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Abstract

The smart grid is envisioned as a reconfigurable energy ex-
change network that is resilient to failures. An expected fea-
ture of the future smart grid is optimal power distribution
from energy producers to consumers, also referred to as net-
work planning. This entails allocating finite energy resources
to customers in order to optimally satisfy all customer de-
mands, subject to constraints on the topology of the graph.
This thesis deals with modeling this problem as the CAPACI-
TATED SPANNING FOREST PROBLEM (CSF), namely the opti-
mization problem of creating a spanning forest with a capac-
ity constraint on each tree limiting its total weight. I prove the
NP-completeness of this problem and provide three different
heuristic algorithms for solving it: a Local Search heuristic, a
Hill Climbing heuristic, and a Max Flow-based heuristic, each
of which has been published in a peer-reviewed IEEE confer-
ence. These are the first algorithmic approaches in the litera-
ture addressing this problem. Each algorithm is an improve-
ment over the previous in solution quality and efficiency. Us-
ing a simulation-based approach I empirically demonstrate
the suitability of these algorithms for planning the initial con-
figuration of a smart grid’s topology, and for recovery when
faults occur.

xvii



Chapter 1

Background on Smart Grids

1.1 Motivation

Electrification was rated “the greatest engineering achievement of the
20th century” by the United States National Academy of Engineering (Ros10),
taking precedence over the automobile, the airplane, the Internet, and
highways. Electric power and the infrastructure that supplies it are vi-
tal to modern human life, and serve as the foundation for essentially all
industries. The importance of its continuous operation and reliability
cannot be overstated.

The development of new technology and recent industrial, social, and
policy factors are leading toward a reconfiguration of the existing energy
infrastructure. The demand for energy in the world is growing faster
than the growth rate of energy generation (LDS10). World energy con-
sumption is projected to increase by 44% from 2006 to 2030. In addition,
in recent years power outages have become increasingly frequent in the
United States (Col10), and outages are often discovered only after they
are reported by consumers (GWP+14). The loss of electric power today
has a more profound effect than in the past due to our reliance on digital
electronic technologies.

A White House report entitled “Economic Benefits of Increasing Elec-
tric Grid Resilience to Weather Outages” (Exe13) found that weather-
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related outages in the period 2003-2012 are estimated to have cost the
U.S. economy an average of $18 billion to $33 billion annually. The re-
port concluded that continued investment in grid modernization and re-
silience will mitigate these costs, saving billions of dollars and reducing
the human hardship caused by extreme weather.

There is a growing need to deliver higher quality and more reliable
power from an aging infrastructure while keeping costs low. Matching
generation to demand is difficult because energy producers do not have
adequate methods to predict demand and to perform demand reduction
(know as load shedding). As a result, they over-generate power during
periods of peak demand, which is expensive and environmentally un-
sound. Similarly, the difficulty of predicting volatile generation such as
wind and solar power makes these energy sources challenging to inte-
grate into the electric grid (KBD+12).

Information and communication technologies are currently being in-
tegrated into traditional energy delivery systems. There is also a world-
wide focus on “green” renewable energy and climate change. The use
of renewable energy requires a grid that can cope with bi-directional
flows and the unpredictability of renewable sources, as well as the in-
corporation of distributed storage. Finally, there is also an increasing
desire from consumers for a role in energy production and management
as “prosumers”.

These needs for change call for the transformation of the electric power
system from a “mostly unidirectional, centralized, and hierarchical or-
ganization into a distributed, networked, and automated energy value
chain” (Ros10). In response to these needs, the United States National
Institute of Standards and Technology (NIST) spurred national efforts to
develop the next-generation electric power system, commonly referred
to as the “Smart Grid” (GWP+14).

The Smart Grid is an enhancement of the 20th century power grid
that uses automation and Information and Communication Technology
(ICT) to better manage energy production and distribution. Whereas tra-
ditional power grids supply energy from a few central generators to a
large number of customers in a mainly static configuration, the Smart
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Grid is an automated and distributed energy delivery network that al-
lows for bi-directional energy flows between prosumers, dynamic rout-
ing, flexible loads, and variable tariffs.

However, because of their complexity the vulnerability of smart grids
must also be addressed. As they are a critical infrastructure, it is crucial
that smart grids be reliable, robust and resilient to failures, whether acci-
dental or malicious. The ability to autonomously “self-heal” in the event
of failure is expected to be an important characteristic of smart grids.

It is this challenge of resilience in smart grids that is the principal
motivation behind this work.

It is noteworthy that although grid digitization is still in incipient in
most of the United States, some smart grid pilot projects at the Medium-
Voltage level featuring some degree of automation have already been
implemented in Europe and other areas of the world, where Italy is lead-
ing the field with ongoing projects deployed after 2010. Enel’s Telege-
store project is regarded as the first commercial scale use of smart grid
smart metering application in consumers’ homes (TA16), while seven
smart grid pilot projects from six operators (Enel, ACEA, A2A, ASM,
A.S.SE.M., Deval) have been deployed on Medium Voltage networks in
Italy in the early 2010s. These projects implement a selection of fea-
tures such as demand response, electric vehicle charging, monitoring
and diagnosis of components such as circuit breakers, network planning,
automated fault detection and localization, and protection mechanisms
(CPP+15).

In particular, the A2A project (DFOP15) implemented in Milan pro-
poses a novel distributed automated method for selective fault detec-
tion based on logic selectivity (a term for simple procedures triggered
by inter-substation communications) and rapid network reconfiguration;
however, at the last time of publication the method had still not been
completely tested and its performance was only estimated. The pilot
project implemented by A.S.SE.M. on a Medium Voltage network in cen-
tral Italy also featured fault isolation through logic selectivity (DFFM15).
Nevertheless, reconfiguring the topology of the electrical network in re-
sponse to faults remains a complex problem, and algorithms are still be-
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ing developed to do so optimally; (PPL+16) propose a genetic algorithm
approach for reconfigurations of the ACEA network.

Other countries in which smart grid demonstration projects and smart
grid technology rollouts have been performed include Korea, Japan, Aus-
tralia, the United Kingdom, the United States, Spain and Portugal (TA16).

1.2 Description of the electrical infrastructure

The electric power network, power grid, or “grid”, is a physical sys-
tem that delivers electrical energy from production facilities (generators)
to consumers. It is comprised of a networked infrastructure that spans
hundreds of kilometers and connects intermediary substations by power
lines (arcs).

The present infrastructure of the electric grid is composed of these
major domains:

Generation: Produces electric energy in various ways at medium and
low voltages. Currently, 62% of worldwide energy generation comes
from coal and gas, 13% from nuclear power sources, 16% from hy-
droelectric sources, and less than 4% from other renewable sources
of energy (Ros10).

Transmission: Carries electricity over long distances via High-Voltage
(HV) (>200 kV) infrastructure. Transmission networks have a meshed
structure for redundancy (see Figure 1).

Distribution: Lowers voltage and distributes it for consumption. Medium-
Voltage (MV) (10kV-60kV) infrastructure serves industry while Low-
Voltage (LV) (220V-380V) serves residential and commercial areas.
The MV infrastructure is connected to the HV and LV infrastruc-
tures, while the LV infrastructure is connected to the MV infras-
tructure. Distribution networks typically have a planar and radial
(tree-like) structure to facilitate metering and reduce costs.

Consumption: Energy is used by consumers in a multitude of ways.
Energy needs are typically less than 20 kW for a residence, 20-200
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kW for commercial buildings, and >200kW for industrial sites.

Operations: Manages the supply-side movement of electricity and is re-
sponsible for the smooth operation and maintenance of the power
system.

Figure 1: Representation of the electrical power system, consisting of Trans-
mission (High voltage lines in blue) and Distribution (Medium voltage and
Low voltage in green) networks. Transmission networks dispatch power
over long distances and have a meshed structure for robustness. Distribu-
tion networks are local and have mostly a radial (tree-like) structure to re-
duce economic costs and to simplify the per-user calculation of power con-
sumption. Industries are generally served by medium voltage, while resi-
dential customers are served by low voltage. Reproduced from (SCC+14).

1.2.1 Description of the distribution network

The following is a description of the main components in the distribution
network, based on the one by (DCI13), to familiarize the reader with the
nature of the grid and its relevant terminology. The Medium and Low-
voltage distribution infrastructures consist of the following categories of
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components:

Substations: Substations are facilities that direct electricity across the
network and control its voltage. They are equipped with switches,
circuit breakers, transformers, and control equipment. They also
connect the MV to the HV and LV infrastructures, lowering the
voltage at each step, and connect generators to the grid. They are
generally unmanned and rely on control systems such as Supervi-
sory Control and Data Acquisition (SCADA) for supervision and
control.

Power (or generating) stations: Supply energy to the distribution net-
work from a variety of sources, including chemical combustion,
nuclear fission, flowing water, wind, solar radiation, and geother-
mal heat. Generators can be classified as:

• Bulk generators: Classical generators that generate energy in
non-intermittent large quantity for transport over long dis-
tances.

• Distributed Energy Resources (DERs): Produce energy in smaller
quantities and are located close to the load they serve. Typi-
cally produce energy from renewable energy sources (wind,
solar, small hydro, biomass, geothermal).

• Micro or mini-generators: Intermittent small-scale generators
in the low-voltage network that are owned by a customer.

Distributed storage: Function as storage for DERs. Can be used to
smooth the power generation profile of intermittent renewable gen-
erators, or can be used by Distributed System Operators (DSOs) to
enhance network performance, helping supply power during peak
operation and improving quality of service. To this end, they can
store energy during off-peak periods or from intermittent sources,
and sell it back on the energy market during peak periods, gener-
ating a profit from the price margin.

Loads: A load is anything connected to the grid that extracts energy
from the distribution network.
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• Non-flexible loads: Classical loads that cannot tolerate a loss
of power. Non-flexible loads in the low-voltage infrastructure
include households, small enterprises, and hospitals.

• Flexible loads: Loads that offer flexibility in the power profile,
e.g. shifting loads to less expensive time slots, changing the
amount of energy or changing the tariff. Examples include
smart appliances and charging stations for electric vehicles.

Power lines, or arcs connecting components in the network. Power
lines have protection units such as breakers or an associated switch.

Switches and circuit breakers: Modify the topology of the network
when they are tripped (in the case of circuit breakers) or alterna-
tively opened or closed (in the case of switches). Circuit breakers
cut off flow to an arc, while switches can be activated or deactivated
to route power flow.

A combination of the above items is also possible. For example, a res-
idential consumer that produces energy (a.k.a. a “prosumer”) can
be both a generator and a load.

The electrical infrastructure can be represented as a network, or graph.
A vertex in the graph represents a power station, a load, or a substation,
or a combination thereof, while an edge represents a power line. The
topology of the High-Voltage network typically follows a meshed con-
figuration. The topology of the Medium-Voltage network is typically
a radial graph or a partially meshed graph for redundancy. The Low-
Voltage electric infrastructure is typically a radial or planar tree graph,
or a loop or ring graph with a few redundant links.

Paraphrasing (GWP+14), “historically, distribution systems have had
radial configurations and little telemetry, almost all communications within
the infrastructure being performed by humans. The primary sensor in
this situation is the customer with a telephone, whose call initiates the
dispatch of a field crew to restore power”.

Although communications interfaces within the distribution domain
have traditionally been hierarchical and unidirectional, they are adapting
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to work in both directions, transmitting information from sensors, just as
electrical connections are beginning to support bi-directional flow.

1.2.2 Smart Grid features

The principal feature differentiating the smart grid from the traditional
power network is pervasive automation facilitated by digital Informa-
tion & Communication Technologies, which allows for a number of system-
wide features of the grid. Whereas the traditional power grid relies on
electromechanical technology and has little internal regulation or means
for communication between devices, the smart grid employs digital tech-
nology that enables increased communication between devices and facil-
itates remote control and self-regulation. The Distribution domain in the
smart grid will be automated and will communicate in a more granu-
lar fashion in real-time with the Operations domain to manage power
flows, including information from energy markets and other environ-
mental and security factors.

On a traditional power grid lacking digitization an electric utility has
few means to control or manage the system other than matching gen-
eration to consumption. In the smart grid, sensors are pervasive and
digital technology allows for self-monitoring and pervasive control of
the grid. The smart grid is reconfigurable, enabling automatic changes
in the topology of the network in the case of failures, thus maintaining
service and expediting system recovery. This type of operation is cur-
rently performed manually on traditional grids. The automated process-
ing for reconfiguration can be implemented in a distributed rather than
centralised fashion, with each switch reacting independently to its sen-
sory inputs. This local control of local topology includes the adoption of
self-healing algorithms (SMRP11). Distribution Transformer Controllers
enable the optimal operation of the local network based on constantly
updated distribution system parameters that optimize energy flows, net-
work topology and offer self-healing algorithms in collaboration with
primary substation automation (SMRP11).

The smart grid will also feature a dynamic energy market enabled
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by digital technology. Constant updates in energy prices to consumers
from the energy market enable demand response, which entails con-
sumers using or storing energy during periods when tariffs are lower,
and can also entail selling energy from storage back on the grid when
it is more expensive. With demand response consumers will have the
ability to dynamically change their electricity consumption in response
to price signals from the grid, which in turn reflect total user demand.
The smart grid system also enables the integration of intermittent renew-
able energy sources and distributed storage, selling their energy back
on the grid. This can even be done from electric vehicles, which func-
tion as mobile distributed storage. To facilitate this, the distribution net-
work must adapt to bi-directional flows rather than conventional uni-
directional flows, as customers may also generate, store, and manage the
use of energy.

The smart grid enables a new market of service providers - sellers of
smart sensors, electric vehicles, and prosumer technologies, increasing
consumer choice. The smart grid will provide the same kind of founda-
tional infrastructure for a new business ecosystem in the same way that
the Internet did for new online business models, such as crowdfunding
or online marketplaces. Service providers in the smart grid are orga-
nizations or individuals providing services to electrical customers and
to utilities. These entities will create new and innovative services and
products to meet the requirements and opportunities presented by the
evolving smart grid. For example, service providers may provide the in-
terface enabling the customer to interact with the energy market. Choice
is also reflected in energy providers as customers can more easily select
green resource or prosumers according to their preferences, rather than
being tied to a single utility.

Further anticipated benefits of the smart grid, elaborated by the Na-
tional Institute of Standards and Technology (NIST) (GWP+14), include:

• “Improved power reliability and quality

• Optimized use of existing power facilities and networks
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• Averts construction of back-up power plants during peak opera-
tion

• Improved resilience to disruption

• Easier deployment of renewable energy sources

• Automated maintenance and operation

• Reduced greenhouse gas emissions

• Reduced fossil fuel consumption, by reducing the need for ineffi-
cient generation during peak usage periods

• Enables the transition to plug-in electric vehicles and new energy
storage options”

1.3 Smart Grid challenges

There are many open challenges in the field of smart grids. These can
be summarized as challenges dealing with 1) the operation of the physi-
cal electric grid infrastructure of the smart grid, 2) the communication
infrastructure of the grid, and 3) the protection of these two compo-
nents (FMXY12). These challenges are outlined in the next section. I will
briefly describe the open problems concerning smart grids as a whole so
the reader is aware of them, and then focus on problems in the domain
of protection and resilience.

The problems of resilience are the ones most relevant to this thesis,
since they motivated the central question addressed by it. The reconfig-
uration mechanisms used to address resilience are exploited to address
the thesis problem, introduced in Chapter 2. This work is concerned both
with utilizing the reconfigurability of smart grids to optimally balance
loads and resources within tight bounds, as well as exploiting the same
reconfigurability to restore connectivity following disruptions.
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1.3.1 Issues of the power grid infrastructure

Integrating intermittent renewable energy sources and distributed stor-
age

Generation in the smart grid includes both traditional generation sources
and distributed energy resources (DER). Traditional generation sources
include coal, nuclear, and large-scale hydro generation usually attached
to the transmission domain. DER refers to prosumer generation, storage
and intermittent sources of energy.

The types of generation in the smart grid can be classified as:

1. Renewable and intermittent: Wind, solar

2. Renewable and non-intermittent: Hydro, biomass, geothermal, pumped
storage

3. Non-renewable and non-intermittent: Nuclear, coal, gas

It is predicted that distributed, renewable energy sources such as
low-cost wind and solar energy generators will be widely used in smart
grids in the future (FMXY12). However, these sources provide power
in a volatile, intermittent manner, as solar and wind energy is sensitive
to intermittent weather conditions. The grid, however, operates from a
“power-on-demand” paradigm for which volatile sources are ill-suited.

Integrating variable resources is one of the challenges of smart grids.
This is difficult for two reasons. First, electrical networks require reliable,
constant power delivery to consumers, whereas variable sources deliver
power in a stochastic manner. Many renewable sources (wind farms, so-
lar power) may ramp up or down unpredictably and faster than can be
compensated for by the traditional power grid without idling of tradi-
tional generator resources. Towards this end, distributed storage is pro-
posed as a solution for maintaining constant power delivery; however,
massive and economical power storage is not yet readily available. Dis-
tributed generation has been introduced in traditional grids in the past
with an important ancillary role in ensuring backup power in case of
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malfunction, and in supporting the variations in loads due to consumer
demand dynamics.

Secondly, variable generation introduces the problem of bi-directional
flows in the grid, because customers are able to become occasional pro-
ducers rather than pure consumers, and can send energy to the grid us-
ing the same infrastructure that has been engineered to be uni-directional.
Thus the grid must be able to handle both incoming and outgoing flows
from distributed storage. Current infrastructures are designed for uni-
directional power flow. Under certain conditions renewable sources can
cause a reversal of energy flow (Figure 2) and trigger protection mecha-
nisms that may disable portions of the grid.

Figure 2: Reversal of energy flow in the presence of renewable energy
sources. Left: A hypothetical power flow in a distribution grid, according to
the way in which the grid has been engineered. Right: A weather instabil-
ity switches the direction of the power flows, eventually causing automatic
protections to trip the lines. Reproduced from (SCC+14).

The optimal deployment of energy reserves to maintain reliability
and meet operational requirements, while taking into account the un-
certainty and variability of renewable energy resources, remains an open
question (FP14).

Electric Vehicles: Grid-to-Vehicle and Vehicle-to-Grid

Another related challenge in smart grids is that of electric vehicles. Elec-
tric vehicles can both draw power from the grid at variable locations and
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times (Grid-to-Vehicle, or G2V), and can also be used as generators and
storage units to supply the grid (Vehicle-to-Grid, or V2G).

In the G2V case, vehicle charging will lead to a significant new load
on the existing distribution grids. In V2G, the challenge is the availability
of electric vehicles, since an electric vehicle can only deliver power to the
grid when it is parked and connected to the grid (FMXY12). The latter
case also opens the possibility for creating new energy markets from elec-
tric vehicle users selling spare energy on the grid. Ultimately the effect
of electric vehicles on the grid is driven by human behavior, and should
be considered in future models.

Demand response and smart metering

Demand response is the ability of users to dynamically change their elec-
tricity consumption in response to price signals, which reflect total user
demand. For example, smart appliances might be inactive during pe-
riods of peak demand when energy prices are higher and instead con-
sume when the price is lower, thereby also reducing total peak demand
(Figure 3). Dynamic pricing and distributed generation are expected to
significantly reduce electricity costs for consumers, (KBD+12), as well as
for providers who will have to build less generating plants (LDS10). De-
mand management will require the development of several technologies,
including smart metering to report energy consumption patterns and ap-
pliances that can adjust their behaviour according to the price index of
electricity. Consumers can also tailor their preference for renewable en-
ergy sources.

1.3.2 Problems of resilience

The U.S. Department of Energy (DOE) defined “reliability” as “the abil-
ity of power system components to deliver electricity to all points of con-
sumption, in the quantity and with the quality demanded by the cus-
tomer” (OK01). The DOE also defined “resiliency” as “the ability of an
energy facility to recover quickly from damage to any of its components
or to any of the external systems on which it depends” (HBFD+10).
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Figure 3: Peak demand reduction. Reproduced from (KBD+12) ( c© 2012
IEEE).

“Self-healing” is the process of dynamically and automatically restor-
ing service in the system, and reacting quickly to disturbances in order
to minimize their impact (LDS10). Traditional power grids mostly do not
have self-healing capabilities. The failure of one link may result in loss
of service to consumers until mechanical repair takes place. However,
smart grids will have systems to monitor the status the of entire power
grid and the means to adapt to disturbances.

The ability to self-heal in the event of failure is expected to be an im-
portant characteristic of smart grids (GWP+14). The future smart grid is
envisioned to be generally adaptable and to have a reconfigurable net-
work topology, enabling demand response and self-repair in the case of
failures. The presence of redundant links is common in infrastructural
networks, making self-healing feasible with current technology. Urban
low-voltage distribution networks typically have a few inactive redun-
dant links that can be activated to restore connectivity can be selectively
activated to restore connectivity after a fault. These redundant links ex-
ist in the form of tie switches between different feeders, which can be
activated or deactivated by opening or closing the switch. The future
smart grid will have to leverage such resources in order to provide re-
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silience and optimal power routing throughout the network. Similarly,
by selectively activating or deactivating links, the future smart grid can
optimally connect customers to energy sources in conformance to their
preferences for certain types of energy sources and in order to minimize
costs.

The smart grid is formed from the merging of a power delivery infras-
tructure and an ICT infrastructure (controllers, monitors, communication
lines, etc.), as well as other entities such as generators, appliances, and
their ancillary IT components that enable automation. Thus, the future
smart grid will be an Internet of Things. The coupling and interaction
between the power grid and other critical infrastructures such as the in-
formation and communication layer makes the smart grid a “multiplex”
network, or a network of networks (Figure 4). This fusion however also
carries risks for the vulnerability of the system. Failures in one network
can trigger failures in the other, and propagate in cascades across the
networks that can result in the disintegration of either (or both) of the
networks (RP14). It is therefore important to investigate what kind of
network topology and interconnection model maximizes the resilience
of the smart grid.

1.4 Network Planning, and Fault Location, Iso-
lation and Supply Restoration (FLISR)

The text in this section, excepting the last paragraph, was first published
in (DSV17). Network Planning, and Fault Location, Isolation and Sup-
ply Restoration (FLISR) are both important functions of power distribu-
tion automation systems. In Power Systems, Network Planning broadly
refers to the configuration at all levels of the network model: optimal grid
construction, economical power distribution, forecasting of power de-
mand, and monitoring the status of the distribution network (HRW16).
In contrast with traditional power distribution networks, smart grids
will allow much greater flexibility in their planning due to their recon-
figurability (SXY+16). This extends also to the structure of the grid’s
topology, which can be modified by the selective activation of lines and

15



Figure 4: The smart grid as an interdependent complex network. Repro-
duced from (RP14) ( c© 2014 IEEE).

switches in the network.
FLISR aims at dealing with faults on power distribution lines, such

as link failures that lead to power outages at customers’ sites. The FLISR
function consists of three steps: first the location of the fault has to be
established, then the affected area has to be isolated by tripping the cor-
responding switches to protect the distribution lines and equipment, and
finally the isolated customers need to get their power supply restored.
The restoration is implemented by activating remotely operated switches
(ROSes), which are located at the redundant tie switch sections connect-
ing distribution feeders with each other.

An example of a FLISR problem formulation and solution is pre-
sented in (ZVD15) ( c© 2015 IEEE) and illustrated in Fig. 5. In the ex-
ample in Fig. 5, there are three 11kV feeders supplied by three different
zone substations (labeled A, B, and C). Distribution substations are po-
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Figure 5: Sample distribution network, fault events and corrective actions.
Reproduced from (ZVD15) ( c© 2015 IEEE).

sitioned along each feeder as demanded by the customers’ loads. In the
initial state, the switches ROS3, ROS4 and ROS9 are open, meaning that
flow is disconnected. All other switches are closed.

An example FLISR scenario is described in (ZVD15) as follows: “A
tree falls on the 11kV mains, severing the line between circuit breaker
CB1 and remotely operated switch ROS1 at the location indicated and
causing a permanent fault on feeder 1. The feeder protection trips circuit
breaker CB1 at zone substation B. After an attempted automatic reclo-
sure, CB1 locks out, preventing an accidental startup. This isolates the
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fault but leaves customers on feeder 1 without power. As they are no
longer energized, switches ROS1 and ROS2 propagate a “call for help”
towards the substations of adjacent feeders 2 and 3. CB2 at zone substa-
tion A, and CB3 at zone substation C, respond with information about
the headroom (excess capacity) available. This information propagates
back down feeders 2 and 3. Switches ROS3 and ROS4 compare the avail-
able excess capacities with their respective loads. The switches agree on
the steps necessary to restore supply: The mid-section of feeder 1 will
be transferred to feeder 2; the tail section will be transferred to feeder 3;
the head section will have to await repair. In the meantime, the control
centre sends the crew to repair the located fault.”

In this research we address the problem of Network Planning and
FLISR in electrical distribution networks, through the automated con-
figuration and re-configuration of the network’s topology to optimally
assign customers to energy sources. This is achieved via several heuris-
tic algorithms that solve the combinatorial optimization problem of con-
structing a spanning forest with capacity constraints on each tree. Our ul-
timate aim is to also address the problem of self-healing, as demonstrated
in the sample FLISR scenario in Figure 5. We define self-healing as the
restoration of connectivity following a link or node failure that discon-
nects certain customers from the network. We achieve this by exploiting
the redundant “dormant” links already present in the distribution net-
work after the planning phase, activating them as needed to reconnect
those nodes to the network.
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Chapter 2

Problem Definition

2.1 Background

This work extends the work and ideas introduced in (QCS14). The cen-
tral idea behind that work was to explore the resilience properties of dif-
ferent classes of networks by creating perturbations in the network and
then restoring connectivity using a “self-healing” algorithm. The net-
works examined represent infrastructural networks. A failure event oc-
curring at some location in the network causes a disconnection in the net-
work, whereupon the self-healing algorithm activates unused but avail-
able redundant links to restore connectivity and functionality.

In the model in (QCS14) there is a graph representing the medium
and low-voltage electrical infrastructure where nodes represent substa-
tions and edges represent arcs (power lines). A source node s provides
power to the rest of the network, and other nodes are connected to the
source by a spanning tree in order to be considered active. The graph
contains redundant “dormant” links that are outside the spanning tree
and are only used in the case of failures in order to re-establish connec-
tivity. In the simulations in the work, failures can occur either in the
links or on the nodes themselves, which has the effect of disabling all the
outbound links of the node.

The authors developed a healing protocol based on a Minimum Span-
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Figure 6: 6a) A source node (upper left corner, marked “S”) serves 15 cus-
tomer nodes connected to it in a tree-like distribution network. Dashed
green lines represent dormant backup links that can be activated in case
of failures. The link marked X is about to fail. 6b) A link fails, disconnecting
six nodes (in red) from the source. 6c) A dormant backup link (marked R)
is activated, restoring supply to all nodes.

ning Tree algorithm that reconstructs the maximal spanning tree that re-
connects as many nodes as possible to the source. Figure 6 shows the
operation of this protocol.

The number of uncorrelated failures in the network were varied and
the performance of the self-healing algorithm on different classes of net-
works was assessed through experimental simulation. The results showed
that the planar (square grid and tree-like) networks most similar to real-
world electrical infrastructures are the most fragile, while scale-free (power-
law degree-distributed) and small-world (having “shortcut” links con-
necting distant nodes) networks are much more resilient as the number
of failures increases.

The model in (QCS14) considered networks having only one source.
Thus, an open problem is to extend the model to consider also networks
served by multiple sources. The sources can represent multiple gener-
ating stations, including different forms of electricity providers. Among
these, for example, could be distributed “green” generators from renew-
able sources, whose energy production is volatile. This type of gener-
ation is becoming an increasingly relevant if not fundamental aspect of

20



Figure 7: Comparison of resilience in different network structures. <
FoS > is the fraction of nodes receiving power. k is the number of failures
introduced. SF: Scale-free. SW: Small-world. SQ: Square grid. Reproduced
from (QCS14).

the future envisioned smart grid, as a shift is anticipated from the tra-
ditional hierarchical, unidirectional and capillary transport and distribu-
tion infrastructure to one that will support local energy trading among
prosumers (PA13). In addition, distributed generators are of interest to
studies of resilience of power grids as their limited presence in power
grids has been found to increase resilience (SMC+13).

2.2 Model description

The text in this section was first published in (DSV17). This work ex-
tends research by (QCS14) in which smart grids were modeled as graphs
and the resilience properties of various types of graphs were tested. The
previous work explored network connectivity on cases with a single en-
ergy source, and left open the problem of cases featuring multiple energy

21



sources, which more closely resembles resembles the smart grid energy
market and real-life scenarios.

Following the model in (QCS14), we represent the electrical distri-
bution grid as an undirected graph in which nodes represent energy
sources, customers, or other operational elements (switches, circuit break-
ers and substations), while edges represent arcs in the power network.
Each source is assigned a capacity indicating the amount of commodity
(electric power) that it can provide to the network, while each customer
node has a demand in energy units. We refer to this as the underlying
graph of the network. In the Network Planning phase, our objective is to
connect each customer to a source, such that the capacity of the source is
not exceeded by the combined demand of the customers it supplies. We
do this by selecting edges in the underlying graph to construct a span-
ning tree from each source to the customers it will serve. This tree topol-
ogy mimics real-life distribution networks, which are planar and radial
(tree-like), and designed as such in order to optimize economic costs and
facilitate management tasks such as metering consumption by any sin-
gle node. We refer to this tree formed by the source, its customers, and
the set of edges connecting them as the active tree. Any unused edges
from the underlying graph that are not in any active tree are dormant
links that can be activated as needed, either at the planning stage or in
the case of failure.

On a graph representing an energy network with multiple sources,
the problem of connecting every customer to a unique source becomes
that of constructing a spanning forest (see Fig. 8) consisting of several
trees rooted at their respective sources, with each tree sharing no cus-
tomers with the others; that is, the trees must be vertex-disjoint. The
union of all trees should then cover the entire set of customers. This is,
in other words, the problem of creating a spanning forest with a capacity
constraint on each tree bounding its total demand weight or cardinal-
ity. Each tree of the forest corresponds to a set of customers, rooted at a
certain source.

The trees are vertex-disjoint so that no customer may be served by
more than one source. As in the single-source case, in the event of a
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disruption inactive links can be activated to recover connectivity.
The trees must be carefully constructed because each source has a ca-

pacity limiting the number of customers it can supply, and trees cannot
share any vertices or edges (so they cannot be built arbitrarily), yet we
wish to maximize the number of nodes in the forest. Thus, finding a
spanning forest with these constraints is a discrete combinatorial opti-
mization problem, and, as we will demonstrate in Chapter 4, one that is
NP-complete.

We call this problem the CAPACITATED SPANNING FOREST problem
(CSF), and as we will show, CSF is NP-complete even on unweighted
graphs with two sources. To the best of our knowledge, this problem is
hitherto not addressed directly in the literature. While the single-source
case can be solved using a simple Minimum Spanning Tree algorithm,
we shall show that cases with multiple sources are NP-complete.

The sources in a graph represented in this way can represent either
constant or intermittent sources; for the representation of intermittent
sources, an intermittent source is either added or removed from the graph
(depending on its current state) and the solution to the graph is recalcu-
lated. For now, flows are not considered in the problem being addressed.

Model implementation

To implement the model described we used the NetworkX package for
Python (HSS08). For the development of an algorithm that solves CSF
we used a simulation-based approach to investigate certain heuristics, as
outlined in later chapters. The evaluation metric used is the fraction of
customers served 〈FoS〉.

2.3 Mathematical Problem Description

The CAPACITATED SPANNING FOREST problem (CSF) is the problem of
covering the vertices of a graph with a spanning forest consisting of k
disjoint trees rooted at different source nodes, with each tree having a
capacity bounding the sum of the weights of its vertices.
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In terms of smart grids, the graph is a representation of a low or
medium-voltage distribution network. The non-source vertices in the
graph correspond to customers and their demands are represented by
the vertex weights. Sources represent sources of electrical energy to be
distributed on the graph, with their capacities representing the capacity
of energy they can serve.

2.3.1 Problem statement

The general CAPACITATED SPANNING FOREST (CSF) problem is as fol-
lows: We are given a finite simple graph G = (V, E) with vertex weights
wv ∈ R+ for all vertices v ∈ V , a set of k source nodes {s1, . . . , sk} ⊆ V ,
and a set of capacities {c1, . . . , ck} ⊂ R+ that correspond to each source,
i.e. source si has capacity ci for i = 1, . . . , k.

The objective is to cover the maximum possible number of vertices in
G using k vertex-disjoint trees (i.e. trees sharing no vertices with another
tree), such that each tree Ti is rooted at a different source si (for i =

1, . . . , k), and the sum of the weights of all vertices in Ti is at most ci.
An example is shown in Figure 8.
More precisely, if F = {T1, . . . , Tk} is a spanning forest on G of k

disjoint trees, the objective function of the optimization problem is
max

∑
v∈F

wv , subject to the constraints that have been mentioned above:

1. Each tree Ti must be rooted at a single source node si.
si ∈ Ti, ({s1, . . . , sk} \ si) ∩ Ti = ∅, i = 1, . . . , k

2. Each tree Ti is disjoint from the other trees in F .
∀(Ti, Tj) ∈ F×F, i 6= j : V (Ti)∩V (Tj) = ∅

3. The total weight of the vertices of Ti must not exceed its capacity ci.∑
v∈Ti

wv ≤ ci, i = 1, . . . , k

This problem is NP-complete, as is demonstrated in the proofs in
Chapter 4.

Note that vertex-disjointness implies also edge-disjointness. In prac-
tical scenarios, n � k, where n = |V \ R|, where R denotes the set of
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source nodes. The weight of the sources is set to 0. Although the weights
and capacities can be any real numbers, in our experimental scenarios
we typically assign wv = 1 for all non-source nodes, and all capacities
are positive integers. However, the proof of hardness and the algorithms
we present in subsequent chapters may easily be extended to the cases
where wv are heterogeneous and wv, cs ∈ R+.

The sum of the capacities of the sources can sum up to any value,
as the objective function of the problem is to maximize the total num-
ber of vertices covered in the graph with the given capacities. However,
in practical scenarios the capacities should sum up to at least the total
number of non-source vertices. In the classic variant of the problem, we
assume that the capacities of the sources equal the number of non-source
vertices in the graph.

In a graph with n vertices and k source nodes, a spanning forest F
will have exactly n− k − 1 edges.

The decision (or recognition) version of the problem can be stated as
follows:

CAPACITATED SPANNING FOREST

INSTANCE: A graphG = (V,E), a set of vertex weights {w1, . . . , w|V |} ⊂ R+,
a set of k source nodes {s1, . . . , sk} ⊂ V , a set of capacities {c1, . . . , ck} ⊂ R+.

QUESTION: Is there a vertex-disjoint spanning forest F on G consist-
ing of k vertex-disjoint trees, such that each tree Ti ∈ F is rooted at a
distinct source si, and the sum of vertex weights in each tree does not
exceed the capacity of its source ci?

This formulation is useful for proving NP-completeness, since the
class of NP-complete problems is composed of decision problems, i.e.
yes or no questions.

2.4 Integer Program formulation

The CAPACITATED SPANNING FOREST problem can be expressed in the
following Integer Program (IP) formulations, one vertex-centric and one
edge-centric. The edge-centric program uses a k ×m matrix (where k is
the number of sources or trees in G and m is the number of edges in G of

25



s1

s2

c1= 4

c2= 3

(a)

s1

s2

c1= 4

c2= 3

(b)

s1

s2

c1= 4

c2= 3

(c)

Figure 8: The CSF problem on a 9-node instance with two sources s1 and
s2, and source capacities c1 = 4 and c2 = 3. Underlying graph in 8a. A sub-
optimal solution in 8b, where a node (white) is left uncovered. An optimal
solution in 8c, in which all nodes are covered.

variables xie for every edge inG and for every tree Ti, which can take the
value 1 if the edge was selected for inclusion in the capacitated spanning
forest F or 0 if it was not selected. The vertex-centric program uses a
k × n matrix of xiv variables for every vertex, where n is the number of
vertices in G.

In addition to the constraints mentioned in Section 2.3.1, the follow-
ing are the constraints to be satisfied in the program:

Constraints

1. Cardinality: |Ti| ≤ ci, i = 1, . . . , k

2. Acyclicity, a.k.a. the “subtour elimination” constraint

3. Vertex-disjointness: Let F = {T1, . . . , Tk}
∀(Ti, Tj) ∈ F×F, i 6= j : V (Ti)∩V (Tj) = ∅

4. Fixed root locations: si ∈ V (Ti), i = 1, . . . , k

5. Connectedness: ∀Ti ∈ F, |E(Ti)| = |Ti| − 1
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Integer Program (edge-centric)

First, replace each undirected edge (u, v) in G with two directed edges
u → v with weight wv and v → u with weight wu. Let m be the number
of edges in this graph.

maximize
k∑

i=1

∑
e∈E

xie

subject to

1.
∑

e∈E(Ti)

wexie ≤ ci, i = 1, . . . , k,

2.
∑

e=(u,v)∈E:u∈S,v∈S

xie ≤ |S| − 1, ∀S ⊆ V (Ti), i = 1, . . . , k,

3.
∑

i:v∈V (Ti)

xie ≤ 1, ∀e = (u, v) ∈ E,

4.
∑

e=(si,v)∈E(Ti)

xie ≥ 1, if |E(Ti)| ≥ 1, i = 1, . . . , k,

5.
∑

e∈E(Ti)

xie = |V (Ti)| − 1, i = 1, . . . , k,

6. xie = {1, 0} i = 1, . . . , k, e = 1, . . . ,m.
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Integer Program (vertex-centric)

maximize
k∑

i=1

∑
v∈V

xiv

subject to

1.
∑

v∈V (Ti)

wvxiv ≤ ci, i = 1, . . . , k,

2.
∑

v∈V (S)

xiv ≥ |S|+ 1, ∀S ⊆ E(Ti), i = 1, . . . , k,

3.

k∑
i=1

xiv ≤ 1, ∀v ∈ V,

4. xiv = 1, i = 1, . . . , k, v = si,

5.
∑

v∈V (Ti)

xiv = |E(Ti)|+ 1, i = 1, . . . , k,

6. xiv = {1, 0}, i = 1, . . . , k, v = 1, . . . , n.

For the Linear Programming relaxation of the above Integer Programs,
0 ≤ xie ≤ 1 and 0 ≤ xiv ≤ 1.

In general, integer programs cannot be solved in polynomial time,
while their linear program relaxations (as well as linear programs in
general) are polynomial-time solvable. However, the linear program-
ming relaxation of an integer program can only give an approximation
of the integer program solution, namely a lower bound in the case of
minimization problems or an upper bound in the case of maximization
problems. Furthermore, because there is an exponential number of the
subtour elimination constraints (marked 2) with respect to the input size
for both of the integer programs presented, solving these programs using
standard methods such as the simplex method is impractical. Therefore
we must use a technique known as the ellipsoid method that can solve
them in polynomial time, which entails defining a separation oracle for
finding violated constraints. However, as mentioned, even the solvable
linear program provides only an approximation of the optimum of the
integral problem; thus either it must be used in combination with heuris-
tics such as Branch-and-Bound techniques, or other approaches such as
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approximation algorithms and other heuristic algorithms can be pur-
sued. In this work, we focus on heuristic algorithms and local search
rather than techniques involving mathematical programming.

2.5 Application and Motivation

As mentioned earlier, the primary motivation for this research is an ap-
plication in smart grids. In the smart grid context, the tree roots represent
energy sources (powerplants, renewable generators, batteries, etc.) and
their capacities represent the quantity of energy that they can distribute.
Other vertices in the graph represent customers, while edges represent
power lines. Customers are connected to a power source by activating
an edge between themselves and a tree routing back to a source. The cus-
tomer node is then added to the tree. In the weighted case, the weights
on each vertex represent the power demand of a given customer node.
By introducing directed edges on the graph, uni-directional flow can be
represented.

Another possible application of this problem is towards military ap-
plications. Consider a graph where nodes represent strategic objectives
such as towns or other locations of strategic value and edges represent
the transport links between them. The trees of the CSF problem can
represent different military detachments that start from insertion points
(sources) and expand to cover as many objectives as possible. The capac-
ities of the sources represent the resources an army group has to achieve
its goals, such as fuel or personnel, while node weights represent the re-
source cost to secure an objective. The trees must stay connected to their
sources so that supply lines to all objectives remain undisrupted.

Lastly, another application is the case of computer networks, where
a set of service providers with differing resources must serve a set of
clients, and providers do not have direct links to all clients.

29



Chapter 3

Previous work and review
of existing literature

To date, there is no previously published work on solving the general
CSF problem as it is defined in the problem description in Section 2.3.1,
nor for special cases of interest such as unweighted grid graphs with in-
tegral capacities. To the best of our knowledge, our works in (DSV17)
and (DV17) are the first to present algorithms for CSF. Although to the
best of our knowledge CSF is not reported in the literature, a few similar
problems are known and have been studied. Some of these problems are
very similar to CSF, while others may be in a related family of problems.
These other problems, however, are not identical to CSF. This means that
although they may inform our approaches toward developing solutions
for CSF, the results and algorithms that emerged from the study of those
problems are not directly applicable to CSF. We will describe some sim-
ilar problems in the literature with the relevant reference to their proof
of NP-completeness while noting their differences from CSF and demon-
strating why new approaches must be developed for tackling this prob-
lem.

In Computer Science, often problems that appear similar to one an-
other are not mutually interconvertible, meaning that small differences
in the objective function or constraints result in distinct problems that
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could even belong to different complexity classes, and approaches to
solving one problem are not guaranteed to work for another. A simple
example of this are the shortest path problem and the longest path prob-
lem, which, although superficially appearing similar, in fact belong to
different complexity classes as shortest path can be solved in polynomial
time while longest path is NP-complete. Although the Bellman-Ford al-
gorithm for the shortest path problem can be adapted to compute the
longest path by negating all edge weights, this is only true for Directed
Acyclic Graphs and not graphs in general. These differences also exist
across problems from the same complexity class: for example, approx-
imation algorithms designed for the NP-complete Traveling Salesman
Problem are specific to TSP and cannot be directly applied, for example,
to the Vertex Cover problem. Thus, it is often the case that results from
one problem are not transferable to another problem, except in special
cases of the problem.

3.1 Problems in the literature similar to CAPAC-
ITATED SPANNING FOREST

CAPACITATED MINIMUM FOREST (LSX13)

The most similar problem to CAPACITATED SPANNING FOREST in the lit-
erature is CAPACITATED MINIMUM FOREST (CMF) introduced by Liang
et al. (LSX13), a problem motivated by an application in wireless sen-
sor networks. The objective in this problem is to find a minimum-edge-
cost spanning forest on an edge-weighted Euclidean graph given a set of
roots, with upper bounds on the cardinality of each component. Liang
et al. prove this problem to be NP-complete by reduction from CAPACI-
TATED MINIMUM SPANNING TREE (Pap78a) and provide approximation
algorithms for it. The decision version of the problem is formulated as
follows:

CAPACITATED MINIMUM FOREST

INSTANCE: A finite graph in the Euclidean planeG = (U∪R,E), whereR
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is a set of roots and U is a set of non-root nodes. E = (U × U) ∪ (R× U),
and for every edge (u, v) ∈ E there is a cost we equal to the Euclidean
distance between u and v. All roots have capacities given by the function
c : R→ N, such that

∑
s∈R

c(s) = |U |. Finally, an integer K is given.

QUESTION: Is there a spanning forest F of cost at most K for which
every connected component contains exactly one root si (i = 1, . . . , |R|)
and exactly c(si) other vertices?

Note that in the optimization version of the problem, the objective is
to minimize

∑
e∈F

we, subject to the constraints above.

Liang et al. provide approximation algorithms for three variations
of the problem that deliver an approximation ratio of at most 2 and run
in O(n3) time. Their approach derives from a general approximation
technique for constrained forest problems introduced by Goemans and
Williamson (GW95). The authors state that this is the first such algorithm
in the literature for this problem. More recently, Jaiswal et al. provide a
similar approximation algorithm for the same problem (Jai15) (JS15).

CMF however differs significantly from CSF in the following ways:

1. An instance of CMF has weighted edges and unweighted nodes,
while in CSF vertices are weighted and edges are unweighted. This
leads to two essential differences between the problems. The first is
that the capacity constraint on the trees in CMF is essentially a car-
dinality constraint, affecting only the number of nodes in a given
tree. This is in contrast with CMF, in which vertices can have het-
erogeneous demands, which must in total not exceed the capacity
of the tree. Second, because edges are weighted in CMF instances,
the objective of CMF is to find a spanning forest of minimal cost,
i.e. minimize

∑
e∈F

we. This objective function does not exist in CSF.

2. The input graph is a nearly complete graph in which, letting R de-
note the set of all roots, E = (U × U) ∪ (R × U), while in CSF the
graph is arbitrary.

3. The cardinality of a tree Ti ∈ F in CMF must be exactly ci + 1 and
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must be a natural number, whereas in CSF it can be less than ci and
can be a real number.

4.
∑|R|

i=1 c(si) must necessarily equal |U | in CMF. In fact, the algo-
rithms suggested by Liang et al. terminate if this condition cannot
be met. This is possible because CMF graphs are nearly complete
and have Euclidean weights weights, which is not the case in CSF.

The special case of CSF where wu = 1 ∀u ∈ U could be framed as a
CMF problem of minimizing the edge weights of a spanning forest on
a graph with uniform edge weights (e.g. we = 1 ∀e ∈ E). However,
this would not be a valid instance of CMF because of the requirement
that graphs be Euclidean, meaning that a CMF input graph cannot have
uniform edge weights. Further, the case of uniform unit vertex weights
would represent only a special case of CSF.

We therefore believe these differences to be sufficient to distinguish
CSF from CMF, and to necessitate a different algorithmic approach than
the ones proposed in (LSX13).

GRAPH TREE PARTITION PROBLEM (CM04)

Cordone and Maffioli (CM04) discuss the complexity of the Graph Tree
Partition Problem (GTPP), a general family of problems that can be vari-
ously defined through combinations of three constraints: root, inclusion,
and weight, and four objective functions: max-sum, min-sum, max-min,
and min-max. The basic problem is: given an edge-weighted graph
G = (V,E), partition the vertex set V into k disjoint vertex subsets Ui

and build a spanning tree Ti on each of them, subject to any of the afore-
mentioned constraints. The objective function can be either maximizing
or minimizing the sum of the edge weights in the forest (max-sum, min-
sum), or minimizing the total edge cost of the most expensive tree in the
forest (min-max), and its reverse, maximizing the cost of the cheapest
tree (max-min).

This problem is a generalization of many problems involving par-
titioning a graph into trees. The authors describe three variations of
constraints for this problem: root constraints, inclusion constraints and
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weight constraints. Of relevance to CSF are the root and weight-constrained
problems. Root constraints require that each tree Ti contains at least one
of the vertices in a given root set Ri, i.e. Ti ∩ Ri 6= ∅. Weight constraints
describe constraints on the total weight of the vertices of the tree, and
are defined similarly as in CSF, though over an interval, and must be
natural numbers. Given a weight function w : V → N on the vertices of
the graph, the total weight of each tree w(Ti) =

∑
v∈Ti

wv must belong to a

given interval [W−i ;W+
i ],W−i ≤ w(Ti) ≤W+

i .
Cordone and Maffioli show that the weight-constrained problem is

NP-complete for all four objective functions, irrespective of any addi-
tional constraints. The root-constrained problem is NP-complete only for
min-max and max-min problems. Previously, (GBH97) had shown that
the weight-constrained problem is strongly NP-hard for the case where
wv = 1 ∀v ∈ V , and W−i = W+

i = n/k, i = (1, . . . , k), i.e. vertices are
unweighted and all trees must have the same cardinality. This is the
MINIMUM TREE PARTITION problem discussed in (GBH97).

The root-constrained min-max GTPP is a generalization of the Mini-
Max Spanning Forest Problem (MMSFP) discussed by Yamada et al. (YTK96),
in which the root sets Ri are singletons. This special case of the GTPP
was already proven NP-complete by (YTK96), who provided a branch
and bound algorithm for it.

Anticipating the proof on Chapter 4, a reduction from the GTPP can
be used to prove that CSF is NP-complete.

Theorem 1. GTPP ≤P CSF for GTPP instances with weight and root con-
straints, uniform edge costs and singleton root sets |Ri| = 1∀i.

Proof. Given any weight-constrained and root-constrained instance of
GTPP B with uniform edge costs and singleton root sets, it is possible
to build an instance of CSF A such that a solution to the former exists if
and only if there exists a capacitated spanning forest on A.

To do so, we first observe that any weight-constrained and root-constrained
instance of GTPP is hard even in the case of uniform edge weightswe = 1
and singleton root sets Ri = {si}. This is can be demonstrated with the
same gadget used in the proof by Cordone and Maffioli, in which all
edges are of cost 1 with the exception of some edges of cost γ that are
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unused except to complete the graph and show its validity under the tri-
angle inequality. The proof still holds even if we remove the edges of cost
γ and collapse the sets R1 and R2 to the single nodes r1 and r2, adjusting
W = n+ nm+ 1 for each tree.

Lemma 1. GTPP remains NP-complete for instances with uniform edge cost
and single root nodes.

By restricting our GTPP instanceB to those with uniform edge weights
and singleton root nodes, we construct a CSF instance A by preserving
the same nodes, node weights, edges, roots and capacities in B, and ig-
noring the costs on the edges and total edge cost requirement K. Since
all edge costs are uniform, a feasible solution to the GTPP will have cost
K = |E| − |R|. A capacitated spanning forest on this graph will obey the
edge cost, root and weight constraints from the GTPP instance B, since
there will be K edges in the forest, the roots are the same as in GTPP and
the trees have the same weight (or capacity) constraints. Thus a solution
to CSF is a solution to GTPP and vice versa.

We have shown that certain instances of CSF where wv, ci ∈ N can be
considered special cases of GTTP where we = 1 for all edges. However,
because of the different objective functions between the two problems,
we consider it more cumbersome to express CSF in terms of maximizing
the total cost of edge weights when there generally are no edge weights
for CSF. Furthermore, the weight constraints as defined by Cordone and
Maffioli must be natural numbers, while in CSF they can be any positive
real numbers.

Some other key differences pertinent to the proof of NP-completeness
are that Cordone and Maffioli’s proof for the weight-constrained case
uses a bound on the total edge cost and non-uniform edge weights, the
weight constraints for both trees are the same, and the roots, although
indicated, are not fixed. We will give a proof of the NP-completeness
of CSF using no edge cost bound and only weight constraints, heteroge-
neous weight constraints, and fixed roots, which we believe is a stronger
result for our problem.

While the authors analyze the complexity of Graph Tree Partition
Problems, they do not give suggestions for how to attack the NP-complete
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variations of GTPP. Nor are algorithms suggested for the rooted, weight-
constrained special case with unweighted edges that resembles the CSF.

CAPACITATED MINIMUM SPANNING TREE (Pap78a)

A Capacitated Minimum Spanning Tree (CMST) is a minimal cost span-
ning tree of a graph with a designated root node s in which every subtree
branching from s has a cardinality (defined as the total number of nodes
in the subtree) no more than a capacity constraint c. The edge cost of the
CMST may be no more than K. Each subtree is connected to the root
by a single edge; thus, if s and its incident edges were removed, there
would be a minimum-cost spanning forest of trees of cardinality at most
c. This problem was introduced and demonstrated to be NP-complete by
(Pap78a).

This problem differs from CSF in several ways:

1. The roots of the subtrees are not specified.

2. All subtrees have the same cardinality constraint c.

3. Vertices are not weighted.

4. In CMST there are edge costs and the objective is to minimize the
total edge cost, which is not the case in CSF.

The objective of minimizing the total edge cost of the forest is es-
sential to the definition of CMST, as the proof of NP-completeness in
(Pap78a) requires edge costs in order to be valid, and does not hold when
edge costs are uniform or ignored. In the proof of (Pap78a), the edge cost
of the CMST may be no more than K. When this constraint is removed
or edge costs are uniform, a solution to CMST does not necessarily cor-
respond to a solution to SAT, so the reduction does not hold. Figure 9
demonstrates this. In Chapter 4 we will demonstrate that CSF is NP-
complete even for cases with no edge costs, a stronger result than the
one in (Pap78a).

The Esau-Williams heuristic and its variations are the most estab-
lished approaches for CMST.

36



x1 x2

x̄2 x̄3

x3

C1

C3

x̄1

C2

d1

d2

d3

s

Figure 9: Demonstration that in a CMST instance with no edge weights,
the solution to CMST is not necessarily a solution to SAT. Illustrated is the
instance of CMST used in the proof of NP-completeness from (Pap78a) cor-
responding to the boolean satisfiability formula φ = (x1 ∨ x2)∧(x̄1 ∨ x3)
∧(x1 ∨ x̄2 ∨ x̄3), however with we = 1 ∀e ∈ E. Each subtree connected to
source s has a capacity c = 6 and is denoted by solid bold lines of differ-
ent thickness. However, although this is a valid solution for CMST without
edge weights, the corresponding selection of literals does not satisfy φ. In-
deed, it is even a logical contradiction as both x2 and x̄2 are selected.
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3.1.1 Other problems similar to CSF

Following is a list of NP-complete problems problems that are similar
to CSF, but not as similar as the previously mentioned CMF, GTPP, and
CMST. These problems all differ from CSF in either their objective func-
tion or their constraints, typically due to having weighted edges rather
than vertices and an objective of minimizing the total edge cost, and lack-
ing either the capacity or the root constraints. Because of these differ-
ences, CSF cannot be considered a special case of any of them. Further-
more, the proofs of hardness and algorithms analyzed for those problems
can also thus not apply to CSF. These problems are often similar to each
other, differing in only a constraint or objective function, and are some-
times reported in the literature without reference to the other problems.

BOUNDED COMPONENT SPANNING FOREST (GJ79)

Given a graph G = (V,E) where each vertex has a non-negative weight,
and two positive integers k and c, can we partition the vertices of V into
k (or less) disjoint subsets where each subset is connected and the sum of
the weights of the vertices in each subset is at most c?

While similar to CSF, BCSF (also known as [ND10] in (GJ79)) has the
following differences from it:

1. There are no fixed roots specified for the trees. This means that
trees can be placed anywhere on the graph, whereas CSF has the
necessary constraint that a tree of a given capacity must include its
given root.

2. The exact number of trees is not given, only a maximum number k.

3. All trees have the same capacity c.

4. Capacities and vertex weights are strictly integers.

A few results from this problem are relevant to CSF. Björklund et al.
(BHK09) (BH06) presented exact algorithms for a whole class of parti-
tioning problems including BCSF that run in 2nnO(1) time and exponen-
tial space. Their method is based on the inclusion–exclusion principle
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and an algorithm known as the zeta transform. They also present algo-
rithms running in O(nO(1)) space and 3nnO(1) time if membership in 2V

can be decided in polynomial time, which is the case for BCSF.
It is known that certain NP-complete problems are decidable in poly-

nomial or pseudo-polynomial time for certain classes of graphs that are
of fixed bounded treewidth, i.e. having a treewidth of at most a constant
t (Bod86). A graph’s treewidth is defined as the minimum width among
all possible tree decompositions of a graph, while a tree decomposition
is a mapping of a graph onto a tree. BCSF is one such problem (ALS88)
(Bod88). Furthermore, according to Courcelle’s theorem, all graph prop-
erties that are definable in monadic second-order logic can be decided in
linear time for classes of graphs of bounded treewidth (Cou90). Shortly
after the publication of Courcelle’s theorem, it was found that BCSF can
also be expressed in this way as a language. (ALS91) . Unfortunately, the
general planar graphs do not fall into this category, and neither does the
n × n grid that has treewidth at most n. Additionally, deciding that the
treewidth of a graph G ≤ t is NP-complete (ACP87). These findings sug-
gest that CSF, which has a more restrictive graph topology, might also be
NP-complete for the planar graph and grid cases that we are interested
in.

MIN-SUM TREE PARTITION & MIN-MAX TREE PARTITION(GBH97)

Given a complete, edge-weighted, undirected graph G = (V,E) together
with edge weights that satisfy the triangle inequality, partition V into
k equally-sized subsets and find a minimum spanning tree on each of
the subgraphs induced by the partition. The objective of the min-sum
version of the problem is to minimize the total sum of the edge costs of
all the spanning trees in the forest, while in the min-max version it is to
minimize the cost of the most expensive tree.

Stated more formally, given a graph G = (V,E) with |V | = n, where
n mod k=0, and edge weights satisfying the triangle inequality we,∀e ∈
E, the MIN-SUM TREE PARTITION problem is to find a partition of V

into k vertex-disjoint trees {Ti}ki=1, |Ti| = n/k, such that
k∑

i=1

∑
e∈E(Ti)

we
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is minimized. For the MIN-MAX TREE PARTITION problem, minimize
max
1≤i≤k

{
∑

e∈E(Ti)

we}.

MIN-SUM TREE PARTITION and MIN-MAX TREE PARTITION (MMTP)
are both special cases of the weight-constrained min-sum and min-max
GTPP, with the weight constraints wv = 1 ∀v ∈ V and W−i = W+

i =

n/k (i = 1, . . . , k), i.e. all trees have the same number of vertices. Guttmann-
Beck and Hassin (GBH97)(GBH98) devised approximation algorithms
for these problems.

These problems differ from CSF in that there are no root constraints,
all trees have the same number of vertices, and in the case of MMTP the
objective function is to find a forest in which the cost of the maximum-
cost tree is minimized.

MINIMUM TREE PARTITION (GBH98)

This problem is the same as MIN-SUM TREE PARTITION, but the trees can
be of different cardinalities.

Given a complete weighted undirected graph G = (V,E) together
with edge weights satisfying the triangle inequality, partition V into k

subsets of given size and find a minimum spanning tree on each of the
subgraphs induced by the partition, minimizing the total sum of the
spanning trees. In other words, find the minimum-cost spanning forest
of k disjoint trees on G.

More formally: Given a graph G = (V,E) with |V | = n and k posi-
tive integers {ci}ki=1 such that

∑k
i=1 ci = n, and edge weights we,∀e ∈ E

satisfying the triangle inequality, the MINIMUM TREE PARTITION prob-
lem is to find a partition of V into vertex-disjoint trees {Ti}ki=1 such that

∀i ∈ {1, . . . , k} |Ti| = ci, and
k∑

i=1

∑
e∈E(Ti)

we is minimized.

This problem is proven NP-complete in (GBH97) for k = 2. (GBH98)
present a (2k−1)-approximation algorithm running inO(k24k+n2) time.
An extension of the algorithm for unequally sized trees maintains the
(2k − 1) approximation ratio but runs in exponential time.

This problem differs from CSF in that no roots are specified for the
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trees {Ti}ki=1 of the graph, and the vertices are unweighted. Lastly, the
objective is to minimize the total sum of the edge weights on the trees.

MINI-MAX SPANNING FOREST PROBLEM (YTK96)

The mini-max spanning forest problem (MMSFP) requires finding a span-
ning forest of an undirected graph that minimizes the maximum of the
costs of constituent trees. This problem was proven NP-hard by (YTK96).

Let G = (V,E) be an undirected graph with each edge e having a
cost w : E → Z. Given a set of root vertices R := {s1, s2, . . . , sk}, a
rooted spanning forest F is a spanning forest of G consisting of k dis-
joint trees T1, T2, . . . , Tk such that si ∈ Ti (i = 1, 2, . . . , k). MMSFP is
the problem of finding the R-rooted spanning forest F∗ that minimizes
max
1≤i≤k

{
∑

e∈E(Ti)

we}.

This is the same problem as MIN-MAX TREE PARTITION but with root
constraints, or as a min-max GTPP where the root sets Ri are singletons.

This problem differs from CSF in several ways. First, there are no ver-
tex weight bounds on the trees. The objective of MMSFP is minimizing
the edge weight of the largest tree, while covering all the vertices, rather
than covering all the vertices while restricted by a capacity constraint.
Lastly, the graph is edge-weighted rather than vertex-weighted.

The authors introduce a heuristic algorithm and a branch-and-bound
technique for exact solutions for small instances of problem.

CONSTRAINED FOREST (CI93)

Given an undirected edge-weighted graph and a natural number m, the
CONSTRAINED FOREST PROBLEM seeks a minimum-edge-weight span-
ning forest such that each of its trees spans at least m vertices. (CI93)
demonstrate that the problem is NP-hard form ≥ 4 and provide a simple
2-approximate greedy heuristic that runs within the time needed to com-
pute a minimum spanning tree. (GW95) provide a widely used general
2-approximation technique for Constrained Forest problems running in
O(n2 log n) time. (LM05), (LM06) and (LM11) provide a series of heuris-
tics for this problem.
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This problem differs from CSF in several ways. Aside from the objec-
tive of minimizing total edge weights, there is a minimum rather than a
maximum bound on tree size. There are also no fixed roots for the trees.

BOUNDED TREE COVER(KS11)

Given an edge-weighted graph G = (V,E) with edge weights w : E →
N+ and a bound K, find a tree cover with a minimum number of trees
such that each tree has total edge weight at most K. A tree cover is a
set of subtrees of G {T1, T2, . . . , Tk} such that

⋃k
i=1 V (Ti) = V . (KS11)

present a 2.5-approximation algorithm for this problem.
The differences from CSF are that there are no tree roots in this prob-

lem, the number of trees is unspecified, the bound is on total edge weights
rather than vertex weights, and the objective function is different than in
CSF. Further, the trees in a tree-cover are not necessarily edge-disjoint
(thus may share vertices as well).

MIN-MAX ROOTED k-TREE COVER (EGK+03b)

A min-max rooted k-tree cover is a cover of all the vertices of a graph
using k or less trees that minimizes the edge cost of the most expensive
tree, with each tree having a distinct given root. The trees in the cover
may share nodes and edges.

Stated more formally, given an undirected graph G = (V,E) with
positive integral edge weights w : E → N+, a set of roots R ⊂ V and
a positive integer k, a ROOTED k-TREE COVER of G is a collection of at
most k trees T = {Ti} such that each tree has a distinct root in R and⋃k

i=1 V (Ti) = V . The min-max problem is to minimize max
Ti∈T

w(Ti), where

w(Ti) =
∑

e∈E(Ti)

w(e). The trees in a tree cover may share nodes and

edges. The root of Tj may be in Ti (i 6= j), but their root nodes must be
distinct.

The min-max problem was studied by (EGK+03a) and shown to be
NP-complete by reduction from BIN-PACK. (EGK+03a) also describe a
polynomial-time (4 − ε)-approximation algorithm for the min-max ver-
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sion of this problem (where ε is an adjustable parameter controlling the
trade-off between accuracy and running time of the solution).

This problem differs from CSF in that trees are not vertex-disjoint or
edge-disjoint, and the trees are not capacitated and can contain any num-
ber of nodes. Further, the objective is to minimize the cost of the edge
weights in the most expensive tree.

k-BALANCED PARTITIONING (Fel11)

The k-BALANCED PARTITIONING problem is to partition the n vertices
of a graph into k sets of size at most n/k each, while minimizing the cut
size (i.e. the number of edges connecting vertices from different sets).
(Fel11) has shown that this problem is hard even on grids and trees. This
means that attempting to partition even regular graphs such as a grid
will be hard, and precludes approaches such as first obtaining a mini-
mum spanning tree of the graph and then making cuts to partition the
tree into a forest.

This problem differs from CSF in that the objective function is differ-
ent (minimizing the cut size), the partitioned sets are not trees, the sets
have no roots, and the sets must be of roughly equal size.

PARTITION INTO FORESTS (GJ79)

INSTANCE: Graph G = (V,E), positive integer K ≤ V .
QUESTION: Can the vertices of G be partitioned into k ≤ K disjoint
sets V1, V2, . . . , Vk such that, for 1 ≤ i ≤ k, the subgraph induced by Vi
contains no circuits?

This problem differs from CSF in that the solution to this problem is
a set of forests, not just one forest. There are also no constraints on the
size of the trees (or forest), and no root nodes specified for the trees.

This problem is known as [GT14] in (GJ79) and also reported as MIN-
IMUM k-CAPACITATED TREE PARTITION. Goemans and Williamson’s
general scheme (GW95) can approximate this problem within 2 − 1/|V |
(CKH95). (Bod88) showed that [GT14] can be solved in polynomial time
for graphs with bounded treewidth, and graphs with bounded treewidth
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and degree. (BPT92) provided a method for solving this problem in lin-
ear time on families of recursively constructed graphs (graphs composed
of smaller members of the same family, such as trees). Their method
entails expressing the problem in their predicate calculus, which auto-
matically generates a recurrence relation usable in a dynamic program-
ming solution. (BHK09) reported a technique for the general problem
of partitioning an n-set N into subsets {S1, . . . , Sk} ⊂ N , based on the
inclusion-exclusion principle zeta transform, that can solve these types
of problems in 2n, or exponential time. This technique consists of ex-
pressing the problem as an inclusion-exclusion formula over the subsets
of N , and then to use memoization via an algorithm known as the fast
zeta transform. The authors claim that their method is extensible also to
[GT14].

k-MINIMUM SPANNING TREE (RSM+96)

Given a graph with non-negative edge weights and a natural number
k, find a tree of minimum cost spanning exactly k vertices. (RSM+96)
proves this problem is NP-complete even for planar graphs and provide
a 2
√
k approximation algorithms for it. A sequence of improvements led

to (2 + ε) approximation algorithms by (Gar05) and (AK05). Of note is
that even the rooted version of this problem (i.e. where the solution must
contain a given root node) is NP-hard (AK05).

SPANNING k-TREE FOREST(LZ09)

Given a graph, find a maximum spanning forest of k-trees, that is, a for-
est of maximum total edge weight where each component is a tree in
which all vertices are at most distance k from the root of the tree. In the
weighted edge distance version, k bounds the sum of edge weights in the
shortest path between any root and its vertices. (LZ09) provide a poly-
nomial time k

k+1 -approximation algorithm for the general problem and
a 0.5-approximation algorithm for the weighted edge distance version.
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3.1.2 Other related problems

A class of problems very closely related to CSF is that of MULTIPLE-
DEPOT VEHICLE ROUTING. This problem is nearly the same as CSF,
except that instead of trees branching from the roots cycles are used to
cover all nodes. It is known to be NP-hard.

As can be seen, CSF is not seen in the literature and approaches to
other problems, while serving as a basis and inspiration, cannot be used
directly for solving it. Therefore we must come up with our own.

A naive approach would be to take the MST of G and then iterate
through the edges of the MST, making a cut. If the two components are of
the size of the capacities and the roots are in the components, accept. The
problem with this approach is that there is no guarantee for the existence
of such components that also contain the roots. We would have to have
the “right” Minimum Spanning Tree. The same problem holds for other
naive approaches such as taking a path through G. This would not be a
good approach to begin with, since the expected value of the number of
nodes failing in case of a failure is higher for a path than for a tree, thus
paths should be avoided in the design of resilient networks.
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Chapter 4

The NP-completeness of
CAPACITATED SPANNING
FOREST

Summary

In this chapter we prove that the Capacitated Spanning Forest problem,
introduced in Chapter 2 is NP-complete by reduction from the general
boolean satisfiability problem (SAT). We show that CSF is NP-complete
for cases with more than two sources and positive capacities. This NP-
completeness result justifies the heuristic approaches taken by the au-
thors in other works discussed in the later chapters of this thesis. This
result was presented at (Dav18).

4.1 Introduction

CSF is NP-complete via a reduction from the general boolean satisfia-
bility problem (SAT) introduced in (Coo71). In SAT, given a boolean
formula φ that is a conjunction of m clauses over n boolean variables, we
must find a satisfying truth assignment for the variables such that φ eval-
uates to 1 (or TRUE). For example φ = (x1∨ x̄2)∧ (x2∨x3)∧ (x1∨ x̄2∨ x̄3)

46



is a boolean formula in conjunctive normal form with three clauses and
three variables (each symbol in a clause being called a literal), and a sat-
isfying assignment x1 = 0, x2 = 0, x3 = 1. We prove that SAT ≤P CSF,
that is, SAT is polynomial-time reducible to CSF.

To do this we perform a reduction from SAT, the general boolean sat-
isfiability problem, which is known to be NP-complete when at least one
clause in the formula has more than two literals (Coo71) (GJ79). We pro-
ceed with the approach of a “reduction” as elaborated in (GJ79), namely
a conversion of any instance of a known hard problem into a specific in-
stance of our problem of interest. By reducing a known hard problem A
to our problem B, we prove that B is at least as hard as A. The reasoning
behind this is that if there was an efficient algorithm for solving B, there
would also be an efficient algorithm solving A: simply first convert A to
B, then use the algorithm for B on it to obtain a solution to A. However,
this is a contradiction, as our assumption was that problem A is hard.
Therefore, reducing a hard problem A to B proves that B is NP-hard, un-
less P=NP.

4.2 Proof of NP-completeness

4.2.1 Proof 1. CAPACITATED SPANNING FOREST is NP-
complete for graphs with more than 2 sources.

Theorem 2. SAT ≤P CAPACITATED SPANNING FOREST for graphs with
|S| > 2, where S is the set of sources in an instance of CSF.

Proof. We first show that CSF ∈ NP. Given an instance of the problem
and a set of trees F as a certificate (a solution to the problem), we can
verify that the certificate is a capacitated spanning forest using a modi-
fied breadth-first search algorithm. For every tree in F , begin the search
from the tree’s source while verifying at each step that all the conditions
of the CSF hold: 1) Each tree is a tree (i.e. has no cycles), 2) Each tree con-
tains exactly one source (i.e. is not connected to another tree), and 3) The
cardinality of each tree does not exceed the capacity of the source. Finally
we verify that each vertex in V is in a tree, which we can do by marking
all nodes visited during the search, and verifying at the end of the search
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that Vvisited = V . This verification algorithm runs in polynomial time,
thus the problem is in NP.

We now show that SAT ≤P CSF, that is, that SAT can be reduced
to CSF in polynomial time. We are given as input an arbitrary boolean
formula φ with m clauses and n variables. We convert this into an in-
stance of the CSF problem so that this instance has a feasible solution if
and only if φ is satisfiable. We construct a graph G = (V,E) with 2n+m
vertices and n+ 1 sources. Our construction is similar to the one used in
(Pap78b). For each variable xi of φ we create two vertices xi and x̄i in G.
We place an edge from xi and x̄i to each of xi+1 and x̄i+1 for i = 1, . . . , n.
For each clause Cj ∈ φ we create a vertex Cj and place an edge from Cj

to each of its literals. We create n source vertices with capacity 1 and link
each such source vertex si with edges to xi and x̄i for i = 1, . . . , n. Fi-
nally, we create a source vertex s0 with capacity n+m, and connect it to
x1 and x̄1. This completes the construction of G. An example of this con-
struction for the boolean formula φ = (x1∨x2)∧ (x̄1∨x2∨x3)∧ (x̄2∨ x̄3)
is shown in Figure 10.

The intuition behind this construction is that the sources s1, . . . , sn
function as “switches”, each si : i = 1, . . . , n selecting either xi or x̄i by
covering them in a tree of cardinality 2 (the literal and the source). This
allows the tree rooted at s0 to cover the complementary literals, which
represents the truth assignment of φ. The 2n possible assignments are
super-polynomial, just as in SAT.

The construction of G can be done in polynomial time. We complete
the proof by proving that this transformation of φ into G is indeed a
reduction, that is, that there is a capacitated spanning forest in G if and
only if φ is satisfiable, and vice versa.

Suppose F is a capacitated spanning forest on G. Then the tree T0
rooted at s0 will contain the vertices C1, . . . , Cm corresponding to the
clauses of φ, since it is the only tree with enough capacity to do so, all
other trees being “switches” with a capacity of 1. Since the only way to
reach a clause vertex is from a literal vertex linking to it, if T0 contains a
clause vertex, it must contain at least one of the literal vertices linking to
it. Because

∑n
0 ci = |V |, for F to be a spanning forest, all capacities must

be used. Thus, since c0 = n + m, T0 must contain exactly m clauses and
n literals. Since c1, . . . , cn = 1, the remaining n literals are covered by
switches. Thus, since any clause vertex is reachable only by a literal in
T0, ifF exists, the n literal vertices in T0 represent a satisfying assignment
for φ.

Conversely, if φ has a satisfying truth assignment, this assignment
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x̄2 x̄3
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x̄1
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s0

c0=6
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Figure 10: Proof of NP-completeness of CSF with n sources. CSF instance
for the boolean formula φ = (x1 ∨ x2)∧(x̄1 ∨ x2 ∨ x3) ∧(x̄2 ∨ x̄3). All non-
source nodes are weighted 1. The satisfying assignment x1, x2, x̄3 = 1
corresponds to the tree rooted at s0 shown in bold. Note that φ belongs to a
hard case of SAT because it has one clause with three variables.

corresponds to the tree T0 in G. For each true literal in the assignment,
we add the literal’s corresponding vertex in G to the new subgraph T0,
as well as the clause vertices and s0. Since the nodes in this subgraph
are connected by the construction of G, there must also be a spanning
tree on the subgraph. Thus the edges in T0 consist of the edges in G that
form a spanning tree on V (T0). We would then need only to set s1, . . . , sn
to cover the complementary literal vertices in order to create a spanning
forest on G.

4.2.2 Proof 2. CAPACITATED SPANNING FOREST is NP-
complete for graphs with 2 sources.

Theorem 3. SAT ≤P CAPACITATED SPANNING FOREST for graphs with
|S| = 2, where S is the set of sources in an instance of CSF.

Proof. Given an instance φ of SAT with n vertices and m clauses, we con-
struct a graph similar to the one in the previous proof, and as illustrated
in Figure 11. The graph has 2n+mn+2 vertices, of which two are sources,

49



with capacities c0 = n + mn and c1 = n respectively. Each clause ver-
tex Ci has edges to n − 1 vertices that we call “auxiliary vertices”. The
construction of this graph can be achieved in polynomial time.

We now prove that this is a reduction. We claim that there is a capac-
itated spanning forest on G if and only if φ has a satisfying truth assign-
ment.

First, suppose that there is a capacitated spanning forestF onG. Then
the tree T0 rooted at s0 will have n + mn vertices and must include the
vertices C1, . . . , Cm plus their auxiliary vertices, since it is the only tree
with sufficient capacity to do so. To demonstrate this, we first note that
the only way to reach clause vertex Cj is from a literal vertex xi, and
likewise, the only way to reach the auxiliary vertices of Cj is through Cj .
However, onceCj is part of a given tree, all the auxiliary vertices adjacent
to Cj can only be covered by that tree since they are only reachable from
Cj , which is now in the tree. Since the tree rooted at s1 has a capacity of
n, and it would require a capacity of at least n + 1 to cover Cj , its n − 1
auxiliary vertices, and the literal vertex xi that led to Cj , the tree rooted
at s1 cannot cover any of the clause vertices if F is a spanning forest.
Thus the only way for clause Cj and the auxiliary vertices to be covered
is for them to be in T0 having capacity n+mn, which is enough to cover
n literals, and all of the m clauses and m(n − 1) auxiliary vertices. As in
the proof of Theorem 2, we consider that if a literal vertex xi is covered
by tree T0 this corresponds to its assignment being 1 in φ. Since in a
capacitated spanning forest all vertices are covered, and all clauses and n
literals must be part of tree T0, T0 corresponds to a satisfying assignment
in φ. The remaining n literals are covered by T1 rooted at s1.

Conversely, suppose that φ has a satisfying truth assignment A. Let
the vertices corresponding to the literals in Ā, the complement of that
assignment, be assigned to tree T1 rooted at s1. There are n such lit-
erals and T1 has a capacity of n, so the tree can cover them. Further-
more, by the construction of G, there is a path s1, l1, l2, . . . , ln, where
li ∈ {xi, x̄i}, i = 1, . . . , n passing through every literal of Ā, and con-
necting them to s1.

The remaining vertices in G′ = G\T1 are assigned to tree T0. This
consists of n + mn = c0 vertices, corresponding to the selected literals
in A, the satisfied clauses, and the auxiliary vertices. Since the sum of
these vertices is equal to c0, T0 can cover these vertices. We know the
subgraph G′ is connected because removal of the path of literals in T1
still leaves the other literals connected by the remaining edges to adjacent
literals, i.e. if (li, li+1) ∈ T1, (l̄i, l̄i+1) ∈ G′, i = 1, . . . , n − 1. Since none
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C1

x3x1 x2

C2

x̄1

C3

x̄2 x̄3

s0

c0=12

s1

c1=3

Figure 11: CSF instance for the 3CNF boolean formula φ = (x1 ∨ x2 ∨
x3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3). All non-source nodes are weighted
1. The satisfying assignment x̄1, x̄2, x3 = 1 corresponds to the tree
rooted at s0 shown in bold. The transformation from any 3SAT instance
to a 2-source instance of CSF is: 〈{m clauses}, {n variables}〉 =⇒ 〈G =
({2n+mn+ 2 vertices}, E), {2 sources}, {c0 = n+mn, c1 = n}〉

of the clauses or the literals connected to the clauses were removed with
T1, the clause nodes and their auxiliary nodes are also in the connected
graph G′. Taking any spanning tree on this subgraph (and a spanning
tree must exist, since G′ is connected) will produce a tree meeting the
capacity requirement of T0 (since |VG′ | = c0). Thus given A we have a
capacitated spanning forest on G.

4.2.3 Proof 3. CAPACITATED SPANNING FOREST is NP-
complete for sources with arbitrary capacity.

Theorem 4. SAT ≤P CAPACITATED SPANNING FOREST for multiple sources
of any capacity > 1.
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Figure 12: Proof of NP-completeness of CSF for sources with arbitrary pos-
itive capacities. All non-source nodes are weighted 1. The satisfying as-
signment of φ is covered by the tree of s0. s1 and s2 have capacities > 1,
however they are exhausted by the paths of dummy nodes until they reach
their respective literals.

Proof. The argument follows the same reasoning as in Theorem 2. How-
ever this time each source si has a path of ki : ki ∈ Z∗ vertices between
it and its respective variable node pair (xi, x̄i), exhausting its capacity to
1 before xi or x̄i is covered. An example of this construction is shown in
Figure 12.

The same argument can be extended to the case in Theorem 2 to make
the proof valid for graphs with k ≥ 2 sources and arbitrary positive ca-
pacities.

4.3 Conclusion

In this section we have demonstrated the NP-completeness of the Ca-
pacitated Spanning Forest problem for cases where k ≥ 2 and capacities
are positive. This justifies the heuristic approaches taken in (DV17) and
(DSV17).
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Chapter 5

Network Planning in Smart
Grids via a Local Search
Heuristic for Spanning
Forest Problems

Summary

In this chapter we present a Local Search heuristic algorithm for the
CAPACITATED SPANNING FOREST problem. We demonstrate the per-
formance of our algorithm on planar square grids and on graphs in-
spired by real-world urban distribution grid topologies for the problem
of Network Planning, namely connecting the customers of a grid to en-
ergy sources. The work presented in this chapter has been published in
(DSV17), and presents the first algorithm in the literature for CSF.

5.1 Introduction

As mentioned in Section 1.4, broadly speaking, Network Planning refers
to the configuration of a power distribution network. In the context of
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this work, we refer to Network Planning as the automated initial config-
uration of switches and lines in the electrical distribution grid to obtain a
certain topology that connects the customers on the grid to a set of energy
sources with given capacities. In essence, this is adapting the Capacitated
Spanning Forest problem to a Smart Grid context, in setting up the ini-
tial topology of the grid. We refer to this phase of obtaining a solution
to CSF on a Smart Grid’s electrical network as the “Network Planning”
phase. Due to their reconfigurability in contrast with traditional power
distribution networks, smart grids allow for much greater flexibility in
their planning (SXY+16).

The work in this chapter addresses the problem of Network Plan-
ning in electrical distribution networks, namely the automated config-
uration of the network’s topology to optimally assign customers to en-
ergy sources. In Chapter 2 we showed that in our model this reduces to
the combinatorial optimization problem of constructing a spanning for-
est of rooted, vertex-disjoint, and weight-bound trees, which we termed
the CAPACITATED SPANNING FOREST problem. We developed a Local
Search heuristic that solves the CAPACITATED SPANNING FOREST prob-
lem and present our results in this chapter. The same heuristic can be
applied to the problem of self-healing, which is addressed in the next
chapter.

5.2 Model and problem description

As mentioned in Section 2.2, this work extends research by (QCS14), and
we will use a similar model. Following the model in (QCS14), we rep-
resent an urban electrical distribution grid as an undirected graph in
which nodes represent energy sources, customers, or other operational
elements (switches, circuit breakers and feeders), while edges represent
arcs (or lines) in the power network, including redundant dormant links
that can be activated selectively. Each source is assigned a capacity indi-
cating the amount of commodity (energy units) that it can provide to the
network, while each customer has a demand in energy units. We refer to
the graph with this information as the underlying graph of the network.
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Figures 13 and 15 show representations of a grid in our model, including
lines, energy sources with capacities, and customers with demands.

The motivation behind our use of undirected graphs is that the Smart
Grids being modeled are supposed to be bi-directional grids support-
ing bi-directional flows to and from prosumers, meaning the network
must also permit reversals of flows. Another reason is that the work
that inspired this research by (QCS14) based its models of smart grids
on undirected graphs. As such, we use the same model to continue
their work. Several previous studies on the topological properties of
electrical grids have also used undirected graphs as models (HBSB10)
(HWR+13) (SBP+08) (CDH+10) (KHGP13) (IKSW13). Another reason is
that the directed and undirected versions of the CSF problems are differ-
ent problems requiring different approaches; a parallel can be seen in the
symmetric (undirected) and asymmetric (directed) Traveling Salesman
Problems, for which there are different approximation algorithms and
approximation ratios. For this work we have chosen to study the undi-
rected version of the problem, which we consider more general. This is
not to say that there is a need to impose a restriction on the graphs to
be undirected in further studies. At present, we are not sure of the time
complexity of CSF on directed graphs, but it is also likely NP-hard. We
suspect that CSF is easier to solve using our approaches on undirected
graphs rather than directed due to fewer restrictions.

In the Network Planning phase, our objective is to connect each cus-
tomer to a source, such that the capacity of the source is not exceeded
by the total demand of the customers. We do this by selecting edges in
the underlying graph to construct a spanning forest of trees connecting
each source to its customers. We refer to the tree formed by the source,
its customers, and the set of edges connecting them as the active tree.
Any unused edges from the underlying graph that are not in any active
tree are dormant links that can be activated later as needed, either at the
planning stage when there is a shift in demand or supply, or in the case
of failure. In the Network Planning phase we seek to find a set of active
trees that span all customer nodes of the graph.

While (QCS14) focused on cases with a single source, the problem of
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cases featuring multiple energy sources was left open. When the graph
has multiple sources, instead of constructing a single spanning tree, we
must construct a spanning forest (see Fig. 8 on page 26) consisting of sev-
eral active trees rooted at their respective sources, with each tree being
disconnected from the others – that is, vertex-disjoint. The union of
all trees should cover the entire set of customers. The trees are vertex-
disjoint so that no customer may be served by more than one source. As
in the single-source case, in the event of a disruption inactive links can
be activated to recover connectivity.

As mentioned in Chapter 2, this problem of covering the vertices of a
graph with a spanning forest consisting of k vertex-disjoint trees rooted
at different nodes, with each tree having a capacity limiting the sum
of weighted vertices that it can contain is the CAPACITATED SPANNING

FOREST problem (CSF).

5.3 Contribution

In this work, we introduce a framework to represent a Smart Grid infras-
tructure and the CSF problem. We developed a Local Search heuristic
for CSF that can be used to 1) construct a spanning forest, assigning cus-
tomers to sources and 2) restore connectivity in case of perturbations in
the graph (this result is shown in Chapter 6). Our Local Search heuris-
tic is successful in constructing forests on planar grids and on a sample
graph inspired by a real-world urban distribution network. We demon-
strate the successful performance of this heuristic on several graph in-
stances.

5.4 Local Search Heuristic

We developed a Local Search heuristic algorithm for solving the CAPAC-
ITATED SPANNING FOREST problem. Our approach is to first obtain an
initial solution by expanding each tree concurrently according to a sim-
ple Breadth First Search (BFS) or Depth First Search (DFS) algorithm to
yield an initial, typically suboptimal configuration of active trees. The
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trees expand in a breadth-first or depth-first manner until no further
nodes can be added, either because they had no remaining capacity or
they are blocked by another tree as in Fig. 8b on page 26.

The simple initialization step in most cases is insufficient to guaran-
tee a cover of the entire graph. This is usually due to one tree blocking
another tree during their construction; the reader can refer to Fig. 15 in
Section 5.5 for some examples of this. Thus, further processing is needed
to improve the solution, for which we have developed a Local Search
heuristic.

The main idea behind our algorithm is to, at each iteration, pass a ran-
dom node from a tree T1 that has exhausted its capacity (i.e. |V (T1) \ s1| = c1)
to one of its neighboring trees T2 that is not yet at capacity, followed by
assigning a new, unserved neighboring node to T1. These steps are per-
formed until either all nodes are served, all trees are at capacity, or the
maximum number of iterations has been reached, which we define as
|V | × 2.

The reasoning behind this algorithm is that a tree that has reached its
capacity limit and has neighbors that are not yet at capacity is probably
blocking those neighboring trees, as in Fig. 8. Through these node ex-
changes the unsatisfied neighboring tree can slowly grow, however gaps
in blockages that might emerge can also be exploited.

Once the node exchange is made, all trees in the graph expand con-
currently according to the heuristic they used in the initialization step
(Breadth-First or Depth-First Search). This exploits newly-created gaps
in blockages so that tree expansions can occur more efficiently, rather
than only one node at a time.

In the single node exchange step of the heuristic, the node being given
up from the full tree is preferably a leaf node. This is because changes in
non-leaf nodes disconnect from the source all nodes that are downstream
of the change location. This is avoided by exchanging only leaves. If a
leaf node cannot be exchanged because T2 is not in contact with any of
T1’s leaves, we exchange any random node v from T1 adjacent to the
recipient T2, which will also disconnect several nodes in T1 downstream
of v. These nodes can be recovered in the expansion step.

57



The heuristic is stated more formally in Algorithm 1.

Algorithm 1 Local Search Heuristic

Require: Graph is initialized with simple BFS or DFS
1: while ∀T ∈ T , T.capacity 6= 0 and |Vuncovered| 6= 0

and iterations < |V | × 2 do
2: T1 ← random T ∈ T with T.capacity = 0
3: T2 ← neighbor tree(T1) having T2.capacity > 0
4: v ← random v ∈ leaves(T1) adjacent to T2
5: if leaves(T1) adjacent to T2 = ∅ then
6: v ← random v ∈ T1
7: end if
8: Give v from T1 to T2
9: u← u ∈ neighbors(T1) where u is unserved

10: T1 ← T1 ∪ u
11: for all T ∈ T do
12: T.expand()
13: end for
14: end while

The structure of the algorithm suggests that its time complexity is
polynomial with respect to the input size. In the worst case, assume a
case with two trees T1 and T2 with initial capacities c1 and c2 where c1 =

c2 = |V |
2 . Suppose after the initialization step that T1.capacity = 0 and

T2.capacity = |V |
2 . Suppose that this situation holds after every iteration

of the algorithm and the trees are in constant contact at all times, in other
words, that after each iteration of the algorithm one node is exchanged
at a time from T1 to T2. Then in total c2 = |V |

2 node exchanges will need
to take place in the worst case; in other words, assuming two trees, O(ci)

is the expected worst case running time, where ci is the capacity of the
least satisfied tree.
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5.5 Experimental Simulations

5.5.1 Experimental setup

To verify the performance of our heuristic algorithm experimentally, we
implemented a test bed to simulate distribution networks in Python (Ros95)
using the NetworkX module (HSS08). The graphs we modeled in our
test bed were planar square grid graphs of sizes N = 9, 2500, 10,000
and 20,000 nodes (Figs. 15 and 17) and we also modeled the topology of
a “real-world” urban distribution network, that was introduced in the
FLISR case study scenario shown in Fig. 5 in Section 1.4. In all graphs,
the demands of customers were uniformly set to 1. In the real-world
graph, customer nodes have a demand of 1, while other nodes (remote
operated switches, circuit breakers, feeders and junctions) have a cost of
0. The roots of each tree (sources) were each assigned a given capacity,
such that in summation they can supply the entire graph. Simulations
were performed where the trees concurrently expanded from their root
nodes via the successive addition of other nodes.

We performed experimental simulations to test the heuristic’s perfor-
mance, averaging the results of 1000 independent simulation runs over
several test scenarios. The variables manipulated in the test scenarios
were the type of underlying graph (square grid or sample electric grid),
the type of algorithm used to obtain an initial partial forest (BFS or DFS),
and in the square grid case, the size of the graph (9 nodes or 2500 nodes).
The metric used to evaluate the algorithm’s performance was the fraction
of customers served, or FoS, defined as FoS = |served nodes|

|total nodes| .
In our general experimental setup, we began with an underlying graph

consisting of unassigned nodes and two or more sources, each source
being assigned a capacity (Fig. 13). We then constructed an initial so-
lution by applying a Breadth First Search or Depth First Search algo-
rithm to grow trees outwards from each source, obeying the constraints
of the CSF problem (for example that trees cannot share the same ver-
tex). Figs. 15a, 15c and 15e illustrate the construction phase and the ini-
tial partial forest thus obtained. Besides an initial solution, this partial
forest also serves as an experimental control and a benchmark against
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(a) Initial N = 9 graph (b) Initial N = 2500 graph

Figure 13: Initial states of planar grid graphs, N = 9 (13a) and N = 2500
(13b). In both cases Source 1 (Red) is placed in the bottom left corner, and
Source 2 (Green) is placed in the center. Each source has capacity (N−2)

2
,

while each customer has demand 1.

which the performance of the Local Search heuristic can be compared,
since simple BFS and DFS algorithms typically do not yield an optimal
cover. Once the initial partial forest was obtained, we executed the Local
Search heuristic and recorded the resulting FoS.

For the square grid cases we used two sources with equal capacities,
such that

∑
ci = |V | − 2. One source was placed in the center of the grid

and another in a corner. In this configuration the simple algorithms used
to initialize the graph were insufficient to produce an optimal covering,
due to one source blocking off another (Figs. 15a and 15c). When both
sources are placed in corners, it was found that BFS is sufficient to cover
the graph.

We performed 1000 runs of simulations on square grids of size N = 9

and N = 2500 initialized with BFS and DFS. In addition, we also ran
tests on graphs of sizeN = 10000 (Fig. 16) andN = 25000, and on graphs
with three sources (Fig. 17).

To simulate a “real-world” electric grid, we created within our frame-
work a representation of the FLISR case study introduced in Fig. 5 from
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Section 1.4, which we refer to as the sample grid. We performed a trans-
lation of all elements: sources, customers, switches, circuit breakers, and
connective elements (Fig. 14). In the sample grid, we modeled three
sources and 24 customers. Sources were all assigned the same capac-
ity, which together was sufficient to cover the entire set of customers.
All customers were assigned a demand of 1, while nodes representing
switches, circuit breakers, junctions and feeders were assigned 0 demand,
meaning they can be added to a tree at zero cost. Junctions or intersec-
tions in the electric lines were represented by a node connecting the rele-
vant links. We did not model the physical limits of the grid.

As in the square grid case, we initialized the graph using Breadth
First Search or Depth First Search. Since not all nodes in this graph are
customers, the BFS and DFS heuristic was modified to give preference to
adjacent customer nodes before adding other types of nodes to the tree.
We performed 1000 runs of simulations initialized with BFS and DFS and
recorded the FoS. Only customer nodes are counted towards the FoS.

5.5.2 Experimental results

The results of our simulations show that the heuristic successfully con-
structs a capacitated spanning forest on both square grid and real grid
topologies; in our trials a complete covering of the graph was obtained
in the vast majority of cases in all test scenarios. Table 1 presents the
results of the Local Search algorithm, averaged over 1000 runs of experi-
ments for each experimental scenario.
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Original

Translation

Figure 14: Top: Sample grid topology. Bottom: The translation in our plat-
form. Junctions, relays and remote operated switches are represented as
nodes with zero cost.
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FoS
Graph BFS DFS LSBFS LSDFS

9 node grid 0.78 0.91 1.0 1.0
2.5K node grid 0.91 0.56 1.0 0.99
Sample Grid 0.55 0.76 0.99 1.0

Table 1: Summary of mean FoS results over 1000 runs. Columns BFS and
DFS show results with those algorithms alone, while columns LSBFS and
LSDFS show results from the Local Search heuristic on graphs initialized with
those respective algorithms. The difference in performance after adding the
Local Search heuristic are very clear and no statistical test is required to
show that the heuristic improves significantly over the initial solutions.

Figures 15–18 show sample runs demonstrating the performance of
the Local Search algorithm in constructing a spanning forest on square
grids and the sample electric grid. The heuristic successfully constructs
a forest even when it is initialized with very unfavourable starting con-
ditions, such as when initializing with DFS, which often resulted in one
source being completely surrounded by another and zero nodes being
added to the surrounded source (Fig 15f). The Local Search heuristic is
able to recover and reach the optimum also in this case.

More specifically, Figures 15a and 15b show a graph with two sources
(in green and red) on a 3x3 grid, the first in the center and the second in
the bottom left corner. The sources have enough capacity to cover all the
nodes together, namely capacities 3 and 4 respectively. Figure 15a shows
the configuration of the trees following initialization with Breadth-First
Search. The tree formed by the central green source blocks the red source
in the bottom left corner. Figure 15b shows the state after the Local Search
is executed, with all nodes being covered.

Figures 15c and 15d show the same type of experiment, but on a
larger 50x50 grid with 2500 nodes. Since there is more space between
the sources, they have more room to expand by BFS before becoming
stuck. Here again, after a few node exchanges, the Local Search heuris-
tic creates a gap through which the bottom left source can expand to the
unserved nodes.

Figure 15e 15f show the same 50x50 grid setup, but using Depth-
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First Search in the initialization phase. Here the bottom right source is
blocked at initialization without adding any nodes. Nevertheless the Lo-
cal Search heuristic, through several node exchanges, manages to cover
the entire graph. Together these results demonstrate that the Local Search
is successful in modifying several types of initial configurations of the
graph.

Although we did not perform a large number of experiments on larger
graphs, we verified experimentally using fewer runs that the heuristic is
equally effective on grids of size N = 10, 000 (Fig. 17) and N = 20, 000.

An explanation for the effectiveness of the heuristic is that the algo-
rithm modifies the graph at each iteration by at least one node (Opera-
tions 9 and 10 in Algorithm 1), adding it to a tree at capacity and giving
up a node to a neighboring unsatisfied tree. Through these minuscule
but persistent changes, whose “footprint” can be seen in the structure
of the final graph, an optimal solution is more likely to be reached than
through larger perturbations such as the disconnection of several nodes
at once, a step which may repeatedly miss the optimum. The cost of
making these many single-node changes is in the larger time taken by
the algorithm to converge.

Although successful in the vast majority of cases, our heuristic does
not guarantee success 100% of the time. A possible explanation for this
is that the maximum number of iterations was reached in some tests; we
believe that given a bit more time the heuristic could eventually reach a
solution.
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(a) BFS (b) Local Search Heuristic

(c) BFS (d) Local Search Heuristic

(e) DFS (f) Local Search Heuristic

Figure 15: Sample results of Local Search on grids of size N = 9 and
N = 2500. Initialization step is shown in left column, Local Search in right
column. When the graph is initialized with BFS (Figs. 15a and 15c) or DFS
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(Fig. 15e), Source 1 (Red) is surrounded or blocked by Source 2 (Green), re-
sulting in many starving nodes (grey). Applying the Local Search algorithm
leads to an optimal covering of the graph on all three starting graphs. Of
note is that the Local Search manages to construct a forest even when Source
1 initially has no nodes at all, and is completely surrounded by Source 2, as
in Fig. 15e.

DFS Local Search Heuristic

Figure 16: Local Search on N = 2500 grid with 3 sources (blue, green, red)
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BFS Local Search

Figure 17: Local Search on N = 10,000 node grid
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(a) DFS

(b) Local Search Heuristic

Figure 18: Sample result of planning stage (i.e. assignment of customers
to sources) on a real-world-inspired FLISR graph. Graph is initialized with
DFS in 18a. Heuristic allocates all customers to a source in 18b.

68



Chapter 6

Network Planning and
Self-Repair in Models of
Urban Distribution
Networks via Hill Climbing

Summary

In this chapter we present a heuristic algorithm for the CAPACITATED

SPANNING FOREST problem based on a Hill Climbing metaheuristic. This
algorithm outperforms the Local Search heuristic from Chapter 5 in solu-
tion quality on more complex graphs, and can solve Network Planning as
well as self-healing scenarios on large graphs representing smart grids.
The work presented in this chapter is published in (DV17).

6.1 Introduction

Network Planning, as well as Fault Location, Isolation and Supply Restora-
tion (FLISR) are both important functions of power distribution automa-
tion systems. As mentioned in Section 1.4 and Chapter 5, Network Plan-
ning broadly refers to the configuration of a power distribution network,

69



while Fault Location, Isolation and Supply Restoration (FLISR) deals
with repairing faults on power distribution lines. In this chapter we in-
troduce an algorithm that addresses both problems.

The work presented in this chapter extends the results presented in
Chapter 5 and (DSV17), wherein a Local Search heuristic was used to
solve a network planning problem of assigning customers to energy sources
in smart grids. We introduce an algorithm based on a Hill Climbing (HC)
metaheuristic that embeds the Local Search from (DSV17), and that out-
performs the plain Local Search on larger graphs. We demonstrate ex-
perimentally the performance of the heuristic on large graphs inspired
by the topologies of real electric grids through thousands of runs of sim-
ulations. The graphs we test on are expansions of the “sample grid”
introduced in (DSV17) that is inspired by real-world networks from the
Australian supplier ENERGEX (HVNS11). This graph is based on the
topology of the FLISR scenario described in Section 1.4, illustrated in
Figure 5. We demonstrate also the use of the Hill Climbing heuristic for
the problem of fault restoration when parts of the grid are disconnected.

The main motivations for this work were twofold. First, the Local
Search introduced in (DSV17) was found to not perform adequately on
the aforementioned expansions of the “sample grid” graph for the net-
work planning problem. Second, following up on the results and future
work mentioned in (DSV17), we aimed to tackle the problem of repairing
a network in the case of link or node failures (the Fault Location, Isolation
and Supply Restoration, or FLISR problem).

6.2 Problem description and model

In the context of this work, Network Planning refers to the automated
initial configuration of the network’s topology in order to optimally as-
sign customers to a set of energy sources, each with a given capacity.
An envisioned feature of smart grids is self-repair in the case of failures.
Fault Location, Isolation and Supply Restoration (FLISR) broadly refers
to the repair of faults on power distribution lines. An example of a FLISR
scenario is illustrated in Fig. 5 reproduced in Section 1.4 from (ZVD15).
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We define self-healing as the automated restoration of connectivity
following a link or node failure that disconnects customers from the grid.
This is achieved by exploiting the redundant “dormant” links already
present in the distribution network after the network planning phase,
activating them as needed to reconnect disconnected nodes. Figure 6
from Section 2.2 illustrates this concept. This model is rooted in reality
as urban low-voltage distribution networks already contain redundant
links that can be activated to restore connectivity when failures occur.
These redundant links exist in the form of tie switches between different
feeders, which can be activated or deactivated by opening or closing the
switch.

Following the model introduced in (QCS14) and used in Chapter 5,
we represent the electrical distribution grid as an undirected graph in
which nodes represent energy sources, customers, or other operational
elements (switches, circuit breakers and feeders), while edges represent
arcs in the power network. Each source is assigned a capacity indicating
the amount of commodity (electric power) that it can provide to the net-
work, while each customer node has a demand in energy units. In the
current model, there are no capacity constraints on the lines (edges), only
on the sources.

In the Network Planning phase every customer is connected to a
source, such that the sum of its customer demands does not exceed its
capacity. In the Self-Healing phase, we are given a graph of a spanning
forest that has suffered some perturbation such as the removal of a node
or edges and must reconnect disconnected customer nodes to sources.
Failures in the network can occur either as link failures that remove an
edge from the graph, or node failures that remove a node and all its ad-
jacent edges.

In (DSV17) and Chapter 2 we described the CAPACITATED SPANNING

FOREST problem (CSF) as the problem of creating on a graph a spanning
forest of k vertex-disjoint trees rooted at distinct nodes, with each tree
having a capacity that limits the sum of weighted vertices that it can
contain. Both Network Planning and Self-Healing can be modeled as in-
stances of the CAPACITATED SPANNING FOREST problem. The Network
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Planning phase deals with constructing a capacitated spanning forest on
a graph representing a power grid, while in the Self-Healing phase, we
are given a graph of a spanning forest that has suffered some perturba-
tion and must reconnect disconnected customer nodes to sources, recon-
structing the spanning forest.

6.3 Algorithm

6.3.1 Initialization

In (DSV17) we introduced in a Local Search heuristic algorithm for CSF.
An initial solution is obtained by building the trees in the graph accord-
ing to Breadth-First or Depth-First Search until moves are no longer pos-
sible. As this initial forest is usually suboptimal it is improved upon
by a Local Search heuristic. In (DSV17), the algorithm used to initial-
ize the graph was a Breadth-First Search or Depth-First Search, executed
concurrently for each tree in separate threads. Because fairness was not
guaranteed, in the current work we used a new algorithm that ensures
trees make an equal number of moves at initialization. Each tree adds a
node from its periphery at random, taking turns. This is implemented in
the form of a list from which trees that have made a move are removed.
Once all trees have made a move, the list is repopulated. This method
was an improvement and yielded better initial solutions, especially in
graphs with bottlenecks and choke-points such as the sample grids we
studied, because trees are less likely to cut each other off early. Indeed, in
some cases, such as the 4-source graph, it was even frequently possible
to obtain the optimal configuration of trees just with this simple initial-
ization procedure.
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Algorithm 2 Initialization algorithm

List← {T1 . . . Tn}
repeat
Ti = List.pop()
v ← random unserved node neighboring Ti
Ti ← Ti ∪ {v}
if List = ∅ then
List← {T1 . . . Tn}

end if
until No more moves possible

This typically leads to a suboptimal solution. Once the graph has
been initialized, we proceed with the hill climbing heuristic procedure.

Note that in our simulations, to test the performance of the Hill Climb-
ing heuristic only, we omitted runs in which the initialization algorithm
was sufficient to reach an optimal solution (which is the case for smaller
graphs).

6.3.2 Hill climbing heuristic

Once an initial solution is obtained, the Hill Climbing heuristic in Al-
gorithm 3 is applied to improve the solution. This algorithm consists
of a main loop in which at each iteration a small local change (i.e. an
exchange of nodes between two adjacent trees) is made on the current
state of the graph. If the resulting solution is better or at least as good
as the current solution, it is accepted and becomes the current solution;
otherwise it is discarded and a new local change is tried.

Algorithm 4 describes the Local Search step performed. This simply
consists of a random donation of one node from tree Ti to its neighbor Tj .
The choice of Ti is preferential, first from any tree that is at full capacity,
then if no such tree is available from any tree with unserved neighbors,
and failing that, from any random tree. Tj is chosen from a random tree
adjacent to Ti. Once node v is donated from Ti to Tj , Ti obtains a random
neighboring unserved node, and all trees are then “expanded” according
to the procedure in Algorithm 5. Some optimization has been made to
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the overall procedure by omitting already discarded moves. The crite-
rion being compared between solutions to determine acceptance is the
Fraction of Serviced customer nodes (FoS).

Algorithm 3 Hill Climbing heuristic

Require: Initialize graph with Algorithm 5
s0 ← InitialSolution
s← s0
repeat
s∗ ← LocalSearchStep(s)
if s∗.FoS ≥ s.FoS then
s← s∗

end if
until All customers served ∨maximum iterations reached
return s

Algorithm 4 LocalSearchStep(s)

Ti ←


random full tree
random tree with unserved neighbor
random tree with |T | > 1

Tj ← random tree neighboring Ti
v ← random node of Ti
Ti ← Ti \ {v}
Tj ← Tj ∪ {v}
u← random unserved node neighboring Ti
Ti ← Ti ∪ {u}
expand(Tj)

6.4 Experimental Scenarios

6.4.1 Experimental setup

To test experimentally the performance of the algorithm, we expanded
the test bed used in (DSV17) that was implemented in Python (Ros95)
using the NetworkX (HSS08) module.
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We modeled graphs that were expansions of the “sample grid” graph
in (DSV17). The sample grid graph is representative of real-world elec-
tric distribution networks and their topologies; it is illustrated in Fig-
ure 5 from Section1.4. This graph is based on the topological profile of
urban 11 kV feeders from the Australian utility ENERGEX (HVNS11),
but shown in simplified form, with only the backbones and ties to ad-
jacent feeders represented; second and third-level spurs that are part of
the network are omitted. The original graph has only three sources and
24 customer nodes, arranged on 3 feeders. The new graphs based on
this model, illustrated in Figs. 19 and 20 are larger, featuring more feed-
ers and junctions at remote operated switches. Essentially, the graph has
been expanded to feature longer feeders and more feeders, with more
junctions between them. Thus these graphs represent more complicated
instances of the Capacitated Spanning Forest problem on a sparse graph.
The expanded graphs have four and ten sources respectively and 128
and 800 customer nodes. The demands of customers were uniformly set
to 1 as in the previous work, while other nodes such as circuit breakers,
junctions and tie switches had no demand but could be added to the tree
of a source.

We performed individual simulation runs and averaged the results
of 1000 independent simulations for each test scenario. The metric used
to evaluate the algorithm’s performance was the fraction of customers
served, or FoS, defined as FoS = |served nodes|

|total nodes| .

In our setup, we begin with an underlying graph consisting of unas-
signed nodes and multiple sources. Each source is assigned a capacity
(Fig. 19). An initial solution is then constructed with Algorithm 5, grow-
ing trees outwards from each source, while obeying the constraints of
the CSF problem (for example that trees cannot share the same vertex).
Once the initial partial forest was obtained, we executed the Hill Climb-
ing heuristic and recorded the resulting FoS.
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6.4.2 Application 1: Network planning with a realistic lay-
out

The first application explored is network planning on an enlargement of
the sample graph scenario introduced in (DSV17), as shown in Figs. 19 & 20.
In this application, the number of feeders (and corresponding sources)
and the length of the feeders is extended. Network planning refers to
the assignment of customers to sources such that each customer node is
served by one source. This is achieved by building a capacitated span-
ning forest on the underlying graph. Larger graphs are more difficult
instances for the heuristic to solve.

6.4.3 Application 2: Fault restoration

The second application we investigated is service restoration during the
occurrence of a fault. When a fault occurs (such as through failure of a
single link or node with several links connected to it), customer nodes
might be disconnected from their energy source. Service restoration in-
volves activating redundant dormant nodes to reconnect the customers
to a source.

In our experimental setup for this scenario, the graph is initially fully
covered by executing the Network Planning phase. The sources are given
excess capacity (their capacity is doubled) to be able to serve additional
nodes that have been disconnected. In our experiments, a single link is
severed in the graph that is either randomly selected or specified. This
has the consequence of disconnecting nodes that are downstream from
it. The Hill Climbing heuristic is then executed in order to restore con-
nectivity.

6.5 Results

6.5.1 Planning

Figure 19 shows sample results from our method for the network plan-
ning scenario on a grid with 4 sources and 412 nodes. After initial-
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ization with Algorithm 5, some nodes (in grey) remain unassigned, so
FoS = 0.72. Upon execution of the Hill Climbing heuristic, all customers
are assigned to a source (FoS = 1). This experiment is repeated with
10 sources and a larger graph of 2590 nodes in Figure 20, and again the
heuristic is successful.

Table 2 encapsulates the results of 1000 simulations on these two types
of graph with the Local Search heuristic introduced previously in (DSV17)
and the new Hill Climbing heuristic. Although adequate for the types of
graphs presented in (DSV17), the Local Search heuristic fails to converge
to a solution on these larger sample grids – in fact, it makes the initial
solutions worse, resulting in a negative average ∆FoS for both 4-source
and 10-source grids.

In contrast, the Hill Climbing heuristic is successful for grids of both
sizes, yielding an average FoS of nearly 1.0. However, there is a marked
increase in the number of iterations needed to reach a solution with re-
spect to the size of the graph.

Table 2: Summary of mean FoS results over 1000 runs for graphs with 3, 4
and 10 sources. LS denotes Local Search heuristic from (DSV17) while HC
is the new Hill Climbing heuristic.

Method N No. of sources FoSfinal ∆FoS iterations
LS 72 3 1.0 0.083 10.86
HC 72 3 1.0 0.083 7.55
LS 412 4 0.57 -0.26 4928
HC 412 4 1.0 0.17 514
LS 2590 10 0.31 -0.29 14702
HC 2590 10 0.996 0.392 63666

6.5.2 Fault restoration

Figures 21, 22, and 23 show sample runs of the application of the Hill
Climbing heuristic in a repair scenario.

Figure 21 shows the action of the algorithm in the case of the single
link failure and FLISR scenario described in Figure 5, on a graph with 24
nodes. A specified edge is removed from the graph and several nodes
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(a) Initial 4 source graph

(b) Final 4 source graph

Figure 19: Network planning on an 412-node graph with 4 sources.
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(a) Initial 10 source graph

(b) Final 10 source graph

Figure 20: Network planning on an 2590-node graph with 10 sources.
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become disconnected from their source. Other sources with excess ca-
pacity are connected to the unserviced nodes to supply them, and the
FoS is restored to its optimal value. This scenario can also be solved by
the Local Search heuristic from Chapter 5.

Figure 22 shows a sample run of the heuristic for the repair scenar-
ios on an expansion of the FLISR scenario sample grid graph from EN-
ERGEX. This graph has more feeders customers and ties than the previ-
ous, essentially having the feeder elements repeated. The heuristic suc-
cessfully restores connectivity to all customers (FoS = 1).

Figure 23 shows a sample run of the heuristic for the repair scenarios
on the larger, more complicated 10-source graphs. The heuristic success-
fully restores connectivity to all customers (FoS = 1).

Although we performed several sample runs to test the Hill Climbing
heuristic in repair scenarios that indicate to us that it can solve such prob-
lems, we did not perform a large number of experiments testing the FoS
results of the Local Search vs the Hill Climbing heuristic for the repair
scenarios. Further research is needed in this area. Our sample runs indi-
cate that the Hill Climbing heuristic produces better quality solutions on
average and with less execution time in the real-world repair scenarios.

Figure 23 shows a sample run of the heuristic for the repair scenarios
on the larger, more complicated 10-source graphs. The heuristic success-
fully restores connectivity to all customers (FoS = 1).

6.6 Conclusion

In this work we presented a Hill Climbing heuristic that can be used
for network planning and grid self-repair. Our empirical findings sug-
gest that this heuristic is effective on larger and much more complicated
graphs than the heuristic presented in (DSV17) for constructing construct-
ing spanning forests of capacitated, vertex-disjoint trees.
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(a) Link failure

(b) Repair

Figure 21: Result of the repair algorithm. An edge failure occurs in tree
B, causing loss of service in some nodes (in grey). Unserviced nodes are
reassigned to sources with excess capacity.
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(a) Link failure - disconnected nodes shown in grey

(b) Repair

Figure 22: The repair algorithm on the 4-source graph with 412 nodes. An
edge failure occurs, causing loss of service in some nodes (in grey). Unser-
viced nodes are reassigned to sources with excess capacity.
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(a) Link failure - disconnected nodes shown in grey

(b) Repair

Figure 23: The repair algorithm on the 10-source graph with 2590 nodes.
An edge failure occurs, causing loss of service in some nodes (in grey). Un-
serviced nodes are reassigned to sources with excess capacity.
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Chapter 7

A Flow-Based Heuristic
Algorithm for Network
Operations Planning in
Smart Grids

Abstract

In this chapter, we present a heuristic algorithm for solving
CSF based on computing the minimum-cost maximum flow
on the graph. The algorithm outperforms the Local Search
from Chapter 5 with respect to solution quality, and signifi-
cantly with respect to running time. The work in this chapter
has been published in (DFMV18).

7.1 Introduction

This work follows the same model, assumptions and problem as intro-
duced in Section1.4, and Chapters 2, 5 and 6.
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The work in this chapter is solely concerned with the Network Plan-
ning phase, i.e. the initial configuration of the network. However, the
same algorithm can be used to handle reconfigurations of the network
whenever a change in topology occurs, such as due to a fault, addition
or removal of a source, or changes in demand.

7.2 Problem description and model

Following the model in (QCS14), we represent the electrical distribution
grid as an undirected graph in which nodes represent energy sources,
customers, or other operational elements (switches, circuit breakers and
feeders), while edges represent arcs in the power network. Each source is
assigned a capacity indicating the amount of commodity (electric power)
that it can provide to the network, while each customer node has a de-
mand in energy units. In the Network Planning phase, our objective
is to connect each customer to a source, such that the capacity of the
source is not exceeded by the combined demand of the customers it sup-
plies. There are no capacity constraints on the lines (edges), only on the
sources.

7.3 Algorithm

We present a heuristic algorithm for the solution of CSF that has two
stages: an initialization stage and a balancing stage. In the initialization
stage we obtain an initial solution by covering all customer vertices while
permitting violations of the sources’ capacities. In the subsequent bal-
ancing stage we improve the initial state by transferring excess vertices
to other sources to correct the capacity violations. We determine the nec-
essary node transfers by creating a flow network from the initial solution
and solving the well-known Maximum Flow Minimum Cost problem on
it. The resulting graph is a solution to CSF. The quality of the solution
and the performance of the algorithm are discussed in Section 7.5.

The rationale behind this two-stage scheme is the following: Suppose
that a leaf is connected to a source si by a single path. The only way to
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cover this leaf is by building a tree rooted at source si. However, if the
length of the path is close to the source’s capacity ci, the ratio of possible
trees rooted in si covering the leaf out of all possible trees rooted in si will
be small. Thus, a search algorithm will spend a lot of time finding any
of the suitable trees. This is a case of restrictive graph topology: the more
restrictive the topology is, the less feasible solutions exist. Such topolog-
ical elements, such as the leaf in question, are very restrictive and search
algorithms cannot efficiently find a solution unless they are guided to
focus on restricted parts of a graph. However, it is hard to find an el-
egant and computationally efficient way to guide them when searching
for trees of fixed weight or cardinality. In order to make this feasible, we
violate capacity constraints in the first stage and assume that the cost of
recovering them during the second stage will be small enough to let the
algorithm outperform a search that does not violate the constraints.

7.3.1 Stage 1: Initialization

The initialization stage of the algorithm is similar to a Breadth-First Search
with a priority queue. At each iteration of the algorithm we select the
source with the largest capacity. This source then chooses a vertex from
its neighboring vertices whose minimum distance (number of hops) to
other sources is greatest. We then connect this vertex with the tree of the
source.

Algorithm 5 Initialization algorithm

Let Ts be the tree of source s
repeat
s← source with largest capacity
v ← neighbor of Ts with the largest minimum distance from any
other source
Ts ← Ts ∪ {v}

until All vertices belong to a tree or no moves possible

As a result of the initialization algorithm run, we obtain a set of trees
that cover the graph. Let xi denote the size of Ti for all trees. These sizes
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may be greater than the corresponding capacities {ci}. The goal of the
next stage is to change the obtained trees such that they still cover the
graph and ci ≥ xi ∀i = {1, . . . , |S|}.

7.3.2 Stage 2: Improving the initial state

We create a flow graph F = (S+, T, f, c, a) in which vertices S+ contain
sources in the initial graph and two special vertices called the transfer
sink and transfer source, and f , c and a are functions mapping flows,
flow capacities and costs to all edges, respectively. The edge set T con-
tains:

1. Edges between sources if it is possible to transfer vertices of the
initial graph G between them (i.e. they have neighboring trees).
Their flow capacity equals infinity and their cost equals 1.

2. Edges from the transfer source to the sources with a flow capacity
of xi (the size of Ti) and a cost of 0.

3. Edges from the sources to the transfer sink with a flow capacity of
ci (the capacity of the source) and cost equal to 0.

Using the flow graph F , we can now reduce the problem to the Min-
imum Cost Maximum Flow problem (SMW+09), which is to find a max-
imum flow from a source vertex to a sink vertex that has minimum edge
cost. In F , the flow between the transfer source and sources as well as
flow between the sources and the transfer sink will be constant in every
solution due to them having no cost at all. What is not known is how to
organize a flow between the sources. The flow capacity between them is
unlimited because there is no reason to limit the number of vertices that
can be transferred from one source to another source. However, there is
a cost on each edge limiting the number of such transfers between the
sources, because each such transfer costs computational time.

Thus, a solution to the Maximum Flow problem is the optimal way
to transfer all the vertices between the sources, with a minimum number
of transfers being performed. In order to find it, we use the well-known
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Ford-Fulkerson algorithm (AMO93; FF56). As a result, we obtain a num-
ber of vertices to be transferred between the sources. We then iterate on
the edges and try to transfer vertices using the algorithm presented in
the next subsection.

7.3.3 Algorithm for vertex transfering

Suppose we need to transfer t vertices from source s1 to source s2. Per-
form the following steps:

1. Count all cut vertices and their downstream children (vc is a child
of vp if vc would be disconnected from its source together with vp)
in T1.

2. Transfer, with children, vertices from s1 to s2 that are neighboring
T2.

Perform steps 1 and 2 until we transfer t vertices or there are no ver-
tices in T1 that can be transferred to T2.

Algorithm 6 Transfer algorithm

Require: t := number of vertices to be transfered per source
1: repeat
2: Count all cut vertices and their children (vc is a child of vp if vc

would be disconnected from its source together with vp) in T1.
3: Transfer (including children) vertices from T1 to neighboring tree

T2.
4: until We have transferred t vertices or there are no vertices in T1 that

can be transferred to T2.

At the end of the execution of this algorithm we should have a bal-
anced capacitated spanning forest.

7.4 Experimental setup

To test the effectiveness of this algorithm, we performed experimental
simulations of the algorithm compared to the Local Search heuristic from (DSV17)
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and a priority queue BFS. Tests were performed on three types of graphs:
1) random trees with 1000 vertices and 20 sources, 2) random graphs
with 1000 vertices and 1250 edges and 3) 32× 32 square grids. We tested
for cover quality, defined as |Vcovered|

min(
∑

i∈S ci,|V |) , where Vcovered is the num-
ber of covered vertices, with respect to source capacity ci and number
of sources k. We also tested for time performance with respect to the
number of sources and sources capacity. The results are summarized in
Section 7.5.

7.5 Results

The results of our experiments are shown in Figures 24–32. In all Fig-
ures, the legend label “Flow” denotes our new algorithm as described
in Section 7.3, compared to the state of the art “Local Search”. The label
“Flow2” refers to a variation of the algorithm in which the flow between
vertices is set to a small value rather than infinity and the algorithm is
run for several iterations (specified in the legend).

Our results demonstrate the superior performance in both cover qual-
ity and time performance of the new algorithm over a benchmark prior-
ity queue BFS and the Local Search from (DSV17).

For all experiments, each case was generated 50 times and the result
was averaged. “Cover quality” is defined as the number of covered ver-
tices divided by the minimum of sum of source capacities and number
of all vertices.
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7.5.1 Cover quality with respect to source capacity

Figures 24–26 show the superior coverage of the new algorithm com-
pared to the Local Search and benchmark BFS with respect to varying
source capacity, for different types of graphs: random trees, random
graphs and square grids.

The cover quality reduces to around the value 50 because this is ex-
actly 1000

20 , or |V |k . This means a cover must be tight, or perfect, with
all the total capacity being exhausted in order to cover all nodes, such
that |V | =

∑
i∈S ci. This state is difficult to achieve, as trees will block

each other and lack reserve capacity to circumvent a block, leading to
a reduced measure of cover quality. Conversely, if |V | 6=

∑
i∈S ci, then

|Vcovered|
min(|V |,

∑
i∈S ci)

is expected to be greater, since trees can either cover a
larger proportion of their capacity without blocking each other off, or
they have reserve capacity to expand around a block. In either case, this
leads to a better ratio of covered nodes.

Figure 24: Cover quality with respect to source capacity on a random tree
with 1000 vertices and 20 sources.
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Figure 25: Cover quality with respect to source capacity on a random graph
with 1000 vertices and 1250 edges.

Figure 26: Cover quality with respect to source capacity on a 32 × 32 grid.
Experiments were run as described in Fig. 24.
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7.5.2 Cover quality with respect to number of sources

Figures 27–29 show the superior coverage of the new algorithm com-
pared to Local Search with respect to the number of sources on graphs
with roughly 1000 vertices. The difference in the cover quality between
the three examples can be explained by the sparsity of the graph: In a
tree, as we increase the number of sources they will begin to block each
other. Random graphs and square grids are less sparse and provide more
edges through which trees can avoid each other. In general, the more
sources are added, cover quality decreased for all three graphs.

Figure 27: Cover quality w.r.t the number of sources on a random tree with
1000 nodes. Source size = |V |

k
.
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Figure 28: Cover quality w.r.t. the number of sources on a random graph
with 1000 vertices and 1250 edges.

Figure 29: Cover quality w.r.t. the number of sources on a 32× 32 grid.
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7.5.3 Performance measures

Figure 30 shows the dramatically reduced wall time taken by the new al-
gorithm in comparison with the Local Search, which is close to zero mil-
liseconds. Figures 31–32 show the effect of varying the number of sources
on elapsed time. When the number of vertices is high enough, the algo-
rithm takes very little time to converge. However, when the number of
vertices is smaller, the number of sources becomes more significant, as it
gets more difficult to not obtain conflicts in the initial state. The growth
of the number of sources thus causes the growth of the points in the flow
graph, which increase time consumption. However, this effect can be ob-
served only in the case when we have a high source–vertices ratio, which
is not common in real-world situations.

Figure 30: Elapsed wall time w.r.t. number of vertices (graph: tree with 20
sources)
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Figure 31: Elapsed wall time w.r.t. number of sources (graph: tree with 5000
vertices)

Figure 32: Elapsed wall time w.r.t. number of sources (graph: tree with 1000
vertices)
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7.6 Conclusion

In this work we presented an algorithm for solving the Capacitated Span-
ning Forest problem with an application towards Network Operations
Planning in smart grids. Our empirical findings indicate that this algo-
rithm is more effective and efficient on a variety of graphs than previ-
ously reported algorithms for the same problem.

In future work we would like to test the algorithm also in repair sce-
narios and on real-world topologies. We also see that the algorithm per-
formance can be improved by adding special policies on processing spe-
cial cases (such as bridges or distant leaves) that are sources of invari-
ants in the solutions. Early detection of such invariants will help to de-
crease the solution search time by decreasing the degrees of freedom of
the search.

Finally, extensions towards more realistic features of the network,
such as voltage constraints on lines, can help improve the applicability
of the algorithm for studying more practical cases.
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Chapter 8

Conclusion

In this thesis we addressed the problem of allocating multiple finite en-
ergy resources to customers in a smart grid in order to satisfy customer
demands. We have also addressed the related problem of self-repair,
namely reconnecting disconnected customers to energy sources. We have
shown that these problems can be modeled as what we call the CAPAC-
ITATED SPANNING FOREST PROBLEM (CSF), which is the optimization
problem of finding a vertex-disjoint spanning forest on a graph with a
capacity constraint on each tree limiting its total weight.

Although several similar problems had been studied or at least been
characterized in terms of their complexity in the literature, this problem
did not have a substantial body of existing work addressing it. As such,
we are the first to fully characterize the time complexity of this problem,
although some special cases had been characterized in the literature. We
proved the NP-completeness of the general problem for the cases with
two sources, more than two sources, and sources with arbitrary capaci-
ties.

Although CSF is NP-complete, as with many NP-complete problems
that do not admit polynomial-time solutions for the worst case, we can
still attempt to develop heuristic solutions that work in the majority of
cases that appear in practical applications. We provided three heuristic
algorithms to address CSF in practice, which are the first algorithms in

97



the literature to do so. These are a Local Search heuristic, a Hill Climbing
heuristic, and a Flow-based heuristic, each of which has been published
in a peer-reviewed IEEE conference. Using a simulation-based approach
we demonstrate the suitability of these algorithms for planning the initial
configuration of a grid’s topology. We have tested these algorithms on
various types of graphs (square grids, trees and random graphs), as well
as on graphs inspired by real-world grid topologies. We also demon-
strated the application of the Local Search and Hill-Climbing heuristic to
fault recovery. Our results show that heuristic approaches can success-
fully be applied to solving CSF in various scenarios.

8.1 Future work

Extending the work of (QCS14), we can test the resilience of different
types of graphs that have not just one source but multiple sources while
varying the number of failures in the network, and the heuristics used.
One could investigate which graphs are the most resilient to failure, and
what heuristics generate the most resilient structures at the Planning
Phase, as well as provide the best recovery. An open problem would
be to investigate what heuristics create the most resilient network struc-
tures at the network planning phase, and after repeated failures in the
self-repair phase. Another interesting question would be to observe the
effect that the sparsity of the graph has on the solution quality for each
heuristic.

An important further goal of this work would be to perform simula-
tions on the topology of a real-world distribution network, which would
yield results directly relevant to a real scenario. Although we have used
topologies inspired by real-world networks, we did not use real-world
data itself. This data could be made available by an energy supplier from
Brisbane, Australia. Hines et al. (HBSB10) also introduced an algorithm
for generating graphs that have topological properties closely resembling
real-world power networks. This can also lead to investigations on tem-
poral networks, such that demands on the grid follow a certain schedule,
and testing failures that occur according to those schedules.
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In the field of designing practical algorithms, a standard open prob-
lem is to refine the existing algorithms, or design new algorithms that
outperform the existing ones. In particular, it would be interesting to
design an algorithm that takes the Minimum Spanning Tree during the
initialization phase, rather than Breadth-First or Depth-First search. The
authors note that we did try Simulated Annealing, however the results
were unsatisfactory; this led, however to the design of the Hill Climbing
heuristic. Of the existing algorithms in the literature, we can attempt to
adapt Liang et al.’s (LSX13) approximation algorithm for CAPACITATED

MINIMUM FOREST towards solving CSF.

Although in or work on CSF we have dealt with metaheuristics and
heuristics, another approach that could be investigated is that of approx-
imation algorithms. Approximation algorithms are polynomial-time al-
gorithms for NP-complete problems that for all instances of the prob-
lem produce a solution whose value is within a factor α of the optimal
solution. The main difference between approximation algorithms and
heuristic approaches is that approximation algorithms are guaranteed to
provide a solution within a factor α of the optimum, while heuristics are
typically analyzed empirically. This performance guarantee α is demon-
strated by a mathematical proof. Similarly, the time and space complex-
ity of approximation algorithms are also proven mathematically. Thus,
approximation algorithms can be said to be more mathematically rig-
orous than heuristic approaches, and are also used to provide a foun-
dational initial solution which can be improved by heuristics. Not all
hard problems admit approximation algorithms, and how well the solu-
tion to a problem can be approximated varies from problem to problem.
Approximation algorithms have been found for many interesting NP-
complete problems, but they can be challenging to find. The Christofides
algorithm (Chr76) discovered in 1976 remains the best approximation al-
gorithm for the famous TRAVELING SALESMAN problem, although algo-
rithms with better approximation ratios have been discovered for special
cases.

Another approach using mathematical programming, such as the In-
teger Programs described in Section 2.4 could also be investigated, and
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will probably have to rely on a Branch and Bound heuristic using a Lin-
ear Programming relaxation in order to obtain a solution in a reasonable
time.

Distributed algorithms are inherently interesting from a resilience per-
spective as a centralized architecture is more prone to attack or impact
from unintended failures. The outage of a single top-level node will af-
fect its client nodes lower in the hierarchy. By overcoming these limita-
tions of centrality, a distributed protocol intrinsically introduces greater
robustness and resilience, and likewise networks based on distributed
routing are naturally able to bootstrap. Thus, algorithms that construct a
solution from a bottom-up rather than top-down perspective are another
area of investigation. The Local Search algorithm we have introduced
fulfils this criteria and could be implemented in a distributed fashion.

In its present state, the model ignores the dynamic electrical proper-
ties of the grid such as the magnitude of electrical flows, capacities of
components, and consumer demand. Thus, mere topology-based rout-
ing could in fact disable more lines or substations by overloading them,
thereby hindering network recovery or disabling more of the grid through
a cascading failure. Awareness of flows and components’ capacities is
important not just for isolated failures but also in the incidence of black-
outs, when a large portion of the grid shuts down and needs to be re-
started in sequence according to these properties. In the future, the algo-
rithms can take into consideration properties beyond just the network’s
physical topology, such as limits on lines’ carrying-flow capacity, elec-
tric path resistance, pricing of electricity, preference of some sources of
energy over others (such as favoring renewable sources), etc., in order
to not just restore connectivity, but also do so optimally with respect to
metrics such as load distribution and the preferences of each consumer.
Additional evaluation metrics besides 〈FoS〉 include the time t of unde-
livered power to each load or for the whole grid after a failure, the dif-
ference between the power consumed by a component and its maximum
capacity, the local or grid-wide power loss due to resistance, and statisti-
cal measures on the graph such as node-connectivity.

There are many further possible extensions that were outside the scope
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of the current work. These include time-dependent data such as model-
ing variable demands and demand response, or modelling intermittent
energy generations.
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