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Abstract

The increasing desire of ubiquitous Internet access has re-

cently promoted the deployment of wireless multi-hop net-

works in several application domains. Wireless Mesh Net-

works (WMNs) provide significant benefits over existing

wirelessmulti-hop networking paradigms, offering a suitable

solution for a wide range of application scenarios, spanning

from public safety communications to community-based net-

works and metro scale municipal networks.

Routing design is crucial to guarantee robust communication

through the mesh backbone. Traditional unicast routing has

shown to be ineffective when dealing with highly variable

wireless channels. One of the most critical aspects is the wire-

less diversity, intended as the reception of a packet at multi-

ple forwarders, causing collisions and interference due to the

broadcast nature of the wireless medium. A set of innovative

routing approaches has recently been proposed as a valuable

alternative to classical routing, thanks to their ability to deal

with the wireless diversity as an opportunity rather than a

shortcoming.

The primary goal of this thesis is to deeply investigate wire-

less diversity-based routing in WMNs, proposing novel solu-

tions able to significantly improve WMN performance. We

extensively describe the main features of this strategy and

provide a classification of the most representative solutions in

literature, discussing their most relevant characteristics, ad-

vantages and disadvantages. Then, we focus on one of the

most promising categories: Opportunistic Routing (OR). It

exploits the multiple packet recipients offered by the wire-

less transmission to incrementally build a path, selecting the

xvi



best next hop only after packet reception. Then, we pro-

pose a novel opportunistic routing algorithm, able to select at

each hop the forwarders that maximize the throughput gain.

In contrast to the common opportunistic approach, the pro-

posed algorithm avoids any form of a priori constraint on

route selection, fully leveraging all the transmission opportu-

nities encountered during path construction. To improve its

efficiency in multi-flow environments, we extend its routing

strategy with an opportunistic packet scheduling algorithm

and a prioritized channel access scheme, so as to facilitate the

transmission of the packets that are traversing the paths pro-

viding higher performance gains.

To ensure high performance in all the typical WMN appli-

cation scenarios, we need to consider that in these environ-

ments channel quality may significantly vary in time and

space, requiring a high degree of flexibility in the path con-

struction process. Most of the existing solutions perform local

decisions (i.e. hop-by-hop) based on end-to-end principles.

In contrast, we propose a novel routing algorithm that com-

bines end-to-end with localized data, so as to adapt routing

decisions to channel conditions at the time of packet trans-

mission. This ensures higher reliability even in the most chal-

lenging application scenarios.

The key factors determining opportunistic improvements are

not clear yet, making hard to identify the conditions under

which this paradigm outperforms classical unicast routing.

Hence, we propose a novel routing architecture that relies on

a configurable machine learning-based agent to properly se-

lect, at each node, the most suitable routing algorithm within

a set of available solutions, according to network conditions

and traffic characteristics. This solution represents a further

step towards the definition of a wireless diversity-based rout-

ing paradigm able to ensure high performance in all WMN

application scenarios.

xvii



Chapter 1

Introduction

In the last decade, wireless networks have rapidly revolutionized our

lifes, totally changing our way of communication. Recent advances in

wireless technology together with standardization efforts have permitted

the wide-spread deployment of wireless networks to satisfy the increas-

ing desire of being connected anytime and anywhere. Clearly, the high

penetration of wireless networks into every aspect of our daily life has

required the adoption of networking paradigms able to provide flexible,

low-cost and easy-to-deploy connectivity.

A crucial role is played by wireless multi-hop networks, which are

composed by devices that cooperatively relay traffic between nodes that

can not directly communicate. Hence, multi-hop network paths can be

established between any pair of nodes without relying on a pre-existing

network infrastructure or dedicated network devices (e.g. routers,

switches, servers) (CG04b). This distributed networking paradigm has

been originally proposed for military networks. Recently, the advent of

new mobile devices (e.g. smartphones), and the growing interest of the

community in accessing connectivity services have promoted its utiliza-

tion for a variety of innovative application domains, ranging from sensor

networks to vehicular networks and mesh networks (CG04a). In partic-

ular, wireless mesh networks are one of the most attracting applications

of this networking paradigm, due to their inherent capability to reduce
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cost and complexity of network configuration and maintenance. Indeed,

they are static ad hoc networks consisting of dedicated nodes that form

a multi-hop wireless backbone used to share a limited number of fixed

Internet connections with a potentially large number of static or nomadic

users (AWW05).

Nowadays, in order to provide Internet access, cellular networks are

commonly used in scenarios such as metropolitan areas, whereas IEEE

802.11-based WLANs are typically deployed to provide home, commu-

nity or enterprise networking. The former can efficiently cover a wide

area, but achieve low data rates and require the deployment of a complex

network infrastructure, which is expensive and might not be feasible in

challenging environments. The latter permit to provide Internet access

at higher data rates and lower costs, although they are not suitable for

large environments, where the installation of multiple access points may

be expensive and hard to realize in many cases.

The wireless mesh architecture combines the robustness of the wire-

less infrastructure (i.e. mesh backbone) with the flexibility of an incre-

mental deployment. The former is guaranteed by a set of static routers

not subject to strict power constraints and responsible for routing pack-

ets across the network. The latter is allowed by the self-configuration and

self-maintenance capabilities, which permit to deploy a mesh network

also in challenging environments and to gradually extend it as needed.

Thanks to the multi-hop communication paradigm, coverage can be eas-

ily extended without requiring high transmission power, and even a

small set of routers connected to the Internet is sufficient to provide Inter-

net access to a large set of users. For these reasons, WMNs offer several

advantages over existing wireless networking paradigms, such as low

cost, easy of incremental deployment and resilience against node/link

failures. Hence, WMNs are expected to overcome limitations of existing

infrastructure-based networking paradigms (e.g. cellular,Wi-Fi), provid-

ing a suitable solution for a wide range of application scenarios that can

not be directly supported by other existing networks (AWW05).

The peculiarities of WMNs have stimulated a large body of re-

search activities orientated to the re-design of algorithms and proto-
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cols at all layers. Routing is fundamental in order to guarantee ro-

bust and low-overhead communications through the mesh backbone.

The most intuitive approach for routing design is the application of the

routing paradigm originally designed for the wired domain, i.e. the

selection of the minimum-cost path between a source and a destina-

tion (JHM07; CJ03; PBRD03). This choice implies a point-to-point link

abstraction (DADSC04) and relies on the assumption that link-layer re-

transmissions can effectively deal with packet losses. Although this ap-

proach has been the first attempt to make wireless mesh networks a re-

ality, it has recently revealed its limitations when dealing with unreli-

ability and unpredictability of wireless transmissions (BM05; RSMQ09;

CRSK06; CJKK07; RSBA07).

Motivated by the above considerations, the research community has

recently started to investigate radically new routing paradigms, able to

turn the challenging peculiarities of wireless transmissions into an op-

portunity to improve network performance (BM05; RSMQ09; CJKK07;

ZKR07; ZKR08; WLL08; YYW+05; KRH+08; DFGV07). Opportunistic

routing is emerging as one of the most promising approaches to face

performance degradation caused by lossy links and unpredictable chan-

nel conditions. Traditional unicast routing selects a sequence of nodes

that each packet has to traverse to flow from the source to the desti-

nation. This choice usually imposes a critical trade-off: the distance of

traversed links should be short enough to guarantee high delivery rate

and long enough to ensure reasonable packet progress. Moreover, sev-

eral retransmissions are required in presence of high packet loss rate,

which is a common characteristic of wireless links (ABB+04; CRSK06).

In contrast, opportunistic routing defers the selection of the next hop

after packet reception, thus it can take advantage of the multiple trans-

mission opportunities generated by the broadcast nature of the wireless

medium. In fact, each packet may be received by multiple nodes, all

experimenting different channel conditions. This novel strategy creates

multiple paths for each endpoint pair by opportunistically exploiting

long transmissions whenever possible, and relying on short hops in the

other cases, ensuring high packet delivery rate even in presence of lossy

3



links (BM05). Reliability is provided through path redundancy, thus this

routing strategy is mainly intended for bulk data transfers of long-lived

flows, where in-order delivery is not the main concern. In contrast, the

use of the scheme for real-time applications is not straightforward, since

they impose strict timing and packet ordering constraints. Experimental

results (BM05; RSMQ06; CJKK07) have demonstrated the high potential-

ity of this novel routing approach as well as its limitations when dealing

with wireless links peculiarities, motivating the work presented in this

thesis.

1.1 Thesis contribution

This thesis provides a significant contribution to the literature on

diversity-based routing. The first contribution is an extensive overview

of routing schemes for wireless mesh networks that exploit the recep-

tion of the same packet at multiple forwarders to improve network per-

formance. In order to clarify the capability of this paradigm to provide

performance gains, we build a classification of the main approaches, us-

ing it as a roadmap to analyze the design challenges that diversity-based

routing needs to address. Then, we describe the features, advantages

and disadvantages of the most representative solutions proposed in the

literature and discuss the open issues in this research area.

Due to its potentiality, we focus on the opportunistic routing strategy

and identify the main limitations of existing solutions. In order to maxi-

mize throughput performance, we proposeMaxOPP, a novel opportunis-

tic routing algorithm able to select the best forwarder(s) for each packet

at run-time, rather than pre-computing a list of potential forwarders or

imposing guard times before forwarders’ transmissions, as performed in

most of the existing solutions. This flexibility permits to achieve through-

put gain compared to traditional shortest path routing, due to the ability

to leverage all the opportunities encountered during packet forwarding.

In order to improve efficiency in multi-flow scenarios, we propose an

extension of MaxOPP algorithm, named PacketOPP, that combines op-

portunistic routing with opportunistic packet scheduling and prioritized

4



channel access, leading to higher throughput than existing opportunistic

routing protocols.

The wide range and high variability of wireless mesh application sce-

narios entail improved flexibility and adaptability capabilities when de-

signing routing solutions for wireless mesh networks. The multiple links

traversed by a packet may present different loss rates, requiring to adapt

the routing strategy along the whole path to ensure packet progress re-

gardless of the channel characteristics. Indeed, the high variability of

link quality may cause topology and routes instability similarly as mo-

bility in Mobile Ad hoc Networks (aka MANETs). In addition, partic-

ular network conditions may exacerbate this instability, as may happen

not only in challenged environments, such as emergency situations, but

also in unplanned deployments of community-based networks. A rout-

ing algorithm designed for WMNs should be able to adapt the routing

decision for each packet and at each hop according to the channel con-

dition observed during packet transmission. Hence, we extend the basic

opportunistic scheme mentioned above (MaxOPP) and we propose RE-

LADO, which uses localized context (e.g. variability of link qualities in

the neighborhood of the receivers) to adjust transmission redundancy

and increase protocol reliability.

Despite the great deal of effort in investigating opportunistic routing

ability to improve network performance, additional work is necessary to

identify the fundamental conditions under which this routing paradigm

outperforms traditional unicast schemes. Providing a response to the

above question seems very difficult due to the large number of factors

that can impact network performance of such heterogeneous scenarios,

hence we propose a novel routing architecture that allows each node

to efficiently select the most suitable routing protocol according to traf-

fic pattern and channel conditions. It relies on a configurable machine

learning-based agent to identify the most appropriate routing strategy

among a set of available schemes so as to fit the requirements of each

application scenario. The proper selection of the most suitable routing

strategy is essential to achieve high performance in all application scena-

rios.

5



1.2 Thesis Structure

The extensive survey on wireless diversity-based routing protocols is

provided in Chapter 2, introduced by the description and discussion of

WMN architecture and benefits. Chapter 3 describes in details the two

novel opportunistic routing algorithms proposed to maximize through-

put gain: MaxOPP (3.2.1) and PacketOPP (3.3.1). Chapter 4 presents RE-

LADO, the reliable and adaptive extension of our proposed basic oppor-

tunistic scheme. In Chapter 5 the machine learning-based hybrid proto-

col is extensively described and evaluated. Finally, in Chapter 6 we draw

final conclusions and discuss open issues and ideas for future works.

6



Chapter 2

Wireless diversity-based
routing

In this chapter, we provide the fundamental concepts behind the research

activity presented in this thesis. Hence, we firstly describe the WMN ar-

chitecture and discuss the most representative benefits of this promising

technology. Then, we present some of the most common application sce-

narios. Finally, we provide an extensive overview of some of the most

interesting routing approaches for WMNs that explicitly take advantage

of wireless peculiarities. Asmentioned above, this family of routing solu-

tions has recently been proposed as an alternative to the classical unicast

shortest path routing, and has demonstrated its potentiality to signifi-

cantly improve network performance.

2.1 Wireless Mesh Networks

A typical WMN architecture is depicted in figure 1. A set of static

Mesh Routers automatically forms and maintains a wireless backbone,

which constitutes the infrastructure responsible for guaranteeing multi-

hop communications within the network. Any static or mobile user (also

called Mesh Client) can easily connect to the backbone by establishing a

communication link with a nearby mesh router through any radio tech-

7



Figure 1: A typical Wireless Mesh Network architecture.

nology available at both nodes (e.g. Ethernet, 802.11, etc.). Then, each

mesh client uses the multi-hop wireless backbone to connect with other

mesh clients. In some cases, mesh clients can also form peer-to-peer net-

works among themselves and perform routing and configuration func-

tionalities asmesh routers, becoming an active part of themesh backbone

rather than simply connecting to it. In addition, a few mesh routers,

called Mesh Gateways, are also connected to the Internet, enabling the

mesh backbone to easily extend the coverage provided by a limited num-

ber of gateways to all the mesh clients (AWW05). In addition to the Inter-

net, mesh routers can act as gateways or bridges to many other external

networks, such as cellular or sensor networks. The integration of the

WMNwith various existing networks provides users with the potential-

ity to access services in other networks.

The distinctive feature of this innovative networking architecture is

the wireless static infrastructure, which provides significant advantages

8
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over other networking paradigms. First, its static and dedicated nature

ensures robust multi-hop communications regardless of the variable con-

tribution of end-users, in contrast to the pure ad-hoc paradigm, where

connectivity and reliability depends on users’ connection and mobility.

Second, the dedicated infrastructure allows the load on end-user devices

to be significantly lower than that on mesh routers, thus decreasing the

requirements on those devices and consequently their price and power

consumption. Third, the network can easily be extended by incremen-

tally addingmesh routers as needed, increasing reliability and connectiv-

ity. Moreover, a wired connection is required only for a restricted subset

of mesh routers, thus it represents a flexible, cost-effective and scalable

alternative to the expensive addition of base stations or access points to

a wired infrastructure, as previously performed in many contexts (e.g.

Home networking, Enterprise networking, etc.). Finally, the mesh back-

bone is resilient to node/link failures and unexpected events (e.g. link

quality degradation, congestion), thanks to the capability of the back-

bone to provide redundant paths between any endpoint pair. Moreover,

since a relevant part of the traffic is directed towards the Internet, most

of the traffic sources havemultiple destinations within the mesh network

(i.e. multiple mesh gateways), which further increases path redundancy.

The above benefits are some of the most representative of this novel net-

working paradigm, and give an idea on the reason behind the growing

interest of the community on WMN deployments.

WMNs have been originally conceived as a low-cost extension of

wired networks and intended for bulk data transfer. They have permit-

ted to turn the ad hoc networking paradigm into a commodity, departing

from the idea of isolated self-configured networks for specialized appli-

cations (e.g. military) in favor of a multipurpose networking platform

that ensure Internet access at a low cost, meeting users’ requirements

to be connected anywhere and anytime (BCG05). The mixed architecture,

combining fixed and mobile users with a static resilient infrastructure,

has been regarded as a suitable solution to provide a cost-effective high-

speed wireless connection in several diverse application scenarios. In the

following, we briefly present some of the most common applications of

9



the wireless mesh networking paradigm. Interested readers may refer

to (BCG05; AWW05) for a deeper discussion.

Broadband Home Networking: IEEE 802.11 WLANs are the common

solution to provide broadband home networking. To guarantee the

adequate service coverage, the installation ofmultiple access points

is essential, although it is expensive and not practical since all the

traffic between different access points has to pass through the back-

haul network access hub. On the other hand, mesh routers can

simply be located where service coverage needs to be extended, re-

quiring a connection to thewired infrastructure only for a restricted

subset of them. Wireless mesh networking avoids dead zones by

positioning mesh routers as needed, and relying on the mesh back-

bone for internal communication, thus passing through the net-

work access hub only when Internet access is required. Hence,

WMNs offer a more robust and flexible connectivity service.

Community and Neighborhood Networking: The typical community

networking paradigm is based on cables and DSL to gain Inter-

net access, and to the last-mile modem-router wireless connection.

However, also in this scenario traffic has to pass through Inter-

net even in case of community-shared information, thus under-

utilizing network resources. Moreover, adequate service coverage

may require a considerable up-front cost. Wireless mesh network-

ing permits to extend service coverage by installing additional

mesh routers and exploiting the robust multi-hop transmissions

provided by the wireless backbone. Thus, even a large community

can fully benefit from a limited number of Internet access points.

Enterprise Networking: A small network within an office can be con-

sidered as a home network, whereas a larger network connecting

several offices or buildings represents a scenario similar to the com-

munity network described above. Hence, the basic principles pro-

vided earlier can be applied to motivate WMN deployment to pro-

vide flexible and resilient connectivity service for public and com-

mercial networking, e.g. enterprises, airports, shoppingmalls. This
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environments arise additional issues due to the size and complex-

ity of the network topology. However, mesh routers deployment

permits to increase service coverage and communication robust-

ness keeping the cost limited.

Metropolitan Area Networks: Scalability is clearly one of the main is-

sues to be considered in these scenarios. Usually, cellular networks

are used to cover most of the large metropolitan area, offering

lower rate than IEEE 802.11-based wireless networks and impos-

ing high infrastructure-related costs. Cables or optical networks

provide high-speed connections but require additional wireless de-

vices to provide Internet access. Wireless mesh networking offers

reasonable transmission data rates with a limited up-front invest-

ment, and can easily grow as the metropolitan area size increases.

Moreover, it permits to provide connectivity even in environments

where the set of Internet access points is very small.

Transportation Systems: In addition to Internet access points installed

all over the city, municipalities and transportation companies are

often interested in deploying an integrated system able to provide

real-time information to passengers. Not only stations and bus

stops need connectivity services, but also the vehicles can be pro-

videdwith wireless technology. Clearly, low cost and extensive ser-

vice coverage can be easily achieved with mesh routers deployed

all over the transportation system, e.g. buses, trains, stations.

Security/Medical Systems: Both medical centers and surveillance sys-

tems need efficient monitoring, which usually requires to exchange

a high and constant volume of data, due to images and videos. Also

in these scenarios, WMNs offer an economically viable solution to

provide the adequate service coverage without incurring the ex-

tremely high cost of the wired infrastructure.

Disaster Recovery: One of the most attracting feature of WMNs is the

ability to provide resilient connectivity services and Internet access

even in critical scenarios, where infrastructure is very limited and
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deployment can not be planned in advance. Wireless mesh routers

can quickly be deployed even in emergency situations, promptly

offering a network that can significantly help in recovering from

disasters, for instance by providing a real-time view of the scene.

Although this is a typical scenario for MANETs, WMNs offer clear

advantages over that networking paradigm.

Due to their attractive features as well as the wide range of possi-

ble application scenarios, WMNs have received increasing attention and

stimulated a large body of research activities. Indeed, WMNs inherit

most of the traditional challenges of ad hoc networks (CCL03). In par-

ticular, it is widely recognized that performance and reliability of wire-

less multi-hop communications significantly depend on the ability of the

routing protocol to properly select network paths, given the current net-

work conditions. A natural design approach for dealing with the com-

plexities of the routing problem is to simply apply to the mesh domain

the routing paradigms traditionally conceived for wired networks. This

design choice implicitly assumes that wireless links are similar to wired

links, and that they can be represented as point-to-point connections.

For example, most of the routing schemes proposed for generic ad hoc

networks (such as DSR (JHM07), AODV (PBRD03) and OLSR (CJ03))

select a shortest path between a source and destination pair, and for-

ward each packet through a predetermined sequence of network de-

vices, while assuming that link-layer retransmissions provide a reason-

able level of communication reliability. Henceforth, we refer to this cate-

gory of networking protocols as legacy routing solutions. However, wire-

less links are fundamentally different from wired links. First of all, the

wireless channel is an intrinsic broadcast medium that has not clearly ob-

servable boundaries outside of which nodes are always unable to com-

municate. This implies that wireless links with intermediate packet loss

rates, even higher that 50%, are quite common in typical outdoor mesh

environments (ABB+04; CRSK06). Furthermore, wireless medium has

time-varying and asymmetric propagation properties due to a variety of

phenomena, including interference from external signals, wireless prop-

agation impairments and fading (Rap02).
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The above considerations on the peculiarities of the wireless commu-

nications suggest that, in order to improve the performance of WMNs,

it is necessary to consider link qualities when choosing the best route

between a source-destination pair. Indeed, a large body of research has

been carried out in this area and different routing metrics have been pro-

posed. The first metric proposed for wireless mesh networking is the

ETX (DCABM03), which defines the cost of a link between a node and

one of its neighbors as the expected number of transmissions that node

requires to successfully deliver a packet to its neighbor. However, the

implementation of this metric has shown poor performance in multi-rate

environments, and an extension, called ETT (DPZ04), has been proposed,

which defines the link cost as the time a data packet requires to be trans-

mitted successfully. On the other hand, recent work has established that

to correctly represent the quality of a link in a multi-hop environment, a

routing metric should be able to capture other aspects of the wireless do-

main, such as the location-dependent nature of the link-layer contention

(for instance, see CATT (GS08) and ETP (MBLD07) proposals), or the

inter-flow and intra-flow interference (e.g., IRU (YWK06)).

Some of the proposed link-aware routing metrics have been imple-

mented and tested in real network deployments, and experiments have

shown that they can achieve significantly higher performance compared

to a classical shortest-path routing algorithm. However, all these legacy

routing protocols pre-compute one or more minimum-cost paths (see,

for instance, multi-path schemes described in (MGLA05; GK04) ) for

each source-destination pair. Experimental evidence (BM05; KRH+08;

CJKK07) has also proved that using predetermined paths can be inef-

fective in dealing with unreliable and varying wireless environments.

For these reasons, recently researchers have been investigating radically

new routing approaches, which exploit the multiple transmission op-

portunities that the broadcast nature of the wireless medium creates.

More precisely, whenever a packet is transmitted, it is simultaneously re-

ceived by multiple nodes, which may experience significantly different

channel conditions. This property is called multi-user diversity because it

refers to a type of spatial diversity existing across multiple receivers (or
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users) (DADSC04; QB03). This intrinsic diversity of the wireless environ-

ment is not a drawback per se, but it may cater for new design principles

and alternative routing paradigms. Several protocols can be included in

this novel class of routing strategies that exploit receptions of the same

packet at multiple nodes to increase network performance compared to

legacy routing. In this chapter, we give a comprehensive review of two

of the most promising design approaches: opportunistic forwarding and

network coding.

Opportunistic routing algorithms implement forwarding decisions in

a hop-by-hop fashion, and they defer the selection of the next hop for a

packet until they have learnt the set of nodes which have actually re-

ceived that packet (BM05). This permits to optimize the selection of the

packet forwarder(s) and to discover on the fly the best network path.

This strategy clearly departs from the design principles of legacy rout-

ing, which assigns a predetermined next hop to each packet. It is also

important to note that the term “opportunistic” refers to a wider class of

routing algorithms based on the common idea of leveraging any trans-

mission opportunity rather than imposing the packet transmission along

a predetermined path. For instance, opportunistic routing is also used

in intermittently connected networks (PPC04). However, in that context,

communication opportunities are generated by mobility, which enables

pair-wise contacts between nodes. In contrast, in this chapter we limit

ourselves to static networks, where transmission opportunities rely on

the variability of channel conditions and on the broadcast nature of the

wireless medium.

The second design principle we analyze in this chapter is wireless

network coding, which allows the network nodes to combine/encode

the data packets they receive, so as to compress data information and to

increase the innovative content carried into each packet (KRH+08). At

the same time, network coding may increase reliability of packet trans-

missions because each encoded packet mix information about multiple

packets, thus increasing the probability that they would reach their des-

tination. It is also useful to note that the boundary between network cod-

ing and opportunistic forwarding may be blurred in some cases, when
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both approaches are jointly used. In these cases, we will prefer the term

hybrid routing to point out that network coding and opportunistic for-

warding are integrated into a unified routing scheme (CJKK07).

The above discussion provides only a brief insight into the reasons

of performance gains achievable with opportunistic forwarding and net-

work coding. The objective of this chapter is to analyze in a thorough

way the various conditions in which these two routing paradigms may

provide the most significant performance improvements.

2.2 Background and Taxonomy

In this section, we overview the general routing approaches that can

be adopted to take advantage of opportunistic forwarding and network

coding in WMNs. Specifically, we introduce three main routing cate-

gories and several related sub-categories. Then, we describe the repre-

sentative features, benefits and design challenges of these three classes

of routing approaches.

2.2.1 Opportunistic routing

The opportunistic-based routing concept considered in this study is char-

acterized by two main features: i) any node overhearing a packet trans-

mission is involved in the forwarding process, and ii) the selection of

the next forwarding node(s) is deferred after packet reception (BM05).

As previously explained, legacy routing algorithms rely on transmitters

that select one or more designated next hops before delivering the pack-

ets, which implies that each packet must know a priori its next relay(s).

However, this design principle borrowed from the routing protocols for

wireline networks, does not appear suitable for wireless networks. In-

deed, it masks the broadcast property of wireless communications un-

der an artificial point-to-point link abstraction (DADSC04). On the con-

trary, opportunistic routing fully embraces the broadcast nature of wire-

less medium because whenever a node is willing to deliver a packet, it

performs a broadcast transmission and, then, the nodes that successfully
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receive the packet autonomously select the “best” next forwarder. This

allows each packet to dynamically construct the optimal route to reach

its intended destination according to the link conditions at the time a

packet transmission is performed.

Intuitively, the main benefit of opportunistic-based routing is to lever-

age transmission opportunities that unexpectedly reach far nodes, taking

advantage of any transmission progress while mitigating the negative

impact of failed transmission attempts. Moreover, this strategy allows

the destination node to receive packets that have been forwarded by dif-

ferent relays, thus traversing different network paths, fully exploiting the

multi-user diversity property. In contrast, legacy routing would require

retransmitting any packet that does not reach the next hop for which it

was intended, as well as the preliminary construction of one or multiple

network paths connecting the source/destination pair.

For a better understanding of the inherent benefits associated to op-

portunistic forwarding, let us consider the simple topology illustrated

in Figure 2(a), firstly analyzed in (BM05). Let us suppose that the best

route from source node S to destination nodeX selected by a traditional

shortest-path routing is S-B-D-X . If a packet sent by S is correctly re-

ceived by nodeA but not nodeB, then it has to be retransmitted by S un-

til it reaches the intended next hop B. This is the case of a transmission

falling unexpectedly short. Another possible situation is a packet sent

by S that is correctly received by both node B and node C. Although

node C is closer to packet destination than node B, it is not allowed to

relay the packet. On the contrary, opportunistic routing techniques take

advantage of any of these situations to maximize the progress towards

the packet destination that each transmission may provide. Moreover,

retransmissions are avoided whenever possible, i.e., if there is any al-

ternative forwarding possibility. Thus, by avoiding wasting of network

resources through useless transmissions, it is possible to significantly in-

crease the overall network throughput.

Another interesting benefit of opportunistic routing is the ability of

combining many weak physical links into one stronger virtual link. As

shown in Figure 2(b) for a diamond-shaped topology, the sender has a
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(a) Linear topology

(b) Diamond topology

Figure 2: Illustrative topologies clarifying the inherent benefits of
opportunistic-based forwarding.
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low delivery probability to all its n neighbors, while they have a high

probability to successfully deliver packets to the destination. In this set-

ting, it may be more advantageous to broadcast a packet in order to in-

crease the probability that at least one of the possible one-hop neighbors

correctly receives it. After the packet reception, the “best” node among

those that received the packet will be responsible for further forwarding

it to the destination. On the other hand, legacy unicast routing strategies

would select in advance one of the available neighbors as the exclusive

relay for the communications between the source and the destination.

This may lead to many retransmissions before the source would be able

to successfully deliver a packet to the intended next hop.

At this point, it should be clear that this capability of taking advan-

tage of any transmission opportunity that arises in the network is the

principal root of the performance improvements provided with oppor-

tunistic forwarding. However, this flexibility comes at the cost of an in-

creased design complexity. In particular, the key technical challenges to

be addressed when designing a new opportunistic protocol for WMNs

are the following.

How to select the next forwarding node(s)? In principle, all the network

nodes may cooperate in the forwarding process, and be considered as

candidate relays. The selection of the next forwarding node(s) among the

candidate relays should maximize the transmission benefits, measured

in terms of the selected performance metric (e.g., reliability, throughput

or the end-to-end delay of the flow). However, the selection of the best

forwarding node(s) requires the implementation of a coordination pro-

cess among the candidate relays, which may require explicit exchange

of state information. It is intuitive to note that the coordination over-

heads and complexities increase with the number of candidate relays in-

volved in the coordination process. For these reasons, most of the exist-

ing solutions for opportunist-based routing relax the constraint of “pure”

opportunism, and assume that the flow source specifies in advance a

subset of candidate relays for each packet or block of packets, which are

the only nodes allowed to participate in the forwarding process. Var-

ious schemes have been proposed for the selection of candidate relays
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based on some notion of “closeness” of the nodes to the packet destina-

tion (BM05; DFGV07; ZWNL06). In general, these mechanisms assume

that there is an underlying link-state routing protocol that constructs a

map of the link qualities in the network, permitting to compute the ap-

proximate cost of using a node as forwarder to reach the intended packet

destination (according to a given routing metric). Then, the identities of

the selected candidate forwarders are listed in the packet header. Thus,

whenever a node receives a packet, it first checks if it is in the forwarder

list of that packet, in which case it further processes the packet; otherwise

it discards it. This strategy keeps the coordination overhead limited, as

far as the number of participants is kept small. To further facilitate the

selection of the next forwarding node(s), the list of candidate forwarders

may be also ordered by assigning to each node a fixed priority value to

be used during the forwarding process. A common design choice is to

derive the node priority from the distance between that node and the

packet destination. In the following, we will further elaborate on the role

of prioritization in the implementation of an opportunistic forwarding

process

When relays should forward a packet? After selecting the candidate for-

warders, it is necessary to establish the time at which the packet should

be forwarded. In fact, differently from classical routing, where packet

forwarding at the next hop node should immediately follow the recep-

tion of the packet, in general opportunistic routing solutions introduce

forwarding delays. The main reason for this design choice is that imper-

fect coordination among candidate relays, as well as packet losses, may

cause multiple duplicate transmissions of the same packet frommultiple

nodes. To avoid this unnecessary waste of network resources, a simple

solution is to establish a scheduling among the candidate relays, and to

set different forwarding timers at the selected forwarders. For instance,

many schemes use the differentiation/prioritization of the candidate re-

lays to assign fixed and constant forwarding timers to each of the po-

tential forwarders (BM05; RSMQ06). Although the overhead for such a

scheduling is high, each node may be aware of its own forwarding time,

without the need of a real-time agreement with the other nodes. Then,
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overhearing of other nodes transmissions or explicit exchange of state in-

formation can be used to cancel transmissions of packets already deliv-

ered by higher priority nodes. To summarize, scheduling techniques en-

sure the effective suppression of most duplicate transmissions at the cost

of an increase in packet delays and protocol complexity, which are nec-

essary to establish node scheduling without requiring explicit signalling

before each transmission. An alternative approach more appropriate for

delay-constrained traffic is to implement randomized schedulers, per-

mitting each node to probabilistically decide if continuing forwarding

the packet towards the destination (YYW+05). However, in this case,

additional mechanisms are needed to control the level of redundancy

in packet transmissions, such as rate control mechanisms or methods to

limit the maximum number of forwarders for each packet traversing the

network.

How to acknowledge packet reception? Broadcast transmissions are the

basis of any opportunistic routing scheme. However, broadcast frames

do not implement link-layer acknowledgements. Thus, acknowledg-

ment mechanisms should be introduced, either at the routing or link

layer, to provide transmission reliability. Two options can be consi-

dered: end-to-end acknowledgements generated by the final destina-

tion (BM05), or hop-by-hop acknowledgements generated by the for-

warders (RSMQ06). The former reduces overhead but it may lead to

higher delay since the forwarding progress depends on acknowledge-

ments generated by the destination. The latter is in contrast with the

broadcast transmission principle, even though it contributes to reducing

delay and ensuring correct packet reception. Note that for schemes op-

erating on blocks of packets rather than individual packets, acknowledg-

ment information can be easily grouped together, limiting the number of

needed acknowledgment messages. Usually, in this case map-based ap-

proaches are adopted to implement selective acknowledgment for group

of packets (BM05). However, these techniques add significant overhead

to packet headers, and they require a careful design and tuning.

How to control congestion? Generally, most of the link-layer technolo-
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gies transmit broadcast frames without using congestion-aware access

methods. Furthermore, duplicate transmissions and multiple flows may

exacerbate the collision problem. Thus, the surge of congestion is a crit-

ical aspect to be taken into account during the forwarding process. This

is still an open issue because most of the current work on opportunis-

tic routing has focused on the design of mechanisms to avoid redun-

dant transmissions, rather than controlling the broadcasting rate. For in-

stance, credit-based schemes have been proposed to control the spread-

ing of packets throughout the network (YYW+05), or basic window-

based techniques have been used to limit the rate with which new pack-

ets are injected in the network (RSMQ06). However, opportunistic rout-

ing solutions generally forward data packets based only on link condi-

tions and routing metrics that reflect the cost to reach the packet destina-

tion. On the other hand, the forwarding process should take into account

typical burstiness of data flows and the contention among multiple ses-

sions (RSMQ06). This would require up-do-date congestion information

to be spread across the network, which arises additional issues.

Keeping in mind the main points discussed above, we believe that a

key aspect in the design of opportunistic routing protocols is the strategy

adopted for the coordination of the candidate relays during the forward-

ing process. In our view, this is an appropriate aspect to be considered

when classifying existing solutions. Thus, we divide opportunistic rout-

ing schemes into scheduled and not-scheduled algorithms. The first cate-

gory of solutions identifies a prioritized subset of potential forwarders

and specify their scheduling. This list specifies not only the nodes al-

lowed to participate in the forwarding process, but also the order in

which they have to transmit, thus their scheduling. On the contrary, not-

scheduled schemes allow each node to autonomously decide whether

to forward a packet and when to do it. Clearly, a subset of potential

forwarders may still be provided in order to simplify the forwarding

process, but without establishing in advance a prioritization. The most

representative schemes belonging to the above two sub-categories are

briefly described in Section 2.3.1.
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2.2.2 Coding-based routing

The basic principle behind network coding is that routers can combine

the information to be transmitted so as to deliver multiple data pack-

ets through a single transmission. More precisely, let us denote as native

packets the original non-coded packets that are initially generated by the

source node. Then, a coded packet is a combination of the native pack-

ets, which the destination node can decode to reconstruct the set of ini-

tial packets. Potential advantages of network coding were first demon-

strated in the pioneering paper by Ahlswede et al. (ACLY00), which

considers multicast transmissions in wired networks. In that paper it

is shown that network utilization can be enhanced if network nodes do

not act as classical switches, i.e., routing or replicating packets, but as en-

coders that mix the information they receive from all the input links and

send it to all the output links. The authors demonstrate that network

coding allows to achieve the multicast capacity, which is the maximum

rate at which a sender can communicate common information to a set of

receivers. Moreover, Li et al. (LY03) show that linear coding is sufficient

for the above condition to hold, while Ho et al. (HMS+03) demonstrate

that this is true also when nodes pick random codes.

Network coding benefits are not confined to multicast transmissions

in networks with point-to-point links. Network coding techniques nat-

urally extend to wireless networks by taking advantage of the broadcast

nature of the wireless channel (FKM+07). In wireless networks, nodes

can overhear neighbors’ transmissions. Hence, each node may be able to

collect many packets to be coded together, thus increasing the efficiency

of the forwarding process in many cases. To better explain the perfor-

mance gains obtained by employing network coding techniques in the

context of wireless networks, in the following we illustrate a simple cod-

ing example. To this end, let us consider the chain topology depicted in

Figure 3(a), where node A wants to send packet pA to node B, and node

B wants to send packet pB to node A. In this case, intermediate node R

must forward both packets received by node A and node B because they

can not directly communicate to each other. Thus, with legacy routing,
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(a) no coding

(b) coding

Figure 3: A simple example of achievable coding gain in wireless environ-
ments.

four transmissions are needed in order to deliver one packet to both des-

tinations. On the other hand, as shown in Figure 3(b), network coding

allows node R to broadcast a single coded packet, say pX , generated by

applying the XOR operator to the native packets (i.e., pX = pA ⊕ pB).

Then, node A can easily recover packet pB since it locally stores a copy

of packet pA and pA ⊕ pX = pB , while node B can reconstruct packet

pA with analogous operations. In this way, three transmissions are re-

quired instead of four, with a 33% improvement of network capacity.

Note that the overall coding gain depends on both the network topology

and the traffic patterns. For instance, a similar reasoning can be applied

to a cross-based topology, in which four flows intersect the central node

R. Then, node R can combine the four packets received by its neighbors

into one coded packet. Assuming overhearing among the neighboring

nodes, four nodes are able to exchange packets in five total transmissions

instead of eight, with a 60% improvement of network capacity. Hence,

coding gain is more significant in larger networks, where more coding op-

portunities arise. In general, a coding opportunity may be defined as the
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possibility of creating a coded packet that can be successfully decoded

from the intended destinations of the native packets.

Another important feature of network coding is the ability of pro-

viding reliability with low complexity, which is particularly relevant in

lossy environments. Indeed, packet loss is a not negligible issue in wire-

less networks, and retransmissions are the simplest method to ensure

reliability. However, simplicity comes at the cost of increased congestion

and higher collision probability due to retransmitted packets. In this con-

text, network coding offers a more convenient alternative to retransmis-

sions of original packets by spreading information about several packets

through their combination. This leads to a certain level of reliability in a

more efficientmanner. Even in case of packet loss, nodesmay still be able

to recover the original packets without asking for any retransmission.

Although the basic principles of network coding are intuitive, there

are critical aspects to be considered when developing a coding-based

routing solution, which can be summarized as follows.

Which packets should be coded together? To maximize coding gains it

is necessary that each node receiving coded packets is able to recover all

the original native packets. This goal can be achieved by imposing some

constraints on coding decisions taken by every node. The coding pro-

cess regards which packets must be coded together and how many coded

packets must be sent (i.e., how much redundancy must be guaranteed).

A primary basic distinction is between intra-flow and inter-flow coding

styles. If a network coding technique is intra-flow, then each node must

encode packets together only if they belong to the same flow (GHK+07).

Thus, packet selection is mainly driven by the flow membership. On the

other hand, if a node can select packets intended for different next hops,

the choice is more complex. Whenever a node is willing to send data, it

must select the subset of native packets that maximize a certain metric,

which should reflect the possibility for each neighbor to recover native

packets (KRH+08; RSW+08). As explained later, this is strictly related to

the encoding scheme used to code packets together. Finally, several tech-

niques have been proposed to improve encoding efficiency. For instance,

a common approach is to group packets into blocks and to permit only
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the coding of packets belonging to the same block. This solution aims to

find a trade-off between network coding benefits and complexity.

How to code packets together? Computational complexity is a crucial

issue in network coding, and selection of coding techniques must con-

sider the impact both in terms of encoding and decoding complexity,

and in terms of minimum number of coded packets needed to recover

the original flow. In the example presented above, coding is performed

through XOR operations, which are easy to implement. However, the

most frequently used approach for encoding packets is through random

linear codes (LY03; HMS+03). Specifically, given a set of k native packets

p1, . . . , pk, the coded packet p′ can be created as p′=
∑k

j=1 cjpj , where cj

are random coefficients extracted from a certain finite field Fq
1. Random

linear codes have some nice properties. First of all, checking for inde-

pendence between coded packets requires only simple matrix algebra,

and decoding can be done inverting the matrix of coding vectors. Fur-

thermore, a linear combination of coded packets is also a linear combi-

nation of the corresponding native packets, which greatly simplifies the

re-encoding process at intermediate forwarders. Several theoretical stud-

ies on properties of random linear coding have been conducted, demon-

strating the potentiality of this technique, both in lossless and in lossy

environments (LMK05).

When coded packets should be generated? Many factors affect the selec-

tion of the time at which coded packets should be generated. In general,

a coded packet should be created only when there is a coding oppor-

tunity, i.e., the node has enough packets to code together. However,

a node may have packets to send but no coding opportunities, thus it

may decide either to forward native packets or to further delay transmis-

sions waiting for receiving additional packets. Clearly, this design choice

represents a trade-off between delay and achievable coding gain. Note

that also buffer constraints must be taken into account to decide how

long packets useful for encoding should be stored by each node. Fur-

1A finite field Fq , or Galois Field GF (q), contains a finite number q of elements, where
q = pn, p is a prime number and n is a positive integer. In general, for network coding
purposes p=2.
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thermore, the coding algorithm should ensure that intermediate nodes

have received enough coded packets to decode their corresponding na-

tive packets (KRH+08; NSZN06). For instance, intermediate nodes may

want to reconstruct native packets to refresh the packet stream by replac-

ing coding coefficients and re-encoding incoming packets. In addition,

coded packets may include packets from multiple flows, and intermedi-

ate nodes may want to decode incoming packets to avoid that data is for-

warded to areas where there are no interested receivers. Thus, the broad-

cast rate of coded packets should be adjusted to ensure that the decoding

probability is sufficiently high not only at intended destinations but also

at intermediate forwarders. Finally, transmissions of coded packets can

also be driven by a trade-off between the desired level of data redun-

dancy and the achievable coding gain (RSW+08). Specifically, coding is

generally used to minimize the total number of transmissions needed

to carry packets across each wireless hop. However, in case of high loss

rates, it may be desirable to increase redundancy by injecting more coded

packets in the network, so as to ensure that the next hop forwarders re-

ceive enough packets to be used during the decoding process, even at the

cost of increasing the number of transmissions required to communicate

the same information.

Several solutions exist to deal with the various issues described

above, and to fully exploit the coding benefits. We believe that the key

characteristic pertinent to network coding that can be used to discrimi-

nate between coding-based routing schemes is the set of rules employed

to decide which packets code together. To this end, the distinction be-

tween the two complementary approaches of intra-flow and inter-flow

network coding, represents an essential principle for the network cod-

ing classification. The most representative schemes belonging to these

two sub-categories are briefly described in Section 2.3.2.

2.2.3 Hybrid routing

From the above discussion we can conclude that opportunistic forward-

ing and network coding are two complementary means of taking ad-
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Figure 4: An example of potential advantages of hybrid schemes.

vantage of the broadcast nature of wireless channel, as well as to ex-

ploit the multi-user diversity of typical wireless environments. It is also

intuitive to anticipate that coupling these two approaches into a hybrid

paradigm may permit to obtain significant improvements, originated by

joining advantages of both techniques. Moreover, this coupling can of-

fer an implicit solution to some limitations of the two paradigms. For

instance, one of the main issues of opportunistic routing is the schedul-

ing overhead for node coordination. Classical opportunistic forwarding

deal with this issue by introducing node prioritization and forwarding

delays, or exchanging state information between candidate relays. In

contrast, network coding may provide an elegant method to partially

eliminate this complexity. In principle, nodes do not need to know ex-

actly which packets are stored by each neighbor and which packets are

sent by the other forwarders. Indeed, if n native packets have to be sent,

then any set of n different coded packets is sufficient to recover the orig-

inal set. Hence, every forwarder may autonomously generate its own

coded packets, since any of them contains information about several na-

tive packets, and it may contribute to the flow progress towards the des-

tination. Clearly, this solution carries also some network coding issues

to the opportunistic setting. In theory, each forwarder can create and

broadcast coded packets, but this may lead to a high number of unnec-

essary transmissions. A possible solution is to allow node to code and

forward only innovative packets. However, the formulation of the inno-

vative property depends on the specific scheme, and we describe it in

details in Section 2.3.3.
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In order to better clarify the advantage of the hybrid paradigm, let

us explain it with an example. In the chain topology shown in Figure 4

source node A should send two packets, p1 and p2, to the destination

node B. Let us assume that a routing protocol has selected the two-

hop path A-R-B because the direct communication A-B is too “weak”,

e.g., affected by a high loss probability or using a slow transmission

rate. Thus, packets p1 and p2 will be sent to intermediate node R, which

should further relay them to the intended destination. Now, let us as-

sume that relay R receives both packets p1 and p2 correctly, and that

node B can directly overhear at least packet p1 from node A. With legacy

routing p1 correct reception at node B is useless, because the packet is

discarded. In contrast, opportunistic routing permits to take advantage

of this unexpected reception, reducing the number of packets that relay

Rmust forward to nodeB. However, if only the opportunistic paradigm

is employed, node R would first need to communicate with B to know

which packet(s) it misses and, then, send it(them). On the other hand,

by exploiting coding techniques, R can broadcast linear combinations

of the two packets, allowing B to recover the missing packets potentially

requiring a smaller number of transmissions andwithout exchanging ad-

ditional control messages. For instance, if R broadcasts p1⊕p2, then only

one transmission from R is sufficient to successfully complete data ex-

change. Clearly, after recovering the missing packet, B has to send an

ACK to notify R of its successful reception, as it is required also in the

legacy case. In summary, this basic case illustrates the main principle of

a hybrid scheme. Nodes perform broadcast transmissions of coded packets

without having a designated next hop. Clearly, specific details depend

on the chosen approach, but the above considerations hold in general.

When designing a hybrid scheme, most of the technical issues are

inherited from the individual techniques. Below we focalize only on the

critical issues that are specifically related to the hybrid paradigm.

Which packets should be coded together? Although this issue has been

alreadydiscussed in the network coding context, it should be revisited by

taking into account the peculiarities of opportunistic forwarding. More

precisely, using legacy routing each packet transmission has a designated
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next hop node. In this case, the coding process may easily discover,

through probabilistic considerations and overhearing or explicit signal-

ing, which are the packets available at the different destination nodes.

Thus, each relay node can locally decide which coded and native pack-

ets should be transmitted to maximize some metric (e.g., throughput,

packet delivery rate, etc.) across all the intended next hop nodes. In

contrast, when the path is constructed hop-by-hop at the packet recipi-

ents, the concept of designated next hop is not valid anymore, thus dif-

ferent coding strategies should be employed. In general, when oppor-

tunistic routing and network coding are used together, the aim should

be to spread coded packets across the network in order to increase cod-

ing opportunities rather than sending (native) packets to a specific subset

of nodes (CJKK07). To simplify this coding decision process, intra-flow

coding is commonly used in existing hybrid routing schemes.

When a node should stop sending packets? From the point of view of

opportunistic routing, a relay node should keep transmitting a packet

until it is sure that at least one node closer to the destination has re-

ceived it. On the other hand, network coding imposes a more demand-

ing constraint because a minimum number of independent coded pack-

ets must be received at the destination node for ensuring correct decod-

ing (CJKK07). In principle, a forwarder may keep transmitting stored

packets to increase levels of redundancy and improve successful decod-

ing probability at the destination node. However, an efficient stopping

rule is needed to achieve those goals while ensuring tolerable delays and

overheads limited. To facilitate the protocol design, usually the coding

process operates on blocks of packets2. Thus, the stopping rule reduces

to the policy used to stop processing a certain group of packets and start

with the next block. Two general approaches can be identified. The first

idea is that the destination directly sends a message to the sender when

it receives enough packets from a certain block, so that the sender starts

processing a new block and informing all the other nodes to stop cod-

ing packets of the previous block (CJKK07). Thus, the destination drives

2The block here is intended as a group of consecutive packets belonging to a certain
flow. In practice, each coding approach has its own “grouping” policy.
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coding decisions at each hop, according to its decoding goals. An alter-

native strategy entails that every node is in charge of ensuring decoding

at its own neighborhood. The key point is that the source and all the

intermediate nodes move from one block to the next one based on the

current situation of their neighbors, thus each node contributes to en-

sure the local complete and correct reception of a block, which in turn

guarantees correct decoding at the destination itself (KHW08). The de-

tails of different solutions and possible enhancements are discussed in

Section 2.3.3.

The classification of hybrid based routing solutions is slightly trickier

than in the other two routing categories previously presented. Clearly,

key features are derived from the basic “components”, since a hybrid

solution is intrinsically opportunistic and coding-based. Thus, in princi-

ple we could think to derive a taxonomy for this class of solutions from

the same criteria used for its building blocks. From the opportunistic

side, the categorization in scheduled and not scheduled approaches loses

its validity in the hybrid case, since network coding partially eliminates

the need of node scheduling. Thus, as for coding-based approaches, we

could opt for a classification based on flow-membership constraints in

the native packets selection process. However, as stated above, inter-

flow coding is perhaps harder in a hybrid context, where the notion of

predetermined next hop node is not valid. In our vision, hybrid based

routing can be better classified based on the used stopping rule. Specif-

ically, we categorize as destination-based the hybrid schemes that rely on

the destination to drive coding decisions at each hop. In contrast, we de-

note as neighborhood-based the hybrid schemes that move the focus of cod-

ing decision to the neighborhood rather than the destination. Hence, the

key difference between destination-based and neighborhood-based coding is

that the former requires notifications from the destination about its cur-

rent situation, while the latter rely on local context discovered through

overhearing and, in some cases, explicit signalling. The most representa-

tive schemes belonging to these two sub-categories are briefly described

in Section 2.3.3.
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2.3 Overview of representative solutions

In this section, for each of the three routing categories analyzed in Sec-

tion 2.2, we overview the design choices and operations of some of the

most representative schemes. For the sake of clarity, Figure 5 illustrates

the proposed taxonomy and lists the solutions that will be analyzedmore

in details in the following.
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Figure 5: Taxonomy of routing approaches for WMNs taking advantage of
multi-user diversity.

2.3.1 Opportunistic routing

As reported in Figure 5, opportunistic-based routing solutions are di-

vided into two sub-categories: scheduled approaches and not scheduled ap-

proaches. The following two sections outline the most relevant schemes

proposed for both approaches.
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Scheduled schemes

Schedule-based opportunistic routing originates from the seminal paper

from Biswas and Morris, who have proposed the Extremely Opportunis-

tic Routing protocol (ExOR) (BM05). To reduce the coordination over-

head between candidate relays, in ExOR the packets to be transmitted

are grouped into batches according to their destination node. For each

packet of the same batch, the source node selects a subset of optimal

candidate forwarders, which are prioritized by closeness to the destina-

tion. The closeness property of a node is evaluated employing the ETX

metric (DCABM03), i.e., estimating the average number of transmissions

needed to reach the destination from that node along the lowest-ETX

path. Thus, the implicit assumption underlying ExOR design is that a

link state routing protocol is also running in parallel to the opportunistic

routing to efficiently collect links’ delivery probabilities.

The list of selected forwarders, ordered by node priority, is added to

the header of each packet broadcasted by the source. Hence, each node

receiving a packet knows whether it has to participate in the forwarding

process or not, and its position in the forwarding schedule. Due to inter-

node loss rates, each candidate forwarder will successfully decode only

portions, called fragments, of the packet batch it has received. In order to

distribute information on which fragments each forwarder has received

and rebroadcasted, each packet also contain a batch map. For each packet

in the batch, this map indicates the highest-priority node known to have

received a copy of that packet (BM05). Then, as the packet progresses

towards the destination, the batch map contained in the packet is used

to update the local batch maps stored in the receiving nodes, which list

the IDs of the node closest to the destination known to have transmitted

that packet. A forwarder is allowed to broadcast only received pack-

ets that its local batch map indicates have not been forwarded by any

other higher priority node. Moreover, to avoid simultaneous or dupli-

cated transmissions by different nodes, whenever a forwarder receives a

packet it sets a timer, called forwarding timer. This timer is an estimate of

the time that would be necessary to higher priority nodes to transmit the
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remaining packets in the batch. Then, only when the node’s forwarding

timer elapses, it can rebroadcast the packets it has received, andwhich its

local batch map does not indicate as received by higher priority nodes.

It is now evident that the batch maps contained in the headers of

transmitted packets play a crucial role in ExOR. On the one hand, they

are used as a sort of gossip mechanism to disseminate reception infor-

mation from higher priority nodes to lower priority nodes. On the other

hand, batch maps are used also for the acknowledgement process. More

precisely, when the destination receives a new packet it sends back to

the source its batch map using a legacy unicast routing. In this way,

the source knows when the destination has received most of the current

batch, so that it can pass to transmit a new batch. However, ExOR only

guarantees to transmit 90% of a batch using opportunistic forwarding,

while the remaining packets are sent with legacy unicast routing.

The strict schedule ExOR establishes between candidate forwarders

is somehow equivalent to a slotted polling system. As shown in (BM05)

through experiments in an urban mesh trial, the ExOR scheduling is ef-

fective in ensuring that each packet is retransmitted aminimal number of

times, and in limiting the probability that multiple forwarders rebroad-

cast the same packet. However, the simplicity of this scheme comes at

the cost of its inefficiency. First of all, the largest the set of candidate

forwarders and the longer is the cycle of the scheduler. Furthermore,

since candidate forwarders can be out of each other radio range, ExOR

fixes a minimum value for the forwarding timers. Thus, even if a node

has no batch fragments to transmit, the scheduler blocks the lower pri-

ority nodes. Finally, the scheduling duration is not dependent on the

number of packets to transmit. Thus, the scheduling overhead would

be excessive for a relatively small number of packets. This is the rea-

son why in the original ExOR design the last 10% of packets in a batch

are routed to the destination using legacy link-state routing. In addition,

ExOR mandates the use of large batches of the order of tens of pack-

ets. This also implies that ExOR works well only with persistent flows,

which always generate the minimum number of packets needed to fill

a batch. In addition, the use of ExOR-style scheduling with multiple
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concurrent flows, which can induce conflicting forwarding timers, is not

specified in (BM05). Nevertheless, ExOR approach has raised very high

interest in the research community, where many groups started to work

on solutions based on the same principle: to abandon the concept of pre-

determined paths in favor of paths constructed hop-by-hop.

An interesting variant of the ExOR solution is the Simple Opportunis-

tic Adaptive Routing protocol (SOAR) (RSMQ06). Similarly to ExOR,

SOAR employs a scheduling scheme relying on priority-based forward-

ing timers to avoid duplicate and simultaneous transmissions by differ-

ent nodes, being ETX the metric used to estimate node’s closeness to the

destination, and its related priority. However, the strategy used by SOAR

to establish the schedule among the candidate forwarders is radically dif-

ferent from ExOR. First of all, SOAR does not use batch maps to explicit

signal among candidate forwarders on packets’ reception status, but it

employs overhearing to coordinate forwarders’ transmissions. More pre-

cisely, whenever a node overhears a transmission from higher priority

nodes, it will cancel its forwarding timer and remove that packet from

its queue, thus avoiding duplicate transmissions. To ensure that the can-

didate forwarders are close enough to overhear each other with a high

probability, SOAR avoids diverging paths and uses only network paths

in close proximity to the shortest route between the source and destina-

tion. Moreover, SOAR abandons the use of packet batches and operates

on individual packets. Since packets are not organized in batches, also

the computation of forwarding timers is simpler in SOAR than in ExOR

because the former can use constant timers proportional to the node pri-

ority, while the latter employed variable timers whose duration depends

on the number of packets buffered in higher priority nodes and the re-

ceiving data rate.

Another aspect that differentiates SOAR from ExOR is the use of hop-

by-hop retransmissions, which are driven by network-layer ACKs gener-

ated by the highest priority forwarder that received the packet. However,

to increase the reliability of the forwarding process and minimize useless

retransmissions, SOAR uses a combination of various ACKmechanisms,

including selective ACK to acknowledge all recently received packets,
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as well as piggyback ACKs and ACK compression to reduce ACK over-

head. Finally, although SOAR does not employ packet batches, it allows

each forwarder to transmit a new packet even if there are other outstand-

ing unacknowledged packets. To this end, SOAR uses a classical sliding-

window protocol to control the maximum number of outstanding data

packets. Note that in (RSMQ06) it is proposed to use a small window

(only three packets) to limit the transmission delays.

The Multi-Channel ExOR protocol (MCExOR) (ZKR07) apply oppor-

tunistic routing to multi-channel wireless networks. Similarly to ExOR,

this protocol uses a prioritized set of candidate forwarders. However, the

multi-channel extension requires the computation of one set for each ra-

dio channel. To decouple routing from channel assignment, in MCExOR

it is assumed that the assignment of channels to nodes is carried out in-

dependently of packets flows. In this case, each node is simply charac-

terized by its home channel, i.e., the channel it is operating on.

Since MCExOR leverages the ExOR design principles, the most im-

portant task it has to perform is the selection of the candidate forwarder

set. However, while ExOR employs a simple and centralized selection

rule, i.e., a candidate forwarder is any node in the network that would be

able to transmit at least 10% of the packets in a batch, MCExOR defines

a more sophisticated and localized heuristic. First of all, in MCExOR a

source of a data flow selects among its neighbors the nodes that have

an expected cost of delivering a packet along the lowest-ETX path to the

destination lower than its own. Then, the selected neighbors are grouped

according to their home channels. Finally, among each group, all the pos-

sible combinations of candidate forwarders are considered. Each of these

subsets has an associated cost, which depends on the average number of

transmissions that would be needed to reach the destination in case that

set of forwarders would be used3.However, the optimal set is not the one

that simply has the minimum metric, but the one that also minimizes

self-interference, which is caused by the use of the same radio channel at

each hop along the path. Thus, a multi-channel environment introduces

3To compute the optimal set in a more efficient way, MCExOR assumes that only the
first hop in path is opportunistic.
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a further dimension in the routing process because the goal now is to

reduce not only the number of data transmissions, but also interference

among packets belonging to the same flow.

Once the source has selected its set of best forwarders, it broadcasts

the packet, whose header contains the forwarder list. To select which

candidate forwarder must carry on with packet transmission, MCExOR

relies on slotted link-layer acknowledgments. Specifically, candidate for-

warders that received the packet send their ACK in order of decreasing

priority, all separated by a delay of SIFS. In case of ACK missing, other

nodes willing to send data may sense the medium idle for a DIFS pe-

riod, which allows it to start a new transmission. Thus, in order to avoid

collisions, the mechanism is defined as a compressed slotted acknowl-

edgement, where each node sends prematurely its own ACK whenever

it detects a missing acknowledgment from the previous (higher priority)

forwarder. Obviously, the highest-priority candidate forwarder to have

sent the ACK is elected as the next relay node. Then, the new forward-

ing node must identify its optimal set of candidate forwarders applying

the same algorithm used by the source. Thus, differently from ExOR,

in MCExOR the candidate forwarder list is recomputed after each trans-

mission by the node that has been selected to rebroadcast the received

packet. It is intuitive to note that this is possible only if MCExOR oper-

ates on individual packets, as SOAR, and not on packet batches.

A different approach from the ones presented so far is introduced

in (WLL08). The basic idea is that nodes closer to the destination are

not the only valid potential forwarders, as in many other opportunistic

solutions, and an utility framework is proposed to estimate the benefit

of the successful delivery of a packet. More precisely, a benefit value is

attributed to each packet originated at source S and heading to destina-

tion D. Then, an expected utility value can be associated to the packet

delivery on each multi-hop network path between the source and des-

tination, computed as the packet benefit minus the path cost. It is also

possible to compute the residual expected network utility (RENU) for each

node on the network path, which represents the utility to use that node

as relay for packet destination D. In other words, RENU parameter re-
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flects the node’s closeness to the destination in terms of utility. Then,

the optimal route that maximizes the utility will depend not only on the

topology, but also on the chosen benefit value, which is a unique prop-

erty of utility-based routing (LW06). In case of opportunistic routing the

utility metric is reformulated as OpRENU (WLL08) to take into account

that there are multiple candidate forwarders and not a single next hop.

In other words, the utility of a node depends not only on the utility of

that node selected as relay to reach the destination, but also on the util-

ity of all the nodes belonging to the same relay set. Due to this mutual

dependency, determining the optimal relay set that maximizes the net-

work utility is a complex problem that requires an exhaustive analysis

of all paths from source to destination. Thus, in (WLL08) an heuristic

solution is proposed to select relays and to determine priorities among

them. With this heuristic, the relay selection procedure operates only on

a restricted subset of the possible paths, according to the order obtained

through RENU values.

Not scheduled schemes

In contrast with the approaches described above, the family of not-

scheduled schemes mitigate the design complexity of opportunistic rout-

ing by avoiding strict scheduling among candidate relays. One of the

first examples of such approach is the ROMER protocol (YYW+05),

which introduces a credit-based forwarding scheme. More precisely,

when a packet is generated by the source node, it receives an amount

of credits that it can spend during the forwarding process. The assigned

credits are equal to the sum of the minimum cost from the source to the

destination (i.e., the shortest path cost), plus extra credits necessary to ex-

pand the path while being forwarded. Then, whenever a node receives

a packet, it decides if it is an appropriate forwarder according to the re-

maining credits of the packet and the cost of the shortest path from itself

to the destination. To some extent, this extra credits reflects the level of

resiliency demanded to the forwarding process. This strategy permits to

create a forwarding mesh on-the-fly centered around the minimum-cost

path from the source node to the destination node. Conceptually, this ap-
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proach is similar to the one adopted in SOAR, which uses the ETXmetric

to control the width of the forwarding mesh, while ROMER credit mech-

anism provides a finer control on a per-packet basis. With this approach,

a critical aspect is how to distribute packet credits along multiple can-

didate forwarders. For instance, more credits can be assigned to nodes

closer to the source than to the destination. This has the effect of per-

mitting a faster initial expansion of the forwarding mesh, and to remain

closer to the shortest path when approaching the destination. However,

other strategies taking into account interference or load distributions are

equally valid design choices. To select the optimal forwarders among the

nodes that received a packet, as well as to reduce the number of dupli-

cate transmissions, ROMER employs a probabilistic strategy: the forward-

ing probability is set proportional to the link’s current transmission rate

and to the desired level of packet redundancy, so as to assign a higher

forwarding probability to intermediate nodes that use higher transmis-

sion rates. This probability-based forwarding scheme permits to exploit

the best-rate links that are dynamically identified by the rate adaptation

algorithms (ABC08), but it is also beneficial to improve the routing re-

siliency to randomized packet losses, and to quickly adapt to the varying

conditions of the wireless links.

A different approach for minimizing the coordination overhead is

proposed in (ZKR08), which presents the Transmit Diversity based Coop-

erative Opportunistic Routing scheme (TDiCOR). Basically, TDiCOR em-

ploys passive listening for the forwarder selection: all the selected can-

didate forwarders that successfully received a packet try to forward it

by contending simultaneously for the medium access. Then, the first

candidate relay that gains access to the channel assumes the forwarding

responsibility, which is the responsibility of continuing the packet for-

warding to the destination, and retransmitting the packet if necessary.

The other candidate forwarders overhearing this transmission will can-

cel their own. Thus, forwarder selection does not rely on any form of

prioritization or cost-based scheduling, but it leverages only on random

medium access. However, since the forwarders selection requires packet

overhearing among candidate nodes, it is important that potential for-
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warders have high-quality links between each other. To this end, TDi-

COR uses the ETXmetric to evaluate the closeness between nodes, which

is somehow similar to SOAR (RSMQ06). Finally, to improve the reliabil-

ity of frame transmissions, TDiCOR exploits the transmit diversity prop-

erty. Specifically, after packet reception all the selected candidate for-

warders transmit their link-layer ACK frames simultaneously, so that the

sender receives multiple identical copies of the same ACK frame. This

cooperative acknowledgment has the effect of increasing received sig-

nal strength and mitigating fading effects, while the next hop selection

comes automatically from the medium access protocol without requir-

ing any additional control traffic nor complex scheduling. However, the

feasibility of transmission diversity depends on the level of timing ac-

curacy. Finally, in TDiCOR transmit diversity is used not only for coop-

erative acknowledgements but also for cooperative data transmissions.

Specifically, if the RTS/CTS option is active, when a node overhears a

CTS frame it can check its interface queue to search if it has an identical

frame to transmit (i.e., identical source address, sequence number, candi-

date set, and retry bit). In this case, that node can act as cooperative relay

and it can transmit the frame simultaneously with the node that has sent

the initial RTS frame.

2.3.2 Coding-based routing

As reported in Figure 5, coding-based routing solutions are divided into

two sub-categories: inter-flow coding approaches and intra-flow coding ap-

proaches. The following two sections outline the most relevant schemes

proposed for both approaches.

Inter-flow coding schemes

A fundamental approach proposed for inter-flow network coding in

mesh networks is the COPE protocol (KRH+08). COPE relies on a legacy

routing protocol to select a minimum-cost path (according to some met-

ric) between nodes. In this sense, COPE is not an opportunistic routing

protocol as defined in this study because the sequence of next hops that
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each packet, encoded or not, should follow is fixed and known a pri-

ori. However, COPE also allows intermediate forwarders to mix packets

from multiple unicast flows. To this end, each node implements oppor-

tunistic listening to overhear packets that are not intended to it but that

can be used for efficient coding. The overheard packets are stored in a

local buffer for a limited time period. Then, whenever the MAC protocol

grants a node the permission to transmit, this node selects from its local

buffers the packets to code together in such a way that all next hops of

encoded packets will be able to reconstruct their corresponding native

packets. More precisely, each node combines, using the XOR operator, n

distinct packets headed for n different next hop relays only if it is sure

that every intended next hop has already all the n−1 packets required to

decode the native packets encoded together.

It is now clear that the critical aspect of the COPE design is to ensure

that each node can learn the state of neighbors’ buffers to know which

packets they have. In practice, neighbors’ buffer information is obtained

through neighbors’ notifications and “guessing”. Specifically, each node

broadcasts reception reports listing the packets it has stored. To some ex-

tent, reception reports are equivalent to the batch maps used in ExOR.

The problemwith the reception reports is that these messages can be lost

or, even more important, arrive too late for the coding purposes. For

these reasons, each node may anticipate if a particular packet has been

received by a certain neighbor based on the delivery probability between

that neighbor and the packet previous hop, i.e. the node from which it

has received that packet. Furthermore, the packet coding algorithm in

COPE is based on the principle of never delaying packets whenever the

wireless medium is available. Thus, the node transmits a combination

of packets if a coding opportunity exists, giving preference to packets of

the same length, otherwise it simply forwards the native packet, if any,

at the head of its transmission queue.

An interesting design choice of COPE is the use of pseudo-broadcast

transmissions instead of conventional broadcast. More precisely, the

destination MAC address of the encoded packet is set to one of the in-

tended next hops, while an additional COPE-header specifies all the next
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hops of the native packets mixed together. By setting radio interfaces in

promiscuous mode, COPE enables each node to overhear multiple en-

coded packets, while, at the same time, unicast transmissions ensure a

higher level of reliability. To further increase the communication relia-

bility, a local recovery strategy is performed through hop-by-hop ACKs

sent asynchronously by all the next hops to which the encoded packets

were headed. If any of the encoded native packets was not acknowl-

edged within a given timeout, the packet is retransmitted, possible en-

coded again, but with a different set of native packets. Note that decod-

ing and re-encoding packets at each intermediate node is important to

avoid diverging paths, resulting into packets that move away from their

destinations. Indeed, this problem is originated by the use of inter-flow

coding that allow to mix together packets even if they are headed for

different areas in the network.

Experimental results shown in (KRH+08) indicate that the coding

gain provided by COPE is highly dependent on a set of factors, includ-

ing traffic patterns and congestion levels. To quantify these interde-

pendencies in arbitrary topologies, authors in (SRB07) elaborate a linear

programming formulation to model the maximum throughput achiev-

able by COPE-style coding. An interesting contribution of this paper

is also the notion of coding-aware and interference-aware routing for se-

lecting routes that maximizes the coding gain while minimizing the in-

terference due to the coded transmissions. However, the scheme pro-

posed in (SRB07) requires an exhaustive analysis of all possible coding

opportunities that may arise after a given routing decision. A simpler

and more practical coding-aware routing approach, called ROCX, is de-

scribed in (NSZN06). The ROCX scheme is based on a new routing met-

ric, called ECX, which captures the expected number of coded transmis-

sions needed to successfully deliver packets between two nodes com-

municating through a relay. Then, a linear programming problem is for-

mulated to find paths between node pairs with the minimum ECX cost,

i.e., which minimizes the expected total number of coded packets for a

successful exchange of packets.

A common feature of the schemes described above is that the coding
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process tries to minimize the number of coded transmissions needed to

successfully delivery a set of packets. A different approach is adopted

in (RSW+08), which proposes a series of algorithms for network coding

with loss-awareness (CLONE), based on the idea that coding must provide

higher levels of redundancy in lossy wireless environments. In other

words, coding decisions aim to introduce an adequate redundancy in

network coding operations in order to achieve higher reliability. Specif-

ically, in (RSW+08) the binary (i.e., involving at most two native pack-

ets) network coding problem is modeled through a graph-based formu-

lation. Then, various coding strategies are defined by imposing different

constraints on the coding process. For instance, the CLONE-MultiXOR

heuristic tries to maximize the number of ways a native packet can be de-

coded by the intended next hop. However, the high complexity required

for packet selection limits the applicability of these algorithms beyond

binary coding.

A somehow simpler approach to implement inter-flow network cod-

ing is proposed in (QXG+08) with the Intra-flow&Inter-flowMIXing proto-

col (I 2MIX). The basic idea behind I2MIX is that each node with packets

buffered in its transmission queue creates random linear combinations

of the same subset of the stored packets until all the respective next hops

acknowledge their correct reception. Intuitively, each receiving node that

is a next hop sends an ACK as soon as it is able to recover the original

data from the coded packets it has received. Then, the decoded packets

are stored in the receiver’s transmission buffer and are used to gener-

ated new coded packets. In contrast to COPE, I2MIX generates random

linear combinations of stored packets. This permits to take advantage

of any existing coding opportunity, thus simplifying the coding process

and avoiding the use of reception reports. However, in I2MIX the sender

can stop to send combinations of the same set of packets, and to move to

the next one, only if it receives an acknowledgment from the next hop of

each flow. In addition, the coding decisions cannot be optimized because

the status of neighbors’ buffers is unknown. Both these simplifications of

the coding process can easily produce a number of transmissions much

higher than the one that would be generally needed by COPE to deliver
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the same number of native packets.

Intra-flow coding schemes

In principle, intra-flow coding would permit to avoid the problem of dis-

covering the state of neighbors’ buffers. However, coding packets flow-

ing between the same source and destination pair could give rise to a

limited number of coding opportunities. To address this issue, Multipath

Code Casting protocol (MC2) (GHK+07) proposes to integrate codingwith

multi-path routing. Specifically, MC2 relies on a legacy routing protocol

to find a set of multiple, not necessarily disjoint, paths between a source

and a destination node. This should ensure that multiple next hops exist

for each node on a path. Then, relay nodes broadcast encoded pack-

ets generated using either native packets received by the source or other

encoded packets received by neighbor nodes. Intermediate decoding is

not allowed, and only the destination node collects encoded packets and

reconstructs the original packets when it has received a sufficient num-

ber of linearly independent coded packets. Note that, similarly to ExOR,

MC2 performs its coding decisions on block of packets, also called gen-

erations, for limiting decoding overheads and state size at intermediate

nodes. Finally, in order to provide reliability, two error control mecha-

nisms are defined. First, a hop-by-hop local recovery is performed by

each sending node, which overhears its neighbors’ transmissions and re-

transmits some missed packets if necessary. Second, on a timeout the

destination sends a unicast request for additional coded packets to the

source, which can also be intercepted and managed by any intermediate

node holding the missed packets.

The critical part of the MC2 scheme is how to assign coding rates to

the multiple paths, i.e., how to decide which next hop a packet must be

sent to, and how many encoded packets should be generated along each

path. To this end, a credit-based algorithm is proposed in (GHK+07).

Specifically, the source associates to each packet generation a given

amount of credits, which represents the total number of packets (i.e.,

including coded packets) that should be used to transfer that block of

native packets to the destination. Moreover, the number of packets the
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source is allowed to send per time unit is specified as a function of the

generated credits. Then, whenever a packet is successfully transmitted to

a next hop, a credit is also transferred to that node. Based on the credits

associated to each node, forwarders are aware of the amount of packets

that are waiting to be sent over each link. Then, to determine the best

next hop to which a node should forward the packet it has received, the

routing protocol applies the back-pressure algorithm (TE92) to the total

credits accumulated by each node. In other words, the packet transmis-

sion is scheduled on the broadcast link with the maximum difference in

the queued credits. The drawback of this approach is that this optimal

scheduling is hard to implement, and the required node state grows ex-

ponentially with the number of neighbors.

An alternative approach to implement intra-flow coding by exploit-

ing node overhearing is proposed in the Intra-flow MIXing (IMIX) proto-

col (QXG+08). The basic principles are similar to the ones used in I2MIX:

the sender keeps coding the same set of n packets from the same data

flow with random linear coding until receiving an acknowledgement

from the next hop. Obviously, the next hop can generate an acknowledg-

ment only after having received n linearly independent coded packets.

Then, the final destination will recover the native data packets from the

coded packet, while intermediate nodes only recode the received pack-

ets. It is important to note that with traditional acknowledgments, one

ACK message is needed per every received data packets. On the con-

trary, with intra-flow coding only one acknowledgement is needed for

every n packets. Thus, using linear coding it is possible to reduce the

overhead of the acknowledgment process without the cost of increased

protocol complexity. To some extent, IMIX can be viewed as a basic intra-

flow solution in which every node simply codes and broadcasts packets

stored in its buffer, irrespective of those packets received by its neigh-

bors. To maximize the coding gain, which can be low for intra-flow cod-

ing since coding opportunities may be scarce, IMIX employs a coding-

aware routing protocol, called OSPR, which selects network paths with

least ETX value, taking into account overhearing opportunities. Com-

pared to classical shortest path routing, OSPR network paths generally
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include more hops to provide more overhearing opportunities.

2.3.3 Hybrid routing

As reported in Figure 5, hybrid routing solutions are divided into two

sub-categories: destination-based approaches and neighborhood-based ap-

proaches. The following two sections outline the most relevant schemes

proposed for both approaches.

Destination-based schemes

The MAC-independent Opportunistic Routing and Encoding protocol

(MORE) proposed in (CJKK07) is the first practical system that combine

intra-flow random linear coding with ExOR-style opportunistic routing.

As in MC2 (see Section 2.3.2) packets are grouped into blocks, which

are now called batches, and coding is restricted to linear combinations

of packets of the same batch. Similarly to ExOR (BM05), opportunis-

tic routing is performed by letting the sender specify a prioritized list

of candidate forwarders. However, in contrast to ExOR there is not a

structured transmission schedule among the forwarders, but the cod-

ing permits random transmissions regulated through the 802.11 MAC

protocol. More precisely, the source breaks up the file to be transmitted

into batches of native packets, creates random linear combinations and

broadcasts the resulting packets after adding a MORE header containing

the forwarder list. Each receiving node discards a packet if it is not in-

novative, i.e., not linearly independent from the other packets stored in

the node’s local buffer, or if the node does not appear in the associated

forwarder list. Otherwise, it refreshes the packet stream by linearly com-

bining the received coded packets and rebroadcasting the newly encoded

packets. Note that a linear combination of coded packets is also a linear

combination of the corresponding native packets (CJKK07). As soon as

the destination is able to decode the whole batch, it sends an ACK to the

source using shortest path routing, causing the sender to stop forwarding

packets from that batch and start processing the next batch. The interme-

diate nodes stop coding/sending packets from a certain batch as soon as
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they intercept the ACK for that batch sent by the destination, or they re-

ceive a packet belonging to a new batch. This strategy leads to a faster

synchronization among nodes without requiring complex coordination

procedures.

Although network coding reduces the number of required transmis-

sions for successfully delivering a packet, the opportunistic paradigm

allows any potential forwarder to send many coded packets. However,

uncontrolled generation of coded packets results in redundant transmis-

sions. The trade-off is between transmitting a sufficient number of coded

packets to guarantee that the destination has enough innovative packets

to reconstruct the native packets, and avoiding to inject in the network

unnecessary packets that may cause congestion. To address this issue,

MORE uses a heuristic algorithm to estimate the maximum number of

transmissions that each node can perform after receiving a packet from

an upstream node, which is a node farther from the destination than it-

self. This limit is computed by each node considering the loss probability

in sending a packet to its neighbors, and the probability that the packet to

be transmitted has not been yet overheard by downstream nodes, which

are nodes closer to the destination than itself. Experimental results ob-

tained in an indoor wireless testbed indicate that MORE’s throughput

gain over ExOR can be relevant when there is a chance of spatial reuse,

because MORE allows multiple forwarders to access the channel simul-

taneously, which is hindered in ExOR (CJKK07).

As pointed out above, determining the acceptable rate for interme-

diate nodes represents a critical issue for hybrid schemes, especially

in scenarios involving multiple flows. Thus, a number of recent pa-

pers have proposed optimization approaches for broadcast rate control,

which maximize the benefit of network coding and broadcast transmis-

sions while mitigating congestion. For instance, the Optimized Multi-

path Network Coding scheme (OMNC) proposed in (ZL08b) formulates

the throughput-maximization problem as a linear programming prob-

lem, whose outcome is the optimal encoding and broadcasting rate for

all nodes. A variant of this approach, calledDICE, is proposed in (ZL08a)

by taking a game-theoretic perspective. However, these enhancements
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of MORE require the exchange of a large amount of state information,

which may be quite inefficient in lossy environments. A different and

more practical scheme to improve routing efficiency is the CodeOR pro-

tocol proposed in (LZL08). The design idea of CodeOR originates from

the observation that the coding process in MORE, and subsequent en-

hancements, is similar to a ‘stop-and-wait’ protocol because the source

keeps coding packets of the same block, also called segment in CodeOR’s

notation, until it receives an explicit signal from the destination. In con-

trast, CodeOR allows the source to transmit a sliding window of multi-

ple segments so that data coding/broadcasting is not limited to only one

block of packets. Moreover, each intermediate node locally decideswhen

it should start processing a new segment within the allowed window.

Hence, we can say that coding decisions depend globally on the desti-

nation, but may adapt locally to the current situation. In practice, this

adaptive behavior is implemented using two different ACK messages:

an end-to-end ACK (called E-ACK) sent by the destination directly to

the source node, and a hop-by-hop ACK (called H-ACK) sent by inter-

mediate nodes. The former message is used to indicate that a segment of

data packets have been received at the destination, and it regulates the

window-based flow control similarly to TCP ACKs. The latter message

is generated by a node to inform its upstream nodes that it has received

a sufficient number of coded packets of the current segment so that it

can continue the coding process on behalf of the source node, while the

upstream nodes can move to the next segment. The peculiarity of the

hop-by-hop support proposed in CodeOR is that the number of required

coded packets is not constant but depends on the receiving rate of each

node. Specifically, each node computes a receiving threshold proportional

to its receiving rate, which specifies when it can assume that it has re-

ceived enough packets in a segment. This rate-based threshold aims to

balance the number of packets generated for a certain segment with the

reception and decoding rate at the various downstream nodes.

47



Neighborhood-based schemes

All the previous hybrid schemes adopt intra-flow coding because with

opportunistic routing each packet has more than one possible next hop,

and coordinating the coding process through multiple flows is proba-

bly less intuitive. In contrast, the hybrid scheme proposed in (KHW08),

called XCOR, is an attempt to combine inter-flow coding with oppor-

tunistic routing. To achieve this goal, XCOR abandons the approach

followed in destination-driven coding strategies (e.g., MORE (CJKK07)

and, partially, CodeOR (LZL08)), to adopt a COPE-style coding, where

the coding decisions are driven by neighbors’ notifications and overhear-

ing of neighbors’ transmissions. More precisely, in XCOR the source con-

structs the set of nodes allowed to participate in the forwarding process

of a certain packet starting from the shortest path, and sorting the candi-

date next hops in terms of ETX-proximity to the destination. Then, after

each transmission, the nodes on the shortest path are allowed to rebroad-

cast immediately the packets they receive, while the other relays set a

forwarding timer in proportion to their priority. In this way, if they over-

hear a transmission from a higher priority node, they can cancel their

timers. Furthermore, similarly to COPE (KRH+08) each node periodi-

cally sends reception reports to inform its neighbors about the packets

it has received. The most innovative aspect of XCOR scheme is the way

these reports are used to regulate the mixing of packets. Specifically,

let assume that a node is crossed by m different flows. Then, the node

computes the utility of each possible combination of packets belonging

to these m flows , in order to find the one that gives the largest utility.

However, the number of possible combinations increases exponentially

with the number of flows to code together. For this reason, XCOR ap-

plies an heuristic that examines the flows in a sequential order, giving

higher priority to flows that are heavily loaded, so that the packet drop-

ping probability is minimized.
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2.4 Discussion

In this chapter, we have examined the key challenges associated to

the design of routing algorithms that use opportunistic forwarding and

network coding to take advantage of the multi-user diversity and the

broadcast nature of the wireless medium. To this end, we have pre-

sented a taxonomy of existing solutions relying on these novel routing

paradigms, and we have analyzed their most representative features, rel-

ative strengths and weaknesses. From this overview, it is easy to identify

some common functionalities and mechanisms that can be considered as

basic building blocks for each solution. Thus, in the following we in-

tegrate the previous discussion by summarizing in Table 1 the specific

design choices made by the presented solutions for each of these key

components. The aim of this schematic illustration is to further clarify

the main features of the various schemes, as well as to permit an easier

comparison between the various approaches. To this end, the first col-

umn specifies the solution name, as reported in the proposed taxonomy

(see Figure 5), while the other columns are dedicated to the most rep-

resentative features of diversity-based routing approaches, which are a

subset of the key challenges illustrated and discussed for each category.

Hence, by looking at this concise description, basic differences and com-

mon aspects among the various approaches are immediately noticeable.

In the following we briefly explain the meaning of the columns fields:

Routing: This field specifies if the routing approach is opportunistic or

legacy. The former implies broadcast transmissions at each hop,

while the latter can perform either unicast or broadcast/pseudo-

broadcast transmissions, as explained in Section 2.3.2. Moreover,

legacy routing can be either single-path or multi-path.

Scheduling: This field specifies if candidate forwarders coordinate their

transmissions by establishing an ordering among them, or if each

node autonomously decides whether to carry on with the forward-

ing process. In legacy routing approaches, a node can transmit only

after receiving a packet from the previous hop along the predeter-
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mined path, thus the scheduling is not a task to be performed at

the routing layer. On the other hand, this aspect is particularly im-

portant in the opportunistic routing case, where different solutions

have been proposed.

Node priority: This field specifies the metric used for establishing

node ordering. Some schemes propose new metrics, such as

ECX (NSZN06), or use existing ones, such as ETX. Other schemes

rely on path costs for routing operations, but they are not forced

to use a specific routing metric. It is important to note that node

priority is not necessarily associated to scheduling. For instance,

in some cases node priority is used to prune some nodes from the

forwarding process, e.g. if the ETX of a node is greater than that

of the sending node. Finally, in legacy routing node priority is in

general provided implicitly by the predetermined sequence of next

hops in the selected network path(s).

Coding: This field reports, when applicable, the coding technique and

the coding strategy. Generally, the coding techniques used in the

presented schemes can be either the XOR operation or the random

linear coding (RLC). On the other hand, the coding strategy refers

to the possibility of combining packets belonging only to the same

data flow (intra-flow coding) or to different flows (inter-flow cod-

ing).

Duplicate suppression: This field specifies the method used for mini-

mizing the duplicate transmissions. This issue is particularly rel-

evant for opportunistic based routing, since many potential for-

warders may send the same packets, leading to unnecessary trans-

missions. In case of network coding applied to legacy routing, du-

plicate suppression is not required because the routing protocol al-

lows only some predetermined nodes to send data, each one to-

wards its respective next hop(s). In principle, the redundancy pro-

vided by network coding is intended to favor packets decoding,

thus duplicate suppression is not an issue. In contrast, opportunis-
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tic forwarding suffers from duplicate transmissions because there

is a looser control on packets dissemination.

ACK strategy: This field indicates the method used to acknowledge

packet transmissions. Most of the network coding based solu-

tions rely on link-layer ACKs, while hybrid approaches mainly

use end-to-end ACKs, although some hybrid schemes may also

use some kind of local recovery mechanism. The opportunistic-

based routing schemes offer a higher variety of solutions, ranging

from hop-by-hop network-layer ACKs to priority-based link-layer

ACKs, and batch maps. In a few cases, the acknowledgment ap-

proach is not specified, thus it is not reported in the table.

Prototype: This field states whether a real implementation of the solu-

tion exists, “no” meaning that the protocol evaluation has been car-

ried out based only on simulations.
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Protocol Routing Scheduling Node priority Coding
Duplicate
suppression

ACK strategy Prototype

ExOR opportunistic yes
ETX-based distance
to destination

no

batch map and
priority-based
forwarding
timers

batch map
MIT
Roofnet
testbed

MCExOR opportunistic yes
ETX-based distance
to destination and
home channel

no
priority-based
link-layer ACKs

hop-by-hop slot-
ted ACKs

no

SOAR opportunistic yes

ETX-based distance
to destination + ETX-
based proximity to
minimum-cost path

no

overhearing
and priority-
based forwarding
timers

hop-by-hop
network-layer
selective ACKs

no

OpRENU opportunistic yes
residual network util-
ity

no
priority-based
link-layer ACKs

link-layer ACKs no

ROMER opportunistic no
minimum-cost path
to destination + link
data rate

no
overhearing and
randomized
forwarding

- no

TDiCOR opportunistic no

ETX-based distance
to destination and
other candidate
forwarders

no overhearing
cooperative ac-
knowledgement

no

COPE

legacy with
pseudo-
broadcast
transmissions

- -

inter-flow
XOR with
reception re-
ports/guessing

- link-layer ACKs
20-node
indoor
testbed

ROCX
legacy and
coding-aware

- - inter-flow RLC - - no

CLONE
XOR

legacy with
broadcast
transmissions

- -

inter-flow
loss-aware
XOR with
reception re-
ports/guessing

- link-layer ACKs
12-node
testbed

I2MIX
legacy with
broadcast
transmissions

- - inter-flow RLC - link-layer ACKs no

MC2

legacy mul-
tipath with
broadcast
transmissions

yes transmission credits intra-flow RLC -

hop-by-hop
overhearing,
end-to-end re-
transmissions

MIT
Roofnet
testbed

IMIX
legacy and
coding-aware

- - intra-flow RLC -
MAC-layer uni-
cast ACKs

no

MORE opportunistic no
ETX-based distance
to destination

intra-flow RLC

packet inno-
vativeness +
overhearing of a
new batch + ACK
overhearing

end-to-end
ACKs

MIT
Roofnet
testbed

OMNC opportunistic no
ETX-based distance
to destination

intra-flow RLC

packet inno-
vativeness +
overhearing of a
new generation +
ACK overhearing

end-to-end
ACKs

emulation
testbed

CodeOR opportunistic no
ETX-based distance
to destination

intra-flow RLC

packet inno-
vativeness +
hop-by-hop
ACKs

end-to-end
ACKs

no

XCOR opportunistic yes

ETX-based distance
to destination + ETX-
based proximity to
minimum-cost path

inter-flow XOR
with reception
reports

overhearing
and priority-
based forwarding
timers

reception reports no

Table 1: Summary of the key design choices of the wireless diversity based
routing approaches presented in this chapter
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Chapter 3

Novel Opportunistic
Routing Paradigms

3.1 Background and Motivation

In the previous chapter, we have provided an extensive overview of rout-

ing approaches that rely on wireless diversity to overcome performance

degradation in WMNs. In this context, we consider opportunistic rout-

ing as a fundamental building block of any routing solution for WMNs.

Motivated by its benefits and stimulated by the necessity to overcome

limitations of existing solutions, we firstly focus on this category and

we propose novel algorithms aimed to overcome the limitations of ex-

isting approaches to further improve network performance. Indeed, as

described in the previous chapter, to limit the coordination overhead

among possible packet forwarders, many existing opportunistic routing

protocols (BM05; RSMQ09) select a priori a small list of candidate for-

warders, generally prioritized by closeness to the destination, and only

those nodes can be used to reach the destination. Thus, the fundamental

limitation of this approach is that candidate forwarders are pre-selected

before the packet is received. Many variants of this basic approach have

been proposed, while a very few schemes try to avoid the pre-computed

forwarding scheduling. ROMER (YYW+05) employs a credit-based for-
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warding scheme to construct at runtime a mesh of forwarders centered

around the minimum-cost path. However, forwarders selection is driven

by the packet credit assignment performed at the source node, thus im-

posing a priori limitations on the routes a packet is allowed to follow. On

the other hand, TDiCOR (ZKR08) simplifies the forwarder selection by

fully relying on the random medium access mechanism: the next hop of

a packet is the first receiver that gains access to the medium among the

candidate relays specified in a forwarders list. Although the simplicity

of this solution reduces node coordination overhead, packet forwarding

depends only on random channel access and can not be driven by any

specific goal (e.g. selecting nodes closest to the destination to achieve

higher throughput).

Motivated by the above considerations, in this chapter we present

two innovative opportunistic routing algorithms, aimed to improve the

performance of WMNs by avoiding a priori limitations on candidate for-

warders and on admissible routes leading to the destination. Indeed,

they perform routing decisions only after packet reception and main-

tain node coordination overhead limited. In the following sections, we

explain in more details the proposed algorithms, and we provide exper-

imental results to show their effectiveness.

3.2 Maximizing Throughput Gain with Oppor-

tunistic Routing: MaxOPP

In this section we present MaxOPP, a novel opportunistic routing al-

gorithm for WMNs, which is based on a substantially different ap-

proach than existing solutions. Specifically, MaxOPP abandons the pre-

computation of candidate forwarders, and it does not force selected for-

warders to transmit during pre-assigned time windows. On the contrary,

wireless diversity generates multiple receivers for each packet transmis-

sion, and any of those receivers could be used as an alternative forwarder

to reach the final packet destination. Thus, MaxOPP adopts a more flex-

ible and resilient approach by employing a localized routing decision

process that selects the forwarding nodes at runtime and on a per-packet

54



basis. In this way, MaxOPP can opportunistically leverage any trans-

mission opportunity generated by the short-term channel dynamics, and

limit the probability of excluding beneficial forwarders. Moreover, Max-

OPP bases the forwarder selection process on an estimate of the oppor-

tunistic throughput gain associated to the packet transmission, allowing

each packet to flow through the most advantageous forwarder at each

hop.

3.2.1 MaxOPP Design

In this section, we firstly present the main principles of MaxOPP design,

and then we describe the MaxOPP algorithm in details.

Overview

To clarify how theMaxOPP schemeworks, we can start by observing that

when a packet traverses a route it consumes network resources. For this

reason, many routing metrics exist to estimate the forwarding cost asso-

ciated to each network path. Traditional routing algorithms search for

minimum cost paths that ensure a long-term stable optimality of some

performance metric (e.g., hop count, or average path throughput). On

the contrary, our opportunistic routing solution adjust at runtime, and on

a per-hop basis, the route followed by a packet to ensure improved op-

portunistic throughput gain and higher reliability. More precisely, upon

receiving a broadcast transmission, a node checks if further forwarding

the packet can minimize the expected cost to reach the packet destina-

tion. Intuitively, if the packet has travelled along long links, consuming

significantly less resources than the ones demanded by the minimum-

cost path, continuing to forward the packet may provide an opportunis-

tic throughput gain. Thus, before deciding whether to continue to for-

ward a packet or not, the receiver checks the network resources con-

sumed so far by the received packet, as well as the remaining path cost

to reach the destination. By completely deferring the forwarder selec-

tion after packet receptions, MaxOPP is able to opportunistically adapt

the forwarding process to the dynamic channel conditions, limiting the
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probability of excluding beneficial forwarders.

In order to realize the opportunistic scheme described above, it is nec-

essary to address two fundamental issues. The first one is how to com-

pute at run time the potential throughput gain associated to a packet

transmission. The second one is how to control the overhead due to the

delivery of redundant copies of a packet. In the following sections we

describe how MaxOPP solve those issues.

MaxOPP forwarding procedure

As in most of the existing opportunistic solutions, MaxOPP assumes that

an underlying link state routing protocol is responsible for collecting link

qualities and disseminating this information to all the nodes in the net-

work. Thus, any node has a complete knowledge of the network topol-

ogy and can pre-compute the “best” path to reach any other node in the

network according to some routing metric. Note that an important prop-

erty that a routing metric should satisfy is isotonicity, since this property

determines if efficient algorithms such as Dijkstra or Bellman-Ford can

be used to find minimum-cost paths, and whether hop-by-hop routing

protocols yield loop-free paths (YWK05). In the following evaluation we

will use ETX (DCABM03) as the underlying routing metric, but any al-

ternative isotonic routing metric can be used.

Before describing the MaxOPP forwarding procedure, let us intro-

duce some useful notation. First of all, let us denote with cost(p) the cost

of delivering a data packet on path p according to the chosen routing

metric. Then, let pS,D be the Minimum Cost Path (MCP) from node S to

node D. Thus, the cost of delivering a packet on the MCP from node S

to node D is simply cost(pS,D). Now, let us assume that a packet gen-

erated by node S for node D, and forwarded on the MCP has traversed

k hops along pS,D, and let i be the k-th intermediate router on pS,D that

has received this packet. For brevity, we define i = pS,D(k). Then, we

express the cost of the remaining portion of the MCP from S to D af-

ter k hops as cost(pS,D; k). From the isotonicity property of the routing

metric, it immediately follows that cost(pS,D; k) = cost(pi,D). In the fol-

lowing, we show howMaxOPP exploits the per-packet knowledge of the
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cost(pS,D; k) value to estimate the benefit of using an intermediate node

as the next packet forwarder.

In MaxOPP, all packets are broadcasted and keep track of the number

of times they have been forwarded by intermediate nodes1. Now, let us

suppose that a node j hears a packet transmission belonging to a traffic

flow from S to D, and which has travelled along k wireless hops. Then,

based on the above introduced notation, cost(pj,D) is the minimum cost

path from node j to node D. On the other hand, if the packet had been

routed along the shortest path between S and D (i.e., pS,D), the remain-

ing cost after k hops would had been equal to cost(pS,D; k). Hence, we

can evaluate the potential benefit of using j as the next forwarder by

introducing an opportunistic gain as follows

OGSD(j, k) = cost(pS,D; k)− cost(pj,D) . (3.1)

The above value represents a sort of dynamic credits that would be

granted to the packet if node j is used as the k-th forwarder for the traf-

fic flowing from S to D. Clearly, transmissions from nodes along the

minimum-cost path provide no gain, given that cost(pS,D; k)=cost(pi,D),

where i= pS,D(k). If the opportunistic gain is negative, this implies that

the packet is lagging behind the minimum-cost path instead of keeping

up with it, and it should be discarded by node j as its further transmis-

sion would not be beneficial.

The fact that OGSD(j, k) > 0 is a necessary but not sufficient condi-

tion to select node j as potential forwarder. Indeed, MaxOPP is designed

to guarantee that each transmission provides a minimum level of op-

portunistic gain, avoiding transmissions that would decrease the oppor-

tunistic benefit achieved so far. Thus, the forwarding decision at node j

should depend also on the gain obtained in the previous hops. More pre-

cisely, let us assume that a node l, upon receiving a packet belonging to

a traffic flow from node S to nodeD, and which has traversed k−1 hops,

decides to further forward it. If the new packet transmission is received

1To this end, we assume that a tiny MaxOPP header follows the MAC-level header and
precedes the packet’s data. This MaxOPP header is used to carry control information that
are needed for executing the MaxOPP forwarding procedure.
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by node j, this node can compute the opportunistic gain ratio as follows:

ORSD(l, j, k) =
OGSD(j, k)

OGSD(l, k − 1)
. (3.2)

Intuitively, a gain ratio greater than one wouldmean that the opportunis-

tic gain is increasing from one hop to the subsequent, and that the for-

wardedpacket is traveling towards the destination on a shorter path than

the long-term minimum cost path. However, MaxOPP aims at improv-

ing not only throughput performance but also resiliency to lossy links or

transient node failures. Therefore, the MaxOPP forwarding procedure

should ensure that a sufficient number of potential forwarders is acti-

vated, in order to increase the probability that at least one of the packet

copies is received correctly by neighboring nodes. In other words, a high

threshold on theORSD(l, j, k) value could be an obstacle for the forward-

ing process. More formally, in MaxOPP a node j is allowed to forward a

packet flowing from S to D and received after k hops from node l if and

only if

ORSD(l, j, k) ≥ γ , (3.3)

where γ ≥ 0. The choice of the γ value provides enough flexibility to

support the desired level of resiliency under different network scenarios

or traffic demands. For instance, the γ parameter can be a function of

the distance between the source and the destination, or of the desired

bound on the total number of generated packet copies, or it can be adap-

tively adjusted during packet forwarding depending on the channel con-

ditions. In the following evaluation, we set γ=0.8, butwe tried also other

values without observing significant performance differences.

Note that a node may receive multiple copies of the same packet. To

avoid unnecessary replicated transmissions, each node stores locally the

sequence numbers of its recently forwarded packets. Upon receiving a

packet, the node checks if it is a duplicate, and in this case discards it.

In this way, each node forwards the same packet at most once. Fur-

thermore, the same packet can be received by multiple receivers and the

MaxOPP forwarding procedure is performed independently on each of

them. Thus, multiple nodes can be selected simultaneously as poten-
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Figure 6: Example scenario: the label associated to each link is the delivery
rate (links are symmetric), while in parenthesis we report the corresponding
ETX cost computed according to formula in (DCABM03).

tial forwarder for the same packet. To minimize forwarding overhead,

MaxOPP implements overhearing between nearby nodes. In other words,

whenever a node receives a packet it also checks if it has the same packet

in its transmission buffer waiting for being transmitted. In this case, it

cancels its own transmission and removes the packet from its queue.

In this way, the node that transmits first is the one that continues the

packet forwarding. Note that overhearing is commonly adopted in ex-

isting opportunistic routing solutions as a low-overhead and distributed

technique to coordinate forwarding nodes (BM05; RSMQ09; YYW+05).

To conclude this section, we illustrate the MaxOPP algorithm using

the example in Figure 6. In the drawing, S is the traffic source and D is

the destination. Aminimum cost path routing would select S−A−B−C−D

as the best path, because the path cost is 4.0, while the other network

path S−A−F −D, although shorter in terms of hops, has a higher cost

equal to 6.0 due to the high packet loss associated to the link from A

to F . However, let as assume that a packet sent by node A is received

from both node B and node F . In this case cost(F −D) = 1, while

cost(B−C−D) = cost(pS,D; 2) = 2. According to formula (3.1), it holds

that OGSD(F, 2) = 1 and OGSD(A, 1) = 0. Thus, from (3.2) it follows

that ORSD(A,F, 2) → ∞, which is greater than any threshold γ. This

implies that MaxOPP selects node F as potential forwarder for the re-

ceived packet. If node F succeeds in transmitting the packet before node

B, which depends on the dynamics of the MAC contention resolution

scheme, the latter cancels its copy of the packet in order to keep data

redundancy limited.
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Loss recovery

Loss recovery is one of the key challenges of opportunistic routing de-

sign. Indeed, legacy 802.11 does not provide any link-level recovery

mechanism for broadcast transmissions. For this reason, opportunistic

routing protocols generally introduce network-layer acknowledgments

and retransmissions, either of hop-by-hop or end-to-end basis. In Max-

OPPwe adopt an end-to-end acknowledgment scheme similar to the one

used in (RSMQ09). More precisely, an end-to-end ACK message is pe-

riodically sent to the source by the destination along the shortest path

using MAC-layer unicast. This acknowledgement message contains the

sequence numbers of the lost packets, which are provided by means of

a fixed-size bitmap to keep the overhead limited. In addition, the ACK

packet contains some additional information that may help the source

node in setting protocol parameters in a proper way. For example, the

source node may decide to adjust the gain ratio threshold (i.e., the γ

value) according to the number of lost packets announced by the des-

tination. Note that the γ parameter is announced to the other nodes in

the MaxOPP header. We point out that packet redundancy is also an in-

direct way of ensuring loss recovery. In fact, increasing the number of

forwarded copies in a controlled manner may be useful to ensure that at

least one packet copy is correctly received. It is important to note that

data redundancy aims to protect against packet losses during the for-

warding process itself, while end-to-end acknowledgments recover lost

packets not received by the destination within a reasonable amount of

time.

3.2.2 Performance Evaluation

In this section, we evaluate the performance of MaxOPP using NS-2 sim-

ulations in a set of representative network scenarios. Furthermore, we

compareMaxOPP against OLSR, a widely adopted link-state single-path

routing protocol that forwards packet over shortest paths. Our results

show that MaxOPP significantly improves throughput of bulk transfer

over traditional routing.
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Simulation set-up

We implement MaxOPP in NS-2 (version 2.33). For comparison, we use

OLSR-ETX code, which is an open-source implementation of the ETX-

based OLSR protocol for NS-2 (W. 09). The ETX-based link cost is com-

puted by measuring the number of OLSR control messages lost every 10

packets sent.

To be able to conduct experiments in controlled environments, while

reproducing the behaviors of lossy wireless links, we extended the phys-

ical channel model of NS-2 to generate packet losses by dropping packet

received at the MAC layer with a constant probability. Note that in our

tests we have uses 802.11MACDCF scheme with fixed transmission rate

equal to 11 Mbps, and disabled RTS/CTS. Concerning the traffic model,

we use CBRUDP flows generating fixed-size packets at a rate sufficiently

high to saturate the wireless channel. If not otherwise stated, the packet

size is 1000 bytes. We have not considered interactive traffic such as TCP

or VoIP because MaxOPP is designed to deliver bulk data faster than

traditional routing. Better integration with interactive traffic will be the

subject of future work. Each simulation run consists of 300-second data

transfer, but throughput measurements are not collected during the first

150 seconds to let the ETX metrics converge. In order to collect statis-

tics (i.e., average values and 95% confidence intervals) we replicate each

simulation ten times.

Simulation results

We evaluate MaxOPP under a range of traffic demands and network

topologies. Initially, we investigate the performance of a single flow in a

basic chain topology, then we study multiple flows in more complex grid

topologies.

Single Flow We use linear chain topologies with varying number of

hops to evaluate the efficacy of MaxOPP to leverage transmissions that

unexpectedly reach far nodes, while mitigating the negative impact of

failed transmission attempts. Figure 7 exemplifies a 4-hop chain topol-
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Figure 7: Illustration of a chain topology used for evaluation: the label as-
sociated to each link is the delivery rate (links are symmetric).
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Figure 8: Throughput in a chain topology versus the packet loss rate.

ogy used in the simulations. Specifically, as shown in the diagram, all

1-hop links are noiseless, i.e., the delivery rate of those links is one and

packets can get lost only due to collisions. On the contrary, 2-hop links

have a fixed delivery rate p, which may be lower than one.

Figure 8 compares the per-flow throughput achieved with MaxOPP

and ETX-based OLSR in the chain topology by varying both the number

of hops between the source and the destination, and the packet delivery

rate p. We can observe that MaxOPP performs significantly better than

shortest path routing in all the considered scenarios, with a throughput

gain that can be higher than 200% for short chains and packet loss rates

from moderate to high values. More generally, the throughput gain is

larger for packet delivery rates in the range from 0.4 to 0.8. This can
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Figure 9: Throughput in a chain topology versus the number of hops.

be explained by observing that if the delivery rate is too low (i.e., deliv-

ery rate close to 0.0) than there a few opportunities to take advantage of

long transmissions, while if the delivery rate is close to one, the shortest

path routing already directly use network routes with less links. How-

ever, also in the extreme cases (i.e., delivery rate either equal to 0.0 or

1.0) MaxOPP may provide a positive throughput gain over shortest path

routing. This can be explained by observing that MaxOPP reduces the

MAC overheads because it eliminates hop-by-hop link-layer acknowl-

edgements, and it is less affected by individual packet losses. Note that

for intermediate delivery rate OLSR suffers from throughput degrada-

tion, as it shown in the Figure 8. This can be explained by observing that

the variability of link quality estimation may cause frequent route flap-

ping during the flow lifetime. These behaviours have been also observed

in real network deployments, as reported in (RSBA07).

Finally, Figure 9 compares MaxOPP with ETX-based OLSR for linear

topologies by varying the number of wireless hops between the source

and the destination but fixing the packet delivery rate at 0.5. It can be

observed that the throughput gain is almost independent of the number

of hops.
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Figure 10: Illustration of the 5 × 5 grid network topology used for evalua-
tion: the label associated to each link is the delivery rate (links are symmet-
ric).

Multiple Flows To evaluate the performance of MaxOPP with multi-

ple flows we consider a 5×5 grid-based network topology where deliv-

ery rates for 1-hop links are perfect, while delivery rates of 2-hop links

are equal to 0.5, as shown in Figure 10. For each test we fix the number

of flows in the network and we randomly pick up source and destina-

tion nodes. The only constraint we impose is that each node is either

the source or the destination of a single flow. Intuitively, this limits the

maximum number of flow that can be activated in a 5×5 grid topology

to twelve connections.

Figure 11 and Figure 12 show the absolute aggregated through-

put and percentage improvement, respectively, for different number of

flows. The average percentage improvement is computed by calculating

the ratio between the total throughput achieved by MaxOPP and OLSR

for each run, and then evaluating the mean value. Note that while the to-

tal aggregated throughput is a statistic dominated by the traffic scenarios

that ensure the largest values, the percentage improvement is calculated

in such a way to assign the same weight to all the runs.

As shown in the pictures, MaxOPP outperforms the shortest path
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Figure 11: Throughput in a 5×5 grid topology versus the number of flows.

routing with an average improvement that ranges from 10%with 4 flows

to more that 100% with one flow. Note that the confidence intervals of

the results is much higher than in the case of a linear topology with a

single flow. This can be explained by noting that in each test flows are

selected randomly and there may be significant differences in the spatial

distribution and lengths of flows in different runs.

3.3 Improving Efficiency in Multi-flow Scena-

rios: PacketOPP

As shown in the previous sections, MaxOPP exploits the notion of op-

portunistic throughput gain associated to each packet transmission to

ensure higher throughput than conventional shortest path routing. It be-

longs to the sub-category of not-scheduled opportunistic routing proto-

cols (2.3.1), which avoid strict node scheduling to leverage potentially

any transmission opportunity encountered during packet forwarding.

However, when the network congestion arises due to an increased num-

ber of flows, the efficiency of such schemes generally decreases because a

packet is allowed to be forwarded by multiple nodes at each hop, which
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Figure 12: Throughput improvement in a 5×5 grid topology versus the
number of flows.

may exacerbate congestion conditions. As a result, efficient support of

multiple flows with opportunistic routing appears still an open problem.

To address the above limitations, in this section we present and eval-

uate PacketOPP, a novel opportunistic routing protocol that combines

randomized opportunistic forwarding with opportunistic packet schedul-

ing. The starting observation is that, if all packets are buffered in a single

queue, and the forwarders transmit the received packets using a FIFO

service discipline, this would make impossible to take advantage of the

fact that some blocked packets in the queue can guarantee a higher po-

tential throughput increase than the Head-of-Line (HOL) packets. To

cope with this undesired restriction, PacketOPP employs packet schedul-

ing techniques to award a higher priority to the packets that are expected

to deliver the highest opportunistic gain, ensuring not only throughput

gain maximization but also a more efficient duplicates suppression, lim-

iting congestion increase.
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3.3.1 PacketOPP Design

In this section we firstly present an overview of the design principles

for the PacketOPP protocol, and then we describe each component of

PacketOPP in details.

Overview

As a non-scheduled opportunistic routing protocol, PacketOPP does not

employ a scheduler to regulate the order in which potential forwarders

should transmit, but it entrusts the MAC layer with the task of chan-

nel access coordination. In particular, PacketOPP exploits the concept

of opportunistic gain as defined in Section 3.2.1 to estimate the potential

throughput improvement associated to each packet transmission, and to

decide about future forwarders.

The component that mostly differentiates PacketOPP from equiva-

lent schemes is the internal packet scheduler used to enhance the ben-

efits of opportunistic routing in the presence of multiple simultaneous

flows traversing the same node. As illustrated in Figure 13, each node

has two transmission queues, one for local traffic (i.e., packets generated

by the node itself) and another for overheard packets to be retransmit-

ted (i.e., the forwarding queue). The separation of the input queues for
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the two types of traffic is useful for ensuring that sufficient bandwidth is

available for the forwarding traffic. Then, PacketOPP employes a packet

scheduler to award a higher priority to the packets that are expected

to deliver the maximum opportunistic gain, thus maximizing the ben-

efits of opportunistic forwarding also with multiple simultaneous flows.

However, for the protocol to be practical, PacketOPP has to address ad-

ditional design issues. First, it must avoid that starvation may affect

some packets that experience lower opportunistic gains that other pack-

ets, thus receiving a low priority from the scheduler. Moreover, to reduce

the probability that the transmission of the packet with the largest gains

is not suppressed by the reception of duplicates, a suitable prioritization

of the channel access would be highly desirable. We discuss the solutions

adopted in PacketOPP for these issues in following sections.

Packet scheduling and forwarding based on opportunistic gain

As mentioned above, most of the PacketOPP components relies on

the concepts of opportunistic gain, initially defined in Section 3.2.1. As

pointed out earlier, the opportunistic gain can be interpreted as the po-

tential throughput gain that an opportunistic transmission can provide

with respect to a traditional unicast transmission. On the other hand, the

opportunistic ratio is used to verify if a new opportunistic transmission

positively or negatively affects the throughput improvements accumu-

lated so far.

The quantities defined in equations (3.1) and (3.2) are used in Pack-

etOPP to drive the routing process. Specifically, we need to address the

following issues in our design: 1) in which circumstances a node should

accept to forward a received packet ; 2) which packet should be for-

warded first; and 3) when to transmit the packet. In the following, we

describe our approach to cope with these design issues.

Forwarding decision In PacketOPP, the decision rule establishing

whether a node is eligible to forward the received packet or not fol-

lows the same approach adopted in MaxOPP ( 3.2.1), thus it depends on
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whether condition 3.3 holds. Basically, we impose a minimum through-

put gain at each traversed hop by allowing transmissions only from re-

cipients belonging to routes that can provide a gain over the shortest

unicast path. Moreover, we require this gain to be at least a percentage

gamma of the gain at the previous hop, as defined in equation 3.3, so

as to preserve the gain obtained so far. We remind to Section 3.2.1 for a

deeper explanation.

Scheduling packet transmissions When a node is chosen as a for-

warder for that received packet, the packet is buffered in the forwarding

queue, otherwise it is discarded. The opportunistic scheduler defines the

policy used to serve the stored packets. It is important to observe that the

goal of this work is not to propose an innovative queuing packet serving

discipline, which is a topic extensively investigated over more than two

decades (PG93). In this paper we aim at demonstrating that combining

opportunistic routing with a low-complexity packet scheduler can lead

to a more efficient support of multiple simultaneous flows. Therefore,

we assume that a simple Round Robin (RR) discipline is used to serve

packets stored in the local and forwarding queues. However, to award

a higher priority to the packets that may provide a greater throughput

improvement we implement the forwarding queue as a priority queue,

where the packet priority is its opportunistic gain, as defined in expres-

sion (3.1). In this way, when the scheduler serves the forwarding queue,

it always picks the packet with the highest opportunistic gain. It is worth

noting that the RR discipline is the simplest approach to avoid starvation

of forwarded traffic due to local saturated traffic. However, in principle

it is still possible that a flow characterized by high opportunistic gains

will dominate all the other flows going through a node. We can observe

that a packet with a large opportunistic gain is usually received over un-

reliable links. Thus, a node is expected to receive much less packets with

large opportunistic gains than packet with low opportunistic gains, and

this should mitigate the risk of flow starvation. However, starvation can

be also avoided by introducing some randomness in the packet insertion

in the priority queue. For instance, using a RED-like (FJ93) approach a
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newly received packet can be inserted in the forwarding queue as the

last packet with probability p, or according to its priority with probabil-

ity 1−p. In this case, p is a system parameter used to control the fraction

of packet managed according to a non-FIFO discipline.

In most opportunistic protocols, such as in (RSMQ09; YYW+05),

overhearing is generally used as a low-overhead mechanism to suppress

the transmission of duplicate copies of the same packet. More precisely,

each packet generated by the source carries an incremental sequence

number, and each node stores the sequence numbers of its recently for-

warded packets. In this way, when receiving a packet the node can deter-

mine whether it is a duplicate or not, and it discards the packet accord-

ingly. PacketOPP further extends the overhearing technique because it

checks if it has the same packet in its forwarding queue. In this case,

if the stored packet is characterized by lower opportunistic gain than

the newly received packet it removes it, otherwise the received packet is

dropped. In this way, PacketOPP ensures that the packet with a better

opportunistic gain get forwarded.

Prioritization of channel access Overhearing is a simple technique to

coordinate forwarding nodes. However, it is most efficient when the

packet with the highest opportunistic gain is the first to be transmitted,

because it can suppress the largest number of duplicate copies, as well

as maximize the benefit of the opportunistic transmission. Motivated by

these observations, PacketOPP introduces a prioritization of the chan-

nel access trying to give a stochastic precedence in the channel access to

transmissions with high opportunistic gains. To achieve this goal, Packe-

tOPP slightly modify the backoff procedure at the MAC layer. More pre-

cisely, the 802.11 access method randomizes the transmission of broad-

cast frames by picking up a backoff timer in the range [1, CWbroadcast].

Since the 802.11 technology does not implement collision detection for

broadcast frames, the contention window is constant. To simply support

a finite number of priority levels for broadcast transmissions we can use

a linear quantization by splitting the contention window into a set of

fixed intervals obtained by dividing the maximum window size by the

70



number of supported priority levels. In other words, if r is the desired

number of priority levels, ∆r = CWbroadcast/r is the duration of these

time intervals. Then, we can associate a priority level l (l is a discrete

value between 1 and r) to a broadcast transmission by selecting a ran-

dom backoff timer in the range [1, l × ∆r]. This ensures higher chances

for channel access to the packet with a lower priority value. Finally, to

assign the priority level to a packet we consider its opportunistic ratio.

More precisely, let us consider a packet sent by node j and received by

node i with an opportunistic ratio ORSD(j, i, k). Since, the higher the

opportunistic ratio and the lower should be the priority level l, for sim-

plicity of notation in the following we consider the inverse of the oppor-

tunistic ratio. As described in Section 3.2.1, a node discards a received

packet if the opportunistic ratio is lower than γ. This implies that the in-

verse of the opportunistic ratio for any buffered packet is upper bounded

by 1/γ. Then, we can quantize the inverse of the opportunistic ratio by

dividing it in r fixed interval of size ωr =
1

γ×r
. Finally, each packet stored

in the forwarding queue receives a priority level l is equal to:

l =

⌈
1

ORSD(j, i, k)
·
1

ωr

⌉
. (3.4)

Loss recovery As explained in section 3.2, in opportunistic routing pro-

tocols it is important to employ loss recovery mechanisms also at the

routing layer. In PacketOPP we adopt the same approach followed in

MaxOPP and (RSMQ06). Specifically, the destination node sends to the

source nodes periodic end-to-end unicast acknowledgement messages

over the shortest path2, which contain a fixed size bitmap with the se-

quence numbers of missing packets. After receiving an acknowledgment

packet, the source node retransmits the lost packet. However, to keep

the retransmission overhead limited, in PacketOPP a packet can be re-

transmitted at most once. Consequently, PacketOPP can only provide

best-effort reliability to some extent. We remind to section 3.2 for more

details.

2In our simulations the acknowledgement period is 100 ms.
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3.3.2 Performance Evaluation

In this section, we evaluate the performance of PacketOPP using ns-

2 (The09) simulations in a set of representative network scenarios. Fur-

thermore, we compare it against two other non-scheduled opportunis-

tic routing protocols, ROMER (YYW+05) and MaxOPP (3.2), and a

traditional link-state routing protocol, in our case OLSR (CJ03), using

ETX (DCABM03) as link-cost metric.

Simulation set-up

To compare the various routing protocols and collect performance mea-

surements, we have used ns-2 (version 2.33) (The09), a popular event

driven simulator that implements the full protocol stack of a MANET. To

be able to conduct experiments in controlled environments, while repro-

ducing the behaviors of lossy wireless links, we extended the physical

channel model of ns-2 to generate packet losses by dropping packet re-

ceived at the MAC layer with a constant probability. Note that in our test

we use DCF scheme of 802.11 by fixing the transmission rate at 11 Mbps,

and disabling the RTS/CTS access method, which is the default setting

in most wireless networks.

Concerning the traffic patterns, we model traffic flows as CBR UDP

connections generating fixed-size packets at a rate sufficiently high to

saturate the wireless channel. If not otherwise stated, the packet size is

1000 bytes. Each simulation run consists of 300-second data transfer, but

throughput measurements are not collected during the first 150 seconds

to let the ETX metrics converge. In order to collect statistics (i.e., average

values and 95% confidence intervals) we replicate each simulation ten

times.

Simulation results

In the following simulations we set the γ value to 0.8 in both MaxOPP

and PacketOPP to ensure similar forwarding node decisions. Regarding

ROMER, we have used the same setting adopted in (YYW+05), which

suggests to set the forwarding probability at each node equal to 0.2.
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Moreover, our simulations will consider a range of network scenarios,

starting from a basic chain topology with a single flow to more complex

grid topologies with multiple simultaneous flows.

Single Flow To investigate the effectiveness of PacketOPP in exploit-

ing weak links that may exist between a transmitter and distant nodes,

we consider a linear chain topology with a single flow. In this topol-

ogy, each 1-hop link is ideal, i.e., with perfect delivery rate, and packet

can get lost only due to collisions. On the other hand, 2-hop links have

a constant delivery rate pd, which is varied from 0 to 1. For clarity, Fi-

gure 7 shows an illustrative 4-hop chain topology. To quantify the per-

formance of each routing algorithm, we used the average end-to-to end

goodput, defined as the average rate of non-duplicated packets received

at the destination. Figure 14 shows the performance of each routing pro-

tocol for a flow that traverses a 7-hop chain topology versus the packet

delivery rate pd. Interesting observations can be derived from the shown

results. First of all, OLSR is the worst routing protocol under moderate

packet loss rates. This can be explained by noting that the Hello-based

link monitoring mechanism used in OLSR to estimate the link quality,

provides oscillating measures, especially for intermediate values of the

delivery rate (i.e., 0.4 < pd < 0.8). As a result, OLSR suffers from exces-

sive route flapping, which causes noticeable performance degradations.

These behaviours have been also observed in real network deployments,

as reported in (RSBA07). On the contrary, the simulation results indicate

that ROMER is more robust than classical shortest path routing protocol

against link quality variations, because ROMER delivers redundant data

copies in a randomized manner over the candidate forwarding mesh,

ensuring better resiliency against lossy links. However, we can observe

that ROMER performance slightly depends on the delivery rate of 2-

hop links. In addition, ROMER performs noticeable worse than OLSR

for delivery rates close to either 0 or 1. This can be explained by ob-

serving that in the current design ROMER employs a fixed forwarding

probability. Therefore, the total number of forwarded copies is constant

and depends only on the number of transmitters’ neighbors. However,
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for smaller values of the delivery rate, most of these packet copies get

lost before reaching the destination, because there are a few transmis-

sions that reach 2-hop neighbors. In other words, the static forwarding

probability does not ensure that a sufficient number of packets are suc-

cessfully received by the destination when the channel conditions do not

offer enough transmission opportunities. On the other hand, for larger

values of pd, the overhead due to the delivery of redundant copies is

excessive because path diversity is limited and multiple transmissions

cause throughput penalty over traditional unicast routing. Moreover, it

is worth reminding that ROMER uses a credit-based scheme to further

limit the number of transmissions. However, setting a static credit bud-

get may not be efficient to cope with different network conditions. The

results shown in Figure 14 confirm that MaxOPP’s throughput is signif-

icantly higher than OLSR and ROMER in all the considered scenarios,

and the maximum throughput gain exceeds 600% for OLSR and 250%

for ROMER. This is mainly due to the ability of MaxOPP to adaptively

select the most advantageous forwarder at each hop. As expected, in

the single flow scenario PacketOPP has similar performance than Max-

OPP because forwarding node selection is based on the same principles

in both algorithms, and the opportunistic packet scheduler cannot fully

exploit the diversity of transmission opportunities, which mainly arises

with multiple flows. Nevertheless, PacketOPP slightly increases the flow

throughput over MaxOPP, especially for small values of the delivery rate

pd, because, as discussed in Section 3.3.1, the access prioritization em-

ployed by PacketOPP protocol improves the efficiency of the overhear-

ing technique.

Figure 15 compares the average throughput achieved by PacketOPP,

MaxOPP, ROMER and ETX-based OLSR for linear chain topologies by

varying the number of wireless hops between the source and the desti-

nation nodes and considering intermediate delivery rates for 2-hop links

(i.e., pd = 0.5). Interestingly, the graph shows that ROMER performs

better for shorter chains (i.e, 2/3 hops) than for longer chains (i.e., 5/6

hops). This can be explained by noting that in a short chain there are a

very few opportunities to take advantage of weak links, and most of the
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Figure 14: Flow throughput in a 7-hop chain topology as a function of the
packet delivery rate pd.

opportunistic gain comes from the use of broadcast frames, which have

no ACK overhead, while the shortest path routing uses unicast transmis-

sions and incurs ACK overhead. In these conditions, there are no sub-

stantial differences among the various opportunistic algorithms, which

achieve similar performance. Nevertheless, the greater efficiency ofMax-

OPP and PacketOPP algorithms over ROMER becomes rapidly evident

as soon as we consider longer chain topologies.

Multiple Flows In this section, we investigate the performance of mul-

tiple flows in grid topologies. Specifically, we consider a 5×5 grid-based

network topology where 1-hop links are perfect (i.e., delivery rate equal

to one), while 2-hop links have intermediate delivery rates (i.e., pd = 0.5)

as shown in Figure 10. Regarding the traffic scenarios, we randomly

choose source and destination pairs, however a node can be either the

source or the destination of a single flow. For each scenario, we report

the total mean throughput and the mean fairness index averaged over

ten different traffic patterns. The system fairness is measured using the

classical Jain’s index (Jai84), defined as (
∑

xi)
2/(n ·

∑
x2
i ), where xi is

the goodput of the i-th flow and n is the number of flows.

Figure 16(a) and Figure 16(b) show the total average throughput and
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Figure 15: Throughput in a chain topology versus the number of hops for
pd = 0.5.

the fairness, respectively, for different number of flows. First of all, we

can observe that the confidence intervals are quite high. This is due to

the fact that, although we fix the number of flows for each scenario, the

structure of each traffic pattern used in the simulation runs is highly di-

verse because we pick randomly the source and destination nodes. Fur-

thermore, the results confirm that, as the number of flows increases, the

system fairness degrades because flows traversing a greater number of

hops are disadvantaged with respect to shorter flows. The graphs also

clearly indicate that opportunistic routing strategies provide significant

throughput gains over traditional unicast routing mainly because op-

portunistic routing algorithms can cope well with unreliable wireless

links, and are more responsive to variable channel conditions. How-

ever, as shown in Figure 16(a), PacketOPP outperforms both MaxOPP

and ROMER for any number of flows, with the maximum throughput

gain varying from 70% for OLSR, 50% for ROMER and 10% for MaxOPP

depending on the traffic scenario and the congestion level. Regarding the

fairness properties, the percentage improvements ensured by PacketOPP

over the other routing protocols are even higher, especially when there

are many simultaneous flows. These results demonstrate the ability of
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Figure 16: Total average throughput (a) and fairness (b) in a 5 × 5 grid
topology versus the number of flows.
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PacketOPP to select the forwarders that may provide the maximum po-

tential throughput gain, and to effectively schedule the packet with the

highest opportunistic gain in such a way that they have a higher chance

to access the wireless medium first.
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Chapter 4

Using Localized Context to
Improve Reliability and
Adaptability of
Opportunistic Routing

4.1 Combining end-to-end with localized data

In the previous chapters, we have presented and discussed several op-

portunistic routing approaches, and highlighted their benefits and lim-

itations in mitigating the negative impact of channel quality variability

on WMNs performance. Moreover, we have proposed two novel algo-

rithms able to select at run-time the paths that maximize the throughput

gain.

Although the opportunistic routing approach has shown its poten-

tiality to deal with high loss rates, the inherent variability of channel

quality over space and time requires a high degree of flexibility and

adaptability to changing network conditions when building the best

path. When opportunistic routing is used, routes are constructed in a

hop-by-hop fashion, evaluating the potential packet progress provided

by each recipient. Most of the existing opportunistic routing solutions
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base the forwarder selection on end-to-end principles (BM05; WLL08).

More specifically, packets are opportunistically forwarded through mul-

tiple alternative paths that are deemed more convenient than the short-

est unicast path. Typically, the cost from each potential forwarder that

can be used to reach the destination is compared with the cost of the

shortest path that would be used by traditional unicast routing, and only

the nodes ensuring a performance improvement over the shortest path

are selected as potential forwarders. Although end-to-end characteristics

are fundamental to rank all the available multiple paths for each source-

destination pair, local network conditions are necessary to performmore

accurate and efficient forwarding decisions at each hop. Indeed, the cost

of a path is not uniformly distributed over space, nor constant over time,

hence even two equal-cost paths might present significantly different

link quality distributions one from the other (CRSK06). This disparity

might be considerable especially in challenging scenarios, where some

sub-regions of the network may be more disadvantaged than others.

Hence, a localized decision (i.e. hop-by-hop) is not sufficient to perform

the most appropriate routing decision when only end-to-end principles

are considered.

Motivated by the above considerations, in this chapter we propose

RELADO (RELiable ADaptive Opportunistic routing protocol), an inno-

vative routing paradigm able to combine end-to-end with local informa-

tion, so as to adapt the forwarding decisions to the localized context ob-

served at the time of packet reception. In a nutshell, RELADO relies

on an end-to-end opportunistic routing paradigm to select the best for-

warder(s) at run-time and on a per-packet basis. In addition, real-time lo-

cal channel information permit to adapt per-packet routing decisions to

short-term and localized (i.e., space-limited) channel dynamics. Thanks

to the combination of end-to-end and localized information, RELADO is

able to promptly react to the channel quality variations along the whole

path, mitigating the negative effect of sub-optimal decisions due to the

lack of a complete and up-to-date path view.
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4.2 RELADO design

In this section we firstly present an overview of the main principles be-

hind RELADO design, and then we describe the algorithm in details.

4.2.1 Overview

The primary goal of RELADO is to ensure robust communications even

in case of transient failures, heterogeneous link quality distributions or

challenged channel conditions, by dynamically adapting routing deci-

sions to both end-to-end and localized network context. In common to

other opportunistic routing schemes, each transmitting node (i.e. source

node and forwarder) broadcasts received packets, and any neighboring

node overhearing this transmission is a potential next hop. The funda-

mental issue in opportunistic routing is how to select the next hop(s)

for each transmitted packet and how to coordinate multiple forwarders

without incurring high overhead and packet duplicates. Our aim is also

to provide each forwarder with the additional capability to estimate the

criticality of each transmission, that is, to evaluate the importance of its

role as a forwarder in building a reliable path for each specific packet. To

achieve the above goals with a distributed low-overhead algorithm, we

need to address two main issues: 1) each receiving node must be able

to autonomously evaluate its potential contribution to the forwarding

process, in order to decide whether to transmit the packet or not, and

2) the contribution must take into account two components: efficiency

and resilience. The former represents how the forwarder can contribute

to reduce the cost to reach the destination, thus increasing the through-

put, considering the path from an end-to-end perspective. The latter rep-

resents how the transmission of this forwarder is crucial to ensure that

the packet makes progress towards the destination, even in case of lossy

links. This component is needed to adjust forwarder selection based on

the localized channel qualities and network state, and their impact on

packet transmissions. This approach attempts to provide the same level

of robustness at each hop of the traversed path, regardless of the channel
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conditions. In the following, we explain how RELADO achieves those

goals, and then we provide a more detailed description of the algorithm.

RELADOdoes not use any pre-determined list of forwarders, but it relies

on a distributed algorithm that provides each node with the capability

to autonomously decide whether to participate to the forwarding pro-

cess. To achieve this goal, as we proposed for the MaxOPP forwarding

procedure ( 3.2.1), each node receiving a packet evaluates the potential

throughput gain that it would generate by further broadcasting the re-

ceived packet. More specifically, each node evaluates its effectiveness as

a forwarder for the received packet by comparing its expected cost to-

wards the destination with the remaining cost along the shortest path.

This step is required to ensure that packets traverse only paths with a

cost lower (or at most equal) than the shortest path, thus providing a

throughput gain. On the other hand, resilience to critical and variable

channel conditions can be guaranteed only with a flexible and adaptive

routing approach, which must be able to easily detect critical but local-

ized channel conditions. Thus, the basic routing scheme described above

should be enhanced to provide a certain degree of flexibility depending

on the channel qualities observed in the range of each transmission.

To better explain this concept, let us consider the example in Fi-

gure 17, where node F is forwarding a packet destined for D. In this

context we can identify three categories of neighbors for node F: 1) admis-

sible forwarders, 2) resilient forwarders, and 3) excluded forwarders. The

first set includes all node F’s neighbors with a difference between their

cost towards the destination and the corresponding cost along the short-

est path lower or equal than a given threshold δ. This implies that the

admissible forwarder can participate to the packet forwarding. On the

contrary, any excluded forwarder will drop the packet because its cost

to the destination is higher than that from F, meaning that the packet

will get farther from the destination. An important role is played by the

second set, which is formed by the remaining node F’s neighbors. The

importance of resilient forwarders resides in the possibility they offer

to enlarge or restrict the set of admissible forwarders according to the

criticality of each transmission. More precisely, if the probability that a
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Figure 17: Example illustrating how the neighbors of node F can be di-
vided into the sets of admissible, resilient and excluded forwarders. In this
example we assume that: i) node F has received a packet that has already
traversed 2 hops (thus k=3), ii) node F acts as a forwarder for the received
packet, which is rebroadcasted to all node Fs neighbors, and iii) δ = 0.

packet transmitted by F reaches one of the admissible forwarders is suf-

ficiently high (i.e., above a given threshold), then the current choice of

the threshold δ is appropriate. On the other hand, if the localized chan-

nel conditions are critical, we need to guarantee that additional resilient

forwarders will be included in the admissible set. The resulting aug-

mented set permits to increase the reception probability from node F to

the nodes closer to the destination. Although this flexibility might re-

duce the throughput gain obtained so far, in such challenging situations

we clearly need to trade path efficiency for resilience. In the following

sections we explain in details how to compute all the quantities needed

to determine the various sets of forwarders, and to estimate the criticality

of a packet transmission.
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Opportunistic routing based solely on end-to-end principles

As stated above, RELADO inherits the basic end-to-end routing ap-

proach that we have proposed in 3.2.1 for the MaxOPP protocol. Thus,

in this section we briefly overview its main principles to better clarify

the differences with the new scheme. We highlight that the goal of this

work is to develop and evaluate an adaptive opportunistic routing proto-

col and compare it with another opportunistic routing scheme lacking of

the capability to adapt to local conditions, in order to evaluate the effec-

tiveness of the additional feature. Thus, our aim is not to select the best

opportunistic approach available, but to select an efficient opportunis-

tic protocol and to provide it with the reliability an adaptivity necessary

to improve its efficiency in most of the typical wireless mesh network

scenarios. For this reason, we select MaxOPP as the basic end-to-end op-

portunistic scheme and we extend it with additional capabilities, hence

we compare RELADOwith MaxOPP.

As explained in section 3.2.1, if the opportunistic gain(3.1) is positive

and sufficiently high, it means that the packet has reached a node unex-

pectedly closer to the destination than its intended next hop, because it

has traversed a path much shorter than the minimum-cost path. Indeed,

it is convenient to take advantage of this favorable condition by allowing

the node i to play the role of the k-th forwarder. Moreover, if the packet

has traversed long hops, significantly improving the path throughput

compared to the shortest path, then successive transmissions should not

nullify the benefit obtained so far. Thus, the routing protocol should

admit only those forwarders that can preserve this gain. On the other

hand, we should also allow enough forwarders to be activated, in order

to guarantee packet progress. This second goal is achieved by specifying

the minimum value of the opportunistic ratio (3.2, 3.3). This ratio rep-

resents the gain variability from the (k-1)-th to the k-th forwarder along

the path. In MaxOPP, whenever a node receives a packet, it checks two

conditions: i) the opportunistic gain must be positive; ii) its opportunis-

tic ratio must be higher than the gain threshold, which is decided by the

source node. In MaxOPP the opportunistic gain takes into account only
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end-to-end features (i.e., the characteristics of the paths traversed by the

received packets.), while in this study we advocated the idea that bet-

ter reliability (and throughput) can be achieved if the localized context

is considered in a more explicit way. Hence, in RELADO design, we still

use the concept of opportunistic gain, but we opt for a less restrictive and

more flexible approach. In the next section, we describe in details how

this is achieved in RELADO.

Opportunistic routing combining end-to-end principleswith localized
context

As explained in the RELADOs overview, when a node i rebroadcasts a

packet that has already been transmitted (k-1) times, all node i’s neigh-

bors can be divided in three different groups. There is the set of admissi-

ble forwarders AFi(k), which is defined as the set of node i’s neighbors

that provide a gain over the shortest unicast path greater or equal than

δi. Formally, AFi(k) can be obtained as

AFi(k) = {v ∈ N(i) | cost(pS,D; k)− cost(pv,D) ≥ δi} (4.1)

where N(i) is the set of i’s neighbors. Note that the set of admissible for-

warders with δi = 0 corresponds to the set of eligible forwarders used in

MaxOPP. The set of excluded forwardersEFi(k) contains node i’s neigh-

bors with a cost towards the destination higher than that from node i

itself, and is given by

EFi(k) = {v ∈ N(i) | cost(pv,D)− cost(pi,D) > 0} (4.2)

Finally, the set of resilient forwarders RFi(k) consists of the remain-

ing neighbors of node i, that is

RFi(k) ={v ∈ N(i) | cost(pv,D) ≤ min(cost(pi,D),

max(0, cost(pS,D; k)− δi))}
(4.3)
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Since we have assumed that each node has a global knowledge of the

network, which is provided by the underlying link-state dissemination

protocol, node i can easily compute the above three sets. However, if we

assume that the constant δi is piggybacked in the header of each packet

transmitted by node i, then each node i’s neighbor that correctly receives

a packet sent by node i can also easily determine to which set it belongs

to. Now, the fundamental open issue is how to set the δi threshold to

obtain the desired level of routing reliability. To this end we introduce

the concept of transmission robustness. More specifically, the robustness of

a packet transmission carried out buy node i, is defined as the probability

that the transmitted packet will be correctly received by at least one of the

nodes in the set AFi(k) of admissible forwarders (which in turn depends

on the δi threshold). It is interesting to note that this value represents

also the probability that the transmitted packet can proceed towards its

destination, since only the admissible forwarders are allowed to transmit

the packets they receive. To compute the transmission robustness, let us

denote with pi,j the probability that a packet transmitted by node i is

correctly received at node j. Clearly, (1 − pi,j) is the probability that the

packet is lost on the link e = (i, j). Then, the probability θi(k) that a

packet transmitted by node i, which was received at node i after having

traversed (k-1) hops, reaches at least one of the nodes in the set AFi(k)

can be computed as follows

θi(k) = 1−
∏

j∈AFi(k)

(1− pi,j) (4.4)

By definition the θi(k) value is the robustness of transmissions per-

formed by node i, and this metric can be used to quantify the criticality

of a packet transmission, and to decide if additional nodes should be em-

ployed as forwarders to help the packet progress. To clarify this point, let

us consider again the example in Figure 17. Considering the path costs

reported in the figure, it is immediate to obtain from formulas 4.1, 4.2

and 4.3 with δi = 0 that AFF (3) = {A,B,C}, RFF (3) = {D,E} and

EFF (3) = {G,H}. Let us suppose that, with this choice of admissible

forwarders, the transmission robustness θF (3) is 0.5, which means that a
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packet should be transmitted on average two times to ensure that it is re-

ceived by at least one node in AFF (3). For many applications such value

of reliability can be too low. On the other hand, allowing other nodes (i.e.,

D and E) to forward the packet can improve routing resilience. From a

practical point of view, let ωi(k) be the minimum transmission robust-

ness we want to guarantee at node i for each packet that has already

traversed (k-1) hops in the network. Algorithm 1 shows the pseudo-code

of the algorithm that is used in RELADO to compute the AFi(k) set and

the threshold δi that guarantees (whenever feasible) θi(k) ≥ ωi(k).

Algorithm 1 Algorithm performed by a node i to compute the AFi(k) set
and the threshold δi that guarantees θi(k) ≥ ωi(k)

Input: N(i), k, ωi(k), D, S
Output: AFi(k), RFi(k), EFi(k), δi

1: δi ←∞
2: Ω = ∅
3: Π = {j ∈ N(i) | cost(pj,D) ≤ cost(pi,D)}
4: θi(k)← 0
5: while (θi(k) < ωi(k))or(Π 6= ∅) do
6: v ← min

v∈Π
{cost(pv,D)}

7: Π : Π\{v}; Ω = Ω
⋃
{v}

8: θi(k)← ComputeRobustness(i,Ω)
9: δi = cost(pS,D; k)− cost(pv,D)
10: end while
11: AFi(k) = Ω
12: RFi(k) = Π
13: EFi(k) = N(i)− Ω−Π

The algorithm starts setting to infinity the minimum opportunistic

gain needed to activate a forwarder (line 1). At this point, the set Ω in-

cluding the admissible forwarders is empty (line 2), while the set Π list-

ing the resilient forwarders includes all node is neighbors that are closer

than node i itself to the destination (line 3). Then, we extract from set

Π the resilient forwarder v with the smallest remaining cost to reach the

destination and we add it to the set Ω (line 7). Then, we re-compute the

transmission robustness, as defined in equation 4.4, with the enlarged set
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Ω (line 8), and we update the threshold δi to ensure that node v will be

considered as an admissible forwarder. We continue to process the nodes

in the set Π until it is not empty or the transmission robustness fulfils the

constraint on the desired level of routing resilience, i.e., θi(k) ≥ ωi(k).

With Algorithm 1, we are able to provide a flexible routing solution that

adaptively trades throughput maximization for communication robust-

ness.

Loss recovery

As stated in the previous chapters, one of the fundamental issues in op-

portunistic routing is the design of an efficient and low-overhead loss

recovery mechanism. For these reasons, most of the existing opportunis-

tic routing solutions introduce special link-layer retransmission mecha-

nisms, or rely on end-to-end retransmissions implemented at upper lay-

ers (network or transport). The former permits to recover from losses

while packets proceed from source to destination, whereas the latter in-

forms the source about packets that have not been received within a

reasonable time period and must be retransmitted. However, end-to-

end acknowledgement messages impose a delay on packet recovery, and

hop-by-hop retransmissions might introduce a considerable overhead.

In order to provide both forms of reliability, we use a combination of the

above two mechanisms by limiting the disadvantages derived from each

approach. Thus, similarly to MaxOPP and PacketOPP, we introduce pe-

riodic end-to-end ACK messages with a fixed-size bit map reporting the

sequence numbers of not received packets, and additional information

on flow performance used at the source node to dynamically set proto-

col parameters (such as gain ratio threshold γ). The use of a fixed-size

bit map permits to keep ACK-related overheads limited. In addition, we

provide a controlled level of data redundancy along the path through

the simultaneous activation of multiple forwarders, which act as a dis-

tributed hop-by-hop loss recovery mechanism generating lower over-

head than traditional link-layer retransmissions. As explained above, the
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number of forwarders is tuned according to the reliability of the channel

during the actual transmission.

4.2.2 Performance Evaluation

In this section, we evaluate the throughput performance of RELADO and

compare it with two alternative protocols. For the purpose of the evalu-

ation, we implement it in the ns-2 network simulator, and we conduct an

extensive set of simulations.

Simulation setup

We consider aWMNof 25 nodes randomly placedwithin an area of 800m

x 800m. Each node is equipped with one omnidirectional antenna. Con-

cerning the MAC layer, we used the 802.11 DCF scheme and we fix the

transmission rate to 11 Mbps. Moreover, we disabled the RTS/CTS ac-

cess method, which is the common setting in most wireless networks.

With regard to the physical layer, instead of the classical TwoRay prop-

agation model, we use the Shadowing model, which is more suitable to

represent realistic outdoor environments. More precisely, the Shadowing

model expresses the received power at a wireless interface as a random

variable that takes into account the effect of multi-path propagation. In

particular, we set the shadowing deviation to 4 and the path loss expo-

nent to 2, in order to simulate an outdoor environment (ABB+04). If not

otherwise stated, the receiving threshold of the network interface is set

so that 95% of the packets are correctly received at the distance of 100m.

Finally, the data traffic is modeled as constant bit-rate UDP flows be-

tween randomly selected node pairs. More details about traffic patterns

are provided in following sections.

In order to evaluate the effectiveness of our routing approach, we

compare it with OLSR (CJ03) and MaxOPP 3.2. The former scheme

is used as a representative of link-state single-path routing protocols,

whereasMaxOPP is an example of opportunistic protocol that employs a

randomized forwarding scheme to select the next hop(s) at run-time and

on a per-packet basis.
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Simulation results

In this section we firstly discuss the results obtained in single-flow scena-

rios with static topology and stable channel conditions. Then, we show

the performance obtained in more critical scenarios due to node failures

or abrupt degradation of channel qualities. Finally, we analyze multi-

flow scenarios.

Single-flow scenario with stable conditions Firstly, we evaluate RE-

LADO performance when only a single flow is active in the network, in

order to gain a clearer insight on the effectiveness of our approach on

flows with different characteristics (number of traversed hops, channel

quality of traversed links, etc.). In order to ensure flow diversity, we

study the performance of the three protocols with 50 different source-

destination pairs. Each source node sends 1000-byte payload packets at

1Mbps data rate for 1000 seconds. Finally, we execute 10 independent

runs for each simulation to be able to compute average values and con-

fidence intervals of the throughput of all flows. Note that simulation

warm-up lasts 200 seconds, and statistics are collected in the remaining

800 seconds.

Figure 18 shows the distribution of flow throughputs for the three

considered protocols. We use a box plot with whiskers, since it permits

to easily display the most significant quartiles of the distribution: the

band inside the box is the median, the bottom and top boundaries of the

box are the first and the third quartile, respectively, and the ends of the

whiskers are the minimum and the maximum values. The square inside

the box represents the average throughput. As shown by the through-

put distributions, our approach offers clear improvements over the other

two algorithms. First of all, the average throughput obtained with RE-

LADO is higher than with the other two protocols, as MaxOPP is able

to outperforms OLSR of about 33%, whereas RELADO offers an average

throughput improvement over OLSR around 46%. Furthermore, OLSR

shows the lowest minimum throughput, and the largest range between

minimum and maximum values. By inspecting the simulation traces we
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Figure 18: Boxplots of throughput of 50 node pairs in a 25-node random
network for different routing schemes. Squares represent themean through-
puts.
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discovered that OLSR usually provides the highest throughput when

short-path flows are considered (one or two hops from source to des-

tination). However, it greatly suffers from an increase in the number

of traversed hops, which causes severe performance degradation. It is

important to note that a high variability of the throughput obtained by

individual node pairs is unavoidable due to the significant differences

in the length of shortest routes connecting such pairs, which span from

single hop traditional routes to routes that have six hops. However, Fi-

gure 18 indicates that with OLSR many flows have low throughputs,

which causes a quite lowmedian throughput. On the other hand, the op-

portunistic routing paradigm is able to exploit more transmission oppor-

tunities than OLSR, especially for long paths, improving the throughput

of disadvantaged flows. In particular, the median throughput obtained

with RELADO is significantly higher than both OLSR and MaxOPP. This

means that, with our scheme, a considerable percentage of flows (50%)

has a significantly higher throughput than with conventional algorithms.

Finally, let us consider the statistical dispersion of throughput values, i.e.,

the range between the first quartile and the third quartile, also known

as interquartile range. We can observe that, when RELADO is used as

the routing protocol, the throughput is concentrated over significantly

higher values, and even the throughput obtained with the least favor-

able conditions (minimum) is noticeably higher.

Single-flow scenario with node failure In order to evaluate the per-

formance of our algorithm in critical scenarios, we firstly consider the

case in which a node unexpectedly disconnects from the network, thus

all the other nodes are required to update link-state information and

re-compute routing tables. In order to create a particularly challeng-

ing environment, for each source-destination pair we disconnect a ran-

dom node located on the shortest path connecting source and destination

nodes, so that its failure certainly affects the performance of the activated

flow, requiring the computation of a new sequence of nodes to reach the

final destination. Note that the wireless mesh backbone is basically a

static network, and mesh routers are usually not resource-limited as de-
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Figure 19: Impact of node failures on the throughput of 50 node pairs in a
25-node random network for different routing schemes.

vices in many other wireless networks (such as sensor networks). How-

ever, route disruption is possible even in such static environments, given

the challenging conditions under which aWMN can be deployed, as dis-

cussed in Section 4.1. Hence, our intent is to analyze how the considered

protocols react to such topology changes. Figure 19 reports the distri-

bution of flow throughputs for the three considered protocols, measured

after the node failure.

The most evident result shown in Figure 19 is the severe performance

degradation experienced by all protocols when even one node stops to

relay packets (compared to the values reported in Figure 18). In particu-

lar, OLSR shows a very low minimum throughput value, as well as the

lowest maximum throughput value, which confirms the negative effect

of topology changes on traditional link-state routing schemes. Moreover,

with OLSR the interquartile range is quite small and shifted towards low

throughput values, whereas opportunistic routing algorithms show sig-

nificantly better performance. The main reason of this noticeable per-

93

mainmatter/4/figures/./Figure3.eps


formance degradation is the delay due to the computation of an alter-

native path. In addition, the new path will generally consist of longer

links affected by higher loss rates. On the other hand, MaxOPP and RE-

LADO are able to quickly adapt to the changed network topology, and

to take advantage of any transmission opportunity to deliver packets

around the failed node. Indeed, even during the collection and dissemi-

nation of updated link-state information, opportunistic routing can con-

tinue packet forwarding based on the data already available, since it al-

ready uses multiple alternative paths. For all these reasons, OLSR suffers

from route disruption more thanMaxOPP and RELADO. Finally, it is im-

portant to note that RELADO significantly outperforms not only OLSR

but also MaxOPP, providing an interquartile range more shifted towards

higher throughput values. This performance gains can be explained by

considering the fact that RELADO reacts to the localized worsening of

channel and connectivity conditions by increasing the set of admissible

forwarders, thus enhancing its resilience against higher packet losses.

Single-flow scenariowith channel quality degradation In this section,

we show and discuss the impact of link quality degradation on the per-

formance of OLSR, MaxOPP and RELADO. More specifically, at the be-

ginning of the simulation the receiver threshold of the network inter-

face is set so that 95% of the packets are correctly received at the dis-

tance of 100m. Then, after 100 seconds the receiver threshold is sud-

denly decreased to 0.80, meaning that only 80% of packets are correctly

received at the distance of 100m. The quality decreases similarly in all

links, causing a more uniform degradation of network conditions with

respect to a node failure, which causes a more localized perturbation of

network state. Thus, this event might cause the re-computation of many

minimum-cost paths, and it certainly generates a uniform increase of link

loss rates. Figure 20 reports the distribution of flow throughputs for the

three considered protocols, measured after the change of link qualities.

As shown in the figure, OLSR is characterized by the largest difference

between the flow with the highest throughput and the most disadvan-

taged flow achieving the minimum throughput. The reason is that link-

94



Figure 20: Impact of channel quality degradation on the throughput of 50
node pairs in a 25-node random network for different routing schemes.

layer retransmissions allows OLSR to provide a more efficient loss recov-

ery for flows with one or two hops, as opposed to opportunistic routing

that does not find enough alternative paths to face the drop in channel

qualities. However, as path length increases, OLSR performance notice-

ably decreases, whereas opportunistic routing schemes findmore oppor-

tunities to transmit. Hence, although the OLSR first quartile and median

throughput are slightly higher than with MaxOPP and RELADO, the lat-

ter protocols outperform the traditional single-path link-state routing in

terms of the interquartile range. In particular, RELADO shows a sig-

nificantly higher average throughput and third quartile than both OLSR

and MaxOPP. We remind that the third quartile is an important metric

because it represents the throughput trend for most of the flows (i.e.,

75% of collected samples). Again, this can be explained by observing

that RELADO reacts to the worsening of link qualities by accordingly in-

creasing the set of potential forwarders to guarantee stable transmission

robustness.
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In conclusion, compared to the other routing schemes, RELADO is

clearly able to boost throughput to higher values in both static and dy-

namic situations. OLSR suffers from route disruption more than oppor-

tunistic routing, because path re-computation is a costly and long pro-

cess. On the other hand, a homogeneous channel quality variation seems

to be a challenging case for all the considered routing protocols, leading

to severe performance degradation. However RELADO is the most ef-

fective scheme in properly reacting to these network changes, limiting

their negative effects.

Multiple-flow scenario In this section we consider more scaled scena-

rios, where a certain number of flows is simultaneously activated, to in-

crease the offered load in the network. As in the single-flow case, we

randomly select source and destination for each activated flow and we

start all flows at the same time, in order to observe how these concur-

rent transmissions affect the performance of the three routing protocols.

Note that flow patterns are chosen in such a way that each node can be at

most the source or the destination of one flow. Figure 21 reports average

values and 95% confidence intervals for the network capacity (i.e., the

sum of the throughputs of individual flows) versus the number of flows

for the three considered routing protocols. These results are obtained

repeating each test with twenty different combinations of selected flows.

The plot indicates that RELADO significantly outperforms OLSR in

all the considered scenarios, with throughput gains ranging from 25% to

55%. On the other hand, RELADO provides good improvements with

respect to MaxOPP for low numbers of flows (up to 20%), and attains

comparable performance for higher numbers of flows. It is interesting

to note that the network capacity is maximal when there are five flows

in the network, and further increasing the number of flows causes a de-

crease of the network capacity. This can be explained by noting that by

adding more flows in the network there is a tradeoff between the im-

provement in link utilization and the increased inter-flow interference.

The variability between the cases with eight and ten flows can be ex-

plained by considering that, in order to simulate realistic scenarios, data
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Figure 21: Impact of the number of simultaneously active flows on the total
network capacity.

flows are selected randomly so as to ensure a high variability of path

characteristics. Hence, the scenario with eight flows is not guaranteed to

reach the network capacity as in the ten flows case. Indeed, our purpose

is to evaluate the performance of the proposed protocol under different

and realistic conditions.
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Chapter 5

Machine Learning-based
Hybrid Routing for WMNs

5.1 Self-adaptive selection of the best routing

strategy

As discussed in the previous chapters, opportunistic routing has been

envisaged as a promising routing paradigm to mitigate performance

degradation due to the unpredictability and unreliability of wireless

transmissions. Although the encouraging results obtained so far, the

community still lacks a comprehensive study of the conditions under

which opportunistic outperforms traditional routing. In this chapter, we

are not concerned with the analysis of which are the scenarios where

one specific routing solution for WMNs shows superior or worse per-

formance than another specific routing solution. On the contrary, the

central question addressed in this chapter is: How to design self-adaptive

mesh networking solutions that autonomously and on-the-fly decide upon the

best routing protocol for a traffic flow from a set of supported algorithms, given

an estimate of the current network state? In principle an exact answer to

this question could be obtained through a comprehensive routing model

characterizing the impact of routing primitives, traffic patterns, network

topologies and link characteristics on the network performance. As a
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matter of fact, theoretical analysis of the capacity of WMNs has received

much attention in recent years (e.g., (ZWR08; ZLZ08; ZJ09)). However,

these studies are either limited to asymptotic bounds or based on central-

ized and computationally complexmodels. Furthermore, existing results

cannot be applied to heterogeneous environments, where each nodemay

use a different routing strategy.

To answer the above questions, in this chapter we propose a novel

routing architecture that exploits reinforcement learning to allow each

node to autonomously choose the best forwarding strategy from a pre-

defined set of routing protocols as network conditions (e.g., traffic loads

or link qualities) change. The idea of using machine learning tech-

niques to solve specific routing problems in ad hoc networks is not new

(see (For07) for a survey). However, to the best of our knowledge there

is very little research in applying reinforcement learning for the optimal

composition of different routing strategies. The rationale behind the use

of reinforcement learning is that it enables the design of decision agents

that learn through trial-and-error interactions with a dynamic environ-

ment how to behave in order to maximize the reward associated to their

actions (SB98). For the purpose of evaluation, in this chapter we design

an intelligent agent able to combine a traditional unicast routing proto-

col with an opportunistic routing scheme. A recent paper (BGLAO09)

has investigated how to combine on-demand routing and delay-tolerant

routing1 in intermittently-connected ad hoc networks. However, the so-

lution proposed in (BGLAO09) is basically an extension of the AODV

routing protocol (PBRD03) to cope with network partitions. On the con-

trary, the approach proposed here is more general because it allows the

combination of multiple and arbitrary routing algorithms without mak-

ing any assumption on the characteristics of the underlying network.

In the following, we first formulate the network state space for our

decision problemwith the objective of identifying the minimum number

of state variables required to estimate the routing efficiency. Second, we

1Delay-tolerant routing is a different type of opportunistic routing, where
transmission opportunities are generated by node mobility rather than wireless
diversity.
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define a set of rules to instruct the learning agent how to behave in order

to maximize its reward. It is important to note that the reward function is

used to formalize the goal of the learning problem. For instance, the re-

ward function can give higher value to policies that improve throughput

performance, reduce delays or increase reliability. This results in a highly

configurable system able to customize the routing behaviour according

to different application objectives and QoS requirements. Finally, the

tool we utilize to solve the learning problem is the Q-learning algorithm,

which is a dynamic programming method that works by continuously

improving its estimates of the value of particular actions at particular

states (WD92). The key properties of Q-learning are: i) it is a model-free

method, i.e., it does not require any model of the system, ii) it converges

with probability one to the optimal policy under general assumptions,

and iii) it is very easy to implement using lookup tables. On the neg-

ative side, it may converge slowly to the optimal policy depending on

the state size. Thus, to improve efficiency and speed up convergence we

rely on compact network-state representations and smart initialization of

action-value functions.

5.2 Background on Reinforcement Learning

Reinforcement Learning (RL) is a popular machine learning technique,

which allows an agent to automatically determine the optimal behaviour

to achieve a specific goal based on the positive or negative feedbacks it

receives from the environment after taking an action (SB98). More for-

mally, let us assume that the interactions between the agent and the en-

vironment occur at a sequence of discrete time instants t. Following the

same notation as in (SB98), the learning problem can be formulated by

defining:

• The state st∈S of the environment as observed by the agent, where S is

the set of possible states.

• The action at∈A(t) chosen by the agent, where A(t) is the set of actions

admissible at time t.
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• The probabilistic reward rt+1 ∈R, whose mean value is provided by the

reward functionR(st, at). Roughly speaking, the reward function maps

the state-action pair to a scalar value, and it is used tomeasure the good-

ness of taking action at in state st.

• The state transition function T (st, at, st+1), which provides the probabil-

ity of making a transition from state st to state st+1 after performing

action at. Note that T (st, at, st+1) captures the non-determinism of the

environment, because taking the same action on the same state may re-

sult in different next states.

Typically, in machine learning it is assumed that the state transition prob-

abilities satisfy the Markov property, i.e., they are independent of any

state or action previous to time t. In this case, the environment where the

agent operates is described through a Markov Decision Process (MDP),

and several optimized learning algorithms have been studied for this

class of environments2. More specifically, let us denote with π a policy,

which is a mapping between states and actions. In other words, the pol-

icy defines the probability π(s, a) that the learning agent takes action a

when in state s. In some cases, a policy can be a simple deterministic

function, but arbitrarily sophisticated policies are possible. In general,

the main goal of the learning agent is to find in the set of feasible policies

the optimal one providing the maximum long-term reward. To express

this in a mathematical setting we define the expected return Wt as a func-

tion of the sequence of rewards received after time step t. In the case

of learning tasks that are continuos a typical formulation for the return

functions is as follows

Wt =

∞∑

k=0

γkrt+k+1 , (5.1)

where γ is a parameter (0≤γ< 1) called discount rate, used to determine

the present value of future rewards. It is intuitive to observe that if γ=0,

2It is important to note that RL can also deal with non-Markovian environ-
ments (SB98). However, Markov property is a good approximation for many
network characteristics observed over long time intervals.
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the agent will behave so as to maximize its immediate reward, even if

this would imply a lower long-term return. It is also important to note

that other models exist for defining the return function (e.g., the finite

horizon model, in which the agent should optimize its expected reward

over a fixed number of time steps), which may be more suitable for other

learning problems, e.g., cyclical tasks.

Now, the solution of any RL problem can be formulated mathemat-

ically in an MDP perspective and under the discounted infinite horizon

optimality model described in (5.1) by introducing the concept of optimal

value V ∗(s) for each state s ∈ S. More precisely, V ∗(s) is defined as the

expected return if the agent starts at state s and then executes the optimal

stationary policy π∗. From the previous definition it follows that

V ∗(s) = max
π

E

(
∞∑

t=0

γtrt

)
. (5.2)

In the MDP case, it is a consolidated theoretical result that the optimal

value function (5.2) is unique and it can be computed as the solution of

the following set of equations (SB98):

V ∗(s) = max
a

(
R(s, a) + γ

∑

s′∈S

T (s, a, s′)V ∗(s′)

)
. (5.3)

Equation (5.3) provides the analytical basis for developing simple iter-

ative methods for calculating V ∗(s) and π∗, assuming that R(s, a) and

T (s, a, s′) are known. However, the main idea behind RL is that it is pos-

sible to obtain the optimal policy for an MDP environment even when

the model of the environment is not known or difficult to learn. Thus,

several model-free RL methods have been developed, which are based on

the concept of action-value functions (SB98). More formally, the optimal

action-value function Q∗(s, a) is the expected return if the agent starts

at state s, executes action a and follows the optimal policy π∗ hereafter.

Owing to this definition, it holds that V ∗(s) = maxa Q∗(s, a). Hence,

Q∗(s, a) can be derived recursively as follows

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′

Q∗(s′, a′) . (5.4)
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It is useful to note that from the knowledge of the Q∗(s, a) function, the

learning agent can straightforwardly build the optimal policy by simply

choosing the action with the highest value at each state. More formally,

this means that π∗(s)=argmaxaQ
∗(s, a).

A fundamental development in the context of model-free RL meth-

ods is the Q-learning algorithm (WD92), which updates the action-value

function using the following rule

Q(s, a) = Q(s, a) + α
[
r + γ max

a′

Q(s′, a′)−Q(s, a)
]
, (5.5)

where s′ and r are the state and reward, respectively, observed after per-

forming action a in state s, and α is a positive step-size parameter deter-

mining the learning rate. It has been shown that under general assump-

tions3 the Q-learning algorithm will asymptotically converge with prob-

ability one to the optimal action-value function Q∗ independently of the

agent’s behaviour, i.e., of the policy π being followed (WD92).

The great advantage of Q-learning algorithm is that it is typically eas-

ier to implement than other RL techniques. On the negative side, it may

converge slowly to the optimal policy due to the so-called exploration and

exploitation issue. Basically, when in state s the learning agent should

exploit its accumulated knowledge of the best policy to obtain high re-

wards, but it must also explore actions that it has not selected before

to find out a better strategy. Moreover, each action must be tried many

times to gain a reliable estimate of its expected reward. In the literature

there are a variety of popular exploration heuristics, ranging from the

simple greedy strategy, which selects action a in state s that maximizes the

current estimation ofQ(s, a), tomore sophisticated stochastic techniques,

which assign a probabilistic value for each action a in state s according

to the current estimation of Q(s, a). In Section 5.3.2 we further discuss

suitable action selection strategies for the application scenario addressed

in this work.

3Themost important condition is that all state-action pairs are visited infinitely
often.
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Figure 22: Node architecture

5.3 Routing Protocol Design

In this section we first provide a high-level overview of the various com-

ponents in our routing framework, and then we describe how to ap-

ply reinforcement learning techniques for improving routing efficiency

in WMNs.

5.3.1 Routing architecture

Figure 22 shows the main components in the node architecture. A key as-

sumption in our routing framework is that each mesh node implements

a number of pre-defined routing algorithms, and it can decide on-the-

fly which protocol to activate. The decision on which routing strategy

should be used can be made at different levels of granularity. For in-

stance, the source node may decide the best routing algorithm on a flow-

level basis. A finer granularity in the optimization process would be ob-

tained by using a combination of routing algorithms for each connection,

for instance dividing the packet flow into batches and choosing the best

routing algorithm on a batch-level basis.
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The core component in the architecture depicted in Figure 22 is the

reinforcement learning agent implementing the Q-learning algorithm.

Such agent operates between the transport layer and the network layer.

Specifically, the agent receives feedback signals from the network, which

are used both to estimate the network state, and to compute the (posi-

tive or negative) reward generated by the last action taken by the agent.

Such feedback signals can be in the form of observed network quantities,

or explicit messages sent by the destination and intermediate nodes. It

is important to note that the reward function formalizes the goal of the

agent and it is application dependent. Indeed, the application scenario

sets the QoS requirements for the route, which are mapped in a suitable

reward function. For instance, in case of applications generating bulk

data transfers, throughput is the most important performancemetric and

the reward should be a function of the measured connection throughput.

In case of delay-sensitive traffic alternative formulations for the reward

would be needed. From the knowledge of network states and transition

rewards, the agent can update the Q-value for the last transition using

formula (5.5). Then, the Q-values are represented by a two-dimensional

lookup table indexed by state-action pairs. Note that lookup tables are

very easy to implement, although the memory requirements may be pro-

hibitive in case of huge state spaces.

The last, but very important, learning component is the action se-

lector. As explained more in detail in the following, in our model an

action is a change in the fraction of packets in a flow that should be for-

warded using one of the available routing protocols. The simplest solu-

tion would be to always select the routing protocol that has provided the

highest throughput up to the time of the agent decision. However, there

is a trade-off between short-term gains and long-term rewards. Further-

more, the agent has to execute each state-action pair infinitely often in

order to guarantee the convergence to the optimal Q∗ matrix. In the fol-

lowing sections, suitable exploitation strategies will be defined.
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5.3.2 Network state, reward and actions

In the rest of this section, to simplify the protocol presentation, we as-

sume that each mesh node implements two different routing strategies,

namely, an unicast routing protocol and an opportunistic routing proto-

col. Note that our solution is not restricted to any specific routing algo-

rithm and it could be easily extended to more than two routing options.

Furthermore, we assume that the agent on the source node operates on

batches of packets all generated by the same traffic flow rather than on

single packets in order to reduce the cost for network state monitoring.

In our model, an action taken by the source is one possible choice for the

ηi parameter, defined as the fraction of packets in batch i to be sent us-

ing the unicast routing protocol (obviously, the remaining (1−ηi) packets

are sent using the opportunistic routing protocol). In other words, the

learning agent at the source node dynamically adapts the portion of traf-

fic sent using unicast routing or opportunistic routing depending on its

view of the network state and the received network feedbacks. More pre-

cisely, the destination collects throughput measurements for the packet

received from each batch4. Then, let ρUi be the throughput of packets

from batch i delivered using the unicast routing protocol, while let ρOi be

the throughput of packets from batch i delivered using the opportunistic

routing protocol. Thus, ρi = ρUi +ρOi is the total throughput for packets

of batch i measured at the destination. In addition, let η′i be the fraction

of the overall throughput at the destination for batch i due to the unicast

transmissions. More formally, this can be expressed as follows

η′i =
ρUi
ρi

. (5.6)

Now, we can introduce the concept of routing efficiency ǫi, a 3-valued vari-

4We assume that a tiny header is added to the traditional routing header con-
taining information such as the batch id and the type of routing algorithm used
to forward that packet.
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Figure 23: Portion of the transition graph used in our learning-based rout-
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valueR(s, a) and the transition probability T (s, a, s′). However, for the sake
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able defined as follows

ǫi =






1 η′i > ηi

0 η′i = ηi

−1 otherwise

. (5.7)

In other words, the ǫi quantity measures if the packets delivered using

the unicast routing protocol suffer from less, the same number, or more

losses than packets of the same batch delivered using the opportunis-

tic routing protocol. Now we can define the network state si as the two-

dimensional tuple {ηi, ǫi}. Note that our objective is not to obtain global

network information, but to define an approximate compact represen-

tation of the network state to infer the impact of agent’s actions on the

performance of each traffic flow.

The last element of our reinforcement learning system is the reward
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R(si, ai) gained when in state si the agent performs action ai. Intuitively,

for bulk data transfers the immediate reward should depend on the total

throughput obtained at the end of the transmitted batch of packets. More

precisely, let us assume that the source receives at the end of the transmis-

sion of batch i a feedback message with the ρUi and ρOi measures5. Then,

the agent chooses a new value for the proportion ηi+1 between unicast

and opportunistic transmissions in the next batch (i+1) (see Section 5.3.3

for a detailed discussion on the action selection policies). At the end of

the (i+1)-th batch, the agent will receive a new feedback message and it

will calculate the reward as follows:

R(si, ai) = ρi+1 + ω(ρi+1 − ρi) , (5.8)

where 0<ω< 1, is a constant parameter. As expressed in formula (5.8),

the reward consists of two contributions. The first term is intuitive: the

higher the measured throughput, the higher is the reward gained by the

source node. However, the agent should also assign higher value to ac-

tions that provide an increase in the flow throughput, and penalize ac-

tions that decrease the throughput. This means that the reward should

also depend on the throughput obtained in the previous step. To this

end, we introduce the second term ω(ρi+1−ρi), which is a scaled mea-

sure of routing gain6. Note that definition (5.8) does not violate the MDP

assumption.

Whenever the source node receives a feedbackmessage from the des-

tination or a neighbor node with the information needed to compute the

reward associated to its last action, it updates its estimates of the action

values using formula (5.5). It is important to note that for learning prob-

lems in stationary environments it is usual to set the learning rate α as

a decreasing function of time. The reason is that at the beginning of the

agent’s life the rate α should be large enough to quickly overcome ini-

tial conditions. As the estimates of the optimal action values converge,

5For the sake of simplicity we assume that the feedback signal is not delayed.
In Section 5.3.4 we discuss on the impact of delayed feedbacks, which is the nor-
mal case in real-world networks.

6In our simulations ω=0.5
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decreasing the rate α mitigate unnecessary fluctuations. However, it is

intuitive to note that the routing problem considered in this work is in-

trinsically non-stationary because the network conditions can change over

time (e.g., due to interference, node failures, etc.). In such cases it is use-

ful to give more weight to recent rewards than past ones to guarantee

a fast adaptation to dynamic network behaviours. This is achieved by

using a constant learning rate (in our implementation α=0.5, which pro-

vides a good tradeoff between reactivity and stability). For the same

reason, we also set the discount rate γ equal to zero, to give more impor-

tance to recent rewards than to future ones, which may be associated to

a network with changed conditions.

Before concluding this section, it is important to explain how our

learning agent reduces the number of admissible state-action pairs to ex-

plore. Indeed, the time the Q-learning agent needs to converge to the

optimal policy will be affected by the size of the network state S and the

number of feasible actions. First of all, we restrict the parameter η to be

a real number in the range [0, 1] obtained as a multiple of a fixed posi-

tive constant. More formally, let (K+1) denote the maximum number of

positive and equally distributed values that η can take in the range [0, 1].

By definition it follows that:

η = kδ with k = 0, 1, 2, . . . ,K (5.9)

where δ = 1/K . Furthermore, for each η, we can have three different

conditions for the efficiency parameter (i.e., −1, 0, 1). This implies that

the overall size of the state space St is 3× (K+1). In our implementa-

tion we have set K = 10, which means that the fraction of packets in a

batch that is transmitted using unicast routing changes with a step size

equal to 10 percent. We have investigated the impact of the parameterK

on the network performance and we found that our proposed protocol

performs equally well with largerK values. In other words, the network

performance are negligibly affected by the use of a finer granularity in

the allocation of packets to the different routing options.

As described in Section 5.3.1, in our model an action is the selection of

a new η value for the successive batch of packets. In principle, after each
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packet batch, the learning agent could select any of the admissible values

of η in the range [0, 1]. However, such approach generates a number of

state-action pairs that is quadratic with K , which may lead to unaccept-

able convergence delays. Consequently, to reduce the number of possible

state-action pairs we assume that in state {ηi, ǫi} the learning agent can

only increase/decrease the ηi parameter by δ, or maintain it constant. In

other words, the agent’s actions can only cause transitions to adjacent

states. Based on these requirements Figure 23 depicts the transition dia-

gram from a generic state {kδ, ǫi}. As shown in the figure, at most nine

transitions are possible from each state. This means that the total number

of state-action pairs per each flow destination that we should rate with

a Q-value is bounded by 27× (K+1). Note that this number is small

enough to make acceptable the use of lookup tables for implementing

the Q-learning algorithm.

5.3.3 Action selection policy

A very important learning procedure is the action selection policy. In the

following simulations, three intuitive and quite popular policies will be

tested. It is important to note that there is not an action selection strategy

that is a priori better then others, but it depends on the properties of the

task to be accomplished.

• greedy: The greedymethod is the simplest action selection rule because,

at time t it always chooses the greedy action a∗, namely the action with

the maximum estimated action-value function. More formally this can

be expressed as follows:

Q(st, a
∗) = max

a
Q(st, a) (5.10)

where st is the network state at time t. This method is guaranteed to

maximize the immediate reward but it ignores exploration. In other

words, a pure greedy action selection policy never samples actions with

non-maximum Q value, although they could lead to action selections

with better long-term return.
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• ε−greedy: A simple alternative to the pure greedy strategy is a near-

greedy selection methods. More precisely, the learning agent will be-

have most of the time greedily, selecting an action with maximum ex-

pected value with probability (1−ε), but with a small probability ε in-

stead selects an action uniformly over the set At, and independently

of the action-value estimates. The advantage of an ε-greedy method is

that it guarantees that every action will be sampled an infinite number

of times as the time goes to infinity, which is the necessary condition

for the convergence of the Q-learning algorithm. However, the advan-

tage of ε-greedy over greedy methods highly depends on the network

behaviour. For instance, if the variance of reward samples is very low,

exploration may not be necessary to find the optimal action. Indeed,

the greedy method would know the almost exact value of each action

after trying it once. In this case the greedy method might actually per-

form better than an ε-greedy method because it would quickly find the

optimal action and then never explore.

• softmax: One drawback of the ε-greedy method is that it has the same

probability of choosing worst-case actions as well as best-case actions

when in exploration phase. An obvious solution for this issue is to

use softmax action selection rules, which rank and weight actions ac-

cording to their value. The most common softmax function used in

reinforcement learning to convert values in action probabilities is the

following (SB98):

π(st, at) =
exp[Q(st, a)]∑

a′∈At

exp[Q(st, a′)]
(5.11)

Based on (5.11), there can be a great difference between the selection

probabilities of different actions depending on their values.

5.3.4 Practical issues

In the previous sections, we have described the general design of our

routing framework. But for the protocol to be practical, there are addi-

tional challenges, which we discuss in detail below.
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Delayed feedbacks

The destination is responsible for collecting the throughput measure-

ments and sending them to the source. Since most of the opportunistic

routing protocols use end-to-end acknowledgements from destination

nodes for signalling purposes, we can assume that those messages are

extended to also deliver the statistics needed for the source’s learning

agent. However, in this case the feedback signal will be asynchronous

with respect to the sequence of batches of packets generated by the

source. Alternatively a new dedicated control message could be gen-

erated at the end of the batch transmission. In any case, the source’s

agent cannot receive the feedback signal (due to end-to-end transmis-

sion delays) in time for selecting the η value for the successive batch. In

addition, sending a feedback message after each received batch would

generate an excessive overhead. To address this issue, in our implemen-

tation the destination generates a feedback message only after receiving

m consecutive batches of packets. Furthermore, this allows the agent to

apply averaging to the per-batch throughput measurements, thus miti-

gating fluctuations due to transient conditions. Then, the source uses the

same η value for at least m+ 1 consecutive batches. Our results indicate

thatm=10 provides a good tradeoff between responsiveness, stability of

throughput estimates and efficiency.

Packet losses

Packets can get lost in the network for several reasons. Generally, uni-

cast routing protocols are totally unaware of these losses that are recov-

ered through mechanisms implemented at different layers of the pro-

tocol stack (e.g., using layer-2 or layer-4 retransmissions). On the con-

trary, most of the opportunistic routing protocols directly retransmit lost

packets. Since the η parameter is a measure of the routing efficiency for

individual packet transmissions, retransmitted packet should not be in-

cluded in such computation.
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Implementation issues

There are several details to take into account during practical implemen-

tation. First of all, we must decide a suitable size for the batch. Note

that, differently from other routing schemes that operate on batches of

packets, such as ExOR (BM05), it is not necessary that the source collects

a full batch of packets before starting the forwarding process. In our im-

plementation, the batch is a virtual concept used to facilitate the learning

process, and to easily allocate each packet to one of the two routing op-

tions so as to respect the η fraction. Thus, each packet is forwarded as

soon as it reaches the head of the transmission buffer. In our implemen-

tation, the batch size is set equal to (K+1) packets.

A second concern regards the measurement of the routing efficiency.

In real-world networks the instantaneous throughput may be fluctuating

due to a variety of causes (e.g., transient changes of link quality due to

fading variations, burstiness of packet arrivals, randomness of channel

accesses, etc.). Consequently, it may be difficult to obtain stable estimates

of ǫ=0, as defined in (5.7). For these reasons, in our implementation we

adopt an extended definition of routing efficiency as follows:

ǫi =






1 η′i/ηi > 1 + β

0 |η′i − ηi| ≤ β ηi

−1 o.w.

. (5.12)

In other words, relationship (5.12) expresses that unicast and opportunis-

tic routing have the same efficiency if the relative difference between η′

and η values is less or equal than β. In our implementation, β = 0.1,

which is sufficient to absorb small fluctuations of throughput measure-

ments.

Finally, since the Q-learning algorithm is an averaging method that

improves its estimates of the average value of action-state pairs as new

actions are taken, it is dependent on the initial values of the action-value

estimates. The simplest initialization approach would be to set all the ini-

tial action values to zero. However, the initial action values could also

be used as a simple way of controlling the initial direction of exploration
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and to speed up convergence. In general, it is advantageous to use opti-

mistic initial values to encourage exploration even if greedy actions are

selected most of the time. Consequently, in our implementation we start

a 2-second probing phase at the beginning of each new connection to get

an initial estimate of the efficiency of unicast routing. More precisely, let

us assume that in the initial probing phase the traffic is sent using only

unicast routing (i.e., η=1). In addition, let φ̃U be the offered load per unit

time measured at the source and ρ̃U the unicast throughput measured at

the destination at the end of the probing phase. Then, η̃ = ρ̃U/φ̃U is a

rough estimate of the efficiency of unicast transmissions. Thus, a good

way for calculating an initial guess for the values of the action-state func-

tion is to assume that states with η > η̃ would not contribute to signifi-

cantly increase the system reward. More formally, this is equivalent to

say that Q(s, a) = ρ̃U for all s = {η, ǫ} such that η ≤ η̃, and Q(s, a) = 0

otherwise. Then, the Q-learning algorithm will improve the Q(s, a) esti-

mates converging towards the optimal values.

5.4 Performance Evaluation

A comprehensive simulation study has been conducted to compare the

performance of the proposed self-adaptive routing protocol, hereafter

simply called Hybrid, against two alternative routing schemes. We first

show the gains in terms of throughput improvements in single flow sce-

narios. Then, we analyze scenarios with multiple flows and unreliable

channels.

5.4.1 Simulation environment

To carry out the following simulation we use the ns-2 network simula-

tor, which implements the full protocol stack for multi-hop wireless net-

works. We consider WMNs of 25 nodes, each of which is equipped with

one omnidirectional radio antenna. These static nodes are placed ran-

domly in a 500m×500m area. Concerning the physical layer character-

istics, to make more realistic simulations we use the Shadowing propaga-
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tion model instead of the classical TwoRay propagation model, because

it permits to describe the received power at a certain distance as a ran-

dom variable. This is more appropriate for WMN environments, where

multi-path propagation due to large reflectors, e.g., buildings, may in-

duce significant fluctuations of instantaneous transmission and sensing

ranges. The following results have been obtained by setting the path loss

exponent equal to 2 and the shadowing deviation to 4, which are typi-

cal values for outdoor environments (ABB+04). If not otherwise stated

the receiving threshold for the network interface is set in such a way to

ensure a 95% correct reception rate at the distance of 100m. Concerning

the MAC layer, we use the 802.11 DCF scheme with a fixed transmission

rate equal to 11 Mbps. Moreover, we have disabled the RTS/CTS access

method, since this is the default setting in most wireless networks.

As motivated in Section 5.1 , for the purpose of evaluation we use

three routing protocols. First, we use OLSR (CJ03) as a representative

of proactive link-state routing protocols. Regarding the opportunistic

routing option, we use the PacketOPP protocol ( 3.3) , a lightweight op-

portunistic routing algorithm able to select at each hop, and at run-time,

the candidate forwarders that can maximize the opportunistic through-

put gain. Finally, the third protocol is Hybrid, which is a dynamic com-

bination of OLSR and PacketOPP obtained by applying the framework

described in Section 5.3 . In the following simulations, to generate the

data traffic we use constant bit-rate UDP flows. We do not use TCP-

controlled data transfers because traditional TCP would experience un-

acceptable performance degradations with opportunistic routing due to

the frequent out-of-order packet deliveries (BM05) . Such issue could

be mitigated by using sophisticated TCP variants, but this is out of the

scope of this chapter. Finally, the broad range of network and traffic sce-

narios used in the simulations will be described in detail in the following

sections.
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Figure 24: Boxplots of throughput of 80 node pairs in a 25-node randomnet-
work for different routing schemes. Squares represents the mean through-
puts.

5.4.2 Numerical results

Single flow

First, we evaluate the performance of our solution under a single flow

scenario. To this end, Figure 24 shows a box-and-whiskers plot7 depict-

ing the quartiles of the distribution of flow throughput for OLSR, Pack-

etOPP and Hybrid with different action-selection strategies. The results

shown in Figure 24 have been obtained as follows. First, we randomly

select a node pair in the network as source and destination of an UDP

flow, which sends packets with a payload of 1000 bytes at an offered rate

7We remind that a boxplot is a way of graphically depicting groups of numeri-
cal data through their five-number summaries: the bottom and top of the box are
the 25th and 75th percentile, the band in the box is the median (50th percentile)
and the ends of the whiskers represent the minimum and maximum of all the
data. Note that boxplots are particularly useful to display differences between
sets of data without making any assumption on the underlying statistical distri-
bution. Moreover, they provide a more aggregate and concise representation of
data variability than classical Cumulative Distribution Functions (CDFs).

116

mainmatter/5/figures/graphs/fig_sf_box_wmean.eps


of 1Mbps. Then, ten statistically independent runs are repeatedwith this

node-pair selection to obtain average values and confidence intervals for

the flow throughput. Since throughput performance of individual flows

are highly variable, we repeat the same set of simulations with 80 differ-

ent node pairs to collect a number of samples sufficiently large to obtain

good estimates of quartile ranges.

Several important considerations can be derived from the above di-

agram. First, if we consider the min-max interval, traditional unicast

routing shows the largest range, and in particular the lowest minimum

throughput. By inspecting the traces we discovered that unicast rout-

ing achieves very low throughput for source-destination pairs that are

separated by many hops. In these cases PacketOPP can take advan-

tage of multiple forwarding nodes and more opportunities to use long

links providing throughput gains of a factor of two or more. On the

other hand, due to its self-adaptive characteristics, Hybrid protocol is

able to select the routing option most suitable for both particularly dis-

advantaged flows and flows with the highest throughputs. The second

observation regards the statistical dispersion of throughput values, i.e.,

the range between the first quartile and the third quartile, also known

as interquartile range. It is important to note that a high variability of

the throughput obtained by individual node pairs is unavoidable due

to the significant differences in the length of shortest routes connecting

such pairs, which span from single hop traditional routes to routes that

have six hops. However, Figure 24 indicates that OLSR has the largest

variability, with many flows having low throughputs. This results in a

quite low median throughput. On the other hand, PacketOPP obtains a

median throughput 50% higher than OLSR. Despite that, the through-

put distribution for PacketOPP is quite concentrated around the median

value, which means that only a few flows can achieve high throughputs.

On the contrary, Hybrid protocol shows the best performance in terms

of median throughput, which is slightly higher than opportunistic me-

dian throughput, as well as interquartile range, which is more shifted

towards high throughputs. A final observation on the impact of action

selection strategies on theHybrid protocol performance. Figure 24 shows
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Figure 25: Scatter plot showing the relationship between the throughput of
individual flows obtained with OLSR and Hybrid (greedy).

that Hybrid protocol behaves almost equally well with all the conside-

red policies. However, the pure greedy strategy behaves slightly better

than the other considered strategies (i.e., ε-greedy methods and softmax

method), as it provides the highest median throughput. In the following,

all the reported results (except for convergence times) are obtained using

the greedy version of our Hybrid scheme.

To better understand the primary reason of throughput gains pro-

vided by Hybrid protocol over the other routing strategies, Figure 25

shows the throughput relationship between OLSR and Hybrid with a

greedy action-selection policy for the 80 node pairs considered in Fi-

gure 24, while Figure 26 shows the relationship between PacketOPP and

Hybrid. Figure 25 indicates that there is a large number of node pairs

with low unicast throughputs that obtain a significant gain when using

Hybrid protocol. Specifically, for half of the node pairs Hybrid outper-

forms OLSR by more than 50%. Moreover, the node pairs with the high-

est throughput (mainly pairs with single hop routes) are not affected by

the use of Hybrid routing. This means that the overhead introduced

by Hybrid (i.e., feedback messages and additional information in packet

headers) have a negligible impact. On the contrary, Figure 26 indicates
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Figure 26: Scatter plot showing the relationship between the throughput of
individual flows obtained with PacketOPP and Hybrid (greedy).

that the throughput gain of Hybrid over PacketOPP occurs mainly for

node pairs with mid to high throughput values, while it provides sim-

ilar performance for node pairs with lower throughputs. To clarify the

routing selection behaviour, Figure 27 shows the probability mass func-

tion (PMF) of the average η value for the 80 considered node pairs and

a greedy action-selection policy. To plot such curve we first compute the

average fraction of traffic that was delivered using unicast routing for

each individual node pair, and then we derive the distribution of such

measurement over all the flows. Interestingly we can observe that the

PMF of the η parameter shows two principal modes, i.e., two distinct

peaks (local maxima). More precisely, most of the flows converge to-

wards η values in the range [0.25, 0.4], which means that these flows use

a combination of unicast and opportunistic transmissions, but give pref-

erences to opportunistic routing. Then, there is a second smaller group

of flows that converge towards η values close to one, which are mostly

node pairs that are separated by a few hops. Interestingly, there is also

a non-null probability that a flow uses only opportunistic routing, i.e.,

η≤0.1.

To conclude this section we present results related to the convergence
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Table 2: Comparison of T1 and σ1 for different action selection strategies.

greedy 0.2-greedy 0.5-greedy softmax

T1 27.23 33.19 34.87 30.55
σ1 0.007 0.012 0.016 0.02

time of our Q-learning algorithm. To this end, we define two metrics.

The first metric is time T1, which is defined as the first hitting time for the

optimal η value. Basically, T1 measures the time needed for the intelli-

gent agent to discover for the first time the η value providing the best

throughput for each individual flow. The second parameter is σ1, which

is defined as the standard deviation of the η values chosen by the agent

after T1. In other words, σ1 measures the variability of the η parameter

around its optimal value. Note that, due to exploration the agent can not

persistently use the optimal η value, but it must occasionally test alter-

native η values. However, a sufficiently small σ1 value indicates that the

agent does not drift significantly from the optimal operating conditions.

Table 2 reports T1 and σ1 values for different action selection strategies.

The results listed in the table indicate that the greedy action selection

strategy outperforms the other schemes both in terms of convergence

times and stability. In particular, a greedy policy ensures that the η value
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providing the maximum throughput is selected most of the time.

Impact of the number of flows

We now turn to consider more scaled scenarios. Basically, we repeat the

same simulations discussed in the previous section, but increasing the

number of parallel data transfers active in the network. Figure 28 reports

average values and 95% confidence intervals for the network capacity

(i.e., the sum of the throughputs of individual flows) versus the number

of flows. These results are obtained repeating each test with twenty dif-

ferent combinations of selected flows. Note that flow patterns are chosen

in such a way that each node can be at most the source/destination of

one flow. The plot indicates that Hybrid significantly outperforms OLSR

in all the considered scenarios, with throughput gains ranging from 25%

to 55%. On the other hand, Hybrid provides smaller improvements with

respect to PacketOPP for low numbers of flows (up to 18%), and attains

comparable performance for higher numbers of flows. It is important

to note that the primary objective of our solution is not to define a new

routing protocol, alternative to OLSR and PacketOPP, but to show how

existing routing paradigms can be adaptively combined to optimize the

network performance in a widest range of scenarios. In fact, a specific

routing protocol can achieve better performance than another routing

protocol in one scenario, but worse in another one. Our routing frame-

work is capable of discovering the best routing option for every scenario

using a minimal knowledge of the network behaviour and limited over-

heads. However, the combination of two different routing protocols al-

lows some flows to obtain a throughput value higher than the one achie-

ved using a single routing strategy. This also leads to an increase in the

network capacity in most of the cases.

Impact of shadowing intensity

We investigate the impact of the shadowing intensity on the routing

performance. More precisely, we keep constant the path loss exponent

(equal to 2) and the shadowing deviation (equal to 4), but we vary the
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Figure 28: Comparison of network capacity for different touring protocols
with varying number of simultaneous flows.

receiver sensitivity threshold to change the probability of packet distor-

tion at the distance of 100m. Figure 29(a) shows the average throughput

obtained in the case of a single flow, while Figure 29(b) shows the net-

work capacity with ten randomly-selected simultaneous flows8. We do

not report results for packet-corruption probabilities higher than 0.4 be-

cause the most of the links are too unreliable to allow OLSR to discover

traditional shortest path between all node pairs. The results confirm that

Hybrid efficiency is not affected by the channel unreliability. It is also

interesting to observe that Hybrid has similar performance than Packe-

tOPP when the probability of packet corruption is low, while it provides

up to 20% throughput gains in more challenged environments. More-

over, unicast routing provides the worst network capacity in all the con-

sidered scenarios.

8The flow sets are the same as the ones used to obtain the results shown for
the previous scenarios.
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Figure 29: Comparison of throughput performance for different routing
protocols with varying shadowing intensity.
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5.5 Related Work

Due to the peculiarity of the proposed hybrid routing paradigm, we

overview some representative protocols for ad-hoc networks based on

configurable routing or reinforcement learning methods. Whereas Sec-

tion 2.3 extensively surveywireless diversity-based solutions forWMNs,

this Section is intended to clarify the state-of-the-art protocols more re-

lated to the hybrid architecture presented in this Chapter.

5.5.1 Configurable routing

The idea of developing a configurable routing framework to simultane-

ously support multiple ad hoc routing protocols is not new. Much work

is dedicated to the development of component-based frameworks, such

as Click (MKJFK00) and MANETKit (RC10) and many others, to enable

the composition of basic routing functionalities (like packet classification,

queueing, scheduling, and interfacing with network devices), to support

dynamic routing reconfiguration, as well as to seamlessly integrate rout-

ing with middleware services. However, the focus of these platforms is

to provide abstract programming interfaces, rather than QoS enhance-

ments. Other studies are more oriented in providing customized routing

solutions capable of supporting different QoS requirements and applica-

tion scenarios. For instance, a middleware toolkit is proposed in (SP09)

to implement dynamic path computation based on any combination of a

number of supported QoS metrics. However, the focus is still on the soft-

ware architecture needed for routing configuration rather than on rout-

ing performance optimization.

5.5.2 RL-based routing

Machine learning has gained much attention in recent years for solving

specific routing problems in computer networks (For07). One of the first

examples is the work by Boyan et al. (BL94) which defines a simple adap-

tive routing algorithm for static networks based on Q-Learning algo-

rithm. More related to the field of ad hoc networks, is the paper (CHK04),
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where reinforcement learning methods are used to control both packet

routing decisions and node mobility, in order to improve the connectiv-

ity of the mobile network. More recently, Forster et al. in (FM11) have de-

signed a multicast routing protocol for wireless sensor networks, which

uses reinforcement learning to adaptively discover optimal routes with

desired characteristics (e.g., route length, battery levels, etc.). A similar

approach is adopted in paper (AVARGCCS07), which applies reinforce-

ment learning and a Bayesian decision models to geographic routing in

WSNs. These studies confirm that machine learning techniques are use-

ful to improve routing performance in uncertain and unreliable environ-

ments. However, the use of reinforcement learning methods for imple-

menting optimal routing composition has not received enough attention.
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Chapter 6

Conclusions

In this thesis, we have deeply analyzed and discussed novel routing

paradigms for wireless mesh networks. We have firstly presented an

extensive overview of recent routing protocols designed to mitigate net-

work performance degradation due to the unpredictability and unrelia-

bility of channel conditions. These solutions take advantage of the mul-

tiple recipients of a packet generated by a wireless transmission (wire-

less diversity) to face the inherent high packet loss rate, hence we have

called this general strategy wireless diversity-based. We have identified

two basic routing categories in this context: opportunistic routing and

coding-based routing. The former generates multiple paths for each

source-destination pair in a hop-by-hop fashion, and exploits this form

of redundancy to provide resilience against path failures. The latter com-

bines data packets to increase transmission robustness through data re-

dundancy.

Keeping in mind the considerations mentioned above, we have fo-

cused our work on the opportunistic routing category, stimulated by the

encouraging results obtained so far and motivated by the limitations of

existing solutions. In principle, this routing paradigm constructs the

routes incrementally, by selecting the best forwarder(s) at each hop ac-

cording to channel conditions. However, one of the most relevant lim-

itations of existing solutions is the selection of a set of the admissible
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forwarders (or paths) before packet reception. Although this scheme

contributes to keep coordination overhead limited, it significantly re-

duces the forwarding opportunities generated by a wireless transmis-

sion. Hence, we have presented and evaluated MaxOPP, a flexible and

adaptive opportunistic routing algorithm able to select at each hop, and

at run-time, the candidate forwarders that can maximize the opportunis-

tic throughput gain. Forwarding decisions in MaxOPP are dynami-

cally adapted to the variations of network conditions, ensuring an ef-

ficient trade-off between reliability, data redundancy and opportunis-

tic gain. MaxOPP outperforms the shortest path routing with an aver-

age improvement that ranges from 10% with 4 flows to more that 100%

with one flow in a grid-based topology, and arrives to 200% in a lin-

ear topology. MaxOPP is based on a randomized forwarding process to

better exploit path diversity, but it may suffer from performance degra-

dations when the number of flows increases. For this reason, we have

proposed PacketOPP, a novel opportunistic routing protocol that wisely

combine randomized opportunistic transmissions with packet schedul-

ing to efficiently support multiple simultaneous flows. PacketOPP out-

performs not only shortest path routing, but also MaxOPP and ROMER,

another representative opportunistic routing protocol, with throughput

gain varying from 70% for OLSR, 50% for ROMER and 10% for Max-

OPP depending on the traffic scenario and the congestion level, whereas

the fairness improvement is even higher, especially when there are many

simultaneous flows.

Despite the flexibility provided by the hop-by-hop path construction,

a higher degree of adaptability to network conditions is required in wire-

less mesh network environments. Link quality is highly variable both in

space and time, due to wireless links peculiarities and characteristics of

mesh application scenarios. Routing decisions are usually based on end-

to-end principles, which do not take into account the localized channel

dynamics. To face this additional issue, we have proposed RELADO, an

opportunistic routing protocol that exploits the localized context to im-

plement a more accurate selection of the possible forwarders after each

packet transmission. RELADO combines end-to-end with localized in-
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formation to dynamically selects the number of eligible forwarders for

each packet transmission, so as to ensure transmission resilience across

the network. With this flexibility, RELADO is able to reduce packet loss

by providing the best trade-off between throughput maximization and

packet progress. The throughput improvement provided by RELADO

is about 46% over OLSR and about 30% over MaxOPP in scenarios with

stable conditions. In general, compared to the other routing schemes,

RELADO is able to boost throughput to higher values in both static and

dynamic situations. Hence, this approach is particularly suitable when-

ever network conditions are critical, such as in case of node failures or

abrupt degradations of link qualities.

There are many possible application scenarios related to WMNs.

Thus, it is very difficult to design a general routing solution fitting the

QoS needs of different applications. To conclude this thesis, we have

proposed and evaluated a self-adaptive routing framework for WMNs,

which enables the dynamic and on-the-fly combination of multiple rout-

ing strategies to maximize routing performance under arbitrary target

objectives. The proposed framework relies on efficient machine learning

techniques, which permits to tackle the complexity of the problem op-

timization without requiring to know how system performance depend

on routing strategies and network conditions. Hybrid is able to outper-

form OLSR by more than 50% and PacketOPP about 20%, depending on

the traffic characteristics. Moreover, the results confirm that Hybrid effi-

ciency is not affected by the channel unreliability, since it can promptly

react to channel variations adapting the routing strategy to the current

network conditions.

The purpose of this thesis is to significantly contribute to the inves-

tigation of novel routing paradigms for WMNs, focusing on benefits

and drawbacks of opportunistic routing. Hence, it provides useful in-

sights on the capability of wireless diversity-based routing in improv-

ing WMNs performance. Moreover, it presents novel routing algorithms

able to maximize throughput performance by employing flexible routing

strategies able to adapt to network conditions and specific application re-

quirements. All the presented results can be considered as a guideline for
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the definition of innovative routing protocols for WMNs.

The promising results presented in this thesis encourage further work

in several directions. One limitation of most of the existing diversity-

based routing solutions for WMNs, is to consider throughput maximiza-

tion as the main objective. However, this networking paradigm is ex-

pected to provide advanced communication services in diverse appli-

cation scenarios, where routing must be efficient not only for bulk data

transfers but also for real-time applications, which require stronger guar-

antees in terms of maximum delay and delay variability. Hence, we plan

to design a routing approach able to adapt forwarding decisions not only

to network and channel conditions, but also to QoS requirements of dif-

ferent applications.

An interesting property of a WMN is that the traffic flowing across

the network can be distinguished between intra-mesh and extra-mesh.

The former identifies traffic headed to nodes within the network, while

the latter represents traffic directed to destinations belonging to external

networks. We are interested in the development of a routing strategy

able to serve intra-mesh and extra-mesh traffic with different policies, so

as to achieve high performance by adapting forwarding decisions to traf-

fic characteristics. As an example, we can consider that packets directed

to the Internet have potentially multiple destinations within the mesh,

since they can potentially reach their intended destination through any

mesh gateway. Hence, extra-mesh traffic forwarding may be performed

in a way that guarantees load balancing not only across the network but

also among gateways, so as to avoid bottlenecks due to overloading of

some gateways and underutilization of others. In addition, many com-

mon application scenarios, such as community networks, rely on hetero-

geneous Internet gateways (e.g. subscriber broadband access lines and

high-speed provider fixed broadband links), which offer significantly

different resources. For this purpose, we are planning to integrate gate-

way selection into the forwarding procedure, allowing either the source

node or the forwarders to select the most convenient gateway(s) for each

packet. This choice must be guided by the evaluation of the resources

available at each specific gateway, combining information such as avail-
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able bandwidth, traffic load and cost to reach this gateway.

To conclude, several open issues and specific application require-

ments motivate our interest in the development of novel routing

paradigms for WMNs, able to ensure efficient and resilient communica-

tion in a more heterogeneous and large set of application environments.
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