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Abstract

The field of economics witnesses a growing interest to better
understand how individuals form decisions and how these
decisions can be supported with the help of sophisticated data-
mining tools. The first half of the thesis analyzes investment
decisions in a competitive environment that is free of con-
founding factors by means of experimental data. The second
half focuses on how supervised learning algorithms can be
applied to predict the outcome and perceived success proba-
bility of pharmaceutical projects for aiding decisions of policy
makers, managers and financial investors.

More specifically, chapter two contrasts repeated individual
expenditure decisions in different contest treatments by vary-
ing the uncertainty of the outcomes and the number of con-
test opponents. Contests with probabilistic outcomes show
decreasing over-expenditures and a higher rate of “drop out”.
If outcomes become deterministic, expenditures quickly con-
vergence towards equilibrium predictions and a near to full
participation. These results are robust to changes in the num-
ber of opponents. A learning parameter estimation using
the experience-weighted attraction model suggests that sub-
jects adopt different learning modes across different contest
structures and helps to explain expenditure patterns deviat-
ing from theoretical predictions.

Chapter three explores the presence of latent contestant types
by applying the classifier Lasso to two versions of contest ex-
periments, one that keeps the grouping of contestants fixed
and one that randomly regroups contestants after each round.
Results suggest that there exist three distinct types of players

xxiv



in both contest regimes. The majority of contestants in fixed
groups behaves reciprocal to opponents’ previous choices. For
experiments in which contestants are regrouped, the share of
“reciprocators” is significantly lower. In both cases the re-
action of other player types seems to differ from what is ex-
pected from a myopic best-reply.

Pharmaceutical drug development can be seen as a real-world
example for lottery contest. Assessing drug candidates’ odds
of success often relies on methods based on historical success
rates. However, machine learning offers a more data-driven
approach to identify promising projects. To evaluate its use-
fulness, chapter four assesses the performance of several su-
pervised learning algorithms that are trained and validated
on a large database of projects. Using a sizeable list of project
characteristics as input data, classification via state-of-the-art
supervised learning methods is more accurate compared to
more simplistic methods. The chapter aids stakeholders in
the pharamceutical industry to make more informed deci-
sions regarding stage-specific project outcomes.

Chapter five extends the study of project outcomes by assess-
ing the relationship between product innovation announce-
ments of bio-pharmaceutical companies and their stock reac-
tions using an event study approach. We hypothesize that fi-
nancial returns that follow news on product innovation are
shaped by a “probability effect”, that depends on how in-
vestors perceive the product’s likelihood of success, and a
“portfolio effect” that depends on the relative importance of
a product within a company’s portfolio. To test for the proba-
bility effect, project specific success probabilities are estimated
via supervised learning methods. The portfolio effect is mea-
sured by the share of the product’s net present value. Market
reactions are found to be higher when assosciated to projects
with high portfolio importance but lower when associated to
projects with high expected success probability.
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Chapter 1

Introduction

1.1 General Introduction

In January 2018, the multinational company Pfizer announced its with-
drawal from the research and development (R&D) intensive Alzheimer
market, making hundreds of neuroscience discovery jobs obsolete. It
was a setback for the whole sector which permanently suffers to launch
successful cures for a market affecting approximately 44 million patients
worldwide (Crow, D., 2018). Pfizer is not an isolated case: in late 2016,
Eli Lilly released its phase III clinical trial failure which was followed
by the announcement of Merck’s failure only a couple of months after-
wards. In environments characterized by high outcome uncertainty, such
as Alzheimer research (Tanzi and Parson, 2001) and more generally drug
development, fully rational decisions are likely to be impaired (Dosi et
al., 2001), which renders learning from previous unsuccessful attempts
often not fruitful. The consequence is an inefficient allocation of efforts in
a trial-and-error search regime (Dosi et al., 2001), which in the pharma-
ceutical drug development can easily result in investment losses in the
hundreds of millions. One trivial way to avoid such a dilemma, as in the
above-mentioned case, is stopping future ventures which however im-
pedes innovative advancement of the industry. The problem of resource
misallocation seems to be pervasive in the bio-pharmaceutical industry,
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which has witnessed excessive investment in some and too little invest-
ment in other research areas (see, for example Hopkins et al., 2007; Jones
and Wilsdon, 2018), resulting in a low R&D productivity during recent
years (Lendrem et al., 2015; Pammolli et al., 2011).

Drug discovery in the pharmaceutical industry is one prevalent exam-
ple of a winner-take-all market in which companies compete for a sin-
gle prize, the exclusive market rights of a drug, whose assignment ulti-
mately depends on the relative efforts of market participants. Such en-
vironments, that feature high outcome uncertainty with current project
success independent of investments in past projects, have often been con-
ceptualized as lotteries (Sutton, 1998; Malerba and Orsenigo, 2002; Gar-
avaglia et al., 2013). To better understand how investment choices are
characterized in these environments, we thus represent them in chapter
2 and 3 by different forms of (lottery-) contests (Tullock, 1980). Since
the empirical investigation of repeated investment choices is plagued by
severe methodological limitations in non-controlled applied industrial
organization research, such as spurious regression (Bennett and J. Sny-
der, 2017) and survivor bias (Denrell, 2003), we opt for an experimental
setting. Laboratory data allows us to directly observe individual choices
free of confounding factors that usually accompany the empirical anal-
ysis of field studies. For example, individual investments in contest sit-
uations can often not be directly measured and the indirect measure, an
individual’s performance, could be confounded by other factors such as
personal ability (Dechenaux et al., 2015). By characterizing differences in
observed individual investment behavior we can draw tentative conclu-
sions that relate to similar real-world settings.

One major difference between contest experiments and real-world con-
test settings in the pharmaceutical industry is that the probability of a
project’s success is not simply determined by a company’s relative share
of R&D investment but rather by a complex interplay of various project
characteristics. Since neither the set of project characteristics that im-
pacts the success probability nor their interactions are commonly known,
it remains challenging to approximate a project’s probability of success.
Chapter 4 proposes that machine learning algorithms trained on infor-
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mation of completed projects can be used to learn more about success
factors and to improve the classification of the outcome of projects.

The steady increase in computational power combined with progress
in storing and disseminating large quantities of information has set the
stage for operating state-of-the-art machine learning algorithms that can
be flexibly used for a multitude of tasks. Prominent examples include
face and speech recognition (Yang et al., 2002; Deng and Li, 2013), but
novel applications go as far as predicting earthquakes (Rouet-Leduc et
al., 2017). In the medical-pharmaceutical area, machine learning tasks al-
ready form an integral part (Ziad Obermeyer, 2016), for example, for can-
cer prognosis (Kourou et al., 2015), for encoding neuronal activity (Bou-
ton et al., 2016), and for screening of new pharmaceutical compounds
(L. Zhang et al., 2017). All these applications have in common that they
require the assessment of a lot of information to form some sort of deci-
sion. The rules to form a decision are however not known a-priori but are
rather established by the algorithm itself using the available information.
The algorithm is colloquially said to learn.

In the pharmaceutical industry, historic information on successful and
unsuccessful projects has been collected for many years and has been
made publicly available in large online repositories such as clinicaltri-
als.gov. Yet, it goes beyond current expertise to decide what piece of
information is indicative for a project’s success and to what degree. We
show that supervised learning algorithms, after being trained on an array
of observable project characteristics, better distinguish successful from
unsuccessful projects than, for example, traditional methods that con-
sider only the historic success rate of similar projects. Shifting from
exploring how individuals make investment decisions in situations of
high outcome uncertainty in chapter 2 and 3, we present in chapter 4 a
data-driven approach to support human decision-making in such envi-
ronments.

Business environments characterized by high outcome uncertainty do
not only create challenges for companies operating in them but also for
financial investors that wish to partake at risky endeavors. Especially
news that relate to product innovation in the pharmaceutical industry
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can cause substantial shifts in companies’ stock prices (see for example
Urbig et al., 2013). Yet, even when employing modern machine learn-
ing algorithms, predicting future stock market returns is only possible
to a limited extent (Gu et al., 2018). Prior to the prediction of market
movements, one needs to develop a sound understanding of common
characteristics that drive price variation as an aftermath of innovation
announcements. We hypothesize in chapter 5 that there are two main
drivers for such of price changes, which can be approximated by using a
detailed database of pharmaceutical projects and a combination of super-
vised learning techniques. The reported results provide new insights on
market reactions after innovation announcements in environments for
which the outcome of innovation is highly uncertain.

This thesis addresses open challenges of environments of high outcome
uncertainty from different angles. Chapter 2 and 3 approach questions
related to how individual decisions can be characterized in such environ-
ments via assessing different dimensions of contest experiments. Chap-
ter 4 and 5 use large pharmaceutical data sets and various supervised
learning approaches to aid future decision-making in these environments.
The next section of the introduction addresses the structure of the the-
sis by summarizing the methodology and main findings of each chapter
separately and in more detail.

1.2 Structure and Summary of the Dissertation

The thesis is organized in six chapters of which the first chapter provides
a general introduction of the topic and sketches the content of the follow-
ing chapters.

Chapter 2 explores how individual expenditures can be characterized
in repeated contest experiments under four different experimental treat-
ments. The treatments vary in the level of competition using groups of
three or five individuals and differ in the degree of outcome uncertainty
by using winner-take-all and proportional prize contest payoff functions.
Besides reporting average expenditure levels, chapter 2 focuses on the
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share of zero expenditures, a feature that has not received much attention
in the existing contest literature. We find that players abstain more often
from expending positive amounts in treatments with higher competition
as well as in treatments with higher outcome uncertainty. Interestingly,
the share of zero expenditures in the “high-competition, high-outcome-
uncertainty” treatment rises significantly over the rounds played, which
cannot be explained by weighted forms of fictitious play that consider
previous opponent effort choices. Estimation of the experience-weighted
attraction model (C. Camerer and T. H. Ho, 1999) reveals that partici-
pants in winner-take-all contests rather employ reinforcement learning
strategies (Roth and Erev, 1995) than evaluating hypothetical payoffs of
not chosen strategies. This behavior is in line with the finding that par-
ticipants in winner-take-all contests decrease their expenditures after a
series of losses. The chapter concludes with drawing parallels and im-
plications to real world contest settings.

Chapter 3 breaks with the established tradition of contest experiments
to focus on average effects for each treatment. Instead, we adapt the
classifier-Lasso (Su et al., 2016) to be used in a fixed effects Tobit model
in order to detect player types that differ in how their expenditures re-
late to information received from previously played rounds. We detect
latent player types in two repeated contest regimes. In the first, par-
ticipants compete against the same group of opponents over all contest
rounds. In the second, participants are randomly regrouped after each
round. In both contest regimes the optimal number of latent player types
is estimated to be three, whereas the type composition changes. The frac-
tion of players that reacts reciprocal to previous opponent expenditures
is significantly higher in contests under which group assignment stays
unchanged. In these treatments we find that groups with more “recip-
rocators” display lower average expenditures which hints at their col-
laborative disposition. The chapter ends by highlighting the importance
of considering heterogeneous behavior in competitive situations under
outcome uncertainty.

Chapter 4 approaches the challenge of outcome uncertainty in drug de-
velopment by applying machine learning techniques to classify the out-
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come of pharmaceutical projects based on available historical data. Af-
ter explaining in detail the data set characteristics and the supervised
learning approach, the chapter continues by comparing the classification
results of different supervised learning methods and common estima-
tion methods. We find that the BART algorithm (Kapelner and Bleich,
2013) delivers the most accurate classification results, significantly dif-
ferent from classification results of simple decision heuristics based on
historical success rates of similar projects. The best-in-class approach is
then used to predict outcomes of the current development pipeline and
to reveal which groups of projects are predicted to be most successful.
Further, we analyze which project characteristics are most often selected
by different algorithms to be relevant for the outcome classification of
the project. As product development in the pharmaceutical industry is
a very risky and costly business, possessing insightful machine learning
estimations on projects’ success propensity is undoubtedly valuable for
many stakeholders including company managers, policy makers and fi-
nancial investors.

The study of project outcomes extends to chapter 5 by assessing the
relationship between product innovation announcements of bio- phar-
maceutical companies and their stock reactions using an event study ap-
proach. After setting up a general company stock reaction model, we de-
rive a set of hypotheses stating that returns around project-specific news
are shaped by two effects: a “probability effect”, that depends on how
investors perceive the project’s likelihood of success, and a “portfolio ef-
fect” that depends on the relative importance of a project within a com-
pany’s portfolio. To test for the probability effect, project-specific suc-
cess probabilities are estimated via a combination of supervised learning
methods. The portfolio effect is measured by the product’s net present
value over the net present value of the company right before the inno-
vation announcements. Various regression specifications and robustness
checks confirm that market reactions after product innovation announce-
ments are higher if they are associated to products of high portfolio im-
portance but lower if they are associated to products with a high suc-
cess probability. The last part of the chapter discusses the results putting
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special attention to strategies that could potentially mitigate the risks of
negative innovation announcements.

Lastly, the conclusive chapter 6 wraps up the findings of each chapter
and puts them into context by discussing their limitations, potential pol-
icy implications, and possible future extensions.
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Chapter 2

Learning and Drop Out in
Contests: An Experimental
Approach

2.1 Introduction

Settings for which outcomes are characterized by high uncertainty are
likely to undermine fully rational decisions, which can render learning
from previous attempts not successful. As a consequence, this process
may lead to an inefficient allocation of efforts in a trial-and-error search
regime, that can easily results in losses (Dosi et al., 2001). The aim of
this study is to identify, by means of experiments, how the payoff struc-
ture and the level of competition affect individual efforts in competitive
settings with uncertain outcomes.

Our candidate setting is the Tullock rent-seeking contest in which sub-
jects compete for a single prize, whose assignment probability depends
on the relative share of subjects’ efforts (Tullock, 1980). In rent-seeking
contests, subjects persistently deviate from what standard game theoret-
ical models predict. A survey of the experimental contest literature by
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Dechenaux et al. (2015) has highlighted that contestants spend on aver-
age considerably more than the theoretical equilibrium. Different moti-
vations have been proposed to explain this phenomenon, such as joy of
winning, probability distortion and impulsive behavior (see Sheremeta,
2018).

Most studies find an overall decrease in expenditures when subjects re-
peatedly play this game (e.g. Cason, Sheremeta, et al., 2012) which is usu-
ally attributed to learning without further specifying the process behind
it. Another empirical regularity that usually remains uncommented is
that participants often choose not to spend any resources in the contest.
Yet, by looking across a subset of experimental studies on lottery con-
tests, we find that zero expenditures are indeed a frequent, sometimes
even modal, choice of participants. The fraction of zero plays is higher
for larger competing groups and is increasing in late stages of the exper-
iment. We hypothesize that the frequency of non-bidding participants
increases with the perceived uncertainty about winning the prize. The
uncertainty of winning is higher in single-prize contests and increases
with the number of competitors. Moreover, if the share of zero expendi-
tures increases in the course of the repeated contest experiment, it could
be a consequence of individuals learning not to expend, which deserves
a closer investigation.

To explore how the uncertainty of outcomes and the number of oppo-
nents affect behavioral patterns such as zero expenditures in contest set-
tings, we set up a laboratory experiment in which we compare, over sixty
periods, participants’ expenditure choices in the standard winner-take-
all Tullock contest versus a non-probabilistic equivalent share contest (L.
Friedman, 1958). The winner-take-all (lottery) contest allows only for
one winner of the prize, whose winning probability is proportional to
the share of own investments over the total group investments. In the
deterministic (share) contest, contestants receive a fraction of the prize
proportional to their percentage in the group investment. Under the as-
sumption of risk-neutrality, both contest settings are equivalent in terms
of equilibrium predictions. Varying the contest type and the group size
of three and five contestants, we create a 2x2 experimental design. Our
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analysis extends to competition under different group size in order to
test if the increase in the level of competition (see Huck, Normann, and
Jörg Oechssler, 2004) may exacerbate zero expenditures, as suggested by
our meta-analysis, linked to lower earnings in share contests or more fre-
quent expected losses in winner-take-all contests.

We find that the average levels of effort observed in share contests un-
der both group sizes are well described by standard game theoretical
predictions. Conversely, in the lottery contests we are unable to distin-
guish total group expenditures between the two group sizes. The decline
of average expenditures in the five-player lottery contests coincides with
a significant increase in what we label “drop outs”, i.e. zero expenditures
that are not justified either by the myopic best-response or weighted fic-
titious play. Drop outs are instead significantly less frequent in share
contests and, if anything, decrease over time. The distinct expenditure
patterns found between the two settings suggest that differences in the
contests’ payoff structures affect subjects’ learning process.

We test this hypothesis by estimating the experience-weighted attrac-
tion model (EWA, C. Camerer and T. H. Ho, 1999). The results reveal that
lottery contestants learn significantly more from their own past payoffs
than players in the share contests (experiential or reinforcement learning
Roth and Erev, 1995). Our results support recent findings by Alós-Ferrer
and Ritschel (2018) on subjects’ frequent use of the reinforcement heuris-
tic “win-stay, lose-shift” rather than a more reasoned approach based on
myopic best-response. The reliance on experiential learning in lottery
settings can explain both the decreasing expenditures over time and the
increasing propensity of zero expenditures choices. The more often a
lottery participant loses, the more she will discourage positive expendi-
tures up to non-participation. Further regression analyses confirm that
expenditures decline significantly with an increase in prior accumulated
losses. Since experienced losses are more frequent in larger competing
groups, expenditures are expected to decrease at a faster rate. This line
of thought explains the absence of differences in total rent-seeking be-
tween groups with signficantly different size in lottery contests, contrary
to theoretical predictions.
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Previous experimental studies have explored subjects’ behavior in con-
tests, whose design or methods partially overlap with ours. For example,
Lim et al., 2014 investigate how lottery contestants’ choices differ in a ten-
period setting by varying the group size whereas Parco et al., 2005 use a
reduced version of the EWA to compare simulated choices with mean ex-
penditures in a two-stage lottery contest. Differently from them, we aim
at comparing contestants’ behavior using the share contest as a bench-
mark, as well as highlighting how different contest structures may lead
to different drop out rates and learning modes over a longer experimen-
tal set-up (60 periods). Another strand of research has compared sub-
jects’ behavior in contests with different payoff structures (e.g. Fallucchi,
Renner, and Sefton (2013), Chowdhury, Sheremeta, et al. (2014), Ghosh
and Hummel (2018)), but none has so far explored their interaction with
different group size. Fallucchi, Renner, and Sefton, 2013 propose that dif-
ferent behavior across contests with different feedback structure stems
from differences in learning methods, yet do not test this suggestion.
Similarly, the high fraction of zero expenditures has often been attributed
to myopic best-reply without proper analysis. Recently, Pangallo, Hein-
rich, et al. (2019) show that in repeated competitive settings equilibrium
predictions are usually an unrealistic assumption. Moreover, Pangallo,
Sanders, et al. (2017) show in games with a stochastic payoff component,
under certain assumptions, models of learning such as EWA do not con-
verge to the equilibrium. In this chapter we investigate experimentally
how expenditure dynamics in general, and zero expenditures in partic-
ular, can be explained by distinct learning mechanisms across contest
structures.

The chapter is organized as follows: section 2.2 introduces the contest
forms and offers a brief review of the related experimental literature on
contests, a meta-analysis on zero expenditures in lottery contests, and a
review of learning modes in related situations. Section 2.3 presents the
experimental design and procedures. The experimental results are pre-
sented and discussed in section 2.4. The first, descriptive, part of our
result section highlights differences in group expenditures and in the
fraction of zero expenditures. The second part presents the EWA model
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estimations and adds support for different learning modes across contest
games. We conclude in section 2.5 with a discussion of our findings and
argue how these results may well represent some empirical regularities
in winner-take-all settings outside the experimental literature.

2.2 Theoretical Background and Experiments

The Tullock model of rent-seeking (Tullock, 1980) has been extensively
applied for modeling competitive situations such as lobbying, patent
races, litigation lawsuits, grant seeking, etc. (Konrad, 2009). In the sim-
plified model, often referred to as lottery or winner-take-all contest, N
agents compete for a prize of size V , where xi is the amount of expen-
diture of agent i and X is the aggregate expenditure. The individual
profits πi depend on all agents’ expenditures, the prize assignment, and
a homogeneous initial endowment denoted by e:

πi =

{
e− xi + V with probability xi/X

e− xi otherwise.
(2.1)

Therefore, the probability of one agent to receive the prize increases
with own expenditures but decreases with the expenditures of others. In
an alternative version of the contest, also known as share or proportional
prize contest, the prize is not assigned to one agent only, but it is divided
across all Nagents proportionally to the fraction of own expenditures xi
and aggregate expenditures X . Thus, each agent with positive expendi-
ture receives a share of the prize. The payoff function in this case is equal
to:

πi = e− xi + V (xi/X) (2.2)

The two contests share the same expected payoffs and, under the as-
sumption of risk neutrality, the same individual effort equilibrium pre-
dictions, where x∗i = V (N − 1)/N2. However, the realized payoff in the
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lottery contest differs from the one in the share contest plausibly due to
the stochastic winner-take-all nature of the game.

Winner-take-all and share contests have frequently been used to model
a vast array of competitive situations. The early work by L. Friedman,
1958 constitutes a first attempt to use the share contest to model the allo-
cation of advertisement budget across media. Proportional-prize assign-
ments are also observed in electoral schemes (Schram and Sonnemans,
1996), lobbying (Krueger, 1974) and labor compensation (Kruse, 1992).
Winner-take-all contests are used to model situations in which the choice
of the winner does not depend solely on efforts. Applications range from
the seminal rent-seeking hypothesis by Tullock (1980), to political polls
(J. M. Snyder, 1989), sport tournaments (Szymanski, 2003), and patent
races (Fudenberg et al., 1983; Harris and Vickers, 1985).

As it is often difficult to capture expenditure dynamics with field data,
laboratory experiments have become increasingly popular in recent years
to characterize behavior in different contest settings.1 Many experiments
support pervasive over-dissipation in lottery contests paired with high
heterogeneity in effort levels across contestants (e.g. Millner and Pratt,
1989; Sheremeta and J. Zhang, 2010; Mago, Samak, et al., 2016). Based
on a sample of thirty studies, Sheremeta, 2013 report a median overbid-
ding rate of 72% compared to the equilibrium predictions. Contrary to
the lottery contests, share contests display less variation in individual
spending behavior and a quicker convergence over time towards to the
predicted equilibrium level (Fallucchi, Renner, and Sefton, 2013; Chowd-
hury, Sheremeta, et al., 2014; Cason, Masters, et al., 2018).

Since it is common to focus on mean expenditures when analyzing
overbidding in contests, the choice of zero expenditures has often been
overlooked. We summarize the data of seven contest experiments, con-
sidering in total ten independent standard repeated lottery treatments
(as specified in equation 2.1). Table 2.1 shows that zero expenditures are

1The following review of the experimental contest literature puts our research in context,
while acknowledging that, given the volume of research in this area, it is only partial and
suitable for the scope of the chapter. See Dechenaux et al. (2015) for a broad overview of
contest experiments.
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Table 2.1: Meta-analysis of zero expenditures plays in lottery contests

Group size 2 4

Number of observations 996 9000
Mode expenditures equal to zero No Yes
Share of zero expenditures 3.9% 12.0%
Share of zero expenditures that are not myopic best-
response (drop out)

3.5% 6.0%

Share of drop out over share of zero expenditures 89.7% 50.0%

The meta-analysis incorporates data from ten treatments of seven publications using
repeated standard lotteries. Two players: Abbink et al., 2010, Cason, Sheremeta, et al.,
2012. Four players: Mago, Samak, et al., 2016, Sheremeta, 2010, Sheremeta and J. Zhang,
2010, Price and Sheremeta, 2011, Sheremeta, 2011.

the modal choice in four-player lottery contests making up 12% of the
total choices and are increasing over time (see figure 2.1). In the two-
player settings the share of zero expenditures is lower (3.9%) and stable
over time. Yet, most of them, especially in later periods, are not a my-
opic best-response to previous opponent choices. We refer to these sort
of zero expenditures as “drop out”. In four-player treatments on average
50% of the zero expenditures are drop outs - a share that is increasing
over time.

The contest literature has focused on explanations for overbidding (e.g.
bounded rationality (Lim et al., 2014), heterogeneous preferences (Shupp
et al., 2013), and utility from winning (Schmitt et al., 2004)) and treats
zero expenditures simply as best-repsonse to the well-studied over dissi-
pation. Given the collected evidence from prior studies, this cannot be an
exclusive explanation. An alternative motivation, that we explore in this
chapter, is that lottery contestants in larger groups choose zero invest-
ments with increasing frequency because it is in line with their applied
learning rules.
We are aware of a handful of studies that analyze learning in repeated
games with stochastic outcomes. They differ from our experimental set-
ting and learning identification strategy in many aspects. Yet, they sup-
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Figure 2.1: Fraction of zero expenditures over time from meta-analysis
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port the use of simple learning heuristics by decision makers. Gun-
nthorsdottir and Rapoport, 2006 find that reinforcement learning (Roth
and Erev, 1995) explains aggregate efforts in a two-stage group game
with an inter-group lottery in the first stage. Reinforcement learning
combined with directional learning (Selten and Stoecker, 1986) describe
well individuals’ behavior of a Tullock contest with group size uncer-
tainty (Boosey et al., 2017). In addition, learning spillovers between
share and lottery contests are found in a within-subjects experiment by
Masiliūnas, 2019. Even though learning behavior in the share contests
has so far only received minor attention in the literature, the expected
payoff structure provides a useful benchmark to observe behavior in the
standard contest, and allows us to treat them as a special case of the
more commonly studied Cournot oligopoly.2 Evidence on learning from
oligopoly experiments suggests that players employ a mix of sophisti-
cated and imitative learning. For example, Bigoni and Fort, 2013, with
an application of a modified EWA model to a Cournot game under en-
dogenous information disclosure, find that participants use a mixture of

2The payoff structure of the share contest resembles a Cournot oligopoly with iso-elastic
inverse demand function plus a constant. See Engel (2007) for a meta-analysis of over 500
experimental studies of oligopoly settings.
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reinforcement, imitation and belief learning, with the latter accounting
for the major share.3

Lastly, learning models have been used to explain behavior in repeated
auction experiments. From the bidders’ perspective, auctions look simi-
larly stochastic to lotteries, since the value of the prize is usually drawn
for each bidder from a random distribution so that bids submitted by ri-
vals appear uncertain. In addition, overbidding is commonly observed
in first-price auctions (Filiz-Ozbay and Ozbay, 2007). Reinforcement and
observational learning is found to reduce overbidding in first-price com-
mon value auctions (Garvin and Kagel, 1994) while directional learning
can explain repeated individual bids (Neugebauer and Selten, 2006).

2.3 Experimental Design and Procedures

The experiment was designed based on the software z-tree (Fischbacher,
2007) and carried out at the University of Nottingham.4 A total num-
ber of 140 students, recruited from various field of studies via the on-
line recruiting system ORSEE (Greiner, 2015), acted as participants. No
participant took part in multiple sessions or participated previously in
experimental contest settings.

With the start of each session, the experimenter walked the participants
through the experimental instructions (see Appendix A.3) and privately
answered their possible questions. To ensure that information passes
only via the intended channels of the contest experiment, other forms of
communication between participants were prohibited. Participants were
randomly assigned to an anonymous group that did not change over the

3Other studies on learning in oligopolies find evidence for imitative learning (Vega-
Redondo, 1997) (such as Huck, Normann, and Jorg Oechssler, 1999; Jörg Oechssler et al.,
2016; D. Friedman et al., 2015), myopic best-response dynamics (Bigoni, 2010) and rein-
forcement learning (Jiao and Nax, 2017).

4The experiment was administered by my co-author, Francesco Fallucchi. Its underlying
characteristics and instructions, apart for the treatment assignment and the handling of
information feedback, follow the experimental set-up outlined in Fallucchi, Renner, and
Sefton, 2013. The set-up of the experiment is detailed since it adds to the understanding of
the subsequent results.
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course of the experiment and for which individual identities were kept
concealed.

Participants took part in the contest experiment for a total of sixty pe-
riods.5 At the beginning of each period, each participant received an
endowment of 1000 points. Then, participants simultaneously decided
how many points to use in the prize competition with total worth of
1000 points. Points that were not spent were accumulated to each in-
dividual balance. After each period, points that were possibly won in
the prize competition were added to the this balance. In the case that no
group member decided to participate in the prize competition, the prize
was not disbursed. We adopt a 2x2 design where treatments differ in the
group size, with three (3) or five (5) contestants, and the contest struc-
ture, share (S) or lottery (L). 3S, 5S, 3L and 5L are the treatment notations
used throughout the rest of the chapter. We conducted two sessions for
each treatment, either with 15 or 20 subjects, resulting in ten independent
observations in treatments with three-player groups and eight indepen-
dent observations in treatments with five-player groups. A summary of
the treatments is reported in table 2.2.

After each period, participants were reminded of their own choice and
informed about the total expenditures of the other members of the group
to which they belong and their own earnings. We opted for this “partial”
feedback disclosure to rule out imitative behavior among contestants,
although we could not rule out the other simple behavioral rule of im-
itating the average expenditures by opponents in the previous round.6

The points that participants earned over the experiment were added and
converted into a cash equivalent, which was privately paid out after each
session. On average, participants received £9.30 for an hour of partic-
ipation time. At the end of the experiment, we conducted a question-
naire that encompassed demographic questions and an individual risk

5The period length in most reviewed experimental studies does not exceed sixty peri-
ods. Exceptions are the studies by D. Friedman et al., 2015 and Jörg Oechssler et al., 2016
of continuous time games for 1200 periods.

6We check the fraction of players whose choice imitates average opponents’ expendi-
tures of previous rounds in Appendix A.2 table A.2. The fraction of imitation is signifi-
cantly lower in lottery treatments and not increasing over time.
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attitude assessment using a survey measure previously tested for a rep-
resentative pool of subjects (see Dohmen et al., 2011).7 The two contest
structures share the same expected payoff and, under the assumption
of risk neutrality, the same Nash equilibria. Introducing risk aversion
could potentially alter theoretical predictions, however the direction and
the extend of the effect of risk aversion on contest expenditures remains
ambiguous under general conditions (Skaperdas and Gan, 1995; Konrad
and Schlesinger, 1997). Also in the experimental literature there seems
to exist no consensus regarding the effect of risk attitude on contest ex-
penditures (see for example Shupp et al., 2013; Mago, Sheremeta, et al.,
2013). To be able to compare both contest structures, we thus main-
tain the assumption of risk neutral contestants. The theoretical predic-
tion of symmetric group expenditures under risk neutrality, given by
x∗ = NV (N − 1)/N2, corresponds to 666.6̄ points for three-player con-
tests and to 800 points for five-player contests.8 Hence, predicted equi-
librium expenditures at individual level are 222 and 160, respectively.

Table 2.2: Experimental 2x2 composition

Group Size
N=3 N=5

C
on

te
st

Share 3S 5S
10 groups 8 groups

Lottery 3L 5L
10 groups 8 groups

7Subjects answered on a Likert scale from 1 to 7: “How willing are you to take risks, in
general? Unwilling to take risks (1) Fully prepared to risks (7)”. We do not find significant
differences of risk scores across treatments. Appendix A.1 addresses the relevance of risk
attitudes on expenditures in more detail.

8See Appendix A.5 for a derivation of the Nash equilibrium.
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2.4 Results

We lay out the results in two sub sections. In section 2.4.1 we illustrate the
spending- and participation behavior of contestants of all treatments. In
section 2.4.2 we illustrate how EWA estimation results differ across treat-
ments and analyze expenditures using Tobit mixed effect regressions.
Reported p-values (p) for within-treatment comparisons between the two
halves of the experiment rely on Wilcoxon matched-pairs signed-rank
tests. For comparisons between treatments we report p-values of two-
sided Wilcoxon rank-sum tests, for which the independent observations
are formed on the group level.

2.4.1 Group Expenditures and Participation

Result 1. (a) Average group expenditures in share contests increase signifi-
cantly with an increase in the group size. (b) Average group expenditures in
lottery contests, contrary to predictions, do not significantly increase with an
increase in the group size.

Figure 2.2 shows the average group expenditure patterns of all treat-
ments relative to their predicted theoretical equilibria. In all cases, the
initial expenditures lie substantially above the Nash equilibrium pre-
dictions. In the share contests, mean expenditures are higher in larger
groups and decline quickly to a level close to the equilibrium where they
exhibit no noticeable time trend thereafter. This result is in line with
previous experimental evidence. Instead, we find the results of the lot-
tery contest surprising: over-expenditures compared to the predicted
equilibrium levels are persistent throughout the experiment, but aver-
age expenditures do not differ across different group size. Moreover,
over the longer horizon, total expenditures are lower in larger groups,
sometimes even below the level predicted by the Nash Equilibrium. We
report in table 2.3 the average group expenditures for the first, second
half, and overall periods and p-values of within- and between-treatment
comparisons. In the share contests we find that average total expendi-
tures are significantly higher in 5S than in 3S for all intervals considered
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(all p 6 0.01). Contrary to the share contests, between-treatment com-
parisons of lottery contests at group level confirm the pattern observed
in figure 2.2, with an overall similar level of expenditures for all intervals
considered (all p > 0.25). Hence, we cannot reject the hypothesis that
group expenditures of winner-take-all contests under different contest
size are the same.9

Table 2.3: Average group expenditures, group comparisons for 1st half, 2nd

half and all periods between and within treatments.

Average Group
Expenditures
(Standard
Errors)

3S 5S 3S vs 5S
p-value

3L 5L 3L vs 5L
p-value

All periods
692.41
(11.73)

880.90
(12.67) 0.01

960.80
(21.74)

1055.94
(38.94) 0.53

Period 1-30
740.25
(20.43)

909.99
(13.12) 0.01

1039.05
(27.67)

1243.23
(46.52) 0.25

Period 31-60
644.57
(11.91)

851.81
(16.54) 0.01

882.54
(20.65)

868.65
(35.50) 0.72

1-30 vs. 31-60
p-value

0.24 0.12 0.09 0.01

Our finding contradicts theoretical results that predict higher group ex-
penditures for larger groups. Previous studies that explored behavior in
contests with different group size have supported the theoretical claim,
yet considered only one-shot decisions (Anderson and Stafford, 2003) or

9For completeness, we report within-treatment comparison of expenditures in the two
halves of the experiment. Results differ across the different contest structures. In both share
contests, expenditures are not significantly different in the second half of the experiment
compared to early periods (3S: 740 vs. 645 points, p = 0.24; 5S: 910 vs. 852 points, p =
0.12). In lottery treatments we observe a significant decrease in group expenditures over
time, sharper for larger groups, which consequently leads to the similar expenditure levels
observed between 3L and 5L (3L: 1039 vs. 883, p = 0.09; 5L: 1243 vs. 869, p = 0.01).
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Figure 2.2: Average group expenditure across treatments over time
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ten repetitions (Lim et al., 2014).10 Over a longer time horizon, average
group expenditures seem to show different dynamics.

Result 2. (a) The fraction of zero expenditures is significantly higher in the lot-
tery contests than in the share contests and increases significantly over time for
larger lottery groups.

Our results question the hypothesis that expenditures in the lottery con-
tests converge towards group size dependent equilibria. We thus look for
justifications that explain the decrease of expenditures in another com-
mon finding from contest experiments: the zero expenditures. To get
a first glimpse of the prevalence and dynamics of zero expenditures in
contests, we compute the total fraction of zero expenditures across treat-
ments. The findings confirm our initial hypothesis that zero expenditures
are more frequent for contest treatments with higher payoff uncertainty.
The total share of zeros increases with group size (3S vs. 5s: p = 0.01, 3L
vs. 5L: p = 0.01) and is more pronounced in the lottery contest (3S vs. 3L:
p < 0.01, 5S vs. 5L: p < 0.01) reaching up to 40% in the late game of 5L.
Moreover, as shown by the black lines in figure 2.3, the fraction of zero
expenditures is stable across time in 3L (periods 1-30 vs. 31-60 p = 0.92)
and increases in 5L (periods 1-30 vs. 31-60 p = 0.09). Result 1(b) can thus
be explained by the increasing fraction of zero expenditures in 5L which
lead to a faster decrease in average group efforts than in 3L.

An intuitive justification for the pronounced fraction of zero expen-
ditures in the lottery contests is that players expect their opponents to
overbid.11 Since we cannot observe players’ expectations on future op-
ponent expenditures, we assume that expectations are formed based on
past opponent behavior. Thus, we assess if zero expenditures are a best
response (BR) given the history of opponents’ decisions using two forms

10Another experiment, by Morgan et al., 2012, spans over fifty periods. However, the
group size formation in their case is endogenous and therefore not comparable to ours
where all players are active.

11If a player expects that opponents will spend in total 1000 or more, it is individually
payoff maximizing to abstain from bidding. A mathematical demonstration can be found
in Appendix A.5.
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of “weighted-fictitious play”. A choice j of player i in period t + 1 is
justified under weighted fictitious play if j maximizes the following ex-
pression:

argmax
j

(φt−1πi(sji , s−i(1)
)

+ . . .+ φ1πi
(
sji , s−i(t− 1)

)
+ πi

(
sji , s−i(t)

)
φt−1 + . . .+ φ+ 1

)
(2.3)

Figure 2.3: Fraction of zero expenditures across treatments over time
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(a) 3S
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(b) 5S
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(c) 3L

0.
0

0.
1

0.
2

0.
3

0.
4

F
ra

ct
io

n 
of

 z
er

o 
ex

pe
nd

itu
re

s

1−
5

6−
10

11
−1

5

16
−2

0

21
−2

5

26
−3

0

31
−3

5

36
−4

0

41
−4

5

46
−5

0

51
−5

5

56
−6

0

Periods

Total zero expenditure Zero expenditure under fict. play

Zero expenditure under myopic BR

(d) 5L

The parameter φ acts as a discount factor. If φ = 0, then the expression
reduces to the myopic BR case of argmaxj

(
πi
(
sji , s−i(t)

))
which denotes

the maximal hypothetical payoff of player i choosing from expenditure
levels j given the choices of its opponents s−i at time t (reported as the
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dashed lines in figure 2.3). At the other extreme, when φ = 1, all hypo-
thetical past payoffs from strategy j are weighted equally for each pe-
riod. In this case the best choice is the one that would have resulted in
the highest average payoff across all rounds played, also known as “fic-
titious play” (reported as the gray lines in figure 2.3).

Most zero choices in lottery contests can neither be justified by my-
opic best-responses nor by fictitious play (average fraction of zeros not
justified by myopic best-responses: 66% in 3L, 62% in 5L; by fictitious
play: 87% in 3L, 81% in 5L).12 Yet, myopic best-responses account for
more choices than fictitious play, consistent with the previous findings
by Rockenbach and Waligora (2016) that lottery contestants hold myopic
beliefs. We hence focus on the zero expenditures that are not explained
by a myopic best-response and define them as drop outs. In case of a
drop out a player decides to spend nothing even if it is payoff maxi-
mizing to bid a positive amount based on a myopic best-response. The
average fraction of drop out per round can be assessed from figure 2.3
as the difference between the fraction of total zero expenditures and the
fraction of zero expenditures under a myopic best-response.

Result 2. (b) The fraction of drop outs is higher in lottery contests and increases
in the five-player lottery.

Drop outs in share contests are more frequent in larger groups (3S vs.
5S: p = 0.04) yet their fraction is relatively low when compared to lottery
treatments and stable over time (average fraction of drop out over all
choices in 3S: 1%, 5S: 8%, 3L: 11%, 5L: 21%). In the lottery contests the
drop out fractions are higher and differ not only in group size but also
with respect to the share contests (3S vs. 3L: p < 0.01, 5S vs. 5L: p = 0.01,
3L vs. 5L: p = 0.02). The quota of drop out is highest in 5L and increases
significantly over time (periods 1-30 vs. 31-60 p = 0.04) while we do not
find such an increase in 3L (periods 1-30 vs. 31-60 p = 0.22).

12The fraction of zeros that would be justified by weighted fictitious play with discount
factors different from 0 or 1 lies between the fractions of the extreme cases.
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From the previous analysis we deduce that the common decreasing pat-
tern in average expenditures, which we observe in all treatments, may
be driven by different behavior, depending on the contest structure. Al-
though in share contests we are far from having the whole contestants
managing to achieve the equilibrium level, the decrease in average ex-
penditures hints towards a process of learning to play optimal strate-
gies.13 Conversely, the decrease of expenditures in the winner-take-all
contests can largely be attributed to an overall drop out effect, that is not
explained by forms of fictitious play.14 We hypothesize that the differ-
ences in the contests’ payoff structures have non-negligible effects on the
learning process. The results from the EWA learning model in the next
section further explore this thought.

2.4.2 EWA Model Estimation and Interpretation

In the previous section we have shown that the structure and group size
of the contest affect total expenditures and expenditure dynamics. Dif-
ferences in expenditures over time suggest that individual behavior is
driven by different learning paths across contests. To test for aggregate
learning differences between treatments, we estimate for each treatment
the EWA model (C. Camerer and T. H. Ho, 1999). In our estimations, we
group the 1001 expenditure choices into K = 11 bins of equal distance
and round all choices to the closest bin to facilitate comparability.

Every contestant i forms each period t a set of j “attractions” denoted
byAji (t), which get recursively reinforced or weakened after every round.
Attractions are updated as follows:

13The heterogeneity of plays are in line with the previous findings in oligopoly experi-
ments: e.g. Rassenti et al. (2000).

14In addition, we evaluate a simple reinforcement rule that assumes participants choose
a lower effort than in the previous period if their payoff was negative and the same effort
otherwise. Figure A.1 in Appendix A.2 shows that the fraction of zero expenditures are
quite well captured by this decision criterion, which motivates the use of the EWA model
that combines weighted fictitious play with reinforcement learning.
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Aji (t) =
φ ·N(t− 1) ·Aji (t− 1)

N(t)
+

δ · E[π(s−ji (t), s−i(t))]

N(t)
+

(1− δ) · π(sji (t), s−i(t))

N(t)

(2.4)

where sji (t) refers to the actual strategy j chosen by player i in pe-

riod t while s−ji (t) denotes all the possible strategies in the same pe-
riod. Defining s−i(t) as the strategy vector chosen by all other players,
the payoff of player i choosing j in t is given by πi(s

j
i (t), s−i(t)). Simi-

larly, E[πi(s
−j
i (t), s−i(t))] denotes the hypothetical payoff of player i that

would have been expected for any possible strategy j given the strate-
gies of all other players. Since the prize assignment in the share contest is
deterministic, this expression simplifies to πi(s

−j
i (t), s−i(t)) and is equiv-

alent to the expected hypothetical payoff of the lottery contest given risk
neutrality. N(t) is a weight on past experience. The faster N(t) increases
in t, the less players focus on immediate current payoffs at time t. The
weights update using the following rule, where the parameter κ deter-
mines the growth rate of attractions, which reflects how quickly players
lock into a strategy:

N(t) = (1− κ) · φ ·N(t− 1) + 1, t ≥ 1. (2.5)

The current attractions of the array of possible strategies J determine
the probability of player i choosing strategy j in the next period t + 1.
A logistic transformation links previous attractions to the choice proba-
bilities (equation 2.6). Thus, the higher a contestant’s past attraction for
a specific strategy, the higher the probability that this strategy will be
pursued in the next round.

P ji (t+ 1) =
eλ·A

j
i (t)∑J

k=1 e
λ·Aki (t)

(2.6)
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Table 2.4: Description of estimated EWA parameters

Parameter, Domain Description

δ ∈ [0, 1] Weight of hypothetical payoffs. The higher δ, the more (less)
weight is assigned to own hypothetical (realized) payoffs.
δ = 0 (δ = 1) corresponds to pure reinforcement (belief)
learning.

N0 ∈
[
0, 1

1−(1−κ)φ
]

Weight of pre-game attractions. Indicates how many peri-
ods of experience are required to offset pre-game attractions.
The boundaries ensure that the weights of N(t) are increas-
ing in t.

κ ∈ [0, 1] Growth property of attractions. If κ = 0, then current at-
tractions are a weighted average of past attractions and past
payoffs. If κ = 1, attractions accumulate and can grow
larger than present payoffs.

φ ∈ [0, 1] Decay rate of attractions from past rounds. The smaller
φ, the faster are past attractions discounted and the more
weight is assigned to attractions of the present round.

λ ∈ [0,∞) Sensitivity measure of attractions. The higher λ, the more do
present attractions matter to determine choice probabilities
of future actions. λ = 0 implies that choice probabilities are
not influenced by attractions.
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Attractions for each strategy are updated via weighting the three sum-
mands in equation 2.4: first, the previous experience discounted by fac-
tor φ, second the current forgone payoffs, and third the current received
payoff. Current forgone payoffs are the payoffs that could have been
expected if the contestant had chosen differently by keeping the oppo-
nents’ strategies fixed. Formation of attractions via evaluating forgone
payoffs is equivalent to belief learning (a version of weighted fictitious
play, Brown, 1951) whereas focusing exclusively on realized payoffs (i.e.
when delta (δ) is zero) reduces the model to reinforcement learning (Roth
and Erev, 1995). Thus, the EWA model incorporates two canonical learn-
ing models via the parameter delta.15

We show in table 2.5 for each treatment the simulation results of the
EWA expenditures distribution using varying δ (0, 0.5, 1) and our ob-
served expenditures frequencies. As δ increases towards belief learning
the simulated choices show less variation and roughly resemble the true
expenditures frequencies in the share contests. The true distribution of
expenditures in the lottery contest is more disperse which is why we as-
sume that lottery contestants rely less on belief learning than share con-
testants.

Result 3. Share contests allow for a mixture of reinforcement and belief learn-
ing. In winner-take-all contests, learning is mostly driven by previous own
payoffs.

For each treatment the EWA model is estimated over the first half and
the complete sample via a Maximum Likelihood procedure.16 Estimated
parameters and their theoretical domains are summarized in table 2.4.
We refrain from freely estimating initial attractions by following the ap-

15We use a parameterized version of EWA since it allows us to explicitly estimate δ for
each treatment. Whereas a single factor EWA (T.-H. Ho et al., 2001) is suitable to model
average contest choices as in Parco et al., 2005.

16In the EWA model we abstain from estimating separately the second half of the game
since the estimation of the second half only would require that initial attractions of period
31 reflect the complete knowledge formed in the first half of the game and thus possibly
results in information loss.
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Table 2.5: Simulated EWA expenditures distribution and observed expen-
ditures distribution

δ = 0 δ = 0.5 δ = 1 Observed

3S

5S

3L

5L

The first three columns show the relative frequency of expenditures for the
EWA simulations, the forth column shows the true expenditures distribu-
tion. For each setting 600 players were simulated and experimental specifi-
cations were kept unchanged. Each treatment is simulated for δ = 0 (rein-
forcement learning), δ = 0.5 (equal mix between reinforcement- and belief
learning), and δ = 1 (belief learning). All other EWA parameters were kept
constant at moderate levels for each simulation (λ = 1, φ = 0.8, N0 = 0,
κ = 0.8, initial attractions=0).
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proach used in T. H. Ho et al., 2008 and choose the initial attractions to
maximize the likelihood of observing first period choice frequencies.17

We report in table 2.6 the estimated parameters with their clustered
standard errors and confidence intervals in parentheses.18 The main pa-
rameter of interest in our estimation analysis is δ, that indicates the de-
gree of belief learning used in the game. In the share contests δ are sig-
nificantly greater than zero, between 0.59 and 0.67, suggesting that play-
ers adopt a mixture between reinforcement learning (considering own
realized payoffs) and belief learning (considering all own hypothetical
payoffs). On the contrary, players in lottery contests mostly rely on re-
inforcement (experiential) learning, as δ are significantly closer to zero.
This is especially true for the early stage of the game (0.02 for 3L and 0.13

for 5L). As players get more familiar with the game, they shift slightly
towards belief learning in all treatments. Nevertheless, the difference be-
tween share and lottery contests remains substantial.19 One can argue
that belief learning is more complex, since it requires to evaluate for each
possible strategy the expected payoffs given the opponents’ set of strate-
gies. The evaluation of hypothetical scenarios could be more difficult in
lottery contests due to the discrepancy between expected and realized
payoffs. It has been shown that individuals lock-in expenditures at inef-
ficient levels in low δ scenarios (Pangallo, Sanders, et al., 2017).

17The traditional EWA model considers only choices that are shaped by past attractions
while later versions add sophistication to allow for choices based on expectations of oppo-
nents behavior (e.g. C. F. Camerer et al., 2002). A sophisticated player forms a best-response
from forecasting the actions of all other players. Since including additional free EWA pa-
rameters increases the danger of overfitting the model, we instead check for sophistication
via the Quantal Response Equilibrium (QRE) model of McKelvey and Palfrey, 1995. In the
QRE model, sophistication is captured via the precision parameter λQ. The higher λQ,
the more sophisticated are the overall choices. We find significantly lower λQ for lottery
treatments. The estimation results of the QRE model can be found in Appendix A.4.

18Standard errors are clustered at individual level. Group level clustering is not neces-
sary, due to random assignment of individuals to groups (see Abadie et al., 2017). A set
of less conservative estimations without clustering adjustments at individual level is pro-
posed in Appendix A.2 table A.3.

19To rule out the possibility that the reported delta estimates are due to our specific EWA
estimation set up, we run three additional EWA specifications in which we limit the number
of freely estimated parameters. The first specification assumes N0 = 0, the second adds
that all initial attractions are zero, and the third additionally sets κ = 0. For all three
specifications we obtain delta estimates similar to our reported results. See Appendix A.2
table A.4.
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Other parameter estimates are similar across various estimations. We
find N0 below one in all estimations, which indicates that pre-game at-
tractions are offset completely by first period attractions.20 Kappa (κ),
which measures the growth property of attractions, is significantly differ-
ent from zero in the first half of the game, indicating that the importance
of past attractions grows over time. The decay rates of past attractions in-
dicated by phi (φ) are significantly different from zero, but similar across
and within treatments, on average between 75% in the share contest and
81% in the lottery contest. Although the difference is negligible, this indi-
cates that lottery contestants may rely more on their past experience. This
result is consistent with the idea that present payoffs in lottery contests
reveal less useful information. Finally, lambda (λ) is significantly differ-
ent from zero for all specifications, indicating that contestants’ choices
are influenced by attractions formed in past rounds.

The EWA parameter estimation uncovers a noticeable difference in learn-
ing between the share and lottery contests. A strong reliance on own real-
ized payoffs by subjects in lottery contests conveys that current decisions
depend on the success of the previous ones. Victories reinforce the prob-
ability of playing the corresponding level of expenditure, while losses
make the corresponding expenditure level less attractive in forthcoming
periods. If a subject experiences frequent losses, positive expenditures
levels will, over time, become less appealing to the advantage of zero
expenditures. Following this thought, the fraction of zero expenditures
should be higher in contests with a higher share of non-winners. This
reconciles with our results in section 2.4.1 that show that the fraction of
drop outs is significantly higher in lottery treatments than in share treat-
ments and increases significantly over time in larger groups. If lottery
contestants rely indeed on previous own experiences, then we should
observe a drop of expenditures after a series of losses.

20An influence of pre-game attractions is not expected from the experimental design,
since none of the participants was previously familiar with the contest setting.
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Result 4. (a) Lottery contestants significantly decrease expenditures after the
accumulation of losses. (b) The effect is more pronounced for bigger groups.

We expect a negative relationship between the length of the series of
losses prior to time t and the expenditure level at time t. We assess this
relationship, using a set of Tobit mixed effect models.21 The model as-
sumes that expenditures levels are left censored at 0 with random effects
at individual and group level. In all models we regress the expenditures
at t on previous own expenditures, previous opponents’ expenditures
(linear and squared) and a variable capturing the time trend.22 We check
the relationship between prior losses and current expenditures via the
variable loss streak defined as the accumulated, (negative) payoff from
consecutive losses prior to time t relative to contestants’ endowment. Af-
ter each incurred loss, the variable decreases by the foregone profits that
would have been received by choosing to not spend the endowment.
Consequently, a loss streak remains unchanged for zero expenditures. If
the contest has been won in the previous period, the contestant’s loss
streak is reset to zero.

Model (1), for 3L, and (4), for 5L, in table 2.7 contain only control vari-
ables. In both lottery treatments the influence of prior expenditures on
current choices is positive and significant, while the effect of period ad-
vancement is negative and significant. In models (2) and (5) we find a
positive and significant effect of the loss streak, indicating that the accu-
mulation of losses indeed leads to a decrease in expenditures. The effect
is more significant in 5L for which individual loss accumulation is on av-

21It might seem suitable to use a hurdle model (Moffatt, 2015), as individuals first choose
whether to participate and subsequently decide their expenditure level. However, its re-
quirements for panel data are too rigid given our setting. In particular, hurdle models
classify a subject as “zero contributor” if own expenditures remain zero over all periods.
Since we do not observe “zero contributors” per se, but rather an increasing tendency of
contestants to choose zero expenditures over time, we opt for the more flexible Tobit mixed
effect model.

22The use of lagged expenditures as explanatory variable requires stationary panels,
which we test for using the Levin-Lin-Chu unit root test for panel data (Levin et al., 2002).
We reject the hypothesis that lottery expenditures follow a unit root process (p<0.00). We
include the square term of other expenditures in t− 1 since the myopic best response func-
tion is concave and thus better approximated by a quadratic polynomial.
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erage higher given the lower unconditional probability to win the con-
test. We further analyze the loss streak effect in (3) and (6), where we addi-
tionally control for the contestants’ gender. As an exploratory result, we
find that women spend on average more than men.23 From (3) we find
that splitting the loss streak variable with respect to gender does not lead
to significant effects on expenditures. Yet when increasing the group size
(6), the accumulation of prior losses significantly decreases the expendi-
tures for both genders, for women more sharply than for men. This last
result has been similarly observed in experimental tournaments (Buser,
2016).

The regression results support the claim that decreasing expenditures
in the lottery contest are driven by previous lottery outcomes. With the
cumulation of losses, contestants tend to lower their expenditures and
may, over time, drop out of the contest.24 Since individual losses accumu-
late longer when facing more opponents, the decrease of expenditures is
more pronounced in 5L.

2.5 Final Discussion

Our contribution to the literature is two-pronged. First, we offer a clean
comparison of how subjects behave across different contest structures.
The witnessed behavioral discrepancy between contest types might be
connected to the probabilistic prize assignment in the lottery that influ-
ences how contestants form their choices. We hypothesize that share and
lottery contestants use distinct learning strategies that may also explain
another expenditure peculiarity, that tends to be overlooked: the modal
choice in lottery contests is often zero.

We find that, in discord with theoretical predictions, group size does not
affect total investments in lottery contests. The decrease of investments

23In line with findings from prior contests experiments such as Price and Sheremeta, 2015
and Brookins and Ryvkin, 2014.

24To analyze the effect of loss cumulation on the likelihood of zero expenditures we re-
port a random effects logit regression in Appendix B table A.5. We find that a prior loss
streak significantly increases the probability of zero expenditures in 5L. For 3L we find that
the effect goes in the same direction but is not significant, which might be due to the lower
loss cumulation in 3L.
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Table 2.7: Tobit mixed effects regression on lottery expenditures.

Dependent vari-
able:

3L 5L

Expenditurest (1) (2) (3) (4) (5) (6)

Expenditurest−1 0.40*** 0.40*** 0.40*** 0.20*** 0.16*** 0.116***
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Other 0.03 0.05 0.06 -0.03 0.02 0.02
Expenditurest−1 (0.05) (0.05) (0.05) (0.04) (0.04) (0.04)
Other -0.00 -0.00 -0.00 0.00 -0.00 -0.00
Expenditures2t−1 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Period -1.41*** -1.37*** -1.35*** -3.71*** -3.43*** -3.36***

(0.42) (0.42) (0.42) (0.46) (0.45) (0.45)
Loss streak 0.02* 0.00 0.07*** 0.04*

(0.01) (0.02) (0.01) (0.02)
Female 85.00* 83.26

(49.57) (85.71)
Female×Loss
streak

0.03 0.05**

(0.02) (0.02)
Constant 197.48*** 199.64*** 145.54*** 192.06*** 223.29*** 161.54**

(34.14) (34.44) (45.50) (45.30) (46.02) (77.05)

Obs. 1770 1770 1770 2360 2360 2360

Multilevel Tobit mixed effects model; Standard error in parenthesis. P-values: *6 0.10,
**6 0.05, ***6 0.01, Obs. is the number of observations.

in large-group lottery contests is influenced by an increasing fraction of
zero expenditures. A substantial number of these zero expenditures is
not justified by myopic best-responses (or other forms of fictitious play)
and defined by us as “drop out”. Even though the drop out rate is lower
for share contests, the average expenditures converge to theoretical pre-
dictions which suggests that spending behavior across contests is formed
by distinct learning processes.

A parameter estimation of the EWA model in all treatments indicates
that lottery contestants decide mostly based on the information gath-
ered from their own realized payoffs. Since success in the lottery con-
test is stochastic, subjects who base their investment decision entirely on
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their previous decisions are less able to adapt their strategies in a payoff-
optimizing fashion. On the contrary, participants in the share contests
rely on a mixture of own realized payoffs as well as foregone payoffs.
This may be facilitated by the deterministic nature of the payoffs in the
share contest. The distinct learning patterns estimated in the two con-
test environments do not significantly change over time and are robust
to changes in the number of players.

Repeated losses that subjects face in the lottery contests decrease over
time the reinforcement of positive expenditure levels and consequen-
tially zero expenditures, irregardless of being a myopic best-response,
become more appealing. Our regression results add to this thought by
showing that the cumulation of prior losses leads to a significant decrease
in expenditures which is more pronounced in bigger groups. The higher
drop out rate in the five-player lottery is presumably driven by the faster
accumulation of individual losses. As a consequence, an increase in the
group size does not necessarily increase total rent-seeking.

In a society full of embedded lottery contests our results obtain practical
relevance. First, it may be beneficial in rent-seeking situations, such as
lobbying, that an increase in contestants does not significantly change to-
tal rent-seeking effort. Contrary, in case a high sum of efforts is favored,
such as in a philanthropic fund-raising lottery, increasing the pool of par-
ticipants might not lead to the desired effect if the individual loss proba-
bility is increasing simultaneously. Second, decisions not to invest can be
aggregated on a macro-level to the so called “industry shakeout”, i.e. a
significant reduction in the number of active firms during the expansion
of new industries (see Gort and Klepper, 1982; Klepper, 1996; Klepper,
1997). One traditional explanation for firm exit dynamics postulates that
market participants use Bayesian updating to learn their true ability of
operating in the market (Jovanovic, 1982; Jovanovic and Nyarko, 1995).
Thus, firms decide to exit assessing their past performance. Our find-
ing, that participants invest less after losses and potentially drop out of
the contest due to non-reinforcement of positive payoffs, takes a similar
line. Third, similar to firms that misallocate R&D efforts in environments
with random outcomes (Ahuja and Novelli, 2017), we stress the diffi-
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culty of players to form rewarding learning strategies in highly uncertain
domains. A well-known domain that is characterized by high outcome
uncertainty is the drug discovery in the pharmaceutical industry, which
has been conceptualized as la lottery (Sutton, 1998). Understanding how
individuals form decisions may help to better address challenges that
companies in such environments face.

The presented work calls for a better understanding on how contes-
tants learn in highly uncertain environments, such as winner-take-all
contests with many participants, and how their decision-making abili-
ties can be improved. In addition, the observed drop out effect and its
relationship to group size and possibly other contest characteristics de-
serves increased attention to better bridge the gap between experimental
findings and theoretical explanations of contestants’ behavior.
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Chapter 3

Identifying Types in
Contest Experiments

3.1 Introduction

The characterization of heterogeneous behavior has a long tradition across
economics disciplines. Various approaches, from revealed preferences to
newly developed econometric models, have been used to define subjects’
behavior in parsimonious and yet tractable ways. These methods receive
notable attention by behavioral economists, who have a long tradition in
designing experimental paradigms to pursue this scope (e.g. Houser et
al., 2004). One eminent example of aforesaid research is the typology
in public good settings proposed by Fischbacher et al., 2001 who use a
variant of the strategy method (Selten, 1965). If we look at competitive
settings, however, little progress has been made in defining a meaningful
typology.

An early suggestion comes from Potters et al., 1998 in the experimental
analysis of the rent-seeking contest (Gordon Tullock, 1967) . The authors
acknowledge that, from the remarks left by participants, it is possible
to classify three types of players: the “gamesmen”, who seem to under-
stand the strategic nature of the game; the “adapters”, who adapt to the
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outcomes of the previous rounds; and the “confused”, who randomize
effort. More recently, Herrmann and Orzen, 2008 find support for the
existence of different types in a variant of the Tullock contest using the
strategy method.

Modeling heterogeneity in competitive situations such as contests is an
important step to understand conflict resolution, as it facilitates further
research on the different motives that drive the behavior of individu-
als and aid comprehension of group dynamics caused by different type
compositions. In this chapter we propose a classification of types in the
Tullock contest using the classifier-Lasso (C-Lasso, Su et al., 2016), which
identifies and estimates latent group structures in panel data.

We apply the C-Lasso to a data set of six repeated contest experiments
that differ in whether the groups of contestants stay fixed or are ran-
domly re-matched after each round. Other studies have highlighted dif-
ferences in average behavior under certain circumstances between fixed
and randomly rematched contestants (e.g., Baik et al., 2015; Fallucchi and
Renner, 2016). Instead of focusing on the overall level of rent-seeking, we
look at the strategies that players adopt.

Results from our estimations suggest that the optimal number of behav-
ioral types in both contest regimes is three, in line with what has been
previously suggested. We label more than half of contestants in fixed
matching as reciprocators since they show an increasing response func-
tion with respect to the effort based on the opponents’ previous choices.
A second group, only formed by a tenth of players, adapts their effort
to the past opponents’ choices in a concave fashion (gamesmen). For the
remaining third, the others, opponent effort on current choices seems to
matter in a non-standard way.

In experiments with random matching we also find reciprocators. How-
ever they represent a significantly lower fraction of players (around 25%).
These findings are coherent with the experimental evidence in other set-
tings that fixed matching protocol induces a higher orientation to reci-
procity (e.g. Schmidt et al., 2001). Interestingly,in treatments with a fixed
matching protocal we find that groups with more reciprocators are associ-
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ated to lower average group efforts hinting at the collaborative nature of
this type of contestant.

The remainder of the chapter is structured as follows. The next sec-
tion offers a short review on the literature of player type identification
in experimental settings. In section 3.3 we describe the contest data and
present the C-Lasso mechanism. In section 3.4 we show the results of the
C-Lasso estimations for both contest with fixed groups and randomly
re-matched groups. We conclude in section 3.5 with a discussion of our
results.

3.2 Type Identification in the Experimental Eco-
nomics Literature

Across many economic situations we observe heterogeneity in individ-
ual behavior. In laboratory settings, behavioral heterogeneity should be
largely due to personal differences in information-processing and decision-
making. Game theoretical models have long built on these individual
differences, as for instance the Level-k (Stahl, 1993; Stahl II and Wilson,
1994) or cognitive hierarchy models (C. F. Camerer et al., 2004). In this
section we review different approaches used in the experimental eco-
nomics literature to group individuals given their observed differences
and thus to identify “what types are there?” (Cosaert, 2019).

One simple way to categorize individuals is by visual examination of
their characteristics. For example, Fischbacher et al., 2001 classify par-
ticipants in a public good experiment based on how their contribution
choice depends on (hypothetical) choices of other players. In another
public good experiment, Kurzban and Houser, 2005 regress the individ-
ual contributions of each participant on the average observed contribu-
tion of group members in the last round, and develop a player taxonomy
based on the differences in individual regression coefficients. A similar
classification approach has been used in a tragedy of the commons ex-
periment by Casari and Plott, 2003.

More sophisticated approaches to form taxonomies in experimental set-
tings frequently use Bayesian estimation of type-specific decision rules or
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finite mixture models. The former models apply Bayesian updating rules
to estimate the probability of a participant sharing a common set decision
rules. For example Houser et al., 2004 analyze behavior in an optimiza-
tion task, in which participants choose successively between two options
whose payoffs are stochastic and depend on the trajectory of own prior
choices. Participant types are identified via the posterior probability to
apply a certain set of decision rules. Different to early work on type
identification using Bayesian updating (El-Gamal and Grether, 1995), the
number and form of decision rules is not a-priori given but derived us-
ing a common set of candidate variables that potentially affect future
choices. Due to computational reasons the procedure is well-suited to
identify types in situations for which the candidate set can be restricted.
The number of latent types is determined by estimating different models
and comparing their fit to the experimental data. Other exemplary adap-
tations of Bayesian estimation for type identification are used in auction
settings (Shachat and Wei, 2012) and normal form games under time con-
straints (Spiliopoulos et al., 2018).

The second group of models, the finite mixture models, assume that
observed data is aggregated from distinct sub distributions, one for each
type (Fraley and Raftery, 2002). The number of types and their composi-
tion can be evaluated using commonly used model selection techniques.
The use of finite mixture models for categorizing individuals has become
standard in repeated experiments. For example, Polonio et al., 2015 use
finite mixture models to cluster participants in two-player normal-form
games based on their eye movement patterns. Other applications that
involve finite mixture models are found in public good games (Bardsley
and Moffatt, 2007), beauty contests (Bosch-Domènech et al., 2010), lot-
tery choices (Conte et al., 2011), and private information games (Brocas
et al., 2014).

In this work, we propose with C-Lasso (Su et al., 2016) an alternative
approach to the traditional ones, that does not only cluster individuals
but simultaneously estimates their type specific characteristics. C-Lasso
has recently been applied for panel data estimations across economic set-
tings (Lu and Su, 2017; Wang et al., 2019). The method shrinks the set of
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individual regression coefficients to a smaller set of group-specific coeffi-
cients and assigns each participant to one of the identified groups. From
an econometric point of view, C-Lasso avoids a series of drawbacks of
mixture models. In particular, the likelihood function of a finite mix-
ture model can show irregularities such as multimodality (Lehmann and
Casella, 2006; Spiliopoulos et al., 2018), and therefore introduces a com-
plication in detecting the local maximum point that corresponds to the
efficient root.1 On the contrary, the application of the penalized likeli-
hood maximization of C-Lasso produces a unique solution for any choice
of parameters.

3.3 Data and Methods

Tullock contests are frequently used to model competitive situations un-
der uncertainty (Konrad, 2009) and form an essential part of the experi-
mental economics literature (Dechenaux et al., 2015). In a standard spec-
ification of the contest N players compete for a prize of size P , whose
assignment is probabilistic. The chance of contestant i to win the prize in-
creases with his own efforts xi but decreases with the total sum of efforts
over all contestants

∑N
i=1 xi. The individual profit πi depends thus on

all contestants’ expenditures, the prize assignment and a homogeneous
initial endowment e:

πi =

{
e− xi + P with probability xi/

∑N
i=1 xi

e− xi otherwise.
(3.1)

Our dataset consists of six experimental treatments.2 In two of them
(Savikhin and Sheremeta, 2013; Mago, Samak, et al., 2016) contestants
repeatedly play the contest against the same three opponents. In the re-
maining four treatments (Sheremeta, 2010; Sheremeta and J. Zhang, 2010;

1Alternative approaches to deal with these problems have been proposed in the liter-
ature without a general consensus (e.g. McLachlan and Peel, 2004, Mercatanti, 2013 and
Feller et al., 2018).

2We warmly thank the authors for providing us with their experimental data
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Price and Sheremeta, 2011; Chowdhury, Sheremeta, et al., 2014) contes-
tants are randomly regrouped with three opponents after each round.
We refer to the two treatment types as fixed matching (FM) and random
matching (RM), respectively.3 For each round contestants anonymously
compete against their opponents by deciding their effort level that can
take values between zero and the value of the prize P .4 After each round,
they are reminded of their own effort and receive information on their
opponents’ total effort and whether they have won the prize. At the end
of the experiment the accumulated earnings are converted and paid out
in cash.

Consistent with evidence from other experimental contests (Dechenaux
et al., 2015), the sample shows substantial variation in efforts. Part of
the observed heterogeneity may be explained by divergent contestants’
reactions to the information provided after each round of the contest.
For example, prior effort of opponents could lead to imitative behavior
(e.g., Apesteguia et al., 2007) or to adapt own efforts in line with the
(myopic) best response function of the contest. Further, how information
of the previous round affects effort decisions might depend on whether
opponents stay the same or potentially change after each round. We thus
are interested in how contestants can be characterized by their reactions
to prior information within FM and RM treatments and how contestants
differ between fixed and random matching regimes.

We analyze the data of FM treatments, N = 96 contestants observed for
T = 19 periods, and of RM treatments, N = 183 contestants observed
for T = 29, into two panel data sets (ωit = (yit,xit)).5 The variables
of interest are yit, the effort of contestant i at time t, and the vector of

3For all treatments, different subjects are recruited from a pool of students (Chowdhury,
Sheremeta, et al. (2014) recruits from University of East Anglia, the other studies from Pur-
due University). We test for differences in average group efforts within the experiments of
both FM and RM treatments using Kruskal-Wallis rank tests but do not detect significant
deviations (p-value FM: 0.222, p-value RM: 0.280).

4In the course of the empirical analysis, we normalize the range of possible effort values
to [0; 1] for all experimental treatments to facilitate the comparison of results.

5From the original data set we drop the observations of four contestants in FM treat-
ments and nine contestants in RM treatments, whose prize assignments are time invariant
and therefore not possible to assess with C-Lasso. We also omit the first period due to lag
effects in the model.
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covariates xit: the sum of normalized expenditures of the contestant’s
opponents at t− 1 (l.othereffort), the squared sum of normalized expendi-
tures of the contestant’s opponents at t− 1 (l.othereffort2), an indicator of
the contest outcome for contestant i at t − 1 (l.win) and a time indicator
(period). We include l.othereffort2, since the (myopic) best response func-
tion of the contest is concave and thus better approximated by including
a square term in the regression (BR(X) =

√
X −X , where X is the sum

of opponent expenditures, see Appendix A.5 for a formal derivation).6

Given the censored nature of the outcome, a standard Tobit panel with
fixed effects can plausibly be assumed to model the contests:

yit = max(0, µi + xitβi + εit) with εit ∼ N(0, σ2
ε ), (3.2)

where µi is the individual fixed effect; βi the vector of individual co-
efficients; εit the idiosyncratic error term. We use a Tobit model with
lower bound, since zero expenditures are frequent whereas maximum
expenditures are never optimal and therefore rare choices. We estimate
the optimal number of behavioral types using C-Lasso. Since we are not
aware of other studies that have adapted the use of C-Lasso in combi-
nation with a Tobit model, we provide a step-by-step description of our
estimation approach in the remaining part of this section.7

C-Lasso estimates group affiliation via shrinking the set of individual
coefficients βi to a smaller set of latent, group-specific coefficients αk
by minimizing the following penalized nonlinear likelihood (PNL) func-
tion:

min
(βi,µi,αk,σ

2
ε )

1

NT

N∑
i=1

T∑
t=1

Ψ(ωit;µi,βi, σ
2
ε ) +

λ

N

N∑
i=1

K∏
k=1

||βi −αk||. (3.3)

6In addition, we perform likelihood ratio tests on FM and RM data panels to determine
whether to include the squared efforts of opponents in t-1, the efforts of opponents in t-2,
and the squared efforts of opponents in t-2 as additional regressors. Only the inclusion of
l.othereffort2 leads to a significant increase in the model’s log likelihood. See table B.1 in
Appendix B.1.

7We warmly thank Zhentao Shi, co-author of the C-Lasso reference paper, for his useful
comments regarding our implementation.
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N , T , and K denote the number individuals, the number of periods,
and the number of groups, respectively. The first term of the PNL equa-
tion (3.3), Ψ(ωit;µi,βi, σ

2
ε ), denotes the log likelihood function of the To-

bit model given the data, the individual fixed effect, the vector of indi-
vidual coefficients, and the variance of the idiosyncratic error term. We
transform the Tobit log likelihood function (Olsen, 1978) to make convex
optimization methods feasible:

−Ψ(ωit;βi, µi, σ
2
ε ) =

∑
yit>0

1

2

[
ln(2π)− lnθ2 + (θyit − x′itδi − c′itηi)2

]
+

∑
yit=0

ln
[
1− Φ(x′itδi + c′itηi))

]
(3.4)

Once the minimization procedure has been carried out, the original pa-
rameters are retrieved by σε = 1/θ, βi = δi/θ, and µi = ηi/θ.

The second term of the PNL function (3.3) reflects the C-Lasso penal-
ization that shrinks the individual-specific vector of explanatory coeffi-
cients βi to a vector of group-specific coefficients αk. Every individual is
assigned to a group for which a set of Tobit coefficients is estimated. The
estimation of the group coefficients αk depends on the tuning parame-
ter λ and on the number of groups K. If the number of groups K is not
known ex-ante, it has to be estimated using an information criterion (IC)
function. We select K and λ according to the IC that minimizes:

min
(K,λ)

2

NT

K∑
k=1

∑
i:β̂i=α̂k

T∑
t=1

Ψ(ωit; α̂k, µi, λ) + ν(NT )−0.5qK (3.5)

The higher the number of groups K, the more free parameters are con-
tained in the model and thus the smaller the negative function Ψ(.). To
counterbalance overfitting, the number of groups is penalized by
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ν(NT )−0.5qK, where q is the number of explanatory variables and ν ∈
(0, 1) a penalization parameter set to ν = 0.22. This parameter is ob-
tained using simulated data for which we fix a-priori the number of
groups (Kknown = 1, 2, 3, 4), and assess the correctly specified number
of groups over all Kknown and a sequence of λ.

We evaluate equation (3.5) for all combinations of K = 1, ..., 4 and cλ

in a geometrically increasing sequence of 10 points and choose the com-
bination (K, cλ) that minimizes the IC function. The tuning parameter
λ is obtained via λ = cλvar(y)T (−1/3), where the used sequence of cλ
depends on the underlying econometric model. Su et al., 2016 use a geo-
metrically increasing sequence of ten cλ from 0.01,...,0.1 for a linear model
and from 0.2,...,2 for a probit model. As a Tobit model resembles a combi-
nation of these two models, we choose with 0.1 ·10(k−1)/9 (k = 1, ..., 10) a
geometrically increasing sequence that overlaps with both of the authors’
original sequences.

The resulting values for the IC function are reported for the FM and RM
panel in table 3.1 and table 3.2. The minimum value of the IC function
is equal to 0.021 in the FM panel and equal to 0.120 in the RM panel,
corresponding to a number of groups K = 3 in both panels. Given the
optimal combination of tuning parameter and number of groups, one
can estimate equation (3.3) and retrieve the C-Lasso group estimates. Es-
timates are unbiased using a half-panel jackknife procedure (Dhaene and
Jochmans, 2015). Lastly, we do not detect signs of model misspecification
using RESET tests (Ramsey, 1969), that have been used in Tobit models
(Peters, 2000).8

3.4 Results

Confirming the suggestions of Potters et al., 1998, our estimation results
show that the optimal number of latent groups in the FM sample is in-

8We use RESET specifications that include quadratic and cubic terms of linear predic-
tions, as they are found to have high statistical power in Monte Carlo simulations (E. A.
Ramalho and J. J. Ramalho, 2012; Lechner, 1995). P-values for the quadratic and cubic
terms in FM (RM) treatments: 0.67, 0.43 (0.48, 0.20). Hence, one cannot reject the Null
hypothesis that the model is correctly specified.
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Table 3.1: FM panel - values of the information criteria (IC) function for alterna-
tive number of groups K, and tuning parameter cλ selection

Tuning Parameter K: Number of Groups
cλ 1 2 3 4

0.100 0.048 0.031 0.038 Inf
0.129 0.048 0.035 0.044 0.038
0.170 0.048 0.034 0.046 0.035
0.215 0.048 0.039 0.043 0.035
0.278 0.048 0.043 0.052 0.033
0.359 0.048 0.042 0.039 0.033
0.464 0.048 0.049 0.037 0.051
0.600 0.048 0.050 0.021 0.041
0.774 0.048 0.053 0.021 0.027
1.000 0.048 0.055 0.028 0.040

Table 3.1 contains for each (K, cλ) combination the result of the IC function in equation
3.5 using the FM panel.

Table 3.2: RM panel - values of the information criteria (IC) function for alterna-
tive number of groups K, and tuning parameter cλ selection

Tuning Parameter K: Number of Groups
cλ 1 2 3 4

0.100 0.197 0.191 0.155 0.166
0.129 0.197 0.190 0.159 0.178
0.170 0.197 0.194 0.158 0.172
0.215 0.197 0.195 0.153 0.175
0.278 0.197 0.194 0.146 0.179
0.359 0.197 0.193 0.120 0.179
0.464 0.197 0.190 0.120 0.179
0.600 0.197 0.187 0.122 0.174
0.774 0.197 0.185 0.132 0.145
1.000 0.197 0.180 0.140 0.155

Table 3.2 contains for each (K, cλ) combination the result of the IC function in equation
3.5 using the RM panel.
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deed three. 58% of the contestants form type 1, 9% fall into type 2 and the
remaining contestants account for type 3 (see Table 3.3). We test whether
contestants that belong to the least frequent type would be equally well
represented in one of the other two types. However, likelihood ratio
tests reveal that re-assigning type 2 contestants significantly reduces the
model fit.9 Further, we test whether individual attributes such as experi-
mental study or gender are proportionally distributed over the identified
types. We do not find that the distribution of static contestant charac-
teristics is significantly different across C-Lasso groups, suggesting that
type assignment rather depends on differences in how contestants react
to information received of the past round played.10 We thus turn to the
C-Lasso regression results that characterize the differences in types.

Table 3.3 reports the estimates of a standard Tobit model with pooled
observations as well as C-Lasso coefficients for each of the three types.
The results of the pooled Tobit regression imply that, over all contestants,
the effect of past opponents’ effort on own effort is concave given the
positive (negative) significant effect of l.otherefforts (l.othereffort2). Win-
ning the contest in the previous round (l.win) significantly increases the
efforts of contestants in the subsequent round. Moreover, we do not
find a significant time trend (period) when pooling observations. Yet, the
pooled estimation results mask the heterogeneous behaviors observed in
the three groups identified by C-Lasso.

For all three contestant types, opponent expenditures in the previous
round matter for own effort choices, but how they matter varies across
types.11 For the first type, contestants show an increasing response func-
tion with respect to l.otherefforts, and further increase (decrease) their ef-

9P-values are smaller than 0.01 so that we reject the hypothesis that assigning type two
contestants to either one of the other groups does not affect the log likelihood of the model.

10P-values of Pearson’s Chi squared test on C-Lasso type assignment in FM treatments
and other time-invariant characteristics: experimental study: 0.496, gender: 0.358, univer-
sity major: 0.06, region of origin 0.680. For RM treatments: experimental study: 0.926,
gender: 0.551, university major: 0.551, region of origin 0.144.

11Across C-Lasso groups, we reject the null hypotheses that the coefficients of l.othereffort
and l.othereffort2 are jointly equal to zero (H0 : β1 = β2 = 0) and the hypothesis that the
average partial effect of l.othereffort on own efforts is zero (H0 : β1 + 2β2l.othereffort = 0,
where l.othereffort is fixed to be the mean value of l.othereffort) on the 1% significance level
using F-tests.
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Table 3.3: C- Lasso Tobit regression results for FM treatments

Pooled
Tobit

C-Lasso Tobit

Dep. variable:
effort

Type 1 Type 2 Type 3
Reciprocators Gamesmen Others

l.othereffort 0.504***
(0.030)

0.113**
(0.051)

1.000***
(0.237)

-0.282***
(0.085)

l.othereffort2 -0.151***
(0.015)

-0.012
(0.020)

-0.347***
(0.094)

0.101***
(0.030)

l.win 0.126***
(0.016)

0.031**
(0.014)

-0.009
(0.041)

-0.004
(0.026)

period 0.001
(0.001)

0.000
(0.001)

-0.005
(0.003)

-0.003*
(0.002)

σε 0.307***
(0.005)

0.200***
(0.006)

0.263***
(0.012)

0.274***
(0.009)

Obs;N;% 1824; 96; 100% 1064; 56; 58% 171; 9; 9% 589; 31; 32%

Standard errors (in parenthesis); p-values: *6 0.10, **6 0.05, ***6 0.01; Obs. is
the total number of observations; N is the number of contestants of each type; %
is the relative share of each type with respect to the full sample.
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fort after a win (loss). Being faced with lower (higher) bidding oppo-
nents leads these contestants to bid low (high) themselves, suggesting a
“good for good and evil for evil” reply to previous opponents’ choices.
We refer to contestants of type one as reciprocators. The second type does
not significantly respond to previous contest outcome, but own efforts
relate positively to other efforts and negatively to its square term. The
inverted u-shape that relates l.othereffort to current choices, suggests that
these players decrease their effort when competition gets fierce, which
is line with what would be expected under standard game theoretical
considerations. Following the taxonomy of Potters et al., 1998, we la-
bel this type as gamesmen. For the third type this relationship appears to
be inverted, and moreover, efforts are decreasing over time. We do not
find an intuitive explanation for this behavior in the contest literature,
which is why we simply label them others.12 Due to the non-linearity of
Tobit models, we graphically present for each type the marginal effects
of l.otherefforts on efforts for different levels of l.otherefforts in figure B.1 in
Appendix B.1. Analyzing the shape of the marginal effects of l.otherefforts
on efforts for each group, we find our above reported considerations con-
firmed. Further, for every C-Lasso regression the estimated standard er-
ror of the idiosyncratic error term σε is lower than in the pooled Tobit
regression, suggesting a better fit of the group estimation due to lower
heterogeneity within groups than in the overall sample.

Result 1. C-Lasso identifies three contestant types for contests with fixed op-
ponents, which we refer to as reciprocators (≈ 58%), gamesmen (≈ 9%), and
others (≈ 32%) based on how own efforts are explained by opponent efforts in
the previous contest round.

For reciprocators, that form the majority of contestants, we want to un-
derstand whether their reciprocal bidding behavior reduces average in-

12If contestants of type others expect their opponents to alternate effort levels, then re-
sponding to previously low opponent efforts with own high efforts can be reasonable. In
that case we should find that current efforts relate to efforts of opponents in t− 2 in a con-
cave fashion. In table B.2 in Appendix B.1, we provide exploratory evidence using pooled
Tobit regressions on the others type that include second lag effects.
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Figure 3.1: Relationship be-
tween the share of reciprocators
and average effort - FM treat-
ments
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Figure 3.2: Relationship be-
tween the share of reciprocators
and average effort - RM treat-
ments
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dividual efforts or exacerbates competition. We thus examine how the
share of reciprocators in a contest group influences the average group ef-
fort. Remember that for all treatments each group consists of four con-
testants. If reciprocal behavior results in collaboration, then groups with
a higher fraction of reciprocators should be associated to lower average ef-
fort levels. On the contrary, if reciprocity increases competition then we
should witness higher average effort levels in groups formed by many
reciprocators. Figure 3.1 shows how the share of reciprocators per group
relates to the average group effort. As suggested by the direction of the
lowess smoother, we find that average group effort is decreasing with the
fraction of reciprocators per group (spearman’s ρ = −0.407 p-value =

0.048), suggesting that reciprocators reduce efforts conditional on the co-
operation of opponents.13 Comparing the average effort levels to the
Nash prediction, we observe substantial rent dissipation across groups,
in line with the consensus in the contest literature (see Dechenaux et al.,
2015).

13A low share of reciprocators implies a high share of contestants assigned to other types.
We thus examine if a decrease in average group efforts is not only associated with an in-
crease in the share of reciprocators but also associated with a decrease in the share of games-
men or others, but we do not find evidence for such an association.
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Result 2. Average group level expenditures are lower for contest groups with a
higher share of reciprocators.

Contestants of the FM treatments know that their opponents stay the
same over the course of the experiments, so that cooperative tendencies
seem to occur naturally. Surprisingly, the reciprocator as player type has
not received much attention in contest experiments. This might be be-
cause in many contest experiments, including Potters et al., 1998, con-
testants are randomly regrouped after each round, making reciprocal ac-
tions less effective. Using data on four different RM contest studies, we
explore whether reciprocators also appear in RM treatments.

Table 3.4: C- Lasso Tobit regression results for RM treatments

Pooled
Tobit

C-Lasso Tobit

Dep. variable:
effort

Type 1 Type 2 Type 3
(Reciprocators)

l.othereffort 0.350***
(0.017)

0.167***
(0.048)

-0.058***
(0.021)

-0.551***
(0.053)

l.othereffort2 -0.095***
(0.009)

-0.035*
(0.021)

0.033***
(0.010)

0.208***
(0.021)

l.win 0.209***
(0.010)

0.119***
(0.017)

0.020**
(0.008)

0.146***
(0.016)

period 0.001*
(0.001)

-0.006***
(0.001)

-0.006***
(0.000)

-0.001
(0.001)

σε 0.321***
(0.003)

0.271***
(0.005)

0.188***
(0.003)

0.309***
(0.007)

Obs;N;% 5307; 183; 100% 1305; 45; 25% 2784; 96; 52% 1218; 42; 23%

Standard errors (in parenthesis); p-values: *6 0.10, **6 0.05, ***6 0.01; Obs. is
the total number of observations; N is the number of contestants of each type. %
is the relative share of each type with respect to the full sample.
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Result 3. C-Lasso identifies three contestant groups for contests with randomly
matched opponents. Only 25% can be identified as reciprocators, significantly
less than for fixed matched treatments.

As in the fixed matching panel, C-Lasso categorizes the 183 RM contes-
tants into three types. Table 3.4 reports the C-Lasso estimates and com-
pares them to the pooled Tobit regression estimates, whose signs and
significance level resembles the estimates of the FM panel. The first type
contains 45 contestants, whose regression estimates and marginal effect
of l.othereffort on effort resemble the ones of reciprocators in FM treat-
ments. As for FM treatments we report the marginal effects of l.othereffort
on effort in figure B.2 of Appendix B.1. Again we analyze the relation-
ship between the share of reciprocators and average effort. Since in RM
treatments the share of reciprocators per group may change every round,
we look at the relationship on the session level for which contestants
stay fixed. The RM treatments contain in total 16 sessions. The lowess
smoother in figure 3.2 suggests no directional relationship between the
share of reciprocators in a session and the average session effort. This is
in line with the spearman correlation coefficient, which we find not sig-
nificant (spearman’s ρ = −0.177 p-value = 0.513). Similar to FM treat-
ments, the average session efforts mostly exceed the theoretical equilib-
rium level.

The share of reciprocators across RM contestants reaches only 25% which
is significantly lower than in treatments where opponents remain fixed
(about 58%).14 Presumably we observe less reciprocators in randomly
matched treatments, since there is no direct feedback on the effectiveness
of own collaboration attempts. The other contestant types two (52%) and
three (22%) increase (decrease) their efforts after previously won (lost)
rounds and show a u-shaped relationship between l.othereffort and cur-
rent own efforts. The magnitude of the regression coefficients suggests

14A Pearson’s chi-squared test, conducted on the contingency table of the empirical dis-
tribution of the number of reciprocators in the two samples (FM and RM), rejects the null
hypothesis that the samples are drawn from the same super-population (p-value < 0.001).
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that previous round information affects current efforts to a lesser extent
for type two contestants. Similar to the others type in FM treatments, both
types differ from what is expected under myopic best response consider-
ations, presumably because contestants do not expect new opponents to
behave as their last round opponents did.

3.5 Discussion and Conclusion

In many competitive situations the development of a contestant taxon-
omy is impeded because one cannot directly assess the motivation be-
hind individual choices. We use the C-Lasso methodology that iden-
tifies latent group structures in panel data and thus categorizes contes-
tants based on how their effort choices relate to information they received
about the previous round.

Using data from six different studies, we find that contestants react
heterogeneously to information of the previous contest round. C-Lasso
identifies three types of contestants for both contest regimes, the ones
with fixed and the ones with randomly matched opponents. The major-
ity of contestants in FM treatments can be classified as reciprocators that
attempt to cooperate by lowering own efforts when previous opponent
efforts were low. In fact, contest groups that contain more reciprocators
show lower average effort levels and thus higher group profits. For RM
treatments the number of reciprocators appears to be significantly lower,
in line with the idea that own cooperative attempts in the current round
cannot be observed by ones next rounds opponents.

Our exploration on what types of contestants are out there hopefully
releases a pulse on how we think about competitive situations such as
conflict resolution. Once we acknowledge that choice rules of competing
individuals are heterogeneous, we can develop a better understanding
for the tools that are needed to mitigate conflicts and to reduce over-
spending in competitive situations. For example, reciprocators are willing
to conditionally cooperate over the course of the contest, which is most
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fruitful whenever the number of them in a group is high and thus coop-
eration can reinforce itself. We can expect that knowing the type compo-
sition of groups delivers valuable insights on what group dynamics can
be anticipated, across applications.

One application is provided by Bordt and Farbmacher (2018) who use
experimental data of repeated public good games to replicate the clas-
sification of behavioral types proposed by Fischbacher et al., 2001 using
the C-Lasso mechanism. Their results are consistent with the re-analysis
done using hierarchical clustering by Fallucchi, Luccasen, et al. (2018)
and suggest a coherence of subject behavior in repeated games with the
choices elicited via the strategy method. In the case of the contest ty-
pology, further research needs to be carried out to understand the main
drivers of behavioral types.

We suggest two directions for future research. The first direction is to
check whether different types react differently to other changes in the
contest structure. For example, excessive over-expenditures observed in
larger groups (Lim et al., 2014) may be driven by less cooperative activity,
that has been demonstrated for different experimental settings (Nosenzo
et al., 2015). The second direction concerns the use of methods that reveal
latent group structures in panel data in order to shed light on different
topics, such as framing e.g., Chowdhury, Mukherjee, et al., 2017 or im-
pulsive behavior e.g., Rubinstein, 2016; Sheremeta, 2018.

55



Chapter 4

Clinical Foresight using
Supervised Learning

4.1 Introduction

Machine learning (ML) tools are used with increasing success across in-
dustries to improve decision-making. For the pharmaceutical industry,
which spends more than $160 billion annually in R&D (Malik and Lisa,
2018) but does not launch the majority of its candidate drugs due to
safety, efficacy or market profitability concerns (Joseph A DiMasi, 2001),
an approach that could predict the outcomes during R&D phases would
be particularly valuable. We develop such an approach that relies on
established supervised learning (SL) algorithms, trained and validated
with the help of a large sample of an EvaluatePharma R© data set which
includes about 8,800 pharmaceutical projects undertaken in the United
States during the last decade.

The outcome prediction of pharmaceutical projects under development
has been facilitated by two streams of research. The first stream focuses
on the causal relationship between successful drug development and
various company or product characteristics. It has revealed that prod-
uct success in the pharmaceutical industry is not only determined by
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the molecular properties of the drug, but relates to surrounding char-
acteristics such as firm specific competence (Henderson and Cockburn,
1994), firm location (Kyle, 2006), and orphan drug status (Regnstrom et
al., 2010), just to name a few. The second stream of research estimates
success rates across different indications and technologies using histori-
cal data on clinical trials (Joseph A DiMasi, 2001; Hay et al., 2014; Wong
et al., 2019; Wong et al., 2018). These estimates, that thanks to the increas-
ing availability of clinical trial data become more and more accurate, are
often used as a first approximation for success probabilities on the project
level. In this work we combine both the historical success rates of similar
projects and an array of other potential success characteristics to train a
selection of SL-algorithms used to predict the phase-specific outcome of
pharmaceutical projects.

Artificial intelligence forms already an integral part of the healthcare
industry (Topol, 2019) with ML methods being used in the early stage
of the drug development process to screen candidate compounds (Bur-
bidge et al., 2001; L. Zhang et al., 2017). It is surprising that their use
has not been extended until recently to predict the outcome of more ad-
vanced clinical stages. J. DiMasi et al., 2015 present a tool that uses infor-
mation on drug specific characteristics to predict regulatory marketing
approval of new oncology compounds, whereas Lo et al., 2019 use data
on clinical trials to analyze classification and missing data imputation
techniques from phase II clinical trials to market approval. Feijoo et al.,
2020, as well use clinical trial data to classify phase II and III develop-
ment outcomes using random forests. We contribute to this developing
field by evaluating different SL-algorithms on a mixture of product, mar-
ket and company characteristics that allow us to predict project outcomes
from phase I clinical trials untill market launch.

We provide a brief introduction into supervised learning in the next sec-
tion. Afterwards we explain the construction of the phase-specific data
sets (section 4.3) and the procedure used to train and validate the algo-
rithms we analyze (section 4.4). In the result section 4.5 we compare the
predicitve performance of all SL methods (sub section 4.5.1), and two tra-
ditionally used methods for predicting pharmaceutical project outcomes
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(sub section 4.5.2). Across methods, a Bayesian additive regression tree
(BART) algorithm delivers the most accurate out-of-sample predictions,
which is subsequently used to predict the outcomes of the current devel-
opment pipeline (sub section 4.5.3). We complete the result section by
analyzing the most predictive success characteristics (sub section 4.5.4).
The concluding discussion (section 4.6) puts our insights into context and
addresses stakeholders in the pharmaceutical industry that could benefit
from increased predictive capabilities regarding pharmaceutical innova-
tions.

4.2 Supervised Learning in a Nutshell

Learning computer algorithms that evaluate and automatically improve
their performance go back many decades. In 1952 Arthur Samuel de-
signed one of the first computer learning programs that improved its
ability to play checkers by learning from previous moves. He coined the
term “machine learning” (ML), which has come to designate a computer
algorithm that “learns” to better its performance on a specific task. Since
the 1950s machine learning has made huge advances that have height-
ened its performance and broadened its appeal. Image recognition soft-
ware, email filters, and personalized advertisement are just some of the
applications which rely on ML technology. And thanks to the growing
availability of large data sets, machine learning is making its way into
healthcare, including drug discovery (Burbidge et al., 2001; L. Zhang et
al., 2017), medical imaging, and health monitoring (Topol, 2019).

A simple three-step supervised learning routine is depicted in figure
4.1. Each observation of the labeled data set, in our application each
pharmaceutical project, is characterized by a set of project characteris-
tics, so called features, and a known outcome variable, its label. In our
case the project outcome is categorical (either classified as success or fail-
ure) and hence the learning methods are termed classification methods
whereas one would speak of regression methods whenever labels are
continuous. The labeled data set is randomly split into two data sets
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(step 1): a training set that contains 70% of the labeled data and a val-
idation set (containing the other 30%). The chosen split ratio is context
dependent but should be chosen so that both training and validation set
contain a sufficiently high number of observations. During the learning
process (step 2) the SL-algorithm establishes decision rules to assign la-
bels to the training observations based on its features. Supervised learn-
ing algorithms, in contrast to unsupervised learning algorithms, use the
true labels of the training data to evaluate their own performance (Sam-
mut and Webb, 2017). Decision rules are repeatedly adjusted until the es-
timated labels become sufficiently close to the true labels. At that point,
the algorithm is deemed to be trained. Note that the way decision rules
are constructed and estimated labels are compared to true outcomes is
algorithm specific.

Figure 4.1: Exemplary supervised machine learning routine

Once the algorithm is trained, it is validated by applying it to the vali-
dation set, which it has never been exposed to (step 3). To be successfully
validated, it must approximate the labels of the validation set with an ac-
curacy that is sufficient for its purpose. When the output data is binary
(e.g. success vs. failure) the performance of the algorithm can be summa-
rized by a confusion matrix (see template in figure 4.5). If the estimated
labels of the validation set are substantially close to the true labels, it in-
dicates that the trained algorithm has learned to classify observations.
After successful validation, the trained algorithm can be used to predict
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labels for similar, unlabeled observations. In our application these are
projects for which the outcome is not yet known. The great advantage
of SL over traditional statistical methods, such as regression analysis, is
that it excels at making use of interactions and non-linear relationships
between features that are embedded in the data but unknown to the re-
searcher.

4.3 Data Set Characteristics

We train five algorithms on a database of drug development projects to
predict the success or failure of the clinical research phases in which they
are engaged. Each project is a combination of features and labels. The
features recapitulate the attributes of each project, such as the character-
istics of the molecule, intended market, company attributes, while the la-
bel indicates the status of its most advanced clinical research phase- e.g.,
success, failure, or on-going. For instance, a project might be lorlatinib to
treat ALK positive, non-small cell lung cancer. The input data would de-
scribe a small molecule developed by Pfizer that was granted orphan sta-
tus and expedited Food and Drug Administration (FDA) treatment. The
output data would indicate: “Filed, on-going”.1 Most of the project fea-
tures were obtained from a novel database developed by Evaluate Ltd., a
commercial company that collects and integrates company-reported and
other published pharmaceutical product and financial information, to
which we were granted access. Data from PATSTAT, a database that cov-
ers information on patents worldwide, is used to complement the main
source for patent-specific information.

To ensure that all projects share the same regulatory framework, we
limit the sample to new molecular entities (NME) monitored by the FDA
that report at least one drug with indication status in the US, the world-
wide biggest geographical market for pharmaceutical products which
is regulated by a single authority (Kyle, 2006). New drug applications,

1We define projects with expedited FDA treatment as projects that fall into at least one of
the four categories defined by the FDA: priority review, breakthrough therapy, accelerated
approval, and fast track. The molecule has since been approved.
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generics, biosimilars, as well as over the counter products are excluded,
due to differences in approval regulations. Furthermore, only projects
that were initialized between 2008 and 2017 are included in the sample
to reduce reporting bias.2 Prior to 2008 companies had little incentive
to publicly disclose information about their projects’ development status
and were required only in case of market approval by the FDA. The FDA
Amendments Act (FDAAA 801) of 2007 raised the standards for regu-
latory approval, strengthened the FDA’s post-market drug surveillance
(Kaitin and Joseph A DiMasi, 2011) and since then requires companies to
publicly disclose trial information on most initiated and on-going clinical
trials (Zarin et al., 2016). Since then, the number of reported abandoned
projects relative to the number of marketed projects has risen sharply
and thus provides a more realistic project outcome distribution. The dif-
ference in the sample composition before and after 2008 is visualized in
figure 4.2.

The complete data set spans 4557 NMEs associated to 1328 companies
for a total of 634 indications leading to 8785 unique company-product-
indication combinations, referred to as projects. Indications classify dis-
eases or disorders using a three tier categorization, similar to EphMRA
anatomical classification (ATC) system. We use the most granular third
level (indlev3) in the subsequent analysis. NMEs that share the same in-
dlev3 can be thought of as substitutes, since they target the same, or a
very similar, therapeutic market. For simplicity, we follow the custom of
the pharmaceutical economics literature and refer to a specific indlev3 as
“market”.3

Pharmaceutical projects regulated in the US are required to undergo
subsequent clinical phases which we denote by the common FDA no-
tation: “Phase I”, “Phase II”, and “Phase III”. Generally speaking, the
more a project advances in its development, the more its focus of investi-
gation shifts from safety to efficacy concerns and the higher becomes the
number of subjects enrolled in clinical trials. Projects that have passed

2Table C.5 in Appendix C.2 describes the data set construction in detail.
3See for example Pammolli et al., 2011, who use the ATC classification to refer to differ-

ent product markets, or Regnstrom et al., 2010, who address to even broader therapeutic
areas as markets.
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Figure 4.2: Project status grouped by first status date before and after 2008
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all clinical trial stages and are filed for approval but not yet marketed
are said to be “Filed”, whereas projects that were successfully launched
in the US are referred to be “Marketed”. Since the probability of suc-
cess varies at each stage of the development and stage-specific success
characteristics might change during development, we analyze success
predictions depending on the development stage.4

Before training the algorithms, the project database was partitioned into
four subsets, for projects having reached phase I, II, III, and Filed respec-
tively. Pre-clinical projects prior to Phase I are excluded from the anal-
ysis, since companies are not required to report them. The first data set
(PI) categorizes each project that has successfully passed Phase I as “suc-
cess”, each project that currently undergoes Phase I trials as “on-going”,
and each project that was abandoned or suspended during Phase I as

4Please refer to figure C.1 in Appendix C.2 for an overview of the average characteristics
of different clinical phases in terms of success probability, years required, and costs.
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“failure”. For the PII data set all projects that completed PII are classi-
fied as success, all projects currently in Phase II as on-going, and all sus-
pended or abandoned projects in Phase II as failure. Projects that have
not (yet) reached phase II are not included in the PII data set. The re-
maining data sets PIII and Filed are constructed accordingly. Table 4.1
shows the grid used to ascertain the label of each project, and shows the
success rates attributed to each phase by the projects in our sample. In
each data set the successes and failures are used to train (and validate)
the supervised learning algorithms. Once the SL-algorithms are trained
they can be used to predict phase-specific success outcomes of on-going
projects.

The success of a project depends on the interplay between treatment ef-
ficacy, safety, favorable market conditions and company specific factors.
The decision rules formed by the SL-algorithms used to determine the
outcome of a project are thus based on a variety of candidate features,
that combine company, product and market factors which characterize
the project. The set of candidate features has been developed involving
a panel of industry experts during various conversations with Evaluate
Ltd. Table 4.2 describes the final 36 project characteristics of the can-
didate feature set grouped by feature dimension. We opt for a rather
extensive set of candidate features to not unnecessarily restrict the prior
choice set of SL-algorithms when forming decision rules. Whether a spe-
cific feature is chosen by the algorithm to classify projects into successes
and failures depends on its predictive aptitude. To avoid potential vari-
able selection issues, we validate for each algorithm whether a ML-based
variable selection step increases the algorithms out-of-sample accuracy
compared to using the full set of candidate features.

Table 4.2: Description of candidate features used in SL-algorithms

Feature name Feature description

Product marketed Indicator. 1 if product is marketed for another indication
before the phase status date

Continued on next page
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Feature name Feature description

Product failed Indicator. 1 if product has failed for another indication be-
fore the phase status date

PR
O

D
U

C
T

MoA validated Categorizes whether the MoA has been validated for the
same indication, a different indication or has not been val-
idated before the phase status date

Product experience (count) Number of distinct indications in which the product was al-
ready active before the phase status date

Patent duration Duration of the patent coverage from filing date to phase
status date

Clinical trial cost Actual or estimated trial cost of the product sourced at
EvaluatePharma R©

Clinical trial results Categorize whether clinical trial results: unavailable, partial,
negative, mixed, or positive. Phase II results only used in
PII, Phase III results only used in PIII

Time in phase Time from start of the phase until phase status date
Patents cite Count of the distinct patent families that refer to the main

patent of the product. Sourced from PATSTAT database and
merged to data set

Patents cited Count of the citations of distinct patent families that the
main patent of the product refers to. Sourced from PATSTAT
database and merged to data set

Technology Categorizes the technology of the product used
Product strategy Categorizes whether the product is developed in-house, via

licensing, via company acquisition, product acquisition or
joint venture

Therapy type Categorizes whether the product has one or more active in-
gredients

Companies per product Counts the number of companies involved in the develop-
ment of the product

M
A

R
K

ET

Market size (companies) Number of companies with marketed products for each in-
dication

Market size (products) Number of distinct marketed products for each indication
Market inequality Standard deviation of product revenues (2017) for all mar-

keted products in each indication
Orphan drugs (count) Current number of marketed Orphan drugs for each indica-

tion
Indication level 1 Indication category aggregated to different therapeutic areas
Market success ratio The sum of marketed products over the sum of marketed

withdrawn and abandoned products for each indication
Phase time (indication) Phase specific median development time for each indication
Phase success rate by indi-
cation

Phase specific historic success rate by indication

C
O

M
PA

N
Y Own similar products

(count)
Number of distinct similar products [similar products are
products that rely on same technology] in which the com-
pany was active before the phase status date

Market experience (count) Number of distinct products for the same indication, in
which the company was active before the phase status date

Continued on next page
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Feature name Feature description

Time in market Number of months of a company’s experience in indication
level 1 before the phase status date

Own similar markets
(count)

Number of distinct similar markets [similar markets share
the same indication level 1] in which the company was ac-
tive before the phase status date

R&D cost Research and development expenses of the company in the
phase status year

Company listed Indicator. 1 if company was publicly traded before the phase
status date

C
O

M
PA

N
Y Company classification Categorizes companies in four distinct groups: Biotechnol-

ogy, Global Majors, Regional Majors and Specialty
Region Categorizes companies in regions based on their legal head-

quarter: Africa & Middle East, America ex USA, Asia &
Oceania, Europe, USA

R&D (count) Number of active R&D products of company
Products (count) Number of marketed products of company
Company success ratio The sum of marketed products over the sum of withdrawn

and abandoned products for each company

O
TH

ER

Orphan status Indicator. 1 if the project is assigned orphan status in the US
Expedited status Indicator. 1 if project is assigned expedited treatment by the

FDA
Phase success rate by MoA Phase specific historic success rate by mechanism of action

(MoA)
Phase success rate by Tech-
nology

Phase specific historic success rate by product technology,
such as biotechnology, vaccine or gene therapy

Given the set of candidate features for each stage-dependent data set,
we turn in the next section to the training and testing procedure of the
SL-algorithms.

4.4 Supervised Learning Approach

The section is split in two parts. In the first part we briefly comment on
the SL-algorithms used, in the second part we detail the learning proce-
dure that we perform on each algorithm.

4.4.1 Employed Supervised Learning Methods

We train five different supervised learning algorithms to detect deci-
sion rules in the feature space that discriminate between successful and
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Table 4.1: Project outcome classification and number of projects for phase-
specific data sets

Data set
Project status PI PII PIII Filed

Filed, completed Success
441

Success
435

Success
493

Success
460

Filed, on-going Success
45

Success
51

Success
71

On-going
75

Filed, abandoned/suspended Success
12

Success
13

Success
15

Failure
16

Phase III, on-going Success
336

Success
347

On-going
559

Phase III, abandoned/suspended Success
248

Success
147

Failure
290

Phase II, on-going Success
844

On-going
2372

Phase II, abandoned/suspended Success
735

Failure
1794

Phase I, on-going On-going
1858

Phase I, abandoned/suspended Failure
1231

Total number of projects by phase 5750 5159 1428 551
Avg. success ratio 68.4% 35.7% 66.6% 96.6%

Table 4.1 summarizes the outcome classification of projects into four stage-
dependent data sets according to their project status. Note that projects are ex-
cluded for a specific data set if the estimated time in the specific phase is erroneous.

66



failed projects in each of the four development phases. Four of the algo-
rithms are tree-based classification methods, a simple decision tree (DT),
boosted decision trees (C5.0) (Kuhn and Johnson, 2013), a random for-
est algorithm (RF) (Breiman, 2001), a Bayesian additive regression tree
(BART) (Chipman et al., 2010; Kapelner and Bleich, 2013) and a linear
probabilistic regression (PROBIT).5 Tree-based classification methods are
advantageous in applications at which non-linearities and interactions
between features are plausible, but unknown. A classification tree can
be thought of as a set of successive decision rules, called branches. At
each branch a feature is selected that, according to a specified metric,
best splits the set of observations to classify them as successes or failures.
The classifications resulting from the successive application of decision
rules are also called leaf nodes. The DT algorithm relies on only one
tree while C5.0, RF and BART use an ensemble of trees but formed in
different ways. The C5.0 method uses gradient boosting enabling the al-
gorithm to learn from classification errors of prior trees, RF averages over
estimates from multiple trees based on a random subset of features and
projects, and lastly BART sums the contribution of multiple trees whose
structure depends on Bayesian priors. In addition, we train a standard
probabilistic regression PROBIT model to compare how classification ac-
curacy changes, when outcomes are predicted by a linear combination of
features without variable interactions.

4.4.2 Learning Procedure

The known outcomes of each of the four data sets are randomly split
into a validation set (30%) and a training set (70%) for which all five
algorithms are trained. The validation set is kept separate to determine
the classification accuracy using observations that the algorithms have
not encountered during training. Figure 4.3 sketches the training and
validation procedure employed in this chapter. We implement a missing

5A detailed description of each algorithm would go beyond the scope of this chapter.
For readers who wish to learn more about the algorithms particularities, we suggest the
above mentioned contributions.
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value imputation step, a feature selection step, and a hyperparameter
tuning step before training the final SL-algorithms.

Figure 4.3: Supervised learning procedure used for each algorithm and data
set

Before running supervised learning algorithms it is important to han-
dle missing values in the feature set, since missingness of features might
not be completely at random and thus itself be indicative for label esti-
mations. However, there exist many approaches that are appropriate to
deal with missing data. So before training the algorithms, we analyze
three different ways on how to cope with missing data and choose for
each algorithm the procedure that maximizes its out-of-sample predic-
tive performance. First, we perform a rudimentary complete case (CC)
analysis in which features with more than 70% of missing values and all
remaining observations that contain missing values are excluded. Sec-
ond, we analyze a five nearest neighbor (5NN) imputation algorithm
that achieved good classification results in a similar application (Lo et
al., 2019). Third, for each supervised learning algorithm we use the in-
ternal imputation technique (II) that comes as default in each algorithms’
R implementation (not available for PROBIT). Each training set is once
more randomly split into 70% of training data (49% of complete data) on
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which each algorithm is trained for each of the three missing value tech-
niques. The resulting classifications are then evaluated on the remaining
30% of the training data (21% of complete data) using the area under
the receiver operating characteristic curve (AUC) as evaluation criterion.
That way we make sure to select the missing value technique that, across
data sets, ensures the highest AUC for each algorithm without the use of
the separately kept validation data (30% of complete data).

Table 4.3: AUC comparison for missing value imputation techniques across
methods and data sets

PI PII PIII Filed

CC

PROBIT 0.8318 0.7096 0.7333 -
DT 0.3379 0.6543 0.29 -
RF 0.8127 0.7755 0.76 -
BART 0.8496 0.7875 0.8 -
C5.0 0.8293 0.7955 0.8267 -

5NN

PROBIT 0.8244 0.8737 0.7664 0.6774
DT 0.6612 0.775 0.3634 0.8104
RF 0.8203 0.9025 0.8226 0.9094
BART 0.82 0.8942 0.7851 0.9729
C5.0 0.8379 0.8945 0.7812 0.7031

II

PROBIT - - - -
DT 0.7349 0.8252 0.7098 0.5
RF 0.8422 0.9299 0.8784 0.9385
BART 0.9182 0.9607 0.8942 0.9562
C5.0 0.774 0.8968 0.7098 0.5

Table 4.3 shows the out-of-sample AUC for each imputation technique (CC, 5NN
and II), algorithm (PROBIT, DT, RF, BART, C5.0), and data set (PI, PII, PIII, Filed).
For projects in the Filed stage CC leaves a sample that consists only of successes
for which no training is possible. The highest AUC of each imputation technique
given the sample algorithm and the data set are highlighted in bold.

Table 4.3 shows the out-of-sample AUC for each imputation technique
across data sets and SL-algorithms. It turns out, that the highest classifi-
cation values in terms of AUC are achieved by 5NN imputation for PRO-
BIT and C5.0 while the other methods are more accurate using their in-
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ternal missing value approaches. Missing features are imputed without
considering label information in order to prevent that imputed values
reflect this information. Moreover, validation and training data are im-
puted separately to avoid inducing any form of relation between them.

After imputing missing values, we perform a feature selection step to
rule out that excessive feature inclusion inhibits the prediction quality
of the algorithms. We evaluate three feature selection methods: LASSO
(Tibshirani, 1996), an often-applied method that uses the shrinkage of lin-
ear regression coefficients for feature selection, RF SE, a successive vari-
able elimination technique in a random forest based on the smallest pre-
diction loss (Diaz-Uriarte and Andrés, 2005), and BART IP that selects
variables based on their inclusion proportion in a BART algorithm with
a small number of trees (Bleich et al., 2014). Following the approach for
missing value imputation, we use 70% of the training data to train each
algorithm on each data set for each feature selection approach and com-
pare the results based on the AUC from validating the 30% of remaining
training data. Table 4.4 shows the results. For PROBIT and DT the feature
selection technique based on the RF prediction loss delivers the highest
AUCs across data sets. For the other three algorithms we chose to omit
the feature selection step, since its effectiveness was mixed across data
sets.

In a last step before the final training, we tune hyperparameters using
5-fold cross validation on the complete training data for each data set.
Hyperparameters that are tuned are the number of trees and the cut-off
probability in BART, the number of randomly sampled variables at each
split in RF and the number of boosting iterations in C5.0.6 After this
stage, every supervised learning algorithm is trained on the full set of
training data reflecting its best performing missing value technique, fea-
ture selection criterion and adjusted hyperparameters. The algorithms
are evaluated using the validation data set that has been kept separated
from the whole training procedure. To rule out that the test results are
influenced by random selection of validation data, the final training and
validation procedure is performed 10 times for each model and each data

6For completeness we report the hyperparameter tuning results in Appendix C.1.
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Table 4.4: AUC comparison for variable selection techniques across meth-
ods and data sets

PI PII PIII Filed

LASSO

PROBIT 0.8258 0.8758 0.7857 -
DT 0.7372 0.8423 0.7098 0.5
RF 0.8419 0.928 0.874 0.7562
BART 0.8961 0.9563 0.9041 0.899
C5.0 0.8279 0.8936 0.8245 0.5

RF SE

PROBIT 0.8247 0.8839 0.8091 0.8562
DT 0.7343 0.8363 0.861 0.5
RF 0.8345 0.9198 0.861 0.8958
BART 0.8866 0.948 0.8923 0.8958
C5.0 0.7924 0.8946 0.8339 0.5

BART IP

PROBIT 0.7786 0.8758 0.8082 0.7766
DT 0.7319 0.8444 0.7098 0.5
RF 0.8488 0.9229 0.8734 0.9469
BART 0.9039 0.952 0.9086 0.9688
C5.0 0.7532 0.8765 0.8143 0.5

PROBIT 0.8244 0.8737 0.7664 0.6774
No feature DT 0.7349 0.8252 0.7098 0.5
selection RF 0.8422 0.9299 0.8784 0.9385

BART 0.9182 0.9607 0.8942 0.9562
C5.0 0.8379 0.8945 0.7812 0.7031

Table 4.4 shows the out-of-sample AUC for each variable selection technique
(LASSO, RF SE, BART IP and “No features selection”), algorithm (PROBIT, DT, RF,
BART, C5.0), and data set (PI, PII, PIII, Filed). The highest AUC of each variable
selection technique given the sample algorithm and the data set are highlighted in
bold.
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set and average performance measures are reported. The next section
starts by comparing the average performance between SL-algorithms
across the four different data sets.

4.5 Results

The result section is split in four parts. The first one (section 4.5.1) com-
pares the performance of SL-methods with each other. The second part
(section 4.5.2) contrasts the best performing SL-algorithm with commonly
used classification approaches. Part three (section 4.5.3) applies the best
performing algorithm to the set of on-going projects and predicts its out-
comes. Lastly, part four (section 4.5.4) details which factors are most
often selected to classify outcomes across algorithms.

4.5.1 Comparison of Supervised Learning Methods

The average performance of the SL-algorithms on validation sets is sum-
marized in table 4.5.7 For all algorithms and data sets we report the
average AUC, its 95% confidence intervals computed by the method of
DeLong et al., 1988, and standard deviations across validation sets. An
advantage to use AUC as a performance criterion is that its value is in-
dependent of the choice of a specific classification threshold (Bradley,
1997). The higher the AUC, the better the algorithm solves the trade-off
between type I and type II prediction errors. An AUC of 0.5 indicates
that the maximum share of correct classifications achieved by any clas-
sification threshold is one half, meaning that random assignment would
be equally predictive. An AUC of 1 indicates that there exists at least one
classification threshold at which the model classifies each case correctly.
Besides the AUC, the algorithms sensitivity (the number of correctly clas-
sified successes over the total number of true successes) and its specificity
(the number of correctly classified failures over the total number of true

7Instead of reporting the average of ten validation repetitions, we report the perfor-
mance of SL-algorithms using just one randomly split training and validation set in table
C.6 of the supplementary material C.2. Overall, results stay the same.
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failures) at a classification threshold of 0.5 are reported. We include these
measures to provide two more intuitive criteria.

Table 4.5: Average validation results of five SL-algorithms across data sets

AUC AUC
SD

AUCL AUCL
SD

AUCH AUCH
SD

SENS SENS
SD

SPEC SPEC
SD

BART

PI 0.92 0.01 0.91 0.01 0.94 0.01 0.90 0.02 0.75 0.03
PII 0.96 0.01 0.94 0.01 0.97 0.00 0.80 0.01 0.95 0.01
PIII 0.94 0.02 0.91 0.02 0.97 0.01 0.89 0.03 0.84 0.05
Filed 0.92 0.06 0.76 0.10 0.99 0.01 1.00 0.00 0.00 0.00

C5.0

PI 0.86 0.01 0.83 0.02 0.89 0.01 0.91 0.02 0.58 0.06
PII 0.90 0.01 0.87 0.01 0.92 0.01 0.70 0.02 0.92 0.02
PIII 0.85 0.03 0.79 0.03 0.91 0.02 0.88 0.04 0.60 0.09
Filed 0.78 0.20 0.48 0.25 0.88 0.20 0.99 0.01 0.16 0.22

RF

PI 0.87 0.02 0.84 0.02 0.89 0.02 0.95 0.02 0.51 0.05
PII 0.91 0.01 0.89 0.01 0.94 0.01 0.78 0.03 0.90 0.02
PIII 0.90 0.03 0.86 0.04 0.95 0.02 0.94 0.02 0.57 0.09
Filed 0.81 0.16 0.51 0.31 1.00 0.00 1.00 0.00 0.12 0.32

PROBIT

PI 0.84 0.02 0.81 0.02 0.87 0.02 0.89 0.02 0.58 0.06
PII 0.87 0.01 0.84 0.02 0.90 0.01 0.66 0.03 0.90 0.02
PIII 0.85 0.01 0.79 0.02 0.92 0.00 0.87 0.03 0.66 0.01
Filed 0.86 0.04 0.75 0.07 0.99 0.01 0.97 0.02 0.00 0.00

DT

PI 0.68 0.18 0.65 0.18 0.72 0.18 0.91 0.02 0.43 0.06
PII 0.83 0.02 0.80 0.02 0.87 0.02 0.55 0.05 0.90 0.03
PIII 0.79 0.03 0.72 0.03 0.86 0.02 0.87 0.06 0.52 0.08
Filed 0.50 0.00 0.50 0.00 0.50 0.00 1.00 0.01 0.02 0.08

Table 4.5 shows the average out-of-sample AUC, its 95% confidence interval
(AUCL, AUCH) the sensitivity (SENS), specificity (SPEC), and respective standard
deviations (SD) of each SL-algorithm for each data set. The highest average AUC
across algorithms for each data set is highlighted in bold.

Result 1. For all data sets, the BART algorithm achieves the highest classifica-
tion performance compared to the other four supervised learning methods.
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In all four data sets the BART algorithm achieves the highest classifica-
tion performance with an average AUC of 0.92 in PI, 0.96 in PII, 0.94 in
PIII, and 0.92 in Filed. We further refer to it as “best-in-class” algorithm.
RF shows a lower performance than BART, but its AUC 95% confidence
intervals overlap with the ones of BART in PII, PIII and Filed. The re-
sults of both algorithms are not influenced by additional feature selection
or missing value imputation techniques, which makes both approaches
powerful stand-alone tools given our application. For C5.0 we find a
slightly lower average AUC than for RF. The performance of PROBIT is
similar to C5.0 which shows that careful choice of missing value impu-
tation and feature selection techniques can offset the linear restrictions
imposed by the model. The worst performing method in terms of aver-
age AUC is DT, possibly since it does not rely on a corrective mechanism
such as re-sampling or boosting.

Looking at the sensitivity and specificity columns, we note that the al-
gorithms seem to distinguish successfully between successes and failures
in the first three data sets. For PI and PIII the algorithms perform better
during success classification, while for PII the opposite is the case. For
example, the BART algorithm classifies correctly 90% of the successes
and 75% of the failures in PI using the default classification threshold of
0.5. In the last data set the average specificity for all algorithms is close
to zero which indicates that failures are not classified correctly. Since
failures in the Filed stage are very unlikely events, it might be that not
enough failures were provided to the algorithms to successfully learn a
distinction between outcomes.

The out-of-sample comparison is visualized in figure 4.4, which shows
the trade-off between specificity and sensitivity using so called receiver
operating characteristic curves (ROC). The better an algorithm solves
this trade-off, the closer the curve comes to the upper-left corner and the
higher is the area under the curve, the AUC. In congruence with the pre-
vious results, the BART ROC curves lay slightly above RF and C5.0 for
PI, PII and PIII, while PROBIT and DT perform worse for all data sets.8 In

8Note that in the Filed data set the RF graph lays over the BART graph because the ROC
curve values are derived from only one validation set and not from the average over ten
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Figure 4.4: ROC curve of out-of-sample classification results
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the next section the best-in-class algorithm is compared to two common
evaluation methods, one based on historical data (Girotra et al., 2007),
and the other on backward/forward probabilistic regression, which is a
mainstay of statistical analysis for classification problems involving bi-
nary outcomes such as success and failure.

4.5.2 Supervised Learning vs. Common Estimation Ap-
proaches

The BART algorithm with internal missing value imputation and no ad-
ditional feature selection delivered for each data set the best average out-
of-sample performance in terms of AUC. To highlight the performance
of our best-in-class algorithm we compare its performance to two rather
crude methods that are easily used to estimate project outcomes, one
based on historic success rates the other based on backward/ forward
probabilistic regression.

The historical (HIST) method classifies projects as successful if the his-
toric success rate for compounds targeting the same market in the same
phase is greater than 50%. The backward/forward probabilistic regres-
sion (DISCR) discriminates between successes and failures by first con-
sidering the full candidate feature set and then subsequently selecting
the most explanatory features using a Bayesian information criterion (BIC).
BIC is used to evaluate how well a model explains the data while staying
as parsimonious as possible. The better a model solves this trade-off, the
higher is its BIC value. The procedure optimizes the BIC value by adding
or removing features to a probabilistic regression, which means it finds
the model that explains the data best without including too many param-
eters. The procedure stops when neither adding nor removing features
contributes to the BIC of the model. For each feature of the final model
a coefficient, its standard error, and its p-value are estimated. Note that
feature inclusion does not necessarily imply significance of the estimated
coefficient. The model coefficients are applied to the observations of the

validation sets. The ROC curves are associated to the AUC values reported in Appendix
C.2 table C.6.
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validation set, resulting in classification values that can be compared to
the true outcomes.

Result 2. BART shows the highest accuracy for classifications in phase PI, PII,
and PIII followed by DISCR and HIST. HIST shows the highest accuracy in
phase Filed.

The comparison between true values and estimated values is reported
via confusion matrices of which we provide an example in figure 4.5.
Since we are comparing the performance of three methods on four data
sets, we obtain twelve confusion matrices whose results appear in figure
4.6. It turns out that the SL-algorithm classifies the outcomes of clinical
research phases (e.g., success or failures) with an accuracy of at least 86%
(PI = 86.6%; PII = 91.1%; PIII = 85.8%). The HIST method is markedly
less accurate (PI = 65.8%; PII = 69.0%; PIII = 70.6%). The DISCR is bet-
ter than HIST, but is still less accurate than the best-in-class supervised
learner (PI = 78.3%; PII = 82.8%; PIII = 78.5%). The AUC measure of each
method confirms the conclusions drawn from evaluating the accuracy
over the first three data sets. At the filed stage the BART algorithm is not
able to distinguish between failures and successes which is due presum-
ably the low number of failures at this stage. In this instance the HIST
method seems to give the best classification results and at the same time
it requires the least complex set-up. For all data sets we visualize the dif-
ferences between the classification values of ML and HIST in figure 4.7.
Across the three clinical phases, SL-classification values of successes and
failures appear more representative of their actual distributions than the
classifications based on historic success rates. The same is reflected by
the mean classification values. Again, in the filed stage HIST captures
failures more reliably.9

In summary we find that, among all methods considered, the share of
correct outcome classifications is highest for BART across clinical stages

9We report a similar graphical comparison between the classification values of ML and
DISCR in figure C.2 of the chapter’s Appendix C.2.
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Figure 4.5: Confusion matrix template

(PI, PII, PIII). In the next section we therefore apply it to predict the out-
come of projects whose clinical research status was classified as on-going
in our sample.
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4.5.3 Predicting Outcomes in the Development Pipeline

We use the trained BART algorithm to predict project outcomes of the
current pipeline. Predictions are difficult to directly verify since the de-
velopment of a new molecule usually takes several years. Therefore, it is
crucial that the training set and the current pipeline, that acts as new in-
put data after the training phase , share the same properties with respect
to missing values and evaluated features. Since we observe that cur-
rent projects contain fewer missing data points than historical completed
projects on which the algorithm is trained, it could potentially induce
biased predictions. To reduce the chance that the difference of missing-
ness in the data influences prediction results, we first impute labeled and
unlabeled data separately using a 5NN algorithm. Then, the algorithm
is trained on the complete set of labeled data and consequently used to
predict outcomes of on-going projects.

Our project database contained 4,789 projects engaged in various phases
of clinical research (PI = 1,858; PII = 2,372; PIII = 559) whose success or
failure in the current stage were not yet known and thus predicted.10

Figure 4.8 shows the predicted success rates for each phase and for all
phases combined. Confidence intervals are shown by the black bars,
whereas orange tics show the weighted average of the historic phase
success rates derived from a meta-analysis of four studies that spanned
more than 43,000 total observations from 2000 until 2018 and (Wong et
al., 2018; Evaluate Ltd., 2018; Hay et al., 2014; Thomas et al., 2016). The
single success rates from which the reported weighted average values
are formed are reported in table C.7 of Appendix C.2.

Result 3. Estimated success rates of the current product pipeline are slightly
higher than historical success rates from a meta-analysis of recent studies.

Comparing the SL success rate predictions of current projects with the
success rates from the meta-analysis, we find Phase I rates to be higher

10We refrain from predicting outcomes in the Filed stage because of the detected over-
classification of successes.

80



Figure 4.7: Best-in-class SL and HIST classification values separated by
phase and true outcome
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Figure 4.8: Predicted success ratio of current project pipeline
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for SL (74.3%) vs. meta (65.8%)11 whereas they are lower for Phase II (SL
= 36.4% vs. meta = 38.1%). For phase III, they two almost match (SL =
58.9% vs. meta = 58.4%). Overall, predictions for the current pipeline
are slightly more optimistic than historical success rates would suggest
(SL: 15.9% vs. meta: 14.7%). Higher future success ratios likely translate
into lower average development costs, since the number of investigated
compounds that is needed for one successful product launch decreases.
Using the R&D cost model of Paul et al., 2010, our predicted success
rates would imply that capitalized costs per drug lower by $68 million
compared to the historical average (SL: $1,661 million vs. meta = $1,729
million).

Despite an overall promising outlook, the persistence of low phase II
success rates has long been a concern in the industry. By breaking down
phase II and III success ratios, we report which project types are most
likely to be successful and thus point to ways how to potentially reduce
R&D portfolio risk.

For both phases we report nine different categories (orphan drug status:
No, Yes; FDA expedited treatment: No, Yes; Validation of Mechanism
of action (MoA): No, Yes other indication, Yes same indication; Prod-
uct marketed in other indication: No, Yes) and compare the predicted
success ratio of each category with the average phase success ratio (see
figure 4.9). We find that projects with special regulatory status are more
likely to be successful.12 Further, projects that use a validated MoA are
estimated to be less risky, especially if the MoA was validated for the
same indication.13. Lastly, repositioning existing drugs for new indica-
tions continues to be a less risky alternative (Ashburn and Thor, 2004)14.

11We cannot rule out that phase I predictions are affected by the companies’ tendency to
report potentially fewer risky projects. Since for phase II and phase III project reporting
becomes mandatory (Zarin et al., 2016), predictions in these phases are only driven by
characteristics of the current project pipeline.

12Success ratio PII [PIII] – no orphan drug: 0.30 [0.54]; PII [PIII] – orphan drug: 0.63
[0.66]; PII [PIII] – not expedited: 0.33 [0.56]; PII [PIII] - expedited: 0.57 [0.73].

13Success ratio PII [PIII] – MoA not validated: 0.31 [0.47]; PII [PIII] – MoA validated
different indication: 0.36 [0.60]; PII [PIII] – MoA validated for same indication: 0.54 [0.72].

14Success ratio PII [PIII] – Not marketed in other indication: 0.33 [0,54]; PII [PIII] – Mar-
keted in other indication: 0.58 [0,81].
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Our prediction results suggest that we will see more projects advancing
from phase II to phase III that have obtained special regulatory treat-
ment, rely on validated MoAs, or are repositioning drugs. Since these
categories are also associated to above average success rates in phase III,
it is likely to see more of them marketed in the future.

Result 4. Estimated success rates in Phase II and III are higher for projects
that have obtained special regulatory treatments, rely on validated MoAs or are
repositioning drugs. Estimated success rates vary across indications and tech-
nological fields.

When targeting indications of novel molecules, assessing their risk pro-
file is vital. Table 4.6 shows how the predicted success ratios for current
phase II and phase III projects vary across indication and technology cat-
egories (see also figure C.3 and C.4 in Appendix C.2 for a visualization
of success ratios split only by technology or indication). The riskiest in-
dications for phase II are “Hepatic & biliary” (success ratio: 19.0%) for
small molecules and “HIV & related conditions” (28.6%) for biotechnol-
ogy. For phase III, indications with the lowest predicted success ratio are
“Psychiatry” (33.3%) for small molecules and “Cardiovascular” (45.5%)
for biotechnology.

Estimating success rates for projects that have not yet reached the mar-
ket is relevant for a multitude of stakeholders in the pharmaceutical in-
dustry. First, the methodology offers managers a tool to assess future
trends and to allocate R&D resources such that the risk profile which the
firm wants to pursue is achieved. Second, the results offer insights for
regulatory bodies who wish to estimate the number of future approvals,
and to identify which product categories will become trendy. This anal-
ysis can be done looking at historical data and then extrapolating future
trends, but a forward-looking projection might complement insights in
future dynamics. Third, algorithms could potentially be used to predict
the project outcome on the company level, so that assessing the risk of
a company’s R&D portfolio could offer information prior to acquisitions
or the commencement of joint ventures. Finally, predicting the outcome
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Figure 4.9: Predicted success ratio of current PII and PIII pipeline by success
factors
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of ongoing projects could aid the decision of professional investors in
which company they want to invest in. For these various stakeholders
not only precise estimation of success rates is important but also knowl-
edge about which features impact R&D outcomes. The next section de-
scribes the most important features in more detail.

4.5.4 Most Indicative Features

Most previously presented SL-results rely on the evaluation of a long
list of candidate features (presented in table 4.2). A natural follow-up
question to ask is which features are most indicative for project suc-
cess at different development stages. We evaluate five different vari-
able selection methods and assess which features are most frequently
selected for project classification. To the three feature selection meth-
ods used in the SL training procedure (LASSO, RF SE, BART IP) we add
the backward/forward probabilistic regression (DISCR) that selects vari-
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Table 4.6: Predicted phase II and III success ratio per indication and tech-
nology

Phase II Phase III
Indication Conventional Biotech. Conventional Biotech.

Hepatic & biliary 19.0% [58] - [8] - [6] - [1]
Sensory organs 22.7% [44] 41.7% [36] 35.7% [14] - [7]
Cancer 25.8% [690] 30.8% [464] 59.0% [83] 64.8% [88]
Respiratory 28.6% [35] 33.3% [24] - [4] - [7]
Blood 28.9% [38] 53.3% [30] 56.3% [16] 63.6% [11]
Psychiatry 36.8% [57] - [0] 33.3% [15] - [0]
Immunology 38.2% [34] 33.3% [51] 62.5% [16] 60.0% [20]
Skin 41.1% [73] 45.8% [24] 92.9% [14] - [3]
Urinary tract 42.1% [19] - [10] - [7] - [3]
Diabetes 43.8% [32] 75.0% [32] - [10] - [3]
Neurology 46.7% [120] 35.7% [28] 43.2% [44] - [9]
Reproduction 50.0% [18] - [1] - [8] - [1]
Musculoskeletal 53.1% [32] 44.7% [47] 73.3% [15] 66.7% [18]
Cardiovascular 56.8% [37] 45.2% [31] 40.0% [20] 41.7% [12]
Gastro-intestinal 63.6% [44] 37.5% [16] - [10] - [8]
Infections 66.2% [77] 32.4% [74] 61.8% [34] 45.5% [11]
HIV & related
conditions

- [8] 28.6% [14] - [6] - [1]

Phase-technology
average

36.30% 36.70% 57.80% 60.50%

Phase average 36.40% 58.90%

Table 4.6 shows the predicted pipeline success ratios for PII and PIII projects across
indications split by Conventional- and Biotechnology. Number of observations in
brackets. The success ratio for indication/technology pairs that contain less than 10
projects is omitted. Average success ratios are weighted by the number of projects
in each category.
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ables based on BIC and a fast and frugal decision tree (FFT) (Phillips et
al., 2017). FFT is a tree based classification approach mimicking human
decision-making by establishing a small set of binary choice rules. On av-
erage, the highest number of features was selected in PII (13.6) followed
by PI (11.6) PIII (7.8) and lastly Filed (4.8), suggesting that the relevant
features in late stages can be narrowed down to a limited set.15

Result 5. The set of indicative features change with respect to the development
stage. The “indication phase success ratio” and the “phase success rate by MoA”
are the most selected features across stages.

Table 4.7 shows for each data set the features that have been selected
by the majority of algorithms (three or more). We refer to these as the
most indicative features, as most methods pick up an association be-
tween these features and the project outcome. Each reported feature re-
lates to a sign (+,-,o) depending on whether the correlation between the
feature and project success is positive, negative or ambiguous (for cate-
gorical features). For example, the plus sign at “indication phase success
ratio” indicates that the higher the historical success ratio of the same
indication in the same phase, the higher is the probability of success.
The “indication phase success ratio” together with the “phase success
rate by MoA” are two features that remain indicative for project success
throughout the development process. Other success ratios based on his-
torical data are also indicative such as the “market success ratio” for early
stages and the “company success ratio” for phase II and III. Clinical trial
costs and orphan drug status relate positively to stage-specific success
in Phase I and II, possibly because it signals a companies commitment
to pursue project development. On the other hand, company experi-
ence in terms of market and product (“Own similar products (count)”
and “R&D (count)”) have a negative effect on the stage-specific success
in early phases presumably due to the increased opportunity costs of

15Number of selected features by data set and method. PI: Lasso 25, RF SE 19,BART IP 8,
DISCR 12, and FFT 4; PII: Lasso 16, RF SE 14,BART IP 10, DISCR 15, and FFT 3; PIII: Lasso
10, RF SE 6,BART IP 7, DISCR 12, and FFT 4; Filed: Lasso 2, RF SE 3,BART IP 4, DISCR 13,
and FFT 2).
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capital a company faces. Projects are evaluated against other projects in
a company’s pipeline and potentially replaced if their relative value re-
sults questionable. Overall, we find that for all clinical phases the most
indicative features relate to a broad variety of feature dimensions, under-
mining the importance of a diversified candidate feature set to predict
the outcome of pharmaceutical projects.

In this section we show which features are mostly selected across vari-
able selection methods to classify outcomes of pharmaceutical projects. It
might be tempting to think about these features as causally contributing
to the probability of a project’s success. Yet, a proper claim that regards
any kind of causal relationship requires a set-up that would exceed our
analysis. The above-mentioned associations hopefully stimulate further
research in this direction.
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4.6 Final Discussion and Concluding Remarks

We have evaluated the performance of various supervised learning algo-
rithms to classify the clinical success of pharmaceutical projects as they
progress through the phases of development. Our best-in-class algo-
rithm is substantially more accurate than traditional methods based on
historic success rates or regression analysis. Given the limitations of tra-
ditional approaches, we predict the success ratio for the current project
pipeline using the best-in-class method. On aggregate, our predictions
are more optimistic than historical benchmarks, even though low phase
II success ratios continue to persist.

Evaluating current projects via supervised learning provides actionable
insights for companies who wish to improve their R&D portfolio in two
ways. First, by analyzing the risk profile of different project types. For
example, repositioning an existing drug is suggested to lower the risk of
the R&D portfolio leaving room for developing new molecular entities.
Second, by directly assessing the success prediction of a single project
under development, companies can take specific measures. Through a
detailed description of our algorithm training procedure and features
which we find most indicative for outcome classification, our work hope-
fully inspires similar research that aim at improving the risk assessment
of pharmaceutical projects under development.

Even though machine-learning algorithms are far from perfect at pre-
dicting outcomes in a complex industry, they provide a useful tool to
help pharmaceutical companies to adjust the profile of their projects and
to potentially raise their odds of clinical success (Feijoo et al., 2020). Other
important applications that require improved risk-assessment of devel-
opmental drugs include to derive more accurate valuations for compa-
nies seeking to raise capital, for Initial Public Offerings, or for R&D as-
sets being transacted. Supervised learning tools could also be used to
help assess the risk inherent in a company’s pipeline and thus provide
a check on management claims about its prospects. At the macro level,
they could aid assessing the amount of innovation embedded in the in-
dustry pipeline.
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Chapter 5

Stock Market Reactions to
Product Innovation:
Evidence from the
Pharmaceutical Industry

5.1 Introduction

On March 21st 2019, the pharmaceutical company Biogen publicly de-
clared to discontinue its advanced clinical trials on aducanumab, its top
candidate drug that aimed at a breakthrough to treat patients diagnosed
with Alzheimer’s disease. Consequently, the shares of Biogen fell by
29.2%, reflecting a revision of shareholders’ expectations on future rev-
enue streams generated by aducanumab.

The stock price correction that followed Biogen’s announcement is not
uncommon for industries in which product innovation is not only im-
perative for long-term success but also associated to costly, lengthy, and
risky development processes (Mazzucato and Tancioni, 2008). Stock mar-
ket participants are aware of the importance of product innovation for
future cash flows and thus closely monitor news on companies’ devel-
opment pipelines. In case innovation announcements are at odds with
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prior investor sentiment, severe reactions on the company stock price
can be the consequence. These, potentially disruptive, price jumps fos-
ter the need of corporate innovators and financial institutions to better
understand the underlying patterns that guide them.

In this work we explain company stock price reactions that follow from
product innovation announcements by two general effects: a probability
effect, that reflects the sudden change of the perceived probability that
a product will be launched for a specific market, and a portfolio effect,
that reflects the share of discounted cash flows expected from the product
once it is marketed relative to the total expected cash flows of the com-
pany. Our findings confirm the common intuition that products whose
success probability (portfolio importance) is high, show lower (higher)
market reactions after product-related innovation announcements. Yet,
establishing a sensible measure for both effects that can be used in em-
pirical settings is not trivial.

We approximate both effects using a detailed database on pharmaceu-
tical products, their characteristics, product-related company announce-
ments, and subsequent stock price reactions. To estimate the probability
effect, we gauge market sentiment on the product success probability in
a given therapeutic market via different supervised learning (SL) meth-
ods. The measure on the portfolio effect is obtained directly from date-,
product-, and company-specific net present value (NPV) data, that is dif-
ficult to calculate directly for large-scale empirical applications. We find
that both measures contribute to better understand market reactions that
follow product innovation announcements.

The bio-pharmaceutical industry is known to be one of the most in-
novative industries (H. Grabowski and Vernon, 1994). For companies
operating in such industries it is vital to keep information on product
innovation confidential which makes the relationship between innova-
tion announcements and financial market reactions difficult to assess.
In contrast, regulatory bodies of the pharmaceutical industry (e.g., the
Food and Drug Administration (FDA) in the United states and the Euro-
pean Medicine Agency (EMA) in the EU) enforce companies to disclose
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information on drugs under development. Since 2007 and 2015, respec-
tively, FDA and EMA require that the outcome of clinical trials which
have passed “Phase I” must be disclosed irrespective of their content
(see Zarin et al., 2016; European Medicines Agency, 2014; US Food and
Drug Agency, 2007). Besides being legally obliged, pharmaceutical com-
panies are found to voluntarily disclose important news on their project
pipeline, positive and negative ones, possibly to signal innovation trans-
parency to investors (Enache et al., 2018).

Another characteristic that makes the pharmaceutical industry an in-
teresting candidate for investigating the relationship between innovation
announcements and stock market reactions is that the innovation process
is standardized and thus announcements can be categorized by their ad-
vancement within the process. The US development process requires
of candidate drugs the completion of multiple sequential stages: after a
pre-clinical stage, that involves the identification of a candidate drug and
the assessment of its toxicity, an investigational new drug (IND) applica-
tion needs to be approved by the FDA. After the IND approval, clini-
cal research on human subjects commences and commonly undergoes
three distinct phases. In “Phase I” the candidate drug is tested on safety
and dosage using small-scale clinical trials. Once the candidate drug has
passed “Phase I”, efficacy of the treatment is evaluated in “Phase II” clin-
ical trials and reassessed in “Phase III” using a larger sample of patients.
If the endpoints of clinical trials are met and the drug fulfills its safety
requirements, companies file a new drug application (NDA) to the FDA
- and possibly to other regulatory authorities of different geographical
markets - which evaluate the complete history of clinical trials and either
approve or refuse its market launch. We refer to this stage as “Filed”. In
case of a negative FDA response in the Filed stage, companies may run
additional clinical trials to support the safety and efficacy of the candi-
date drug and refile afterwards. In case of a positive FDA response, the
company is entitled to market the product, however drug safety mon-
itoring continues also in the post clinical stage.1 In the pharmaceutical

1Figure C.1 in the supplementary material shows the pharmaceutical development pro-
cess. The process regards the United states but other western countries follow similar pro-

92



industry that spends an average $19 million on each clinical trial (Moore
et al., 2018), but faces long development times (Joseph A DiMasi and
H. G. Grabowski, 2007) and high failure rates (Wong et al., 2018), inno-
vation related announcements should have a substantial impact on stock
price reactions. If these price reactions can be explained by some gen-
eral effects that plausibly hold up across business environments, then
we should carefully analyze them to better understand the forces that
drive market reactions around product innovation announcements.

The chapter proceeds as follows: in the next section we review studies
that employ stock market data of pharmaceutical companies to study the
impact of firm announcements. Motivated by previous empirical find-
ings, we set up a simple company stock reaction model in section 5.3
from which we derive our hypotheses that market reactions on innova-
tion announcements can be described by a “portfolio” and a “probabil-
ity” effect. In section 5.4 we provide details on how to measure both
effects and how we relate them to market reactions using an event study
methodology. Section 5.5 describes our data set and highlights some de-
scriptive statistics and preliminary evidence. In section 5.6 we present
our results in which we relate market reactions to portfolio and prob-
ability effects using different regression specifications. We discuss our
findings and potential implications for innovative companies in the con-
clusive section 5.7.

5.2 Literature Review

The study of the relationship between company announcements and sub-
sequent market reactions enjoys a long tradition across economic fields
from entrepreneurial- and management research to applications in ac-
counting and finance. A common property of such event studies is that
the type and precise date of the announcement is retrieved ex-post so
that a direct effect on stock market valuation can be estimated. Because

cesses. Differences across these countries are mainly found in the post-clinical stage due to
different pricing and reimbursment regulations.
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of the vast literature on event studies across sectors, we chose to focus
on articles that use with the bio-pharmaceutical industry a comparable
empirical setting.

Over the last two decades, the bio-pharmaceutical industry has increased
its transparency concerning R&D related information. Consequently, re-
searchers have started to investigate, whether the disclosure of R&D re-
lated information is i) value-relevant for the company and ii) improving
the decision-making of investors. Dedman et al., 2008 show that positive
R&D announcements in the UK biotechnology sector are associated to
higher market reactions than earning announcements. Similarly, Short-
ridge, 2004 finds that reported R&D expenses are associated to higher
company valuations for companies with an above-average number of
new drug applications. Both studies suggest that R&D disclosure is con-
sidered by investors, while Hao et al., 2017 add that information on R&D
also improves their decisions. They show that the forecast accuracy of fi-
nancial analysts improves for companies that disclose more details about
their development pipeline.

Disclosing the composition of the development pipeline may aid finan-
cial investors to assess the value of a company (Ely et al., 2003), via the
use of a real-option valuation approach (Kellogg and Charnes, 2000) or
by calculation of the probability adjusted discounted cash flows (Girotra
et al., 2007). Both valuation approaches are frequently used among finan-
cial practitioners and share the underlying assumption of our contribu-
tion, that shifts in stock prices can be explained by changes in investors’
expectations. Girotra et al., 2007 proxy investor expectations by market
specific historical success rates and find that the drop in a company’s
valuation after a negative event is associated to a drop in the company’s
probability to obtain at least one drug launch in a specific therapeutic
market. Kellogg and Charnes, 2000 use a real-option valuation approach
to estimate investor expectations on the value of a single biotechnology
company. They find that historic success probabilities are sufficient to ex-
plain market valuations before Phase II, yet investor expectations are not
reflected by average success rates for later development stages. We di-
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rectly address this obstacle by gauging success probabilities on product
level using a supervised learning procedure.

A substantial body of research uses event studies on pharmaceutical
R&D announcements to address research questions like: “what effect
does variable of interest (VoI) have on companies’ stock market perfor-
mance pre-, at, or post-announcement?”.2 To provide a detailed overview
on previously conducted research of this form, table 5.1 summarizes stud-
ies according to sample composition, sample period, VoI, event interval,
and main findings. The entries are ordered by sample size. The last row
shows our contribution to simplify a comparison with the related litera-
ture.

Many of our reviewed studies report that negative events cause higher
absolute market reactions around the announcement date than positive
ones (see A. Sharma and Lacey, 2004; Sarkar and Jong, 2006; Rothen-
stein et al., 2011; Hwang, 2013). Different reasons for this market reaction
asymmetry have been proposed, for example, overconfidence in future
successes and financial certainty of negative news versus financial am-
biguity of positive news (A. Sharma and Lacey, 2004). Another often
explored topic is how the stage of product development at which an an-
nouncement occurs relates to stock market reactions. Dedman et al., 2008
find significant market reactions for late stage positive announcements in
UK biotech firms, whereas Ely et al., 2003 find significant announcement
effects for the US market only in Phase II. Focusing on negative events,
Urbig et al., 2013 report higher negative reactions for late phase failures,
which is amplified for companies with higher R&D costs per employee.
Conversely, Sarkar and Jong, 2006 find that news induced market reac-
tions diminish over the approval process.

The difference in these findings could be due to small sample sizes
that are frequently restricted to certain categories and thus might not
be comparable, e.g. large bio-pharmaceutical companies (Hwang, 2013)
or cancer drugs (Rothenstein et al., 2011). Another potential issue is that

2For the classification of the reviewed literature, we define “at-announcement” as -5/+5
days around the news. Studied market reactions before and after this interval are classified
as “pre-announcement” and “post-announcement”, respectively.
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Table 5.1: Selected literature using pharmaceutical R&D events ordered by
sample size

Author Sample
composi-
tion

Period VoI Event
interval

Main Finding

Xu, 2006 3420
(only
positive)

1980-
2003

R&D progress post
event

Post announcement drift and volatility
decrease with R&D progress.

A. Sharma
and Lacey,
2004

447
(Filed)

- FDA
announcements

at event Return asymmetry between positive
and negative news.

Dedman
et al., 2008

234 1990-
1998

Earning
announcements,
R&D
announcements

at event R&D announcements have a higher im-
pact than earning announcements.

Ely et al.,
2003

193 1988-
1998

Development
stage

at event The relationship between R&D ex-
penses and market value is positive
and significant for companies with high
drug portfolio potential.

Sarkar and
Jong, 2006

189
(Filed)

1990-
2001

FDA
announcements

at event Market reactions decrease over the ap-
proval process.

Urbig et al.,
2013

148
(only
negative)

1994-
2008

companies R&D
focus

at event High debt to equity ratio, industry ex-
perience, and R&D focus are associated
to higher negative price shocks for late
stage failures.

Girotra
et al., 2007

132
(Phase III)

1994-
2004

Phase market
success rate

at event Market reaction lower for companies
with higher number of products in
development for the same therapeutic
market.

Rothenstein
et al., 2011

109 2000-
2009

Positive/
negative news

pre-,
post
event

Increase (decrease) in stock price be-
fore positive (negative) clinical trial. an-
nouncement.

De Carolis
et al., 2009

105
(only
negative)

1992-
2003

organizational
characteristics

at event Stronger market reaction for companies
with lower technological capabilities.

Donovan,
2018

100
(only
positive
Filed)

2013-
2017

firm and drug
attributes

pre-, at,
post
event

Positive (negative) association between
price shock and novelty of drug (com-
pany market capitalization).

Pérez-
Rodriguez
and López-
Valcárcel,
2012

46
(one
company)

1994-
2008

Scientific and
regulatory news

at event Higher market reaction for regulatory
news than for scientific news. No
spillover effects on competitors.

Panattoni,
2011

37 1993-
2007

generic entry at event Negative (positive) market impact for
brand (generic) company upon generic
entry approval before end of exclusivity
period.

Hwang,
2013

24 2011-
2013

clinical trial
announcements

at event Return asymmetry between positive
and negative news

This study 703 2017-
2018

Product
portfolio
importance and
success
probability

at event Market reactions can be described by a
portfolio effect and probability effect.
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samples that start in years for which companies were not required to an-
nounce failures and successes alike, might suffer from publication bias
(Joos, 2003). We hope to overcome these limitations by using a large sam-
ple of more than 700 innovation announcements that occurred between
January 2017 and December 2018, when mandatory disclosure policies
were already in place. It contains both positive and negative outcomes
in different research stages for a heterogeneous set of companies, prod-
ucts, and therapeutic areas.

The heterogeneous findings reported in the literature on how markets
react to product related announcements motivate us to formalize a gen-
eral company stock reaction model. It can serve to put prior empiri-
cal findings into context and we use it to derive the hypotheses tested
throughout this chapter.

5.3 Company Stock Reaction Model and Hypoth-
esis Derivation

The market value of a company is the price at which financial investors
agree to trade the companies stock. Upon the announcement of positive
news, investors perceive that a company’s value has increased, hence
increase their demand and thus its stock price rises. Contrary, nega-
tive news lead investors to perceive the company as less valuable which
consequentially results in a decrease of the company’s market valuation.
Since investors try not to miss a favorable trading opportunity, we as-
sume that market reactions after announcements usually happen fast.
This is a general assumption in event studies which implies that an-
nouncements can be related to subsequent changes in the market value.
One traditional approach to numerically derive a company’s market value
is the discounted cash flow (DCF) model (DeFusco et al., 2015). Our com-
pany stock reaction model is constructed in this spirit, assuming that the
market value of a company MVc is proportional to the expectation in fu-
ture DCF that result from all projects p, where |p| is the total number
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of projects of which company c can expect future revenues (see equation
5.1). The expected DCF for projects under development is weighted with
their probability of success Prob(Sp). For already completed projects
such as launched products Prob(Sp) is equal to one. In our target set-
ting, a project can be considered a pharmaceutical product for a specific
therapeutic market (e.g. aducanumab for Alzheimers disease).

MVc ∝ E(DCFc) =

|p|∑
p=1

E(DCF )p =

|p|∑
p=1

Prob(Sp) ·DCFp|Sp (5.1)

Since each project has to pass sequentially through the development
stages (k = {1 : Phase I, 2 : Phase II, 3 : Phase III, 4 : Filed}),
Prob(Sp) in equation 5.2 is the product of the success probabilities at
each stage k which it still has to pass.

Prob(Sp) =

|k|∏
i=k

Prob(Spi) (5.2)

We assume that in case of a negative event related to project p∗ the suc-
cess probability decreases (Prob(Sp∗ |event = neg) < Prob(Sp∗)), while
in the case of a positive event, e.g. the project advances one stage, the
probability of a success increases (Prob(Sp∗ |event = pos) > Prob(Sp∗)).3

The relative change in the market value of a company, that results from
news referring to a specific project, can thus be written as equation 5.3.

3For simplicity, we assume no spillover effects of the probability of success across
projects in the same company (i.e. Prob(Sp|∆Prob(Sp∗ )) = Prob(Sp) ∀p 6= p∗). On
the other hand, the model does not restrict events to announcements of the focal company
itself but can account for all sorts of news which indirectly affect the success probability of a
product, such as news of substitute or complementary products of third parties. Given the
nature of our event data, we focus in our empirical application on announcements directly
associated to the product under development.
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∆MVc ∝
[Prob(Sp∗ |event)− Prob(Sp∗)] ·DCF ∗p |Sp∗∑|p|

p=1 Prob(Sp) ·DCFp|Sp
=

= ∆Prob(Sp∗)×
E(DCF )p∗

E(DCFc)

(5.3)

The change in market value thus depends on two main effects. First, the
more an event changes the probability that a specific project will generate
cash flows ∆Prob(Sp∗), the higher should be the market reaction. We call
it the “probability effect”. Second, the higher the relative importance of a
project in a companies portfolio in terms of future discounted cash flows
E(DCF )p∗

E(DCFc)
, the higher should be the market reaction. We refer to this

effect as “portfolio effect”. For the sake of deriving testable hypotheses
on both effects, we treat them as separable measures, assuming that the
relative product portfolio importance is conditional on product success.
We address the relationship of both measures in the result section 5.6.

Exact quantification of the probability effect would require measuring
the projects’ perceived success probability right before and right after
the event, which is, given common data sources, not feasible. We thus
can only provide an identification attempt of the probability effect by
estimating the probability of success for project p∗. In case the success
probability of a project is already high, we expect that the average event
will not drastically change the success probability. As the project ad-
vances through the innovation process and increases its success proba-
bility, uncertainty about the project is resolved (Sarkar and Jong, 2006)
which should be reflected in lower market reactions. For example, after
a positive event that affects a project whose success probability is already
high, investors will only marginally update their beliefs about its success
and thus the market reaction reads low. Yet, the opposite could be argued
for negative events. Negative events which occur late in development
(i.e., that affect pharmaceutical products with a relative high probability
of success) might be associated to higher market reactions since investors
have already built up expectations (Urbig et al., 2013). But if the severity
of reported negative events changes during the development process,
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then one should not make the mistake to equate negative project an-
nouncements with the termination of product development.4 In our data
set, we find that the majority of projects associated to negative late-stage
events do not terminate but rather imply a prolonged continuation and
thus carry with them some residual value. We therefore assume that the
announcement induced probability revision, and thus the related market
reactions, decrease in the probability of the product being launched. We
formulate Hypothesis 1 accordingly:

Hypothesis 1: The higher the success probability of a project, the lower
are market reactions that follow its innovation announcements.

The probability effect also provides an explanation to the often reported
return asymmetry between positive and negative events. Assume that
positive events induce, on average, a lower change in the probability of
success than negative events. Then, average returns of positive events
should be lower, as well. In the pharmaceutical context this assumption
seems reasonable since positive events are mostly related to a product
passing from one stage to the next, implying an incremental change in
the success probability. Negative news, on the other hand, are not re-
stricted to an incremental change in the success probability and thus av-
erage market reactions tend to be higher.

Besides the probability effect, market reactions should depend on a
portfolio effect. As previously suggested, the more important is the project
for the project portfolio of a company, the higher is the assumed market
reaction after project specific news, independent whether news are posi-
tive or negative. We thus formulate Hypothesis 2 as:

Hypothesis 2: The higher the relative importance of a project in the com-
pany’s product portfolio, the higher are market reactions that follow its

4Mathematically expressed, we cannot generalize that Prob(Sp∗ |event = neg) = 0
assuming heterogeneity in negative events. We only hypothesize that ∆Prob(Sp∗ ) >
∆Prob(Sp◦ ) for Prob(Sp∗ ) < Prob(Sp◦ ).
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innovation announcements.

The company stock reaction model is kept general to be applicable across
corporate environments that relate to innovation announcements on the
project level. Projects relate in our empirical application to pharmaceuti-
cal products under development for a given therapeutic market but can
more generally be thought of separable company ventures whose value
is uncertain. Similarly, the events considered by the model are not lim-
ited to official communications of companies associated to the project but
might contain any public announcement that affects the project’s per-
ceived probability of success or its expected portfolio importance, for ex-
ample, news on rival companies, opinions of expert panels, or announce-
ments about R&D collaborations. The generality of the model comes at a
cost, namely to find suitable approximations for both the probability and
the portfolio effect. The three parts of the next section describe how we
approximate success probabilities, measure portfolio importance, and
quantify the market reactions that relate to both effects.

5.4 Empirical Strategy

In our main analysis we associate market reactions after project-specific
innovation announcements to the success probability and the portfolio
importance of these projects. In this section we discuss our approaches
to estimate market reactions (section 5.4.1), success probabilities (section
5.4.2), and portfolio importance (section 5.4.3) combining financial data
with the information obtained from a large bio-pharmaceutical data base.

5.4.1 Measurement of Market Reactions

We are interested in how innovation announcements affect the stock price
of companies. Since financial markets adjust fast to new information, we
collect product related innovation announcements for which we know
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the exact date.5 For all announcements we calculate daily logarithmic
stock returns using adjusted closing price data from Yahoo! Finance. In
case a company’s stock trades at multiple exchanges, we choose the mar-
ket with the highest average trading volume to avoid return anomalies
due to market frictions. To extract the part of the stock price adjustment
that is due to the respective announcement, we use a traditional event
study approach (MacKinlay, 1997). The daily return of company i at
event date τ , denoted by Riτ , is assumed to contain an expected com-
ponent E[Riτ ] and an event component called abnormal return ARiτ . To
obtain the abnormal return one subtracts the expected return of company
i at time τ (see equation 5.4).

ARiτ = Riτ − E[Riτ ] = Riτ − α̂i − β̂iRmτ (5.4)

The expected return is given by the market return Rmτ of market m at
event date τ weighted by the estimated coefficient that relates market
returns to company returns β̂i and added to the idiosyncratic company
return component α̂i. Both parameters are estimated in an ordinary least
squares regression over a 100-day estimation window around the event
date [τ − 51, τ − 2] ∪ [τ + 2, τ + 51] using company and market returns.6

To account for the specific characteristics of the bio-pharmaceutical in-
dustry, we choose the ARCA Pharmaceutical Index as reference market.
Since the choice of the reference market directly affects the estimated ab-
normal returns and thus might alter our findings, we calculate two ad-
ditional AR measures based on market indices that are more disperse
across sectors and geographical markets (Dow Jones Industrial index and
Ishares MSCI World).

Our event data reports the date of the market impact alongside with the
date of the company announcement, which mostly coincide. Yet, in some

5While there exists some evidence that events in the industry are subject to insider trad-
ing (Rothenstein et al., 2011), the market reaction at the announcement date is usually sub-
stantial so that we infer that the general public is kept unaware of innovation results and
thus changes in company value happen with the announcement.

6There exist various ways in the literature to estimateE[Riτ ] including the capital asset
pricing model (Black et al., 1972) that assumes no idiosyncratic effects (α = 0) or factor
models that include additional company specific factors (Fama and French, 1993). We use
a linear regression with constant to capture company-specific effects and, at the same time,
stay as parsimonious as possible in the estimation.

102



cases the announcement date does not fall on a trading date or the market
impact spans two days. To consider this timing effect, we calculate the
cumulated abnormal return (CAR) of company i around event date τ ,
according to MacKinlay, 1997, as:

CARiτ =

τ+1∑
t=τ−1

ARit (5.5)

The range of dates over which the abnormal returns are summed is called
the event window ([τ − 1, τ + 1]). The event window is commonly sym-
metrically chosen around the event date such that CAR includes the re-
turn of the event but the impact of returns not associated to the event
stays limited. The average cumulated return (CAR) over a set of N
events is then simply given by averaging over CARs of individual events
(see equation 5.6).

CAR =
1

N

N∑
n=1

CARn (5.6)

The CAR for different groups, for example projects with high estimated
success probability or high portfolio importance, can then be compared
using parametric and non-parametric test statistics. To test our hypothe-
ses, we relate the CAR around each innovation announcement to the
success probability and the portfolio importance of its associated prod-
uct using different regression specifications. Since the CAR measure is
influenced by the chosen specifications during its calculation, we addi-
tionally use the discrete daily stock return as a more simplistic measure
within each regression specification.

5.4.2 Measurement of Product Success Probability via Su-
pervised Learning

To test Hypothesis 1, we need a qualified measure for the project-specific
success probability which reflects the sentiment of market participants.
Since such a measure is difficult to obtain, it is, within the pharmaceu-
tical context, commonly approximated via the historical success rate of
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similar products in the same stage of development (Girotra et al., 2007;
Kellogg and Charnes, 2000). All products that share the same stage of de-
velopment and therapeutic market would then be associated to the same
success probability, neglecting individual differences between products
of which investors are most likely aware. Another implicit assumption
is that the perceived success probability of market participants is accu-
rately reflected by historical success ratios.

We aim to loosen these restrictions by proposing a project specific mea-
sure of success probability. In chapter 4 we have successfully used su-
pervised learning (SL) methods to classify the outcome of pharmaceuti-
cal projects. Here, we build on our insights and approximate investors’
sentiment by estimating project success probabilities via an optimized
combination of SL methods. These consider multiple product character-
istics that are used to determine individual success probabilities. Each
used SL algorithm employs a different degree of complexity that relates
to the heterogeneous approaches chosen by investors to form probability
estimates. All of the SL probability estimates are then weighted accord-
ing to an optimization function that minimizes the forecast error. This
way our probability estimates reflect product-specific characteristics and
moreover do not only depend on a single estimation method. The rest
of this subsection will detail the SL procedure used to derive the product
success probability estimates.

In recent years, supervised learning algorithms have become increas-
ingly popular to classify observations into different known categories.
In our context, observations are pharmaceutical products under develop-
ment for a specific therapeutic market (referred to as projects) which are
classified either as successful or unsuccessful by estimating the project’s
probability of success. Comparable to a human decision-maker, an SL al-
gorithm forms decision rules on how to best distinguish successful from
unsuccessful projects based on their characteristics (referred to as fea-
tures). Features are chosen such that most investors find them easily
accessible and decision-relevant based on previous evidence.7 The fea-
ture set contains information on the novelty of the product that relates to

7We list the input features in table D.1 of appendix D.1.
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its regulatory approval requirements and consequently to its probability
of being approved (Cohen, 2005). It further indicates the product’s ex-
pedited treatment status and its orphan drug status granted by the FDA
which is linked to the probability of drug approval (Regnstrom et al.,
2010; Joppi, Garattini, et al., 2013). Lastly, it contains the success ratio
of products that use similar technology and the success ratio of prod-
ucts in the same therapeutic market; both ratios being practical approxi-
mations to estimate a product’s probability of success (Joseph A DiMasi
and H. G. Grabowski, 2007; Wong et al., 2018). One can think of extend-
ing the feature set in many ways which would likely raise the predictive
performance of considered SL methods, but would, at the same time,
feed the doubt whether the majority of investors i) enjoys access to such
a large information base and ii) holistically uses these characteristics to
form beliefs about project outcomes. Since the challenge here is to gauge
perceived market success probabilities, that are ultimately driven by hu-
man decision-makers, we opt for keeping the feature set rather parsimo-
nious.8

Expressed mathematically, each project and phase specific success prob-
ability conditional on the array of product features Prob(Spk)|X) can be
estimated by a decision function f that combines product features X and
their importance weighting β. Equation 5.7 shows this general relation-
ship where Φ is a probability mapping function Φ : R→ [0, 1].

Prob(Spk|X) = Φ[f(X, β)] (5.7)

If investors assess the success propensity of a specific project and phase
by weighting various success characteristics, then estimating the deci-
sion function in equation 5.7 should result in probability estimates that
proxy the direction of market sentiment. The functional form of the deci-
sion function reflects the way market participants combine single success
indicators to derive their success probability estimates. Since we are ag-
nostic about how sophisticated market participants are at forming their
decisions, we derive probability estimates using four different models

8In fact, if the majority of investors were able to predict outcomes accurately, we would
not observe succinct market reactions after innovation announcements in the first place.
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that differ in terms of their functional complexity, as summarized in ta-
ble 5.2.

Table 5.2: Summary of analyzed project success probability estimation
methods

Name Decision
function
complexity

Average
weight

Functional form of Φ[f(X, β)]

HIST Low 2% Prob(Smk)

FFT Medium 14% RF [TM(X)]

LOGIT High 15% (1 + e−X
′β̂)−1

BART Very High 69% Φ[TM1 (X) + TM2 (X) + . . . +
TMm (X)]

Table 5.2 compares the four project success propensity estimation methods HIST, FFT,
LOGIT, and BART with respect to their complexity of employed decision function, the av-
erage weight over all stages assigned to each method, and the functional form described in
the text.

As mentioned above, the first model uses a simple historical heuris-
tic (HIST) to classify projects. It assumes that the success probability
of a project at a given stage can be approximated by the historical suc-
cess rate of products in the same stage and same therapeutic market m
(Prob(Spk) = Prob(Smk)).

The second model, a fast and frugal tree (FFT, Phillips et al., 2017), con-
siders all potential success factors. The algorithm is inspired by human
heuristic decision-making in that it consecutively evaluates only a hand-
ful of decision rules. At each decision rule, the algorithm classifies a
subset of observations and keeps the rest to be evaluated using the next
decision rule. The last rule classifies the remaining observations. The
probability Prob(Spk) can be described by RF [TM(X)], where T is the
tree structure or sequence of rules,M the decision rules that relate to the
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features X, and RF (.) the relative frequency of success at the classifying
decision rule.9

The third model is a common logistic regression (LOGIT) which lin-
early weights the set of product features with β̂, chosen such that the
prediction error is minimized. The product success probability is then
calculated via (1 + e−X

′β̂)−1.

Lastly, we use a Bayesian additive classification tree (BART, Kapelner
and Bleich, 2013), a powerful classifier, that combines Bayesian prob-
ability updating with ensemble tree models. The success probability
Prob(Spk) becomes a function ofm trees with different tree structure and
decision rules, whose contributions are added and then scaled using a
cumulative density function of a standard normal distribution Φ.

Figure 5.1: SL procedure to estimate success probabilities

9For a graphical visualization of the FFT decision rules to estimate Phase I probabilities
see Appendix D.1 figure D.1.
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For around 17,000 product-market observations obtained from the
EvaluatePharma R© data base, the phase specific outcome is known, yet
without exact information regarding its announcement date. Even though
these observations cannot be directly linked to financial market reactions,
they are valuable to rigorously train and validate the SL procedure that
is used for estimating phase specific success probabilities (the estimation
procedure is sketched in figure 5.1). To do so, we assign all project ob-
servations, that is the product features and their phase specific outcome,
to four phase specific data sets: PI, PII, PIII and Filed. The data set PI
contains all projects that either successfully moved on to Phase II or be-
yond (codified as success) or were abandoned during Phase I (codified as
failure). The remaining data sets are constructed alike. That way SL al-
gorithms can assign for each project the probability it will advance to the
next stage. We split each phase-specific data set into three parts: 70% of
the data form the training set on which each algorithm learns to form its
decision function; 15% are used to derive the optimal weights between
algorithms at each stage using a quadratic optimization procedure and
10-fold cross validation; 15% are used after the training steps to validate
the out of sample performance.10

To test Hypothesis 1, we estimate for the event data set, that contains ex-
act announcement dates related to project news and has so far been kept
separated, the phase-, product-, and therapeutic market-dependent suc-
cess probability using the previously trained methods. For each method,
we then multiply stage-specific probability estimations to obtain a mea-
sure of the project probability to pass all stages (see equation 5.2). The
success probability estimates from each method are weighted with the
previously calculated optimal stage-specific weights to derive an aggre-
gate probability estimate of success reflecting all methods. The probabil-
ity estimates derived from the SL procedure can then be related to market
reactions that follow innovation announcements. As a robustness check
we also relate the historical success ratio of similar products to market

10We provide more details on the SL methods used, the estimation process, the out-of-
sample performance, and the derivation of algorithm weightings in Appendix D.1.
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reactions. Next, we turn to the estimate of product portfolio importance
that will be related to market reactions, as well.

5.4.3 Measurement of Relative Portfolio Importance

According to our model, the relative importance of a company’s product
depends on the expected cash flow assigned to each of the company’s
products discounted to the event date. Finding suitable data that appro-
priately reflects this specific information is complicated. We try to come
as close as possible to the ideal measurement by assessing the relative im-
portance of a product in a company’s portfolio by its NPV. That is we take
the product-specific NPV at the event date and divide it by the NPV of
all products of the company at that date. Usually product-specific NPV
estimates are cumbersome to calculate and, for historical data, difficult to
obtain because of their time dependency. For our research purpose, we
sourced this exclusive information via the EvaluatePharma R© platform
which contains discounted cash flow information for over 5,000 prod-
ucts (Evaluate Ltd., 2019).11 A product NPV is the expected free cash flow
that is forecast over the lifetime of the product and then discounted to the
value at the event date. For our data, expected free cash flows are calcu-
lated by subtracting estimated product costs and taxes from expert con-
sensus forecast of product revenues. These net projections are afterwards
discounted to the event date using their cost of capital. The revenue ex-
trapolation considers the estimated lifetime of the product depending on
its estimated patent expiration. If we assume that the provided NPV esti-
mates reflect market expectations, we should observe that products with
a high NPV share relative to the total company’s NPV, namely products
with high portfolio importance, show higher market reactions after in-
novation announcements.

11The real option approach is another prominent method to derive the value of projects
under development. However, data on the time-dependent option value of projects across a
sample of companies is usually infeasible to obtain (see, for example, Kellogg and Charnes,
2000; León, Piñeiro, et al., 2004 who base their valuation analysis on a single company).
Since we are mainly interested in a measure of the relative project value within a company’s
portfolio that can be applied across firms, we opt to use the NPV framework for which data
is available to us.
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Since the NPV measure relies on future projections that are only pos-
sible to verify with hindsight, we provide an alternative measure for
portfolio importance that we use as a robustness check. We construct
a simple development index that weights the number of company prod-
ucts by their success probability according to their R&D stage (Hao et al.,
2017). The companies development index (DI) is obtained by equation
5.8:

DI =

∑|p|
i=1 pki · ωk

100
(5.8)

where ωk is the average success probability of a product at stage k to be
launched according to Paul et al., 2010. The measure is scaled by 100
to better visualize its impact in the subsequent regression specifications.
A high DI implies that the expected number of products that generates
future revenues for the associated company is high. Thus, companies
with high DI should show lower market reactions after product specific
news. In the next section we describe the data set used in our analysis
and present descriptive statics of the measures introduced in this section.

5.5 Data and Descriptive Statistics

We originally sourced 1,340 announcements from the EvaluatePharma R©

platform including the date, a short announcement description, and fur-
ther the company, the product and the therapeutic market the announce-
ment refers to. From the original data set we need to exclude 636 events
mainly because they were not related to clinical phase innovation an-
nouncements.12 The remaining 703 events, on which our main analysis

12Breakdown of excluded events: for 57 events data on historical company stock prices
was not available; for 154 events a conclusive description of whether the nature of the event
was positive or negative was missing (e.g. “company reports data of its clinical trial xyz
regarding product p for market m.”); 273 events could not be mapped specifically to one of
the clinical research stages Phase I, Phase II, Phase III, Filed and therefore not assigned to
an estimated success probability (e.g. announcements regarding priority review or opin-
ions of the EU advisory committee are not phase-specific); for 100 events the event date
was within +/- 3 days from another event of the same stock and thus might have caused
overlapping market reactions. 52 events occurred before 2017 and were dropped to ensure
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relies, took place between 04.01.2017 and 31.12.2018. They are associated
to 289 distinct companies, 444 products and 209 therapeutic markets.13

Each event can be associated to the development stage at which it oc-
curred: Phase I (79), Phase II (167), Phase III (285), and Filed (172); and
was grouped after manual inspection of the event description as positive
(490) or negative (213). The event distribution according to stage and
outcome is summarized in table 5.3.

Table 5.3: Data distribution of development phases and outcomes

Phase I Phase II Phase III Filed Sum

Positive 60 101 191 138 490
Negative 19 66 94 34 213
Sum 79 167 285 172 703

Using the final sample we relate market reactions, which constitute the
dependent variables measured by CAR and Return, to our variables of
interest namely the product portfolio importance Port and the product
success probability Prob and interact them with the outcome of the event
(Positive). We report the descriptive statistics of all variables including
their counterparts used in robustness checks (DI and HIST ) in table
5.4. We witness that both return measures show pronounced outlier re-
actions, which are addressed in the following regression specifications.
Most measures of the variables of interest are available for all observa-
tions. The only exception is the Port measure for which it was not pos-
sible to obtain product-specific NPV measures for every product. This
potentially induces some sort of selection bias, that affects the compo-
sition of sampled market reactions. Yet, the observations for which the
Port variable is available do not differ significantly in terms of the CAR

that mandatory disclosure policies apply for the whole sample. One event was associated
to a product for which the data reported an NPV share greater than 1.

13About 60% of the companies are associated to just one event. More than 90% are asso-
ciated to less than five events.

111



and Return measures from the observations for which Port is unavail-
able.14

Table 5.4: Summary statistics of dependent variable and variables of interest

Obs Min 1.
Quar-
tile

Median 3.
Quar-
tile

Max Mean Variance

Dependent
Variables

CAR 703 -2.68 -0.046 0.007 0.078 1.449 -0.033 0.132

Return 703 -0.922 -0.055 0.012 0.105 4.476 0.031 0.151

Variables of
interest

Port 510 0.000 0.038 0.159 0.770 1 0.384 0.148

(DI) 703 0.000 0.014 0.056 1.454 12.023 1.182 4.665

Prob 703 0.037 0.349 0.729 0.911 0.987 0.626 0.098

(HIST) 703 0 0.137 0.500 0.860 1 0.512 0.130

Positive 703 0 0 1 1 1 0.697 0.211
Table 5.4 summarizes the dependent variablesCAR andReturn together with the variables of interest

Port,DI , Prob,HIST , and Positive. The table contains information on the number of observations,

minimum value, 25% percentile, median, 75% percentile, maximum value, mean, and variance.

Besides our variables of interest, we consider in the regression analy-
sis a set of control variables that accounts for company, market, prod-
uct, and time specific information available to us (see table 5.5). The
variable In-house categorizes whether the product associated to the event
was developed in-house, was in-licensed, or acquired from another com-
pany. Sharing the risks and rewards of product development with an-
other company via licensing agreements could possibly reduce the im-
pact of product related innovation announcements. The variable Phase
indicates the development stage of the product at time of the event and,
as suggested by the literature, might have an effect on market reactions.

14We test for mean differences inCAR between observations for which thePortmeasure
is available and observations for which it is not available using Wilcoxon rank sum tests
(p-value: 0.458) and Welch’s t-test (p-value: 0.365). We perform the same tests using the
Return measure leading to a p-value of 0.650 and 0.265, respectively.
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The therapeutic area for which the product is aiming to get approval is
controlled by Market. Therapeutic markets differ in their size, number
of competitors, embedded development risk, and thus potentially also
in average market reactions. We also include an indicator whether the
product seeks approval for multiple therapeutic markets Multiple, since
we expect that news for products that have multiple market entry op-
tions are, on average, less severe. On the company level we account
for the size of the company and its breadth of operations by including
the variable Class. Product specific news might affect big, globally op-
erating companies differently than smaller, specialized firms. We also
account for the Region the company stock is listed in, since market reac-
tions after R&D announcements might be different across geographical
locations. Lastly, we include with the variable Quarter time fixed effects
to pick up potential seasonal trends.15

We provide a graphical illustration in figure 5.2 on the relationship be-
tween positive and negative market reactions and the presumed proba-
bility and portfolio effect. Sub figure (a) shows the differences in aver-
age cumulated abnormal returns before, at, and after the event date for
positive and negative events whose product success probability is above
(high) or below (low) the median success probability. Confirming previ-
ous evidence of the literature on company announcements, we observe
larger market reactions after negative news (red lines) than after posi-
tive news (green lines). Positive events which relate to products with a
low probability of success, show higher reactions (green dotted line) than
products with an estimated high success probability (green solid line).
The same holds for negative news, but for a lesser extent. Shifting our
focus to the portfolio effect in sub figure (b), we observe that for products
whose relative NPV share in the companies portfolio is high (solid lines),
the absolute return jump at the event date is amplified, even more so in
case the event is negative. We quantify the CAR for each of the reported
groups of events in table D.4 and D.5 in Appendix D.2 reporting in addi-

15Since most companies are associated to only one event, we do not include fixed effects
on the company level.
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Table 5.5: Summary of control variables - number of observations per group

Organic Phase Market Multiple Class Region Quarter

1 Organic
(346)

Phase
I (79)

Cancer
(227)

One Mar-
ket (563)

Bio- tech-
nology
(351)

North
America
(463)

Q1 ’17
(68)

2 In-
licensed
(181)

Phase
II
(167)

Blood (35) Many
Markets
(140)

Global
Majors
(192)

Europe
(222)

Q2 ’17
(110)

3 Ac-
qui-
sition
(157)

Phase
III
(285)

Cardio-
vascular
(29)

- Regional
Major
(35)

Other
(18)

Q3 ’17
(93)

4 Other
(19)

Filed
(172)

Immunology
(37)

- Speciality
(123)

- Q4 ’17
(80)

5 - - Infections
(32)

Other (2) - Q1 ’18
(70)

6 - - Miscellaneous
(176)

- - - Q2 ’18
(91)

7 - - Musculo-
skeletal (
41 )

- - - Q3 ’18
(85)

8 - - Neurology
( 86 )

- - - Q4 ’18
(106)

9 - - Respiratory
( 40 )

- - - -

Table 5.5 summarizes the set of control variables used in regression specifications 2-4. Number of
observations in parenthesis. Groups in the first row are used as reference group in the regressions.

tion parametric and non-parametric test statistics for each group.16 Yet,
by looking at average market reactions in isolation we can only provide
preliminary evidence on our hypotheses. In the following result section
we present regression specifications that control for confounding factors
and are thus suited to test our hypotheses on the probability and portfo-
lio effect appropriately.

16The employed test statistics are detailed in Appendix D.3.
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Figure 5.2: Cumulative abnormal return for positive and negative product
announcements
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(a) Below and above median product success probability
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(b) Below and above median product portfolio importance

Figure 5.2 shows the average cumulated return for different event types between event time -50 and +
50 (in days). Green lines represent returns from positive events, red lines returns from negative events.
Figure (a) shows the average return of events associated to a success probability above median (high)

with solid lines, and below median (low) with dotted lines. Figure (b) shows the average return of
events associated to a NPV share above median (high) with solid lines and below median (low) with

dotted lines.
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5.6 Results

We present the results from our regression analysis in subsection 5.6.1.
Robustness checks using different measures are then discussed in sub-
section 5.6.2.

5.6.1 Regression Analysis

We implement three regression models that focus on the portfolio effect
(1), the probability effect (2), and both effects combined (3). Each model
relates the dependent variable yi, which is either the CAR or the discrete
one-day return (Return) of event i, to a linear combination of variables
of interest and a set of control variables.

yi = α+ βposPosi + βportPorti + βpos×portPosi × Porti + γΓi + εi (1)

yi = α+ βposPosi + βportProbi + βpos×probPosi × Probi + γΓi + εi (2)

yi = α+ βposPosi + βportPorti + βpos×portPosi × Porti+
+ βportProbi + βpos×probPosii × Probi + γΓi + εi (3)

The variable of interest in the first model is the portfolio importance
Porti of the product related to event i that is measured by the share of the
company NPV attributed to the product at the time of the event. The in-
dicator variable Positivei is equal to one for positive events and zero for
negative news. We interact Positivei with Porti to observe whether the
portfolio importance has a different effect for positive and negative an-
nouncements. The matrix of control variables is denoted by Γi. The sec-
ond model relates the product success probability Probi, estimated via
a weighted average across supervised learning predictions, to the return
measure at event i. Again we pick up differences between positive and
negative events by interacting Positivei with Probi. In the third model
we examine the mutual relationship of portfolio and probability effect
on abnormal returns and thus include information on Port, Prob, and
Positive. It is theoretically possible that the probability effect interacts
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somehow with the portfolio effect, yet its direction is ambiguous. Phar-
maceutical products that carry more risk are found to be associated with
higher potential rewards (Pammolli et al., 2011), that could positively
impact a product’s relative importance in the company portfolio. But
product innovations that are vital in a companies portfolio presumably
enjoy favorable conditions during their development, which in turn may
reduce the risk of failure in development. From an empirical standpoint,
we check whether both measures are correlated across clinical phases
and thus provide a first hint on their interrelation. The estimated corre-
lation coefficients of Probi and Porti are -0.231 (p-value 0.123) for Phase
I, 0.011 (p-value 0.919) for Phase II, -0.064 (p-value 0.335) for Phase III,
-0.049 (p-value 0.559) for Filed projects. Since one cannot reject the null
hypothesis of (linear) independence at none of the development stages,
we decide to omit the inclusion of interaction terms between these two
variables.17

We report four different specifications for each of the three models.
Specification one uses an ordinary least squares (OLS) regression and
includes only the variables of interest, the interactions and a constant. In
specification two we perform the same regression but include all control
variables, as specified above, and additionally cluster standard errors on
company level to allow for dependence between events that affect the
same company. Since some market reactions are so extreme that they
could potentially affect mean-based point estimates, we add two regres-
sion specifications that are robust to outliers. In specification three we
perform a quantile regression on the median including all control vari-
ables and robust standard errors. These estimates are not influenced
by single market reactions at the tails of the distribution. In specifica-
tion four we derive robust regression estimates based on weighted least
squares with Huber and biweight iterations which has been proposed in
a similar setting (Urbig et al., 2013). Robust regression estimates also deal
with not normally distributed residuals, which are common for event

17From a parsimony perspective, Bayesian information criterion comparisons suggest
that interaction effects between Port and Prob over-specify model (3); see table D.6 in
Appendix D.2.
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studies under OLS and could lead to wrong statistical inference (Hen-
derson Jr, 1990). We run each of the four regression specifications with
CAR and with Return as dependent variables.

Table 5.6: Model 1 - Effect of product portfolio importance Port on Return
and CAR

Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Port -0.27*** -0.32*** -0.32*** -0.34*** -0.44*** -0.47*** -0.35*** -0.29***

(0.05) (0.06) (0.05) (0.03) (0.05) (0.10) (0.10) (0.04)

Positive 0.09*** 0.10*** 0.03** 0.07*** 0.07* 0.06* 0.03*** 0.09***

(0.03) (0.03) (0.02) (0.02) (0.04) (0.03) (0.01) (0.02)

Port ×
Positive

0.47*** 0.46*** 0.41*** 0.45*** 0.54*** 0.55*** 0.42*** 0.38***

(0.05) (0.07) (0.06) (0.03) (0.06) (0.10) (0.10) (0.04)

Constant -0.06** -0.04 0.05** 0.00 -0.04 0.01 0.03 -0.05

(0.03) (0.05) (0.02) (0.03) (0.03) (0.06) (0.03) (0.04)

Observations 510 510 510 510 510 510 510 510

Adjusted
R2

0.359 0.398 - 0.601 0.353 0.407 - 0.475

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier cor-
rection

No No Yes Yes No No Yes Yes

Table 5.6 contains the regression results for model 1 concerning the effect of product portfolio im-

portance Port on Return (column 2-5) and on CAR (column 6-9). Standard errors in parenthesis.

P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.

Table 5.6 shows the effect of product portfolio importance on market
reactions that follow innovation announcements. The variable Port ×
Positive is significant and positive for all specifications implying that, in
case of a positive event, products of higher portfolio importance show
higher returns. The variable Port captures the effect for negative events:
products of higher portfolio importance are associated to lower returns
for all specifications. Overall, as assumed in Hypothesis 2, products with
higher portfolio importance are associated to higher absolute returns at
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innovation announcements. The variable Positive captures the differ-
ence between positive and negative outcomes for products whose rela-
tive NPV share is zero. The effect is positive and significant. Most control
variables seem not to affect market reactions across specifications. The
only exception are products that are in development for more than one
market or that are in the filed stage, for which we observe a significant
negative shift in returns with respect to their base category (One market
and Phase I, respectively) in four out of six specifications. For reasons of
clarity we report the full regression table including control variables in
Appendix D.2 , table D.7.

Result 1. The higher the importance of a product in a companies portfolio, the
higher are market reactions that follow innovation announcements.

For model two the results are reported in table 5.7. The variable Prob×
Positive shows that, for positive news, projects that are estimated to be
likely successful are associated significantly lower returns than projects
that were estimated to be more risky. The variable Prob captures the
relationship between stock returns and success probability for negative
news. The effect is not significant in the first specification that does not
control for confounding factors. When adding control variables, such as
the stage of development, we find in five out of six specifications that
returns are significantly higher (so for negative returns lower in magni-
tude) if they are associated to products with a high success probability.
Yet, for negative news the relationship between product success proba-
bility and market reaction is attenuated, possibly because the severity of
negative events visibly varies more than the one of positive events and
thus variability in the tails of the return distribution is left unexplained.18

Consequently regression specification three and four, that mitigate the
effect of outlier events, capture the effect better. The variable Positive

18Performing a content analysis (Bell et al., 2018) on the event descriptions in our sample,
we observe that negative events range from delays in product launch to abrupt termina-
tion of development whereas positive announcements commonly report that products have
reached the next stage in development. Figure D.2 in Appendix D.2 shows that the return
distribution of negative announcements is more disperse.
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Table 5.7: Model 2 - Effect of product success probability Prob on Return
and CAR

Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Prob 0.10 0.12* 0.23*** 0.12** 0.06 0.07 0.22** 0.12*

(0.07) (0.07) (0.08) (0.05) (0.07) (0.10) (0.11) (0.06)

Positive 0.66*** 0.65*** 0.47*** 0.53*** 0.58*** 0.56*** 0.41*** 0.52***

(0.06) (0.08) (0.05) (0.04) (0.05) (0.07) (0.09) (0.04)

Prob ×
Positive

-0.40*** -0.35*** -0.31*** -0.27*** -0.23*** -0.21** -0.28*** -0.24***

(0.09) (0.10) (0.08) (0.05) (0.08) (0.10) (0.11) (0.06)

Constant -0.31*** -0.35*** -0.31*** -0.32*** -0.37*** -0.36*** -0.28*** -0.34***

(0.05) (0.06) (0.05) (0.04) (0.04) (0.07) (0.09) (0.05)

Observations 703 703 703 703 703 703 703 703

Adjusted
R2

0.268 0.282 - 0.453 0.314 0.336 - 0.374

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier cor-
rection

No No Yes Yes No No Yes Yes

Table 5.7 contains the regression results for model 2 concerning the effect of product success probability

Prob on Return (column 2-5) and on CAR (column 6-9). Standard errors in parenthesis. P-value

≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.

is significant and positive while the Constant is significant and negative
indicating that if the product success probability is estimated to be zero
then negative events differ substantially from positive ones. Again the
majority of control variables is not significantly associated to shifts in
market reactions across regression specifications, except for two groups.
We observe negative return shifts for large companies (“global majors”)
and products that are candidate for multiple therapeutic markets.19

Result 2. The higher the success probability of a product, the lower are mar-
ket reactions that follow innovation announcements. The effect is moderated for

19The complete regression table (table D.8) that includes all control variables is reported
in the Appendix D.2.

120



negative announcements.

Since usually probability and portfolio effects cannot be observed in
isolation, model three includes Prob and Port to check how their mutual
variation affects abnormal returns around innovation announcements.
Table 5.8 shows that sign and magnitude of the portfolio effect stay prac-
tically unchanged. All specifications suggest that events related to prod-
ucts with high portfolio value are subject to more extreme market re-
actions. As in model two, the probability effect is significant for most
specifications independent of the event being positive or negative. Yet
the size of the probability effect, in particular for positive news, seems
lower. Specifications that show no significant relationship do either not
include control variables or, in case of CAR as dependent variable, do
not deal with outlier returns. The effect of control variables on market
reactions is not significant across specifications apart from the already
mentioned negative shift in returns for multi-indication products.20

Moreover, the adjusted R2 of model three, a measure of explained re-
turn variation, is slightly higher than in model one for all specifications
suggesting that the inclusion of information on the product success prob-
ability increases the explained variation in market reactions beyond the
information that is contained in the Portmeasure alone. Since the proba-
bility measure is static for each product, Port might better capture time-
dependent information right before the event. We assume that product-
specific probability measures that reflect all information available to in-
vestors before the event would capture even more return variation. Yet,
with the measures at hand, the portfolio effect explains return variation
around innovation announcements better than the probability effect.

To visualize the mutual effect of probability and portfolio measures on
daily stock price returns, we report the marginal effects of Prob and Port
of model three- specification four in figure 5.3 (a) for positive events
and in figure 5.3 (b) for negative events. The estimated market reaction
of positive events is highest for products of high portfolio importance

20The complete regression table (table D.9) that includes all control variables is reported
in the Appendix D.2.
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Table 5.8: Model 3 - Effect of product success probability Prob and product
portfolio importance Port on Return and CAR

Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Positive 0.23*** 0.23*** 0.17*** 0.17*** 0.08 0.07 0.11*** 0.18***

(0.06) (0.06) (0.03) (0.04) (0.07) (0.08) (0.03) (0.04)

Port -0.26*** -0.30*** -0.25*** -0.32*** -0.45*** -0.47*** -0.32*** -0.27***

(0.05) (0.06) (0.05) (0.03) (0.05) (0.10) (0.07) (0.04)

Port ×
Positive

0.43*** 0.43*** 0.34*** 0.43*** 0.53*** 0.55*** 0.38*** 0.36***

(0.05) (0.07) (0.05) (0.03) (0.06) (0.10) (0.07) (0.04)

Prob 0.07 0.15** 0.17*** 0.11*** -0.10 -0.02 0.10** 0.09*

(0.06) (0.07) (0.05) (0.04) (0.07) (0.10) (0.05) (0.05)

Prob ×
Positive

-0.19*** -0.20** -0.18*** -0.14*** 0.00 -0.00 -0.11** -0.13**

(0.07) (0.08) (0.05) (0.04) (0.08) (0.11) (0.05) (0.05)

Constant -0.11** -0.13** -0.08** -0.07* 0.02 0.02 -0.03 -0.11**

(0.05) (0.06) (0.03) (0.04) (0.06) (0.09) (0.04) (0.05)

Observations 510 510 510 510 510 510 510 510

Adjusted
R2

0.372 0.404 - 0.609 0.359 0.405 - 0.480

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier cor-
rection

No No Yes Yes No No Yes Yes

Table 5.8 contains four specifications for model 3 concerning the effect of product success probability
Prob and product portfolio importance Port on Return (column 2-5) and on CAR (column 6-9).
Standard errors in parenthesis. P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.
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Figure 5.3: Estimated portfolio and probability effect for positive events and
negative events
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(b) Negative events

Figure 5.3 shows the daily discrete return estimate and its 95% confidence interval for 11 levels of prod-
uct success probability (x axis) and two levels of product portfolio importance (gray and black scaled
lines). Positive events are depicted in sub figure (a) and negative events in sub figure (b).
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whose success sentiment was estimated to be low (16.1%). For events as-
sociated to a product with low importance but high success probability,
the estimated market reaction is 3.0%. In case of negative news, predicted
returns are lower for products with high portfolio importance and low
product success probability (-43.3%) and higher for products with low
portfolio importance and high product success sentiment (0.0%). For
both good and bad news, a change in the product importance is esti-
mated to result in a more drastic market reaction than a change in the
success probability. In line with the return asymmetry that has been fre-
quently observed in related settings, the magnitude of estimated market
returns after positive announcements is, on average, lower than the ones
of negative announcements. The next section presents robustness checks
which confirm these results.

5.6.2 Robustness Checks

Since the portfolio and probability effect might depend on our specific
choice of variables, we replace both original measures with simpler ap-
proximations. To measure the portfolio effect, we construct a develop-
ment index (DI) for each company that weights the number of products
in a company’s portfolio by its current development stage (see section
5.4.3). According to Hypothesis 2, companies with a highDI should show,
on average, low market reactions after product innovation announce-
ments. As a measure of a product’s success probability we use the his-
torical success rate of products in the same stage and therapeutic market
HIST . The measure of HIST has the advantage that it is easily accessible
and already established to approximate success rates.

Table 5.9 and 5.10 show the regression results for the two effects us-
ing the same four specifications and two return types as for the origi-
nal measure. The value of the development index is negatively associ-
ated to returns for positive events (DI × Positive) and positively asso-
ciated to returns for negative events (DI) across specifications. In other
words, market reactions that follow product-specific news, independent
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whether positive or negative, affect companies with a large development
portfolio less than companies whose revenue projections rely on a few
products.

Table 5.10 reports results that are consistent with the original findings
presented in table 5.7. The market reactions that follow positive an-
nouncements are estimated smaller for products with high success prob-
ability (HIST × Positive is negative). Market reactions after negative
events are also decreasing in the product success probability (HIST ) but
the effect is weaker. We compare the adjustedR2 of the original measures
with the ones of the measures used in the robustness check. As expected,
we find that the product portfolio importance Port explains observed
market reactions better than the more generic company portfolio index
DI across all specifications. Concerning the success probabilities, recall
that the historical success rate contributes only, on average across phases,
2% to the weighted Prob estimate (see table 5.2). Changing this weight-
ing to 100%, as in the HIST specification, does not create substantial
differences in terms of explained variation suggesting that changing the
weighting of probability estimates in the SL procedure delivers robust
effects on market reactions.21

Another robustness check concerns the dependent variableCAR, which
is supposed to capture the stock price reactions that are specific to an
event and not any other, market-driven, price changes. To test whether
the results we obtain are due to a specific choice of market index, we es-
timate the abnormal return (see equation 5.4) using two different market
indices, Ishares MSCI World index and Dow Jones Industrial index, that are
broadly constructed and thus might capture market variation differently.
Yet, the conclusions we can draw from the regression results, provided
in table D.11-D.16 of Appendix D.2, remain virtually unchanged.

21Using the alternative measures jointly in model three, we obtain similar results than
when using the original measures. Namely, we find strong support for the portfolio effect
for both positive and negative announcements, strong support for the probability effect
for positive announcements and partial support for the probability effect for negative an-
nouncements. We report model 3 results in table D.10 of Appendix D.2.
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Table 5.9: Robustness check 1- Effect of product portfolio importanceDI on
Return and CAR

Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

DI 0.05*** 0.05*** 0.06** 0.06*** 0.07*** 0.06*** 0.05*** 0.06***

(0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.01) (0.01)

Positive 0.49*** 0.51*** 0.33*** 0.45*** 0.52*** 0.52*** 0.31*** 0.45***

(0.03) (0.04) (0.03) (0.02) (0.03) (0.04) (0.04) (0.02)

DI ×
Positive

-0.08*** -0.08*** -0.06** -0.08*** -0.09*** -0.09*** -0.06*** -0.08***

(0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.01) (0.01)

Constant -0.29*** -0.29*** -0.20*** -0.28*** -0.39*** -0.35*** -0.20*** -0.31***

(0.02) (0.06) (0.03) (0.04) (0.02) (0.05) (0.04) (0.04)

Observations 703 703 703 703 703 703 703 703

Adjusted
R2

0.275 0.299 - 0.491 0.352 0.374 - 0.417

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier cor-
rection

No No Yes Yes No No Yes Yes

Table 5.9 contains the regression results for robustness check 1 concerning the effect of product portfolio

importance DI on Return (column 2-5) and on CAR (column 6-9). Standard errors in parenthesis.

P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.

5.7 Discussion and Concluding Remarks

Innovation is of vital importance for corporations and its announcements
of high interest to customers, competitors, and investors who rapidly
capitalize the news in the value of the companies. The resulting mar-
ket reactions can be severe, and in case of negative news, put further
innovation attempts at risk. Characterizing elementary factors that drive
these market reactions is thus a substantial requirement to better under-
stand future market reactions and form appropriate preventive actions.
Using a general framework, we propose that market reactions which fol-
low project related innovation announcements can be described by two
main effects: a probability effect, that relates to investors’ sentiment re-
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Table 5.10: Robustness check 2- Effect of product success probability HIST
on Return and CAR

Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

HIST 0.11 0.14** 0.20*** 0.14*** 0.15** 0.17* 0.13* 0.12*

(0.07) (0.07) (0.06) (0.05) (0.06) (0.09) (0.08) (0.06)

Positive 0.58*** 0.57*** 0.41*** 0.48*** 0.58*** 0.56*** 0.34*** 0.48***

(0.05) (0.06) (0.04) (0.03) (0.04) (0.06) (0.06) (0.03)

HIST ×
Positive

-0.34*** -0.29*** -0.24*** -0.24*** -0.30*** -0.25*** -0.19** -0.22***

(0.08) (0.07) (0.06) (0.05) (0.07) (0.08) (0.08) (0.06)

Constant -0.30*** -0.32*** -0.26*** -0.31*** -0.40*** -0.38*** -0.22*** -0.33***

(0.04) (0.06) (0.04) (0.04) (0.03) (0.06) (0.06) (0.05)

Observations 703 703 703 703 703 703 703 703

Adjusted
R2

0.261 0.278 - 0.451 0.319 0.340 - 0.373

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier cor-
rection

No No Yes Yes No No Yes Yes

Table 5.10 contains the regression results for robustness check 2 concerning the effect of product success

probabilityHIST onReturn (column 2-5) and onCAR (column 6-9). Standard errors in parenthesis.

P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.

garding the innovation, and a portfolio effect, that relates to the relative
importance of the innovation in terms of future expected cash flows.

Data on the bio-pharmaceutical industry is particularly well-suited to
empirically test our theoretical considerations, since product related R&D
announcements are mandatory, frequent, and market reactions after an-
nouncements mostly substantial. With the help of a recent and sizable
data set, we provide two novel measures to approximate our variables
of interest. First, we extend the use of supervised learning methods to
approximate investor project success sentiment, which goes beyond pre-
diction tasks such as predicting equity premia (Gu et al., 2018) or classi-
fying pharmaceutical project outcomes (e.g., Feijoo et al., 2020). Second,
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we directly apply date-specific NPVs at the product and company level
to construct a measure that closely reflects the relative importance of a
product with respect to its expected discounted cash flows.

The predicted relationships between product characteristics and mar-
ket reactions are confirmed. The higher the importance of a product in
a company’s portfolio, the higher is the abnormal market return that fol-
lows product related innovation announcements, independent of whether
the announcement is positive or negative. Further, the higher the success
probability of a product for a specific therapeutic market, the lower are
the market reactions that follow the announcements. Yet, in the case of
negative news, this relationship seems to be attenuated. Two lines of rea-
son might jointly be responsible for this. First, our assumption, that the
project’s success probability is inversely related to the change of prob-
ability induced by the announcement, might hold on average but for a
few late-stage, negative events we can observe extreme market reactions
(e.g., after announcing the discontinuation of a project) that mitigate the
overall effect. In fact, in the regression specifications that are robust to
outlier market reactions, we observe the hypothesized relationship be-
tween project success probability and market reactions after negative an-
nouncements to be significant. Second, it has been discussed that people
have difficulties to objectively assess success probabilities (e.g, Barberis,
2013). Even if the derived success probabilities reflect reasonable estima-
tions, we cannot be certain that investors perceive them as such and thus
react in some situations different from our expectations.

In addition, we confirm previously noted return asymmetries between
positive and negative events. Possibly, positive events, that mostly re-
fer to an incremental advance in the development process, are associated
to lower product success probability revisions while negative events can
range from product launch delays up to the abandonment of a research
line and hence reflecting higher average success probability revisions. In
fact, we observe that the variation of market reactions that follow nega-
tive news is higher than the one after positive ones, but this explanation
remains tentative since we do not measure the success probability revi-
sion itself. Future work in which the aggregate investor perception of
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success probabilities before and after an event can be directly measured
would be a silver bullet to further characterize the probability effect and
to dissolve the above mentioned concerns.

Independent of their positive or negative nature, innovation announce-
ments that relate to products of high importance and high risk show, on
average, the highest market reactions. Especially managers who profit
from increasing stock prices (e.g., due to share based renumeration pack-
ages Dawid et al., 2019) but do not suffer financial consequences from
negative market reactions can be expected to promote such “high risk-
high gain” products. Yet, company stakeholders with contrary incen-
tives might be interested in mitigating the risk of market reactions that
follow from adverse innovation announcements.

Our results suggest that one effective way to reduce market reactions
around R&D announcements is to lower the relative importance of sin-
gle products in the product portfolio. Yet, especially for companies with
a limited product pipeline, reducing product specific dependencies is not
trivial. One possibility that leaves the size of the portfolio unchanged is
to form strategic alliances during the product development and thus to
share product specific risks. We report some suggestive evidence in fig-
ure 5.4 showing that the absolute market reactions after negative news
are lower when associated to products that share the risks and merits of
co-development, even more so for late development stages (subfigure b).
On the contrary, market reactions that follow positive news do not show
differences in whether they relate to in-house developed products or not
(subfigure a). Increased involvement in a market for technologies (Arora
et al., 2001) may thus mitigate financial effects induced by negative inno-
vation announcements, while at the same time it does not substantially
affect market reactions that follow positive events.22 Yet, strong reliance
on collaborations may reduce other long-term risks, such as becoming

22We derive the marginal effects of the variable In-house and Not in-house interacted with
Positive and Late stage on CAR using a linear regression that includes the probability, the
portfolio measure, and all other specified control variables. We find that for negative events
the predicted CAR for In-house products is significantly lower than for products not devel-
oped in-house, on the 10% level. For positive events we do not find a significant difference,
as suggested in the figures. The predicted CAR estimates are reported in table D.17 in
Appendix D.2.
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Figure 5.4: CAR of in-house and not in-house developed products in early
and late stages
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a target for acquisition or foster competitive forces (also referred to as
co-opetition, Gnyawali and Park, 2011). We encourage future work to
further explore these preliminary findings.

Another possibility to reduce adverse market reactions around R&D
announcements is to manage investor expectations in a way that they re-
flect objective evidence. Overconfidence frequently attributed to finan-
cial investors (Allen and Evans, 2005) has been assumed to be one reason
for the observed return gap between positive and negative events (A.
Sharma and Lacey, 2004). If part of the price drop that follows negative
events is due to investors’ overly optimistic speculations, then compa-
nies announcing interim results should try to avoid fostering overconfi-
dence of financial analysts, as it may backfire in the long run.

In this work, we show that using two sophisticated measures on the
market specific product success probability and the product portfolio im-
portance helps us to better explain market reactions that follow from in-
novation announcements. Yet, there still remains a substantial share of
announcement risk that needs to be properly managed. The combina-
tion of data mining tools and high-frequency real-time information that
relates to market expectations could become an interesting venue to ele-
vate our methodology further.
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Chapter 6

Conclusion

The field of economics has developed a long tradition of approaching
complex real-world relationships by formulating mathematical models
that naturally require simplifying assumptions. An especially often de-
bated set of assumptions concerns how to model the human side of the
equation. Over the years, economists have increasingly refrained from
the paradigm that human decision-making across settings can primarily
be explained by simple forms of utility maximization. Breaking with this
premise, understandably raises new questions, for example, “how does
decision-making and behavior change given different situations?” or, if
we assume decisions are not optimal, “how can they be improved?”.

These questions become particularly relevant in environments for which
decision-making is not straightforward. For example, competitive envi-
ronments with uncertain outcomes potentially hinder successful rational
decision-making (Dosi et al., 2001). If so, then we should carefully inves-
tigate such environments to better understand their impact on individual
decisions and, moreover, provide means for improving them. The first
part of the thesis approaches the challenges that situations of outcome
uncertainty pose on individuals by analyzing experimental data of con-
test experiments. Chapter 2 provides insights on how individual efforts
depend on the structure of the contest, whereas chapter 3 discusses an
econometric approach to develop a taxonomy of contestants based on
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their observed behavior. In the second part of the thesis we present a
use case for improving decision-making in a real-world setting that is
characterized by high outcome uncertainty: the product development
process of the pharmaceutical industry. Chapter 4 investigates the use of
several supervised learning methods to classify the stage-dependent suc-
cess of pharmaceutical projects in development. Chapter 5 picks up the
previously developed methodological approach to explain the drivers of
market reactions after product-specific innovation announcements. The
following concluding remarks summarize for each chapter its findings
and briefly discuss its implications, limitations, and suggestions for fu-
ture extensions.

Chapter 2 analyzes the efforts of individuals that repeatedly compete
in contest situations by means of a laboratory experiment. The contest
settings vary in the number of contestants per group (three and five) and
the prize assignment mechanism (lottery and share contest). That way
we can analyze aggregate behavioral differences that emerge from differ-
ences in competition and outcome uncertainty. We find that zero expen-
ditures are more frequent in situations with high outcome uncertainty
and high competition. The increasing share of zero expenditures in five-
player lottery contests also explains, contrary to theoretical predictions,
why we find no significant difference between average group expendi-
tures between three-player and five-player lottery treatments. Since only
a fraction of zero expenditures can be explained by weighted forms of
fictitious play, we estimate an experience weighted attraction model (C.
Camerer and T. H. Ho, 1999) to better understand differences in learning
processes across contest settings. Consistent with the increasing share of
zero expenditures, we find that lottery contestants rather apply experi-
ential learning rules that, with the accumulation of lost rounds, tend to
discourage positive expenditure levels.

Our finding that average group expenditure in lotteries does not signifi-
cantly increase with group size has direct implications for contest design-
ers depending on whether their goal is to maximize or minimize overall
contestant effort. A contest designer who aims at increasing participation
can do so by providing multiple prizes, as it is common in lotteries or raf-
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fles, by making the prize more desirable, or by making participation less
costly. In the pharmaceutical industry, for example, regulators promote
research on rare diseases by granting companies tax deductions (i.e. sub-
stitutions of efforts) and market exclusivity (i.e. higher prize) (Seoane-
Vazquez et al., 2008). Continuing in the spirit of applying our findings to
the pharmaceutical drug development, which is exemplary for a compet-
itive environment under outcome uncertainty (Sutton, 1998), we would
expect that misallocation in terms of frequent R&D overspending occurs
also on the company level. Especially in competitive research areas we
could expect individual firms to spent excessively in order to become
the first to develop a breakthrough treatment. Only after considerable
time, after having learned from previous investment decisions compa-
nies would abstain from unprofitable investments. In fact, there are nu-
merous industry examples in which companies collectively invest in the
same area, such as gene therapy, with limited success (another prominent
example in the pharmaceutical context is the accumulation of Alzheimer
trials based on the amyloid hypothesis, Makin, S., 2018).

Another finding is that less complex decision rules better explain the
observed choices for situations in which outcome uncertainty is high
(see also Alós-Ferrer and Ritschel, 2018). Here future work needs to
further investigate if the observed behavior is due to the decision for-
mation mechanism we propose, or if the observed behavior is caused by
other underlying choice rules. More generally speaking, experimental
economics has made substantial contributions to show how individu-
als behave compared to theoretical predictions. Yet, since the decision-
making process is commonly not be measured, motivating the reasons
behind the observed behaviors stays vague by construction. Besides ex-
ploring behavioral differences in various situations, it becomes essential
to find out why these differences occur.

In chapter 3 we develop a player taxonomy for contest experiments
using the heterogeneity of observed individual efforts. We use the C-
Lasso method (Su et al., 2016) to shrink individual regression coefficients
to a set of group coefficients and thus categorize contestants into types
based on their reactions to previously received information. For this
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purpose we expand the base model in (Su et al., 2016) to be used in all
sorts of Tobit applications in which the range of the dependent variable
is restricted. We analyze data of six contest experiments that differ in
whether groups of four contestants stay fixed over the experiment or are
randomly reassigned after each round. In both contest regimes the op-
timal number of latent types is estimated to be three. In fixed matched
treatments the largest group of contestants shows reciprocal traits. Con-
test groups with more reciprocators display lower average efforts, which
hints at the collaborative nature of this type. For treatments in which
contestants are randomly matched after each round, reciprocators appear
less frequent. Overall, we find that identified types consider informa-
tion of previous rounds differently than predicted by myopic best reply
considerations.

Our contribution stresses the importance of group heterogeneity that
tends to be overlooked in mainstream regression analysis with focus on
average effects. If we have reason to believe that a dependent variable
relates systematically different to a set of explanatory variables for dif-
ferent unobserved groups of observations, then implications based on
average effects can be misleading. Game theoretical models vastly ac-
knowledge that individual decision rules differ in their sophistication
(e.g. Stahl, 1993; Stahl II and Wilson, 1994; C. F. Camerer et al., 2004),
which makes correct type identification particularly important in game
theoretical experiments. In many experiments, behavioral heterogeneity
is rather the norm than the exception. Yet average effects across partic-
ipants are frequently used to report results which resonates a notion of
participant homogeneity that might be too simplistic. To foster a discus-
sion on player types in contest experiments, we bundle contest data from
different experiments and apply a novel econometric method that iden-
tifies latent type structures in panel data. One downside of such an en-
suing data-driven approach is that differences in identified types cannot
be further explored during the course of the experiment. Future work on
similar experiments could in a first step identify player types and next
explicitly investigate the impact of different type compositions on group
behavior. Based on our findings, we expect that the group composition
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influences group expenditure dynamics. For example, it would be inter-
esting to observe the effort dynamics in contest experiments that emerge
over time when exogenously assigning groups based on previously iden-
tified types. A similar line of thoughts is worth to explore across game
theoretical experiments that involve group settings.

The first half of the thesis showed that even in controlled experimen-
tal environments individual decisions in competitive situations under
outcome uncertainty are heterogeneous and often deviate from standard
theoretical predictions. In chapter 4 we therefore explore how to support
decision-makers in similar, real-world situations. As our target setting
we choose the pharmaceutical drug development for which we attempt
to predict stage-specific development outcomes exploiting a rich infor-
mation base by using supervised learning algorithms. Each algorithm is
trained on a large feature set involving company-, product-, market-, and
regulatory characteristics. We find that the BART algorithm (Kapelner
and Bleich, 2013) provides the most accurate classification results across
a variety of methods and is thus used to explore the success rates of the
current development pipeline and to assess which types of products are
predicted to be most successful.

Estimating with higher accuracy the development outcome of drugs
under development is of substantial interest for pharmaceutical com-
panies, financial analysts, and regulators. It is therefore not surprising
that Evaluate Ltd. (Evaluate Ltd., 2019), with whom we frequently ex-
changed ideas and information over the course of the project, has since
then built on our methodological approach to estimate product-specific
success probabilities. In fact, the integration of a supervised learning-
based classification tool into a dynamic data base would be the next logi-
cal step to apply our approach. Outcome predictions that consider multi-
ple informational dimensions are shown to be, on average, more accurate
than measures that relate solely to historic success rates. Using sophis-
ticated data-based methods to gauge clinical success may have impor-
tant implications for various stakeholders in the pharmaceutical indus-
try. For example, the usage of more accurate success measures allows
company managers to make more informed decision about the allocation

136



of resources. It also delivers novel insights to regulators about the suc-
cesses awaiting in the current development pipeline and provides a tool
to assess the prospect of success on the project level, particularly valu-
able to companies looking for collaboration or acquisition opportunities.
Yet, safety and efficacy of a single drug, two dimensions that ultimately
determine its approval, are difficult to gauge by solely relying on pub-
licly available information. Supervised learning algorithms that combine
high-dimensional data with project-specific expert opinions might be the
next step to improve predictions across many applications.

It needs to be stressed that providing decision makers with sophisti-
cated tools that address the probability of R&D success will not trivialize
the decision making process on how to allocate resources. First, resource
allocation does not solely depend on the odds of success but also on fu-
ture revenue projections and the strategic interaction with other compa-
nies. Second, since each company is different in their in-house expertise
and their inherent risk profile, we cannot expect that an entire industry
follows collectively the suggestions of artificial intelligence approaches
(i.e. investing only in projects that are commonly estimated to be likely
to become successful). Therefore it remains ambiguous how the usage
of algorithms used to estimate pharmaceutical successes will impact the
R&D pipeline on an industry level and how this will affect society as
a whole. In fact, the impact that artificial intelligence will continue to
have on our societies is multifaceted, difficult to objectively assess, even
more difficult to quantify, and thus remains an interesting and important
venue for further research.

The outcome uncertainty of the pharmaceutical drug development pro-
cess directly translates to substantial reactions of companies’ stock prices
that follow product innovation announcements. In chapter 5 we aim at
identifying common effects that explain these reactions. According to
our theoretical framework, company stock market reactions that follow
from project innovation announcements should be subject to a proba-
bility effect, that is the change in the perceived probability of market
launch, and a portfolio effect, that is the relative importance of a prod-
uct in a companies portfolio in terms of future cash flows. Measuring
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both effects directly poses practical difficulties, which we try to over-
come by estimating the project-specific success probability using a com-
bination of supervised learning methods, and by measuring a products
portfolio importance via net present values. We find our hypotheses con-
firmed, namely that projects with high success probability (portfolio im-
portance) show lower (higher) market reactions after product innovation
announcements.

Our results are of applied interest to pharmaceutical companies that
want to hedge against negative announcement risks and thus wish to an-
ticipate the possible market impact of public disclosure. Negative project
news might lead to a sustained drop in company equity which could,
especially for companies with a narrow project portfolio, influence the
managerial decision to discontinue a precarious project. Financial in-
vestors that aim at buying company stock are another group of stake-
holders that benefits from understanding how the success probability
of products is perceived in the market. Our methodological approach,
which relies on an ensemble learner consisting of several SL-algorithms
to gauge project success probabilities, could be of great use, as well. In
fact, estimating accurately the probability of success may complement
the traditional DCF analysis that focuses on estimating future cash flows
but commonly accounts for their risk in a simplistic fashion (i.e. by
adding a risk premium to the discount factor). An interesting venue for
further research would be to compare different investment strategies in
terms of profitability across markets and time, e.g., one strategy using a
sophisticated measure of success probabilities, another focusing on accu-
rately forecasting earning trajectories, and a third combining both. An-
other opportunity for future research concerns improving the measure-
ment of perceived success probabilities and thus increasing the explained
variation in market returns after product innovation announcements. To
do so, one needs to comprehend how investors establish success proba-
bility estimates and how these change with the arrival of new informa-
tion. Such fundamental questions could be addressed first of all using
experimental settings that are able to control the characteristics and tim-
ing of new information.
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Appendix A

Supplementary Material for
Chapter 2

A.1 Risk Assessment

The equilibrium predictions are derived in both contest types under the
assumption of risk neutrality. However, difference in individual risk pro-
files i.e. risk aversion might alter the expected effort levels and hence the
conclusions drawn from a direct comparison between contest types.

Theoretical evidence of the effect of risk aversion on efforts is ambigu-
ous (Konrad and Schlesinger, 1997), since results vary with the assump-
tions on risk aversion, contest success functions, and homogeneity of
rent-seekers (Treich, 2010).

Early experimental work by Millner and Pratt, 1991 on lottery contests
finds lower mean dissipation rates for risk-averse contest groups, not
significantly different from risk-neutral equilibrium predictions. Other
authors find risk aversion to significantly reduce efforts in lottery con-
tests, but averages remain still above the risk-neutral equilibrium predic-
tions (e.g. Anderson and Freeborn, 2010; Mago, Sheremeta, et al., 2013;
Sheremeta, 2011). In contrast, a direct comparison of lottery and share
contests does not find risk aversion to significantly drive down efforts
(Shupp et al., 2013).
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To control for risk aversion in our experiment, we ask subjects to evalu-
ate how willing they are to take risks, in general, using a Likert scale from
1 (unwilling to take risks) to 7 (fully prepared to take risks). Dohmen et
al., 2011 validate this measure in a representative subject pool to mea-
sure individual risk inclination. The average “risk score”, reported in
table A.1, is not significantly different between share contests and lottery
contests treatments. Hence, differences in efforts between treatments of
equal group size should not be due to different risk score distributions
across treatments.

Table A.1: Average responses on risk assessment overall and for each
treatment

Overall 3S 3L 5S 5L

Mean risk score 4.60
(0.12)

4.97
(0.27)

4.35
(0.24)

4.87
(0.26)

4.38
(0.20)

p-value 3S-3L 0.11
p-value 5S-5L 0.14

Mean risk score (1 low subjective risk score, 7 high subjective risk score)
and standard error (in parentheses). Between-treatment comparisons are
based on Pearson’s Chi-squared test at individual level.
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A.2 Additional Tables and Figures

Table A.2: Mean fraction of plays that imitate previous average opponent expen-
diture (+/-50)

3S 5S 3L 5L p-value
3S-3L

p-value
5S-5L

Mean All 0.27 0.25 0.12 0.13

0.00 0.01
Mean 1-30 0.24 0.21 0.10 0.12
Mean 31-60 0.31 0.29 0.13 0.14

Within p-value 0.05 0.12 0.39 0.26

Reported p-values for within-treatment comparisons between the two halves of the ex-
periment are based on Wilcoxon matched-pairs signed-rank tests. Reported p-values for
between-treatment comparisons are based on two-sided Wilcoxon rank-sum tests.
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Figure A.1: Fraction of zero expenditures across treatments over time - in-
cluding explained zeros under reinforcement learning
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Table A.4: Delta estimates for different EWA model specifications

δ estimates N0=0 N0 = 0,
Attr0 = 0

N0 = 0,
Attr0 = 0,
κ = 0

Reported δ
values in
main text

3S 1-30 0.62 0.62 0.65 0.61

3S All 0.67 0.67 0.68 0.67

5S 1-30 0.59 0.59 0.58 0.59

5S All 0.62 0.62 0.61 0.62

3L 1-30 0.04 0.04 0.05 0.02

3L All 0.12 0.12 0.11 0.11

5L 1-30 0.14 0.14 0.15 0.13

5L All 0.19 0.19 0.17 0.18
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Table A.5: Random effects logit regression on zero expenditures in lottery
contests

Dependent variable: 3L 5L
Zero expendituret (1) (2) (3) (4)

Expenditurest−1 -1.38*** -1.31** -1.02*** -0.61*
(0.53) (0.52) (0.35) (0.35)

Other 2.00* 1.84* 1.00** 0.69*
Expenditurest−1 (1.12) (1.10) (0.43) (0.41)

Other -0.70* -0.65 -0.18 -0.10
Expenditures2t−1 (0.42) (0.42) (0.14) (0.13)
Period -0.00 -0.01 0.03*** 0.03***

(0.01) (0.01) (0.01) (0.01)
Loss streak -0.21 -0.58***

(0.14) (0.14)
Constant -3.71*** -3.73*** -3.03*** -3.39***

(0.98) (0.97) (0.66) (0.70)

Obs. 1770 1770 2360 2360

Random effects logit regression; Standard error clustered at player level in
parenthesis. P-values: *6 0.10, **6 0.05, ***6 0.01, Obs. is the number of
observations. All effort related regressors are normalized (divided by 1000).
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A.3 Instructions

Welcome! You are about to participate in an experiment in the economics
of decision making. Please do not talk to any of the other participants un-
til the experiment is over. If you have a question at any time please raise
your hand and an experimenter will come to your desk to answer it. The
experiment will consist of 60 periods. In each period you will have the
chance to earn points. At the end of the experiment each participant’s
accumulated point earnings from all periods will be converted into cash
at the exchange rate of 0.015 pence per point. Each participant will be
paid in cash and in private.
At the beginning of the experiment you will be matched with two [four]
other people, randomly selected from the participants in this room, to
form a group of three [five]. The composition of the group will stay the
same throughout the experiment, i.e. you will form a group with the
same two [four] other participants during the whole experiment. Your
earnings will depend on the decisions made within your group, as de-
scribed below. Your earnings will not be affected by decisions made in
other groups. All decisions are made anonymously and you will not
learn the identity of the other participants in your group.

Decision task in each period

Each period has the same structure. In each period the three [five] par-
ticipants in each group will be competing for a prize of 1000 points.
At the beginning of the period each participant will be given an endow-
ment of 1000 points. Each participant has to decide how many of these
points they want to use to buy “contest tokens”. Each contest token costs
1 point, so each participant can purchase up to 1000 of these tokens. Any
part of the endowment that is not spent on contest tokens is kept by the
participant. Each participant must enter his or her decision via the com-
puter. An example screenshot is shown below.

Once everybody has chosen how many contest tokens to purchase, the
computer will calculate each participant’s share of the prize of 1000 points.

146



Figure A.2: Experiment screenshot- expenditure choice

Your share of the prize will depend on how many contest tokens you
have purchased and the total number of contest tokens purchased in
your group.

[In Share Contest Description]
If nobody in your group purchases any contest tokens, none of you will
receive a share of the prize. Otherwise, the computer will calculate each
participant’s share of the prize so that your share of the prize will be
equal to the number of contest tokens that you have purchased divided
by the total number of contest tokens purchased in your group. That is, if
you buy a number of X contest tokens and if the other two participants in
your group buy Y and Z contest tokens each, then your share of the prize
will be X/(X+Y+Z). [That is, if you buy a number of V contest tokens
and if the other four participants in your group buy W, X, Y and Z con-
test tokens each, then your share of the prize will be V/(V+W+X+Y+Z).]
Your contest earnings will be your share times 1000 points (rounded to
the nearest point).
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[In Lottery Contest Description]
If nobody in your group purchases any contest tokens, none of you will
win the prize. Otherwise, the computer will determine which participant
wins the prize in a way that will ensure that the probability that you will
win the prize is equal to the number of contest tokens that you have pur-
chased divided by the total number of contest tokens purchased in your
group. That is, if you buy a number of V contest tokens and if the other
two participants in your group buy W and X contest tokens each, then
the probability that you win the prize will be V/(V+W+X). [That is, if
you buy a number of V contest tokens and if the other four participants
in your group buy W, X, Y, Z contest tokens each, then the probability
that you win the prize will be V/(V+W+X+Y+Z).] Your contest earnings
will be either 0 (if you do not win the prize), or 1000 (if you win the prize).

Your point earnings for the period will be calculated as follows:

point earnings = 1000 – contest tokens purchased + contest earnings

After all participants have made a decision, a result screen will appear.
An example screenshot is shown below. This is like the screen you will
see during the experiment except that the blacked out fields will be filled
in according to the decisions made in that round.

Each participant will be informed of the points remaining from their en-
dowment after making their purchase, the number of contest tokens they
have purchased, the sum of tokens purchased by the other participants
in their group, their contest earnings and their point earnings for the pe-
riod. In addition, the results screen will inform each participant of his or
her accumulated points from all periods so far.

Beginning of the experiment
If you have any questions please raise your hand and an experimenter
will come to your desk to answer it.

148



Figure A.3: Experiment screenshot- information feedback

We are now ready to begin the decision-making part of the experiment.
Please look at your computer screen and begin making your decisions.
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A.4 QRE Model

In result section 2.4.2 we report that choices made by lottery contestants
rely more on own past experience than the ones of share contestants. This
supplementary section adds to the behavioral differences across treat-
ments by exploring the degree of contestants’ “sophistication” using the
homogeneous Quantal Response Equilibrium (QRE) model of McKelvey
and Palfrey, 1995. Sophisticated players base their choices on the evalua-
tion of expectations on future actions of opponents (C. F. Camerer et al.,
2002). The estimation results complement the EWA findings: sophisti-
cation increases over time, yet share contestants act more sophisticated
than lottery contestants.

P (xk) =
eλ

QEp[π(xk)]∑K
j=1 e

λQEp[π(xj)]
for k = 1 · · · 11 (A.1)

Let P (xk) denote the probability of choosing the kth bin xk for an arbi-

trary player. Let Ep[π(xk)] be the expected payoff from choosing bin xk
conditional on all N −1 opponents playing the mixed strategy p over the
K bins.1 The K probabilities are the solutions of a logit QRE specifica-
tion in equation A.1. λQ ∈ [0,∞) is called precision parameter. While λ
in the EWA model measures the impact of past attractions, λQ measures
the impact of expectations on choice probabilities. Table A.6 describes all
reported QRE parameters.

The estimation results in table A.7 show that the lottery treatments ex-
hibit a lower value of λQ, indicating that players’ choices depend less on
payoff expectations given the anticipation of opponents mixed strategies
and are therefore, on average, less sophisticated.

We use likelihood ratio tests to verify heterogeneity in λQ within- and
between-treatments (see Lim et al., 2014. To test whether the impact
of expected payoffs on choices changes over time, we compare the log-
likelihood of a constant λQ across all periods with the log-likelihood of a
differing λQ between the two halves of the session (equation A.2).

1To be coherent with the EWA estimation, we use 11 bins of equal distance.
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Table A.6: Description of reported QRE values

Parameter Description

λQ Sensitivity measure of attractions. The higher λQ, the more best-
responses rely on forecasts of opponents behavior. For λQ = 0,
equation A.1 simplifies to P (xk) = 1/K, i.e. every choice is equally
likely to occur and does not depend on the relative expected payoff.
Contrariwise, as λQ →∞ the QRE prediction converges to the Nash
equilibrium.

−LL λQ is chosen such that it maximizes the log-likelihood of the theo-
retical choice probabilities of the QRE model given real choice fre-
quencies. The corresponding log-likelihood value is given by −LL.

−LLUni The log-likelihood that would result from all choices equally likely.

−LLMax The log-likelihood that would result from an exact correspondence
between model estimations and the observed data.

Q Q-statistic ( LL−LLUni
LLMax−LLUni

) measures the fit of the QRE model ac-
cording to Lim et al., 2014. If Q = 0, then the best fit is achieved
using a uniform choice distribution. If Q = 1, the model predicts
perfectly the empirical distribution.

Similarly, for between-treatment comparisons (3L-5L, 3S-5S, 3S-3L and
5S-5L) we take for each λQ the sum of the log-likelihood of both treat-
ments and find the new optimal λQ and its corresponding log-likelihood
(equation A.3). We then compare the resulting LLT1+T2 with LLT1 +

LLT2. Meaning we estimate the λQ parameters for each treatment sepa-
rately and then sum the corresponding log-likelihood estimations. Both
test statistics are asymptotically chi-squared distributed with 1 degree of
freedom. The summary of all likelihood ratio tests can be found in table
A.8.

D(within) = −2
[
LLALL − (LL1−30 + LL31−60)

]
(A.2)

D(between) = −2
[
LLT1+T2 − (LLT1 + LLT2)

]
(A.3)

Estimations show a significant increase in the precision parameters over
time: the estimated λQ in 3S increases from 0.33 in the first half to 0.76
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in the second half (D = 109.8, p = 0.00). Comparable increases are ob-
served for all other treatments (5S: from 0.31 to 0.51 (D = 49.3, p = 0.00),
3L: from 0.09 to 0.14 (D = 18.8, p = 0.00), 5L: from 0.16 to 0.24 (D = 35.0,
p = 0.00).

When comparing the results for different group sizes of the same con-
test, one might expect that an increase in group size could make the
game more complex since the possible set of opponents’ expenditures
increases, leading thus to a lower lambda in larger groups.2 We find
support for this assumption in the overall periods of the share contest
(D = 18.6, p = 0.00), yet in the first half of the share contests results
are not significant (D = 1.0, p = 0.31). In the lottery contest we find
significantly higher λQ for the five-player treatment (1st half: D = 42.3,
p = 0.00, all: D = 87.0, p = 0.00).

Using the same approach for a between contest type comparison, we
discover that λQ is significantly higher for the share contest in all eval-
uated treatments and subsamples (1st half three-player: D = 185.5, all
three-player: D = 509.1, 1st half five-player: D = 85.4, all five-player:
D = 178.1). This suggests that expected payoffs matter less for lottery
contest players when deciding on their next investment, especially dur-
ing early periods. Similar to Chowdhury, Sheremeta, et al., 2014, we
find a higher Q-statistic for the share contest in all treatments suggesting
that the estimated QRE model better fits the share contest expenditures.
Expenditures in the lottery contain a higher share of zero expenditures,
which may explain the lower goodness of fit.

Stylizing the main results of the QRE model, we find that players across
treatments become more sophisticated over time meaning that they in-
creasingly rely on forecasting opponents’ behavior when determining
their choices. Additionally, a higher number of players leads to an in-
crease in λQ for lottery treatments, while the effect in the share contest is
ambiguous. The choice patterns observed in lottery treatments display
less sophistication than in the share contest which might be due to the

2Lim et al., 2014 estimate a QRE model for Tullock contests and find a lower lambda in
larger groups.
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probabilistic prize assignment that makes it challenging to form sophis-
ticated expectations.

Table A.7: QRE estimation results across treatments

Treatment 3S 5S 3L 5L

Periods 1-
30

All 1-
30

All 1-
30

All 1-
30

All

Q
R

E

λQ 0.33 0.47 0.31 0.38 0.09 0.11 0.16 0.20

−LL 1816 3403 2279 4412 2097 4126 2567 4926

−LLUni 2158 4316 2877 5755 2158 4316 2877 5.755

−LLMax 1774 3328 2184 4296 1921 3862 2327 4350

Q 0.89 0.92 0.86 0.92 0.26 0.42 0.57 0.59

λQ is the precision parameter of the QRE model which maximizes the log-likelihood
(LL) to observe the relative frequency of actual choices. See table A.6 for further
parameter explanations.
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Table A.8: QRE model- likelihood ratio test results

Treatment Period λQ -LL D-
statistic

p-value

3S
1-30 0.33 1816

109.8 0.00031-60 0.76 1532
All 0.47 3403

5S
1-30 0.31 2279

49.3 0.00031-60 0.51 2109
All 0.38 4412

3L
1-30 0.09 2097

18.8 0.00031-60 0.14 2020
All 0.11 4126

5L
1-30 0.16 2567

35.0 0.00031-60 0.24 2342
All 0.20 4926

5S+3S
1-30 0.32 4095 1.0 0.307

31-60 0.60 3654 26.9 0.000
All 0.42 7824 18.6 0.000

5L+3L
1-30 0.13 4685 42.3 0.000

31-60 0.20 4384 44.2 0.000
All 0.16 9096 87.0 0.000

3L+3S
1-30 0.16 4005 185.5 0.000

31-60 0.27 3746 386.9 0.000
All 0.21 7784 509.1 0.000

5L+5S
1-30 0.22 4888 85.4 0.000

31-60 0.32 4506 112.5 0.000
All 0.26 9427 178.1 0.000

λQ is the precision parameter of the QRE model which maximizes the log-likelihood
(LL) to observe the relative frequency of actual choices. The D-statistic for the first
four treatments is the within-LR test statistic of equation A.2. The D-statistic for the
last four treatment combinations is based on the between-LR test statistic of equation
A.3.
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A.5 Mathematical Demonstrations

A.5.1 Nash Equilibrium of Share and Lottery contests

1. Show equality of expected values in lottery and share contest

The expected payoff of player i in the lottery contest is given by

E(πi) =
xi
X

(e− xi + V ) +
X − xi
X

(e− xi)

=
xi
X
V +

X

X
(e− xi)

= e− xi + V (
xi
X

)

which is the individual payoff function of the share contest. Since the
share contest is not probabilistic, its payoff function is equivalent to its
expected payoff function.

2. Derive the Nash equilibrium starting from the expected value

Replace X by
∑N
i=1 xi. The expected value of payoff function can then

be expressed as:

E(π) =
xi∑N
i=1 xi

V − xi + e

The First order condition with respect to own effort xi is given by:

FOCxi =

∑N
i=1 xi − xi

(
∑N
i=1 xi)

2
V − 1

!
= 0

(

N∑
i=1

xi − xi)V = (

N∑
i=1

xi)
2

V

N∑
i=1

xi − (

N∑
i=1

xi)
2 = xiV
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In equilibrium this expression needs to hold for every individual i. Since
the sum of expenditures (left term) is the same for all i, due to equality
also the right term is the same for all i. We thus replace xi with x∗ and
obtain:

V

N∑
i=1

x∗ − (

N∑
i=1

x∗)2 = x∗V

V nx∗ − (nx∗)2 = x∗V

V (n− 1)x∗ = (nx∗)2

V (n− 1)

n2
= x∗

which is the Nash equilibrium for individual efforts of the lottery and
share contest. The equilibrium contribution for n players in a group is
then x∗ = nV (n − 1)/n2. Note that for an increase in the number of
players, the individual level of equilibrium efforts decreases but the level
of group effort increases.

A.5.2 Myopic Best Response Function

The best response (BR) function relates the opponent efforts c to the pay-
off maximizing level of own efforts x. A myopic best response considers
only the opponent efforts of the last round when choosing an own effort.
Here we show how the best response function is calculated and why it is,
according to the myopic BR, not optimal to invest if aggregate opponent
efforts were higher in the previous round than the prize V . We start with
the expected value of the contests:

E(π(x)) = e− x+ V (
x

x+ c
)

Since we are interested in the (expected) payoff maximizing level of own
expenditures, we take the derivative with respect to x and set it equal to
zero.
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∂E(π(x))

∂x
= −1 +

V

x+ c
− V x

(x+ c)2
!
= 0

(x+ c)2 = V c

x1,2 = −2c

2
±
√

(
2c

2
)2 − (c2 − V c)

x1,2 = −c±
√
V c

Since x and c are ≥ 0, only the solution x1 = −c +
√
V c is of practical

relevance. The best response function given opponent effort level c and
prize V is hence given by BR(c) = −c +

√
V c. If c = V , then the best

response is zero, meaning not to put any effort in the contest. In case
c > V , the BR(c) becomes negative, but since efforts are by definition
greater or equal to zero, zero efforts remain, in practice, the best response.
If an individual expects c ≥ V , where in our experiment V = 1000, then
own efforts greater zero are not maximizing the expected payoff.
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Appendix B

Supplementary Material for
Chapter 3

B.1 Additional Tables and Figures

Table B.1: Likelihood ratio test: p-values for model selection

Additionally included variables FM RM

l.othereffort2 0.02 0.01
l2.othereffort 0.12 0.26
l2.othereffort, l2.othereffort2 0.20 0.41

Table B.1 shows the p-values of the likelihood ratio tests between the base model and models with
additionally included variables for FM and RM treatments. For p-values below 0.05, we reject the Null

hypothesis that both models are equivalent in terms of log likelihood and include the additional
variable.
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Table B.2: Tobit regression estimates for FM type “others”

Dep. variable: ef-
fort

(1) (2) (3)

l.othereffort 0.031
(0.102)

0.088
(0.1044)

0.116
(0.105)

l.othereffort2 0.008
(0.039)

-0.0132
(0.040)

-0.026
(0.040)

l2.othereffort 0.370***
(0.099)

0.375***
(0.102)

0.379***
(0.103)

l2.othereffort2 -0.120***
(0.037)

-0.125***
(0.038)

-0.126***
(0.039)

period -0.001
(0.003)

0.000
(0.003)

0.001
(0.003)

l.win 0.105***
(0.034)

0.114***
(0.035)

-

l2.win 0.179***
(0.034)

- -

σε 0.342***
(0.011)

0.350***
(0.012)

0.354***
(0.012)

Obs; N 558;31 558;31 558;31

Standard errors in parenthesis; p-values: *6 0.10, **6 0.05, ***6 0.01;
Obs. is the total number of observations; N is the number of contestants in
each group.
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Figure B.1: Marginal effect of l.othereffort on effort in FM treatments
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Figure B.2: Marginal effect of l.othereffort on effort in RM treatments
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Appendix C

Supplementary Material for
Chapter 4

C.1 Hyperparameter Tuning

More complex SL-algorithms often rely on an array of exogenously sup-
plied parameters that remain unchanged during the actual training pro-
cedure. These so called hyperparameters are usually estimated using
cross validation approaches and chosen such that they minimize the out
of sample error. For PROBIT and DT there are no hyperparameters avail-
able to tune. For the other algorithms we restrict hyperparameter tuning
to one (RF, C5.0) or two values (BART) for each data set, because we
observe that the performance gain from fine-tuning hyperparameters is
low while computation times are high. All hyperparameters are tuned
using five-fold cross validation. Hyperparameters that are not tuned are
kept at their default values specified by the respective R package. The
hypertuning results of the BART cut-off probability, the BART number
of trees, the RF randomly sampled variables at each split, and the C5.0
number of boosting iterations are shown in table C.1, table C.2, table C.3,
and table C.4, respectively.
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Table C.1: Hyperparameter tuning: Error ratio for BART cut-
off probability

Cut-off probability value
0.3 0.4 0.5 0.6 0.7

PI 0.1714 0.1596 0.1524 0.1598 0.183
PII 0.119 0.108 0.0974 0.1084 0.1334
PIII 0.1442 0.1082 0.1212 0.1492 0.2082
Filed 0.033 0.033 0.033 0.033 0.033

Table C.1 shows the out-of-sample error ratio for BART cut-off
probability values at each data set. The lowest error ratio for

each data set is highlighted in bold.

Table C.2: Hyperparameter tuning: BART number
of trees

Number of trees
50 100 150 200

PI
Accuracy 0.8499 0.8554 0.8595 0.8562
Accuracy SD 0.0076 0.0152 0.0077 0.0065
PII
Accuracy 0.8990 0.9006 0.8995 0.8975
Accuracy SD 0.0076 0.0069 0.0101 0.0094
PIII
Accuracy 0.8750 0.8767 0.8701 0.8701
Accuracy SD 0.0545 0.0413 0.0382 0.0432
Filed
Accuracy 0.9671 0.9671 0.9671 0.9671
Accuracy SD 0.0066 0.0066 0.0066 0.0066

Table C.2 shows the accuracy and its standard devia-
tion (SD) for BART number of tree values at each data
set. The highest accuracy for each data set is high-
lighted in bold.
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Table C.3: Hyperparameter tuning: RF number of sampled variables at each
split

Number of sampled variables at each split
Accuracy (SD) 7 8 9 10

PI 0.8407 (0.0120) 0.8411 (0.0138) 0.8415 (0.0135) 0.8396 (0.0147)
PII 0.8708 (0.0194) 0.8688 (0.0196) 0.8739 (0.0204) 0.8719 (0.0159)

PIII 0.8455 (0.0390) 0.8422 (0.0380) 0.8439 (0.0364) 0.8472 (0.0353)
Filed 0.9672 (0.0160) 0.9672 (0.0160) 0.9702 (0.0179) 0.9642 (0.0129)

Table C.3 shows the accuracy and its standard deviation (SD) for RF number of sampled
variables at each split. The highest accuracy for each data set is highlighted in bold.

Table C.4: Hyperparameter tuning: C5.0 number of boosting iterations

PI PII PIII Filed
Iterations ACC SD ACC SD ACC SD ACC SD

10 0.7930 0.0211 0.8473 0.0154 0.7948 0.0288 0.9789 0.0173
20 0.8040 0.0162 0.8462 0.0205 0.7948 0.0307 0.9760 0.0172
30 0.8073 0.0195 0.8498 0.0183 0.8063 0.0233 0.9760 0.0172
40 0.8114 0.0150 0.8514 0.0231 0.8112 0.0197 0.9760 0.0172
50 0.8114 0.0161 0.8519 0.0183 0.8128 0.0210 0.9760 0.0172
60 0.8099 0.0175 0.8493 0.0195 0.8095 0.0219 0.9760 0.0172
70 0.8121 0.0172 0.8503 0.0174 0.7997 0.0238 0.9760 0.0172
80 0.8125 0.0180 0.8524 0.0157 0.8030 0.0217 0.9760 0.0172
90 0.8139 0.0182 0.8514 0.0131 0.8030 0.0255 0.9760 0.0172

100 0.8121 0.0199 0.8529 0.0125 0.8047 0.0220 0.9760 0.0172

Table C.4 shows the accuracy (ACC) and its standard deviation (SD) for C5.0 number
of boosting iterations. The highest accuracy for each data set is highlighted in bold.
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C.2 Additional Tables and Figures

Table C.5: Inclusion and exclusion criteria of data in main dataset

Description The dataset includes FDA monitored drugs of active pharmaceutical
companies with at least one reported indication status in the US.

Excluded Included
Companies outside the pharmaceutical sector: Companies within the pharmaceutical

sector:

• AGBio & Chemicals
• Food & Consumer
• Hospitals
• Government Agencies
• Non-profit
• Universities
• Investors

• Global Majors (Pharma)
• Regional Majors (Pharma)
• Speciality & Genomics (Pharma)
• Biotechnology

Firms with no core business in R&D and mar-
keting of pharmaceuticals:

Firms with core business in R&D and
marketing of pharmaceuticals:

• MedTech
• CRO
• API (Manufacturers)

• All companies with core
business in Pharma

Products: Products:

• Generics
• OTC Products
• New drug applications
• New Derivative
• Biosimilars
• Unclassified

• New molecular entities

Indications: Indications:

• Not in R&D or marketed for the US
• Status unclassified
• Last status before 2008 - after 2017

• In R&D or marketed for the
US

• Status Assigned
• Last status between 2008 and

2017
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Table C.6: Validation results of the five SL-algorithms across data sets (one
repetition only)

AUC AUCL AUCH SENS SPEC

PROBIT

PI 0.8497 0.8272 0.8722 0.9093 0.5630
PII 0.8887 0.8657 0.9116 0.6538 0.9141

PIII 0.8767 0.8331 0.9204 0.9441 0.5960
Filed 0.7000 0.4971 0.9029 1.0000 0.0000

DT

PI 0.8096 0.7835 0.8358 0.9320 0.4048
PII 0.8416 0.8125 0.8707 0.5737 0.9408

PIII 0.8013 0.7461 0.8564 0.9255 0.5657
Filed 0.5000 0.5000 0.5000 1.0000 0.0000

RF

PI 0.8808 0.8611 0.9005 0.9559 0.3941
PII 0.9340 0.9165 0.9516 0.7917 0.9179

PIII 0.9098 0.8749 0.9448 0.9317 0.6667
Filed 0.9781 0.9540 1.0000 1.0000 0.0000

BART

PI 0.9420 0.9294 0.9547 0.9219 0.7480
PII 0.9618 0.9480 0.9756 0.8429 0.9523

PIII 0.9401 0.9142 0.9659 0.8882 0.8081
Filed 0.9518 0.8964 1.0000 1.0000 0.0000

C5.0

PI 0.8686 0.8471 0.8902 0.9307 0.5416
PII 0.9111 0.8911 0.9312 0.7115 0.9179

PIII 0.8924 0.8539 0.9309 0.9255 0.5960
Filed 0.6686 0.3487 0.9886 0.9927 0.0000

Table C.6 shows the AUC, its lower and upper 95% confidence interval (AUCL, AUCH),
the sensitivity (SENS) and the specificity (SPEC) on the validation set for each SL-
algorithm and data set. The algortihm with the highest AUC of each data set is high-
lighted in bold.
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Figure C.1: Stylized drug development process in the US

Figure C.1 stylizes the US drug development process and describes each stage according to US Food
and Drug Agency, 2019. Estimates concerning the average cost for one drug launch, the success ratio,
and the duration of each stage are found in Paul et al., 2010. In stage “Discovery and Development”,
cost, success ratio, and duration reflect estimates after selection of a target compound. The post launch
success ratio is found in Qureshi et al., 2011.

Table C.7: Meta-analysis of phase success rates

Success rates
Source Number

of obser-
vations

Time in
Phase
I

in
Phase
II

in
Phase
III

PI-PIII
Com-
pletion

Wong and Lo (2019) 15102 2000-
2015

66.4% 48.6% 59.0% 19.0%

EvaluatePharma
(2018)

16000 2000-
2018

66.8% 33.1% 57.5% 13.7%

Thomas et al. (2016) 7455 2006-
2015

63.2% 30.7% 58.1% 11.3%

Hay et al. (2014) 4451 2003-
2011

64.5% 32.4% 60.1% 13.6%

Weighted average 65.8% 38.1% 58.4% 14.7%

Table C.7 shows a meta analysis of success rates in clinical phases. The weighted aver-
age weighs the success rate of each source by its share of observations.
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Figure C.2: Best-in-class SL and DISCR classification values separated by
phase and true outcome
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Figure C.3: Predicted success rates of current PII and PIII pipeline by tech-
nology

Figure C.3 contains the predicted success ratio on the current PII/ PII pipeline using the BART algo-
rithm. Success ratios are split by employed technology. Only categories with more than 10 observations
reported.
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Figure C.4: Predicted success rates of current PII and PIII pipeline by indi-
cation

Figure C.4 contains the predicted success ratio on the current PII/ PII pipeline using the BART algo-
rithm. Success ratios are split by indication level 1. Only categories with more than 20 observations
reported.
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Appendix D

Supplementary Material for
Chapter 5

D.1 Product Success Probability Estimation via
Supervised Learning

This section presents each method used in the SL procedure in more de-
tail. We also report a description of the feature set (table D.1), informa-
tion on the optimal weights across methods and stages (table D.2), and
information on the out-of-sample performance (table D.3).

The HIST measure is built on the stage-specific historical success ratio
of a therapeutic market. For example, a Phase II product in the therapeu-
tic market “breast cancer” is assigned a stage-specific success probability
of 0.24 based on the ratio of products in the same stage and same mar-
ket that passed Phase II. A product in the same market, but in Phase
III (Filed) would be assigned the historical success probability of 0.5 (1).
Then, for obtaining the success probability of receiving market approval
the stage-specific probabilities are multiplied. The historic success prob-
ability of a breast cancer product in Phase II to be approved is thus
0.24∗0.5∗1 = 0.12. Our data sample covers success rates of more than 200
therapeutic markets that are different across development stages. We use
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the HIST method as it presents an easy rule-of-thumb investors could
use to form probability estimates.

The intuition of the FFT measure is best explained by an example. Fig-
ure D.1 shows the FFT tree structure of the decision rules used to esti-
mate Phase I success probabilities. The FFT decision tree is computed
during the training phase of the algorithm (see Phillips et al., 2017 for
details). For each observation in the testing set, the decision tree sequen-
tially evaluates its features (nodes - rectangular boxes) based on deci-
sion rules (in orange). At each decision rule the FFT tree either predicts
the stage-specific outcome of a product or moves to the next feature and
decision rule. The classifying branches of decision rules are also called
leaves. For example, the algorithm is trained such that in Phase I all
products whose Mechanism of Action (MoA) has been previously ap-
proved are classified as successful. If the MoA has not been approved
yet, the next feature “Proprietary Level” is evaluated. At the last de-
cision rule all remaining observations are classified. The percentage in
the blue circle denotes the accuracy for each decision rule which is the
number of correct classifications over all classifications. The way the FFT
algorithm proceeds is similar to an investor who evaluates one feature at
a time and decides based on a previously learned cutoff rule whether to
form an opinion about the product outcome or to evaluate another (less
relevant) feature.

LOGIT models are commonly used in regression analysis. The binary
variable (success or failure) at each stage of the development process is
modeled by a logistic function that maps values from the real domain
into a range between zero and one, which can be thought of as probabil-
ities (f : R→ (0, 1)).

f(x) =
1

1 + e−(X′β)

Using a maximum likelihood procedure, the vector β is chosen such
that, given the feature set X, the mean squared error between f(x) and
the outcomes of the training set is minimized. We include the LOGIT
method since it resembles an investor who estimates the success proba-
bility of a product by assigning weights to every product feature.

171



Figure D.1: FFT decision rules used to estimate phase I success
probabilities

Figure D.1 shows the FFT decision tree and the accuracy at each leaf in the Phase I testing set.

Lastly we use a BART algorithm, as it resembles a sophisticated su-
pervised learning method that can consider non-linear relationships and
interactions between features. As the FFT algorithm, BART belongs to
the family of tree algorithms, but rather than estimating just one single
tree it estimates an ensemble of trees. The contribution of every tree to
classify observations is additive. The structure of the trees and the leaf
parameters (decision nodes) of each tree are determined by prior distri-
butions that are data set dependent. This ensures that all trees in the
ensemble contribute to the classification. The posterior distribution of
the tree structure and its leaves is drawn using a Gibbs sampler. We use
the R package bartMachine of Kapelner and Bleich, 2013 for our imple-
mentation.

Once we have trained all algorithms, we derive the 4× 1 vector of opti-
mal weights w that minimizes the mean squared error between the ma-
trix of probability estimates of each method A at a specific stage and the
vector of true outcomes y solving the following quadratic optimization
problem:
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min
w

1

2
||Aw − y||2 =

1

2
(Aw − y)T (Aw − y) =

=
1

2
wTATAw − yTAw +

1

2
yT y

s.t. w ≥ 0,

1Tw = 1

The weights are hence chosen such that their linear combination with the
probability estimates minimizes the distance to the vector of true out-
comes y while restricting them to sum up to one and being positive. We
reserve 15% of the observations in each sample for deriving the optimal
weights between algorithms. On these 15% we use a 10-fold cross valida-
tion, meaning we optimize ten times using randomly chosen samples of
10% and average the weighting estimates. This procedure is performed
for each development stage leading to four different weighting vectors.
Table D.2 shows for each stage the weighting vector assigned to the suc-
cess probability estimates of the different methods. Whilst for Phase I
and Phase II prediction performance is optimized using a high share of
BART , we see that the weight of FFT and LOGIT increases in the late
stage of development. The weight of HIST is very low for probability
estimates across phases. Thus the HIST measure is most different with
respect to the weighted average that considers all methods. Replacing
the weighted average with HIST , as we do in the regression robustness
check, generates more distortion from the original Prob measure than
using any other method in isolation.

Not only do the methods used in the supervised learning procedure
differ in their complexity, they also perform differently when predicting
outcomes on a separately kept testing sample (the remaining 15%). Ta-
ble D.3 contains for each method the out-of-sample classification results
using the area under the receiver operating curve (AUC) measure. The
AUC measure ranges between 0 and 1 and quantifies how well the classi-
fication approach solves the trade-off between type one and type two er-
rors. Roughly speaking, an AUC of 0.5 is equivalent to randomly guess-
ing the outcome. We can observe that more complex methods are asso-
ciated to better out-of-sample classification results. In Phase I till Phase
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III BART performs best, whereas in Filed FFT delivers the best predic-
tion results. Across data sets the classification performance of HIST is
lowest.

Table D.1: Description of product success features used in SL-methods

Feature
category

Feature Name Description

Product MoA Classifies whether the underlying mechanism of action
(MoA) of the product has been already approved in the US
market. New products that rely on already approved MoA
are usually less risky.

Product Proprietary
level

Classifies the product by its type of novelty. The following
classes are considered: New Molecular Entity, New Drug Ap-
plication (NDA), Biosimilar, and New Derivative.

Regulatory Orphan Drug Classifies whether the product has been granted an orphan
drug status. Orphan status is granted to drugs that are devel-
oped for rare diseases and usually encompasses tax benefits
and market exclusivity.

Regulatory Expedited Classifies whether the product has been granted an expedited
status. Promising drug candidates can apply for expedited
FDA treatment, which implies an accelerated review process.

Technology Success rate -
Technology

The historical phase-specific success rate of products that
share the same type of technology e.g. “Small molecule
Medicine” or “Cell therapy”.

Therapeutic
Market

Success rate -
Therapeutic
area

The historical phase-specific success rate of products that
share the same therapeutic area e.g. “Alzheimer’s disease”
or “Narcolepsy”.
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Table D.2: Optimal weights (rounded) of SL methods for each phase

Method Phase I Phase II Phase III Filed

HIST 0.03 0.01 0.03 0.01

FFT 0.02 0.02 0.17 0.36

LOGIT 0.10 0.06 0.17 0.25

BART 0.86 0.91 0.62 0.37

Sum 1 1 1 1

Table D.3: Out-of-sample AUC of each SL method across development
phases

Method Phase I Phase II Phase III Filed

HIST 0.58 0.68 0.65 0.53

FFT 0.68 0.82 0.68 0.68

LOGIT 0.73 0.87 0.74 0.62

BART 0.76 0.88 0.77 0.65
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D.2 Additional Tables and Figures

Figure D.2: Distribution of cumulated abnormal returns split by negative
and positive announcements
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Figure D.2 shows the dispersion ofCAR for negative and positive announcements.

Table D.7: Model 1 - Effect of product portfolio importance Port onReturn
and CAR - with control variables

Dependent variable: Return Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Port -0.27*** -0.32*** -0.32*** -0.34*** -0.44*** -0.47*** -0.35*** -0.29***
(0.05) (0.06) (0.05) (0.03) (0.05) (0.10) (0.10) (0.04)

Positive 0.09*** 0.10*** 0.03** 0.07*** 0.07* 0.06* 0.03*** 0.09***
(0.03) (0.03) (0.02) (0.02) (0.04) (0.03) (0.01) (0.02)

Port ×
Positive

0.47*** 0.46*** 0.41*** 0.45*** 0.54*** 0.55*** 0.42*** 0.38***

(0.05) (0.07) (0.06) (0.03) (0.06) (0.10) (0.10) (0.04)
Constant -0.06** -0.04 0.05** 0.00 -0.04 0.01 0.03 -0.05

(0.03) (0.05) (0.02) (0.03) (0.03) (0.06) (0.03) (0.04)

Acquisition 0.04 -0.01 -0.01 0.03 0.00 0.01
(0.04) (0.01) (0.01) (0.04) (0.01) (0.02)

In-licensed 0.02 0.01 0.02 0.03 0.01 0.04**
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Table D.7 – continued from previous page
Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

(0.02) (0.00) (0.01) (0.03) (0.01) (0.02)
Other 0.15** 0.11 0.12 0.24 0.05 0.11

(0.07) (0.30) (0.07) (0.15) (0.75) (0.09)
Filed -0.03 -0.06*** -0.04 -0.07* -0.06** -0.05*

(0.03) (0.01) (0.02) (0.04) (0.03) (0.03)
Phase II 0.06 -0.03** 0.00 0.03 -0.04 -0.01

(0.04) (0.01) (0.02) (0.04) (0.03) (0.03)
Phase III -0.00 -0.05*** -0.02 -0.07* -0.06** -0.03

(0.03) (0.01) (0.02) (0.04) (0.03) (0.03)
Blood 0.02 0.02** 0.03 0.04 0.03 0.03

(0.03) (0.01) (0.03) (0.04) (0.03) (0.03)
Cardiovascular -0.03 -0.01 -0.04 -0.15 -0.01 0.04

(0.06) (0.01) (0.03) (0.12) (0.01) (0.04)
Immunology -0.01 0.01 0.01 0.01 0.00 0.01

(0.03) (0.01) (0.03) (0.03) (0.01) (0.03)
Infections -0.03 -0.00 -0.01 0.01 0.02* 0.01

(0.04) (0.01) (0.03) (0.05) (0.01) (0.04)
Miscellaneous 0.01 -0.01 -0.02 0.02 -0.00 -0.01

(0.03) (0.01) (0.02) (0.03) (0.01) (0.02)
Musculoskeletal -0.02 -0.01 -0.02 -0.04 0.00 -0.00

(0.03) (0.01) (0.03) (0.05) (0.01) (0.03)
Neurology 0.04 0.02 0.03 0.06 0.03** 0.04

(0.04) (0.01) (0.02) (0.04) (0.01) (0.02)
Respiratory 0.04 0.01 0.03 0.07 0.02** 0.05

(0.04) (0.01) (0.03) (0.05) (0.01) (0.03)
Europe 0.01 0.00 -0.00 0.02 0.00 -0.01

(0.02) (0.01) (0.01) (0.02) (0.01) (0.02)
Other 0.19 -0.00 -0.01 0.21 -0.01 0.00

(0.21) (0.01) (0.04) (0.17) (0.02) (0.05)
Global
Majors

-0.06** -0.01 -0.03 -0.03 -0.01 -0.00

(0.03) (0.01) (0.02) (0.03) (0.01) (0.02)
Other 0.11** 0.01 0.05 0.21*** 0.03 0.07

(0.05) (.) (0.12) (0.08) (.) (0.15)
Regional
Major

-0.06* -0.01 -0.02 -0.06 -0.01 -0.01

(0.03) (0.01) (0.03) (0.04) (0.01) (0.03)
Specialty -0.06 -0.00 -0.01 -0.08 0.00 0.01

(0.04) (0.01) (0.02) (0.05) (0.01) (0.02)
2017Q2 0.00 0.00 0.01 0.02 0.02** 0.03

(0.03) (0.01) (0.02) (0.03) (0.01) (0.03)
2017Q3 0.08* 0.00 0.02 0.07* 0.01* 0.04

(0.05) (0.01) (0.02) (0.04) (0.01) (0.03)
2017Q4 -0.01 -0.00 -0.01 -0.02 0.00 -0.02
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Table D.7 – continued from previous page
Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

(0.03) (0.01) (0.02) (0.03) (0.01) (0.03)
2018Q1 -0.03 0.01 -0.00 -0.06 0.01* 0.01

(0.03) (0.01) (0.02) (0.06) (0.01) (0.03)
2018Q2 0.06 0.00 0.03 0.06 0.01 0.03

(0.05) (0.01) (0.02) (0.04) (0.02) (0.03)
2018Q3 -0.02 -0.01 -0.01 0.00 0.01 0.03

(0.03) (0.01) (0.02) (0.04) (0.01) (0.03)
2018Q4 -0.07** -0.02 -0.04* -0.04 -0.00 -0.03

(0.03) (0.01) (0.02) (0.04) (0.01) (0.03)
Many
Markets

-0.05** -0.01 -0.04** -0.10** -0.01 -0.05**

(0.02) (0.01) (0.02) (0.04) (0.01) (0.02)

Observations 510 510 510 510 510 510 510 510
Adjusted
R2

0.359 0.398 - 0.601 0.353 0.407 - 0.475

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier
correction

No No Yes Yes No No Yes Yes

Table D.7 contains the regression results for model 1 concerning the effect of product portfolio im-

portance Port on Return (column 2-5) and on CAR (column 6-9). All control variables included.

Standard errors in parenthesis. P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.

Table D.8: Model 2 - Effect of product success probability Prob on Return
and CAR - with control variables

Dependent variable: Return Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Prob 0.10 0.12* 0.23*** 0.12** 0.06 0.07 0.22** 0.12*
(0.07) (0.07) (0.08) (0.05) (0.07) (0.10) (0.11) (0.06)

Positive 0.66*** 0.65*** 0.47*** 0.53*** 0.58*** 0.56*** 0.41*** 0.52***
(0.06) (0.08) (0.05) (0.04) (0.05) (0.07) (0.09) (0.04)

Prob ×
Positive

-0.40*** -0.35*** -0.31*** -0.27*** -0.23*** -0.21** -0.28*** -0.24***

(0.09) (0.10) (0.08) (0.05) (0.08) (0.10) (0.11) (0.06)
Constant -0.31*** -0.35*** -0.31*** -0.32*** -0.37*** -0.36*** -0.28*** -0.34***

(0.05) (0.06) (0.05) (0.04) (0.04) (0.07) (0.09) (0.05)

Acquisition 0.08** 0.00 0.04** 0.06* -0.00 0.03
(0.04) (0.01) (0.02) (0.04) (0.01) (0.02)

In-licensed -0.02 0.00 0.02 0.03 0.00 0.03

178



Table D.8 – continued from previous page
Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

(0.03) (0.01) (0.02) (0.03) (0.01) (0.02)
Other 0.11 0.03*** 0.10** 0.15* 0.05 0.11*

(0.10) (0.01) (0.05) (0.09) (0.05) (0.05)
Filed -0.07 -0.04** -0.02 -0.07 -0.04* -0.05

(0.06) (0.02) (0.04) (0.05) (0.02) (0.04)
Phase II -0.03 -0.02 0.00 -0.05 -0.01 -0.03

(0.06) (0.02) (0.03) (0.04) (0.02) (0.03)
Phase III -0.07 -0.04*** -0.02 -0.09** -0.05** -0.05

(0.05) (0.01) (0.03) (0.04) (0.02) (0.04)
Blood 0.07 0.04*** 0.03 0.04 0.02 0.02

(0.06) (0.01) (0.04) (0.05) (0.02) (0.04)
Cardiovascular 0.12 0.03 -0.01 -0.08 -0.00 -0.01

(0.12) (0.03) (0.04) (0.12) (0.05) (0.05)
Immunology -0.05 -0.01 -0.04 -0.07 -0.01 -0.04

(0.04) (0.01) (0.04) (0.05) (0.01) (0.04)
Infections 0.02 -0.01 -0.01 -0.03 0.00 -0.03

(0.04) (0.02) (0.04) (0.06) (0.01) (0.04)
Miscellaneous 0.06* 0.01 0.03 0.02 -0.00 0.01

(0.04) (0.01) (0.02) (0.03) (0.01) (0.03)
Musculoskeletal 0.01 0.00 -0.01 -0.03 -0.00 -0.03

(0.04) (0.01) (0.03) (0.05) (0.01) (0.04)
Neurology 0.09** 0.04** 0.04 0.04 0.03** 0.04

(0.04) (0.02) (0.03) (0.04) (0.01) (0.03)
Respiratory 0.20 0.07* 0.05 0.15** 0.07* 0.10**

(0.15) (0.04) (0.03) (0.06) (0.04) (0.04)
Europe 0.03 0.00 0.01 0.03 -0.00 0.01

(0.04) (0.01) (0.02) (0.03) (0.01) (0.02)
Other 0.07 -0.03 -0.03 0.03 -0.02 0.04

(0.12) (0.03) (0.05) (0.13) (0.02) (0.06)
Global
Majors

-0.07*** -0.04*** -0.04** -0.01 -0.03** -0.01

(0.03) (0.01) (0.02) (0.03) (0.01) (0.02)
Other -0.07 -0.14 -0.01 0.11** -0.16 0.07

(0.09) (0.17) (0.14) (0.05) (0.36) (0.17)
Regional
Major

-0.09* -0.05*** -0.04 -0.02 -0.02 -0.01

(0.05) (0.01) (0.04) (0.05) (0.02) (0.05)
Specialty -0.07* -0.02 -0.03 -0.04 -0.02 -0.03

(0.04) (0.02) (0.02) (0.04) (0.01) (0.03)
2017Q2 0.04 0.01 0.03 0.06 0.02 0.05

(0.03) (0.01) (0.03) (0.04) (0.01) (0.04)
2017Q3 0.04 0.00 0.03 0.06 0.00 0.04

(0.04) (0.01) (0.03) (0.04) (0.01) (0.04)
2017Q4 0.05 0.00 0.00 -0.00 0.00 0.01
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Table D.8 – continued from previous page
Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

(0.04) (0.01) (0.03) (0.05) (0.01) (0.04)
2018Q1 -0.03 0.02 -0.02 -0.06 0.00 -0.01

(0.04) (0.01) (0.03) (0.06) (0.01) (0.04)
2018Q2 0.02 0.01 0.00 0.03 0.00 0.03

(0.05) (0.01) (0.03) (0.05) (0.02) (0.04)
2018Q3 0.09* 0.01 0.03 0.09* 0.03*** 0.08**

(0.06) (0.01) (0.03) (0.05) (0.01) (0.04)
2018Q4 0.03 0.01 -0.01 0.02 -0.00 0.01

(0.05) (0.01) (0.03) (0.04) (0.01) (0.04)
Many
Markets

-0.04 -0.02** -0.05*** -0.09* -0.03** -0.05**

(0.04) (0.01) (0.02) (0.04) (0.01) (0.02)

Observations 703 703 703 703 703 703 703 703
Adjusted
R2

0.268 0.282 0.453 0.314 0.336 0.374

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier
correction

No No Yes Yes No No Yes Yes

Table D.8 contains the regression results for model 2 concerning the effect of product success probabil-

ity Prob onReturn (column 2-5) and on CAR (column 6-9). All control variables included. Standard

errors in parenthesis. P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.

Table D.9: Model 3 - Effect of product success probability Prob and portfo-
lio importance Port on Return and CAR - with control variables

Dependent variable: Return Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Positive 0.23*** 0.23*** 0.17*** 0.17*** 0.08 0.07 0.11*** 0.18***
(0.06) (0.06) (0.03) (0.04) (0.07) (0.08) (0.03) (0.04)

Port -0.26*** -0.30*** -0.25*** -0.32*** -0.45*** -0.47*** -0.32*** -0.27***
(0.05) (0.06) (0.05) (0.03) (0.05) (0.10) (0.07) (0.04)

Port ×
Positive

0.43*** 0.43*** 0.34*** 0.43*** 0.53*** 0.55*** 0.38*** 0.36***

(0.05) (0.07) (0.05) (0.03) (0.06) (0.10) (0.07) (0.04)
Prob 0.07 0.15** 0.17*** 0.11*** -0.10 -0.02 0.10** 0.09*

(0.06) (0.07) (0.05) (0.04) (0.07) (0.10) (0.05) (0.05)
Prob ×
Positive

-0.19*** -0.20** -0.18*** -0.14*** 0.00 -0.00 -0.11** -0.13**

(0.07) (0.08) (0.05) (0.04) (0.08) (0.11) (0.05) (0.05)
Constant -0.11** -0.13** -0.08** -0.07* 0.02 0.02 -0.03 -0.11**
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Table D.9 – continued from previous page
Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

(0.05) (0.06) (0.03) (0.04) (0.06) (0.09) (0.04) (0.05)

Acquisition 0.05 -0.00 -0.00 0.03 -0.00 0.01
(0.04) (0.01) (0.01) (0.04) (0.01) (0.02)

In-licensed 0.01 0.01** 0.02 0.03 0.00 0.04**
(0.02) (0.00) (0.01) (0.03) (0.01) (0.02)

Other 0.12* 0.05 0.10 0.24 0.04 0.08
(0.07) (0.12) (0.07) (0.15) (0.62) (0.09)

Filed -0.03 -0.06*** -0.03 -0.06 -0.07** -0.04
(0.04) (0.02) (0.03) (0.05) (0.03) (0.03)

Phase II 0.07* -0.03* 0.00 0.03 -0.04 -0.01
(0.04) (0.02) (0.02) (0.04) (0.03) (0.03)

Phase III -0.01 -0.05*** -0.03 -0.06 -0.06* -0.03
(0.03) (0.01) (0.02) (0.04) (0.03) (0.03)

Blood 0.02 0.02*** 0.03 0.04 0.02 0.03
(0.03) (0.01) (0.03) (0.04) (0.03) (0.03)

Cardiovascular -0.04 -0.01 -0.05* -0.15 -0.01 0.04
(0.07) (0.01) (0.03) (0.12) (0.03) (0.04)

Immunology -0.01 0.01 0.01 0.01 0.00 0.01
(0.03) (0.01) (0.03) (0.03) (0.01) (0.03)

Infections -0.03 -0.00 -0.01 0.01 0.01 0.01
(0.04) (0.01) (0.03) (0.05) (0.01) (0.04)

Miscellaneous 0.01 -0.01 -0.02 0.02 -0.01 -0.01
(0.03) (0.00) (0.02) (0.03) (0.01) (0.02)

Musculoskeletal -0.02 -0.01 -0.02 -0.04 -0.00 -0.01
(0.03) (0.01) (0.03) (0.05) (0.02) (0.03)

Neurology 0.04 0.02* 0.03 0.06 0.02** 0.03
(0.04) (0.01) (0.02) (0.05) (0.01) (0.02)

Respiratory 0.02 -0.00 0.03 0.07 0.02 0.04
(0.04) (0.01) (0.03) (0.05) (0.02) (0.03)

Europe 0.01 0.01 -0.00 0.02 0.00 -0.01
(0.02) (0.01) (0.01) (0.02) (0.01) (0.02)

Other 0.21 0.01 -0.00 0.21 -0.01 0.01
(0.22) (0.02) (0.04) (0.17) (0.02) (0.05)

Global
Majors

-0.06** -0.02* -0.03 -0.02 -0.02 -0.00

(0.03) (0.01) (0.02) (0.03) (0.01) (0.02)
Other 0.04 -0.07 0.00 0.21** -0.02 0.02

(0.06) (.) (0.12) (0.09) (.) (0.15)
Regional
Major

-0.06** -0.01 -0.02 -0.06 -0.01 -0.01

(0.03) (0.01) (0.03) (0.04) (0.02) (0.03)
Specialty -0.07* -0.01 -0.02 -0.07 -0.01 0.00

(0.04) (0.01) (0.02) (0.05) (0.02) (0.02)
2017Q2 -0.00 -0.00 0.01 0.02 0.01 0.02
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Table D.9 – continued from previous page
Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

(0.03) (0.01) (0.02) (0.03) (0.01) (0.03)
2017Q3 0.07 0.00 0.01 0.07* 0.01 0.04

(0.04) (0.01) (0.02) (0.04) (0.01) (0.03)
2017Q4 -0.01 -0.00 -0.01 -0.02 -0.01 -0.02

(0.03) (0.01) (0.02) (0.03) (0.01) (0.03)
2018Q1 -0.03 0.00 -0.00 -0.06 0.01 0.01

(0.03) (0.01) (0.02) (0.06) (0.01) (0.03)
2018Q2 0.06 0.01 0.02 0.06 0.02 0.03

(0.05) (0.01) (0.02) (0.04) (0.02) (0.03)
2018Q3 -0.03 -0.01* -0.02 0.00 -0.00 0.02

(0.03) (0.01) (0.02) (0.04) (0.01) (0.03)
2018Q4 -0.07** -0.02 -0.04* -0.04 -0.00 -0.03

(0.03) (0.01) (0.02) (0.04) (0.01) (0.03)
Many
Markets

-0.05** -0.01* -0.04** -0.10** -0.01 -0.05***

(0.02) (0.01) (0.02) (0.04) (0.01) (0.02)
Observations 510 510 510 510 510 510 510 510
Adjusted
R2

0.372 0.404 0.609 0.359 0.405 0.480

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier
correction

No No Yes Yes No No Yes Yes

Table D.9 contains the regression results for model 3 concerning the effect of product success prob-

ability Prob and product portfolio importance Port on Return (column 2-5) and on CAR (column

6-9). All control variables included. Standard errors in parenthesis. P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤

0.01 :∗∗∗.
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Table D.4: Average CAR for positive and negative news grouped by port-
folio importance

Product Portfolio Importance Positive Negative

All 0.0986s −0.3358s

Below median [0; 0.159) 0.0285s −0.0649s

Above median [0.159; 1] 0.1093s −0.3682s

Above median − Below median 0.0808◦◦◦,∗∗∗ −0.3033◦◦◦,∗∗∗

1st. quartile [0; 0.039) 0.0151s −0.0322

2nd. quartile [0.039; 0.159) 0.0437s −0.0836s

3rd. quartile [0.159; 0.774) 0.0927s −0.2748s

4th. quartile [0.774; 1] 0.1273 −0.4500s

Table D.4 groups events by outcome and portfolio importance of their associated product and reports
the average CAR for each group. One, two or three circles (stars) denote significance of the difference

between two samples using the Wilcoxon rank sum test (two sample t-test) on the 10%, 5% or 1%
significance level, respectively. ‘s’ denotes that the average group CAR is significantly different from

zero for both t-test and Corrados rank test at the 5% level. The test statistics are explained in Appendix
D.3.

Table D.5: Average CAR for positive and negative news grouped by prod-
uct success probability

Product Success Probability Positive Negative

All 0.0986s −0.3358s

Below median [0; 0.774) 0.1479s −0.3542s

Above median [0.774; 1] 0.0561s −0.3097s

Above median − Below median 0.0918◦◦◦,∗∗∗ −0.0445

1st. quartile [0; 0.351) 0.1595s −0.3076s

2nd. quartile [0.351; 0.774) 0.1351s −0.3933s

3rd. quartile [0.774; 0.911) 0.0951s −0.3590s

4th. quartile [0.911; 1] 0.0247 −0.2190s

Table D.5 groups events by outcome and success probability of their associated product and reports
the average CAR for each group. One, two or three circles (stars) denote significance of the difference
between two samples using the Wilcoxon rank sum test (two sample t-test) on the 10%, 5% or 1% signif-
icance level, respectively. ‘s’ denotes that the average group CAR is significantly different from zero for
both t-test and Corrados rank test at the 5% level. The test statistics are explained in Appendix D.3.
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Table D.6: Model Selection - Inclusion of interaction effect between Port
and Prob according to Bayesian information criterion

Regression model 3 Log likelihood Degrees
of
freedom

BIC

No interaction; no control variables 23.43 6 −9.46

With interaction; no control variables 28.61 8 −7.35

No interaction; with control variables 56.64 34 98.69

With interaction; with control variables 61.33 36 101.77

Table D.6 shows the BIC of four different versions of model 3 including and excluding the interaction
effect of Port and Prob both with and without including control variables.
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Table D.10: Robustness check 3 - Effect of product success probability
HIST and product portfolio importance DI on Return and CAR

Dependent variable: Return Dependent variable: CAR

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4

Positive 0.60*** 0.61*** 0.43*** 0.52*** 0.61*** 0.59*** 0.39*** 0.52***

(0.05) (0.06) (0.05) (0.03) (0.04) (0.06) (0.06) (0.03)

DI 0.05*** 0.05*** 0.05*** 0.05*** 0.07*** 0.06*** 0.06*** 0.05***

(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01)

DI ×
Positive

-0.07*** -0.07*** -0.05*** -0.07*** -0.08*** -0.08*** -0.06*** -0.07***

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01)

HIST 0.06 0.11* 0.17** 0.11** 0.09 0.13 0.12 0.08

(0.07) (0.06) (0.06) (0.05) (0.06) (0.09) (0.08) (0.06)

HIST ×
Positive

-0.24*** -0.22*** -0.21** -0.18*** -0.20*** -0.17** -0.16* -0.15**

(0.08) (0.07) (0.06) (0.05) (0.07) (0.08) (0.08) (0.06)

Constant -0.32*** -0.35*** -0.29*** -0.34*** -0.43*** -0.40*** -0.27*** -0.36***

(0.04) (0.06) (0.05) (0.04) (0.03) (0.06) (0.06) (0.05)

Observations 703 703 703 703 703 703 703 703

Adjusted
R2

0.291 0.305 - 0.505 0.360 0.377 - 0.422

Control
variables

No Yes Yes Yes No Yes Yes Yes

Outlier cor-
rection

No No Yes Yes No No Yes Yes

Table D.10 contains robustness check 3 concerning the effect of product success probability HIST and
portfolio indexDI onReturn (column 2-5) and onCAR (column 6-9). Standard errors in parenthesis.
P-value≤ 0.1 :∗ ≤ 0.05 :∗∗ ≤ 0.01 :∗∗∗.
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Table D.11: Robustness check 4 - Effect of product portfolio importance
Port on CAR using Dow Jones Industrial Index as reference market

Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Port -0.44*** -0.47*** -0.35*** -0.30***
(0.05) (0.10) (0.10) (0.04)

Positive 0.07** 0.06* 0.03** 0.09***
(0.04) (0.03) (0.01) (0.03)

Port× Positive 0.54*** 0.55*** 0.42*** 0.39***
(0.06) (0.10) (0.10) (0.04)

Constant -0.04 0.01 0.05 -0.05
(0.03) (0.06) (0.04) (0.04)

Observations 510 510 510 510
Adjusted R2 0.354 0.408 - 0.475

Control variables No Yes Yes Yes
Outlier correction No No Yes Yes

Robustness check: Table D.11 contains four specifications for model 1 concerning the effect of

product portfolio importance Port on CAR using the Dow Jones industrial index during calculation

of abnormal returns. Standard errors in parenthesis. P-value≤ 0.1 : ∗ ≤ 0.05 : ∗∗ ≤ 0.01 :∗∗∗.

186



Table D.12: Robustness check 5 - Effect of product success probability Prob
on CAR using Dow Jones Industrial Index as reference market

Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Prob 0.06 0.07 0.19* 0.12*
(0.07) (0.10) (0.11) (0.06)

Positive 0.58*** 0.57*** 0.41*** 0.52***
(0.05) (0.07) (0.09) (0.04)

Prob× Positive -0.23*** -0.21** -0.27** -0.24***
(0.08) (0.10) (0.11) (0.06)

Constant -0.37*** -0.36*** -0.27*** -0.34***
(0.04) (0.07) (0.09) (0.05)

Observations 703 703 703 703
Adjusted R2 0.314 0.336 0.375

Control variables No Yes Yes Yes
Outlier correction No No Yes Yes

Robustness check: Table D.12 contains four specifications for model 2 concerning the effect of

product success probability Prob on CAR using the Dow Jones industrial index during calculation of

abnormal returns. Standard errors in parenthesis. P-value≤ 0.1 : ∗ ≤ 0.05 : ∗∗ ≤ 0.01 :∗∗∗.
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Table D.13: Robustness check 6 - Effect of product success probability Prob
and product portfolio importance Port on CAR using Dow Jones Industrial
Index as reference market

Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Port -0.45*** -0.47*** -0.31*** -0.28***
(0.05) (0.10) (0.07) (0.04)

Positive 0.08 0.07 0.11*** 0.18***
(0.07) (0.08) (0.03) (0.04)

Port× Positive 0.53*** 0.55*** 0.37*** 0.36***
(0.06) (0.10) (0.07) (0.04)

Prob -0.10 -0.02 0.09* 0.09*
(0.07) (0.10) (0.05) (0.05)

Prob× Positive 0.00 -0.00 -0.09** -0.12**
(0.08) (0.11) (0.04) (0.05)

Constant 0.02 0.02 -0.02 -0.11**
(0.06) (0.09) (0.04) (0.05)

Observations 510 510 510 510
Adjusted R2 0.360 0.406 0.479

Control variables No Yes Yes Yes
Outlier correction No No Yes Yes

Robustness check: Table D.13 contains four specifications for model 3 concerning the effect of

product success probability Prob and product portfolio importance Port on CAR using the Dow

Jones industrial index during calculation of abnormal returns. Standard errors in parenthesis. P-value

≤ 0.1 : ∗ ≤ 0.05 : ∗∗ ≤ 0.01 :∗∗∗.
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Table D.14: Robustness check 7 - Effect of product portfolio importance
Port on CAR using MSCI World Index as reference market

Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Port -0.44*** -0.47*** -0.35*** -0.29***
(0.05) (0.10) (0.10) (0.04)

Positive 0.07** 0.06* 0.04*** 0.09***
(0.04) (0.03) (0.01) (0.02)

Port× Positive 0.54*** 0.55*** 0.41*** 0.38***
(0.06) (0.10) (0.10) (0.04)

Constant -0.04 0.01 0.05 -0.05
(0.03) (0.06) (0.04) (0.04)

Observations 510 510 510 510
Adjusted R2 0.353 0.408 0.475

Control variables No Yes Yes Yes
Outlier correction No No Yes Yes

Robustness check: Table D.14 contains four specifications for model 1 concerning the effect of

product portfolio importance Port on CAR using the MSCI World index index during calculation of

abnormal returns. Standard errors in parenthesis. P-value≤ 0.1 : ∗ ≤ 0.05 : ∗∗ ≤ 0.01 :∗∗∗.
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Table D.15: Robustness check 8 - Effect of product success probability Prob
on CAR using MSCI World Index as reference market

Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Prob 0.06 0.07 0.19* 0.12*
(0.07) (0.10) (0.11) (0.06)

Positive 0.58*** 0.57*** 0.40*** 0.52***
(0.05) (0.07) (0.09) (0.04)

Prob× Positive -0.23*** -0.21** -0.26** -0.24***
(0.08) (0.10) (0.11) (0.06)

Constant -0.37*** -0.36*** -0.27*** -0.34***
(0.04) (0.07) (0.09) (0.05)

Observations 703 703 703 703
Adjusted R2 0.313 0.335 0.373

Control variables No Yes Yes Yes
Outlier correction No No Yes Yes

Robustness check: Table D.15 contains four specifications for model 2 concerning the effect of

product success probability Prob on CAR using the MSCI World Index during calculation of

abnormal returns. Standard errors in parenthesis. P-value≤ 0.1 : ∗ ≤ 0.05 : ∗∗ ≤ 0.01 :∗∗∗.
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Table D.16: Robustness check 9 - Effect of product success probability Prob
and product portfolio importance Port on CAR using MSCI World index as
reference market

Dependent variable: CAR
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Port -0.45*** -0.47*** -0.31*** -0.27***
(0.05) (0.10) (0.07) (0.04)

Positive 0.08 0.07 0.10*** 0.18***
(0.07) (0.08) (0.03) (0.04)

Port× Positive 0.53*** 0.55*** 0.37*** 0.36***
(0.06) (0.10) (0.08) (0.04)

Prob -0.10 -0.02 0.08* 0.09*
(0.07) (0.10) (0.05) (0.05)

Prob× Positive 0.00 -0.00 -0.09* -0.12**
(0.08) (0.11) (0.05) (0.05)

Constant 0.02 0.02 -0.01 -0.11*
(0.06) (0.09) (0.05) (0.05)

Observations 510 510 510 510
Adjusted R2 0.360 0.405 0.479

Control variables No Yes Yes Yes
Outlier correction No No Yes Yes

Robustness check: Table D.16 contains four specifications for model 3 concerning the effect of

product success probability Prob and product portfolio importance Port on CAR using the MSCI

World index during calculation of abnormal returns. Standard errors in parenthesis. P-value

≤ 0.1 : ∗ ≤ 0.05 : ∗∗ ≤ 0.01 :∗∗∗.
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Table D.17: Linear prediction of CAR w.r.t In-house, Late stage, and Positive

Positive In-house Not
In-house

Early Stage 0.110 0.134 0.122

Late Stage 0.049 0.041 0.045

0.065 0.067

Negative In-house Not
In-house

Early Stage -0.300 -0.107 -0.198

Late Stage -0.329 -0.222 -0.273

-0.321 -0.190
Table D.17 contains the linear prediction of CAR with respect to the interaction of In-house, Late stage,

and Positive derived from a linear regression model that includes Prob, Port, and all remaining
control variables with standard errors clustered on company level. The difference between predictions

is not significant for In-house and Not In-house given positive events. But the return difference is
substantial for negative events (p-value=0.088).
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D.3 Description of Parametric and Non-Parametric
Tests

We employ two types of tests. The first type is used to test whether CAR
for a group of N events is equal to zero (H0 : CAR = 0). We use the
one-sample student t-test (t1) derived from MacKinlay, 1997:

t1 =
1
N

∑N
i=1 CARi

se(CAR)

where se(CAR) is the standard error of the mean cumulated abnormal
returns in the group.

In addition we use the non-parametric Corrados rank test (c) that allows
for missing returns (Corrado and Zivney, 1992):

c =
1√
N

N∑
i=1

(
rank(ARit)/(1 +Mi)− 0.5

)
/S(U)

where rank(ARit) is the rank of the abnormal return of event i in its
return series t = −51... + 51, Mi is the number of non-missing returns
in the return window for event i and S(U) is the standard deviation of
missing return adjusted ranks given by:

S(U) =

√√√√ 1

103

+51∑
t=−51

( 1√
Nt

Nt∑
i=1

(
rank(ARit)/(1 +Mi)− 0.5

))2
The second type of test is used to test whether the CAR of two groups
A,B is equal (H0 : CARA = CARB). We use Welch’s t-test (t2) as:

t2 =
CARA − CARA√

sA
NA

+ sB
NB

where sA is the unbiased variance estimator of group A andNA the num-
ber of events in group A. The degrees of freedom are approximated by
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the Welch-Satterthwaite equation.

As non-parametric alternative, we use the Wilcoxon rank sum test. The
test ranks the observations ofCARA andCARB and then sums the ranks
of each group Ri. The test statistic is then given by.

Ui = Ri −
ni(ni + 1)

2

where ni is the number of observations in group i. Usually significance
tests are performed on the smaller value of Ui.
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