
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Abstract Probabilistic Semantics for the
Analysis of Biological Systems Models

PhD Program in Computer Science

and Engineering

XXIII Cycle

By

Guido Scatena
2011

The dissertation of Guido Scatena is approved.

Program Coordinator:

Ugo Montanari, University of Pisa

Supervisors:

 Roberto Barbuti, University of Pisa
 Francesca Levi, University of Pisa

The dissertation of Guido Scatena has been reviewed by:

Damas Gruska, University of Bratislava (Slovakia)
Francisco J. Romero-Campero, University of Seville (Spain)

IMT Institute for Advanced Studies, Lucca

2011

Contents

1 Introduction 1
1.1 Motivations . 3
1.2 Related Works . 4
1.3 Contributions . 6
1.4 Structure of the thesis . 7
1.5 Published Material . 8

2 Background 9
2.1 Introduction to Biological Systems Modelling 9
2.2 Notions of Biochemical Reactions Kinetics 14
2.3 Probabilistic Semantics and Analysis 18

2.3.1 Notions of Probability 19
2.3.2 Kripke Structures, Markov Chains and Markov Decision

Processes . 21
2.3.3 Model Checking . 25

2.4 Abstraction Techniques . 31
2.4.1 Abstract Interpretation 32
2.4.2 Predicate Abstraction 35

3 Abstract Semantics for Models with Uncertainty on Kinetic Rates 39
3.1 Introduction . 39
3.2 Probabilistic Model Checking of Biological Systems 41

3.2.1 Labeled Transition System Semantics 42
3.2.2 Derivation of Probabilistic Semantics 43
3.2.3 Probabilistic Model Checking 44

3.3 Abstract Systems Modelling and Model Checking 45
3.3.1 Abstraction and Concretization 46

3.3.2 Abstract LTS Semantics 47
3.3.3 Interval Markov Chains 50
3.3.4 Derivation of Abstract Probabilistic Semantics 53

3.4 Case Study: Tumor Cell Growth 58
3.5 Comparison with Related Works 63
3.6 Conclusions . 63

4 Maximally Parallel Probabilistic Semantics for Multiset Rewriting 65
4.1 Introduction . 65
4.2 Maximally Parallel Multiset Rewriting Models 67
4.3 Maximally Parallel Labeled Transition System Semantics 69
4.4 Maximally Parallel Probabilistic Semantics 72
4.5 Max. Parallel Multiset Rewriting Branching Complexity 74
4.6 Case Study: C. elegans Vulval Development 77
4.7 Comparison with Related Works 81
4.8 Conclusions . 82

5 Interval Valued Abstract Maximally Parallel Semantics for Multiset
Rewriting 85
5.1 Introduction . 86
5.2 Interval Valued Abstract Models 87
5.3 Abstract Labelled Transition System Semantics 91

5.3.1 Computation of Reachable Abstract States 92
5.3.2 Computation of Abstract Max. Parallel Rule Applications 95
5.3.3 Computation of Abstract Transition Rates 100
5.3.4 Soundness of abstract LTS semantics 104

5.4 Abstract Probabilistic Semantics 106
5.4.1 Abstract Probabilistic Semantics 108
5.4.2 Soundness with respect to Probabilistic Reachability . . 109

5.5 Case study: Seasonal Reproduction Model 111
5.6 Discussion . 117
5.7 Comparison with Related Works 118
5.8 Conclusions . 120
5.9 Proofs . 121

6 Conclusions 137

Bibliography 141

VITA

April 2, 1982 Born, Pisa, Italy

2007 Degree Computer Science
Final marks: 106/110
Università di Pisa
Pisa, Italy

PUBLICATIONS AND PRESENTATIONS

R. Barbuti, F. Levi, P. Milazzo, G. Scatena (2009) Probabilistic Model
Checking of Biological Systems with Uncertain Kinetic Rates. In:
Reachability Problems, RP09, Palaiseau, France, LNCS 5797. pp.64-78.

P. Drabick, G. Scatena (2010) An Application of Model Checking to
Epidemiology. In: Applications of Membrane computing, Concurrency
and Agent-based modelling in POPulation biology, AMCA-POP 2010,
Jena, Germany. pp. 90-97.

R. Barbuti, F. Levi, P. Milazzo, G. Scatena (2010) Maximally Parallel
Probabilistic Semantics for Multiset Rewriting. In: CS&P, Informatik-
Bericht of Humboldt-Universitat zu Berlin , Berlin, Genrmany. pp.25-
36.

Abstract

This Thesis concerns the development of probabilistic semantics tailored to
model the dynamic behavior of biological systems in order to formally analyze
them. More specifically, it attempts to overcome problems, related to uncertainty
and to the state space explosion, inherent to models describing biological
systems.

Recently, many formalisms originated from Computer Science have been
successfully applied to describe biological systems. Many of these formalisms
include probabilistic aspects, and techniques like stochastic simulation and
probabilistic model checking have been proposed to study biological systems
properties. However, the practical application of formal analysis tools in this
context is still limited.

The size of state space associated with models is often prohibitively large.
Moreover, the knowledge of biological processes is often incomplete, resulting
in models with uncertain parameters. For these reasons the application of
available Computer Science tools is often difficult. In addition, usual tools
deal with models in which concurrency is described by interleaving semantics.
However, interleaving is not suitable for modelling certain classes of biological
systems.

To overcome these problems, in this Thesis, we propose to apply abstraction
techniques to probabilistic semantics of biological systems models. The
application of such techniques presents several advantages. On one hand, these
techniques can help in reducing the state space associated to models. On the
other hand, they can help in handling models with uncertainty.

About the management of uncertainty in models, we consider the uncertainty
in stochastic parameters. Often, having incomplete knowledge of the kinetics of
a system, we are not able to choose among models differing only for parameters.
Hence, we define a framework to study models with parameters expressed as

intervals, obtaining results that hold for all models with parameters included
in the specified intervals. In more detail, probabilistic model checking can
be performed on biochemical reactions systems models when kinetic rates,
expressing the propensity of the interaction events, are not expressed precisely
as point values, but as intervals. We define an effective method to derive
an abstract semantics for such models and to obtain conservative bounds on
probability of reachability properties. The abstract semantics, given in terms
of Interval Markov Chain (IMC), is derived from a Labeled Transition System
(LTS) semantics. It is proven to be correct, by means of abstract interpretation
techniques, with respect to the Discrete Time Markov Chain (DTMC) semantics,
usually associated with these systems. As example of application, we study how
the behavior of a model of tumor cell growth changes when different intervals
of kinetic rates are used.

Subsequently, we face the problems related to the use of interleaving
semantics and to the size of state space size of models. In particular, we define
the probabilistic semantics for systems evolving in a maximally parallel way: in
each step of the system evolution, as many interactions happen synchronously.
Using the proposed semantics we are able to reproduce in vivo experiments
outcomes on a model of C. elegans vulval development.

Moreover, we develop an abstraction framework for the proposed maximally
parallel probabilistic semantics. The framework is based on a form of predicate
abstraction computing an abstract semantics in terms of IMC. Since the abstrac-
tion is parametric on a set of predicates, the abstract probabilistic model can be
refined until a right compromise between dimension and precision is reached.
We prove that conservative bounds on probabilities of reachability properties of
systems evolving in a maximally parallel way can be computed on the abstract
semantics. We show the efficacy of the approach, in terms of state and transition
number reduction, by analysis probabilistic reachability on a simple model of
seasonal animal reproduction.

Chapter 1

Introduction

Nowadays, the study of biological systems is evolving from a reductionist
approach toward a systemic approach. Molecular Biology and other “omics”
sciences produce a huge amount of data concerning the behavior of single
constituents or single aspects of living organisms. Nevertheless, a detailed
knowledge of biological systems components is not sufficient to gain a deep
comprehension of how such components interact together at the system level,
generating the set of complex behavior we observe in nature. This is the
main motivation of the rising of Systems Biology [Kit02], a science integrating
experimental activity and mathematical modelling to study the organizational
principles and the dynamic behavior of biological systems. Mathematical
and computational techniques are central in this approach to Biology, as they
provide the capability of formally describing living systems and studying their
properties.

The base of this approach is to view living systems components as computing
entities and biological systems as concurrent systems: objects able to change
their state as result of biochemical interactions [RS02].

Successful attempts have been made in formal modelling of biological
systems. Formalisms originated in Computer Science to describe concurrent
interactive systems, such as stochastic π–calculus [PRSS01] (a stochastic
extension of π–calculus [Mil99]) or (stochastic) Petri Nets [Pet62, Rei85, ST05,
SKSW04, BC89], have been used. Also biologically inspired formalisms such as
κ–calculus [DL04], BioAmbients [RPS+04], Brane Calculi [Car05], P Systems
[Pău02], Stochastic Calculus of Looping Sequences [BCMS+08, Mil07] have

been proposed. As far as the latter class of languages is concerned, they are
based on different theories – namely process algebras theory, concurrent systems
theory, rewriting systems theory – but they offer primitives to easily express
biological features, such as arbitrary nested membranes, complex biological
components and interactions.

The formalization of the knowledge about a biological system by using
one of the previous formalisms, instead of using one of ambiguous notations
commonly used in Biology, gives the opportunity to realize several analyses.
In this way biologists can perform verification of models and simulate them,
obtaining information and predictions on the possible results of “in vitro”/“in
vivo” experiments. These analyses can be classified as qualitative, in the
case they consider only possible interactions and reachable configurations,
abstracting from probability and time aspects, or as quantitative, otherwise.

Among the qualitative analyses, model checking [CGL94] is one of most
popular approaches. This technique allows properties to be checked by
exploiting the Kripke structure defined by a formal semantics and describing the
dynamic behavior of a system. The properties of interest, expressed as formulas
of appropriate logics (as for instance Computation Tree Logic (CTL) [Eme90]),
are verified by exhaustively exploring all the possible reachable configurations
of the system (i.e. the associated state space). This approach is useful both
to validate models against known properties, and to test certain hypotheses on
validated models.

Among quantitative analyses, techniques of simulation or probabilistic
model checking are commonly used. Simulation techniques trace possible time
evolutions of system models, offering to biologist a framework to perform “in
silico” experiments.

Probabilistic model checking consists in performing model checking con-
sidering events probabilities [Kwi03]. The model checking techniques are
extended both to probabilistic systems and stochastic systems, whose semantics
is modelled either as Discrete Time Markov Chains (DTMCs) or as Continuous
Time Markov Chains (CTMCs) or as Markov Decision Processes (MDPs).
Indeed, for certain biological properties, like the ones associated with very
unlikely events, the use of stochastic simulation only is not enough to deeply
understand the system dynamics. In fact, sporadic events require a huge number
of simulations to be observed, and any number of simulations cannot give
any formal guarantees on event probabilities. Thus, studying such systems in
a quantitative way requires to exhaustively evaluate the probability of every
possible system behavior.

2

1.1 Motivations

In the last years many formalisms with probabilistic semantics have been
successfully applied to describe biological systems and stochastic simulation
have been proposed to study properties of such systems, obtaining results that
are more precise than those obtained by deterministic models.

Despite of the great amount of work done in biological systems research,
formal modelling tools are not very diffused in biology research current practice,
and their application is limited to certain type of small and well known models.
Within the reasons for this limitations, we focus our attention on the following
aspects.

First, the semantics traditionally used in Computer Science systems to
model concurrent systems are typically interleaving, i.e. each component of
a system can evolve asynchronous. Instead, in the context of biological systems
modelling, there exist scenarios for which the standard interleaving semantics
seems to be not adequate. Indeed, asynchrony semantics may not mimic real-
life biological behavior properly (e.g. cellular or animal population dynamics)
as it allows a part of the systems (e.g. a single cell or individual) to evolve
indefinitely while other system components may stall. Hence, for certain kind
of synchronized behavior the interleaving semantics may be not the best choice.
For these modelling scenarios a parallel (i.e. on a single transitions many
components can evolve) and maximal (i.e. no components can remain blocked)
semantics is required.

Another cause of the limited application of formal tools in biological systems
modelling is that, since biological systems are composed by a huge number of
elements, the state space of such systems is often prohibitively large and both
the approaches based on model checking and simulation suffer from complexity
issues. Model checking tools, such as PRISM [PRI], suffer from state explosion
problems when applied to biochemical model: as the number of elements in
the system increases, the range of possible behaviors grows exponentially. For
instance Gilbert et al. [GHL07] experienced this problem just when systems
consisting of few tens of molecules are considered. The same problem arises in
the case of stochastic simulation due to the slowness of the algorithm moving on
the same (huge) state space.

Finally, formal frameworks need to be extended in order to deal with
uncertainty in models. Indeed, classical formal tools require a complete
description of the system under study and this requirement is in contrast with
the typical knowledge of biological processes. In Biology the knowledge

3

is often extracted from wet lab experiments that give semi–quantitative and
incomplete information about the system in exam, resulting, as discussed in
[IM07], in models that are often incomplete and containing uncertainty. In
fact, it is often impossible to assign precise probability to each interaction of
an intricate biological pathway; even if probabilities are given, they are often
estimated through statistical experiments, which only provide bounds on the
actual ones. Thus, an important challenge is to be able to model and analyze
systems having incomplete knowledge of them. However, since uncertainty
differs qualitatively from the randomness of biological systems, and arises from
different causes, probabilistic methods should not be expected to model also
uncertainty [MHS90].

Having in mind these problems, we focus our attention on Multiset Rewriting
(MSR) as modelling language; such a language is, indeed, simple but expressive
enough to describe a wide range of scenarios. For such a formalism we
discuss the definition of a maximally parallel probabilistic semantics and the
use of abstraction both to manage uncertainty in models, and to reduce the size
associated state-space. To this aim we investigate the use of Interval Markov
Chains (IMCs) to abstract probabilistic semantics (i.e. DTMCs).

1.2 Related Works
MSR has been used as modelling formalism for describing, for instance,
chemical reactions and network protocols, using interleaving semantics, both in
a qualitative and quantitative fashion [BCL+03, CS06, CDL+99]. The formalism
has the same expressing power of Petri Nets [Pet62], also used in this context
[HGD08].

The abstraction of probabilistic semantics has been widely studied over
the last few years, but few approaches are aimed in supporting uncertain
models. For instance, infinite state abstraction [HHWZ10], predicate abstraction
[WZH07, KKNP08], symmetry reduction [DMP07], counter example driven
abstraction refinement [HWZ08] has been recently proposed to address the
traditional state explosion problem . The approaches of [FLW06, DJJL01, SVA,
Hut05, Šku06, Šku09] present abstractions of probabilistic semantics, using
MDP or IMC. In particular, the abstract semantics is derived from the concrete
one (a DTMC), by partitioning the concrete state space and by calculating
the abstract probability distributions directly from the concrete ones. The
approaches presented in [CGL09, GL09] compute an abstract semantics to
validate probabilistic temporal properties of biological systems. The analysis

4

computes an IMC by approximating the multiplicity of individuals, present in
a state, using intervals of integers. Namely these abstractions are designed for
approximating the multiplicity of individuals, present in a state, using intervals
of integers. The proposal of [DFF+08, DFFK08] applies abstract interpretation
techniques, in the context of formal studies of biological systems, in order
to compute efficiently a superset of reachable complexes, and to generates
smaller systems of differential equations from the concrete one. Finally,
[Mon05, DPW00] investigate the application of abstract interpretation into the
context of standard concurrent probabilistic programming languages.

The need of a maximally parallel semantics to describe certain kind of
biological systems has been advocated by many (as, for instance [FHMP07,
FHMP08]). The maximally parallel semantics proposed, in the qualitative case,
for instance for Petri Nets [Bur80] (when firing is under Maximal Strategy), has
received great attention in the context of P Systems [Pău02]. P Systems are a
biologically inspired formalism, based on the maximally parallel rewriting of
atomic objects spread across different compartments.

Apart from the qualitative, non-deterministic, semantics originally proposed,
for P Systems, different probabilistic and stochastic semantics have been
proposed [PBMZ06, CC07, AC03, Mad03, Obt02, OP03]. Nevertheless, each
approach faces the problem under particular assumptions and, hence, in the
probabilistic setting, an affirmed general interpretation of maximally parallel
semantics still lacks. The Dynamical P Systems, by Pescini et al. [PBMZ06],
are presented with a stochastic simulation algorithm, but lack of a formal
probabilistic semantics. The definition of probabilistic transitions proposed
by Ciobanu and Cormacel [CC07] uses a hyper-geometric distribution. The
approaches proposed by Aderlean and Cavaliere [AC03] and by Madhu [Mad03]
give a probabilistic semantics for P Systems modifying the basic framework with
additional rule probabilities. Obtulowicz [Obt02] proposes a stochastic and a
randomized semantics, while Obtulowicz and Paun [OP03] discuss in general
terms how to add probability to P Systems semantics.

While the abstraction of probabilistic semantics has been widely studied
over the last few years, to our knowledge there are not any work dealing with
abstraction of a maximally parallel probabilistic semantics for MSR.

5

1.3 Contributions

The contribution of this thesis is twofold: a part of the thesis is devoted to handle
uncertainty in stochastic models, while the other part defines a probabilistic
maximally parallel semantics and describes a state space reduction abstraction
technique.

As modelling language we choose MSR as it is simple and, at the same time,
expressive enough to model a wide range of biological systems.

Concerning the management of uncertainty in models, we consider the
uncertainty in stochastic parameters. Often, having incomplete knowledge of
the kinetics of a system, we are not able to choose among models differing only
for parameters. Hence, we define a framework to study models where kinetic
parameters are expressed as intervals, obtaining results that holds for all models
with parameters included in the specified intervals. In more detail, probabilistic
model checking can be performed on biochemical reactions systems models
when kinetic rates, expressing the propensity of the interaction events, are not
expressed precisely as point values, but as intervals. We define an effective
method to derive an abstract semantics for such models and to obtain bounds on
probability of reachability properties that are, not only conservative but, exactly
the most precise values which are correct. Indeed, they corresponds to the
minimum and the maximum of the probabilistic reachability corresponding to
each concrete system represented by an abstract one.

Subsequently, we face the problems related to the use of interleaving
semantics and to the size of the state space size of models. In particular,
we define the probabilistic semantics for systems evolving in a maximally
parallel way: in each step of the system evolution, as many interactions happen
synchronously. The choice of a maximally parallel semantics is tailored to study
systems with a synchronous behavior. Indeed, interleaving may not mimic real-
life biological behavior properly, especially cellular population behavior, as it
allows a part of the systems (e.g. a single cell) to evolve indefinitely while
other system components may stall. Such kind of semantics is not adequate
also for modelling phase-wise populations dynamics. Indeed, in such systems
populations evolve in phases, often related to environmental conditions (e.g.
seasonality). Within a phase, each individual makes a choice about the action
to be taken among those possible. The set of choices made by individuals
identifies a single step of the whole population evolution. Moreover, in such
cases the use of the standard interleaving semantics build bigger and more
imprecise transitions systems than the one computed considering maximally

6

parallelism: big, as they containing additional configurations and transitions
not actually realizable, and imprecise, as less close to real system behavior.
For these reasons we define a probabilistic semantics tailored to describe the
behavior of systems evolving in a maximally parallel way, where transitions
have an associated probability depending on the state and on the propensity of
maximally parallel rewriting events.

Using the proposed semantics we are able to reproduce in vivo experiments
outcomes on a model of C. elegans vulval development.

Subsequently, for the proposed semantics we develop an abstraction frame-
work. The framework is based on a form of predicate abstraction and is able
to drastically reduce the number of state and transitions of a system semantics,
and to finitely represents the behavior of possibly infinite maximally parallel
rewriting systems. We prove that conservative bounds on probabilities of
reachability properties of systems evolving in a maximally parallel way can be
computed on the abstract semantics. Being the abstraction parametric on a set
of predicates, we are able to refine the abstract probabilistic model until a right
compromise between dimension and precision is reached. We show the efficacy
of the approach, in terms of state and transition number reduction, on a simple
model of seasonal animal reproduction.

All proposed semantics are computed by the construction of appropriate
Labeled Transition Systems. Subsequently, from such structures are derived
the corresponding probabilistic structures, given in terms of DTMC or IMC in
the concrete or abstract case respectively. The proposed abstract semantics are
proved, by means of abstract interpretation techniques and through the definition
of suitable approximation orders, to offer sound approximations.

1.4 Structure of the thesis

The thesis is structured as follows.

• In Chapter 2, we recall some background notions of Biology and Com-
puter Science that will be assumed in the rest of the thesis. In particular,
we review some approaches in Biology systems modelling and we present
some notion of biochemical reactions kinetics. We recall some models to
describe probabilistic dynamics and how to perform their analysis through
model checking. Finally, we present the concepts of abstraction, abstract
interpretation and of predicate abstraction.

7

• In Chapter 3, we present an abstract framework for modelling and
performing discrete-time probabilistic model checking of biochemical
systems of reactions with uncertain kinetic rates (expressed by intervals).
We discuss the soundness of the approach and we shown its efficacy in the
study of the different outcomes exhibited by a model of tumor cell growth
dynamic, when different intervals of reaction rates are considered.

• In Chapter 4, we present a maximally parallel probabilistic semantics
for MSR. We describe by a model the vulval development process of C.
Elegans. Performing probabilistic simulations of such a model, we are
able to mime the in vivo observed behavior.

• In Chapter 5, we define an abstract maximally semantics for MSR based
on interval-valued predicates evaluation, and we prove the soundness with
respect to probabilistic reachability. Using such a framework we are
able to obtain an approximated probabilistic semantics with a reduced
number of states and transitions, and to get bounds on probability of
reachability properties, as we show on a simple example of seasonally
animal reproduction model.

Finally, we conclude and discuss further work in Chapter 6.

1.5 Published Material
Part of the material presented in this thesis has appeared in some publications or
has been submitted for publication, in particular:

• The definitions of the abstract semantics for MSR to perform reachability
analysis on models of biochemical reactions with uncertain kinetic rates
presented in Chapter 3 have appeared, in a preliminary form, in [BLMS09]
and submitted to Theoretical Computer Science.

• The definition of the probabilistic maximally parallel semantics for MSR
presented in Chapter 4 have appeared in [BLMS10] and submitted to
Fundamenta Informaticae.

All the published material is presented in this thesis in revised and extended
form.

8

Chapter 2

Background

This Chapter presents the basic concept on which biological systems modelling
is constituted, that will be assumed in the rest of the thesis. In particular:

• Section 2.1 gives an overview of the approaches, the formalisms and the
tools used in Systems Biology;

• Section 2.2 gives the an introduction to biochemical systems dynamics as
it is used as reference for biochemical systems interaction;

• Section 2.3 introduces the main notions of probability and of the formal
models traditionally used to describe the semantics of probabilistic sys-
tems. Moreover, it introduces standard techniques for studying systems
dynamic behaviors by model checking.

• Section 2.4 introduces some notion of abstraction and abstract interpre-
tation.

2.1 Introduction to Biological Systems
Modelling

A detailed knowledge of biological systems components is not sufficient to gain
a deep comprehension of how such components interact together at the system
level, generating the set of complex behavior we observe in nature. This is the
main motivation of the rising of Systems Biology [Kit02], a science integrating

experimental activity and mathematical modelling to study the organizational
principles and the dynamic behavior of biological systems.

Mathematical and computational techniques are central in this approach to
Biology, as they provide the capability of formally describing living systems and
studying their properties.

Successful attempts have been made in formal modelling of biological
systems. The base of this approach is to view living systems components as
computing entities and biological systems as concurrent systems: objects able
to change their state as result of biochemical interactions [RS02].

Formalisms originated in Computer Science to describe generic systems of
concurrent interacting processes, such as stochastic π–calculus [PRSS01] (a
stochastic extension of π–calculus [Mil99]) or (stochastic) Petri Nets [Pet62,
Rei85, ST05, SKSW04, BC89], have been used. Also biologically inspired
formalisms such as κ–calculus [DL04], BioAmbients [RPS+04], Brane Cal-
culi [Car05], P Systems [Pău02], Stochastic Calculus of Looping Sequences
[BCMS+08, Mil07] have been proposed. As regards of the latter class of
languages, they are based on different theories – namely process algebras theory,
concurrent systems theory, rewriting systems theory – but they offer primitives to
easily express biological features, such as arbitrary nested membranes, complex
biological components and interactions.

The formalization of the knowledge about a biological system by using
one of the previous formalisms, instead of using one of ambiguous notations
commonly used in Biology, gives the opportunity to realize several analyses.
In this way biologists can perform verification of models and simulate them,
obtaining information and predictions on the possible results of “in vitro”/“in
vivo” experiments. These analyses can be classified as qualitative, in the
case they consider only possible interactions and reachable configurations,
abstracting from probability and time aspects, or as quantitative, otherwise.

Among the qualitative analyses, model checking [CGL94] is one of most
popular approaches. The technique allows properties to be checked by exploiting
the Kripke structure (see Section 2.3.2) defined by a formal semantics and
describing the dynamic behavior of a system (see Section 2.3.3). The properties
of interest, expressed as formulas of appropriate logics (as for instance Compu-
tation Tree Logic (CTL) [Eme90], described in Section 2.3.3), are verified by
exhaustively exploring all the possible reachable configurations of the system
(the state space). This approach is useful both to validate models against known
properties, and to test certain hypotheses on validated models.

For instance, in the context of biochemical systems example of properties

10

that can be formalized in CTL, and verified against models, are the following:

• Given an initial configuration s, is there a pathway for synthesizing a
molecule Y ?

• Which are the initial configurations for which a molecule Y can be
produced ?

• Can the system reach a configuration s while passing by another configu-
ration s′ ?

• Can the system reach a configuration s without violating certain con-
straints c ?

• Is a certain (partially described) system configuration stable ?

• Which stable configurations are reachable from the initial
configuration s ?

• Can / must the system reach a stable state starting from the initial
configuration s ?

Another traditional approach for qualitative analysis is based on testing the
behavioral equivalence of different models. For example, it is possible to model
a pathway and test if it has the same observable behavior of (if it is bisimilar
with) the same model specified at an higher level of abstraction, or in which
certain perturbing factors (i.e drugs or viruses) are added [BMSMT08, APP+04]

As regards quantitative analysis, techniques of probabilistic model checking
or simulation are commonly used.

Simulation techniques trace possible time evolutions of system models,
offering to the biologist a framework to perform “in silico” experiments. These
virtual experiments have advantages with respect to real experiments in terms
of feasibility and cost, allowing the testing hypotheses and guide “in vitro”/“in
vivo” experiments. For many formalisms a stochastic semantics is defined and
specific software simulators have been developed (SPiM [SPI] for the Stochastic
π–calculus, CytoSim and PSym [PSY] for P Systems, BAM for BioAmbients
[MPV], CLSm [CLS, Sca07] for Stochastic Calculus of Looping Sequences).
These simulators permit to get some traces of the time–evolution of the modelled
systems according to the Stochastic Simulation Algorithm (SSA) [Gil77] (see
Section 2.2).

11

In the case of probabilistic model checking, we perform model checking
considering events probability [Kwi03]. Traditional model checking techniques
are extended both to probabilistic and stochastic systems, whose semantics is
modelled either as Discrete Time Markov Chains (DTMCs) or as Continuous
Time Markov Chains (CTMCs) or as Markov Decision Processes (MDPs)
(see Section 2.3.2). Indeed, certain biological properties, such as the ones
associated with very unlikely events, cannot be observed using stochastic
simulation. In fact, sporadic events require a huge number of simulations to
be observed, and any number of simulations cannot give any formal guarantees
on event probabilities. Thus, studying such a properties requires to exhaustively
evaluate the probability of possible evolutions of the system by model checking
techniques. For example, by using logics as Probabilistic Temporal Logic
(PCTL) (see Section 2.3.3), the following quantitative properties can be checked:

• Which is the probability to reach configurations in which the concentra-
tion of molecule X exceeds c (by avoiding that concentration of molecule
Y exceeds d) ?

• Which is the probability that the concentration of a certain molecule
always stays between x and y ?

Probabilistic model checking has been applied to validate a model with respect
to temporal specification, to complete it, and to search for kinetic parameter
value in models expressed by Biochemical Abstract Machine [FS08a]. Also
oscillations can be verified by probabilistic model checking [BMM08]. More-
over, queries regarding timed properties (i.e. the property is satisfied within
a time limit or a time interval) can be verified with time–aware probabilistic
model checking, verifying CTMCs against properties expressed in logics such
as Continuous Stochastic Logic (CSL) [ASSB96].

A reference software for probabilistic model checking is PRISM [PRI]: it
supports models as DTMCs, CTMCs and MDPs, temporal logics as PCTL, CSL
and incorporates state-of-the-art data structures and algorithms.

Current Limitations Unfortunately, despite of the great amount of work done
in biological systems research, formal modelling tools are not very spread in
biology research and their application is limited to small well known models.
Two reasons for this limitations are the following.

Since biological systems are composed by an huge number of elements, the
state space of such systems is often very large (and even infinite) so that both

12

the approaches based on model checking and simulation suffer from complexity
issues. Model checking tools, such as PRISM [PRI], suffer from state explosion
problems when applied to biochemical models: as the number of elements in
the system increases, the range of possible behaviors grows exponentially. For
instance Gilbert et al. [GHL07] experienced this problem and are able to check
only systems with less than ten molecules. The same limitations arises in the
case of stochastic simulation due to the slowness of the algorithm which also
explores the same (huge) state space. In fact, more are the events enabled,
smaller is the time consumed by each simulation step, making the computation
slow.

Another limitation of current tools is related to the presence of uncertainty
in the knowledge of studied systems. Indeed, classical formal tools require
a complete description of the system under study and this requirement is
in contrast with the typical description of biological processes. In biology
the knowledge is often extracted from wet lab experiments that give semi–
quantitative and incomplete information about the system in exam. An example
of such description is

“The concentration of the protein peaks within 2 and 5 minutes
and then falls to less than 50% of the peak value within about 60
minutes”.

As discussed in [IM07], biological models are often incomplete. In fact,
it is often impossible to assign precise probability to each interaction of an
intricate biological pathway; even if probabilities are given, they are often
estimated through statistical experiments, which only provide bounds on the
actual ones. Thus, an important challenge is to be able to model incomplete
systems. However, since uncertainty differs qualitatively from the randomness
of biological systems, and arises from different causes, probabilistic methods
should not be expected to model also uncertainty [MHS90].

Finally, as discussed in [FS08], the need of developing an abstraction
framework dealing with uncertainty in models comes from the fact that models
of biological systems are built with two different perspectives. The first
is a perspective of knowledge representation: here “the more concrete the
better” as models aim at gathering in a consistent way current knowledge on
a particular system, representing the interactions with the maximum detail. The
second perspective for building models is to make predictions and to answer to
particular questions about a system. In this perspective “the more abstract the
better” as models for making prediction should get rid of useless details and

13

should represent the minimum information that is sufficient for answering the
considered question. In this perspective the aim is not to model a single precise
system setting (i.e. a single “experiment”), but to describe a range of system
setting, expressing parameters that may vary through uncertainty. These two
different modelling perspectives require not only to develop models but also to
formalize the relationship between models at different levels of abstraction.

2.2 Notions of Biochemical Reactions Kinetics
Biological systems are constituted by cells, that are regulated by coupled
chemical reactions at the molecular level. Thus the specification of chemical
reactions is essential in all modelling approaches.

In the description of systems of biological reactions the fundamental rules
are given by stoichiometric equations, defining which molecular species may
react in order to result in a certain product, and how many molecules are involved
in reaction.

We consider n ∈ N molecular species {S 1, S 2, . . . , S n} and m ∈ N reaction
types {R1,R2, . . . ,Rm}. Each reaction Ri, 1 ≤ i ≤ m is usually represented by a
reaction equation denoted as

li1S 1 + li2S 2 + . . . + linS n
ki
−→ ri

1S 1 + ri
2S 2 + . . . + ri

nS n.

The stoichiometric coefficients li1, l
i
2, . . . , l

i
n ∈ N describe, for each species, the

number of molecules which are consumed by a reaction of type Ri. Similarly,
the stoichiometric coefficients ri

1, r
i
2, . . . , r

i
n ∈ N describe how many molecules

of each species are produced by Ri . The reaction rate constants ki ∈ R
≥0 are

related to the kinetic model adopted; they represent its basic expected frequency
and determine the “speed” of Ri, as explained below. Note that the population
of species S j is unaffected by Ri if lij − ri

j = 0. The species for which l j > 0 are
called reactants, the species for which r j > 0 are called products of the reaction.
The previous equation states that combining an appropriate number of reactants
we can obtain the products. The use of the symbol
 denotes that the reaction is
reversible (i.e. it can occur in both directions). Irreversible reactions are denoted
by the single arrow→.

Quantitative probability and timing aspects are specified by reaction rates
assigned to each reaction. The most popular law for computing rates is the law
of mass action: for a reaction in a homogeneous medium, the reaction rate will
be proportional to the concentrations of the individual involved reactants. Other

14

kinetic law, as for instance Hill kinetic [Hil10] or Michaelis–Menten kinetics
[MM13], can also be used.

Models of biochemical reactions may be state–continuous or state–discrete
and their dynamical behavior may be deterministic or stochastic. In any case,
it is assumed that the system is well stirred1 and thermally equilibrated. This
means that a well stirred mixture of molecules inside some fixed volume interact
at constant temperature.

Deterministic Approach

The deterministic approach to biochemical reaction kinetics modelling is based
on the generalized law of mass action. The system state at any time is given
by the concentrations (measured in mol per liter) of each molecular species.
Expressing the system dynamics in terms of deterministic rate equations yields
a system of ordinary differential equations (ODEs) for the concentrations.

In more detail, in the differential semantics of reaction models a set of
reaction rules {Ri = (li, ri, ki)∀i = 1, . . . , n} over molecular concentration
variables {x1, . . . , xm} is interpreted by the following system of ODE:

δxk/δt =

n∑
i=1

ri(xk) ∗ ki −

n∑
j=1

l j(xk) ∗ k j.

This approach assumes continuous, deterministic changes in concentrations
of molecular species and can be suitable for reaction networks involving large
populations. Thanks to its wide range of mathematical tools, this approach is the
most commonly used in mathematical biology [Seg84]. The major drawback of
this approach is that it neither properly models the discreteness of molecular
quantities nor the inherent randomness in chemical reactions. In particular,
for gene expression and signal transduction processes it has been extensively
demonstrated that stochastic noise plays a major role and should be taken into
account. Many examples and studies elucidate the stochastic nature of biological
systems such that stochastic models are well established in systems biology
[Wil06, TSB04, SES02, Pau04, MA99].

The study of the relationship between the differential and the stochastic
semantics dates back to the seminal work of Boltzmann in the XIXth century. In
this setting, the differential semantics is obtained from the stochastic semantics

1Meaning that the mixture is spatially homogeneous: such that the concentration or the number
of molecules does not depend on positions in space.

15

by limit operations where the number of molecules tends to the infinity and the
time steps tend to zero, under several assumptions such as perfect diffusion.

Stochastic Approach

In the stochastic approach, that we focus on, the system state at any time is
given by the number of molecules, for each species, and the system is modelled
by a Continuous Time Markov Chain (CTMC) (see Section 2.3.2). The system
dynamics are described by a system of first–order differential equations (ODEs)
called the chemical master equation (CME).

In more detail, the stochastic process that represents the temporal evolution
of the species populations is given by a family (X(t))t≥0 of random vectors

X(t) = (X1(t), X2(t), . . . , Xn(t))

taking values in a discrete set {X ⊂ Nn}. The random variable Xi(t), 1 ≤ i ≤ n,
describes the number of molecules of species S i at time instant t. We fix the
initial conditions of the process by taking that P(X(0) = x0) = 1 for an initial
population vector x0 ∈ X .

The transient state probability that, at time t ≥ 0, the system is in state
x = (x1, x2, . . . , xn), given X(0) = x0 , is denoted by

pt(x) = P(X(t) = x | X(0) = x0) .

Here P(E) stands for the probability of the event E (i.e. the value of a probability
distribution over possible events, see Section 2.3.1), and P(E1 | E2) denotes the
probability of event E1 when it is known that event E2 happened (this is called
conditional probability).

State changes are triggered by chemical reactions. For an infinitesimal time
interval [t, t + δt),

P(Ri occurs in [t, t + δt) | X(t) = x) = αi(x)δt

where αi(x) : X 7→ R≥0 is called propensity function of Ri. This probability is
proportional to the number of distinct combination of Ri’s reactants2. Hence,
αi(x) is computed as

αi(x) = ki

n∏
j=1

(
x j

lij

)
.

2This interpretation is based on the law of mass action kinetics. Other possible formulation can
be based on other kinetic laws as for instance Hill kinetic [Hil10] or Michaelis–Menten kinetics
[MM13].

16

The probability P(Ri occurs in [t, t + δt) | X(t) = x) only depends on the length
of the time interval which means that the propensity functions are time-
independent. Besides, the next time of state in the system evolution only depends
on the current state, and neither on the specific time nor on the history of
reactions that led to the current state. Hence, the system is modelled as a CTMC
(X(t))t ≥ 0 with n-dimensional state space X ⊆ Nn. This gives rise to a state-
transition graph representation in which outgoing transitions of x are labeled
by transition rates αi(x). The successor state according to a transition from x
triggered by a reaction of type Ri is the state x + vi where vector vi, the state
change vector of Ri, equals the ith row of the stoichiometric matrix V , M × N,
is defined as follows: for Ri, vi = (vi1, . . . , vin) where vi j = hi

j − lij. The system
dynamics, in terms of the state probabilities time derivatives, are given by the
chemical master equation (CME)

δpt(x)
δt

=

m∑
i=1

(αi(x − vi)pt(x − vi) − αi(x)pt(x)).

The CME is a set of first–order differential equations (ODEs) describing the
time evolution of the probability of a system to occupy each one of a discrete
set of states. As shown in [Gil77], this ODE is generally difficult to solve,
in particular it can be solved analytically only for a very few simple systems
and, furthermore, numerical solutions may be prohibitively difficult. These
difficulties justified the definition of the stochastic simulation algorithm (SSA)
by Gillespie [Gil77]. This algorithm addresses the following problem: given the
system in state x at time t, computes the time instant at which the next reaction
fires and chooses, accordingly to some policy, the reaction to fire. As regards the
former problem, it is shown in [Gil77] how the putative time for the next reaction
can be chosen by sampling an exponentially distributed random variable with
mean α0(x) =

∑m
j=1 α j(x). The sampling of such variable can be obtained by

inverse Monte Carlo algorithm for generating exponentially distributed values.
Similarly, the reaction to fire is chosen accordingly to the following inequalities,∑ j−1

i=1 αi(x) < r2α0(x) ≤
∑ j

i=1 αi(x), where r2 is a random real number uniformly
distributed in [0, 1]. For a proof of correctness of these choices see [Gil77].

Gillespie Stochastic Simulation Algorithm (SSA).

1. Initialize the time t = t0 and the system state x = x0.

2. With the system in state x at time t, evaluate all the α j(x) and their sum
α0(x) =

∑m
j=1 α j(x).

17

3. Given two random numbers r1 and r2 uniformly distributed in [0; 1],
generate values for τ and j accordingly to

τ =
1

α0(x)
ln(

1
r1

)
j−1∑
i=1

αi(x) < r2α0(x) ≤
j∑

i=1

αi(x)

then update x := x + v j and t = t + τ, go to step 2.

Notice that this algorithm is exact in the sense that produces one exact
trajectory in the state space of the system. Furthermore, it is worth mentioning
that many equivalent variants of the SSA exist; in particular they differ from
the way in which they compute the putative time for next reaction and on the
way in which they choose the reaction to fire. The variant we presented here is
named Direct Method [Gil77]. Other algorithms for the stochastic simulation of
biological systems can be found in [GB00, CLP04, Gil07, GW].

Stochastic simulation is in widespread use for analyzing stochastic models
of biological networks. It can be applied to arbitrarily large models but it also
has a couple of major drawbacks. Stochastically exact trajectory generation
by Gillespie algorithm is computationally expensive and is exceedingly slow.
Moreover stochastic simulations can only provide statistical estimates. In fact,
rather than directly solving the CME, trajectories (sample paths) of the CTMC
are generated, and, even with approximate methods for accelerated trajectory
generation, a large number of trajectories is required in order to obtain reliable
and meaningful results with acceptable statistical accuracy.

2.3 Probabilistic Semantics and Analysis
When we are interested in studying the dynamic behavior of a system in a formal
way, the first step is to model it using a formal language and to describe its formal
semantics.

Here, we introduce the formal models traditionally used to describe the
semantics of probabilistic and stochastic systems; that is, systems where the
behavior is not deterministic, but where actions are performed somehow in
according to certain probabilities.

In Section 2.3.1 we introduce basic probability concepts, then in Sec-
tions 2.3.2 we introduce Kripke Systems, Discrete and Continuous time Markov
chains and Markov Decision Processes.

We refer to [RKNP04] for a more detailed discussion.

18

Given a formal description of the dynamic behavior of a system in terms of a
probabilistic semantics, system can be automatically analyzed using simulation
and model checking techniques (see Section 2.3.3). In the case of simulation
one is interested in sampling a set of trajectories in the systems state space.
Conversely, model checking consists of exhaustively exploring state space
looking for the satisfaction of certain properties of interest. In other words, the
simulation approach can be considered equivalent to test systems behaviors by
performing experiments, while the model checking approach can be considered
similar to analyze all possible systems behaviors in a systematic way.

2.3.1 Notions of Probability

Probability Distributions

A probability distribution over reals is a function which assigns to every interval
of the real numbers a probability P(I), so that Kolmogorov axioms are satisfied,
namely:

• for any interval I it holds P(I) ≥ 0

• P(IR) = 1

• for any set of pairwise disjoint intervals I1, I2, . . . it holds
P(I1 ∪ I2 ∪ . . .) =

∑
P(Ii)

A probability pseudo–distribution is a probability distribution for which the
second axiom is relaxed. It is not required that P(IR) = 1.

Given a finite set of events S we denote with

Distr(S) = {ρ | ρ : S → [0, 1] and
∑
e∈S

ρ(e) = 1}

the set of (discrete) probability distribution over S , and with

PDistr(S) = {ρ | ρ : S → [0, 1]}

the set of (discrete) probability pseudo–distribution over S .
A random variable on a real domain is a variable whose value is randomly

determined. Every random variable gives rise to a probability distribution, and
this distribution contains most of the important information about the variable.
If X is a random variable, the corresponding probability distribution assigns to

19

the interval [a, b] the probability P(a ≤ X ≤ b), i.e. the probability that the
variable X will take a value in the interval [a, b]. The probability distribution of
the variable X can be uniquely described by its cumulative distribution function
F(x), which is defined by

F(x) = P(X ≤ x)

for any x ∈ IR.
A distribution is called discrete if its cumulative distribution function

consists of a sequence of finite jumps, which means that it belongs to a discrete
random variable X: a variable which can only attain values from a certain finite
or countable set.

A distribution is called continuous if its cumulative distribution function is
continuous.

Most of the continuous distribution functions can be expressed by a prob-
ability density function: a non-negative Lebesgue integrable function f defined
on the real numbers such that

P(a ≤ X ≤ b) =

∫ b

a
f (x) dx

for all a and b.
The support of a distribution is the smallest closed set whose complement

has probability zero.
An important continuous probability distribution function is the exponential

distribution, which is often used to model the time between independent events
that happen at a constant average rate. The distribution is supported on the
interval [0,∞). The probability density function of an exponential distribution
has the form

f (x, λ) =

{
λe−λx x ≥ 0

0 x < 0

where λ > 0 is a parameter of the distribution, often called the rate parameter.
Its cumulative distribution function, instead, is given by

F(x, λ) =

{
1 − e−λx x ≥ 0

0 x < 0

The exponential distribution is used to model Poisson processes, situations
where an object initially in state A can change to state B with constant probability
per unit time λ. The time at which the state actually changes is described by an

20

exponential random variable with parameter λ. Therefore, the integral from 0 to
T over f is the probability that the object is in state B at time T .

Given a set X, a σ–algebra (sigma–algebra) F is a non-empty collection of
subsets of X (subset F of the power set of a set X) such that the following hold:

1. X is in F.

2. F is closed under complements: if A is in F, then so is the complement of
A (X \ A ∈ F).

3. F is closed under countable unions: if An is a sequence of elements of F,
then the union of the An is in F.

From these axioms, it follows that X and the empty set are in F, and that the σ–
algebra is also closed under countable intersections (via De Morgan’s laws). If
S is any collection of subsets of X, then we can always find a sigma-algebra
containing S , namely the power set of X. By taking the intersection of all
σ–algebras containing S , we obtain the smallest such σ–algebra. We call the
smallest σ–algebra containing S the sigma-algebra generated by S .

A measure on X is a function which assigns a real number to subsets of X;
this can be thought of as making precise a notion of “size” or “volume” for sets.

Elements of the σ–algebra are called measurable sets. An ordered pair
(X, F), where X is a set and F is a σ–algebra over X, is called a measurable
space. A function between two measurable spaces is called measurable if the
preimage of every measurable set is measurable. The collection of measurable
spaces forms a category with the measurable functions as morphisms. Measures
are defined as certain types of functions from a σ–algebra to [0,∞].

A probability space is a measure space such that the measure of the whole
space is equal to 1. In other words: a probability space is a triple (X, F, P)
consisting of a set X (called the sample space), a σ–algebra F of subsets of X
(these subsets are called events), and a measure P on (X, F) such that P(X) = 1
(called the probability measure).

2.3.2 Kripke Structures, Markov Chains and Markov Deci-
sion Processes

Kripke Structure To describe the semantics of non-deterministic systems we
use Kripke Structure, a.k.a. non-deterministic transition systems. It is basically a
graph whose nodes represent the reachable states of the system and whose edges
represent possible state transitions.

21

Definition 1 (Kripke Structure). A Kripke Structure is a tuple (S ,R, s0), where:
S is the set of states, s0 is a starting state, R ⊆ S × S is the transition relation.

A path π is a non-empty (finite or infinite) ordered succession of states
s′, s′′, . . . of S . We denote the ith state of the path π by π[i], starting from 1, and
the length of π by |π|, where |π| = ∞ if π is infinite. The set of paths over S is
denoted by Paths(S) and its subset of finite paths is denoted as FPaths(S). For a
finite path πwe use πlast for the last state of the path. The cylinder corresponding
to a path π is the set of all paths prefixed by π. Formally, for π ∈ Paths(s),
C(π) = {ππ′ | π′ ∈ Paths(S)} and C(s) denotes the set of paths starting from the
state s.

On Kripke structure is possible to verify qualitative temporal properties,
expressed by CTL (see Section 2.3.3).

Discrete Time Markov Chain To describe the probabilistic semantics of a
system we use Discrete Time Markov Chain (DTMC). DTMCs are similar to
transition systems with the difference that non-deterministic choices among
successor states are replaced by probabilistic ones. That is, the successor of
a state s is chosen according to a probability distribution (see Figure 2.1.(a)).
The probability distribution only depends on the current state s and not on the
path fragment, leading to state s from the initial state. Accordingly, the system
evolution does not depends on the history (i.e., the path fragment that has been
executed so far), but only depend on the current state s. This is know as the
memoryless property.

Definition 2 (Discrete Time Markov Chain). A DTMC is a tuple (S , P, s0),
where: S is the set of states, s0 is the starting state; P : S × S 7→ IR≥0

is the transition probability function, satisfying ∀s ∈ S
∑

s′∈S P(s, s′) = 1 (or
equivalently P : S 7→ Distr(S)).

Here, P(s, s′) gives the (time–independent) probability to move from state s
to state s′.

We say that a DTMC (S , P, s0) is finite if S is finite. When a DTMC is finite
its probabilistic transition function can be expressed by a |S | × |S | matrix with
elements ≤ 1.

Markov chains, as in Definition 2, are called discrete-time as they are
adequate only when the underlying time domain is discrete and each transition
is assumed to take a single time unit. On DTMC it is possible to verify both

22

qualitative and (time-abstract) quantitative properties expressed in CTL and
PCTL formulae (see Section 2.3.3).

On a DTMC to each path has an associated probability, defined as follows.

Definition 3 (Probability of Paths). Let (S , s0, P) be a DTMC.
Let Π =

⋃
π∈FPaths(s) C(π) be the set of all cylinders, B be the smallest σ–algebra

containing Π, and s ∈ S a state. The tuple (Paths(S),B, Ps) is a probability
space, where Ps is the unique measure satisfying, for all path s0 . . . sn,

Ps(C(s0 . . . sn)) =

1 if s0 = s ∧ n = 0

P(s0, s1) × . . . × P(sn−1, sn) if s0 = s ∧ n > 0

0 otherwise.

Continuous Time Markov Chain To describe the semantics of a stochastic
system we use Continuous Time Markov Chain (CTMC). A DTMC is time–
abstract, conversely, CTMCs are time–aware as they have an explicit reference
to time in the form of exit rates which determine, together with the transition
probabilities, the stochastic evolution of the system. Roughly speaking, a CTMC
is a DTMC where each state has a residence time that is governed by negative
exponential distributions [Ros83].

A CTMC corresponds to a family of random variables {X(t) | t ≥ 0}, where
X(t) is an observation made at time instant t and t varies over non-negative reals.
The state space, namely the set of all possible values taken by X(t), is a discrete
set. Moreover, a CTMC must satisfy the Markov (memoryless) property: for any
integer k ≥ 0, sequence of time instances t0 < t1 < · · · < tk and states s0, . . . , sk

it holds

P(X(tk) = sk | X(tk−1) = sk−1, . . . , X(t1) = s1) =

P(X(tk) = sk | X(tk−1) = sk−1) .

Intuitively, the memoryless property means that the probability of making a
transition to a particular state at a particular time depends only on the current
state, and not on the previous history of states passed through. The exponential
distribution is the only continuous probability distribution which exhibits this
memoryless property, hence it is the only one that can be used in the definition
of CTMCs.

Formally, a CTMC is defined as follows.

23

Definition 4 (Continuous Time Markov Chain). A CTMC is a tuple (S , s0,R),
where: S is the set of states; s0 ∈ S is the starting state; R : S × S 7→ IR≥0 is the
transition rate function.

To a CTMC is usually associated an exit rate function E : S 7→ R≥0 such
that ∀s ∈ S E(s) :=

∑
s′∈S R(s, s′). The exit rate E(s) determines the random,

exponentially distributed residence time of state s. That is, (1 − e−E(s)t) is the
probability to take a transition emanating from s within the next t time units.
Note that self-loops are admitted. We also say that a transition in state s occurs
with an average pace of E(s). The time-dependent transition probability to move
from s to s′ within t time units is now given by P(s, s′, t) := R(s, s′)(1 − e−E(s)t).

The system is assumed to pass from a configuration, modelled by a state s, to
another one, modelled by a state s′, by consuming an exponentially distributed
quantity of time, in which the parameter of the exponential distribution is the
rate R(s, s′). If the set of states of the CTMC is finite (S = {s1, . . . , sn}), then the
transition function R can be represented as a square matrix of size n in which the
element at position (i, j) is equal to R(si, s j). On CTMC is possible to verify
Continuous Stochastic Logics properties, a continuous-time variant of PCTL
proposed by Aziz et al. [ASB95] and Baier et al. [BHHK03], (i.e. basically,
PCTL properties extended with continuous time bounds).

The time–abstract probabilistic behavior of CTMC M is described by its
embedded DTMC. The embedded DTMC of CTMC M = (S , s0,R) is simply
given by emb(M) = (S , s0, P) with,

∀s, s′ ∈ S , P(s, s′) =

R(s, s′)/E(s) ifE(s) ≥ 0

1 ifE(s) = 0 and s = s′

0 otherwise.

The probability to move from a state s to a state s′, P(s, s′), is calculated
normalizing the rate of the move R(s, s′) with respect to the exit rate of the state
s, E(s).

Markov Decision Process To model both probabilistic and non-deterministic
behaviors we use Markov Decision Processes (MDP).

Definition 5 (Markov Decision Process). A MDP is a tuple (S , A, P), where: S
is the set of states; A is a non-empty finite alphabet of actions; P : S ×A 7→ S 7→
IR≥0 is the transition function, satisfying ∀s ∈ S ,∀a ∈ A,

∑
s′∈S P(s, a)(s′) = 1

(or equivalently P : S × A ⇀ Distr(S)).

24

(a) (b)

Figure 2.1: Examples of DTMC (a) and of MDP (b).

Notice that the function P associates to each state s and to each action a a
distribution Distr(S).

In a MDP each move from a state s ∈ S is done performing firstly a non-
deterministic choice of an action a ∈ A and then doing a probabilistic choice of
the next state according to the probability P(s, a) given by the distribution P(s, a)
(see Figure 2.1).

In other words, to trace a path through an MDP, both the non-deterministic
and probabilistic choices have to be resolved. Usually, it is assumed that the
non-deterministic choices are made by an scheduler (also known as adversary).

On a MDP is possible to obtain lower and upper bounds on probabilistic
temporal properties, or compute it precisely once a give scheduler is fixed. In
fact, the behavior of an MDP under a given adversary is purely probabilistic.

2.3.3 Model Checking

Model checking is an automated technique which, given a finite-state model
of a system and a formal property, systematically checks whether this property
holds for that model, starting from a certain state [CE81]. Such a verification
techniques explores all possible system states in a brute-force manner, and can
discover subtle behaviors which cannot be observed by simulation.

Model checking has been successful applied to several ICT systems and
their applications, both software and hardware, from network protocols to from
spacecraft controllers, both for systems verification (i.e. “are we build the thing
right ?”) and for systems validation (i.e. “are we build the right thing ?”) . We

25

refer to [BGC09] for a detailed analysis of model checking techniques history
and bibliography.

While the earlier techniques were restricted to checking the absence of
deadlock or livelocks, model checking allows for examination of broader classes
of properties using modal logics.

Modal Logics

To make a rigorous verification possible, properties should be described in
a precise and unambiguous manner. This is typically done using a property
specification language. We focus in particular on temporal logic as property
specification language, a form of modal logics. In terms of mathematical logic,
one check that the system description is a model of a temporal logic formula.
Temporal logic is basically an extension of traditional propositional logic with
operators that refer to the behavior of the system over time

In the following a set AP of atomic propositions are used to formalize
properties of states. Intuitively, atomic propositions express simple facts about
the states of the system under consideration, while temporal properties are
expressed by operators of certain logics, as for instance Computation Tree Logic.

CTL Computation Tree Logic (CTL), is a branching-time temporal logic based
on propositional logic with a discrete notion of time, and only future modalities.
CTL is an important branching temporal logic that is sufficiently expressive for
the formulation of an important set of system properties. It was originally used
by Clarke and Emerson [CE81] and (in a slightly different form) by Queille and
Sifakis [QS82] for model checking.

CTL has a two-stage syntax where formulae in CTL are classified into state
and path formulae. The former are assertions about the atomic propositions in
the states and their branching structure, while path formulae express temporal
properties of paths.

Syntax of CTL CTL state formulae over the set AP of atomic proposition are
formed according to the following grammar:

Φ ::= true | a |Φ1 ∧ Φ2 | ¬Φ | ∃ϕ | ∀ϕ

where a ∈ AP and ϕ is a path formula. CTL path formulae are formed
according to the following grammar:

26

ϕ ::= ©Φ |Φ1UΦ2

where and Φ,Φ1, and Φ2 are state formulae.
CTL distinguishes between state formulae and path formulae. Intuitively,

state formulae express a property of a state, while path formulae express a
property of a path, i.e., an infinite sequence of states. The temporal operators
© and U are path operators with the following meaning. Formula ©Φ holds
for a path if Φ holds at the next state in the path, and ΦUΨ holds for a path if
there is some state along the path for which Ψ holds, and Φ holds in all states
prior to that state. Path formulae can be turned into state formulae by prefixing
them with either the path quantifier ∃ (pronounced for some path) or the path
quantifier ∀ (pronounced for all paths). Note that the linear temporal operators
© and U are required to be immediately preceded by ∃ or ∀ to obtain a legal
state formula. Formula ∃Φ holds in a state if there exists some path satisfying
Φ that starts in that state. Dually, ∀Φ holds in a state if all paths that start in that
state satisfy Φ.

Satisfaction Relation for CTL CTL formulae are interpreted over the states
and paths of a transition system TS. Formally, given a Kripke Structure TS, the
semantics of CTL formulae is defined by two satisfaction relations (both denoted
by �TS , or briefly �): one for the state formulae and one for the path formulae.
For the state formulae, � is a relation between the states in TS and state formulae.
We write s � Φ rather than (s,Φ) ∈�. The intended interpretation is: s| = Φ if
and only if state formula Φ holds in state s. For the path formulae, � is a relation
between maximal path fragments in TS and path formulae. We write π � Φ

rather than (π,Φ) ∈ �. The intended interpretation is: π � Φ if and only if path π
satisfies path formula Φ.

Let a ∈ AP be an atomic proposition, TS = (S ,R, s0) be a Kripke Structure,
state s ∈ S , Φ,Ψ be CTL state formulae, and ϕ be a CTL path formula. The
satisfaction relation � is defined for state formulae by

s � ¬Φ i f f s 2 Φ

s � Φ ∧ Ψ i f f s � Φ and s � Ψ

s � ∃ϕ i f f π � ϕ for some π ∈ Paths(s)

s � ∀ϕ i f f π � ϕ for all π ∈ Paths(s)

27

Figure 2.2: Examples of satisfaction of CTL formulae.

For path π, the satisfaction relation � for path formulae is defined by

π � ©Φ i f f π[1] � Φ

π � ΦUΨ i f f ∃ j ≥ 0 s.t. (π[j] � Ψ ∧ (∀0 ≤ k < j : π[k] � Φ))

where for path π = s0 s1 s2 . . . and integer i ≥ 0, π[i] denotes the (i + 1)th
state of π, i.e., π[i] = si.

The interpretations for atomic propositions, negation, and conjunction are as
usual, and are interpreted over states. State formula ∃ϕ is valid in state s if and
only if there exists some path starting in s that satisfies ϕ. Conversely, ∀ϕ is
valid in state s if and only if all paths starting in s satisfy ϕ. The semantics of the
path formulae is as follows. ∃ © Φ is valid in state s if and only if there exists
some path π starting in s such that in the next state of this path, state π[1], the
property Φ holds. This is equivalent to the existence of a direct successor s′ of s
such that s′ � Φ. ∀ (ΦUΨ) is valid in state s if and only if every path starting in
s has an initial finite prefix (possibly only containing s) such that Ψ holds in the
last state of this prefix and Φ holds in all other states along the prefix. ∃ (ΦUΨ)
is valid in s if and only if there exists a path starting in s that satisfies ΦUΨ. The
semantics of CTL here is non strict in the sense that the path formula ΦUΨ is
valid if the initial state of the path satisfies Ψ (see Figure 2.2).

PCTL The logic Probabilistic computation tree logic (PCTL) is a branching-
time temporal logic, based on CTL. The main difference of PCTL with respect
to CTL is that universal and existential path quantifications are replaced by the
probabilistic operator PJ(ϕ), where ϕ is a path formula and J is an interval of

28

[0, 1]. The path formula ϕ imposes a condition on the set of paths, whereas J
indicates a lower bound and/or upper bound on the probability.

As for CTL formulae, a PCTL formula formulates conditions on a state of
a Markov chain and its interpretation is Boolean, i.e., a state either satisfies or
violates a PCTL formula. The intuitive meaning of formula PJ(ϕ) in state s is:
the probability of the set of paths satisfying ϕ and starting in s meets the bounds
given by J.

The path formulae ϕ are defined as for CTL, except that a bounded until
operator is additionally incorporated. The intuitive meaning of the path formula
ΦU≤nΨ for a natural number n is that a Ψ state should be reached within n
transitions, and that all the previous states satisfy Φ.

Syntax of PCTL PCTL state formulae over the set AP of atomic propositions
are formed according to the following grammar

Φ ::= true | a |Φ1 ∧ Φ2 | ¬Φ | PJ(ϕ)

where a ∈ AP, Φ is a path formula and J ⊆ [0, 1] is an interval with rational
bounds. PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ |Φ1UΦ2 |Φ1U≤nΦ2

where Φ,Φ1, and Φ2 are state formulae and n ∈ N. As in CTL, the
linear temporal operators © and U (and its bounded variant) are required to
be immediately preceded by P. Rather than writing the intervals explicitly,
often abbreviations are used; e.g., P≤0.5(Φ) denotes P[0,0.5](Φ), P=1(Φ) stands
for P[1,1](Φ), and P≥0(Φ) denotes P]0,1](Φ).

The propositional logic fragment of PCTL, as well as the path formulae©Φ

and Φ1UΦ2 has the same meaning as in CTL. Path formula Φ1U≤nΦ2 is the step-
bounded variant of Φ1UΦ2. It asserts that the event specified by Φ2 will hold
within at most n steps, while Φ1 holds in all states that are visited before a Φ2-
state has been reached. Other Boolean connectives are derived in the usual way.
Also the eventually operator and the always operator can be derived using the U
operator and the duality of eventually and always (as in CTL) and the duality of
lower and upper bounds.

Satisfaction Relation for PCTL Let a ∈ AP be an atomic proposition,
M = (S , P, s0) be a DTMC, s ∈ S a state, Φ,Ψ be PCTL state formulae, and

29

ϕ be a PCTL path formula. The satisfaction relation |= is defined, assuming the
definition of s � a, for state formulae by

s � ¬Φ i f f s 2 Φ

s � Φ ∧ Ψ i f f s � Φ and s � Ψ

s � PJ(ϕ) i f f Pr(s � ϕ) ∈ J

Here, Pr(s � ϕ) = Prs{π ∈ Paths(s) : π � ϕ}.
Given a path π inM, the satisfaction relation is defined (as for CTL):

π � ©Φ i f f π[1] � Φ

π � ΦUΨ i f f ∃ j ≥ 0 s.t. (π[j] � Ψ ∧ (∀0 ≤ k < j : π[k] � Φ))

π � ΦU≤nΨ i f f ∃0 ≤ j ≤ n s.t. (π[j] � Ψ ∧ (∀0 ≤ k < j : π[k] � Φ))

where for path π = s0 s1 s2 . . . and integer i ≥ 0, π[i] denotes the (i + 1)-st
state of π, i.e., π[i] = si.

The semantics of the probability operator P refers to the probability for
the sets of paths for which a path formula holds. To ensure that this is well-
defined, we need to establish that the event specified by PCTL path formulae are
measurable; but, as the set {π ∈ Paths(s)s.t.π � ϕ} for PCTL path formula ϕ can
be considered as a countable union of cylinder sets, its measurably is ensured.

Brief Bibliography on Quantitative Model Checking PCTL is introduced,
with several model checking algorithms for its verification over DTMC in
[HJ94], and is extended to PCTL* in [ASB95]. The initial work on model
checking a DTMC against PCTL formulae symbolically is [BCHG+97]: it
introduces the representation of the probability transition matrix by means of
multi-terminal binary decision diagrams (MTBDDs). Such an approach has
been then extended by [dAKN+00] and it is used by the state of the art model
checker tool PRISM [PRI].

Works about the verification of MDP against PCTL properties are [Var85,
CY95, BdA95, BK98]. Such approaches has been extended [dA99a] to consider
also cost and rewards in the computation of minimum/maximum probability of
reaching a set of states.

An extended and updated bibliography on quantitative model checking can
be found at http://www.prismmodelchecker.org/publications.

30

http://www.prismmodelchecker.org/publications

universe of values

exact answer

over-approximation

under-approximation

wrong approximation

Figure 2.3: The nature of approximation.

2.4 Abstraction Techniques

We are often interested in reasoning about complex systems for which the
exact study is not computable or is not practically feasible due to excessive
requirement in term of computation. It is therefore reasonable to pursue
approaches which simplify this task even if they contain some degrees of
imprecision or approximation. For these reasons abstraction techniques have
been developed.

The notion of approximation is crucial (See Figure 2.3). We may have an
over–approximation to the exact result of the analysis. In this case we can
guarantee that certain values cannot be result of the analysis, namely those not
included in the analysis result (certain events will never happen). When we have
an under–approximation we can guarantee that certain values are included in
the analysis result, namely those included in the analysis result (certain events
will indeed happen). Results that neither are over nor under–approximations are
uninteresting as we cannot interpret them meaningfully.

When we have an analysis that always gives under– or over–approximations
we talk about conservative or safe abstraction. Obviously, it is trivial to
construct uninformative over– and under– approximations that actually give
us useless information (i.e. return always the universe of values as over–
approximation and the empty space as under–approximation), so the challenge
is to obtain approximations striking the right balance between precision and

31

computational cost; the higher precision requires more costly analysis.
In this framework, we talk about the best abstraction if we have an analysis

that is conservative and is the most accurate. The correctness and the precision
of an abstraction is traditionally expressed in formal way by means of an order
over abstractions.

By abstract analyses we refer to a variety of techniques which extract
information about the dynamic behavior of systems without executing the
systems themselves. This is typically done by systematically inspecting the
studied system structure (syntax), or by executing the program using an abstract
semantics, considering only the properties of interest. These analyses are
typically designed for a particular set of properties of interest and a particular
specification language, and are systematic, meaning that they can be applied to
all programs of the language.

2.4.1 Abstract Interpretation

Abstract interpretation (AI) [CC77, CC79] is a very popular and general
methodology for developing abstract analyses.

The theory is based on the idea of approximating the semantics of a
programming or specification language. It formalizes the idea that the semantics
can be more or less precise according to the considered level of observation.
In more detail, abstract interpretation allows both to effectively construct
conservative approximations of the semantics of a programming language, and
to prove the corresponding analyses correct.

If the approximation is coarse enough, the abstraction of a semantics yields
less precise but easier to compute analyses than the ones computed on the
original semantics. Because of the corresponding loss of information, not all
questions can be answered, but all answers given by the effective computation
of the approximate semantics are always correct.

In mathematics, a lattice is a partially ordered set (also called a poset) in
which any two elements have a unique supremum (the elements’ least upper
bound; called their join) and an infimum (greatest lower bound; called their
meet). Lattices can also be characterized as algebraic structures satisfying
certain axiomatic identities.

In the algebraic setting of abstract interpretation, a domain is a lattice L(v
,⊥,>,t,u) defined by a partial order (L,v), where ⊥ and > are elements of L
and t and u are binary operators on L, respectively denote the least element, the

32

(a)

more
information

less
information

(b)

Figure 2.4: Scheme of construction of abstract semantics function (a) and of
Galois connection (b).

greatest element, the least upper bound and the greatest lower bound. Intuitively,
the partial ordering represents the information loss.

In general, the abstract interpretation framework is used for constructing a
non-standard (approximated) semantics FA obtained from the the standard (or
concrete) one FC by replacing the actual (concrete) domain of computation (C)
and its basic (concrete) operators with an abstract domain (A) and corresponding
abstract semantic operations, respectively (see Figure 2.4).

An abstraction can be formalized by a Galois connection between a concrete
domain C and an abstract domain A, using an abstraction and a concretization
functions, α and γ, as follows:

Definition 6 (Galois Connection). A Galois connection C←−γ−→α
A between two

lattices (C,vC) and (A,vA) is defined by an abstraction function α : C 7→ A,
and a concretization function γ : A 7→ C, that are both

• monotonic:

33

– ∀c, c′ ∈ C : c vC c′ ⇒ α(c) vA α(c′)

– ∀a, a′ ∈ A : a vC a′ ⇒ γ(a) vC γ(a′)

• adjoint:

– ∀c ∈ C,∀a ∈ A : c vC γ(a)⇔ α(c) vA a.

Theorem 2.4.1 (Properties of Galois connection). For any Galois connection,
the following properties hold

1. γ ◦ α is extensive (i.e. c vC γ ◦ α(c)) and represents the information lost
by the abstraction

2. α ◦ γ is contracting (i.e. α ◦ γ(a) vC a)

3. γ ◦ α is the identity⇔ γ is onto⇔ α is one–to–one

4. α preserves >, and γ preserves ⊥

5. γ(a) = max α−1(↓ a) = >α−1(↓ a)

6. α(c) = min γ−1(↑ c) = ⊥γ−1(↑ c)

7. the composition of two Galois connections is a Galois connection.

Where f ◦ g ≡ λx.g(f (x)) and ↓ a = {b | b v a} , ↑ a = {b | a v b}.

With one–to–one function we mean injective function; a function that
associates distinct arguments with distinct values (information-preserving).
With onto function we mean surjective function: its values span its whole
codomain (for every y in the codomain, there is at least one x in the domain
such that f (x) = y).

If γ ◦ α is the identity, the abstraction α loses no information, and C and
A are isomorphic from the information standpoint (although α may be not onto
and γ not one–to–one). It is equivalent in the definition of Galois connections
to replace the condition of adjointness by conditions 1 and 2, or by condition 5
which also entails the monotonicity of γ.

Once defined an abstraction function α and an order over the abstract domain
vA, the abstract analysis can be proved to be sound if, for each program P ∈ C
and the corresponding abstract program P◦ ∈ A, it holds that α(FC(P)) vA
FA(P◦).

34

The theory of abstract interpretation provides several properties of abstract
operators and of abstract domain to guarantee the soundness of abstract seman-
tics and their fix-point. We refer the interested reader to [CC77, CC79]. Here,
we are interested in a different application of abstract interpretation, that is in
abstract probabilistic model checking. Therefore, we apply theory in the style
of [CGL94, DGG97, Hut05].

2.4.2 Predicate Abstraction

Predicate abstraction has been introduced as a technique for reducing an infinite
state system to a finite state in the work of Graf and Saidi [GS97]. In that work,
a finite state system is obtained as an over-approximation of an infinite state
system. This is a conservative abstraction, in the sense that for every execution
in the concrete system there is a corresponding execution in the abstract system.
The abstract version of the verification condition is model checked in this
abstract system. If a property (typically expressed in some form of modal
logic) is verified then it holds in the concrete system. Otherwise an abstract
counter-example trace is generated. There could be a concrete counter-example
corresponding to it, in which case there is a bug in the design, or the abstract
counter-example is an artifact of the abstraction (for more detailed discussion on
predicate abstraction we refer to [Das03]).

Formally, a predicate is a boolean condition over states. Given a state space
S and a set of predicates P, an abstract state space is computed: each abstract
state is equal to a conjunction of a possible evaluation all the predicates in P.
The size of the abstract state space is top bound by 2|P|. An abstract state is
identified by the subset of P of predicates that are true for the state.

The techniques has been lately applied also to probabilistic transition
systems (see for instance [WZH07, KKNP08, KH09]). In this case the result
of the predicate abstraction is an MDP: a transition system where probabilistic
transitions are alternated to non-deterministic transitions (see Section 2.3.2).
Practically, given an abstract state, to perform a move, it is necessary, first,
to perform a non-deterministic choice, in order to identify a concrete state
within the states abstracted by the current abstract state, and, then, to perform a
probabilistic move corresponding to the probabilistic move of the concrete state
selected.

By safety property we denote properties specifying that “something bad
never happens”. By liveness property we denote properties specifying that
“something good will happen eventually” [Lam77, Kin94].

35

One of the main drawback of predicate abstraction is that, often, it cannot be
used to prove liveness properties. Indeed, abstract transition systems usually
contains cycles that do not correspond to concrete computations restricting
useful results to safety properties only: according to the predicate abstracted
semantics, there is the possibility to loop forever on certain states, while there
are not any corresponding concrete computation. Actually, a sound but totally
imprecise abstract semantics is computed (see the following Example). This
problem is sometimes solved by imposing fairness constraints over transitions,
but this is not always correct w.r.t. the concrete semantics of the system
[BK98, dA99b, BGC09].

Example 1. Let us consider a MSR system (see Section 3.2) where two
populations A, B evolve, starting from a state consisting in 3 individuals of A.
Each individual of the species A can disappear or become an individual of the
species B. This behavior can be expressed by the following two rewriting rules:

R1 : A→ B , R2 : A→ .

Assuming an interleaving semantics, we can associate to such a system the
transition system depicted in Figure 2.5.a).

If we perform predicate abstraction using the set of predicates (see Fig-
ure 2.5.b))

{(A = 0) (A ∈ [1, 2]) (A ∈ [3, 4]) (A ≥ 4) (B = 0) (B ∈ [1, 2]) (B ∈ [3, 4]) (B ≥ 4) }

we obtain the abstract states depicted in Figure 2.5.c), on which an abstract
MDP semantics can be computed as shown in Figure 2.5.d).

The problem with such a semantics is that liveness properties cannot
be verified without imposing a fairness constraint on some non-deterministic
choice. Indeed, without fairness constraints, it is possible to remain forever on
the starting state.

36

a)
b)

c)
d)

Fi
gu

re
2.

5:
Il

lu
st

ra
tio

n
of

pr
ed

ic
at

e
ab

st
ra

ct
io

n
of

m
od

el
of

E
xa

m
pl

e
1.

a)
co

nc
re

te
se

m
an

tic
s,

b)
pa

rt
iti

on
by

pr
ed

ic
at

e
ev

al
ua

tio
n,

c)
ab

st
ra

ct
st

at
es

,d
)

ab
st

ra
ct

no
n-

de
te

rm
in

is
tic

se
m

an
tic

s:
ci

rc
le

s
ar

e
ab

st
ra

ct
st

at
es

,r
ec

ta
ng

le
s

re
pr

es
en

ts
no

n-
de

te
rm

in
is

tic
ch

oi
ce

s,
ar

ro
w

s
re

pr
es

en
ts

pr
ob

ab
ili

st
ic

tr
an

si
tio

ns
.

37

38

Chapter 3

Abstract Semantics for
Models with Uncertainty on
Kinetic Rates

In this chapter, we present a formalization of biological systems based on
Multiset Rewriting systems and we investigate the use of abstract interpretation
on their semantics. We consider a probabilistic semantics, which is well
suited to represent the non-deterministic evolution of real biological systems.
Abstract interpretation allows us to deal with systems in which the kinetic
rates of the evolution rules are not precisely known. On the (abstract) systems
we perform probabilistic model checking obtaining lower and upper bounds
for the probabilities of reaching states satisfying given properties. We apply
probabilistic model checking to verify reachability properties in a model of
tumor growth.

3.1 Introduction
Modelling biological systems requires to represent the events (reactions) which
guide the evolution of the systems together with their rates. Rates are often
not precisely known, given the difficulty of measuring them for each single
reaction. Thus, in many cases, it is necessary to construct models with some
approximation which should not influence the overall behavior of the system

P̃(M)
LTS
−−−−−−→ LTS

H
−−−−−−→ MCyα yαLTS yαMC

M◦
LTS ◦
−−−−−−→ LTS◦

H◦

−−−−−−→ MC
◦

Figure 3.1: Schematics of the defined theory; with ◦ we indicate abstract
structures, with α abstraction functions. P̃ denotes the power-set of isomorphic
elements. Here, H and H◦ stand for the concrete and abstract probabilistic
translation functions, while LTS and LTS ◦ are the concrete and abstract LTS
computation functions, respectively.

we are interested to analyze. In these cases we can predict the evolution of the
system, although in a non-precise way.

In this chapter we present a formalization of biological systems based on
Multiset Rewriting (MSR) [CDL+99], and we investigate the use of abstract
interpretation [CC77] on its semantics. We consider a probabilistic semantics
of MSR which is well suited to represent the non-deterministic evolution of real
biological systems. We define an effective method to compute an approximation
of the probabilistic semantics of MSR systems for which the exact kinetic
rates are not precisely known, but they are supposed to lie in some intervals.
We use an IMC [JL91, KU02] to abstract the set of DTMC describing the
probabilistic semantics of a set of MSR systems with uncertain kinetic rates.
IMC is a model, which combines non-deterministic and probabilistic steps, using
intervals of probabilities. Probabilistic model checking on IMC, which can be
realized following the approach of [FLW06], reports lower and upper bounds
for probabilistic temporal properties. In particular, we are interested in the
probability of reachability properties, that is in the probability to reach states
satisfying given properties. The methodology is illustrated in Figure 3.1.

We start by recalling MSR. MSR is used as the formalism for constructing
concrete systems, namely systems with exact kinetic rates. We give a Labeled
Transition System (LTS) semantics to MSR and show how to derive, in standard
way, a probabilistic semantics from it, in terms of a DTMC. On the DTMC it is
possible to perform probabilistic model checking.

In order to deal with uncertainty we define abstract systems, in which the
kinetic rates are given as intervals, we introduce an abstract LTS semantics and
a systematic method to derive an IMC form abstract LTS. We relate the concrete

40

probabilistic semantics with the abstract one by means of abstract interpretation
techniques [CC77]. We prove the soundness (and the precision) of abstract
semantics, both LTS and probabilistic, with respect to their concrete versions.
This guarantees that lower and upper bounds of probabilistic reachability,
computed on the IMC of an abstract system, safely approximate the concrete
probability values, for each corresponding concrete system.

To validate the usefulness of our approach in the context of biological
systems modelling, we apply probabilistic model checking to verify reachability
properties in an abstract system of tumor growth [VR03]. We conclude with a
discussion about related works and we present some possible future direction of
the research.

3.2 Probabilistic Model Checking of Biological Sys-
tems

To model biological systems we adopt MSR [CDL+99] where rewriting rules
are enriched with non-negative real kinetic constants. In this model, multisets
are states of computation and transitions between states are obtained by applying
rewriting rules with a probability proportional to their kinetic constants.

We choose such a formalism because it is simple and expressive enough
to describe many systems of interest. Moreover, as many formalisms used
in the context of biological systems modelling are based on MSR, techniques
developed for MSR may be further expanded to more complex languages.

Given a finite set of elements, X, a multiset is a function s : X → N and
MS(X) is the universe of multisets over X. Sum ⊕ and difference 	 of multisets
are defined as follows: for s′, s′′ ∈ MS(X), we have s′ ⊕ s′′(x) = s′(x) + s′′(x)
and s′ 	 s′′(x) = max(s′(x) − s′′(x), 0). In the following we shall often assume a
set of species names Σ, of size n, to be given.

In the following, a multiset represents a configuration of a biological system,
and possible events are modelled by rewriting rules. A rewriting rule is a pair
(l, r), where l and r are multisets, called reactants and products, respectively.
Each rule is associated to a kinetic constant that is, roughly, an indication of the
likelihood of the represented event1.

1 In the context of chemical kinetics studies, kinetic constants are often used to express the
speed of reactions, and the a continuous time semantics is used (i.e. a CTMC). Here we use kinetic
constants just as an indication of the likelihood of events and we study systems in a probabilistic
(time-abstract) setting.

41

Definition 7 (Concrete System). A concrete system M is a triple (R,K , s0):

• R = {R1, . . . ,Rm}, with Ri ∈ MS(Σ) ×MS(Σ), is a vector of
rewriting rules;

• K = {k1, . . . , km}, with ki ∈ R>0, is a vector of kinetic constants;

• s0 ∈ MS(Σ) is the starting state.

In the following we refer to generic tuples components by name. For
instance, given a system M = (R,K , s0), we use R(M),K(M), s0(M) to denote
R,K , s0 respectively. When M is clear from the context, for i ∈ [1,m], we use li
and ri to denote the reactants and products multisets of rule R[i], and we use ki

for the kinetic constant K[i].
The universe of concrete systems is denoted by M. We also say that two

concrete systems Mi, i ∈ {1, 2}, are isomorphic (M1 ∼ M2) if and only ifR(M1) =

R(M2) ∧ s0(M1) = s0(M2). Intuitively, M1 ∼ M2 iff M1 and M2 share the initial
state and the set of rewriting rules.

3.2.1 Labeled Transition System Semantics

To describe the semantics of a concrete systems we adopt a Labeled Transition
System (LTS) semantics. Namely, we adopt a transition relation of the form

s′
η , β
−−−→ s′′, where η is the number of the applied rule and β ∈ R>0 is the transition

rate.
The application of a rule Rη to a state s′ is modelled by the inference rule

(lη, rη) ∈ R kη ∈ K lη ⊆ s′ β = rate(lη, s′, kη)

s′′ = ((s′ 	 lη) ⊕ rη)

s′
η , β
−−−→ s′′

(3.1)

where rate(lη, s′, kη) = kin(lη, s′) × kη and kin(lη, s′) =
∏

x∈Σ

(
s′(x)
lη(x)

)
.

To compute kin(lη, s′) we take into account the number of possible distinct
applications of the rule Rη to state s′. Actually, this requires to compute the
number of distinct combinations of the reactants lη in the multiset s′. Then,
rate(lη, s′, kη) is obtained by multiplying the value of kin(lη, s′) by the kinetic
constant kη associated with rule Rη.

42

In the following, we use LTS to denote the universe of LTSs and we define
the function LTS : M 7→ LTS, such that LTS (M), with M = (R,K , s0), is
the LTS = (S , s0,→), obtained by transitive closure of (3.1) starting from s0.

When the transition relation→ is clear from the context, we use Next(s) for
the set of transitions exiting from the state s. In addition, we use TS (s′, s′′) =

{s′
η , β
−−−→ s′′ for some η , β} to denote the set of transitions from s′ to s′′. Given

a transition t = s′
η , β
−−−→ s′′, we also use rate(t) = β. Note that, ∀Rη ∈ R, s ∈ S ,

there is at most one transition s
η , β
−−−→ s′ ∈ Next(s) corresponding to Rη.

3.2.2 Derivation of Probabilistic Semantics
We define the probabilistic semantics of a concrete system by means of a
translation from its LTS into a DTMC (as defined in Section 2.3.2, Definition 2).

In the following, we restrict our attention to finitely branching DTMCs,
meaning that for each s in the state space, the set {s′ | P(s, s′) > 0} is finite.
Since our systems have m–sized vector of rules, for each state, we have at most
m outgoing transitions. Moreover, we useMC to denote the universe of (finitely
branching) DTMCs.

To derive a DTMC from an LTS, we have to calculate, for each states s and
s′ of LTS , the probability of moving from s to s′, by exploiting transition rates.
Thus, we introduce two functions R : S × S 7→ R>0 and E : S 7→ R>0, such that

R(s, s′) =
∑

t∈TS (s,s′)

rate(t) and E(s) =
∑
s′∈S

R(s, s′).

Intuitively, R(s, s′) gives the rate of the set of transitions from s to s′, while E(s)
computes the exit rate of states. The probability of moving from s to s′ is derived
from R(s, s′) and E(s), in the standard way.

Definition 8 (Probabilistic Translation Function). We define H : LTS → MC
as H((S , s0,→)) = (S , s0, P), where P : S → Distr(S) is the probability
transition function, s.t. , ∀s, s′ , s ∈ S : if E(s) = 0, then P(s, s′) = 0, and
P(s, s) = 1; P(s, s′) = R(s, s′)/E(s) otherwise.

Note that, traditionally, the semantics of a stochastic system is formalized
as a Continuous Time Markov Chain (CTMC). The DTMC of Definition 8 is
obviously the so called “embedded” DTMC (see Section 2.3.2). We consider
the DTMC because we are interested in probability of reachability properties
(see the following section).

43

3.2.3 Probabilistic Model Checking

In the context of probabilistic model checking [Kwi03, KNP02] we consider
a fragment of the Probabilistic Temporal Logic CTL (PCTL) [HJ94], able to
express probabilistic reachability properties (see Section 2.3.3 for more details).
Probabilistic reachability captures the probability to reach a state which satisfies
a given property. Formally, this requires to evaluate the probability of a set of
paths in the DTMC. We briefly recall main concepts concerning PCTL model
checking and we refer the interested reader to [Kwi03, BK08].

Our reachability properties are parametric w.r.t. a set AP of propositional
symbols (ranged over by {A, B, . . .}). A symbol A ∈ AP denotes a set
of conditions on multisets that are evaluated by a corresponding notion of
satisfaction � : MS(Σ) × AP 7→ {true , f alse}. As usual, given s ∈ MS(Σ)
and A ∈ AP, s � A says that s satisfies A.

Definition 9 (Concrete Reachability). Let mc = (S , s0, P) be a DTMC. The
probability of reaching a state satisfying A ∈ AP, starting from s ∈ S , is

ReachA,mc(s) = Ps({π ∈ C(s) | π[i] � A for some i ≥ 0}) .

Model checking of reachability properties on a DTMC, from a state s,
consists on computing ReachA,mc(s), and can be done using standard iterative
methods [Kwi03, BK08].

We use Reach(A) to denote ReachA,mc(s0) where mc = H(LTS (M)), for a
system M clear from the context.

Example 2 (Concrete System Model Checking). We consider a simple system
of chemical reactions, where, starting from a configuration consisting of two
molecules of X, two of Y and ten of W, two molecules X and Y may bind, to
form complex XY , and molecule X may be degraded, by molecule W. Using
Σ = {X,Y,W, XY}, the system can be formalized as Mex = (R,K , s0) where

s0 = {(X, 2), (Y, 2), (W, 10)},

K = {k1 = 3, k2 = 1},

R = {(R1 = {X,Y}
k1
−→ {XY}), (R2 = {X,W}

k2
−→ {W})}.

Note that we assume that the complexation is three times faster than the

44

Figure 3.2: LTS (Mex), andH(LTS (Mex)).

degradation. Figure 3.2 shows the derived LTS (Mex) andH(LTS (Mex)) where

S = { s0 ={(X, 2), (Y, 2), (W, 10), (XY, 0)}

s1 ={(X, 1), (Y, 1), (W, 10), (XY, 1)}

s2 ={(X, 1), (Y, 2), (W, 10), (XY, 0)}

s3 ={(X, 0), (Y, 0), (W, 10), (XY, 2)}

s4 ={(X, 0), (Y, 1), (W, 10), (XY, 1)}

s5 ={(X, 0), (Y, 2), (W, 10), (XY, 0)} }.

The probability of obtaining at least two complexes XY corresponds to the
probability to reach s3. That is, 3/8×3/13 = 9/104. This shows that, even if the
rate of the complexation is (three times) greater that the one of the degradation,
the concentration of reagent W makes the degradation more likely to happen
than the binding of reagent X and Y .

3.3 Abstract Systems Modelling and Model
Checking

We introduce abstract systems, the abstract LTS semantics, and the correspond-
ing abstract probabilistic semantics in terms of IMC. Moreover, we prove the
soundness of the approach, using notions of the abstract interpretation theory.

In order to approximate the information about the kinetic rates of the reaction
rules we adopt the domain of intervals of (non-negative) reals I (the real valued
version of intervals of integers [CC77, Kea96, Wei99]).

Definition 10 (Intervals). I = { [m, n] |m ∈ R≥0, n ∈ R≥0 ∪ {∞} ∧ m ≤ n}.

45

Over intervals of reals I we use the operations and the order defined as
follows.

∀ i, j ∈ I, i = [a , b], j = [c , d] : [i]− = a , [i]+ = b

i ×I j = [a × c , b × d] , i ∪I j = [min(a , c) , max(b , d)] ,

i +I j = [a + c , b + d] , i vI j iff (i ∪I j = j) .

We consider both ∪I and vI extended component-wise to m–sized vectors
of intervals, and for simplicity we use the same symbols. For x ∈ R>0 we use
x• = [x, x] ∈ I for its best abstraction - i.e. the most precise abstraction - as
interval, considered extended to vector of reals.

In abstract systems each reaction rule has associated an interval of reals (∈ I)
rather than a precise kinetic constant (∈ R).

Definition 11 (Abstract Systems). An abstract system M is a triple (R,K◦, s0)
with R and s0 as in the concrete case, whileK◦ = {k◦1, . . . , k

◦
m}, k◦i ∈ I, is a vector

of interval values.

We denote the universe of abstract systems asM◦. We assume the notations
used for concrete systems extended, in the obvious way, to abstract systems.
The order vI over intervals introduces a corresponding approximation order vM◦
over abstract systems.

Definition 12 (Order on Abstract Systems). For all M◦i , i ∈ {1, 2} :
M◦1 vM◦ M◦2 iff M◦1 ∼ M◦2 ∧ K(M◦1) vI K(M◦2).

3.3.1 Abstraction and Concretization
To formalize the relation between concrete and abstract systems we introduce
a pair of functions, abstraction and a concretization functions, which form a
Galois connection [CC77]. The abstraction function α reports the approximation
of sets of concrete systems differing only for the kinetic part of the rules: sets of
isomorphic systems. Its counterpart is the concretization function which reports
the set of concrete systems abstracted by an abstract system.

Given that as abstract system represents infinite set of concrete systems
differing only on the rates of reactions we introduce the domain of isomorphic
concrete systems. Intuitively, they are sets of concrete systems that are identical
except for the kinetic part of the rewriting rules.

Let P̃(M) = {X ∈ P(M) , ∀M,M′ ∈ X , M ∼ M′} be the domain of
sets of isomorphic concrete systems. Given X ∈ P̃(M) we denote with R(X)

46

and s0(X) the shared components, e.g. the vector of rules and the starting state,
respectively.

To define the concrete domain of the Galois connection we also have to
define the order v

P̃(M) on sets of isomorphic concrete systems.

Definition 13 (Order on Set of Isomorphic Concrete Systems).
Given two set of isomorphic concrete systems Xi ∈ P̃(M), i ∈ {1, 2} :
X1 vP̃(M) X2 iff K1 vI K2 where Ki = ∪IM∈Xi

(K(M))•.

Definition 14 (Abstraction and Concretization Functions). Let
α : P̃(M) 7→ M◦ and γ :M◦ 7→ P̃(M) be s.t. ∀X ∈ P̃(M) , ∀M◦ ∈ M◦ :

• α(X) = (R(X) , K◦ , s0(X)) where K◦ ≡
⋃I

M∈X(K(M))• ;

• γ(M◦) = {M |α(M) vM◦ M◦} .

Theorem 3.3.1. The pair (α, γ) is a Galois connection between
(P̃(M),v

P̃(M)) and (M◦,vM◦); α and γ are a) monotonic and
b) adjoint.

Proof. a) Is trivial given the definition of α and γ.
b) We have to show: ∀X ∈ P̃(M),M◦ ∈ M◦ : α(X) vM◦ M◦ ⇔ X v

P̃(M)
γ(M◦).

Let us consider M◦ = (R,K◦M◦ , s0) and X = {Mi = (R′,Ki, s′0), i ∈ IX}.
By definition of α and γ, γ(M◦) = {M j = (R,K j, s0), j ∈ Jγ(M◦)} and α(X) =

(R′,K◦, s′0), whereK◦X ≡
⋃I

i∈IX
(K(Mi))•. Thus, by definition of v

P̃(M) and vM◦ ,
it must be the case that R = R′ and s0 = s′0, and, remains to show that

K◦X vI K
◦
M◦ ⇔ ∪

I
i∈IX

(K(Mi))• vI ∪Ij∈Jγ(M◦)(K(M j))• .

This is evident as the dis-equations are side by side equal by def. of α and γ. �

This formalization shows that an abstract system M◦ represents a (possibly
infinite) set of isomorphic concrete systems γ(M◦). Each model M ∈ γ(M◦) has
the same vector of rules and the same starting state, while the kinetic rates may
vary in the vector of intervals K◦(M◦).

3.3.2 Abstract LTS Semantics
We introduce the LTS semantics associated with abstract systems, adopting an

abstract transition relation s
η , β◦

−−−→◦ s′, where η is as in the concrete case, while
β◦ ∈ I is an interval of rates.

47

The application of a rule Rη to a state s is modelled by the rule

(lη , rη) ∈ R k◦η ∈ K
◦ lη ⊆ s′ β◦ = rate◦(lη, s, k◦η,)

s′ = ((s 	 lη) ⊕ rη)

s
η , β◦

−−−→◦ s′
(3.2)

where rate◦(lη, s, k◦η) = kin(lη, s) ×I k◦η. To compute rate◦(lη, s, k◦η) we follow the
same reasoning of the concrete case, replacing exact rates with intervals.

We define the function LTS ◦ : M◦ 7→ LTS ◦ such that LTS ◦((R,K◦, s0)) =

(S , s0,→◦) is obtained by transitive closure of (3.2) starting from s0. As in
the concrete case the outgoing transitions from a state have distinct labels. In
the following we use LTS◦ to denote the universe of abstract LTSs and we
assume that the notations, defined for LTSs, are adapted in the obvious way to
the abstract case.

To relate an LTSs to its abstract counterpart, and to express the soundness
and the precision of abstract LTSs, we introduce the concept of best abstraction,
both for an LTS and for sets of isomorphic LTSs.

Two LTSs ltsi = (S i, s0,i,→i), i ∈ [1, 2] are isomorphic (lts1 ∼ lts2) iff S 1 =

S 2 and s0,1 = s0,2, that is if they share the same state space, included the initial
state. We denote the universe of isomorphic LTS as P̃(LTS).

Definition 15 (Best Abstraction of LTSs). We define

• αLTS : LTS 7→ LTS◦ such that αLTS((S , s0,→)) = ((S , s0,→
α
◦)) with

→α
◦= {s

η , β•

−−−→α
◦

s′|s
η , β
−−−→ s′ ∈→} ;

• α̂LTS : P̃(LTS)→ LTS◦ such that α̂LTS(X) ≡ (S (X), s0(X),→∧
◦
) with

→∧◦= {s
η,β̂◦

−−−→∧
◦

s′ |(S , s0,→) ∈ XLTS , β̂◦ =
⋃I

s
η , β◦

−−−→◦ s′ ,(S ,s0,→◦)∈XLTS

β◦ ,

XLTS = {αLTS(LTS (M))|M ∈ X} } .

The most precise abstraction of an LTS is obviously obtained by replacing
the rate β of each transition with β• = [β, β]. Note that αLTS does not effectively
introduce any approximation. The abstraction of a set of isomorphic LTSs use
as rates the union of rates of the abstract LTSs, obtained by computing the most
precise abstraction of each LTS in the set.

Function αLTS can be suitably used to relate concrete and abstract LTSs.
To express soundness, however, we need to introduce an approximation order

48

vLTS◦ over abstract LTSs, in the style of [DGG97]. In this way, we can say that
an abstract LTS lts◦ ∈ LTS◦ is a sound approximation of an LTS lts ∈ LTS, if
it approximates the best abstraction of lts. That is αLTS◦ (lts) vLTS◦ lts◦.

Definition 16 (Order on Abstract LTSs). Let lts◦i = (S , s0,→
i
◦), i ∈ {1, 2}. We

say that lts◦1 vLTS◦ lts◦2 iff, ∀s, s′ ∈ S

∀t◦1 = (s
η , β◦1
−−−→◦ s′) ∈→1

◦, ∃ t◦2 = (s
η , β◦2
−−−→◦ s′) ∈→2

◦ such that β◦1 vI β
◦
2.

Intuitively, the definition of vLTS◦ , requires that, if lts1 vLTS◦ lts◦2, each pair
of states, in→1

◦ relation, are in→2
◦ relation with a coarser transition rate interval.

Function α̂LTS can suitably be used to relate a set of isomorphic LTS with
abstract LTS. In more detail, the following theorem shows that LTS ◦(M◦), for an
abstract system M◦, coincides with the best abstraction of the set of isomorphic
LTS {(LTS (M))|M ∈ γ(M◦)}. This demonstrates the precision of the abstract
LTS semantics of an abstract system M◦ with respect to the set of LTS describing
the behavior of the concrete system M approximated by M◦ (i.e. M ∈ γ(M◦)).

Theorem 3.3.2 (Precision of LTS ◦).
∀M◦ ∈ M◦ : α̂LTS({(LTS (M))|M ∈ γ(M◦)}) = LTS ◦(M◦) .

Proof. Let M◦ = (R,K◦, s0) and L̂TS (M◦) = {LTS (M)|M ∈ γ(M◦)}. Moreover,
let LTS ◦(M◦) = (S , s0,→M◦

◦
). For each M ∈ γ(M◦) we have M = (R,K , s0)

for some vector of kinetic constants K , and LTS (M) = (S , s0,→) for some
transition relation →; consequently α̂LTS(L̂TS (M◦)) = (S , s0,→

∧
◦) for some

transition relation→∧◦ . Hence, we have only to prove that→∧◦ =→M◦
◦ .

Since the vector of rules R in M◦ is the same as in any M ∈ γ(M◦), we have
that each transition in LTS ◦(M◦) has a corresponding transition in LTS (M),
namely

∀s, s′ ∈ S ,∀ t1 = s
η , β
−−−→ s′ , ∃ t2 = s

η , β◦

−−−→
M◦

◦ s′, and consequently, ∀ t1 = s
η , β◦1
−−−→∧

◦

s′ , ∃ t2 = s
η , β◦2
−−−→M◦

◦
s′. Now, also β◦1 = β◦2 holds as, by def. of

⋃I, LTS , and γ,

49

β◦1 =
⋃I

s
η , β◦

−−−→◦ s′ ,
(S ,s0,→◦)∈αLTS(L̂TS (M◦))

β◦ =
[
min

s
η , β

−−−→s′ ,
(S ,s0,→)∈L̂TS (M◦)

β , max
s

η , β

−−−→s′ ,
(S ,s0,→)∈L̂TS (M◦)

β
]

=

[
min

(R,K ,s0)∈γ(M◦)
kη × kin(lη, s), max

(R,K ,s0)∈γ(M◦)
kη × kin(lη, s)

]
= k◦η × kin(lη, s)

= β◦2

�

A consequence of the previous Theorem is that LTS ◦(M◦) is a sound
approximation of LTS (M), for each M represented by M◦ (i.e. such that
M ∈ γ(M◦)).

Corollary 3.3.3 (Soundness of LTS ◦).
∀M◦ ∈ M◦ , ∀M ∈ γ(M◦) : αLTS(LTS (M)) vLTS◦ LTS ◦(M◦) .

Proof. Follows from αLTS(LTS (M)) vLTS◦ α̂LTS({(LTS (M))|M ∈ γ(M◦)}).
�

3.3.3 Interval Markov Chains

We use Interval Discrete-Time Markov Chains [JL91, KU02] (IMC) to define the
probabilistic semantics of abstract systems. We briefly recall the main concepts
concerning the validation of probabilistic temporal properties on IMC and we
refer the interested reader to [JL91, KU02, FLW06].

Definition 17 (Interval Markov Chain). An IMC is a tuple (S , s0, P−, P+), where:
S is the set of states and s0 ∈ S the starting state; P−, P+ : S → PDistr(S) are
the lower and upper probability transition functions such that ∀s, s′ ∈ S ,
P−(s, s′) ≤ P+(s, s′) and

∑
s′′∈S P−(s, s′′) ≤ 1 ≤

∑
s′′∈S P+(s, s′′) .

Here, P−(s, s′) and P+(s, s′) define intervals of probabilities, that represent
lower and upper bounds for the transition probabilities of moving from s to s′.
In the following we useMC◦ to denote the universe of IMCs.

In an IMC, for any state s, there is a choice for an admissible distribution
yielding the probabilities to reach successor states. A distribution σ ∈ Distr(S)
is admissible for an IMC mc◦ = (S , s0, P−, P+) and a state s ∈ S , iff, ∀ s′ ∈ S :

50

P−(s, s′) ≤ ρ(s′) ≤ P+(s, s′). We use ADistrmc◦ (s) for denoting the admissible
distributions for s and mc◦. As in Markov Decision Processes (MDP), the non-
determinism is resolved by schedulers. The notion of path for IMCs is analogous
to that presented for DTMCs, and therefore it is convenient to use the same
notation.

Definition 18 (Scheduler). Let mc◦ = (S , s0, P−, P+) be an IMC. A scheduler is
a function S : FPaths(S) 7→ ADistrmc◦ (πlast) for each path π ∈ FPaths(S). We
use Adm(mc◦) for the set of schedulers on mc◦.

Given a scheduler S ∈ Adm(mc◦) a probability space over paths can
be defined analogously as for DTMCs (see Definition 3); PSs stands for the
probability starting from the state s w.r.t. the scheduler S.

On IMCs, probabilistic reachability properties gives lower and upper bounds,
obtained considering the minimum and maximum probabilities w.r.t. all
schedulers.

Definition 19 (Abstract Reachability). Let mc◦ = (S , s0, P−, P+) be an IMC.
The lower and upper bound of the probability of reaching a state satisfying a
propositional symbol A ∈ AP, starting from s ∈ S , are defined as follows:

Reach◦A,mc◦ (s) =
[

inf
S∈Adm(mc◦)

PSs ({π ∈ C(s) | π[i] � A for some i ≥ 0}) ,

sup
S∈Adm(mc◦)

PSs ({π ∈ C(s) | π[i] � A for some i ≥ 0})
]
.

Similarly as for LTSs, we introduce the concepts necessary to state the
soundness and the precision of IMCs.

To relate DTMCs to IMCs, their abstract counterparts, we introduce the best
abstraction of a DTMC and of sets of isomorphic DTMCs.

Two IMCs mci = (S i, s0,i, Pi), i ∈ [1, 2] are isomorphic (mc1 ∼ mc2) iff
S 1 = S 2 and s0,1 = s0,2. We denote the universe of isomorphic DTMC with
P̃(MC).

Definition 20 (Best Abstraction of DTMCs). We define

• αMC :MC 7→ MC◦ such that αMC((S , s0, P)) = (S , s0, P, P)

• α̂MC : P̃(MC) → MC◦ such that α̂MC(X) ≡ (S (X), s0(X), P−∧, P
+
∧) and

∀s, s′ ∈ S (X) ,
P+
∧(s, s′) ≡ max(S ,P,s0)∈X P(s, s′) , P−∧(s, s′) ≡ min(S ,P,s0)∈X P(s, s′) .

51

As for LTS with αLTS, αMC does not introduce any approximation. Thus, the
probabilities derived by αMC are exact: ∀A ∈ AP,mc ∈ MC : [ReachA,mc(s0)]• =

Reach◦A,αMC(mc)(s0). Conversely, α̂MC, given a set of isomorphic DTMC, reports,
for each pair of states in the shared state space, the minimum and the maximum
transition probability with respect to all the DTMC.

Moreover, we introduce an approximation order vMC◦ , similar to [CGL09,
DJJL01].

Definition 21 (Order on IMCs). Let mc◦i = (S , s0, P−i , P
+
i), i ∈ {1, 2}, two IMCs.

We say that mc◦1 vMC◦ mc◦2 iff ∀s ∈ S , ADistrmc◦1 (s) ⊆ ADistrmc◦2 (s).

Intuitively, we say that mc◦1 vMC◦ mc◦2 iff, for each state, the set of admissible
distributions of the state in mc1

◦ is included in the set of admissible distributions
of the state in mc2

◦.
The following theorem states the soundness of the order on IMCs for

probabilistic reachability. In particular, mc◦1 vMC◦ mc◦2 guarantees that the lower
and upper bounds for probabilistic reachability obtained for mc1 are included in
the ones obtained for mc2.

Theorem 3.3.4. Let mc◦i = (S , s0, P−i , P
+
i), i ∈ {1, 2}, two IMCs.

If mc◦1 vMC◦ mc◦2 then ∀ A ∈ AP , s ∈ S : Reach◦A,mc◦2
(s) vI Reach◦A,mc◦1

(s) .

Proof. We examine only the case [ReachA,mc◦2 (s)]− ≤ [ReachA,mc◦1 (s)]−.
From mc◦1 vMC◦ mc◦2 it follows that ADistrmc◦1 (s) ⊆ ADistrmc◦2 (s).

In order to simplify the proof it is convenient to exploit the fact that
Reach−A,mc◦ (s) can be specified as a linear equations system [CGL09, DJJL01,
Kwi03, FLW06]. In particular, for h ∈ {1, 2} , [ReachA,mc◦h (s)]− =

⋃
i∈{0,∞} ρ

−,i
A,mc◦h

(s)
where

ρ−,iA,mc◦h
(s) =

1 if s � A,

0 if i = 0 ∧ s 2 A,

inf
ρ jh∈ADistrmc◦h

(s)

∑
s′∈S

ρ jh (s′) × ρ−,i−1
A,mc◦h

(s′) otherwise.

and where
⋃

stands for the least upper bound with respect to the underlying
order on pseudo-distributions, e.g. ρ1 ⊆ ρ2 iff for each s, ρ1(s) ≤ ρ2(s).

Intuitively, ρ−,iA,mc◦h
(s) reports the minimum probability to reach a state

satisfying A, starting from s, after i-iterates.
Therefore, it is enough to show that ρ−,iA,mc◦2

(s) ≤ ρ−,iA,mc◦1
(s), for every i ≥ 0.

The proof proceeds by induction.

52

(i = 0) There are two possibilities for ρ−,0A,mc◦2
(s). Either s � A and result is 1

or s 2 A and the result is zero. Both the cases are trivial as ρ−,0A,mc◦2
(s) =

ρ−,0A,mc◦1
(s).

(i > 0) There are two possibilities for ρ−,iA,mc◦2
(s). Either s � A and result is 1 or

the result is computed by

ρ−,iA,mc◦2
(s) = inf

ρ j2 ∈ADistrmc◦2
(s)

∑
s′∈S

ρ j2 (s′) × ρ−,i−1
A,mc◦2

(s′) (3.3)

The case of s � A is trivial, as we have explained in the case of i = 0. In
case (3.3), we observe that for ρ−,iA,mc◦1

(s) the result is

ρ−,iA,mc◦1
(s) = inf

ρ j1∈ADistrmc◦1
(s)

∑
s′∈S

ρ j1 (s′) × ρ−,i−1
A,mc◦1

(s′) (3.4)

In this case we have to compare (3.3) and (3.4). By inductive hypothesis
we have that ρ−,i−1

A,mc◦2
(s′) ≤ ρ−,i−1

A,mc◦1
(s′), so that we reduce to show

inf
ρ j2∈ADistrmc◦2

(s)

∑
s′∈S

ρ j2 (s′) ≤ inf
ρ j1∈ADistrmc◦1

(s)

∑
s′∈S

ρ j1 (s′) .

This is guaranteed by the fact that ADistrmc◦1 (s) ⊆ ADistrmc◦2 (s).

�

3.3.4 Derivation of Abstract Probabilistic Semantics
We define the abstract probabilistic translation function H◦ : LTS◦ → MC◦.
Moreover, we prove the soundness and precision of the abstract probabilistic
semantics using the notions of Section 3.3.3.

The abstract LTS reports on transitions the number of the rule which is
applied and the interval representing a possible range for its rate. From this
information, both lower and upper bounds for the probabilities of moving from
a state to another can be calculated. Following the guidelines of the derivation of
the DTMC from the concrete LTS, we introduce R◦ : S ×S 7→ I, and E◦ : S 7→ I
s.t. ∀s, s′ ∈ S

R◦(s, s′) =

I∑
t∈TS (s,s′)

rate◦(t) and E◦(s) =

I∑
s′∈S

R◦(s, s′).

53

Intuitively, R◦(s, s′) reports the interval of rates corresponding to the move from
s to s′, while E◦(s) is the abstract exit rate.

For all states s and s′ ∈ S , both lower and upper bounds of the probability
of moving from s to s′ can be determined by exploiting R◦(s, s′) and E◦(s).
For these purposes we need to consider the worst case and best case scenario,
respectively. That is, the transition to be maximized (minimized) takes as
rate value its upper (lower) bound and all the others take their lower (upper)
bound. This reasoning has to be properly combined with the special cases when
[E◦(s)]+ = 0 (the state s is stable) or [E◦(s)]− = 0 (the state s is stable for
some values of kinetic constant of some rules).

Definition 22 (Abstract Probabilistic Translation Function). We define
H◦ : LTS◦ → MC

◦ such that H◦((S , s0,→
◦)) = (S , s0, P−, P+), where

P−, P+ : S → PDistr(S) are obtained, for each s, s′ ∈ S , s , s′, as follows:

• if [E◦(s)]+ = 0,
then P+(s, s′) = P−(s, s′) = 0, P+(s, s) = P−(s, s) = 1;

• if [E◦(s)]+ > 0,
then

(a) if [E◦(s)]− = 0, then P+(s, s) = 1, P−(s, s) = 0

(b) if [R◦(s, s′)]− = 0, then P−(s, s′) = 0 else
P−(s, s′) = [R◦(s, s′)]−/([R◦(s, s′)]− +

∑
s′′∈S ,s′′,s′ [R◦(s, s′′)]+)

(c) if [R◦(s, s′)]+ = 0, then P+(s, s′) = 0 else
P+(s, s′) = [R◦(s, s′)]+/([R◦(s, s′)]+ +

∑
s′′∈S ,s′′,s′ [R◦(s, s′′)]−) .

The following theorem states that the approximation order over abstract
LTSs is preserved by the translation to IMCs.

Theorem 3.3.5. Let lts◦i = (S , s0,→
i
◦), i ∈ {1, 2}, be s.t. lts◦1 vLTS◦ lts◦2. We

have thatH◦(lts◦1) vMC◦ H◦(lts◦2).

Proof. From lts◦1 vLTS◦ lts◦2 we have that ∀s, s′ ∈ S

∀t◦1 = (s
η , β◦1
−−−→◦ s′) ∈→1

◦, ∃ t◦2 = (s
η , β◦2
−−−→◦ s′) ∈→2

◦ such that β◦1 vI β
◦
2 . (3.5)

We have to prove that (3.5)⇒ ADistrH◦(lts◦1)(s) ⊆ ADistrH◦(lts◦2)(s).
By Def. 22 of H◦, for i ∈ {1, 2}, H◦(lts◦i) = (S , s0, P−i , P

+
i ,). Moreover,

ADistrH◦(lts◦i)(s) = ρi s.t. ∀s′ ∈ Next(s) : P−i (s, s′) ≤ ρi(s′) ≤ P+
i (s, s′).

54

We have that P+
i , P−i , are defined, according to H◦, maximizing and

minimizing R◦(s, s′)/E◦(s). Namely, for the general case we have that,
P−i (s, s′) = [R◦(s, s′)]−/([R◦(s, s′)]− +

∑
s′′∈S ,s′′,s′ [R◦(s, s′′)]+) =[∑I

s
η , β◦

−−−→◦∈→
i
◦ s′
β◦

]+
/(

[∑I
s

η , β◦

−−−→◦∈→
i
◦ s′
β◦

]+
+

∑
s′′∈S ,s′′,s′

[∑
s

η′ ,β◦

−−−→◦ s′′∈→i
◦

β◦
]−).

By (3.5), we have that P−1 (s, s′) ≤ P−2 (s, s′) and, for the same reasoning on P+
1 ,

P+
1 (s, s′) ≥ P+

2 (s, s′). Similarly, for the special cases, when [E◦(s)]+ = 0 or
[E◦(s′)]− = 0, by (3.5) we have that P−1 = P−2 and P+

1 = P+
2 .

Thus ∀s ∈ S , ADistrH◦(lts◦1)(s) ⊆ ADistrH◦(lts◦2)(s). �

The following theorems show the soundness and the precision of the IMC
obtained by our approach. Specifically, we relate the IMCH◦(LTS ◦(M◦)) with
the DTMC H(LTS (M)) for each M represented by M◦. Following the same
reasoning done for LTSs, we exploit the abstraction functions αMC and α̂MC,
reporting the best abstraction of a DTMC and of a set of isomorphic DTMC,
respectively.

To prove the main theorem, we introduce the following lemma, stating that
αMC ◦ H = H◦ ◦ αLTS.

Lemma 3.3.6. ∀M ∈ M , αMC(H(LTS (M))) = H◦(αLTS(LTS (M))) .

Proof. Let M = (R,K , s0), LTS (M) = (S , s0,→). We have H(LTS (M)) =

(S , s0, P) and αMC(H(LTS (M))) = (S , s0, P, P).
On the other hand we have αLTS(LTS (M)) = (S , s0,→

α
◦) where

→α
◦ = {s′

η , β•

−−−→◦ s′′ | s′
η , β
−−−→ s′′ ∈→} and H◦(αLTS(LTS (M))) = (S , s0, P, P).

�

The following theorem shows that H◦(LTS ◦(M◦)) coincides with the best
abstraction, obtained by means of α̂MC, of the set of isomorphic DTMCs
{H(LTS (M))|M ∈ γ(M◦)}. As a consequence, H◦(LTS ◦(M◦)) is also a sound
approximation of each DTMC H(LTS (M)) such that M ∈ γ(M◦) (as stated by
Corollary 3.3.8).

Theorem 3.3.7 (Precision ofH◦).
∀M◦ ∈ M◦ : α̂MC({H(LTS (M))|M ∈ γ(M◦)}) = H◦(LTS ◦(M◦)) .

Proof. Let Ĥ(M◦) = {H(LTS (M))|M ∈ γ(M◦)} and L̂TS (M◦) = {LTS (M)|M ∈
γ(M◦)}. By Theorem 3.3.2 it is enough to prove α̂MC(Ĥ(M◦)) = H◦(α̂LTS(L̂TS (M◦)).
Here α̂MC(Ĥ(M◦)) = (S , s0, P−∧, P

+
∧) andH◦(α̂LTS(L̂TS (M◦))) = (S , s0, P−, P+).

We show that P+
∧ = P+; the same reasoning applies to P−∧ = P−.

55

By definition of α̂MC andH , we have for the general case that,
∀s, s′ ∈ S ,

P+
∧(s, s′) ≡ max

(S ,P,s0)∈Ĥ(M◦)
P(s, s′)

= max
(S ,s0,→)∈L̂TS (M◦)

R(s, s′)/(R(s, s′) +
∑
s′′,s′

R(s, s′′))

= max
(S ,s0,→)∈L̂TS (M◦)

(∑
(s

η , β

−−−→s′)∈→

β
)
/
(∑

(s
η , β

−−−→s′)∈→

β +
∑

(s
η′ ,β

−−→s′′)∈→, s′,s′′

β
)
. (3.6)

Moreover, by definition ofH◦, we have for the general case that, ∀s, s′ ∈ S ,

P+(s, s′) ≡ [R◦(s, s′)]+/([R◦(s, s′)]+ +
∑

s′′∈S , s′′,s′ [R◦(s, s′′)]−) =[∑I
s

η , β◦

−−−→∧
◦

s′
β◦

]+
/
([∑I

s
η , β◦

−−−→∧
◦

s′
β◦

]+
+

∑
s′′∈S , s′′,s′

[∑
s

η′ ,β◦

−−−→∧
◦

s′′,
β◦

]−)
=

∑
s

η , β◦

−−−→∧
◦

s′
[β◦]+/(

∑
s

η , β◦

−−−→∧
◦

s′
[β◦]+ +

∑
s

η′ ,β◦

−−−→∧
◦

s′′, s′,s′′
[β◦]−). (3.7)

For the general case, it remains to prove that (3.6) = (3.7), that is true by the
fact that maximizing a/(a+b) corresponds to maximize a and minimize b, and by
definition of γ, which ensures that the maximum in L̂TS (M◦) of

∑
(s

η , β

−−−→s′)∈→
β

is equal to
∑

s
η , β◦

−−−→∧
◦

s′
[β◦]+ and the minimum L̂TS (M◦) of

∑
(s

η′ ,β

−−→s′′)∈→,s′,s′′
β

is equal to
∑

s′′∈S ,s′′,s′ of
[∑

s
η′ ,β◦

−−−→∧
◦

s′′,
β◦

]−) . The special cases in which either

P+(s, s′) = 1 and s = s′ or P+(s, s′) = 0 and s , s′ are trivial. �

Corollary 3.3.8 (Soundness ofH◦).
∀M◦ ∈ M◦ , M ∈ γ(M◦) : αMC(H(LTS (M))) vMC◦ H◦(LTS ◦(M◦)) .

Proof. Follows from αMC(H(LTS (M))) vMC◦ α̂MC({H(LTS (M))|M ∈ γ(M◦)}).
�

The following theorem states our main result: the soundness and precision
results on IMC are lifted to probabilistic reachability, that is the lower and upper
bounds of probabilistic reachability we obtain onH◦(LTS ◦(M◦)) are exactly the
most precise values which are correct. Indeed, they correspond to the minimum
and the maximum of the concrete probabilities corresponding to each concrete
system M represented by M◦.

56

Theorem 3.3.9.⋃I
mc∈{H(LTS (M))|M∈γ(M◦)}[ReachA,mc(s)]• = Reach◦A,H◦(LTS ◦(M◦))(s) .

Sketch of proof. In the definition of Reach◦A,mc◦ (s) the probability of a path is
computed by associating each step from a state s to a state s′ in the path with
a probability taken form one of the admissible distributions for s and mc◦. The
proof reduces to show that for each state s of both α̂MC andH◦(LTS ◦(M◦)), we
have that(
∃M ∈ γ(M◦) s.t. (H(LTS (M)) = (S , s0, P) ∧ P(s) = ρ)

)
⇔ ρ ∈

ADistrH◦(LTS ◦(M◦))(s). The implication ⇒ follows from M ∈ γ(M◦) and
Theorem 3.3.7. The implication ⇐ follows from the definition of γ, γ(M◦)
contains a concrete model M for each possible combination of values chosen
from the intervals of M◦, and from the fact that LTS ◦ and H◦ do not introduce
admissible distribution that are not present in anyH(LTS (M)). �

Finally, we conclude that the IMC, derived from the abstract LTS of an
abstract system M◦, gives conservative bounds for probability of reachability
properties for each concrete system M ∈ γ(M◦).

Theorem 3.3.10. ∀M ∈ γ(M◦), A ∈ AP, s ∈ S (LTS(M)),

[ReachA,H(LTS(M))(s)]• vI Reach◦A,H◦(LTS◦(M◦))(s) .

Proof.
From Theorem 3.3.2 and 3.3.5, H◦(αLTS◦ (LTS(M))) vMC◦ H◦(LTS

◦(M◦)).
From Lemma 3.3.6, αMC(H(LTS(M))) vMC◦ H◦(LTS

◦(M◦)).
By Theorem 3.3.4, Reach◦A,αMC(H(LTS(M)))(s) vI Reach◦A,H◦(LTS◦(M◦))(s) and
finally, by Definition 20, [ReachA,H(LTS(M)))(s)]• vI ReachA,H◦(LTS◦(M◦))(s). �

Example 3 (Abstract System Model Checking). We consider the system of
reactions introduced in Example 2. In this case, we assume that the kinetic
rates of the rules are not exact, but described by intervals. For instance, we
consider the abstract system M◦ex = (R,K◦, s0) where R and s0 are the same of
Example 2, while K◦ = {k◦1 = [1, 5], k◦2 = [1, 5]}. Note that the concrete system
Mex of Example 2 is one of the systems represented by M◦ex, i.e. Mex ∈ γ(M◦ex).

Figure 3.3 shows LTS ◦(M◦ex) and H◦(LTS ◦(M◦ex)), where the state space S
is the same of Example 2. By computing the probability of obtaining at least
two complexes XY , we obtain [4/104, 1/2] ×I [1/51, 1/3] = [1/1326, 1/6]: the
concentration of reagent W makes the degradation more likely to happen than
the binding of reagent X and Y . This result shows that the abstraction is precise

57

Figure 3.3: LTS ◦(M◦ex) andH◦(LTS ◦(M◦ex)).

enough to observe the same behavior of Example 2, even with imprecise reaction
rates.

3.4 Case Study: Tumor Cell Growth
We briefly present the application of the proposed approach to a model of
tumor growth, proposed by Villasana and Radunskaya and studied with Delay
Differential Equations (DDEs) in [VR03].

Tumor growth is based on cell divisions (or mitosis). The cell cycle is the
process between two mitosis, and it consists of four phases: the G1 phase (a
resting phase or gap period), the S phase where the replication of DNA occurs,
the G2 gap period, and the mitosis phase M in which the cells segregate the
duplicated sets of chromosomes between daughter cells. The three phases G1,
S, and G2 constitute the pre-mitotic phase, also called inter-phase.

The simplest model proposed in [VR03] considers two populations of tumor
cells: the population of tumor cells during cell cycle inter-phase, and the
population of tumor cells during mitosis. Such a model can be expressed as
the following reactions:

R = {R1 : TI
a1
−→ TM , R2 : TM

a4
−→ 2TI , R3 : TI

d2
−→ , R4 : TM

d3
−→ }

where TI and TM are tumor cells in inter-phase and in mitosis, respectively.
Reaction R1 represents the passage of a tumor cell from the inter-phase to the
mitosis phase, R2 represents the mitosis, whereas R3 and R4 represent tumor cell
death.

Let d be the rate at which mitotic cells disappear, namely d = d3 + a4.
Figure 3.4 shows the results of the analytical study of the DDEs model, by setting
the parameters a4 and d2 to 0.5 and 0.3, respectively, and by varying a1 and d.

58

Figure 3.4: The regions which describe the different behaviors of the DDEs
model by varying parameters a1 and d.

There are two regions. The region in which the tumor grows is R-I, while in R-II
both kinds of tumor cells disappear. A concrete probabilistic model of tumor
growth could be trivially obtained from reactions R. We have constructed three
abstract systems of tumor growth, M◦1 ,M

◦
2 and M◦3 , by replacing rates in the

reactions with intervals. Actually, in all the three systems we have replaced a1

with [0.8, 0.9], a4 with 0.5•, d2 with 0.3•. Concerning d3, we have replaced
it with [0.05, 0.1], [1, 1.4] and [0.005, 2] in M◦1 ,M

◦
2 and M◦3 , respectively. This

corresponds to considering a region in R-I, a region in R-II and a region across
the line separating R-I and R-II (see Figure 3.4). Moreover, we have considered
an initial population consisting of 10 tumor cells in inter-phase and 10 tumor
cells in mitosis.

Formally, M◦i = (R,K◦i , s0), with i ∈ {1, 2, 3}, where s0 = {(TI , 10), (TM , 10)},

K◦i = [[0.8, 0.9]; 0, 5•; 0, 3•; di
3],

where d1
3 = [0.05, 0.1], d2

3 = [1, 1.4], d3
3 = [0.005, 2].

In order to perform model checking on the abstract systems we have
developed a translator [AMS] of abstract MSR semantics into equivalent MDP
by following the extreme distribution approach of [FLW06]. In particular, it
computes in effective way the extreme distributions from intervals of probability
reported by the IMC probabilistic semantics of the system. The tool invokes
PRISM [PRI] for the verification of the properties on the corresponding MDP

59

model. Moreover, in order to obtain a finite MDP, we have, heuristically, limited
the number of states of the model to 104. Specifically, we generate states with
a breadth-first approach, starting with s0 and we put a deadlock loop on states
when we reached a number of states equal to 104. As states on this border
correspond to system configurations with a very big number of individuals, even
if this artifact affects the behavior of the system, its effect on probability of
studied reachability properties, where we test states with at most 20 individuals,
is minimal.

In Figure 3.5 we show the results of model checking of property Reach◦(TM =

x) in M◦1 ,M
◦
2 and M◦3 by varying x. In M◦1 both the minimum and the maximum

probabilities tend to zero for small values of x while they are both equal to 1 for
values greater than or equal to 10 (the initial value of TM). In M◦2 it holds the
opposite. In M◦3 we have that both probabilities are equal to 1 when x is 10, but
they tend to the interval [0, 1], namely to complete uncertainty, both for greater
and smaller values of x. A more immediate representation of systems dynamic
behavior can be obtained plotting Reach(TM = y ∧ time = x), where time is the
number of steps of the path that reaches a state satisfying TM = y (Figure 3.6).

The obtained results agree with the analytic ones: the results on M◦1 describe
tumor growth, those on M◦2 describe tumor decay, those on M◦3 leave uncertainty.

Our approach is more precise with respect to analytic studies, as it looks at all
possible behaviors of the modelled system, rather than a single average behavior.
Moreover, a more realistic discrete probabilistic semantics is considered, instead
of a continuous deterministic one.

60

Fi
gu

re
3.

5:
M

od
el

ch
ec

ki
ng

of
R

ea
ch
◦
(T

M
=

x)
in

,M
◦ 1

(t
op

le
ft

),
M
◦ 2

(t
op

ri
gh

t)
,M

◦ 3
(b

ot
to

m
).

61

Fi
gu

re
3.

6:
M

od
el

ch
ec

ki
ng

of
R

ea
ch

(T
M

=
y∧

tim
e

=
x)

in
,f

ro
m

le
ft

to
ri

gh
t,

M
◦ 1
,M
◦ 2
,M
◦ 3
.T

he
pr

ob
ab

ili
ty

is
ex

pr
es

se
d

by
co

lo
ri

nt
en

si
ty

.T
he

pl
ot

s
of

[R
ea

ch
]+

,[
R

ea
ch

]−
an

d
[R

ea
ch

]+
−

[R
ea

ch
]−

ar
e

sh
ow

n
fr

om
to

p
to

do
w

n.

62

3.5 Comparison with Related Works

The abstraction of probabilistic semantics has been widely studied over the last
few years.

The approaches of [FLW06, DJJL01, SVA, Hut05, Šku06, Šku09] present
similar abstractions of probabilistic systems, using MDP or IMC. The abstrac-
tions are designed for dealing with the traditional state explosion problem. In
particular, the abstract model is derived from the concrete one (a DTMC), by
partitioning the concrete state space and by calculating the abstract probability
distributions directly from the concrete ones. Others approaches aimed to
fight state explosion problem are those based on infinite state abstraction
[HHWZ10], predicate abstraction [WZH07, KKNP08], symmetry reduction
[DMP07] or counter example driven abstraction refinement [HWZ08]. We refer
to [KKLW07a, KKLW07b, Kli10] for a more detailed discussion of abstraction
of probabilistic and stochastic systems.

We use abstraction techniques in a different way in order to deal with the
uncertainty about kinetic rates, typical of biological system modelling. In our
context the abstract probabilistic model (IMC), representing an infinite set of
concrete models with different kinetic rates, is calculated in effective way from
an LTS semantics.

A similar approach, is presented in [CGL09, GL09] to validate probabilistic
temporal properties of biological systems. The analysis computes an IMC by
approximating the multiplicity of individuals, present in a state, using intervals
of integers.

The proposal of [DFF+08, DFFK08] applies abstract interpretation tech-
niques, in the context of formal studies of biological systems, to compute
efficiently a superset of reachable complexes, and to generates smaller systems
of differential equations from the concrete one.

Finally, [Mon05, DPW00] investigate the application of abstract inter-
pretation into the context of standard concurrent probabilistic programming
languages.

3.6 Conclusions

In this Chapter we have considered biological systems modelled by MSR, where
rewriting rules, corresponding to reactions, are enriched by real valued kinetic
constraints. Our framework supports probabilistic model checking of MSR

63

systems with uncertain kinetic rates. Model checking an abstract system gives
conservative probabilistic bounds with respect to the (infinite) set of concrete
models which are abstracted. This approach allows us to safely and effectively
manage in a finite way the semantics of an infinite set of (finite) systems.
Moreover results obtained on an abstract system are exactly the most precise
values which are correct. Indeed, they corresponds to the minimum and the
maximum of the concrete probability values corresponding to each concrete
system represented by an abstract one.

We have developed an automatic verifier of abstract systems [AMS]: the
tool, based on PRISM [PRI], uses a translation (similar to that of [FLW06]) of an
abstract probabilistic model (IMC) into a MDP. This translation has exponential
complexity as it requires the computation of all the extreme distributions whose
number grows exponentially with the number of uncertain parameters. More
efficient algorithms, which calculate the extreme distributions on-the-fly, could
be applied (see [FLW06, SVA]). Also the use of approximated verification
approach presented by [HP09] can be used.

We apply the presented approach to a model of tumor growth [VR03],
obtaining more precise results than the ones obtained with analytical studies.

With regard to future development of our work, since in the presented case
study we made use of an ad-hoc techniques to deal with infinite state space,
would be interesting to combine the proposed approach, dealing with uncertainty
of kinetic rates, with abstraction approaches dealing with infinite systems with
infinite state space [BLO98, CK01, MP08, HHWZ09].

Moreover, we plan to investigate the extension of our methodology to
the abstraction of Continuous-Time Markov Chains (CTMC), for example by
following the approach of [KKLW07a], based on uniform CTMC [BKHW05].
In particular, from transition rates of LTSs it is possible to derive uniform CTMC
of the form (S , s0, P−, P+, Euni f). On such a structure, the uniform exit rate
Euni f can be computed as Euni f ≥ maxs∈S [E(s)]+ and, consequently, continuous
time rates can be defined as P(s, s′) = [[R◦(s, s′)]−/Euni f , [R◦(s, s′)]+/Euni f] and
P(s, s) = [1 −

∑
s′∈S P−(s, s′) , 1 −

∑
s′∈S P+(s, s′)].

Special cases are when: (a) [E(s)]+ = 0 and then P(s, s) = [1, 1] and
P(s, s′) = [0, 0]; (b) [E(s)]− = 0 and then [P(s, s)]+ = 1; (c) [R(s, s′)]+ = 0
and then P(s, s′) = [0, 0]; (d) [R(s, s′)]− = 0 and then [P(s, s′)]− = 0.

64

Chapter 4

Maximally Parallel
Probabilistic Semantics for
Multiset Rewriting

Maximally parallel semantics have been proposed for many formalisms as an
alternative to the standard interleaving semantics for some modelling scenarios.
Nevertheless, in the probabilistic setting an affirmed interpretation of maximal
parallelism still lacks.

In this chapter, we define a synchronous maximally parallel probabilistic
semantics for Multiset Rewriting tailored to describe, simulate and verify
systems evolving with maximally parallel steps. Each step of the proposed
semantics is parallel: each reaction can happen multiple times; and it is maximal
as it leaves no enabled reaction i.e. as many reactions as possible are executed.
We define a maximally parallel probabilistic semantics in terms of Discrete
Time Markov Chain for systems described by stochastic Multiset Rewriting. We
propose a simple, maximally parallel, model of Caenorhabditis elegans vulval
development on which we show probabilistic simulations results.

4.1 Introduction
Multiset Rewriting is used to model the dynamic behavior of systems composed
by unstructured objects, each of which may come in contact with each other,

taking part in interactions described by rewriting rules. Typically, for such
systems an interleaving semantics is given: a step of the computation occurs
each time a single reaction happens, resulting in a totally asynchronous behavior,
i.e. all possible interleaving of transitions are possible. Probabilistic or
stochastic interleaving semantics, has been successfully used, for instance,
to describe the dynamics of chemical reactions [BCL+03, CS06] or network
protocols [CDL+99].

Nevertheless, there exist modelling scenarios for which the standard in-
terleaving semantics seems to be not adequate. Fisher et al. [FHMP07,
FHMP08] argue that (unbounded) asynchrony semantics may not mimic real-
life biological behavior properly, especially cellular population behavior, as it
allows a part of the systems (e.g. a single cell) to evolve indefinitely while
other system components may stall. The interleaving semantics is not adequate
also for modelling phase-wise populations dynamics. Indeed, in such systems
populations evolve in phases, often related to environmental conditions (e.g.
seasonality). Within a phase, each individual makes a choice about the action to
be taken among those possible. The set of choices made by individuals identifies
a single step of the whole population evolution. For this kind of synchronized
behavior the interleaving semantics may be not the best choice.

For these modelling scenarios a parallel (i.e. on a single transitions
many components can evolve) and maximal (i.e. no components can remain
blocked) semantics is required. A synchronous semantics has been proposed,
for instance, for P-systems [Pău02] and Petri nets with firing under Maximal
Strategy [Bur80].

Here we present a maximally parallel probabilistic semantics for MSR,
which extends the standard interleaving probabilistic semantics of MSR. In
particular, the MSR formalism used here is analogous to the one presented in
Section 3.2, where also its interleaving semantics is given. Such a seman-
tics is computed in terms of Discrete Time Markov Chain (DTMC), via the
construction of a Labeled Transition System (LTS). This allows the dynamics
of biological systems with maximally parallel evolution to be described, and
such systems to be analyzed through both probabilistic simulation and model
checking tools.

In Section 4.2 we formalize maximally parallel MSR models; in Section 4.3
we define their semantics in terms of LTS and in Section 4.4 we describe the
derivation of a probabilistic semantics in terms of DTMC. Some results about
branching complexity in maximally parallel MSR are discussed in Section 4.5.
In Section 4.6 we present a case study: the modelling and analysis, through

66

probabilistic simulation, of a simple model of Caenorhabditis elegans vulval
development. We consider related works in Section 4.7 and we discuss future
work directions and conclude in Section 4.8.

4.2 Maximally Parallel Multiset Rewriting
Models

As in the previous section, to model biological systems we adopt Multiset
Rewriting (MSR) [CDL+99] where rewriting rules are enriched with non
negative real kinetic constants. In this model, multisets are states of the
computation and transitions between states are obtained by applying rewriting
rules.

Given a multiset m ∈ MS(X) we use |m| to denote its cardinality, i.e. the
number of elements contained in X. Assuming an arbitrary order on elements of
X, with X[i], i ∈ [1, |X|] we denote the ith element of X.

A multiset can be used to represent a configuration of a biological system,
while events may be modelled by multiset rewriting rules. A rewriting rule
is a triple (l, r, k) where l and r are multisets, called reactants and products,
respectively. Each rule has associated a kinetic constant, k ∈ R>0, that is,
roughly, an indication of the propensity of the group of individuals l to take
part the represented event. In the following, given a set of rewriting rules R, we
use lR, rR and kR to denote the components of R = (lR, rR, kR) ∈ R.

Each rewriting rule expresses a possible behavior for a certain group of
individuals, with a numeric rate expressing the propensity to make such a choice
when individuals can take part in different behaviors.

A system is a tuple S = (Σ,R, s0) where Σ is an n-sized set of species
interacting in the system through the rules in the m-sized set R of rewriting
rules, and s0 is a multiset representing the starting configuration of the system.

Definition 23 (System). A system M is a triple (Σ,R, s0):

• Σ is a finite set of species names of size n;

• R = {R1, . . . ,Rm}, Ri ∈ MS(Σ) ×MS(Σ) × R>0, is
a set of rewriting rules;

• s0 ∈ MS(Σ) is the starting state.

67

In the following we useM to denote the universe of systems.
Transitions correspond to the application of rules in a maximally parallel

way: each individual takes part in a reaction, if possible, into the current step,
and all individuals perform the actions in parallel. Each step is parallel as each
reaction can happen multiple times, and it is maximal as it leaves no enabled
reaction, i.e. as many reactions as possible are executed. Thus, each step is
associated with a multiset µ ∈ MS(R) expressing how many times each reaction
is applied.

Given a system (Σ,R, s0), a multiset µ ∈ MS(R) is applicable to a state s,
denoted as

IsApplicable(µ, s,R), iff ∀a ∈ Σ :
∑
R∈R

lR(a) ∗ µ(R) ≤ s(a)

i.e. there are enough symbols in the configuration to perform all the rules in µ
with the corresponding multiplicity.

The result of removing the reactants associated with the rules multiplicity,
expressed by µ, from s′, and the result of applying µ on s′ are, respectively

Rem(µ, s′,R) = s′′ s.t. ∀a ∈ Σ, s′′(a) = s′(a) −
∑
R∈R

(lR(a) ∗ µ(R)) ,

Apply(µ, s′,R) = s′′ s.t. ∀a ∈ Σ, s′′(a) = Rem(µ, s′,R) +
∑
R∈R

(rR(a) ∗ µ(R)) .

The state s′′, resulting from the parallel application of rules in R expressed
by µ, is obtained from s′ by removing, for each rule R ∈ R, µ(R) times lR and
then by inserting µ(R) times rR.

The multiset of rules represented by µ is maximal if IsApplicable(µ, s,R),
and no rules R ∈ R can be applied to the remaining individuals in the same step,
i.e. for any R ∈ R : Rem(µ, s,R) + lR. We denote this as IsMaximal(µ, s,R).

As a maximally parallel step should correspond to one time step in the
evolution of the biological system, the value k associated with each reaction
should be chosen carefully. The kinetic constants is particularly important when
two or more reactions compete for reactants: two reactions competing for the
same reactant should have a ratio between rates equal to the ratio between their
propensity. On the other hand, it should be stressed that not competing reactions
are always executed as many times as possible. If a species A ∈ Σ could not be
modified, a “null” rule should be included for such species e.g. ({A}, {A}, k).

68

In the following we describe how to associate a maximally parallel proba-
bilistic semantics to systems through the construction of a Labeled Transitions
System semantics and their translation into a DTMC.

4.3 Maximally Parallel Labeled Transition
System Semantics

To describe the evolution of a system we adopt a Labeled Transition System
(LTS) semantics with a transition relation of the form s′

µ , r
−−→ s′′. Here, s′ and s′′

are multisets describing the system configurations before and after a maximally
parallel step; µ ∈ MS(R) is a multiset, representing how many times each rule
is applied; r ∈ R>0 is the transition rate.

The application of a multiset of rules µ to a state s′ is formalized by the
inference rule

IsMaximal(µ, s′,R)

r = Rate(µ , s′ , R) s′′ = Apply(µ , s′, R)

s′
µ , r
−−→ s′′

(4.1)

where
Rate(µ, s,R) = MUL(µ, s,R) ∗ KIN(µ, s,R) , (4.2)

MUL(µ, s,R) =
∏
a∈Σ

∏
i∈[1,m]

s.t. Applied(i,µ)

(s(a) −
i∑

r=1
lR[r](a) ∗ µ(R[r])

lR[i](a) ∗ µ(R[i])

)
, (4.3)

KIN(µ, s,R) =
∏
R∈R

LRR(R, s,R)µ(R) , (4.4)

LRR(R, s,R) =
∏
a∈Σ

s.t. lR(a)>0

LIRP(R, s, a,R)lR(a) , (4.5)

LIRP(R, s, a,R) =
P(R, s, a,R) ∗ kR∑

R′∈R
s.t. Enabled(R′,s,R)

P(R′, s, a,R) ∗ kR′
, (4.6)

P(R, s, a,R) =

(
MaxReq(a, s,R)

lR(a)

)
, MaxReq(a, s,R) = max

R∈R
s.t. Enabled(R,s,R)

lR(a) ,

(4.7)

69

Enabled(R, s,R) = (lR ⊆ s) and Applied(i, µ) = µ(R[i]) > 0 .

The rate associated with a maximally parallel transition expressed by
µ, Rate(µ, s,R), is equal to the product of the kinetics of such an event,
KIN(µ, s,R), by the multiplicity of the event, MUL(µ, s,R) (4.2).

The multiplicity MUL(µ, s,R) of a maximally parallel rewriting event µ is
equal to the number of ways in which the event can be realized. This corresponds
to the product, for each applied rule, for each species, of the number of way of
applying the rule (4.3). Note that MUL yields the same results for every order
of evaluation of the rules (that is every evaluation order of µ)1.

The kinetics of the event expressed by µ, KIN(µ, s,R), is given by the
product of the propensity that each reaction R ∈ R is applied in the state s,
LRR(R, s,R) (for Local Rule Rate), raised to the power of the number of times
the rule is applied, as expressed by µ(R) (4.4).

The propensity that a reaction Rr is applied once from a configuration s is
LRR(R, s,R). This is equal to the product, for each species a ∈ Σ involved (that
is, s.t. lR(a) > 0), of the probability that an individual of the species take part
in the reaction, that is LIRP(R, s, a,R) (for Local Individual Rule Probability),
raised to the power of the number of individuals required for the species (lR(a)).

To obtain the probability that an individual is involved in a certain reaction
we need to “normalize” the rates associated with the rules, expressing the
propensity of a group of individuals (defined by its left hand side) to take part in a
reaction, into a probability distribution on each individual. Such a normalization
depends on the state s of the system as it concerns only enabled rules. Actually,
for each species a ∈ Σ, we consider MaxReq(a, s,R), the maximum number
of individuals of such species needed by an enabled rule; then, through LIRP
function, we spread the kinetic constants on each individual (4.6). We consider
how many times the number of individuals of species a ∈ Σ required by a
rule R can be chosen in MaxReq(a, s,R) individuals: that is the number of
way in which the rule requirements lR(a) can be found in the requirements of
the maximum demanding rule (4.7). Note that the co-domain of LIRP, and
consequently of LRR, is [0, 1].

An example of how kinetic rates are normalized is shown in Fig. 4.1. Note
that the kinetic constants are not spread among different species.

We define the function LTS : M 7→ LTS, such that LTS (M), with M =

(Σ,R, s0), is the LTS = (S , s0,→), obtained by transitive closure of inference
rule (4.1) starting from s0. We use LTS to denote the universe of LTSs.

1e.g.
(

N
M

)(
N−M

T

)(
N−M−T

K

)
= N!

M!T !K!(N−M−T−K)! =
(
N
K

)(
N−K

T

)(
N−K−T

M

)
70

Figure 4.1: Example of kinetic rates normalization done by LIRP (4.6): the rates
associated with the rules, expressing the propensity of a group of individuals, are
normalized into a probability distribution for each individual.
Let R = {R1,R2,R3} where

R1 = {A
k1
−→ B} , R2 = {2A

k2
−→ C} , R3 = {4A , C

k3
−→ D}

with
k1 = 1, k2 = 2, k3 = 3 and s = {4A, C} .

We have

• LIRP(R1, s, A,R) = kA
1 =

(
4
1

)
∗ k1(

4
1

)
∗ k1 +

(
4
2

)
∗ k2 +

(
4
2

)
∗ k3

=
4

19
;

• LIRP(R2, s, A,R) = kA
2 =

12
19

;

• LIRP(R3, s, A,R) = kA
3 =

3
19

;

• LIRP(R3, s,C,R) = kC
3 = 1.

71

4.4 Maximally Parallel Probabilistic
Semantics

The maximally parallel probabilistic semantics is formalized as a DTMC (as
defined in Section 2.3.2, Definition 2) which is obtained for the LTS semantics.

As in the previous chapter, we restrict our attention to finitely branching
DTMCs and We useMC to denote the universe of (finitely branching) DTMCs.

To derive a DTMC from an LTS, we have to compute, for each pair of states,
s and s′, the probability of moving from s to s′, by exploiting transition rates.
Thus, we introduce two functions R : S × S 7→ R>0 and E : S 7→ R>0, such that

R(s, s′) =
∑

s
µ , r
−−→s′∈→

r and E(s) =
∑
s′∈S

R(s, s′) .

Intuitively, R(s, s′) gives the rate of the set of transitions from s to s′, while E(s)
computes the exit rate of the state s. The probability of moving from s to s′ is
derived from R(s, s′) and E(s), in standard way, by the functionH .

Definition 24 (Probabilistic Semantics). We define a function H : LTS →
MC as H((S , s0,→)) = (S , s0, P), where P : S → Distr(S) is the probability
transition function, s.t. , ∀s, s′ , s ∈ S : if E(s) = 0, then P(s, s′) = 0, and
P(s, s) = 1; P(s, s′) = R(s, s′)/E(s) otherwise.

We now explain the proposed probabilistic semantics by two examples.

Example 4. Let S ex = (Σex,Rex, s0ex) with Σex = {A, B,C},
Rex = {R1 = {{A}, {B}, 1} ; R2 = {{A}, {C}, 2} } and s0ex = {3A}.

The number of possible outcomes of such system corresponds to the number
of success in three flips of an unfair coin, and their probabilities are described
by a Bernoulli distribution where p = 1/(1 + 2) and 1− p = 2/(1 + 2). The same
result can be obtained by the construction of the LTS of the system (see Fig. 4.2).

In more detail, the following events are possible:

• 3 times R1, 0 times R2, with multiplicity 1
has a probability of 1 ∗ (1/3)3 = 1/27

• 2 times R1, 1 time R2, with multiplicity 3
has a probability of 3 ∗ (1/3)2 ∗ (2/3) = 6/27

• 1 time R1, 2 times R2, with multiplicity 3
has a probability of 3 ∗ (1/3) ∗ (2/3)2 = 12/27

72

Figure 4.2: LTSs of Example 4 (left) and Example 5 (right).

• 0 times R1, 3 times R2, with multiplicity 1
has a probability of 1 ∗ (2/3)3 = 8/27.

Note that this case does not require to use the translation function H; the
rates reported on the LTS are probability distributions on exit transitions and
can be directly used in the DTMC. When all the rules are context free and they
all compete for the same species, we have that ∀s ∈ S : P(s) = R(s) ∈ Distr(S)
and the normalization done byH is not needed.

Example 5. Consider the previous example S ex = (Σex,Rex, s0ex), and replace
R2 with {{2A}, {C}, 2} in R. The main difference is that the second reaction can
happen only if 2 individuals of species A are present. In this case through the LTS
construction we assign to each transition a weight, expressing the propensity of
the related maximally parallel step, which is proportional to the kinetic rates
associated with the reactions and to the multiplicity of the events (the number
of possible assignments of individuals to reactions). In this case, we obtain the
LTS of Figure 4.2.

Then, by applying the translation functionH we get the following probability
distribution of events:

• 3 times R1, 0 times R2, with multiplicity 1
has rate 1 ∗ (1/3)3 = 1/9 corr. to a probability of 1/7

• 1 time R1, 1 time R2, with multiplicity 3
has rate 3 ∗ (1/3) ∗ (2/3) = 6/9 corr. to a probability of 6/7.

73

(n, m) 1 2 3 4 5 6 . . .
1 1 2 3 4 5 6 . . .
2 1 3 6 10 15 21 . . .
3 1 4 10 20 35 46 . . .
4 1 5 15 35 70 116 . . .
5 1 6 21 46 116 232 . . .

. . .

Figure 4.3: Number of transitions exiting from s0 in S ex of Example 6 where
n = s0(A0), m = |R|.

4.5 Notes on the Maximally Parallel Multiset Rewriting
Branching Complexity

A major drawback of the maximally parallel semantics is that the number of
transitions exiting from a state (i.e. the branching complexity) grows with
respect to the size of the population (i.e. the total number of individuals
represented by the state). In the following we use Tr(s,R) to denote the
transitions exiting from a state s using the rules in R.

Example 6. Let S ex = (Σex,Rex, s0ex) with Σex =
⋃m

i=0 Ai,
Rex =

⋃m
i=1 R[i] = ([A0], [Ai], 1) and s0ex = {nA}. The number of transitions

exiting from s0 are shown in Figure 4.3.

In general, the number of transitions exiting from a state is difficult to obtain.
If we focus on a particular case, namely systems using only context free rewriting
rules, we are able to compute accurately such a number, while in general, with
arbitrary rewriting rules, we can get an upper bound on it. We define a rewriting
rule R = (l, r, k) to be context free on the species a, ContextFree(R, a), iff l(a) =

1 ∧ ∀b ∈ Σ , b , a : l(b) = 0. We define a set of rules to be context free iff it
consists only of context free rules. Given a set of context free rewriting rules R,
∀a ∈ Σ, it can be partitioned into disjoint subsets (R)a consisting only of rules
with their left hand side requiring only an individual of the species a. Formally
∀a ∈ Σ : (R)a = {R = (l, r, k) ∈ R |ContextFree(R, a)}.

Theorem 4.5.1. Given a system S = (Σ,R, s0) and a state s ∈ MS(Σ), if
R is context free, the number of exiting transitions from a state, |Tr(s,R)| is
(
∏

a∈Σ , s(a)>0 φ(|(R)a|, s(a))) where φ(m, n) =
(

m+n−1
n

)
=

(n+m−1)!
(m−1)!n! .

74

Proof. Let us consider the case in which Σ consists of a single species a, i.e.
|Σ| = 1. We have to prove that the number of transitions exiting from s, |Tr(s,R)|,
is φ(|R|, s(a)). The proof proceeds by induction both on the number of rules, |R|,
and on the number of individuals in the state, s(a).

Base cases:

|R| = 1: there is a single exiting transition assigning all individuals to the single
rule in the system;

s(a) = 1: the number of exiting transitions is |R|: we have a transition for each
way of assigning the only individual to one of the rules.

Inductive case: let us consider a rule R ∈ R. The set of transitions exiting
from s can be split into two disjoint sets: the set of transitions in which R is
not applied, i.e. µ(R) = 0, and the set of transitions in which R is applied at
least once, i.e. µ(R) ≥ 1. In the first set we have transitions corresponding to
|R| − 1 rules competing for s(a) objects; by inductive hypothesis their number is
φ(|R|−1, s(a)) =

(
s(a)+|R|−2

s(a)

)
. On the other set we have transitions corresponding to

|R| rules competing for n− 1 objects: an object is used to apply R once while the
other objects are contended by the rules, including R. By inductive hypothesis
the number of transitions in the second set is φ(|R|, s(a) − 1) =

(
s(a)+|R|−2

s(a)−1

)
.

Summarizing we have
(

s(a)+|R|−2
s(a)

)
+

(
s(a)+|R|−2

s(a)−1

)
transitions, and by the fact that(

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
, this is equal to

(
s(a)+|R|−1

s(a)

)
= φ(|R|, s(a)).

Let us consider the case in which |Σ| > 1. Given the fact that rules are
context free, they do not compete on different species. Hence the set of possible
transitions corresponds to the Cartesian product of the possible transitions of
each partition of rules with respect to a species. Their number is thus

|Tr(s,R)| = (
∏

a∈Σ , s(a)>0

φ(|(R)a|, s(a))) .

�

We now explain the previous theorem by means of two examples.

Example 7. Let S ex = (Σex,Rex, s0ex) with Σex = {A, B,C,D}, Rex = {R1 =

({A}, {B}, 1) , R2 = ({A}, {C}, 1) , R3 = ({A}, {D}, 1)} and s0ex = {3A} the number
of transitions exiting from s0 are φ(3, 3) = 10. In more detail, such a number is
equal to the sum of :

75

• the number of transitions in which R1 , R2 compete for 3a: φ(2, 3) = 4.
Namely they correspond to the set of maximally parallel application of
rules, {{3, 0, 0} , {2, 1, 0} , {1, 2, 0} , {0, 3, 0}};

• the number of transitions in which R1 , R2 , R3 compete for 2a (con-
sidering at least an object assigned to R3): φ(3, 2) = 6. Namely
they correspond to the set of maximally parallel application of rules,
{{2, 0, 1} , {1, 1, 1} , {0, 2, 1} , {1, 0, 2} , {0, 1, 2} , {0, 0, 3} }.

Example 8. Let S ex = (Σex,Rex, s0ex) with Σex = {A, B,C,D}, Rex = {R1 =

({A}, {B}, 1) , R2 = ({A}, {C}, 1) , R3 = ({B}, {C}, 1) , R4 = ({B}, {D}, 1)} and
s0ex = {2A, 2B} the number of transitions exiting from s0 are φ(2, 2)×φ(2, 2) = 9.
In more detail, such a number is equal to the Cartesian product of

• the transitions in which R1 , R2 compete for 2a (that are φ(2, 2) = 3) and

• the transitions in which R3 , R4 compete for 2b (that are φ(2, 2) = 3).

Namely they correspond to the set of maximally parallel application of rules

{{2, 0, 2, 0} , {2, 0, 1, 1} , {2, 0, 0, 2} , {1, 1, 2, 0} , {1, 1, 1, 1} ,

{1, 1, 0, 2} , {0, 2, 2, 0} , {0, 2, 1, 1} , {0, 2, 0, 2} }.

We have seen how to compute the number of transitions exiting from a state
using only context free rules. In general, when the rules are not constrained to
be context free, we are able to get an upper bound on the number of transitions
exiting from a state, and to this aim, we introduce an encoding of rules, from the
general form, into context free rules.

Assuming an arbitrary order on Σ, the encoding of a rewriting rule, and of a
set of rewriting rules, into context free form is defined as:

• given a rewriting rule R = (l, r, k), and being a the minimum species such
that l(a) > 0: ‖R‖ = {({a}, r, k)} ∪ {({b}, , k) | l(b) > 0 , b , a} ,

• ‖R‖ =
⋃

R∈R‖R‖ ∪ {({a}, {a}, k) | a ∈ Σ} .

The encoding of a rule creates a rule for each species required in its left
hand side: these rules produce nothing, except one that produces the effect of
the original rule. The encoding of a set of rules is equal to the union of the
encoding of the single rules plus a “null” rule, rewriting an element in itself, for
each species.

76

The following lemma states that by replacing the rules of a system with a
context free encoding of them we obtain a system which is able to perform more
transitions than the original one, from any given state.

Lemma 4.5.2. Given a system M = (Σ,R, s0), its context free encoding M′ =

(Σ, ‖R‖, s0) and a state s ∈ MS(Σ), it holds that |Tr(s,R)| ≤ |Tr(s, ‖R‖)|.

Proof. It is easy to see that M′ can simulate the behavior of M: each maximal
application of rules in R corresponds to a different maximal application of rules
in ‖R‖, being ‖R‖ composed of context free rules plus additional “null” rules.
Moreover M′ can perform transitions that M cannot perform. �

The following lemma states that we can get an upper bound on the number
of transitions a system can perform from a given state. To this aim we consider
the number of transitions a system using a context free encoded version of the
original rules can perform from the same state.

Theorem 4.5.3. Given a system M = (Σ,R, s0), and a state s ∈ MS(Σ), it holds
that

|Tr(s,R)| ≤
∏

a∈Σ , s(a)>0

φ(‖(R)a‖, s(a)) .

Proof. Follows from the Lemma 4.5.2 and the Theorem 4.5.1. �

Related aspects of are discussed in [AV08, CPPJ06, GNPJRN07].

4.6 Case Study: C. elegans Vulval
Development

We present the application of our framework to a model of Caenorhabditis el-
egans vulval development, a system already studied with different formalisms
at different levels of detail [FPHH07, FPH+05, SFB+08, BKF+09, LNUM09].
Here, our purpose is a demonstration of the usability of maximally parallel
probabilistic semantics for modelling inter-cellular dynamics, rather than an
accurate modelling of the biological process.

C. elegans is a hermaphrodite round worm, about 1 mm in length, which
lives in soil. In order to lay eggs, the C. elegans grows an organ called vulva. The
biological mechanisms underlying the vulval development has been object of
research in the last 20 years and include cell-cell interactions, cell differentiation,
cross-talk between pathways and gene regulation.

77

Figure 4.4: Inter-cellular signaling events involved in VPCs fate specification.

The C. elegans vulva normally derives from three vulval precursor cells
(VPCs) that are members of a larger set of six VPCs, P3.p-P8.p. Each of the
six VPCs is multi-potent, capable of adopting one of three fates, called primary
(1°), secondary (2°), tertiary (3°) [SH86, SH89, Ste05]. The actual fate that each
cell adopts depends on inter-cellular signals: an inductive signal emanating from
the gonad anchor cell (AC) and a later signal between VPCs originated form
presumptive 1° fate cell (see Fig. 4.4). In response to inductive signal the VPCs
produce lateral signal that counteracts the inductive AC signal in the neighboring
VPCs by inducing the expression of a set of inhibitions and causing the cells to
assume 2° fate cell. Despite the ability of each cell to adopt any of the three
fates, the pattern of fates adopted by P3.p-P8.p in wild-type animals is always
[3°3°2°1°2°3°], respectively. VPCs fates in wild-type animals are influenced by
their distance from the AC: the cell closest to the AC (P6.p) becomes 1°, the
next closest (P5.p and P7.p) become 2°, and the most distant cells (P3.p,P4.p
and P8.p) become 3°.

The considerable amount of descriptive biological knowledge and the large
number of genetic perturbations tested in vivo, welcome the research of
alternative modelling procedures. Among the others, the process has been
modelled with Reactive Modules [FPHH07], with StateCharts [FPH+05], with a
combination of Live Sequence Charts and StateCharts [SFB+08], with Petri net
with firing under Maximal Strategy and overshooting [BKF+09], with hybrid
functional Petri nets [LNUM09].

Here we present a simple maximally parallel Multiset Rewriting model in of
C. elegans and we show that different behaviors, corresponding to different in
vivo perturbations, can be observed by probabilistic simulation. The different
behaviors can be realized altering the rate associated with reactions.

78

Figure 4.5: Diagrammatic model of VPCs from [SH89].

Using our approach we are able to consider a probabilistic semantics without
extending the MSR framework. Conversely, [FPHH07, FPH+05, SFB+08,
BKF+09] study the system with non-deterministic models, while [LNUM09],
in order to include quantitative information about the system dynamics, extends
the Petri nets framework with continuous processes.

We propose a formal dynamics model of vulval fate specification based
on the diagrammatic model proposed by Sternberg and Horvitz [SH89, Ste05]
(see Fig. 4.5), where the process is expressed as a set of simple production or
inhibition reactions.

We encode an inhibitory relation A inhibits B, as A B → A; an activation
A activates B, as A → B. The resulting model of a single VPC is shown in
Figure 4.6. It consists of the following eight reactions (that are parametric to the
VPC identifier i ∈ [3, 8]).

Vuli
10
−−→ G1i (R1,i) Vuli G3i

100
−−→ Vuli (R2,i)

Vuli
1
−→ LS i (R3,i) G1i Lin12i

1000
−−−→ G1i (R4,i)

Lin12i
1
−→ G2i (R5,i) G2i G1i

1
−→ G2i (R6,i)

G3i Lin12i
1
−→ G3i (R7,i) LS i

1
−→ Lin12i (R8,i)

The connection between neighboring cells is modelled as follows.

LS i
1
−→ Lin12i+1 (Rconni,i+1) LS i

1
−→ Lin12i−1 (Rconni,i−1)

The inductive signal by AC is modelled as follows.

79

Figure 4.6: Single VPC maximally parallel Multiset Rewriting model.

AC
KRaci
−−−→ Vuli (Raci)

The different amount of signal received by each VPC, according to the
distance from the AC, is modelled by the use of different kinetic rates: KRaci is
equal to 100 for i = 6, equal to 1 for i ∈ {7, 5} and equal to 0,001 for i = {3, 4, 8}.

A rule is used to keep track of the time elapsed (i.e. the number of maximally
parallel steps). The final fate of cells, whose determination is described in details
in [LNUM09], is determined by three rules, activated after a certain number of
steps, on the base of concentration of fate specific proteins, G1i,G2i,G3i .

t
1
−→ t time (Rtime)

marki G1i time ∗ 100
1
−→ G1i time ∗ 100 CellFate1i (R f ate1,i)

marki G2i ∗ 3 time ∗ 100
1
−→ G2i ∗ 3 time ∗ 100 CellFate2i (R f ate2,i)

marki G3i time ∗ 100
1
−→ G3i time ∗ 100 CellFate3i (R f ate3,i)

The whole studied system is shown in Figure 4.7: the six VPCs and the AC.
We considered three different scenarios: a) the wild-type, b) a mutant where

the AC sends equal signals to all the VPCs, and c) a mutant in which cells do
not respond to lateral signals. The two mutants are obtained modifying the rates
associated to AC signals and suppressing the reaction in charge of replying to

80

lateral signal Rconni,i+1 and Rconni,i−1. Namely, in b), KRaci = 100 for each
i ∈ [3, 8], in c) the rates associated with Rconni,i+1 and Rconni,i−1 are set to 0.

By performing probabilistic simulation runs, for each case, we are able
to reproduce the pattern formations observed in vivo: wild-type a) yields
[3°3°2°1°2°3°] pattern2, mutant b) yields patterns where 1° and 2° are random
distributed among cells, and, similarly, mutant c) yields patterns where some
cells adopt 1° and some others 3°.

To perform simulations we developed a probabilistic simulator that, at each
step, computes the probability distribution over the possible maximally parallel
events, and then selects one of them probabilistically. The computation of
the multiset of maximally parallel rule applications is done using an algorithm
similar to [AV08]. A more efficient algorithm, as one described in [MPPRS11],
can be used.

4.7 Comparison with Related Works
Multiset rewriting has been used as modelling formalism for describing, for in-
stance, chemical reactions and network protocols, using interleaving semantics,
both in a qualitative and quantitative fashion [BCL+03, CA06, CDL+99]. The
formalism has the same expressing power of Petri Nets [Pet62], also used in this
context [HGD08].

The maximally parallel semantics proposed, in the qualitative case, for
instance for Petri Nets [Bur80], has received great attention in the context of
P Systems [Pău02]. P Systems are a biologically inspired formalism, based
on the maximally parallel rewriting of atomic objects spread across different
compartments, that recently have been successfully applied to many modelling
scenarios (see, for instance, [CA06, BCPM08, RCPJ08, RC08a, BMMG10]).
Apart from the qualitative semantics originally proposed, for P Systems, several
probabilistic and stochastic semantics have been proposed [PBMZ06, CC07,
AC03, Mad03, Obt02, OP03].

Multiset rewriting with a maximally parallelism semantics is Turing-complete
(see [Pău02] where this is proved for one-membrane P Systems). Turing-
completeness of different semantics of Multiset Rewriting is discussed also in
[CZ08].

The approaches more similar to our are [PBMZ06, CC07]. The Dynamical
P Systems, by Pescini et al. [PBMZ06], are presented with a stochastic

2On 103 simulation runs, all yielded such a pattern.

81

simulation algorithm, but lack of a formal probabilistic semantics. The definition
of probabilistic transitions proposed by Ciobanu and Cormacel [CC07] uses an
hyper-geometric distribution. In both cases, the rates assigned to a parallel
step are different from those obtained with our methodology. In particular, in
[PBMZ06] the rate computation, bone by splitting one parallel step into several
sequential sub-steps, depends on the order in which reactions are considered. In
[CC07] the rates may be influenced by the presence of extraneous reactions (i.e.
rules never applicable to the system).

The approaches proposed by Aderlean and Cavaliere [AC03] and by Madhu
[Mad03] give a probabilistic semantics for P Systems but they modify the basic
framework with additional rule probabilities. Obtulowicz [Obt02] proposes a
stochastic and a randomized semantics, while Obtulowicz and Paun [OP03]
discuss how to add probability to P Systems semantics.

Finally, many are the approaches [SMC+08, RCPJ08, BRCG+05, RCGB+06]
where the requirement for maximal parallelism of P Systems is relaxed in
favor of a stochastic interleaving semantics, realized by the Gillespie Stochastic
Simulation Algorithm (SSA) [Gil77].

4.8 Conclusions

In this Chapter we have defined a probabilistic semantics for maximally
parallel Multiset Rewriting systems which corresponds to P systems with one
membrane or Petri nets where promoter arcs are added and the parallelism is
maximal. The need of such a semantics is motivated by the fact that most
of the semantics/simulators of P systems (i.e. maximally parallel MSR into
membranes) either resolve the non-determinism in the random way or use the
interleaving semantics to simulate via Gillespie SSA the studied system.

We defined a maximally parallel probabilistic semantics in term of DTMC,
built via LTS construction, and we have shown an application to C. elegans
vulval development modelling. Here we have shown probabilistic simulation
results; as it would be interesting to study maximally parallel systems through
probabilistic model checking, we plan to realize on a translator from MPMRS
to DTMC allowing to use existing model checking tools.

We think that the proposed semantics can be easily adapted to describe a
(maximally parallel) probabilistic semantics for P Systems and Petri nets with
firing under Maximal Strategy, and can also be considered as an alternative
semantics for other formalisms proposed for Systems Biology (e.g. [Phi07]).

82

A major drawback of the maximally parallel semantics is that the number
of transitions exiting from a state grows with respect to the size of the
population represented by the state (see Section 4.5). This represents the main
computational cost of the proposed semantics and can be a serious problem,
depending on the system under study, to run simulations or to perform model
checking. For this reason in Chapter 5 we define an abstract semantics to
reduce the number of transitions exiting from a state, still obtaining bounds on
transitions probabilities and conservative results about probabilistic reachability.

83

Fi
gu

re
4.

7:
M

od
el

of
th

e
w

ho
le

st
ud

ie
d

sy
st

em
:t

he
si

x
V

PC
an

d
th

e
A

C
.

84

Chapter 5

Interval Valued Abstract
Maximally Parallel Semantics
for Multiset Rewriting

In this chapter, we define an abstract probabilistic semantics for maximally
parallel Multiset Rewriting (MSR) able to describe with a reduced number of
states and transitions the semantics of systems with huge, possibly infinite,
associated state space.

Such a semantics is effectively computed as Interval Markov Chain (IMC),
which is derived from an abstract Labelled Transition System (LTS). The abstract
states are obtained by approximating the exact multiplicities of reactants using
intervals of integers, by means of interval valued predicate evaluation.

With the proposed approach we are able to obtain lower and upper bounds on
transition probabilities. Since the abstraction is parametric on a set of predicates,
the abstract probabilistic model can be refined until a right compromise between
dimension and precision is reached.

As case study, we propose an example of probabilistic reachability compu-
tation on a simple model of seasonal animals reproduction.

5.1 Introduction

As discussed in Section 4.5, a major drawback of the maximally parallel
semantics of MSR is that the number of transitions exiting from a state grows
with respect to the size of the state (i.e. the total number of individuals in the
population represented by the state).

This may represent a serious computational problem, depending on the
system under study, both to perform simulations or model checking, as a
probability has to be assigned to each transition exiting from a state. Moreover,
the application of probabilistic model checking is limited to systems with a small
and finite state space.

For these reasons we propose an abstract maximally parallel probabilistic
semantics that, using interval valued predicate abstraction [GS97], allows a finite
abstract probabilistic model, with a reduced number of states and transitions,
to be obtained. More in details, we introduce a technique based on the idea of
approximating the multiplicity of the elements of multisets by means of intervals
of integers. The technique is parametric on a set of predicates, which determine
the intervals, partitioning the values, for each species. By tuning the granularity
of intervals it is possible to refine the abstract probabilistic model until a right
compromise between dimension and precision is reached.

The abstraction technique is sound for probabilistic reachability. Specifically
probabilistic model checking of the abstract probabilistic semantics reports
lower and upper bounds for probability of reachability properties.

More in details, the domain of each variable (i.e. the number of individuals
of a species) is partitioned into intervals of integers. This corresponds to impose
a sort of grid, consisting of predicates, over the concrete state space. Then,
we introduce a systematic method for calculating an abstract, approximated,
probabilistic semantics, corresponding to an IMC. The IMC is derived from
an abstract LTS semantics, by computing the intervals of probability from the
information recorded on abstract transition (e.g. the transitions rates).

We introduce the concepts formalizing the abstraction of the state space
by means of the interval valued predicates (Sect. 5.2). Then, in Section 5.3,
we introduce the abstract LTS semantics; first we present the computation of
the abstract reachable states (Sect. 5.3.1), then the computation of the abstract
maximally parallel multiset of rule application (Sect. 5.3.2), and finally the
computation of the abstract transition rates (Sect. 5.3.3). The soundness of the
proposed abstract LTS semantics, with respect to the LTS semantics defined
in Section 4.3, is discussed in Section 5.3.4. The used abstract probabilistic

86

semantics is defined in Section 5.4, its derivation from an abstract LTS and
its soundness is presented in Section 5.4.1. In order to prove the soundness
of our framework we apply notions of abstract interpretation, similarly as in
Section 3.3.4.

An example of application of the proposed framework to a simple model of
seasonal animals reproduction model is given in Section 5.5.

Finally, in Section 5.6 we discuss the limitations and possible further
development of our work. In Section 5.7 we review related works and we
conclude in Section 5.8.

For simplifying the presentation, great part of the proofs are presented in
Section 5.9.

5.2 Interval Valued Abstract Models
We introduce the concepts of abstract states and systems, and the related notions
necessary to relate them to their concrete version.

To abstract precise numeric values we use Intervals of values.

Definition 25 (Intervals). I = { [m, n] |m ∈ R≥0, n ∈ R≥0 ∪ {∞}}.

We say that an interval is well formed if its lower bound is less or equal its
upper bound; formally WellFormed([m, n]) = m ≤ n.

In the following, given an interval i = (m, n) ∈ I we use Precise(i) to denote
m = n.

Since intervals may contain ∞, mathematical operations may give indeter-
minate forms. For this reason we extend mathematical operators +, ×, −, / in
order to consider, in some cases, ∞. This avoid the need to deal with certain
indeterminate forms in each definition that follows. In particular we consider :

a + b =

∞ if a = ∞ or b = ∞ ;

a + b otherwise.
a × b =

∞ if a = ∞ or b = ∞ ;

a × b otherwise.

a − b =

∞ if a = ∞ and b , ∞ ;

−∞ if b = ∞ and a , ∞ ;

a − b otherwise.

a/b =

∞ if a = ∞ or b = ∞ ;

a/b otherwise.

To represent interval valued states, we use an abstract version of multisets.

87

Definition 26 (Abstract Multiset). Given a finite set X, an abstract multiset is a
function m◦ : X 7→ I. We denote the universe of abstract multiset byMS◦, and
the universe of abstract multisets over a set X asMS◦(X).

We say that an abstract multiset is well formed if it is composed by well
formed intervals. Formally WellFormed(m◦) = ∀i=1,|m◦ |WellFormed(m◦[i]).

On abstract multisetsMS◦ an approximation order vMS◦ can be defined as
follows.

Definition 27 (Order on Abstract Multisets). Given abstract multisets m◦1,m◦2 ∈

MS◦(X) we say that m◦1 vMS◦ m◦2 iff ∀ a ∈ X : m◦1(a) vI m◦2(a).

We use predicates of the form of (a ≥ xlow) ∧ (a ≤ xhigh), where a ∈ Σ

indicates a species while [xlow , xhigh] ∈ I (xlow ≤ xhigh ∈ N). For the sake of
simplicity we denote predicates as pairs, specifying the species and the interval
of values.

Definition 28 (Predicate). A Predicate p is a pair (a, i)

• a ∈ X is a species;

• i ∈ I is an interval of values.

We denote the universe of predicates as P and the universe of predicates over a
set of species X as P(X).

To evaluate the truth of a predicate w.r.t. concrete and abstract states we
use an entailment function �P: (MS ∪MS◦) × P 7→ {true, f alse}. A predicate
p = (a, i) is true for a state s ∈ MS, denoted as s �P p, iff s(a) ∈ i.
Moreover, p = (a, i) is true for an abstract state s◦ ∈ MS◦, denoted as s◦ �P p,
iff s◦(a) vI i.

To abstract concrete models we use sets of predicates p ∈ Parts(P(Σ)). In
the following, ∀a ∈ Σ , ∀p ∈ Parts(P(Σ)), we use p(a) = { p ∈ p | p = (a, i) }, the
subset of predicates regarding a.

Specifically, we consider sets of predicates which are a partition with respect
to the set of species Σ, denoted by P̂(Σ) ⊂ Parts(P(Σ)), and sets of predicates
which are a partition with respect to the set of species Σ and the set of rules R of
a model, denoted by P̂R(R) ⊂ P̂(Σ).

A set of predicates is a partition w.r.t. a set of species Σ if it partitions the
domains associated to each species of Σ.

88

Definition 29. A set of predicates p ∈ P̂(Σ) is a partition w.r.t. Σ iff

• covers all species in Σ:
⋃

(a,i)∈p{a} = Σ;

• they are a partition of the values in the domain of each species:

– ∀p′ = (a1, i1), p′′ = (a2, i2) ∈ p : a1 = a2 ⇒ i1 ∩ i2 = �;

– ∀a ∈ Σ, n ∈ N : ∃p = (a, i) ∈ p s.t. n ∈ i
that is ∀a ∈ Σ :

⋃I
(a,i)∈p i = [0,∞].

A set of predicates p is a partition w.r.t. a set of rules R over Σ if: (a) it is
a partition w.r.t. Σ and (b) for all species a ∈ Σ, for all rules R = (l, k, r) ∈ R,
and for all predicates p = (a, i = [xmin, xmax]) ∈ p, the number of individuals
requested by the rule for the species, l(a), if is included in the interval i, it can
be only its minimum, i.e. l(a) < [xmin + 1, xmax]. Notice that this condition
guarantees that a rule can be applied in any or in all of the states corresponding
to a given abstract state.

Definition 30.
A set of predicates p ∈ P̂R(Σ) is a partition w.r.t. R over Σ iff

• is a partition w.r.t. Σ

• ∀R = (l, r, k) ∈ R , ∀p = (a, i = [xmin, xmax]) ∈ p :
l(a) < [xmin + 1, xmax]

In order to relate concrete multisets to abstract multisets we introduce
abstraction and concretization of multisets function, αMS and γMS, which are
parametric w.r.t sets of predicates. For m ∈ MS, the abstraction function reports
its best approximation w.r.t. a set of predicates p. Conversely, for m◦ ∈ MS◦ the
concretization function reports the (possibly infinite) set of multisets represented
by m◦.

Definition 31 (Abstraction of Multiset w.r.t. Set of Predicates and
Concretization of Abstract Multiset).

• αMS : P̂(X) 7→ MS(X) 7→ MS◦(X) is defined as

αMS(p)(m) : m◦ s.t. ∀ a ∈ X : m◦(a) = i s.t. ∃p = (a, i) ∈ p ∧ m �P p ;

89

• γMS(X) :MS◦ 7→ Parts(MS(X)) is defined as

γMS(m◦) : {m | ∀ a ∈ X : [m(a)]◦ vI m◦(a)} .

We introduce the abstract systemsM◦.

Definition 32 (Abstract System). An abstract system M◦ is a tuple (Σ,R, s0, p):

• Σ is a finite set of species names of size n;

• R = {R1, . . . ,Rm}, Ri ∈ MS(Σ) × MS(Σ) × R>0, is a set of not-null 1

rewriting rules;

• s0 ∈ MS(Σ) is the starting state;

• p ∈ P̂R(R) is a set of predicates which is a partition w.r.t. the set of rules
R over Σ.

We denote the universe of abstract models asM◦.
Note that, using a set of predicates that is a partition w.r.t. a set of rules

guarantees that all the concrete states abstracted by a an abstract multiset shares
the same set of applicable rules. That is, as the following theorem states, if a
rule is applicable in m ∈ γMS(m◦), then, ∀m′ ∈ γMS(m◦), the rule is applicable
to m′.

Lemma 5.2.1. Let M◦ = (Σ,R, s0, p) ∈ M◦. For each s ∈ MS◦(Σ) , s′, s′′ ∈
γMS(αMS(p)(s)) and R = (r, l, k) ∈ R,

IsApplicable(R, s′)⇔ IsApplicable(R, s′′)

where IsApplicable(R = (l, r, k), s′) ≡ l ⊆ s′.

Proof. As IsApplicable(R, s′), ∀a ∈ Σ , l(a) ≤ s′(a). Let αMS(p)(s0) =

[xmin, xmax] , reasoning for a generic a ∈ Σ, given that s′ ∈ γMS(αMS(p)(s0)),
we have that xmin ≥ l(a) (by Definitions 32 and 30).

On the other side we have that, as s′′ ∈ γMS(s0
◦), we have that ∀a ∈

Σ , s′′(a) ≥ xmin, that is l ⊆ s′′, and thus IsApplicable(R, s′′). As the reasoning
can be done also in the other sense,⇔ holds. �

1 That is, not ∀a ∈ Σ : l(a) = r(a) = 0.

90

We now introduce an order over abstract models vM◦ based on an order vP̂
over the associated set of predicates.

An approximation order over set of predicates is defined as follows. The
> of such an order is the infinite set p• of predicates consisting of a precise
interval for each possible value of each species in a system. Formally p•(Σ) =⋃

a∈Σ, x∈N{(a, x•)}2. Note that ∀p ∈ P̂(Σ) : p•(Σ) vP̂ p, and that ∀s ∈ MS :
γMS◦ (αMS◦ (p•)(s)) = {s}.

Definition 33 (Order on Set of Predicates). Given sets of predicates p1, p2 ∈

P̂(X) we say that p1 vP̂ p2 iff

∀ p1 = (a1, i1) ∈ p1 : ∃! p2 = (a2, i2) ∈ p2 s.t. a1 = a2 ∧ i1 vI i2 .

Definition 34 (Order on Abstract Systems). Let M◦i = (Σi,Ri, s0,i, pi) for i ∈
{1, 2}. We say that

M◦1 vM◦ M◦2 iff (αMS(p1)(s0,1) vMS αMS(p2)(s0,2)) ∧ (p1 vP̂ p2) .

Intuitively, an abstract system M◦1 is more precise than another M◦2 if: (a)
M◦1 and M◦2 have the same rules over the same set of species; (b) if the best
abstraction of the initial state of M◦1 is finer than that of the initial state of M◦1;
(c) if M◦1 has a finer set of predicates than M◦2.

To relate a concrete system to its best approximation, and vice versa, we
introduce the following abstraction and concretization functions.

Definition 35 (Abstraction and Concretization Functions).
We define α : P̂R 7→ M 7→ M◦ and γ : M◦ 7→ Parts(M) such that ∀M ∈

M , ∀M◦ ∈ M◦ :

• α(p)((Σ,R, s0)) = (Σ,R, s0, p);

• γ(M◦ = (Σ,R, s0
◦, p)) = {M |α(p)(M) vM◦ M◦} .

5.3 Abstract Labelled Transition System
Semantics

We present an abstract, LTS semantics that approximates both the states and the
transitions of the concrete LTS semantics, using intervals.

2 In the following we omit Σ when it is clear from the context.

91

In the following we use the notation s′
µ , r
−−→ s′′ to refer to a transition, labeled

by µ, r, in the concrete probabilistic maximally parallel semantics as defined
in Section 4.3. Formally, s′

µ , r
−−→ s′′ stands for IsMaximal(µ, s′,R) ∧ r =

Rate(µ, s′,R) ∧ s′′ = Apply(µ, s′,R).
We introduce the LTS semantics associated with abstract systems adopting

an abstract transition relation s′◦
µ◦ , r◦
−−−−→ s′′◦ where s◦′, s◦′′ ∈ MS◦ are abstract

states, µ◦ ∈ MS◦ is an abstract multiset of rule applications and r◦ ∈ I an
abstract transition rate.

Formally, the abstract LTS we consider are tuples (S ◦(p), s0
◦,→◦) such that:

S ◦(p) ⊂ MS◦(Σ) is an abstract state space, with respect to a set of predicates p ∈
P̂(Σ); s0

◦ ∈ S ◦(p) is an abstract starting state; and→◦⊆ MS◦×MS◦×I×MS◦(R)

is an abstract transition relation s.t. ∀ s◦, s◦′ ∈ S ◦(p) , ∃! s◦
µ◦ , r◦
−−−−→ s′◦ for some

µ◦ and r◦. In the following we use LTS◦ to denote the universe of abstract
LTSs.

We define the function LTS ◦ :M◦ 7→ LTS◦ such that
LTS ◦((Σ,R, s0

◦, p)) = (S ◦(p), s0
◦,→◦) where s0

◦ = αMS(p)(s0), S ◦(p) = {s◦ ∈
MS

◦(Σ) | ∀a ∈ Σ : ∃! p ∈ p(a) s.t. s◦ �P p}, and→◦ is obtained by the following
inference rule (5.1) starting from s0

◦.

s′′◦ ∈ N̂ext◦(R)(s◦′, p) µ◦ = f̂ ◦(R)(s′◦, s′′◦)

r◦ = Rate◦(R)(µ◦ , s′◦ , s′′◦)

s′◦
µ◦ , r◦
−−−−→◦ s′′◦

(5.1)

Rule (5.1) gives the abstract transitions, exiting from an abstract state
s◦′. This is based on the calculation of a reachable abstract state s◦′, of
an abstract multiset of rules µ◦ and of the associated abstract rate r◦. The
computation reachable abstract states (i.e. the N̂ext◦ function) is described in
Section 5.3.1, the computation of abstract maximally parallel application of
rules (i.e. f̂ ◦ function) in Section 5.3.2 and their rates (i.e. the Rate◦ function)
in Section 5.3.3. Finally we discuss the soundness of such an abstract LTS
semantics with respect to the concrete one in Section 5.3.4.

5.3.1 Computation of Reachable Abstract States
The N̂ext◦(R) : MS◦ × P 7→ MS◦ function computes an over-approximation
of the set of states reachable from an abstract state by the execution of a
single maximal step. Formally, N̂ext◦(R)(s◦, p) approximates the set of abstract

92

states corresponding to the concrete moves. Thus, its most precise value is
Next◦(R)(s◦, p) = {s′◦ | ∃ s′ ∈ Next(s,R) | s ∈ γMS(s◦), s◦′ = αMS(p)(s′)} where
Next(s,R) = {s′|s

µ , r
−−→ s′}.

In order to approximate Next◦, for each species, we calculate a lower and an
upper bound on the concentrations reachable by a single step of the semantics,
and then we decompose such bounds by means of a predicate.

To this aim, we define Decompose(s◦, p) :MS◦ × P 7→ Parts(MS◦) as

Decompose(s◦, p) = {s◦′ | s◦′ = αMS(p)(s) ∧ s ∈ γMS(s◦)} .

Intuitively, given an abstract multiset s◦ and a set of predicates p, Decompose
computes the minimum set of abstract multiset, w.r.t. to p, that covers all the
concrete states represented by s◦.

Then, we define N̂ext◦(R)(s◦, p) = Decompose(MR(s◦,R), p) where MR(s◦,R)
(for Max Reachable) is defined as follows: ∀a ∈ Σ

MR(s◦,R)◦(a)− =

0
if ∃R = (l, r, k) ∈ R :

l(a) > 0 ∧ [s◦(a)]− ≥ l(a)
[s◦(a)]− otherwise

MR(s◦,R)◦(a)+ =

(

∑
b∈Σ, r∈[1,m]

PR(b, a, r) ∗ [s◦(b)]+) + X
if ∃R = (l, r, k) ∈ R :

r(a) > 0∧
[s◦(a)]+ ≥ l(a)

[s◦(a)]+ otherwise

where X =

0 if ∃R = (l, r, k) ∈ R : ContextFree(R, a)

[s◦(a)]+ otherwise

and PR(standing for Production Ratio)

∀i, j ∈ [1, n],∀r ∈ [1,m] : PR(b, a, r) = dRr(a)/Lr(b)e .

The following lemma states the monotonicity of Decompose and of MR.

Lemma 5.3.1. Given s◦′, s◦′′ ∈ MS◦, s◦′ vMS◦ s◦′′ and p ∈ P :

i) Decompose(s◦′, p) ⊆ Decompose(s◦′′, p)

93

ii) MR(s◦′,R) vMS◦ MR(s◦′′,R)

Proof.

i) As γMS(s◦′) ⊆ γMS(s◦′′) it follows that
⋃

s′∈γMS(s◦′) αMS(p)(s′) ⊆⋃
s′′∈γMS(s◦′′) αMS(p)(s′′) and so Decompose(s◦′, p) ⊆ Decompose(s◦′′, p).

ii) About [MR(s◦′,R)]−, we have two cases :

– ∃a ∈ σ,R ∈ R : L(a) > 0: [MR(s◦′,R)]− = 0 = [MR(s◦′′,R)]−

– otherwise : [MR(s◦′,R)]− = [s◦′]− ≤ [s◦′′]− = [MR(s◦′′,R)]−.

On the other hand, about [MR(s◦′,R)]+, we have two cases :

– ∃ a ∈ σ,R ∈ R : R(a) > 0:
MR(s◦′ ,R)◦(a)+ =

∑
b∈Σ, r∈[1,m]

PR(b, a, r) ∗ [s◦′(b)]+ + X′

MR(s◦′′,R)◦(a)+ =
∑

b∈Σ, r∈[1,m]

PR(b, a, r) ∗ [s◦′′(b)]+ + X′′, where

X′, X′′ =

0 , 0

if ∃R = (l, r, k) ∈ R :

ContextFree(R, a)
[s◦′(a)]+, [s◦′′(a)]+ otherwise

and the statement is true given that ∀a ∈ Σ : s◦′(a) vI s◦′′(a).

– otherwise : [MR(s◦′,R)]+ = [s◦′]+ ≤ [s◦′′]+ = [MR(s◦′′,R)]+.

�

The following theorem states the soundness of N̂ext◦ and its monotonicity.

Theorem 5.3.2. N̂ext◦ is

i) is a sound approximation of Next◦; formally

∀s ∈ MS◦ , p ∈ P : Next◦(R)(s◦, p) ⊆ N̂ext◦(R)(s◦, p)

ii) is monotone; formally ∀s◦′, s◦′′ ∈ MS◦ :

s◦′ vMS◦ s◦′′ ⇒ N̂ext◦(R)(s◦′, p) ⊆ N̂ext◦(R)(s◦′′, p)

94

Proof. i) As N̂ext◦(R)(s◦, p) is obtained applying αMS(p) to each state in⋃
MR(s◦,R) γMS(s), we prove that {s′ ∈ Next(s,R, p)|s ∈ γMS(s◦)} ⊆⋃
MR(s◦,R) γMS(s). Let’s assume the previous statement to be false, that

is ∃ s∗ ∈ {Next(s,R) | s ∈ γMS(s◦)} s.t. s∗ <
⋃

MR(s◦,R) γMS(s). This means
that s∗◦ = αMS(p)(s∗) 6vMS◦ MR(s◦,R), that can happen only in one the
following cases: ∃a ∈ Σ s.t.

– [s∗◦(a)]− ≤ 0 that is impossible;

– [s∗◦(a)]− ≤ [s◦(a)]− and ¬TC(a,R) that is impossible as the species
a can not be consumed;

– [s∗◦(a)]+ ≥ [s◦(a)]+ and ¬T P(a,R) that is impossible as the species
a can not be produced;

– [s∗◦(a)]+ ≥ maxa,b∈Σ, r∈[1,m]PR(b, a, r)∗ [s◦′(b)]+ that means applying
some rules more times that the available reactants. This is impossible
as a rule application consumes a least an individual of a species.

ii) As Decompose(MR(s◦′,R)) ⊆ Decompose(MR(s◦′′,R)) by the previous
Theorem.

�

5.3.2 Computation of Abstract Maximally Parallel Rule Ap-
plications

Abstract maximally parallel rule applications, expressed as abstract multisets,
reported on abstract LTS transitions, approximate the multisets of maximally
parallel rule application reported be the corresponding concrete LTS.

Function f̂ ◦(R) : MS◦ ×MS◦ 7→ MS◦ computes an approximation of the
maximally parallel multisets of rules which produces a move from an abstract
state to another one using the rules in R.

Let f ◦(R)(s′◦, s′′◦) the abstract multiset abstracting the set of multisets
associated with all transitions, from one of the concrete states abstracted by s′◦

to one of the concrete states abstracted by s′′◦.
Formally,

f ◦(R)(s′◦, s′′◦) =

MS
◦⋃
{ µ• | s′

µ , r
−−→ s′′ , s′ ∈ γMS(s′◦) , s′′ ∈ γMS(s′′◦) } .

Note that the computation of f ◦(R)(s′◦, s′′◦) requires to build all the
transitions of the concrete semantics between each pair of concrete states

95

abstracted by s′◦ and s′′◦, respectively. We, therefore, introduce the function
f̂ ◦, that computes in effective way and approximation of f ◦. In particular,
f̂ ◦(R)(s′◦, s′′◦) gives an approximation of the abstraction of concrete transitions
between concrete multisets abstracted by s′◦ and s′′◦.

The abstract function f̂ ◦ uses a ∆ function, that applied to two multisets
returns their difference, while applied to abstract multisets returns bounds on the
difference between all the corresponding concrete multisets.

Formally, let

∆ : ((MS×MS) ∪ (MS◦ ×MS◦)) 7→ (MS∪MS◦) be s.t. ∀a ∈ Σ

∀m′,m′′ ∈ MS : ∆(m′,m′′) = m′ − m′′ ∈ MS and

∀m◦′,m◦′′ ∈ MS◦ :

∆(m◦′,m◦′′)(a) = [[m′′◦(a)]− − [m′◦(a)]+ , [m′′◦(a)]+ − [m′◦(a)]−] ∈ MS◦ .

The following lemma states that ∆ applied to two abstract multisets m◦′,m◦′′

is a sound approximation of ∆ applied to each pair of multisets m′ ∈ γMS(m◦′),m′′ ∈
γMS(m◦′′).

Lemma 5.3.3. ∀a ∈ Σ , m◦′,m◦′′ ∈ MS◦ , m′ ∈ γMS(m◦′) , m′′ ∈ γMS(m◦′′) :
[∆(m′,m′′)(a)]• vI ∆(m◦′,m◦′′)(a)

Proof. We have to prove ∀a ∈ Σ : s′′(a) − s′(a) ≥ [s◦′′(a)]− − [s◦′′(a)]+, that is
true as s′′(a) ≥ [s◦′′(a)]− and s′(a) ≤ [s◦′(a)]+. The same reasoning applies to
s′′(a) − s′(a) ≤ [s◦′′(a)]+ − [s◦′′(a)]− �

We now introduce function f̂ ◦, as the least fixpoint of a function f̂ ◦(n),
where at each refinement step not well formed abstract multisets are eliminated.
Formally, it is defined as, ∀i∈[1,m] :

f̂ ◦(R)(s′◦, s′′◦)(i) =

µ(i) if µ = FixPoint(f̂ ◦(n)(R)(s′◦, s′′◦)) ∧WellFormed(µ)

[0, 0] otherwise.

where f̂ ◦(n) is defined as

f̂ ◦(n)(R)(s′◦, s′′◦)(i) =

̂f ◦(n−1)(R)(s′◦, s′′◦)(i)

if n > 0∧

Precise(̂f ◦(n−1)(R)(s′◦, s′′◦)(i))
X otherwise

96

and

X = [max
a∈Σ
{

{d[∆(sMod◦′, sMod◦′′)(a)]−/Ri(a)e s.t.

[∆(sMod◦′, sMod◦′′)(a)]− > 0 ∧ Ri(a) > 0 ∧ OP(i, a, rMod))} ∪

{d−[∆(sMod◦′, sMod◦′′)(a)]+/Li(a)e s.t.

[∆(sMod◦′, sMod◦′′)(a)]+ < 0 ∧ Li(a) > 0 ∧ OC(i, a, rMod)}

∪ {0} } ,

min
a∈Σ
{

{b[∆(sMod◦′, sMod◦′′)(a)]+/Ri(a)c s.t.

[∆(sMod◦′, sMod◦′′)(a)]+ ≥ 0 ∧ Ri(a) > 0 ∧ ¬TOC(i, a, rMod) } ∪

{b[sMod◦′′(a)]+/Ri(a)c s.t.

Ri(a) > 0 ∧ TOC(i, a, rMod) } ∪

{b−[∆(sMod◦′, sMod◦′′)(a)]−/Li(a)c s.t.

[∆(sMod◦′, sMod◦′′)(a)]− ≤ 0 ∧ Li(a) > 0 ∧ ¬TOP(i, a, rMod } ∪

{b[sMod◦′(a)]+/Li(a)c s.t.

Li(a) > 0 ∧ TOP(i, a, rMod) } }]

where (for Ri Only Producer of a, Ri Only Consumer of a)
OP(i, a,R) = ∧ii∈[1,m]Rii(a) = 0 and UC(i, a,R) = ∧ii∈[1,m]Lii(a) = 0,
and (for There is Other rule Consuming, There is Other rule Producing a)
TOC(i, a,R) = (∃R[j] = (l, r, k) j , i s.t. l(a) ≥ 0),
TOP(i, a,R) = (∃R[j] = (l, r, k) j , i s.t. r(a) ≥ 0) and

sMod◦′ =

s◦′ if n = 0

ReacMod(s◦′, ̂f ◦(n−1)(R)(s′◦, s′′◦)) otherwise
,

sMod◦′′ =

s◦′′ if n = 0

ProdMod(s◦′′, ̂f ◦(n−1)(R)(s′◦, s′′◦)) otherwise
,

97

rMod =

R if n = 0

R′(R, ̂f ◦(n−1)(R)(s′◦, s′′◦)) otherwise ,
where

R′(R, µ◦) = R {Ri|Ri ∈ R , [µ◦[i]]− = [µ◦[i]]+} ,

and ∀a ∈ Σ :

ReacMod(s◦, µ◦,R)(a) =

[max(0, [s◦(a)]− − Reac(µ◦,R, a) , [s◦(a)]+ − Reac(µ◦,R, a)] ,

ProdMod(s◦, µ◦,R)(a) =

[[s◦(a)]− + Prod(µ◦,R, a) , [s◦(a)]+ + Prod(µ◦,R, a)]

where

Reac(µ◦,R, a) =

∑m

i=1 li(a)[i] if Precise(µ◦[i])

0 otherwise,

Prod(µ◦,R, a) =

∑m

i=1 ri(a)[i] if Precise(µ◦[i])

0 otherwise.

The computation of f̂ ◦ is based on the refinement f̂ ◦(n), starting from f̂ ◦(0),
until a fixpoint is reached. Since each step of iteration excludes values contained
in the previous abstract multiset (i.e. f̂ ◦(i+1) vMS◦ f̂ ◦(i)), the computation ends,
at most with a precise abstract multiset, consisting of a precise number of rule
applications. Note that, if n = 0, then rMod = s◦ and rMod = R.

Intuitively, f̂ ◦(0)(R)(s′◦, s′′◦) computes the minimum/maximum number of
times each single rule, considered in isolation, may/has to be applied in order
to produce the difference between s◦′ and s◦′′ (expressed by ∆(s′◦, s′′◦)). The
result depends on whether the considered rule is the only producer or the only
consumer of a certain species.

More in details, the value f̂ ◦(0)(R)(s′◦, s′′◦)[i]− corresponds to the strongest
constraint (i.e. the maximum) about the minimum number the rule has to be
applied to produce a positive [∆s◦(a)]− (for each species a for which the rule
is a producer), and the number of times the rule has to be applied to produce a
negative [∆s◦(a)]+ (for each species a for which the rule is a consumer). Finally,
when the considered rule is neither the only producer nor the only consumer

98

of all the species, or when the ∆s◦(a) is equal to 0• for all the species in the
reactants or the products of the rule, it may be applied a minimum of 0 times.

To compute the maximum f̂ ◦(0)(R)(s′◦, s′′◦)[i]+ we consider the strongest
constraint (i.e. the minimum) of the following values, ∀a ∈ Σ :

• if the rule Ri produces a

– and there are not other rules consuming a, having that
[∆(s◦′, s◦′′)(a)]+ > 0, we consider b[∆(s◦′, s◦′′)(a)]+/Ri(a)c. Actu-
ally it may happen that the rule Ri produces all the a of [∆(s◦′, s◦′′)(a)]+;

– and there are other rules consuming a, we consider
b[s◦′(a)]+/Li(a)c. Actually it may happen that all the available a are
consumed by the rule Ri (and possibly produced up to [s◦′′(a)]+ by
other rules).

• if the rule Ri consumes a

– and there are not other rules producing a, having that
[∆(s◦′, s◦′′)(a)]− < 0, we consider b−[∆(s◦′, s◦′′)(a)]−/Li(a)c. Actu-
ally it may happen that the rule Ri consumes all the a of [∆(s◦′, s◦′′)(a)]−;

– and there are other rules producing a, we consider
b[s◦′′(a)]+/Ri(a)c. Actually it may happen that all the a in the arrival
state are produced by the rule Ri

(e.g. all the occurrences of a are consumed by to other rules and then
the number of a reaches [s◦′′(a)]+ by applications of Ri).

The value of f̂ ◦(n), for n > 0, is computed by refining ̂f ◦(n−1). In particular,
the approximation is refined by removing from ̂f ◦(n−1) values corresponding to a
not possible number of rule applications, by exploiting the exact values possibly
contained in ̂f ◦(n−1). In order to realize such computation, we consider: (a) a
modified difference between starting and arrival state, taking into account the
applications of rules with an exact multiplicity in the previous approximation
(i.e. ∆(sMod◦′, sMod◦′′)); and (b) a set of rules R′ ⊂ R, reproducing such
a refined difference, in which rules with an exact multiplicity in the previous
approximation are removed (i.e. rMod). In fact, if f̂ ◦

(n−1)
[i]− = f̂ ◦

(n−1)
[i]+,

for some i ∈ [1,m], we can construct sMod◦′, sMod◦′′ so that the starting state
and the arrival state are modified by the application of such rules, and we can
remove such rules from the set of rule applicable for realizing the remaining
state change.

99

The following lemma states the soundness of the approximation given by f̂ ◦

w.r.t f ◦.

Lemma 5.3.4. ∀s◦′, s◦′′ ∈ MS◦ : f ◦(R)(s◦′, s◦′′) vMS◦ f̂ ◦(R)(s◦′, s◦′′) .

Proof. See Section 5.9 �

5.3.3 Computation of Abstract Transition Rates

We introduce the abstract rate function, computing the rate of an abstract
maximally parallel application of rules, Rate◦(R) :MS◦(R)×MS◦×MS◦ 7→ I.
In particular, Rate◦(R)(µ◦, s′◦, s′′◦) calculates the abstract rate for the move from
s′◦ to s′′◦, corresponding to the abstract multiset µ◦, w.r.t. the rules R. The
definition uses an abstract version of the concrete operators KIN, MUL and
LIM (defined in Section 4.3): K̂IN◦, M̂UL◦ e L̂IM◦.

Formally, function Rate◦ is defined as

Rate◦(◦)(µ◦, s′◦, s′′◦) =

[[M̂UL◦(µ◦, s◦,R)]− ∗ [K̂IN◦(µ◦, s◦,R)]− ∗ [L̂IM◦(s′◦, s′′◦,R)]− ,

[M̂UL◦(µ◦, s◦,R)]+ ∗ [K̂IN◦(µ◦, s◦,R)]+ ∗ [L̂IM◦(s′◦, s′′◦,R)]+].

In order to calculate the abstract multiplicity M̂UL◦ we use the interval
calculated as follows.

M̂UL◦(µ◦, s◦,R) = [1, M̂UL∗(s◦,R)] where

M̂UL∗(s◦,R) =
∏
a∈Σ

Υ′(a,R)

where

Υ′(a,R)

1 if ContextFree(R, a) ∧ (NAR(s+(s◦), a,R) = 1 ,

Υ(s+(s◦)(a), X) otherwise

in which

X =

(NAR(s+(s◦), a,R) − 1 if ∃R ∈ R s.t. ContextFree(R, a) ,

(NAR(s+(s◦), a,R) otherwise ,

100

and

Υ(n,m) =
n!

b(n
m+1)c!(m+1) ,

s+ :MS◦ 7→ MS s.t. ∀m◦ ∈ MS◦, a ∈ Σ : s+(m)(a) = [m(a)]+

and (for Number of Applicable Rules),

NAR(s, a,R) = |{R = (l, r, k) ∈ R | l(a) > 0 ∧ l(a) ≤ s(a)}| .

In order to compute the minimum/maximum multiplicity for µ◦ we consider an
approximation of the minimum/maximum multiplicity of the maximally parallel
steps abstracted by µ◦. The multiplicity of a maximally parallel step depends
on the binomial function applied to the number of reactants required by each
rule, on the number of applications of the rule, and on the availability of such
reactants in the source state. To get an upper bound on such a value we consider
an event µ such that µ• vI µ◦ and such that it assigns to each applicable rule a
number of reactants equal to s(a)/X, for each species a ∈ Σ, where X is equal
to NAR(s(a), a,R) + 1, if there are not context free rules on a. In this way we
compute the multiplicity of a µ• vI µ◦ where each rule takes s(a)/X objects,
and s(a)/X are not assigned to any rule. Conversely, when there are context free
rules on a, X is equal NAR(s(a), a,R), since, by maximally parallelism, all the
individuals of species a have to be assigned to some rule.

The step µ• vI µ◦ constructed in this way, in practice, is not always possible,
as it may be the case that: (a) the number of reactants given to each rule R =

(l, r, k) by µ may be not a multiple of l(a); (b) the number of times each rule
can be applied is limited by the availability of all the species in l (i.e. it is
limited by the minimum, for a ∈ Σ, bs(a)/l(a)c). Both these cases are, instead,
not considered in the computation of µ◦. Hence, considering the not realistic
situation where each rule takes, for each species, s(a)/X elements, we get an
upper bound on the values of MUL. On the other side, to get a lower bound for
MUL we safely consider 1.

The following lemma states the soundness of the approximation given by the
abstract operator M̂UL◦ w.r.t. its concrete version MUL.

101

Lemma 5.3.5. ∀ µ ∈ µ◦ , s◦ ∈ MS◦(Σ) , s ∈ γMS(s◦) :

[MUL(µ, s,R)]• vI M̂UL◦(µ◦, s◦,R) .

Proof. See Section 5.9 �

For the kinetic part of the rate function K̂IN◦ we use the interval calculated
as follows.

K̂IN◦(µ◦, s◦,R) =

[
∏

r∈[1,m]

LRR(r, s−(s◦),R)[µ◦[r]]+

,
∏

r∈[1,m]

LRR(r, s+(s◦),R)[µ◦[r]]−]

where LRR is defined as in the concrete case (Section 4.3).
To compute the minimum/maximum kinetics for an abstract multiset µ◦ we
consider the minimum/maximal kinetics over the maximally parallel steps
abstracted by µ◦. The kinetics of a maximally parallel step depends to the
number of rules applicable in the source state (by the LRR term), and it is
inversely proportional to the number of times each rule is applied. Note that all
the concrete states abstracted by an abstract state share the same set of applicable
rules (see Lemma 5.2.1). As a consequence, for each Rr ∈ R, LRR(r, s,R) is the
same for all s ∈ γMS(s′◦). For this reason to get lower/upper bound for the value
of KIN we take an approximation of the maximum/minimum number of times
each rule Rr ∈ R can be applied, [µ◦[r]]−/[µ◦[r]]+, from any one of the concrete
states abstracted by the source abstract state 3.

The following lemma states the soundness of the approximation given by
K̂IN◦ w.r.t. KIN.

Lemma 5.3.6. ∀ µ ∈ µ◦ s◦ ∈ MS◦(Σ) , s ∈ γMS(s◦) :

[KIN(µ, s,R)]• vI K̂IN◦(µ◦, s◦,R)

Proof. See Section 5.9 �

Finally, function L̂IM◦ gives lower and upper bounds on the number of
possible concrete transitions between all the concrete states, represented by
two abstract states. Let LIM◦(s◦′, s◦′′,R) be the interval corresponding to the

3 For convenience we consider the maximum state abstracted by the abstract starting state s+(s◦).

102

minimum and maximum number of concrete transitions between a multiset
abstracted by s◦′ (s′ ∈ γMS(s◦′)) and one of the multisets abstracted by s◦′′

(s′′ ∈ γMS(s′′◦)). Formally we have:

LIM◦(s◦′, s◦′′,R) = [min
s′∈γMS(s◦′)

|{s′
µ , r
−−→ s′′ ∈→ ∧ s′′ ∈ γMS(s◦′′)}| , (5.2)

max
s′∈γMS(s◦′)

|{s′
µ , r
−−→ s′′ ∈→ ∧ s′′ ∈ γMS(s◦′′)}|] .

(5.3)

In order to compute an approximated upper bound for LIM◦(s◦′, s◦′′,R)
we consider s◦+ as it represents the concrete states, abstracted by s◦, with the
greatest number of exiting transitions (see Section 4.5). To get a lower bound on
LIM◦(s◦′, s◦′′,R) we consider two cases. In the case where there exist concrete
states abstracted by the source state which have no transition into any of the
concrete states abstracted by the target state (i.e. ∃ s′ ∈ γMS(s◦′) : @ s′

µ,r
−−→

s′′ | s′′ ∈ γMS(s◦′′)), we use 0. Otherwise, if all the concrete states abstracted by
the source state have at least a transition to a state abstracted by the target state,
we safely consider 1.

Formally, we define

L̂IM◦(s◦′, s◦′′,R) = [ψ(s◦′, s◦′′,R),
∏

a∈Σ , [s◦(a)]+>0

φ(‖(R)a‖, [s◦(a)]+)]

where φ is defined similarly4 as in Section 4.5, that is

φ(m, n) =

1 if m = 1 ,(
m+n−1

n

)
=

(n+m−1)!
(m−1)!n! otherwise

while ψ :MS◦ ×MS◦ × R is defined as

ψ(s◦′, s◦′′,R) =

1 if ∀s′ ∈ γMS(s◦′)∃ s′
µ,r
−−→ s′′ | s′′ ∈ γMS(s◦′′) ,

0 otherwise .

As the following lemma states, L̂IM◦(s◦′, s◦′′,R) is a sound approximation
of LIM◦(s◦′, s◦′′,R).

4 The only difference is that here n can be equal to ∞ and we have to deal with this particular
case.

103

Lemma 5.3.7. ∀s◦′, s◦′′ ∈ MS◦ : LIM◦(s◦′, s◦′′,R) vI L̂IM◦(s◦′, s◦′′,R)

Proof. See Section 5.9 �

The following theorem states the soundness of the abstract rates computed
by Rate◦ w.r.t. the concrete rates computed by Rate.

Theorem 5.3.8. ∀s′◦, s′′◦ ∈ MS◦, s′ ∈ γMS(s′◦), µ ∈ MS(R),
[µ, µ] vMS◦ µ◦ :

[Rate(µ, s′,R)]• vI Rate◦(R)(µ◦, s′◦, s′′◦,R) .

Proof. See Section 5.9 �

5.3.4 Soundness of abstract LTS semantics
We prove the soundness of the abstract LTS semantics with respect to the
concrete one. The proof is based on a notion of approximation order on abstract
LTS, using an approach similar to Section 3.3.4.

To relate an LTS to its abstract counterpart we introduce the concept of best
abstraction of an LTS. The most precise abstract LTS has the same state space of
the original LTS (formally, we use the best abstraction with respect to the most
precise partitioning p•). For each move from s to s′, the abstract multiset r• and
µ• are the union and the sum of the associated concrete moves, respectively.

Definition 36 (Best abstraction of LTS). We define the LTS best abstraction
function αLTS : LTS 7→ LTS◦ such that

αLTS((S , s0,→)) = ((S ◦(p•), αMS(p•)(s0),→α
◦))

with

→α
◦= {s

◦
µ∗ , r∗
−−−−→α s′◦ | s

µ , r
−−→ s′ ∈→ ∧ s ∈ γMS(s◦) ∧ s′ ∈ γMS(s′◦) }

where

(µ∗, r∗) = (
MS

◦⋃
µ•,

I∑
r•) and s

µ , r
−−→ s′ ∈→ ∧s ∈ γMS(s◦) ∧ s′ ∈ γMS(s′◦) .

Note that αLTS introduces the least possible approximation, by means of
abstract multisets MS◦, to represent sets of multisets MS. Conversely, αLTS
does not introduce any approximation on transition rates, as the following
Lemma states.

104

Lemma 5.3.9. Given an lts ∈ LTS it holds that

αLTS(lts) = (S ◦(p•), αMS(p•)(s0), →α
◦) ,

∀ s◦, s◦′ ∈ S ◦(p•) , s◦
r◦,µ◦
−−−→ s′◦ ∈→α

◦ : [r◦]+ = [r◦]− .

Proof. By definition of αLTS (r◦ =
∑I r•). �

Moreover, in the abstract LTS
αLTS((S , s0,→)) = (S ◦(p•), αMS(p•)(s0),→α

◦) each concrete state is associated
with a single abstract state and vice-versa. Formally ∀s ∈ S !∃ s◦ ∈ S ◦(p•) s.t.
s ∈ γMS(s◦). In the following we use s = γMS(s◦) to denote such a state. Hence
it holds that

{s◦ | s◦ ∈ S ◦(p•)} = {αMS(p•)(s) | s ∈ S } = {γMS(s◦) | s◦ ∈ S ◦(p•)} = S .

We introduce the approximation order on abstract LTSs, vLTS◦ . Using the
order we can say that lts◦ ∈ LTS◦ is a sound approximation of lts ∈ LTS
provided that αLTS◦ (lts) vLTS◦ lts◦.

Definition 37 (Order on Abstract LTSs).
Let lts◦i = (S ◦(pi), s0,i

◦,→i
◦), ∈ LTS

◦, for i ∈ {1, 2}. We say that lts◦1 vLTS◦ lts◦2
iff

i) p1 vP̂ p2;

ii) ∀t◦1 = (s◦1
µ◦1 , r◦1
−−−−−→◦ s◦′1) ∈→1

◦, ∃ t◦2 = (s◦2
µ◦2 , r◦2
−−−−−→◦ s◦′2) ∈→2

◦ such that

a) s◦1 vMS◦ s◦2 , s◦′1 vMS◦ s◦′2 ;

b) µ̂◦ vMS◦ µ◦2 and r̂◦ vI r2
◦ where

µ̂◦ =

MS
◦⋃

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
1
◦ s.t.

s◦3 vMS◦ s◦2,
s◦′3 vMS◦ s◦′2

µ◦3 , r̂◦ =

I⋃
s◦3∈S ◦(S 1)
s◦3vMS◦ s◦2

I∑
s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
1
◦ s.t.

s◦′3vMS◦ s◦′2

r◦3

iii) ∀t◦2 = (s◦2
µ◦2 , r◦2
−−−−−→◦ s◦′2) ∈→2

◦ : ([r2
◦]− = 0)∨

(∃ t◦1 = (s◦1
µ◦1 , r◦1
−−−−−→◦ s◦′1) ∈→1

◦, s.t. s1
◦ vMS◦ s2

◦ ∧ s1
◦′ vMS◦ s2

◦′)

105

Intuitively, lts1
◦ vLTS◦ lts◦2 requires the following conditions.

i) The predicates used by lts1
◦ are more precise than the predicates used by

lts2
◦. ii) Each transition of lts1

◦ has a corresponding transition in lts2
◦: if the

transition of lts1
◦ goes from a state s◦1 to a state s◦′1, the corresponding transition

in lts2
◦ goes from a state s◦2 approximating s◦1 to a state s◦′2 approximating

s◦′1. Moreover, the transition of lts2
◦ has to approximate all the transitions

of lts1
◦ from a state approximated by s◦2 to a state approximated by s◦′2. In

particular, its abstract multiset µ◦2 has to approximate the union of multisets of
the set corresponding to concrete moves, e.g. µ̂◦. Similarly, its rate r◦2 has to
approximate the sum of rates of the set corresponding to concrete moves, e.g. R̂◦.
iii) Each transition of lts2

◦, either has a minimum rate equal to 0, or corresponds
to at least a transition of lts1

◦.
The following theorem states that LTS ◦(M◦) is a sound approximation of

each LTS (M) such that M ∈ γ(M◦).

Theorem 5.3.10 (Soundness of LTS ◦).
∀M◦ ∈ M◦ , ∀M ∈ γ(M◦) : αLTS(LTS (M)) vLTS◦ LTS ◦(M◦) .

Proof. See Section 5.9 �

5.4 Abstract Probabilistic Semantics
We use Interval Markov Chains [JL91, KU02] (IMC), to define the probabilistic
semantics of abstract systems. The definition of IMC and the approximation
order over IMC we use are similar to the ones of Section 3.3.3. The difference
consists in considering an abstract state space instead of a concrete one. We refer
to Section 3.3.3 also for the definitions of scheduler and of abstract probabilistic
reachability.

Definition 38 (Interval Markov Chain). An IMC is a tuple (S ◦(p), s0
◦, P−, P+),

where: S ◦(p) is the set of abstract states and s0
◦ ∈ S ◦(p) the initial abstract

state; P−, P+ : S → PDistr(S ◦(p)) are the lower and upper probability
transition functions such that ∀s◦, s◦′ ∈ S ◦(p), P−(s◦, s◦′) ≤ P+(s◦, s◦′) and∑

s◦′′∈S ◦(p) P−(s◦, s◦′′) ≤ 1 ≤
∑

s◦′′∈S ◦(p) P+(s◦, s◦′′) .

We refer to Section 3.3.3 for the definitions of scheduler and of abstract
probabilistic reachability.

To relate the DTMC semantics of a concrete system, to its abstract counter-
part IMC, we use the best DTMC abstraction function αMC.

106

Definition 39 (Best abstraction of DTMC). We define the DTMC best abstrac-
tion function αMC :MC 7→ MC◦ such that

αMC((S , s0, p)) = (S ◦(p•), αMS(p)(s0), P̂, P̂) where

∀s, s′ ∈ S : P̂(αMS(p•)(s), αMS(p•)(s′)) = P(s, s′) (5.4)

In the following, with an abuse of notation we use P̂ = P for (5.4).
The following Lemma states that the probabilities derived by αMC are exact.

Lemma 5.4.1.
∀A ∈ AP,mc ∈ MC : [ReachA,mc(s0)]• = Reach◦A,αMC(mc)(αMS(p•)(s0)).

Proof. Let mc = (S , s0, P) ∈ MC and hence
αMC(mc) = (S ◦(p•), αMS◦ (p•)(s0), P̂, P̂). Note that mc and αMC(mc) are
isomorphic as ∀s ∈ S : γMS◦ (αMS◦ (p•)(s)) = {s}.

We have to prove that

ReachA,mc(s0) =

inf
S∈Adm(mc◦)

PSs◦ ({π ∈ C(s◦) | π[i]∀ � A for some i ≥ 0}) =

sup
S∈Adm(mc◦)

PSs◦ ({π ∈ C(s◦) | π[i]∃ � A for some i ≥ 0}) =

[Reach◦A,αMC(mc)(αMS(p•)(s0))]− = [Reach◦A,αMC(mc)(αMS(p•)(s0))]+

As the abstract state space is S ◦(p•), we have that ∀s◦ ∈ S ◦(p•) , A ∈ AP :
s◦∀ � A ⇔ s◦∃ � A ⇔ s = γMS◦ (s◦)∃ � A. Moreover, as P̂ = P by definition
of αMC, it holds that infS∈Adm(mc◦) PSs◦ ({π ∈ C(s◦) | π[i]∀ � A for some i ≥ 0}) =

supS∈Adm(mc◦) PSs◦ ({π ∈ C(s◦) | π[i]∀ � A for some i ≥ 0}). Finally, as the structure
are isomorphic, to each abstract path corresponds a concrete path, with the same
probabilities. �

Similarly as in Section 3.3.4, we introduce an approximation order over IMC
vMC◦ .

107

Definition 40 (Order on IMCs). Let mc◦i = (S ◦(pi), s0,i,P
−
i ,P

+
i), i ∈ {1, 2}, two

IMCs. We say that mc◦1 vMC◦ mc◦2 iff ∀s◦1 ∈ S ◦(p1)∃! s◦2 ∈ S ◦(p2) :

• s◦1 vMS◦ s◦2;

• ∀ρ1 ∈ ADistr(s◦1)∃ ! ρ2 ∈ ADistr(s◦2) s.t.

∀s◦′2 ∈ S ◦2 : ρ2(s2
◦′) =

∑
s1
◦′∈ S ◦1 , s1

◦′vMS◦ s◦′2

ρ1(s1
◦′) .

Intuitively, we say that mc1
◦ vMC◦ mc2

◦ if each state s◦1 in the state space
of mc1

◦ corresponds to a state s◦2 in the state space of mc2
◦, which is a sound

approximation of s◦1 and which over-approximates the probability distributions.
More in details, each distribution of s◦1 has a corresponding distribution of s◦2

where the probabilities of the target states are summed up.
The following theorem states the soundness of the order on IMCs w.r.t.

reachability properties.

Theorem 5.4.2. Let mc◦i = (S ◦(pi), s0,i
◦, P−i , P

+
i), i ∈ {1, 2}, two IMCs.

If mc◦1 vMC◦ mc◦2 then ∀ A ∈ AP , s◦1 ∈ S ◦(p1) , s◦2 ∈ S ◦(p2) , s◦1 vMS◦ s◦2 we
have that

Reach◦A,mc◦1
(s◦1) vI Reach◦A,mc◦2

(s◦2) .

Proof. See Section 5.9 �

5.4.1 Abstract Probabilistic Semantics
We define the abstract probabilistic translation function H◦ : LTS◦ → MC◦.
The most difficult part of the translation consists of the calculation of intervals
of probabilities from intervals of rates.

We define R◦ : MS◦ ×MS◦ 7→ I, and E◦ : MS◦ 7→ I as follows. Given an
abstract LTS lts◦ = (S ◦(p), s◦0,→◦), ∀s◦, s◦′ ∈ S ◦(p)

R◦(s◦, s′◦) = r◦ s.t. s◦
r◦ , µ◦
−−−−→ s′◦ ∈→◦ and E◦(s◦) =

I∑
s◦′ ∈ S ◦(p)

R◦(s◦, s◦′) .

Intuitively, R◦(s◦, s◦′) reports the interval of rates corresponding to the move
from s◦ to s◦′, while E◦(s◦) is the abstract exit rate.

For all the pairs of states s◦, s◦′ ∈ S ◦(p), both lower and upper bounds of
the probability of moving from s◦ to s◦′ can be determined by R◦(s◦, s◦′) and

108

by E◦(s◦). For these purposes we need to consider the worst case and best case
scenario, respectively. That is, the transition to be maximized (minimized) takes
as rate value its upper (lower) bound and all the others take their lower (upper)
bound. This reasoning has to be properly combined with the special cases when
[E◦(s◦)]+ = 0 (the state s◦ is stable) or [E◦(s◦)]− = 0 (the state s◦ is stable for
some values of kinetic constant of some rules).

Definition 41 (Abstract Probabilistic Translation Function). We define
H◦ : LTS◦ → MC◦ such that H◦((S ◦(p), s◦0,→

◦)) = (S ◦(p), s◦0, P−, P+),
where P−, P+ : S ◦(p) → PDistr(S ◦(p)) are obtained, for each s◦, s◦′ ∈
S ◦(p), s◦ , s◦′, as follows:

• if [E◦(s◦)]+ = 0, then P+(s◦, s◦′) = P−(s◦, s◦′) = 0, P+(s◦, s◦) =

P−(s◦, s◦) = 1;

• if [E◦(s◦)]+ > 0, then

(a) if [E◦(s◦)]− = 0, then P+(s◦, s◦) = 1, P−(s◦, s◦) = 0

(b) if [R◦(s◦, s◦′)]− = 0, then P−(s◦, s◦′) = 0 else
P−(s◦, s◦′) = [R◦(s◦, s◦′)]−/([R◦(s◦, s◦′)]− +

∑
s◦′′∈S ◦(p)

s◦′′,s′

[R◦(s◦, s◦′′)]+)

(c) if [R◦(s◦, s◦′)]+ = 0, then P+(s◦, s◦′) = 0 else
P+(s◦, s◦′) = [R◦(s◦, s◦′)]+/([R◦(s◦, s◦′)]+ +

∑
s◦′′∈S ◦(p),

s◦′′,s◦′

[R◦(s◦, s◦′′)]−) .

5.4.2 Soundness with respect to Probabilistic
Reachability

The following lemma states that the approximation order over abstract LTSs
obtained by the best LTS abstraction is preserved by the translation to IMCs.

Lemma 5.4.3. Let lts = (S , s0,→) and αLTS(lts) = (S ◦(p1), s◦0,1,→
◦

1), for
p1 = p• and s◦0,1 = αMS(p•)(s0). Moreover, let lts◦ = ((S ◦(p2), s◦0,2,→

◦
2)) be

an abstract LTS.
If αLTS(lts) vLTS◦ lts◦ thenH◦(αLTS(lts)) vMC◦ H◦(lts◦).

Proof. See Section 5.9 �

Lemma 5.4.4 states that αMC ◦ H = H◦ ◦ αLTS.

109

Lemma 5.4.4. ∀M ∈ M , αMC(H(LTS (M))) = H◦(αLTS(LTS (M))) .

Proof. See Section 5.9 �

The following theorem states the soundness of the abstract probabilistic
semantics for an abstract system with respect to the best abstraction of the
probabilistic semantics, for each approximated concrete system.

Theorem 5.4.5 (Soundness of the abstract probabilistic semantics). ∀M◦ ∈
M◦ , M ∈ γ(M◦) : αMC(H(LTS (M))) vMC◦ H◦(LTS ◦(M◦)) .

Proof. By Lemma 5.4.4, we have that

αMC(H(LTS (M))) = H◦(αLTS(LTS (M))) ,

and given the monotonicity ofH◦ (see Lemma 5.4.3), it remains to prove that

αLTS(LTS (M)) vLTS◦ LTS ◦(M◦) ,

that is true by Theorem 5.3.10. �

Finally, we conclude that the IMC, derived from the abstract LTS of an
abstract system M◦, gives conservative bounds for probability of reachability
properties for each concrete system M ∈ γ(M◦).

Theorem 5.4.6.
∀M◦ = (Σ,R, s0, p) ∈ M◦ , ∀M = (Σ, s0,R) ∈ γ(M◦), A ∈ AP, s ∈ S , s◦ ∈
S ◦(p), s ∈ γMS(s◦),

[ReachA,H(LTS(M))(s)]• vI Reach◦A,H◦(LTS◦(M◦))(s) .

Proof. By Lemma 5.4.1 we have that ∀p ∈ P

[ReachA,H(LTS(M))(s)]• = Reach◦A,αMC(H(LTS (M)))(αMS◦ (p)(s)) .

Since s ∈ γMS(s◦) we have that α◦
MS

(p)(s) vMS◦ s◦, and hence, given
Theorem 5.4.2, it remains to prove that

αMC(H(LTS (M))) vMC◦ H◦(LTS ◦(M◦)) ,

that is guaranteed by Theorem 5.4.5. �

110

5.5 Case study: Seasonal Reproduction Model
We show the efficacy of the proposed approach on a model of seasonal animals.
Namely we model the reproduction of seasonal animals, we construct the
corresponding abstract probabilistic semantics and we study the probabilistic
reachability of an extinction state (i.e. a state with no more individuals).

Model. Seasonal animals have a cyclic behavior in which they alternatively
couple and hatch. In nature the alternation of coupling and hatching periods
is governed by the alternation of seasons. The main assumption is that all the
animals reproduce in a certain season (e.g. spring), while they hatch and grow
offspring in an other season (e.g. winter); no animals can couple during the
hatching season.

The species involved are

Σ = {F , Fo , Fi} ;

F represents female individuals ready to couple, Fo represents female individ-
uals during hatching season, while Fi represents young animals. For the sake
of simplicity, we don’t model explicitly the presence of males and we assumes
males to be always present.

In particular we can model such a behavior with the following set of rules R:

{ F
1
−→ (R1), F

1
−→ Fi Fo (R2),

Fo
1
−→ F (R3), Fi

1
−→ (R4),

Fi
1
−→ F (R5) }.

Each female F can die (R1) or couple (R2), giving birth to a young female
Fi, and becoming an hatching female Fo; in this period they can only rest and,
eventually, become again a female ready to couple (R3). Young females Fi may
become an adult female (R5) or may die (R4).

For the sake of simplicity, we assume all the rule rates to be equal (i.e. equal
to 1), that it that all events are equiprobable.

This kind of synchronous behavior is badly modelled with an interleaving
semantics, showing system executions in which the system population consists
for a part in females ready to couple and females hatching. This actually cannot
happen as the behavior of females is timed by seasons. Moreover while a single
female reproduces many times, the other females may stall.

111

Conversely, with a maximally parallel semantics we can represent the system
dynamics as synchronous.

Note that the state space associated to the concrete semantics of the system
is infinite as each species can grows indefinitely, while, using interval based
predicate abstraction, we can obtain a finite abstract model.

Specifically, we construct an abstract system

M◦ex = (Σ,R, s0, p) ,

where s0 = {3, 0, 0}, using the following set of predicates

p =
⋃
a∈Σ

{(a , [0, 0]), (a , [1, 2]), (a , [3, 4]),

(a , [4, 5]), (a , [6, 7]), (a , [7, 8]), (a , [9,∞])} .

Note that p is a partition with respect to R over Σ, that is p ∈ P̂R(Σ).

Abstract Probabilistic Semantics. The IMC probabilistic semantics of M◦ex

is shown in Figure 5.1, whose bounds on transition probabilities are the reported
in Table 5.1, and abstract states are the following:

s0
◦ = { [3, 4], [0, 0], [0, 0] }

s1
◦ = { [0, 0], [0, 0], [0, 0] }

s2
◦ = { [0, 0], [1, 2], [1, 2] }

s3
◦ = { [0, 0], [3, 4], [3, 4] }

s4
◦ = { [0, 0], [5, 6], [5, 6] }

s5
◦ = { [0, 0], [7, 8], [7, 8] }

s6
◦ = { [0, 0], [9,∞], [9,∞] }

s7
◦ = { [1, 2], [0, 0], [0, 0] }

s8
◦ = { [5, 6], [0, 0], [0, 0] }

s9
◦ = { [7, 8], [0, 0], [0, 0] }

s10
◦ = { [9,∞], [0, 0], [0, 0] } .

We comment here the computation of abstract rates of transitions exiting
from s0 and the related probabilities, as an example.

112

From the abstract starting state s◦0 the reachable abstract states correspond
to N̂ext◦(R)(s◦0, p) = Decompose({[0, 0], [0, 4], [0, 4]}, p). From such a set
of reachable abstract states, many states are excluded, as arrival states, by
the function f̂ ◦. Indeed, the only abstract states s◦′ for which f̂ ◦(s◦0, s◦′,R)
return a value different from the null abstract multiset of rule application are
{s◦1, s◦6, s◦9 }.

For such states we have that

f̂ ◦(R)(s◦0, s◦1) = {[3, 4], [0, 0], [0, 0], [0, 0], [0, 0] } = µ◦1,
f̂ ◦(R)(s◦0, s◦2) = {[0, 4], [1, 2], [0, 0], [0, 0], [0, 0] } = µ◦2,
f̂ ◦(R)(s◦0, s◦3) = {[0, 4], [3, 4], [0, 0], [0, 0], [0, 0] } = µ◦3 .

Instead, transitions from s0
◦ to state resulting from

Decompose({[0, 0], [0, 4], [0, 4]}, p) are excluded by f̂ ◦ as the least fix-point of
f̂ ◦(n) consists in a not WellFormed abstract multisets.
For instance, f̂ ◦(R)(s◦0, {[0, 0], [0, 0], [1, 2]}) is equal the null abstract multiset
as

FixPoint(f̂ ◦(n)(R)(s0
◦, {[0, 0], [0, 0], [1, 2]}))[2] = [1, 0] .

The computation of rates for such transitions is

Rate◦(R)(s◦0, s◦1) = [1 , 6] × [1
16 , 1

8] × [1 , 5] = [1
16 , 15

4],
Rate◦(R)(s◦0, s◦2) = [1 , 6] × [1

64 , 1
2] × [1 , 5] = [1

64 , 15],
Rate◦(R)(s◦0, s◦3) = [1 , 6] × [1

256 , 1
8] × [1 , 5] = [1

256 , 15
4],

and, hence, their probabilities are

P◦(s◦0, s◦1) = [1
301 , 192

193],
P◦(s◦0, s◦2) = [1

481 , 3840
3857],

P◦(s◦0, s◦3) = [1
4801 , 48

49] .

Examples of computation of rate for transitions involving abstract states
having∞ as upper bound of at least a species are, for instance :

• a transition to a an infinite abstract state, as the one from s◦5 to s◦10: we
have that
f̂ ◦(R)(s◦5, s◦10) = {[0, 0], [0, 0], [7, 8], [0, 8], [0, 8] },
and hence Rate◦(R)(s◦5, s◦10) = [1, 70] × [1

16777216 ,
1

128] × [1, 36]
= [1/16777216, 315/16] and P◦(s◦5, s◦10) can be obtained in standard
way;

113

• a transition from a an infinite abstract state, as the one from s◦10 to s◦1:
we have that
f̂ ◦(R)(s◦10, s◦1) = {[0,∞], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0] },
and hence Rate◦(R)(s◦10, s◦1) = [1,∞] × [0, 1] × [1,∞]
= [0,∞] and P◦(s◦10, s◦1) = [0, 1].

Probabilistic Reachability. Looking for extinction probability (i.e. proba-
bilistic reachability of s1) through model checking we obtain that:

• starting from s◦0 it is included in [0.018378449702171482 , 1];

• starting from s◦8 it is included in [1.7291907142970184 ∗ 10−4 , 1];

• starting from s◦9 it is included in [9.519793254996947 ∗ 10−6 , 1].

We can also obtain, for instance, bounds for the probability of reaching an
extinction state within the first year (i.e. within two steps). The results are the
following:

• starting from s◦0 we have a probability included in
[0.00332225913621262 , 0.994818652849741];

• starting from s◦8 we have a probability included in
[1.70039108995069 ∗ 10−4 , 0.998861973662819];

• starting from s◦9 we have a probability included in
[9.33698098056974 ∗ 10−6 , 0.999736552557765].

Bounds for the probability of reaching an extinction state within the second
year (i.e. within four steps) are the following:

• starting from s◦0,
[0.007385312320100682 , 0.9999880841548489];

• starting from s◦8,
[1.7068427116859715 ∗ 10−4 , 0.999999204924427];

• starting from s◦9,
[9.383470899327278 ∗ 10−6 , 0.9999999516622782].

114

Figure 5.1: Transition system corresponding to the IMC probabilistic semantics
for the model of seasonal animals reproduction M◦ex (see Table 5.1 for transition
probabilities). 115

P
◦(s
◦7 ,s

◦1)
=

[
113

, 4849
],

P
◦(s
◦7 ,s

◦1)
=

[
149

, 1213
],

P
◦(s
◦0 ,s

◦1)
=

[
1301

, 192
193

],

P
◦(s
◦0 ,s

◦2)
=

[
1481

, 3840
3857

],

P
◦(s
◦0 ,s

◦3)
=

[
1

4801
, 4849

],

P
◦(s
◦8 ,s

◦1)
=

[
1

5881
, 6144
6151

],

P
◦(s
◦8 ,s

◦2)
=

[
1

6753
, 286720
286789

],

P
◦(s
◦8 ,s

◦3)
=

[
1

80769
, 71680
71761

],

P
◦(s
◦8 ,s

◦4)
=

[
1

376833
, 640
643

],

P
◦(s
◦9 ,s

◦1)
=

[
1

107101
, 64512
64529

],

P
◦(s
◦9 ,s

◦2)
=

[
1

110881
, 20643840
20644117

],

P
◦(s
◦9 ,s

◦3)
=

[
1

1411201
, 1032192
1032257

],

P
◦(s
◦9 ,s

◦4)
=

[
1

6612481
, 1290240
1290577

],

P
◦(s
◦9 ,s

◦5)
=

[
1

27417601
, 16128
16145

],

P
◦(s
◦10 ,s

◦1)
=

[0
,1

],

P
◦(s
◦10 ,s

◦2)
=

[0
,1

],

P
◦(s
◦10 ,s

◦3)
=

[0
,1

],

P
◦(s
◦10 ,s

◦4)
=

[0
,1

],

P
◦(s
◦10 ,s

◦5)
=

[0
,1

],

P
◦(s
◦10 ,s

◦6)
=

[0
,1

],

P
◦(s
◦6 ,s

◦10)
=

[0
,1

],

P
◦(s
◦5 ,s

◦10)
=

[
1

41287681
, 41287680
41287681

],

P
◦(s
◦5 ,s

◦9)
=

[
1

41287681
, 41287680
41287681

],

P
◦(s
◦4 ,s

◦10)
=

[
1

1474561
, 368640
368641

],

P
◦(s
◦4 ,s

◦9)
=

[
1

1474561
, 368640
368641

],

P
◦(s
◦4 ,s

◦8)
=

[
1

1474561
, 368640
368641

],

P
◦(s
◦3 ,s

◦9)
=

[
1

153661
, 38415
38416

],

P
◦(s
◦3 ,s

◦8)
=

[
1

153661
, 38415
38416

],

P
◦(s
◦3 ,s

◦0)
=

[
1

153661
, 38415
38416

],

P
◦(s
◦2 ,s

◦0)
=

[
197

, 9697
],

P
◦(s
◦2 ,s

◦7)
=

[
197

, 9697
],

P
◦(s
◦2 ,s

◦2)
=

[1
,1

],

Table
5.1:Transition

probabilities
ofIM

C
probabilistic

sem
antics

forthe
m

odelofseasonalanim
als

reproduction
M
◦ex .

116

5.6 Discussion

The proposed approach allows systems evolving with a maximally parallel
probabilistic semantics, even with an infinite associated state space, to be
studied. It allows a number of transitions smaller than the one of the concrete
probabilistic semantics to be obtained. Conversely, a standard predicate
abstraction approach (as the one of [KH09]) it is able to reduce the number
of states but not of the number of transitions.

We have shown by the previous case study that our approach is correct
and does not suffer from liveness related problems (i.e. lower bounds on
transition probabilities are different from 0) typical of abstract semantics based
on predicate abstraction. Nevertheless, it presents many points where precision
can be improved.

Summarizing the main causes of imprecision, and some suggestions to their
solution, are the following:

a) The function L̂IM◦, computing bounds on the number of concrete tran-
sitions between the states abstracted by two abstract states, considers the
arrival state only for the computation of the lower bound. In other words,
for some s◦′, s◦′′,R the value of [L̂IM◦(s◦′, s◦′′,R)]+ depends only on s◦′.
This is evident in the seasonal animals reproduction model of the previous
section: we have that

L̂IM◦(s◦0, s◦1,R) = L̂IM◦(s◦0, s◦6,R) = L̂IM◦(s◦0, s◦9,R) = [1, 6]

while

LIM◦(s◦0, s◦1,R) = [1, 1] , LIM◦(s◦0, s◦6,R) = [2, 2]

and LIM◦(s◦0, s◦9,R) = [1, 2] .

A more precise version of this function should, instead, consider the
information given by s◦′′.

b) The function M̂UL◦, computing the bounds on the multiplicity of maxi-
mally parallel rules application events between two abstract states, in the
current definition ignores information about the abstract multiset of rule
application in input and considers only the starting state.

117

This is evident in the oviparous reproduction model of the previous
section: we have that

M̂UL◦(µ◦1, s◦0,R) = M̂UL◦(µ◦2, s◦0,R) = M̂UL◦(µ◦3, s◦0,R) = [1, 5]

while
max

s∈γMS(s0) , µ∈γMS(µ◦1)
MUL(µ, s,R) = 1 ,

max
s∈γMS(s0) , µ∈γMS(µ◦2)

MUL(µ, s,R) = 2 and

max
s∈γMS(s0) , µ∈γMS(µ◦3)

MUL(µ, s,R) = 2 .

A more precise version should consider the information given by the
abstract multiset of rule application.

c) The function f̂ ◦(n) should refine the abstract multiset of rule applications
not only considering the precise intervals in the previous approximation,
but exploiting also information about the minimum/maximum number of
times a rule each rule is applied in the previous approximation.

These points are not investigated here to keep the discussion as simple as
possible in order to show the soundness of the approach.

The approach we propose is able to effectively compute a finite, compact,
abstract probabilistic semantics for models of systems evolving with a syn-
chronous, maximally parallel, behavior.

Actually, the result we have presented are not limited to this particular
application and can be generalized. Indeed, the proposed approach could be
adapted to any language and abstract semantics able to give concrete and abstract
LTSs in a relation similar to the one presented here, vLTS◦ . More in details,
Theorem 5.4.6 can be applied to any lts and lts◦, independently from the
language and the semantics used to compute them, such that αLTS(lts) vLTS◦
lts◦5.

5.7 Comparison with Related Works
With regard to related works, while the abstraction of probabilistic semantics has
been widely studied over the last few years, to our knowledge there are not other
works dealing with abstraction of a maximally parallel probabilistic semantics.

5 In particular, only the condition over transition rates of vLTS◦ in Definition 37 should be
respected.

118

In literature many abstractions of probabilistic semantics have been recently
proposed: infinite state abstraction [HHWZ10], predicate abstraction [WZH07,
KKNP08, KH09], symmetry reduction [DMP07, KNP06], counter example
driven abstraction refinement [HWZ08].

The approaches of [FLW06, DJJL01, SVA, Hut05, Šku06, Šku09] present
similar abstractions of probabilistic systems, using MDP or IMC. The abstrac-
tions are designed for dealing with the traditional state explosion problem. In
particular, the abstract model is derived from the concrete one (a DTMC), by
partitioning the concrete state space and by calculating the abstract probability
distributions directly from the concrete ones.

Our approach is different from other works as it aimed to effectively compute
an abstract probabilistic semantics for maximally parallel rewriting systems,
through the computation of an LTS, while other approaches discuss the problem
of abstraction starting from the concrete DTMC. Moreover our approach allows
systems with associated an infinite concrete state space to be studied, computing
on the flight bounds on probabilities of transitions involving infinite states.

In the context of biological systems modelling similar approaches, are
presented in [CGL09, GL09, BLMS09] to validate probabilistic temporal
properties of biological systems. Namely these abstractions are designed for
approximating the multiplicity of individuals, present in a state, using intervals
of integers, and for supporting probabilistic model checking of MSR systems
with uncertain kinetic rates, using intervals of reals.

The proposal of [DFF+08, DFFK08] applies abstract interpretation tech-
niques, in the context of formal studies of biological systems, to compute
efficiently a superset of reachable complexes, and to generates smaller systems
of differential equations from the concrete one.

The approach of [KRHK10] is aimed to perform abstraction of a particular
kind of Markov chain, namely the ones structured as Quasi-Birth/Dead pro-
cesses.

Finally, [Mon05, DPW00] investigate the application of abstract inter-
pretation into the context of standard concurrent probabilistic programming
languages.

The idea of partitioning the state space of biochemical system model is also
used in [GH09], where states are assigned to classes of equivalence on the base
of the set of applicable rules.

While the abstraction of probabilistic semantics has been widely studied over
the last few years, to our knowledge there are not other works dealing with
abstraction of a maximally parallel probabilistic semantics.

119

5.8 Conclusions
In this Chapter we defined an approach to construct effectively a sound
approximation of the maximally parallel probabilistic semantics defined in
Chapter 4.

It allows conservative bounds on probability of reachability properties to
be obtained. Moreover it allows the number of states and transitions in the state
space of the studied system to be drastically reduced and systems with an infinite
associated states space to be analyzed. Since the abstraction is parametric on a
set of predicates, it is possible to refine the abstract probabilistic model until a
right compromise between dimension and precision is reached.

The approach is proved to be sound with respect to probabilistic reachability
and its efficacy is shown on a simple model of seasonal animal reproduction
behavior. The method can be further refined, defining more precise and complex
functions for transition rates computation, preserving its soundness.

120

5.9 Proofs

Proof of Lemma 5.3.4. As f̂ ◦ is defined as the fix-point of f̂ ◦(n), our proof
proceeds by induction

1) f ◦(R)(s◦′, s◦′′) vMS◦ f̂ ◦(0)(R)(s◦′, s◦′′)

2) if f ◦(R)(s◦′, s◦′′) vMS◦ f̂ ◦(n)(R)(s◦′, s◦′′) then
f ◦(R)(s◦′, s◦′′) vMS◦ ̂f ◦(n+1)(R)(s◦′, s◦′′)

1) We have to prove that ∀i ∈ [1,m]

a) [f ◦(R)(s◦′, s◦′′)(i)]+ ≤ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]+

b) [f ◦(R)(s◦′, s◦′′)(i)]− ≥ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]−

To prove a):We have that f ◦(R)(s◦′, s◦′′)(i)+

= [
⋃MS◦ µ•(i) | s′ µ , r

−−→ s′′ , s′ ∈ γMS(s′◦) , s′′ ∈ γMS(s′′◦)]+

= max
s′

µ , r
−−→s′′ , s′∈γMS(s′◦) , s′′∈γMS(s′′◦)

µ(i)

= maxi, and let s′maxi
, s′′maxi

be states s.t. s′maxi

µmaxi , rmaxi
−−−−−−−−→ s′′maxi

∧ µmaxi (i) = maxi.

On the other side, we have that [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]+ is less or equal, ∀a ∈ Σ,
of each of the following values:

i) b[∆(s◦′, s◦′′)(a)]+/Ri(a)c if
[∆(s◦′, s◦′′)(a)]+ ≥ 0 ∧ Ri(a) > 0 ∧ ¬TC(a,R);

ii) {b[s◦′′(a)]+/Ri(a)c if Ri(a) > 0 ∧ TC(a,R);

iii) {b−[∆(s◦′, s◦′′)(a)]−/Li(a)c if
[∆(s◦′, s◦′′)(a)]− ≤ 0 ∧ Li(a) > 0 ∧ ¬T P(a,R);

iv) b[s◦′(a)]+/Li(a)c if Li(a) > 0 ∧ T P(a,R) .

Let us consider a generic a ∈ Σ. Lets us consider the i) case.
The condition [∆(s◦′, s◦′′)(a)]+ ≥ 0 ∧ Ri(a) > 0 ∧ ¬TC(a,R) holds.
By Lemma 5.3.3 we have that [∆(s◦′, s◦′′)(a)]+/Ri(a) ≥ ∆(s′maxi

, s′′maxi
)(a)/Ri(a).

As there are not rules consuming a, and Ri is producing a, no more than
∆(s′, s′′)(a) may be created by Ri, that consequently is applied no more than
∆(s′maxi

, s′′maxi
)(a)/Ri(a) times. Summarizing,

121

f ◦(R)(s◦′, s◦′′)(i)+ =

maxi ≤ mina∈Σ∆(s′maxi
, s′′maxi

)(a)/Ri(a) ≤ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]+ .

Lets us consider the ii) case. The condition Ri(a) > 0 ∧ TC(a,R) holds.
As there are rules consuming a, and Ri is producing a, it may happen that all the
a in the arrival state are produced by applications of Ri. Namely Ri cannot be
applied more than bs′′maxi

(a)/Ric, times.
As s′′maxi

∈ γMS(s′′◦) we have that bs′′maxi
(a)/Ric ≤ b[s◦′′(a)]+/Ri(a)c. Summariz-

ing,

f ◦(R)(s◦′, s◦′′)(i)+ =

maxi ≤ mina∈Σs′′maxi
(a)/Ri ≤ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]+ .

Lets us consider the iii) case. The condition [∆(s◦′, s◦′′)(a)]− ≤ 0 ∧ Li(a) >
0 ∧ ¬T P(a,R) holds.
By Lemma 5.3.3 we have that−[∆(s◦′, s◦′′)(a)]−/Li(a) ≥ −∆(s′maxi

, s′′maxi
)(a)/Li(a).

As there are not rules producing a, and Ri is consuming a, no more than
−∆(s′, s′′)(a) may be consumed by Ri, that consequently is applied no more
than −∆(s′maxi

, s′′maxi
)(a)/Li(a) times. Summarizing,

f ◦(R)(s◦′, s◦′′)(i)+ = maxi ≤ mina∈Σ∆(s′maxi
, s′′maxi

)(a)/Ri(a) ≤ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]+ .

Lets us consider the iv) case. The condition Li(a) > 0 ∧ T P(a,R) holds.
As there are rules producing a, and Ri is consuming a, it may happen that all
the a in the starting state are consumed by applications of Ri. Namely Ri can be
applied no more than bs′maxi

(a)/Lic, times.
As s′maxi

∈ γMS(s′◦) we have that bs′maxi
(a)/Lic ≤ b[s◦′′(a)]+/Ri(a)c. Summariz-

ing,

f ◦(R)(s◦′, s◦′′)(i)+ = maxi ≤ mina∈Σs′maxi
(a)/Li ≤ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]+ .

To prove b): We have that f ◦(R)(s◦′, s◦′′)(i)−

= [
⋃
MS

◦ µ•(i) | s′
µ , r
−−→ s′′ , s′ ∈ γMS(s′◦) , s′′ ∈ γMS(s′′◦)]−

= min
s′

µ , r
−−→s′′ , s′∈γMS(s′◦) , s′′∈γMS(s′′◦)

µ(i)

= mini, and let s′mini
, s′′mini

be states s.t. s′mini

µmini , rmini
−−−−−−−→ s′′mini

∧ µmini (i) = mini.

122

On the other side, we have that [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]− is greater or equal, ∀a ∈ Σ,
of each of the following values:

i) d[∆(s◦′, s◦′′)(a)]−/Ri(a)e if [∆(s◦′, s◦′′)(a)]− > 0∧ Ri(a) > 0∧OP(i, a,R);

ii) d−[∆(s◦′, s◦′′)(a)]+/Li(a)e if [∆(s◦′, s◦′′)(a)]+ < 0 ∧ Li(a) > 0 ∧
OC(i, a,R);

iii) 0.

Lets us consider a generic a ∈ Σ. Lets us consider the i) case.
The condition [∆(s◦′, s◦′′)(a)]− > 0 ∧ Ri(a) > 0 ∧ OP(i, a,R) holds.
By Lemma 5.3.3 we have that [∆(s◦′, s◦′′)(a)]−/Ri(a) ≤ ∆(s′mini

, s′′mini
)(a)/Ri(a).

As Ri is the only rule producing a, ∆(s′mini
, s′′mini

)(a) are created by Ri, that,
consequently, is applied at least ∆(s′mini

, s′′mini
)(a)/Ri(a) times. Summarizing,

f ◦(R)(s◦′, s◦′′)(i)− = mini ≥ maxa∈Σ∆(s′mini
, s′′mini

)(a)/Ri(a) ≥ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]− .

Considering the ii) case, the condition [∆(s◦′, s◦′′)(a)]+ < 0 ∧ Li(a) >

0 ∧ OC(i, a,R) holds.
By Lemma 5.3.3 we have that−[∆(s◦′, s◦′′)(a)]+/Li(a) ≤ /,−∆(s′mini

, s′′mini
)(a)/Li(a).

As Ri is the only rule consuming a, −∆(s′mini
, s′′mini

)(a) are consumed by Ri, that,
consequently, is applied at least −∆(s′mini

, s′′mini
)(a)/Li(a) times. Summarizing,

f ◦(R)(s◦′, s◦′′)(i)− = mini ≥ maxa∈Σ−∆(s′mini
, s′′mini

)(a)/Li(a) ≥ [f̂ ◦(0)(R)(s◦′, s◦′′)(i)]− .

The iii) case is trivial as each rule cannot be applied less than 0 times.
2) It is immediate to show that f ◦(R)(s◦′, s◦′′) vMS◦ f̂ ◦(n)(R)(s◦′, s◦′′),

implies f ◦(R)(s◦′, s◦′′) vMS◦ ̂f ◦(n+1)(R)(s◦′, s◦′′). In fact the refinement function
uses a more precise ∆ (based on sMod) and set of rules rMod, excluding
only values of f̂ ◦(n)(R)(s◦′, s◦′′) not included in f ◦(R)(s◦′, s◦′′). Formally,
f ◦(R)(s◦′, s◦′′) vMS◦ ̂f ◦(n+1)(R)(s◦′, s◦′′) vMS◦ f̂ ◦(n)(R)(s◦′, s◦′′). Moreover,
for the same reasoning, FixPoint(f̂ ◦(n)(R)(s◦′, s◦′′)) always exists and the
computation eventually halts, at most with a precise abstract multiset (i.e. µ◦

s.t. ∀i∈[1,|µ|] : µ[i]+ = µ[i]−). �

Proof of Lemma 5.3.5. We have to prove that :

i) MUL(µ, s,R) ≥ 1;

ii) MUL(µ, s,R) ≤ [M̂UL◦(µ◦, s◦,R)]+.

123

The case i) is obvious as a maximally parallel event µ has at least a multiplicity
of 1.

Considering the case ii), we have to prove that MUL(µ, s,R) ≤ M̂UL∗(s◦,R)
that is

∏
a∈Σ

∏
i∈[1,m]

s.t. Applied(i,µ)

(s(a) −
i∑

r=1
lr(a) ∗ µ[r]

li(a) ∗ µ[i]

)

≤
∏
a∈Σ

∏
i∈[1,m]

Υ(s+(s◦)(a), X))

where

X =

(NAR(s+(s◦), a,R) − 1 if ∃R ∈ R s.t. ContextFree(R, a)

(NAR(s+(s◦), a,R) otherwise ,
.

As (i ∈ [1,m] s.t. Applied(i, µ)) ⊆ (i ∈ [1,m]), ∀a ∈ Σ, this is equal to prove

s(a)!∏
i∈[1,m]

s.t. µ[i]>0
(li(a) ∗ µ[i])! ∗ [s(a) −

∑
i∈[1,m]

s.t. µ[i]>0
li(a) ∗ µ[i]]!

≤
s+(s◦)(a)!

b(s+(s◦)(a)
X)c!

X .

We have that, ∀a ∈ Σ, s(a)! ≤ s+(s◦)(a)!.
It remains to prove that

∏
i∈[1,m]

s.t. µ[i]>0

(li(a) ∗ µ[i])! ∗ [s(a) −
∑

i∈[1,m]
s.t. µ[i]>0

li(a) ∗ µ[i]]! ≤ b(
s+(s◦)(a)

X + 1
)c!

X+1

.

We have two cases:

• if ∃R ∈ R s.t. ContextFree(R, a) then
∑

i∈[1,m]
s.t. µ[i]>0

li(a)∗µ[i] = s(a). We have

that b(s+(s◦)(a)
(NAR(s+(s◦),a,R))c!

(NAR(s+(s◦),a,R)
is a lower bound for

∏
i∈[1,m]

s.t. µ[i]>0
(li(a) ∗

µ[i])!;

124

• otherwise, we have that b(s+(s◦)(a)
(NAR(s+(s◦),a,R)+1)c!

(NAR(s+(s◦),a,R)+1
is a lower

bound for all the expressions of the form k1!k2! . . . km!(n −
∑m

i=1 ki)! when
m = NA(s+(s◦), a,R) , n = s+(s◦)(a) and

∑m
i=1 ki ≤ n. Hence it is a lower

bound for
∏

i∈[1,m]
s.t. µ[i]>0

(li(a) ∗ µ[i])!.

�

Proof of Lemma 5.3.6. We have to prove that :

i) KIN(µ, s,R) ≥ [K̂IN◦(µ◦, s◦,R)]−;

ii) KIN(µ, s,R) ≤ [K̂IN◦(µ◦, s◦,R)]+.

Considering the case i), we have that KIN(µ, s,R) =
∏

r∈[1,m] LRR(r, s,R)µ[r] is
≥ of [K̂IN◦(µ◦, s◦,R)]− =

∏
r∈[1,m] LRR(r, s+(s◦),R)[µ◦[r]]+

as LRR has [0, 1] as
co-domain, and [µ◦(r)]+ ≥ µ(r).

Considering the case ii), a similar reasoning holds as [µ◦(r)]− ≤ µ(r). �

Proof of Lemma 5.3.7. As we already seen in Section 4.5, the number of
exiting transition from a concrete state s using rules in R is top bound by∏

a∈Σ , s(a)>0 φ(‖(R)a‖, s(a)).
L̂IM◦(s◦′, s◦′′,R)+ consist of the result of same computation using ∀a ∈

Σ[s◦(a)]+; As ∀a ∈ Σ ,∀s ∈ γMS(s◦) : s(a) ≤ [s◦(a)]+, we have that
L̂IM◦(s◦′, s◦′′,R)+ ≤ LIM◦(s◦′, s◦′′,R)+.

L̂IM◦(s◦′, s◦′′,R)− is a sound lower approximation of LIM◦(s◦′, s◦′′,R)−

as it is equal to 0 if there exists a state s ∈ γMS(s◦′) for which there are
no transitions to any state s′′ ∈ γMS(s◦′′); it is equal to 1 if there is at least
a transitions exiting from each concrete state s ∈ γMS(s◦′) to some state
s′′ ∈ γMS(s◦′′).

�

Proof of Theorem 5.3.8. We have to prove that

a) MUL(µ, s,R)∗KIN(µ, s,R) ≥ [M̂UL◦(µ◦, s◦,R)]− ∗ [K̂IN◦(µ◦, s◦,R)]− ∗
[L̂IM◦(s′◦, s′′◦,R)]−

b) MUL(µ, s,R)∗KIN(µ, s,R) ≤ [M̂UL◦(µ◦, s◦,R)]+ ∗ [K̂IN◦(µ◦, s◦,R)]+ ∗

[L̂IM◦(s′◦, s′′◦,R)]+

To prove a) we have to prove that

i) MUL(µ, s,R) ≥ [M̂UL◦(µ◦, s◦,R)]−

125

ii) KIN(µ, s,R) ≥ [K̂IN◦(µ◦, s◦,R)]−

iii) [L̂IM◦(s′◦, s′′◦,R)]− ≥ [L̂IM◦(s′◦, s′′◦,R)]− = 1.

But i) and ii) are guaranteed by Lemmata 5.3.5 and 5.3.6, respectively, while iii)
is true by definition of L̂IM◦.

To prove b) we have to prove that

i) MUL(µ, s,R) ≤ [M̂UL◦(µ◦, s◦,R)]+

ii) KIN(µ, s,R) ≤ [K̂IN◦(µ◦, s◦,R)]+

iii) [LIM◦(s′◦, s′′◦,R)]+ ≤ [L̂IM◦(s′◦, s′′◦,R)]+.

But i) and ii) are guaranteed by Theorems 5.3.5 and 5.3.6, respectively, while
iii) is true by definition of L̂IM◦. �

Proof of Theorem 3.3.3. Let M◦ = (Σ,R, s0, p) and M = (Σ,R, s0). LTS (M) is
(S , s0,→) and αLTS(LTS (M)) = (S ◦(p•), αMS(p•)(s0),→α

◦), while LTS ◦(M◦) =

(S ◦(p), s0
◦,→◦). We have to prove that

a) p• vP̂ p that is true by definition of p• and by the fact that p is a partition
with respect to Σ;

b) ∀t◦1 = (s1
◦

µ∗ , r∗
−−−−→◦ s1

◦′) ∈→α
◦ , ∃ t◦2 = (s2

◦
µ◦ , r◦
−−−−→◦ s2

◦′) ∈→◦ such that

1) s◦1 vMS◦ s◦2 , s◦′1 vMS◦ s◦′2 ;

2) Let

µ̂◦ =

MS
◦⋃

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦3 vMS◦ s◦2
s◦′3 vMS◦ s◦′2

µ◦3 , r̂◦ =

I⋃
s◦3vMS◦ s◦2

I∑
s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

r◦3

i) µ̂◦ vMS◦ µ◦ and ii) r̂◦ vI r◦

c) ∀t◦2 = (s2
◦

µ◦ , r◦
−−−−→◦ s2

◦′) ∈→◦:
([r◦]− = 0) ∨

∃ t◦1 = (s1
◦

µ∗ , r∗
−−−−→◦ s1

◦′) ∈→α
◦ , s.t. s1

◦ vMS◦ s2
◦ ∧ s1

◦′ vMS◦ s2
◦′)

126

As p• vP̂ p it holds that ∀s◦1 ∈ S (p•)∃! s◦2 ∈ S (p) s.t. s◦1 vMS◦ s◦2.
The same reasoning applies to s◦′1 and s◦′2. Moreover, given the fact that N̂ext◦

is sound and monotone (see Theorem 5.3.2), and LTS ◦ has a transition from
a state s◦ to all states in N̂ext◦(R)(s◦, p), the existence, for each transition in
αLTS(LTS (M)), of a transition in LTS ◦(M◦) respecting the conditions of 1) is
guaranteed.

About 2), the condition i) is guaranteed by by Lemma 5.3.4, as µ◦ is
computed by LTS ◦ by f̂ ◦, that gives a sound approximation of all the maximally
parallel multiset of rule applications between all the concrete states abstracted
by s2

◦ and s2
◦′.

About the ii) condition we have to prove that

r̂◦ =

I⋃
s◦3vMS◦ s◦2

I∑
s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

r◦3 vI Rate◦(R)(µ◦ , s◦2 , s′2
◦) = r◦

that is

min
s◦3vMS◦ s◦2

I∑

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

r◦3

−

≥

[M̂UL◦(µ◦, s◦2,R)]− ∗ [K̂IN◦(µ◦, s◦2,R)]− ∗ [L̂IM◦(s◦2, s′◦2,R)]−

and

max
s◦3vMS◦ s◦2

I∑

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

r◦3

+

≤

[M̂UL◦(µ◦, s◦2,R)]+ ∗ [K̂IN◦(µ◦, s◦2,R)]+ ∗ [L̂IM◦(s◦2, s′◦2,R)]+

127

that is

min
s◦3vMS◦ s◦2

I∑

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

I∑
s

µ , r
−−→s′∈→
s∈γMS(s◦3)

s′∈γMS(s′◦3)

r•

−

≥

[M̂UL◦(µ◦, s◦2,R)]− ∗ [K̂IN◦(µ◦, s◦2,R)]− ∗ [L̂IM◦(s◦2, s′◦2,R)]−

and

max
s◦3vMS◦ s◦2

I∑

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

I∑
s

µ , r
−−→s′∈→
s∈γMS(s◦3)

s′∈γMS(s′◦3)

r•

+

≤

[M̂UL◦(µ◦, s◦2,R)]+ ∗ [K̂IN◦(µ◦, s◦2,R)]+ ∗ [L̂IM◦(s◦2, s′◦2,R)]+

that is

min
s◦3vMS◦ s◦2

I∑
s

µ , r
−−→s′∈→

s∈γMS(s◦3) , s′∈γMS(s′◦3)

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

[MUL(µ, s,R) × KIN(µ, s,R)]•

−

≥

[M̂UL◦(µ◦, s◦2,R)]− ∗ [K̂IN◦(µ◦, s◦2,R)]− ∗ [L̂IM◦(s◦2, s′◦2,R)]−

and

128

max
s◦3vMS◦ s◦2

I∑
s

µ , r
−−→s′∈→

s∈γMS(s◦3) , s′∈γMS(s′◦3)

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
α
◦ s.t.

s◦′3vMS◦ s◦′2

[MUL(µ, s,R) × KIN(µ, s,R)]•

+

≤

[M̂UL◦(µ◦, s◦2,R)]+ ∗ [K̂IN◦(µ◦, s◦2,R)]+ ∗ [L̂IM◦(s◦2, s′◦2,R)]+

We have that, by Lemmata 5.3.5 and 5.3.6 and by the fact that s ∈ γMS(s◦3)
and s◦3 vMS◦ s◦2 that

• [M̂UL◦(µ◦, s◦2,R)]− ≤ MUL(µ, s,R) ≤ [M̂UL◦(µ◦, s◦2,R)]+;

• [K̂IN◦(µ◦, s◦2,R)]− ≤ KIN(µ, s,R) ≤ [K̂IN◦(µ◦, s◦2,R)]+.

Thus ∀s ∈ γMS(s◦3) | s◦3 vMS◦ s◦2 :

• MUL(µ, s,R) × KIN(µ, s,R) ≥ [M̂UL◦(µ
◦

, s2)]− × [K̂IN◦(µ
◦

, s2)]−;

• MUL(µ, s,R) × KIN(µ, s,R) ≤ [M̂UL◦(µ
◦

, s2)]+ × [K̂IN◦(µ
◦

, s2)]+.

Moreover the previous statements, being valid ∀s ∈ γMS(s◦3) s.t. s◦3 vMS◦ s◦2

, are valid for the s ∈ γMS(s◦3) s.t. s◦3 vMS◦ s◦2 and for which MUL(µ, s,R) ×
KIN(µ, s,R) are min or max.

Finally, let X = {s
µ , r
−−→ s′ ∈→ |s ∈ γMS(s◦3), s′ ∈ γMS(s′◦3), s◦3

µ◦3 , r◦3
−−−−−→◦

s◦′3 ∈→
α
◦ s◦′3 vMS◦ s◦′2}; as [L̂IM◦(s◦2, s′◦2,R)]− ≤ |{X}| ≤ [L̂IM◦(s◦2, s′◦2,R)]+,

we can conclude that r̂◦ vI r◦.

About c, ∀t◦2 = (s2
◦

µ◦ , r◦
−−−−→◦ s2

◦′) ∈→◦, the existence of corresponding
s1
◦, s1

◦′ s.t. vMS◦ s2
◦ ∧ s1

◦′ vMS◦ s2
◦′ is given by the use of S ◦(p•). We

have two cases: or exists t◦1 = (s1
◦

µ∗ , r∗
−−−−→◦ s1

◦′) ∈→α
◦ , and the order is satisfied,

or, otherwise, we have that ψ(s2
◦, s2

◦′,R) = 0 and hence
[r◦]− = 0. �

Proof of Theorem 5.4.2. In order to simplify the proof it is convenient to
exploit the fact that ReachA,mc◦ (s◦) can be specified as a linear equations
system [CGL09, DJJL01, Kwi03, FLW06]. In particular, for h ∈ {1, 2} , s ∈

129

S ◦h , ReachA,mc◦h (s◦)− =
⋃

i∈{0,∞} ρ
−,i
A,mc◦h

(s◦) , ReachA,mc◦h (s◦)+ =
⋃

i∈{0,∞} ρ
+,i
A,mc◦h

(s◦)
where

ρ−,iA,mc◦h
(s◦) =

1 if s◦ ∀ � A,

0 if i = 0 ∧ ¬(s◦∀ �A),

inf
ρ jh∈ADistrmc◦h

(s)

∑
s◦′∈S

ρ jh (s◦′) × ρ−,i−1
A,mc◦h

(s◦′) otherwise;

and

ρ+,i
A,mc◦h

(s◦) =

1 if s◦ ∃ � A,

0 if i = 0 ∧ ¬(s◦∃ �A),

sup
ρ jh∈ADistrmc◦h

(s)

∑
s◦′∈S

ρ jh (s◦′) × ρ+,i−1
A,mc◦h

(s◦′) otherwise.

and where
⋃

stands for the least upper bound with respect to the underlying
order on pseudo-distributions, e.g. ρ1 ⊆ ρ2 iff for each s◦ ∈ MS◦, ρ1(s◦) ≤
ρ2(s◦). Intuitively, ρ−,iA,mc◦h

(s◦) reports the minimum probability to reach a state
satisfying A, starting from s◦, after i-iterates.

We examine only the case [ReachA,mc◦2 (s◦2)]− ≤ [ReachA,mc◦1 (s◦1)]−.

Therefore, it is enough to show that ρ−,iA,mc◦2
(s◦2) ≤ ρ−,iA,mc◦1

(s◦1), for every i ≥
0 , s◦1 ∈ S ◦(p1) , s◦2 ∈ S ◦(p2) , s◦1 vMS◦ s◦2. The proof proceeds by induction.

(i = 0) There are two possibilities:

(s2
◦∀ � A) then also s1

◦∀ � A and ρ−,iA,mc◦2
(s◦2) = ρ−,iA,mc◦1

(s◦1) = 1;

(otherwise) ρ−,iA,mc◦2
(s2
◦) = 0. In both the cases, of ρ−,iA,mc◦1

(s◦1) = 0 and

ρ−,iA,mc◦1
(s◦1) = 1, it holds ρ−,iA,mc◦2

≤ ρ−,iA,mc◦1
.

(i > 0) There are two possibilities:

(s2
◦∀ � A) then also s1

◦∀ � A and ρ−,iA,mc◦2
(s◦2) = ρ−,iA,mc◦1

(s◦1) = 1;

(otherwise) then

ρ−,iA,mc◦2
(s2
◦) = inf

ρ j2∈ADistrmc2
◦ (s◦2)

∑
s◦′2∈S

◦
2

ρ j2(s◦′2) × ρ−,i−1
A,mc2

◦ (s◦′2) .

On the other hand we have two cases:

130

(s1
◦∀ � A) then ρ−,iA,mc◦1

(s1
◦) = 1 while ρ−,iA,mc◦2

(s2
◦) ∈ [0, 1].

(otherwise)

ρ−,iA,mc◦1
(s1
◦) = inf

ρ j1∈ADistrmc1
◦ (s◦1)

∑
s◦′1∈S

◦
1

ρ j1(s◦′1) × ρ−,i−1
A,mc1

◦ (s1
◦′) .

Let ρmin
j1 ∈ ADistrmc1

◦ (s◦1) s.t. we can rewrite ρ−,iA,mc◦1
(s◦1) as

ρ−,iA,mc◦1
(s◦1) =

∑
s◦′1∈S

◦
1

ρmin
j1 (s◦′1) × ρ−,i−1

A,mc1
◦ (s1

◦′) .

Now, by inductive hypothesis (s◦′1 vMS◦ s◦′2 ⇒ ρ−,i−1
A,mc◦1

(s◦′1) ≥
ρ−,i−1

A,mc◦2
(s◦′2)), we have that,

ρ−,iA,mc◦1
(s◦1) ≤

∑
s◦′1∈S

◦
1

ρmin
j1 (s◦′1) × ρ−,i−1

A,mc2
◦ (s2

◦′)

for s2 s.t. s1
◦′◦′ vMS◦ s2

◦′6. As

S ◦(p1) =
⋃

s2
◦∈S ◦(p2)

{s1
◦ ∈ S ◦(p1) | s1

◦ vMS◦ s2
◦} ,

we can rewrite the last expression as

=
∑

s◦′2∈S
◦

2

(
∑

s1
◦′∈S 1

◦ , s◦′1vMS◦ s◦′2

ρmin
j1 (s◦′1)) × ρ−,i−1

A,mc2
◦ (s2

◦′) .

Let ρ∗2 ∈ ADistr(s2
◦) be such that ∀s2

◦ ∈ S ◦(p2) : ρ∗2(s2
◦′) =∑

s1
◦′∈S 1

◦ , s1
◦′vMS◦ s2

◦′ ρmin
j1 (s◦′1), the last expression can be rewrit-

ten as ∑
s◦′2∈S

◦
2

ρ∗2(s2
◦′) × ρ−,i−1

A,mc2
◦ (s2

◦′) .

Finally, we have that the last expression is

≤ inf
ρ j2∈ADistrmc2

◦ (s◦2)

∑
s◦′2∈S

◦
2

ρ j2(s◦′2) × ρ−,i−1
A,mc2

◦ (s◦′2) = ρ−,iA,mc◦2
(s2
◦) .

�

6 As mc1
◦ vMC◦ mc2

◦ exists only one s2
◦ s.t. s1

◦′ vMS◦ s2
◦′

131

Proof of Lemma 5.4.3. LetH◦(lts◦) = (S ◦(p2), s0,2
◦, P−2 , P

+
2) andH◦(αLTS(lts)) =

(S ◦(p1), s0,1
◦, P−1 , P

+
1).

By hypothesis αLTS(lts) vLTS◦ lts◦ it holds that

• p1 vP̂ p2;

• ∀t◦1 = (s◦1
µ◦1 , r◦1
−−−−−→◦ s◦′1) ∈→1

◦, ∃ t◦2 = (s◦2
µ◦2 , r◦2
−−−−−→◦ s◦′2) ∈→2

◦ such that

1) s◦1 vMS◦ s◦2 , s◦′1 vMS◦ s◦′2 ;

2) µ̂◦ vMS◦ µ◦2 and r̂◦ vI r◦2 where

µ̂◦ =

MS
◦⋃

s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
1
◦ s.t.

s◦3 vMS◦ s◦2
s◦′3 vMS◦ s◦′2

µ◦3 , r̂◦ =

I⋃
s◦3∈S ◦(S 1)
s◦3vMS◦ s◦2

I∑
s◦3

µ◦3 , r
◦
3

−−−−−→◦ s◦′3 ∈→
1
◦ s.t.

s◦′3vMS◦ s◦′2

r◦3

We have to prove that ∀s◦1 ∈ S ◦(p1)∃! s◦2 ∈ S ◦(p2) :

a) s◦1 vMS◦ s◦2;

b) ∀ρ1 ∈ ADistr(s◦1)∃ ! ρ2 ∈ ADistr(s◦2) s.t.

∀s◦′2 ∈ S ◦2 : ρ2(s2
◦′) =

∑
s1
◦′∈S ◦1 , s1

◦′vMS◦ s◦′2

ρ1(s1
◦′) .

The condition a) is guaranteed by p1 vI p2.
About b), we have that ∀s◦′i , s

◦′′
i ∈ S ◦(pi) : ADistr(s◦i) = {ρ | P−(s◦′i , s

◦′′
i) ≤

ρi(s1
◦′) ≤ P+(s◦′i , s

◦′′
i)}.

To guarantee b) it is enough to prove that ∀s◦1 ∈ S ◦(p1) , s◦2, s◦′2 ∈ S ◦(p2)

s.t. ∃ s◦′1 s.t. s1
◦

µ◦,r◦
−−−→ s◦′1 ∧ s◦′1 vMS◦ s◦′2

i)
∑

s◦′1vMS◦ s◦′2
P+

1 (s◦1, s◦′1) ≤ P+
2 (s◦2, s◦′2)

ii)
∑

s◦′1vMS◦ s◦′2
P−1 (s◦1, s◦′1) ≥ P−2 (s◦2, s◦′2)

Let us consider only i); ii) can be proved with similar arguments.
We have to prove that, ∀s◦2, s◦′2 ∈ S ◦(p2),

P+
2 (s◦2, s◦

′
2)

?
≥

∑
s◦′∈S ◦(p1)

s◦′1vMS◦ s◦′2

P+(s◦1, s◦
′
1)

132

that is

[R◦(s2
◦, s◦′2)]+

[R◦(s2
◦, s◦′2)]+ +

∑
s◦′′2 ∈S

◦(p2)
s◦′′2 ,s◦′2

[R◦(s◦2, s◦′′2)]−
?
≥

∑
s◦′∈S ◦(p1)

s◦′1vMS◦ s◦′2

[R◦(s1
◦, s◦′1)]+

[R◦(s1
◦, s◦′1)]+ +

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 ,s◦′1

[R◦(s◦1, s◦′′1)]−

By hypothesis of αLTS(lts) vLTS◦ lts◦, namely 2), it holds that

• [R(s◦2, s◦′2)]+ ≥ max s◦3∈S ◦(p1)
s◦3vMS◦ s◦2

∑
s◦′3∈S

◦(p1)
s◦′3vMS◦ s◦′2

[R(s◦3, s◦′3)]+;

• [R(s◦2, s◦′′2)]− ≤ min s◦3∈S ◦(p1)
s◦3vMS◦ s◦2

∑
s◦′3∈S

◦(p1)
s◦′3vMS◦ s◦′′2

[R(s◦3, s◦′3)]−.

Hence we have to prove that

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

[R(s◦1, s◦′1)]+ + w∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

[R(s◦1, s◦′1)]+ + w +
∑

s◦′′2 ∈S
◦(p2)

s◦′′2 ,s◦′2

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 vMS◦ s◦′′2

[R(s◦1, s◦′′1)]− − w′
?
≥

∑
s◦′∈S ◦(p1)

s◦′1vMS◦ s◦′2

[R◦(s1
◦, s◦′1)]+

[R◦(s1
◦, s◦′1)]+ +

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 ,s◦′1

[R◦(s◦1, s◦′′1)]−

where

w = [R(s◦2, s◦
′
2)]+ − max

s◦3∈S ◦(p1)
s◦3vMS◦ s◦2

∑
s◦′3∈S

◦(p1)
s◦′3vMS◦ s◦′2

[R(s◦3, s◦
′
3)]+ ,

w′ = [R(s◦2, s◦
′′
2)]− − min

s◦3∈S ◦(p1)
s◦3vMS◦ s◦2

∑
s◦′3∈S

◦(p1)
s◦′3vMS◦ s◦′′2

[R(s◦3, s◦
′
3)]− .

As rates computed by αLTS are precise, it holds that ∀s◦, s◦′ ∈ S ◦(p1) :
[R◦(s◦, s◦′)]+ = [R◦(s◦, s◦′)]− = R◦(s◦, s◦′) and hence we can write

133

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) + w∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) + w +
∑

s◦′′2 ∈S
◦(p2)

s◦′′2 ,s◦′2

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 vMS◦ s◦′′2

R(s◦1, s◦′′1) − w′
?
≥

∑
s◦′∈S ◦(p1)

s◦′1vMS◦ s◦′2

R◦(s1
◦, s◦′1)∑

s◦′′1 ∈S
◦(p1) R◦(s◦1, s◦′′1)

and as

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) + w∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) + w +
∑

s◦′′2 ∈S
◦(p2)

s◦′′2 ,s◦′2

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 vMS◦ s◦′′2

R(s◦1, s◦′′1) − w′
≥

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1)∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) +
∑

s◦′′2 ∈S
◦(p2)

s◦′′2 ,s◦′2

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 vMS◦ s◦′′2

R(s◦1, s◦′′1) − w′
≥

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1)∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) +
∑

s◦′′2 ∈S
◦(p2)

s◦′′2 ,s◦′2

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 vMS◦ s◦′′2

R(s◦1, s◦′′1)

we can reduce our proof to

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1)∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) +
∑

s◦′′2 ∈S
◦(p2)

s◦′′2 ,s◦′2

∑
s◦′′1 ∈S

◦(p1)
s◦′′1 vMS◦ s◦′′2

R(s◦1, s◦′′1)
?
≥

∑
s◦′∈S ◦(p1)

s◦′1vMS◦ s◦′2

R◦(s1
◦, s◦′1)∑

s◦′′1 ∈S
◦(p1) R◦(s◦1, s◦′′1)

that is

134

∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1)∑
s◦′1∈S

◦(p1)
s◦′1vMS◦ s◦′2

R(s◦1, s◦′1) +
∑

s◦′1∈S
◦(p1)

s◦′1 6vMS◦ s◦′2

R(s◦1, s◦′′1)
?
≥

∑
s◦′∈S ◦(p1)

s◦′1vMS◦ s◦′2

R◦(s1
◦, s◦′1)∑

s◦′′1 ∈S
◦(p1) R◦(s◦1, s◦′′1)

that is true by =.
�

Proof of Lemma 5.4.4.
Let M = (Σ, s0,R) and hence LTS (M) = (S , s0,→), H(LTS (M)) = (S , s0, P)
and αMC(H(LTS (M))) = (S ◦(p•), αMS(p•)(s0), P̂, P̂) and P̂ = P.

On the other side αLTS(LTS (M)) = (S ◦(p•), αMS(p•)(s0),→α
◦) where→α

◦=

{s◦
µ∗ , r∗
−−−−→ s′◦ | s

µ , r
−−→ s′ ∈→ ∧ s ∈ γMS(s◦) ∧ s′ ∈ γMS(s′◦) } where

(µ∗, r∗) = (
MS

◦⋃
µ•,

I∑
r•) and s

µ , r
−−→ s′ ∈→ ∧s ∈ γMS(s◦) ∧ s′ ∈ γMS(s′◦) .

Hence,

H◦(αLTS(LTS (M))) =

H◦(S ◦(p•), αMS(p•)(s0),→α
◦) =

(S ◦(p•), αMS(p•)(s0), P−, P+)

where P− = P+ as they are computed byH◦ using precise transition rates.

P−(s◦, s◦′) = P+(s◦, s◦′) by def. ofH◦ and by Lemma 5.3.9

=
[R◦(s◦, s◦′)]+

[R◦(s◦, s◦′)]+ +
∑

s◦′′∈S ◦(p•)
s◦′′,s◦′

[R◦(s◦, s◦′′)]−

=
[r∗]+ | s◦

r∗,µ◦
−−−→ s◦′ ∈→α

◦

[r∗]+ | s◦
r∗,µ◦
−−−→ s◦′ ∈→α

◦ +
∑

s◦′′∈S ◦(p•)
s◦′′,s◦′

[r∗]− | s◦
r∗,µ◦
−−−→ s◦′′ ∈→α

◦

135

=

∑I s
r,µ
−−→s′∈→

s∈γMS(s◦) , s′∈γMS(s◦′)

r•

+

∑I s
r,µ
−−→s′∈→

s∈γMS(s◦) , s′∈γMS(s◦′)

r•

+

+
∑

s◦′′∈S ◦(p•)
s◦′′,s◦′

∑I

s
r,µ
−−→s′′∈→ ,

s∈γMS(s◦) , s′′∈γMS(s◦′′)
s′′∈S , s′′,s′

r•

−

=

∑
s

r,µ
−−→s′∈→

s∈γMS(s◦) , s′∈γMS(s◦′)

r∑
s

r,µ
−−→s′∈→

s∈γMS(s◦) , s′∈γMS(s◦′)

r +
∑

s◦′′∈S ◦(p•)
s◦′′,s◦′

∑
s

r,µ
−−→s′′∈→ ,

s∈γMS(s◦) , s′′∈γMS(s◦′′)
s′′∈S , s′′,s′

r

and, as ∀s ∈ S ◦(p•) , ∃! s ∈ S | s ∈ γMS(s◦),

=
R(s, s′)

R(s, s′) +
∑

s′′∈S
s′′,s′

R(s, s′′)
= P(s, s′) = P̂(s◦, s◦′)

�

136

Chapter 6

Conclusions
In this thesis, we have faced problems related to the use of MSR in the context of
biological systems formal modelling and analysis. Namely, we have investigated
the use of abstract interpretation techniques over the probabilistic semantics
of MSR, both to deal with uncertainty of kinetic parameters, in the case of
interleaving semantics, and to reduce the number of states and transitions, in
the case of a maximally parallel probabilistic semantics.

In particular, we have presented an abstract probabilistic semantics able to
represent the dynamics of systems of biochemical reactions, when kinetic rates
of reactions are uncertain (i.e. expressed by intervals of values). This approach
allows the semantics of an infinite set of systems to be safely and effectively
managed in a finite way. We proved that probabilistic reachability results are, not
only conservative but, exactly the most precise values which are correct. Indeed,
they corresponds to the minimum and the maximum of values of probabilistic
reachability corresponding to each concrete system represented by on abstract
one. In particular, while a DTMC semantics is associated to models where
reaction rates are expressed by precise values, an IMC semantics is associated
to models where reaction rates are expressed by intervals. Such a semantics is
computed via the construction of an LTS semantics and reports lower and upper
bounds on transition probabilities. Over such abstract probabilistic semantics
it is possible to perform probabilistic model checking obtaining conservative
bounds on probability of reachability properties.

Moreover we have defined a probabilistic semantics for maximally parallel
MSR. On such a semantics as many interactions as possible are executed
on a single evolution step, resulting in a synchronous behavior, typical of
certain types of biological systems (e.g. seasonal animals or cells populations).
Indeed, for such kind of systems, a maximally parallel semantics is more

suitable than the interleaving one, that allows part of the system to evolve
indefinitely while other system components stall and thus considering not
realizable configurations. For these reasons we defined a probabilistic semantics
tailored to describe the behavior of systems evolving in a maximally parallel
way, where transitions have an associated probability depending on the system
state and on the propensity of maximally parallel rewriting events.

As the maximally parallel semantics presents the drawback of having a
number of transitions exiting from a state growing with respect to the number
of individuals in the state, over this kind of semantics we developed an interval
based predicate abstraction. Such an abstraction is able to drastically reduce
the number of states and transitions in the semantics associated to a system,
and to finitely represents the behavior of possibly infinite maximally parallel
rewriting systems. Since the abstraction is parametric on a set of predicates,
the abstract probabilistic model can be refined until a right compromise between
dimension and precision is reached. We proved that probabilities bounds are
conservative with respect to the concrete ones, and that soundness results are
lifted to probabilistic reachability.

Also the proposed maximally parallel semantics are computed by the
construction of appropriate LTSs. Subsequently, from such structures are
derived the corresponding probabilistic structures, given in terms of DTMC or
IMC in the concrete or abstract case respectively. Abstract semantics are proved
to be sound approximations by means of abstract interpretation techniques, via
the definition of suitable approximation orders.

The application of the different proposed approaches is shown by different
case studies. The abstraction for uncertain kinetic rates has been tested on
model of tumor cells growth. On such model interaction rates are described by
intervals, has been studied, and different outcomes have been obtained by using
different intervals of rates. The maximally parallel semantics has been tested
on a model of C. Elegans vulval development, from evolutionary biology. Such
a model have been simulated with maximally parallel semantics, and in vivo
experiments results have been reproduced. Finally, the efficacy of the abstract
maximally parallel probabilistic semantics, in terms of reduction of number of
states and transitions has been shown by an example of probabilistic reachability
analysis on a simple model of seasonal animal reproduction.

Outlook. This work could be continued in many directions.
The analysis of biochemical systems of reactions with uncertainty rates can

be extended to include continuous-time information. In particular, the approach

138

proposed by Katoen et al. [KKLW07a] can be used: from transition rates of
abstract LTS defined in Chapter 3 a uniform CTMC [BKHW05] can be derived.
The verification of CSL properties, allowing to verify time-bounded reachability
properties, is then straightforward.

The abstraction of the maximally parallel semantics for MSR can be
improved in terms of precision. As we briefly discussed in Chapter 5,
some transition rate computation functions could be refined, exploiting more
information, in order to introduce less approximation while remaining sound
with respect to concrete semantics. Moreover soundness results with respect
to probabilistic reachability could be generalized for any language and abstract
semantics able to give concrete and abstract LTSs in a relation similar to the one
presented here.

Finally both the abstract semantics for reactions with uncertain kinetics, and
the maximally parallel probabilistic semantics, here proposed for MSR, can be
exploited to define corresponding semantics for more complex and expressive
formalisms with a rewriting semantics (e.g. P Systems, the Calculus of Looping
Sequences).

139

140

Bibliography

[AC03] I. I. Ardelean and M. Cavaliere, Modelling biological processes
by using a probabilistic p system software, Natural Computing,
vol. 2, no. 2, pp. 173–197, Kluwer Academic Publishers, 2003.

[AMS] The AMSR2PRISM web page, http://www.di.unipi.it/
msvbio/wiki/amsr2prism .

[APP+04] M. Antoniotti, C. Piazza, A. Policriti, M. Simeoni and
B. Mishra, Taming the complexity of biochemical models through
bisimulation and collapsing: theory and practice, Theoretical
Compututer Science, vol. 325, no. 1, pp. 45–67, Elsevier Science
Publishers Ltd., 2004.

[ASB95] A. Aziz, V. Singhal and F. Balarin, It usually works: The
temporal logic of stochastic systems, In: CAV-95, Lecture Notes
in Computer Science, vol. 939, pp. 155–165, Springer-Verlag,
1995.

[ASSB96] A. Aziz, K. Sanwal, V. Singhal and R. Brayton, Verifying
continuous time markov chains, In: CAV’96, Lecture Notes in
Computer Science, vol. 1102, pp. 269–276, Springer-Verlag,
1996.

[AV08] A. Alhazoc and S. Verlan, Minimization strategies for maximal
parallel multiset rewriting systems, Tech. report, Turku Centre
for Computer Science (TUCS), 2008.

[BC89] G. Balbo and G. Chiola, Stochastic petri net simulation,
In: WSC’89, pp. 266–276, ACM Press, 1989.

http://www.di.unipi.it/msvbio/wiki/amsr2prism
http://www.di.unipi.it/msvbio/wiki/amsr2prism

[BCPM08] D. Besozzi, P. Cazzaniga, D. Pescini and G. Mauri, Modelling
metapopulations with stochastic membrane systems, Biosystems,
vol. 91, no 3, pp. 499–514, Elsevier Science Publishers Ltd.,
2008.

[BCHG+97] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska
and M. Ryan, Symbolic model checking for probabilistic
processes, In: ICALP’97, Lecture Notes in Computer Science,
vol. 1256, pp. 430–440, Springer-Verlag, 1997.

[BCL+03] S. Bistarelli, I. Cervesato, G. Lenzini, R. Marangoni and
F. Martinelli, On representing biological systems through multiset
rewriting, In: EUROCAST’03, Lecture Notes in Computer
Science, vol. 2809, pp. 415–426, 2003.

[BCMS+08] R. Barbuti, G. Caravagna, A. Maggiolo-Schettini, P. Milazzo and
G. Pardini, The calculus of looping sequences, In: FMCSB’08,
Lecture Notes in Computer Science, vol. 5016, pp. 387–423,
Springer-Verlag, 2008.

[BMMG10] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and D. P. Gruska,
A Notion of Biological Diagnosability Inspired by the Notion of
Opacity in Systems Security, Fundamenta Informaticae, vol. 102,
no. 1, pp. 19–34, 2010.

[BdA95] A. Bianco and L. de Alfaro, Model checking of probabilistic
and nondeterministic systems, In: FSTTCS’95, Lencture Notes
in Computer Science, vol. 1026, pp. 499–513, Springer Berlin /
Heidelberg, 1995.

[BGC09] C. Baier, M. Groesser and F. Ciesinski, Quantitative analysis
under fairness constraints, In: ATVA ’09, Lecture Notes in
Computer Science, vol. 5799 pp. 135–150, Springer Berlin /
Heidelberg, 2009.

[BHHK03] C. Baier, B. R. Haverkort, H. Hermanns and J. P. Katoen, Model-
checking algorithms for continuous-time markov chains, IEEE
Transactions on Software Engineering, vol. 29, pp. 524–541,
IEEE Computer Society Press, 2003.

142

[BK98] C. Baier and M. Kwiatkowska, Model checking for a probabilistic
branching time logic with fairness, Distributed Computing,
vol. 11, no. 3, pp. 125–155, 1998.

[BK08] C. Baier and J. Katoen, Principles of model checking, The MIT
Press, 2008.

[BKF+09] N. Bonzanni, E. Krepska, K. A. Feenstra, W. Fokkink,
T. Kielmann, H.E. Bal and J. Heringa, Executing multicellular
differentiation: quantitative predictive modelling of C.elegans
vulval development, Bioinformatics, vol. 25 (16), pp. 2049-2056,
Oxford University Press, 2009.

[BKHW05] C. Baier, J. P. Katoen, H. Hermanns and V. Wolf, Comparative
branching-time semantics for markov chains, Information and
Computation, vol. 200, no.2, pp. 149–214, Academic Press Inc.,
2005.

[BLMS09] R. Barbuti, F. Levi, P. Milazzo and G. Scatena, Probabilistic
model checking of biological systems with uncertain kinetic rates,
In: RP’09, Lecture Notes in Computer Science, vol. 5797, pp. 64–
78, Springer-Verlag, 2009.

[BLMS10] , Maximally parallel probabilistic semantics for multiset
rewriting., In: CS&P’10, Informatik-Bericht, vol. 237, pp. 25–36,
Humboldt-Universitat zu Berlin Informatik-Berichte, 2010.

[BLO98] S. Bensalem, Y. Lakhnech and S. Owre, Computing Abstractions
of Infinite State Systems Compositionally and Automatically,
In: CAV’98, Lecture Notes in Computer Science, vol. 1427,
pp. 319–331, Springer-Verlag, 1998.

[BMM08] P. Ballarini, I. Mura and R. Mardare, Query-based verification
of biochemical oscillations through probabilistic model checking,
Tech. report, COSBI: Center for Computational and Systems
Biology - The Microsoft Research - University of Trento, Italy,
2008.

[BMSMT08] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina,
Bisimulations in calculi modelling membranes, Formal Aspects
of Computing, vol. 20, no.4–5 pp. 351–377, Springer-Verlag,
2008.

143

[BRCG+05] F. Bernardini, F.J. Romero-Campero, M. Gheorghe, M.J. Perez-
Jimenez, M. Margenstern, S. Verlan and N. Krasnogor, On p
systems with bounded parallelism, In: SYNASC ’05, p. 399,
IEEE Computer Society Press, 2005.

[Bur80] H.D. Burkhard, On priorities of parallelism, In: LPTA’80,
pp. 86–97, Springer-Verlag, 1980.

[Car05] L. Cardelli, Brane calculi, In: CMSB’04, Lecture Notes in
Computer Science, vol. 3082, pp. 257–280, Springer-Verlag,
2005.

[CA06] M. Cavaliere and I. I. Ardelean, Modeling Respiration in Bacteria
and Respiration/Photosynthesis Interaction in Cyanobacteria
Using a P System Simulator, Applications of Membrane
Computing, part 2, pp. 129–159, Springer, 2006.

[CC77] P. Cousot and R. Cousot, Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints, In: SIGPLAN’77, pp. 238–252, ACM
Press, 1977.

[CC79] , Systematic design of program analysis frameworks,
In: SIGPLAN’79, pp. 269–282, ACM Press, New York, NY,
1979.

[CC07] G. Ciobanu and L. Cornacel, Probabilistic transitions for
P systems, Progress in Natural Science, vol. 17, pp. 431–441,
Elsevier, 2007.

[CDL+99] I. Cervesato, N.A. Durgin, P .D. Lincoln, J.C. Mitchell and
A. Scedrov, A meta-notation for protocol analysis, In: CSFW ’99,
pp. 55–69, IEEE Computer Society Press, 1999.

[CE81] E.M. Clarke and E. A. Emerson, Design and synthesis of
synchronization skeletons using branching time temporal logic,
In: LP’81, Lecture Notes In Computer Science, vol. 131, pp. 52–
71, Springer-Verlag, 1981.

[CGL94] E.M. Clarke, O. Grumberg and D. E. Long, Model checking and
abstraction, ACM Transactions on Programramming Langan-
guges and Systems, vol. 16, pp. 1512–1542, ACM Press, 1994.

144

[CGL09] A. Coletta, R. Gori and F. Levi, Approximating probabilistic
behaviors of biological systems using abstract interpretation,
Electronic Notes in Theoretical Computer Science, vol. 229,
pp. 165–182, Elsevier Science Publishers Ltd., 2009.

[CLP04] Y. Cao, H. Li, and L. Petzold, Efficient formulation of the
stochastic simulation algorithm for chemically reacting systems,
Journal of Chemical Physics, vol. 121, pp. 4059–4067, 2004.

[CLS] The CLSm web page: http://www.di.unipi.it/msvbio/
wiki/sclsm .

[CPPJ06] G. Ciobanu, G. Păun, and M. J. Pérez-Jiménez, On the branching
complexity of p systems, Fundamenta Informaticae, vol. 73, no.
1-2, pp. 27–36, 2006.

[CS06] M. Cavaliere and S. Sedwards, Modeling and simulat-
ing biological processes with stochastic multiset rewriting,
Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

[CY95] C. Courcoubetis and M. Yannakakis, The complexity of
probabilistic verification, Journal of the ACM, vol. 42, pp. 857–
907, ACM Press, 1995.

[CZ08] L. Cardelli and G. Zavattaro, On the computational power of
biochemistry, In: AB’08, Lecture Notes in Computer Science,
vol. 5147, pp. 65–80, Springer-Verlag, 2008.

[CK01] A. Chutinan and B. H. Krogh, Verification of infinite-state
dynamic systems using approximate quotient transition systems,
IEEE Trans. on Automatic Control, vol. 26, no. 9, pp. 1401–1410,
IEEE Computer Society, 2001.

[dA99a] L. de Alfaro, Computing minimum and maximum reachability
times in probabilistic systems, CONCUR ’99, pp. 66–81,
Springer-Verlag, 1999.

[dA99b] L. de Alfaro, From fairness to chance, In: PROBMIV’98,
Electronic Notes in Theoretical Computer Science, vol. 22,
pp. 55–87, Elsevier Science Publishers Ltd., 1999.

145

http://www.di.unipi.it/msvbio/wiki/sclsm
http://www.di.unipi.it/msvbio/wiki/sclsm

[dAKN+00] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker
and R. Segala, Symbolic model checking of probabilistic
processes using MTBDDs and the Kronecker representation,
In: TACAS’00, Lecture Notes in Computer Science, vol. 1785,
pp. 395–410, Springer-Verlag, 2000.

[Das03] S. Das, Predicate abstraction, Ph.D. Thesis, Stanford University,
USA, 2003.

[DFF+08] V. Danos, J. Feret, W. Fontana, R. Harmer and J. Krivine,
Rule-based modelling, symmetries, refinements., In: FMSB’08,
Lecture Notes in Computer Science, vol. 5054, pp. 103–122,
Springer-Verlag, 2008.

[DFFK08] V. Danos, J. Feret, W. Fontana and J. Krivine, Abstract
interpretation of cellular signalling networks, In: VMCAI’08,
Lecture Notes in Computer Science, vol. 4905, pp. 83–97,
Springer-Verlag, 2008.

[DGG97] D. Dams, R. Gerth and O. Grumberg, Abstract interpretation
of reactive systems, In: TOPLAS’97, ACM Transactions on
Programogramming Languages and Systems, vol. 19, no. 2,
pp. 253–291, ACM Press, 1997.

[DJJL01] P. D’Argenio, B. Jeannet, H. Jensen and K. Larsen, Reachability
analysis of probabilistic systems by successive refinements,
In: PAPM-PROBMIV ’01, pp. 39–56, Springer-Verlag, 2001.

[DL04] V. Danos and C. Laneve, Formal molecular biology, Theoretical
Computer Science, vol. 325, no. 1, pp. 69–110, 2004.

[DMP07] A. Donaldson, A. Miller and D. Parker, GRIP: Generic
representatives in PRISM, In: QEST’07, pp. 115–116, IEEE
Computer Society, 2007.

[DPW00] A. Di Pierro and H. Wiklicky, Concurrent constraint pro-
gramming: towards probabilistic abstract interpretation.,
In: PPDP’00. pp. 127-138. ACM, 2000.

[Eme90] E.A. Emerson, Temporal and modal logic, Handbook of
Theoretical Computer Science, pp. 995–1072, Elsevier and MIT
Press, 1990.

146

[FHMP07] J. Fisher, T. A. Henzinger, M. Mateescu and N. Piterman,
Bounded Asynchrony: A Biologically Inspired Notion of
Concurrency, Tech. report, EPFL, 2007.

[FHMP08] , Bounded Asynchrony: Concurrency for Modeling
Cell-Cell Interactions, In: FMSB’08, Lecture Notes Computer
Science, vol. 5054, pp. 17–32, Springer-Verlag, 2008.

[FLW06] H. Fecher, M. Leucker and V. Wolf, Don’t Know in probabilistic
systems., Lecture Notes in Computer Science, vol. 3925, pp. 71–
88, Springer-Verlag / Heidelberg, 2006.

[FPH+05] J. Fisher, N. Piterman, E. J. A. Hubbard, M. J. Stern and D. Harel,
Computational insights into Caenorhabditis elegans vulval
development, Proceedings of the National Academy of Sciences,
vol. 102, no. 6, pp. 1951–1956, 2005.

[FPHH07] J. Fisher, N. Piterman, A. Hajnal and T. A. Henzinger,
Predictive modeling of signaling crosstalk during C. elegans
vulval development., PLoS Computational Biology vol. 3(5):
e92, 2007.

[FS08] F. Fages and S. Soliman, Abstract interpretation and types
for systems biology, Theoretical Compututer Science, vol. 403,
pp. 52–70 Elsevier Science Publishers Ltd., 2008.

[FS08a] F. Fages and S. Soliman, Formal Cell Biology in Biocham,
In: FMCSB’08, Lecture Notes in Computer Science, vol. 5016,
pp. 54–80, Springer-Verlag, 2008.

[GB00] M. A. Gibson and J. Bruck, Efficient Exact Stochastic Simulation
of Chemical Systems with Many Species and Many Channels, The
Journal of Physical Chemistry A, vol. 104, pp. 1876–1889, ACS
Publications, 2000.

[GH09] V. Galpin and J. Hillston, Equivalence and discretisation in
bio-pepa, In: CMSB’09, Lecture Notes in Computer Science,
vol. 5688, pp. 189–204, Springer-Verlag, 2009.

[GHL07] D. Gilbert, M. Heiner and S. Lehrack, A unifying framework for
modelling and analysing biochemical pathways using petri nets,

147

In: CMSB’07, Lecture Notes in Computer Science, vol. 4695,
pp. 200–216, Springer-Verlag, 2007.

[Gil77] D. Gillespie, Exact stochastic simulation of coupled chemical
reactions, Journal of Physical Chemistry, vol. 81 (25), pp. 2340–
2361, ACS Publications, 1977.

[Gil07] , Stochastic simulation of chemical kinetics, Annual
Review of Physical Chemistry, vol. 58, Annual Review, 2007.

[GL09] R. Gori and F. Levi, Abstract interpretation for probabilistic
termination of biological systems, In: MeCBIC’09, Electronic
Proceedings in Theoretical Computer Science, vol. 11, pp. 137–
153, 2009.

[GNPJRN07] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez and A. Riscos-
Núñez, On the degree of parallelism in membrane systems,
Theoretical Computer Science, vol. 372, pp. 183–195, Elsevier
Science Publishers Ltd., 2007.

[GS97] S. Graf and H. Saidi, Construction of abstract state graphs with
pvs, In: CAV’97, Lecture Notes in Computer Science, vol. 1254,
pp. 72–83, Springer-Verlag, 1997.

[GW] Gillespie’s work on SSA: http://www.citeulike.org/tag/
gillespie.

[HGD08] H. Heiner, D. Gilbert and R. Donaldson, Petri nets for
systems and synthetic biology, In: FMCSB’08, Lecture Notes
in Computer Science, vol. 5016, pp. 215–264, Springer-Verlag,
2008.

[HHWZ09] E. M. Hahn, H. Hermanns, B. Wachter and L. Zhang, Time-
Bounded Model Checking of Infinite-State Continuous-Time
Markov Chains, Fundamenta Informaticae, vol. 95, no. 1,
pp. 129–155, 2009.

[HHWZ10] E. M. Hahn, H. Hermanns, B. Wachter and L. Zhang, PASS:
Abstraction refinement for infinite probabilistic models, Lecture
Notes in Computer Science, vol. 6015, pp. 353–357, Springer-
Verlag, 2010.

148

http://www.citeulike.org/tag/gillespie
http://www.citeulike.org/tag/gillespie

[Hil10] A. V. Hill, The possible effects of the aggregation of the molecules
of hemoglobin on its dissociation curves, Journal of Physiology,
vol. 40, pp. iv–vii, The Physiological Society, 1910.

[HJ94] H. Hansson and B. Jonsson, A logic for reasoning about time and
reliability, Formal Aspects of Computing, vol. 6, pp. 102–111,
Springer-Verlag, 1994.

[HP09] S. Haddad and N. Pekergin, Using stochastic comparison
for efficient model checking of uncertain markov chains,
In: QEST’09, pp. 177–186, IEEE Computer Society, 2009.

[Hut05] M. Huth, On finite-state approximants for probabilistic computa-
tion tree logic, Theoretical Computer Science, vol. 346, pp. 113–
134, Elsevier Science Publishers Ltd., 2005.

[HWZ08] H. Hermanns, B. Wachter and L. Zhang, Probabilistic CEGAR,
In: CAV’08, Lecture Notes in Computer Science, vol. 5123,
pp. 162–175, Springer-Verlag, 2008.

[IM07] M. S. Iyengar and M. F. MCGuire, Imprecise and Qualitative
Probability in Systems Biology , In: Proceedings of ICSB, 2007.

[JL91] B. Jonsson and K.G. Larsen, Specification and refinement of
probabilistic processes, In: IEEE Symposium on Logic in
Computer Science, pp. 266–277, IEEE Computer Society, 1991.

[Kea96] R.B. Kearfott, Interval computations: Introduction, uses, and
resources, Euromath Bulletin, vol. 1, no. 2, pp. 95–112, 1996.

[KH09] M. Kattenbelt and M. Huth, Abstraction Framework for Markov
Decision Processes and PCTL via games, Tech. Report RR-09-
01, Oxford University Computing Laboratory, 2009.

[Kin94] E. Kindler, Safety and liveness properties: A survey., EATCS
Bulletin, vol. 53, pp. 268–272, European Association for
Theoretical Computer Science, 1994.

[Kit02] H. Kitano, Computational systems biology, Nature, vol. 420,
pp. 206–210, Nature Publishing Group, 2002.

149

[KKLW07a] J. Katoen, D. Klink, M. Leucker and V. Wolf, Three-valued
abstraction for continuous-time markov chains, In: CAV’07,
Lecture Notes in Computer Science, vol. 4590, pp. 311–324,
Springer-Verlag, 2007.

[KKLW07b] , Three-valued abstraction for probabilistic systems,
Tech. Report AIB-2007-20, RWTH Aachen, 2007.

[KKNP08] M. Kattenbelt, M. Kwiatkowska, G. Norman and D. Parker,
Game-based probabilistic predicate abstraction in PRISM,
In: QAPL’08, Electronic Notes in Theoretical Computer Science,
vol. 220, no. 3, pp. 5–21, Elsevier Science Publishers Ltd., 2008.

[Kli10] D. Klink, Three-valued abstraction for stochastic systems, Ph.D.
thesis, RWTH Aachen University, Germany, 2010.

[KNP02] M.Z. Kwiatkowska, G. Norman, and D. Parker, PRISM:
Probabilistic symbolic model checker., In: TOOLS’02, Lecture
Notes in Computer Science, vol. 2324, pp. 200–204, Springer-
Verlag, 2002.

[KNP06] M. Kwiatkowska, G. Norman, and D. Parker, Symmetry reduction
for probabilistic model checking, In: CAV’06, Lecture Notes
in Computer Science, vol. 4114, pp. 234–248, Springer-Verlag,
2006.

[KRHK10] D. Klink, A. K. I. Remke, B. R. Haverkort and J. P. Katoen, Time-
bounded reachability in tree-structured qbds by abstraction,
Performance Evaluation, vol. 68, pp. 105–125, Elsevier Science
Publishers Ltd., 2010.

[KU02] I.O. Kozine and L.V. Utkin, Interval-valued finite markov chains,
Reliable Computing, vol. 8, pp. 97–113(17), Springer-Verlag,
2002.

[Kwi03] M. Kwiatkowska, Model checking for probability and time: from
theory to practice, In: LICS’03, p. 351–360, IEEE Computer
Society, 2003.

[Lam77] L. Lamport, Proving the correctness of multiprocess programs,
IEEE Transactions on Software Engineering, vol. 3, pp. 125–143,
IEEE Computer Society Press, 1977.

150

[LNUM09] C. Li, M. Nagasaki, K. Ueno and S. Miyano, Simulation-
based model checking approach to cell fate specification during
Caenorhabditis elegans vulval development by hybrid functional
petri net with extension, BMC Systems Biology, vol. 3, pp. 42–
77, Springer-Verlag, 2009.

[MA99] H.H. McAdams and A. Arkin, It’s a noisy business! genetic
regulation at the nanomolar scale, Trends in Genetics, vol. 15,
pp. 65–69, Elsevier Science Publishers Ltd., 1999.

[Mad03] M. Madhu, Probabilistic rewriting P Systems, International
Journal of Foundations of Computer Science, vol. 14, pp. 157–
166, World Scientific Publishing Company, 2003.

[MHS90] M. G. Morgan, M. Henrion and M. Small, Uncertainty: A
guide to dealing with uncertainty in quantitative risk and policy
analysis, Cambridge University Press, 1990.

[Mil99] R. Milner, Communicating and mobile systems: the pi-calculus,
Cambridge University Press, 1999.

[Mil07] P. Milazzo, Qualitative and quantitative formal modeling of
biological systems, Ph.D. thesis, University of Pisa, Italy, 2007.

[MM13] L. Michaelis and M. Menten, Kinetik der invertinwirkung,
Biochem. Z, vol. 49, pp. 333–369., 1913.

[Mon05] D. Monniaux, Abstract interpretation of programs as Markov
decision processes, In: SAS’03, vol. 58, pp. 179–205, Springer-
Verlag, 2005.

[MP08] M. B. Mamoun and N. Pekergin, Model Checking of Infinite State
Space Markov Chains by Stochastic Bounds, In: ASMTA’08,
Lecture Notes in Computer Science, vol. 5055, pp. 264–278,
Springer-Verlag, 2008.

[MPPRS11] M. A. Martı́nez-del-Amor, I. Pérez-Hurtado, M. J. Pérez-
Jiménez, A. Riscos-Núñez and F. Sancho-Caparrini, A Simulation
Algorithm for Multienvironment Probabilistic P Systems: a
Formal Verification, International Journal of Foundations of
Computer Science, vol. 22(1), pp. 107–118, World Scientific
Publishing, 2011.

151

[MPV] V. A. Muganthan, A. Phillips, and M. G. Vigliotti, Bam:
Bioambient machine., In: ACDS’08, IEEE Computer Society,
2008.

[Obt02] A. Obtulowicz, Probabilistic P Systems, In: WMC-CdeA’02,
Lecture Notes in Computer Science, vol. 2597, pp. 377/387,
Springer-Verlag, 2003.

[OP03] A. Obtulowicz and G. Păun, (In search of) Probabilistic P
systems, Biosystems, vol. 70, pp. 107–121, Elsevier Science
Publishers Ltd., 2003.

[Pău02] G. Păun, Membrane computing. An introduction, Natural
Computing Series, Springer-Verlag, 2002.

[Pau04] J. Paulsson, Summing up the noise in gene networks, Nature,
vol. 427, Nature Publishing Group, 2004.

[PBMZ06] D. Pescini, D. Besozzi, G. Mauri and C. Zandron, Dynamical
probabilistic P systems, International Journal of Foundations
of Computer Science, vol. 17, pp. 183–204, World Scientific
Publishing Company 2006.

[Pet62] C.A. Petri, Kommunikation mit automaten, Ph.D. thesis,
University of Bonn, Germany, 1962.

[Phi07] Efficient, Correct Simulation of Biological Processes in the
Stochastic Pi-calculus., In: CMSB’07, Lecture Notes in Com-
puter Science, vol. 4695, pp. 184–199, Springer-Verlag, 2007.

[PRI] PRISM model checker web site: http://www.

prismmodelchecker.org.

[PRSS01] C. Priami, A. Regev, E. Shapiro and W. Silverman, Application
of a stochastic name-passing calculus to representation and
simulation of molecular processes, Information Processing
Letters, vol. 80, pp. 25–31, Elsevier North-Holland, Inc., 2001.

[PSY] The P System web page: http://ppage.psystems.eu/ .

[RKNP04] J. J. M. M. Rutten, M. Kwiatkowska, G. Norman and
D. Parker, Mathematical techniques for analyzing concurrent and
probabilistic systems, American Mathematical Society, 2004.

152

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org
http://ppage.psystems.eu/

[QS82] J. P. Queille and J. Sifakis, Specification and verification of
concurrent systems in CESAR, In: Symposium on Programming,
Lecture Notes in Computer Science, vol. 137, pp. 337–351,
Springer-Verlag, 1982.

[RCGB+06] F.J. Romero-Campero, M. Gheorghe, L. Bianco, D. Pescini,
Pérez-Jiménez M. J. and R Ceterchi, Towards Probabilistic
Model Checking on P Systems Using PRISM, In:Membrane
Computing, Lecture Notes in Computer Science, vol. 4361,
pp. 477–495, Springer-Verlag, 2006.

[RCPJ08] F. J. Romero-Campero and M. J. Pérez-Jiménez, A model of
the quorum sensing system in vibrio fischeri using P Systems,
Artificial Life, vol. 14, pp. 95–109, MIT Press, 2008.

[RC08a] F. J. Romero-Campero, P systems, a computational modelling
framework for systems biology, Ph.D. Thesis, Universidad de
Sevilla, Spain, 2008.

[Rei85] W. Reisig, Petri Nets: an introduction, Springer-Verlag, 1985.

[Ros83] S. Ross, Stochastic processes, John Wiley, 1983.

[RPS+04] A. Regev, E.M. Panina, W. Silverman, L. Cardelli and E. Shapiro,
Bioambients: an abstraction for biological compartments,
Theoretical Computer Science, vol. 325, pp. 141–167, Elsevier
Science Publishers Ltd., 2004.

[RS02] A. Regev and E. Shapiro, Cellular abstractions: Cells as
computation, Nature, vol. 419, p. 343, Nature Publishing Group,
2002.

[Sca07] G. Scatena, Development of a stochastic simulator for biological
systems based on Calculus of Looping Sequences, Master’s
thesis, University of Pisa, Italy, 2007.

[Seg84] L.A. Segel, Modeling dynamic phenomena in molecular and
cellular biology, Cambrige University Press, 1984.

[SES02] P.S. Swain, M.B. Elowitz and E.D. Siggia, Intrinsic and extrinsic
contributions to stochasticity in gene expression, Proceedings of
the National Academy of Sciences, vol. 99, pp. 12795–12800,
2002.

153

[SFB+08] A. Sadot, J. Fisher, D. Barak, Y. Admanit, M.J. Stern, E.J.A.
Hubbard and D. Harel, Toward verified biological models,
Transactions. Comput. Biol. Bioinformatics, vol. 5, pp. 223–234,
IEEE Computer Society, 2008.

[SH86] P.W. Sternberg and H.R. Horvitz, Pattern formation during vulval
development in C. elegans, Cell, vol. 44, pp. 761–772, Cell Press,
1986.

[SH89] , The combined action of two intercellular signaling
pathways specifies three cell fates during vulval induction in C.
elegans, Cell, vol. 58, pp. 679–693, Cell Pres, 1989.

[SKSW04] O. Shaw, A. Koelmans, J. Steggles and A. Wipat, Applying petri
nets to systems biology using xml technologies, Tech. report,
University of Newcastle upon Tyne, March 2004.

[Šku06] D. Škulj, Finite discrete time markov chains with interval
probabilities., Advances in Intelligent and Soft Computing,
pp. 299–306, Springer-Verlag, 2006.

[Šku09] D. Škulj, Discrete time markov chains with interval probabilities,
International Journal of Approximate Reasoning, vol. 50,
pp. 1314–1329, Elsevier Science Inc., 2009.

[SMC+08] A. Spicher, O. Michel, M. Cieslak, J. L. Giavitto and
P. Prusinkiewicz, Stochastic p systems and the simulation of
biochemical processes with dynamic compartments, Biosystems,
vol. 91, pp. 458–472, Elsevier Science Inc., 2008.

[SPI] The SPiM web page: http://research.microsoft.com/
˜aphillip/spim/ .

[ST05] O. Schulz-Trieglaff, Stochastic petri nets in systems biology,
BMC Bioinformatics, vol. 6(suppl.3), p. 25, Springer-Verlag,
2005.

[Ste05] P. W. Sternberg, Vulval development, Chapter on vulval develop-
ment in Wormbook (http://www.wormbook.org/chapters),
2005.

154

http://research.microsoft.com/~aphillip/spim/
http://research.microsoft.com/~aphillip/spim/
http://www.wormbook.org/chapters

[SVA] K. Sen, M. Viswanathan and G. Agha, Model-checking markov
chains in the presence of uncertainties, In: TACAS’06, Lecture
Notes in Computer Science, vol. 3920, pp. 394–410, Springer-
Verlag, 2006.

[TSB04] T. E. Turner, S. Schnell, and K. Burrage, Stochastic approaches
for modelling in vivo reactions, Computational Biology and
Chemistry, vol. 28, pp. 165–178, Elsevier Science Inc. 2004.

[Var85] M.Y. Vardi, Automatic verification of probabilistic concurrent
finite state programs, In:FOCS’85, pp. 327–338, IEEE Computer
Society, 1985.

[VR03] M. Villasana and A. Radunskaya, A delay differential equation
model for tumor growth.,Journal of Mathematical Biology,
vol. 47, pp. 270–294, Springer-Verlag, 2003.

[Wei99] K. Weichselberger, The theory of interval-probability as a unify-
ing concept for uncertainty, International Journal Approximated
Reasoning, vol. 24, pp. 149–170, Elsevier Science Inc., 1999.

[Wil06] D.J. Wilkinson, Stochastic modelling for systems biology
(mathematical and computational biology), Chapman & Hall,
2006.

[WZH07] B. Wachter, L. Zhang, and H. Hermanns, Probabilistic model
checking modulo theories, In:QUEST’07, pp. 129–140, IEEE
Computer Society, 2007.

155

	Introduction
	Motivations
	Related Works
	Contributions
	Structure of the thesis
	Published Material

	Background
	Introduction to Biological Systems Modelling
	Notions of Biochemical Reactions Kinetics
	Probabilistic Semantics and Analysis
	Notions of Probability
	Kripke Structures, Markov Chains and Markov Decision Processes
	Model Checking

	Abstraction Techniques
	Abstract Interpretation
	Predicate Abstraction

	Abstract Semantics for Models with Uncertainty on Kinetic Rates
	Introduction
	Probabilistic Model Checking of Biological Systems
	Labeled Transition System Semantics
	Derivation of Probabilistic Semantics
	Probabilistic Model Checking

	Abstract Systems Modelling and Model Checking
	Abstraction and Concretization
	Abstract LTS Semantics
	Interval Markov Chains
	Derivation of Abstract Probabilistic Semantics

	Case Study: Tumor Cell Growth
	Comparison with Related Works
	Conclusions

	Maximally Parallel Probabilistic Semantics for Multiset Rewriting
	Introduction
	Maximally Parallel Multiset Rewriting Models
	Maximally Parallel Labeled Transition System Semantics
	Maximally Parallel Probabilistic Semantics
	Max. Parallel Multiset Rewriting Branching Complexity
	Case Study: C. elegans Vulval Development
	Comparison with Related Works
	Conclusions

	Interval Valued Abstract Maximally Parallel Semantics for Multiset Rewriting
	Introduction
	Interval Valued Abstract Models
	Abstract Labelled Transition System Semantics
	Computation of Reachable Abstract States
	Computation of Abstract Max. Parallel Rule Applications
	Computation of Abstract Transition Rates
	Soundness of abstract LTS semantics

	Abstract Probabilistic Semantics
	Abstract Probabilistic Semantics
	Soundness with respect to Probabilistic Reachability

	Case study: Seasonal Reproduction Model
	Discussion
	Comparison with Related Works
	Conclusions
	Proofs

	Conclusions
	Bibliography

