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Abstract

Functional connectivity (FC) metrics identify statistical (undi-
rected) associations among distinct brain areas and therefore
represent a powerful tool to investigate brain inter-regional
interactions in distinct behavioural states. However, the ap-
plication and interpretation of FC in electrophysiological data
is impacted by important confounds related to the instan-
taneous propagation of electric fields generated by primary
current sources to many of the on-scalp sensors – the so-called
phenomenon of “volume conduction”. Because of this lin-
ear mixing of different sources, common FC methods may
lead to the identification of apparent couplings that do not re-
flect true brain inter-regional interactions. To overcome this
problem, new FC metrics have been specifically designed to
minimize the impact of volume conduction. Among these
novel methods, the weighted Phase Lag Index (wPLI) and
the weighted Symbolic Mutual Information (wSMI) attracted
a growing interest during the last decade, and have been suc-
cessfully applied to describe brain function in a wide range
of different conditions, including states associated with al-
tered levels of consciousness. In spite of the many promising
applications and results, the two methods have never been
characterized in detail, nor compared to investigate their po-
tential similarities or differences. Given these premises, in
the present thesis, my aim was to assess the properties of
wPLI and wSMI in order to define their respective poten-
tial advantages and disadvantages, as well as to determine
whether useful information could be gained through their
combined application. To this aim I performed three dis-
tinct, complementary studies. In my first project, I simulated
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realistic high-density EEG data based on imposed interac-
tion dynamics between sources of interest to test the accu-
racy of wPLI and wSMI at detecting different types of linear
and nonlinear functional interactions. Based on the result-
ing finding that they provide complementary information,
I applied the two methods to the study of EEG data, col-
lected in physiological and pathological states. In my second
study, I analyzed power, wPLI and wSMI changes across dis-
tinct physiological stages of vigilance, specifically wakeful-
ness (W), NREM and REM sleep in 24 healthy participants.
Specifically, I explored the role of power- and FC-based fea-
tures in identifying differences between all stages of interest
(W, N2, N3, REM), stages characterized by higher (W+REM)
and lower (N2+N3) probabilities of conscious experiences and
differences in sensory disconnection (REM vs. W), using a
cross-participant classification paradigm. Finally, in my third
study, I applied the two methods for investigating the effects
of motor rehabilitation on brain functional correlates in 16
multiple sclerosis patients. Obtained results demonstrated
that wPLI and wSMI provide distinct and complementary in-
formation about functional brain dynamics and indicate that
the conjoint use of these two methods may represent a power-
ful tool to investigate brain connectivity in physiological and
pathological conditions.

vii



Acknowledgements

I am grateful for the guidance I have received from both my
three-year-long supervisor, Dr. Giulio Bernardi at the IMT
School for Advanced Studies Lucca, and my one-year-long
supervisor, Dr. Robin A. A. Ince at the University of Glasgow,
who have both supported me in pursuing my research goals.
I am very appreciative that both of them allowed me to follow
my research interests independently, while at the same time
responding to my questions and queries very promptly.

I would also like to thank the other co-authors of the two
studies that have already been published and the study that I
have presented at the World Sleep Congress 2019.

Firstly, I would like to thank both, Srivas Chennu and Andrés
Canales-Johnson, at the Universities of Cambridge and Kent,
whom I have been working with previously during my Mas-
ter’s thesis, Francesca Siclari, Lausanne University Hospital,
where the EEG data of healthy participants was recorded,
as well as Monica Betta, Luca Cecchetti, Emiliano Ricciardi
and Pietro Pietrini, IMT Lucca, for their contributions to my
first project (see chapter 2 that refers to the same-titled article,
published in Scientific Reports (Imperatori et al., 2019)).

Secondly, I would like to thank Caterina Tramonti, Chiara
Fanciullacci, Giuseppe Lamola and Carmelo Chisari, Univer-
sity Hospital of Pisa, for collecting the EEG data of and ad-
ministering the rehabilitative training to the multiple sclero-
sis patients, Giada Lettieri and Luca Cecchetti for their addi-
tional MRI analyses and Emiliano Ricciardi for his feedback
to my second article (published in the European Journal of
Physical and Rehabilitation Medicine (Tramonti et al., 2018);
see chapter 4).

viii

https://www.nature.com/articles/s41598-019-45289-7
 https://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y9999N00A18102905
 https://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y9999N00A18102905


Thirdly, I would like to thank Jacinthe Cathaldi, Monica Betta,
Francesca Siclari and Emiliano Ricciardi for their respective
roles in data collection and the provision of feedback to my
last project, presented at the World Sleep Congress 2019 in
Vancouver (see chapter 3).

Moreover, I am grateful for the positive feedback on my thesis
from both reviewers, Umberto Olcese and Denis Engemann.

I am thankful for the financial support I have received in form
of the PhD scholarship from IMT Lucca and the Erasmus+
traineeship grant from the European Union, as well as for
my access to the computational clusters at IMT Lucca and the
University of Glasgow, that have enabled me to pursue my
research.

I am grateful for having been able to attend several inter-
national conferences and a summer school on “Conscious-
ness: From Theory to Practice” with the leading conscious-
ness researchers in the world at the Neuroscience School of
Advanced Studies in Venice in 2018.

Finally, I wish to acknowledge the unwavering support and
great love of my family and of Luke Milbourn, who have al-
ways encouraged me in everything I set out to do.

ix

https://doi.org/10.1016/j.sleep.2019.11.461
https://doi.org/10.1016/j.sleep.2019.11.461


Vita

February 17, 1992 Born in Frankfurt, Germany

June 2010 Abitur
Final mark: 1.0
Internatsschule Schloss Hansenberg,
Geisenheim, Germany

October 2011 –
June 2015

MSci & BA Honours Degree in
Natural Sciences Tripos
(Experimental and Theoretical Physics)
Final mark: Class II.1
University of Cambridge,
Cambridge, United Kingdom

November 2016 Admission to PhD Programme in
Cognitive, Computational & Social Neurosciences
IMT School for Advanced Studies Lucca,
Lucca, Italy

February –
September 2019

Erasmus+ Traineeship
University of Glasgow,
Glasgow, United Kingdom

x



Publications

1. Imperatori, L. S., Betta, M., Cecchetti, L., Canales-Johnson, A., Ricciardi,
E., Siclari, F., ... & Bernardi, G. (2019). EEG functional connectivity metrics
wPLI and wSMI account for distinct types of brain functional interactions.
Scientific Reports, 9(1), 8894.

2. *Imperatori, L.S., *Tramonti, C., Fanciullacci, C., Lamola, G., Lettieri, G.,
Bernardi, G., ... & Chisari, C. (2018). Predictive value of EEG connectiv-
ity measures for motor training outcome in multiple sclerosis: an obser-
vational longitudinal study. European Journal of Physical and Rehabilitation
Medicine. * Co-first Author (order changed for emphasis).

3. Imperatori, L. S., Milbourn, L., & Garasic, M. D. (2018). Would the Use of
Safe, Cost-Effective tDCS Tackle Rather than Cause Unfairness in Sports?.
Journal of Cognitive Enhancement, 2(4), 377-387.

Presentations

1. “Cross-participant prediction of vigilance stages through the combined
use of wPLI and wSMI EEG functional connectivity metrics”; L.S. Impera-
tori, J. Cataldi, M. Betta, E. Ricciardi, R. Ince, F. Siclari, G. Bernardi; World
Sleep 2019, September 20-25 2019, Vancouver, Canada.

xi



Abstracts accepted at (inter-)national
Conferences

1. “Cross-participant prediction of vigilance stages through the combined
use of wPLI and wSMI EEG functional connectivity metrics”; L.S. Impera-
tori, J. Cataldi, M. Betta, E. Ricciardi, R. Ince, F. Siclari, G. Bernardi; World
Sleep 2019, September 20-25 2019, Vancouver, Canada.

2. “Integrity of corpus callosum is essential for the cross-hemispheric prop-
agation of sleep slow waves: a high-density EEG study in split-brain pa-
tients”; G. Avvenuti, G. Handjaras, M. Betta, J. Cataldi, L.S. Imperatori,
S. Lattanzi, B. Riedner, P. Pietrini, E. Ricciardi, G. Tononi, F. Siclari, G.
Polonara, M. Fabri, M. Silvestrini, M. Bellesi, G. Bernardi; ; World Sleep
2019, September 20-25 2019, Vancouver, Canada.

3. “EEG connectivity measures wPLI and wSMI identify distinctive differ-
ences in brain functional interactions during wakefulness and sleep”; L.S.
Imperatori, M Betta, E Ricciardi, P Pietrini, F Siclari, G Bernardi; 24th
Congress of the European Sleep Research Society, September 25-28 2018,
Basel, Switzerland.

4. “Predictive value of EEG-based functional connectivity measures on the
outcome of a task-specific rehabilitative treatment in Multiple Sclerosis pa-
tients”; L.S. Imperatori, C Fanciullacci, C Tramonti, G Lettieri, L Cecchetti,
G Bernardi, E Ricciardi, C Chisari; 19th World Congress of Psychophysiol-
ogy, September 4-8, 2018, Lucca, Italy.

5. “EEG connectivity measures wPLI and wSMI identify distinct types of
brain functional interactions”; L.S. Imperatori, M Betta, L Cecchetti, A
Canales-Johnson, E Ricciardi, F Siclari, S Chennu, P Pietrini, G Bernardi;
OHBM Meeting, June 17-21 2018, Singapore.

6. “La connettività funzionale è predittiva del recupero motorio in seguito ad
un training task-specifico nella Sclerosi Multipla.” C. Tramonti, L.S. Im-
peratori, C. Fanciullacci, S. Di Martino, G. Lamola, G. Lettieri, G. Bernardi,
L. Cecchetti, E. Ricciardi, C. Chisari; XVIII Congresso Nazionale SIRN,
April 5-7 2018, Trieste, Italy.

7. “Predictive value of EEG-based functional connectivity measures on the
outcome of a task-specific rehabilitative treatment in Multiple Sclerosis pa-
tients”; L.S. Imperatori, C. Fanciullacci, C. Tramonti, S. Di Martino, G.
Lettieri, L. Cecchetti, G. Bernardi, B. Rossi, E. Ricciardi, C. Chisari; XXV
Annual SIPF Meeting, November 16-18 2017, Rome, Italy.

xii



Contents

Abstract vi

Acknowledgements viii

Vita and Publications x

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation for Investigating Brain Connectivity . . . . . . 1

1.1.1 Modes of Connectivity . . . . . . . . . . . . . . . . . . 1
1.2 Common Functional Connectivity Metrics in Electrophys-

iology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Phase-Based Metrics . . . . . . . . . . . . . . . . . . . 4
1.2.2 Information-Theoretic Metrics . . . . . . . . . . . . . 4

1.3 The problem with zero-lag connectivity . . . . . . . . . . . . 5
1.3.1 Volume Conduction . . . . . . . . . . . . . . . . . . . 5

1.4 Non-zero-lag-metrics . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Weighted Phase Lag Index . . . . . . . . . . . . . . . 8
1.4.2 Weighted Symbolic Mutual Information . . . . . . . 9

1.5 Application of wPLI and wSMI to physiological and patho-
logical conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xiii



2 Sensitivity to (non-)linear brain dynamics of wPLI and wSMI
metrics 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Simulation of hd-EEG data . . . . . . . . . . . . . . . 17
2.2.2 Source Interaction Dynamics . . . . . . . . . . . . . . 20
2.2.3 Linear interactions . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Nonlinear interactions . . . . . . . . . . . . . . . . . . 21
2.2.5 Connectivity Analysis . . . . . . . . . . . . . . . . . . 21
2.2.6 Statistical Procedure for Simulated Data . . . . . . . 23
2.2.7 Whole-brain accuracy . . . . . . . . . . . . . . . . . . 25
2.2.8 Topographic accuracy . . . . . . . . . . . . . . . . . . 27
2.2.9 Experimental hd-EEG recordings . . . . . . . . . . . 28

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Simulation of linear and nonlinear interdependen-

cies in hd-EEG data . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Simulated data - whole-brain connectivity . . . . . 36
2.3.3 Simulated data - topographic connectivity . . . . . 41
2.3.4 Experimental data in wakefulness and sleep . . . . 44

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.1 Performance of wPLI and wSMI in simulated data 50
2.4.2 Performance of wPLI and wSMI in distinct states

of vigilance . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Complementary Information of EEG Connectivity Metrics in
Wakefulness and Sleep 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 EEG Recordings . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 Data bootstrapping . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . 62
3.2.5 Statistical comparisons . . . . . . . . . . . . . . . . . . 63
3.2.6 Classification Procedure . . . . . . . . . . . . . . . . . 63

xiv



3.2.7 Mutual information analysis . . . . . . . . . . . . . . 66
3.2.8 Partial information decomposition . . . . . . . . . . 67

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Classification of vigilance stages . . . . . . . . . . . . 68
3.3.2 Classification of high vs. low level of consciousness 77
3.3.3 Classification of ’conscious’ stages with and with-

out sensory disconnection . . . . . . . . . . . . . . . . 79
3.3.4 Best individual features . . . . . . . . . . . . . . . . . 81
3.3.5 Redundancy Analysis . . . . . . . . . . . . . . . . . . 81

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.1 Contribution of connectivity metrics to the classifi-

cation of vigilance stages . . . . . . . . . . . . . . . . 86
3.4.2 Classification of states with high or low levels of

consciousness or disconnection . . . . . . . . . . . . 87
3.4.3 Limitations of the study . . . . . . . . . . . . . . . . . 88

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Complementary Information of EEG Connectivity Metrics in
Multiple Sclerosis Motor Training Outcomes 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Rehabilitative Intervention . . . . . . . . . . . . . . . 93
4.2.3 Motor Performance Assessment . . . . . . . . . . . . 93
4.2.4 Data Collection, Preprocessing and Analysis . . . . 94
4.2.5 The effects of TOCT on brain connectivity . . . . . . 95

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 wPLI Connectivity . . . . . . . . . . . . . . . . . . . . 97
4.3.2 wSMI Connectivity . . . . . . . . . . . . . . . . . . . . 97

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Conclusions 104

References 107

xv



Appendices 122

A Quantitative EEG analysis of Sleep and Wakefulness 124
A.1 Electroencephalography . . . . . . . . . . . . . . . . . . . . . 124
A.2 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2.1 Spectral Power . . . . . . . . . . . . . . . . . . . . . . . 125
A.2.2 Spectral Power in Distinct Stages of Vigilance . . . 126

A.3 Connectivity Metrics in Different Stages of Vigilance . . . 127
A.3.1 Overall Connectivity Differences . . . . . . . . . . . 127
A.3.2 Graph-Theoretic Analyses . . . . . . . . . . . . . . . . 129

B Metrics for the Study of Consciousness 133
B.1 Definition of Consciousness . . . . . . . . . . . . . . . . . . . 133
B.2 A Selection of Theories of Consciousness . . . . . . . . . . . 134
B.3 How to quantify different levels of consciousness? . . . . . 135

B.3.1 wPLI and wSMI in anaesthesia and DoC patients . 137

C The Application of Mutual Information in ECoG-Data 145
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.2.1 Experimental Model . . . . . . . . . . . . . . . . . . . 146
C.2.2 ECoG arrays . . . . . . . . . . . . . . . . . . . . . . . . 147
C.2.3 Stimuli and task . . . . . . . . . . . . . . . . . . . . . . 147
C.2.4 ECoG recording and preprocessing . . . . . . . . . . 148
C.2.5 Mutual Information Analysis . . . . . . . . . . . . . . 149

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

References of Appendices 157

xvi



List of Figures

1 From modelling source dynamics to EEG field patterns. . 18

2 Outline of the methodological design for the assessment
of whole-brain accuracy. . . . . . . . . . . . . . . . . . . . . . 24

3 Frequency-Resolved Power in Wakefulness and Sleep . . . 30

4 Linear and non-linear interdependencies between bivari-
ate sources of simulated data. . . . . . . . . . . . . . . . . . . 35

5 Whole-brain detection accuracy of wPLI and wSMI in sim-
ulated brain activity . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Whole-brain detection and topographic accuracy of wPLI
and wSMI for linear dynamics (Broadband vs. Alpha) . . . 39

7 Whole-brain detection accuracy of wPLI and wSMI for AAFT-
randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Topographic detection accuracy of wPLI and wSMI in sim-
ulated brain activity . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Whole-brain wPLI and wSMI connectivity in wakefulness
and sleep (0.5-12 Hz) . . . . . . . . . . . . . . . . . . . . . . . . 45

10 Topographic wPLI and wSMI) connectivity in wakefulness
and sleep (0.5-12 Hz) . . . . . . . . . . . . . . . . . . . . . . . . 46

11 Frequency-Resolved wPLI in Wakefulness and N3-Sleep . 47

12 Whole-brain, median wPLI and wSMI in wakefulness (W)
and N3-sleep in different frequency bands (delta: 0.5-4Hz,
theta: 4-8Hz, alpha: 8-12Hz) . . . . . . . . . . . . . . . . . . . 48

xvii



13 Topographic wPLI and wSMI connectivity in wakefulness
(W) and N3-sleep in different frequency bands (delta: 0.5-
4Hz, theta: 4-8Hz, alpha: 8-12Hz). . . . . . . . . . . . . . . . 49

14 Four-way classification of W, N2, N3 and REM vigilance
stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

15 Statistical comparisons between stages of vigilance . . . . 70
16 Topographic distributions of features across different stages

of vigilance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17 Topographic comparisons of features across different stages

of vigilance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
18 Frequency-Resolved Whole-Brain Power-Spectral-Density

and wPLI in Wakefulness, NREM- and REM-Sleep . . . . . 75
19 Correlation between delta-wPLI and mean maximum neg-

ative amplitudes in N2-Sleep . . . . . . . . . . . . . . . . . . 76
20 Correlation between delta-wPLI and mean maximum neg-

ative amplitudes in N3-Sleep . . . . . . . . . . . . . . . . . . 76
21 Two-way classification of W+REM vs. N2+N3 vigilance

stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
22 Two-way classification of W and REM vigilance stages . . 80
23 Mutual Information vs. LDA Classifier Accuracy . . . . . . 83
24 Redundancy Results based on Partial Information Decom-

position (PID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

25 Correlations between connectivity and behavioural per-
formance in MS patients . . . . . . . . . . . . . . . . . . . . . 99

26 Interaction Information of Monkey Fr . . . . . . . . . . . . . 152
27 Partial Information Decomposition of Monkey Fr . . . . . . 153
28 Interaction Information of Monkey Go . . . . . . . . . . . . 154
29 Partial Information Decomposition of Monkey Go . . . . . 154
30 Interaction Information of Monkey Kr . . . . . . . . . . . . . 155
31 Partial Information Decomposition of Monkey Kr . . . . . 155

xviii



List of Tables

1 Correlations between behavioural performance and wPLI
in multiple sclerosis patients . . . . . . . . . . . . . . . . . . . 98

2 Correlations between behavioural performance and wSMI
in multiple sclerosis patients . . . . . . . . . . . . . . . . . . . 100

3 Review on Connectivity in Wakefulness and Sleep . . . . . 132

4 Review on Connectivity in Anaesthesia and Disorders of
Consciousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 Review on Suggested Metrics for Tracking Consciousness 144

xix



Abbreviations

AAFT Amplitude-Adjusted Fourier Transform. 26, 36, 37, 40

AP antero-posterior. 95, 96

AR auto-regressive. 20, 33

AUC Area under the Curve. 96

BBCB Berlin Brain Connectivity Benchmark. 17, 18, 33, 38, 43, 50

CC Cross-Correlation. 34, 35

CSD Current-Source Density. 22, 61, 95

ECoG Electrocorticography. 67, 145–149

EDSS Expanded Disability Status Scale. 93, 102

EEG Electroencephalography. 5, 14, 15, 18–22, 25, 27–29, 36, 41, 50, 52,
53, 124

FC Functional Connectivity. 2, 14, 15, 21, 27, 28, 50, 53, 54, 91, 104, 105

hd-EEG high-density Electroencephalography. 16, 17, 19, 28, 33, 42, 50,
53

ICA Independent Component Analysis. 29, 60, 94

xx



II Interaction Information. 67, 149

INTERH inter-hemispheric. 95–98, 127, 131, 132, 139

LDA Linear Discriminant Analysis. 63, 66, 83

MCS Minimally Conscious State. 16, 54, 137, 138

MEG Magnetoencephalography. 5, 14, 15, 125

MI Mutual Information. 4, 66, 83, 149, 151

MS Multiple Sclerosis. 92, 93, 95, 100–103

N Independence Measure. 34, 35

NREM Non-rapid Eye Movement (Sleep). 12, 28, 53, 75

PID Partial Information Decomposition. 67, 84, 149, 152, 156

PSD Power-Spectral Density. 29, 62

REM Rapid Eye Movement (Sleep). 12, 75

SNR Signal-to-Noise-Ratio. 19, 24, 25, 27, 28, 33, 36, 38–43, 51

TOCT Task-Oriented Circuit Training. 92, 93, 95, 100–102

TUG Timed Up & Go. 94, 96–101

UWS Unresponsive Wakefulness Syndrome. 16, 54, 137, 138

wPLI weighted Phase Lag Index. 7, 8, 10, 15–17, 19, 21–23, 25, 28, 31, 33,
36–55, 62, 73, 74, 104–106

wSMI weighted Symbolic Mutual Information. 7, 9, 10, 15–17, 19, 21–23,
25, 28, 31, 33, 36, 38–41, 43–46, 48–55, 62, 104–106

xxi



Chapter 1

Introduction

1.1 Motivation for Investigating
Brain Connectivity

The investigation of brain networks in different physiological and patho-
logical conditions is a topic of growing interest in many branches of
neuroscience (Sporns, 2011). The classical approach in neuroimaging
is to compare uni-dimensional variables extracted from the same spa-
tial location across different conditions. For example, in EEG studies
we can compare the power measured at the same sensors across dif-
ferent conditions, while in fMRI we can compare the BOLD-responses
in the same regions of interest across different conditions. This uni-
dimensional approach has certainly helped us to learn more about brain
function. However, as the brain is a multi-dimensional complex sys-
tem (Stam, 2005), the interactions and co-dependencies between differ-
ent brain regions (also referred to as ‘connectivity’) need to be taken into
account as well.

1.1.1 Modes of Connectivity

The term connectivity can refer to several different and interrelated as-
pects of brain organisation (Horwitz, 2003; Sporns, 2007). The key three

1



modes of connectivity are structural, functional and effective (Friston,
1994). This distinction is applicable to neuronal networks at all time
and spatial scales and at all potential levels of organisation (Varela et al.,
2001), e.g. from mapping the “functional input connectivity” of indi-
vidual neurons in vitro (Schubert et al., 2007) to functional networks ob-
tained from seconds- or minute-long windows of neural activity in the
macaque neocortex (Honey et al., 2007).

Structural connectivity

Structural connectivity refers to a network of anatomical (synaptic) con-
nections between different neurons. While the physical pattern of anatom-
ical connections is relatively stable at shorter time scales (seconds to min-
utes), they are likely to be subject to significant morphological change
and plasticity at longer time scales (hours to days) (Sporns, 2015).

Structural connectivity analyses rely on either invasive tracing stud-
ies to find direct axonal connections (Köbbert et al., 2000) or on diffusion
weighted imaging techniques, such as Diffusion Tensor Imaging, which
is useful as whole-brain, in vivo markers of temporal changes in fibre
tracts, but has a much lower spatial resolution (Hagmann et al., 2008).

Functional Connectivity

Functional Connectivity (FC) metrics identify statistical (undirected) as-
sociations among spatially distinct brain areas. As statistical patterns be-
tween neuronal elements fluctuate on multiple time scales, some as short
as tens or hundreds of milliseconds, FC is highly time-dependent. Im-
portantly, FC does not make any explicit reference to specific directional
effects or to an underlying structural model unlike structural of effective
connectivity (Friston, 1994). However, structural connectivity places con-
straints on which functional interactions occur in the network (Bullmore
and Sporns, 2009).

2



Effective connectivity

Effective connectivity aims to infer causal effects of one neural compo-
nent over another. Therefore, unlike to functional connectivity, directed
neural networks are of interest. While causal effects can only be truly in-
ferred through systematic perturbations of the system, approximations
that rely on the assumption that causes must precede effects in time are
also employed in time series analysis (Bastos and Schoffelen, 2016).

Some techniques for extracting effective connectivity require the spec-
ification of a model including structural parameters, for example Dy-
namic Bayesian Modelling. Most applications of Granger causality rely
on a linear auto-regressive model fit to the data (Bastos and Schoffelen,
2016). On the contrary, transfer entropy is a generalised, model-free,
information-theoretic approach to study delayed (directed) interactions
between time series (Schreiber, 2000).

1.2 Common Functional Connectivity Metrics in
Electrophysiology

Oscillatory synchronisation has been suggested as a key mechanism by
which neural populations transmit information to form larger networks
(Fries, 2005; Salinas and Sejnowski, 2001; Singer, 1993). Oscillations can
be characterised by their frequencies (speed/ occurrences per second)
and amplitudes (magnitudes of change w.r.t. their equilibrium posi-
tions). The phase of an oscillation can tell us the current position in the
repeating cycle. Phase and power (proportional to the square of the sig-
nal’s amplitude) are mostly independent measures and therefore likely
reflect different neurophysiological dynamics, with phase being hypoth-
esised to be sensitive to the timing of activity within a neural population
and power to account for the number of neurons or spatial extent of the
neural population (Cohen, 2014).

Therefore, statistical dependencies can be considered between the am-
plitudes and/or phases of the different signals. There are various differ-
ent ways of assessing these statistical dependencies, or the synchronisa-
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tion among spatially distinct brain areas. All of these approaches can
be summarised under the term of functional “connectivity” metrics (Co-
hen, 2014). The best methods to capture brain oscillations non-invasively
are electro- (EEG) and magnetoencephalography (MEG).

1.2.1 Phase-Based Metrics

The most common method of assessing linear correlations between EEG
signals is coherence, computed as the cross-spectral density of two sig-
nals, which uses the Fourier transform of their cross- correlation (Sakkalis,
2011). The phase values are weighted by power values, implying that
results from spectral coherence are likely to be influenced by strong in-
creases or decreases in power. For example, if connectivity increases but
power simultaneously decreases, spectral coherence may provide biased
results (Lachaux et al., 1999).

As synchronisation between different brain areas is often only depen-
dent on phase, the phase locking value (PLV) (Lachaux et al., 1999) has
been developed to only detect phase synchronisations between two sig-
nals. However, both of these metrics are susceptible to volume conduc-
tion, which is explained in more detail in section 1.3.1.

1.2.2 Information-Theoretic Metrics

Mutual Information (MI) is a simple, yet robust method of detecting
shared information between two variables (see Appendix C). It is com-
puted based on the distributions of values within variables and the joint
distribution of two (or more) variables. Mutual Information has the key
advantage of being sensitive to linear as well as non-linear interactions,
that standard correlation metrics would fail to identify. For example, a
circle has a correlation coefficient of zero but a mutual information value
greater than zero (Ince et al., 2017; Timme and Lapish, 2018). Although it
is a widely used signal-processing technique, it does not have a straight-
forward neurophysiological interpretation (Cohen, 2014).

4



1.3 The problem with zero-lag connectivity

Electroencephalography (EEG) and Magnetoencephalography (MEG) rep-
resent popular neuroimaging modalities for the estimation of functional
connectivity (FC) owing to their high temporal resolution, in the order of
milliseconds. However, both EEG and MEG suffer from volume conduc-
tion, as sources in the brain generate large electromagnetic fields that are
measured by more than one EEG electrode or MEG sensor, introducing
spatial auto-correlation at the sensor level. Therefore, even though there
can be physiological zero-lag connectivity (Gollo et al., 2014; Roelfsema
et al., 1997), it cannot be unambiguously identified with EEG and MEG
(see appendix A for more background information on M/EEG).

1.3.1 Volume Conduction

The ’volume conduction’ phenomenon depends on the fact that electri-
cal signals propagate throughout brain tissues reaching scalp electrodes
in different locations. Therefore, at a given instant in time, the differ-
ent EEG/MEG sensors capture a weighted sum of the activities of all
brain sources. Moreover, signal propagation due to volume conduc-
tion is virtually instantaneous in comparison to the timescales of neu-
ral transmission within the brain. Thus, volume conduction enhances
the degree of instantaneous coupling between channels independently
of the actual brain source interaction. This leads to all channels to ap-
pear to be highly coupled with all others, even if only two interacting
sources are simulated (Pizzella et al., 2014). More generally, a single de-
tectable source (e.g., a set of synchronously firing pyramidal neurons)
with a fixed amplitude and orientation induces field patterns on all sen-
sors. In a noise-free case, this would imply that the covariance matrix
across sensors has rank 1, i.e. that its column/row vectors are linearly de-
pendent with respect to each other. This is illustrated by the widespread
topographies of the auditory and somato-sensory evoked potentials, due
to localised brain activations in the auditory and somato-sensory cor-
tices respectively (Scherg et al., 2019). Any detectable (primary current)
source is related to the movement of ions due to their chemical concen-
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tration gradients (Hämäläinen et al., 1993). Passive Ohmic currents, also
referred to as volume current, are set up in the surrounding medium to
avoid a build-up of charge. The magnetic field is then generated by both
the primary and volume currents. If the primary source and the sur-
rounding conductivity distributions are known, the resulting electrical
potential and magnetic field can be calculated from Maxwell’s equations,
that describe the spreading of all electromagnetic fields. 1

The mathematical problem of projecting the relevant sources in the
brain to the resulting field patterns in the sensor space is called the ’For-
ward Problem’. It provides an an answer to the question of what activ-
ity would look like on the scalp, given activation of one dipole in the
brain (Cohen, 2014). For fields of physiological origin, frequencies are
usually low (less than a few thousand Hz), such that magnetic induction
(Faraday’s law) has a negligible effect on the electric field, leading to the
electro-quasistatic approximation of Maxwell’s equations (Gratiy et al.,
2017; Haus and Melcher, 1989; Plonsey and Heppner, 1967; Rosenfalck,
1969). 2

In addition, the displacement current (including a time derivative)
can be considered to be much smaller than the Ohmic currents and can
therefore also be neglected, leading to the magneto-quasistatic approxi-
mation (Hämäläinen et al., 1993). 3

The quasistatic approximation of Maxwell’s equations then enables
us to reduce the Forward Problem of the EEG to three steps: firstly to
set up the current sources, secondly to solve Poisson’s equation with the

1Interestingly, based on the physics underlying electromagnetism, MEG and EEG field
distributions are mutually orthogonal. Moreover, MEG (in contrast to EEG) can only de-
tect sources with currents that have a component tangential to the surface of a spherically
symmetric conductor, while radial sources do not lead to a visible magnetic field outside
the head. (Hämäläinen et al., 1993)

2 Moreover, the macroscopic velocity u of ions in the brain and the magnetic fields of
physiological origin are so low that the magnetic component of the Lorentz force F = q(E +
u ∧ B) is negligible, i.e. the magnetic field has a negligible effect on the motion of free
charges as compared to the effect of the electric field. Neglecting the magnetic induction
and the magnetic component of the Lorentz force results in considering the current density
as independent of the magnetic field.

3The displacement current is responsible for the capacitive charging of neural mem-
branes (Gratiy et al., 2017).
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relevant boundary conditions to thirdly obtain the potentials at the scalp.
Importantly, at a boundary between different media (with different

permittivities), field lines lines are diverted, i.e. electric fields spread tan-
gentially at the skull-scalp boundary, which has a smearing effect (Nunez
et al., 2006) on the surface potential distribution. The magnetic perme-
ability of biological tissues is almost the same as that of empty space.
Hence, the magnetic field is not distorted by scalp or skull (Singh, 2014).

Therefore, EEG, but not MEG, is also affected by the lateral spread
of electrical fields through head tissues (cerebro-spinal fluid (CSF), skull,
and scalp etc.), especially to neighbouring electrodes(Cohen, 2014), while
magnetic fields pass through these tissues undisturbed.

However, the linear mixing of signals at the sensor level applies to
both MEG and EEG and may therefore lead to the identification of ap-
parent functional couplings that do not reflect true brain inter-regional
interactions (Khadem and Hossein-Zadeh, 2014; Srinivasan et al., 2007;
Vinck et al., 2011) for common methods of functional connectivity (FC)
estimation, such as coherence or mutual information.

An additional potential confound with zero-lag connectivity in EEG
stems from the common reference problem, which arises when a com-
mon reference channel is used for recording, which is typical of a large
majority of EEG recording hardware. This leads to the presence of spuri-
ous zero-lag connectivity estimates depending on the strength of poten-
tials fluctuations at the recording and reference sites (Bastos and Schof-
felen, 2016).

1.4 Non-zero-lag-metrics

Two FC metrics, the weighted Phase Lag Index (wPLI; Vinck et al., 2011)
and the weighted Symbolic Mutual Information (wSMI; King et al., 2013),
represent examples of spectral (wPLI) and information-theoretic (wSMI)
connectivity estimation methods that are increasingly applied to both
EEG and MEG data (Canales-Johnson et al., 2017; Chennu et al., 2017,
2014, 2016; Comsa et al., 2019; Lau et al., 2012; Lee et al., 2017a,b; Ortiz
et al., 2012; Parra et al., 2017; Robinson and Mandell, 2015; Simor et al.,
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2018; Sitt et al., 2014; Tramonti et al., 2018; Xing et al., 2017).

These two connectivity metrics are modified versions of pre-existing
methods (PLI (Stam et al., 2007; Vinck et al., 2011); SMI (King et al., 2013))
that minimise the contribution of ’(almost-)zero-lag’ interactions, poten-
tially determined by volume conduction. These approaches are thus ex-
pected to allow identifying true time-lagged functional couplings (Co-
hen, 2015; Hipp et al., 2012; Palva and Palva, 2012; Peraza et al., 2012;
Schoffelen and Gross, 2009) in the activity of underlying brain sources,
while excluding apparent zero-lag connectivity driven by a mixture of
real and spurious relationships (Gollo et al., 2014; Roelfsema et al., 1997).

1.4.1 Weighted Phase Lag Index

The wPLI measures the extent to which phase angle differences between
two time series x(t) and y(t) are distributed towards positive or negative
parts of the imaginary axis in the complex plane (similar to the PLI (Stam
et al., 2007; Vinck et al., 2011)).

The underlying idea is that volume-conducted activity accounts for
the greatest proportion of detected 0° or 180° phase differences between
signals. Therefore, to obtain a conservative estimate for real, non-volume
conducted activity, only phase angle distributions predominantly on the
positive or negative side are considered.

The PLI is defined as the absolute value of the sum of the signs of
the imaginary part of the complex cross-spectral density Sx y of two real-
valued signals x(t ) and y(t ) at trial t .

PLI =
∣∣∣∣∣
∑n

t=1 sgn
(
imag

(
sx y,t

))
n

∣∣∣∣∣ (1.1)

While PLI is already insensitive to zero-lag interactions, the weighted
Phase-Lag Index (Vinck et al., 2011) further addresses potential confounds
caused by volume conduction, by scaling contributions of angle differ-
ences according to their distance from the real axis, as almost ‘almost-
zero-lag’ interactions are considered as noise affecting real zero-lag in-
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teractions:

wPLI =
∣∣∣∣∣
∑n

t=1

∣∣imag
(
sx y,t

)∣∣ sg n
(
imag

(
sx y,t

))∑n
t=1

∣∣imag
(
sx y,t

)∣∣
∣∣∣∣∣ (1.2)

The wPLI is based only on the imaginary component of the cross-spectrum,
and thus implies robustness to noise compared to coherence, as uncorre-
lated noise sources cause an increase in signal power (Peraza et al., 2012).

1.4.2 Weighted Symbolic Mutual Information

The wSMI (King et al., 2013) evaluates the extent to which two EEG sig-
nals present non-random joint fluctuations, suggesting sharing of infor-
mation.

The time series X and Y in all EEG channels are first transformed into
sequences of discrete symbols (X̂ , Ŷ ). The symbols are coded according
to the trends in amplitudes of a specific predefined number of consecu-
tive time points. If the kernel k is chosen to be 3, then the symbols are
constituted by 3 elements, leading to 3! = 6 different potential symbols in
total (King et al., 2013; Sitt et al., 2014).

The temporal separation of elements that constitute a symbol can
be predetermined to be τ frames, such that the maximum resolved fre-
quency is fmax = fs

kτHz, whereby fs is the sampling frequency. The joint
probability of each pair of symbols co-occurring in two different time
series is computed to estimate the symbolic mutual information (SMI)
shared across two signals.

To address volume conduction artifacts, the weighted symbolic mu-
tual information disregards co-occurrences of identical or opposite-sign
signals.

wSMI(X̂ , Ŷ ) = 1

log(k !)

∑
x̂∈X̂

∑
ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log
p(x̂, ŷ)

p(x̂)p(ŷ)
(1.3)

The wSMI can lead to negative values, given that it is a weighted mu-
tual information measure, a form of weighted relative entropy (Kvålseth,
1991).

9



Other non-zero-lag-metrics

There are several other phase-based connectivity measures that ignore
zero-phase-lag connectivity, including imaginary coherence (Nolte et al.,
2004) and the phase-slope index (Nolte et al., 2008). These measures
(including PLI and wPLI) are also insensitive to volume conduction, al-
though in some cases they may still be susceptible to mixing sources (Per-
aza et al., 2012). While imaginary coherence (Nolte et al., 2004) was de-
veloped as a way to apply spectral coherence without concern for spu-
rious connectivity due to volume conduction, the phase-slope index is
mostly used to measure directed phase-based “effective” connectivity.4

1.5 Application of wPLI and wSMI to physio-
logical and pathological conditions

Both wPLI and wSMI have been applied to explore brain functional dy-
namics associated with different behavioural states (Lau et al., 2012; Or-
tiz et al., 2012) or potential network-level alterations in pathological con-
ditions (e.g., Alzheimer’s disease (Parra et al., 2017), multiple sclero-
sis (Tramonti et al., 2018), schizophrenia (Robinson and Mandell, 2015)
and social anxiety disorder (Xing et al., 2017)).

Interestingly, they have also been suggested to allow the identifica-
tion of variations in functional integration accompanying changes in the
level of consciousness (Chennu et al., 2017, 2014, 2016; King et al., 2013;
Lee et al., 2017a,b; Sitt et al., 2014). For instance, King and colleagues
(King et al., 2013) found that wSMI connectivity between centro-posterior
areas and other brain regions is higher in healthy conscious individu-
als as compared to patients with unresponsive wakefulness syndrome
(UWS) or in a minimally conscious state (MCS).

4The underlying idea is that if there is a directed functional connection from area A to
area B with a fixed phase lag, the spectral representation of this phase lag will increase with
increasing frequency. Thus, the phase-slope index measures whether the slope of the phase
lag is consistently positive or negative over several adjacent frequency bins, whereby the
sign of the slope indicates whether the net connectivity flows from region A to B or the
reverse (Nolte et al., 2008).
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Similarly, Chennu and colleagues (Chennu et al., 2017, 2014) showed
that alpha-band wPLI-based functional networks differ between healthy
individuals and patients with disorders of consciousness (UWS, MCS).
In line with this, previous studies (Chennu et al., 2016; Lee et al., 2017b)
also showed that propofol sedation in healthy individuals is associated
with a decrease in alpha-band wPLI (Chennu et al., 2016) and a relative
increase in delta-band wPLI connectivity (Lee et al., 2017b).

These observations across different conditions characterized by al-
tered levels of consciousness are particularly interesting, as they sug-
gest that wPLI and wSMI may offer general, relatively simple and re-
producible indices of the current level of consciousness of an individ-
ual (Casali et al., 2013). An overview of metrics that have been suggested
to allow tracking changes in the level of consciousness can be found in
appendix B.

In spite of these promising findings, it had not been previously inves-
tigated whether the two methods provide a similar description of brain
inter-regional relationships, or account instead for distinct types of func-
tional interactions. In fact, wPLI (Vinck et al., 2011) is a measure of phase
synchronisation that may account for linear interactions but is also ex-
pected to be sensitive to nonlinear couplings (David et al., 2004; West
et al., 2016). On the contrary, wSMI (King et al., 2013) is thought to reveal
nonlinear relationships due to its grounding in information theory (Ince
et al., 2017).

However, the actual performance of the two methods at detecting dis-
tinct types of connectivity dynamics had never been directly compared in
simulated or real experimental data. In addition, wPLI and wSMI have
been mostly used to investigate pathological differences in the level of
consciousness (between healthy participants and patients with disorders
of consciousness; Chennu et al. (2017, 2014); King et al. (2013); Sitt et al.
(2014)) and for the study of pharmacologically induced differences in
the level of consciousness (anaesthesia; Chennu et al. (2016); Lee et al.
(2017a,b)). The combination of the two metrics, wPLI and wSMI, had not
been used previously to investigate differences in the levels of conscious-
ness during sleep.
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1.6 Aims

The principal aim of this work was to determine whether the two connec-
tivity metrics, wPLI and wSMI, provide overlapping or complementary
information about changes in brain functional dynamics across physio-
logical and pathological conditions.

In chapter 2, I used simulated high-density (hd-)EEG data to investi-
gate and compare the accuracy of wPLI and wSMI at identifying different
types of functional interaction dynamics, including both linear and non-
linear dynamics. Moreover, in light of previous observations suggesting
that the two methods may allow the detection of differences in the level
of consciousness (Chennu et al., 2017, 2014, 2016; Comsa et al., 2019; King
et al., 2013; Lee et al., 2017a,b; Sitt et al., 2014), I tested whether both
wPLI and wSMI connectivity were also able to detect significant differ-
ences between wakefulness and deep (N3-)sleep, typically characterised
by markedly different levels of consciousness (Nir et al., 2013), in EEG
recordings of 12 healthy participants.

In chapter 3, I built on the findings of this simulation study and in-
vestigated whether the combined use of these two methods may unveil
functional differences across distinct physiological stages of vigilance,
including wakefulness, Non-rapid Eye Movement (Sleep) (NREM)- and
Rapid Eye Movement (Sleep) (REM)-sleep. I studied the potential value
of power-based and FC-indices wPLI and wSMI in the cross-participant
prediction of four stages of vigilance (wakefulness, NREM (N2/N3), REM
sleep) in the EEG recordings of 24 healthy participants. Furthermore, I
investigated the relevance of FC-based features for the distinction be-
tween stages characterised by a higher probability of conscious experi-
ences (e.g., perception or thoughts during wakefulness, and dreams dur-
ing sleep) as compared to a lower probability of conscious experiences
(in NREM-Sleep). To shed light on the possible functional basis of the
typical sensory disconnection of sleep, I compared FC-derived features
in REM-sleep and wakefulness, two stages characterized by vivid con-
scious experiences.
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In chapter 4, I investigated the ability of wPLI and wSMI to track
variations in brain integration in the pathological condition of multiple
sclerosis in a cohort of 16 patients that underwent physical rehabilitation
training.

In conclusion, the aim of this thesis was to investigate and compare
the accuracy of wPLI and wSMI at identifying different types of func-
tional interaction dynamics – both linear and nonlinear dynamics – in
simulated hd-EEG data, where the ground-truth is known.

Building on this validation study, I then compared the performance
of these two connectivity metrics at tracking changes in brain dynamics
associated with a physiological (wakefulness/sleep) and a pathological
condition (multiple sclerosis).
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Chapter 2

EEG functional
connectivity metrics wPLI
and wSMI account for
distinct types of brain
functional interactions

2.1 Introduction

All the results shown in this chapter refer to the same-titled article, pub-
lished in Scientific Reports (Imperatori et al., 2019).

Functional connectivity (FC) metrics identify statistical (undirected)
associations among spatially distinct brain areas. EEG and MEG repre-
sent popular neuroimaging modalities for the estimation of FC due to
their high temporal resolution, in the order of milliseconds.

However, both EEG and MEG suffer from volume conduction, as
sources in the brain generate large electromagnetic fields that are mea-
sured by more than one EEG electrode or MEG sensor, introducing spa-
tial auto-correlation at the sensor level. Because of this linear mixing
of different sources on the same sensor, common methods for FC estima-

14

https://www.nature.com/articles/s41598-019-45289-7


tion, such as coherence or mutual information, may lead to the identifica-
tion of apparent functional couplings that do not reflect true brain inter-
regional interactions (Khadem and Hossein-Zadeh, 2014; Srinivasan et al.,
2007; Vinck et al., 2011).

To overcome this problem, several new FC methods have been specif-
ically designed to minimize the impact of volume conduction effects. In
particular, the weighted Phase Lag Index (wPLI; Vinck et al. (2011)) and
the weighted Symbolic Mutual Information (wSMI; King et al. (2013)),
represent examples of spectral (wPLI) and information-theoretic (wSMI)
connectivity estimation methods that are increasingly applied to both
EEG and MEG data (Canales-Johnson et al., 2017; Chennu et al., 2017,
2014, 2016; Comsa et al., 2019; Lau et al., 2012; Lee et al., 2017a,b; Ortiz
et al., 2012; Parra et al., 2017; Robinson and Mandell, 2015; Simor et al.,
2018; Sitt et al., 2014; Tramonti et al., 2018; Xing et al., 2017).

These two connectivity metrics are modified versions of pre-existing
methods (PLI (Stam et al., 2007; Vinck et al., 2011); SMI (King et al., 2013))
that minimise the contribution of ’(almost-)zero-lag’ interactions, poten-
tially determined by volume conduction. These approaches are thus ex-
pected to allow identifying true time-lagged functional couplings (Co-
hen, 2015; Hipp et al., 2012; Palva and Palva, 2012; Peraza et al., 2012;
Schoffelen and Gross, 2009) in the activity of underlying brain sources,
while excluding apparent zero-lag connectivity driven by a mixture of
real and spurious relationships (Gollo et al., 2014; Roelfsema et al., 1997).

Both wPLI and wSMI have been applied to explore brain functional
dynamics associated with different behavioural states (Lau et al., 2012;
Ortiz et al., 2012) or potential network-level alterations in pathological
conditions (e.g., Alzheimer’s disease (Parra et al., 2017), multiple sclero-
sis (Tramonti et al., 2018), schizophrenia (Robinson and Mandell, 2015)
and social anxiety disorder (Xing et al., 2017)).

Interestingly, they have also been suggested to allow the identifica-
tion of variations in functional integration accompanying changes in the
level of consciousness (Chennu et al., 2017, 2014, 2016; King et al., 2013;
Lee et al., 2017a,b; Sitt et al., 2014). King and colleagues (King et al., 2013)
found that wSMI connectivity between centro-posterior areas and other
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brain regions is higher in healthy conscious individuals as compared to
patients with Unresponsive Wakefulness Syndrome (UWS) or in a Mini-
mally Conscious State (MCS).

Similarly, Chennu and colleagues (Chennu et al., 2017, 2014) showed
that alpha-band wPLI-based functional networks differ between healthy
individuals and patients with disorders of consciousness (UWS, MCS).
In line with this, previous studies (Chennu et al., 2016; Lee et al., 2017b)
also showed that propofol sedation in healthy individuals is associated
with a decrease in alpha-band wPLI (Chennu et al., 2016) and a relative
increase in delta-band wPLI connectivity (Lee et al., 2017b).

These observations across different conditions characterized by al-
tered levels of consciousness are particularly interesting, as they sug-
gest that wPLI and wSMI may offer general, relatively simple and re-
producible indices of the current level of consciousness of an individ-
ual (Casali et al., 2013).

In spite of these promising findings, it is currently unclear whether
the two methods provide a similar description of brain inter-regional re-
lationships, or account instead for distinct types of functional interac-
tions. In fact, wPLI (Vinck et al., 2011) is a measure of phase synchroni-
sation that may account for linear interactions but is also expected to be
sensitive to nonlinear couplings (David et al., 2004; West et al., 2016). On
the contrary, wSMI (King et al., 2013) is thought to reveal nonlinear rela-
tionships due to its grounding in information theory (Ince et al., 2017).

However, the actual performance of the two methods at detecting dis-
tinct types of connectivity dynamics has never been directly compared
in simulated or real experimental data. Therefore, here we used simu-
lated high-density Electroencephalography (hd-EEG) data to specifically
investigate and compare the accuracy of wPLI and wSMI in identifying
different types of interaction dynamics, including both linear and non-
linear dependencies.

In addition, to evaluate the potential impact of differences between
the two methods on the analysis of real experimental data, we tested
wPLI and wSMI on hd-EEG recordings collected from human partici-
pants in distinct behavioural states, namely wakefulness and deep (N3-)
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sleep, typically characterised by markedly different levels of conscious-
ness (Nir et al., 2013). In light of previous observations suggesting that
the two methods may allow the detection of differences in the level of
consciousness (Chennu et al., 2017, 2014, 2016; Comsa et al., 2019; King
et al., 2013; Lee et al., 2017a,b; Sitt et al., 2014), we expected both wPLI
and wSMI connectivity to differ between wakefulness and N3-sleep.

However, here we also asked whether the two connectivity metrics
provide overlapping or complementary information about changes in
brain functional dynamics across the two vigilance states.

2.2 Methods

2.2.1 Simulation of hd-EEG data

The MATLAB-based Berlin Brain Connectivity Benchmark (BBCB) frame-
work (Haufe and Ewald, 2016) was used to simulate realistic hd-EEG
recordings (108 channels, 500Hz, 120s). In particular, the simulated elec-
trical activity was generated by imposing bivariate relationships between
two cortical sources, which were then projected at scalp level using a bio-
physically realistic model of electrical current propagation in the head.
The adopted model was based on the standard ICBM152 anatomical tem-
plate (Huang et al., 2016) and included 6 tissue types: scalp, skull, air
cavities, gray matter, white matter and cerebrospinal fluid (CSF). A finite
element model (FEM) was solved to generate the lead field.

We modelled both intra- and inter-hemispheric interactions between
pairs of cortical sources (see Fig. 1, including corresponding MNI coor-
dinates 1. The first source was placed either in the left (LIPL) or right
(RIPL) inferior parietal lobule, while the second source was kept in the
right middle frontal gyrus (RMFG).

The choice of these locations was motivated by previous neuroimag-
ing studies showing that resting state activity of these areas is modulated

1The MNI coordinate system is a normalised coordinate system, described in (Evans
et al., 1993; Mazziotta et al., 2001), to map the location of brain structures, independent
from individual differences in size and shape, facilitating comparisons across time points,
subjects, groups and sites.
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Figure 1: From modelling source dynamics to EEG field patterns. Intra- and
inter-hemispheric interactions between two source pairs were modelled: the
first source was placed either in left (LIPL) or right (RIPL) inferior parietal
lobule, while the second source was kept in the right middle frontal gyrus
(RMFG). The orientation of the neuronal current at each node is defined as
the normal vector w. r. t. the mesh surface at that node, i.e. field spreads
were calculated assuming perpendicular source orientations. Source ampli-
tudes are shown using a lateral view of the brain, while resulting EEG field
potentials are plotted using a top view of the scalp. The brain images were
plotted based on the Matlab scripts provided in the BBCB toolbox (Haufe
and Ewald, 2016)
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by conscious perception and attention (Maksimow et al., 2005; Martuzzi
et al., 2010; Vanhaudenhuyse et al., 2011, 2009).

Moreover, studies that employed wPLI and wSMI to investigate func-
tional connectivity in different states of consciousness specifically sug-
gested that a key correlate of such changes may be represented by varia-
tions in the strength of interactions across posterior and anterior brain ar-
eas (Blain-Moraes et al., 2014; Chennu et al., 2016; Comsa et al., 2019). For
the sake of simplicity, only two interacting sources at a time were con-
sidered: a) LIPL-RMFG (inter-hemispheric) and b) RIPL-RMFG (intra-
hemispheric).

Nine different coupling relationships between the two sources, which
differed in the type and relative degree of linear and nonlinear compo-
nents, were modelled. For each pair of source locations (LIPL-RMFG and
RIPL-RMFG) and each type of simulated source coupling dynamics we
also modelled 100 different Signal-to-Noise Ratios; from 0.01 to 1, with
steps of 0.01), which describe the weighting of simulated source signals
with respect to simulated background activity.

As detailed below, 100 different background noise patterns were ob-
tained for each considered Signal-to-Noise-Ratio (SNR). Brain noise nb(t )

was generated by placing 500 mutually statistically independent time-
series characterised by 1/ f -shaped power (pink noise) and random phase
spectra at an equal number of random locations sampled from the entire
cortical surface. Moreover, spatially and temporally uncorrelated sensor
noise ns (t ) was sampled from a univariate standard normal distribution.
The overall noise contribution was defined as noise n(t ):

n(t ) = 0.9
nb(t )

‖nb(t )‖F
+0.1

ns (t )

‖ns (t )‖F
, (2.1)

where ‖nb(t )‖F the Frobenius norm. The simulated hd-EEG recording
was generated according to:

xi nt (t ) =α si nt (t )∥∥si nt (t )
∥∥

F

+ (1−α)
n(t )

‖ñ(t )‖F
, (2.2)

where sint corresponds to the signal contribution of the sources of interest
to the EEG scalp signal (i..e. si nt (t ) is the projected source interaction to
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the EEG sensors through multiplication of the lead field with the source
time courses, mapped to two patches of the cortical surface). The pa-
rameter α is related to the signal-to-noise and ñ(t) is the filtered version
of n(t ) in the frequency-range of interest (8-12Hz for linear dynamics,
0.5-12Hz for the non-linear dynamics).

2.2.2 Source Interaction Dynamics

For each source pairing (LIPL-RMFG, RIPL-RMFG), nine different cou-
pling relationships were simulated by modelling the time-series of the
two sources based on linear (auto-regressive (AR) model) and nonlin-
ear (Hénon (Hénon, 1976), Ikeda (Ikeda, 1979), Rössler (Rössler, 1979),
Lorenz (Lorenz, 1963)) dynamical systems.

2.2.3 Linear interactions

The time courses of the two sources were modelled using bivariate linear
autoregressive (AR) models of order 5:

[
z1(t )
z2(t )

]
=

P∑
p=1

[
a11(p) a12(p)
a21(p) a22(p)

][
z1(t −p)
z2(t −p)

]
+

[
ε1(t )
ε2(t )

]
(2.3)

where ai j (p), i , j ∈ 1,2, p ∈ 1, ..,P are linear autoregressive (AR) model co-
efficients, and εi (t ), i ∈ 1,2 are uncorrelated standard normal distributed
noise variables. The off-diagonal entry a12(p) was set to zero, while
a21(p) was set to 0.5. Thus, interactions arise from a unidirectional time-
delayed influence of z1 on z2.

The generated time series were bandpass-filtered in the alpha band
(8-12 Hz) using an acausal third-order Butterworth filter with zero phase-
delay (Haufe and Ewald, 2016). We decided to simulate alpha oscilla-
tions with a clearly defined sender-receiver relationship, as they are also
a key feature of brain activity in physiological wakefulness (Sadaghiani
and Kleinschmidt, 2016).
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2.2.4 Nonlinear interactions

Several distinct non-linear dynamics were selected in order to represent
a wide-range of possible functional interactions. Among the chosen dy-
namics, the Hénon map and the Rössler systems have previously been
employed by Wang et al. (2014) to test different functional connectivity
measures.

The time courses of the two sources were modelled by considering
each one as a time-varying state variable of a specific dynamical sys-
tem. We considered four different nonlinear systems: two defined by
two-dimensional non-iterated maps ( Hénon (1976) and Ikeda (1979))
and two represented by three-dimensional nonlinear ordinary differen-
tial equation systems ( Rössler (1979) and Lorenz (1963) dynamics).

Dynamical systems describe the motion of a point in a multidimen-
sional state space, where the starting point is defined by the initial con-
ditions of the system. For each system all potential combinations of vari-
ables were considered as representing different interaction dynamics, i.e.
Hénon (x,y), Ikeda (x,y), Rössler (x,y), Rössler (x,z), Rössler (y,z), Lorenz
(x,y), Lorenz (x,z) and Lorenz (y,z).

The MATLAB-based Chaotic Systems Toolbox was used to compute
the time series for the selected nonlinear systems, and the respective pa-
rameters were chosen to achieve complex chaotic behaviour: Hénon map
[a=1.4; b=0.3], Ikeda map [µ= 0.9], Rössler dynamics [a=0.2, b=0.2, c=5.7,
x0 = 0.1, y0 = 0.1, z0 = 0.1, h=0.1], Lorenz dynamics [σ=10, β=28, ρ=8/3,
x0 = 0.1, y0 = 0.1, z0 = 0.1, h=0.1]. Due to the complex nature of these
dynamics, they have not been limited to a specific frequency band.

2.2.5 Connectivity Analysis

The simulated EEG datasets (108 channels, 500Hz, 120 s) generated for
each coupling model were divided into 60 non-overlapping 2 s-epochs
(Colclough et al., 2016; King et al., 2013; Vinck et al., 2011). Then, FC
was computed for each epoch and pair of electrodes. While wPLI and
wSMI could be theoretically applied to source-modelled EEG data, they
are most commonly applied at scalp-level, and for this reason all present
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analyses were performed by computing connectivity values between pairs
of scalp EEG-sensors.

Before computing connectivity measures, a Current-Source Density
(CSD) transform (Kayser and Tenke, 2006) was applied to the EEG data,
as in previous works (King et al., 2013; Vinck et al., 2011). This method
provides a reference-independent signal and acts as a spatial filter, lead-
ing to a relatively improved spatial resolution (Nunez et al., 2006).

Analyses were focused on the 0.5-12 Hz frequency range for the broad-
band computations and on delta- (0.5-4Hz), theta- (4-8Hz) and alpha-
bands (8-12Hz) for the frequency-band-resolved analyes.

wPLI

wPLI was computed using the Fieldtrip toolbox (Oostenveld et al., 2011)
(multi-taper method fast Fourier transform, single Hanning taper (Vinck
et al., 2011) 0.5 Hz frequency resolution). The mean value across the
frequency-bins in the frequency range of interest was computed to obtain
a single wPLI coupling value (Broadband 0.5-12Hz; Delta 0.5-4Hz; Theta
4-8Hz; Alpha 8-12Hz).

wSMI

We chose the kernel k to be 3, implying that the symbols are consti-
tuted of three elements, leading to 3!=6 different potential symbols in
total (King et al., 2013; Sitt et al., 2014).

The temporal separation of elements that constitute a symbol was set
to be τ = 14 frames (τt = 28ms), such that the maximum resolved fre-
quency was fmax = fs

kτ = 500Hz
3×14 = 11.9Hz.

Prior to wSMI computation, the signal was low-pass-filtered using
the ft_preproc_lowpass FieldTrip function with an additional mir-
ror padding (ft_preproc_padding) of 1s before and after each indi-
vidual epoch to avoid potential filter edge-artifacts. For the analysis in
frequency bands, a bandpass-filter (ft_preproc_bandpass) was used
with the same padding scheme.
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2.2.6 Statistical Procedure for Simulated Data

The accuracy of wPLI and wSMI was evaluated at whole-brain and to-
pographic levels, respectively indicating

• the ability to detect the presence of statistical dependencies in the
overall (median) connectivity across all pairs of electrodes (see figs. 1
and 2), and

• the ability to detect a significant interaction between the pairs of
electrodes spatially closest to the actual brain sources among all
pairs of electrodes.
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Figure 2: Outline of the methodological design for the assessment of whole-brain accuracy. The source locations
LIPL, RIPL and RMFG are marked as yellow dots in the brain plots, while the red line indicates a true interaction
between two of the sources (RIPL-RMFG). For each SNR in the range 0.01-1.00 (0.01 steps; N=100) different spatial
distributions (N=100) of random background noise (marked as green dots) were generated in combination with
true interactions between the source pairs and projected at scalp level. The corresponding null distributions were
obtained through time-point-shuffling of the original interacting source-level timeseries. The same procedure has
been applied to all interaction dynamics and tested source pairs (intra/inter-hemispheric). The brain images were
rendered using Surf Ice (vers. 5 May 2016, 64-bit).
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2.2.7 Whole-brain accuracy

For each source pairing (LIPL-RMFG, RIPL-RMFG), tested interaction
dynamics and SNR, the whole-brain detection accuracy of wPLI and
wSMI was computed as the proportion of cases (N=100 datasets differ-
ing by their respective spatial noise distributions), in which the whole-
brain median connectivity value (across all electrode-pairs) of simulated
EEG data passed the 95th percentile of a null distribution obtained after
time-point-shuffling of the original source-level timeseries (N=100 per-
mutations; Fig. 2, Algorithm 1).

Algorithm 1: Whole-Brain Accuracy
Result: Whole-Brain Accuracy

1 Generate different spatial distributions (N=100) of random
background noise - with either real underlying interactions or
surrogate interactions between the chosen source pairs;

2 for SNR=0.01:0.01:1 do
3 for NoiseDistribution=1:1:100 do
4 Test whole-brain connectivity value (Acctr ue ) obtained from

EEG dataset with given noise distribution but real
interaction dynamics against 95% threshold of null
distribution (Accper m) of whole-brain connectivity values
obtained from EEG datasets with randomised interaction
dynamics (use generalised Pareto distribution to model
the tail of the null distribution);

5 end
6 if Acctr ue > Accper m then
7 Assign a score of 1.
8 else
9 Assign a score of 0.

10 end
11 Take the sum over all scores and divide by the number of

tested noise distributions to obtain the whole-brain accuracy
at each SNR;

12 end
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To account for the small number of permutations, a generalised Pareto
distribution was used to model the tail of the null distribution, using
the PALM (Permutation Analysis of Linear Models) software (Winkler
et al., 2014). Of note, we chose to focus on a time-point-shuffling proce-
dure instead of phase-shuffling, since the latter can introduce spurious
interdependences between time-series, especially for the Rössler dynam-
ics (Maiwald et al., 2008).

A null distribution was also generated by phase-shuffling the origi-
nal time-series using the Amplitude-Adjusted Fourier Transform (AAFT)
procedure (see algorithm 2 (Theiler et al., 1992, 1991)). With the expected
exception of the Rössler dynamics, the two approaches provided similar
results (see Fig. 7).

Algorithm 2: Amplitude-Adjusted Fourier Transform
Result: Surrogate data with preserved linear structure and

amplitude distribution and randomised temporal
relationships

1 Scale the data to a Gaussian distribution (Gaussianization);
2 Perform Fourier Transform and assign random phase to each

frequency. (The phase must be conjugate symmetric around the
centre frequency in order to obtain a real, surrogate dataset.);

3 Perform inverse Fourier Transforms;
4 Do an inverse transformation of the first Gaussian transformation

(de-Gaussianization).
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2.2.8 Topographic accuracy

For each source location pairing, interaction dynamics and SNR, the to-
pographic accuracy was defined as the proportion of simulated EEG
datasets (N=100 differing by their respective spatial noise distributions),
in which the connectivity between the two electrodes spatially closest to
the cortical sources (minimum Euclidean distance) passed the 95th per-
centile of all other electrode pairings (N=5777) in each simulated EEG-
recording with the same underlying brain noise (Algorithm 3).

Algorithm 3: Topographic Accuracy
Result: Topographic Accuracy

1 Generate different spatial distributions (N=100) of random
background noise with real underlying interactions between the
chosen source pairs;

2 for SNR=0.01:0.01:1 do
3 for NoiseDistribution=1:1:100 do
4 Test connectivity value (Accsour ce ) between the two

electrodes spatially closest to the sources (Euclidean
distance) against 95% threshold of null distribution of all
other connectivity values;

5 end
6 if Acctr ue > Accper m then
7 Assign a score of 1.
8 else
9 Assign a score of 0.

10 end
11 Take the sum over all scores and divide by the number of

tested noise distributions to obtain the topographic accuracy
at each SNR;

12 end

In summary, for both approaches, a threshold corresponding to the
95th percentile of the respective null-distributions (surrogate data for
whole-brain connectivity, and connectivity of all electrode-pairs in topo-
graphic analysis) was regarded as the limit for the detection of significant
FC interactions (α= 0.05).
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The mean total accuracy of wPLI and wSMI was computed as the
mean of accuracies obtained across all SNRs. Non-parametric permu-
tation tests (N=10000, p < 0.05) were used to compare the performance
of the two metrics at each SNR and for mean accuracy. Specifically, for
each examined condition, the difference in mean accuracy between wPLI
and wSMI was compared with a null distribution obtained by randomly
’reassigning’ to the two metrics the values of accuracy determined for
the different SNR configurations. A similar procedure was used to com-
pare performance of wPLI and wSMI for different spatial distributions
of noise at each SNR.

2.2.9 Experimental hd-EEG recordings

To verify whether potential differences between wPLI- and wSMI-based
FC measures in recognizing distinct interaction dynamics have actual im-
plications for the analysis of real experimental data, an additional inves-
tigation was performed on hd-EEG recordings (257 channels, Electrical
Geodeisics Inc.; 500 Hz) obtained in different behavioural states.

Specifically, data were obtained from 12 healthy volunteers (25±4 yrs,
6F) during distinct states of vigilance: relaxed wakefulness with eyes
closed (W) and deep (N3-)sleep. The data was recorded as part of a larger
project aimed at exploring the effects of changes in visual experiences
during wakefulness on NREM-sleep features (Bernardi et al., 2019a) 2.

Brain activity during N3-sleep was extracted from an overnight EEG
recording in the sleep laboratory, whereas wakefulness data consisted
of six minutes of eyes-closed resting-state activity obtained at 8am the
following morning, when homeostatic sleep pressure is expected to be at
its minimum (Borbély, 1982).

All continuous wake and N3-sleep recordings were band-pass fil-
tered between 0.5 and 45 Hz (NetStation 5, EGI), and the first and last
5-s of data were discarded to account for filter-related edge-artifacts. Bad

2The collection of experimental EEG data in wakefulness and sleep was approved by
the ethical committee of the Canton of Vaud (Switzerland) and performed in accordance
with relevant guidelines and regulations. Written informed consent was obtained from
each subject.
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channels were identified upon visual inspection and interpolated using
spherical splines: we removed 31.5± 12.9 electrodes (corresponding to
12.3±5.0% of all electrodes) in sleep recordings, and 30.8±8.6 electrodes
(12.0±3.4%) in wakefulness recordings.

Sleep scoring was performed using standard procedures (Iber, 2007)
and all 30s epochs containing N3-sleep were extracted and concatenated.
EEG recordings during wakefulness were divided into non-overlapping
5s segments and visually inspected to identify and reject clear artifacts.
Overall, 27.3±13.8% of all epochs were discarded due to artifacts, while
in deep sleep no epochs were discarded. Indeed, large artifacts caused
by eye movements, movements or muscular activity are typically absent
or greatly reduced while in deep sleep.

For both wakefulness and sleep data, a procedure based on Indepen-
dent Component Analysis (ICA) was used to remove residual ocular,
muscular, and cardiac artifacts (Delorme and Makeig, 2004).

For each subject, we randomly extracted and analyzed the minimum
common number (across subjects) of artifact-free 2s-long epochs of wake-
fulness data, corresponding to 70 segments (i.e. 140s; the first 0.5s and
the last 0.5s of each 5s segment were discarded). The same amount of
data (i.e. 70 2s-epochs; 140s) was randomly selected from N3-sleep that
occurred during the first half of the night.

From this selection, we excluded epochs representing potential out-
liers in terms of signal power within classical frequency bands. Specifi-
cally, the Power Spectral Density (Power-Spectral Density (PSD); Welch’s
method, Hamming windows, 8 sections, 50% overlap) of all N3 2s-epochs
was calculated in delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), sigma
(12-16Hz), beta (18-25Hz), gamma (30-45Hz) and broadband (0.5-45Hz)
frequency ranges. Then, outlier segments for any of the seven consid-
ered frequency ranges (i.e., threshold = median PSD ±2 median absolute
deviations; MAD) were excluded from the random selection procedure
(see Fig. 3).
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Figure 3: Group-level (N=12) average signal spectral power of data from
wakefulness and N3-sleep. The shaded area reflects the standard error of
the mean for each vigilance state.

30



For each condition and channel, the median wPLI and wSMI con-
nectivity of each electrode to all other scalp electrodes was computed in
all epochs for the 0.5-12 Hz frequency range (i.e., as in simulated data).
The median one-to-all connectivity of each electrode was computed and
compared to the average of the median one-to-all connectivity across sur-
rogate datasets (1000 iterations) generated through time-point shuffling
of the original recordings of each channel.

In this approach, the same permutation scheme was used for all sub-
jects, and the global signal, corresponding to the average signal across all
electrodes, was re-added to each shuffled dataset to ensure the preserva-
tion of the internal characteristics of the data and of the potential spuri-
ous (volume-conduction-dependent) interactions.

Paired comparisons were performed between i) wakefulness and sur-
rogate data, and ii) wakefulness and N3-sleep (non-parametric permu-
tation test; p < 0.05; see Explanation 2.2.1). Correction for multiple com-
parisons was ensured using a permutation-based supra-threshold cluster
correction (Huber et al., 2004; Nichols and Holmes, 2002).

In brief, the same contrast was repeated (N=10000 iterations) after
shuffling the labels of the two compared sets and the maximum size of
significant electrode-clusters was saved in a frequency table. A cluster-
size threshold corresponding to the 95th percentile of the obtained dis-
tribution (α= 0.05) was applied to correct for multiple comparisons.

Whole-brain connectivity (median of one-to-all connectivity across all
electrodes) was also evaluated and compared to surrogate data using a
non-parametric permutation test (N=10000 iterations; p < 0.05).
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Explanation 2.2.1: Permutation Testing

Given an EEG dataset with two conditions A and B, a potential
hypothesis would be that a metric, derived from the EEG activ-
ity, is greater in condition A as compared to condition B. The null
hypothesis would be that there is no difference in this metric be-
tween A and B. The procedure for testing for statistical signifi-
cance would be structured in the following way (Maris and Oost-
enveld, 2007):

1. Randomly shuffle the labels across conditions A and B. a

2. Calculate the test statistic on this random partition.
3. Repeat steps 1) and 2) a large number of times N to obtain

a more robust null distribution (histogram of the test statis-
tics).

4. From the test statistic that was actually observed and the
histogram in step 3), calculate the number of random parti-
tions that resulted in a larger test statistic than the observed
one and divide it by all tested partitions to obtain the p-
value.

5. If the p-value is smaller than the critical alpha-level (con-
ventionally 0.05), conclude that the data in the two experi-
mental conditions are significantly different.

A correction for multiple comparisons is especially relevant,
when performing topographic comparisons. One method is the
Bonferroni-correction, that divides the critical alpha-level by the
number of performed tests. It assumes that tests are independent,
which is not the case for many EEG results (see section 1.3.1).
Within nonparametric permutation testing, there are two intrin-
sic methods to correct for multiple comparisons: considering a)
pixels and b) clusters (groups of suprathreshold pixels) to be the
unit for determining a threshold (Cohen, 2014). b

aAcross trials in within-subject analyses and across subjects in group-analyses.
bCluster-based permutation tests are increasing in popularity despite a com-

mon overestimation of the temporal, spatial, and frequency precision of the asso-
ciated statistical claims (Sassenhagen and Draschkow, 2019).
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2.3 Results

The MATLAB-based (The MathWorks, Inc., Natick, Massachusetts, USA)
’Berlin Brain Connectivity Benchmark’ (BBCB) framework (Haufe and
Ewald, 2016) was used to simulate scalp-level hd-EEG recordings (108
channels, 500Hz, 120s) including bivariate relationships between two
cortical sources. We modelled an intra-hemispheric interaction, between
the right inferior parietal lobule (RIPL) and the right middle frontal gyrus
(RMFG), and an inter-hemispheric interaction, between the left inferior
parietal lobule (LIPL) and the right middle frontal gyrus (RMFG) (Fig. 6).
The choice of these locations was motivated by previous neuroimaging
studies showing that resting state activity of these areas is modulated
by conscious perception and attention (Maksimow et al., 2005; Martuzzi
et al., 2010; Vanhaudenhuyse et al., 2011, 2009).

2.3.1 Simulation of linear and nonlinear interdependen-
cies in hd-EEG data

As detailed in the Methods section (see 2.2), nine different coupling re-
lationships between the two sources were simulated, respectively based
on: linear autoregressive (AR) model, Hénon map, Ikeda map, Rössler
(x,y), Rössler (x,z), Rössler (y,z), Lorenz (x,y), Lorenz (x,z) and Lorenz
(y,z) (see below for details).

For each pair of source locations (LIPL-RMFG and RIPL-RMFG) and
each type of simulated source coupling dynamics we modelled 100 dif-
ferent signal-to-noise ratios (SNR; from 0.01 to 1 with steps of 0.01), which
describe the weighting of simulated source signals with respect to simu-
lated background activity.

In addition, 100 different background noise patterns were obtained
for each considered SNR. As detailed below, the accuracy of wPLI and
wSMI at detecting the different interaction dynamics was thus computed
both across patterns of noise distribution (for accuracy at each SNR) and
across SNRs (for an estimate of overall accuracy) (Fig. 2). First, we
quantified the content of linear and nonlinear interdependencies in the
nine examined interaction dynamics. In particular, to quantify the linear
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content of the bivariate relationships between the original sources we
used Cross-Correlation (CC), which offers a simple measure of similar-
ity of two signals as a function of the displacement of one relative to the
other (Quiroga et al., 2002).

In order to measure the nonlinear content, we took the average of the
directional, nonlinear Independence Measure (N) in both directions of
the source dynamics (Arnhold et al., 1999; Quiroga et al., 2002). For all
cases, N was computed using the following parameters: embedding di-
mension (m=10), time lag (τ=5), theiler correction (theiler=50), number
of nearest neighbours (nn=10). Similar results were obtained when op-
timal, individual parameters were selected for each time-series. Most of
the interaction dynamics we modelled presented a mixture of linear and
nonlinear dependencies, with the notable exception of Lorenz (x,z) and
Lorenz (y,z), which showed a clear predominance of nonlinear interac-
tions (Fig. 4).
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Figure 4: Linear and non-linear interdependencies between bivariate
sources of simulated data. The absolute value of cross-correlation (CC; mea-
sure of similarity of two series as a function of the displacement of one rela-
tive to the other) and the interdependence measure N (measure of the non-
linear relationship between two time series) were computed for simulated
true source time-series (0.5-12 Hz) and the null distribution, obtained by
shuffling the source time-series (N=1000, 0.5-12 Hz). For both CC and N,
low values indicate total independence, while high values indicate strong
dependence. The differences between the true simulated data and its null
distribution, i.e. surrogate data, were computed (* for pone−t ai l < 0.05,
Bonferroni-corrected based on 18 comparisons). The error bars show the
standard deviation for the null distribution.
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2.3.2 Simulated data - whole-brain connectivity

The whole-brain detection accuracy was computed as the proportion of
cases in which the whole-brain median connectivity value (across all
channel-pairs) of each simulated EEG dataset passed the 95th percentile
of the corresponding null distribution.

The null distribution consisted of whole-brain median connectivity
values that were computed in matched simulated EEG datasets, where
the time series between cortical sources of interest were subjected to one
of two different surrogate procedures (time-point-shuffling or AAFT-
randomization; see algorithm 2) to destroy their interaction relationship
(see Figs 1 and 2).

Fig. 5A shows the mean accuracy of wPLI and wSMI (averaged over
all SNRs) computed for each source pairing (intra/inter-hemispheric)
and tested interaction dynamics. Fig. 5B shows the whole-brain accu-
racy at each SNR. Of note, the accuracy of the two connectivity measures
was similar for intra- and inter-hemispheric connections.

The performance of both metrics was similar for the linear relation-
ship in the broadband (0.5-12 Hz) signal. However, wPLI showed higher
accuracy than wSMI in the intra-hemispheric case, when connectivity in
the alpha-band (8-12 Hz; corresponding to the range in which the inter-
action was modelled) was specifically considered (Fig. 6).

While wSMI performed better at detecting the Hénon map dynam-
ics for high SNRs (≥ 0.67), wPLI performed better at detecting the Ikeda
dynamics, especially at intermediate SNRs (0.28-0-86).

Both wPLI and wSMI showed significant and comparable levels of
accuracy for all Rössler (x,y; x,z; y,z) cases at all tested SNRs, with the
exception of low SNRs (Rössler (y,z) SNRs 0.05-0.08), for which wSMI
tended to achieve a better detection performance.

For the Lorenz (x,y) dynamics, wPLI achieved a better mean intra-
hemispheric accuracy relative to wSMI, with the strongest differences
observed for low SNRs (0.06-0.32). On the other hand, wSMI had higher
accuracy for identifying Lorenz (y,z) dynamics for all SNRs ≥ 0.06. Fi-
nally, while no overall performance differences were observed at detect-
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ing Lorenz (x,z)-based interaction dynamics, wPLI tended to achieve a
higher accuracy for intermediate SNRs, between 0.41 and 0.51.

Of note, with the expected exception of the Rössler dynamics (see
Methods), similar results were obtained when the null distributions were
generated using phase-shuffling (AAFT) instead of time-point shuffling
(Fig. 7).
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Figure 5: A) Mean whole-brain detection accuracy for all nine different rela-
tionships between the chosen source location pairings (L = left IPL to right
MFG; R = right IPL to right MFG). The green vertical lines mark signifi-
cant differences between wPLI and wSMI (permutation tests, p < 0.05) for
each type of interaction, pairing of source locations and SNR. The brain im-
ages were plotted based on the Matlab scripts provided in the BBCB tool-
box (Haufe and Ewald, 2016). B) Whole-brain detection accuracy for all
nine different relationships between the chosen source location pairings as
a function of SNRs (L = left IPL to right MFG; R = right IPL to right MFG).
Black dots at the top of each graph mark significant accuracy differences
between wPLI and wSMI for each specific SNR that were observed for both
intra- and inter-hemispheric conditions
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Figure 6: Whole-brain (A and B) and topographic (C and D) detection accu-
racy for linear dynamics analysed within the 0.5-12 Hz (broadband) or the
8-12 Hz (alpha-band) ranges (L = left IPL to right MFG; R = right IPL to right
MFG). In bar plots (A, C), the * marks significant differences between wPLI
and wSMI (permutation tests, p < 0.05). In B and D, accuracy is shown as a
function of SNR. In these graphs, black dots mark significant accuracy dif-
ferences between wPLI and wSMI (for a specific SNR) that were observed
for both intra- and inter-hemispheric conditions
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Figure 7: A) Absolute values of cross-correlation (CC; measure of similarity
of two series as a function of the displacement of one relative to the other)
and interdependence measure N (measure of the nonlinear relationship be-
tween two time series) for simulated source time-series (0.5-12 Hz) and for
the corresponding time-series obtained after AAFT phase-shuffling (* for
pone−t ai l < 0.05, Bonferroni-corrected based on 18 comparisons). B) Mean
whole-brain detection accuracy for the nine tested relationships between
the chosen source location pairings (L = left IPL to right MFG; R = right IPL
to right MFG). The green vertical lines mark significant differences between
wPLI and wSMI (permutation tests, p < 0.05). C) Whole-brain detection ac-
curacy for the nine tested relationships between the chosen source location
pairings as a function of SNRs (L = left IPL to right MFG; R = right IPL
to right MFG). Black dots at the top of each graph mark significant accu-
racy differences between wPLI and wSMI for each specific SNR that were
observed for both intra- and inter-hemispheric conditions
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2.3.3 Simulated data - topographic connectivity

The topographic accuracy was defined as the proportion of simulated
EEG datasets (with true interactions between the cortical sources of in-
terest), in which the connectivity between the two electrodes closest to
the cortical sources passed the 95th percentile of all other electrode pair-
ings. Results are similar to those described for whole brain accuracy (Fig.
8).

For the linear dynamics, wPLI and wSMI showed again similar mean
accuracies, but wPLI tended to have higher accuracy for low SNRs (0.05-
0.08) and high SNRs (> 0.94). Accuracy of wPLI (but not of wSMI) fur-
ther improved for band-limited connectivity in the alpha-range (8-12 Hz;
Fig. 6), especially for low SNRs (0.04-0.09) as well as high SNRs (≥ 0.93).

For both Hénon and Ikeda iterated maps, the mean topographic accu-
racy of wPLI was significantly higher than the mean topographic accu-
racy of wSMI. Specifically, in the Hénon case, wPLI had higher accuracy
especially for SNRs ≥ 0.44, while in the Ikeda case, it had higher accuracy
at low and intermediate SNRs (0.14-0.50).

Both wPLI and wSMI showed high levels of mean accuracy for the
three Rössler (x,y; x,z; y,z) cases, although wPLI performed significantly
better than wSMI in the intra-hemispheric case of Rössler (x,y), the inter-
hemispheric case of Rössler (x,z) and both inter-and intra-hemispheric
cases of Rössler (y,z). The evaluation of accuracy levels as a function
of SNR showed that wSMI tended to perform better than wPLI for low
SNRs (0.11-0.21) in the Rössler (y,z) case, while it showed a steep de-
crease in accuracy at high SNRs (R-R Rössler (x,y) ≥ 0.75; L-R Rössler
(x,z) ≥ 0.86; L-R/R-R Rössler (y,z) ≥ 0.76/0.83).

Finally, while wPLI and wSMI showed similar mean accuracy in the
Lorenz (x,y) case (with wPLI performing relatively better for SNRs in
the range 0.03-0.06), only wSMI was able to detect interactions based on
Lorenz (x,z) and Lorenz (y,z) dynamics (Lorenz (x,z) ≥ 0.07; Lorenz(y,z)
≥ 0.04).

41



Videos that show the mean connectivity matrices across all simu-
lated hd-EEG recordings as a function of SNR can be found here.3 A
video showing frequency-resolved wPLI computed between the elec-
trodes spatially closest to the sources can be found here.4

3Description: Connectivity matrices obtained in the presence of interacting sources and
in surrogate data as a function of SNR. Different videos have been generated for each of the
tested interaction dynamics. The connectivity matrices represent the mean across all pos-
sible brain noise instantiations at any particular SNR. The top two connectivity matrices
represent the matrices obtained in the presence of LIPL-RMFG or RIPL-RMFG interacting
sources, while the bottom two connectivity matrices show the result of shuffled source in-
teraction dynamics for both source location pairings. The top right plot shows the values
used to determine topographic accuracy, i.e. the value of connectivity between the elec-
trodes spatially closest to the sources, described here as “LIPL-RMFG” and “RIPL-RMFG”
and their corresponding threshold, described as “95% All”. The bottom right plot shows
the values used to determine whole-brain accuracy, i.e. the value of median connectivity
across all channels in real (“L-R Real”, “R-R Real”) and surrogate data ( “L-R Surr”, “R-R
Surr”).

4Description: Connectivity matrices obtained in the presence of interacting sources and
in surrogate data as a function of SNR. Different videos have been generated for each of the
tested interaction dynamics. The connectivity matrices represent the mean across all pos-
sible brain noise instantiations at any particular SNR. The top two connectivity matrices
represent the matrices obtained in the presence of LIPL-RMFG or RIPL-RMFG interacting
sources, while the bottom two connectivity matrices show the result of shuffled source in-
teraction dynamics for both source location pairings. The top right plot shows the values
used to determine topographic accuracy, i.e. the value of connectivity between the elec-
trodes spatially closest to the sources, described here as “LIPL-RMFG” and “RIPL-RMFG”
and their corresponding threshold, described as “95% All”. The bottom right plot shows
the values used to determine whole-brain accuracy, i.e. the value of median connectivity
across all channels in real (“L-R Real”, “R-R Real”) and surrogate data.
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Figure 8: A) Mean topographic detection accuracy for all nine different rela-
tionships between the chosen source location pairings (L = left IPL to right
MFG; R = right IPL to right MFG). The green vertical lines mark signifi-
cant differences between wPLI and wSMI (permutation tests, p < 0.05) for
each type of interaction, pairing of source locations and SNR. The brain im-
ages were plotted based on the Matlab scripts provided in the BBCB tool-
box (Haufe and Ewald, 2016). B) Topographic detection accuracy for all
nine different relationships between the chosen source location pairings as
a function of SNRs (L = left IPL to right MFG; R = right IPL to right MFG).
Black dots at the top of each graph mark significant accuracy differences
between wPLI and wSMI for each specific SNR that were observed for both
intra- and inter-hemispheric conditions
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2.3.4 Experimental data in wakefulness and sleep

In wakefulness, both wPLI and wSMI revealed significant levels of con-
nectivity in all tested electrodes (p < 0.05, cluster-corrected), relative to
values observed in time-point shuffled data (Figs 9 and 10A; 0.5-12 Hz
frequency range). In particular, for both measures the highest connectiv-
ity values were observed in posterior (occipital, parietal) areas.

However, in N3-sleep the two methods provided different results:
wPLI revealed diffuse high connectivity values peaking in frontal areas,
while wSMI showed reduced connectivity values (Figs 9 and 10B).

In line with these observations, the direct contrast between wake-
fulness and N3-sleep also revealed distinct changes based on wPLI and
wSMI (Figs 9 and 10C). Specifically, while wSMI connectivity was sig-
nificantly higher for wakefulness as compared to N3-sleep in all areas,
there were no statistically significant differences in wPLI between these
two states of vigilance.

Further analyses focusing on classical frequency bands (delta: 0.5-
4Hz, theta: 4-8Hz, alpha: 8-12Hz), showed that both wPLI and wSMI
were higher in wakefulness than in sleep within the alpha-band ( figs. 12
and 13). However, wPLI was also lower in wakefulness relative to N3 in
the delta-band. Frequency-resolved wPLI for wakefulness and sleep can
be found in Fig 11.
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Figure 9: Whole-brain wPLI (left) and wSMI (right) connectivity in wake-
fulness and sleep (0.5-12 Hz). Paired comparisons were performed between
median whole-brain connectivity in wakefulness and N3-sleep, as well as
between experimental and surrogate data. * marks p< 0.05 (non-parametric
permutation tests)
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Figure 10: Topographic wPLI (left) and wSMI (right) connectivity in wake-
fulness and sleep (0.5-12 Hz). Paired comparisons were performed between
A) wakefulness and shuffled surrogate data and B) N3-sleep and shuffled
surrogate data and C) wakefulness and N3-sleep, for wPLI (top row) and
wSMI (bottom row). White dots mark significant effects (cluster-based non-
parametric permutation test, p < 0.05). Colorbars show the permutation test
statistic for the difference between conditions, so that the green color marks
higher values in real vs. surrogate data for panels A and B. In panel C,
the red color indicates higher values in wakefulness, while the blue color
indicates higher values in sleep. These images were generated using the
’topoplot’ function in EEGLAB (Delorme and Makeig, 2004)
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Figure 11: Group-level (N=12) average wPLI (median across channels) for
each frequency-bin computed on data from wakefulness and N3-sleep. The
shaded area reflects the standard error of the mean for each vigilance state.
Black dots at the top mark significant differences between wakefulness and
sleep for each specific frequency bin (non-parametric permutation tests, p <
0.05)
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Figure 12: Whole-brain, median wPLI and wSMI in wakefulness (W) and
N3-sleep in different frequency bands (delta: 0.5-4Hz, theta: 4-8Hz, alpha:
8-12Hz). Error bars show the standard error of the mean. Horizontal bars
and * mark significant differences between conditions (non-parametric per-
mutation tests, p < 0.05, Bonferroni-corrected for the number of tested fre-
quency bands)
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Figure 13: Topographic wPLI and wSMI connectivity in wakefulness (W)
and N3-sleep in different frequency bands (delta: 0.5-4Hz, theta: 4-8Hz,
alpha: 8-12Hz). Colorbars show the permutation test statistic for the dif-
ferences between wakefulness and N3-sleep. The red color marks higher
values in wakefulness, while the blue color indicates higher values in sleep.
White dots mark significant differences between conditions (cluster-based
non-parametric permutation test, p < 0.05). These images were generated
using the ’topoplot’ function in EEGLAB (Delorme et al., 2011)
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2.4 Discussion

The weighted Phase Lag Index (Vinck et al., 2011) and the weighted Sym-
bolic Mutual Information (King et al., 2013) are two robust functional
connectivity approaches increasingly applied to M/EEG data, because of
their relative immunity to volume conduction effects (Canales-Johnson
et al., 2017; Chennu et al., 2017, 2014, 2016; Cohen, 2015; Comsa et al.,
2019; Lau et al., 2012; Lee et al., 2017a,b; Ortiz et al., 2012; Parra et al.,
2017; Robinson and Mandell, 2015; Simor et al., 2018; Sitt et al., 2014; Tra-
monti et al., 2018; Xing et al., 2017).

Here we set out to investigate whether the two methods are able to
capture overlapping or complementary information regarding variations
in brain inter-regional interactions.

By combining analyses on simulated hd-EEG data and real hd-EEG
recordings collected in different states of vigilance, we demonstrated that
wPLI has an optimal sensitivity for interaction dynamics presenting a
mixture of linear and nonlinear components, whereas wSMI has higher
sensitivity to predominantly nonlinear dynamics. Given that the brain
is a highly complex system typically characterised by both linear and
nonlinear interaction dynamics (Stam, 2005), it may be better described
through the combined use of different measures (David et al., 2004).

Consistent with this view, our results suggest that the conjoint use
of wPLI and wSMI may allow researchers to measure complementary
information about FC interactions, and thus to better describe relative
changes associated with distinct behavioural states.

2.4.1 Performance of wPLI and wSMI in simulated data

The ’Berlin Brain Connectivity Benchmark’ (BBCB) framework (Haufe
and Ewald, 2016) was adapted and employed to generate hd-EEG record-
ings in sensor-space. This framework allowed us to model different inter-
action dynamics between two cortical sources, noise with temporal and
spatial structure as well as source mixing due to volume conduction, in
a highly realistic electromagnetic volume conductor (head) model.
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In particular, we generated interaction dynamics with different de-
grees and types of nonlinearity, from linear to exclusively nonlinear, and
specifically tested the sensitivity of wPLI and wSMI at detecting these
inter-regional dependencies. Of note, for each of the tested dynamics, we
also tested two different source locations (intra- and inter-hemispheric
interactions) and different signal-to-noise ratios (SNR).

Our results showed that the phase-based measure wPLI performs
generally better at detecting inter-regional couplings presenting both lin-
ear and nonlinear components. Only in two of the more complex non-
linear coupling cases (Lorenz (x,z) and Lorenz (y,z)), characterised by
non-significant cross-correlation values (see Figs 5 and 8), wPLI had a
very low accuracy.

Contrarily, the information-theoretic measure wSMI had a significantly
higher accuracy for these two interaction dynamics, but performed sig-
nificantly worse for the Ikeda-based couplings and also had lower topo-
graphic accuracy for Hénon- and Rössler-based couplings.

With few exceptions, the accuracies of wPLI and wSMI were very
similar for intra- and inter-hemispheric interactions, and the detection
accuracy of both methods tended to increase with an increase in SNR.
Of note, however, the spatial (topographic) accuracy of wSMI (but not
the whole-brain accuracy based on median global connectivity) showed
instead a decrease at high SNRs for linear and Rössler interactions. This
accuracy reduction may be related to an increase in the spatial spread-
ing of the source signals to more distant scalp electrodes with increasing
SNRs, which may have led a greater proportion of electrodes to detect
the underlying functional coupling (loss of spatial resolution).

Moreover, at high SNRs a relative ’cross-contamination’ may be ex-
pected to occur between the two electrodes spatially closest to the inter-
acting sources. In particular, the activity of one source may be ’volume-
conducted’ to the electrode closest to the other source (and vice-versa).
Due to the particular weighting approach used for wSMI, the increased
similarity between the signals of these particular channels may limit the
maximum attainable connectivity strength, thus reducing the relative
difference with respect to all other electrode pairings.
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On the other hand, such effects of volume conduction at high SNRs
can be expected to have had only a marginal impact on (or even to im-
prove) the estimation of whole-brain accuracy with respect to null-datasets
generated from point- or phase-shuffled time-series.

In the linear case, where interacting dynamics were fixed in the alpha-
range, we noted that both wPLI and wSMI had a lower accuracy at de-
tecting the presence of interacting sources when evaluating the broad-
band signal instead of the band-limited one (Fig. 6). As described below,
this was confirmed by the analysis on experimental data, which revealed
a higher sensitivity of the band-limited analysis to potential differences
across vigilance states (Fig. 13).

These observations indicate that wPLI and wSMI may have a lower
sensitivity when computed on a frequency range larger than the one in
which the interaction actually occurs. For this reason, a-priori knowl-
edge regarding the potential frequency ranges of interest should be used
to guide the analyses whenever possible. In this respect, however, wPLI
has the important advantage of also allowing more exploratory, frequency-
resolved analyses; however, such analyses may raise statistical issues
when many distinct interactions have to be tested.

Overall, our results demonstrated that wPLI, as a measure of phase
synchronization, performs generally better at detecting functional cou-
plings presenting a mixture of linear and nonlinear dynamics, whereas
wSMI, fundamentally rooted in mutual information, has higher sensitiv-
ity for exclusively nonlinear dynamics, such as Lorenz (x,z) and Lorenz
(y,z) dynamics. Importantly, present results also demonstrated that both
wPLI and wSMI are characterised by a high spatial (topographic) accu-
racy, thus supporting their use in graph theoretical analysis at sensor-
level.

2.4.2 Performance of wPLI and wSMI in distinct states of
vigilance

To evaluate whether the results we obtained from simulated EEG data
are relevant to the analysis of real experimental data, we tested and com-
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pared the performance of the two connectivity measures in hd-EEG record-
ings collected in humans in different states of vigilance. In fact, both
wPLI and wSMI have been previously shown to successfully identify
relative variations in brain FC associated with different degrees of con-
sciousness under anaesthesia or following severe brain injury (Chennu
et al., 2014, 2016; King et al., 2013; Lee et al., 2017a,b; Sitt et al., 2014).

Based on these premises, here we asked whether the two methods
may identify similar or distinct changes associated with variations in
the level of consciousness of healthy subjects from wakefulness to deep
NREM-sleep (N3). In humans, N3-sleep is characterised by the occur-
rence of large and diffuse EEG slow waves (0.5-4 Hz), by relative sen-
sory disconnection (Rechtschaffen et al., 1966) and by a low probability
of having any conscious experiences (dreams) (Siclari et al., 2017). It has
been suggested that slow waves, representing the alternation of neuronal
silence (off-period) and firing (on-period), and occurring out-of-phase in
different cortical areas, may contribute to the fading of consciousness
through the interruption of causal interactions between distant brain re-
gions (Jobst et al., 2017; Massimini et al., 2005; Pigorini et al., 2015; Vec-
chio et al., 2017). Here we showed that N3-sleep is associated with a
significant and diffuse decrease in wSMI connectivity within the 0.5-12
Hz frequency range. This difference appeared particularly prominent in
posterior brain areas. In contrast, we observed no significant differences
between wakefulness and N3-sleep in broadband wPLI-connectivity.

A band-limited analysis revealed that changes in wSMI were mainly
driven by an overall decrease in alpha (8-12 Hz) connectivity in N3 rela-
tive to wakefulness. Of note, alpha-band wPLI connectivity also showed
a similar, but more localized, decrease during N3-sleep, especially in
posterior areas. These results are in line with previous work showing
that the transition into unconsciousness due to sedation or physiolog-
ical sleep (stage N1/N2) is associated with a decrease in alpha wPLI-
connectivity (Blain-Moraes et al., 2014; Chennu et al., 2016; Comsa et al.,
2019; Lee et al., 2017a,b), especially in posterior regions (Lee et al., 2017a,b)
and for posterior-anterior interactions (Blain-Moraes et al., 2014; Chennu
et al., 2016; Comsa et al., 2019).
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Moreover, they are consistent with evidence indicating that relative to
healthy individuals, patients with unresponsive wakefulness syndrome
(UWS) or in a minimally conscious state (MCS) display a connectivity
decrease that mainly affects posterior areas or posterior-anterior interac-
tions (Chennu et al., 2017, 2014; King et al., 2013; Lehembre et al., 2012;
Sitt et al., 2014).

Similarly, alpha-band wSMI has been found to be lower in UWS as
compared to MCS patients (Sitt et al., 2014). Therefore, our findings in-
dicate that both wPLI and wSMI may be suited to capture variations in
alpha-connectivity associated with relative changes in vigilance and/or
responsiveness to the environment.

However, wPLI also revealed a relative increase in delta (0.5-4 Hz)
connectivity. Importantly, the change in delta-wPLI is consistent with the
presence of traveling slow waves during sleep (Massimini et al., 2004)
as well as with a recent similar observation of increased parietal and
parieto-frontal delta-wPLI connectivity during propofol sedation (Lee
et al., 2017b) and midazolam-based anaesthesia (Lee et al., 2017a). More-
over, wPLI in the delta/theta-band has been shown to be increased in
patients with disorders of consciousness (UWS, MCS), relative to healthy
awake subjects (Chennu et al., 2014).

In summary, the analysis of wPLI- and wSMI-based connectivity in
different states of vigilance confirmed our findings in simulated data,
indicating that the two methods are sensitive to distinct brain dynam-
ics. While an in-depth characterization of the differences in FC between
wakefulness and sleep was beyond the scope of the present work, our
results also suggest that wakefulness may be characterised by a mixture
of ’simple’ (i.e., mainly linear; better described by wPLI) and more com-
plex (i.e., mainly nonlinear) interactions (better described by wSMI) in
the alpha range, while sleep may be dominated by ’simpler’ delta-band
connectivity (better captured by wPLI), likely reflecting the occurrence
of traveling slow waves. This interpretation is in line with previous ob-
servation indicating that N3 is associated with lower complexity or en-
tropy (Ma et al., 2018; Stam, 2005) as compared to wakefulness.
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2.5 Conclusions

Our study demonstrates that wPLI and wSMI connectivity metrics pro-
vide distinct but complementary information about inter-regional inter-
actions and indicate that the combined use of these two methods may
provide a better and more complete characterization of brain functional
dynamics within and across distinct behavioural states. In particular,
we showed that while wPLI displays an optimal sensitivity for interac-
tion dynamics with linear and nonlinear components, wSMI has a higher
sensitivity for predominantly nonlinear dynamics.

We also showed that this finding may have significant implications
for the analysis of functional connectivity in states of vigilance associated
with different levels of consciousness.

In light of recent evidence indicating that the independent application
of wPLI and wSMI connectivity metrics may allow to identify changes
in brain connectivity associated with variations in the level of conscious-
ness, our results point to their possible combined use as a powerful tool
to increase their accuracy and predictive value. Nonetheless, our find-
ings may also have more general implications for the study of functional
connectivity in a wide variety of behavioural conditions characterised by
distinct underlying brain dynamics.
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Chapter 3

Cross-Participant
Prediction of Vigilance
Stages through the
combined use of wPLI and
wSMI EEG Functional
Connectivity Metrics

3.1 Introduction

All the results shown in this chapter refer to the same-titled abstract, pre-
sented at the World Sleep Congress 2019 in Vancouver.

Classically, the transition from wakefulness to sleep and the alterna-
tion of the different sleep stages are described in terms of variations in
electrophysiological brain activity. The falling asleep process is charac-
terized by a shift from fast-frequency, low-amplitude oscillations, to low-
frequency, high amplitude activity, with typical slow waves (0.5-4Hz)
and spindles (12-16Hz) (Marzano et al., 2013; Ogilvie, 2001; Siclari et al.,
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2014). An increase in the incidence and amplitude of regional slow waves
then marks the deepening of Non-REM sleep. The occurrence of REM
sleep, every 60-150min, is instead identified by a relative EEG desyn-
chronization, with an increase in theta activity (4-8Hz), and by bursts of
sawtooth-waves (2-5Hz) that commonly precede the occurrence of rapid
eye movements (Aserinsky et al., 1953; Bernardi et al., 2019b; Dement
and Kleitman, 1957).

All these changes may be efficiently captured through the analysis
of signal power in classical frequency bands, although evidence indi-
cates that the different stages of vigilance are also characterized by rela-
tive variations in the way distinct areas of the brain interact with each
other (e.g., Imperatori et al. (2019); Langheim et al. (2011); Migliorelli
et al. (2019); Rusterholz et al. (2017); Vecchio et al. (2017)). These differ-
ences can be explored using functional connectivity (FC) metrics, which
identify statistical (undirected) associations among the EEG time-series
of spatially distinct brain regions. Interestingly, distinct FC indices may
allow the detection of partially different interaction dynamics, with dis-
tinct weights of linear and nonlinear components, and may thus produce
partially different results (Imperatori et al., 2019; Migliorelli et al., 2019).
However, it is still unclear whether connectivity metrics, either analysed
individually or in combination, can actually provide relevant or rather
overlapping (i.e., redundant) information about the current stage of vig-
ilance of an individual with respect to classical (power-based) measures
of EEG brain activity.

The weighted Phase Lag Index (wPLI (Vinck et al., 2011)) and the
weighted Symbolic Mutual Information (wSMI (King et al., 2013)) are
two robust FC approaches increasingly applied to MEG and EEG data
because of their relative immunity to volume conduction. Thanks to this
property, wPLI and wSMI are less likely to detect spurious functional
interactions determined by the quasi-simultaneous conduction of real
brain signals and of physiological or non-physiological noise to EEG-
sensors distant from the actual source. Interestingly, both these meth-
ods have been suggested to track the level of consciousness based on
promising findings in patients with severe brain injury (minimally con-

57



scious state, unresponsive wakefulness syndrome) or in participants un-
der anaesthesia (Chennu et al., 2014, 2016; King et al., 2013; Lee et al.,
2017a,b; Nir and Tononi, 2010). Of note, we recently demonstrated that
wPLI and wSMI present a different sensitivity to distinct FC dynam-
ics and may thus provide complementary information regarding brain
inter-regional interactions (Imperatori et al., 2019). Specifically, while
wPLI has an optimal sensitivity for dynamics presenting a mixture of
linear and nonlinear components, wSMI has higher sensitivity to pre-
dominantly nonlinear dynamics.

In light of the above premises, here we set out to investigate whether
wPLI and wSMI may allow the detection of FC differences across distinct
stages of vigilance including wakefulness, light NREM sleep (N2), deep
NREM sleep (N3) and REM sleep, and whether the provided information
is redundant or complementary with respect to that granted by power-
based indices of brain activity. To this aim, a supervised classification
approach was used to identify the optimal combination of power- and
FC-based features allowing to distinguish among vigilance stages across
different sets of subjects. Crucially, this classification was cross-validated
across different sets of participants, thus allowing to determine the abil-
ity of the predictive model to generalise across independent groups of
subjects. For each individual feature, we also investigated its relevance,
information content and degree of redundancy with other examined fea-
tures.

In addition, the present study offered us the opportunity to inves-
tigate the potential value of FC-derived indices as markers of the lev-
els of consciousness and of sensory disconnection during sleep. Indeed,
the probability of having a conscious experience varies greatly between
wakefulness and sleep as well as across the different sleep stages: sub-
jects may report a conscious experience (a dream) in less than 30% of the
awakenings from deep (N3) NREM sleep, while this percentage may get
close to 100% in REM sleep (Nir and Tononi, 2010; Siclari et al., 2017, 2018,
2013). Yet, while REM sleep is populated by rich and vivid conscious ex-
periences that often resemble in many aspects those of wakefulness, it
is also characterized by a relative disengagement (or ’disconnection’) of
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the individual from the external environment (Bonnet and Moore, 1982;
Darracq et al., 2018; Nir and Tononi, 2010). Therefore, we specifically in-
vestigated whether FC-based indices could significantly contribute to the
classification of states characterized by high (wakefulness, REM) vs. low
(NREM) levels of consciousness, as well as by ’connected’ (wakefulness)
and ’disconnected’ (REM) consciousness (Darracq et al., 2018).

3.2 Methods

3.2.1 Participants

Twenty-four healthy adult participants (26.7±5.7yrs, 13F) underwent hd-
EEG recordings (256 channels, 500Hz) during the night and while awake
in bed after sleep (8am; 6min, eyes-closed). The overnight recordings
were started at the usual bed-time of each subject and interrupted at 7am.
Twelve subjects (25.5±3.7yrs, 6F; dataset-1) were studied in the context
of a project aimed at exploring the effects of short-term visual depriva-
tion on brain activity during sleep (Bernardi et al., 2019a). Here we only
included data from the control condition, in which subjects remained in
the sleep laboratory and watched movies of their choice (selected from a
pre-defined list) from 3 to 8pm.

The other twelve subjects (27.9± 7.1 yrs, 7F; dataset-2) only arrived
at the laboratory 2h prior to the beginning of the overnight recording.
All volunteers had a good sleep quality as assessed by the Pittsburgh
Sleep Quality Index (PSQI score ≤ 5;(Buysse et al., 1989)) and scored ≤ 10
points on the Epworth Sleepiness Scale (ESS; Johns (1991)). Volunteers
were asked to maintain a regular sleep-wake schedule in the week pre-
ceding the overnight recording. Compliance was verified using wrist-
worn actigraphy devices (MotionWatch 8, CamNtech). The study was
approved by the ethical committee of the Lausanne University Hospital.
Written informed consent was obtained from each subject.
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3.2.2 EEG Recordings

Wake EEG recordings

Resting-state eyes-closed recordings collected in the morning, during
wakefulness (W), were bandpass-filtered between 0.5 and 45 Hz. Each
recording was divided into nonoverlapping 5s epochs and visually in-
spected to identify and reject bad channels and epochs containing large
artefacts (NetStation 5; Electrical Geodesic). An independent component
analysis (ICA) was then performed to remove residual ocular, muscular,
and electrocardiograph artefacts using EEGLAB (Delorme and Makeig,
2004). 1 Rejected channels were eventually interpolated using spherical
splines. Finally, the first 0.5s and the last 0.5s of each 5s epoch were dis-
carded and excluded from further analyses.

Sleep EEG recordings

Sleep EEG recordings were scored according to standard criteria using
30-s epochs (Iber, 2007). 2 Recordings were bandpass-filtered between
0.5 and 45 Hz. All epochs scored as N2, N3 (NREM) or REM were then
extracted and visually inspected to remove bad channels (later replaced
by spherical spline interpolation). 3 An ICA-based procedure was used
to remove potential artefacts. Given that NREM and REM sleep are af-
fected by homeostatic and circadian factors, and that REM sleep is es-
pecially represented toward the morning hours, further analyses were
focused on NREM epochs extracted from the first half of the night and
on REM epochs identified in the second half of the night. 4

1This procedure has been shown to reduce the impact of EEG artefacts on power compu-
tation and on the identification of individual grapho-elements while producing negligible
changes in physiological signals of interest (Iriarte et al., 2003; Romero et al., 2003).

2For scoring purposes, electrodes located in the chin-cheek region were used to evalu-
ate muscular activity, whereas four electrodes placed near the eyes were used to monitor
horizontal and vertical eye movements (Siclari et al., 2014).

3N1 was not considered in the analysis, as it is a transitional state and therefore generally
very short, accounting for only about 5% of total sleep time.

4This approach also allowed us to minimize the impact of inter-subject differences in
the relative distribution of NREM and REM epochs across the night (e.g., due to the lack of
consistent REM sleep during the first sleep cycle in some participants).
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3.2.3 Data bootstrapping

A bootstrapping procedure with replacement (see explanation 3.2.1) was
applied to account for differences in the amount of data available for each
stage of vigilance. Specifically, at each iteration of the bootstrapping pro-
cedure (N=2000) and for each considered stage (W, N2, N3 and REM), fif-
teen 2s segments were randomly chosen, obtaining 30s-long data epochs.

A current-source-density transform was applied to all extracted EEG
data epochs using the CSD toolbox (Kayser and Tenke, 2006), as de-
scribed in previous works (Imperatori et al., 2019; King et al., 2013; Vinck
et al., 2011). This method provides a reference-independent signal and
acts as a spatial filter, leading to a relatively improved spatial resolu-
tion (Nunez et al., 2006).

Explanation 3.2.1: Bootstrapping

Bootstrapping relies on the idea that the repetition of experiments
provides us with estimates on the uncertainty of the sampling dis-
tribution such as the standard error of the mean or the confidence
intervals. The key idea is that rather than physically having to
repeat the experiments, we can simulate the replications.
In the non-parametric bootstrapping procedure (Efron, 1992), the
original data set is essentially treated as a complete population
and – at every bootstrapping iteration – a new, simulated sam-
ple is drawn from it, picking each observation with equal proba-
bility (allowing repeated values). The parameters of interest are
then calculated either directly from the empirical distribution, or
by applying a model to this surrogate data, leading to the uncer-
tainty estimation of the distribution.
In contrast to permutation testing, another statistical resampling
procedure, in bootstrapping, the goal is often to define confidence
intervals on data characteristics (such as mean or variance) based
on subsampling the data (Cohen, 2014). Conversely, the goal in
permutation testing is to determine the probability that the ob-
served test statistic could have been obtained if the null hypothe-
sis were true (i.e. whether a finding is statistically significant).
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3.2.4 Feature Extraction

Relative Power

The PSD (Welch’s method, Hamming windows, 8 sections, 50% overlap)
was calculated for each electrode in 2s data segments. Then, the signal
power (POW) was computed for delta (0.5-4Hz), theta (4-8Hz), alpha
(8-12Hz), sigma (12-16Hz), beta (18-25Hz), gamma (30-45Hz) and broad-
band (0.5-45Hz) frequency ranges by integrating the PSD values in the
frequency ranges of interest.

Relative power (relPOW) was computed by expressing the value of
each frequency band as a percentage with respect to the total broad-band
power. Finally, the mean was computed across the 15 segments of each
30s epoch (N=1000) and the median power was computed across all elec-
trodes.

wPLI

wPLI was computed using the Fieldtrip toolbox (Oostenveld et al., 2011)
(multi-taper method fast Fourier transform, single Hanning taper, 0.5 Hz
frequency resolution, Vinck et al. (2011)). The mean value across the
frequency-bins in the frequency range of interest was computed to obtain
a single wPLI coupling value.

wSMI

The kernel k was chosen to be 3, implying that the symbols are consti-
tuted of three elements, leading to 3!=6 different potential symbols in
total (King et al., 2013; Sitt et al., 2014). The temporal separation of ele-
ments that constitute a symbol was set to be τ= [41,21,14,10,6,3] frames,
such that the maximum resolved frequency was fmax = fs

kτ , and therefore
[4.1,7.94,11.90,16.67,27.78,55.56]Hz depending on the chosen τ, whereby
- due to the band-pass-filtering of the signal up to 45Hz - the maximum
resolved frequency for τ= 3 was 45Hz.

Prior to wSMI computation, the signal was either low-pass-filtered
using a 6th order Butterworth IIR filter - with an additional mirror padding
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(ft_preproc_padding) of 1s before and after each individual segment
to avoid potential filter edge-artifacts - or bandpass-filtered (4th order
Butterworth IIR filter) with the same padding scheme, depending on the
chosen frequency-range.

3.2.5 Statistical comparisons

As described above, for each bootstrapping iteration, we computed the
median power across electrodes and the median (wPLI/wSMI) connec-
tivity across all pairs of channels in delta, theta, alpha, sigma, beta, and
gamma frequency bands, thus obtaining 6 features per metric and 18 fea-
tures in total. For each individual feature, non-parametric paired per-
mutation tests (N=10000) were performed between all vigilance stages. A
Bonferroni-correction was applied for the number of tested comparisons,
separately for power-, wPLI- and wSMI-based features (N=36; corrected
p < 0.05).

3.2.6 Classification Procedure

The subjects were divided into two equal-sized groups (N=12) corre-
sponding to dataset-1 and dataset-2. A two-fold (i.e. training on dataset-
1(2) and testing on dataset-2(1)) Linear Discriminant Analysis (LDA) was
applied to investigate the ability of power- and connectivity-based fea-
tures obtained from one dataset to discriminate vigilance stages in the
other dataset (Duda et al., 2012; Li et al., 2006) (see algorithm 4). 5

Specifically, the classifier was trained on a single 30s sampled epoch
per stage of interest from each one of the 12 subjects in dataset-1 (2) (one
bootstrapping iteration) and tested on a single 30s epoch per stage of
interest from each one of the 12 subjects in dataset-2 (1). This procedure
was repeated for all bootstrapping iterations (i.e. Nboot=2000 times) to
estimate the corresponding classification accuracy.

5Of note, the obtained features and accuracies were very similar irrespective of which
classifier (e.g., linear, quadratic LDA, support-vector machine (SVM) or Naive Bayes clas-
sifier) or accuracy metrics (e.g., accuracy or micro-averaged F1-score) were chosen.
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Algorithm 4: Linear Discriminant Analysis
Result: Reduce f features to k linear discriminants (essential linear

combinations of the original features) that separate the
classes.

1 Compute the f -dimensional mean vectors for the c different
classes from the dataset;

2 Compute the f x f scatter matrices (in-between-class SB and
within-class SW scatter matrix);

3 Compute the eigenvectors (e1,e2, ...,ef) and corresponding
eigenvalues (λ1,λ2, ...,λf) for the matrix product of the scatter
matrices S−1

W SB to obtain the linear discriminants;
4 Sort the eigenvectors by decreasing eigenvalues and choose k

eigenvectors (k < f ) with the largest eigenvalues to form a f xk
dimensional matrix W;

5 Use this f xk eigenvector matrix to transform the samples onto the
new subspace. This can be summarized by the matrix
multiplication: Y = XxW, where X is a nx f -dimensional matrix,
representing the n-samples and Y are the transformed
nxk-dimensional samples;

6 → Obtain a feature subspace that maximises the between-class
variance as compared to the within-class variance.

A forward selection procedure was performed to identify the optimal
feature set (see Algorithm 5). The procedure started with an empty fea-
ture set. At each step of the forward selection procedure, the accuracies
of classification models based on each available additional feature were
computed. The feature giving rise to the highest classification accuracy
was then added to the existing feature set. The selection was stopped
when the added feature provided no further increase in mean accuracy
(i.e. accuracy increase ≤ 0). Finally, a permutation-based null-hypothesis
significance test was performed on the bootstrap mean estimate for the
optimal feature set obtained from the forward selection procedure. For
each permutation (Nperm=2000), the labels were shuffled in the train-
ing set of the classifier and the mean accuracy estimate per permutation
was obtained using the same bootstrapping procedure as for the origi-
nal labels. The true mean accuracy across bootstrapping iterations was
compared to the 99%ile of the null distribution (P < 0.01).
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Algorithm 5: Applied Forward Selection Procedure
Result: Features Relevant for the Classification

1 Start with empty feature set;
2 for Step=1:NFeat do
3 for Feat=1:NFeat do
4 Add Feat to existing set of features (temporarily);
5 for Boot=1:NBoot do
6 Perform classification (LDA);
7 end
8 Obtain mean estimate of accuracy per additional feature;
9 end

10 Select “additional” feature giving rise to highest accuracy;
11 Add this feature to the existing set of features;
12 if AccStep < AccStep−1 then
13 Stop;
14 Test the final model for all features included up to ’Step-1’

by permuting the classification labels in the training set;
15 for Perm=1:NPerm do
16 Permute Labels in the training set;
17 for Boot=1:NBoot do
18 Perform classification (LDA) with permuted labels;
19 end
20 Obtain mean estimate of accuracy per permutation;
21 end
22 Obtain the 99% threshold of the null distribution (Accper m))

and compare it to the mean estimate of accuracy
(AccStep−1));

23 else
24 Continue with the Forward Selection Procedure;
25 end
26 end
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3.2.7 Mutual information analysis

To complement the findings regarding the best combination of features
from the LDA-classification procedure described above, here we investi-
gated the relevance of each individual feature in more detail. Specifically,
the single-feature mutual information (MI) value was contrasted with
the single-feature classification accuracy. MI was quantifies how much
information each individual feature contains about the three different
comparisons of vigilance stages: W vs. N2 vs. N3 vs. REM, W+REM
vs. N2+N3 and W vs. REM. The continuous feature values were binned
based on ranks into 4 equal-population bins, and the standard discrete
formulation of MI was used (Cover et al., 2006; Ince et al., 2017). A Miller-
Madow bias correction was applied (Miller, 1955).

A data augmentation procedure was used to ensure that a minimum
of 100 values was available in each subject for enabling MI computation.
Specifically, 50 data epochs were repeatedly sampled with replacement
(2000 iterations) from the previously generated data distribution (see sec-
tion 3.2.3). Of note, this procedure was especially necessary for wakeful-
ness data, since only few minutes were recorded in all subjects, whereas
more than 25 min of data were available for all other stages in 23 of the
24 studied volunteers.

In order to compare MI values with LDA accuracies for each fea-
ture, the single-feature LDA classification procedure (regarding the pre-
dictability across subjects) was repeated by performing the training on
the same augmented datasets obtained for MI computation and tested
on one 30s epoch per subject. The aim of this analysis is to qualitatively
display the information content of all examined power- and FC-based
features, by contrasting the within-subjects MI analysis with the across-
subjects LDA classification analysis.
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3.2.8 Partial information decomposition

Partial Information Decomposition (PID) (Ince, 2017; Williams and Beer,
2010) was used to determine the level of information about the stage of
vigilance that is shared by all pairs of examined features (see detailed
explanation C.2.2 in appendix C).

In fact, two features could convey the same, shared information, which
is quantified as redundancy. Each feature could convey unique informa-
tion that is not available from the other feature. Moreover, two features
could also convey more information together than they do separately, i.e.
if the relationship between the feature values is itself informative about
the vigilance stage. This is quantified as synergy. PID was computed on
for each subject using the same augmented dataset described above.

An additional analysis that compares the performance of two meth-
ods that are used to quantify redundancy or synergy, PID and Interaction
Information (II), can be found in appendix C. This analysis of Electro-
corticography (ECoG)-data recorded in marmosets (using a roving odd-
ball paradigm) shows that co-information (see explanation C.2.1 in ap-
pendix C) only gives a “net-effect”, as compared to PID, which shows
that redundancy and synergy cancelling is not only a theoretical concern,
but can occur in real experimental data. Please refer to appendix C for
more detailed explanations regarding the differences between the two
frameworks.
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3.3 Results

3.3.1 Classification of vigilance stages

For the classification across all considered vigilance stages (W, N2, N3,
REM) the accuracy estimate obtained with each single metric was 66.84%

for relPOW, 58.24% for wPLI and 60.38% for wSMI (Figure 14A).
The combination of two feature sets increased accuracy to 76.68% for

relPOW+wPLI, 74.94% for relPOW+wSMI, and 70.22% for wPLI+wSMI.
The highest accuracy (80.53%) was obtained, when all sets of features
were considered together (relPOW+wPLI+wSMI). This model was found
to be statistically different from the null distribution (P < 0.0005). The
three most relevant features for this model included elements from each
of the considered metrics, namely delta-POW, sigma-wPLI and sigma-
wSMI (Figure 14C).

Statistical comparisons based on paired non-parametric permutation
tests (p < 0.05, Bonferroni correction) showed that both NREM (N2/N3)
and REM sleep were characterised by increased delta-POW (N 3 > N 2 >
RE M > W ), with respect to W, while sigma-wPLI (N 2 > N 3 > RE M = W )
and sigma-wSMI (N 2 = N 3 > RE M =W ) were higher in NREM relative to
both wakefulness and REM sleep (Figure figs. 15 to 17). Additional rel-
evant features included alpha-wSMI (W > N 3 > N 2 > RE M), delta-wPLI
(N 2 > N 3 = RE M > W ), theta-wSMI (N 3 > N 2 = W = RE M) and alpha-
wPLI (W = N 2 > N 3 > RE M).
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Figure 14: Four-way classification of W, N2, N3 and REM vigilance stages.
A) LDA accuracy for tested feature sets in the classification of W vs. N2 vs.
N3 vs. REM sleep. The top values reported in each box indicate the mean
accuracy across bootstrapping iterations (marked by a white dot), while the
bottom values indicate the number of included features F based on the for-
ward selection procedure. B) Topographic analysis for the best-performing
multi-feature-set chosen based on whole-brain results. The same selection
of features was extracted from individual channels (instead of whole-brain
median power or connectivity) by considering the single-channel power
value and median connectivity between each electrode and all the other
electrodes respectively. C) Forward feature selection for the classification
of W vs. N2 vs. N3 vs. REM sleep. The blue continuous line represents
the mean classification accuracy across bootstrapping iterations, while the
dashed lines represent the 2.5% and 97.5% confidence interval boundaries
on the accuracy estimate. The grey line indicates the percent change in ac-
curacy granted by each individual feature added to the model. The dashed
grey vertical line indicates the threshold for which inclusion of additional
features did not improve classification accuracy.
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Figure 15: Statistical comparisons between stages of vigilance in delta,
theta, alpha, sigma, beta and gamma frequency bands for whole-brain A)
relative power, B) wPLI and C) wSMI. Red dots indicate subjects of dataset-
1, while blue dots indicate subjects of dataset-2. ∗p < 0.05, Bonferroni cor-
rection across all performed comparisons for each considered metric.
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Figure 16: Topographic distribution of power (top panel), wPLI (mid panel)
and wSMI (bottom panel) values in wakefulness, N2, N3 and REM sleep, for
delta, theta, alpha, sigma, beta and gamma frequency ranges. For each met-
ric and frequency band the colour-scale minimum and maximum were kept
fixed in order to facilitate qualitative comparison across vigilance stages.
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Figure 17: Topographic comparisons of power (A), wPLI (B) and wSMI (C)
values in N2, N3 and REM sleep expressed as the difference (permutation
test) with respect to wakefulness, in the classical frequency bands (delta,
theta, alpha, sigma, beta, gamma). White dots mark p < 0.05, cluster-based
correction.
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Investigation of Relationships between Delta-Connectivity
and Slow Waves in NREM-Sleep

As delta-wPLI was found to be higher in all sleep stages, especially in
N2 and N3 sleep, relative to wakefulness (see figs. 15 and 18), we inves-
tigated whether there is an association between the properties of slow
waves (Massimini et al., 2004) and the strength of wPLI connectivity. 6

This analysis was not based on the bootstrapping procedure outlined
above. Instead, all recorded, artifact-free 30s-epochs of N2/N3 sleep,
were included. Slow wave amplitude and number were computed for
each 30s epoch using validated algorithms (Riedner et al., 2007). More-
over, the median delta-wPLI (across channels) was obtained for each cor-
responding 30s epoch, by segmenting it in fifteen 2s trials before comput-
ing wPLI (15×2s).

For each subject, Spearman’s correlations between wPLI and either
the number of slow waves or the maximum negative amplitudes were
computed. Prevalence tests (see 3.3.1) were used to account effectively
for the variability of the tested effect in the group (Allefeld et al., 2016;
Donhauser et al., 2018). They were specifically employed to infer whether
the effect of the correlation between delta-connectivity and slow-wave
peak amplitude was present or absent in the population.

The majority null hypothesis (γ0 ≤ 0.5) can only be rejected for the
correlations between delta-wPLI and the mean maximum negative peak
amplitude of the slow waves in N2-Sleep. The highest γ0 that can be re-
jected at the given significance level can be interpreted as a lower-bound
estimate on the population prevalence.

The correlation between delta-wPLI and the mean maximum negative-
peak-amplitude led to γ0 = 0.876 in N2-Sleep (Figure 19), while the cor-
relation between delta-wPLI and the mean maximum negative-peak am-
plitude led to γ0 = 0.13 in N3-Sleep (Figure 20).

6Our previous preliminary investigation (Imperatori et al., 2019) also highlighted signif-
icant differences in delta-connectivity between N3 and Wakefulness for wPLI, but not for
wSMI.
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Explanation 3.3.1: Prevalence Test

The population prevalence γ represents the proportion of the pop-
ulation, from which our sample was drawn that we would expect
to show the tested relationship (Allefeld et al., 2016; Donhauser
et al., 2018). We make inferences on the population prevalence
based on the results of within-participant statistical testing in our
sample.
A prevalence null hypothesis, H0: γ ≤ γ0, can be tested using a
modified binomial distribution (Allefeld et al., 2016; Donhauser
et al., 2018; Friston et al., 1999). The null hypothesis can be e.g.,
that the effect is absent from the population (γ0= 0, global null
hypothesis) or that it is present in less than half of the population
(γ≤ γ0), majority null hypothesis).
The null hypothesis is rejected if the probability, under the null, of
observing the number of significant subjects we do in our sample,
or greater, is less than a critical value (here pcr i t = .05)

Interestingly, when only considering large-amplitude slow waves (>
100µV), all 24 subjects showed a significant correlation between delta-
wPLI and number of slow waves, while only half of the subjects showed
a correlation between delta-wPLI and the total number of slow waves
(of all sizes). The same was observed for the correlation between delta-
wPLI and number of slow waves in N3-Sleep (from 5 of 24 subjects for
slow waves of all sizes to 12 of 24 subjects for the inclusion of large slow
waves only (> 100µV)).

The high correlation between delta-wPLI and slow wave amplitude
in all subjects in N2, but not N3, and the greater sensitivity to larger
slow waves suggest that wPLI may be strongly affected by the occur-
rence of K-complexes that are known to represent large-amplitude, tem-
porally isolated slow-wave-like events. While K-complexes are global
slow waves, most cortical slow waves (more common during N3 sleep)
are relatively local events, that may occur out of phase across different
brain regions. These local events may thus be expected to present a less
efficient and widespread cortical propagation compared to K-complexes.
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Figure 18: Frequency-Resolved Whole-Brain Power-Spectral-Density in Wakefulness, NREM- andREM-Sleep. The
shaded area reflects the standard error of the mean across subjects for each vigilance stage.
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Figure 19: Spearman-Correlations between median delta-wPLI (across
channels) and mean maximum negative amplitudes (of the slow wave en-
velope) in N2-Sleep were performed for all 24 subjects. Each subplot repre-
sents one subject and each point represents one epoch. Points were marked
in red for p < 0.05 and in blue otherwise.

Figure 20: Spearman-Correlations between median delta-wPLI (across
channels) and mean maximum negative amplitudes (of the slow wave en-
velope) in N3-Sleep were performed for all 24 subjects. Each subplot repre-
sents one subject and each point represents one epoch. Points were marked
in red for p < 0.05 and in blue otherwise.
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3.3.2 Classification of high vs. low level of consciousness

For the classification between stages associated with higher (W+REM)
and lower (N2+N3) probability of conscious experiences, the classifica-
tion accuracy estimate obtained with each single metric was 81.58% for
relPOW, 75.53% for wPLI and 81.84% for wSMI (Figure 21). The combina-
tion of two feature sets increased accuracy to 89.44% for relPOW+wPLI,
89.24% for relPOW+wSMI, and 84.95% for wPLI+wSMI (Figure 21).

The highest accuracy (92.66%) was obtained, when all feature sets
were included (relPOW+wPLI+wSMI). This model was found to be sta-
tistically different from the null distribution (P < 0.0005). The most rele-
vant features in this model resulted to be sigma-wSMI, delta-POW and
sigma-wPLI.

Statistical comparisons based on paired non-parametric permutation
tests (p < 0.05, Bonferroni correction) showed that both NREM (N2/N3)
and REM-sleep were characterised by increased delta-POW (N 3 > N 2 >
RE M >W ) and higher sigma connectivity (wPLI/wSMI) in N2/N3-sleep
with respect to both W and REM-sleep (no differences between W and
REM). Additional relevant features included delta-wPLI, gamma-wSMI
and beta-POW.
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Figure 21: Two-way classification of W+REM vs N2+N3 vigilance stages.
A) LDA accuracy for tested feature sets in the classification of W+REM
vs N2+N3 vigilance stages. The top values reported in each box indi-
cate the mean accuracy across bootstrapping iterations (marked by a white
dot), while the bottom values indicate the number of included features F
based on the forward selection procedure. B) Topographic analysis for the
best-performing multi-feature-set chosen based on whole-brain results. The
same selection of features was extracted from individual channels (instead
of whole-brain median power or connectivity) by considering the single-
channel power value and median connectivity between each electrode and
all the other electrodes respectively. C) Forward feature selection for the
classification of W+REM vs N2+N3 vigilance stages. The green continu-
ous line represents mean classification accuracy across bootstrapping itera-
tions, while the dashed lines represent the 2.5% and 97.5% confidence inter-
val boundaries on the accuracy estimate. The grey line indicate the percent
change in accuracy granted by each individual feature added to the model.
The dashed grey vertical line indicates the threshold for which inclusion of
additional features did not improve classification accuracy.
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3.3.3 Classification of ’conscious’ stages with and without
sensory disconnection

For the comparison between wakefulness (’connected’ consciousness)
and REM sleep (’disconnected’ consciousness), the maximum classifi-
cation accuracy obtained with each single metric was 92.91% for rela-
tive POW (relPOW), 77.29% for wPLI and 86.07% for wSMI (Figure 22).
The combination of two feature sets increased accuracy to 93.08% for
relPOW+wPLI, 94.04% for relPOW+wSMI, and 85.72% for wPLI+wSMI
(Figure 22).

The highest accuracy (94.09%) was obtained, when all feature sets
were included (POW+wPLI+wSMI). This model was found to be statis-
tically different from the null distribution (P < 0.0005). The most relevant
features in this model resulted to be delta-POW, theta-POW and alpha-
wSMI.

Statistical comparisons based on paired non-parametric permutation
tests (p < 0.05, Bonferroni correction) showed increased delta-power and
theta-power and decreased alpha-wSMI in REM sleep with respect to
wakefulness. Additional relevant features included gamma-POW and
beta-wPLI.
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Figure 22: Two-way classification of W and REM vigilance stages. A) LDA
accuracy for tested feature sets in the classification of W vs. REM-sleep. The
top values reported in each box indicate the mean accuracy across boot-
strapping iterations (marked by a white dot), while the bottom values in-
dicate the number of included features F based on the forward selection
procedure. B) Topographic analysis for the best-performing multi-feature-
set chosen based on whole-brain results. The same selection of features
was extracted from individual channels (instead of whole-brain median
power or connectivity) by considering the single-channel power value and
median connectivity between each electrode and all the other electrodes
respectively. C) Forward feature selection for the classification of W vs.
REM-sleep. The red continuous line represents mean classification accu-
racy across bootstrapping iterations, while the dashed lines represent the
2.5% and 97.5% confidence interval boundaries on the accuracy estimate.
The grey line indicate the percent change in accuracy granted by each indi-
vidual feature added to the model. The dashed grey vertical line indicates
the threshold for which inclusion of additional features did not improve
classification accuracy.
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3.3.4 Best individual features

In order to further evaluate which individual features carry more rele-
vant information for distinguishing between considered classes (i.e., vig-
ilance stages), we contrasted the single-feature LDA performance (re-
garding the predictability across subjects) with the mutual information
each feature contains about the classes (within subjects’ analysis).

On the one hand, LDA tests the generalisation of predictive accuracy
of a specific feature to a new set of subjects. On the other hand, MI is a
within-subject analysis, determining the predictive power of the feature
within each individual. In this light, the two approaches provide related
but complementary information. Results obtained from this analysis are
shown in Figure 23.

For the differentiation between all stages of vigilance (W, N2, N3,
REM), delta-POW resulted as the best feature based on both its indi-
vidual classification performance and mutual information value (59.83%,
MI=0.93bits; Figure 23A). For the comparison between NREM (N2, N3)
sleep and W+REM, sigma-wSMI resulted as the best feature (81.30%,
MI=0.53bits); Figure 23B.

Finally, for the comparison of W and REM sleep, alpha-wSMI alone
achieved 87.17% accuracy (with an MI value of 0.73bits), although a higher
LDA accuracy was obtained by delta-POW.

3.3.5 Redundancy Analysis

In order to determine to what extent the statistical relationship in two
features is common or overlapping, we used an information theoretic
framework called partial information decomposition (PID; (Allen et al.,
2017; James et al., 2018); see explanation C.2.2 in appendix C).

Here, we assessed whether the information that any particular fea-
ture contains regarding the label (W vs. N2 vs. N3 vs. REM in Figure
24A, W+REM vs. N2+N3 in Figure 24B, W vs. REM in Figure 24C) is
shared among two features or is unique to that feature. Results shown
in Figure 24 indicate that especially power-based features are highly re-
dundant with each other.

81



Indeed, non-parametric permutation tests (N=10000) showed that re-
dundancy among power-features is higher than that among wPLI and
wSMI features respectively (42.98± 7.51% vs. 16.77± 3.41% vs. 28.28±
7.62%; p = 0.0001) for the comparison among all the four vigilance stages
(W, N2, N3, REM). Power with respect to wSMI features are more re-
dundant with each other (27.43±5.10%) as compared to power with re-
spect to wPLI (19.56± 3.30%) and wPLI with respect to wSMI features
(18.54± 3.30%). Similar differences were observed for the W+REM vs.
N2+N3 and W vs. REM comparisons.

Interestingly, in the W vs. REM case, both alpha-POW and alpha-
wSMI appeared to be highly redundant with respect to delta-POW (83.44%

and 72.27%, respectively) and with each other (72.42%). This may explain
both why alpha-POW was not included in the forward selection proce-
dure and the fact that the inclusion of alpha-wSMI determines only a
marginal increase in classification accuracy (Figure 22).
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Figure 23: Mutual Information vs. LDA Classifier Accuracy. Each plot represents the single-feature LDA perfor-
mance (y-axis) with respect to the mean within-participant MI conveyed by the feature about the vigilance classes
(x-axis) for all three tested comparisons: A) W vs. N2 vs. N3 vs. REM, B) W+REM vs. N2+N3, C) W vs. REM.
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Figure 24: Relative Redundancy among features (redundancy as computed by PID divided by the sum of redun-
dancy, synergy, unique X and unique Y information values). The three matrices display the results based on partial
information decomposition (PID) for the three tested comparisons: A) W vs. N2 vs. N3 vs. REM, B) W+REM vs.
N2+N3, C) W vs. REM. A higher value (darker colour) indicates higher redundancy between two features.
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3.4 Discussion

Power-based features are known to significantly differ across vigilance
stages and may be used for the development of automated sleep scoring
algorithms with a satisfactory level of accuracy (Berthomier et al., 2007;
Koley and Dey, 2012; Zoubek et al., 2007). However, previous work also
showed that vigilance stages may differ in terms of functional connectiv-
ity (FC), and that distinct FC-metrics may also reveal distinct variations
in inter-regional neural communication as a function of their specific sen-
sitivity for linear and nonlinear interaction dynamics (Imperatori et al.,
2019; Migliorelli et al., 2019). Yet it was still unclear whether FC metrics
actually provide relevant or rather redundant information with respect
to classical measures of brain EEG activity.

By using a linear discriminant analysis (LDA) with feature sets in-
cluding signal power and two connectivity metrics with known distinct
sensitivity for linear and nonlinear interactions (i.e., wPLI and wSMI),
here we showed that the inclusion of connectivity-based features increases
the classification accuracy of vigilance stages. Moreover, we determined
which specific individual features provide the best accuracy not only for
distinguishing among all vigilance stages, but also for comparisons con-
trasting states associated with lower or higher probabilities of having a
conscious experience (typically in the form of dreams during sleep), and
states associated with more or less ’disconnection’ from the external en-
vironment.

In line with previous evidence (Chennu et al., 2014; Lee et al., 2017a,b;
Massimini et al., 2004), obtained results showed that delta-power car-
ries relevant information for all of these comparisons. Moreover, our
results indicate that sigma-FC may be especially relevant for distinguish-
ing among vigilance stages respectively characterized by higher and lower
probability of conscious experiences during sleep, while changes in alpha-
FC may mainly mark the degree of sensory disconnection rather than the
level of consciousness per se.
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3.4.1 Contribution of connectivity metrics to the classifi-
cation of vigilance stages

Relative variations in brain activity that characterize distinct vigilance
stages may be efficiently captured through the analysis of signal power in
classical frequency bands. Of note, however, evidence indicates that the
different stages of vigilance are also accompanied by relative variations
in the way distinct areas of the brain interact with each other (Migliorelli
et al., 2019).

Here we showed that information granted by FC analysis, as deter-
mined using wPLI and wSMI metrics, is not redundant with respect to
power-based features. In fact, while individual FC metrics showed a
lower accuracy (58−60%) at discriminating the four examined stages of
vigilance (W, N2, N3, REM) with respect to power-based features ( 67%),
their inclusion in the model considerably increased the overall accuracy,
which reached 81%. Importantly, the adopted LDA classifier was trained
on one group of subjects and tested on a separate group of individuals,
thus supporting the generalisability of our findings.

The evaluation of the individual features for this classification showed
that delta-power is the most relevant feature for the cross-participant
classification for all vigilance stages and carries the most information
at the within-subject level. Other relevant features included several FC
features based on both wPLI (sigma-wPLI, delta-wPLI, alpha-wPLI) and
wSMI (sigma-wSMI, alpha-wSMI, theta-wSMI).

Overall, these results indicate that the inclusion of FC-based features
in the classification of vigilance stages can lead to a higher accuracy with
respect to using power-based features alone, and that the inclusion of
multiple FC-metrics with sensitivity to inter-regional interactions hav-
ing distinct linear and nonlinear weights could lead to a further gain in
accuracy.
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3.4.2 Classification of states with high or low levels of
consciousness or disconnection

Previous works reported differences in delta (Chennu et al., 2014; Lee
et al., 2017a,b) and alpha (Blain-Moraes et al., 2014; Chennu et al., 2016;
Comsa et al., 2019; Lee et al., 2017a) connectivity between states char-
acterized by high or low levels of consciousness. These studies com-
pared healthy adult individuals and patients in unresponsive wakeful-
ness syndrome (UWS) or minimally conscious state (MCS), or the same
subjects before, after and during anaesthesia. However, any valid metric
of consciousness should be able to identify differences between wake-
fulness with awareness and all states associated with a reduced level of
consciousness, including dreamless sleep (Demertzi et al., 2019; Sarasso
et al., 2014). Thus, here we investigated whether, in line with previous
studies, FC-based indices could be used to distinguish between states
characterized by a higher level of consciousness, that are wakefulness
and REM sleep, and states associated with a relatively reduced prob-
ability of having a conscious experience, corresponding to N2 and N3
sleep. 7

The obtained classification model led to a high accuracy ( 93%), which
was mainly driven by a subset of FC- and power-based features. In par-
ticular, the strongest contribution to accuracy was provided by sigma-
wSMI, delta-power and sigma-wPLI. Delta-wPLI, gamma-wSMI and beta-
power provided a smaller contribution.

Of note, the contribution of delta power and connectivity is especially
consistent with previous findings indicating a relationship between these
parameters and changes in the level of consciousness during sleep and in
pathological states or anesthesia (Chennu et al., 2014; Lee et al., 2017a,b;
Massimini et al., 2005). Variations in sigma-connectivity have been less
often reported, but may reflect here the occurrence and cortical ’propaga-
tion’ of sleep spindles (Andrillon et al., 2011; Muller et al., 2016). In fact,
previous work indicate that changes in spindle parameters may be re-

7Notably, as previous studies have shown (Siclari et al., 2013), conscious experiences are
also common to N2 and N3 sleep; however, the probability of their occurrence is signifi-
cantly lower as compared to REM-sleep and wakefulness.
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lated to the presence of conscious experiences during NREM sleep (Siclari
et al., 2018). It should be noted, though, that sigma-power did not signif-
icantly contribute to classification accuracy.

The additional classification between wakefulness and REM-sleep,
respectively representing states of connected and disconnected conscious-
ness, revealed alpha-FC as one of the strongest contributors to classifica-
tion accuracy (other features included delta-power, theta-power, gamma-
power and beta-wPLI). As mentioned above, this feature did not con-
tribute instead to the distinction between states characterized by high or
low levels of consciousness. Based on this finding, we suggest that alpha
connectivity may mainly mark disconnection or disengagement from the
external environment rather than the current level of consciousness, in
line with recent findings describing a suppression in TMS-evoked alpha
activity during disconnected consciousness in REM sleep (Darracq et al.,
2018).

Interestingly, delta-power appeared among the most relevant features
for all tested classifications. Stage-related variations in this parameter
may depend on the occurrence and cortical spreading of sleep slow waves
(0.5-4Hz). Indeed, the sleep slow wave, which marks temporary neu-
ronal off-periods at cortical level, has been suggested to interrupt the
causal flow of information among brain areas, thus impairing the possi-
ble emergence of conscious experiences in both NREM and REM sleep
(Pigorini et al., 2015; Siclari et al., 2017; Tononi and Massimini, 2008).
Moreover, slow-wave-like events (i.e., K-complexes) have been suggested
to also have a direct role in the relative disconnection that character-
ize sleep through the quenching of incoming sensory information (Cash
et al., 2009; Halász, 2016; Laurino et al., 2014, 2019).

3.4.3 Limitations of the study

While it has been shown that the probability of dreaming in NREM sleep
is around 50% (across N2 and N3) as compared to 80 − 100% in REM
sleep and wakefulness (Siclari et al., 2018), we did not directly assess
the presence of conscious experiences and the level of consciousness in
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the present data. Similarly, we did not directly assess the level of relative
sensory disconnection. Therefore, analyses investigating the power- and
connectivity-based correlates of consciousness and disconnection should
be considered as preliminary. Future studies should include within-stage
analyses comparing conditions with or without conscious experiences
and with low or high responsiveness to external stimuli (high/low arousal
threshold).

Moreover, here only the whole-brain, median connectivity and power
were used, and topographic differences in the distribution of evaluated
features were not included in the LDA classifiers. However, recent stud-
ies clarified that local variations in brain activity may determine signif-
icant variations in the level of consciousness within and across sleep
stages (Siclari et al., 2017, 2018). Thus, the inclusion of topographic in-
formation could be expected to increase classification accuracy. It would
also be important for future studies to investigate whether considering a
smaller sensor layout would lead to similar results with respect to those
obtained here using hd-EEG with 257 electrodes (Engemann et al., 2018).

3.5 Conclusions

Our results demonstrate that changes in brain activity across sleep stages
are better characterised by the combined use of the signal power and
the two connectivity metrics wPLI and wSMI, relative to both individ-
ual connectivity approaches and power-based indices alone. In line with
previous studies regarding the neural correlates of consciousness, present
results also showed that variations in delta power and connectivity are
among the most relevant classification features. On the other hand, in
contrast to previous works, alpha-connectivity did not contribute to the
classification of states with high and low levels of consciousness, and
was instead found to represent one of the best features for distinguish-
ing between wakefulness and REM sleep, a state typically characterized
by vivid conscious experiences. In this light, present results suggest that
connectivity changes in the alpha range could mark disconnection from
the external environment rather than the level of consciousness per se.
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Overall, our results indicate that connectivity metrics provide rele-
vant, complementary information with respect to metrics based on signal
power, and also showed that the application of connectivity approaches
with different sensitivity to linear and nonlinear dynamics may allow
to achieve a more complete description of brain activity across different
behavioural and vigilance states.
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Chapter 4

Predictive value of EEG
connectivity metrics for
motor training outcome in
multiple sclerosis: an
observational longitudinal
study

4.1 Introduction

All the results shown in this chapter refer to the same-titled article, pub-
lished in the European Journal of Physical and Rehabilitation Medicine
(Tramonti et al., 2018).

Functional connectivity (FC) metrics identify statistical (undirected)
associations among spatially distinct brain areas. EEG- and MEG-based
metrics have previously been employed to characterise the functional in-
teractions between different brain regions in multiple sclerosis (MS) pa-
tients as compared to healthy subjects (Cover et al., 2006; Leocani et al.,
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2000; Van der Meer et al., 2013; Zhong et al., 2016). These studies mainly
described relative reductions in brain connectivity, especially within the
alpha range, in Multiple Sclerosis (MS) patients (Cover et al., 2006; Leo-
cani et al., 2000).

However, here, we were mainly interested in the functional correlates
of training-induced plasticity in MS patients (Tomassini et al., 2012b).
Previous studies showed that adaptive brain plasticity can occur in MS
patients, despite a high occurrence of cerebral pathology and disability
(Reddy et al., 2000; Rocca et al., 2005; Tomassini et al., 2012a), providing
that appropriate interventions facilitate enhanced neural reorganization
and motor recovery (Tomassini et al., 2012b).

Here we aimed at testing whether wPLI and wSMI can predict and
track behavioural changes induced by a Task-Oriented Circuit Training
(TOCT) paradigm for gait rehabilitation in MS patients, previously vali-
dated in Chisari et al. (2014). We hypothesized that EEG-based connec-
tivity could represent an adequate technique to predict and track motor
performance changes induced by TOCT.

Firstly, we anticipated that brain connectivity metrics prior to the
training may predict the success of the intervention. Specifically, we
hypothesized patients with stronger connectivity to have more residual
functional resources, favouring a greater post-treatment behavioural per-
formance.

Secondly, we expected clinical improvement induced by the interven-
tion to be associated with brain functional reorganization. Specifically,
we predicted an increase in connectivity to be correlated to an increase
in motor performance after rehabilitation.

We tested these hypotheses using wPLI and wSMI, as we exptected
their different sensitivities for linear and non-linear brain dynamics (Im-
peratori et al., 2019) to be reflected in their corresponding predictive
value for the outcome of the undergone rehabilitative treatment in MS
patients.
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4.2 Methods

4.2.1 Patients

Sixteen MS patients (10 females; mean age = 51.44 years; range: 27 - 67
years were included based on the following criteria:

• age > 18 years;

• diagnosis of MS according to McDonald Revised Criteria (Polman
et al., 2005) (relapsing - remitting, primary progressive) 1;

• clinical stability for at least three months (no relapses, no disability
worsening and no other medical complications);

• motor impairment score between 3.5 and 5.5 as assessed with the
Expanded Disability Status Scale (EDSS) (Kurtzke, 1983).

4.2.2 Rehabilitative Intervention

Subjects performed TOCT, including six different workstations of phys-
ical exercise. The rehabilitative treatment lasted 2 weeks, with a fre-
quency of 5 days/week and each session lasting around 120 minutes
overall. Each session comprehended gait training with treadmill, stretch-
ing exercises and task oriented circuit training.

The task-oriented circuit was organized in several stations in which
patients were asked to: overcome an obstacles course; achieve various
targets placed at different heights sights on a mirror with the feet, walk
along a 10 meter long line drawn on the ground, climb and descent stairs.
For further details on methodology, please refer to (Chisari et al., 2014).

4.2.3 Motor Performance Assessment

All patients underwent a comprehensive examination including five dif-
ferent clinical tests to assess mobility, walking endurance, speed, gait
performance and energy expenditure during exercise.

1Notably, two subjects had primary progressive (MS-PP), while the other fourteen sub-
jects had relapsing-remitting MS (MS-RR).
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Here, we were especially interested in their performance in the Timed
Up & Go (TUG) task (Learmonth et al., 2012). Their performance was
evaluated before (T0) and after (T1) treatment.

4.2.4 Data Collection, Preprocessing and Analysis

EEG recordings were performed at T0 and T1 with a 64 - electrodes high-
density (hd-)EEG system (Micromed), using a sampling frequency of 256
Hz. Of note, data from one subject was not available at T1, and analyses
including this time-point were thus performed on a subset of fifteen sub-
jects. Each data acquisition session included ten minutes of eyes - closed
resting condition.

Preprocessing and analysis of EEG recordings was performed using
MATLAB R2017a (The Mathworks, Inc.) and the EEGLAB toolbox (De-
lorme and Makeig, 2004), similarly to previous work (Bernardi et al.,
2015). Specifically, all EEG recordings obtained at T0 and T1 were band-
pass-filtered between 1 and 45 Hz and segmented in non-overlapping 4
s epochs.

A visual inspection was performed to identify and reject bad chan-
nels and data epochs containing clear artifacts. An Independent Com-
ponent Analysis (ICA) was applied on retained data to remove residual
ocular, muscular and cardiac artifacts using EEGLAB routines (Delorme
and Makeig, 2004; Delorme et al., 2011). Then, the signal of rejected elec-
trodes was replaced with data interpolated from nearby channels using
spherical splines. Finally, the signal of each channel was re-referenced to
average reference.

The Welch’s method (4 s Hamming windows, 8 segments, 50% over-
lap; 0.25Hz bin resolution) was used to compute power estimates for the
following frequency bands: delta (1 - 4.5 Hz), theta (5 - 8 Hz), alpha (8
- 12 Hz) and beta (18 - 25 Hz). For each frequency range, (global) mean
power values were calculated across all scalp electrodes.

Functional connectivity metrics were computed in artifact-free 4 s
epochs. For each patient, connectivity analyses were performed on 57
data epochs (3.8 min), corresponding to the smallest number of epochs
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retained across all subjects. This approach was applied to avoid potential
confounds based on including different amounts of data.

wPLI Connectivity Analysis

To measure changes in brain connectivity induced by the two-weeks
TOCT, especially related to phase synchronisation, wPLI (Vinck et al.,
2011) of the alpha-band was considered, as previous studies in MS pa-
tients reported a frequency-specific decrease in alpha-range connectivity
relative to healthy subjects (Cover et al., 2006; Leocani et al., 2000).

wSMI Connectivity Analysis

To measure changes in brain connectivity, mostly related to non-linear
dynamics induced by the two-weeks TOCT paradigm, wSMI (King et al.,
2013) was computed. This metric evaluates the extent to which two EEG
signals present non-random joint fluctuations, suggesting sharing of in-
formation. We chose the kernel k to be 3, implying that the symbols are
constituted of three elements amounting to six different potential sym-
bols in total, and the temporal separation of elements that constitute a
symbol to be τ = 4ms (1 time - sample), to include frequencies up to
45 Hz. For wSMI, surface-Laplacian (i.e. CSD) transform (Kayser and
Tenke, 2006) was applied instead of average reference. Connectivity was
computed across all frequencies (i.e., 1 - 45 Hz) (King et al., 2013).

4.2.5 The effects of TOCT on brain connectivity

A single index of ’global’ (whole - brain) connectivity strength was calcu-
lated for both wPLI and wSMI. First, the connectivity measure was com-
puted for all potential channel combinations. Then, the mean value of all
these pairs was defined as global connectivity strength for wPLI (Vinck
et al., 2011), while the median was considered instead for wSMI (King
et al., 2013). Of note, since previous studies suggested that MS patients
may show prevalent alterations of inter-hemispheric (INTERH) (Cover
et al., 2006) or antero-posterior (AP) connectivity (Leocani et al., 2000),
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we also computed two additional indices to specifically investigate the
possible relevance of INTERH and AP regional interactions by consid-
ering the mean connectivity of all electrodes to their contralateral corre-
sponding sensors along the left-right (INTERH) and the anterior-posterior
(AP) axes, respectively.

To further explore the potential predictive role of the brain functional
organization on post-training performance improvement, we performed
additional graph-based analyses of the network global efficiency, based
on wPLI (i.e., the average inverse shortest path length in the network). In
fact, complex and highly integrated networks have shorter path lengths
than random networks, allowing for efficient information transfer (Rubi-
nov and Sporns, 2010).

Specifically, for each subject, the respective wPLI connectivity ma-
trices were considered as adjacency matrices with channels represent-
ing nodes and connectivity values between them representing edges.
Those weighted undirected networks were thresholded to include differ-
ent percentages of strongest edges. The network global efficiency (Latora
and Marchiori, 2001) was calculated as the Area under the Curve (AUC)
across 5 different thresholds representing different subsets of strongest
edges (i.e., from 30% to 70% strongest nodes with 10% steps) using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

To evaluate the relationship between performance improvement as
measured by changes in TUG and connectivity values at T0 or T1, or
connectivity variations T1 - T0 (positive values represent higher degree
of connectivity after training), partial correlation analysis was employed
including patients’ age as confounding variable. All reported p - values
are results of two - tailed tests if not explicitly stated otherwise.

Of note, Shapiro-Wilk test was employed to verify whether, T0, T1
and ∆T EEG connectivity metrics were normally distributed and when
the assumption of normality was violated, partial correlation analyses
were based on the non-parametric Spearman’s Rho test, while for all the
other measures Pearson’s correlation coefficient was employed.
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4.3 Results

Power Analysis

No significant correlations were noted between ∆TUG and power in all
tested frequency ranges (delta, theta, alpha, beta), either at T0, T1, or for
T1–T0 variation.

4.3.1 wPLI Connectivity

Results obtained for wPLI connectivity are summarized in Table 1. A
significant correlation was observed between the alpha-band wPLI con-
nectivity at T0 and the behavioural measure ∆TUG (Fig. 25A; r = 0.61; p
= 0.017). This effect appeared to be mainly explained by antero-posterior
(AP) wPLI connectivity at T0 (Fig. 25B; r = 0.54; p = 0.038), rather than
by inter-hemispheric (INTERH) T0 connectivity (r = 0.45; p = 0.089).

In line with these observations, wPLI network’s global efficiency at
T0 (r = 0.50; pone−t ai l = 0.030) and T1 (r = 0.47; pone−t ai l = 0.045) was
found to be positively correlated with ∆TUG. No significant correlations
were observed between T1 - T0 variations in connectivity (r = -0.019, p =
0.47) and ∆TUG.

Importantly, when removing the two PP subjects all tests remain sig-
nificant, except for the relationship between antero-posterior wPLI con-
nectivity at T0 and ∆TUG (r = 0.54; p = 0.058), and wPLI efficiency at T1
and ∆TUG (r = 0.50; p = 0.051; see Table 1).

4.3.2 wSMI Connectivity

Results obtained for wSMI connectivity are summarized in Table 2. The
whole - brain wSMI connectivity was found to be correlated with ∆TUG
at T1 (rho = 0.775; p = 0.001; Fig. 25C) but not at T0 (r = 0.23; p = 0.421).
For wSMI, the correlation appeared to be explained by both AP-wSMI
connectivity (r = 0.68; p = 0.008) and INTERH wSMI connectivity (rho
= 0.67; p = 0.01). Crucially, a significant correlation was also observed
between the T1-T0 variation in wSMI connectivity and ∆TUG, with r =
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Table 1: Correlations between TUG at T0, T1, ∆TUG and wPLI. MS-RR
stands for relapsing-remitting multiple sclerosis, while MS-PP stands for
primary progressive multiple sclerosis. Depending on the outcome of the
Shapiro-Wilk-Test, Pearson product-moment correlation values (r ) or Spear-
man’s rho (ρ) correlation tests were performed between EEG measures and
∆TUG. All significant effects are marked in bold and with an asterisk (∗).
All reported p-values are two-tailed, except for pot , which is a one-tailed
p-value.

MS-RR and MS-PP
Patients

Only MS-RR
Patients

T0 T1
Diff.

(T1-T0) T0 T1
Diff.

(T1-T0)

wPLI
r 0.606 0.47 -0.256 0.628 0.445 -0.201

p 0.017∗ 0.09 0.378 0.022∗ 0.147 0.531

AP
wPLI

r (ρ) 0.538 0.524 0.061 0.538 0.54 0.063

p 0.038∗ 0.053 0.836 0.580 0.70 0.845

INTERH
wPLI

r 0.455 0.148 -0.176 0.461 0.25 -3.799

p 8.89 0.614 0.548 0.113 0.423 0.908

wPLI
efficiency

r 0.5 0.47 -0.019 0.52 0.496 0.151

pot 0.029∗ 0.045∗ 0.474 0.034∗ 0.05 0.32

0.70 (p = 0.005; Fig. 25D), implying that an increase in behavioural per-
formance was correlated to an increase in wSMI connectivity.

However, neither the T1-T0 difference in AP-wSMI connectivity (r =
0.53; p = 0.052) nor the T1-T0 difference in INTERH wSMI connectiv-
ity were correlated to ∆TUG (r = 0.38; p = 0.180). Importantly, when
removing the two PP subjects, all tests remain significant, except for in-
terhemispheric wSMI connectivity at T1 (r = 0.49; p = 0.108; see Table
2).
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Figure 25: Panel A shows correlation between alpha-band wPLI connectiv-
ity and ∆TUG at T0 (r = 0.61; p = 0.017), while Panel B depicts the relation-
ship between anteroposterior-alpha-band wPLI connectivity and ∆TUG at
T0 (r = 0.54; p = 0.038). Panel C and D illustrate the correlation between
broadband wSMI connectivity at T1 and ∆TUG (rho = 0.78; p = 0.001), and
between T1-T0 wSMI connectivity variation and ∆TUG (r = 0.70; p = 0.005),
respectively.
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Table 2: Correlations between TUG at T0, T1, ∆TUG and wSMI. MS-RR
stands for relapsing-remitting multiple sclerosis, while MS-PP stands for
primary progressive multiple sclerosis. Depending on the outcome of the
Shapiro-Wilk-Test, Pearson product-moment correlation values (r ) or Spear-
man’s rho (ρ) correlation tests were performed between EEG measures and
∆TUG. All significant effects are marked in bold and with an asterisk (∗).
All reported p-values are two-tailed.

MS-RR and MS-PP
Patients

Only MS-RR
Patients

T0 T1
Diff.

(T1-T0) T0 T1
Diff.

(T1-T0)

wSMI
r (ρ) 0.225 0.775 0.700 0.15 0.632 0.699

p 0.42 0.001∗ 0.005∗ 0.608 0.028∗ 0.011∗

AP
wSMI

r 0.267 0.676 0.529 0.162 0.644 0.482

p 0.337 0.008∗ 0.051 0.59 0.024∗ 0.112

INTERH
wSMI

r (ρ) 0.216 0.665 0.38 0.327 0.487 0.338

p 0.44 0.01∗ 0.18 0.27 0.108 0.281

4.4 Discussion

In this study, the aim was to test whether EEG-based connectivity metrics
could be used to predict and/or track functional recovery related to a
specific gait rehabilitation protocol (TOCT) in MS patients.
Specifically, we hypothesized that

• pre-training connectivity metrics may predict the success of the in-
tervention, and

• clinical improvement induced by the intervention may be associ-
ated to a brain functional reorganization that is captured by EEG-
based connectivity metrics.

100



Consistent with these hypotheses, pre-training alpha-band wPLI connec-
tivity was found to correlate with changes in behavioural performance
as measured using the Timed Up and Go (TUG) index, while wSMI con-
nectivity was able to track relative TUG changes associated with the gait
rehabilitation protocol TOCT.

The strength and efficiency of alpha-band wPLI connectivity at T0
was positively correlated with the clinical improvement measured by
∆TUG. This relationship was also characterized by a relative topograph-
ical specificity, as the strongest relationship between connectivity and
performance improvement was identified for for antero-posterior rather
than inter-regional interactions. Of note, previous work showed that
MS patients typically show a decreased alpha-band-connectivity with re-
spect to healthy control subjects (Cover et al., 2006; Leocani et al., 2000).
In this perspective, our results suggest that patients with less disrupted
alpha-band connectivity may profit more from a two-week training in-
tervention.

While alpha-band wPLI seem to reflect the potential of a patient to
profit from treatment, it does not account well for changes that occur in
neural activity based on the treatment itself. In fact, these changes may
be better captured by wSMI connectivity, fundamentally rooted in infor-
mation theory. Indeed, we observed a positive correlation between T1-T0
changes in broadband wSMI connectivity (∆wSMI) and variations in mo-
tor performance (∆TUG). Given that wSMI at T1, but not at T0, was also
found to correlate with ∆TUG, changes in broadband wSMI connectiv-
ity may reflect compensatory functional adaptations (increase in system
complexity): i.e., the implementation or the unmasking of mechanisms
that were not ’active’ in patients before treatment (no correlation at T0).

In line with this view, previous studies suggested that MS patients
may have lower chaotic activity (Kotini et al., 2007), or decreased brain
functional complexity (Carrubba et al., 2012). For instance, Kotini et
al. (Kotini et al., 2007) found that the number of independent variables
required to describe a dynamical system is lower for MEG activity in MS
patients relative to healthy control subjects. Similarly, using recurrence
quantification analysis, Carrubba et al. (Carrubba et al., 2012) found that
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the probability that a specific state will recur was greater in MS patients.
The wSMI as a weighted measure of mutual information may thus be
well suited to track relative changes in the complexity of brain activity
through the two-week treatment. We hypothesize that an increase in
wSMI in patients from T0 to T1 could be related to an increase in ’healthy-
brain-like’ nonlinear system properties.

To our knowledge, this is the first study to account for changes in non-
linear dynamics induced by treatment in MS patients, and our results
suggest that methods investigating such dynamics may provide valuable
information regarding the impact of rehabilitation strategies based on
motor training.

Intriguingly, classical metrics of lesion volume based on the analysis
of MRI data, were not associated with motor recovery after TOCT train-
ing in our sample. These data confirm that adaptive brain plasticity can
occur in MS patients, despite a high burden of cerebral pathology and
disability (Tomassini et al., 2012a), and may suggest that the brain plas-
tic reorganization induced by the training could be better captured by
functional, rather than structural, indices.

Limitations of this study include the comparatively small sample size
(n=16) and the lack of a control group. These limitations inevitably re-
duced the statistical power of the analyses and the generalisability of the
findings. Moreover, our sample contained two subsets of individuals
with distinct MS phenotypes (RR for 14 out of 16 and PP for 2 out of 16
patients) and featured a relatively wide range in the Expanded Disability
Status Scale EDSS score (3.5-5.5) and of age (27-67).

We carefully evaluated the possible presence of outliers, which are
likely to affect correlation analyses when the number of patients is lim-
ited, and no evidence of outliers was found in our sample for the EEG
connectivity and primary behavioural outcome measures. In addition,
age was controlled for by regressing out the effect of this variable on per-
formed analyses, and all principal results remained significant after the
exclusion of the two PP phenotype patients.
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4.5 Conclusions

In conclusion, our study showed that changes in brain connectivity re-
lated to phase synchronization (i.e., alpha-band wPLI connectivity) cor-
relate with functional recovery after specific gait training in mildly im-
paired MS patients. Moreover, changes in brain connectivity related to
non-linear dynamics (i.e., broadband wSMI) may represent a promising
measure to account for behavioural changes induced by the treatment
and may reflect functional compensatory brain plasticity.

These results offer a preliminary indication regarding the potential
value of EEG-based connectivity metrics for predicting and tracking the
impact of motor rehabilitation strategies in MS patients.
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Chapter 5

Conclusions

The works included in this thesis allowed to demonstrate that the func-
tional connectivity metrics wPLI and wSMI have a different sensitivity
for distinct types of brain interaction dynamics and may thus account
for different functional processes. The findings presented here indicate
that the combined use of these two methods may provide a better and
more complete characterization of brain functional dynamics within and
across distinct physiological and pathological states.

Indeed, using simulated, yet highly realistic high-density EEG data,
we showed that while wPLI displays an optimal sensitivity for interac-
tion dynamics with linear and nonlinear components, wSMI has a higher
sensitivity for exclusively nonlinear dynamics.

This finding may have significant implications for the analysis of func-
tional connectivity in different vigilance stages. Specifically, we found
that the combined use of power- and FC-based features better describes
changes in brain activity across wakefulness, N2, N3 and REM sleep rel-
ative to individual feature sets alone.
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Moreover, we investigated FC in vigilance stages associated with dif-
ferent probabilities of occurrences of conscious experiences. Previous
observations in states characterized by altered levels of consciousness,
including unresponsive wakefulness syndrome and anaesthesia, identi-
fied delta- and alpha-connectivity as potential markers of consciousness.
However, here we found that alpha-FC does not significantly contribute
to distinguishing between states characterized by a higher probability
of conscious experiences (wakefulness and REM sleep) as compared to
states associated with a lower probability of conscious experiences (N2
and N3 sleep).

Instead, we found alpha-FC to represent the best FC-feature for dis-
tinguishing between Wakefulness and REM sleep, a state typically char-
acterized by vivid conscious experiences and by a relative sensory dis-
connection with respect to the external world. In this light, our results
suggest that FC changes in the alpha range could mark disengagement
from the external environment rather than the current level of conscious-
ness.

Sigma-FC (but not sigma power) was found to strongly contribute to
the differentiation between states characterized by higher and lower lev-
els of consciousness. The study of this parameter as a potential marker
of consciousness in sleep will certainly deserve further investigations.

Finally, we have also used the same FC metrics in EEG recordings of
multiple sclerosis (MS) patients to evaluate their potential ability to track
or predict behavioural performance enhancement induced by a rehabili-
tative motor training. This study confirmed that wPLI and wSMI account
for different brain functional dynamics, and identify distinct aspects of
training-related functional changes. Alpha-band wPLI resulted as a good
indicator of whether a patient will positively respond to treatment, but
was not able to track treatment-based changes in neural activity. On the
contrary, broadband-wSMI was found to correlate with changes induced
by the treatment (increase in system complexity), likely reflecting the im-
plementation or unmasking of (compensatory) mechanisms that are not
active in patients before treatment.
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In conclusion, results of these works highlight the importance of tak-
ing into account the relative sensitivity of applied connectivity methods
to different types of inter-regional interaction dynamics and provide a
strong support to the combined use of multiple metrics for obtaining a
more accurate description of functional connectivity across different con-
ditions or groups. wPLI and wSMI are especially interesting due to their
similar robustness to volume conduction confounds and to their different
sensitivities to linear and nonlinear dynamics. The combined application
of these two metrics may thus represent a powerful tool for the evalua-
tion of brain connectivity in physiological and pathological conditions.
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Appendix A

Quantitative EEG analysis
of Sleep and Wakefulness

A.1 Electroencephalography

It is currently not possible to measure non-invasively, in real time, the ac-
tivity of individual neurons in human brains. The best approximation to
this ideal situation is provided by intracranial recordings. However, this
technique requires brain surgery and can therefore only be applied to pa-
tients with severe health conditions (e.g., epilepsy (Téllez-Zenteno et al.,
2005)) that undergo brain surgery for the remediation of their conditions.

For research on large samples of healthy individuals, an alternative
window into brain functioning is necessary. The voltage differences on
the scalp resulting from the electrical communication among neurons in
the brain have first been measured in 1924 by Hans Berger (Berger, 1929)
on human participants. Models suggest that the EEG records postsynap-
tic potentials generated synchronously in cell assemblies (Da Silv, 2005).

Power and connectivity analyses can be computed directly on the sig-
nals recorded by individual scalp electrodes, i.e. in the sensor space, or
in the source space, i.e. after the application of source reconstruction
algorithms that can be used to estimate the location of brain sources un-
derlying the EEG signal. While source reconstruction algorithms should
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allow to make more specific inferences about brain dynamics, they are
not always reliable (Schoffelen and Gross, 2009; Hassan et al., 2014), es-
pecially if no structural magnetic resonance imaging dataset is available
to perform the mapping.

Magnetoencephalography (MEG) combines the great temporal reso-
lution (millisecond-level) of EEG with a better spatial brain source reso-
lution; however, its application involves greater practical difficulties, es-
pecially for the investigation of physiological stages of vigilance and also
for the investigation of pathological conditions, as it requires remaining
still and is not very comfortable for the patient/participant during an ex-
tended period of time. Moreover, MEG, as well as the functional imag-
ing alternatives of functional magnetic resonance imaging (fMRI), and
positron emission tomography (PET) are considerably costlier.

Therefore, the EEG provides an easy and efficient solution that can be
used during sleep recordings and in pathological conditions.

A.2 Spectral Methods

The most prominent feature of the human scalp EEG is the presence of
oscillations with peaks at specific frequencies. The canonical frequency
bands historically used to describe the EEG are denoted by Greek letters:
alpha (8-12 Hz), beta (13-30 Hz), gamma (above 30 Hz), delta (below 4
Hz), theta (4-7 Hz).

In sleep, the sigma band is especially relevant, as it tracks the occur-
rence and properties of sleep spindles (12-16 Hz). The exact source of
each rhythms is not always fully clear and, sometimes, multiple unre-
lated sources produce rhythms of similar frequency which are difficult
to disentangle (Sadaghiani and Kleinschmidt, 2016).

A.2.1 Spectral Power

A comprehensive picture of the spectral architecture of the EEG can be
obtained using frequency decomposition algorithms such as the Fourier
transform. The discrete Fourier transform produces the representation
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of a signal from time domain to frequency domain by expressing it as a
sum of sinusoids, thereby providing the power at N frequencies of inter-
est: s

(
fk

) = ∑N−1
i=0 s (ti )e− j 2π fk ti (ti+1 − ti ) , k ∈ {0,1, . . . , N −1}, where s(t ) is

the waveform to be decomposed into a sum of sinusoids and S( f ) is the
Fourier transform of s(t ).

The fast Fourier transform provides a computationally efficient al-
gorithm for this purpose (Brigham, 1988). Notably, a disadvantage of
the Fourier transform is that it requires a window of data, assumed to
be generated by a stationary and linear system, to compute the power
spectrum, thereby producing a temporal resolution inferior to that of the
original signal.

A.2.2 Spectral Power in Distinct Stages of Vigilance

The alpha rhythm represents a typical marker of relaxed wakefulness ob-
served most prominently over the posterior, especially occipital, areas of
the scalp. In healthy adults, eye closing results in bursts of alpha waves
easily visible in the EEG (Barry et al., 2007). Its origin is considered to be
cortical; however, there is some debate on the functional meaning of the
alpha rhythm (Klimesch, 2012; Niedermeyer et al., 2005).

As the subject becomes drowsy and approaches sleep, the alpha rhythm
fades, while lower-frequency oscillations in theta and delta band appear
in the EEG (Ogilvie, 2001).

Light sleep is characterized by the appearance of spindles in the sigma
frequency (12-16 Hz) and K-complexes in the delta range (< 2 Hz). In
deep sleep, slower frequency oscillations are present, including large-
amplitude slow waves, which reflect a cyclical hyperpolarisation and
depolarisation of the membrane potential in cortical neurons (Steriade
et al., 1993a,b), also referred to as up and down states (Steriade et al.,
2001).

Historically, spectral power is the most well-established method for
analysing the EEG and extensive literature exists on its relationship with
a wide range of cognitive processes and states (Hanslmayr et al., 2011;
Klimesch, 2012).
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However, as there are a plethora of interactions across the whole-
brain network, analysing the power spectrum by itself is not satisfactory
in the quest for understanding the neural correlates of complex physio-
logical and pathological conditions.

A.3 Connectivity Metrics in Different Stages of
Vigilance

A review of the literature has been performed to investigate how brain
connectivity change between wakefulness and sleep, as well as between
the different sleep stages. In spite of the different methodological ap-
proaches reported in the literature, some common aspects emerged. A
detailed overview of the current research can be found in Table 3.

A.3.1 Overall Connectivity Differences

The findings that are most consistent across previous publications are as
following.

The overall delta-connectivity is higher in NREM and REM sleep as
compared to wakefulness, specifically inter-hemispheric (INTERH) con-
nectivity. The same applies to to the theta band. However, the over-
all alpha-connectivity is higher in wakefulness as compared to all sleep
stages.

While sigma-connectivity is higher in NREM-Sleep as compared to
wakefulness, it has not been investigated in REM-Sleep as compared
to wakefulness. However, there is higher inter- and intra-hemispheric
sigma-connectivity in NREM-Sleep as compared to REM-Sleep. The high-
est beta-connectivity seems to occur in REM-Sleep as compared to NREM-
Sleep. There are mixed results regarding differences in beta-connectivity
between sleep stages as compared to wakefulness. Gamma-connectivity
is higher in NREM-Sleep as compared to Wakefulness; however, there
are also mixed results regarding the differences between REM- and NREM-
Sleep.
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Notably, many of the studies have a very small number of electrodes
(e.g., < 10 channels (Achermann and Borbély, 1998; Guevara et al., 1995)),
number of subjects and use coherence as a method of choice. The prob-
lem with coherence is its great sensitivity to volume conduction con-
founds.

At a local level, the thalamus (accompanied by several other brain re-
gions throughout the cortex, the limbic lobe, the caudate nucleus, as well
as midbrain structures, such as the mammillary body/hypothalamus)
has been shown to have reduced activity during NREM sleep across all
sleep stages (Kaufmann et al., 2005). Moreover, decreased thalamic ac-
tivity was recorded at sleep onset (Kaufmann et al., 2005), temporally
preceding the deactivation of the cortex (Magnin et al., 2010).

Using slow bold FC, thalamocortical connectivity has been shown to
be sharply reduced in the transition from wakefulness to light sleep (Spoor-
maker et al., 2010). However, cortico-cortical connectivity was found to
increase with a breakdown of cortico-cortical connectivity in Slow-Wave-
Sleep (SWS). (Spoormaker et al., 2010). Both intra- and inter-hemispheric
thalamic connectivity measured from functionally defined thalamic sub-
divisions strengthened during the progression into sleep. The largest
increases have been shown during N2 sleep (especially in sensorimotor
cortices) (Hale et al., 2016). The global thalamo-cortical connectivity has
been shown to increase on awakening (Tsai et al., 2014).

Thalamocortical synchrony has been suggested to underlie global field
synchronization, a metric that has been employed to find differences be-
tween stages of vigilance (Achermann et al., 2016) (see Table 3). Several
studies point to altered thalamocortical FC during light sleep (Hale et al.,
2016; Picchioni et al., 2014; Spoormaker et al., 2010).

In general, bivariate connectivity metrics such as coherence, wPLI
and wSMI, are easier to understand, implement, visualise and to sta-
tistically quantify as compared to multivariate methods. Moreover, the
most relevant types of connections for many cognitive functions are also
bivariate (Cohen, 2014). However, if the network structure is actually
multivariate, they can inflate or misrepresent estimates of relationships.
Multivariate network analyses rely fundamentally on graph theory.
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A.3.2 Graph-Theoretic Analyses

Theoretical Background

Graph theory attempts to answer the question how a system as a whole
can emerge from the properties of its constituents. For example, it can
enable us to understand how magnetism emerges from the collective be-
havior of millions of spins, or how quantum particles lead to phenom-
ena as Bose-Einstein condensation or superfluidity (Albert and Barabási,
2002).

Graph theory defines the study of mathematical structures used to
model pairwise relations between objects. A graph or network 1 is a col-
lection of vertices or nodes connected by lines called edges or links. A
graph may be undirected, meaning that there is no distinction between
the two vertices associated with each edge, or it may be directed, which
means that its edges are directed from one vertex to another. Nodes cor-
respond to entities in a network and links to the connections between
them.

In the graph-representation, nodes are all the same, whereas a weight
(numerical value) can be assigned to each link of the network to make
the model more realistic. Hence, the focus is on relationships between
entities rather than the entities themselves.

1The term ’graph’ is primarily used in mathematics and the term ’networks’ predomi-
nantly in physics.
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Network-Level Changes in Sleep

The overall network organization of the EEG slow-wave synchronization
during sleep has been shown to feature characteristic of small-world net-
works (high average clustering coefficient combined with a low average-
path-length) (Ferri et al., 2007). Moreover, all other sleep stages have
been shown to demonstrate small-world organisation (Ferri et al., 2008).

There was increased neocortical connectivity as well as increased small-
world properties on specific frequency bands (Dimitriadis et al., 2009;
Ferri et al., 2007, 2008). Specifically anterior and posterior brain areas
have been shown to become more isolated from one another during REM-
Sleep (Dimitriadis et al., 2009).

Sleep deprivation is often used in experimental designs to learn more
about the restorative effects of sleep. The alpha-clustering-coefficient (lo-
cal integration) was decreased and theta-path-length (global integration)
was increased in wakefulness after total sleep deprivation (Verweij et al.,
2014).

Global network properties in the alpha, theta and gamma band have
been demonstrated to move to a more random network after sleep de-
privation compared to after sleep (Koenis et al., 2013).
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Continued on next page

Delta Theta Alpha Sigma Beta Gamma All
REM compared to
wakefulness

higher INTERH corre-
lations for slow (<0.1
Hz) fluctuations (Nir
et al., 2008); higher
INTERH correlation
than W (Guevara
et al., 1995)

higher INTERH corre-
lation than W (Gue-
vara et al., 1995)

Higher in wakeful-
ness (wPLI (Simor
et al., 2018); phase
coherence (Voss et al.,
2009); Highest global
field synchronization
wakefulness (Acher-
mann et al., 2016);
significant decrease
in the fronto-occipital
as well as in the
inter-frontal coher-
ence values in the
alpha range (Can-
tero et al., 1999);
higher inter- and
INTRAH correlation
in W (Corsi-Cabrera
et al., 1996; Guevara
et al., 1995)

INTERH coherence
in cats only in wake-
fulness, no coherence
in REM (Castro et al.,
2014, 2013); coherence
(30–48 and 52–100
Hz) smaller in REM
than NREM and W
in rats (Cavelli et al.,
2015); decrease in
correlation spectra
(27–48 Hz, 2s epochs)
INTRAH frontal-
perceptual cortical
ROIs in REM (Pérez-
Garci et al., 2001);
coherence decreases
during REM com-
pared with W; during
lucid dreaming, co-
herence values are in-
termediate between W
and REM sleep (Voss
et al., 2009); increase
in INTERH syn-
chrony (Corsi-Cabrera
et al., 2014; Pérez-
Garci et al., 2001)

Highest global field
synchronization in
REM (Achermann
et al., 2016)

REM: phasic vs. tonic INTRAH WPLI in
tonic REM higher for
5–6 Hz (Simor et al.,
2018)

long-range inter- and
INTRAH WPLI higher
in tonic REM (Simor
et al., 2018)

INTRAH WPLI in
tonic REM higher for
13-16 Hz (Simor et al.,
2018)

long-range inter- and
INTRAH WPLI higher
in tonic REM (Simor
et al., 2018))

Short-range WPLI
higher in phasic REM
(frontal) (Simor et al.,
2018)

low EEG synchro-
nization for F7–F8
and T3–T4, espe-
cially in tonic REM
sleep. (Landwehr and
Jowaed, 2012)
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NREM vs. Wakeful-
ness

higher INTERH corre-
lations during N2 for
slow (<0.1 Hz) fluctua-
tions (Nir et al., 2008);
coherence between
GP and fronto-central
cortex and GP and
parieto-occipital cor-
tex (Salih et al., 2009);
higher INTERH cor-
relation for S2 and
S4 than W (Guevara
et al., 1995); nonlinear
mechanisms (Terry
et al., 2004); based
on MI SWA propa-
gated predominantly
between adjacent
cortical areas in EcoG
recordings in focal
epilepsy (Hangya
et al., 2011)

FP wPLI peaks before
and after LOR in
N1/N2 (Comsa et al.,
2019); higher INTERH
correlation for S2 and
S4 than W (Guevara
et al., 1995)); parietal
and fronto-parietal
precedes behavioural
microsleep (Toppi
et al., 2012))

Highest global field
synchronization in
wakefulness (Acher-
mann et al., 2016);
Decrease in wPLI in
N1/N2 (Comsa et al.,
2019); coherent be-
tween fronto-central
and parieto-occipital
cortex in N3 (Salih
et al., 2009)); Regional
coherence during
SWS is differentially
distributed with a
14 Hz component
in central and pos-
terior regions and a
10 Hz component in
frontal and central
regions (Duckrow and
Zaveri, 2005); higher
INTRAH correlation
for S2 and S4 than
W (Guevara et al.,
1995)

Highest global field
synchronization in
NREM (Achermann
et al., 2016); lateralized
left fronto-temporal
network of posi-
tively correlated
synchronous EEG
potentials (Langheim
et al., 2011)); coher-
ence between GP
and fronto-central
cortex and GP and
parieto-occipital cor-
tex from 9.5 to 17 Hz
in N2 and N3 (Salih
et al., 2009); higher
inter- and INTRAH
correlation for S2 and
S4 than W (Guevara
et al., 1995); spherical
harmonics in light
sleep (Sivakumar
et al., 2016)

Higher proportion of
recurrent increases
in synchronisation
based on pointwise
transinformation
events during wake-
fulness, light sleep,
and REM sleep than in
SWS (Landwehr et al.,
2014)

INTRAH coherence
may be higher in SWS
than W. (Pérez-Garci
et al., 2001); hyper-
correlated activity in
NREM sleep (Bola
et al., 2018)

Higher pointwise
transinformation in
N2 and N3 than in R,
W, and N1. (Landwehr
and Jowaed, 2012));
phase-amplitude
coupling between
spindles and broad-
band > 20H z activity,
spindle-beta cou-
pling greater during
frontally defined up
states relative to down
states (Cox et al., 2014)

REM vs. NREM Increased coherence in
the low delta band
in NREM (Achermann
and Borbély, 1998)

Higher ante-
rior INTERH in
NREM (Achermann
and Borbély, 1998);
higher INTERr and
INTRAr in NREM
than REM (Guevara
et al., 1995)

Higher INTRAH
coherence in
NREM (Achermann
and Borbély, 1998);
Higher inter- and
INTRAH correlation
in N2 vs REM (Corsi-
Cabrera et al., 2003);
higher INTERr and
INTRAr in NREM
than REM (Guevara
et al., 1995)

Higher coherence in
REM (Achermann and
Borbély, 1998); Higher
INTRAH corr in N2 vs
REM, lower INTERH
corr (Corsi-Cabrera
et al., 2003))

No differences in
coherence (Cantero
et al., 2004); similar
low inter-hemispheric
homotopic coher-
ence (Castro et al.,
2014), reduction of
rhinal-hippocampal
coherence (Fell et al.,
2003)

No difference in
posterior INTERH co-
herence (Achermann
and Borbély, 1998);
mean INTERH co-
herence (delta, theta,
alpha, beta) higher in
stage 2, 4, REM than
in W (Nielsen et al.,
1990)

Table 3: Review on Connectivity in Wakefulness and Sleep
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Appendix B

Metrics for the Study of
Consciousness

B.1 Definition of Consciousness

Consciousness is probably one of the most difficult phenomena to clearly
define - in a philosophical and scientific way. In the context of our ev-
eryday experience, we can define it as what is lost when we fall into a
dreamless sleep and what returns when we wake up again (Searle, 1993;
Seth, 2009).

There are differences in the level of consciousness, ranging from brain-
death to alert wakefulness, and in the content of consciousness, referring
to the composition of a given conscious scene at any non-zero conscious
level (Seth, 2009). Conscious contents typically consist of phenomenal
aspects (’qualia’) such as perceptual experiences (e.g. ’redness’), bodily
sensations (e.g. pain), emotional reactions (e.g. happiness) and moods
(e.g. boredom; Haugeland (1985)). Morever, thoughts, inner speech,
a sense of agency, self and a subjective first-person perspective on the
world (the ’I’) also represent conscious contents. The underlying idea
is that the greater the conscious level, the greater the range of possible
contents (Seth, 2009).
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B.2 A Selection of Theories of Consciousness

There are many different theories that attempt to build an explanatory
bridge between the subjective experience of consciousness and neural ac-
tivity. Here, we focus on the two theories that are currently the most dis-
cussed in the scientific community: Dehaene’s neuronal global workspace
theory and Tononi’s integrated information theory.

The global workspace theory (Baars, 1993) is based on the observation
that consciousness encompasses a momentarily unified collection of in-
formation processed by specialised ’mental modules’. Highly-specialised
modules perform different, intrinsically unconscious computations that
can momentarily become part of the ’global workspace’ and share infor-
mation with other modules of the brain. We are then conscious of the
globally shared content.

A neural implementation of the global workspace theory, the “neu-
ronal global workspace”, has been suggested by Dehaene et al. (2003).
The underlying idea is that cortical areas, that code for certain contents
of consciousness (e.g., sensory areas), “broadcast” their information in
a global neuronal workspace that consists of highly recurrent fronto-
parietal areas, thereby making these contents globally available for use
by other areas. The theory predicts that conscious awareness is a non-
linear function of stimulus salience; i.e., a gradual increase in stimulus
visibility is accompanied by a sudden transition in conscious awareness.

Starting from phenomenology itself, e.g. the experience that every
conscious scene is both integrated (i.e. experienced ’all of a piece’) and
differentiated (i.e. composed of many different parts and therefore one
among a large number of possible experiences; Tononi (2004)), the inte-
grated information theory (Oizumi et al., 2014; Tononi, 2004) attempts to
bridge the gap between the first-person experience and the underlying
causal mechanisms that can generate it.

It proposes a set of axioms that describe conscious experience, e.g.
that it consists as a composition of multiple elements that are experi-
enced at the same time, that it is informative due to its distinctiveness
from any other possible experience, is integrated and irreducible to the
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sum of its components, and exclusive of other simultaneous conscious
experiences (Oizumi et al., 2014).

IIT proposes an information integration metric of consciousness called
Φ, that is computed based on the causal structure of a system. Systems
with Φ > 0 are conscious, while a system with Φ = 0 is unconscious. For
example, Φ is always greater than zero in recurrent systems (they are al-
ways conscious) and always equal to zero in feedforward systems (they
are never conscious; Oizumi et al. (2014)), as they do not generate cause
and effect as a whole. 1

In line with the idea of consciousness depending on the brain’s abil-
ity to support complex activity patterns that are, at the same time, dis-
tributed among interacting cortical areas (integrated) and differentiated
in space and time (information-rich), a practical proxy of Φ, the Pertur-
bational Complexity Index (PCI; see Table 5), has been found to be low in
coma, intermediate in minimally conscious states, and maximal during
wakefulness (Casali et al., 2013).

B.3 How to quantify different levels
of consciousness?

Differences in the level of consciousness are mostly studied by compar-
ing conscious states with unconscious (or less conscious) states. Two
very popular ways of studying the difference between consciousness
and unconsciousness is through investigating the loss of consciousness
induced by anaesthesia and the decrease in the level of consciousness
induced by traumatic brain injuries in patients with disorders of con-
sciousness (DoC).

One of the fundamental problems of considering patients with dis-
orders of consciousness regarding testing the accuracy of different met-
rics of consciousness is that there is a misdiagnosis rate of almost 40%

(Schnakers et al., 2009). Unfortunately, there is no standardized diagnos-

1However, different mathematical formulations of IIT’s axioms lead to different predic-
tions about which systems are conscious, and for each system that provides evidence for
IIT, there are other possible systems that falsify it (Doerig et al., 2019).
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tic tool for establishing the state of consciousness of a patient. One of
the more advanced assessments in addition to the standard clinical ex-
aminations is based on the Coma Recovery Scale-Revised (CRS-R), that
tests behavioural awareness in these patient. It is designed to find dif-
ferences between patients that show reflexive responses only (UWS) and
those who show a degree of awareness with/without command follow-
ing (MCS-/MCS+ respectively). Any studies of consciousness in patients
with disorders of consciousness suffer from the confound of lacking the
knowledge of the ground-truth regarding which state any particular pa-
tient is in.

Another popular paradigm is the investigation of pharmacologically-
induced differences in the level of consciousness due to anaesthesia. How-
ever, the mechanisms through which the extremely diverse group of gen-
eral anaesthetics drugs (ranging from very potent intravenous anaes-
thetics, such as propofol, to less potent gaseous agents, such as nitrous
oxide) cause reversible loss of consciousness are still not fully under-
stood (Franks, 2008) and once in every 1000−2000 operations a patient
may temporarily regain consciousness or even remain conscious during
surgery (Sebel et al., 2004). However, despite different mechanisms and
sites of action, most anaesthetic agents seem to cause unconsciousness by
targeting, directly or indirectly, a posterior lateral corticothalamic com-
plex centered around the inferior parietal lobe, and potentially also a me-
dial cortical core (Alkire et al., 2008).

The key confound for studying either pathologically-induced differ-
ences in consciousness or pharmacologically-induced differences in con-
sciousness is that disconnection from the environment, unresponsive-
ness and unconsciousness are hard to separate from each other - within
the same paradigm. In anaesthesia, we can experience the loss of con-
sciousness as well as disconnected consciousness; however, these states
are mostly induced by different anaesthetic agents, and anaesthesia is not
promptly reversible. After undergoing ketamine anaesthesia, subjects
mostly report vivid dream-like experiences consistent with disconnected
consciousness, while in propofol anaesthesia most subjects experience a
loss of consciousness (Darracq et al., 2018). During physiological sleep,
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when we dream, we have vivid conscious experiences, but are unrespon-
sive because inhibition by the brainstem induces muscle paralysis (Hob-
son et al., 2000), especially during REM-sleep, and we are disengaged
from the external environment (Bonnet and Moore, 1982; Darracq et al.,
2018; Nir and Tononi, 2010). Conscious sleep can be directly compared
with wakefulness. Moreover, within the same sleep stage, we can com-
pare connected consciousness with disconnected consciousness using a
serial awakening paradigm (Siclari et al., 2013).

B.3.1 wPLI and wSMI in anaesthesia and DoC patients

wPLI and wSMI have both been suggested to allow the identification of
variations in functional integration accompanying changes in the level
of consciousness (Chennu et al., 2017, 2014, 2016; King et al., 2013; Lee
et al., 2017a,b; Sitt et al., 2014). Both of them mostly represent metrics of
integration, while wSMI has been especially designed in the context of
Integrated Information Theory.

King and colleagues (King et al., 2013) found that wSMI connectiv-
ity between centro-posterior areas and other brain regions is higher in
healthy conscious individuals as compared to patients with unrespon-
sive wakefulness syndrome (UWS) or in a minimally conscious state
(MCS).

Moreover, alpha-band wPLI-based functional networks differ between
healthy individuals and patients with disorders of consciousness (UWS,
MCS) (Chennu et al., 2017, 2014). In line with this, previous studies
(Chennu et al., 2016; Lee et al., 2017b) also showed that propofol seda-
tion in healthy individuals is associated with a decrease in alpha-band
wPLI (Chennu et al., 2016) and a relative increase in delta-band wPLI
connectivity (Lee et al., 2017b).

These observations across different conditions characterized by al-
tered levels of consciousness are particularly interesting, as they sug-
gest that wPLI and wSMI may offer general, relatively simple and re-
producible indices of the current level of consciousness of an individ-
ual (Casali et al., 2013).
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A review of the literature has been performed to identify differences
in functional integration in conditions that are known to be associated
with different levels of consciousness, i.e. in patients with disorders of
consciousness (unresponsive wakefulness syndrome (UWS) vs. mini-
mally conscious state (MCS)) and in anaesthesia (see Table 4).

A more general overview of several metrics that have been suggested
to allow tracking changes in the level of consciousness can be found in
Table 5.
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Abbreviations: F: Frontal; P: Parietal; FP: Frontoparietal; UnC: Unconsciousness: CS; Conscious; RES: Responsiveness; TRANS: Transition; SAPD: Spatial Analytic Phase Difference

Delta Theta Alpha Sigma Beta Gamma All
Unresponsive
Wakefulness Syn-
drome/ Minimally
Conscious State /
(Severe Neurocog-
nitive Disorder)

wPLI in-
creased (Chennu
et al., 2014); wSMI
decreased mainly
in P or AP (King
et al., 2013; Sitt
et al., 2014); higher
frontal-to-posterior
PLI and imaginary
coherence in MCS
as compared to
UWS (Lehembre
et al., 2012)

Decrease in FP-
wPLI (Chennu
et al., 2017); lower
wSMI in VS as
compared to MCS
and CS patients (Sitt
et al., 2014); higher
PLI INTERH con-
nectivity (Lehembre
et al., 2012), richer
GC for SND than
MCS (Leon-Carrion
et al., 2012)

Stronger GC from
all areas to frontal
region in SND vs.
MCS (Pollonini
et al., 2010), richer
GC for SND than
MCS (Leon-Carrion
et al., 2012))

Reduced connec-
tivity in MCS vs.
SND, particularly of
frontal regions from
other regions (Pol-
lonini et al., 2010)

Sedation / Anaes-
thesia compared to
Wakefulness

Increased P and
PF wPLI (Propo-
fol/Midazolam)
Lee et al. (2017a,b)
; drop in sub-delta
band phase co-
herence (0.05-1.5
Hz) slow-wave
coherence between
frontal, occipi-
tal, and frontal-
occipital electrode
pairs (Wang et al.,
2014); higher inte-
grated information,
higher average
degree (wPLI) in
anesthesia, lower
number of mod-
ules (Kim et al.,
2018) (Ketamine,
Propofol)

SAPD in-
crease (Murphy
et al., 2011) (Propo-
fol), Higher co-
herence in Propofol
than baseline (Akeju
et al., 2014); higher
integrated infor-
mation (Ketamine,
Propofol), lower
number of modules
in anesthesia (Kim
et al., 2018)

Decrease, especially
in FP (PLI) and
F-to-P (dPLI) (Blain-
Moraes et al., 2014)
(Ketamine); De-
crease in wPLI
(Chennu et al.,
2016) (mild and
moderate propofol
sedation); SAPD
increase (Murphy
et al., 2011) (Propo-
fol); Lower P wPLI
(Lee et al., 2017a);
Higher coherence
in propofol than
dexmedetomidine
sedation and base-
line (Akeju et al.,
2014); lower inte-
grated information,
lower average
degree (wPLI) in
anesthesia, higher
number of mod-
ules (Kim et al.,
2018) (Ketamine,
Propofol)

F-wPLI higher in
UnC (Lee et al.,
2017a,b); higher
coherence in
dexmedetomi-
dine sedation than
propofol or base-
line) (Akeju et al.,
2014)

High wPLI in transi-
tions of RES over F,
P, and FP (Lee et al.,
2017b) (Propofol)

High wPLI in Un-
RES; higher during
TRANS to RES
than UnC (Lee
et al., 2017b); hyper-
correlated activity
in Propofol anaes-
thesia (Bola et al.,
2018); SAPD in-
crease (Murphy
et al., 2011)

Phase Lag Entropy
reliably distin-
guished between
consciousness and
its loss in anaes-
thesia (8-30Hz;
(Lee et al., 2017a);
Decrease in coher-
ence (John et al.,
2001)

Table 4: Review on Connectivity in Anaesthesia and Disorders of Consciousness
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Measures of Consciousness
General Overview Key Considerations
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s

w
PL

I F U S-
P

Weighted Phase Lag Index
estimates, for a particular
frequency, to what extent
the phase leads and lags
between signals from two
sensors are not equiprob-
able, irrespective of the
magnitude of the phase
leads and lags, weight-
ing the contribution of ob-
served phase leads and
lags by the magnitude of
the imaginary component
of the cross-spectrum.

EEG,
LFP,
MEG

Data has to
be Fourier-
or Hilbert-
transformed.

Quasi-stationarity required
; Observed data modelled
as linear mixture of source
activities, assuming quasi-
stationary description of
the Maxwell equations for
the EEG/MEG/LFP fre-
quencies of interest; there-
fore not valid for order of
kHz (spike-waveforms)

Comparatively reduced
wPLI graph-theoretic net-
work efficiency found in
the alpha band in DoC
patients as compared to
healthy controls.

(Chennu
et al., 2014;
Vinck
et al., 2011)

Sp
ec

tr
al

C
oh

er
en

ce

F U S-
F

Cross-spectral density di-
vided by autospectral den-
sities of two different elec-
trodes; computed using
nonparametric spectral es-
timation techniques, e.g.
Fourier or wavelet trans-
form.

EEG Test for weak-
sense stationar-
ity; use single
trial data such
that detailed
non-stationary
interactions can
be appropriately
quantified.

Requirements of linearity
and stationarity; assum-
ing (weak-sense) stationar-
ity means that the autocor-
relation structure of a sig-
nal is not dependent on the
reference time point.

Loss of gamma-band co-
herence has been reported
to be associated with LOC;
Well understood and stud-
ied, computationally fast,
relatively robust against
noise and allows an easy
overview over relevant
coherent frequencies in the
data.

Can be increased during
loss of consciousness in-
duced by propofol anesthe-
sia; spectral coherence sen-
sitive to amplitude correla-
tion values.

(John et al.,
2002)

Abbreviations: S - Spectral; IT: Information-Theoretic; B - Baysian; P - Phase; F - Frequency; T - Time; Continued on next page
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En
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y F U IT-
T

Quantify the amount of
regularity and the unpre-
dictability of fluctuations
over time-series data

EEG Choose vector
length, filter
factor, num-
ber of included
data points of
segment.

Stationarity required;
High ApEN: random,
unpredictable; Low ApEN:
regular, predictable

Differences in different
states of sleep can be
computed using short data
sets.

Tends to show group-level
differences between spe-
cific conditions in which
consciousness is absent or
present, but is less reliable
at detecting reproducible
and graded changes.

(Burioka
et al., 2005)

B
is

pe
ct

ra
lI

nd
ex

F U IT-
T/F

The BIS index is based on
the power distribution of
the Fourier transform of
the EEG signal, and quan-
tifies the phase coupling
between different EEG fre-
quencies

EEG Detrend epochs
by mean, high-
pass-filter and
notch filter of
50Hz.

More suitable for the anal-
ysis of stationary signals;
EEG is assumed to have
multiple discrete oscilla-
tory peaks.

One of the most popu-
lar EEG-based commercial
monitor systems in hospi-
tals.

Widely variable among
subjects and anesthetic
agents; no theoretical or
mechanistic link proposed
between neural network
physiology in the cerebral
cortex and the intrafre-
quency coupling notion of
the BIS.

(Iselin-
Chaves
et al., 1998)

C
om

pl
ex

it
y

m
ea

su
re

s F U IT-
F

Lempel-Ziv Complexity,
amplitude coalition en-
tropy, synchrony coalition
entropy. LZc counts the
number of distinct patterns
in the concatenated obser-
vations, or equivalently
computes how incom-
pressible the data matrix
is, while ACE and SCE are
based on the average sur-
prise (entropy) of a single
nx1 observation drawn at
random from the matrix (n
being the number of time
series).

hdEEG Reject channels
with artefacts,
remove elec-
tronic frequency
artefacts, spa-
tially filter by
computing Sur-
face Laplacian.
Perform linear
de-trending and
baseline subtrac-
tion.

More suitable for the anal-
ysis of stationary signals

Robustly distinguish loss-
of-consciousness (LOC)
from wakeful resting (WR)
on the broad-band signal,
giving higher mean values
for WR as compared to
LOC across subjects. On
analyses restricted to spe-
cific frequency bands, the
discriminative power of
the complexity measures is
highest for low and high
frequency bands (delta,
beta, gamma), and lower
for intermediate bands
(theta, alpha). ACE and
LZc can also discriminate
mild sedation (MS) from
WR.

LZc, SCE and ACE,
when applied to multi-
dimensional EEG record-
ings of brain activity, may
only cautiously be con-
sidered to also correlate
with integration in EEG
dynamics, and therefore
to track complexity in
the sense of simultane-
ous differentiation and
integration.

(Schartner
et al., 2015)

w
SM

I F U IT-
T

Weighted symbolic mutual
information evaluates the
extent to which two EEG
signals present nonrandom
joint fluctuations, suggest-
ing sharing of information.

hd-
EEG

No stationarity required wSMI increases with
consciousness state, partic-
ularly across distant sites;
distinguishes patients
in vegetative state (VS),
minimally conscious state
(MCS), and conscious state
(CS); observed regardless
of etiology and delay since
insult.

wSMI does not lead to reli-
able results for average ref-
erencing.

(King et al.,
2013)

Abbreviations: S - Spectral; IT: Information-Theoretic; B - Baysian; P - Phase; F - Frequency; T - Time; Continued on next page
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E U IT-
T

Perturb the cortex with
TMS to engage distributed
interactions in the brain
(integration) and compress
the spatiotemporal pattern
of these electrocortical re-
sponses to measure their
algorithmic complexity (in-
formation).

TMS-
EEG

Identify primary
sources by source
modelling.

No stationarity in data re-
quired; however, pertur-
bation must trigger signif-
icant response; Need to
apply many TMS pulses
to compute a single PCI
value (relevant for mini-
mally conscious patients in
whom consciousness fluc-
tuates over time or for
the real-time monitoring of
anesthesia).

Can be used to measure
the level of consciousness
in single individuals dur-
ing wakefulness, sleep, and
anesthesia, as well as in
patients who had emerged
from coma and recovered a
minimal level of conscious-
ness; Theoretical Founda-
tion is Integrated Informa-
tion Theory.

PCI values are compara-
ble across different condi-
tions such as slow-wave
sleep, anaesthetic-induced
unconsciousness and unre-
sponsive wakefulness syn-
drome; although PCI does
not depend on
the cortical site of stimu-
lation in healthy brains, it
may be inaccurate in brain-
injured patients when ap-
plied to a structurally dam-
aged portion of the cortical
surface.

(Casali
et al., 2013)

G
ra

ng
er

C
au

sa
li

ty

F D IT-
T/F

A time series X is said
to Granger-cause Y if X
values provide statistically
significant information
about future values of Y.

EEG,
source
space
EEG,
fMRI

Needs to be modi-
fied for ERP-EEG.

Covariance stationary or
window technique; Vulner-
able to producing spurious
results as a result of its lin-
ear interpretation, sensitiv-
ity to noise and band pass
filtering and inaccurate in-
ferences in cases where two
signals are mutually influ-
enced by a third indepen-
dent source; Random fluc-
tuations assumed to be se-
rially independent (show
no temporal correlations
and fluctuate at very fast
timescales), even if neu-
ronal fluctuations in the
brain are produced by neu-
ronal systems that have the
same time constants as the
system studied

Granger causality can be
applied directly to any
given time series to detect
the coupling among em-
pirically sampled neuronal
systems; useful in identi-
fying distributed networks
for subsequent analyses
of effective connectivity;
Granger causality can
be used in source space
(Brainstorm).

Need to specify a model
for the signals and their
interactions; can actually
be increased during loss of
consciousness induced by
propofol anesthesia

(Friston,
2011; Nala-
tore et al.,
2007)

Abbreviations: S - Spectral; IT: Information-Theoretic; B - Baysian; P - Phase; F - Frequency; T - Time; Continued on next page
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F

Frequency domain analog
of the concept of Granger
causality

EEG Should be limited
to subtraction
of the mean,
division by the
variance and
digital filtering.
Filtering must not
influence phases
of signals, e.g.
filter forward and
backward (Mat-
lab filtfilt). The
signals should
be referenced
to a “neutral”
derivation; Use
linear inverse
procedure to
estimate current
density wave-
forms in each
ROI; Apply DTF
to cortical wave-
forms related to
the ROIs.

Quasi-stationary only re-
quired for short-time DTF.
Requires a multivariate au-
toregressive model to be
estimated simultaneously
from all the time series.

Very robust to noise; per-
form quite well even in
case of non-linear signals.

Decreased SNR and length
impairs the accuracy of
the connectivity pattern es-
timation obtained by the
DTF; DTF performs signif-
icantly better in bivariate
than multivariate case.

(Winterhalder
et al., 2005)

Ph
as

e
Sl

op
e

In
de

x F D IT-
P

If the speed at which dif-
ferent waves travel is sim-
ilar, then the phase differ-
ence between sender and
recipient increases with fre-
quency, leading to a pos-
itive slope of the phase
spectrum.

EEG For estimating
cross-spectral
density, divide
into epochs, use
Hanning win-
dows, Fourier-
transform data.

No stationarity required;
PSI indicates temporal or-
der of two signals. For
bidirectional coupling, A
drives B does not imply B
cannot have an impact on
A.

Can estimate the direction
of causal relations from
time series’ based on the
phase slope of the cross-
spectra; insensitive to arbi-
trary mixtures of indepen-
dent source

Substantial intersubject
variation, similar to alpha
peak power.

(Nolte
et al., 2008)

Abbreviations: S - Spectral; IT: Information-Theoretic; B - Baysian; P - Phase; F - Frequency; T - Time; Continued on next page
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Tr
an

sf
er

En
tr

op
y F D IT-

T
Transfer entropy is condi-
tional mutual information,
with the history of the in-
fluenced variable as condi-
tion.

EEG,
MEG,
fMRI,
LFP

TE should only be used
on data of sufficient length
that show at most weak
non-stationarities; TE may
not accurately measure the
underlying causal struc-
ture in all situations, as
causal interactions can also
serve the purposes of infor-
mation storage and mod-
ification. Assume pair-
wise interactions, although
a fully multivariate exten-
sion is possible.

Detect purely non-linear
interactions in a model-free
manner; robust for a wide
distribution of interaction
delays

No information on the type
of interaction, i.e. TE anal-
ysis is difficult to interpret
when signals have a dif-
ferent physical origin such
as for example a chemical
concentration and an elec-
tric field; high sensitivity
for all types of depedencies
between two time-series;
susceptible to producing
spurious results due to a
source that mutually influ-
ences the signals of inter-
est.

(Schreiber,
2000; Lind-
ner et al.,
2011)

D
yn

am
ic

C
au

sa
lM

od
el

li
ng

E D B-
T

Bayesian model compari-
son procedure that rests on
comparing models of how
data were generated.

ERP-
EEG,
fMRI

Assuming linearity and
stationarity model’s bio-
physical parameters
prescribe the cross-spectral
density of responses. DCM
assumes a bilinear state
space model with non-
linear interactions and
requires a priori knowl-
edge about the underlying
connectivity and compar-
isons of several competing
models with respect to
the observed data; Three
sub-populations in each
neuronal source (spiny
stellate input cells, deep
pyramidal output cells and
inhibitory interneurons)
with forward connections
(targeting spiny stellate
cells), backward connec-
tions (targeting pyramidal
cells and inhibitory in-
terneurons with slower
kinetics) and lateral con-
nections (targeting all
subpopulations).

Biophysically plausible
generative model of the
measured data; in EEG-
based DCM models will
potentially allow the char-
acterisation of receptor-
specific contributions to
brain connectivity (impor-
tant in pharmacological
and clinical settings)

DCM can currently not
be implemented in sponta-
neous EEG recordings and
requires prior knowledge
of connectivity.

(Moran
et al., 2009,
2011)

Table 5: Review on Suggested Metrics for Tracking Consciousness
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Appendix C

The Application of Mutual
Information in ECoG-Data

C.1 Introduction

I undertook this project during my Erasmus+ traineeship with Dr Robin
Ince at the University of Glasgow.

This is a new analysis of electrocorticography (ECoG) data, that has
already been used in a previous publication (Komatsu et al., 2015) and of
unpublished ECoG data of a work that is currently in preparation.

The goal of our analysis was to find whether the changes between
standard and deviant tones is marked by a difference across all frequen-
cies in a broadband-manner or whether this was due to changes in par-
ticular oscillations.

In the predictive coding framework, the brain constantly generates
and updates a mental model of sensory input. In each region of the neu-
ral sensory processing network, the propagated model is compared to
the current sensory input. If they do not match, a prediction error is sent
back up the network and the model is revised (Clark, 2013).

The underlying neural mechanisms of prediction error are typically
studied by presenting a series of “standard” stimuli with intermittently
occurring deviant stimuli, also called “oddballs”, and by contrasting brain
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responses between these stimuli categories (Lumaca et al., 2019). This
way, event-related potentials (ERP) and a range of neural oscillations
have been identified as neural markers of prediction error.

The most widely studied deviance ERP is auditory mismatch nega-
tivity (MMN) – a negative deflection of electrical event related poten-
tial recorded on the scalp or cortical surface using electrocorticography
(ECoG ) (Näätänen et al., 2007). MMN originates from the primary au-
ditory cortex (Edwards et al., 2005), and it peaks around 150-200 ms in
humans, whilst the peak latencies below 100 ms are typically reported in
monkeys (Komatsu et al., 2015). In addition to MMN, prediction error
responses are observed in neural oscillations in a variety of frequency
ranges including theta (3-8 Hz), alpha (8-12 Hz), beta (14-30 Hz) and
gamma (> 30 Hz) ranges (MacLean and Ward, 2014). Especially, Broad-
band High-frequency Activity (BHA; 70-150 Hz), also known as “high
gamma” has been used to study neuronal population responses in audi-
tory processes (Mesgarani and Chang, 2012; Tang et al., 2017). Here, we
investigated whether all any frequency bands involved in the mismatch
negativity response contain the overlapping or complementary informa-
tion regarding the prediction error.

C.2 Methods

C.2.1 Experimental Model

Three adult male common marmosets (Callithrix jacchus) that weighed
320-380 g were included in this study. Monkeys were implanted with
ECoG electrode array under general anaesthesia, and all efforts were
made to minimize suffering. All surgical and experimental procedures
were performed in accordance with the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals and approved
by the RIKEN Ethical Committee (No. H26-2-202).
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C.2.2 ECoG arrays

Chronically implanted, customized multichannel ECoG electrode arrays
(Cir-Tech Inc., Japan) were used for neural recordings (Komatsu et al.,
2017, 2015). One monkey had 32 implanted electrodes in the epidural
space of the the left hemisphere (monkey Fr), while the other two mon-
keys had 64 implanted electrodes (the right hemispheres of monkey Go
and Kr) in the epidural space. In all monkeys, the electrode-array cov-
ered the frontal, parietal, occipital, and temporal cortices, including the
primary auditory area.

C.2.3 Stimuli and task

Based on a roving oddball paradigm (Cowan et al., 1993), trains of 3, 5, or
11 repetitive single-tones of 20 different frequencies (250–6727 Hz with
intervals of 1/4 octave) were pseudo-randomly presented.

Tones were identical within each tone-train, but differed between tone-
trains. Because tone-trains followed on from one another continuously,
the first tone of a train was considered to be an unexpected deviant tone,
because it was of a different frequency from that of the preceding train.
The final tone was considered to be an expected standard tone, because
it was preceded by several repetitions of this same tone.

To avoid analytical artefacts stemming from differences in the num-
ber of standard and deviant stimuli, only the last tone of a train was
considered as standard.

Standards and deviants were presented 240 times in a single record-
ing session. Pure sinusoidal tones lasted 64 ms (7 ms rise/fall), and
stimulus onset asynchrony was 503 ms. Stimulus presentation was con-
trolled by MATLAB (MathWorks Inc., Natick, MA, USA) using the Psy-
chophysics Toolbox extensions (Pelli and Vision, 1997). Tones were pre-
sented through two audio speakers (Fostex, Japan) with an average in-
tensity of 60 dB SPL around the animal’s ear.
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C.2.4 ECoG recording and preprocessing

ECoG recordings were taken in the passive listening condition while
monkeys were awake. In each recording session, the monkey Fr was
held in a drawstring pouch, which was stabilized in a dark room, and
the monkeys Go and Kr sat on a primate chair in a dimly lit room.

The length of a single session was about 15min: the first 3min of data
were used for many standard stimuli and the remaining 12min of data
were used for the roving oddball sequences. For monkey Fr, data from 3
sessions were used for analysis, which resulted in 720 (=240×3) standard
and deviant presentations.

For monkeys Go and Kr, data from 6 sessions were used for analy-
sis, which resulted in 1440 (=240×6) standard and deviant presentations.
ECoG signals were recorded at a sampling rate of 1kHz per channel. In
the signal preprocessing, those signals were re-referenced using an aver-
age reference montage, and high-pass filtered above 1H z. Datasets were
segmented from −903 to 400ms relative to the onset of the unexpected
tone, so that each segment would include a pair of a deviant and a stan-
dard immediately preceding the deviant, as well as a baseline of 400ms
preceding the standard tone.

The segments were then divided into standard epochs and deviant
epochs (−400 ms to 400ms). Parts of the dataset are shared in the pub-
lic server Neurotycho.org (http://neurotycho.org/; (Nagasaka et al.,
2011)). ECoG electrode-of-interested was identified functionally by con-
trastic time frequency charts between standard and deviant stimuli (0-
350 ms), separately for each electrode.

Hilbert transforms were applied every 10 Hz and z-scored with re-
spect to the baseline period (-100 ms to 0 ms). One electrode with the
largest high-gamma difference between the standard and deviant tones
(MacLean and Ward, 2014) was selected for each monkey for further
analyses. In all three monkeys, the selected electrode-of-interest was lo-
cated in the auditory cortex.
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C.2.5 Mutual Information Analysis

Stockwell-Transform

The recorded ECoG data from the channel best representing the auditory
cortex in each individual monkey was transformed in time-frequency-
space using Stockwell transforms (Stockwell, 2007).

The filter is a Gaussian window function in frequency domain. There-
fore, when the input frequency is low, it has a better clarity in the fre-
quency as compared to the time domain, while when the input frequency
is high, it has a better clarity in the time domain as compared to the fre-
quency domain.

Binned Mutual Information

The binned mutual information (MI, NBin=2; NBin = number of bins)
that each frequency bin contains regarding the difference between stan-
dard and deviant tones was computed across all available trials for each
monkey and for each individual time point.

Redundancy Analysis

To find the redundancy between different frequencies with respect to
each other (frequency-frequency redundancy), two different information-
theoretic frameworks were used: a) II or Co-Information (Bell, 2003; McGill,
1954) and b) partial information decomposition (PID) analysis (Allen
et al., 2017; James et al., 2018).

The time-point of interest selected here was obtained based on com-
puting the maximum possible mean information content across all pairs
of frequencies.
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Explanation C.2.1: Interaction Information

Co-Information or Interaction Information answers the question
whether the joint information between any two variables X1 and
X2 and a third variable Y , specifically I ({X1, X2},Y ), is greater or
smaller than the information that any variable contains about Y
individually, e.g. I ({X1},Y ). Mathematically, this is experessed as
following:

I I = I ({X1, X2};Y )− (I (X1;Y )+ I (X2;Y )), (C.1)

where I (X1,Y ) represents the information that X1 contains about
Y and I ({X1, X2},Y ) represents the joint information that X1 and
X2 contain about Y . If the co-information is positive, this implies
that X1 and X2 contain more information about Y , when they are
considered together as compared to individually (synergy). If the
co-information is negative, X1 and X2 share overlapping informa-
tion about Y (redundancy).
However, it is not clear how much more/less information they
contain together as compared to individually due to the phe-
nomenon of redundancy-synergy cancelling (Chicharro et al.,
2018).
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Explanation C.2.2: Partial Information Decomposition

Based on considering the joint information I ({X1, X2},Y ), partial
information decomposition allows us to disentangle the follow-
ing questions from each other:

• what information overlap about Y exists between X1 and X2

(redundancy, R(X1, X2;Y )),

• what information does X1 provide about Y , that X2 does
not, and vice versa (unique information, U 1(X1, X2;Y ),
U 2(X1, X2;Y ) ),

• what additional information do X1 and X2 provide
about Y when both are known simultaneously (synergy,
S(X1, X2;Y )).

I ({X1, X2};Y ) = S(X1, X2;Y )+R(X1, X2;Y )

+U 1(X1, X2;Y )+U 2(X1, X2;Y )
(C.2)

I (X1,Y ) = R(X1, X2;Y )+U 1(X1, X2;Y ) (C.3)

I (X2,Y ) = R(X1, X2;Y )+U 2(X1, X2;Y ) (C.4)

While the mutual information (MI) expressions in eqs. (C.2)
to (C.4) can be calculated within the standard mutual information
framework, it is not possible to derive mathematical expressions
for the synergy, redundancy, and unique information without any
further measures (Timme and Lapish, 2018).
Several candidate measures for redundancy have been proposed.
Here, we used a metric of redundancy that quantifies the com-
mon change in surprisal shared between variables at the local or
pointwise level (Ince, 2017) in the dit package in Python (Allen
et al., 2017; James et al., 2018).
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C.3 Results

A clear pattern of frequency redundancy above 70H z can be observed
for all three monkeys. While co-information shows different clusters of
redundancy ( figs. 26, 28 and 30), PID shows most of the oddball re-
sponse is marked by redundancy in the Broadband High-frequency Ac-
tivity ( figs. 27, 29 and 31).

Figure 26: The top right plot shows the inverse of the Interaction Informa-
tion between any two frequencies (x- and y-axis) for Monkey Fr. Positive
values are shown in red and represent redundancy, while negative values
are shown in blue and represent synergy. The top left and bottom right plot
show the individual frequency-resolved mutual information of the oddball
response, while the bottom left plot shows the time-frequency resolution of
the mutual information computed on the spectral power during the whole
trial (-400ms to 400ms). Here, 0 along the x-axis marks the onset of the stim-
ulus and the associated color bar is at the bottom right. Higher values are
shown in red and lower values are shown in blue. Videos of the changes
occurring during the whole trial are available on request.
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Figure 27: Partial Information Decomposition between any two frequency
bins (x- and y-axis) for Monkey Fr. The redundancy, synergy as well as the
unique information for X and Y are shown for the interactions between all
pairs of frequencies. Videos of the changes occurring during the whole trial
are available on request.
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Figure 28: Interaction Information between all pairs of frequencies for Mon-
key Go. A detailed explanation of the subplots can be found in the caption
of Figure 26.

Figure 29: Partial Information Decomposition of Frequencies for Monkey
Go. A detailed explanation of the subplots can be found in the caption of
Figure 27.
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Figure 30: Interaction Information between all pairs of frequencies for Mon-
key Kr. A detailed explanation of the subplots can be found in the caption
of Figure 26.

Figure 31: Partial Information Decomposition for all pairs of frequencies
for Monkey Kr. A detailed explanation of the subplots can be found in the
caption of Figure 27.
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C.4 Conclusions

This study represents the first time partial information decomposition
analysis has been applied in the frequency domain.

Interestingly, PID reveals a different perspective to co-information.
While co-information shows different clusters of redundancy, PID shows
most of the oddball response is marked by redundancy in the broad-
band high-frequency activity (BHA). From a methodological point of
view, this finding shows that redundacy-synergy cancellation is possi-
ble (Chicharro et al., 2018). From a physiological point of view, it shows
that the activity at all frequencies in the BHA-range is not only co-occurring
at the same time, but also redundant with itself. Future studies should
test whether this redundancy effect in the high frequencies is limited to
the auditory cortex or whether it represents a whole-brain effect.
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