
The DReAM framework:
a logic-inspired approach to

reconfigurable system modeling

PhD in Institutions, Markets and Technologies

Curriculum in Computer Science

XXX Cycle

By

Alessandro Maggi

2020

mailto:alessandro.maggi@imtlucca.it




The dissertation of Alessandro Maggi is approved.

Program Coordinator: Rocco De Nicola, IMT School for Advanced Stud-
ies Lucca

Supervisor: Prof. Rocco De Nicola, IMT School for Advanced Studies
Lucca

Supervisor: Prof. Joseph Sifakis, Univ. Grenoble Alpes

The dissertation of Alessandro Maggi has been reviewed by:

Prof. Martin Wirsing, Ludwig-Maximilians-Universität München

Prof. Roberto Bruni, University of Pisa





In beloved memory of my grandmother,
Annunziata Mastracca (June 3, 1921 - November 20, 2016)





Contents

Acknowledgements x

Vita and Publications xiii

Abstract xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Origin of the material . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 Approaches to software systems modeling . . . . . . . . . 10

2.1.1 Process Description Languages . . . . . . . . . . . . 11
2.1.2 Architecture Description Languages . . . . . . . . . 12

2.2 Approaches to components coordination . . . . . . . . . . 15
2.2.1 Exogenous coordination paradigms . . . . . . . . . 15
2.2.2 Endogenous coordination paradigms . . . . . . . . 16

2.3 BIP-based Formalisms . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 BIP: Behavior, Interaction, Priority . . . . . . . . . . 17
2.3.2 Dynamic BIP . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Dynamic Reconfigurable BIP . . . . . . . . . . . . . 25

vii



3 The L-DReAM framework 29
3.1 PIL-based systems . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Propositional Interaction Logic (PIL) . . . . . . . . . 30
3.1.2 Interacting Components . . . . . . . . . . . . . . . . 31
3.1.3 Systems of components . . . . . . . . . . . . . . . . 32
3.1.4 Disjunctive and Conjunctive styles in PIL . . . . . . 34

3.2 L-DReAM Syntax and Semantics . . . . . . . . . . . . . . . 36
3.2.1 Static systems with PILOps . . . . . . . . . . . . . . 37
3.2.2 Disjunctive and Conjunctive styles in PILOps . . . 50
3.2.3 Parametric architectures and dynamic systems . . . 55

3.3 Encoding other formalisms . . . . . . . . . . . . . . . . . . 64

4 The DReAM framework 70
4.1 Structuring architectures . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Component Types and component Instances . . . . 72
4.1.2 Motif modeling . . . . . . . . . . . . . . . . . . . . . 76

4.2 The DReAM coordination language . . . . . . . . . . . . . . 80
4.2.1 Declaration expansion for coordination terms . . . 81
4.2.2 Reconfiguration operations . . . . . . . . . . . . . . 83
4.2.3 Disjunctive and Conjunctive styles in DReAM . . . 88
4.2.4 Operational semantics . . . . . . . . . . . . . . . . . 91

4.3 Example systems . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Coordinating flocks of interacting robots . . . . . . 92
4.3.2 Coordinating flocks of robots with stigmergy . . . . 95
4.3.3 Reconfigurable ring . . . . . . . . . . . . . . . . . . 96
4.3.4 Simple platooning protocol for automated highways 100

5 Executable implementation 107
5.1 The jDReAM core architecture . . . . . . . . . . . . . . . . . 108
5.2 The jDReAM extended architecture . . . . . . . . . . . . . . 115
5.3 Use cases in practice . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Coordinating flocks of robots . . . . . . . . . . . . . 119
5.3.2 Reconfigurable ring . . . . . . . . . . . . . . . . . . 122
5.3.3 Simple platooning protocol . . . . . . . . . . . . . . 124

viii



6 Concluding considerations 129
6.1 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Proofs 136
A.1 Disjunctive to conjunctive transformation in PIL . . . . . . 136

B jDReAM code examples 139
B.1 Coordinating flocks of interacting robots . . . . . . . . . . . 139
B.2 Simple platooning protocol for automated highways . . . . 142

ix



Acknowledgements

The memory of the first time I walked through the walls of
Lucca knowing I was there to stay is still vividly impressed in
my mind. It has been quite a long journey from that day, full
of twists and turns as any meaningful road in life truly worth
traveling along is. Seeing it through has been a challenging
feat, one that would have not been possible without the con-
tribution and support of many people.

A major thank you goes to the SysMA research unit of IMT for
having me and, more specifically, to its director Prof. Rocco
De Nicola, who introduced me to the field of formal meth-
ods and process calculi guiding me through the PhD with
patience, kindness, and his signature constructive optimism.
I owe him a lot both professionally and personally for his con-
tinuous support and understanding.

Another major thank you goes to Prof. Joseph Sifakis, who
I must credit first and foremost for his inventive ideas that
sparked my interest and shaped all the work that led me to
this accomplishment. To him goes all my appreciation for his
passionate support, priceless insights, and frank exchanges
we had.

I am likewise grateful to the attention my external referees,
Prof. Roberto Bruni and Prof. Martin Wirsing, have put into
my work, pushing me to keep improving it further.

Another thank you goes to Dr. Marinella Petrocchi and Prof.
Francesco Tiezzi, who guided me in the first steps of the PhD
with a fruitful and stimulating collaboration which taught me

x



many important lessons on scientific research.

The most significant turning point in this path has undoubt-
edly been my acceptance of a position at the Bank of Italy
halfway-through the PhD. Despite the challenge of continu-
ing my research activity alongside the commitment of a full-
time job, I managed to overcome it also thanks to the support
of many colleagues in the Bank.

In particular, I would like to thank the former head of the
Supervision Inspectorate Dr. Carmelo Lattuca and the head of
the On-site Inspection Planning Division Dr. Paolo Bernardini
for authorizing an extended leave from work which allowed
me to finish my study period at the School.

I would also like to thank all the members of the Applied Re-
search Team of the General Directorate for Information Tech-
nology, where I currently work as a research staff member,
and specifically the head of the unit Dr. Marco Benedetti and
his deputy Dr. Luigi Bellomarini for their understanding and
open support to my external research activities.

No journey is truly complete without travel companions. I am
truly grateful I had the opportunity to meet so many along the
way, I want to take the time to thank the ones who are dearer
to me one by one in no particular order.

Hanin, my dear coffee-pal, for all the coffees, the quality movie
and TV-series recommendations, and especially the meaning-
ful and inspirational conversations we had; Paolo, for sharing
many priceless moments, both fun and emotional, as well as
one of the most peculiar cooking sessions involving a chicken
and a can of beer; Luca, for all the funny moments and shower-
related puns, as well as for being the best roommate one could
hope for; Valentina, for her ability of combining rock-solid de-
termination with contagious glee, and for being the best part-

xi



ner in interdisciplinary projects and team-based card games;
Valerio, for his self-irony, his infectious laughter, and his un-
bounded passion for lemons; Vitaly, for his ever-so-slightly
decipherable poker-face and his big heart; Anita, for her en-
thusiasm, kindness, and for being always there to help others;
Claudia, for the shared immeasurable enthusiasm for tabletop-
and video-games.

Most importantly, to all of them, thank you for your friend-
ship and for the time we spent together.

Next, I wish to thank my closest friends, Francesco, Germano
and Valerio, who have always been there for me even when
we were far apart and had less opportunities to hang out.

Many thanks to the brilliant “team members” Fabio and Saimir,
always ready to pitch new ideas and arrange epic reunions
across space and time ever since we met at the university.

Thank you also to the eclectic duo from my past life as junior
physicist, Riccardo and Valerio, with whom I will always re-
member some of the most peculiar moments of our life spent
in a laboratory.

I also owe many thanks to my parents and my aunt Nuccia for
their unconditional support and encouragement throughout
these years.

Last, but definitely not least, I thank from the bottom of my
heart my soulmate and wife Michela, who has always been
by my side encouraging me to do my best and to follow my
dreams, giving me strength throughout this journey.

xii



Vita

March 22, 1985 Born, Rome, Italy

2008 Bachelor Degree in Physics
Final mark: 106/110
Sapienza University of Rome, Rome, Italy

2008-2010 Collaborator journalist
Soura Magazine, Unexplored Publishing LLC, Dubai,
United Arab Emirates

2009-2015 Collaborator journalist
Notebook Italia, Trani, Italy

2010 Bachelor Degree in Computer Engineering
Final mark: 110/110
Roma Tre, Rome, Italy

2013 Master Degree in Computer Engineering
Final mark: 110/110 cum laude
Sapienza University of Rome, Rome, Italy

2013-2015 Photographer
RPM Proget, Rome, Italy

2014 Business Technologist
Capgemini Italia, Rome, Italy

since 2014 PhD Candidate in Computer Science
IMT School for Advanced Studies Lucca, Lucca, Italy

2016-2019 Administrative assistant
Supervision Inspectorate, Bank of Italy, Rome, Italy

since 2019 ICT research staff member
Applied Research Team, Bank of Italy, Rome, Italy

xiii



Publications

1. R. De Nicola, A. Maggi, M. Petrocchi, A. Spognardi, and F. Tiezzi. “Twit-
lang(er): Interactions Modeling Language (and Interpreter) for Twitter”.
In: Proceedings of the 13th International Conference of Software Engineering and
Formal Methods. Springer, 2015.

2. A. Maggi, M. Petrocchi, A. Spognardi, and F. Tiezzi. “A language-based
approach to modelling and analysis of Twitter interactions”. In: Journal of
Logical and Algebraic Methods in Programming, vol. 87, 2017.

3. [43] R. De Nicola, A. Maggi, and J. Sifakis. “DReAM: dynamic reconfig-
urable architecture modeling”. In: International Symposium on Leveraging
Applications of Formal Methods. Springer, 2018.

4. [37] A. Maggi, R. De Nicola, and J. Sifakis. “A Logic-Inspired Approach
to Reconfigurable System Modelling”. In: From Reactive Systems to Cyber-
Physical Systems. Springer, 2019.

5. [18] R. De Nicola, A. Maggi, and J. Sifakis. “The DReAM framework for
dynamic reconfigurable architecture modelling: theory and applications”.
In: International Journal on Software Tools for Technology Transfer, 2020.

xiv



Abstract

Modern systems evolve in unpredictable environments and
have to continuously adapt their behavior to changing con-
ditions. The DReAM (Dynamic Reconfigurable Architecture
Modeling) framework has been designed to address these re-
quirements by offering the tools for modeling reconfigurable
dynamic systems effectively.

At its core, the framework allows component-based architec-
ture design leveraging a rule-based language, inspired from
Interaction Logic. The expressiveness of the language allows
us to define the behavior of both components and components
aggregates encompassing all aspects of dynamicity, including
parametric multi-modal coordination of components and re-
configuration of their structure and population.

DReAM allows the description of both endogenous/modu-
lar and exogenous/centralized coordination styles and sound
transformations from one style to the other, while adopting a
familiar and intuitive syntax. To better model dynamic mobile
systems, the framework is further extended with two struc-
turing concepts: motifs - independent dynamic architectures
coordinating components assigned to them - and maps - graph-
like data structures modeling the topology of the environment
and parametrizing coordination between components.

The jDReAM Java project has been developed to provide an
execution engine with an associated library of classes and
methods that support system specifications conforming to the
DReAM syntax. It allows to develop runnable systems com-
bining the expressiveness of the rule-based notation with the
flexibility of this widespread programming language

xv



Chapter 1

Introduction

1.1 Motivation

Depending on the perspective from which we examine a software sys-
tem, we could consider it a procedure made of instructions that a machine
can understand and execute, a mathematical function that maps an in-
put to an output, a circuit of elements in which data and control signals
flow through ports appropriately wired, and so on. Different aspects and
properties emerge by adopting one perspective or the other. The same
applies if we shift our attention on the approaches to design such systems.
Depending on the level of abstraction that we choose to adopt for each
element that contributes to the definition of what a system does, we have
to account for a trade-off between expressive power, practical viability in
terms of actual instantiation and implementation, ease of human under-
standing, and verifiability of desired properties (such as correctness and
liveness).

Modern programming languages have reached a level of diffusion
and maturity that arguably grants sufficient readability of code in addi-
tion to high expressiveness and efficient execution. On the other hand,
the challenges posed by the limits of verifiability of their broad capabili-
ties and rich data types limits the kind of guarantees that we can obtain,
so errors and unexpected behaviors are checked mostly during testing

1



and get patched even after the program is released. This is a standard
practice in the industry, and while there is no reason to require that every
single line of code of every software has to be error-free from the day of
release, there are two exceptions that require additional guarantees:

1. critical systems whose correctness has direct implications for human
health and safety: potential faults have to be tracked and fixed be-
fore they manifest during execution, as the consequences can be
major and irreversible;

2. open systems executing in an unpredictable environment and coor-
dinating with third-party agents not known a priori: correctness
checks of system code could be not enough as unexpected, erro-
neous behaviors can emerge from the interaction with external enti-
ties.

The ever increasing complexity of modern software systems has changed
the perspective of software designers who now have to consider new
classes of them, consisting of a large number of interacting components
and featuring complex interactions. These systems are usually distributed,
heterogeneous, decentralized and interdependent, and are operating in
an unpredictable environment. Such level of complexity calls for new ap-
proaches to software design taking advantage of decomposition, indirec-
tion and adaptation, as the lack of rigorous methodologies and formally
grounded modeling frameworks increases the risks of undesirable inter-
ference and unpredictable outcomes. To cope with these issues, software
needs to be developed in such a way that systems can continuously adapt
to internal changes and to changes in their operating environment.

The notion of “adaptation” directly ties in with that of “reconfigura-
tion” capability, which allows to capture the dynamic aspects of modern
software already at design-time. Integrating these capabilities in the de-
sign process is even more challenging for frameworks that aim at model-
ing architectures, as they require to support both parametric systems in-
stantiations and dynamic reconfigurations of their inner structure and of
their coordination patterns. Software architectures are crucial in software
development as they represent the fundamental structures upon which

2



individual systems are built. Effective architecture modeling supports
efficient and correct development by encouraging modularity, separation
of concerns, and rationalization of recurring scenarios into “patterns” and
“styles”. Despite the challenges, these benefits are all the more needed
for the classes of systems that we described. Architecture modeling lan-
guages should be expressive enough to support these features while offer-
ing an intuitive syntax and clear design methodologies in order to foster
their practical use.

1.2 Problem statement

One of the main challenges that formalized approaches to complex sys-
tems specification have to face is how to capture their dynamic aspects
and how to integrate them in a rigorous and controlled way in the design
process. Dynamism, indeed, plays a crucial role in these modern systems
and can be guaranteed by exploiting the expressive power offered by the
three following features:

1. the parametric description of interactions between instances of com-
ponents for a given system configuration;

2. the reconfiguration involving creation/deletion of components and
management of their interaction according to a given architectural
style;

3. the migration of components between predefined architectural styles.

The first feature implies the ability of describing the coordination of
systems that are parametric with respect to the number of instances of
types of components; examples of such systems are Producer-Consumer
systems with m producers and n consumers or Ring systems consisting
of n identical interconnected components.

The second feature is related to the ability of reconfiguring systems
by creating or deleting components and managing their interactions tak-
ing into account the dynamically changing conditions. In the case of a
reconfigurable ring this would require having the possibility of removing

3



a component which self-detects a failure and of adding it back after recov-
ery. Added components are subject to specific interaction rules according
to their type and their position in the system. This is especially true for
mobile components which are subject to dynamic interaction rules de-
pending on the state of their neighborhood.

The third aspect is related to the vision of “fluid architectures” [24]
or “fluid software” [55]. The underlying idea is that applications and
“smart” objects live in an environment which corresponds to an architec-
tural style that defines how these entities behave and interact. Systems’
dynamicity is modeled by allowing such entities to migrate among differ-
ent environments; this dynamic migration allows a disciplined and easy-
to-implement management of dynamically changing coordination rules.
For instance, self-organizing systems may adopt different architectural
styles to adapt their behavior in order to guarantee global properties.

The different approaches to architectural modeling and the new trends
and needs are reviewed in detailed surveys such as [13, 16, 38, 39, 45].
Here, we consider two criteria for the classification of existing approaches:
exogenous vs. endogenous and conjunctive vs. disjunctive modeling.

Exogenous modeling assumes that components are architecture-agnostic
and guarantee a strict separation between a component behavior and its
coordination. Coordination is specified globally by rules applied to sets
of components. The rules involve synchronization of events between
components and associated data transfer. This approach is adopted by
Architecture Description Languages (ADL) [38]. It has the advantage of
providing a global view of the coordination mechanisms and their prop-
erties.

Endogenous modeling requires adding explicit coordination primitives
in the code describing components behavior. Components are composed
through their interfaces, which are used to expose their coordination ca-
pabilities. An advantage of endogenous coordination is that it does not re-
quire programmers to explicitly build a global coordination model. How-
ever, validating a coordination mechanism and studying its properties
becomes much harder without such a model.

Conjunctive modeling uses logic to express coordination constraints

4



between components. In particular, it allows modular description of com-
pound systems as one can associate with each component its coordination
constraints. The global coordination of a system can then be obtained as
the conjunction of individual constraints of its constituent components.

Disjunctive modeling consists in explicitly specifying system coordina-
tion as the union of executable coordination mechanisms such as sema-
phores, function call and connectors.

Merits and limitations of the two approaches are well understood.
Conjunctive modeling allows abstraction and modular description but
it is exposed to the risk of inconsistency in case there is no architecture
satisfying the specification. Conversely, disjunctive modeling by con-
struction does not expose system designers to this risk, but requires the
definition of monolithic connectors that usually have strong dependen-
cies with other parts of the system and thus have limited reusability.

Many approaches for software architecture modeling have been pro-
posed in literature with varying degrees of formalization, but to the best
of our knowledge none of them provides a generalized foundation ca-
pable of capturing all the listed modeling criteria while also supporting
dynamic reconfiguration and architectural style changes at runtime.

1.3 Main contributions

This thesis details two closely connected formal frameworks for the spec-
ification of software architectures which natively support dynamism and
advanced reconfiguration capabilities. Both offer rigorous methodologies
for architecture design by adopting a logic-based modeling language that
is expressive and powerful enough to support different approaches to
coordination and all the key features required to capture dynamicity. As
such, the two frameworks do not impose limits to the coordination and
computation styles, allowing instead to formalize sound transformations
between different design approaches.

L-DReAM - Light Dynamic Reconfigurable Architecture Modeling -
is the most “unstructured” of the two frameworks aimed at capturing

5



all the core aspects of the underling modeling language with minimal
overhead.

In L-DReAM a system is a hierarchical structure of components. Each
non-atomic component hosts a “pool” of components and defines the
coordination rules that regulate the way they interact and evolve. The
overall structure of systems can also change as components can leave
and join different pools. Components will thus be subject to different
coordination rules as they change their position in the hierarchy.

L-DReAM rules include an interaction constraint, modeled as a for-
mula of the Propositional Interaction Logic (PIL) [11], and some opera-
tions allowing data transfer as well as more complex reconfigurations of
the component’s state. Parametric coordination between classes of com-
ponents is achieved through the introduction of the concepts of component
types - blueprints for actual components - and component instances created
from specific types. Their coordination is characterized by rules in a first
order extension to PIL with quantification over instance variables of a
given type.

DReAM - Dynamic Reconfigurable Architecture Modeling - can be
thought as a specialization of L-DReAM to model systems that do not re-
quire unbounded, free-form structures of components, but instead adopts
a hierarchy that adequately fits concrete systems and integrates additional
parametrization structures that make the design of dynamic and mobile
architectures more intuitive and efficient.

In DReAM, a system consists of instances of types of components or-
ganized in hierarchies of “motifs”. Component instances can migrate
between motifs depending on specific conditions. Thus, a given type of
component can be subject to different rules when it is in a “ring” mo-
tif or in a “pipeline” one. Motifs themselves are typed, and each motif
instance can migrate from one to another, dynamically changing their
hierarchy and thus potentially affecting all the underlying components.
Using motifs allows a natural description of self-organizing systems.

Coordination rules in a motif are defined according to the same core
language used by L-DReAM. To enhance the expressiveness of the differ-

6



ent kinds of dynamism, each motif is also equipped with a “map”, which
is a graph defining the topology of the interactions in the motif. Compo-
nents are associated with locations of the map via an addressing function
@ which defines the position @(c) in the map of any component instance
c associated with the motif. Additionally, each location is equipped with
a local memory that can be accessed by components and used as a shared
memory. Maps are also very useful to express mobility, in which case
the connectivity relation of the map represents possible moves of compo-
nents. Finally, DReAM allows us to modify maps by adding or removing
locations and edges, as well as to dynamically create and delete compo-
nent instances.

1.4 Outline

The rest of the thesis is organized as follows.
Chapter 2 gives an overview of the “setting” in which the problem

of defining software intensive systems has been faced so far, focusing
on how different approaches handle the architectural aspects of system
definitions, how they capture dynamic characteristics of the systems at
runtime, and to what extent they support adaptation through reconfigu-
ration of their structure and behavior. This chapter will also present some
of the main formalisms that have inspired the development of the two
frameworks described in this thesis.

Chapter 3 introduces L-DReAM, a “light” variant of the DReAM frame-
work that shares its approach on coordination of components but retains
a simpler syntax and a looser structure, making it very flexible and more
suitable to study fundamental properties of the underlying language. The
presentation of the framework is done incrementally, starting from a sim-
ple static setting where components interact according to formulas of the
Propositional Interaction Logic (PIL), and proceeding upwards by first
adding data transfer between components and then reconfiguration ca-
pabilities.

Chapter 4 presents the fully-structured DReAM framework detailing
its key concepts and features, both in terms of their role in addressing the

7



requirements for dynamic and reconfigurable architecture modeling as
well as in the way they tie in with fundamental L-DReAM concepts. To
highlight the distinguishing characteristics of DReAM with respect to its
light variant and other formalisms, we discuss few specific use cases that
take full advantage of the capabilities of the framework.

Chapter 5 describes the prototype Java-based modeling and execution
framework jDReAM with a detailed overview of its architecture. The core
components of jDReAM implement the abstract syntax of L-DReAM and
its operational semantics, while a dedicated library extends the API in
order to support DReAM specifications natively.

The concluding Chapter summarizes the main contributions and re-
sults, briefly highlights similarities and differences between related works
and the presented frameworks, and discusses directions for future work
both from a theoretical and practical standpoint.

1.5 Origin of the material

The contents of this Thesis refer to and expand upon the following publi-
cations:

[43] R. De Nicola, A. Maggi, and J. Sifakis. “DReAM: dynamic recon-
figurable architecture modeling”. In: International Symposium on
Leveraging Applications of Formal Methods. Springer, 2018.

[37] A. Maggi, R. De Nicola, and J. Sifakis. “A Logic-Inspired Approach
to Reconfigurable System Modelling”. In: From Reactive Systems to
Cyber-Physical Systems. Springer, 2019.

[18] R. De Nicola, A. Maggi, and J. Sifakis. “The DReAM framework
for dynamic reconfigurable architecture modelling: theory and ap-
plications”. In: International Journal on Software Tools for Technology
Transfer, 2020.

8



Chapter 2

Preliminaries

Software systems have reached a level of complexity that calls for more
rigorous approaches to software design. When applied to classes of sys-
tems that globally consist of countless interacting components and feature
complex interaction patterns, the lack of rigorous methodologies and for-
mally grounded frameworks for modeling them increases the risks of
undesirable interference and unpredictable outcomes. These risks are
amplified by the fact that these systems are usually distributed, heteroge-
neous, interdependent, and are operating in unpredictable environments.
To cope with these issues, software needs to be developed in order to
continuously adapt to internal changes and to external ones happening
in the environment.

Correct design of such systems, even those traditionally not classified
as “critical”, is becoming more and more important as they become in-
creasingly interconnected and the fault of few can cause ripple effects on
many others. This challenge has been faced by practitioners using two
very distinct approaches:

1. a “production-centric” approach revolving mainly on organizational
frameworks for the software life-cycle management that leverage
best practices to guide software design and development;

2. a “formal” approach providing sound mathematical models of com-

9



putation that can be used to specify software systems and verify
qualitative and quantitative properties theoretically.

Discussing the merits and limitations of the former approach is beyond
the scope of this Thesis, which will focus on the latter instead.

This Chapter is organized as follows.
Section 2.1 presents an overview of two different approaches to soft-

ware modeling, namely Process Description Languages and Architecture De-
scription Languages.

Section 2.2 shifts the perspective to coordination paradigms for
component-based software modeling, comparing the exogenous coordina-
tion approach with the endogenous one.

Section 2.3 focuses on the BIP framework and some of the main rep-
resentatives of its derived formalisms showing how they relate with the
taxonomy discussed in Section 2.2. This will also provide the basis upon
which the frameworks discussed in this Thesis have been devised.

2.1 Approaches to software systems modeling

To formalize a system specification there are many approaches that can
be adopted which depend on the perspective that we assume. We could
focus on the description of how individual elements of a system behave
by defining precise rules that allow to reconstruct the exact execution
trajectory down to its sequence of states. However, if we are more inter-
ested in capturing dependency relationships between components that
constitute a system and how they interact with one another, we might
adopt instead an approach that highlights the overall structure of the
system and treats other aspects with coarser approximation. These are
just two examples in a wide range of different dimensions in which it is
possible to organize the many formalisms and frameworks that allow to
write software-intensive system specifications. Among these, two broad
categories relating to the two orthogonal perspectives that we have just
introduced are Process Description Languages and Architecture Description
Languages.

10



2.1.1 Process Description Languages

Process Description Languages (PDLs) are backed by a rich theory de-
veloped in the last three decades that formalizes the semantics of concur-
rent programming allowing to understand various functional and non-
functional aspects of concurrent, distributed and mobile systems.

As of now there exist a large number of instances of PDLs, but over-
all they share a common ground: they can be generally described as
action-based formalisms relying on behavioral operators that support com-
positionality and abstraction, where the meaning of process terms is for-
mally defined via structural operational semantics rules that induce a
state transition graph over the process term.

Compositionality and abstraction are key concepts in the formalism
as they enable the definition of behavioral equivalences. Such equivalences
permit manipulations at syntax and semantics level that allow to focus
on specific aspects of a system and to fix the necessary granularity of the
specification by possibly abstracting from unnecessary details. By exploit-
ing them it is possible to verify whether a system behavior conforms to a
given specification, i.e., a reference model describing the expected abstract
behavior of an application. This approach is generally called equivalence
checking.

PDLs, when equipped with an operational semantics, do support also
another kind of verification technique known as model checking. The goal
of this approach is to verify whether a given system satisfies some proper-
ties, often expressed via an appropriate logic. The fundamental difference
between model checking and equivalence checking lies in the fact that
properties need not be a full specification of the intended behavior, but
they might deal with specific characteristics of the system (e.g. deadlock
freedom).

Notable representatives of PDLs well recognized in scientific literature
are, among others, CSP (Communicating Sequential Processes) [28, 29],
CCS (Calculus of Communicating Systems) [40] and π-calculus [41].

The expressive power and flexibility of this class of formalisms lent
themselves to extensions that go beyond the initial scope of modeling

11



functional system behavior. Few examples of them allowing to capture
quantitative features are timed and probabilistic process calculi [3, 26, 44].

2.1.2 Architecture Description Languages

Architecture description languages (ADLs) are formal languages that can be
used to represent the architecture of a software-intensive system. With
the term architecture we refer to the description of the components that
comprise a system, the behavioral specifications of those components,
and the patterns and mechanisms for their interactions. Note that a sin-
gle system is usually composed of more than one type of component:
modules, tasks, functions, etc. An architecture can choose the type of
components most appropriate or informative, or it can include multiple
views of the same system, each illustrating different components.

As software architectures became a dominating theme in large system
development and acquisition, methods for unambiguously specifying
them have become more and more important. The main notions were
already identified in the early ’90s [25, 57]: components abstracting com-
putations and data repositories, connectors abstracting the interaction
protocols used among components. Since then, a rich research literature
has accompanied the development of several ADLs, experimenting with
different approaches to architecture specification.

Despite the efforts put into place by the scientific community, rigor-
ous approaches to software architectures have yet to reach mainstream
attention within the community of developers. Indeed, as highlighted in
[38] and [58], the process of software development in the industry has
been heavily influenced by organizational frameworks fostering “agile”
methodologies that encourage quick iterations and fast prototyping, but
has not yet tied these practices with formalized frameworks that bind ar-
chitectural descriptions with their implementations. In fact, practitioners
are still heavily relying on informal circle-and-line drawings and semi-
formal approaches that exhibit very weak support for architecture speci-
fication such as UML [32]. This makes traceability between architectural
documentation and actual code ambiguous and challenging, diminish-

12



ing the incentive to keep the former up-to-date with the latter, which in
turn discourages a wider adoption of structured approaches addressing
architectural aspects of software design like ADLs.

However, agile development is not inherently in contrast with rigor-
ous architecture description approaches. The reasons behind the “resis-
tance” to ADLs adoption are manifold. On one hand the constellation of
proposed languages and their different characteristics prevents potential
adopters to get a clear picture of what each one has to offer and how using
them could be beneficial in the scope of software development. Further-
more surveys on the main acknowledged ADLs [17, 22, 47] have revealed
the presence of “gaps” in the formal semantics associated to some of the
languages, thus making early analysis of system architectures in such in-
stances difficult or even impossible. Paired with what seems to be one of
the biggest obstacles in the adoption - i.e. the complexity of the languages
and the absence of an industrial standard [38] - this results in spotty usage
of the more sophisticated languages for architectures specification.

Commonalities and discriminators among ADLs

Early architecture description languages such as ArTek [56], CODE [42],
COMMUNITY [21], Darwin [36], Demeter [48], Modechart [34], PSDL/-
CAPS [8], Rapide [35], Resolve [19], UniCon [54] and Wright [4], provided
an already rich and diversified collection of approaches to the problem
before the turn of the century.

Comparative studies [17] showed how each language agreed on a
number of common aspects that contributed to an empirical notion of
what constitutes an ADL, and conversely exhibited differentiating fac-
tors that traced back to the area of expertise of the groups behind their
development.

Among the common characteristics shared by most of these ADLs it
is worth mentioning:

– presence of a formally-defined graphical and textual syntax (usually
accompanied with the respective semantics);

13



– capability to handle data flow and control flow as interconnection
mechanisms;

– support for creation, validation and refinement of architectures;

– ability to represent hierarchical levels of detail and to handle multiple
instantiations of templates;

– absence of significant support for capturing design rationale and/or
history.

Among the discriminant aspects which differentiated these early
ADLs the following stand out:

– ability to handle real-time constructs at the architectural level;

– support for specification of particular architectural styles;

– ability to allow a user to define new types of components and connectors,
define new statements and represent non-architectural information;

– possibility of user-defined definitions of the concept of “consis-
tency”;

– ability to handle variability at the level of architecture instantiation;

– support to systems analysis.

The last point of discrimination deserves additional attention because
providing means to perform analysis of architectures is in fact one of the
main arguments supporting the usage of ADLs against general-purpose
languages like UML.

Indeed while most of the languages supported analysis capabilities,
in their initial versions few of them provided actual tools to perform ar-
chitecture analysis. Among those which offered such tools, the approach
to analysis was also very different between one another. For instance,
Rapide features a discrete-event simulator based on partially-ordered
sets of event behaviors, while Modechart uses a model-checker to verify

14



whether a system description guarantees, prohibits or is compatible with
a given logical assertion.

More recent languages for architecture design - such as AADL [20],
ADR [15], Alloy [33], CONNECT [31], COSA [46], PiLar [53], PRISMA
[49] and SOFA [52] - proved to offer consistently a broader coverage of
features while balancing out complexity by narrowing their scope (e.g.,
enabling specification of architectural styles but limiting it to their coor-
dination patterns, or offering complete typing of structural concepts and
equivalence relations between them but only for static parametric sys-
tems). As shown in [47], the diversification process involved mainly the
focus on specific capabilities of the language or the support tools, but they
can be roughly arranged in two broad categories: the component-only ap-
proach and the component-and-connector one. We will go into more details
on them and how they compare to each other in section 2.2.

2.2 Approaches to components coordination

In section 2.1 we provided an overview of two broad categories of ap-
proaches to model software-intensive systems. Another way of looking
at them is focusing on the way coordination between elements of such sys-
tems is realized, i.e., how to define which actions synchronize/interleave
and under which circumstances. We can single out two main coordina-
tion paradigms, namely the exogenous and the endogenous ones.

2.2.1 Exogenous coordination paradigms

The exogenous approach to coordination assumes that components are
architecture-agnostic, self-contained building blocks that can be com-
bined to form a complex system by “gluing” them together. The glue
here is what defines coordination between components, and can be spec-
ified in multiple ways, e.g. by means of specific connectors that define
explicitly which components can interact, under which conditions and to
what effect.

This paradigm guarantees a strict separation between a component

15



behavior and its coordination capabilities with other components. As
such, it is conceptually closer to the domain of ADLs.

One of the main advantages of the exogenous approach is that com-
ponents can be designed individually as they are architecture and coordi-
nation agnostic, and thus support code reuse. The architecture defining
how components interact and communicate (i.e., the glue) can be de-
signed separately, and to do so only some knowledge of the interface of
the involved components (i.e., the minimal information that character-
izes their endpoints for interaction) is required. An approach that can be
considered a representative of this paradigm is REO [5], which indeed
focuses purely on the composition of connectors abstracting the inner
behavior of components.

This “global” perspective from which coordination between compo-
nents is defined offers full expressive power to realize any interaction
pattern, but for large systems it can make architecture specification cum-
bersome as it cannot always be developed incrementally.

2.2.2 Endogenous coordination paradigms

The endogenous approach requires adding explicit coordination primitives
in the code describing components behavior.

Many PDLs can be related to this approach: for example all those
where synchronization between components happens by matching com-
patible actions embedded in their individual behaviors (e.g., the interface
parallel operator in CSP). Systems specified with this paradigm can be
built incrementally by composing individual components via specific op-
erators such as the parallel composition and the interface parallel.

An advantage of endogenous coordination is that it does not require
programmers to explicitly build a global coordination model when writ-
ing the specification of a system. The coordination model emerges as
the result of the composition of individual behaviors in which the com-
munication actions are embedded. However, validating a coordination
mechanism and studying its properties becomes much harder without
such a coordination model, requiring specific techniques (such as model

16



checking for process calculi) that usually can only be applied to subsets
of a system, simplified versions of it, or under specific hypotheses.

2.3 BIP-based Formalisms

BIP can be considered a “close relative” of ADLs in which systems are
defined as sets of components glued together using connectors. Despite
sharing some structuring concepts and a fundamentally exogenous coor-
dination approach, BIP differentiates from many ADLs in that it offers
a fully formalized operational semantics, a mathematical model to rep-
resent, combine and analyze interactions, and a comprehensive set of
tools for code synthesis, embedding and verification. This makes BIP a
viable choice to design and model different classes of systems, but also
a robust platform upon which several modeling formalisms have been
built - including the frameworks covered by this Thesis.

2.3.1 BIP: Behavior, Interaction, Priority

BIP was developed to model heterogeneous real-time component-based
systems. Within the framework, components are obtained as the super-
position of three layers that give name to the framework itself: Behavior,
Interaction between transitions of the behavior in the form of a set of con-
nectors, and Priority to describe the scheduling policies of interactions.

The framework is designed to allow incremental construction of sys-
tems starting from atomic components (see figure 2) combined through
a parametrized binary composition operator [27] that acts on each respec-
tive layers separately and preserves deadlock-freedom. Parameters are
used to define new interactions as well as new priority rules between the
composed components.

BIP also supports heterogeneity by providing two mechanisms for
structuring interaction: rendezvous for strong synchronization, and broad-
cast for weak synchronization.

17



Atomic components The structured syntax of atomic components is
reported in figure 1. Atomic components in BIP are characterized by:

– a set of ports P = {p1 . . . pn}, names used for synchronization with
other components;

– a set of control states S = {s1 . . . sk}, denoting locations at which
components wait for synchronization;

– a set of variables V used to store data;

– a set of transitions modeling atomic computation steps, each one
being a tuple of the form (s1, p, gp, fp, s2) representing a step from
control state s1 to s2 with guard gp (Boolean condition on V ) and
internal computation fp on V .

It should be noted that guards and statements in the behavior of the com-
ponent are C expressions and statements, respectively, and that they are
restricted with the assumption of atomicity for transitions (e.g. they have
no side-effects and their termination is guaranteed).

transition means that the associated guard is true and the
internal computation microstep is empty. The syntax for
atomic components in BIP is the following:

atom::=
component component id

port port id+

[data type id data id+]
behavior
{state state id

{on port id [provided guard]
[do statement] to state id}+}+

end
end

That is, an atomic component consists of a declaration fol-
lowed by the definition of its behavior. Declaration consists
of ports and data. Ports are identifiers and for data, basic C
types can be used. In the behavior, guard and statement
are C expressions and statements respectively. We assume
that these are adequately restricted to respect the atomicity
assumption for transitions e.g. no side effects, guaranteed
termination.

Behavior is defined by a set of transitions. The keyword
state is followed by a control state and the list of outgoing
transitions from this state. Each transition is labelled by a
port identifier followed by its guard, function and a target
state.

The BIP description of the reactive component of fig-
ure 1 is:

component Reactive
port in, out
data int x, y
behavior

state empty
on in provided 0 < x do y:=f(x) to full

state full
on out to empty

end
end

2.2. Connectors and Interactions

Components are built from a set of atomic components
with disjoint sets of names for ports, control states, variables
and transitions.

Notation: We simplify the notation for sets of ports
in the following manner. We write p1|p2|p3|p4 for the
set {p1, p2, p3, p4} by considering that singletons are com-
posed by using the associative and commutative operation
|.

A connector γ is a set of ports of atomic components
which can be involved in an interaction. We assume that

connectors contain at most one port from each atomic com-
ponent. An interaction of γ is any non empty subset of this
set. For example, if p1, p2, p3 are ports of distinct atomic
components, then the connector γ = p1|p2|p3 has seven
interactions: p1, p2, p3, p1|p2, p1|p3, p2|p3, p1|p2|p3. Each
non trivial interaction i.e., interaction with more than one
port, represents a synchronization between transitions la-
beled with its ports.

Following results in [11], we introduce a typing mech-
anism to specify the feasible interactions of a connector γ,
in particular to express the following two basic modes of
synchronization:

• Strong synchronization or rendezvous, when the only
feasible interaction of γ is the maximal one, i.e., it con-
tains all the ports of γ.

• Weak synchronization or broadcast, when feasible in-
teractions are all those containing a particular port
which initiates the broadcast. That is, if γ = p1|p2|p3

and the broadcast is initiated by p1, then the feasible
interactions are p1, p1|p2, p1|p3, p1|p2|p3.

The typing mechanism distinguishes between complete
and incomplete interactions with the following restriction:
All the interactions containing some complete interaction
are complete; dually, all the interactions contained in in-
complete interactions are incomplete. An interaction of a
connector is feasible if it is complete or if it is maximal.

Preservation of completeness by inclusion of interactions
allows a simple characterization of interaction types. It is
sufficient, for a connector γ to give the set of its minimal
complete interactions. For example, if γ = p1|p2|p3|p4 and
the minimal complete interactions are p1 and p2|p3, then the
set of the feasible interactions are p1, p2|p3, p1|p4, p2|p3|p4,
p1|p2|p3, p1|p2|p3|p4.

If the set of the complete interactions of a connector is
empty, that is all its interactions are incomplete, then syn-
chronization is by rendezvous. Broadcast through a port
p1 triggering transitions labeled by ports p2, . . . , pn can be
specified by taking p1 as the only minimal complete inter-
action.

The syntax for connectors is the following:

interaction ::= port id+

connector::=
connector conn id = port id+

[complete = interaction+]
[behavior

{on interaction [provided guard] [do statement]}+

end]

That is, a connector description includes its set of ports fol-
lowed by the optional list of its minimal complete interac-
tions and its behavior. If the list of the minimal complete

Figure 1: Abstract syntax for atomic components [9]

Figure 2 illustrates an example of an atomic BIP component with two
ports (in and out), two control states (empty and full), two variables (x and
y), and two transitions (in and out). Notice that the transition in from
control state empty to full has a guard and a statement associated to it,
requiring that the variable x is greater than 0 to activate and causing y to
get assigned the value f(x) as a result.

18



behavior and structure (connectors and priority rules).

• It uses a parameterized binary composition operator on
components. The product of two components consists
in composing their corresponding layers separately.
Parameters are used to define new interactions as well
as new priority rules between the composed compo-
nents [11, 13]. The use of such a composition opera-
tor allows incremental construction. That is, any com-
pound component can be obtained by successive com-
position of its constituents. This is a generalization of
the associativity/commutativity property for composi-
tion operators whose parameters depend on the order
of composition.

• It encompasses heterogeneity. It provides a power-
ful mechanism for structuring interactions involving
strong synchronization (rendezvous) or weak synchro-
nization (broadcast). Synchronous execution is charac-
terized as a combination of properties of the three lay-
ers. Finally, timed components can be obtained from
untimed components by applying a structure preserv-
ing transformation of the three layers.

• It allows considering the system construction pro-
cess as a sequence of transformations in a three-
dimensional space: Behavior × Interaction ×
Priority. A transformation is the result of the su-
perposition of elementary transformations for each di-
mension. This provides a basis for the study of prop-
erty preserving transformations or transformations be-
tween subclasses of systems such as untimed/timed,
asynchronous/synchronous and event-triggered/data-
triggered.

The paper is structured as follows. Section 2 presents the
BIP language and the underlying concepts for component
composition. Section 3 presents the operational semantics
of the language and associated tools for execution and anal-
ysis. Section 4 shows that timed and synchronous systems
correspond to particular classes of BIP components. This is
illustrated by examples provided in Section 5. Finally, Sec-
tion 6 discusses some more fundamental issues about the
component construction space and its properties.

2. The BIP language — Basics for Component
Composition

The BIP language supports a methodology for building
components from:

• atomic components, a class of components with behav-
ior specified as a set of transitions and having empty
interaction and priority layers. Triggers of transitions

include ports which are action names used for synchro-
nization.

• connectors used to specify possible interaction pat-
terns between ports of atomic components.

• priority relations used to select amongst possible inter-
actions according to conditions depending on the state
of the integrated atomic components.

We provide a description of the main features of the lan-
guage.

2.1. Atomic Components

An atomic component consists of:

• A set of ports P = {p1 . . . pn}. Ports are action names
used for synchronization with other components.

• A set of control states S = {s1 . . . sk}. Control states
denote locations at which the components await for
synchronization.

• A set of variables V used to store (local) data.

• A set of transitions modeling atomic computa-
tion steps. A transition is a tuple of the form
(s1, p, gp, fp, s2), representing a step from control
state s1 to s2. It can be executed if the guard (boolean
condition on V ) gp is true and some interaction in-
cluding port p is offered. Its execution is an atomic
sequence of two microsteps: 1) an interaction includ-
ing p which involves synchronization between compo-
nents with possible exchange of data, followed by 2)
an internal computation specified by the function fp on
V . That is, if v is a valuation of V after the interaction,
then fp(v) is the new valuation when the transition is
completed.

full

empty
in

[0<x]
y:=f(x)

in

ou
t

out

Figure 1. An atomic component.

Figure 1 shows an atomic reactive component with two
ports in, out, variables x, y, and control states empty, full.
At control state empty, the transition labeled in is possible
if 0 < x. When an interaction through in takes place, the
variable x is eventually modified and a new value for y is
computed. From control state full, the transition labeled
out can occur. The omission of guard and function for this

(a) Graphical representation

transition means that the associated guard is true and the
internal computation microstep is empty. The syntax for
atomic components in BIP is the following:

atom::=
component component id

port port id+

[data type id data id+]
behavior
{state state id

{on port id [provided guard]
[do statement] to state id}+}+

end
end

That is, an atomic component consists of a declaration fol-
lowed by the definition of its behavior. Declaration consists
of ports and data. Ports are identifiers and for data, basic C
types can be used. In the behavior, guard and statement
are C expressions and statements respectively. We assume
that these are adequately restricted to respect the atomicity
assumption for transitions e.g. no side effects, guaranteed
termination.

Behavior is defined by a set of transitions. The keyword
state is followed by a control state and the list of outgoing
transitions from this state. Each transition is labelled by a
port identifier followed by its guard, function and a target
state.

The BIP description of the reactive component of fig-
ure 1 is:

component Reactive
port in, out
data int x, y
behavior

state empty
on in provided 0 < x do y:=f(x) to full

state full
on out to empty

end
end

2.2. Connectors and Interactions

Components are built from a set of atomic components
with disjoint sets of names for ports, control states, variables
and transitions.

Notation: We simplify the notation for sets of ports
in the following manner. We write p1|p2|p3|p4 for the
set {p1, p2, p3, p4} by considering that singletons are com-
posed by using the associative and commutative operation
|.

A connector γ is a set of ports of atomic components
which can be involved in an interaction. We assume that

connectors contain at most one port from each atomic com-
ponent. An interaction of γ is any non empty subset of this
set. For example, if p1, p2, p3 are ports of distinct atomic
components, then the connector γ = p1|p2|p3 has seven
interactions: p1, p2, p3, p1|p2, p1|p3, p2|p3, p1|p2|p3. Each
non trivial interaction i.e., interaction with more than one
port, represents a synchronization between transitions la-
beled with its ports.

Following results in [11], we introduce a typing mech-
anism to specify the feasible interactions of a connector γ,
in particular to express the following two basic modes of
synchronization:

• Strong synchronization or rendezvous, when the only
feasible interaction of γ is the maximal one, i.e., it con-
tains all the ports of γ.

• Weak synchronization or broadcast, when feasible in-
teractions are all those containing a particular port
which initiates the broadcast. That is, if γ = p1|p2|p3

and the broadcast is initiated by p1, then the feasible
interactions are p1, p1|p2, p1|p3, p1|p2|p3.

The typing mechanism distinguishes between complete
and incomplete interactions with the following restriction:
All the interactions containing some complete interaction
are complete; dually, all the interactions contained in in-
complete interactions are incomplete. An interaction of a
connector is feasible if it is complete or if it is maximal.

Preservation of completeness by inclusion of interactions
allows a simple characterization of interaction types. It is
sufficient, for a connector γ to give the set of its minimal
complete interactions. For example, if γ = p1|p2|p3|p4 and
the minimal complete interactions are p1 and p2|p3, then the
set of the feasible interactions are p1, p2|p3, p1|p4, p2|p3|p4,
p1|p2|p3, p1|p2|p3|p4.

If the set of the complete interactions of a connector is
empty, that is all its interactions are incomplete, then syn-
chronization is by rendezvous. Broadcast through a port
p1 triggering transitions labeled by ports p2, . . . , pn can be
specified by taking p1 as the only minimal complete inter-
action.

The syntax for connectors is the following:

interaction ::= port id+

connector::=
connector conn id = port id+

[complete = interaction+]
[behavior

{on interaction [provided guard] [do statement]}+

end]

That is, a connector description includes its set of ports fol-
lowed by the optional list of its minimal complete interac-
tions and its behavior. If the list of the minimal complete

(b) Description in BIP

Figure 2: An atomic component in BIP (2a) and its formal description (2b)
[9]

Connectors and interactions Components are built from sets of atomic
components with disjoint sets of names for ports, control states, variables
and transitions.

A connector γ is a set of ports of atomic components which can be
involved in an interaction. Assuming that connectors contain at most one
port from each atomic components in the system, an interaction of γ is
any non empty subset of this set. Each interaction involving more than
one port represents a synchronization between transitions labeled with
its ports.

As already mentioned, interactions of a connector γ can express two
basic modes of synchronization:

19



– strong synchronization or rendezvous: the only feasible interaction of
γ is the maximal one (e.g. see figure 3);

– weak synchronization or broadcast: all the feasible interactions are
those containing a particular port which initiates the broadcast (e.g.
see figure 4).

interactions is omitted, then this is considered to be empty.
Connectors may have behavior specified as for transitions,
by a set of guarded commands associated with feasible in-
teractions. If α = p1|p2|...|pn is a feasible interaction then
its behavior is described by a statement of the form: on α
provided Gα do Fα, where Gα and Fα are respectively a
guard and a statement representing a function on the vari-
ables of the components involved in the interaction. As for
atomic components, guards and statements are C expression
and statements respectively.

The execution of α is possible if Gα is true. It atom-
ically changes the global valuation v of the synchronized
components to Fα(v).

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Figure 2. Interaction types.

We use a graphical notation for connectors in the form of
trees. The leaves are singleton interactions and the higher
level nodes are synchronization types. We denote an incom-
plete interaction by a bullet and a complete interaction by a
triangle. For example, consider the connector C1 described
below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and
p3 which is graphically represented in figure 2(a), where the
singleton incomplete interactions p1, p2, p3 are marked by
bullets. The behavior for the interaction p1|p2|p3 involves a
data transfer between the interacting components: the vari-
ables xi are assigned the maximum of their values if they
are not equal.

The following connector describes a broadcast initiated
by p1. The corresponding graphical representation is shown
in fig 2(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and
x3.

Notice that contrary to other formalisms, BIP does not
allow explicit distinction between inputs and outputs. For
simple data flow relation, variables can be interpreted as
inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3. Priorities

Given a system of interacting components, priorities are
used to filter interactions amongst the feasible ones depend-
ing on given conditions. The syntax for priorities is the fol-
lowing:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of
an ordered pair of interactions associated with a condition
(cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions.
When the condition holds and both interactions are enabled,
only the higher one is possible. Conditions can be omitted
for static priorities. The rules are extended for composition
of interactions. That is, the rule begin1 < begin2 means
that any interaction of the form begin2|q has higher priority
over interactions of the form begin1|q where q is an inter-
action.

2.4. Compound Components

A compound component allows defining new compo-
nents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors be-
tween them and the priorities. The syntax of a compound
component is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values
to their variables through a named association.

An example of a compound component named System
is shown in figure 3. It is the serial connection of three
reactive components, defined as:

component System
contains Reactive r1, r2, r3

connector C1 = r1.in

(a) Graphical representation

interactions is omitted, then this is considered to be empty.
Connectors may have behavior specified as for transitions,
by a set of guarded commands associated with feasible in-
teractions. If α = p1|p2|...|pn is a feasible interaction then
its behavior is described by a statement of the form: on α
provided Gα do Fα, where Gα and Fα are respectively a
guard and a statement representing a function on the vari-
ables of the components involved in the interaction. As for
atomic components, guards and statements are C expression
and statements respectively.

The execution of α is possible if Gα is true. It atom-
ically changes the global valuation v of the synchronized
components to Fα(v).

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Figure 2. Interaction types.

We use a graphical notation for connectors in the form of
trees. The leaves are singleton interactions and the higher
level nodes are synchronization types. We denote an incom-
plete interaction by a bullet and a complete interaction by a
triangle. For example, consider the connector C1 described
below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and
p3 which is graphically represented in figure 2(a), where the
singleton incomplete interactions p1, p2, p3 are marked by
bullets. The behavior for the interaction p1|p2|p3 involves a
data transfer between the interacting components: the vari-
ables xi are assigned the maximum of their values if they
are not equal.

The following connector describes a broadcast initiated
by p1. The corresponding graphical representation is shown
in fig 2(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and
x3.

Notice that contrary to other formalisms, BIP does not
allow explicit distinction between inputs and outputs. For
simple data flow relation, variables can be interpreted as
inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3. Priorities

Given a system of interacting components, priorities are
used to filter interactions amongst the feasible ones depend-
ing on given conditions. The syntax for priorities is the fol-
lowing:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of
an ordered pair of interactions associated with a condition
(cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions.
When the condition holds and both interactions are enabled,
only the higher one is possible. Conditions can be omitted
for static priorities. The rules are extended for composition
of interactions. That is, the rule begin1 < begin2 means
that any interaction of the form begin2|q has higher priority
over interactions of the form begin1|q where q is an inter-
action.

2.4. Compound Components

A compound component allows defining new compo-
nents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors be-
tween them and the priorities. The syntax of a compound
component is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values
to their variables through a named association.

An example of a compound component named System
is shown in figure 3. It is the serial connection of three
reactive components, defined as:

component System
contains Reactive r1, r2, r3

connector C1 = r1.in

(b) Description in BIP

Figure 3: A connector representing strong synchronization between the com-
ponents involved in BIP (3a) and its formal description (3b) [9]

interactions is omitted, then this is considered to be empty.
Connectors may have behavior specified as for transitions,
by a set of guarded commands associated with feasible in-
teractions. If α = p1|p2|...|pn is a feasible interaction then
its behavior is described by a statement of the form: on α
provided Gα do Fα, where Gα and Fα are respectively a
guard and a statement representing a function on the vari-
ables of the components involved in the interaction. As for
atomic components, guards and statements are C expression
and statements respectively.

The execution of α is possible if Gα is true. It atom-
ically changes the global valuation v of the synchronized
components to Fα(v).

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Figure 2. Interaction types.

We use a graphical notation for connectors in the form of
trees. The leaves are singleton interactions and the higher
level nodes are synchronization types. We denote an incom-
plete interaction by a bullet and a complete interaction by a
triangle. For example, consider the connector C1 described
below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and
p3 which is graphically represented in figure 2(a), where the
singleton incomplete interactions p1, p2, p3 are marked by
bullets. The behavior for the interaction p1|p2|p3 involves a
data transfer between the interacting components: the vari-
ables xi are assigned the maximum of their values if they
are not equal.

The following connector describes a broadcast initiated
by p1. The corresponding graphical representation is shown
in fig 2(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and
x3.

Notice that contrary to other formalisms, BIP does not
allow explicit distinction between inputs and outputs. For
simple data flow relation, variables can be interpreted as
inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3. Priorities

Given a system of interacting components, priorities are
used to filter interactions amongst the feasible ones depend-
ing on given conditions. The syntax for priorities is the fol-
lowing:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of
an ordered pair of interactions associated with a condition
(cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions.
When the condition holds and both interactions are enabled,
only the higher one is possible. Conditions can be omitted
for static priorities. The rules are extended for composition
of interactions. That is, the rule begin1 < begin2 means
that any interaction of the form begin2|q has higher priority
over interactions of the form begin1|q where q is an inter-
action.

2.4. Compound Components

A compound component allows defining new compo-
nents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors be-
tween them and the priorities. The syntax of a compound
component is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values
to their variables through a named association.

An example of a compound component named System
is shown in figure 3. It is the serial connection of three
reactive components, defined as:

component System
contains Reactive r1, r2, r3

connector C1 = r1.in

(a) Graphical representation

interactions is omitted, then this is considered to be empty.
Connectors may have behavior specified as for transitions,
by a set of guarded commands associated with feasible in-
teractions. If α = p1|p2|...|pn is a feasible interaction then
its behavior is described by a statement of the form: on α
provided Gα do Fα, where Gα and Fα are respectively a
guard and a statement representing a function on the vari-
ables of the components involved in the interaction. As for
atomic components, guards and statements are C expression
and statements respectively.

The execution of α is possible if Gα is true. It atom-
ically changes the global valuation v of the synchronized
components to Fα(v).

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Figure 2. Interaction types.

We use a graphical notation for connectors in the form of
trees. The leaves are singleton interactions and the higher
level nodes are synchronization types. We denote an incom-
plete interaction by a bullet and a complete interaction by a
triangle. For example, consider the connector C1 described
below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and
p3 which is graphically represented in figure 2(a), where the
singleton incomplete interactions p1, p2, p3 are marked by
bullets. The behavior for the interaction p1|p2|p3 involves a
data transfer between the interacting components: the vari-
ables xi are assigned the maximum of their values if they
are not equal.

The following connector describes a broadcast initiated
by p1. The corresponding graphical representation is shown
in fig 2(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and
x3.

Notice that contrary to other formalisms, BIP does not
allow explicit distinction between inputs and outputs. For
simple data flow relation, variables can be interpreted as
inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3. Priorities

Given a system of interacting components, priorities are
used to filter interactions amongst the feasible ones depend-
ing on given conditions. The syntax for priorities is the fol-
lowing:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of
an ordered pair of interactions associated with a condition
(cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions.
When the condition holds and both interactions are enabled,
only the higher one is possible. Conditions can be omitted
for static priorities. The rules are extended for composition
of interactions. That is, the rule begin1 < begin2 means
that any interaction of the form begin2|q has higher priority
over interactions of the form begin1|q where q is an inter-
action.

2.4. Compound Components

A compound component allows defining new compo-
nents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors be-
tween them and the priorities. The syntax of a compound
component is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values
to their variables through a named association.

An example of a compound component named System
is shown in figure 3. It is the serial connection of three
reactive components, defined as:

component System
contains Reactive r1, r2, r3

connector C1 = r1.in

(b) Description in BIP

Figure 4: A connector representing weak synchronization between the com-
ponents involved in BIP (4a) and its formal description (4b) [9]

A connector description includes its set of ports followed by the op-
tional list of its minimal complete interactions and its behavior (figure 5).
The latter can be specified by a set of guarded commands associated with
feasible interactions like for transitions of atomic components.

20



transition means that the associated guard is true and the
internal computation microstep is empty. The syntax for
atomic components in BIP is the following:

atom::=
component component id

port port id+

[data type id data id+]
behavior
{state state id

{on port id [provided guard]
[do statement] to state id}+}+

end
end

That is, an atomic component consists of a declaration fol-
lowed by the definition of its behavior. Declaration consists
of ports and data. Ports are identifiers and for data, basic C
types can be used. In the behavior, guard and statement
are C expressions and statements respectively. We assume
that these are adequately restricted to respect the atomicity
assumption for transitions e.g. no side effects, guaranteed
termination.

Behavior is defined by a set of transitions. The keyword
state is followed by a control state and the list of outgoing
transitions from this state. Each transition is labelled by a
port identifier followed by its guard, function and a target
state.

The BIP description of the reactive component of fig-
ure 1 is:

component Reactive
port in, out
data int x, y
behavior

state empty
on in provided 0 < x do y:=f(x) to full

state full
on out to empty

end
end

2.2. Connectors and Interactions

Components are built from a set of atomic components
with disjoint sets of names for ports, control states, variables
and transitions.

Notation: We simplify the notation for sets of ports
in the following manner. We write p1|p2|p3|p4 for the
set {p1, p2, p3, p4} by considering that singletons are com-
posed by using the associative and commutative operation
|.

A connector γ is a set of ports of atomic components
which can be involved in an interaction. We assume that

connectors contain at most one port from each atomic com-
ponent. An interaction of γ is any non empty subset of this
set. For example, if p1, p2, p3 are ports of distinct atomic
components, then the connector γ = p1|p2|p3 has seven
interactions: p1, p2, p3, p1|p2, p1|p3, p2|p3, p1|p2|p3. Each
non trivial interaction i.e., interaction with more than one
port, represents a synchronization between transitions la-
beled with its ports.

Following results in [11], we introduce a typing mech-
anism to specify the feasible interactions of a connector γ,
in particular to express the following two basic modes of
synchronization:

• Strong synchronization or rendezvous, when the only
feasible interaction of γ is the maximal one, i.e., it con-
tains all the ports of γ.

• Weak synchronization or broadcast, when feasible in-
teractions are all those containing a particular port
which initiates the broadcast. That is, if γ = p1|p2|p3

and the broadcast is initiated by p1, then the feasible
interactions are p1, p1|p2, p1|p3, p1|p2|p3.

The typing mechanism distinguishes between complete
and incomplete interactions with the following restriction:
All the interactions containing some complete interaction
are complete; dually, all the interactions contained in in-
complete interactions are incomplete. An interaction of a
connector is feasible if it is complete or if it is maximal.

Preservation of completeness by inclusion of interactions
allows a simple characterization of interaction types. It is
sufficient, for a connector γ to give the set of its minimal
complete interactions. For example, if γ = p1|p2|p3|p4 and
the minimal complete interactions are p1 and p2|p3, then the
set of the feasible interactions are p1, p2|p3, p1|p4, p2|p3|p4,
p1|p2|p3, p1|p2|p3|p4.

If the set of the complete interactions of a connector is
empty, that is all its interactions are incomplete, then syn-
chronization is by rendezvous. Broadcast through a port
p1 triggering transitions labeled by ports p2, . . . , pn can be
specified by taking p1 as the only minimal complete inter-
action.

The syntax for connectors is the following:

interaction ::= port id+

connector::=
connector conn id = port id+

[complete = interaction+]
[behavior

{on interaction [provided guard] [do statement]}+

end]

That is, a connector description includes its set of ports fol-
lowed by the optional list of its minimal complete interac-
tions and its behavior. If the list of the minimal complete

Figure 5: Abstract syntax for connectors [9]

Priorities Priorities are used to filter interactions among the feasible
ones depending on given conditions (refer to figure 6 for their syntax).
Namely, priorities are a set of rules consisting of ordered pairs of inter-
actions associated with a condition on the variables of the components
involved in the interactions: when the condition holds and both interac-
tions are enabled, only the one with higher priority is possible.

interactions is omitted, then this is considered to be empty.
Connectors may have behavior specified as for transitions,
by a set of guarded commands associated with feasible in-
teractions. If α = p1|p2|...|pn is a feasible interaction then
its behavior is described by a statement of the form: on α
provided Gα do Fα, where Gα and Fα are respectively a
guard and a statement representing a function on the vari-
ables of the components involved in the interaction. As for
atomic components, guards and statements are C expression
and statements respectively.

The execution of α is possible if Gα is true. It atom-
ically changes the global valuation v of the synchronized
components to Fα(v).

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Figure 2. Interaction types.

We use a graphical notation for connectors in the form of
trees. The leaves are singleton interactions and the higher
level nodes are synchronization types. We denote an incom-
plete interaction by a bullet and a complete interaction by a
triangle. For example, consider the connector C1 described
below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and
p3 which is graphically represented in figure 2(a), where the
singleton incomplete interactions p1, p2, p3 are marked by
bullets. The behavior for the interaction p1|p2|p3 involves a
data transfer between the interacting components: the vari-
ables xi are assigned the maximum of their values if they
are not equal.

The following connector describes a broadcast initiated
by p1. The corresponding graphical representation is shown
in fig 2(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and
x3.

Notice that contrary to other formalisms, BIP does not
allow explicit distinction between inputs and outputs. For
simple data flow relation, variables can be interpreted as
inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3. Priorities

Given a system of interacting components, priorities are
used to filter interactions amongst the feasible ones depend-
ing on given conditions. The syntax for priorities is the fol-
lowing:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of
an ordered pair of interactions associated with a condition
(cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions.
When the condition holds and both interactions are enabled,
only the higher one is possible. Conditions can be omitted
for static priorities. The rules are extended for composition
of interactions. That is, the rule begin1 < begin2 means
that any interaction of the form begin2|q has higher priority
over interactions of the form begin1|q where q is an inter-
action.

2.4. Compound Components

A compound component allows defining new compo-
nents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors be-
tween them and the priorities. The syntax of a compound
component is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values
to their variables through a named association.

An example of a compound component named System
is shown in figure 3. It is the serial connection of three
reactive components, defined as:

component System
contains Reactive r1, r2, r3

connector C1 = r1.in

Figure 6: Syntax for priorities [9]

Architectures in BIP

Generally speaking, an architecture can be considered as an operator A
that, applied to a set of components B, realizes a composite component
A (B) that satisfies a characteristic property Φ.

The need of combining multiple architectural solutions over a set of
components to achieve some global property by defining an operator “⊕”
for architecture composition is stressed in [6].

In other words, if we consider two architectures A1 and A2 enforc-
ing respectively properties Φ1 and Φ2 on a set of components B - that is
A1 (B) |= Φ1 and A2 (B) |= Φ2 - then it is desirable that the composed
architecture A1 ⊕A2 applied to the same set of components satisfies both
properties - i.e. (A1 ⊕A2) (B) |= Φ1 ∧ Φ2.

21



In this formalization, architectures are solutions to specific coordina-
tion problems associated to the relevant properties that must hold. Es-
sentially, an architecture enforces constraints on the possible interactions
over the ports of the components involved. For instance, in the example
reported in figure 7, the architecture ensuring mutual exclusion between
the working components is the one that allows only the interactions be-
tween the following pairs of ports: {b1, b12} , {b2, b12} , {f1, f12} , {f2, f12}.

5

Intuitively, an architecture A enforces coordination constraints on the com-
ponents in B. The interface PA of an architecture A contains all ports of the
coordinating components C and some additional ports, which must belong to
the components in B. In the application A(B), the ports belonging to PA can
only participate in the interactions defined by the interaction model � of A.
Ports that do not belong to PA are not restricted and can participate in any
interaction. In particular, they can join the interactions in � (see (3)). If the
interface of the architecture covers all ports of the system, i.e. P = PA, we have
2P\PA = {;} and the only interactions allowed in A(B) are those belonging to �.
Finally, the definition of �0 k �00, above, requires that an interaction from each
of �0 and �00 be involved in every interaction belonging to �0 k �00. To enable
independent progress in (3), one must have ; 2 �. (Notice that ; 2 2P\PA holds
always.)

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)

Fig. 1: Component (a) and coordinator (b) for Ex. 1 (the initial states of the
components are shaded).

Example 1 (Mutual exclusion). Consider the components B1 and B2 in Fig. 1(a).
In order to ensure mutual exclusion of their work states, we apply the ar-
chitecture A12 = ({C12}, P12, �12), where C12 is shown in Fig. 1(b), P12 =
{b1, b2, b12, f1, f2, f12} and �12 =

�
;, {b1, b12}, {b2, b12}, {f1, f12}, {f2, f12}

 
.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the
only possible interactions are those explicitly belonging to �12. Assuming that
the initial states of B1 and B2 are sleep, and that of C12 is free, neither of
the two states (free, work, work) and (taken, work, work) is reachable, i.e. the
mutual exclusion property (q1 6= work)_ (q2 6= work)—where q1 and q2 are state
variables of B1 and B2 respectively—holds in A12(B1, B2).

Let B3 be a third component, similar to B1 and B2, with the inter-
face {b3, f3}. Since b3, f3 62 P12, the interaction model of the application
A12(B1, B2, B3) is �12 k

�
;, {b3}, {f3}

 
. (We omit the interaction {b3, f3}, since

b3 and f3 are never enabled in the same state and, therefore, cannot be fired si-
multaneously.) Thus, the component A12(B1, B2, B3) is the unrestricted product
of the components A12(B1, B2) and B3. The application of A12 enforces mutual

(a) components

5

Intuitively, an architecture A enforces coordination constraints on the com-
ponents in B. The interface PA of an architecture A contains all ports of the
coordinating components C and some additional ports, which must belong to
the components in B. In the application A(B), the ports belonging to PA can
only participate in the interactions defined by the interaction model � of A.
Ports that do not belong to PA are not restricted and can participate in any
interaction. In particular, they can join the interactions in � (see (3)). If the
interface of the architecture covers all ports of the system, i.e. P = PA, we have
2P\PA = {;} and the only interactions allowed in A(B) are those belonging to �.
Finally, the definition of �0 k �00, above, requires that an interaction from each
of �0 and �00 be involved in every interaction belonging to �0 k �00. To enable
independent progress in (3), one must have ; 2 �. (Notice that ; 2 2P\PA holds
always.)

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)

Fig. 1: Component (a) and coordinator (b) for Ex. 1 (the initial states of the
components are shaded).

Example 1 (Mutual exclusion). Consider the components B1 and B2 in Fig. 1(a).
In order to ensure mutual exclusion of their work states, we apply the ar-
chitecture A12 = ({C12}, P12, �12), where C12 is shown in Fig. 1(b), P12 =
{b1, b2, b12, f1, f2, f12} and �12 =

�
;, {b1, b12}, {b2, b12}, {f1, f12}, {f2, f12}

 
.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the
only possible interactions are those explicitly belonging to �12. Assuming that
the initial states of B1 and B2 are sleep, and that of C12 is free, neither of
the two states (free, work, work) and (taken, work, work) is reachable, i.e. the
mutual exclusion property (q1 6= work)_ (q2 6= work)—where q1 and q2 are state
variables of B1 and B2 respectively—holds in A12(B1, B2).

Let B3 be a third component, similar to B1 and B2, with the inter-
face {b3, f3}. Since b3, f3 62 P12, the interaction model of the application
A12(B1, B2, B3) is �12 k

�
;, {b3}, {f3}

 
. (We omit the interaction {b3, f3}, since

b3 and f3 are never enabled in the same state and, therefore, cannot be fired si-
multaneously.) Thus, the component A12(B1, B2, B3) is the unrestricted product
of the components A12(B1, B2) and B3. The application of A12 enforces mutual

(b) coordinator

Figure 7: A simple “mutual exclusion” example scenario [6]

The composition operator defined in [6] is associative, commutative
and idempotent. The characteristic properties that are considered are
safety and liveness.

2.3.2 Dynamic BIP

BIP is quite a mature framework that provides robust features and com-
prehensive tools to model and develop a variety of systems. However,

22



like many other ADLs, it lacks effective means to represent dynamic archi-
tectures. This category of architectures is necessary to model reconfigurable
and adaptive systems, defined as the composition of components subject to
dynamically changing architectural constraints.

One proposed solution developed to support correct and robust mod-
eling of such systems is Dy-BIP [12], a language that can be considered as
an extension of BIP natively supporting the design of dynamic architec-
tures.

While Dy-BIP is inspired by BIP, to the best of our knowledge at
the current stage it maintains marginal similarities with the original
language and needs to be extended in order to be able to model even
basic real systems.

Dy-BIP retains the concepts of systems of (atomic) components in-
teracting through sets of ports, but it does not encompass priorities nor
connectors.

To realize dynamic architectures, atomic components provide inter-
action constraints for each possible transition and history variables that
parametrize them keeping track of already executed interactions. Given
that each constraint is associated to one port and defines which condi-
tions must hold for it to be involved in an interaction, the coordination
paradigm adopted in Dy-BIP can be considered endogenous (i.e., system
coordination is the result of the combination of each individual interac-
tion constraint associated to each port). These constraints are expressed
using Propositional Interaction Logic (PIL) [11], which is characterized
by the following syntax:

Ψ ::= true | p ∈ h | p | ¬Ψ | Ψ1 ∧ Ψ2 (2.1)

where p ∈ P is a port and h ∈ H is an history variable.

To allow the generalization of constraints to parametric system with
a finite number of components, PIL is extended to “First-Order Proposi-
tional Interaction Logic” (FOIL) with first order quantifiers over instances

23



of component types:

Ψ ::= true | x.p ∈ h | x.p | x = y | x = self | ¬Ψ | Ψ1 ∧ Ψ2 | ∀x : T.Ψ (x)
(2.2)

where T is a component type, which represents a set of component in-
stances with the same interface of ports and behavior, and x, y are vari-
ables ranging over component instances in the scope of their respective
quantifier.

The composition semantics uses a centralized execution engine which
gathers current state interaction constraints from all atomic components,
then builds and solves the global system of constraints finding the set of
maximally satisfying interactions. Finally one of them is selected and
executed atomically by all involved components, and the process restarts
over the newly reached global state.

To give a glimpse of the language and how it can be used to design
software architectures, we will present and comment a simple example
from [12].

Example 2.3.1. Let us consider a simple system consisting of two types
of components: Masters and Slaves. Each Master performs two sequential
requests to two different Slaves and then performs some computation
with them. Figures 8 and 9 show the representation of such types in
Dy-BIP.

Each component instance in the system is a transition system sharing
the graph representation of its component type. Action names - referred
to as ports - are associated with interaction constraints, which are used to
restrict the choice of allowed interactions, and history variable updates to
keep track of already executed interactions.

Interaction constraints are defined by the syntax of FOIL (2.2), but are
written via more convenient abbreviations that express causal, acceptance
and filtering constraints. In figure 8, the req port belonging to the transition
from s1 to s2 presents three different abbreviations:

– Require Slave.get is a causal constraint that expresses the require-
ment for a port get, belonging to a component instance whose type
is Slave, to be present in the interaction in order for req to partici-
pate;

24



s1 s2 s3

req req

compute

req
Require Slave.get
Accept Slave.get
Unique Slave.get
Update h1

req
Require x.get [x : Slave | x.get /∈ h1]
Accept x.get [x : Slave | x.get /∈ h1]
Unique Slave.get
Update h2

compute
Require x.work y.work [x : Slave | x.get ∈ h1] [y : Slave | y.get ∈ h2]
Accept x.work y.work [x : Slave | x.get ∈ h1] [y : Slave | y.get ∈ h2]

Figure 8: Master type

– Accept Slave.get is an acceptance constraint that excludes from
possible interactions all ports that are not a get of a Slave compo-
nent type;

– Unique Slave.get is a filtering constraint that forbids the participa-
tion of req in an interaction with more than one instance of compo-
nent type Slave with port get.

Richer variants of these abbreviation can involve more than one port/-
type combination (e.g. the constraint associated to the compute port of
type Master in figure 8) or include conditions over history variables (e.g.
the constraint associated to the work port of type Slave in figure 9).

2.3.3 Dynamic Reconfigurable BIP

Dynamic Reconfigurable BIP(DR-BIP) [7] is an extension of BIP con-
ceived to support the development of component-based systems support-
ing various degree of dynamism, including the ability to change many
aspects of the system configuration at run-time.

25



s4 s5

get

work

get
RequireMaster.req
AcceptMaster.req
UniqueMaster.req
Update h

work
Require x.compute [x : Master | x.get ∈ h]
Accept Slave.work x.compute [x : Master | x.get ∈ h]

Figure 9: Slave type

It has been developed concurrently and independently with the frame-
works presented in this Thesis, yet they share many core concepts as they
draw inspiration from the same premises and aim at addressing the same
problems.

DR-BIP draws inspiration from Dy-BIP in the way it models inter-
actions among BIP components, but uses a distinct approach to handle
dynamic changes in the system configuration. More specifically, DR-BIP
uses an exogenous coordination paradigm much closer to the ones char-
acterizing ADLs offering strict separation between behavior and architec-
ture.

One of the core-concepts of the framework is the architectural motif,
which is the minimal building block describing an architecture in DR-BIP.
A motif is characterized by:

– a set of components, contributing to the behavior of the motif;

– interaction rules for components in the motif;

– reconfiguration rules that modify the motif’s configuration;

26



– a graph-like data structure called map consisting of interconnected
positions;

– a deployment function that relates components in the motif to posi-
tions in its map.

Figure 10 presents the abstract structure of a motif and a simple example.
4 Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 1: Motif Concept

Reconfiguration rules

Map H

when |B|  10
do x := B.create(C,idle),

n:=H.extend(), D(x) := n

Deployment D

b2b1

Behavior B

Interaction rules

when D(x1) 7! D(x2)
sync x1.out x2.in

b3

Fig. 2: Motif Example

Motifs are structurally organized as the deployment of component instances
on a logical map as illustrated in Fig. 1. Maps are arbitrary graph-like structures
consisting of interconnected positions. Deployments relate components to posi-
tions on the map. The definition of the motif is completed by two sets of rules,
defining interactions and reconfiguration actions of the following generic forms:

interaction-rule ::= reconfiguration-rule ::=
sync-rule-name(formal-args) ⌘ do-rule-name(formal-args) ⌘

[ when rule-constraint ] [ when rule-constraint ]
sync interaction-ports do reconfiguration-action+

[ interaction-guard !
interaction-action+ ]

Both sets of rules are interpreted on the current motif configuration. Formal-
args denotes (sets of) component instances and defines the scope of the rule.
Rule-constraint defines the conditions under which the rule is applicable. Con-
straints are essentially boolean combinations on deployment and map constraints
built from formal-args. An interaction rule also defines the set of interacting ports
(interaction-ports), the interaction guard (interaction-guard) and the associated
interaction actions (interaction-action). The guard and the action define respec-
tively a triggering condition and an update of the data of components partici-
pating in the interaction. Finally, a reconfiguration rule defines reconfiguration
actions (reconfiguration-action) to update the content of the motif. Such actions
include creation/deletion of component instances, and change of their deploy-
ment on the map as well as change of the map itself, i.e. adding/removing map
positions and their interconnection.

Fig. 2 illustrates the proposed motif concept for describing a dynamic ring
architecture. Three components b1, b2, b3 are deployed into a three-position
circular map. Given the deployment function D, the interaction rule reads as
follows: for components x1, x2 deployed on adjacent nodes D(x1) 7! D(x2)

(a) Abstract structure of a motif

4 Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 1: Motif Concept

Reconfiguration rules

Map H

when |B|  10
do x := B.create(C,idle),

n:=H.extend(), D(x) := n

Deployment D

b2b1

Behavior B

Interaction rules

when D(x1) 7! D(x2)
sync x1.out x2.in

b3

Fig. 2: Motif Example

Motifs are structurally organized as the deployment of component instances
on a logical map as illustrated in Fig. 1. Maps are arbitrary graph-like structures
consisting of interconnected positions. Deployments relate components to posi-
tions on the map. The definition of the motif is completed by two sets of rules,
defining interactions and reconfiguration actions of the following generic forms:

interaction-rule ::= reconfiguration-rule ::=
sync-rule-name(formal-args) ⌘ do-rule-name(formal-args) ⌘

[ when rule-constraint ] [ when rule-constraint ]
sync interaction-ports do reconfiguration-action+

[ interaction-guard !
interaction-action+ ]

Both sets of rules are interpreted on the current motif configuration. Formal-
args denotes (sets of) component instances and defines the scope of the rule.
Rule-constraint defines the conditions under which the rule is applicable. Con-
straints are essentially boolean combinations on deployment and map constraints
built from formal-args. An interaction rule also defines the set of interacting ports
(interaction-ports), the interaction guard (interaction-guard) and the associated
interaction actions (interaction-action). The guard and the action define respec-
tively a triggering condition and an update of the data of components partici-
pating in the interaction. Finally, a reconfiguration rule defines reconfiguration
actions (reconfiguration-action) to update the content of the motif. Such actions
include creation/deletion of component instances, and change of their deploy-
ment on the map as well as change of the map itself, i.e. adding/removing map
positions and their interconnection.

Fig. 2 illustrates the proposed motif concept for describing a dynamic ring
architecture. Three components b1, b2, b3 are deployed into a three-position
circular map. Given the deployment function D, the interaction rule reads as
follows: for components x1, x2 deployed on adjacent nodes D(x1) 7! D(x2)

(b) Example of an architectural motif

Figure 10: Architectural motifs in DR-BIP [7]

Systems are built combining multiple motifs and even “overlapping”
them: indeed, the same components can be bound to several motifs at
the same time, but they can also migrate from one motif to another at
run-time.

Each motif encapsulates its own coordination and reconfiguration ca-
pabilities in the form of interaction and reconfiguration rules, respectively.
These two types of rules that define how a motif evolves determine a
dichotomy that is reflected in the operational semantics of DR-BIP sys-
tems: the execution of “interaction steps” has no effect on the architecture,
which in turn is modified explicitly via “reconfiguration steps” that have
no impact on the state of individual components. This concept is summa-
rized in figure 11.

27



6 Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis

only on its internal structure and associated rules. Furthermore, several motifs
can synchronize all together to jointly perform a reconfiguration of the system.
Coordination between motifs is therefore possible either implicitly by means of
shared components or explicitly by means of inter-motif reconfiguration rules.

The inter-motif reconfiguration rules allow joint reconfiguration of several
motif instances. They also allow two additional types of actions, respectively
creation and deletion of motif instances, and exchanging component instances
between motifs.

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Fig. 4: An example : system reconfigurations

Fig. 4 provides an overall
view on the structure and evo-
lution of a motif-based sys-
tem. The initial configuration
(left) consists of six inter-
acting components organized
using three motifs (indicated
with dashed lines). The cen-
tral motif contains compo-
nents b1 and b2 connected in
a ring. The upper motif con-
tains components b1, c1, c2,
c3, with b1 being connected to all others. The lower motif contains connected
components b2, c4. The second system configuration (in the middle) shows the
evolution following a reconfiguration step. Component c3 migrated from the up-
per motif to the lower motif, by disconnecting from b1 and connecting to b2.
The central motif is not impacted by the move. The third system configuration
(right) shows one more reconfiguration step. Two new components have been
created b3 and c5. The central motif now contains one additional component b3,
interconnected along b1 and b2 forming a larger ring. Furthermore, a new motif
is created containing b3 and c5.

2.3 Execution Model

b b0

m

m0

↵
Interaction

Reconfiguration ⇢

Behavior

Configuration

Fig. 5: Reconfiguration vs Interaction Steps

The behavior of motif-based
systems in DR-BIP is de-
fined in a compositional man-
ner. Every motif defines its
own set of interactions based
on its local structure. This
set of interactions and the
involved components remain
unchanged as long as the mo-
tif does not execute a recon-
figuration action. Hence in the absence of reconfigurations, the system keeps a
fixed static architecture and behaves like an ordinary BIP system. The execu-
tion of interactions has no e↵ect on the architecture. In contrast to interactions,
system and/or motif reconfigurations rules are used to define explicit changes

Figure 11: System evolution: reconfiguration vs interaction [7]

System parametrisation is realized not only via maps, but also by
typing components and motifs. Indeed, DR-BIP is equipped with the
notions of component types and motif types, which serve as blueprints to
create new instances from a given type.

In addition to “local” reconfiguration actions, DR-BIP provides rules
for inter-motif reconfiguration that allow creation/deletion of motif in-
stances and migration of component instances between motifs. These en-
able dynamic modification of entire architectural styles at run-time, such
as migrating all the component instances of a system to another motif in-
stance characterized by completely different interaction/reconfiguration
rules or map.

28



Chapter 3

The L-DReAM framework

This chapter introduces the L-DReAM framework [37], a “light” variant
of the DReAM framework [18, 43] for modeling Dynamic Reconfigurable
Architectures, which will be presented later in Chapter 4. Both frame-
works rely on a logic-based modeling language which is expressive and
powerful enough to support different approaches to coordination and
provides all the key features required to capture dynamism. L-DReAM
differentiates from DReAM mainly by “blurring” the separation between
behavior and coordination of components, and by offering a reduced set
of parametrization data structures by default.

In L-DReAM a system is a hierarchical structure of components. The
latter are characterized by an interface of ports serving as endpoints for
interactions, a store of local variables, and a rule describing components
behavior. Furthermore, each non-atomic component hosts a “pool” of
components and defines the coordination rules that regulate how mem-
bers of the pool interact and evolve. The overall structure of systems can
also change as components are created and deleted, or leave and join dif-
ferent pools. Components will thus be subject to different coordination
rules as they change their position in the hierarchy.

L-DReAM rules include an interaction constraint, modeled as a for-
mula of the Propositional Interaction Logic (PIL) [11], and some opera-
tions allowing data transfer as well as more complex reconfigurations of

29



the component’s state. Parametric coordination between classes of com-
ponents is achieved through the introduction of the concepts of component
types - blueprints for actual components - and component instances created
from specific types. Their coordination is characterized by rules in a first
order extension to PIL with quantification over instance variables of a
given type.

In L-DReAM there is no separation between behavior and coordina-
tion of components. In fact, L-DReAM rules are used to coordinate sub-
components in a compound’s pool and to characterize both the behavior
and the capabilities of components. Furthermore, the possibility of hav-
ing compounds hosting other compounds in their pool allows to treat
every element in the hierarchy uniformly, to the point where the overall
system itself is a component.

All this allows L-DReAM to be expressive while boasting a stream-
lined and uniform operational semantics, making it suitable for theoreti-
cal analysis and comparison with other formalisms.

3.1 PIL-based systems

This section reviews some of the fundamental building blocks needed to
understand the foundations of L-DReAM focusing on the semantics of
Propositional Interaction Logic (PIL) applied to simplified systems where
no operation is carried out (i.e., no data transfer and no reconfiguration).

3.1.1 Propositional Interaction Logic (PIL)

At its core, PIL is a “specialized” version of propositional logic where the
atoms are port names that characterize the interface of components in a
system. This allows us to define how components coordinate by shifting
the perspective from connectors to interactions. In other words, if we
define an interaction as a set of ports obtained by composing interfaces of
components, PIL can be used to express which interactions are allowed
through a logical formula.

30



Let P be the domain of ports. The formulas of Propositional Interac-
tion Logic Ψ ∈ PIL(P) are defined by the following syntax:

(PIL formula) Ψ ::= true | p ∈ P | ¬Ψ | Ψ1 ∧ Ψ2 (3.1)

We will also use the derived logical connectives ∨ and⇒with the classical
meaning.

The models of the logic are interactions on the set of ports P . The
semantics is defined by the following satisfaction relation |= between an
interaction a and a PIL formula:

a |=true for any a

a |=p if p ∈ a
a |=Ψ1 ∧ Ψ2 if a |= Ψ1 ∧ a |= Ψ2

a |=¬Ψ if a 2 Ψ

(3.2)

A monomial
∧

p∈I p ∧∧p∈J ¬p with I ∩ J = ∅ characterizes a set of
interactions a such that:

1. the positive terms correspond to required ports for the interaction to
occur;

2. the negative terms correspond to inhibited ports to which the inter-
action is “closed”;

3. the non-occurring terms are optional ports.

When the set of optional ports is empty, the monomial is a single interac-
tion and it is characterized by

∧
p∈a p ∧∧p /∈a ¬p.

Given the set of ports P , two formulas Ψ1, Ψ2 ∈ PIL(P) are equivalent
(i.e., Ψ1 ≡ Ψ2) if a |= Ψ1 ⇔ a |= Ψ2 for any a ⊆ 2P .

3.1.2 Interacting Components

A system model in PIL is the composition of interacting components. Each
component B is a transition system characterized by an interface P , i.e.,
a vocabulary of port names, a set of states S, and a set of transitions

31



between such states labeled with an atom of PIL(P ). Interacting com-
ponents are completely coordination-agnostic, as there is no additional
characterization to ports and states beyond their names (e.g. we do not
distinguish between input/output ports or synchronous/asynchronous
components).

Definition 3.1.1 (Interacting component). LetP and S respectively be the
domain of ports and states.

A component is a transition system B = (P, S, T, s0 ) where:

– P ⊆ P : finite set of ports;

– S ⊆ S: finite set of states;

– T ⊆ S × P × S: finite set of transitions 〈s, p, s ′〉, where p ∈ P and
s, s ′ ∈ S;

– s0 ∈ S: the initial state.

It is assumed that the sets of ports and states of different components are
disjoint.

As a result of participating in an interaction awith port p, a component
B = (P, S, T, s0 ) can change state from s to s ′ if there exists a transition
〈s, p, s ′〉 ∈ T . Alternatively if a ∩ P = ∅, then we say that the compo-
nent stays “idle” not changing its current state while the interaction is
performed.

This can be expressed through the following inference rule:

(p ∈ a ∧ 〈s, p, s ′〉 ∈ T ) ∨ (a ∩ P = ∅ ∧ s ′ = s)

s
a−→ s ′

(3.3)

3.1.3 Systems of components

In this simple framework a system specification is characterized by a set
of interacting components Bi = (Pi, Si, Ti, s0i) for i ∈ [1, n]. The state γ of
a system is the set of the current states of each constituent component:

γ = {si ∈ Si}i∈[1..n] (3.4)

Given the finite set of ports of a system P =
⋃
i∈[1..n] Pi, an interaction a

is any finite subset of P such that:

32



– every port pi ∈ a belongs to a component Bi of the system;

– every component Bi participates in the interaction a at most with
one port, i.e., if pi ∈ a and pj ∈ a (with pi 6= pj ), then Bi 6= Bj for
i, j ∈ [1..n].

The set of all interactions I (P ) is a subset of 2P .
Given a system consisting of components B1 . . . Bn, the set of allowed

interactions for the system can be characterized by a formula Ψ ∈ PIL(P ).
The operational semantics of the system from a configuration γ to γ′ is
then defined by the following rule:

a |= Ψ si
a−→ s ′i for si ∈ γ γ′ = {s ′i}i∈[1..n]

γ
a−→ γ′

(3.5)

where si is the current state of component Bi.
Two PIL systems made of the same set of interacting components and

characterized by PIL formulas Ψ1, Ψ2 are equivalent if Ψ1 ≡ Ψ2.

Example 3.1.1 (Basic client-server interactions). Let us consider a sim-
ple system consisting of two components: a Client and a Server . The
interaction between the two components represents the typical “client-
server” pattern where the client sends a request to the server, and then the
server replies with the requested content. We assume that the exchanges
between the two components are fully synchronous.

Figure 12 provides a graphical representation of the LTS of such com-
ponents.

ready wait

post

get

(a) The Client component

wait busy

accept

return

(b) The Server component

Figure 12: Client and Server components

33



The set of interactions that we allow to model the described behavior
at any give state of the system is the following:

A = {{post , accept} , {get , return} , ∅}

where the empty interaction represents the ability of the components to
stay idle without interacting.

Instead of writing A explicitly, we can represent it using PIL with the
following formula:

Ψ1 = (post ∧ accept) ∨ (get ∧ return)

∨ (¬post ∧ ¬get ∧ ¬accept ∧ ¬return)

An alternative way of expressing the same constraint but using a different
“style” is the following:

Ψ2 = (post ⇒ accept) ∧ (accept ⇒ post)

∧ (get ⇒ return) ∧ (return ⇒ get)

It is straightforward to see that Ψ2 ≡ Ψ1 given the basic properties of
propositional logic operators. Nonetheless, we will see that as the com-
plexity of the systems we need to specify grows, choosing to model inter-
actions with one approach or the other can have meaningful implications
in the design process.

3.1.4 Disjunctive and Conjunctive styles in PIL

The problem of designing a system that has to evolve through a set of
given interactions using PIL as coordination language can be approached
in many ways, as there are multiple ways of writing formulas that pro-
duce equivalent systems. We distinguish two very different styles that
can be adopted when describing allowed interactions, which we call dis-
junctive and conjunctive.

The disjunctive style approach is based on the idea of starting from an
initial formula which does not allow any interaction for the components.
From this “false” atom, the capabilities of the components are incremen-
tally extended by using the logical “or” ∨ to combine formulas that model
individual interaction patterns. In other words, each sub-formula can
describe an interaction in its entirety. The PIL formula Ψ1 in example

34



3.1.1 adopts this style to define which interactions are allowed within the
system.

The conjunctive style approach starts from the opposite premise, i.e.,
by assuming that any interaction is allowed. From this “true” atom, the
capabilities of the components are incrementally restricted by using the
logical “and” ∧ to combine formulas that model individual contributions
to interaction patterns and the relevant requirements that must hold. To
guarantee incremental composability of conjunctive constraints, each for-
mula must always be satisfied by the “idling” interaction a0 = ∅, so that
there always exists at least one model for the conjunction of any two
conjunctive style PIL formulas Ψ1 ∧ Ψ2.

A methodology for writing conjunctive specifications proposed in [11]
considers that each term of the conjunction is a formula of the form p ⇒
Ψp , where the implication is interpreted as a causality relation: for p to
be true, it is necessary that the formula Ψp holds and this defines the
interaction patterns of other components in which the port p needs to be
involved. We have already seen an application of this approach when we
defined Ψ2 in example 3.1.1. Other examples are the rendezvous between
p1 , p2 and p3 , modeled by the formula f1 = (p1 ⇒ p2 ) ∧ (p2 ⇒ p3 ) ∧
(p3 ⇒ p1 ), and the broadcast from a sending port t towards receiving
ports r1 , r2 , which is defined by the formula f2 = (t ⇒ true)∧(r1 ⇒ t)∧
(r2 ⇒ t). The non-empty solutions of the latter are the interactions {t},
{t , r1}, {t , r2} and {t , r1 , r2}.

Notice that, by applying this methodology, we can associate to a com-
ponent with interface P a constraint

∧
p∈P (p ⇒ Ψp) that characterizes the

set of interactions where some port of the component may be involved.
Thus, if a system consists of components B1 , . . . ,Bn with interfaces
P1, . . . , Pn respectively, then the PIL formula

∧
i∈[1,n]

∧
p∈Pi

(p ⇒ Ψp) ex-
presses a global interaction constraint. Such a constraint can be put
in a disjunctive form by simply expanding the implications and rear-
ranging the terms using the associativity and distributivity properties
of logical ∧,∨ operators until the disjunctive normal form is obtained
(where monomials characterize global interactions). This means, for in-
stance, that we can have an equivalent disjunctive representation of f1

35



as f ′1 = (p1 ∧ p2 ∧ p3 ) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3 ). Notice that the disjunctive
form obtained in this manner contains the monomial

∧
p∈P ¬p, where

P =
⋃
i∈[1..n] Pi, which is satisfied by the idling interaction. This triv-

ial remark shows that in the PIL framework it is possible to express in-
teraction constraints of each component separately and compose them
conjunctively to get global disjunctive constraints.

The inverse operation, i.e., projecting a disjunctive coordination
model into the individual contribution for each port of each component,
is only possible if the former allows global idling. This condition deter-
mines the limits of the conjunctive/compositional approach.

Formally, a global disjunctive constraint Ψ can be transformed into the
conjunction of a series of conjunctive constraints of the form p ⇒ Ψp , each
expressing a contribution to the global interaction from the perspective
of each port p in the system, if and only if ∅ |= Ψ (refer to A.1 for the full
proof).

To translate a disjunctive formula Ψ satisfying the aforementioned
condition into a conjunctive form

∧
p∈P (p ⇒ Ψp), we just need to choose

Ψp = Ψ [p = true] obtained from Ψ by substituting true to p. Consider
broadcasting from port p to ports q and r (Fig. 13). The possible inter-
actions are characterized by the active ports {p} , {p, q} , {p, r} , {p, q , r}
and ∅ (i.e., idling). The disjunctive style formula is: (¬p ∧ ¬q ∧ ¬r) ∨
(p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ q ∧ r) = (¬q ∧ ¬r) ∨ p.
The equivalent conjunctive formula is: (q ⇒ p) ∧ (r ⇒ p) that simply
expresses the causal dependency of ports q and r from p.

3.2 L-DReAM Syntax and Semantics

L-DReAM can be thought as an enriched version of the simple PIL frame-
work of interacting components presented in section 3.1. Components
lose their characterization as labeled transition systems, but are equipped
with a set of local variables to store and transfer data, a set of “hosted”
components, and a coordination rule that defines both how the compo-
nent evolves and under which constraints the other components hosted in
it can interact. For non-parametric systems, coordination rules are written

36



T V U

(SRNYRGXMZI��PSGEP��GSRWXVEMRXW�

)MWNYRGXMZI��KPSFEP��GSRWXVEMRX�

Figure 13: Broadcast example: disjunctive vs conjunctive specification

using a syntax which extends PIL in order to encompass state predicates
and operations realizing transfer of data between components. Paramet-
ric and fully dynamic systems are then modeled by further expanding
the coordination language with first-order quantifiers over component
variables and reconfiguration operations that allow to add/remove com-
ponents from a system or even “migrate” them from one host to another.

This section presents the framework incrementally by first introducing
the syntax and the semantics of L-DReAM in the simple scenario of static,
non-parametric systems, and then expanding it to encompass parametric
system instantiation and dynamic reconfiguration.

3.2.1 Static systems with PILOps

PILOps components and coordination rules

The building blocks of a L-DReAM system are components, which are char-
acterized by an interface (i.e. a set of port names), a store (i.e. a set of local
variables), a pool (i.e. a set of constituent sub-components) and a behavior
rule. We refer to components with an empty pool as atomic, whereas we
call compound any non-atomic component (see figure 14).

Definition 3.2.1 (L-DReAM Component). Let C, P and X respectively be
the domain of components, ports and local variable names. A component
is a tuple c = (P,X, r, γ0 ) with

37



p1

storeA

Component A

x1 x2

x3 x4

poolA

ruleA

p2 p3

interfaceA

Comp. B

Comp. C

Comp. D

Figure 14: A schematic representation of a L-DReAM compound (i.e., non-
atomic component)

– interface P ⊆ P : finite set of ports;

– store X ⊆ X : finite set of local variables;

– rule r: constraint built according to the syntax in (3.6) characteriz-
ing the behavior of the component and the coordination between
constituents of its pool;

– initial state γ0 ∈ Γ.

The state γ ∈ Γ of component c is the tuple γ =
(
σ,C,ΓC

)
, where:

– σ : X 7→ V is the valuation function for the set of local variables X ;

– C ⊆ C is the pool of c, i.e., a set of components that c coordinates;

– ΓC = {γci}ci∈C and γci is the state of component ci in the pool of c.

38



We will use Γ to denote the set of all states. It is assumed that the sets of
ports and local variables of different components are disjoint.

Furthermore, we do not allow any component to belong to the pools
of two different compounds nor to its own pool.

We will adopt a “dot” notation to express the notion of “ownership”
between elements, e.g. c.p will refer to a port p in the interface of c, c.X

to the set of local variables of c, and γc .C to the pool of c for state γc .
Given two components c and c′, we say that:

– c is a child of c′ if c ∈ γc′ .C;

– c is the parent of c′ if c′ is a child of c;

– c is a descendant of c′ (i.e., c ∈ Descendants(c′)) if c is a child of c′ or
if the parent of c is a descendant of c′;

– c is an ancestor of c′ (i.e., c ∈ Ancestors(c′)) if c′ is a descendant of c.

Behavior and coordination of components are realized only through
L-DReAM rules, which are expressed in PILOps [18, 43]. PILOps formulas
are constructed by combining terms with either the conjunction operator
& or the disjunction operator ‖. Each term is essentially a guarded command
composed of a PIL formula, which encodes a constraint on ports involved
in interactions and on states of the associated components, and an opera-
tion to be performed when the formula is satisfied. The syntax for PILOps
rules is thus defined as follows:

(PILOps rule) r ::= Ψ → ∆ | r1 & r2 | r1 ‖ r2

(PIL formula) Ψ ::= true | p | π | ¬Ψ | Ψ1 ∧ Ψ2

(operation set) ∆ ::= skip | {δ} |∆1 ∪∆2

(3.6)

where:

– operators & and ‖ are associative and commutative, and & has higher
precedence than ‖;

– π : Γ 7→ {true, false} is a state predicate;

– skip is the “inaction” (i.e., the identity transformation for a state);

39



– δ : Γ 7→ Γ is an operation that transforms the state γ of a component;

– the set union operator ∪ has the traditional meaning, except for how
it handles the special operation set skip:

skip ∪∆ =

{
skip if ∆ ≡ ∅
∆ otherwise

(3.7)

As for PIL, the models of the logic are interactions a, i.e. finite subsets
of the universe of port names P such that no two ports belong to the same
component. To determine whether an interaction is admissible for a given
PILOps rule, we define a satisfaction relation parametric in the state γ of
the component “owning” the rule. This relation ignores operations and
essentially translates the PILOps rule to a PIL formula by substituting
terms Ψ → ∆ with Ψ and changing operators &, ‖ with the logical ∧,∨.
The resulting formula will be a conjunction/disjunction of port names
and state predicates that can be checked against a and γ.

Formally, the satisfaction relation is defined by extending (3.2) with
the new terms of the syntax (3.6), obtaining the following set of rules:

a |=γΨ → ∆ if a |=γ Ψ

a |=γr1 & r2 if a |=γ r1 and a |=γ r2

a |=γr1 ‖ r2 if a |=γ r1 or a |=γ r2

a |=γtrue for any a

a |=γp if p ∈ a
a |=γπ if π(γ) = true

a |=γΨ1 ∧ Ψ2 if a |=γ Ψ1 and a |=γ Ψ2

a |=γ¬Ψ if a 2γ Ψ

(3.8)

Before discussing how operations are tied to PIL formulas, let us de-
fine the evaluation of their operands on a given component state. Let γ =(
σ,C,ΓC

)
be the state of a component c,X its store, Yj and σj respectively

the pool and valuation function of component cj ∈ Dc = Descendants(c).

40



The evaluation ∆↓γ is then defined by the following rules:

skip↓γ≡ skip

{δ}↓γ≡
{
δ [σ(x ) /x ]x∈X [σj(y) /y ]cj∈Dc,y∈Yj

}

(∆1 ∪∆2)↓γ≡ (∆1 ↓γ) ∪ (∆2 ↓γ)
(3.9)

By exhaustively applying (3.9) to an operation set ∆, references to local
variables of components are replaced with their evaluation.

Given an admissible interaction a for a component c in state γ, the
operations to be performed under a, γ are either:

– for rules combined with “&”: the set of all the operations - evaluated
under state γ - associated to all PIL formulas if everyone of them
holds for (a, γ), or none at all if at least one formula does not;

– for rules combined with “‖”: the set of all the operations - evaluated
under state γ - associated to PIL formulas satisfied by (a, γ).

The set of operations JrKa,γ to be performed for r under (a, γ) is defined
according to the following rules:

JΨ → ∆Ka,γ =

{
{∆↓γ} if a |=γ Ψ

∅ otherwise

Jr1 & r2Ka,γ =

{
Jr1Ka,γ ∪ Jr2Ka,γ if a |=γ r1 and a |=γ r2

∅ otherwise

Jr1 ‖ r2Ka,γ = Jr1Ka,γ ∪ Jr2Ka,γ

(3.10)

Notice that from 3.10 follows that if JrKa,γd = ∅ for any a, it means that
γd is a deadlock state for a system coordinated by rule r, as there is no
interaction a that satisfies r.

Rules 3.10 allow to define a notion of semantic equivalence between
L-DReAM rules:

r1 = r2 iff Jr1Ka,γ = Jr2Ka,γ for any a, γ (3.11)

i.e., two rules r1, r2 are equivalent if and only if, for any interaction a and
component state γ, Jr1Ka,γ = Jr2Ka,γ .

41



Performing the set of operations ∆ = JrKa,γ = {δ1, . . . , δn} on a com-
ponent c with state γ produces a set of states

{
γ′j
}
j∈[1..n!]

. Each γ′j is the
result of the application of an operation δ′j to γ, where δ′j is obtained as
the composition of all δi ∈ ∆ in a given order.

Formally, given ∆ = {δ1, . . . , δn}, let the symmetric group S∆ of all
the n! permutations on the set of operations ∆ be:

S∆ =
{(
δαj(1) · · · δαj(n)

)}
j∈[1..n!]

(3.12)

where αj(i) is the j-th permutation of the index i. Then, the application
∆ (γ) produces the set

{
γ′j
}
j∈[1..n!]

as follows:

∆ (γ) =
{(
δαj(1) ◦ · · · ◦ δαj(n)

)
(γ)
}
j∈[1..n!]

(3.13)

where:

–
(
δαj(1) · · · δαj(n)

)
∈ S∆ for j ∈ [1..n!];

– the operator ◦ is the function composition (e.g. f ◦ g (x) = f (g (x))).

Operations δ in PILOps are assignments on local variables of compo-
nents involved in an interaction. Their syntax is x := f (y1 , . . . , yk ), where
x ∈ X is the local variable subject to the assignment and f : Vk 7→ V, is
a function on local variables y1 , . . . , yk (yi ∈ X ) on which the assigned
value depends.

Assuming that operations are always evaluated under a given compo-
nent state according to (3.9), we define the semantics of the application of
assignments c.x := f (y1 , . . . , yk ) to the state γ of c as:

(c.x := f (y1 , . . . , yk ))↓γ (γ) =

= (c.x := f (v1, . . . , vk))
(
σ,C,ΓC

)

=
(
σ [c.x 7→ f (v1, . . . , vk)] , C,ΓC

)
(3.14)

where vi is the value of local variable yi in state γ.
Notice that by evaluating every operation on the same state γ, the set

of states obtained by the application of an operations set ∆ to γ according
to (3.13) has more than one (distinct) element only if ∆ contains two

42



or more assignments on the same local variable. Indeed, only in this
case applying all the assignments in different orders produces different
resulting states.

Lastly, we allow the definition of operation sets in the form of condi-
tional statements (i.e., “if ... then ... else ...”) and iterative loops (i.e., ”for ...
do ...”). These statements are never executed as-is, as they are expanded
to sets of actual operations during the evaluation. The syntax and evalu-
ation semantics enriching rules (3.9) are the following:

(
IF
(
π
)
THEN

{
∆t

}
ELSE

{
∆e

})
↓γ≡

{
∆t ↓γ if π (γ) = true

∆e ↓γ otherwise
(3.15)

(
FOR

(
i ∈ [n..m]

)
DO

{
∆i

})
↓γ≡

m⋃

i′=n

(∆i [i′/i])↓γ (3.16)

Operational semantics of components

Having introduced the syntax of PILOps and formally characterized the
semantics of the operations, we can define the evolution of a L-DReAM
component c from state γ with the following operational semantics rule:

a |=γ r ∀γi ∈ γ.ΓC : γi
a−→ γ′i

γ′′ ∈ JrKa,γ
(
γ.σ, γ.C, {γ′i}ci∈γ.C

)

γ
a−→ γ′′

c = (P,X, r, γ0 ) (3.17)

where γ′′ is an element of the set of states obtained according to (3.13)
by applying the operations ∆ = JrKa,γ to the intermediate state γ′ =(
γ.σ, γ.C, {γ′i}ci∈γ.C

)
.

Rule (3.17) can be intuitively understood as follows: component c

changes state from γ to γ′′ through interaction a provided that every com-
ponent ci in its pool changes state to γ′i through a, and that γ′′ is the state
of c reached from γ′ (i.e. the initial state γ of c with the updated states of
components in its pool) by applying the operations to be performed for
a, γ when a is a model of the rule r under state γ. Rule (3.17) applies to
any component. For atomic components with empty pools, the interme-
diate state will be equal to the initial state, i.e. γ ≡ γ′. For compounds,

43



it is worth pointing out that a must be an admissible interaction both for
the component c, and for every descendant of c.

Notice that the final state γ′′ is selected with no specific criterion, there-
fore the effects of multiple operations on component configurations are
generally non-deterministic. This behavior is mitigated by the snapshot
semantics resulting from the evaluation of the operands (3.9) using the
initial state γ when computing the set of operations to perform according
to (3.10), which prevents the inversion of access/update operations on
distinct local variables from producing different outcomes. This limits
non-determinism in L-DReAM to the application of multiple assignments
on the same local variable, as we have previously mentioned when defin-
ing the application of operation sets to component states.

A system model can be seen as a hierarchical tree structure where the
leaves are atomic components and the rest of the nodes are compounds
that aggregate child components in their pools. As such, the system itself
is the root component c0 of this structure, and the initial state γ0 of a system
coincides with the initial state of c0 . By applying rule (3.17) to γ0 we
can characterize the evolution of the whole system. Being the root of
the system’s hierarchy, c0 is “orphan” (i.e., has no parent compound)
and it is the ancestor of every component in the system. Note that we
did not explicitly define a notion of “scope” on port names and local
variables, but we shall assume that the rule of a component will only
mention ports/variables belonging to itself or to its descendants.

Axioms for PILOps rules

The following axioms hold for PILOps rules:

& is associative, commutative and idempotent (3.18)

Ψ1 → ∆1 & Ψ2 → ∆2 = Ψ1 ∧ Ψ2 → ∆1 ∪∆2 (3.19)

r & true→ skip = r (3.20)

‖ is associative, commutative and idempotent (3.21)

Ψ → ∆1 ‖ Ψ → ∆2 = Ψ → ∆1 ∪∆2 (3.22)

Ψ1 → ∆ ‖ Ψ2 → ∆ = Ψ1 ∨ Ψ2 → ∆ (3.23)

44



Absorption: r1 ‖ r2 = r1 ‖ r2 ‖ r1 & r2 (3.24)

Distributivity: r & (r1 ‖ r2) = r & r1 ‖ r & r2 (3.25)

Disjunctive Normal Form (DNF):

Ψ1 → ∆1 ‖ Ψ2 → ∆2 =

= Ψ1 ∧ ¬Ψ2 → ∆1 ‖ Ψ2 ∧ ¬Ψ1 → ∆2 ‖ Ψ1 ∧ Ψ2 → ∆1 ∪∆2 (3.26)

Note that PILOps strictly contains PIL as a formula Ψ can be repre-
sented by Ψ → skip. If we focus on its specific & and ‖ operators though,
there are additional similarities and important differences worth pointing
out. The operator & is the extension of conjunction with neutral element
true→ skip and ‖ is the extension of the disjunction with a distributivity
axiom (3.25) and an absorption axiom (3.24). The latter replaces the usual
absorption axioms for disjunction and conjunction. Lastly, note that the
DNF is obtained by application of the axioms, and there is no conjunctive
normal form.

Example 3.2.1 (Server with two Nodes). In example 3.1.1 we started rep-
resenting a simple client-server system by modeling the synchronous
interactions between these two components using PIL. While from the
client’s perspective a server can be considered a single entity, we know
this is just an abstraction offered by a service interface which “hides” a
possibly much more complex back-end. We thus expand the given sce-
nario modeling in more details the latter portion of the system where we
have a Server component that, given some input data, accepts requests to
process it and returns a result. Furthermore, we assume that the requested
computation can be easily parallelized, therefore our Server will use two
distinct computational Node components to perform the operations.

Since each Node is effectively an integral part of the Server from an ex-
ternal point of view, we will model them as atomic components belonging
to the Server ’s pool. Their specification will be:

Nodek =
(
{receivek , returnk} , {datak , resultk} , rk,(
{datak 7→ null, resultk 7→ null} , ∅, ∅

))

meaning that:

– the interface consists of two ports: receivek (to signal that Nodek

can receive new data from the Server ) and returnk (to send back the
result of the computation to the Server );

45



– the store has two local variables: datak (storing the data to be pro-
cessed) and resultk (storing the results of the computation);

– the initial state of Nodek has its local variables mapped to null and
an empty pool (i.e., they are atomic components).

Let f(x ) be the function representing the computation that each Node has
to perform on input x . Rules rk can be defined as follows:

rk =datak = null ∧ resultk = null ∧ receivek → skip

‖
datak 6= null→ {resultk := f(datak ), datak := null}
‖

resultk 6= null ∧ returnk → {resultk := null}
‖
¬receivek ∧ ¬returnk → skip

This means that a Node can:

– receive new input data when both the variable used to store it and
the one where the result is saved are empty (null);

– compute the result and store it when its data local variable is initial-
ized (resetting the input data);

– return the results when computed (resetting the result variable);

– avoid participating in an interaction (negation of all its ports with
no associated operation).

Note that a transfer of values between components is achieved by access-
ing their respective stores through assignment operations. In this particu-
lar instance, rk does not involve any transfer of data, as the specification
of Nodek simply assumes that someone can assign values to the datak

variables and read values from resultk .
The component that will actually perform such operations is the

Server :

Server =
(
{accept , reduce, return} , {input , output} , rs,
(
σ0, {Node1 ,Node2} ,

{
γN1
0 , γN2

0

}))

46



meaning that:

– the interface of the Server consists of three ports: accept (to accept
new requests), reduce (to get the results back from the nodes), and
return (to notify that the response to the request is ready);

– the store of the Server has two local variables: input (storing all the
data to be processed) and output (storing the complete results of the
computation);

– the initial state is characterized by some valuation function σ0 and
by a pool containing Node1 and Node2 (with their respective initial
configurations).

Let split(x , k) be a functions that, given an input value x , splits it into two
chunks and returns the k-th, and merge(x , y) one that does the opposite
returning a value by merging x and y . Rule rs can be specified as follows:

rs =input = null ∧ accept → output := null

‖
input 6= null ∧ output = null ∧ receive1 ∧ receive2

→ {data1 := split (input , 1) , data2 := split (input , 2)}
‖

reduce ∧ return1 ∧ return2 → {output := merge (result1 , result2 )}
‖

output 6= null ∧ return → {input := null}
‖
¬accept ∧ ¬reduce ∧ ¬return → skip

We can describe the behavior of the Server induced by the rule rs as
follows:

– it can accept a request (accept) when its variable storing the input is
not initialized (input = null), resetting at the same time the output
variable;

– when its input variable has a value (input 6= null), it can have both
Node1 and Node2 synchronize through receivek , initializing their
datak local variables;

47



– it can synchronize with both nodes through their returnk ports and
its reduce port, assigning to output the value obtained by merging
the individual results of each Nodek ;

– it can signal that the response to the original request is ready (return)
when the output variable is initialized, resetting the input variable
in the process;

– it can skip participating in an interaction (negation of all ports with
no operation).

Let us consider a concrete case where the f(x ) that a Nodek computes
is a simple “character count” function (returning the number of characters
in x excluding spaces), and the merge(x , y) is the sum x + y . To represent
the evolution of a system where its root component is the Server , we will
start from a configuration where its input variable is already initialized:

σ0 = {input 7→ “hello DReAM!”, output 7→ null}

From here we evaluate which valid interactions A can transform the cur-
rent state of the system according to (3.17). Since the premise requires
that each a ∈ A can transform the state of each Nodek first, we check for
interactions satisfying r1, r2 over the interfaces of Node1 , Node2 . Given
that datak = null for k = [1, 2], the results are:

An = {∅, {receive1} , {receive2} , {receive1 , receive2}}

Next, we consider the Server ’s rule rs: for this rule in the current Server
state, the admissible interactions are:

As = {∅, {receive1 , receive2} , {reduce, return1 , return2}}

Only one of these non-empty interactions can model the Server ’s rule rs
and both r1, r2, that is a0 = {receive1 , receive2}. There are no other admis-
sible interactions in the current state, so this is the one that is performed.

Given that JrkKa0,Nodek .γ0 ≡ skip, the intermediate state produced
by the execution of operations associated to each rule of Nodek will be
identical to Server .γ0 .

Then, we evaluate the operations that will be carried out according to
the Server ’s rule rs:

JrsKa0,Server .γ′0 = {data1 := split(input , 1), data2 := split(input , 2)}

48



By applying the operations to Server .γ′0 we obtain the new state
Server .γ1 :

Server .γ1 =
(
{input 7→ “hello DReAM!”, output 7→ null} , {Node1 ,Node2} ,
{Node1 .γ1 ,Node2 .γ1}

)

Node1 .γ1 =
(
{data1 7→ “hello ”, result1 7→ null} , ∅, ∅

)

Node2 .γ1 =
(
{data2 7→ “DReAM!”, result2 7→ null} , ∅, ∅

)

In the new state, the only admissible interaction is now the empty
interaction a1 = ∅. At Node level, since datak 6= null, each one will
perform:

JrkKa1,Nodek .γ1 = {resultk := f(datak ), datak := null} (3.27)

Given that f (“hello′′) = 5 and f (“DReAM !′′) = 6, the new state
Server .γ2 will be:

Server .γ2 =
(
{input 7→ “hello DReAM!”, output 7→ null} , {Node1 ,Node2} ,
{Node1 .γ2 ,Node2 .γ2}

)

Node1 .γ2 =
(
{data1 7→ null, result1 7→ 5} , ∅, ∅

)

Node2 .γ2 =
(
{data2 7→ null, result2 7→ 6} , ∅, ∅

)

From state Server .γ2 , the admissible interactions for Node1 and
Node2 become:

An = {∅, {return1} , {return2} , {return1 , return2}}

while for the Server component:

As = {∅, {receive1 , receive2} , {reduce, return1 , return2}}

which leaves as the only non-empty admissible interaction the set of ports
a2 = {reduce, return1 , return2}. As a result, each Nodek will reset its
resultk variable with the assignment:

JrkKa2,Nodek .γ2 = {resultk := null}

The Server will perform output := 11 given that

merge (result1 , result2 ) = 5 + 6 = 11

49



producing the new state Server .γ3 :

Server .γ3 =
(
{input 7→ “hello DReAM!”, output 7→ 11} , {Node1 ,Node2} ,
{Node1 .γ3 ,Node2 .γ3}

)

Node1 .γ3 =
(
{data1 7→ null, result1 7→ null} , ∅, ∅

)

Node2 .γ3 =
(
{data2 7→ null, result2 7→ null} , ∅, ∅

)

Now the Server can synchronize with an external “client” component
through the return port and start over. �

3.2.2 Disjunctive and Conjunctive styles in PILOps

The approach shown in section 3.1.4 to write conjunctive-style rules by
using logical implications in PIL formulas does not translate directly to
PILOps as the semantics of operations is the same of (parallel) guarded
commands: at each state one or more guards can be satisfied by the se-
lected interaction, and for all those that do the associated operation is
carried out. Instead, the idea behind the conjunctive characterization of
admissible interactions is that, in order to guarantee composability, each
and every formula must hold for any admissible interaction.

Suppose we have a component c that can interact through its port
p only provided that some constraint Ψp holds: a causal PIL formula
that we could write for a conjunctive style specification is Ψ = p ⇒ Ψp .
Furthermore, suppose we want a local variable x of c to increment its
value as a result of c interacting through its port p: ∆ = {x := x + 1}. If
we were to build a L-DReAM term by associating ∆ as a “consequence”
of Ψ , we would obtain p ⇒ Ψp → {x := x + 1}. This however does
not model the intended behavior: operations in ∆ are carried out if the
formula Ψ holds, and given that Ψ in conjunctive style is an implication
of the form p ⇒ Ψp , this rule would cause ∆ to be executed for any
admissible interaction (i.e., even those where p is not involved at all).

Indeed, a minimal contribution to a rule written in conjunctive style
needs to combine two PILOps rules: one defining which port of the com-
ponent is offered for participation in the interaction, the other under
which conditions it will participate and which operations will be per-

50



formed as a result. These can be extended in order to also describe opera-
tions triggered by predicates on the state of a component independently
from its participation in an interaction, defining a conjunctive term.

Definition 3.2.2 (Conjunctive term). Let c = (P,X, r, γ0 ) be an L-DReAM
component according to definition 3.2.1. A conjunctive term for c is de-
fined as:

ρB Ψρ → ∆ρ , (¬ρ→ skip ‖ ρ ∧ Ψρ → ∆ρ) (3.28)

where:

– ρ ::= p ∈ P | π (X) is the premise of the term, and is either a port in
the interface of c or a predicate on its local variables;

– Ψρ is the requirement of the term, which is either true if ρ = π or a
PIL formula otherwise;

– ∆ρ is the consequence of the term.

A conjunctive term is consistent if its consequence only modifies the state
of c or of any of its descendants. That is, ∆ρ is either skip or it only
contains assignments of the form x := f (Y ), with x ∈ X or x ∈ c′.X
where c′ ∈ Descendants(c).

Definition 3.2.2 allows for two types of conjunctive terms:

1. p B Ψp → ∆p : defining the coordination constraint for the involve-
ment of the port p in an interaction and the associated operations;

2. π B true→ ∆π : defining the operations that transform the state of
a component when it satisfies π.

A PILOps rule can be written in conjunctive style by using consistent
conjunctive terms as sub-rules, joined via the & operator.

No additional notation is required to write rules in disjunctive style:
it is sufficient to combine base terms of PILOps rules (3.6) with the ‖
operator.

Rules written using the conjunctive style have a direct translation to
an equivalent disjunctive style rule. Consider for instance, the combina-
tion of two conjunctive terms on ports p and q :

(p B Ψp → ∆p) & (q B Ψq → ∆q) =

51



= (¬p → skip ‖ p ∧ Ψp → ∆p) & (¬q → skip ‖ q ∧ Ψq → ∆q) =

= ¬p ∧ ¬q → skip ‖ p ∧ ¬q ∧ Ψp → ∆p ‖ q ∧ ¬p ∧ Ψq → ∆q ‖
p ∧ q ∧ Ψp ∧ Ψq → ∆p ∪∆q

The disjunctive form obtained from the application of the distributivity
axiom (3.25) is the union of four terms corresponding to the canonical
monomials on p and q and leading to the execution of operation ∆p , ∆q ,
both or none. It is easy to see that for a set of ports P the conjunctive form

&
p∈P

(¬p → skip ‖ p ∧ Ψp → ∆p) (3.29)

is equivalent, according to (3.11), to the disjunctive form

n

I∪J=P

( ∧

pi∈I
pi ∧ Ψpi ∧

∧

pj∈J
¬pj →

⋃

pi∈I
∆pi

)
(3.30)

where
∧
i∈∅ Ψ = true, and

⋃
i∈∅∆pi

= skip. Similarly, for the conjunction
of terms with premise π ∈ Π we have:

&
π∈Π

(¬π → skip ‖ π → ∆π) ≡
n

I∪J=Π

( ∧

πi∈I
πi ∧

∧

πj∈J
¬πj →

⋃

πi∈I
∆πi

)

(3.31)
The converse does not hold. Given a disjunctive specification r it is

not always possible to get an equivalent conjunctive one, even if ∅ |=γ r

for any γ. If we have a rule of the form
f
k∈K Ψk → ∆k over a set of ports

P with ∆k 6= skip, it can be put in the canonical form, i.e., the union of
canonical terms of the form

∧
i∈I pi

∧
j∈J ¬pj → ∆IJ . It is easy to see that

for this form to be obtained as the combination of consistent conjunctive
terms, a sufficient condition is that for each port pi there exists an oper-
ation ∆pi such that ∆IJ =

⋃
i∈I ∆pi and pi B Ψpi → ∆pi is consistent.

This condition also determines the limits of the conjunctive/composi-
tional approach for PILOps. That is, in order to express a disjunctive rule
with a conjunctive equivalent, it must be possible to deconstruct the set
of operations of the former rule in subsets of operations each modifying
only the state of a component having a port as premise in the associated
conjunctive term.

52



As an example, let two components c1 , c2 be:

c1 =
(
{p} , {x} , true→ skip, γ10

)

c2 =
(
{u, v} , ∅, true→ skip, γ20

)

Consider a system defined as a compound having c1 , c2 in its pool and
characterized by the following disjunctive coordination rule:

r = p ∧ u → x := 1 ‖ p ∧ v → x := 2 ‖ ¬p ∧ ¬u ∧ ¬v → skip

The admissible interactions for r are {p, u, v} , {p, u} , {p, v}, and the
idling. Let us try to transform r into a combination of conjunctive terms,
one for each port in the system:

r′ = p B Ψp → ∆p & u B Ψu → ∆u & v B Ψv → ∆v

Reasoning on the models of the interaction logic, we can easily conclude
that:

– Ψp = u ∨ v : port p requires either u or v ;

– Ψu = p: port u requires p;

– Ψv = p: port v requires p.

The problem of completing the translation of r into a conjunctive speci-
fication now becomes choosing the appropriate operation sets for each
conjunctive term such that JrKa = Jr′Ka for any a (3.11):

JrK{p,u,v} = Jr′K{p,u,v} =⇒∆p ∪∆u ∪∆v = {x := 1, x := 2}
JrK{p,u} = Jr′K{p,u} =⇒∆p ∪∆u = {x := 1}
JrK{p,v} = Jr′K{p,v} =⇒∆p ∪∆v = {x := 2}

JrK∅ = Jr′K∅ = skip

while for any other interaction on ports p, u and v : JrKa = Jr′Ka = ∅.
The only choice that makes r and r′ semantically equivalent is ∆p =

skip, ∆u = {x := 1} and ∆v = {x := 2}, however this produces two
conjunctive terms that are not consistent since both consequences affect a
local variable of c1 but have a port of c2 as premise.

53



Example 3.2.2 (Server with two Nodes - conjunctive style). We will now
revisit Example 3.2.1 and define coordination rules adopting the conjunc-
tive style. Rules rk of Nodek can be redefined as follows:

r′k =receivek B datak = null ∧ resultk = null→ skip

&

datak 6= nullB true→ {resultk := f(datak ), datak := null}
&

returnk B resultk 6= null→ {resultk := null}

The Server rule rs can be rewritten in the conjunctive form r′s:

r′s =accept B input = null→ {output := null}
&

receive1 B receive2 ∧ input 6= null ∧ output = null

→ {data1 := split (input , 1)}
&

receive2 B receive1 ∧ input 6= null ∧ output = null

→ {data2 := split (input , 2)}
&

reduce B return1 ∧ return2

→ {output := merge (result1 , result2 )}
&

return1 B reduce → skip

&

return2 B reduce → skip

&

return B output 6= null→ {input := null}

Notice that each sub-rule in the disjunctive rule rs coordinating Node1

and Node2 has been decomposed in the highlighted conjunctive sub-rules
in r′s. For instance, receivek B receivek ′ ∧ input 6= null ∧ output = null→
datak := split (input , k) models the constraint from the perspective of
Nodek , whose receivek port is being offered for interaction. Accordingly,
the assignment datak := split (input , k) modifies only the store of Nodek

54



as the premise of the term involves one of its ports. The conjunctive
term having the port reduce as premise characterizes instead an internal
behavior of the Server that needs to merge the individual results of both
Node components to produce the output, and as such it is isolated in a
separate sub-rule. �

3.2.3 Parametric architectures and dynamic systems

Now we expand the language introduced in section 3.2.1 allowing L-
DReAM to describe dynamic system architectures with an arbitrary (fi-
nite) number of components.

To have a modeling language with sufficient expressive power to de-
scribe classes of systems with an arbitrary number of components while
supporting dynamic reconfiguration of their structure, L-DReAM is en-
riched on three fronts:

1. The concepts of component type and component instance are intro-
duced in order to decouple the architecture specification from the
instanced system;

2. A first-order extension, with quantifiers over component instances,
of the logic used in (3.6) is considered;

3. Appropriate operations to create and delete component instances,
and to migrate them from one pool to another are introduced.

Definition 3.2.3 (L-DReAM Component Type). Let P and X respectively
be the domain of port and local variable names. A component type is a
tuple b = (P,X, r, γ0 ) where:

– interface P ⊆ P is a finite set of ports;

– store X ⊆ X is a finite set of local variables;

– rule r is a constraint built according to the syntax in (3.33) that char-
acterizes the behavior of the component instances of this type and
the coordination between constituents of their pools;

– initial state γ0 ∈ Γ of the form γ0 =
(
σ0, ∅, ∅

)
(i.e., where the pool of

b is empty).

55



A component type can be considered as the blueprint for actual com-
ponents of a L-DReAM system, which we refer to as component instances.

Definition 3.2.4 (L-DReAM Component Instance). Let Cid be the domain
of instance identifiers and b = (P,X, r, γ0 ) be a component type. A compo-
nent instance c of type b, identified by i ∈ Cid, is a L-DReAM component as
defined in (3.2.1) with set of ports P , local variablesX and corresponding
references in the rule r and state γ0 indexed with i:

c = b [i] = (P [i] , X [i] , r [P [i] /P ] [X [i] /X] , γ0 [X[i]/X]) (3.32)

It is assumed that each instance is characterized by a unique identifier,
regardless of its type.

Notice that even though we do not require interfaces and stores of
different component types to be disjoint sets, the assumption of unique-
ness of instance identifiers ensures that interfaces and stores of actual
component instances are always disjoint.

In order to have rules sufficiently expressive to model the interactions
between arbitrary component instances without any prior knowledge of
their identifiers, we equip the language for specifying L-DReAM rules
with first-order logic quantifiers in the form of component instance variable
declarations. The syntax in (3.6) then becomes:

(L-DReAM rule) r ::= Ψ → ∆ |D
{
r
}
| r1 & r2 | r1 ‖ r2

(declaration) D ::= ∀c :c∗.b | ∃c :c∗.b where c ∈ c∗.C

(PIL formula) Ψ ::= true | p | π | ¬Ψ | Ψ1 ∧ Ψ2

(operation set) ∆ ::= skip | {δ} |∆1 ∪∆2

(3.33)

Note that conjunctive terms ρ B Ψρ → ∆ introduced for PILOps in sec-
tion 3.2.2 can still be used as terms for L-DReAM rules with the interpre-
tation given by (3.28).

A declaration of the form ∀c :c∗.b can be understood as the definition
of a variable name c representing component instances of type b in the
pool of the component instance c∗. If the scope of a declaration in a rule of
a component instance is its own pool, then we simply omit the reference
to it and write ∀c : b instead. Similarly, if we do not want to restrict the

56



type of the component instance in the declaration, we simply omit it and
write ∀c : c∗ (or ∀c if the scope of the variable c is the pool of the same
component). ∃c :c∗.b can be interpreted similarly.

Note that ports p and predicates π in PIL formulas can now be para-
metric with respect to the instance variables defined in the enclosed dec-
laration (e.g. a rule with a declaration ∀c : b can refer to a port p of all
component instances c that match the declaration, using the dot notation
c.p).

Under the assumption that L-DReAM systems have a finite number
of component instances, each declaration in the rule of a component in-
stance can be removed by transforming the rule itself into a combination
of rules (via the & and ‖ operators for the universal and existential quanti-
fiers, respectively) where the instance variable is replaced with the actual
component instances of the given type in the given pool. We refer to this
transformation as the declaration expansion

〈〈
r
〉〉
γ

of rule r of a compo-
nent instance with state γ =

(
σ,C,ΓC

)
, which is formally defined by the

following rules:
〈〈
Ψ → ∆

〉〉
γ

= Ψ → ∆
〈〈
∀c :c∗.b

{
r
}〉〉

γ
= &

b[i]∈c∗.C

〈〈
r [b [i] /c]

〉〉
γ

〈〈
∀c :c∗

{
r
}〉〉

γ
=&
∀b

〈〈
∀c :c∗.b

{
r
}〉〉

γ

〈〈
∃c :c∗.b

{
r
}〉〉

γ
=

n

b[i]∈c∗.C

〈〈
r [b [i] /c]

〉〉
γ

〈〈
∃c :c∗

{
r
}〉〉

γ
=

n

∀b

〈〈
∃c :c∗.b

{
r
}〉〉

γ

〈〈
r1 & r2

〉〉
γ

=
〈〈
r1

〉〉
γ

&
〈〈
r2

〉〉
γ〈〈

r1 ‖ r2

〉〉
γ

=
〈〈
r1

〉〉
γ
‖
〈〈
r2

〉〉
γ

(3.34)

where r [b [i] /c] is the rule r after applying the substitution of the instance
variable c with the actual instance b [i].

Example 3.2.3 (Server with n Nodes - declaration expansion). Let us ex-
pand Example 3.2.1 and 3.2.2 by considering a scenario where we have a
variable pool of Node component instances that one Server instance can
use to handle the computation.

57



We will define the component types Server and Node as follows:

Server = ({accept , reduce, return} , {input , output} , rs, γ0 )

Node = ({receive, return} , {id , data, result} , rn, γ0 )

where we introduced the local variable id to keep track of the identifier
of Node instances ready to process their Server ’s input, and the output
variable is now an array of values (where output [i] represents the i-th
element of the array).

Consider now a system with the same initial configuration described
in Example 3.2.1, where we have one Server instance - Server [0] - and two
Node instances - Node[1],Node[2]. The initial state γ0 of Server [0] will be:

Server [0].γ0 =
(
{input 7→ “hello DReAM!”, output 7→ null} ,
{Node[1],Node[2]} , {Node[1].γ0 ,Node[2].γ0}

)

Let us define a fragment r of rule rs of the Server component type
modeling how Node instances are fed input data to be processed using
the conjunctive style:

r = ∀c :Node
{

c.receive B input 6= null ∧ output = null

→ {c.data := split (input , poolSize(this) , c.id)}
}

where we extended the split function in order to parametrize the splitting
degree with the number of components in the Server ’s pool (referenced
through the function poolSize(c)). The declaration expansion of rule r
under state Server [0].γ0 is performed by generating a new rule for each
Node instance in the pool of Server and substituting it in place of the
instance variable c:
〈〈
r
〉〉
γ0

= Node[1].receive B input 6= null ∧ output = null

→ {Node[1].data := split (input , poolSize(Server [0]) ,Node[1].id)}
&

Node[2].receive B input 6= null ∧ output = null

→ {Node[2].data := split (input , poolSize(Server [0]) ,Node[2].id)}

�

To encompass the additional step of declaration expansion in the de-
scription of the behavior of a L-DReAM component, the inference rule

58



(3.17) used to describe the operational semantics of the static version of
the language needs to be modified accordingly:

∀ci ∈ c.C : ci .γ
a−→ ci .γ

′ c.γ′ =
(
c.σ, c.C, {ci .γ′}ci∈c.C

)

a |=c.γ

〈〈
c.r
〉〉

c.γ
c.γ′′ ∈ J

〈〈
c.r
〉〉

c.γ
Ka,c.γ (c.γ′)

c.γ
a−→ c.γ′′

(3.35)

Rule (3.35) now requires that, at each state of a component instance, the
problem of finding an interaction that satisfies its coordination rule is
solved after it is reduced to the static, non-parametric case by expanding
the declarations.

Semantics of reconfiguration operations

Since the higher-order language now allows us to express constraints
without prior knowledge of the individual component instances in a sys-
tem, reconfiguration operations are extended in order to allow dynamic
variations in the population of component instances. We thus have three
new operations:

– create (c :b, cs , g)
[
∆c

]
: to create a new component instance of type

b, add it to the pool of component instance cs , and bind it to the
instance variable c within the scope of the operation set ∆c which is
then executed, where g is a generator attribute which can be used to
distinguish multiple creation operations with the same parameters;

– delete(c): to delete the component instance c;

– migrate (c, cs): to migrate component instance c to the pool of cs

(removing it from the pool where it previously belonged).

Note that the “create” operation can be written using the short-
hand notation create(b, cs , g) when no chained operation has to be
performed after the new instance is created (i.e., create(b, cs , g) ≡
create (c :b, cs , g)

[
skip

]
).

59



To formalize the semantics of the application of the new operations
on a component state, let us first define the “binding” support operation:

bind (c, cs) (ĉ.γ) =

{(
σ,C ⊕ c,ΓC ⊕ c.γ

)
if cs = ĉ(

σ,C,Γ′C
)

otherwise
(3.36)

where:

– Γ′C = {bind (c, cs) (γi) | γi ∈ ΓC};

– S ⊕ s ≡ S ∪ {s} is the set addition operation.

Note that this operation, which adds c to the pool of cs , is not explicitly
used within L-DReAM rules as its use can produce states where a compo-
nent belongs to the pool of two different compounds or to its own pool
(which we do not allow).

Having defined the support operation bind, the state transformation
induced by the application of each operation on the component state
ĉ.γ =

(
σ,C,ΓC

)
can now be formalized as follows:

create (c :b, cs , g)
[
∆c

]
(ĉ.γ) = (∆c [b[f ] /c])↓γ′ (γ′) (3.37)

where:

– f ∈ Cid is a fresh instance identifier;

– γ′ = bind (b[f ] , cs) (ĉ.γ).

delete(c) (ĉ.γ) =

{(
σ,C 	 c,ΓC 	 c.γ

)
if c ∈ C(

σ,C,Γ′C
)

otherwise
(3.38)

where:

– Γ′C = {delete(c) (γi) | γi ∈ ΓC};

– S 	 s ≡ S \ {s} is the set removal operation.

migrate (c, cs) (ĉ.γ) = bind (c, cs) (delete(c) (ĉ.γ)) (3.39)

60



Notice that the generator attribute g has no effect on the semantics of
the “create” operation (3.37), but contributes to the (implicit) structural
equivalence between operations. Formally:

create (c′1 :b1 , c1 , g1)
[
∆c′1

]
≡ create (c′2 :b2 , c2 , g2)

[
∆c′2

]

⇓
b1 = b2 and c1 = c2 and g1 = g2

(3.40)

Different choices for this attribute allow to define whether a L-DReAM
rule can create multiple instances of the same component type in the
same pool. This can be used to different effect. Consider as an example
the following rules:

r1 =∀c :c0 .b
{
true→ {create(b, c0 , 0)}

}

r2 =∀c :c0 .b
{
true→ {create(b, c0 , c.id)}

}

Assume that c0 hosts two component instances of type b in its pool in
its current state γ, respectively with instance identifier equal to 1 and
2. The declaration expansion of these two rules in γ according to (3.34)
produces:

〈〈
r1

〉〉
γ

= true→ {create(b, c0 , 0)}& true→ {create(b, c0 , 0)}
〈〈
r2

〉〉
γ

= true→ {create(b, c0 , 1)}& true→ {create(b, c0 , 2)}

If we now compute the respective sets of operations to be performed for
the two rules according to (3.10), we get:

J
〈〈
r1

〉〉
γ
Kγ = {create(b, c0 , 0)}

J
〈〈
r2

〉〉
γ
Kγ = {create(b, c0 , 1) , create(b, c0 , 2)}

Indeed, the two rules could have been interpreted as follows:

– r1: if c0 hosts at least an instance of type b in its pool, then create
another instance;

– r2: for every instance of type b hosted in the pool of c0 , create a new
instance.

61



The adoption of a snapshot semantics guarantees that component ref-
erences are always resolved according to the snapshot, so any operation
can still be carried out even if a delete/migrate operation on the involved
instance is executed before it. This means, for example, that the execu-
tion of the set of operations ∆ = {delete(c) , c′.x := c.x} produces a state
where c is no longer present and variable c′.x has the same value that
c.x had prior to being deleted, regardless of the order in which the two
operations are resolved.

Conjunctive style in L-DReAM

The full L-DReAM framework relies on the same conjunctive term (3.28)
defined for PILOps in section 3.2.2 to build coordination rules using the
conjunctive style.

The notion of being “consistent”, which we attributed to conjunctive
terms with operations that only modify the state of the component in-
volved in their premise or of any of its descendants, still applies.

Considering the reconfiguration operations introduced in the dy-
namic framework, a conjunctive term on component ĉ of the form
ρĉ B Ψρĉ → ∆ρĉ associated to the rule of component cr is consistent if
its consequence ∆ρĉ ≡ skip or if it only contains operations δ that verify:

– create (c :b, cs , g)
[
∆c

]
: cs = ĉ, and ρĉ B true→ ∆c is consistent;

– delete(c): c ∈ Descendants(ĉ)⊕ ĉ;

– migrate (c, cs): c = ĉ, and cs ∈ Descendants(cr )⊕ cr .

Example 3.2.4 (Server with dynamic instantiation of Nodes). Recall the
extended scenario presented by Example 3.2.3. We will now integrate the
definition of the Server and Node component types with their L-DReAM
rules using the conjunctive style. Rule rn of the type Node will be essen-
tially the same as rk in Example 3.2.2:

rn =receive B data = null ∧ result = null→ skip

&

data 6= nullB true→ {result := f(data), data := null}
&

62



return B result 6= null→ {result := null}

Since all the ports and local variables mentioned in rn will be local to each
Node instance, no scoping or quantification is needed.

On the other hand rs will now have to deal with an arbitrary number
of nodes. Recall that the service that we want our Server to provide is
the “character count” function. Let us define rs as the conjunction of the
following six sub-rules r1& . . .&r6:

r1 = ∀c :Node
{

accept B input = null

→ {output := null, delete(c)}
}

Rule r1 implements the output reset of the Server as in the non-parametric
case of Example 3.2.2, but it also deletes every Node instance.

r2 = input 6= null ∧ poolSize(this) = 0B true

→
{
FOR

(
i = 1..length(input)/5

)
DO

{

create (c :Node, self, i)
[
c.id := i

]}}

Rule r2 is completely new to the parametric variant, and it is used to
create as many Node instances as needed (e.g. in this case one every five
characters in input).

r3 = ∀c :Node
{

c.receive B input 6= null ∧ output = null

→ c.data := split (input , poolSize(this) , c.id)
}

Rule r3 is exactly the same rule as r discussed in Example 3.2.3 describing
how Node components receive input data from the Server .

r4 = ∀c :Node
{

reduce B c.return → {output [c.id ] := c.result}
}

Rule r4 characterizes how processed data is collected by the Server by
collecting the results in its output local variable.

r5 = return B output 6= null→ {input := null}

Rule r5 is left unchanged from the non-parametric case.

r6 = ∀c :Node
{
∀c′ :Node

{
c.receive B c′.receive → skip

}}

&

∀c :Node
{

c.return B reduce → skip
}

63



Lastly, r6 enforces strong synchronization between all Node instances
when interacting through the receive port, and between the Server and
all its nodes through the return and reduce ports (the latter is, in fact,
the result of the combination of the second conjunctive term of r6 with
r4). �

3.3 Encoding other formalisms

The “loose” characterization of individual components and the freedom
to hierarchically compose them makes L-DReAM extremely flexible and
capable of describing a variety of systems and programming paradigms.

Consider for example a labeled transition system (S,L, T ) defined
over the states S, labels L and transitions T ⊂ S×L×S. One of the possi-
ble modeling of an LTS as a L-DReAM atomic component c = (P,X, r, γ0 )

is the following:

– every label l ∈ L has a corresponding port pl ∈ P ;

– every state s ∈ S has a corresponding local variable xs ∈ X ;

– for every transition 〈si, li, s′i〉 ∈ T there is a rule
r =

f
i

(
xsi ∧ pli →

{
xsi := false, xs′i := true

})
.

L-DReAM can also be used in an imperative, sequential fashion. To do
so, one possibility is to simply add a “program counter” local variable pc

in the store of each component type and conjunct the appropriate pred-
icate over it in the requirements of each conjunctive term describing its
behavior:

rseq = &
i

(pi B (Ψ ′i ∧ pc = i)→ ∆i ∪ {pc := pc + 1}) (3.41)

More generally, by using the conjunctive style L-DReAM can be used
as an endogenous coordination language comparable to process calculi
relying on a single associative parallel composition operator. Consider
for instance the CCS [40] process P0 defined as the parallel composition
of two processes P1 and P2 that can synchronize over the actions q and u:

P0 = P1 | P2

64



P1 = q.ū.0 P2 = q̄.u.0

where 0 is the inaction. To translate this simple system in L-DReAM we
define three components ci , each one modeling the process Pi:

c0 =
(
{τ} , ∅, r0,

(
∅, {c1 , c2} , {γc1 , γc2 }

))

c1 = ({q , ū} , {pc1} , r1, γc1 )

c2 = ({q̄ , u} , {pc2} , r2, γc2 )

where the pool of c0 hosts c1 and c2 .
Rules r1, r2 will model a simple sequential process according to (3.41):

r1 = q B (pc1 = 1)→ {pc1 := 2}
&

ū B (pc1 = 2)→ {pc1 := 3}
r2 = q̄ B (pc2 = 1)→ {pc2 := 2}

&

u B (pc2 = 2)→ {pc2 := 3}

The rule r0 of the root component c0 will instead characterize the seman-
tics of the CCS parallel composition, which provides that two parallel pro-
cesses can synchronize over the matching actions (in this case represented
by the interactions {q , q̄} and {u, ū}) causing the system to perform an
internal action τ :

r0 = τ B (q ∧ q̄) ∨ (u ∧ ū)→ skip

Notice that r0 still allows interleaving between c1 and c2 just like for P0.
Another way of modeling communicating sequential processes in L-

DReAM is to equip every component with two ports in , out and char-
acterize the communication channel (or the action label in CCS) with a
specific local variable chan . This allows to model even more complex
synchronization mechanisms of calculi like π-calculus [41] and one of its
main features: channel mobility. Let us consider a simple process that we
will call again P0, representing the parallel composition of three processes

65



P1, P2 and P3:

P0 = P1 | P2 | P3

P1 = q(x).x̄ 〈v〉 .0 P2 = q̄ 〈u〉 .0 P3 = u(y).0

The idea is that P1 wants to communicate with P3, but initially can only
communicate with P2. Through the output/input pair of actions q̄ 〈u〉
and q(x), P2 can send the channel u to P1 which then allows it to send a
message to P3 by binding u to x.

To represent this system in L-DReAM, we will first define the root
component type b0 as before:

b0 =
(
{τ} , ∅, r0,

(
∅, ∅, ∅

))

To model the other processes, we will instead define three component
types b1 , b2 and b3 :

b1 =
(
{in, out} , {pc, chan, val , x} , r1, γ

1
0

)

b2 =
(
{in, out} , {pc, chan, val} , r2, γ

2
0

)

b3 =
(
{in, out} , {pc, chan, y} , r3, γ

1
0

)

where the initial states γ10 , γ20 and γ30 are respectively:

γ10 =
(
{pc 7→ 1, chan 7→ “q”, val 7→ null, x 7→ null} , ∅, ∅

)

γ20 =
(
{pc 7→ 1, chan 7→ “q”, val 7→ “u”} , ∅, ∅

)

γ30 =
(
{pc 7→ 1, chan 7→ “u”, y 7→ null} , ∅, ∅

)

Rules r1, r2 and r3 will again model sequential processes, but will now
also handle channel names and value output:

r1 = in B (pc = 1)→ {x := val , chan := x , val := “v”, pc := 2}
&

out B (pc = 2)→ {pc := 3}
r2 = out B (pc = 1)→ {pc := 2}
r3 = in B (pc = 1)→ {pc := 2}

66



The assignments on the chan variable here are used to indicate the chan-
nel name associated with the preceding interaction constraint, while the
val variable is used to store the channels being passed.

Synchronization and actual value passing is instead implemented by
rule r0 of the root component c0 :

r0 = ∃c
{
∃c′
{
τ B c.in ∧ c′.out → skip

}}

&

∀c
{
∃c′
{

c.in B c′.out ∧ c.chan = c′.chan → {c.val := c′.val}
}}

This rule characterizes both the behavior of the root component type b0

- which performs τ if two instances of any type interact via ports in and
out - and the coordination between components in its pool - i.e., for one
to interact with port in there must be another one participating with port
out with matching values for their local variables chan . For the sake of
simplicity, we are omitting further parts of rule r0 to enforce only binary
synchronization between component instances.

L-DReAM can be also used to model capabilities of many other pro-
cess algebras relying on more complex and flexible strategies to realize
communication and coordination between components than simple chan-
nels matching. For instance, specifications written with the AbC calculus
[1, 2] can be translated to L-DReAM preserving most of the features of the
source language.

In AbC, a system is a set of parallel components equipped with a set
of attributes. Communication happens in a broadcast fashion with the
caveat that only components that satisfy some predicates over specific
attributes do receive the message given that also the sender satisfies other
predicates. The core actions of the language that characterize its commu-
nication paradigm are the input and output actions:

(input) Π1 (x̃)

(output) (Ẽ)@Π2

where x̃ is a sequence of “placeholders” for the received values and Ẽ

is a sequence of expressions representing the values being sent. Π are

67



predicates, which can be defined over attributes only (i.e. for output
actions) or also over received values (i.e. for input actions). A simple
example of matching input/output actions in AbC could be:

– (x > 1 ∧ color = blue)(x, y): bind two values to variables x, y from
messages having x > 1 and coming from components with attribute
color equal to blue;

– (2, 0)@(color = red): send values 2, 0 to all components with at-
tribute color equal to red.

Broadcast communication can be easily implemented in L-DReAM.
To maintain uniformity with AbC where actions are defined at compo-
nent level, we can adopt the conjunctive style and define two rules that
implement its input/output actions:

(input) ∀c
{
∃c′
{

c.in B c′.out ∧Π1(c′.Ẽ)→
{

c.x̃ := c′.Ẽ
}}}

(output) ∀c
{
∃c′
{

c.out B c′.in ∧Π2 → skip
}}

where we assume that:

– the interface of all component types includes two ports in, out ;

– the store of all component types contains local variables describing
attributes, values being passed through messages, and the variables
that are bound to values being passed;

– the predicates Π1,Π2 are equivalent to the respective AbC counter-
parts, with the appropriate references to local variables modeling
attributes and values being passed.

Going back to the simple example mentioned above, we could translate
the given pair of input/output actions as:

(x > 1 ∧ color = blue)(x, y)

↓
∀c
{
∃c′
{

c.in B (c′.out ∧ c′.x > 1 ∧ c′.color = blue)

→
{

c.x := c′.x , c.y := c′.y
}}}

68



(2, 0)@(color = red)

↓
∀c
{
∃c′
{

c.out B (c′.in ∧ c′.color = red)→ skip
}}

There are many more nuances to AbC that we are not representing
here, such as the fact that the in action is blocking while the out action
is not. To model this, we need to combine the previously mentioned
encoding of the in and out actions with the approach described earlier to
simulate sequential processes in L-DReAM.

69



Chapter 4

The DReAM framework

The L-DReAM framework introduced in Chapter 3 provides a flexible ap-
proach to the specification of dynamic and reconfigurable systems. The
light structure imposed on components and compounds makes it very
close to a minimal extension to the language used to define its rules,
which allows to study it effectively with little overhead. However, the
design of most “real” systems does not necessarily benefit from the sim-
plicity of the adopted formalism. Specialized elements of the language
addressing common use cases and specific needs can indeed ease the task
of system modeling.

This Chapter presents DReAM (Dynamic Reconfigurable Architecture
modeling) [18, 43], a specialized version of L-DReAM that is equipped
with features supporting effective design of dynamic system architec-
tures. DReAM uses the same logic-based modeling language of its “light”
counterpart, inheriting its expressive power and flexibility. The system
structure, however, is no longer a uniform hierarchy of components. In-
stead, ti consists of instances of types of components organized in hierar-
chies of motifs (see figure 15). Each motif defines how hosted components
interact and reconfigure via coordination rules. Thus, a given type of com-
ponent can be subject to different rules when it is in a “ring” motif or in
a “pipeline” one. Motifs themselves are typed, and each motif instance
can “migrate” from one to another, dynamically changing their hierarchy

70



Motif m1

coordination rule

r1

coordination rule

Map

n1 n2

n4 n5

n3

Pool

c6
c7

c8

c9

m5

coordination rule

Motif m2

DReAM System (Motif m0)

r2

r0

Map

n1

n2

n3

c Component instance Component Types n Map NodeMotif Types

Pool

c1
c2

c3

m3

c5

c4 m4

Figure 15: Overview of a DReAM system

and thus potentially affecting all the underlying components. Coordina-
tion rules in a motif are expressed using the same formalism adopted for
L-DReAM rules in (3.33). Component instances can also migrate between
motifs, allowing to switch seamlessly coordination style at runtime.

To enhance expressiveness of the different kinds of dynamism, each
motif is equipped with a map, which is a graph defining the topology of
the interactions in the motif. To parametrize coordination terms for the
nodes of the map, an addressing function @ is provided which defines the
position @(c) in the map of any component instance c associated with the
motif. Additionally, each node is equipped with a local memory that can
be accessed by components and used as a shared memory. Maps are also
very useful to express mobility, in which case the connectivity relation of
the map represents possible moves of components. Finally, the language
allows to modify maps by adding or removing nodes and edges, as well
as to dynamically create and delete component instances.

71



4.1 Structuring architectures

A DReAM system is made of atomic components, each one characterized
by a behavior, a data store for local variables, and an interface of ports to
interact and coordinate with other components. The system architecture
that realizes their coordination is structured with hierarchies of “motifs”,
each representing an independent architecture with its own coordination
rules and data structures for parametrization.

The support for dynamic reconfiguration allows systems to modify
their architecture at runtime by creating, deleting, and migrating both
components and motifs. This allows to model changes in the population
of entities in the system but also seamless switching of architectural styles.

In this section we will introduce and formally define the entities that
characterize the structure of a DReAM system.

4.1.1 Component Types and component Instances

The basic elements of DReAM systems are instances of component types.
Component types in DReAM are essentially a mix between L-DReAM
component types (Definition 3.2.3) and basic interacting components (Def-
inition 3.1.1).

Concretely, DReAM component types are labeled transition systems
equipped with a store (i.e., a set of local variables) and an interface (i.e., a set
of ports). Transitions connect control locations of the LTS, and their labels
are transition rules built from a fragment of PILOps (P,X) that we will
call t-PILOps:

(t-PILOps rule) t ::= Φ→ ∆

(PIL atom) Φ ::= idle(P ) | p ∈ P
(operation set) ∆ ::= skip | {x := f(X)} |∆1 ∪∆2

(4.1)

where:

– idle(P ) ≡ ∧
p∈P ¬p is a notation to represent the PIL monomial

obtained by the conjunction of all the negated ports in P ;

– x ∈ X is a local variable.

72



For the sake of conciseness, we will omit the the operation part of the
transition rule when ∆ = skip (i.e., Φ ≡ Φ→ skip).

The models of the fragment and semantics of operations are the same
as static PILOps defined in section 3.2.1, with the difference that the effect
of the application of operations to components states ∆ (γ) is limited to
the valuation function of the component (as DReAM components do not
host other components like L-DReAM compounds, and operation sets
associated to transition only contain assignments).

Having introduced t-PILOps, we can now formally define what a com-
ponent type is in DReAM.

Definition 4.1.1 (DReAM Component Type). Let S be the set of all com-
ponent control locations, X the set of all local variables, and P the set of
all ports. A component type ct is a transition system ct := (P,X, S, T, γ0 ),
where:

– interface P ⊆ P : finite set of ports;

– store X ⊆ X : finite set of local variables;

– S ⊆ S: finite set of control locations;

– T ⊆ S× t-PILOps(P,X)×S: finite set of transitions 〈s, t, s ′〉, where
t ∈ t-PILOps(P,X);

– initial state γ0 ∈ Γ of the form γ0 = (s0 , σ0), with s0 ∈ S and
σ0 : X 7→ V is a valuation function for local variables in X .

Each component type has one implicit loop transition 〈s, idle(P ) , s〉 for
each control location s ∈ S. This transition represents the inaction, i.e.,
the ability of instances of component type ct of not participating in inter-
actions by not changing their state. For the sake of simplicity, we assume
that no transition other than the idle ones are labeled with the PIL formula
“idle(P )” (i.e., every non-idle transition is labeled with a port name).

Just like in L-DReAM, component instances are obtained from a com-
ponent type by renaming its control locations, ports and local variables
with a unique identifier.

Definition 4.1.2 (DReAM Component Instance). Let Cid be the domain
of component identifiers and ct = (P,X, S, T, γ0 ) be a component type.

73



A component instance c of type ct , identified by i ∈ Cid, is obtained by
renaming the set of control locations, ports and local variables of the
component type ct with the identifier i, that is:

c , ct [i] = (P [i], X[i], S[i], T [i], γ0 [i]) (4.2)

where:

– the initial state γ0 [i] is obtained from γ0 = (s0 , σ0) by replacing
the initial control location s0 with the renamed s0 [i] ∈ S[i] and by
replacing the domain of σ0 with X[i];

– transitions T [i] are obtained from T by replacing control locations,
ports and local variables with their renamed instances:

T [i] =
{
〈s[i], t[i], s ′[i]〉 |
〈s, t, s ′〉 ∈ T, t[i] = t [p[i]/p] [x[i]/x] ∀p ∈ P,∀x ∈ X

}

Without loss of generality, we assume that instance identifiers uniquely
represent a component instance regardless of its type.

The state γc of a component instance c is therefore defined as the pair
γc = (c.s, c.σ), where c.σ is the valuation function of the variables c.X . Σ
denotes the domain of all valuation functions, while we can refer to the
set of all possible valuation functions for component instance c with c.Σ.

We use the same notation to denote ports, control locations, states and
variables belonging to a given component instance (e.g. c.p ∈ c.P ). Given
that, by construction, each instance identifier is uniquely associated to one
component instance, we have that sets of ports, control location and local
variables of different component instances are disjoint, i.e. c.P ∩ c′.P = ∅
for c 6= c′.

From their “internal” behavioral standpoint, component instances are
essentially interacting components (Def. 3.1.1) with transitions possibly
enriched with sets of assignments. As a result, the operational seman-
tics of interactions for component instances is defined according to the
following rule:

a |= Φ→ ∆ 〈c.s, Φ→ ∆, c.s ′〉 ∈ c.T c.σ′ = ∆ (c.σ)

(c.s, c.σ)
a−→ (c.s ′, c.σ′)

(4.3)

74



It is worth pointing out that the hierarchical structuring of L-DReAM
components does not apply here, meaning that all DReAM component in-
stances are in fact L-DReAM atomic components. The role of compounds
as aggregates of atomic components defining how they interact, coordi-
nate and reconfigure, is instead embodied by the specialized concept of
motif.

Example 4.1.1 (Client-Server architecture with back-end nodes: compo-
nent types). Recall the scenario presented in chapter 3 by examples 3.2.1-
3.2.4 where we defined a portion of a client-server architecture with
Server components receiving data fed to Node components to process
and then return the result of the computation. Here we are going to
model the same general scenario using the DReAM framework. Instead
of focusing only on the “server-side” of the system, now we also model
the clients querying the service offered by the servers that we defined in
the simple PIL scenario of example 3.1.1.

We start by re-defining the component types Client , Server and Node .

Client component type: clients are simple two-stages automatons that
post data to servers and then get the result back once ready (figure 16).
The operation ∆get associated to the transition from wait to ready handles
the consumption of the result from the service and generates new data .
Additionally, each client has a local variable server to store the identifier
of the server queried.

ready wait

post

get → ∆get

data = v0

result = null
server = null

store:

Figure 16: The Client component type

Server component type: servers accept requests and return results from
Client components, and handle the computation in a distributed fashion
by mapping input data to Node instances and reducing the individual re-
sults to a single output with operation ∆red (figure 17). The buffer vari-

75



able is an array used to store individual results returned from nodes (i.e.
buffer : V 7→ V). Each server keeps also track of the identifier of the client
that requested the current computation in the local variable client .

wait

busy

linked

done

accept map

reduce → ∆redreturn

input = null
buffer = ∅
output = null
client = null

store:

Figure 17: The Server component type

Node component type: nodes are modeled with a two-stage automaton
that can receive new data to process, and can return the computation
result when done (figure 18). To ensure that the result is forwarded to
the correct server instance (if more than one is present), each node also
stores the identifier of the server that requested the computation in the
local variable server .

wait ready

receive

return

data = null
result = null
server = null

store:

Figure 18: The Node component type

4.1.2 Motif modeling

A motif characterizes an independent dynamic architecture defined by a
coordination rule and parametrized by a data structure called map. Just like
component types serve as blueprints for actual executable component
instances, motif type definitions can be used to create executable motif
instances.

76



Definition 4.1.3 (Motif Type). A motif type mt is a pair mt := (r, µ0),
where r is the coordination rule characterizing the interaction and recon-
figuration architecture of mt , and µ0 is the initial configuration of the map
associated to the motif.

A motif can host and coordinate component instances as well as other
nested motifs. We refer to the combined set of motifs and components
hosted in another motif as its pool. Every entity hosted in a motif is also
associated to its map. A map is a set of locations and a connectivity relation
between them. It is the structure over which computation is distributed
and defines a system of coordinates for hosted components and motifs,
which are correlated to locations via an address function. It can represent a
physical structure, such as a geographic map, or some conceptual struc-
ture, e.g., the cellular structure of a memory. Additionally, each location
has a local memory that can written to or read from.

Formally, a map in DReAM is a pair (µ0,F), where µ0 is its initial
configuration and F is a set of utility functions (e.g. predicates on reacha-
bility from one location to another, expressions that return the number of
edges connected to a location, etc). HavingM and C respectively as the
domain of motifs and component instances, the configuration µ of a map
in DReAM is specified as a graph µ =

(
N,E, ω,@

)
, where:

– N is a set of nodes or locations (possibly infinite);

– E is a set of (possibly directed) edges subset of N ×N that defines
the connectivity relation between nodes;

– ω : N 7→ V is a valuation function that associates nodes to values,
realizing the map memory;

– @ :M∪ C → N is a (partial) address function binding motifs and
components to nodes n ∈ N .

If the map memory is empty, then the only available information for a
location is its name. Otherwise, the memory can be shared by different
entities and used for their coordination.

The relation E defines a concept of neighborhood, which is used in
many applications to express coordination constraints or directions for

77



moving components. When these additional topological relations are
not needed and E = ∅, the map can be still used as a simple indexing
structure.

As we mentioned, maps can be used to model a physical environment
where components are moving. For example, we can model a discrete
two-dimensional space with an array map N = {(i, j) | i, j ∈ N} × {f, o},
where the pairs (i, j) represent coordinates and the symbols f and o stand
respectively for free and obstacle. We can model the movement of c, such
that @(c) = ((i, j), f), to a position (i + a, j + b) provided that there is a
path from (i, j) to (i+ a, j + b) consisting of free locations.

A map is also equipped with a set of useful functions F . These may
range from predicates over the map nodes and edges (e.g., a predicate
that evaluates to true if there exists a sequence of edges connecting two
nodes), to selectors that return a specific location having a specific prop-
erty (e.g., a function that evaluates to the node with the highest number
of adjacent edges).

Definition 4.1.4 (Motif Instance). Let mt = (r, µ0) be a motif type and Mid
the domain of motif identifiers. A motif instance mt [i ] is obtained from mt by
renaming the constituent elements of the initial map configuration mt .µ0

with the identifier i ∈ Mid and all their occurrences in the coordination
rule r:

m , mt [i ] = (r [µ0[i]/µ0] , µ[i]) (4.4)

where µ0[i] = (N [i], E [N [i]/N ] , ω [N [i]/N ] ,@ [N [i]/N ]).
The state γm of a motif instance m is the combination of a map config-

uration µ with the sets of hosted motifs M , component instances C, and
respective current states:

γm = (M,C,ΓM ,ΓC , µ) (4.5)

where ΓM = {γmi
}mi∈M and ΓC = {γci}ci∈C .

We assume that each motif and component instance is hosted in ex-
actly one motif instance, i.e. γm1 .M ∩ γm2 .M = ∅ and γm1 .C ∩ γm2 .C = ∅
for any m1 6= m2 .

Like with components, we assume that motif identifiers uniquely sin-
gle out motif instances regardless of their type.

78



By modifying the state of a motif instance we can model:

– Component dynamism: the set of component instancesC hosted in the
motif (or in any descendant motif) may change by creating/deleting
or migrating components and motifs;

– Map dynamism: the set of nodes or/and the connectivity relation
of a map may change. This is the case in particular when an au-
tonomous component e.g. a robot, explores an unknown environ-
ment and builds a model of it, or when nodes in a network become
unreachable;

– Mobility dynamism: the address function µ.@ changes to express
mobility of components and groups of components in a motif.

Different types of dynamism can be obtained as the combination of these
three basic types. More details on how they can be implemented in
DReAM will be discussed in section 4.2.2 where reconfiguration operations
are introduced.

Example 4.1.2 (Client-Server architecture with back-end nodes: motif
types). Let us continue example 4.1.1 by defining the motif types that
will host components in the system. More specifically, we are going to
model the described scenario using two motif types: the Service and the
ClientService types.

Each instance of the Service motif type represents one independent
sub-system of servers and nodes. The ClientService motif type defines
instead the context in which clients can interact with Service instances,
and in this case coincides with the whole system. We consider the case
of a ClientService system initially hosting two Client instances and two
Service instances, while Service instances start with one Server and two
Node instances.

Let us define the maps associated with each motif type. For the sake of
simplicity, we will assume that servers and nodes implementing services
are fully connected. This means that the Service motif type does not
require any explicit notion of topology, and its associated map can be a
single location to which all components are mapped.

For the ClientService motif type, we want to model the (relative) ge-
ographical distribution of clients and services. To do so, we use as map

79



for the motif a graph with N locations, to which Client and Service in-
stances are assigned, linked by edges that represent the notion of topolog-
ical proximity in the connectivity network. For the initial configuration
µ0 = (N,E, ω,@) we have:

µ0 = ({n0, . . . , n3} , {(n0, n2) , (n1, n2) , (n1, n3)} , ∅,@0)

that isN is a set of 4 locations andE is a set of 3 edges connecting them as
in figure 19. The initial address function @0 maps clients and services in
such a way that each client’s location is linked with at least one location
mapped to a service:

@0 = {Client1 7→ n0,Client2 7→ n1,Service1 7→ n2,Service2 7→ n3}

The support functions F of the map only includes a predicate

n0

n2 n3

Client1 Client2n1

Service1 Service2

ClientService map

Figure 19: The initial configuration of the map of ClientService motif type

isEdge
(
n1, n2

)
that evaluates to true only if (n1, n2) ∈ E. This predi-

cate will allow us to test “reachability” of services by clients when we
define the coordination rules of the ClientService motif type.

4.2 The DReAM coordination language

The coordination language modeling interactions between components
is, for the most part, independent from the abstract system structure. Con-
sequently, the coordination language introduced in section 3.2.3 is shared
between L-DReAM and DReAM.

80



Given the domain of ports P and the set of all possible system states
Γ , the DReAM coordination language is therefore obtained from (3.33) by
replacing the generic compound c∗ with the motif m in the scope of the
declarations:

(DReAM rule) r ::= Ψ → ∆ |D
{
r
}
| r1 & r2 | r1 ‖ r2

(declaration) D ::= ∀m :ms .mt | ∃m :ms .mt | ∀c :ms .ct | ∃c :ms .ct

(PIL formula) Ψ ::= true | p | π | ¬Ψ | Ψ1 ∧ Ψ2

(operation set) ∆ ::= skip | {δ} |∆1 ∪∆2

(4.6)
where declarations define the context of the associated rule by declaring
quantified (∀|∃) variables for motifs (m) and components (c) associated
to instances of a given type (mt and ct , respectively) hosted in a “scope”
motif ms .

Note that predicates π now include map functions in F with Boolean
codomain (e.g., the isEdge

(
n1, n2

)
predicate used in example 4.1.2) and

can use other map functions in equality/inequality relations (e.g., hav-
ing defined the function tail(m) that returns the last location in a map
modeling an ordered sequence of nodes, we can define a predicate that
is satisfied when the component c is located in this last location as
@(c) = tail(m)).

A DReAM coordination rule is well formed if all motifs and component
variables appearing in the scope of declarations, PIL formulas and associ-
ated operations, are defined in a declaration. From now on, we will only
consider well formed terms.

Just like in L-DReAM, given a system state, a DReAM rule can be
translated to an equivalent one by performing a declaration expansion step,
which expands the quantifiers and replaces variables with actual motif
and component instances.

4.2.1 Declaration expansion for coordination terms

Given that DReAM systems host a finite number of motif and component
instances, first-order logic quantifiers can be eliminated by enumerating
every one of them according to the type specified in each declaration. We

81



thus define the declaration expansion
〈〈
r
〉〉
γm̂

of rule r in motif m̂ under
state γm̂ by adapting rules (3.34) as follows:

〈〈
Ψ → ∆

〉〉
γm̂

= Ψ → ∆
〈〈
∀m :ms .mt

{
r
}〉〉

γm̂
= &

mt[i]∈γms .M

〈〈
r [ct [i ]/c]

〉〉
γm̂

〈〈
∃m :ms .mt

{
r
}〉〉

γm̂
=

n

mt[i]∈γms .M

〈〈
r [mt [i ]/m]

〉〉
γm̂

〈〈
∀c :ms .ct

{
r
}〉〉

γm̂
= &

ct[i]∈γms .C

〈〈
r [ct [i ]/c]

〉〉
γm̂

〈〈
∃c :ms .ct

{
r
}〉〉

γm̂
=

n

ct[i]∈γms .C

〈〈
r [ct [i ]/c]

〉〉
γm̂

〈〈
r1 & r2

〉〉
γm̂

=
〈〈
r1

〉〉
γm̂

&
〈〈
r2

〉〉
γm̂〈〈

r1 ‖ r2

〉〉
γm̂

=
〈〈
r1

〉〉
γm̂
‖
〈〈
r2

〉〉
γm̂

(4.7)

where:

– ms is either a descendant of m̂ or they coincide;

– r [mt [i ]/m] is the substitution of the motif variable m with the actual
instance mt [i ] in rule r;

– r [ct [i ]/c] is the substitution of the component variable c with the
actual instance ct [i ] in rule r.

For the sake of conciseness, (4.6) and (4.7) do not mention additional
notations that can be used to ease declaration writing. For instance, ex-
plicit reference to the motif hosting the instance variable can be omit-
ted when the term is associated to the motif itself (otherwise referenced
through the this keyword). Similarly, if the rule has to apply to groups
of instances regardless of their type, the component type can be omitted
in the declaration.

By applying (4.7) exhaustively under a given system state, any rule
can be transformed into an equivalent one only involving actual motifs
and component instances free of declarations. Notice that this transfor-
mation is only practically feasible at runtime when the exact hierarchy of
component and motif instances is known.

82



4.2.2 Reconfiguration operations

In addition to the “assignment” operation already introduced for PILOps
in section 3.2.1, DReAM supports more complex reconfiguration opera-
tions which enable component, map and mobility dynamism by allowing
transformations of a motif configuration at run-time. Some of them are
natural extensions of the ones introduced for L-DReAM in section 3.2.3,
while others are entirely new and exclusive to DReAM.

We will now list all the main operations that enable reconfiguration
capabilities breaking them down into three classes of dynamism:

1. Motif dynamism can be realized using the following statements:

– create(m :mt ,ms , n, g)
[
∆m

]
: to create a new motif instance of

type mt at node n of the map of motif ms , binding it to the
variable m within the scope of the operation ∆m , which is
then executed;

– delete(m): to delete motif instance m (and all its descendants).

2. Component dynamism can be realized using the following state-
ments:

– create(c :ct ,ms , n, g)
[
∆c

]
: to create a component instance of

type ct at node n of the map of motif ms , binding it to the
variable c within the scope of the operation ∆c , which is then
executed;

– delete(c): to delete component instance c.

3. Map dynamism can be realized using the following statements:

– addNode(n,ms , g)
[
∆n

]
: to create a new location in the config-

uration of the map of motif ms , binding it to variable n within
the scope of the operation ∆n, which is then executed;

– rmNode(n,ms): to remove node n from the configuration of the
map of motif ms , along with incident edges, mapped motifs
and components;

83



– addEdge(n1, n2,ms): to add the edge (n1, n2) to the configura-
tion of the map of motif ms ;

– rmEdge(n1, n2,ms): to remove the edge (n1, n2) from the con-
figuration of the map of motif ms .

4. Mobility dynamism can be realized using the following statements:

– move(m, n): to change the position of motif instance m to node
n in the map of motif ms ;

– move(c, n): to change the position of component instance c to
node n in the map of motif ms .

5. Dynamic changes of architectural constraints can be realized with
the following statements:

– migrate(m,ms , n): to move a motif instance m to node n in the
map of the motif instance ms ;

– migrate(c,ms , n): to move a component instance c to node n in
the map of the motif instance ms .

where g is a generator attribute that is used to discriminate multiple oper-
ations with the same parameters as in the L-DReAM “create” operation
(described in section 3.2.3).

Semantics of reconfiguration operations

The application of the listed reconfiguration operations on the state of a
motif produces a new state. Let m̂ be a motif and m̂.γ = (M,C,ΓM ,ΓC , µ)

be its state, where µ =
(
N,E, ω,@

)
is the configuration of the associated

map. To formalize the transformation induced by the application of each
different reconfiguration operation on the state m̂.γ, let us first define
the semantics of the application of the support “binding” operations as
follows:

bind (m,ms , n) (m̂.γ) =

{
(M ⊕m, C,ΓM ⊕m.γ0 ,ΓC , µ

′) if ms = m̂

(M,C,Γ′M ,ΓC , µ) otherwise
(4.8)

84



where:

– µ′ =
(
N,E, ω,@ [m 7→ n]

)
;

– Γ′M = {bind (m,ms , n) (γi) | γi ∈ ΓM};

– S ⊕ s ≡ S ∪ {s} is the set addition operation.

bind (c,ms , n) (m̂.γ) =

{
(M,C ⊕ c,ΓM ,ΓC ⊕ c.γ0 , µ

′) if ms = m̂

(M,C,Γ′M ,ΓC , µ) otherwise
(4.9)

where:

– µ′ =
(
N,E, ω,@ [c 7→ n]

)
;

– Γ′M = {bind (c,ms , n) (γi) | γi ∈ ΓM}.

bindNode(n,ms) (m̂.γ) =

{
(M,C,ΓM ,ΓC , µ

′) if ms = m̂

(M,C,Γ′M ,ΓC , µ) otherwise
(4.10)

where:

– µ′ =
(
N ⊕ n,E, ω,@

)
;

– Γ′M = {bindNode(n,ms) (γi) | γi ∈ ΓM}.

As already mentioned for L-DReAM, the bind and bindNode operations are
introduced to simplify the presentation of the semantics of more complex
reconfiguration operations, which we will now detail.

create(m :mt ,ms , n, g)
[
∆m

]
(m̂.γ) = (∆m [mt [f ] /m])↓γ′m̂ (γ′m̂) (4.11)

where:

– f ∈ Mid is a fresh motif instance identifier;

– γ′m̂ = bind (mt [f ] ,ms , n) (m̂.γ).

85



delete(m) (m̂.γ) =

{
(M 	m, C,ΓM 	m.γ,ΓC , µ

′) if m ∈M
(M,C,Γ′M ,ΓC , µ) otherwise

(4.12)

where:

– µ′ =
(
N,E, ω,@ [m 7→ ⊥]

)
, i.e., remove m from the domain of @;

– Γ′M = {delete(m) (γi) | γi ∈ ΓM};

– S 	 s ≡ S \ {s} is the set removal operation.

create(c :ct ,ms , n, g)
[
∆c

]
(m̂.γ) = (∆c [ct [f ] /c])↓γ′m̂ (γ′m̂) (4.13)

where:

– f ∈ Cid is a fresh component instance identifier;

– γ′m̂ = bind (ct [f ] ,ms , n) (m̂.γ).

delete(c) (m̂.γ) =

{
(M,C 	 c,ΓM ,ΓC 	 c.γ, µ′) if C ∈ C
(M,C,Γ′M ,ΓC , µ) otherwise

(4.14)

where:

– µ′ =
(
N,E, ω,@ [c 7→ ⊥]

)
, i.e., remove c from the domain of @;

– Γ′M = {delete(c) (γi) | γi ∈ ΓM}.

addNode(n,ms , g)
[
∆n

]
(m̂.γ) = (∆n [n′/n])↓γ′m̂ (γ′m̂) (4.15)

where:

– n′ is a new map location;

– γ′m̂ = bindNode(n′,ms) (m̂.γ).

rmNode(n,ms) (m̂.γ) =

{
(M ′, C ′,ΓM ′ ,ΓC′ , µ′) if ms = m̂

(M,C,Γ′M ,ΓC , µ) otherwise
(4.16)

86



where:

– the map configuration µ′ is obtained from µ by: removing node n,
removing all edges incident to n, removing the valuation for n from
ω, and keeping only the the mappings towards location different
from n in the addressing function @:

µ′ =
(
N 	 n, {(n1, n2) | (n1, n2) ∈ E : n1 6= n ∧ n2 6= n} ,

ω [n 7→ ⊥] , {(e 7→ ni) | (e 7→ ni) ∈ @ : ni 6= n}
)

– M ′ = M \ {m | m ∈M : @(m) = n};

– C ′ = C \ {c | c ∈ C : @(c) = n};

– Γ′M = {rmNode(n,ms) (γi) | γi ∈ ΓM}.

addEdge(n1, n2,ms) (m̂.γ) =

{
(M,C,ΓM ,ΓC , µ

′) if ms = m̂

(M,C,Γ′M ,ΓC , µ) otherwise
(4.17)

where:

– µ′ =
(
N,E ⊕ (n1, n2) , ω,@

)
if n1, n2 ∈ N , otherwise µ′ = µ;

– Γ′M = {addEdge(n1, n2,ms) (γi) | γi ∈ ΓM}.

rmEdge(n1, n2,ms) (m̂.γ) =

{
(M,C,ΓM ,ΓC , µ

′) if ms = m̂

(M,C,Γ′M ,ΓC , µ) otherwise
(4.18)

where:

– µ′ =
(
N,E 	 (n1, n2) , ω,@

)
if n1, n2 ∈ N , otherwise µ′ = µ;

– Γ′M = {rmEdge(n1, n2,ms) (γi) | γi ∈ ΓM}.

move(m, n) (m̂.γ) =

{
(M,C,ΓM ,ΓC , µ

′) if m ∈M
(M,C,Γ′M ,ΓC , µ) otherwise

(4.19)

87



where:

– µ′ =
(
N,E, ω,@ [m 7→ n]

)
if n ∈ N , otherwise µ′ = µ;

– Γ′M = {move(m, n) (γi) | γi ∈ ΓM}.

move(c, n) (m̂.γ) =

{
(M,C,ΓM ,ΓC , µ

′) if c ∈ C
(M,C,Γ′M ,ΓC , µ) otherwise

(4.20)

where:

– µ′ =
(
N,E, ω,@ [c 7→ n]

)
if n ∈ N , otherwise µ′ = µ;

– Γ′M = {move(c, n) (γi) | γi ∈ ΓM}.

migrate(m,ms , n) (m̂.γ) = bind (m,ms , n) (delete(m) (m̂.γ)) (4.21)

migrate(c,ms , n) (m̂.γ) = bind (c,ms , n) (delete(c) (m̂.γ)) (4.22)

4.2.3 Disjunctive and Conjunctive styles in DReAM

As we have seen, DReAM inherits the core coordination language to de-
fine its rules from L-DReAM. As such, the two frameworks naturally
share also the different approaches on system specification that we called
disjunctive and conjunctive presented in sections 3.1.4 and 3.2.2. Notably,
the coordination language defined in (4.6) is enriched with the same con-
junctive term formalized in definition 3.2.2.

The notion of “consistency”, introduced for conjunctive PILOps terms,
is also extended to encompass the richer set of reconfiguration operations
and the different system structure. That is, having ρc be either a port c.p

or a predicate π (c.X), we consider a conjunctive term ρc B Ψρc → ∆ρc to
be consistent if its consequence ∆ρc is equal to skip, or if it only contains
operations δ that do not modify the state of components different from c

nor their addressing in the relevant map. Concretely, this allows ∆ρc to
include any operation that modifies the state of c and of its ancestors as
long as it does not delete, move, or migrate another component instance,
nor it performs an assignment on one of its local variables.

A DReAM rule for motif m̂ is written using the conjunctive style by
combining consistent conjunctive terms with the & operator.

88



Example 4.2.1 (Client-Server architecture with back-end nodes: coordi-
nation rules). In example 4.1.2 we described the general architecture
of the system and the initial configuration of the map for motif type
ClientService. Now we define the coordination rules that realize the in-
teraction patterns described qualitatively in example 4.1.1 adopting the
conjunctive style.

Let us start with rule rcs of the ClientService motif type. The interac-
tions that need to be modeled are of two kinds, both involving a Client
instance and a Server instance: one that starts a task on the client’s data,
and one that transfers the results of the task back to the client. We can sep-
arate rcs into two sub-rules each modeling the two kinds of interactions
listed:

– rule r1
cs, which models the strong synchronization between clients

and servers that are mapped to connected locations in the map al-
lowing the former to send data to process to the latter:

r1
cs =∀c :Client

{
∃s :Service.Server

{

c.post B s.accept ∧ isEdge
(
@(c) ,@(s)

)

→ {c.server := s.id}
}}

&

∀s :Service.Server
{
∃c :Client

{

s.accept B c.post ∧ isEdge
(
@(c) ,@(s)

)

→ {s.client := c.id , s.input := c.data}
}}

– rule r2
cs, which models the strong synchronization between clients

and servers that are mapped to connected locations in the map al-
lowing the former to receive the results of the computation from
the latter:

r2
cs =∀c :Client

{
∃s :Service.Server

{

c.get B s.return ∧ isEdge
(
@(c) ,@(s)

)
∧ (s.id = c.server)

→ {c.result := s.output}
}}

&

∀s :Service.Server
{
∃c :Client

{

s.return B c.get ∧ isEdge
(
@(c) ,@(s)

)
∧ (c.id = s.client)

→ skip
}}

89



Notice that in the declaration of the component variable s we used a
compressed notation that implicitly defines the scope of the variable in
any Service motif instance:

∀c :mt .ct
{
r
}
≡ ∀m :mt

{
∀c :m.ct

{
r
}}

∃c :mt .ct
{
r
}
≡ ∃m :mt

{
∃c :m.ct

{
r
}}

To ensure that the initial synchronization between a client and a server
does not involve more than one instance of each, we also add a rule of
the form:

r3
cs = atMost(1,Client .post) & atMost(1,Service.Server .accept)

where atMost(k,mt .ct .p) is a macro notation for a rule that is satisfied by
interactions in which there are at most k component instances of type ct
in a motif of type mt participating with port p:

atMost(k,mt .ct .p) , ∀m :mt

{
∀c0 , . . . , ck :m.ct

{

c0 .p B
∨

i,j∈[0..k],i6=j
ci = cj ∨

∨

i∈[1..k]

¬ci .p → skip

}}

(4.23)
By combining these three sub-rules we obtain rcs = r1

cs & r2
cs & r3

cs.
To complete the specification, we need to define the coordination rule

rs for motif type Service. Since the interactions involve one Server com-
ponent instance and some Node component instances in a two-phase ren-
dezvous synchronization, we can define rs using the same “structure” we
used for rcs, i.e., dividing it into two sub-rules:

– rule r1
s , which models the strong synchronization between servers

and nodes, allowing the former to send data to process to the latter:

r1
s =∀s :Server

{
∃n :Node

{

s.map B n.receive → skip
}}

&

∀n :Node
{
∃s :Server

{

n.receive B s.map

→ {n.server := s.id ; n.data := s.input}
}}

90



where, for the sake of simplicity, we have assumed that servers
transfer all the input data to each node.

– rule r2
s , which models the strong synchronization between servers

and nodes allowing the former to receive the results of the compu-
tation from the latter:

r2
s =∀s :Server

{
∃n :Node

{

s.reduce B n.return → {s.buffer [n.id ] := n.result}
}}

&

∀n :Node
{
∃s :Server

{

n.return B s.reduce ∧ (n.server = s.id)→ skip
}}

We apply similar restrictions as the ones in r3
cs on the number of servers

allowed to participate in an interaction:

r3
s = atMost(1,Server .map) & atMost(1,Server .reduce)

which combined with the other two sub-rules produces rs = r1
s & r2

s & r3
s .

4.2.4 Operational semantics

As described in 4.1.2, motifs are equipped with rules r of the coordination
language which are used to compose motif and component instances
assigned to them and regulate their interactions. A motif instance m

can evolve from state γm to state γ′′m by performing a transition labeled
with the interaction a and characterized by the application of the set of
operations J

〈〈
r
〉〉
γm

Ka,γm iff a |=
〈〈
r
〉〉
γm

. Formally this is encoded by the
following inference rule:

a |=γm

〈〈
r
〉〉
γm

γm
a−→ γ′m γ′′m ∈ J

〈〈
r
〉〉
γm

Ka,γm (γ′m)

γm
a

γ′′m
m = (r, µ0)

(4.24)
where:

– recall that rule (4.3) defines the semantics of individual component
instances; γm

a−→ γ′m expresses the capability of the motif m to

91



evolve to state γ′m when its hosted motif and component instances
evolve with a:

∀γmi
∈ ΓM : γmi

a
γ′mi

∀γc ∈ ΓC : γc
a−→ γ′c

(M,C,ΓM ,ΓC , µ)
a−→
(
M,C,

{
γ′mi

}
M
,
{
γ′ci
}
C
, µ
) (4.25)

– J
〈〈
r
〉〉
γm

Ka,γm (γ′m) is the set of motif configurations obtained accord-
ing to (3.10) and (3.13) by applying the operations ∆ = J

〈〈
r
〉〉
γm

Ka,γm
to the motif configuration γ′m .

Rules (4.24-4.25) can be intuitively understood as follows: a motif m

evolves through interaction a, provided it satisfies its coordination rule,
if all its hosted motifs and component instances can also evolve through
a making m reach an intermediate state γ′m ; as a consequence, the final
state γ′′m reached by m is obtained by applying the operations in its coor-
dination rule evaluated in its initial state to the intermediate state γ′m .

Definition 4.2.1 (DReAM system). Let Tm and Tc be respectively a
set of motif types and component types. A DReAM system is a tuple
(Tm ,Tc ,mr ) where mr is the root motif.

The operational semantics of a DReAM system is defined by the infer-
ence rule (4.24) applied to the state γmr

of the root motif mr .

4.3 Example systems

We will now present how some simple application scenarios can be mod-
eled using the DReAM coordination language.

4.3.1 Coordinating flocks of interacting robots

Consider a system with N robots moving in a square grid, each one with
given initial location and initial movement direction as represented in
figure 20. Robots are equipped with a sensor that can detect other peers
within a specific range ρ and assess their direction: when this happens,
the robot changes its own direction accordingly.

92



We require that robots maintain a timestamp of their last interaction
with another peer: when two robots are within the range of their sensors,
their direction is updated with the one having the highest timestamp. For
the sake of simplicity we also assume that the grid is, in fact, a torus with
no borders.

x

r5

0

1

2

3

4

5

0 1 2 3 4 5

r8 r9

r2r1 r3

r4 r6

r7

y

node
address

Figure 20: Initial system configuration for grid size s = 6

To model these robots in DReAM we will define a Robot component
type as the one represented in figure 21. Each Robot maintains a local
clock that is incremented by 1 through an assignment operation every
time an instance interacts with port tick .

93



s0 tick → {clock := clock + 1}
clock = 0
range = ρ
ts = 0
dir = [dx, dy]

store:

Figure 21: The Robot component type

A motif that realizes the described scenario can be defined with the
conjunction of two coordination terms: one that enforces synchronization
between every Robot instance through port tick allowing information
exchange when possible, and another that enables all Robot instances
performing a tick to move:

r = ∀c :Robot
{

c.tick B true→ {move(c,@(c) + c.dir)}
}

&

∀c1 , c2 :Robot
{

c1 .tick B c2 .tick

→ IF
(
c1 6= c2 ∧@(c1 )↔ @(c2 ) < c1 .range

∧ (c1 .ts < c2 .ts ∨ (c1 .ts = c2 .ts ∧ c1 < c2 ))
)
THEN

{
c1 .dir := c2 .dir , c1 .ts := c1 .clock

}}

where:

– we use a map whose nodes are addressed via size-two integer ar-
rays [x, y];

– we are using a n1 ↔ n2 function that returns the euclidean distance
between two points in an n-dimensional space;

– in the inequality c1 < c2 we use instance variables c1 , c2 in place
of their respective integer instance identifiers.

The coordination rule r, which adopts the conjunctive style, can be intu-
itively understood breaking it into two parts:

1. every robot c can interact with its port c.tick , and if it does it also
moves according to its stored direction c.dir ;

94



2. for every robot c1 to interact with its port c1 .tick , every robot c2

must also participate in the interaction with its port c2 .tick (i.e.
interactions through port tick are strictly synchronous). Further-
more, for every pair of distinct (c1 6= c2 ) robots c1 , c2 interacting
through their respective tick ports: if they are closer than a given
range (@(c1 ) ↔ @(c2 ) < c1 .range) and either c1 has updated its
direction less recently (c1 .ts < c2 .ts) or they have updated their
directions at the same time but c2 has a higher instance identifier
(c1 .ts = c2 .ts ∧ c1 < c2 ), then c1 will update its direction and
timestamp using c2 ’s.

Notice that if the direction of a robot is updated at a given time, the robot
will move according to this new direction only during the next clock cycle
because of the adopted snapshot semantics.

Since all robots synchronize on the same “clock”, many of them might
update their respective directions differently at the same time: adding the
“tiebreaker” on the instance identifier when timestamps are equal allows
data exchange even in these cases.

Multiple updates of the direction of a robot c can still happen when
more than one peer with higher timestamp (or equal timestamp, but
higher instance identifier) is within its range: this event does not affect
the assignment on c.ts , which only depends on the clock, but ultimately
causes the direction of c to be updated nondeterministically with one of
the directions of the robots in range according to the semantics of the
application of operation sets (3.13).

4.3.2 Coordinating flocks of robots with stigmergy

We consider a variant of the previous problem by using stigmergy [51].
Instead of letting robots sense each other, we will allow them to “mark”
their locations with their direction and an associated timestamp. In this
way, each time a robot moves to a node in the map it will either update
its direction with the one stored in the node or update the one associated
with the node with the direction of the robot (depending on whether the
timestamp stored in the node memory is more recent than the last time

95



the robot changed its direction or not).
The Robot component type represented in figure 21 can still be used

without modifications (the range local variable will be ignored).
The coordination term associated to the motif becomes:

r′ = ∀c :Robot
{

c.tick

→
{
IF
(
@(c) .ts > c.ts

)
THEN

{

c.dir := @(c) .dir , c.ts := c.clock , @(c) .ts := c.clock
}
ELSE

{

@(c) .ts := c.clock , @(c) .dir := c.dir
}
,

move(c,@(c) + c.dir)
}}

Notice that we are now adopting a disjunctive-style specification for r′ as
the rule is made of a non-conjunctive term that does not support idling.
We can interpret the term r′ as follows:

1. every robot c must participate in all interactions with its port c.tick ,
and will move in the map according to its stored direction c.dir ;

2. every robot c either updates its direction with the one stored in
the node @(c) if the latter is more recent (i.e., if @(c) .ts > c.ts) or
overwrites the direction stored in the node with its own otherwise.

4.3.3 Reconfigurable ring

Consider a system of nodes arranged in a ring topology where a passing
token allows each node, in turns, to communicate with the next. This
rather simple coordination scheme is enriched with two dynamic ele-
ments characterizing the system:

1. new nodes are created and added to the ring constantly, until it
reaches a given size limit N ;

2. nodes can fail and get removed from the ring at a rate that increases
with the ring size.

96



empty full

in → ∆pl

init → ∆pl

out

payload = null
buffer = null

store:

Figure 22: The Node component type

The Node component type is represented in figure 22. Each Node has
two local variables: payload , that holds the next value to send, and buffer ,
that stores the last value received. The payload variable is initialized via
the operation ∆pl associated to the transitions that change the control
location of a Node from empty to full , which will contain an assignment
of the form payload := v, where v is a value that the Node wants to transfer
to its neighbor. The out and in ports are used intuitively to model the send
and receive actions that a Node can perform with its neighbors in the ring,
while the init port is used to handle more conveniently the bootstrapping
of the system when all nodes are in the initial empty control location.

The motif that will model the system needs to be equipped with an
appropriate map to represent the ring topology of interest, which is essen-
tially a cyclic directed graph with just one cycle. The functions associated
to this kind of map will have to allow adding and removing map locations
by also updating the set of edges in order to preserve the initial properties
of the graph. Furthermore, we assume that initially each Node instance
has a one-to-one correspondence with a location. Figure 23 illustrates a
graphical representation of the ring with four Node instances, where the
data flow and relationship between component instances and locations
of the map are highlighted in green. Having these ingredients, we can
define a coordination term r that realizes the described behavior adopting
the conjunctive style. This allows us to be compositional in our design
process, so we will make use of this advantage and divide the problem of
defining r into three simpler sub-problems.

First, we will model how the ring grows and shrinks as new Node

instances are created and removed. As we previously mentioned, we

97



out

in

in

out

outin

out in

N1 @N1

N4

N3

N2

@N2

@N3

@N4

Figure 23: A representation of a ring with four Node instances and the corre-
sponding map

will design the system in such a way that one new Node is added to
the ring map as long as its size is less than N . At the same time, any
Node instance in the system can terminate and get removed from the
ring with probability D

(
ring.size

N

)2
, where D ∈ [0, 1]. When this happens,

the ring will automatically reconfigure to preserve the overall structure
as illustrated in figure 24. To keep the example simple, we encode the
information required to model this behavior directly within the motif: the
constants N andD will be statically defined within the coordination term
r, and the current ring size will be obtained from a property of the map
(i.e., the number of its locations). We can encode this behavior with the
following rule:

r1 = ring .size < N B true

→
{
addNode(n, this, g)

[
create(Node, this, n)

]}

&

∀c :Node
{
rand < D (ring .size/N)

2 B true

→ {rmNode(@(c) , this)}
}

where rand ∈ [0, 1] is a random number.
Next, we will define how components interact and transfer data. Com-

munication is binary between neighboring nodes in the ring: a Node ni

98



out

in

in

out

outin

out in

N1 @N1

N4

N3

N2

@N2

@N3

@N4

(a) N3 and the location @(N3) are deleted

out

in

outin

out in

N1 @N1

N4

N2

@N2

@N4

(b) and the map reconfigures to pre-
serve the ring

Figure 24: How the system handles Node deletion

can send data to a Node nj only if the edge (@(ni) ,@(nj )) belongs to the
ring map (which we express with the predicate isEdge

(
ni ,nj

)
). Addition-

ally, the node sending data and the one receiving it have to participate in
the interaction with ports out and in , respectively. We can encode these
constraints in the following way:

r2 = ∀c1 , c2 :Node
{

c1 .out B isEdge
(
c1 , c2

)
∧ c2 .in → skip

}

&

∀c1 , c2 :Node
{

c1 .in B isEdge
(
c2 , c1

)
∧ c2 .out

→ {c1 .buffer := c2 .payload}
}

Lastly, we need to handle the transient situations when all nodes are
in the empty (initial) control location. We can model a system with a
single passing token by defining a coordination term that allows just one
Node instance to perform an init provided that every other Node instance
is empty and stays idle :

r3 = ∀c1 , c2 :Node
{

c1 .init B c1 = c2 ∨ (c2 .empty ∧ c2 .idle )→ skip
}

This term will come into play after the creation of the very first Node

99



instance in the ring and in the event that the Node instance holding the
token gets removed from the ring.

The overall coordination rule r of the motif modeling the system will
be the conjunction of the given rules:

r = r1 & r2 & r3

4.3.4 Simple platooning protocol for automated high-
ways

Platooning protocols aim at addressing the problem of coordinating col-
lections of vehicles autonomously while guaranteeing some desired prop-
erties (e.g., human safety, fuel efficiency, traffic intensity, and so on). Here
we will model a simple platooning protocol inspired by [10, 30].

Let us consider a scenario where we have a one-way road where au-
tonomous cars move. Cars are organized in platoons, i.e., groups of one
or more cars next to one-another proceeding at the same speed. Each pla-
toon has one leader car, that is the car leading the platoon. While moving,
a platoon can:

– join another platoon, if the distance between their leading/trailing
cars is below a certain threshold d: after the platoons join, the cruis-
ing speed is set to the value of the slower one (i.e., the one that was
on the front);

– split into two separate platoons, if for instance a car has to decrease
its speed in order to exit the road via an intersection: the speed of
the platoon in front is increased by a factor ∆s, while the one in the
back is decreased by the same factor ∆s.

To model the system we define two motif types: the Road and the
Platoon . The Platoon motifs define how cars bound to the specific motif
instance move and keep track of their relative position within the platoon.
One Road motif instance represents the whole system, and coordinates
all the Platoon instances it hosts.

We model cars as component instances of the type Car . A car keeps
track of its speed and position on the road, and has an interface towards

100



other cars to signal the initiation of a joining/splitting procedure, the
acknowledgment of another car’s joining/splitting, and the completion
of either procedures. Figure 25 provides a complete representation of the
Car component type.

s0 sbsa

initSplit

closeSplit

ackSplit

initJoin

finishJoin

ackJoin pos = π0

speed = v0

store:

Figure 25: The Car component type

The Platoon motif type is characterized by a map that models the train
of cars using an indexed linked list, where each location is referenced by a
unique integer address and is meant to be occupied by one car (figure 26).

0 1 2 3

Car0 Car1 Car2 Car3

pool

map

leader tail

Figure 26: A representation of the Platoon map

The coordination rule rP associated to the motif in this simple scenario
defines:

1. how each car in the platoon updates its position based on its current
speed;

2. the requirement of having more than 1 car for any of them to trigger
the splitting of the platoon;

101



3. the synchronization between all cars in the platoon when the join-
ing/splitting maneuvers are performed.

This can be encoded in the DReAM coordination language using the con-
junctive style as follows:

rP = ∀c :Car
{
true→ {c.pos := c.pos + c.speed ×∆t}

}
(4.26)

&

∀c :Car
{

c.initSplit B poolSize(this) > 1

∧ leader(this) 6= c ∧ rand(0, 1) < psplit → skip
}

(4.27)

&

∀c :Car
{
∀c′ :Car

{
c.ackJoin B c′.ackJoin → skip

}}
(4.28)

&

∀c :Car
{
∀c′ :Car

{
c.initJoin B c′.initJoin → skip

}}
(4.29)

&

∀c :Car
{
∀c′ :Car

{
c.finishJoin B c′.finishJoin → skip

}}
(4.30)

&

∀c :Car
{
∃c′ :Car

{
c.ackSplit B c′.initSplit → skip

}}
(4.31)

&

∀c :Car
{
∀c′ :Car

{
c.initSplit B c′.ackSplit ∨ c = c′ → skip

}}

(4.32)

where:

– poolSize(m) is a function that returns the number of components
and motifs hosted in m ;

– leader(m) ∈ F is a function of the Platoon map that returns the
entity assigned to the first position (0-indexed) of the map of motif
m ;

– rand(0, 1) is a function that returns a random number between 0

and 1;

102



– psplit is the probability that a car can initiate a splitting maneuver
at any given time (for simplicity we are assuming this being a pa-
rameter of the system).

Sub-rules (4.26-4.27) directly implement the policies described in 1-2. Sub-
rules (4.28-4.30) force the symmetric synchronization of all the cars in the
platoon when a join maneuver is initiated, acknowledged, or completed.
Lastly (4.31-4.32) prescribe a splitting platoon to have all its cars but one
acknowledge the split that the latter is initiating.

As we are keeping track of the positions of cars with local variables,
the topological features of the Road motif map are not used. This simpli-
fies the rules of the motif and saves us from having to apply discretization
to the space of positions.

We start by defining the rules that realize the join procedure. The
general idea is that when a platoon approaches another one ahead of it,
the former adjust its speed and then every car in it migrates to the latter.
This procedure is thus broken into two parts:

1. the first part defines how cars of a platoon initiate a join procedure,
which requires that the leading car of the platoon is “close enough”
to the tailing car of another platoon (i.e., the distance must be below
a given threshold ∆j) and that its leader acknowledges the join:

r1
j = ∀p :Platoon

{
∀c :p.Car

{
∃p′ :Platoon

{

c.initJoin B (0 < tail(p′).pos − leader(p).pos ≤ ∆j)

∧ p 6= p′ ∧ leader(p′).ackJoin

→
{
addNode(p′, c) ,

c.speed := leader(p′).speed ,

@(c).newLeader := leader(p′) ,

@(c).newLoc := mapSize(p′) + @(c)
}}}}

&

∀p :Platoon
{
∃p′ :Platoon

{

leader(p) .ackJoin B (0 < tail(p).pos − leader(p′).pos ≤ ∆j)

∧ leader(p′) .initJoin → skip
}}

103



Notice that when the conjunctive term of the first subformula is
satisfied, the following operations are performed:

– a new location is created in the map of p′;

– the variable c.speed of the car in the rear platoon p is set to the
speed of the leading car in the platoon on front (p′);

– the map memory at location @(c) is used to store temporary
information regarding the identity of the leader car in the pla-
toon on the front and the new location index that the car will
occupy in the map of p′ (note here that @(c) in the sum oper-
ation is overloaded and used here as the index of the location
where c is mapped in platoon p).

2. the second part defines how the join is finalized with the involved
cars migrating to the platoon on the front:

r2
j = ∀p :Platoon

{
∀c :p.Car

{
∃p′ :Platoon

{

c.finishJoin B leader(p′).finishJoin

∧ (leader(p′) = @(c).newLeader ∨ p = p′)

→
{
IF
(
p 6= p′

)
THEN

{

migrate(c, p′,@(c).newLoc) , delete(p)
}}}}}

The requirement of the conjunctive term guarantees that the join
is finalized with the appropriate platoon, and the operations per-
formed migrate each car to the stored new location before deleting
motif p (notice that the delete operation will be carried out once for
each car in motif p, but the effect will be equivalent as if only one
delete operation is performed).

The platoon splitting procedure is more complex as it requires the
creation of one new Platoon instance with the appropriate number of lo-
cations to host the cars leaving their original platoon before any migration
between the two can effectively happen. We propose a possible way to
model this procedure by breaking it into three conjunctive rules:

104



1. the first rule defines the capability of any car in a platoon to initiate
the splitting maneuver, resulting in the creation of a new platoon:

r1
s = ∀p :Platoon

{
∀c :p.Car

{

c.initSplit B true

→
{

c.speed := c.speed × (1−∆s) ,

create(p′ :Platoon, this,@(p) , g)
[

addNode(n, p′, c)
[
migrate(c, p′, n)

]
,

FOR
(
i ∈ (@(c) ,mapSize(p))

)
DO

{
addNode(p′, i)

}]
,

rmNode(@(c) , this)
}}}

When a car initiates a splitting maneuver, first it decreases its speed,
then a new platoon p′ is created. Within the context of p′, a new
location is created to which the car migrates, and then a “for” loop
adds one node for each remaining nodes in the map of platoon p

positioned after the one hosting the component that initiated the
split procedure. Finally, outside the local scope of the operations on
the new motif instance, the location where the car c was originally
assigned is removed;

2. the second rule defines how the cars of a platoon involved in a
splitting maneuver synchronize and acknowledge its initiation:

r2
s = ∀p :Platoon

{
∀c :p.Car

{
∃c′ :p.Car

{

c.ackSplit B c′.initSplit

→
{
IF
(
@(c) > @(c′)

)
THEN

{

@(c).newLeader := c,

@(c).newLoc := @(c)−@(c′) ,

c.speed := c.speed × (1−∆s)}
ELSE

{
c.speed := c.speed × (1 +∆s)

}}}}}

Every car acknowledging a split needs to account for it in a different
way depending on its position in the platoon relative to the car that

105



initiates the maneuver. To implement this, an “if” conditional state-
ment in r2

s operations allows only cars in the back of the splitting
point to store the new leader and location of the rest of the splitting
cars, while also modifying their speed by a factor of (1−∆s). Col-
laterally, the rest of the cars not leaving the platoon increase their
speed by a factor of (1 +∆s);

3. the last rule completes the procedure by migrating all the cars that
were behind the one which initiated the splitting to the platoon
where the latter is now leading:

r3
s = ∀p :Platoon

{
∀c :p.Car

{
∃p′ :Platoon

{

c.closeSplit B@(c).newLeader = null

∨ (leader(p′).closeSplit ∧@(c).newLeader = leader(p′))

→
{
IF
(
@(c).newLeader 6= null

)
THEN

{

migrate(c, p′,@(c).newLoc) ,

rmNode(@(c) , p)
}}}}}

The rule allows all splitting cars (including the one that initiated
the procedure) to synchronize via port closeSplit . Cars that are not
already in the new platoon (i.e. those that have stored in their map
node the information regarding their new leader and position) are
finally migrated to their new location and their old location is re-
moved.

Overall, the Road motif will be characterized by a coordination rule
obtained from the conjunction of the rules that we defined so far:

rR = r1
j & r2

j & r1
s & r2

s & r3
s

106



Chapter 5

Executable implementation

The DReAM framework has been implemented in Java as an execution
engine with an associated library of classes and methods that support
system specification conforming to the DReAM syntax. The first version
of this implementation has been presented in [18].

This Chapter presents jDReAM, an all-new implementation of the
framework rebuilt from the ground up in order to support both DReAM
and L-DReAM specifications. Currently jDReAM consists of roughly 200
classes organized in more than 20 packages. A detailed documentation
of all its constituent elements is beyond the scope of this Thesis: here
we discuss only the main building blocks of the platform. We first illus-
trate the “core” architecture of the solution which implements the exe-
cution engine and defines the foundational classes required to encode
L-DReAM specifications. We then describe an additional set of packages
and libraries that extend the core module in order to support DReAM
specifications. While the development of jDReAM is still active, the
source code is available on GitHub and accessible at the following url:
https://github.com/ZephonSoul/j-dream.

To represent the main elements of jDReAM and their relationships
we will adopt a graphical syntax coherent with UML conceptual class
diagrams (see figure 27). To ensure a readable presentation of each key
concept, each diagram is going to focus on a specific “package” of the

107

https://github.com/ZephonSoul/j-dream


AbstractClass

Package

Class

!<<interface!>>
Interface

Package association

Dependency

Realization

Inheritance

Class association
(with multiplicity)

n!/*

Relations Entities

Figure 27: Reference schematics syntax inspired by UML class diagrams

jDReAM library. Classes and interfaces that are detailed in specific dia-
grams are color-coded across the different figures where they are refer-
enced.

To show the effectiveness of our framework, we use jDReAM to im-
plement, execute and evaluate relevant example systems discussed in
Chapters 4. The classes implementing the simple use cases described at
the end of this Chapter are also available in the project repository.

5.1 The jDReAM core architecture

The key elements that constitute the “core” of the jDReAM implementa-
tion are illustrated in figure 28, and comprise:

– the ExecutionEngine class, which implements the operational
semantics;

– the execution strategies package, which leverages the Strat-
egy design pattern [23] to implement different approaches for ad-
missible interaction selection;

– the output handlers package, providing helper classes for the
ExecutionEngine logging and presentation facilities;

108



– the entities package, containing all the classes that define the
structure of L-DReAM components;

– the coordination package, which provides the implementation
of all the elements of the coordination language as Java artifacts,
including PIL formulas and operations;

– the expressions package, that mainly supports the classes of
the coordination package by implementing arithmetic and set-
theory expressions.

execution
strategies

Execution
Engine

output
handlers

entities

coordination

constraints

operations

expressions

values

Figure 28: Package overview of the jDReAM core architecture

This set of software packages supports the specification of executable sys-
tems conforming to the L-DReAM abstract syntax which evolve according
to its operational semantics described in Chapter 3.

To have a more precise idea of the inner workings of jDReAM, we will
illustrate the contents and function of the two main packages that consti-
tute the core architecture: the entities and coordination packages.

109



The entities package

Being an object-oriented programming language, the class-object dualism
in Java is conceptually very close to the type-instance pair of L-DReAM
components. This is also one of the reasons that guided the choice of this
programming language as a first platform to develop jDReAM instead of
selecting other options using different paradigms that would have been
perhaps a better fit for the implementation of the underlying coordina-
tion logic. To leverage Java’s native mechanism of generalization, each

«interface»
Entity

1

«interface»
Rule

*

pool

1store

*

interface
Abstract

LightComponent

«interface»
CoordinatingEntity

«interface»
InteractingEntity

VarStore

Port

Figure 29: Simplified class diagram of the entities package

L-DReAM component type corresponds to a Java class. To streamline
their definition, each user-specified component type must implement an
Entity interface that encapsulates all the required methods for a com-
ponent instance to work with jDReAM. Two extensions to the Entity
interface are provided:

1. CoordinatingEntity: implemented by compound entities (i.e.,
objects that host a pool of other entities and have coordination rules
to define how they interact);

110



2. InteractingEntity: implemented by entities that are equipped
with an interface to interact with other entities.

Many of these functions, common to all L-DReAM components, are factor-
ized in an abstract class AbstractLightComponent which implements
both interfaces. Additionally, it also provides a number of methods con-
tributing to the implementation of the semantics of L-DReAM. This allows
the user to extend the abstract class and just override its constructor by
leveraging the ones in its superclass.

The interface and pool of a L-DReAM component are implemented as
Java collections of Port and Entity instances, while the store is realized
with a dedicated VarStore Java class composed by LocalVariable in-
stances. All of them are defined within the AbstractLightComponent
class as instance variables.

Lastly, the L-DReAM rule that defines the component behavior and the
coordination constraints over the components in its pool is also stored in
an instance variable of AbstractLightComponent and it is described
via the Rule interface of the coordination package.

Figure 29 presents the main elements of the entities package that
have just been described in the form of a simplified class diagram.

The coordination package

The coordination package contains a collection of classes and sub-
packages that implement the L-DReAM language itself. At top-level it
provides the Rule interface, which represents any L-DReAM rule that
can be built using the syntax in (3.33). Concretely, a Rule can be either
instanced as a Term (either disjunctive or conjunctive), a FOILRule (i.e.,
a Rule bound to a Declaration), or a combination of rules in the form
of either a conjunction (AndRule) or disjunction (OrRule). This is illus-
trated in figure 30.

Classes implementing terms contain instance variables that define con-
straints on the interaction and local variables, as well as operations that
are performed when the former hold. These two concepts are abstracted
through the use of the Formula and Operation interfaces, respectively.

111



«interface»
Rule

Interaction

1

1

Term

«interface»
Formula

«interface»
Operation

1

constraint

1

requirement

1

Conjunctive
Term

«interface»
Instance<T>

1

1

FOILRule AbstractRule

scope

variable

Declaration AndRule OrRule

Figure 30: Simplified class diagram of the coordination package

112



1

«interface»
Formula

Abstract
Formula

Abstract
UnaryFormula

1
NotFormula

*

Abstract
EnnaryFormula

PortReference

PortAtom

AndFormula

OrFormula

«interface»
Instance<T>

«interface»
Predicate

«interface»
Expression

Figure 31: Simplified class diagram of the constraints package

Classes that implement these interfaces are dependent on another inter-
face: the Instance<T>. This parametric interface decouples references
to individual elements of the framework from their actual Class instance.
In the scope of L-DReAM, this is used to define component variables and
local variable references when defining the coordination rules.

Figures 31 and 32 expand the contents of the constraints and op-

erations sub-packages presenting the main classes that implement the
Formula and Operation interfaces. It is worth noting that many ele-
ments of these packages have a dependency towards the Expression
interface, which encapsulates the facilities offered by the expressions
package providing the classes that implement algebraic expressions over
local variables and values in L-DReAM.

113



«interface»
Operation

Abstract
Operation

*
Operations
Sequence

value 1

variable

1

Assign

scope

1

newParent
1

Migrate

1Delete
Instance

1

chainedOp

1
scopeCreate

Instance

«interface»
Instance<T>

«interface»
Expression

else

1

then

1

condition 1IfThenElse

iteration

1

init
1

stop

1

ForLoop

«interface»
Formula

Skip

Figure 32: Simplified class diagram of the operations package

114



5.2 The jDReAM extended architecture

Since DReAM can be considered a specialized version of L-DReAM,
the core libraries of jDReAM could already be used as-is to implement
DReAM specifications with very little approximation. This would how-
ever prove to be inefficient, as many choices that have been made in order
to tailor DReAM to more “concrete” systems also allow many opportu-
nities for optimization and complexity reduction. One of such examples
is the choice of defining the behavior of atomic components with a la-
beled transition system instead of relying uniquely on coordination rules,
which add to the complexity of the global coordination model that the
execution engine has to build and solve at each execution cycle.

To take advantage of these opportunities and have an API for DReAM
that is closer to its Java implementation, the core packages presented
in section 5.1 are extended to encompass DReAM’s structuring concepts
such as motifs and maps.

Given the number of shared concepts between the two theoretical
frameworks and the modularity of the elements of the core architecture,
many of them translate directly to the extended architecture and are sim-
ply “imported”.

There are however substantial additions to three packages presented
in figure 28: the entities, operations and expressions packages.
In the following diagrams new/modified classes are marked with a red
bookmark to distinguish them from the ones belonging to the jDReAM
core.

The extended entities package

In L-DReAM, components seamlessly act as both coordinating and
interacting entities depending on their definition and state. This is
reflected by the implementation of the AbstractLightComponent

class which extends both CoordinatingEntity and InteractingEn-
tity interfaces in jDReAM (see figure 29). In DReAM, motifs and
components implement one of the two interfaces each. Two abstract
classes (AbstractMotif and AbstractComponent) implement com-

115



«interface»
Entity

«interface»
CoordinatingEntity

«interface»
InteractingEntity

pool

*

1 1

AbstractMotif

store

1

interface

*

AbstractComponent

«interface»
Rule

«interface»
Map

Port

VarStore

LTS

Figure 33: Simplified class diagram of the extended entities package

mon methods and instance variables relevant to the respective concepts
of the framework. Notably, AbstractComponent now relies on an LTS

object to define its behavior and interaction capabilities instead of using
a general coordination rule, and AbstractMotif maintains a reference
to an associated Map object in an instance variable. These extensions are
summarized in figure 33 (where we omitted classes and relationships only
relevant to L-DReAM). The LTS class (figure 34) is composed of Transi-

*

current

1

LTS

Control
Location

source1

target1
1

Transition Term

«interface»
Rule

Figure 34: Class diagram of the LTS class

tion objects, which directly model DReAM transitions associating two

116



ControlLocation objects (i.e., source and target of the transition) with
a t-PILOps rule, which is implemented with a static Term of the coordi-
nation language.

«interface»
Map

*

*

AbstractMap«interface»
MapEdge

source
* 1

MapNode VarStore«interface»
Entity

Figure 35: Class diagram of the maps package

At a general level, DReAM maps are graphs with memory associated
to each node, but in practice we have shown how having specific map
implementations enriched with utility functions allows to simplify the
definition of coordination rules and system modeling. The maps package
(figure 35) therefore defines a general interface that every “map” real-
ization has to implement, and an AbstractMap that defines instance
variables and utility methods shared among most Map implementations.
MapNode instances that model map locations store references to objects
implementing the Entity interface (i.e., either motifs or components
associated to the location) and are equipped with a VarStore just like
components.

The extended operations package

As both frameworks share the same underling coordination language,
the coordination package and its constraints sub-package do not
require substantial extensions to support DReAM specifications.

The operations package, on the other hand, is enriched with vari-
ants of the Migrate and CreateInstance operations that implement

117



«interface»
Operation

Abstract
Operation

*
Operations
Sequence

value 1

variable

1

Assign

Migrate

1Delete
Instance

1

chainedOp
Create
Instance

«interface»
Instance<T>

«interface»
Expression

else

1

then

1

condition 1IfThenElse

iteration

1

init
1

stop

1

ForLoop

«interface»
Formula

Skip

1scope 1

location

scope

1
newLocation

1

newParent

11

Trigger
Transition

Transition

Figure 36: Simplified class diagram of the extended operations package

118



map reconfigurations (e.g., creation/deletion of nodes and edges), as rep-
resented in figure 36. Notice that references to MapNode objects are han-
dled with classes extending the parametric Instance<T> interface like
for entities and local variables. An additional TriggerTransition op-
eration is also defined in order to handle firing of components’ transitions
uniformly with other operations.

The extended expressions package

As previously mentioned, the classes in the expressions package im-
plement arithmetic and set-theory expressions. These involve constant
values and sets of values, but also handle references to them in the form,
for instance, of local variables.

In the core architecture of jDReAM, few classes depend on this pack-
age, mainly the ones implementing the Predicate interface and the
Assign class realizing the assignment operation.

In the extended jDReAM architecture, the expressions package is
enriched with additional classes in order to handle the new structuring
concepts added at the entities level, i.e., maps and control locations
in the behavior of components.

5.3 Use cases in practice

5.3.1 Coordinating flocks of robots

Recall the two examples presented in 4.3.1 and 4.3.2 describing two sys-
tems of robots exploring a bi-dimensional space trying to converge to a
single “flock” where all its members move in the same direction.

We used jDReAM to implement both variants (with and without stig-
mergy) and studied their behavior with different initial settings. For com-
parison purposes, in both cases we fixed the number of robots in the
system to 9 and we chose a specific initial direction for each one of them.
The mapping of the robots to a grid of size s× s is realized in such a way
that they are uniformly spaced both horizontally and vertically. We chose
grid sizes proportional to 3 for uniformity.

119



Refer to section B.1 of the Appendix for the listings of the Java classes
defined using jDReAM for the “interacting robots” example.

Interacting robots without stigmergy

In this first case, we executed the system multiple times while varying
the size s of the grid and the communication range for a fixed number of
robots. During each execution, we monitored the number of flocks (i.e.,
the number of groups formed by robots moving in the same direction).
Intuitively, we expect to observe a faster convergence in the movement
directions as the size of the grid shrinks and/or as the communication
range increases.

The graphs in figure 37 show the trend in the number of flocks over
time for different system setups. Indeed, the results confirm our expec-

0 5 10 15 20
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 s=6
 s=9
 s=12
 s=15
 s=18
 s=21
 s=24

(a) range = 3

0 5 10 15 20
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 s=6
 s=9
 s=12
 s=15
 s=18
 s=21
 s=24

(b) range = 4

0 5 10 15 20
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 s=6
 s=9
 s=12
 s=15
 s=18
 s=21
 s=24

(c) range = 5

0 5 10 15 20
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 s=6
 s=9
 s=12
 s=15
 s=18
 s=21
 s=24

(d) range = 6

Figure 37: Trends in the number of flocks over time at different communica-
tion ranges

tations: the adopted initial setup procedure of the robot’s positions and
directions allows them to converge to an homogeneous flock within 20
clock ticks, a number which decreases as we increase the communication
range. There is also an opposite trend when increasing the size of the

120



grid, although it is interesting to see that there are several exceptions to
this rule (e.g. for range = 3 convergence on the grid s = 6 takes more
time than on the grid s = 9; the same applies for s = 12 vs s = 15 and
s = 18 vs s = 21).

Coordinating robots with stigmergy

For a comparison with the systems of 5.3.1, we fixed the same parameters
regarding number of robots, initial directions, set of tested grid sizes and
mapping criterion also in the case of robots coordinating using stigmergy.

We expected a similar correlation between convergence time and grid
size as in the case for communicating robots. Indeed, this is confirmed
by the graph in figure 38, which shows the trends in the number of flocks
for different grid sizes.

It is worth observing that convergence time and grid size are, again,
not always directly proportional: here it is noticeable how the robots
converge to a single flock for grid sizes equal to 15 and 21 in roughly
half the time it takes for them to converge on the smaller grid with s =

12. The graphs in figure 39 compare directly the convergence trends

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 s=6
 s=9
 s=12
 s=15
 s=18
 s=21
 s=24

Figure 38: Evolution of the number of flocks over time at different commu-
nication ranges

using the two approaches on grids of different sizes. From these we

121



can appreciate how the stigmergy-based solution performs roughly on-
par with the interaction-based one for small maps, progressively losing
ground to the latter as the map becomes larger. This comparison also
helps to better visualize how the implementation not resorting on sensors
initially requires some time to populate the map with information which
is proportional with the size of the map itself.

0 2 4 6 8 10
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 range=3
 range=4
 range=5
 range=6
 stigmergy

(a) s = 6

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 range=3
 range=4
 range=5
 range=6
 stigmergy

(b) s = 9

0 2 4 6 8 10 12 14 16 18
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 range=3
 range=4
 range=5
 range=6
 stigmergy

(c) s = 15

0 5 10 15 20 25
1

2

3

4

5

6

7

8

n°
 o

f f
lo

ck
s

clock

 range=3
 range=4
 range=5
 range=6
 stigmergy

(d) s = 21

Figure 39: Comparison between the two approaches at different grid sizes

5.3.2 Reconfigurable ring

We executed the reconfigurable ring example presented in 4.3.3 using the
jDReAM Java API. Like in the use cases modeling the flocks of robots
studied in 5.3.1, we monitored a simple metric of the system to evaluate
its overall behavior, but in this case we chose the size of the ring (i.e.,
the number of active Node instances). Choosing the system parameters
N = 20 andD = 0.5, the probability that the ring will grow in size at each
iteration can be easily computed as pg(n) = (1− pd (n))

n, where n is the
current size of the ring and pd(n) = 0.5 · (n/20)

2 is the probability that
at least one node will get deleted. Table 1 displays the values of pg for
n ranging from 1 to N . Figure 40 visualizes the results produced by the

122



poolSize(ring) Growth prob.
1 99.8750%
2 99.0025%
3 96.6628%
4 92.2368%
5 85.3215%
6 75.8613%
7 64.2465%
8 51.3219%
9 38.2605%
10 26.3076%

poolSize(ring) Growth prob.
11 16.4656%
12 9.2420%
13 4.5731%
14 1.9555%
15 0.7058%
16 0.2090%
17 0.0490%
18 0.0087%
19 0.0011%
20 0.0001%

Table 1: Growth probability at varying ring sizes for N = 20 and D = 0.5

first 200 iterations of the execution engine. The graph shows a behavior
that is in line with what we were expecting from the system for the given
N and D: the probability of the ring to steadily grow towards the size
cap falls below 25% once the population of nodes surpasses 10, and the
likelihood that the growth is going to be negated by at least one Node

instance getting deleted exceeds 95% when the size of the ring reaches 13.

0 50 100 150 200

2

4

6

8

10

12

14

rin
g 

si
ze

execution cycles

Figure 40: Evolution of the number of nodes in the ring

123



5.3.3 Simple platooning protocol

To evaluate the simple platooning protocol described in 4.3.4, we have
constructed a set of test scenarios by choosing different values for the
following initial parameters:

– nP : the number of platoons in the system;

– nC : the number of cars per platoon in the system (assuming nC to
be initially the same for all platoons);

– sC : the speed of every car;

– dC : the distance between two adjacent cars within a platoon;

– dP : the distance between two adjacent platoons;

– ∆j : the minimum distance between two adjacent platoons to trigger
the “join” maneuver;

– ∆s: the speed modification factor applied in the splitting maneuver;

– psplit: the probability that a car can initiate a “split” maneuver at
any given time (provided it is not the leader of its platoon).

Additionally, the symmetry of the initial conditions can be altered by
having sC , dC and dP randomly distributed around their mean values
with chosen variance.

We kept parameters nP and nC small enough to ease the analysis of
the execution traces in relation to the behavior of individual components.
From these traces we extracted, at each execution step, the number of
distinct platoons on the road and both the position as well as the speed of
each car. To this end, we opted to have a total of 12 Car instances initially
split in 2, 3, 4 and 6 different platoons.

We ran the system for 100 execution cycles with fully-symmetric initial
conditions that guaranteed no triggering of joining maneuvers unless at
least a platoon split happens first. This allows us to appreciate the effect
of the split probability psplit on the behavior of the system.

124



Given how the coordination rules and behaviors are defined in 4.3.4,
the only event that alters the cruising speed of cars in the system is the
splitting maneuver. This is well represented in figure 41, showing the
evolution of the average speed of cars in the system with different initial
groupings into platoons. Although performing a split increases the speed

0 2 0 4 0 6 0 8 0 1 0 0
2 0

2 5

3 0

3 5

4 0

4 5

av
g s

pe
ed

 (∆
x/c

ycl
e)

c y c l e

 a v g  s p e e d  ( p S p l i t  =  0 . 1 )
 a v g  s p e e d  ( p S p l i t  =  0 . 2 )
 a v g  s p e e d  ( p S p l i t  =  0 . 5 )
 a v g  s p e e d  ( p S p l i t  =  1 . 0 )

(a) nP = 2, nC = 6

0 2 0 4 0 6 0 8 0 1 0 0
2 0

2 5

3 0

3 5

4 0

4 5

av
g s

pe
ed

 (∆
x/c

ycl
e)

c y c l e

 a v g  s p e e d  ( p S p l i t  =  0 . 1 )
 a v g  s p e e d  ( p S p l i t  =  0 . 2 )
 a v g  s p e e d  ( p S p l i t  =  0 . 5 )
 a v g  s p e e d  ( p S p l i t  =  1 . 0 )

(b) nP = 3, nC = 4

0 2 0 4 0 6 0 8 0 1 0 0
2 0

2 5

3 0

3 5

4 0

4 5

av
g s

pe
ed

 (∆
x/c

ycl
e)

c y c l e

 a v g  s p e e d  ( p S p l i t  =  0 . 1 )
 a v g  s p e e d  ( p S p l i t  =  0 . 2 )
 a v g  s p e e d  ( p S p l i t  =  0 . 5 )
 a v g  s p e e d  ( p S p l i t  =  1 . 0 )

(c) nP = 4, nC = 3

0 2 0 4 0 6 0 8 0 1 0 0
2 0

2 5

3 0

3 5

4 0

4 5

av
g s

pe
ed

 (∆
x/c

ycl
e)

c y c l e

 a v g  s p e e d  ( p S p l i t  =  0 . 1 )
 a v g  s p e e d  ( p S p l i t  =  0 . 2 )
 a v g  s p e e d  ( p S p l i t  =  0 . 5 )
 a v g  s p e e d  ( p S p l i t  =  1 . 0 )

(d) nP = 6, nC = 2

Figure 41: Average speed of cars in the system for different values of psplit
(sC = 40, dC = 15, dP = 30, ∆j = 25, ∆s = 0.2)

of the cars in front of the one initiating the maneuver, the cars slowing
down are eventually reached by a trailing platoon. This causes more and
more cars to slow down and join the slower platoon, and even if some
cars can still split and increase their speed, the way we modeled this
speed-up as a fixed ratio of the current speed makes regaining the lost
velocity more difficult.

125



This behavior is confirmed across all the tested configurations of the
system, where we observed an average speed decrease ranging from 30

to 50% after 100 execution cycles. As expected, lower split probabilities
generally resulted in higher average final speed. It is interesting to note
that the initial fragmentation of the same amount of cars in more distinct
platoons does not change the relative speed trend dramatically, except
for the corner case psplit = 1. Indeed, as leader cars cannot initiate a split
maneuver, having more platoons effectively reduces the number of cars
that can potentially trigger the procedure. E.g., for nP = 2, 10 cars can
potentially initiate a splitting, whereas for nP = 6 this number reduces
to 6. With two platoons of six cars each and an individual psplit = 0.1,
the probability that at least one split happens is about 65%, whereas with
six platoons of size two and double psplit the combined probability is less
than 74% (where we computed the overall probability of at least one split
happening for n eligible cars with 1− (1− psplit)n).

Figure 42 shows the complementary picture of the evolution of the
number of platoons in the system.

Another test of the protocol that can be easily performed is to fix the
split probability and introduce noise in the initial configurations to sim-
ulate a more “realistic” scenario with cars entering the road at different
speeds and not perfectly distanced between one-another. This was per-
formed by sampling sC , dC and dP from random uniform distributions
U (a, b) (where a and b are the boundaries of the distribution). Figure 43
shows another way of visualizing the evolution of the resulting systems
by plotting the individual positions of all cars at different initial settings
for nP and nC .

Refer to section B.2 of the Appendix for the listings of the Java classes
defined using jDReAM to model the presented use case.

126



0 2 0 4 0 6 0 8 0 1 0 0
2

3

4

5

6

7

8

9

1 0

1 1

1 2

n p
lat

oo
ns

c y c l e

 n  p l a t o o n s  ( p S p l i t  =  0 . 1 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 2 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 5 )
 n  p l a t o o n s  ( p S p l i t  =  1 . 0 )

(a) nP = 2, nC = 6

0 2 0 4 0 6 0 8 0 1 0 0
2

3

4

5

6

7

8

9

1 0

1 1

1 2

n p
lat

oo
ns

c y c l e

 n  p l a t o o n s  ( p S p l i t  =  0 . 1 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 2 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 5 )
 n  p l a t o o n s  ( p S p l i t  =  1 . 0 )

(b) nP = 3, nC = 4

0 2 0 4 0 6 0 8 0 1 0 0
2

3

4

5

6

7

8

9

1 0

1 1

1 2

n p
lat

oo
ns

c y c l e

 n  p l a t o o n s  ( p S p l i t  =  0 . 1 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 2 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 5 )
 n  p l a t o o n s  ( p S p l i t  =  1 . 0 )

(c) nP = 4, nC = 3

0 2 0 4 0 6 0 8 0 1 0 0
2

3

4

5

6

7

8

9

1 0

1 1

1 2

n p
lat

oo
ns

c y c l e

 n  p l a t o o n s  ( p S p l i t  =  0 . 1 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 2 )
 n  p l a t o o n s  ( p S p l i t  =  0 . 5 )
 n  p l a t o o n s  ( p S p l i t  =  1 . 0 )

(d) nP = 6, nC = 2

Figure 42: Number of distinct platoons in the system for different values of
psplit (sC = 40, dC = 15, dP = 30, ∆j = 25, ∆s = 0.2)

127



0 2 0 4 0 6 0 8 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

x

c y c l e

 C a r [ 1 ]
 C a r [ 2 ]
 C a r [ 3 ]
 C a r [ 4 ]
 C a r [ 5 ]
 C a r [ 6 ]
 C a r [ 7 ]
 C a r [ 8 ]
 C a r [ 9 ]
 C a r [ 1 0 ]
 C a r [ 1 1 ]
 C a r [ 1 2 ]

(a) nP = 2, nC = 6

0 2 0 4 0 6 0 8 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

x

c y c l e

 C a r [ 1 ]
 C a r [ 2 ]
 C a r [ 3 ]
 C a r [ 4 ]
 C a r [ 5 ]
 C a r [ 6 ]
 C a r [ 7 ]
 C a r [ 8 ]
 C a r [ 9 ]
 C a r [ 1 0 ]
 C a r [ 1 1 ]
 C a r [ 1 2 ]

(b) nP = 3, nC = 4

0 2 0 4 0 6 0 8 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

x

c y c l e

 C a r [ 1 ]
 C a r [ 2 ]
 C a r [ 3 ]
 C a r [ 4 ]
 C a r [ 5 ]
 C a r [ 6 ]
 C a r [ 7 ]
 C a r [ 8 ]
 C a r [ 9 ]
 C a r [ 1 0 ]
 C a r [ 1 1 ]
 C a r [ 1 2 ]

(c) nP = 4, nC = 3

0 2 0 4 0 6 0 8 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

x

c y c l e

 C a r [ 1 ]
 C a r [ 2 ]
 C a r [ 3 ]
 C a r [ 4 ]
 C a r [ 5 ]
 C a r [ 6 ]
 C a r [ 7 ]
 C a r [ 8 ]
 C a r [ 9 ]
 C a r [ 1 0 ]
 C a r [ 1 1 ]
 C a r [ 1 2 ]

(d) nP = 6, nC = 2

Figure 43: Positions of individual cars over 100 execution cycles (sC =
U(35, 45), dC = U(12.5, 17.5), dP = U(20, 40), ∆j = 25, ∆s = 0.2,
psplit = 0.2)

128



Chapter 6

Concluding considerations

6.1 Summing up

The availability of adequate tools to develop complex systems that in-
teract with one-another and have to react/adapt to unpredictable envi-
ronments is a challenging feat, yet it is increasingly becoming a strict
requirement as ex post correctness proves to be unmanageable to verify
and major bugs get too expensive to fix. Addressing this issue at the ar-
chitecture design level allows us to offer an adequate trade-off between
the implementation-specific dependencies inherent to code programming
and synthesis, and the general principles of “sound” design based on best
practices and architectural patterns.

In this Thesis we have presented two frameworks for the descrip-
tion of dynamic reconfigurable systems supporting their incremental con-
struction according to a hierarchy of structuring concepts. Both rely on
the same coordination language inspired by propositional and first-order
logic to define interactions and reconfigurations of components that con-
stitute a system. We have shown how the expressive power of this for-
mal language is sufficient to support many coordination patterns and
to capture all the key features of dynamic systems. By not imposing a
priori limits to the coordination and computation styles that can be repre-
sented with this language, we presented intuitions on how sound trans-

129



formations between different design approaches can be formalized. More
specifically, we outlined methodologies to approach coordination of com-
ponents using a compositional approach that we called conjunctive style
- where the global constraint that defines admissible interactions is ob-
tained from the conjunction of individual constraints associated to each
component - and a connectors-centric approach that we called disjunctive
style - where the whole interaction model is defined by the union of con-
straints that implement a specific coordination mechanism. At the same
time, by studying the relationship between conjunctive and disjunctive
styles, we have shown that while they are both equally expressive for
interactions without data transfer, the disjunctive style is more expressive
when interactions involve data transfer and reconfigurations.

L-DReAM provides the most “general” platform for architecture spec-
ification, as it captures the core elements of the underling modeling lan-
guage with minimal overhead. DReAM is essentially a specialized version
of L-DReAM that fixes some base design decisions and offers additional
parametrization features, making the specification of dynamic and mobile
architectures more straightforward and efficient.

Both frameworks model systems as aggregates of coordinating com-
ponents. In L-DReAM these aggregates are completely symmetric: a com-
ponent can host other components defining a hierarchy in which each
aggregate (i.e., compound) defines the coordination rules that regulate
the way in which other components downward in the hierarchy interact
and evolve. DReAM systems are instead defined as hierarchies of motifs
coordinating atomic components. Motifs represent independent dynamic
architectures that define how their underlying components interact and
reconfigure.

Both frameworks guarantee enhanced expressiveness and incremen-
tal modifiability thanks to the following features:

Incremental modifiability: Coordination rules associated with com-
ponents in an aggregate (either a compound or a motif) can be modi-
fied and composed independently. Components can be defined indepen-
dently of their context of use. Self-organization can be modeled by com-
bining coordinating aggregates, i.e., system modes for which particular

130



interaction rules hold.

Expressiveness: This is inherited from BIP as the possibility to di-
rectly specify any kind of static coordination without modifying the in-
volved components or adding extra coordinating components. Regarding
dynamic coordination, the proposed language directly encompasses the
identified levels of dynamicity by supporting typing and the expressive
power of first order logic. Nonetheless, explicit handling of quantifiers is
limited to declarations that link variable names to actual instances.

Abstract Semantics: The language relies on an operational semantics
that admits a variety of implementations between two extreme cases.
One consists in pre-computing a global interaction constraint applied
to an unstructured set of component instances and choosing the enabled
interactions and the corresponding operations for a given configuration.
The other consists in computing separately interactions for aggregates of
components and combining them.

DReAM differentiates from L-DReAM by changing two of its core con-
cepts: atomic components and compounds. The behavior of an atomic
component in DReAM is explicitly defined as a labeled transition system
instead of being encoded using the core coordination language, which
makes the definition of multi-stage automatons more intuitive. Motifs are
obtained from L-DReAM compounds by stripping them of their interface
and local variables while equipping them with a map to parametrize com-
ponent coordination and allowing to access utility functions to simplify
map access and management. These differences are the result of specific
choices tailored to the classes of actual systems and use cases that the
framework aims at modeling, while also allowing concrete implementa-
tions that are more resource-efficient. These include adaptive systems,
where the focus is not in the ability of capturing precisely how all the
internals work but rather how their macroscopic behavior needs to react
and adapt to changes in the environment, or collaborative mobile sys-
tems, where the focus is to study and guide emerging collective behavior
while varying the topology and coordination rules underneath.

Lastly, we provided an experimental validation of the theoretical
frameworks by presenting the prototype implementation jDReAM and

131



studying how it handles some simple yet relevant examples modeled us-
ing DReAM. While at this maturity stage jDReAM is meant to represent
only a “proof of concept” of an executable environment, there are many
opportunities for improvement and extension of its features that make it
a viable ground for future development.

6.2 Related works

L-DReAM and DReAM allow both conjunctive and disjunctive style mod-
eling of dynamic reconfigurable systems. They inherit the expressiveness
of the coordination mechanisms of BIP [11] as they directly encompass
multiparty interaction and extend previous work on modeling parametric
architectures in Dy-BIP [12] in many respects. In both frameworks interac-
tions involve not only transferal of values but also encompass reconfigu-
ration. DReAM takes this one step further and supports self-organization
“out of the box” by relying on the notions of maps and motifs.

BIP is a mature framework that leverages connectors to model interac-
tions among components and define the computation flow between them.
System definitions can be parametric, but connectors remain essentially
“static” and defined from a somewhat “global” perspective by matching
ports from different components. This restriction allows BIP to synthe-
size very efficient executable runtimes from system specifications, but
prevents it from modeling dynamic systems effectively.

Dy-BIP was introduced with the intent of addressing the efficient
specification of dynamic systems sharing some ground theory and ter-
minology with BIP. It uses previous work on the encoding of BIP con-
nectors with PIL, but instead of specifying them from a global perspec-
tive it adopts a more “compositional” approach by attaching interaction
constraints to the ports of components. From these, a global interaction
constraint is built at each system state as the conjunction of individual
constraints, and the interaction that is performed is a solution to it.

L-DReAM and DReAM adopt a coordination language that, just like
Dy-BIP, is built on the foundation of PIL, but gives the designer more
freedom on how to use it to the point of allowing any style between two

132



“extremes” that we referred to as disjunctive and conjunctive.

When the disjunctive style is adopted, both frameworks can be con-
sidered as exogenous coordination languages, e.g., like an ADL. To the
best of our knowledge L-DReAM and DReAM surpass existing exogenous
coordination frameworks in that hey offer a well-thought and method-
ologically complete set of primitives and concepts to model parametric,
dynamic and reconfigurable system architectures.

When the conjunctive style is adopted, they can be used as endoge-
nous coordination languages comparable to process calculi to the extent
that they rely on a single associative parallel composition operator. In
DReAM and L-DReAM this operator is logical conjunction. It is easy to
show that for existing process calculi parallel composition is a specializa-
tion of conjunction in Interaction Logic. For CCS [40] the causal rules
are of the form p ⇒ true ∧ p̄ ⇒ true, where p and p̄ are input and out-
put port names corresponding to port symbol p. In this context, strong
synchronization can also be modeled without resorting to restriction by
using causal rules like p⇒ p̄ ∧ p̄⇒ p. For CSP [14], the interface parallel
operator parametrized by the shared channel a can be modeled in PIL by
defining a set of ports A implementing a and using causal rules of the
form ai ⇒

∧
aj∈A aj for all ai ∈ A.

We have briefly hinted at how we can model some aspects of other
richer calculi that offer the possibility of modeling dynamic infrastruc-
tures via channel passing, such as π-calculus [41], using L-DReAM with
its reconfiguration operations. The same applies for formalisms with
richer communication models, such as AbC [1], offering multicast com-
munications by selecting groups of partners according to predicates over
their attributes. Attribute-based interaction can be simulated by our inter-
action mechanism involving guards on the exchanged values and atomic
transfer of values.

Both frameworks were designed with autonomy in mind, especially
DReAM. As such, it has some similarities with languages for autonomous
systems, in particular robotic systems such as Buzz [50, 51]. Nonetheless,
we believe that the presented frameworks are more general as they do
not rely on assumptions about the timed synchronous cyclic behavior of

133



components.
Finally, DReAM shares the same conceptual framework with DR-BIP

[7]. The latter is an extension of BIP with component dynamism and re-
configuration. As such it adopts an exogenous and imperative approach
based on the use of connectors.

6.3 Future work

The presented frameworks have been developed with due attention to
sound formal definitions of their core concepts and empirically validated
through the implementation of an execution engine paired with libraries
that support the translation of L-DReAM and DReAM specifications to
Java. These two tracks still require further work for the frameworks to
reach maturity.

From the theoretical standpoint, early intuitions on the relationship
between conjunctive and disjunctive style need to be investigated in order
to formalize under which conditions disjunctive rules can be converted
to conjunctive ones. Furthermore, while the language adopted to define
coordination rules allows to enforce properties on interactions by con-
struction, the formal approach adopted by the framework enables the
use of (possibly automated) analysis techniques that would also allow
verification of structural and behavioral properties of specifications. The
development of such techniques is a key step to take full advantage of
the frameworks and support their actual application. The capability of
L-DReAM to capture and model several elements of other process de-
scription languages hinted in section 3.3 can also benefit from a more
through selection of comparable languages to define sound transforma-
tions from one to the other, not only to test the ability of the framework to
capture different paradigms but also to verify to what extent it is possible
to map them in a taxonomy of coordination approaches induced by the
dichotomy of styles “conjunctive vs disjunctive”. Further research ques-
tions are concerned with the study of congruence and similarity relations
for L-DReAM and DReAM systems.

From the implementation standpoint, the reworked jDReAM library

134



offers many opportunities for improvement and extension. From a us-
ability perspective, the framework would greatly benefit from an inte-
grated development environment capable of compiling a domain spe-
cific language closer to the theoretical syntax of L-DReAM and DReAM
into Java code that uses the jDReAM API. This environment should also
be enriched with plug-ins to monitor the jDReAM execution engine and
simulate the execution of complex systems with convenient graphical
interfaces. Under the hood, there are several optimizations and further
developments that can be done to improve the performance of the en-
gine. One of these is to enable support for multi-processing by allowing
compounds and motifs to have dedicated execution engines running on
different processes (and possibly different machines), organizing them
in hierarchies matching the system structure with parent processes col-
lecting the computation of their descendants. Having the possibility of
turning on and off this feature would enable us to exploit parallelism to
divide the problem of computing the global coordination constraint into
smaller problems for complex systems with complicated structures with-
out suffering from the unneeded synchronization overhead when dealing
with “flatter” systems that cannot benefit as much from parallelization.
Lastly, as the coordination language is fully represented with dedicated
classes implementing the syntax of the interaction logic, developing a
translator to propositional logic over port names could allow the integra-
tion of third-party state-of-the-art solvers to increase the performance of
the engine in finding solutions to the global coordination constraints.

135



Appendix A

Proofs

A.1 Disjunctive to conjunctive transformation
in PIL

A global disjunctive constraint Ψ can be transformed into the conjunction
of a series of conjunctive constraints of the form p ⇒ Ψp if and only if
∅ |= Ψ .

Proof. Let P be the set of ports over which the formula Ψ is defined.
The necessity of ∅ being a model of Ψ in order to have a corresponding

conjunctive formulation is trivial, as ∅ is always a model for any conjunc-
tive formula

∧
p∈P p ⇒ Ψp , and two PIL formulas are equivalent if and

only if they are satisfied by the same interactions.
To prove the condition is also sufficient, we first observe that

∅ |= Ψ ⇒ Ψ ≡ Ψ ∨
∧

p∈P ′
¬p (A.1)

where P ′ ⊆ P .
Let us write Ψ in the disjunctive normal form:

Ψ =

n∨

i=1


 ∧

pi∈Pi

pi ∧
∧

qi∈Qi

¬qi


 (A.2)

where Pi, Qi ⊆ P .

136



From (A.1), it follows that we can use the logical disjunction to com-
bine Ψ with any monomial consisting only of inhibited ports. In particular,
we can consider an equivalent formula Ψ ′ defined in the following way:

Ψ ′ = Ψ ∨
∧

p∈P
¬p (A.3)

By applying De Morgan’s law, we can transform Ψ ′ in the form:

Ψ ′ =

n∨

i=1


 ∧

pi∈Pi

pi ∧
∧

qi∈Qi

¬qi


 ∨

∧

p∈P
¬p =

=
n∧

i=1


 ∧

pi∈Pi

pi ∧
∧

qi∈Qi

¬qi


 ∧

∨

p∈P
p =

=
n∧

i=1


 ∨

pi∈Pi

¬pi ∨
∨

qi∈Qi

qi


 ∧

∨

p∈P
p

(A.4)

From here, we can apply the distributivity property of the logical con-
junction obtaining:

n∧

i=1


 ∨

pi∈Pi

¬pi ∨
∨

qi∈Qi

qi


 ∧

∨

p∈P
p =

=
∨

p∈P
j∈J
i∈I


 ∧

pi∈Pi

¬pi ∧
∧

qj∈Qj

qj ∧ p




(A.5)

where I ∪ J = [1..n] and I ∩ J = ∅.
By applying again De Morgan’s law until we remove the negations we

137



obtain the conjunctive normal form:

∨

p∈P
I,J


 ∧

pi∈Pi

¬pi ∧
∧

qj∈Qj

qj ∧ p


 =

=
∧

p∈P
I,J


 ∧

pi∈Pi

¬pi ∧
∧

qj∈Qj

qj ∧ p


 =

=
∧

p∈P
I,J


 ∨

pi∈Pi

pi ∨
∨

qj∈Qj

¬qj ∨ ¬p


 =

=
∧

p∈P
I,J

p ⇒


 ∨

pi∈Pi

pi ∨
∨

qj∈Qj

¬qj




(A.6)

which is indeed an equivalent conjunctive-style formula.

138



Appendix B

jDReAM code examples

B.1 Coordinating flocks of interacting robots

The following code snippets show one possible way of implementing the
component types described in section 4.3.1 using the jDReAM libraries.

We start with the definition of the Robot class, which implements the
component type by the same name extending the AbstractComponent
class. The constructor is parametrized with the parent Entity that will
host it in its pool (i.e., the root motif of the example), the sensor’s range
and the robot’s initial direction.

public class Robot extends AbstractComponent {

  public Robot(Entity parent,double range,int dirx,int diry) {
    super(parent);

    setInterface(new Port("tick",this));

    setStore(
        new VarStore(
            new LocalVariable("clock",new NumberValue(0)),
            new LocalVariable("range",new NumberValue(range)),
            new LocalVariable("ts",new NumberValue(0)),
            new LocalVariable("dir",new ArrayValue(dirx,diry))));

    setBehavior(newBehavior(getInterface(),getStore()));

  }

  ...

139



public class Robot extends AbstractComponent {

  public Robot(Entity parent, double range, int dirx, int diry) {
    super(parent);

    setInterface(new Port("tick", this));

    setStore(
        new VarStore(
            new LocalVariable("clock", new NumberValue(0)),
            new LocalVariable("range", new NumberValue(range)),
            new LocalVariable("ts", new NumberValue(0)), 
            new LocalVariable("dir", new ArrayValue(dirx, diry)))
        );

    setBehavior(newBehavior(getInterface(), getStore()));

  }

  ...

  private static LTS newBehavior(
      Map<String, Port> cInterface,
      VarStore store) {
    
    Map<ControlLocation, Set<Transition>> transitions = new HashMap<>();
    ControlLocation currentControlLocation = new ControlLocation("s0");

    transitions.put(currentControlLocation, new HashSet<>());
    transitions.get(currentControlLocation)
    .add(
        new Transition(
            currentControlLocation,
            new Term(
                new PortAtom(cInterface.get("tick")),
                new Assign(
                    new VariableActual(store.getLocalVariable("clock")),
                    new Sum(
                        new VariableActual(store.getLocalVariable("clock")),
                        new NumberValue(1)))),
            currentControlLocation));

    return new LTS(transitions, currentControlLocation);
  }
}

Next, we show the definition of the class implementing the motif coordi-
nating all the robots. The constructor accepts as parameters the size of
the square grid used to initialize the map, and the sensor’s range for all
Robot instances. An array of initial directions for each Robot instance is
chosen and used to setup the initial configuration of the motif.

public class InteractiveRobots extends AbstractMotif {

  public InteractiveRobots(int size,double range) {
    super(new GridMap(size,size));

    int[][] dirs = {{0,1},{1,1},{1,0},{1,-1},{0,0},
       {0,-1},{-1,-1},{-1,0},{-1,1}};
    int[][] addrs = new int[9][2];
    int step = size/3;

    for (int i=0; i<3; i++) {
      for (int j=0; j<3; j++) {
        addrs[i*3+j][0] = step*j;
        addrs[i*3+j][1] = step*i;
      }
    }

    for (int i=0; i<9; i++) {
      Entity robot = new Robot(this,range,dirs[i][0],dirs[i][1]);
      addToPool(robot);
      setEntityPosition(robot,map.getNodeForAddress(new ArrayValue(addrs[i])));
    }

  ...

140



The specification is completed by defining the rules that coordinate the
movement of robots and their direction update:

    ...

    EntityInstanceActual scope = new EntityInstanceActual(this);

    Declaration allRobots = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Robot.class));
    EntityInstanceRef c = allRobots.getVariable();

    Rule r1 = new FOILRule(allRobots,
        new ConjunctiveTerm(
            new PortReference(c,"tick"),
            Tautology.getInstance(),
            new Move(c,
                new MapNodeForAddress(scope,
                    new Sum(
                        new MapNodeAddress(new MapNodeForEntity(c)),
                        new VariableRef(c,"dir"))))));

    Declaration allRobots1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Robot.class));
    EntityInstanceRef c1 = allRobots1.getVariable();

    Declaration allRobots2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Robot.class));
    EntityInstanceRef c2 = allRobots2.getVariable();

    Rule r2 = new FOILRule(allRobots1,
        new FOILRule(allRobots2,
            new ConjunctiveTerm(
                new PortReference(c1,"tick"),
                new PortReference(c2,"tick"),
                new IfThenElse(
                    new And(
                        new LessThan(
                            new MapNodeDistance(
                                new MapNodeForEntity(c1),
                                new MapNodeForEntity(c2)),
                            new VariableRef(c1,"range")),
                        new Or(
                            new LessThan(
                                new VariableRef(c1,"ts"),
                                new VariableRef(c2,"ts")),
                            new And(
                                new Equals(
                                    new VariableRef(c1,"ts"),
                                    new VariableRef(c2,"ts")),
                                new LessThan(
                                    new InstanceIdentifier(c1),
                                    new InstanceIdentifier(c2))))),
                    new OperationsSequence(
                        new Assign(new VariableRef(c1,"dir"),
                            new VariableRef(c2,"dir")),
                        new Assign(new VariableRef(c1,"ts"),
                            new VariableRef(c1,"clock")))))));
    setRule(new AndRule(r1,r2));
  }
}

141



B.2 Simple platooning protocol for automated
highways

The following code snippets show one possible way of implementing the
component types described in section 4.3.4 using the jDReAM libraries.

First, we define a class implementing the component type Car by
extending the AbstractComponent class:

public class Car extends AbstractComponent {

  public static NumberValue splitProb = new NumberValue(0.2);

  public Car(Entity parent,double position,double speed) {
    super(parent);

    setInterface(new Port("initSplit"),new Port("ackSplit"),
        new Port("closeSplit"),new Port("initJoin"),
        new Port("ackJoin"),new Port("finishJoin"));

    setStore(new VarStore(
        new LocalVariable("id",new NumberValue(id)),
        new LocalVariable("pos",new NumberValue(position)),
        new LocalVariable("speed",new NumberValue(speed))));

    setBehavior(newBehavior(getInterface(),getStore()));
  }

  private static LTS newBehavior(Map<String,Port> cInterface,VarStore store) {
    Map<ControlLocation,Set<Transition>> transitions = new HashMap<>();
    ControlLocation currentControlLocation = new ControlLocation("cruising");

    ControlLocation c1, c2;

    c1 = currentControlLocation;
    c2 = new ControlLocation("splitting");
    transitions.put(c1,new HashSet<>());
    transitions.get(c1).add(new Transition(c1,
        new Term(new And(
            new LessThan(new RandomNumber(),splitProb),
            new PortAtom(cInterface.get("initSplit")))),c2));
    transitions.get(c1).add(new Transition(c1,
        new Term(new PortAtom(cInterface.get("ackSplit"))),c2));
    transitions.put(c2,new HashSet<>());
    transitions.get(c2).add(new Transition(c2,
        new Term(new PortAtom(cInterface.get("closeSplit"))),c1));
    c2 = new ControlLocation("joining");
    transitions.put(c2,new HashSet<>());
    transitions.get(c1).add(new Transition(c1,
        new Term(new PortAtom(cInterface.get("initJoin"))),c2));
    transitions.get(c1).add(new Transition(c1,
        new Term(new PortAtom(cInterface.get("ackJoin"))),c2));
    transitions.get(c2).add(new Transition(c2,
        new Term(new PortAtom(cInterface.get("finishJoin"))),c1));

    return new LTS(transitions,currentControlLocation);
  }
}

142



Here you can see that the probability of initiating a splitting maneuver
and the corresponding condition on the port initSplit are handled by
the Car components themselves instead of leaving them to the Platoon

motifs as in sub-rule (4.27) of rP . The latter is instead defined by declaring
a Platoon class extending the AbstractMotif class.

public class Platoon extends AbstractMotif {

  public Platoon(Entity parent,Entity[] initialPool) {
    super(parent,
        Arrays.stream(initialPool).collect(Collectors.toSet()),
        new ArrayMap(initialPool.length));
    map.setOwner(this);

    for (int i=0; i<initialPool.length; i++)
      setEntityPosition(initialPool[i],((ArrayMap)map).getNodeAtIndex(i));

    setRule(newRule(this));
  }

  @Override
  public MapNode createMapNode() {
    MapNode newNode = super.createMapNode();
    newNode.getStore().setVarValue("newLeader",new NumberValue(-1));
    newNode.getStore().setVarValue("newLoc",new NumberValue(-1));
    return newNode;
  }

  ...

  private static Rule newRule(AbstractMotif current) {
    EntityInstanceActual scope = new EntityInstanceActual(current);

    Declaration cars = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    EntityInstanceRef c = cars.getVariable();

    Rule r1 = new FOILRule(cars,
        new Term(
            new Assign(
                new VariableRef(c,"pos"),
                new Sum(
                    new VariableRef(c,"pos"),
                    new VariableRef(c,"speed")))));

    cars = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c = cars.getVariable();

    Rule r2 = new FOILRule(cars,
        new ConjunctiveTerm(
            new PortReference(c,"initSplit"),
            new And(
                new GreaterThan(new PoolSize(scope),new NumberValue(1)),
                new Not(
                    new Equals(
                        new VariableRef(new MapPropertyRef<>(scope,"head"),"id"),
                        new VariableRef(c,"id"))))));

    Declaration cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    var c1 = cars1.getVariable();
    Declaration cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    var c2 = cars2.getVariable();

Notice that we are overriding the createMapNode method of the super-
class in order to equip every location in the associated map with the local
variables newLeader and newLoc. The creation of the rule coordinating
the components in the motif is delegated to the static method newRule,
which returns a Rule object directly implementing (4.26-4.32):

  ...

  private static Rule newRule(AbstractMotif current) {
    EntityInstanceActual scope = new EntityInstanceActual(current);

    Declaration cars = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    EntityInstanceRef c = cars.getVariable();

    Rule r1 = new FOILRule(cars,
        new Term(new Assign(new VariableRef(c,"pos"),
            new Sum(
                new VariableRef(c,"pos"),
                new VariableRef(c,”speed”)))));

  ...

    cars = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c = cars.getVariable();

    Rule r2 = new FOILRule(cars,
        new ConjunctiveTerm(
            new PortReference(c,"initSplit"),
            new And(
                new GreaterThan(new PoolSize(scope),new NumberValue(1)),
                new Not(
                    new Equals(
                        new VariableRef(new MapPropertyRef<>(scope,"head"),"id"),
                        new VariableRef(c,"id"))))));

    Declaration cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    var c1 = cars1.getVariable();
    Declaration cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    var c2 = cars2.getVariable();
    
    Rule r3 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"ackJoin"),
                new PortReference(c2,"ackJoin"))));

    cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c1 = cars1.getVariable();
    cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c2 = cars2.getVariable();
    
    Rule r4 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"initJoin"),
                new PortReference(c2,"initJoin"))));

    cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));

143



    ...

    cars = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c = cars.getVariable();

    Rule r2 = new FOILRule(cars,
        new ConjunctiveTerm(
            new PortReference(c,"initSplit"),
            new And(
                new GreaterThan(new PoolSize(scope),new NumberValue(1)),
                new Not(new Equals(
                    new VariableRef(new MapPropertyRef<>(scope,"head"),"id"),
                    new VariableRef(c,"id"))))));

    Declaration cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    var c1 = cars1.getVariable();
    Declaration cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    var c2 = cars2.getVariable();
    
    Rule r3 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"ackJoin"),
                new PortReference(c2,"ackJoin"))));

    cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c1 = cars1.getVariable();
    cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c2 = cars2.getVariable();
    
    Rule r4 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"initJoin"),
                new PortReference(c2,"initJoin"))));

    cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c1 = cars1.getVariable();
    cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c2 = cars2.getVariable();
    Rule r5 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"finishJoin"),
                new PortReference(c2,"finishJoin"))));

    ...

    

144



    ...

    cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c1 = cars1.getVariable();
    cars2 = new Declaration(
        Quantifier.EXISTS, scope, new TypeRestriction(Car.class));
    c2 = cars2.getVariable();
    
    Rule r6 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"ackSplit"),
                new PortReference(c2,"initSplit"))));

    cars1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c1 = cars1.getVariable();
    cars2 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Car.class));
    c2 = cars2.getVariable();
    
    Rule r7 = new FOILRule(cars1,
        new FOILRule(cars2,
            new ConjunctiveTerm(
                new PortReference(c1,"initSplit"),
                new Or(
                    new SameInstance(c1,c2),
                    new PortReference(c2,"ackSplit")))));

    return new AndRule(r1,r2,r3,r4,r5,r6,r7);
  }
}

Lastly, the Road motif type is also implemented by defining a sub-class
of AbstractMotif with a rule implementing rR:

public class Road extends AbstractMotif {

  public Value speedUp;
  public Value speedDown;

  public Road(Set<Entity> pool,double joinDistance,double speedDelta) {
    super(null,pool,new DummyMap());
    map.setOwner(this);
    MapNode node = map.getNodes().stream().findFirst().get();
    pool.stream().forEach(e -> map.setEntityMapping(e,node));
    speedUp = new NumberValue(1+speedDelta);
    speedDown = new NumberValue(1-speedDelta);

    EntityInstanceActual scope = new EntityInstanceActual(this);
    Declaration platoons1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Platoon.class));
    EntityInstanceRef p1 = platoons1.getVariable();
    Declaration cars = new Declaration(
        Quantifier.FORALL, p1, new TypeRestriction(Car.class));
    EntityInstanceRef c = cars.getVariable();
    Declaration platoons2 = new Declaration(
        Quantifier.EXISTS, scope, new TypeRestriction(Platoon.class));
    EntityInstanceRef p2 = platoons2.getVariable();

    ...  

145



    ...

    MapNodeRef n = new MapNodeRef();

    Rule join1 = new FOILRule(platoons1,
        new FOILRule(cars,
            new FOILRule(platoons2,
                new ConjunctiveTerm(
                    new PortReference(c,"initJoin"),
                    new And(
                        new Not(new SameInstance(p1,p2)),
                        new LessThan(
                            new NumberValue(0),
                            new Difference(
                                new VariableRef(
                                    new MapPropertyRef<>(p2,"tail"),"pos"),
                                new VariableRef(
                                    new MapPropertyRef<>(p1,"head"),"pos")),
                            new NumberValue(joinDistance)),
                        new PortReference(
                            new MapPropertyRef<>(p2,"head"),"ackJoin")),
                    new CreateMapNode(p2,n,
                        new OperationsSequence(
                            new Assign(new VariableRef(c,"speed"),
                                new VariableRef(
                                    new MapPropertyRef<>(p2,"head"),"speed")),
                            new Assign(
                                new VariableRef(
                                    new MapNodeForEntity(c),"newLeader"),
                                new VariableRef(
                                    new MapPropertyRef<>(p2,"head"),"id")),
                            new Assign(
                                new VariableRef(new MapNodeForEntity(c),"newLoc"),
                                new Sum(
                                    new MapSize(p2),
                                    new VariableRef(
                                        new MapNodeForEntity(c),”index")))))))));
    
    platoons1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Platoon.class));
    p1 = platoons1.getVariable();
    platoons2 = new Declaration(
        Quantifier.EXISTS, scope, new TypeRestriction(Platoon.class));
    p2 = platoons2.getVariable();

    Rule join1b = new FOILRule(platoons1,
        new FOILRule(platoons2,
            new ConjunctiveTerm(
                new PortReference(new MapPropertyRef<>(p1,"head"),"ackJoin"),
                new And(
                    new PortReference(new MapPropertyRef<>(p2,"head"),"initJoin"),
                    new LessThan(
                        new NumberValue(0),
                        new Difference(
                            new VariableRef(
                                new MapPropertyRef<>(p1,"tail"),"pos"),
                            new VariableRef(
                                new MapPropertyRef<>(p2,"head"),"pos")),
                        new NumberValue(joinDistance))))));
    ...

146



    ...

    platoons1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Platoon.class));
    p1 = platoons1.getVariable();
    cars = new Declaration(
        Quantifier.FORALL, p1, new TypeRestriction(Car.class));
    c = cars.getVariable();
    platoons2 = new Declaration(
        Quantifier.EXISTS, scope, new TypeRestriction(Platoon.class));
    p2 = platoons2.getVariable();

    Rule join2 = new FOILRule(platoons1,
        new FOILRule(cars,
            new FOILRule(platoons2,
                new ConjunctiveTerm(
                    new PortReference(c,"finishJoin"),
                    new And(
                        new PortReference(
                            new MapPropertyRef<>(p2,"head"),"finishJoin"),
                        new Or(
                            new Equals(
                                new VariableRef(
                                    new MapPropertyRef<>(p2,"head"),"id"),
                                new VariableRef(
                                    new MapNodeForEntity(c),"newLeader")),
                            new SameInstance(p1,p2))),
                    new IfThenElse(
                        new Not(new SameInstance(p1,p2)),
                        new OperationsSequence(
                            new MigrateMotif(c,p2,
                                new MapNodeVarEquals(p2,"index",new VariableRef(
                                    new MapNodeForEntity(c),"newLoc"))),
                            new DeleteInstance(p1)))))));

    platoons1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Platoon.class));
    p1 = platoons1.getVariable();
    cars = new Declaration(
        Quantifier.FORALL, p1, new TypeRestriction(Car.class));
    c = cars.getVariable();
    p2 = new EntityInstanceRef();

    n = new MapNodeRef();
    VariableRef i = new VariableRef("i");

    Rule split1 = new FOILRule(platoons1,
        new FOILRule(cars,
            new ConjunctiveTerm(
                new PortReference(c,"initSplit"),
                new OperationsSequence(
                    new Assign(
                        new VariableRef(c,"speed"),
                        new Product(new VariableRef(c,"speed"),speedDown)),
                    new CreateMotifInstance(Platoon.class,scope,
                        new MapNodeActual(((DummyMap)this.map).getNode()),p2,
                        new OperationsSequence(
                            new CreateMapNode(p2,n,
                                new MigrateMotif(c,p2,n)),
    ...  

147



    ...
                            new ForLoop(i,
                                new Sum(
                                    new NumberValue(1),
                                    new VariableRef(
                                        new MapNodeForEntity(c),"index")),
                                new MapSize(p1),
                                new CreateMapNode(p2)))),
                    new DeleteMapNode(new MapNodeForEntity(c))))));

    platoons1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Platoon.class));
    p1 = platoons1.getVariable();
    Declaration cars1 = new Declaration(
        Quantifier.FORALL, p1, new TypeRestriction(Car.class));
    EntityInstanceRef c1 = cars1.getVariable();
    Declaration cars2 = new Declaration(
        Quantifier.EXISTS, p1, new TypeRestriction(Car.class));
    EntityInstanceRef c2 = cars2.getVariable();

    Rule split2 = new FOILRule(platoons1,
        new FOILRule(cars1,
            new FOILRule(cars2,
                new ConjunctiveTerm(
                    new PortReference(c1,"ackSplit"),
                    new PortReference(c2,"initSplit"),
                    new IfThenElse(
                        new GreaterThan(
                            new VariableRef(new MapNodeForEntity(c1),"index"),
                            new VariableRef(new MapNodeForEntity(c2),"index")),
                        new OperationsSequence(
                            new Assign(
                                new VariableRef(
                                    new MapNodeForEntity(c1),"newLeader"),
                                new VariableRef(c2,"id")),
                            new Assign(
                                new VariableRef(
                                    new MapNodeForEntity(c1),"newLoc"),
                                new Difference(
                                    new VariableRef(
                                        new MapNodeForEntity(c1),"index"),
                                    new VariableRef(
                                        new MapNodeForEntity(c2),"index"))),
                            new Assign(
                                new VariableRef(c1,"speed"),
                                new Product(
                                    new VariableRef(c1,"speed"),speedDown))),
                        new Assign(
                            new VariableRef(c1,"speed"),
                            new Product(new VariableRef(c1,”speed"),speedUp))
                        )))));

    platoons1 = new Declaration(
        Quantifier.FORALL, scope, new TypeRestriction(Platoon.class));
    p1 = platoons1.getVariable();
    cars = new Declaration(
        Quantifier.FORALL, p1, new TypeRestriction(Car.class));
    c = cars.getVariable();

    ...  

148



    ...

    platoons2 = new Declaration(
        Quantifier.EXISTS, scope, new TypeRestriction(Platoon.class));
    p2 = platoons2.getVariable();

    Rule split3 = new FOILRule(platoons1,
        new FOILRule(cars,
            new FOILRule(platoons2,
                new ConjunctiveTerm(
                    new PortReference(c,"closeSplit"),
                    new Or(
                        new And(
                            new Equals(
                                new VariableRef(
                                    new MapNodeForEntity(c),"newLeader"),
                                new VariableRef(
                                    new MapPropertyRef<>(p2,"head"),"id")),
                            new PortReference(
                                new MapPropertyRef<>(p2,"head"),"closeSplit")),
                        new Equals(
                            new VariableRef(
                                new MapNodeForEntity(c),"newLeader"),
                            new NumberValue(-1))),
                    new IfThenElse(
                        new Not(
                            new Equals(
                                new VariableRef(
                                    new MapNodeForEntity(c),"newLeader"),
                                new NumberValue(-1))),
                        new OperationsSequence(
                            new MigrateMotif(c,p2,
                                new MapNodeVarEquals(p2,"index",
                                    new VariableRef(
                                        new MapNodeForEntity(c),"newLoc"))),
                            new DeleteMapNode(new MapNodeForEntity(c))))))));

    setRule(new AndRule(join1,join1b,join2,split1,split2,split3));

  }
}

The tests ran in section 5.3.3 and presented in figure 41 have been gen-
erated and executed by running the jDReAM ExecutionEngine as fol-
lows:

Platooning road = generateConfiguration(pN[i],cN[i],avgS[i],avgSVar[i],
    avgCS[i],avgCSVar[i],avgPS[i],avgPSVar[i],jD[i],sD[i]);

String output = String.format(
          "platooning_%d_%d_%.2f_%.2f_%.2f_%.2f_%.2f_%.2f_%.2f_%.2f_%dc.json",
          pN[i],cN[i],avgS[i],avgSVar[i],avgCS[i],avgCSVar[i],avgPS[i],
          avgPSVar[i],jD[i],sD[i],cycles[i]);

ExecutionEngine ex = new ExecutionEngine(
    road,GreedyStrategy.getInstance(),new ConsoleOutput(),100,output);

ex.run();

149



Bibliography

[1] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. “On
the Power of Attribute-Based Communication”. In: Proceedings of
Formal Techniques for Distributed Objects, Components, and Systems -
FORTE 2016 - 36th IFIP WG 6.1 In’l Conference. 2016, pp. 1–18.

[2] Yehia Abd Alrahman et al. “A calculus for attribute-based com-
munication”. In: Proceedings of the 30th Annual ACM Symposium on
Applied Computing, Salamanca, Spain, April 13-17, 2015. ACM, 2015,
pp. 1840–1845.

[3] Luca Aceto et al. Reactive systems: modelling, specification and verifi-
cation. cambridge university press, 2007.

[4] Robert Allen and David Garlan. “A formal basis for architectural
connection”. In: ACM Transactions on Software Engineering and
Methodology (1997).

[5] Farhad Arbab. “Reo: a channel-based coordination model for com-
ponent composition”. In: Math. Struct. Comput. Sci. 14.3 (2004),
pp. 329–366.

[6] Paul Attie et al. “A general framework for architecture composabil-
ity”. In: Software Engineering and Formal Methods. Springer, 2014,
pp. 128–143.

[7] Rim El Ballouli et al. “Four Exercises in Programming Dynamic
Reconfigurable Systems: Methodology and Solution in DR-BIP”.
In: Proceedings of the 8th International Symposium on Leveraging Ap-
plications of Formal Methods. Vol. 11246. Lecture Notes in Computer
Science. Springer, 2018, pp. 304–320.

[8] Patrick J. Barnes et al. Prototyping hard real-time Ada systems in a
classroom environment. Tech. rep. 1992.

150



[9] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling het-
erogeneous real-time components in BIP”. In: Proceedings of the
4th IEEE International Conference on Software Engineering and Formal
Methods. IEEE. 2006, pp. 3–12.

[10] Carl Bergenhem. “Approaches for facilities layer protocols for pla-
tooning”. In: 2015 IEEE 18th International Conference on Intelligent
Transportation Systems. IEEE. 2015, pp. 1989–1994.

[11] Simon Bliudze and Joseph Sifakis. “The algebra of connectors -
structuring interaction in BIP”. In: IEEE Transactions on Computers
57.10 (2008), pp. 1315–1330.

[12] Marius Bozga et al. “Modeling dynamic architectures using Dy-
BIP”. In: Proceedings of the 11th International Conference on Software
Composition. Springer. 2012, pp. 1–16.

[13] Jeremy S. Bradbury. “Organizing definitions and formalisms for
dynamic software architectures”. In: Technical Report 477 (2004).

[14] Stephen D. Brookes, Charles A. R. Hoare, and Andrew W. Roscoe.
“A theory of communicating sequential processes”. In: Journal of
the ACM (JACM) 31.3 (1984), pp. 560–599.

[15] Roberto Bruni et al. “A Formal Support to Business and Archi-
tectural Design for Service-Oriented Systems”. In: Rigorous Soft-
ware Engineering for Service-Oriented Systems - Results of the SEN-
SORIA Project on Software Engineering for Service-Oriented Comput-
ing. Vol. 6582. Lecture Notes in Computer Science. Springer, 2011,
pp. 133–152.

[16] Arvid Butting et al. “A Classification of Dynamic Reconfigura-
tion in Component and Connector Architecture Description Lan-
guages”. In: Proceedings of the 4th International Workshop on Inter-
play of Model-Driven and Component-Based Software Engineering. 2017,
p. 13.

[17] Paul C. Clements. “A survey of architecture description languages”.
In: Proceedings of the 8th international workshop on software specification
and design. IEEE Computer Society. 1996, p. 16.

[18] Rocco De Nicola, Alessandro Maggi, and Joseph Sifakis. “The
DReAM framework for dynamic reconfigurable architecture mod-
elling: theory and applications”. In: International Journal on Software
Tools for Technology Transfer (2020), pp. 1–19.

151



[19] Stephen H. Edwards et al. “Part II: Specifying components in RE-
SOLVE”. In: ACM SIGSOFT Software Engineering Notes 19.4 (1994),
pp. 29–39.

[20] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture
analysis & design language (AADL): An introduction. Tech. rep. DTIC
Document, 2006.

[21] José Luiz Fiadeiro and T. S. E. Maibaum. “Categorical Semantics of
Parallel Program Design”. In: Sci. Comput. Program. 28.2-3 (1997),
pp. 111–138.

[22] Ariel D. Fuxman. “A survey of architecture description languages”.
In: Reports from CSC2108 Automatic Verification (2000).

[23] Erich Gamma. Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[24] David Garlan. “Software architecture: a travelogue”. In: Proceed-
ings of the on Future of Software Engineering. ACM, 2014, pp. 29–39.

[25] David Garlan and Mary Shaw. “An introduction to software archi-
tecture”. In: Advances in Software Engineering and Knowledge Engi-
neering. Ed. by V. Ambriola and G. Tortora. Vol. I. World Scientific
Publishing Company, New Jersey, 1993.

[26] Stephen Gilmore and Jane Hillston. “The PEPA workbench: A
tool to support a process algebra-based approach to performance
modelling”. In: International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation. Springer. 1994, pp. 353–
368.

[27] Gregor Gößler and Joseph Sifakis. “Composition for Component-
Based Modeling”. In: Proceedings of the 1st International Symposium
on Formal Methods for Components and Objects. Vol. 2852. Lecture
Notes in Computer Science. Springer, 2002, pp. 443–466.

[28] Charles A. R. Hoare. Communicating Sequential Processes. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1985.

[29] Charles A. R. Hoare. “Communicating sequential processes”. In:
Communications of the ACM 21.8 (1978), pp. 666–677.

[30] Ann Hsu et al. Design of platoon maneuver protocols for IVHS. UC
Berkeley: California Partners for Advanced Transportation Tech-
nology, 1991.

152



[31] Valérie Issarny, Amel Bennaceur, and Yérom-David Bromberg.
“Middleware - layer connector synthesis: Beyond state of the art
in middleware interoperability”. In: Formal Methods for Eternal Net-
worked Software Systems. Springer, 2011, pp. 217–255.

[32] James Ivers et al. Documenting component and connector views with
UML 2.0. Tech. rep. DTIC Document, 2004.

[33] Daniel Jackson. “Alloy: a lightweight object modelling notation”.
In: ACM Trans. Softw. Eng. Methodol. 11.2 (2002), pp. 256–290.

[34] Farnam Jahanian and Aloysius K. Mok. “Modechart: A specifi-
cation language for real-time systems”. In: IEEE Transactions on
Software Engineering 20.12 (1994), pp. 933–947.

[35] David C. Luckham et al. “Partial orderings of event sets and their
application to prototyping concurrent, timed systems”. In: Journal
of systems and Software 21.3 (1993), pp. 253–265.

[36] Jeff Magee and Jeff Kramer. “Dynamic structure in software archi-
tectures”. In: Proceedings of the Fourth ACM SIGSOFT Symposium on
the Foundations of Software Engineering. 1996.

[37] Alessandro Maggi, Rocco De Nicola, and Joseph Sifakis. “A Logic-
Inspired Approach to Reconfigurable System Modelling”. In: From
Reactive Systems to Cyber-Physical Systems. Vol. 11500. Lecture Notes
in Computer Science. Springer, 2019, pp. 181–201.

[38] Ivano Malavolta et al. “What industry needs from architectural
languages: A survey”. In: IEEE Transactions on Software Engineering
39.6 (2013), pp. 869–891.

[39] Nenad Medvidovic, Eric M Dashofy, and Richard N Taylor. “Mov-
ing architectural description from under the technology lamppost”.
In: Information and Software Technology 49.1 (2007), pp. 12–31.

[40] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture
Notes in Computer Science. Springer, 1980.

[41] Robin Milner, Joachim Parrow, and David Walker. “A calculus of
mobile processes, I”. In: Information and computation 100.1 (1992),
pp. 1–40.

[42] Peter Newton and James C. Browne. “The CODE 2.0 graphical par-
allel programming language”. In: Proceedings of the 6th international
conference on Supercomputing. ACM. 1992, pp. 167–177.

153



[43] Rocco De Nicola, Alessandro Maggi, and Joseph Sifakis. “DReAM:
Dynamic Reconfigurable Architecture Modeling”. In: Proceedings of
the 8th International Symposium on Leveraging Applications of Formal
Methods. Vol. 11246. Lecture Notes in Computer Science. Springer,
2018, pp. 13–31.

[44] Xavier Nicollin and Joseph Sifakis. “An overview and synthesis on
timed process algebras”. In: International Conference on Computer
Aided Verification. Springer. 1991, pp. 376–398.

[45] Peyman Oreizy et al. “Issues in modeling and analyzing dynamic
software architectures”. In: Proceedings of the International Work-
shop on the Role of Software Architecture in Testing and Analysis. 1998,
pp. 54–57.

[46] Mourad Oussalah, Adel Smeda, and Tahar Khammaci. “An Ex-
plicit Definition of Connectors for Component-Based Software Ar-
chitecture”. In: Proceedings of the 11th IEEE International Conference
on the Engineering of Computer-Based Systems. IEEE, 2004, pp. 44–51.

[47] Mert Ozkaya and Christos Kloukinas. “Are we there yet? Analyz-
ing architecture description languages for formal analysis, usability,
and realizability”. In: Proceedings of the 39th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA). IEEE.
2013, pp. 177–184.

[48] Jens Palsberg, Cun Xiao, and Karl Lieberherr. “Efficient implemen-
tation of adaptive software”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 17.2 (1995), pp. 264–292.

[49] Jennifer Pérez. “PRISMA: Aspect-Oriented Software Architec-
tures”. PhD thesis. Department of Information Systems and Com-
putation, Polytechnic University of Valencia, 2006.

[50] Carlo Pinciroli and Giovanni Beltrame. “Buzz: An extensible pro-
gramming language for heterogeneous swarm robotics”. In: Pro-
ceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2016, pp. 3794–3800.

[51] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. “Buzz:
An extensible programming language for self-organizing heteroge-
neous robot swarms”. In: arXiv preprint arXiv:1507.05946 (2015).

[52] Frantisek Plasil and Stanislav Visnovsky. “Behavior protocols for
software components”. In: Software Engineering, IEEE Transactions
on 28.11 (2002), pp. 1056–1076.

154



[53] Carlos E. C. Quintero et al. “Coordination in a reflective architec-
ture description language”. In: Proceedings of the 5th International
Conference on Coordination Models and Languages. Vol. 2315. Lecture
Notes in Computer Science. Springer, 2002, pp. 141–148.

[54] Mary Shaw et al. “Abstractions for Software Architecture and Tools
to Support Them”. In: IEEE Transactions on Software Engineering 21
(1995), pp. 314–335.

[55] Antero Taivalsaari, Tommi Mikkonen, and Kari Systä. “Liquid soft-
ware manifesto: the era of multiple device ownership and its impli-
cations for software architecture”. In: Proceedings of the 38th Com-
puter Software and Applications Conference. IEEE. 2014, pp. 338–343.

[56] Allan Terry et al. “Overview of Teknowledge’s domain-specific
software architecture program”. In: ACM SIGSOFT Software Engi-
neering Notes 19.4 (1994), pp. 68–76.

[57] Alexander L. Wolf et al. “Foundations for the Study of Software
Architecture”. In: ACM SIGSOFT Software Engineering Notes 17
(1992), pp. 40–52.

[58] Chen Yang, Peng Liang, and Paris Avgeriou. “A systematic map-
ping study on the combination of software architecture and agile de-
velopment”. In: Journal of Systems and Software 111 (2016), pp. 157–
184.





Unless otherwise expressly stated, all original material of whatever
nature created by Alessandro Maggi and included in this thesis, is
licensed under a Creative Commons Attribution Noncommercial
Share Alike 3.0 Italy License.

Check creativecommons.org/licenses/by-nc-sa/3.0/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/3.0/it/
http://creativecommons.org/licenses/by-nc-sa/3.0/it/
http://creativecommons.org/licenses/by-nc-sa/3.0/it/
http://creativecommons.org/licenses/by-nc-sa/3.0/it/
mailto:alessandro.maggi@imtlucca.it

	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Main contributions
	1.4 Outline
	1.5 Origin of the material

	2 Preliminaries
	2.1 Approaches to software systems modeling
	2.1.1 Process Description Languages
	2.1.2 Architecture Description Languages

	2.2 Approaches to components coordination
	2.2.1 Exogenous coordination paradigms
	2.2.2 Endogenous coordination paradigms

	2.3 BIP-based Formalisms
	2.3.1 BIP: Behavior, Interaction, Priority
	2.3.2 Dynamic BIP
	2.3.3 Dynamic Reconfigurable BIP


	3 The L-DReAM framework
	3.1 PIL-based systems
	3.1.1 Propositional Interaction Logic (PIL)
	3.1.2 Interacting Components
	3.1.3 Systems of components
	3.1.4 Disjunctive and Conjunctive styles in PIL

	3.2 L-DReAM Syntax and Semantics
	3.2.1 Static systems with PILOps
	3.2.2 Disjunctive and Conjunctive styles in PILOps
	3.2.3 Parametric architectures and dynamic systems

	3.3 Encoding other formalisms

	4 The DReAM framework
	4.1 Structuring architectures
	4.1.1 Component Types and component Instances
	4.1.2 Motif modeling

	4.2 The DReAM coordination language
	4.2.1 Declaration expansion for coordination terms
	4.2.2 Reconfiguration operations
	4.2.3 Disjunctive and Conjunctive styles in DReAM
	4.2.4 Operational semantics

	4.3 Example systems
	4.3.1 Coordinating flocks of interacting robots
	4.3.2 Coordinating flocks of robots with stigmergy
	4.3.3 Reconfigurable ring
	4.3.4 Simple platooning protocol for automated highways


	5 Executable implementation
	5.1 The jDReAM core architecture
	5.2 The jDReAM extended architecture
	5.3 Use cases in practice
	5.3.1 Coordinating flocks of robots
	5.3.2 Reconfigurable ring
	5.3.3 Simple platooning protocol


	6 Concluding considerations
	6.1 Summing up
	6.2 Related works
	6.3 Future work

	A Proofs
	A.1 Disjunctive to conjunctive transformation in PIL

	B jDReAM code examples
	B.1 Coordinating flocks of interacting robots
	B.2 Simple platooning protocol for automated highways


