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1. Bargagli-Stoffi, F. J., Tortù, C., Forastiere, L. 2020 “Heterogeneous Treat-

ment and Spillover Effects under Clustered Network Interference.”, work-
ing paper

2. Lee, K., Bargagli-Stoffi, F. J., Dominici, F. 2020 “Causal Rule Ensemble: In-
terpretable Inference on Heterogeneous Treatment Effects.”, working pa-
per

3. Bargagli-Stoffi, F. J., De Beckker, K., De Witte, K., Maldonado, J. 2020 “As-
sessing Sensitivity of Machine Learning Predictions. A Novel Toolbox with
an Application to Financial Literacy.”, working paper

4. Bargagli Stoffi, F. J., Riccaboni, M., Rungi, A. 2020 “Machine Learning for
Zombie Hunting. Firms’ Failures and Financial Constraints.” FEB Research
Report Department of Economics DPS20. 06.

5. Bargagli Stoffi, F. J., Cevolani, G., Gnecco, G. 2020 “Occam’s Razor and
Statistical Learning Theory”, working paper

6. Bargagli-Stoffi, F. J., De Witte, K. Gnecco. G. 2019 “Heterogeneous Causal
Effects with Imperfect Compliance: a Novel Bayesian Machine Learning
Approach.” arXiv preprint arXiv:1905.12707.

xx



Presentations

1. St. Gallen University Invited Seminar, fall 2020, St. Gallen, Switzerland

2. Data Science for Impact Evaluation webinar (organizer), July 2020

3. International Conference on Machine Learning, Optimization, and Data
Science, July 2020, Siena, Italy

4. Flemish Ministry of Education invited seminar February 2020, Brussels,
Belgium

5. Bank of England/King’s College conference on ”Big Data and Machine
Learning: Interpretability and Model Uncertainty” November 2019, Lon-
don, UK

6. Sant’Anna School for Advanced Studies Research Symposium, October
2019, Pisa, Italy

7. Harvard Data Science Initiative Research Symposium, May 2019, Cam-
bridge, MA, USA

8. Atlantic Causal Inference Conference May 2019, Montréal, Canada
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Abstract

In this Dissertation, we deal with a series of applications of machine
learning in the fields of social and health sciences. We introduce a set
of novelties in the traditional usage of machine learning algorithms for
predictive and causal inference tasks. In Part 1, we explore the field of
machine learning for causal inference and we introduce two innovative
techniques that combine state-of-the-art machine learning algorithms
with causal inference methodologies. In the first Chapter, we introduce a
novel Bayesian tree-based methodology to draw causal inference on het-
erogeneous effects in quasi-experimental scenarios. In the second Chap-
ter, we account for possible drawbacks of tree-based methodologies by
proposing a composite algorithm with a high level of interpretability and
precision. In Part 2, we introduce applications of machine learning pre-
dictive power to forecast students’ financial literacy scores and firm’s fi-
nancial distress. In the third Chapter, we innovate the applied machine
learning literature by proposing a novel sensitivity analysis for predic-
tions. Finally, in the fourth Chapter, we show how economic intuition
can boost the performance of machine learning algorithms. The Disserta-
tion contributes to the literatures on causal and predictive machine learn-
ing mainly by: (i) extending the current framework to novel scenarios
and applications (Chapter 1 - Chapter 3); (ii) introducing interpretability
in the learning models (Chapter 1 - Chapter 2); (iii) developing a novel
methodology to assess the robustness of predictions (Chapter 3); (iv) in-
forming the choice of the technique used by specific economic knowl-
edge on the field of investigation (Chapter 4). In the applied Sections of
each Chapter, we answer policy relevant questions that pave the way to
the usage of machine learning for targeted interventions.
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Introduction

In recent years, the ability of machines to solve increasingly more com-
plex tasks has grown exponentially (Sejnowski, 2018). The availability of
learning algorithms that deal with tasks such as facial and voice recog-
nition, automatic driving, and fraud detection (among the others) makes
the various applications of artificial intelligence a hot topic not just in spe-
cialized literature but also in other media outlets. The development of
intelligent machines that can mimic inherently human functions such as
learning and problem solving (Russell & Norvig, 2016) is revolutionizing
our economy, healthcare, welfare and transports systems, not to mention
our cities, houses, jobs, and, ultimately, our lives.

Even if artificial intelligence is often perceived as a relatively recent
field of study, some of the most wide spread algorithms in its sub-field of
machine learning1 are the improved versions of learning algorithms that
were first developed at the beginning of the second half of the twentieth
century. In fact, for many decades, computer scientists have been using
algorithms that automatically update their course of action to better their
performance. Already in the 1950’s, Arthur Samuel developed a program
to play checkers that improved its performance by learning from its pre-
vious moves. The term “machine learning” was coined in that context,
and is the field of study that gives computers the ability to learn without

This Chapter extends Bargagli-Stoffi, Niederreiter and Riccaboni (2020).
1Artificial intelligence is divided in subfields based on the different tasks being tackled:

e.g., machine learning deals with the design and implementation of learning algorithms,
natural language processing deals with speech recognition, understanding and reproduction,
robotics deals with the design and construction of robots, and so on.
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being explicitly programmed, according to Samuel (1959).

Social and health sciences haven’t been immune to the large spread of
machine learning applications. Starting from the call of Varian (2014) on
the potential applications of machine learning in economics, there has
been a rise in the usage of machine learning to address issues related
to policy prediction and evaluation. Indeed, machine learning provides
a set of powerful tools that can be applied both to investigate at a finer
and more granular level research questions that were already been raised
in previous literature (Cockx et al., 2019; Davis & Heller, 2017; Dubé &
Misra, 2017; Kleinberg et al., 2015), and to open new fields of investiga-
tion (Kleinberg et al., 2017; Plonsky et al., 2017). The huge impact of these
methodologies on the advancement of sciences is proved by the fact that
the prestigious scientific journal Nature recently kicked off a new collec-
tion on the topic of “Machine learning for healthcare”2.

To better understand how and why these methods are having such a
huge impact, let us provide an insight on how machine learning works
in practice. Tom M. Mitchell defined the learning component of ma-
chine learning as follows: “a computer program is said to learn from expe-
rience E with respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with experience E”
(Mitchell, 1997, p. 2). The E component of the algorithm can be thought
as a set of data that are used as an input for the machine learning model,
while the performance measure P is a measure of the quality of model’s
outputs3. Most machine learning methods can be divided in two main
branches with respect to the task T being addressed: (i) unsupervised
learning and (ii) supervised learning models. Unsupervised learning refers
to those techniques used to draw inferences from datasets consisting of
input data without labelled outcomes . These algorithms are used to per-
form tasks such as clustering and pattern mining. Supervised learning
refers to the class of algorithms employed to make predictions on la-

2This paper’s collection can be found on Nature’s website at the following address:
https://www.nature.com/collections/zbkpvddmhm.

3The choice of the right performance measure is crucial and is covered in more detail in
Section 1.
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belled outcome values (i.e., discrete and continuous outcomes)4. These
techniques use a known dataset with input data and outcome values,
referred as training dataset, to learn how to successfully perform predic-
tions on the labelled outcomes. The learned decision rules can then be
used to predict unknown outcomes for a new set of observations. Ma-
chine learning algorithms provide great added value in such predictive
tasks since they are specifically designed for such purposes (Kleinberg
et al., 2015). Moreover, the non-parametric nature of machine learning
algorithms makes them suited to uncover hidden relationships between
the predictors and the outcome variable that could be overlooked by tra-
ditional econometric approaches. Indeed, the latter models – e.g., ordi-
nary least squares and logistic regression – are built assuming a set of
restrictions on the functional form of the model and on the statistical
distributions of the errors to guarantee statistical properties such as esti-
mator unbiasedness and consistency. Machine learning algorithms often
relax those assumptions and the functional form is dictated by the data
at hand (the phrase “data-driven models”, often used to refer to machine
learning algorithms, highlights this feature). This characteristic makes
machine learning algorithms more adaptive and inductive, therefore en-
abling more accurate predictions for future outcome realizations.

In this Dissertation, we deal with a series of applications of machine
learning in the fields of social and health science. We introduce a set of
novelties in the traditional usage of machine learning algorithms for pre-
dictive and causal inference tasks. Before getting into the nuts and bolts
of the Dissertation, let us set the stage on machine learning and its appli-
cations. In Section 1, we introduce a very general overview on machine
learning and a high-level discussion on the most widely used algorithms.
Section 2 briefly introduces the main applications of machine learning in
social sciences and categorizes them. In Section 3, we draw the outline of
the Dissertation and we highlight how each Chapter contributes to the
related machine learning literature.

4Henceforth, we refer to supervised learning algorithm simply as “machine learning”
as it is common usage in the applied machine learning literature.
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1 Machine learning

In his famous paper on the difference between model-based and data-
driven statistical methodologies Leo Breiman stated, referring to the sta-
tistical community, that “there are two cultures in the use of statistical mod-
eling to reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and treats
the data mechanism as unknown. [...] If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence on data
models and adopt a diverse set of tools” (Breiman et al., 2001, p. 199). In this
quote Breiman catches the essence of machine learning algorithms: their
ability to capture hidden patterns in the data by directly learning from
them, without the restrictions and assumptions of model-based statisti-
cal methods.

Machine learning algorithms employ a set of data with input data and
outcome values, referred to as training sample, to learn and make predic-
tions (in-sample predictions) while another set of data, referred to as test
sample, is kept separate to validate the predictions (out-of-sample predic-
tions). Training and testing sets are usually built by randomly sampling
observations from the initial dataset. In the case of panel data, the test-
ing sample should contain only observations that occurred later in time
than the observations used to train the algorithm to avoid the so-called
look-ahead bias. This ensures that future observations are predicted from
past information, not vice versa.

When the dependent variable is categorical (e.g., yes/no, categories 1
to 5, etc) the task of the machine learning algorithm is referred to as a clas-
sification problem, whereas when the dependent variable is continuous it
is referred to as a regression problem.

The common denominator of machine learning algorithms is that
they take an information set XN×P – namely, a matrix of features (also
referred to as attributes or predictors) – and map it to an N -dimensional
vector of outputs y (also referred to as actual values, dependent vari-
able or response variable), where N is the number of observations i =

1, . . . , N and P is the number of features. The functional form of this
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relationship is very flexible and gets updated by evaluating a loss func-
tion. The functional form is usually modelled in two steps (Mullainathan
& Spiess, 2017):

1. pick the best in-sample loss-minimizing function f(·):

argmin
N∑
i=1

L
(
f(xi), yi

)
over f(·) ∈ F s. t. R

(
f(·)

)
≤ c (1)

where
∑N
i=1 L

(
f(xi), yi

)
is the in-sample loss functional to be min-

imized (i.e., the mean-squared-error of prediction), f(xi) are the
predicted (or fitted) values (commonly reported also as ŷi), yi are
the actual values, f(·) ∈ F is the function class of the machine
learning algorithm and R

(
f(·)

)
is the complexity functional that

is constrained to be less than a certain value c ∈ R5;

2. estimate the optimal level of complexity using empirical tuning
through cross-validation.

Cross-validation refers to the technique that is used to evaluate pre-
dictive models by training them on the training sample and evaluating
their performance on the test sample6. Then, on the test sample the algo-
rithm’s performance is evaluated on how well it has learned to predict
the dependent variable y. By construction, many machine learning algo-
rithms tend to perform extremely well on the training data. This phe-
nomenon is commonly referred to as over-fitting the training data because
the model shows a very high predictive power on the training data and,
consequently, a poor fit on the test data. This lack of generalizability of the
model’s prediction from one sample to another can be addressed by pe-
nalizing the model’s complexity. The choice of a good penalization algo-
rithm is crucial for every machine learning technique to avoid this class
of problems.

5For the sake of simplicity, one can think of this parameter as a budget constraint that
limits the complexity of the model.

6This technique (hold-out) can be extended from two to k folds. In k-folds cross-
validation, the original dataset is randomly partitioned into k different subsets. The model
is constructed on k − 1 folds and evaluated on 1 fold repeating the procedure until all the
k folds are used to evaluate the predictions.
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To optimize the complexity of the model, the performance of the
machine learning algorithm can be assessed by employing various per-
formance measures on the test sample. It is important for scholars and
practitioners to choose the performance measure that best fits the pre-
diction task at hand and the structure of the response variable. In re-
gression tasks different performance measures can be employed. The
most common are the mean-squared-error (MSE), the mean-absolute-
error (MAE) and the R2 (and its adjusted version). In classification tasks
the most straightforward method is to compare true outcomes with pre-
dicted ones via confusion matrices from where common evaluation met-
rics, such as true positive rate (TPR), true negative rate (TNR), and ac-
curacy (ACC), can be easily calculated (see Figure 1). Another popular
measure of prediction quality for binary classification tasks (i.e., positive
vs. negative response), is the Area Under the receiver operating Curve
(AUC) that relates how well the trade-off between the model’s TPR and
TNR is solved. TPR refers to the proportion of positive cases that are
predicted correctly by the model, while TNR refers to the proportion of
negative cases that are predicted correctly. Values of AUC range between
0 (total misprediction) and 1 (perfect prediction), where 0.5 indicates that
the model has the same prediction power as a random assignment. The
choice of the appropriate performance measure is key to communicate
the fit of a machine learning model in an informative way.

Consider the example in Figure 1 in which the testing data contains
82 positive outcomes (e.g., firm survival) and 18 negative outcomes (e.g.,
firm exit), and the algorithm predicts 80 of the positive outcomes cor-
rectly but only one of the negative ones. The simple accuracy measure
would indicate 81% correct classifications, but the results suggest that
the algorithm has not successfully learned how to detect negative out-
comes. In such a case, a measure that considers the unbalanced out-
comes in the testing set, like balanced accuracy (BACC), defined as
((TPR+ TNR/2) = 51.6%), or the F1-score would be more suited. Once
the algorithm has been successfully trained and its out-of-sample per-
formance has been properly tested, its decision rules can be applied to
predict the outcome of new observations, for which outcome informa-
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Figure 1: Exemplary confusion matrix for assessment of classification per-
formance.

Source Bargagli-Stoffi, Niederreiter, et al. (2020).

tion is not (yet) known.

Choosing a specific machine learning algorithm is crucial since per-
formance, computational scalability (i.e., the ability of an algorithm to ef-
ficiently handle a growing amount of data), and interpretability differ
widely across available implementations. In this context, easily inter-
pretable algorithms are those that provide comprehensive decision rules
from which a user can retrace results (I. Lee & Shin, 2019). Usually highly
complex algorithms require a discretionary fine tuning of some model
hyper-parameters, more computational resources, and so their decision
criteria are less straightforward. Yet, the most complex algorithms do
not necessarily deliver the best predictions across applications (Kotthoff,
2016). Therefore, practitioners usually run a horse race on multiple algo-
rithms and choose the one that provides the best balance between inter-
pretability and performance on the task at hand7. In some learning appli-
cations, for which prediction is the sole purpose, different algorithms are
combined so that overall predictive performance is maximized. Learning
algorithms that are formed by multiple self-contained methods are called

7We want to stress that the concept of “best balance between interpretability and per-
formance” varies depending on the task at hand, and it is often based on scholars and
practitioners’ subjective decisions.
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ensemble learners (e.g., the super-learner algorithm by Van der Laan et
al., 2007).

Moreover, machine learning algorithms are used by scholars and
practitioners to perform predictors selection in high-dimensional set-
tings (e.g., scenarios where the number of predictors is larger than the
number of observations: small N large P settings), text analytics, and
natural language processing (NLP). The most widely used algorithms to
perform the former task are the Least-Absolute-Shrinkage-and-Selection-
Operator (LASSO) algorithm (Tibshirani, 1996) and its related versions
such as stability selection (Meinshausen & Bühlmann, 2010), C-LASSO
(L. Su et al., 2016) and R-LASSO (Belloni, Chernozhukov, Hansen, &
Kozbur, 2016). The most popular natural language processing and text
analytics machine learning algorithms are Support Vector Machines
(Steinwart & Christmann, 2008), Naı̈ve Bayes (Ng & Jordan, 2002), and
Artificial Neural Networks (Hassoun et al., 1995).

Even though some algorithms provide reasonably good predictions
across applications, it is generally difficult to understand afterwards why
a certain observation was assigned to a certain value, or why it was clas-
sified in a certain way. This issue relates to a possible trade-off between
model interpretability and predictive performance. Indeed, in the pres-
ence of high-dimensional non-linear data, less complex algorithms are
usually the ones that are easier to interpret, but also the ones associated
with the worst performance. In some applications for which prediction
is the sole purpose, a deeper analysis is not required, but commonly it is
relevant to identify the attributes that mostly influenced the prediction
outcome. There are different ways to investigate the decision rules of the
algorithms and to get a sense of variables’ importance (e.g., tree-based
methods such as Random Forest). Papers such as the one by Fisher et al.
(2019) provide robust ways to investigate which the variables with the
highest predictive power are.

Reviewing machine learning in detail would go beyond the scope of
this Introduction, however, in Table 3 we provide a basic intuition of the
machine learning methodologies employed in the Dissertation.
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Table 1: Machine learning algorithms

Method Description Interpretability Computational
Scalability

Used in
Chapter(s)

Decision Tree Decision Trees consist of a sequence of binary decision rules
(nodes) on which the tree splits into branches (edges). At each
final branch (leaf node) a decision regarding the outcome is
estimated. The sequence and definition of nodes is based on
minimizing a measure of node purity (e.g., Gini index, or
entropy for classification tasks and MSE for regression tasks).
Decision Trees are easy to interpret but sensitive to changes in
the features, that frequently lower their predictive performance
(see also Breiman, 2017).

High High 2,3,4

Random Forest Instead of estimating just one Decision Tree, Random Forest
re-samples the training set observations to estimate multiple
trees. For each tree at each node a set of m (with m < P )
predictors is chosen randomly from the features space. To obtain
the final prediction, the outcomes of all trees are averaged or in
classification tasks chosen by majority vote (see also Breiman,
2001).

Medium Medium 2,3,4,5

Bayesian
Additive
Regression
Trees

Similarly to the Random Forest algorithm, Bayesian Additive
Regression Tree is a sum-of-trees ensemble methodology. It
relies on a fully Bayesian probability model to obtain its
predictions. The Bayesian component of the algorithm is
incorporated in a set of three different priors on: (i) the structure
of the trees; (ii) the distribution of the outcome in the nodes; (iii)
the error variance (see also Chipman et al., 2010).

Medium Medium-low 2,3,4,5

Super Learner The idea behind the Super Learner is to combine some
candidate algorithms, called learners, to create a new predictive
model. The weighted convex combination of the single learner
predictions, leads to the final super-learner fit and the optimal
combination is obtained through cross-validation (see also
Van der Laan et al., 2007)

Low Low 3
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2 Literature on applied machine learning

In the previous Section, we highlighted how the strength of machine
learning comes from the fact that it provides a very flexible way to make
high-quality predictions, at the expenses of un-verifiability (or, some-
times, absence) of the model underlying assumptions. To put this in a
way that is familiar to statisticians, econometricians and quantitative so-
cial scientists, we could simplify by saying that machine learning is more
about getting a precise estimation of the output of interest, say ŷ, than a
stable, unbiased estimate of the parameters of the model, say β̂. Hence,
the largest part of applications of machine learning in social sciences
regards topics where the added value of improved predictions is large
(Kleinberg et al., 2015).

As machine learning algorithms are a relatively new set of tools, it is
important to try to categorize the various streams of literature of applied
machine learning. To do so, we rely on two review papers in this field
by Mullainathan and Spiess (2017) and Athey and Imbens (2019). The
former paper contributes to a topic-based categorization of the papers,
while the latter to a methodological one. Here, we build on the catego-
rization proposed by Mullainathan and Spiess (2017) and we integrate it
with the insights provided by Athey and Imbens (2019), with a focus on
the field of causal machine learning.

Mullainathan and Spiess (2017) highlight how the largest part of ap-
plications of machine learning in social sciences regard four subfields: (i)
machine learning for prediction in policy; (ii) machine learning for causal
inference; (iii) machine learning for the construction of new data sources;
(iv) machine learning to test theories. As this Dissertation is aimed at con-
tributing to the first two subfields, we introduce the related two streams
of literature8.

A complete review of the various applications of machine learning
for prediction policy and causal issues would go beyond the scope of the
present Introduction. Nevertheless, we want to provide to the reader a

8We refer the reader to the original paper by Mullainathan and Spiess (2017) if she wants
to deepen into machine learning applications for the construction of new data sources and
theory testing.
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brief introduction to some of the main scientific works in these fields to
better place our contributions in these streams of literature. The first sub-
field regards the most “straightforward” applications of the predictive
power of machine learning. Indeed, as Kleinberg et al. (2015) point out
in their work, there are many policy applications in which causality is
not central, or even necessary, and scholars need to rely on predictive al-
gorithms. As a toy example, let us imagine a policy-maker facing poten-
tially adverse weather conditions. On the one side, if she wants to assess
whether or not a rain-dance would help, she needs to answer to a causal
question (e.g., “could a rain-dance stop the rain?”). On the other side, if
she wants to know whether or not to buy umbrellas for her constituents,
she needs to answer a predictive question, (e.g., “will it pour with rain?”).

The latter question refers to a prediction policy problem and can be
answered by using a machine learning model with a set of appropri-
ate predictors. Prediction policy problems of various sorts have been
addressed in the literature as machine learning models can be adapted
to a wide and heterogeneous set of issues. Kleinberg et al. (2017) use a
tree-based algorithm to help judges improve their decisions on bail prob-
lems regarding whether or not to release a defendant before the trial. The
authors show that machine learning could help policy-makers to either
decrease the number of defendants detained or the risks of defendants’
recidivism and fail-to-appear, while reducing racial bias. Job market se-
lection has been widely studied through the lens of machine learning.
For instance, Kane and Staiger (2008) and Jacob et al. (2018) show how
machine learning predictions, based on the observed characteristics of
teachers, can predict their teaching quality. More generally, Chalfin et al.
(2016) show that machine learning tools can provide a value added when
facing human resources decisions. Besides job market selection, machine
learning is widely used for the prediction of firms’ dynamics9. Indeed,
Moscatelli et al. (2019) argue that machine learning outperforms stan-
dard econometric models when the predictions of firms’ distress is (i)
based solely on financial accounts data as predictors and, (ii) relies on

9We refer to Bargagli-Stoffi, Niederreiter, et al. (2020) for a detailed review of this stream
of literature.
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a large amount of data. In fact, as these algorithms are model-free, they
need large datasets (that is the reason why they are sometimes referred
to as “data hungry algorithms”) to extract the amount of information
needed to build precise predictive models. Table 2 depicts several papers
in the field of economics, computer science, statistics, business and de-
cision sciences that deal with the issue of predicting firms’ bankruptcy
or financial distress through machine learning algorithms. The former
stream of literature (bankruptcy prediction) - that has its foundations in
the seminal works of Udo (1993), K. C. Lee et al. (1996), Shin et al. (2005)
and Chandra et al. (2009) - compares the binary predictions obtained
with machine learning algorithms with the actual realized failure out-
comes and uses this information to calibrate the predictive models. The
latter stream of literature (financial distress prediction) - pioneered by Fan-
tazzini and Figini (2009) - deals with the problem of predicting default
probabilities (Moscatelli et al., 2019) or financial constraint scores (Linn
& Weagley, 2019). Even if these streams of literature tackle the issue of
firms’ viability from slightly different perspectives, they train their mod-
els on dependent variables that range from firm’s bankruptcy (see all the
“bankruptcy papers” in Table 2) to firm’s default (Behr & Weinblat, 2017;
Fantazzini & Figini, 2009; Moscatelli et al., 2019), liquidation (Bonello et
al., 2018), firm’s political connections (Mazrekay et al., 2018), and finan-
cial constraints (C. Hansen et al., 2018; Sun et al., 2017).

Above and beyond applications for prediction in policies, causal
problems can be addressed using machine learning as well. Before get-
ting in the nuts and bolts of this stream of literature, it is important to
highlight how the usage of machine learning techniques and data sci-
ence methodologies does not rule out the centrality of the usual identi-
fication assumptions that are at the foundations of any causal inference
application10. Machine learning in this sense, offers a set of tools that
widens and sharpens traditional causal inference methodologies, with-
out changing in a substantial way the usual causal framework. Schol-
ars and practitioners eager to use causal machine learning techniques,

10For a general review of causal inference in the era of data science we refer the reader to
Dominici and Mealli (2020).
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should still check for assumptions – such as (among the others) uncon-
foundedness, positivity, consistency, no-interference (Imbens & Rubin,
2015) – to hold. As the causal machine learning literature is growing at
a very fast pace, we highlight some of the main fields of applications
of this field to this day. Causal machine learning methodologies have
been applied to tackle issues regarding (i) potential outcomes imputa-
tion, (ii) doubly robust methods for the estimation of treatment effects,
(iii) heterogeneous effects detection and estimation, and (iv) instrumen-
tal variables selection11. The seminal contributions in the field of causal
machine learning are direct applications of the predictive power of ma-
chine learning for potential outcomes imputation. In fact, as causal infer-
ence is fundamentally a missing data problem (Holland, 1986), machine
learning provides a straightforward way to impute the missing poten-
tial outcome using the information for the observed potential outcomes
for units with the same treatment level as training data. Starting from this
idea, Foster et al. (2011) propose to use Random Forest (Breiman, 2001) to
perform such an imputation, while Hill (2011) develops a similar method
based on Bayesian Additive Regression Trees (Chipman et al., 2010). Fol-
lowing these seminal contributions, various techniques have been pro-
posed to estimate the missing potential outcomes and the propensity
score in a flexible way that combines these two estimation problems in
doubly robust methods (Chernozhukov et al., 2017; Chernozhukov et al.,
2016). Moreover, besides the estimation of the average treatment effect,
researchers are interested in investigating how the treatment effects vary
across different subpopulations. These subpopulations can be either de-
fined ex-ante (through some intuition on possible sources of effect vari-
ation for the phenomenon being studied), or scholars may want to let
the data speak for themselves to avoid potential cherry-picking in the selec-
tion of the subpopulations (Cook et al., 2004). In the latter case, different

11Other recent applications of causal machine learning are in panel data scenarios where
just one or very few units receive the treatment (Ben-Michael et al., 2018), settings where
there is no overlap between treated and control units (Nethery et al., 2019), or in the esti-
mation of causal effects in the presence of interference (Bargagli-Stoffi, Tortu, et al., 2020).

A more detailed set of references regarding this stream of literature will be provided in
Chapters 1 and 2.
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data-driven techniques have been used for this scope: among the others,
Athey and Imbens (2016) develop the honest causal tree algorithm build-
ing on Classification and Regression Tree (Breiman et al., 1984). Wager
and Athey (2018) and Athey et al. (2019) extend this framework by de-
veloping the Causal Forest and Generalized Random Forest algorithms,
while P. R. Hahn et al. (2020) proposes a Bayesian counterpart of the
Generalized Random Forest named Bayesian Causal Forest. These tech-
niques can be adapted for interpretable causal rules detection (K. Lee
et al., 2018) and for optimal policy estimation (Athey & Wager, 2017;
Kallus, 2018; Z. Zhou et al., 2018). Furthermore, it may be the case that
researchers are dealing with multiple instrumental variables issues and
they need some guidance regarding which one to select. Belloni et al.
(2014), Belloni, Chernozhukov, Hansen, and Kozbur (2016) propose to
use LASSO, or ridge regression (C. Hansen & Kozbur, 2014) to perform
instrumental variables selection.

3 Dissertation outline

The present Dissertation is divided in two parts. In Part 1, we explore
the field of machine learning for causal inference and we introduce two
innovative techniques that combine state-of-the-art machine learning al-
gorithms with causal inference methodologies. In the first Chapter, we
introduce a novel Bayesian tree-based methodology to draw causal infer-
ence on heterogeneous effects in quasi-experimental scenarios. In the sec-
ond Chapter, we account for possible drawbacks of tree-based method-
ologies by proposing a composite algorithm with a high level of inter-
pretability and precision. In Part 2, we introduce applications of machine
learning predictive power to forecast students’ financial literacy scores
and firm’s financial distress. In the third Chapter, we innovate the ap-
plied machine learning literature by proposing a novel sensitivity analy-
sis for predictions. Finally, in the fourth Chapter, we show how economic
intuition can boost the performance of machine learning algorithms.

The Dissertation contributes to the literatures on causal and predic-
tive machine learning mainly by: (i) extending the current framework to
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novel scenarios and applications (Chapter 1 - Chapter 3); (ii) introduc-
ing interpretability in the learning models (Chapter 2 - Chapter 4); (iii)
developing a novel methodology to assess the robustness of predictions
(Chapter 3); (iv) informing the choice of the technique used by specific
economic knowledge on the field of investigation (Chapter 4).

Below, we introduce in deeper detail these works, how they con-
tribute and innovate the existing literature, and the main research ques-
tions (RQs) that we tackle therein.

3.1 Part 1: Machine learning for causality

Part 1.1: Machine learning for heterogeneous effects

The gold standard for assessing the causal effects of an intervention is
to conduct a Randomized Control Trial (RCT). For instance, Duflo et al.
(2015) randomly selected Kenyan schools to receive funds to hire addi-
tional teachers and then evaluate the effects of this policy on students’
performance. However, it is often the case that researchers, for financial
and ethical reasons, cannot set up an experiment to assess the impact of a
given policy. In such scenarios, researchers must find quasi-experimental
set ups that allow them to draw causal conclusion.

In the first Chapter, we develop a novel machine learning algo-
rithm to draw inference on the heterogeneity of causal effects in quasi-
experimental set ups where the treatment is not randomly assigned to the
treated units. This work innovates the literature on the estimation of het-
erogeneous causal effects, by providing a tool to discover and estimate
heterogeneous effects in the presence of non-compliance between the
assignation and the reception of the treatment (these scenarios are some-
times referred as “broken randomizations”). We extend the seminal work
by Bargagli-Stoffi and Gnecco (2018), by developing a novel method-
ology that, on the one side improves over state-of-the-art methodolo-
gies such as Causal Trees with Instrumental Variables (Bargagli-Stoffi &
Gnecco, 2020) and Generalized Random Forests (Athey et al., 2019), and on
the other guarantees statistical properties of the conditional estimators
such as consistency and asymptotic normality. We show, through Monte
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Carlo simulations, that our proposed Bayesian Causal Forest with Instru-
mental Variable (BCF-IV) algorithm outperforms other machine learning
techniques tailored for causal inference in estimating the heterogeneous
causal effects.

BCF-IV provides the policy-makers with a relevant tool for real-world
evidence on treatment effect variations in observational studies. Such in-
sights on heterogeneous effects are utterly relevant for targeted policies.
Indeed, as policy-makers are always facing financial constraints, they
may want their policies to just target subsets of the population that re-
ally benefit from it (or, in turn, do not target those that do not benefit).

This is particularly true for education policies. As human capital
plays a fundamental role in modern societies (Romer, 1989), it is deemed
important to understand which the characteristics of students that get
the highest return on their performance from additional school transfers
are. Hence, the research question the we investigate in the first Chapter
is the following:

RQ1: What kinds of students most benefit from additional
school funding?

As funding is generally not assigned in a randomized way, traditional
causal machine learning techniques may fail in investigating such a re-
search question, providing biased estimates of the true conditional causal
effects. BCF-IV could be used for such a task, accounting for broken-
randomization, greatly enhancing the effectiveness of school funding.
Hence, we use BCF-IV to evaluate the heterogeneity in the effects of
a program, promoted by the Flemish Ministry of Education starting
from 2002, aimed at providing additional funding for secondary schools
which have a high share of disadvantaged students (De Witte et al., 2018).
We focus on the effects of additional funding on two outcomes: (i) stu-
dents’ performance and (ii) students’ progresses to the following year
without retention in their grades. We run our analysis on the universe of
pupils (135,682 students) in the first stage of secondary education in the
school year 2010/2011 in Flanders.

16



Part 1.2: Machine learning for interpretable causal rules

A main drawback of machine learning methods in general, and causal
machine learning models in particular, is that they may lack inter-
pretability. As causal machine learning is employed more and more often
to aid policy-makers in high-stakes scenarios, it is deemed important to
provide information on simple causal rules (e.g., in the form of a col-
lection of heterogeneous subgroups to target) that can be exploited to
improve policy effectiveness and to ensure that stakeholders and policy-
makers understand (and, in turn, trust) the functionality of these models.
In the second Chapter, we propose a new causal rule ensemble (CRE)
method that has two main features: 1) ensures interpretability of the
causal rules; and 2) provides a level of statistical precision of the esti-
mated conditional causal effects for each of the newly discovered rules
that is comparable to the most accurate causal machine learning algo-
rithms.

Besides providing methodological innovations, CRE accommodates
for central problems in the discovery of interpretable heterogeneous
effects. In fact, tree-based methods provide the highest level of inter-
pretability but have several limitations: (i) they are unstable; (ii) they al-
low for the discovery of a limited set of subgroups (i.e., subgroups that
can be detected through a binary Decision Tree); (iii) they may fail to
distinguish between effect modifiers and confounders.

To adjust for these limitations and develop an interpretable algo-
rithm, we use a sample-splitting approach that splits the total sample
into two smaller subsamples: the discovery subsample and inference
subsample. In the discovery subsample, we generate a large set of causal
rules through state-of-the-art causal machine learning methodologies,
and then select a few of them through regularization. In the inference
subsample, we estimate the causal treatment effect for each rule and its
confidence interval. We provide theoretical results that guarantee con-
sistency of the estimated causal effects for the newly discovered rules.
Furthermore, via Monte Carlo simulations, we show that the causal rule
ensemble method has an excellent performance with respect to its abil-
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ity to discover the rules and then accurately estimate the causal effects,
under different scenarios.

Effect variation discovery is particularly important when we deal
with health-related issues and it is at the very foundations of the recently
established field of personalized medicine. In the application section of the
Chapter, we use the proposed method to the study of the effects of long-
term exposure to air pollution on the 5-year mortality rate of the New
England Medicare population in United States finding the subgroups of
people who are more vulnerable. While in the first Chapter our goal is to
estimate the subpopulation that benefits the most from the intervention,
here we want to discover the people that are more at risk of develop-
ing diseases as a consequence of exposure to air pollution. Hence, our
research question is the following:

RQ2: What characteristics make people most vulnerable to
the negative effects of higher levels of pollution?

To investigate this research question, we use data on Medicare beneficia-
ries in New England regions of the United States between 2000 and 2006
and the pollution levels for the same regions and time span.

3.2 Part 2: Machine learning for prediction

Part 2.1: Using machine learning for robust predictions in a novel ap-
plication

In the third Chapter, we propose a general algorithm to assess how the
omission of an unobserved variable affects the predictions and the per-
formance of a machine learning model. We argue that there is a need for
specific techniques which can assess, what we call, the sensitivity of fore-
casts to variations in the set of predictors used to train the model. Indeed,
we claim that a desirable property of any (well-performing) predictive
model is not to show extreme variations in its prediction and accuracy
following the inclusion of a novel variable in the model. We claim that
assessing the stability of an algorithm is central in any high-stakes pre-
diction.

18



The proposed methodology extends the usage of machine learning
from pointwise predictions to inference and robustness analysis. In the
application, we show how our framework can be applied to data with
inherent uncertainty, as school outcomes. First, using Bayesian Additive
Regression Trees (Chipman et al., 2010), we predict students’ financial
literacy scores (FLS) for a pool of students with missing scores. We apply
our proposed framework to the 2015 data of the OECD’s Program for In-
ternational Student Assessment (PISA) for Belgium. Belgium provides a
very interesting case study as all regions of the country participated in
the general assessment of PISA, while only selected regions participated
in the financial literacy assessment. This structure of the data allows us
to use a common set of predictors for all regions from the general assess-
ment to predict financial literacy outcomes for students in the regions
that did not participate in this part of PISA. Then, we assess the sensi-
tivity of predictions by comparing models with and without a synthetic
predictor which highly correlates with the outcome variable but is un-
correlated to the observed set of predictors. The methodology that we
develop provides an answer to the following research question:

RQ3: How sensitive are the predictions of student financial
literacy scores to a potentially unobserved predictor with
high explanatory power?

Our proposed framework has applications beyond the scope of financial
literacy. From a policy perspective, it creates the opportunity to predict
missing observations in large administrative datasets in service of tar-
geted policies, and it explores how robust machine learning predictions
are.

Part 2.2: Improving machine learning predictions through economic
intuition

In the fourth and last Chapter, we exploit machine learning techniques in
a prediction policy setting. Our task is to improve current methodologies
in predicting the risk of failure of firms and to provide a novel definition
of zombie firms. This Chapter contributes both to the policy prediction
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literature, to the literature on firms’ distress, bankruptcy prediction and
zombie firms by introducing for the first time in this setting a machine
learning methodology that outperforms all the state-of-the-art methods
employed thus far in the literature (see Table 2 on how our contribution
compares to the literature).

The estimation of default probabilities, financial distress and the
predictions firms’ bankruptcies based on balance sheet data and other
sources of information on firms’ viability is a highly relevant topic for
regulatory authorities, financial institutions, and banks. In fact, regula-
tory agencies often evaluate the ability of banks to assess enterprises vi-
ability as this affects their capacity of best allocating financial resources
and, in turn, their financial stability. Hence, a higher predictive power of
machine learning algorithms can boost targeted financing policies that
lead to safer allocation of credit.

We show that, on the one side, informed choices of the predictors
can boost the performance of the machine learning model, and on the
other side economic intuition can guide researchers in the choice of the
machine learning algorithm to be used for the data analysis. In fact, we
find that machine learning methodology that incorporates the informa-
tion on missing data into its predictive model – i.e., the Bayesian Ad-
ditive Regression Trees with Missing Incorporated in Attributes algo-
rithm by Kapelner and Bleich (2015) – can lead to staggering increases
in the predictive performances when the predictors are missing-non-at-
random (MNAR) and their missingness patterns are correlated with the
outcome. We argue that often times the decision not to release financial
account information is driven by firm’s financial distress. Hence, the re-
search question that we investigate is the following:

RQ4: Can economic intuition boost the machine learning
predictions of firms’ distress and provide insight on non-
viable firms that do, however, still survive?

We start by training our algorithm on about 305,000 firms active in Italy
in the period 2008-2017. We compare our technique to the use of previous
financial indicators, including Z-scores and distance-to-default, more tra-
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ditional econometric techniques, and other widely used machine learn-
ing algorithms. Moreover, we discuss how machine learning helps in
identifying zombie firms, which we define as firms that persist in status of
a high risk of failure. More generally, we highlight how statistical learn-
ing may help in the design of target-specific and evidence-based policies
in presence of market selection failures, for example in the design of op-
timal bankruptcy laws.
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Table 2: Machine learning literature on firms’ failure and financial distress

Author, Year Domain Output Country, time Dataset size SL-method Attributes GOF

Alaka et al. (2018) CS Bankruptcy UK (2001-2015) 30,000 NN 5 88% (AUC)
Barboza et al. (2017) CS Bankruptcy USA (1985-2014) 10,000 SVM, RF, BO,

BA
11 93% (AUC)

Bargagli-Stoffi, Riccaboni, et al.
(2020)

ECON Fin. distress ITA (2008-2017) 305,000 BART-MIA 46 97%(AUC)
63% (F1-score)

Behr and Weinblat (2017) ECON Bankruptcy INT (2010-2011) 945,062 DT, RF 20 85% (AUC)
Bonello et al. (2018) ECON Fin. distress USA (1996-2016) 1,848 NB, DT, NN 96 78% (ACC)
Brédart (2014) BMA Bankruptcy BEL (2002-2012) 3,728 NN 3 81%(ACC)
Chandra et al. (2009) CS Bankruptcy USA (2000) 240 DT 24 75%(ACC)
Cleofas-Sánchez et al. (2016) CS Fin. distress INT (2007) 240-8,200 SVM, NN, LR 12-30 78% (ACC)
Danenas and Garsva (2015) CS Fin. distress USA (1999-2007) 21,487 SVM, NN, LR 51 93% (ACC)
Fantazzini and Figini (2009) STAT Fin. distress DEU (1996-2004) 1,003 SRF 16 93% (ACC)
C. Hansen et al. (2018) ECON Fin. distress DNK (2013-2016) 278,047 CNN, RNN 50 84% (AUC)
Heo and Yang (2014) CS Bankruptcy KOR (2008-2012) 30,000 ADA 12 94% (ACC)
Hosaka (2019) CS Bankruptcy JPN (2002-2016) 2,703 CNN 14 18% (F1-score)
S. Y. Kim and Upneja (2014) CS Bankruptcy KOR (1988-2010) 10,000 ADA, DT 30 95% (ACC)
K. C. Lee et al. (1996) BMA Bankruptcy KOR (1979-1992) 166 NN 57 82% (ACC)
Liang et al. (2016) ECON Bankruptcy TWN (1999-2009) 480 SVM, KNN 190 82% (ACC)
Linn and Weagley (2019) ECON Fin. distress INT (1997-2015) 48,512 DRF 16 15% (R2)
Moscatelli et al. (2019) ECON Fin. distress ITA (2011-2017) 250,000 RF 24 84%(AUC)
Shin et al. (2005) CS Bankruptcy KOR (1996-1999) 1,160 SVM 52 77%(ACC)
Sun and Li (2011) CS Bankruptcy CHN 270 CBR, KNN 5 79% (ACC)
Sun et al. (2017) BMA Fin. distress CHN (2005-2012) 932 ADA, SVM 13 87%(ACC)
Tsai and Wu (2008) CS Bankruptcy INT 690-1,000 NN 14-20 79-97%(ACC)
Tsai et al. (2014) CS Bankruptcy TWN 440 ANN, SVM 95 86% (ACC)
G. Wang et al. (2014) CS Bankruptcy POL (1997-2001) 240 DT, NN, NB 30 82% (ACC)
Udo (1993) CS Bankruptcy KOR (1996-2016) 300 NN 16 91% (ACC)
Zieba et al. (2016) CS Bankruptcy POL (2000-2013) 10,700 BO 64 95% (AUC)

Abbreviations used - Domain: ECON: Economics, CS: Computer Science, BMA: Business, Management, Accounting, STAT: Statistics. Country: BEL: Belgium, ITA: Italy, DEU: Germany, INT: International, KOR: Korea,

USA: United states of America, TWN: Taiwan, CHN: China, UK: United Kingdom, POL: Poland. Primary SL-method: ADA: AdaBoost, ANN: Artificial Neural Network, CNN: Convolutional Neural Network, NN:

Neural Network, GTB: Gradient Tree Boosting, RF: Random Forest, DRF: Decision Random Forest, SRF: Survival Random Forest, DT: Decision Tree, SVM: Support Vector Machine, NB: Naive Bayes, BO: Boosting, BA:

Bagging, KNN: K-Nearest Neighbour, BART: Bayesian Additive Regression Tree, DT: Decision Tree, LR: Logistic Regression. Rate: ACC: Accuracy, AUC: Area under the receiver operating curve. The year was not

reported when it was not possible to recover this information from the papers. Source: Bargagli-Stoffi, Niederreiter, et al. (2020).
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Part 1
Machine learning for causality
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Chapter 1

Heterogeneous causal
effects with imperfect
compliance

In social and health sciences the largest part of scientific research ques-
tions deals with inferring a causal relationship (e.g., evaluating the im-
pact of a policy, the effects of a drug, the returns from a marketing or
business strategy and so on). Following the growing availability of large
datasets, the necessity to deal with problems connected with potentially
heterogeneous treatment effects is stronger than what was observed in
the past. The availability of large datasets makes it possible to investigate
and, in turn, customize the causal effect estimates for population subsets
as well as for individuals (Athey, 2019). In this scenario, machine learn-
ing techniques are increasingly used to address causal inference tasks
and, in particular, to estimate heterogeneous causal effects (Athey & Im-
bens, 2016; Foster et al., 2011; Green & Kern, 2012; P. R. Hahn et al., 2020;
Hill, 2011; Lechner, 2019; K. Lee et al., 2018; X. Su et al., 2012; Wager &
Athey, 2018). A growing literature seeks to apply supervised machine

This chapter is based on Bargagli-Stoffi, De Witte and Gnecco (2019), as well as
Bargagli-Stoffi and Gnecco (2018, published in Proceeding of the 5th IEEE DSAA Conference)
and Bargagli-Stoffi and Gnecco (2020, published in International Journal of Data Science and
Analytics).
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learning techniques to the problem of estimating heterogeneous treat-
ment effects. In their seminal contributions, Hill (2011) and Foster et
al. (2011) propose to directly apply machine learning algorithms to es-
timate the unit level causal effect as a function of the units’ attributes.
In other contributions, machine learning algorithms are adapted to esti-
mate the heterogeneous causal effects (Athey & Imbens, 2016; Athey et
al., 2019; P. R. Hahn et al., 2020; Lechner, 2019; Wager & Athey, 2018).
However, most of these techniques are tailored for causal inference in
settings where the treatment is randomly assigned to the units and do
not address imperfect compliance issues. Nevertheless, in the real world,
the implementation of policies or interventions often results in imper-
fect compliance, which makes the policy evaluation complicated. Imper-
fect compliance may arise in observational studies where the assignment
to the treatment can be different from the receipt of the treatment (e.g.,
individuals are randomly assigned to a treatment, but not all the units
that are assigned to it actually receive it). Recently, some machine learn-
ing algorithms have been proposed to deal with imperfect compliance
(Athey et al., 2019; Bargagli-Stoffi & Gnecco, 2020; Hartford et al., 2016;
Johnson et al., 2019; G. Wang et al., 2018). However, these methods ex-
hibit three principal limitations: (i) random forest-based algorithms for
causal inference require large samples to converge to a good asymptotic
behaviour for the estimation of causal effects, as shown in P. R. Hahn,
Dorie, et al. (2018) and Wendling et al. (2018); (ii) deep learning-based
algorithms lack interpretability of the machine learning black-box which
can expose them to critiques, especially in the context of social sciences;
(iii) the algorithms proposed by G. Wang et al. (2018) and Bargagli-Stoffi
and Gnecco (2020), Bargagli-Stoffi and Gnecco (2018) are based on sin-
gle learning that perform worse as compared to multiple learning (i.e.,
ensemble methods)1. Moreover, in machine learning applications, infer-
ence and uncertainty quantification are of secondary importance after
predictive performance. However, in policy decision settings it is crucial
to know the credibility and variance of the counterfactual predictions

1Ensemble methods have extensively been shown to outperform single learning algo-
rithms in prediction tasks (Van der Laan et al., 2007).
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(Athey et al., 2019).

To address and accommodate these shortcomings this Chapter inno-
vates the literature in both a methodological and an empirical perspec-
tive. First, we develop a machine learning algorithm tailored to draw
causal inference in situations where the assignment mechanism is ir-
regular, namely the assignment depends on the observed and unob-
served potential outcomes (Imbens & Rubin, 2015). This methodology
contributes to the increasing use of machine learning techniques to draw
causal inference (Athey & Imbens, 2017). In particular, we propose to
modify a machine learning technique, namely, Bayesian Causal Forests,
developed for causal inference goals (P. R. Hahn et al., 2020) to fit an in-
strumental variable setting (Angrist et al., 1996). The proposed method,
Bayesian Instrumental Variable Causal Forest (BCF-IV), is an ensemble
semi-parametric Bayesian regression model that directly builds on the
Bayesian Additive Regression Trees (BART) algorithm (Chipman et al.,
2010). BART is an ensemble-of-trees approach to nonparametric regres-
sion (Starling et al., 2018), which is in turn a refined version of the random
forest algorithm (Breiman, 2001): BART obtains more precise estimates
both in non-causal inference scenarios (Chipman et al., 2010; Hernández
et al., 2018; Linero, 2018; Linero & Yang, 2018; Murray, 2017; Starling et
al., 2018) and in causal inference settings (P. R. Hahn, Dorie, et al., 2018;
P. R. Hahn et al., 2020; Hill, 2011; Logan et al., 2019) by employing a full
set of prior distributions on the depth of the trees, on the noise, and on
the outcome in their nodes.

Second, we evaluate the fit of the proposed algorithm by compar-
ing it with two alternative machine learning methods explicitly devel-
oped to draw causal inference in the presence of irregular assignment
mechanisms: namely, the Generalized Random Forests (GRF) algorithm
(Athey et al., 2019) and the Honest Causal Trees with Instrumental Vari-
ables (HCT-IV) algorithm (Bargagli-Stoffi & Gnecco, 2020). Using Monte
Carlo simulations, we evaluate each algorithm with respect to three di-
mensions: (i) the choice of the correct source of heterogeneity (i.e., the
choice of the right splitting variable); (ii) the choice of the correct cutoff,
in the case of a continuous splitting variable, and (iii) the estimation of
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the heterogeneous causal effects. These dimensions are consistent with
recent evaluations of various machine learning methods for causal in-
ference that highlight the excellence of Bayesian algorithms for causal
inference (P. R. Hahn, Dorie, et al., 2018; Wendling et al., 2018). We show
that for each dimension, BCF-IV outperforms both GRF and HCT-IV in
small samples and converges to an optimal asymptotic behaviour.

Third, we show how the proposed algorithm can be used for targeted
policies, which are increasingly relevant as the call for personalized in-
terventions has unfurled in all social sciences, especially in economics,
health and management sciences (Athey & Imbens, 2017). The main ob-
jective of targeted policies studies is to inform policy-makers about the
best allocation of treatments to individuals or sub-populations (Kitagawa
& Tetenov, 2018). The idea behind these policies is to target those obser-
vations that benefit the most from a certain intervention in order to get
either of two possible welfare gains: (i) reducing the costs of an interven-
tion with constant effect sizes, or (ii) increasing the intervention effects
for given costs (Kleinberg et al., 2017).

Fourth, in an empirical application, BCF-IV is used for the evalua-
tion of an educational policy. The evaluation of educational policies is
a promising field for the discovery of heterogeneous causal effects and,
in turn, targeted policies. This is due to at least two factors: (i) in the
education context, there is a clear source of heterogeneity given by the
disparate profiles of schools and students; and (ii) it is possible to gather
large (administrative) datasets. In a similar framework, machine learn-
ing provides a tailored, data-driven tool for the evaluation of the hetero-
geneity in the causal effects, and, consequently, the implementation of
targeted policies. In particular, we evaluate the effects of additional re-
sources for disadvantaged students on students’ performance in a fuzzy
Regression Discontinuity Design (RDD) scenario (J. Hahn et al., 2001)2.
By using a unique administrative dataset, we employ BCF-IV to evalu-
ate the heterogeneity in the effects of the ‘Equal Educational Opportu-
nities Program’ promoted by the Flemish Ministry of Education starting
from 2002. The program is aimed at providing additional funding for sec-

2The fuzzy RDD that we implement in this Chapter is described in detail in Section 3.
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ondary schools with high share of disadvantaged students (De Witte et
al., 2018). We focus on the effects of additional funding on two outcomes:
(i) students’ performance, namely if a student gets the most favorable
outcome (A-certificate); and (ii) students’ progresses to the following year
without retention in their grades. The Flemish Ministry of Education pro-
vided us with data on the universe of pupils in the first stage of sec-
ondary education in the school year 2010/2011 with a total of 135,682 stu-
dents. We obtained data on student level and school level characteristics.
Moreover, this setting provides us with a quasi-experimental identifica-
tion strategy since the additional funding is provided to schools based
on being above or below an exogenously set threshold regarding the pro-
portion of disadvantaged students. There is also a second, exogenously
set, eligibility criterion stating that schools have to generate a minimum
number of teaching hours. This provides us with an imperfect compli-
ance setting – as not all the schools fulfill both the criteria – in which we
are able to exploit a fuzzy regression discontinuity design to draw causal
effects.

The results of our empirical application suggest that, although the
effects of additional funding on the overall population of students are
found to be not statistically significant3, there is appreciable heterogene-
ity in the causal effects: the effects on students’ progress are positive and
significant if we focus on the sub-population of students in schools with
less senior principals (namely, principals with less than 25 years of ex-
perience) and younger principals (namely, principals younger than 55
years). These results can advise policy-makers in multiple ways: the het-
erogeneous drivers could, on the one hand, help them enhancing the pol-
icy effectiveness by targeting just the schools with the highest shares of
pupils that benefit the most from additional funding. On the other hand,
policy-makers could investigate more in depth the reason why some
schools do not benefit from the policy and ultimately provide additional
tools to these schools to enhance the policy outcomes.

The methodology proposed in this Chapter can be more widely ap-

3This is in line with further research of additional funding on school level outcomes (De
Witte et al., 2018).
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plied to evaluations of the heterogeneous impact of an intervention in the
presence of an irregular assignment mechanism in social and biomedical
sciences.

The remainder of this Chapter is organized as follows: in Section 1
we provide a general overview on causal inference and the applied ma-
chine learning frameworks and we introduce our algorithm. In Section 2
we compare the performance of our algorithm with the performance of
other methods already established in the literature. In Section 3 we de-
pict the usage of our algorithm in an educational scenario to evaluate the
heterogeneous causal effects of additional funding to schools. Section 4
discusses the results and highlights the further applications of heteroge-
neous causal effects discovery and targeted policies in education as well
as in social and biomedical sciences.

1 Bayesian causal forest with instrumental vari-
able

1.1 Notation

This Chapter contributes to the literature by establishing a novel, com-
bined machine learning approach for the estimation of conditional causal
effects in the presence of an irregular assignment mechanism.

We follow the standard notation of the Rubin’s causal model (Im-
bens & Rubin, 2015; Rubin, 1974, 1978). Given a set of N units, in-
dexed by i = 1, ..., N , we denote with Yi a generic outcome variable,
with Wi a binary treatment indicator and, with X a N × P matrix of
P control variables. Given the Stable Unit Treatment Value Assumption
(SUTVA), that excludes interference between the treatment assigned to
one unit and the potential outcomes of another (Imbens & Rubin, 2015),
we can postulate the existence of a pair of potential outcomes: Yi(Wi).
Specifically, the potential outcome for a unit i if assigned to the treat-
ment is Yi(Wi = 1) = Yi(1), and the potential outcome if assigned to
the control is Yi(Wi = 0) = Yi(0). We cannot observe for the same
unit both the potential outcomes at the same time. However, we ob-
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serve the potential outcome that corresponds to the assigned treatment:
Y obsi = Yi(1)Wi + Yi(0)(1−Wi).

In order to draw proper causal inference in observational studies re-
searchers need to assume strong ignorability to hold. This assumption
states that:

Yi(Wi) ⊥⊥Wi|Xi, (1.1)

and

0 < Pr(Wi = 1|Xi = x) < 1 ∀ x ∈ X, (1.2)

where X is the features space. The first assumption (unconfoundedness)
rules out the presence of unmeasured confounders while the second con-
dition needs to be invoked to be able to estimate the unbiased treatment
effect on all the support of the covariates space. If these two conditions
hold, we are in the presence of the so-called regular assignment mechanism.
In such a scenario the Average Treatment Effect (ATE) can be expressed
as:

τ = E[Y obsi |Wi = 1]− E[Y obsi |Wi = 0], (1.3)

and one can define, following Athey and Imbens (2016), the Conditional
Average Treatment Effect (CATE) simply as:

τ(x) = E[Y obsi |Wi = 1,Xi = x]− E[Y obsi |Wi = 0,Xi = x]. (1.4)

CATE is central for targeted policies as it enables the researcher to inves-
tigate the heterogeneity in causal effects. For instance, we may be inter-
ested in assessing how the effects of an intervention vary within different
sub-populations.

In observational studies, the assignment to the treatment may be dif-
ferent from the reception of the treatment. In these scenarios, where one
allows for non-compliance between the treatment assigned and the treat-
ment received, one can assume that the assignment is unconfounded,
wherein the receipt is confounded (Angrist et al., 1996). In such cases,
one can rely on an instrumental variable (IV), Zi, to draw proper causal
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inference4. Zi can be thought as a randomized assignment to the treat-
ment, that affects the receipt of the treatment Wi, without directly affect-
ing the outcome Yi (exclusion restriction). Thus, one can then express the
treatment received as a function of the treatment assigned: Wi(Zi).

If the classical four IV assumptions5 (Angrist et al., 1996) hold, one
can get the causal effect of the treatment on the sub-population of com-
pliers, the so-called Complier Average Causal Effect (CACE), that is:

τ cace = ITTY,C =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Wi|Zi = 1]− E[Wi|Zi = 0]
=
ITTY
πC

. (1.5)

CACE is also sometimes referred to as LATE (Local Average Treatment
Effects) and represents the estimate of causal effect of the assignment to
treatment on the principal outcome, Yi, for the subpopulation of com-
pliers (Imbens & Rubin, 2015). In this Chapter, we introduce and con-
sider the following conditional version of CATE. The conditional CACE,
τ cace(x), can be thought as the CACE for a sub-population of observa-
tions defined by a vector of characteristics x:

τ cace(x) = ITTY,C(x) =
E[Yi|Zi = 1,Xi = x]− E[Yi|Zi = 0,Xi = x]

E[Wi|Zi = 1,Xi = x]− E[Wi|Zi = 0,Xi = x]

=
ITTY (x)

πC(x)
. (1.6)

1.2 Estimating conditional causal effects with machine
learning

In recent years, various algorithms have been proposed to estimate con-
ditional causal effects (i.e, CATE and τ cace(x)). Most algorithms focus on
the estimation of CATE (Athey & Imbens, 2016; Green & Kern, 2012; P. R.
Hahn et al., 2020; Hill, 2011; Lechner, 2019; K. Lee et al., 2018; X. Su et al.,

4Throughout this Section and throughout the Chapter we assume the instrumental vari-
able to be binary but, one could relax this assumption. However, as there are currently
no studies that develop machine learning algorithms for the estimation of heterogeneous
causal effects with a continuous treatment variable, we leave the investigation of these al-
gorithms to further research.

5See Appendix 5 for a detailed discussion of the four assumptions and how they are
assumed to hold in our application reported in Section 3.
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2012; Wager & Athey, 2018) while just a few (Athey et al., 2019; Bargagli-
Stoffi & Gnecco, 2020; Hartford et al., 2016; G. Wang et al., 2018) focus on
the estimation of τ cace(x). In this Chapter, we propose an algorithm for
the estimation of CATE in an irregular assignment mechanism scenario.
In particular, we adapt the Bayesian Causal Forest (BCF) algorithm (P. R.
Hahn et al., 2020) for such a task. BCF was originally proposed for regu-
lar assignment mechanisms. This algorithm builds on the Bayesian Ad-
ditive Regression Trees (BART) algorithm (Chipman et al., 2010) which is
a Bayesian version of an ensemble of Classification and Regression Trees
(CART) (Breiman et al., 1984)6.

CART is a widely used algorithm for the construction of binary trees
(namely, trees where each node is splitted into only two branches). A
binary tree is constructed by splitting a node into two child nodes re-
peatedly, beginning with the root node that contains the whole learning
sample and proceeding with the splits to the final nodes (leaves). Figure
2 illustrates how the binary partitioning works in practice in a simple
case with just two regressors x1 ∈ [0, 1] and x2 ∈ [0, 1].

Figure 2: An example binary tree. The internal nodes are labelled by their
splitting rules and the terminal nodes labelled with the corresponding pa-
rameters li.
(Right) The corresponding partition of the sample space.

Binary trees are named classification trees when the outcome variable
can take a discrete set of values, and regression trees when the outcome
variable takes continuous values. The CART algorithm associates, for

6Chipman et al. (2010) highlight how their algorithm is different from other ensemble
methods such as the Random Forest algorithm (Breiman, 2001).
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every individual belonging to a partition of the feature space, a condi-
tional prediction for the outcome variable. The task of a binary tree is to
estimate the conditional expectation of the observed outcome, on the ba-
sis of the information on features and outcomes for units in the training
sample, and to compare the resulting estimates on a test sample to tune
the complexity of the tree, in order to minimize the “error”7 between the
true and estimated values of Yi(x) within each partition.

The accuracy of the predictions of binary trees, Ŷi(x), can be dramat-
ically improved by iteratively constructing the trees. A Random Forest
(RF) consists in an ensemble of trees, where each tree is constructed by
randomly sampling the observations and randomly drawing the covari-
ates (predictors, in the machine learning literature) that are used to build
each tree (Breiman, 2001). One of the main problems of RFs is that they
tend to “overfit” the data on which they are trained. “Overfitting” leads
to a scarce generalizability of the predictions on samples different from
the training set. In order to avoid this, Bayesian Additive Regression
Trees were proposed by Chipman et al. (2010).

BART, as well as BCF, are “refined versions” of the RF algorithm.
BART is, as the RF, a sum-of-trees ensemble algorithm, but its estimation
approach used to obtain the values of Yi(x) relies on a fully Bayesian
probability model (Kapelner & Bleich, 2015). In particular, the BART
model can be expressed as:

Yi = f(Xi) + εi ≈ T1(Xi) + ...+ Tq(Xi) + εi, εi ∼ N (0, σ2), (1.7)

where each of the q distinct binary trees is denoted by T8.
The Bayesian component of the algorithm is incorporated in a set of

three different priors on: (i) the structure of the trees (this prior is aimed
at limiting the complexity of any single tree T and works as a regular-
ization device); (ii) the probability distribution of data in the nodes (this
prior is aimed at shrinking the node predictions towards the center of the
distribution of the response variable Yi); (iii) the error variance σ2 (which

7There are various “error” measures used to optimize binary trees. The most widely
used are the mean-squared-error for regression trees and the entropy or the Gini index for
classification trees.

8T represents the entire tree: its structure, its nodes and its leaves (terminal nodes).
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bounds away σ2 from very small values that would lead the algorithm
to overfit the training data)9. The aim of these priors is to “regularize”
the algorithm, preventing single trees to dominate the overall fit of the
model (Kapelner & Bleich, 2015). Moreover, BART allows the researcher
to tune the variables’ importance by departing from the original formula-
tion of the Random Forest algorithm where each variable is equally likely
to be chosen from a discrete uniform distribution (i.e., with probability
1
p ) to build a single tree learner. These Bayesian tools give researchers the
possibility to mitigate the “overfitting” problem of RFs and to tune the
algorithm with prior knowledge. Given these characteristics BART has
shown particular flexibility and an excellent performance in both pre-
diction tasks (Hernández et al., 2018; Linero, 2018; Linero & Yang, 2018;
Murray, 2017; Starling et al., 2018) and in causal inference tasks (P. R.
Hahn et al., 2020; Hill, 2011; Logan et al., 2019; Nethery et al., 2019).

Thus far, the algorithms that we discussed are tailored to find hetero-
geneity in the response variable Yi(x), but are not developed to estimate
the heterogeneity in the causal effects. The BCF algorithm proposed by
P. R. Hahn et al. (2020) is a semi-parametric Bayesian regression model
that directly builds on BART. It, however, introduces some significant
changes in order to estimate heterogeneous treatment effects in regular
assignment mechanisms (even in the presence of strong confounding).
The principal novelties of this model are the expression of the condi-
tional mean of the response variable as a sum of two functions and the
introduction, in the BART model specification for causal inference, of an
estimate of the propensity score, E[Wi = 1|Xi = x] = π(x), in order to
improve the estimation of heterogeneous treatment effects10. As depicted

9The choice of the priors, and the derivation of the posterior distributions, is discussed
in depth by Chipman et al. (2010) and Kapelner and Bleich (2015). Namely, (i) the prior on
the probability that a node will split at depth k is β(1 + k)−η where β ∈ (0, 1), η ∈ [0,∞)
(these hyper-parameters are generally chosen to be η = 2 and β = 0.95); (ii) the prior on
the probability distribution in the nodes is a normal distribution with zero mean:N (0, σ2

q )
where σq = σ0/

√
q and σ0 can be used to calibrate the plausible range of the regression

function; (iii) the prior on the error variance is σ2 ∼ InvGamma(v/2, vλ/2) where λ is
determined from the data in a way that the BART will improve 90% of the times the RMSE
of an OLS model.

10It is important to highlight that the propensity score is not used to estimate the causal
effects but to moderate the distortive effects in treatment heterogeneity discovery due to
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from the results of the Atlantic Causal Inference Conference (ACIC) com-
petition in 2016 and 2017, reported by P. R. Hahn, Dorie, et al. (2018), it
was observed that BCF performs dramatically better than other machine
learning algorithms for causal inference in the presence of randomized
and regular assignment mechanisms.

1.3 Extending BCF to an IV scenario

Bargagli-Stoffi and Gnecco (2020) show that a naı̈ve application of meth-
ods developed for the estimation of heterogeneous causal effects in ran-
domized or regular assignment mechanisms would introduce a large
bias in the estimation of the heterogeneous causal effects in imperfect
compliance settings. Moreover, the authors show that this would lead
to very imprecise heterogeneous causal effects estimators. This reason
drives the need for a new algorithm, the Bayesian Instrumental Variable
Causal Forest (BCF-IV), tailored for causal inference on heterogeneous
effects in the presence of irregular mechanisms.

The BCF-IV algorithm is constructed in two steps:

1. Discovering heterogeneity for the conditional intention-to-treat
(ITTY (x));

2. Estimation of the conditional CACE (τ cace(x)) within the sub-
populations defined in the first step.

We will discuss these two steps in detail in the next Sections.

Heterogeneity in the Conditional ITT

The BCF-IV algorithm starts from modifying (1.7) to adapt it for the es-
timation of the intention-to-treat, by including the instrumental variable
Zi:

Yi = f(Xi, Zi)+εi ≈ T1(Xi, Zi)+...+Tq(Xi, Zi)+εi, εi ∼ N (0, σ2), (1.8)

strong confounding. Moreover, since BCF includes the entire predictors’ vector, X, even if
the propensity score is mis-specified or poorly estimated, the model allows for the possi-
bility that the response remains correctly specified (P. R. Hahn et al., 2020). In Appendix 6,
we show that even if the estimate π̂(x) of the propensity score is incorrectly specified the
results are still widely robust.
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where, for simplicity, we assume the error to be a mean zero additive
noise as in P. R. Hahn et al. (2020), Hill (2011), Logan et al. (2019). The
conditional expected value of Yi can be expressed as:

E[Yi|Zi = z,Xi = x] = µ(z, x), (1.9)

and in turn the conditional intention-to-treat, ITTY (x), is:

ITTY (x) = E[Yi|Zi = 1,Xi = x]−E[Yi|Zi = 0,Xi = x] = µ(1, x)−µ(0, x).

(1.10)
Then, adapting to an irregular assignment mechanism the model pro-
posed by P. R. Hahn et al. (2020), we adopt the following functional form
for (1.9):

E[Yi|Zi = z,Xi = x] = µ(x, π(x)) + ITTY (x)z (1.11)

where π(x) is the propensity score for the instrumental variable:

π(x) = E[Zi = 1|Xi = x]. (1.12)

The expression of E[Yi|Zi = z,Xi = x] as a sum of two functions is
central: the first component of the sum, µ(x, π(x)), directly models the
impact of the control variables on the conditional mean of the response
(the component that is independent from the treatment effects) while the
second component ITTY (x)z models directly the intention-to-treat ef-
fect as a nonlinear function of the observed characteristics (this second
components captures the heterogeneity in the intention-to-treat). Both
the functions µ and ITTY are given independent priors. These priors are
chosen in line with P. R. Hahn et al. (2020) to be for the first component
the same priors of Chipman et al. (2010) (see Section 1.2). However, for
the second component the priors are changed in a way that allows for
less deep, hence simpler trees11.

The expression of E[Yi|Zi = z,Xi = x] as a sum of two functions has
a double effect: (i) on the one hand, it allows the algorithm to learn which
component in the heterogeneity of the conditional mean of the outcome
is driven by a direct effect of the control variables and which component

11The depth penalty parameters are set to be η = 3 and β = 0.25 (instead of η = 2 and
β = 0.95).
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is the true heterogeneity in the effects of the assignment to the treatment
Zi on Yi; (ii) on the other hand, it allows the predictions of the treatment
effect driven by the BART to be modelled directly and separately with
respect to the impact of the control variables (P. R. Hahn et al., 2020).

The estimated propensity score, in the BCF model, is not used for
the estimation of the effects but is included, as an additional covariate,
in the first component of (1.11) to mitigate possible problems connected
to regularization induced confounding (RIC)12 and targeted selection13. More-
over, in scenarios where the instrumental variable is not randomized ex-
ante, the inclusion of the estimated propensity score, π̂(x), leads to an
improvement in the discovery of the heterogeneity in the causal effect
(P. R. Hahn, Dorie, et al., 2018). Furthermore, it is important to highlight
that choosing a mis-specified definition of π̂(x) does not impact in a sig-
nificant way the quality of the results as shown in Appendix 6. This is
due to the fact that this first step of our algorithm is not about directly
estimating the conditional CACE but is tailored to discover the hetero-
geneity in ITTY (x).

Once one estimated with the BCF-IV the unit-level intention-to-treat,
one can build a simple binary tree, using a CART model (Breiman, 1984),
on the fitted values (ITT

∧

Y (Xi)) to discover the drivers of the heterogene-
ity. Such a two step approach (i.e.,first estimate the unit level effects, then
discover the heterogeneity through a tree-based algorithm) is extremely
valuable in providing interpretable information on the heterogeneity of
the effects, and is investigated further in Chapter 2.

Estimation of Conditional CACE

Once the heterogeneous patterns in the intention-to-treat (ITT) are
learned from the algorithm, one can estimate the conditional CACE,

12RIC is analyzed in depth in P. R. Hahn, Carvalho, et al. (2018). RIC issues rise when the
ML algorithm used for regularizing the coefficient does not shrink to zero some coefficients
due to a nonzero correlation between Zi and Xi resulting in an additional degree of bias
that is not under the researcher’s control.

13Targeted selection refers to settings where the treatment (or in an IV scenario the as-
signment to the treatment) is assigned based on an ex-ante prediction of the outcome con-
ditional on some characteristics Xi. We refer to P. R. Hahn et al. (2020) for a discussion of
targeted selection problems.
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τ cace(x). To do so, one can simply use the method of moments estima-
tor in Equation (1.6) within all the different sub-populations that were
detected in the previous step.
The conditional CACE can be estimated in a generic sub-sample (i.e., for
each Xi ∈ Xj , where Xj is a generic node of the tree, like a non-terminal
node or a leaf) as:

τ̂ cace(Xi) =
ITT
∧

Y (Xi)

π̂C(Xi)
, (1.13)

where π̂C(Xi) is estimated as:

π̂C(Xi) =
1

N1,l

∑
l:Xl∈Xj

WlZl −
1

N0,l

∑
l:Xl∈Xj

Wl(1− Zl), (1.14)

and ITT
∧

Y (Xi) as:

ITT
∧

Y (Xi) =
1

N1,l

∑
l:Xl∈Xj

Y obsl Zl −
1

N0,l

∑
l:Xl∈Xj

Y obsl (1− Zl), (1.15)

where Nk,l (where k ∈ {0, 1}) is the number of observations with Zl ∈
{0, 1} in the sub-sample of observations with Xl ∈ Xj14.

To show in detail how this second step works, let us use a toy exam-
ple. Let’s imagine a simple heterogeneity structure for ITTY (x) where
ITTY (Xi,p > 0)�ITTY (Xi,p ≤ 0) and Xi,p ∈ (−1, 1) is a single regres-
sor. This is namely, the case where the average intention-to-treat for those
individuals with positive values of Xi,p is greater than for individuals
with non-positive values. Then, the conditional CACE can be estimated
in the two different sub-populations defined with respect to Xp as15:

τ̂ cace(Xi,p > 0) =
ITT
∧

Y (Xi,p > 0)

π̂C(Xi,p > 0)
, (1.16)

τ̂ cace(Xi,p ≤ 0) =
ITT
∧

Y (Xi,p ≤ 0)

π̂C(Xi,p ≤ 0)
. (1.17)

14It is worth highlighting that, since the supervised machine learning technique is used
in the discovery phase and not in the estimation phase, the estimators that are proposed
here could be used in a more “traditional way”, in settings where the subgroups are defined
ex-ante by the researcher.

15Alternatively, one can perform a Two Stage Least Squares (2SLS) regression within the
different sub-populations. This is our preferred estimation strategy and is the one used
both for the simulations and the real application.
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1.4 Properties of the conditional CACE estimator

In the case of a binary instrument (Zi ∈ {0, 1}) and a binary treatment
variable (Wi ∈ {0, 1}), Angrist et al. (1996) and Imbens and Rubin (2015)
revealed that the population versions of (1.13)-(1.15) correspond to a Two
Stage Least Squares (henceforth referred to as 2SLS) estimator of τ cace, in
the cases where the four IV assumptions can be assumed to hold. Hence,
since this case is analogous to our setting, one can apply the 2SLS method
in every node Xj of the tree T for the estimation of the effect on the com-
pliers population, as it is presented by Imbens and Rubin (1997).

The two simultaneous equations of the 2SLS estimator are, in the pop-
ulation,

Y obsi = α+ τ caceWi + εi, (1.18)

Wi = π0 + πCZi + ηi, (1.19)

where E(εi) = E(ηi) = 0, and E(Ziηi) = 016. In the econometric terminol-
ogy, the explanatory variable Wi is endogenous, while the IV variable Zi
is exogenous.

We can express the 2SLS equations, conditional on a subpopulation
of a node Xj , as

Y obsi,Xj = αXj + τ caceXj Wi,Xj + εi,Xj , (1.20)

Wi,Xj = π0,Xj + πC,XjZi,Xj + ηi,Xj , (1.21)

where E(εi,Xj ) = E(ηi,Xj ) = 0, and E(Zi,Xjηi,Xj ) = 0. Moreover, the fol-
lowing reduced equation (obtained plugging (1.21) into (1.20)) holds:

Y obsi,Xj =
(
αXj + τ caceXj π0,Xj

)
+
(
τ caceXj πC,Xj

)
Zi,Xj +

(
εi,Xj + τ caceXj ηi,Xj

)
= ᾱXj + γXjZi,Xj + ψi,Xj . (1.22)

In the case of a single instrument, the logic of IV regression is that one
can estimate the respective parameters πC,Xj and γXj = τ caceXj πC,Xj of
the regressions (1.21) and (1.22) above by least squares, when the obser-
vations in each node are independent and identically distributed, then

16The latter comes from the fact that (1.19) is assumed to represent the linear projection
of Wi onto Zi.
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obtaining an estimate of the parameter τ caceXj in (1.20). In particular, for
every element Xi of a node Xj , one can estimate τCACE(Xi) = τ caceXj
through 2SLS, as the following ratio (Imbens & Rubin, 2015):

τ̂CACE(Xi) ≡ τ̂2SLSXj =
γ̂Xj
π̂C,Xj

. (1.23)

The 2SLS estimator associated with (1.20)-(1.22) satisfies the next
properties. They can be proved likewise in the application of 2SLS to
the population case (see, e.g., Imbens and Rubin (2015)).

Theorem 1: Consistency of the Conditional 2SLS Estimator.
Let E(Z2

i,Xj ) 6= 0 (Assumption 1), E(Zi,Xj εi,Xj ) = 0 (Assumption 2) and
πC,Xj 6= 0 (Assumption 3) hold. Then

τ̂2SLSXj − τXj
p→ 0 as NXj →∞, (1.24)

where p→ denotes convergence in probability, and NXj is the number of observa-
tions within the node Xj .

It should be noted that Assumption 3 is not necessarily guaranteed
even if the overall instrument is strong. However, this assumption is
standard in treatment effects variation papers such as the contribution
of Ding et al. (2019)17.

Theorem 2: Asymptotic Normality of the Conditional 2SLS Estimator.
Let Assumptions 1, 2, and 3 hold. Let also E(Z2

i,Xj ε
2
i,Xj ) be finite (Assumption

4). Then√
NXj

(
τ̂2SLSXj − τXj

) d→ N
(
0, NXjavar(τ̂

2SLS
Xj )

)
as NXj →∞, (1.25)

where d→ denotes convergence in distribution, N stands for normal distribu-
tion, and avar(τ̂2SLSXj ) is the asymptotic variance of the 2SLS estimator. The

17In cases where Assumption 3 is not violated but the proportion of compliers within the
nodes approaches zero, there could be potential problems related to heterogeneity driven
by these small values of πC,Xj and weak instruments issues within the nodes. In our sce-
nario, since the heterogeneity in the treatment effect is detected with respect to the condi-
tional ITT (which does not take directly into account πC,Xj for its computation), our model
is robust to possible treatment effects heterogeneity variations driven by smaller values of
πC,Xj . Moreover, we do run weak-instrument tests within every node and we discard those
nodes where a weak-instrument issue is detected.
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asymptotic variance of the estimator is (Wooldridge, 2015):

avar(τ̂2SLSXj ) =
ψ̂2
Xj

TSSWXjρ
2
WXj ,ZXj

(1.26)

where TSSWXj is the conditional total sum of square of W , ρ2WXj ,ZXj is

the conditional squared correlation of a regression of W on Z, and ψ̂2
Xj is

estimated as:

ψ̂2
Xj =

1

NXj − 2

NXj∑
i=1

û2i (1.27)

where ui is the regression residual obtained regressing the outcome on
W . The variance can be estimated using the finite-sample estimators of
the corresponding components of equation 1.26.

The proofs of the two Theorems above directly follow from their un-
conditional versions18. In this case, for the convergence of our estimator
to τXj and its normality to hold approximately we need to have a suffi-
cient number of observations within every node. Hence, we suggest to
perform our algorithm on sufficiently large datasets and to trim those
nodes where the number of observations is not large enough19.

2 Monte Carlo simulations

To evaluate the performance of the BCF-IV algorithm we compare it,
using Monte Carlo Simulations, with two methods that are directly tai-
lored for drawing causal inference in irregular assignment mechanism
scenarios: the Honest Causal Trees with Instrumental Variable (HCT-IV)
algorithm (Bargagli-Stoffi & Gnecco, 2020) and the Generalized Random
Forests (GRF) algorithm (Athey et al., 2019). Both the latter algorithms
outperform other machine learning methodologies which are not tai-
lored for irregular assignment mechanisms (Bargagli-Stoffi & Gnecco,

18For further details on these proofs we refer to Wooldridge, 2002, Section 5.2.
19An R function for BCF-IV, and the code used for both the simulations and the applica-

tion study in the Chapter are available at the following GitHub page: https://github.com/
fbargaglistoffi.
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2020), so we focus, in this context, just on a comparison within these three
algorithms.

Since the foremost focus of this Chapter is on discovery of the hetero-
geneity in the causal effects, we compare the algorithms on three dimen-
sions: (i) the correct choice of the variable that drives the heterogeneity
(heterogeneity driving variable [HDV]), (ii) the correct choice of the thresh-
old value used to perform the binary split of the data given the right
identification of HDV, and (iii) the mean-squared error for the heteroge-
neous causal effects given the correct choice of HDV.

For Monte Carlo Simulations we build two different designs. The
functional forms of the designs are built following the simulation de-
signs in G. Wang et al. (2018). The first design takes the form of Yi =∑k
p=1Xi,p +WiXi,1 + ξi + εi where Xi,p ∼ N (0, 1), Wi ∼ Bern(0.5), ξi ∼

N (0, 0.01) and εi ∼ N (0, 1). The interaction term between the regres-
sor Xi,1 and the treatment indicator Wi is functional to heterogenise the
treatment effects, while the nuisance parameter ξi is an unobserved vari-
able that affects both Wi and the response variable Yi. The second de-
sign has the same functional form but xi,p ∼ Bern(0.5). In both the
designs we set the correlations between Wi, the instrument Zi and the
nuisance parameter ξi to be: Cor(Wi, Zi) ∈ (0.55, 0.65) and Cor(Wi, ξi) ∈
(0.45, 0.55), while k assumes values 5 and 10 and the sample sizes are 500,
1,000, 5,000. For both designs the results are aggregated over 30 rounds
of simulations.

The results from the simulations are shown in Table 4. As shown in
Panel A, the correct identification of the HDV is very similar for BCF-IV
and GRF in the designs with 500 and 5,000 units. GRF is faster in iden-
tifying the right HDV, as it outperforms both BCF-IV and HCT-IV when
the sample size is 1,000. Panel B depicts the results in terms of mean
squared error between the true and the predicted threshold used to per-
form the binary split of the data. The threshold is not available in Design
2 where the regressors are binary variables. BCF-IV outperforms both
GRF and HCT-IV with all the sample sizes and with both 5 and 10 fea-
tures (with the exception of Design 1 in the sample of 5,000 units with
5 features). Panel C depicts the mean squared error of prediction for the
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causal effects given the correct identification of the HDV. Another clear
advantage of using BCF-IV is given by the correct identification of the
treatment effects. Indeed, BCF-IV outperforms, in terms of lower mean-
squared-error of prediction for the treatment effects, the other algorithms
in both the designs with 5 and 10 features (with the exception of Design
1 in the samples of 5,000 units with 5 features and 500 units with 10 fea-
tures). Hence, in a scenario with binary regressors, BCF-IV is preferable
irrespective of the sample size. However, in a scenario with continuous
regressors20, there is a trade-off between the capacity of getting the right
HDV and the capacity of correctly estimating the causal effect. In designs
with samples sizes of 1,000, GRF outperforms BCF-IV in correctly iden-
tifying the HDV but fails to precisely estimate the causal effect. Indeed,
on one side GRF is directly built to detect the heterogeneity in the causal
effects, but it depicts a lower precision in their estimation. On the other
side, BCF-IV is not directly optimized to discover effect variation, but its
two-stage procedure allows researchers to estimate the effects at a higher
level of precision. We want to highlight that, as the sample size increases,
particularly in the scenario with 5 features, both the algorithms get to the
same large-sample results in terms of correct HDV identification and the
mean-squared-error of prediction.

We argue that, in small samples, BCF-IV would be preferable to GRF
because, while the proportion of correctly identified HDVs is very simi-
lar, the gains obtained both in terms of mean-squared-error between the
true and predicted threshold and the true and predicted causal effects
are much larger. In fact, the relative gap21 between the true and predicted
causal effects ranges between 15% and 81% in favour of BCF-IV, while the
relative gap in the proportion of correctly identified HDV ranges from -
10% (in favour of GRF) to 30% (in favour of BCF-IV). Hence, we claim

20For instance, when the regressors are distributed according to a standardized normal
distribution.

21The formula for the relative gap is, for the MSE of prediction, the following (G. Wang
et al., 2018):

Relative Gap =
MSEGRF −MSEBCF -IV

MSEGRF
× 100.

The relative gap is positive when BCF-IV outperforms GRF and negative vice versa.
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that the gain in the mean-squared-error of prediction for the causal effect
outweighs the slower identification of HDVs. This holds true as BCF-IV
and GRF converge to a very similar fit, as the sample size increases, with
respect to the three dimensions that are the object of our analysis. More-
over, the large sample behaviour of BCF-IV is slightly better than the one
of all the other techniques.

Table 4: Monte Carlo comparison of BCF-IV, GRF and HCT-IV

Panel (A): proportion of correctly identified heterogeneity driving variables
(HDV)

Sample Size
#Features Approach 500 1,000 5,000 500 1,000 5,000

Design 1 Design 2
HDV

5 BCF-IV 0.57 0.57 1.00 0.90 0.96 1.00
GRF 0.63 0.83 1.00 0.93 1.00 1.00
HCT-IV 0.43 0.40 0.70 0.53 0.56 0.86

10 BCF-IV 0.30 0.33 0.73 0.53 0.93 1.00
GRF 0.23 0.43 1.00 0.50 0.96 1.00
HCT-IV 0.17 0.30 0.77 0.20 0.63 0.83

Panel (B): MSE between true and predicted threshold

Sample Size
#Features Approach 500 1,000 5,000 500 1,000 5,000

Design 1 Design 2
Threshold

5 BCF-IV 0.062 0.037 0.006 - - -
GRF 0.063 0.069 0.002 - - -
HCT-IV 0.185 0.188 0.045 - - -

10 BCF-IV 0.046 0.014 0.017 - - -
GRF 0.190 0.125 0.040 - - -
HCT-IV 0.096 0.023 0.167 - - -
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Panel (C): MSE between true and predicted causal effects

Sample Size
#Features Approach 500 1,000 5,000 500 1,000 5,000

Design 1 Design 2
Causal Effects

5 BCF-IV 0.047 0.026 0.002 0.048 0.005 0.010
GRF 0.330 0.030 0.001 0.055 0.006 0.011
HCT-IV 0.067 0.051 0.012 0.048 0.005 0.010

10 BCF-IV 0.017 0.021 0.020 0.036 0.005 0.002
GRF 0.230 0.197 0.128 0.190 0.105 0.012
HCT-IV 0.013 0.039 0.046 0.036 0.005 0.002

Note: In these Tables we show the results from Monte Carlo simulations. Panel A de-

picts the proportion of correctly identified heterogeneity driving variables (HDVs). Panel

B shows the mean squared error between true and predicted threshold (which is available

just for the model with normally distributed variables). Panel C depicts the mean squared

error between true and predicted causal effects. We highlighted in bold the best results

for every round of simulations. In case of the same mean-squared-error of prediction (that

occurs with BCF-IV and HCT-IV since both techniques are based on the same estimator)

we assigned the best performance to the technique that performs better in identifying the

correct HDVs. The results are obtained by aggregating 30 bootstrap samples.

In Appendix 6, we provide a number of robustness checks of the
Monte Carlo simulation. In particular, we focus on what happens to the
fit of the three algorithms when one: (i) changes the correlation between
Zi and Wi (possible weak-instrument problems)22; (ii) introduces a vi-
olation in the exclusion restriction; (iii) changes the specification of the
propensity score for the BCF-IV; (iv) introduces multiple heterogeneity
variables; (v) changes the error distribution. The results that we high-
lighted before hold true also in the robustness checks: BCF-IV converges
slowly to an optimal identification of the HDVs but largely outperforms
GRF with respect to the mean-squared-error of prediction for the causal

22It is important to highlight that in order to avoid weak-instrument problems within a
node our algorithm performs a weak-instrument test in every sub-sample (namely, an F-
test on the first stage regression) and discards the nodes where the null hypothesis of weak
instrument is not rejected.
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effects23. Moreover, the performance of BCF-IV does not seem to widely
deteriorate, as compared to the baseline models in Table 4, in any of the
robustness designs.

3 Heterogeneous causal effects of education
funding

There is a wide consensus that education positively influences labor mar-
ket outcomes (see the review by Psacharopoulos and Patrinos (2018)).
Students’ performance can be driven by multiple factors connected with
students’ characteristics and environmental characteristics. However, to
the best of our knowledge, this is the first contribution to study the im-
pact of additional school funding on students’ performance using ma-
chine learning techniques tailored for causal inference. In this Section,
we apply the BCF-IV algorithm to evaluate the impact and estimate the
heterogeneity in the effects of additional funding to schools with dis-
advantaged students on students’ performance. First, we describe the
data used for this application. Next, we depict the identification strat-
egy. Finally, we describe the results obtained and their relevance in the
economics of education literature.

3.1 Data

Starting from the year 2002, the Flemish Ministry of Education promoted
the “Equal Educational Opportunities” program (henceforth referred to
as EEO) to ensure equal educational opportunities to all the students
(OECD, 2017a). The EEO program provides additional funding for sec-
ondary schools with a significant share of disadvantaged students. Ow-
ing to the funding schools can hire additional teachers and increase the
number of teaching hours. Pupils are considered to be disadvantaged
on the basis of five different indicators: (i) the pupil lives outside the

23However, when we introduce a partial violation of the exclusion restriction assump-
tion (design 2) we see exactly the opposite: BCF-IV outperforms GRF with respect to the
identification of the correct HDV while GRF outperforms BCF-IV in precisely estimating
the causal effects.
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family; (ii) the pupil does not speak Dutch as a native language; (iii) the
mother of the pupil does not have a secondary education degree; (iv)
the pupil receives educational grant guaranteed for low income families;
and (v) one of the parents is part of the travelling population. In order
for a school to be eligible for the EEO funding, it needs to satisfy two
conditions: the first condition is that the share of students with at least
one of the five characteristics has to exceed an exogenously set thresh-
old; to avoid fragmentation of resources, the second condition requires
that the additional resources should be at least larger than six teaching
hours a week. The exogenous cutoff is, for students in the first two years
of secondary education (first stage students), a minimum share of 10%
disadvantaged students.

The Flemish Ministry of Education provided us with data on the uni-
verse of pupils in the first stage of education in the school year 2010/2011
(135,682 students). In particular, we have data on student level charac-
teristics and school level characteristics. The student level characteris-
tics cover the gender of the pupil (gender), the grade retention in pri-
mary school (retention) and the inclusion of the pupil in the special needs
student population in primary school (which serves as a proxy of stu-
dent’s low cognitive skills). The school level characteristics include both
the teacher characteristics, such as the teachers’ age, seniority and edu-
cation, in addition to principal characteristics, such as the principals’ age
and seniority. Teacher and principal seniority measure the level of experi-
ence of the teachers and principals, respectively. These variables assume
values in the range of 1 to 7, where the teachers (and principals) with a
seniority level of 1 are the least experienced (0-5 years of experience) and
teachers (and principals) with a seniority level of 7 are the most experi-
enced (more than 30 years of experience)24. Similarly, the ages of teacher
and principal are reported as categorical variables that range from 1 to
8, where teachers/principals in the first category are the youngest (less
than 30 years old) and teachers/principals in the last category are the

24Teachers and principals’ seniority classes are the following: class 1: between 0 and 5
years of experience; class 2: between 6 and 10; class 3: between 11 and 15; class 4: between
16 and 20; class 5: between 20 and 25; class 6: between 26 and 30; class 7: more than 30.
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oldest (more than 60 years old)25. Teachers’ education records whether
or not the teacher holds a pedagogical training (in the following we will
refer to it as “teacher training”). All these variables are aggregated at
school level in the form of averages (for age and seniority) and shares
(for teachers’ education) and assigned to each student with respect to the
school where he/she is enrolled.

The outcome variables are two dummy variables defined as follows:
the variable progress school assumes value 1 if the student progresses to
the following year without any grade retention and 0 if not (this vari-
able is a complement of school retention); the variable A-certificate as-
sumes value 1 if the student gets an “A-certificate” at the end of the
school year (which is the most favorable outcome) and 0 if not. Since
we do not have data on standardized test scores for Flemish students, A-
certificate is a good, available proxy of student performance. Every year,
each student performs a final test and gets a ranking from “A” to “C”.
Students that get an “A” can progress school without any restriction,
while the students that get either “B” or “C” can progress school but
only in specific programs or have some grade retention. Both these out-
come variables are proxies for different levels of students’ performance:
a positive A-certificate proxies for a higher level of performance than a
positive progress school. In principle, the target of a policy-maker could
be to have the highest possible share of students getting “A-certificates”
and the lowest share of students not progressing through school.

3.2 Identification strategy

To evaluate the impact of the policy on students’ performance we apply
the BCF-IV within a regression discontinuity design (J. Hahn et al., 2001).
Regression Discontinuity Design (RDD) is a method that aims at evaluat-
ing the causal effects of interventions in settings where the assignment to
the treatment is determined (at least partly) by the values of an observed

25Teachers and principals’ age classes are the following: class 1: less than 30 years old;
class 2: between 30 and 34; class 3: between 35 and 39; class 4: between 40 and 44; class 5:
between 45 and 49; class 6: between 50 and 54; class 7: between 55 and 60; class 8: more
than 60.
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covariate lying on either sides of a threshold point. The idea is that sub-
jects just above and below this threshold are very similar and one can
assume a quasi-randomization around the threshold (Mealli & Rampi-
chini, 2012). RDDs are categorized in sharp RDDs and fuzzy RDDs. In
sharp RDDs, the central assumption is that, around the threshold, there
is a sharp discontinuity (from 0 to 1) in the probability of being treated.
This is due to the fact that in sharp RDDs there is no room for imperfect
compliance. In many real world scenarios, however, thresholds are not
strictly implemented, as in the case of our application. To deal with these
situations, one can use fuzzy RDDs, which are applicable when around
the threshold the probability of being actually treated changes discontin-
uously, but not sharply from 0 to 1 (i.e., the jump in the probability of be-
ing treated is less than 1). In our application of the fuzzy RDD technique,
we exploit two cutoffs around the 10% share of disadvantaged students
in the first stage of secondary education. The students in schools just be-
low the threshold are assigned to the control group (Zi = 0), while the
students in schools just above the threshold are assigned to the treated
group (Zi = 1). The bandwidth around the threshold (from which one
obtains the two cutoffs) is determined using the “rdrobust package” in R

(Calonico et al., 2015). The optimal, bias-corrected bandwidths around
the threshold are 3.5% and 3.7%, respectively for the outcome variables
A-certificate and progress school. Accordingly to these two bandwidths, we
obtain two refined samples where the sample with the 3.5% bandwidth is
the smallest and the sample with the 3.7% bandwidth the largest. We run
a series of robustness checks for the selection of the bandwidths around
the cutoff. In order to validate the bandwidths selected using the method
of Calonico et al. (2015), we run additional analyses implementing the
Bayesian methods proposed by Li et al. (2015) and by Mattei and Mealli
(2016). In these papers, the authors implement a hierarchical Bayesian
model for assessing the balance of the covariates between the groups
of observations assigned to the treatment and the ones assigned to the
control. For both the thresholds selected following Calonico et al. (2015)
(i.e., 3.5% and 3.7%), the probability of the pre-assignment variables be-
ing well-balanced is high for the subpopulations defined by values of the
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cutoff strictly lower than 3.5% and 3.7%. Indeed, these probabilities are
larger than or close to 0.8, indicating that the covariates are balanced in
the two groups.

Moreover, to guarantee an equal representation to all the schools, and
to avoid biases related to the over-representation of biggest schools’ stu-
dents, we sample 50 pupils from each school. In turn, this leads to a
higher balance among the averages between the observations assigned
to the treatment and the observations assigned to the control, as shown
in panel (a) of Figure 5. In Appendix 7, we run a series of tests to show
that the RDD (Regression Discontinuity Design) is valid for this appli-
cation. Moreover, as a robustness check we sample a higher number of
students according to the size of the smallest school (62 pupils) from ev-
ery school26. In Appendix 8, we show the balance in the samples of units
assigned to the treatment and to the control in the second scenario.

3.3 Results

This Section assesses the effects of the additional funding on students’
performances and highlights the main drivers of the heterogeneity in
causal effects. These analyses are made for both the outcome variables:
A-certificate and progress school27.

A-Certificate

Proceeding from the seminal contributions of Coleman (1966) and
Hanushek (2003) to recent contributions by Jackson et al. (2015) and Jack-
son (2018), the question on whether or not school spending affects stu-
dents’ performances has been central in the economic literature.

In our study, the variable A-certificate serves as a proxy for posi-
tive performance. In our sample, the students that got an “A-certificate”

26We do not apply any sampling with replacement technique to avoid oversampling
of observations from smaller schools. Indeed, such a procedure may induce biases in the
statistical representatives of the sample used to draw causal inference.

27It is important to highlight that the results for both the outcomes, considered separately,
in terms of effects and heterogeneity drivers, remain roughly the same when we widen the
sample of units included in the analysis (results are reported in the Appendix 8).
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are the 91.73% of the total population. In Figure 3, the heterogeneous
Complier Average Causal Effects (CACE) estimated using the proposed
model are depicted28 29. The darker the shade of blue in the node the
higher the causal effect.
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Teacher Age < 3.5

Teacher Age >= 3.5 

Principal Age >=  7.5
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Principal Age < 7.5

CACE
0.034
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Figure 3: Visualization of the heterogeneous Complier Average Causal Ef-
fects (CACE) of additional funding on A-certificate estimated using the pro-
posed model. The tree is a summarizing classification tree fit to posterior
point estimates of individual treatment effects as in (P. R. Hahn et al., 2020).
The overall sample size is 4,300. The significance level is * for a significance
level of 0.1, ** for a significance level of 0.05 and *** for a significance level
of 0.01.

Although positive, the overall effect of the additional funding is
not significant. This finding is in line with the recent literature on
school spending and students’ performance in a cross-country scenario
(Hanushek et al., 2016; Hanushek & Woessmann, 2017) and in the Flan-
ders, in particular (De Witte et al., 2018). Nevertheless, rather than fo-

28The nodes for whom (i) it was not possible to compute the CACE or, (ii) the weak-IV
test was not rejected were excluded from the plot.

29In Figures 3, 4, 8, 9, the so-called summarizing trees (P. R. Hahn et al., 2020) are de-
picted. A summarizing tree is a classification or regression tree that is built using the fitted
values estimated from the BCF-IV. These summarizing trees are used to provide a visual-
ization of the heterogeneity in the causal effects.
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cusing on the overall average effect it is more interesting to explore the
heterogeneous effects.

The first driver in the heterogeneity of the effects is the variable teacher
seniority: for students in schools with more senior teachers, the effects of
funding are larger. These results, even if not significant, show that the
treatment effects are higher for students that are in schools with teachers
that have more than 16 years of experience. The second driver of het-
erogeneity is the age of the teacher: students in schools with younger
teachers (namely, when teaching age assumes values lower or equal to
3.5 on a scale from 1 to 8, referring to teachers younger than 40 years
old) have an increase in their performance even if they are in schools
with less experienced teachers. Both these heterogeneity drivers, namely,
the seniority and age of the teacher, are particularly appreciable, as there
are evidences in the education literature that connect teachers’ seniority
(Harris & Sass, 2011; Rice, 2010) and teachers’ age (Holmlund & Sund,
2008) to their teaching performance, and in turn teaching performance to
students’ positive achievements (Goldhaber & Hansen, 2010).

Further heterogeneous effects come from the interaction between
teacher’s seniority and principal’s age. The effect for students in schools
with more experienced teachers and principals younger than 60 is higher
than the effect on students in schools with teachers with similar experi-
ence but older principals. This evidence can be interpreted in the follow-
ing way: the additional funding has a positive, but not statistically signif-
icant, effect in boosting the performance of students in the overall pop-
ulation, but it increases its effect in a notable way for those students in
schools with more senior teachers and younger teachers and principals.
These results are in line with the evidence that additional school funding
does not boost the performance of the overall population of students (De
Witte et al., 2018; Hanushek et al., 2016; Hanushek & Woessmann, 2017)
and with the literature that connects students’ achievements with teach-
ing performance (Harris & Sass, 2011; Holmlund & Sund, 2008; Rice,
2010) and, in turn, teaching performance with students’ performance
(Goldhaber & Hansen, 2010). It is important to highlight that even if we
find some evidence of treatment effects variation connected to teachers’
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seniority and age and principal age, the conditional causal effects are not
significant.

Progress in School

The second outcome variable, progress school, assumes value 1 if the stu-
dent progresses to the following year without any grade retention and
0 if not: roughly 98% of the students in the sample manage to progress
in school in the first two years of secondary education. For the students
unable to progress in school, this variable is used as a proxy of negative
achievements. Therefore, it is relevant to understand if additional fund-
ing was effective in driving students away from negative performance.
Figure 4 depicts the heterogeneous conditional CACEs: the darker the
shade of green in the node, the higher the causal effect.
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Figure 4: Visualization of the heterogeneous Complier Average Causal Ef-
fects (CACE) of additional funding on Progress School estimated using the
proposed model. The tree is a summarizing classification tree fit to poste-
rior point estimates of individual treatment effects as in (P. R. Hahn et al.,
2020). The overall sample size is 4,450. The significance level is * for a signif-
icance level of 0.1, ** for a significance level of 0.05 and *** for a significance
level of 0.01.
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The additional funding has a slightly negative, but statistically in-
significant, impact on the chance of progress in school for the overall
students in the sample (again, this is in line with what was found by De
Witte et al. (2018) at the school level). However, it is compelling to ob-
serve the main drivers of the heterogeneity in the causal effect. The first
driver is the seniority level of principals: the treatment effect is positive
and statistically significant (the effect in this case is 0.044**, meaning that
being treated leads to an increase of 4.4% in the probability of progress-
ing through school) for students in schools with less senior principals
(less than 25 years of experience), and it is negative and statistically sig-
nificant for students in schools with more experienced principals (the
conditional effect is -0.029**, meaning that being treated leads to a de-
crease of 2.9% in the probability of progressing through school).

The second driver of the heterogeneity in CACE is the principal age.
As in the case of the previous outcome, students in schools with younger
principals (namely, principals younger than 55 years) show higher causal
effects (the conditional effect is 0.056**). This holds true even when we
do not condition on the principal’s seniority (in this case the conditional
effect is 0.062*). The sub-populations of students with positive and sta-
tistically significant effect account for the 36% and 32% of the overall
sample (respectively, when conditioning, or not, on the principal seniority
variable) and show effects that are in their absolute values between 49
and 62 times larger than the overall effect30.

This evidence of higher and statistically significant effects of the fund-
ing in schools for those schools with younger and less senior principals
(with respect to the average seniority and age, respectively) is a novel
finding of this research. There is a compelling evidence in the literature
regarding the role of principals in driving higher students’ achievements
(Eberts & Stone, 1988; Gentilucci & Muto, 2007), however this is, to the

3049 is the ratio between the conditional treatment effect for the sub-population of stu-
dents in schools with principals with less than 25 years of experience (0.0440) and the ab-
solute value of the average treatment effect for the overall population (0.0009). 62 is the
ratio between the conditional treatment effect for the sub-population of students that are
in schools with less senior and younger principals (0.0557), corresponding to the darker
shade of green leaf in Figure 4, and the absolute value of the average treatment effect on
the overall population (0.0009).
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extent of our knowledge, the first research that highlights the role of prin-
cipal’s age and seniority as drivers of treatment effect variations. Clearly,
these characteristics could possibly correlate with unobservables, such as
the effectiveness of principals (which may decrease as principals grow
older). In any case, this finding opens up new fields for further inves-
tigation, in line with the newly established role of machine learning in
the economic literature as a “theory-driving/theory-testing” tool (Mul-
lainathan & Spiess, 2017).

4 Discussion

This Chapter developed a novel Bayesian machine learning technique,
BCF-IV, to draw causal inference in scenarios with imperfect compli-
ance. By investigating the heterogeneity in the causal effects, the tech-
nique expedites targeted policies. We manifested that the BCF-IV tech-
nique outperforms other machine learning techniques tailored for causal
inference in precisely estimating the causal effects and converges to an
optimal asymptotic performance in identifying the heterogeneity driving
variables (HDVs). Moreover, using Monte-Carlo simulations, we showed
that the competitive advantages of using BCF-IV, as compared to GRF or
HCT-IV, are substantial. Peculiarly, the performance of BCF-IV in pre-
cisely estimating the heterogeneous causal effects shadows its slower
convergence to an optimal identification of HDVs as compared to GRF.
This is especially true if we look at the relative gaps between the BCF-IV
and the other techniques.

BCF-IV can assist the researchers to shed light on the heterogeneity of
causal effects in IV scenarios in order to provide to policy-makers a rel-
evant knowledge for targeted policies. In our application, we evaluated
the effects of additional funding on students’ performances. While the
overall effects are positive but not significant, there are significant differ-
ences among different sub-populations of students. Indeed, for students
in schools with less senior and younger principals (with respect to the
average seniority and age, respectively) the effects of the policy are be-
tween 49 and 62 times bigger than the effects on the overall population
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(in the most conservative scenario), and significant for the Progress School
output.

On one hand, as an underlying mechanism, the need for addi-
tional funds can be higher in schools with younger teachers and prin-
cipals, who are more often observed in the most disadvantaged schools.
This phenomenon arises as senior teachers and principals select them-
selves out of the most disadvantaged schools and more into advantaged
schools, thereby creating relatively more vacancies in disadvantaged
schools. Therefore, on average, younger teachers and principal lack a real
choice but to start working in the most disadvantaged schools. Moreover,
owing to the additional funds, schools could use the funds to reduce class
sizes, which might be more effective for younger (and less senior) teach-
ers. On the other hand, we can think of the motivation for both teachers
and principals to decrease as they grow older and this, in turn, have an
impact on their performance. Favouring this hypothesis Ololube (2006)
finds that motivation enhances productivity and has an impact on teach-
ers’ performances. However, teachers’ motivation might positively and
significantly affect teacher’s job satisfaction, but it might not affect their
performance. To the best of our knowledge, this is the first study that in-
vestigates the effects of age and seniority of principals on enhancing the
effectiveness of school funding on students’ performance. The investiga-
tion of the true causal channel is beyond the goals of this Chapter and
is left to further investigation where more granular teachers’ and princi-
pals’ characteristics are available.

These results are relevant to the policy as they furnish the instruments
to policy-makers to enhance the effects of additional funding on stu-
dents’ performance. Indeed, on one side policy-makers could target just
students in school with positive, statistically significant effects reducing
the overall costs of the policy and using the savings to experiment more
effective policies in the other schools. On the other side, policy-makers
could analyze the reason of lack of the effectiveness of funding in schools
with certain characteristics and implement policies to boost the effects of
future funding. Furthermore, the added value of our algorithm is that it
could enable policy-makers to target just those units that benefit the most
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from the treatment and, at the same time, it provides an insight on pos-
sible inefficiencies in the allocation and/or usage of funding. From our
analysis it seems that there is room for policies that support less senior
principals since students in their schools show higher returns in terms of
performance from additional funding.

Moreover, it would be of interest to extend the proposed analyses
from the first to the second stage of secondary education. In particular,
these analyses would provide further insights for at least two reasons: (i)
the compliance status may change driving to different local effects since
the exogenously set threshold to get funded is different, (ii) the different
age of students could have an impact on the discovered heterogeneous
effects.

The extension of these methods to other fields of economic investiga-
tion and the development of novel machine learning algorithms for tar-
geted policies and welfare maximization can form the future scope of fur-
ther research. In particular, the development of an algorithm that could
deal with welfare maximization in the context of multiple outcomes is
of interest. The “usual” Bayesian way for estimating CACE is via a data
augmentation scheme (e.g., imputing compliance status and estimating
impacts among estimated compliers [Imbens and Rubin, 2015]). In our
algorithm we do not implement such a methodology, however it could
be extended including a data augmentation scheme. Moreover, further
research should focus on connecting BCF-IV and GRF into a single en-
semble algorithm, following Grimmer et al. (2017), Van der Laan et al.
(2007), to obtain a novel algorithm that combines the small and large
sample properties of both BCF-IV and GRF to obtain possible gains in
imperfect compliance scenarios.
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Supplementary material for
Chapter 1

5 Discussion on the IV assumptions

In a typical IV scenario one can express the treatment received as a func-
tion of the treatment assigned:Wi(Zi). This leads to distinguish four sub-
populations of units (Gi) (Angrist et al., 1996; Imbens & Rubin, 2015): (i)
those that comply with the assignment (compliers: Gi = C : Wi(Zi =

0) = 0 and Wi(Zi = 1) = 1); (ii) those that never comply with the assign-
ment (defiers: Gi = D : Wi(Zi = 0) = 1 and Wi(Zi = 1) = 0); (iii) those
that even if not assigned to the treatment always take it (always-takers:
Gi = AT : Wi(Zi = 0) = 1,Wi(Zi = 1) = 1); (iv) those that even if
assigned to the treatment never take it (never-takers: Gi = NT : Wi(Zi =

0) = 0,Wi(Zi = 1) = 0). In such a scenario what “one directly gets from
the data” is the so-called Intention-To-Treat (ITTY ):

ITTY = E[Yi|Zi = 1]− E[Yi|Zi = 0], (1.28)

which is defined as the effect of the intention to treat a unit on the out-
come of the same unit. (1.28) can be written as the weighted average of
the intention-to-treat effects across the four sub-populations of compli-
ers, defiers, always-takers and never-takers:

ITTY = πCITTY,C + πDITTY,D + πNT ITTY,NT + πAT ITTY,AT , (1.29)

where ITTY,G is the effect of the treatment assignment on units of type
G and πG is the proportion of units of type G.
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ITTY does not represent the effect of the treatment itself but just the
effect of the assignment to the treatment. If we want to draw proper
causal inference in such a scenario we need to invoke the four classical
IV assumptions (Angrist et al., 1996):

1. exclusion restriction: Yi(0) = Yi(1), for Gi ∈ {AT,NT} where, for
each sub-population and z ∈ {0, 1}, the shortened notation Yi(z) is
used to denote Yi(z,Wi(z))

2. monotonicity: Wi(1) ≥Wi(0)→ πD = 0;

3. existence of compliers: P (Wi(0) < Wi(1)) > 0→ πC 6= 0;

4. unconfoundedness of the instrument:
Zi ⊥⊥ (Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1),Wi(0),Wi(1)).

In our application, these four assumptions are assumed to hold. Let
us look at them in detail. The exclusion restriction is assumed to hold
since we can reasonably rule out a direct effect of being eligible (around
the threshold) on the performance of students. The effect, in this case, can
be reasonably assumed to go through the actual reception of additional
funding. Monotonicity holds by design: since we are in a one-sided non-
compliance scenario there is no possibility for those who are not assigned
to the treatment to defy and get the treatment. The same can be said
about the existence of compliers. Since the sub-populations of always-
takers and defiers can be ruled out by design, this leads to the fact that
units receiving the treatment are compliers. Unconfoundedness of the
instrument can also reasonably be assumed to hold since observations
around the exogenous threshold are as good as if they were randomized
to the assigned-to-the-treatment group and the assigned-to-the control
group. This holds true especially since we do not observe any manipula-
tion around the threshold and sorting of the units into the treated group.
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6 Robustness checks in Monte Carlo simula-
tions

We introduce some changes in the synthetic models used to test the fit of
the BCF-IV (as compared to GRF and HCT-IV). The model from which
we start is the simplest model introduced in Section 2: Yi =

∑k
p=1Xi,p +

WiXi,1 + ξi + εi where Xi,p ∼ N (0, 1),Wi ∼ Bern(0.5), ξi ∼ N (0, 0.01),
εi ∼ N (0, 1) and k = 5. We introduce 5 different variations in this model
(each one corresponds to a different design in Table 9):

1. we change the correlation between Zi and Wi in order to introduce
possible weak-instrument problems: we decrease the correlation to
Cor(Wi, Zi) ∈ (0.45, 0.55) and we do so by introducing in half of
the population a very weak instrument Cor(Wi, Zi|Xi,5 < 0) ∈
(0.35, 0.45);

2. we introduce a partial violation in the exclusion restriction;

3. we introduce multiple heterogeneity driving variables (HDVs):

Yi =

k∑
p=1

Xi,p +

2∑
p=1

(WiXi,p) + ξi + εi, (1.30)

where this variation is introduced to test if the HDVs are correctly
selected even when they are multiple;

4. we change the error distribution, εi ∼ U(0, 1), to test if the algo-
rithm is robust to changes in the noise parameter;

5. we manipulate the propensity score function for the BCF-IV, to test
if this model is robust to a mis-specification of π̂(x).
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Table 5: Robustness checks

Sample Size
#Design Approach 500 1000 5000 500 1000 5000 500 1000 5000

HDV Threshold MSE given HDV
1 BCF-IV 0.37 0.63 0.83 0.065 0.031 0.007 0.078 0.117 0.017

GRF 0.56 0.73 1.00 0.157 0.107 0.007 0.230 0.122 0.011
HTC-IV 0.23 0.36 0.73 0.289 0.090 0.065 0.110 0.140 0.022

2 BCF-IV 0.63 0.40 0.77 0.022 0.061 0.002 0.005 0.107 0.043
GRF 0.43 0.57 0.23 0.052 0.067 0.003 0.171 0.082 0.035
HTC-IV 0.43 0.37 0.53 0.189 0.170 0.064 0.018 0.102 0.056

3 BCF-IV 0.60 0.76 1.00 0.352 0.242 0.021 0.183 0.077 0.004
GRF 0.77 1.00 1.00 0.169 0.230 0.004 0.776 0.365 0.275
HTC-IV 0.53 0.63 0.73 0.323 0.289 0.180 0.312 0.116 0.031

4 BCF-IV 0.63 0.80 1.00 0.043 0.065 0.002 0.006 0.009 0.002
GRF 0.80 0.97 1.00 0.068 0.014 0.001 0.211 0.031 0.001
HTC-IV 0.47 0.40 0.70 0.207 0.103 0.087 0.029 0.014 0.017

5 BCF-IV 0.53 0.63 1.00 0.112 0.020 0.016 0.018 0.011 0.007
GRF 0.63 0.83 1.00 0.062 0.069 0.002 0.330 0.030 0.001
HTC-IV 0.43 0.40 0.70 0.185 0.188 0.045 0.067 0.051 0.012

Note: HDV refers to the proportion of correctly identified Heterogeneity Driving Variables
(HDV); Threshold refers to the mean-squared-error between the true threshold and the

predicted one; MSE given HDV refers to the mean-squared-error of prediction for the true
causal effects. We highlighted in bold the best results for every round of simulations.

The results from these five different designs are reported in Table 5. In
the presence of a weak-instrument (design 1), the fit of all the three algo-
rithms deteriorates. As we saw in the Monte Carlo simulations in Section
2, GRF is better in identifying the correct HDV but BCF-IV outperforms
both GRF and HCT-IV in picking the right threshold and in precisely
estimating the causal effect. As we introduce a partial violation of the ex-
clusion restriction (design 2), BCF-IV outperforms the other algorithms
with respect to all the dimensions both in the cases with small sample
and large sample sizes. When we introduce multiple heterogeneity driv-
ing variables, the capacity of correctly estimating the causal effects for
GRF deteriorates while BCF-IV outperforms the other algorithms. In the
last two designs (design 4 and 5), we again see a trade-off, for the designs
with 500 and 1,000 units, between the capacity of correctly identifying the
HDV (GRF outperforms the other techniques) and precisely estimating
the causal effects (BCF-IV outperforms the other algorithms). In both the
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latter designs, BCF-IV and GRF get to fairly similar asymptotic results.

7 RDD Checks

In order to check whether or not the RDD (Regression Discontinuity De-
sign) setting is valid, we implement the following checks (D. S. Lee &
Lemieux, 2010)31: (i) we check the balance in the sample of units assigned
to the treatment just above and below the threshold (this is done to check
if the randomization holds); (ii) we examine if there are manipulations in
the distribution of schools with respect to the share of disadvantaged stu-
dents around the threshold, (iii) we employ a formal manipulation test,
the McCrary test (McCrary, 2008), to discover potential sorting around
the threshold; (iv) we check if there is a discontinuity in the probability
of being assigned to the treatment around the threshold. Table 6 shows
that the averages of the control variables are not statistically different for
the group of units assigned to the treatment and assigned to the control
around the cutoff, with the exception of teacher seniority. Thus, there is ev-
idence that more senior teachers self-select in schools with lower disad-
vantaged students. However, as we will show in Section 3.3, this variable
does not surface as a driver of significant heterogeneity in the estimated
causal effects. We argue that including this variable in our model results
in more robust findings. This is due to the fact that our model is robust to
spurious heterogeneity coming from unbalances in the samples, as shown
by P. R. Hahn et al., 2020 in randomized and regular assignment mecha-
nisms’ scenarios. Moreover, panel (b) of Figure 5 shows the standardized
difference in the means for these two groups with the relative standard-
ized confidence intervals. The McCrary manipulation test implemented
in Calonico et al., 2015 through a Local-Polynomial Density Estimation
leads to the rejection of the null hypothesis of the threshold manipula-
tion32. Both these results and the plot of the distribution of schools with
respect to the share of disadvantaged students around the threshold in

31The checks depicted in this Subsection are made on the sample of 50 students intro-
duced in Subsection 3.2.

32The McCrary test leads to a T-value of -0.7497 corresponding to a p-value of 0.4534.
The test is performed aggregating the student data at school level.
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Figure 6 indicate that there is no evidence of manipulation. Finally, Fig-
ure 7 shows a clear discontinuity in the probability of being assigned to
the treatment around the threshold.

However, as we pointed out in Section 3, schools that are assigned to
the treatment actually receive the treatment if they satisfy an additional
condition of a minimum of six teaching hours. This leads to a fuzzy-
regression discontinuity design where the jump in the probability of be-
ing assigned to the treatment around the cutoff is not sharp. This scenario
is characterized by imperfect compliance.

Students can be sorted, with respect to their compliance status, into
two types: (i) students in schools above the cutoff with more than
six teaching hours or students in schools below the cutoff (compliers:
Wi(Zi = 1) = 1 orWi(Zi = 0) = 0); (ii) students in schools above the cut-
off but with less than six teaching hours (never-takers: Wi(Zi = 1) = 0)33.

The assignment to the treatment variable (i.e., studying in a school
just below or above the cutoff) is a relevant instrumental variable in our
scenario (namely, the correlation between Zi and Wi is roughly 0.62).
Moreover, we can reasonably assume both the exogeneity condition and
the exclusion restriction to hold in this situation. On one side, since the
randomization of the instrument holds there is no reason not to assume
conditional independence between the instrument and the unobserv-
ables. On the other side, the exclusion restriction seems to hold as well
since we can believe that being just below or above the threshold does
not affect the performance of students in any way other than through the
additional funding. In this imperfect compliance setting, the causal effect
of the additional funding on the students’ performance can be assessed
through the Complier Average Causal Effect in (1.5). Moreover, using our
novel BCF-IV algorithm we can estimate the Conditional Complier Av-
erage Causal Effect, (1.6), to assess the heterogeneity in the causal effects.

33This a so-called case of one-sided-non-compliance, in which we do not observe any
always-takers since for those that are sorted out of the assignment to the treatment (Zi = 0)
there is no possibility to access the treatment.
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Figure 5: Balance improvement. The label “PS” refers to Principal Seniority,
the label “PA” to Principal Age, the label “TS” to Teacher Seniority, the la-
bel “TA” to Teacher Age, the label “TT” to Teacher Training and the label
“BULO” refers to students with special needs in primary education. (Left)
Balance improvement obtained with sampling. “Initial” refers to the initial
sample, while “Sampled” refers to the bootstrapped sample. (Right) Stan-
dardized difference in means (SDM) and 95% confidence interval around
the cutoff with a bandwidth of 3.5%.

Figure 6: Frequency distribution of disadvantaged students around the
threshold (10%). In red the density of the disadvantaged students in the
units assigned to the treatment and in blue the density for the units assigned
to the control. The densities are aggregated at school level.
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Above Cutoff Below Cutoff Full Sample p-value

Retention 0.036 (0.187) 0.037 (0.189) 0.037 (0.188) 0.913
Gender 0.492 (0.500) 0.471 (0.499) 0.482 (0.500) 0.155
Special Needs 0.000 (0.000) 0.002 (0.044) 0.001 (0.030) 0.045
Teacher Age 4.022 (0.333) 4.024 (0.269) 4.023 (0.304) 0.814
Teacher Seniority 3.867 (0.452) 3.927 (0.342) 3.895 (0.404) 0.000
Teacher Training 0.982 (0.025) 0.981 (0.026) 0.982 (0.026) 0.169
Principal Age 6.022 (1.308) 5.951 (1.229) 5.988 (1.271) 0.067
Principal Seniority 5.778 (1.228) 5.829 (0.935) 5.802 (1.098) 0.120

Observations 2250 2050 4300

Table 6: Results for 3.5% discontinuity sample with bootstrapped samples
of size 50. Standard deviations are in parentheses and the p-value corre-
sponds to a t-test for the difference between the means in the group above
and below the threshold.

Figure 7: Probability of treatment given the share of disadvantaged students
(EEO percentage) in the first stage of secondary education (cutoff 10%).

8 Robustness checks for policy evaluation

This Appendix tests the robustness of our models to sampling varia-
tions. The sampling variations introduced come from the following two
sources: (i) a wider bandwidth around the threshold (changing from
3.5% to 3.7%); (ii) an expansion in the number of sampled units (from
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50 up to the lowest number of students per school, which is 62). More-
over, an algorithm which detects the heterogeneity in the ITT effects is
applied. To understand if the balance and the results are robust, we man-
ifest the balance in the averages in the samples of units assigned to the
treatment and assigned to the control (Tables 7, 8, 9) and the results of the
causal effects when we increase the number of units sampled (Figures 8).

In all the different samples the school level characteristics remain
widely balanced (with the exception of teacher seniority34). Primary re-
tention and Gender seem to be slightly unbalanced when we widen the
bandwidth, this however holds true just in the case where we sample
through bootstrap 50 units (Gender in this case gets back to a good bal-
ance).

Above Cutoff Below Cutoff Full Sample p-value

Gender 0.471 (0.499) 0.493 (0.500) 0.482 (0.499) 0.110
Retention 0.039 (0.194) 0.035 (0.184) 0.037 (0.189) 0.418
Special Needs 0.001 (0.039) 0.000 (0.000) 0.001 (0.027) 0.045
Teacher Age 4.024 (0.269) 4.002 (0.333) 4.023 (0.304) 0.793
Teacher Seniority 3.926 (0.341) 3.867 (0.452) 3.895 (0.404) 0.000
Teacher Training 0.982 (0.025) 0.981 (0.026) 0.982 (0.026) 0.126
Principal Age 5.951 (1.228) 6.002 (1.308) 5.988 (1.271) 0.041
Principal Seniority 5.829 (0.934) 5.777 (1.227) 5.802 (1.097) 0.083

Observations 2790 2542 5332

Table 7: Results for 3.5% discontinuity sample with bootstrapped samples
of size 62. Standard deviations are in parentheses and the p-value corre-
sponds to a t-test for the difference between the means in the group above
and below the threshold.

34This could be due to the fact that less senior principals select themselves in schools
with a lower percentage of disadvantaged students.
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Above Cutoff Below Cutoff Full Sample p-value

Retention 0.030 (0.170) 0.042 (0.201) 0.036 (0.186) 0.025
Gender 0.497 (0.500) 0.461 (0.499) 0.479 (0.500) 0.015
Special Needs 0.000 (0.021) 0.001 (0.037) 0.001 (0.030) 0.309
Teacher Age 4.022 (0.333) 4.023 (0.260) 4.022 (0.299) 0.955
Teacher Seniority 3.867 (0.452) 3.932 (0.330) 3.899 (0.398) 0.000
Teacher Training 0.982 (0.025) 0.983 (0.026) 0.983 (0.026) 0.805
Principal Age 6.022 (1.308) 6.000 (1.206) 6.011 (1.259) 0.556
Principal Seniority 5.778 (1.228) 5.818 (0.912) 5.798 (1.083) 0.212

Observations 2250 2200 4450

Table 8: Results for 3.7% discontinuity sample with bootstrapped samples
of size 50. Standard deviations are in parentheses and the p-value corre-
sponds to a t-test for the difference between the means in the group above
and below the threshold.

Above Cutoff Below Cutoff Full Sample p-value

Retention 0.029 (0.168) 0.040 (0.196) 0.034 (0.182) 0.026
Gender 0.490 (0.500) 0.464 (0.499) 0.477 (0.500) 0.058
Special Needs 0.000 (0.019) 0.001 (0.038) 0.001 (0.030) 0.174
Teacher Age 4.022 (0.333) 4.023 (0.260) 4.022 (0.299) 0.950
Teacher Seniority 3.867 (0.452) 3.932 (0.330) 3.899 (0.398) 0.000
Teacher Training 0.982 (0.025) 0.983 (0.026) 0.983 (0.026) 0.784
Principal Age 6.022 (1.308) 6.000 (1.206) 6.011 (1.259) 0.512
Principal Seniority 5.778 (1.227) 5.818 (0.912) 5.798 (1.083) 0.165

Observations 2790 2728 5518

Table 9: Results for 3.7% discontinuity sample with bootstrapped samples
of size 62 (the smallest school in the sample). Standard deviations are in
parentheses and the p-value corresponds to a t-test for the difference be-
tween the means in the group above and below the threshold.

With respect to the results of the BCF-IV algorithm, when we increase
the number of sampled units we report the results just for the outcome
variable Progress School, for which we find evidence of significant treat-
ment effect variation. The main differences between the results for the
sample of 50 students (Figure 4) and the ones for the sample of 62 stu-
dents (Figure 8) are the following: (i) the overall effect is positive (but,
again, not statistically significant); (ii) the conditional effects estimated
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are larger and with a higher statistical significance (which is not surpris-
ing given the larger sample).

Figures 9 and 10 depict the results obtained for the estimation of the
Intention-To-Treat (ITT) effect using the same set-up used for the estima-
tion of CACE in Figures 3 and 4. Figure 9 depicts the results for the ITT
for the A-certificate outcome and can be directly compared with Figure 3,
while Figure 10 depicts the results for the ITT for the Progress School out-
come and can be directly compared with Figure 4. The results for CACE
and ITT are fairly similar as the complier sub-populations vary between
a maximum of 83% of compliers to a minimum of 58% of them. Hence,
we can argue that our algorithm catches treatment variations in CACE
that are directly driven by the effect variations in the estimated ITT and
not by variations in the proportion of compliers within the different sub-
populations.

CACE
0.017
100%

Principal Seniority < 5.5

Principal Seniority >= 5.5

Principal Age < 6.5

Principal Age >= 6.5 CACE
0.055***

36%

CACE
-0.030**

64%

CACE
-9.70x10−16

4%

CACE
0.069***

32%

Figure 8: Visualization of the heterogeneous Complier Average Causal Ef-
fects (CACE) of additional funding on Progress School estimated using the
proposed model. The tree is a summarizing classification tree fit to poste-
rior point estimates of individual treatment effects as in P. R. Hahn et al.,
2020. The overall sample size is 5,518. The significance level is * for a signif-
icance level of 0.1, ** for a significance level of 0.05 and *** for a significance
level of 0.01.
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ITT
0.004
100%

ITT
-0.021
14%

ITT
0.012
86%

Teacher Seniority < 3.5

Teacher Seniority >= 3.5

ITT
0.040

4%

ITT
-0.069
10%

Teacher Age < 3.5

Teacher Age >= 3.5 

Principal Age >=  7.5

ITT
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Principal Age < 7.5

ITT
0.019
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Figure 9: Visualization of the heterogeneous Intention-To-Treat (ITT) effect
of additional funding on A-certificate. The tree is a summarizing classifica-
tion tree fit to posterior point estimates of individual treatment effects as in
P. R. Hahn et al., 2020. The overall sample size is 4,300.

ITT
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100%

Principal Seniority < 5.5

Principal Seniority >= 5.5
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ITT
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Figure 10: Visualization of the heterogeneous Intention-To-Treat (ITT) ef-
fect of additional funding on Progress School estimated using the proposed
model. The tree is a summarizing classification tree fit to posterior point
estimates of individual treatment effects as in P. R. Hahn et al., 2020. The
overall sample size is 4,450.
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Chapter 2

Causal rule ensemble:
interpretable inference of
heterogeneous treatment
effects

There have been many developments in estimating the average treat-
ment effects (ATE). In various fields, the estimation of the ATE provides
a central insight on the causal effect of a treatment (e.g., a drug, a pub-
lic intervention, an environmental policy, and so on) on an outcome, on
average for the whole population. However, in addition to the ATE, it is
critically important to identify subgroups of the population that would
benefit the most from a treatment and/or would be most vulnerable to
an environmental exposure. In the context of air pollution, it is deemed
important to public health to identify the subgroups that are most vul-
nerable, so that effective interventions can be put in place to mitigate
adverse health effects (K. Lee et al., 2018).

There is extensive literature on assessing heterogeneity of causal ef-
fects that is based on estimating the conditional average treatment effect
(CATE). For each combination of covariates X = x (i.e., subset of the

This Chapter is based on Lee, Bargagli-Stoffi and Dominici (2020).
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features space), the average treatment effect conditioning on x can be es-
timated with the same set of the causal assumptions that are needed for
estimating the ATE (Athey & Imbens, 2016). For example, earlier works
on nonparametric approaches for estimating CATE relies on nearest-
neighbor matching and kernel methods (Crump et al., 2008; M.-j. Lee,
2009). Wager and Athey (2018) discuss that these approaches may fail
in handling a large number of covariates. This issue is often referred
to as curse of dimensionality (Bellman, 1961; Robins & Ritov, 1997). Re-
cently, other nonparametric approaches have been developed that rely
on machine learning methods such as Random Forest (Breiman, 2001)
and Bayesian Additive Regression Tree (BART) (Chipman et al., 2010).
These approaches have been successful even when the number of fea-
tures is very large. For instance, in their seminal contributions Foster et
al. (2011) and Hill (2011) used forest-based algorithms for the prediction
of the missing potential outcomes. In a similar spirit, P. R. Hahn et al.
(2020) proposed a BART-based approach but with a novel parametriza-
tion of the outcome surfaces. In more recent contributions, Wager and
Athey (2018) and Athey et al. (2019) developed forest-based methods
for the estimation of heterogeneous treatment effects. They also provide
asymptotic theory for the conditional treatment effect estimators and
valid statistical inference.

Despite the success in accurately estimating the CATE using ma-
chine learning methods, these tree ensemble methods offer little guid-
ance about which covariates or, even further, subgroups (i.e., subsets of
the features space defined by multiple covariates) play an important role
in driving treatment effects heterogeneity. Their parametrization of the
covariate space is complicated and difficult to interpret by human ex-
perts. This issue is well-known as lack of interpretability. Increasing model
interpretability is key to understanding and furthering human knowl-
edge. However, effort to improve interpretability is so far lacking in the
current causal inference literature dealing with the study of treatment
effect heterogeneity.

As we show in Chapter 1 binary trees provide a high level of inter-
pretability but suffer of three main limitations: (i) they are prone to over-
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fitting data, so the results can fail to be replicable/generalizable (Strobl
et al., 2009); (ii) they are able to discover just a limited number of hetero-
geneous subpopulations; (iii) they may fail to distinguish between effect
modifiers and confounders.

In this Chapter, we propose a novel Causal Rule Ensemble (CRE)
method that ensures interpretability of the causal rules, while maintain-
ing a high level of accuracy of the estimated treatment effects for each
rule, and accommodating for the shortcomings of tree-based method-
ologies. We define interpretability as the degree to which a human can
understand the cause of a decision or consistently predict the results of
the model (B. Kim et al., 2016; T. Miller, 2019). Decision rules are ideal
for this non-mathematical definition of interpretability. A decision rule
consists of a set of conditions about the covariates, that define a subset
of the features space, and corresponds to a specific subgroup. The con-
cept of interpretable causal rules was first introduced in the causal infer-
ence literature in the seminal contribution of T. Wang and Rudin (2017).
However, these authors focus on a small set of short rules to capture the
heterogeneous subgroups. In this Chapter, we improve over this paper
by discovering a potentially larger and more complex set of rules, while
maintaining a high level of interpretability.

We want to achieve at least three main goals: to (1) discover de novo
the rules that lead to heterogeneity of causal effects; (2) make valid and
precise inference about the CATE with respect to the newly discovered
rules; and (3) assess sensitivity to unmeasured confounding bias for the
rule-specific causal effects. To do so, we follow Athey and Imbens (2016),
and we rely on a sample-splitting approach that divides the total sample
into two smaller samples: (1) one for discovering a set of interpretable de-
cision rules that could lead to treatment effect heterogeneity (i.e., discov-
ery sample) and (2) the other for estimating the rule-specific treatment
effects and associated statistical uncertainty (i.e., inference sample). We
also tailor a sensitivity analysis method proposed by Q. Zhao et al. (2019)
to assess the robustness of the rule-specific treatment effects to unmea-
sured confounding.

To summarize, our proposed approach has the following character-
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istics all embedded within a single algorithm: 1) identifies de novo the
features that lead to treatment effect heterogeneity; 2) ensures that these
features are interpretable, that is, they are mapped into simple causal
rules that describe subsets of the study population where the treatment
effect for that subgroup deviates from the ATE; 3) estimates the causal
treatment effects for each of the rule, while maintaining statistical ac-
curacy; 4) allows the researcher to detect, in a more flexible and stable
way, a larger set of causal rules with respect to the one that could be dis-
covered with state-of-the-art methodologies; 5) provides a powerful tool
to disentangle the effect modifiers (namely, drivers of causal effect het-
erogeneity) from the confounders; 6) allows for a sensitivity analysis to
unmeasured confounding bias; 7) provides higher standards of replica-
bility.

The reminder of the Chapter is organized as follows. In Section 1, we
introduce the main definitions of CATE and interpretable decision rules.
In Section 2, we describe the algorithm used for the discovery of causal
rules. Section 3 introduces our innovative ideas regarding estimation and
sensitivity analysis. In Section 4, we conduct simulations studies. In Sec-
tion 5, we apply the proposed method to the Medicare Data. Section 6
discusses the strengths and weaknesses of our proposed approach and
areas of future research.

1 Treatment effect heterogeneity, interpretabil-
ity and sample-splitting

1.1 Causal treatment effects

Suppose that we have N subjects. Following the notation and the poten-
tial outcome framework (Neyman, 1923, 1990; Rubin, 1974) introduced in
Chapter 1, we can define, again, two potential outcomes Yi(1) and Yi(0)

as a function of the treatment Wi assigned to each subject i (i.e., Yi(Wi)).
Yi(1) is the potential outcome for unit i under treatment, while Yi(0) is
the potential outcome under control. As in Chapter 1, we consider the
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conditional average treatment effect (CATE) τ(x) defined as:

τ(x) = E [Yi(1)− Yi(0)|Xi = x] , (2.1)

and the average treatment effect (ATE) defined as τ = E[τ(x)].
Although τ(x) cannot be observed, τ(x) can be estimated under the

assumption of unconfoundedness introduced in Chapter 1:

(Yi(1), Yi(0)) ⊥⊥Wi |Xi. (2.2)

This assumption means that the two potential outcomes depend on Xi,
but are independent of Wi conditioning on Xi. By using the propensity
score e(x) = E[Wi|Xi = x] (Rosenbaum & Rubin, 1983b), the CATE τ(x)

can be identified as

τ(x) = E
[(

Wi

e(x)
− 1−Wi

1− e(x)

)
Yi |Xi = x

]
. (2.3)

However, in practice we do not know whether a considered set Xi is
sufficient for the assumption (2.2). When there exists a source of unmea-
sured confounding, this assumption is violated, and the identification re-
sults do not hold. Sensitivity analysis provides a useful tool to investigate
the impact of unmeasured confounding bias, which will be discussed in
Section 3.2.

1.2 Interpretability and decision rules

Our primary goal is to provide an interpretable structure of τ(x) (dis-
covery of treatment effects heterogeneity) and then estimate τ(x) in an
efficient and precise manner (estimation of treatment effects heterogene-
ity). The functional form of τ(x) is not known, and may have a com-
plicated structure varying across subgroups. To get a better estimate of
τ(x), a complex model can be used, but such model may mask the infor-
mative structure of τ(x). Instead, it is possible to “extract” (or “approxi-
mate”) important subspaces of X that are responsible for the variation of
τ(x). The extracted subspaces may not perfectly describe the treatment
effect heterogeneity, but provide a concise and informative summary of
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Total sample

Male

Young maleOld male

Young= 0 Young= 1

Female

Male= 0 Male= 1

Figure 11: Example of causal rules.

Table 10: Extracting rules from the example tree in Figure 11

Rules Conditions
r1 Male= 0
r2 Male= 1
r3 Male= 1 & Young= 0
r4 Male= 1 & Young= 1

τ(x). This is often referred to as trade-off between interpretability and accu-
racy. More specifically, weighing too much on achieving high accuracy in
the estimation of the causal effect for a given covariates-profile generally
comes at the cost of compromising interpretability. On the other hand,
trying to achieve higher levels of interpretability might lead to the need
to specify more complex models with a larger number of parameters,
which in turn may reduce the statistical precision.

Our work focuses on how to find a good balance between inter-
pretability and estimation accuracy. Even better, we aim to improve in-
terpretability while the level of accuracy is maintained. To do so, we
consider decision rules as base learners, and describe the heterogeneous
treatment effect as a linear combination of these learners.

First, we define decision rules with formal definition. Let Sp be the
set of possible values of the pth covariate and sp,m ⊆ Sp be a specific
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subset corresponding to the mth rule. Then, each decision rule rm(x) can
be represented as

rm(x) =
∏

p:sp,m 6=Sk

I(xk ∈ sp,m). (2.4)

Define the covariate space D = S1 × · · · × SP as a Cartesian product of
P sets. A vector of covariates Xi must lie in D for all i. Also, we define
the subset Dm corresponding to the rule rm(x), Dm = s1,m × · · · × sP,m.
Then, rm(x) = 1 if x ∈ Dm and rm(x) = 0 otherwise. Decision rules
are easily obtained from a decision tree. For example, Figure 11 shows a
toy example. The decision tree in this figure consists of several decision
rules. Four decision rules can be extracted from this tree. For example, the
young male group can be expressed as r4 = 1(Male = 1)×1(Young = 1).
Other decision rules are listed in Table 10. We note that r2 represents the
internal node of the male group. Each decision rule corresponds to either
internal or terminal nodes (leaves) except for the initial node (root node).
Including rules corresponding to internal nodes may increase the total
number of decision rules to consider, but it can be helpful not to miss
important decision rules that are essential to describe variability of τ(x).

1.3 Sample Splitting

Analysis of heterogeneous treatment effects or subgroup analysis are
typically conducted for subgroups defined a priori to avoid the cherry-
picking problem that reports only subgroups with extremely high/low
treatment effects (Cook et al., 2004). However, defining subgroups a pri-
ori requires a fairly good understanding of the treatment effect, prob-
ably from previous literature. On top of that, another problem is that
researchers may miss unexpected subgroups. To overcome these limita-
tions, we propose to use data-driven machine learning approaches com-
bined with honest inference (Athey & Imbens, 2016). In particular, we
use a sample-splitting approach that divides the total sample into two
smaller samples (Athey & Imbens, 2016; K. Lee et al., 2018): (1) discov-
ery and (2) inference samples. By using the discovery sample, decision
rules are generated, and among them, a few candidates are selected.
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Algorithm 1 Overview of the Causal Rule Ensemble (CRE) Method

• Randomly split the total sample into two smaller samples: the dis-
covery and inference subsamples

• The Discovery Step (performed on the discovery subsample):

1. Rules generation (Section 2.1)

(a) Estimate τi using existing methods for estimating the
CATE

(b) Use (τ̂i,Xi) to generate a collection of trees through tree-
ensemble methods

(c) From the collection, extract decision rules rjby removing
duplicates

2. Rules regularization (Section 2.2)

(a) Generate a new vector X̃∗i whose jth component corre-
sponds to rules rj

(b) Apply stability selection to (τ̂i, X̃
∗
i ) and select potentially

important decision rules X̃.

• The Inference Step (performed on the inference subsample)::

1. Estimate the CATE for the set of important decision rules se-
lected in step 2.b (Section 3.1)

2. Sensitivity analysis for the estimated CATE from the previous
step (Section 3.2)
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These selected rules are regarded as rules given a priori when making
statistical inference using the remaining inference sample. This sample-
splitting approach is transparent and furthermore even efficient in high-
dimensional settings.

2 Discovery step: which subgroups are poten-
tially important?

This Section illustrates the step for discovering potentially important
subgroups in terms of decision rules. In particular, we introduce a
generic method that creates a set of decision rules and identifies the rule-
generated structure. The main advantage of separating this step from
the inference step is to provide transparency. In this context, transparency
refers to independence from one’s subjective decisions. The procedure
illustrated below is performed only using the data in the discovery sam-
ple.

2.1 Rule Generation

We use decision rules as base learners. Decision rules can be externally
specified by using prior knowledge. However, we propose to employ a
data-driven approach that uses hundreds of trees and extracts decision
rules1. This approach overcomes two drawbacks that classical subgroup
analysis approaches have: (1) they strongly rely on the subjective deci-
sions on which are the heterogeneous subpopulations to be investigated;
and (2) they fail to discover new rules other than the ones that are a pri-
ori defined by the researchers. On top of that, a data-driven method to
detects causal rules avoids potential problems related to cherry-picking
of the subgroups with extremely high/low treatment effects (Cook et al.,
2004).

1Please note that these two approaches to decision rules discovery (i.e., prior knowledge
vs data-driven discovery) can be merged in the proposed CRE algorithm. Indeed, one can
manually tune the algorithm in order to let it discover more often subpopulations define
by covariates that were found to be important in previous studies.
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To create base learners for τ(x), we estimate τi first (where τi =

tau(Xi)). This estimation is not considered for making inference, but de-
signed for exploring the heterogeneous treatment effect structure. Many
different approaches for the estimation of τ(x) can be considered. There
has been methodological advancement in directly estimating τ(x) by us-
ing machine learning methods such as Causal Forest (Wager & Athey,
2018) or Bayesian Causal Forest (BCF) (P. R. Hahn et al., 2020). The BCF
method directly models the treatment effect such as τi = m0(Xi; ê) +

α(Xi; ê)Wi using the estimated propensity score ê(Xi). P. R. Hahn et al.
(2020) shows that BCF produces extremely precise estimates of τ(x). This
evidence is consistent with recent works showing an excellent perfor-
mance of Bayesian machine learning methodologies in causal inference
scenarios (Bargagli-Stoffi et al., 2019; P. R. Hahn, Dorie, et al., 2018; Hill,
2011; Logan et al., 2019; Nethery et al., 2019; Starling et al., 2019). The BCF
method can be applied to the discovery sample to estimate τi. We denote
such estimates with τ̂BCFi . Alternative approaches for the estimation of
τ(x) are discussed in Appendix 8. Here, we want to highlight that the
simulations’ results show that the performance of the CRE algorithm in
discovering the true causal rules is higher when we use BCF to estimate
τ(x) (additional details on these simulations are provided in Appendix
8).

Once the unit level treatment effect τ̂i is obtained, one can fit a deci-
sion tree using the data (τ̂i,Xi). After fitting a tree, decision rules can be
extracted as discussed above. However, using a single tree is neither an
efficient nor a stable way to find important decision rules. This is due to
two main factors: (i) the greedy nature of tree-based algorithms and (ii)
their lack of flexibility. Binary trees are greedy algorithms as they do not
subdivide the population based on the overall best splits (the set of splits
that would lead to the minimization of the overall criterion function), but
they pick the best split at each step (the one that minimizes the criterion
function at that particular step)2. Moreover, binary trees may not spot si-
multaneous patterns of heterogeneity in the data because of their binary

2Optimal trees (Bertsimas & Dunn, 2017) accommodate for this shortcoming at the cost
of an extremely higher computational burden.
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nature. Imagine that the treatment effect differs by sex and high school
diploma. The tree-based algorithm may be able to spot only one of the
two drivers of heterogeneity if one affects the treatment effect more than
the other. Even when both the heterogeneity drivers are discovered they
are spotted in a suboptimal way as an interaction between the two vari-
ables (i.e., women with a high school diploma, men with no diploma,
etc).

To accommodate for these shortcomings of single trees, tree ensemble
methods such as Random Forest (Breiman, 2001) and Gradient Boosting
(Friedman, 2001) can be applied to obtain a collection of trees. Nalenz
and Villani (2018) discuss that boosting and Random Forest are very dif-
ferent in nature, thus using both approaches can generate a wider set
of decision rules. Even after removing duplicate rules, this will lead to
a larger and more diverse set of candidate rules, but will increases the
probability to capture important rules. We follow Friedman and Popescu
(2008) and Nalenz and Villani (2018) to use the same settings of the tun-
ing parameters for gradient boosting and Random Forest.

Our approach puts more attention on creating a large enough set
that includes important decision rules with high probability. The created
set will be reduced by using variable selection techniques later in the
same discovery step. Another remark is that one should avoid using too
lengthy (i.e., many conditions) or too many decision rules, which results
in reducing interpretability.

2.2 Rules regularization and stability selection

Denote rm(x) as the generated rules from Section 2.1, with m =

1, . . . ,M∗. Since each rule rm(x) indicates whether x satisfies the rule
or not, it can take a value either 0 or 1. Define X̃∗ as a new matrix whose
columns are the decision rules. The number of rules,M∗, is usually larger
than P and depends on how heterogeneous τ(x) is. Although the origi-
nal dataset X is not high-dimensional, X̃∗ can be high-dimensional.

The set of the generated rules is a set of potentially important rules. It
can contain actually important decision rules that describe the true het-
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erogeneity in the treatment effects. However, insignificant rules may be
contained in the set. Then, rule selection is applied to distinguish be-
tween few important rules and many insignificant ones. This regulariza-
tion step improves understanding of the heterogeneity in the effects and
increases efficiency. On top of this, such step improves interpretability: if
too many rules are selected, this information may be too complex to un-
derstand. We consider the following linear regression model of the form,

τ(x) = β0 +

M∗∑
m=1

βmrm(x) + ε (2.5)

Since a linear model is considered, the model (2.5) lends a familiar in-
terpretation of the coefficients {βm}M

∗

0 . Using this linear model, one can
employ the following penalized regression to select important rules:

argmin
βm

{
β0 +

M∗∑
m=1

βmrm(x)

}
subject to ||βm||p ≤ λ (2.6)

where λ is the regularization parameter and || · ||p is the lp-norm. How-
ever, variable selection has been known as a notoriously difficult prob-
lem.

The Least Absolute Shrinkage and Selection Operator (LASSO) es-
timator (Tibshirani, 1996) has been popular and widely used over the
past two decades in order to solve the problem in (2.6) by employing
the l1-norm (

∑M∗

m=1 |βm|). The usefulness of this estimator among other
penalization regression methods is demonstrated in various applications
(Belloni, Chernozhukov, Hansen, & Kozbur, 2016; Chernozhukov et al.,
2017; Chernozhukov et al., 2016; L. Su et al., 2016). Using a regulariza-
tion parameter λ, we can see that the estimate β̂ shrinks toward to zero
as λ increases, which provides a sparse structure close to the true model.
Consistency of LASSO variable selection has been studied in P. Zhao
and Yu (2006) and others. However, the biggest challenge is to choose a
proper value of λ for consistent selection. Cross-validation is usually ac-
companied to choose λ. However, it may fail for high-dimensional data
(Meinshausen & Bühlmann, 2006). Stability selection (Meinshausen &
Bühlmann, 2010) can be used to enhance the performance of the LASSO
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estimator. Roughly speaking, by using a subsampling scheme, selection
probabilities of variables (decision rules) can be estimated. Given two
parameters (i.e., cut-off threshold and the average number of selected
variables), variable selection can be done in a comparatively robust and
transparent way. Also, Meinshausen and Bühlmann (2010) discussed that
the solution of stability selection depends little on the initial regulariza-
tion chosen, which is a desirable feature when selecting decision rules.

Among initially generated M∗ decision rules, we assume that
M (with M << M∗) decision rules are selected as an output from the dis-
covery procedure. Then, we can define X̃ as the matrix containing only
the selected decision rules. Figure 12 depicts the intuition behind these
steps of rules discovery and selection. The Figure shows a simple forest
composed of just five trees. Each node of each tree (with the exclusion of
the roots) represents a causal rule (rules’ discovery), while the nodes high-
lighted in red represent the causal rules that are selected by the stability
selection methodology (rules’ selection).

Figure 12: Rules’ discovery and selection in a simple forest.

2The intuition behind stability selection is to aggregate the results from multiple penal-
ized regressions constructed using sub-sampling techniques, controlling for a fixed number
of false discoveries. Meinshausen and Bühlmann (2010) show that the variables that are se-
lected more often are a stable set of important regressors.
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3 Inference step: which subgroups are really
different?

Using the rules that were discovered and then selected in the discovery
step, the remaining inference sample is used to make inference. We pro-
pose a generic approach to estimate the rule-specific treatment effect, and
compare it with existing approaches. Furthermore, we propose a new
sensitivity analysis method to assess the presence of unmeasured con-
founding bias.

3.1 Estimating the subgroup-specific treatment effect

Decision rules are selected through the discovery step by using the linear
model in (2.5),

τ = X̃β + ε

with E(ε|x) = 0 and var(ε|x) = σ2I . The main goal of this inference
step is to estimate β that represents rule-specific treatment effects. We
estimate the conditional average treatment effects for the subpopulations
corresponding to the selected rules. We use ordinary least squares (OLS)
to estimate β. However, this estimator cannot be obtained as the unit
level treatment effect τ is not known. Hence, we define a new vector
τ ∗ = (τ∗1 , . . . , τ

∗
N )T that is an estimate of τ . The newly defined τ ∗ is

just an intermediate value used in the inference step. Although τ ∗ is an
estimate, to distinguish this with the fitted value obtained by using the
linear model, we save hat notation.

The estimate τ∗i can be viewed as an observable quantity with some
sampling error although τ∗i is an estimated value. The quantity τ∗i can be
represented by

τ∗i = τi + ui where E(ui|xi) = 0 and var(ui|xi) = ωi. (2.7)

In general, the variance ωi is not constant across all individuals. By com-
bining it with the model (2.5), the modified linear model is obtained as

τ∗i = β0 +

M∑
j=1

βjX̃ij + νi = X̃iβ + νi, (2.8)
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where X̃i is the ith row of X̃ and νi = εi + ui. Lewis and Linzer (2005)
considered a similar linear model like the model (2.8) and found via sim-
ulation studies that the OLS estimator performs well in many cases. Also,
they found that since the error νi is not homoscedastic, considering White
or Efron’s heteroscedastic-consistent standard error can provide an effi-
cient estimate. Based on these findings, we also consider the OLS estima-
tor for β that can be defined as

β̂ = (X̃T X̃)−1X̃T τ ∗. (2.9)

Also, the fitted value τ̂ is defined as τ̂ = X̃β̂ = X̃(X̃T X̃)−1X̃T τ ∗.
The intermediate vector τ ∗ can be chosen in various ways. However,

to validate our estimator (2.9), each τ∗i has to be unbiased with finite vari-
ance. Given that the matrix X̃ is fixed, we can prove that the estimator
β̂j , j = 1, . . . ,M is a consistent estimator of βj that is the average treat-
ment effect for the subgroups defined by the decision rule rj if rj is not
included in another rule rj′ .

Theorem 1. If τ∗i satisfies the model (2.7) (Condition 1) and E(X̃T
i X̃i) =

Q is a finite positive definite matrix (Condition 2), then the estimator β̂ =
(X̃T X̃)−1X̃T τ ∗ is a consistent estimator for β.

Corollary 1.1. The estimator β̂IPW = (X̃T X̃)−1X̃T τ ∗ where τ∗i = τ̂ IPWi is
consistent3.

We need additional assumptions to prove asymptotic normality of
β̂. For a general covariate matrix, the following three conditions are re-
quired:

3. E(X̃4
ij) <∞;

4. E(ν4i ) <∞;

5. E(ν2i X̃
T
i X̃i) = Ω is a positive definite matrix.

Since X̃ij is either 0 or 1 in our setup, Condition (3) is satisfied by design.
The following theorem represents the asymptotic distribution of β̂.

3The estimator β̂IPW is introduced in more detail in Appendix 8.
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Theorem 2. If Conditions (1)-(5) hold, then

√
N(β̂ − β)

d→ N (0,V) as N →∞

where V = Q−1ΩQ−1.

The variance V usually has to be estimated. The variance-covariance
matrix estimator V̂n = Q̂−1Ω̂Q̂−1 can be obtained by the sandwich for-
mula where Q̂ = n−1

∑N
i=1 X̃T

i X̃i, Ω̂ = n−1
∑N
i=1 ν̂

2
i X̃

T
i X̃i and ν̂i =

τ∗i − X̃iβ̂. This estimator is robust and often called the White’s estimator
(H. White, 1980). There are other approaches to obtain a heteroscedastic-
ity consistent covariance matrix, which is discussed in Long and Ervin
(2000). For small samples, Efron’s estimator (Efron, 1982), known as
HC3 estimator, can be considered alternatively. Also, if the variance wi
is known from the large sample properties of existing methods for ob-
taining τ∗i , then feasible generalized least squares estimators (Lewis &
Linzer, 2005) can be considered.

Instead of estimation, hypothesis testing for identifying true decision
rules can be considered. As we have seen in the previous simulation
study, true rules representing treatment effect heterogeneity are discov-
ered and selected with high probability. However, at the same time, non-
true rules are selected with high probability. If one wants to know which
rules are really important for describing treatment effect heterogeneity,
variable selection can be used to choose a final model for treatment effect
heterogeneity. For instance, the null hypothesis H0 : β = 0 can be tested
by using a Wald-type test statistic Tn = nβ̂T V̂−1n β̂. If Tn > χ2

M,1−α, H0 is
rejected.

3.2 Sensitivity analysis

The validity and consistency of the estimator β̂ rely on the assump-
tion of no unmeasured confounders (2.2) and correct specification of the
propensity score model. However, in reality, there is no guarantee that
these assumptions are satisfied. Also, such assumptions are not directly
testable. Without further knowledge about unmeasured confounding, it
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is extremely difficult to quantify how much bias can occur. Instead of at-
tempting to quantify the degree of unmeasured confounding in the given
dataset, it is more realistic to see how our causal conclusion will change
with respect to various degrees of such bias. In this subsection, we pro-
pose a sensitivity analysis to examine the impact of potential violations
of the no unmeasured confounding assumption on the discovered causal
rules. We introduced a generic approach for estimating β in Section 3.1.
However, in our sensitivity analysis, we consider the special case where
τ∗i is estimated as τ̂SIPWi

4. Define U = (X̃T X̃)−1X̃T that is a M ×N ma-
trix. Also, let Uj be the jth row of U and Uji be the (j, i) element of U.
Our estimator β̂j is explicitly represented by

β̂j = β̂j(1)− β̂j(0) where

β̂j(1) =

[
1

N

N∑
i=1

Wi

ê(Xi)

]−1 [ N∑
i=1

UjiYiWi

ê(Xi)

]

β̂j(0) =

[
1

N

N∑
i=1

1−Wi

1− ê(Xi)

]−1 [ N∑
i=1

UjiYi(1−Wi)

1− ê(Xi)

]
.

We consider the marginal sensitivity model that was introduced by
Tan (2006) and Q. Zhao et al. (2019). Let the true propensity probability
e0(x, y; a) = P0(W = 1|X = x, Y (a) = y) for a ∈ {0, 1}. If the assump-
tion of no unmeasured confounders holds, this probability would be the
same as e0(x) = P0(W = 1|X = x) that is identifiable from the data.
Unfortunately, this assumption cannot be tested since e0(x, y; a) is gener-
ally not identifiable from the data. For each sensitivity parameter Λ that
will be introduced in detail later, the maximum deviation of e0(x, y; a)

from the identifiable quantity e0(x) is restricted, and sensitivity analysis
is conducted for each Λ to see if there is any qualitative change of our
conclusion. In addition to this non-identifiability of e0(x, y; a), there is
another difficulty in obtaining e0(x) non-parametrically when X is high-
dimensional. In practice, as it is common use, e0(x) is estimated by a
parametric logistic model in the form of eγ(x) = exp(γ′x)/{1+exp(γ′x)}

4The estimator β̂SIPW is introduced in more detail in Appendix 8.
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where eγ0(x) can be considered as the best parametric approximation of
e0(x), and used for sensitivity analysis.

Our sensitivity model assumes that the true propensity probability
e0(x, y; a) = P0(W = 1|X = x, Y (a) = y) satisfies:

e0(x, y; a) ∈ Eγ0 (Λ) = {0 < e(x, y; a) < 1 : 1/Λ ≤ OR{e(x, y; a), eγ0 (x)} ≤ Λ}
(2.10)

for a ∈ {0, 1} and where eγ0(x) = Pγ0(W = 1|X = x) and
OR{e(x, y; a), eγ0(x)} is an odds ratio:

OR{e(x, y; a), eγ0(x)} =
(1− e(x, y; a)) · eγ0(x)

e(x, y; a) · (1− eγ0(x))
. (2.11)

The deviation of e0(x, y; a) is symmetric with respect to the parametri-
cally identifiable quantity eγ0(x), and the degree of the deviation is gov-
erned by the sensitivity parameter Λ ≥ 1. When Λ = 1, e0(x, y; a) =

eγ0(x) for all a, which implies that there is no violations of the assump-
tions. If the propensity score model is correctly specified, eγ0(x) = e0(x).
Also, if there is no unmeasured confounder, e0(x, y; a) = e0(x). There-
fore, under the assumptions of correct propensity score model and no
unmeasured confounder, e0(x, y; a) = eγ0(x). Our sensitivity model con-
siders violations of both assumptions. This sensitivity analysis model re-
sembles the model proposed by Rosenbaum (2002). The connection be-
tween the two models is illustrated in Section 7.1 in Q. Zhao et al. (2019).

The (1 − α)-coverage confidence interval of βj can be constructed
by using the percentile bootstrap. First, we replace UjiYi by Ỹ ji and
treat Ỹ ji as if it is an observed outcome, then the confidence interval
for each βj can be constructed through the procedure in Algorithm 2.
Confidence intervals have at least 100(1 − α) % coverage probability
even in the presence of unmeasured confounding. The validity of the
percentile bootstrap confidence interval [Lj , Uj ] can be proved by us-
ing Theorem 1 in Q. Zhao et al. (2019). In Step (2e) of Algorithm 2,
the optimization problem can be efficiently solved by separating two
simpler optimization problems. The minimum is obtained when the

first part
∑N1
i=1 Ỹ

(`)
ji [1+qi exp{−γ̂(`)X

(`)
i }]∑N1

i=1[1+qi exp{−γ̂(`)X
(`)
i }]

is minimized and the second part∑N
i=N1+1 Ỹ

(`)
ji [1+qi exp{γ̂(`)X

(`)
i }]∑N

i=N1+1[1+qi exp{γ̂(`)X
(`)
i }]

is maximized. For instance, the minimiza-
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tion of the first part is achieved at {qi : qi = 1/Λ for i = 1, . . . , b, and qi =

Λ for i = b + 1, . . . , N1} for some b. To find the minimum, it is required
to check every possible value of b, and the computational complexity is
O(N1). See Proposition 2 in Q. Zhao et al. (2019) for more details.

Algorithm 2 Constructing the confidence interval of βj for each sensitiv-
ity parameter Λ

1. Generate a matrix U = (X̃T X̃)−1X̃T

2. In the `th of L iterations:

(a) Generate a bootstrapped sample: (U
(`)
i , Y

(`)
i ,X

(`)
i )i=1,...,N .

(b) Generate the transformed outcomes Ỹ (`)
ji = UjiYi for all i,

where Uji is the (j, i) element of U.

(c) Reorder the index such that the firstN1 =
∑N
i=1W

(`)
i units are

treated with Ỹj1 ≥ . . . ≥ Ỹj,N1 and the rest are control with
Ỹj,N1+1 ≥ . . . ≥ Ỹj,N

(d) Compute the estimate γ̂(`) by fitting the logistic regression
with (W

(`)
i ,X

(`)
i )

(e) Solve the following optimization problems:

min or max

∑N1
i=1

Ỹ
(`)
ji

[1 + qi exp{−γ̂(`)X(`)
i
}]∑N1

i=1
[1 + qi exp{−γ̂(`)X(`)

i
}]

−

∑N
i=N1+1 Ỹ

(`)
ji

[1 + qi exp{γ̂(`)X(`)
i
}]∑N

i=N1+1
[1 + qi exp{γ̂(`)X(`)

i
}]

subject to 1/Λ ≤ qi ≤ Λ, for 1 ≤ i ≤ N , and denote the
minimum as L(`)

j and the maximum as T (`)
j

3. Construct the (1 − α)-coverage confidence interval [Lj , Tj ] where

Lj = Qα/2

(
L
(`)
j

)
and Tj = Q1−α/2

(
T

(`)
j

)
.

4 Simulation

In this section, we introduce two simulation studies to assess the perfor-
mance of the CRE method. In the first simulation study, we evaluate the
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discovery step in terms of how well the method performs in discover-
ing the true underlying decision rules. In the second simulation study,
we evaluate the overall performance of both the discovery and inference
steps in terms of estimation accuracy.

4.1 Simulation study: rules discovery

In order to evaluate the ability of CRE in the discovery step we run a se-
ries of simulations in which we assess how many times CRE can spot the
true underlying decision rules. First, we assess the absolute performance
of CRE; then we compare its performance with the one of the Honest
Causal Tree (HCT) method (Athey & Imbens, 2016). The HCT method
is a causal decision tree algorithm that provides interpretable decision
rules by discovering a set of causal rules that can be represented through
a single binary tree. In order to evaluate the ability of discovering de-
cision rules we consider, among the discovered rules, how many times
true rules are captured.

As we discussed in Section 2, to apply the CRE method, many ap-
proaches can be considered to estimate the individual treatment effect
τi. We have found via simulation studies that methods for directly esti-
mating τi, such as the BCF method, have better performance than other
approaches such as τ̂ IPWi or BART (in Appendix 8, we show the compar-
ative performances of BCF, BART, IPW and outcome regression). Thus,
in this simulation study, we implement the BCF approach for the CRE
method. We call this version of the CRE method CRE-BCF. Also, for the
data-generating process, we generate the covariate matrix X with 10 bi-
nary covariates from Xi1 to Xi,10. For potential outcomes, we consider
Yi(0) ∼ N(Xi1 + 0.5Xi2 + Xi3, 1) and Yi(1) = Yi(0) + τ(Xi) where
τ = k if Xi1 = 0, Xi2 = 0, and τ = −k if Xi1 = 1, Xi2 = 1. The bi-
nary treatment indicator Wi is sampled from a binomial distribution,
Wi ∼ Binom(πi) where πi = logit(−1 + Xi1 − Xi2 + Xi3). Finally, the
output is generated as y = y0 · (1− wi) + y1 · wi + f(X) where f(X) is a
linear function of the confounders Xi1, Xi2 and Xi3. Moreover, we intro-
duce variations in (i) the number of decision rules, i.e. from two to four
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decision rules: τ = k if Xi1 = 0, Xi2 = 0 or Xi2 = 0, Xi3 = 0; τ = −k if
Xi1 = 1, Xi2 = 1 or Xi2 = 1, Xi3 = 1; (ii) the effect size, i.e. (k · 0.1)20k=0

with k ∈ N; and (iii) the sample size: i.e. 1,000 and 2,000 data points.
Figure 13, depicts the simulations’ results for the scenarios with two

true rules (left panel) and four true rules (right panel). We consider 100
simulated datasets for each effect size and we report the average number
of correctly discovered rules (CDR). We report the results for both 1,000
(red solid line) and 2,000 (red dashed line) data points. We find that in
the scenario with 2,000 data points CRE-BCF is faster in discovering the
actual rules. However, the difference in not sizable as the performance of
CRE-BCF is excellent also with the smaller sample size. As the effect size
k increases CRE-BCF is always able to spot the true causal rules. Even for
smaller effect sizes, where the causal rules are not statistically significant
(i.e., when the effect size is smaller than one), the performance of CRE
is excellent both in the case with two and four true rules5. In Appendix
10, we run a series of simulations introducing additional variations in
the correlation between the covariates and the functional form of f(X).
Here, it is worth highlighting that none of these variations in the data
generating process decreases the ability of CRE to correctly spot the true
underlying causal rules.

As we show that CRE-BCF has an excellent absolute performance in
the discovery phase, it is interesting to compare the fit of this method
with state-of-the-art methodologies for interpretable discovery of het-
erogeneous causal effects such as the HCT algorithm. Before comparing
these two methods, it is important to highlight that the HCT algorithm is
able to spot just those causal rules that can be represented through a sin-
gle binary decision tree. The CRE-BCF method improves on this through
its ability to spot a larger set of decision rules. Namely, the rules that can
be detected through the CRE-BCF method are not just the rules that can
be represented by a single binary tree, but any possible set of decision
rules. In order to produce a more meaningful comparison between CRE-
BCF and HCT, we restricted the data generating process to causal rules
that are representable through a binary tree. In particular, in the case of

5In Appendix 9, we depict more detailed results for this set of simulations.
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Figure 13: Average number of correctly discovered rules for CRE-BCF in the
case of two true rules (left panel) and four true rules (right panel).

two causal rules we have that τ = k if Xi1 = 0, Xi2 = 0 and τ = −k
if Xi1 = 0, Xi2 = 1; while in the case of four causal rules we have that
τ = k if Xi1 = 0, Xi2 = 0, τ = 2k if Xi1 = 0, Xi2 = 0, Xi3 = 0; τ = −k
if Xi1 = 0, Xi2 = 1 and τ = −2k if Xi1 = 0, Xi2 = 1, Xi3 = 1. This sce-
nario was chosen because it is the most favourable to the HCT algorithm.
Moreover, we introduce variations in the set of covariates that are used
to define the causal rules (we refer to these variables as effect modifiers)
by switching X1 with X10, X2 with X9 and X3 with X8. These scenarios
where chosen to investigate whether or not there are differences between
the two methodologies in settings where (i) the effect modifiers are the
same covariates as the confounders; and (ii) the effect modifiers are dif-
ferent from the confounders. This is of central importance as confounders
might affect the ability of the algorithm to spot the correct causal rules.
Figures 14 and 15 depict the results in the case with the same variables
for both confounders and effect modifiers and in the case of different
variables, respectively.

In the former scenario, CRE-BCF consistently outperforms HCT,
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Figure 14: Average number of correctly discovered rules in the case where
the same variables are used as confounders and effect modifiers. The first
column depicts the case of two true rules while the second column the case
of four true rules. In the first row the sample size is 1,000 while in the second
it is 2,000.
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Figure 15: Average number of correctly discovered rules in the case where
the confounders are different from the effect modifiers. The first column
depicts the case of two true rules while the second column the case of four
true rules. In the first row the sample size is 1,000 while in the second it is
2,000.
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while in the latter scenario CRE-BCF is still performing better but the
performance gap is narrower especially in the case with two true causal
rules. In both the scenarios, the gap is wider as the number of true rules
is four. This is due to the fact that HCT is consistently unable to detect
all the four true rules. These simulations show that the usage of CRE-
BCF results in an increase in the detection of the true causal rules espe-
cially when there is overlap between the confounders and effect modi-
fiers. This is a very interesting feature of CRE-BCF as similar scenarios
are very likely in real-world applications. For instance, it can be the case
in pollution studies, that income is a confounder as poorer people live in
neighbours with higher levels of pollution, and also an effect modifier as
poorer people may have worst living conditions and, in turn, experience
higher negative effects from pollution. On top of this, it is important to
highlight that CRE provides a smaller number of detected rules (4 to 7)
as compared to HCT (10 to 84).

4.2 Simulation study: rules effects estimation

In this subsection, we evaluate the overall performance of the CRE
method including both the discovery and inference steps. In the previ-
ous simulation study, we found that the BCF approach shows a great
performance in discovering underlying decision rules. Also, it has been
shown that the BCF approach estimates τi with great accuracy heuristi-
cally. Thus, in this simulation study, we use the BCF approach for both
discovery and inference steps when applying the CRE method. In partic-
ular, in the discovery step, (Xi, τ̂

BCF
i ) is used in order to discover and

select important decision rules. In the inference step, the intermediate
variable τ∗i is estimated, as in the previous section, by using the BCF ap-
proach (CRE-BCF).

To compare, we consider an original BCF approach that does not use
the sample-splitting technique, and we call this original-BCF. The origi-
nal BCF provides the estimate τ̂i, but does not provide an interpretable
form of the heterogeneous treatment effects. On the contrary, the CRE-
BCF not only provides a set of decision rules that significantly increase
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Table 11: RMSE comparison between the CRE and BCF methods

Method
N CRE50 CRE40 CRE30 CRE25 CRE20 CRE10 BCF

500 0.568 0.520 0.486 0.478 0.498 0.598 0.391
1000 0.399 0.366 0.347 0.343 0.344 0.406 0.355
1500 0.326 0.299 0.279 0.276 0.278 0.320 0.309
2000 0.283 0.258 0.239 0.231 0.234 0.262 0.237

interpretability of the finding, but also provides the estimate with respect
to the discovered structure. It is difficult to compare the two methods in
terms of interpretability, so in this simulation study, we compare them
in terms of estimation accuracy. Athey and Imbens (2016) recommends
to use a (50%, 50%) ratio between the discovery and inference samples
for sample-splitting, but K. Lee et al. (2018) shows through simulation
studies that a (25%, 75%) ratio has better performance that (50%, 50%).
We investigate six different ratios from (10%, 90%) to (50%, 50%). Note
that the original-BCF can be considered as the (0%, 100%) ratio of the
CRE-BCF.

For the data generating process, covariates, treatment, and potential
outcomes are generated in the same way as in the previous simulation
study. In this simulation, only difference is that we assume that there are
two true underlying decision rules: (1) Xi1 = 0, Xi2 = 0 and (2) Xi1 =

1, Xi2 = 1. The treatment effect τi is defined as τi = 1 if Xi1 = 0, Xi2 = 0,
τi = −1 if Xi1 = 1, Xi2 = 1, and τi = 0 otherwise. We consider four
samples sizes, N = 500, 1000, 1500 and 2000. We consider the root mean
squared error (RMSE) to compare the two methods.

Table 11 shows the performance comparison using RMSE. We con-
sider 1000 simulated datasets for each sample size and provide the aver-
age of 1000 RMSE values. Among the considered ratios, (25%, 75%) pro-
vides the least RMSE for every sample size. The RMSE value decreases as
the proportion of the discovery sample increases up to 25%, and it starts
to increase after 25%. When the sample size is small (i.e., N = 500), the
RMSE for CRE25 is higher than that for BCF, however, it is lower whenN
is moderately large. This simulation result shows that even though, for
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instance, the CRE25 method uses 75% of the total sample for inference,
it is as efficient as the original BCF that uses 100% of the total sample for
inference.

5 Data application: Medicaid data

We apply the proposed CRE method to the Medicare data in order to
study the effect of long-term exposure to fine particulate matter (PM2.5)
on 5-year mortality. K. Lee et al. (2018) studied the treatment effect of
exposure to PM2.5 with 110,091 matched pairs and discovered treatment
effect heterogeneity in a single tree structure by using the HCT approach.
However, as pointed out in their discussion, a single tree unavoidably
contains subgroups that are not informative for describing treatment ef-
fect heterogeneity due to the nature of tree algorithms. In particular, they
found six disjoint subgroups, but only three of them are informative to
describe the treatment effect heterogeneity.. Also, as we discussed and
showed in our simulation study, the HCT approach can be highly af-
fected by sample-to-sample variations. However, in this specific study,
K. Lee et al. (2018) showed that the discovered tree is stable by evaluat-
ing 1000 bootstrapped discovery samples.

For a brief overview of the matched Medicare data, the data contain
Medicare beneficiaries in New England regions in the United States be-
tween 2000 and 2006. The treatment is whether the two-year (2000-2001)
average of exposure to PM2.5 is greater than 12 µg/m3. The outcome
is five-year mortality measured between 2002-2006. There are four in-
dividual level covariates - sex (male, female), age (65-70, 71-75, 76-80,
81-85, 86+), race (white, non-white), and Medicaid eligibility (eligible,
non-eligible). Medicaid eligibility is considered as a variable indicating
socioeconomic status. If an individual is eligible for Medicaid, it is highly
likely that he/she has lower household income, thus we use this variable
as a proxy for low income. In the matched data, these four variables are
exactly matched. There are also 8 ZIP code-level or 2 county-level covari-
ates, and they are fairly balanced between the treated and control groups,
see Table 2 in K. Lee et al. (2018) for the covariate balance. Also, see Di
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Table 12: Discovering decision rules and estimating the coefficients for the
decision rules

Rules Covariates
Individual Indiv. + ZIP code

# Description Est. 95% CI Est. 95% CI
Intercept 0.070 (0.054, 0.087) 0.077 (0.061, 0.094)

r1 1(white = 0) -0.008 (-0.027, 0.011)
r2 1(65 ≤ age ≤ 75) -0.012 (-0.024, 0.000) -0.009 (-0.021, 0.002)
r3 1(65 ≤ age ≤ 80) -0.027 (-0.045, -0.010) -0.027 (-0.045, -0.010)
r4 1(65 ≤ age ≤ 85) · 1(Medicaid = 0) -0.033 (-0.050, -0.016) -0.031 (-0.048, -0.015)
r5 1(hispanic % = 0) · 1(education = 1) -0.019 (-0.038, 0.000)
r6 1(hispanic % = 0) · 1(education = 1)

·1(population density = 0) -0.045 (-0.067, -0.022)

et al. (2016) for general description about the Medicare data.
We apply the CRE method to the same discovery and inference sam-

ples that are split by using a (25%, 75%) ratio and contain 27,500 and
82,591 matched pairs respectively. Since two individuals in a matched
pair share the same covariates, but experience different treatment val-
ues, the observed outcomes can be considered as two potential out-
comes for a hypothetical individual that represents the corresponding
matched pair. The difference between the two outcomes can be consid-
ered as an estimate of τi for matched pair i. However, since our outcome
is binary, the estimate τ̂Matching

i can take only one of three possible val-
ues {−1, 0, 1}. This discrete feature is undesirable under the linear re-
gression model (2.5). Instead, we ignore the matched structure and use
27500 × 2 = 55000 individuals in the discovery sample as if they were
obtained independently. We use the logistic BART approach to estimate
potential outcome functions mw(x) = E[Yi(w)|Xi = x], w = 0, 1. Then,
the estimate τ̂BARTi = m̂1(Xi)− m̂0(Xi) is obtained.

First, we focus on the discovery step with the estimate τ̂BARTi . We
apply the CRE method with four individual-level covariates. Four deci-
sion rules, r1, r2, r3, r4, are discovered. Table 12 shows the descriptions
for these rules on the left column. Based on this finding, the model
τ(x) = β0 +

∑4
j=1 βjrj(x) is considered for the later inference step. The

first rule is for non-white people that is only 7% of the total population.
The next three rules are defined by age, and r2 is included in r3. The in-
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tercept β0 represents the treatment effect for the subgroup of Medicaid
eligible white people aged between 81-85 and white people aged above
85. This subgroup corresponds to the single tree finding in K. Lee et al.
(2018).

Furthermore, we extend the CRE method to the four individual-
level and eight ZIP code-level covariates. The ZIP code-level covari-
ates could not be considered in K. Lee et al. (2018) because pairs were
matched exactly only on individual-level covariates. When applying the
CRE method, five rules are discovered including the three previous rules,
r2, r3, r4 and two additional rules, r4, r5. The additional rules are defined
by Hispanic population (10% above or not), Education (did not complete
high school 30% above or not), and Population density (above the aver-
age or not). The rule r4 means a subgroup of people living in areas where
the proportion of hispanic is below 10% and the proportion of people
who did not complete high school is above 30%. The rule r5 is included
in r4, and means a subgroup of r4 with the additional condition that the
population density is below the average.

Before making inference with the discovered rules, we want to em-
phasize two aspects in the discovery step of the CRE method. First, since
the CRE method discovers decision rules instead of a whole tree, only im-
portant subgroups (decision rules) are selected, and other subgroups are
represented by the intercept. For example, K. Lee et al. (2018) discovered
6 subgroups, but only a few of them are informative for describing the
treatment effect heterogeneity. Second, the discovered rules are stable.
Being stable means that if another discovery sample is chosen, the dis-
covered rules are hardly changed while a discovered tree varies with its
size and terminal nodes. This robustness to sample-to-sample variation
makes findings replicable.This feature is extremely significant because
higher standards of reproducibility are deemed important in the context
of open science.

Next, with respect to the discovered decision rules, we use the re-
maining 82,591 pairs in the inference sample to estimate the rule-specific
treatment effects. For the first rule set r1, . . . , r4, the corresponding coeffi-
cients are estimated and reported in Table 12. To obtain the estimates and
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95% confidence intervals, we consider τ∗i = τ̂SIPWi to claim the asymp-
totic normality and obtain the 95% confidence intervals using the asymp-
totic distributions. Causal Forest method (Athey et al., 2019) can be also
considered since it guarantees the asymptotic normal distribution for β.
On the first part of the right column of Table 12, all the coefficients ex-
cept for the intercept have the negative sign. The intercept indicates that
the subgroup which does not belong to the discovered rules from r1 to
r4 is significantly affected by exposure to air pollution. There is a 7 per-
centage point increase of mortality rate for this subgroup. Though the
estimates for r1, r2 are negative, they are not statistically significant at a
significance level α = 0.05. However, the estimates for r3, r4 are signifi-
cant, which means that people below 80 and people below 85 not eligible
for Medicaid are significantly less vulnerable to air pollution exposure.
When including ZIP code-level covariates, we found rules from r2 to r6.
Similarly, all the estimates are negative and the rule r2 is not significant.
For newly discovered r5, r6, only r6 is statistically significant.

Also, we want to emphasize the interpretation of the coefficients in
the inference step. A non-significant estimate does not mean that the
corresponding subgroup has the null treatment effect. In this context,
non-significance means that the decision rule is not no longer important
for describing the treatment effect heterogeneity. For instance, consider a
subgroup of black people above 85 who are represented by only the rule
r1 that is shown as not significant. However, the treatment effect for this
subgroup is β̂0 + β̂1 = 0.062 with the 95% CI (0.041, 0.084). Also, a sub-
group of black people below 75 has the effect β̂0 + β̂1 + β̂2 + β̂3 = 0.023

(95% CI: (0.003, 0.043)), which is still significant. Since we have the
asymptotic distribution for β, any subgroup’s treatment effect can be ex-
amined.

Finally, to evaluate the robustness of the above finding about the
treatment effect heterogeneity, we conduct sensitivity analysis in the in-
ference step by setting τ∗i = τ̂SIPWi . We use the following model for sen-
sitivity analysis, τi = β0 +

∑6
j=2 βjrj . Under the sensitivity model (2.10),

for each Λ, we obtain several sets of 95% CIs for the coefficients. Table 13
shows the 95% CIs for Λ from 1.01 to 1.05. As Λ increases all the CIs get
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Table 13: Sensitivity analysis for the treatment effect heterogeneity by using
the percentile bootstrap

Rules Sensitivity Parameter Λ
1.01 1.02 1.03 1.04 1.05

Inter. (0.054, 0.100) (0.045, 0.110) (0.035, 0.121) (0.024, 0.130) (0.014, 0.140)
r2 (-0.026, 0.007) (-0.031, 0.012) (-0.036, 0.017) (-0.041, 0.022) (-0.047, 0.028)
r3 (-0.051, -0.003) (-0.060, 0.004) (-0.069, 0.014) (-0.077, 0.023) (-0.086, 0.033)
r4 (-0.054, -0.009) (-0.062, 0.000) (-0.071, 0.009) (-0.078, 0.017) (-0.087, 0.024)
r5 (-0.040, 0.004) (-0.046, 0.012) (-0.053, 0.016) (-0.059, 0.020) (-0.066, 0.026)
r6 (-0.072, -0.017) (-0.080, -0.011) (-0.085, -0.004) (-0.091, 0.002) (-0.098, 0.008)

wider. When Λ = 1.04, all the coefficients contain zero and there is no
evidence for the heterogeneity. In particular, Λ = 1.04 means that if there
is an unmeasured confounder that can make the estimated propensity
score deviate from the true score by 1.04 in terms of the odds ratio scale,
then our finding about the heterogeneity can be explained by this un-
measured bias. One further thing to note is that even if the heterogeneity
can be explained by an unmeasured bias at Λ = 1.04, the treatment effect
of the baseline subgroup (i.e., intercept) is significant.

6 Discussion

This Chapter proposes a new data-driven method for studying treat-
ment effect heterogeneity that notably improves interpretability of the
heterogeneity and provides helpful guidance about subgroups with het-
erogeneous effects in terms of decision rules. Moreover, the proposed
CRE methodology accommodates for well-known shortcomings of bi-
nary trees by providing a more stable, flexible and robust methodology
to discover and estimate heterogeneous effects. Indeed, CRE is stable to
sample-to-sample variations, leading to more reproducible results and,
its flexibility allows for the discovery of a wider set of causal rules. Also,
CRE provides robust results for the detection of causal rules in the pres-
ence of overlap between confounders and effect modifiers.

Though the CRE method makes inference using a smaller size of the
sample due to sample-splitting, it maintains estimation precision at a
similar level as other existing methods while providing an interpretable
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form of the treatment effect heterogeneity. The CRE method is a generic
method that is completely compatible with existing methods for estimat-
ing heterogeneous treatment effect. The performance of CRE may vary
with respect to the choice of existing methods to generate base deci-
sion rules in the discovery sample and intermediate values τ∗i in the
inference sample. Therefore, the CRE method can be thought of as a
refinement process of the outputs produced by existing methods. If an
estimation method for the CATE has great precision, then it is highly
likely that it detects the treatment effect heterogeneity during the esti-
mation procedure. When the CRE method is accompanied with this es-
timation method, the CRE method discovers the underlying treatment
effect structure with high probability and represents this structure in
an easy-to-interpret form. Indeed, a few simple rules are utterly impor-
tant for public policy implications. However, when it comes to precision
medicine, discovering a possibly lengthy rule that is specific to a patient
could be of interest.

The proposed CRE method requires a researcher to specify some of
the so-called tuning parameters. In particular, one should choose a num-
ber of trees that are generated for extracting decision rules, and the cut-
off threshold in stability selection during the discovery step. Previous
studies show that the performance is not much affected by specifica-
tion of the parameters. Also, the studies provide a general guidance of
how to specify the parameters. However, the optimal choice of the split-
ting ratio between the discovery and inference samples is not known yet.
Even though the ratio (25%, 75%) is shown to have the best performance
through simulation studies, we do not know whether this ratio works
best for all real-world datasets. It may be possible to require a larger
proportion of the discovery sample if data is sparse. On the contrary,
a smaller proportion is needed when the underlying effect structure is
simple.

Regardless of the splitting ratio, it is more important to choose a
proper number of decision rules during the discovery step. The choice
may depend on the questions that practitioners want to answer. For ex-
ample, public policy makers generally want to discover a short list of
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risk factors. A few important subgroups defined by the risk factors are
usually easy-to-understand, and further foster focused discussions about
the assessments of potential risks and benefits of policy actions. Also,
due to the restriction of resources, public health can be promoted effi-
ciently when prioritized subgroups are available. Instead, a compara-
tively larger set of decision rules can be chosen, for instance, in preci-
sion medicine. An important goal is to identify patient subgroups that
respond to treatment at a much higher (or lower) rate than the average
(Loh et al., 2019). Also, identifying a subgroup that must avoid the treat-
ment due to its excessive side effects can be valuable information. How-
ever, discovering only a few subgroups is likely to miss this extreme sub-
group.

A number of extensions of the CRE method can be possible. First,
the CRE method maintain the benefits of some of existing methods, i.e.,
asymptotic normality and unbiasedness. If an existing method can pro-
duce unbiased point estimates for τ(x) with valid confidence intervals,
the CRE method can produce unbiased estimates for β with valid con-
fidence intervals. Bayesian methods such as BART or BCF can be also
used, and it is empirically shown that they perform really well. How-
ever, the validity of Bayesian inference such as constructing credible in-
tervals remains as a future research question. Second, the discovery step
of the CRE method can be considered as a dimension reduction proce-
dure. We used a set of decision rules, but it may be possible to character-
ize the treatment effect heterogeneity using different approaches that are
easy-to-interpret. Furthermore, one of the main issues that prevents eval-
uation of subgroup effects and heterogeneity in practice is small sample
size, resulting in very low statistical power. Hence, it would be of inter-
est, for further lines of research, to develop such an analysis in the context
of an interpretable methodology, as the proposed CRE algorithm. Finally,
we proposed an approach for sensitivity analysis of unmeasured con-
founding bias based on the inverse probability of treatment weighting
estimator. A general approach for sensitivity analysis that can be compat-
ible with a larger class of estimation methods would be helpful. Future
research is needed for developing such sensitivity analysis.
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Supplementary material for
Chapter 2

7 Proofs

7.1 Proof of Theorem 1

By multiplying (X̃T X̃)−1X̃T on the both sides of model (2.8), we have
β̂ = β + (X̃T X̃)−1X̃Tν. From the assumptions, plim 1

N

∑N
i=1 X̃T

i X̃i =

Q and plim 1
N

∑N
i=1 X̃T

i νi = plim 1
N

∑N
i=1 X̃T

i (εi + ui) = 0. By Slutsky’s
theorem, plim β̂ = β.

7.2 Proof of Theorem 2

To prove normality, we use the expression β̂ = β + (X̃T X̃)−1X̃Tν.
By rewriting this, we have N1/2(β̂ − β) = (N−1

∑N
i=1 X̃T

i X̃i)
−1 ×

N−1/2
∑N
i=1 X̃T

i νi. From the assumptions, we also have E(X̃T
i νi) = 0

and var(X̃T
i νi) = E(ν2i X̃

T
i X̃i) < ∞. Then, by the central limit theorem,

N−1/2
∑N
i=1 X̃T

i νi converges in distribution to N(0,Ω). By Slutsky’s the-
orem and Cramer-Wold theorem, N1/2(β̂ − β) converges in distribution
to N(0,Q−1ΩQ−1).
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8 Comparison between BCF, BART, IPW, OR
for rules’ discovery

As we discussed in Section 2, one of the attractive features of the CRE
methods is that we can consider many approaches to estimate the indi-
vidual treatment effect τi. Among many existing methods, one approach
to note is the inverse probability weighting estimator:

τ̂ IPWi =

(
Wi

ê(Xi)
− 1−Wi

1− ê(Xi)

)
Yi (2.12)

where ê(Xi) is the estimate of the propensity score e(x) at Xi and IPW
denotes inverse probability weighting. The estimate ê(Xi) can be ob-
tained by fitting a logistic regression on (Wi,Xi). The estimator is val-
idated based on the identification result (2.3). Although τ̂ IPWi is an un-
biased estimator of τ(x) (i.e., E[τ̂ IPWi |X = x] = τ(x)), the transformed
value τ̂ IPWi can be highly fluctuating when ê(Xi) is close to 0 or 1. To
avoid extreme values of τ̂ IPWi , we can instead use the stabilized version
τ̂SIPWi (Hirano et al., 2003),

τ̂SIPWi =


(

1

N

N∑
i=1

Wi

ê(Xi)

)−1

Wi

ê(Xi)
−

(
1

N

N∑
i=1

1−Wi

1− ê(Xi)

)−1

1−Wi

1− ê(Xi)

Yi.

(2.13)

Although τ̂ IPWi or τ̂SIPWi is enough to use as an estimate of τi, an-
other approach of imputing missing potential outcomes can be consid-
ered. Without estimating the propensity score, functions for two poten-
tial outcomes, say m1(x) = E[Y |W = 1,X = x] and m0(x) = E[Y |W =

0,X = x], are estimated. Then missing potential outcomes are imputed
by the estimated functions m̂0 and m̂1. For instance, ifWi = 0, Yi(0) is ob-
served as Yi and Yi(1) is imputed by m̂1(Xi). The unit level treatment ef-
fect can be estimated by either subtracting the observed outcome and im-
puted counterfactual, i.e. τORi = Y obsi −(m̂1(Xi)·(1−Wi)+m̂0(Xi)·Wi), or
by subtracting the imputed potential outcomes, i.e., τBARTi = m̂1(Xi) −
m̂0(Xi). We refer to the former methodology as outcome regression (OR)
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and to the latter as BART imputation (Hill, 2011). Indeed, we implement
both these methods for the estimation of the unit level treatment effect
using the Bayesian Additive Regression Tree (BART) algorithm Chipman
et al., 2010.

Here, we show that the BCF method for the estimation of τi has the
better performance as compared to other approaches such as inverse
probability weighting, outcome regression (OR) and BART (Chipman et
al., 2010; Hill, 2011). In order to evaluate the ability of discovering deci-
sion rules, two factors are considered in line with similar simulations
scenarios (Bargagli-Stoffi et al., 2019): (1) how many rules are discov-
ered and (2) among the discovered rules, how many times true rules are
captured. We implement the simulation scenario introduced in Subsec-
tion 2.2 with uncorrelated covariates, linear confounding and 2,000 data
points. The obtained results are depicted in Figure 16. The four differ-
ent plots in the Figure show the variation in the number of correct rules
(first row) and the number of detected rules (second row) as the effect
size increases. The plots in the first column depict the results in the case
of two true causal rules, while in the second column depict the results in
the case of four true causal rules.

In the case of two true causal rules, BCF, BART and OR perform in
a very similar manner with respect to their ability to identify the true
causal rules, while in the case of four true causal rules there is a clear
advantage in using BART or BCF over OR. IPW is consistently outper-
formed in both the scenarios. With respect to the number of rules de-
tected, OR and IPW are the more “conservative” methods (i.e., smaller
number of detected rules) while BART is the less “conservative” method.
These results inform our choice to implement the CRE-BCF method, as
BCF shows the best performance in terms of correctly detected rules,
while it detects consistently less rules than the other best performing
methodology (BART) and it provide higher computational scalability
(i.e., we need to estimate just one model and not two as in the case of
BART).
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Figure 16: Comparison between BCF, BART, IPW, OR for rules’ discovery.
The plots show the variation in the number of correct rules (first row) and
the number of detected rules (second row) as the effect size increases, in the
cases of two true rules (first column) and four true rules (second column).
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9 Detailed simulation results

Table 14 depicts the performance of CRE-BCF for the simulation scenario
introduced in Subsection 4.1 with two and four causal rules and with
1,000 and 2,000 data points. We consider 100 simulated datasets for each
effect size and we provide both the average number of Correctly Dis-
covered Rules (CDR), the proportion of times when the correct rules are
discovered (π) and the average number of Discovered Rules (DR). As the
effect size k increases CRE is almost always able to spot the true causal
rules. Even for smaller effect sizes, where the causal rules are not sta-
tistically significant (i.e., when the effect size is smaller than one), the
performance of CRE is excellent both in the case with two and four true
rules.

Table 14: Performance of the CRE-BCF method in discovering the true un-
derlying causal rules

Linear Scenario
Two Rules Four Rules

1,000 2,000 1,000 2,000
k CDR π DR CDR π DR CDR π DR CDR π DR

0.1 0.03 0.00 6.53 0.04 0.01 6.41 0.15 0.01 6.54 0.25 0.01 6.57
0.2 0.05 0.01 6.54 0.22 0.05 6.73 0.33 0.04 6.51 1.06 0.14 6.88
0.3 0.13 0.02 6.50 0.55 0.15 6.57 0.92 0.09 6.66 2.18 0.35 6.82
0.4 0.34 0.09 6.54 0.92 0.33 6.60 1.86 0.29 7.04 2.96 0.48 7.55
0.5 0.64 0.17 6.64 1.43 0.61 6.82 2.67 0.40 7.44 3.62 0.83 7.68
0.6 1.05 0.42 6.59 1.86 0.90 6.80 3.03 0.56 7.48 3.76 0.83 7.66
0.7 1.37 0.59 6.84 1.99 0.99 6.67 3.48 0.71 7.59 3.84 0.89 7.60
0.8 1.89 0.90 6.61 2.00 1.00 6.65 3.64 0.79 7.61 3.92 0.94 7.51
0.9 1.96 0.96 6.77 2.00 1.00 6.66 3.71 0.82 7.66 3.94 0.95 7.39
1.0 1.99 0.99 6.68 2.00 1.00 6.55 3.93 0.96 7.71 3.97 0.97 7.35
1.1 1.98 0.98 6.79 2.00 1.00 6.51 3.90 0.92 7.51 3.97 0.98 7.24
1.2 1.99 0.99 6.63 2.00 1.00 6.36 3.93 0.95 7.62 3.94 0.96 6.88
1.3 2.00 1.00 6.65 2.00 1.00 6.67 3.97 0.97 7.64 3.94 0.94 6.68
1.4 2.00 1.00 6.76 2.00 1.00 6.30 3.98 0.98 7.59 3.96 0.96 6.82
1.5 2.00 1.00 6.65 2.00 1.00 6.31 3.92 0.95 7.38 3.88 0.89 6.52
1.6 2.00 1.00 6.65 2.00 1.00 6.29 3.95 0.95 7.18 3.94 0.94 6.23
1.7 2.00 1.00 6.61 2.00 1.00 6.26 3.93 0.93 7.16 3.93 0.93 6.04
1.8 2.00 1.00 6.47 2.00 1.00 6.01 3.90 0.90 7.16 3.96 0.96 6.01
1.9 2.00 1.00 6.50 2.00 1.00 6.03 3.95 0.95 6.94 3.85 0.85 5.84
2.0 2.00 1.00 6.24 2.00 1.00 5.93 3.93 0.93 6.90 3.96 0.97 5.84
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10 Additional simulations

In this Section of the Appendix, we run an additional set of simulations
introducing variations in the data generating process described in Sec-
tion 4.1. In particular, we introduce correlation between each covariate
in the X matrix (i.e., all the covariates have a 0.3 correlation with each
other). Such correlations were introduced to investigate whether or not
correlated covariates negatively affect the ability of CRE-BCF to discover
the true causal rules. Indeed, it could be possible that CRE-BCF faces
harder times in correctly picking the variables that are responsible for the
heterogeneous effects, as all the variables are correlated with each other.
Figure 17 depicts the results for this new simulation setting in the case of
1000 data points and 2 and 4 true causal rules, respectively. No variation
was found in the performance of the model with respect to the origi-
nal data generating process with no correlation in the covariate matrix.
In fact, the proposed model shows a very good simulated performance
in correctly detecting the causal rules both with and without correlation
between the variables.

Moreover, we generate non-linearities in the confounding f(X). In
particular, the data generating process introduced in Section 2.2 is re-
worked as follows: y = y0 · (1 − zi) + y1 · zi + exp{X1 − X2 · X3}.
This non-linear f(X) is introduced in order to check the robustness of
the CRE-BCF model to non-linear confounding. Indeed, we can argue
that in many real-world applications the confounders can interact with
each other and can have non-linear associations with the output. Again,
we generate two different scenarios with 2 and 4 true causal rules and
1000 data points. From Figure 18 we find that this kind of non-linear
confounding is not harmful for our model, but it even slightly increases
its ability of correctly discover the true causal rules. This is due to the
fact that both BCF (hahn2020bayesian) and CRE are able to deal with
non-linearities in a excellent way.

109



0.
0

0.
5

1.
0

1.
5

2.
0

Two True Rules

Effect Size

N
um

be
r 

of
 C

or
re

ct
 R

ul
es

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
1

2
3

4

Four True Rules

Effect Size

N
um

be
r 

of
 C

or
re

ct
 R

ul
es

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

CRE-BCF (no correlation) CRE-BCF (correlation)

Figure 17: Average number of correctly discovered rules for CRE-BCF in the
case of two true rules (left panel) and four true rules (right panel).
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Figure 18: Average number of correctly discovered rules for CRE-BCF in the
case of two true rules (left panel) and four true rules (right panel).
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Part 2
Machine learning for prediction
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Chapter 3

Assessing sensitivity of
machine learning
predictions

Machine learning is rapidly growing in popularity in social sciences
(Athey & Imbens, 2019). As we highlighted in the Introduction of the
present Dissertation, this growth is due to the fact that machine learn-
ing provides an excellent set of tools to address a large number of issues
regarding prediction, causal inference, theory testing and development
of new data sources (Mullainathan & Spiess, 2017). The recent rise in
the usage of machine learning algorithms across various scientific dis-
ciplines has been mainly driven by the staggering performance of these
algorithms in predictive tasks. However, the usage of off-the-shelf ma-
chine learning methodologies to perform predictions should be done in
a careful and thoughtful way. Today, little has been done to explore how
sensitive machine learning predictions are to potentially unobserved pre-
dictors.

On the methodological side, this Chapter accounts and accommo-
dates for this shortcoming by proposing a general algorithm that assesses
how the omission of an unobserved predictor could affect the predic-

This Chapter is based on Bargagli-Stoffi, De Beckker, De Witte and Maldonado (2020).
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tions and the performance of the model. As such, we obtain estimates
for, what we call, sensitivity of prediction analysis. The algorithm that we
propose is general enough to be applied to both Bayesian methodolo-
gies (i.e., Bayesian Additive Regression Trees [Chipman, 2010]) and fre-
quentist techniques (i.e., Random Forests [Breiman, 2001]). In particular,
the method that we propose aims at answering policy-relevant questions
such as: “is the machine learning model getting enough signal from the data?”
and “how much would an unobserved predictor impact the model’s predictions
and its performance?”. To do so, we generate a synthetic predictor with a
high explanatory power (i.e., high correlation with the outcome) but that
is uncorrelated with all the predictors in the model. Then, we check how
the inclusion of this additional variable in the machine learning model
modifies its predictions and accuracy. We assume that the model at hand
is able to catch all the signal in the data if its forecasts and its predic-
tive ability are not extensively modified by the inclusion of the synthetic
predictor. In order to test this, we check if: (i) the unit level predictions
of the model with the synthetic predictor (augmented model) fall within
the confidence interval of the unit level prediction of the model that we
are testing; and (ii) the predictive performance of the augmented model
is statistically different from the performance of the original model. The
approach that we develop here is applied in the case of a continuous out-
come variable, but it can be easily extended to a binary outcome variable.
Moreover, we make this methodology robust by introducing, in a second
step, a set of correlations between the synthetic predictor and the most
important predictors in the original model. This second case more closely
mimic the case of real-world applications where predictors are correlated
within each other.

On the applied side, we innovate the literature by introducing the first
application of supervised machine learning in the financial literacy liter-
ature. First, we use machine learning to predict financial literacy scores
(FLS) for students in a region of Belgium where these scores are not ob-
served. We train our model using the PISA data (OECD, 2017b) for the
Flemish region of Belgium were the FLS are observed. Then, we perform
the prediction for the missing FLS of students in the Wallonia region of
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Belgium. We use an extensive set of student and school-level variables
as predictors in our machine learning model. Second, we use machine
learning to identify the characteristics of students with outlying pre-
dicted test scores. In our case, the main focus is on students with lower
predicted FLS. Indeed, machine learning can help researchers and policy-
makers to understand the characteristics of students who have low pre-
dictions for financial literacy. These insights enable policy-makers to tar-
get interventions to lower performing students in order to improve their
performances. Third, we employ the novel sensitivity analysis to assess
the robustness of our analyses. Sensitivity is central in the case of our
application, as we deal with sensitive data such as students’ scores in a
standardized assessment on financial literacy. In particular, it is deemed
important to assess how sensitive the predictions of student financial lit-
eracy scores are to a potentially unobserved predictor with high explana-
tory power.

Our main results can be summarized as follows. The performance
of the proposed model is good as we reach an estimated adjusted R2

of roughly 73% (this performance measure results from a 10-folds cross-
validation1). Moreover, the chosen machine learning technique, Bayesian
Additive Regression Trees (Chipman et al., 2010), allows us to get draws
from the posterior distribution of the predicted observations and con-
struct credible intervals for the unit level predictions. Hence, we are able
to detect the predictions that fall outside the 95% credible intervals for
the mean posterior predicted values. We use this information to identify
a set of outlier predictions. On one side, this analysis shows that the pre-
dictive probability of having a low financial literacy scores is the largest
for students with lower scores for reading and math in the PISA test. On
the other side, the students’ background plays a critical role: students
with the largest predicted low financial literacy scores are often individ-
uals from families where the school language is not spoken at home and
the parents have a poor educational background. Moreover, results from
the sensitivity of predictions analysis show that the inclusion of an un-

110-folds cross-validation is a well known way to assess the performance of a predictive
model in machine learning.
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observed predictor would not affect the predictions and the predictive
ability of the model in a sizable manner. This hints at the fact that our
model is already getting enough signal to perform its predictions.

We argue that the proposed methodologies have applications be-
yond the financial literacy literature. Indeed, in applied sciences, there
is a need to introduce uncertainty of predictions as machine learning is
more and more extensively used to perform predictions on very sensi-
tive manners: i.e., patients’ life expectancy (Kleinberg et al., 2015), hu-
man capital selection (Chalfin et al., 2016), unemployment insurance ef-
fectiveness (Chernozhukov et al., 2017), students’ learning abilities (De-
len, 2010; S. B. Kotsiantis, 2012; S. Kotsiantis et al., 2004), and so on. In
this spirit, the proposed methodology and the motivating application in-
troduced in this paper are a first step towards a more transparent way
to account for predictions stability and uncertainty in machine learning
applications in social sciences.

The remainder of the Chapter is organized as follows. In Section 1
we introduce the machine learning methodologies used and developed
in this Chapter; Section 3 describes the PISA data used to illustrate the
proposed methodology; in Section 3 we discuss the results obtained from
the application on the PISA data; and Section 4 concludes the Chapter
with a discussion of the methods and results and with new potential
lines of research2.

1 Methodology

This Section discusses in detail the machine learning technique used for
prediction (Subsection 1.1) and its extension in order to detect obser-
vations with outlying values which paves the way to targeted policies.
In Subsection 1.2, we introduce the novel methodologies for sensitiv-
ity analysis that extend the usage of machine learning algorithms from
pointwise predictions to robustness analysis regarding these predictions.

2The R and Stata codes used for the analysis, together with the data and the func-
tions for the machine learning analysis are publicly available on the GitHub page of the
corresponding author (https://github.com/fbargaglistoffi).
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1.1 Machine learning for predictions and targeted poli-
cies

In order to make predictions, we have to train a machine learning algo-
rithm. As underlying method, we rely on BART (Chipman et al., 2010),
which is a Bayesian ensemble of trees method3. BART was shown to have
an excellent performance in both prediction tasks (Bargagli-Stoffi, Ric-
caboni, et al., 2020; Hernández et al., 2018; Linero, 2018; Linero & Yang,
2018; Murray, 2017; Starling et al., 2018) and in causal inference tasks
(Bargagli-Stoffi et al., 2019; P. R. Hahn et al., 2020; Hill, 2011; K. Lee et al.,
2020; Logan et al., 2019; Nethery et al., 2019). This is due to the particular
flexibility of this method and the fact that it overcomes potential issues
connected with other machine learning methodologies such as the Clas-
sification And Regression Tree (CART) algorithm (Breiman et al., 1984)
and the Random Forest (RF) algorithm (Breiman, 2001). Moreover, BART
allows researchers to get draws from the posterior distribution of the pre-
dicted values. In Bayesian statistics, the posterior predictive distribution
indicates the distribution of predicted data based on the data one has
already seen (Gelman et al., 2014). Hence, the posterior predictive dis-
tribution can be used to predict new data values and to draw inference
around the distribution of these predicted values.

BART can be considered a “refined” version of the RF methodol-
ogy. Both these methodologies found their foundation in the CART al-
gorithm. CART is a widely used algorithm for the construction of trees
where each node is split into only two branches (i.e., binary trees).
Breiman (2001) has shown that the accuracy of the predictions of CART
can be dramatically improved by averaging the prediction of an ensem-
ble of uncorrelated trees. For additional details on how CART and RF
work, we refer the reader to Chapter 1 where these algorithms were in-
troduced in detail, and to the seminal papers by Breiman et al. (1984) and
Breiman (2001).

As we saw in Chapter 1, similarly to the RF algorithm, BART is a
sum-of-trees ensemble methodology. However, BART relies on a fully

3Extension to other machine learning algorithms such as random forest (Breiman, 2001)
is straightforward.
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Bayesian probability model to obtain its predictions (Kapelner & Bleich,
2016). As we are in a predictive settings, let us define with Y the outcome
vector, with yi the outcome for a generic unit i, and with X the N × P
matrix of predictors4 (where P is the number of predictors), with Xi the
P -dimensional vector of predictors for i (with i = 1, ..., N). Then, using
a more compact notation than the one used in Chapter 1, we can express
BART as:

Y =

J∑
j=1

Tj(X;Dj ,Mj) + ε. (3.1)

where the J distinct binary trees are denoted by T (X;Dj ,Mj). T is a
function that sorts each unit into one of the sets of mj terminal nodes,
associated with mean parameters Mj = {µ1, ..., µmj}, based on a set
of decision rules, Dj . ε is an error term and is typically assumed to be
independent, and identically normally distributed when the outcome is
continuous (Chipman et al., 2010). For a detailed discussion on the set of
priors used in BART the reader is referred to Chapter 1 and the seminal
paper by Chipman et al. (2010). Here, we just want to highlight that the
aim of these priors is to “regularize” the algorithm, which prevents single
trees to dominate the overall fit of the model (Kapelner & Bleich, 2016).

BART allows the researcher to tune the variables’ importance by de-
parting from the original formulation of the Random Forest algorithm
where each variable is equally likely to be chosen from a discrete uni-
form distribution (i.e., with probability 1

p ) to build a single tree learner.
These Bayesian tools give researchers the possibility to mitigate the over-
fitting problem of RFs and to tune the algorithm with prior knowledge.
Moreover, BART has shown a consistently strong performance under
“default” model specifications. This is a highly valuable characteristic
of BART as it reduces its dependence on the choice of parameters done
by the researcher as well as the computational time and costs related to
cross-validation (Nethery et al., 2019).

To see in more detail how BART works, let us introduce a simple case
in which we have a study sample (Ω = {X, Y }) for which we observe

4In the machine learning literature, the variables that are used to fit the model are usu-
ally referred to as predictors.
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the set of predictors X, but the vector of outcomes is observed just for
a subsample of the study population, Y obs. Hence, we can indicate with
Y mis the vector of missing outcomes in the study sample, where Y =

Y mis∪Y obs. To perform the imputation, BART collects a sample from the
posterior distribution of θ = {σ2,Dj ,Mj}, p(θ|Y obs) using the Bayesian
backfitting algorithm proposed by Chipman et al. (2010). An imputed
value for Ŷ mis can be obtained by sampling from the posterior predictive
distribution (ppd):

p(Y mis|Y obs) =

∫
p(Y mis|Y obs, θ) · p(θ|Y obs) dθ. (3.2)

From equation (3.2) we obtain a vector of predicted values for the
missing outcome observations. Then, we can use standard techniques
employed for outlier detection, such as the ones proposed by J. Miller
(1991) (i.e., two/three standard deviation from the mean of the distri-
bution) and Leys et al. (2013) (i.e., two/three absolute deviations from
the median), to detect the predictions with values that are consistently
further away from the mean or the median of the predicted distribu-
tion, respectively. The nice feature of such techniques, is that they can be
manually tuned in order to include units with more or less extreme pre-
dicted values. This type of analyses can therefore be highly relevant for
policy-makers to spot observations with more or less extreme predicted
outcome values. Indeed, it can be the case that policy-makers could be in-
terested in targeting their intervention to a specific subpopulation, based
on the values of an unobserved outcome (e.g., provide additional learn-
ing material to more vulnerable students in a region where financial lit-
eracy is not observed). Moreover, information on the factors related to
these “high or low levels” of the predicted outcome are not only useful
to identify potential subgroups but also to reveal which factors are asso-
ciated with specific levels of the outcome.

1.2 Sensitivity of predictions analysis

The ability of machine learning techniques to provide accurate and robust
predictions is key. As predictions always hold a degree of uncertainty, we

118



argue that there is a need for specific techniques that enable researchers
to assess their sensitivity. This is particularly true as the usage of machine
learning for prediction policy problems has been increasing over the last
few years (Kleinberg et al., 2015; Mullainathan & Spiess, 2017).

The tasks of the sensitivity of predictions analysis introduced here is to
assess how the omission of an unobserved predictor could affect both
the forecasts of the model and its performance. Indeed, we argue that a
desirable property of any predictive model is to be robust to potentially
unobserved predictors. In a predictive scenario, we can define robustness
as the model’s ability to provide stable predictions and a stable perfor-
mance over the inclusion of additional variables in the model. Robust-
ness of predictions is a desirable property as volatile predictions may be
completely overturned by the inclusion of an additional predictor in the
model. Stability of predictions per-se is not necessarily a desideratum: a
model that is completely unable to properly predict a certain outcome
may be stable but highly inaccurate. We argue that the stability of the
model depends on the quality of the additional predictor included. In-
deed, as we include a novel variable with a high explanatory power in
a poorly performing model (i.e., a model with highly inaccurate predic-
tions), the model will show a boost in its predictive power driven by an
increase in the precision of its predicted values. Hence, it is intuitive to
see how such a sensitivity of prediction analysis is important for at least
two reasons. First, it can show how much an additional predictor could
boost the performance of the model, indicating how much the model can
be improved by taking into account additional, potentially unobserved
predictors. Second, it reveals the variability in the predictions induced by
novel predictors: the more stable they are, given a high predictive perfor-
mance, the more the model can be trusted for predictive policy tasks.

Such a sensitivity of prediction analysis is directly inspired by its
causal inference sensitivity analysis counterpart (Ichino et al., 2008;
Rosenbaum & Rubin, 1983a). In particular, Ichino et al. (2008) propose
a simulation-based sensitivity analysis to assess the robustness of causal
estimands to failures in the unconfoundedness assumption (i.e., inde-
pendence between the treatment and the potential outcomes). The au-
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thors build on the works by Rosenbaum and Rubin (1983b) and Rosen-
baum and Rubin (1983a) and simulate an unobserved confounder that
is both associated with the potential outcome and the treatment. Then,
they introduce this additional confounder in the model for the estima-
tion of the Average Treatment effect on the Treated (ATT). They repeat
the estimation procedure many times using a different set of values for
the simulated confounder and compare these estimates with the original
estimate of the ATT obtained without the inclusion of the simulated con-
founder. Such comparison informs scholars on how robust the original
causal estimands are to different configurations used for the construc-
tion of the confounder (and, in turn, different levels of violations of the
unconfoundedness assumption).

While using a similar intuition, the sensitivity analysis that we im-
plement here is fundamentally different because we deal with a predic-
tion setting rather than a causal inference one. In fact, as we deal with
prediction problems, we depart from the conceptual meaning of sensi-
tivity analysis, in causal inference, as a strategy to assess the robustness
of an estimators to an underlying and untestable set of assumptions. In
this sense, the sensitivity analysis that we introduce in this Chapter is
not aimed at testing any model assumption or identification assumption.
Conversely, our aim is to provide a direct assessment of the quality of
the model and its predictions. In particular, the added value of the pro-
posed approach is in those situations where one has a well-performing
predictive model and wants to assess whether or not it’s worthwhile to
continue the search for new predictors.

The sensitivity of prediction analysis is performed by generating a
synthetic predictor and checking if (and how) its inclusion in the set of
predictors changes the model’s predictions and, in turn, its performance.
Let us define with R a P -dimensional vector for the synthetic predictor.
As we want this predictor to have a good explanatory power with re-
spect to the outcome vector Y . Hence, we will design it it to have a high
correlation between the outcome and the synthetic predictor but to be
uncorrelated with all the predictors in the model.

Before going into the details of how to construct the synthetic vari-
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able, let us discuss the implications of constructing it in such a way. While
a high correlation with the outcome and a zero correlation with the ob-
served predictors guarantees a high explanatory power (i.e., a large share
of the variation in the outcome being explained by the synthetic variable,
controlling for the other predictors), it does not guarantee that the syn-
thetic variable is also the one with the highest predictive power. Indeed,
it may be the case that in a non-linear setting, the interaction between two
variables with lower explanatory power and the outcome could carry
more information than a predictor with a higher explanatory power than
these two individual variables. However, such interaction patterns be-
tween the predictors and the outcome are hidden in the data (in some
way, the ultimate goal of machine learning methodologies is to discover
such underlying patterns), and is not possible to reproduce them in any
meaningful way. Hence, constructing a variable with a high predictive
power, may not lead to the best absolute model performance but it is
(i) feasible (while it may not be feasible to construct a variable with the
highest predictive power due to the complex, non-linear patterns of in-
teractions between the predictors and the outcome) and; (ii) meaningful
as the explanatory power of a variable is relevant also in a prediction
setting (especially when the ultimate users are the policy-makers).

Let us show in detail how to compute the synthetic predictor. We start
from sampling N independent realizations from a normally distributed
continuous variable: R̃ ∼ N (0, 1)5 . We define R̃ the N × (P + 2) matrix
that stacks the output vector Y , R̃ and the matrix of observed variables
X such that:

R̃(N×(P+2)) =
[
Y(N×1) R̃(N×1) X(N×P )

]
. (3.3)

We define with K̂ the estimated correlation matrix of R̃:

K̂((P+2)×(P+2)) =


1 ρ̂(Y, R̃) . . . ρ̂(Y,Xp)

ρ̂(R̃, Y ) 1 . . . ρ̂(R̃,Xp)
...

...
. . .

...
ρ̂(Xp, Y ) ρ̂(Xp, R̃) . . . 1

 (3.4)

5The distribution of this variable mimics the distribution of the synthetic predictor and
can be directly changed by the researcher.
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and with Σ̃ = diag(σ̂2
Ỹ
, σ̂2
R̃
, σ̂2
X1
..., σ̂2

Xp
) the (P+2)×(P+2) diagonal ma-

trix of estimated variances, where σ̂2
Ỹ

is the estimated variance of the out-
put, σ̂2

R̃
is the estimated variance of R̃ and σ̂2

X̃j
is the estimated variance

of the j-th variable in X. Moreover, if we define with C the symmetric,
idempotent centering N ×N matrix:

C = I− 1

N
1 (3.5)

where 1 is a N ×N matrix of 1s, we can center and scale the R̃ matrix as
follows:

Ṙ = CR̃Σ̃−1 (3.6)

where Ṙ is a multivariate normal matrix. This is similar to the type of
scaling used, for example, in standard normal variate correction (Barnes
et al., 1989), and corresponds to a variation of the whitening (or sphering)
transformation . Then, we introduce no-correlation within the columns in
R̃ as follows6:

L−1Ṙ (3.7)

where L is a lower triangular matrix obtained through the Cholesky de-
composition of K̃:

LLT = K̃. (3.8)

The matrix that we obtain in 3.7 is a set of realizations of uncorrelated
multivariate normal random variables. At this point, we can reintroduce
the correlation between each column:

UL−1Ṙ (3.9)

where L is obtained thought as the Cholesky decomposition of K:

UUT = K (3.10)

and K is a newly defined correlation matrix:

K((P+2)×(P+2)) =


1 ρ̃(Y,R) . . . ρ̂(Y,Xp)

ρ̃(R, Y ) 1 . . . ρ̃(R,Xp)
...

...
. . .

...
ρ̂(Xp, Y ) ρ̃(Xp, R) . . . 1

 (3.11)

6This is possible as far as K is a symmetric positive-definite matrix.

122



where ρ̃(Y,R) is the correlation between the synthetic predictor R and
the outcome, that is set directly by the researcher, and ρ̃(Xj , R) is the cor-
relation between the synthetic predictor the j−th regressor. These corre-
lations are set to be equal to zero in our setting:

K((P+2)×(P+2)) =


1 ρ̃(Y,R) . . . ρ̂(Y,Xp)

ρ̃(R, Y ) 1 . . . 0
...

...
. . .

...
ρ̂(Xp, Y ) 0 . . . 1

 (3.12)

In a further step, we make this algorithm robust by introducing corre-
lations between the synthetic variable and the best predictor, to closely
mimic the case of real-world applications where predictors are correlated
within each other. The choice of the correlations pattern is left to the re-
searcher, and can be informed by previous analyses on the relative im-
portance and correlation of the predictors.

Finally, we scale the data back to their original distribution:

R = C−1UL−1ṘΣ̃ (3.13)

and “extract” the newly generated synthetic predictor R from the R ma-
trix. In this specific case, the synthetic predictor corresponds to the sec-
ond column of the matrix R. However, its relative position depends on
how the matrix R̃ is generated.

At this point, we can rework the model in (3.1) to include the set of
stack predictors G:

L∑
l=1

Tl(G;Dl,Ml) + ψ (3.14)

where G is:
G(N×(P+1)) =

[
R(N×1) X(N×P )

]
. (3.15)

Finally, we can compare the predictions of the new augmented model in
(3.14) with the ones of the original BART model in (3.1). To do so, we run
the two models on b bootstrapped samples b = 1, ..., B to get a set of
predicted values at each iteration

J∑
j=1

Tj,b(X;Dj ,Mj) + ε; (3.16)
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L∑
l=1

Tl,b(G;Dl,Ml) + ψ. (3.17)

Once we get the unit level predictions for these models at each iteration
step b (ŷb(xi) and ŷb(gi), respectively), we can run a series of comparisons
between both the distribution of the predictions and the performance
of augmented model as compared to the original model. To assess the
statistical difference between the unit level predictions’ distributions we
test the difference between the mean of the unit level prediction of the
augmented model, ¯̂y(xi), and the mean of the unit level predictions of
the original model, ¯̂y(ri)

¯̂y(xi) =
1

B

B∑
b=1

ŷb(X = xi) and ¯̂y(ri) =
1

B

B∑
b=1

ŷb(G = gi). (3.18)

Moreover, to assess whether or not there is an improvement in the perfor-
mance of the augmented model, we run a series of tests on the difference
of both the Root-Mean-Squared-Error of prediction and the adjusted R2

of the two models7.
These tests provide a measure of the extent to which the inclusion

of a new regressor that is correlated with the outcome and uncorrelated
with the observed predictors, would impact the model’s predictions and
performance. As the correlation coefficients between the synthetic pre-
dictor and the outcome are defined by the scholar herself8, this impact
can be estimated for different correlation settings. The more similar the
unit level predictions, and the more similar the performance of the origi-
nal and the augmented model, the more one can argue that the available
signal is enough for stable and precise predictions.

The table Algorithm 3 summarizes the algorithm introduced in this
Subsection and its main steps9.

7For additional details on this set of tests in the online appendix.
8With the constraint of K being a symmetric positive-definite matrix.
9Here, we introduce our algorithm in its most general version. However, running B

times the machine learning model at hand can be computationally intensive, especially for
less scalable machine learning methodologies. In the case of BART, to reduce such com-
putational burden, one can directly sample the unit level predictions from the posterior
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Algorithm 3 Overview of the sensitivity analysis

The steps of the algorithm:

1. create a new matrix of predictors G stacking the observed predic-
tors X and a synthetic predictor R correlated with the outcome Y
and uncorrelated to all the variables in X;

2. generate two models, one including only the observed predictors
X (original model) and one including the observed predictors and
the synthetic predictor G (augmented model);

3. run the two models on b bootstrapped samples (b = 1, ..., B) to get
a set of predicted values at each iteration:

Ŷb(X) =

J∑
j=1

Tj,b(X;Dj ,Mj) + ε (3.19)

Ŷb(G) =

L∑
l=1

Tl,b(G;Dl,Ml) + ψ; (3.20)

4. run a series of tests comparing the original and the augmented
model with respect to:

(a) their unit level predictions;

(b) their performance.

2 Data

To illustrate the proposed methodologies for prediction, subgroups’ tar-
geting and sensitivity, we apply the methodology to the 2015 data of the
OECD’s Program for International Student Assessment (PISA) for Bel-
gium. The structure of the Belgian PISA 2015 data offers an interesting
example of forecasting missing scores on a standardised student assess-

predictive distribution. For the RF algorithm, we argue that researchers can invoke the sta-
tistical properties introduced by Wager and Athey (2018) to construct reliable confidence
intervals and statistical tests for each unit level prediction.
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ment. In particular, in the special case of Belgium, all regions of the coun-
try participated in the general assessment of PISA, while only selected re-
gions participated in the financial literacy assessment10 This structure of
the data allows us to use a common set of predictors for all regions from
the general assessment in order to predict financial literacy outcomes for
students in the regions that did not participate in this part of PISA.11.

We choose the Belgian case to illustrate the forecasting methodology,
since the regions of the small country have many similarities and com-
mon policies that justify the assumption of a common relationship be-
tween the predictors and the outcome variable. At the same time, the
Belgian regions differ in population characteristics as well as education
policies which suggests that the missing scores in Wallonia are unlikely
to be identical to those in Flanders. Indeed, as shown in Table 20 in Ap-
pendix 5, a t-test reveals a significant difference in means on most of
the relevant background characteristics of students. The Belgian sample
is balanced across regions in terms of gender, age and parents’ charac-
teristics. However, important variables with respect to financial literacy,
such as math and reading scores as well as the socioeconomic status
in terms of wealth or the number of books at home, are significantly
different in the two regional samples. PISA math scores, for example,
are highly correlated with PISA financial literacy scores (in Flanders,
r(5673) = 0.793, p = 0.000). Figure 19 shows that the distribution of
math scores in Flanders and Wallonia overlaps; however the distribution
is shifted to the right for Flanders compared to Wallonia. It is, therefore,
likely that the financial literacy scores differ across the regions as well.
A similar pattern is observed regarding the socioeconomic status of stu-
dents in the two samples, as approximated by the PISA wealth indicator

10The Belgian federal state has three regions (Flanders, Wallonia, Brussels), but educa-
tion policy is decided at the level of language communities (Flemish for schools in Flan-
ders and Brussels, French for schools in Wallonia and Brussels, and German for schools in
the German-speaking parts of Wallonia). To simplify, we group the French- and German-
speaking communities and use the term Wallonia here as synonym for the French- and
German-speaking communities and Flanders for the Flemish community. As of January
1st 2019, the German-speaking community account for 2% of the population of Wallonia.

11In the eight OECD countries and economies participating in the PISA financial literacy
assessment 2015, this specific feature of differences in regional assessment is only the case
for Belgium and Canada.
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which summarises economic possessions of the family. Figure 19 shows
that, similarly, the distribution of wealth overlaps, but is slightly shifted
to the right in Flanders compared to Wallonia.

Figure 19: (Left) Distribution of PISA math Scores in Flanders (blue) and
Wallonia (yellow).
(Right) Distribution of PISA Wealth Index in Flanders (blue) and Wallonia
(yellow).

Having specific information about the financial literacy of students
in each region is highly relevant for policy-makers in order to provide
appropriate financial education. Predicting the missing financial literacy
scores for Wallonia can therefore lead to informed policies tailored to the
respective regional education system.

2.1 Outcome variable

The financial literacy scores in PISA 2015 are reported as a set of ten plau-
sible values12. The financial literacy score is based on a test of financial
knowledge with 43 items in the four content categories money and trans-
actions, risk and reward, planning and managing finances, and the finan-

12For each participating country or economy, 33% of the students who completed the
general PISA assessment were tested on financial literacy (OECD, 2017c). The plausible
values were then constructed for all students participating in the general PISA based on
item response theory and latent regression. In the case of Belgium, this was only done
for Flanders. As a results, the plausible values are available for all participating students
in the Flemish region, but missing for students from Wallonia. In the following, we use
the plausible value PV 1FLIT for the analysis, since any bias caused by using a single
plausible value instead of all ten simultaneously is arguably negligible (Gramat,ki, 2017).
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cial landscape (OECD, 2017b).
In the case of Belgium, there are 9,651 observations on the general

assessment from all Belgian regions, but the financial literacy scores are
only available for the 5,675 students from Flanders, while the financial
literacy scores of the 3,976 students from Wallonia are missing. Flanders
thus represents our “study” population in which we observe the finan-
cial literacy scores Y obs. Wallonia represents the “target” population for
which we predict the missing financial literacy scores, Y obs, based on the
common set of predictors from the general assessment X. Table 19 in
Appendix 5 provides summary statistics of the outcome variable. On av-
erage, Flemish students score 541 points, which corresponds to the PISA
proficiency level 3 out of 5 levels. Figure 27 in Appendix 5 shows the dis-
tribution of financial literacy scores in the Flemish data. 12% of Flemish
students fail to reach the baseline level 2 of 400 points or more which
the OECD defines as the level necessary to participate in society (OECD,
2017b). Figure 28 in Appendix 5 provides an overview of the required
knowledge corresponding to the five PISA proficiency levels.

2.2 Predictors

In contrast to regression analyses, in which multicollinearity of regres-
sors needs to be avoided, a large number of (potentially correlated) pre-
dictors can be used for forecasting in machine learning (Makridakis et
al., 2008; Shmueli, 2010; Vaughan & Berry, 2005). We therefore select a
broad set of predictors X from the general assessment of PISA 2015. Ta-
ble 15 provides an overview of the variables used as predictors. The set of
predictors includes students’ background characteristics, proxies of the
socioeconomic status of students, indicators of student achievement and
attitudes, as well as school characteristics.

To account for the students’ background, we include gender, grade,
age, language and study track. Existing studies commonly find finan-
cial literacy scores to be highly correlated in particular with math and
reading performance (e.g. Mancebón et al., 2019; Riitsalu & Põder, 2016).
In the case of Flanders the correlation of financial literacy scores with
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Table 15: Variables used from the PISA data

Student Characteristics
ST001D01T International Grade
ST004D01T Gender
AGE Age
ISCEDD Study Track: ISCED Designation
ISCEDO Study Track: ISCED Orientation
BELANGN Speaks Belgian Language at Home

Socioeconomic Status
HEDRES Educational Resources at Home
WEALTH Family Wealth Index (Economic Possessions)
ST013Q01TA Number of Books at Home
IMMIG Immigration Status
MISCED Mother’s Education (ISCED)
FISCED Father’s Education (ISCED)
BMMJ1 Mother’s Job (ISEI)
BFMJ2 Father’s Job (ISEI)
EMOSUPS Parents Emotional Support

Achievement and Attitude
PV1MATH Plausible Value 1 in Mathematics
PV1READ Plausible Value 1 in Reading
REPEAT Grade Repetition
OUTHOURS Out-of-School Study Time per Week
MMINS Mathematics Learning Time at School
LMINS Language Learning Time at School
ANXTEST Personality: Test Anxiety
MOTIVAT Achievement Motivation

School Characteristics
SC001Q01TA School Community (Location)
SC048Q01NA Share of Students With a Different Heritage Language
SC048Q02NA Share of Students With Special Needs
SC048Q03NA Share of Socioeconomically Disadvantaged Students
SCHSIZE School Size
CLSIZE Class Size
RATCMP1 Number of Available Computers per Student
LEADPD Teacher Professional Development
SCHAUT School Autonomy
EDUSHORT Shortage of Educational Material
STRATIO Student-Teacher Ratio
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math and reading scores amounts to 0.8, which is slightly higher than
the OECD average of 0.75 (Universiteit Gent, 2017). As such, we include
the PISA math score, as well as the reading score and additional variables
related to student achievement, such as grade repetition, study time and
instruction time. Given that personality traits and attitudes have been
found to matter for financial literacy as well (Longobardi et al., 2018; Pe-
sando, 2018), we also include students’ test anxiety and motivation.

Another major factor associated with financial literacy scores is the
family background, such as parental characteristics, language or immi-
gration background (e.g. Gramat, ki, 2017; Mancebón et al., 2019). To ap-
proximate the socioeconomic status of a student we use the indicators
of educational and economic possessions of the family, the number of
books in the home, the immigration background of the student, mother’s
and father’s education and job, as well as a variable capturing perceived
parental emotional support.

Finally, studies of PISA financial literacy scores commonly include
variables for school level variables (e.g. Cordero & Pedraja, 2018; Pe-
sando, 2018). We include a number of school characteristics from the
questionnaire for school principals, such as the school’s location, size
and autonomy. As indicators of teaching quality, we use the student-
teacher ratio, class size and teacher professional development. We also
use school level indicators of socioeconomic status, such as the share of
students with a different home language, special needs or a socioeco-
nomically disadvantaged home, the number of available computers and
shortage of educational material.

Figure 29 in Appendix 5 shows the missing observations in the vari-
ables used in the analysis. Apart from the financial literacy scores, which
are, as described above, only available for Flemish students, no clear
patterns of missingness appear across the predictors. We can therefore
assume the observations to be Missing-Completely-at-Random (Little &
Rubin, 2019) and we proceed with multiple imputations using the Fully
Conditional Specification (FCS) developed by Buuren and Groothuis-
Oudshoorn (2010) and implemented in the R package MICE.
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3 Results

In this Section, we discuss the performance of BART in the prediction
task at hand; we provide the results and some descriptive evidence re-
garding the observation with posterior predicted probability lower than
the average; and we provide the results from the sensitivity analysis.

3.1 Results for BART predictions

Many recent studies have shown that BART performs in an excellent way
in various predictive tasks across different scenarios (Bargagli-Stoffi, Ric-
caboni, et al., 2020; Hernández et al., 2018; Linero, 2018; Linero & Yang,
2018; Murray, 2017; Starling et al., 2018). In our particular scenario, we
test the performance of BART through a 10-folds cross-validation, and
compare it with the performance of the random forest (RF) algorithm
Breiman (2001). A generic k-folds cross-validation technique consists of
dividing the overall sample (in our specific case we draw this sample
from the set of observations for which the outcome variable is present)
into k different subsamples. k − 1 subsamples are used to train the ma-
chine learning technique. Then its performance is tested on the subsam-
ple that was left out. We decide to test the performance of our algo-
rithm with the one of the RF algorithm, one of the most widely used
algorithms for prediction in social sciences (Athey, 2019; Bargagli-Stoffi,
Niederreiter, et al., 2020). We observe that BART performs equally or bet-
ter than the random forest algorithm in the predictive task at hand. Table
16 depicts the comparative results of the two algorithms with respect to
their root-mean-squared-error (RMSE) and mean-absolute-error (MAE)
of prediction and theirR2. BART demonstrates a very good performance
(as well as a series of other qualities that were described briefly in Sec-
tion 1), as it outperforms RF with respect to all the selected performance
measures (i.e., smaller RMSE and MAE, higher R2). Hence, we use this
technique to predict the missing financial literacy scores for students in
Wallonia.

Figure 20 depicts the posterior predicted values for financial literacy
scores for students in Flanders (light blue) and Wallonia (orange), while

131



Table 16: Summary statistics of the performance of the ML techniques

RMSE MAE R2

BART 58.1799 45.7505 0.7306
Random Forest 58.8402 46.1451 0.7251

Table 17: Summary statistics of the predicted FLS

Mean SD Minimum Median Maximum N

Predicted FLS Flanders 541.4 96.8 157.3 559.9 750.0 5675
Predicted FLS Wallonia 516.6 95.7 188.3 530.3 731.7 3976

Table 17 reports summary statistics for the same predictions. From Ta-
ble 17 we observe that the mean posterior predictive financial literacy
scores for students in Flanders is higher than for those in Wallonia, 541.4
compared to 516.6. Considering the minimum and maximum values for
Flanders and Wallonia we note that the scores of the students in Flan-
ders seem to be more centered around the mean in Wallonia compared
to Flanders. The same conclusion can be drawn from Figure 20 where the
peak of the light blue area (Flanders) is to the right of the peak of the or-
ange area (Wallonia). As OECD provide interpretable difference between
the FLS, we can interpret the different results for Flanders and Wallo-
nia. In particular, based on OECD computations a difference of 40 points
equals an entire school year of learning. Hence, based on this, we can
state that students in Flanders are roughly half a year ahead of students
in Wallonia with respect to their standardized knowledge in financial lit-
eracy.

Robustness checks

The quality of the predictions of FLS in Wallonia is not directly testable as
this outcome is unobserved in this region. However, the quality of these
prediction can be thought to potentially be very similar to the one es-
timated through cross-validation if the underlying assumption that the
‘technology’ and the efficiency to transform teaching and environmental
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Figure 20: Predicted financial literacy scores for Flanders (light blue) and
Wallonia (orange). The red line indicates the threshold of the baseline level
of proficiency in financial literacy. OECD suggests that students above this
threshold of 400 points have financial literacy levels that are sufficient to
participate in society (OECD, 2017b).

inputs into learning output is comparable between Flanders and Wallo-
nia. As we argued in Section 3, it is relatively safe to think about this
assumption to hold.

However, to investigate this assumption thoroughly, we run a series
of robustness checks using different outcome variables. Given the high
correlation between the outcome and math scores and reading scores, and
given the standardized way all these outcome are recorded, the most
straightforward way to implement this analysis is to use these two vari-
able as outcomes and test whether the BART model build using Flemish
data performs well when tested on Walloon data.

To perform this test we use a reworked version of the 10-folds cross-
validation used in the previous Section. This procedure is illustrated in
Figure 21, and assigns random folds from the Flemish data to the train-
ing sample and one random fold from the Walloon data to the training
sample at each split. The performance of the method is evaluated at each
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Figure 21: Reworked k-folds cross-validation.

split and then the results are aggregated. To make this example mimic as
close as possible the evaluation of the algorithm performed in the pre-
vious Section, we chose to use the same number of training folds and
testing fold. However, as the testing data are less then the training data
(respectively 5,675 students from Flanders and 3,976 students from Wal-
lonia), the training data were partitioned in just 7 folds and each fold was
used at a different split to assess the performance of the algorithm.

The results are depicted in Table 18. The adjusted R2 for BARTs built
on the different outcomes are comparable to the ones in Table 16 and hint
at the fact that there are no relevant differences between the performance
of the model built using the Flemish data both for training and testing
and the one built using Flemish data for training and Walloon data for
testing. In turn, this robustness check seems to confirm the fact that the
‘technology’ and the efficiency in Flanders and Wallonia are comparable.

3.2 Results for vulnerable students detection

Policy-makers often want to target only those who are really in need
for an intervention as they are often facing budget constraints that pre-
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Table 18: Summary statistics of the performance of the BART on different
outcomes

RMSE MAE R2

Math Score Outcome 52.5344 41.89435 0.7099
Reading Score Outcome 52.5421 441.8146 0.7064

vent them from enacting policies for all constituents. These groups can
be identified, in cases where the values of a certain outcome of interest
are observed, by simply looking at the outcome’s distribution. However,
it is often the case that such outcomes may be hidden or not observed for
a part of the study population. In such scenarios, machine learning pre-
dictions may furnish a valuable tool to policy makers. In the case of our
application, we face a prediction problem: imagine that policy makers
want to provide additional learning material to more vulnerable students
in a region where FLS are not observed. Machine learning can provide a
useful tool to draw such predictions.

In order to detect the most vulnerable students (i.e., those with low
predicted FLS), we use the procedure introduced in Section 4.1. Uncov-
ering subpopulations of students that differ in terms of the distribution
of a certain outcome is central to boost school and teacher’s effectiveness
and various strategies have been applied to this task (Masci et al., 2019).
However, to the extent of our knowledge, this is the first time that a su-
pervised machine learning technique is used for this aim. In a previous
study on OECD data, De Beckker et al. (2019) identify four groups of
adults with different financial literacy levels through an unsupervised
machine learning algorithm (i.e., k-means). The advantage of the use
of machine learning is clear as it allows to partition a large heteroge-
neous group of people into subgroups according to their financial liter-
acy scores. However, while simple unsupervised machine learning algo-
rithms such as k-means are useful to get a first impression of the differ-
ent subgroups and their socio-economic characteristics, they do not pro-
vide immediate information on the robustness of the outcomes. More-
over, these simple algorithms are not capable of making predictions for
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out-of-sample regions. This is particularly relevant when dealing with
standardized tests, such as PISA, which often only cover subpopulations
of a country, such as specific regions.

First, we train BART on the sample of Flemish students for which we
have data on their financial literacy scores. Next, we predict the financial
literacy scores for both the sample of students in Flanders and Wallonia.
After that, we compare the posterior predicted values for each student
with the mean of the predicted posterior values. Finally, we detect the
students for which these values are lying outside the credibility intervals
for the mean values. Here, we define outliers as those observations with
predicted financial literacy scores values smaller than two standard devi-
ations from the mean following J. Miller (1991). In Appendix 6, we check
the results we would obtain when defining the outliers as observations
with predicted financial literacy scores two absolute deviations smaller
than the median as suggested by Leys et al. (2013)13.

Moreover, in order to get a better understanding of which variables
best explain low predicted financial literacy scores we generate a dummy
variable that assumes value 1 if the student has a low predicted financial
literacy scores and 0 otherwise. Finally, we built a series of conditional
inference trees (Hothorn et al., 2006) to have a descriptive sense of which
are the drivers of low financial literacy. Figure 22 depicts the conditional
tree for the overall sample, Figure 23 shows the conditional trees for Flan-
ders and Wallonia respectively, Figure 24 depicts the trees for students in
grades 7 to 9 and 10 to 12, and Figure 25 shows the results for the trees
for students in general and vocational education.

As shown in Figure 22, reading (PV1READ) and math (PV1MATH)
scores, the language spoken at home (BELANGN), study track (ISCEDD)
and grade (ST001D01T) are important variables distinguishing groups of
students in our entire sample. For students from the lower grades (grade
7 to 9) with lower scores on reading (≤ 389.567) and math (≤ 406.49) the
predicted probability of a low financial literacy scores is 95 percent. A

13Such results are not significantly different from the ones that are depicted in this Sec-
tion. Thus, we argue that our results are robust to different definitions of outlying predic-
tions.
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higher PISA math score (> 406.49), but not being a native speaker results
in a predicted probability of 84 percent of having a low financial literacy
scores. On the opposite side, students with a reading score above base-
line (> 389.567), following general programs designed to give access to
the next level, have - depending on their grade - a predicted probabil-
ity of respectively only 19 or 1 percent of having a low financial literacy
scores.

In Figure 23, we split by region. In the tree in the left panel of the Fig-
ure, we note that in Flanders the largest predictive proportion of students
with low financial literacy scores are again situated among those with
lower scores for reading (≤ 386.732) and math (≤ 405.291). In the group
with a low reading score (≤ 386.732) and a higher math score (> 405.291)
immigration status seems to matter (IMMIG). Among those who are first
generation-migrants the predictive probability of having a low financial
literacy scores is 82 percent. In Wallonia (tree in the right panel), the pro-
portion of students with low financial literacy scores is again the largest
(94 percent) among those with low reading (≤ 385.283) and math scores
(≤ 406.49). In Wallonia, mother’s education (MISCED) seems to play a
distinctive role. Students with better reading and math scores and with
a highly educated mother only have a predictive probability of 1 percent
of low financial literacy scores.

In Figure 24, we split by grade. We group grades 7-9 (left panel), and
10-12 (right panel). Indeed in Flanders, after grade 9 certain conditions
change (teacher qualification requirements, etc.). Hence, it is interesting
to investigated the drivers of heterogeneous effects by grade. In grades
7-9, the largest predictive proportion (95 percent) of students with low
financial literacy scores are again among those with a lower reading
(≤ 398.29) and math score (≤ 389.567). The second largest proportion of
students with low financial literacy scores (84 percent) is found among
non-native speakers with a high math score (406.49) but with a low read-
ing score (≤ 398.29). The same pattern seems to exists in grades 10 to 12.
However, in grades 10 to 12, the education of a student’s father (FISCED)
seems to have a significant influence on financial literacy scores. For stu-
dents with fathers with a higher education background, the predictive
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probability of low financial literacy scores lies between 1 and 20 per-
cent, depending on whether the student has a math score above or below
399.714.

In Figure 25, we split by track. In the case of general education stu-
dents (left panel) from grade 7, 8 and 12 with a low reading (≤ 397.528)
and math score (≤ 409.921) have, with a predictive probability of 92
percent, the highest chance of having low financial literacy scores. The
second largest predictive proportion (78 percent) is among students in
grade 9, 10 and 11 in schools with more than 67 percent of special needs
students (SC0848Q02NA) who have a math score smaller or equal to
460.087. Considering only the students in vocational education (right
panel), we observe that the main determinants of students’ low finan-
cial literacy are the study track, math and reading scores and whether or
not the student speaks Dutch at home.
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Figure 22: Conditional tree for the entire sample. Within each leaf is de-
picted in red the histogram of the percentage of units that have a low fi-
nancial literacy score, and next to it the percentage of units with not-low
financial literacy score within the same leaf.
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Figure 23: (Left) conditional tree for Flanders. (Right) The corresponding
tree for Wallonia.

PV1READ 

(n = 3394)

£ 398.29 > 398.29

PV1MATH 

(n = 1238)

£ 406.49 > 406.49

PV1READ 

(n = 922)

£ 389.567 > 389.567

Node 4 

 (n = 858)

0.05

Node 5 

 (n = 64)

0.38

BELANGNdum 

(n = 316)

Speaks Other Language at Home{, Speaks Belgian Language at Home}

Node 7 

 (n = 70)

0.16

Node 8 

 (n = 246)

0.58

ISCEDD 

(n = 2156)

{B, C} A

PV1MATH 

(n = 422)

£ 406.794 > 406.794

Node 11 

 (n = 117)

0.5

Node 12 

 (n = 305)

0.9

SC048Q02NA 

(n = 1734)

£ 70 > 70

Node 14 

 (n = 1664)

0.97

Node 15 

 (n = 70)

0.6

PV1READ 

(n = 6257)

£ 372.702 > 372.702

PV1READ 

(n = 213)

£ 339.565 > 339.565

Node 3 

 (n = 98)

0.12

BELANGNdum 

(n = 115)

Speaks Other Language at Home{, Speaks Belgian Language at Home}

Node 5 

 (n = 23)

0.09

Node 6 

 (n = 92)

0.65

FISCED 

(n = 6044)

{ISCED 1, None}{, ISCED 2, ISCED 3A, ISCED 4, ISCED 3B, C, ISCED 5A, 6, ISCED 5B}

PV1READ 

(n = 146)

£ 421.974 > 421.974

Node 9 

 (n = 20)

0.35

Node 10 

 (n = 126)

0.97

PV1MATH 

(n = 5898)

£ 399.714 > 399.714

Node 12 

 (n = 121)

0.8

Node 13 

 (n = 5777)

1

Figure 24: (Left) conditional tree for students in grades 7 to 9. (Right) The
corresponding tree for students in grades 10 to 12.
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Figure 25: (Left) conditional tree for general education. (Right) The corre-
sponding tree for vocational education.
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3.3 Results for sensitivity of predictions analysis

In this Section, we report the results for the sensitivity of predictions
analysis. In Section 1.2 we introduced the methodology which we em-
ploy here to assess how an unobserved predictor, uncorrelated to the
observed ones, could impact the predicted financial literacy scores and
the performance of the model. In particular, the sensitivity function
that we developed in the statistical software R provides estimates of how
many unit level predictions are statistically different between the orig-
inal model and the model with the synthetic predictor and how much
the synthetic predictor would improve the overall performance of the
model.

Starting from the unit level predictions that we introduced in Section
1.2, we can get a sense of how much the synthetic predictor would affect
the model prediction in a varying range of correlations between the syn-
thetic predictor and the outcome (in the case of our application this range
is [0.1, 0.5])14. Here, we test how many of the predicted values of the aug-
mented model would be statistically different from the predicted values
of the original model. We find no evidence of statistically significantly
different predictions up to a correlation of 0.5, where just 0.01% of the
unit level predictions of the augmented model are significantly different.

Moreover, figure 26 depicts the results for both the RMSE and R2

of the original and augmented model with their confidence intervals as
the correlation between the synthetic predictor R and the outcome Y in-
creases. In both cases, even when the synthetic predictor has a correlation
of 0.5 with the outcome, there is no significant difference between the
RMSE of the original and the augmented model. The R2 is significantly
improved just when the correlation reaches 0.5. This evidence could be
interpreted as the fact that, in order to get a significant increase in theR2,
we would need an explanatory variable (completely unrelated to the ob-
served ones) with at least a 0.5 correlation to the outcome. To put things
into perspective, a predictor with such a correlation would rank between
the first three best predictors in the model. We argue that, in the context

14This range depends on the data at hand as we need to guarantee that R is a symmetric
positive definite matrix.
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of our application, such an unobserved variable would be very hard, if
not impossible, to find.

As argued before, the interpretation of such a sensitivity analysis is
that, even if we could introduce a new, unobserved predictor, with a high
explanatory power in the model, the unit level predictions as well as the
overall performance of the model would remain fairly stable. This set
of evidence, together with the non-significant variation in the unit level
predictions, hints at the fact that our model is already capturing most of
the signal in the data and its predictions are stable. Hence, this analy-
sis offers to policy-makers an additional evidence in favour of using the
predictions from the model that we propose to enact targeted policies.
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Figure 26: (Left) Estimated RMSE for the augmented model with confi-
dence intervals (blue) and for the original model (red). (Right) EstimatedR2

for the augmented model with confidence intervals (blue) and for the orig-
inal model (red). The 99% confidence intervals were constructed following
Cohen et al. (2014).

Moreover, we make this analysis robust by introducing correlations
between the synthetic predictor and the two best predictors The size
of the correlation is the same as the correlation introduced between the
synthetic predictor and the outcome. In the case of our application, the
model is robust because the results from the sensitivity analyses are in-
variant to the introduction of this additional correlation patterns.

14The best predictors are chosen according to the built-in variables’ importance measure
of BART. For a review of various tree-based variables’ importance measures and their pit-
falls we refer the reader to James et al. (2013) and the recent contribution by Gottard et al.
(2020).
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4 Discussion

In this Chapter, we introduce a novel sensitivity analysis to assess the ro-
bustness of our preferred predictive model in terms of the stability of its
predictions and its performance. The model that we propose is general
enough to be applied to both Bayesian techniques (such as the Bayesian
Additive Regression Trees algorithm) or frequentist techniques (such as
the Random Forest algorithm). In particular, we propose a novel way to
partially answer policy-relevant questions such as “is the machine learning
model getting enough signal from the data?” and “how much would an unob-
served predictor impact the model’s prediction and its performance?”. To do so,
we develop a novel methodology to construct a synthetic predictor that
is correlated with the outcome but is uncorrelated with the observed pre-
dictors. By generating the synthetic predictor in this a way, we are able
to interpret the results from the sensitivity analysis in a way that hints at
how much an exogenous predictor with a high explanatory value would
add to the model. If the addition of the synthetic predictor is not result-
ing in significant differences, then we can safely assume that our predic-
tive model is capturing enough signal from the training data. Moreover,
through our novel methodology we are able to use a wide range of cor-
relations between the outcome and the synthetic predictor. This enables
the researchers to check whether or not there is a break-point (given by
the explanatory power of the synthetic predictor) above which the per-
formance of the model would be significantly better.

In addition, we use a novel machine learning approach to predict fi-
nancial literacy scores for students in a region of Belgium where financial
literacy scores are unobserved. We identify the characteristics of students
with predicted financial literacy scores lower than the mean. Finally, we
verify the sensitivity of our observations for unobserved predictors.

The first stage of our analysis provides evidence that the Bayesian
Additive Regression Tree (BART) approach outperforms the traditional
random forest (RF) approach on a number of selected performance mea-
sures (i.e. smaller RMSE and MAE, higher R2) with respect to FLS pre-
dictions. We find that the predicted values for financial literacy scores
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for students in Flanders are on average somewhat larger than those for
students in Wallonia. Nevertheless, the distribution of financial literacy
scores in Flanders is more extreme (i.e. lower minimum, larger maxi-
mum) compared to Wallonia.

Next, we estimate the posterior predicted observations available for
each student which also allows to identify outliers (i.e. students for
which the the financial literacy scores are situated outside the 95% cred-
ibility intervals for the mean values). Our results show that the predic-
tive probability of having a low financial literacy scores is the largest
for students with lower scores on reading and math in the PISA test.
This corroborates with findings of Mancebón et al. (2019) who state that
the development of financial abilities of students is mediated by their
mathematical skills. Another interesting observation is that the family
background also has a key influence. Students with the largest predicted
low financial literacy scores are often students from families where the
school language is not spoken at home. Particularly in Flanders, being a
first-generation immigrant or not is key in having low financial literacy
scores. The educational background of parents is another important pre-
dictor. These observations are in line with existing literature suggesting
that more vulnerable groups in terms of low financial literacy scores are
often situated among those with a lower socioeconomic background (De
Beckker et al., 2019; Gramat, ki, 2017; Riitsalu & Põder, 2016).

Finally, we confirm that our novel approach is robust in terms of
potential unobserved variables. The inclusion of a synthetic predictor
highly correlated with the outcome does result in a significant differ-
ence in the performance measures of the original model and the syn-
thetic model. From a policy perspective, our novel approach is highly
interesting as it not only allows to predict outcomes for certain countries
or regions within countries with missing data, but also introduces the
possibility to detect observations that fall outside the mean outcomes.
In this respect, policy-makers can detect which factors drive low results.
We applied our model to PISA financial literacy data, however, the same
approach can also be applied to other large administrative datasets.

143



Supplementary material for
Chapter 3

5 Data

Summary statistics of Plausible Value 1 in Financial Literacy from PISA
2015 for the Flemish region in Belgium. The OECD constructs ten plau-
sible values for financial literacy using item response theory and latent
regression (OECD, 2017c). The analysis in this Chapter is based on Plau-
sible Value 1. SD stands for the standard deviation of the variable.

Table 19: Summary statistics of the outcome variable

Mean SD Minimum Median Maximum N

Financial Literacy 541.43 112.16 51.81 555.14 901.64 5675

6 Changing outliers definition

Below we depict the results for the conditional tree analysis, when we
define outliers as observation with predicted values below two absolute
deviation from the median. This is a more restrictive definition of out-
liers.
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Figure 27: Histogram of the Outcome Variable (PISA Financial Literacy
Score). The red line indicates the threshold of the baseline level of profi-
ciency in financial literacy. The OECD suggests that students above this
threshold of 400 points have financial literacy levels that are sufficient to
participate in society (OECD, 2017b).
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Figure 28: PISA Proficiency Levels for Financial Literacy (OECD, 2017b)

Figure 29: Missingness map

146



Table 20: Summary statistics of the predictors
Flanders Wallonia Difference in Means

Mean SD N Mean SD N p-value
Student Characteristics
International Grade 9.72 0.52 5675 9.44 0.75 3857 0.000
Gender 1.51 0.50 5675 1.51 0.50 3976 0.976
Age 15.85 0.29 5675 15.84 0.29 3976 0.725
Study Track: ISCED Designation 1.43 0.81 5675 1.24 0.64 3976 0.000
Study Track: ISCED Orientation 2.09 1.00 5675 1.55 0.89 3976 0.000
Speaks Belgian Language at Home 0.91 0.29 5595 0.87 0.34 3929 0.000

Socioeconomic Status
Educational Resources at Home 0.27 0.91 5585 -0.15 0.90 3930 0.000
Family Wealth Index (Economic Possessions) 0.27 0.74 5606 -0.04 0.85 3936 0.000
Number of Books at Home 3.02 1.51 5557 3.32 1.53 3905 0.000
Immigration Status 1.20 0.54 5512 1.32 0.66 3851 0.000
Mother’s Education (ISCED) 4.62 1.39 5376 4.63 1.53 3774 0.882
Father’s Education (ISCED) 4.53 1.44 5221 4.52 1.58 3654 0.901
Mother’s Job (ISEI) 47.05 22.75 4763 47.30 22.10 3159 0.635
Father’s Job (ISEI) 46.21 21.38 4713 46.21 22.16 3318 0.996
Parents Emotional Support -0.01 0.96 5458 0.01 0.96 3801 0.302

Achievement and Attitude
Plausible Value 1 in Mathematics 521.61 97.89 5675 494.78 90.71 3976 0.000
Plausible Value 1 in Reading 510.95 100.67 5675 490.46 95.81 3976 0.000
Grade Repetition 0.24 0.43 5457 0.42 0.49 3804 0.000
Out-of-School Study Time per Week 14.24 10.21 4245 16.27 11.61 3216 0.000
Mathematics Learning Time at School 191.28 86.43 5273 219.74 81.86 3668 0.000
Language Learning Time at School 187.24 84.63 5275 227.10 83.49 3665 0.000
Personality: Test Anxiety -0.30 0.97 5416 -0.01 1.01 3775 0.000
Achievement Motivation -0.64 0.83 5417 -0.28 0.87 3767 0.000

School Characteristics
School Community (Location) 2.87 0.81 5556 3.24 1.11 3681 0.000
Share of Students With a Different Heritage Language 16.41 23.39 5406 26.19 30.29 2812 0.000
Share of Students With Special Needs 19.58 20.14 5154 18.97 21.94 3005 0.208
Share of Socioeconomically Disadvantaged Students 20.02 22.11 5248 33.06 30.38 3120 0.000
School Size 695.86 331.42 5405 771.27 327.30 3413 0.000
Class Size 18.89 5.14 5592 21.01 3.77 3578 0.000
Number of Available Computers per Student 1.25 0.89 5270 0.47 0.33 3251 0.000
Teacher Professional Development 0.10 0.90 5150 0.11 1.07 3433 0.685
School Autonomy 0.77 0.18 5675 0.59 0.21 3626 0.000
Shortage of Educational Material 0.02 0.87 5488 0.21 0.87 3429 0.000
Student-Teacher Ratio 9.09 3.21 5325 9.14 2.66 2847 0.454

Note: Summary statistics of all predictors used in the analysis from the PISA 2015 data
for Flanders and Wallonia. SD stands for the standard deviation of the variable. The last
column shows the p-value of a two-sample t-test for the equality of means across the
regions of Flanders and Wallonia. Language has been grouped for Belgium (1=Dutch,
2=French, 3=German, 4=Other).
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Figure 30: Conditional tree for the entire sample. Within each leaf are de-
picted in red the histogram of the percentage of units that have a low fi-
nancial literacy score, and next to it the percentage of units with not-low
financial literacy score within the same leaf.
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Figure 31: (Left) conditional tree for Flanders. (Right) The corresponding
tree for Wallonia.
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Figure 32: (Left) conditional tree for students in grades 7 to 9. (Right) The
corresponding tree for students in grades 10 to 12.
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Figure 33: (Left) conditional tree for general education. (Right) The corre-
sponding tree for vocational education.
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Chapter 4

Machine learning for
zombie hunting

In this Chapter, we use machine learning techniques to identify zom-
bie firms after training an algorithm on a big dataset of firms’ failures
and financial accounts. We implement a Bayesian Additive Regression
Tree with Missing Incorporated in Attributes (BART-MIA) robust to non-
random patterns of missing values to predict firms’ failures. A LASSO
(least absolute shrinkage and selection operator) allows us selecting a
list of best predictors from firm level observed information. Eventually,
we propose an empirical definition of zombie firms as firms that persist in
a status of high risk of failure.

The problem of spotting non-viable firms is relevant for both aca-
demics and practitioners, whether the reason is to assess credit risk for
the individual firm or, more in general, to detect a share of an economy
that is in trouble. On one hand, we have a large body of literature that
proposes to assess credit risk from the perspective of a financial insti-
tution. On the other hand, we have an emerging literature that assesses
the viability of firms from a wider perspective, possibly discussing poli-
cies that reduce the misallocation of financial and productive resources,
as for example in the case of zombie firms. In either cases, we argue that

This Chapter is based on Bargagli-Stoffi, Riccaboni and Rungi (2020).
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machine learning techniques improve upon existing proxy methods and
standard econometric techniques, reducing inescapable prediction errors
while paving the way for more target-specific and evidence-based poli-
cies.

From the perspective of a financial company, a limited information is
usually available on the viability of firms’ investment projects from its
financial accounts. The seminal references in this field are the Z-Score
(Altman, 1968, 2000) and the distance-to-default (Merton, 1974) proxy
models. In both cases, firms’ financial accounts have been traditionally
used to gauge a company’s likelihood of bankruptcy. In the case of the
Z-Score, five financial ratios are calculated from firm-level data, typically
including profitability, leverage, liquidity, solvency and volumes of ac-
tivity. After the latter are plugged in an equation with some weights to
proxy their relative importance, one obtains a threshold that, if crossed,
indicates that there is a high probability of bankruptcy in the next fu-
ture. Different from the Z-Score, the distance-to-default model by Merton
(1974) focuses specifically on the ability of a company to meet its finan-
cial obligations. The original intuition is that a company’s equity can be
modelled as a call option on its assets. Hence, the distance-to-default also
requires the knowledge of some firm-level accounts (company’s assets,
debts, market value) combined with information retrieved on financial
markets (risk-free interest rate, standard deviation of stock returns) to
plug in an equation that returns the value of a theoretically fair call op-
tion1.

Against this background, our machine learning technique clearly im-
proves upon existing models of credit rating by exploiting a wider bat-
tery of firm-level economic and financial indicators that potentially con-
tain different pieces of information regarding both the core economic ac-
tivity of the firm and its ability to meet financial obligations. In fact, by
construction, machine learning techniques work better if one includes as
much valuable information as possible, and they are dynamic as they

1After the insights of the distance-to-default model, Black and Scholes (1973) developed
their widely known model based on the observation that hedging an option one could
remove a systemic risk component.
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continuously update themselves every time there is new out-of-sample
information. The more we update the prediction algorithm the more pre-
cise the prediction we obtain. Moreover, statistical learning allows con-
trolling for the level of significance of the predictions, and it provides
us with the possibility to measure how prediction errors reduce thanks
to independent tests that minimize deviations between realized and pre-
dicted outcomes (Athey, 2019). In fact, we argue that any closed set of
indicators, any ex-ante weights attributed to ratios, and any specific func-
tional forms that we find in previous proxy methods are not flexible
enough to consider the ever-changing peculiarities of the economic envi-
ronment in which each company operates. One size does not fit all.

On the contrary, we can explicitly track non-parametrically whether
and how some firms’ accounts become more or less relevant than others
to predict failure over time. For example, the same firms’ accounts can
show more distress in times of a general crisis than in happier times.
In addition, firms in one country could be more resilient than others,
although under distress, as a result of some institutional characteristics.

As we acknowledge that we will never be able to expunge uncer-
tainty and informative asymmetries from our horizon, we can instead
reduce our disadvantage after using all the information at our disposal
with iterative statistical learning methods. After we apply a BART-MIA
on a sample of 304,906 Italian firms in the period 2008-2017, we show
how it outperforms previous proxy models (i.e., Z-score and distance-to-
default), standard econometric methods (i.e., a logistic regression), and
also other machine learning techniques (i.e., Classification and Regres-
sion Tree, Random Forest, Super Learner) in predicting firms’ failures.
From our point of view, Italy is an interesting case as a country that has
been shown to host an important share of non-viable and less productive
firms that hamper the growth potential of the economy (Andrews et al.,
2017; Calligaris et al., 2016; McGowan et al., 2018). Eventually, we end
up with a probabilistic measure for the financial healthiness of a firm,
which can be used to assess a firm’s credit risk. The higher the value of
the probabilistic measure the less viable the firm is on the market.

Among indicators that better forecast failure, we find the firm-level
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ratio between interest payments and cash flow, proposed as a financial
constraint indicator by Nickell and Nicolitsas (1999), but also the in-
terest coverage ratio, a negative value added, a size-age indicator pro-
posed by Hadlock and Pierce (2010), a profitability indicator (Schivardi
et al., 2017), a benchmark difference with firm-level interest payments
(Caballero et al., 2008; McGowan et al., 2018), the liquidity and solvency
ratios. Yet, we underline how no single indicator can be separated from
the entire battery to predict failure, because each taken alone ends up
with a higher rate of false positives, when the test wrongly indicates that
a firm is at a high risk of failure, or a higher rate of false negatives, when
the test wrongly indicates that a firm is viable.

From our point of view, the empirical problem of assessing if a firm
is a zombie is strictly related to the problem of assessing its credit risk
and its resilience to bankruptcy. In either case, a company has private
information on the actual viability of its investment projects that is not
disclosed to the financial institution or, more in general, to an analyst
that may want to understand how much of a portion of an economy is in
trouble. In either case, such a private information may be only in part ob-
served from financial accounts. In the end, we argue that a zombie firm is
a non-viable firm that is able to escape failure thanks to external financial
resources despite its inability to repay debts. In other words, zombies are
firms that have the highest risk of failure but they do not fail thanks to ex-
ternal financing. Interestingly, most of the indicators that we have found
to be good predictors of failure have also been used to spot zombies, each
of them in a different framework. Recent OECD studies (Andrews et al.,
2017) estimate that so-called zombies represent a non-negligible and in-
creasing share of many economies in a range between 2% and 10% of
incumbent firms in year 2013, and they absorb up to 15%, 19% and 28%
of the capital stock in countries like Spain, Italy and Greece, respectively.
Eventually, in some economic environments more than in others, market
selection processes seem not be working properly for a variety of reasons,
and spotting non-viable firms could be especially useful for avoiding a
waste of economic and financial resources. In this contribution, we set a
working threshold of high risk of failure over the 9th decile and assume
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that a zombie is a firm that persists in such a high risk status. In the Ital-
ian case, we find that the share of zombies falls in a range between 2.5%
and 4.5%. Interestingly, we also find that the share of zombies is counter-
cyclical, because it increases during the financial crisis after 2008, but it
decreases again after the economic recovery started.

We finally argue that spotting non-viable firms is important not only
for financial institutions, but it is also of more general interest to the pol-
icy maker, as for example when she has to design optimal bankruptcy
laws2. An empirical method that tracks a firm’s risk of failure allows
all stakeholders, not only creditors, to understand whether there is a
chance for restructuring and, if not, to prevent that additional economic
resources are wasted by incumbent albeit non-viable firms.

The rest of the Chapter is organized as follows. In Section 1, we in-
troduce our empirical strategy for the identification of a firm-level risk
of failures, and how it relates to the phenomenon of zombies. In Section
2, we introduce a novel indicator to spot zombie firms and we develop a
methodology to assess which are the best predictors of zombies. In Section
3, we introduce our data and we provide some preliminary evidence. In
Section 4, we discuss our predictions and related sensitivity checks. Sec-
tion 5 concludes the Chapter with a discussion of potential applications
and future work.

1 Empirical strategy

Spotting a non-viable firm is difficult for obvious reasons. If financial ac-
counts are bad, one could always argue that it is just a matter of time
because the firm will become more competitive in the next future, given
the right conditions. If financial accounts are good, one could argue that
the worst has yet to come and bad management choices will show up
only later, given the right conditions. Trivially, only firms that are al-
ready bankrupt were certainly non-viable at some point, but an external

2See for example the European Directive 2012/30/UE and the recent Italian Law on
business failures on October 19th 2017, n. 155 that laid the legal foundations for early sig-
naling of firm’s crises to enhance targeted interventions.
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observer will never know ex ante, because a manager of a firm in trouble
does not share her private information. This is the typical twin problem
of a financial institution that faces uncertainty in presence of informative
asymmetries. On one hand, the company under financial assessment has
an obvious information advantage on its investment plans. On the other
hand, both the financial institution and the company itself have a limited
power in predicting future economic shocks that will have either positive
or negative impacts on financial accounts. In this context, we propose a
machine learning framework that uses past information about already
failed firms to assess what the probability is that another firm in a sim-
ilar condition will go bankrupt3. The wider the set and variety of past
experiences on which we can rely, the more precise the prediction on the
healthiness, or lack thereof, of a firm (Kleinberg et al., 2015). Ultimately,
ours is a perspective on the (lack of) resilience of a firm potentially us-
ing all the observables that could possibly hold a piece of information on
the viability of a firm. We end up with a firm-level probabilistic measure
bounded between 0 and 1 that tells us what is a chance that a firm exits
from the market in the next period since other firms in similar conditions
did. Importantly, we are not concerned about the identification of the
drivers of failures because ours is a pure prediction problem. Nonethe-
less, we do provide a methodology to assess a list of best predictors of
which firm is zombie (accordingly to our working definition), possibly
changing over time, which is not the same as finding the causes of fail-
ure. In fact, we show and discuss how predictors of failures can change
over time and in different economic environments.

Finally, we discuss how the identification of zombie firms (Bank of Eng-
land, 2013; Bank of Korea, 2013; Caballero et al., 2008; McGowan et al.,
2018; Schivardi et al., 2017) can be usefully framed following the same
prediction problem, hence providing an empirical definition of zombies

3Previous exercises to predict firms’ failures from financial accounts have been tried in
data science literature in absence of a clear economic framework. In this regard, Bargagli-
Stoffi, Niederreiter, et al. (2020), provide an extensive overview of the recent data science
literature related to the usage of machine learning for firm dynamics. The prediction power
of our framework outperforms those exercises, as they are confined in a range 85% to 93%
of Area Under the Curve (AUC)
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as persisting in a status of high risk of failure. In the following analyses,
we set a working threshold of high risk above the 9th decile of the distri-
bution of fitted values, therefore we consider persistence when the firm
outlives the market for at least three years without any sign of financial
recovery.

1.1 Predictions of failures

Let us consider a generic prediction f̂ in the form:

f̂(Xit−1) = P̂ (Yit = 1 |Xit−1 = xi), (4.1)

where Yit is the binary variable that assumes value 1 if the ith firm fails at
time t and zero otherwise, while Xit−1 is a matrix of firm-level predictors
taken at time t− 1. The functional form that links predictors to outcomes
is determined by the generic supervised machine learning technique that
will predict well out-of-sample. Briefly, the generic algorithm will pick
the best in-sample loss-minimizing function in the form introduced in
the Introduction section of the present Dissertation:

argmin

N∑
i=1

L(f(xi), yi) over f(·) ∈ F s. t. R
(
f(·)

)
≤ c, (4.2)

where F is a function class from where to pick f(·), and R
(
f(·)

)
is the

generic regularizer that summarizes the complexity of f(·). In our case,
the function f(·) is an element of the family of classification trees, or a
combination thereof. The set of regularizers, R’s, will change following
the standards adopted by each algorithm. Eventually, any algorithm we
use shall take a loss function L(ŷ, y) as an input and look for the function
that minimizes prediction losses4.

4In general, any tree |T| is built on if-then statements that split the dataset according
to the observed value of the predictors, allowing for non-linear relationships between the
predictors and the outcome. Hence, the generic algorithm for the construction of a tree,
T, is based on a top-down approach that continues to split the main sample into non-
overlapping sub-samples (i.e. the nodes and the leaves). Then, the tree is pruned iteratively
with a generic regularizer R to improve its predictive ability and avoid data overfitting,
when trees become too deep over many layers. For a general reference, see Breiman et al.
(1984).
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Eventually, given new out-of-sample information, we can derive a
prediction for the failure of any firm based on the set of its up-to-date
financial accounts, both in the case of incumbent firms that already oper-
ated in the previous periods and in the case of firms entering into the
market for the first time. From another perspective, we interpret this
probability range as a degree of risk by an investor that does not have
any other information than what is included in the actual financial ac-
counts.

In following analyses, we consider as a baseline the BART - Bayesian
Additive Regression Tree (Chipman et al., 2010). More specifically, we
adopt a variant (BART-MIA) that is robust to non-random patterns of
missing values in financial accounts to predict firms’ failures (Kapelner
& Bleich, 2015).

In general as we saw in Chapter 1, the BART (Chipman et al., 2010)
is an ensemble method based on the aggregation of different indepen-
dent trees and three regularizing priors designed to prevent overfitting.
BART-MIA extends the original BART algorithm by incorporating addi-
tional information coming from patterns of missing values (Kapelner &
Bleich, 2015). This is done by introducing, in each binary-tree component
of the BART algorithm, the possibility to split on a missingness feature.
As shown by Twala et al. (2008), such a splitting-rule allows trees to bet-
ter capture the direct influence of missing values as a further predictor
of the response variable. Indeed, in our framework, we can assume that
patterns of missing values are not at random, or at least not completely
at random, when firms are financially distressed. In other words, at least
a few firms can try and hide private information by not reporting finan-
cial accounts, especially when they are in trouble. This is particularly
true when some accounts are not legally binding. In this case, naı̈vely
trimming the missing observations would introduce a sample selection
bias in the data, i.e. we could more likely exclude from our analyses
some firms that are financially distressed. Neither standard imputation
techniques (e.g., conditional median imputation, Bayesian imputation)
would solve such a sample selection problem, as far as they are based on
the use of in-sample information. Usefully, the BART-MIA creates a new
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label when the values of a certain firm-level financial account is missing
and it tests the new label as an additional predictor for a firm’s failure.

1.2 Robustness checks

We compare baseline predictions from BART-MIA with other com-
monly used machine learning techniques: the Conditional Inference Tree
(Hothorn et al., 2006), the Random Forest (Breiman, 2001), and the Super
Learner (Van der Laan et al., 2007). Moreover, machine learning predic-
tions are compared with a standard logistic regression model, as a bench-
mark for classical econometric techniques. Finally, we contrast our pre-
dictions with Z-scores and proxy models obtained from Altman (1968)
and Merton (1974), respectively. The Conditional Inference Tree Hothorn
et al. (2006), that we apply is a simple variant of the Classification and
Regression Tree (CART) algorithm (Breiman et al., 1984) based on a sig-
nificance test procedure that avoids a bias towards categorical predictors
(see Odén, Wedel, et al. (1975)). Conditional Inference Trees are binary
trees constructed by splitting a node into two child nodes recursively.
Starting from a a root node including the whole learning sample, it pro-
ceeds by splitting until some final nodes called leaves. The possible reg-
ularizers, R

(
f(·)

)
, for any binary tree algorithm are multiple (e.g., depth

of the tree, number of nodes, minimal leaf size, information gain at each
split) and they are all aimed at penalizing deeper trees. Deeper, more
complex, trees need to be regularized as they tend to overfit the training
data. Less deep, hence less complex, trees show a lower performance on
the training sample, but they are more generalizable. The optimal level of
complexity is usually chosen by cross-validation. In a nutshell, the idea
behind cross-validation is to train and test the algorithm on multiple in-
dependent subsamples in order to choose the level of complexity asso-
ciated with the best performance on the training sample (out-of-sample
performance).

The Random Forest is yet another ensemble method that aggregates
different trees to get to a stronger predictive power. Each tree is con-
structed by randomly picking different variables among all the possible
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predictors and randomly selecting a subset of the total number of obser-
vations (see also Breiman (2001)). Random Forests are linear combina-
tions of multiple and fully grown CARTs. The regularization parameters
of the Random Forest include the number of trees, the level of complex-
ity, the number of variables and the observations used to build each tree.
Finally, we compare with the Super Learner (Van der Laan et al., 2007),
whose intuition is to combine some candidate algorithms, called learn-
ers, to create a new prediction algorithm that shall outperform the single
learners as it is based on a weighted combination of single-learners’ pre-
dictions. Van der Laan et al. (2007) show how the estimated loss function
of the super learner is at least as large as the best basic learner. For our
purposes, the Super Learner we build is a convex combination of a lo-
gistic regression model, a Conditional Interference Tree and a Random
Forest. Hence, the regularization parameters for the Super Learner are
both the ensemble weights and the individual regularization parameters
(hyper-parameters) of both the Conditional Inference Tree and the Ran-
dom Forest.

1.3 Sensitivity checks

We perform a sensitivity analysis for the baseline predictions obtained
from the BART-MIA algorithm based on the methodology introduced in
Chapter 3 and developed by Bargagli-Stoffi, De Beckker, et al. (2020). We
want to make sure that predictions are not sensitive to the inclusion of an
unobserved predictor that we can assume is orthogonal to already used
predictors but possibly highly correlated with the outcome, i.e. the firms’
failures. For our scope, we can generate a synthetic predictor, i.e. a possi-
ble confounder Qi, whose correlation with the outcome is as high as the
one of the best observed predictor, but not significantly correlated with
any of the other predictors. Hence, we can check how its inclusion affects
unit level predictions. If the differences in the unit level predictions be-
tween the original model and the augmented model are not significant,
then the original model already captures most of the signal in the data.
Results are reported in Section 4.
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2 A case for ’zombie firms’

Apparently, the problem of assessing which firms are in trouble could
seem trivial because, according to basic economic theory, competitive
markets should do their work and let non-profitable firms succumb.
Therefore, in absence of market failures, non-viable firms are simply the
ones that go bankrupt. Originally, the notion of zombie firms related to
the phenomenon of zombie lending, when banks keep credit flowing to
otherwise insolvent borrowers. Sometimes, zombie lending has been a de-
liberate strategy to avoid budget restructuring, while only apparently
comply with capital standards set by financial regulations, as it was the
case of Japanese banks in the 1990s (Caballero et al., 2008; Peek & Rosen-
gren, 2005). More recently, Schivardi et al. (2017) study the Italian firms
during the financial crisis and they find that credit misallocation after
zombie lending increases the failure rate of healthy firms while reducing
the failure rate of non-viable firms. The reason is that under-capitalized
banks can decide to cut credit to more viable projects to avoid a public
disclosure of non-performing loans in their portfolio. Paradoxically, in
times of financial crises, zombies may be relatively more resilient thanks
to a continuous access to financial resources.

But what is exactly a zombie firm? There is no consensus on the exact
meaning of the zombie attribute beyond its evocative power. In the ab-
sence of a clearer guidance from theory, previous scholars just adopt dif-
ferent working thresholds based on the proxy assessment of one or more
available financial indicators. Ideally, one should consider firms’ com-
petitiveness and financial constraints in a dynamic perspective, having
in mind the entire horizon of future events. After considering all future
threats and opportunities, and how they mirror on the flows of firm-level
profits and financial resources, one would obtain the theoretical identifi-
cation of zombie firms. In absence of the latter, the empirical identification
is left to the creativity of the scholars. The seminal work by Caballero et
al. (2008) defines zombies as some firms that receive subsidies under the
form of bank credit after observing how present interest payments com-
pare to an estimated benchmark of debt structure and market interest
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rates. On the other hand, McGowan et al. (2018) assume that zombies are
old firms that have persistent problems meeting their interest payments,
although the policy discussion is then centered on the macroeconomic
impact of low-productivity firms. Bank of Korea (2013) specifically looks
at the interest coverage ratio being lower than one over a span of three
years. Bank of England (2013) explicitly overlooks financial management
and considers firms that have both negative profits and negative value
added, hence focusing on the core activity of a company.

According to us, the direction of previous empirical works is clear:
one wants to deduce from actual financial accounts the ‘viability’ of com-
panies. If they do not seem in good shape now, the firm will likely be
in troubles in the next future. After that, one may be interested in esti-
mating the aggregate impact that non-viable firms have on the overall
welfare, while others may focus on the specific misallocation of financial
resources, as in the case of credit scoring.

From our point of view, the empirical identification of zombie firms is
a perfect case study for the application of machine learning techniques
to firm-level data. In fact, we must acknowledge that any chosen present
firm-level indicator, or set thereof, aimed at the identification of zombies
is by nature imperfect.

We propose a working definition based on the predictions of firms’
failures. Conventionally, we assume that zombies are firms that persist in
a high risk of failure for three consecutive years. We believe that setting
a working threshold of high risk above 90% realistically allows encom-
passing most difficult situations. That is, we consider the deciles along
the predictions f̂(Xit−1), where each qj,t is the threshold for the jth decile
of failing probability at time t:

Qj,t =

{
1 if f̂(Xit−1) ≥ qj,t ∩ Yit 6= 1,

0 otherwise,

where Yit 6= 1 indicates that firm i did not fail at time t. Since there is
no consensus about the most appropriate threshold to be used, in Ap-
pendix 6, we show the results that one would obtain by choosing a less
conservative threshold.
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As we plot in Figure 34, the idea is that we can assess the distance
of each firm from the highest financial distress, which we conventionally
may assume in red above the 9th decile. In fact, following analyses will
show that the highest decile is the segment of the risk distribution after
which it is very difficult to transit back to lower distress.

Figure 34: Fictional distribution of failure’s probability

In general, we can say that, based on the information we observe, a
firm in good shape does not easily shift into financial distress, but when it
does it is difficult to get out of it. Against this evidence, it makes sense for
us to set a working threshold at the 9th decile, as we realistically would
encompass most difficult situations of the business life. In Table 21, we
report a transition matrix for the firms that did not fail, based on elab-
orations over the entire period of analyses in 2008-2017. In Figure 35,
we also visualize a Sankey plot using the same information (Kennedy
& Sankey, 1898). We observe that firms that our predictions locate be-
yond the 9th decile in a representative year t do not have a high chance
to improve in t + 1. See also the constant trends we report in Figure 36.
The bars of the graph indicate the transition of zombie firms in the years
following predictions: i) to failure (bright red); ii) to a relatively lower
distress (dark grey); iii) to a permanence in a zombie status. Negligible
and non-visible is the share of firms that transit to an area of no distress
(bright grey), below the median prediction. Please note that we cannot
report year 2017, as we cannot compare with actual observations in fol-
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Table 21: Transitions across deciles of risk

t / t+ 1 9th decile t+ 1 8th decile t+ 1 7th decile t+ 1 6th decile t+ 1 Below 6th decile t+ 1 Total t+ 1

9th decile t 0.64 0.24 0.07 0.02 0.03 1.00
8th decile t 0.22 0.39 0.21 0.06 0.12 1.00
7th decile t 0.08 0.20 0.28 0.23 0.21 1.00
6th decile t 0.04 0.08 0.23 0.30 0.35 1.00

Below 6th decile t 0.01 0.02 0.03 0.06 0.88 1.00

Figure 35: Transitions across deciles of risk: a visualization

t t+1

9th decile 9th decile

8th decile 8th decile

7th decile 7th decile

6th decile 6th decile

Below 6th decile Below 6th decile

lowing years. The greatest majority of them (64%) gets stuck in the same
highest-risk category, 24% transit to the 8th decile, and only 12% are able
to recover and reach a more reasonable level of financial distress. Inter-
estingly, the 9th decile is quite difficult to reach from the bottom of the
distribution, as only 8%, 4% and 1% of firms that are below the 8th, 7th
and 6th decile, respectively, are observed to transit to a situation of high-
est distress. Moreover, about 88% of company stay below the 6th decile
in the entire period of analysis.

We believe that a period of at least three years allows discounting
some firms’ break-even strategies, hence reducing the share of false pos-
itives in the zombie status. Hence, we define zombie firms those firms that
persist for at least three years beyond the 9th decile of the risk distribu-
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tions:

1(
3∑
t=1

Qj,t = 3) (4.3)

where the risk distributions are the ones that we estimate based on the
BART-MIA algorithm. We argue that if a firm is just temporarily under
distress, because it is waiting for a break-even after some new investment
choices, we should however observe a progressive decrease in the esti-
mated probability of failure over a relatively short span of time, when
financial accounts start improving. For a similar reason, we propose to
exclude from the perimeter of zombies all start-ups for three years, i.e.
considering they need some time to reach their break-even.

Figure 36: Transitions after predictions of a zombie status

Of course, ours is just a working definition that can be refined in dif-
ferent contexts, while moving along the predictions of failures. In gen-
eral, however, we argue that our framework improves on previous at-
tempts to define the viability of a firm based on single indicators, be-
cause it reduces the error margin while providing an entire ranking of
possibilities, given our probabilistic measure, rather than an in-or-out bi-
nary forecast.
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2.1 Predictors of zombies

In this section, we propose to perform a LOGIT-LASSO (Ahrens et al.,
2019) to spot a list of best predictors in a zombie status. The functional
form in a panel setting is the following:

β∈Rp
1

2N

N∑
i=1

(
yit(x

T
it−1β)− log(1 + e(x

T
it−1β))

)2
subject to ‖β‖1 ≤ k (4.4)

where yit is a binary variable equal to one if a firm i had been fallen
above the 9th decile of high risk for at least three years until it is observed
at time t, while it is zero otherwise. Any xit−1 is a lagged predictor cho-
sen in Rp at time t − 1, whereas ‖β‖1 =

∑p
j=1 |βj | and k > 0. The con-

straint ‖β‖1 ≤ k limits the complexity of the model to avoid overfitting,
and k is chosen, following Ahrens et al. (2019), as the value that max-
imises the Extended Bayesian Information Criteria (Chen & Chen, 2008).
To account for the potential presence of heteroskedastic, non-Gaussian
and cluster-dependent errors we adopt the rigorous penalization origi-
nally introduced by Belloni, Chernozhukov, and Wei (2016).

Finally, we run a logistic regression with year and sector fixed effects
to assess the statistical association between the set of best predictors se-
lected in the previous LOGIT-LASSO and the zombie status:

β̂post = β∈Rp
1

2N

N∑
i=1

(
yit(

T+1∑
t=1

αtBit +

S∑
s=1

δsWsit + xTit−1β)

− log(1 + e(
∑T+1
t=1 αtBit+

∑S
s=1 δsWsit+x

T
it−1β))

)2

(4.5)

subject to βj = 0 if β̃j = 0,

where β̃j is a predictor from (4.4),Bit andWsit are sets of time and sector
dummy variables that allow controlling for variables that are constant
across entities but vary over time, on one hand, and for factors that differ
across sectors but are constant over time, on the other hand. We empha-
size once again how our entire strategy, including the latter stage, is not
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intended to identify drivers of failures, since ours is a pure prediction
problem. Yet, the identification of a list of best predictors allows us un-
derlying how different indicators may contribute with different pieces of
information. Eventually, the list of predictors can change over time and
in different economic environments, as we will show in the case of Italy.

3 Data and preliminary evidence

We source financial accounts from the Orbis database5, compiled by Bu-
reau Van Dijk, for manufacturing firms active in Italy at least one year
in the period 2008-2017. First of all, we exploit two main variables that
help identifying firms’ failures: the status of a firm and the date in which
it becomes inactive. Table 22 depicts our sample coverage by status in
the period of analysis. We assume that a company failed in the first year
when it is reported as being “Bankrupted”, “Dissolved”, or “In Liqui-
dation”. Altogether, the share of exiting firms in our sample constitutes
about 5.7% of the entire sample, which is a figure not too far from the
average official figure (6.3%) indicated by ISTAT, the national statistics
office, in the same period. Figure 37 maps the firms’ failures by NUTS
3-digit regions in logarithmic scale. As expected, we find a concentration
of failures in metropolitan regions but full representativeness of the en-
tire Italian territory, as we detect failures in any region in our period of
analysis.

Table 22: Firms by status

Status Active Bankrupted Dissolved In Liquidation Total

Sample 287,586 1,533 8,540 7,221 304,906
Percentage 94.33% 0.50% 2.80% 2.37% 100%

5Orbis firm-level data have become a common source for world financial accounts. See
for example, Gopinath et al. (2017) and Gal (2013). Coverage of smaller firms and some
balance sheet information can change from country to country (Kalemli-Ozcan et al., 2015),
according to filing requirements by national business registries. Moreover, disclosure of
specific financial accounts can change according to different national regulations.
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Figure 37: Geographic Coverage

Note: all regions are covered in our sample.

Additionally, we exploit a battery of economic and financial indica-
tors to train our predictive models. The battery includes: i) original firm-
level financial accounts; ii) indicators that have been adopted in previ-
ous literature to proxy firm-level financial constraints; iii) indicators that
have been used so far to spot zombie firms; iv) indicators that are adopted
as an alert on firms’ crises in the recent Italian bankruptcy law6. Any
predictor we consider is described in detail in Table 23.

Please note how many of the indicators that we pick as predictors
have been used in very different frameworks to assess how much a
firm is in trouble. From our perspective, they cannot be interpreted as a
drivers of failure. It is enough if they contribute with an albeit small piece

6A recent reform of the bankruptcy law (L. 155/2017 and DL 14/2019) proposes an early
warning system based on indicators proposed by practitioners. The purpose is to spot firms
that are in trouble before it is too late, preserving entrepreneurial abilities and finding a way
out of the crisis.
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Table 23: Panel (A): List of predictors for firms’ failures.

Variables Description

Operating Revenues, Material
Costs, Costs of Employees,
Added Value, Taxation, Tax and
Pensions’ Payables, Financial
Revenues, Financial Expenses,
Interest Payments, Number of
Employees, Net Income, Cash
Flow, EBITDA (Earnings before
interest, Taxation, Depreciation
and Amortization), Total
Assets, Fixed Assets, Current
Assets, Shareholders’ Funds,
Retained Earnings, Long-Term
Debt, Loans, Current liabilities

Original firm-level financial accounts expressed in
euro.

Corporate control (Control) A binary variable equal to one if a firm belongs to a
corporate group.

Number of patents The stock of patents granted to a firm by a patent
office.

Number of trademarks The total number of trademarks issued to the firm
by national or international trademark offices

Consolidated accounts A binary variable equal to one if the firm
consolidates accounts of its subsidiaries

NACE rev. 2 A 4-digit industry of affiliations for each firm,
following European classification NACE rev. 2.

Liquidity ratio (Current assets - Stocks) / Current liabilities
Solvency ratio (Shareholders funds / (Non current liabilities +

Current liabilities)) * 100
Capital Intensity (CI) It is a ratio between the fixed assets and the number

of employees.
Labour productivity It is a ratio of added value over the number of

employees.
Enterprise Value (Listed
companies only)

It is a synthetic value sourced from the original
Orbis database for each listed company, and it is
calculated considering other 10 comparable listed
companies in terms of Market Capitalization,
Minority Interest, Preferred shares, Long Term debt,
Loans, Other short term debt, Cash.

Interest Coverage Ratio (ICR) It is calculated following the forumula
ICR = EBIT

Interest Expenses
. It considered an

indicator of zombies when it is less than one for three
consecutive years by Bank of Korea (2013) and
McGowan et al. (2018).
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Panel (B): List of predictors for firms’ failures.

Variables Description

Financial Misallocation (FM) It is a binary indicator adopted by Schivardi, Sette
and Tabellini (2017) for catching zombie lending,

based on both ROA
1
3

∑3
t=1 EBITDAt
Total Assets

< prime

and Leverage = Financial Debt
Total Assets

> L̃, where prime
is the measure of the cost of capital for firms with
Z-score equal to 1 or 2, and where L̃ is the median
value of leverage in the current year for firms that
exited in two following years.

TFP It is the Total factor productivity of a firm computed
as in Ackerberg et al. (2015)

Financial Constraint Indicator
(FCI)

It is a proxy of financial constraints as in Nickell and
Nicolitsas (1999), calculated as a ratio between
interest payments and cash flow

Productive Capacity it is an indicator of investment in productive
capacity computed as (fixed assets in t/ (fixed assets
in t-1 + depreciation in t-1))

Negative Added Value It is a binary variable adopted by Bank of Korea
(2013) for zombie firms equal to one when added
value is less than zero.

Size-Age It is a synthetic indicator proposed by Hadlock and
Pierce (2010), equal to −0.737 ∗ log(totalassets) +
0.043 ∗ log(totalassets))2 − 0.040 ∗ age.

Profitability It is the Profitability indicator by Schivardi et al.
(2017)

Financial sustainability It is a ratio of financial expenses over revenues
Capital Adequacy Ratio It is the ratio of shareholders’ funds over the sum of

short and long term debt
Liquidity Returns (LR) It is the ratio of cash flow over total assets
Tax and Pension Payables It is the ratio of the sum of tax and pension payables

over total assets.
Interest Benchmarking (BID) It is a zombie proxy proposed by Caballero et al.

(2008) calculated as R∗ = rst−1BSit−1 +
( 1
5

∑5
j=1 rlt−j)BLit−1 + rcb5y,t ·Bondsit−1,

where BSit−1 are short-term bank loans, BLit−1

are long-term bank loans, rst−1 are the average
short-term prime rate in year t, rlt−j are the
average long-term prime rate in year t, Bonds are
the total outstanding bonds, rcb5y,t is the minimum
observed rate on any convertible corporate bond
issued over the previous 5 years.
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of information on the healthiness of a firm. In our prediction framework,
they could even border on multicollinearity, as for example in the case of
different measures of efficiency, when we include both Total Factor Pro-
ductivity and labor productivity. As far as we are not interested in the
identification of the single contribution made by each predictor to the
outcome, multicollinearity will not affect the ability of a model to predict
the outcome (Makridakis et al., 2008; Shmueli, 2010; Vaughan & Berry,
2005). Interestingly, in Figure 38 we visualize a map of the ensemble of
the predictors to bring out patterns of missing values in brighter colors.
We register that some predictors are relatively more missing than others.
After we run a series of chi-squared tests, we do find that there is a sta-
tistical association between observed patterns of missing values and the
event of a firm failure. The results from these test are reported in Table
22.

For our analysis, the main issue is sample selection, when observa-
tions are selectively missing for some categories of firms, potentially
introducing a bias on the identification of non-viable firms. Obviously,
smaller firms are often exempted from full financial reporting, espe-
cially when they are not quoted at the stock exchange. In fact, smaller
firms may also be the ones that suffer relatively more from financial con-
straints, hence they are more likely distressed in times of crisis. On the
other hand, firms of any size more likely avoid disclosing negative out-
comes when in distress. The application of a BART-MIA procedure, as
described in Kapelner and Bleich (2015) allows us considering the pat-
terns of missing values as a further predictor of the outcome in following
analyses.

The missingness analyses reported above are particularly relevant for
the scope of this Chapter. The main issue is sample selection when obser-
vations are selectively missing for some categories of firms. In this case,
we have two potential sources of sample selection bias: i) firms in dis-
tress vis à vis firms not in distress, because the first can have an incentive
to disclose less information than the latter; ii) smaller firms vis à vis bigger
firms because the first are often exempted from a full financial report, ac-
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Figure 38: Missing values from a sample of 10,000 observations in the period
2008-2016

Panel (A): Missingness patterns for the “raw variables”

Panel (B): Missingness patterns for the indicators built using the “raw vari-
ables”.
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Table 22: Missingness tests by status

Firm’s failure
0 1 Test Statistic

N = 287587 N = 17319

BID : 0 38% (110524) 61% ( 10530) χ2
1=3414.25, P<0.001

BID : 1 62% (177063) 39% ( 6789)

ICR : 0 37% (105907) 49% ( 8422) χ2
1=970.93, P<0.001

ICR : 1 63% (181680) 51% ( 8897)

Negative AV : 0 34% ( 98014) 63% ( 10915) χ2
1=5958.81, P<0.001

Negative AV : 1 66% (189573) 37% ( 6404)

FCI : 0 37% (105904) 49% ( 8419) χ2
1=968.27, P<0.001

FCI : 1 63% (181683) 51% ( 8900)

FM : 0 39% (112560) 54% ( 9276) χ2
1=1415.82, P<0.001

FM : 1 61% (175027) 46% ( 8043)

TFP : 0 36% (104345) 38% ( 6600) χ2
1=23.52, P<0.001

TFP : 1 64% (183242) 62% ( 10719)

Solvency : 0 41% (118851) 63% ( 10897) χ2
1=3115.5, P<0.001

Solvency : 1 59% (168736) 37% ( 6422)

Liquidity : 0 42% (119357) 72% ( 12543) χ2
1=6362.72, P<0.001

Liquidity : 1 58% (168230) 28% ( 4776)

Size-age : 0 42% (120260) 75% ( 12989) χ2
1=7310.19, P<0.001

Size-age : 1 58% (167327) 25% ( 4330)

LR : 0 39% (112561) 54% ( 9277) χ2
1=1416.88, P<0.001

LR : 1 61% (175026) 46% ( 8042)

Labour Product. : 0 34% ( 97253) 36% ( 6221) χ2
1=32.23, P<0.001

Labour Product. : 1 66% (190334) 64% ( 11098)

Profitability : 0 37% (105907) 49% ( 8422) χ2
1=970.93, P<0.001

Profitability : 1 63% (181680) 51% ( 8897)

Fin. sustainability : 0 41% (117294) 64% ( 11119) χ2
1=3673.94, P<0.001

Fin. sustainability : 1 59% (170293) 36% ( 6200)

Capital intensity : 0 36% (104122) 42% ( 7325) χ2
1=261.17, P<0.001

Capital intensity : 1 64% (183465) 58% ( 9994)

Note: numbers after percents are frequencies. Test used: Pearson Chi-squared test. Please
find the entire battery of test in the Online appendix.
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cording to Italian regulation 7. In fact, the two sources can overlap, since
smaller firms may also be the ones that suffer relatively more from finan-
cial distress. The application of a BART-MIA procedure, as described in
Section 1, allows us considering both sources of sample selection when
patterns of missing financial accounts emerge because the algorithm in-
cludes such patterns as a further predictor of firms’ failures.

Interestingly, as reported from panel (B) of Figure 38, the most miss-
ing variables are the ones that have been used in previous works as prox-
ies for zombies. Take for example the case of the Interest Coverage Ratio
(ICR), derived as a ratio between the earnings before interest and taxes
(EBIT) and the interest expenses. When ICR is lower than one, Bank of
England (2013) assumes that a firm is a zombie since it has problems in
meeting financial obligations. In our sample, we find that about 19%
of firms have an ICR smaller than one but, at the same time, there are
62.50% firms whose information on ICR is not present at all. Further,
according to (Bank of Korea, 2013), a negative value added is the most
appropriate proxy for assessing a zombie status, since in this case the
value of intermediate inputs is higher than the value of the output re-
alized on the market. In the case of Italy, about 64.27% of companies do
not report any value in the sample, while about 3% of them reports a
negative figure. Clearly, negative value added is a stricter condition than
negative profits, as a firm can have no profits without destroying eco-
nomic value. Indeed, firms’ profitability is at the core of two very similar
proxies of zombies adopted by Schivardi et al. (2017), when they com-
pare firm-level profits with a fixed benchmark. Reproducing the same
exercises, we would find about 3% of firms are in trouble, while a large
amount of firms (62.50%) does no report any information at all. Finally,
Caballero et al. (2008) and McGowan et al. (2018) adopt an interest bench-
mark to compare the interest paid by a firm to obtain financial resources

7Following Italian civil law, companies that do not quote financial activities on the stock
exchange have the possibility to present more aggregate financial accounts when their size
does not exceed simultaneously two of the following thresholds, for one or two consecutive
periods: i) 4,400,000 euro of total assets; ii) 8,800,000 euro of operating revenues; iii) 50
employees. A limited financial statement always includes main items at the first or second
digit of aggregation.
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and some reference on the cost opportunity to invest the resources in
alternative safer assets. For example, when we take as benchmark the
yields on state-issued bonds with a maturity of ten years (European Cen-
tral Bank), we find that up to 42% of sample firms do pay higher inter-
ests, although 60.29% of firms do not report any information. Finally, we
include as a predictor of a firm’s failure also an estimate of Total Fac-
tor Productivity (TFP), following the methodology proposed by Acker-
berg et al. (2015), which takes into account the simultaneity bias deriving
from ex-post adjustments in the combination of factors of production. In
this regard, firm-level TFPs allow us considering the ability to transform
factors of production and sell on the market. We may assume that less
productive firms are also the ones that may encounter more financial
constraints.

4 Results

In this Section, we report the results of our analysis. Subsection 4.1 de-
picts and discusses the results of the proposed machine learning method-
ology as compared to (i) standard econometric techniques, (ii) other
state-of-the-art machine learning algorithms and, (iii) financial indicators
such as Z-score Altman (1968) and Distance-to-Default Merton (1974). Fi-
nally, subsection 4.2 displays the results for the analysis of zombie mea-
sures which have been used so far and their validation.

4.1 The performance of our preferred ML method

Since our zombie indicator is built on the ability of the algorithm to prop-
erly predict firm level probability of failures, it is central to validate dif-
ferent algorithms and indicators performance in this task. Here, we com-
pare the predictions of different techniques on which firms should or
should not fail with the observed firms statuses.

Before getting in the nuts and bolts of the performance of the pro-
posed BART-MIA algorithm (and how it compares to other methodolo-
gies used to assess firm’s financial distress), let us briefly discuss a pecu-
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liarity of our data: the unbalanced distribution of the outcome. Indeed,
as shown in 22, the largest part of the firms (94.3%) do not exit the mar-
ket in the time span of our analysis (zero inflated distribution). What is
the problem with dealing with such an unbalanced setting? Take as an
example a methodology that would predict all the firms in our dataset
to be failed. Obviously, such a methodology would be totally uninfor-
mative, but it still would get an accuracy measure (correctly classified
observations over total observations) of 94.3%.

In order to deal with unbalanced output variables, different meth-
ods have been proposed. The two that are most widely used by scholars
and practitioners are either under-sampling observations for the label that
accounts for the largest majority of observations, or over-sampling obser-
vations for the other label (Gruszczyński, 2019; L. Zhou, 2013). We argue
that both these methodology would be sub-optimal in our setting. In-
deed, as we deal with a scenario where the missingness pattern in the
predictors are potentially informative, under-sampling the failed firms
would artificially induce a higher association between the missing obser-
vations and the outcome, while over-sampling would induce the oppo-
site effect. Hence, we do not use these methodology, but we accommo-
date for the unbalanced outcome data by using performance measures
that account for such settings. In this way, we use all the information
in our dataset without artificially introducing any bias in the data. In
particular, the main goodness-of-fit measures that we employ are the F1-
score (Van Rijsbergen, 1979), the Balanced ACCuracy (BACC) and the
area under the Precision-Recall curve (PR)8. These three goodness-of-fit
measures account, in different ways, for unbalanced outcomes. In addi-
tion, we compare them with performance measures that do not adjust
for unbalanced outcomes such as the Area Under the receiver operating
characteristic Curve (AUC, Hanley and McNeil (1982)) and the adjusted
R2.

Table 23 depicts the comparative results of BART-MIA, logistic re-
gression (logit), conditional inference tree (Ctree), random forest and su-
per learner. The results are obtained through a standard two folds cross-

8For a detailed description of these performance measures we refer to Fawcett (2006).
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Table 23: Machine learning techniques and out-of-sample prediction accu-
racy

Models’ Horse Race
Model AUC PR F1-score BACC R2 Train Obs Test Obs
Logit 0.8896 0.3576 0.2098 0.8433 0.0829 83,537 9,282
Ctree 0.8889 0.3568 0.2000 0.7804 0.0654 83,537 9,282
Random Forest 0.9050 0.4262 0.2257 0.8515 0.0922 83,537 9,282
Super Learner 0.9073 0.4311 0.2232 0.8666 0.0945 83,537 9,282
BART-MIA 0.9667 0.7484 0.6328 0.8993 0.4038 83,537 9,282

validation procedure that assigns 90% of the observations to the train-
ing sample and 10% to the test sample (Devijver & Kittler, 1982). Please
note how BART-MIA could always use a larger training sample, includ-
ing firms that report missing values on predictors. This is an additional
advantage of our baseline methodology. However, for sake of compari-
son, all methodologies in Table 23 have been trained on the same subset
of roughly 84,000 observations for the training and 9,000 for the testing,
without considering missing values9.

BART-MIA outperforms a standard econometric technique such as
logistic regression, and all the other machine learning techniques em-
ployed for the analysis10. In particular, the increase in the performance
of BART-MIA as compared to the super learner11 ranges between 4%

9As a robustness check, we implemented an alternative methodology in which we pre-
processed a subsample of data to impute missing values using a CART-based methodology
(Buuren & Groothuis-Oudshoorn, 2010) similar to the one proposed by T. K. White et al.
(2018). Then, we applied methods alternative to BART-MIA. Results are in line with the
ones reported in the Chapter and with previous predictive analysis on ORBIS data for Ital-
ian enterprises by Weinblat (2018). We don’t find a sensitive improvement in the prediction
performance of the alternative methods. For additional details on this robustness analysis
we refer to the online Appendix.

10Let us note that, in our scenario, a fine hyper-parameters tuning for the machine learn-
ing techniques that we are comparing to BART-MIA does not lead to any sizable increase
in the performance. This hints at the fact that any fine hyper-parameters tuning would
overturn the gap in performance between BART-MIA and all the other machine learning
methodologies.

11It is interesting to highlight that the super learner is performing better than the random
forest with respect to the accuracy, but not with respect to the F1-score. This is due to the
fact that the super learner algorithm (Van der Laan et al., 2007) is optimized in a way to find
a convex combination of learners that minimizes the accuracy of the ensemble method. In
this particular case, this strategy is not optimal as the output data are unbalanced.
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and 327%, depending on the various performance measures. These re-
sults show that the additional information coming from the missingness
patterns in the data are particularly valuable. In particular, Figure 39 pro-
vides an insight on how BART-MIA improves its performance with re-
spect to the other techniques. On the left column, we report the results
for the AUC performance measures of logit, super learner and BART-
MIA respectively. On the right column, we report the results for the PR
curve for the same techniques. Both AUC and PR are performance mea-
sure that vary between 0 and 1, where 0 indicates complete misclassifi-
cation, 1 perfect prediction. For AUC values around 0.5 indicate that the
model has the same predictive power as a random assignment. On the
one side, AUC takes into account the sensitivity/recall (true positive rate)
and the false discovery rate (how many observations where misclassified
as positives). On the other side, PR accounts for sensitivity/recall (true
positive rate) and for precision (positive predicted values: the proportions
of positive results that are true positive). Hence, while the performance
with respect to both sensitivity/recall and false positive rate are similar
(even though BART-MIA performs better than the other models), the real
boost in the performance comes from a higher precision (one can check
this by comparing Panels (B), (D) and (F) in Figure 39). This means that
BART-MIA has a higher ability to precisely predict firms that will fail
one year from now. This is central for our analysis, as our zombie indica-
tor is directly built on the ability of machine learning to correctly assess
the failure probability, assigning distressed firms to higher probability of
default.

Moreover, BART-MIA shows a higher performance than other ma-
chine learning algorithms employed for the same task on similar data
such as the ones proposed by Moscatelli et al. (2019) using Italian data
with additional unstructured information, and Weinblat (2018) using the
same ORBIS data. For a detailed analysis on how the current method
would compare with state-of-the-art machine learning methodologies
we refer to Bargagli-Stoffi, Niederreiter, et al. (2020).

On top of that, BART shows a high stability in its prediction as shown
by the sensitivity of prediction analysis. The original model is stable as the
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Figure 39: Out-of-sample goodness-of-fit
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Figure 40: Standardized differences in means
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addition of a new highly explanatory predictor is not affecting in a siz-
able way the predicted values. Figure 40, shows the standardized differ-
ences in means between the prediction of the original BART model and
the predictions of the “augmented” BART model for 50 sampled units.
One can easily see that there is no evidence of significant differences be-
tween the unit level predictions. Indeed, we find that just a negligible
percentage of unit level predictions are different as the correlation be-
tween the confounder and the outcome reaches 0.5 (higher than the best
predictor in the model). For lower correlation values, the differences are
even more negligible. Such an analysis informs us that the predictive
model that we implement is capturing enough signal from the data.

Thus far, we compared different econometric and machine learning
techniques with respect to their ability of correctly discriminating be-
tween viable and non-viable firms. Table 24 depicts the results for preci-
sion and false discovery rate of two proxy models widely used to assess
the viability of firm’s investment projects: the Z-Score (Altman, 1968) and
the distance-to-default (Merton, 1974). The results are obtained setting a
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range of thresholds ranking from the 10th to the 1st percentile, denoting
increasingly higher firm’s distress. In order to make these results compa-
rable to the ones of BART-MIA the performance measures are computed
just on the set of observations used for the test sample12. Distance-to-
default shows both a higher precision (0.2680 vs 0.1613) and a lower false
discovery rate (0.7320 vs 0.8387) as compared to the Z-score, hinting at a
higher performance of this proxy model. However, both models are out-
performed by BART-MIA whose precision and false discovery rate are
0.8278 and 0.1722, respectively.

Hence, the proposed BART-MIA methodology outperforms standard
econometric, proxy and machine learning models in capturing firms’ fi-
nancial distress. This higher ability to discriminate between viable and
non-viable firms, in particular with respect to firm’s with high failure
risk, is a strength for our definition of zombies as surviving non-startup
enterprises at high-risk of failure for three consecutive years.

Table 24: Precision and false discovery rate (FDR) of DtD and Z-score

Percentile Precision DtD FDR DtD Precision Z-score FDR Z-score
1st 0.2680 0.7320 0.1613 0.8387
2nd 0.2680 0.7320 0.1505 0.8495
3rd 0.2680 0.7320 0.1505 0.8495
4th 0.2258 0.7742 0.1371 0.8629
5th 0.2022 0.7978 0.1269 0.8731
6th 0.1759 0.8241 0.1185 0.8815
7th 0.1569 0.8431 0.1108 0.8892
8th 0.1467 0.8533 0.1036 0.8964
9th 0.1411 0.8589 0.0981 0.9019

10th 0.1313 0.8687 0.0969 0.9031

Note: these results should be compared with the ones of BART-MIA. The precision for

BART-MIA is 0.8278 (best result for precision is 1) and the false discovery rate is 0.1722

(best result for the false discovery rate is 0). Moreover the analyses are performed on the

test set.

12Comparing the performance on the training test, could artificially boost the perfor-
mance of BART-MIA.
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4.2 Which are the best zombie indicators?

In Section 2.1, we developed a method to assess which are the best finan-
cial indicators to catch the zombie phenomenon among the ones in the
literature (Bank of England, 2013; Bank of Korea, 2013; Caballero et al.,
2008; McGowan et al., 2018; Schivardi et al., 2017). In order to do so we
proposed a LASSO-based technique. Indeed, after constructing our zom-
bie indicator, we employ a LOGIT-LASSO regression to select the vari-
ables that best predict a firm being zombie and then we use the selected
variables for a post-logistic regression.

Table 25: Ranking of predictors by year (zombies 9th decile)
Rank 2017 2016 2015 2014 2013 2012 2011

1 FCI* Control* Control* FCI* FCI* FCI* FCI*
2 Control* FCI* FCI* Control* Control* LR* Control*
3 ICR* Negative AV* LR* ICR* LR* Control* LR*
4 Negative AV* Size-Age* Negative AV* Negative AV* Negative AV* Profitability* Negative AV*
5 Size-Age* LR* Size-Age* Size-Age* Profitability* Negative AV* Profitability*
6 LR ICR* Profitability* Profitability Size-Age* Solvency* Solvency*
7 Solvency* Solvency* ICR* Solvency* ICR* Size-Age* Size-Age*
8 BID Profitability* Solvency* LR* Solvency* ICR* ICR*
9 Profitability BID* BID BID TFP TFP Trademark*
10 CI CI TFP Innovation FM Innovation Innovation

Note: The ranking refers to the first ten ranked financial predictors by logit-lasso. The

ascetics indicates those variables that are selected from the rigorous logit-lasso as well.

In Table 25, we show the results for the best selected predictors by
year. The indicators that rank higher and that are more often included
are: the financial constraint indicator proposed by Nickell and Nicolitsas
(1999) (FCI), the dummy variable control that assumes value 1 if the firm
is owned by a bigger enterprise and 0 otherwise, interest coverage ratio
(Bank of Korea, 2013), followed by other zombie indicators such as neg-
ative value added (Bank of England, 2013), liquidity return, solvency and
profitability (Schivardi et al., 2017) and financial constraint indicators such
as the size-age proposed by Hadlock and Pierce (2010). However, the in-
dicator used by OECD (McGowan et al., 2018) that is reported as BID
(Benchmark Interest Difference) ranks quite low in all the years. This could
be due to the fact that the original indicator developed by Caballero et
al. (Caballero et al., 2008) is not precisely reconstructable with the ORBIS
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data13. This analysis highlights that, despite the low predictive power
of BID, all the other indicators used so far in the literature to describe
the dynamics of failure in the market of allocation of credit are fairly
good predictors of failures in the market selection mechanism. These
two dynamics that should be, in principle, very correlated seem to be,
indeed, two sides of the same coin. Moreover, there is not evidence of
a strong role of firm level productivity on the chance of being a zom-
bie. These result are made robust by running the same selection proce-
dure with a zombie indicator defined with respect to a less conservative
threshold (namely, the 8th decile), and by proposing an alternative se-
lection method. The results for these additional analyses can be find in
Appendix 6.

Table 26 depicts the results from the post-logistic regression analysis.
We find a negative association between the enterprise being controlled
and its likelihood of being zombie, while a positive association is found
with respect to the financial/zombie indicators such as size-age, FCI, ICR,
negative added value and profitability. These positive associations indi-
cate that as the financial burden increases, the likelihood of the firm being
a zombie increases as well. On the opposite side, higher solvency and liq-
uidity return are associated with a lower likelihood of the enterprise be-
ing a zombie. The same results are found when the analysis is performed
on the less conservative zombie definition (see Appendix 6 for additional
details).

Furthermore, it is important to highlight that the average out-of-
sample performance of the post-logistic regressions is higher than the
performance of the logistic regression implemented with all the predic-
tors. The adjusted R2 increases by roughly 100% (from 0.0829 to 0.1670)
while the F1-score by 115% (from 0.2098 to 0.4524). This is due to the fact
that the logistic regression performed with all the predictors overfits the
training data, and consequently has a lower out-of-sample performance.
This evidence, on one side informs us on the quality of the selection pro-
cedure, while on the other it highlights that scholars and practitioners
should rely on a selected number of good-performing indicators in order

13This limit is present both in our analysis and OECD’s paper.
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to spot zombie firms.

Table 26: Post-logistic regressions with predictors selected with rigorous
logit-lasso (zombies 9th decile)

(2017) (2016) (2015) (2014) (2013) (2012) (2011)

Control -7.394∗∗∗ -7.937∗∗∗ -6.061∗∗∗ -4.610∗∗∗ -4.331∗∗∗ -3.806∗∗∗ -3.597∗∗∗

(-10.23) (-12.06) (-17.04) (-28.56) (-35.19) (-42.58) (-40.13)

Size-Age 0.898∗∗∗ 0.967∗∗∗ 1.056∗∗∗ 0.791∗∗∗ 0.623∗∗∗ 0.370∗∗∗ 0.380∗∗∗

(13.25) (22.13) (26.98) (15.87) (17.65) (15.45) (17.35)

FCI 0.814∗∗∗ 1.134∗∗∗ 1.111∗∗∗ 1.356∗∗∗ 2.028∗∗∗ 1.793∗∗∗ 2.723∗∗∗

(8.51) (13.69) (9.97) (15.30) (11.04) (21.27) (15.33)

ICR 1.304∗∗∗ 1.068∗∗∗ 0.948∗∗∗ 1.372∗∗∗ 0.717∗∗∗ 0.349∗∗∗ 0.349∗∗∗

(11.93) (14.34) (12.17) (19.20) (10.26) (3.63) (5.46)

Solvency -0.0112∗∗∗ -0.0161∗∗∗ -0.0126∗∗∗ -0.0124∗∗∗ -0.0123∗∗∗ -0.0189∗∗∗ -0.0203∗∗∗

(-8.42) (-12.00) (-11.02) (-12.60) (-5.93) (-14.69) (-13.50)

Negative AV 1.083∗∗∗ 1.718∗∗∗ 1.580∗∗∗ 1.222∗∗∗ 1.490∗∗∗ 1.240∗∗∗ 1.142∗∗∗

(8.96) (16.67) (9.04) (9.32) (6.17) (10.04) (13.84)

Profitability 0.331∗∗∗ 0.470∗∗∗ 0.329∗∗∗ 0.417∗∗∗ 0.435∗∗∗ 0.300∗∗∗

(4.25) (8.62) (5.37) (3.34) (5.18) (3.91)

LR 0.367 -1.224∗∗∗ -2.221∗∗∗ -0.355 -0.724∗ -1.115∗∗∗

(1.91) (-4.11) (-7.61) (-0.24) (-2.08) (-3.61)

BID 0.516∗∗∗

(15.20)

Trademark -1.072∗∗∗

(-12.04)

Constant 5.847∗∗∗ 6.542∗∗∗ 7.875∗∗∗ 5.160∗∗∗ 3.402∗∗∗ 0.855∗∗ 0.733∗∗

(8.17) (13.36) (19.35) (10.70) (9.12) (2.90) (3.21)

Year FE (YES) (YES) (YES) (YES) (YES) (YES) (YES)

Sector FE (YES) (YES) (YES) (YES) (YES) (YES) (YES)

Observations 78720 80371 82084 82607 82119 80124 76273

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

5 Discussion

In this work, we propose machine learning analyses of firm level data
to spot non-viable albeit surviving firms, which could hinder realloca-
tion of resources. So called zombie firms may be relevant for misallo-
cation of financial resources, on one side, especially during and after
financial shocks, as previous references suggest. Also, non-viable low-
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productivity firms may reduce overall welfare, preventing industrial re-
structuring. If we take 2011 as a reference year, we can track the amount
of added value and employment sunk in zombie firms in the following
years. Our back-of-envelope estimate is that average employment for
firms that were detected as being zombie, that failed in the years until
2017, is significantly lower that for non-zombie firms (4.40 vs 16.22 em-
ployees per firm). The same holds true for the added value (89,853 vs
1,065,850 Euros per year). Hence, we find that zombies are smaller firms
and their added value accounts just for the 0.34% of the overall added
value of the enterprises considered in the analysis (even though zombies
are roughly 4% of firms).

The implementation of our indicator in the Italian scenario founds a
negative lagged correlation between GDP growth and zombie firms, re-
jecting the hypothesis of zombies as a cause of the Italian crisis (see Figure
41). Based on this finding, following Ottaviano (2011), we argue that zom-
bies can play a role in slowing down the recovery: a bad selection mech-
anism for firms exiting the market can slow down the recovery during
the downswings of the business cycle. Since zombies and unemployment
seem to follow similar growth patterns, future research should investi-
gate the possibility that for very small, distressed firms, in the presence
of a stagnant labour market, survival might be just an alternative to un-
employment.

We show how statistical learning can derive non-trivial information
on a battery of financial indicator, and successfully identify firms in a per-
sistent high-failure-risk situation. Our preferred machine learning tech-
nique, BART-MIA, outperforms both simple proxies and otherwise stan-
dard econometric models in predicting firms’ failures. This is particu-
larly true in the presence of missing-not-at-random observations where
the patterns of missingness would induce a large bias in the construction
of standard indicators (i.e., ICR, negative added value, etc.). We argue
that the study of zombies is central to highlight when the market selec-
tion mechanism fails. In the present work, we reconnect the two sides of
the zombie phenomenon (survival and financial side) into a single prob-
abilistic indicator, overcoming the limitations of deterministic indicator.
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Figure 41: Zombie firms (9th decile) and GDP
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The machine learning based indicator proposed is robust to a potential
confunding factor orthogonal to the observed predictors and to varia-
tions in the training samples as we show through our novel sensitivity of
prediction analysis.

Moreover, the method that we implemented for the validation of the
current, deterministic indicators highlights how financial constraint indi-
cators, such as the ones proposed by Nickell and Nicolitsas (1999) and
Hadlock and Pierce (2010), and zombie indicators such as interest coverage
ratio (Bank of England, 2013), negative added value (Bank of Korea, 2013),
profitability (Schivardi et al., 2017), liquidity return and solvency seem to
be the most reliable indicators.

Following Calligaris et al. (2016), we believe that a revision of na-
tional regulations for bankruptcy and a higher efficiency of the judicial
system may be needed to reduce the presence of zombie firms. On the
other hand, a bigger attention to the phenomenon of zombie lending is
needed to prevent credit misallocation and crowding-out of financial re-
sources at the expenses of more viable firms with profitable projects of
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investments. To the best of our knowledge, scant attention has been de-
voted to the phenomenon of zombie lending by the public sector, although
regulatory agencies are moving forward to investigate its impact on the
banking sector (e.g., Schivardi et al. [2017]).

We argue that our machine learning indicator assumes a particular
relevance from a policy perspective as some countries, particularly in Eu-
rope (following the European Directive 2012/30/UE), are re-calibrating
in their business failure legislation. Some countries are proposing to in-
clude in the financial assessment of firms’ viability indicators tailored
to signal the crises of firms in an early stage (i.e., the Italian Law Oc-
tober 19th 2017, n. 155). In this context, the higher predictive power of
machine learning algorithms can boost targeted financing policies that
lead to safer allocation of credit either on the extensive margin, reduc-
ing the number borrowers by lending money just to the less risky ones,
or on the intensive margin (i.e., credit granted), by setting a threshold to
the amount of credit risk that banks are willing to accept (Bargagli-Stoffi,
Niederreiter, et al., 2020). Indeed, our indicator is tailored to identify per-
sistently distressed firms and is, in this regard, aligned with the spirit of
the aforementioned laws and paves the way for the implementation of
target-specific and evidence-based policies.
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Supplementary material for
Chapter 4

6 Robustness checks: changing the threshold

Here, we look at what would happen if we would set a different thresh-
old for the failure probability in order for a firm to be identified as a
zombie. In particular, combining the 8-th and 9-th decile of probability of
failure for each firm, for three consecutive years, we were able to identify
five different probability levels (i.e., high, medium-high, medium, medium-
low, low).

Table 27: Zombies in 2011

Predicted Risk Number of Firms Percentage Sunk Added Value Sunk Employment

High Risk 7,278 3.85% 89,853 4.40
Medium-High Risk 4,600 2.44% 232,508 6.91
Medium Risk 3,567 1.89% 254,970 7.32
Medium-Low Risk 3,435 1.82% 415,929 9.76
Low Risk 2,721 1.44% 392,771 9.74

Others 167,195 88.56% 1,130,417 16.91

Note: sunk added value and sunk employment are referred to the average zombie’s added
value (in Euro) and employment for those firms that failed in the subsequent years. The

results are compared with the ones of firms that are not classified as zombies.

These hazard levels rank from high-risk firms (namely, active firms
with failure probability above the 9-th decile for three consecutive years),
to low-risk firms (namely, active firms with failure probability between
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the 8-th and 9-th decile for three consecutive years). Such hazard levels
catch the risk for a certain firm to be a zombie based on its survival prob-
abilities and its failure to exit the market.

Figure 42: Zombie firms (8th decile) and GDP
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Figure 42 shows the share of zombies and the GDP growth rate. Ta-
ble 28 depicts the selected predictors from LOGIT-LASSO and Table 29
shows the coefficient of the post-logistic regressions for the selected pre-
dictors in the time span 2011-2017.

Table 28: Ranking of predictors by year (zombies 8th decile)
Rank 2017 2016 2015 2014 2013 2012 2011

1 Control* Control* Control* Control* Control* Control* Control*
2 Size-Age* Size-Age* Size-Age* FCI* FCI* FCI* FCI*
3 ICR* ICR* FCI* Size-Age* Size-Age* Size-Age* Size-Age*
4 FCI* FCI* LR* ICR LR* LR* Solvency*
5 Negative AV* Negative AV* ICR* Negative AV* ICR* Solvency* LR*
6 Solvency* BID* Negative AV* BID* Innovation* Negative AV * Trademark*
7 BID* LR* BID* LR* Misallocation* Trademark* ICR*
8 LR* Profitability* LR* Innovation* TFP* Innovation* Negative AV*
9 CI CI Profitability* Trademark* BID* TFP* Innovation
10 TFP Solvency* CI Profitability* Negative AV* BID* Net Income

Note: the ranking refers to the first ten ranked financial predictors by logit-lasso. The
ascetics indicates those variables that are selected from the rigorous logit-lasso as well.
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Table 29: Post-logistic regressions with predictors selected with rigorous
logit-lasso (zombies 8th decile)

(2017) (2016) (2015) (2014) (2013) (2012) (2011)

Control -5.503∗∗∗ -5.870∗∗∗ -5.551∗∗∗ -5.293∗∗∗ -4.872∗∗∗ -4.212∗∗∗ -4.072∗∗∗

(-51.65) (-47.75) (-46.69) (-42.95) (-29.45) (-43.27) (-31.30)

Size-Age 0.639∗∗∗ 0.884∗∗∗ 1.075∗∗∗ 1.028∗∗∗ 0.857∗∗∗ 0.541∗∗∗ 0.714∗∗∗

(11.63) (15.29) (18.95) (17.52) (20.03) (19.15) (18.74)

FCI 0.108 0.702∗∗∗ 1.303∗∗∗ 1.151∗∗∗ 1.570∗∗∗ 1.576∗∗∗ 2.152∗∗∗

(1.54) (8.67) (12.61) (13.01) (9.37) (24.68) (15.40)

ICR 1.013∗∗∗ 1.005∗∗∗ 0.560∗∗∗ 0.982∗∗∗ 0.705∗∗∗ 0.301∗∗ 0.439∗∗∗

(21.98) (17.85) (7.17) (20.09) (7.36) (2.68) (7.18)

Solvency -0.00770∗∗∗ -0.00309∗∗∗ 0.00156 -0.00302∗ -0.0120∗∗∗ -0.0164∗∗∗

(-9.38) (-3.79) (1.65) (-2.27) (-14.96) (-14.96)

BID 0.455∗∗∗ 0.566∗∗∗ 0.410∗∗∗ 0.432∗∗∗ 0.396∗∗∗

(17.87) (19.37) (14.27) (14.24) (8.65)

Negative AV 0.604∗∗∗ 1.133∗∗∗ 1.236∗∗∗ 0.667∗∗ 0.482 1.544∗∗∗ 0.850∗∗∗

(5.21) (13.31) (13.32) (2.95) (1.51) (10.55) (5.86)

Profitability 0.282∗∗∗ 0.456∗∗∗ 0.436∗∗∗ 0.219∗

(4.46) (5.86) (3.94) (2.25)

Net income -3.57e-08∗∗∗ -2.39e-08∗

(-4.04) (-2.56)

LR 0.0463∗∗∗ 0.128 -1.033∗∗ -6.001∗∗∗ -4.951∗∗∗ -2.010∗∗∗ -1.865∗∗∗

(6.11) (0.53) (-2.70) (-12.67) (-10.62) (-7.04) (-6.74)

Innovation -0.562∗∗∗ -0.701∗∗∗ -0.869∗∗∗ -0.834∗∗∗

(-9.18) (-6.61) (-8.32) (-7.80)

TFP -0.00916∗ -0.0212∗∗∗ -0.0227∗∗∗

(-2.38) (-4.96) (-5.64)

Trademark -0.648∗∗∗ -0.454∗∗∗ -1.086∗∗∗ -1.509∗∗∗

(-7.34) (-3.94) (-10.91) (-25.98)

Misallocation 0.314∗∗ 0.185∗∗

(2.98) (3.01)

Sustainability 3.830∗

(2.13)

Constant 5.820∗∗∗ 8.161∗∗∗ 10.29∗∗∗ 10.34∗∗∗ 8.430∗∗∗ 4.882∗∗∗ 6.770∗∗∗

(10.35) (13.00) (16.92) (16.63) (17.08) (14.92) (17.56)

Year FE (YES) (YES) (YES) (YES) (YES) (YES) (YES)

Sector FE (YES) (YES) (YES) (YES) (YES) (YES) (YES)

Observations 78635 80365 82459 78549 44191 51733 76273

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Conclusions

Machine learning algorithms have advanced to become effective and
prominent tools across a broad-spectrum of scientific fields and appli-
cations. The reasons behind the surge in the usage of machine learning
are manifold and are connected to the major technological innovations
introduced in the last decades. Advances in data storage, data transfer
and data processing, and the availability of large data sources to be an-
alyzed called for novel, more powerful, computational tools. This stag-
gering growth in the size of datasets was mainly driven by the increase
in the amount of data produced through novel technologies.

The early adopters of machine learning techniques were mainly
computer scientists (mostly, on the application side) and statisti-
cians/applied mathematicians (mostly, on the theoretical side). How-
ever, as these technologies have become more widespread, their influ-
ence has gone far beyond the boundaries of these fields. Indeed, the
application of machine learning in social sciences has given rise to a
completely novel field of investigation named “computational social sci-
ence”.

Machine learning techniques can capture hidden patterns in the
data by directly learning from them, without the usual restrictions of
model-based statistical methods, due to their model-free, data driven na-
ture (Breiman et al., 2001). These features are particularly central as re-
searchers are not bounded to theory-based methodologies and assump-
tions, but they can “let the data speak” and, in some cases, let the data
drive their theories. This does not mean that theories and assumptions
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are undermined in the novel “machine learning era” (Sejnowski, 2018).
Quite the contrary, machine learning alone cannot provide an insight
on the underlying assumption of causal inference settings (Dominici
& Mealli, 2020). Also, a theory-driven choice regarding which machine
learning technique best fits the application at hand can lead to a great
increase in the predictive performance of the model.

The main aim of this Dissertation is to extend the causal and predic-
tive machine learning frameworks through an application-oriented per-
spective. Indeed, the methods developed provide answers to relevant
empirical questions. In the first two Chapters, we bridge several gaps in
the field of interpretable causal machine learning for heterogeneous ef-
fects estimation and discovery in observational studies. In the last two
Chapters, we adapt the usual predictive machine learning framework to
account for robust and theory driven predictions. Table 30 provides an
overview of the main empirical contributions of the Dissertation.

1 Methodological contribution

In the first Chapter, we introduced a novel, Bayesian machine learning
methodology to discover and estimate heterogeneous effects in quasi-
experimental settings. Analysis of heterogeneous treatment effects are
usually conducted for subgroups defined a-priori (Cook et al., 2004).
A-priori choice of the subgroups of analysis is required14 to avoid pos-
sible cherry-picking problems: i.e., researchers reporting the causal re-
sults only for subgroups with extremely high/low treatment effects.
However, defining subgroups a priori has some drawbacks: it requires
a good understanding of the treatment effect (from previous literature)
and, it could miss unexpected subgroups. Moreover, few methodologies
have been proposed to deal with heterogeneous effect discoveries in ob-
servational studies in the presence of a broken randomization scenario
(Bargagli-Stoffi & Gnecco, 2020). In this Chapter, we account for these
shortcomings, by proposing a data-driven methodology to discover and

14This is, for instance, the case of the protocols issued by the US Food and Drug Admin-
istration.
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estimate heterogeneous effects in observational studies with imperfect
compliance. Such a methodology, that we name Bayesian Causal Forest
with Instrumental Variable (BCF-IV), outperforms seminal methodolo-
gies proposed in the field (Athey et al., 2019; Bargagli-Stoffi & Gnecco,
2018) both in discovering the effects and in precisely estimating them in a
simulated scenario. On top of that, BCF-IV has desirable statistical prop-
erties such as consistency and asymptotic normality of the conditional
estimators.

The second Chapter deals with a widely known issue of machine
learning techniques: their potential lack of interpretability. As causal ma-
chine learning methodologies are providing more and more accurate pre-
dictions of individual treatment effects, at the same time their complex-
ity is increasing as well, leading to a complete lack of interpretability
in some cases (Doshi-Velez & Kim, 2017). We argue that heterogeneous
effects are central for targeted policies, but in high-stakes scenarios sim-
ple, yet consistent, causal rules should be provided to policy-makers and
stakeholders. Indeed, interpretable causal machine learning can promote
a deeper understanding about how the subpopulations to be targeted
were discovered. This, in turn, provides a higher trust in these method-
ologies both with regard to policy-makers enacting the policies, and to
constituent subject to their implementation. In this spirit, we propose an
algorithm that aims at a higher level of “accountability” in the discovery
and estimation of causal effects. Beside leading to a higher level of inter-
pretability, the proposed method accounts for several limitations of the
most interpretable causal machine learning methodologies introduced to
this day. For instance, tree based methods provide a high level of inter-
pretability but suffer of three main limitations: (i) they are unstable; (ii)
they are able to discover just a limited number of heterogeneous sub-
populations; (iii) they often fail do distinguish between effect modifiers
and confounders. The proposed Causal Rule Ensemble accommodates
for these limitations by providing a stable algorithm for the discovery
of a large set of rules controlling for confounding factors. In a series of
simulations, we showed how the proposed method outperforms state-
of-the-art algorithms while providing consistent results.
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While in the first two Chapters we deal with issues related to causal-
ity in general, and heterogeneous effects, in the last two we address pol-
icy prediction problems (Kleinberg et al., 2015).

In the third Chapter, we introduce a novel sensitivity of predictions
analysis. We argue that one potential problem arising from the exten-
sive usage of machine learning to address inherently predictive prob-
lems, could be an underlying instability in the predictive model. This
issue is central as high-stakes predictive models should not just display
high performance, but also stability. This is utterly true in applications
where there is no real performance benchmark, and researchers cannot
rely on previous contributions for a comparative analysis. In our contri-
bution, we define a predictive model to be stable if its predictions and
its performance are not widely changed by the inclusion of a new syn-
thetic variable with a high explanatory power in the set of predictors. We
name this simulation-based analysis sensitivity of predictions. Sensitivity
of predictions can inform practitioners and policy-makers on the quality
of their predictive model. In particular, the main questions that it seeks
to answer are the following: “is the machine learning model getting enough
valuable signal from the data?” and “how much would an unobserved predic-
tor impact the model’s prediction and its performance?”. Such questions are
firstly investigated in this Chapter.

The contribution of the fourth Chapter is not methodological in the
strictest sense. Indeed, it relates to a wider definition of methods as proce-
dures for accomplishing a predictive task. We start by asking ourselves
if there is a way to improve the predictive power of state-of-the-art tech-
niques by incorporating theoretical intuitions in the predictive model for
the phenomenona being investigated. Indeed, the application we deal
with has been addressed many times in the literature on machine learn-
ing for firm dynamics, and many different methods have been proposed
(Bargagli-Stoffi, Niederreiter, et al., 2020). We find that a procedure that
starts from the economic problem at hand and, consequently, chooses the
model that could best fit the specific problem (from a theoretical perspec-
tive), provides a great improvement in the predictive performance. Of
course, such findings are specific to the context of our application. How-
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ever, we argue that the proposed procedure shows that it is not always
the case that the most complex method provides the best performance,
while it can often be the case that an application oriented choice can lead
to the best results.

2 Policy implications

The empirical research question that we investigate in Chapter 1 con-
cerns the estimation of the heterogeneous effects of additional school
funding on students’ performance:

RQ1: What kinds of students most benefit from additional
school funding?

Such question is relevant from an empirical perspective as it relates, on
one side, with the effectiveness of educational funding policies, and on
the other, with student’s differential human capital development. The
proposed BCF-IV methodology enables us to investigate the effects of
additional school funding promoted by the Flemish Ministry of educa-
tion starting from 2002. We study the performance of 135,682 treated and
untreated students, accounting for the universe of pupils in Flanders in
the school year 2010/2011. We find that the overall effects are slightly
positive but not significant. This finding is in line with the most recent
literature on students’ performance both in Flanders (De Witte et al.,
2018) and in a wider cross-country perspective (Hanushek et al., 2016;
Hanushek & Woessmann, 2017). However, we find evidence of strong
effect variation. Indeed, students in schools with less senior/younger
principals and teachers show higher, positive, significant effects of the
funding on their performance. This insight is particularly important, not
just because it is the first time that heterogeneous effects are investigated
in the context of funding effectiveness. In fact, the underlying mecha-
nism that we discover informs policy-makers in multiple ways. Firstly, it
highlights the need for additional funds to schools with younger teach-
ers and principals. In many cases, senior teachers and principals select
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themselves out of the most disadvantaged schools15, creating more va-
cancies in such schools. Therefore, younger teachers and principals lack
a real choice but to start working in the most disadvantaged schools.
Hence, supporting younger teachers and principals is central as it leads
to higher returns in terms of students’ performance, and it could help
bridging the performance gap between advantaged and disadvantaged
schools. Secondly, the discovered heterogeneity in the effect could hint at
differential motivation levels between younger and more senior teachers
and principals, that could, in turn, have an impact on their performance.
Ololube (2006) favours this hypothesis, as he finds the motivation en-
hances teachers’ productivity, with potentially beneficial effects on stu-
dents’ performance.

The research question that we investigate in the application section
of Chapter 2 is:

RQ2: What characteristics make people most vulnerable to
the negative effects of higher levels of pollution?

We use data on Medicare beneficiaries in New England between 2000
and 2006 and pollution data on the average two-year exposure (2000-
2001) to PM2.5 in the same regions. The outcome of our investigation is
the five-year mortality rate measured between 2002 and 2006, while the
characteristics of the individuals that we consider are unit level covari-
ates - sex (male,female), age (65-70, 71-75, 76-80, 81-85, 86+), race (white,
non-white), and Medicaid eligibility (eligible, non-eligible). Medicaid el-
igibility is considered as a proxy variable indicating low socio-economic
status. Moreover, we introduce 9 ZIP code-level or 2 county-level co-
variates (average temperature, humidity, body-mass-index, smoker rate,
Hispanic population rate, median household income, median value of
housing, % of people below the poverty level, % of people below high
school education, % of owner occupied housing and population den-
sity). These variables are used both to control for potential confound-
ing bias as well as effect variation drivers. We find that, controlling for

15We refer to Chapter 1 for a the detailed definition of what “disadvantaged” and “ad-
vantaged” mean in this context.
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confounding effects, Medicaid eligible white people aged between 81-85
and white people above 80 are most at risk. These results are consistent
with the findings of K. Lee et al. (2018) and are validated through a sen-
sitivity analysis. Obviously, it is critical to understand which people are
more vulnerable to the effect of pollution. Indeed, this analysis can in-
form policy-makers on who should be targeted and what policies can
be designed to prevent or mitigate the negative effects of pollution on
health. Moreover, our findings are informative on the areas where the
efforts to reduce pollution should be greater. The higher the density of
older, low income people, the more restrictive the environmental poli-
cies should be.

Chapter 3 investigates whether or not a predictive model for stu-
dent’s financial literacy scores with input data on student-level (age,
socio-economic status, achievements, attitude, among the others) and
school-level characteristics (school size, classes, size, teachers’ profes-
sional development, among the others) provides stable and robust pre-
dictions:

RQ3: How sensitive are the predictions of student financial
literacy scores to a potentially unobserved predictor with
high explanatory power?

We use the 2015 data of the OECD’s Program for International Student
Assessment (PISA) for Belgium to train our model. Through the novel
sensitivity of prediction analysis, we find that the model’s predictions are
fairly invariant to the inclusion of a new synthetic predictor with a high
explanatory power. This finding informs us that the predictors provide
enough signal to the predictive model. On top of that, it informs policy-
makers on the viability of the model that reaches an adjusted R2 out-of-
sample performance of 73%. The model is used to predict the financial
literacy scores for a region of Belgium (Wallonia) where these scores are
not observed, using the same set of input variables. This model could be
used to target students with low predicted financial literacy scores with
additional teaching material to boost their financial knowledge. Such in-
tervention would be highly valuable as the literature demonstrates the
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centrality of financial literacy to an active participation in society (OECD,
2017b). Our results show that the probability of having low financial
literacy score is largest for students with lower scores on reading and
math. This evidence is corroborated by Mancebón et al. (2019) and high-
lights how the development of financial abilities could be mediated by
mathematical skills. Moreover, we find that students with the lower pre-
dicted financial literacy scores are often students from families where
the school language is not spoken at home. Also, the educational back-
ground of parents is another important predictor. These observations are
in line with existing literature suggesting that more vulnerable groups in
terms of low financial literacy scores are often situated among those with
a lower socioeconomic background (De Beckker et al., 2019; Gramat, ki,
2017; Riitsalu & Põder, 2016). Even if these findings do not indicate a
causal relationship between these characteristics and financial literacy
scores, they provide hints to policy-makers on possible lines of action to
boost students’ financial literacy. Indeed, we argue that policy-makers
should opt a 360◦ approach to boost students’ financial literacy scores.
First, they could use our machine learning methodology to spot students
with lower predicted scores. Then, for such students they could imple-
ment a targeted learning approach not only focused at improving finan-
cial literacy, but also math and reading. Additionally, our methodology
could be used to target student at a very early stage, in a way that could
boost the positive results and externalities of the interventions.

While in the previous Chapter, we dealt with a novel setting where
machine learning techniques were either employed for the first time
(Chapter 1 and 3) or,very rarely (Chapter 2), in Chapter 4 we deal with an
application that was extensively investigated in the literature. As shown
by Bargagli-Stoffi, Niederreiter, et al. (2020), there are various applica-
tions of machine learning predictive power in the field of firm dynamics.
Hence, the goal of the fourth Chapter is to understand if and how we can
possibly outperform previously proposed methodologies by tackling the
predictive problem from a different perspective:

RQ4: Can economic intuition boost the machine learning
predictions of firms’ distress and provide insight on non-
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viable firms that do, however, still survive?

The contribution of our Chapter is relevant from a policy perspective in
at least three ways. First, we show that accounting for failure to release
financial information can improve credit risk prediction in a staggering
way. Second, we propose a novel machine learning-based definition of
zombie firms. This definition can be used to identify firms that are in a
persistently distressed position. Third, the method that we implement
allows us to validate the current, deterministic indicators used to assess
firm’s credit risk and financial distress. We find that financial constraint
indicators, like the ones proposed by Nickell and Nicolitsas (1999) and
Hadlock and Pierce (2010), and zombie indicators such as interest coverage
ratio (Bank of England, 2013), negative added value (Bank of Korea, 2013),
profitability (Schivardi et al., 2017), liquidity return and solvency show
the best predictive performance. This is particularly relevant as the Eu-
ropean Union (under the Directive 2012/30/EU), and other European
countries, like Italy in particular (see Law October 19th 2017, n. 155),
are re-calibrating in their business failure legislation to include in the
financial assessment of firms’ viability indicators tailored to signal the
crises of firms in an early stage. In this spirit, our indicator is tailored to
identify persistently distressed firms and is aligned with the aforemen-
tioned laws, paving the way for the implementation of target-specific
and evidence-based policies.

To conclude, machine learning provides an incredibly useful set of
tools to improve the effectiveness of public policies in many ways. As
shown in this Dissertation, on the one side, causal machine learning
could be used to either design optimal policies, or to boost the ef-
fect of existing policies. On the other side, predictive machine learning
could be employed to gather preemptive insights on potential groups
to be targeted. We argue that policy-makers should increasingly adopt
an evidence-bases approach. In this spirit, they should set up teams of
statisticians, health, social and data scientists with the aim of gathering
- through the application of novel methodologies in the fields of causal-
ity and machine learning - real-world evidence on the actual, or poten-
tial, effects of public interventions.Furthermore, with a view to make
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any data analysis possible, engineers and computer scientists should be
hired to improve data collection, transfer and storage. The costs related
to these teams would be outweighed by the benefits in the effectiveness
of policies, or by the decrease in their related costs. On top of that, policy-
makers could use these novel technologies to design personalized inter-
ventions and to reach higher levels of accountability.

3 Outlines for further research

In the first Chapter, we presented evidence of strong teacher and princi-
pal related drivers of funding effectiveness on students’ performance.
However, the investigation of the true causal channels is beyond the
goals of this Chapter and are left to further investigation where more
granular teachers’ and principals’ characteristics are available. We argue
that providing such an insight on the drivers of funding effectiveness is
not only important to boost students’ performance, but also important to
identify which are the underlying features of students, teachers, princi-
pals and schools that lead to an optimal policy allocation. Furthermore,
the method that we develop, BCF-IV, could be extended, connecting it
with the Generalized Random Forest algorithm (Athey et al., 2019). Such
an ensemble algorithm could be created to obtain a novel technique that
combines the small and large sample properties of both the methodolo-
gies. Indeed, as shown by Van der Laan et al. (2007) it is often the case
that the combination of multiple machine learning techniques results in
an ensemble method that usually outperforms the single methodologies.

In Chapter 2, we saw that older, white people with low income are
more vulnerable to the exposure to higher levels of pollution. Such evi-
dence can provide a simple rule to implement policies targeted at pre-
venting or mitigating the negative effects of pollution for this demo-
graphic. However, the data that we used do not enable us to understand
which are the more granular drivers of this higher hazard. A very inter-
esting line for further research would be to investigate, with an ad-hoc
study, whether the drivers of vulnerability can be found in a higher mor-
bidity, and what are the diseases that are most associated with higher
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increases in the mortality rates. On the application side, it would be
promising to investigate the effects of environmental policies: e.g., does
a decrease in pollution levels affect in different ways different subgroups
of people? On top of that, a limitation of our study is that we consider
pollution exposure as a binary variable, dichotomizing the levels using
an exogenously set threshold. We argue that a very promising method-
ological contribution would be to extend our setting from a binary to a
continuous treatment scenario.

The third- and fourth- Chapter dealt with applications of machine
learning in the field of policy prediction problems. Hence, a straightfor-
ward extension of these works would be to run a causal inference analy-
sis regarding the effects of the predictors on the outcome. Such analyses
are not straightforward to implement because they need a proper exper-
imental or quasi-experimental scenario to draw proper causal inference.
However, we argue that a very interesting extension of our work would
go in the direction of assessing how exogenous increases in reading and
math scores would affect financial literacy. Indeed, programs targeted
at enhancing students’ financial literacy could be ineffective if they do
not provide to students with the tools to improve their knowledge in
math and their reading abilities. This could hold true as we find that
reading and math scores are good predictors of financial literacy. More-
over, it would be of interest to use a methodology similar to the one that
we proposed to shift from spatial predictions (i.e., predicting scores in
regions where they are not observed) to temporal predictions (i.e., pre-
dicting scores one, two, three years from now based on the data that we
observe today).

Regarding possible further research related to the fourth Chapter, we
believe that there is the need for a causal analysis on how a revision of
national regulations for bankruptcy laws may help reduce the presence
of zombie firms. Moreover, we argue that researchers should further in-
vestigate the phenomenon of zombie lending (i.e., banks loaning money to
non-viable, financially distressed enterprises). Indeed, a better allocation
of credit could avoid crowding out of financial resources at the expenses
of more viable firms with profitable projects of investments. To the best
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of our knowledge, scant attention has been devoted to the public sec-
tor and the criminal sector as drivers of the zombie phenomenon. Such
investigations would be of great importance to reduce possible public
misallocation of credit, and to furnish to public authorities an insight on
how important the criminal component of zombie lending is. We leave
this to further research.

Thus far, we highlighted further lines of research directly connected
with the works presented in each Chapter of this Dissertation. However,
we want to take a small step away from our works and look, from a
bigger perspective, at few of the most promising directions of future
research in the field of applied machine learning. From a predictions-
in-policies perspective, we argue that in the next few years more effort
should be made in providing higher levels of interpretability. A big chal-
lenge will be to translate very complex machine learning tools (e.g., deep
artificial neural networks) into more interpretable, and accountable al-
gorithms. While predictive machine learning has been used almost in
any possible context - from algorithms that spot people’s feelings to
Netflix movies’ suggestions - we argue that there are many more land-
scapes to be explored in the field of causal machine learning. Promising
lines of research in this field regard extending the discovery and esti-
mation of causal effects to scenarios where the treatment is continuous
(i.e., exposure-response curves), or where there are interaction patterns
between the units that would introduce strong biases in the causal es-
timands (i.e., social networks). However, the real “shot-to-the-moon” in
both fields is to investigate in depth the theoretical properties and empir-
ical performances of each method to provide a better guidance to prac-
titioners regarding which techniques to use in any specific context. With
this Herculean effort, the application of machine learning will move from
an art (Peng & Matsui, 2015) to higher standards of reproducibility.

In conclusion, it requires a deep understanding of the research ques-
tion under investigation to design, develop or adjust a machine learning
methodology in social and health sciences scenarios. This holds true also
when it comes to understanding in depth the insights provided by novel
machine learning techniques. We are far from machines overturning the
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importance of scholars’ abilities such as properly designing a causal eval-
uation or, deeply understanding the phenomenon being studied. The
most recent developments of applied machine learning literature, as well
as this Dissertation’s contributions, provide insights on the fact that the
most effective usage of novel technologies can be reached when intelli-
gent machines are driven by expert human beings.
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Table 30: The dissertation’s empirical contributions

Chapter Research Question Findings Policy implications Further Research

Part 1 Chapter 1 What kinds of students
most benefit from

additional school funding?

Students in schools
with less

senior/younger
principals and teachers

show positive,
significant effects

Increase funding to
schools that benefit the
most from additional

financial support

Investigate the causal
mechanism that drives

effects variation at a
more granular level

Chapter 2 What characteristics make
people most vulnerable to

the negative effects of
higher levels of pollution?

Medicaid eligible white
people aged between

81-85 and white people
above 80 are most at

risk

Targeted policies to
prevent or mitigate the

negative effects of
pollution for the most
vulnerable subgroups

Investigate possible
health related drivers of

the heterogeneous
effects (e.g. morbidity)

Part 2 Chapter 3 How sensitive are the
predictions of student

financial literacy scores to a
potentially unobserved

predictor with high
explanatory power?

Predictions are fairly
invariant to the

inclusion of a new
synthetic predictor

Provide students with
low predicted financial

literacy scores with
additional teaching
material at an early

stage

Shift from inter-spacial
to inter-temporal

predictions of financial
literacy scores

Chapter 4 Can economic intuition
boost the machine learning

predictions of firms’
distress and provide insight
on non-viable firms that do,

however, still survive?

Accounting for failure
to release financial

information can
improve credit risk
predictions and the
discovery of zombie

firms

Prevent banks from
indulging in zombie
lending, and revise

national regulations for
bankruptcy laws

Causal investigation of
possible public and
criminal drivers of

persistently distressed
firms’ survival

Note: the policy implications illustrated in the Table are just some of the various, possible implications connected to our empirical findings. The same holds
true for further lines of research. Please refer to the related Chapters for more detailed discussions.
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