in the sense that the up-
dates and the stepsizes of each agent only depend on local information.
In fact, no (prior) global coordination is required. We showcase an ap-
plication of our algorithm in distributed formation control. Moreover, as
another application in Chapter 5 the problem of distributed model pre-
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Chapter 5
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Chapter 7

Convex Optimization

Nonconvex Optimization

Chapter 8

Monotone Inclusion

Distributed Applications

Figure 1.2: Overview of the chapters

dictive control (DMPC) with coupling in the dynamics of the systems is
considered. The resulting scheme does not require strong convexity, in-
volves one round of communication at every iteration and allows a plug-
and-play implementation where addition or removal of a subsystem only
affects the neighboring nodes without the need for global coordination.

Chapter 4 is based on:
Latafat, P., Freris, N. M., and Patrinos, P. A new randomized block-coordinate
primal-dual proximal algorithm for distributed optimization. IEEE Transactions
on Automatic Control 64, 10 (10 2019), 4050–4065.

Chapter 5 is based on:
Latafat, P., Bemporad, A., and Patrinos, P. Plug and play distributed model
predictive control with dynamic coupling: A randomized primal-dual proximal al-
gorithm. In European Control Conference (ECC) (June 2018), pp. 1160–1165.

Chapter 6 considers a network of agents, eachwith its ownprivate cost
consisting of the sum of two possibly nonsmooth convex functions, one of
which is composed with a linear operator. At every iteration each agent
performs local calculations and can only communicate with its neigh-
bors. The goal is to minimize the aggregate of the private cost functions
and reach a consensus over a graph. A special case of AFBA is used to
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develop a primal-dual algorithm for solving this minimization over the
communication graph. It is demonstrated through computational exper-
iments how suitably selecting the parameters of our algorithm can lead
to larger stepsizes and yield better performance.

Chapter 6 is based on:
Latafat, P., Stella, L., and Patrinos, P. New primal-dual proximal algorithm for
distributed optimization. In 55th IEEE Conference on Decision and Control
(CDC) (Dec 2016), pp. 1959–1964.

Chapter 7 considers primal-dual algorithms over message-passing
(multi-agent) architectures with communication delays. It is assumed
that the delay with respect to each neighbor is bounded but otherwise ar-
bitrary. The global optimization problem is the aggregate of the local cost
functions and a common Lipschitz differentiable function.When the cou-
pling between agents is represented only through the common function,
the primal-dual algorithm proposed by Vũ and Condat [170, 53] is em-
ployed. In the case when the linear maps introduce additional couplings
between agents a new algorithm is developed. Moreover, a randomized
variant of this algorithm is presented that allows the agents to wake up
at random and independently from one another. The convergence of the
proposed algorithms is established under strong convexity assumptions.

Chapter 7 is based on:
Latafat P. and Patrinos. P. Primal-dual algorithms for multi-agent structured
optimization over message-passing architectures with bounded communication
delays (submitted 2019).

Chapter 8 deals with block-coordinate proximal gradient methods for
minimizing the sum of a separable smooth function and a (nonsepara-
ble) nonsmooth function, both of which are allowed to be nonconvex. The
main tool in our analysis is the forward-backward envelope (FBE), which
serves as a particularly suitable continuous and real-valued Lyapunov
function. Global and linear convergence results are established when
the cost function satisfies the Kurdyka-Łojasiewicz property without im-
posing convexity requirements on the smooth function. Two prominent
special cases of the investigated setting are regularized finite sum mini-
mization and the sharing problem; in particular, an immediate byproduct
of our analysis leads to novel convergence results and rates for the popu-
lar Finito/MISO algorithm in the nonsmooth and nonconvex settingwith
very general sampling strategies.

Chapter 8 is based on:
Latafat P., Themelis A. and Patrinos P. Block-coordinate and incremental ag-
gregated proximal gradient methods for nonsmooth nonconvex problems.
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1.2 Preliminary material
In this section we recap some standard definitions and results that are
used throughout the thesis [143, 13, 144, 18, 14].

The set of real numbers is denoted by �. The set of extended real
numbers is defined as � � � ∪ {∞}. We denote (a , b) B {x | a < x <
b} where a, b can be taken to be ±∞, and square brackets [a , b] when
equality is allowed in the definition. Intervals (a , b] and [a , b) are defined
accordingly.

1.2.1 Vector notation
We denote by�n the standard n-dimensional Euclidean space with inner
product 〈·, ·〉 and induced norm ‖ · ‖. For w � (w1 , . . . ,wN ) ∈ �n , wi ∈ �ni

is used to denote its i-th (block) coordinate.
The sets of symmetric, symmetric positive semi-definite and sym-

metric positive definite n-by-n matrices are denoted by Sn , Sn
+ and Sn

++,
respectively. We also write P � 0 and P � 0 for P ∈ Sn

+ and P ∈ Sn
++,

respectively. For P ∈ Sn
++ we define the scalar product 〈x , y〉P � 〈x , P y〉

and the induced norm ‖x‖P �
√
〈x , x〉P . The identity matrix is denoted

by In ∈ �n×n ; we write I when no ambiguity occurs.

1.2.2 Sequences

We use the notation (wk)k∈I to denote a sequence with indices in the
set I ⊆ �. Occasionally, when dealing with scalar sequences we use the
subscript notation (γk)k∈I .

Definition 1.1 (Fejér monotonicity). A sequence (wk)k∈� is said to be Fejér
monotone with respect to a nonempty setU ⊆ �n if for all v ∈ U and all k ∈ �

‖wk+1 − v‖ ≤ ‖wk − v‖.
It is said to be quasi-Fejér monotone with respect toU ⊆ �n if for all v ∈ U ,
there exists a summable nonnegative sequence (εk)k∈� such that for all k ∈ �

‖wk+1 − v‖2 ≤ ‖wk − v‖2 + εk .
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Moreover, given S ∈ Sn
++, we say that a sequence is S-(quasi)-Fejér monotone

with respect toU ⊆ �n if it is (quasi)-Fejér monotone with respect toU in the
space equipped with 〈·, ·〉S.

We use the following notions of linear convergence:

• A sequence (wk)k∈� is said to converge to a point w? (at least) Q-
linearly (with quotient rate) with Q-factor given by σ ∈ (0, 1), if there
exists k0 ∈ � such that for all k ≥ k0,

‖wk+1 − w?‖ ≤ σ‖wk − x?‖.

• A sequence (wk)k∈� is said to converge to a point w? (at least) R-
linearly (with root rate) if there exists a sequence of nonnegative
scalars (vk)k∈� such that ‖wk − w?‖ ≤ vk and (vk)k∈� converges
Q-linearly to zero.

1.2.3 Functions and operators

An operator (or set-valued mapping) F : �n ⇒ �d maps each point
x ∈ �n to a subset Fx of �d . We denote the domain of F by

dom F B {x ∈ �n | Fx , ∅},
its graph by

gra F B {(x , y) ∈ �n ×�d | y ∈ Fx},
the set of its zeros by zer F B {x ∈ �n | 0 ∈ Fx}, and the set of its fixed
points by fix F B {x | x ∈ Fx}. The inverse of F is defined through its
graph: gra F−1 B {(y , x) | (x , y) ∈ gra F}. The resolvent of F is defined by
JF B (id + F)−1, where id denotes the identity operator. The mapping F
is called monotone if for all (x , y), (x′, y′) ∈ gra F

0 ≤ 〈x − x′, y − y′〉,
and is said to be maximally monotone if its graph is not strictly contained
in the graph of another monotone operator. The mapping F is said to be
nonexpansive if for all (x , y), (x′, y′) ∈ gra F

‖y − y′‖ ≤ ‖x − x′‖ ,
and firmly nonexpansive if

‖y − y′‖2 ≤ ‖x − x′‖2 − ‖(x − y) − (x′ − y′)‖2.
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The resolvent JF is firmly nonexpansive (with dom JF � �n) if and only
if F is (maximally) monotone [13, Prop. 23.8].

Operator F is outer semicontinuous (osc) at x̄ ∈ dom F if

limsup
x→x̄

Fx B {y | ∃xk → x̄ , ∃yk → y with yk ∈ Fxk} ⊆ Fx̄. (1.4)

Operator F is osc everywhere if and only if its graph is closed in�n ×�d .
Next, let us define the notion of metric subregularity which is used

throughout the thesis for establishing linear convergence. Metric subreg-
ularity is a “one-point”versionofmetric regularity.We refer the interested
reader to [61, §3] and [144, §9] for further discussion.

Definition 1.2 (metric subregularity). A set-valued mapping F : �n ⇒ �d

ismetrically subregular at x̄ for ȳ if (x̄ , ȳ) ∈ gra F and there exists a positive
constant η together with a neighborhood of subregularityU of x̄ such that

dist(x , F−1 ȳ) ≤ η dist( ȳ , Fx) ∀x ∈ U . (1.5)
If the following stronger condition holds

‖x − x̄‖ ≤ η dist( ȳ , Fx) ∀x ∈ U , (1.6)

then F is said to be strongly subregular at x̄ for ȳ.
Moreover, we say that F is globally (strongly) subregular at x̄ for ȳ if (strong)

subregularity holds withU � �n .

Definition 1.3 (cocoercivity). An operator C : �p → �p is said to be cocoer-
cive with respect to ‖ · ‖V with V ∈ Sp

++ if for all z , z′ ∈ �p

〈Cz − Cz′, z − z′〉 ≥ ‖Cz − Cz′‖2V−1 . (1.7)

For an extended-real-valued function f : �n → �, its domain is the set

dom f B {x ∈ �n | f (x) < ∞}.
Function f is said to be proper if its domain is a nonempty set. The
epigraph of f is

epi f B {(x , α) ∈ �n ×� | f (x) ≤ α},
and f is said to be closed if epi f is a closed set in �n+1. For any α ∈ �,
α-(sub)level set of f is

lev≤α f B {x ∈ �n | f (x) ≤ α}.
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Function f is called lower semicontinuous (lsc) at x̄ ∈ �n if

f (x̄) ≤ lim inf
x→x̄

f (x).

It is called lsc if it is lsc at all points �n . For extended-real-valued func-
tions, lower semicontinuity, closedness, and all level sets being closed are
equivalent [144, Thm 1.6].

The indicator function of a set X ⊆ �n is given by

δX(x) B
{
0 if x ∈ X
+∞ if x < X.

The indicator function δX is closed if and only if X is a closed set. The
projection onto and the distance from X with respect to ‖ · ‖V are denoted
by

PV
X(z) B argmin

w∈X
{‖w − x‖V }, distV (z ,X) B inf

x∈X
{‖z − x‖V },

respectively. The absence of super/subscript V implies the same defini-
tions with respect to the canonical norm.

A set X ⊆ �n is said to be polyhedral if it can be expressed as the
intersection of finitely many closed half-spaces and/or hyperplanes.

An important class of functions prevalent in optimization is the class
of piecewise linear-quadratic (PLQ) functions, which is closed under scalar
multiplication, addition, conjugation and Moreau envelope [144].

Definition 1.4 (piecewise linear-quadratic). A function f : �n → � is
called piecewise linear-quadratic (PLQ) if its domain can be represented as the
union of finitely many polyhedral sets, and in each such set f (x) is given by an
expression of the form 1

2 〈x ,Qx〉 + 〈d , x〉 + c, for some c ∈ �, d ∈ �n , and
Q ∈ Sn .

1.2.4 Subgradients

Let f : �n → � be a proper lsc function. Then, v ∈ �n is a regular
subgradient of f at x̄ if

lim inf
x→x̄
x , x̄

f (x) − f (x̄) − 〈v , x − x̄〉
‖x − x̄‖ ≥ 0.
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The set of all regular subgradient of f at x̄ is called the subdifferential of
f at x̄ and is denoted by ∂̂ f (x̄). The regular subdifferential is closed and
convex.

A vector v ∈ �n is a (limiting) subgradient of f at x̄ ∈ dom f if there
exists sequences xk → x̄ with f (xk) → f (x̄), and vk → v such that
vk ∈ ∂̂ f (xk). The set of all subgradients of f at x̄ is called the limiting
subdifferential of f at x̄ and is denoted ∂ f (x̄). Local minimizers of f are
characterized by the following extension of Fermat’s rule [144, Thm. 10.1].

Lemma 1.5. Let f : �n → � be a proper lsc function. If f has a local minimum
at x̄, then 0 ∈ ∂̂ f (x̄). If f is also convex, then this condition is equivalent to
x̄ ∈ argmin f .

The regular and limiting subdifferentials coincide with the usual no-
tion of subdifferential for convex functions [144, Prop. 8.12].

Lemma 1.6. Let f : �n → � be a proper lsc convex function. For any x ∈
dom f

∂ f (x) � ∂̂ f (x) � {y ∈ �n | ∀z ∈ �n , 〈z − x , y〉 + f (x) ≤ f (z)}.

We conclude by noting that if f is a proper lsc convex function, then
∂ f is maximally monotone [143, Cor. 31.5.2].

1.2.5 Conjugate functions and infimal convolution

The Fenchel conjugate of an extended-real-valued function f : �n → �,
denoted f ∗, is defined by

f ∗(v) B sup
x∈�n
{〈v , x〉 − f (x)}.

The conjugate function f ∗ is lsc and convex. The Fenchel-Young inequality
states that for all x , u ∈ �n

〈x , u〉 ≤ f (x) + f ∗(u).
In the special case when f �

1
2 ‖ · ‖2V for some symmetric positive definite

matrix V , this gives:

〈x , u〉 ≤ 1
2 ‖x‖2V +

1
2 ‖u‖2V−1 . (1.8)
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The infimal convolutionof twoproper extended-real-valued functions f , g :
�n → � is defined by

( f � g)(x) B inf
z∈�n
{ f (z) + g(x − z)},

and the conjugate of the infimal convolution is given by

( f � g)∗ � f ∗ + g∗.

1.2.6 Proximal mappings and Moreau envelopes

For a proper lsc function f : �n → �andV ∈ Sn
++, theV-proximalmapping

of f is defined as the following set-valued mapping

proxV
f (x) B argmin

w∈�n
{ f (w) + 1

2 ‖x − w‖2V }.

When V � γ−1In is a multiple of the identity matrix In , the notation
proxγ f is typically used and γ is referred to as a stepsize. The value
function associated to the minimization defining the proximal mapping
is theMoreau envelope

f V (x) B min
w∈�n

{
f (w) + 1

2 ‖w − x‖2V
}
.

Function f is called prox-bounded if f +
1

2γ ‖ · ‖2 is lower bounded for
some γ > 0. The supremum of the set of all such γ is the threshold γ f of
prox-boundedness for f .

If f is a proper lsc convex function, then the V-proximal mapping is
uniquely determined by the resolvent of V−1∂ f :

proxV
f (x) � (id + V−1∂ f )−1x ,

and the Moreau decomposition is given by

proxV−1

f (x) + V proxV
f ∗(V−1x) � x.
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Chapter 2

Asymmetric forward-backward-adjoint
splitting

This chapter is based on:
Latafat, P., and Patrinos, P. Asymmetric forward–backward–adjoint split-

ting for solving monotone inclusions involving three operators. Computational
Optimization and Applications 68, 1 (Sep 2017), 57–93.

2.1 Introduction

The focus of this chapter is on solving monotone inclusion problems of
the form

0 ∈ Ax + Mx + Cx , (2.1)

where A is a maximally monotone operator, M is a bounded linear op-
erator and C is cocoercive. The most well known algorithms for solv-
ing monotone inclusion problems are forward-backward (FBS), Douglas-
Rachford (DRS) and forward-backward-forward (FBFS) splittings [118,
108, 49, 130, 29, 162]. The operator splitting schemes FBS and DRS are
not well suited to handle (2.1) since they are designed for monotone in-
clusions involving the sum of two operators. The FBFS can solve (2.1) by
considering M +C as one Lipschitz continuous operator. However, being
blind to the fact that C is cocoercive, it would require two evaluations of
C per iteration. Many other variations of the three main splittings have
been proposed over time that can be seen as intelligent applications of
these classical methods (see for example [30, 38, 31, 170, 53]).
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In this chapter a new algorithm called asymmetric-forward-backward-
adjoint splitting (AFBA) to solve the monotone inclusion (2.1), without
resorting to any kind of reformulation of the problem. One important
property of AFBA is that it includes asymmetric preconditioning. This
gives great flexibility to the algorithm, and indeed it is the key for re-
covering and unifying existing primal-dual proximal splitting schemes
for convex optimization and devising new ones. More importantly, it can
deal with problems involving three operators, one of which is cocoercive.
It is observed that FBS, DRS, and the Proximal Point Algorithm (PPA) can
be derived as special cases of our method. Another notable special case
is the method proposed by Solodov and Tseng for variational inequal-
ities in [151, Alg. 2.1]. Moreover, when the cocoercive term C is absent
in (2.1), in a yet another special case it coincides with the FBFS when its
Lipschitz operator is skew-adjoint. Recently, a new splitting scheme was
proposed in [58] for solving monotone inclusions involving the sum of
three operators, one of which is cocoercive. This method can be seen as
Douglas-Rachford splitting with an extra forward step for the cocoercive
operator. As a special case of our scheme, we propose an algorithm that
also bears heavy resemblance to the classic Douglas-Rachford splitting
with an extra forward step (see Algorithm 2.2). The proposed algorithm
differs from that of [58], in that the forward step precedes the two back-
ward updates.

As another contribution, big-O(1/(k + 1)) and little-o(1/(k + 1)) con-
vergence rates are derived for AFBA (see Theorem 2.3). It is observed that
in many cases these convergence rates are guaranteed under mild condi-
tions. In addition, under metric subregularity of the underlying operator,
linear convergence is guaranteed without restrictions on the parameters
(see Theorem 2.4). Given that AFBA generalizes a wide range of algo-
rithms, this analysis provides a systematic way to deduce convergence
rates for many algorithms.

Notation: In this section, we consider real Hilbert spaces. We denote
the scalar product and the induced norm of a Hilbert space by 〈·, ·〉
and ‖ · ‖ respectively. Let H and G be real Hilbert spaces. We denote
by B(H ,G) the space of bounded linear operators from H to G and
set B(H) � B(H ,H). The space of self-adjoint operators is denoted by
S(H) � {L ∈ B(H)|L � L∗}, where L∗ denotes the adjoint of L. The
Loewner partial ordering on S(H) is denoted by �. Let τ ∈]0,+∞[ and
define the space of τ-strongly positive self-adjoint operators by Sτ(H) �
{U ∈ S(H)|U � τid}. For U ∈ Sτ(H), define the scalar product and
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the norm by 〈x , y〉U � 〈x ,U y〉, and ‖x‖U �
√
〈x ,Ux〉. We also define the

Hilbert spaceHU by endowingH with the scalar product 〈x , y〉U .
All other preliminary definitons and notations in Section 1.2 extend

directly to real Hilbert spaces considered in this chapter.

2.2 Asymmetric forward-backward-adjoint
splitting

LetH be a real Hilbert space and consider the problem of finding z ∈ H
such that

0 ∈ Tz where T B A + M + C, (2.2)

where operators A, M, C satisfy the following assumption:

Assumption 2.I. Throughout the chapter the following hold:

(i) Operator A : H ⇒ H is maximally monotone and M ∈ B(H) is
monotone.

(ii) Operator C : H → H is β-cocoercive with respect to ‖ · ‖P , where
β ∈]1/4,+∞) and P ∈ Sρ(H) for some ρ ∈ (0,∞), i.e.,

(∀z ∈ H)(∀z′ ∈ H) 〈Cz − Cz′, z − z′〉 ≥ β‖Cz − Cz′‖2P−1 .

It is important to notice that the freedom in choosing P is a crucial part
of ourmethod. InAssumption2.I(ii)we consider cocoercivitywith respect
to ‖ · ‖P with β ∈]1/4,+∞). However, this is by no means a restriction of
our setting; another approach would have been to consider cocoercivity
with respect to the canonical norm ‖ · ‖ with β ∈]0,+∞) but this would
lead to statements involving ‖P‖ and ‖P−1‖. Indeed convergence with
respect to ‖ · ‖ and ‖ · ‖P are equivalent but in using ‖ · ‖P we simplify the
notation substantially.

In addition, let S be a strongly positive, self-adjoint operator, K ∈
B(H) a skew-adjoint operator, i.e., K∗ � −K, H � P + K and (λk)k∈� is a
sequence satisfying (2.5). Then, the algorithm for solving the monotone
inclusion described above is as follows:
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Algorithm 2.1Asymmetric Forward-Backward-Adjoint Splitting (AFBA)

Inputs: z0 ∈ H
for k � 0, 1, . . . , do

z̄k � (H + A)−1(H −M − C)zk

z̃k � z̄k − zk

αk �
λk ‖ z̃k ‖2P

‖(H + M∗)z̃k ‖2S−1

zk+1 � zk + αkS−1(H + M∗)z̃k

Before proceeding with the convergence analysis let us define

D � (H + M∗)∗S−1(H + M∗). (2.3)

Since P ∈ Sρ(H) for some ρ ∈ (0,∞), K is skew-adjoint, and M ∈ B(H)
is monotone, it follows that 〈(H + M∗)z , z〉 ≥ ρ‖z‖2 for all z ∈ H , and we
have

(∀z ∈ H) 〈z ,Dz〉 � ‖(H + M∗)z‖2S−1 ≥ ρ2‖S‖−1‖z‖2. (2.4)

Hence, D ∈ Sν(H) with ν � ρ2‖S‖−1. Notice that the denominator of αk
in Algorithm 2.1 is equal to the left hand side of (2.4) for z � z̃k and thus
it is bounded below by ρ2‖S‖−1‖ z̃k ‖2.

2.2.1 Convergence analysis
In this section we analyze convergence and rate of convergence of Al-
gorithm 2.1. We also consider a special case of the algorithm in which
it is possible to relax strong positivity of P to positivity. We begin by
stating our main convergence result. The proof relies on showing that the
sequence (zk)k∈� is Fejér monotone with respect to zer(A + M + C) in the
Hilbert spaceH equipped with the scalar product 〈·, ·〉S.
Theorem 2.1. Consider Algorithm 2.1 under Assumption 2.I and assume that
zer(T) , ∅ where T � A + M + C. Let σ ∈ (0,∞), S ∈ Sσ(H), K ∈ B(H) a
skew-adjoint operator, and H � P + K. Let (λk)k∈� be a sequence such that

(λk)k∈� ⊆ [0, δ] with δ � 2− 1
2β , δ > 0, lim inf

k→∞
λk(δ−λk) > 0. (2.5)

Then the following hold:
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(i) (zk)k∈� is S-Fejér monotone with respect to zer(T).
(ii) (z̃k)k∈� converges strongly to zero.

(iii) (zk)k∈� converges weakly to a point in zer(T).
Furthermore, when C ≡ 0 all of the above statements hold with δ � 2.

Proof. The operators Ã � P−1(A+K) and B̃ � P−1(M+C−K) aremonotone
in the Hilbert spaceHP . We observe that

z̄k
� (H + A)−1(H −M − C)zk

� (id + Ã)−1(id − B̃)zk .

Therefore zk − B̃zk ∈ z̄k + Ãz̄k , or −z̃k − B̃zk ∈ Ãz̄k . Since −B̃z? ∈ Ãz? for
z? ∈ zer(T) by monotonicity of Ã onHP we have

〈B̃zk − B̃z? + z̃k , z? − z̄k〉P ≥ 0.

Then,

0 ≤ 〈B̃zk − B̃z? + z̃k , z? − z̄k〉P
� 〈P−1(M + C − K)zk − P−1(M + C − K)z? + z̃k , z? − z̄k〉P .
� 〈(M − K)(zk − z?) + Czk − Cz? + Pz̃k , z? − z̄k〉. (2.6)

On the other hand

〈Czk − Cz?, z? − z̄k〉 � 〈Czk − Cz?, zk − z̄k〉 + 〈Czk − Cz?, z? − zk〉
≤ ε2 ‖ z̃

k ‖2P +
1

2ε ‖Czk − Cz?‖2P−1

+ 〈Czk − Cz?, z? − zk〉

≤ ε2 ‖ z̃
k ‖2P +

(
1 − 1

2εβ

)
〈Czk − Cz?, z? − zk〉.

The first inequality follows from Fenchel-Young inequality for ε
2 ‖ · ‖2P ,

while the second from β-cocoercivity of C with respect to ‖ · ‖P . Set
ε B 1

2β so that

〈Czk − Cz?, z? − z̄k〉 ≤ 1
4β ‖ z̃

k ‖2P . (2.7)

In turn, (2.6), (2.7) and monotonicity of M − K, yield

0 ≤ 〈(M − K)(zk − z?) + Czk − Cz? + Pz̃k , z? − z̄k〉
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≤ 〈(M − K)(zk − z?), z? − zk〉 + 〈(M − K)(zk − z?), zk − z̄k〉
+

1
4β ‖ z̃

k ‖2P + 〈Pz̃k , z? − zk〉 + 〈Pz̃k , zk − z̄k〉

≤ 〈zk − z?, (M∗ + K)(zk − z̄k)〉 + 1
4β ‖ z̃

k ‖2P + 〈Pz̃k , z? − zk〉 − ‖ z̃k ‖2P

� 〈zk − z?,−(M∗ + H)z̃k〉 −
(
1 − 1

4β

)
‖ z̃k ‖2P ,

or equivalently

〈zk − z?, (M∗ + H)z̃k〉 ≤ −
(
1 − 1

4β

)
‖ z̃k ‖2P . (2.8)

For notational convenience define δ B 2− 1
2β . We show that ‖zk − z?‖2S is

decreasing using (2.8) together with step 3 and 4 of Algorithm 2.1:

‖zk+1−z?‖2S � ‖zk − z? + αkS−1(H + M∗)z̃k ‖2S
� ‖zk − z?‖2S + 2αk 〈zk − z?, (H + M∗)z̃k〉 + α2

k ‖(H + M∗)z̃k ‖2S−1

≤ ‖zk − z?‖2S − αkδ‖ z̃k ‖2P + α2
k ‖(H + M∗)z̃k ‖2S−1

� ‖zk − z?‖2S − δλk
‖ z̃k ‖4P

‖(H + M∗)z̃k ‖2S−1

+ λ2
k

‖ z̃k ‖4P
‖(H + M∗)z̃k ‖2S−1

� ‖zk − z?‖2S − λk(δ − λk)‖(H + M∗)z̃k ‖−2
S−1 ‖ z̃k ‖4P (2.9)

� ‖zk − z?‖2S − λk(δ − λk)‖P−1/2S−1/2(H + M∗)z̃k ‖−2
P ‖ z̃k ‖4P

≤ ‖zk − z?‖2S − λk(δ − λk)‖P−1/2S−1/2(H + M∗)‖−2
P ‖ z̃k ‖2P

� ‖zk − z?‖2S − λk(δ − λk)‖S−1/2(H + M∗)P−1/2‖−2‖ z̃k ‖2P . (2.10)

Furthermore, when C ≡ 0 all the above analysis holds with δ � 2.
(i): Inequality (2.10) and (λk)k∈� ⊆ [0, δ] show that (zk)k∈� is S-Fejér

monotone with respect to zer(T).
(ii): From (2.10) and lim inf

k→∞
λk(δ − λk) > 0, it follows that z̃k → 0.

(iii): Define
wk B −(H −M)z̃k

+ Cz̄k − Czk . (2.11)

It follows from (2.11), linearity of H −M, cocoercivity of C and (ii) that

wk → 0. (2.12)
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By step 1 of Algorithm 2.1 we have (H − M − C)zk ∈ (H + A)z̄k , which
together with (2.11) yields

wk ∈ Tz̄k . (2.13)
Now let z be a weak sequential cluster point of (zk)k∈� , say zkq ⇀ z. It
follows from (ii) that z̄kq ⇀ z, and from (2.12) that wkq → 0. Altogether,
by (2.13), the members of the sequence (z̄kq , wkq )q∈� belong to gra(T).
Additionally, by [13, Ex. 20.31, 20.34 and Cor. 25.5(i)], T is maximally
monotone. Then, an appeal to [13, Prop. 20.38(ii)] yields (z , 0) ∈ gra(T).
This together with (i) and [13, Thm. 5.5] completes the proof.

Remark 2.2. It can be shown based on (2.8) that for a constant λn � λ ∈
]0, δ], the fixed-pointmapping behindAlgorithm 2.1 is δ−λλ -strongly quasi-
nonexpansive (SQNE), in the sense of [35, Def. 2.1.38]. It is well known that
an averaged operator is also SQNE. In fact if an operator is λ

δ -averaged
then it is δ−λ

λ -SQNE. But the converse is not true in general. See [35, Fig.
2.10] for an overview of the relation between algorithmic operators.

Equation (2.10) implies that the sequence (mini�1...k ‖ z̃ i ‖2P)k∈�, the cu-
mulative minimum of (‖ z̃k ‖2P)k∈�, converges sublinearly. Next, we derive
big-O(1/(k + 1)) and little-o(1/(k + 1)) convergence rates for the sequence
itself. This is established below, under further restrictions on (λk)k∈�, by
showing that the sequence

(‖ z̃k ‖2D
)

k∈� is monotonically nonincreasing
and summable.

Theorem 2.3 (convergence rates). Consider Algorithm 2.1 under the assump-
tions of Theorem 2.1. Let c1 and c2 be two positive constants satisfying

c1P � D � c2P, (2.14)

with D defined in (2.3). Assume

(λk)k∈� ⊆ ]0, c1δ/c2], (2.15)

where δ is defined in (2.5). Suppose that τ B inf k∈� λk(δ − λk) > 0. Then, the
following convergence estimates hold:

‖ z̃k ‖2D ≤
c2

2
τ(k + 1) ‖z

0 − z?‖2S and ‖ z̃k ‖2D � o(1/(k + 1)).

Proof. Using the monotonicity of A and Step 1 of Algorithm 2.1

0 ≤ 〈(H −M)(zk − zk+1) − H(z̄k − z̄k+1) + Czk+1 − Czk , z̄k − z̄k+1〉.
(2.16)
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On the other hand we have

〈Czk+1 − Czk , z̄k − z̄k+1〉 � 〈Czk+1 − Czk , z̃k − z̃k+1〉
+ 〈Czk+1 − Czk , zk − zk+1〉
≤ ε2 ‖ z̃k − z̃k+1‖2P +

1
2ε ‖Czk+1 − Czk ‖2P−1

+ 〈Czk+1 − Czk , zk − zk+1〉
≤ ε

2 ‖ z̃k − z̃k+1‖2P
+

(
1 − 1

2εβ
) 〈Czk+1 − Czk , zk − zk+1〉.

The first inequality follows from the Fenchel-Young inequality for ε2 ‖ · ‖2P ,
and the second inequality follows from β-cocoercivity of C with respect
to ‖ · ‖P . Set ε � 1

2β so that

〈Czk+1 − Czk , z̄k − z̄k+1〉 ≤ 1
4β ‖ z̃k − z̃k+1‖2P . (2.17)

Using (2.16), (2.17) and monotonicity of M we have

0 ≤ 1
4β ‖ z̃k − z̃k+1‖2P + 〈−M(zk − zk+1) − H(z̃k − z̃k+1), z̄k − z̄k+1〉

�
1

4β ‖ z̃k − z̃k+1‖2P + 〈−M(zk − zk+1) − H(z̃k − z̃k+1), z̃k − z̃k+1〉
+ 〈−M(zk − zk+1) − H(z̃k − z̃k+1), zk − zk+1〉
≤ 1

4β ‖ z̃k − z̃k+1‖2P + 〈−M(zk − zk+1) − H(z̃k − z̃k+1), z̃k − z̃k+1〉
+ 〈−H(z̃k − z̃k+1), zk − zk+1〉 (2.18)

� −
(
1 − 1

4β

)
‖ z̃k − z̃k+1‖2P − 〈(M + H∗)(zk − zk+1), z̃k − z̃k+1〉. (2.19)

It follows from (2.19) and Step 4 of Algorithm 2.1 that
(
1 − 1

4β

)
‖ z̃k − z̃k+1‖2P ≤ 〈−(M + H∗)(zk − zk+1), z̃k − z̃k+1〉

� 〈αk(H + M∗)∗S−1(H + M∗)z̃k , z̃k − z̃k+1〉
≤ 〈αk Dz̃k , z̃k − z̃k+1〉. (2.20)

Let us show that (‖ z̃k ‖2D)k∈� is monotonically nonincreasing. Using the
identity

‖a‖2D − ‖b‖2D � 2〈Da , a − b〉 − ‖a − b‖2D , (2.21)
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we have

‖ z̃k ‖2D − ‖ z̃k+1‖2D � 2〈Dz̃k , z̃k − z̃k+1〉 − ‖ z̃k − z̃k+1‖2D
≥ 2

αk
(1 − 1

4β )‖ z̃k − z̃k+1‖2P − ‖ z̃k − z̃k+1‖2D
≥ c1δ

λk
‖ z̃k − z̃k+1‖2P − ‖ z̃k − z̃k+1‖2D

≥
(

c1δ
c2λk
− 1

)
‖ z̃k − z̃k+1‖2D

where the inequalities follow from (2.20), the definition of αk and (2.14).
Therefore ‖ z̃k ‖2D is nonincreasing as long as (2.15) is satisfied. It follows
from (2.9) and (2.14) that

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − λk(δ − λk)‖(H + M∗)z̃k ‖−2
S−1 ‖ z̃k ‖4P

� ‖zk − z?‖2S − λk(δ − λk)‖ z̃k ‖−2
D ‖ z̃k ‖4P

≤ ‖zk − z?‖2S − c−2
2 λk(δ − λk)‖ z̃k ‖2D .

Summing over k yields
∑∞

i�0λ
i(δ−λi)‖ z̃ i ‖2D ≤ c2

2‖z0 − z?‖2S. Therefore we
have ∑∞

i�0‖ z̃ i ‖2D ≤
c2

2
τ ‖z0 − z?‖2S . (2.22)

On the other hand, since ‖ z̃k ‖2D is nonincreasing, it follows that ‖ z̃k ‖2D ≤
1

k+1
∑k

i�0 ‖ z̃ i ‖2D . Combining this with (2.22) establishes the big-O conver-
gence. The little-o convergence follows from [57, Lem. 3-(1a)].

Recall the notion of metric subregulariy in Definition 1.2. In Theorem
2.4, we derive linear convergence rateswhen the operatorT � A+M+C is
metrically subregular at all z? ∈ zer(T) for 0. Metric subregularity is used
in [104] to show linear convergence of Krasnosel’skiı̌-Mann iterations for
finding a fixed point of a nonexpansive mapping (see Lemma 4.12 and
the preceding discussion).

Theorem 2.4 (linear convergence). Consider Algorithm 2.1 under the as-
sumptions of Theorem 2.1. Suppose that T is metrically subregular at all z? ∈
zer(T) for 0, cf. (1.5). If either H is finite-dimensional or U � H , then
(distS(zk , zer(T)))k∈� converges Q-linearly to zero, (zk)k∈� and (‖ z̃k ‖P)k∈�
converge R-linearly to some z? ∈ zer(T) and zero, respectively.
Proof. It follows from metric subregularity of T at all z? ∈ zer(T) for 0
that

dist(x , zer(T)) ≤ η‖y‖ ∀x ∈ U and y ∈ Tx with ‖y‖ ≤ ν, (2.23)
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for some ν ∈ (0,∞) and η ∈ [0,∞) and a neighborhood U of zer(T).
Consider wk defined in (2.11). It was shown in (2.12) that wk → 0 and
if H is a finite-dimensional Hilbert space, Theorem 2.1(ii)-(iii) yield that
z̄k converges to a point in zer(T). Then there exists k̄ ∈ � such that for
k > k̄ we have ‖wk ‖ ≤ ν and a neighborhood U of zer(T) exists with
z̄k ∈ U (This holds trivially when U � H ). Consequently (2.23) yields
dist(z̄k , zer(T)) ≤ η‖wk ‖. In addition, triangle inequality and Lipschitz
continuity of C yield

‖wk ‖ � ‖Hz̃k −Mz̃k − Cz̄k
+ Czk ‖ ≤ ‖(H −M)z̃k ‖ + ‖Cz̄k − Czk ‖

≤
(
‖H −M‖ + 1

β ‖P‖
)
‖ z̃k ‖.

Consider the projection of z̄k onto zer(T), Pzer(T)(z̄k). By definition ‖ z̄k −
Pzer(T)(z̄k)‖ � dist(z̄k , zer(T)) (the minimum is attained since T is maxi-
mally monotone [13, Proposition 23.39]), and we have

‖zk − Pzer(T)(z̄k)‖ ≤ ‖ z̄k − Pzer(T)(z̄k)‖ + ‖ z̃k ‖ � dist(z̄k , zer(T)) + ‖ z̃k ‖
≤ ξη‖ z̃k ‖ + ‖ z̃k ‖ ≤ (ξη + 1)‖P−1‖1/2‖ z̃k ‖P , (2.24)

where ξ � ‖H −M‖ + 1
β ‖P‖. It follows from (2.24) that

dist2
S(zk ,zer(T))≤ ‖zk−Pzer(T)(z̄k)‖2S≤(ξη+1)2‖P−1‖‖S‖‖ z̃k ‖2P . (2.25)

By definition we have ‖zk − PS
zer(T)(zk)‖S � distS(zk , zer(T)), and since

inequality (2.9) holds for all z? ∈ zer(T), it follows that

dist2
S(zk+1 ,zer(T))≤ ‖zk+1−PS

zer(T)(zk)‖2S
≤‖zk−PS

zer(T)(zk)‖2S−λk(δ−λk)‖(H+M∗)z̃k ‖−2
S−1 ‖ z̃k ‖4P

�dist2
S(zk ,zer(T))−λk(δ−λk)‖(H+M∗)z̃k ‖−2

S−1 ‖ z̃k ‖4P (2.26)

≤dist2
S(zk ,zer(T))−λk(δ−λk)‖S−1/2(H+M∗)P−1/2‖−2‖ z̃k ‖2P (2.27)

≤dist2
S(zk ,zer(T))− λk (δ−λk )

ς dist2
S(zk ,zer(T)),

where ς � (ξη + 1)2‖P−1‖‖S‖‖S−1/2(H + M∗)P−1/2‖2 and in the last in-
equality we used (2.25). It follows from (2.5) that there exists k̃ ∈ �
such that (λk(δ − λk))k>k̃ ⊆ [τ̄,∞) for some τ̄ > 0. Hence, the sequence
(distS(zk , zer(T)))k∈� converges Q-linearly to zero. Thus, R-linear conver-
gence of

(‖ z̃k ‖P
)

k∈� follows from (2.27).
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Step 4 of Algorithm 2.1 and (2.26) yield

‖zk+1 − zk ‖2S � λ2
k ‖(H + M∗)z̃k ‖−2

S−1 ‖ z̃k ‖4P
≤ δ

2

τ̄

(
dist2

S(zk , zer(T)) − dist2
S(zk+1 , zer(T))

)
.

Therefore,
(‖zk+1 − zk ‖S

)
k∈� converges R-linearly to zero. This is equiva-

lent to saying that there exists c ∈ (0, 1), κ ∈ (0,∞), k ∈ � such that for
all k ≥ k, ‖zk+1 − zk ‖S ≤ κck holds. Thus, for any j > k ≥ k we have

‖z j − zk ‖S ≤ ∑ j−1
i�k ‖z i+1 − z i ‖S ≤ ∑ j−1

i�k κc i ≤ ∑∞
i�k κc i � κ

1−c ck . (2.28)

Hence, the sequence (zk)k∈� is a Cauchy sequence, and therefore con-
verges to some z ∈ H . From uniqueness of weak limit and Theorem
2.1(iii) we have z ∈ zer(T). Let j →∞ in (2.28) to obtain R-linear conver-
gence of (zk)k∈�.

In the special case when C ≡ 0, M is skew-adjoint , K � M and S � P,
the operator P ∈ B(H) can be a self-adjoint, positive operator rather than
a strongly positive operator. Under these assumptions AFBA simplifies
to the following iteration:

z̄k
� (H + A)−1Pzk (2.29a)

zk+1
� zk

+ λk(z̄k − zk). (2.29b)

Notice that if P was strongly positive, this could simply be seen as proxi-
mal point algorithm in a different metric applied to the operator A + M,
but we have relaxed this assumption and only require P to be positive. Be-
fore providing convergence results for this algorithm we begin with the
following lemma, showing that the mapping (H + A)−1 has full domain
and is continuous when H has a block triangular structure with strongly
positive diagonal blocks, even though its symmetric part, P, might not
be strongly positive. This lemma motivates the assumption on continu-
ity of (H + A)−1P in Theorem 2.6. As an application of this theorem in
Proposition 2.7(iii), when P is positive with a two-by-two block structure
(see (2.54a) in the limiting case θ � 2), DRS is recovered.
Lemma 2.5. Let H � H1 ⊕ · · · ⊕ HN , where H1 , · · · ,HN are real Hilbert
spaces. Suppose that A is block separable and H has a conformable lower (upper)
triangular partitioning, i.e.,

A : z 7→ (A1z1 , · · · ,AN zN ),
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H : z 7→ (H11z1 ,H21z1 + H22z2 , · · · ,
N∑

j�1
HN j z j), (2.30)

where zi ∈ Hi for i � 1, · · · ,N , z � (z1 , · · · , zN ) ∈ H , and Hi j ∈ B(Hj ,Hi)
for i , j � 1, · · · ,N . For i � 1, · · · ,N , assume that Ai is maximally monotone,
and Hii ∈ Sτi (Hi)with τi ∈]0,∞]. Then, the mapping (H+A)−1 is continuous
and has full domain, i.e., dom((H + A)−1) � H . Furthermore, the update
z̄ � (H + A)−1z is carried out using

z̄i �

{(H11 + A1)−1z1 , i � 1;
(Hii + Ai)−1

(
zi −∑i−1

j�1 Hi j z̄ j

)
, i � 2, · · · ,N, (2.31)

where z̄ � (z̄1 , · · · , z̄N ) ∈ H .

Proof. We consider a block lower triangular H as in (2.30), the analysis for
upper triangular case is identical. The goal is to consider Ai ’s separately.
Let z̄ � (H + A)−1z with z̄ � (z̄1 , · · · , z̄N ). The block triangular structure
of H in (2.30) yields the equivalent inclusion zi ∈ Ai z̄i +

∑i
j�1 Hi j z̄ j , for

i � 1, · · · ,N . This is equivalent to (2.31), in which, each z̄i is evaluated
using zi and z̄ j for j < i. For the first block we have z̄1 � (H11 + A1)−1z1.
SinceA1 ismonotone andH11 is stronglymonotone, it follows thatH11+A1
is stronglymonotone,which in turn implies that (H11+A1)−1 is cocoercive
and, as such, atmost single-valued and continuous. SinceA1 ismaximally
monotone and H11 is strongly positive we have

dom
((H11 + A1)−1)

� ran(H11 + A1) � ran(id + A1H−1
11 ) � H1 ,

where the last equality follows from maximal monotonicity of A1H−1
11 in

theHilbert spacedefinedbyendowingH1 with the scalar product 〈·, ·〉H−1
11
,

and Minty’s theorem [13, Thm. 21.1]. For the second block in (2.31) we
have z̄2 � (H22 + A2)−1(z2 − H21 z̄1). Hence, by the same argument used
for previous block, (H22 + A2)−1 is continuous and has full domain. Since
(z2 − H21 z̄1) and (H22 + A2)−1 are continuous, so is their composition
(H22 + A2)−1(z2 − H21 z̄1). Follow the same argument for the remaining
blocks in (2.31) to conclude that (H + A)−1 is continuous and has full
domain.

The next theorem provides convergence and rate of convergence re-
sults for algorithm (2.29a)-(2.29b) in finite-dimensions by employing the
same idea used in [53, Thm. 3.3]. The idea is to consider the operator R �
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P+id−Q,whereQ is theorthogonal projectiononto ran(P). Theproofpre-
sented here is for a general P and it coincides with the one of Condat [53,
Thm. 3.3] for a special choice P ∈ B(K) : (x , y) 7→ (

γ−1x − y ,−x + γy
)
.

Theorem 2.6. Suppose that H is finite-dimensional. Let P ∈ S (H), P � 0,
M ∈ B(H) a skew-adjoint operator and H � P + M. Consider the iteration
(2.29a)-(2.29b) and assume zer(T) , ØwhereT � A+M. Furthermore, assume
that (H+A)−1P is continuous. Let (λk)k∈� be uniformly bounded in the interval
(0, 2). Then,

(i) (zk)k∈� converges to a point in zer(T).
(ii) Let Q be the orthogonal projection onto ran(P), and R � P + id−Q. The

following convergence estimates hold:

‖Pzk+1 − Pzk ‖2 ≤ ‖P‖
τ(k+1) ‖Qz0 −Qz?‖2R , (2.32)

for some constant τ > 0, and ‖Pzk+1 − Pzk ‖2 � o(1/(k + 1)).
Proof. (i): Since P is not strongly positive, it does not define a valid inner
product. Consider R B P + id −Q, where Q is the orthogonal projection
onto ran(P). We show that by construction R is strongly positive. By the
spectral theoremwe canwrite Pz1 � UΛU∗z1, whereU is an orthonormal
basis consisting of eigenvectors of A. Consider two sets: s1 � {i |λi , 0}
and s2 � {i |λi � 0}. Denote by U1 the orthonormal basis made up of
ui for i ∈ s1. Then, ran (P) � ran (U1) and we have Q � U1U∗1. For
any z ∈ H , z � z1 + z2 where z1 � Qz and z2 � (id − Q)z. Then,
Rz � Pz+z−Qz � Pz1+z2 and 〈Rz , z〉 � 〈Pz1+z2 , z〉 � 〈Pz1 , z1〉+ ‖z2‖2.
If z1 � 0 then 〈Rz , z〉 � ‖z2‖2 � ‖z‖2. Suppose that z2 , 0 and z1 , 0.
Denote by λmin the smallest non zero eigenvalue of P. We have

〈Rz , z〉 � 〈Pz1 , z1〉 + ‖z2‖2 � 〈UΛU∗z1 , z1〉 + ‖z2‖2
� 〈ΛU∗z1 ,U∗z1〉 + ‖z2‖2 ≥ λmin‖U∗1z1‖2 + ‖z2‖2
� λmin〈z1 ,Qz1〉 + ‖z2‖2 � λmin‖z1‖2 + ‖z2‖2
≥ min{1, λmin}‖z‖2.

If z2 � 0 the above analysis holds with z � z1 and result in strong
positivity parameter equal to λmin.

We continue by noting that by definition we have Q ◦ P � P, and
symmetry of P yields P ◦ Q � P. Therefore, R ◦ Q � P and for z ∈ H we
have

〈Pz , z〉 � 〈QPz , z〉 � 〈Pz ,Qz〉 � 〈RQz ,Qz〉, (2.33)
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which will be used throughout this proof. Observe now that for z? ∈
zer(T) , ∅ we have −Mz? ∈ Az?. By monotonicity of A and (2.29a) we
have 〈Mz̄k −Mz? + Pz̃k , z? − z̄k〉 ≥ 0. Then

0 ≤ 〈Mz̄k −Mz? + Pz̃k , z? − z̄k〉 � 〈Pz̃k , z? − z̄k〉
� 〈Pz̃k ,Qz? −Qz̄k〉 + 〈RQz̃k ,Qz̃k〉 − 〈RQz̃k ,Qz̃k〉
� 〈Pz̃k ,Qz? −Qzk〉 − ‖Qz̃k ‖2R , (2.34)

where the equalities follows from skew-symmetricity of M and (2.33).We
show that ‖Qzk −Qz?‖R is decreasing using (2.34):

‖Qzk+1 −Qz?‖2R � ‖Qzk −Qz? + λkQz̃k ‖2R
� ‖Qzk −Qz?‖2R + 2λk 〈Qzk −Qz?, Pz̃k〉 + λ2

k ‖Qz̃k ‖2R
≤ ‖Qzk −Qz?‖2R − λk(2 − λk)‖Qz̃k ‖2R . (2.35)

Let us define the sequence xk � Qzk and x̄k � Qz̄k for every k ∈ �. Then,
since P ◦Q � P the iteration for xk � Qzk is written as

x̄k
� Q(H + A)−1P(xk)

xk+1
� xk

+ λk(x̄k − xk). (2.36)

Let G � (H+A)−1P and G′ � Q ◦G. It follows from H � P+M and (2.29a)
that

0 ∈ T(G(z)) + PG(z) − Pz. (2.37)

Use (2.37) and monotonicity of T at z? ∈ zer(T) and G(z?) to derive

0 ≤ 〈G(z?) − z?, Pz? − PG(z?)〉. (2.38)

In view of (2.38) and positivity of P, we have 〈G(z?)− z?, PG(z?)−Pz?〉 �
0, and by [13, Cor. 18.18], PG(z?) − Pz? � 0. Hence, since R ◦ Q � P,
we have RQG(z?) − RQz? � 0, and strong positivity of R implies Qz? �

QG(z?) � QG(Qz?), where the last equality is due to G ◦ Q � G. Thus,
Qz? is a fixed point of G′ � QG. We showed that if z? ∈ zer(T) then
Qz? ∈ fix(G′), i.e.,

Q zer(T) ⊆ fix(G′). (2.39)

Furthermore, for any x? ∈ fix(G′) we have Px? � PG′(x?) � PQG(x?) �
PG(x?). Combine this with (2.37) to derive G(x?) ∈ zer(T). Therefore,
x? � G′(x?) � QG(x?) ∈ Q zer(T). This shows that if x? ∈ fix(G′),
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then x? ∈ Q zer(T), i.e., fix(G′) ⊆ Q zer(T). Combine this with (2.39) to
conclude that the two sets fix(G′) and Q zer(T) are the same. On the other
hand, we rewrite (2.35) for xk and x̄k :

‖xk+1 −Qz?‖2R ≤ ‖xk −Qz?‖2R − λk(2 − λk)‖ x̄k − xk ‖2R . (2.40)

Therefore, (xk)k∈� is R-Fejér monotone with respect to fix(G′). Since
(λk)k∈� is uniformly bounded in (0, 2), it follows that

G′(xk) − xk
� x̄k − xk → 0. (2.41)

Let x be a sequential cluster point of (xk)k∈�, say xkq → x. G′ is continuous
since G′ � Q ◦ G and G is assumed to be continuous. Thus, it follows
from (2.41) that G′(x) − x � 0, i.e., x ∈ fix(G′). This together with Fejér
monotonicity of xk with respect to fix(G′) and [13, Thm. 5.5] yields xk →
x ∈ fix(G′).

The proof is completed by first using G ◦ Q � G and continuity of G
to deduce that z̄k � G(zk) � G(xk) converges to G(x?) ∈ zer(T), and then
arguing for convergence of zk . We skip the details here because they are
identical to the last part of the proof in [53, Thm. 3.3]).

(ii): Follow the procedure in the proof of Theorem 2.3 to derive (2.18),
except that in this case the cocoercive term is absent. This yields

0 ≤ 〈−M(zk − zk+1) − H(z̃k − z̃k+1), z̃k − z̃k+1〉 − 〈H(z̃k − z̃k+1), zk − zk+1〉.
(2.42)

Since H � P + M and M is skew-symmetric, (2.42) simplifies to

0 ≤ 〈−P(z̃k − z̃k+1), z̃k − z̃k+1〉 + 〈−P(zk − zk+1), z̃k − z̃k+1〉
� −‖Qz̃k −Qz̃k+1‖2R + λk 〈Pz̃k , z̃k − z̃k+1〉, (2.43)

where we used (2.33) and (2.29b). Using identity (2.21), we derive

‖Qz̃k ‖2R − ‖Qz̃k+1‖2R � 2〈RQz̃k ,Qz̃k −Qz̃k+1〉 − ‖Qz̃k −Qz̃k+1‖2R
� 2〈Pz̃k , z̃k − z̃k+1〉 − ‖Qz̃k −Qz̃k+1‖2R
≥

(
2
λk
− 1

)
‖Qz̃k −Qz̃k+1‖2R , (2.44)

where we made use of (2.43). Consider (2.35) and sum over k to derive
∞∑

i�0
λi(2 − λi)‖Qz̃ i ‖2R ≤ ‖Qz0 −Qz?‖2R . (2.45)
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Inequality (2.44) shows that ‖Qz̃k ‖2R is monotonically nonincreasing.
Combined with (2.45) and uniform boundedness of λk , i.e., (λk)k∈� ⊆[ε, 2 − ε] for some ε > 0,

‖Qz̃k ‖2R ≤
1

(k + 1)ε2 ‖Qz0 −Qz?‖2R . (2.46)

Furthermore, it follows from (2.36) and definition of xk , x̄k that

‖xk+1 − xk ‖2R � λ2
k ‖Qz̃k ‖2R ≤ (2 − ε)2‖Qz̃k ‖2R . (2.47)

Combine (2.47) and (2.46) to derive

‖xk − xk+1‖2R ≤
(2 − ε)2
(k + 1)ε2 ‖Qz0 −Qz?‖2R . (2.48)

This establishes big-O convergence for (xk)k∈�. The little-o convergence of
‖Qz̃k ‖2R and subsequently ‖xk − xk+1‖2R follows from (2.44), (2.45) and [57,
Lem. 3-(1a)]. We derive from (2.33) that ‖xk − xk+1‖2R � 〈zk − zk+1 , P(zk −
zk+1)〉. Then, it follows from [13, Cor. 18.18] that

‖Pzk − Pzk+1‖2 ≤ ‖P‖‖xk − xk+1‖2R . (2.49)

Set τ �
ε2

(2−ε)2 , and combine (2.49) with (2.48) to yield big-O convergence
for the sequence (Pzk)k∈�. Similarly, little-o convergence follows from that
property of ‖xk − xk+1‖2R.

2.3 Operator splitting schemes as special cases
We are ready to consider some important special cases to illustrate the
importance of parameters S, P and K. Further discussion on other special
choices for the parameters appear inChapter 3 in the framework of convex
optimization with the understanding that it is straightforward to adapt
the same analysis for the corresponding monotone inclusion problem.

2.3.1 Forward-backward splitting
When H � γ−1id, S � id and M ≡ 0, Algorithm 2.1 reduces to forward-
backward splitting (FBS):

z̄k
� (id + γA)−1(id − γC)zk
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zk+1
� zk

+ λk
(
z̄k − zk ) .

Let β be the cocoercivity constant of C with respect to the canonical norm
‖ · ‖, then β/γ is the cocoercivity constant with respect to the P norm and
condition (2.5) of Theorem 2.1 becomes

(λk)k∈� ⊆ [0, δ] with δ � 2− γ

2β , γ ∈ (0, 4β), lim inf
k→∞

λk(δ − λk) > 0.

(2.50)
This allows a wider range of parameters than the standard ones found
in the literature. The standard convergence results for FBS are based on
the theory of averaged operators (see [52] and the references therein) and
yield the same conditions as in (2.50) but with γ ∈ (0, 2β] (see also [53,
Lem. 4.4] and [13, Thm. 26.14]). Additionally, if C ≡ 0, FBS reduces to the
classical PPA.

The convergence rate for FBS follows directly from Theorem 2.3. Since
D � γ−2id and P � γ−1id, (2.14) holds with c1 � c2 � γ−1. Consequently,
if (λk(δ − λk))k∈� ⊆ [τ,∞) for some τ > 0, we have

‖ z̃k ‖2 ≤ 1
τ(k + 1) ‖z

0 − z?‖2 ,

and ‖ z̃k ‖2 � o(1/(k + 1)).

2.3.2 Solodov and Tseng
In Algorithm 2.1, set C ≡ 0, H � id and A � NX where X is a nonempty
closed convex set inH . Then, Algorithm 2.1 reduces to

z̃k
� PX(zk −Mzk) − z

zk+1
� zk

+ αkS−1(id + M∗)z̃k , αk � λk ‖ z̃k ‖2/‖(id+M∗)z̃k ‖2
S−1 ,

recovering the scheme proposed by Solodov and Tseng [151, Alg. 2.1].

2.3.3 Forward-backward-forward splitting
Consider Algorithm 2.1 when M is skew-adjoint and set H � γ−1id, S �

id. We can enforce αk � γ by choosing λk � (γ‖(γ−1id + M∗)z̃k ‖/‖ z̃k ‖)2.
It remains to show that the sequence (λk)k∈� satisfies the conditions of
Theorem 2.1. Since M is skew-adjoint, we have λk � 1+ (γ‖Mz̃k ‖/‖ z̃k ‖)2,
and if the stepsize satisfies γ ∈ (0, ‖M‖−1

√
1 − 1/(2β)), then (λk)k∈� is

31



uniformly bounded between 0 and δ (in fact it is larger than 1) and thus
satisfies (2.5). Under these assumptions Algorithm 2.1 simplifies to

z̄k
� (id + γA)−1(id − γM − γC)zk

zk+1
� z̄k − γM

(
z̄k − zk ) .

This algorithm resembles the FBFS [162]. Indeed, if C ≡ 0, then the range
for the stepsize simplifies to γ ∈ (0, ‖M‖−1) and yields the FBFS when its
Lipschitz operator is the skew-adjoint operator M.

2.3.4 Douglas-Rachford type with a forward term
We now focus our attention on a choice for P, K and S that lead to a
new Douglas-Rachford type splitting with a forward term. Consider the
problem of finding x ∈ H such that

0 ∈ Dx + Ex + Fx , (2.51)

together with the dual inclusion problem of finding y ∈ H such that
there exists x ∈ H , {

0 ∈ Dx + Fx + y
0 ∈ E−1 y − x. (2.52)

where D : H ⇒ H , E : H ⇒ H are maximally monotone and F :
H → H is η-cocoercive with respect to the canonical norm. Let K be
the Hilbert direct sum K � H ⊕ H . The pair (x?, y?) ∈ K is called a
primal-dual solution to (2.51) if it satisfies (2.52). Let (x?, y?) ∈ K be a
primal-dual solution, then x? solves the primal problem (2.51) and y?

the dual (2.52). In this section, we assume that there exists x? such that
x? ∈ zer (D + E + F). This assumption yields that the set of primal-dual
solutions is nonempty (see [50, 26] and the references therein for more
discussion).
Reformulate (2.52) in the form of (2.2) by defining

A : K ⇒ K : (x , y) 7→ (Dx , E−1 y), (2.53a)
M ∈ B(K) : (x , y) 7→ (y ,−x), (2.53b)

C : K → K : (x , y) 7→ (Fx , 0). (2.53c)

The operators A and M are maximally monotone [13, Prop. 20.23 and Ex.
20.35]. It is easy to verify, by definition of cocoercivity, that C is cocoercive.
Let γ > 0, θ ∈ [0, 2], (the case of θ � 2 can only be considered in the
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absence of the cocoercive term and results in classic DR, see Proposition
2.7). Set

P ∈ B(K) : (x , y) 7→ (
γ−1x − 1

2θy ,− 1
2θx + γy

)
, (2.54a)

K ∈ B(K) : (x , y) 7→ ( 1
2θy ,− 1

2θx
)
, (2.54b)

S ∈ B(K) : (x , y) 7→ ((3 − θ)γ−1x − y ,−x + γy
)
. (2.54c)

The operators S and P are strongly positive for θ ∈ [0, 2) [96, Lem. 5.1,
5.3]. The operator H � P + K is given by

H ∈ B(K) : (x , y) 7→ (γ−1x ,−θx + γy). (2.55)

Notice that H has the block triangular structure described in Lemma 2.5.
By using this structure as in (2.31) and substituting (2.54), (2.55) in Algo-
rithm2.1, after some algebraicmanipulations involvingMoreau’s identity
as well as a change of variables sk B xk − γyk (see proof of Proposition
2.7 for details), we derive the following algorithm:

Algorithm 2.2 Douglas-Rachford Type with a Forward Term
Inputs: x0 ∈ H , s0 ∈ H
for k � 0, 1, . . . do

x̄k � JγD(sk − γFxk)
rk � JγE(θx̄k + (2 − θ)xk − sk)
sk+1 � sk + ρk(rk − x̄k)
xk+1 � xk + ρk(x̄k − xk)

In the special case when ρk � 1, the last line in Algorithm 2.2 becomes
obsolete and x̄k can be replaced with xk+1. The next proposition provides
the convergence properties for Algorithm 2.2.

Proposition 2.7. Consider the sequences (xk)k∈� and (sk)k∈� generated by Al-
gorithm 2.2. Let η ∈ (0,+∞) be the cocoercivity constant of F. Suppose that one
of the following holds:

(i) θ ∈ [0, 2), γ ∈ (0, η(4 − θ2)) and the sequence of relaxation parameters
(ρk)k∈� is uniformly bounded in the interval

(ρk)k∈� ⊆
(
0,

4 − θ2 − γ/η
(2 − θ)(2 +

√
2 − θ)

)
. (2.56)

33



(ii) F ≡ 0, θ ∈ [0, 2), γ ∈ (0,∞), and sequence (ρk)k∈� uniformly bounded
in the interval

(ρk)k∈� ⊆
(
0, 2 −

√
2 − θ

)
.

(iii) F ≡ 0, θ � 2, γ ∈ (0,∞), (ρk)k∈� uniformly bounded in the interval
(0, 2), andK is finite-dimensional.

Then, there exists a pair of solutions (x?, y?) ∈ K to (2.52) such that the
sequences (xk)k∈� and (sk)k∈� converge weakly to x? and x?−γy?, respectively.

Proof. (i): Let us start by noting that P and S defined in (2.54) are strongly
positive if θ ∈ [0, 2) [96, Lem. 5.1, 5.3].

Next, consider step 3 of Algorithm 2.1 and Substitute the parameters
defined in (2.54), to derive

αk

λk
�
‖ z̃k ‖2P
‖ z̃k ‖2D

�
γ−1‖ x̃k ‖2 + γ‖ ỹk ‖2 − θ〈x̃k , ỹk〉

γ−1(θ2 − 3θ + 3)‖ x̃k ‖2 + γ‖ ỹk ‖2 + 2(1 − θ)〈x̃k , ỹk〉 ,
(2.57)

where D is defined in (2.3) and by construction is strongly positive. Let
λk be equal to the inverse of the right hand side in (2.57) multiplied by
ρk where (ρk)k∈� ⊆ (0, 2). This would result in αk � ρk and simplify the
iterations. Consider C defined in (2.53c), we have

‖Cz − Cz′‖2P−1 � γ
(
1 − 1

4θ
2)−1‖Cz − Cz′‖2.

From here it is easy to see that C is β-cocoercive with respect to P norm,
where β � ηγ−1(1 − 1

4θ
2). In order to apply Theorem 2.1, condition (2.5)

must hold. From strong positivity of D, boundedness of P and the fact
that ρk is uniformly bounded above 0 it follows that (λk)k∈� ⊆ (ν1 ,∞) for
some positive ν1. Let ν2 be a positive parameter such that

ν2 < 2 − 1
2β −

2ρk(2 +
√

2 − θ)
2 + θ

, (2.58)

holds for all k ∈ �. It’s easy to verify that such ν2 exists as long as ρk is
uniformly bounded in the interval (2.56). For brevity, we define β′ such
that 1

2β′ �
1

2β + ν2. Additionally, introduce the notation υ � (2 − 1
2β′ )/ρk ,

ω1 � υθ + 2(1 − θ), ω2 � θ2 − 3θ + 3. We proceed by showing that λk is
smaller than 2 − 1

2β − ν2. A sufficient condition for this to hold is

ξ � γ−1(υ − ω2)‖ x̃k ‖2 + γ(υ − 1)‖ ỹk ‖2 − ω1〈x̃k , ỹk〉 > 0. (2.59)
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Apply the Fenchel-Young inequality for ε
2 ‖ · ‖2 to lower bound ξ:

ξ ≥ (
γ−1(υ − ω2) − |ω1 | ε2

) ‖ x̃k ‖2 + (
γ(υ − 1) − |ω1 | 1

2ε
) ‖ ỹk ‖2 , (2.60)

where | · | is the absolute value. It follows from (2.58) that υ > 1 for all
k ∈ �. Let ε � |ω1 |

2γ(υ−1) so that the term involving ‖ ỹk ‖2 in (2.60) disappears.
We obtain

γ−1
(
υ − ω2 − ω2

1
4(υ−1)

)
‖ x̃k ‖2 > 0, (2.61)

which is sufficient for (2.59) to hold. By substituting ω1 and ω2 and after
somealgebraicmanipulationswefind that the condition (2.58) is sufficient
for the right hand side in (2.61) to be positive. Consequently, Theorem 2.1
completes the proof of convergence. We showed that we can set αk � ρk
by choosing λk appropriately. Algorithm 2.2 follows by setting αk � ρk ,
a change of variables sk � xk − γyk , substituting xk+1 and application of
Moreau’s identity.

(ii):Mimic the proof of (i), but use Theorem 2.1with C ≡ 0, by showing
that λk is uniformly bounded between 0 and 2.

(iii): When θ � 2, we have P ∈ S (K), P � 0. It follows from (2.53a),
(2.55) and Lemma 2.5 that (H + A)−1P is continuous. Therefore, since
F ≡ 0, by appealing to Theorem 2.6 and following the same change of
variables as in previous parts the assertion is proved.

The next proposition provides convergence rate results for Algorithm
2.2 when θ � 2, based on Theorem 2.6. Similarly, for the case when
θ ∈ [0, 2), convergence rates can be deduced based on Theorem 2.3. Fur-
thermore, when metric subregulariy assumption in Theorem 2.4 holds,
linear convergence follows without any additional assumptions.

Proposition 2.8 (convergence rate). LetK be finite-dimensional. Consider the
sequences (xk)k∈� and (sk)k∈� generated by Algorithm 2.2. Let F ≡ 0, θ � 2,
γ ∈ (0,∞), and (ρk)k∈� be uniformly bounded in the interval (0, 2). Then

‖sk+1 − sk ‖2 ≤ γ
τ(k+1) ‖Qz0 −Qz?‖2R ,

and ‖sk+1 − sk ‖2 � o(1/(k + 1)) for some constant τ > 0, where Q is the
orthogonal projection onto ran(P),R � P+id−Q, and zk �

(
xk , γ−1(xk − sk)) .

Proof. Following the argument in proof of Proposition 2.7(iii) and Theo-
rem 2.6(ii) yields

‖Pzk+1 − Pzk ‖2 ≤ ‖P‖
τ(k+1) ‖Qz0 −Qz?‖2R , (2.62)

35



and ‖Pzk+1−Pzk ‖2 � o(1/(k+1)), where zk �
(
xk , γ−1(xk − sk)) . Combine

this with definition of P, (2.54a) with θ � 2, to derive

‖Pzk+1 − Pzk ‖2 � (1 + γ−2)‖sk+1 − sk ‖2. (2.63)

Furthermore, simple calculation shows that P2 � (γ + γ−1)P. Hence for
all z ∈ K

‖Pz‖2 � (γ + γ−1)〈z , Pz〉
� (γ + γ−1)(γ−1‖x‖2 + γ‖y‖2 − 2〈x , y〉)
≤ (γ + γ−1)2‖z‖2 , (2.64)

whereweusedFenchel-Young inequalitywith ε � γ. It follows from (2.64)
that ‖P‖ ≤ (γ+ γ−1). Combining this with (2.62) and (2.63) completes the
proof.

Remark 2.9. Recently, another three operator splitting algorithm was
proposed in [58] which can also be seen as a generalization of Douglas-
Rachford method and allows a third cocoercive operator. In the afore-
mentioned paper, the forward step takes place after the first backward
update, while in Algorithm 2.2 it precedes the backward update. The
parameter range prescribed in [58, Thm. 3.1] is simply γ ∈ (0, 2η) and
(ρk)k∈� ⊆ (0, 2− γ

2η ), while forAlgorithm2.2 it consists of γ ∈ (0, η(4−θ2))
with relaxation parameter uniformly bounded in the interval (2.56). For
θ ∈ [0,√2), Algorithm 2.2 can have larger stepsize but it is important
to notice that this might not necessarily be advantageous in practice be-
cause the upper bound for the relaxation parameter in (2.56) decreases as
we reduce θ. For example if we fix ρk � 1, conditions of Proposition 2.7
become θ ∈ (1, 2) and γ/η ∈ (0, (2 − θ)(θ − √2 − θ)). This stepsize is al-
ways smaller that the one of [58]. However, if the relaxation parameter ρk
is selected to be small enough then γ can take values larger than the one
allowed in [58]. In Section 3.5 numerical simulations are performed for
the two algorithms which indicate that on dual support vector machine
problem Algorithm 2.2 is slower presumably due to smaller stepsize.

Remark 2.10. In Algorithm 2.2 the case θ � 2, ρk � 1 with F ≡ 0 (see
Proposition 2.7(iii)) yields the classical DRS [108]. This choice of P is
precisely the one considered in [53, §3.1.1].
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ADMM form
Consider the following problem

minimize
x1 ,x2 ,x3

f1(x1) + f2(x2) + f3(x3) (2.65a)

subject to L1x1 + L2x2 + L3x3 � b , (2.65b)

where fi ∈ Γ0(Hi), Li ∈ B(Hi ,H4), i � 1, 2, 3, and b ∈ H4 withH1 , . . . ,H4
denoting real Hilbert spaces. Additionally, f1 is ξ-strongly convex for
some ξ ∈]0,+∞[. It is well known that the classic Alternating Direction
Method of Multipliers (ADMM) is equivalent to Douglas-Rachford algo-
rithm applied to the dual problem (see [29] and the references therein).
We derive a new 3-block ADMM iteration in a similar way. Consider the
dual problem

minimize
y

d1(y) + d2(y) + d3(y), (2.66)

where d1(y) � f ∗1 (−L∗1 y), d2(y) � f ∗2 (−L∗2 y) and d3(y) � f ∗3 (−L∗3 y)+ 〈y , b〉.
By strong convexity of f1 we have that d1 has a ξ−1‖L1‖2-Lipschitz gradi-
ent. Form the augmented Lagrangian

Lγ(x1 , x2 , x3 , y) �
3∑

i�1
fi(xi) +

〈
y ,

3∑
i�1

Li xi − b

〉
+
γ

2


3∑

i�1
Li xi − b


2

.

WeapplyAlgorithm 2.2with ρk � 1 to themonotone inclusion associated
with (2.66) and after a change of order and some algebraic manipulations
we derive Algorithm 2.3 (the procedure is similar to the one found in [66,
§3.5.6] for the classic ADMM). Our 3-block ADMM can be written as

Algorithm 2.3 3-block ADMM

Inputs: (x0
1 , x

0
2 , x

0
3) ∈ H1 ×H2 ×H3, (y0 , y1) ∈ H4 ×H4

for k � 0, 1, . . . do
ȳk � (θ − 1)yk + (2 − θ)yk−1

xk+1
1 � argminx1 L0(x1 , xk

2 , x
k
3 , yk)

xk+1
2 � argminx2 Lγ(xk

1 , x2 , xk
3 , ȳk)

xk+1
3 � argminx3 Lγ(xk+1

1 , xk+1
2 , x3 , ȳk)

yk+1 � ȳk + γ(L1xk+1
1 + L2xk+1

2 + L3xk+1
3 − b)
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Proposition 2.11. LetH1 , . . . ,H4 be finite-dimensional, fi ∈ Γ0(Hi), b ∈ H4,
Li ∈ B(Hi ,H4) for i � 1, 2, 3 and ker(L2) � {0}, ker(L3) � {0}. Let ξ ∈
]0,+∞[ be the strong convexity constant of f1. Assume that the set of saddle
points of (2.65), denoted by Σ, is nonempty. Let θ ∈]1, 2[ and

γ < ξ(2 − θ)(θ −
√

2 − θ)/‖L1‖2. (2.67)

Then the sequence (xk
1 , x

k
2 , x

k
3 , yk)k∈N generated by Algorithm 2.3, converges to

some (x?1 , x?2 , x?3 , y?) ∈ Σ.
Proof. Let (x?1 , x?2 , x?3 , y?) denote a KKT point of (2.65), i.e.,{

0 ∈ ∂ fi(x?i ) + L∗i y?, for i � 1, 2, 3
0 � b − L1x?1 − L2x?2 − L3x?3 .

(2.68)

Algorithm 2.3 is an implementation of Algorithm 2.2 for solving (2.66).
Hence, Proposition 2.7 yields yk → y, where y is a solution to (2.66). Let
x1 be a point satisfying −L∗1 y ∈ ∂ f1(x1). From strong convexity of f1 at x1
and xk+1

1 , we have

(∀u ∈ ∂ f1(xk+1
1 ))(∀v ∈ ∂ f1(x1)) ξ‖xk+1

1 − x1‖2 ≤ 〈u − v , xk+1
1 − x1〉.

It follows from the optimality condition for the xk+1
1 update and the

definition of x1 that

ξ‖xk+1
1 − x1‖2 ≤ 〈−L∗1 yk

+ L∗1 y , xk+1
1 − x1〉 ≤ ‖L1‖‖xk+1

1 − x1‖‖yk − y‖.
Combine this with the convergence of (yk)k∈� to derive xk

1 → x1. From
the change of variables to derive Algorithm 2.3 we have

sk − yk
� −γL1xk

1 − γL3xk
3 , (2.69)

which together with the convergence of (sk)k∈� , (yk)k∈� (see Proposi-
tion 2.7) and (x1,n)k∈� imply that (L3xk

3)k∈� converges to a point. Since
ker(L3) � {0}, it follows that (x3,n)k∈� converges to some x3. From the op-
timality condition for the xk+1

3 update and the last step in Algorithm 2.3,
we have

−L∗3 yk+1
� −L∗3 ȳk − γL∗3(L1xk+1

1 + L2xk+1
2 + L3xk+1

3 − b) ∈ ∂ f3(xk+1
3 ).

Taking the limit and using [13, Prop. 20.38(iii)], we have −L∗3 y ∈ ∂ f3(x3).
On the other hand, Theorem 2.1(ii) and the last line of Algorithm 2.3 yield

yk+1 − yk → 0, and L1xk
1 + L2xk

2 + L3xk
3 → b. (2.70)
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It follows from (2.69), (2.70), and the convergence of (sk)k∈� , (yk)k∈� that
(L2xk

2)k∈� converges to a point. We can now argue almost exactly as we
did for (L3xk

3)k∈�. Since ker(L2) � {0}, we deduce that (x2,n)k∈� converges
to some x2. Combine the optimality condition for the xk+1

2 update and the
last step in Algorithm 2.3 with the convergence of yk , to derive −L∗2 y ∈
∂ f2(x2). Altogether, we showed that the limit points (x1 , x2 , x3 , y), are
jointly optimal by the KKT condition (2.68).

Remark 2.12. The convergence rate of Algorithm 2.3 can be deduced
similar to Algorithm 2.2 from Theorems 2.3, 2.4 and 2.6 with ρk � 1.
However, we do not consider it here.

Remark 2.13. In the case when f1 ≡ 0 we can choose the limiting value
θ � 2 and recover the classical ADMM (see Proposition 2.7(iii)). On
the other hand if f2 or f3 vanish, the Alternating Minimization Method
(AMM) [160] is recovered. Finally, when both f2 and f3 vanish then the
dual ascent method is recovered.

Remark 2.14. In [58, Alg. 8], another 3-block ADMM formulation is pre-
sented by following similar algebraic manipulations (It is derived by
applying their Algorithm 7 to the dual). It should be noted that they do
not require rank assumptions on L2 , L3. In contrast to that work in our
version (xk

1)k∈� and (xk
2)k∈� are updated in parallel which corresponds

to the fact that in Algorithm 2.2 the forward step precedes the first prox
step. Furthermore, in our algorithm, (xk

2)k∈� and (xk
3)k∈� are updated us-

ing the augmented Lagrangian at (θ − 1)yk + (2 − θ)yk−1 rather than yk .
Moreover, the stepsize in [58, Thm. 2.1] has to satisfy γ < 2ξ/‖L1‖2. This
is always larger than the stepsize in (2.67). Refer to Remark 2.9 for further
discussion, noting that Algorithm 2.3 is derived by setting the relaxation
parameter, ρk , equal to one.

Remark 2.15. Some of the other recent attempts to directly generalize
ADMM for 3 blocks include [33, 42, 81, 103, 107]. In [42], it was shown
through a counterexample that a direct extension of ADMM to more
than 2 blocks is not convergent in general. In order to ensure convergence,
additional assumptions on strong convexity of the functions or rankof Li ’s
are needed. In [33] the authors require one function to be strongly convex
and L2 and L3 to have full column rank, while [103] modify the steps with
regularization terms and [107] solves a perturbed problem (see [107] and
the references therein for further discussion). In contrast to these papers,
the first minimization step of Algorithm 2.3 consists of minimizing a
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normal Lagrangian rather than an augmented one (therefore it can be
trivially executed in a distributed fashion in the case where f1 is block-
separable) and it can be performed in parallel to the second step.

2.4 Conclusions
In this chapter the operator splitting technique asymmetric-forward-
backward-adjoint splitting (AFBA) was introduced for solving monotone
inclusions involving three terms. We discussed how it relates to, unifies
and extends classical splitting methods. Asymmetric preconditioning is
the main feature of AFBA that can lead to several extensions and new al-
gorithmic schemes.Wemake extensive use of the results of this chapter in
the next five chapters where we study primal-dual proximal algorithms
for distributed applications.

We conclude by noting some recent developments. In Section 2.3.3
it was shown that a special case of AFBA coincides with the classical
forward-backward-forward splitting (FBFS) when the Lipschitz opera-
tor in FBFS is skew-adjoint. Interesting recent work [78] proposes a four
operator splitting that recovers AFBA as well as the forward-backward-
forward splitting (FBFS). Moreover, several new splittings have been pro-
posed recently that involve Lipschitz continuous operators but unlike
FBFS require only one evaluation of the Lipschitz operator per iteration
[116, 36, 146, 140].
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Chapter 3

A unifying framework for primal-dual
proximal algorithms

This chapter is based on:
Latafat, P., and Patrinos, P. Asymmetric forward–backward–adjoint split-

ting for solving monotone inclusions involving three operators. Computational
Optimization and Applications 68, 1 (Sep 2017), 57–93.

Latafat P., Patrinos P., Primal-dual proximal algorithms for structured
convex optimization: a unifying framework, in Chapter 5 of Large-Scale and
DistributedOptimization, (Giselsson P., and Rantzer A., eds.), vol. 2227 of
Lecture Notes in Mathematics, Springer International Publishing, 2018,
pp. 97-120.

3.1 Introduction

In this chapter we revisit the convex optimization problem (1.1). As dis-
cussed in Chapter 1 this model is quite rich and captures a plethora
of problems arising in machine learning, signal processing and control
[49, 152, 92].

Here, we present a simple primal-dual framework that relies on the
splitting method introduced in Chapter 2. Recall that this splitting in-
volves a stepsize parameter αk (cf. Alg. 2.1), which is dynamically com-
puted at each iteration. We also consider a variant with constant stepsize
that serves to simplify the analysis for primal-dual algorithms discussed
in Section 3.2.1.We provide a general and easy-to-check convergence con-
dition for the stepsizes in Assumption 3.II and Assumption 3.III (for the
case with dynamically computed stepsize parameter). Furthermore, we
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discuss four mild regularity assumptions on the functions involved in
(1.1) that are sufficient for metric subregularity of the operator defining
the primal-dual optimality conditions (cf. Lem.s 3.8 and 3.11). Linear con-
vergence rate is then deduced based on the results developed for AFBA
(cf. Thm. 3.5). These results do not impose additional restrictions on the
stepsizes of the algorithms. It is important to note that the provided con-
ditions are much weaker than strong convexity and in many cases do not
imply a unique primal or dual solution.

It is worth mentioning that another class of primal-dual algorithms
was introduced recently that rely on iterative projections onto half-spaces
containing the set of solutions [4, 48]. This class of algorithms is not
covered by the analysis of this chapter.

3.2 A simple framework for primal-dual algo-
rithms

In this sectionwe present a simple framework for primal-dual algorithms.
For this purpose we consider the following extension of (1.1)

minimize
x∈�n

ϕ(x) � f (x) + g(x) + (h � l)(Lx), (3.1)

where l is a strongly convex function. Notice that when l � δ{0}, the
infimal convolution h � l reduces to h and problem (1.1) is recovered. As
it will become apparent later in the chapter, the framework developed
here is not symmetric with respect to the primal and dual variables.
Some known algorithms are recovered by applying it to the dual problem
(where l∗ plays the role of the smooth term, see (3.2)).

Throughout this chapter the following assumptions hold for (3.1).

Assumption 3.I.

(i) g : �n → �, h : �r → � are proper closed convex functions, and
L : �n → �r is a linear mapping.

(ii) f : �n → � is convex, continuously differentiable, and for some
β f ∈ [0,∞),∇ f is β f -Lipschitz continuouswith respect to themetric
induced by some Q � 0 , i.e., for all x , y ∈ �n :

‖∇ f (x) − ∇ f (y)‖Q−1 ≤ β f ‖x − y‖Q ,
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(iii) l : �r → � is proper closed convex, its conjugate l∗ is continu-
ously differentiable, and for some βl ∈ [0,∞), ∇l∗ is βl-Lipschitz
continuous with respect to the metric induced by some R � 0.

(iv) The set of solutions to (3.1), denoted by X?, is nonempty.

(v) (Constraint qualification) There exists x ∈ ri dom g such that Lx ∈
ri dom h + ri dom l.

In Assumption 3.I(ii) the constant β f is not absorbed into the metric
Q in order to be able to treat the case when ∇ f is constant in a uniform
fashion by setting β f � 0. The same reasoning applies to Assumption
3.I(iii).

The dual problem is given by

minimize
u∈�r

(g∗ � f ∗)(−L>u) + h∗(u) + l∗(u). (3.2)

Notice the similar structure of the dual problem in which l , f and h , g
have swapped roles. A well-established approach for solving (3.1) is to
consider the associated convex-concave saddle point problem given by

minimize
x∈�n

maximize
u∈�r

L(x , u) B f (x)+g(x)+〈Lx , u〉−h∗(u)−l∗(u). (3.3)
The primal-dual optimality conditions are{

0 ∈ ∂g(x) + ∇ f (x) + L>u ,
0 ∈ ∂h∗(u) + ∇l∗(u) − Lx. (3.4)

Under the constraint qualification condition, the set of solutions for the
dual problem denoted by U? is nonempty, a saddle point exists, and the
duality gap is zero. In fact for any x? ∈ X? and u? ∈ U?, the point (x?, u?)
is a primal-dual solution, see [143, Cor. 31.2.1] and [13, Thm. 19.1].

The right-hand side of the optimality conditions in (3.4) can be split
as the sum of three operators:(

0
0

)
∈

(
∂g(x)
∂h∗(u)

)
︸    ︷︷    ︸

Az

+

(∇ f (x)
∇l∗(u)

)
︸   ︷︷   ︸

Cz

+

(
0 L>
−L 0

)
︸      ︷︷      ︸

M

(
x
u

)
︸︷︷︸

z

. (3.5)

Operator A defined above, is maximally monotone [13, Thm. 21.2, Prop.
20.23], while operator C, being the gradient of f̃ (x , u) � f (x) + l∗(u), is
cocoercive and M is skew-symmetric and as such monotone.

Throughout this section we use T to denote the operator above, i.e.,

0 ∈ Tz B Az + Cz + Mz. (3.6)
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3.2.1 Primal-dual algorithms with constant stepsize
Algorithm 3.1 describes the proposed primal-dual framework for solving
(3.1). This framework is the result of solving the monotone inclusion (3.5)
using the three term splitting AFBA with constant stepsize as described
in Section 3.3. We defer the derivation and convergence analysis of Algo-
rithm 3.1 to Section 3.4.

The proposed framework involves two scalar parameters θ ∈ [0,∞)
and µ ∈ [0, 1]. Different primal-dual algorithms correspond to different
values for these parameters. The iterates in Algorithm 3.1 consist of two
proximal updates followed by two correction steps that may or may not
be performed depending on the parameters µ and θ. Below we discuss
some values for these parameters that are most interesting.

Notice that Algorithm 3.1 is not symmetric with respect to the primal
and dual variables; another variant may be obtained by switching their
roles (equivalently by applying the algorithm to the dual problem (3.2)).

Algorithm 3.1 A simple framework for primal-dual algorithms

Require: x0 ∈ �n , u0 ∈ �r , algorithm parameters µ ∈ [0, 1], θ ∈ [0,∞).
Initialize: Σ, Γ and λ based on Assumptions 3.II(ii) and 3.II(iii).
for k � 0, 1, . . . do

x̄k � proxΓ−1
g (xk − ΓL>uk − Γ∇ f (xk))

ūk � proxΣ−1

h∗ (uk + ΣL((1 − θ)xk + θx̄k) − Σ∇l∗(uk))
x̃k � x̄k − xk , ũk � ūk − uk

xk+1 � xk + λ(x̃k − µ(2 − θ)ΓL>ũk)
uk+1 � uk + λ(ũk + (1 − µ)(2 − θ)ΣLx̃k)

In Section 3.4 we show that the sequence (xk , uk)k∈� generated by Al-
gorithm 3.1 converges to a primal-dual solution if Assumption 3.II holds.
Practical rules of thumb for selecting the stepsizes are presented in Section
3.5.

Assumption 3.II (convergence condition for Algorithm 3.1).

(i) (Algorithm parameters) θ ∈ [0,∞), µ ∈ [0, 1].
(ii) (Stepsizes) Γ ∈ Sn

++, Σ ∈ Sr
++ and (relaxation parameter) λ ∈ (0, 2)
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(iii) The following condition holds(
A B
B> C

)
� 0, (3.7)

where

A � ( 2
λ − 1)Γ−1 − (1 − µ)(1 − θ)(2 − θ)L>ΣL − β f

2λQ ,

B �
(
µ − (1 − µ)(1 − θ) − θ

λ

)
L> ,

C � ( 2
λ − 1)Σ−1 − µ(2 − θ)LΓL> − βl

2λR.

In Algorithm 3.1 the linear mappings L and L> must be evaluated
twice at every iteration. In the special cases when µ � 0, 1 they may be
evaluated only once per iteration by keeping track of the value computed
in the previous iteration. As is evident from (3.7), the cases where both
the algorithm and the convergence condition simplify are combinations
of µ � 0, 1, θ � 0, 1, 2. Here we briefly discuss some of these special
cases to demonstrate how (3.7) leads to simple conditions that are often
less conservative than the conditions found in the literature. We have
dubbed the algorithmsbasedonwhether the twoproximalupdates canbe
evaluated in parallel and if a primal or a dual correction step is performed.

The first algorithm is the result of setting θ � 2 (regardless of µ)
and leads to the algorithm of Condat and Vũ [53, 170] which itself is
a generalization of the Chambolle-Pock algorithm [38]. With this choice
of θ, the two proximal updates are performed sequentially while no
correction step is required. In the box below a general condition is given
for its convergence.

SNCA (Sequential No Corrector Algorithm): θ � 2
Substituting θ � 2 in (3.7) and dividing by 2

λ − 1 yields
(
Γ−1 − β f

2(2−λ)Q −L>

−L Σ−1 − βl
2(2−λ)R

)
� 0. (3.8)

If Q , R � id and Γ � γid, Σ � σid for some scalars γ, σ, then the
following sufficient condition may be used

σγ‖L‖2 <
(
1 − γβ f

2(2−λ)
) (

1 − σβl
2(2−λ)

)
, λ ∈ (0, 2). (3.9)
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Notice that this condition is less conservative than the condition of
[53, Thm. 3.1] (see [96, Rem. 5.6]).

In the next algorithm proximal updates are evaluated sequentially,
followed by a correction step for the primal variable, hence the name
SPCA. Most notable property of this algorithm is that the generated se-
quence is S-Fejér monotone where S is block diagonal. The algorithm
introduced in [95] (discussed in Chapter 4) can be seen as an applica-
tion of SPCA to the dual problem when the smooth term is zero. Note
that SPCA can be transformed into SNCA (when λ � 1 and f ≡ 0) by a
change of order, eliminating the primal variable xk and keeping the aux-
iliary primal variable x̄k . Below we comment on algorithms proposed in
[62, 95] emphasizing the close relation between them.

SPCA (Sequential Primal Corrector Algorithm): θ � 1, µ � 1,
λ � 1
In this case the left-hand side in (3.7) is block diagonal. Therefore
the convergence condition simplifies to

Γ−1 − β f
2 Q � 0, Σ−1 − LΓL> − βl

2 R � 0.

If Q � id, R � id, Γ � γid, Σ � σid for some scalars γ, σ, then it is
sufficient to have

γβ f < 2, σγ‖L‖2 < 1 − σβl
2 . (3.10)

This special case generalizes the recent algorithm proposed in [62].
In particular we allow a third nonsmooth function g as well as
the strongly convex function l. In addition to this improvement
our convergence condition with l∗ ≡ 0 (set βl � 0 in (3.10)) is
less restrictive and doubles the range of acceptable stepsize γ. The
convergence condition in that work is given in our notation as
γβ f < 1 and σγ‖L‖2 < 1 [62, Cor. 3.2].

The next algorithm features sequential proximal updates that are fol-
lowedby a correction step for the dual variable, for all values of θ ∈ (0,∞).
The parallel variant of this algorithm, referred to as PDCA, is discussed in
a separate box below.We have observed that selecting θ so as tomaximize
the stepsizes, i.e., θ � 1.5, leads to faster convergence [100]. Moreover, if
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we set Σ � Γ−1, this choice of µ leads to a three-block ADMM or equiva-
lently a generalization of DRS to include a third cocoercive operator (see
Section 2.3.4).

SDCA (Sequential Dual Corrector Algorithm): θ ∈ (0,∞), µ � 0,
λ � 1
In this case the convergence condition simplifies to(

Γ−1 − (1 − θ)(2 − θ)L>ΣL − β f
2 Q −L>

−L Σ−1 − βl
2 R

)
� 0.

If l � δ{0} then βl � 0 and using Schur complement we derive the
following condition

Γ−1 − (
θ2 − 3θ + 3

)
L>ΣL − β f

2 Q � 0.

If in addition Q � id, and Γ � γid, Σ � σid for some scalars γ, σ,
then we have the following sufficient condition

(θ2 − 3θ + 3)σγ‖L‖2 < 1 − γβ f
2 .

The next algorithm appears to be new and involves parallel proximal
updates followed by a primal correction step.

PPCA (Parallel Primal Corrector Algorithm): θ � 0, µ � 1
The convergence condition is given by(

( 2
λ − 1)Γ−1 − β f

2λQ L>

L ( 2
λ − 1)Σ−1 − 2LΓL> − βl

2λR

)
� 0.

If f ≡ 0 (set β f � 0) and λ � 1, using Schur complement yields the
following condition

Σ−1 − 3LΓL> − βl
2 R � 0.

If in addition R � id and Γ � γid, Σ � σid for some scalars γ, σ,
then the following sufficient condition may be used

3σγ‖L‖2 < 1 − σβl
2 .
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The parallel variant of SDCA is considered below. Interestingly, by
switching the order of the proximal updates (since θ � 0), PDCAmay be
seen as PPCA applied to the dual problem (3.2).

PDCA (Parallel Dual Corrector Algorithm): θ � 0, µ � 0
In this case the convergence condition simplifies to(

( 2
λ − 1)Γ−1 − 2L>ΣL − β f

2λQ −L>

−L ( 2
λ − 1)Σ−1 − βl

2λR

)
� 0.

If l � δ{0} (set βl � 0) and λ � 1, using Schur complement yields
the following condition

Γ−1 − 3L>ΣL − β f
2 Q � 0.

If in addition Q � id, and Γ � γid, Σ � σid for some scalars γ, σ,
then the following sufficient condition may be used

3σγ‖L‖2 < 1 − γβ f
2 .

The last special case considered here involves sequential proximal
updates followed by correction steps for the primal and dual variables.
As noted before for this choice of µ, the linear mappings L and L> must
be evaluated twice at every iteration.

PPDCA (Parallel Primal and Dual Corrector Algorithm): θ � 0,
µ � 0.5
In this case condition (3.7) reduces to:

Γ−1 − λ
(2−λ)L

>ΣL − β f

2(2−λ)Q � 0, Σ−1 − λ
(2−λ)LΓL> − βl

2(2−λ)R � 0.

If Q � id, R � id, λ � 1 and Γ � γid, Σ � σid for some scalars γ, σ,
the following sufficient condition may be used

σγ‖L‖2 < min{1 − γβ f
2 , 1 − σβl

2 }.
This special case generalizes [31, Alg. (4.8)] with the addition of
the smooth function f and the strongly convex function l.

48



Remark 3.1. In [180] a newprimal-dual algorithm is proposed for solving
(3.1) that recovers the three term splitting of [58] when L � id. It is
interesting to note the relation to our framework. This algorithm is given
by [180, Eq. 4a-4c]:

uk+1
� proxσh∗

(
uk

+ σLx̄k − σ∇l∗(uk)
)

(3.11a)

xk+1
� proxγg

(
xk − γL>uk+1 − γ∇ f (xk)

)
(3.11b)

x̄k+1
� 2xk+1 − xk

+ γ∇ f (xk) − γ∇ f (xk+1). (3.11c)

Let us consider SPCA, a special case of Algorithm 3.1 where θ � 1, µ � 1,
with λ � 1, Σ � σid, Γ � γid. Change the order of the updates starting
from the dual update to obtain:

uk+1
� proxσh∗

(
uk

+ σLx̄k − σ∇l∗(uk)
)

(3.12a)

xk+1
� x̄k − γL>(uk+1 − uk) (3.12b)

x̄k+1
� proxγg

(
xk+1 − γL>uk+1 − γ∇ f (xk+1)

)
. (3.12c)

In order to be able to compare the stepsizes of the two algorithmswithout
algebraic difficulty (see [180, Assumption 1 and Thm. 1]) set l � δ{0} and
Q � id. Using the above parameters in Assumption 3.II(iii)we obtain the
following sufficient condition for (3.12):

γβ f < 2, γσ‖L‖2 < 1. (3.13)

This stepsize condition is the same as that of [180]. However, the two al-
gorithms are quite different in the way the primal variables are updated.
In Section 3.5, simulations are performed for solving dual support vec-
tor machine problems, and the results indicate very similar convergence
speed for the two algorithms, see Figure 3.2.

3.2.2 Primal-dual algorithms with a dynamically updated
stepsize

In this section a variant of Algorithm 3.1 is discussed that involves a step-
size parameter that is computed based on the primal and dual variables
at every iteration, leading to potentially larger stepsizes. This algorithm is
the result of applying AFBA Algorithm 2.1 to solve the monotone inclu-
sion (3.5). The algorithm converges to a primal-dual solution provided
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that Assumption 3.III holds. The analysis is detailed in Section 3.4. As
remarked in Section 3.2.1, Algorithm 3.1 is also not symmetric with re-
spect to the primal and dual variables, and a variant may be obtained by
switching their roles.

Algorithm 3.2 A simple framework for primal-dual algorithms

Require: x0 ∈ �n , u0 ∈ �r , algorithm parameters µ ∈ [0, 1], θ ∈ [0,∞).
Initialize: Σ, Γ and λ based on Assumption 3.III.
for k � 0, 1, . . . do

x̄k � proxΓ−1
g (xk − ΓL>uk − Γ∇ f (xk))

ūk � proxΣ−1

h∗ (uk + ΣL((1 − θ)xk + θx̄k) − Σ∇l∗(uk))
x̃k � x̄k − xk , ũk � ūk − uk

Compute αk according to (3.14)
xk+1 � xk + αk(x̃k − µ(2 − θ)ΓL>ũk)
uk+1 � uk + αk(ũk + (1 − µ)(2 − θ)ΣLx̃k)

In Algorithm 3.2

αk � λ
‖ x̃k ‖2

Γ−1 + ‖ũk ‖2
Σ−1 − θ〈x̃k , L>ũk〉

V(x̃k , ũk) , (3.14)

where

V(x̃k , ũk) � ‖ x̃k ‖2
Γ−1 + ‖ũk ‖2

Σ−1 + (1 − µ)(1 − θ)(2 − θ)‖Lx̃k ‖2Σ
+ µ(2 − θ)‖L>ũk ‖2Γ + 2((1 − µ)(1 − θ) − µ)〈x̃k , L>ũk〉. (3.15)

Note that in many distributed applications the computation for the step-
size in (3.14) is disadvantageous since it would entail global coordination.
Nevertheless, if this is not a concern, it can lead to larger stepsizes.

In Section 3.4 it is shown that the sequence (xk , uk)k∈� generated
by Algorithm 3.1 (resp. Algorithm 3.2) converges to a primal-dual solu-
tion if Assumption 3.II (resp. Assumption 3.III) holds. Moreover, linear
convergence rates are established if either one of four mild regularity
assumptions hold for functions f , g , l and h (cf. Cor. 3.12).
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Assumption 3.III (convergence condition for Algorithm 3.2). Addition-
ally to Assumptions 3.II(i) and 3.II(ii) suppose that the following holds

(
Γ−1 − 1

2(2−λ)β f Q − θ2 L>

− θ2 L Σ−1 − 1
2(2−λ)βlR

)
� 0. (3.16)

3.3 Simplified asymmetric forward-backward-
adjoint splitting

A new three term splitting technique was introduced in Chapter 2 for the
problem of finding z ∈ �p such that

0 ∈ Tz B Az + Cz + Mz , (3.17)

where A is maximally monotone, C is cocoercive and M is a monotone
linear mapping. AFBA in its original form includes the stepsize αk , (cf.
Alg. 2.1). Here we simplify the algorithm by considering a constant step-
size (cf. Alg. 3.3). This variant of AFBA is particularly advantageous in
distributed applications where global coordination may be infeasible.
Furthermore, unlike Algorithm 2.1, cocoercivity of the operator C is con-
sidered with respect to some norm independent of the parameters of the
algorithm, and the convergence condition is derived in terms of a matrix
inequality. These changes simplify the analysis for the primal-dual algo-
rithms discussed in Section 3.2. We remind the reader that Algorithm 3.1
is the result of solving the primal-dual optimality conditions usingAFBA.
We defer the derivation and convergence analysis of Algorithm 3.1 until
Section 3.4. A basic key inequality that we use is the following.

Lemma 3.2 (three-point inequality). Suppose that C : �p → �p is cocoercive
with respect to ‖ · ‖U with U ∈ Sp

++, and let V : �p → �p be a linear mapping
such that V ◦ C � C (identity is the trivial choice). Then, for any three points
z , z′, z′′ ∈ �p we have

〈Cz − Cz′, z′ − z′′〉 ≤ 1
4 ‖V>(z − z′′)‖2U . (3.18)

Proof. Use the inequality, valid for any a , b ∈ �p ,

〈a , b〉 � 2〈 1
2 U

1
2 a ,U−

1
2 b〉 ≤ 1

4 ‖a‖2U + ‖b‖2U−1 , (3.19)
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together with (1.7) and V ◦ C � C to derive

〈Cz − Cz′, z′ − z′′〉 � 〈V(Cz − Cz′), z − z′′〉 + 〈Cz − Cz′, z′ − z〉
� 〈Cz − Cz′,V>(z − z′′)〉 + 〈Cz − Cz′, z′ − z〉
3.19
≤ 1

4 ‖V>(z − z′′)‖2U + ‖Cz − Cz′‖2U−1

+ 〈Cz − Cz′, z′ − z〉
1.7
≤ 1

4 ‖V>(z − z′′)‖2U .
The main reason for considering V is to avoid conservative bounds in

(3.18). For example, assume that the space is partitioned into two blocks
z � (z1 , z2) ∈ �p with z1 ∈ �p1 and z2 ∈ �p2 , and C : �p → �p is given
by Cz � (C1z1 , 0) where C1 : �p1 → �p1 is cocoercive. Using inequality
(3.19) without taking into account the structure of C, i.e., that V ◦ C � C
for V � blkdiag(Ip1 , 0p2), would result in the whole vector appearing in
the upper bound in (3.18).

Algorithm 3.3 involves two matrices H and S that are instrumental to
its flexibility. In Section 3.4 we discuss a choice for H and S and demon-
strate how Algorithm 3.1 is derived. Below we summarize the assump-
tions for the monotone inclusion (3.17) and the convergence conditions
for Algorithm 3.3 (cf. Thm. 3.4).

Assumption 3.IV.

(i) Assumptions for the monotone inclusion (3.17):

1) The operator A : �p ⇒ �p is maximally monotone.
2) The linear mapping M : �p → �p is monotone.
3) The operator C : �p → �p is cocoercive with respect to ‖ · ‖U

with U ∈ Sp
++. In addition, V : �p → �p is a linear mapping

such that V ◦ C � C (identity is the trivial choice).

(ii) Convergence conditions for Algorithm 3.3:

1) The matrix H B P + K, where P ∈ S
p
++ and K is a skew-

symmetric matrix.
2) The matrix S ∈ Sp

++ and the following holds

2P − 1
2 VUV> − D � 0, (3.20)

where
D B (H + M>)>S−1(H + M>). (3.21)
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Algorithm 3.3 AFBA with constant stepsize

Require: z0 ∈ �p

Initialize: set S and H according to Assumption 3.IV(ii).
for k � 0, 1, . . . do

z̄k � (H + A)−1(H −M − C)zk

zk+1 � zk + S−1(H + M>)(z̄k − zk)

Lemma 3.3. Let Assumption 3.IV hold. Consider the update for z̄ in Algorithm
3.3

z̄ � (H + A)−1(H −M − C)z. (3.22)

For all z? ∈ zer T the following holds

〈z − z?, (H + M>)(z̄ − z)〉 ≤ 1
4 ‖V>(z − z̄)‖2U − ‖z − z̄‖2P . (3.23)

Proof. Use (3.22) and the fact that z? ∈ zer T, together with monotonicity
of A at z? and z̄ to derive

0 ≤ 〈−Mz? − Cz? + Mz + Cz + H(z̄ − z), z? − z̄〉. (3.24)

In Lemma 3.2 set z′ � z? and z′′ � z̄

〈Cz − Cz?, z? − z̄〉 ≤ 1
4 ‖V>(z − z̄)‖2U . (3.25)

For the remaining terms in (3.24) use skew-symmetry of K (twice) and
monotonicity of M:

〈−Mz? + Mz + H(z̄ − z), z? − z̄〉
�〈−Mz? + Mz + P(z̄ − z) + K(z̄ − z) + K(z? − z̄), z? − z̄〉
�〈(M − K)(z − z?) + P(z̄ − z), z? − z̄〉
�〈(M − K)(z − z?) + P(z̄ − z), z? − z〉
+ 〈(M − K)(z − z?) + P(z̄ − z), z − z̄〉
≤〈P(z̄ − z), z? − z〉 + 〈(M − K)(z − z?), z − z̄〉 − ‖ z̄ − z‖2P
≤〈z − z?, (M> + H)(z − z̄)〉 − ‖ z̄ − z‖2P .

Combining this with (3.24) and (3.25) completes the proof.

53



Theorem3.4 (convergence). Let Assumption 3.IV hold. Consider the sequence
(zk)k∈� generated by Algorithm 3.3. Then, the following inequality holds for all
k ∈ �

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − ‖zk − z̄k ‖2
2P− 1

2 VUV>−D
, (3.26)

and (zk)k∈� converges to a point z? ∈ zer T.

Proof. We show that the generated sequence is S-Fejér monotone with
respect to zer T. For any z? ∈ zer T using the zk+1 update in Algorithm
3.3 we have

‖zk+1 − z?‖2S �‖zk − z?‖2S + ‖S−1(H + M>)(z̄k − zk)‖2S
+ 2〈zk − z?, (H + M>)(z̄k − zk)〉

(3.23)≤ ‖zk − z?‖2S + ‖S−1(H + M>)(z̄k − zk)‖2S
+

1
2 ‖V>(zk − z̄k)‖2U − 2‖zk − z̄k ‖2P

(3.21)≤ ‖zk − z?‖2S − ‖zk − z̄k ‖2
2P− 1

2 VUV>−D
.

Therefore, the sequence (zk − z̄k)k∈� converges to zero. Convergence of
(zk)k∈� to a point in zer T follows by standard arguments; see the last part
of the proof of Theorem 2.1.

It is shown in Theorem 2.4 that under a metric subregularity assump-
tion for operator T, (3.17), the sequence generated by AFBA (cf. Alg. 2.1)
converges R-linearly. In the next theorem we show that Algorithm 3.3
also enjoys linear convergence if either (i) operator T is metrically sub-
regular at all z? ∈ zer T for 0 or (ii) when the operator id − TAFBA has
this property, where TAFBA denotes the operator that maps zk to zk+1 in
Algorithm 3.3. In addition, we show that the two conditions are equiva-
lent. Note that although not stated, this equivalence also holds for TAFBA
corresponding to Algorithm 2.1 in Chapter 2. In Section 3.4 we exploit
the first condition in order to establish linear convergence based on the
properties of the cost functions involved.

Theorem 3.5 (metric subregularity equivalence and linear convergence).
Let Assumption 3.IV hold. The following subregularity assumptions are equiv-
alent.

(i) T � A + M + C is metrically subregular at all z? ∈ zer T for 0.
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(ii) Let TAFBA denote the operator that maps zk to zk+1 in Algorithm 3.3, i.e.,
zk+1 � TAFBA(zk). The operator id− TAFBA is metrically subregular at
all z? ∈ zer T for 0.

Moreover, if either condition holds then (zk)k∈� generated by Algorithm 3.3
converges R-linearly to some z? ∈ zer T and (distS(zk , zer T))k∈� converges
Q-linearly to zero.

Proof. (ii)⇒ (i): assume that R B id − TAFBA is metrically subregular at
z? for 0. Then, there exists η > 0 and a neighborhoodU of z? such that

dist(z ,R−10) ≤ η dist(0,Rz) ∀z ∈ U . (3.27)

Using the definition of TAFBA we have that z ∈ fix TAFBA if and only if
(H+A)−1(H−M−C)z � z which is equivalent to z ∈ zer T. Therefore, the
setsR−10 andT−10 are equal. Inwhat follows,weupper bounddist(0,Rz)
by dist(0, Tz). Let w ∈ Tz � Az +Mz +Cz and consider z̄ as in (3.22). We
have

Hz −Mz − Cz − Hz̄ ∈ Az̄.

Using this together with the monotonicity of A at z and z̄, we obtain:

0 ≤〈z − z̄ , (w −Mz − Cz) − (Hz −Mz − Cz − Hz̄)〉
�〈z − z̄ , w − Hz + Hz̄〉 � 〈z − z̄ , w〉 − ‖ z̄ − z‖2P ,

where in the last equality we have used the fact that H � P + K and K is
skew-symmetric.

By the Cauchy–Schwarz inequality

‖ z̄ − z‖2P ≤ 〈z − z̄ , w〉 ≤ ‖ z̄ − z‖P ‖w‖P−1 ,

therefore
‖ z̄ − z‖P ≤ ‖w‖P−1 . (3.28)

On the other hand since TAFBAz � z + S−1(H + M>)(z̄ − z),
‖Rz‖ ≤ ‖S−1(H + M>)P−1/2‖‖ z̄ − z‖P .

Combine this with (3.27) and (3.28) to obtain

dist(z , T−10) �dist(z ,R−10) ≤ η‖Rz‖
≤η‖S−1(H + M>)P−1/2‖‖P−1‖1/2‖w‖.
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Since w ∈ Tz was arbitrary, we conclude that T is metrically subregular
at z? for 0 (possibly with a different subregularity modulus).

(i)⇒ (ii): assume that T is metrically subregular at z? for 0, i.e., there
exists η > 0 and neighborhoodU of z? such that

dist(z , T−10) ≤ η dist(0, Tz) ∀z ∈ U . (3.29)

By (3.23) and the Cauchy–Schwarz inequality we infer that

‖ z̄ − z‖ ≤ c‖z − z?‖ ,
for some positive constant c. Hence, there exists a neighborhood Ū ⊂ U
of z? such that if z ∈ Ū then z̄ ∈ U . Fix a point z ∈ Ū so that z̄ ∈ U . By
(3.29) it holds that:

dist(z̄ , T−10) ≤ η dist(0, Tz̄). (3.30)

Define
v B −(H −M)(z̄ − z) + Cz̄ − Cz.

By the triangle inequality and Lipschitz continuity of C

‖v‖ � ‖(H −M)(z̄ − z) − Cz̄ + Cz‖
≤ ‖(H −M)(z̄ − z)‖ + ‖Cz̄ − Cz‖ ≤ ξ‖ z̄ − z‖ , (3.31)

for some positive ξ. Moreover, noting that v ∈ Tz̄, it follows from (3.30)
that

dist(z̄ , T−10) ≤ η‖v‖ ≤ ηξ‖ z̄ − z‖ , (3.32)
where we used (3.31) in the second inequality. Invoking triangle inequal-
ity we have

dist(z ,R−10) �dist(z , T−10) ≤ dist(z̄ , T−10) + ‖ z̄ − z‖
≤(1 + ηξ)‖ z̄ − z‖. (3.33)

On the other hand it holds that

‖ z̄ − z‖ ≤ ‖(H + M>)−1S‖‖Rz‖.
Combining this with (3.33) yields

dist(z ,R−10) ≤ (1 + ηξ)‖(H + M>)−1S‖‖Rz‖ ∀z ∈ Ū ,
i.e., that R is metrically subregular at z? for 0. This completes the proof
of equivalence of (i) and (ii).

The proof of linear convergence based on (i) is identical to Theorem
2.4 and is therefore omitted.
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3.4 A unified convergence analysis for primal-
dual algorithms

Our goal in this section is to describe how Algorithms 3.1 and 3.2 are de-
rived and to establish their convergence. The idea is to solve themonotone
inclusion corresponding to the primal-dual optimality conditions using
asymmetric forward-backward-adjoint splitting (AFBA) described in Section
3.3. In order to recover Algorithm 3.1 simply apply Algorithm 3.3 to this
monotone inclusion with the following parameters: let θ ∈ [0,∞) and set
H � P + K with

P �

(
Γ−1 − θ2 L>
− θ2 L Σ−1

)
, K �

(
0 θ

2 L>
− θ2 L 0

)
, (3.34)

and S �
(
λµS−1

1 + λ(1 − µ)S−1
2

)−1 where µ ∈ [0, 1], λ ∈ (0, 2)with

S1�

(
Γ−1 (1 − θ)L>
(1−θ)L Σ−1+(1−θ)(2−θ)LΓL>

)
, S2�

(
Γ−1+(2−θ)L>ΣL −L>

−L Σ−1

)
.

Notice that with P and K set as in (3.34), H has a lower (block) triangular
structure. Therefore the backward step (H + A)−1 in Algorithm 3.3 can
be carried out sequentially, see Lemma 2.5. Algorithm 3.1 is derived by
noting this and substituting S and H defined above. Algorithm 3.2 is
obtained similarly by using Algorithm 2.1 with P, K, M and S as defined
in this chapter. Therefore, convergence of both algorithms follow directly
from that of the two variants of AFBA. This is summarized in the next
theorem.

Theorem 3.6 (convergence of Algorithms 3.1 and 3.2). Let Assumption 3.I
hold. Consider the sequence (zk)k∈� � (xk , uk)k∈� generated by Algorithm 3.1
(resp. Algorithm 3.2). Suppose that Assumption 3.II (resp. Assumption 3.III)
holds. Then, (zk)k∈� converges to some point z? ∈ zer T.

Proof. We begin by establishing the claim for Algorithm 3.3. The goal is
to verify that Assumptions 3.I and 3.II are sufficient for Assumption 3.IV
to hold. As noted in Section 3.2, operator A is maximally monotone [13,
Thm. 21.2, Prop. 20.33], and the linear mapping M is skew-adjoint and as
such monotone. The operator C is cocoercive with respect to the metric
induced by U � blkdiag(β f Q , βlR). In Assumption 3.IVwe use the linear
mappingV in order to avoid conservative requirements. The special cases
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when f ≡ 0 (or l∗ ≡ 0) are captured by setting V � blkdiag(0n , Ir) (or
V � blkdiag(In , 0r)). It remains to verify Assumption 3.IV(ii). Evaluating
D according to (3.21) yields the following D � λµD1 + λ(1− µ)D2 where

D1 �

(
Γ−1 −L>
−L Σ−1 + (2 − θ)LΓL>

)
,

D2 �

(
Γ−1 + (1 − θ)(2 − θ)L>ΣL (1 − θ)L>

(1 − θ)L Σ−1

)
.

Noting that Γ,Σ � 0, and using Schur complement for D1 and P defined
in (3.34) we have

D1 � 0 ⇔ Σ−1
+ (1 − θ)LΓL> � 0, Σ−1 − θ2

4 LΓL> � 0 ⇔ P � 0.

Thus, since 1 − θ ≥ − θ2

4 for all θ, we have that D1 � 0 if P � 0. It
can be shown that the same argument applies for S1, S2 and D2. The
sum of two positive definite matrices is also positive definite, therefore
S,D � 0 if P � 0. Matrix P is symmetric positive definite if (3.20) holds.
The convergence conditions in Assumption 3.II are the result of replacing
D, P, U and V in (3.20).

In order to establish convergence ofAlgorithm3.2we start by adapting
the convergence analysis of Algorithm 2.1 to suit the notation of this
chapter. This amounts to the following condition:

(2 − λ)P − 1
2 VUV> � 0, λ ∈ (0, 2). (3.35)

To see this note that using Lemma 3.3, inequality (2.10) is updated as
follows:

‖zk+1−z?‖2S≤‖zk−z?‖2S+λ2‖(H+M∗)z̃k ‖−2
S−1 ‖ z̃k ‖4P

+λ‖(H+M∗)z̃k ‖−2
S−1 ‖ z̃k ‖2P

(
1
2 ‖V>(zk− z̄k)‖2U−2‖zk− z̄k ‖2P

)

�‖zk−z?‖2S−‖(H+M∗)z̃k ‖−2
S−1 ‖ z̃k ‖2P

(
λ‖ z̃‖2

2P− 1
2 VUV>

−λ2‖ z̃k ‖2P
)

�‖zk−z?‖2S−λ‖P−1/2S−1/2(H+M∗)z̃k ‖−2
P ‖ z̃k ‖2P

(
‖ z̃‖2
(2−λ)P− 1

2 VUV>

)

≤‖zk−z?‖2S−λ‖P−1/2S−1/2(H+M∗)‖−2
P ‖ z̃‖2(2−λ)P− 1

2 VUV>
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Therefore, using standard argumentswe conclude that if (3.35) holds then
the sequence (zk)k∈� converges to a primal-dual solution. It is straight-
forward to see that Assumption 3.III is a restatement of (3.35) with P, U,
V defined here. This completes the proof.

3.4.1 Linear convergence
In this section we explore sufficient conditions for f , g , h and l under
which Algorithm 3.1 and Algorithm 3.2 achieve linear convergence rates.
In Lemma 3.8 and Lemma 3.11 we provide four regularity assumptions
under which T defining the primal-dual optimality conditions is metri-
cally subregular at z? ∈ zer T for 0. The linear convergence rate results
are then deduced in Corollary 3.12.

Let us first recall the notion of quadratic growth: a proper closed
convex function g is said to have quadratic growth at x̄ for 0 with 0 ∈ ∂g(x̄)
if there exists a neighborhoodU of x̄ such that

g(x) ≥ inf g + c dist2(x , ∂g−1(0)), ∀x ∈ U . (3.36)

Metric subregularity of the subdifferential operator and the quadratic
growth condition are known to be equivalent [6, 63]. In particular, ∂g is
metrically subregular at x̄ for ū with ū ∈ ∂g(x̄) if and only if the quadratic
growth condition (3.36) holds for g(·) − 〈ū , ·〉, i.e., there exists a positive
constant c and a neighborhoodU of x̄ such that [6, Thm. 3.3]

g(x) ≥ g(x̄) + 〈ū , x − x̄〉 + c dist2(x , ∂g−1(ū)), ∀x ∈ U . (3.37)

Strong subregularity has a similar characterization [6, Thm. 3.5]

g(x) ≥ g(x̄) + 〈ū , x − x̄〉 + c‖x − x̄‖2 , ∀x ∈ U . (3.38)

Next, let us define the following general growth condition.

Definition 3.7 (quadratic growth relative to a set). Consider a proper closed
convex function g and a pair (x̄ , ū) ∈ gra ∂g. We say that g has quadratic
growth at x̄ for ū relative to a nonempty closed convex set X containing x̄, if
there exists a positive constant c and a neighborhoodU of x̄ such that

g(x) ≥ g(x̄) + 〈ū , x − x̄〉 + c dist2(x ,X), ∀x ∈ U . (3.39)

From the above definition it is evident that metric subregularity and
strong subregularity characterized in (3.37) and (3.38) are recoveredwhen
X � ∂g−1(ū) and X � {x̄}, respectively.
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Another regularity assumption used in Lemma 3.8 is the notion of
local strong convexity: a proper closed convex function g is said to be
locally strongly convex in a neighborhood of x̄, denoted by U , if there
exists a positive constant c such that

g(x′) ≥ g(x) + 〈v , x′ − x〉 + c
2 ‖x′ − x‖2 , ∀x , x′ ∈ U , ∀v ∈ ∂g(x).

Notice that local strong convexity in a neighborhood of x̄ implies (3.38),
but (3.38) is much weaker than local strong convexity since it holds only at
x̄ and only for ū ∈ ∂g(x̄).

In the next lemma we provide three different regularity assumptions
that are sufficient for metric subregularity of the operator defining the
primal-dual optimality conditions. In Lemma 3.8(i) (or Lemma 3.8(ii)) we
use local strong convexity, aswell as the quadratic growth condition (3.39)
relative to the set of primal solutions (or dual solutions). Interestingly, this
regularity assumption does not entail a unique primal-dual solution.
Lemma 3.8. Let Assumption 3.I hold. The operator T defining the primal-dual
optimality conditions, cf. (3.6), is metrically subregular at z? � (x?, u?) for 0
with 0 ∈ Tz? if one of the following assumptions holds:

(i) f + g has quadratic growth at x? for −L>u? relative to the set of primal
solutions X?, and h∗ + l∗ is locally strongly convex in a neighborhood of
u?. In this case the set of dual solutions is a singleton, U? � {u?}.

(ii) f + g is locally strongly convex in a neighborhood of x?, and h∗ + l∗ has
quadratic growth at u? for Lx? relative to the set of dual solutions U?. In
this case the set of primal solutions is a singleton, X? � {x?}.

(iii) ∇ f + ∂g is strongly subregular at x? for −L>u? and ∂h∗ +∇l∗ is strongly
subregular at u? for Lx?. In this case the set of primal-dual solutions is a
singleton, zer T � {(x?, u?)}.

Proof. 3.8(i)- Consider the point z? � (x?, u?). By definition of quadratic
growth there exists a neighborhoodUx? and a positive constant c1 such
that

( f + g)(x) ≥ ( f + g)(x?) + 〈−L>u?, x − x?〉 + c1 dist2(x ,X?), ∀x ∈ Ux? .
(3.40)

LetUu? denote theneighborhoodof u? inwhich the local strong convexity
of h∗ + l∗ holds. Fix a point z � (x , u) ∈ Zz? B Ux? × Uu? . Now take
v � (v1 , v2) ∈ Tz � Az + Mz + Cz, i.e.,{

v1 ∈ ∂g(x) + ∇ f (x) + L>u ,
v2 ∈ ∂h∗(u) + ∇l∗(u) − Lx. (3.41)
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Let z0 � (x0 , u0) denote the projection of z onto the set of solutions, zer T.
The subgradient inequality for f + g at x using (3.41) gives

〈v1 , x − x0〉 ≥ ( f + g)(x) − ( f + g)(x0) + 〈L>u , x − x0〉. (3.42)

Noting that 0 ∈ Tz0, by the subgradient inequality for h∗ + l∗ at u0 we
have

(h∗ + l∗)(u) ≥ (h∗ + l∗)(u0) + 〈Lx0 , u − u0〉. (3.43)

Summing (3.42) and (3.43) yields

〈v1 , x − x0〉 ≥ L(x , u) − L(x0 , u0) � L(x , u) − L(x?, u?), (3.44)

where L is the Lagrangian defined in (3.3). By local strong convexity of
h∗ + l∗ at u ∈ Uu? (for some strong convexity parameter c2):

(h∗ + l∗)(u?) ≥ (h∗ + l∗)(u) + 〈v2 + Lx , u? − u〉 + c2
2 ‖u? − u‖2.

Sum this inequality with (3.40) to obtain that for z ∈ Zz?

L(x , u) − L(x?, u?) ≥ c1 dist2(x ,X?) + 〈v2 , u? − u〉 + c2
2 ‖u? − u‖2.

(3.45)

It follows from (3.44) and (3.45) that

〈v2 , u − u?〉 + 〈v1 , x − x0〉 ≥ c2
2 ‖u? − u‖2 + c1 dist2(x ,X?)

�
c2
2 ‖u? − u‖2 + c1‖x − x0‖2

≥ c
(‖u? − u‖2 + ‖x − x0‖2

)
, (3.46)

where c � min{c1 ,
c2
2 }. By the Cauchy-Schwarz inequality

〈v1 , x − x0〉 + 〈v2 , u − u?〉 ≤ ‖v‖ (‖u − u?‖2 + ‖x − x0‖2
) 1

2 . (3.47)

Combining (3.46) and (3.47) yields

‖v‖ ≥ c
(‖u − u?‖2 + ‖x − x0‖2

) 1
2 ≥ c‖z − z0‖ � cd(z , T−10).

Since v ∈ Tz was selected arbitrarily we have that

d(z , T−10) ≤ 1
c d(Tz , 0), ∀z ∈ Zz? .
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This completes the first claim. Next, consider z̄? � (x̄?, ū?) ∈ zer T such
that z̄? ∈ Zz? . Setting z � z̄? in (3.45) yields

0 � L(x̄?, ū?) − L(x?, u?) ≥ c2
2 ‖u? − ū?‖2.

Therefore, ū? � u? and since zer T is convexwe conclude that U? � {u?}.
3.8(ii)- The proof of the second part is similar to part 3.8(i). Therefore,

we outline the proof. Let Ux? ,Uu? be the neighborhoods in the defini-
tion of local strong convexity of f + g and quadratic growth of h∗ + l∗,
respectively. Fix z ∈ Zz? � Ux? ×Uu? . Take v � (v1 , v2) as in (3.41), and
let z0 denote the projection of z onto zer T. In contrast to the previous
part, sum the subgradient inequalities for f + g at x0 and for h∗ + l∗ at u
to derive

〈v2 , u − u0〉 ≥ L(x0 , u0) − L(x , u) � L(x?, u?) − L(x , u). (3.48)

Use local strong convexity of f + g at x, and the quadratic growth of h∗+ l∗
at u? for Lx? relative to U? to derive

L(x?, u?) − L(x , u) ≥ c1d(u ,U?) + 〈v1 , x? − x〉 + c2
2 ‖x − x?‖2.

Combining this with (3.48) and arguing as in the previous part completes
the proof.

3.8(iii)- The proof of this part is slightly different. Let Ux? ,Uu? be
the neighborhoods in the definitions of the two strong subregularity
assumptions. Fix z ∈ Zz? � Ux? × Uu? . Sum the subgradient inequality
for f + g at x and for h∗ + l∗ at u to derive

〈v , z − z?〉 � 〈v2 , u − u?〉 + 〈v1 , x − x?〉 ≥ L(x , u?) − L(x?, u) (3.49)

On the other hand by [6, Thm. 3.5], f + g has quadratic growth at x? for
−L>u? relative to {x?} and h∗ + l∗ has quadratic growth at u? for Lx?

relative to {u?}. Summing the two yields

L(x , u?) − L(x?, u) ≥ c2‖u − u?‖2 + c1‖x − x?‖2 (3.50)

Combining this inequality with (3.49) and using the Cauchy-Schwartz
inequality as in previous parts completes the proof. Uniqueness of the
solution follows from (3.50) by setting z � z̄? ∈ zer T such that z̄? ∈ Zz?

and using the convexity of zer T.

The assumptions of Lemma 3.8 are much weaker than strong con-
vexity and do not always imply a unique primal-dual solution. Here we
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present two simple examples for demonstration. Notice that in the next
example the assumption of Lemma 3.8(i) that f + g has quadratic growth
with respect to the set of primal solutions is equivalent to the metric
subregularity assumption.

Example 3.9. Consider the problem

minimize
x∈�

g(x) + h(x) � max{1 − x , 0} + x
2 min{x , 0}

The solution to this problem is not unique and any x? ∈ [1,∞) solves this
problem. The dual problem is given by

minimize
u∈�

g∗(−u) + h∗(u), (3.51)

where g∗(u) � u + δ[−1,0](u) and h∗(u) � 1
2 u2 + δ≤0(u). It is evident that

the dual problem has the unique solution u? � 0. It is easy to verify that
g has quadratic growth at all the points x? ∈ [1,∞) for 0 with respect to
X? � [1,∞). Moreover, we have ∂g−1(0) � [1,∞), i.e., X? � ∂g−1(0). In
otherwords in this case the assumption of Lemma3.8(i) for g is equivalent
to the metric subregularity of ∂g at x? for 0. Notice that ∂g is not strongly
subregular at any point in [1,∞) for 0. Furthermore, h∗ is globally strongly
convex given that ∇h is Lipschitz. Therefore, according to Lemma 3.8(i)
one would expect a unique dual solution but not necessarily a unique
primal solution, which is indeed the case.

Example 3.10. Let c ∈ [−1, 1] and consider

minimize
x∈�

g(x) + h(x) � |x | + cx.

When c ∈ (−1, 1) the problem attains a unique minimum at x? � 0.
When c � 1 (or c � −1) all x? ∈ (−∞, 0] (or x? ∈ [0,∞)) solves the
problem. The dual problem is given by (3.51) with g∗(u) � δ[−1,1](u) and
h∗(u) � δ{c}(u). The unique dual solution is u? � c. Furthermore, ∂h∗
is strongly subregular at u? � c for all x? given that x? ∈ ∂h∗(u?). It is
easy to verify that ∂g is metrically subregular at x? � 0 for u? ∈ [−1, 1]
but is only strongly subregular at x? � 0 for u? ∈ (−1, 1). Notice that
u? � c, therefore by Lemma 3.8(iii) one would expect a unique primal-
dual solution when u? � c ∈ (−1, 1)which is indeed the case.

Awide range of functions used in optimization applications belong to
the class of piecewise linear-quadratic (PLQ) functions, Definition 1.4. Some
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notable examples include: affine functions, quadratic functions, indicators
of polyhedral sets, polyhedral norms such as `1, and regularizers such as
elastic net, Huber loss, hinge loss, and many more [144, 7]. For a proper
closed convex PLQ function g, ∂g is piecewise polyhedral, and therefore
metrically subregular at any z for any z′ provided that z′ ∈ ∂g(z) [144, 61].
Lemma 3.11. Let Assumption 3.I hold. In addition, assume that f , g , l , and
h are piecewise linear-quadratic. Then, the operator T defining the primal-dual
optimality conditions, cf. (3.6), is metrically subregular with the same constant
at any z for any z′ provided that z′ ∈ Tz.

Proof. The subdifferential ∂g, ∇ f , ∂h∗ and ∇l∗ are piecewise polyhedral
[144, Prop. 12.30, Thm. 11.14]. Therefore, A and C are piecewise polyhe-
dral. Furthermore, the graph of M is polyhedral since M is linear. There-
fore, the graph of T � A+M+C is also piecewise polyhedral. The inverse
of a piecewise polyhedral mapping is also piecewise polyhedral. There-
fore by [61, Prop. 3H.1, 3H.3] the mapping T is metrically subregular at z
for z′ whenever (z , z′) ∈ gra T.

In the next corollary linear convergence results based on the two
previous lemmas and Theorem 3.5 are presented.

Corollary 3.12 (linear convergence for Algorithms 3.1 and 3.2). Let As-
sumption 3.I hold. Consider the sequence (zk)k∈� � (xk , uk)k∈� generated by
Algorithm 3.1 (resp. Algorithm 3.2). Suppose that Assumption 3.II (resp. As-
sumption 3.III) holds. In addition, suppose that one of the following assumptions
holds:

(i) f , g , l , and h are piecewise linear-quadratic.

(ii) f , g , l , and h satisfy at least one of the conditions of Lemma 3.8 at every
z? ∈ zer T (not necessarily the same condition at all the points).

Then, the sequence (zk)k∈� converges R-linearly to some z? ∈ zer T, and
(distS(zk , zer T))k∈� converges Q-linearly to zero.

3.5 Stepsize selection and simulations
In this section we present some rules of thumb for selecting the step-
sizes of the algorithms introduced in Section 3.2. Note that in appli-
cations where function g (or h) is separable, i.e., g(x) �

∑N
i�1 gi(xi)
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with x � (x1 , x2 , . . . , xN ) ∈ �n , xi ∈ �ni , using a diagonal matrix Σ �

blkdiag(σ1InN , σ2In2 , . . . , σNInN ) results in the following decomposition
of the proximal mapping of g

proxΣ−1
g (x) �

(
proxσ1 g1(x1), proxσ2 g2(x2), . . . , proxσN gN

(xN )
)
,

and leads to larger stepsizes than if we had used Σ � σIn (this would
effectively correspond to σ � mini σi). Below, after discussing stepsize
selection and practical aspects of termination criteria, numerical sim-
ulations are performed comparing the performance of the algorithms
presented in this chapter.

Stepsize selection: For simplicity we discuss some rules of thumb for
stepsize selection when Σ � σid, Γ � γid, R,Q � id and the relaxation
parameter λ � 1. Similar rules can be obtained following the same rea-
soning for more general cases such as when diagonal stepsize matrices
are used.

While the choice of the stepsizes is application dependent, the choices
discussed below perform reasonably well in our experiments. These are
also used as default parameters in the Julia package ProximalAlgorithms1
for the primal-dual AFBA solver.

Consider the stepsize condition for the Vũ-Condat algorithm (see
(3.9)):

σγ‖L‖2 <
(
1 − γβ f

2

) (
1 − σβl

2

)
. (3.52)

This inequality is always satisfied for

γ �
1

β f
2 +
‖L‖
ν

, σ �
0.99

βl
2 +ν‖L‖

, ν ∈ (0,∞). (3.53)

In our experiments, setting

ν �



ξ2‖L‖/β f if β f > ξ1βl & ξ1β f > ‖L‖
βl/ξ2‖L‖ if βl > ξ1β f & ξ1βl > ‖L‖
1 otherwise,

(3.54)

with ξ1 � 5 and ξ2 � 100 seems to perform best. The idea here is that if
β f is much larger that βl , it is best to select γ as large as possible. If βl
and β f are of the same order, or if ‖L‖ is much larger than both of them,
then given the symmetry in (3.53), stepsizes γ and σ of the same order
are used.

1https://github.com/kul-forbes/ProximalAlgorithms.jl

65

https://github.com/kul-forbes/ProximalAlgorithms.jl


In the case of SPCA, the condition is as follows:

γσ‖L‖2 < (1 − σβl
2 ), γβ f < 2.

In the simulations we set γ � 1.99/β f and σ � 0.99/γ‖L‖2 (since βl � 0).
In the case of SDCA, PDCA, PPDCAwhen βl � 0 (as is the case in the

simulations) the stepsizes are selected as in (3.53) and (3.54), with ‖L‖
replaced by η‖L‖ where η � θ2 − 3θ + 3.

In the case of Algorithm 3.2, in order to satisfy Assumption 3.III we
set the stepsizes as follows: if θ , 0 then the stepsizes are selected as in
(3.53) and (3.54), with ‖L‖ replaced by θ

2 ‖L‖. If θ � 0 then γ � 1.99/β f

and σ � 1.99/βl . Since in the example below βl � 0, σ can be any positive
number and is selected by trial for best performance.

Termination criteria: Another practical matter is to have a criterion
for termination andperformance comparisons of primal-dual algorithms.
Consider v � (v1 , v2) ∈ Tz, i.e.,{

v1 ∈ ∂g(x) + ∇ f (x) + L>u ,
v2 ∈ ∂h∗(u) + ∇l∗(u) − Lx.

This inclusion is satisfied with v � 0 at any primal-dual solution (x , u).
Therefore, the norm of v is an appropriate measure of optimality. Con-
sider the primal and dual updates in Algorithms 3.1 and 3.2 withΣ � σid
and Γ � γid. Using the definition of proximal mapping we have

γ−1(xk− x̄k)−L>(uk− ūk)+∇ f (x̄k)−∇ f (xk)∈L>ūk
+∂g(x̄k)+∇ f (x̄k),

σ−1(uk− ūk)+(1−θ)L(xk− x̄k)+∇l∗(ūk)−∇l∗(uk)∈∂h∗(ūk)+∇l∗(ūk)−Lx̄k .

Therefore, we use O(zk , z̄k) given by

O(zk , z̄k) B ‖γ−1(xk − x̄k) − L>(uk − ūk) + ∇ f (x̄k) − ∇ f (xk)‖2
+ ‖σ−1(uk − ūk) + (1 − θ)L(xk − x̄k) + ∇l∗(ūk) − ∇l∗(uk)‖2

as a measure of optimality in the simulations. Note that computing
O(zk , z̄k) does not always require additional gradient evaluations. This
is the case for several of the special cases discussed in Section 3.2.1 for
which xk+1 � x̄k , such as SNCA with λ � 1, or SDCA, PDCA and dual
of SPCA when l � δ{0} and λ � 1. Although in other cases additional
gradient evaluations may be unavoidable, O(zk , z̄k) is used here for per-
formance comparisons anyway. We also remark that in practice one may
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use the sum of residuals ‖ x̄k − xk ‖/γ and ‖ūk − uk ‖/σ as the termination
criteria.

Simulations: We evaluate the performance of the algorithms with
the above stepsizes on the dual support vector machine problem (1.3) with
C � 1/10. In our simulations we used two processed datasets, iris (first two
classes) and a1a from the LIBSVM dataset [40].
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Figure 3.1: Dual SVM on iris, a1a: (left column) variants of Algorithm 3.1 (right
column) variants of Algorithm 3.2

We formulate the problem in the form of (3.1) by setting f equal to
the quadratic cost, g the indicator of the box [0, C]N , h � δ{0} and L � b>
where b � (b1 , . . . , bN ). The results are presented in Figure 3.1 where we
have only included some representative algorithms. Other variants have
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similar performances and are excluded for the sake of clarity of the plot.
The stepsizes for SPCA can take larger values compared to other variants.
Consequently, we often observe faster convergence for SPCA; however, it
is observed that in general the algorithms have similar performance and
the trajectories are very close to each other. Note that other than PPDCA
the other five algorithms depicted require only two matrix-vector prod-
ucts excluding the gradient evaluation (PPDCA requires four). Moreover,
for this problem the performance gain by using Algorithm 3.2 is not sig-
nificant enough to justify the extra computation required for computing
νk in (3.14).
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Figure 3.2: Performance comparisons for SPCA and PD3O [180] for classifying
a1a dataset
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Figure 3.3: Performance comparisons for SPCA, Alg. 2.2 and Davis-Yin algorithm
for classifying a1a dataset
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Next, SPCA is compared with PD3O [180] discussed in Remark 3.1.
We use the same formulation for both algorithms. The stepsize condition
for PD3O is identical to SPCA, and therefore we use the same rule of
thumbdescribed above for best performance.Note that the iterates are not
necessarily feasible. In order tohave a fair comparison, for both algorithms
we use the primal variable that belongs to the domain of g, i.e., xk+1

in (3.11) and x̄k+1 in (3.12). Figure 3.2 (left) shows the distance of the
quadratic cost from the optimal cost and (right) plots |Lx | (recall the
constraint Lx � 0). It is observed that both algorithms have very similar
performances.

In Chapter 2 a DRS-type algorithm was introduced, Algorithm 2.2,
which in the optimization framework can be derived from Algorithm 3.1
with µ � 0, by setting l � δ{0}, L � id, and γ � σ−1 after a change of
variable. As noted in Remark 2.9, we compare its performance against
the three term splitting of Davis and Yin [58]. For this set of simulations,
problem (1.3) is formulated as before with the difference that h is set to
be the indicator of the set {x ∈ �N | ∑N

i�1 xi bi � 0} (and L � id). Note that
the proximal mapping of h can be computed efficiently. The stepsizes of
Algorithm 2.2 were selected according to Proposition 2.7 with θ � 1.5,
γ � 0.5(4 − θ2)/β f and ρk set to the maximum permitted value in (3.37).
It is observed in Figure 3.3 that for this problem Algorithm 2.2 is slower,
which is due to limiting the stepsizes to γ � σ−1. We also plotted the
result of SPCA with this formulation and observe that its trajectories are
quite close to those of the Davis-Yin algorithm.

3.6 Conclusions
This section introduceda simpleprimal-dual framework for solving struc-
tured convex optimization problems. Depending on the value of two
parameters, (extension of) known as well as many new primal-dual algo-
rithms are obtained. Owing to this unified framework linear convergence
rates were obtained for all the special cases of our framework provided
that some mild regularity conditions for the cost functions are satisfied.
Moreover, numerical simulations were performed on dual SVM where
we discussed practical issues such as rules of thumb for stepsize selection
and termination criteria.
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Chapter 4

A randomized block-coordinate primal-dual
proximal algorithm

This chapter is based on:
Latafat, P., Freris, N. M., and Patrinos, P. A new randomized block-

coordinate primal-dual proximal algorithm for distributed optimization. IEEE
Transactions on Automatic Control 64, 10 (10 2019), 4050–4065.

4.1 Introduction
In this chapter we revisit the optimization problem

minimize
x∈�n

f (x) + g(x) + h(Lx), (4.1)

where L is a linear mapping, h and g are proper, closed, convex func-
tions (possibly nonsmooth), and f is convex, continuously differentiable
with Lipschitz continuous gradient. We further assume that the proximal
mappings associated with h and g are efficiently computable [49]. This
setup is quite general and captures a wide range of applications in signal
processing, machine learning and control.

In problem (4.1), it is typically assumed that the gradient of the smooth
term f is β f -Lipschitz for some nonnegative constant β f . We consider
Lipschitz continuity of ∇ f with respect to ‖ · ‖Q with Q � 0 in place
of the canonical norm (cf. (4.2)). This is because in many applications of
practical interest, a scalar Lipschitz constant fails to accurately capture
the Lipschitz continuity of ∇ f . A prominent example lies in distributed
optimization, where f is separable, i.e., f (x) � ∑m

i�1 fi(xi). In this case,
the metric Q is taken block-diagonal with blocks containing the Lipschitz
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constants of the ∇ fi ’s. Notice that in such settings considering a scalar
Lipschitz constant results in using the largest of the Lipschitz constants,
which leads to conservative stepsize selection and consequently slower
convergence rates.

This chapter presents a primal-dual algorithm TriPD (Alg. 4.1), that
consists of two proximal evaluations (corresponding to the two nons-
mooth terms g and h), one gradient evaluation (for the smooth term f ),
and one correction step (cf.Alg. 4.1). We adopt the general Lipschitz con-
tinuity assumption (4.2) in our convergence analysis, which is essential
for avoiding conservative stepsize conditions that depend on the global
scalar Lipschitz constant.

In Section 4.2, it is shown that the sequence generated by TriPD (Alg.
4.1) is S-Fejér monotone (with respect to the set of primal-dual solutions),
where S is a block diagonal positive definite matrix. This key property
is exploited in Section 4.3 to develop a block-coordinate version of the
algorithm with a general randomized activation scheme.

The connections of TriPD to other related primal-dual algorithms in
the literature are discussed in Section 4.2.1. Most notably, TriPD trans-
forms into the algorithm of Vũ and Condat [170, 53] by a change of order
and elimination of the dual variable (refer to Section 4.2.1). Convergence
of the Vũ-Condat schemewas established independently by Vũ [170] and
Condat [53], by casting it in the form of the forward-backward splitting.
In the original analysis a scalar constant is used to capture the Lipschitz
continuity of the gradient of f , thus resulting in potentially smaller step-
sizes (and slower convergence in practice). In [47], the authors assume
the more general Lipschitz continuity property (4.2) by using a precon-
ditioned variable metric forward-backward iteration. Nevertheless, the
stepsize matrix is restricted to be proportional to Q−1.

Block-coordinate (BC) minimization is a simple approach for tackling
large-scale optimization problems. At each iteration, a subset of the coor-
dinates is updated while others are held fixed. Randomized BC algorithms
are of particular interest, and can be divided into two main categories:

Typea) comprises algorithms inwhich only one coordinate is randomly
activated and updated at each iteration. The BC versions of gradient [125]
andproximal gradientmethods [139] belong in this category.Adistinctive
attribute of the aforementioned algorithms is the fact that the stepsizes
are selected to be inversely proportional to the coordinate-wise Lipschitz
constant of the smooth term rather than the global one. This results in
applying larger stepsizes in directions with smaller Lipschitz constant,
and therefore leads to faster convergence.
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Type b) contains methods where more than one coordinate may be
randomly activated and simultaneously updated [22, 51]. Note that this
class may also capture the single active coordinate (type a) as a special
case. The convergence condition for this class of BC algorithms is typically
the same as in the full algorithm. In [22, 51] random BC is applied to α-
averaged operators by establishing stochastic Fejér monotonicity, while
[51] also considers quasi-nonexpansive operators. In [134, 22] the authors
obtain randomized BC algorithms based on the primal-dual scheme of
Vũ and Condat; the main drawback is that, just as in the full version
of these algorithms, the use of conservative stepsize conditions leads to
slower convergence in practice.

The BC version of TriPD (Alg. 4.1) falls into the second class, i.e.,
it allows for a general randomized activation scheme (cf. Alg. 4.2). The
proposed scheme converges under the same stepsize conditions as the full
algorithm. As a consequence, in view of the characterization of Lipschitz
continuity of ∇ f in (4.2), when f is separable, i.e., f (x) � ∑m

i�1 fi(xi), our
approach leads to algorithms that depend on the local Lipschitz constants
(of ∇ fi ’s) rather than the global constant, thus assimilating the benefits
of both categories. Notice that when f is separable, the coordinate-wise
Lipschitz continuity assumption of [125, 139, 70] is equivalent to (4.2)with
β f � 1 and Q � blkdiag(β1In1 , . . . , βm Inm ), where m denotes the number
of coordinate blocks, ni denotes the dimension of the i-th coordinate
block, and βi denotes the Lipschitz constant of fi . In the general setting,
[125, Lem. 2] can be invoked to establish the connection between the
metric Q and the coordinate-wise Lipschitz assumption. However, in
many cases (most notably the separable case) this lemma is conservative.

In [70], the authors propose a randomized BC version of the Vũ-
Condat scheme. Their analysis does not require the cost functions to be
separable and utilizes a different Lyapunov function for establishing con-
vergence. Notice that the block-coordinate scheme of [70] updates a single
coordinate at every iteration (i.e., it is a type a) algorithm) as opposed to
the more general random sweeping of the coordinates. Additionally, in
the case of f being separable, our proposed method (cf. Alg. 4.2) assigns
a block stepsize that is inversely proportional to βi

2 (where βi denotes
the Lipschitz constant for fi), in place of βi required by [70, Assumption
1(e)]: larger stepsizes are typically associated with faster convergence in
primal-dual proximal algorithms.

In Section 3.4.1 linear convergence rates were obtain for a large class of
primal-dual algorithms (special cases of Algorithms 3.1 and 3.2). In Sec-
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tion 4.4 we further explicate the required conditions for TriPD in terms
of the objective functions, with two special cases of prevalent interest: a)
when f , g and h satisfy a quadratic growth condition (cf. Lem. 4.8) (which
is much weaker than strong convexity) or b) when f , g and h are piecewise
linear-quadratic (cf. Lem. 4.9), a common scenario in many applications
such as LPs, QPs, SVM and fitting problems for a wide range of regular-
ization functions; e.g. `1 norm, elastic nets, Huber loss and many more.
Specifically, for the BC version of TriPD, linear conveergence rate is estab-
lished under slightly stronger conditions (cf. Thm. 4.11).

Finally, as an important application, we consider a distributed struc-
tured optimization problemover a network of agents. In this context, each
agent has its ownprivate cost function of the form (4.1),while the commu-
nication among agents is captured by an undirected graph G � (V , E):

minimize
x1 ,...,xm

m∑
i�1

fi(xi) + gi(xi) + hi(Li xi)

subject to Ai j xi + A ji x j � b(i , j) (i , j) ∈ E .
We use (i , j) to denote the unordered pair of agents i, j, and i j to denote
the ordered pair. The goal is to solve the global optimization problem
through local exchange of information. Notice that the linear constraints
on the edges of the graph prescribe relations between neighboring agents’
variables. This type of edge constraints was also considered in [182]. It is
worthwhile noting that for the special case of two agents i � 1, 2, with
fi , hi ≡ 0, one recovers the setup for the celebrated alternating direction
method of multipliers (ADMM) algorithm. Another special case of particu-
lar interest is consensus optimization, when Ai j � I, A ji � −I and b(i , j) � 0.
A primal-dual algorithm for consensus optimization was introduced in
[100] for the case of fi ≡ 0, where a transformation was used to replace
the edge variables with node variables.

This multi-agent optimization problem arises in many contexts such
as sensor networks, power systems, transportation networks, robotics,
water networks, distributed data-sharing, etc. [28, 89, 136]. In most of
these applications, there are computation, communication and/or phys-
ical limitations on the system that render centralized management infea-
sible. This motivates the fully distributed synchronous and asynchronous
algorithms developed in Section 4.5. Both versions are fully distributed
in the sense that not only the iterations are performed locally, but also the
stepsizes of each agent are selected based on local information without
any prior global coordination (cf. Assumption 4.VI). The asynchronous
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variant of the algorithm is based on an instance of the randomized block-
coordinate algorithm in Section 4.3. The protocol is as follows: at each
iteration, a) agents are activated at random, and independently from one
another, b) active agents perform local updates, c) they communicate the
required updated values to their neighbors and d) return to an idle state.

4.2 Triangularly preconditioned primal-dual al-
gorithm

In this section we present a primal-dual algorithm for problem (4.1). We
adhere to the following assumptions throughout sections 4.2 to 4.4:

Assumption 4.I.

(i) g : �n → �, h : �r → � are proper, closed, convex functions, and
L : �n → �r is a linear mapping.

(ii) f : �n → � is convex, continuously differentiable, and for some
β f ∈ [0,∞),∇ f is β f -Lipschitz continuouswith respect to themetric
induced by Q � 0 , i.e.,

‖∇ f (x) − ∇ f (y)‖Q−1≤ β f ‖x − y‖Q ∀x , y ∈ �n . (4.2)

(iii) The set of solutions to (4.1) is nonempty. Moreover, there exists
x ∈ ri dom g such that Lx ∈ ri dom h.

In Assumption 4.I(ii), the constant β f ≥ 0 is not absorbed into the
metric Q in order to also incorporate the case when ∇ f is a constant (by
setting β f � 0).

The dual problem is to

minimize
u∈�r

(g + f )∗(−L>u) + h∗(u). (4.3)

With a slight abuse of terminology, we say that (u?, x?) is a primal-dual
solution (in place of dual-primal) if u? solves the dual problem (4.3) and
x? solves the primal problem (4.1). We denote the set of primal-dual
solutions by S. Assumption 4.I(iii) guarantees that the set of solutions to
the dual problem is nonempty and the duality gap is zero [143, Corollary
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31.2.1]. Furthermore, the pair (u?, x?) is a primal-dual solution if and
only if it satisfies: {

0 ∈ ∂h∗(u) − Lx ,
0 ∈ ∂g(x) + ∇ f (x) + L>u. (4.4)

We proceed to present the new primal-dual scheme TriPD (Alg. 4.1). The
motivation behind the name becomes apparent in the sequel after equa-
tion (4.12). The algorithm involves two proximal evaluations (respective
to the non-smooth terms g , h), and one gradient evaluation (for the Lip-
schitz differentiable term f ). The stepsizes in TriPD (Alg. 4.1) are chosen
so as to satisfy the following assumption:

Assumption 4.II (stepsize selection). Both the dual stepsize matrix
Σ ∈ �r×r , and the primal stepsize matrix Γ ∈ �n×n are symmetric positive
definite. In addition, they satisfy:

Γ−1 − β f
2 Q − L>ΣL � 0. (4.5)

Selecting scalar primal and dual stepsizes, along with the standard
definition of Lipschitz continuity, as is prevalent in the literature [170, 53],
can plainly be treated by setting Σ � σIr , Γ � γIn , and Q � In , whence
from (4.5) we require that

γ <
1

β f
2 + σ‖L‖2

.

Algorithm 4.1 Triangularly Preconditioned Primal-Dual algorithm (TriPD)

Inputs: x0 ∈ �n , u0 ∈ �r

for k � 0, 1, . . . do
ūk � proxΣ−1

h∗ (uk + ΣLxk)
xk+1 � proxΓ−1

g (xk − Γ∇ f (xk) − ΓL>ūk)
uk+1 � ūk + ΣL(xk+1 − xk)

Remark 4.1. Each iteration of TriPD (Alg. 4.1) requires one application of
L and one of L> (even though it appears to require two applications of L).
The reason is that, at iteration k, only L>ūk , Lxk+1 need to be evaluated
since L(xk+1 − xk) � Lxk+1 − Lxk and Lxk was computed during the
previous iteration.
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TriPD (Alg. 4.1) can be compactly written as:

zk+1
� Tzk ,

where zk B (uk , xk), and the operator T is given by:

ū � proxΣ−1

h∗ (u + ΣLx) (4.6a)

x̄ � proxΓ−1
g (x − Γ∇ f (x) − ΓL>ū) (4.6b)

Tz � (ū + ΣL(x̄ − x), x̄). (4.6c)

Remark 4.2 (relaxed iterations). It is also possible to devise a relaxed
version of TriPD (Alg. 4.1) as follows:

zk+1
� zk

+Λ(Tzk − zk),
whereΛ is a positive definitematrix andΛ ≺ 2In+r . For ease of exposition,
we present the convergence analysis for the original version (i.e., for Λ �

In+r). Note that the analysis carries through with minor modifications for
relaxed iterations.

For compactness of exposition, we define the following operators:

A : (u , x) 7→ (∂h∗(u), ∂g(x)), (4.7a)
M : (u , x) 7→ (−Lx , L>u), (4.7b)
C : (u , x) 7→ (0,∇ f (x)). (4.7c)

The optimality condition (4.4) can then be written in the equivalent form
of the monotone inclusion:

0 ∈ Az + Mz + Cz C Fz , (4.8)

where z � (u , x). Observe that the linear operator M is monotone since
it is skew-symmetric, i.e., M> � −M. It is also easy to verify that the
operator A is maximally monotone [13, Thm. 21.2 and Prop. 20.23], while
operator C is cocoercive, being the gradient of f̃ (u , x) � f (x), and in light
of Assumption 4.I(ii) and [13, Cor. 18.17].

We further define

P �

(
Σ−1 1

2 L
1
2 L> Γ−1

)
, K �

(
0 − 1

2 L
1
2 L> 0

)
, (4.9)
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and set H � P +K. It is plain to check that condition (4.5) implies that the
symmetric matrix P is positive definite (by a standard Schur complement
argument). In addition, we set

S � blkdiag(Σ−1 , Γ−1). (4.10)

Using these definitions, the operator T defined in (4.6) can be written as:

Tz B z + S−1(H + M>)(z̄ − z), (4.11)

where
z̄ � (H + A)−1(H −M − C)z. (4.12)

This compact representation simplifies the convergence analysis. A key
consideration for choosing P and K as in (4.9) is to ensure that H � P + K
is lower block-triangular. Notice that when M ≡ 0, (4.11) can be viewed as
a triangularly preconditioned forward-backward update, followed by a cor-
rection step. Thismotivates the name TriPD:Triangularly Preconditioned
Primal-Dual algorithm. Due to the triangular structure of H, the back-
ward step (H + A)−1 in (4.12) can be carried out sequentially: an updated
dual vector ū is computed (through proximal mapping) using (u , x) and,
subsequently, the primal vector x̄ is computed using ū and x, cf. (4.6).
Furthermore, it follows from (4.11) that this choice makes H + M> upper
block-triangular which, alongside the diagonal structure of S, yields the
efficiently computable update (4.6c) in view of:

S−1(H + M>) �
(
I ΣL
0 I

)
. (4.13)

Remark 4.3. Note that potentially larger stepsize parameter as in Sec-
tion 3.2.2 can be considered here. Although this can potentially improve
the rate of convergence in practice, we opt not to: the reason is that in
the context of multi-agent optimization (that we especially target in this
chapter) such design choice would require global coordination, that is
contradictory to our objective of devising distributed algorithms.

We proceed by showing that the set of primal-dual solutions coincides
with the set of fixed points of T, fix T:

S � {z | 0 ∈ Az + Mz + Cz} � fix T. (4.14)

To see this note that from (4.11) and (4.12) we have:

z ∈ fix T ⇐⇒ z � Tz ⇐⇒ z̄ � z
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⇐⇒ (H + A)−1(H −M − C)z � z
⇐⇒ Hz −Mz − Cz ∈ Hz + Az ⇐⇒ z ∈ S ,

where in the second equivalenceweused the fact that S is positive definite
and 〈(H + M>)z , z〉 ≥ ‖z‖2P for all z ∈ �n+r (since K is skew-adjoint and
M is monotone).

Next, let us define

P̃ B
(
Σ−1 − 1

2 L
− 1

2 L> Γ−1 − β f
4 Q

)
. (4.15)

Observe that (from Schur complement) Assumption 4.II is necessary and
sufficient for 2P̃ − S to be symmetric positive definite (cf. the convergence
result in Thm. 4.5). In particular, P̃ is positive definite since S is positive
definite.

The next lemma establishes the key property of the operator T that is
instrumental in our convergence analysis:

Lemma 4.4. Let Assumptions 4.I and 4.II hold. Consider the operator T in (4.6)
(equivalently (4.11)). Then, for any z? ∈ S and any z ∈ �n+r we have

‖Tz − z‖2
P̃
≤ 〈z − z?, z − Tz〉S . (4.16)

Proof. Consider the operator T as in (4.11). By monotonicity of A at z?

and z̄ along with (4.12) we have

0 ≤ 〈−Mz? − Cz? + Mz + Cz − Hz + Hz̄ , z? − z̄〉. (4.17)

For β f > 0, assumption 4.I(ii) is equivalent to∇ f being cocoercive [13, Thm.
18.17], i.e., for all x , y ∈ �n :

1
β f
‖∇ f (x) − ∇ f (y)‖2Q−1 ≤ 〈∇ f (x) − ∇ f (y), x − y〉. (4.18)

On the other hand, for β f > 0 we have

〈Cz − Cz?, z? − z̄〉 � 〈∇f (x) − ∇f (x?), x? − x̄〉
� 〈∇f (x) − ∇f (x?), x − x̄〉 + 〈∇f (x) − ∇f (x?), x? − x〉
≤ 1

β f
‖∇f (x) − ∇f (x?)‖2

Q−1 +
β f
4 ‖x − x̄‖2Q + 〈∇f (x) − ∇f (x?), x? − x〉

≤ 〈∇f (x) − ∇f (x?), x − x?〉 + β f
4 ‖x − x̄‖2Q + 〈∇f (x) − ∇f (x?), x? − x〉,

�
β f
4 ‖x − x̄‖2Q , (4.19)
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where we have used (1.8) (with V �
2
β f

Q−1) in the first inequality,
and (4.18) in the second inequality, respectively. Notice that if β f � 0
then inequality (4.19) holds trivially with equality.

Using (4.19) in (4.17), alongwith skew-symmetry of K and M, we have

0 ≤〈−Mz? − Cz? + Mz + Cz − Hz + Hz̄ , z? − z̄〉
≤〈(M − K)(z − z?) + P(z̄ − z), z? − z̄〉 + β f

4 ‖x − x̄‖2Q
�〈(M − K)(z − z?) + P(z̄ − z), z? − z〉 + β f

4 ‖x − x̄‖2Q
+ 〈(M − K)(z − z?) + P(z̄ − z), z − z̄〉

�〈P(z̄ − z), z? − z〉 + β f
4 ‖x − x̄‖2Q − ‖ z̄ − z‖2P + 〈(M − K)(z − z?), z − z̄〉

�〈z − z?, (H + M>)(z − z̄)〉 + β f
4 ‖x − x̄‖2Q − ‖ z̄ − z‖2P . (4.20)

By definition, S−1(H + M>)(z̄ − z) � Tz − z. Thus

〈z − z?, (H + M>)(z − z̄)〉 � 〈z − z?, z − Tz〉S . (4.21)

On the other hand,we have z̄−z � (H+M>)−1S(Tz−z). Using (4.9), (4.13)
and (4.6c) we conclude

‖ z̄ − z‖2P −
β f
4 ‖ x̄ − x‖2Q � ‖Tz − z‖2

P̃
, (4.22)

where P̃ is defined in (4.15). Combining (4.20), (4.21) and (4.22) completes
the proof.

The main convergence result for TriPD (Alg. 4.1) is established in
the next theorem. In specific, it is shown that the generated sequence
is S-Fejér monotone. We emphasize that the diagonal structure of S is
the key property used in developing the block-coordinate version of the
algorithm in Section 4.3.

Theorem4.5. Let Assumptions 4.I and 4.II hold. Consider the sequence (zk)k∈�
generated by TriPD (Alg. 4.1). The following Fejér-type inequality holds for all
z? ∈ S:

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − ‖zk+1 − zk ‖22P̃−S
. (4.23)

Consequently, (zk)k∈� converges to some z? ∈ S.
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Proof. We establish convergence by showing that the sequence (zk)k∈� is
S-Fejér monotone with respect to S � fix T. We have

‖zk+1 − z?‖2S �‖Tzk − zk
+ zk − z?‖2S

� ‖zk − z?‖2S + ‖Tzk − zk ‖2S + 2〈zk − z?, Tzk − zk〉S
≤ ‖zk − z?‖2S − ‖Tzk − zk ‖22P̃−S

, (4.24)

where the inequality follows from Lemma 4.4. Note that 2P̃ − S is sym-
metric positive-definite if and only if assumption 4.II holds. Therefore,
by (4.24) the sequence (zk)k∈� is Fejér monotone in the space equipped
with inner product 〈·, ·〉S; in particular, (zk)k∈� is bounded. Furthermore,
it follows from (4.24) and the fact that 2P̃ − S is positive-definite that

‖Tzk − zk ‖ → 0. (4.25)

The operator T is continuous (since it involves proximal and linear map-
pings that are continuous, and since ∇ f is assumed continuous). Let zc be
a cluster point of (zk)k∈�. It follows from the continuity ofT and (4.25) that
Tzc − zc � 0, i.e., zc ∈ fix T. The result follows from Fejér monotonicity of
(zk)k∈� with respect to S � fix T and [13, Thm. 5.5].

4.2.1 Related primal-dual algorithms
In this section we elaborate on the relation between TriPD (Alg. 4.1) and
other primal-dual algorithms. In Section 3.2 six main special cases of Al-
gorithm 3.1 were discussed. The algorithm considered in this chapter,
TriPD (Alg. 4.1), can be seen as SPCA (sequential primal corrector algo-
rithm) applied to the dual problem when the smooth term is zero (see
Section 3.2). Note that it is possible to derive and analyze a variant of
TriPD (Alg. 4.1) for (3.1). However, we do not pursue this in this chapter
and focus on problem (4.1) for clarity of exposition.

A closely related algorithm was proposed in [62] called PAPC (prox-
imal alternating predictor-corrector) for solving saddle point problem
(3.3) with g ≡ 0 and l ≡ δ{0}. Refer to the explanation for SPCA in Sec-
tion 3.2 for more details. Another closely related primal-dual algorithms
is the algorithm of Vũ and Condat [53, 170]. In fact TriPD (Alg. 4.1) trans-
forms into this algorithm with a change of order (by starting from the
primal update) and elimination of the dual variable uk while keeping
the axillary dual variable ūk . Another connection with [53, 170] can be
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drawn by seeing it as a special case of Algorithm 3.1 as discussed in Sec-
tion 3.2 under the name SNCA. One can verify that the operator defining
the fixed-point iterations in the Vũ-Condat algorithm is given by (4.11)
with H � P + K and S defined as follows:

S �

(
Σ−1 L
L> Γ−1

)
, (4.26)

P �

(
Σ−1 L
L> Γ−1

)
, K �

(
0 −L

L> 0

)
.

For such selection of S, P, K, it holds that S−1(H + M>) � I, whence in
proximal form, the operator defined in (4.11) becomes:

ū � proxΣ−1

h∗ (u − Σ∇l∗(u) + ΣLx)
x̄ � proxΓ−1

g (x − Γ∇ f (x) − ΓL>(2ū − u))
Tz � (ū , x̄).

Observe the non-diagonal structure of S for the Vũ-Condat algorithm
in (4.26), in contrast with the one for TriPD (Alg. 4.1) in (4.10). For the
sake of comparisonwith [53, 170] we consider the relaxed iteration zk+1 �

zk + λ(Tzk − zk) for some λ ∈ (0, 2) and problem (3.1) with l satisfying
Assumption 3.I(iii) in this subsection (which we opted to exclude from
TriPD (Alg. 4.1) solely for the purpose of simplicity).

The analysis in Theorem 4.5 can be further used to establish conver-
gence of the Vũ-Condat scheme for problem (3.1) under the sufficient
conditions (3.8) (in place of Assumption 4.II). Notice that when l � δ{0}
(i.e., for problem (4.1)), l∗ ≡ 0 whence βl � 0, and the condition simplifies
to:

Γ−1 − β f

2(2−λ)Q − L>ΣL � 0.

Given the stepsize condition (3.1) the following Fejér-type inequality
holds.

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − λ‖zk+1 − zk ‖22P̂−λS
, (4.27)

with S defined in (4.26) and P̂ given by:

P̂ B

(
Σ−1 − βl

4 R L
L> Γ−1 − β f

4 Q

)
.
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This generalizes the result in [53, Thm. 3.1], [170, Cor. 4.2] and [96, Prop.
5.1] where Q � I and the stepsizes are assumed to be scalar.

Our main goal here was to demonstrate the non-diagonal structure
of S for the Vũ-Condat algorithm. In the sequel, we highlight that our
analysis additionally leads to less conservative conditions as compared
to [170, 53, 47]. Notice that the proofs in the aforementioned papers are
based on casting the algorithm in the form of forward-backward itera-
tions. Consequently, the stepsize condition obtained ensures that the un-
derlying operator is averaged. In contradistinction, the sufficient condition
in (3.1) only ensures that the Fejér-type inequality (4.27) holds, which is
sufficient for convergence. Therefore, even in the case of scalar stepsizes
(as in [170, 53]) condition (3.1) allows for larger stepsizes compared to
[170, 53].

In [47, 134] the authors propose a variable metric version of the al-
gorithm with a preconditioning that accounts for the general Lipschitz
metric. This is accomplished by fixing the stepsize matrix to be a con-
stant times the inverse of the Lipschitz metric, and obtaining a condition
on the constant. Our approach does not assume this restrictive form for
the stepsize matrix; even when such a restriction is imposed it allows for
larger stepsizes, thus achieving generally faster convergence. As an illus-
trative example, let us set Γ � µQ−1 and Σ � νR−1 for some µ, ν > 0. For
simplicity and without loss of generality, let βl � 1, β f � 1. Then, (3.1)
simplifies to:

(µ−1 − 1
2(2−λ) )(ν−1 − 1

2(2−λ) )Q − L>R−1L � 0, (4.28)

whereas the condition required in [47, 134] is λ ∈ (0, 1] and
δ

1 + δ
>

max{µ, ν}
2 with δ �

1√
νµ ‖G−1/2LQ−1/2‖−1 − 1. (4.29)

It is not difficult to check that condition, (4.28), is always less restrictive
than (4.29). For instance, let R−1/2LQ−1/2 � I and set µ � 1.5, then (4.28)
requires that ν < 1

6.5 whereas (4.29) necessitates that ν < 1
24 .

4.3 A randomized block-coordinate algorithm
In this section, we describe a randomized block-coordinate variant of
TriPD (Alg. 4.1) and discuss important special cases pertaining to the
randomized coordinate activation mechanism. The convergence analysis

83



is basedon establishing stochastic Fejérmonotonicity [51] of the generated
sequence. In addition, we establish linear convergence of the method
under further assumptions in Section 4.4.

First, let us define a partitioning of the vector of primal-dual variables
into m blocks of coordinates. Notice that each block might include a
subset of primal or dual variables, or a combination of both. Respectively,
let Ui ∈ �(n+r)×(n+r), for i � 1, . . . ,m, be a diagonal matrix with 0-1
diagonal entries that is used to select a subset of the coordinates (selected
coordinates correspond todiagonal entries equal to 1).We call suchmatrix
an activation matrix, as it is used to activate/select a subset of coordinates
to update.

Let Φ � {0, 1}m denote the set of binary strings of length m (with the
elements considered as column vectors of dimension m). At the k-th it-
eration, the algorithm draws a Φ-valued random activation vector εk+1

which determines which blocks of coordinateswill be updated. The i-th el-
ement of the vector εk+1 is denoted as εk+1

i : the i-th block is updated at
iteration k if εk+1

i � 1. Notice that in general multiple blocks of coordi-
nates may be concurrently updated. The conditional expectation E[· | Fk]
is abbreviated by Ek[·], where Fk is the filtration generated by (ε1 , . . . , εk).
The following assumption summarizes the setup of the randomized co-
ordinate selection.

Assumption 4.III.

(i) {Ui}mi�1 are 0-1 diagonal matrices and
∑m

i�1 Ui � I .

(ii) (εk)k∈� is a sequence of i.i.d. Φ-valued random vectors with

pi B P(ε1
i � 1) > 0 i � 1, . . . ,m. (4.30)

(iii) The stepsize matrices Σ, Γ are diagonal.

The first condition implies that the activation matrices define a parti-
tion of the coordinates, while the second that each partition is activated
with a positive probability.

We further define the (diagonal) coordinate activation probabilityma-
trix Π as follows:

Π B
m∑

i�1
piUi . (4.31)
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For ε � (ε1 , . . . , εm)we define the operator T̂(ε) by:

T̂(ε)z B z +

m∑
i�1

εiUi(Tz − z),

where T was defined in (4.6) (equivalently (4.11)). Observe that this is
a compact notation for the update of only the selected blocks. The ran-
domized scheme is then written as an iterative application of T̂(εk+1) for
k � 0, 1, . . . (this operator updates the active blocks of coordinates and
leaves the others unchanged, i.e., equal to their previous iterate values).
The randomized block-coordinate scheme is summarized below.

Algorithm 4.2 Block-coordinate TriPD algorithm

Inputs: x0 ∈ �n , u0 ∈ �r

for k � 0, 1, . . . do
Select Φ-valued r.v. εk+1

zk+1 � T̂(εk+1)zk

We emphasize that the randomizedmodel that we adopt here is capa-
ble of capturing many stationary randomized activation mechanisms. To
illustrate this, consider the following activation mechanisms (of specific
interest in the realm of distributed multi-agent optimization cf. §4.5):

• Multiple coordinate activation: at each iteration, the j-th coordinate block
is randomly activated with probability p j > 0 independent of other
coordinates blocks. This corresponds to the case that the sample space
is equal to Φ � {0, 1}m . The general distributed algorithm of Section
4.5 assumes this mechanism.

• Single coordinate activation: at each iteration, one coordinate block is
selected, i.e., the sample space is

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . , (0, . . . , 0, 1)}. (4.32)

We assign probability pi to the event εi � 1 (and ε j � 0 for j , i),
whence the probabilities must satisfy

∑m
i�1 pi � 1.

The next lemma establishes stochastic Fejér monotonicity for the gen-
erated sequence, by directly exploiting the diagonal structure of S. The
proof technique is adapted from [22, Thm. 3] (see also [88, Thm. 2], [51,
Thm. 2.5]), and is based on the Robbins-Siegmund lemma [142].
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Theorem 4.6. Let Assumptions 4.I–4.III hold. Consider the sequence (zk)k∈�
generated by TriPD-BC (Alg. 4.2). The following Fejér-type inequality holds for
all z? ∈ S:

Ek
[‖zk+1 − z?‖2

Π−1S

] ≤ ‖zk − z?‖2
Π−1S − ‖Tzk − zk ‖22P̃−S

. (4.33)

Consequently, (zk)k∈� converges a.s. to some z? ∈ S.
Proof. Let us define the operator Ek B

∑m
i�1 ε

k
i Ui that maps the elements

of (�n+r , Fk−1) to (�n+r , Fk). The iterations of TriPD-BC (Alg. 4.2) can be
written as zk+1 � zk + Ek+1(Tzk − zk). We have

Ek ◦ Ek+1
�

∑
ε∈Ψ

P(εk+1
� ε)

m∑
j�1

ε jU j �

m∑
j�1

∑
ε∈Ψ

P(εk+1
� ε)ε jU j

�

m∑
j�1

∑
ε∈Ψ,ε j�1

P(εk+1
� ε)U j �

m∑
j�1

p jU j � Π, (4.34)

where we used Assumptions 4.III(i) and 4.III(ii). Therefore, we have

Ek
[‖zk+1 − z?‖2

Π−1S

]
� Ek

[‖zk
+ Ek+1(Tzk − zk) − z?‖2

Π−1S

]
� ‖zk − z?‖2

Π−1S + 2〈zk − z?,Ek
[
Ek+1(Tzk − zk)]〉Π−1S

+ Ek
[〈Ek+1(Tzk − zk), Ek+1(Tzk − zk)〉Π−1S

]
� ‖zk − z?‖2

Π−1S + ‖Tzk − zk ‖2S + 2〈zk − z?, Tzk − zk〉S
where we used (4.34) and the fact Ek is self-adjoint and idempotent (since
Ui are 0-1 matrices) in the last equality. Inequality (4.33) follows by using
(4.16). The convergence of the sequence follows from (4.33) using the
Robbins-Siegmund lemma [142] and arguing as in [22, Thm. 3] and [51,
Prop. 2.3].

It is important to emphasize that a naive implementation of TriPD-
BC (Alg. 4.2) (with regards to the partitioning of primal-dual variables)
may involve wasteful computations. As an example, consider a BC algo-
rithm inwhich, at every iteration, either all primal or all dual variables are
updated. In such a case, if at iteration k the dual vector is to be updated,
both xk+1, uk+1 are computed (cf.Alg. 4.1), whereas only uk+1 is updated.
This phenomenon is common to all primal-dual algorithms, and is due to
the fact that the primal and dual updates need to be performed sequen-
tially in the full version of the algorithm. As a consequence, the blocks of
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coordinates must be partitioned in such a way that computations are not
discarded, so that the iteration cost of a BC algorithm is (substantially)
smaller than computing the full operator T. This choice relies entirely on
the structure of the optimization problem under consideration. A canon-
ical example of prominent practical interest is the setting of multi-agent
optimization in a network (cf. §4.5), where L is not diagonal, f and g
are separable, and additional coupling between (primal) coordinates is
present through h, see (4.51). In this example, the primal and dual coor-
dinates are partitioned in such a way that no computation is discarded
(cf. §4.5 for more details).

We proceed with another example where the coordinates may be
grouped such that the BC algorithm does not incur any wasteful compu-
tations: consider problem (4.1) with Lx � blkdiag(L1x1 , . . . , Lm xm), and
g, h separable functions i.e.,

minimize
x∈�n

f (x) +
m∑

i�1

(
gi(xi) + hi(Li xi)

)
.

In this problem, the coupling between the (primal) coordinates is carried
via function f . For each i � 1, . . . ,m, we can choose Ui such that it selects
the i-th primal-dual coordinate block (ui , xi). Under such partitioning of
coordinates, onemay use TriPD-BC (Alg. 4.2) with any random activation
pattern satisfying Assumption 4.III. For example, for the case of multiple
independently activated coordinates, as discussed above, at iteration k
the following is performed




• each block (ui , xi) is activated with probability pi > 0
• for active block(s) i compute:
ūk

i � proxσh∗i
(uk

i + σLi xk
i )

xk+1
i � proxγgi

(xk
i − γ∇i f (xk) − γL>i ūk

i )
uk+1

i � ūk
i + σLi(xk+1

i − xk
i ).

More generally, when g and h are separable in problem (4.1), and L is
such that either each (block) row only has one nonzero element or each
(block) column has one nonzero element, then the coordinates can be
grouped together in such a way that no wasteful computations occur: in
the first case the primal vector xi and all dual vectors u j that are required
for its computation are selected by Ui (with the role of primal and dual
reversed in the second case).
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Remark 4.7. Note that in TriPD-BC (Alg. 4.2) the probabilities pi are
taken fixed, i.e., the matrixΠ is constant throughout the iterations. This is
a non-restrictive assumption and can be relaxed by considering iteration-
varying probabilities pk

i in (4.30) and modifying TriPD-BC (Alg. 4.2) by
setting:

zk+1
� zk

+

m∑
i�1

εk+1
i

mpk+1
i

Ui(Tzk − zk).

Let Πk denote the probability matrix defined as in (4.31) using pk
i . Then,

by arguing as in Theorem4.6, it can be shown that the following stochastic
Fejér monotonicity holds for the modified sequence:

Ek
[‖zk+1 − z?‖2S

] ≤ ‖zk − z?‖2S − ‖Tzk − zk ‖22
m P̃− 1

m2 S(Πk+1)−1
.

4.4 Linear convergence

In this section, we establish linear convergence of Algorithms 4.1 and 4.2
under additional conditions on the cost functions f , g and h. To this end,
we show that linear convergence is attained if the monotone operator
F � A+M +C defining the primal-dual optimality conditions (cf. (4.8)) is
metrically subregular (globally metrically subregular in the case of TriPD-
BC (Alg. 4.2)). A notable consequence of our analysis is the fact that linear
convergence is attained when the cost functions either a) belong in the
class of piecewise linear-quadratic (PLQ) convex functions or b) when they
satisfy a certain quadratic growth condition (which is much weaker than
strong convexity). Moreover, notice that in the case of PLQ the solution
need not be unique (cf. Thm.s 4.10 and 4.11).

Recall the notion of metric subregularity in Definition 1.2. Metric sub-
regularity of the subdifferential operator has been studied thoroughly
and is equivalent to the quadratic growth condition [6, 63] defined next.
In particular, for a proper closed convex function f , the subdifferential
∂ f is metrically subregular at x̄ for ȳ with (x̄ , ȳ) ∈ gra ∂ f if and only if
there exists a positive constant c and a neighborhood U of x̄ such that
the following growth condition holds [6, Thm. 3.3]:

f (x) ≥ f (x̄) + 〈 ȳ , x − x̄〉 + cd2(x , (∂ f )−1( ȳ)) ∀x ∈ U
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Furthermore, ∂ f is strongly subregular at x̄ for ȳ with (x̄ , ȳ) ∈ gra ∂ f , if
and only if there exists a positive constant c and a neighborhoodU of x̄
such that [6, Thm. 3.5]:

f (x) ≥ f (x̄) + 〈 ȳ , x − x̄〉 + c‖x − x̄‖2 ∀x ∈ U (4.35)

Note that strongly convex functions satisfy (4.35), but (4.35) ismuchweaker
than strong convexity, as it is a local condition: it only holds in a neighbor-
hood of x̄, and also only for ȳ.

The lemma below provides a sufficient condition for metric subregu-
larity of themonotone operatorA+M+C, in terms of strong subregularity
of ∇ f + ∂g and ∂h∗ (equivalently the quadratic growth of f + g and h∗, cf.
(4.35)) as stated in the following assumption:

Assumption 4.IV (strong subregularity of ∇ f + ∂g and ∂h∗). There exists
z? � (u?, x?) ∈ S satisfying:

(i) ∇ f + ∂g is strongly subregular at x? for −L>u?,

(ii) ∂h∗ is strongly subregular at u? for Lx?.

We say that f , g and h satisfy this assumption globally if the strong sub-
regularity assumption of ∇ f + ∂g and ∂h∗ both hold globally (cf. Def.
1.2).

In particular, Assumption 4.IV holds globally if either f or g (or both)
are strongly convex and h is continuously differentiable with Lipschitz
continuous gradient, i.e., h∗ is strongly convex.

Lemma 4.8. Let Assumptions 4.I and 4.IV hold. Then, F � A+M+C (cf. (4.7))
is strongly subregular at z? for 0. Moreover, if f , g and h satisfy Assumption
4.IV globally, then F is globally strongly subregular at z? for 0. In both cases
the set of primal-dual solutions is a singleton, S � {z?}.
Proof. From the equivalent characterization of strong subregularity in
(4.35) we have that there exists a neighborhoodUx? of x? such that for all
x ∈ Ux?

( f + g)(x) ≥( f + g)(x?) + 〈−L>u?, x − x?〉
+ c1‖x − x?‖2 , (4.36)

and a neighborhoodUu? of u? such that for all u ∈ Uu?

h∗(u) ≥ h∗(u?) + 〈Lx?, u − u?〉 + c2‖u − u?‖2. (4.37)
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Fix z � (u , x) with u ∈ Uu? and x ∈ Ux? . Consider v � (v1 , v2) ∈ Fz B
Az + Mz + Cz. By definition (cf. (4.7)) we have{

v1 ∈ ∂h∗(u) − Lx ,
v2 ∈ ∂g(x) + ∇ f (x) + L>u.

Using this together with the definition of subdifferential yields:

〈v1 + Lx , u − u?〉 ≥ h∗(u) − h∗(u?), (4.38)
〈v2 − L>u , x − x?〉 ≥ ( f + g)(x) − ( f + g)(x?). (4.39)

Combining (4.38), (4.39) with (4.36), (4.37) and noting that

〈L>(u? − u), x − x?〉 + 〈L(x − x?), u − u?〉 � 0,

yields:

〈v , z − z?〉 � 〈v1 , u − u?〉 + 〈v2 , x − x?〉
≥ c2‖u − u?‖2 + c1‖x − x?‖2 ≥ c‖z − z?‖2 ,

where c � min{c1 , c2}. Therefore, by the Cauchy-Schwarz inequality
‖v‖ ≥ c‖z − z?‖. Since ‖z − z?‖ ≥ dist(z , F−10), and v ∈ Fz was selected
arbitrarily, we have

dist(z , F−10) ≤ 1
c dist(0, Fz) ∀z ∈ Uu? ×Ux? . (4.40)

Thus F is metrically subregular at z? for 0.
To establish uniqueness of the primal-dual solution consider:

L(u , x) B ( f + g)(x) + 〈Lx , u〉 − h∗(u).
Adding (4.36) and (4.37) yields

L(u?, x) − L(u , x?) ≥ c‖z − z?‖2 ∀z ∈ Uu? ×Ux? (4.41)

Let z̄? � (ū?, x̄?) ∈ S such that z̄? ∈ Uu? × Ux? . Since z̄? is also a
primal-dual solutionwe haveL(ū?, x?)−L(u?, x̄?) ≥ 0. Therefore, using
(4.41) at z̄? yields z̄? � z?. Since S is convex, we conclude that it is a
singleton, i.e., S � {z?}. Consequently it follows from (4.40) that F is
strongly subregular at z? for 0.

The second part is a direct consequence of the first part and the fact
that if Assumption 4.IV holds globally then also the quadratic growth
conditions (4.36) and (4.37) hold globally, i.e., Ux? � �n , Uu? ∈ �r . This
can be shown by adapting the proof of [6, Thm. 3.3].

90



Lemma 4.9 establishes metric subregularity of the operator A+M +C
when the functions f , g and h are piecewise linear-quadratic (PLQ) (see
Definition 1.4). The claim follows directly from Lemma 3.11. Note that
this assumption does not imply that the set of solutions S is a singleton,
nevertheless, linear convergence can still be established. The class of PLQ
functions is closed under scalar multiplication, addition, conjugation and
Moreau envelope [144]. A wide range of functions used in optimization
applications belong to this class, for example: affine functions, quadratic
forms, indicators of polyhedral sets, polyhedral norms (e.g., the `1-norm),
and regularizing functions such as elastic net, Huber loss, hinge loss, to
name a few.

Lemma 4.9. Let Assumption 4.I hold. In addition, assume that f , g and h
are piecewise linear-quadratic. Then F � A + M + C (cf. (4.7)) is metrically
subregular with the same constant η at any z for any v with (z , v) ∈ gra F.

Ourmain convergence rate results are provided in Theorems 4.10 and
4.11. In this context, Lemmas 4.8 and 4.9 are used to establish sufficient
conditions in terms of the cost functions. We omit the proof of Theorem
4.10; it is similar to that of Theorem 4.11, the main difference being that
in Theorem 4.10 local (as opposed to global) metric subregularity is used:
due to the Fejér-type inequality (4.23), z̄k will eventually be contained in
a neighborhood of metric subregularity, where inequality (4.46) applies.

Theorem 4.10 (linear convergence of Alg. 4.1). Consider TriPD (Alg. 4.1)
under the assumptions of Theorem 4.5. Suppose that F � A+M+C is metrically
subregular at all z? ∈ S for 0. Then, (distS(zk ,S))k∈� converges Q-linearly to
zero, and (zk)k∈IN converges R-linearly to some z? ∈ S.

In particular, themetric subregularity assumption holds and the result follows
if either one of the following holds:

(i) either f , g and h are PLQ,

(ii) or f , g and h satisfy Assumption 4.IV, in which case the solution is
unique.

Theorem 4.11 (linear convergence of Alg. 4.2). Consider TriPD-BC (Alg.
4.2) under the assumptions of Theorem 4.6. Suppose that F � A + M + C is
globally metrically subregular for 0 (cf. Def. 1.2), i.e., there exists η > 0 such
that

dist(z , F−10) ≤ η dist(0, Fz) ∀z ∈ �n+r .

Then (E
[
d2
Π−1S(zk ,S)

]
)k∈� converges Q-linearly to zero.
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In particular, this result holds if

(i) either f , g , h are PLQ and there exists a compact set C such that (zk)k∈� ⊆C (as is the case if dom g and dom h∗ are compact),

(ii) or f , g and h satisfy Assumption 4.IV globally, in which case the solution
is unique.

Proof. For notational convenience let S̄ � Π−1S and note that S � zer F
(cf. (4.14)). By definition we have ‖zk − P S̄

S(zk)‖S̄ � distS̄(zk ,S) (where
the minimum is attained since S is a closed convex set). Consequently, it
follows from (4.33) that

Ek

[
d2

S̄
(zk+1 ,S)

]
≤ Ek

[
‖zk+1 − P S̄

S(zk)‖2
S̄

]
≤ ‖zk − P S̄

S(zk)‖2
S̄
− ‖Tzk − zk ‖22P̃−S

� dist2
S̄(zk ,S) − ‖Tzk − zk ‖22P̃−S

. (4.42)

By definition (4.11), we have

‖ z̄k − zk ‖2 � ‖(H + M>)−1S(Tzk − zk)‖2
≤ ‖(H + M>)−1S‖2‖(2P̃ − S)−1‖‖Tzk − zk ‖22P̃−S

, (4.43)

where z̄k is defined by (4.12) applied at z � zk . Consider the projection
of z̄k onto S, PS(z̄k). By definition ‖ z̄k − PS(z̄k)‖ � dist(z̄k ,S), and we
have

dist2
S̄(zk ,S) ≤ ‖zk − PS(z̄k)‖2

S̄
≤ ‖S̄‖‖zk − PS(z̄k)‖2

≤ ‖S̄‖
(
‖ z̄k − PS(z̄k)‖ + ‖ z̄k − zk ‖

)2

� ‖S̄‖
(
dist(z̄k ,S) + ‖ z̄k − zk ‖

)2
. (4.44)

In what follows we bound dist(z̄k ,S) by ‖ z̄k − zk ‖. Define

vk B −(H −M)(z̄k − zk) + Cz̄k − Czk . (4.45)

It follows from (4.12) that (H − M − C)zk ∈ (H + D)z̄k , which in turn
implies

vk ∈ Fz̄k
� (A + M + C)z̄k .
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Consequently, using (global) metric subregularity of F yields

dist(z̄k ,S) ≤ η‖vk ‖. (4.46)

By the triangle inequality and Lipschitz continuity of C,

‖vk ‖ � ‖(H −M)(z̄k − zk) − Cz̄k
+ Czk ‖

≤ ‖(H −M)(z̄k − zk)‖ + ‖Cz̄k − Czk ‖ ≤ ξ‖ z̄k − zk ‖ , (4.47)

where ξ � ‖H−M‖ + β f ‖Q‖. By (4.46) and (4.47) we have

dist(z̄k ,S) ≤ ξη‖ z̄k − zk ‖.
Combine this with (4.43) and (4.44) to derive

dist2
S̄(zk ,S) ≤ φ‖Tzk − zk ‖22P̃−S

, (4.48)

where φ � (ξη+1)2‖(H +M>)−1S‖2‖(2P̃ − S)−1‖‖S̄‖. Therefore, by (4.42)
and (4.48) we have

Ek

[
d2

S̄
(zk+1 ,S)

]
≤ dist2

S̄(zk ,S) − 1
φ dist2

S̄(zk ,S).

Taking expectation in both sides concludes the proof. For the case of PLQ
functions, let Uz? denote an open subregularity neighborhood around
z? ∈ S, and set U? B ∪z?∈SUz? . By Lemma 4.9 there exists a positive
η such that dist(z , F−10) ≤ η dist(Fz , 0) for z ∈ U?. Moreover, since
(zk)k∈� ⊆ C up to possibly enlarging C we have (z̄k)k∈� ⊆ C. Note
that since (zk)k∈� ⊆ C and C is closed, C ∩ S , ∅ and C ∩ U? , ∅. It is
sufficient to show thatdist(z , F−10) ≤ η dist(0, Fz) for z ∈ C. Let us define
D(z) B dist(0, Fz). Since gra F is closed, D(z) is lower semicontinuous
[144, Thm. 5.7, Prop. 5.11(a)]. By [144, Cor. 1.10] D(z) attains a minimum
over the compact set C \ U?: cC B minz∈C\U? D(z) > 0 where the strict
inequality is due to the fact that theminmizer belongs toC\U?.Moreover,
cC B supz∈C dist(z , F−10) < ∞ due to the fact that C is bounded. Hence
dist(z , F−10) ≤ cC ≤ cC

cd
dist(Fz , 0) for z ∈ C\U?. Therefore, by combining

the two cases we obtain dist(z , F−10) ≤ max{ cC
cd
, η} dist(Fz , 0) for z ∈ C

as claimed. The second sufficient condition follows from Lemma 4.8.

In the recent work [104] the authors establish linear convergence in
the framework of non-expansive operators under the assumption that the
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residualmappingdefinedbyR � id−T ismetrically subregular.However,
such a condition is not easily verifiable in terms of conditions on the cost
functions. In the next lemma, we show that R is metrically subregular if
and only if the monotone operator F is metrically subregular. This result
connects the two assumptions and is interesting in its own right. More
importantly, it enables the use of Lemmas 4.8 and 4.9 for establishing
linear convergence for a wide array of problems.

Lemma4.12. Let Assumptions 4.I and 4.II hold. Consider the operatorT defined
in (4.11) and a point z? ∈ S. Then, F � A + M + C (cf. (4.7)) is metrically
subregular at z? for 0 if and only if the residual mapping R B id−T is metrically
subregular at z? for 0.

4.5 Distributed optimization
In this section, we consider a general formulation for multi-agent opti-
mization over a network, and leverage Algorithms 4.1 and 4.2 to devise
both synchronous and randomized asynchronous distributed primal-
dual algorithms. The setting is as follows. We consider an undirected
graph G � (V , E) over a vertex set V � {1, . . . ,m} with edge set
E ⊂ V ×V. Each vertex is associated with a corresponding agent, which
is assumed to have a local memory and computational unit, and can only
communicate with its neighbors. We define the neighborhood of agent i by
Ni B { j |(i , j) ∈ E}.Weuse the terms vertex, agent, and node interchange-
ably. The goal is to solve the following global optimization problem in a
distributed fashion:

minimize
x1 ,...,xm

m∑
i�1

fi(xi) + gi(xi) + hi(Li xi) (4.49a)

subject to Ai j xi + A ji x j � b(i , j) (i , j) ∈ E , (4.49b)

where xi ∈ �ni . The cost functions fi , gi , hi ◦ Li are taken private to agen-
t/node i ∈ V, i.e., our distributed methods operate solely by exchanging
local variables among neighboring nodes that are unaware of each other’s
objectives. The coupling in the problem is represented through the edge
constraints (4.49b).

Throughout this section the following assumptions hold:

Assumption 4.V. For each i � 1, . . . ,m:
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(i) For j ∈ Ni , b(i , j) ∈ �l(i , j) and Ai j ∈ �ni → �l(i , j) is a linear mapping.

(ii) gi : �ni → �, hi : �ri → � are proper closed convex functions, and
Li : �ni → �ri is a linear mapping.

(iii) fi : �ni → � is convex, continuously differentiable, and for some
βi ∈ [0,∞), ∇ fi is βi-Lipschitz continuous with respect to the metric
Qi � 0, i.e.,

‖∇ fi(x) − ∇ fi(y)‖Q−1
i
≤ βi ‖x − y‖Qi x , y ∈ �ni .

(iv) The graph G is connected.

(v) The set of solutions of (4.49) is nonempty. Moreover, there exists
xi ∈ ri dom gi such that Li xi ∈ ri dom hi , for i � 1, . . . ,m, and
Ai j xi + A ji x j � b(i , j) for (i , j) ∈ E.

Algorithm 4.3 Synchronous & asynchronous versions of TriPD-Dist al-
gorithm

Inputs: x0
i ∈ �ni , y0

i ∈ �ri , for i � 1, . . . ,m, and w(i , j),i ∈ �l(i , j) for j ∈ Ni .
for k � 0, 1, . . . do
I: Synchronous version

for all agents i � 1, . . . ,m do

II: Asynchronous version
Each agent i � 1. . . . ,m is activated inde-
pendently with probability pi > 0
for all active agents do

Local updates:
w̄k
(i , j),i�

1
2
(
wk
(i , j),i + wk

(i , j), j
)
+
κ(i , j)

2
(
Ai j xk

i + A ji xk
j − b(i , j)

)
, ∀ j ∈ Ni

ȳk
i � proxσi hi

?
(
yk

i + σi Li xk
i
)

xk+1
i � proxτi gi

(
xk

i − τi L>i ȳk
i − τi

∑
j∈Ni A>i j w̄

k
(i , j),i − τi∇ fi(xk

i )
)

yk+1
i � ȳk

i + σi Li(xk+1
i − xk

i )
wk+1
(i , j),i� w̄k

(i , j),i + κ(i , j)Ai j(xk+1
i − xk

i ), ∀ j ∈ Ni

Transmission of information:
Send Ai j xk+1

i , wk+1
(i , j),i to agent j, ∀ j ∈ Ni

Each agent i ∈ V maintains its own local primal variable xi ∈ �ni

and dual variables yi ∈ �ri , and w(i , j),i ∈ �l(i , j) (for each j ∈ Ni), where
the former is related to the linear mapping Li , and the latter is the local
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dual variable of agent i corresponding to the edge-constraint (4.49b). It is
important to note that the updates in TriPD-Dist (Alg. 4.3) are performed
locally through communicationwith neighbors: the only information that
agent i shares with its neighbor j ∈ Ni is the quantity Ai j xi , along with
edge variable w(i , j),i , while all other variables are kept private.

The proposed distributed protocol features both a synchronous as
well as an asynchronous implementation. In the synchronous version,
at every iteration, all the agents update their variables. In the random-
ized asynchronous implementation, only a subset of randomly activated
agents perform updates, at each iteration, and they do so using their lo-
cal variables as well as information previously communicated to them
by their neighbors. After an update is performed, in both cases, updated
values are communicated to neighboring agents. Notice that the asyn-
chronous scheme corresponds to the case of multiple coordinate blocks
activation in TriPD-BC (Alg. 4.2). Other activation schemes can also be
considered, and our convergence analysis plainly carries over; notably, the
single agent activation which corresponds to the asynchronous model of
[169, 74, 186] in which agents are assumed to ‘wake-up’ based on inde-
pendent exponentially distributed tick-down timers.

Furthermore, in TriPD-Dist (Alg. 4.3) each agent i keeps positive local
stepsizes σi , τi and

(
κ(i , j)

)
j∈Ni

. The edge weights/stepsizes κ(i , j) may

alternatively be interpreted as inherent parameters of the communication
graph. For example, they may be used to capture edge’s ‘fidelity,’ e.g., the
channel quality in a communication link. The stepsizes are assumed to
satisfy the following local assumption that is sufficient for the convergence
of the algorithm (cf. Thm.s 4.13 and 4.14).
Assumption 4.VI (stepsizes of TriPD-Dist (Alg. 4.3)).

(i) (node stepsizes) Each agent i keeps two positive stepsizes σi , τi .

(ii) (edge stepsizes) A positive stepsize κ(i , j) is associated with edge
(i , j) ∈ E, and is shared between agents i, j.

(iii) (convergence condition) The stepsizes satisfy the following local
condition

τi <
1

βi ‖Qi ‖
2 + ‖σiL>i Li +

∑
j∈Ni

κ(i , j)A>i jAi j ‖
.

According to Assumption 4.VI(iii) the stepsizes τi , σi for each agent
only depend on the local parameters βi , ‖Qi ‖, the edge weights, κ(i , j) and
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the linear mappings Li , and Ai j , which are all known to agent i; therefore
the stepsizes can be selected locally, in a decentralized fashion.

We proceed by casting the multi-agent optimization problem (4.49)
in the form of the structured optimization problem (4.1). In doing so, we
describe howTriPD-Dist (Alg. 4.3) is derived as an instance of Algorithms
4.1 and 4.2.

Define the linear operator

N(i , j) : x 7→ (Ai j xi ,A ji x j),

and N ∈ �2
∑
(i , j)∈E l(i , j)×

∑m
i�1 ni by stacking N(i , j):

N : x 7→ (N(i , j)x)(i , j)∈E .

Its transpose is given by:

N> : (w(i , j))(i , j)∈E 7→ x̃ �

∑
(i , j)∈E

N>(i , j)w(i , j) ,

with x̃i �
∑

j∈Ni
A>i j w(i , j),i . We have set w(i , j) � (w(i , j),i , w(i , j), j), i.e., we

consider two dual variables (of dimension l(i , j)) for each edge constraint,
where w(i , j),i is maintained by agent i and w(i , j), j by agent j.

Consider the set

C(i , j) � {(z1 , z2) ∈ �l(i , j) ×�l(i , j) | z1 + z2 � b(i , j)}.

Then problem (4.49) can then be re-written as:

minimize
m∑

i�1
fi(xi) + gi(xi) + hi(Li xi) +

∑
(i , j)∈E

δC(i , j)(N(i , j)x) (4.50)

Let C �
>
(i , j)∈E C(i , j), L � blkdiag(L1 , . . . , Lm), and Lx � (Lx,Nx) �:

(ỹ, w̃) ∈ �nd with nd � 2
∑
(i , j)∈E l(i , j) +

∑m
i�1 ri , and rewrite (4.50) in the

following compact form:

minimize f(x) + g(x) + h̃(Lx), (4.51)

where f(x) � ∑m
i�1 fi(xi), g(x) � ∑m

i�1 gi(xi), h̃(ỹ, w̃) � h(ỹ) + δC(w̃), h(ỹ) �∑m
i�1 hi( ỹi).
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In what follows, S refers to the set of primal-dual solutions of (4.51).
As in Section 4.2, the primal-dual optimality conditions can be written in
the form of monotone inclusion (4.8) with

A :(y,w, x) 7→ (∂h∗(y), ∂δ∗C(w), ∂g(x)),
M :(y,w, x) 7→ (−Lx,−Nx, L>y + N>w),
C :(y,w, x) 7→ (0, 0,∇f(x)),

where u � (y,w) represents the dual vector.
We define the edge weight matrix as follows

W � blkdiag
(
(κ(i , j)I2l(i , j))(i , j)∈E

)
,

where the weights κ(i , j) are repeated twice (for each of the two neighbor-
ing agents). Furthermore, we set

Σ � blkdiag(σ1Ir1 , . . . , σm Irm ,W),
Γ � blkdiag(τ1In1 , . . . , τm Inm ),

Q � blkdiag(β1Q1 , . . . , βmQm).
Since proxh̃?(y,w) � (proxh?(y),w − PC(w)) (using proxδC

(·) � PC(·)
along with Moreau decomposition [13, Thm. 14.3]) the proximal updates
of TriPD (Alg. 4.1), cf. (4.6), become:

ȳi � proxσi hi
?(yi + σiLi xi),

w̄(i , j)� w(i , j)+κ(i , j)(N(i , j)x − PC(i , j)(κ−1
(i , j)w(i , j) + N(i , j)x)),

x̄i � proxτi gi
(xi − τiL>i ȳi − τi(N>w̄)i − τi∇ f (xi)).

Note that for w1 , w2 ∈ �l(i , j) the projection onto C(i , j) is

PC(i , j)(w1 , w2) � 1
2

(
w1 − w2 + b(i , j) ,−w1 + w2 + b(i , j)

)
.

By assigning to agent i the primal coordinate xi and dual coordinate
yi and w(i , j),i for all j ∈ Ni , TriPD-Dist (Alg. 4.3) is obtained. Note that this
assignment entails non-overlapping sets of coordinates, i.e., Assumption
4.III(i) is satisfied.

The convergence results of TriPD-Dist (Alg. 4.3) are provided sepa-
rately for the synchronous and asynchronous schemes in the next two
theorems, along with a sufficient condition for linear convergence. The
proofs follow directly from Theorems 4.10 and 4.11.
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Theorem 4.13 (convergence of Algorithm 3-I). Let Assumptions 4.V and
4.VI hold. The sequence (zk)k∈� � (yk ,wk , xk)k∈� generated by Algorithm 3-I
converges to some z? ∈ S. Furthermore, if fi , gi and hi , i � 1, . . . ,m are PLQ,
then (distS(zk ,S))k∈� converges Q-linearly to zero, and (zk)k∈� converges R-
linearly to z? ∈ S.
Theorem 4.14 (convergence of Algorithm 3-II). Let Assumptions 4.V and
4.VI hold. The sequence (zk)k∈� � (yk ,wk , xk)k∈� generated by Algorithm 3-
II converges almost surely to some z? ∈ S. Furthermore, if fi , gi and hi ,
i � 1, . . . ,m are PLQ and (zk)k∈� ⊆ C where C is a compact set, then

(E
[
dist2

Π−1S(zk ,S)
]
)k∈� converges Q-linearly to zero.

4.6 Application: formation control

In this section we consider the problem of formation control of a group
of robots [136, 148], where each robot/agent has its own local dynam-
ics and cost function and the goal is to achieve a specific formation by
communicating only with neighboring agents.

For simplicity of visualization we consider a 2D problem. Each sub-
system (corresponding to a robot) has four states xi � (pxi , pyi , vxi , vyi ),
where (pxi , pyi ) and (vxi , vyi ) denote the position and the velocity vec-
tors, respectively. The input for each system is given by ui � (vu

xi
, vu

yi
).

The discrete-time LTI model of each system is given by

xi(k + 1) � Φi xi(k) + ∆i ui(k), k � 0, 1, . . . .

The state and input transition matrices are as follows

Φi �

©«

I 0 X1 0
0 I 0 X1
0 0 X2 0
0 0 0 X2

ª®®®¬
, ∆i �

©«

X3 0
0 X3

X1 0
0 X1

ª®®®¬
,

where the parameters are given by X1 � −td(e−
1
td − 1), X2 � e−

1
td and

X3 � t2
d(e
− 1

td − 1 +
1
td
) with time constant td � 5 (s). This discrete-time

model was derived from the continuous-time model of [148] using exact
discretization with step length ∆T � 1.
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Let N denote the horizon length. Consider the stacked state and input
vectors xi ∈ �4N , ui ∈ �2N :

xi B (xi(1), . . . , xi(N)), ui B (ui(0), . . . , ui(N − 1)).
Then the dynamics of each agent can be represented asAi xi + Bi ui � bi
where Ai , Bi are appropriate matrices and bi depends on the initial
state. The state and input constraints of each agent are represented by
the sets Xi , Ui and are assumed to be easy to project onto, e.g., boxes,
halfspaces, norm balls, etc. Moreover, we assume that each agent has its
own private objective captured by input and state cost matrices Qi and
Ri , and vectors qi , ti . The specific formation between agents is enforced
using another quadratic term that penalizes deviation of two neighbors
from the desired relative position. The optimization problem is described
as follows:

minimize
xi ,ui

m∑
i�1

1
2 ‖Qi xi − qi ‖2 + 1

2 ‖Ri ui − ti ‖2

+

m∑
i�1

∑
j∈Ni

λi
2 ‖C(xi − x j) − di j ‖2

subject to Ai xi + Bi ui � bi , xi ∈ Xi , ui ∈ Ui
i � 1, . . . ,m

(4.52)

The relative desired distance of agent i from its neighbor j is given by
di j , C is an appropriate linear mapping that selects the position variables,
and λi is a scalar weight to penalize deviation.

For each system that communicates with i, i.e., j ∈ Ni , we introduce
a local variable xi j , that can be seen as the estimate of x j kept locally
by agent i. In order to be consistent hereafter the self variables xi , ui are
denoted by xii , uii .

For each agent i � 1, . . . ,m define the stacked vector

zNi �

(
(xi j) j∈Ni∪{i} , uii

)
∈ �ni ,

where ni � 4N(|Ni | + 1) + 2N .
Let Ei be a linear mapping such that Ei zNi � Ai xii +Bi uii . Hence, the

set of points satisfying thedynamics are givenbyDi � {z ∈ �ni |Ei z � bi}.
Consider the linear mapping Li such that Li zNi � (xii , uii) and denote
Zi B Xi ×Ui . Moreover, let hi B δZi , gi B δDi and

fi(zNi ) B 1
2 ‖Qi xii − qi ‖2 + 1

2 ‖Ri uii − ti ‖2 + λi
2

∑
j∈Ni
‖C(xii − xi j) − di j ‖2.
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With these definitions problem (4.52) is cast in the form of problem
(4.49) (minimizing over zNi , i � 1, . . . ,m) where the linear mapping Ai j ,
for j ∈ Ni , is such that Ai j zNi � (xii ,−xi j) if i < j and Ai j zNi � (−xi j , xii)
otherwise. Therefore, we can readily apply TriPD-Dist (Alg. 4.3) to solve
the problem in a fully distributed fashion yielding both synchronous and
randomized asynchronous implementations.

In our simulations we used horizon length N � 3. For the input and
state constraints of all agents we used box constraints: the positions pxi

and pyi are assumed to be between 0 and 20 (m). The velocities vxi and
vyi and inputs vu

xi
and vu

yi
are assumed to be between between 0 and 15

(m/s) (for all agents). The local state cost matrices are set Qi � 0.1I for all
i. The local input cost matrices are set Ri � I for half of the agents and
Ri � 2I for the rest. Moreover, the vectors qi , ti are set equal to zero, and
the penalty parameter λi � 10 is used for all the agents.

The stepsizes of TriPD-Dist (Alg. 4.3) were selected as follows: i) (edge
stepsizes) κ(i , j) � 1 for all (i , j) ∈ E, ii) (node stepsizes) σi � βi/4 and
τi � 0.99/( βi

2 + σi +
∑

j∈Ni
κ(i , j)) for all i, where we used

βi � max{‖Q>i Qi ‖ + λi(|Ni | + 1), ‖R>i Ri ‖},
which is an upper bound for the Lipschitz constant of ∇ fi . It is plain to
see that the above choice of stepsizes for the agents satisfy Assumption
4.VI(iii). Note that the stepsize selection only requires local parameters
Ri , Qi , λi and the number of neighbors |Ni |, i.e., the algorithm can be
implemented without any global coordination.

In our simulations, we considered m robots initially in a polygon con-
figuration and enforced an arrow formation by appropriate selection of
di j in (4.52). This scenario is depicted for m � 5 in Figure 4.2. The neigh-
borhood relation in this case is taken to be the same arrow configuration,
i.e., all agents have two neighbors apart from two agents with only one
neighbor.

For comparison we considered the dual decomposition approach of
[136] (based on the subgradient method). Notice that dual decomposi-
tion with gradient or accelerated gradient methods can not be applied
to this problem since fi ’s are convex but not strongly convex. Recently,
TriPD-Dist (Alg. 4.3) was compared against the dual accelerated proximal
gradient method, in the context of distributed model predictive control
(with strongly convex quadratic cost) [94].

In the simulations for Figure 4.1, we used the stepsize 10/k (as tuned
for achieving better performance) for the dual decomposition method
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Figure 4.1: Comparison for the convergence of the algorithms for m � 5 (left), and
m � 50 (right).

0 2 4 6

0

2

4

6

x-axis (m)

y-
ax

is
(m

)

Figure 4.2: Five agents reorganizing from a polygon to an arrow configuration.

where k is the number of iterations. Notice that the dual decomposition
approach for this problem can not achieve a full splitting of the operators
involved: at every iteration agents need to solve an innerminimization (we
usedMATLAB’s quadprog to perform this step), the result of which must
be communicated to the neighbors for their computation, and is followed
by another communication round. This extra need for synchronization
would further slow down the algorithm in practice [73].

Figure 4.1 demonstrates the superior performance of both the syn-
chronous and asynchronous versions of TriPD-Dist (Alg. 4.3) compared
to the dual decomposition approach. The y-axis is the distance of vk B
(xk

11 , u
k
11 , . . . , x

k
mm , uk

mm) from the solution (v? was computed by solving
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(4.52) in a centralized fashion). The x-axis denotes the total number of lo-
cal transmissions between agents. In the asynchronous implementation
we used independent activation probabilities pi � 0.5 for all agents. It is
observed that the total number of local iterations is similar to that of the
synchronous implementation. Finally, as evident in Figure 4.1 both ver-
sions of TriPD-Dist (Alg. 4.3) achieve linear convergence rate as predicted
by Theorems 4.13 and 4.14 (the functions fi , gi and hi are PLQ).

4.7 Conclusions
Theprimal-dual algorithmconsidered in this chapter enjoys several struc-
tural properties that distinguish it from other related methods in the
literature. A key property, that has been instrumental in developing a
block-coordinate version of the algorithm, is the fact that the generated
sequence is S-Fejér monotone, where S is a block diagonal positive defi-
nite matrix. It is shown that the algorithm attains linear convergence un-
der a metric subregularity assumption that holds for a wide range of cost
functions that are not necessarily strongly convex. The block-coordinate
version of the developed algorithm is exploited to devise a novel fully dis-
tributed asynchronousmethod formulti-agent optimization over graphs.
Our future work includes designing a block-coordinate version of the Su-
perMann scheme of [157] that applies to quasi-nonexpansive operators.
In light of the fact that this method enjoys superlinear convergence rates,
such extension is especially attractive for multi-agent optimization yield-
ing schemes with faster convergence and fewer communication rounds.
Other research directions enlist investigating extensions to account for di-
rected and time-varying topologies, communication delays, and design-
ing efficient strategies for selecting activation probabilities and stepsizes.
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Chapter 5

Plug and play distributed model predictive
control

This chapter is based on:
Latafat, P., Bemporad, A., and Patrinos, P. Plug and play distributed

model predictive control with dynamic coupling: A randomized primal-dual
proximal algorithm. In European Control Conference (ECC) (June 2018),
pp. 1160–1165.

5.1 Introduction
This chapter considers distributed model predictive control (DMPC) of a
network of m dynamically coupled linear systems. For i � 1, . . . ,m, the
dynamics of system i is of the form

xi(k + 1) �
m∑

j�1
Φi j x j(k) + ∆i j u j(k),

with xi(k) ∈ IRsi , ui(k) ∈ IRti , subject to local state and input constraints.
The structure of the network is defined by the coupling of the dynamics
through matrices Φi j and ∆i j . System j affects i if either one of Φi j , ∆i j
is nonzero. It is natural to assume that two systems can communicate if
either one of them affects the dynamics of the other, in which case we say
that they are neighbors. However, the systems need not be aware of the
global structure of the network, or even existence of systems beyond their
neighbors.

DMPC formulations considered in the literature vary depending on
the nature of the coupling and can be grouped in two general categories.
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In applications such as formation control where the systems are phys-
ically separate but share a common goal the DMPC problem involves
coupling cost or constraints without dynamic coupling [171, 65, 173].
The second category involves DMPC problems with dynamic coupling
with applications ranging from smart grids, sensor networks, water net-
works to transportation systems, and has been studied by many authors
[79, 16, 77, 86, 69, 159]. This chapter is focused on the second category.
We note that in our setting it is straightforward to extend the proposed
setup to include coupling in cost and constraint between neighbors, how-
ever, this leads to complicated notation and has been avoided for the
sake of clarity. Furthermore, this chapter is not concerned with the stabil-
ity of the closed-loop system and looks at the DMPC problem from the
optimization point of view.

A popular approach for solving the DMPC problem is to derive dis-
tributed algorithms using dual decomposition. Many authors have con-
sidered solving the dual problem using the proximal gradient method,
the alternating directionmethod ofmultipliers (ADMM) or their variants
[124, 77, 69, 86, 79]. These approaches are preferred to subgradient meth-
ods given that they allow constant stepsizes. Algorithms that are based
on proximal gradient or its accelerated variants require the cost function
to be strongly convex. Another common issue is the need for central-
ized computations for selecting the stepsizes. This is a major drawback
that can hinder the implementation especially in applications where the
network structure is subject to change. For example, applying proximal
gradient requires the stepsize to be bounded by the inverse of the Lip-
schitz constant associated to the dual function [79]. In [76] a metric for
Lipschitz continuity is used which requires solving a semidefinite pro-
gram (SDP) globally. In [77] the authors provide a distributed method
for selecting the metric that involves solving a series of local SDPs. An-
other recentwork that involves distributed stepsize selection is [86]where
the Lagrangian minimization step is modified with regularization terms.
Each iteration in [77] and [86] involve a local inner minimization step the
result of which is required by the neighbors, i.e., each iteration involves
two rounds of communication.

The main contributions are summarized below:

• The new algorithm is fully-distributed, involves simple computations
for each subsystem without any inner loops, and requires one round
of communication per update. At every iteration active subsystems
perform local updates, communicate the necessary vectors to their
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neighbors, and go idle. The algorithm is presented in two forms: The
synchronous case where all of the systems are active at every iteration,
and the asynchronous case where subsystems are activated at random
independently of one another.

• The stepsize of each subsystem is selected locally through a simple rule
(cf. Assumption 5.II(iii)). Therefore, any modification to the network
structure would only affect the neighboring subsystems.

• The cost function must be convex but not necessarily strongly convex.

• The algorithm possesses linear convergence rate when the local input
and state constraints are polyhedral sets, a common scenario.

5.2 Problem setup
We consider a distributed model predictive control problem with m dy-
namically coupled subsystems. We use an undirected graph G � (V , E)
to model the interaction between subsystems/agents. Each node i ∈ V
is associated with a subsystem, maintains its own local variables, and can
communicatewith its neighbors. The goal is to solve the globalmodel pre-
dictive control problem with only local exchange of information between
neighbors.

Let Φi j and ∆i j denote the state transition and input matrices from
subsystem j to i. For all i ∈ V, the in-neighbor and out-neighbor sets are
defined by

N in
i �{ j ∈ V \ {i}|Φi j , 0 or ∆i j , 0},

Nout
i �{ j ∈ V \ {i}|Φ ji , 0 or ∆ ji , 0},

and the neighborhood set is defined by Ni � Nout
i ∪ N in

i , i.e., the edge
(i , j) ∈ E exists if j ∈ Ni . The DMPC problem is written in the following
standard form:

minimize 1
2

m∑
i�1

( N∑
k�1

xi(k)>Qk
i xi(k) +

N−1∑
k�0

ui(k)>Rk
i ui(k)

)

subject to xi(k + 1) �
∑

j∈N in
i ∪{i}

Φi j x j(k) + ∆i j u j(k) (5.1a)

ui(k) ∈ Ui , for k � 0, . . . ,N − 1,
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xi(k) ∈ Xi , for k � 1, . . . ,N − 1,

xi(N) ∈ X f
i

for all i � 1, . . . ,m

where xi(0) is given, xi(k) ∈ IRsi and ui(k) ∈ IRti denote the state and
input variables of subsystem i at time k.

Note that the separable quadratic cost function is used for clarity of
exposition. It may be replaced by any Lipschitz differentiable function
without requiring the subsystems to solve inner minimizations (cf. Rem.
5.1). Furthermore, it is straightforward to modify our analysis to allow
coupling between neighbors.

Throughout the chapter the following assumptions hold:

Assumption 5.I. For i � 1, . . . ,m:

(i) Input and state constraint sets Xi ,X f
i ⊆ IRsi and Ui ⊆ IRti are

nonempty, closed, and convex.

(ii) The cost matrices Qk
i and Rk

i are positive semidefinite.

(iii) The graph G is connected.

(iv) The DMPC problem admits a solution. Moreover, for i � 1, . . . ,m
there exists xi(k) ∈ riXi for k � 1, . . . ,N − 1, xi(N) ∈ riX f

i , and
ui(k) ∈ riUi for k � 0, . . . ,N−1 such that the linear dynamics (5.1a)
are satisfied.

The strict feasibility enforced inAssumption 5.I(iv) ensures that strong
duality holds, and can be dropped whenever the constraint sets are poly-
hedral [143, Corollary 31.2.1].

For i � 1, . . . ,m define

zi �
(
xi(1), · · · , xi(N), ui(0), · · · , ui(N − 1)) ∈ IRri ,

where ri � N(si + ti). The quadratic cost function can be written as
1
2
∑m

i�1 z>i Gi zi where Gi � blkdiag(Q1
i , . . . ,Q

N
i , R

0
i , . . . , R

N−1
i ). The dy-

namics can be expressed as:∑
j∈N in

i ∪{i}
Li j z j �

∑
j∈N in

i ∪{i}
bi j x j(0), for i � 1, · · · ,m ,
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where Li j and bi j are appropriate linear mappings [76]. With these defi-
nitions the distributed MPC problem becomes

minimize 1
2

m∑
i�1

z>i Gi zi (5.2a)

subject to
∑

j∈N in
i ∪{i}

Li j z j � bi , i � 1, · · · ,m (5.2b)

zi ∈ Zi , i � 1, · · · ,m (5.2c)

where bi �
∑

j∈N in
i ∪{i} bi j x j(0), and the constraint setsZi denote the prod-

uct of local input and state constraint sets:

Zi � Xi × . . . × Xi︸         ︷︷         ︸
N−1

×X f
i ×Ui × . . . ×Ui︸           ︷︷           ︸

N

.

5.3 A primal-dual algorithm for DMPC
Our goal is to solve (5.2) in a fully distributed fashion while keeping
the number of communications to a minimum. For each subsystem that
affects i, i.e., j ∈ N in

i , we introduce a local variable zi j , that can be seen
as the estimate of z j kept locally by agent i. For notation consistency,
self-variables zi are hereafter denoted by zii . We write the equivalent
optimization problem:

minimize 1
2

m∑
i�1

z>ii Gi zii (5.3a)

subject to
∑

j∈N in
i ∪{i}

Li j zi j � bi , i � 1, . . . ,m (5.3b)

zii ∈ Zi , i � 1, . . . ,m (5.3c)
zi j � z j j , i � 1, . . . ,m and j ∈ N in

i (5.3d)

For i ∈ V, let ni �
∑

j∈N in
i ∪{i} r j and define:

zNi � (zi j) j∈N in
i ∪{i}∈ IRni , Li � [Li j] j∈N in

i ∪{i}∈ IRNsi×ni

The set of points satisfying the linear constraint is given by:

Di � {z ∈ IRni |Li z � bi}.
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Figure 5.1: Dynamic coupling in the DMPC problem

Wenote that the variables are stacked in ascendingorder (index-wise). For
example, consider the neighborhood relation described in Figure 5.1. Sub-
system 1 is affected by subsystems 2 and 4, therefore, zN1 � (z11 , z12 , z14).
Our proposed algorithm is a primal-dual scheme. Therefore, in addition
to primal variables each system holds dual variables. For each i ∈ V we
introduce two sets of dual variables: the node variable yi ∈ IRri and the
edge variables wi j,i ∈ IRri for j ∈ Nout

i , and w ji ,i ∈ IRr j for j ∈ N in
i . The

first argument of the subscript denotes the edge relation and the second
the ownership of the variable, i.e., if system i affects j, then i and j will
keep wi j,i and wi j, j respectively.

Let Ei ∈ IRri×ni be a linear mapping such that Ei zNi � zii . Define

gi(zNi ) � δDi (zNi ) + 1
2 z>Ni

E>i GiEi zNi , hi � δZi , (5.4)

where δX denotes the indicator function of a closed nonempty convex set,
X. Problem (5.3) becomes

minimize
m∑

i�1
gi(zNi ) + hi(Ei zNi ) (5.5a)
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subject to Ai j zNi + A ji zNj � 0 (i , j) ∈ E (5.5b)

where Ai j ∈ IRl(i , j)×ni is defined based on the neighborhood relation as
follows

Ai j zNi �




zii j < N in
i , j ∈ Nout

i−zi j j ∈ N in
i , j < Nout

i(zii ,−zi j) j ∈ N in
i , j ∈ Nout

i .
(5.6)

Notice that depending on the neighborhood relation l(i , j) is either equal
to ri , r j or ri + r j .

A primal-dual algorithm was introduced in [100] (see Chapter 6) for
problems of the form (5.5) with consensus constraint. However, a con-
sensus constraint can not capture the coupling in the DMPC problem
depicted in Figure 5.1. Another drawback of the aforementioned work is
that the stepsize selection requires global coordination. Our analysis here
is different from that work and is based on [95] (see Chapter 4). In Sec-
tion 5.4 we describe how TriPD-Dist (Alg. 4.3) is applied to the DMPC
problem to derive Algorithm 5.1.

Our proposed distributed scheme is summarized in Algorithm 5.1. It
involves two versions. In the synchronous case at each iteration all sys-
tems perform their local updates and broadcast the result to the relevant
neighbors. In the asynchronous case each system wakes up randomly in-
dependent of other systems, i.e., there may be several active systems at
each iteration. The stepsizes appearing in Algorithm 5.1 should satisfy
the following:

Assumption 5.II (stepsizes in Algorithm 5.1).

(i) (node stepsizes) Subsystem i keeps two positive stepsizes σi , τi
associated to hi and gi , respectively.

(ii) (edge stepsizes) For each edge (i , j) ∈ E we associate a positive
stepsize κ(i , j) that is shared between system i and j.

(iii) (convergence condition) The stepsizes satisfy the following local
condition consensus

τi <
1

max{∑ j∈Nout
i
κ(i , j) + σi , (κ(i , j)) j∈N in

i
} . (5.7)

The dual updates for yi in Algorithm 5.1 require projection onto the
setZi which can often be performed efficiently, e.g. for boxes, halfspaces,
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Algorithm 5.1 Synchronous & asynchronous distributed primal-dual al-
gorithm for DMPC

Inputs: σi > 0, τi > 0 for i � 1, . . . ,m, and κ(i , j) > 0 for (i , j) ∈ E
for k � 0, 1, . . . do
I: Synchronous version

for all systems i � 1, . . . ,m do

II: Asynchronous version
drawr.v. εk

i according toP(ε0
i � 1) � pi > 0

for all systems i with εk
i � 1 do

Local updates:
w̄k

i j,i �
1
2

(
wk

i j,i + wk
i j, j

)
+

κ(i , j)
2

(
zk

ii − zk
ji

)
, ∀ j ∈ Nout

i

w̄k
ji ,i �

1
2

(
wk

ji ,i + wk
ji , j

)
+

κ(i , j)
2

(
zk

j j − zk
i j

)
, ∀ j ∈ N in

i

ȳk
i � yk

i + σi zk
ii − σi PZi

(
σ−1

i yk
i + zk

ii

)
zk+1
Ni

� proxτi gi
(c) is given by (5.8) and (5.9).

yk+1
i � ȳk

i + σi(zk+1
ii − zk

ii)
wk+1

i j,i � w̄k
i j,i + κ(i , j)(zk+1

ii − zk
ii), for all j ∈ Nout

i

wk+1
ji ,i � w̄k

ji ,i − κ(i , j)(zk+1
i j − zk

i j), for all j ∈ N in
i

Broadcast of information:
Send zk+1

ii , wk+1
i j,i to j ∈ Nout

i , and zk+1
i j , wk+1

ji ,i to j ∈ N in
i

normballs. The primal updates are compactlywritten as zNi � proxτi gi
(c)

where c � (ci j) j∈N in
i ∪{i} is given by

cii � zii − τi
(
ȳi +

∑
j∈Nout

i

w̄i j,i
)
, (5.8a)

ci j � zi j + τi w̄ ji ,i , for all j ∈ N in
i . (5.8b)

Theproximalmappingproxτi gi
(c) involves theminimization of a strongly

convex quadratic function over an affine subspace:

minimize
z

1
2 z>(E>i GiEi +

1
τi

Ini )z − 1
τi

c>z (5.9a)

subject to Li z � bi , (5.9b)

and can be evaluated efficiently through solving the linear system defin-
ing its KKT optimality conditions. We stress that the matrix of the linear
system is constant throughout iterations, and needs to be factored only
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once. Consequently, the evaluation of the primal step at every iteration
amounts to forward and backward substitution steps [129, §III.C].

5.4 Deriving the algorithm and convergence re-
sults

In this section we detail the steps of applying Algorithms 4.1 and 4.2 to
the DMPC problem.

Let z � (zN1 , . . . , zNm ) and define the linear operator

N(i , j) : z 7→ (Ai j zNi ,A ji zNj ).
The edge constraints (5.5b) can be equivalently formulated in the cost
as

∑m
i�1 δC(i , j)

(
N(i , j)z

)
, where C(i , j) � {(z1 , z2) ∈ IR2l(i , j) | z1 + z2 � 0}.

Consequently, (5.5) can be formulated in the form of unconstrained opti-
mization:

minimize
m∑

i�1

(
gi(zNi ) + hi(Ei zNi )

)
+

∑
(i , j)∈E

δC(i , j)

(
N(i , j)z

)

In order to formulate the dual problem we introduce two sets of dual
variables, yi ∈ IRri and w(i , j) ∈ IR2l(i , j) . The former corresponds to node
and the latter to edge constraints. The edge variable w(i , j) consists of two
blocks,w(i , j) � (w(i , j),i , w(i , j), j), i.e.,we consider twodual variables for each
constraint, where w(i , j),i ∈ IRl(i , j) is maintained by agent i and w( j,i), j ∈
IRl(i , j) by agent j. Notice that the edge variable w(i , j),i itself consists of
either one or two blocks: w(i , j),i � (wi j,i , w ji ,i), where wi j,i and w ji ,i are
present when j ∈ Nout

i and j ∈ N in
i , respectively.

For clarity of exposition we rewrite the problem with compact nota-
tion.WeuseNwithout any subscript to denote the stacked linearmapping
N � (N(i , j))(i , j)∈E , and C �

>
(i , j)∈E C(i , j). The transpose of N is given by

N> : (w(i , j))(i , j)∈E 7→ z̃ �

∑
(i , j)∈E

N>(i , j)w(i , j) ,

with z̃i �
∑

j∈Ni
A>i j w(i , j),i . Furthermore, set E � blkdiag(E1 , . . . , Em)

and define Lz � (Ez ,Nz) �: ( ỹ , w̃) ∈ IRnd , where nd �
∑
(i , j)∈E 2l(i , j) +
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∑m
i�1 ri . Set g(z) � ∑m

i�1 gi(zNi ), h( ỹ , w̃) � h̃( ỹ) + δC(w̃), where h̃( ỹ) �∑m
i�1 hi( ỹi). Then, problem (5.5) can be casted as

minimize g(z) + h(Lz). (5.10)

Problem (5.10) may be solved by a range of primal-dual algorithms re-
sulting in the full splitting of the nonsmooth functions and the linear
mapping, see Chapter 3. Our goal is to derive algorithms in which: i)
both the iterates and the stepsizes are computed locally, ii) involve one
round of communication per iteration, iii) allow block coordinate up-
dates. An ideal candidate for this purpose is the primal-dual algorithm
introduced in [95, Alg. 1], see Chapter 4. In particular, the sequence gen-
erated by the algorithm is S-Fejér monotone where S is a block diagonal
positive definite matrix.

Remark 5.1. In (5.4) the quadratic terms were captured by nonsmooth
functions gi . Our scheme requires calculating the proximal mapping of
gi which translates to solving the quadratic over affine minimization
(5.9). Alternatively, one can model the quadratic cost functions using a
third smooth term in (5.10) (see TriPD (Alg. 4.1)). This would result in a
gradient step and a projection onto the setDi in place of a quadratic over
affine minimization. Hence, it is possible to use general convex Lipschitz
differentiable functions as cost in the DMPC problem. In that case the
Lipschitz constant of the smooth term would affect the stepsizes.

In order to represent the algorithm compactly we define the following
set of diagonal matrices:

W � blkdiag
(
(κ(i , j)I2l(i , j))(i , j)∈E

)
,

Σ � blkdiag(σ1Ir1 , . . . , σm Irm ),
Γ � blkdiag(τ1In1 , . . . , τm Inm ).

Notice that κ(i , j) is repeated twice, i.e., once for every node sharing the
edge.

Let v � (y , w , z), and define the operator T

Tv � ( ȳ + ΣE(z̄ − z), w̄ + WN(z̄ − z), z̄),
where

ȳ � proxΣ−1

h̃∗
(y + ΣEz) (5.11a)
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w̄ � proxW−1

δ∗C
(w + WNz) (5.11b)

z̄ � proxΓ−1
g (z − ΓE> ȳ − ΓN>w̄). (5.11c)

Then TriPD (Alg. 4.1) can be represented as the fixed-point iteration
vk+1 � Tvk . This iteration is amenable to block coordinate (BC) updates. A
general BC scheme was proposed in TriPD-BC (Alg. 4.2). Our focus here
is on the case where each coordinate has an independent probability to
be active. Briefly put, the BC scheme is represented as

zk+1
�

m∑
i�1

εk
i Ui(Tzk),

where Ui are diagonal matrices with zero and one diagonal elements,
and are used to select the coordinates, while εk

i ∈ {0, 1}m encodes if a co-
ordinate i is updated at iteration k. The matrices Ui are assumed to be
disjoint and

∑m
i�1 Ui � I, where I is the identity matrix of appropriate

dimensions. The partitioning described in this section satisfies these re-
quirements, i.e., for i � 1, . . . ,m, the matrix Ui selects zNi , yi and w(i , j),i
for j ∈ Ni .

Since h̃ in (5.11a) is separable, using (5.4) and the Moreau identity
[13], we have that for i � 1, . . . ,m

ȳi � yi + σi zii − PZi (yi + σi zii),
and the projection onto C(i , j) is given by

PC(i , j)(w1 , w2) � 1
2 (w1 − w2 ,−w1 + w2).

Therefore, (5.11b) yields the updates for the edge variables in Algorithm
5.1. The z̄ in (5.11c) can be evaluated as follows: For each i ∈ V

z̄Ni � proxτi gi

(
zNi − τiE>i ȳi − τi

∑
j∈Ni

A>i j w̄(i , j),i
)
.

Therefore, the primal update is carried out by solving (5.9) where c is
given by (5.8). Finally, evaluation of the operator T requires matrix-vector
products and straightforward substitution of the involvedmatrices yields
Algorithm 5.1.

The next theorem summarizes the convergence results for Algorithm
5.1. The proof is omitted here and the interested reader is referred to
Chapter 4.
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Theorem 5.2. Let Assumptions 5.I and 5.II hold. Consider the stacked vectors
z � (zN1 , . . . , zNm ), y � (y1 , . . . , ym), w � (w(i , j))(i , j)∈E . Then, in the case of
synchronous updates, (vk)k∈� � (yk , wk , zk)k∈� generated by Algorithm 5.1
converges to some v?, and in the case of asynchronous updates it converges
almost surely to some v?-valued random variable, where v? is a primal-dual
solution to (5.5). In particular, (zk

11 , . . . , z
k
mm)k∈� converge to a solution of the

DMPC problem (5.1). If in addition, Xi ,X f andUi are polyhedral sets then in
the synchronous case the distance from the primal-dual solution set converges
Q-linearly to zero.

5.5 Numerical simulations
In this section, as a benchmark example we consider the problem of
frequency control in power networks [141]. The network consists of power
generation areas with the goal of maintaining nominal frequency levels
despite changes in load and network configuration. The approach in
[141] is based on modeling the dynamic coupling as disturbance. Clearly,
this could lead to conservative control actions. In contrast our method
solves the exact global optimization constrained by the dynamics through
distributed computation and communication with the neighbors.

Each system consists of four states xi � (∆θi ,∆ωi ,∆Pmi ,∆Pvi ) and
one control input ui � ∆Pref i . The continuous-time LTI model of each
system is given by

Ûxi �
∑

j∈N in
i ∪{i}

Ai j x j + Bi ui .

Notice that the inputs are not coupled. The objective for each system is to
track xr

i � (0, 0,∆PLi ,∆PLi ) and ur
i � ∆PLi , where ∆PLi denotes the local

power load. Inour simulationsweusedfive systemsasdescribed inFigure
5.2. The local constraints for each system are as follows: ∆θi ∈ [−0.1, 0.1]
for all i, and ∆PL1 ,∆PL5 ∈ [−0.5, 0.5], ∆PL2 ,∆PL3 ∈ [−0.65, 0.65], and
∆PL4 ∈ [−0.55, 0.55]. Furthermore, the quadratic costs Qi � 4Isi and
Ri � Iti are used for all systems along the horizon. We have omitted the
details on the system dynamics here. The reader is referred to [141] and
the references therein for details and parameter values. We used Euler’s
method for discretization of the dynamics with step length of 1 sec. This
discretization has the advantage of maintaining the sparsity patterns of
the transition matrices. In all our simulation we used horizon length
N � 20.
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Figure 5.2: Network structure in the DMPC problem for scenario 1: system 5 is
added at t � 20 and system 4 is disconnected at t � 50.

In Algorithm 5.1 the stepsizes for each system must be selected in
accordance to the simple condition of Assumption 5.II(iii). Typically,
in primal-dual proximal algorithms larger stepsizes yield faster conver-
gence. However, there is a trade-off between edge parameters κ(i , j) and
node parameters, σi , τi . We selected these values empirically as follows:
i) κ(i , j) � 10 for all (i , j) ∈ E, ii) σi � 1 if dout

i � 1, and 10|dout
i − 1| oth-

erwise, iii) τi �
0.99

max{10dout
i +σi ,10} , where dout

i denotes the cardinality of
Nout

i . Notice that due to this simple local rule, removal or addition of a
node only affects the neighboring nodes through dout

i .
Our simulations consist of two scenarios:
Scenario 1: In the first scenario we demonstrate the plug and play ca-

pability of our algorithm, i.e., removal and addition of a new system only
affects the network locally without the need for any global coordination.
We consider systems 1, . . . , 4 with the dynamic coupling depicted in Fig-
ure 5.2. We assume that at time t � 20 system 5 is connected to systems
2 and 4. Furthermore, system 4 is disconnected from the network at time
t � 50. Table 5.1 summarizes the load of power and network modifica-
tion at given time steps. Figure 5.3 highlights the frequency deviation (the
second state variable) for systems one and four. It is observed that the fre-
quency control is achieved despite the load and configuration changes.

Table 5.1: loads of power and network structure for Scenario 1

time 5 5 20 20 35 35 50
system 1 4 2 5 5 3 4
∆PLi 0.10 -0.12 0.08 added 0.05 -0.10 removed
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Figure 5.3: Frequency deviation for systems one and four
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Figure 5.4: Total number of local iterations: comparing synchronous PDDMPC,
randomized PDDMPC and DGFG.

Scenario 2: In the second scenario, we considered a static network
structure with 5 systems and load ∆PL1 � 0.10 with the same neighbor-
hood structure and constraints as in the previous scenario. We compared
our algorithm (referred here as PDDMPC) to [77, Alg. 3] (DGFG) that
is based on applying the fast gradient method to the dual problem. The
aforementioned paper proposes solving a series of convex semidefinite
program (SDP) locally at the nodes in order to select the parameters of
the algorithm in a distributed fashion. In order to have a fair compari-
son we solved the global optimization problem using MOSEK [5]. Figure
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5.4 demonstrates the superior performance of our scheme. The y-axis is
the error defined as the norm of the difference between current primal
variables and the solution in both algorithms. The x-axis denotes the to-
tal number of local iterations. Notice that DGFG requires two rounds of
communication at every iteration. Furthermore, we used the randomized
version of the algorithm where each system is activated independently
with probability pi � 0.5. It is observed that the random activation of
nodes result in roughly the same number of total local iterations as the
synchronous case.

5.6 Conclusions
This chapter introduced a fully distributed primal-dual proximal algo-
rithm for the DMPC problem that includes both synchronous and ran-
domized versions. In addition to simple local iterations, the stepsizes of
the new algorithm are selected locally without any global coordination.
Therefore, any changes to the network structure only affects the neigh-
boring nodes. In addition, our algorithm enjoys a linear convergence rate
under mild assumptions on the input and state constraints. Future works
include devising efficient strategies for selecting the edge weights, and
extending the algorithm for the case of lossy communications.
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Chapter 6

A primal-dual proximal algorithm for
distributed optimization over graphs

This chapter is based on:
Latafat, P., Stella, L., and Patrinos, P. New primal-dual proximal algo-

rithm for distributed optimization. In 55th IEEE Conference on Decision and
Control (CDC) (Dec 2016), pp. 1959–1964.

6.1 Introduction
In this chapter we deal with the distributed solution of the following
optimization problem:

minimize
x∈IRn

N∑
i�1

gi(x) + hi(Ci x) (6.1)

where for i � 1, . . . ,N , Ci is a linear operator, gi and hi are proper closed
convex and possibly nonsmooth functions. We further assume that the
proximal mappings associated with gi and hi are efficiently computable
[49]. In a more general case we can include another continuously differ-
entiable term with Lipschitz continuous gradient in (6.1) as in Chapter 3
but we opted not for clarity of exposition.

Inmachine learning and statistics the Ci are featurematrices and func-
tions hi measures the fitting of a predicted model with the observed data,
while the gi are regularization terms that enforce some prior knowledge
in the solution (such as sparsity, or belonging to a certain constraint set).
For example if hi is the so-called hinge loss and gi �

λ
2 ‖ · ‖22 , for some
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λ > 0, then one recovers the standard SVM model. If instead gi � λ‖ · ‖1
then one recovers the `1-norm SVM problem [185].

Problem (6.1)may be solved in a centralized fashion, when all the data
of the problem (functions gi , hi andmatrices Ci , for all i ∈ {1, . . . ,N}) are
available at one computing node.However, such a centralized approach is
not realistic in many scenarios. For example, suppose that hi(Ci x)models
least-squares terms and C1 , . . . , CN are very large featuresmatrices. Then,
collecting C1 , . . . , CN into a single computer may be infeasible due to
communication costs, or even worse they may not fit into the computer’s
memory. Furthermore, the exchange of such information may not be
possible at all due to privacy issues.

Our goal is therefore to solve problem (6.1) in a distributed fashion.
Specifically, we consider a connected network of N computing agents,
where the i-th agent is able to compute the proximal mappings of gi , hi ,
and matrix-vector products with Ci (and its adjoint operator). We want
all the agents to iteratively converge to a consensus solution to (6.1), and
to do so by only exchanging variables among neighbouring nodes, i.e,
no centralized computations (i.e., existence of a fusion center) are needed
during the iterations.

To do so, we will propose a solution based on Asymmetric Forward-
Backward-Adjoint (AFBA) splitting method, Algorithm 2.1. This splitting
technique solvesmonotone inclusion problems involving three operators,
however, in this chapter we will focus on a special case that involves two
terms. Specifically, we develop a distributed algorithmwhich is based on
a special case of AFBA applied to the monotone inclusion correspond-
ing to the primal-dual optimality conditions of a suitable graph splitting
of (6.1). Our algorithm involves a nonnegative parameter θ which serves
as a tuning knob that allows to recover different algorithms. In partic-
ular, the algorithm of [38] is recovered in the special case when θ � 2.
We demonstrate how tuning this parameter affects the stepsizes and ul-
timately the convergence rate of the algorithm.

Other algorithms have been proposed for solving problems similar to
(6.1) in a distributed way. As a reference framework, all algorithms aim
at solving in a distributed way the problem

minimize
x∈IRn

N∑
i�1

Fi(x).

In [122] a distributed subgradient method is proposed, and in [64] this
idea is extended to the projected subgradient method.More recently, sev-
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eral works focused on the use of ADMM for distributed optimization.
In [29] the generic ADMM for consensus-type problems is illustrated. A
drawback of this approach is that at every iteration the agents must solve
a complicated subproblem that might require an inner iterative proce-
dure. In [131] another formulation is given for the case where Fi � gi + hi ,
and only proximalmappingswith respect to gi and hi are separately com-
puted in each node. Still, when either gi or hi is not separable (such as
when they are composed with linear operators) these are not trivial to
compute and may require inner iterative procedures, or factorization of
the data matrices involved. Moreover, in both [29, 131] a central node is
required for accumulating each agents variables at every iteration, there-
fore these formulations lead to parallel algorithms rather than distributed.
In [153] the optimal parameter selection for ADMM is discussed in the
case of distributed quadratic programming problems. In [174, 175, 115],
fully distributed algorithms based on ADMM proposed, assuming that
the proximal mapping of Fi is computable, which is impractical in many
cases. In [21] the authors propose a variation of the Vũ-Condat algorithm
[53, 170], having ADMM as a special case, and show its application to
distributed optimization where Fi � gi + hi , but no composition with a
linear operator is involved. Only proximal operations with respect to gi
and hi and local exchange of variables (i.e., among neighboring nodes) is
required, and the method is analyzed in an asynchronous setting.

In this chapter we deal with the more general problem as in (6.1). The
main features of our approach, that distinguish it from the related works
mentioned above, are:

1) Wedealwith Fi that is the sumof twopossibly nonsmooth functions
one of which is composed with a linear operator.

2) Our algorithm only require local exchange of information, i.e., only
neighboring nodes need to exchange local variables for the algo-
rithms to proceed.

3) The iterations involve direct operations on the objective terms. Only
evaluations of proxgi

, proxh?i
and matrix-vector products with Ci

and CT
i are involved. In particular, no inner subproblem needs to be

solved iteratively by the computing agents, andnomatrix inversions
are required.
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6.2 Problem formulation
Consider problem (6.1) under the following assumptions:

Assumption 6.I. For i � 1, . . . ,N :

(i) Ci : IRn → IRri are linear operators.

(ii) gi : IRn → �, hi : IRri → � are proper closed convex functions.

(iii) The set of minimizers of (6.1), denoted by S?, is nonempty.

We are interested in solving problem (6.1) in a distributed fashion.
Specifically, let G � (V, E) be an undirected graph over the vertex set
V � {1, . . . ,N} with edge set E ⊂ V × V . It is assumed that each node
i ∈ V is associated with a separate agent, and each agent maintains its
own cost components gi , hi , Ci which are assumed to be private, and its
own opinion of the solution xi ∈ IRn . The graph imposes communication
constraints over agents. In particular, agent i can communicate directly
only with its neighbors j ∈ Ni � { j ∈ V | (i , j) ∈ E}. We make the
following assumption.

Assumption 6.II. Graph G is connected.

With this assumption, we reformulate the problem as

minimize
x∈IRNn

N∑
i�1

gi(xi) + hi(Ci xi)

subject to xi � x j (i , j) ∈ E

where x � (x1 , . . . , xN ). Associate any orientation to the unordered edge
set E. Let M � |E | and B ∈ IRN×M be the oriented node-arc incidence matrix,
where each column is associatedwith an edge (i , j) ∈ E and has+1 and−1
in the i-th and j-th entry, respectively. Notice that the sum of each column
of B is equal to 0. Let di denote the degree of a given vertex, that is, the
number of vertices that are adjacent to it. We have BB> � L ∈ IRN×N ,
where L is the graph Laplacian of G, i.e.,

Li j �




di if i � j,
−1 if i , j and node i is adjacent to node j ,
0 otherwise.
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Constraints xi � x j , (i , j) ∈ E canbewritten in compact formasAx � 0,
where A � B> ⊗ In ∈ IRMn×Nn . Therefore, the problem is expressed as

minimize
x∈IRNn

N∑
i�1

gi(xi) + hi(Ci xi) + δ{0}(Ax). (6.2)

The dual problem is:

minimize
yi∈IRri

w∈IRMn

N∑
i�1

g∗i (−A>i w − C>i yi) + h∗i (yi), (6.3)

where Ai ∈ IRMn×n is the i-th (block) column of A. The primal-dual
optimality conditions are




0 ∈ ∂gi(xi) + C>i yi + A>i w ,i � 1, . . . ,N
Ci xi ∈ ∂h∗i (yi) i � 1, . . . ,N∑N

i�1 Ai xi � 0,
(6.4)

where w ∈ IRMn , yi ∈ IRri , for i � 1, . . . ,N . The following condition is
assumed to hold throughout this chapter.

Assumption 6.III. There exist xi ∈ ri dom gi such that Ci xi ∈ ri dom hi ,
i � 1, . . . ,N and

∑N
i�1 Ai xi � 0.

This assumption implies that the set of solutions to (6.4) is nonempty
(see [50, Prop. 4.3(iii)]). If (x?, y?,w?) is a solution to (6.4), then x? is a
solution to the primal problem (6.2) and (y?,w?) to its dual (6.3).

6.3 Distributed primal-dual algorithms
In this section we provide the main distributed algorithm that is based
onAsymmetric Forward-Backward-Adjoint (AFBA) [96] (see Chapter 2). The
developed algorithm belongs to the class of primal-dual algorithms. The
convergence results include both primal and dual variables. However, the
convergence analysis here focuses on the primal variables for clarity of
exposition, with the understanding that similar claims holds for the dual
variables.

Our distributed algorithm consists of two phases, a local phase and
the phase inwhich each agent interactswith its neighbors according to the
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constraints imposed by the communication graph. Each iteration has the
advantage of only requiring local matrix-vector products and proximal
updates. Specifically, each agent performs 2 matrix-vector products per
iteration and transmits a vector of dimension n to its neighbors.

Let u � (x , v) where v � (y ,w) and y � (y1 , . . . , yN ). The optimality
conditions in (6.4), can be written in the form of the following monotone
inclusion:

0 ∈ Du + Mu (6.5)
with

M �
©«

0 C> A>
−C 0 0
−A 0 0

ª®¬
, D(x , y ,w) � (∂g(x), ∂h∗(y), 0),

where g(x) � ∑N
i�1 gi(xi) , h∗(y) � ∑N

i�1 h∗i (yi), C � blkdiag(C1 , . . . , CN ).
Notice that Ax �

∑N
i�1 Ai xi , A>w � (A>1 w , . . . ,A>N w). The operator D+M

is maximally monotone [13, Prop. 20.23, Cor. 25.5].
Monotone inclusion (6.5) which is a restatement of the primal-dual

optimality conditions (6.4) is solved by applying [96, Alg. 6]. This results
in the following iteration:

xk+1
� proxΣ−1

g (xk − ΣC>yk − ΣA>wk) (6.6a)

ȳk
� proxΓ−1

h∗ (yk
+ ΓC(θxk+1

+ (1 − θ)xk)) (6.6b)
w̄k

� wk
+ΠA(θxk+1

+ (1 − θ)xk) (6.6c)
yk+1

� ȳk
+ (2 − θ)ΓC(xk+1 − xk) (6.6d)

wk+1
� w̄k

+ (2 − θ)ΠA(xk+1 − xk) (6.6e)

where matrices Σ, Γ,Π play the rule of stepsizes and are assumed to be
positive definite. The iteration (6.6) can not be implemented in a dis-
tributed fashion because the dual vector w consists of M blocks corre-
sponding to the edges. The key idea that allows distributed computations
is to introduce the sequence

(ρk
i )k∈IN � (A>i wk)k∈IN , for i � 1, . . . ,N. (6.7)

This transformation replaces the stacked edgevector wk with correspond-
ing node vectors ρi . More compactly, letting ρk � (ρk

1 , . . . , ρ
k
N ), it follows

from (6.6c) and (6.6e) that

ρk+1
� ρk

+ A>ΠA(2xk+1 − xk), (6.8)

126



where A>ΠA is the weighted graph Laplacian. Since wk in (6.6a) appear as
A>wk we can rewrite the iteration:

xk+1
� proxΣ−1

g (xk − ΣC>yk − Σρk)
ȳk

� proxΓ−1

h∗ (yk
+ ΓC(θxk+1

+ (1 − θ)xk))
yk+1

� ȳk
+ (2 − θ)ΓC(xk+1 − xk)

ρk+1
� ρk

+ A>ΠA(2xk+1 − xk)
Set

Σ � blkdiag (σ1In , . . . , σN In),
Γ � blkdiag (τ1Ir1 , . . . , τN IrN ),
Π � blkdiag (π1In , . . . , πM In),

where σi > 0, τi > 0 for i � 1, . . . ,N and πl > 0 for l � 1, . . . ,M. Consider
a bĳective mapping between l � 1, . . . ,M and unordered pairs (i , j) ∈ E
such that κi , j � κ j,i � πl . Notice that πl for l � 1, . . . ,M are stepsizes to
be selected by the algorithm and can be viewed as weights for the edges.
Thus, iteration (6.6) gives rise to our distributed algorithm:

Algorithm 6.1
Inputs: σi > 0, τi > 0, κi , j > 0 for j ∈ Ni , i � 1, . . . ,N , θ ∈ [0,∞), initial
values x0

i ∈ IRn , y0
i ∈ IRri , ρ0

i ∈ IRn .
for k � 0, 1, . . . do

for each agent i � 1, . . . ,N do
Local steps:
xk+1

i � proxσi gi
(xk

i − σiρk
i − σiC>i yk

i )
ȳk

i � proxτi h∗i
(yk

i + τiCi(θxk+1
i + (1 − θ)xk

i ))
yk+1

i � ȳk
i + τi(2 − θ)Ci(xk+1

i − xk
i )

uk
i � 2xk+1

i − xk
i

Exchange of information with neighbors:
ρk+1

i � ρk
i +

∑
j∈Ni

κi , j(uk
i − uk

j )

Notice that each agent i only requires uk
j ∈ IRn for j ∈ Ni during the

communication phase. Before proceeding with convergence results, we
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define the following for simplicity of notation:

σ̄ � max{σ1 , . . . , σN },
τ̄ � max{τ1 , . . . , τN , π1 , . . . , πM},
L � L ⊗ In + C>C , where L is the graph Laplacian.

It must be noted that the results in this section only provide choices of
parameters that are sufficient for convergence. They can be selectedmuch
less conservatively by formulating and solving sufficient conditions that
they must satisfy as linear matrix inequalities (LMIs).

Theorem 6.1. Let Assumptions 6.II and 6.III hold true. Consider the sequence
(xk)k∈IN � (xk

1 , . . . , x
k
N )k∈IN generated by Algorithm 6.1. Assume the maximum

stepsizes, i.e., σ̄ and τ̄ defined above, are positive and satisfy

σ̄−1 − τ̄(θ2 − 3θ + 3)‖L‖ > 0, (6.9)

for a fixed value of θ ∈ [0,∞). Then, the sequence (xk)k∈IN converges to
(x?, . . . , x?) for some x? ∈ S?. Furthermore, if θ � 2 the strict inequality (6.9)
is replaced with σ̄−1 − τ̄‖L‖ ≥ 0.

Proof. Algorithm 6.1 is an implementation of [96, Alg. 6]. Thus conver-
gence of (xk)k∈IN to a solution of (6.2) is implied by [96, Prop. 5.4]. Com-
bining thiswithAssumption 6.II yields the result. Notice that in thatwork
the stepsizes are assumed to be scalars for simplicity. It is straightforward
to adapt the result to the case of diagonal matrices.

In Algorithm 6.1 when θ � 2, we recover the algorithm of Chambolle
and Pock [38]. One important observation is that the term θ2 − 3θ + 3
in (6.9) is always positive and achieves its minimum at θ � 1.5. This is a
choice of interest for us since it results in larger stepsizes, σi , τi , κi , j , and
consequently better performance aswe observe in numerical simulations.

Theorem 6.2 establishes linear convergence for the algorithm when-
ever gi and hi are piecewise linear-quadratic (PLQ), see Definition 1.4. The
class of PLQ functions has been studied extensively and has many de-
sirable properties (see [144, §10 and §11]). Many practical applications
involve PLQ functions such as quadratic function, ‖ · ‖1, indicator of poly-
hedral sets, hinge loss, etc. Thus, the R-linear convergence rate that we
establish in Theorem 6.2 holds for a wide range of problems encountered
in control, machine learning and signal processing.
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Theorem 6.2. Consider Algorithm 6.1 under the assumptions of Theorem 6.1.
Assume gi and hi for i � 1, . . . ,N , are piecewise linear-quadratic functions.
Then the set valued mapping T � D + M is metrically subregular at any
z for any z′ provided that (z , z′) ∈ gra T. Furthermore, the sequence (xk)k∈IN
converges R-linearly to (x?, . . . , x?) for some x? ∈ S?.

Proof. The proof of the first claim is similar to Lemma 3.11 and is omit-
ted. The second part of the proof follows directly by noting that [96, Alg.
6] used to derive Algorithm 6.1 is a special case of Algorithm 3.1 (with
µ � 0 and λ � 1). Therefore, linear convergence follows from Corol-
lary 3.12(i). The aforementioned theorem guarantees linear convergence
for the stacked vector u in (6.5), however, here we consider the primal
variables only.

6.3.1 Special case

Consider the following problem

minimize
x∈IRn

N∑
i�1

gi(x), (6.10)

where gi : IRn → � for i � 1, . . . ,N are proper closed convex functions.
This is a special case of (6.1) when hi ◦ Ci ≡ 0. Since functions hi are
absent, the dual variables yi in Algorithm 6.1 vanish and for any choice
of θ the algorithm reduces to:

xk+1
i � proxσi gi

(xk
i − σiρ

k
i )

uk
i � 2xk+1

i − xk
i

ρk+1
i � ρk

i +
∑
j∈Ni

κi , j(uk
i − uk

j ).

Thus setting θ � 1.5 in (6.9) to maximize the stepsizes yields σ̄−1 −
3τ̄
4 ‖L‖ > 0, where L is the graph Laplacian.
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Figure 6.1: Convergence of the relative error for the algorithms, in one of the
considered instances.

6.4 Numerical simulations
We now illustrate experimental results obtained by applying the pro-
posed algorithm to the following problem:

minimize λ‖x‖1 +
N∑

i�1

1
2 ‖Di x − di ‖22 (6.11)

for a positive parameter λ. This is the `1 regularized least-squares prob-
lem. Problem (6.11) is of the form (6.1) if we set for i � 1, . . . ,N

gi(x) � λ
N ‖x‖1 , hi(z) � 1

2 ‖z − di ‖22 , Ci � Di , (6.12)

where Di ∈ IRmi×n , di ∈ IRmi . For the experiments we used graphs of N �

50 computing agents, generated randomly according to the Erdős-Renyi
model, with parameter p � 0.05. In the experiments we used n � 500 and
generated Di randomly with normally distributed entries, with mi � 50
for all i � 1, . . . ,N . Then we generated vector di starting from a known
solution for the problem and ensuring λ < 0.1‖∑N

i D>i di ‖∞.
For the stepsize parameters we set σi � σ̄, τi � τ̄, for all i � 1, . . . ,N ,

and κi , j � κ j,i � τ̄ for all edges (i , j) ∈ E, such that (6.9) is satisfied.
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Figure 6.2: Distribution of the number of communication rounds required by the
algorithms to achieve a relative error of 10−6, for fixed data and 200 randomly
generated Erdős-Renyi graphs, with parameter p � 0.05.

In order to have a fair comparison we selected σ̄ � α/‖L‖ and τ̄ �

0.99/(α(θ2 − 3θ + 3)) with α � 20 which was set empirically based on
better performance of all the algorithms.

The results are illustrated in Figure 6.2, for several values of θ, where
the distribution of the number of communication rounds required by the
algorithms to reach a relative error of 10−6 is reported. In Figure 6.1 the
convergence of algorithms is illustrated in one of the instances. It should
be noted that the algorithm of Chambolle and Pock, that corresponds to
θ � 2, is generally slower than the case θ � 1.5. This is mainly due to the
larger stepsize parameters guaranteed by Theorem 6.1.
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Chapter 7

Multi-agent structured optimization with
bounded communication delays

This chapter is based on:
P. Latafat and P. Patrinos. Primal-dual algorithms for multi-agent struc-

tured optimization over message-passing architectures with bounded communi-
cation delays (submitted 2019).

7.1 Introduction
In this chapter we consider a class of structured optimization problems
that can be represented as follows:

minimize
x∈�n

f (x) +
m∑

i�1

(
gi(xi) + hi(Ni x)

)
, (7.1)

where x � (x1 , . . . , xm), Ni is a linear mapping, hi , gi are proper closed
convex (possibly) nonsmooth functions, gi are in addition strongly con-
vex, and f is convex, continuously differentiable with Lipschitz continu-
ous gradient. The goal is to solve (7.1) over a network of agents through
local communications. Each agent is assumed to maintain its own pri-
vate cost functions gi and hi , while f and (possibly) the linear mappings
Ni represent the coupling between the agents. In practice local commu-
nications between agents are subject to delays and/or dropouts which
constitutes an important challenge addressed here.

Most iterative algorithms for convex optimization can be written as

zk+1
� zk − Tzk , (7.2)
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Figure 7.1: The main two memory models; (left) agents cooperating to perform a
task, (right) processors updating a global memory

where themapping id−T (id is the identity operator) has some contractive
property resulting in the convergence of the sequence to a zero of T. In
distributed optimization the goal is to devise algorithms where a group
of agents/processors distributively update certain coordinates of z while
guaranteeing convergence to a zero of T.

There are twomain computationalmodels in distributed optimization
(depicted in Fig. 7.1) with a range of hybrid models in between [20, §1].
These models are conceptually different and require different analysis.
The model considered here is the local/private-memory model. Let us
first describe the two models.

Shared-memory model: This model is characterized by the access of
all agents/processors to a sharedmemory.A large bodyof literature exists
for parallel coordinate descent algorithms for this problem. Typically,
coordinate descent algorithms would require a memory lock to ensure
consistent reading. Interesting recentworks allow inconsistent reads [109,
133]. In this model, for the fixed point iteration (7.2), each processor
reads the global memory and proceeds to choose a random coordinate
i ∈ {1, . . . ,m} and to perform

zk+1
i � zk

i − Ti ẑk ,

where ẑk denotes the data loaded from the global memory to the local
storage at the clock tick k, and Ti represents the operator that updates
the i-th coordinate. This form of updates are asynchronous in the sense
that the processors update the global memory simultaneously resulting
in possibly inconsistent local copy ẑk due to other processors modifying
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the global memory during a read. The analysis of such algorithms would
in general rely on either using the properties of the operator that updates
the i-th coordinate when possible (coordinate-wise Lipschitz continuity
in the case of the gradient [109]), or the properties of the global operator
(see [133] for nonexpansive operators). A crucial point in the convergence
analysis of suchmethods is the fact that for a given processor, the index of
the coordinate to be updated is selected at random, but no matter which
coordinate is selected the same local data ẑk is used for the update. Let
T̂i z B (0, . . . , 0, Ti z , 0 . . . , 0). Then, in a randomized scheme T̂i can be
summed over i:

m∑
i�1

T̂i ẑk
� Tẑk ,

allowing one to use the properties known for the global operator (see the
proof of [133, Lem. 7]). This type of argument is also used in [176] in the
context of decentralized consensus optimization. See [34] for a detailed
discussion on the assumptions that are often imposed in this model. As
we discuss below, the difficulty in the local-memory model is precisely
due to the fact that this summation no longer holds.

Local/private-memory model: In this model each agent/processor
has its own private local memory. The agents can send and receive infor-
mation to other agents as needed, and agent i can only update zi . This
model is also referred to as message-passing model [20].

In the absence of delay between agents, randomized block-coordinate
updates may be used to develop distributed asynchronous algorithms.
Such schemes would typically involve random independent activation of
agents to perform their local updates, and are in this sense also referred
to as asynchronous [88, 22, 95, 134]. Note that in these schemes while
the agents may wake up to perform their updates at different times,
the information used by each agent is assumed to be up to date, i.e.,
synchronization is required.

In accordance with the notation of the seminal work [20, §7] we de-
fine the following local (outdated) version of the generic vector zk �

(zk
1 , . . . , z

k
m) used by agent i:

zk[i] B
(
z
τi

1(k)
1 , . . . , zτ

i
m (k)

m

)
, (7.3)

where τi
j(k) is the latest time at which the value of z j is transmitted to

agent i by agent j. In our setting the delay is assumed to be bounded:
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Assumption 7.I. There exists an integer B such that for all k ≥ 0 the
following holds

(∀i , j) 0 ≤ k − τi
j(k) ≤ B, and τi

i (k) � k.

The fact that each agent knows its own local variable without delay
is projected in the assumption τi

i (k) � k. This is a natural assumption
and is satisfied in practice. Notice that for ease of notation we defined
the complete outdated vector while in practice each agent would only
keep a local copy of the coordinates that are required for its computation,
see Fig. 7.1. The directions of the arrows in Fig. 7.1 signify the nature
of the coupling between two agents. For example, the arrow from A4
to A3 indicates that agent A3 requires z4 for its computation. Such a
relation between agents is dependent on the formulation and thenature of
coupling between agents. For instance, in (7.1) the coupling is represented
through f and possibly Ni . As we shall see in §7.2 the coupling through f
may be one sided since agent i may require information from agent j for
computing ∇i f (the partial derivative of f with respect to i-th coordinate)
without the reverse relation being true.

In summary, each agent controls only one block of coordinates and
updates according to

zk+1
i � zk

i − Ti zk[i],
the result of which will be sent (possibly with different delay) to the
agents that require it in their computations. The difficulty in this model
comes from the impossibility of summing Ti zk[i] over all i given that
zk[i] is different for each i.

In addition to the above described delay, the partially asynchronous
(PA) protocol considered in [20, §7] involves a second assumption: each
agent must perform an update at least once during any time interval of
length B. In [20, §7.5] a PA variant of the gradient method is studied.
This analysis is further extended to the projected-gradient method in
the convex case. In [161] a periodic linear convergence rate is established
for the projected-gradient method. The recent work [184] extends this
analysis to the proximal-gradient method.

The aforementioned primal methods are not well equipped for prob-
lems with more complex structures as in (7.1). An efficient way to tackle
such problems is to employ a class of first-order methods, referred to
as primal-dual algorithms. This approach leads to fully split algorithms
eliminating the need for inverting matrices or solving inner loops. Devel-
oping PA schemes for primal-dual algorithms is not addressed here and
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remains a challenge. It it worth noting that [80] considers a primal-dual
framework under a different asynchronous protocol where the primal
variables follow a totally asynchronousmodel [20, §6]. However, the dual
variables are required to be synchronized across agents.

It is worth noting that finite summinimization over graphs is another
popular problem that has been considered by many authors [122, 64,
150, 110, 90, 100]. Several asynchronous algorithms have been studied for
this popular problem overmaster-worker architectures [1, 12, 71, 41, 183].
Moreover, asynchronous subgradient typemethodshavebeen studied ex-
tensively for finite sum problems [121, 168, 154, 172, 105]. In contrast, in
this work general optimization problem (7.1) is considered. This frame-
work can be used to develop asynchronous distributed proximal algo-
rithms for general finite sum minimization of the form

minimize
x∈�n

m∑
i�1

Ψi(x) + Θi(x) + Φi(Ci x),

where Φi is smooth, Θi and Φi are (possibly) nonsmooth extended-real-
valued and Ci is a linear mapping. This problem can be reformulated as
(7.1) using a consensus reformulation according to the communication
graph. However, this is deferred to future work.

7.1.1 Motivating examples
Consider the regularized logistic regression problem

minimize
w∈�n

m∑
i�1

∑
j∈Ii

log
(
1 + exp

(
−y( j)〈x( j) , w〉

))
+ λ‖w‖2 , (7.4)

where w � (w1 , . . . ,wm) ∈ �n is the regression vector, λ is a posi-
tive constant, and the data is distributed between m machines; the pair
(x( j) , y( j)) j∈Ii represents the data stored at the i-th machine. The goal is
to solve the global minimization via local communications which may be
subject to communication delays. Clearly (7.4) fits into the formof (7.1): let
g represent the separable regularizer, hi(v) � ∑

j∈Ii
log((1 + exp(−y( j)v j))

the loss function, f ≡ 0 and the rows of Ni consisting of x>( j) for j ∈ Ii . In
this formulation the coupling is through the linear terms (cf. §7.5). Dis-
tributed elastic net problem is another such example with hi representing
the squared loss, Ni the locally stored data, g the elastic net regularizer
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and f ≡ 0. Note that in both examples gi is strongly convex and hi is con-
tinuously differentiable with Lipschitz continuous gradient, satisfying
the requirements of §7.5 for the cost functions.

Another notable example is the problem of formation control [136],
where each agent (vehicle) has its ownprivate dynamics and cost function
and the goal is to achieve a specific formation while communicating only
with a selected number of agents. Let wi � (ξi , vi) where ξi and vi
denote the local state and input sequences. The location of agent i is
given by yi � Cξi and the set of its neighbors is denoted by Ai . The
linear dynamics of each agent over a control horizon is represented by
the constraints Ei wi � bi . In order to enforce a formation between agents i
and j the quadratic cost function ‖C(ξi−ξ j)−di j ‖2 is usedwhere di j is the
target relative distance between them (refer to [136] for details). Hence,
the formation control problem is formulated as the following constrained
minimization:

minimize
m∑

i�1

λi
2

∑
j∈Ai

‖C(ξi − ξ j) − di j ‖2 + 1
2

m∑
i�1

w>i Qi wi (7.5a)

subject to Ei wi � bi , wi ∈ Wi , i � 1, . . . ,m (7.5b)

This problem can be easily cast in the form of (7.1) by setting f equal to
the first term, gi equal to the quadratic local cost, while hi ◦ Li captures
the dynamics and input and state constraints (see Section 7.6 for more
details). Therefore, the objective is to enforce a formation between agents
by solving this optimization problem in presence of communication de-
lays by allowing the agents to use outdated information. Notice that in
this case the coupling between agents is enforced only through f . This
special case of (7.1) is studied in §7.4.

7.1.2 Main contributions
• To the best of our knowledge this is the first work that considers the
delay described in (7.3) in a message-passing model for primal-dual al-
gorithms. Unlike primal methods (gradient or proximal-gradient), the
proposed algorithms are applicable to problems with complex structures
as in (7.1) without the need to solve inner loops or to invert matrices.
• The analysis of [20, 161, 184] rely on the use of the cost as the Lyapunov
function. In contrast,we show that quasi-Fejérmonotonicity is an effective
tool in the analysis of bounded delays in our setting. While this paper fo-
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cuses on two particular primal-dual algorithms, a similar analysis should
be applicable to others such as those proposed in [50, 31, 62, 96, 95, 98].
• Two primal-dual algorithms are presented: (i) when the coupling be-
tween agents is enforced only through f , the algorithm of [53, 170] is
considered (cf. §7.4), (ii) when the coupling is through f and the linear
term, a newmodified algorithm is developed (cf. §7.5). In addition, linear
convergence rates are established with explicit convergence factors.
• In §7.5.2 an asynchronous protocol is considered; at every iteration
agents are activated at random, and independently from one another,
while performing their updates using outdated information. In practice,
random activation can model the discrepancies in the speed of different
agents.

7.2 Problem setup
Throughout this chapter the primal and dual vectors, denoted x and u,
are assumed to be composed of m blocks as follows

x � (x1 , . . . , xm) ∈ �n , u � (u1 , . . . , um) ∈ �r ,

where xi ∈ �ni and ui ∈ �ri . Moreover, we denote the stacked primal and
dual variable as z � (x , u).

Consider a linear mapping L : �n → �r that is partitioned as follows:

L �
©«

L11 · · · L1m
...

. . .
...

Lm1 · · · Lmm

ª®®¬
, (7.6)

where Li j : �ni → �r j . Furthermore, the i-th (block) row of L is denoted
by Li• : �n → �ri and the i-th (block) column by L•i : �ni → �r , i.e.,

L �
©«

L1•

...
Lm•

ª®®¬
�

(
L•1 · · · L•m

)
.

The following holds

〈Lx , u〉 �
m∑

i�1
〈Li• x , ui〉 �

m∑
i�1
〈xi , L>•i u〉. (7.7)
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Consider the structured optimization problem (7.1) where the linear
mapping Ni has been replaced by Li• defined above in order to clarify the
structure of the mapping:

minimize
x∈�n

f (x) +
m∑

i�1

(
gi(xi) + hi(Li• x)) . (7.8)

The cost functions gi and hi ◦ Li• are private functions belonging to agent
i. The coupling between agents is through the smooth term f and the
linear term Li• x. An agent i is assumed to have access to the information
required for its computation, be it outdated, cf. Algorithms 7.1 and 7.2.

Let the following assumptions hold

Assumption 7.II.

(i) For i � 1, . . . ,m, hi : �ri → � is proper closed convex function, and
Li• : �n → �ri is a linear mapping.

(ii) (strong convexity) For i � 1, . . . ,m, gi : �ni → � is proper closed
µi

g-strongly convex for some µi
g > 0.

(iii) f : �n → � is convex, continuously differentiable, and for some
β ∈ [0,∞), ∇ f is β-Lipschitz continuous:

‖∇ f (x) − ∇ f (x′)‖ ≤ β‖x − x′‖ , ∀x , x′ ∈ �n .

(iv) For every i � 1, . . . ,m there exists a nonnegative constant β̄i such
that for all x , x′ ∈ �n satisfying xi � x′i :

‖∇i f (x) − ∇i f (x′)‖ ≤ β̄i ‖x − x′‖. (7.9)

(v) The set of solutions to (7.8) is nonempty. Moreover, there exists
xi ∈ ri dom gi , for i � 1, . . . ,m such that L j• x ∈ ri dom h j , for
j � 1, . . . ,m.

Assumption 7.II(iv) quantifies the strength of the coupling (through
f ) between agents [20, §7.5]. In particular, if f is separable, i.e., f (x) �∑m

i�1 fi(xi), then there is no coupling and β̄i � 0.
Problem (7.8) can be compactly represented as

minimize
x∈�n

f (x) + g(x) + h(Lx),
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where g(x) � ∑m
i�1 gi(xi), h(u) � ∑m

i�1 hi(ui), and L is as in (7.6). The dual
problem is given by

minimize
u∈�r

(g + f )∗(−L>u) + h∗(u).

ByAssumption 7.II(ii) the set of solutions to (7.8) is nonempty andunique.
Under the constraint qualification of Assumption 7.II(v), the set of solu-
tions to the dual problem is nonempty (not necessarily a singleton) and
the duality gap is zero [143, Cor. 31.2.1]. Furthermore, x? is a primal
solution and u? is a dual solution if and only if the pair (x?, u?) satisfies{

0 ∈ ∂g(x?) + ∇ f (x?) + L>u?,
0 ∈ ∂h∗(u?) − Lx?. (7.10)

Such a point is called a primal-dual solution and the set of all primal-dual
solutions is denoted by S.

For each agent i ∈ {1, . . . ,m} define positive stepsizes γi , σi associated
with the primal and the dual variables, respectively. Let us also define
the following parameters

β̄ B
(
β̄1 , . . . , β̄m

)
,

Γ B blkdiag
(
γ1In1 , . . . , γmInm

)
,

Σ B blkdiag (σ1Ir1 , . . . , σmIrm ),
D � blkdiag(Γ−1 ,Σ−1). (7.11)

The algorithm of Vũ and Condat [170, 53] for solving (7.8) is given by
the following updates for agent i at iteration k:

xk+1
i � proxγi gi

(
xk

i − γiL>•i u
k − γi∇i f (xk)

)
(7.12a)

uk+1
i � proxσi h∗i

(
uk

i + σiLi•(2xk+1 − xk)
)
. (7.12b)

In a synchronous implementation of the algorithm, each agent requires
the latest variables xk , xk+1 and uk in the above updates, which may
not be available due to communication delays. In the case when L is
block-diagonal the coupling between agents is enforced only through the
smooth function f (in (7.12) agent i requires the primal variables that are
required for computing ∇i f ). We refer to this type of coupling as partial
coupling. In Section 7.4 the updates in (7.12) are considered for the case of
partial coupling (cf. Alg. 7.2).
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More generally when L is not block-diagonal, the coupling between
agents is enacted through the linear mapping L (the linear operations L>

•i
and Li• in (7.12b) require additional communication between agents) and
possibly the smooth function f . We refer to this type of coupling as total
coupling. This case is considered in Section 7.5 where an Arrow-Hurwicz-
Uzawa type [8] (referred hereafter as AHU-type) primal-dual algorithm is
proposed in place of (7.12). The synchronous iterations of the AHU-type
algorithm for agent i at iteration k is given by:

xk+1
i � proxγi gi

(
xk

i − γiL>•i u
k − γi∇i f (xk)

)
(7.13a)

uk+1
i � proxσi h∗i

(
uk

i + σiLi• xk
)
. (7.13b)

Differently from (7.12), in the dual update linear operator is applied to
xk in place of 2xk+1 − xk . When operating under the bounded delay as-
sumption, the AHU-type primal-dual algorithm, (7.13), allows for larger
stepsizes compared to (7.12).

It is worth noting that (7.13) can be seen as a forward-backward iter-
ation:

zk+1
� (D + T2)−1(D − T1)zk ,

where T2 � (∂g , ∂h∗), T1 : (x , u) 7→ (∇ f (x)+ L>u ,−Lx), and D as defined
in (7.11). Even in the synchronous case this algorithm is not in gen-
eral convergent. The convergence may be established when g and h∗ are
strongly convex [43, Assumption A]. Moreover, when g is the indicator
of a set and h is the support of a set, the AHU-type algorithm resem-
bles another primal-dual AHU-type algorithm considered in [123, 80] for
solving saddle-point problems.

7.3 Notation and preliminary results
This section is devoted to establishing some preliminary results and no-
tation.
Lemma 7.1. Let q : �n → � be a proper closed µ-convex function for some
µ ≥ 0. For all r ∈ �n , ω ∈ �n and ωρ B proxρq(ω) the following holds

q(r) − q(ωρ) ≥ 1
ρ 〈ω − ωρ , r − ωρ〉 + µ

2 ‖r − ωρ‖2. (7.14)

Proof. The inequality follows immediately from the definition of strong
convexity and the characterization of proximalmapping [13, Prop. 16.44].
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For all a , b , c ∈ �n and all positive definite matrices V ∈ �n×n the
following elementary equality holds.

2〈a − b , c − b〉V � ‖a − b‖2V + ‖c − b‖2V − ‖a − c‖2V . (7.15)

We also make use (1.8) with V � εIn :

〈x , y〉 ≤ ε
2 ‖x‖2 + 1

2ε ‖y‖2 , ∀x , y ∈ �n , ε > 0. (7.16)

Lemma 7.2 provides a basic inequality which is crucial in our analysis.
Refer to [20, §7.5] and [184, Lem. 4] for the proof.

Lemma 7.2. Let Assumption 7.I hold. Consider a vector wk � (wk
1 , . . . ,w

k
m)

and its outdated version wk[i], cf. (7.3). Then, the following inequality holds

‖wk − wk[i]‖ ≤
k−1∑

τ�[k−B]+
‖wτ+1 − wτ‖. (7.17)

Let l and d be two nonnegative scalars. For a given sequence (wt)t∈�
we define the following for simplicity of notation:

Sd
l (wt)t≤k B

k−d∑
τ�[k−B+1−l]+

‖wτ+1 − wτ‖2.

Summing Sd
l (wt)t≤k over k from 0 to p > 0 and noting that each term is

repeated at most B + l − d times we obtain:

p∑
k�0

Sd
l (wt)t≤k ≤ (B + l − d)

p−d∑
k�[1−B−l]+

‖wk+1 − wk ‖2

≤ (B + l − d)
p∑

k�0
‖wk+1 − wk ‖2. (7.18)

This inequality will be used in the convergence analysis.

Lemma 7.3. Suppose that µi
h , µ

i
g > 0, i � 1, . . . ,m, and in the case of Lem.

7.3(i) let Assumption 7.II(iv) hold. Then, the following hold for any positive
constants ε1, ε2, ε3, nonnegative integer q and generic vectors v � (v1 , . . . , vm),
y � (y1 , . . . , ym) with vi ∈ �ni and yi ∈ �ri :

(i)
∑m

i�1〈∇i f (xk[i])−∇i f (xk), x?i −vi〉≤ ε1
2 ‖v−x?‖2Mg

+
B

2ε1
‖ β̄‖2

M−1
g

S1
1(xt)t≤k
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(ii)
∑m

i�1〈L>•i
(
uk[i] − uk+q ) , x?i − vi〉≤ ε2

2 ‖v − x?‖2Mg
+

Cs(B+q)
2ε2

S1−q
1 (ut)t≤k

(iii)
∑m

i�1〈Li •(xk[i] − xk+q), yi − u?i 〉≤ ε3
2 ‖y − u?‖2Mh

+
Rs(B+q)

2ε3
S1−q

1 (xt)t≤k

where Rs, Cs are defined in (7.30), Mg ,Mh in (7.20) and (7.31a).
Proof. We provide the proof for the first inequality and omit the rest
noting that they are derived following a similar argument. Using the
Cauchy–Schwarz inequality we have

m∑
i�1
〈x?i − vi ,∇i f (xk [i]) − ∇i f (xk )〉 ≤

m∑
i�1
‖vi − x?i ‖‖∇i f (xk ) − ∇i f (xk [i])‖

(7.9)≤
m∑

i�1
β̄i ‖vi − x?i ‖‖xk − xk [i]‖

(7.17)≤
m∑

i�1
β̄i ‖vi − x?i ‖

( k−1∑
τ�[k−B]+

‖xτ+1 − xτ ‖
)

�

m∑
i�1

k−1∑
τ�[k−B]+

β̄i ‖vi − x?i ‖‖xτ+1 − xτ ‖

((7.16) with ε �
µi

g ε1
B ) ≤ 1

2

m∑
i�1

k−1∑
τ�[k−B]+

( µi
g ε1
B ‖vi− x?i ‖2+

β̄2
i B

µi
g ε1
‖xτ+1− xτ ‖2

)

≤ ε1
2 ‖v − x?‖2Mg

+
B

2ε1
‖ β̄‖2

M−1
g

k−1∑
τ�[k−B]+

‖xτ+1 − xτ ‖2 ,

proving the claim.

7.4 The case of partial coupling
Throughout this section we consider the optimization problem (7.8) with
partial coupling (when L has a block-diagonal structure). In this case, the
coupling between agents is enacted only through the smooth function f
(and not through L). The example of formation control in Section 7.1.1
can be cast in this form.

Under this setting problem (7.8) becomes

minimize
x∈�n

f (x) +
m∑

i�1

(
gi(xi) + hi(Lii xi)

)
,

where Lii is the i-th diagonal block of L, see (7.6). In order to solve this
problem with the iterates in (7.12), agent i must receive those x j ’s that
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are required for the computation of ∇i f and all other operations are local.
Let us define two sets of indices: those that are required to send their
variables to i:

N in
i B { j | ∇i f depends on x j},

and those that i must send xi to asNout
i B { j | i ∈ N in

j }.
Algorithm 7.1 summarizes the proposed scheme. At every iteration

each agent i performs the updates described in (7.12) using the last infor-
mation it has received from agents j ∈ N in

i . It then transmits the updated
xk+1

i to the agents that require it (possibly with different delay). Note that
xk[i]was defined as the outdated version of the full vector xk for simplic-
ity of notation, and in practical implementation it would only involve the
coordinates that are required for the computation of ∇i f .

Algorithm 7.1 Vũ-Condat algorithm with bounded delays

Initialize: x0
i ∈ �ni , u0

i ∈ �ri for i ∈ {1, . . . ,m}.
For k � 0, 1, . . . do

For each agent i � 1, . . . ,m do
% Local updates

perform the local updates using the last received information, i.e., the locally

stored vector xk[i] as defined in (7.3):
1: xk+1

i � proxγi gi

(
xk

i − γiL>ii u
k
i − γi∇i f (xk[i])

)
2: uk+1

i � proxσi h∗i

(
uk

i + σiLii(2xk+1
i − xk

i )
)

% Broadcasting to neighbors

3: send xk+1
i to all j ∈ Nout

i (possibly with different delays)

As shown in Theorem 7.4, for small enough stepsizes the generated
sequence converges to a primal-dual solution under the bounded delay
assumption, and provided that functions gi are strongly convex. Such
needed requirements are summarized below:
Assumption 7.III. (stepsize condition) For i � 1, . . . ,m, the stepsizes
σi , γi > 0 satisfy the following assumption:

γi <
1

σi ‖Lii ‖2 + β + B2

2 ‖ β̄‖2M−1
g

, (7.19)
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where
Mg � blkdiag

(
µ1

g In1 , . . . , µ
m
g Inm

)
. (7.20)

According to Assumption 7.III a one time global communication of
‖ β̄‖M−1

g
and β is required when initiating the algorithm.

According to (7.19) as the upper bound on delay, B, and coupling
constants β̄i (as defined in (7.9)) increase, smaller stepsizes should be
used. This is intuitive given that in either case the agents have a lower
confidence in the currently stored vectors and thus should take smaller
steps. Moreover, the higher the modulus of strong convexity, the larger
steps agents are allowed to take, countering the effect of the delay.

In the case when the smooth term is separable, the problem is decou-
pled (β̄i � 0 for all i) and the stepsize condition for each agent does not
depend on the delay. The same stepsize condition would be required in
the case of synchronous updates (B � 0). Note that, in this case (7.19)
is still more conservative than the classical results which would require
γi < 1/(σi ‖Lii ‖2 + β/2) (the difference being a β appearing in place of
β/2).

Before proceeding with the convergence results, let us define the fol-
lowing

P B
(
Γ−1 −L>
−L Σ−1

)
. (7.21)

Noting that Σ, Γ are positive definite, and using Schur complement we
have that P is positive definite if and only if Γ−1−L>ΣL is positive definite,
a condition that holds if (7.19) is satisfied (since L has a block-diagonal
structure).

Our analysis in Theorem 7.4 relies on showing that the generated
sequence is quasi-Fejér monotone with respect to the set of primal-dual
solutions in the space equipped with the inner product 〈·, ·〉P . Notice that
without communication delays (B ≡ 0), this analysis leads to the usual
Fejér monotonicity of the sequence. The use of outdated information
introduces additional error terms that are shown to be tolerated by the
algorithm if the stepsizes are small enough and the functions gi are
strongly convex.

Theorem 7.4. Suppose that Assumptions 7.I–7.III are satisfied. Then, the se-
quence (zk)k∈� � (xk , uk)k∈� generated by Algorithm 7.1 is P-quasi-Fejér
monotone with respect to S. Furthermore, (zk)k∈� converges to some z? ∈ S.
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Proof. In order to establish convergence we first derive the following in-
termediate result.

Lemma 7.5. Suppose that Assumption 7.I, 7.II and 7.II(ii) are satisfied. Con-
sider the sequence generated by Algorithm 7.1. Then, for any (x?, u?) ∈ S the
following hold:

‖xk+1 − x?‖22Mg+Γ−1 − ‖xk − x?‖2
Γ−1 + ‖xk − xk+1‖2

Γ−1−βI

≤ 2
m∑

i�1
〈∇i f (xk[i]) − ∇i f (xk), x?i − xk+1

i 〉 + 2〈L>(uk − u?), x? − xk+1〉,
(7.22)

and

‖uk+1−u?‖2
Σ−1−‖uk−u?‖2

Σ−1+‖uk−uk+1‖2
Σ−1≤2〈L(2xk+1−xk−x?), uk+1−u?〉.

(7.23)

Proof. To derive the first inequality use (7.14) with q � gi , r � x?i , ωρ �

xk+1
i and ω � xk

i − γiL>ii u
k[i] − γi∇i f (xk[i]) (using the update for the

primal variable xk+1
i in the algorithm):

gi(x?i ) − gi(xk+1
i ) ≥ 〈∇i f (xk[i]) + L>ii u

k
i , x

k+1
i − x?i 〉

+
1
γi
〈xk

i − xk+1
i , x?i − xk+1

i 〉 +
µi

g
2 ‖x?i − xk+1

i ‖2. (7.24)

Let f ? B f (x?), and f k B f (xk). By convexity of f :

f k − f ? ≤ 〈∇ f (xk), xk − x?〉,
and by Lipschitz continuity of ∇ f we have

f k+1 ≤ f k
+ 〈∇ f (xk), xk+1 − xk〉 + β

2 ‖xk+1 − xk ‖2.
Summing the two yields

f k+1− f ? ≤ 〈∇ f (xk), xk+1 − x?〉 + β
2 ‖xk+1 − xk ‖2. (7.25)

For notational conveniencewe use F B f +g and F? B F(x?), Fk B F(xk).
Noting that g is separable, sum (7.24) over i, add (7.25) anduse (7.15) (with
V � Γ−1, a � xk , b � xk+1, c � x?) to obtain

F? − Fk+1 ≥ 1
2 ‖xk − xk+1‖2

Γ−1−βI +
1
2 ‖xk+1 − x?‖2

Γ−1+Mg
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− 1
2 ‖xk − x?‖2

Γ−1 +

m∑
i�1
〈−L>ii u

k
i , x

?
i − xk+1

i 〉

+

m∑
i�1
〈∇i f (xk) − ∇i f (xk[i]), x?i − xk+1

i 〉.

On the other hand by convexity of f , strong convexity of gi and (7.10) we
have

Fk+1 − F? ≥ 〈−L>u?, xk+1 − x?〉 + 1
2 ‖xk+1 − x?‖2Mg

.

Summing the last two inequalities, multiplying by 2 and a simple rear-
rangement yields (7.22).

For the second inequality, consider the update for uk+1
i and use (7.14):

h∗i (u?i ) − h∗i (uk+1
i ) ≥ 〈Lii

(
2xk+1

i − xk
i

)
, u?i − uk+1

i 〉
+

1
σi
〈uk

i − uk+1
i , u?i − uk+1

i 〉. (7.26)

Furthermore, by convexity of hi and using (7.10):

h∗(uk+1) − h∗(u?) ≥ 〈Lx?, uk+1 − u?〉.
Sum (7.26) over all i, add the last inequality, and use (7.15) to derive the
inequality.

Adding (7.22) and (7.23) we obtain

‖xk+1 − x?‖22Mg+Γ−1 − ‖xk − x?‖2
Γ−1 + ‖xk − xk+1‖2

Γ−1

+ ‖uk+1 − u?‖2
Σ−1 − ‖uk − u?‖2

Σ−1 + ‖uk − uk+1‖2
Σ−1

≤ 2
m∑

i�1
〈x?i − xk+1

i ,∇i f (xk[i]) − ∇i f (xk)〉 + β‖xk − xk+1‖2

+ 2〈L(2xk+1 − xk − x?), uk+1 − u?〉 + 2〈L>(uk − u?), x? − xk+1〉.
(7.27)

The last two inner products can be rearranged as

2〈L(xk+1−xk),uk+1−uk〉−2〈L(xk−x?),uk−u?〉+2〈L(xk+1−x?),uk+1−u?〉.
Replacing this term and using Lemma 7.3(i) (with ε1 � 2 and v � xk+1)
in (7.27) yields (with P defined in (7.21)):

‖zk+1 − z?‖2P − ‖zk − z?‖2P + ‖zk+1 − zk ‖2P
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≤ β‖xk − xk+1‖2 + B
2 ‖ β̄‖2M−1

g
S1

1(xt)t≤k . (7.28)

Sum inequality (7.28) over k from 0 to p > 0 to obtain:

‖zp+1 − z?‖2P − ‖z0 − z?‖2P +

p∑
k�0
‖zk+1 − zk ‖2P

≤ β
p∑

k�0
‖xk − xk+1‖2 + B

2 ‖ β̄‖2M−1
g

p∑
k�0

S1
1(xt)t≤k . (7.29)

Let us define

P̃ �

(
Γ−1 − B2

2 ‖ β̄‖2M−1
g
− β −L>

−L Σ−1

)
.

Since Σ is positive definite (σi > 0), by Schur complement P̃ is positive
definite provided that (7.19) holds (recall that L has a block-diagonal
structure).

Use (7.18) (with l � d � 1) in (7.29) to derive

‖zp+1 − z?‖2P +

p∑
k�0
‖zk+1 − zk ‖2

P̃
≤ ‖z0 − z?‖2P .

Therefore, by letting p to infinitywe obtain
∑∞

k�0 ‖zk+1−zk ‖2
P̃
< ∞. Hence,

using (7.18) for the right-hand side in (7.28) we have
∞∑

k�0

(
B
2 ‖ β̄‖2M−1

g
S1

1(xt)t≤k + β‖xk − xk+1‖2
)
< ∞.

Therefore, in view of (7.28) we conclude that (zk)k∈� is P-quasi-Fejér
monotone with respect to S.

Consequently, the sequence (xk , uk)k∈� is bounded [46, Lem. 3.1]. Let
(xc , uc) be a cluster point of (xk , uk)k∈�, i.e., (xkn , ukn ) → (xc , uc). Using
Lemma 7.2 also xkn [i] → xc . Noting that the proximal and linear maps
as well as ∇ f are continuous, for all i � 1, . . . ,m we have

xc
i �proxγi gi

(
xc

i − γi∇i f (xc) − γiL>ii u
c
i

)
uc

i �proxσi h?i

(
uc

i + σiLii xc
i

)
,

which implies (xc , uc) ∈ S. The convergence of the sequence follows [46,
Thm. 3.8].
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In the case of total coupling (when L is not block-diagonal), it is no
longer possible to establish quasi-Fejér monotonicity of the Vũ-Condat
generated sequence in the space equipped with 〈·, ·〉P . This is because the
coupling linear mapping L, is operating on outdated vectors. In the next
section we propose an AHU-type primal-dual algorithm that is better
suited for problems with total coupling.

7.5 The case of total coupling

In this section we consider problem (7.8) with total coupling. That is, we
assume that the coupling between agents is enforced through the linear
maps (L is not block-diagonal), and possibly through the smooth term f .

7.5.1 An AHU-type primal-dual algorithm

We consider the primal-dual algorithm (7.13). Compared to (7.12), in the
dual update the linearmap Li• operates on xk[i] in place of 2xk+1[i]−xk[i].
This modification results in the possibility of using larger stepsizes since
the terms 2xk+1[i] − xk[i]would introduce additional sources of error.

Let us define the following two sets of indices:

Mp
i B { j | L ji , 0}, Md

i B { j | Li j , 0},

where 0 denotes a zero matrix of appropriate dimensions. In Algorithm
7.2, due to the additional coupling through the linear maps, the primal
vector of agent i must be transmitted to all j ∈ Mp

i ∪Nout
i while the dual

vector is to be transmitted to all j ∈ Md
i . Notice that the outdated primal

and dual vectors xk[i] and uk[i], need not have the same delay pattern
and are arbitrary as long as Assumption 7.I is satisfied, i.e., agent i may
use the primal vector xk1

j and the dual vector uk2
j that were the variables

of agent j at times k1 and k2.
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Algorithm7.2AnAHU-typeprimal-dual algorithmwithboundeddelays

Initialize: x0
i ∈ �ni , u0

i ∈ �ri for i ∈ {1, . . . ,m}.
For k � 0, 1, . . . do

For each agent i � 1, . . . ,m do
% Local updates

perform the local updates using the last received information, i.e., the locally

stored vectors xk[i] and uk[i] as defined in (7.3):
1: xk+1

i � proxγi gi

(
xk

i − γiL>•i u
k[i] − γi∇i f (xk[i])

)
2: uk+1

i � proxσi h?i

(
uk

i + σiLi• xk[i]
)

% Broadcasting to neighbors

3: send xk+1
i to all j ∈ Nout

i ∪ Mp
i , and uk+1

i to all j ∈ Md
i

(possibly with different delays)

In Theorem 7.6 convergence is established for Algorithm 7.2 when the
stepsizes are small enough, under the assumption that the functions gi
are strongly convex and hi are continuously differentiable with Lipschitz
continuous gradient. Note that under this extra assumption the set of
primal-dual solutions is a singleton, S � {z?}. We summarize these
requirements below:

Assumption 7.IV. For all i � 1, . . . ,m:

(i) (Lipschitz continuity) hi is continuously differentiable, and ∇hi is
1
µi

h
-Lipschitz continuous for some µi

h > 0. Equivalently, h∗i is µi
h-

strongly convex.

(ii) (stepsize condition) The stepsizes σi , γi > 0 satisfy the following
inequalities

σi <
1

Cs(B + 1)2 , γi <
1

β + 1
2 Rs(B + 1)2 + B2‖ β̄‖2

M−1
g

,

where

Rs B
m∑

i�1

1
µi

h
‖Li•‖2 , Cs B

m∑
i�1

1
µi

g
‖L>

•i ‖2. (7.30)
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Throughout this sectionwemake use of the following positive definite
matrices.

Mh B blkdiag(µ1
h Ir1 , . . . , µ

m
h Irm ), (7.31a)

M B blkdiag(Mg ,Mh). (7.31b)

Note that according to Assumption 7.IV(ii) a one time global communi-
cation of Rs, Cs, β and ‖ β̄‖M−1

g
is required.

The stepsize condition in Assumption 7.IV(ii) is more stringent than
the condition derived in Section 7.4 for the case of partial coupling. This
is due to the fact that Li• and L•i are operating on delayed vectors. It is
shown in Theorem 7.6 that for the case of total coupling with AHU-type
algorithm quasi-Fejér monotonicity holds in the space equipped with
〈·, ·〉D (with D defined as in (7.11)).

We proceed with the convergence results for Algorithm 7.2.

Theorem 7.6. Suppose that Assumptions 7.I, 7.II and 7.IV are satisfied. Then,
the sequence (zk)k∈� � (xk , uk)k∈� generated by Algorithm 7.2 is D-quasi-Fejér
monotone with respect to S � {z?}, and converges to z?.

Proof. Theproof is similar to that of Theorem7.4. In this case, the presence
of coupling through the linearmaps results in additional error terms. First
we establish a key result for Algorithm 7.2.

Lemma 7.7. Suppose that Assumption 7.I, 7.II and 7.IV(i) are satisfied. Con-
sider the sequence generated by Algorithm 7.2. Then, for any (x?, u?) ∈ S the
following hold:

‖xk+1 − x?‖22Mg+Γ−1 − ‖xk − x?‖2
Γ−1 + ‖xk − xk+1‖2

Γ−1−βI

≤ 2
m∑

i�1
〈∇i f (xk[i]) − ∇i f (xk) + L>

•i (uk[i] − u?), x?i − xk+1
i 〉, (7.32)

‖uk+1 − u?‖22Mh+Σ−1 − ‖uk − u?‖2
Σ−1 + ‖uk − uk+1‖2

Σ−1

≤ 2
m∑

i�1
〈Li • xk[i], uk+1

i − u?i 〉 + 2〈Lx?, u? − uk+1〉. (7.33)

Proof. The proof of the lemma is similar to that of Lemma 7.5 and is
therefore omitted.
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Add (7.32) and (7.33), and rearrange the inner products using (7.7) to
derive (with D defined in (7.11))

‖zk+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − zk+1‖2D
− β‖xk − xk+1‖2 + ‖xk+1 − x?‖22Mg

+ ‖uk+1 − u?‖22Mh

≤ 2
m∑

i�1
〈∇i f (xk[i]) − ∇i f (xk) + L>

•i(uk[i] − uk+1), x?i − xk+1
i 〉

+ 2
m∑

i�1
〈Li•(xk[i] − xk+1), uk+1

i − u?i 〉 (7.34)

Using the inequalities in Lemma 7.3 with q � 1, ε1 � ε2 � 1, ε3 � 2,
v � xk+1 and y � uk+1 yields:

‖zk+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − zk+1‖2D
≤ B‖ β̄‖2

M−1
g

S1
1(xt)t≤k +

1
2 Rs(B + 1)S0

1(xt)t≤k

+ Cs(B + 1)S0
1(ut)t≤k + β‖xk − xk+1‖2. (7.35)

Sum over k from 0 to p > 0, to derive

‖zp+1 − z?‖2D − ‖z0 − z?‖2D +

p∑
k�0
‖zk − zk+1‖2D

≤ B‖ β̄‖2
M−1

g

p∑
k�0

S1
1(xt)t≤k +

Rs(B+1)
2

p∑
k�0

S0
1(xt)t≤k

+ β

p∑
k�0
‖xk − xk+1‖2 + Cs(B + 1)

p∑
k�0

S0
1(ut)t≤k . (7.36)

By repeated use of (7.18) in (7.36) we obtain

‖zp+1 − z?‖2D − ‖z0 − z?‖2D +

p∑
k�0
‖zk − zk+1‖2D

≤
(
B2‖ β̄‖2

M−1
g
+

1
2 Rs(B + 1)2 + β

) p∑
k�0
‖xk − xk+1‖2

+ Cs(B + 1)2
p∑

k�0
‖uk − uk+1‖2.
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If the stepsizes are small enough to satisfy Assumption 7.IV(ii), letting p
to infinity yields

∑∞
k�0 ‖zk+1 − zk ‖2 < ∞. Therefore, it follows from (7.35)

(using (7.18)) that (zk)k∈� is D-quasi-Fejér monotone with respect to S.
Arguing as in Theorem 7.4 completes the proof.

The next theorem provides a sufficient condition for the stepsizes
under which linear convergence is attained.

Theorem 7.8 (linear convergence). Suppose that Assumption 7.I, 7.II and
7.IV(i) are satisfied. Consider the sequence (zk)k∈� generated by Algorithm 7.2.
Let c be a positive scalar and set γi �

c
µi

g
, σi �

c
µi

h
for i � 1, . . . ,m. Let

µmin
g � min{µ1

g , . . . , µ
m
g }, µmin

h � min{µ1
h , . . . , µ

m
h }. Then, the following

linear convergence rate holds

‖zk − z?‖2D ≤
( 1

1+c

) k ‖z0 − z?‖2D ,

provided that c ≤ (1 + c2)
1

B+1 − 1 where

c2 � min



µmin
g

2B‖ β̄‖2
M−1

g
+ Rs(B + 1) + β ,

µmin
h

2Cs(B + 1)


.

Proof. In Theorem 7.6 the strong convexity assumption was leveraged to
counteract the error terms. In order to prove linear convergence we retain
some of the strong convexity terms. Using the inequalities of Lemma 7.3
with q � 1, ε1 � ε2 � 0.5, ε3 � 1, v � xk+1 and y � uk+1 in (7.34) yields

‖zk+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − zk+1‖2D
+ ‖xk+1 − x?‖2Mg

+ ‖uk+1 − u?‖2Mh

≤
(
2B‖ β̄‖2

M−1
g
+ Rs(B + 1)

)
S0

1(xt)t≤k

+ 2Cs(B + 1)S0
1(ut)t≤k + β‖xk − xk+1‖2. (7.37)

Note that one may set these constants differently and obtain a different
valid bound on the stepsizes.

Since we set γi �
c
µi

g
, σi �

c
µi

h
, we have D � blkdiag(Γ−1 ,Σ−1) �

1
c blkdiag(Mg ,Mh), which together with (7.37) yields

(1 + c)‖zk+1 − z?‖2D − ‖zk − z?‖2D ≤
(
2B‖ β̄‖2

M−1
g
+ Rs(B + 1) + β

)
S0

1(xt)t≤k
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+ 2Cs(B + 1)S0
1(ut)t≤k − ‖zk+1 − zk ‖2D ,

(7.38)

where we used the conservative bound β‖xk+1 − xk ‖2 ≤ βS0
1(xt)t≤k in

order to avoid algebraic difficulties. The result follows by multiplying
(7.38) by (1 + c)k and summing over k from 0 to p, see [12, Lem. 1].

7.5.2 Randomized variant
In this subsection we propose a randomized variant of Algorithm 7.2
where agents are activated randomly according to independent proba-
bilities, i.e., at every iteration several agents may be active. Unlike the
partially asynchronous protocol [20], in this scheme the agents are not re-
quired to perform at least one update in any interval of length B. In the

Algorithm 7.3 A randomized variant of Algorithm 7.2

Initialize: x0
i ∈ �ni , u0

i ∈ �ri for i ∈ {1, . . . ,m}.
For k � 0, 1, . . . do

each agent i � 1, . . . ,m is activated independantly with probability
pi > 0.
For active agents do
% Local updates

perform the local updates using the last received information, i.e., the locally

stored vectors xk[i] and uk[i] as defined in (7.3):
1: xk+1

i � proxγi gi

(
xk

i − γiL>•i u
k[i] − γi∇i f (xk[i])

)
2: uk+1

i � proxσi h?i

(
uk

i + σiLi• xk[i]
)

% Broadcasting to neighbors

3: send xk+1
i to all j ∈ Nout

i ∪ Mp
i , and uk+1

i to all j ∈ Md
i

(possibly with different delays)

randomized setting of Algorithm 7.3, the stepsize condition in Assump-
tion 7.IV(ii) is replaced by the following stepsize condition.

Assumption 7.V. (stepsize condition) For all i � 1, . . . ,m, independent
probabilities pi > 0 and stepsizes σi , γi > 0 satisfy the following inequal-
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ities

σi <
1

2Cs
(
B2pi + 1

) , γi <
1

β + Rs
(
B2pi + 1

)
+ ‖ β̄‖2

M−1
g

B2pi
.

Notice that compared to the non-randomized version, according to
Assumption 7.V, an agent is allowed to take larger steps if its probability
of activation is smaller.

Theorem 7.9. Suppose that Assumption 7.I, 7.II, 7.IV(i) and 7.V are satisfied.
Then the sequence (zk)k∈� � (xk , uk)k∈� generated by Algorithm 7.3 converges
almost surely to z?.

Proof. Let z̄k+1
i � (x̄k+1

i , ūk+1
i ) denote the updated vector belonging to

agent i if that agent was to perform an update at iteration k. That is,
in Algorithm 7.3, zk+1

i � z̄k+1
i if agent i is activated and zk+1

i � zk
i if it

remains idle. Let us define the global vector z̄k+1 � (z̄k+1
1 , . . . , z̄k+1

m )which
corresponds to a deterministic update of all agents at iteration k. Using
Lemma 7.7 as in (7.34) we have

‖ z̄k+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − z̄k+1‖2D
− β‖xk − x̄k+1‖2 + ‖ x̄k+1 − x?‖22Mg

+ ‖ūk+1 − u?‖22Mh

≤ 2
m∑

i�1
〈∇i f (xk[i]) − ∇i f (xk) + L>

•i(uk[i] − ūk+1), x?i − x̄k+1
i 〉

+ 2
m∑

i�1
〈Li•(xk[i] − x̄k+1), ūk+1

i − u?i 〉 (7.39)

Using Lemma 7.3(ii) with q � 0, v � x̄k+1, and (7.16) (with ε � ε2µi
g for

each term in the summation) we have

m∑
i�1
〈L>

•i(uk[i] − uk
+ uk − ūk+1), x?i − x̄k+1

i 〉

≤ ε2
2 ‖x? − x̄k+1‖2Mg

+
BCs
2ε2

S1
1(ut)t≤k

+

m∑
i�1

(
‖L>

•i ‖2 1
2ε2µi

g
‖uk − ūk+1‖2 + ε2µi

g
2 ‖x?i − x̄k+1

i ‖2
)

� ε2‖x? − x̄k+1‖2Mg
+

Cs
2ε2
‖ūk+1 − uk ‖2 + BCs

2ε2
S1

1(ut)t≤k . (7.40)
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Similarly, using Lemma 7.3(iii) with q � 0, y � ūk+1 and (7.16) (with
ε � ε3µi

h for each term in the summation) we obtain:
m∑

i�1
〈Li•(xk[i] − x̄k+1), ūk+1

i − u?i 〉 ≤ ε3‖ūk+1 − u?‖2Mh
+

Rs
2ε3
‖xk − x̄k+1‖2

+
BRs
2ε3

S1
1(xt)t≤k . (7.41)

Using (7.40), (7.41) with ε2 � 0.5 and ε3 � 1 together with Lemma 7.3(i)
with ε1 � 1, v � x̄k+1 in (7.39) yields

‖ z̄k+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − z̄k+1‖2D
≤ aS1

1(xt)t≤k + bS1
1(ut)t≤k +

(
β + Rs

) ‖xk − x̄k+1‖2 + 2Cs ‖ūk+1 − uk ‖2 ,
(7.42)

where a B
(
BRs + B‖ β̄‖2

M−1
g

)
and b B 2BCs .

Let Ek[·] denote the expectation conditioned on the knowledge until
time k. Moreover, for notational convenience let us define the diagonal
probability matrix

Π �blkdiag(p1In1 , . . . , pmInm , p1Ir1 , . . . , pmIrm ),
Di �blkdiag(γ−1

i Iniσ
−1
i Iri ),

zk
i � (xk

i , u
k
i ) and z?i � (x?i , u?i ). Consequently, using the fact that D is

diagonal we have

Ek
{‖zk+1 − z?‖2

Π−1D

}
� Ek

[
m∑

i�1
p−1

i ‖zk+1
i − z?i ‖2Di

]

�

m∑
i�1

p−1
i

(
pi ‖ z̄k+1

i − z?i ‖2Di
+ (1 − pi)‖zk

i − z?i ‖2Di

)

�

m∑
i�1

(
‖ z̄k+1

i − z?i ‖2Di
+
(1−pi )

pi
‖zk

i − z?i ‖2Di

)

� ‖ z̄k+1 − z?‖2D + ‖zk − z?‖2
Π−1D − ‖zk − z?‖2D .

(7.43)

Therefore, using (7.42) we obtain

Ek
{‖zk+1 − z?‖2

Π−1D

} ≤ ‖zk − z?‖2
Π−1D − ‖zk − z̄k+1‖2D + 2Cs ‖ūk+1 − uk ‖2
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+ aS1
1(xt)t≤k + bS1

1(ut)t≤k +
(
β + Rs

) ‖xk − x̄k+1‖2.
(7.44)

Let us define Xk B
∑k−1
τ�[k−B]+ (τ − (k − B) + 1)‖xτ+1 − xτ‖2 and Uk B∑k−1

τ�[k−B]+ (τ − (k − B) + 1)‖uτ+1 − uτ‖2. It is easy to see that

Xk+1
� Xk −

k−1∑
τ�[k−B]+

‖xτ+1 − xτ‖2 + B‖xk − xk+1‖2.

Arguing as in (7.43) we have

Ek
{‖xk+1 − xk ‖2} �

m∑
i�1

pi ‖ x̄k+1
i − xk

i ‖2.

Therefore

Ek
{
Xk+1} ≤ Xk −

k−1∑
τ�[k−B]+

‖xτ+1 − xτ‖2 + B
m∑

i�1
pi ‖ x̄k+1

i − xk
i ‖2 , (7.45)

Similarly for the dual variables we have

Ek
{
Uk+1} ≤ Uk −

k−1∑
τ�[k−B]+

‖uτ+1 − uτ‖2 + B
m∑

i�1
pi ‖ūk+1

i − uk
i ‖2. (7.46)

Consider the following Lyapunov function:

vk B ‖zk − z?‖2
Π−1D + aXk

+ bUk .

Then using (7.44), (7.45) and (7.46) we obtain

Ek
{

vk+1} ≤ vk − ‖zk − z̄k+1‖2D
+ aB

m∑
i�1

pi ‖ x̄k+1
i − xk

i ‖2 + bB
m∑

i�1
pi ‖ūk+1

i − uk
i ‖2

+
(
β + Rs

) ‖xk − x̄k+1‖2 + 2Cs ‖ūk+1 − uk ‖2.
Therefore, if Assumption 7.V holds then there exists c̄ > 0 such that

Ek
{

vk+1} ≤ vk − c̄‖zk − z̄k+1‖2.
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Since ‖zk − zk+1‖ ≤ ‖zk − z̄k+1‖, we conclude by the Robbins-Siegmund
lemma [142] that almost surely ‖zk − zk+1‖ converges to zero, and con-
sequently by Lemma 7.2 so does ‖zk − zk[i]‖. Moreover, as a second
consequence of the Robbins-Siegmund lemma we have that (vk)k∈� and
in particular ‖zk − z?‖Π−1D converges to some [0,∞)-valued variable. The
convergence result follows by standard arguments as in [22, Thm. 3] and
[51, Prop. 2.3] and using continuity of the proximal operator.

In the next theoremwe establish linear convergence for Algorithm 7.3
and provide an explicit convergence rate.

Theorem 7.10. Suppose that Assumption 7.I, 7.II and 7.IV(i) are satisfied.
Let c < min{p1 , . . . , pm} be a positive scalar and set γi �

1
(pi/c−1)µi

g
and

σi �
1

(pi/c−1)µi
h
for i � 1, . . . ,m. Moreover, let

δ1 �
1

2B‖ β̄‖2
M−1

g
+ 2BRs + 2Rs + β

min
i
{(pi − c)µi

g},

δ2 �
1

4Cs(1 + B) min
i
{(pi − c)µi

h}.

Suppose that c is such that the following inequality is satisfied (such c always
exist close enough to zero)

1
(1 − c)B + c ≤1 + min{δ1 , δ2}.

Then, the following holds for the sequence (zk)k∈� generated by Algorithm 7.3:

E{‖zk − z?‖2M} ≤ (1 − c)k ‖z0 − z?‖2M .
Proof. As in the deterministic case in Theorem 7.8, in order to show linear
convergencewe retain some of the strong convexity terms. Consider (7.39)
and use Lemma 7.3(i) with ε1 � 0.5, v � x̄k+1, (7.40) and (7.41) with
ε2 � 0.25, ε3 � 0.5 to derive:

‖ z̄k+1 − z?‖2D+M − ‖zk − z?‖2D + ‖ z̄k+1 − zk ‖2D
≤ 2B

(
‖ β̄‖2

M−1
g
+ Rs

)
S1

1(xt)t≤k + 4BCsS1
1(ut)t≤k

+ (2Rs + β)‖ x̄k+1 − xk ‖2 + 4Cs ‖ūk+1 − uk ‖2 , (7.47)
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where M B blkdiag(Mg ,Mh). Given the choice of stepsizes we have
D � blkdiag(Γ−1 ,Σ−1) � ( 1

cΠ − I
)
M. Using this and arguing as in (7.43)

we have:

Ek
{‖zk+1 − z?‖2M

}
� ‖ z̄k+1 − z?‖2ΠM + ‖zk − z?‖2M − ‖zk − z?‖2ΠM

� c‖ z̄k+1 − z?‖2D+M + ‖zk − z?‖2M − c‖zk − z?‖2D+M .

Combining this with (7.47) yields

Ek
{‖zk+1 − z?‖2M

}
≤ (1 − c)‖zk − z?‖2M − c‖ z̄k+1 − zk ‖2D

+ 2cB
(
‖ β̄‖2

M−1
g
+ Rs

)
S1

1(xt)t≤k + 4cBCsS1
1(ut)t≤k

+ c(2Rs + β)‖ x̄k+1 − xk ‖2 + 4cCs ‖ūk+1 − uk ‖2. (7.48)

Next, note that by definition of z̄k � (x̄k , ūk)we have

S1
1(xt)t≤k ≤

k−1∑
τ�[k−B]+

‖ x̄τ+1 − xτ‖2 ≤
k∑

τ�[k−B]+
‖ x̄τ+1 − xτ‖2 ,

and similarly for the dual vector. Using this in (7.48) yields:

Ek
{‖zk+1 − z?‖2M

}
≤ (1 − c)‖zk − z?‖2M − c‖ z̄k+1 − zk ‖2D

+ c
(
2B‖ β̄‖2

M−1
g
+ 2BRs + 2Rs + β

) k∑
τ�[k−B]+

‖ x̄τ+1 − xτ‖2

+ 4cCs(1 + B)
k∑

τ�[k−B]+
‖ūτ+1 − uτ‖2.

The result follows by taking total expectation from both sides, dividing
by (1 − c)k+1 and summing over k from 0 to p, see [12, Lem. 1].

Note that owing to the diagonalmetric used in the proofs of Theorems
7.9 and 7.10, the independent activation pattern in Algorithm 7.3 can be
replaced with the more general random sweeping strategy as in [22, 95].
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7.6 Numerical simulations

In this section we revisit the formation control example defined in (7.5).
For the dynamics of each agent/robotwe used themodel of [148]with ex-
act discretization of steplength ∆T � 1. The state and input cost matrices
and the constraints setsWi are as in Section 4.6.

Let Ĉ be a linear mapping such that Ĉwi � Cξi and Li• be such that
Li• w � (Ei wi , wi). Minimization (7.5) can be formulated as an instance
of (7.8) by setting f (w) � ∑m

i�1
λi
2

∑
j∈Ai
‖Ĉ(wi − w j) − di j ‖2, gi(wi) �

1
2 w>i Qi wi , hi(yi , vi) � δbi (yi)+ δWi (vi). Therefore, implementation of the
algorithms presented in this paper would only require simple operations
such as matrix-vector products, projections onto points and projections
onto setsWi (which are simple boxes).

In our simulations, horizon length 3 was used. The delays between
agents are randomly generated integers in the interval [0, B]. We consider
two numerical simulations. In the first onewe set m � 5, B � 1 with initial
polygon configuration and enforce an arrow formation by appropriate se-
lection of di j . The interested reader may refer to Section 4.6 for additional
details of the formation setup. As discussed in the introduction, mini-
mization (7.5) is an example of partial coupling and Algorithm 7.1 is the
suitable choice. In the first numerical experiment, depicted in Figure 7.2
(left), we use the theoretical stepsize bound in (7.19). For comparison, we
also considered the dual decomposition approach of [136] that is based
on the subgradient method (although this algorithm is not studied with
communication delays). For comparison, Algorithms 7.2 and 7.3 are also
plotted even though they are not designed for this type of problem. Al-
gorithm 7.3 is used with probabilities of activation pi set to 0.2 and 0.8.
It is observed that the convergence rate of the proposed algorithms are
linear.

In the second numerical experiment, depicted in Figure 7.2 (right), we
considered a larger problemwith m � 50 and themaximumdelay B � 10.
We simulated the algorithms with nominal stepsizes. It is observed that
Algorithm 7.2 and the dual decomposition approach struggle to reach a
high precision. Interestingly, the randomized algorithm Algorithm 7.3 is
able to overcome this. Moreover, even with larger delays the algorithms
are convergent with nominal stepsizes while the theoretical stepsize may
become too small resulting in slow convergence in practice. Therefore, it
would be interesting to study if the stepsize conditions presented in this
paper can be relaxed for the special case when hi are indicator functions
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Figure 7.2: Comparison for the convergence of the algorithms for m � 5, B � 1
(left) and m � 50, B � 10 (right).

and gi are quadratic.

7.7 Conclusions
In this chapter we considered the application of primal-dual algorithms
for solving structured optimization problems over message-passing ar-
chitectures. The coupling between agents was classified as total and par-
tial coupling. For each case a separate algorithm was studied and it was
shown that the communication delay is tolerated provided that the step-
sizes are small enough, and that some strong convexity assumption holds.
In addition, in the case of total coupling a variant of the proposed algo-
rithm was studied that allows random and independent activation of the
agents. Future work consists of extending the convergence analysis to
the partially asynchronous framework and exploring different Lyapunov
functions that allow for nonconvex cost functions.
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Chapter 8

Block-coordinate and incremental
aggregated proximal gradient methods

This chapter is based on:
P. Latafat, A. Themelis and P. Patrinos. Block-coordinate and incremen-

tal aggregated proximal gradient methods for nonsmooth nonconvex problems.
arXiv:1906.10053 (submitted 2019).

8.1 Introduction
This chapter addresses block-coordinate (BC) proximal gradientmethods
for problems of the form

minimize
x�(x1 ,...,xN )∈�

∑
i ni
Φ(x) B F(x) + G(x), where F(x) B 1

N
∑N

i�1 fi(xi),
(8.1)

in the following setting.

Assumption 8.I (problem setting). In problem (8.1) the following hold:

a1 function fi is L fi -smooth (Lipschitz differentiable with modulus L fi ),
i ∈ [N];

a2 function G is proper and lower semicontinuous (lsc);

a3 a solution exists: argminΦ , ∅.
Unlike typical cases analyzed in the literature where G is separable

[163, 166, 125, 15, 25, 139, 106, 44, 85, 179], we here consider the comple-
mentary case where it is only the smooth term F that is assumed to be
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separable. The main challenge in analyzing convergence of BC schemes
for (8.1) especially in the nonconvex setting is the fact that even in expecta-
tion the cost does not necessarily decrease along the trajectories. Instead,
we demonstrate that the forward-backward envelope (FBE) [132, 158] is
a suitable Lyapunov function for such problems.

Several BC-type algorithms that allow for a nonseparable nonsmooth
term have been considered in the literature, however, all in convex set-
tings. In [165, 167] a class of convex composite problems is studied that
involves a linear constraint as the nonsmooth nonseparable term. A BC
algorithm with a Gauss-Southwell-type rule is proposed and the con-
vergence is established using the cost as Lyapunov function by exploit-
ing linearity of the constraint to ensure feasibility. A refined analysis in
[119, 120] extends this to a random coordinate selection strategy. Another
approach in the convex case is to consider randomized BC updates ap-
plied to general averaged operators. Although this approach can allow for
fully nonseparable problems, usually separable nonsmooth functions are
considered in the literature. The convergence analysis of such methods
relies on establishing quasi-Fejér monotonicity [88, 51, 134, 22, 133, 95].
In a primal-dual setting in [70] a combination of Bregman and Euclidean
distance is employed as Lyapunov function. In [82] a BC algorithm is pro-
posed for strongly convex algorithms that involves coordinate updates
for the gradient followed by a full proximal step, and the distance from
the (unique) solution is used as Lyapunov function. The analysis and the
Lyapunov functions in all of the above mentioned works rely heavily on
convexity and are not suitable for nonconvex settings.

Thanks to the nonconvexity and nonseparability of G, many machine
learning problems can be formulated as in (8.1), a primary example being
constrained and/or regularized finite sum problems [17, 149, 60, 59, 114,
138, 137, 147]

minimize x∈�n ϕ(x) B 1
N

∑N
i�1 fi(x) + g(x), (8.2)

where fi : �n → � are smooth functions and g : �n → � is possibly
nonsmooth, and everything here can be nonconvex. In fact, one way to
cast (8.2) into the form of problem (8.1) is by setting

G(x) B 1
N

∑N
i�1 g(xi) + δC(x), (8.3)

where C B
{

x ∈ �nN | x1 � x2 � · · · � xN
}
is the consensus set, and δC

is the indicator function of set C. Since the nonsmooth term g is allowed
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to be nonconvex, formulation (8.2) can account for nonconvex constraints
such as rank constraints or zero norm balls, and nonconvex regularizers
such as `p with p ∈ [0, 1), [87].

Another prominent example in distributed applications is the “shar-
ing” problem [29]:

minimize
x∈�nN

Φ(x) B 1
N

∑N
i�1 fi(xi) + g

(∑N
i�1 xi

)
. (8.4)

where fi : �n → � are smooth functions and g : �n → � is nonsmooth,
and all are possibly nonconvex. The sharing problem is cast as in (8.1) by
setting G B g ◦ A, where A B [In . . . In] ∈ �n×nN .

8.1.1 The main block-coordinate algorithm
While gradient evaluations are the building blocks of smooth minimiza-
tion, a fundamental tool to deal with a nonsmooth lsc term ψ : �r → �
is its V-proximal mapping

proxV
ψ (x) B argmin

w∈�r

{
ψ(w) + 1

2 ‖w − x‖2V
}
, (8.5)

where V is a symmetric and positive definite matrix and ‖ · ‖V indicates
the norm induced by the scalar product (x , y) 7→ 〈x ,V y〉. It is common
to take V � t−1Ir as a multiple of the r × r identity matrix Ir , in which
case the notation proxtψ is typically used and t is referred to as a stepsize.
While this operator enjoys nice regularity properties when g is convex,
such as (single valuedness and) Lipschitz continuity, for nonconvex g it
may fail to be a well-defined function and rather has to be intended as a
point-to-set mapping proxV

ψ : �r ⇒ �r . Nevertheless, the value function
associated to theminimization problem in the definition (8.5), namely the
Moreau envelope

ψV (x) B min
w∈�r

{
ψ(w) + 1

2 ‖w − x‖2V
}
, (8.6)

is awell-defined real-valued function, in fact locally Lipschitz continuous,
that lower bounds ψ and shares with ψ infima and minimizers. The
proximal mapping is available in closed form for many useful functions,
many of which are widely used regularizers in machine learning; for
instance, the proximal mapping of the `0 and `1 regularizers amount to
hard and soft thresholding operators.
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In many applications the cost to be minimized is structured as the
sum of a smooth term h and a proximable (i.e., with easily computable
proximalmapping) termψ. In these cases, the proximal gradientmethod [75,
11] constitutes a cornerstone iterative method that interleaves gradient
descent steps on the smooth function and proximal operations on the
nonsmooth function, resulting in iterations of the form x+ ∈ proxγψ(x −
γ∇h(x)) for some suitable stepsize γ.

Our proposed scheme to address problem (8.1) is a BC variant of
the proximal gradient method, in the sense that only some coordinates
are updated according to the proximal gradient rule, while the others
are left unchanged. This concept is synopsized in Algorithm 8.1, which
constitutes the general algorithm addressed in this chapter.

Algorithm 8.1 General forward-backward block-coordinate scheme

Require x0 ∈ �∑
i ni , γi ∈ (0, N/L fi ), i ∈ [N]

Γ � blkdiag(γ1In1 , . . . , γNInN ), k � 0
Repeat until convergence
1: zk ∈ proxΓ−1

G

(
xk − Γ∇F(xk))

2: select a set of indices Ik+1 ⊆ [N]
3: update xk+1

i � zk
i for i ∈ Ik+1 and xk+1

i � xk
i for i < Ik+1, k ← k + 1

Return zk

Although seemingly wasteful, in many cases one can efficiently com-
pute individual blocks without the need of full operations. In fact BC
Algorithm 8.1 bridges the gap between a BC framework and a class of in-
cremental methods where a global computation typically involving the
full gradient is carried out incrementally via performing computations
only for a subset of coordinates. Two such broad applications, problems
(8.2) and (8.4), are discussed in the dedicated Sections 8.3 and 8.4, where
among other things we will show that Algorithm 8.1 leads to the well
known Finito/MISO algorithm [60, 114].

8.1.2 Contributions
1) To the best of our knowledge this is the first analysis of BC schemes
with a nonseparable nonsmooth term and in the fully nonconvex setting.
While the original cost Φ cannot serve as a Lyapunov function, we show
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that the forward-backward envelope (FBE) [132, 158] decreases surely,
not only in expectation (Lemma 8.5).

2) This allows for a quite general convergence analysis for different sam-
pling criteria. This chapter in particular covers randomized strategies
(Section 8.2.3) where at each iteration one or more coordinates are sam-
pled with possibly time-varying probabilities, as well as essentially cyclic
(and in particular cyclic and shuffled) strategies in case the nonsmooth
term is convex (Section 8.2.4).

3) We exploit the Kurdyka-Łojasiewicz (KL) property to show global (as
opposed to subsequential) and linear convergence when the sampling is
essentially cyclic and the nonsmooth function is convex, without impos-
ing convexity requirements on the smooth functions (Theorem 8.11).

4) As immediate byproducts of our analysis we obtain (a) an incremental
algorithm for the sharing problem [29] that to the best of our knowledge is
novel (Section 8.4), and (b) the Finito/MISO algorithm [60, 114] leading to
a much simpler and more general analysis than available in the literature
with new convergence results both for randomized sampling strategies
in the fully nonconvex setting and for essentially cyclic samplings when
the nonsmooth term is convex (Section 8.3).

8.1.3 Organization

This chapter is organized as follows. The core of the chapter lies in the
convergence analysis of Algorithm 8.1 detailed in Section 8.2: Section
8.2.1 introduces the FBE, fundamental tool of our methodology and lists
some of its properties followed by other ancillary results documented in
Section 8.7.1. The algorithmic analysis begins in Section 8.2.2 with a col-
lection of facts that hold independently of the chosen sampling strategy,
and later specializes to randomized and essentially cyclic samplings in
the dedicated Sections 8.2.3 and 8.2.4. Sections 8.3 and 8.4 discuss two
particular instances of the investigated algorithmic framework, namely
(a generalization of) the Finito/MISO algorithm for finite summinimiza-
tion and an incremental scheme for the sharing problem, both for fully
nonconvex and nonsmooth formulations. Convergence results are imme-
diately inferred from those of themore general BCAlgorithm 8.1. Section
8.6 concludes this chapter.
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8.2 Convergence analysis
We begin by observing that Assumption 8.I is enough to guarantee the
well definedness of the forward-backward operator in Algorithm 8.1,
which for notational convenience will be henceforth denoted as Tfb

Γ (x).
Namely, Tfb

Γ : �
∑

i ni ⇒ �
∑

i ni is the point-to-set mapping

Tfb
Γ (x) B proxΓ−1

G (x − Γ∇F(x))
� argmin

w∈�
∑

i ni

{
F(x) + 〈∇F(x),w − x〉 + G(w) + 1

2 ‖w − x‖2
Γ−1

}
. (8.7)

Lemma 8.1. Suppose that Assumption 8.I holds, and for γi ∈ (0, N/L fi ), i ∈
[N] let Γ B blkdiag(γ1In1 , . . . , γNInN ). Then, proxΓ−1

G and Tfb
Γ are locally

bounded, outer semicontinuous (osc), nonempty- and compact-valuedmappings.

Proof. For x? ∈ argminΦ it follows from (8.41) that

minΦ ≤ F(x) + G(x) ≤ G(x) + F(x?) + 〈∇F(x?), x − x?〉 + 1
2 ‖x? − x‖2ΛF

.

Therefore, G is lower bounded by a quadratic function with quadratic
term − 1

2 ‖ · ‖2ΛF
, and thus is prox-bounded in the sense of [144, Def. 1.23].

The claim then follows from [144, Thm. 1.25 and Ex. 5.23(b)] and the
continuity of the forward mapping id − Γ∇F.

8.2.1 The forward-backward envelope
The fundamental challenge in the analysis of (8.1) is the fact that, without
separability of G, descent on the cost function cannot be established even
in expectation. Instead, we show that the forward-backward envelope (FBE)
[132, 158] can be used as Lyapunov function. This subsection formally in-
troduces the FBE, here generalized to account for amatrix-valued stepsize
parameter Γ, and lists some of its basic properties needed for the conver-
gence analysis of Algorithm 8.1. Although easy adaptations of the similar
results in [132, 158, 156], for the sake of self-inclusiveness the proofs are
included here.

Definition 8.2 (forward-backward envelope). In problem (8.1), let fi be
differentiable functions, i ∈ [N], and let Γ � blkdiag(γ1In1 , . . . , γNInN ) for
γ1 , . . . , γN > 0. The forward-backward envelope (FBE) associated to (8.1) with
stepsize Γ is the function Φfb

Γ : �
∑

i ni → [−∞,∞) defined as

Φfb
Γ (x) B inf

w∈�
∑

i ni

{
F(x) + 〈∇F(x),w − x〉 + G(w) + 1

2 ‖w − x‖2
Γ−1

}
. (8.8a)
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Definition 8.2 highlights an important symmetry between theMoreau
envelope and the FBE: similarly to the relation between the Moreau en-
velope (8.6) and the proximal mapping (8.5), the FBE (8.8a) is the value
function associated with the proximal gradient mapping (8.7). By re-
placing any minimizer z ∈ Tfb

Γ (x) in the right-hand side of (8.8a) one
obtains yet another interesting interpretation of the FBE in terms of the
Γ−1-augmented Lagrangian associated to (8.1)

LΓ−1(x , z , y) B F(x) + G(z) + 〈y , x − z〉 + 1
2 ‖x − z‖2

Γ−1 ,

namely,
Φfb
Γ (x) � F(x) + 〈∇F(x), z − x〉 + G(z) + 1

2 ‖z − x‖2
Γ−1 (8.8b)

� LΓ−1(x , z ,−∇F(x)). (8.8c)
Lastly, by rearranging the terms it can easily be seen that

Φfb
Γ (x) � F(x) − 1

2 ‖∇F(x)‖2Γ + GΓ
−1(x − Γ∇F(x)), (8.8d)

hence in particular that the FBE inherits regularity properties of GΓ
−1 and

∇F, some of which are summarized in the next result.

Lemma 8.3 (FBE: fundamental inequalities). Suppose that Assumption 8.I
is satisfied and let γi ∈ (0, N/L fi ), i ∈ [N]. Then, the FBE Φfb

Γ is a (real-valued
and) locally Lipschitz continuous function. Moreover, the following hold for any
x ∈ �∑

i ni :

(i) Φfb
Γ (x) ≤ Φ(x).

(ii) 1
2 ‖z − x‖2

Γ−1−ΛF
≤ Φfb

Γ (x) −Φ(z) ≤ 1
2 ‖z − x‖2

Γ−1+ΛF
for any z ∈ Tfb

Γ (x),
where ΛF B 1

N blkdiag
(
L f1In1 , . . . , L fn InN

)
.

(iii) If in addition each fi is µ fi -strongly convex and G is convex, then for every
x ∈ �∑

i ni

1
2 ‖z − x?‖2µF

≤ Φfb
Γ (x) −minΦ

where x? B argminΦ, µF B 1
N blkdiag

(
µ f1In1 , . . . , µ fN InN

)
, and

z � Tfb
Γ (x).

Proof. Local Lipschitz continuity of the FBE follows from (8.8d) in light
of Lemma 8.1 and [144, Ex. 10.32].

♠ 8.3(i) Follows by replacing w � x in (8.8a).

♠ 8.3(ii) Directly follows from (8.42) and the identity Φfb
Γ (x) �MΓ(z , x)

for z ∈ Tfb
Γ (x).
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♠ 8.3(iii) By strong convexity, denoting Φ? B minΦ, we have

Φ? ≤ Φ(z) − 1
2 ‖z − x?‖2µF

≤ Φfb
Γ (x) − 1

2 ‖z − x?‖2µF

where the second inequality follows from Lemma 8.3(ii).

Another key property that the FBE shares with the Moreau envelope
is that minimizing the extended-real-valued function Φ is equivalent to
minimizing the continuous function Φfb

Γ . Moreover, the former is level
bounded iff so is the latter. This fact will be particularly useful for the
analysis of Algorithm 8.1, as it will be shown in Lemma 8.5 that the
FBE (surely) decreases along its iterates. As a consequence, despite the
fact that the same does not hold for Φ (in fact, iterates may even be
infeasible), coercivity ofΦ is enough to guarantee boundedness of (xk)k∈�
and (zk)k∈�.
Lemma 8.4 (FBE: minimization equivalence). Suppose that Assumption 8.I
is satisfied and that γi ∈ (0, N/Li), i ∈ [N]. Then, the following hold:

(i) minΦfb
Γ � minΦ;

(ii) argminΦfb
Γ � argminΦ;

(iii) Φfb
Γ is level bounded iff so is Φ.

Proof.

♠ 8.4(i) and 8.4(ii) It follows from Lemma 8.3(i) that inf Φfb
Γ ≤ minΦ.

Conversely, let (xk)k∈� be such that Φfb
Γ (xk) → inf Φfb

Γ as k → ∞, and for
each k let zk ∈ Tfb

Γ (xk). It then follows from Lemmas 8.3(i) and 8.3(ii) that

inf Φfb
Γ ≤ minΦ ≤ lim inf

k→∞
Φ(zk) ≤ lim inf

k→∞
Φfb
Γ (xk) � inf Φfb

Γ ,

hence minΦ � inf Φfb
Γ . Suppose now that x ∈ argminΦ (which exists

by Assumption 8.I); then it follows from Lemma 8.3(ii) that Tfb
Γ (x) � {x}

(for otherwise another element would belong to a lower level set of Φ).
Combining with Lemma 8.3(i) with z � x we then have

minΦ � Φ(z) ≤ Φfb
Γ (x) ≤ Φ(x) � minΦ.

Since minΦ � inf Φfb
Γ , we conclude that x ∈ argminΦfb

Γ , and that in
particular inf Φfb

Γ � minΦfb
Γ . Conversely, suppose x ∈ argminΦfb

Γ and let
z ∈ Tfb

Γ (x). By combining Lemmas 8.3(i) and 8.3(ii) we have that z � x,
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that is, thatTfb
Γ (x) � {x}. It then follows from Lemma 8.3(ii) and assertion

8.4(i) that
Φ(x) � Φ(z) ≤ Φfb

Γ (x) � minΦfb
Γ � minΦ,

hence x ∈ argminΦ.
♠ 8.4(iii) Due to Lemma 8.3(i), if Φfb

Γ is level bounded clearly so is Φ.
Conversely, suppose that Φfb

Γ is not level bounded. Then, there exist α ∈
� and (xk)k∈� ⊆ lev≤α Φfb

Γ such that ‖xk ‖ → ∞ as k → ∞. Let λ �

mini
{
γ−1

i − L fi N
−1} > 0, and for each k ∈ � let zk ∈ Tfb

Γ (xk). It then
follows from Lemma 8.3(ii) that

minΦ ≤ Φ(zk) ≤ Φfb
Γ (xk) − λ

2 ‖xk − zk ‖2 ≤ α − λ
2 ‖xk − zk ‖2 ,

hence (zk)k∈� ⊆ lev≤α Φ and ‖xk − zk ‖2 ≤ 2
λ (α −minΦ). Consequently,

also the sequence (zk)k∈� ⊆ lev≤α Φ is unbounded, proving that Φ is not
level bounded.

We remark that the kinship of Φfb
Γ and Φ extends also to local mini-

mality; the interested reader is referred to [155, Thm. 3.6] for details.

8.2.2 A sure descent lemma
We now proceed to the theoretical analysis of Algorithm 8.1. Clearly,
some assumptions on the index selection criterion are needed in order to
establish reasonable convergence results, for little can be guaranteed if,
for instance, one of the indices is never selected. Nevertheless, for the sake
of a general analysis it is instrumental to first investigatewhich properties
hold independently of such criteria. After listing some of these facts in
Lemma 8.5, in Sections 8.2.3 and 8.2.4 we will specialize the results to
randomized and (essentially) cyclic sampling strategies.

Lemma 8.5 (sure descent). Suppose that Assumption 8.I is satisfied. Then, the
following hold for the iterates generated by Algorithm 8.1:

(i) Φfb
Γ (xk+1) ≤ Φfb

Γ (xk) − ∑
i∈Ik+1

ξi
2γi
‖zk

i − xk
i ‖2, where ξi B

N−γi L fi
N ,

i ∈ [N], are strictly positive;
(ii) (Φfb

Γ (xk))k∈� monotonically decreases to a finite value Φ? ≥ minΦ;
(iii) Φfb

Γ is constant (and equalsΦ? as above) on the set of accumulation points
of (xk)k∈�;
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(iv) the sequence (‖xk+1−xk ‖2)k∈� has finite sum (and in particular vanishes);

(v) if Φ is coercive, then (xk)k∈� and (zk)k∈� are bounded.

Proof.

♠ 8.5(i) To ease notation, let ΛF B 1
N blkdiag

(
L f1In1 , . . . , L fn InN

)
and

for w ∈ �∑
i ni let wI ∈ �

∑
i∈I ni denote the slice (wi)i∈I , and let ΛFI , ΓI ∈

�
∑

i∈I ni×∑i∈I ni be defined accordingly. Start by observing that, since zk+1 ∈
proxΓ−1

G (xk+1 − Γ∇F(xk+1)), from the proximal inequality on G it follows
that

G(zk+1) − G(zk ) ≤ 1
2 ‖zk − xk+1

+ Γ∇F(xk+1)‖2
Γ−1 − 1

2 ‖zk+1 − xk+1
+ Γ∇F(xk+1)‖2

Γ−1

�
1
2 ‖zk − xk+1‖2

Γ−1 − 1
2 ‖zk+1 − xk+1‖2

Γ−1 + 〈∇F(xk+1), zk − zk+1〉. (8.9)

We have
Φfb
Γ (xk+1) −Φfb

Γ (xk ) � F(xk+1) + 〈∇F(xk+1), zk+1 − xk+1〉 + G(zk+1)
+

1
2 ‖zk+1 − xk+1‖2

Γ−1

−
(
F(xk ) + 〈∇F(xk ), zk − xk〉 + G(zk ) + 1

2 ‖zk − xk ‖2
Γ−1

)
apply the upper bound in (8.41) with w � xk+1 and the proximal inequality (8.9)

≤ 〈∇F(xk ), xk+1 − zk〉 + 1
2 ‖xk+1 − xk ‖2ΛF

+ 〈∇F(xk+1), zk − xk+1〉
− 1

2 ‖zk − xk ‖2
Γ−1 +

1
2 ‖zk − xk+1‖2

Γ−1 .

To conclude, notice that the `-th block of∇F(xk)−∇F(xk+1) is zero for ` < I,
and that the `-th block of xk+1−zk is zero if ` ∈ I.Hence, the scalar product
vanishes. For similar reasons, one has ‖zk − xk+1‖2

Γ−1 − ‖zk − xk ‖2
Γ−1 �

− ‖zk
I − xk

I ‖2Γ−1
I

and ‖xk+1 − xk ‖2
ΛF

� ‖zk
I − xk

I ‖2ΛFI
, yielding the claimed

expression.

♠ 8.5(ii) Monotonic decrease of (Φfb
Γ (xk))k∈� is a direct consequence of

assertion 8.5(i). This ensures that the sequence converges to some value
Φ?, bounded below by minΦ in light of Lemma 8.4(i).

♠ 8.5(iii) Directly follows from assertion 8.5(ii) together with the conti-
nuity of Φfb

Γ , see Lemma 8.3.

♠ 8.5(iv) Denoting ξmin B mini∈[N] {ξi} which is a strictly positive
constant, it follows from assertion 8.5(i) that for each k ∈ � it holds that

Φfb
Γ (xk+1) −Φfb

Γ (xk) ≤ −
∑

i∈Ik+1

ξi
2γi
‖zk

i − xk
i ‖2
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≤ − ξmin
2

∑
i∈Ik+1

γ−1
i ‖zk

i − xk
i ‖2

� − ξmin
2 ‖xk+1 − xk ‖2

Γ−1 . (8.10)

By summing for k ∈ � and using the positive definiteness of Γ−1 together
with the fact that minΦfb

Γ � minΦ > ∞ as ensured by Lemma 8.4(i) and
8.Ia3, we obtain that

∑
k∈� ‖xk+1 − xk ‖2 < ∞.

♠ 8.5(v) It follows from assertion 8.5(ii) that the entire sequence (xk)k∈�
is contained in the sublevel set

{
w | Φfb

Γ (w) ≤ Φfb
Γ (x0)}, which is bounded

provided that Φ is coercive as shown in Lemma 8.4(iii). In turn, bound-
edness of (zk)k∈� then follows from local boundedness of Tfb

Γ , cf. Lemma
8.1.

8.2.3 Randomized sampling
In this section we provide convergence results for Algorithm 8.1 where
the index selection criterion complies with the following requirement.
Assumption 8.II (randomized sampling requirements). There exist con-
stants p1 , . . . , pN > 0 such that, at any iteration and independently of the
past, each i ∈ [N] is sampled with probability at least pi .

Our notion of randomization is general enough to allow for time-
varying probabilities andmini-batch selections. The role of parameters pi
in Assumption 8.II is to prevent that an index is sampled with arbitrarily
small probability. In more rigorous terms, Pk[i ∈ Ik+1] ≥ pi shall hold
for all i ∈ [N], where Pk represents the probability conditional to the
knowledge at iteration k. Notice that we do not require the pi ’s to sum up
to one, as multiple index selections are allowed, similar to the setting of
[22, 95] in the convex case.

Due to the possible nonconvexity of problem (8.1), unless additional
assumptions are made not much can be said about convergence of the
iterates to a unique point. Nevertheless, the following result shows that
any accumulation point x? of sequences (xk)k∈� and (zk)k∈� generated
by Algorithm 8.1 is a stationary point, in the sense that it satisfies the
necessary condition for minimality 0 ∈ ∂̂Φ(x?), where ∂̂ denotes the
(regular) nonconvex subdifferential, see [144, Thm. 10.1].
Theorem 8.6 (randomized sampling: subsequential convergence). Sup-
pose that Assumptions 8.I and 8.II are satisfied. Then, the following hold almost
surely for the iterates generated by Algorithm 8.1:
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(i) the sequence (‖xk − zk ‖2)k∈� has finite sum (and in particular vanishes);

(ii) the sequence (Φ(zk))k∈� converges to Φ? as in Lemma 8.5(ii);

(iii) (xk)k∈� and (zk)k∈� have same cluster points, all stationary and on which
Φ and Φfb

Γ equal Φ?.

Proof. In what follows, Ek denotes the expectation conditional to the
knowledge at iteration k.

♠ 8.6(i) Let ξi B
N−γi L fi

N > 0, i ∈ [N], be as in Lemma 8.5(i). We have

Ek
[
Φfb
Γ (xk+1)]8.5(i)≤ Ek

[
Φfb
Γ (xk) −

∑
i∈Ik+1

ξi
2γi
‖zk

i − xk
i ‖2

]

� Φfb
Γ (xk) −

∑
I∈Ω

Pk
[Ik+1

� I
] ∑

i∈I

ξi
2γi
‖zk

i − xk
i ‖2

� Φfb
Γ (xk) −

N∑
i�1

∑
I∈Ω,I3i

Pk
[Ik+1

� I
] ξi

2γi
‖zk

i − xk
i ‖2

≤ Φfb
Γ (xk) −

N∑
i�1

piξi
2γi
‖zk

i − xk
i ‖2 , (8.11)

where Ω ⊆ 2[N] is the sample space (2[N] denotes the power set of [N]).
Therefore,

Ek
[
Φfb
Γ (xk+1)] ≤ Φfb

Γ (xk) − σ
2 ‖xk − zk ‖2

Γ−1 where σ B min
i�1...N

piξi > 0.
(8.12)

The claim follows from the Robbins-Siegmund supermartingale theorem,
see e.g., [142] or [17, Prop. 2].

♠ 8.6(ii) Observe thatΦfb
Γ (xk)− ‖zk − xk ‖2

Γ−1+ΛF
≤ Φ(zk) ≤ Φfb

Γ (xk)− ‖zk −
xk ‖2
Γ−1−ΛF

holds (surely) for k ∈ � in light of Lemma 8.3(ii). The claim
then follows by invoking Lemma 8.5(ii) and assertion 8.6(i).

♠ 8.6(iii) In the rest of the proof, for conciseness the “almost sure” nature
of the results will be implied without mention. It follows from assertion
8.6(i) that a subsequence (xk)k∈K converges to some point x? iff so does
the subsequence (zk)k∈K . Since Tfb

Γ (xk) 3 zk and both xk and zk converge
to x? as K 3 k → ∞, the inclusion 0 ∈ ∂̂Φ(x?) follows from Lemma 8.21.
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Since the full sequences (Φfb
Γ (xk))k∈� and (Φ(zk))k∈� converge to the same

value Φ? (cf. Lem. 8.5(ii) and assertion 8.6(ii)), due to continuity of Φfb
Γ

(Lemma 8.3) it holds thatΦfb
Γ (x?) � Φ?, and in turn the bounds in Lemma

8.3(ii) together with assertion 8.6(i) ensure that Φ(x?) � Φ? too.

When G is convex and F is strongly convex (that is, each of the func-
tions fi is strongly convex), the FBE decreases Q-linearly in expectation
along the iterates generated by the randomized BC-Algorithm 8.1.

Theorem 8.7 (randomized sampling: linear convergence under strong
convexity). Additionally to Assumptions 8.I and 8.II, suppose that G is convex
and that each fi is µ fi -strongly convex. Then, for all k the following hold for the
iterates generated by Algorithm 8.1:

Ek
[
Φfb
Γ (xk+1) −minΦ

] ≤ (1 − c)(Φfb
Γ (xk) −minΦ

)
(8.13a)

E
[
Φ(zk) −minΦ

] ≤ (
Φ(x0) −minΦ

)(1 − c)k (8.13b)
1
2E

[
‖zk − x?‖2µF

]
≤ (
Φ(x0) −minΦ

)(1 − c)k (8.13c)

where x? B argminΦ, µF B 1
N blkdiag

(
µ f1In1 , . . . µ fn InN

)
, and denoting

ξi �
N−γi L fi

N , i ∈ [N],

c � min
i∈[N]

{
ξi pi
γi

}/
max
i∈[N]

{
N−γiµ fi
γ2

i µ fi

}
. (8.14)

Moreover, by setting the stepsizes γi and minimum sampling probabilities pi as

γi �
N
µ fi

(
1 −

√
1 − 1/κi

)
and pi �

(√
κi +
√
κi − 1

)2

∑N
j�1

(√
κ j +

√
κ j − 1

)2 (8.15)

with κi B
L fi
µ fi

, i ∈ [N], then the constant c in (8.13) can be tightened to

c �
1∑N

i�1 (√κi+
√
κi−1)2 . (8.16)

Proof. Since zk is a minimizer in (8.8a), the necessary stationarity condi-
tion reads Γ−1(xk − zk) − ∇F(xk) ∈ ∂G(zk). Convexity of G then implies

G(x?) ≥ G(zk) + 〈Γ−1(xk − zk) − ∇F(xk), x? − zk〉,
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whereas from strong convexity of F we have

F(x?) ≥ F(xk) + 〈∇F(xk), x? − xk〉 + 1
2 ‖xk − x?‖2µF

.

By combining these inequalities into (8.8b), and denoting Φ? B minΦ �

minΦfb
Γ (cf. Lem. 8.4(i)), we have

Φfb
Γ (xk)−Φ?≤ 1

2 ‖zk−xk ‖2
Γ−1− 1

2 ‖x?−xk ‖2µF
+〈Γ−1(zk−xk),x?−zk〉

�
1
2 ‖zk−xk ‖2

Γ−1−µF
+〈(Γ−1−µF)(zk−xk),x?−zk〉− 1

2 ‖x?−zk ‖2µF
.

Next, by using the inequality 〈a , b〉 ≤ 1
2 ‖a‖2µF

+
1
2 ‖b‖2µ−1

F
to cancel out the

last term, we obtain

Φfb
Γ (xk) −Φ? ≤ 1

2 ‖zk − xk ‖2
Γ−1−µF

+
1
2 ‖(Γ−1 − µF)(xk − zk)‖2

µ−1
F

�
1
2 ‖zk − xk ‖2

Γ−2µ−1
F (I−ΓµF) , (8.17)

where the last identity uses the fact that the matrices are diagonal. Com-
bined with (8.11) the claimed Q-linear convergence (8.13a) with factor
c as in (8.14) is obtained. The R-linear rates in terms of the cost func-
tion and distance from the solution are obtained by repeated application
of (8.13a) after taking (unconditional) expectation from both sides and
using Lemma 8.3.

To obtain the tighter estimate (8.16), observe that (8.11)with the choice

pi B 1
γiµ fi

N−γiµ fi
N−γi L fi

(∑
j

1
γjµ f j

N−γjµ f j
N−γj L f j

)−1

,

which equals the one in (8.15) with γi as prescribed, yields

Ek

[
ΦfbΓ (xk+1)−Φ?

]
≤ΦfbΓ (xk)−Φ?−

(
2N

∑
j

1
γjµ j

N−γjµ j
N−γj L j

)−1 N∑
i�1

N−γiµ fi
γ2

i µ fi
‖zk

i −xk
i ‖2

�Φfb
Γ
(xk)−Φ?−

(
2N

∑
j

1
γjµ j

N−γjµ j
N−γj L j

)−1‖zk−xk ‖2
Γ−1µ−1

F (Γ−1−µF).

The result now follows by combining this with (8.17) and replacing the
values of γi as proposed in (8.15).

Notice that as κi ’s approach 1 the linear rate tends to 1 − 1/N.
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8.2.4 Cyclic, shuffled and essentially cyclic samplings
In this section we analyze the convergence of the BC-Algorithm 8.1 when
a cyclic, shuffled cyclic or (more generally) an essentially cyclic sampling
[164, 163, 85, 45, 179] is used. As formalized in the following standing
assumption, an additional convexity requirement for the nonsmooth term
G is needed.

Assumption 8.III (essentially cyclic sampling requirements). In problem
(8.1), function G is convex. Moreover, there exists T ≥ 1 such that in Al-
gorithm 8.1 each index is selected at least once within any interval of T
iterations.

Note that having T < N is possible because of our general sampling
strategy where sets of indices can be sampled within the same iteration.
For instance, T � 1 corresponds to Ik+1 � [N] for all k, in which case
Algorithm 8.1 would reduce to a (full) proximal gradient scheme.

Two notable special cases of single index selection rules are the cyclic
and shuffled cyclic sampling strategies.
Shuffled cyclic sampling: corresponds to setting

Ik+1
�

{
πbk/Nc

(
mod(k ,N) + 1

)}
for all k ∈ �, (8.18)

where π0 , π1 , . . . are permutations of the set of indices [N] (chosen ran-
domly or deterministically).
Cyclic sampling: corresponds to the case (8.18) with πbk/Nc � id, i.e.,

Ik+1
� {mod(k ,N) + 1} for all k ∈ �. (8.19)

Consistently with the deterministic nature of the essentially cyclic sam-
pling, all results of the previous section hold surely, as opposed to almost
surely.

Theorem 8.8 (essentially cyclic sampling: subsequential convergence).
Suppose that Assumptions 8.I and 8.III are satisfied. Then, all the assertions of
Theorem 8.6 hold surely.

Proof. We first establish an important descent inequality for Φfb
Γ after

every T iterations, cf. (8.26). Convexity of G, entailing proxΓ−1

G being Lip-
schitz continuous (cf. Lem. 8.22(i)), allows the employment of techniques
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similar to those in [15, Lem. 3.3]. Since all indices are updated at least
once every T iterations, one has that

tν(i) B min
{

t ∈ [T] | i is sampled at iteration Tν + t − 1
}

(8.20)

is well defined for each index i ∈ [N] and ν ∈ �. Since i is sampled at
iteration Tν + tν(i) − 1 and xTν

i � xTν+1
i � · · · � xTν+tν(i)−1

i by definition of
tν(i), it holds that

xTν+tν(i)
i � xTν+tν(i)−1

i + U>i
(
Tfb
Γ (xTν+tν(i)−1) − xTν+tν(i)−1

)
� xTν

i + U>i
(
Tfb
Γ (xTν+tν(i)−1) − xTν+tν(i)−1

)
, (8.21)

whereUi ∈ �(
∑

j n j )×ni denotes the i-th block columnof the identitymatrix
so that for a vector v ∈ �ni

Ui v � (0, . . . , 0,
i-th
v , 0, . . . , 0)>. (8.22)

For all t ∈ [T] the following holds

Φfb
Γ (xT(ν+1)) −Φfb

Γ (xTν) �
T∑
τ�1

(
Φfb
Γ (xTν+τ) −Φfb

Γ (xTν+τ−1))
≤ Φfb

Γ (xTν+t) −Φfb
Γ (xTν+t−1)

≤ − ξmin
2 ‖xTν+t − xTν+t−1‖2

Γ−1 , (8.23)

where ξi B
N−γi L fi

N as in Lemma 8.5(i), ξmin B mini∈[N] {ξi}, and the
two inequalities follow from Lemma 8.5(i). Moreover, using triangular
inequality for i ∈ [N] yields

‖xTν+tν(i)−1 − xTν ‖Γ−1 ≤
tν(i)−1∑
τ�1
‖xTν+τ − xTν+τ−1‖Γ−1

≤ T√
ξmin/2

(
Φfb
Γ (xTν) −Φfb

Γ (xT(ν+1))
) 1/2
, (8.24)

where the second inequality follows from (8.23) together with the fact
that tν(i) ≤ T. For all i ∈ [N], from the triangular inequality and the
LT-Lipschitz continuity of Tfb

Γ (Lemma 8.22(iv)) we have

γ−1/2
i ‖U>i (xTν −Tfb

Γ (xTν))‖ ≤ γ−1/2
i ‖U>i

(
xTν −Tfb

Γ (xTν+tν(i)−1)) ‖
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+ γ−1/2
i ‖U>i

(
Tfb
Γ (xTν+tν(i)−1) −Tfb

Γ (xTν)) ‖
≤ γ−1/2

i ‖xTν+tν(i)−1
i − xTν+tν(i)

i ‖
+ ‖Tfb

Γ (xTν+tν(i)−1) −Tfb
Γ (xTν)‖Γ−1

≤ ‖xTν+tν(i)−1 − xTν+tν(i)‖Γ−1

+ LT‖xTν+tν(i)−1 − xTν ‖Γ−1

(8.23), (8.24)
≤ 1+TLT√

ξmin/2

(
Φfb
Γ (xTν) −Φfb

Γ (xT(ν+1))
) 1/2
. (8.25)

By squaring and summing over i ∈ [N], we obtain

Φfb
Γ (xT(ν+1)) −Φfb

Γ (xTν) ≤ − ξmin
2N(1+TLT)2 ‖z

Tν − xTν ‖2
Γ−1 . (8.26)

By telescoping the inequality and using the fact that minΦfb
Γ � minΦ

shown in Lemma 8.4(i), we obtain that (‖zTν − xTν ‖2
Γ−1)ν∈� has finite sum,

and in particular vanishes. Clearly, by suitably shifting, for every t ∈ [T]
the same can be said for the sequence (‖zTν+t − xTν+t ‖2

Γ−1)ν∈�. The whole
sequence (‖zk − xk ‖2)k∈� is thus summable, and we may now infer the
claim as done in the proof of Theorem 8.6.

In the next theoremexplicit linear convergence rates are derivedunder
the additional strong convexity assumption for the smooth functions. The
cyclic and shuffled cyclic cases are treated separately, as tighter bounds
can be obtained by leveraging the fact that within cycles of N iterations
every index is updated exactly once.
Theorem8.9 (essentially cyclic sampling: linear convergenceunder strong
convexity). Additionally to Assumptions 8.I and 8.III, suppose that each func-
tion fi is µ fi -strongly convex. Then, denoting δ B mini∈[N]

{
γiµ fi

N

}
and

∆ B maxi∈[N]
{
γi L fi

N

}
, for all ν ∈ � the following hold for the iterates generated

by Algorithm 8.1:

Φfb
Γ (xT(ν+1)) −minΦ ≤ (1 − c)(Φfb

Γ (xTν) −minΦ
)

(8.27a)
Φ(zTν) −minΦ ≤ (

Φ(x0) −minΦ
)(1 − c)ν (8.27b)

1
2 ‖zTν − x?‖2µF

≤ (
Φ(x0) −minΦ

)(1 − c)ν (8.27c)

where x? B argminΦ, µF B 1
N blkdiag

(
µ f1In1 , . . . µ fn InN

)
, and

c �
δ(1 − ∆)

N
(
1 + T(1 − δ))2(1 − δ)

. (8.28)
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In the case of shuffled cyclic (8.18) or cyclic (8.19) sampling, the inequalities can
be tightened by replacing T with N and with

c �
δ(1 − ∆)

N(2 − δ)2(1 − δ)
. (8.29)

Proof.

♠ The general essentially cyclic case. Since Tfb
Γ is LT-Lipschitz continuous

with LT � 1 − δ as shown in Lemma 8.22(iv), inequality (8.26) becomes

Φfb
Γ (xT(ν+1)) −Φfb

Γ (xTν) ≤ − 1−∆
2N(1+T(1−δ))2 ‖zTν − xTν ‖2

Γ−1 .

Moreover, it follows from (8.17) that

Φfb
Γ (xTν) −Φ? ≤ 1

2 (δ−1 − 1)‖zTν − xTν ‖2
Γ−1 . (8.30)

By combining the two inequalities the claimed Q-linear convergence
(8.27a) with factor c as in (8.28) is obtained. In turn, the R-linear rates
(8.27b) and (8.27c) follow from Lemma 8.3.

♠ The shuffled cyclic case. Let us now suppose that the sampling strategy
follows a shuffled rule as in (8.18) with permutations π0 , π1 , . . . (hence in
the cyclic case πν � id for all ν ∈ �). Let Ui be as in (8.22) and ξmin as
in the proof of Theorem 8.8. Observe that tν(i) � π−1

ν (i) ≤ N for tν(i) as
defined in (8.20). For all t ∈ [N]

Φfb
Γ (xN(ν+1)) −Φfb

Γ (xNν) ≤ Φfb
Γ (xNν+t−1) −Φfb

Γ (xNν)

≤ − ξmin
2

t−1∑
τ�1
‖xNν+τ − xNν+τ−1‖2

Γ−1

� − ξmin
2 ‖xNν+t−1 − xNν ‖2

Γ−1 , (8.31)

where the equality follows from the fact that at every iteration a different
coordinate is updated (and that Γ is diagonal), and the inequalities from
Lemma 8.5(i). Similarly, (8.23) holds with T replaced by N (despite the
fact that T is not necessarily N , but is rather bounded as T ≤ 2N − 1). By
using (8.31) in place of (8.24), inequality (8.25) is tightened as follows

γ−1/2
i ‖U>i (xNν −Tfb

Γ (xNν))‖ ≤ 1+LT√
ξmin/2

(
Φfb
Γ (xNν) −Φfb

Γ (xN(ν+1))
) 1/2
.
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By squaring and summing for i ∈ [N]we obtain

ΦfbΓ (xN(ν+1))−ΦfbΓ (xNν) ≤ − ξmin
2N(1+LT)2 ‖z

Nν−xNν ‖2
Γ−1 �

−(1−∆)
2N(1+LT)2 ‖z

Nν−xNν ‖2
Γ−1 ,

(8.32)
where LT � 1 − δ as discussed above. By combining this and (8.30) (with
T replaced by N) the improved coefficient (8.29) is obtained.

Note that if one sets γi � αN/L fi for some α ∈ (0, 1), then δ �

αmini∈[N]
{
µ fi/L fi

}
and ∆ � α. With this selection, as the condition num-

ber approaches 1 the rate in (8.29) tends to 1 − α
N(2−α)2 .

8.2.5 Global and linear convergence with KL inequality
The convergence analyses of the randomized and essentially cyclic cases
both rely on a descent property on the FBE that quantifies the progress in
the minization of Φfb

Γ in terms of the squared forward-backward residual
‖x−z‖2. A subtle but important difference, however, is that the inequality
(8.12) in the former case involves a conditional expectation,whereas (8.26)
in the latter does not. The sure descent property occurring for essentially
cyclic sampling strategies is the key for establishing global (as opposed
to subsequential) convergence based on the Kurdyka-Łojasiewicz (KL)
property [111, 112, 93]. A similar result is achieved in [179], which how-
ever considers the complementary case to problem (8.1) where the nons-
mooth function G is assumed to be separable, and thus the cost function
itself can serve as Lyapunov function.

Definition 8.10 (KL property with exponent θ). A proper lsc function
h : �n → � is said to have the Kurdyka-Łojasiewicz (KL) property with
exponent θ ∈ (0, 1) at w̄ ∈ dom h if there exist ε, η, % > 0 such that

ψ′(h(w) − h(w̄))dist(0, ∂h(w)) ≥ 1

holds for all w such that ‖w − w̄‖ < ε and h(w̄) < h(w) < h(w̄) + η, where
ψ(s) B %s1−θ. We say that h satisfies the KL property with exponent θ (without
mention of w̄) if it satisfies the KL property with exponent θ at any w̄ ∈ dom ∂h.

Semialgebraic functions comprise a wide class of functions that enjoy
this property [24, 23], which has been extensively exploited to provide
convergence rates of optimization algorithms [9, 10, 11, 25, 72, 128, 102,
178]. Based on this, in the next result we provide sufficient conditions en-
suring global and R-linear convergence of Algorithm 8.1 with essentially
cyclic sampling.
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Theorem8.11 (essentially cyclic sampling: global and linear convergence).
Additionally to Assumptions 8.I and 8.III, suppose that Φ has the KL property
with exponent θ ∈ (0, 1) (as is the case when fi and G are semialgebraic),
and is coercive. Then, any sequences (xk)k∈� and (zk)k∈� generated by Algo-
rithm 8.1 converge to (the same) stationary point x?. Moreover, if θ ≤ 1/2 then
(‖zk − xk ‖)k∈�, (xk)k∈� and (zk)k∈� converge at R-linear rate.

Proof. Let (xk)k∈� and (zk)k∈� be sequences generated by Algorithm
8.1 with essentially cyclic sampling, and let Φ? be the limit of the se-
quence (Φfb

Γ (xk))k∈� as in Lemma 8.5(ii). To avoid trivialities, we may
assume that Φfb

Γ (xk) 	 Φ? for all k, for otherwise the sequence (xk)k∈�
is asymptotically constant, and thus so is (zk)k∈�. Let Ω be the set of ac-
cumulation points of (xk)k∈�, which is compact and such that Φfb

Γ ≡ Φ?
on Ω, as ensured by Theorem 8.8. It follows from Lemma 8.23 and [9,
Lem. 1(ii)] that Φfb

Γ enjoys a uniform KL property on Ω; in particular,
ψ′(Φfb

Γ (xk) − Φ?)dist(0, ∂Φfb
Γ (xk)) ≥ 1 holds for all k large enough such

that xk is sufficiently close to Ω and Φfb
Γ (xk) is sufficiently close to Φ?,

where ψ(s) � %s1−θ′ for some % > 0 and θ′ � max {θ, 1/2}. Combined
with Lemma 8.22(iii), for all k large enough we thus have

ψ′(Φfb
Γ (xk) −Φ?) ≥ c

‖xk − zk ‖Γ−1
, (8.33)

where c B
N mini {√γi}

N+maxi {γi L fi } > 0. Let ∆k B ψ(Φfb
Γ (xk) − Φ?). By combining

(8.33) and (8.26) we have that there exists a constant c′ > 0 such that

∆(ν+1)T−∆νT ≤ ψ′(ΦfbΓ (xνT )−Φ?)
(
ΦfbΓ (x(ν+1)T ) −ΦfbΓ (xνT )

)
≤ −c′‖xνT−zνT ‖Γ−1

(8.34)
holds for all ν ∈ � large enough (the first inequality uses concavity of ψ).
By summing over ν (sure) summability of the sequence (‖xνT−zνT ‖)ν∈� is
obtained. By suitably shifting, for every t ∈ [T] the same canbe said for the
sequence (‖zTν+t − xTν+t ‖)ν∈�, and since T is finite we conclude that the
whole sequence (‖zk−xk ‖)k∈� is summable. Since ‖xk+1−xk ‖ ≤ ‖zk−xk ‖
we conclude that (xk)k∈� has finite length and is thus convergent (to a
single point), and consequently so is (zk)k∈�.

Suppose now that θ ≤ 1/2, so that ψ(s) � %√s. Then,

‖xνT − zνT ‖Γ−1

(8.33)
≥ 2c

%

√
Φfb
Γ (xνT) −Φ? �

2c
%2ψ(Φfb

Γ (xνT) −Φ?) � 2c
%2∆νT .
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Combined with (8.34) it follows that (∆νT)ν∈� conveges Q-linearly. By
rearranging (8.34) as

c′‖xνT − zνT ‖Γ−1 ≤ ∆νT − ∆(ν+1)T ≤ ∆νT ,

R-linear convergence of (‖xνT − zνT ‖)ν∈� follows. By suitably shifting, for
every t ∈ [T] the same can be said for the sequence (‖zTν+t − xTν+t ‖)ν∈�,
and since T is finite we conclude that the whole sequence (‖zk − xk ‖)k∈�
converges R-linearly. On the other hand, since ‖xk+1 − xk ‖ ≤ ‖zk − xk ‖,
also (‖xk+1 − xk ‖)k∈� converges R-linearly, hence so does (xk)k∈�. By
combining the two, we conclude that also (zk)k∈� converges R-linearly.

8.3 Nonconvex finite sum problems: the Fini-
to/MISO algorithm

As mentioned in Section 8.1, if G is of the form (8.3) then problem (8.1)
reduces to the finite sum minimization presented in (8.2). Most impor-
tantly, the proximal mapping of the original nonsmooth function G can
be easily expressed in terms of that of the small function g in the reduced
finite sum reformulation, as shown in the next lemma.

Lemma 8.12. Given γi > 0, i ∈ [N], let Γ B blkdiag(γ1In , . . . , γN In) and
γ̂ B

(∑N
i�1 γ

−1
i

)−1. Then, for G as in (8.3) and any u ∈ �Nn

proxΓ−1

G (u) �
{
(v̂ , . . . , v̂) | v̂ ∈ proxγ̂g(û)

}
where û B γ̂

∑N
i�1 γ

−1
i ui .

Proof. Observe first that for every w ∈ �n one has
∑

iγ
−1
i ‖w−ui ‖2�

∑
iγ
−1
i ‖û−ui ‖2+

∑
iγ
−1
i ‖w− û‖2+

�0︷                     ︸︸                     ︷
2
∑

iγ
−1
i 〈û−ui ,w− û〉

�
∑

iγ
−1
i ‖û−ui ‖2+γ̂−1‖w− û‖2. (8.35)

Next, observe that since dom G ⊆ C (the consensus set),

proxΓ−1

G (u) � argmin
w∈�Nn

{
G(w) +∑N

i�1
1

2γi
‖wi − ui ‖2

}
� argmin

w∈�Nn

{
G(w) +∑N

i�1
1

2γi
‖wi − ui ‖2 | w1 � · · · � wN

}
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� argmin
(w ,...,w)

{
g(w) +∑N

i�1
1

2γi
‖w − ui ‖2

}
(8.35)
� argmin
(w ,...,w)

{
g(w) + 1

2γ̂ ‖w − û‖2
}
�

{
(v̂ , . . . , v̂) | v̂ ∈ proxγ̂g(û)

}
as claimed.

If all stepsizes are set to a same value γ, so that Γ � γINn , then the
forward-backward step reduces to

z ∈ proxΓ−1

G (x − Γ∇F(x)) ⇔ z � (z̄ , . . . , z̄),
z̄ ∈ proxγg/N

(
1
N

∑N
j�1

(
x j − γ

N∇ f j(x j)
) )
.

(8.36)

The argument of proxγg/N is the (unweighted) average of the forward op-
erator. By applying Algorithm 8.1 with (8.36), Finito/MISO [60, 114] is
recovered. Differently from the existing convergence analyses, ours cov-
ers fully nonconvex and nonsmooth problems, more general sampling
strategies and the possibility to select different stepsizes γi for each block,
which can have a significant impact on the performance compared to the
case where all stepsizes are equal. Moreover, to the best of our knowl-
edge this is the first work that shows global convergence and linear rates
even when the smooth functions are nonconvex. The resulting scheme is
presented in Algorithm 8.2. We remark that the consensus formulation
to recover Finito/MISO (although from a different umbrella algorithm)
was also observed in [56] in the convex case. Moreover, the Finito/MISO
algorithm with cyclic sampling is also studied in [117] when g ≡ 0 and
fi are strongly convex functions; consistently with Assumption 8.III, our
analysis covers the more general essentially cyclic sampling even in the
presence of a nonsmooth convex term g and allowing the smooth func-
tions fi to be nonconvex. Randomized Finito/MISO with g ≡ 0 is also
studied in the recent work [135]; although their analysis is limited to
a single stepsize, in the convex case it is allowed to be larger than our
worst-case stepsize mini γi .

The convergence results fromSection 8.2 are immediately translated to
this setting by noting that the bold variable zk corresponds to (zk , . . . , zk).
Therefore, Φ(zk) � ϕ(zk) where ϕ is the cost function for the finite sum
problem.

Corollary 8.13 (subsequential convergence of Algorithm 8.2). In the finite
sum problem (8.2) suppose that argminϕ is nonempty, g is proper and lsc, and
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Algorithm 8.2 Nonconvex proximal Finito/MISO for problem (8.2)

Require xinit ∈ �n ; γi ∈ (0, N/L fi ), i ∈ [N]
Initialize γ̂ B

(∑N
i�1 γ

−1
i

)−1; s0
i � xinit − γi

N∇ fi(xinit), i ∈ [N]; ŝ0 �∑N
i�1

γ̂
γi

s0
i

Repeat for k � 0, 1, . . . until convergence
1: zk ∈ proxγ̂g(ŝk)
2: select a set of indices Ik ⊆ [N], set ŝk+1 � ŝk and sk+1

i � sk
i , i < Ik

3: for i ∈ Ik do
4: sk+1

i ← zk − γi
N∇ fi(zk) . buffer update

5: ŝk+1 ← ŝk+1 +
γ̂
γi
(sk+1

i − sk
i ) . average update

Return zk

each fi is L fi -Lipschitz differentiable, i ∈ [N]. Then, the following hold almost
surely (resp. surely) for the sequence (zk)k∈� generated by Algorithm 8.2 with
randomized sampling strategy as in Assumption 8.II (resp. with any essentially
cyclic sampling strategy and g convex as required in Assumption 8.III):

(i) the sequence (ϕ(zk))k∈� converges to a finite value ϕ? ≤ ϕ(xinit);
(ii) all cluster points of the sequence (zk)k∈� are stationary and on which ϕ

equals ϕ?.

If, additionally, ϕ is coercive, then the following also hold:

(iii) (zk)k∈� is bounded (in fact, this holds surely for arbitrary sampling crite-
ria).

Corollary 8.14 (linear convergence of Algorithm 8.2 under strong con-
vexity). Additionally to the assumptions of Corollary 8.13, suppose that g is
convex and that each fi is µ fi -strongly convex. The following hold for the iterates
generated by Algorithm 8.2:
Randomized sampling: under Assumption 8.II,

E
[
ϕ(zk) −min ϕ

] ≤ (ϕ(xinit) −min ϕ)(1 − c)k

1
2E

[‖zk − x?‖2] ≤ N(ϕ(xinit) −min ϕ)∑
i µ fi

(1 − c)k
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holds for all k ∈ �, where c is as in (8.14) and x? B argminϕ. If the
stepsizes γi and the sampling probabilities pi are set as in Theorem 8.7, then
the tighter constant c as in (8.16) is obtained.

Shuffled cyclic or cyclic sampling: under either sampling strategy (8.18) or
(8.19),

ϕ(zνN ) −min ϕ ≤ (ϕ(xinit) −min ϕ)(1 − c)ν

1
2E

[‖zνN − x?‖2] ≤ N(ϕ(xinit) −min ϕ)∑
i µ fi

(1 − c)ν

holds surely for all ν ∈ �, where c is as in (8.29).

The next result follows from Theorem 8.11 once the needed properties
of Φ as in the umbrella formulation (8.1) are shown to hold.

Corollary 8.15 (global convergence of Algorithm 8.2). In the finite sum
problem (8.2), suppose that ϕ has the KL property with exponent θ ∈ (0, 1) (as
is the case when fi and g are semialgebraic) and coercive, g is proper convex
and lsc, and each fi is L fi -Lipschitz differentiable, i ∈ [N]. Then, the sequence
(zk)k∈� generated by Algorithm 8.2 with any essentially cyclic sampling strategy
as in Assumption 8.III converges surely to a stationary point for ϕ. Moreover, if
θ ≤ 1/2 then it converges at R-linear rate.

Proof. Function Φ � F + G be as in (8.3) clearly is coercive and satisfies
Assumption 8.I. In order to invoke Theorem 8.11 is suffices to show that
there exists a constant c > 0 such that

dist(0, ∂Φ(x)) ≥ c dist(0, ∂ϕ(x)) for all x ∈ �n and x � (x , . . . , x),
(8.37)

as this will ensure thatΦ enjoys the KL property at x? � (x?, . . . , x?)with
same desingularizing function (up to a positive scaling). Notice that for
x ∈ �n and x � (x , . . . , x), one has v ∈ ∂G(x) iff 1

N
∑N

i�1 vi ∈ ∂g(x). Since
∂Φ(x) � 1

N ×N
i�1 ∇ fi(xi) + ∂G(x) and ∂ϕ(x) � 1

N
∑N

i�1 ∇ fi(x) + ∂g(x), see
[144, Ex. 8.8(c) and Prop. 10.5], for x ∈ �n and denoting x � (x , . . . , x)we
have

dist(0, ∂ϕ(x)) ≤ inf
v∈∂G(x)

 1
N

∑N
i�1 ∇ fi(x) + 1

N
∑N

i�1 vi


≤ 1
N inf

v∈∂G(x)
∑N

i�1 ‖∇ fi(x) + vi ‖ � 1
N inf

u∈∂Φ(x)
|||u |||,
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where ||| · ||| is the norm in �Nn given by |||w ||| � ∑N
i�1 ‖wi ‖. Inequality

(8.37) then follows by observing that infu∈∂Φ(x) |||u ||| is the distance of 0
from ∂Φ(x) in the norm ||| · |||, hence that ||| · ||| ≤ c′‖ ·‖ for some c′ > 0.

8.3.1 A low memory variant
The main drawback of the Finito/MISO algorithm is the high memory
requirement. Implementing Algorithm 8.2 requires keeping a table of si ’s
in the memory, which can be prohibitively large in some applications. In
this section we present Algorithm 8.3 (L-Finito), a low memory variant
of Algorithm 8.2, that is inspired by stochastic variance reduced gradient
method (SVRG) [91, 177]. SVRG is designed for strongly convex problems.
In [3] a variant of SVRG is studied that allows fi to be nonconvex while
requiring their sum as well as g to be convex. In [137] SVRG is studied
under a different stepsize condition for nonconvex fi , andwith g � 0. This
analysis is extended for proxSVRG in [138] with convex g. In contrast,
while Algorithm 8.3 (L-Finito) enjoys the low memory requirements of
SVRG, it covers fully nonconvex regularized finite sum problems with
simple-to-choose constant stepsizes.

The proposed algorithm involves a full proximal gradient update fol-
lowed by a (shuffled) cyclic sweeping of indices. Note that in the inner
loop any sweeping strategy may be used as long as no index is selected
twice. This is unlike SVRG which allows for an index to be selected (at
random) more than once in the inner loop. The idea here is that after
the full update step, the common point zk is used for the update of the
average ŝ, thus eliminating the need for storing si ’s. The reduction in
memory requirements comes at the cost of repeated gradient evaluations
∇ fi(zk)within the inner loop. Just as is the case for SVRG [91] this can be
avoided by storing a table of gradients which can be maintained cheaply
in applications such as logistic regression and least squares.

The convergence of Alg. 8.3 is a consequence of the sure descent
property and is summarized below. We omit convergence rate results for
the strongly convex case.

Corollary 8.16 (convergence of Algorithm 8.3). In the finite sum problem
(8.2) suppose that argminϕ is nonempty, g is proper and lsc, and each fi is
L fi -Lipschitz differentiable, i ∈ [N]. Then, the assertions in Cor.s 8.13(i) and
8.13(ii) hold surely for the sequence (zk)k∈� generated by Algorithm 8.3. If in
addition ϕ has the KL property with exponent θ ∈ (0, 1) (as is the case when
fi and g are semialgebraic) and is coercive, then (zk)k∈� converges surely to a
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Algorithm 8.3Nonconvex low-memory Finito/MISO (L-Finito) for prob-
lem (8.2)

Require xinit ∈ �n ; γi ∈ (0, N/L fi ), i ∈ [N]
Initialize γ̂ B

(∑N
i�1 γ

−1
i

)−1; average ŝ0 � xinit − γ̂
N

∑N
i�1 ∇ fi(xinit)

Repeat for k � 0, 1, . . . until convergence
1: zk ∈ proxγ̂g(ŝk)
2: ŝk+1 � zk − γ̂

N
∑N

i�1 ∇ fi(zk) . full update
3: Select `k sets of disjoint indices Ik

1 , . . . , I
k
`k ⊆ [N]

4: for j � 1, . . . , `k do . inner loop
5: ztemp ∈ proxγ̂g(ŝk+1)
6: for i ∈ Ik

j do

7: ŝk+1 ← ŝk+1 +
γ̂
γi
(ztemp − zk) − γ̂

N (∇ fi(ztemp) − ∇ fi(zk))
Return zk

stationary point for ϕ. Moreover, if θ ≤ 1/2 then it converges at R-linear rate.

8.4 Nonconvex sharing problem
In this section we consider the sharing problem (8.4). As discussed in
Section 8.1, (8.4) fits into the problem framework (8.1) by simply letting
G B g ◦ A, where A B [In . . . In] ∈ �n×nN . By arguing as in [14,
Thm. 6.15] it can be shown that, when A has full row rank, the proximal
mapping of G � g ◦ A is given by

proxΓ−1

G (u) � u + ΓA>(AΓA>)−1
(
prox(AΓA>)−1

g (Au) − Au
)
. (8.38)

Since AΓA>�
∑N

i�1 γi for the sharing problem (8.4),

v ∈ proxΓ−1

G (u) ⇔ v � (u1 + γ1w , . . . , uN + γN w)
w ∈ γ̃−1

(
proxγ̃g(ũ) − ũ

)
, γ̃ B

∑N
i�1 γi , ũ B

∑N
i�1 ui .

Consequently, the general BC Algorithm 8.1 when applied to the sharing
problem (8.4) reduces to Algorithm 8.4.
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Algorithm 8.4 Block-coordinate method for nonconvex sharing problem

Require xinit
i ∈ �n , γi ∈ (0, N/L fi ), i ∈ [N]

Initialize γ̃ B
∑N

i�1 γi , s0
i � xinit

i − γi
N∇ fi(xinit

i ) i ∈ [N], s̃0 �
∑N

i�1 s0
i

Repeat for k � 0, 1, . . . until convergence
1: wk ← γ̃−1(proxγ̃g(s̃k) − s̃k)
2: select a set of indices Ik ⊆ [N], set ŝk+1 � ŝk and sk+1

i � sk
i , i < Ik

3: for i ∈ Ik do
4: sk+1

i ← sk
i + γi wk − γi

N∇ fi(sk
i + γi wk) . update buffer

5: s̃k+1 ← s̃k+1 + (sk+1
i − sk

i ) . update sum

Return zk � (sk
1 + γ1wk , . . . , sk

N + γN wk)

Remark 8.17 (generalized sharing constraint). Another notable instance
of G � g ◦ A well suited for the BC framework of Algorithm 8.1 is when
g � δ{0} and A � [A1 . . . AN ], Ai ∈ �n×ni such that A is full row rank.
This models the generalized sharing problem

minimize
x∈�

∑
i ni

1
N

∑N
i�1 fi(xi) subject to ∑N

i�1 Ai xi � 0.

In this case (8.38) simplifies to

(
proxΓ−1

G (u)
)

i
� ui − γiA>iA−1

N∑
i�1

Ai ui ,

where A B AΓA> can be factored offline and
∑N

i�1 Ai xi can be updated
in an incremental fashion in the same spirit of Algorithm 8.4.

The convergence results for Algorithm 8.4 summarized below fall as
special cases of those in Section 8.2.

Corollary 8.18 (convergence of Algorithm 8.4). In the sharing problem (8.4),
suppose that argminΦ is nonempty, g is proper and lsc, and each fi is L fi -
Lipschitz differentiable, i ∈ [N]. Consider the sequences (wk)k∈� and (sk)k∈�
generated by Algorithm 8.4 and let (zk)k∈� � (sk

1 +γ1wk , . . . , sk
N +γN wk)k∈�.

Then, the following hold almost surely (resp. surely) with randomized sampling
strategy as inAssumption 8.II (resp.with any essentially cyclic sampling strategy
and g convex as required in Assumption 8.III):
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(i) the sequence (Φ(zk))k∈� converges to a finite value Φ? ≤ Φ(xinit);
(ii) all cluster points of the sequence (zk)k∈� are stationary and on which Φ

equals Φ?.

If, additionally, Φ is coercive, then the following also hold:

(iii) (zk)k∈� is bounded (in fact, this holds surely for arbitrary sampling crite-
ria).

Corollary 8.19 (linear convergence of Algorithm 8.4 under strong con-
vexity). Additionally to the assumptions of Corollary 8.18, suppose that g is
convex and that each fi is µ fi -strongly convex. The following hold:
Randomized sampling: under Assumption 8.II,

E
[
Φ(zk) −minΦ

] ≤ (
Φ(xinit) −minΦ

)(1 − c)k
1
2E

[
‖zk − x?‖2µF

]
≤ (
Φ(xinit) −minΦ

)(1 − c)k

holds for all k ∈ �, where x? B argminΦ, c is as in (8.14) and µF B
1
N blkdiag

(
µ f1In1 , . . . µ fn InN

)
. If the stepsizes γi and the sampling proba-

bilities pi are set as in Theorem 8.7, then the tighter constant c as in (8.16) is
obtained.

Shuffled cyclic or cyclic sampling: under either (8.18) or (8.19),

Φ(zNν) −minΦ ≤ (
Φ(xinit) −minΦ

)(1 − c)ν
1
2 ‖zNν − x?‖2µF

≤ (
Φ(xinit) −minΦ

)(1 − c)ν

holds surely for all ν ∈ �, where c is as in (8.29).

We conclude with an immediate consequence of Theorem 8.11 that
shows that (strong) convexity is in fact not necessary for global or linear
convergence to hold.

Corollary 8.20 (global and linear convergence of Algorithm 8.4). In prob-
lem (8.4), suppose thatΦ has the KL property with exponent θ ∈ (0, 1) (as is the
case when g and fi are semialgebraic) and is coercive, g is proper convex lsc, and
each fi is L fi -Lipschitz differentiable, i ∈ [N]. Then, the sequence (zk)k∈� as
defined in Corollary 8.18 with any essentially cyclic sampling strategy as in As-
sumption 8.III converges surely to a stationary point for Φ. Moreover, if θ ≤ 1/2
it converges with R-linear rate.
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8.5 Numerical simulations for the regularized
finite sum problem

In this sectionwe evaluate the performance ofAlgorithms 8.2 and 8.3with
two sets of experiments on `1-regularized and `0-norm ball constrained
least squares problems. The simulations are performed using the open-
source julia package CIAOAlgorithms1. In all of our simulations, stepsizes
γi � 0.99N/L fi are used (independent of minibatch size).Whenever a single
stepsize is used, i.e., γ � mini γi , this is indicated in the legend by adding
-γ to the algorithm’s name. For Algorithm 8.3 (L-Finito), we used Ik

i � {i}
and `k � N , i.e., a cyclical inner loop. In the figures, each iteration of Al-
gorithm 8.3 is counted as 3 passes through the data due to the repeated
∇ fi(zk) update in the inner loop.

Lasso: Consider the regularized least squares problem

minimize
x∈�n

1
N

N∑
i�1

1
2 (〈ai , x〉 − bi)2︸            ︷︷            ︸

fi (x)

+‖x‖1 , (8.39)

where the pair (ai , bi) represents the ith data. In our simulations we used
N � 1000, n � 5000 and the sparsity parameter for the solution was
set to p � 0.01. The data for our simulations were randomly generated
according to the procedure described in [126, §6]. In order to evaluate
the performance of the algorithms we generated the matrix B in [126, §6]
with two different condition numbers cond(B) � 20 and cond(B) � 2.5
and normalized its columns. This leads to maxi L fi/mini L fi equal to 144
and 3.3. The simulations are provided in Figure 8.1 with two different
initializations. See our discussion at the end of the section.

Figure 8.2 depicts the behavior of the algorithms for different batch
sizes. We only plot the result for cyclical sampling with different batch
sizes b, since it outperformed randomized and shuffled variants. It is
observed that lower batch sizes result in faster convergence. This effect
was less pronounced in the low memory variant which is due to the
presence of a full proximal gradient update within each iteration.

Sparsity constrained least squares: Consider the `0-norm ball con-
strained least squares problem

minimize
x∈�n

1
N
∑N

i�1
1
2 (〈ai , x〉 − bi)2 , subject to ‖x‖0 ≤ l. (8.40)

1https://github.com/kul-forbes/CIAOAlgorithms
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Figure 8.1: Performance comparisons for Algorithms 8.2 and 8.3 for problem (8.39)
with different initial points: (left) xinit � 0n , (right) xinit � 1n . Algorithm names
ending with -γ indicate the use of a single stepsize γ � mini γi .
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Figure 8.2: (left) Algorithm 8.2 and (right) Algorithm 8.3 (L-Finito) with cyclical
sampling and different batch sizes for solving problem (8.39).

For this example we used the same data as described in the previous
section. In the simulation l � 50 was used. The results are depicted in
Figure 8.3. Note that all algorithms converged to the same cost ϕ?. Hence,
the distance of the cost from ϕ? is used to measure their performance.

We make the following observations:

• The cyclical variant consistently outperforms the shuffled and ran-
domized variants.

• The low memory variant, Algorithm 8.3 (L-Finito), has comparable
performance to randomized variant of Algorithm 8.2.

• When using a single stepsize the speed of the algorithms is dictated
by the largest L fi , and as expected, it can be much slower when the
data is not uniform in the sense that maxi L fi/mini L fi is large.

• The choice of initial point affects the convergence rate on non-
strongly convex problems.

8.6 Conclusions
We presented a general block-coordinate forward-backward algorithm
for minimizing the sum of a separable smooth and a nonseparable nons-
mooth function, both allowed to be nonconvex. The framework is general
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Figure 8.3: Performance comparisons for Algorithms 8.2 and 8.3 for problem (8.40)
with different initial points: (left) xinit � 0n , (right) xinit � 1n . Algorithm names
ending with -γ indicate the use of a single stepsize γ � mini γi
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enough to encompass regularized finite sum minimization and sharing
problems, and leads to (a generalization of) the Finito/MISO algorithm
[60, 114] with new convergence results, and to another novel incremen-
tal algorithm (for the sharing problem). The forward-backward envelope
is shown to be a particularly suitable Lyapunov function for establish-
ing convergence: additionally to enjoying favorable continuity properties,
sure descent (as opposed to in expectation) occurs along the iterates. Pos-
sible future developments include extending the framework to account
for a nonseparable smooth term, for instance by “quantifying the strength
of coupling” between blocks of variables as in [20, §7.5].

8.7 The key tool: the forward-backward enve-
lope

This appendix contains some proofs and auxiliary results omitted in the
main body. We begin by observing that, since F and −F are 1-smooth in
the metric induced by ΛF B 1

N blkdiag(L f1In1 , . . . , L fN InN ), one has
F(x)+ 〈∇F(x),w− x〉 − 1

2 ‖w− x‖2ΛF
≤ F(w) ≤ F(x)+ 〈∇F(x),w− x〉+ 1

2 ‖w− x‖2ΛF
(8.41)

for all x ,w ∈ �∑
i ni , see [19, Prop. A.24]. Let us denote

MΓ(w , x) B F(x) + 〈∇F(x),w − x〉 + G(w) + 1
2 ‖w − x‖2

Γ−1

the quantity being minimized (with respect to w) in the definition (8.8a)
of the FBE. It follows from (8.41) that

Φ(w) + 1
2 ‖w − x‖2

Γ−1−ΛF
≤ MΓ(w , x) ≤ Φ(w) + 1

2 ‖w − x‖2
Γ−1+ΛF

(8.42)

holds for all x ,w ∈ �∑
i ni . In particular,MΓ is a majorizing model for Φ, in

the sense thatMΓ(x , x) � Φ(x) andMΓ(w , x) ≥ Φ(w) for all x ,w ∈ �∑
i ni .

In fact, as explained in Section 8.2.1, while a Γ-forward-backward step
z ∈ Tfb

Γ (x) amounts to evaluating a minimizer of MΓ( · , x), the FBE is
defined instead as the minimization value, namely Φfb

Γ (x) � MΓ(z , x)
where z is any element of Tfb

Γ (x).

8.7.1 Further results
This section contains a list of auxiliary results invoked in the main proofs
of Section 8.2.

195



Lemma8.21. Suppose thatAssumption 8.I holds, and let two sequences (uk)k∈�
and (vk)k∈� satisfy vk ∈ Tfb

Γ (uk) for all k and be such that both converge to a
point u? as k →∞. Then, u? ∈ Tfb

Γ (u?), and in particular 0 ∈ ∂̂Φ(u?).
Proof. Since ∇F is continuous, it holds that uk − Γ∇F(uk) → u? − Γ∇F(u?)
as k →∞. From outer semicontinuity of proxΓ−1

G [144, Ex. 5.23(b)] it then
follows that

u? � lim
k→∞

vk ∈ limsup
k→∞

proxΓ−1

G (uk − Γ∇F(uk))
⊆ proxΓ−1

G (u? − Γ∇F(u?)) � Tfb
Γ (u?),

where the limit superior is meant in the Painlevé-Kuratowski sense, cf.
[144,Def. 4.1]. The optimality conditions definingproxΓ−1

G [144, Thm. 10.1]
then read

0 ∈ ∂̂
(
G +

1
2 ‖ · − (u? − Γ∇F(u?))‖2

Γ−1

)
(u?)

� ∂̂G(u?) + Γ−1 (u? − (u? − Γ∇F(u?)))
� ∂̂G(u?) + ∇F(u?) � ∂̂Φ(u?),

where the first and last equalities follow from [144, Ex. 8.8(c)].

Lemma 8.22. Suppose that Assumption 8.I holds and that function G is convex.
Then, the following hold:

(i) proxΓ−1

G is (single-valued and) firmly nonexpansive (FNE) in the metric
‖ · ‖Γ−1 ; namely, for all u, v

‖ proxΓ−1

G (u) − proxΓ−1

G (v)‖2Γ−1 ≤ 〈proxΓ−1

G (u) − proxΓ−1

G (v), Γ−1(u − v)〉
≤ ‖u − v‖2

Γ−1 ; (8.43)

(ii) the Moreau envelope GΓ
−1 is differentiable: ∇GΓ

−1
� Γ−1(id − proxΓ−1

G );
(iii) for every x ∈ �∑

i ni it holds that

dist(0, ∂Φfb
Γ (x)) ≤

N+maxi {γi L fi }
N mini {√γi} ‖x −Tfb

Γ (x)‖Γ−1 ;

(iv) Tfb
Γ is LT-Lipschitz continuous in the metric ‖ · ‖Γ−1 for some LT ≥ 0;

if in addition fi is µ fi -strongly convex, i ∈ [N], then LT ≤ 1 − δ for
δ �

1
N mini∈[N]

{
γiµ fi

}
.
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Proof.

♠ 8.22(i) and 8.22(ii) See [13, Prop.s 12.28 and 12.30].

♠ 8.22(iii) Let D ⊆ �∑
i ni be the set of points at which ∇F is differentiable.

From the chain rule of differentiation applied to the expression (8.8d)
and using assertion 8.22(ii), we have that Φfb

Γ is differentiable on D with
gradient

∇Φfb
Γ (x) �

[
I − Γ∇2F(x)]Γ−1 [x −Tfb

Γ (x)
] ∀x ∈ D.

Since D is dense in �
∑

i ni owing to Lipschitz continuity of ∇F, we may
invoke [144, Thm. 9.61] to infer that ∂Φfb

Γ (x) is nonempty for every x ∈
�

∑
i ni and

∂Φfb
Γ (x) ⊇ ∂BΦ

fb
Γ (x) �

[
I − Γ∂B∇F(x)]Γ−1 [x −Tfb

Γ (x)
]

�
[
Γ−1 − ∂B∇F(x)] [x −Tfb

Γ (x)
]
,

where ∂B denotes the (set-valued) Bouligand differential [68, §7.1]. The
claim now follows by observing that each element of ∂B∇ fi(xi) has norm
bounded by L fi and ∂B∇F(x) � 1

N blkdiag(∂B∇ f1(x1), . . . , ∂B∇ fN (xN )).
♠ 8.22(iv) Lipschitz continuity follows from assertion 8.22(i) together
with the fact that Lipschitz continuity is preserved by composition. Sup-
pose now that fi is µ fi -strongly convex, i ∈ [N]. By [127, Thm 2.1.12] for
all xi , yi ∈ �ni

〈∇ fi(xi) − ∇ fi(yi), xi − yi〉 ≥ µ fi L fi
µ fi +L fi

‖xi − yi ‖2 + 1
µ fi +L fi

‖∇ fi(xi) − ∇ fi(yi)‖2.
(8.44)

For the forward operator we have

‖(id− γi
N∇ fi)(xi)−(id− γi

N∇ fi)(yi)‖2

�‖xi−yi ‖2+ γ2
i

N2 ‖∇ fi(xi)−∇ fi(yi)‖2− 2γi
N 〈xi−yi ,∇ fi(xi)−∇ fi(yi)〉

(8.44)
≤

(
1− γ

2
i µ fi L fi

N2

)
‖xi−yi ‖2− γi

N

(
2− γi

N (µ fi +L fi )
)
〈∇ fi(xi)−∇ fi(yi),xi−yi〉

≤
(
1− γ

2
i µ fi L fi

N2

)
‖xi−yi ‖2− γiµ fi

N

(
2− γi

N (µ fi +L fi )
) ‖xi−yi ‖2

�

(
1− γiµ fi

N

)2
‖xi−yi ‖2 ,
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where strong convexity and the fact that γi < N/L fi ≤ 2N/(µ fi +L fi ) was
used in the second inequality. Multiplying by γ−1

i and summing over i
shows that id − Γ∇F is (1 − δ)-contractive in the metric ‖ · ‖Γ−1 , and so is
Tfb
Γ � proxΓ−1

G ◦(id − Γ∇F) as it follows from assertion 8.22(i).

The next result recaps an important property that the FBE inherits
from the cost function Φ that is instrumental for establishing global con-
vergence and asymptotic linear rates for the BC-Algorithm 8.1. The result
falls as special case of [181, Thm. 5.2] after observing that

Φfb
Γ (x) � inf

w
{Φ(w) + DH(w , x)},

where DH(w , x) � H(w)−H(x)− 〈∇H(x),w− x〉 is the Bregman distance
with kernel H �

1
2 ‖ · ‖2Γ−1 − F.

Lemma 8.23 ([181, Thm. 5.2]). Suppose that Assumption 8.I holds and for γi ∈
(0, N/L fi ), i ∈ [N], let Γ � blkdiag(γ1In1 , . . . , γNInN ). IfΦ has the KL property
with exponent θ ∈ (0, 1) (as is the case when fi and G are semialgebraic), then
so does Φfb

Γ with exponent max {1/2, θ}.
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Conclusions

In this thesis a new three term splitting was proposed that solves mono-
tone inclusions involving the sumofmaximallymonotone, cocoercive and
monotone linear operators. Classical methods such as forward-backward
and Douglas-Rachford splittings are special cases of the new splitting.
This new splitting is leveraged for developing a unifying framework for
primal-dual algorithms. It is shown that, by selecting different param-
eters, (extensions to) known algorithms as well as novel primal-dual
methods are obtained. Moreover, owing to this unified analysis linear
convergence is deduced for many primal-dual algorithms based on mild
regularity conditions for the cost functions.Most notably, said algorithms
achieve linear convergence when the cost functions are piecewise linear-
quadratic.

A randomized block-coordinate primal-dual algorithm was devel-
oped that is particularly suitable for distributed applications. It is shown
that it leads to asynchronous (randomized) distributed algorithmswhere
both the updates and stepsizes only depend on local information. This
is of great practical importance, not only because it allows plug-and-play
implementations but also because it leads to larger stepsizes that depend
on local Lipschitz constants rather than on the global one. Our compu-
tational tests have shown its superior performance in distributed model
predictive control with dynamic coupling.

In the context of structured finite sum minimization over graphs, we
have seen that solving the correspondingmonotone inclusionwith AFBA
leads to novel distributed algorithms. In the context of general struc-
tured optimization overmessage-passing architectures, we have seen that
bounded communication delays are tolerated provided that some strong
convexity assumptions hold.

This thesis has also studied a block-coordinate (BC) variant of proxi-
mal gradient method for nonconvex problems. In the nonconvex setting
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neither the distance from the solution nor the cost function are viable
Lyapunov function candidates. We have shown that forward-backward en-
velope is a particularly suitable candidate in this setting. A sure descent is
established for the block-coordinate scheme and convergence is analyzed
under very general sampling strategies. When applied to regularized fi-
nite summinimization, the proposed BC scheme leads to a generalization
of the Finitio/MISO algorithm. As another prominent example, when ap-
plied to the regularized sharing problem it results in a novel incremental
aggregated method.

Future directions
Several future researchdirectionswerediscussed in each of the individual
chapters. Here, we outline some other general ideas for future research.

The algorithms considered in this thesis comprise of simple fixed
point iterations, employ constant stepsizes, scale well, and are suitable
for distributed and parallel computations. However, like other first-order
methods they struggle in reaching high precision, and are sensitive to ill
conditioning,which can result indeterioration of performance. Therefore,
an important future research direction is to develop synchronous and
asynchronous distributed Newton-type algorithms.

Another important future research direction relates to incremental ag-
gregated algorithms. While several such algorithms have been proposed
over the years, their convergence analyses are typically rather compli-
cated and/or are limited to the strongly convex case. In Chapter 8 a
connection was established between (a class of) such algorithms and a
block-coordinate proximal gradient method in the fully nonconvex case.
However, there are several other incremental algorithms that are not cov-
ered by this analysis. In addition to this, in Chapter 8 it was shown that
the forward-backward envelope is a particularly suitable Lyapunov func-
tion for the nonconvex BC proximal gradient algorithm. Based on this,
ongoing research is investigating a linesearch strategy that extends that
of [158] to the block-coordinate case. This in turn opens up the possibility
of developing Newton-type incremental aggregated algorithms. Another
important extension is to study the Bregman variants by exploiting Breg-
man forward-backward envelope [2] which would greatly expand the
scope of the algorithms.
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