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(UNICA), Ciego de Avila.

Working Experience
09/2013 - 09/2016 Lecturer of Digital Image Processing.

University “Máximo Gómez Báez”
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Abstract

Mathematical models are a fundamental tool used in many
branches of science and engineering to gain insights into the
dynamics of systems. In Systems Biology [122], these models
facilitate the analysis of complex biochemical networks that
describe molecular interactions at different level in living or-
ganisms. In the last years, several efforts have been dedicated
to the characterization of biological systems [98, 127, 128, 165,
209], specific interaction mechanisms [10, 15, 44, 45] and bi-
ological phenomena such as oscillations and bistability [80,
119, 147, 175]. As result, the use of mathematical models of
biological processes have shown to be an useful asset in the
development of several medical applications including drug
design and target therapy [55, 110, 179, 197].

There are two main problems to solve when working with
these types of models. The first one is the typically large com-
putational cost required for their analysis, which is giving in
part to the large number of configurations in which compo-
nents such as proteins, or genes are present in the living cell.
The second problem is related to the difficulty in calibrating
large models, since they are generally associated with many
parameters whose experimental estimation in living cells is
notoriously difficult to make.

In this dissertation we explore several approaches for the re-
duction of biological systems, paying special attention to the
interpretability of the aggregated system. In general, we are
interested in techniques that produce an exact reduction, i.e.,
algorithms that given an input chemical network, produce a
smaller network (consisting of fewer species and reactions)

xxi



that preserves the output dynamics of interest to the modeler,
e.g. [137, 201].

We present a framework for the automatic analysis of large-
scale quantitative repositories of biological models, with spe-
cial support for models written in the well-known SBML [103]
specifications. For networks with stochastic dynamics, we
provide equivalences at the level of the Markov chain that
can be applied to several models including biological net-
works and epidemic processes on complex networks. In ad-
dition, we approach the simplification of biochemical models
by focusing on their steady-state behaviour [2], a stable con-
dition attained by the biological system when the influence
of the initial condition can be disregarded. Here, we discuss
a method for the computation of equilibrium points, with the
guarantee of yielding the unique equilibrium of the ODE un-
der defined graph-theoretical conditions.

Overall, this dissertation provides a detailed analysis of tech-
niques for the reduction of quantitative models of biochemi-
cal reaction networks, together with the interpretation of the
biological and functional characteristics of the reductions ob-
tained over a wide collection of case studies from the litera-
ture. Interestingly, the inspection of the obtained reductions
has revealed reducible motifs, i.e., structures embedded in the
structure of the network that are often compressed in the mod-
els analyzed. These findings provide the intuition that these
techniques can abstract beyond the behavior of the system to
capture structural/functional segments of the network that
can be simplified with no (or little) effect in the dynamics of
the model.

xxii



Chapter 1

Introduction

Biological processes involve molecular actors such as proteins, genes,
DNA fragments and enzymes, resulting in the production of a molec-
ular component, or the regulation of an already existing unit. A classical
example are signaling pathways, groups of molecules in a cell that work
in a coordinated fashion to control one or more cell functions. Each com-
ponent in the pathway influences the signaling process; if a component
does not behave normally, it is not possible to obtain the expected re-
sponse. In the worst case, malfunctioning components inside this path-
way could lead to a disturbed response, such as exacerbated cell growth
or cancer [158]. To understand such level of specificity, it is not enough
to observe the behavior of each molecular actor, but is required a system-
level approach [72, 88, 122].

The base of a biological process comprehends the coordinated inter-
action among chemical components. These interaction networks can be
modeled as a bipartite graph with two types of nodes to represent either
the chemical entities or the reactions. The nodes are connected with an-
notated arcs indicating the stoichiometric information. This representa-
tion allows to analyze the network using graph techniques. For instance,
[65] checks the network capability to exhibit multiple equilibria by ex-
ploring the graph of network complexes and the reaction diagram using
deficient theory. Yet, emerging properties such as bifurcations or oscilla-
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tions are not easily perceived from the network topology.

Chemical reaction networks (CRNs) are a well-known model to rep-
resent the behavior of biological systems. Deterministic and stochas-
tic models can be used to equip such networks with kinetic informa-
tion, leading to a dynamical representation that describes the time-course
change of molecular concentrations of the species of the system. This dy-
namics can interpreted in two different ways: through ordinary differen-
tial equations (ODEs) or continuous-time Markov chains (CTMCs).

In the ODE interpretation each equation tracks the time-course evo-
lution of the concentration of a species in time [199, 210]. Thus, the ODE
system can generally be interpreted as an approximation of the behavior
of the system. The CTMC representation instead describes the evolution
of the system through a transition system. Here, a state of the Markov
chain is a vector that contains the population count of the species in that
state, and each reaction in the CRN represents a potential transition from
a source state to a target state. The population count of the species in each
target state is updated by observing the species which are consumed and
produced in the reaction that generated such transition. Then, the com-
plete state space for a given initial population of species is discovered by
evaluating exhaustively the set of reactions in each state.

Both ODE and CTMC representations can be formally related to each
other under appropriate conditions, with the ODEs being the thermo-
dynamical limit when the populations of the species are large enough
[126]. It may be often useful to consider both interpretations of a CRN;
one would take the CTMC semantics as the ground-truth representation
and the ODE as a suitable approximation that estimates the first-order
moments.

Mechanistic models of biological processes oftentimes yield complex
networks involving many state-variables and reactions. The number of
species represented also depends on the level of abstraction used by the
modeler. For example, the canonical MAPK pathway is oftentimes de-
picted as a cascade where an input signal is received and transported
downstream in a three-level scheme [147], but the number of interac-
tions between human MAPK-related proteins and other mechanisms can

2



reach the thousands [9].

The high dimensionality of these networks is also given by the num-
ber of possible combinations in which molecular actors can be observed.
There are occasions when the modeler is interested in observing the be-
havior of different states of the same molecular species, e.g., active and
inactive variants of a protein kinases. Protein kinases and phosphatases
are fundamental in cell regulatory processes, acting as bistable switches
that can be in either one of two different stable states [147]. The on/off
behaviour itself is already an abstraction of the state of these proteins.
Many signaling proteins have (several) binding sites specific to be phos-
phorylated or dephosphorylated by different kinases or phosphatases,
respectively. In these circumstances, the computational model needs to
account for: the inactive protein (when none of the residues is phos-
phorylated), the active protein (when all the residues are phosphory-
lated), and all the possible states of partial-phosphorylation in between;
this yields large networks that grow exponentially with each additional
molecular state [189].

These characteristics induce two problems: the first is the typically
large computational cost for the analysis of these models, which is exac-
erbated when the modeler needs to make predictions at different condi-
tions, e.g., to understand how a gene expression in a pathway depends
on increasing levels of concentration of an input signal [181]. Indeed,
the modeler is typically left with computationally intense approaches
such as the numerical integration of ODEs (e.g., [6]) or stochastic sim-
ulation [85]. The second problem is related to the difficulty in calibrating
large models, since they are generally associated with many parameters
whose experimental estimation in living cells is notoriously difficult to
carry out.

Both problems can be tackled using mathematically founded model
abstraction techniques that translate a large model into a smaller one
while preserving the dynamics of interest in a controllable fashion, sim-
plifying simulation and validation tasks [62, 141, 174, 180, 196, 203, 204].

Simplification approaches such as sensitivity and conservation analy-
sis can also be used to reduce model complexity. These techniques verify
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the robustness of the reaction network to a subset of parameters or min-
imal steady state modules. For example, in [204] the authors exploit the
presence of dependencies (moities) in the stoichiometry matrix to reduce
by 10-15% the number of state variables, and write a simplified system
in terms of the independent variables only.

Sensitivity analysis can be used in combination with time-scale tech-
niques to identify the lesser influent variables in a model. Time-scale
techniques rely on the asymptotic assumption that the dynamics of the
system can be separated into slow and fast processes. Classical examples
here are the Briggs-Haldane reduction of the enzyme equation [24] and
the quasi steady-state approximation [182]. Recent work in [173] allows
to describe the effect of the fast dynamics on the slow time scale directly
in terms of the original species by partitioning of the reaction network
into slow and fast modules.

Another approach for model reduction are exact model reduction al-
gorithms. This category comprehends a series of reduction techniques
that guarantee an (exact) relationship between the original and the re-
duced model. For instance, the work in [51] applies linear transforma-
tions to an ODE system to obtain a reduced system that exactly preserves
the output with respect to the original. The reduction framework ob-
serves two properties of the system, namely observability and controllabil-
ity. The observability property characterizes a state space which contains
the state variables which can be observed in the system’s output. The
controllability characterizes the influence of the input over the state vari-
ables. If the state variables are not influenced by the input, this means
that the chosen input has no control (or influence) over the system’s out-
put. The reduced system is obtained by simplifying all the unobserved
states and focusing instead in the observable ones. Hence, the system can
be simplified by removing all equations which do not influence the dy-
namics of the output variables [51]. In the case of observable states which
are also uncontrollable and therefore not influenced by the initial input,
their ODE drifts in the reduced system are simply set to the steady state
values. This method is used on [52] to exactly reduce a model of EGF
and insulin receptor crosstalk consisting of 5,182 ODEs to only 87 ODEs.
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Starting from the original network, the idea behind exact methods is
to produce a smaller network (i.e., consisting of fewer species and re-
actions) that preserves the output dynamics of interest to the modeler
(e.g., [138, 201]). This leads to a coarse-grained reaction network where
it is possible to observe the time evolution of a subset of the original
species (e.g., the phosphorylated forms of downstream molecular com-
plexes in a signaling pathway) whilst the behavior of some species can
be simplified or collapsed into macrovariables. The conformation of the
macrovariables is determined by a similarity criterion, i.e., species which
are “similar” are grouped together. Thus, the selection of the grouping
criteria is dependent on the aims of the modeler.

In [20], the authors apply a domain-oriented approach to collapse
the different macro-states of scaffold proteins in a signaling circuit of the
epidermal growth factor receptor (EGFR). Scaffold proteins are a special
type of molecule that has more than one binding site. The state of each
binding site encodes specific information such as phosphorylation ac-
tivity, protein binding or phosphorylation of the bound partner. Then,
a state of the scaffold is a vector where each element encodes the state
of a specific site. Assuming independence among all sites, it is possible
to partition the space of all the states of the scaffold such that for each
macro-state we can write a macrovariable which is the sum of all proteins
displaying the same state in a specific binding site. Thus, the network
structure can be replaced by a macro-description where the dynamic is
described only in terms of the variation of the concentration of the macro-
states. Importantly, the macro-description still allows to recover the dy-
namics of the original microstates, owing to the fact that the micro-state
concentrations are exactly expressed as the product of fractional concen-
trations of macro-states [20].

In [36], the grouping criteria captures similarities in the species be-
havior. Specifically, this framework considers mass-action CRNs, a spe-
cial case of CRN where the propensity with which a given reaction occurs
is proportional to the product of the population levels of the species in-
volved. Given a mass-action CRN where the number of reagent partners
in each reaction is at most two; the encoded ODE system is reduced by
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establishing equivalence relations among the species in the CRN. These re-
lations describe two distinct ways of observable behavior and are based
in the notions of probabilistic bisimulation from [130] where, roughly
speaking, equivalent states have the same behavior towards any equiva-
lence class [38].

The two behavioral equivalences discussed here, forward and back-
ward bisimulations (FB and BB respectively), induce a partition of species
over the underlying ODE system. FB looks at the reaction and produc-
tion rates of each species to induce a partition of species such that the
sum of the ODEs of each partition block can be written as an explicit
function of the sum of variables. On the other hand, BB partitions the
species by grouping those that have the same ODE solutions at each
point of time, starting from the same initial conditions. As result, these
equivalences produce a reduced network that preserves the original dy-
namics in an exact way. FB induces a partition where each equivalence
class represents the exact sum of the concentrations of the species be-
longing to that class, whereas BB characterizes exact fluid lumpability in
terms of properties of the ODE vector field of a CRN [36]. Importantly,
being a CRN-to-CRN transformation implies that the reduced network
can still be subject to other techniques to further reduce its complexity,
e.g., approximate model reduction [37] or sensitivity analysis [60].

The approach in [39] recasts such behavioral equivalences to an Inter-
mediate Drift Oriented Language (IDOL), a syntax drift for general non
linear ODEs. This allows to extend the notion of equivalence over species
to relations over IDOL variables representing linear systems, CRNs or
quantitative models of computing systems such as process algebra [108].
Forward Differential Equivalence (FDE) is presented as a notion of equiv-
alence between IDOL variables that allows to write a specification with
one variable per equivalence class, representing the sum of the trajec-
tory solutions of its members. Whereas Backward Differential Equivalence
(BDE) is given as an equivalence relation among variables that have the
same semantics when starting from the same initial conditions.

When applied to CRNs, these aggregations fully characterize the be-
havioral equivalences from [36]. In addition, the notions in [39] extend
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the scope of these relations to CRNs that encode Hill kinetics. In this con-
text, FDE captures linear transformations of the original state variables
such that in the aggregate ODE each macrovariable represents the sum
of the original variables. The FDE partition requires that the evaluation
of the polynomial that represents the quotient derivative for an equiva-
lence class be invariant with respect to a redistribution of the values of
any pair variables within the equivalence class. On the other hand, BDE
associates ODE variables that have identical solutions at all time points.

In [38], the authors introduce two equivalence relations that fully
characterize forward and backward equivalences over mass-action chem-
ical reaction networks with arbitrary degree. Given polynomial ODEs,
one can build a reaction network where each ODE variable is represented
by a species, and each monomial in the derivatives of such variable is a
reaction. Then, a Forward Equivalence (FE) is an equivalence relation that
partitions the set of species such that each equivalence class describes
the time course evolution of the sum of the ODE variables in the orig-
inal model. A Backward Equivalence (BE) instead, induces a partition in
the species such that each equivalence class contains ODE variables that
have the same solutions at all time points. The reduction procedure can
preserve observables of interest and yields a physically intelligible re-
duced model, since each aggregate corresponds to the exact sum of orig-
inal variables [38].

The equivalence approaches mentioned above consider the ODE in-
terpretation of the CRN. However, in some cases the modeler is inter-
ested in the stochastic behavior of the system. For instance, in cell regula-
tory processes governed by low-abundance biochemical species [95], the
presence of noise caused by the inherent fluctuations in the bio-molecular
processes involved [195] may introduce significant variability in gene ex-
pression [70]. Stochastic simulation can reduce the combinatorial com-
plexity of a system by restricting the number of elements to be consid-
ered to the total of number of protein copies while the number of feasible
multiprotein complexes can easily grow to millions [52].

Stochastic reaction networks form a fundamental model across many
branches of science to describe populations of species interacting through
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reaction channels [89]. The dynamics of these networks is governed
by the master equation, a system of linear differential equations which
provides the time course of the probability distribution of the underly-
ing continuous-time Markov chain that tracks every configuration of the
population levels for each species [207]. Unfortunately, to track every
configuration of the species population in a stochastic network implies
a combinatorial growth in the number of states of its underlying CTMC,
which makes exact analysis impractical in general.

One simplification approach to maintain the stochastic behavior con-
sists in reducing the Markov chain by means of lumpability [115]. The
notion of lumpability in the context of a Markov chain characterizes a
partition of the original state space such that it is possible to derive a re-
duced Markov chain with one macrostate per partition block [27]. Com-
plementary methods such as finite state projection [156] and sliding win-
dow abstraction [99] truncate the state space by discarding states which
accumulate low probability mass. However, these techniques work at
the Markov chain level, requiring the computationally expensive enu-
meration of the state space.

In [40], the authors present Syntactic Markovian Bisimulation (SMB),
an aggregation method that extends the condition of ordinary lumpa-
bility to elementary CRNs, i.e., networks where each reaction is repre-
sented as a single transition from the reactant to the product set. SMB
can be applied on uni and bi-molecular elementary reactions, i.e., reac-
tions where the set of reactants is at most two. In this context, the SMB
equivalence relates two species when the cumulative kinetic parameters
of the reactions, where they are involved as reagents, are the same for
every equivalence class of products. This yields a structure-preserving
coarse-grained network where the dynamics of each macro-species is
stochastically equivalent to the exact sum of the original species in each
equivalence class.

In this dissertation we explore the biological relevance of the aggre-
gations by several approaches for the reduction of large-scale biological
systems. We discuss the reduction capability of each approach, paying
special attention to the interpretability of the aggregated systems. We
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put special attention to exact aggregation techniques for two main rea-
sons. First, the exact approaches that we consider produce a CRN-to-
CRN transformation where the coarse-grained CRN can still be subject
to all the other techniques, e.g., [37, 137, 219], to reduce the complexity of
the analysis. Second, the collapse of several species into one may carry
a physical interpretation that increases our understanding of the system
under study. We note that the latter point is of scientific relevance re-
gardless of the extent with which the reduction algorithm compresses
the CRN.

We introduce an equivalence-based technique for stochastic mass-
action reaction networks that extends the notion of aggregation over the
states of the CTMC in [40] to networks with n-ary reactions. In this sense,
we provide an equivalence at the level of the Markov chain which can be
used to process biological networks with such semantics and more im-
portantly, large complex networks depicting epidemic processes.

Next, we explore the equivalence methods from [38–40]. To extend
the scope of these techniques, we propose a framework for the large-
scale aggregation of biochemical models that comprehends the encod-
ing of system markup biological language (SBML) [103], a standard lan-
guage to model biological models, into the syntax of chemical reaction
networks [169]. This allows us to tap into the BioModels database, and
possibly other repositories that use this encoding format.

In addition, we analyze model reduction abstracting from the dynam-
ics of the system to focus instead in the steady-state behavior. In certain
occasions, modelers are interested in the behavior of a system when it is
sufficiently away from a transient regime that depends on the conditions
with which the ODEs are initialized. This leads to the study of equilib-
rium points, i.e., states at which the ODE solutions will settle in time.

Generally, the analysis of equilibria could be approached by means of
iterative fixed-point algorithms such as Newton’s method. However, as
discussed in [170], there are two notable issues related to the use of such
methods. The first issue is of computational nature and is due to the
fact that these methods require the computation of the Jacobian at each
iteration, which may be demanding when the number of ODE state vari-
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ables is large. The second issue is related to the convergence properties.
Indeed, Newton’s method does not guarantee convergence in general.
Also, it may converge to different fixed points depending on the initial
guess in the case of an ODE system with multiple equilibria. Finally,
while it can be used to find equilibria, it cannot be used to prove that a
given ODE systems has only one equilibrium point.

Here we discuss [170], a method for the computation of equilibrium
points with the guarantee of yielding an unique equilibrium of the ODE
under defined conditions. Following the standard biochemical represen-
tation from [202] and [31], we decompose the behavior of the system
such that the local dynamics describes the evolution between the differ-
ent forms of a given component, and the network dynamics describes
the influence that one form of each component exerts on the other com-
ponents in the system. This leads to a more abstract representation of the
reaction network where each locality in the model is given by a single
vertex (most active element) and each vertex is connected to the rest by
activation or inhibition arcs. We open the loops of the network by sup-
pressing one or several edges of the original network; which allows us to
write the local equilibria of some species as a function of the concentra-
tion of the other species. Then, we combine those functional expressions
into a fixed-point equation that fully characterizes all the fixed-points of
the system.

The structure of the thesis is organized as follows:

• Chapter 2: Presents a compact review of model reduction approaches
used in computational biology. Then, we set the notation that will
be used during the thesis and relate the problem of model reduc-
tion to the equivalence techniques in [38–40].

• Chapter 3: Discusses SE, an equivalence-based technique for stochas-
tic mass-action reaction networks that extends the notion of aggre-
gation over the states of the CTMC in SMB to mass-action networks
with n-ary reactions.
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• Chapter 4: Proposes a framework for the large-scale assessment
of exact model reduction on quantitative models of biological pro-
cesses. Here we provide a detailed report of the reduction results
obtained over a snapshot from BioModels Database, where we look
at the performance of several equivalence-based reduction tech-
niques.

• Chapter 5: Shows a method for the efficient computation of equilib-
rium points, with the guarantee of yielding the unique equilibrium
of the ODE under defined conditions [170].

• Chapter 6: Summarizes the main findings of the considered streams
for the reduction of quantitative systems of biochemical networks
and exposes the main contributions of this dissertation.
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Chapter 2

Background

In this chapter we fix the thesis notation and explore diverse variants for
the representation of chemical processes. Then we review popular ap-
proaches for model reduction paying special attention to lumping tech-
niques. To conclude, we review the definitions of the semantics of the
species equivalence techniques used in this thesis.

2.1 Chemical reaction networks

A Chemical Reaction Network (CRN) is a pair (S,R) where S and R
are sets of species and reactions, respectively. The interaction among the
species is described through reactions in the form:

ρ
f−→ π (2.1)

where ρ is the multiset of reactant species, and π is the multiset of products.
We denoteMS(S) as the set of all multisets of species in S. The stoichio-
metric coefficient of a species S is denoted as ρ(S) and π(S) to indicate
the species’s multiplicity in the multisets of reactants and the products,
respectively. The term f represents a propensity function f : RS → R≥0.
Which gives the rate at which the reaction occurs. Once the reaction fires,
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the state update is set by the net stoichiometry π − ρ.1

2.2 ODE semantics

According to the deterministic semantics of CRNs [210], a CRN (S,R) is
associated with an ODE system which tracks the time course evolution
of the vector of concentrations of the species at time t. The rate of change
of a component [X](t) = ([XS ](t))X∈S is given by:

d[XS ](t)

dt
=

∑
(ρ

f−→π)∈R

(πS − ρS) · f([X](t)).

which essentially states that variation onX’s amount is the difference be-
tween the concentration of produced and consumed X over all reactions
inR.

A CRN with mass-action kinetics is a special case of CRN, where the
interaction between the chemical species is described by the law of mass-
action [211]. In a deterministic mass-action CRN each reaction is associ-
ated with a kinetic parameter λ > 0 and the propensity function fλ, is
given by:

fλ(x) = λ ·
∏
S∈S

xρSS (2.2)

If the number of reactants in each reaction is restricted to at most two
interacting species, i.e. ρ

fλ−→ π where |ρ| ≤ 2, then we are in presence of
an elementary mass-action CRN.

Example 1 (Mass-action CRN). Let (SE ,RE) be a CRN with species SE =
{S1, S2, S3, S4, S5}, and reactions

RE={S1
2−−→S5, S1

1−−→2S3, S3+S5
3−−→S3,

S2
2−−→S3, S2

1−−→2S5, S4+S5
3−−→S3}

The network in Example 1 is an elementary mass-action network that
will be used as running example through this chapter. Following the

1As usual, the + and - operators denote multiset union and difference, respectively,
while the multiplicity of a species denotes its stoichiometric coefficient.
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law of mass action, we can express the dynamics of the network in the
following ODE system:

d[XS1 ](t)

dt
= −3 · [XS1

](t) (2.3)

d[XS2
](t)

dt
= −3 · [XS2

](t)

d[XS3
](t)

dt
= 2 · ([XS1

](t) + [XS2
](t)) + 3 · ([XS4

](t) · [XS5
](t))

d[XS4
](t)

dt
= −3 · [XS4 ](t) · [XS5 ](t)

d[XS5 ](t)

dt
= 2 · [XS2

](t)− 3 · [XS5
](t) ·

(
[XS3

](t) + [XS4
](t)
)

2.3 CTMC semantics

A state of the underlying Markov chain is a multiset of species, i.e., an
element ofMS(S), where σi denotes the population count of species Si
in that state. For instance, the state σe = (1, 0, 0, 2) encodes the initial
population S1 + 2S4 in the CTMC of (SE ,RE). For the analysis of the
stochastic semantics we consider only CRNs with mass-action kinetics,
which is the case covered by the techniques herein analyzed. In this con-
text, a reaction Rk in the CRN induces a transition from state σ to a state
σ+πk−ρk in the underlying Markov chain, with mass-action propensity
given by:

αk

n∏
i=1

(
σi
ρk,i

)
The CTMC specification is mediated by a multi-transition system (MTS)

that records transition multiplicities. This is needed to account for all the
reactions contributing to the same transition. For instance, consider re-
actions A+B

α1−−→ B+C and A α2−−→ C. In both reactions one unit of A is
consumed to produce one unit of C, however the production of C occurs
at different speed in each reaction, i.e, α1 and α2.
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Definition 1 (Multi-transition system). The multiset of outgoing transitions
out(σ) from state σ ∈MS(S) is obtained as

out(σ) =


∣∣∣∣∣∣ σ λ−−→ σ − ρ+ π | (ρ α−−→ π) ∈ R, λ = α ·

∏
X∈ρ

(
σ(X)

ρ(X)

) ∣∣∣∣∣∣


The set of reachable states from σ, denoted by reach(σ), is the smallest set
such that:

1. σ ∈ reach(σ);

2. if σ′ ∈ reach(σ), then the target states of each transition in out(σ′) be-
long to reach(σ).

Finally, for an initial state σ0 ∈ MS(S), the MTS for (S,R) and σ0 is
the union of the multisets of transitions outgoing from any reachable state, i.e.,
MTS (σ0) =

⊎
θ∈reach(σ0) out(θ).

Consider the state σ0e = S1 +S4 as an initial population for (SE ,RE)

(Example 1). Then, the possible outgoing transitions for σ0e are:

out(σ0e) = {|σ0e −−→ S5 + S4, σ0e −−→ S4 + 2S3|}

due to the first and second reactions inRE , respectively.
The CTMC underlying a CRN for an initial state consists of all states

and transitions generated by applying exhaustively the reactions on all
generated states, starting from the initial one. Given an MTS, the CTMC
is obtained by collapsing all transitions between the same source and tar-
get into a single CTMC transition and summing their rates. Let (S,R) be
a reaction network and σ0 an initial population. This means that the un-
derlying CTMC of (S,R) for σ0 has states reach(σ0) and transitions given
by

Definition 2 (CTMC).

MC(σ0) =

σ r−−→ θ | σ, θ ∈ reach(σ0) ∧ σ 6= θ ∧ r =
∑

(σ
r′−−→θ)∈MTS(σ0)

r′
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For any two states σ, θ ∈ MS(S) the element of the generator matrix of
MC(σ0) from σ to θ is defined as:

q(σ, θ) =


r if σ 6= θ ∧ (σ

r−−→ θ) ∈MC(ν0)

−
∑

θ′∈MS(S) s.t. θ′ 6=σ

q(σ, θ′) if σ = θ

0 otherwise

For any set of statesM⊆MS(S), we define q[σ,M] =
∑
θ∈M q(σ, θ).

For any two distinct states σ and σ′, we denote q(σ, σ′) as the sum of
the transition rates from σ to σ′ across all reactions. These values form
the generator matrix Q, which characterizes the dynamical evolution of
the Markov chain by means of the master equation ṗ = Qp>. Each com-
ponent of its solution, pσ(t), is the probability of being in state σ at time
t [207], starting from an initial condition where the probability mass is
concentrated at the initial state σ̂, i.e., pσ̂(0) = 1.

2.4 Model reduction

Methods of model reduction project the set of reactants (and the set of re-
actions) to some space where a subset of the original dynamic behavior
can be approximated [190]. This can be done by finding relationships
among the reactants and thus reducing the amount of species which
needs to be observed independently. For instance, time-scale exploita-
tion methods separate the components in the system into groups of slow
or fast components in comparison with the dynamics of the variables of
interest. This is possible thanks to the different speeds on which chem-
ical processes occur inside a biological system [216]. Some examples of
time-scale techniques are the steady-state (SSA) and equilibrium approx-
imations (EA) [79] and the work of [145, 187] to characterize the slow
manifold.

A well known example in this context is the work of Briggs-Haldane
for the simplification of the enzyme-substrate equation [24]. The equa-
tion is a two step mechanism that ends with the production of new species.
The first step characterizes the reversible binding of a substrate with a
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mediator enzyme forming a complex. The second step is given by the
decomposition of the enzyme-substrate complex, releasing the enzyme
units and transforming the substrate in a new species, namely product.
Intermediate species, such as the enzyme-substract complex, tend to ex-
ist locally in the environment of the reaction mixture. In this mechanism,
the concentration of the molecular complex depends only on the concen-
tration of the reacting enzyme and substrate.

Briggs quasi steady-state assumption (QSSA) is that total concentra-
tion of the enzyme, meaning the free enzyme and the substrate-bound
enzyme, is much lower than the concentration of the substrate and the
product. Assuming that the mechanism is mass-preserving, the concen-
tration of the complex is negligible in comparison with both the concen-
tration of the substrate and the product [24]. Thus, the rate change of the
complex is also negligible in comparison with the rest of the mechanism
and a slow-time scale model can be written by setting the net formation
of such complex to zero. This comprises the two step mechanism into a
single equation, which is the Michaelis-Menten formula.

A major problem of time-scale approaches in general is the need of a
deep knowledge of behavior of the species to identify a clear separation
between the different timescales. This can be particularly difficult, es-
pecially when analyzing large models. In such cases, sensitivity analysis
techniques can be used to split the set of species to recognize components
with little or no influence in the dynamics of the system, e.g., [60, 219].

There are many streams for the reduction of biochemical models; a
detailed tutorial covering of several approaches for model reduction is
provided in [161]. For the interested reader, we also recommend con-
sulting [178, 190]. The work in [178] discusses a compilation of algo-
rithms for the reduction of dynamical models in computational biology,
whereas [190] reviews general approaches of model reduction for large-
scale biological systems. In this section we focus on lumping techniques
applied to the context of model reduction. This provides the mathemat-
ical background required in the next sections to discuss ordinary and
exact lumpability as equivalence relations for states of the Markov chain.
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Lumping techniques addresses the model reduction problem by find-
ing a mapping between the variables in the original system and a system
of lower dimension. In this sense, at least one state variable is removed
from the original model and replaced with a new lumped variable that
represents a direct mapping from the original.

Let us recall X , the vector containing the concentration of all species.
We can express the change in time of this vector as:

dX

dt
= f(X; k) s.t Xi(t0) = [Si](t0) (2.4)

where k = (k1, . . . , kn) is the vector of kinetic constants which charac-
terizes the speed at which the reactions occur; and f is a function that
calculates the variation of the concentration values depending on k. The
objective is to produce a reduced system dX̂/dt = f̂(X̂; k̂) where X̂ can
be a subset of the original species so the dimension of X̂ is lower than X
[125].

Linear lumping transforms the vector of concentrations to a lower
dimension vector so fewer species are tracked independently, meaning:

X̂ =

n∑
j=0

mijXj i = {1. . . . , l} (2.5)

wheremij is an element of the lumping matrixM . Li and Rabitz [139] ap-
ply this scheme to systems with arbitrary non linearities by introducing
invariant subspaces of the reaction system. Here, the reverse calculation
of equation 2.5 is given by:

X = M̄X̂ (2.6)

where M̄ is the right inverse of M , such that the multiplication of M · M̄
is equal to the n̂-identity matrix In̂. Evaluating this in equation 2.4 we
get

dM̄X̂

dt
= f(M̄X̂; k) (2.7)
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Assuming M̄ constant, it is then possible to extract it out of the derivative
so M̄(dX̂/dt) = f(M̄X̂; k). Reorganizing we obtain

dX̂

dt
= Mf(M̄X̂; k) (2.8)

If the system is lumped in this way, then the number of governing equa-
tions for the dynamics of the considered system is reduced from n in
equation 2.4 to n̂ in equation 2.8.

As pointed out in [125], given a reactivity matrixK the lumping error
in unimolecular systems can be calculated as:

E ≡MK − K̂M (2.9)

where K̂ is a diagonal matrix with the corresponding values of the the
eigenvalues of K. If the system is exactly lumpable (with respect to
the lumping matrix M ) then equation 2.9 yields a unique null matrix.
Whereas if the system is not exactly lumpable, E depends on the diago-
nal matrix K̂.

The necessary and sufficient condition for exact lumping of nonlinear
systems is that the transpose of the Jacobian matrix JR(X) of f(X) has
non trivial fixed invariant subspacesM [139]. To protect the components
of interest (observables), i.e., variables which will not be lumped, M can
be written as

M =

(
Mobs

Mdet

)
(2.10)

where Mobs are the observables and Mdet are the components determined
from a search of the invariant subspaces of the system.

Finding such mapping becomes a difficult task, especially in very
large models. A good alternative in such cases is to treat the species
as a continuum, which means that the reduced model consists of a single
lumped macrovariable that can be tracked by monitoring the distribution
of the data [47, 160]. Here, we focus on discrete lumping, i.e., approaches
that take into account each individual variable in the original system.
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The term lumping is used to describe a wide range of methods for
the reduction of dynamical systems [190]. According to the contribu-
tion of the original species in the aggregated system, lumping can fall in
two categories: proper and improper. Proper lumping refers to a scheme
where each of the original variables appears in only one lumped variable
of the reduced model [161, 190]. Following the principle of invariant re-
sponse, the reaction rate of the lump depends then only on the sum of the
lumped species. In the improper lumping scheme, instead, each variable
from the original model can contribute to more than one lump [161].

In the recent years, lumping techniques have been used in the litera-
ture to reduce a number of biochemical systems [34, 36, 38, 40, 63, 78, 194,
200]. In [102] the authors used a combined approach of sensitivity analy-
sis together with PCA to remove redundant reactions over the simulation
conditions followed by a proper lumping scheme for further reduction.
The calculation of M̄ is given in terms of α, a matrix that represents the
share of each individual species within its lump, i.e., αij represents the
share of species j within the lump i. The lumping scheme was validated
by reducing a model describing oxidation of fuel-rich methane mixtures
from a size of 155 species to 53. Another combined approach of lumping
and optimization is proposed in [56]; where the authors reduce effec-
tively a 20D model of yeast glycolytic oscillations to 8 dimensions using
a lumping and subsequent optimization approach (LASCO).

In [63] the authors propose a proper lumping algorithm for the auto-
matic order reduction of system biology models and tested it reducing
a 26-state NF-κB signaling model to 12 final states. The authors use the
Penrose inverse, a unique matrix M+ which is the pseudo-inverse ma-
trix of M as candidate for M̄ . The lumping algorithm searches through
all the possible lumping schemes and tries to lump them; i.e., in each
step the lump is verified by comparing the result of the simulation of the
original to the reduced model. This procedure is repeated for all possible
lumpable configurations.

Similar to the approach in [21], the authors in [124] use domain-oriented
lumping [21, 51] over a layer-based formalism for the reduction of sig-
naling pathways. First, the model is separated in three different layers
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according to a biological process: ligand binding, binding site phospho-
rylation and effector binding, and the reaction rates for within each pro-
cess is assumed to be equal. Then, the macrospecies are built by lump-
ing species in each layer, e.g., species which are phosphorylated can be
lumped together regardless of their binding status. This allows to write a
reduced system with equations given in terms of the macro-species and
a gross rate.

The work of [194] also divides the system in modules, but in this
case based on properties of the reaction graph. The lumpability crite-
rion groups states so that the interaction among the states within a lump
occur at a much faster time scale than the rest of the reactions in the
model. Groups of states that are connected by such fast reactions are
called DGFR. Each DGFR is checked for strong components (SC), i.e.
components in the group which are interconnected with fast reactions.
If there are no fast reactions to states outside the strong component, then
this is a sink component. Finally, the algorithm checks if it is possible to
lump strong components with any of the sink SC in their DGFR.

In [78] the authors use a rule-based description to facilitate the anal-
ysis of the reaction mixture. The authors work with a model of protein
interactions in the form of a site-graph, a graph generalization where the
nodes represent proteins and their sites ( i.e., binding domains, residues,
etc.) and the edges indicate bonds between proteins. The dynamics of
the protein interactions is modeled by constructing a Markov chain on
a space of site-graphs. Unlike the species representation of the reaction
network where thousands of entities are required to model the dynam-
ics of the system, rule-based modeling [14, 58] allows to generate the
complete state space using a smaller set of rules that describe the inter-
action patterns between the molecular entities. The framework in [78]
identifies patterns, namely abstract species or stochastic fragments, on
the rule-based language Kappa (κ) [58] that represent a syntactic crite-
ria that yield a sufficient condition of weak lumpability on the Markov
chain. The detection of fragments involves characterizing the states of
the CTMC that can be lumped while preserving lumpability [171]. This
is achieved by equating pairs of sides which are related directly or indi-
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rectly within the left-hand or right-hand side of a rule [81, 171], enforcing
a strong independence between the uncorrelated sites.

2.5 Equivalences over species in a CRN

Two of the chapters of this thesis assess the equivalence-based approaches
from [36, 38–40] for the reduction of quantitative biological models. Im-
portantly, the equivalence over species provided by these methods can
be seen as a generalization of equivalence relations for Markov chains.

Markov chain lumpability Ordinary and exact lumpability are two equiv-
alence relations that can be established over the states of a Markov chain.
Given a generator matrix Q, ordinary lumpability is an equivalence re-
lation that partitions the state space into N blocks P1, . . . , PN , such that
all states in a block have equal aggregate rate toward any block [27, 115],
that is, ∑

ϑ∈Pj

q(σ, ϑ) =
∑
ϑ∈Pj

q(σ′, ϑ) for Pi, Pj and any σ, σ′ ∈ Pi.

These rates form the generator matrix of the lumped Markov chain, where
each macro-state corresponds to a partition block. Ordinary lumpability
preserves the stochastic behavior in the sense that the probability of be-
ing in one block in the lumped Markov chain is equal to the sum of the
probabilities of being in states of that block in the original Markov chain
[27].

On the other hand, exact lumpability partitions the state space intoN
blocks P1, . . . , PN , if and only if it holds that for any two blocks Pi and
Pj and any states σ, σ′ in Pi∑

ϑ∈Pj

q(ϑ, σ) =
∑
ϑ∈Pj

q(ϑ, σ′)

Both lumpability criteria observe the transitions within states of the Markov
chain. Ordinary lumpability looks at the outgoing transitions from each
state, whereas exact lumpability looks at the incoming transitions.
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Overview of the equivalence-based techniques The equivalence tech-
niques hereby mentioned identify a criterion which allows to induce an
equivalence relation on the species of a CRN. This allows to partition the
set of species using the equivalence relation as splitting condition, such
that equivalent species are lumped in the same block and one of them is
chosen as block representative.

To build the reduced network we update the set of reactions by re-
placing each species by its representative. This ensures that the resulting
network is written having a macro-species per partition block. Then, the
reaction rates of the updated reactions are scaled down by the product
of sizes of the block that contains the reagent species. Finally, we reduce
the set of reactions by merging all those that have the same reactants
and products by summing their kinetic parameters [38]. The final out-
come is a reduced network where each representative can be interpreted
as a macro-species that tracks the sum of the populations of the distinct
species in the original network that belong to the same equivalence class.

These techniques use a partition refinement algorithm to compute the
largest equivalence, which is the coarsest reduction. Given an equiva-
lence E and an initial partition HE , which is the trivial partition consist-
ing in all species, the algorithm refines such partition to find the largest
equivalence. The algorithm maintains a reference to the current candi-
date partition and a set of blocks that will be used to check the candi-
date partition (“splitters”). Both, structures are initialized to HE . Then,
a fixed-point iteration algorithm splits a block of the current candidate
partition whenever it falsifies E with respect to a splitter.

The algorithm refines the falsifying block into sub-blocks that have
equal values for the quantities in the partitioning criteria, thus creating
a new potential splitter to be used in future iterations. Importantly, the
largest sub-block may be ignored [164], and therefore not included in the
set of splitters. The refinement process stops when no further block is
found that breaks the equivalence condition, hence the current partition
must be the largest refinement of HE . The computational cost of such
calculations is polynomial in time and space for FE, BE and SMB.

23



To make this thesis self-contained, in the next sessions we review
the definitions of the semantics of such equivalence techniques. A brief
overview of these techniques can be found in [169]. For a detailed tuto-
rial, consult [199]. In addition, all the equivalence techniques discussed
here are available in ERODE [35], a public software tool for the reduction
and simulation of differential equations2.

2.5.1 Forward and Backward equivalences

Forward and Backward equivalences (FE and BE) are the polynomial dy-
namical systems analogues of ordinary and exact lumpability in Markov
chains, respectively. Both reduction techniques can be applied over mass-
action CRNs as equivalence relations on species. Furthermore, both equiv-
alences can be efficiently checked relying only in structural conditions of
the reactions [38].

For completeness, we restate the FE and BE definitions from [38]:

Definition 3 (FE-BE deffinition). Given a CRN (S,R), a partition H of
species is χ (χ ∈ {FE,BE}) iif. for any two blocks H,H ′ ∈ H and any two
species Si, Sj ∈ H it holds:

cχ(Si, η,H
′)=cχ(Sj , η,H

′) ∀η. ∃(Sk+η
λ−−→π)∈R for Sk ∈ {Si, Sj}

where cχ maps a species (Si,Sj), a multiset of reagent partners (η) and a block
(H ′) into a real number computed by inspecting only the reactions.

Before defining the specific mapping functions for FE and BE, let us
recall the notions of net stochiometry provided in [38]. Let Si ∈ S be a
species, and G ⊆ S. The net stochiometry of Si and H ′due to reagents η
is defined in equations 2.11 and 2.12, respectively.

φ(η, Si) =
∑

η
α−−→π

(πi − ηi) · α (2.11) φ(ρ,H ′) =
∑
S1∈H′

φ(η, Si) (2.12)

Then, to verify that χ is an FE we compute:

cFE(Si, η,H
′) =

φ(Si + η,H ′)

[Si + η]!

2Available for download from https://sysma.imtlucca.it/tools/erode/
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Hf ={{S1, S2}, {S3, S4}, {S5}}
Sf ={S1,2, S3,4, S5}
Rf ={S1,2

1−−→S5, S1,2
0.5−−→2S3,4, S3,4+S5

3−−→S3,4,

S1,2
1−−→S3,4, S1,2

0.5−−→2S5}
(a) FE-reduction

Figure 1: FE-reduction of (SE ,RE) from Example 1.

where the operator [·]! denotes the multinomial coefficient induced by a
multiset of species η:

η! =

( |η|
{η(Si) | Si ∈ S}

)
=

|η|!∏
Si∈S

(η(Si)!)

The equivalence established by FE relates species such that it is possi-
ble to rewrite the ODEs underlying the CRN in terms of sums of the vari-
ables in each block. This is easily seen in Figure 1 where the FE-condition
identifies the lumpable species {S1, S2} and {S3, S4} in SE ,RE (Example
1). The FE partition Hf divides the set of species such that the lumpable
species are treated as a macrovariable in the FE-reduced CRN (Sf ,Rf ).
In our representation, each macrovariable is denoted with a subscript
that refers to the indices of the species that it represents.

The FE-reduced network is represented in the following ODE system:

d[XS1,2 ](t)

dt
= −3 · [XS1,2

](t)

d[XS3,4
](t)

dt
=

3

2
· [XS1,2 ](t)

d[XS5 ](t)

dt
=

3

2
· [XS1,2

]− 3 · [XS3,4
](t) · [XS5

](t)

The macrovariables in CRN (Sf ,Rf ) can be used to study the concen-
tration of the sum of the original lumped variables. For instance, the
traces of S3,4 in the FE-reduced ODE system (Fig 2 c) are used to track
S3 + S4 in the original model (Fig 2 a). Instead, the un-lumped species,
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(b) Original model with sums of solutions
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(c) Solutions of the FE-reduced model

Figure 2: ODE simulation of the FE-reduced model from Example 1.

such as S5, represent the same chemical entity in both the original and
the FE-reduced model. Assuming all species start from the same initial
conditions, i.e., [Si] = 1 (i = 1, . . . , 5), Figure 2 shows the solutions of the
original and the FE-reduced model.

The equivalence established by BE relates two species Si and Sk if
they start from the same initial conditions and have the same behavior
in time, i.e., equal consumption and production rates. To verify that an
equivalence χ (Definition 3) is a BE we compute:

cBE(Si, η,H
′) =

∑
Sk∈H′

∑
M∈η

φ(Sk +Mi, Si)

|Sk +M|H′
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Hb={{S1, S2}, {S3}, {S4}, {S5}}
Sb={S1,2, S3, S4, S5}
Rb={S1,2

1−−→S5, S1,2
0.5−−→2S3, S3+S5

3−−→S3,

S1,2
1−−→S3, S1,2

0.5−−→2S5, S4+S5
3−−→S3}

(a) BE-reduction

Figure 3: BE reduction of (SE ,RE) from Example 1.

where |π|H′ = |{Sl ∈ H ′|πl ≤ 0}| counts the number of different species
in H ′ occurring in π.

Inspecting our running example we can observe that species S1 and
S2 are consumed at the same rate in the first, second, fourth and fifth
reactions of RE . Furthermore, those are the only reactions where these
species are involved. Hence, the species S1 and S2 are lumpable up to
BE. Figure 3 shows Hb, the partition that BE induces on (SE ,RE), and
(Sb,Rb), the BE-reduced network.

The macrovariable S1,2 in the BE-reduced CRN (Sb,Rb) represents
the sum of original species S1 + S2. However, thanks to the BE condi-
tion, for each block we can recover the individual solutions of the orig-
inal species by dividing the value of the macrovariable by the number
of species in the block. For instance, we can recover the values of the
concentrations of S1 and S2 by halving the value the concentration of
S1,2.

Figure 4 shows the solutions of the original and the BE-reduced model.
Where the BE-reduced system is given by:

d[XS1,2 ](t)

dt
= −3 · [XS1,2

](t)

d[XS3
](t)

dt
= 2 · [XS1,2

](t),

d[XS4 ](t)

dt
= −1

2
· [XS1,2 ](t),

d[XS5 ](t)

dt
=

3

2
· [XS1,2

](t)− 3 · [XS5
](t) ·

(
[XS3

](t) + [XS4
](t)
)
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(b) Solutions of the BE-reduced model

Figure 4: ODE simulation of the BE-reduced model from Example 1.

2.5.2 Forward and Backward differential equivalences

FDE and BDE, introduced in [39], are notions of equivalences established
between IDOL variables, a syntax language that represents the ODE drifts.
The aggregations provided by FDE and BDE bring to mind those of FE
and BE. The equivalence established by FDE allows to write a quotient
program where each equivalence class is represented using a single vari-
able, or class representative that preserves the sum of the original tra-
jectories. On the other hand, the equivalence established by BDE re-
lates variables that have the same semantics whenever they start from
the same conditions, i.e., variables whose drifts have the same value.

For completeness, here we restate the original definitions from [39]:

Definition 4 (Definition FDE). Let p be an IDOL program and Vp = {x1, . . . , xn}
the set of variables in p, where fi denotes the drift of variable xi. LetH be a par-
tition of ODE variables, such that H = {xH,1, . . . , xH,|H|} is a block of such
partition. Then,H is an FDE iff.

θ(p) −−→
∧
H∈H

(∑
xi∈H

fi =
∑
xi∈H

fi

[
xj/

∑
xk∈H xk

|H ′| : H ′ ∈ H, xj ∈ H ′
])

(ΦH)
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Definition 5 (Definition BDE). Let p be an IDOL program andH a partition
of ODE variables. Then,H is an BDE iff.

θ(p) −−→
∧
H∈H

(
xH,1 = · · · = xH,|H|

)
−−→

∧
H∈H

(
fH,1 = · · · = fH,|H|

)
(ΨH)

When applied to ODEs encoding CRNs, FDE and BDE provide a full
characterization of FE and BE (Section 2.5.1). However, the greater gen-
erality of these methods comes at the cost of a more computationally
expensive implementation based on encodings in satisfiability modulo
theory (SMT) formulas. Observe the following example taken from [169].
The formula ψHb encodes the check whether partitionHb is a BDE:

ψHb := (XS1
= XS2

) =⇒ (−3 ·XS1
= −3 ·XS2

)

which checks that if all variables in the same block are equal (the premise)
then they must evolve in the same way, i.e., their derivative should eval-
uate to the same value (the conclusion). The formula has two free real
variables, XS1

and XS2
, corresponding to S1 and S2. By using an SMT

solver, e.g., Z3 [59], we can check if Hb is a BDE by checking for the sat-
isfiability of ¬ψHb . If there exists an assignment for XS1

and XS2
that

makes ¬ψHb true, then Hb is not a BDE. From the running example this
is not the case, and hence it is a BDE (as expected from it being a BE).

2.5.3 Syntactic Markovian bisimulation

Syntactic Markovian bisimulation (SMB)[40] is an equivalence technique
for the reduction of stochastic elementary mass-action CRNs that can be
seen as an instantiation of FE to the stochastic semantics of CRNs. In
the SMB-reduced network, a macrovariable tracks the sum of the popu-
lations of the distinct species in the original network that belong to the
same SMB-equivalence class.

Therefore, for any given initial condition of the original network, it is
possible to directly generate its lumped Markov chain from the reduced
network by fixing a matching initial condition up to sums of populations.
For completeness, here we restate the original definitions from [40].
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Figure 5: Example of a SMB reduction. (a) Graphical representation of the
CTMC underlying (SE ,RE) (Example 1) starting from an initial state σe =
(0, 0, 1, 1, 1) (b) The lumped CTMC.

SMB computes the cumulative rate that characterizes the transforma-
tion of a certain reagent ρ into a product π by checking the syntax of the
reactions using the following notion of reaction rate:

Definition 6 (SMB-Reaction rate). Let (S,R) be an reaction network, and
ρ, π ∈MS(S). The reaction rate from ρ to π is defined as

rrSMB(ρ, π) =
∑

(ρ
α−−→π)∈R

α

For anyM⊆MS(S), we define rrSMB [ρ,M] =
∑
π∈M rrSMB(ρ, π).

We can now define SMB

Definition 7 (SMB). Let (S,R) be an reaction network, R an equivalence re-
lation over S,R↑ the multiset lifting ofR andH↑ =MS(S)/R↑. We say that
R is a syntactic Markovian bisimulation (SMB) for (S,R) if and only if

rrSMB [X + ρ,M] = rrSMB [Y + ρ,M]

for all (X,Y ) ∈ R, ρ ∈MS(S), andM∈ H↑.
We define the syntactic Markovian bisimilarity of (S,R) as the union of all
SMBs of (S,R).

Figure 5 a shows the CTMC underlying (SE ,RE) for an initial state
(0, 0, 1, 1, 1), which encodes the initial species population S3 + S4 + S5.
From this initial state we can reach states: (0, 0, 1, 1, 0) and (0, 0, 2, 0, 0)

due to the third and sixth reactions in RE , respectively. Both states are
reached with the same transition rate. It can be shown that the partition
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of species Hs = {S1}, {S2}, {S3, S4}, {S5} induces an ordinary lumpable
partition of the Markov chain, which means that we can write a reduced
CTMC having one state per equivalence class. The states (0, 0, 1, 1, 0)

and (0, 0, 2, 0, 0) in Figure 5a form an ordinary lumpable partition that is
represented in the lumped CTMC (Figure 5b) by the state (0, 0, 2, 0).

Hs = {{S1}, {S2}, {S3, S4}, {S5}}
Ss={S1, S2, S3,4, S5}
Rs={S1

2−−→S5, S1
1−−→2S3,4, S3,4+S5

3−−→S3,4,

S2
2−−→S3,4, S2

1−−→2S5}
(a) SMB-reduction

Figure 6: Coarsest SMB and SMB reduction of (SE ,RE) from Example 1.

Figure 6 shows the SMB partition Hs and reduced CRNs, for the run-
ning example. The CTMCs of (Ss,Rs) are reductions in terms of CTMC
ordinary lumpability [27] of the ones obtained from (SE ,RE). Therefore,
similarly to FE, SMB produces a coarse-grained version of the original
CRN which allows to reason in terms of sums of variables [169]. We re-
mark that the partition Hs is a refinement of Hf . Indeed, it has been
shown that SMB implies FE, but not vice versa [40]. This will be con-
firmed in Section 4.2.
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Chapter 3

Abstraction of stochastic
behaviour by species
aggregation

In this chapter we discuss Species Equivalence (SE), a reduction technique
that can be seen as the stochastic analogue of an aggregation method de-
veloped for mass-action networks in [38]. First, we define the notions
behind SE, followed by a technical comparison with SMB (discussed in
Section 2.5.3). We conclude by showing the applicability of SE to the re-
duction of biological networks and epidemic processes on complex net-
works.

3.1 Abstraction of stochastic behavior

As discussed in Section 2.5, ordinary lumpability preserves stochastic
equivalence in the sense that the probability of each block/macro-state
is equal to the sum of the probabilities in each original state belong-
ing to that block [27, 115]. However, to verify the conditions for ordi-
nary lumpability requires the full enumeration of the CTMC state space,
which grows combinatorially with the multiplicities of initial state and
the number of reactions [27, 115].
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SE detects ordinary lumpability directly at the finitary level of the re-
action network by identifying an equivalence relation (i.e., a partition) of
the species which induces an ordinary lumpable partition over the mul-
tisets representing the CTMC states. Similar to [40], we consider a natu-
ral lifting of a partition H of species to multisets of species H↑ through
the notion of multiset lifting. This allows to relate multisets that have
the same cumulative multiplicity form each partition block. That is, two
multisets/states σ1, σ2 belong to the same block B ∈ H if it holds that∑
S∈H σ1(S) =

∑
S∈H σ2(S) for all blocks of species H ∈ H.

At the basis of SE is the notion of the reaction rate rr(ρ, π) from reagents
ρ to products π, as the analogue to the entries of the CTMC generator ma-
trix:

rr(ρ, π) =


∑

ρk
αk−−→πk,

ρ=ρk,π=πk

αk if ρ 6= π,

− ∑
πk∈π,ρ 6=πk

rr(ρ, πk) if ρ = π.

An SE-partition H splits the network by relating species that have
equal sums of values across all members within each SE-equivalence
class. Thus, two multisets of species σ, σ′ are equal up to the partitionH
iff ∑

Si∈H
σi =

∑
Si∈H

σ′i, for all blocks of species H ∈ H.

Let us denote π/H as the partition induced on the set of products π of
the network up to H. Then, we say that the partition of species H is an
SE if for any two species Si and Sj in a block of H, and for any block of
productsM∈ π/H we get∑

π∈M
rr(Si + ρ, π) =

∑
π∈M

rr(Sj + ρ, π) (3.1)

for all ρ such that Si + ρ or Sj + ρ are in the set of reagents ρ.

3.1.1 Computation of the SE-reduced network

The partition that SE induces on the products carries over to the states of
the underlying Markov chain, thereby yielding an ordinarily lumpable
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Figure 7: Illustration of SE on a simple network with four species. From
left to right: original system and its corresponding Markov chain generated
from an initial population S1+2S4, reduced Markov chain and reduced sys-
tem. The colored boxes represent lumpable blocks in the ordinary lumpable
partition and the red labels indicate variables in the reduced systems.

partition that aggregates all states that are equal up to the SE. Given a
partition H, it is possible to construct a reduced network using an algo-
rithm similarly to [36], where it was developed for network reductions
with deterministic rate interpretation.

Each representative in the reduced network can be interpreted as
a macro-species that tracks the sum of the populations of the distinct
species in the original network that belong to the same SE equivalence
class. Therefore, for any given initial condition σ̂ of the original net-
work, it is possible to directly generate its lumped Markov chain from
the reduced network by fixing a matching initial condition up to sums of
populations.

Figure 7 shows an example of SE reduction. The original system
is a CRN with species S1, S2, S3, S4. Next, we observe the underlying
Markov chain derived from the initial state σ̂0 = S1 + 2S4. The Markov
chain is shown in a customary graph representation where each node is
a state and each arc is labeled with the transition rate according to mass-
action kinectics, i.e., q(σ, σ′) is the transition rate from state σ to state
σ′. The colored boxes represent the two lumpable blocks in an ordinary
lumpable partition of the Markov chain (here it suffices to check that the
outgoing transitions are equal for states in blocks of size two).
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The partition of species H = {{S1}, {S2, S3}, {S4}} can be shown to
be an SE, hence, states that are equal up to the sum of the second and
third coordinate form a lumpable partition block. This SE gives rise to
a reduced network by choosing the representatives S1, S2 and S4 for
each block (colored in red in the figure to distinguish them from orig-
inal species names). The reduced network has fewer reactions due to
the fact that reactions in the original network are merged into a single
after renaming. Similar to the equivalence techniques described in the
background, the maximal SE can be calculated using a partition refine-
ment algorithm that refines the initial partition, i.e., a singleton block
containing all species. Following the blue arrow we observe the under-
lying Markov chain of the reduced network derived from the matching
initial state σ̂0 = S1 + 2S4. The Markov chain of the reduced network
essentially corresponds to the lumped Markov chain of the original net-
work (as indicated by the matching colors of the nodes).

3.2 Technical Results

Now we can formally define Species Equivalence1.

Definition 8 (Multiset lifting). Let (S,R) be an reaction network,R ⊆ S×S
be an equivalence relation over S, and H be the partition induced by R over S.
The multiset lifting ofR onMS(S), denoted byR↑ ⊆MS(S)×MS(S), is:

R↑ , {(σ1, σ2) | σ1, σ2 ∈MS(S) ∧ ∀H ∈ H : σ1(H) = σ2(H)}

The multiset liftingR↑ ofR can be readily seen to be an equivalence relation
overMS(S). Let H↑ = MS(S)/R↑. For any equivalence class of multisets
M∈MS(S)/R↑ we have

ρ(H) = ρ′(H) for any ρ, ρ′ ∈M and any H ∈ H.

Therefore we might useM(H) to denote σ(H), with σ being any ele-
ment ofM.

1 The mathematical framework of this chapter is as in [32]. For matters of completeness,
we also included the corresponding proofs, which are the result of the work of my co-
authors A. Vandin, T. Waizmann and M. Tschaikowski.

35



Definition 9 (Species Equivalence). Then, we say that R is a species equiv-
alence (SE) for (S,R) if and only if:

rr[X+ρ,M] = rr[Y+ρ,M], for all (X,Y ) ∈ R, ρ ∈MS(S), andM∈ H↑.

To show that SE is a sufficient condition for ordinary lumpability,
the first step is to express q[σ, M̃ ], the cumulative transition rate from
a CTMC state σ to states belonging to a block M̃ of the multiset lifting
of an SE, in terms of the reagents and products of the reactions that gen-
erate those transitions. Given the source and target blocks M and M̃ ,
respectively, and for a given block of multisets M̄ , we define the set:

M̄M→M̄ = {π ∈MS(S)|∃σ ∈M,ρ ∈ M̄ s.t ρ ⊂ σ and (σ − ρ+ π) ∈ M̃} (3.2)

which collects all products π of reactions which can be executed in a
state σ ∈ M , such that the reagents belong to M̄ and the target state is
in block M̃ . Importantly, it can be shown that M̄M−−→M̄ is a block of the
multiset lifting. Then, for any two distinct blocks of the multiset lifting,
M, M̃ ∈ H↑ and for any σ ∈M it holds that:

q[σ, M̃ ] =
∑
M̄∈H↑

∑
ρ∈M̄
ρ⊂σ

∏
S∈ρ

(
σ(S)

σ(S)

)
· rr[ρ, M̄M→M̄ ] (3.3)

thus, expressing the aggregate rate in terms of the source state σ and
quantities depending on the multiset lifting. Furthermore, we can ex-
press q[σ, M̃ ] in a way that does not depend on the source state σ, but
only on the block of the multiset lifting to which it belongs. For any
M, M̃ ∈ H↑, for any σ ∈M , it holds that:

∑
ρ∈M̃

∏
S∈ρ

(
σ(S)

ρ(S)

)
=
∏
H∈H

(
M(H)

M̃(H)

)
(3.4)

To formalize this we need to show that for any two blocks of the mul-
tiset lifting M,M̃ ∈ H↑ and for any two states σ, σ0 ∈M , we have:

q[σ, M̃ ] = q[σ′, M̃ ]
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Indeed, let us assume that M 6= M̃ . Due to the properties of SE, we
can factor out the reaction-rate quantities in Equation. 3.3. Using ρM̄ to
denote any element of M̄ , we obtain

q[σ, M̃ ] =
∑
M̄∈H↑

rr[ρM̄ , M̄M→M̄ ]
∑
ρ∈M̄
ρ⊂σ

∏
S∈ρ

(
σ(S)

ρ(S)

)
(3.5)

=
∑
M̄∈H↑

rr[ρM̄ , M̄M→M̄ ]
∑
ρ∈M̄

∏
S∈ρ

(
σ(S)

ρ(S)

)

=
∑
M̄∈H↑

rr[ρM̄ , M̄M→M̄ ]
∏

H∈H↑

(
M(S)

B̄(S)

)
(3.6)

where the last equality follows by Equation 3.4. This closes the case,
because the terms appearing on the right-hand side of Equation 3.5 do
not depend on σ or σ0. Since the case M = M̃ follows from the case
M 6= M̃ , see [[205], Proposition 1], we infer the sufficiency of SE.

3.2.1 Comparison with SMB

Syntactic Markovian Bisimulation (Section 2.5.3) is an earlier variant of
SE . It is easy to see that SMB is strictly finer than SE; that is, an SE is also
an SMB but the converse is not true in general. We now provide a simple
reaction network which shows that SMB is stricter than SE. The reaction
network has species {A,B} and only one reaction: {A 1−−→ B}. We have
that the partition {{A,B}} is an SE, but it is not an SMB. Indeed, we
have only one class of multi-set equivalent products, consisting of {A}
and {B}, with

Example 2 (SMB stricter than SE).

rr(A, {{A}, {B}}) = 0 and rr(B, {{A}, {B}}) = 0

rrSMB(A, {{A}, {B}}) = 1 and rrSMB(B, {{A}, {B}}) = 0
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Table 3: Comparison between SMB and SE.

Number of species Number of reactions

Model Ref. Orig. SMB SE Orig. SMB SE

e9 [189] 262 146 222 222 3 538 944 990 990
e8 [189] 65 538 167 167 786 432 720 720
e7 [189] 16 386 122 122 17 032 504 504
e6 [189] 4 098 86 86 368 664 336 336
e5 [189] 1 026 58 58 7 680 210 210

NIHMS80246-S1 [19] 708 555 555 7 432 5 416 5 416
NIHMS80246-S4 [19] 213 66 66 2 230 432 432
NIHMS80246-S6 [19] 24 2 2 88 3 3

machine [193] 14 531 10 855 10 855 194 054 142 165 142 165

pcbi.1000364.s006 [12] 2 562 1 907 1 907 41 233 33 141 33 141
pcbi.1000364.s005 [12] 471 348 348 5 033 4 083 4 083

Tyrosine phosphorylation [48, 49] 730 217 217 5 832 1 296 1 296

Nag2009 [157] 920 364 364 12 740 4 020 4 020

Tumor supressor protein [11] 796 503 503 5 797 4 210 4 210

mmc1 [68] 348 72 72 284 142 142

fceri ji [74, 189] 354 105 105 3 680 732 732
sx fceri ji sitel [10] 348 215 215 3 447 1 782 1 782

fceri gamma2 asym [74, 189] 10 734 3 744 351 187 468 5 708 3 132
sx fceri ji sitelll [74, 189] 2 506 1 281 154 32 776 16 841 1 140

sx insulin [123] 2 768 2 719 2 719 38 320 37 760 37 760

In Table 32 we compare SMB against SE in a number of models of
models from the literature that were previously analyzed in [38, 40]. For
most of the models, including those in Section 3.5 , the maximal SMB
and SE aggregations coincide. However, SE yields coarser aggregations
for two variants of the FcεRI signaling pathway model presented in [74,
189].

FcεRI is a tetrameric receptor complex that has high affinity for the
Fc region of immunoglobulin (IgE), an antibody involved in defense re-
sponse to bacterium and inmune response. FcεRI signaling is a process

2These aggregations where obtained using ERODE in its version
win32.x86 64 1.0.0.201810151158.
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connected to cell surface receptor signaling and immune response reg-
ulation. The system starts with the binding of IgE to the FcεRI recep-
tor on the surface of a signal-receiving cell. This initiates a series of
ordered phosphorylation events within the receptor microenviroment.
The β and γ-chains mediate signaling in the intracellular environment
through their immunoreceptor tyrosine-based activation motifs (ITAMs).
Exhibiting a cooperative behavior, the ITAMs motifs recruit molecules
with a SrC-homology-2 (SH2) domain.

The order of phosphorylation events in signaling pathways can be
either sequential or random [66, 86]. The hierarchical organization of
phosphorylation reactions is common in molecules with multiple phos-
phorylation residues, e.g., in [64] the state of one site in GPCR dictates
whether or not other phosphosites become efficiently phosphorylated. In
signal-transduction, for instance, protein binding events oftentimes re-
quire one of the interacting sites to be phosphorylated in advance. This
imposes an ordering on the phosphorylation and binding events in the
model [19]. In the FcεRI signaling pathway, the phosphorylation of the
ITAM sites of β and γ conditions the binding of the SH2 domains of Lyn
and Syk.

The models fceri gamma asym and fceri fyn lig are prototypical mod-
els depicting early events in FcεRI signaling [189] consisting of 10 734
species and 187 468 reactions, and 2 506 species and 32 776 reactions,
respectively. The general mechanism in both models consists in a FcεRI
receptor with a ligand-binding site α and two protein docking sites β and
γ that are used to recruit the Src kinases Lyn and Syk, respectively. The
crosslinking events in FcεRI lead to tyrosine phosphorylation of the β by
an active Lyn molecule. The phosphorylated FcεRI receptor binds Syk
molecules using the γ site. Moreover, receptor-bound Lyn can transpho-
sphorylate an adjacent receptor in a dimer on both phosphorylation sites,
which causes the recruit of Syk and the activation loop of Syk proteins
bound to the same dimer.

In fceri gamma asym the site γ is modeled as dimeric unit with sites
labeled γ1 and γ2. Figure 8 (A) shows the four molecular components of
the model: a bivalent ligand, two proteins: Lyn and Syr, and the FcεRI

39



A. B.

1.

Lyn

Syk

Extracellular ligand

Fcε receptor

�

�

�

α

β
γ

�

�

�

�

�

�

2.

�

�

�

�

�

�

3.

�

�

�

�

�

�

4.

�

�

�

�

�

�

1

2

Figure 8: (A) Components in the fceri gamma asym model, a model for
the early events in FcεRI signaling induced by a bivalent Ligand [19] where
the FcεRI receptor has a dimeric γ site. Binding sites β and γ1, γ2 can be
either phosphorylated (green circles) or unphosphorylated (white circles);
green-white circles represent either phosphorylation state. (B) Examples of
macrovariables obtained in the reduced model.

receptor. The result of SE evaluation is a reduced model consisting of
351 species and 2532 reactions. In a closer inspection of the aggregated
system, we observe that states of the dimerized receptor are aggregated
in equivalence classes, e.g., Figure 8(B1-4). For instance, an equivalence
between receptor dimmers with active β site, where at least one γ site
has bound a Syr, causing the phosphorylation of the bound γ; results in
the collapse of eight receptor dimmer units into the macrovariabe shown
in Figure 8 (B1). This equivalence relation extends to receptor dimmers
which are bound to one or more Lyn units (Figure 8(B1) and (B3), respec-
tively), and to receptor dimmers whose γ1 and γ2 sites can be bound to
Syr (Figure 8(B4)).

The model fceri fyn lig includes the phosphorylation of one of the
sites of the Lyn by another Lyn unit in a transphosphorylation process
occuring in the receptor dimmer. This model also includes a second
Src protein called Fyn that can bind to the β site of the FcεRI recep-
tor, and whose phosphorylation occurs in the receptor dimmer by Lyn
transphosphorylation. Additionally, the bivalent ligand is modeled with
two states, which increases the overall combinatorial complexity. The
SE-reduced model for fceri fyn lig consists of 154 species and 900 reac-
tions. The SE-aggregations for the FcεRI states in this model are consis-
tent with those discussed above. In addition, in both fceri gam-ma asym
and fceri fyn lig, the SE-aggregations also relate four states of the free
Syk protein, regardless the phosphorylation state of its binding sites.
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3.2.2 Comparison with Forward Equivalence.

Although SE and FE work on different semantics, the fact that they are
both equivalences over species that induce analogous aggregations at the
semantic level calls for the question of establishing a formal relation be-
tween the two equivalences.

Theorem 1. Let (S,R) be an reaction network and R an equivalence relation
over S. Then, ifR is an SE for (S,R), it also is an FE for (S,R′), with

R′ = {(ρ α′−−→ π) | (ρ α−−→ π) ∈ R,α′ =
α∏

Y ∈S
(ρ(Y )!)

} (3.7)

Proof of Theorem 3.2.2 LetH be the partition induced byR over S, and
H↑ the partition induced by R↑ overMS(S). In order to close the proof
we show that the condition of SE in (S,R) implies the condition of FE in
(S,R′).

Note that the factor 1
[ρ]! in fr has the effect of scaling the rates of reac-

tion in (ρ
α′−−→ π) in R′ back to its original rate in R, divided by |ρ|!. It is

hence easy to see that fr(S,R′)(ρ,H) = fr′(S,R)(ρ,H), with

fr′(ρ,H) :=
1

|ρ|! ·
∑
Y ∈H

∑
(ρ

α−−→π)∈R

(π(Y )− ρ(Y )) · α

In the rest of the proof we will hence use fr′(S,R) rather than fr(S,R′). Since
all rr and fr′ are defined over (S,R), we avoid to write the reaction net-
work as prefix.

What we want to show is that rr[X + ρ,M] = rr[Y + ρ,M] ∀M ∈
H↑, implies fr′[X + ρ,H] = fr′[Y + ρ,H] ∀H ∈ H. All multi-sets in
a given M ∈ H↑ contain same number of species of each block H ∈
H. Thus, with a slight abuse of notation we can writeM(H) to denote∑
Z∈H π

M(Z), with πM any multi-set inM. Let us assume that X + ρ

belongs to an equivalence class M′ ∈ H↑. We remark that this implies
that Y + ρ belongs toM′ as well. Then, a reaction with reagents X + ρ,
rate α and product any π ∈M, produces comulatively species in H with
rate (M(H)−M′(H)) · α. Finally, for each H ∈ H we easily obtain
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fr′[X + ρ,H] =
1

|X + ρ|!
·

∑
M∈H↑

(M(H)−M′(H)) ·

 ∑
π∈M

∑
(X+ρ

α−−→π)∈R

α



=
1

|X + ρ|!
·

∑
M∈H↑s.t.M′ 6=M

(M(H)−M′(H)) ·

 ∑
π∈M

∑
(X+ρ

α−−→π)∈R

α


=

1

|X + ρ|!
·

∑
M∈H↑s.t.M′ 6=M

(M(H)−M′(H)) · rr[X + ρ,M]

This follows similarly for Y , where we have as well (Y + ρ) ∈ M′.
Furthermore, we have |X + ρ| = |Y + ρ|. This allows us to conclude
fr′[X + ρ,H] = fr′[Y + ρ,H], closing the proof.

Remarks An important remark to be made regarding this result is that
it requires to scale the rates of reactions in Equation (3.7). This is due to
an inherent, well-known inconsistency existing between the CTMC and
ODE semantics of chemical reaction networks. While, as discussed in
Section 2, rates are scaled by binomial coefficients in the CTMC semantics
in order to capture the combinatorial nature of the discrete molecular
interactions, in the ODE semantics does not make such difference, e.g.,
[76]. We refer to [30] for a more in depth discussion on this.

It is interesting to note that a different ODE semantics would be possi-
ble, grounded on a limit result by Kurtz which establishes the ODE solu-
tion as the asymptotic behavior of a sequence of infinitely large CTMCs
induced by the same chemical reaction network with increasing volumes
of a solution having given initial concentrations of species. This interpre-
tation would lead to same scaling as those considered in Theoreom 3.2.2
also in the ODE case [126]. We leave it for future work to understand
if, by appropriately adapting FE to this different ODE semantics, The-
orem 3.2.2 can be stated so as to relate SE and FE on the same reaction
network.

42



3.3 Applications to Systems Biology

Next, we discuss a series of case studies to highlight the physical inter-
pretability of SE aggregations.

3.3.1 Species equivalence in multi-site phosphorylation
processes

Mechanistic models of signaling pathways are prone to a rapid growth
in the number of species and reactions due to the distinct configurations
in which a molecular complex can be found [180]. A prototypical situ-
ation is multisite phosphorylation, a fundamental process in eukaryotic
cells that is responsible for various mechanisms such as the regulation of
switch-like behavior [93, 198].

Let us take for example scaffold proteins; the multiple sites allow the
scaffold to bind several signaling proteins at the same time. This is useful
for instance when it is necessary to transport proteins to a specific bind-
ing partner avoiding unnecessary interactions. In other cases the scaffold
recruits several kinases to form a larger multi-kinase complex capable to
interact with specific targets. An example of this is the scaffold kinase
suppressor of Ras 1 (KSR 1) which can bind all the three kinases of the
MAPK pathway [155]. In addition, Ras 1 promotes MEK’s phosphoryla-
tion by transporting the recruited MEK molecules close Ras in the cellu-
lar membrane [151]. The multisite characteristic is also present in several
kinases involved in signaling pathways, e.g., the double phosphoryla-
tion of MAPK discussed in case study 4.3.1, where MAPK phosphoryla-
tion and dephosphorylation is mediated by kinases and phosphatases in
each specific residue.

Figure 9 shows a prototypical model of multisite phosphoryation in
protein with n docking sites. Each site behaves independently from the
others and exhibits the same affinity with kinase K. In the example, K
binds the protein in site iwhich is unphosphorylated (iu). Upon binding,
the kinase transfers a phosphate group to the protein causing phospho-
rylation (ip).
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Figure 9: Phosphorylation/dephosphorylation processes in aN -site protein
[180]. The state of each binding site can be either phosphorylated (p), un-
phosphorylated (u) or unknow (?). Phosphorylation occurs according to a
random mechanism where the binding of kinase (K) to site i is described
through kinetic parameter r1. Dephosphorylation is modeled as a sponta-
neous process where kinetic parameter r2 gives the speed in change of i

The dephosphorylation of the protein occurs as a result of its own
enzymatic activity, i.e., the protein looses the phosphate group and the
site ip returns to its original unphosphorylated state. This mechanism
is common in signal transduction systems, when self-catalysis of the re-
ceiver domain terminates the signal process, e.g., [91].

To keep track of the status of each individual site of the protein in the
example, we require 2n distinct molecular species in a formal network
[180]. Let us call our protein A, then each species representing a state
of A can be written in the form A(b1, ..., bn) where a site bj can be either
phosphorylated (bj = 1) or not (bj = 0). Then, for all j = 1, ..., n and for
any combination of the site states s1, ..., sj−1, sj+1, ..., sn, the resulting
mass-action network is given by:

A(s1, ..., sj−1, 0, sj+1, ..., sn) +K
r1−−→ A(s1, ..., sj−1, 1, sj+1, ..., sn) +K

A(s1, ..., sj−1, 1, sj+1, ..., sn)
r2−−→ A(s1, ..., sj−1, 0, sj+1, ..., sn)

To simplify this mathematical model, it is often assumed that the ki-
netic parameters are equal at all phosphorylation sites [189]. Under this
setting, SE can provide a stochastically equivalent reduction using N

equivalence classes, each aggregating the behavior of all distinct protein
configurations with the same number of phosphorylated sites. More for-
mally, if we consider a block of species Hi that groups all configurations
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that have exactly i phosphorylated sites, Hi = {A(s1, ..., sn)|s1 + ... +

sn = i} for i = 0, ..., n, then the maximal SE is given by the partition
{{K}, H0, ...,Hn}.

Occasionally, protein dephosphorylation occurs by the influence of
an enzyme, i.e., a phosphatase. In an opposite manner to the kinase
which induces phosphorylation, the phosphatase binds the protein on
its phosphorylated site to sequestrate the phosphate group. This results
in a reaction where the site bound to the phosphatase becomes dephos-
phorylated, e.g., the double dephosphorylation of MAPK by MKP (Sec.
4.3.1). Considering the prototypical CRN above, and a phosphatase F ,
the equation describing A’s dephosphorylation becomes:

A(s1, ..., sj−1, 1, sj+1, ..., sn) + F
r2−−→ A(s1, ..., sj−1, 0, sj+1, ..., sn) + F

We tested SE using a model describing the enzyme-mediated phos-
phorylation and dephosphorylation of a 2-site protein [189]. The model
consists of 18 species and 24 reactions describing the interactions of a
substrate A(b1{u,p} , b2{u,p}), an enzyme K(k) and a phosphatase F (f),
where k, f = {1, 2}, k 6= f indicate the site to which K or F are bound.
Here, SE produces equivalence classes that aggregate components with
symmetric site configuration, e.g., the equivalence class {A(b1u , b2p),

A(b1p , b2u)} equates the two forms of the partially phosphorylated sub-
strate. This equivalence extends to all the states of the substrate, regard-
less if they are bound with K, F , or in a complex where the substrate is
bound to bothE and F at the same time. This yields a SE-reduced model
given by 12 species and 24 reactions.
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3.3.2 Identification of equivalent molecular complexes in
CaMKII mechanism

The assumption of equal kinetic parameters is not necessary to achieve
aggregation with SE. We show this on MODEL100115100, a kinetic model
of the interactions between calcium (Ca2+), calmodulin (CaM), and the
calcium-CaM dependent protein kinase II (CaMKII) [167] taken from
BioModels Database. CaMKII is a serine/threonine serine kinase that
is regulated by the Ca2+|CaM complex and is considered to play a fun-
damental role in the mechanism of synaptic plasticity [143].

The structure of a molecule of CaMKII consists of: a variable segment,
a catalytic, an anti-inhibitory and a self-association domains. The vari-
able and self-association domains determine CaMKII isophorms and the
sensitivity to react with calcium and calmodulin; for example, CaMKIIβ
shows higher affinity for Ca2+|CaM than CAMKIIα [25, 107]. After bind-
ing the Ca2+|CaM complex, the calcium-calmodulin complex CaMKII be-
comes active. Then, as the amounts of Ca2+|CaM increase, the neighbor-
ing sub-units of CaMKII activate via autophosphorylation which could
lead to a sustained calcium-dependend persistent activation.

In the model under consideration, Ca2+ can bind to two pairs of do-
mains located at the amino (N) and carboxyl (C) termini of CaM, thus
from now own we will refer to the complex Ca2+|CaM as a single unit
CaMnNcC where n, c –– (0,1,2) indicate the amount of Ca2+ ions bound to
N and C respectively. Figure 10 (A) represents the kinetic interactions of
CaMKII and CaMnNcC (CaM). From left to right, the monomeric units of
CaM bind to CaMKII and form a complex referred to as KCaM. Then,
KCaM experiences a reversible dimerization that may lead to autophos-
phorylation. The active units of KCaM (KCaM*) can interact with any
unphosphorylated KCaM unit (indicated in the figure by the “?” sign)
and form a phosphorylated complex. The KCaM* complex decomposes
either in a reverse reaction releasing the two original units, or can lead
to autophosphorylation of the associated unphosphorylated KCaM unit.
This dynamics is represented in a reaction network consisting of 156
species and 480 reactions.
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Figure 10: (A). Graphical representation of the dynamics in the kinetic
model of Ca2+, CaM and CaMKII adapted from [167]. (B) Units of CaM
and CaMKII in the original model; calcium-bound CaM is represented by
coulored circles with label nNcC, where n and c corresponds to the number
of Ca2+ions associated to each termini. (C) Units in the SE reduced model.

The maximal SE finds that all phosphorylated monomers are equiva-
lent (Figure 10 B), although their dynamics are characterized by distinct
kinetic parameters to account for phosphorylation rates that depend on
the number of bound Ca2+[184]. Furthermore, such equivalences carry
over to all complexes where they are involved. This leads to equivalence
classes consisting of nine molecular species each, with an overall reduc-
tion from 156 species and 480 reactions to 76 species and 264 reactions.
Notably, important quantities to observe in this model are the amounts of
free and bound CaM[142], both recoverable from the reduced network.
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3.3.3 Internalization of the GTPase cycle in a SPOC model

In the examples above, SE can be physically interpreted as a reduction
that preserves both the structure of equivalent molecular species as well
as their functions. In our next case study we show that SE can also ag-
gregate species that exhibit contrasting functionality. We consider the
mechanistic model from [44] of spindle position checkpoint (SPOC).

SPOC intervenes in the process of cell division by verifying the cor-
rect alignment of the nucleus between mother and daughter cells [135],
an important requisite in the cell cycle. A correct alignment of the mi-
totic spindle determines the fate of the two daughther cells in the process
of cell division. During mitosis, the mother cell develops a mechanism
called spindle apparatus whose function is to ensure the proper align-
ment of the genetic material, so that upon division two identical daugh-
ter cells are created. The mitotic spindle is an elipsoide structure com-
posed of proteins and microtubules, all structural components whose
function is to bind on specific sites the mother’s chromosomes.

A Bfa 1 |Bub 2 GTPase complex in the SPOC inhibits the mitotic exit
network (MEN) by regulating its upper stream component: the Ras-like
GTPase Tem 1. Under correct alignment the GAP complex is inhibited
by kinase Cdc 5 who phosphorylates Bfa 1 [90]; under misalignment, the
kinase Kin 4 phosphorylates Bfa 1 preventing the inhibitory phosphory-
lation by Cdc 5 [168]. Stabilization of the spindle poles means that the
nucleus has moved to a daugher cell, which allows Tem 1 to return to its
active phase and start the exit from mitosis.

Figure 11 (B) adapts the Tem 1 GTPase cycle from [44]. The most
upstream event of the pathway shows Tem 1, which is regulated by the
(GAP) complex Bfa 1 |Bub 2 (from now on Bfa 1). Tem 1 binds to the yeast
centrosomes (spindle pole bodies, SPBs) via GAP-dependent and GAP-
independent sites. The intrinsic GTPase switching cycle of Tem 1 is mod-
eled as a reversible first-order reaction that converts Tem 1 GTP into
Tem 1 GDP and vice versa. When bound directly to the SPB, Tem 1 does
not interact with Bfa 1 whereas the units of Tem 1 in the cytosol interact
with units of Bfa 1 located in both, cytosol and SPB. These interactions
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Figure 11: (A) Subunits of the model. (B) Adaptation of the SPOC dynami-
cal model from [44]. Beige boxes indicate the SPB compartment. Reactions
crossing the compartment boundary represent the reversible SPB associa-
tion of the respective species or complexes. Reactions in blue mark the in-
trinsic Tem1 GTPase-cycle and reversible SPB association. The dashed boxes
represent the SE equivalence classes. (C) SE reduced network.

occur for all instances of Bfa 1 regardless its phosphorylation state as in-
dicated by the ”?” sign. The dashed arrows indicate GTP hydrolysis by
the respective Bfa 1 |Tem 1 GTP complexes, which is accelerated depend-
ing on Bfa 1’s GAP activity.

The maximal SE collapses complexes that are equal up to the GTP-
or GDP-bound state (Figure 11) (B), yielding eight equivalence classes
that contain pairs of molecular species. The original network with 24
species and 71 reactions is reduced to 16 species and 36 reactions, from
which one may recover observables of interest such as the total amount
of active Bfa 1 [44].
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3.4 Epidemic processes in networks

Models of epidemic processes are well established since the celebrated
work by Mermack and McKendrick [116]. They have received consider-
able attention from several disciplines including biology, computer sci-
ence, mathematics, physics, and sociology due to the generality with
which, in addition to the diffusion of pathogens, the epidemic analogy
can be applied to a variety of phenomena such as the spreading of rumor
[146], opinion [42], as well as computer viruses [212]. The availability
of large datasets in a range of socio-technical systems has prompted the
study of epidemic processes on complex networks that consider the het-
erogeneity of real-world processes, which is neglected in simpler vari-
ants that assume a well-mixed, uniform environment [166].

Aggregation of epidemic processes on networks has been studied by
Simon et al. [185], relating symmetries in the graph with lumping on
the Markov chain. Symmetry is formalized in terms of nodes belong-
ing to the same orbit, thereby satisfying the property that there exists a
graph automorphism relating them. Then, the orbit partition, i.e., the
partition of nodes where each block is a distinct orbit, induce a Markov
chain lumping that tracks the number of nodes in each block of the orbit
partition that are in any given state [185].

Here we show that SE can be seen as a complementary, exact aggre-
gation method for epidemic processes on complex networks. As an ex-
ample, we study the well-known susceptible-infected-susceptible (SIS)
model, where each node in the network in the susceptible state can be
infected with a rate proportional to the number of infected neighbors,
and recover from infection according to an independent Poissonian pro-
cess. Let A = (aij), with A ∈ RN×N , define the adjacency matrix of a
graph with N nodes representing the network topology, with aij > 0

denoting the presence of a possibly weighted edge between node i and
j.

The network experiments where conducted by my co-author M. Tribastone. The set-up
of the experiment, together with the corresponding analysis of the results is detailed here
since it contributes to the understanding of the general applicability of SE.
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Table 4: Coarse graining of SIS models on real-world networks.

Original size Reduced size

Network N E N E Orbits

tntp-ChicagoRegional [69] 1 467 2 596 635 932 166
ego-facebook [150] 2 888 5 962 35 104 35
as20000102 [134] 6 474 27 790 3 885 19 437 3 690
arenas-pgp [16] 10 680 48 632 8 673 44 074 7 944
web-webbase-2001 [17] 16 062 51 186 5 253 24 232 3 574
as-caida20071105 [134] 26 475 106 762 13 393 69 184 13 252
ia-email-EU [134] 32 430 108 794 6 262 53 228 6 259
topology [218] 34 761 215 440 19 246 168 782 19 128
douban [217] 154 908 654 324 59 524 462 128 59 493

The SIS epidemic process can be described by the network

Si + Ij
aijλ−−−−→ Ii + Ij , Ii

γ−−→ Si, 1 ≤ i, j ≤ N, j 6= i, (3.8)

where the first reaction models infections by neighbors and the second
reaction is the spontaneous recovery, with parameters λ and µ respec-
tively. In a similar fashion, different variants of the process, such as
SIR, SIRS, and SEIR [166], can be described. Any physically meaning-
ful initial condition σ̂ for this network must be such that each node i
is initially infected (σ̂Si = 0, σ̂Ii = 1) or susceptible (σ̂Si = 1, σ̂Ii = 0).
This setting makes stochastic models of epidemics spreading on complex
networks difficult to study exactly because the state of each individual
node is tracked explicitly [213], leading to a state space size with 2N dis-
tinct configurations [185]. With SE it is possible to discover an ordinary
lumpability of the underlying Markov chain, without ever generating it,
on the network of Eq. 3.8, which has exponentially smaller size because
it has 2N species and E+N reactions, where E is the number of nonzero
entries in the adjacency matrix of the graph.

It can be shown that, for the SIS model, the maximal SE is the triv-
ial partition where all the species are in a single block. This is an in-
variant property stating that the total population of individuals in the
system is constant [185]. A non-degenerate reduction may be obtained

51



by considering initial partitions with two blocks, hereafter denoted by
S = {Si | 1 ≤ i ≤ N} and I = {Ii | 1 ≤ i ≤ N}, that separates species
associated with nodes in the susceptible state from those in the infected
state, respectively. Such a setting leads to noticeable SE reductions for
SIS models evolving on several real-world networks from the literature
(Table 4).
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��! I0 + I1

S1 + I0
��! I1 + I0
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��! S0

I1
��! S1
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A B C

Figure 12: Example of SE reduction of SIS dynamics on a coarse-grained
network. (A) Star network over which an SIS process evolves according to
Eq. 3.8, starting from an initial condition where the infection starts at node
0. (B) Reduced network from the SE that partitions the species into blocks
{S0}, {I0}, {S1, S2, S3, S4} and {I1, I2, I3, I4} (species representatives are
underlined in the figure for clarity). (C) The SE partition induces a partition
on the graph with blocks {0} and {1, 2, 3, 4}. The reduced network corre-
sponds to the description of the SIS dynamics on the quotient graph. The
lumpability relation holds for an initial condition of the reduced network
that is consistent with the initial condition of the original network up to SE,
hence the initial number of agents in each macro-node of the quotient graph
is equal to the sum of the initial conditions of the equivalence class that it
subsumes.

An inspection of the obtained SE equivalence classes reveals that each
refinement of the initial block S matches a refinement of block I for the
same subset of nodes of the graph. As a result, SE naturally induces
a partitioning of the graph, and the reduced network can thus be un-
derstood as a description of the SIS dynamics on the quotient graph
where each macro-node subsumes a partition block of nodes induced by
SE (Figure 12). According to this structural interpretation, the reduced
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model is still an epidemic process, albeit on a coarse-grained network;
as such, it is still amenable to the applicability of a wide range of anal-
ysis techniques developed for such systems [166, 213]. These include
mean-field and pair approximation [43, 149, 208], whose computational
cost for the generation and solution of the resulting nonlinear differential
equations may benefit from the availability of a stochastically equivalent
reduced model.

Since SE is a sufficient condition for Markov chain lumping, coarser
aggregations of the Markov chain state space could be obtained in prin-
ciple. Indeed the line graph in Figure 12 C admits the orbit partition that
collapses nodes 0 and 1, thereby inducing a lumping following [185].
However, this is not detected by SE. The reason is that the lumpability
relation induced by SE must hold for all population vectors that are equal
up to SE. However, the lumpable partition derived with the approach in
[185] violates this property because it does not collapse in the same block
the states S0 + I0 + S1 + I1 and S0 + S0 + I1 + I1, which preserve the
sums of infected and susceptible individuals. In our tested real-world
networks in Table 4, the maximal SE induces a partition on the nodes of
the graph which is a refinement of the orbit partition, although in many
cases it is not considerably stricter. On the other hand, SE can be applied
to models that do not satisfy the conditions required in [185]. For exam-
ple, the SIS dynamics on the star network of Figure 12 can be lumped
also in the case of node-specific kinetic parameters, whilst the results in
[185] require equal transmission and recovery rates at every node.

3.4.1 SIS model with heterogeneous rates

Consider now a variant of the network presented in Fig 12. In this vari-
ant we assume node-dependent transmission and recovery rates that de-
pend on whether the node is at the center or at the periphery of the star.
More specifically, we consider the following mass-action reaction net-
work:
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I0
γ1−−→ S0 S0 + I1

β1−−→ I0 + I1 S1 + I0
β2−−→ I1 + I0

I1
γ2−−→ S1 S0 + I2

β1−−→ I0 + I2 S2 + I0
β2−−→ I2 + I0

I2
γ2−−→ S2 S0 + I3

β1−−→ I0 + I3 S3 + I0
β2−−→ I3 + I0

I3
γ2−−→ S3 S0 + I4

β1−−→ I0 + I4 S4 + I0
β2−−→ I4 + I0

I4
γ2−−→ S4 (3.9)

For given γ1 6= γ2 and β1 6= β2, this model admits the same SE as
above, namely

H =
{
{S0}, {I0}, {S1, S2, S3, S4}, {I1, I2, I3, I4}

}
.

In fact, using the SE theory it is possible to prove that such equiva-
lence holds for any choice of rates such that β1 6= β2 and γ1 6= γ2. To
do so, let us assume without loss of generality that the kinetic rates are
expressed as rational numbers βi = nβi/dβi , γi = nγi/dγi , i = 1, 2. Then,
we consider a time rescaling of this parameters such that all of them are
non-negative integers, e.g., by multiplying each such parameter by the
product of all denominators dβ1

dβ2
dγ1dγ2 .

Let us denote rescaled parameters by β̂i and γ̂i, i = 1, 2. Then, the
original reaction network in Eq. 3.9 and the one with the rescaled kinetic
parameters are equivalent in the sense that they give rise to the same
stochastic behavior (i.e., the solution of the master equation) up to a time
rescaling. Importantly, the rescaled parameters β̂i and γ̂i can now be
interpreted as auxiliary species Pγ1 , Pγ2 , Pβ1

and Pβ2
in the following

extended mass-action network with unitary kinetic rate parameters and
auxiliary species Pβ1

, Pβ2
, Pγ1 , and Pγ2 :

Pγ1 + I0
1−→ S0 + Pγ1 Pγ2 + I1

1−→ S1 + Pγ2 Pγ2 + I2
1−→ S2 + Pγ2
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Pγ2 + I3
1−→ S3 + Pγ2 Pγ2 + I4

1−→ S4 + Pγ2

Pβ1
+ S0 + I1

1−→ I0 + I1 + Pβ1
Pβ1

+ S0 + I2
1−→ I0 + I2 + Pβ1

Pβ1 + S0 + I3
1−→ I0 + I3 + Pβ1 Pβ1 + S0 + I4

1−→ I0 + I4 + Pβ1

Pβ2
+ S1 + I0

1−→ I1 + I0 + Pβ2
Pβ2

+ S2 + I0
1−→ I2 + I0 + Pβ2

Pβ2
+ S3 + I0

1−→ I3 + I0 + Pβ2
Pβ2

+ S4 + I0
1−→ I4 + I0 + Pβ2

Here the auxiliary species act as catalysts, i.e., their population re-
mains constant at the occurrence of every reaction. Thus, it is easy to
see that if the initial condition is such that it matches the values in the
original (time-rescaled) model, i.e.,

σ̂Pβ1 = β̂1, σ̂Pβ2 = β̂2, σ̂Pγ1 = γ̂1 σ̂Pγ2 = γ̂2,

then the two networks give rise to the same underlying Markov chain.
The expanded reaction network, however, can provide a statement of SE
that is independent from the actual values of the parameters. Indeed, it
can be shown that the partitionH′ defined as

H′ = H ∪
{
{Pβ1}, {Pβ2}, {Pγ1}, {Pγ2}

}
is an SE for the expanded reaction network. This induces a lumpable par-
tition on the underlying Markov chain (hence, on the underlying Markov
chain of the original reaction network) for all states independently of the
values of the auxiliary species — hence, independently of the choice of
transmission and recovery rates in the original reaction network.

3.5 Discussion

Table 5 shows the results obtained by SE over a collection of models taken
from BioModels repository [136], JWS Online [162] as well as benchmark
networks obtained from BioNetGen [14] rule-based models. The table
divisions are set to group models that appear in the same scientific pub-
lication, although they describe different biological mechanisms.

Models M1-M2 show reductions in the number of species but not in
the number of reactions. A manual inspection of these models and the
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resulting SE equivalence classes reveals that SE equates species with no
dynamical role in the network as they can be interpreted as distinct aux-
iliary species that are used to model zero order reactions in the form
I

α−→ I + A, degradation reactions such as A α−→ SINK , or purely cat-
alytic species such as A + C

α−→ B + C, where I and SINK , and C are
the auxiliary species that are otherwise not involved as reagents in the
network.

Models M3-M12 present a small reduction in the number of species
and reactions, that can be explained in a similar fashion to the previous
models. M20 on the other hand, is a simplified model for prothrombinase
action based on [133]. The model describes the transformation of coagu-
lation factor II (Prothrombin) (II) in Meizothrombin (M) and Prethrombin
(P2), as an intermediate step for factor II’s activation.

Model M13 depicts sugar isomerization, one of the main reaction
pathways in the sugar-casein systems, in which aldoses and ketoses can
isomerize into each other. The reaction network also considers the Mail-
lard reaction, in which sugars react with the lysine residues [23]. Here,
SE aggregates species that are produced and never consumed in a sin-
gle macro variable which produces a reduced system consisting of six
species and ten reactions from the original model (11 species and 11 re-
actions).

Interestingly, in a number case studies (such as those discussed in
Section 3.3) we observe that symmetries carry over to equivalences at
the level of the underlying quantitative semantics. This appears often in
case studies analyzing protein phosphorylation and signaling pathways.
In addition, it is worthy to remark that when applying FE to the mod-
els in tables 5 and 3 we observe that in all cases the largest computed
FE equivalence corresponds to the discussed largest SE, except for the
models MODEL1511170000-02 (Table 3).
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Table 5: SE reductions.

Species Reactions

Id Name Cit. Orig. Red. Orig. Red.

1 BIOMD0000000362 [28] 34 30 45 45

2 MODEL4780784080 [96] 14 13 16 16

3 BIOMD0000000077 [15] 8 7 8 7

4 BIOMD0000000188 [175] 19 13 20 19
5 BIOMD0000000189 [175] 17 10 14 13

6 MODEL1511170000 [144] 7 6 8 7
7 MODEL1511170001 [144] 7 6 8 7
8 MODEL1511170002 [144] 8 7 10 9

9 MODEL1608100000 [1] 4 3 4 3

10 MODEL1609100000 [84] 7 2 7 1

11 MODEL8262229752 [140] 22 16 25 17

12 MODEL1411130000 [152] 8 4 8 6

13 BIOMD0000000052 [22] 11 6 11 10

14 MODEL1001150000 [167] 156 76 480 264

15 BIOMD0000000699 [44] 24 16 71 36
16 BIOMD0000000702 [44] 24 16 71 36

17 BIOMD0000000705 [188] 26 22 61 52
18 BIOMD0000000706 [188] 40 36 127 102
19 S6K - Insulin model I [111] 15 10 16 10
20 S6K - Insulin model II [111] 15 10 16 10

3.6 Concluding remarks

Stochasticity is a key tool to understand a variety of phenomena regard-
ing the dynamics of reaction networks, but the capability of exactly an-
alyzing complex models escapes us due to the lack of analytical solu-
tions and the high computational cost of numerical simulations in gen-
eral. Species equivalence enables aggregation in the sense of Markov
chain lumping by identifying structural properties on the set of reactions,
without the need of the costly enumeration of the state space. Owing to
the polynomial space and time complexity of the reduction algorithm, it
can be seen as a universal pre-processing step that exactly preserves the
stochastic dynamics of species of interest to the modeler. Since species
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equivalence gives rise to a network where the reactions preserve the
structure (up to a renaming of the species into equivalence classes), the
reduction maintains a physical interpretation in terms of coarse-grained
interactions between populations of macrospecies.

Another consequence of the availability of a reduced network is that
our method is orthogonal to any of the analysis techniques developed
for stochastic reaction networks. Numerical simulations may run faster
because they traverse fewer reactions at each time step [40]; when fea-
sible, one can generate the underlying Markov chain to be further ana-
lyzed or reduced [99, 156, 205]; the reduced network can be subjected
to complementary coarse-graining techniques concerned with time-scale
separation [29, 87, 114, 186]. More generally, since the reduced network
preserves the stochastic dynamics in the sense specified above, it can be
used as the basis for various forms of approximate analysis such as linear
noise or moment closure approximation [183], where the complexity of
the resulting system of equations grows rapidly with the network size.
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Chapter 4

Exact reduction of
quantitative biological
models

In this chapter we present a framework for the large-scale assessment on
quantitative models of biological systems, that includes the conversion
of SMBL models into a CRN-like syntax. To test our framework we use a
snapshot of 1640 biological models extracted from BioModels Database.
We evaluate the performance of each equivalence technique in terms of
the reduction in the number of species and reactions. To conclude, we
discuss a series of case studies that illustrate the physical interpretability
of the obtained aggregations.

4.1 Repositories and databases of biological
models

The growing interest in computational biology has lead to an increased
amount of publicly accessible peer-reviewed biological models. A brief
review on the current state of the art of the model databases and re-
sources in systems biology is proposed in [83].
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Initiatives such as the Gene Ontology (GO) [7] consortium facilitate
the availability of annotated biological data. An important part of this
inititiave is the GO’s Reference Genome Project, which provides a frame-
work to infer annotations of biological components (e.g., genes or protein
and RNA molecules produced by a gene) from a broad set of genomes
from experimental annotations in a semi-automated manner [82]. The
biological data is integrated from different resources and databases such
as TAIR, WormBase, FlyBase, the Protein ANalysis THrough Evolution-
ary Relationships Pathway (PANTHER) and the EBI project for human
UniProtKB-Gene Ontology Annotation [UniProtKB-GOA].

The availability of data also influenced the creation of repositories
that store mechanistic models of biological processes. Repositories such
as NFsim [189] gather synthetic mechanisms that describe processes such
as multisite phosphorylation in proteins, polymerization, branching and
severing in cells, and cellular behavior in bacteria, among others.

Other database resources instead focus on specific processes. A pop-
ular metabolic pathway database is the Reactome project [73]. This data-
base lists a collection of curated human pathways with molecular de-
tails of signal transduction, transport, metabolism and other cellular pro-
cesses. Reactome gathers curated core pathways and reactions in hu-
man biology, with each of its components being cross-referenced in se-
quence databases such as NCBI, UniProt, the Kyoto Encyclopedia on
Genes and Genomes (KEGG) [113] (KEGG) and GO [7]. In addition to
curated human events, one can also find inferred orthologous events in
22 non-human species including mouse, rat, chicken, puffer fish, worm,
fly, yeast, E.coli and two plants.

While Reactome is mostly dedicated to the human organism, there
are biological databases with a broader scope such as MetaCyc [41], a
general reference database on metabolism, or KEGG [113], focused on
high-level functions of biological systems from molecular-level informa-
tion. It is not clear where to draw the line for a proper classification of
these biological resources, but a suitable cutting point is database speci-
ficity. For example, organism-specific resources such as EcoCyc [117]
and ECMDB[94] are largely dedicated to the metabolism and genes of
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Escherichia Coli. However, there is a rich variety of resources focus-
ing in several areas such as metabolism (BiGG [120], BioSilico [100],
BioCarta [159]); or molecular interactions, i.e enzymes (BRENDA [109],
ENZYME[8]) or lipids (LIPID MAPS [53, 192]).

Since many model repositories use their own storage format, one in-
tuitive criterion to categorize these database resources is provided by
their underlying data structure. For example, CellML [153] uses XML
markup language to characterize a wide range of curated electrophysio-
logical and cellular processes. A common standard for model encoding
is given through the systems biology markup language (SMBL) [103].
SBML is machine-readable format based on XML used to describe bio-
logical systems where the biological entities are involved in, and mod-
ified by processes that occur over time, such as chemical reaction net-
works.

Several database resources employ this encoding, being so popular
that even a fragment of the models contained in KEGG of metabolic
pathways have been annotated in it. Furthermore, JWS Online [162]
uses a database implementation with a native format that mirrors the
SBML specification, and encodes several quantitative models of biochem-
ical processes and a platform for model simulation.

4.1.1 The BioModels repository

The BioModels Database is a repository of computational models of bio-
logical processes [136]. It hosts dynamical quantitative models described
in peer-reviewed scientific literature as well as models generated auto-
matically from pathway resources such as KEGG [113], BioCarta [159],
MetaCyc [41], PID [172] and SABIO-RK [215]. BioModels covers a wide
range of models from several biological categories such as biochemical
reaction systems, kinetic models, metabolic networks, steady-state mod-
els and signaling pathways. Models are available, among other formats,
in SBML [103].

The BioModels repository is divided into two sections: the curated
branch and the non-curated branch. The former contains models that have
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Species
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BioModels

Reduced model

Species

Reactions

ERODE model

Figure 13: Workflow overview. Models were downloaded from the
BioModels repository in the SBML format. We implemented a tool to trans-
late the SBML description into the CRN-like input (.ode format) of ERODE.
The output of ERODE is a reduced CRN with reactions involving macro-
species, each representing the sum within an equivalence class of original
species. We manually inspected the ERODE output to provide a physical
interpretation of the obtained equivalences.

been manually checked and their components annotated using unam-
biguous identifiers [112] that refer to external biological databases [50,
75, 191] or ontologies (such as Gene Ontology [7], SBO [54] or ChEBI
[61]). Models are curated following the Minimum Information Required
in the Annotation of Models guidelines (MIRIAM) [131]. Models that
are not MIRIAM-compliant are stored in the non-curated branch, which
also contains non-kinetic models such as flux balance analysis models, or
models which are not supported by SBML (e.g., spatial models). A more
detailed description of this database is available at [46].

4.1.2 Encoding SBML into CRN syntax

We developed a tool for the conversion of SBML models to ERODE for-
mat, a CRN-like syntax. We build the tool using Java 1.8.0 121 and Net-
Beans IDE 8.2 (Build 201705191307) runing on Windows 10 v.1709. To
access the objects in the SBML description [67, 132] we used the jsbml
library1 version 1.2.

An ERODE specification is a file divided in three ordered sections:
parameters (kinetic rates), species, and reactions; each section is delim-
ited using the labels begin/end. The reactions are defined using mass-
action kinetics by default unless the keyword arbitrary is used. Af-

1Here we explain each step of the translation process; for specific details of the SBML
structure, please consult the official resources.
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Figure 14: A screenshot of ERODE

ter the components of the model have been declared, the user can write
list of commands for analysis, reduction, and export. Figure 14 shows a
screenshot of ERODE.

The SBML specification is a more complex file that encodes also infor-
mation of the species compartment, rules of assignment for the species
and parameters, propensity rules constraining reaction rates, etc. The
conversion process is regulated using three structures that verify the cor-
rectness of the conversion of each parameter, species and reactions in the
CRN encoding:

• BannedNamesList stores a list of the reserved words in the ERODE
environment and its main function is to verify that a term (species,
parameters, etc.) extracted from the SBML specification can be
written into ERODE. If the name of the term is a banned name,
we make a name replacement in the ERODE model and annotate
the original name.

• SBOChecker stores a dictionary of SBO labels depicting mass-action
kinetics. We use this to verify the kinetics of each reaction upon the
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translation (See 4.1.2.3).

• KineticFormulaParser contains methods that operate over the
kinetic law describing the reaction rate.

4.1.2.1 Parameters

An SBML parameter associates a symbol with a value, so that it can be
useds in mathematical formulas. Parameters can have constant values
for the complete duration of a simulation, or their value can be updated
according to some specific rule. See for example Assignment Rules and
Rate Rules in [103–106].

Global parameters are defined at the top of the SBML model and can
be used by any of the elements of the model, although there are also
parameters which are defined locally for the use of a specific reaction. The
following SBML snippet specifies a parameter from BIOMD0000000030 ,
a model from BioModels Database that we will use as running example
to explain the conversion process.

1 <parameter id="k1" metaid="metaid_0000019" name="k1" value="0.02"/>

We translate this into ERODE using the parameter’s id and value and
write it in the ERODE parameters list, i.e., k1 = 0.02 (delimited by
begin parameters/end parameters). In the case of non-constant
parameters we replace the value of the parameter by the rule assignment
directly in the reaction rates (Section 4.1.2.3)

4.1.2.2 Species

An SBML species can represent a chemical species, or groups of reactant
entities that take part in a chemical reaction. Species are associated in
compartments, which indicate the section of the cell on which the species
is present. The attributes initialAmount or initialConcentration
are used to denote the species initial quantity. These attributes are mutu-
ally exclusive, which means that only one can have a value in the species
instance. In general, the quantity of the species varies during simula-
tion, except in the case of constant species or species which belong to the
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boundary of the system, i.e., species which can intervene in the reactions
as reactants but their values are not determined by a kinetic law.

If the species is constant, this means that the concentration of the
species is not altered during the reaction process (Section 4.1.2.3). This is
also true for the boundary species, however, the concentration in time of
these species can be updated via specific rules (SBML manual [104–106]).
The next SBML snippet defines a species:

1 <species compartment="cell" id="M" initialConcentration="800"
2 metaid="metaid_0000005" name="MAPK"/>

For each species ERODE only requires an identifier and the species’
initial concentration. Thus, we write the species in the example as M=800
within ERODE ’s species declaration section (delimited by begin init/end
init). In the case of species whose concentration is determined by rules,
e.g., boundary species, we replace the species by its corresponding rule
assignment directly in the reaction rate (Section 4.1.2.3).

4.1.2.3 Reactions and other structures

An SBML reaction represents a transformation in the concentration of one
or more species. The reversibility of a reaction process is given by the op-
tional attribute reversible, by default set to true. Two lists, called
listofReactants and listOfProducts, store the species which are
being consumed and produced during the reaction, respectively. An op-
tional list, called listOfModifiers, contains species that mediate in
the reaction such that their concentration is not affected. In our encoding,
we treated as modifiers all species labeled as constant or part of boundary
system.

The speed of the reaction is dictated by a KineticLaw object, which
inherits an optional attribute sboTerm of type SBOTerm that defines the
type of reaction rate encoded by the KineticLaw instance. The SBO
identifier contained in sboTerm refers to a term from the vocabulary de-
fined in the System Biology Ontology repository. The inspection of this
attribute is what allows to identify the type of kinetics of the reaction
by capturing the label assigned to the term in the ontology, e.g. the la-
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1 <reaction id="reaction_0000001" metaid="metaid_0000046"
2 name="binding MAPKK on Tyr site of MAPK">
3 <listOfReactants>
4 <speciesReference metaid="_063184" species="M"/>
5 <speciesReference metaid="_063196" species="MAPKK"/>
6 </listOfReactants>
7 <listOfProducts>
8 <speciesReference metaid="_063208" species="M_MAPKK_Y"/>
9 </listOfProducts>

10 <kineticLaw metaid="_063220">
11 <math xmlns="http://www.w3.org/1998/Math/MathML">
12 <apply>
13 <times/>
14 <ci>cell</ci>
15 <apply>
16 <minus/>
17 <apply>
18 <times/><ci>k1</ci><ci>M</ci><ci>MAPKK</ci>
19 </apply>
20 <apply>
21 <times/><ci>k_1</ci><ci>M_MAPKK_Y</ci>
22 </apply>
23 </apply>
24 </apply>
25 </math>
26 </kineticLaw>
27 </reaction>

Figure 15: Sample SBML reaction adapted from BIOMD0000000030

bel ”SBO:0000562” corresponds to ”mass action like rate law for second
order irreversible reactions, one reactant, one essential stimulator”.

The math element inside the KineticLaw holds a MathML formula
defining the rate of the reaction. Each formula can involve species con-
tained in any of the three internal lists of the reaction, and both local
and global parameters. Figure 15 shows a snippet of an SBML reaction,
where we omitted the annotation tag for the sake of readability.

ERODE represents the reactions as ρ −−→ π, f , remembering the nota-
tion in equation 2.1. In each reaction, ρ is the sum of the elements (with
their corresponding stoichiometry) contained in the two list of species
listofReactants and listOfModifiers. Then, π is the sum of the
elements in listOfModifiers and listOfProducts. However, if
the reaction does not have modifiers, then we need to account for two
particular cases. First, if listofReactants is empty, i.e., ρ = ∅, we
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are in the presence of the spontaneous creation of a product. We encode
this reaction setting as reactant the dummy species Source, which has no
dynamics, e.g., Source -> S encodes the creation of species S. Second,
if the reaction does not have defined products, i.e., π = ∅, then this is
a reaction which encodes the spontaneous degradation of a species. We
solve this by creating a dummy SINK species which will be set as prod-
uct of the reaction, e.g., S -> SINK. The SBML reaction in Figure 15 is
then translated into the following ERODE reaction:

M+MAPKK -> M_MAPKK_Y,arbitrary cell*(k1*M*MAPKK - k_1*M_MAPKK_Y)

Here, the left- and right-hand sides of the reactions are taken from the
SMBL lists as described above, the term cell is the compartment where
the reaction occurs and the arbitrary keyword denotes a reaction with
a generic non-mass-action propensity function.

The conversion of the KineticLaw to a reaction rate f is not straight-
forward. We pay particular attention to the recognition of mass-action
models to which FE, BE, and SE can be applied. As discussed, SBML
allows the direct specification of the type of kinetics by means of appro-
priate SBO labels in the KineticLaw object. However, we encountered
cases where the sboTerm attribute is omitted, and upon manual inspec-
tion of the reactions these are effectively mass-action kinetics. An ex-
ample is given in the reaction in Figure 15. It is easily noticeable that
the reaction is encoding a reversible mass-action reaction with kinetic
parameters cell * k1 and cell * k 1, describing the forward and
backward reactions respectively.

We manually detected such occurrences of non-tagged mass-action
reactions and translated them into ERODE mass-action ones. We in-
ferred the forward and reverse rate functions as the left and right operand,
respectively, of the topmost minus MathML tag (Line 16). This leads
to the two following ERODE irreversible reactions (as ERODE does not
support reversible reactions):

M + MAPKK -> M_MAPKK_Y, cell * k1

M_MAPKK_Y -> M + MAPKK, cell * k_1
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Testing ERODE can export the ODEs underlying a model as a MAT-
LAB function. Likewise, in BioModels all models come with an encoding
as MATLAB functions. We tested our converter over a large random se-
lection of BioModels files by checking that their MATLAB functions and
those exported by ERODE corresponded.

4.1.3 Data processing

In our experiments we used the BioModels repository’s snapshot of the
26th of July 2017. The data consists of 640 models in the curated branch
BIOMD0000000001-640 and 1000 models in the non-curated branch (with
ids ranging from MODEL0072364382 to MODEL9811206584 ). We per-
formed a preprocessing step to filter out models that could not be used
for the analysis. In the non-curated branch only 491 models are kinetic
models described as ODE systems, while the others are described in for-
malisms, e.g., logical or flux balance analysis models outside the scope
of applicability of species equivalences. Overall, we could process 448
models from the curated branch and 219 from the non-curated one, for
a sanitized dataset of 667 models. Of these, 43 were identified as mass-
action CRNs (as detailed in Section 4.1.2).

The most frequent reasons for discarding a model were (within paren-
thesis we give the frequency in the curated branch, which we assume to
be more stable):

• syntactic limitations in our converter prototype, including the lack
of support for models without explicit reactions where the dynam-
ics is given by rate rules over a set of parameters,
e.g., BIOMD0000000020 (114);

• models with unsupported propensity functions such as tanh and
exp (31);

• models with species with Assignment Rules, used to model features
such as delayed equations and hybrid systems, not supported by
ERODE (47).
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4.2 Reduction results

Non mass-action models were analyzed using FDE and BDE, whilst for
mass-action ones we used FE, BE, and SE. In a preliminary analysis we
considered the maximal equivalences for all cases, computed by starting
the partition-refinement algorithms with the initial singleton partition
with a single block containing all species in the CRN. However, in 32
cases we found that the maximal FDE/FE collapsed all species and reac-
tions. This is because these CRNs are closed and mass-preserving, mean-
ing that the concentrations (represented by the ODE solutions for each
species) just flow among the species, but the total cumulative concentra-
tion is constant. Therefore these systems can be self-consistently written
as a single-equation ODE with zero derivative (and initial concentration
equal to that total cumulative concentration).2 In these 32 cases, we built
more meaningful ad-hoc initial partitions to be used in the partition-
refinement algorithm by isolating variables of interest to the modeler,
in accordance to the model’s output as evinced from the scientific publi-
cation associated with each model.

For each equivalence we computed the reduced CRN, recording the
resulting number of species and reactions as a measure of the effective-
ness of the exact reduction techniques. Figure 16 counts the models that
could be reduced by at least one technique, regardless of the reduction ra-
tio. For the non mass-action models (Figure 16a), 224 models (36%) could
be reduced. In particular, only 33 models could be reduced by both FDE
and BDE, suggesting that they are not comparable. Several models (196,
31%) could not be analyzed due to the excessive computational cost of
FDE, whereas only 2 due to BDE (we used a time-out of 8 hours). This is
consistent with more (and more complex) SMT checks required by FDE
with respect to BDE [39].

2We remark that this situation is analogous to ordinary lumpability in Markov chains,
where the coarsest ordinarily lumpable partition contains all states because the sum must
always preserve the probability mass at all time points.
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Figure 16: Reduction results.

All the mass-action models (Figure 16b) could be reduced by at least
one equivalence relation. Ten models (23%) could be reduced with BE
only, seventeen models (40%) could be reduced with the three methods
and sixteen models (37%) could be reduced with SE and FE. The fact that
the models that are reducible with SE can also be reduced by FE derives
from the aforementioned property that SE implies FE.

Figure 17 shows a scatter plot to summarize the reduction ratio for
each model using the species equivalence that yielded the best reduc-
tion. The average reduction ratio in the number of species and reactions
for each method is: BDE (23%, 8%), FDE (50%, 48%), BE (15%, 10%),
FE (37%, 30%) and SE (36%, 29%). Figure 18 illustrates the reductions
obtained. For each species equivalence, we group the models in 6 his-
togram bins (0%, (0%-20%], . . . , (80%-100%]) in two series showing the
reduction ratio of the species (red) and the reactions (blue). There are
models which reduce in the number of species but not the reactions. This
can be due to an equivalence among species with dynamical role in the
network as they can be interpreted as distinct auxiliary species that are
used to model zero order reactions, such as I -> I + A, degradation

70



100 101 102
100

101

102

103

104

Reduced model

Original model

N
u
m

b
er

 o
f 
sp

ec
ie

s 

Number of reactions
Figure 17: Comparison among original and reduced species and reactions
(log scale).

reactions such as A -> SINK, or purely catalytic species such as C in the
reaction A + C -> B + C, with I, SINK and C species that are other-
wise not involved as reagents in the network.
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4.3 Case Studies

We selected three case studies to highlight the physical interpretability of
the reductions obtained.

4.3.1 Aggregation of symmetric molecular complexes in
MAPK phosphorylation scheme

The Mitogen-activated protein kinase, popularly known as MAPK is a
fundamental system in cell signaling processes, and consists of a large
family of enzymes that exhibit a switch-like behavior in a phosphory-
lation cascade. There are several families in the MAPK signaling path-
way, and each of them is initialized by specific extracellular agents which
leads to the activation of a particular MAPK. The JNK and ERK 1/ 2 path-
ways can both be activated by RTK receptors via a Ras|Raf complex, al-
though other activation paths are possible for both kinases, e.g., ERK 1/ 2
can also be activated by the Integrin receptor through a Ras|Raf interfer-
ence. In addition, the p38 MAPK family can be activated through both
the IL – 1 R and TNFR receptors, but also by multistep activation from
Cdc 42.

In general, the mechanism starts with an external stimulus that ac-
tivates precursor enzymes or a target receptor. This leads to the even-
tual activation of a MAPK module and starts a phosphorylation cascade
with the activation of the MAPK kinase kinase (MAPKKK). MAPK’s
are a three tier cascade where the active kinase in each level mediates
the phosphorylation of the kinase downstream. The active MAPKKK
phosphorylates and activates MAPKK, which in turn activates MAPK,
a serine/threonine-specific protein kinase that requires phosphorylation
on conserved threonine (T) and tyrosine (Y) residues.

Here, we analyze BIOMOD0000000030 , a model of the double phos-
phorylation/dephosphorylation of MAPK. The kinetic mechanism shows
four distinct forms for MAPK: inactive (M), active (Mpp), and two par-
tially phosphorylated forms MpY and MpT which represent the phos-
phorylation in the tyrosine and threonine residues, respectively. This
dynamics is represented in a model with 18 species and 32 reactions.
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Figure 19: (A) Mechanisms for the phosphorylation and dephosphory-
lation of MAPK (M) [147]. Red and white circles indicate respectively a
phosphorylated (on) or unphosphorylated (off). Initially both residues are
off and turn on upon kinase binding. Reversely, when M is activated, the
residues becomes off upon phosphatase binding. (B) BE yields compact rep-
resentations of the mechanism in (A) by establishing an equivalence over
the two symmetric complexes in each binding mechanism.

The model shows distributive kinetic mechanisms in both the phos-
phorylation and dephosphorylation processes (Figure 19). The MAPK
molecule is phosphorylated by interaction with a kinase that upon bind-
ing transfers a phosphate group, resulting in the phosphorylation of the
MAPK’s site. Then, the kinase releases the intermediate monophospho-
rylated molecule and a new collision is required to phosphorylate MAPK’s
remanent residue. The same mechanism but in reverse is observed be-
tween the phosphorylated form of MAPK and a phosphatase.

BE produces a reduced model that equates symmetric molecular com-
plexes in both the phosphorylation and dephosphorylation mechanism.
The molecular complexes of the MAPK and the kinase are set in the same
equivalence class, regardless the site where the kinase is bound. In the
same fashion we group the molecular complexes of the fully phospho-
rylated MAPK and the phosphatase. This yields a reduced model of 16
species and 28 reactions.

74



4.3.2 Aggregation of opposite states in components of a
MAPK signaling cascade

Phosphorylation cascades in signal transduction can experience diverse
organizational phenomenons such as sensitivity. The sensitivity is the in-
fluence of variations in the signal in the elements of the pathway; which
augments with the number of layers in the circuit. The literature uses the
term ultrasensitivity when the response is very susceptible to variations
in the upper levels, such that slight variations in any level of the chain
can produce large changes in the response.

Several efforts have been made in characterizing ultrasensitivity in
the MAPK cascade [101, 118, 147]. In the ERK-MAPK cascade, the Ras
protein acts as a critical switch in response to receptor signals that can
account for biological responses such as cell growth, differentiation and
proliferation. However, due to its central role, the ultrasensitivity of this
molecule also dictates its carcenogenic potential [148].

The ERK – MAPK pathway starts with the extracellular activation of
a RTK receptor by a signaling molecule. In response to the stimuli, RTK
receptors recruit cytosolic Son of Sevenless homolog protein (SOS) to
the cell surface where it stimulates GTP/GDP exchange in Ras. Active
Ras recruits serine/threonine-protein kinase Raf 1 to the membrane pro-
moting its activation and the beginning of a MAPK cascade that com-
prises the secuential phosphorylation of MEK 1/ 2 and ERK 1/ 2. Active
ERK 1/ 2 can stimulate the kinase P 90 RSK or translocate to the nucleous
and promote the transcription factors (TF) CREB, Elk 1 and c-Myc. Upon
stimulation, P 90 RSK translocates to the nucleus and triggers a differ-
ent response in the pathway by promoting only the transcription factors
CREB and c-Fos, a TF involved in the promotion of collagenases.

Figure 20 A adapts the reaction mechanism in BIOMOD0000000033 ,
a model of EGFR – NGFR signaling that concludes in ERK activation [26].
The model is formed by one central MAPK pathway, interconnected with
two pathways PI 3 K and C 3 G. Upon binding of their respective signal-
ing molecules (EGF and NGF) both receptors activate Ras by stimulation
of (mSOS), which leads to the ERK phosphorylation cascade. In a dif-
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Figure 20: (a) Adaptation of the EGFR/NGFR signaling networks in [26]
were we represent the two-states of each kinase and their relations.(b) BDE
reduction. The upstream input is replaced by a module describing EGF
activity over receptor-bound EGF and the activity of the unregulated phos-
phatases P1,2,3 is aggregated as single molecule, namely, P.

ferent path, the NGFR complex activates RAP 1-GTPase, a small GTPase
from the Ras family, who activates the protein BRaf and B – Raf molecules
upregulate ERK 1/ 2 by positive stimulation of MEK 1/ 2. The signal re-
ceived in the EGFR receptor also activates units of PI 3 K in a bifurca-
tion motif that starts the PI 3 K – AKT signaling pathway [154]. Active
AKT downregulates ERK 1/ 2 via negative regulation of RAF 1. Inde-
pendently, the MAPK pathway is regulated by P 90 in a negative feed-
back loop to mSOS.

The complete dynamics of the model is represented using 26 reac-
tions and 32 species, where the active and inactive states of all the ki-
nases involved are modeled as independent units. To facilitate visual-
ization, components with the same color in Figure 20 belong to the same
molecule and the symbol “∗” indicates the active state, i.e., pink circles
represent mSOS* and mSOS, the active and inactive forms of molecular
SOS. BDE simplifies the step of EGF binding the free EGFR receptor unit,
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Figure 21: (A) Aggregation pattern found in the FDE-equivalence classes of
[26] that equates the two forms of each molecular unit. (B) FDE reduction.
The switch-like dynamics of the pathway is simplified producing a reduced
model given just in terms of the binding/unbinding mechanism of EGF to
EGFR.

to a mechanism where EGF interacts directly with the bound EGFR. The
phosphatases P(1 – 3) are aggregated in a single equivalence class, which
is reasonable, considering that these species exhibit a purely catalytic be-
havior and their concentration is not affected by any reaction. This yields
the reduced model in Figure 20 B, characterized by 27 species and 26 re-
actions.

The FDE reduced model is described using 18 species and 4 reactions.
Upon inspection of the FDE equivalence classes , we discover the aggre-
gation pattern in Figure 21 A. This pattern holds for the two states of
each species in Figure 20 A, such that the active and inactive forms of
each molecule are equivalent and lumped to a macrovariable given by
the sum of both states, i.e., Raf 1 * = Raf 1. The dynamics of the active
and inactive variants are identical but with opposite sign which results
in lumped variables with zero contribution. As consequence, the phos-
phorylation pathway is collapsed and we obtain the model in Figure 21
B, where the only dynamic preserved is the one corresponding to the
free EGF molecule, and both EGF-bound and free units of EGFR. Inter-
estingly, we capture the same aggregation pattern (aggregation of oppo-
site states of a molecule) in the FDE reductions of other signaling models
such as [13, 163].
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4.3.3 Aggregation of diverse molecular units with sym-
metric behavior

As discussed in the previous case studies, equivalence-based reduction
methods can capture symmetries among molecular components. In both
of the examples above the equivalence is given between different vari-
ants of the same component, i.e., in 4.3.1 we relate two MAPK com-
plexes that differ only in the binding site, whereas in 4.3.2 the relation
is established between the two opposite states of a kinase. Here we use
MODEL1112260000 3, a model for the analysis of the response of FOXO
transcription factor, to show that SMB can also establish equivalences
between different components that exhibit symmetric behavior.

The Forkhead Box (FOX) is a family of transcription factors with more
than 100 members in the human organism classified from FOXA to FOXR.
These transcription factors are involved in several biological processes
such as apoptosis, cell metabolism, differentiation, and drug resistance
[129]. Members of the type “O” (FOXO ) are regulated by the Insulin/PI-
3 K/AKT signaling pathway, but are also known for their multiple inter-
connections within the cellular signaling network [97]. Upon different
stimuli, FOXO proteins use their DNA-binding domain in the nucleus
to activate or repress target genes [206]. The transcriptional activity is
regulated through post-translational modifications such as acetylation,
ubiquitination or phosphorylation [214].

The model we analyze consists of 56 species and 135 reactions de-
scribing processes such as basal transcription, export, translation, and
degradation of RNA and proteins. Figure 22 (A) adapts the FOXO de-
pendent synthesis mechanism. The mRNA-bound FOXO translocates
the mRNA units of IsnR (green) and SOD 2 (blue) to the cytoplasm where
both target mRNAs are translated to their final protein structure. From
the figure is easy to observe that the synthesis processes of IsnR and
SOD2 are symmetric. Furthermore, both proteins share the same kinetic
parameters in each reaction step. SE equates all the components which
are at the same level, i.e., the species enclosed in the dashed boxes of Fig-

3This model has been moved to the curated branch under the id BIOMD0000000705
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Figure 22: (A) Adaptation of the FOXO dependent protein synthesis mech-
anism in [188]. Dashed circles represent mRNA-bound molecules. Dashed
boxes represent the SE equivalence classes. (B) SE reduced model.

ure 22 (A). This produces a reduced model in which the two synthesis
mechanisms are collapsed into a single pathway where FOXO mediates
the transcription and synthesis of a macrovariable (blue/green circles)
given by the sum of its lumped IsnR and SOD2 members.

4.4 Concluding remarks

In the preprocessing phase (Section 4.1.3), we found 300 models not sup-
ported by ERODE. Among the reasons for incompatibility one can men-
tion the use of exponential expressions in rate functions. This is not ac-
cepted by FDE/BDE because the underlying theory is not decidable. A
workaround has been sketched in [38, 39] and builds on a systematic
technique which transforms an initial value problem for an ODE system
with derivatives containing rational and exponential expressions into an
equivalent problem with polynomial derivatives [92], to which BE and
FE can be applied. In future work we plan to implement such a trans-
formation in order to extend the range of applicability of species equiva-
lences.
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Overall, we found exact model reductions effective in terms of both
the number of cases in which a CRN could be reduced by at least one
technique (40% considering both mass-action and non mass-action mod-
els) and the overall compression ratio achieved on average (32% for the
number of species and 25% for the number of reactions). Unfortunately,
the analysis of FDE on a rather appreciable number of models (196) was
not conclusive due to timeouts, because of the relative complexity of the
SMT checks that are required. This challenges the practical applicability
of FDE to realistic case studies (BDE, on the other hand, timed out only
twice in our tests whereas BE, FE, and SE are supported by minimization
algorithms that enjoy polynomial time and space complexity), prompt-
ing alternative approaches to computing FDE, for example by paralleliz-
ing the computations, or randomized algorithms.

In the selected case studies herein presented, the exact model reduc-
tions have revealed that symmetries in certain signalling pathways carry
over to equivalences at the level of the underlying quantitative seman-
tics. Given their moderate size, the considered models would be compu-
tationally treatable even without reduction. However, the equivalences
can be used as an aid in developing more complex models where such
symmetries are present in some components. In addition, we remark
that exact model reduction can still be useful when the complexity is due
to the many repetitions that are required (e.g., for sensitivity analysis or
for simulation with tight confidence intervals) or for particularly difficult
analyses such as parametric inference [183].

This empirical study suggests potential benefits in the application of
exact model reduction techniques in biological models. This motivates
the development of the translator tool into a more mature tool to be fur-
ther integrated with BioModels/SBML. The availability of ready-to-use
model conversions in a simple CRN format such as ERODE’s might stim-
ulate similar assessments with other model reduction techniques (e.g.,
[18, 37]).

At the moment we focus on reducing models with parameterizations
given as in the respective original publications. If we wish to draw more
general conclusions about the relevance of the reductions and the pres-
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ence of certain symmetrical patterns in signalling pathways, it becomes
important to test their robustness with respect to the model parameters.
Theoretically, this does not seem to be particularly difficult, at least for
CRNs with deterministic semantics. For example, model parameters
could be interpreted as further variables in the SMT formulas used for
checking FDE and BDE. Such an extension is currently not implemented
in ERODE and is subject to the aforementioned caveats about the scala-
bility of SMT-based reduction techniques, hence left for future work.
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Chapter 5

Computation of
equilibrium points in
biochemical regulatory
networks

In systems biology, the analysis of the equilibrium points of ODE systems
that represent biochemical reaction networks carries important physical
implications that are related to various regulatory phenomena; because
of this, it is an area that has received considerable attention [121, 202].
Here we discuss a method for the computation of equilibrium points,
with the guarantee of yielding the unique equilibrium of the ODE under
defined conditions.1. We provide a formal introduction of our technique
and show its performance through the evaluation of two models of sig-
naling pathways.

1 The mathematical framework of this chapter is as in the original paper. For matters of
completeness, we also included the corresponding proofs, which are the result of the work
of my co-author M. Tschaikowski.
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5.1 Equilibria in signaling networks

Here we shall present the main ideas using a running example. We con-
sider a computational model which can be schematically represented as
the regulatory network (RN) depicted in Figure 23 (A). The three levels of
the cascade are highlighted using different colored boxes. Each level con-
sists of a cycle involving two or more interconvertible mass-preserving
forms of a species.

The dynamics of the model is described as follows. A signal (S) medi-
ates the activation of speciesXi intoX∗i . The newly activated species me-
diates the activation of the subsequent species downstream Xi+1. This
sequence repeats n times, until the activation of the last species in the
pathway namely X∗n, which is responsible for triggering a cellular re-
sponse R. A negative feedback loop from the last active species acts as a
regulator of the pathway by inhibiting S.

S S

Xi*Xi

Xi+1*Xi+1

...

Xn*Xn

R

Xn*

Xi+1*

...

Xi*

R

A. B.

Figure 23: (A) Network representing a phosphorylation cascade in a signal-
ing network. The number of levels is given by i = 0, 1, . . . , n. The most
active form of each species is indicated by the symbol ∗ next to the species
identifier. (B) Signaling network where each level in (a) is represented using
the most-active species
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We decompose the behavior into a local dynamics that describes the
evolution between the different forms of a given component (i.e., a gene,
a protein, a metabolite, and so on) and the network dynamics that de-
scribes the influence (that is, activation or inhibition) that one form of
each such component exerts on the other components in the system. In
doing so, we are essentially following a standard biochemical represen-
tation, akin to that used, among others, by Cardelli [31] as well as Tyson
and Novak [202], remarking that we are not committing to specific ki-
netic mechanisms.

Overall, this leads to a more abstract graphical representation of the
RN (that will be mathematically formalized later) as depicted in Fig-
ure 23 (B), where we replace each box of Figure 23 (A) with a single
vertex (labeled with the most active form of the component) and con-
nect the vertices through activation or inhibition arcs. The vertex label
indicates the observable, that is, the ODE variable related to the specific
component form (for instance, the most active form) that appears in the
ODEs of the other components.

Our main contribution is a graph-theoretic analysis of the RN for the
computation of the equilibrium points of its associated ODE system. To
see this with our example, let us make the assumption of mass-action
dynamics. Then, the ODE equations associated with the vertices labeled
S and X∗i are thus:

d[S]

dt
= λ− β11[X∗n](t)S(t)− γ[S](t) (5.1)

d[Xi]

dt
= β2[X∗i ](t)− α1[Xi](t)[S](t) (5.2)

d[X∗i ]

dt
= α1[Xi](t)[S](t)− β2[X∗i ](t) (5.3)

where, following standard notation, species names in square brackets
refer to concentrations. In these equations, αi, λ, βi, and γ are positive
parameters, respectively (in particular, we assume that the signal arrives
to the system at a constant rate).

To cope with the length of some expressions, in the remainder of this
chapter we use Ȧ(t) instead dA/dt to indicate the derivative of A.
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5.1.1 Open and closed-loop networks

For simplicity, let us assume that our example CRN has three levels and
the least-active species in each level are X0, X1 and X2. The key idea of
our method builds upon [4, 177] and consists in transforming a closed-
loop RN into an open-loop one by suppressing one or several edges of
the original network. Vertices whose incoming edges are suppressed are
treated as input vertices. Figure 24 visualizes this process in the case of
our running example.

S X0* X1* X2* S X0* X1* X2*

Closed loop network Open loop network

Figure 24: The feedback from X∗1 to X∗2 is suppressed and vertex X∗2 is
interpreted as an input vertex.

Under certain assumptions, the dynamical system underlying the open
loop network has a unique equilibrium and can be efficiently computed
whenever a constant input is provided. For instance, by removing the feed-
back loop from X∗2 to S, we treat [X∗2 ] as a constant input in the ODE
(5.1) of S. With this, we can compute the equilibrium of S by setting its
derivative to zero as

S =
λ

β11[X∗2 ] + γ
=: φS([X∗2 ]) (5.4)

where the φ function maps the input [X∗2 ] to the unique equilibrium point
of [S]. We can continue this reasoning along the pathway, by interpreting
[S] as a constant input in the ODEs (5.2)-(5.3) of X1 and X∗1 . This leads to
the equilibrium

[X∗1 ] =
α1cX∗1

α1[S] + β2
=: φX∗1 ([S]), (5.5)

where we have set

cX∗1 := [X1](0) + [X∗1 ](0)
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thanks to the mass conservation property ˙[X1](t) + ˙[X∗1 ](t) = 0. By
continuing in a similar fashion, one can derive the equilibrium formula
φX∗2 ([X∗1 ]).

While the above discussion implies that the equilibrium point of the
open-loop network given in Figure 24 can be computed efficiently, its re-
lation to the equilibria of the original closed-loop network in Figure 24 is
not obvious. We can address this problem by closing the open loop net-
work by reactivating the previously suppressed edge. Formally, this cor-
responds to the feedback condition [X∗2 ] = φX∗2 ([X∗1 ]), where φ[X∗2 ]([X

∗
1 ])

denotes the equilibrium value of X∗2 in the case of a given constant input
X∗1 . Overall, we obtain the fixed-point equation

[X∗2 ] = φX∗2

(
φX∗1

(
φX∗0

(
φS([X∗2 ])

)))
=: fX∗2 ([X∗2 ]) (5.6)

Therefore, the equilibria of the original ODEs system stands in an
one-to-one correspondence with the solution of the single nonlinear equa-
tion (5.6). More formally, if [X∗2 ] is the value of the X∗2 -coordinate of an
equilibrium of the ODE system, then [X∗2 ] solves (5.6). Conversely, ev-
ery solution of (5.6) induces the equilibria [S], [X∗0 ], [X∗1 ] and [X∗2 ] for
the ODEs of S, X∗0 , X∗1 and X∗2 , respectively, through the functions φS ,
φX∗0 , and φX∗1 . Together with the equilibrium conditions imposed by the
ODEs and the conservation of mass, this determines the equilibria of the
remaining five ODEs.

The arguments from above have been already observed in [176, 177].
More specifically, in [176, 177] the above discussion is generalized and
the equilibria of a nonlinear ODE system is expressed as fixed points of
a nonlinear vector function of smaller size. Unfortunately, the compu-
tation of the solution set of a system of nonlinear equations is computa-
tionally prohibitive and does not scale, see concluding remarks of [176].

We address this problem by solving the system of nonlinear equa-
tions via a fixed-point iteration algorithm. More specifically, we iden-
tify graph-theoretic conditions under which an RN induces a fixed-point
equation x = f(x) such that f is anti-monotonic, i.e., x ≤ x′ implies
f(x′) ≤ f(x), where ≤ is to be interpreted component wise if x and f(x)
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are vectors. For instance, let us denote by cX∗2 the maximal concentra-
tion attainable by X2 in any of its forms. Then, for any 0 ≤ x ≤ x′ ≤ cX∗2 ,
where it holds that fX∗2 (x′) ≤ fX∗2 (x). In the case of the running example,
this should is not a surprise because it essentially states that an increase
in inhibition leads to a decrease in activation.

While anti-monotonicity does not imply in general that a fixed-point
iteration x, f(x), f(f(x)), . . . converges to a fixed-point of f , it ensures
that the composition g := f ◦ f is monotonic, i.e., 0 ≤ x ≤ x′ ≤ c implies
g(x) ≤ g(x′), with c being the vector of all maximal attainable species
concentrations. This and Kleenes’s fixed-point theorem ensure that the
sequences 0, g(0), g(g(0)), . . . and c, g(c), g(g(c)), . . . converge to the least
and the greatest fixed-point of g, respectively.

Noting that any fixed-point of f has to be necessarily a fixed-point of
g = f ◦ f , this can be used to prove the following two statements:

1. Let x⊥ and x> be the least and greatest fixed-point of g, respec-
tively. Then, any equilibrium of the ODE system underlying the
RN is contained in [x⊥;x>].

2. If x∗ = x⊥ = x>, then x∗ is the unique equilibrium of the ODE
system underlying the RN.

The first statement allows one to efficiently estimate the set of equilib-
ria of the ODE system, while the second statement allows one to decide
whether the ODE system has a unique equilibrium and, in the case it
does, allows for an efficient computation of it. If applied to the running
example, the above discussion ensures that we obtain the unique solu-
tion of the nonlinear equation (5.6) when the sequences

0, gX∗2 (0), gX∗2
(
gX∗2 (0)

)
, . . .

and

cX∗2 , gX∗2 (cX∗2 ), gX∗2
(
gX∗2 (cX∗2 )

)
, . . .

converge to the same value, with gX∗2 := fX∗2 ◦ fX∗2 .
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5.2 Formal definition of the RN semantics

We can now formalize the ideas and results presented in the previous
section, to this end, we start by fixing the notation for a RN. Lets denote
by RI vectors with index set I . For x ∈ RI and I0 ⊆ I , the restriction of x
to the index set I0 is denoted by x|I0 .

Definition 10 (Regulatory Network). A Regulatory Network is a directed
graph (V,E) where V is the set of vertices and E is the set of labeled edges, i.e.,
E ⊆ V × {+,−} × V .

For each RN:

1. The set of all outgoing neighbors of vertex i ∈ V is denoted by out(i),
that is out(i) = {j ∈ V | (i, ·, j) ∈ E}. Similarly, in(i) denotes all
incoming neighbors of i.

2. A vertex is called activator (resp., inhibitor) if all its outgoing edges are
activating (resp., inhibiting). We let V + and V − be the sets of activator
and inhibitor vertices, respectively.

3. The set of inhibitors with incoming edges defines the set of core observables
I, that is, I = {i ∈ V − | in(i) 6= ∅}.

The symbols in the label set of the edges denote activation and in-
hibition in the obvious way. The set of core observables I corresponds
essentially to those vertices whose incoming edges are all suppressed
and which act as exogenous inputs in the open network. Throughout the
remainder of this thesis we exclude the case of vertices with no outgoing
edges. For a more compact notation, the set of vertices is assumed to be
V = {1, 2, . . . , n} for some n ≥ 1.

We now define the semantics of a RN in terms of a system of coupled
ODEs. In particular, with a given vertex i we associate a set of mi ODEs
over variables x1

i , . . . , xmii . Essentially, each of the mi variables x1
i , . . . ,

xmii related to a vertex i may represent the different forms that a compo-
nent can exhibit, e.g., X1 and X∗1 in Figure 23 (A). One such variable (i.e.,
the first component x1

i without loss of generality) to represent the observ-
able — the only variable that may appear in the set of ODE related to the
other vertices; this formalizes the idea of the labels used in the pictorial
representation of the RN of, for example, Figure 23 (B).
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Definition 11 (RN Semantics). Given a RN, its underlying ODE is given by
associating each vertex i ∈ V with a system of mi ≥ 1 ODEs over variables
x1
i , . . . , x

mi
i . The ODE system associated with vertex i is given by

~̇xi = Fi(x
1
1, . . . , x

1
i−1, ~xi, x

1
i+1, . . . , x

1
n)

with ~xj := (x1
j , . . . , x

mj
j ) for 1 ≤ j ≤ n. The ODE system underlying the

RN is given by

~̇x = F (~x), where ~x = (~x1, . . . , ~xn) and F = (F1, . . . , Fn).

The initial condition of the RN is denoted by ~x(0) and assumed to be non-
negative. Moreover, we assume that the solution of ~̇x = F (~x) remains non-
negative if initialized with a non-negative initial condition.

In the remainder, we avoid the use of the superscript for the observ-
able of vertex i, i.e., we write xi to indicate x1

i .

5.2.1 Well-Posed RN

We next introduce well-posed RNs. Intuitively, this identifies a local
property of the network whereby the ODE system associated with each
vertex enjoys a unique equilibrium when the observables of the other
vertices that act as inhibitors or activators are treated as exogenous con-
stant inputs.

Definition 12 (Well-Posed RN). An RN (V,E) is called well-posed when
the following conditions are satisfied.

1) V + and V − form a partition of V , i.e., there are no vertices that are both
activators and inhibitors.

2) For every i ∈ V , the maximal value of xi attainable across all non-negative
initial conditions ~̂x(0) satisfying ‖~̂x(0)‖1 = ‖~x(0)‖1 exists and is denoted
by ci.2

3) For every vertex i ∈ V , define

• U+
i :=

∏
j∈V +∩in(i)[0; cj ] the set of admissible activation inputs; and

2Following standard notation, ‖·‖1 denotes the L1 norm.
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• U−i :=
∏
j∈V −∩in(i)[0; cj ] the set of admissible inhibition inputs.

Then, for every i ∈ V , u+ ∈ U+
i and u− ∈ U−i , it must hold that the

equilibrium equation

0 = Fi(x1, . . . , xi−1, ~xi, xi+1, . . . , xn)

admits a non-negative solution that satisfies xj = u+
j for all j ∈ V +∩in(i)

and xk = u−k for all k ∈ V − ∩ in(i).

Moreover, the equilibrium equation must characterize the value ~xi. That is,
given two non-negative solutions

0 = Fi(x1, . . . , xi−1, ~xi, xi+1, . . . , xn)

0 = Fi(x̂1, . . . , x̂i−1, ~̂xi, x̂i+1, . . . , x̂n)

satisfying xj = x̂j = u+
j for all j ∈ V + ∩ in(i) and xk = x̂k = u−k for all

k ∈ V − ∩ in(i), then ~xi = ~̂xi.

The uniqueness property ensures the well-definedness of φi(u+, u−) := xi.

Essentially, the equilibrium of vertex i is uniquely determined in the
case one is given constant activation and inhibition inputs u+ and u−,
respectively. Since inputs are described by the values of the observables
x = (x1, . . . , xn), one can use x instead of the redundant (at least as far
the steady-state regime is concerned) vector ~x.

For instance, in the case of the running example from Figure 23, equa-
tions (5.4) and (5.5) show that the vertices associated with S and X∗1 in
Figure 23 (B) do satisfy the requirement above.

5.2.2 Anti-monotonic RN

Armed with the notion of well-posedness, we are ready to introduce anti-
monotonic RNs, the core concept of this approach. The graph-theoretic
conditions describing an anti-monotonic network ensure that the corre-
sponding nonlinear fixed-point equation characterizing the equilibria,
y = f(y), can be constructed and is anti-monotonic, that is, it satisfies
f(y′) ≤ f(y) for all y ≤ y′.
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Definition 13 (Anti-monotonic RN). A well-posed network (V,E) is called
anti-monotonic if the following properties are satisfied.

i) There are no inhibitors that are inhibited.

ii) All vertices with incoming neighbors can be reached from the set of core
observables I.

iii) The graph which arises from (V,E) by removing all inhibitors is acyclic,
that is, (V +, E \ (V − × {−,+} × V ∪ V × {−,+} × V −)) is acyclic.

iv) With φi(u+, u−) being as in Definition 12, φi is a continuous function
that is monotonic and anti-monotonic in u+ and u−, respectively. That is:

• φi is continuous as a function of (u+, u−) ∈ U+
i × U−i ;

• φi(u−, u+) ≤ φi(u−, û+) if u− ∈ U−i and u+, û+ ∈ U+
i with u+ ≤

û+;
• φi(u−, u+) ≥ φi(û

−, u+) if u−, û− ∈ U−i and u+ ∈ U+
i with

u− ≤ û−.

5.2.3 Algebraic manipulations over the RN

We first remark that ii) requires that all i /∈ I depend on the core observ-
ables I. Intuitively, this is needed to ensure that the equilibrium of the
opened network can be computed from the values assigned to I. Con-
dition iii), instead, is needed to exclude dependency deadlocks. For in-
stance, the network depicted in Figure 25 cannot be handled because the
equilibrium of 2 depends on the equilibrium of 3 and vice versa. Overall,
ii) and iii) ensure that f in the fixed-point equation y = f(y) is well-
defined, while condition i) and iv) imply that f is anti-monotonic.

1 2 3

Anti-monotonic RN

Figure 25: An RN that is not anti-monotonic because is violates condition
iii).

The graph-theoretic conditions i) − iii) boil down to verifying that
a subgraph of (V,E) has no loops, a well-known problem that can be
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solved in polynomial time. Instead, condition iv) depends on the actual
ODE system underlying the RN. For instance, recall that in the case of the
example network from Figure 23 (B), we have φX∗0 ([S]) = α1cX∗0 /(α1[S]+

β2). Hence, (5.5) fulfills condition iv). More in general, the following can
be proven.

Lemma 1. The example network from Figure 23 (B) satisfies i)− iv).

Lemma 1. Since φS and φX∗0 have been covered in Section 5.1, we are left
to derive the expressions φX∗1 and φX∗2 . Noting that φX∗2 is an instance
of φX∗1 with modified activation and inhibition parameters, it suffices to
focus on φX∗1 only. Standard algebraic manipulations reveal that

φX∗1 ([X∗0 ]) = cX∗1
α3α4[X∗0 ]2

α3α4[X∗0 ]2 + α3β4[X∗0 ] + β5β6

For completeness, we remark here that

φX1
([X∗0 ]) = cX∗1

β5β6

α3α4[X∗0 ]2 + α3β4[X∗0 ] + β5β6

φX∗1 ([X∗0 ]) = cX∗1
α3β4[X∗0 ]

α3α4[X∗0 ]2 + α3β4[X∗0 ] + β5β6

Since αi and βi are positive, it suffices to show that the function h(y) :=
a1y

2/(a1y
2 + a2y + a3) is monotonic in y when a1, a2, a3 > 0. A differen-

tiation of h with respect to y yields

(∂yh)(y) =
2a1y

a1y2 + a2y + a3
− a1y

2(a2 + 2a1y)

(a1y2 + a2y + a3)2

Algebraic manipulations reveal that ∂yh has the roots y = 0 and y =
− 2a3

a2
< 0. Since h is non-negative and h(0) = 0, we infer the claim.

In our framework, we suppress the incoming edges of the core ob-
servables I and show that the equilibrium of the so-obtained open-loop
network can be computed from the values assigned to I. To do so, we
will work with three index sets. First, there is the full vector ~x. The sub-
vector x of ~x which lives in RV and tracks the observables. Finally, x|I
provides only the values of those vertices who become dangling in the
open the network. Our theorems work on this coarsest set I and show
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that the knowledge of those values characterizes the equilibria ~x of the
ODE system ~̇x = F (~x) in full.

In particular, the next result ensures that Algorithm 1 computes, for
a given vector y ∈ ∏i∈I [0; ci], a value f(y) ∈ ∏i∈V [0; ci] such that the
fixed-points of y 7→ f|I(y) stand in an one-to-one correspondence with
the equilibria of the ODE system ~̇x = F (~x) of the RN. Thus, if y = f|I(y),
then the unique equilibrium ~x associated to y can be computed from y.
For instance, in the case of the network from Figure 23 (B), I = {X∗2}
and y 7→ f|I(y) rewrites to [X∗2 ] 7→ fX∗2 ([X∗2 ]), thus resembling (5.6). The
function value f([X∗2 ]), instead, has the four components

fS([X∗2 ]) = φS([X∗2 ])

fX∗0 ([X∗2 ]) = φX∗0 (fS([X∗2 ]))

fX∗1 ([X∗2 ]) = φX∗1 (fX∗0 ([X∗2 ]))

fX∗2 ([X∗2 ]) = φX∗2 (fX∗1 ([X∗2 ])),

where φS and φX∗0 are given in 5.4 and 5.5, respectively (while φX∗1 p

and φX∗2 are derived in the proof of Lemma 1). If [X∗2 ] satisfies [X∗2 ] =

fX∗2 ([X∗2 ]), we set

[S] := fS([X∗2 ]) [X∗0 ] := fX∗0 ([X∗2 ])

[X∗1 ] := fX∗1 p([X
∗
2 ]) [X∗2 ] := fX∗2 ([X∗2 ])

With this, the remaining components of the equilibrium, [X0], [X1], and
[X2], are determined by the corresponding equilibrium equations. In the
case of [X0] and [X∗0 ] for instance, it holds that (see proof of Lemma 1)

[X1] = cX∗1 p
β5β6

α3α4[X∗0 ]2 + α3β4[X∗0 ] + β5β6

[X∗1 ] = cX∗1 p
α3α4[X∗0 ]2

α3α4[X∗0 ]2 + α3β4[X∗0 ] + β5β6
,

where cX∗1 = [X1](0) + [X∗1 ](0). Noting that the above values [X1] and
[X∗1 ] depend only on [X∗0 ], we observe that the equilibrium of vertex X∗1
is fully determined by [X∗0 ]. Hence, vertex [X∗0 ] satisfies condition 3)

of Definition 12 which requires that the equilibrium equation of vertex
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i ∈ V ,
0 = Fi(x1, . . . , xi−1, ~xi, xi+1, . . . , xn),

characterizes the value of ~xi (with respect to the given activation and
inhibition inputs).

Theorem 2. Assume that (V,E) is an anti-monotonic RN. Then, Algorithm 1
computes, for any vector y ∈ ∏i∈I [0; ci], a value f(y) ∈ ∏i∈V [0; ci]. The
function f enjoys the following properties.

• It is anti-monotonic, i.e., 0 ≤ y ≤ y′ ≤ c|I implies 0 ≤ f(y′) ≤ f(y) ≤
c.

• There is an one-to-one correspondence between the equilibria of F and the
fixed-points of f|I . More formally

– If ~x is such that 0 = F (~x), then f(~x|I) = ~x|I .

– If y ∈ ∏i∈I [0; ci] satisfies f|I(y) = y, then there exists a unique ~x
such that that 0 = F (~x) and y = ~x|I . Moreover, f(y) = ~x|V .

The above result ensures that it suffices to find all fixed-points of f|I
in order to determine the equilibria of ~̇x = F (~x). In particular, given a
fixed-point y of f|I , the vector f(y) provides the observables V with val-
ues, i.e., xi = fi(y). Hence, ~xi can be obtained by solving the equilibrium
equations, see discussion preceding Theorem 2.

5.2.4 Computation of the anti-monotonic function under-
lying an anti-monotonic RN

As for Algorithm 1, any vector y ∈ ∏
i∈I [0; ci] is processed in three

stages. In the first stage, the for loop from line 2, the algorithm sets the f
value of each vertex in I (i.e., fi(y) := yi for all i ∈ I) and computes the
f values of all vertices that have no incoming neighbors (note that the
equilibrium function of any vertex i ∈ V with in(i) = ∅ has no inputs,
hence φi is merely a constant).

In the second stage, the algorithm computes the f values of all re-
maining vertices, that is vertices that are activators with at least one in-
coming neighbor. The underlying computation is carried out using the
while loop from line 10. This is because the f values in question have
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Algorithm 1 Computation of the anti-monotonic function f underlying
an anti-monotonic RN.

Require: Anti-monotonic network (V,E) and y ∈∏i∈I [0; ci]
1: set done to V − ∪ {i ∈ V + | in(i) = ∅}
2: for all i ∈ done do
3: if i ∈ I then
4: set fi(x) to yi
5: else
6: set fi(x) to φi
7: end if
8: end for
9: set left to

⋃
i∈done out(i)

10: while left 6= ∅ do
11: set tmp to left
12: for all i ∈ tmp do
13: if in(i) ⊆ done then
14: set fi(x) to φi(u+, u−), where u+ and u− are computed from

{fj(x) | j ∈ in(i)}
15: set done to done ∪ {i}
16: set left to left ∪ (out(i) \ done)
17: end if
18: end for
19: end while
20: for all i ∈ I do
21: set fi(x) to φi(u+), where u+ is computed from {fj(x) | j ∈ in(i)}

22: end for
23: return f(x) ∈∏i∈V [0; ci]

to be computed in a specific order that is dictated by the graph. For in-
stance, in the case of the network from Figure 23 (B), fS([X∗2 ]) has to be
computed before fX∗0 ([X∗2 ]) can be computed. Because of this, fX∗0 ([X∗2 ])

is computed during the second iteration, while fS([X∗2 ]) is obtained in
the first iteration.
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The third and final stage of the algorithm is given by the for loop in
line 20. There, the algorithm computes the f values of all i ∈ I using the
previously computed f values. This intuitively corresponds to a closing
of the opened network, see Section 5.1. In particular, if the f values com-
puted during the for loop in line 20 coincide with y ∈ ∏i∈I [0; ci], then
y = f|I(y).

If applied to the network from Figure 23 (B), Algorithm 1 repeats the
computational steps from Section 5.1 by deriving, in each iteration of the
while loop from line 10, fS([X∗2 ]) := φS([X∗2 ]), fX∗0 ([X∗2 ]) := φX∗0 (fS([X∗2 ]))

and fX∗1 (X∗2 ) := φX∗1 (fX∗0 ([X∗2 ])), respectively. Instead, the for loop from
line 20 sets fX∗2 ([X∗2 ]) := φX∗2 (fX∗1 ([X∗2 ])).

Armed with Theorem 2, we are in a position to state our main result.

Theorem 3. Assume that (V,E) is an anti-monotonic RN and let I and f be
as in Theorem 2. Define g(y) := f|I(f|I(y)) for any y ∈∏i∈I [0; ci]. Then, the
following holds true.

1) Function f|I :
∏
i∈I [0; ci]→

∏
i∈I [0; ci] has at least one fixed-point.

2) Function g is monotonic, i.e., 0 ≤ y ≤ y′ ≤ c|I implies 0 ≤ g(y) ≤ g(y′) ≤
c.

3) Sequence 0|I , g(0|I), g(g(0|I)), . . . converges to x⊥, the least fixed-point of
g.

4) Sequence c|I , g(c|I), g(g(c|I)), . . . tends to x>, the greatest fixed-point of g.

5) If ~x is such that 0 = F (~x), then ~x|I ∈ [x⊥;x>].

6) If x∗ = x⊥ = x>, then 0 = F (~x) has a unique solution ~x and ~x|I = x∗.

Theorem 3 formalizes the claims made in Section 5.1 and provides
an analysis framework for the equilibria of an ODE underlying an anti-
monotonic RN. Having all these elements, we can formalize the proof for
Theorem 2.
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Proof. Let us first assume that every iteration of the while loop from
line 10 has at least one i ∈ tmp for which the if-clause in line 13 becomes
true. Under this assumption, every iteration of the while loop adds at
least one element to done, hence Algorithm 1 terminates. We next show
that f is anti-monotonic. To this end, let Vk ⊆ V be the set of vertices
that is added to done during the k-th iteration of the while loop, where
1 ≤ k ≤ ν. Additionally, let V0 coincide with the value of done at line 2.
Let fki (y) denote the value assigned to vertex i, fi(y), at the beginning of
the k-th iteration of the while loop in the case where the algorithm has
been invoked with y ∈ ∏i∈I [0; ci]. Exploiting the fact that y ≤ y′, we
next show that

a) If i ∈ V0 ∪ . . . ∪ Vk−1 is an inhibitor, then fki (y) ≤ fki (y′)

b) If i ∈ V0 ∪ . . . ∪ Vk−1 is an activator, then fki (y′) ≤ fki (y)

Please note that a) does not contradict the final claim because the val-
ues assigned to inhibitors with incoming neighbors will be overwritten
in line 21. To see a)-b) for k = 1, we first observe that, for any i ∈ V0

with no incoming neighbors, line 6 sets fi(y) to the constant value φi.
Hence, fi(y′) = φi = fi(y) for all such i. Instead, line 4 ensures that
fi(y) = yi ≤ y′i = fi(y

′) for all i ∈ I ⊆ V0. This shows a)-b) for k = 1.
Let us now assume that a)-b) hold true at the beginning of the k-th iter-
ation. The definition of V0, . . . , Vk−1 implies that done = V0 ∪ . . . ∪ Vk−1

at the beginning of the k-th iteration. This, iv) and the validity of a)-b) at
the beginning of the k-th iteration then imply that every vertex added to
done in line 15 will satisfy a)-b).

Overall, we obtain the validity of a)-b) at the beginning of the (k+ 1)-
th iteration. Since the while condition is false at the beginning of the last
iteration and ii) holds true, we infer that Vν = ∅ and V0 ∪ . . . ∪ Vν = V at
the beginning of the last iteration. This shows that all vertices satisfy the
inequality conditions of a)-b) after the while loop is completed. Thanks
to the fact that inhibitors can only be activated (see i)), this allows us
to conclude that the values assigned to all inhibitors i in line 21 satisfy
fi(y

′) ≤ fi(y).
The above discussion shows that fi(y) = yi for all i ∈ I if and only

if, for every i ∈ I, the value fi(y) computed in line 21 coincides with the
value fνi (y). Since fνi (y) are computed via the functions (φi)i, this and 3)
of Definition 12 ensure the one-to-one correspondence.
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We are left with showing that every iteration of the while loop fea-
tures one i ∈ left such that in(i) ⊆ done holds true in line 13. To
see this, let us assume towards a contradiction that the algorithm gets
stuck, i.e., during an iteration of the while loop, we end up in the situa-
tion where for all i ∈ left it holds true that in(i) 6⊆ done. With this, fix
any i′ ∈ left and let j1, . . . , jk be a path in V \done that connects done
to i′, that is

• jk = i′

• in(j1) ∩ done 6= ∅

• jl ∈ V \ done for all 1 ≤ l ≤ k

• (jl, jl+1) ∈ E for all 1 ≤ l ≤ k − 1

The existence of such a path is guaranteed by ii) and I ⊆ V0 ⊆ done
(also, notice that in the trivial case in(i′) ∩ done 6= ∅ we can simply set
k = 1). Since in(j1) ∩ done 6= ∅, it must hold that j1 ∈ left. This, in
turn, implies that in(j1) 6⊆ done, as otherwise the algorithm would not
be stuck. Hence, we can pick some i′′ ∈ in(j1)∩ (V \done). Overall, we
were able to construct a path from some i′′ ∈ (V \done) to i′ ∈ (V \done)
that remains in V \ done and whose length is positive because i′ 6= i′′.
By applying the very same argument to i′′, we can construct a path from
some i′′′ ∈ (V \done) to i′′ ∈ (V \done) that remains in V \done and that
has positive length. By repeating the argument at most |V \done| times,
we thus can construct a cycle in (V \ done) ⊆ (V \ I) which contradicts
iii).

We conclude the section by noting that one may be tempted to check
x⊥ = x> by solving the ODE system for different initial conditions (that
respect the maximal attainable concentration vector c). However, while
such ad-hoc approach can be used to discover the presence of different
equilibria, it cannot be used to prove their absence because the number
of possible initial conditions is infinite.
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5.3 Evaluation of the algorithm for computing
the equilibria

Together with the equilibria expressions from Section 5.1 and the proof
of Lemma 1, we will provide the complete configuration of Algorithm 1
through two case studies.

5.3.1 MAPK signaling cascade

As discussed in previous chapters, MAPK is a pathway that can be started
by several receptors upon external stimuli. The signal triggers the con-
secutive activation of several downstream protein kinases, where the last
kinase can promote cellular responses such as growth, development, dif-
ferentiation, proliferation, inflammation, and aptosis.

RAS

MKKK MKKKP

MKKK MKKKP MKKKPP

MAPK MAPKP MAPKPP
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MKKKPP

MAPKPP

RAS

MKKKP

MKKKPP

MAPKPP

A. B. C.

Figure 26: (A). MAPK signaling pathway adapted from [119], where each
level of the pathway is represented using a different color. (B) Linear path-
way replacing each family of states (e.g., {[MKK], [MKKP], [MKKPP]}) by
the most active species (e.g., [MKKPP]). (C) Closed loop RN obtained over
(B)

Each level in Figure 26 (A) consists of a phosphorylation cycle in-
volving two or more interconvertible mass-preserving forms of a kinase
where the suffixes ‘-P’ and ‘-PP’ denote the partial and total phosphory-
lated forms of such kinase, respectively. The most active form in each
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level regulates its downstream kinases acting as a catalyst in a phospho-
rylation reaction (e.g., the reaction with label 3). The dephosphorylation
process instead occurs spontaneously (e.g., label 6). The dynamical sys-
tem behind the MAPK schematics in Figure 26 (A) is given by the follow-
ing nine differential equations:

˙[RAS](t) = λ− β0[MAPKPP](t)[RAS](t)− γ[RAS](t)

˙[MKKK](t) = β2[MKKKP](t)− α1[MKKK](t)[RAS](t)

˙[MKKKP](t) = α1[MKKK](t)[RAS](t)− β2[MKKKP](t)

˙[MKK](t) = β6[MKKP](t)− α3[MKKKP](t)[MKK](t)

˙[MKKP](t) = α3[MKKKP](t)[MKK](t) + β5[MKKP](t)

− β6[MKKP](t)− α4[MKKKP](t)[MKKP](t)

˙[MKKPP](t) = α4[MKKKP](t)[MKKP](t)− β5[MKKKP](t)

˙[MAPK](t) = β10[MAPKP](t)− α7[MKKPP](t)[MAPK](t)

˙[MAPKP](t) = α7[MKKPP](t)[MAPK](t) + β9[MAPKPP](t)

− α8[MKKPP](t)[MAPKP](t)− β10[MAPKP](t)

˙[MAPKPP](t) = α8[MKKPP](t)[MAPKP](t)− β9[MAPKPP](t),

where the initial conditions are given by

[RAS](0) = 0 [MKKK](0) = 90 [MKKKP](0) = 10

[MKK](0) = 280 [MKKP](0) = 10 [MKKPP](0) = 10

[MAPK](0) = 280 [MAPKP](0) = 10 [MAPKPP](0) = 10

Together with the ODEs, the initial conditions led to the following
maximal attainable species concentrations:

cRAS = λ/γ

cMKKKP = [MKKK](0) + [MKKKP](0) = 100

cMKKPP = [MKK](0) + [MKKP](0) + [MKKPP](0) = 300

cMAPKPP = [MAPK](0) + [MAPKP](0) + [MAPKPP](0) = 300
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As in Section 5.1, by removing the feedback loop from MAPKPP to
RAS, we treat [MAPKPP] as a constant input in the ODE of RAS. With
this, we can compute the equilibrium of RAS by setting its derivative to
zero as

[RAS] =
λ

β11[MAPKPP] + γ
=: φRAS([MAPKPP])

Reinterpreting [RAS] we obtain the equilibrium for [MKKKP] given
by

[MKKKP] =
α1cMKKKP

α1[RAS] + β2
=: φMKKKP

([RAS])

which is consistent with Equation 5.5. By continuing in a similar fashion,
one can derive the equilibrium formula φMKKPP([MKKKP]). We close
the open loop network in Figure 26 (B) by reactivating the previously
suppressed edge (Figure 26 (C)), this corresponds to the feedback condi-
tion [MAPKPP] = φMAPKPP([MKKPP]), where φMAPKPP([MKKPP]) denotes
the equilibrium value of MAPKPP in the case of a given constant input
[MKKPP].

[MAPKPP] = φMAPKPP

(
φMKKPP

(
φMKKKP

(
φRAS([MAPKPP])

)))
=: fMAPKPP([MAPKPP]) (5.7)

Therefore, the equilibria of the original ODEs system consisting of
nine equations stands in a one-to-one correspondence with the solution
of the single nonlinear equation (5.7).

If applied to the MAPK network from Figure 26 (B), Algorithm 1 re-
peats the computational steps from Section 5.1 by deriving, in each itera-
tion of the while loop from line 10, fRAS([MAPKPP]) := φRAS([MAPKPP]),
fMKKKP([MAPKPP]) := φMKKKP(fRAS([MAPKPP])) and fMKKPP(MAPKPP)

:= φMKKPP
(fMKKKP

([MAPKPP])), respectively. Instead, the for loop from
line 20 sets fMAPKPP

([MAPKPP]) := φMAPKPP
(fMKKPP

([MAPKPP])). Ta-
ble 6 shows the result of the algorithm in each iteration.
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Table 6: Application of Algorithm 1 to the MAPK model. The values are
stated with respect to the beginning of the while loop iteration one, two,
three, four and line 20, respectively. All function terms are meant to be
evaluated with respect to x4, e.g., f1 ≡ f1(x4), φ1 ≡ φ1(x4) and φ2(f1) ≡
φ2(f1(x4)). This is because the feedback from 3 to 4 is suppressed during
the while loop computation and 4 is treated as an input vertex, compare
Figure 24. However, after line 20 the feedback from vertex 3 to 4 is taken
into account, thus allowing one to obtain f4(x4) from the values computed
by the while loop.

Value Iteration 1 Iteration 2 Iteration 3 Iteration 4 Line 20

f1 — φ1 φ1 φ1 φ1

f2 — — φ2(f1) φ2(f1) φ2(f1)

f3 — — — φ3(f2) φ3(f2)

f4 x4 x4 x4 x4 φ4(f3)

done {4} {1, 4} {1, 2, 4} {1, 2, 3, 4} {1, 2, 3, 4}
left {1} {2} {3} ∅ ∅

5.3.2 EGFR signaling pathway

We next discuss a model for the EGFR signaling pathway from [26],
whose associated RN and a compact set of labels is given in Figure 27
A and B respectively. From now on, we will use a set of labels to identify
the diverse variables from the model. We use a mass-action semantics
that follows [31], where each vertex is associated with a variable triplet.

Here we already express it in the more compact notation which ex-
ploits the preservation of mass among the three forms. Thus we use two
ODE variables x∗i and xi, which represent the active and the passive form
of each component, respectively, and denote by ci the total concentration
for vertex i. Let us denote by Ω+

i ⊆ V and Ω−i ⊆ V the set of activators
and inhibitors of vertex i, respectively. The ODEs are given by:
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Figure 27: (A) Regulatory network adapted from the EGFR pathway from
citeBrown2004. (B) The corresponding open network which arises by sup-
pressing the activations from 3 to 6 and 11 to 12, respectively. The open net-
work has the core observables 6 and 12. The blue numbers give the while
loop iteration at whose beginning the corresponding f value becomes avail-
able for the first time.

ẋ∗i = −
( ∑
Ik∈Ω−i

βk,ixIk +
∑

Al∈Ω+
i

αk,i(cAl − xAl)
)
x∗i

+
( ∑
Al∈Ω+

i

αk,ixAl +
∑
Ik∈Ω−i

βk,i(cIk − xIk)
)

(ci − x∗i − xi)

ẋi = −
( ∑
Al∈Ω+

i

αk,ixAl +
∑
Ik∈Ω−i

βk,i(cIk − xIk)
)
xi

+
( ∑
Ik∈Ω−i

βk,ixIk +
∑

Al∈Ω+
i

αk,i(cAl − xAl)
)

(ci − x∗i − xi)
(5.8)

where the parameters α and β are positive constants that give the
strengths of inhibition and activation, respectively. The set of core ob-
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servables is I = {6, 12} and conditions i)− iii) can be easily seen to hold
true. Instead, using

ai(A, I) =
∑
Al

αl,ixAl −
∑
Ik

βk,ixIk +
∑
Ik

βk,icIk

bi(A, I) =
∑
Ik

βk,ixIk −
∑
Al

αl,ixAl +
∑
Al

αl,icAl ,

it can be shown that φi = cia
2
i /(a

2
i + aibi + b2i ) is the unique equilibrium

point of x∗i . Moreover, it can be proven that the roots of (∂Alφi)(Al) are
either less than or equal zero or strictly greater than cAl . By considering
Al 7→ (∂2

Al
φi)(Al) atAl = 0, we infer that φi is monotonic inAl on [0; cAl ].

A similar argumentation ensures that φi is anti-monotonic in every Ik on
[0; cIk ], thus yielding the following.

Lemma 2. The semantics (5.8) satisfies condition iv).

The dynamical system is induced by Figure 27 and the semantics dis-
cussed in the proof of Lemma 2. For instance, since 2 is inhibited by 12

and activated by 1, the ODEs of 2 are given by

ẋ∗2 = −(β12x
∗
12 + α1(c1 − x∗1))x∗2 + (α1x

∗
1 + β(c12 − x∗12))(c2 − x∗2 − x2)

ẋ2 = −(α1x
∗
1 + β12(c12 − x∗12))x2 + (β12x12 + α1(c1 − x∗1))(c2 − x∗2 − x2)

If a vertex has more than one activator or inhibitor, the above formula
has to be adjusted, see proof of Lemma 2. In the case a vertex has no acti-
vators, all its α coefficients are set to zero. Likewise, all β coefficients are
set to zero if a vertex has no inhibitors. Since this implies that the ODEs
of i ∈ {1, 5, 8, 10} are zero, we set φi := ci := x∗i (0), with x∗i (0) being the
initial condition from [26] (the computation of φ1 is actually more com-
plicated than that because φ1 is the steady-state of an ODE system that
is independent from all other vertices of the regulatory network; φ1 was
computed using the parameters and initial conditions from [26]). The
initial conditions from [26] and the dynamics outlined above led to the
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following maximal attainable concentrations:

cEGFR∗ = 79955 cSOS∗ = 120000 cPI3K∗ = 120000

cRas∗ = 120000 cGAP∗ = 120000 cAkt∗ = 120000

cRaf1∗ = 120000 cPtase∗ = 120000 cMEK∗ = 600000

cPP2A∗ = 12000 cERK∗ = 600000 cP90Rsk∗ = 120000

Together with the formula φi = cia
2/(a2 + ab+ b2) from the proof of

Lemma 2, this provides a complete configuration of Algorithm 1. Table
7 additionally provides the corresponding f values.

Table 7: Application of Algorithm 1 to the model of the epidermal growth
factor from Figure 27. The variable values are stated with respect to the
beginning of the while loop iteration one, two, three, four and five, respec-
tively. All function terms are meant to be evaluated with respect to x6 and
x12, e.g., f2 ≡ f2(x6, x12) and φ2(f1, f12) ≡ φ2(f1(x6, x12), f12(x6, x12)).

Value Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

f1 φ1 φ1 φ1 φ1 φ1 φ1

f2 — φ2(f1, f12) φ2(f1, f12) φ2(f1, f12) φ2(f1, f12) φ2(f1, f12)

f3 — — — φ3(f1, f4) φ3(f1, f4) φ3(f1, f4)

f4 — — φ4(f2, f5) φ4(f2, f5) φ4(f2, f5) φ4(f2, f5)

f5 φ5 φ5 φ5 φ5 φ5 φ5

f6 x6 x6 x6 x6 x6 x6

f7 — — — φ7(f4, f6, f8) φ7(f4, f6, f8) φ7(f4, f6, f8)

f8 φ8 φ8 φ8 φ8 φ8 φ8

f9 — — — — φ9(f7, f10) φ9(f7, f10)

f10 φ10 φ10 φ10 φ10 φ10 φ10

f11 — — — — — φ11(f9, f10)

f12 x12 x12 x12 x12 x12 x12

The order in which the algorithm computes the entries of the vector
function f is provided in Figure 27 B (light-blue numbers alongside the
nodes). For instance, f6 and f12 are initialized during the for loop in line 2
and are thus available at the beginning of the first while loop iteration.
This is because 6 and 12 are treated as inputs during the while loop. The
for loop from line 20, instead, takes the suppressed feedbacks to 6 and 12

into account and assigns f6 := φ6(f3) and f12 := φ12(f11). On the other
hand, f2 is computed during the first while loop iteration.
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5.4 Concluding remarks

Our method for the computation of equilibrium points in ODE systems
encoding RNs is based on the idea of cutting feedback loops in the net-
work, similarly to other approaches in the literature, most notably [4]
and [176]. Unlike [4] we do not focus on systems with positive feedback.
In fact, while positive feedback is related to the presence of multiple equi-
libria, we were able to prove that our models of MAPK and EGFR signal-
ing pathways with negative feedback admit a unique equilibrium point.

We evaluated our approach on the MAPK and EGFR model from Fig-
ure 26 and Figure 27, respectively. To this end, we ran 100 experiments
for each model in which the parameters were uniformly sampled from
the compact interval [1; 1000], covering thus a variety of possible scenar-
ios; for both models we used the initial conditions stated in [119] and [26],
respectively. In each experiment, the ODE system could be shown to en-
joy a unique equilibrium because the least and the greatest fixed-point of
g from Theorem 3 were identical.

A possible line of future research is to combine our computational
approach with [4, 71]. Specifically, the goal would be to provide suffi-
cient conditions ensuring that the set of equilibria contains, for instance,
only attractors. To this end, we plan to relate the anti-monotonic regu-
latory networks to the graphs that are induced by systems of differen-
tial equations in [3–5, 71]. Moreover, we intend to investigate whether
the requirement that each vertex is either an inhibitor or activator can
be dropped by introducing artificial vertices that preserve equilibria. Fi-
nally, aiming at a more efficient computation of equilibria, we also plan
to investigate if the current approach can be combined with model re-
duction techniques such as [33, 36, 38, 39, 57, 77].
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Chapter 6

Conclusion

This thesis provides a detailed analysis of techniques for the reduction
of quantitative systems of biochemical networks together with the in-
terpretation of the biological and functional characteristics of reductions
obtained over a variate collection of case studies.

We provide a framework for the automatic analysis of large-scale
quantitative repositories of biological models, with special support for
models based in SBML specifications [169]. We consider a family of tech-
niques based on equivalence relations over the species in the network
[36, 38, 40], leading to a coarse graining which provides the exact ag-
gregate time-course evolution for each equivalence class. All the reduc-
tions were performed in ERODE [35], a state-of-the-art tool for the reduc-
tion of dynamical systems in which the selected equivalences are imple-
mented. In addition, we provide a tool for translation of models encoded
in System Biology Markup Language (SBML) to CRN-like specifications,
which is the input format of ERODE.

For networks with stochastic dynamics, we provide equivalences at
the level of the Markov chain that can be applied to biological networks,
and complex networks depicting epidemic processes. Here we show that
SE can be seen as complementary, exact aggregation method for epi-
demic processes on complex networks where the maximal SE induces
a partition on the nodes of the graph which is a refinement of the orbit
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partition, i.e., the partition of nodes where each block is a distinct orbit.
Interestingly, we also show that SE can be applied to models that do not
satisfy the conditions required in [185].

These exact model reduction techniques produce comprehensible re-
duced models where the collapse of several species into one may carry
a physical interpretation that increases our understanding of the system
under study. In the case studies discussed in this dissertation, the exact
model reductions revealed symmetries in signaling pathways that carry
over to equivalences at the level of the underlying quantitative seman-
tics. Given their moderate size, the considered models would be compu-
tationally treatable even without reduction. However, the equivalences
can be used as an aid in developing more complex models where such
symmetries are present in some components.

In a different stream, we approach model reduction by focusing on
the steady-state behavior of the system. To this end, we provide a method
for the computation of equilibrium points, with the guarantee of yielding
the unique equilibrium of the ODE under defined conditions [170]. We
apply this algorithm for the simplification of two signaling pathways [26,
147] characterized by different dynamic mechanisms. The EGFR circuit
in [26] models the interaction among the two states (active/inactive) of
each molecule involved in the ERK-MAPK and PI3K pathways. Whereas
the mechanism in [147] studies in more detail the phosphorylation and
dephosphorylation mechanisms in MAPK by building a cascade that in-
cludes all the states of MAPK in each level on the pathway. In both cases
we were able to collapse the behavior of the intermediate components
which allows to characterize the dynamics in a single fixed point equa-
tion. Importantly, our algorithm does not require the availability of the
Jacobian of the ODE vector field, thus, we are not limited by the system’s
dimension.

Interestingly, the analysis performed in Chapters 3-5 reveals reduc-
tion motifs embedded in the structure of the network, i.e., structures that
where compressed in each case found.
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Overall we could identify 3 functional/structural motifs:

• Motif 1 is a two-component motif which represents the interaction
between two species X and X*, where X* is the active variant of X.
This mechanism is a recurrent element in signaling networks where
several layers of switch-like proteins regulate the cell’s response
to external stimuli. Our aggregation techniques collapse the two
states of the protein in a macrovariable X̃ , represented by the sum
of the active and inactive states, i.e. X̃(t) = [X](t) + [X∗](t).

• Motif 2 is a three-component motif depicting the interaction be-
tween three species X0

0, X0
1, X1

0, so that X can transform into X0
1 or

X1
0. Species X changes to a state where one of its sites is occupied,

e.g., by a phosphatase to model X’s phosphorylation or by another
component to form a complex. In this scenario, our techniques can
merge the symmetric species 1

0 and 0
1 into a macrovariable X̂ such

that X̂(t) = [X1
0 ](t) + [X0

1 ](t).

• Motif 3 is a single-component motif, where we establish relation-
ships among the different states of each binding sites. The existence
of multiple binding sites is a characteristic of in several members of
signal transduction pathways such as scaffold proteins and multi-
site receptors. In either way, the multisite property allows to recruit
diverse molecules to form molecular complexes with specific func-
tions. The motif that we identified is a multisite receptor with two
protein-binding docks (β, γ) and one ligand-binding site (α), i.e.,
a RTK receptor. Often times the dynamics involved in RTK sig-
naling follows a hierarchical configuration where the propensity of
binding adapter species is influenced by the state of the receptor’s
binding sites. In such circumstances, we preserve the hierarchy in
the order of the reactions but we abstract from the different states
of the receptor in each level, thus producing a reduced description
where each stage is represented by a macrovariable that relates the
involved receptor’s states.
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These findings provide the intuition that our techniques abstract be-
yond the behavior of the system to capture structural/functional seg-
ments of the network that can be simplified with no (or little) effect in
the dynamics of the model. This becomes useful when we are dealing
with large networks, where to check a priori for the existence of such
motifs is less costly than the computation of the complete network.

We plan to study further the network structures of diverse biological
systems to characterize a wider selection of reducible motifs. It would
be interesting to investigate if these motifs also appear in other networks
beyond the scope of systems biology. A natural follow up is of course
to build an algorithm to check the presence of reducible motifs in the
network which would allow to check if a network is reducible without
actually computing the reduction.

Another future line of research is to explore the performance of other
lumping schemes for the reduction of ODE systems, for instance im-
proper lumping techniques. The fact that the network transformation is
done by means of an improper lumping implies that the original vari-
ables can be mapped to more than one macrovariable in the reduced
model. As with the exact techniques discussed in this dissertation, we
will evaluate the performance of such improper lumping scheme by ob-
serving the effectiveness and the intelligibility of the obtained reduc-
tions.

Finally, while considerable work has been done on abstraction tech-
niques that preserve certain desired original dynamics in an exact way
[57, 85, 200], it is known that such abstractions are sensitive to the spe-
cific values of the model parameters. However such values are usually
difficult to measure, and are therefore characterized by a considerable
degree of uncertainty. Hence, another line of future research is to study
the effect of parametric tolerances in the abstraction of biological models.
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[144] Verónica Lloréns-Rico et al. “Bacterial antisense RNAs are mainly
the product of transcriptional noise”. In: Science Advances 2.3 (2016),
pp. 1–9. ISSN: 23752548. DOI: 10.1126/sciadv.1501363. arXiv:
arXiv:1011.1669v3 (cit. on p. 57).

[145] Ulrich Maas and Stephen B Pope. “Implementation of simplified
chemical kinetics based on intrinsic low-dimensional manifolds”.
In: Symposium (International) on Combustion. Vol. 24. 1. Elsevier.
1992, pp. 103–112 (cit. on p. 16).

124

https://doi.org/http://dx.doi.org/10.1016/0009-2509(89)85014-6
https://doi.org/http://dx.doi.org/10.1016/0009-2509(89)85014-6
https://doi.org/10.1038/msb4100107
https://doi.org/10.1038/msb4100107
https://doi.org/10.1126/sciadv.1501363
https://arxiv.org/abs/arXiv:1011.1669v3


[146] Daniel P Maki and Maynard Thompson. Mathematical models and
applications: with emphasis on the social life, and management sciences.
Prentice-Hall Englewood Cliffs, 1973 (cit. on p. 50).

[147] Nick I Markevich et al. “Signaling switches and bistability arising
from multisite phosphorylation in protein kinase cascades”. In:
The Journal of cell biology 164.3 (2004), pp. 353–359 (cit. on pp. xxi,
2, 3, 74, 75, 108).

[148] NI Markevich et al. “Signal processing at the Ras circuit: what
shapes Ras activation patterns?” In: Systems biology 1.1 (2004), pp. 104–
113 (cit. on p. 75).
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