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Abstract

In the last years network theory has seen several theoretical
advancements and an increasing number of interesting ap-
plications in various fields of knowledge such as in social,
biological, human and economic networks.

The use of network results in economics has led to fruitful
developments in the theory of trade, of the economic effect
of migration and of financial distress contagion. Moreover,
in agent based modelling, a network structure is often em-
ployed as foundation for the behaviour of agents. Hence it
has been demonstrated that the applications of network find-
ings to different economic models can lead to new discover-
ies, showing that economic phenomena may obtain interest-
ing explanations when network diffusion processes are taken
into consideration.

However, the main economic applications of network theory
are often limited to single layer network results, where the
networks employed represent one single type of relationship
among the nodes and if more layers are analysed, they are
considered independent. On the contrary an increasing num-
ber of publications by leading network scholars is focused on
studying multilayer networks, where the same nodes have
different types of links between them and their respective in-
terdependence is recognized and studied. As a consequence,
many of the single layer network concepts have been gener-
alized to multilayer networks, improving previous analysis
by adding the possibility to study different types of relations
in an organic manner.

In economics, in particular, network data regarding multi-
ple relations among world countries has been employed over

xxiv



time but only recently the focus has shifted towards a more
systematic approach. The first contribution of the present
work is the harmonization of the majority of these sources in
a consolidated dataset, the first merging together information
from different fields: from flows of goods, to flows of finan-
cial contracts, to flows of people, to flows of citations. The fi-
nal dataset spans over 40 years and 211 countries and reaches,
in the more rich cross sections, 19 layers of data (ignoring du-
plicated and redundant sources). Since nodes are common
across all layers the particular type of multilayer network we
are using is a multiplex.

In our first study on this new dataset we have measured the
centrality of countries over time. We have identified two cross
sections of layers, the years 2003 and 2010 (before and after
the Great Financial Crisis), where the majority of the sources
was present. Then we have harmonized the data filtering out
excessive differences among the layers. Finally, we have ap-
plied on the dataset two recent multilayer algorithms which
have generalized two of the most common centrality mea-
sures. The first is the MultiRank, the multilayer generaliza-
tion of the PageRank algorithm, the second is the MD-HITS
(MultiDimensional HITS) which generalizes the hubs and au-
thority algorithm. Both the algorithms have been used to
rank the importance of page results on the web and they high-
light different features of the nodes: the first one refers to the
property of webpages of being linked (cited) from other im-
portant ones, the second one instead is related to the status of
a page as an important source of information (an authority)
or as an important hub redirecting to authority pages. The in-
teresting feature of both the multilayer generalizations of the
algorithms is that they produce automatically two types of
rankings: one for the nodes of the multiplex and one for the
layers. This allows us to also identify which are the sources
of importance of a certain country in the whole multiplex in

xxv



an unsupervised manner. To obtain a measure of the rele-
vance of these new methods we have compared the ranking
of nodes obtained using the multiplex centrality measures
with the ranking of countries by per capita GDP. We have
found similarity in the rankings but not perfect correlation,
signalling that our new dataset may contain some additional
source of information to be exploited in explaining country
development.

After measuring country centrality, the second research ques-
tion we have addressed with the aid of our new data sources
regards the Great Financial Crisis. The collapse of the world
financial markets in 2009, symbolically kick-started by the de-
fault of Lehman Brothers, made clear that economic theories
were missing something, otherwise a crisis so deep and per-
vasive would have been avoided. One of the streams of re-
search originated by this event is tightly related with network
theory and it is the study of the propagation of contagious
phenomena over networks, in particular financial distresses.
However, contagion models are mostly theoretical and the
empirical evidence on financial contagion is still scarce. More-
over, the econometric studies on financial crisis have yet to
find a consistent and persistent explanation of why some coun-
tries are more affected than others during these events. Fi-
nally multilayer studies in this field are still rare.

In this work we have used as starting point a consolidated set
of evidences obtained in Feldkircher (2014). From a set of 95
economic and financial measures regarding world countries,
they found only one which was significantly present in every
model when trying to explain why countries have had dif-
ferent performances after the GFC: the growth of credit sup-
ply from domestic banks. Starting from this element we have
integrated their analysis with a set of network variables ob-
tained from each of our layers regarding topological features
of the networks such as centrality (both at single and mul-
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tilayer level), clustering and community structure. We have
used their same methodology, Bayesian Model Averaging, to
solve the issue of model selection and avoid bias in selecting
the explanatory variables. With our final results we have im-
proved on Feldkircher 2014 by finding a new variable which
is consistently present in the majority of the analysed mod-
els: the kcore centrality of the investment layer. This result is
important both because it confirms the relevance of network
variables as explanatory candidates for economic models and
because it introduces a new explanation for the different per-
formance of countries after the crisis.

Our last research question regards network embeddings and
their use to predict missing links. In our dataset we have
missing information due to unreported or censored data, to
reconstruct it we have used the information available from
the known part of the network to obtain predictions on the
existence of the unobserved part. This is achieved employing
the method of network embeddings both at single and mul-
tiple layer level: an embedding of a network is a mapping
of the rich structure of the graph at node level to a lower-
dimensional latent space where projections of nodes are opti-
mized to be closer when they map to closer relations at graph
level. By doing so networks can be used as features for ma-
chine learning tasks in a very flexible way. Among the net-
work embeddings literature we have seen a recent develop-
ment of several multilayer methods among which we have
found the scalable multilayer network embeddings method
(MNE, D. Zhang et al. (2018)) to be our best option for mak-
ing predictions. By pairing the MNE binary prediction to the
method of weighted stochastic block models (Peixoto, 2018a)
to assign a weight to links we have predicted missing links in
all the multiplex layers. Our results show that a certain level
of reconstruction can be achieved, even though with wide
variability by layer.
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To conclude, by answering these three research question we
have shown how network measures can be of great help to
improve the analysis of economic issues and in particular how
the integration of different data sources mapping relation among
countries can alter vividly the picture of the world that we
have.
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Chapter 1

Country centrality in the
international multiplex
network

The content of this chapter was published in the journal Applied Network Sci-
ence as Bonaccorsi et al. (2019)

1.1 Introduction

Over the last few years we have witnessed an increase in the use of net-
work models in economics, finance and business studies: details coming
from the topology of specific networks, either on micro level of social in-
teractions among individuals and collaborations between firms, or at a
macro level of international economics, help scholars identify new phe-
nomena and clarify how they diffuse and distribute (Easley and J. Klein-
berg, 2010).

Usually, though, one network is examined at a time (i.e. trade) or
the relationship between two networks is investigated (i.e. migration
and trade). Network features are frequently used as explanatory or de-
scriptive variables in gravity models of international activities. For in-
stance, we have several studies on the effect of the centrality of countries
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in the trade and migration networks on the magnitude of countries’ ex-
ports (Fagiolo and Mastrorillo, 2014, Sgrignoli et al., 2015, Metulini et al.,
2018). Occasionally, other networks have been considered in the litera-
ture, such as the network of foreign direct investments, human mobility,
information, knowledge and financial flows.

On the one hand, country centrality in networks has been used in
the study of international relations as a proxy of power (Hafner-Burton,
Kahler, and Montgomery, 2009). On the other hand, new developments
in multilayer network analysis suggest that international studies may
greatly benefit from jointly analyzing multiple international relations in
a unified framework (De Domenico, Solé-Ribalta, et al., 2015).

In this Chapter we study the international network of countries by
looking at several dimensions of development from a multilayer network
perspective. We assemble a multiplex network of 112 countries as nodes
and their connections across 19 heterogeneous layers, observed at two
moments in time before and after the Great Recession (2003 and 2010).
We compute the centrality of countries in the multilayer network by us-
ing the multilayer generalization of the PageRank algorithm (Iacovacci
and Bianconi, 2016) – MultiRank from now on – and of the hubs and
authority score (Arrigo and Tudisco, 2018) – MD-HITS from now on.

The ranking we obtain based on MultiRank centrality is consistent
with the common north-south divide, that is to say the division of coun-
tries among developed and underdeveloped, and depicts a positive cor-
relation with relevant economic variables such as GDP per capita pur-
chasing power parity (PPP) (pcGDP from now on). This configuration of
MultiRank gives more importance to those layers which are commonly
considered as relevant for the performance of countries, predominantly
trade and financial networks. Moreover it is very similar to the ranking
selected by the MD-HITS algorithm, with the latter actually having an
even better fit with relevant macroeconomic variables.

Our work sheds new light on the relationship between position and
centrality of countries in the international multiplex network and their
development by analyzing, for the first time, a vast set of international
relations: trade, finance, transportation, human mobility and migrations,
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information and knowledge flows, international alliances. Increasing
data availability coupled with the recent advancements in the analysis of
multiple networks open up new possibilities for the analysis of complex
global phenomena and new dimensions can be added to our framework
to cover an even broader set of international linkages.

The rest of the Chapter is structured as follows: section 1.2 describes
how our work fits in the extant literature, section 1.3 contains a detailed
description of the data we have collected, section 1.4 explains the method-
ology we apply and finally section 1.5 illustrates our results. Finally the
last section discusses our contribution to the literature and future work.

1.2 Related literature

Following previous applications of network theory in macroeconomics,
we define a single layer economic network G(N,E) as a set of nodes N
representing countries, coupled with a set of edges E describing the re-
lations between them. In so doing we follow a long tradition of studies
in trade (Chaney, 2014), migration (Fagiolo and Mastrorillo, 2014), inter-
national aid (Kali, Horowitz, and Song, 2017), banking (Minoiu and J. A.
Reyes, 2013, S. Battiston et al., 2012; Bardoscia et al., 2015), mergers and
acquisitions (Campi et al., 2016). Usually, the edges between nodes are
weighted and directed, representing the amount of monetary exchanges
from a source country to a target country.

However, there are some international networks in which directed
edges represent relationships other than monetary exchanges, such as
the networks of migration and human mobility (Sgrignoli et al., 2015;
Fagiolo and Santoni, 2016; Fagiolo and Santoni, 2015; Fagiolo and Mas-
trorillo, 2014; Riccaboni, Rossi, and Schiavo, 2013).

Sometimes edges may also be undirected (symmetric) and unweighted.
A stream of literature has investigated international infrastructures in-
cluding, among others, the international airport transportation network
(Colizza et al., 2006), the trade shipping network (Kaluza et al., 2010 ) and
the overseas telephone and fiber cables linkage (Rossello, 2015) . Intan-
gible networks of knowledge flows have also been studied by looking
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at patent citations (Hall, Jaffe, and Trajtenberg, 2001) and international
collaboration among scholars (Pan, Kaski, and Fortunato, 2012). Finally,
international relationships are shaped by the networks of diplomatic re-
lationships, such as alliances, trade agreements and intergovernmental
organization memberships, as reported in the “Correlates of war” project
(Bayer, 2006; Pevehouse, Nordstrom, and Warnke, 2003; Gibler and CQ
Press, 2009; Sousa and Lochard, 2011)

Building upon previous studies, which have analyzed the different
dimensions of international connectivity, and thanks to multiple avail-
able data sources, in this paper we reconstruct the first comprehensive
multilayer network among countries: instead of analyzing each of the
layers in isolation, focusing on standard network statistics and compar-
ing them, we analyze the structure of international networks considered
as a whole. Following Kivela et al., 2014 we define our multilayer net-
work as a multiplex, i.e. a network where no link connects directly the
layers but all the layers share the same set of nodes, e.g. countries. There-
fore, a multiplex is a colored network where edges of different colors rep-
resent different types of international relationships (i.e. trade, migration,
investments, knowledge flows etc) between countries.

In recent years multilayer networks have become the subject of sev-
eral scholarly works aimed at generalizing network statistics and algo-
rithms from single to multiple layer analysis (Lee et al., 2012; De Domenico,
Nicosia, et al., 2015; Kivela et al., 2014; F. Battiston, Nicosia, and Latora,
2014; Boccaletti et al., 2014; Bródka Piotr et al., 2018; De Bacco et al., 2017;
Aleta and Moreno, 2019).

Among the numerous methods which have been proposed to mea-
sure the centrality of nodes in a multilayer network we have selected two
measures which can be computed for weighted and directed multilayer
networks and do not require any pre-defined ranking of the importance
of network layers (i.e. different types of international relationships), but
provide it as an output.

The first is the generalization to multiplex network of the PageRank
centrality of nodes (Brin and Page, 1998). According to it, nodes are
ranked higher if they receive links from other important nodes: hence
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it focuses on the attractiveness of nodes only. To apply it to our mul-
tilayer network we closely followed a set of recently published papers
(Rahmede et al., 2018; Halu et al., 2013; Iacovacci, Rahmede, et al., 2016;
Iacovacci and Bianconi, 2016)1 which have developed a way of defining
the attractiveness of nodes by taking into account also the relevance of
each layer in the whole multiplex. In the multiplex version of the Pager-
ank nodes are rewarded for their capacity of receiving links from other
central nodes in more relevant layers.

Our second choice is the hubs and authority algorithm, also known
as HITS, Hyperlink-Induced Topic Search, (J. M. Kleinberg, 1999). Refer-
ring to the problem of getting access to information, it defines as author-
ities those nodes which hold essential information to the user whereas
hubs are those nodes which redirect the user to the authorities.2 In our
case some countries act as brokers among important partners whereas
other countries acquire importance for being connected to many hubs.
To apply this algorithm to our data we follow the work by Arrigo and
Tudisco (2018) where not only nodes are ranked but also layers receive a
score, ranking their capacity of linking important layers or being linked
by hubs layers. 3

One challenge we face is to analyze a multiplex of heterogeneous lay-
ers to characterize the relevance of countries over a set of different fea-
tures (flows of goods, services, investments, knowledge, human mobility
and so on).4. So far, only multiplexes of homogeneous layers have been
considered, where each layer represents a different typology of the same
relation (different trade commodities in the trade network, different air-
lines in the airport network and so on). To deal with this issue we have
filtered our data both by node, i.e. by deciding which nodes were con-

1Specifically we apply the last version of the algorithm where both layer relevance and
node centrality are calculated at each iteration and for multiplexes of many layers.

2The classification reflects how information is searched and found: it is difficult to find
the right answer at first try, hence there are nodes which collect information and redirect
the user to the right destination gaining in centrality for this reason. Hence to have a high
authority score a node must have links from nodes with high hub score, whereas higher
hub score is awarded to nodes linking to high authorities nodes.

3More details on this are provided in section 1.4.
4By doing so our work is related to social network studies of international relationships

such as Smith and White, 1992.
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stantly measured over time, and by edge, i.e. by selecting only relevant
edges and discarding less probable ones.

The position and role of countries in the multiple network of interna-
tional relations is then compared to pcGDP as a measure to summarize
the relative economic performance of countries. By doing so our work
contributes also to the ongoing debate on the appropriateness of pcGDP
as a measure of the well being of populations (Sen, 1985; Dasgupta and
Mäler, 2000; Stevenson and Wolfers, 2013; Lange, Wodon, and Carey,
2018). While on one side it is obvious to see that pcGDP is an excessively
synthetic measure which discards many details and should never used
as the only indicator of development, on the other side there have been
many different proposals for substitutes of pcGDP, all revolving around
what one should consider as the right measure of growth for countries
(Costanza et al., 2009), but without a clear consensus on which should
be used. As consequence the trade-off between accuracy and simplicity
for a world development index is yet to be solved: while most scholars
agree on the shortcomings of pcGDP it still represents the best candidate
to summarize efficiently the position of a country in the world landscape.

Instead of trying to solve this trade-off we recognize the informative
content of pcGDP and use it as reference for the capacity of our new mea-
sures to capture the overall state of development of world countries. We
will consider good centrality measures those which can summarize in a
single index the information content of all the layers in our dataset with
the same efficiency of pcGDP and with a sufficient correlation with it.
Being the content of the layers heterogeneous and not strictly related to
pcGDP (even more given the network nature of our data) we consider a
positive sign that multilayer centrality measures can reconstruct a rank-
ing of countries similar to a widely used development index.

However we are not concerning ourselves with looking for perfect
correlation with pcGDP, first because of its well-known shortcomings
and secondly because a complete matching will also deprive our mea-
sures of any new information content. Hence we will consider the differ-
ences in the rankings of countries between pcGDP and multilayer cen-
tralities as the proof that we are measuring dimensions of development
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which are not included in pcGDP and hence may be worth exploring.

We are aware that there is not a clear threshold which is able to quan-
tify how much our measures should be similar or different with respect
to pcGDP and hence we cannot fully validate our results. To do so we
should require further evidences to which test both rankings against and
this would also imply to choose a specific framework to evaluate our
new well-being measures. We think that this task is outside the scope
of this paper and we regard our contribute not as definitive conclusion
of the GDP debate but as a first step toward a better understanding of
which network measures should be included (and how) in order to fully
account for the development of a certain country.

1.3 Data

As acknowledged in the previous section, this work takes advantage of
previous applied network studies mapping international relations among
countries. We have collected and integrated multiple data sources in a
unique dataset spanning several years and we have selected among the
different layers the ones we thought were the most significant to describe
the role of a country in the global system. Figure A.7 in the Appendix
provides a full overview of all the data we collected for years 1990-2015,
also with examples of layers which have not been included in our multi-
plex. In this section instead we first explain the criteria we have followed
to select layers, then we describe their main structural properties and fi-
nally we describe the method we have used to normalize them. All the
details about the sources we have consulted for the selected layers are
reported in Table A.7 with references to the literature and URL links to
online sources when retrievable. 5

5A version of the dataset is available also at: https://github.com/gibbbone/
international_multiplex_network
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1.3.1 A selection of international networks

Our main objective in building the international multiplex has been to
identify two cross sections with a sufficient number of nodes and lay-
ers to compare the structure of the multiplex before and after the Great
Recession.

From the larger dataset showed in Figure A.7 in the Appendix we
have first selected a set of layers with non overlapping characteristics,
avoiding duplicates and partial sources.

The selection of the two years in the dataset to be compared is based
on two criteria: first network measures often evolve slowly, thus a suffi-
ciently long period is needed to capture some changes; second depend-
ing on the choice of the years some layers might not be present in the
final selection, due to lack of data. To partially mitigate this second issue
we have relaxed the constraint on some significant layers including them
in the final cross sections even when they are missing in a given year, but
data are available for an interval around it.

By choosing years 2003 and 2010 as reference point we have obtained
the results shown in the last two columns of Table 1.1, t0 and t1, where
we can see that the two cross sections are scattered: migration stock, FDI
and aid layers are not matching the 2003 reference year 6. In the rest of
the Chapter we will occasionally refer to the cross section in 2003 as first
cross section and to the cross section in 2010 as second cross section.

Our main goal in the construction of the international multiplex was
to include as many countries as possible. By looking at the column nodes
of Table 1.1 one can see that the number of reported nodes for some lay-
ers differs across time. To obtain a stable and large set of countries we
proceeded in two steps. First, we have identified non missing observa-
tions: if the node is the target or the source of at least one non-zero edge
in any of the years available for a given layer it belongs to the dataset.
Second we have calculated the common subset of nodes for all layers.
Some layers have been discarded from the analysis since they do not
have enough observations. A more detailed discussion of our two steps

6Migration flows data covers five years intervals by construction.
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strategy is provided in the Appendix, section "Data selection".

As a result we selected a multiplex of 19 layers with the same set of
112 nodes in each of them, sampled at two time periods around 2003 and
2010. Table 1.1 shows the features of our final selection and in Section
1.3.2 we describe the content of each layer. By looking at the distribu-
tion of weights and at the density of each layer we can see that, even
though balancing our two cross sections on the same set of nodes and
layers ensures that we can make meaningful comparisons before and af-
ter the Crisis, some further steps are required to normalize the content
of the dataset, across multiple and heterogeneous dimensions. In sub-
section 1.3.3 we explain how we have filtered the edges to make layers
comparable. For additional details on how we processed the data before
filtering we refer to section "Data preprocessing" in the Appendix.

1.3.2 Summary statistics

Table 1.1: Variable summary: descriptive statistics of the raw data

layer code nodes edges weights a Ub Sc t0 t1
t0 t1 t0 t1 min max avg. std.

fta_wto 211 / 211 2800 / 5004 1.00E+00 1.00E+00 1.00E+00 0.00E+00 3 3 2003 2010
expv 211 / 211 24276 / 25862 1.00E+00 3.49E+08 4.24E+05 4.24E+06 2003 2010
serv_exp 207 / 207 4903 / 7126 1.00E+00 5.72E+10 3.33E+08 1.92E+09 2003 2010
arms 153 / 153 274 / 396 1.00E+00 2.33E+03 6.60E+01 1.98E+02 2003 2010
invest 209 / 208 2892 / 3997 1.00E+00 1.14E+06 6.19E+03 3.72E+04 2003 2010
FDI 210 / 210 452 / 720 0.00E+00 1.25E+05 3.19E+03 1.11E+04 2005 2010
FDI_Greenfield 158 / 158 1767 / 2233 7.00E-02 2.19E+04 3.95E+02 1.25E+03 2003 2010
value 177 / 177 672 / 906 3.00E-03 3.47E+04 5.01E+02 1.74E+03 2003 2010
BIS_flow_claims 183 / 183 1993 / 2720 4.00E-03 8.97E+05 3.90E+03 2.81E+04 2003 2010
aid 170 / 136 2726 / 2887 1.00E-02 4.78E+03 1.98E+01 1.15E+02 2006 2010
migration_flow 179 / 179 11544 / 11893 1.00E+00 2.68E+06 3.47E+03 3.24E+04 2000 2005
migration_stock 205 / 202 10787 / 10991 1.00E+00 1.16E+07 1.81E+04 1.53E+05 2005 2010
out_tour 189 / 191 9842 / 10789 1.00E+00 7.93E+07 7.38E+04 8.80E+05 2003 2010
mobility 191 / 189 6014 / 7215 1.00E+00 1.26E+05 3.98E+02 2.82E+03 2003 2010
citation 196 / 195 24054 / 24054 0.00E+00 1.16E+07 2.52E+03 8.01E+04 2003 2010
collaboration 191 / 189 8854 / 8854 0.00E+00 2.04E+06 8.97E+02 2.46E+04 2003 2010
pat_cit_inv 164 / 164 2668 / 2244 1.00E+00 1.68E+06 9.90E+02 2.71E+04 2003 2010
totIC 187 / 187 627 / 833 0.00E+00 2.91E+01 7.87E-01 2.42E+00 3 2003 2010
cow_alliances 124 / 112 2455 / 2505 1.00E+00 5.00E+00 1.24E+00 5.26E-01 2003 2010

Legend: 3 = True, empty space = False, - = NaN.
a Weights are calculated on values greater than 0. Reported zeros are positive values lower than 0.001.
b If True the layer is unweighted.
c If True the layer is symmetric.
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Table 1.1 reports the list of selected networks in our multiplex, with
the short name of each layer used in our dataset in the first column and
some summary statistics for each layer of the multiplex: number of nodes
and edges in each of the cross sections analyzed, symmetry and weight
checks on the edges and actual years used to construct the database.

Layers can be classified in six categories according to the type of in-
ternational relationship they represent:

• trade: trade agreements among countries (fta_wto), commod-
ity and services exchanges (expv, serv_exp) and arms transfers
(arms)

• investment: foreign direct investments (FDI, FDI_Greenfield),
total portfolio investments (TPI) (invest), value of mergers and
acquisitions (M&A) (value), international aid (aid) and interna-
tional bank loans (BIS_flow_claims)

• human mobility: movement of individuals between states as mea-
sured by permanent migration in flows and stocks (migration_flow,
migration_stock) and temporary mobility, i.e. tourism (out_tour)
and students abroad (mobility)

• knowledge flows through patent citations (pat_cit_inv), cita-
tions of scientific papers (citation) and paper coauthorships (collaboration)

• common infrastructures between countries as measured by capac-
ity of internet cable routing (totIC)

• diplomatic relationships (cow_alliances).

Table A.7 shows that trade layers are constituted mostly by monetary
flows, hence they are represented by directed weighted graphs where
edges are flows of money from source country to target country. The
network of trade agreements (fta_wto) is one exception: it is a sym-
metric and unweighted layer with edges equal to 1 when two country
have signed a free trade agreement.

Another exception regards arms exchange (arms): it is an interesting
network to political scientists, hence a particular effort has been devoted
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in tracing and accounting arms trade. They come from separate sources
collected in the the SIPRI database.

Financial layers too have edges representing monetary flows, such as
FDI, TPI and M&A. It is worth noticing that FDI flows are reported twice,
since we integrate OECD data with a separate source (FDI_Greenfield)
collected in Kirkegaard (2013) focusing on specific type of firms which
are difficult to measure in the official FDI statistic. Given the extent of
this second source and the relevance of its content (which differs sig-
nificantly from OECD) we added it as a separate source. As for BIS
flows, which represent data collected from the Bank of International Set-
tlements on loans among international banks, we selected only the claims
layer, which is also automatically adjusted for changes in exchange rates.
Finally, flows of international aid constitute another exception. These
specific flows of capital are named Official Development Assistance (ODA)
Disbursments and are measured by the OECD. While in the other layers
edges represented monetary payments from source countries to target
ones, here the relation represents voluntary donation from source coun-
tries to foster the development of their counterparts. Hence ODA flows
represent a reversed measure of the development of a countries: central
nodes (in terms of incoming edges) are those which are more underde-
veloped. For this reason in our final multiplex the aid layer has been
reversed (more details on this in the section "Data preprocessing" in the
Appendix).

The third category of layers concerns the movement of people. Lay-
ers of this group can be divided in temporary migration (tourism and
residencies lasting less than one year) and permanent stock of migrants.
Both measures are collected by the United Nations statistical division. A
third measure, flows of migrants among countries, has been produced
for every five years from 1990 to 2010 by G. J. Abel and Sander (2014)
through estimates based on the UN stock data 7.

Knowledge flows are represented by citations of patents and papers
by countries. Patent citations come from the NBER database and refer

7Another set of estimates, this time in ten years interval from 1960 to 2000, was also
provided in a previous work (G. Abel, 2013)
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to the country of patent inventors. Paper citations instead have been col-
lected by Pan, Kaski, and Fortunato (2012) and represent an average over
a five year period. These layers have a common unit of measurement:
each edge between two nodes represents the number of papers/patents
of the destination country cited by the source one.

The last two layers are cable route capacity and diplomatic alliances.
The first is a measure of the common telecommunication infrastructure
linking two countries: each edge represents how many terabyte of data
can travel between two countries via cable connection. Hence by con-
struction this layer is weighted and symmetric. The alliances layer is
symmetric too but it is unweighted: each edge represents an interna-
tional diplomatic alliance between two countries. This is one of the mea-
sures of diplomatic interaction from the Correlates of War project. 8

1.3.3 Filtering

The layers of the multiplex are very different and there is a need to stan-
dardize them before proceeding in any further analysis. In fact, the dis-
tribution of weights of layers in Table 1.1 (more details in Figure A.8 and
A.9 in the Appendix) shows that they have very different mean value,
range and skewness. Moreover, in many of our sources there is a bias
in the reporting countries: due to their economic (and sometimes terri-
torial) size, developed countries take part in exchanges with other coun-
tries more frequently.

To solve these issues we apply an hypergeometric filter on the data,
as in Riccaboni, Rossi, and Schiavo (2013) . The reasoning goes like this:
since edge weights are affected by the size of nodes, a filter must be ap-
plied to the edges in order to distinguish the significant ones. Following
Riccaboni, Rossi, and Schiavo (2013) and Armenter and Koren (2014) we
take as as starting point a null model where we assume that edges are
randomly assigned to all nodes with probability proportional to their
connectivity. The resulting probability distribution is an hypergeomet-
ric one. Next we fix a significance threshold and we test if the weights

8The others are: exchange of diplomatic representatives, membership in international
organizations, armed conflicts and militarized disputes
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of the actual edges in our layers passes the threshold. If not so, we dis-
card them. The outcome of this procedure is a filtered layer where in-
significant edges are removed. This approach is used to standardize the
layers using the probabilities created with the filter, solving at the same
time both the size bias and the heterogeneity of layers. In a nutshell,
we replace heterogeneous links with the probability of them being more
intense than expected under a random null model.

The final effect of the hypergeometric filter is to reduce the density
variance by smoothing out denser layers and leaving almost untouched
sparse layers. This follows our assumption that more connected nodes
(in denser layers) have a greater share of irrelevant edges, while less con-
nected ones have few relevant links which pass the filter. Figures A.10
and A.11 in the Appendix demonstrate this by showing the amount of
observations eliminated by the filter in every layer and how this quan-
tity is positively correlated with the layer density before filtering.

Our choice of the filter was made to reduce the variation in density
across layers to make them comparable. However, we have not con-
trolled for variation in other possible features, such as the clustering or
the weak-tie structure, which might have been altered as a consequence
of our procedure.

Other filters could have been chosen to preserve different character-
istics of the networks. Some examples are the disparity filter of Serrano,
Boguñá, and Vespignani (2009) , the GloSS filter of Radicchi, Ramasco,
and Fortunato (2011) or the Maximum Entropy approach proposed in
Gemmetto, Cardillo, and Garlaschelli (2017). While some of these meth-
ods are certainly better to avoid unwanted alterations in the structure
of the filtered networks, as demonstrated in Gemmetto, Cardillo, and
Garlaschelli (2017), we see two possible difficulties in our case. First,
the disparity filter relies on a different theoretical assumption about the
null model used to validate the network, a uniform distribution of links,
whereas in our case we have assumed an hypergeometric one. Second,
in the other two cases, the full information on the network structure is
used to construct the null model. Even though this is in principle a de-
sired property of the filter, we cannot rule out some reporting error in
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our data which could make the above mentioned methods less reliable.
In our approach, by using only information on a given country, we avoid
spreading the reporting error to the full specification of the null model.

In the next subsections we show some general network statistics cal-
culated on the filtered multiplex using a very conservative filtering thresh-
old.9
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Figure 1.1: Network statistics by layer of the cross section in 2003: ranking
of layers on panel (a), correlation among rankings on panel (b)

1.3.4 A comparative analysis of the international networks

Given that our interest is in the aggregated multiplex and not in the sin-
gle layers composing it, we have simplified the presentation of the single
layer analysis by computing network statistics on the unweighted ver-
sion of our graphs, without taking into consideration those assortativity
and clustering measures which rely on the directionality of edges. We
also do not perform a full fledged analysis of similarity of layers, as in
Bródka Piotr et al. (2018).

9Cfr. Figures A.12 and A.12 in the Appendix to see the effect of different thresholds.
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Table 1.2 reports the network statistics for the cross section in 2003
of our multiplex. A similar table is provided in the Appendix for the
cross section of year 2010 (Table A.8). To help us in visualizing some
properties of layers we show in Figure 1.1 the rank of each layer with
respect to each statistic (left hand side plot) and the correlation matrix
measured on these rankings (right hand side plot). A lighter (darker)
color in the left panel means that the selected layer (y-axis) ranks lower
(higher) with respect to the selected statistics (x-axis). A lighter (darker)
color in the right panel means that the two selected layers have lower
(higher) correlation with respect to their position in the statistics ranking
(i.e. if correlation is high the two layers rank similar in the same network
statistic).

While we see some patterns of similarity, no clear cluster structure
emerges: only few layers have a distinct profile (the symmetric layers)
while all the others cannot be grouped in a clear manner.

This is evident in plot (a) of Figure 1.1: layers rank similarly only
regarding some particular statistics, but look very different in all the oth-
ers. For this reason we do not perform a proper cluster analysis, which
will only increase the complexity of the exposition, and we inspect only
the macro structure of the layers.

We identify two macro groups of layers with somewhat similar rank-
ing in the statistics. The first one comprehends trade and migration data
with the paper citations layer and the three symmetric layers. These last
three also form another more compact ensemble in the picture. The other
big group is mainly composed by financial layers together with mobility,
papers collaboration and patent citation data. While the division in two
groups is not clear-cut, it approximately corresponds to the division of
layers by typology we introduced at the beginning with layer of different
types behaving differently. This suggests that integrating these different
data sources may be beneficial.

Moving to the network statistics graph (left hand side of Figure 1.1)
the picture is more detailed and we can observe differences in the previ-
ously identified groups. The first one is the more defined: migration and
trade data, together with the citation layer, are usually denser, both in
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the simple and in the bilateral sense, they have bigger average size and
diameter of their bigger strongly connected components, longer average
short path length and larger size of their weakly connected components.
On the other hand, they have fewer components, their degree (includ-
ing outdegree and indegree) is usually more skewed to the right and
they have lower values of network centralization and weighted asym-
metry. These characteristics are also shared by the next three layers (
cow_alliances, fta_wto, totIC) which are also less dense.

Other layers exhibit an opposite behavior. There is a set of layers
(FDI, arms, value) which is highly anti-correlated with the previous
ones: they all rank higher in the left hand side statistics, i.e they have
greater number of weakly and strongly connected components and de-
grees skewed to the left. Moreover they show lower rankings in the
statistics where previous layers showed higher rankings: they are less
dense, have lower average clustering coefficient and their biggest weakly
connected component is smaller and has lower average short path length.
Moreover their largest strongly connected components have smaller di-
ameter and size.

Finally, the remaining layers have less sparkly defined characteristics:
while, on average, they have opposite behavior with respect to the initial
ones the differences are not so clear. In particular, like the first layers,
they have higher density and higher average size of their biggest weakly
connected component. However, for the remaining statistics, they differ
from the first set of layers.
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Table 1.2: Network statistics - cross section in 2003
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fta_wto 0.390 0.390 0.390 0.034 0.034 48.000 2.333 0.196 48.000 2.333 - 6.000 - 2.810 0.526 0.132 0.000
expv 0.600 0.777 1.128 0.209 0.089 3 1.000 112.000 1.000 3 1.000 112.000 4.000 4.000 1.973 1.973 0.393 0.382 0.558
serv_exp 3.501 3.711 3.275 0.077 0.047 2.000 56.000 0.991 3 1.000 112.000 - 5.000 2.174 2.174 0.387 1.119 0.358
arms 3.967 1.782 5.083 0.013 0.000 107.000 1.047 0.054 49.000 2.286 - 4.000 - 0.281 0.078 0.341 0.591
invest 1.684 0.870 2.263 0.058 0.007 74.000 1.514 0.348 19.000 5.895 - 7.000 - 1.069 0.269 0.524 0.775
FDI 6.883 7.107 5.182 0.012 0.002 96.000 1.167 0.134 23.000 4.870 - 4.000 - 0.687 0.000 0.663 0.486
FDI_Greenfield 1.789 0.935 2.826 0.060 0.007 63.000 1.778 0.420 13.000 8.615 - 7.000 - 1.345 0.285 0.612 0.786
value 2.825 1.125 3.850 0.018 0.003 78.000 1.436 0.312 37.000 3.027 - 7.000 - 1.531 0.125 0.294 0.578
BIS_flow_claims 3.951 0.418 4.084 0.045 0.001 105.000 1.067 0.054 3.000 37.333 - 3.000 - 0.152 0.415 0.826 0.826
aid 1.592 1.689 -0.593 0.120 0.000 112.000 1.000 0.009 4.000 28.000 - 0.000 - 0.163 0.031 0.518 0.947
migration_flow 0.970 1.431 0.602 0.194 0.021 17.000 6.588 0.830 3 1.000 112.000 - 10.000 2.430 2.430 0.339 0.559 0.867
migration_stock 1.795 2.141 0.186 0.144 0.036 3 1.000 112.000 1.000 3 1.000 112.000 9.000 9.000 3.024 3.024 0.403 0.598 0.717
out_tour 0.909 1.046 1.290 0.152 0.037 22.000 5.091 0.812 3 1.000 112.000 - 5.000 1.906 1.906 0.338 0.397 0.729
mobility 1.498 1.679 0.102 0.159 0.007 73.000 1.534 0.339 2.000 56.000 - 12.000 - 0.864 0.309 0.685 0.924
citation -0.182 -0.019 -0.083 0.383 0.237 3 1.000 112.000 1.000 3 1.000 112.000 4.000 4.000 1.677 1.677 0.543 0.449 0.362
collaboration 0.300 0.946 1.213 0.110 0.009 112.000 1.000 0.009 3 1.000 112.000 - 0.000 0.728 0.728 0.340 0.234 0.751
pat_cit_inv 2.247 2.469 1.754 0.051 0.010 59.000 1.898 0.482 17.000 6.588 - 6.000 - 1.469 0.500 0.693 0.616
totIC 1.189 1.189 1.189 0.025 0.025 50.000 2.240 0.527 50.000 2.240 - 12.000 - 5.169 0.441 0.188 0.000
cow_alliances 0.475 0.475 0.475 0.042 0.042 37.000 3.027 0.384 37.000 3.027 - 8.000 - 3.564 0.465 0.153 0.000

Legend: 3 = True, empty space = False, - = NaN.
Abbreviations: scc: strongly connected components, wcc: weakly connected components, spl: shortest path length.
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1.4 Multiplex centrality

We define a multiplex M as a set L of layers, where each layer l is a
network defined as two coupled set of nodes N l and edges El connect-
ing nodes. In our case nodes are countries and edges represent differ-
ent types of relationships among them. For instance countries like USA,
Russia and India are simultaneously connected by trade, migration and
knowledge flows (see Figure 1.2). Therefore, two nodes are connected in
the multiplex if they have a link in at least one layer.

Export (expv)

Migration (migration flow)

Patent citations (pat cit inv)

ARE

ARE

ARE

BLZ

BLZ

BLZ

CMR

CMR

CMR

ECU

ECU
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IND

IND

IND

JOR

JOR

JOR

KWT
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LTU

LTU

LTU

MDA

MDA

MDA

NOR

NOR

NOR

POL

POL

POL

RUS

RUS

RUS

TUN

TUN

TUN
USA

USA

USA

UZB

UZB

UZB

Figure 1.2: Subset of the international multiplex. Four nodes have been
selected from each of the pcGDP quartiles. Node size is proportional to
node degree in the whole layer, node color intensity is proportional to Mul-
tiRank centrality in the whole multiplex, edge width is proportional to edge
weights

To exemplify this reasoning in Figure 1.2 we can see a selection of
nodes and links from the international multiplex: 3 layers have been
represented (export, migration and patent citations). For each layer, four
nodes have been chosen for each of the 4 quartiles of the GDP per capita
distribution (PPP) and placed in ascending order on the vertical axis.
The size of the nodes is proportional to their degree in each layer while
the color intensity of the nodes corresponds to the centrality of each of
them in the whole multiplex calculated using the MultiRank central-
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ity explained in Section 1.4.1. We can see that Uzbekistan (UZB) and
Camerun (CMR) are isolated nodes in the patent citations layer, but not
in the migration and export ones. Moreover we can see that, between
the three depicted layers, self-loops are present only in the patent cita-
tion one.10 In our multiplex there is no link across layers, but the same
countries are present in all layers (Kivela et al., 2014).

The centrality of a node in a multiplex network is no more a local
measure related to its role in each single layer, but becomes a global mea-
sure affected by all relationships in which the node takes part. To mea-
sure country centrality we have selected two different algorithms which
generalize single layer centrality measures to multilayer networks and
have the nice property to provide also a ranking of layers as output. This
allows us to avoid any a priori assumption of the relevance of layers.11

The two algorithms are the multiplex PageRank (MultiRank) (Rahmede
et al., 2018) and the multiplex HITS(MD-HITS) (Arrigo and Tudisco, 2018)
also known as "hubs and authorities" algorithm. In the next subsections
we provide a brief description of the two methods, while we refer to the
original works for any further details.

1.4.1 MultiRank

The (single layer) PageRank of a node is a measure of node centrality that
accounts for the importance of the node by looking at its centrality and
the centrality of all the in-neighbours pointing to it.

Formally, given an unweighted network ofN nodes, the PageRank of
node i can be defined as (cfr. Halu et al., 2013):

xi = d
∑

j

Aij
gj
· xj +

1− d
N

(1.1)

Where d is the so called damping factor, Aij is an element of the un-
weighted adjacency matrix of our network A and gj is the out-degree

10More generally, self-loops have not been removed from our dataset, when reported by
the original sources

11Obviously, there is still our selection of the layers and nodes in the dataset but, as we
have shown, this is related to data availability and comparability.
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of node j (i.e. the number of its out-neighbors) when its greater than
0, 1 otherwise. Hence a random walker will choose among the out-
neighbours of node j with probability d and with probability 1 − d will
switch to one of all the other nodes in the network. Starting with a uni-
form distribution and running iteratively the algorithm we should obtain
a stable distribution of the PageRank for all nodes.

When we move from single to multiple layer networks, nodes will
have multiple dimensions over which nodes share links, hence the PageR-
ank centrality of nodes is affected both by the single-layer centrality and
by the centrality of a layer in the multiplex. Therefore, a rank of the lay-
ers of the multiplex is needed to compute the multiplex version of the
PageRank.

Following Rahmede et al. (2018) we summarize the multiplex from
two perspectives: first as a colored network with links of different colors
having different influences, second as a bipartite network of nodes and
layers. Then we use both dimensions to obtain a generalized multiplex
PageRank. This multilayer version of the PageRank algorithm can be
defined for directed and undirected networks as well as weighted and
binary networks, hence the adjacency matrix Aα will refer without dis-
tinction to any of these types of layers.

From the colored network perspective we obtain matrix G as the sum
of adjacency matrices acrossM layers weighted by their respective influ-
ence zα. So, given layers α = 1, 2, . . .M , the elements of G are given
by:

Gij =

M∑

α=1

Aαijz
α (1.2)

From the bipartite view of a multiplex we obtain theM×N incidence
matrices Bin and Bout representing the normalized in-strength and out-
strength (respectively in-degree and out-degree for binary networks) of
each node i in each layer α:
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Binαi =

∑
j A

α
ji∑N

i=1

∑N
j=1A

α
ij

=

∑
j A

α
ji

Wα
Boutαi =

∑
j A

α
ij∑N

i=1

∑N
j=1A

α
ij

=

∑
j A

α
ij

Wα

(1.3)

Here Wα =
∑N
i=1

∑N
j=1A

α
ij represents the sum of all edges weights

in layer α for directed weighted networks or twice this number if the
layer is undirected. For unweighted networks it becomes the total num-
ber of links (directed case) or its double (undirected case). Similarly, for
undirected multiplex networks Binαi and Boutαi are identical since the Aα

matrix is symmetric.

Our specification of the multiplex PageRank works on the assump-
tion that, given a certain node in the multiplex, its centrality will be af-
fected both by the centrality of nodes pointing to it and by the influence
of the layers to which these in-neighbors of the node belong. A random
walker moves from node j to a neighbour of i along all layers with a
probability d̃ and proportionally to Gij . Otherwise with probability 1− d̃
it jumps randomly on another node of G. The stable distribution we
get at the end of this process is the multiplex PageRank centrality of the
nodes.

Similarly to the single layer PageRank equation we get the multilayer
PageRank equation:

Xi = d̃

N∑

j=1

GjiXj

kj
+ βvi (1.4)
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Where d̃ is the damping factor and:

kj = max

(
1,

N∑

i=1

Gji

)
(1.5)

vi =θ



N∑

j=1

(Gij +Gji)


 (1.6)

β =

N∑

j=1

[
1− d̃θ

(
N∑

i=1

Gji

)]

N∑

i=1

vi

Xj (1.7)

(1.8)

Here θ(·) is the Heaviside step function. Equation 1.4 is a function
of the set of layers’ influences. To avoid calculating all these values, we
couple the above equation with another one aimed at determining the
influence of layers. This time we define layers’ influence (relevance) as a
function of the centrality of their nodes. Hence:

zα =
Wα

N
N∑

i=1

BinαiXi (1.9)

Here N represents a normalization constant. A more flexible spec-
ification of this equation can be obtained by introducing some tuning
parameters:

zα =
(Wα)a

N

[
N∑

i=1

Binαi(Xi)
sγ

]s
(1.10)

where a regulates the effect of total weight of layers Wα on the influ-
ence: with a = 1 layers with larger Wα become more influential, while
with a = 0 the layer influence is rescaled with respect to Wα.

The s parameters instead indicates if more influential layers are those
with fewer (s = −1) or more central nodes (s = 1).
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Finally, once s is settled, the parameter γ allows us to suppress or
enhance the contribution of low centrality nodes: with s = 1 values of
γ > 1 ( γ < 1) suppress (enhance) their contribution. Conversely, when
s = −1 values of γ > 1 ( γ < 1) enhance (suppress) the contribution of
less central nodes.

Solving simultaneously the two coupled equations 1.4 and 1.10, given
a set of parameters a, s, γ, allows us to assign a centralityXi to each node
and an influence zα to each layer α of the multiplex.

Clearly, different choices of parameters will return different rank-
ings.Nevertheless, as we will show in the next section, the configurations
can be refined once we require them to be stable enough with respect to
the choice of γ.

1.4.2 MD-HITS

The (single layer) hubs and authority scores of a set of nodes are two
measures of centrality which depend one on the other recursively. For a
node to have an high authority score it is necessary to have many high
hub nodes pointing to it. Similarly, for a node to have an high hub score
it must have a lot of high authority score nodes to point to.

Given the adjacency matrix A of an (unweighted) graph, the hub and
authority scores are defined as:

hi =
∑

j

Aijaj and ai =
∑

j

Ajihj ⇒ h = Aa and a = ATh

(1.11)
Usually, the algorithm is calculated by setting all scores to one and

iterating for a sufficient number of times, which requires after each step
to normalize to one the sum of all the scores.

The generalization of the algorithm for multilayer networks provided
by Arrigo and Tudisco (2018) includes layers and time stamps as dimen-
sions to be used to compute the centrality. This results in five scores: two
for nodes (hub and centrality scores), two for layers (broadcasting and
receiving scores) and one for the time dimension. In our case the last
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score would not be used since we have only two cross sections.
Similarly to the MultiRank, a node receives an high hub score if it

belongs to an high broadcasting layer and has many links towards high
authority nodes in layers with high receiving capabilities. Conversely,
high authority would be awarded to nodes in high receiving layers with
high hub nodes from high broadcasting layers pointing to them.

Finally the definition of the broadcasting and receiving scores of the
layers follows when the focus is toward layers instead of nodes.

As for the MultiRank, also the MD-HITS algorithm can be defined on
both directed and undirected network as well as weighted and binary
networks. Hence, we refer to the adjacency matrix A without making
distinction among them.

For each layer α the multilayer generalization of the HITS algorithm
reads as:

hαi =bα
∑

α

∑

j

rαAαija
α
j (1.12)

aαi =rα
∑

α

∑

j

bαAαjih
α
j (1.13)

bα =
∑

α

∑

j

rαhαj (1.14)

rα =
∑

α

∑

j

bαaαj (1.15)

where b and r are the broadcasting and receiving scores of each layer.
It is straightforward to notice that the overall hub centrality of a node in
the multiplex is hi =

∑
α b

αaαi while its overall authority score is ai =∑
α r

αhαi . Since we are dealing with a multiplex, our formulation of the
layer scores does not allow for some layer to not be connected to others:
in other words the inter-layer network in our case is fully connected.

As we can see, there are no parameters to choose in the MD-HITS,
hence we will always have one and only one ranking of nodes and layers
(according to the score we are interested in). To obtain the centralities of
nodes and layers we need to solve the recursive equations defined above,
which requires us to solve the eigenvector problem on the whole tensor
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which represents the multiplex. This can be done by finding an adequate
multi-homogeneous map on the adjacency tensor and its unique Perron
eigenvector (cfr. Definition 1 in Arrigo and Tudisco (2018)). In Arrigo
and Tudisco (2018) the authors then demonstrate the existence, unique-
ness and maximality of the MD-HITS measure and provide a converging
and fast parallel algorithm to compute it. MD-HITS is an ideal candi-
date algorithm to compute centrality in a multiplex, since it exists and
is unique regardless of connectivity of the graph, while other centrality
measures based on eigenvectors require the graph to be strongly con-
nected, a property which is rarely satisfied.

In the next section we analyze the centrality of countries in the inter-
national multiplex.

1.5 Results

In this Section we summarize our main results concerning country rank-
ing obtained computing MultiRank and MD-HITS centrality indicators.
In particular, we shall focus on two setups regarding the free parame-
ters of the MultiRank algorithm, i.e. (α, s, γ) = (1, 1, 1) and (α, s, γ) =

(0, 1, 1). In general, results are fairly robust to alternative specifications,
see section "Choice of the MultiRank parameters" in the Appendix for
more details. Notice that when (α, s, γ) = (1, 1, 1) we measure the layer
importance z without rescaling layers by their weights (α = 1) and with-
out giving more importance to layers with less central nodes (s = 1).
Furthemore, the contribution of low centrality nodes is neither enhanced
nor suppressed ( γ = 1).

1.5.1 Preliminary results

Our dataset contains 19 different layers representing heterogeneous re-
lations among countries. Our objective is to show how different infor-
mation sources can be integrated in order to obtain synthetic measures
of importance of countries and which are the possible differences among
these measures. Hence we have focused on using the full set of layers at
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our disposal, discarding unsuitable or repeated layers before construct-
ing the multiplex (more details on this in section A.1 in the Appendix).

However another possible question would be to check how much of
the final results is correlated with the single layer composing our net-
work, i.e. to investigate the redundancy of some layers in determining
the multilayer centrality of the nodes. The intuition would be that if lay-
ers are heavily correlated among themselves the analysis could be carried
on by removing some of them without loosing explanatory power.

Given that this objective is only partially consistent with our focus
on analyzing the multiplex as a whole we show here some preliminary
results on the correlation among single layer centrality measures of our
layers and their multiplex equivalent. It is worth noticing that, how-
ever, a clear relation among the multiplex centrality rankings and the
single layer ones cannot be found directly given the recursive nature of
the multilayer algorithms.

In Figure 1.3 we show how much the single layers are correlated
among themselves in their centrality rankings and also with respect to
the multilayer version of centrality. We can see that the MultiRank al-
gorithm is positively correlated with almost every layer except for two,
even though rarely with correlation over 70%. Moreover the layers pos-
itively correlated with MultiRank are also correlated among themselves.
Conversely for the MD-HITS algorithm the set of layers negatively corre-
lated with the multilayer centrality measures contains more layers. Inter-
estingly the MultiHub and MultiAuth are more correlated with different
set of layers hence meaning that removing a set of them or another would
affect the centrality measures differently.

In Figure 1.4 we have calculated for each layer the centrality scores of
its nodes according to the single layer version of our centrality measures.
Then for each measure we have decomposed the set of layer scores in
their principal components and plotted the number of components nec-
essary to explain at least 90% of the variance in the data (the red step
line). We can see that there is some redundancy in the dataset and that
the number of required components is almost half the one we are ana-
lyzing in our work for all the centrality measures. Moreover we have
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performed a principal component regression of the multilayer central-
ity measures. In principal component regression the dependent vari-
able, the multilayer centrality in our case, is not regressed directly on
the explanatory variables, the single layer centrality scores, but on their
principal components. Since we want to test the best number of com-
ponents in order to explain the multilayer measures, we have added an
increasing number of components to the regression registering the Mean
Squared Error of the fitting. 12 The blue line in Figure 1.4 shows how the
Mean Squared Error of the regression behaves. We can see that it roughly
agrees with the explained variance result and reaches a minimum for a
number of component near half the ones we are using (even though with
more variability).

All in all, we find that it exists some level of redundancy among the
layers in our dataset and that a more parsimonious choice of layers could
deliver almost similar results than the one we have made. However how
to choose those layers is left to be decided, knowing that some choices
could penalize some of the algorithms more than the others. 13 Given
this uncertainty we think our full-fledged approach would at least avoid
this type of bias at the cost of more redundancy in the data.

1.5.2 Layer rankings

The ranking of the layers resulting from the first combination of parame-
ters for the MultiRank is shown in Figure 1.5 at the left of the two panels.
We can see that this choice of parameters rewards the trade layers (value
of exports and service exports), some of the financial layers (BIS loans,
FDI flows of both types and the value of M&As) and some of the mo-
bility layers (temporary migrations and migration stocks). Even though
some choices of the algorithm are not obvious (especially among layers
of similar kind) one can find a final ranking which fulfills some of the

12Given the multilayer centrality Y k for type k of centrality (pagerank, hub and author-
ity) and the scores of its single layer version, ykα, for each layer α, we obtain the principal
components of the single layer scores, fPCA(yk) = Xk

PCA, and then perform OLS as
follows: Y k = Xk

PCAβ + ε
13Indeed while the number of sufficient principal components is similar across all cen-

trality measures, this does not give us any hint about which of the layers we should remove.
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Figure 1.3: Spearman correlation of the node rankings obtained by calculat-
ing centrality measures on both the single layers and the multiplex (hence
using the multiplex version of the algorithms). For the MultiRank rankings
the other parameters are in both cases s = 1 and γ = 1.All results refer to
the cross section in 2003, results for the cross section in 2010 available in the
Appendix.
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Figure 1.4: In red: number of principal components sufficient to explain 90%
of the variance of the measures of centrality calculated on the single layers
(scale reported on the right y-axis). In blue: mean square error obtained by
regressing the multilayer measures of centrality against the principal com-
ponents of the single layer centralities, added one by one (scale reported on
the left y-axis). All results refer to the cross section in 2003, results for the
cross section 2010 are available in the Appendix
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Figure 1.5: Layer rankings in different configurations: cross section 2003 (a),
cross section 2010 (b). For the MultiRank rankings the other parameters are
in both cases s = 1 and γ = 1.

usual expectations on which aspects of a country are more relevant when
looking at a global level: exports, foreign direct investment, international
M&A, tourism and stock of migration.

The MD-HITS rankings are reported at the center of Figure 1.5. The
colouring of the lines helps us see that this new ranking is very similar
to the MultiRank one with a = 1, with some layers switching only few
positions (the only exception being international aid).

Finally by looking at the two panels in Figure 1.5 we can see that over
time the two previous observations hold: the ranking of layers does not
change and the two algorithms follow each other.

The second configuration of the MultiRank is reported on the right
of Figure 1.5. In this setting we leave s = 1 and γ = 1 but now a = 0,
hence all layers are normalized by their total weight. This corresponds
to define the layer importance as zα = 1

N
∑N
i=1B

in
αi(Xi).

This new configuration reduces the effect of different topological prop-
erties among layers and makes them more comparable. The result is that
we have a new ranking with stark differences from the other two: now
trade and migration layers are less important, loosing positions in favor
of other layers such as arms trade and patent citations.
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1.5.3 Node rankings
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Figure 1.6: Node rankings in different configurations: cross section in 2003
(a), cross section in 2010 (b). For the MultiRank rankings the other parame-
ters are in both cases s = 1 and γ = 1.

We now move to the comparison of node rankings. Our final goal
is to understand how different centrality indicators perform in ranking
countries in the multiplex. In Figure 1.6 we report rankings for the top
20 countries obtained employing the two parameter setups used for the
MultiRank, as well as the multiplex hub and authority scores (MultiHub
and MultiAuth).

Results show that, as opposed to the layer rankings, on average the
differences in rankings are less pronounced (the blue lines rarely cross
the red ones). In fact for the top ten countries we see an almost stable
distribution, with countries switching few positions by changing algo-
rithms with the exception of RUS and CAN (this last being severely pe-
nalized by the MultiRank and rewarded by MD-HITS) and all algorithms
agreeing on the same nodes. In the bottom 10 positions instead we see
more differences, especially between the MultiRank and MD-HITS al-
gorithms. In particular the ranking of the multiplex authority score re-
wards the countries at the bottom at the distribution and penalizes those
at the middle. Finally results for the two cross sections show that some
countries experience strong catching up or falling behind behaviour. For
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instance Poland (POL) in the 2010 cross section does belong to the top
twenty countries by MultiRank when a = 1 but with a = 0 it loses sev-
eral positions. On the contrary the United Arab Emirates (ARE) were not
in the top twenty countries for any of the algorithms in 2003, while they
are in the 2010.

We now ask whether country centrality rankings correlate with coun-
try income, as measured by pcGDP. Note that, should one find a perfect
correlation, our centrality indicators would not provide any additional
insight.

MultiHub MultiAuth MultiRank
(a = 0)

MultiRank
(a = 1)

PageRank Hub Authority

pcGDP 2003 0.7623 0.7607 0.6372 0.6899 0.6745 0.7017 0.7594
pcGDP 2010 0.7779 0.748 0.6414 0.6264 0.6873 0.7251 0.7373
Difference 2003-2010 0.31 0.137 -0.1715 0.1228 -0.0772 0.3568 -0.1638

Table 1.3: First two lines: Spearman correlation coefficient between the
rankings from pcGDP of the reference year and those obtained by different
algorithms. Last line: correlation coefficient between evolution in rankings
over time. First 4 columns use multilayer algorithms, last 3 use single layer
algorithms on the aggregate network.

Table 1.3 shows the Spearman rank correlation coefficient between
the nodes ranking resulting from pcGDP and the one resulting from dif-
ferent centrality algorithms. For robustness purposes we have added
to our four multilayer measures their single layer version (PageRank,
Hubs and Authority) calculated on the aggregate multiplex obtained by
summing over all the layers the corresponding entries of their adjacency
matrices. The first two rows report the rank correlations for our two
cross sections, while the third contains the (simple) correlation between
the evolution in ranking of pcGDP over time and of the centrality mea-
sures. The MultiHub centrality is the one with the highest correlation in
ranking with pcGDP consistently between cross sections and over time.
It is followed by MultiAuth centrality and the two aggregate multiplex
Hub and Authority scores. Both MultiRank indicators perform relatively
worse together with the PageRank centrality calculated and the aggre-
gate network. These results show that some of the multilayer centrality
algorithms rank countries in a way consistent with the ranking of pcGDP,
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but with some relevant differences. Specifically for the MD-HITS algo-
rithm they are on average better than their single layer versions calcu-
lated on the aggregated network.
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Figure 1.7: Performance of single layers centrality measures (stacked
barplots) against multiplex ones (dashed lines) evaluated by correlation of
their ranking of nodes with respect to pcGDP.

Another interesting result is that not only our multilayer measures
perform better than their aggregated multiplex analogues, but they also
have better performance than single layer centrality measures calculated
on each layer. This can be seen in Figure 1.7 where we plot the the first
two rows of Table 1.3 as dashed lines and the single layer centrality mea-
sures as barplots. We can see that only some layer centralities have a
comparable performance with our measures, but none of them is better
than our best ones, i.e. MultiHub for both cross sections and MultiAuth
for the first only. In the Appendix we are reporting also the geographic
distribution of MultiHub, for the cross section of year 2003 and for the
evolution of rankings over time (Figure A.16).

Finally to further inspect the relation between the node rankings of
our algorithms and pcGDP over time, in Figure 1.8 we have plotted the
change in rank of each country from one cross section to the other for
the MultiRank score (x-axis), the MultiAuth score (y-axis), the MultiHub
score (coloring of dots) and pcGDP (size of dots). One can observe that
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Figure 1.8: Evolution over time of node centrality rankings from different
algorithms for a = 1 (left panel) and a = 0 (right panel). Labels are provided
for the top and bottom 10 nodes in the evolution of the MD-HITS scores.

while for the pcGDP and MultiHub score rankings we cannot see a clear
pattern, for MultiRank and MultiAuth score there is a linear correlation
among their rank evolution over time. Moreover this is not affected by
the choice of the parameter a.
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Figure 1.9: Difference between ranking of countries by MultiRank (a) and MD-HITS (b) and by pcGDP in year 2003.
The alternative measure for each algorithm is shown in darker color. In the insets only the top and bottom ten
countries by rank difference are plotted, with ranking by multiplex centrality on the left and ranking by pcGDP on
the right. The width of the line represents the evolution over time of the measures
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1.5.4 Difference between pcGDP and multiplex rankings

As mentioned before, similarity with pcGDP is one possible criterion to
analyze multiplex centrality. On top of this, one can get additional in-
sights by exploring how centrality rankings deviate from those obtained
using pcGDP. Figure 1.9 reports the difference in rank with respect to
pcGDP ranking in 2003 for the two configurations of MultiRank (Fig 1.9
(a)) and the two MD-HITS scores (Fig 1.9(b)).14 Observations at the top of
the y-axis have greater negative difference between their ranking and the
pcGDP one, hence they are being rewarded by pcGDP; while elements at
the bottom of the graph have greater positive difference, hence their rank
is better according to MultiRank while pcGDP ranking penalizes them.

We can see that there are wide differences between the ranking as-
signed by pcGDP and those assigned by the algorithms: in both cases
there are nodes gaining or loosing more than 40 positions in the ranking
with respect to pcGDP. Moreover, since the two graphs share the same
ordering of rows (given by the Multirank differences), we can see that
the rank divergences do not correspond between the MultiRank and the
MD-HITS.

To further inspect these differences the behavior of the top ten and
bottom ten nodes of the distributions has been analyzed in the inset of
the graphs. In the insets we position on the left y-axis the ranking by our
algorithm and on the right y-axis the pcGDP ranking. The “bump” from
left to right represents the divergence of rankings with respect of pcGDP,
while the thickness of the line represents how much the rankings have
changed over time.

Two observations are in order. First, by looking at the insets in the
MultiRank graph, the nodes with greater divergence have very different
starting MultiRank ranking: we can see that countries being penalized
by pcGDP (bottom inset) are coming both from the bottom part of the
distribution (Benin, BEN) and from the top part (India, IND). And the
same holds in the top inset: see Mongolia (MNG) and Kuwait (KWT).

The second observation is that the same countries evaluated by the

14Notice that values have been binned in five element intervals.
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MD-HITS algorithm have less extreme behaviour. For instance by look-
ing at the bottom inset of the MD-HITS graph we can see that nodes that
were ranked higher in MultiRank with respect to pcGDP, in MD-HITS do
not show a great divergence.

Finally in each graph we can also observe with a different color the
other ranking obtained by the algorithms: MultiRank with a=1 and Mul-
tiHub. There are some differences with respect to the principal rankings
but less pronounced than the ones between algorithms.
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Figure 1.10: Evolution of ranking over time of pcGDP (x-axis) and MultiRank (y-axis). MultiRank calculated with
a = 1 in (a) and with a = 0 in (b). Countries have been split by the direction of evolution of MultiRank and
pcGDP; starting from the top left corner clockwise: 1) increase/decrease, 2) increase/increase, 3) decrease/increase,
4) decrease/decrease.
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1.5.5 Difference between pcGDP and multiplex rankings
over time

In the last subsection, we have compared rankings obtained using our
centrality indicators with the country ranking based on pcGDP. We now
explore how country centrality and pcGDP rankings change across the
two cross sections. For the sake of simplicity, we focus on countries
gaining or losing at least five positions over time in either centrality
or pcGDP rankings. We then create four country groups according to
whether countries experience a rank improving (worsening) change in
the centrality or pcGDP rank.

In Figure 1.10 each group of countries has been plotted in a sepa-
rate graph. The position of the points represents their initial rankings
by pcGDP and MultiRank of 2003 while the arrows show the movement
in ranking for pcGDP(x-axis) and MultiRank (y-axis) over time. In sub-
plots 2 and 4 their movements in pcGDP and MultiRank are correlated
(in direction, not in magnitude) while in the other quadrants they are an-
ticorrelated: while for pcGDP a certain country is expected to gain (lose)
positions for MultiRank is the opposite. As a reference to pcGDP growth
the size of points is proportional to the compounded growth rate of the
pcGDP of the country. Finally Figures 1.10 (a) and 1.10 (b) show the dif-
ferences when we change from a = 1 to a = 0 in the MultiRank.

The top right (2) and bottom left (4) plots represent those countries
experiencing a similar change in centrality and pcGDP. We can see that
this is not related to their initial rankings: this happens for Venezuela
(VEN), Iraq (IRQ) and Georgia (GEO) in the top graph as well as Mexico
(MEX), El Salvador (SLV) and Eritrea (ERI) in the bottom graph which
are in different parts of the distribution. At the same time, we notice that
in the top right and bottom left panels nodes tend to be distributed along
the bisector (hence their initial rankings among pcGDP and MultiRank
coincided as well), but with some notable exceptions such as India (IND)
and Gabon (GAB).

The top left (1) and bottom right (3) plots instead show countries
whose evolution over time did not coincide (in direction) by MultiRank
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and pcGDP. Top left countries have lost positions by pcGDP but gained
by MultiRank, while the contrary happens to bottom right countries. We
can see that affected countries have initial position either at the top of the
graph (Brasil (BRA) in plot (1) and Israel (ISR) in plot (3)) or at the bot-
tom part of the distribution (Haiti (HTI) in plot (1) and Tajikistan (TJK)
in plot (3)) with less countries in the middle of the distibution.

But the most interesting findings come from the difference between
plot 1.10 (a) with MultiRank using a = 0 and plot 1.10 (b) where Multi-
Rank is calculated using a = 1.

These differences show that the choice of the MultiRank parameter a
and the resulting ranking of layers has an effect on the final ranking of
nodes and on their expected evolution. So if we assume that layers have
to be rewarded for their total weight (a = 1), we get a ranking of layers
which rewards trade layers the most (cfr. Figure 1.5) and this in turn
affects the ranking of countries and affects which of them seem to gain
positions over their pcGDP rankings. If instead we prefer to normalize
layers by their weight ( a = 0 ) we get a different ranking of layers.

While the relation between the choice of parameters, layer and node
rankings is clear for MultiRank, we do not have similar insights for the
MD-HITS algorithm: we have a unique ranking of layers and two rank-
ing of nodes which take into consideration two different aspects of coun-
try centrality.

To have a clear overview on how differently the algorithms we used
classify nodes with respect to their rank evolution in Figure 1.11 the four
quadrants of plot Figure 1.10 have been assigned four colour codes as
indicated by the colorbar on the right and for each of our algorithms
nodes have been sorted in their respective categories.15 We can see that
there are few nodes where all algorithms agree on the classification, a
bigger set where most of them agree and finally for more than half nodes
the algorithms provide wildly different classifications.

So if we want to use a very conservative criterion and think that the

15Hence to see which countries are "appearing" in the plots, as we discussed in the pre-
vious paragraphs, it is sufficient to check the columns where one country is present for one
algorithm and not for another (hence the third and the fourth column in our case)
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agreement of the all four algorithms represent a good way to identify
some stylized facts, we get the following picture: while by their pcGDP
ranking Yemen (YEM) United Arab Emirates (ARE), Ecuador (ECU) and
Paraguay (PRI) have not been growing, by their multiplex ranking they
have been becoming more central. Another way to see this is that all
four algorithm would have placed these countries in panel 1 (top left)
of Figure 1.10. On the opposite all algorithms agree to place only Turk-
menistan (TKM) in panel 3, which identifies countries which have be-
come less central than what their pcGDP growth would have predicted.
Furthermore in panel 2 (both the rankings resulting by pcGDP and by
multiplex centrality have positive growth) the algorithms would place
Uruguay (URY), Iraq (IRQ), Georgia(GEO), India (IND), Perù (PER) and
Panama (PAN). Finally in panel 4 (negative growth of rankings) they
would place Gabon (GAB), Belize (BLZ), Philippines (PHL), Costa Rica
(CRI) and El Salvador (SLV).

1.5.6 Economic interpretation of the results

As we already mentioned in section 1.2 this work tries to contribute to
the debate on country development indicators by bridging gap between
economic-based indicators (pcGDP in primis) and network based indi-
cators. Given the novelty of the approach and the ongoing debate re-
garding the appropriateness of pcGDP as a measure of well-being it is
difficult to obtain an economic interpretation of the results without in-
troducing further evidences or assumptions, i.e without anchoring our
analysis to specific case studies or specific frameworks of interpretation
of the results.

Moreover, unlike other works on multilayer networks (see De Domenico,
Solé-Ribalta, et al., 2015 for instance), our work utilizes heterogeneous
layers where edges represent very different types of relation (financial
flows vs. human migrations vs. paper citations and so on), and hence it
is difficult to give a simple interpretation of the centrality indicators with-
out sacrificing the complexity of the information that has been analyzed:
for example the centrality of nodes is strictly related to the influence of
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Figure 1.11: Expected direction of movement of nodes with respect to
pcGDP for all the algorithms: color corresponds to the 4 quadrants in Fig-
ure 1.10, for each of the algorithm each country is classified by the joint
direction of evolution of pcGDP and Multirank. Order of rows given by the
Multirank (a = 1) algorithm
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layers which in turns may depend, in the MultiRank case, on the choice
of the parameters of the algorithm equation.

Given the previous points we think that the appropriate interpreta-
tion of our results may be to consider the centrality algorithms as par-
ticular functions of aggregation of factors: the more central countries are
those which are capable to obtain relevant factors more easily and the
relevance of factors is defined by the importance of layers which, we
showed, is a byproduct of the procedure. Hence the process we are look-
ing at is that of a hierarchical random search of factors: if we randomly
look for factors we will more probably end up in one of the more central
nodes of the more relevant layers, on the reverse more peripheral nodes
have less probability to be visited randomly if the search starts from other
parts of the multiplex.

While from the economic point of view a random search of factor is
not a likely process since agents usually know what they are looking for,
what is more likely is instead the random emergence of opportunities to
exploit factors in a more productive manner: countries were relevant fac-
tors are not abundant may not enjoy the same economic opportunities of
others and moreover they may see their important factors move towards
central nodes were demand is stronger and there is more probability of
profitable employment.

Finally we highlight the fact that, even though some of our networks
have edges weighted by their economic value, our measures are affected
by the network position of countries and not only by their economic rel-
evance, hence we are measuring the diffusion of factors more than their
efficient (or profitable) use. The differences in the rankings of pcGDP
and of the multilayer centralities may then be explained by their differ-
ent focus: on one hand pcGDP may highlight country specific features
reflected by national accounting but also distorted by the focus on mea-
surable economic flows, on the other multilayer centrality may highlight
the reciprocal position of countries in a wide set of different networks
of exchanges ignoring economic prevalence but also all the non-network
features of development of a country.

In this sense the analysis of Section 1.5.5 (and specifically in Figure
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1.10) highlights countries with different path of developments: quad-
rants where the expected evolution of countries differ (top left and bot-
tom right in the figure) contain countries which have gained (lost) po-
sition as attractors of relevant factors while loosing (gaining) positions
from the static economic profile. As we already said in section 1.2, we
don’t have enough evidence to validate these hypothesis but we think
that by starting from the pattern of development of these countries the
effectiveness of the centrality algorithms will be confirmed.

1.6 Conclusions

In this work we have collected a new dataset of international network
measures, measuring the connections between countries over different
financial and non-financial dimensions and using multilayer network
analysis for the first time.

We have computed different centrality measures and we have shown
how different aspects of the data can be highlighted with little change in
the parameters of the algorithms and how the resulting change in rank-
ing can be interpreted. Next, we have compared the ranking of coun-
tries obtained by network measures and a common measure of macroe-
conomic performance, such as pcGDP. We have found a satisfying corre-
lation for some of the algorithms, the MultiHub score especially, both at
the static cross section level and for the change in pcGDP.

To show the differences between network measures and pcGDP, we
have analyzed how each country development trajectory compares to
changes in network centrality. We have found only few countries for
which all measures agree, while for most of countries different possi-
ble trajectories were drawn, not always consistent to those measured by
pcGDP.

This may reflect the fact that the development of countries is not char-
acterized by a single path and multiple factors concur to define their
growth trajectories, hence new measures are required to capture those
differences. However we are conscious that any index that would try
to summarize all these aspects over one dimension is by definition an
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approximation and entails a loss of information.
This work is a first step in order to provide meaningful multiplex

measures for the centrality of countries, hence we have left many issues
open for future work. We have not addressed any issue of community
detection of nodes and layer similarity. Moreover we have not addressed
any of the issues of causality over the network nor network reconstruc-
tion which we think are too broad topics to be discussed here. Further
work will also be required to integrate other sources in the dataset of
relevant international relationships.
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Chapter 2

The effect of the network
structure of the economy on
the performance of
countries during the
2008-2009 crisis

2.1 Introduction

The Great Financial Crisis (GFC from now on) is regarded as the most
serious global financial crisis in history since the Black Tuesday of 1929.
Starting from the collapse of the US market of housing mortgages, weak-
ened by the use of subprime mortgages, it then transmitted to the bank-
ing sector peaking with the failure of the Lehman Brothers investment
bank. From there it rapidly spread all over the world.

Officially the NBER established the duration of the GFC for the U.S
as 18 months from December 2007 to June 2009. In this period we can
observe one of the most impressive feature of the GFC: starting from an
initial moment when few countries were affected, it rapidly involved the
majority of them with a share of more than 80% of the total at its peak,
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then deflating to a share of around 20% in the immediate subsequent
period. In Figure 2.1 we can observe the evolution of the GFC and its
aftermath in the period from 2007Q1 to 2015Q1 as measured as months
of recession by country 1.

Given the international spread of this phenomenon it would be mean-
ingful to extend the observations regarding the GFC in two ways.

First, by considering the whole sample of affected countries, we could
move the end date of the GFC as the first period where the majority of
the sample exited from recession. This can be identified as the end of the
first quarter of 2010 (the dashed line) when only 5 countries out of 70 (the
7%) were still in recession.

Secondly, we should account for the different effect of the GFC on
countries. In fact if we look at the long period and extend our time range
up to 2015Q1 we can see that a relevant share of countries (up to a 25%
of the sample) did not recover fully from the crisis and fell in a second
period of recessions from the end of 2011 up to half of 2013. For one
of them, Greece, the recession period lasted uninterrupted from 2009 to
2014. In Figure 2.1 this phenomenon is highlighted by the position of
countries in the plot and by their colour: more affected countries are
plotted on top with darker colours, less affected ones on the bottom with
lighter tones.

This is reflected also by the different economic performances of these
countries as measured as the losses they bore during the GFC period. In
Figure 2.3 (top panel) we have plotted the cumulative loss of each coun-
try recession during the GFC (accounting for differences in their timing):
we can see a (rough) correspondence between the colouring we obtained
in Figure 2.1 and the amount of losses for each countries.

The reason of these differences has been the object of several stud-
ies in the macroeconomic literature in the past years aimed at explaining
why some countries have been more resilient during the crisis and have
been less affected by the GFC. Moreover given that the recession started
as a local banking crisis and then rapidly escalated at national and in-

1Recessions in Figure 2.1 have been measured as negative differences quarter-on-quarter
in adjusted GDP. In the rest of the paper we will use a separate definition of recession.
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ternational level we have observed the development of a new field of
studies focused on contagion over financial networks. We will briefly
review both these strains of literature in Section 2.2.

However there is still some space of improvement in explaining coun-
try resilience given by the interplay of these two fields of studies. On one
hand network measures are still uncommon in macroeconomic studies
on country resilience with only few examples of works integrating them
with other economic and financial indicators. On the other hand the lit-
erature on banking contagion is mostly focused on modeling national
banking networks and not international contagion. While some mod-
els could be extended to international financial flows, it seems that more
simple mechanisms may help us explain the origin of the international
spillover of the GFC and its different effect on world countries.

In what follows we will look for explanatory variables for different
measures of economic losses during the GFC checking if network mea-
sures can help explain the different resilience of certain countries. We
will show that by adding several of them to the econometric specifica-
tion and testing them in an agnostic way we can improve on previous
analyses. In particular we have found that kcore centrality of the net-
work of investments among countries has an high explanatory value for
the performance of countries after GFC both in the long and in the short
run, something previously not discovered. We will then try to see which
kind of theoretical model is useful in explain some of our findings.

The rest of the Chapter is organized as follows: in Section 2.2 we
briefly review other works related to our research question, in Section
2.3 we describe the data we are using, in Section 2.4 we explain our
methodology and finally in Section 2.5 we show our results, 2.6 is left
for concluding remarks.
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2.2 Related literature

Our work is related to two particular field of literature at the intersec-
tion of economics and network theory: models of financial contagion in
financial networks and empirical analyses on banking crisis.

2.2.1 Contagion on financial networks

During the GFC and in its aftermath what became evident was that the
interconnectedness of global financial institutions while providing a chan-
nel for economic development also provided routes for financial conta-
gion which could rapidly spread across countries. As a consequence net-
work scientists and economists have focused on the study of the proper-
ties of financial networks and of their sensitivity to contagion (Glasser-
man and Young, 2016 for a review).

Models of financial contagion however provide only a partial expla-
nation of the phenomena witnessed during GFC. Firstly the focus of con-
tagion literature is mainly theoretical (Chinazzi and Fagiolo, 2013), ei-
ther because data from financial institutions are not publicly or entirely
available (Anand et al., 2018), or because contagion phenomena are rare
to witness (Iyer and Peydró, 2011). Two exceptions in this case are Ca-
ballero (2015) and Minoiu, Kang, et al. (2015) which use data from bank-
ing crises in the years 1980-2010 to look for network properties capable of
explaining the emergence of recessions. Using data on international syn-
dicated loans Caballero (2015) finds (among other network indicators)
that the betweenness in the international network of the average bank in
a country is a good explanatory variable for the number of banking crisis
the country has experienced. Minoiu, Kang, et al. (2015) using instead
data from BIS have shown that the degree, clustering and connectedness
of a country in the network of BIS loans help explain the probability of a
crisis in that country.

A second reason why contagion models are still unsatisfactory in ex-
plaining the GFC is the fact that they rarely focus on the transmission of
financial shocks to the real economic system. This calls for further inves-
tigation since, as we will show in the next subsection, the debate is still
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open on whether banking crises necessarily lead to recessions and if this
phenomenon is necessarily contagious.

One possible solution may be to adapt one of the existing models
to an international scenario. For instance in Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2015) the collapse of a financial network is represented in
a simple yet effective manner.

Financial actors have a three periods horizon: in the first period they
allocate resources to risk-free assets (cash), risky investments and lend-
ing to others. If they find themselves liquidity constrained, they borrow
resources from other actors for their investments. In the second period
they obtain a return from their investments and have to repay their debts
(or collect their credits), eventually deciding to liquidate (at a cost) the
asset they will receive in the next period. Finally if they reach the third
period without defaulting they receive an asset as return from their in-
vestment.

The network structure emerges from the borrowing and lending re-
lations in period 1 and the contagion mechanism emerges as the con-
sequence of three features of the model. First actors have senior exter-
nal creditors, for instance employees or the government through taxes,
which have precedence over junior creditors involved in the credit rela-
tion. Second a shock may hit randomly each of the actors with low or
high severity. Finally the network of lending may be more or less sparse.

Here is how the contagion works. Since actors have senior creditors
when a shock hits their current resources they automatically are unable
to repay their junior creditors and are faced with a choice: liquidating
their future assets or defaulting. If they default their repayment is 0, oth-
erwise it is a share of their initial borrowed sum. Hence if the shock is
high enough they will default automatically and the shock will be trans-
mitted to their creditors. In this case the network structure play an im-
portant role: if the network is maximally sparse (a ring) or maximally
dense (a complete graph) then the shock propagation will be maximum.
Any intermediate configuration obtained by isolating a set of the nodes
from the others will instead attenuate the propagation and reduce the
global losses.
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For small shocks instead the reverse situation appears: maximally
dense graphs are the more resilient to shocks, while rings are the more
fragile. Hence any intermediate configuration moving from the ring to-
ward the complete graph will improve the stability of the network.

These two different behaviours of the network, according to its den-
sity and to the shock its actors receive, highlight the robust-yet-fragile
feature of highly dense networks: when shocks are small a very dense
network may distribute the consequences of defaults among many dif-
ferent actors hence reducing the effect of the shocks, on the contrary
when shocks are large the same dense structure may reverberate the
heavy losses and transmit them to the full network.

The model of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) does not
impose that all banks in the network must belong to the same country,
hence it could be easily employed to model international borrowing re-
lations. If we abstract from the differences among regulations of banks of
different nationality and we assume that shocks are propagating across
national borders without any modification, we can see the GFC as the
catastrophic reaction of a dense network of international borrowing to a
regime of large shocks. However what we are interested to find is how
the world network structure of the economy has affected the country
performance after the shocks and on this issue the work of Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015) does not give any particular insights.
While the model is effective in pointing out that network variables must
have a role in international resilience analysis, it does not give us any
hint on which of the possible network variables we should use.

An intuition of this can be obtained by looking at Figure 2.2. If we
consider countries in recession as infected units of an epidemic model
we can plot the share of units at risk of recession (susceptible), infected
and recovered in each moment of the GFC and obtain a graph resem-
bling a very basic SIR epidemic model: a rapid outburst of the epidemic
followed by an equally fast decay in the number of infected units.

As our results will show, simpler epidemiological models (Moreno,
Pastor-Satorras, and Vespignani, 2002; Pastor-Satorras and Vespignani,
2002; Pastor-Satorras, Castellano, et al., 2015) similar to the one shown
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Figure 2.2: SIR model of the Great Financial Crisis. Share of susceptible
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share of recovered countries in red. Stepwise plots represent actual data.
Smooth lines represent spline interpolations with k = 3.

in Figure 2.2 can provide the theoretical insight on where to look for
explanatory network measures regarding resilience. In fact it has been
demonstrated that in epidemiological models one of the most effective
measure to recognize strong spreaders in the network is k-core centrality
(Kitsak et al., 2010; Lin et al., 2014) which is exactly the kind of measure
we will find relevant in our analyses.

Hence while a banking contagion model such as the one of Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015) can be useful to explain a first phase
of the GFC when the cause of the crisis has been developed, for its sec-
ond phase of contagion across countries a simpler epidemiological model
may be the best choice.2 An integration of the two phases in single model
might be an interesting development in the financial contagion field.

2In a certain sense an epidemiological model, by modeling each of the recessions as
the same type of epidemics is making an even stricter assumption of similarity among
countries with respect of the banking models
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2.2.2 Early warnings and effect of banking crises on out-
put

A long standing series of studies on banking crises in the last 100 years
(Reinhart and Rogoff, 2009; Reinhart and Rogoff, 2014) has focused on
demonstrating similarities among the effects of those episodes on coun-
try performances. The main takeaway from these works has always been
that "This time is not different": crises have common features and identi-
fiable policy solutions.

However following the recent evidences it has been shown that reces-
sions after banking crises are not inevitable (Devereux and Dwyer, 2016)
and that not all the recessions resulting from a banking crisis have to be
severe (C. D. Romer and D. H. Romer, 2017). This confirms the early
findings in the literature that financial crises are difficult to study since
they are heterogeneous and rare events and that the GFC represented an
exceptionally severe and diffuse episode (Cecchetti, Kohler, and Upper,
2009). For instance, an interesting approach in this sense is given by the
study of the increased probability of extreme events as measured by the
changes in the tail probability distribution of the stock exchange returns.
As shown in Bee, Riccaboni, and Trapin (2017) for US, the detection of
tail change points can be used as an early warning signal, since they an-
ticipates by months the start of a crisis.

Given the previous observations a consistent theory of the resilience
of countries after a crisis has not emerged yet and for the GFC different
competing hypothesis have tried to explain the variable performance of
countries (Frankel and Saravelos, 2012 for a review). On one hand all
these studies agree that credit growth before the crisis is the leading ex-
planatory variable, on the other they wildly disagree on further possible
explanatory factors.3

Furthermore, among the different proposed explanations only few
works have employed network measures aimed at addressing country
interconnection, even though they are commonly used for financial con-
tagion models. The few exceptions are Kali and J. Reyes (2010) for trade

3Moreover different methodology for measuring crisis have been proposed and this ob-
viously affects the final results and makes it difficult to make comparisons.
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data, Minoiu and J. A. Reyes (2013) for data regarding the interbank loans
and Chinazzi, Fagiolo, et al. (2013) for data on cross-border portfolio in-
vestment holdings. In all these works adding measures of country con-
nectivity to the econometric analysis has shown to be effective in explain-
ing the performance of countries after a crisis.

Since no valid theory has emerged on country resilience after the
GFC, any empirical effort to explain it is potentially exposed to model
uncertainty bias, i.e. to the possibility of testing a theory on a suboptimal
set of models while ignoring other equivalently good explanations in the
models space. To address this issue in this work we follow the approach
showed in Feldkircher (2014) where a Bayesian Model Averaging (BMA
from now on) methodology has been used to solve the issue of model
uncertainty in the study of country resilience after the crisis. 4

In Feldkircher (2014) country resilience is measured with 4 different
loss indicators capturing both short run and long run deviations in the
development of a country. As explanatory variables a set of 97 finan-
cial and economic indicators has been collected, drawing from previous
studies on the different reaction of countries after financial crises 5. Each
of the dependent variables has been regressed against all the 97 explana-
tory variables using BMA as variable selection mechanism. The results
of this process highlight one principal element affecting all countries re-
gardless of the measure of the losses and several country specific and
measure specific effects. The main variable affecting negatively coun-
try resilience is the growth of credit in the years before the crisis: coun-
tries with higher credit growth before crisis bore greater losses during
the GFC. This phenomenon is ubiquitous in the whole sample. On the
contrary there are two countries which have specific features: in Ukraine
losses are significantly higher than the rest of the sample while in Be-
larus they are lower. While the severe crisis of Ukraine has been histor-
ically recognized, the exception of Belarus can be explained by its strict
relation with Russia, through trade arrangements, which has sheltered it

4BMA has been employed in growth economics for a long time and only recently has
started to be used also in different contexts, for a review on its applications in economics
we refer to Moral-Benito (2015)

5More details in Section 2.3
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from more severe losses. The use of several different measures of crisis
resilience helps Feldkircher (2014) recover other specific effects, in par-
ticular the positive effect of food exports which signal country less em-
bedded in financial markets, the negative effect of free trade agreements
which signal a probable channel of contagion and another channel of
contagion through the exposure to external funding 6. However these
effect are specific to the type of loss measure used, hence the main take-
away of Feldkircher (2014) is that only one variable among the 97 tested
can consistently explain cross country resilience, our hypothesis is that
instead we can discover further effects when network variables are used.
Hence we will first replicate Feldkircher (2014) results and then expand
on them with newer variables.

To summarize in this Chapter we make three contributions to the de-
bate on cross-country performance after the crisis. First, by using the
same methodology and baseline models of Feldkircher (2014) we expand
their analysis by testing and demonstrating the importance of country
network variables, effectively being the first work to use them in the
BMA framework. Secondly we employ a newly collected dataset on 18
network layers among international countries, expanding over several
dimensions the previous analyses on country connectedness. Third we
do not only use single layer centrality measures but employ them also
at a multilayer level. While the use of multilayer measures is common
place in the contagion literature we have not seen any work using them
in the context of cross country resilience analysis.

2.3 Data

2.3.1 Variables from Feldkircher, 2014

In order to replicate the analysis in Feldkircher (2014) we are using the
same dataset of variables they employ. Here we will briefly describe
them and refer for further details to the original paper. We have four
types of dependent variables capturing the effect of the crisis on output

6We refer to the original work for a detailed analysis.
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both in the short and in the long run and a set of 97 possible explanatory
variables.

Measures of the severity of the crisis

The static approach to define the period of crisis for a country consist
in using a fixed period of time for all countries in the dataset and com-
pare their levels of GDP or GDP growth to the ones before the crisis. In
Feldkircher (2014) instead a more dynamic approach has been used: the
period of crisis for each country starts with the second quarter of con-
secutive negative growth and ends in the quarter in which the economy
reach again the maximum of its output as it was recorded in the four
quarters before the start of the recession 7. The dynamic approach al-
lows us to analyze the effect of the crisis without being affected by the
different timing of recessions across the world.

Let’s define as tstart and tend the country specific quarters delimiting
the crisis period. Then we can define the following two short run mea-
sures of the impact of the crisis, the cumulative loss of output and the
depth of the crisis:

cum.loss =

∑tend

tstart
yt − ypeak
ypeak

∗ 100 (2.1)

Depth =
ythrough − ypeak

ypeak
∗ 100 (2.2)

Here yt is real quarterly GDP and peak and through follow the def-
initions given before. Next two long run measures of the impact of the
crisis can be defined by looking at the deviation after the crisis from the
long run trend of output obtained via the Hodrick-Prescott filter. To do
so we need to redefine the period of crisis as the range from the first quar-
ter the real GDP schedule detached from the trend trajectory (tstart∗) and
the first quarter it surpassed the trend again (tend∗). Moreover we as-
sume two types of effect: a transitory effect (HP.trans) and a permanent

7Similarly the trough of the output is defined as the minimum value of output in the
four quarter before the crisis
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effect (HP.per). In the first case we assume that the output long run trend
is not affected by the crisis and hence we use as a reference point the ex-
trapolation of the output trend from the start of the crisis yHP

ext

t . In the
second case the long run trend is affected and hence we use as reference
the trend obtained via the Hodrick-Prescott filter on the whole period
yHPt :

HP.trans =

∑t2011Q4

tstart∗
yHP

ext

t − yt
yHP

ext

t

∗ 100 (2.3)

HP.per =

∑tend∗
tstart∗

yHPt − yt
yHPt

∗ 100 (2.4)

Notice that in HP.trans the end period is the same for all countries be-
cause none of them reached their pre-crisis trend in output. The four
crisis measures are plotted in Figures 2.3 and 2.3: we can see that they
have a general similar schedule but not a perfect correlation.

Explanatory variables for country performance

The set of explanatory variables contains 97 different measures calcu-
lated annually before the crisis period. The dataset aims to contain a
broader set of causes in order to capture all the possible explanations
provided in the literature and reduce the uncertainty. The variables be-
long to different categories of risk: macroeconomic, external, fiscal, fi-
nancial and risk of contagion and spillover. We refer to the Appendix of
Feldkircher (2014) for a detailed description.
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Table 2.1: Variables summary

layer code nodes edges weights a Ub Sc t
min max avg. std.

fta_wto 211 3742 1.0 1.0 1.0 0.0 3 3 2006
expv 211 25450 1.0 295528891.206 444044.45 4421265.2 2006
serv_exp 207 6826 100.0 51692128612.0 305982312.319 1823159056.15 2006
arms 153 331 1.0 2472.0 72.408 203.262 2006
invest 208 3716 1.0 1075579.0 6620.332 39333.797 2006
FDI 210 493 0.01 116745.324 3710.756 12378.164 2006
FDI_Greenfield 158 1873 0.25 25024.721 504.81 1615.989 2006
value 177 937 0.001 56561.026 894.909 3291.988 2006
BIS_flow_claims 183 2483 0.001 2829050.054 7880.348 82954.496 2006
aid 136 2726 0.01 4781.82 21.033 137.958 2006
migration_flow 179 11893 1.0 1957397.0 3488.237 30348.68 2005
migration_stock 206 10787 1.0 10309054.0 16902.973 145370.344 2005
out_tour 189 10586 1.0 73909666.0 76076.011 914418.922 2006
mobility 191 5932 1.0 93672.0 398.405 2734.95 2006
citation 196 24054 0.0 11594656.0 2519.782 80055.601 2006
collaboration 191 8854 0.0 2041948.75 896.614 24557.128 2006
pat_cit_inv 164 2891 1.0 1626451.0 1148.407 30879.491 2006
totIC 187 697 0.0 22.747 0.691 2.323 3 2006
cow_alliances 112 2503 1.0 5.0 1.242 0.527 2006

Legend: 3 = True, empty space = False, - = NaN.
a Weights are calculated on values greater than 0. Reported zeros are positive values lower than 0.001.
b If True the layer is unweighted.
c If True the layer is symmetric.

2.3.2 Network variables

We extend the analysis of Feldkircher (2014) by using a set of network
variables selected from the international exchange multiplex (IEM from
now on). As we already shown in Chapter 1 the IEM contains more than
20 network layers where nodes represent countries and edges represent
different type of relations among them. For each layer we have obser-
vations in a different set of years, with maximum coverage achieved in
years 2000-2010. Countries are not uniformly present in each layers but a
minimum set of 112 nodes can be recovered in the most dense snapshots
of data.

Layers in the IEM can be classified in six categories according to the
type of international relationship they represent.

• trade: trade agreements among countries (fta_wto), commod-
ity and services exchanges (expv, serv_exp) and arms transfers
(arms)
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• investment: foreign direct investments (FDI, FDI_Greenfield),
total portfolio investments (TPI) (invest), value of mergers and
acquisitions (M&A) (value), international aid (aid) and interna-
tional bank loans (BIS_flow_claims)

• human mobility: movement of individuals between states as mea-
sured by permanent migration in flows and stocks (migration_flow,
migration_stock) and temporary mobility, i.e tourism (out_tour)
and students abroad (mobility)

• knowledge flows through patent citations (pat_cit_inv), cita-
tions of scientific papers (citation) and paper coauthorships (
collaboration)

• common infrastructures between countries as measured by capac-
ity of internet cable routing (totIC)

• diplomatic relationships (cow_alliances).

For the sources from which we have collected the data and a detailed
description of the data and the procedure we have followed to homoge-
nize its content we refer to Section 1.3 in Chapter 1

For this study we have selected a single year of the dataset, 2006.
Moreover, in order to achieve a sufficient number of nodes in each layer,
we have selected only 18 layers among the ones available in the IEM.
Table 2.1 reports the list of selected networks included in our cross sec-
tion of layers, with the short name used in our dataset in the first column
and some summary statistics for each layer of the multiplex: number of
nodes and edges, symmetry and weight checks on the edges and actual
years used to construct the database. For migration data we have used
observations from the closest year available, 2005 in this case.

Using the data described in Table 2.1 we have expanded on the anal-
ysis made in Feldkircher (2014) adding to the BMA models several net-
work measures at node level drawing from different strand of literature.
Starting from the previous analyses on the effect of network structure
(Kali and J. Reyes, 2010; Minoiu and J. A. Reyes, 2013; Chinazzi, Fagi-
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olo, et al., 2013) we have included for each country measures of con-
nectedness (indegree, outdegree, instrength, outstrength, betweennes)
and clustering (weighted and binary clustering coefficient). Moreover
we have included different type of node centrality at single layer level
(PageRank, HITS, K-core) and at multilayer level (MultiRank and MD-
HITS). These last two measures represent generalizations of the well known
PageRank and HITS algorithms which take into account the multilayer
structure of our data and obtain centrality measures considering also the
importance of different layers. While for node and single layer centrality
measures the definitions are the usual ones available in most network
science textbook (M. Newman, 2010), for the multilayer ones we refer to
Rahmede et al. (2018) for the MultiRank and to Arrigo and Tudisco (2018)
for the MD-HITS.

2.4 Methods

The econometric models we are going to estimate read as follows:

yi,t = βixi,t−1 + γizi,t−1 + εi,t (2.5)

Where yi represents one of the four crisis measures, xi is a subset of the
97 macroeconomic regressors variables chosen by Feldkircher (2014) and
zi is a subset of our network variables. i = 1 . . . N are the countries of
our sample withN = 55 obtained as the intersection of our network mea-
sures and the original macroeconomic ones. The timing of measurement
is not the same for each measures, since crisis measures have been mea-
sured on a moving window of time for each country and not all macroe-
conomic and network measures were available exactly in the same year:
in what follows independent variables will be measured in 2006, if avail-
able, otherwise the earliest measurement in a range of 3 years will be
used. Finally each of the network measures we add is calculated in ev-
ery layer of the dataset, hence we are adding 18 new variables to the
estimation each time.8

8For multilayer measures we have included them in the relative single layer set, hence
MultiRank with single layer PageRank measures and MD-HITS with HITS ones. Hence in
those cases the variable added to the model are 20
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2.4.1 Preliminary tests

If we assume that the true model in our analysis has a low number of
explanatory variables we can frame our problem as an high dimensional
approximately sparse linear regression model, i.e. where there is an high
number of regressors p, a low number of observations n and the num-
ber of significant variables selected must be relatively low. The first way
to address this problem is to use LASSO regressions (Tibshirani, 1996),
i.e. to shrink to zero the coefficients of all the variables which do not
contribute to the fitting of the model. Moreover a more robust method
has been proposed in Belloni and Chernozhukov (2013), the RLASSO
("robust" lasso), where λ, the shrinking threshold of the LASSO, is auto-
matically chosen by the algorithm and a 2 stage least square estimation
is performed on the LASSO selected variables.

Hence as preliminary steps in the analysis we have employed two
different types of LASSO regressions to see which regressors were se-
lected and after that we have moved to the proper BMA model. This
has the advantage that LASSO regressions are less computationally in-
tensive and allowed us to have some preliminary insights on which vari-
ables were more relevant to maximize the fit of the models. We will show
the LASSO and RLASSO results together with BMA ones in the results
section to compare which variables have been selected by the different
methods.

2.4.2 Bayesian Model Averaging

Since no specific theory on country resilience has emerged, any combi-
nation of our variables may represent a good candidate to explain the
different reaction of countries after the crisis. With at least 115 variables
to test at each step (97 macroeconomic variables and 18 network mea-
sures) the space of models to explore is enormous (2118 possible combi-
nations of parameters). One possible approach may be to select as base-
line a small subset of significant variables, already tested in the literature,
and then enhance the initial model with some variations chosen ad-hoc.
This "kitchen-sink" approach though has revealed to be fallacious since
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it is not robust to the addition/exclusion of variables from the chosen
model. A more agnostic approach instead is to find a method to ex-
plore efficiently the whole space of models and then base inference on
the weighted average of all the results. Bayesian Model Averaging is one
of the possible solutions to this problem.

Inference on regression coefficients in the BMA approach reads as fol-
lows:

p (βi|y) =

2K∑

j=1

p (βi|Mj , y) p (Mj |y) (2.6)

Where Mj represents a single model among the 2K models available in
the model spaceM (with K = 116 in our case). The first term of Equa-
tion 2.6 is the posterior distribution of βi under the hypothesis that the
selected model Mj is the true one. The second term instead, p (Mj |y) is
the posterior model probability (PMP), the probability that the model is
the true one. Hence each estimated coefficient is obtained as the average
of single model coefficients weighted by their PMP.

To obtain the posterior model probabilities we must use the the Bayes
update formula with the prior probability of each model, p̄ :

PMPj = p (Mj |y) =
p (y|Mj) p̄(Mj)

p(y)
=

p (y|Mj) p̄(Mj)∑2K

l=1 p (y|Ml) p̄(Ml)
(2.7)

At the first term of the numerator we find the likelihood of the observa-
tions under the selected model:

p (y|Mj) =

∫
p (y|Mj , φj) p (φj |Mj) dφj with φj = (βj , εj) (2.8)

Hence we find the PMP of each models as the ratio of likelihood under
different model specification: models with higher PMP are those with
better fit to the data. Next, to obtain a measure of the importance of each
variable, we sum the PMP of each model which includes the selected
variable: highly significant variables are then defined as those which are
included in the best fitting models. The posterior inclusion probability
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(PIP) of a determinate variable z is then defined as follows:

PIPz ≡
2K∑

j:z∈Mj

p (Mj |y) =

2K∑

j:z∈Mj

PMPj (2.9)

Finally we must specify a prior distribution for the model parameters
and for the distribution of models. In the first case we follow the most
common option: model parameters βj are distributed as normal around
zero means. This is equivalent to assume that a priori the regressor has
no effect on the dependent variable. Formally we have:

βj

∣∣∣σ2,Mj , g ∼ N
(

0, σ2g
(
X ′jXj

)−1
)

(2.10)

Where g is the Zellner’s hyperparameter (Zellner, 1986) for rescaling the
number of variables. Similarly to the a priori distribution of model pa-
rameters also for the distribution of models we make an agnostic choice
and assume that all models are equally likely.

Being our work an extension of the one Feldkircher (2014) we will
not explain all the details of the technical implementation of the BMA
estimation. For further technical details we refer to the original work.

2.5 Results

2.5.1 Description of the results

We run four different tests, one for each of the different crisis measures.
In each test 10 millions models are extracted from the distribution via a
Monte Carlo Markov Chain procedure, half of them are used to initialize
the analysis (the burn-in phase) while only the other half are actually an-
alyzed. This is required since the Monte Carlo procedure may visit parts
of the model distribution which are not significant and hence collecting
results would not be meaningful.

For each test we have run three preliminary LASSO regressions: an
ordinary LASSO regression (the L column), a RLASSO regression with-
out constraints (the RL column) and finally in the third one we have
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constrained the RLASSO analysis to include our netwok variables (the
ERL column). For the first one we are reporting the λ threshold at which
our network variables are included in the final model: b represents the
best threshold, the one automatically chosen by the estimation, l repre-
sents a low threshold, which corresponds to .75% of the best one, hence
a very permissive bound. Ideally we would like our variables to be se-
lected with the best threshold. Similarly for the RLASSO regression we
observe both the automatic result of the estimation and the one where
we constrain the regression to include our variables and check if they
are statistically significant. In both cases we report the level of statistical
significance.

While we do not necessarily expect the LASSO and RLASSO proce-
dures to agree on the inclusion of certain variables, we would like to
see the same variables selected by both the BMA and the more robust
RLASSO procedures, especially the unconstrained one. However since
the two different methodologies rely on different principles to evaluate
the importance of variables it is interesting to observe the differences be-
tween the two selection criteria.

For the BMA analysis we report three measures: the first is the poste-
rior inclusion probability of our variables (the PIP column), the second
is the posterior mean coefficient (PostMean) and the third is a measure
of "effective estimation" or posterior significance (PostSign.). Follow-
ing Masanjala and Papageorgiou (2008) variables which have a ratio of
posterior mean with respect to the posterior standard deviation greater
than 1.3 are dubbed as "efficiently estimated" and this is reported in this
last column. Variables with high PIP (over .75) and which are efficiently
estimated are good candidates as explanatory variables for the different
performance of countries after the crisis.

For each of the variables included in the analysis the BMA reports a
posterior inclusion probability. However most of the regressors are often
discarded resulting in very low PIP. Hence while we report only the top
15 variables by PIP for each tests, these are always sufficient to show the
most important variables in the models. As a matter of fact, finding more
than one variable with a PIP over .9 would be very rare. We highlight
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network variables in the BMA results with a gray shade.
Finally for each experiment we report a comparison between an OLS

regression for the top 5 selected models with network variables and the
best model selected without network variables. Since the sample size is
the same for both procedure we can directly compare the models, hence
we can make observation about the best fitting of each model to the data.

2.5.2 Summary of the results

In the next subsection we will report only the main results related to
the cumulative loss dependent variable (Tables B.21 and 2.3). The other
results are reported in the Appendix B and are organized as follows:

• Original BMA results on new sample: as starting point we repli-
cated the exact Feldkircher (2014) analysis on our new sample of
countries. Results include models with and without interaction
terms, which we label M1 and M3.9

• BMA results with full set of network variables: as second step we
ran BMA with the full sample of network variables as first model
selection stage. Results include only the model without interaction
terms (M1).

• BMA results with only kcore centralities: after the first selection
stage we identified a set of network measures which consistently
appeared in the top positions by PIP, the k-core centralities of lay-
ers, so we repeated the analysis only with them including models
with and without interaction terms (M1 and M3).

• Regression results with only kcore centralities: finally to compare
the fitting of the new models with respect to the old ones selected
in Feldkircher (2014) we have run an OLS regression using the first
5 models selected with the new procedures against the best one
selected by the original analysis.

9Considered interactions are among 15 relevant economic variables and the growth of
private credit (as reported in Feldkircher (2014)). For network variables we consider the
interaction of all k-core layer centralities and the growth of private credit.
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2.5.3 Comments on the findings

Table 2.2: Dependent variable: cum.loss. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.996589 -0.193375 True *** ***
invest_kcore_nr 0.913447 -4.081269 True *** ***
net.pf.equ.infl.0006 0.092341 -0.081941
collaboration_kcore_nr 0.079319 0.506029 ** b
dummy_blr 0.078006 7.602253 *** *** b
migration_stock_kcore_nr 0.069573 0.252032 ** b
gen.govDebt.06 0.042261 -0.012355 *** ***
dummy_ukr 0.042036 -2.442006 *** ***
twin.fis 0.040403 0.001346 b
net.pf.debt.infl.0006 0.039193 -0.022468
mobility_kcore_nr 0.038861 0.159460 *
chg.stocks.gdp.0006 0.035835 0.000316 b
outputGap_0006Exo 0.035443 -3.538792
trade.freedom.06 0.033166 -0.026626 * *
arms_kcore_nr 0.030527 0.138219 . b

Reproduction of the original results

First from Section B.1 we can see that even with a smaller sample we are
able to reproduce the results of Feldkircher (2014). Hence when network
variables are not added to the regressions the conclusions are the same:
in almost all the tests the variable with a level of PIP great enough to be
considered is always the variation in the supply of domestic credit by
banks in the years between 2000 and 2006 (chg.dom.cred.bank.0006) which
has a negative sign. This is consistent over the majority of tests we ran
where chg.dom.cred.bank.0006 is always in the top 5 variables by PIP, of-
ten the first by several orders of magnitude with respect to the others
and almost always efficiently estimated. Also the RLASSO regressions
correctly identify the change in domestic credit as a relevant variable.

Moreover, similarly to Feldkircher (2014), we also find that the dummy
variables for Belarus (dummy_blr) is most of the time the second most im-
portant variable by PIP with a positive sign, even though almost never
efficiently estimated and with a level of PIP comparable to credit growth.
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Table 2.3: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
cum_loss

1 2 3 4 5 ref.

invest_kcore_nr −4.503∗∗∗ −5.182∗∗∗ −4.691∗∗∗ −4.223∗∗∗

(0.923) (0.932) (0.891) (0.896)
migration_stock_kcore_nr 3.869∗∗

(1.652)
collaboration_kcore_nr 6.464∗∗

(2.808)
net.pf.equ.infl.0006 −0.855∗∗

(0.373)
chg.dom.cred.bank.0006 −0.201∗∗∗ −0.185∗∗∗ −0.213∗∗∗ −0.200∗∗∗ −0.213∗∗∗ −0.245∗∗∗

(0.021) (0.022) (0.021) (0.020) (0.025) (0.022)
chg.stocks.gdp.0006 0.013∗∗∗

(0.005)
dummy_blr 122.978∗∗∗

(32.954)
Constant 63.521∗∗∗ 4.390 37.736∗ 61.313∗∗∗ −10.658 −13.881∗∗

(16.281) (29.698) (19.244) (15.683) (6.970) (6.215)

Observations 55 55 55 55 55 55
R2 0.708 0.736 0.735 0.735 0.574 0.705
Adjusted R2 0.697 0.721 0.720 0.720 0.566 0.688
Residual Std. Error 31.020 29.764 29.813 29.823 37.099 31.471
F Statistic 63.017∗∗∗ 47.459∗∗∗ 47.250∗∗∗ 47.205∗∗∗ 71.470∗∗∗ 40.656∗∗∗

BF 0.57865 1 0.92427 0.90871 0.00035 1
Logmarg 26.21542 26.76248 26.68373 26.66675 18.80165 24.06065
Post. Prob 0.28666 0.01304 0.01208 0.01161 0.00987 0.01373
Dim 3 4 4 4 2 4

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

70



The only difference can be found for the BMA test run with depth as
dependent variable: here we obtain different results with respect to the
original work, however the PIP of the variables and their coefficients are
in line with our previous observations.

When instead we run BMA with interaction terms we are unable to
reproduce the level of PIP obtained by Feldkircher (2014), even though
we are following similar procedures.10 However the ranking of variables
by PIP and the coefficients are consistent with the original results and do
not alter what we have seen so far.

Network variables as regressors

Our most important contribution regards the effect of some of our net-
work measures on the BMA estimation. For some of them in fact we find
high levels of PIP and efficient estimates which suggest that these vari-
ables may have a good explanatory power. When compared to original
results in terms of fitting of the data, i.e. when used as regressors in Ta-
ble 2.3 and in Section B.4, we find that they have better or comparable
performance.

The first step in this process has been to perform the BMA analysis
with all the network variables available to select the best models among
all the possible ones. These results are shown in Section B.2. We can
see that for all the four dependent variables the kcore centralities appear
among the top five network regressors by PIP, while only strength and
betweenness among the other types of variables are sometimes present
but not with the same consistency. For this reason in the second step of
model selection we have restricted the analysis to kcore variables only.

Following the literature on contagion models, the relevance of kcore
centrality as an indicator to identify influential spreaders in the network
was expected. Hence it is a confirmation that, while using an agnostic
procedure as Bayesian model averaging, we found it as the main type of
explanatory variable.

10This is confirmed even when we ran the test on the original data hence ruling out an
effect deriving from different sample sizes
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The results of the second step BMA procedure using kcore centrali-
ties only are presented in Table B.21 for the cumulative loss dependent
variable and in Section B.3 for all the others variables. The outcomes are
interesting for several reasons.

First, we finally find a new set of variables which have posterior in-
clusion probability greater than .5, something which was rare before, as
we already observed in the subsection on replicated results. In Table B.21
for instance, the kcore centrality of the investment layer has PIP of 0.91.
This confirms that network variables are useful in general and were pre-
viously ignored.

Secondly we can see that these new variables do not substitute the
previously found most important explanatory variable, growth of pri-
vate credit, but add to it. In fact if we observe the first four top models
selected by the BMA procedure in Table B.21 we can see that all of them
include chg.dom.cred.bank.0006 together with the kcore centrality of the
investment layer. On the contrary in the case of the Belarus dummy vari-
able we have a substitution effect: the new network variables capture the
statistical significance of the Belarus dummy which is retained less often
by the BMA procedure. This is preferable since a dummy variable is a
single data point regarding a single observation, hence with little con-
tent regarding the rest the sample and highly dependent on the choice
of countries in the analysis. Substituting it with an index which contains
information on all the dataset may be a better choice if the new model
has comparable explanatory power, as we will show next.

A third reason why our results are interesting regards the type of
layer which are selected more often and their posterior means. In fact
we can see these layers are the investment layer with a negative coeffi-
cient (selected for all types of dependent variables: see Section B.4) and
the stock of migration with a positive one (selected for all dependent
variables except HP_trans). Hence we find that higher kcore central-
ity in the investment layer amplifies losses together with the growth of
private credit, while higher kcore centrality in the migration stock layer
attenuates losses.

The inclusion of the investment layer and its sign was expected and
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is explainable in a straightforward way: total portfolio investments rep-
resent the international counterparts of local financial networks, hence
the more probable main channel of contagion among countries. Indeed
already in Chinazzi, Fagiolo, et al. (2013) it was chosen as a candidate
layer for explaining losses after the crisis, even though without choosing
kcore as one of the target variables.

On the other hand the migration stock layer is less straightforward
to interpret, especially given its positive coefficient. Since we are using
the undirected version of kcore centrality in the migration layer, we are
measuring the number of countries with which each node is involved in
bilateral migration and which have a degree equal to the one of the node.
Our results show that the higher is the kcore of a country the less it has
been affected by the GFC, hence greater fluxes of people are beneficial to
the resilience of a country. The explanation of this phenomenon may be
related to the role of remittances. In fact a consolidated strain of literature
(Aggarwal, Demirgüç-Kunt, and Pería, 2011; Ziesemer, 2012; Fromentin,
2017) has shown that financial flows of emigrants from host countries to
home countries have a positive effect on the growth and development of
home countries. Hence the positive coefficient we have found confirms
that countries with a consistent stock of migrants abroad have enjoyed
from an external help from remittances during the GFC.

Similarly another layer with positive effect but ambiguous interpre-
tation is the layer of exchange of weapons (arms) which seems to be rel-
evant in explaining transitory deviation from the trend (cfr. Table B.24).
Here we are capturing the effect of weapons expenditures which has
been shown repeatedly to have a negative effect on growth (Yakovlev,
2007; Alptekin and Levine, 2012; Dunne and Tian, 2015). Countries with
high defense expenditures were already growing less than others and
hence their transitory deviation from the trend has been smaller than the
rest of the sample, which is captured by the positive effect of the arms
variables.

The last reason why our results are interesting can be observed in the
regression tables in Section B.4 and in Table 2.3: when compared with
the original models obtained without network variables the new mod-
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els which include kcore centrality have always a greater or comparable
fit with respect to the data, hence signaling that they have explanatory
power and are suitable candidate for alternative theories on the resilience
of countries after the GFC. Indeed in Table 2.3 all the first four selected
models have an adjusted R-squared statistic greater than the best refer-
ence.

Finally, one last note: all the other network measures in our dataset
do not show particularly high PIPs, including the multilayer ones. This is
interesting because most of the recent literature in network science seems
to emphasize the better performance of multilayer measures over single
layer ones (De Domenico, Solé-Ribalta, et al., 2015), while in this case we
do not observe any particular advantage in using them.

We have represented our results in Figures B.19,B.20 and B.21 in the
Appendix where we have plotted the investment layer with nodes as
countries and edge as investment flows. We can observe that the correla-
tion between the cumulative loss variable (the size of the nodes) and the
dependent variables (the colour of the nodes) is positive (bigger nodes
have darker colours) in the case of the change in domestic credit pro-
vided by bank (Figure B.19) and in the case of the kcore of the invest-
ment layer (Figure B.20), while it is negative (bigger nodes have lighter
colours) for the kcore of the stock of migration (Figure B.21). Moreover
we can see how the degree of the nodes (the position of node on the circle
layout) is not enough to capture the contagion effect: many nodes with
high degree have small size, indicating no relation with the cumulative
loss variable.

Network variables as regressors with interaction terms

As robustness test we have also included interaction terms in the BMA
analysis both for economic variables and kcore centralities. We have used
the strong heredity prior (Chipman, 1996; Moser and Hofmarcher, 2014)
which selects an interaction term only if both its interacting terms have
already been selected. This restricts the space of models but avoid the
situation where the three terms appear independently, making impossi-
ble to test the actual effect of the interaction as separated from the effect

74



of the other terms. Hence while adding common variables to the model
does not restrict the selection of particular models (as when we added
network variables to economic ones), in this case instead some of the
previous candidate models are visited with lower probability than before
since the space of models is different and favours model with interaction
terms, when they have sufficient PIP.

This is the case only for the models where we used cumulative loss
and permanent deviation from the trend as dependent variables. In these
cases one interaction term has been selected as relevant but only in the
cum_loss model we have a better fit with the data. Indeed in this case the
model where domestic credit growth and claims on GDP interact is the
one with better fit with the data, even better than models with network
variables, however only the interaction term is statistically significant
and not the two single terms, so that paradoxically the best model is the
one where domestic credit growth is not statistically significant anymore
but only if interacted.

For all the other cases interaction terms are not relevant and models
with no interaction have a better explanatory power.

2.6 Conclusions

In this Chapter we contributed to the effort in explaining the cross-country
differences in performances after the GFC by adding network measures
as explanatory variables. We employed a Bayesian Model Averaging ap-
proach to account for different model hypotheses and extended the work
carried on in Feldkircher (2014). We have found that some of our net-
work measures have good explanatory power with respect to particular
indexes of after-crisis performance. This suggests that these variables
should be added in future studies on country resilience after financial
crises.

Specifically following the literature on epidemic contagion we have
found that kcore measures of centrality are relevant in explaining the
resilience of countries after the GFC with the investment layer adding to
the negative effect of the growth of domestic credit in a country and the
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stock of migration layer reducing the effect of both those variables. While
the effect of investment was expected and it is easy to explain, the effect
of the migration layer is surprising and fosters further investigation.

With respect of models of banking contagion these findings reflect the
intuition of more simple models of epidemics which recommend to focus
on kcore centrality measures to identify potential spreaders. If we use as
reference Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) we can think
that, once shocks reach a critical threshold at a local level and transmit in
the whole network, then they can spillover internationally with little fric-
tion; hence it is realistic to model each country as a similar unit suscep-
tible of contagion. As a consequence while the global network statistics
on which Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) focused was
the density of the network, in our case we need to look at the distance
between low central nodes and high central nodes, i.e. their degrees of
separation: indeed if contagion is immediate for a node to be infected it
is not necessary to be central but it is sufficient to be connected to a very
influential node.

In fact, if we look at the investment layer we find a very low den-
sity but high "small-wordness" of the layer: the small-world omega and
sigma (Hurlin, 2006) are respectively 0.06 and 0.96 indicating that the
investment layer has a small-world property with respect to a random
graph or a random lattice. Moreover if we use the empirical estimate of
the degrees of separation among the nodes of the investment network,

logN
log<k> where N is the number of nodes and k is their degree, we obtain
that each node is 1.23 steps away from the others: from the point of view
of the investment layer, the world is really a small (global) village.

Possible extensions of this work may be directed to expand the sam-
ple size of the collected variables either by taking into account other
crisis events or by increasing the number of countries in the used net-
work; moreover given the framework we have worked with other net-
work variables may be tested, including more refined index of contagion
spreading. Finally, in case a sample covering longer time is obtained,
the recent advances in BMA panel estimation should be used to address
possible biases, other than model selection uncertainty, which we have
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ignored in this work.
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Chapter 3

Multiplex network
reconstruction using
network embeddings on
the international exchange
multiplex

3.1 Introduction

One of the recurrent issues in network analysis is the missing data prob-
lem, i.e. the fact that portions of the network may not be observable. The
most common causes of this problem are two: first, being network data
the result of a measurement or sampling procedure, there is the possibil-
ity of inaccuracy in the measurements or bias in the sampling procedure
(Peixoto, 2018c); second privacy issues may force the researcher to use
censored or only partially available data (Anand et al., 2018).

More precisely, when we observe a missing link between two nodes
(a 0 in the adjacency matrix), we can formulate two possible hypotheses:
either we are observing the relation between the two nodes and we are
measuring its absence (there is no edge between the nodes or there is an
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edge with weight 0) or we are not observing the interaction and hence
the measurement is missing, there could be a possible link between the
two nodes but we cannot know if it exists or not (Marchette and Priebe,
2008; Guimera and Sales-Pardo, 2009).

Moreover when censored data is used a second type of issue may
emerge related to the missing nodes problem: our network may contain
more nodes than the ones we have sampled, hence we have only partial
information and we need to reconstruct the rest. Now we have missing
rows and columns in our adjacency matrix but we cannot know if they
are empty because they do not actually exist or because they have not
been sampled (Kim and Leskovec, 2011).

Different approaches have been proposed to solve these issues. For
link prediction a common distinction is between methods which are based
on measures of similarity of nodes and maximum likelihood methods
(Lü and Zhou, 2011).

The first methods rely on the structural properties of the nodes inside
the network to obtain a score of their respective similarity, then use the
score as a proxy of the probability that a link exists among the nodes. Ac-
cording to the scope to which each measure refer to they can be classified
as local (referring to the neighbourhood of the node), global (referring to
the whole graph) or quasi-local. Three of the most common local similar-
ity measures are the common neighbor score (M. E. J. Newman, 2001) the
Jaccard coefficient and the Adamic-Adar score (Adamic and Adar, 2003).

The maximum likelihood based methods instead obtain the probabil-
ity of a link between two nodes as the solution of a maximum likelihood
problem where some information on the network is used as constraint
and the most likely graph is the solution of the constrained maximiza-
tion. These methods have roots in generative network models such as the
classical and weighted configuration models (Park and M. E. J. Newman,
2004; Serrano and Boguñá, 2005) and the binary and weighted stochas-
tic block models (Holland, Laskey, and Leinhardt, 1983; Aicher, Jacobs,
and Clauset, 2015), and have demonstrated to be very effective for link
prediction (Squartini and Garlaschelli, 2011; Clauset, Moore, and M. E. J.
Newman, 2008). However they are computational intensive (hence less
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scalable) and require additional information to act as constraint (usually
the degree or strength sequences).

Finally maximum likelihood methods are also useful for network re-
construction (Squartini, Mastrandrea, and Garlaschelli, 2015; Mastran-
drea et al., 2014; Peixoto, 2018c) especially for economics and financial
networks (Almog, Squartini, and Garlaschelli, 2015; Squartini, Caldarelli,
et al., 2018; Anand et al., 2018).

A completely different approach is the one of network embeddings.
In this case the network data is projected on a lower dimensional space
(the embedding) which is optimized in order to obtain the best fit on a
proximity measure of the nodes (Hamilton, Ying, and Leskovec, 2018).
The outcome is a representation of the nodes in the graph which has less
complexity but preserves the main information on the structural proper-
ties of the nodes in the network. This allows to use the embeddings for
link prediction (via the Hadamard product of the embeddings, usually)
but also for a larger set of tasks such as node classification and clustering.

Another advantage of network embeddings is that we already have
several multilayer methods developed for link prediction on multidi-
mensional graphs and hence we are able to run an horse race to deter-
mine which is the best for our use case. Moreover multilayer methods
for link prediction have a natural advantage: while with single layer
methods only the information of the single network is available, by using
different sources of information (the different layers of the network) mul-
tilayer methods are able to measure the relation between two nodes on
multiple dimensions allowing the prediction to be refined. For instance
if we have no information about patent citations between two countries,
in single layer methods we must rely only on similar patterns of citations
among the nodes on the layer, whereas with multilayer methods we can
infer a link between the two countries by their trade relation or by the
patterns of their paper citation behaviour, exploiting up to other 17 types
of relations (when available). By doing so this approach is similar to
other "enhanced" method of prediction where metadata about the nodes
is used to predict their behaviour, however in our case we are using in-
formation about edges which is different for each possible nodes dyad
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and hence has a greater level of detail.
In this Chapter we will use the methodology of network embeddings

to predict the existence of missing links in the 2003 cross section of our
data. We will employ both single layer and multilayer network embed-
dings, first testing their performance on our data and then using the best
one to predict missing links. Then we will assign a weight to each pre-
dicted link with a weighted stochastic block model and measure multi-
layer centralities comparing the reconstructed multilayer network with
the constrained one used in Chapter 1.

In our case the problem of missing nodes is irrelevant: since our ref-
erence units are countries, we do know that they exist and it is just a
matter of their interactions being correctly measured in the layers of our
multiplex.

As we have shown in Chapter 1 our dataset does not account for
all world countries and, more importantly, relation among countries are
measured at different scale in different layers. As a consequence to obtain
a subset of common nodes among all layers we were forced to employ a
reduced country set of 112 nodes instead of the bigger possible set of 213
countries.

In building the country subset, to account for the difference between
measured missing data and unmeasured and (probably) missing data we
have exploited the time dimension of our dataset and checked if edges
linking to and from a certain country were measured before and after the
cross section we were dealing with (in an interval of maximum 20 years
if the data was available). Hence if in this interval any measurement was
registered, a zero in the adjacency matrix represented a real (observed)
absence of relation, on the contrary if no measurement was found that
zero counted as missing data and hence the node was discarded from
the common set.

Since in Chapter 1 our main goal was to ensure compatibility among
layers we have used a restricted dataset, however now we would like
to attempt a partial reconstruction of the missing links in order to use
the full extent of our layers to calculate centrality measures. The main
contribution of this Chapter is the prediction of the missing links in our
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multiplex with a state of the art multilayer embedding algorithm and the
use of these links (after weight assignment) to check the effect of missing
data on our previous analyses.

The rest of the Chapter is organized as follows: in Section 3.2 we
briefly review the related literature on link prediction with network em-
beddings, in Section 3.3 we describe the methodology we have used and
finally in Section 3.4 we show our findings. Section 3.5 is left for conclud-
ing remarks.

3.2 Related works

3.2.1 Network embeddings

In what follows we will use the categorization outlined in Hamilton,
Ying, and Leskovec, 2018 (and their notation) to introduce the basic con-
cepts of network embeddings. Other similar overviews can be found in
Cai, Zheng, and Chang (2017), Goyal and Ferrara (2018) and D. Zhang
et al. (2018). In the next subsection we will briefly describe the methods
we will test.

Network embeddings are methods developed in the field of repre-
sentation learning, which focus on summarizing the topological features
of the nodes of a network in a smaller vector space in order to provide
feature inputs for machine learning tasks. This solves the problem of in-
cluding network information as input for machine learning algorithms
without relying on summary statistics but instead with a data-driven ap-
proach: node embeddings are learned from the specific structure of the
graph and are able to capture more nuanced characteristics.

Obtaining the embedding of a node corresponds to project the node
in a latent space with less dimensions where the more geometrically close
are the projections the more they should reflect a stronger relation be-
tween the nodes in the original graph. Since network relations may have
different degree of complexity, different types of proximity have been
defined and algorithms may be ranked according to their ability to pre-
serve them (Tang et al., 2015). The main types of proximity are of the
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first, second and high order. First-order proximity describes the rela-
tion among vertices via their the direct neighborhood: if two edges are
connected then their proximity of first order is the weight of their edge,
otherwise is 0. Second-order proximity expands this relation to two-step
paths: it is the number of common neighbors shared by the two vertices.
Finally higher-order proximity captures the similarity of indirectly con-
nected nodes embedded in a similar set of of neighbors and it can be
measured by the number of path of length greater than 2 connecting the
nodes (Cao, Lu, and Xu, 2015).

To project nodes in the embedding space the first step is to use an
encoder function, fENC , which maps V , the set of nodes of our graph G,
into a lower-dimensional space Rd composed of vectors z. The second
step is to devise a decoder function which maps the obtained encoding
to specific graph features at higher level, hence allowing us to recover
the richness of the graph topology from a lower dimensional vectors.

The most common decoder function is the pairwise decoder which
maps two node embeddings to sG , a measure of proximity of the nodes
in the graph: fDEC : Rd × Rd → R+.

By applying the decoder to the encoded nodes vectors we obtain an
approximation of the proximity measure of the two original nodes:

fDEC(zi, zj) = fDEC (fENC(vi), fENC(vj)) ≈ sG(vi, vj) (3.1)

The aim of the network embedding methodology is to minimize the
error in approximating the sG measure, hence the objective of most ap-
proaches is to minimize the empirical loss L given a random selection of
training nodes pairs D by choosing the appropriate set of parameters for
the encoding function ΘfENC

:

min
ΘfENC

L =
∑

(vi,vj)∈D

`(fDEC(zi, zj), sG(vi, vj)) (3.2)

where ` is a a suitable loss function: ` : R× R→ R.
The minimization problem is then usually solved by optimizing the

parameters via stochastic gradient descent.
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Each of the 4 element composing the embedding methodology (en-
coder function, decoder function, proximity measure, loss function) can
characterize different approaches. In this work we will focus only on a
subset of these approaches, the random walk based, which share these
common features: the use of direct encoding of nodes, inner product
decoder, random walk based proximity functions and entropy loss func-
tion.

3.2.2 Random walk based embeddings

Random walk based methods use direct encoding of nodes. The di-
rect encoding function is the most common encoder in node embedding
methods, it consists in just an embedding lookup: zi, the encoding of
node vi, is simply the corresponding column in the embedding matrix
Z ∈ Rd×V :

fENC(vi) = Zvi (3.3)

Then the encoding parameters to be optimized, ΘfENC
, correspond

to the embedding matrix itself.
Next, to decode the embedded nodes the random walk based meth-

ods start by sampling numerous random-walks at fixed length T ∈ {2, . . . , 10}
from each node vi obtaining the probability pG,T (vj |vi) of visiting node j
on a random path of length T starting from i. Then the embeddings are
optimized in a manner that the dot product among them is proportional
to pG,T (vj |vi).

Hence the decoder for random walks methods reads as:

fDEC(zi, zj) ,
ezi>zj

∑
vk∈V e

zi>zk
≈ pG,T (vj |vi) (3.4)

To conclude the last feature of these methods is type of loss function
they use in the minimization problem, the cross-entropy loss:

min
ΘfENC

L =
∑

(vi,vj)∈D

− log(fDEC(zi, zj)) (3.5)

Here D, the training set for each node vi, is extracted from the distribu-
tion of random walks starting from vi.

84



The novelty of the random walk approach is that the graph proxim-
ity measure is stochastic and asymmetric, allowing a greater flexibility
which has led to improvements in the performance of these embeddings
with respect to other more deterministic proximity measures.In particu-
lar random walk based methods are known to preserve proximities up
to the higher order exactly because they optimize their encodings by ex-
tracting paths of different length originating from the same node.

These achievements stem from the intuition that the word embed-
ding methods which proved to be effective in natural language process-
ing and in particular word2vec (Mikolov, Yih, and Zweig, 2013; Mikolov,
Sutskever, et al., 2013), could be applied to network data. As sentences
are considered similar when they share similar context words, so path
sequences are corresponding if they link together nodes with the same
neighbourood. The first application of this intuition has been applying
the skip-gram algorithm of Word2Vec on networks in Perozzi, Al-Rfou,
and Skiena (2014) followed by Grover and Leskovec (2016) where a bi-
ased variation of the algorithm has been proposed (more details in Sec-
tion 3.2.3).

Following the growing interest in multilayer networks several multi-
layer embedding methods have been developed, including random walk
based ones. These methods can be distinguished by the type of embed-
dings they try to obtain: one common node embedding which summa-
rizes the collapsed information from all the layers or a different node
embeddings for each layer which however are optimized including in-
formation from all the others. We have used one of the first type (PMNE,
(Liu et al., 2017)) and two of the second type in this work (Ohmnet, (Zit-
nik and Leskovec, 2017), MNE, (H. Zhang et al., 2018)) obtaining results
which are comparable or better than single layer embeddings. In the next
subsection we will add some details to describe them before showing the
type of experiments we have run.
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3.2.3 An overview of our embedding methods

Single layer network embeddings

• DeepWalk (Perozzi, Al-Rfou, and Skiena, 2014). The first random
walk based method. It was characterize by the use of unbiased
walks over the graph.

• Node2Vec (Grover and Leskovec, 2016). With respect of DeepWalk,
Node2Vec has a major and a minor difference.

The major difference is the introduction of two hyperparameters
regulating the bias of the random walk: q tuning the likelihood of
the random walk visiting the 1-step neighborhood of the node and
p controlling the probability of the path to revisit a previous node.
These two parameters allow the algorithm to simulate walks simi-
lar to either bread-first or depth-first searches hence reconstructing
features of nodes which are more related the role of the node in its
immediate neighborhood (BFS) or to the reachability of the node
from longer path distances (DFS).

The second minor difference is the introduction of negative sam-
pling to optimize the approximation of Equation 3.5, which is an-
other improvement borrowed from Word2Vec.

Multilayer network embeddings

• PMNE (Liu et al., 2017). The Principled Multilayer Network Em-
bedding (PMNE) is a multilayer embedding method which pro-
duces a single embedding from the whole multilayer. Three dif-
ferent types of aggregate embeddings are available: network ag-
gregation, where Node2Vec is calculated on the collapsed network;
embedding aggregation, where Node2Vec is run on each layer and
then the resulting embedding are joined together; co-analysis ag-
gregation. This last method introduces a new hyperparameter r
which manages the "hopping" of random walks across layers: with
r → 0 the algorithm will favour inter-layer hops while with r → 1

the random walk will remain on the same layer more often. After
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the random walks are collected Node2Vec is run as in the previous
methods.

• Ohmnet (Zitnik and Leskovec, 2017) The Ohmnet method has been
developed for predicting the function of proteins in a multilayer
network of cellular tissues. Since cellular tissues have a natural hi-
erarchy Ohmnet employs this external feature to impose a further
constraint on the embedding: while on one hand it learns feature
at each layer level via Node2Vec, at global level proteins which be-
long to layers closer in the hierarchy are assumed to behave sim-
ilarly and hence have similar embeddings. This is concretely im-
plemented by adding a regularization on the loss function which
pushes children nodes towards the embeddings representation of
their parents, recursively.

• MNE (H. Zhang et al., 2018) The scalable multilayer network em-
bedding (MNE) is a multilayer embedding method which uses a
methodology similar to the one of other random walk methods to
produce for each node n ∈ N in layer i ∈ M the following specific
embedding:

vin = bn + wi ·Xi>uin (3.6)

Here bn is a common embedding for the node which is shared
among all the layers of the network as a channel of influence among
them. On the other hand the embedding uin represents the embed-
ding of the node from the specific features of the single layer net-
work. Then the transformation matrix Xi provides the coordina-
tion between the common and specific embedding via an influence
parameter wi for the single layer i.

Other methods

As baselines and references for other types of methodology we have also
included the following non random walk based prediction methods:

• LINE (Tang et al., 2015) The Large-scale Information Network Em-
beddings (LINE) method obtains embeddings by using two objec-
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tive functions which optimize proximity of the first and second
order on a direct encoding of nodes. Then they use a Kullback-
Liebler divergence as loss function between the probability distri-
bution obtained by the embeddings and the one obtained by the
adjacency matrix.

• Common Neighbor (M. E. J. Newman, 2001) The Common Neigh-
bor (CN) is a network structure based measure which use as proxy
of the probability of a link between two nodes the number of com-
mon neighbours between the two.

• Jaccard Coefficient The Jaccard Coefficient (JC) is a rescaled ver-
sion of CN where common neighbours are rescaled by the total
number of neighbours of the node.

• Adamic-Adar (Adamic and Adar, 2003)The Adamic-Adar (AA) is
a network structure measure which similarly to CN and JC focus
on common neighbors between nodes, however, by giving more
importance to the nodes with fewer neighbors, it achieves greater
accuracy than the others.

3.3 Methods

3.3.1 Prediction test

As first step in our analysis we have ran an horse race between all the
link prediction methods on the cross section of 2003 of our international
layer multiplex. We have used the same dataset of Chapter 1, with a set
of 112 common nodes. Each algorithm has been trained on a portion of
the dataset and evaluated on a prediction task on the remaining unused
share. We have used a random 4-to-1 train/test split and a five-fold cross
validation procedure.

The PMNE and network-structure methods have been trained on the
full set of training edges for all the layers and the two LINE embeddings
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(first order and second order) have been concatenated. 1.
The size of the embeddings has been fixed to be 200 for all methods,

with 10 step window for the random walks and negative sampling equal
to 5. For Node2Vec the hyperparameters have been fixed at p = 2 and
q = 0.5.

Particular attention has been devoted to the Ohmnet method since a
measure of hierarchy among the layers is required in order to obtain the
embeddings. Given that both multilayer centrality algorithms we have
employed in Chapter 1 produce a measure of the influence of each layer
in the multiplex we have used the unnormalized layer scores from the
two algorithms to produce a tree hierarchy based on the distance among
the scores. The three hierarchies (two for the two possible configurations
of the MultiRank and one for MD-HITS) are shown in Figure 3.1.

3.3.2 Link prediction

We have used the best model selected by the horse race, MNE, to obtain
predictions for missing links in our full dataset. The procedure we have
followed is highlighted in Figure 3.2.

As first step we have selected five "full" layers, i.e. layers which con-
tain the maximum common set of nodes. Their final number of nodes
is 2082 and they are: free trade agreement (fta_wto), the value of ex-
port (expv), the value of exported services (serv_exp), foreign direct
investment (FDI) and investment (invest).

The remaining layers have the been ordered increasingly by the num-
ber of missing nodes from their country set with respect to the common
country set among the five "full" layers, so that the first layer is the one
which has fewer nodes missing with respect to the five reference layers
and the last one is the one with more nodes missing. 3

1Notice that by doing so we are replicating the same analysis of H. Zhang et al. (2018)
using a new dataset.

2Selecting the full sample of country nodes, with dimension equal to 213 as we said in
Section 3.1, would have made necessary to predict edges on the initial layers too, making
the prediction procedure less robust

3Note: here we are using the periphrasis "missing nodes" to say that some edges were
not measured in a certain layer. Since the set of nodes of a layer has been defined by the
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(c) MD-HITS layer centrality.

Figure 3.1: Hierarchies of layers used with Ohmnet to obtain embeddings.
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Figure 3.2: Algorithm for link prediction
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We have used the five full layers as starting training set for MNE us-
ing all their nodes. Then starting from the most similar layer (by number
of nodes) we have updated the embeddings by training on the new layer
data with less available nodes. After the training we have predicted the
missing links from the newly added layer and finally added the newly
predicted links to training set of the following step. Hence starting from
the second step (since at first there are no predicted links) the training set
consists of the union of the previously predicted edges and the new layer
edges and the used nodes are always the maximum available from start.

At each step we have run a prediction test on the layer data and used
the best prediction from the algorithm to fix a threshold in order to accept
the predicted links.

This procedures ensures that at each step the algorithm has been trained
on the more complete data available from the previous iterations, result-
ing in more reliable predictions. In fact even if the layer data for the cur-
rent step is very noisy or the predictions are not good this is mitigated
by the compound effect of the previous "good" steps.

3.3.3 Weight assignment

The newly predicted links are only binary since the task we have tested
the algorithms on is only a binary classifier. To obtain a weight for the
new links we have employed a different strategy.

Since, as we will show in Section 3.4, the number of predicted links is
always a small share of the original size of the layer, we can assume the
network macro structure would not be altered by their addition.

Hence if we could obtain a reliable estimate of the latent block struc-
ture of the network before adding the links, we could assign a weight on
them by using the inferred structure and the previously existing nodes
to which the newly added links are pointing to.

In other words the predicted links will have a weight corresponding
to the average weight of the block of nodes to which they have been

edges measured in that layer (in an interval of 20 years), saying that a node is missing
means to say that edges have not been measured, hence actually the links are missing and
as a consequence the nodes have been dropped from the dataset.
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Figure 3.3: Algorithm for weight assignment

93



layer distribution nested degree
corrected

value real-normal 3

totIC real-exponential 3

BIS_flow_claims real-normal 3 3

aid real-exponential 3

FDI_Greenfield real-normal
cow_alliances discrete-binomial
pat_cit_inv real-exponential
mobility real-exponential 3

out_tour real-normal
migration_stock real-normal
citation real-exponential
migration_flow real-exponential
collaboration real-normal 3

arms real-exponential

Table 3.1: Characteristic of WSBM models obtained via model selection for
each of the layers

attached, as if they always belonged to it. More precisely we need also to
allow for the possibility of the new links to be casted as inter-block links
(links between two different blocks) hence their weight would be the
weighted average of the weights inside the block and of all the weights
pointing to it from other blocks, averaged by their respective frequencies.

Since weight is a fundamental feature of the structure of the network
we want to estimate we are going to use weighted stochastic block mod-
els (WSBM) (Peixoto, 2014; Peixoto, 2018b). These methods try to obtain
a reliable estimate of the block structure of a network by maximizing
the maximum likelihood of the observed data via the choice of different
partitions of the network under the hypothesis of a prior distribution of
the edges ( a generative model). Moreover by including a prior on the
distribution of weights they can also model weighted networks (Aicher,
Jacobs, and Clauset, 2015). Finally since all these method are Bayesian a
model averaging approach may be employed to select the best partition
among all the one obtainable via sampling on the distribution of the pos-
terior probability (in a similar way of what we have shown in Chapter 2)
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(Peixoto, 2018a).
Due to their ability to generalize the structure of a network, SBMs

can be employed also for link and weight prediction with significant re-
sults (Clauset, Moore, and M. E. J. Newman, 2008; Aicher, Jacobs, and
Clauset, 2015; Peixoto, 2018c), however since the focus of this Chapter
is on network embeddings we will employ them only as an assignment
mechanism for the predicted edges weight.

The procedure to assign weights that we have used is depicted in
Figure 3.3 and works as follows: we fit a WSBM on each of the layer
of the dataset with a weight prior chosen appropriately for each layer
among exponential and lognormal distributions for continuous data and
Bernoulli distribution for discrete data. After this we have ran 4 different
WSBMs to test the best fit of simple and nested block models, with or
without degree correction. We evaluate the model performances accord-
ing to the minimum description length principle, according to which the
best model is the one that uses the less information to describe the avail-
able data. To select one specific class of models we approximated the
posterior entropy by the Bethe measure (Mézard and Montanari, 2009)
and calculated the model evidence after 200000 sampling from the poste-
rior distribution.4 The results of the model choice procedure are reported
in Table 3.1.

Finally after the best model has been chosen we have used the result-
ing block structure to obtain the average edge weight inside each block
and between them and used these averages to assign weights to the pre-
dicted links.

3.4 Results

3.4.1 Comparison of the performance of the different em-
beddings methods

The results of our first step are shown in Figure 3.4 and 3.5.

4Comparing the results with others obtained with an alternative measure of entropy, the
mean field approximation, we have found both measures agreeing on the majority of the
model class selections except for a pair of cases.
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In the first one we are showing the area under the ROC curve ob-
tained in the prediction task described in Section 3.3.1 for each layer and
for each algorithm. The PMNE and the network structure methods are
shown as constant since they train on the whole set of edges of the multi-
plex. It is immediate to observe two things: first for all the methods there
are layers which are more difficult to embed, hence where all the embed-
ding methods fail to predict accurately links. These are in particular:
aid, FDI, mobility and export of services. The second observation
is the stark difference in the performance of MNE with respect to all the
other methods: in Table 3.2 we have reported also the averages and stan-
dard deviation of each of the methods across all layers and it is clear to
see how better is MNE. The main explanation for this is the way in which
the MNE embedding method integrates information about all the layers,
i.e. the common embeddings bn of Equation 3.6. This allows the method
to generalize information about all the layers and use it to characterize
the nodes on a variety of levels, effectively exploiting all the dimensions
of our data.

Our second test is shown in Figure 3.5. Here we have used the embed-
dings to reconstruct the full network and we have calculated the average
difference between several structural network measures in the predicted
and in the actual networks. In the plot we are showing the averages of all
the methods for all the layers across all the 5 fold validations. To allow
better comparisons we have only plotted the median value for MNE and
we have also excluded the Ohmnet results from the average of the other
methods since they were clearly outliers as it is shown from the position
of their median value (the black crosses in the plot).

Again we can see the same patterns commented above. The MNE
performance is among the best but there is a wide variability in the per-
formance of the other methods: while their median error is usually close
to the one of MNE we can see that the minimum average error (the lower
"whisker") is often better than MNE, while their maximum error is sev-
eral times worse than MNE. To better observe and explain this variability,
for each method we have reported the mean and standard deviation of
the errors in Table 3.3.
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We can see that the overall performance visualized in the boxplots
of Figure 3.5 is composed of two trends: the first one is the worse per-
formance of the single layer methods, which have all higher mean errors
and higher variability; the second trend instead is the better performance
of the aggregated methods (structural scores and PMNE embedding)
which are calculated on the full network and in one case, PMNE, make
less errors than MNE. However, as in the prediction test, these methods
benefit from making a single estimate for all the multiplex, hence avoid-
ing to make big errors on the most difficult layers and scoring on average
better. The downside of this is that we do not have a real prediction for
each single layer but an aggregate prediction for all the multiplex which
is way less useful once we want to find missing links in separate layers.

mean std

node2vec 0.573 0.0143
LINE 0.544 0.0121
Deepwalk 0.573 0.0131
aa_score 0.687 0.00595
jacc_score 0.668 0.00357
cc_score 0.686 0.00595

(a) Single layer methods

mean std

PMNE_1 0.639 0.0097
PMNE_3 0.685 0.00764
PMNE_2 0.676 0.00444
ohmnet_mdhits 0.542 0.12
ohmnet_mr_a0 0.541 0.1186
ohmnet_mr_a1 0.546 0.1174
MNE 0.791 0.0238

(b) Multilayer methods

Table 3.2: Mean and standard deviation of the area under the ROC curve
scores for each method, over all layers and iterations.

3.4.2 Missing links prediction using MNE

Given the good performance of the MNE method we have chosen it to
obtain a prediction of the missing links on our multiplex. Using the
methodology explained in Section 3.3.2 we have obtained the results
shown in Table 3.5. Here we show how many links have been predicted
in each layer by the algorithm and how many of them we have accepted:
since the accuracy of the algorithm is highly unstable with respect to the
layer in which it is applied we are preserving only a share of the pre-
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density diameter ASPL clustering avg. degree SCC

Deepwalk 0.0506 (0.0559) 0.037 (0.0671) 0.0312 (0.0451) 0.0408 (0.064) 0.0438 (0.0583) 0.038 (0.0545)
node2vec 0.0488 (0.0547) 0.0473 (0.0541) 0.0397 (0.049) 0.043 (0.0654) 0.0423 (0.0575) 0.0377 (0.0558)
LINE 0.0439 (0.0536) 0.0207 (0.0374) 0.0229 (0.0255) 0.0277 (0.0319) 0.0426 (0.0543) 0.0462 (0.0809)
aa_score 0.0551 (0.0) 0.0 (0.0) 0.0287 (0.0) 0.0243 (0.0) 0.0551 (0.0) 0.0 (0.0)
cc_score 0.0552 (0.0) 0.0 (0.0) 0.0287 (0.0) 0.0244 (0.0) 0.0552 (0.0) 0.0 (0.0)
jacc_score 0.0519 (0.0) 0.0 (0.0) 0.027 (0.0) 0.024 (0.0) 0.0519 (0.0) 0.0 (0.0)
PMNE_1 0.0075 (0.0) 0.0 (0.0) 0.0037 (0.0) 0.0034 (0.0) 0.0075 (0.0) 0.0 (0.0)
PMNE_2 0.0007 (0.0) 0.0 (0.0) 0.0001 (0.0) 0.0002 (0.0) 0.0007 (0.0) 0.0 (0.0)
PMNE_3 0.0116 (0.0) 0.0 (0.0) 0.0059 (0.0) 0.0077 (0.0) 0.0116 (0.0) 0.0 (0.0)
ohmnet_mr_a0 0.1929 (0.2921) 0.076 (0.0647) 0.0744 (0.0942) 0.1746 (0.2874) 0.1753 (0.2533) 7.01 (19.67)
ohmnet_mr_a1 0.1866 (0.2892) 0.0719 (0.0814) 0.0649 (0.072) 0.1681 (0.2862) 0.1715 (0.2514) 6.808 (19.69)
ohmnet_mdhits 0.1973 (0.3002) 0.0936 (0.084) 0.0676 (0.0596) 0.1813 (0.2934) 0.1812 (0.2576) 7.263 (19.89)
MNE 0.0294 (0.0477) 0.0 (0.0) 0.0107 (0.0186) 0.0127 (0.0233) 0.0106 (0.0137) 0.0284 (0.0425)

Table 3.3: Mean and standard deviation (in parenthesis) of the average er-
ror between structural measures calculated on the actual graph and on the
reconstructed ones using all embedding methods.

dicted edges proportional to that accuracy. Finally in the last column we
are showing which percentage of the original layer the kept edges repre-
sent.

As comparison we have carried on the same task also with another
of the embeddings methods, the Jaccard score, which we show in Table
3.4. We can see that the Jaccard score is increasingly generous with its
predictions with links predicted in all the layers and a very high share of
the original layers predicted in certain cases. On the contrary the MNE
algorithm is very conservative: it does not predict any link in the collab-
oration and in the infrastructure networks and for many others predict
very few edges. Moreover for the layers which have shown to be difficult
to predict, aid for instance, the MNE seems to predict more edges than
in the other layers, a sign maybe of a difficulty in embedding their infor-
mation. Accordingly also the accuracy of the algorithm is lower on these
networks, hence we have accepted a smaller share of predicted links. As
we have already observed, the share of newly predicted edges is very
small in each layer, allowing us to use the WSBM methodology under
the assumption that the new information will not alter the original block
structure of the network.
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predicted kept share kept

migration_stock 16 13 0.13 %
citation 352 246 1.04 %
collaboration 411 273 3.14 %
mobility 586 348 6.31 %
out_tour 203 157 1.62 %
totIC 32 31 4.93 %
BIS_flow_claims 71 60 5.50 %
migration_flow 819 658 6.53 %
value 273 231 36.32 %
aid 5992 4422 179.17 %
pat_cit_inv 1985 1486 58.41 %
FDI_Greenfield 707 537 32.80 %
arms 2310 2017 766.92 %
cow_alliances 9634 9502 394.76 %

Table 3.4: Missing link prediction using Jaccard score method. In percent-
ages it is shown which proportion of the old network is covered by the new
links in the layer.

predicted kept share_new

migration_stock 170 125 1.30%
citation 558 430 1.82%
collaboration 0 0 0.00%
mobility 228 123 2.23%
out_tour 362 261 2.70%
totIC 0 0 0.00%
BIS_flow_claims 16 12 1.10%
migration_flow 1344 936 9.29%
value 2 1 0.16%
aid 9280 1714 69.45%
pat_cit_inv 220 179 7.04%
FDI_Greenfield 110 84 5.13%
arms 184 137 52.09%
cow_alliances 82 76 3.16%

Table 3.5: Missing link prediction using MNE multilayer method. In per-
centages it is shown which proportion of the old network is covered by the
new links in the layer.
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3.4.3 Multirank centrality on the full multiplex

Having obtained the binary and weighted information on the new links
via the MNE and the WSBM methods we have added the predicted links
to our multiplex and repeated the multirank analysis of Chapter 1. How-
ever the great advantage of having an estimate of the missing links in our
network is that we can safely assume (if the predictions are reliable) that
all the 0s in the adjacency matrices are really observed so that we do
not need to restrict ourselves to a common subset of all the nodes. As a
consequence the new analysis has been run on the full multiplex of 208
nodes and to further inspect the effect of the new sample size without
other possible confounding factors, we have also avoided filtering the
graphs. 5

Not surprisingly the results are not affected neither by the addition
of the predicted missing links, which was predictable given their small
size, nor by the inclusion of the previously missing nodes.

As we can see from Figure 3.6 the correlation between the scores of
the Multirank calculated on the reduced (N = 112) and on the extended
node set (N = 208) are really similar both at node and at layer level and
with a parameter equal to 0 and 1.

Similarly the set of the top 20 countries by multirank centrality does
not see huge shifts, with the notable exception that with the extended
dataset finally China is included in the sample (and with a very high
centrality).

Apart from that, it seems that our initial choice of nodes was suffi-
cient for capturing the essential relationship among the countries of our
international multiplex. With the prediction of the missing links we now
have a more stable foundation for the use of a reduced set of countries
even in absence of a portion of the data.

5A version of the reconstructed dataset is available at: https://github.com/
gibbbone/international_multiplex_network
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Figure 3.6: Comparison of the multirank with full and restricted set of
nodes.

full (a=1) full (a=0) reduced (a=1) reduced (a=0)

USA USA USA USA
DEU GBR DEU GBR
GBR DEU GBR DEU
FRA FRA FRA FRA
JPN CHN ITA ITA
CHN JPN CAN JPN
ITA ITA JPN ESP
CAN ESP BEL CAN
ESP CAN ESP NLD
BEL NLD NLD BEL
NLD BEL MEX RUS
MEX HKG RUS MEX
KOR RUS TUR GRC
HKG KOR IND TUR
SGP MEX POL BRA
RUS IRL AUS PRT
AUS SGP PRT AUS
IRL AUS GRC IND
IND GRC BRA POL
SWE IND DNK DNK

Table 3.6: Top 20 countries by multirank calculated on the full and reduced
dataset with parameter a equal to 0 and 1.
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3.5 Conclusions

In this work we have employed different random-walk based network
embeddings to obtain a reliable estimate of the missing links in our dataset.
We have tested their performance on our data and elected as candidate
for the prediction the Scalable Multiplex Network Embedding of H. Zhang
et al. (2018). We have then employed weighted stochastic block-models
to assign a weight to our predicted links and reanalyzed the Multirank
centrality with an extended and more complete set of nodes. We have
found that very little changes after these steps in the final results of the
Multirank. However this allows us to have a measure of the (probable)
missing information in our data and how this could impact our analy-
ses: now we have more evidence that a restricted set of highly influential
nodes can allow a sufficient analysis without the need of the full sample
of the observations.
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Appendix A

Appendix to Chapter 1

A.1 Data selection

Reporting agencies collect data on a fixed set of countries in different
years. Hence an empty report would not imply the absence of the coun-
try from the dataset but for a given year only. To translate in network
theory terms: there may be some nodes in a network whose edge weights
with respect to all other nodes are 0 at a certain time ti, but are still
present in the network with positive edge weights at other tj with j 6= i.
These nodes belong to the network and we call them isolated nodes at
time ti. On the other hand, missing nodes don’t have link to other nodes
at any t.

To tell if the absence of a certain node from a specific year means its
absence in the overall layer we needed to define when a node is part
of our dataset. To do that we have made the following assumption: if a
node is present as origin or destination at least once in the whole reported
set of years for a certain layer, that node has to be considered as existing
in the dataset.1 To calculate the set of existing nodes in each layer we
have used the whole span of its observations in our dataset, hence not
only years 2003 and 2010.

Finally, to get a constant set of nodes across all the multiplex, the ex-

1A more strict assumption would be to use only nodes existing at least once as sources.
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isting nodes of each layer must match across all the others. The result of
this process is a set of 112 nodes common to all our layers. By referring
to the nodes column in Table 1.1 we can get a good approximation of this
process: we define the set of nodes for each layer as the union of the exist-
ing nodes in the years 2003 and 2010. Hence their size corresponds to the
maximum number between t0 and t1 in Table 1.1 and ranges from 211 in
the free trade agreement layer to 124 in the alliances layer. This leaves us
with 19 different sets of nodes, one for each layer, partially overlapping.
To obtain a common set of countries for the whole multiplex we calculate
the subset of all the individual layers’ node sets. Hence our final set is a
group of 119 countries and the difference between 124 and 119 is given
by five countries belonging only to the alliances layer and not to the rest
of the multiplex, which we have removed.

It must be noted that this process leads automatically to select the
smallest set of common countries across all layers. To avoid reducing this
number too much we had to select a minimum threshold of countries to
include in the multiplex with the consequence of eliminating some layers
which would have had observations in the required years but with a
reduced number of nodes (Figure A.7 in the Appendix shows some of
the layers we have eliminated with this last criterion).

A.2 Data preprocessing

Our final result is a multiplex of 19 layers with 112 nodes in each of
them, observed at two “rugged” time snapshots, i.e. with not exactly
the same starting and ending year for all layers. Balancing our two cross
sections on the same selection of nodes and layers ensures that we can
make meaningful comparisons over time, but some further steps are re-
quired before moving on to the actual analysis.

First we have preprocessed our data to remove inconsistent obser-
vations. While in principle network weights do not have strict require-
ments to satisfy, in our case we needed to impose some restrictions: since
our network layers are mostly directed, negative weights have no mean-
ingful interpretation. They should instead be rewritten as positive edges
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in the reverse direction: if country A receives a negative flow from coun-
try B, it actually means that country B is the source of a positive flow
towards A. Hence we have reversed negative flows when possible, i.e
when the whole layer showed a consistent pattern of reversed flows and
there were no duplicates after reversion. If instead most negative weights
seemed randomly distributed or reverse flows were already recorded in
the dataset we have dismissed the negative values as computational er-
rors. 2

Another type of requirements we imposed is to have edge weights
not smaller than one, in order to avoid problems with eventual filtering
operations. As one can see from the minimum weight column in Table
1.1 several layers have fractional values. Most of the time this was due
to the unit of scale employed, hence it has been sufficient to rescale them
with the right multiplier. This is the case for FDI, FDI_Greenfield,
BIS_flow_claims, aid, value, serv_exp and totIC layers.

The other cases of fractional weights are the results of citations of
multi-authored works which are attributed to certain countries only with
the fraction related to a specific author. To deal with this we have added
by default a single citation to all the fractional citations. 3.

The last restriction we have imposed on our data regards the way
we intend to interpret our results. Since the basic stylized fact we want
to recover from the MultiRank and MD-HITS algorithms is the division
of countries in two groups, developed and underdeveloped countries
(a north-south view of the word), we need our layers to be oriented in
the right way: the concentration of flows toward some countries must
reflect their centrality as developed nodes in the network. To achieve this
we have inverted the international aid layer, as we said before, and the
migration stock one which, by construction, tells us how many persons
from the source country migrated to the destination one. On the contrary
in a more north-centric view of the world we will need to know how
many migrants the source country hosted from the destination one, since

2This issue affected a small number of layers with marginal effects. Only in one case,
the BIS layer, the share of negative values was substantial (around 15%)

3Another option would have been to rescale all the citations by the minimum, but this
would have made the whole distribution of weights explode.
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migration flows usually points from south countries to north ones.

A.3 Choice of the MultiRank parameters

Results of the MultiRank algorithm with respect to changes in each of the
three parameters a, s, γ (for nodes only the top 18 elements are shown)
are reported in Figure A.13 (a) and A.13 (b). We can see that choosing a
different combination of parameters alters the final ranking of nodes and
layers and that some combinations experience more abrupt changes than
others. While for the MD-HITS we don’t need to provide any parameters
in order to obtain the final rankings, for the MultiRank we need to choose
how to specify them. In what follows we will show how we choose our
two configurations.

The process which led us to the choice of the final configurations of
the MultiRank starts by making sensible assumptions on how the rank-
ing of layers should be performed: as we already explained in the main
text the safest configuration is (1,1,1) where the content of the layers is
considered as it is, without making any adjustments. The next best can-
didate is the configuration where a = 0, hence where we try to adjust for
differences in the total weight of layers, which we have shown to be non
negligible even after filtering, still without making any other assump-
tions on the importance of central nodes inside each layer, which will
require us to introduce further assumptions on the data.

In Figure 1.5 one can see the two rankings of layers which are the re-
sults of the previous assumptions. Now the second step in the evaluation
of the two configurations is to move to the node rankings deriving from
them and compare their stability with respect to the parameter γ which
from Figure A.13 seems to create disruptions in the rankings even when
keeping fixed the other two parameters. We would like to have two con-
figurations of the MultiRank which are not heavily affected by the choice
of γ in at least the majority of the range of its values.

Finally the third criterion to evaluate our choice of parameters is by
comparing the similarity of the node rankings with respect to the one
stemming from pcGDP. We would like our choice of parameters to have
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a good correlation (in rank) with pcGDP which will mean that our cen-
trality measures are capturing a good signal from the underlying data.
However we do not aim to completely reconstruct the ranking of nodes
by pcGDP, otherwise our measures will not have an informative content.

Our test for these last two criteria is shown in Figure A.14. Here we
have plotted the Spearman rank correlation coefficient (ρ) between the
nodes ranking resulting from pcGDP and the one resulting from different
centrality algorithms while we let the parameter γ take different values
(x-axis). The coloured lines are 4 different configuration of the MultiRank
while the dashed lines are the MD-HITS hubs and authority scores (here
called MultiHub and MultiAuth) which by definition are not affected by
γ. For robustness we have added the single layer version of the three
previous measures (PageRank, Hubs and Authority) calculated on the
aggregate multiplex obtained by summing over all the layers the corre-
sponding entries of their adjacency matrices, which are constant too.

The first thing to notice is that the ranking deriving from hub scores
for the MD-HITS algorithm is the one which follows more closely the
pcGDP ranking with a Spearman ρ between 0.76 and 0.78. In the cross
section in 2003 also the MD-HITS authority scores and the authority
scores calculated on the aggregated network have a good fit too but the
same strong similarity does not hold in the cross section in 2010.

Moreover among the ranking obtained from the MultiRank we see
different behaviours according to different choice of parameters in the
two cross sections: only for some particular combinations of them in
the 2003 cross section the MultiRank outperforms the ranking resulting
from PageRank calculated on the aggregated multiplex, while in the 2010
cross section for the majority of the values of γ the ranking resulting from
PageRank is better than all possible combinations of the MultiRank mak-
ing it the worse choice.

We observe in fact that in the 2003 cross section the combinations with
a = 1 are rewarded, while for a = 0 the Spearman correlation with
pcGDP ranking is lower. On the contrary in the second cross section
combination with s = −1 are rewarded irrespective of the magnitude of
a.
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Even though in these last cases we obtain a better fit with respect to
pcGDP, still choosing s = −1, which corresponds to assume that low
centrality nodes are more important is difficult to justify without further
evidence and does not account for a sufficient improvement in fitting
in cross section 2010. Moreover the combination a = 1, s = −1 which
would be ideal in both cross section is the more affected by the choice of
γ in cross section 2010, hence making it too volatile. Finally for γ = 1 has
the same fitting to pcGDP ranking as our second choice a = 0, s = 1.

Hence we have two configurations of the MultiRank which are worth
analyzing since they stem from sensible assumptions on the data and are
sufficiently stable with respect to γ. Once we fix the parameter γ to 1,
one of them, (a = 1,s = 1), has the best fitting with respect to pcGDP in
cross section 2003, while the other (a = 0,s = 1) represents a good second
best option in cross section 2010. Similar trade-offs could have arisen by
choosing one of the other combinations, which however have stronger
implications that need further empirical justifications.
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A.4 Figures
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Figure A.7: Overview of the full dataset.

111



0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

102

1.
00

8.
13

E+
00

1.
16

E+
07

citation

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

101

103

1.
00

3.
33

E+
00

2.
04

E+
06

collaboration

0.0 0.5 1.0 1.5 2.0
1e8

102

1.
00

4.
27

E+
03

2.
16

E+
08

expv

0.0 0.2 0.4 0.6 0.8 1.0

104 1.
00

0.
00

E+
00

1.
00

E+
00

fta_wto

0 100000 200000 300000 400000 500000 600000

101

103 1.
00

5.
75

E+
01

6.
63

E+
05

invest

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e7

101

103

1.
00

1.
27

E+
03

1.
76

E+
07

out_tour

0 250000 500000 750000 1000000 1250000 1500000 1750000

101

103 1.
00

6.
00

E+
00

1.
68

E+
06

pat_cit_inv

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

101

103

1.
00

1.
08

E+
04

3.
76

E+
07

serv_exp

0.0 0.5 1.0 1.5 2.0
1e7

101

54
.6

2

9.
77

E+
04

2.
26

E+
07

totIC

0.0 0.5 1.0 1.5 2.0
1e7

101

13
.0

0

6.
01

E+
04

2.
28

E+
07

value

0 1000000 2000000 3000000 4000000 5000000

101

103 10
.0

0

1.
76

E+
03

4.
78

E+
06

aid

0 500 1000 1500 2000

101

1.
00

1.
50

E+
01

2.
24

E+
03

arms

0.0 0.2 0.4 0.6 0.8
1e8

101

46
.0

0

5.
80

E+
04

8.
34

E+
07

BIS_flow_claims

1.0 1.5 2.0 2.5 3.0 3.5 4.0

102

1.
00

1.
00

E+
00

4.
00

E+
00

cow_alliances

0.0 0.5 1.0 1.5 2.0 2.5
1e7

101

2.
49

2.
65

E+
04

2.
55

E+
07

FDI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e7

101

103 20
0.

00

9.
37

E+
04

1.
44

E+
07

FDI_Greenfield

0 500000 1000000 1500000 2000000 2500000

101

103

1.
00

6.
90

E+
01

2.
68

E+
06

migration_flow

0.0 0.2 0.4 0.6 0.8 1.0
1e7

101

103

1.
00

5.
94

E+
02

1.
03

E+
07

migration_stock

0 10000 20000 30000 40000 50000 60000 70000

101

103

1.
00

2.
10

E+
01

7.
46

E+
04

mobility

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

(Values less than 1 rescaled. Zeros ignored. Shift = null. Not Log transformed. Rescaled by null. Log scale.)

Distributions of the first cross section

Figure A.8: Positive weights distribution in each layer of the cross section
in 2003. Values rescaled to 1 if lower than 1. Logarithmic scale on the y axis.
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Figure A.9: Positive weights distribution in each layer of the cross section
in 2010. Values rescaled to 1 if lower than 1. Logarithmic scale on the y axis.
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Figure A.10: How density of layers has changed: before the filter (left panel)
and after (right panel). Cross section in 2003 in blue, cross section in 2010
in red. On the inset panels boxplots of the density values of the two cross
sections.
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Figure A.12: Sensitivity of the preserved values after filtering with respect
to the change of the threshold of the filter. Cross section in 2003 (a) and in
2010 (b).
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Figure A.13: Evolution of MultiRank for the 18 top countries (a) and for all
layers (b) in the dataset with respect to different parameters choice.
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Figure A.14: Spearman correlation of rankings of different measures of node
centrality with respect to ranking by pcGDP.
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Figure A.15: Change in ranking with respect to MultiRank with parameters
s = 1, γ = 1 and a = 0 (a) or a = 1 (b)
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Figure A.16: Geographic distribution of the multiplex hub score (Multi-
Hub). Cross section in 2003 (a) and evolution of the ranking from the first
cross section to the cross section in 2010 (b).
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Figure A.17: Spearman correlation of the node rankings obtained by calcu-
lating centrality measures on both the single layers and the multiplex (hence
using the multiplex version of the algorithms). For the MultiRank rankings
the other parameters are in both cases s = 1 and γ = 1. All results refer to
the cross section in 2010
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Figure A.18: In red: number of principal components sufficient to explain
90% of the variance of the measures of centrality calculated on the single
layers (scale reported on the right y-axis). In blue: mean square error ob-
tained by regressing the multilayer measures of centrality against the prin-
cipal components of the single layer centralities, added one after one (scale
reported on the left y-axis). All results refer to the cross section in 2010.
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A.5 Tables

Table A.7: Sources and references of the variables

la
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r

de
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pt
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n
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it

s

da
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_s
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e
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fe
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nc

e

fta_wto Trade agreements 1=RTA WTO de_sousa_does_2011
expv Trade of commodities Export value, thous. of

US$
BACI Gaulier and Zignago, 2010

serv_exp Trade of services Export value, thous. of
US$

COMTRADE -

arms Transfers of arms SIPRI trend-indicator
value in Mil.

SIPRI SIPRI Arms Transfers Database (website), 2019

invest TPI: total portfolio investment Mil. of US$ IMF Coordinated Portfolio Investment Survey(IMF web-
site), 2019

FDI Total FDI financial flow Mil. of US$ OECD FDI financial flows - By partner country (OECD online
API), 2019

FDI_Greenfield Total FDI financial flow Mil. of US$ - Kirkegaard, 2013
value Value of merge and aquisition operations Monetary value, US$ Thomson

Reuters
Worldwide Mergers, Acquisitions, and Alliances
Databases SDC Platinum

BIS_flow_claims Flow of financial claims across international
banks

Mil. of US$ BIS Locational banking statistics (BIS website), 2019

aid Official Development Assistance Disburse-
ments

Mil. of US$ OECD OECD ODA disbursment (web API), n.d.

migration_flow Flow of migrants (at 5 year intervals) N°of people - G. J. Abel and Sander, 2014
migration_stock Stock of migrants (at 5 year intervals) N°of people UN United Nations, 2013, International migrant stock (di-

rect download), 2015
out_tour Temporary migration bilateral flows N°of people UN Tourism Statistics (UN Tourism office website), 2019
mobility Flow of mobile students at the tertiary level N°of people UNESCO -
citation Paper citations among scholars N°of citations - Pan, Kaski, and Fortunato, 2012
collaboration Coauthorship among scholars N°of coauthorships - Pan, Kaski, and Fortunato, 2012
pat_cit_inv Patent citations (by inventor country) N°of citations NBER Hall, Jaffe, and Trajtenberg, 2001, NBER patent data

(download), 2019
totIC Cumulative sum of initial capacity of cable

routing
Cable capacity TeleGeography Rossello, 2015, TeleGeography Submarine Cable Map,

2019
cow_alliances Membership in international alliances 1= alliance COW Correlates of war datasets (website), 2019

* When missing the source comes only from a paper.

122



Table A.8: Cross section in 2010 - Network statistics, part 1
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fta_wto 0.506 0.506 0.506 0.034 0.034 44.000 2.545 0.348 44.000 2.545 - 8.000 - 3.537 0.428 0.151 0.000
expv 0.673 0.666 0.660 0.206 0.087 3 1.000 112.000 1.000 3 1.000 112.000 4.000 4.000 1.977 1.977 0.389 0.415 0.562
serv_exp 2.668 2.784 2.444 0.097 0.052 3.000 37.333 0.982 3 1.000 112.000 - 5.000 2.109 2.109 0.391 0.949 0.434
arms 3.265 1.025 3.825 0.020 0.001 107.000 1.047 0.054 37.000 3.027 - 2.000 - 0.196 0.126 0.400 0.671
invest 1.639 0.679 2.126 0.078 0.009 74.000 1.514 0.348 9.000 12.444 - 6.000 - 0.806 0.306 0.638 0.808
FDI 5.934 7.214 4.076 0.015 0.004 78.000 1.436 0.312 25.000 4.480 - 10.000 - 1.634 0.000 0.621 0.465
FDI_Greenfield 1.847 0.869 2.751 0.063 0.006 46.000 2.435 0.598 8.000 14.000 - 10.000 - 2.389 0.270 0.542 0.805
value 1.861 1.387 2.695 0.024 0.003 74.000 1.514 0.339 25.000 4.480 - 8.000 - 1.393 0.114 0.264 0.636
BIS_flow_claims 3.371 0.379 3.448 0.057 0.002 97.000 1.155 0.143 2.000 56.000 - 5.000 - 0.284 0.400 0.820 0.846
aid 1.503 1.565 -0.648 0.130 0.000 112.000 1.000 0.009 4.000 28.000 - 0.000 - 0.179 0.035 0.599 0.952
migration_flow 1.088 1.657 1.288 0.190 0.019 12.000 9.333 0.902 3 1.000 112.000 - 10.000 2.862 2.862 0.359 0.585 0.877
migration_stock 1.859 2.105 -0.024 0.151 0.037 2.000 56.000 0.991 3 1.000 112.000 - 9.000 2.933 2.933 0.397 0.592 0.728
out_tour 0.739 1.085 1.165 0.166 0.039 20.000 5.600 0.830 3 1.000 112.000 - 6.000 1.945 1.945 0.345 0.396 0.737
mobility 1.348 1.486 0.261 0.171 0.007 72.000 1.556 0.348 3 1.000 112.000 - 10.000 0.854 0.854 0.283 0.669 0.928
citation -0.182 -0.019 -0.083 0.383 0.237 3 1.000 112.000 1.000 3 1.000 112.000 4.000 4.000 1.677 1.677 0.543 0.449 0.362
collaboration 0.300 0.946 1.213 0.110 0.009 112.000 1.000 0.009 3 1.000 112.000 - 0.000 0.728 0.728 0.340 0.234 0.751
pat_cit_inv 2.308 2.529 2.556 0.048 0.009 64.000 1.750 0.429 17.000 6.588 - 6.000 - 1.444 0.505 0.673 0.613
totIC 1.214 1.214 1.214 0.032 0.032 40.000 2.800 0.598 40.000 2.800 - 9.000 - 3.872 0.547 0.247 0.000
cow_alliances 0.243 0.243 0.243 0.044 0.044 32.000 3.500 0.438 32.000 3.500 - 11.000 - 4.060 0.468 0.130 0.000

Legend: 3 = True, empty space = False, - = NaN.
Abbreviations: scc: strongly connected components, wcc: weakly connected components, spl: shortest path length.
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Appendix B

Appendix to Chapter 2

B.1 Original BMA results on new sample

B.1.1 Without interaction terms (M1)

Table B.9: Dependent variable: cum.loss. Network measure: original

PIP Post Mean Post Sign. RL L

chg.dom.cred.bank.0006 0.990196 -0.209281 True ***
dummy_blr 0.652980 82.809459 *** b
chg.stocks.gdp.0006 0.226506 0.002769 b
net.pf.debt.infl.0006 0.156034 -0.132258
net.pf.equ.infl.0006 0.125816 -0.116705
gen.govDebt.06 0.118906 -0.044018 ***
gr.savings.gdp.06 0.110369 -0.221302
twin.fis 0.101405 0.005114 l
ext.debt.gdp.06 0.092907 -0.010232
food.exports.0006 0.089996 0.074366 b
chg.rgdpcap.0006 0.081463 -0.095454 .
int.res.extDebt.06 0.077147 0.027441
adv.claims.gdp.06 0.074040 -0.017504
trade.freedom.06 0.073205 -0.069921
dummy_ukr 0.069632 -4.295198 ***
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Table B.10: Dependent variable: Depth. Network measure: original

PIP Post Mean Post Sign. RL L

chg.dom.cred.bank.0006 0.850753 -0.014609 True ***
chg.stocks.gdp.0006 0.310245 0.000476 b
chg.rgdpcap.0006 0.174569 -0.030507
outputGap_0006Exo 0.093592 -1.368720
gen.govDebt.06 0.088946 -0.003213 **
trade.freedom.06 0.083414 -0.008992
food.exports.0006 0.076132 0.006881 l
twin.fis 0.071166 0.000300
m.growth.06 0.067807 0.048371 l
dummy_blr 0.062649 0.492534 ***
outputGap_06Exo 0.058185 2.977258
pop.gr.0006 0.054681 0.011210 b
ext.debt.gdp.06 0.050717 -0.000415
net.pf.debt.infl.0006 0.048776 -0.003319
size.of.gov.06 0.047985 -0.031968

Table B.11: Dependent variable: HP.trans. Network measure: original

PIP Post Mean Post Sign. RL L

chg.dom.cred.bank.0006 0.915299 -0.000411 True ***
dummy_blr 0.860033 0.355244 True *** l
rgdpgr.06 0.293219 -0.006580
food.exports.0006 0.291387 0.000807
gr.savings.gdp.06 0.286037 -0.001591
int.res.extDebt.06 0.282461 0.000352
unempl.06 0.207220 0.001478
trade.freedom.06 0.182201 -0.000543
sound.money.06 0.177432 0.006343
m.growth.06 0.173514 0.003314 l
twin.fis 0.168617 0.000020
chg.rgdpcap.0006 0.168076 -0.000516
infl.0006 0.164447 -0.000690
outputGap_0006Exo 0.160363 -0.053236
depRate.06 0.143529 -0.001094
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Table B.12: Dependent variable: HP.per. Network measure: original

PIP Post Mean Post Sign. RL L

trade.freedom.06 0.792734 -0.024236 True ***
chg.rgdpcap.0006 0.551611 -0.018957
chg.dom.cred.bank.0006 0.451667 -0.001147 **
dummy_blr 0.237513 0.357576 *** b
rgdpgr.06 0.169411 -0.020510
rgdpgr.0006 0.148592 -0.032245
gr.savings.gdp.06 0.136961 -0.004457
unempl.06 0.096257 0.003713 b
infl.06 0.084605 -0.006007
emp.0006 0.072777 0.003232 b
gov.spend.06 0.065343 -0.000487
ext.debt.gdp.06 0.055509 -0.000067
cred.mark.reg.06 0.049728 -0.010154
for.bank.comp.06 0.049685 -0.004683
rgdpcap.06 0.048935 0.011745
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B.1.2 With interaction terms (M3)

Table B.13: Dependent variable: cum.loss. Network measure: original

PIP Post Mean Post Sign. RL L

chg.dom.cred.bank.0006 0.997954 -0.169951 True ***
dummy_blr 0.426877 52.156765 *** b
dummy_ukr 0.236893 -29.151510 ***
food.exports.0006 0.225583 0.319547 b
adv.claims.gdp.06 0.224833 0.018659
chg.dom.cred.bank.0006
: adv.claims.gdp.06

0.189386 -0.000405

chg.stocks.gdp.0006 0.137779 0.001496 b
net.pf.debt.infl.0006 0.085029 -0.067070
net.pf.equ.infl.0006 0.076332 -0.071024
gen.govDebt.06 0.067353 -0.022041 ***
infl.targeter 0.049542 0.686335 b
twin.fis 0.047408 0.001805 b
trade.freedom.06 0.047403 -0.041225
ext.debt.gdp.06 0.047093 -0.004142
gr.savings.gdp.06 0.043365 -0.067669

Table B.14: Dependent variable: Depth. Network measure: original

PIP Post Mean Post Sign. RL L

chg.dom.cred.bank.0006 0.923423 -0.016297 True ***
chg.stocks.gdp.0006 0.203675 0.000304 b
chg.rgdpcap.0006 0.095781 -0.016611
outputGap_0006Exo 0.052816 -0.743767
trade.freedom.06 0.041981 -0.004620
food.exports.0006 0.039840 0.003497 l
gen.govDebt.06 0.039292 -0.001303 **
twin.fis 0.036980 0.000138
m.growth.06 0.029470 0.018370 l
Mark.cap.06 0.026305 0.000395
freedom.from.corr.06 0.024380 0.001114
dummy_blr 0.023373 0.150973 ***
size.of.gov.06 0.022795 -0.015504
pop.gr.0006 0.020394 0.003562 b
net.pf.debt.infl.0006 0.019923 -0.001058
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Table B.15: Dependent variable: HP.trans. Network measure: original

PIP Post Mean Post Sign. RL L

chg.dom.cred.bank.0006 0.968449 -0.000332 ***
dummy_blr 0.694773 0.281924 *** b
food.exports.0006 0.212552 0.000641 b
infl.0006 0.198211 -0.001409
gr.savings.gdp.06 0.184799 -0.000908
rgdpgr.0006 0.148429 -0.001626
rgdpgr.06 0.130429 -0.002179
int.res.extDebt.06 0.113679 0.000108 b
m.growth.06 0.111229 0.002127 b
trade.freedom.06 0.107619 -0.000298
outputGap_0006Exo 0.101551 -0.034471
chg.rgdpcap.0006 0.093403 -0.000281
depRate.06 0.090802 -0.000722
sound.money.06 0.090735 0.002771 l
unempl.06 0.090162 0.000539 b

Table B.16: Dependent variable: HP.per. Network measure: original

PIP Post Mean Post Sign. RL L

trade.freedom.06 0.702028 -0.021293 True ***
chg.rgdpcap.0006 0.549763 -0.019617
chg.dom.cred.bank.0006 0.445992 -0.001207 **
dummy_blr 0.138837 0.197353 *** b
rgdpgr.0006 0.127793 -0.029715
rgdpgr.06 0.100439 -0.011456
gr.savings.gdp.06 0.069836 -0.001986
infl.06 0.048814 -0.003304
unempl.06 0.045674 0.001572 b
gov.spend.06 0.043677 -0.000334
emp.0006 0.034943 0.001424 b
ext.debt.gdp.06 0.029005 -0.000031
size.of.gov.06 0.028833 -0.002998
dummy_ukr 0.027156 -0.025210 ***
net.pf.debt.infl.0006 0.027067 -0.000223
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B.2 BMA results with full set of network vari-
ables

B.2.1 Without interaction terms (M1)

Table B.17: Dependent variable: cum.loss. Network measure: centr

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.996004 -0.193969 True *** ***
invest_kcore_nr 0.882947 -3.957268 True * *
dummy_blr 0.055094 5.704390 ** ** b
collaboration_kcore_nr 0.045075 0.302184 * b
net.pf.equ.infl.0006 0.044412 -0.037697
migration_stock_kcore_nr 0.035613 0.129549 * b
migration_flow_betweenness_nr 0.032843 -5.531874
value_pagerank_nr 0.032136 15.943713 l
dummy_ukr 0.023023 -1.366911 *** ***
totIC_instrength_nr 0.022768 -1.085531 **
mobility_kcore_nr 0.021153 0.091134
mobility_authority_nr 0.020691 12.464149
chg.stocks.gdp.0006 0.019599 0.000180 l
twin.fis 0.019445 0.000615 b
gen.govDebt.06 0.019028 -0.005205 *** ***

Table B.18: Dependent variable: Depth. Network measure: centr

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.914681 -0.014326 True *** ***
migration_stock_kcore_nr 0.539577 0.381900 *** b
invest_kcore_nr 0.538689 -0.248409
pat_cit_inv_kcore_nr 0.476569 -0.266488
FDI_Greenfield_instrength_nr 0.476027 4.551346 .
totIC_instrength_nr 0.463028 -4.848323 **
rgdpcap.06 0.277205 0.864655
chg.stocks.gdp.0006 0.218597 0.000291 b
arms_pagerank_nr 0.138018 13.480885 .
citation_betweenness_nr 0.127088 -1.185583
outputGap_0006Exo 0.124427 -1.756882
expv_hubs_nr 0.106457 -11.590491
floater 0.105607 0.196811
size.of.gov.06 0.098223 -0.145490
rgdpgr.0006 0.096203 -0.120991
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Table B.19: Dependent variable: HP.trans. Network measure: centr

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.864131 -0.000376 True *** ***
dummy_blr 0.622907 0.242757 *** *** h
migration_stock_kcore_nr 0.375009 0.005562 ** h
FDI_Greenfield_kcore_nr 0.202929 -0.003388 .
rgdpgr.0006 0.175083 -0.006417
aid_betweenness_nr 0.163167 -0.552310 ***
invest_kcore_nr 0.148889 -0.001506
value_kcore_nr 0.138075 0.002586
rgdpgr.06 0.132924 -0.002275
trade.freedom.06 0.126042 -0.000451
gr.savings.gdp.06 0.116358 -0.000611
FDI_Greenfield_hubs_nr 0.105495 -0.283014 ***
int.res.extDebt.06 0.101886 0.000118
depRate.06 0.101780 -0.000965
pat_cit_inv_kcore_nr 0.101513 -0.000955

Table B.20: Dependent variable: HP.per. Network measure: centr

PIP Post Mean Post Sign. RL ERL L

trade.freedom.06 0.907635 -0.032518 True
rgdpgr.0006 0.737155 -0.238038 True
arms_kcore_nr 0.515491 0.084696 . b
invest_kcore_nr 0.426259 -0.022991 *
migration_stock_outstrength_nr 0.324349 -0.409899 .
chg.dom.cred.bank.0006 0.271497 -0.000574 * *
migration_flow_betweenness_nr 0.228866 -0.641719 . .
arms_authority_nr 0.184124 2.673576 b
FDI_Greenfield_hubs_nr 0.173072 -2.967023 ***
FDI_Greenfield_kcore_nr 0.157677 -0.012578
chg.rgdpcap.0006 0.142150 -0.004653
pat_cit_inv_kcore_nr 0.103951 -0.005218
dummy_blr 0.097088 0.118411 *** *** b
migration_stock_kcore_nr 0.074789 0.004357 . b
gov.spend.06 0.071056 -0.000940
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B.3 BMA results with only kcore centralities

B.3.1 Without interaction terms (M1)

Table B.21: Dependent variable: cum.loss. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.996589 -0.193375 True *** ***
invest_kcore_nr 0.913447 -4.081269 True *** ***
net.pf.equ.infl.0006 0.092341 -0.081941
collaboration_kcore_nr 0.079319 0.506029 ** b
dummy_blr 0.078006 7.602253 *** *** b
migration_stock_kcore_nr 0.069573 0.252032 ** b
gen.govDebt.06 0.042261 -0.012355 *** ***
dummy_ukr 0.042036 -2.442006 *** ***
twin.fis 0.040403 0.001346 b
net.pf.debt.infl.0006 0.039193 -0.022468
mobility_kcore_nr 0.038861 0.159460 *
chg.stocks.gdp.0006 0.035835 0.000316 b
outputGap_0006Exo 0.035443 -3.538792
trade.freedom.06 0.033166 -0.026626 * *
arms_kcore_nr 0.030527 0.138219 . b

Table B.22: Dependent variable: Depth. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.792740 -0.011859 True *** ***
invest_kcore_nr 0.602631 -0.250068 ***
migration_stock_kcore_nr 0.558166 0.361456 * h
chg.stocks.gdp.0006 0.214344 0.000286 b
outputGap_0006Exo 0.187540 -3.001745
rgdpgr.0006 0.160131 -0.197833
chg.rgdpcap.0006 0.158581 -0.023116
emp.0006 0.140615 -0.041960
trade.freedom.06 0.134988 -0.015629
expv_kcore_nr 0.129593 -0.060104 *
gen.govDebt.06 0.110795 -0.003966 * *
pat_cit_inv_kcore_nr 0.104376 -0.030735
FDI_Greenfield_kcore_nr 0.090430 -0.037776 **
collaboration_kcore_nr 0.089778 0.048960
mobility_kcore_nr 0.089603 0.044919
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Table B.23: Dependent variable: HP.trans. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.883112 -0.000315 True *** ***
migration_stock_kcore_nr 0.650883 0.010118 h
dummy_blr 0.649971 0.256761 *** *** h
trade.freedom.06 0.408269 -0.001623
FDI_Greenfield_kcore_nr 0.405665 -0.007254
value_kcore_nr 0.382445 0.007303 b
invest_kcore_nr 0.370206 -0.003828 **
bus.reg.06 0.361473 -0.016327
rgdpgr.06 0.325581 -0.006727
rgdpcap.06 0.313460 0.026449 l
int.res.extDebt.06 0.243184 0.000287 b
depRate.06 0.202520 -0.001729
rgdpgr.0006 0.197799 -0.005974
migration_flow_kcore_nr 0.190862 0.002867 l
pat_cit_inv_kcore_nr 0.181733 -0.001480 *

Table B.24: Dependent variable: HP.per. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

trade.freedom.06 0.934515 -0.030406 True *** ***
arms_kcore_nr 0.750060 0.118763 True *** b
rgdpgr.0006 0.739034 -0.216284 True
invest_kcore_nr 0.495432 -0.027608 **
FDI_Greenfield_kcore_nr 0.373809 -0.035036
chg.dom.cred.bank.0006 0.326871 -0.000582 ** **
migration_stock_kcore_nr 0.253954 0.016486 b
trade.to.eu15.totExp.0006 0.163201 0.000533 b
dummy_blr 0.142938 0.172905 *** *** b
chg.rgdpcap.0006 0.134113 -0.003819
rgdpgr.06 0.129033 -0.016883
for.bank.comp.06 0.115329 -0.012644
infl.06 0.112519 -0.009257
mon.freedom.06 0.103421 -0.003008
pop.06 0.103283 -0.013911
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B.3.2 With interaction terms (M3)

Table B.25: Dependent variable: cum.loss. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.999049 -0.182986 True
invest_kcore_nr 0.925301 -4.019574 True * *
net.pf.equ.infl.0006 0.064062 -0.057175
collaboration_kcore_nr 0.054527 0.345634 b
migration_stock_kcore_nr 0.053847 0.178639 * b
dummy_blr 0.047688 4.392633 ** **
invest_kcore_nr :
chg.dom.cred.bank.0006

0.045940 -0.000425

dummy_ukr 0.035800 -2.706387
mobility_kcore_nr 0.027007 0.110260 * *
chg.stocks.gdp.0006 0.025753 0.000126
net.pf.debt.infl.0006 0.024805 -0.014114
twin.fis 0.024493 0.000769 b
gen.govDebt.06 0.024191 -0.006489
adv.claims.gdp.06 0.023263 0.000609
outputGap_0006Exo 0.022745 -2.288245

Table B.26: Dependent variable: Depth. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.908059 -0.014878 True
invest_kcore_nr 0.379052 -0.146408 **
migration_stock_kcore_nr 0.347743 0.218676 ** b
chg.stocks.gdp.0006 0.127792 0.000175 b
outputGap_0006Exo 0.101993 -1.631124
chg.rgdpcap.0006 0.081640 -0.012639
trade.freedom.06 0.055667 -0.006245
rgdpgr.0006 0.054217 -0.059433
emp.0006 0.048670 -0.013170
expv_kcore_nr 0.046464 -0.016348 **
twin.fis 0.034418 0.000115
gen.govDebt.06 0.033738 -0.001038
pat_cit_inv_kcore_nr 0.033444 -0.008249 *
collaboration_kcore_nr 0.029339 0.015106 l
int.res.extDebt.06 0.028631 0.000875
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Table B.27: Dependent variable: HP.trans. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

chg.dom.cred.bank.0006 0.951186 -0.000299
migration_stock_kcore_nr 0.557428 0.006484 * * b
dummy_blr 0.452533 0.174701 * * b
invest_kcore_nr 0.345099 -0.003377
bus.reg.06 0.292619 -0.011964
pat_cit_inv_kcore_nr 0.280455 -0.002895 **
FDI_Greenfield_kcore_nr 0.229537 -0.003380 .
migration_stock_kcore_nr
:
chg.dom.cred.bank.0006

0.220308 0.000013

trade.freedom.06 0.208082 -0.000672
rgdpcap.06 0.202407 0.015173 b
rgdpgr.06 0.175851 -0.002702
rgdpgr.0006 0.168357 -0.003971
value_kcore_nr 0.148250 0.002448
FDI_kcore_nr 0.139905 0.000136
infl.0006 0.134302 -0.000807

Table B.28: Dependent variable: HP.per. Network measure: kcore

PIP Post Mean Post Sign. RL ERL L

trade.freedom.06 0.850759 -0.027122 True
rgdpgr.0006 0.636798 -0.187927
arms_kcore_nr 0.568257 0.088220 . h
invest_kcore_nr 0.405075 -0.022767 *
chg.dom.cred.bank.0006 0.395451 -0.000234
FDI_Greenfield_kcore_nr 0.247951 -0.021898
chg.rgdpcap.0006 0.186478 -0.006272
migration_stock_kcore_nr 0.150872 0.009509 h
trade.to.eu15.totExp.0006 0.101056 0.000312 h
dummy_blr 0.096502 0.117861 . . b
pat_cit_inv_kcore_nr 0.081135 -0.004232 *
rgdpgr.06 0.076507 -0.009150
for.bank.comp.06 0.067749 -0.007532
pop.06 0.061641 -0.007813
expv_kcore_nr 0.054860 0.001751 .
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B.4 Regression results with only kcore centrali-
ties

B.4.1 Without interaction terms (M1)

Table B.29: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
Depth

1 2 3 4 5 ref.

invest_kcore_nr −0.392∗∗∗ −0.446∗∗∗

(0.097) (0.093)
migration_stock_kcore_nr 0.716∗∗∗ 0.499∗∗∗ 0.607∗∗∗

(0.172) (0.186) (0.166)
chg.dom.cred.bank.0006 −0.019∗∗∗ −0.015∗∗∗ −0.020∗∗∗ −0.017∗∗∗ −0.015∗∗∗ −0.020∗∗∗

(0.003) (0.002) (0.002) (0.003) (0.002) (0.002)
chg.stocks.gdp.0006 0.001∗∗∗ 0.001∗∗∗

(0.001) (0.001)
outputGap_0006Exo −15.972∗∗∗

(5.589)
Constant −3.524∗∗∗ −10.069∗∗∗ −4.098∗∗∗ −12.592∗∗∗ −4.767 −4.098∗∗∗

(0.701) (3.100) (0.690) (3.453) (3.445) (0.690)

Observations 55 55 55 55 55 55
R2 0.506 0.671 0.572 0.566 0.717 0.572
Adjusted R2 0.497 0.652 0.555 0.549 0.695 0.555
Residual Std. Error 3.733 3.107 3.510 3.533 2.909 3.510
F Statistic 54.378∗∗∗ 34.689∗∗∗ 34.722∗∗∗ 33.931∗∗∗ 31.715∗∗∗ 34.722∗∗∗

BF 0.00027 0.15348 0.00147 0.00107 1 1
Logmarg 15.08684 21.42833 16.78135 16.46169 23.30254 16.78135
Post. Prob 0.07166 0.01886 0.00681 0.00534 0.00449 0.02899
Dim 2 4 3 3 5 3

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.30: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
HP_per

1 2 3 4 5 ref.

value_kcore_nr 0.018∗∗∗

(0.005)
FDI_Greenfield_kcore_nr −0.022∗∗∗

(0.004)
invest_kcore_nr −0.013∗∗∗

(0.002)
pat_cit_inv_kcore_nr −0.010∗∗∗

(0.002)
migration_stock_kcore_nr 0.017∗∗∗ 0.017∗∗∗

(0.003) (0.003)
gr.savings.gdp.06 −0.005∗∗∗

(0.002)
chg.dom.cred.bank.0006 −0.0005∗∗∗ −0.001∗∗∗ −0.0004∗∗∗ −0.0002∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.00005) (0.00005) (0.0001) (0.0001)
depRate.06 −0.010∗∗∗

(0.002)
infl.0006 −0.007∗∗∗ −0.008∗∗∗

(0.002) (0.002)
dummy_blr 0.302∗∗∗ 0.427∗∗∗ 0.620∗∗∗ 0.707∗∗∗

(0.089) (0.065) (0.133) (0.126)
rgdpgr.06 −0.020∗∗∗

(0.004)
trade.freedom.06 −0.004∗∗∗

(0.001)
bus.reg.06 −0.040∗∗∗

(0.008)
rgdpcap.06 0.088∗∗∗

(0.015)
Constant −0.092∗∗∗ −0.087∗∗∗ −0.224∗∗∗ −0.303∗∗ −0.055∗∗∗ 0.059

(0.018) (0.016) (0.062) (0.125) (0.018) (0.041)

Observations 55 55 55 55 55 55
R2 0.522 0.608 0.829 0.883 0.670 0.721
Adjusted R2 0.513 0.593 0.807 0.862 0.650 0.699
Residual Std. Error 0.093 0.085 0.059 0.050 0.079 0.073
F Statistic 57.980∗∗∗ 40.407∗∗∗ 38.686∗∗∗ 43.310∗∗∗ 34.442∗∗∗ 32.321∗∗∗

BF 0 0 0.00215 0.26733 0 1
Logmarg 15.91348 18.97027 31.39138 36.21654 21.31348 23.6231
Post. Prob 0.00675 0.00257 0.00137 0.00073 0.00073 0.00174
Dim 2 3 7 9 4 5

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.31: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
HP_trans

1 2 3 4 5 ref.

invest_kcore_nr −0.060∗∗∗ −0.081∗∗∗

(0.013) (0.013)
FDI_Greenfield_kcore_nr −0.097∗∗∗

(0.021)
arms_kcore_nr 0.123∗∗∗ 0.212∗∗∗ 0.138∗∗∗

(0.033) (0.039) (0.030)
rgdpgr.0006 −0.365∗∗∗ −0.317∗∗∗ −0.363∗∗∗

(0.031) (0.032) (0.029)
trade.freedom.06 −0.031∗∗∗ −0.037∗∗∗ −0.035∗∗∗ −0.038∗∗∗ −0.030∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.006)
chg.rgdpcap.0006 −0.039∗∗∗ −0.042∗∗∗

(0.004) (0.004)
chg.dom.cred.bank.0006 −0.003∗∗∗

(0.0004)
trade.to.eu15.totExp.0006 0.003∗∗∗

(0.001)
dummy_blr 1.225∗∗

(0.502)
Constant 5.917∗∗∗ −0.614∗∗∗ 3.591∗∗∗ 3.030∗∗∗ 3.601∗∗∗ 6.122∗∗∗

(0.721) (0.105) (0.478) (0.465) (0.436) (0.694)

Observations 55 55 55 55 55 55
R2 0.697 0.606 0.800 0.799 0.837 0.729
Adjusted R2 0.685 0.599 0.784 0.783 0.820 0.713
Residual Std. Error 0.497 0.560 0.411 0.412 0.375 0.475
F Statistic 59.737∗∗∗ 81.650∗∗∗ 50.135∗∗∗ 49.816∗∗∗ 50.286∗∗∗ 45.616∗∗∗

BF 1e-05 0 0.00467 0.00413 0.07992 1
Logmarg 25.28173 20.7911 31.56105 31.43887 34.40068 26.05862
Post. Prob 0.02075 0.0141 0.00957 0.0086 0.0075 0.00808
Dim 3 2 5 5 6 4

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

137



B.4.2 With interaction terms (M3)

Table B.32: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
cum_loss

1 2 3 4 5 ref.

invest_kcore_nr −4.503∗∗∗ −5.182∗∗∗ −2.384∗ −4.691∗∗∗

(0.923) (0.932) (1.304) (0.891)
migration_stock_kcore_nr 3.869∗∗

(1.652)
collaboration_kcore_nr 6.464∗∗

(2.808)
chg.dom.cred.bank.0006 −0.201∗∗∗ −0.213∗∗∗ −0.185∗∗∗ −0.037 −0.213∗∗∗ −0.019

(0.021) (0.025) (0.022) (0.077) (0.021) (0.035)
invest_kcore_nr:chg.dom.cred.bank.0006 −0.009∗∗

(0.004)
adv.claims.gdp.06 0.142

(0.111)
food.exports.0006 1.676∗∗∗

(0.349)
dummy_ukr −133.524∗∗∗

(28.570)
chg.dom.cred.bank.0006:adv.claims.gdp.06 −0.002∗∗∗

(0.0004)
Constant 63.521∗∗∗ −10.658 4.390 27.311 37.736∗ −42.443∗∗∗

(16.281) (6.970) (29.698) (22.615) (19.244) (8.623)

Observations 55 55 55 55 55 55
R2 0.708 0.574 0.736 0.734 0.735 0.811
Adjusted R2 0.697 0.566 0.721 0.718 0.720 0.792
Residual Std. Error 31.020 37.099 29.764 29.906 29.813 25.707
F Statistic 63.017∗∗∗ 71.470∗∗∗ 47.459∗∗∗ 46.849∗∗∗ 47.250∗∗∗ 42.048∗∗∗

BF 0.57865 0.00035 1 0.79405 0.92427 1
Logmarg 26.21542 18.80165 26.76248 26.53187 26.68373 30.95571
Post. Prob 0.38085 0.01484 0.01339 0.01242 0.01237 0.02435
Dim 3 2 4 4 4 6

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.33: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
Depth

1 2 3 4 5 ref.

invest_kcore_nr −0.392∗∗∗ −0.267∗∗

(0.097) (0.106)
migration_stock_kcore_nr 0.716∗∗∗ 0.499∗∗∗

(0.172) (0.186)
chg.dom.cred.bank.0006 −0.019∗∗∗ −0.015∗∗∗ −0.020∗∗∗ −0.017∗∗∗ −0.018∗∗∗ −0.020∗∗∗

(0.003) (0.002) (0.002) (0.003) (0.002) (0.002)
chg.stocks.gdp.0006 0.001∗∗∗ 0.001∗∗∗

(0.001) (0.001)
Constant −3.524∗∗∗ −10.069∗∗∗ −4.098∗∗∗ −12.592∗∗∗ 0.868 −4.098∗∗∗

(0.701) (3.100) (0.690) (3.453) (1.867) (0.690)

Observations 55 55 55 55 55 55
R2 0.506 0.671 0.572 0.566 0.560 0.572
Adjusted R2 0.497 0.652 0.555 0.549 0.543 0.555
Residual Std. Error 3.733 3.107 3.510 3.533 3.558 3.510
F Statistic 54.378∗∗∗ 34.689∗∗∗ 34.722∗∗∗ 33.931∗∗∗ 33.104∗∗∗ 34.722∗∗∗

BF 0.00027 0.15348 0.00147 0.00107 0.00076 1
Logmarg 15.08684 21.42833 16.78135 16.46169 16.12383 16.78135
Post. Prob 0.2559 0.03616 0.01769 0.01304 0.00891 0.0362
Dim 2 4 3 3 3 3

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.34: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
HP_per

1 2 3 4 5 ref.

FDI_kcore_nr 0.020
(0.016)

migration_stock_kcore_nr 0.013∗∗∗

(0.004)
gr.savings.gdp.06 −0.005∗∗∗

(0.002)
chg.dom.cred.bank.0006 −0.0005∗∗∗ −0.001∗∗∗ 0.001∗∗ −0.0005∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
infl.0006 −0.007∗∗∗ −0.008∗∗∗

(0.002) (0.002)
dummy_blr 0.302∗∗∗ 0.344∗∗∗ 0.620∗∗∗ 0.707∗∗∗

(0.089) (0.084) (0.133) (0.126)
FDI_kcore_nr:chg.dom.cred.bank.0006 −0.0003∗∗∗

(0.0001)
Constant −0.092∗∗∗ −0.087∗∗∗ −0.167∗∗∗ −0.322∗∗∗ −0.055∗∗∗ 0.059

(0.018) (0.016) (0.041) (0.078) (0.018) (0.041)

Observations 55 55 55 55 55 55
R2 0.522 0.608 0.681 0.669 0.670 0.721
Adjusted R2 0.513 0.593 0.662 0.650 0.650 0.699
Residual Std. Error 0.093 0.085 0.078 0.079 0.079 0.073
F Statistic 57.980∗∗∗ 40.407∗∗∗ 36.316∗∗∗ 34.425∗∗∗ 34.442∗∗∗ 32.321∗∗∗

BF 0 0 0 0 0 1
Logmarg 15.91348 18.97027 22.17321 21.3053 21.31348 23.6231
Post. Prob 0.04339 0.01337 0.00992 0.00277 0.00263 0.00325
Dim 2 3 4 4 4 5

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.35: Regression results. Comparison of top 5 models with the best
original model.

Dependent variable:
HP_trans

1 2 3 4 5 ref.

chg.dom.cred.bank.0006 −0.003∗∗∗

(0.0004)
invest_kcore_nr −0.060∗∗∗ −0.057∗∗∗

(0.013) (0.015)
FDI_Greenfield_kcore_nr −0.097∗∗∗

(0.021)
arms_kcore_nr 0.123∗∗∗ 0.212∗∗∗

(0.033) (0.039)
rgdpgr.0006 −0.365∗∗∗ −0.317∗∗∗ −0.390∗∗∗

(0.031) (0.032) (0.034)
trade.freedom.06 −0.031∗∗∗ −0.037∗∗∗ −0.035∗∗∗ −0.033∗∗∗ −0.030∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
chg.rgdpcap.0006 −0.039∗∗∗ −0.042∗∗∗

(0.004) (0.004)
dummy_blr 1.225∗∗

(0.502)
Constant −0.614∗∗∗ 5.917∗∗∗ 3.591∗∗∗ 3.030∗∗∗ 3.676∗∗∗ 6.122∗∗∗

(0.105) (0.721) (0.478) (0.465) (0.535) (0.694)

Observations 55 55 55 55 55 55
R2 0.606 0.697 0.800 0.799 0.744 0.729
Adjusted R2 0.599 0.685 0.784 0.783 0.729 0.713
Residual Std. Error 0.560 0.497 0.411 0.412 0.461 0.475
F Statistic 81.650∗∗∗ 59.737∗∗∗ 50.135∗∗∗ 49.816∗∗∗ 49.466∗∗∗ 45.616∗∗∗

BF 0 1e-05 0.00467 0.00413 8e-05 1
Logmarg 20.7911 25.28173 31.56105 31.43887 27.50779 26.05862
Post. Prob 0.06118 0.05912 0.0183 0.01718 0.01234 0.00991
Dim 2 3 5 5 4 4

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.5 Network representation of the results
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Figure B.19: Network representation of the investment layer with colours
based on the intensity of the change in domestic credit variable. Nodes are
ordered on the circle by their degree with size representing the cumulative
loss variable and edge width representing the flow of investments among
them.

142



DEU

FRA

FIN

SWE

NLD

BEL

CZE

AUT

RUS

GBR

ITA

DNK

TUR

HUN

ISL

NOR

GRC

ESP

POL

BGR

UKR

USA

BRA

SVN

PRT

AUS

CYP

HRV

CHL

LTU

ISR

LVA

ARG

IRL

CAN

ZAF

EST

JPN

THA

JOR

MLT

COL

GEO

BLR

MYS

PER

MAR

MEX

CRI

TUN

PHL

MUS

KGZ

NZL

JAM

Figure B.20: Network representation of the investment layer with colours
based on the kcore of nodes on the investment layer. Nodes are ordered on
the circle by their degree with size representing the cumulative loss variable
and edge width representing the flow of investments among them.
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Figure B.21: Network representation of the investment layer with colours
based on the kcore of nodes on the stock of migration layer. Nodes are
ordered on the circle by their degree with size representing the cumulative
loss variable and edge width representing the flow of investments among
them.
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