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Abstract

The notion of a session is fundamental in service-oriented ap-
plications, as it serves to separate interactions between clients
and different instances of the same service, and to group to-
gether logical units of work. In the area of process calculi
Honda, Kubo and Vasconcelos proposed their perspective of
what a session should be from the perspective of theorical
foundations. They presented a calculus equipped with a no-
tion of session types that govern the interactions between
peers. This first proposal gave rise to a new research direc-
tion and to a community of researchers interested in session
types and their extensions and applications. The great merit
of session types is in fact to be like a classical type system,
intended to describe structural properties of the data manip-
ulated by programs. One can think of a session type as the
equivalent notion of channel sorting for the π-calculus. The
novelty is that well-typedness of a process implies a stronger
property than any other classical type systems, namely the
session safety. Session safety guarantees that at runtime any
interaction inside a session will proceed without errors due
to mismatching communications. Moreover, with a little ad-
ditional effort, session safety implies the progress property,
which in some manner prevents deadlock. Well typing of a
process written in a session calculus can be easily verified
at the cost to annotate certain names of the processes with
session types. Here we address the problem of finding ef-
ficient procedure for checking well-typedness in absence of
any type annotation or said in other words the type infer-
ence of session types. It is interesting how different notions
proposed in different works on session types are used to-
gether as tools to achieve the result. At the end our study
leads to establish a formal theory of session types that can be
applied and transferred to various settings and formalisms.
Since type inference strictly depends on a specific calculus
we show the wide applicability of our result studying the

xiii



problem for two particular calculi with very different mecha-
nisms of session instantiation. Prototype implementation of
the type algorithms are written in Ocaml and available at
http://www.di.unipi.it/˜mezzina.
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Chapter 1

Introduction

1.1 Service Oriented Scenario

Recent years have witnessed a tremendous growth of the so-called
Service Oriented Architectures. The main idea is to have loosely coupled
components, called services, that can be described, published in publicly
available registries, searched and dynamically assembled to form larger
applications. A major scientific research trend has been aimed to extend
the description of services to include behavioral information, like the
communication protocol they use, that can be used to infer some guar-
antees of their composition.

Without entering into the technicalities of software engineering, we
consider a service as a piece of software capable to carry out a partic-
ular function. It is similar to a classical server in a client-server archi-
tecture, but the main novelty is that services are globally available over
networks and anyone can use them and their functionalities to build a
more complex software. We call this scenario service oriented computing
since all the software functionalities are delegated to services. Differently
from the old client service architecture in which one has to program di-
rectly at the socket level to develop a particular client for a certain server,
here every possible service can be accessed in the same uniform man-
ner irrespectively of its location. From the programmers point of view
this means that he/she can (ideally) develop an application visually by
simply connecting basic compatible services to build the expected collab-
orative system. The first incarnation of this scenario was the Web Service
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architecture which allowed users to interact with every web service in a
uniform way so to have interoperable and cross-platform services. Today
Web Services have not reached the widespread use they promised, and
their potentialities are still not fully exploited. Nevertheless we find in-
teresting how services can be accessed in an uniform and cross-platform
manner by exploiting only three standards, namely SOAP, WSDL and
XML Schema, viewing the service offering a simple remote procedure
call. WSDL offers the possibility to describe a contract which is intended
to describe how to prepare a SOAP message in order to invoke the service
and receive a reply back. WSDL describes some sort of a basic contract
since it embodies the service demands, i.e. how the service wishes to be
invoked, syntactically. Each message exchanged with a web service is an
XML packet with the invocation parameters. WSDL has a specific section
for this purpose, which usually is a XML-Schema fragment. An XML-
Schema describes the type of an XML fragment and such a fragment has
to be validated against a certain Schema. Finally, SOAP describes how to
encapsulate in a standard manner an XML file into another XML one.

However the needs to build real applications are many and very de-
manding ones, so numerous additions and standards came out. Some of
these extensions are concerned with security, others are concerned with
failures, others with cataloguing and discovery for available services.
The presence of many standards that may lead to cumbersome and diffi-
cult to handle specifications and the lack of a mathematical foundations
may undermine the success of Web Service in a near future. Yet the de-
velopment of these new standards comes from pragmatical needs and
it is a big challenge for computer scientists that studied for decades in-
teraction models. The fact that the service architecture is reviving under
a new shape, called REST architecture, means that services are very im-
portant also in practice for the development of future applications, which
justifies also the growth of the research in this field.

1.2 Research issues

We address the problem of developing a solid theory of interaction for
service oriented applications by means of process calculi and type sys-
tems. It is natural to place our analysis in the service oriented scenario be-
cause we assume that each entity is invoked in a uniform manner, with-
out entering in the detail of how such invocation is realized. Moreover
we go a step beyond with respect to the simple request/response method
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invocation, which allows only to represent a series of communications
as a collection of distinct, unrelated interactions, where for example if
we need to send a value, get a reply back and then send another value
computed on the basis of the first reply, we need at least two different
services. Our approach builds on the well-established theory of process
calculi. To logically group single communications into larger protocols,
we use a basic structuring concept, called a session. A session is a chain
of dyadic interactions between two parties, the client and the service,
that carry out a conversation distinguished by the fact that we use a pri-
vate channel (either implicit or explicit), through which the interactions
belonging to the same session are performed and separate from other
communications. The possibilities of interactions we consider within a
session are the same as proposed initially in (37) with three basic commu-
nication primitives, value passing, label branching and delegation. Value
passing is the standard synchronous message passing. Label branching
is a form of method invocation without value passing: a set of labels is
offered with different continuations and the possibility of choice, that
is, we have an internal and an external choice. Delegation is for pass-
ing an opened session to another process, which allows substituting a
certain partner in a conversation. These three primitives can be used to
model a great number of interesting scenarios at the right level of ab-
straction and, more importantly, there exists a typing discipline for them
very close to the concept of types in classical programming language,
citing (63): “The methodological perspective that types are best used to
describe structural properties of the data manipulated by programs, as
well as the more pragmatic requirement that well-typedness must be au-
tomatically and efficiently verifiable”.

Well-typedness holds if the type annotations are consistent with the
process specification and it is important that well-typedness has to be
preserved during the evaluation of processes. As an example consider
the following description of a generic RPC service

• open a session k of type T relative to an invocation of a

• receive x : int from the session k

• compute f(x) of type int and send the result back on the session k

• end

Service a is well-typed if T , the type of k, is ?(int).!(int), i.e. an integer is
received ?(int) and then an integer is sent !(int). The informal description
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of service a can be rendered more compactly as a(k).k?(x : int).k!(f(x)).
A “compatible” client that wishes to consume the service must have
some sort of dual type to T , like !(int).?(int) (in which we switched in-
put/output actions). Well-typedness in this setting directly implies safety
of the communication, in the sense that the client always undertakes the ac-
tion expected by the service. However more powerful guarantees can be
enforced: the progress property which checks that the client does not dead-
lock in a opened session and the deadlock freedom property which checks
that deadlock does not happen between both client and service.

The notion of type compatibility is also a topic of interest. Recently
Gay and Hole studied a subtyping relation which is effectively com-
putable by means of an algorithm inspired to the classical subtyping
algorithm among infinite regular types (2; 31; 50). This algorithm is an
important achievement, because it allows us to model infinite interac-
tions and we have a terminating sound and complete algorithm to check
subtyping of infinite session types.

1.3 Our approach

The topic which we shall address in this thesis is how to relief pro-
grammers from the burden of type annotations possibly providing a
lightweight type engine. The answer is not obvious due to the typing
rules for internal/external choices, recursion, session delegation and lin-
earity.

• Internal and external choices introduce non-determinism since the
type of an internal choice may have more options than the one ac-
tually selected while the type of an external choice can have less
options than the ones actually offered. However, choices relax the
exact matching in the sense that it is possible to define different
replicas of a service with different behaviors, and different clients
for the same service.

• Recursion requires the comparison among cyclic behaviors which
are also mixed with subtyping and choices.

• Session delegation is not obvious in presence of subtyping since
when we send a session to someone we have some expectation on
the actions to be performed in order to complete the delegated ses-
sion, but we do not know how he/she is going to actually use the
session.
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• Type systems for session types are mixed in the sense that they
encompass both classical type systems and linear type systems (64).
Here linearity refers to the fact that at any time only two peers can
have the same session, because sessions are dyadic.

Let us introduces these concepts by means of examples described in
the syntax of HVK-X (discussed in Chapter 5).

Internal/external choices. A database service is offered by means of an
accept on the shared name db. After the client request is issued a new pri-
vate session k, shared between the server and the client is created. The
new session ensures the client and the service have a private conversa-
tion when communicating on k. Service db offers four options to choose
from: query, update, add and end. The client, depending on the out-
come of expression test (representing its internal state) is interested in
either query or update. If the client requests the query option, then
the service expects a SQL query which will be bound in the string vari-
able sqlvar in the body process P1.

db(k).k?(query)k?(sqlvar).P1

+k?(update).P2

+k?(add).P3

+k?(end).0
db(k).if test then k!(query).k!(sqlstr).P

else k!(update).Q

Suppose that k in each Pi has type Ti, k in P has type T1 and k inQ has
type T2 (for Ti denoting the dual of Ti). If we use &{l1 : V1, . . . , ln : Vn}
and ⊕{l1 : V1, . . . , ln : Vn} for external and internal choices respectively
with options l1, . . . , ln then the process is well typed when k has type,
say, Udb = &{query:?(string).T1, update:T2, add:T3} on service side
and k has type⊕{query:!(string).T1, update:T2, add:T3} on client side,
because these two types are syntactically equivalent if we exchange &
with ⊕ and ? (the symbol for input) with ! (the symbol for output). We
require in fact that both the rules for service request and service accept
need to agree with the standard assumption relative to db which is [Udb],
a service with a session of type Udb. Notice however that the external
choice removed end from the list of labels and that the internal choice
locally guessed the type of the external choice provided by the service;
i.e., the typing rule of a process of the form k!(l).P must guess a set of
choices offered by the counterpart. In turn, this will also force the two
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branches of the conditional statement to take into account the same set of
alternatives since in order to guarantee the subject reduction, the type for
an if-then-else statement must be the same for both branches. To guide
the intuitions, the following is a fragment of the proof-tree relative to
the process within the query label. Type judgments here take the simple
form of Γ ` P : ∆ where P is a process, Γ is the standard environment
and ∆ is the linear environment.

(2)

(1)

Γ, sqlvar : string ` 0 . k : end
...

Γ, sqlvar : string ` P1 . k : T1,∆
(3)

Γ ` k?(sqlvar).P1 . k :?(string).T1,∆

Notice how k in the axiom (1) is guessed, how the behavior ?(string).T1

in correspondence of an input (3) is built and how the assumption on
sqlvar is propagated towards the axiom (2), (1). The solution we propose
is to generate a set of constraints whose satisfiability implies typability
of the process. For instance, relatively to the above process we generate
the following set of constraints where all α’s are automatically generated
type variables:

αdb ≤ &{query :?(string).T1, update : T2, add : T3, end : end}
αif ≤ ⊕{query :!(string).T1} αif ≤ ⊕{update : T1} αif ≤ αdb

The first constraint on αdb says that the type of the session relative to the
service db must be less than the type of the internal choice considering
all the available branches. In fact the type Udb which does not include the
branch labeled with end satisfies the constraints. A type which offers an
external choice is a subtype of an another type that offers a greater range
of possibilities to select from, regardless of the order in which the labels
are offered. Relatively to the “if” instruction of the client, we generate
two constraints, one for each branch of the if-then-else, and αif must
satisfy both at the same time. The last inequality is relative to the invo-
cation, since the body of the invocation is the if-then-else, we constrain
the dual of αif to be less than the type of the session relative to the ser-
vice db. Here we use duality since we are on the client side. Finding a
solution to αif implies having a way to compute a minorant of the two
types and since we are searching for the most general minorant we need
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a way to compute the intersection of two session types. This case is sim-
ple the intersection of ⊕{query :!(string).T1} and ⊕{update : T2} is the
type ⊕{query :!(string).T1, update : T2} and then making a further step
with the transitivity of≤we can conclude &{query :!(string).T1, query :
!(string).T1} ≤ &{query :?(string).T1, update : T2, add : T3, end : end}
which holds implying the typability of the process.

Recursive processes The type system uses a third environment to store
assumptions relative to the process variables, the process environment.
The type of assumptions in the process environment strictly depends on
the recursion construct offered, but at least it needs to store the linear
environment assumed for each process variable. For instance consider
the following client for a hypothetical service dbrec

dbrec(k).rec X if test then k!(query).k!(sqlstr).X
else k!(query).X

which uses the recursion operator to repeatedly choose of either query
or update We have two ways to generate a set of constraints for a pro-
cess involving recursion. The first is to account for the recursion during
the computation of the set of constraints and then mime the recursion in
the type by means of the µ operator:

αdbrec ≤ µαX .⊕ {query :!(string).αX} αdbrec ≤ µαX .⊕ {update : αX}

The second is to leave the solution of the recursion be in the set of con-
strains as well:

αdbrec ≤ αX αif ≤ ⊕{query :!(string).αX} αif ≤ ⊕{update : αX}
αX ≤ αif

In the first case, the solution is at hand simply by computing the intersec-
tion which is equal to ⊕{query : µαX .⊕ {query :!(string).αX}, update :
µαX . ⊕ {update : αX}, i.e. initially one can choose between query and
update then after the first choice one can only choose of either query or
update an unbounded number of times.

The solution to the second set of constraints is not so immediate since
we have a cyclic dependency between αif and αrec. We formally prove
that such dependencies can be solved by means of recursion hence:

αdbrec ≤ αX αX ≤ µαX .⊕ {query :!(string).αX}
αX ≤ µαX .⊕ {update : αX}
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and then one can conclude in a similar manner as above computing the
intersection.

An important condition is to consider recursion instead of replication
that easily corrupt linearity. Consider for example a replicated output
∗k!(sqlstr) with the expected operational semantics, then after two un-
folding steps we have k!(sqlstr)|k!(sqlstr)| ∗ k!(sqlstr) which obviously
violates the linearity of session k. Recursion instead allows for a much
more careful use of iteration inside protocols.

Delegation In order to describe how delegation works we model inside
P1 the interaction with the query manager completely delegating to it the
task of replying the client, in order for example, to be ready for another
client request.

dbdel(k).k?(query).k?(sqlvar).querymanager(k1).k1!〈〈k〉〉.0 |
querymanager(k1).k2?((k)).P1

Here we use k1 as the session to talk with the service querymanager and
the symbol | indicates the execution of both services at the same time,
i.e. their parallel composition. We send k through k1 using k1!〈〈k〉〉.0 and
we receive k through k2 using k2?((k)).P1. Delegation allows starting a
conversation directly with the client that issued a request on dbdel to the
query manager. The set of constraints relative to dbdel contains also the
following one

αdbdel ≤ ⊕{query :?(string).αdel}

where αdel is unknown. Since we cannot solve directly such constraint,
we postpone the solution until αdel is solved by some substitution as in
this case:

?(αdel) ≤?(αP1) αP1 ≤ T1

From the first constraint we get the substitution αdel = αP1 and then
we can substitute αdel with T1 in order to obtain the closed constraint
αdbdel ≤ ⊕{query :?(string).T1}. If instead the specification of the ser-
vice querymanager is missed we must find a way to define a general
substitution for αdel which does not compromise the typability of the en-
tire process, that is we must be careful not to instantiate αdel too much.
The point is that both delegation and recursion can generate open con-
straints.
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Linearity Type systems for session types are mixed in the sense that
they encompass both classical type systems and linear type systems (64).
The classical realm allows collecting the type of services and the linear
realm allows to collect the type of sessions. A linear type system for the
π-calculus was first studied in (47).

Usually the differences between classical and linear type systems can
be seen in both the axioms and the typing rule for parallel composi-
tion. The axioms of classical type systems may contain any assumption
in addition to the needed one. The possibility of having arbitrary as-
sumptions allows the proof of both the Weakening and the Strengthening
Lemma. Axioms in linear type systems contain only needed assumptions
and usually neither the Weakening Lemma nor Strengthening lemma do
hold. The rule for parallel composition is also different in standard and
linear type systems. In standard type systems the environment used to
type each parallel process is the same, in linear type systems one has
to develop an environment composition function that allows to linearly
distributing the assumptions. However the linear realm of a session type
system have a peculiarity, it allows any assumption in the axiom for the
nil process as long as it refers to ended sessions. Ended sessions are ses-
sions that do not perform any action and have a special type end. Type
end is also used as a trailing (like the nil process) for every finite session
types. Infinite session types are trailed with a type variable which al-
lows recursion. This way to type the nil process allows to arbitrarily add
ended assumptions used as trailing for each open session appearing in
a process. The superfluous ended assumptions that create linearity con-
flict will be ruled out by the linear environment composition function.
This fact is possible since session types are collected by starting from ax-
ioms and moving towards the leaves of the typing proof tree. Vice versa
assumptions in the standard environment are collected from the leaves
by moving towards the axioms. Consistency of linear assumptions and
standard assumptions is checked in the typing rules for service invoca-
tion and service definition. In fact in the premise of these rules the session
type relative to the service is collected and in the conclusion the stan-
dard type assumption relative to the service is collected. Furthermore
in the rule for service invocation the relative session type must be dual
with respect to the type assumed for the service and this is important.
Session types are defined in such a manner that each action has a dual
counterpart: input with output and internal choice with external choice.
The duality check is the guarantee that communication within a session
evolves without errors.
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For a detailed review of the main literature available on session typ-
ing systems we refer to Sections 6.2.2 and 6.2.3 which can be used as an
useful introductory material for those readers not familiar with session
types.

As one could have guessed there is a number of interesting problems
to solve in order to infer the typability of a process.

1.4 Main contributions

Our main contribution is the development of an algorithm to infer
the typability of sessions in a process solving all the sources of non-
determinism already outlined. We first study CST as an higher level lan-
guage than the calculus of Honda et al. since it allows the implicit and
disciplinated managing of the session variables.

At this point we propose a type system for a variant of the language
of Honda et al. with general recursion in place of process definition and
name extrusion, which we call HVK-X with the aim of studying typa-
bility of a process. The set of constraints whose solution implies the ty-
pability, involves cyclic dependencies due to the recursion, non direct
dependencies due to the service name extrusion and free variables due
to the delegation. Service name extrusion allows the communication of a
service name within a session to a partner. The partner can either invoke
such service or define a new replica of the service dynamically.

We propose an automatic way to solve the set of constraints, an al-
gorithm that multiplexes each constraint in other constraints directly de-
pending on it. We also implement this algorithm in a tool called TypSes
written in Ocaml (55).

We provide an encoding function from CST to HVK-X in order that
each well typed CST process is a well type encoded HVK-X process and
vice versa. From this encoding it comes out that one can use TypSes to
check the typability of CST processes.

Said in other words we solve for session types a problem that is classi-
cally solved in the simply typed π-calculus finding the sort of each chan-
nel. While in the simply typed π-calculus, one finds out the type of values
exchanged on each channel here we find out the session type associated
to each service. However, since we are in presence of subtyping we do
not return the type of a service but rather a series of constraints that the
type of each service must satisfy.

The good news about this fact is that each type system built on top of
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the simply typed π-calculus (25; 41; 45; 48; 49) can be used with session
types. These type systems collecting the so called channel usages allow
checking a lot of useful properties such as termination, deadlock free-
dom, resource analysis and correspondence assertion and using a ses-
sion type system increases the expressivity reducing the total number of
channels (since each channel can be used to exchange more values) and
the consequent cost of verifying the desiderated property.

From another point of view one can think of this work as a useful
introduction to the topic of dyadic sessions with session types and as a
useful index of properties of the subtyping relation.

1.5 Outline of this thesis

The thesis regards: (1) the consolidation of session type theory, Chap-
ter 3, (2) the application of the theory to calculi with different session
handling principles, Chapters 4, 5 and 6. More precisely, this thesis in
organized as follows:

• In Chapter 2 we introduce an informal background on process cal-
culi with focus on the π-calculus. We also introduce some notions
of type systems and the simply typed π-calculus. Incrementally we
give the main ideas underlying the π-calculus with sessions and
session types, then we specialize the session instantiation mecha-
nism to obtain the session calculus of Honda, Kubo and Vasconce-
los. Finally we further specialize the session handling mechanism
on which CaSPiS is based.

• In Chapter 3 we present the session types framework. We present
an algorithmic way to compute the intersection between two ses-
sion types and we prove it to be sound and complete (Theorem
3.19) with respect to the algebraic notion of intersection as induced
by the subtyping relation between two session types. Subsequently
in order to deal with subtyping relation containing type variables
we use the notion of syntactic unifier and then we prove in Propo-
sition 3.30 that under suitable assumptions the syntactic unifier of
the subtyping relation behaves as the most general unifier.

• In Chapter 4 we introduce CaSPiS for Session Types, or CST for
short and a relative type discipline which enjoys Subject Reduction
(Theorem 4.17). From this type system we extract a syntax directed
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type system which uses sets to store the types of multiple branches
and allows inferring the type of the recursion on the fly. Theorem
4.30 shows the soundness of the set-based type system with respect
to the original type system. Our solve algorithm solves a certain
set of constraints and it succeeds if and only if a process is well
typed in the set syntax directed type system (Theorem 4.34).

• In Chapter 5 we introduce HVK-X, a calculus stemmed from the
session calculus of Honda, Kubo and Vasconcelos and its type
discipline with the proof of the typing preservation along reduc-
tions (Theorem 5.12). The relative syntax directed type system is
sound (Proposition 5.15) and complete (Proposition 5.16) and the
solve algorithm succeeds if and only if a process without open
constraints is typable in the syntax directed type system (Theorem
5.27). We also encode CST in HVK-X in such a manner that each
well typed process is a well typed encoded process and vice versa
(Theorem 5.37). In the same manner we encode (the simply typed)
π-calculus in HVK-X. This fact allows having only one implementa-
tion of the typing algorithms for the simply typed π-calculus, CST
and HVK-X.

• In Chapter 6 we prove the progress property for CST (Theorem
6.10. We compare in detail our work with the proposal in (9; 33; 37)
which are our main sources of inspiration and we discuss related
works.

• In Appendix we report some examples that step by step highlight
all the functionalities of TypSes.

We prefer to distribute all technical background among the various chap-
ters, so to keep each notion and notation closer to the place where it is
needed.

1.5.1 An important remark on mathematical conventions

We shall introduce each needed syntactical convention each time
we need, but one such (non-obvious) convention is used extensively in
proofs throughout the thesis. This is a special dot notation often used in
the proofs for symbol economy. More precisely, in order to reuse some
symbol s that appears in the statement of a theorem we write ṡ in the
proof to refer a different symbol (like those arising from inference rules)
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and ˙sym to explicitly refer the symbol appearing in the statement when
we need to do so in order to avoid ambiguities and renaming of sym-
bols in inference rules. An example of this is, the proof of Theorem 5.12.
In general we push for the economy of symbols so when there are no
risks of clashes we tend to overload the same symbol to indicate differ-
ent things, for example we use always symbols Γ and Θ for typing envi-
ronments regardless of the calculus: each time it will be the shape of the
typing sequents to disambiguate the type of assumptions contained.

1.6 Origins of the Chapters

The results in this thesis are concerned with both the development
and the formal study of a tool, called TypSes see http://www.di.
unipi.it/˜mezzina, for checking the typability of a process written
in a session calculus. Here the list of pointers of published and submit-
ted paper relative to each chapter:

• The first part of Chapter 3 is adapted from the paper ”Meet recur-
sive session types“ (submitted to a conference during the writing
of this thesis).

• Chapter 4 is an enhancement of the work ”How to infer finite ses-
sion types in a calculus of services and sessions“ published in the
Proceedings of Coordination Models and Languages (56) and of
the work ”How to infer session types in a calculus of services and
sessions“ (currently submitted to a conference during the writing
of this thesis).

• Chapter 5 is the result of the development of TypSes.

• Progress for CST reported in Section 6.1 is an enhancement of the
work ”Types and Deadlock Freedom in a Calculus of Services, Ses-
sions and Pipelines“ published in the Proceedings of Algebraic
Methodology and Software Technology (15).

All the rest of the contents is original to this thesis.
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Chapter 2

Background

2.1 Process calculi

Process algebras or process calculi are mathematically rigorous lan-
guages with well defined semantics that permit describing and verify-
ing properties of concurrent communicating systems. They can be seen
as mathematical models of processes, regarded as agents that interact
continuously with other similar agents and with their common environ-
ment. The agents may be real-world objects (even people), or they may
be artifacts, embodied perhaps in computer hardware or software sys-
tems. Modeling a system by means of a process algebra allows to focus
on the aspects of interest such as secure communication, synchronous
and asynchronous communication, distribution awareness and resource
access. Process algebras provide a number of constructors for system de-
scriptions and are equipped with an operational semantics that describes
systems evolution.

There has been a huge amount of research work on process algebras
carried out during the last 25 years that started with the introduction of
CCS (57; 58) and CSP (13) and maturated with the introduction of the π-
calculus (61), expressive enough to capture most of the others proposed
models. The capacity to change the connectivity of a network of pro-
cesses is the crucial differences between the π-calculus and the preced-
ing proposals. This changing of connectivity allows describing mobility
among processes since with a suitable level of abstraction the location
of a process is determined by the links which it has to other processes.
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According to this way of thinking, the movement of a process can be rep-
resented entirely by the movement of its links. Of course there are many
other ways to describe mobility but this choice is economical, flexible
and moderately simple. This flavor of mobility is now known as name
mobility.

The main ingredients of a specific process algebra are:

1. A minimal set of well thought operators capturing the relevant as-
pects of systems behavior and the way systems are composed.

2. A transition system associated with the algebra via structural oper-
ational semantics to describe the evolution of all systems that can
be built from the operators.

3. An equivalence notion that permits abstracting from irrelevant de-
tails of systems descriptions.

Let us now introduce some notions of the π-calculus. The simpler π-
calculus process is 0 used for an inactive process, x〈ỹ〉.P (sometimes
written also as x!(ỹ) or xy) for the output of a possibly empty tuple
ỹ = y1, . . . , yn on the channel x followed by the process P and x(ỹ).P
(sometimes written also as x?(ỹ)) for the input of a possibly empty pair-
wise distinct tuple ỹ = y1, . . . , yn on the channel x followed by the pro-
cess P . These basic actions are called prefixes, additionally there are some
operators to compose processes such as the parallel composition of P |Q
and the choice P+Q. The former allows to describe the parallel execution
of both P and Q while the latter describes the execution of either P or Q.
Additional expressive power is achieved by means of the restriction op-
erator (νx)P which allows to hide all the actions relative to x within P
so to describe communication restricted to a certain numbers of partic-
ipants. New names x̃ and x introduced by y(x̃).P and (νx)P are called
bound and the respective operator are called binders.

Bound names are allowed to be alpha-renamed and two processes are
considered equivalent up-to renaming of the bound names, e.g. (νx)x〈y〉
and (νz)z〈y〉 are the same processes. Moreover one can consider two pro-
cesses equal up-to the so-called structural congruence (pointed with ≡),
an equivalence relation preserved by all operators of the process calcu-
lus. A typical example are the monoidal laws of the parallel composi-
tion operator P |Q ≡ Q|P (commutativity), P |0 ≡ P (0 identity element)
and (P |Q)|R ≡ P |(Q|R) (associativity law), then for example x().(P |0)
and x().P are considered as the same process. With the help of structural
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equivalence it is also possible to describe an unbounded availability of
a certain name provided by means of: replication, recursion and process
definition. Recursion is written as rec X.P whereX is a process variable,
the respective structural congruence rule is rec X.P ≡ P [rec X.P /X ].
Replication !P , sometimes written ∗P , is defined by means of recursion

letting !P = rec X.P |X . Process definitions written as X(x̃) def= P with
some X(ỹ) possibly free in P resembles function calls with the list of ac-
tual parameters ỹ and formal parameters x̃. A standard result is that pro-
cess definition can be encoded by means of only replication (for instance
see (60) Section 9.5). In this thesis we prefer using recursion which gives
a fine grained control in modeling both recursive protocols and service
availability.

Operational semantics of the π-calculus is given by means of either a
Labeled Transition System (LTS for short) or by reductions. The former

describes the evolution of a process using a relation of the form P
λ−→ Q

where P evolves in Q with the label λ. For example the axiom for output

prefix is x〈ỹ〉.P xỹ−→ P , the axiom for input prefix is x(z̃).P
xỹ−→ P [ỹ/z̃]

which given in the early style guesses the received tuples ỹ where [ỹ/z̃]
is the standard capture avoiding substitution of the tuple ỹ for the tuple

z̃. The communication rule is

(COM)

P
xỹ−→ P ′ Q

xỹ−→ Q′

P |Q τ−→ P ′|Q′
where τ represents

a silent action due to the synchronization of the two processes.
Giving the operational semantics by means of reductions allows de-

scribing the evolution of a process specifying how redexes are evalu-
ated after being grouped thanks to the structural congruence. For ex-
ample the corresponding communication rule given by reductions is
x(z̃).P + M | x〈ỹ〉.Q + N → P [ỹ/z̃]|Q where M and N are arbitrary
summations and the label τ disappears. When we give the operation se-
mantics by reductions we are implicitly considering only reduction ac-
tions (indicated with τ ).

An interesting fact about the π-calculus is that it allows to extend at
runtime the scope of a name thanks to the name extrusion. Consider
e.g. the process ((νy)x〈y〉.P )|x(z).Q in which y is private to P . After a
communication on x, it evolves to (νy)(P |Q[y/z]) in which both P and
Q know y. Name extrusion, for example, allows to describe how the
connections in a system evolve dynamically, given that, P is connected
with Q if both P and Q know a certain name. There is another vari-
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ant of the π-calculus called πI (67) which limits the communication to
private names only. Syntactically it restricts outputs to processes of the
form (νỹ)(x〈ỹ〉.P ) written x(ỹ).P with the following communication rule
x(ỹ).P+M |x(ỹ).Q+N → (P |Q). The different notation for output makes
explicit that it constitutes also a binder, like the restriction and the input
prefix. Notice the only form of substitution is the alpha-renaming ahead
of communication to make ỹ syntactically match.

2.2 Well behaving processes

One benefit on using process calculi is to prototype large systems
in a natural and formal way to study their interaction properties. For-
mal verification of concurrent systems within the process algebraic ap-
proach is performed either by resorting to behavioral equivalences like
trace equivalence, bisimilarities and testing equivalence (10; 61; 68) (just
to cite few) for proving conformance of processes to specifications that
are expressed within the notation of the same algebra or by checking
that processes enjoy properties described by logic formulae (18; 19; 36).

Thus for example we have a famous equality x().y() + y().x() ∼
x()|y() where ∼ is the bisimilarity, that is the parallel execution of x and y
corresponds to either executing first the sequence of x and y or executing
the sequence of y and x.

Another trend relative to the verification, which we embrace here,
is the development of type systems. In a context where type systems
are studied it is simpler to consider the operational semantics given by
means of reduction contexts by the fact that half-splitted actions (as the
rule for output given above) are not present.

Type systems allow, by means of a set of inference rules, to decide
if a process is well-typed or not. The good thing about well-typed pro-
cesses is that each of them automatically satisfies a certain property and
when well-typing is proved to be preserved along reductions, then the
property of interest is preserved during the entire lifetime of a process.
We are interested in type systems for which the well-typing property
is decidable. Well-typedness can be checked with the help of the types
annotated by the user, in which case the type system checks that the pro-
vided types allow building a correct proof tree using the inference rules
of the type system. This is called type checking. Also well-typedness can
be checked without providing any type annotations, and by developing
an algorithm that is able to automatically discover a proof tree allow-
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ing the input process to be well-typed using the set of inference rules.
This is called type inference. In this case the challenge is developing type
inference systems, where proof trees can capture the most general type
(sometimes called principal type), so to cover all possible correct instances
of the application.

We now start introducing all these concepts by means of general ex-
amples. Consider the following π-calculus process:

P = !ser(r).(r〈〉 | r〈〉) | (νr′)ser〈r′〉.r′()

Here ! indicates the replication, the fact that ser is always available for
input, that is the server waits an unbounded number of requests by the
clients. Intuitively P models the behavior of a ping server that reads a
channel r and send two replies back to signal it is still correctly working.
The client creates by means of the restriction operator a new name r′

that it subsequently uses to wait only one of the two replies. In order to
typecheck the previous process we can annotate each bound name with
type information:

P = !ser(r : []).(r〈〉 | r〈〉)|(νr′ : [])ser〈r′〉.r′()

in which we indicate that both r and r′ have the same type; a channel
used only to signal, i.e. [] is the type of channel used to send a null value.
Consider that in order to type P we also need an assumption on the type
of ser since it is not introduced in P by any binders and thus is a free
name. P is well typed in the simply typed π-calculus assuming ser of
type [[]] a channel used to send a channel name in turn used to send a
null tuple. A type system which makes assumptions only on free names
is given á la Curry. In this thesis every type system is presented à la Curry
but also one can assume that each name has a given type a priori in this
case the type system is said to be à la Church.

Typing inference for the simply typed π-calculus is decidable (70) i.e.,
there exists an algorithm to discover the most general type of a channel.
As a direct consequence of the well typing of a process and the corre-
sponding subject reduction we have the disciplined usage of channels
since they are used to send and receive only one type of value. On the
top of this type system a series of type systems have been built, like
(41; 45; 49), which allow to prove stronger property such as the dead-
lock freedom of a process. We show how one of such type system works
coding P in Typical (43):
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*ser?r.(r!()|r!()) | (new r1 in ser!r1.r1?x)

Running the tool we obtain the following output:

TyPiCal 1.6.2: A Type-based static analyzer for
the Pi-Calculus analyzing ping...

*ser?r.(r!()|r!()) | (new r1 in ser!!r1.r1??x)
Elapsed Time: 0.001999sec

In particular the tool signaled with ser!!r1.r1??x (the doubled action)
that both the operations of invocation of ser and the operation of reading
the result on r1 are guaranteed to eventually succeed. The output above
is the result of the channel usages analysis. Channel usages describes for
each channel how it is used in the process, in particular here, r1 has type
[]!|!|?. The additional annotations with respect to the simple type says that
r1 is used in parallel for two outputs and one input. Thus we cannot
say who of the two outputs succeeds but we can say that one of these
will be available for the input. However collecting channel usages does
not account for dependencies among channels and it does not suffice
to prove strong guarantees such as deadlock freedom. Consider a slight
variant of P in which the body of ser is deadlocked by keeping invoking
itself:

TyPiCal 1.6.2: A Type-based static analyzer for
the Pi-Calculus analyzing ping1...

*ser??r.(new r2 in ser!r2.r2?z.(r!()|r!()))
|(new r1 in ser!!r1.r1?x)

Elapsed Time: 0.002sec

The output says that we will not receive any reply back from the server
since we have r1?x (not r1??x as before). Notice how r1 has the same
usage as in the example before but it is deadlocked. Together with usages
Typical collects also obligation and capability levels: two integers that
describe the constraints imposed by the surrounding context e.g. the fact
that before writing on r there is a input operation on r2.

Consider now we want to code a sequence of exchanges undertaken
with ser: first we send to it an integer and then we expect a reply back.
Since we are not allowed to send multiple values with different types on
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each channel we need an encoding.

!ser(x).x(y, z).z〈〉 | ser〈k〉.(νk1)k〈5, k1〉.k1()

As proposed in (44) we encoded the sequence of actions, returning each
time a fresh channel to be used for the subsequent action.

We however want to code such a process in a natural way for example
in the variant of the π-calculus introduced in (33).

SESSION = !ser(y).y(x).y〈〉 | (νr)ser〈r+〉.r−〈5〉.r−()

We have a mechanism to create a new session channel r that accounts for
two polarized sides indicated with r+, r− each of those assigned to the
service and to the client respectively. One can argue that it could suffice
a compilation function from the π-calculus with sessions to the standard
π-calculus and then we can continue using Typical for analysis. This can
be a good solution for sequences of only inputs and outputs. However
things get much worst in presence of delegation and choices because
such aspects have no correspondences in the π-calculus. Hence we de-
cide to introduce higher level types to account for session channels.

2.3 Session handling

Session types are intended to study how to type a session channel. As
expected r− has type !(int).?(), an output followed by an input. However
since the type of a session channel evolves together with the process, the
subject reduction is guaranteed only if each side of a session channel
is used linearly, i.e. in each moment during the evaluation there exists
only one copy of the session channel in the syntax tree of the considered
process.

Another issue of interest is finding an automatic way to distribute the
two session sides between parties. The idea used in (37) is to employ for
each invocation (that creates a new session) the bound output as found
in πI. The resulting rule is x(y).P |x(y).Q→ (P |Q).

Finally in (8) (even if the authors do not mention session types at all)
they studied a way to completely remove y from the syntax, creating
a placeholder of the form r+ . P that at runtime allows to remember
the current session intended as the subject of the communication. For
example the process SESSION is coded with

∗ser.(x).〈〉|ser.〈5〉.()
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This time the invocation rule is x.P |x.Q→ (νr)(r+ .P |r− .Q) where two
fresh session side placeholders are created. The main difference is that in
the formal proposal the conversation with different partners in different
sessions can be carried on in interleaving, while in the proposal of (8)
this is not possible, although sessions can be nested one into the other
and some outputs to the parent session are possible.

The theory described in the next chapters is based on these ideas, in
particular the basics of sessions types are recalled in Section 3.2. We will
study and develop type systems and type inference algorithms suitable
for calculi with sessions.
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Chapter 3

Extending the session types
framework

3.1 Introduction

The aim of this chapter is to set up the session type framework to be
exploited in the rest of the thesis. We start studying the notion of sub-
typing among session types which is the notion proposed in (33) with
only minor differences. First we consider non ordered branches in each
choice. Second, to have a clear separation between input/output of ordi-
nary values with input/ouput of sessions, we handle them in different
rules. According to the subtyping pre-order, we consider the problem of
computing the standard meet and join of two session types. (Often in the
text we use term meet or intersection and term join or union interchange-
ably.) We show that computing the meet and the join can be reduced to
compute only one operation, the meet since the duality operation among
session types allows switching the operator’s order in the subtyping re-
lation (e.g. T ≤ U iff U ≤ T ).

The subtyping relation is given in a co-inductive setting (i.e. the sub-
typing relation is defined as the greatest typing simulation relation) then
we define the intersection co-inductively too. Moreover since the subtyp-
ing relation is not defined on each pair of session types and our notion of
intersection is derived directly from the subtyping relation then the in-
tersection is not always defined. We think that this way of having partial
operations is more natural than adding some element to indicate that the
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operation is not defined.
However both the subtyping algorithm and the meet algorithm show

how to compute the intersection among closed types, but often these re-
lations appear in a type which involves free type variables. The problem
is that we want to know if there exists some substitution for the vari-
ables that allows a constraint to be satisfied. The first simplification we
made is to restrict our setting, by requiring the syntactic equality of the
sent/received values, which is not necessary in the general setting where
sessions are contravariant with respect to the output and covariant with
respect to the input. With this simplification we introduce an algorithm
to compute the most general syntactic unifier which, when the free vari-
ables appear only in the communicated types (types as the argument of
either an input or an output action), turns out to be sound and complete
in the sense that it holds if and only if there exists a substitution that sat-
isfies the constraint. In presence of generic free variables deciding the ex-
istence of a satisfying substitution becomes harder. We develop two algo-
rithms that try to find a solving substitution for a set of meet constraints
(i.e. constraints that are satisfied if the intersection between two types
exists). The first algorithm is rather simple w.r.t. to the computational
cost but it is only correct. The second one is (we claim) sound and com-
plete. We do not prove formally this fact since it is not used elsewhere but
we think it is interesting to outline the complexity of solving constraints
without any assumptions on free variables. Solving a set of meet exists
constraints is an important fact since also subtyping constraints can be
reduced to a set of meet exists constraints as we shall show.

Background: Session types were first proposed in (37) and the subtyp-
ing relation≤ and the proof that≤ is a pre-order are given in (33). In that
work authors give the algorithm to compute the subtyping relation. This
algorithm and the others we propose for the membership checking of
the greatest fixed point using a set of assumptions are inspired to (2) but
as outlined in (31) the proofs are simpler in a co-inductive setting rather
then limits of sequences of approximations. All remaining contents are
introduced here.

3.2 Session Types

We assume an infinite collection α, . . . of type variables and an infi-
nite collection l, . . . of labels. We distinguish session types T and types
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T,U ::= end (no action)
| ?(S1, . . . , Sn).T (input of a tuple)
| !(S1, . . . , Sn).T (output of a tuple)
| ?(U).T (input of a session)
| !(U).T (output of a session)
| &{l1 : T1, . . . , ln : Tn} (external choice)
| ⊕{l1 : T1, . . . , ln : Tn} (internal choice)
| µα.T (recursive behavior)
| α (type variable)

S ::= int (basic type)
| [T ] (service reference)

Figure 1: Syntax of types

for message contents S, which we often call sort types, defined by the
grammar in Figure 1. Type end represents the type of a session in which
no further communications are allowed. The types ?(S1, . . . , Sn).T and
!(S1, . . . , Sn).T represent respectively an input and an output of tuple of
type S1, . . . , Sn respectively, followed by the continuation T . The types
!(U).T and ?(U).T are similar but they allow for session delegation. The
types &{l1 : T1, . . . , ln : Tn} and ⊕{l1 : T1, . . . , ln : Tn} denote respec-
tively an external and an internal choice. The external choice is used to
offer a set of options to the partner while the internal choice expresses
selections a partner may wish to perform. The recursive expression µα.T
represents recursive behaviors and µ is a binder that gives rise, in the
standard way, to notions of bound (bv) and free variables (fv), closed µ-
types, and equivalence of µ-types up to renaming of bound variables.
In the proofs we also use the function unfold(T ) defined by recursion
on the structure of T : unfold(µα.T ) = unfold(T [µα.T /α]) and in all other
cases unfold(T ) = T . Finally, the type of the sent/received type can be
both int, a basic data value, and [T ], a service name that behaves accord-
ing to T . We often omit the trailing end and we write T̃ for a sequence
T1, . . . , Tn of types and ♦{li : Ti}i∈I for ♦{li1 : Ti1 , . . . , lin : Tin} where
I = {i1, . . . , in} and ♦ ∈ {⊕,&}. We shall use sometimes also the (par-
tial) function ; ; defined for both kinds of choice as:

♦{l : T} ; ; ♦{l1 : T1, . . . , ln : Tn} =

{
♦{l1 : T1, . . . , l : T, . . . , ln : Tn} if l /∈ {l1, . . . , ln}
undefined otherwise
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?(S̃).T = !(S̃).T ?(U).T = !(U).T
!(S̃).T ′ = ?(S̃).T ′ !(U).T ′ = ?(U).T ′

&{l1 : T1, . . . , ln : Tn} = ⊕{l1 : T1, . . . , ln : Tn}
⊕{l1 : T1, . . . , ln : Tn} = &{l1 : T1, . . . , ln : Tn}
µα.T = µα.T α = α end = end

Figure 2: The syntactic dual of a session types

inductively extended as expected when the first operator is a general
choice ♦{lj : T ′j}j∈J .

Definition 3.1 (Well formedness). A type T is well formed if it is contrac-
tive (i.e., in any subexpression µα.µα1 . . . µαn.T

′ the body T ′ is not α,
see (31)) and if the same label does not appear twice in a choice (i.e., in
any ♦{li : Ti}i∈I if i 6= j then li 6= lj).

For simplicity we call types only well formed types and we denote
with TYPE the set of all types. Each session type T has a syntactic dual
type T , inductively defined by the equations in Figure 2, notice that the
communicated types are unchanged by duality e.g. ?(?(int).end).end =
!(?(int).end).end.

The following is a direct consequence of the duality.

Lemma 3.2. T = T i.e. the duality is involutive.

Example 3.3. We now present a few session types that will serve as a
running example:

T = µα.&{quit : end, V = µα.&{quit : end,
play : µβ.&{prev : α, play : µβ.&{prev : α,

vol :?(int).β}} bright :?(int).β}}

U = µα.&{quit : end, U ′ = µα.&{play : &{prev : α}}
play : &{prev : α}}

Type T represents the type of a menu that offers two choices: quit
which allows to exit from the menu and play which allows accessing a
submenu. The submenu is composed of two choices: prev permits re-
turning to the main menu and vol that after communicating an integer
returns to the submenu. Type V is similar but for the branch bright in
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place of vol. Now it is clear that U has common behaviors of both menus
T and V and it is a possible candidate for their meet. In fact, U can offer
either the option quit or the two consecutive options play and prev. U ′

it is also a possible candidate for the meet since it has the common be-
haviors of T and V , but it lacks the option for quit. Intuitively we want
U to be the meet of T and V , not U ′.

3.3 Intersection of Session Types

3.3.1 Algebraic meet of session types

In this section we discuss the algebraic notion of intersection with
respect to the pre-order ≤ given in (33).

Definition 3.4. A relationR ⊆ TYPE×TYPE is a type simulation relation
if (T, V ) ∈ R implies the following conditions:

1. if unfold(T ) = !(S1, . . . , Sn).T ′ then unfold(V ) = !(S1, . . . , Sn).V ′

and (T ′, V ′) ∈ R

2. if unfold(T ) = !(U).T ′ then unfold(V ) = !(U ′).V ′ and (U ′, U) ∈ R
and (T ′, V ′) ∈ R

3. if unfold(T ) = ?(S1, . . . , Sn).T ′ then unfold(V ) = ?(S1, . . . , Sn).V ′

and (T ′, V ′) ∈ R

4. if unfold(T ) = ?(U).T ′ then unfold(V ) = ?(U ′).V ′ and (U,U ′) ∈ R
and (T ′, V ′) ∈ R

5. if unfold(T ) = &{l1 : T1, . . . , lm : Tm} then unfold(V ) = &{l′1 :
V1, . . . , l

′
n : Vn} where m ≤ n and for all i ∈ {1, . . . ,m} there exists

one j ∈ {1, . . . , n} such that li = l′j and (Ti, Vj) ∈ R

6. if unfold(T ) = ⊕{l1 : T1, . . . , lm : Tm} then unfold(V ) = ⊕{l′1 :
V1, . . . , l

′
n : Vn} where n ≤ m and for all i ∈ {1, . . . , n} there exists

one j ∈ {1, . . . ,m} such that l′i = lj and (Tj , Vi) ∈ R

7. if unfold(T ) = end then unfold(V ) = end

The co-inductive ≤ relation is defined as T ≤ V if there exists a type
simulation relation R such that (T, V ) ∈ R, i.e. it is the largest type sim-
ulation relation.
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Roughly T ≤ V holds if T refines the behavior of V . Each case of a
type simulation relation is in an or-relation with the others. Cases for in-
put/ouput prefixes for sort types S are simple: they require the syntactic
equality of the argument and they constrain the continuation to be also
in the relation. Input/output prefixes for session types require the sub-
typing relation computed in depth, thus they require contravariance for
output case and covariance for the input case respectively (63). Instead,
an external choice is in subtype relation with another external choice if
it contains a subset of the labels. This, for example, allows replacing an
external choice when we are sure that only a subset of the real available
labels is offered. On the other hand internal choice behaves dually: we
can chose more labels than the actual ones. The greatest fixed point of
the subtyping definition exists since the associate function is monotone.
The following is a support lemma used in the proof of Proposition 3.6.

Lemma 3.5. Let T ≤ V .

1. if unfold(V ) = !(S1, . . . , Sn).V ′ then unfold(T ) = !(S1, . . . , Sn).T ′ and
T ′ ≤ V ′

2. if unfold(V ) = !(U ′).V ′ then unfold(T ) = !(U).T ′ and U ′ ≤ U and
T ′ ≤ V ′

3. if unfold(V ) = ?(S1, . . . , Sn).V ′ then unfold(T ) = ?(S1, . . . , Sn).T ′

and T ′ ≤ V ′

4. if unfold(V ) = ?(U ′).V ′ then unfold(T ) = ?(U).T and U ≤ U ′ and
T ′ ≤ V ′

5. if unfold(V ) = &{l′1 : V1, . . . , l
′
m : Vm} then unfold(T ) = &{l1 :

T1, . . . , ln : Tn} where m ≤ n and for all i ∈ {1, . . . ,m} there exists one
j ∈ {1, . . . , n} such that li = l′j and Ti ≤ Vj

6. if unfold(V ) = ⊕{l1 : V1, . . . , lm : Vm} then unfold(T ) = ⊕{l′1 :
T1, . . . , l

′
n : Tn} where n ≤ m and for all i ∈ {1, . . . , n} there exists one

j ∈ {1, . . . ,m} such that l′i = lj and Ti ≤ Vj

7. if unfold(V ) = end then unfold(T ) = end

Proof. The proof is first by inspection and then by contradiction, we
show the first case the others are similar. If unfold(T ) has not the form
!(S1, . . . , Sn).T ′ then unfold(V ) cannot have the form !(S1, . . . , Sn).V ′,
contradicting the hypothesis. If unfold(T ) =!(S1, . . . , Sn).T ′ and
unfold(V ) =!(S1, . . . , Sn).V ′ then it must be the case that T ′ ≤ U ′.

27



(AS-ASSUMP)
T ≤ U ∈ Σ

Σ ` T ≤ U

(AS-END)
end ≤ end

(AS-RECL)
Σ, µα.T ≤ U ` T [µα.T /α] ≤ U

Σ ` µα.T ≤ U

(AS-RECR)
Σ, T ≤ µα.U ` T ≤ U [µα.U/α]

Σ ` T ≤ µα.U

(AS-IN)
Σ ` T ≤ U

Σ `?(S̃).T ≤?(S̃).U

(AS-OUT)
Σ ` T ≤ U

Σ `!(S̃).T ≤!(S̃).U

(AS-CATCH)
Σ ` V ≤ V ′ Σ ` T ≤ U

Σ `?(V ).T ≤?(V ′).U

(AS-THROW)
Σ ` V ′ ≤ V Σ ` T ≤ U

Σ `!(V ).T ≤!(V ′).U

(AS-SELECT)
|I| ≤ |J| ∀i ∈ I ∃j ∈ J ⇒ li = l′j , Σ ` Ti ≤ T ′j

Σ ` &{li : Ti}i∈I ≤ &{l′j : T ′j}j∈J

(AS-CHOICE)
|J| ≤ |I| ∀j ∈ J ∃i ∈ I ⇒ li = l′j , Σ ` Ti ≤ T ′j

Σ ` ⊕{li : Ti}i∈I ≤ ⊕{l′j : T ′j}j∈J

Figure 3: The subtyping algorithm

This co-inductive characterization of the subtyping relation is useful
since we have a complete and sound algorithm to compute it. The sub-
typing algorithm reported in Figure 3 is used to verify that two types are
in subtyping relation or said in other words if there exists a type simula-
tion that contains them. As usual for algorithms that check the greatest
fixed point membership, the subtype algorithm takes a set Σ of assump-
tions avoiding unfold indefinitely the recursion. Often paying the cost
of being slightly imprecise we use the word algorithm referencing a set
of inferences rules to indicate the derived algorithm obtained applying
rules from the conclusion to the premises. Of course, each time should
exist only one possible rule that matches the algorithm input and if no
such rule exists then the algorithm is intended to terminate with failure.
Thus imposing that rule (AS-ASSUMP) is applied in place of rules (AS-RECL)

and (AS-RECR) whenever is possible, we disambiguate the rule application.
Hence the inference rules in Figure 3 constitute in fact an algorithm. In
rules (AS-CHOICE) and (AS-SELECT) we use the set notation and |I|, |J | stay for
the cardinality of I and J respectively.
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We shall need an additional proposition which relates the ≤ relation
with the duality relation:

Proposition 3.6. If T ≤ V then V ≤ T .

Proof. It suffices to prove that R = {(V , T )|T ≤ V } ∪ {(T, V )|T ≤ V }
is a type simulation relation. We sketch the session input and external
choice cases. If unfold(V ) = ?(U).V ′ we have to show that unfold(T ) =
?(U ′).T ′ with (U,U ′) ∈ R and (V ′, T ′) ∈ R. Since (V , T ) ∈ R we know
that T ≤ V . Since unfold(V ) = ?(U).V ′ we know by Lemma 3.5 that,
unfold(T ) = ?(U ′).T ′ for suitableU ′ and T ′. Therefore unfold(V ) =!(U).V ′

and unfold(T ) =!(U ′).T ′ and since T ≤ V it must be the case that U ≤ U ′
and T ′ ≤ V ′, hence (U,U ′) ∈ R and (V ′, T ′) ∈ R. Similarly, if unfold(V ) =
&{l1 : V1, . . . , lm : Vm} then unfold(T ) = &{l′1 : T1, . . . , l

′
n : Tn} and

m ≤ n and for all i ∈ {1, . . . ,m} there exists one j ∈ {1, . . . , n} such that
li = l′j and (Vi, Tj) ∈ R since (Tj ≤ Vi).

Corollary 3.7. T ≤ V iff V ≤ T

Proof. By the previous proposition and by Lemma 3.2.

The above corollary is proved also in (69) but by induction on the
algorithm rather than co-inductively. In the following we shall use this
property of subtyping and duality relation naturally, without any refer-
ence.

The three following propositions are proved in (33). Apart from the
algorithm termination the second one states the soundness and the com-
pleteness of the algorithm w.r.t. the co-inductive definition and the third
one states that ≤ is in fact a preorder; that is ≤ is reflexive and transitive.

Proposition 3.8 (see Lemma 10 in (33)). The subtyping algorithm always
terminates.

Proof. The idea of the proof is to define the set Sub(T ) to be the set of
all subterms of T , with free type variables replaced by their recursive
definitions. For any T , Sub(T ) is finite because its size is bounded by the
number of distinct subterms of T . We refer the original work for further
details.

Proposition 3.9 (see Corollary 2 in (33)). ∅ ` T ≤ U iff T ≤ U .

Proposition 3.10 (see Propositions 2 and 3 in (33)). ≤ is a pre-order.
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We let ≶ be the equivalence relation induced by the pre-order ≤, e.g.
!(int).µα.!(int).α ≶ µα.!(int).α.

Definition 3.11. We write T ≶ V iff T ≤ V and V ≤ T hold.

Consequently, ≤ can be considered a partial order up to ≶. We write
greatest(T,U, V ) for the predicate ∀ V ′.V ′ ≤ T and V ′ ≤ U ⇒ V ′ ≤ V .
In the same manner least(T,U, V ) is the predicate ∀ V ′.T ≤ V ′ and U ≤
V ′ ⇒ V ≤ V ′. Since the relation ≤ is a partial order up to ≶ (the anti-
symmetry holds only if we consider ≶ as equivalence relation), defining
the meet of two types requires a bit of attention. The problem is due to
the fact that given two types there exists a (possibly infinite) set of great-
est lower bounds. In particular all the elements of such a set belong to
the equivalence class generated by the relation ≶. In few words, if V is
the greatest lower bound of T and U then all the elements of [V ]≶ (the
equivalence class of V w.r.t. ≶) also are. Thereby the uniqueness of the
meet is intended with respect to the notion of ≶. Also since the subtyp-
ing relation is not defined on every pairs of session types then also the
intersection is not always defined.

Definition 3.12 (Type meet and type join). The meet of two session types
T ∧ U is the (unique w.r.t. ≶ when it exists) type V such that V ≤ T and
V ≤ U and greatest(T,U, V ). Similarly the join of two session types T ∨U
is the (unique w.r.t. ≶when it exists) type V such that T ≤ V and U ≤ V
and least(T,U, V ).

The operation of duality allows switching the meet with join.

Lemma 3.13. T ∧ U ≶ T ∨ U

Proof. It suffice to prove that T ∧ U ≶ T∨U then by definition T∧U is the
type V s.t. V ≤ T and V ≤ U and ∀ V ′.V ′ ≤ T and V ′ ≤ U ⇒ V ′ ≤ V
hence T ≤ V and U ≤ V and ∀ V ′.T ≤ V ′ and U ≤ V ′ ⇒ V ≤ V ′ which
concludes.

It is also easy to see that the following holds:

Lemma 3.14. For any T,U, V :

• Idempotency: (T ∧ T ) ≶ T

• Commutativity: (T ∧ U) ≶ (U ∧ T )

• Associativity: T ∧ (U ∧ V ) ≶ (T ∧ U) ∧ V
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Proof. Idempotency: By definition T ∧ T is the type V such that V ≤ T
and V ≤ T and greatest(T, T, V ) and the result follows taking V ≶ T .
Commutativity: By definition T ∧ U is the type V such that V ≤ T and
V ≤ U and greatest(T,U, V ) or equivalently is the type V such that T ≤ V
and U ≤ V and greatest(U, T, V ).
Associativity: By definition U ∧ V is the type V1 such that V1 ≤ U and
V1 ≤ V and greatest(U, V, V1) and T ∧ V1 is the type V2 such that V2 ≤ T
and V2 ≤ V1 and greatest(T, V1, V2). Also T ∧ U is the type V3 such that
V3 ≤ T and V3 ≤ U and greatest(T,U, V3) and V3 ∧ V is the type V4 such
that V4 ≤ V3 and V4 ≤ V and greatest(V3, V, V4). The result follows since
V2 ≶ V4 exploiting the transitivity of ≤.

Example 3.15. Consider the types given in Section 1. We have both
U ≤ T , U ≤ V and U ′ ≤ T , U ′ ≤ V but since U ′ ≤ U then U is more
suitable than U ′ to be the meet of T and V , but for now we do not have
an automatic manner to verify that greatest(T, V, U) holds since we have
an universal quantification over types.

3.3.2 Inference Relations for the Meet

In this section we overcome the problem related to the universal
quantification in the definition of the predicate greatest. To this aim we
introduce two new relations: one that checks whether a type is effectively
the meet of two given types and another one that checks the existence of
the meet for two given types.

Definition 3.16. A relationR ⊆ TYPE×TYPE×TYPE is a meet relation
if (T,U, V ) ∈ R implies the following conditions:

1. if unfold(T ) = !(S1, . . . , Sn).T ′ then unfold(U) = !(S1, . . . , Sn).U ′

and unfold(V ) = !(S1, . . . , Sn).V ′ and (T ′, U ′, V ′) ∈ R

2. if unfold(T ) = !(T1).T ′ then unfold(U) = !(U1).U ′ and unfold(V ) =
!(V1).V ′ and (T1, U1, V1) ∈ R and (T ′, U ′, V ′) ∈ R

3. if unfold(T ) = ?(S1, . . . , Sn).T ′ then unfold(U) = ?(S1, . . . , Sn).U ′

and unfold(V ) = ?(S1, . . . , Sn).V ′ and (T ′, U ′, V ′) ∈ R

4. if unfold(T ) = ?(T1).T ′ then unfold(U) = ?(U1).U ′ and unfold(V ) =
?(V1).V ′ and (T1, U1, V1) ∈ R and (T ′, U ′, V ′) ∈ R
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5. if unfold(T ) = &{li : Ti}i∈I then unfold(U) = &{l′j : T ′j}j∈J and
letting K = {(i, j) | li = l′j} with |K| ≥ 1 we have unfold(V ) =
&{li : U(i,j)}(i,j)∈K and ∀i∀j(i, j) ∈ K ⇒ (Ti, T ′j , U(i,j)) ∈ R

6. if unfold(T ) = ⊕{li : Ti}i∈I then unfold(U) = ⊕{l′j : T ′j}j∈J and
lettingK = {(i, j) | li = l′j}, I ′ = I \fst(K) ,J ′ = J \snd(K) we have
unfold(V ) = ⊕{li : U(i,j)}(i,j)∈K ; ; ⊕{li : Tµi}i∈I′ ; ; ⊕{l′j : T ′µj}j∈J′
and ∀i ∈ I ′ Tµi ≶ Ti and ∀j ∈ J ′ T ′µj ≶ T ′j and ∀i∀j(i, j) ∈ K ⇒
(Ti, T ′j , U(i,j)) ∈ R

7. if unfold(T ) = end then unfold(U) = end and unfold(V ) = end

The co-inductive
c
∧ = relation is defined as T

c
∧U = V if there exists a

meet relation R such that (T,U, V ) ∈ R.

Once again it is simple to see that the function associated to the meet
relation is monotonic. Since the output of a session is contravariant, the
respective rule (point 2) requires the syntactic dual of each sent type to
be co-inductively in the relation. The duality relation is exploited here to
use the same algorithm but to compute the union (or the join). The rule in
fact would require to compute the least upper bound of T1 and U1. Rules
for choices use the intersection set K which contains pairs of indexes
with equal labels in each choice. Remember that we are considering only
well formed types, hence labels in choices are distinct and consequently
each component in a pair belonging to K is distinct too. Accordingly, the
type ♦{li : U(i,j)}(i,j)∈K has all the labels in the intersection where li
are some of the labels indexed by I (here we used li the labels of the first
type, but l′j would do too). Moreover, the rule for external choice uses the
; ; operation (as a destructor) to exhibit the type V and both functions fst
and snd to project each component ofK. The definition of these functions
is straightforward, i.e. fst(K) = {i|(i, j) ∈ K} and snd(K) = {j|(i, j) ∈
K}. The resulting type contains branches in the intersection (indexed by
K) which are constrained to be co-inductively in the relation together
with both Tµi equal to the remaining branches of the type T (indexed by
I ′) and T ′µi equal to the remaining branches of the type V (indexed by
J ′). There is a subtlety in the rule for external choice, as the relation is
defined only if K contains at least one element. A similar check is not
necessary for the internal choice since the requirement is automatically
fulfilled as T and V contain at least one branch each.

We first prove that each representant of the algebraic intersection is
also captured by the greatest meet relation.
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Proposition 3.17. If T ∧ U ≶ V then T
c
∧U = V .

Proof. We show thatR = {(T,U, V )|V ≤ T and V ≤ U and greatest(T,U, V )}
is a meet relation. We prove the theorem by case analysis on unfold(V ):

• If unfold(V ) = !(V1).V ′ by definition of≤we must have unfold(T ) =
!(T1).T ′ with T1 ≤ V1 and V ′ ≤ T ′. Similarly for U , unfold(U) =
!(U1).U ′ with U1 ≤ V1 and V ′ ≤ U ′. By Proposition 3.6 we
have V1 ≤ T1 and V1 ≤ U1. To conclude the proof, note
that greatest(T1, U1, V1) and greatest(T ′, U ′, V ′) trivially hold by
greatest(T,U, V ). In fact, by definition of greatest(T,U, V ) we have
∀W s.t. unfold(W ) = !(W1).W ′ and W ≤ T and W ≤ U ⇒ W ≤ V .
By definition of ≤ we have W ′ ≤ T ′ and W ′ ≤ U ′ ⇒ W ′ ≤ V ′

or in other words greatest(T ′, U ′, V ′). In the same manner we have
W1 ≤ T1 and W1 ≤ U1 ⇒ W1 ≤ V1, i.e. greatest(T1, U1, V1). In brief
we proved: V ′ ≤ T ′, V1 ≤ T1, V ′ ≤ U ′, V1 ≤ U1, greatest(T ′, U ′, V ′)
and greatest(T1, U1, V1) which allow to conclude.

• If unfold(V ) = ⊕{li : Vi}i∈I by definition of ≤ we must have
unfold(T ) = ⊕{l′j : Tj}j∈J and |J | ≤ |I| and for all j ∈ J there
exists i ∈ I s.t. li = l′j and Vi ≤ Tj . Similarly for U , unfold(U) =
⊕{l′′i : Ui}i∈J′ and |J ′| ≤ |I| and for all j ∈ J ′ there exists i ∈ I s.t.
li = l′′j and Vi ≤ Uj . TakeK = {(i, j)|l′i = l′′j and i ∈ J and j ∈ J ′} it
holds that for some (i, j) ∈ K, V(i,j) ≤ Ti and V(i,j) ≤ Uj and since
greatest(T,U, V ) the previous inequalities hold for all (i, j) ∈ K.
Take now any i s.t. i ∈ J \ fst(K) then it holds for some k′ ∈ I that
Vk′ ≤ Ti but greatest(T,U, V ) implies Vk′ ≶ Ti and the same for any
i s.t. i ∈ J ′ \ snd(K) it holds for some k′′ ∈ I that Vk′′ ≶ Ui. Since
greatest(T,U, V ) then I does not contain any additional branch.
To finish we must prove that greatest holds for the elements in-
dexed by K. By definition of greatest(T,U, V ) we have ∀W s.t.
unfold(W ) = ⊕{l′′′i : Wi}i∈I′ and W ≤ T and W ≤ U ⇒ W ≤ V .
By definition of ≤ we have |J | ≤ |I ′| and for all j ∈ J there exists
i ∈ I ′ s.t. l′′′i = l′j and Wi ≤ Tj and |J ′| ≤ |I ′| and for all j ∈ J ′

there exists i ∈ I ′ s.t. l′′′i = l′′j and Wi ≤ Uj ⇒ |I| ≤ |I ′| and for all
i ∈ I there exists j ∈ I ′ s.t. li = l′′′j and Wj ≤ Vi and in particular
∀(i, j) ∈ K greatest(Ti, Uj , V(i,j)).

• If unfold(V ) = &{li : Vi}i∈I by definition of ≤ we must have
unfold(T ) = &{l′j : Tj}j∈J and |I| ≤ |J | and for all i ∈ I there exists
J ∈ J s.t. li = l′j and Vi ≤ Tj . Similarly for U , unfold(U) = &{l′′i :
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Ui}i∈J′ and |I| ≤ |J ′| and for all i ∈ I there exists j ∈ J ′ s.t. li = l′′j
and Vi ≤ Uj . Take K = {(i, j)|l′i = l′′j and i ∈ J and j ∈ J ′}, it is
obvious that |K| ≥ 1 and since greatest(T,U, V ) we have |K| = |I|.
The remaining part that greatest holds for the elements of K is sim-
ilar to the previous case.

• The remaining cases are analogous but simpler.

In order to prove that the greatest meet relation captures only correct
representatives of the intersection we need to define co-inductively the
notions of minorant.

Definition 3.18. A relation R ⊆ TYPE × TYPE × TYPE is a minorant
relation if (T,U, V ) ∈ R implies the following conditions:

1. if unfold(T ) = !(S1, . . . , Sn).T ′ then unfold(U) = !(S1, . . . , Sn).U ′

and unfold(V ) = !(S1, . . . , Sn).V ′ and (T ′, U ′, V ′) ∈ R

2. if unfold(T ) = !(T1).T ′ then unfold(U) = !(U1).U ′ and unfold(V ) =
!(V1).V ′ and (T1, U1, V1) ∈ R and (T ′, U ′, V ′) ∈ R

3. if unfold(T ) = ?(S1, . . . , Sn).T ′ then unfold(U) = ?(S1, . . . , Sn).U ′

and unfold(V ) = ?(S1, . . . , Sn).V ′ and (T ′, U ′, V ′) ∈ R

4. if unfold(T ) = ?(T1).T ′ then unfold(U) = ?(U1).U ′ and unfold(V ) =
?(V1).V ′ and (T1, U1, V1) ∈ R and (T ′, U ′, V ′) ∈ R

5. if unfold(T ) = &{li : Ti}i∈I then unfold(U) = &{l′j : T ′j}j∈J and
letting K = {(i, j) | li = l′j} for any K ′ ⊆ K and |K ′| ≥ 1
we have unfold(V ) = &{li : U(i,j)}(i,j)∈K′ and ∀i∀j(i, j) ∈ K ′ ⇒
(Ti, T ′j , U(i,j)) ∈ R

6. if unfold(T ) = ⊕{li : Ti}i∈I then unfold(U) = ⊕{l′j : T ′j}j∈J and
letting K = {(i, j) | li = l′j}, I ′ = I \ fst(K) ,J ′ = J \ snd(K)
we have unfold(V ) = ⊕{li : U(i,j)}(i,j)∈K ; ; ⊕{li : Tµi}i∈I′ ; ;
⊕{l′j : T ′µj}j∈J′ ; ; ⊕{l′′k : T ′′k }k∈K′ for any ⊕{l′′k : T ′′k }k∈K′ and
∀i ∈ I ′ Tµi ≤ Ti and ∀j ∈ J ′ T ′µj ≤ T ′j and ∀i∀j(i, j) ∈ K ⇒
(Ti, T ′j , U(i,j)) ∈ R

7. if unfold(T ) = end then unfold(U) = end and unfold(V ) = end

The co-inductive minorant relation is defined as minorant(T,U, V ) if there
exists a minorant relation R such that (T,U, V ) ∈ R.

34



The rules are similar to the corresponding ones in the definition of a
meet relation but for cases 5 and 6. In case 5 we allow in the resulting type
a subset K ′ of K; that is, having only some of the common branches of T
and U characterizes all minorants of T and U . Case 6 allows the type sub-
scripted with µ to be also less than the type in the corresponding branch
(either indexed by I ′ or J ′) but also it allows an arbitrary internal choice
indexed by K ′ to be part of the final type. In this manner we characterize
all minorants of an external choice. Notice the monotonicity also holds
for the function associated to a minorant relation, in particular rules 5
and 6 have an universal quantification that keeps the monotonicity.

The next theorem shows that indeed
c
∧ = relates two types with

their respective meet.

Theorem 3.19. T ∧ U ≶ V iff T
c
∧U = V

Proof. The if part follows by the previous Proposition, for the only if part
it suffices to show that:

1. RT = {(V, T )|∃U T
c
∧U = V } ∪ {(T1, T2)|T1 ≶ T2} ∪

{(T, V )|∃U T
c
∧U = V } is a type simulation relation.

2. RU = {(V,U)|∃T T
c
∧U = V } ∪ {(T1, T2)|T1 ≶ T2} ∪

{(U, V )|∃T T
c
∧U = V } is a type simulation relation.

3. T
c
∧U = V implies greatest(T,U, V ).

We partially prove point 1, point 2 is similar. Relatively to point 1 we

prove only the case for {(V, T )|∃U T
c
∧U = V }, the third relation is exactly

the same while the second relation is straightforward. We proceed by
inspection on unfold(T ).

• if unfold(T ) = &{li : Ti}i∈I then by definition of
c
∧ = ,

unfold(U) = &{l′j : T ′j}j∈J and letting K = {(i, j)|li = l′j and i ∈
I and j ∈ J}, unfold(V ) = &{li : V(i,j)}(i,j)∈K . The result follows
since by definition |K| ≤ |I| and for all (i, j) ∈ K there exists i′ ∈ I
s.t. li = li′ (i.e. the labels of K are a subset of the labels in I) and
Ti′

c
∧Uj = V(i,j).

• if unfold(T ) = ⊕{li : Ti}i∈I then by definition of
c
∧ = ,

unfold(U) = ⊕{l′j : T ′j}j∈J and letting K = {(i, j)|li = l′j and i ∈
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I and j ∈ J}, I ′ = I \ fst(K), J ′ = J \ snd(K), unfold(V ) = ⊕{li :
V(i,j)}(i,j)∈K ; ; ⊕{li : Tµi}i∈I′ ; ; ⊕{lj : T ′µj}j∈J′ and for all i ∈ I ′,
Tµi ≶ Ti and for all j ∈ J ′, Tµj ≶ Tj . In particular holds that
|I| ≤ |K| and for all i′ ∈ I there exists (i, j) ∈ K s.t. li′ = li and
then either there exists Tµi s.t. Tµi ≶ Ti′ or Ti′

c
∧Ui = V(i,j).

• if unfold(T ) = !(T1).T ′ then by definition of
c
∧ = , unfold(U) =

!(U1).U ′ and unfold(V ) = !(V1).V ′. We have T1

c
∧U1 = V1 and

T ′
c
∧U ′ = V ′ which allow to conclude.

• Remaining cases are simpler.

To show point 3 we must prove that in fact minorant does his job
showing that R = {(T,U, V )|V ≤ T and V ≤ U} is a minorant
relation and both RT = {(V, T )|∃U minorant(T,U, V )} and RU =
{(V,U)|∃T minorant(T,U, V )} are type simulation relations. We conclude

by proving that R1 = {(V1, V )|T
c
∧U = V and minorant(T,U, V1)} is a

type simulation relation which in fact proves that T
c
∧U = V implies

greatest(T,U, V ).

Example 3.20. The type U ′ in the Example 3.3 is not the meet of the two
types T and V , since does not exist a meet relation which contains the
tuple (T, V, U). In particular, the test fails due to the lack in U ′ of the
label quit in a choice together with play. However U ′ is a minorant of T
and V since it exists a minorant relation that contains (T, V, U ′).

Now we introduce another relation which contains all pairs of types
such that the meet is defined.

Definition 3.21. A relation R ⊆ TYPE ×TYPE is a meet exists relation if
(T,U) ∈ R implies the following conditions:

1. if unfold(T ) = !(S1, . . . , Sn).T ′ then unfold(U) = !(S1, . . . , Sn).U ′

and (T ′, U ′) ∈ R

2. if unfold(T ) = !(T1).T ′ then unfold(U) = !(U1).U ′, (T1, U1) ∈ R and
(T ′, U ′) ∈ R

3. if unfold(T ) = ?(S1, . . . , Sn).T ′ then unfold(U) = ?(S1, . . . , Sn).U ′

and (T ′, U ′) ∈ R
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4. if unfold(T ) = ?(T1).T ′ then unfold(U) = ?(U1).U ′ and (T1, U1) ∈ R
and (T ′, U ′) ∈ R

5. if unfold(T ) = &{li : Ti}i∈I then unfold(U) = &{l′j : T ′j}j∈J and
K = {(i, j) | li = l′j} and |K| ≥ 1 and ∀i∀j(i, j) ∈ K ⇒ (Ti, T ′j) ∈ R

6. if unfold(T ) = ⊕{li : Ti}i∈I then unfold(U) = ⊕{l′j : T ′j}j∈J and
K = {(i, j) | li = l′j}, ∀i∀j(i, j) ∈ K ⇒ (Ti, T ′j) ∈ R

7. if unfold(T ) = end then unfold(U) = end

The co-inductive
c
∧ relation is defined as T

c
∧U if there exists a meet exists

relation R such that (T,U) ∈ R.

Simply, the previous definition ignores the shape of the meet, check-
ing only the consistency of T and U . The next theorem formally prove

the fact that the relation
c
∧ is defined only if the meet of two types exists.

Theorem 3.22. T
c
∧U iff ∃V such that T

c
∧U = V .

Proof. ⇐) It suffices to show that R = {(T,U)|∃V T
c
∧U = V } is a meet

exists relation. The proof follows directly from the two definitions.

⇒) It suffices to show that R = {(T,U, V )|T
c
∧U and V ≤ T and V ≤

U and greatest(T,U, V )} is a meet relation. All cases are simple. For ex-
ample, if unfold(T ) = &{li : Ti}i∈I then unfold(U) = &{l′j : T ′j}j∈J and
the result follows since V = &{li : U(i,j)}(i,j)∈K withK = {(i, j) | li = l′j}
and |K| ≥ 1 and ∀i∀j(i, j) ∈ K , U(i,j) ≤ Ti and U(i,j) ≤ T ′j and
greatest(Ti, T ′j , U(i,j)).

One can prove that if there exists a lower bound then there exists also
the greatest lower bound.

Lemma 3.23. If V ≤ T and V ≤ U then there exists V ′ s.t. T
c
∧U = V ′.

Proof. Simply we prove that R = {(T,U)|∃ V V ≤ T and V ≤ U} is a
meet exists relation then we can conclude with the previous theorem.

3.3.3 Algorithmic Meet

In this section we discuss our algorithm for computing the meet. First
we present the algorithm for the membership checking of both relations
c
∧ and

c
∧ = . The algorithmic sequents for

c
∧ take the form Σ ` T

c
∧U
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where Σ represents the set of assumptions of the form T ′
c
∧U ′ (later we

will introduce the set of inverse assumptions

Σ

with elements T
c
∧U too,

see Figure 6). The inference rules in Figure 4 faithfully follows the defi-
nition of a meet exists relation but rules (A2-REC1), (A2-REC2 ) and (A2-ASSUMP)

are used to handle the unfolding of a recursion with the usual conven-
tion that rule (A2-ASSUMP) should be applied if possible. The algorithmic

sequents for
c
∧ = are Σ ` T

c
∧U = V where Σ represents the set of as-

sumptions of the form T ′
c
∧U ′ = V ′. (Note that we use the same symbol Σ

used for algorithmic subtyping without any risk of clash) The inference
rules in Figure 5 follows the definition of a meet relation but this time
since we are handling a triple we have 3 different rules for recursion un-
folding (rules (A3-REC1), (A3-REC2 ) and (A3-REC3)) and the relative assump-
tion axiom (A3-ASSUMP). In rule (A3-CHOICE), the ≶ relation can be verified
with the set of inference rules in Figure 3.

The proof of soundness and completeness of the two algorithms with
respect to the co-inductive definition and the proof of termination are
similar to the proofs of Propositions 3.8 and 3.9, here the latter relation is
only trivially extended with triple.

Moreover rule (A3-Choice) use the ≶-relation which can be verified
with the help of ≤ algorithm.

The problem in computing the meet of two infinite types is that the
resulting structure can be different from the two types given in input.

The relation
c
∧ = gives a hint on how to build the infinite type but we

need a way to represent this type finitely by means of a regular infinite
session type. As discussed in the introduction, it is not obvious that such
representation exists, namely is the meet of two regular session types
regular? In fact at this point we only know that if the meet has a finite
representation (since the set of session types are the least fixed point of
the generating function derived by the relative grammar) then we have
a way of checking its goodness.

The idea of computing such representation comes from the algorith-
mic membership checking of the greatest fixed point for recursive reg-
ular types. Simply, the algorithm acts as follows: consider for example
any generic type µα.A.B.C.α to be checked against another generic type
µβ.D.E.β, where A, ...,E are generic actions. Then when unfolding re-
cursion to perform the check, it is important to maintain a set of assump-
tions, so to prevent checking twice the same relation. After the first un-
folding the algorithm matches A with D, then B with E, then C with
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(A2-END)

Σ ` end
c
∧end

(A2-ASSUMP)

Σ, T
c
∧U ` T

c
∧U

(A2-THROW)

Σ ` T1
c
∧U1 Σ ` T

c
∧U

Σ `!(T1).T
c
∧!(U1).U

(A2-OUT)

Σ ` T
c
∧U

Σ `!(S̃).T
c
∧!(S̃).U

(A2-CATCH)

Σ ` T1
c
∧U1 Σ ` T

c
∧U

Σ `?(T1).T
c
∧?(U1).U

(A2-IN)

Σ ` T
c
∧U

Σ `?(S̃).T
c
∧?(S̃).U

(A2-SELECT)

K = {(i, j) | li = l′j} |K| ≥ 1 ∀(i, j) ∈ K.Σ ` Ti
c
∧T ′j

Σ ` &{li : Ti}i∈I
c
∧&{l′j : T ′j}j∈J

(A2-CHOICE)

K = {(i, j) | li = l′j} ∀(i, j) ∈ K.Σ ` Ti
c
∧T ′j

Σ ` ⊕{li : Ti}i∈I
c
∧ ⊕ {l′j : T ′j}j∈J

(A2-REC1)

Σ, µα.T
c
∧U ` T [µα.T /α]

c
∧U

Σ ` µα.T
c
∧U

(A2-REC2)

Σ, T
c
∧µα.U ` T

c
∧U [µα.U/α]

Σ ` T
c
∧µα.U

Figure 4: Algorithmic membership checking for
c
∧

D, then A with E, then B with D and finally C with E, for a total of six
matches. After that, the algorithm ends since it re-encounters the original
pair of types, already present in the assumptions. All checks made by the
algorithm cover the entire range of possibilities for the first type and for
the second type, this is also the desired behavior of the meet, namely the
meet of the two previous types is composed by six components.
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(A3-END)

Σ ` end
c
∧end = end

(A3-ASSUMP)

Σ, T
c
∧U = V ` T

c
∧U = V

(A3-OUT)

Σ ` T
c
∧U = V

Σ `!(S̃).T
c
∧!(S̃).U = !(S̃).V

(A3-THROW)

Σ ` T1
c
∧U1 = V1 Σ ` T

c
∧U = V

Σ `!(T1).T
c
∧!(U1).U = !(V1).V

(A3-IN)

Σ ` T
c
∧U = V

Σ `?(S̃).T
c
∧?(S̃).U = ?(S̃).V

(A3-CATCH)

Σ ` T1
c
∧U1 = V1 Σ ` T

c
∧U = V

Σ `?(T1).T
c
∧?(U1).U = ?(V1).V

(A3-SELECT)

K = {(i, j) | li = l′j} |K| ≥ 1 ∀(i, j) ∈ K.Σ ` Ti
c
∧T ′j = U(i,j)

Σ ` &{li : Ti}i∈I
c
∧&{l′j : T ′j}j∈J = &{li : U(i,j)}(i,j)∈K

(A3-CHOICE)
K = {(i, j) | li = l′j}, I

′ = I \ fst(K),

J′ = J \ snd(K)
∀(i, j) ∈ K.Σ ` Ti

c
∧T ′j = U(i,j)

∀i ∈ I′.Tµi ≶ Ti ∀j ∈ J′.T ′µj ≶ T ′j

Σ ` ⊕{li : Ti}i∈I
c
∧ ⊕ {l′j : T ′j}j∈J =

⊕{li : U(i,j)}(i,j)∈K ; ;
⊕{li : Tµi}i∈I′ ; ; ⊕{l′j : T ′µj}j∈J′

(A3-REC1)

Σ, µα.T
c
∧U = V ` T [µα.T /α]

c
∧U = V

Σ ` µα.T
c
∧U = V

(A3-REC2)

Σ, T
c
∧µα.U = V ` T

c
∧U [µα.U/α] = V

Σ ` T
c
∧µα.U = V

(A3-REC3)

Σ, T
c
∧U = µα.V ` T

c
∧U = V [µα.V /α]

Σ ` T
c
∧U = µα.V

Figure 5: Algorithmic membership checking for
c
∧ =

40



The set of rules in Figure 6, with sequents of the form Σ ` T
c
∧U →

V �

Σ

exploits this characteristic of the membership checking algorithms
to compute the full range of possible behaviors of the meet. (Notice that
the values contained in

Σ

are not related to those in Σ: the symbol has
just been chosen to remember the fact that this set of assumptions is built
from top to bottom as opposed to Σ.) The set of inverse assumptions
collects only the pairs of types which allow to apply the assumption ax-
ioms; rules (ALG-ASSUMP1) and (ALG-ASSUMP2). In these cases the algorithm
returns (after the →) a type variable whose name is dependent on the
assumption (and on the input types as well). Notice that all possible as-
sumptions are µ-guarded since they contain in either the first component
or the second component a type starting with a recursion. In this manner,
if before the unfolding of a recursion the pair is already present in the set
of inverse assumptions the algorithm knows that this is the right time to
place a recursion in the result. The recursion added by rules (ALG-REC1)

and (ALG-REC2) is µ-guarded w.r.t. the same type variable that later allows
application of axioms (ALG-ASSUMP1) and (ALG-ASSUMP2). If instead before the
unfolding of a recursive type the pair is not present in the set of inverse
assumptions, then the rules (ALG-SKIP1) and (ALG-SKIP2) are applied. The re-
maining rules simply compute locally the values of the meet, alike those

for
c
∧ = .

However, using a free type variable in axioms is a tricky operation
and requires additional work to avoid capturing the wrong type variable
with recursion. For this reason we need an auxiliary convention in order
to guarantee that all type variables returned by (ALG-REC1) and (ALG-REC2)

are different. We fix a standard naming for the variables to be introduced
by (ALG-ASSUMP1) and (ALG-ASSUMP2), which are indeed determined by the
exploited assumption present in

Σ

. Finally, we define the notation for
µvar to denote the set of variables that can arise from

Σ

: we let µvar(∅) = ∅
and µvar(T

c
∧U,

Σ

) = {αT,U} ∪ µvar(

Σ

).

The following lemma accounts two simple invariants of Σ ` T
c
∧U →

V �

Σ

.

Lemma 3.24. If Σ ` T
c
∧U → V �

Σ

then the number of assumptions in

Σ

is
less then the number of assumptions in Σ and fv(V ) = µvar(

Σ

).

Proof. The proof is by straightforward rule induction on the rules for Σ `
T
c
∧U → V �

Σ

.

Now we prove the soundness and the completeness of the algorithm.
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(ALG-END)

Σ ` end
c
∧end→ end � ∅

(ALG-ASSUMP1)

Σ, µα.T
c
∧U ` µα.T

c
∧U → αµα.T,U � µα.T

c
∧U

(ALG-ASSUMP2)

Σ, T
c
∧µα.U ` T

c
∧µα.U → αT,µα.U � T

c
∧µα.U

(ALG-REC1)

Σ, µα.T
c
∧U ` T [µα.T /α]

c
∧U → V �

Σ

, µα.T
c
∧U

Σ ` µα.T
c
∧U → µαµα.T,U .V �

Σ

(ALG-SKIP1)

Σ, µα.T
c
∧U ` T [µα.T /α]

c
∧U → V �

Σ

µα.T
c
∧U /∈

Σ

Σ ` µα.T
c
∧U → V �

Σ

(ALG-REC2)

Σ, T
c
∧µα.U ` T

c
∧U [µα.U/α]→ V �

Σ

, T
c
∧µα.U

Σ ` T
c
∧µα.U → µαT,µα.U .V �

Σ

(ALG-SKIP2)

Σ, T
c
∧µα.U ` T

c
∧U [µα.U/α]→ V �

Σ

T
c
∧µα.U /∈

Σ

Σ ` T
c
∧µα.U → V �

Σ

(ALG-SELECT)

K = {(i, j) | li = l′j} |K| ≥ 1 ∀i∀j(i, j) ∈ K.Σ ` Ti
c
∧T ′j → U(i,j) �

Σ

(i,j)

Σ ` &{li : Ti}i∈I
c
∧&{l′j : T ′j}j∈J → &{li : U(i,j)}(i,j)∈K �

⋃
(i,j)∈K

Σ

(i,j)

(ALG-CHOICE)
K = {(i, j) | li = l′j}, I

′ = I \ fst(K),

J′ = J \ snd(K)
∀(i, j) ∈ K.Σ ` Ti

c
∧T ′j → U(i,j)�

Σ

(i,j)

Σ ` ⊕{li : Ti}i∈I
c
∧

⊕{l′j : T ′j}j∈J
→ ⊕{li : U(i,j)}(i,j)∈K ; ;
⊕{li : Ti}i∈I′ ; ; ⊕{l′j : T ′j}j∈J′

�
⋃

(i,j)∈K

Σ

(i,j)

(ALG-OUT)

Σ ` T
c
∧U → V �

Σ

Σ `!(S̃).T
c
∧!(S̃).U →!(S̃).V �

Σ

(ALG-THROW)

Σ ` T1
c
∧U1 → V1 �

Σ

1 Σ ` T
c
∧U → V �

Σ

Σ `!(T1).T
c
∧!(U1).U →!(V1).V �

Σ

1 ∪

Σ

(ALG-IN)

Σ ` T
c
∧U → V �

Σ

Σ `?(S̃).T
c
∧?(S̃).U →?(S̃).V �

Σ

(ALG-CATCH)

Σ ` T1
c
∧U1 → V1 �

Σ

1 Σ ` T
c
∧U → V �

Σ

Σ `?(T1).T
c
∧?(U1).U →?(V1).V �

Σ

1 ∪

Σ

Figure 6: The algorithmic meet
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All states of the algorithm we consider (with state we mean the instance

of a particular conclusion) are of the form Σ ` T
c
∧U → V �

Σ

. Moreover
we say that a state is completed if the set of inverse assumptions is the empty
set. To fix the correspondence between different proof trees, we define
the function forget from a set of assumptions Σ (set of triples of types), to
a set of assumptions Σ (set of pairs of types) as:

forget(Σ) =

{
forget(∅) = ∅
forget(Σ′, T

c
∧U = V ) = forget(Σ′), T

c
∧U

where Σ, T
c
∧U = V (resp. Σ, T

c
∧U , resp.

Σ

, T
c
∧U ) is Σ∪{T

c
∧U = V } (resp.

Σ ∪ {T
c
∧U}, resp.

Σ

∪ {T
c
∧U}). The next proposition simply says that the

algorithm in Figure 6 computes a correct intersection, all the additional
hypotheses are used to give a correspondence between the algorithm in
Figure 6 and the algorithm in Figure 5.

Proposition 3.25. Let Σ ` T
c
∧U → V �

Σ

a state in the proof
tree of a completed state with {αT1,U1 , . . . , αTn,Un} = µvar(

Σ

). Then
there exists a tuple µαT1,U1 .V

′
1 , . . . , µαTn,Un .V

′
n s.t. Σ ` T

c
∧U =

V [µαT1,U1 .V
′
1 /αT1,U1

] . . . [µαTn,Un .V
′
n/αTn,Un ] where forget(Σ) = Σ and each

of the substitution [µαTi,Ui .V
′
i /αTi,Ui ] is introduced orderly by successive ap-

plications of either the rule (ALG-REC1) or the rule (ALG-REC2) with premise
Ti ∧ Ui → µαTi,Ui .Vi.

Proof. The proof is by induction on the height of the proof tree of com-
pleted state. Notice that we consider a state in the proof tree of a com-
pleted state then the order of the substitutions for the free variables in V
is uniquely fixed by the considered proof tree.

The base cases are when the last applied rule is (ALG-END), and the
statement trivially holds and when the last applied rule are (ALG-ASSUMP1)

and (ALG-ASSUMP2). The last cases are both similar. For instance in the case
of (ALG-ASSUMP1) we have forget(Σ), µα.T

c
∧U ` µα.T

c
∧U → αµα.T,U �

µα.T
c
∧U and we can conclude with rule (A3-ASSUMP) Σ, µα.T

c
∧U =

µαµα.T,U .V
′ ` T

c
∧U = αµα.T,U [µαµα.T,U .V

′
/αµα.T,U ] for some V ′. In the

inductive cases when the last applied rule is

• (ALG-Rec1) we have forget(Σ) ` T [µα.T /α]
c
∧U →

V �

Σ′, µα.T
c
∧U and by inductive hypothesis letting
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˜[µα.V ′/α] = [µαT1,U1 .V
′
1 /αT1,U1

] . . . [µαTn−1,Un−1.V
′
n−1/αTn−1,Un−1

],

Σ ` T [µα.T /α]
c
∧U = V [µαµα.T,U .V

′
n/αµα.T,U ] ˜[µα.V ′/α] where

{αT1,U1 , . . . , αTn−1,Un−1} = µvar(

Σ′). Since [µαµα.T,U .V
′
n/αµα.T,U ] is

introduced here by hypothesis from the other side we must have

Σ ` T [µα.T /α]
c
∧U = V ′′ with V ′′ = V [ ˜µα.V ′/α][V [ ˜µα.V ′/α]/αµα.T,U ].

The thesis follows applying (A3-Rec1) and (A3-Rec3) since we set

Σ = Σ′, µα.T
c
∧U = µα.V ′′, T [µα.T /α]

c
∧U = µα.V ′′. The following

proof trees help understanding this case.

forget(Σ′′), µα.T
c
∧U ` µα.T

c
∧U → αµα.T,U � µα.T

c
∧U

...

forget(Σ), µα.T
c
∧U ` T [µα.T /α]

c
∧U → V � µα.T

c
∧U

(ALG-REC1)
forget(Σ) ` µα.T

c
∧U → µαµα.T,U .V � ∅

Σ′′, µα.T
c
∧U = µαµα.T,U .V ` µα.T

c
∧U = µαµα.T,U .V

...

Σ′, T [µα.T /α]
c
∧U = µαµα.T,U .V ` T [µα.T /α]

c
∧U = V [µαµα.T,U .V /α]

(A3-REC3)
Σ, µα.T

c
∧U = µαµα.T,U .V ` T [µα.T /α]

c
∧U = µαµα.T,U .V

(A3-REC1)
Σ ` µα.T

c
∧U = µαµα.T,U .V

• (ALG-THROW) we have forget(Σ) ` T1

c
∧U1 → V1 �

Σ

1

and forget(Σ) ` T
c
∧U → V �

Σ

and by induction

Σ ` T1

c
∧U1 = V1[µαT1,U1 .V

′
1 /αT1,U1

] . . . [µαTn,Un .V
′
n/αTn,Un ]

where {αT1,U1 , . . . , αTn,Un} = µvar(

Σ

1) and Σ `
T
c
∧U = V [µαT ′1,U′1 .V

′′
1 /αT ′1,U′1

] . . . [µαT ′m,U′m .V
′′
m/αT ′m,U′m

] where
{αT ′1,U ′1 , . . . , αT ′m,U ′m} = µvar(

Σ

). By hypothesis we are inducting
on a completed tree then it must exist a sequence of applications of
either the rule (ALG-REC1) or (ALG-REC2) which consume all the sub-
stitutions and fixes their application ordering. Consequently we

can conclude by applying (A3-THROW) Σ `!(T1).T
c
∧!(U1).U =

!(V1).V [µαT ′′1 ,U′′1 .V
′′′
1 /αT ′′1 ,U′′1

] . . . [µαT ′′k ,U′′m .V
′′′
k /αT ′′

k
,U′′
k

] where
{αT ′′1 ,U ′′1 , . . . , αT ′′k ,U ′′k } = µvar(

Σ

∪

Σ

1).
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• remaining rules are similar e.g. (ALG-REC2), (ALG-SELECT) or follow di-
rectly by induction e.g. (ALG-SKIP1). In the case of rule (ALG-CHOICE) we
use the reflexivity of ≶.

The inverse of the previous Lemma is simpler since we only make
assumptions on the existence of the meet (using the respective relation).

Proposition 3.26. If Σ ` T
c
∧U then ∃

Σ

and U s.t. Σ ` T
c
∧U → V �

Σ

.

Proof. The proof is by straightforward induction on the depth of the
proof tree. The following is an example tree where the recursion is ap-
plied.

Σ′, µα.T
c
∧U ` µα.T

c
∧U

...

Σ, µα.T
c
∧U ` T [µα.T /α]

c
∧U

(A2-REC1)
Σ ` µα.T

c
∧U

Σ′, µα.T
c
∧U ` µα.T

c
∧U → αµα.T,U � µα.T

c
∧U

...

Σ, µα.T
c
∧U ` T [µα.T /α]

c
∧U → V � µα.T

c
∧U,

Σ

(ALG-REC1)
Σ ` µα.T

c
∧U → µαµα.T,U .V �

Σ

The final theorem states soundness and completeness of the algorith-
mic intersection.

Theorem 3.27. If ∅ ` T
c
∧U → V � ∅ then V is the meet of T and U .

Proof. By Proposition 3.25 we know that each value computed by the
algorithm belongs to a meet relation. Notice that the proposition is ap-
plied since the set of inverse assumptions (

Σ

) is empty and thus a com-
pleted state. Again, since

Σ

is empty, there exists a meet relation that
contains (T,U, V ). By the Proposition 3.26 we know that the algorithm
exhibits a result V for each T and U for which the meet is defined and
by Lemma 3.24,

Σ

= ∅ and fv(V ) = ∅. Then in order not to contradict
Theorem 3.19 each value V in a meet relation, with T and U must be in
≶-relation with the value computed by the algorithm.
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T
c
∧U, . . . ` T

c
∧U → αT,U � T

c
∧U

(ALG-ASSUMP1)

cT
c
∧U, . . . ` &{s1 : α; s2 : β}[T /α][T1/β ]

c
∧

&{s1 : α; s3 : β}[U/α][U1/β ]
→ &{s1 : αT,U}� T

c
∧U

...

T
c
∧U, . . . ` &{s1 : α; s2 : β}[T /α][T1/β ]

c
∧

µα.µβ.&{s1 : α; s3 : β}
→ &{s1 : αT,U}� T

c
∧U

(ALG-SKIP1)

T
c
∧U ` µβ.&{s1 : α; s2 : β}[T /α]

c
∧

µα.µβ.&{s1 : α; s3 : β}
→ &{s1 : αT,U}� T

c
∧U

(ALG-REC1)

∅ ` µα.µβ.&{s1 : α; s2 : β}
c
∧

µα.µβ.&{s1 : α; s3 : β}
→ µαT,U .&{s1 : αT,U}� ∅

Figure 7: Algorithmic meet at work

Example 3.28. We show how the algorithm computes the meet of T =
µα.µβ.&{s1 : α; s2 : β} and U = µα.µβ.&{s1 : α; s3 : β}. The intersec-
tion computed in Figure 7 is µ-equal to µαT,U .&{s1 : αT,U} with T1 and
U1, in Figure, resulting from the unfolding and . . . in Figure, indicating
any set of assumptions.

Notice that the given algorithm does not require backtracking (i.e.
it is syntax directed) and the set of inference rules reported in Figure 6
constitutes in fact a real algorithm (applied from the conclusion to the
premises). The algorithm is intended to input a triple Σ, T, U and re-
turn a pair V,

Σ

and if no rule conclusion matches the input triple the
algorithm fails returning an error. When the algorithm fails it means that
no intersection of two types exists, because Theorem 3.27 together with
Theorem 3.19 logically imply the soundness and the completeness of our
algorithm.

3.4 Types with free type variables

We now tackle the problem of computing the subtyping and the meet
relations in presence of types with free type variables. First of all we in-
troduce a new category of type variables ranged over β for sort type S
and we continue using α for a type variable relative to a session type.
The relative notion of free variables is defined as expected extended also
to all type variables β. However we need to be more precise and iden-
tify also those free variables appearing as argument of either an input

46



fcv(?(S1, . . . , Sn).T ) = fcv(T ) ∪
⋃n
i=1 fv(Si) fcv(?(U).T ) = fcv(T ) ∪ fv(U)

fcv(!(S1, . . . , Sn).T ) = fcv(T ) ∪
⋃n
i=1 fv(Si) fcv(!(U).T ) = fcv(T ) ∪ fv(U)

fcv(&{l1 : T1, . . . , ln : Tn}) =
⋃n
i=1 fcv(Ti)

fcv(⊕{l1 : T1, . . . , ln : Tn}) =
⋃n
i=1 fcv(Ti)

fcv(µα.T ) = fcv(T ) \ {α} fcv(α) = {α} fcv(β) = {β} fcv(end) = ∅

Figure 8: The set of free communicated variables

or an output action. We call these variables free communicated variables
written as fcv defined in Figure 8.

We anticipate that we will deal with type T such that fv(T ) = fcv(T )
e.g. !(α).!(β) represents a type that sends both an unknown session α and
an unknown value of type β and its free variables coincide with the free
communicated variables.

We use σ and ρ to range over substitutions with domain containing
both sort type variables and session type variables and with dom(σ) we
indicate the set of both type variables and sort variables in the domain of
σ, so for example σ1 = [end/α][int/β] is the substitution of αwith end and
of β with int and dom(σ) = {α, β}. The substitution application to a type
T is pointed with σT thus for example σ1!(β).α =!(int) holds. Often we
extend substitution application to a constraint and to set of constraints as
expected e.g. σ(T1 ≤ T2) corresponds to σT1 ≤ σT2 and σΣ is the point-
wise application of σ to each constraint in Σ. In the same way we indicate
the substitution composition with the juxtaposition of substitutions, for
example σρ is the composition of ρwith σ. Since we use juxtaposition for
both substitution composition and substitution application we fix that
composition has higher priority than application so for example σρT is
(σρ)T . Formally we can define composition of substitutions as:

Definition 3.29 (Composition of substitutions). Let σ =
[T1/α1 ] . . . [Tn/αn ][S1/β1 ] . . . [Sm/βm ] and
ρ = [T

′
1/α′1 ] . . . [T

′
n′/α′

n′
][S
′
1/β′1 ] . . . [S

′
m′/βm′ ] s.t. dom(σ) ∩ dom(ρ) =

∅. The composition of σ and ρ, σρ is the substitution
[ρT1/α1 ] . . . [ρTn/αn ][ρS1/β1 ] . . . [ρSn/βn ] ∪ ρ.

We employ the standard algorithm to find the most general unifier
(66) and we use the notation σT=U and σS1=S2 for the most general uni-
fier s.t. respectively σT = σU and σS1 = σS2. The idea is to rely on the
unification algorithm to solve a constraint with the set of free variables
equal to the set of free communicated variables. In order to do so we
modify the definition of ≤ in cases of session input/output as follows:
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(ASC-ASSUMP)
T ≤ U ∈ Σ

Σ ` T ≤ U I ∅

(ASC-END)
Σ ` end ≤ end I ∅

(ASC-VARL)
Σ ` α ≤ T I {α = T}

(ASC-VARR)
Σ ` T ≤ α I {T = α}

(ASC-RECL)
Σ, µα.T ≤ U ` T [µα.T /α] ≤ U I C

Σ ` µα.T ≤ U I C

(ASC-RECR)
Σ, T ≤ µα.U ` T ≤ U [µα.U/α] I C

Σ ` T ≤ µα.U I C

(ASC-IN)
Σ ` T ≤ U I C

Σ `?(S̃′).T ≤?(S̃′′).U I {S̃′ = S̃′′} ∪ C

(ASC-OUT)
Σ ` T ≤ U I C

Σ `!(S̃′).T ≤!(S̃′′).U I C ∪ {S̃′ = S̃′′}

(ASC-CATCH)
Σ ` T ≤ U I C

Σ `?(V ).T ≤?(V ′).U I {V = V ′} ∪ C

(ASC-THROW)
Σ ` T ≤ U I C

Σ `!(V ).T ≤!(V ′).U I C ∪ {V = V ′}

(ASC-SELECT)
|I| ≤ |J| ∀i ∈ I ∃j ∈ J ⇒ li = l′j , Σ ` Ti ≤ T ′j I Ci

Σ ` &{li : Ti}i∈I ≤ &{l′j : T ′j}j∈J I
⋃
i∈I Ci

(ASC-CHOICE)
|J| ≤ |I| ∀i ∈ I ∃j ∈ J ⇒ li = l′j , Σ ` Ti ≤ T ′j I Ci

Σ ` ⊕{lj : Tj}j∈J ≤ ⊕{l′i : T ′i}i∈I I
⋃
i∈I Ci

Figure 9: An algorithm to extract constraints for the syntactic unifier relative
to the subtyping relation

• if unfold(T ) = !(U).T ′ then unfold(V ) = !(U).V ′ and (T ′, V ′) ∈ R

• if unfold(T ) = ?(U).T ′ then unfold(V ) = ?(U).V ′ and (T ′, V ′) ∈ R

From now on we use≤ to indicate this new relation and with
c
∧ and

c
∧ =

the straightforward adaptation of meet relations to this new definition
of ≤. We think that removing the depth subtyping for sessions is not an
issue in fact we recover it in rules for session delegation (see Figure 33).

In figure 9 we report the algorithm Σ ` T ≤ U I C that extracts a set
of unification constraints C whose the most general unifier is a substitu-
tion that we are going to call the syntactic unifier relative to the subtyp-
ing relation. The algorithm is simple, it faithfully follows the subtyping
algorithm to collect a set of constraints. For example in rule (ASC-CATCH)

we allow V and V ′ to be different as long as there exists a unifier that
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solves V = V ′; in rules (ASC-OUT) and (ASC-IN) we shorten the pointwise
equality with S̃ = S̃′.

As the next proposition shows the syntactic unifier computed by the
algorithm is in fact the most general unifier of T ≤ U if the free variables
of both T and U coincide with the free communicated variables (indi-
cated with fv(T1 ≤ T2) = fcv(T1 ≤ T2)). Moreover we prove that if the
free variables that are not also free communicated variables have unique
occurrence then the syntactic unifier exists if and only if there exists a
substitution ρ that satisfies the constraint. This second part of the propo-
sition will be used to check the satisfiability of constraints generated by
the session delegation which satisfy the hypothesis of linear occurrence
of type variables.

Proposition 3.30. Let T1 ≤ T2 a constraint and Σ ` T1 ≤ T2 I C. If σ is the
most general unifier of C then for any ρ = σσ′ we have ρΣ ` ρT1 ≤ ρT2. Vice
versa

1. if fv(T1 ≤ T2) = fcv(T1 ≤ T2) and ρΣ ` ρT1 ≤ ρT2 then there exists σ
as the mgu of C and ρ = σσ′ for some σ′.

2. if each occurrence of a free variable in the set fv(T1 ≤ T2) \ fcv(T1 ≤ T2)
is unique in T1 ≤ T2 and ρΣ ` ρT1 ≤ ρT2 then there exist σ as the
mgu of C and ρ∗ s.t. ρ∗Σ ` ρ∗T1 ≤ ρ∗T2 and ρ∗ = σσ∗ for some σ∗ and
dom(ρ) = dom(ρ∗) and for all α ∈ dom(ρ) if α ∈ fcv(T1 ≤ T2) then
ρ(α) = ρ∗(α).

Proof. ⇒) The proof is by induction on the derivation of Σ ` T1 ≤ T2 I C
with case analysis on the last applied rule. In the base cases we have:

• (ASC-ASSUMP) and
(ASC-ASSUMP)
T ≤ U ∈ Σ

Σ ` T ≤ U I ∅
and

(AS-ASSUMP)
ρT ≤ ρU ∈ ρΣ
ρΣ ` ρT ≤ ρU

for any ρ.

• (ASC-VARL) and (ASC-VARL)
Σ ` α ≤ T I {α = T} and the mgu is the substitution

σ = [T /α] and (AS-VARL)
(σρ)Σ ` (σρ)α ≤ (σρ)T by reflexivity for any ρ. Notice

that it cannot be the case that α is in the syntax tree of T otherwise
the mgu is not defined.

• (ASC-VARR) similar to the previous case and (ASC-END) is trivial.

In the inductive cases we have:
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• (ASC-CATCH) and
(ASC-CATCH)

Σ ` T ≤ U I C
Σ `?(V ).T ≤?(V ′).U I {V = V ′} ∪ C

and σ is the mgu

of {V = V ′} ∪ C. Let ρ = σσ′ (for some σ′). Since σ solves {V =
V ′} ∪ C we have that ρ solves C and ρV = ρV ′. If we let σ1 be the
mgu of C then ρ = σ1σ

′′. By inductive hypothesis ρΣ ` ρT ≤ ρU
(because Σ ` T ≤ U I C and σ1 is the mgu of C and ρ = σ1σ

′′)
hence ρΣ ` ρ?(V ).T ≤ ρ?(V ′).U by applying rule (AS-CATCH).

• (ASC-SELECT) and
(ASC-SELECT)
|I| ≤ |J| ∀i ∈ I ∃j ∈ J ⇒ li = l′j , Σ ` Ti ≤ T ′j I Ci

Σ ` &{li : Ti}i∈I ≤ &{l′j : T ′j}j∈J I
⋃
i∈I Ci

and σ

is the mgu of
⋃
i∈I Ci. Since σ solves

⋃
i∈I Ci we have for all i, σ

solves Ci. Let ρ = σσ′ for some σ′. Then, ∀i also ρ solves Ci. If we
let σ1i be the mgu of Ci then ρ = σ1iσ

′′
i for all i ∈ I . By inductive

hypothesis ρΣ ` ρTi ≤ ρT ′j hence ρΣ ` ρ&{li : Ti}i∈I ≤ ρ&{l′j :
T ′j}j∈J by applying rule (AS-SELECT).

• the remaining case are either similar or follows directly by induc-
tion.

⇐ Sub-Case 1) Follows directly from the Sub-Case 2 since by hypothesis
fv(T1 ≤ T2) \ fcv(T1 ≤ T2) = ∅ implies ρ̇∗ = ρ̇.
⇐ Sub-Case 2) The proof is by induction on the derivation of ρΣ ` ρT1 ≤
ρT2 with case analysis on the last applied rule. In both rules (AS-ASSUMP)

and (AS-END) the empty substitution holds for the mgu of the empty set.
In the inductive cases we have:

• every rule which has a premise of the form ρα ≤ ρT or of the form
ρT ≤ ρα. We discuss the first case the other is similar. We have ρΣ `
ρα ≤ ρT and ρ = [T

′
/α]ρ′ for some T ′, ρ′ and the rule (ASC-VARL) is

applied, then we take the substitution ρ∗ = [T /α]ρ′ to conclude
since [T /α] is the mgu of {α = T}.

• (AS-CATCH) and
(AS-CATCH)

ρΣ ` ρT ≤ ρU
ρΣ ` ρ?(V ).T ≤ ρ?(V ′).U

and by induction Σ ` T ≤

U I C and ρ∗ = σ′σ′∗ for some σ′∗ and σ′ is the mgu of C. Now
since ρV = ρV ′ and since by hypothesis the variables in V and V ′

belong to set of free communicated variables then the information
about the substitution are already those contained in σ′∗ thus we
can specialize the mgu taking a different composition ρ∗ = σσ∗ to
conclude.
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• (AS-SELECT) and
(AS-SELECT)
|I| ≤ |J| ∀i ∈ I ∃j ∈ J ⇒ li = l′j , ρΣ ` ρTi ≤ ρT

′
j

ρΣ ` ρ&{li : Ti}i∈I ≤ ρ&{l′j : T ′j}j∈J
and by

induction Σ ` &{li : Ti}i∈I ≤ &{l′j : T ′j}j∈J I Ci and ρ∗i = σiσ∗
for some σ∗ and σi is the mgu of Ci and i ∈ I . By hypothesis ρ
may differ from each ρ∗i in the value assigned to the free variables
that are not free communicated variables and since each of these
variables has an unique occurrence we can built the resulting ρ∗
taking the substitution for the free variables from the respective
branch they belong to.

In the same manner we define an algorithm Σ ` T
c
∧U I C reported in

Figure 10 that extracts a set of unification constraints in order to find the

syntactic unifier of a constraint of the form T
c
∧U . The following proposi-

tion shows the property of this unifier.

Proposition 3.31. Let T1, T2 two types from a constraint and Σ ` T1

c
∧T2 I

C. If σ is the most general unifier of C then for any ρ = σσ′ we have ρΣ `
ρT1

c
∧ρT2. Vice versa

1. if fv(T1

c
∧T2) = fcv(T1

c
∧T2) and ρΣ ` ρT1

c
∧ρT2 then there exists σ as the

mgu of C and ρ = σσ′ for some σ′.

2. if each occurrence of a free variable in the set fv(T1

c
∧T2) \ fcv(T1

c
∧T2)

is unique in T1

c
∧T2 and ρΣ ` ρT1

c
∧ρT2 then there exist σ as the mgu

of C and ρ∗ s.t. ρ∗Σ ` ρ∗T1 ≤ ρ∗T2 and ρ∗ = σσ∗ for some σ∗ and
dom(ρ) = dom(ρ∗) and for all α ∈ dom(ρ) if α ∈ fcv(T1

c
∧T2) then

ρ(α) = ρ∗(α).

Proof. The proof is almost similar to the previous one.

From now on when ∅ ` T1 ≤ T2 I C we write σT1≤T2 for the most

general unifier σ, if it exists, of C and when ∅ ` T1

c
∧T2 I C we write

σ
T1

c
∧T2

for the most general unifier σ, if it exists, of C.

3.4.1 Beyond syntactic unifiers

In the previous section we have introduced syntactic unifiers for both
the subtyping algorithm and the meet exists relation and we have proved
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(A2C-END)

Σ ` end
c
∧end I ∅

(A2C-ASSUMP)

Σ, T
c
∧U ` T

c
∧U I ∅

(A2C-VARR)

Σ ` T
c
∧α I {T = α}

(A2C-VARL)

Σ ` α
c
∧T I {α = T}

(A2C-THROW)

Σ ` T
c
∧U I C

Σ `!(V ).T
c
∧!(V ′).U I {V = V ′} ∪ C

(A2C-OUT)

Σ ` T
c
∧U I C

Σ `!(S̃′).T
c
∧!(S̃′′).U I {S̃′ = S̃′′} ∪ C

(A2C-CATCH)

Σ ` T
c
∧U I C

Σ `?(V ).T
c
∧?(V ′).U I {V = V ′} ∪ C

(A2C-IN)

Σ ` T
c
∧U I C

Σ `?(S̃′).T
c
∧?(S̃′′).U I {S̃′ = S̃′′} ∪ C

(A2C-SELECT)

K = {(i, j) | li = l′j} |K| ≥ 1 ∀(i, j) ∈ K.(Σ ` Ti
c
∧T ′j I C(i,j))

Σ ` &{li : Ti}i∈I
c
∧&{l′j : T ′j}j∈J I

⋃
(i,j)∈K C(i,j)

(A2C-CHOICE)

K = {(i, j) | li = l′j} ∀(i, j) ∈ K.(Σ ` Ti
c
∧T ′j I C(i,j))

Σ ` ⊕{li : Ti}i∈I
c
∧ ⊕ {l′j : T ′j}j∈J I

⋃
(i,j)∈K C(i,j)

(A2C-REC1)

Σ, µα.T
c
∧U ` T [µα.T /α]

c
∧U I C

Σ ` µα.T
c
∧U I C

(A2C-REC2)

Σ, T
c
∧µα.U ` T

c
∧U [µα.U/α] = V I C

Σ ` T
c
∧µα.U I C

Figure 10: An algorithm to extract constraints for the syntactic unifier rela-
tive to the meet exists relation

some useful properties in particular that in presence of types where free
variables coincide with free communicated variables, syntactic unifiers
are able to discover the most general substitution that satisfies the con-
sidered relation. Solving the problem in general when types present free
variables is not easy. Here we discuss an algorithm to discover a substi-
tution for a set of meet exists constraints which is important since also
solving a subtyping constraint involves discovering a substitution for a
set of meet exists constraints.

First of all consider the algorithm in Figure 10 with these rules:

(A2C-VARR)

Σ ` T
c
∧α II {T

c
∧α}

(A2C-VARL)

Σ ` α
c
∧T II {α

c
∧T}
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localsolve(C)

1. given C of the form T = T1, C′ (resp. S = S1, C′) then
σ=localsolve(σT=T1C′) (resp. localsolve(σS=S1C′)) and return
σT=T1σ (resp. σS=S1σ)

2. given C of the form α
c
∧T, C′ (resp. U

c
∧α, C′) then

σ=localsolve([T /α]C′) (resp. localsolve([U/α]C′)) and return
[T /α]σ (resp. [U/α]σ)

3. given C of the form T
c
∧U, C′ with T 6= α and U 6= α compute

∅ ` T
c
∧U II C′′ then return localsolve(C′ ∪ C′′).

4. if C = ∅ return the empty substitution.

Figure 11: localsolve algorithm

It is obvious that a solution to the set of constraints generated byII holds
if and only if the substitution satisfies the considered relation.

Lemma 3.32. Let Σ ` T1

c
∧T2 II C. σ � C iff σΣ ` σT1

c
∧σT2.

Proof. By straightforward induction on either the derivation of Σ ` T1 ≤
T2 II C or the derivation of σΣ ` σT1 ≤ σT2.

However we want to solve a set of such constraints and now we give,
in Figure 11, an algorithm that discovers and returns a solving substitu-
tion. For ease of notation in the algorithm we use C, C′ as an abbreviation
of C ∪ C′ and when either C or C′ is given specifying the list of elements
we omit the usual usage of curly brackets. In line 1 the algorithm solves
the unification constraints using the most general unifier for both sort
types S and session types T . In line 2 we approximate α with T (resp.
U ) exploiting the symmetry of the meet. In the penultimate line we gen-
erate the set of constraints for the meet of T and U . Obviously we lost
the completeness of the algorithm in line 2 but this algorithm is enough
under the assumption of unique occurrence of type variables (see Propo-
sition 5.30). We now prove the soundness of the algorithm, we use the
notation σ � C to mean that σC holds. This notation comes together with
this useful lemma, it allows to switch substitutions from the right to � to
its left.
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Lemma 3.33 (Switching Lemma). Let σ, σ′ two substitutions s.t. dom(σ) ∩
dom(σ′) = ∅. σ � σ′C iff σ′σ � C.

Proof. The proof follows directly by the definition of substitution com-
position and the definition of σ � C.

The function var(C) returns the set of both sort and session type vari-
ables in C. The condition on the domain of σ says that we want a minimal
substitution w.r.t. to the free variables in the set of constraints, moreover
this allows the application of Lemma 3.33.

Lemma 3.34 (localsolve soundness). If σ=localsolve(C) then σ � C and
dom(σ) ⊆ var(C).

Proof. We first define a measure of termination for localsolve then we use
it to induct on the recursive structure of the algorithm. The well founded
order we are going to define is C < C′ if C has less constraints of the

form T
c
∧U where T and U are different from a type variables or if such

constraints are equal in both C and C′ then C has less constraints of the

form T
c
∧U where either T or U is a type variable otherwise if the equality

holds for the previous conditions then |C| < |C′|. We now proceed to
prove lemma by induction on σ=localsolve(C) by case analysis on the last
applied line. In the base case line 4 is applied and the empty substitution
solves the empty set of constraints. In the inductive case when the last
applied line is:

• line 1 and σ =localsolve(σT=T1C′) implies by induction σ �
σT=T1C′ and dom(σ) ⊆ var(σT=T1C′). By definition σ � σT=T1(C′ ∪
{T = T1}) and by Lemma 3.33 (since dom(σ) ∩ dom(σT=T1) = ∅)
σT=T1σ � C′ ∪ {T = T1}which concludes. The case where an unifi-
cation constraint of the form S = S1 is solved is similar.

• line 2 and σ =localsolve([T /α]C′) implies by induction σ � [T /α]C′.
Since the intersection is idempotent it is the case that [T /α]σ(T

c
∧α).

We can conclude since [T /α]σ � C′ ∪ {T
c
∧α}.

• line 3 and σ=localsolve(C′ ∪ C′′) and C′′ s.t. ∅ ` T
c
∧U II C′′ and by

induction σ � C′ ∪ C′′. By Lemma 3.32, σ � T
c
∧U holds and we can

conclude with σ � C′ ∪ C′′ ∪ {T
c
∧U}.
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Let us now make some examples, in particular the first one shows
how to solve a subtyping constraint by means of localsolve.

Example 3.35. We want to check if there exists some substitution that
satisfies the following inequality.

⊕{l1 : α, l2 : α, l3 : α, l4 : α1}
≤

⊕{l1 : ⊕{ll1 : α2, ll2 : α3}, l2 : ⊕{ll1 : α3, ll3 : α4}, l4 : end}

It is simple to extract a set of constraints from a subtype constraint (with
a similar algorithm toII), as we done in the following, in order to exploit
localsolve.

α ≤ ⊕{ll1 : α2, ll2 : α3} α ≤ ⊕{ll1 : α3, ll3 : α4} α1 ≤ end
α ≤ ⊕{ll1 : α2, ll2 : α3} α ≤ ⊕{ll1 : α3, ll3 : α4}
localsolve(⊕{ll1 : α2, ll2 : α3}

c
∧ ⊕ {ll1 : α3, ll3 : α4)

α2

c
∧α3

success

In the first line we safely remove α1 ≤ end since it does not appear else-
where, in the second line we remain with two constraints relative to α
then we use localsolve, to check the existence of the intersection.

Example 3.36. Consider someone give us this specification of α without
specifying something else. We want to check locally if there exists some-
one that is able to behave dually.

α ≤ ⊕{l1 : α1, l2 : α1, l3 : α1, l4 : α2}

α ≤ ⊕{ l1 : ⊕{ll1 : &{lll1 : α1}, ll2 : α4},
l2 : ⊕{ll1 : &{lll2 : α1}, ll2 : α2}, l4 : end }

We proceed using ∅ ` T1

c
∧T2 II C (where T1 and T2 are the two types at

the right of α) to extract the set of constraints and then localsolve to solve
it.

2
α2

c
∧end α1

c
∧ ⊕ {ll1 : &{lll1 : α1}, ll2 : α4}

α1

c
∧ ⊕ {ll1 : &{lll2 : α1}, ll2 : α2}

2 α1

c
∧ ⊕ {ll1 : &{lll1 : α1}, ll2 : α4} α1

c
∧ ⊕ {ll1 : &{lll2 : α1}, ll2 : end}

3 ⊕{ll1 : &{lll1 : α1}, ll2 : α4}
c
∧

⊕{ll1 : &{lll2 : ⊕{ll1 : &{lll2 : α1}, ll2 : end}}, ll2 : end}

which fails in the last step.
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In spite of the localsolve failure in the previous example the two
constraints are satisfiable. Consider for example the substitution of α1

with ⊕{ll3 : end}, α2 and α4 both with end and consequently α with
⊕{l1 : ⊕{ll3 : end}, l2 : ⊕{ll3 : end}, l3 : ⊕{ll3 : end}, l4 : end}.
The problem is in the line 2 of localsolve which approximates the be-

havior of α in α
c
∧T with T itself. We have been smarter than the

algorithm, choosing the right substitution with a fresh label ll3 that
does not lead to a contradiction (the fact that does not exist the in-
tersection of &{lll1 : α1} and &{lll2 : α1}). What we are going to
do now is to refine line 2 of localsolve to achieve the completeness.

2a given C of the form α
c
∧T, C′ then:

1 if unfold(T ) =?(S̃).T ′ (resp. ?(V ).T )
then σ=localsolve([?(S̃).α′/α]C) (resp.
σ=localsolve([?(V ).α′/α]C) with α′ fresh and return
[?(S̃).α′/α]σ (resp. [?(V ).α′/α]σ)

2 if unfold(T ) =!(S̃).T ′ (resp. !(V ).T ) then
σ=localsolve([!(S̃).α′/α]C) (resp. localsolve([!(V ).α′/α]C))
with α′ fresh and return [!(S̃).α′/α]σ (resp. [!(V ).α′/α]σ)

3 if unfold(T ) = ⊕{li : Ti}i∈I then generate a new
fresh label l and σ=localsolve([⊕{l:end}/α]C′) and return
[⊕{l:end}/α]σ

4 if unfold(T ) = &{li : Ti}i∈I then select a label lj try
σ=localsolve([&{lj :Tj}/α]C}) if it fails select another label
and retry until either all labels are chosen or the call suc-
ceeds and return [&{lj :Tj}/α]σ.

5 if unfold(T ) = α′ or unfold(T ) = end then
σ=localsolve([T /α]C}) and return [T /α]σ

2b given C of the form U
c
∧α, C′ we proceed in a similar manner

as before.

The idea behind this refinement lays on the fact that we specialize each
time one operator without instantiating too much in such a manner to
lose the completeness. Lines for input/output prefixes (lines 2a-1, 2b-1

56



and 2a-2,2b-2) instantiate α with the same prefix and a fresh variable in
the continuation. Lines relative to the external choice (2a-3,2b-3) creates
a new fresh branch in such a manner to not interfere with the already
available labels. Internal choice requires care, according to rule (A2-SELECT)

(since |K| ≥ 1) the instantiated choice must have at the least one com-
mon branch with the other choice then we backtrack until a compatible
branch is found. Even if we do not formally prove the following claim it
should hold.

Claim. σ=localsolve(C) iff there exists ρ and ρ � C.

Let us now show some examples of how the algorithm works.

Example 3.37. Take again the constraints from example 3.36 we have:

2a− 5
α2

c
∧end α1

c
∧ ⊕ {ll1 : &{lll1 : α1}, ll2 : α4}

α1

c
∧ ⊕ {ll1 : &{lll2 : α1}, ll2 : α2}

2a− 3
α1

c
∧ ⊕ {ll1 : &{lll1 : α1}, ll2 : α4}

α1

c
∧ ⊕ {ll1 : &{lll2 : α1}, ll2 : end}

3 ⊕{ll3 : end}
c
∧ ⊕ {ll1 : &{lll2 : ⊕{ll3 : end}}, ll2 : end}

4 success

Example 3.38. Consider we have a set of meet constraints and we want
to check if there exists some substitution that satisfies them all together,
we can run localsolve directly on the set of constraints. For instance takes
the constraints in the first line we have:

α
c
∧&{l :!(int), l1 : end} α

c
∧&{l :?(int), l2 : end} α

c
∧α1

? α1

c
∧&{l :!(int), l1 : end} α1

c
∧&{l :?(int), l2 : end}

&{l : α2}
c
∧&{l :!(int), l1 : end} &{l : α2}

c
∧&{l :?(int), l2 : end}

α2

c
∧!(int) &{l : α2}

c
∧&{l :?(int), l2 : end}

&{l :!(int)}
c
∧&{l :?(int), l2 : end}

? α1

c
∧&{l :!(int), l1 : end} α1

c
∧&{l :?(int), l2 : end}

&{l1 : α3}
c
∧&{l :!(int), l1 : end} &{l1 : α3}

c
∧&{l :?(int), l2 : end}

In particular in the starred lines we backtrack trying to find the correct
branch and it turns out that the function fails after trying both branches
l and l1.
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3.5 Concluding remarks on the session types
framework

In this chapter we have studied the subtyping preorder introduced
by Gay and Hole in (33). Taking the definition as originally proposed
we have introduced the greatest lower bound of two types. We also
have proposed a co-inductive characterization of the meet and we have
proved that these two characterizations are equivalent. However, the co-
inductive relation is useful to prove properties of the intersection for in-
stance we proved that if there exists a lower bound between two types

then there exists the greatest lower bound too. The meet exist relation
c
∧

instead, contains all pairs such that the greatest lower bound exists.
Next we have tackled the problem of algorithmically compute the in-

tersection. The co-inductive definition of these two relations gives a hint
on how to locally compute the meet but it does not exhibit the representa-
tion as a finite regular session type. A further step is that for co-inductive
relations the membership checking algorithms based on set of assump-
tions, is standard (2; 31; 50). The existence of these algorithms says that
if the meet is finite then we have a way of checking its appropriateness.
These algorithms proceed by exploring all the possible combinations of
sub-elements among the input elements until an already explored com-
bination is found and this is exactly the behavior of the meet. Our algo-

rithm ∅ ` T
c
∧U → V � ∅ is built on this key observation. To prove its

soundness we have showed that the relation
c
∧ = is able to simulate

all the input triples in the algorithm. Vice versa the algorithm is capable
to exhibit a result for each pair of type that has the greatest lower bound.
The soundness result follows from the uniqueness, up to ≶, of the great-
est lower bound.

We have concluded this chapter studying both the subtyping relation
and the meet exist relation among types with free variables. We have two
kinds of type variables, one kind for sort types and another one for ses-
sion types respectively. What we want to do is to compute (if it exists) a
substitution for the variables of each type such that the substituted types
satisfies the considered relation. Since we are interested to the most gen-
eral such substitution we modify both the subtyping relation and the
meet relation to not allow the exploration in depth, that is we require the
syntactic equality of sent/receviced sessions. Thanks to this mild mod-
ification (since we recover the depth session subtyping modifying the
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typing rules for session delegation) we compute the syntactic unifier re-
sulting as the solution of a set of unification constraints obtained miming
the algorithmic behavior of each relation. As expected when given types
such that free variables appear only in the communicated types, the syn-
tactic unifier is in fact the most general unifier. Next, we have focused
our attention to solve the problem of finding the existence of a substitu-
tion in the general case where types contain also free variables. We have
proved that if each occurrence of a free variable is unique the syntactic
unifier exists if and only if there exists a substitution that satisfies the
considered constraint. In alternative we have proposed the localsolve al-
gorithm which inputs a set of meet exists constraints and returns a solv-
ing substitution. Solving the meet exists constraints is an important fact
since also a subtyping constraint can be reduced to a set of meet exists
constraint. We have proposed a first version of localsolve which is only
correct and a refined one. For this refined version we conjecture that it
succeeds if and only if there exists a solving substitution, unfortunately
proving it is an issue due also to the backtracking behaviors in the rule
for external choice. In fact the algorithm in presence of an external choice
tries a branch per time until either the a recursive call succeeds or it fails
since all branches are explored.
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Chapter 4

CaSPiS for Session Types

4.1 Introduction

In this chapter we introduce a simple language to handle sessions.
This language is somewhat a more disciplinated version of the full cal-
culus introduced next, but since it allows reasoning only on two sessions
per time, the proofs and the statements of the various theorems are cer-
tainly much immediate. The core language is inspired to CaSPiS (8; 9)
but it is extended with constructs for intra-session communications and
at the same time it is limited removing pattern matching. One can think
of this language as a typed variant of CaSPiS with session types, which
we call CaSPiS for Session Types or CST for short. As in the original
proposal in CST communications are intended within the current session
and within the parent session. For this reason communication primitives
are not annotated with the session subject since this subject is implicit
from the syntactic context. The resulting type system, instead of being
endowed with the linear environment ∆, has a couple of types (with-
out session subject) relative to the current and to the parent session, that
is, besides standard type environments, type judgments for processes P
have the form P : T ;U .

When we started working with these judgments we noticed that the
entire framework is suitable to explore some naive intuitions about recur-
sive processes. For example given that the process P is typed as P : T ;U
is it true that rec X.P ′ where P ′ is obtained from P by replacing trail-
ing 0 with X is typed as P : µα.T ′;µα.U ′ where T ′ and U ′ are obtained
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from T and U respectively by replacing the trailing occurrences of end
with α? We start introducing a standard non syntax directed type system
and then we build a set based type system that infers recursive behav-
iors based on the intuition above. We found that this basic intuition re-
quires a lot of mathematical efforts to prove its validity. For instance we
prove that if T ≤ U then it holds that infinite sequences of T (obtained by
means of the µ operator) are in subtyping relation with infinite sequences
of U . In addition, the set based type system uses sets to record the type
of multiple branches in a process, for example the type of an if-then-else
is the set resulting from the union of two branches.

We prove that the syntax directed type system is correct with respect
to the non syntax directed version, that is it produces valid judgments
and then we propose an algorithm to extract constraints and another al-
gorithm to solve these constraints. In few words we partition the non-
determinism of the initial type system into two blocks: a syntax directed
type system from which we generate some constraints and an algorithm
to solve these constraints. As we shall see, using sets for multiplexing
types of branches and inferring on the fly recursive behaviors, we push
all efforts towards the type system. The resulting constraint solver algo-
rithm is very simple and elegant. Such algorithm has a complexity that is
quadratic with respect to the set of constraints and the set of constraints
have as many elements as the number of service invocations and service
declarations in the input process. Unfortunately, this naive type system is
not complete with respect to the original type system. At the end we pro-
pose another syntax directed type system which is also complete. This
time the effort is split among the two blocks but the algorithm of con-
straint resolution has an exponential growth as well as an increment of
the number of generated constraints.

Background. CaSPiS was proposed in (9) built on the proposal of SCC
(8). We built CST on the top of CaSPiS adding the communication con-
structs as proposed in (37) (see Section 6.2.1 for a brief introduction to
CaSPiS). We also give the operational semantics by means of reductions
much closer to (8). The idea of typing judgments with two components
was first proposed in (51), but typing rules does not support session
types (only sequence of input/output) nor they allow to check the lin-
earity of sessions. All remaining contents are introduced here.
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P,Q ::= 0 (nil)
| v.P (service definition)
| rp . P (session)
| v.Q (invocation)
| if v = w then P else Q (if-then-else)
| (x̃).P (tuple input)
| 〈ṽ〉.P (value output)
| Σni=1(li).Pi (label guarded sum)
| 〈l〉.P (label choice)
| return ṽ.P (value return)
| P |Q (parallel)
| (νm)P (restriction)
| rec X.P (recursion)
| P > x̃ > Q (pipeline)
| X (process variable)

v, w ::= x (variable)
| a (service)
| . . . ,−1, 0, 1, . . . (integers)

Figure 12: Syntax of our service calculus

4.2 Syntax and operational semantics

We assume an infinite collection r, s . . . of session names, an infi-
nite collection a, . . . of service names, an infinite collection of variables
x, y, . . ., an infinite collection of process variables X,Y, . . . and an infinite
collection l, . . . of labels. Additionally we usem,n to range over both ser-
vice and session names. We let ·̃ denote tuples and | · | their cardinality.
The syntax of processes P,Q, . . . is defined in Figure 12, where values
v, w, . . . are either variables, services or integers. For practical reason we
assume every variables appearing in a tuple x̃ is different from each other
so the variables-tuple for values-tuple substitution [v1,...,vn/x1,...,xn ] stays
for the sequence of substitutions [v1/x1 ] . . . [vn/xn ].

As usual 0 is the nil process (whose trailing is often omitted), paral-
lel composition is denoted by P |Q, restriction by (νm)P and recursion
by rec X.P . The construct rp . P indicates a generic session side with
polarity p ∈ {+,−}. We use p, q as meta variables to range over session
polarities and p is the dual polarity of p, i.e.; + = − and − = +. A fresh
session name r and two polarized session ends r− . P and r+ . Q are
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generated (on client and service sides, respectively) upon each service
invocation a.P of the service a.Q.

Then, polyadic I/O communications in P and Q are uniquely di-
rected toward the dual side labeled with the same name r but with dual
polarity. Communication primitives inside each session are standard for
session typed calculi: input/output (i.e. abstractions (x̃) and concretions
〈ṽ〉 prefixes) and internal/external choices (i.e. a way for expressing a
choice 〈l〉.P on one side among a set of available options Σi(li).Qi at the
other side). Sessions can be arbitrarily nested (e.g., in a1.(P |a2.Q) the ses-
sion established with a2 will run inside the session established with a1)
and the return primitive outputs a value to (the partner of) the parent
session. Finally P > x̃ > Q allows to output a tuple, bound in x̃, directly
to a new instance of Q, that is each time P outputs a value then a new
copy of Q is spawned to receive the value.

In few words the calculus allows all the standard in-session com-
munication constructs towards dual sessions and allows only outputs
towards the parent and the current sessions with return ṽ .P and
P > x̃ > Q respectively.

Priority of the operators in order of increasing relevance is: | , pipe,
. and ν, so for example rp . P |Q means (rp . P )|Q and (νr)P |Q means
((νr)P )|Q. Binders of the calculus are (x̃).P for x̃ in P , P > x̃ > Q for
x̃ in Q and (νm)P for m in P , and rec X.P for X in P , with standard
notions of free names (fn defined in Figure 13) and bound names (bn)
of a process, bound (bpv) and free process variables (fpv) defined in Fig-
ure 14 and closed processes (when fpv(P ) = ∅). Processes are considered
equivalent up to alpha renaming of bound names and bound processes
variables. Sometimes, especially in proofs, we need to be more specific
about session names with polarity, in which case we define the set of
free polarized names (fpn(P )) in Figure 13 which is the set of (only) ses-
sion names with polarity information of P . Notice that r /∈ fn(P ) implies
{r+, r−} ∩ fpn(P ) = ∅.

The structural congruence relation≡ reported in Figure 15 is the stan-
dard π-calculus structural congruence, with additional axioms for the
floating of restrictions w.r.t. session side and pipe constructs. As com-
mon when dealing with concurrency the structural congruence is used to
couple redexes so the reduction rules are given specifying redexes, with-
out caring about the other processes in parallel. The presence of nesting,
however requires a little care since the reduction can happen at different
level of sessions nesting. For example in r+ . r−1 . 〈5〉.P | r+

1 . ((r−2 .
Q1) | (x).Q2) we have an enabled communication (a delivery of a mes-
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fn(0) = ∅
fn(v.P ) = fn(v) ∪ fn(P )
fn(rp . P ) = {r} ∪ fn(P )
fn(v.P ) = fn(v) ∪ fn(P )

fn( if v = w
then P
else Q)

=
fn(v) ∪ fn(w)
∪fn(P )
∪fn(Q)

fn((x̃).P ) = fn(P ) \ {x̃}
fn(〈ṽ〉.P ) = fn(P ) ∪ fn(ṽ)
fn(Σni=1(li).Pi) =

⋃n
i=1 fn(Pi)

fn(〈l〉.P ) = fn(P )
fn(return ṽ.P ) = fn(P ) ∪ fn(ṽ)
fn(P |Q) = fn(P ) ∪ fn(Q)

fn((νm)P ) = fn(P ) \ {m}
fn(rec X.P ) = fn(P )

fn(P > x̃ > Q) =
fn(P )∪

(fn(Q) \ {x̃})
fn(X) = ∅
fn(a) = {a}
fn(x) = {x}
fn(.., 0, 1, ..) = ∅

fpn(rp . P ) = {rp} ∪ fpn(P )

fpn((νr)P ) =
fpn(P )\
{r+, r−}

fpn((νa)P ) = fpn(P )
fpn(P ) = . . .

Figure 13: Definition of free names and free polarized names

sage by standard message passing) of value 5 to process Q2, however
both the sender and the receiver are inside specific sessions.

We present the operational semantics of the calculus by means of re-
duction contexts. We have four different types of contexts generated from
respective grammars. The one-hole context C[[·]] is useful to insert a pro-
cess P , the result being denoted C[[P ]] (process P replaces the hole inside
C), into an arbitrary nesting of sessions together with arbitrary processes
in parallel. The one-hole context Crp allows inserting a process into the
session rp running in parallel with an arbitrary process. Contexts D and
Dr are the two-holes counterparts of the previous contexts. These con-
texts are a subclass of syntactic contexts, for instance in each context,
neither binders nor service invocation/definition cannot appear above
the hole since they are not enabled for immediate reductions. The opera-
tional semantics is reported below.
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fpv(0) = ∅
fpv(v.P ) = fpv(P )
fpv(rp.) = fpv(P )
fpv(v.P ) = fpv(P )

fpv( if v = w
then P
else Q)

=
fpv(P )∪
fpv(Q)

fpv((x̃).P ) = fpv(P )
fpv(〈ṽ〉.P ) = fpv(P )

fpv(Σni=1(li).Pi) =
⋃n
i=1 fpv(Pi)

fpv(〈l〉.P ) = fn(P )
fpv(return ṽ.P ) = fpv(P )
fpv(P |Q) = fpv(P ) ∪ fpv(Q)
fpv((νm)P ) = fpv(P )
fpv(rec X.P ) = fpv(P ) \ {X}
fpv(P > x̃ > Q) = fpv(P ) ∪ (fpv(Q)
fpv(X) = {X}

Figure 14: Definition of free process variables

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)
(νm)P |Q ≡ (νm)(P |Q) if m /∈ fn(Q)
(νm)0 ≡ 0 (νm)P > x̃ > Q ≡ (νm)(P > x̃ > Q) if m /∈ fn(Q){x̃}
(νm)(νn)P ≡ (νn)(νm)Q rp . (νm)P ≡ (νm)rp . P if m 6= r

Figure 15: Structural congruence

(INV) D[[a.P, a.Q]] → (νr)D[[r− . P, r+ . Q]] (r /∈ fn(D[[a.P, a.Q]]))

(COM) Dr[[(x̃).P, 〈ṽ〉.Q]] → Dr[[P [ṽ/x̃], Q]] (|x̃| = |ṽ|)
(LCOM) Dr[[Σni=1(li).Pi, 〈lk〉.Q]] → Dr[[Pk, Q]] (1 ≤ k ≤ n)

(RET) Dr1 [[(x̃).P,Crq [[return ṽ.Q]]]] → Dr1 [[P [ṽ/x̃],Crq [[Q]]]]

(PIPE) C[[(〈ṽ〉.P |P ′) > x̃ > Q]] → C[[(P |P ′) > x̃ > Q | Q[ṽ/x̃]]] (|x̃| = |ṽ|)

(PIPERET) C[[(Crp [[return ṽ.P ]]|P ′) > x̃ > Q]] → C[[(Crp [[P ]]|P ′) >
x̃ > Q | Q[ṽ/x̃]]]

(|x̃| = |ṽ|)

(IFT) C[[if v = v then P else Q]]→ C[[P ]]
(IFF) C[[if v = w then P else Q]]→ C[[Q]] (v 6= w)

(REC) C[[P [rec X.P /X ]]]→ P ′ ⇒ C[[rec X.P ]]→ P ′

(SCOP) P → P ′ ⇒ (νm)P → (νm)P ′

(STR) P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q⇒ P → Q

C ::= [[·]] | C|P | rp . C | C > x̃ > P Crp ::= rp . ([[·]]|P )
D ::= C[[C′ | C′′]] Dr ::= D[[C′rp ,C

′′
rp

]]

Rule (INV) defines how the invocation of a service creates a new ses-
sion r that puts in direct communication an instance of the service pro-
tocol Q with the client body P . Notice how the definition of a service is
consumed once it is used. Rules (COM) and (LCOM) show respectively how
a tuple is transmitted (by means of message passing) between the two
sides of a session and how the dual partner can select one of the options
offered by the other. As usual P [ṽ/x̃] is the simultaneous substitution of
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each variable x̃ with values ṽ in P if |x̃| = |ṽ|. Rule (RET) illustrates how
a nested session rq can output a value upward to the parent session rp1 ,
which is read by (x̃).P in rp1 . Rules (PIPE) and (PIPERET) describe how pipe
works: the former allows the direct delivery (by means of an output) of
ṽ to Q while the latter manages the delivery of a value ṽ from a nested
session (by means of a return) to Q. In both cases a new instance of Q
is spawned and the pipe rests waiting another value. Notice how we
used the same output primitive but we assigned a different semantics
depending of the surrounding syntactic context. Recursion is given with
rule (REC) in the operational semantics, another solution is to use the rule
built-in with the structural congruence but we do not pursue this way
since we want to keep distinct the role of the structural congruence from
the role of the evaluation function. Remaining rules (IFT), (IFF) locally eval-
uate the if guard, rule (SCOP) adds restrictions and (STR) couples redexes by
means of the structural congruence.

We now introduce two running examples which we also continue us-
ing in the next sections to highlight some peculiarities of the type system.

Example 4.1. In this first example we show how different replicas of a
service are allowed, as long as each replica has a common type even in
presence of syntactically different processes. In fact the operational se-
mantics in presence of multiple definitions non-deterministically choose
one of them.

(νa)
(
a.rec X.〈l〉.Σ4

i=1(li).X
∣∣ rec X1.

(
a.rec Y2.Σ2

i=1(l).〈li〉.Y2

∣∣ X1

)
∣∣ a.rec Y1.(l).if test

then 〈l1〉.Y1

else 〈l3〉.Y1

)
The definition of service a is duplicated (in the sense that there are two
different definitions of a) and despite of their different syntactic structure
both protocols of the replicas are compatible with the client (in the sense
of subtyping relation, see Definition 3.4). They are in fact both able to re-
cursively offer l (the first one by means of a choice which offers l twice)
and then to select one of the labels offered by the client (either l1 or l2
in the case of the first service definition, depending on which l-branch
is used; either l1 or l3 in the case of the second definition, depending on
some internal condition test). Also notice that the first definition of ser-
vice a is replicated by means of recursion and that the well-formedness
of session types does not forbid using an external choice guarded with
the same label.
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Example 4.2. In this example we show recursivity using mutual refer-
ences to different services.

P = a.(x).x.〈a〉 | a.〈b〉 | b.(x)

Service a inputs a service x that in turn is invoked again with a service of
type a. We also show the evaluation steps:

P → (νr)(r+ . (x).x.〈a〉 | r− . 〈b〉) | b.(x)→
(νr)(r+ . b.〈a〉 | r− . 0) | b.(x)→
(νr)(νs)(r+ . s− . 〈a〉 | r− . 0 | s+ . (x))→
(νr)(νs)(r+ . s− . 0 | r− . 0 | s+ . 0)

4.3 Type system

4.3.1 A type system for CST

The set of types we consider is defined in Figure 1 we retain same
notions of well formedness, of bound (bv) and free type variables (fv),
closed µ-types, and equivalence of µ-types up to alpha-renaming of
bound variables. We start introducing the type discipline of CST. We
consider two typing environments Γ and Θ, which are finite partial map-
pings. Γ is the standard typing environment and maps service/polarized
session names/variables to sort types S and Θ is the processes typing
environment and maps process variables to couples of session types of
the form T ;U . We write dom(Γ) (resp. dom(Θ)) for the set of elements
in the domain of Γ (resp. Θ) and ∅ is the function with empty domain.
With Γ, x : S we point the partial function Γ′ s.t. Γ′(y) = Γ(y) if x 6= y
and Γ′(y) = S otherwise, in the same manner we define Γ, rp : [T ] and
Γ, a : [T ] and Θ, X : T ;U . For example ∅, x : int, y : int = ∅, y : int, x : int
is the partial function with domain {x, y} that maps both x and y to an in-
teger type. The initial ∅, is often omitted when the function is defined for
some values. With the help of these definitions we also define a syntac-
tic notion of well formedness for typing environments; for simplicity we
require that if a session Γ(rp) = [T ] then it must be also that Γ(rp) = [T ].

Definition 4.3 (Well-formed typing environments). Γ and Θ are well-
formed if they are generated from the following grammar:

Γ ::= ∅ | Γ, a : [T ] | Γ, x : S | Γ, rp : [T ], rp : [T ]
Θ ::= ∅ | Θ, X : T ;U

67



We consider only well-formed environments and we write Γ, r : [T ]
(r without polarity annotation) as a shorthand for Γ, r+ : [T ], r− : [T ].

We have two kinds of typing judgments reported in Figure 16, Γ `
m : S for values and Γ; Θ ` P : T ;U ;L for processes. The first four
typing rules are for values and are standard, in rule (INTV) n stays for a
generic integer. We sometimes use Γ ` m̃ : S̃ where m̃=m1, . . . ,mn and
S̃ = S1, . . . , Sn to mean that Γ ` m1 : S1,. . ., Γ ` mn : Sn hold. In the
typing judgments for processes, T is the type of the behavior of P w.r.t.
the current session, U is the type of the behavior of P w.r.t. the parent
session and L is a set of polarized session names, which is used to check
the linearity of sessions. We call the triple T ;U ;L the linear typing envi-
ronment and we refer to T (resp. to U , L) with T -component (resp. to
U -component, L-component). The presence of L allows the type system
to check the linear usage of each session in a process. Since the type of
each session evolves during reductions, linearity is fundamental in order
to keep typing preservation along reductions, namely the Subject Reduc-
tion. Consider for example the process r+ . (x) | r+ . (x) | r− . 〈5〉, the
process would be well typed with assumptions r+ : [?(int)], r− : [?(int)],
but after a reduction step it is not well typed anymore.

Some comments about the typing rules are in order. Rule (TNEWR)

guesses two dual types for each session sides whilst (TNEW) guesses only
the type of the service a. This choice reflects the asymmetry between
client and service and the symmetry between two dual session sides.
The side condition on the cardinality of |L ∩ {r+, r−}| allows {r+, r−}
optional in L. Rule (TDEF) constrains the protocol of the service to be the
same as the body type of the process P and (TINV), instead checks that the
dual type of the client protocol is the same as the service protocol. Rule
(TSES) is similar to (TDEF) but in addition it handles the linearity check on
rp w.r.t. the set L. We require, in fact with the help of the disjoint union
L ] {rp} that in rp . P there is no sub-process of P of the form rp . P ′.
Rules for parallel composition (TPARL) and (TPARR) do the same check with
the two set of labels L1 and L2. Besides, they check that at least one pro-
cess among P and Q has type end for both the current and the parent
session. This check is important to prevent parallel actions inside a ses-
sion, because session types are not powerful enough to model parallel
composition of two session types. Rules (TIN), (TOUT) and (TRET) insert ei-
ther the input or the output in the correct place. Rule (TBRANCH) allows to
insert in the result type only a subset J of the total choices, while rule
(TCHOICE) adds arbitrarily branches in the type together with the branch
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(SER)
Γ, a : [T ] ` a : [T ]

(VAR)
Γ, x : S ` x : S

(SES)
Γ, rp : [T ] ` rp : [T ]

(INTV)
Γ ` n : int

(TNIL)
Γ; Θ ` 0 : end; end; ∅

(TNEW)
Γ, a : S; Θ ` P : T ;U ;L

Γ; Θ ` (νa)P : T ;U ;L

(TNEWR)
Γ, r+ : [T ], r− : [T ]; Θ ` P : T ′;U ;L |L ∩ {r+, r−}| 6= 1

Γ; Θ ` (νr)P : T ′;U ;L \ {r+, r−}

(TIF)
Γ ` vi : S i = 1, 2 Γ; Θ ` P : T ;U ;L Γ; Θ ` Q : T ;U ;L

Γ; Θ ` if v1 = v2 then P else Q : T ;U ;L

(TREC)
Γ; Θ, X : T ;U ` (P : T ;U ; ∅)?

Γ; Θ ` rec X.P : T ;U ; ∅

(TWEAK)
Γ; Θ ` P : T ;U ;L T ′ ≤ T U ′ ≤ U

Γ; Θ ` P : T ′;U ′;L

(TPVAR)
Γ; Θ, X : T ;U ` X : T ;U ; ∅

(TSES)
Γ; Θ ` P : T ;U ;L Γ ` rp : [T ]

Γ; Θ ` rp . P : U ; end;L ] {rp}

(TDEF)
Γ; Θ ` P : T ;U ;L Γ ` v : [T ]

Γ; Θ ` v.P : U ; end;L

(TINV)
Γ; Θ ` P : T ;U ;L Γ ` v : [T ]

Γ; Θ ` v.P : U ; end;L

(TIN)
Γ, x̃ : S̃; Θ ` P : T ;U ;L

Γ; Θ ` (x̃).P : ?(S̃).T ;U ;L

(TOUT)
Γ; Θ ` P : T ;U ;L Γ ` ṽ : S̃

Γ; Θ ` 〈ṽ〉.P : !(S̃).T ;U ;L

(TRET)
Γ; Θ ` P : T ;U ;L Γ ` ṽ : S̃

Γ; Θ ` return ṽ.P : T ; !(S̃).U ;L

(TBRANCH)
∅ ⊂ J ⊆ I = {1, . . . , n} ∀i ∈ I, Γ; Θ ` Pi : Ti;U ;L

Γ; Θ ` Σni=1(li).Pi : &{lj : Tj}j∈J ;U ;L

(TCHOICE)
l = li ∈ {l1, . . . , ln} Γ; Θ ` P : Ti;U ;L

Γ; Θ ` 〈l〉.P : ⊕{l1 : T1, . . . , ln : Tn};U ;L

(TPARL)
Γ; Θ ` P : T ;U ;L1 Γ; Θ ` Q : end; end;L2

Γ; Θ ` P |Q : T ;U ;L1 ] L2

(TPARR)
Γ; Θ ` P : end; end;L1 Γ; Θ ` Q : T ;U ;L2

Γ; Θ ` P |Q : T ;U ;L1 ] L2

(TPIPE)
Γ; ∅ ` P : T1; end;L Γ, x̃ : S̃; Θ ` Q : T2;U2; ∅ (T, U) = pipe(T1, T2, U2, S̃)

Γ; Θ ` P > x̃ > Q : T ;U ;L

Figure 16: Typing rules: rule (TREC) for recursion requires an additional con-
sistency condition
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nocuract(0)
nocuract(v.P ) = noretact(P )
nocuract(return ṽ.P ) = nocuract(P )
nocuract(v.P ) = noretact(P )
nocuract(rp . P ) = noretact(P )

nocuract
( if then
P else Q

)
=

nocuract(P )
and
nocuract(Q)

nocuract(P |Q) =
nocuract(P )
and
nocuract(Q)

nocuract(P > x̃ > Q) = nocuract(Q)
nocuract((νm)P ) = nocuract(P )
nocuract(rec X.P ) = nocuract(P )
nocuract(X)

noretact(0)
noretact(v.P )
noretact(v.P )
noretact(rp . P )

noretact(
if then
P else Q

) =
noretact(P )
and noretact(Q)

noretact((x̃).P ) = noretact(P )

noretact(Σni=1(li).Pi) =
noretact(P1) . . .
and noretact(Pn)

noretact(〈ṽ〉.P ) = noretact(P )
noretact(〈l〉.P ) = noretact(P )

noretact(P |Q) =
noretact(P )
and noretact(Q)

noretact(P > x̃ > Q) = noretact(Q)
noretact((νm)P ) = noretact(P )
noretact(rec X.P ) = noretact(P )
noretact(X)

Figure 17: Two predicates to check the presence of active actions

labeled with l. Both these rules are not syntax directed and together with
(TWEAK) (which in turn relaxes the type of T and U by substituting them
with a subtype) allow some flexibility in the protocol specification of each
side, for example we can correctly type µα.&{l : end, l1 : α} against both
⊕{l1 : ⊕{l : end}} and µα.⊕ {l1 : α} (i.e. they are in subtyping relation).
Rule (TPIPE) uses the pipe function defined as

pipe(end, T, U, S̃) = end, end
pipe(!(S̃), T, U, S̃) = T,U

This function allows a pipe to be used only as a sequencing operator
since replication of multiple instances of Q can cause parallel actions in-
side a session. In detail, consider P > x̃ > Q if P does not produce
any output then the total type of the process is end for both the current
and the parent sessions, if instead P produces only one output then the
type of the entire process is the type of Q, since only one copy of Q will
be spawned. We studied in (15) a way to relax the typing rules for pipe
and parallel composition which can be easily accommodated here with
minimal effort.

Finally rule (TREC) is the standard rule to type recursion but we need
an additional condition to type the unguarded recursion. Consider for
example the process rec X.X , using the above rules the process is typed
as ∅; ∅ ` rec X.X : T ;U ; ∅ for any T and U . To characterize all such cases
we introduce two predicates (Figure 17) nocuract(P ) which holds if there
is in P at least one active action in the current sessions and noretact(P )
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which holds if in P there is at least one return action. The only non trivial
case in both the two definitions is the case of a pipe, where we check
only actions in the continuationQ, and it is strictly related to the function
pipe. The consistency condition we impose in rule (TREC) pointed with (P :
T ;U ; ∅)? is “nocuract(P ) implies T = end and noretact(P ) implies U =
end”. Take again the process rec X.X with this new condition the only
possible type for T and U is end.

Example 4.4. In Figure 18 we report the proof tree of the two definitions
of service a in Example 4.1 where the set L is omitted for conciseness (it
is equal to ∅) and Tα = µα.&{l : ⊕{l1 : α, l2 : α, l3 : α}}, Γ = a : [Tα],
Θ = Y2 : Tα; end;X1 : end; end and Θ1 = Y1 : Tα; end. In rule (TPAR)? we
omit the typing derivation for X1.

Example 4.5. In figure 19 we report the proof tree of each of the three
processes of Example 4.2 where the set L is omitted for conciseness (it is
equal to ∅) and Ta = [µα.?([?([α])], Γ = a : [Ta], b : [?([Ta])]. Notice that
we can apply (TWEAK) since µα.?([?([α])]) ≤?([?(µα.?([?([α])]))]).
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4.3.2 Subject reduction and safety

The aim of this subsection is to prove that the typing is preserved
along reduction steps which directly implies the so-called session safety.
In Chapter 6, we prove a stronger property of this type system almost
a direct consequence of the subject reduction, called progress in litera-
ture (26). Next three lemmas are standard: they allow respectively to add
assumptions into each environment, to remove assumptions from envi-
ronments and to collapse two assumptions.

Lemma 4.6 (Weakening). If Γ; Θ ` P : T ;U ;L and m /∈ fn(P ) then Γ,m :
S; Θ ` P : T ;U ;L for any S. If Γ; Θ ` P : T ;U ;L and X /∈ fpv(P ) then
Γ; Θ, X : T ′;U ′ ` P : T ;U ;L for any T ′, U ′.

Proof. The proof is by straightforward induction on the derivation of
Γ; Θ ` P : T ;U ;L.

Lemma 4.7 (Strengthening). If Γ,m : S; Θ ` P : T ;U ;L and m /∈ fn(P )
then Γ; Θ ` P : T ;U ;L. If Γ; Θ, X : T ′;U ′ ` P : T ;U ;L and X /∈ fpv(P )
then Γ; Θ ` P : T ;U ;L.

Proof. The proof of the two statements are by straightforward induction
on the derivation of Γ,m : S; Θ ` P : T ;U ;L and Γ; Θ, X : T ′;U ′ ` P :
T ;U ;L respectively.

Lemma 4.8 (Substitution lemma). If Γ, x : S; Θ ` P : T ;U ;L and Γ ` v : S
then Γ; Θ ` P [v/x] : T ;U ;L. If Γ; Θ, X : T ′;U ′ ` Q : T ;U ;L and Γ; Θ ` P :
T ′;U ′; ∅ then Γ; Θ ` Q[P /X ] : T ;U ;L.

Proof. Without loss of generality we prove the theorem for the case when
the tuple length in input, output (and pipe) actions is one. The proof
of the first statement is by induction on the derivation of Γ, x : S; Θ `
P : T ;U ;L with case analysis on the last applied rule. We sketch the
interesting cases. When the last applied rule is (TOUT) and Ṗ = 〈v〉.P
the not obvious case is when ẋ = v otherwise the theorem follows by

induction. We have
(TOUT)

Γ, v : S, v̇ : S; Θ ` P : T ;U ;L

Γ, v : S, v̇ : S; Θ ` 〈v〉.P :!(S).T ;U ;L
and by induction

Γ, v̇ : S; Θ ` P [v̇/v] : T ;U ;L holds. Applying rule (TOUT) to the last judg-
ment we have Γ, v̇ : S; Θ ` 〈v̇〉.P [v̇/v] :!(S).T ;U ;L and the thesis follows
since 〈v̇〉.P [v̇/v] = (〈v〉.P )[v̇/v]. The other non-trivial cases are when the

last applied rule is (TDEF) or (TINV). We have
(TINV)
Γ, v : [T ], v̇ : [T ]; Θ ` P : T ;U ;L

Γ, v : S, v̇ : S; Θ ` v.P : U ; end;L
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Γ; Θ ` Y2 : Tα; end

Γ; Θ ` 〈l2〉.Y2 : ⊕{l1 : Tα, l2 : Tα}; end
Γ; Θ ` (l).〈l2〉.Y2 : unfold(Tα); end

Γ; Θ ` Y2 : Tα; end

Γ; Θ ` 〈l1〉.Y2 : ⊕{l1 : Tα, l2 : Tα}; end
Γ; Θ ` (l).〈l1〉.Y2 : unfold(Tα); end

(TBRANCH)
Γ; Θ ` Σ2

i=1(l).〈li〉.Y2 : Tα; end
(TWEAK—TREC)

Γ;X1 : end; end ` rec Y2.Σ
2
i=1(l).〈li〉.Y2 : Tα; end

(TWEAK—TDEF)
Γ;X1 : end; end ` a.rec Y2.Σ

2
i=1(l).〈li〉.Y2; end; end

(TPAR)?
Γ;X1 : end; end ` a.rec Y2.Σ

2
i=1(l).〈li〉.Y2|X1; end; end

(TREC)
Γ; ∅ ` rec X1.(a.rec Y2.Σ

2
i=1(l).〈li〉.Y2|X1); end; end

Γ; Θ1 ` Y1 : Tα; end

Γ; Θ1 ` 〈l3〉.Y1 : ⊕{l1 : Tα, l2 : Tα, l3 : Tα}; end
...

Γ; Θ1 ` if test then 〈l1〉.Y1 else 〈l3〉.Y1 : ⊕{l1 : Tα, l2 : Tα, l3 : Tα}; end
Γ; Θ1 ` (l).if test then 〈l1〉.Y1 else 〈l3〉.Y1 : &{l : ⊕{l1 : Tα, l2 : Tα, l3 : Tα}}; end

Γ; ∅ ` (l).if test then 〈l1〉.Y1 else 〈l3〉.Y1 : unfold(Tα); end
(TWEAK—TREC)

Γ; ∅ ` rec Y1.(l).if test then 〈l1〉.Y1 else 〈l3〉.Y1 : Tα; end
(TDEF)

Γ; ∅ ` a.rec Y1.(l).if test then 〈l1〉.Y1 else 〈l3〉.Y1 : end; end

Figure 18: Example of typing

Γ, x :?([Tα]; ∅ ` 〈a〉 :!([Ta]); end
(TINV)

Γ, x :?([Tα]); ∅ ` x.〈a〉 : end; end
(TIN)

Γ; ∅ ` (x).x.〈a〉 :?([?([Ta])]); end
(TWEAK)

Γ; ∅ ` (x).x.〈a〉 : Ta; end
(TDEF)

Γ; ∅ ` a.(x).x.〈a〉 : end; end

Γ; ∅ ` 〈b〉 :!([?([Ta])]); end
(TINV)

Γ; ∅ ` a.〈b〉 : end; end

Γ; ∅ ` (x) :?([Ta]); end
(TDEF)

Γ; ∅ ` b.(x) : end; end

Figure 19: Example of typing
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and by induction Γ, v̇ : [T ]; Θ ` P [v̇/v] : T ;U ;L holds. Applying rule
(TINV) to the last judgment we have Γ, v̇ : [T ]; Θ ` v̇.P [v̇/v] : U ; end;L and
we conclude since v̇.P [v̇/v] = (v.P )[v̇/v]. The case for rule (TDEF) is similar.
The proof of the second judgment is by induction on the derivation of
Γ; Θ, X : T ′;U ′ ` Q : T ;U ;L with case analysis on the last applied rule.
The only non trivial case is the base case, rule (TPVAR), when Q = Ẋ . We
have Γ; Θ, Ẋ : T ′;U ′ ` Ẋ : T ′;U ′; ∅ and by hypothesis Γ; Θ ` Ṗ : Ṫ ′; U̇ ′; ∅
which concludes since X[Ṗ /X ] = Ṗ

We extend the previous lemma with tuples to fit the polyadic com-
munications of the calculus.

Corollary 4.9 (Substitution lemma for tuples). If Γ, x̃ : S̃; Θ ` P : T ;U ;L
and Γ ` ṽ : S̃ then Γ; Θ ` P [ṽ/x̃] : T ;U ;L.

Proof. The proof is by induction on the tuple length. The base case with
tuple length 1 is the Substitution Lemma. In the inductive case the the-
orem holds for tuple of length n − 1 thus Γ, x1 : S1 . . . xn : Sn; Θ `
P : T ;U ;L and Γ ` v1 : S1,. . ., Γ ` vn : Sn then Γ, xn : Sn; Θ `
P [v1,...,nn−1/x1,...,xn−1 ];T ;U ;L. The result follows applying the Substitu-
tion Lemma to P1 = P [v1,...,nn−1/x1,...,xn−1 ].

Sometimes we use the Weakening Lemma to add an assumption of
a name (resp. of a process variable) that does not appear in the typing
environment (resp. process typing environment) without caring about
free names (resp. free process names). The following lemma justifies this
fact.

Lemma 4.10. Let Γ; Θ ` P : T ;U ;L. If m is not a session then m /∈ dom(Γ)
implies m /∈ fn(P ). If m is a session r then {r+, r−} ∩ dom(Γ) = ∅ implies
r /∈ fn(P ). If X /∈ dom(Θ) then X /∈ fpv(P ).

Proof. The proof is by straightforward induction on the typing of Γ; Θ `
P : T ;U ;L with case analysis on the last applied rule.

Subject Congruence proves that the typing is preserved by the struc-
tural congruence.

Proposition 4.11 (Subject Congruence). If Γ; Θ ` P : T ;U ;L and P ≡ Q
then Γ; Θ ` Q : T ;U ;L

Proof. It suffices to prove that the statement holds in both directions for
each congruence rule. Closure under arbitrary contexts (≡ is a congru-
ence relation) is obvious from the typing system.

74



• P |0 ≡ P

Γ; Θ ` P : T ;U ;L Γ; Θ ` 0 : end; end; ∅
(TPARL)

Γ; Θ ` P |0 : T ;U ;L

• P |Q ≡ Q|P we have two cases depending of the rule used to de-
rive the judgment of P |Q. If the judgment has been derived by rule
(TPARL) then

Γ; Θ ` P : T ;U ;L1 Γ; Θ ` Q : end; end;L2
(TPARL)

Γ; Θ ` P |Q : T ;U ;L1 ] L2

Γ; Θ ` Q : end; end;L2 Γ; Θ ` P : T ;U ;L1
(TPARR)

Γ; Θ ` Q|P : T ;U ;L1 ] L2

otherwise,

Γ; Θ ` P : end; end;L1 Γ; Θ ` Q : T ;U ;L2
(TPARR)

Γ; Θ ` P |Q : T ;U ;L1 ] L2

Γ; Θ ` Q : T ;U ;L2 Γ; Θ ` P : end; end;L1
(TPARL)

Γ; Θ ` Q|P : T ;U ;L1 ] L2

• (P |Q)|R ≡ P |(Q|R) in order to be well-typed two processes among
P , Q and R should be typed with a type different from end; end.
Consequently we have three possibilities: typing in turn either P
or Q or R with a generic type T ;U and with end; end the remaining
two.

• (νm)P |Q ≡ (νm)(P |Q) if m /∈ fn(Q) we have two possibilities ac-
cording if m is a session or a service; the two cases are similar. For
example ifm = r and L1∩{r+, r−} = ∅ or L1∩{r+, r−} = {r+, r−}
we have:

Γ, r : [T ]; Θ ` P : T ;U ;L1
(TNEWR)

Γ; Θ ` (νr)P : T ;U ;L1 \ {r+, r−} Γ; Θ ` Q : end; end;L2
(TPARL)

Γ; Θ ` (νr)P |Q : T ;U ;L1 \ {r+, r−} ] L2

Γ, r : [T ]; Θ ` P : T ;U ;L1 Γ, r : [T ]; Θ ` Q : end; end;L2
(TPARL)

Γ, r : [T ]; Θ ` P |Q : T ;U ;L1 ] L2
(TNEWR)

Γ; Θ ` (νr)(P |Q) : T ;U ;L1 \ {r+, r−} ] L2
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In particular, when the proof is from (νm)P |Q to (νm)(P |Q) we use
(to judge Q) the Weakening Lemma, in the other direction instead
we use the Strengthening Lemma. The case with (TPARR) when P has
type end; end is similar.

• (νm)0 ≡ 0 we might have
(TNEWR)
Γ, r : [T ]; Θ ` 0 : end; end; ∅

Γ; Θ ` (νr)0 : end; end; ∅
if m = r or

we might have
(TNEW)
Γ, a : [T ]; Θ ` 0 : end; end; ∅

Γ; Θ ` (νa)0 : end; end; ∅
if m = a. The direction

from 0 to (νm)0 follows by the Weakening Lemma and the well-
formedness of Γ since Γ = Γ′, rp : [T ] iff Γ = Γ′′, rp : [T ].

• (νm)P > x̃ > Q ≡ (νm)(P > x̃ > Q) if m /∈ fn(Q) \ {x̃}

Γ, r : [T ′]; ∅ ` P : T1;U1;L1
(TNEWR)

Γ; ∅ ` (νr)P : T1;U1;L1 \ {r+, r−} Γ, x̃ : S̃; Θ ` Q : T2 : U2; ∅
(TPIPE)

Γ; Θ ` (νr)P > x̃ > Q : T ;U ;L

Γ, r : [T ′]; ∅ ` P : T1;U1;L1 Γ, r : [T ′], x̃ : S̃; Θ ` Q : T2 : U2; ∅
(TPIPE)

Γ, r : [T ′]; Θ ` P > x̃ > Q : T ;U ;L1
(TNEWR)

Γ; Θ ` (νr)(P > x̃ > Q) : T ;U ;L

where (T,U) = pipe(T1, U1, T2, U2, S̃) and L = L1 \ {r+, r−} and
L1 ∩ {r+, r−} = ∅ or L1 ∩ {r+, r−} = {r+, r−}. We apply Strength-
ening Lemma and Weakening Lemma to type Q in the respective
direction.

• (νm)(νn)P ≡ (νn)(νm)Q There are four cases depending of the
essence of m and n we prove the case where m = a and n = r.

Γ, r : [Tr], a : [Ta]; Θ ` P : T ;U ;L
(TNEWR)

Γ, a : [Ta]; Θ ` (νr)P : T ;U ;L′

(TNEW)
Γ; Θ ` (νa)(νr)P : T ;U ;L′

Γ, r : [Tr], a : [Ta]; Θ ` P : T ;U ;L
(TNEW)

Γ, r : [Tr]; Θ ` (νa)P : T ;U ;L
(TNEWR)

Γ; Θ ` (νr)(νa)P : T ;U ;L′

where L′ = L \ {r+, r−} and L ∩ {r+, r−} = ∅ or L ∩ {r+, r−} =
{r+, r−}
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• rp . (νm)P ≡ (νm)rp .P if m 6= r. In the case whenm = awe have:

Γ, r : [T ], a : S; Θ ` P : T ;U ;L
(TNEW)

Γ, r : [T ]; Θ ` (νa)P : T ;U ;L
(TSES)

Γ, r : [T ]; Θ ` rp . (νa)P : U ; end;L ] {rp}

Γ, a : S, r : [T ]; Θ ` P : T ;U ;L
(TSES)

Γ, a : S, r : [T ]; Θ ` rp . P : U ; end;L ] {rp}
(TNEW)

Γ, r : [T ]; Θ ` (νa)rp . P : U ; end;L ] {rp}

In addition, we need auxiliary lemmas to deal with the presence of
contexts. The next lemma allows to take P out from a well-typed process
C[[P ]]. Not only P is well-typed but it can be replaced with Q, a process
with the same typing of P , and conclude C[[Q]] well-typed. Furthermore
Q can have more opened sessions than P provided that it contains all the
sessions opened in P . This condition is achieved constraining the set of
session names.

Lemma 4.12 (Replacement C). If Γ; ∅ ` C[[P ]] : T ;U ;L then there exist
some T ′,U ′,L′ s.t. Γ; ∅ ` P : T ′;U ′;L′ with L′ ⊆ L. Moreover for any Q, s.t.
Γ; ∅ ` Q : T ′;U ′;L′′ with L′′ ∩ L = L′ then Γ; ∅ ` C[[Q]] : T ;U ;L ∪ L′′.

Proof. The first part of the statement is a direct consequence of the com-
positionality of the type system plus the fact that the set of labels L in-
creases from the premises to the conclusion of each rule. Second part of
the statement can be proved by straightforward induction on the struc-
ture of the context C.

As discussed above the linearity of each session is important in order
to keep type preservation during reductions. This fact appears just dur-
ing the proof of the Replacement Lemma for contexts Dr. In turn proving
session linearity requires the following lemma about the setLwhich con-
tains exactly the set of free polarized session names.

Lemma 4.13. If Γ; Θ ` P : T ;U ;L then fpn(P ) = L

Proof. The proof is by straightforward induction on the typing of Γ; Θ `
P : T ;U ;L with case analysis on the last applied rule.

Lemma 4.14 (Session linearity). If Γ; Θ ` C[[rp . P ]] : T ;U ;L then
rp /∈ fpn(C[[P ]])
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Proof. The proof is by induction on the structure of C and then on the
structure of P . Base case is when C = [[·]]. We report one interesting
inductive case. When C = C′[[[[·]]|Pc]] and P = sq . P ′ by induction
hypothesis the theorem holds for C′[[rp . P ′]], then rp /∈ fpn(C′[[P ′]]). If
Γ; Θ ` C′[[P ′]] : T ;U ;L by Lemma 4.13, rp /∈ L and by Lemma 4.12, there
exist T ′, U ′ and L′ s.t Γ; Θ ` P ′ : T ;U ′;L′ and L′ ⊆ L and L′]{rp} holds.
Since the entire process is well-typed by hypothesis, it must be the case
(rule (TSES) applied to rp . sq . P ′) that rp 6= sq (since L′ ] {sq} ] {rq}
holds in turn) and then rp /∈ fpn(C′[[sq . P ′]]). On the other hand since
C′[[(rp . sq . P ′)|Pc]] is well-typed, by Lemma 4.12 there exists L′′ ⊆ L
that type-checks Pc and by rules for parallel compositionL′]{sq, rq}]L′′
holds and in order not to contradict Lemma 4.13, rp /∈ fpn(Pc) which con-
cludes.

We define a relation that captures the evaluation of session types:

Definition 4.15. Let ⊆ denote the smallest relation on TY PE × TY PE
such that: (1) T ⊆?(S̃).T , (2) T ⊆!(S̃).T , (3) Ti ⊆ &{l1 : T1, . . . , ln : Tn}
and (4) Ti ⊆ ⊕{l1 : T1, . . . , ln : Tn}.

Lemma 4.16 (Replacement Dr). Let Γ = Γ′, rp : [Tr], rp : [Tr]. If Γ; ∅ `
Dr[P,Q] : T ;U ;L then there exist some U1, L1 ⊆ L and U2, L2 ⊆ L s.t.
L1 ∩L2 = ∅ and Γ; ∅ ` P : Tr;U1;L1 and Γ; ∅ ` Q : Tr;U2;L2. Moreover for
any P ′ and Q′ s.t. Γ1; ∅ ` P ′ : T⊆r ;U1;L1 and Γ1; ∅ ` Q′ : T⊆r ;U2;L2 then
Γ1; ∅ ` Dr[P ′, Q′] : T ;U ;L for some T⊆r ⊆ Tr and Γ1 = Γ′, rp : [T⊆r ], rp :

[T⊆r ].

Proof. First part of the statement is a direct consequence of the compo-
sitionality of the type system plus the fact that we use disjoint union to
compose two sets of label. Second part of the statement can be proved
by straightforward induction on the structure of the context Dr which
turns out to be an induction on the structure of C[[C′rp |C′′rp ]]. We sketch
the base case and one inductive case, the others are similar. In the base
case we have Dr[[Ṗ , Q̇]] = rp . (Ṗ |P )|rp . (Q̇|Q) and by hypothesis (or
by the first statement) Γ; ∅ ` Ṗ : Tr;U1;L1 and Γ; ∅ ` P : end; end;L′1
and Γ; ∅ ` Q̇ : Tr;U2;L2 and Γ; ∅ ` Q : end; end;L′2 with Γ = Γ′, rp :
[Tr], rp : [Tr]. Now consider the case when Γ1; ∅ ` P ′ : T⊆r ;U1;L1

and Γ1; ∅ ` Q′ : T⊆r ;U2;L2 where Γ1 = Γ′, rp : T⊆r , r
p : T⊆r . By

Lemma 4.13 both r /∈ fn(P ) and r /∈ fn(Q). Applying the Strength-
ening Lemma first and the Weakening lemma then, we can conclude
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Γ1; ∅ ` P : end; end;L′1 and Γ1; ∅ ` Q : end; end;L′2. The thesis follows
applying rules (TPARR) and (TSES) on both sides and then one of the two
rules for parallel composition depending whose between U1 and U2 has
type end. The inductive cases are mixed cases one for each production
of contexts C, C′rp and C′′rp used to build Dr. Consider for example the
case where Dr[[Ṗ , Q̇]] = (C′1[[sq . rp . (Ṗ |P )]]|(C′′1 [[rp . (Q̇|Q)|Q1]])) where
C = [[·]], C′ = C′1[[sq . [[·]]]] and C′′ = C′′1 [[[[·]]|Q1]]. By induction hypothe-
sis the thesis holds for C′1[[rp . (Ṗ |P )]]|C′′1 [[rp . (Q̇|Q)]]. The result follows
since replacing Ṗ with Ṗ ′ and its environment not influence the typing of
session s (in fact s 6= r by Lemma 4.14) and replacing Q̇ with Q̇′ not influ-
ence the applicability of rules for parallel composition provided that we
use Lemma 4.14 together with Strengthening and Weakening lemmas to
type Q1 with the new assumptions.

Finally we are now ready to prove the Subject Reduction Theorem.
We prove the Subject reduction for closed processes (i.e. Θ = ∅) and we
require the set of sessions L to be balanced. A set L is balanced if rp ∈ L
implies rp ∈ L. This condition is necessary since we require that a process
must always have either a session with both dual polarities or no session
at all.

Theorem 4.17 (Subject reduction). If Γ; ∅ ` P : T ;U ;L with L balanced
and P → P ′ then Γ′; ∅ ` P ′ : T ;U ;L for some Γ′ s.t. dom(Γ) = dom(Γ′) and
a ∈ dom(Γ) implies Γ(a) = Γ′(a).

Proof. The proof is by induction on the derivation of P → P ′ with case
analysis on the last applied rule.

• Rule (INV) we have that D[[a.P, a.Q]] is well-typed by hypothe-
sis. Applying Lemma 4.12 on D it must be the case that Γ; ∅ `
C′[[a.P ]]|C′′[[a.Q]] : T1;U1;L⊆1 ] L⊆2 . Two other applications of
Lemma 4.12 give, with say Γ ` a : [T ′′],

(TINV)
Γ; ∅ ` P : T ′′;U ′1;L1

Γ; ∅ ` a.P : U ′1; end;L1

(TDEF)
Γ; ∅ ` Q : T ′′;U ′2;L2

Γ; ∅ ` a.Q : U ′2; end;L2

To type the result obtained after the reduction step (INV), we can
apply the Weakening Lemma (thanks to the side condition on r in
the rule (INV)).

(TSES)
Γ′1, r : [T ′′]; ∅ ` P : T ′′;U ′1;L1

Γ′1, r : [T ′′]; ∅ ` r− . P : U ′1; end;L1 ] {r−}
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(TSES)
Γ′2, r : [T ′′]; ∅ ` Q : T ′′;U ′2;L2

Γ′2, r : [T ′′]; ∅ ` r+ . Q : U ′2; end;L2 ] {r+}

The result follows applying Lemma 4.12 twice, to obtain Γ; ∅ `
C′[[r− . P ]]|C′′[[r+ . Q]] : T1;U1;L⊆1 ]{r−}]L

⊆
2 ]{r+} since the con-

dition of freshness of r gives {r+, r−} ∩ fpn(C′[[a.P ]]|C′′[[a.Q]]) = ∅
and Lemma 4.13 implies sets of label disjoint with r. To conclude it
suffices to apply Lemma 4.12 another time and rule (TNEWR).

• (COM) We have that Dr[[(x̃).P, 〈ṽ〉.Q]] is well-typed by hypothesis.
Applying Lemma 4.16 on the context Dr it must be the case that

(TIN)
Γ, x̃ : S̃; ∅ ` P : T ′1;U ′1;L1

Γ; ∅ ` (x̃).P :?(S̃).T ′1;U ′1;L1

and
(TOUT)

Γ; ∅ ` Q : T ′1;U ′2;L2

Γ; ∅ ` 〈ṽ〉.Q : !(S̃).T ′1;U ′2;L2

. To type

the result obtained after the reduction step (COM), we can apply
the Substitution Lemma to obtain: Γ; ∅ ` P [ṽ/x̃] : T ′1;U ′1;L1 and an-
other application of Lemma 4.16 to conclude.

• Rule (LCOM) we have that Dr[[Σni=1(li).Pi, 〈lk〉.Q]] is well-typed by
hypothesis. Applying Lemma 4.16 on the context Dr it must be the
case that:

(TBRANCH)
∅ ⊂ J ⊆ {1, . . . , n} ∀i Γ; ∅ ` Pi : Ti;U

′
1;L1

Γ; ∅ ` Σni=1(li).Pi : &{lj : Tj}j∈J ;U ′1;L1

(TCHOICE)
Γ; ∅ ` Q : Tk;U ′2;L2

Γ; ∅ ` 〈lk〉.Q : ⊕{l1 : T1, . . . , ln : Tn};U ′2;L2

The process resulting

after the reduction step (LCOM) is the typing judgment obtained
from Pk and Q and an application of Lemma 4.16.

• Rule (RET) we have that Dr1 [[(x̃).P,Crq [[return ṽ.Q]]]] is well-typed
by hypothesis. Applying Lemma 4.16 on the context Dr1 it must be
the case that:

(TIN)
Γ, x̃ : S̃; ∅ ` P : T ′1;U ′1;L1

Γ; ∅ ` (x̃).P :?(S̃).T ′1;U ′1;L1

(TRET-TPARL-TSES)
Γ; ∅ ` Crq [[Q]] : T ′1; end;L2

Γ; ∅ ` Crq [[return ṽ.Q]] : ?(S̃).T ′1; end;L2

. The

result follows applying Lemma 4.16 on both premises.

• Rule (PIPE). The result follows by Lemma 4.12 if we show that
(〈ṽ〉.P |P ′) > x̃ > Q and (P |P ′) > x̃ > Q | Q[ṽ/x̃] have the same
type. Let L1 = L′1 ] L′′1 , the former is typed as
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Γ; ∅ ` P : end; end;L′1 (TOUT)
Γ; ∅ ` 〈ṽ〉.P :!(S̃); end;L′1 Γ; ∅ ` P ′ : end; end;L′′1 (TPARL)

Γ; ∅ ` 〈ṽ〉.P |P ′ :!(S̃); end;L1 Γ, x̃ : s̃; ∅ ` Q : T ′1;U ′2; ∅
(TPIPE)

Γ; ∅ ` (〈ṽ〉.P |P ′) > x̃ > Q : T ′1;U ′2;L1

while the latter (with the help of Substitution Lemma) is typed as

Γ; ∅ ` P : end; end;L′1Γ; ∅ ` P ′ : end; end;L′′1

Γ; ∅ ` P |P ′ : end; end;L1 Γ, x̃ : s̃; ∅ ` Q : T ′1;U ′2; ∅
(TPIPE)

Γ; ∅ ` (P |P ′) > x̃ > Q : end; end;L1 Γ; ∅ ` Q[ṽ/x̃] : T ′1;U ′2; ∅
(TPARR)

Γ; ∅ ` (P |P ′) > x̃ > Q | Q[ṽ/x̃] : T ′1;U ′2;L1

• Rule (PIPERET). Similarly to the previous case we
have that both C[[(Crp [[return ṽ.P ]]|P ′) > x̃ > Q]] and
C[[(Crp [[P ]]|P ′) > x̃ > Q | Q[ṽ/x̃]]] must have equal type. Let
L1 = L′1 ] L′′1 , the former is typed as

Γ; ∅ ` P : end; end;L′1 (T?)
Γ; ∅ ` Crp [[return ṽ.P ]] :!(S̃); end;L′1 Γ; ∅ ` P ′ : end; end;L′′1 (TPARL)

Γ; ∅ ` Crp [[return ṽ.P ]]|P ′ :!(S̃); end;L1 Γ, x̃ : s̃; ∅ ` Q : T ′1;U ′2; ∅
(TPIPE)

Γ; ∅ ` (Crp [[return ṽ.P ]]|P ′) > x̃ > Q : T ′1;U ′2;L1

where (T?) stays for the application of (TRET),(TPARL) and (TSES). To
type the result obtained after the reduction we use Substitution
Lemma and we have:

Γ; ∅ ` Crp [[P ]] : end; end;L′1Γ; ∅ ` P ′ : end; end;L′′1

Γ; ∅ ` Crp [[P ]]|P ′ : end; end;L1 Γ, x̃ : s̃; ∅ ` Q : T ′1;U ′2; ∅
(TPIPE)

Γ; ∅ ` (Crp [[P ]]|P ′) > x̃ > Q : end; end;L1

?

? Γ; ∅ ` Q[ṽ/x̃] : T ′1;U ′2; ∅
(TPARR)

Γ; ∅ ` (Crp [[P ]]|P ′) > x̃ > Q | Q[ṽ/x̃] : T ′1;U ′2;L1

• Rules (IFT) and (IFF) follows directly by the application of the induc-
tion hypothesis and the fact that (TIF) judges P and Q in the same
manner.
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• Rule (REC). The proof of this case might be concluded by a straight-
forward application of the inductive hypothesis since we have P ′

in both the premise and in the conclusion of the rule. However, to
apply the induction we must prove that P [rec X.P /X ] is well-typed
and in order to apply Lemma 4.12 the process must by judged in the
same manner as rec X.P . By hypothesis and Lemma 4.12 we know
that rec X.P is well-typed and its typing should be derived with

(TREC)
Γ;X : T ;U ` P : T ;U ; ∅
Γ; ∅ ` rec X.P : T ;U ; ∅

. Since both X and rec X.P satisfy the hy-

potheses of the Substitution Lemma for process variables applied
to P we have Γ; ∅ ` P [rec X.P /X ] : T ;U ; ∅ which is the desiderated
judgment.

• Rule (SCOP). By induction we know that P → P ′ and Γ; ∅ ` P :
T ;U ;L and L balanced implies Γ′; ∅ ` P ′ : T ;U ;L. As usual we
have two cases depending of m. If m = a we can conclude by in-
ductive hypothesis since Γ(a) = Γ′(a) and rule (TNEW), if m = r we
can conclude with rule (TNEWR) since {r+, r−} ⊆ L or L∩{r+, r−} =
∅.

• Rule (STR) Follows by induction and by Subject Congruence Lemma.

Typing processes with session types gives an immediate consequence
about the goodness of a process. Following (37) an error is a process
which has incompatible kinds of communications in a dual sessions
e.g. Dr[[(x̃).P ′, (x̃).P ′′]], D[[(x̃).P ′,Σni=1(li).Pi]], D[[(x̃).P ′, 〈l〉.P ′′]] and so on
for the other mismatching prefixes. A process P has an error if P ≡
(νm̃)D[[P ′, P ′′]] and D[[P ′, P ′′]] is an error.

Theorem 4.18 (Safety). Let Γ, ∅ ` P : T ;U ;L then P never reduces to a
process with an error.

Proof. By Subject Reduction it suffices to show that typable processes are
not errors. The proof is by reductio ad absurdum, assuming error pro-
cesses typable. Suppose for example Γ, r : [Tr]; ∅ ` Dr[[(x̃).P ′, (x̃).P ′′]] :
T ;U ;L. By Lemma 4.16 we have Γ; ∅ ` (x̃).P ′ : Tr;U1;L1 for some U1, L1

and Γ; ∅ ` (x̃).P ′ : Tr;U2;L2 for U2, L2. But it cannot be Tr = Tr unless
Tr ≶ end which is not the case since Tr is typed with the rule (TIN).

The type system here proposed cannot be exploited directly for type
inference, because three main sources of non-determinism that would
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require guesses and backtracking: the rule for choices (TBRANCH) and
(TCHOICE), the rule for recursion (TREC) and rule (TWEAK). In the next section
we propose a first naive attempt to get a syntax directed type system.

4.4 A set based type system

In this section we introduce a syntax-directed type system to over-
come the above mentioned sources of non determinism. The typing
judgements in Figure 20 have the form Γ; Θ s̀d P : T ;U ;L where types
in calligraphic: T , U are sets of (possibly not closed) session types.

The basic intuitions behind this type system are two. First, the set T
is obtained multiplexing each branch of the if-then-else (see rule (TIFSD))
or each branch of an external choice labeled with equal labels (see rule
(TBRANCHSD)). Second recursion is typed using a type variable with the
name dependent of the current process variable, to mean that its type
is unknown (see rules (TRECSD)).

Rules (TBRANCHSD) and (TCHOICESD) are now fully syntax directed but
rules (TDEFSD) and (TINVSD) require a little care. In particular, we use the
subtyping relation to relax the service protocol w.r.t. the actual protocol
specified in the process. The subtyping relation between sets and type
is defined as expected in Figure 21. Note that the subtyping check is in-
verted in rule (TINVSD) due to the property in Proposition 3.6, but it is
not related to the contravariance (63) of output (not present here because
we require the syntactic equality of I/O types). Let us focus on the rule
(TRECSD) for recursive processes. The type of the process P is computed by
means of a type variable inserted in Θ. The resulting type is computed
with the help of the function µα(T ) (see Figure 21) which checks the pos-
sibility to close the variable α in the type T . We have three possibilities
depending on whether α is free in T and the resulting type µα.T is con-
tractive.

Some other auxiliary functions used in the type system are also in Fig-
ure 21. They are all simple (homomorphic extension of the operators in
the type signature defined by pointwise application) but same, which de-
serves some explanations. Consider for instance the Example 4.1, where
we use the same label l to offer an external choice. While the previous
type system guesses automatically the common type of each branch with
the same label (it is in some manner forced by the well-formedness of
session types), here in a syntax direct type system we must exhibit such
type. The idea is to treat branches labeled with the same label, like an
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(TNEWRSD)
Γ, r+ : [T ], r− : [T ]; Θ s̀d P : T ;U ;L L ∩ {r+, r−} 6= 1

Γ; Θ s̀d (νr)P : T ;U ;L \ {r+, r−}

(TIFSD)
Γ ` vi : S i = 1, 2 Γ; Θ s̀d P : T1;U1;L Γ; Θ s̀d Q : T2;U2;L

Γ; Θ s̀d if v1 = v2 then P else Q : T1 ∪ T2;U1 ∪ U2;L

(TNEWSD)
Γ, a : S; Θ s̀d P : T ;U ;L

Γ; Θ s̀d (νa)P : T ;U ;L

(TRECSD)
Γ; Θ, X : αX ;αX s̀d P : T ;U ; ∅

Γ; Θ s̀d rec X.P : µαX(T );µαX(U); ∅

(TPVARSD)
Γ; Θ, X : T ;U s̀d X : {T}; {U}; ∅

(TSESSD)
Γ; ∅ s̀d P : T ;U ;L Γ ` rp : [T ] T ≤ T

Γ; Θ s̀d r
p . P : U ; {end};L ] {rp}

(TDEFSD)
Γ; ∅ s̀d P : T ;U ;L Γ ` a : [T ] T ≤ T

Γ; Θ s̀d a.P : U ; {end};L

(TINVSD)
Γ; ∅ s̀d P : T ;U ;L Γ ` v : [T ] T ≤ T

Γ; Θ s̀d v.P : U ; {end};L

(TINSD)
Γ, x̃ : S̃; Θ s̀d P : T ;U ;L

Γ; Θ s̀d (x̃).P : ?(S̃).T ;U ;L

(TOUTSD)
Γ; Θ s̀d P : T ;U ;L Γ ` ṽ : S̃

Γ; Θ s̀d 〈ṽ〉.P : !(S̃).T ;U ;L

(TBRANCHSD)
I = {1, . . . , n} ∀i ∈ I, Γ; Θ s̀d Pi : Ti;Ui;L

Γ; Θ s̀d Σni=1(li).Pi : &{same((li : Ti)i∈I)};
⋃
i∈I Ui;L

(TRETSD)
Γ; Θ s̀d P : T ;U ;L Γ ` ṽ : S̃

Γ; Θ s̀d return ṽ.P : T ; !(S̃).U ;L

(TCHOICESD)
Γ; Θ s̀d P : T ;U ;L

Γ; Θ s̀d 〈l〉.P : ⊕{l : T };U ;L

(TPARLSD)
Γ; Θ s̀d P : T ;U ;L1 Γ; Θ s̀d Q : {end}; {end};L2

Γ; Θ s̀d P |Q : T ;U ;L1 ] L2

(TPARRSD)
Γ; Θ s̀d P : {end}; {end};L1 Γ; Θ s̀d Q : T ;U ;L2

Γ; Θ s̀d P |Q : T ;U ;L1 ] L2

(TPARLRSD)
Γ; Θ s̀d P : T1;U1;L1 Γ; Θ s̀d Q : T2;U2;L2

Γ; Θ s̀d P |Q : T1 ∪ T2 ∪ {end};U1 ∪ U2 ∪ {end};L1 ] L2

(TNILSD)
Γ; Θ ` 0 : {end}; {end}; ∅

(TPIPESD)
Γ; ∅ s̀d P : {T1}; {end};L Γ, x̃ : S̃; Θ s̀d Q : T2;U2; ∅ (T ,U) = pipe(T1, T2,U2, S̃)

Γ; Θ s̀d P > x̃ > Q : T ;U ;L

Figure 20: Syntax directed typing rules
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♦{l1 : T1, . . . , ln : Tn} = {♦{l1 : T1, . . . ln : Tn} | i ∈ {1, . . . , n} andTi ∈ Ti}
!(S̃).T = {!(S̃).T | T ∈ T } ?(S̃).T = {?(S̃).T | T ∈ T }
µα(T ) = {µα(T ) | T ∈ T }
T ≤ T ⇔ ∀T ′ ∈ T .T ′ ≤ T T ≤ T ⇔ ∀T ′ ∈ T .T ≤ T ′

µα(T ) =

 µα.T if α ∈ fv(T ) ∧ µα.T is contractive
end if α ∈ fv(T ) ∧ µα.T is not contractive
T otherwise

&{l : T} ; ; &{l1 : T1, . . . , ln : Tn} ={
&{l1 : T1, . . . , l : T, . . . , ln : Tn} if l /∈ {l1, . . . , ln}
undefined otherwise

same(l1 : T1, . . . , ln : Tn) ={
l1 : T1, same(l2 : T2 . . . , ln : Tn)) if l1 /∈ {l2, . . . , ln}
same(l2 : T2, . . . , li : T1 ∪ Ti, . . . , ln : Tn) if l1 = li

same(l : T ) = l : T

fv(T ) =
⋃
T ′∈T fv(T ′)

Figure 21: Auxiliary functions for sets of types (where ♦ ∈ {&,⊕})

if-the-else and then to create a unique label but with the union of the
types resulting from these branches. Function same is used together with
♦{l1 : T1, . . . , ln : Tn} which produces a set of choices taking the carte-
sian product of each Ti. For example &{l1 : {T1, U1}, l2 : {T2}} is the set
T = {&{l1 : T1, l2 : T2},&{l1 : U1, l2 : T2}} and &{same(l1 : T1, l1 :
U1, l2 : T2)} is equal to T .
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In this type system we also have three rules for parallel composition,
rules (TPARLSD) and (TPARRSD) are similar to the respective counterparts in `.
Remaining rule (TPARLRSD) allows to compose a process even if neither T1

and U1 nor T2 and U2 have type {end}. Consider for example the process
P = rec X.rec Y.(X|Y ) the process is typable in ` with ∅; ∅ ` P :
end; end; ∅ but here after applying rule (TPVARSD) for both X and Y we are
stalled since neither rule among (TPARLSD) and (TPARRSD) is applicable. Rule
(TPARLRSD) allows typing X|Y but in the conclusion it adds the type end
to mean that the resulting type of both branches must have something in
common with end (see Theorem 4.30). Moreover, rule (TPARLRSD) has an
implicit premise, T1 and U1 or T2 and U2 must be different from {end},
i.e. (TPARLSD) and (TPARRSD) should be applied if possible.

Arbitrary typing judgments Γ; Θ s̀d P : T ;U ;L are not correct since
sets of types are intended to group type with a common behavior. Later
we shall prove that a judgment is correct if there exists the greatest lower
bound of T and all elements in U are in ≶ relation.

Moreover, due some limitations of the type system we are only able
to prove the soundness, (later we introduce another type system sound
and complete with respect to judgments in `). The limit of the type sys-
tem is that it does not support recursion under service invocation, service
definition and sessions, in fact rules (TDEF), (TINV) and (TSES) judge the body
P with ∅ as process typing environment. This limitation is due to the fact
that we need to compute ≤ in these rules but if T contains some type
variables, inserted by rule (TPVARSD), then the subtyping is not defined.
The other limitation is due to the fact that (TDEFSD) allows service declara-
tion of the form a.P (not a variable). This limitation is not strictly related
to the type system but it allows a simple and terminating constraint solv-
ing algorithm.

Example 4.19. The first instance of service a in Example 4.1 is typed as
below, where T = &{same(l : {⊕{l1 : αY2}, l : ⊕{l2 : αY2}})} = {&{l :
⊕{l1 : αY2}},&{l : ⊕{l2 : αY2}}}, Θ = αY2 ;αY2 , Γ = a : [µα.&{l : ⊕{l1 :
α, l2 : α, l3 : α}}] and the curly brackets are omitted when the set is a
singleton:

Γ; Θ s̀d Y2 : αY2 ; end

Γ; Θ s̀d 〈l1〉.Y2 : ⊕{l1 : αY2}; end

Γ; Θ s̀d (l).〈l1〉.Y2 : &{l : ⊕{l1 : αY2}}; end

Γ; Θ s̀d Y2 : αY2 ; end

Γ; Θ s̀d 〈l2〉.Y2 : ⊕{l2 : αY2}; end

Γ; Θ s̀d (l).〈l2〉.Y2 : &{l : ⊕{l2 : αY2}}; end

Γ; Θ s̀d Σ2
i=1(l).〈li〉.Y2 : T ; end

Γ; ∅ s̀d rec Y2.Σ
2
i=1(l).〈li〉.Y2 : µαY2 .T ; end

Γ; ∅ s̀d a.rec Y2.Σ
2
i=1(l).〈li〉.Y2 : end; end

86



Example 4.20. P from Example 4.2 is typed in the same way as in ` since
neither recursion nor branching are present.

4.4.1 Soundness

To account for the free variables present in a type during the typing
derivation (rule (TPVARSD)) we introduce some auxiliary syntax used in the
proofs of theorems, called the •-machinery. The idea is that the special
symbol • acting like end replaces a free variable in the type. First of all
we add a production for •, both as a process and as a session type with
the two obvious axioms Γ; Θ ` • : •; •; ∅ and Γ; Θ s̀d • : {•}; {•}; ∅.
Moreover we add a rule in the subtyping relation which asserts that “if
unfold(T ) = • then unfold(V ) = •”, e.g. • ≤ •. The next lemma is a
very interesting property of the •-machinery: if two types are in subtype
relation then infinite copies of these types are in subtype relation.

Lemma 4.21. If T1[•/α1 ] ≤ T2[•/α2 ] then µα1.T1 ≤ µα2.T2.

Proof. It suffices to prove that R =
{(T1[µα1.V1/α1 ], T2[µα2.V2/α2 ])|T1[•/α1 ] ≤ T2[•/α2 ] and V1[•/α1 ] ≤
V2[•/α2 ]} is a type simulation relation, which contains both µα1.T1

and µα2.T2 since (T1[µα1.T1/α1 ], T2[µα2.T2/α2 ]) ∈ R. We prove
the case when unfold(T1[µα1.V1/α1 ]) is an input. We have two
cases unfold(T1[µα1.V1/α1 ]) =?(S̃).T ′1[µα1.V1/α1 ] or the case when
unfold(T1[µα1.V1/α1 ]) =?(S̃).V ′1 [µα1.V1/α1 ] and unfold(T1) = α1 and
unfold(µα1.V1) =?(S̃).V ′1 [µα1.V1/α1 ]. In the first case we have by def-
inition of T1[•/α1 ] ≤ T2[•/α2 ] that unfold(T1[•/α1 ]) =?(S̃).T ′1[•/α1 ]
and unfold(T2[•/α2 ]) =?(S̃).T ′2[•/α2 ] with T ′1[•/α1 ] ≤ T ′2[•/α2 ] which
concludes since (T ′1[µα1.V1/α1 ], T ′2[µα2.V2/α2 ]) ∈ R. In the other
case when unfold(T1) = α1 we have unfold(T1[•/α1 ]) = • and by
definition of T1[•/α1 ] ≤ T2[•/α2 ], T2[•/α2 ] = •. By definition of
V1[•/α1 ] ≤ V2[•/α2 ] since unfold(V1[•/α1 ]) =?(S̃).V ′1 [•/α1 ] it must be the
case that unfold(V2[•/α2 ]) =?(S̃).V ′2 [•/α2 ] with V ′1 [•/α1 ] ≤ V ′2 [•/α2 ] which
concludes since (V ′1 [µα1.V1/α1 ], V ′2 [µα2.V2/α2 ]) ∈ R. The case for output
and choices are similar.

The converse of the previous lemma is a bit tricky, if two infinite types
are in subtyping relation then it is possible to find a finite representation
for both types s.t. these finite types are in subtyping relation.
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Lemma 4.22. If µα.T1 ≤ µα.T2 then there exist µα.T ′1, µα.T ′2 s.t. µα.T1 ≶
µα.T ′1 and µα.T2 ≶ µα.T ′2 and T ′1[•/α] ≤ T ′2[•/α].

Proof. The proof is rather long but simple. The idea is to com-

pute ∅ ` µα.T1

c
∧µα.T2 → µα.T ′1 � ∅ and ∅ ` µα.T1

c
∧µα.T2 →

µα.T ′2 � ∅ then µα.T ′1 ≶ µα.T1 and µα.T ′2 ≶ µα.T2 and finally
conclude that T ′1[•/α] ≤ T ′2[•/α]. In few words we exploit the in-
tersection algorithm introduced in Chapter 3 to obtain an expanded
representation of µα.T1 and µα.T2 since if µα.T1 ≤ µα.T2 it holds
that µα.T1 ∧ µα.T2 ≶ µα.T1 and µα.T1 ∨ µα.T2 ≶ µα.T2. For ex-
ample ∅ ` µα.!(int).α

c
∧µα.!(int).!(int).α → µα.!(int).!(int).α � ∅

and ∅ ` µα.!(int).!(int).α
c
∧µα.!(int).α → µα.!(int).!(int).α � ∅ and

!(int).!(int).• ≶!(int).!(int).•.
In order to do so, we first define a predicate sameplace(α, T1, T2)

which holds if each occurrence of α, free in both T1 and T2, appears
at the same height in the syntax tree of both T1 and T2 and type pre-
fixes in T1 and T2 are compatible in the sense of subtyping relation.
For instance both sameplace(α, !(S̃). ⊕ {l : α, l1 : end}, !(S̃). ⊕ {l : α})
and sameplace(α, ?(S̃).&{l : α}, ?(S̃).&{l : α, l1 : α}) hold and nei-
ther sameplace(α, !(S̃). ⊕ {l : α, l1 : end}, !(S̃). ⊕ {l : α, l1 : α}) nor
sameplace(α, µα1. ⊕ {l : α1, l1 : α},⊕{l1 : α}) hold. In particular the
last predicate does not hold since the two types have different syntac-
tic structure and α appears at different height. Next we must prove that
sameplace is preserved by unfolding and then we prove by induction that

for every T3 and T4 s.t. Σ ` T1

c
∧T2 → T3 � Σ and Σ ` T1

c
∧T2 → T4 � Σ

then sameplace(α, T3, T4) holds for every α ∈ fv(T3) and fv(T3) = fv(T4).
Finally one can prove thatR = {(T1[•/α], T2[•/α])|∀V1, V2 , T1[µα.V1/α] ≤
T2[µα.V2/α] and sameplace(α, T1, T2)} is a type simulation relation.

An equivalent of Lemma 4.21 also holds for the meet relation.

Lemma 4.23. If T1[•/α]
c
∧T2[•/α] = T3[•/α] then µα.T1

c
∧µα.T2 = µα.T3

Proof. The proof proceeds in a similar manner to what
we have done in Lemma 4.21, we prove that R =

{(T1[µα1.V1/α1 ], T2[µα2.V2/α2 ], T3[µα2.V3/α3 ])|T1[•/α1 ]
c
∧T2[•/α2 ] =

T3[•/α3 ] and V1[•/α1 ]
c
∧V2[•/α2 ] = V3[•/α3 ]} is a meet relation.

Following is an important lemma used in the proof of the Lemma 4.26,
but it turns out that this lemma can be used in general to obtain a solution
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to cyclic constraint of the form α ≤ T with α free variable in T (but not
free communicated variable) solved by α ≤ µα.T e.g. if α ≤!(int).α then
as expected α ≤ µα.!(int).α.

Lemma 4.24. If T ≤ V [T /α] and α /∈ fcv(V [T /α]) then T ≤ µα.V

Proof. We prove that R = {(T1, T2[µα.V /α])|T1 ≤ T2[T /α] and T ≤
V [T /α]} is a type simulation relation since (T, V [µα.V /α]) ∈ R.

The next lemma says, if only sequences of outputs are considered
(like the type relative to the parent session), then ≤ always implies ≶.

Lemma 4.25. Let U a type generated from the following syntax:
U ::= end | • | !(S̃).U |µα.U |α then we have U ≤ U ′ iff U ≶ U ′.

Proof. The only if part of the proof derives directly by the definition of
≶. For the if part we prove that R = {(U1, U2)|U2 ≤ U1} is a type sim-
ulation relation. If unfold(U2) =!(S̃).U ′2 then by definition of ≤ we have
unfold(U1) =!(S̃).U ′1 and U ′2 ≤ U ′1 which concludes. The other cases for
unfold(U1) = • and unfold(U2) = end follows directly.

Now that we have finished with properties concerning only types we
prove two additional properties that relate • also with processes for both
` and s̀d. We start proving a property that show how types change if • is
replaced by a recursion in `. In the statement of the lemma we disallow a
recursion under a nested session since Theorem 4.30 proves the correct-
ness from a well-typed process in s̀d to ` then each P automatic fulfill
this hypothesis.

Lemma 4.26. If Γ; ∅ ` P [•/X ] : T ′;U ′; ∅ and X does not appear under service
invocations or service definitions or sessions then Γ; ∅ ` rec X.P : T ;U ; ∅
where if T ′ = • then T = end or if T ′ = T ′′[•/α] then T = µα.T ′′ or T ′ = T
otherwise, and if U ′ = • then U = end or if U ′ = U [•/α] then U = µα.U ′′ or
U ′ = U otherwise.

Proof. The proof is by induction on the typing of Γ; ∅ ` P [•/X ] : T ;U ; ∅
with case analysis on the last applied rule. Without loss of generality
we assume • does not appear in the syntax tree of P . The base cases
are when Ṗ = X and Ṗ = 0. If X = Ẋ we have (TBULLET)

Γ; ∅ ` • : •; •; ∅ then
(TREC)
Γ;X : end; end ` X : end; end; ∅

Γ; ∅ ` rec X.X : end; end; ∅
. The case where Ṗ = X 6= Ẋ holds trivially

since the premise of typability of P does not hold and in the case where
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Ṗ = 0 then (TNIL)
Γ; ∅ ` 0 : end; end; ∅ and

(TREC)
Γ;X : end; end ` 0 : end; end; ∅

Γ; ∅ ` rec X.0 : end; end; ∅
which con-

cludes. (Notice how we applied the consistency condition to type recur-
sion.)

In the inductive cases, depending on the last applied rule:

• rule (TIN) with Ṗ = (x̃).P consequently the inductive hypothe-
sis holds for Γ, x̃ : S̃; ∅ ` P [•/X ] : T ;U ; ∅ for some S̃. The U -
component of the type is unchanged then the result for this part
follows directly by induction. Regarding the T -component we have
various cases, if T = T ′[•/α] then Ṫ ′ =?(S̃).T ′[•/α], for some S̃, and
by induction rec X.P is typed with µα.T ′ and the result follows
since rec X.(x̃).P is typed with µα.?(S̃).T ′ (applying rule (TIN)).
Otherwise if T = • then Ṫ ′ =?(S̃).• and by induction rec X.P has
type end. The result follows since rec X.(x̃).P has type, µα.?(S̃).α.
In the last case rec X.P has type T ′′ = T , the type of P [•/X ], and
then rec X.(x̃).P has type ?(S̃).T ′′ = Ṫ ′ for some S̃. In particu-
lar the step from µα.T ′, the type of rec X.P , to Ṫ = µα.?(S̃).T ′

is not straightforward. We have
(TIN)

Γ, x̃ : S̃;X : V ;U ` P : T ′[V /α];U ; ∅

Γ;X : V ;U ` (x̃).P : ?(S̃).T ′[V /α];U ; ∅
for some unknown V then in order to apply (TREC) we must have
V =?(S̃).T ′[V /α] and by Lemma 4.24, V ≶ µα.?(S̃).T ′ and we con-
clude by rule (TWEAK).

• rules (TOUT), (TRET), (TCHOICE) and (TBRANCH) are similar to the previous
case but (TBRANCH) requires an inner induction on the number of la-
bels.

• rule (TDEF) with Ṗ = v.P and Γ;X : T ;U ` P : T ;U ; ∅. By hy-
pothesis X /∈ fpv(P ) then P [•/X ] = P . Applying the Strengthening
Lemma we have Γ; ∅ ` P [•/X ] : T ;U ; ∅ which concludes by an
application of the rule (TDEF) since Ṫ ′ = Ṫ and U̇ ′ = U̇ .

• rules (TINV) and (TSES) similar to the previous case.

• rule (TWEAK) follows by induction and by the transitivity of ≶.

• rule (TPIPE) with Ṗ = P > x̃ > Q. The thesis follows by induction
on Q if Γ; ∅ ` P :!(S̃); end;L1 for some S̃,L1 otherwise we have
Γ; ∅ ` Ṗ [•/X ] : end; end;L for some L with Ṫ ′ = Ṫ and U̇ ′ = U̇ .
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• (TWEAK). We have Ṗ = P and Γ; ∅ ` P [•/X ] : T ′;U ′; ∅ implies
by induction Γ; ∅ ` rec X.P : T ;U ; ∅. Let T ′≤ s.t. T ′≤ ≤ T ′. If
T ′ = • then T ′≤ = • and T = end which concludes this case. If
T ′ = T ′′[•/α] for some T ′′ then T ′≤ = T ′′≤[•/α] for some T ′′≤. By
Lemma 4.21, T ′′[•/α] ≤ T ′′≤[•/α] implies µα.T ′′ ≤ µα.T ′′≤ which
concludes.

• for the remaining rules the thesis follows directly by induction.

We need the corresponding lemma for s̀d in the opposite direction
from processes with free variables to processes with a •. This time we
have a direct correspondence between process variables and type vari-
ables.

Lemma 4.27. If Γ; Θ, X : αX ;αX s̀d P : T ;U ;L then Γ,Θ s̀d P [•/X ] :
T [•/αX ];U [•/αX ];L

Proof. The proof is by straightforward induction on the typing derivation
of P with case analysis on the last applied rule. Without loss of generality
we assume • does not appear in the syntax tree of P . As usual base cases
are (TNILSD) and (TPVARSD). In the last case we have two sub-cases depend-
ing on whether Ẋ = X or not. In the inductive cases when the conclusion
of a rule can produce end as a type (e.g. (TPIPESD)) the thesis follows since
end[•/αX ] = end for any αX . We report only cases when the last ap-
plied rules are (TRECSD) and (TPARLRSD). We have Ṗ = rec Y.P and Y 6= Ẋ

by hypothesis. Let X = Ẋ , we have by induction on P that Γ; Θ, X :
αX ;αX ` P : T ;U ;L implies Γ,Θ s̀d P [•/X ] : T [•/αX ];U [•/αX ];L.
We have three cases for T [•/αX ] and three for U [•/αX ] depending of
the results of the function µαY used in the conclusion of rule (TREC). Let
T ∈ T ∪ U if µαY (T ) = end then µαY (T [•/αX ]) = end which concludes,
if µαY (T ) = T then µαY (T [•/αX ]) = T [•/αX ] which concludes and if
µαY (T ) = µαY .T then µαY (T ) = µαY .T [•/αX ] since αX 6= αY by the
fact that X 6= Y which concludes. When the last applied rule is (TPARLRSD)

we have Γ; Θ, X : αX ;αX s̀d Pi : Ti;Ui;Li for i ∈ {1, 2} and Γ; Θ, X :
αX ;αX s̀d P1|P2 : T1 ∪T2 ∪ {end};U1 ∪U1 ∪ {end};L1 ∪L2. By induction
Γ; Θ s̀d Pi[•/X ] : Ti[•/αX ];Ui[•/αX ];Li and we can conclude with Γ; Θ s̀d

(P1|P2)[•/X ] : (T1∪T2∪{end})[•/αX ]; (U1∪U1∪{end})[•/αX ];L1∪L2.

The next proposition relates the free variables of the set T w.r.t to the
domain of Θ. This fact is important since ≤ is defined only for closed
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types, then the lemma guarantees the subtyping is defined if Θ = ∅, i.e.
in rules (TDEFSD), (TINVSD) and (TSESSD).

Lemma 4.28. If Γ; Θ s̀d P : T ;U ;L then fv(T ) ⊆ dom(Θ).

Proof. By straightforward induction on the typing of P .

The following is another simpler property of s̀d which we are going
to use to state its soundness.

Lemma 4.29. If Γ; Θ s̀d P : T ;U ;L then |T | ≥ 1 and |U| ≥ 1

Proof. The proof is by straightforward rule induction on the rules for
Γ; Θ s̀d P : T ;U ;L.

The soundness theorem proves that a judgment Γ; ∅ s̀d P : T ;U ;L is
correct if both there exists the greatest lower bound of T and there exists
a type U s.t. U ≤ U and U ≤ U which we shall indicate with U ≶ U .
The greatest lower bound of T is indicated with

∧
T defined point-wise

exploiting Lemma 4.29 and properties of the meet in Lemma 3.14.
The theorem is formulated for closed processes, i.e. we require Θ to

be ∅. With this formulation however we cannot directly exploit the in-
duction in the rule (TRECSD) since the rule adds new ssumptions in Θ. The
solution is to replace the occurrence of a free process variable with a •
and then to use the induction hypothesis on the resulting process. We
can conclude thanks to the two previous lemmas that give a direct corre-
spondence from the substituted process with the original one.

Theorem 4.30 (Soundness). Let Γ; ∅ s̀d P : T ;U ;L. If T =
∧
T is defined

and there exists U s.t. U ≶ U then Γ; ∅ ` P : T ;U ;L.

Proof. The proof is by induction on the derivation of Γ; Θ s̀d P : T ;U ;L
with case analysis on the last applied rule. Without loss of generality we
assume • does not appear as a subprocess of P and consequently in the
syntax tree of any types in T . The only base case, is when the rule (TNILSD)

is applied then Γ; ∅ s̀d 0 : {end}; {end}; ∅ and Γ; ∅ s̀d 0 : {end}; {end}; ∅.
In the inductive cases if the last applied rule is:

• (TRECSD) we have Ṗ = rec X.P . Given that Γ;X : αX ;αX s̀d

P : T ;U ; ∅ and fv(T ) ⊆ fv(U) ⊆ {αX} by Lemma 4.28, and
Γ; ∅ s̀d rec X.P : µαX(T );µαX(U); ∅ we must prove Γ; ∅ `
rec X.P : T ;U ; ∅ and T =

∧
µαX(T ) and U ≶ U . We proceed

as follows, since we cannot directly exploit the induction on P we
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reason on P [•/X ] instead. By Lemma 4.27 applied to P we have
Γ; ∅ s̀d P [•/X ] : T [•/αX ];U [•/αX ]; ∅. Now the induction hypothesis
gives Γ; ∅ ` P [•/X ] : T1;U1; ∅ for some T1 and U1. We consider case
analysis for types in T , case analysis for U is similar and follows
by Lemma 4.25. If • ∈ T then it must be the case

∧
T = • (since

no other type is smaller than •) and by induction T1 = •. The re-
sult follows since by Lemma 4.26, Γ; ∅ ` P [•/X ] : T1;U1; ∅ implies
Γ; ∅ ` rec X.P : end;U2; ∅ for some U2 and µαX(αX) = end. If
T ′[•/αX ] ∈ T then it must be by induction that T1 =

∧
(T [•/α]).

By Lemma 4.26 we have Γ; ∅ ` P [•/X ] : T1;U1; ∅ implies Γ; ∅ `
rec X.P : µα.T2;U2; ∅ for some U2 where T2[•/α] = T1 and Lemma
4.23 implies µα.T2 =

∧
(µα.T ) which allows to conclude. The last

case when T ′ ∈ T and T ′ 6= T ′′[•/α] for any T ′′ follows directly by
induction, by Lemma 4.26 and by the fact that µαX(T ′) = T ′.

• (TDEFSD) we have Ṗ = a.P and Γ; ∅ s̀d P : T ;U ;L and Γ ` a : [T ] and
T ≤ T which is valid since by Lemma 4.28, fv(T ) = ∅. By induction
we know that Γ; ∅ ` P : T ′;U ;L holds if T ′ =

∧
T and U ≶ U . The

result follows since T ≤ T ′ applying the rule (TWEAK) first and rule
(TDEF) then.

• (TSESSD) similar to the previous case.

• (TINVSD) we have Ṗ = v.P and Γ; ∅ s̀d P : T ;U ;L and Γ ` v : [T ] and
T ≤ T which is valid since by Lemma 4.28, fv(T ) = ∅. By induction
we know that Γ; ∅ ` P : T ′;U ;L holds if T ′ =

∧
T and U ≶ U . The

result follows since T ′ ≤ T and T ′ ≤ T and we conclude applying
the rule (TWEAK) first and rule (TINV) then.

• (TINSD) we have Ṗ =?(x̃).P and Γ; ∅ s̀d P : T ;U ;Lwith Γ ` x̃ : S̃. By
induction we know that Γ; ∅ ` P : T ;U ;L if T =

∧
T and U ≶ U .

The fact that ?(S̃).
∧
T implies

∧
?(S̃).T follows by definition of

meet relation.

• (TOUTSD) similar to the previous case.

• (TRETSD) we have Ṗ = return ṽ.P and Γ; ∅ s̀d P : T ;U ;L with
Γ ` ṽ : S̃. By induction we know that Γ; ∅ ` P : T ;U ;L if T =

∧
T

and U ≶ U . With T we are fine, regarding U we conclude with
?(S̃).U since ?(S̃).U ≶?(S̃).U .
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• (TCHOICESD) we have Ṗ = 〈l〉.P and Γ; ∅ s̀d P : T ;U ;L. By induction
we know that Γ; ∅ ` P : T ;U ;L if T =

∧
T and U ≶ U . The result

follows with Γ; ∅ ` 〈l〉.P : ⊕{l : T};U ;L since ⊕{l :
∧
T } implies∧

⊕{l : T } by definition of meet relation.

• (TBRANCHSD) we have Ṗ = Σni=1(li).Pi and Γ; ∅ s̀d Pi; T1;Ui;L and by
induction that Γ; ∅ ` Pi : Ti;Ui if Ti =

∧
Ti and Ui ≶ Ui. First of all

(sinceU ≶ U1 andU ≶ U2 impliesU ≶ U1∪U2) we use rule (TWEAK) n
times in order to have Γ; ∅ ` Pi : Ti;U ;L where U ≶ Ui for all i. Re-
garding the T -component we notice that

∧
(T1 ∪ T2) =

∧
T1 ∧

∧
T2

by definition. Moreover, &{l1 :
∧
T1, . . . , ln :

∧
Tn} =

∧
(&{l1 :

T1, . . . , ln : Tn}) by definition of meet relation. We conclude since
letting I = {1, . . . , n},

∧
&{same(li : Ti)i∈I} = &{same(li :∧

Ti)i∈I} (this fact can be easily proved by induction exploiting
the two properties mentioned above) and applying rule (TWEAK) as
many times as necessary to type n processes having the same label
with the greatest lower bound of the types returned by the induc-
tive hypothesis relative to these processes, we can conclude with
rule (TBRANCH) Γ; ∅ ` Ṗ :

∧
&{same(li : Ti)i∈I};U ;L.

• (TPARLRSD) we have Ṗ = P |Q and the inductive hypothesis holds for
both Γ; ∅ ` P : T1;U1;L1 and Γ; ∅ ` P : T2;U2;L2 and T1, U1, T2,
U2 satisfy the theorem hypothesis. However, the conclusion of rule
(TPARLRSD) adds end in the two resulting types which means that T1,
U1, T2, U2 must be equal to end because the only type less than end
is end itself then we can conclude with either (TPARL) or (TPARR).

• (TPIPESD) we have Ṗ = P > x̃ > Q. If Γ; ∅ s̀d P : {!(S̃)}; {end};L1

by induction it must be Γ; ∅ ` P :!(S̃); end;L1 and then the result
follows directly by inductive hypothesis on the typing derivation
of Q. If Γ; ∅ s̀d P : {end}; {end};L1 then Γ; ∅ ` P : end; end;L1 and
the result follows for Ṫ = end and U̇ = end.

• remaining rules follow directly by induction.

We note that the side conditions T =
∧
T and U ≶ U , in the previ-

ous theorem, can be self-checked by the system itself creating two fresh
services as follows: let a, b s.t. {a, b} ∩ fn(P ) = ∅ if Γ; ∅ ` P : T ;U ;L then
Γ, a : U, b :

∧
T ; ∅ ` a.b.P : end; end;L and Γ; ∅ ` (νa)(νb)a.b.P : T ;U ;L.
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Starting from the syntax directed type system we define an algorithm
to extract a set C of constraints. We use a type variable when a particular
type is unknown. The algorithm INF in Figure 22 takes a process P with-
out free process variables (i.e. Θ is empty) and with every bound and free
names different (we write Γ ∪ {m : S} and Γ ∪ {x : S} to mean Γ,m : S
and Γ, x : S). Together with P the algorithm also expects a typing envi-
ronment Γ containing type assumptions on free names (each assumption
can be either a type variable or a type inserted for type checking pur-
poses) and returns a set C of constraints over type variables, the set of
types T of the current session, the type U of the parent session and the
set L of opened session names. (In the algorithm {T ≤ T} is a shorthand
for {T ′ ≤ T | T ′ ∈ T }.) VALUEINF is the counterpart of the algorithm for
values, it takes a value and an environment Γ and returns the type of the
value.

In the following we use: σ, ρ, . . . for substitutions, the juxtaposition
σ′σ for substitution composition, σT for the result of the simultaneous
substitution σ applied to the free variables of T and σT ,σC for the result
of the simultaneous substitution applied to each element in the set. We
write σ � C if σ is a substitution s.t. the entire set of constraints σC holds.
The INF algorithm is sound and complete w.r.t. the typing rules in the
following sense:

Proposition 4.31 (Soundness and Completeness of INF). Let
INF(P,Γ,Θ) = (C, T ,U , L) and σ a substitution s.t. (fv(T ) ∪ fv(U)) ∩
dom(σ) = ∅. Then σ � C iff σΓ; Θ s̀d P : T ;U ;L.

Proof. ⇒) The proof is by induction on the recursive structure of a run of
INF(P,Γ,Θ) with case analysis on the last applied rule. We sketch some
inductive cases. When the last applied rule is:

• relative to service definition we have Ṗ = a.P . By induction σ � C
(the set of constraints generated by INF for P , Γ, Θ) implies σΓ; ∅ s̀d

P : T ;U ;L. By hypothesis also holds that σ � C ∪ {α ≤ T } ∪

{Γ(a) = [α]} then we have
(TDEFSD)
σΓ; ∅ s̀d P : T ;U ;L σΓ ` a : [σα] σα ≤ T

σΓ; ∅ s̀d a.P : U ; {end}; L
which concludes.

• relative to the return construct, (TRETSD) we have Ṗ = return ṽ.P .
By induction σ � C (the set of constraints generated by
INF for P , Γ, Θ) implies σΓ; Θ s̀d P : T ;U ;L and then

(TRETSD)
σΓ; Θ s̀d P : T ;U ;L σΓ ` ṽ : σS̃

σΓ; Θ s̀d return ṽ.P : T ; !(S̃).U ;L

which concludes.
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VALUEINF(x,Γ)= Γ(x) VALUEINF(s,Γ)= Γ(s) VALUEINF(n,Γ)= (int)
INF(0,Γ,Θ)= (∅, {end}, {end}, ∅)
INF(a.P ,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ, ∅)

in (C ∪ {α ≤ T } ∪ {Γ(a) = [α]},U, {end}, L) (where α fresh)
INF(v.P ,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ, ∅)

in (C ∪ {T ≤ α} ∪ {Γ(v) = [α]},U, {end}, L) (where α fresh)
INF((x1, . . . , xn).P ,Γ,Θ)=

let (C, T ,U, L)=INF(P,Γ ∪ {x1 : β1, . . . , xn : βn},Θ) β1, ., βn fresh
in (C,?(β1, . . . , βn).T ,U, L)

INF(〈v1, . . . , vn〉.P ,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ,Θ) in
let S1=VALUEINF(v1,Γ)......Sn=VALUEINF(vn,Γ)
in (C,!(S1, . . . ,Sn).T ,U, L)

INF(return v1, . . . , vn.P ,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ,Θ) in
let S1=VALUEINF(v1,Γ)......Sn=VALUEINF(vn,Γ)
in (C, T ,!(S1, . . . ,Sn).U, L)

INF(if v1 = v2 then P else Q,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ,Θ) in
let (C1, T1,U1, L)=INF(Q,Γ,Θ) in
let S1=VALUEINF(v1,Γ) S2=VALUEINF(v2,Γ)
in (C ∪ C1 ∪ {S1 = S2}, T ∪ T1,U ∪ U1, L)

INF((νa)P,Γ,Θ)=INF(P,Γ ∪ {a : β},Θ) (where β fresh)
INF((νr)P,Γ,Θ)=

let (C, T ,U, L)=INF(P,Γ ∪ {r+ : [α1], r− : [α2]},Θ) (where α1, α2 fresh)
in (C ∪ {α1 = α2}, T ,U, L \ {r+, r−})
(where L ∩ {r+, r−} = {r+, r−} or ∅)

INF(P |Q,Γ,Θ)= let (C, T ,U, L1)= INF(P,Γ,Θ) in
let (C1, T1,U1, L2)=INF(Q,Γ,Θ) in
if T =={end} and U=={end} then (T2,U2)=(T1,U1)
else if T1=={end} and U1=={end} then (T2,U2)=(T , U)
else (T2,U2)=(T ∪ T1 ∪ {end},U ∪ U1 ∪ {end})

in (C ∪ C1, T2,U2, L1 ] L2)
INF(Σni=1(li).Pi,Γ,Θ)=

let (C1, T1,U1, L)=INF(P1,Γ,Θ)......(Cn, Tn,Un, L)=INF(Pn,Γ,Θ)
U=
⋃
i Ui i ∈1 . . .n

in (C1 ∪ . . . ∪ Cn,&{same(l1 : T1, . . . , ln : Tn)},U, L)
INF(〈l〉.P ,Γ,Θ)=let (C, T ,U, L)= INF(P,Γ,Θ) in (C,⊕{l : T },U, L)
INF(P > x1, . . . , xn > Q,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ, ∅)

in let(C1, T1,U1, ∅)=INF(Q,Γ ∪ {x1 : S1, . . . , xn : Sn},Θ)
in if T =={end} and U=={end} then
(C ∪ C1, {end}, {end}, L)

else if T =={!(S̃)} and U=={end} then
(C ∪ C1, T1,U1, L)

else error!!!
INF(rp . P ,Γ,Θ)= let (C, T ,U, L)=INF(P,Γ, ∅)

in (C ∪ {α ≤ T } ∪ {Γ(rp) = [α]},U, {end}, (L ] {rp}))
(where α fresh)

INF(rec X.P ,Γ,Θ)= let (C, T ,U, ∅)=INF(P,Γ,Θ ∪ {X : αX ;αX})
in (C, µα(T ), µα(U), ∅)

INF(X,Γ,Θ)= (∅, {(fst Θ(X))}, {(snd Θ(X))}, ∅)

Figure 22: The algorithm to extract constraints in Ocaml-like syntax
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⇐) The proof is by induction on the recursive structure of a run of
INF(P,Γ,Θ) with case analysis on the last applied rule. The proof is al-
most similar to the if part with inverse implications

• service restriction; We have Ṗ = (νa)P and σΓ; Θ ` (νa)P : T ;U ;L
and by induction σΓ, a : σβ; Θ s̀d P : T ;U ;L implies σ � C (the
set of constraints generated by INF for P , Γ, a : β and Θ) which
concludes.

• parallel composition: We have Ṗ = P1|P2 and by induction
σΓ; Θ s̀d Pi : Ti;Ui;L σ � Ci and INF(Pi,Γ,Θ) = (Ci, Ti,Ui) where
i ∈ {1, 2}. By hypothesis (fv(Ti)∪ fv(Ui))∩ dom(σ) = ∅ then it must
be the case that either T1 = end and U1 = end or T2 = end and
U2 = end or neither. INF mimes all the rules for parallel composi-
tion and the result follows since σ � C1 ∪ C2.

Some observations about the previous theorem follow. The first in-
teresting fact is that, regarding the process environment Θ, we do not
need any solving substitution σ since all the work is done by the syn-
tax directed type system (and the relative proofs). The restriction of the
domain of the solving substitution is also due to the fact that such sub-
stitution should not interfere with the work done by the type system.

We now, give the solve algorithm which takes a set of constraints C
and returns success if there exists a substitution σ that solves the set of
constraints, i.e. σ � C, or it fails otherwise. Let (C, T ,U , ) = INF(P,Γ, ∅),
we apply the solve algorithm defined in Figure 23 on C ∪ {(αt ≤ T )|T ∈
T } ∪ {(αu ≤ U)|U ∈ U} where both αt and αu are fresh. The semantic
of the match is Ocaml-like but with a slight abuse of notation we assume
pattern-matching over sets is possible (while we had to implement it in
the running version of the algorithm).

It easy to see that each step preserves the solvability of the original
constraints. Some comments about the algorithm follow. In line 1 we
solve the unification constraints and in a similar manner in line 2 we
solve inequality using the most general syntactic unifier σT1≤T2 (notice
the precondition of the rule). In lines 3 and 4 we compute the meet and
the join resulting after the computation of the most general syntactic uni-
fier. In few words we first compute a substitution s.t. T1 ∧T2 or T1 ∨T2 is
defined using the syntactic unifier relative to the meet exists σT1∧T2 then
we compute a representant of the intersection returned by the algorithm
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let rec solve C = match C with
1 |S1 = S2, C′ -> solve σS1=S2C

′

2 |T1 ≤ T2, C′ when fv(T1) ∪ fv(T2) = fcv(T1) ∪ fcv(T2) -> solve σT1≤T2C
′

3 |α ≤ T1, α ≤ T2, C′ -> solve σT1∧T2 (C′, α ≤ T1 ∧ T2)

4 |T1 ≤ α, T2 ≤ α, C′ -> solve σT1∧T2
(C′, T1 ∧ T2 ≤ α)

5 |α ≤ T1, T2 ≤ α, C′ -> solve C′, T2 ≤ T1, α ≤ T1

6 |α1 = α2, α1 ≤ T1, α2 ≤ T2, C′ -> solve C′, T1 ≤ T2
7 |T ≤ T1, C′-> solve C′
8 | -> success

Figure 23: The solving algorithm

in Figure 6 with the substituted types as input. Line 5 is relative to the
invocation by a client to a service: we use the transitivity to merge the
two definitions. We also remember the equation relative to the service
since yet another client can be later discovered by some substitution due
to the service name extrusion. Line 6 joins the two sides of a session. Dur-
ing the running of INF we used the equation α1 = α2 as a bookmark to
remember that both α1 and α2 are specifications relative to the same ses-
sion with dual polarity. Here we join the two equations, notice also that
there does not exist in C′ any other inequality either of the form α1 ≤ U1

or of the form α2 ≤ U2 otherwise line 4 would be applied. We can also
remove the bookmark equation since session delegation is not allowed
in CST then the relative equations are not necessary anymore.

It is not directly reported here but of course the algorithm fails if one
of the unifier does not exist. Finally notice, the low complexity of solve,
i.e. |C|2 is a good complexity lover bound since the worst case is when we
should apply |C|/2 times line 5. Further the size of |C|, apart for the uni-
fication constraints, depends only on the number of service invocations,
service declarations and sessions in the input process.

Lemma 4.32. solve terminates.

Proof. Observe that, at each iteration, the algorithm decrements either
the overall number of constraints or the number of constraints of the
form α ≤ T1 and T2 ≤ α.

As already discussed the most general syntactic unifiers, σT1≤T1 and
σT1∧T1 , are the most general unifier if the set of free variables and the
set of free communicated variables coincide. The next lemma proves that
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for set of constraints generated by INF we are guaranteed that the most
general syntactic unifier σT1∧T2 is in fact the most general unifier when Θ
is empty. The notion of free variables is extended point-wise to Θ using
fv(Θ).

Lemma 4.33. Let C s.t. (C, , , ) = INF(P,Γ,Θ). If α ≤ T ∈ C then (fv(T ) \
fcv(T )) ⊆ fv(Θ) and if T ≤ α ∈ C then (fv(T ) \ fcv(T )) ⊆ fv(Θ).

Proof. The proof is by straightforward induction on the recursive struc-
ture of a run of INF(P,Γ,Θ) with case analysis on the last applied
rule.

Finally the main theorem which asserts the validity of our solve al-
gorithm for closed processes without free names. The condition on the
domain of σ says that we want a minimal substitution w.r.t. to the free
variables in the set of constraints, moreover this allows the application
of Lemma 3.33.

Theorem 4.34. Let C s.t. (C, , , ) = INF(P, ∅, ∅) then solve C = success if
and only there exists σ such that σ � C and dom(σ) ⊆ var(C).

Proof. ⇒) The proof is by induction on the recursive structure of a run
of solve C with case analysis on the last applied rule. However the in-
duction does not work directly since the number of elements in the con-
straint set do not decrease at each interaction. The well founded order we
are going to define is: C < C′ if |C| < |C′| or if |C| = |C′| and C contains less
equations of the form α ≤ T1 and T2 ≤ α than C′. In the base case, when
the line 8 of solve is applied then solve is invoked with the empty set
of constraints and ∅ � ∅ that is an empty set of constraints is solved by
the empty substitution. In the inductive case when the last line is:

• the line 1 of solve. We have by induction that if solve σS1=S2C′ =
success there exists σ s.t. σ � σS1=S2C′. The result follows since
by Lemma 3.33, σS1=S2σ � C′ and σS1=S2σ � C′, S1 = S2. The
composition of σS1=S2σ is defined since by induction dom(σ) ⊆
var(σS1=S2C′) which implies dom(σS1=S2)∩dom(σ) = ∅. We implic-
itly assume this step in the next cases.

• the line 2 of solve is similar to the previous case but we use Propo-
sition 3.30.

• the line 3 of solve. We have by induction that if
solve σT1∧T2(C′, α ≤ T1 ∧ T2) = success there exists σ s.t.
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σ � σT1∧T2(C′, α ≤ T1 ∧ T2). Then σT1∧T2σ � C′, α ≤ T1 ∧ T2 and
by definition of greatest lower bound σT1∧T2σ � C′, α ≤ T1, α ≤ T2

which concludes.

• the line 4 of solve. We have by induction that if
solve σT1∧T2

(C′, T1 ∧ T2 ≤ α) = success there exists σ s.t.

σ � σT1∧T2
(C′, T1 ∧ T2 ≤ α). Then σT1∧T2

σ � C′, T1 ∧ T2 ≤ α and
σT1∧T2

σ � C′, T1 ∨ T2 ≤ α by Lemma 3.13 and by definition of least
upper bound σT1∧T2

σ � C′, T1 ≤ α, T2 ≤ α which concludes.

• the line 5 of solve. We have by induction that if solve (C′, T2 ≤
T1, α ≤ T1) = success then there exists σ s.t. σ � C′, T2 ≤ T1, α ≤ T1

and then [T1/α]σ′ � C′, α ≤ T1, T2 ≤ α where σ′ is obtained from σ
removing the substitution for α (remember that another constraint
of the form α ≤ T3 cannot appear in C′ since service definitions
cannot be variables, that is α cannot be less than T1).

• line 6 of solve. We have by induction that if solve (C′, T1 ≤ T2)
then there exists σ s.t. σ � C′, T1 ≤ T2 and we must prove
σ′ � C′, α1 = α2, α1 ≤ T1, α2 ≤ T2 for some σ′. Since neither α2

nor α2 nor α1 appear elsewhere in C by session linearity, we have
[T1/α1 ][T1/α2 ]σ � C′, α1 = α2, T1 ≤ α1, α2 ≤ T2 which concludes
this case.

• the line 7 of solve. We have Ċ = C′, T ≤ T1 and by induction if
solve C′ = success there exists σ s.t. σ � C′. Moreover one can
easily prove (exploiting the hypothesis that the set of constraints
is returned by INF(P, ∅, ∅)) that if line 6 is applied either T = α or
T1 = α1 for some α, α1 which means that whatever substitution
which solves either α ≤ T1 or T ≤ α holds (otherwise another line
would be applied), let us take [T1/α]σ or [T /α1 ]σ respectively.

⇐) In the only if direction the proof shows that, each time, we always
choose the most general way to proceed without compromising the re-
sult. The easiest way to prove the proposition is to do it by induction on
the resolution steps of solve C and the result trivially holds by induction.
But we must pay attention and also prove that the substitution used in
the inductive hypothesis is implied by the premise, for example in line
1 we know that σ � σS1=S2C′ and we must show that σ′ � C′, S1 = S2

is implied for some σ′. Moreover, the reasoning is sound since solve is
defined for every constraints returned by INF.
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Likewise, when line 8 is applied, the empty set of constraints is solved
by the empty substitution. In the inductive case when

• line 1 is applied we must prove that σ � σS1=S2C is implied by
the premise. If ρ � C, S1 = S2 for some ρ then by definition of
mgu it must be ρ = σS1=S2ρ

′ and applying Lemma 3.33 we can
conclude since ρ′ � σS1=S2(C, S1 = S2). Notice that a less general
substitution than σS1=S2 would not allow us to conclude.

• lines 2 is applied, similar to the previous case using the fact that
σT1≤T2 with the fact that (when the set of free variables and the
set of free communicated variables coincide) is the most general
substitution that satisfies T1 ≤ T2 (Proposition 3.30).

• line 3 is applied we have ρ � α ≤ T1, α ≤ T2, C then it must be
the case that ρ = σT1∧T2σ

′ by Proposition 3.31 and Lemma 4.33 for
some σ′ which allows to conclude.

• line 4 is applied similar to the previous case.

• line 5 and line 6 and line 7. Regarding line 5 we must prove that
σ � C, α ≤ T1, T2 ≤ α is implied by σ � C, α ≤ T1, T2 ≤ T1 which
follows directly by transitivity. About line 6 observe that σ � α1 =
α2, α1 ≤ T1, α2 ≤ T2 implies σ � T1 ≤ α2, α2 ≤ T2 which concludes
by transitivity. Finally about line 7 observe that if σ � C′, α1 ≤ T1

then σ′ � C′ where σ′ is obtained from σ removing the substitution
relative to α1. The case when σ � C′, T1 ≤ α is similar and we are
done since line 7 is applied only for these constraints as we have
already discussed.

Solving the set of constraints generated by INF with an arbitrary Γ
can be an issue depending of what kind of assumptions are allowed.
If the user is allowed to insert only closed types as assumptions, then
solve still works, otherwise one need a very different algorithm since
for example assumptions inserted by the user can have mutual depen-
dencies.

Example 4.35. The constraints generated by INF for the process in
Example 4.1 are:
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αa ≤ µαY2 .&{l : ⊕{l1 : αY2}} αa ≤ µαY2 .&{l : ⊕{l2 : αY2}}

αa ≤ µαY1 .&{l : ⊕{l1 : αY1}} αa ≤ µαY1 .&{l : ⊕{l3 : αY1}}

µαX .⊕ {l : &{l1 : αX}} ≤ αa µαX .⊕ {l : &{l2 : αX}} ≤ αa
µαX .⊕ {l : &{l3 : αX}} ≤ αa µαX .⊕ {l : &{l4 : αX}} ≤ αa

The first group of two constraints is relative to the first definition of
service a, notice that the replication does not add any additional
constraint. The second line is relative to the second definition of a
and the third group of constraints is relative to service invocation.
After computing all intersections and unions for each group we have:

αa ≤ &{l : ⊕{l1 : µαY2 .&{l : ⊕{l1 : αY2}}, l2 : µαY2 .&{l : ⊕{l2 : αY2}}}

αa ≤ &{l : ⊕{l1 : µαY1 .&{l : ⊕{l1 : αY1}}, l3 : µαY1 .&{l : ⊕{l3 : αY1}}}

µαX .⊕ {l : &{l1 : αX , l2 : αX , l3 : αX , l4 : αX}} ≤ αa

in which remains an equation for each declaration/in-
vocation of a and after intersecting the two equations
relative to the two replies of a, remains to compute:

µαX .⊕ {l : &{l1 : αX , l2 : αX , l3 : αX , l4 : αX}} ≤ µαY .&{l : ⊕{l1 : αY , l2 : αY , l3 : αY }}

which holds. For brevity we wrote µαY .&{l : ⊕{l1 : αY , l2 : αY , l3 : αY }}
which is a minorant of the real intersection.

Example 4.36. We report the four main steps of solve applied to the
Example 4.2.

1 βa = [αa] βx = [αx] βb = [αb] αa ≤?(βx) !(βa) ≤ αx !(βb) ≤ αa αb ≤?(βx1 )

2 !([αb]) ≤?([αx]) !([αa]) ≤ αx αb ≤?(βx1 )

3 !([αa]) ≤?(βx1 )

4 success

Notice how we can solve directly also a list of constraints with circular
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dependencies.

4.5 Type inference or Type checking

Until now we have been vague in the usage of the terms type infer-
ence and type checking. Actually what we have done is a hybrid system
between type inference and type checking. A type checker takes in input
a process with the binders annotated and output true or false whether or
not the type annotations match the process behavior. This mean that the
user has to specify manually the type of each bound name, which can be
a real problem as the complexity of types increases very fast. On the other
hand type inference takes a process without type annotation and tries to
discover whether there exists a type assignment for the bound names
that makes the process well typed. Now it is clear that our solve algo-
rithm (Figure 23) neither requires the type annotations nor returns a full
type assignment. We tackled the problem from this perspective since it
is simpler but of course if solve algorithms are correct they must man-
age the real types at some point. Moreover since we are in presence of
subtyping we are able to return a list of inequalities that a type must sat-
isfies, not a closed equality; that is we are able to say “according to this
process the type of a certain service must respect these constraints” and
not always “the type of this service is this”.

We now informally describe the steps one has to follow to obtain in-
formation about types. First of all instead of leaving to INF the man-
agement of the standard type environment we directly input to INF
a type environment which already has a fresh type variable for each
bound name. Remember that INF inputs a process with each bound
name different from the free names and from the other bound names.
With this modification we have the control of types contained in the
typing environment. At this point the solve algorithm takes in input
the standard environment too and whenever it applies a substitution to
the set of constrains it applies the same substitution to each type con-
tained in the environment. Moreover instead of removing inequalities
we keep them into a list. When solve succeeds, in the environment we
will find a type variable for each bound name and in the list all con-
straints the type variable must obey. Here the modified version of solve:
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let rec solve (C,Γ,L) = match C with
1 |S1 = S2, C′ -> solve σS1=S2 (C′,Γ,L)

2 |T1 ≤ T2, C′ when fv(T1)∪fv(T2) = fcv(T1)∪fcv(T2) -> solve σT1≤T2 (C′,Γ,L)

3 |α ≤ T1, α ≤ T2, C′ -> solve σT1∧T2 (C′ ∪ {α ≤ T1 ∧ T2},Γ,L)

4 |T1 ≤ α, T2 ≤ α, C′ -> solve σT1∧T2
(C′ ∪ {T1 ∧ T2 ≤ α},Γ,L)

5 |α ≤ T1, T2 ≤ α, C′ -> solve (C′ ∪ {T2 ≤ T1} ∪ {α ≤ T1},Γ,
L ∪ {α ≤ T1, T2 ≤ α})

6 |α1 = α2, α1 ≤ T1, α2 ≤ T2, C′ -> solve (C′ ∪ {T1 ≤ T2},Γ,
L ∪ {α1 ≤ T1, α2 ≤ T2})

7 |T ≤ T1, C′-> solve (C′,Γ,L)
8 | -> (Γ,L)

The invocation of solve is intended with both C and Γ returned by INF
and L initially empty. In particular in lines 1 and 2 we apply the respec-
tive substitution to Γ and L too and in line 5 and 6 we save the couple of
constraints before removing them.

Example 4.37. Let us take the set of constraints generated in the Example
4.36

C
βa = [αa] βx = [αx] βb = [αb] αa ≤?(βx)

!(βa) ≤ αx !(βb) ≤ αa αb ≤?(βx1 )
Γ a : βa x : βx x1 : βx1 b : βb
L ∅

C !([αb]) ≤?([αx]) !([αa]) ≤ αx αb ≤?(βx1 )
Γ a : [αa] x : [αx] x1 : βx1 b : [αb]

L αa ≤?([αx]) !([αb]) ≤ αa

C !([αa]) ≤?(βx1 )
Γ a : [αa] x : [αb] x1 : βx1 b : [αb]

L αa ≤?([αb]) !([αb]) ≤ αa !([αa]) ≤ αb αb ≤?(βx1 )

Γ a : [αa] x : [αb] x1 : [αa] b : [αb]

L αa ≤?([αb]) !([αb]) ≤ αa !([αa]) ≤ αb αb ≤?([αa])

The last line is the result of solve: the environment and the constraints
it satisfies. For constraints contained in L we can use Lemma 4.25 (≤
implies≶) and by the symmetry of≶we have only: αb ≶?([αa]) and αa ≶
?([αb]). At this point, using unification of infinite trees (since ≶ implies
=) taking αa = µα.?([?([α])]) and αb =?[µα.?([?([α])])] we are ok.

Example 4.38. Let us take the set of constraints generated in the example
4.35, the modified solve returns:
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Γ a : [αa]
L αa ≤ (µαY2 .&{l : ⊕{l1 : αY2}} ∧ µαY2 .&{l : ⊕{l2 : αY2}}
∧µαY1 .&{l : ⊕{l1 : αY1}} ∧ µαY1 .&{l : ⊕{l3 : αY1}})
(µαX .⊕ {l : &{l1 : αX}} ∨ µαX .⊕ {l : &{l2 : αX}}
∨µαX .⊕ {l : &{l3 : αX}} ∨ µαX .⊕ {l : &{l4 : αX}}) ≤ αa

Here αa is not in a closed form but it is between the intersection and the
union of some inequalities.

In the previous example we might return the type of the service a,
but however this is not a desirable feature since in this manner we limit
the range of possibilities if we want to put into the system another def-
inition of the service a. For instance suppose we want to know the type
of a. To this end we remove inequalities relative to the service invocation
(since they are fulfilled by the fact the solve succeeds) and we retain
only those relative to the definition of a. At this point we can judge the
type of a as [µαY .&{l : ⊕{l1 : αY , l2 : αY , l3 : αY }}] (which is a minorant
of the real intersection but it is not a problem). Suppose we have another
specification of a which behaves like [µαY .&{l : ⊕{l1 : αY , l4 : αY }}] we
can only conclude that this specification is not compatible with the type
of a since µαY .&{l : ⊕{l1 : αY , l2 : αY , l3 : αY } ≤ µαY .&{l : ⊕{l1 :
αY , l4 : αY }} does not hold. However this is not the case since running
solve once again with the set of constraints in L together with the con-
straint αa ≤ µαY .&{l : ⊕{l1 : αY , l4 : αY }} we obtain the algorithm suc-
ceeds. Another problem is due to the fact that certain specifications give
raise to a type with type variables such as the service poly.(x).return x.
The only inequality we can extract from this specification is αpoly ≤?(β).
At this point one have two ways to proceed either say that αpoly is a poly-
morphic type such as ∀β.?(β) or instantiate β with some type. Both the
previous ways are wrong. The first one with polymorphism, since two
clients that use αpoly to send a value of different types are not typable
in our system. The second one, since we can instantiate β with a type
different from the actual client need.

4.6 A sound and complete syntax directed type
system

In previous section we discuss a very naive approach to the recon-
struction of recursive session types. Unfortunately the resulting system
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is not complete e.g. a : [!(int)]; ∅ ` rec X.a.〈5〉.X : end; end; ∅ holds but
it does not have a counterpart in s̀d. In this section we introduce a new
syntax directed type system sound and complete. It comes out that not
only the number of constraints grows faster than in the previous type
system but also that the constraints resolution algorithm has an expo-
nential complexity. We give details of the solving algorithm in the next
chapter, since it is also capable to solve constraints generated from HVK-
X calculus with session delegation.

The new syntax directed type system is reported in Figure 24.
We overload the symbol s̀d without confusion since type judgments

are of the form Γ; Θ s̀d P : T ;U ;L, i.e. sets disappear from judgments
because we generate a new constraint whenever the type system in Fig-
ure 20 required union among sets (namely, rules (TIFSD) and (TBRANCHSD),
notice the new definition of the function same). The recursion is handled
constraining also assumptions contained in the process typing environ-
ment (rule (TRECSD)) (notice rule (TRECSD) requires the consistency check
that in the previous type system was automatically solved by the func-
tion µα(T )) and the rule (TPARLRSD) is not necessary anymore. Other rules
are similar to the previous type system.

This time the syntax directed type system produces exactly the same
judgments as the non-syntax directed version.

Theorem 4.39 (Soundness). If Γ; Θ s̀d P : T ;U ;L then Γ; Θ ` P : T ;U ;L.

Proof. The proof is by induction on the typing derivation of Γ; Θ s̀d P :
T ;U ;L with case analysis on the last applied rule. In the base case when
the last applied rule is (TNILSD) we have Γ; Θ s̀d 0 : end; end; ∅ and Γ; Θ `
0 : end; end; ∅. In the base case when the last applied rule is (TPVARSD) we
have Γ; Θ, X : T ;U s̀d X : T ;U ; ∅ and then Γ; Θ, X : T ;U s̀d X;T ;U ; ∅.
In the inductive cases when the last applied rule is:

• (TIFSD) we have Ṗ = if v1 = v2 then P1 else P2 and Γ; Θ s̀d Pi :
Ti;Ui;Li and i ∈ {1, 2} and Γ; Θ s̀d Ṗ : T ;U ;L and T ≤ Ti and
Ui ≶ U . By induction Γ; Θ ` Pi : Ti;Ui;L. Since T ≤ Ti applying
(TWEAK) Γ; Θ ` Pi : T ;U ;L and we can conclude Γ; Θ ` Ṗ : T ;U ;L.

• (TRECSD) we have Ṗ = rec X.P and Γ; Θ s̀d Ṗ : T ;U ; ∅ and
Γ, X : T ;U ; Θ s̀d P : T ′;U ′; ∅ with T ≤ T ′ and U ≶ U ′. By in-
duction Γ; Θ s̀d P : T ′;U ′; ∅ and the result follows applying (TWEAK)

to replace T ′ with T and rule (REC) to conclude.
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(TNEWRSD)
Γ, r+ : [T ], r− : [T ]; Θ s̀d P : T ′;U ;L |L ∩ {r+, r−}| 6= 1

Γ; Θ s̀d (νr)P : T ′;U ;L \ {r+, r−}

(TNILSD)
Γ; Θ ` 0 : end; end; ∅

(TNEWSD)
Γ, a : S; Θ s̀d P : T ;U ;L

Γ; Θ s̀d (νa)P : T ;U ;L

(TIFSD)
Γ ` vi : S Γ; Θ s̀d Pi : Ti;Ui;L T ≤ Ti U ≶ Ui i = 1, 2

Γ; Θ s̀d if v1 = v2 then P else Q : T ;U ;L

(TRECSD)
Γ; Θ, X : T ;U s̀d P : (T ′;U ′; ∅)∗ T ≤ T ′ U ≶ U ′

Γ; Θ s̀d rec X.P : T ;U ; ∅

(TPVARSD)
Γ; Θ, X : T ;U s̀d X : T ;U ; ∅

(TSESSD)
Γ; Θ s̀d P : T ′;U ′;L Γ ` rp : [T ] T ≤ T ′

Γ; Θ s̀d r
p . P : U ′; end;L ] {rp}

(TDEFSD)
Γ; Θ s̀d P : T ′;U ;L Γ ` v : [T ] T ≤ T ′

Γ; Θ s̀d v.P : U ; end;L

(TINVSD)
Γ; Θ s̀d P : T ′;U ;L Γ ` v : [T ] T ′ ≤ T

Γ; Θ s̀d v.P : U ; end;L

(TINSD)
Γ, x̃ : S̃; Θ s̀d P : T ;U ;L

Γ; Θ s̀d (x̃).P : ?(S̃).T ;U ;L

(TOUTSD)
Γ; Θ s̀d P : T ;U ;L Γ ` ṽ : S̃

Γ; Θ s̀d 〈ṽ〉.P : !(S̃).T ;U ;L

(TBRANCHSD)
I = {1, . . . , n} ∀i ∈ I, Γ; Θ s̀d Pi : Ti;Ui;L U ≶ Ui

Γ; Θ s̀d Σni=1(li).Pi : &{same((li : Ti)i∈I)};U ;L

(TRETSD)
Γ; Θ s̀d P : T ;U ;L Γ ` ṽ : S̃

Γ; Θ s̀d return ṽ.P : T ; !(S̃).U ;L

(TCHOICESD)
Γ; Θ s̀d P : T ;U ;L

Γ; Θ s̀d 〈l〉.P : ⊕{l : T};U ;L

(TPARLSD)
Γ; Θ s̀d P : T ;U ;L1 Γ; Θ s̀d Q : end; end;L2

Γ; Θ s̀d P |Q : T ;U ;L1 ] L2

(TPARRSD)
Γ; Θ s̀d P : end; end;L1 Γ; Θ s̀d Q : T ;U ;L2

Γ; Θ s̀d P |Q : T ;U ;L1 ] L2

(TPIPESD)
Γ; ∅ s̀d P : T1; end;L Γ, x̃ : S̃; Θ s̀d Q : T2;U2; ∅ (T, U) = pipe(T1, T2, U2, S̃)

Γ; Θ s̀d P > x̃ > Q : T ;U ;L

same(l1 : T1, . . . , ln : Tn) =

 l1 : T1, same(l2 : T2 . . . , ln : Tn) if l1 /∈ {l2, . . . , ln}

same(l2 : T2, . . . , li : U, . . . , ln : Tn) if l1 = li and
U ≤ T1, Ti

same(l : T ) = l : T

Figure 24: Syntax directed typing rules
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• (TSESSD) we have Ṗ = rp . P and Γ; Θ s̀d P : T ′;U ;L and Γ; Θ s̀d

Ṗ : end;U and Γ ` rp : [T ] and T ≤ T ′. By induction Γ; Θ ` P :
T ′;U ;L. The result follows applying (TWEAK) to replace T ′ with T
and (TSES) to conclude.

• (TDEFSD) similar to the previous case.

• (TINVSD) we have Ṗ = v.P and Γ; Θ s̀d P : T ′;U ;L and Γ; Θ s̀d Ṗ :
end;U and Γ ` v : [T ] and T ′ ≤ T or T ≤ T ′. The result follows
applying (TWEAK) to replace T ′ ≤ T with T and (TINV) to conclude.

• (TBRANCHSD) the result follows by induction on the typing of each
Pi and applying the rule (TWEAK) for each inequality generated by
same.

• remaining rules follows directly by induction.

But also the completeness of the type system holds, since the syntax
directed type system is able to simulate every judgments produced by `.

Theorem 4.40 (Completeness). If Γ; Θ ` P : T ;U ;L then there exists T ′,
U ′ s.t. Γ; Θ s̀d P : T ′;U ′;L and T ≤ T ′ and U ≶ U ′.

Proof. The proof is by induction on the typing derivation of Γ; Θ ` P :
T ;U ;Lwith case analysis on the last applied rule. In the base cases when
the last applied rule is (TNIL) the result follows directly. Otherwise, when
the last applied rule is (TPVAR) we have Γ; Θ, X : T ;U ` X : T ;U ; ∅ and
Γ; Θ, X : T ;U s̀d X : T ;U ; ∅ and the result follows by reflexivity of≤ and
≶. In the inductive cases when the last applied rule is:

• (TIF) we have Ṗ = if v1 = v2 then P1 else P2 and Γ; Θ ` Ṗ :
T ;U ;L. Moreover by induction hypothesis we have for i ∈ {1, 2}
that Γ; Θ ` Pi : T ;U ;L implies that there exist T1, T2, U1, U2 and
that Γ; Θ s̀d Pi : Ti;Ui;L with T ≤ Ti and U ≶ Ui. The result
follows by an application of the rule (TIFSD).

• (TREC) we have Ṗ = rec X.P and Γ; Θ ` Ṗ : T ;U ; ∅ and Γ; Θ, X :
T ;U ` P : T ;U ; ∅. By induction we have Γ; Θ, X : T ;U s̀d P :
T ′;U ′; ∅ for some T ′,U ′ s.t. T ≤ T ′ and U ≶ U ′ and an application
of the rule (TREC) concludes this case.
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• (TSES) we have Ṗ = rp . P and Γ; Θ ` P : T ;U ;L and Γ; Θ ` Ṗ :
end;U and Γ ` rp : [T ]. By induction Γ; Θ s̀d P : T ′;U ′;L for some
T ′, U ′ s.t. T ≤ T ′ and U ≶ U ′. The result follows applying (TSESSD).

• (TDEF) similar to the previous case.

• (TINV) we have Ṗ = v.P and Γ; Θ ` P : T ;U ;L and Γ; Θ ` Ṗ : end;U
and Γ ` v : [T ]. By induction Γ; Θ s̀d P : T ′;U ′;L for some T ′, U ′

and T ′ ≤ T or T ′ ≤ T which allows an application of the rule (TINV)

to conclude.

• (TIN) we have Ṗ = (x̃).P and Γ, x̃ : S̃; Θ ` P : T ;U ;L and Γ; Θ `
(x̃).P :?(S̃).T ;U ;L. By induction Γ, x̃ : S̃; Θ ` P : T ′;U ′;L where
T ≤ T ′ and U ′ ≶ U . The result follows since by definition of ≤,
?(S̃).T ≤?(S̃).T ′.

• (TOUT) and (TRET) similar to the previous case.

• (TCHOICE) similar to case for (TIN) together with the fact that ⊕{l :
T} ; ; ⊕{li : Ti}i∈I ≤ ⊕{l : T} holds for any ⊕{li : Ti}i∈I by
definition of ≤.

• (TBRANCH) we have Ṗ = Σni=1(li).Pi and Γ; Θ ` Pi : Ti;U ;L for all
i and Γ; Θ ` Ṗ : &{li : Ti}i∈J ;U ;L where J ⊆ I = {1, . . . , n}.
In addition ∀i∀j ∈ I i 6= j and li = lj implies Ti = Tj since
by well-formedness condition two equal labels cannot appear in
the type, that is at the type level the type system shrinks the type
relative to two branches with equal label until a common type is
found (if it exists). By induction Γ; Θ s̀d Pi : T ′i ;U

′
i ;L for some

T ′i and U ′i s.t. Ti ≤ T ′i and U ≶ U ′i . The last equality satis-
fies the theorem conclusion, but to conclude we must still prove
&{li : Ti}i∈J ≤ &{same(li : T ′i )i∈I} for each J ⊆ I and Ti ≤ T ′i . We
note that J contains less or equal branches than &{same(li : T ′i )i∈I}
by the well-formedness condition and in addition each time the
same function is computed with the second case (i.e. the case with
two equal labels) we have V ≤ T ′1 and V ≤ T ′i for some i but as
discussed above T1 = Ti then we can select V to be equal to Ti. At
this point the result follows by the definition of ≤.

• (TWEAK) follows directly by induction and by the transitivity of ≤.

• remaining rules follows directly by induction.
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We report in Figure 25 the corresponding algorithm to extract con-
straints from the type system in Figure 24. The most interesting rules
are: the rule relative to recursion which behaves exactly as the rule for
recursion in the previous type system adding a type variable in the as-
sumptions and both the rules for parallel composition and pipe which
non-deterministically have different returning values offered by means
of the or keyword. This is due to the fact that we cannot statically know
the types of P andQ in both the current protocol and the parent protocol.
Thus we can think of INF as returning a list of sets of constraints and we
must check if at least one constraint set in the list is satisfiable. Moreover,
here we do not try to solve the recursion on-the-fly (i.e. via the function
µα()) but instead we generate a constraint: it is a task of the constraint
solver algorithm to solve the recursion. In the case relative to the external
choice we use an overloaded function same similar to the original one but
in addition we collect a list of constraints too.

same(l1 : T1, . . . , ln : Tn) =


l1 : T1, same(l2 : T2 . . . , ln : Tn) if l1 /∈ {l2, . . . , ln}

same(l2 : T2, . . . , li : α, . . . , ln : Tn) if
l1 = li and
α ≤ T1, Ti
and α fresh

same(l : T ) = l : T

We abbreviate a list l1 : T1, . . . , ln : Tn as l̃ : T and we write (C, l̃′ : T ′) =
same(l1 : T1, . . . , ln : Tn) to obtain the resulting pair (the set of constraints
and the list of labels/types) from the above defined function and only
l̃′ : T ′ = same(l1 : T1, . . . , ln : Tn) to obtain the result from the function
defined in Figure 24. It is simple to see that the following lemma holds:

Lemma 4.41. Let (C, l̃′ : T ′) = same(l1 : T1, . . . , ln : Tn). If σ � C then
˜l′ : σT ′ = same(l1 : σT1, . . . , ln : σTn).

Proof. A direct consequence of the two definitions.

Also the correspondence theorem between INF and the type system
has a slight different formulation since the solving substitution is applied
to the process environment too.

Proposition 4.42 (Soundness and Completeness of INF). Let
INF(P,Γ,Θ) = (C, T, U, L). σ � C iff σΓ;σΘ s̀d P : σT ;σU ;L.
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VALUEINF(x,Γ)= Γ(x) VALUEINF(s,Γ)= Γ(s) VALUEINF(n,Γ)= (int)
INF(0,Γ,Θ)= (∅,end,end, ∅)
INF(v.P ,Γ,Θ)= let (C, T , U, L)=INF(P,Γ, ∅)

in (C ∪ {α ≤ T} ∪ {Γ(v) = [α]}, U,end, L) (where α fresh)
INF(v.P ,Γ,Θ)= let (C, T , U, L)=INF(P,Γ, ∅)

in (C ∪ {T ≤ α} ∪ {Γ(v) = [α]}, U,end, L) (where α fresh)
INF((x1, . . . , xn).P ,Γ,Θ)=

let (C, T , U, L)=INF(P,Γ ∪ {x1 : β1, . . . , xn : βn},Θ) β1, ., βn fresh
in (C,?(β1, . . . , βn).T , U, L)

INF(〈v1, . . . , vn〉.P ,Γ,Θ)= let (C, T , U, L)=INF(P,Γ,Θ) in
let S1=VALUEINF(v1,Γ)......Sn=VALUEINF(vn,Γ)
in (C,!(S1, . . . ,Sn).T , U, L)

INF(return v1, . . . , vn.P ,Γ,Θ)= let (C, T , U, L)=INF(P,Γ,Θ) in
let S1=VALUEINF(v1,Γ)......Sn=VALUEINF(vn,Γ)
in (C, T ,!(S1, . . . ,Sn).U, L)

INF(if v1 = v2 then P else Q,Γ,Θ)= let (C, T , U, L)=INF(P,Γ,Θ) in
let (C1, T1, U1, L)=INF(Q,Γ,Θ) in
let S1=VALUEINF(v1,Γ) S2=VALUEINF(v2,Γ)

in (C ∪ C1 ∪ {S1 = S2, α ≤ T1, α ≤ T2, α1 ≶ U1, α2 ≶ U2}, α, α1, L)
(where α, α1 fresh)

INF((νa)P,Γ,Θ)=INF(P,Γ ∪ {a : β},Θ) (where β fresh)
INF((νr)P,Γ,Θ)=

let (C, T , U, L)=INF(P,Γ ∪ {r+ : [α1], r− : [α2]},Θ) (where α1, α2 fresh)
in (C ∪ {α1 = α2}, T , U, L \ {r+, r−})
(where L ∩ {r+, r−} = {r+, r−} or ∅)

INF(P |Q,Γ,Θ)= let (C, T , U, L1)= INF(P,Γ,Θ) in
let (C1, T1, U1, L2)=INF(Q,Γ,Θ)
in (C ∪ C1 ∪ T1 = end, U1 = end, T , U, L1 ] L2)
or (C ∪ C1 ∪ T = end, U = end, T1, U1, L1 ] L2)

INF(Σni=1(li).Pi,Γ,Θ)=
let (C1, T1, U1, L)=INF(P1,Γ,Θ)......(Cn, Tn, Un, L)=INF(Pn,Γ,Θ)

in let (C′, l̃′ : T ′) = same(l1 : T1, . . . , ln : Tn)

in (C′ ∪ C1 ∪ . . . ∪ Cn ∪ {U ≶ U1, . . . , U ≶ Un},&{l̃′ : T ′},U,L)
where each type variables generated by same is fresh

INF(〈l〉.P ,Γ,Θ)=let (C, T , U, L)= INF(P,Γ,Θ) in (C,⊕{l : T}, U, L)
INF(P > x1, . . . , xn > Q,Γ,Θ)= let (C, T , U, L)=INF(P,Γ, ∅)

in let(C1, T1, U1, ∅)=INF(Q,Γ ∪ {x1 : S1, . . . , xn : Sn},Θ)
(C ∪ C1 ∪ {T = end, U = end}, {end}, {end}, L)
or (C ∪ C1 ∪ {T = !(β), U = end}, T1, U1, L)
where β fresh

INF(rp . P ,Γ,Θ)= let (C, T , U, L)=INF(P,Γ, ∅)
in (C ∪ {α ≤ T} ∪ {Γ(rp) = [α]}, U,end, (L ] {rp}))
(where α fresh)

INF(rec X.P ,Γ,Θ)= let (C, T , U, ∅)=INF(P,Γ,Θ ∪ {X : α1;α2})
in if nocuract(P ) then C = C ∪ {T = end}
in if noretact(P ) then C = C ∪ {U = end}
in (C ∪ {α1 ≤ T , α2 ≶ U}, α1, α2, ∅)
(where α1, α2 fresh)

INF(X,Γ,Θ)= (∅,(fst Θ(X)),(snd Θ(X)), ∅)

Figure 25: The algorithm to extract constraints in Ocaml-like syntax
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Proof. The proof is by induction on the recursive structure of a run of
INF(P,Γ,Θ) and it is almost similar to the proof of Proposition 4.31, we
report the inductive case relative to the recursion rule for the soundness
part of the proof and the inductive case relative to parallel composition
for the completeness part of the proof.

• We have Ṗ = rec X.P . Let C be the set of constraints
generated by INF(P,Γ,Θ). By induction σ � C implies
σΓ;σΘ, X : σT ′;σU ′ s̀d P : σT, σU ;L. By hypothesis also
holds σ � C ∪ {T ≤ T ′, U ≶ U ′} plus two optional con-
straints if either nocuract(P ) or noretact(P ) holds then we have

(TRECSD)
σΓ;σΘ, X : σT ′;σU ′ s̀d P : (σT, σU ; ∅)? σT ≤ σT ′ σU ≶ σU ′

σΓ;σΘ s̀d rec X.P : σT ′;σU ′; ∅
which con-

cludes.

• We have Ṗ = P1|P2 and by induction σΓ;σΘ ` Pi : σTi;σUi;Li
implies σ � Ci where Ci are the sets of constraints generated by INF
with input Pi for i ∈ {1, 2}. We have two cases if σT1 = end and
σU1 = end we conclude with σ � C1 ∪ C2 since σΓ;σΘ ` P |Q :
σT2;σU2;L1 ] L2 and INF(P |Q,Γ,Θ) = (C1 ∪ C2, T2, U2, L1 ] L2)
the other case σT2 = end and σU2 = end, follows since also
INF(P |Q,Γ,Θ) = (C1 ∪ C2, T1, U1, L1 ] L2) (remember we use the
or keyword to allows for both cases).

Example 4.43. We show the set of constraints generated by INF for the
Example 4.1. Actually the result is a list of sets of constraints due to the
various parallel compositions, but all except one contain the same con-
straints since no return action are performed. The different one has an
additional constraint αX1 = end.

end = end αX ≤ ⊕{l : &{l1 : α1, l2 : α2, l3 : α3, l4 : α4}} α1 ≤ αX α2 ≤ αX
α3 ≤ αX α4 ≤ αX αX ≤ αa α5 ≤ &{l : ⊕{l1 : αY2}} α6 ≤ &{l : ⊕{l2 : αY2}}
α7 ≤ α5 α7 ≤ α6 αY2 ≤ α7 αa ≤ αY2 α8 ≤ ⊕{l3 : αY1} α9 ≤ ⊕{l1 : αY1}

α10 ≤ α8 α10 ≤ α9 αY1 ≤ α10 αa ≤ α10

Compare the list of constraints generated in this example with the
corresponding list of constraints generated for the same example by the
previous INF algorithm. Moreover the solve algorithm defined if Fig-
ure 23 does not work anymore. As a simple counterexample consider the
constraint αX ≤ αa simply solve does not handle it or consider the con-
straints α1 ≤ αX and α2 ≤ αX the syntactic unifier relative to the meet
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relation is not the most general one because the set of free variables is
different from the set of communicated variables (Proposition 3.31).

We shall see in the next chapter that the set of constraints can be
solved but with an exponential cost.

4.7 Concluding remarks on CST

In this chapter we have introduced CST, a session-typed variant of
CaSPiS. First we have given a standard non syntax directed type system
which not only assigns a type to each value and session in a process but
checks session linearity. We have seen that session linearity is an impor-
tant fact to keep typability along reduction steps. As a direct consequence
of the subject reduction we have proved the so-called session safety, i.e.
that a well-typed program cannot goes wrong. The type system is non
deterministic in many ways: it allows the non-deterministic application
of the rule (TWEAK), it allows to choose arbitrary branches in each choices,
rules (TBRANCH) and (TCHOICE), and most importantly it guesses the type of
process variables in rule (TREC). The latter fact is quite problematic since
solving recursion involves a cyclic reasoning. Despite these problems the
non-determinism helps in the proof of theorems, which result simpler.

Then, we have proposed a syntax directed type system which uses
sets to multiplex types of different process-branches and on-the-fly res-
olution of the recursion. A type judgment in this set based type system
is correct if it exists the greatest lower bound of each element in the set.
Recursion resolution instead is based on the naive idea that if a process
has a certain type T then the same process with recursion has a type of
the form µα.T ′ where T ′ is obtained from T replacing the trailing oc-
currences of α with end. However this fact could not allow to achieve
the completeness of the type system since a process variable cannot be
nested inside a service like e.g. in rec X.a.X . Nevertheless we give a
constraint extraction algorithm which extracts a set of constraints to be
satisfied if and only if the process is well typed and an algorithm to solve
these constraints. Since half of the work is done by the syntax directed
type system it turns out that the solving algorithm has a quadratic com-
plexity with respect to the number of constraints in input. We also prove
that the solving algorithm is sound and complete w.r.t. the syntax di-
rected type system in the sense that it solves all the constraints generated
by the constraint extractor algorithm for a certain process and if it solves
a set of constraint then it is guaranteed that the process is typable.
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Finally we have introduced a new syntax directed type system which
is, this time, sound and complete. We also have given for this type sys-
tem a constraint extractor algorithm (sound and complete) and we have
ended the chapter observing the number of constraints generated by the
two different syntax directed versions of the type system for the same
process. Not only the number of constraints has an impressive growth
but the solving algorithm does not work anymore. The latter issue can
be overcome by using the solving algorithm defined in the next Chapter.
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Chapter 5

HVK-X a full session
calculus

5.1 Introduction

In this chapter we introduce a variant of the language described in
(76). The main difference with the original language is in the treatment
of recursion. Here we choose to keep the full recursion which is pro-
vided in the original proposal by means of process definitions. These two
paradigms in presence of replications are similar: one can be encoded in
the other and vice versa (provided that the number of process definitions
is finite (59)). We choose the general recursion to stay closer with CST and
the π-calculus. Moreover, the presentation of the language is simplified;
for instance we do not need all the structural congruence rules relative
to the process definitions. We call this calculus HVK-X from the initials
of the original authors together with X that stays for a general recursion
variable.

From the type system point of view, the main difference regards the
introduction of subtyping; by means of a specific weakening rule the type
system can replace a type of an active session with one of its subtypes.
The weakening rule is also used to insert at any time an assumption
about a session with type end. This characteristic resembles the type sys-
tem proposed in (26) while in the original proposal the ended sessions
can be inserted within specific rules. Successively we try to eliminate the
non determinism proposing a set of syntax directed rules from which
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we extract a set of constraints. The satisfiability of these constraints im-
plies the typability of the original process. We also study an algorithm to
automatically solve these constraints which is more complicated than the
previous solve (see Figure 23). This time the presence of session delega-
tion together with recursion and name extrusion results in an algorithm
with an exponential cost. In the previous solve we actively use the in-
tersection, here, to account for the presence of free variables, we merge
each constraint multiplexing them in each possible context. We prove the
soundness and the completeness of the proposed algorithm; while the
soundness holds the completeness direction holds for closed processes
without free names. This limitation is also due to the high complexity
solving locally a set of constraints.

We conclude providing two encoding functions from HVK-X to π-
calculus and from HVK-X to CST. Instead of proving some equivalence
between the operational rules of two calculi (62) we prove the goodness
of our encodings showing the correspondence between type systems. In
particular, for the first encoding we prove the soundness and the com-
pleteness of the proposed type system with respect to the simply typed
π-calculus. For the second encoding instead we prove the soundness and
the completeness of the proposed type system with respect to the type
system proposed in Chapter 4. This result is not obvious due to the sub-
stantial differences between these calculi and can be viewed as the proof
of the existence of the solving algorithm which is missed at the end of
the previous chapter. In fact we can use both encodings to check the
well-typedness for π-calculus and CST by implementing just the one for
HVK-X. On the other hand encodings can be used to find problems in
different type systems; in fact thanks to this encoding we discovered a
lot of problems in the earlier version of CST type system.

Background. The calculus used here was first proposed in (76) and in-
spired on (37) where session were considered for the fist time. We modify
the original proposal removing process definition replaced by the gen-
eral recursion. We however modified typing rules since our main con-
cern is about type inference. All remaining contents are introduced here.

5.2 Syntax and operational semantics

As in the case of CST we assume an infinite collection r, s . . . of session
names, an infinite collection a, . . . of service names, an infinite collection
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P,Q ::= 0 (nil)
| v(x).P (session acceptance)
| v(x).P (session request)
| κ!(ṽ).P (output)
| κ?(x̃).P (input)
| κ!(l).P (label selection)
| Σni=1κ?(li).Pi (label branching)
| κ!〈〈κ′〉〉.P (session sending)
| κ?((x)).P (session receiving)
| if v = w then P else Q (if-then-else)
| P |Q (parallel)
| (νm)P (restriction)
| rec X.P (recursion)
| X (process variable)

v, w ::= x, y, . . . (variable)
| a (service name)
| n (integers)

κ ::= x,y, . . . (session var.)
| rp (session)

Figure 26: Syntax of HVK-X

of variables x, y, . . ., an infinite collection of process variables X,Y, . . .
and an infinite collection l, . . . of labels. Here in addition we use x,y, . . .
to range over session variables and κ, . . . to range over both polarized
sessions and session variables. The syntax of processesP,Q, . . . is defined
in Figure 26. Two primitives v(x).P and v(x).P model service declara-
tion and service invocation respectively (which are called here service
request and service accept). Each of the four primitives for session com-
munications has a κ which is the session subject and it is used to specify
the session in which communications happen e.g. Σni=1κ?(li).Pi is the ex-
ternal choice with subject κ (the same subject for each offered branch).
In addition, we can send and receive session sides by means of the two
primitives: κ!〈〈κ′〉〉.P which is read as, send the session κ′ through the
session κ, and κ?((x)).P which is read as, receive a session through κ and
bind it to the variable x. In order to keep linearity of sessions when κ′ is
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delegated, by means of κ!〈〈κ′〉〉.P , it should not be used in P for commu-
nications.

Priority of the operators is the same as in the π-calculus so the par-
allel composition binds less than the restriction operator. Binders for the
calculus are κ?(x̃).P for the tuple of variables x̃ in P , (νm)P for the name
m in P , a(x).P and κ?((x)).P for the session variable x in P and rec X.P
for the process variableX in P . The derived notion of free names (fn), de-
fined in Figure 27, and bound names of a process, free process variables
(fpv), defined in Figure 29, and bound process variables and closed pro-
cess (when fpv(P ) = ∅) are standard. As before we define a more specific
set of free polarized names that contains both session names and session
variables. We denote such set as fpn and its definition is given in Figure
28.

Differently from CST in HVK-X each communication is annotated
with the session subject, in order to open many sessions at the same time
as well as interleaving communications in any order. This strategy al-
lows to remove session nesting, the pipe and the return primitive and
additionally it allows introducing session delegation.

The structural congruence relation ≡ (Figure 30) is standard from the
π-calculus. Differently from (76) we do not have to define the structural
congruence for process definitions.

As usual thanks to the structural congruence we give the operational
semantics of the calculus by grouping redexes.

(LINK) (a(x).P )|(a(y).Q)→ (νr)(P [r
+
/x]|Q[r

−
/y]) r /∈ fn(P |Q)

(COM) (rp!(ṽ).P )|(rp?(x̃).Q)→ (P |Q[ṽ/x̃]) |ṽ| = |x̃|
(LABEL) (rp!(lk).P )|(Σni=1r

p?(li).Pi)→ (P |Pi) (1 ≤ k ≤ n)
(PASS) (rp!〈〈r′q〉〉.P )|(rp?((x)).Q)→ P |Q[r

′q
/x] r 6= r′

(IF1) if v = v then P else Q→ P
(IF2) if v = w then P else Q→ Q v 6= w
(REC) P [rec X.P /X ]→ P ′ ⇒ rec X.P → P ′

(SCOP) P → Q ⇒ (νm)P → (νm)Q
(PAR) P → P ′ ⇒ P |Q→ P ′|Q
(STR) P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q ⇒ P → Q

Rule (LINK) models the invocation of a service and then it creates a new
fresh session r allowing P and Q to communicate. The communication
model imposes that P andQ can communicate only if they have the same
session with dual polarity, thus r+ and r− are substituted in place of the
respective bound session variable. Rule (COM) is the standard message
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fn(0) = ∅
fn(v(x).P ) = fn(v) ∪ (fn(P ) \ x)
fn(v(x).P ) = fn(v) ∪ (fn(P ) \ x)
fn(κ!(ṽ).P ) = fn(κ) ∪ fn(ṽ) ∪ fn(P )
fn(κ?(x̃).P ) = fn(κ) ∪ (fn(P ) \ {x̃})
fn(κ!(l).P ) = fn(κ) ∪ fn(P )
fn(Σni=1κ!(li).Pi) = fn(κ) ∪

⋃n
i=1 fn(Pi)

fn(κ!〈〈κ′〉〉.P ) = fn(κ) ∪ fn(κ′) ∪ (P )
fn(κ?((x)).P ) = fn(κ) ∪ (P \ {x})

fn
( if v = w then
P else Q

)
=

fn(u) ∪ fn(w) ∪
fn(P ) ∪ fn(Q)

fn(P |Q) = fn(P ) ∪ fn(Q)
fn((νm)P ) = fn(P ) \ {m}
fn(rec X.P ) = fn(P )
fn(X) = ∅
fn(x) = {x}
fn(rp) = {r}
fn(a) = {a} fn(x) = {x}

Figure 27: Definition of free names

fpn(0) = fpn(X) = ∅
fpn(v(x).P ) = fpn(v(x).P ) = fpn(P ) \ {x}
fpn(κ!(l).P ) = fpn(κ!(ṽ).P ) = fpn(κ?(x̃).P ) = fpn(P ) ∪ {κ}
fpn(Σni=1κ?(li).Pi =

⋃n
i=1 fpn(Pi) ∪ {κ}

fpn(κ!〈〈κ′〉〉.P ) = fpn(P ) ∪ {κ, κ′}
fpn(κ?((x)).P ) = (fpn(P ) ∪ {κ}) \ {x}
fpn(if v = w then P else Q) = fpn(P |Q) = fpn(P ) ∪ fpn(Q)
fpn((νa)P ) = fpn(rec X.P ) = fpn(P )
fpn((νr)P ) = fpn(P ) \ {r+, r−}

Figure 28: Definition of free polarized session names

passing communication within a session κ and rule (LABEL) allows choos-
ing a label offered from the partner within a session κ. Other rules are
standard: (IF1-IF2) allows testing if two values are equal, (REC) is the stan-
dard rule for recursion, (SCOP) allows reductions inside restrictions, (PAR)

allows for parallel composition and (STR) applies structural congruence to
group redexes.

Example 5.1. In this example we define a proxy server that multiplexes
values from a client by invoking a new instance of a service for each
received value. Process Proxy has two recursions one with process vari-
able Y that allows for replication and one with process variable X that
allows to repeatedly receive requests from a client.

Proxy = rec Y.(a(x).rec X.x?(x).b(y).y!(x).X|Y )

The real service processes only one request per time

Service = rec X.b(x).x?(x)|X
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fpv(0) = ∅
fpv(v(x).P ) = fpv(P )
fpv(v(x).P ) = fpv(P )
fpv(κ!(ṽ).P ) = fpv(P )
fpv(κ?(x̃).P ) = fpv(P )
fpv(κ!(l).P ) = fpv(P )
fpv(Σni=1κ!(li).Pi) =

⋃n
i=1 fpv(Pi)

fpv(κ!〈〈κ′〉〉.P ) = fpv(P )
fpv(κ?((x)).P ) = fpv(P )

fpv(
if then
P else Q

) = fpv(P ) ∪ fpv(Q)

fpv(P |Q) = fpv(P ) ∪ fpv(Q)
fpv((νm)P ) = fpv(P )
fpv(rec X.P ) = fpv(P ) \ {X}
fpv(X) = {X}

Figure 29: Definition of free process names

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)
(νm)P |Q ≡ (νm)(P |Q) if m /∈ fn(Q)
(νm)0 ≡ 0
(νm)(νn)P ≡ (νn)(νm)Q

Figure 30: Structural congruence

and finally the client which invokes the proxy and continuously sends
requests by means of recursion.

Client = a(x).rec X.x!(5).x!(6).X

Example 5.2. In this example we show how session delegation works.
We show a delegation of an ended session since it is notoriously (6) a
bug of the type system of the original proposal (37). We remind that the
original proposal describes a different calculus from HVK-X since it does
not use polarities annotation (see Section 6.2.2 for a brief description of
the calculus). Session calculi with polarity annotations does not present
any problems in the treatment of ended session delegation, but as we
shall see the treatment introduces some issues while trying to obtain a
full syntax-directed type system.

Nulldel = a(x).b(y).y!〈〈x〉〉.0|a(x)|b(y).y?((x)).0

The protocol of a is an ended session but the first subprocess delegates
via b to the third subprocess the capability to take place in a conversation
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with a. We show the process reductions:

a(x).b(y).y!〈〈x〉〉.0|a(x)|b(y).y?((x)).0→
b(y).y!〈〈r+〉〉.0|0|b(y).y?((x)).0→
r+
1 !〈〈r+〉〉.0|0|r−1 ?((x)).0→

0|0|0

5.3 Type system

5.3.1 A type system for HVK-X

The set of types we consider is the same introduced in Figure 1. We
start introducing the type discipline inspired to (76). For processes, the
type judgements we consider are of the form Γ; Θ ` P .∆. We omit those
for values which are the same as in Figure 16 but without rule (SES). Typ-
ing environments Γ, Θ and ∆ are finite partial mappings. Γ is the stan-
dard typing environment, it maps variables and service names to sort
type S, Θ is the process typing environment and maps process variables
X to a list of pairs of the form κT where T is not end. An assumption
of the form X : κT means that we assume X to have an open session
κ with type T . ∆ is the linear environment and maps polarized sessions
and session variables to session types. We define the comma operator
Γ, x : S and Γ, a : S and Θ, X : κ1T1, . . . , κnTn as expected. Also we
introduce some abbreviations for ease of notation: we write Θ, X : κ̃T̃
for Θ, X : κ1T1, . . . , κnTn if k̃ = κ1, . . . , κn and T̃ = T1, . . . , Tn and we
write κ̃ : T̃ for the linear environment ∆ = ∅, κ1 : T1, . . . , κn : Tn if
κ̃ = k1, . . . , kn and T̃ = T1, . . . , Tn. We write {k̃} for the set {κ1, . . . , κn}
if κ̃ = κ1, . . . , κn and similar for {T̃}. Consequently the domain of a lin-
ear environment ∆ is the set dom(∆) = {κ̃} if ∆ = k̃ : T̃ for some κ̃, T̃
With the help of these definitions we can define syntactically each envi-
ronment.

Definition 5.3 (Well-formed typing environments). Γ, Θ, ∆ are well
formed if they are generated from the following grammar:

Γ ::= ∅ | Γ, a : [T ] | Γ, x : S
Θ ::= ∅ | Θ, X : κ̃T̃ and end /∈ {T̃}
∆ ::= ∅ | ∆, κ : T

The reason we disallowed ended sessions as assumptions in Θ is tech-
nical and it is related to the proof of the Strengthening Lemma. More-
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over, notice the differences from these environments and those defined in
the previous chapter. Environments reflect the differences between lan-
guages, for example in CST we stored the type of a session in Γ since
communications are somewhat grouped by the operator rp . P so we do
not need a specialized environment to collect session types but we used
the set L to keep linearity. Instead here since communications can be in-
terleaved ∆ is used to store assumptions about the opened sessions.

Some comments for the typing rules reported in Figure 31 are in or-
der. Rule (SNIL) types the process 0 with the empty environment, rule
(SACC) checks that P uses x in accordance with the type stored in Γ for
the service, (SREQ) is similar but it checks the duality w.r.t. the type in Γ.
Rule (SWEAK) uses the operation ∆1 ≤ ∆2 defined as:

∆1 ≤ ∆2 =
{

∆1(κ) ≤ ∆2(κ) if κ ∈ dom(∆1) ∩ dom(∆2)
∆1(κ) = end if κ ∈ dom(∆1) \ dom(∆2)

The operation allows both to replace the type of an existing session with
one of its own subtype and to add new ended sessions. This allows ax-
ioms ((SNIL) and (SPVAR)) with only the strictly necessary sessions. When
we want to limit the arbitrariness of the operation we write ∆1↓{κ̃} ≤ ∆2

if ∆1 ≤ ∆2 and dom(∆1) = {κ̃}.
Rules (SIN) and (SOUT) add an input action and an output action respec-

tively to the type of κ, rule (SBRANCH) imposes the linear environment of
each Pi to be equal but for κwhich is used to offer an external choice. The
final type in the conclusion has a subset of the total offered labels mainly
because a process can offer equal labels. Equal labels are not allowed in-
stead at the type system level, by the well-formedness condition. How-
ever we want to type such process as long as equal labels have a common
type (see Example 4.1).
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(SNIL)
Γ; Θ ` 0 . ∅

(SACC)
Γ; Θ ` P .∆,x : T Γ ` v : [T ]

Γ; Θ ` v(x).P .∆

(SREQ)
Γ; Θ ` P .∆,x : T Γ ` v : [T ]

Γ; Θ ` v(x).P .∆

(SWEAK)
Γ; Θ ` P .∆ ∆′ ≤ ∆

Γ; Θ ` P .∆′

(SIN)
Γ, x̃ : S̃; Θ ` P .∆, κ : T

Γ; Θ ` κ?(x̃).P .∆, κ :?(S̃).T

(SOUT)
Γ; Θ ` P .∆, κ : T Γ ` ṽ : S̃

Γ; Θ ` κ!(ṽ).P .∆, κ :!(S̃).T

(SBRANCH)
∅ ⊂ J ⊆ I = {1, . . . , n} ∀i ∈ I (Γ; Θ ` Pi .∆, κ : Ti)

Γ; Θ ` Σni=1κ?(li).Pi .∆, κ : &{lj : Tj}j∈J

(SCHOICE)
l = li ∈ {l1, . . . , ln} Γ; Θ ` P .∆, κ : Ti

Γ; Θ ` κ!(l).P .∆, κ : ⊕{l1 : T1; . . . ; ln : Tn}

(SCATCH)
Γ; Θ ` P .∆, κ : T,x : U

Γ; Θ ` κ?((x)).P .∆, κ :?(U).T

(STHROW)
Γ; Θ ` P .∆, κ : T

Γ; Θ ` κ!〈〈κ′〉〉.P .∆, κ :!(U).T, κ′ : U

(SIF)
(Γ ` vi : S Γ; Θ ` Pi .∆) i ∈ {1, 2}
Γ; Θ ` if v1 = v2 then P1 else P2 .∆

(SPAR)
Γ; Θ ` P .∆1 Γ; Θ ` Q .∆2

Γ; Θ ` P |Q .∆1,∆2

(SNEWR)
Γ; Θ ` P .∆, r+ : T, r− : T

Γ; Θ ` (νr)P .∆

(SNEW)
Γ, a : S; Θ ` P .∆

Γ; Θ ` (νa)P .∆

(SREC)
Γ; Θ, X : κ̃T̃ ` P . κ̃ : T̃ {κ̃} = fpn(P )

Γ; Θ ` rec X.P . κ̃ : T̃

(SPVAR)
Γ; Θ, X : κ̃T̃ ` X . κ̃ : T̃

Figure 31: Typing rules
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Rule (SCHOICE) adds arbitrary internal choices together with the correct
one, notice that we would simulate this behavior with the help of rule
(SWEAK) but we duplicate it to simplify proofs since we do not need to ac-
count for the arbitrary presence of (SWEAK) in each type derivation ending
with rules (SCHOICE) or (SBRANCH). Two rules allows for session delegation
(SCATCH) and (STHROW). Rule (SCATCH) allows using x only after it is catched,
in the continuation P , vice versa rule (STHROW) allows communications
over κ′ only before it is sent. The rule for parallel composition uses the
operation ∆1,∆2 defined as the point-wise extension of ∆, κ : T to check
the disjointness of the two linear environments. Rule (SNEWR) restricts r
only if its two polarized versions in the linear environment are dual to
each other. Finally the rule for recursion (SREC) requires that the body of
recursion P is typed only with the set of free polarized names. It is also
clear that each session in the set of free polarized names has a type differ-
ent from end (remember the condition imposed by the well-formedness)
since a throw instruction of the form κ!〈〈κ′〉〉.P cannot be inside the body
of a recursion rec X.Q if κ′ ∈ fpn(Q).

This choices is also consistent with (76) which allows the body of a
definition to be typed only with those sessions used as parameters of a
definition. Here parameters are explicit, i.e. they are all the free polar-
ized names in P . Besides this fact the rule is the standard rule for re-
cursion. Notice that this time the process rec X.X is typed only with
Γ; Θ ` rec X.X . ∅.

Example 5.4. Letting Tα = µα.?(int).α and Θ = X : xTα, Y : ∅ and
Γ = a : [Tα], b : [?(int)], the process Proxy from Example 5.1 can be
typed as:

Γ, x; int; Θ ` X . x : Tα
(SWEAK)

Γ, x : int; Θ ` X . x : Tα,y : end
(SOUT)

Γ, x : int; Θ ` y!(x).X . x : Tα,y :!(int)
(SREQ)

Γ, x : int; Θ ` b(y).y!(x).X . x : Tα
(SIN)

Γ; Θ ` x?(x).b(y).y!(x).X . x :?(int).Tα
(SWEAK)

Γ; Θ ` x?(x).b(y).y!(x).X . x : Tα
(SREC)

Γ; Θ ` rec X.x?(x).b(y).y!(x).X . x : Tα
(SACC)

Γ;Y : ∅ ` a(x).rec X.x?(x).b(y).y!(x).X . ∅ Γ;Y : ∅ ` Y . ∅
(SPAR)

Γ;Y : ∅ ` a(x).rec X.x?(x).b(y).y!(x).X|Y . ∅
(SREC)

Γ; ∅ ` Proxy . ∅

Example 5.5. Letting Γ = a : [end], b : [!(end)] each of the three sub
processes in Example 5.2 can be typed as follows:
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...
Γ; ∅ ` y!〈〈x〉〉.0 . y :!(end),x : end

(SACC)
Γ; ∅ ` b(y).y!〈〈x〉〉.0 . x : end

(SACC)
Γ; ∅ ` a(x).b(y).y!〈〈x〉〉.0 . ∅

Γ; ∅ ` 0 . ∅
(SNIL)

Γ; ∅ ` a(x) . x : end
(SREQ)

Γ; ∅ ` a(x) . ∅

...
Γ; ∅ ` y?((x)).0 . y :?(end)

(SREQ)
Γ; ∅ ` b(y).y?((x)).0 . ∅

5.3.2 Subject reduction and safety

The aim of this section is to prove that typing is preserved along
reductions steps, due to the above discussed modifications the typing
preservation is not obvious from the subject reduction theorem proved
in (76). We prove the Weakening Lemma which allows adding assump-
tions into each environment but for the linear one, which can use the
rule (SWEAK) to add assumptions for ended sessions. The Strengthening
Lemma can be used to remove unused assumptions, this time the state-
ment concerning the linear environment allows to remove assumptions
relative to ended sessions if the name does not belong to the set of free
polarized names.

Lemma 5.6 (Weakening). If Γ; Θ ` P . ∆ and v /∈ fn(P ) with v either a
service name or a variable then Γ, v : S; Θ ` P .∆ for any S. If Γ; Θ ` P .∆
and X /∈ fpv(P ) then Γ; Θ, X : κ̃T̃ ` P .∆ for any κ̃T̃ .

Proof. The proof of both statements is by induction on the typing deriva-
tion of Γ; Θ ` P .∆ with case analysis on the last applied rule.

Lemma 5.7 (Strengthening). If Γ, v : S; Θ ` P . ∆ and v /∈ fn(P ) with v
either a service name or a variable then Γ; Θ ` P .∆. If Γ; Θ, X : κ̃T̃ ` P .∆
and X /∈ fpv(P ) then Γ; Θ ` P .∆. If Θ; Γ ` P .∆, κ : end and κ /∈ fpn(P )
then Θ; Γ ` P .∆.

Proof. The proof of each statement is by induction on the typing deriva-
tion of Γ, v : S; Θ ` P .∆, Γ; Θ, X : κ̃T̃ ` P .∆ and Θ; Γ ` P .∆, κ : end
respectively. We show the base case relative to a process variable, the oth-
ers are straightforward. We have Γ; Θ′, X : κ̃T̃ ` X . κ̃ : T̃ and since each
T is different from end by the well-formedness condition the premise of
the theorem is false so the implication holds.
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This lemma relates the various definitions of free names to each envi-
ronment.

Lemma 5.8 (Free names and environments). Let Γ; Θ ` P .∆ then

• if a /∈ dom(Γ) then a /∈ fn(P ).

• if X /∈ dom(Θ) then X /∈ fpv(P ).

• if κ /∈ dom(∆) then κ /∈ fpn(P ).

Proof. The proof is by straightforward induction on the typing derivation
of Γ; Θ ` P .∆ with case analysis on the last applied rule.

Previous lemma is stated in the form ¬p1 implies ¬p2 but sometimes
we will use it in the form p2 implies p1 which is logically equivalent.

Substitution Lemma allows to collapse two assumptions but for the
linear environment which allows substituting a session variable with a
polarized session name.

Lemma 5.9 (Substitution). If Γ, x : S; Θ ` P . ∆ and Γ ` v : S then
Γ; Θ ` P [v/x] . ∆. If Γ; Θ, X : κ̃T̃ ` P . ∆ and Γ; Θ ` Q . κ̃ : T̃ then
Γ; Θ ` P [Q/X ] . ∆. If Γ; Θ ` P . ∆,x : T and rp /∈ dom(∆) then Γ; Θ `
P [r

p

/x] .∆, rp : T .

Proof. All statements are proved by induction on the typing derivation
with case analysis on the last applied rule. Regarding the first statement
we prove the cases when last applied rules are an output action and a ser-
vice invocation. Service definition is similar and other cases are simpler
and follow directly by inductive hypothesis. Without loss of generality
we prove the theorem for the case when the tuple length in input, output

actions is one. We have
(SOUT)
Γ, x : S, v̇ : S; Θ ` P ′ .∆, κ : T Γ, v̇ : S, x : S ` w : S

Γ, x : S, v̇ : S; Θ ` κ!(w).P ′ .∆, κ :!(S).T

and then two different possibilities depending if ẋ = w or not.
The latter case follows directly by inductive hypothesis. In the for-
mer case instead we know by inductive hypothesis that Γ; Θ `
P ′[v̇/w] . ∆ and (SOUT) gives Γ; Θ ` κ!(w).P ′[v̇/w] . ∆′ i.e. Γ; Θ `
(κ!(v̇).P ′)[v̇/w] . ∆′ the desiderated result. Service invocation is similar

we have
(SREQ)
Γ, x : [T ], v̇ : S; Θ ` P ′ .∆,y : T Γ, x : [T ], v̇ : S ` v : [T ]

Γ, x : [T ], v̇ : S; Θ ` v(y).P ′ .∆

and (provided

that ẋ = v) thanks to the inductive hypothesis and by applying (SREQ) we
can conclude Γ; Θ ` (v̇(y).P ′)[v̇/v] .∆′.
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The second statement relative to the Θ environment follows directly
by straightforward induction on the typing derivation, we only sketch
the base case where Ṗ = Ẋ . In this case we have (SPVAR)

Γ; Θ, Ẋ : κ̃T̃ ` Ẋ . κ̃ : T̃

and Γ; Θ ` Ẋ[Q̇/Ẋ ] . κ̃ : T̃ follows by hypothesis.
Finally about the third statement for the linear environment ∆ we

sketch the case when the last applied rules are

• (STHROW), and Ṗ = κ!〈〈κ′〉〉.P . We have three cases (notice that κ 6= κ′

otherwise the rule is not applicable) depending of if ẋ = κ, if ẋ = κ′

or if κ 6= ẋ 6= κ′. The latter case follows directly by induction. If

ẋ = κ we have
(STHROW)

Γ; Θ ` P .∆, κ : T

Γ; Θ ` κ!〈〈κ′〉〉.P .∆, κ :!(U).T, κ′ : U
and by induction

hypothesis Γ; Θ ` P [r
p

/κ] . ∆, rp : T and applying (STHROW) we
conclude Γ; Θ ` (κ!〈〈κ′〉〉.P )[r

p

/κ] . ∆, rp :!(U).T, κ′ : U . If x = κ′

applying Lemma 5.8 we know that κ′ /∈ fpn(P ) then P [r
p

/κ′ ] = P
and the result follows by applying rule (STHROW) that gives Θ; Γ `
κ!〈〈rp〉〉.P .∆, κ :!(U).T, rp : U .

• (SDEF) and Ṗ = v(x).P . By hypothesis Γ; Θ ` Ṗ . ∆ for some ∆ and
κ /∈ dom(∆) thus if x = ẋ the premise of the theorem is false so
the theorem is true. When x = ẋ the hypothesis follows directly by
induction.

Corollary 5.10 (Substitution lemma for tuples). If Γ, x̃ : S̃; Θ ` P .∆ and
Γ ` ṽ : S̃ then Γ; Θ ` P [ṽ/x̃] .∆.

Proof. The proof is by induction on the tuple length, the base case is the
Substitution Lemma the inductive case is proved thanks to the Substitu-
tion Lemma as in the previous chapter.

The subject congruence proves the typability is preserved by the
structural congruence.

Lemma 5.11 (Subject Congruence). If Γ; Θ ` P .∆ and P ≡ Q then Γ; Θ `
Q .∆.

Proof. As before we show the typing of each congruence rule holds in
both directions, which it suffices to conclude.
Case P|0 ≡ P:
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Γ; Θ ` P .∆ Γ; Θ ` 0 . ∅
(SPAR)

Γ; Θ ` P |0 .∆
Γ; Θ ` P .∆

Case P|Q ≡ Q|P:

Γ; Θ ` P .∆1 Γ; Θ ` Q .∆2
(SPAR)

Γ; Θ ` P |Q .∆1,∆2

Γ; Θ ` Q .∆2 Γ; Θ ` P .∆1
(SPAR)

Γ; Θ ` Q|P .∆2,∆1

We can conclude since ∆̇ = ∆1,∆2 = ∆2,∆1

Case (P|Q)|R ≡ P|(Q|R): This case is similar to the previous one.
Case (νm)P|Q ≡ (νm)(P|Q) if m /∈ fn(Q): We have two cases depend-
ing of whether m is a session name or a service name. If m = r we have:

Γ; Θ ` P .∆1, r
+ : T, r− : T

(SNEWS)
Γ; Θ ` (νr)P .∆1 Γ; Θ ` Q .∆2

(SPAR)
Γ; Θ ` (νr)P |Q .∆

Γ; Θ ` P .∆1, r
+ : T, r− : T Γ; Θ ` Q .∆2

(SPAR)
Γ; Θ ` P |Q .∆, r+ : T, r− : T

(SNEWS)
Γ; Θ ` (νr)(P |Q) .∆

From the top tree to the bottom tree we use the Strengthening Lemma to
remove both r+ and r− from dom(∆2) since r /∈ fn(Q) implies {r+, r−} ∩
fpn(Q) = ∅. Instead, if m = a we have:

Γ, a : [T ]; Θ ` P .∆1
(SNEW)

Γ; Θ ` (νa)P .∆1 Γ; Θ ` Q .∆2
(SPAR)

Γ; Θ ` (νa)P |Q .∆

Γ, a : [T ]; Θ ` P .∆1 Γ, a : [T ]; Θ ` Q .∆2
(SPAR)

Γ, a : [T ]; Θ ` P |Q .∆
(SNEWS)

Γ; Θ ` (νa)(P |Q) .∆

In detail, when the proof is from the first proof tree to the second proof
tree we use the Weakening Lemma to type Q otherwise if the proof is in
the opposite direction we use the Strengthening Lemma to type Q.
Case (νm)0 ≡ 0: in case m = r both processes can be typed with the
empty session environment otherwise if m = a the result follows apply-
ing either the Strengthening Lemma or the Weakening Lemma according
to the direction of the proof.
Case (νm)(νn)P ≡ (νn)(νm)Q: follows directly thanks to the commuta-
tivity of the comma operator among environments.
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Eventually we are ready to prove the Subject Reduction Theorem, we
say that ∆ is balanced if ∆(rp) = T and rp in dom(∆) then ∆(rp) =
T . Two balanced linear environments ∆1 and ∆2 are balanced equal if
dom(∆1) = dom(∆2) and for all rp s.t. rp ∈ dom(∆1) and rp /∈ dom(∆1)
then ∆1(rp) = ∆2(rp).

Theorem 5.12 (Subject Reduction). If Γ; Θ ` P . ∆ with ∆ balanced and
P → Q then there exists a balanced ∆′ s.t. Γ; Θ ` Q . ∆′ with ∆ and ∆′

balanced equal.

Proof. The proof is by induction on the derivation of P → Q with case
analysis on the last applied rule.
Base Case:(LINK) (a(x).P )|(a(y).Q) → (νr)(P [r

+
/x]|Q[r

−
/y]) r /∈

fn(P |Q). The typing of Ṗ is derived from:

Γ, a : [T ]; Θ ` P .∆1,x : T
(SACC)

Γ, a : [T ]; Θ ` a(x).P .∆1

Γ, a : [T ]; Θ ` Q .∆2,y : T
(SINV)

Γ, a : [T ]; Θ ` a(y).Q .∆2
(SPAR)

Γ, a : [T ]; Θ ` Ṗ . ∆̇

Sub. Lemma︷ ︸︸ ︷
Γ, a : [T ]; Θ ` P [

r+
/x] .∆1, r

+
: T

Sub. Lemma︷ ︸︸ ︷
Γ, a : [T ]; Θ ` Q[

r−
/y] .∆2, r

−
: T

(SPAR)
Γ, a : [T ]; Θ ` P [r

+
/x]|Q[r

−
/y] .∆1,∆2, r

+ : T, r− : T
(SNEWR)

Γ, a : [T ]; Θ ` Q̇ . ∆̇′

We notice that r /∈ fn(P |Q) implies {r+, r−} ∩ fpn(P ) = ∅ and {r+, r−} ∩
fpn(Q) = ∅ and we can use the Strengthen Lemma to remove r+ and r−

from both dom(∆1) and dom(∆2) to fit the premise of the Substitution
Lemma. Also ∆̇ = ∆̇′.
Base Case:(COM)(rp!(ṽ).P )|(rp?(x̃).Q) → (P |Q[ṽ/x̃]) |ṽ| = |x̃|. The typ-
ing of Ṗ is derived from:

Γ; Θ ` P .∆1, r
p : T

(SOUT)
Γ; Θ ` rp!(ṽ).P .∆1, r

p :!(S̃).T

Γ, x̃ : S̃; Θ ` Q .∆2, r
p : T

(SIN)
Γ; Θ ` rp?(x̃).Q .∆2, r

p :?(S̃).T
(SPAR)

Γ; Θ ` Ṗ . ∆̇

Γ; Θ ` P .∆1, r
p : T

Sub. Lemma︷ ︸︸ ︷
Γ; Θ ` Q[

ṽ
/x̃] .∆2, r

p
: T

(SPAR)
Γ; Θ ` Q̇ . ∆̇′
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To conclude we have ∆̇ and ∆̇′ balanced equal.
Base Case:(LABEL) similar to the previous one.
Base Case:(PASS) (rp!〈〈r′q〉〉.P )|(rp?((x)).Q) → P |Q[r

′q
/x]. The typing of Ṗ

is derived from:

Γ; Θ ` P .∆1, r
p : T

Γ; Θ ` rp!〈〈r′q〉〉.P .∆1, r
p :!(U).T, r′q : U

Γ; Θ ` Q .∆2, r
p : T ,x : U

(SCATCH)
Γ; Θ ` rp?((x)).Q .∆2, r

p :?(U).T
(SPAR)

Γ; Θ ` Q̇ . ∆̇

Γ; Θ ` P .∆1, r
p : T

Sub. Lemma︷ ︸︸ ︷
Γ; Θ ` Q[

r′q
/x] .∆2, r

′q
: U, r

p
: T

(SPAR)
Γ; Θ ` Ṗ . ∆̇′

Some comments are in order. By hypothesis ∆′1, r
p :!(U).T, r′q :

U,∆′2, r
p :?(U).T is defined then it must be the case that r′q /∈

dom(∆′2, r
p :?(U).T ) in order to fit the hypothesis of the Substitution

Lemma. Moreover, ∆̇ and ∆̇′ are balanced equal.
Inductive Case:(IF1) and (IF2). By application of the inductive hypothesis
either on P or Q together with the fact that typing rule (SIF) requires both
branches to have the same type.
Inductive Case:(REC). We have Ṗ = rec X.P . By hypothesis we know
that Γ; Θ ` rec X.P . ∆ and in order to apply the induction we
must prove P [rec X.P /X ] is well typed. By hypothesis for some k̃ and
T̃ , Γ; Θ, X : k̃T̃ ` P . k̃ : T̃ then Γ; Θ ` P [rec X.P /X ] . k̃T̃ applying the
Substitution Lemma. We can conclude since P [rec X.P /X ] → Q̇ and by
inductive hypothesis Q̇ is well typed.
Inductive Case:(SCOP). We have Ṗ = (νm)P and Q̇ = (νm)Q and by in-
ductive hypothesis Γ; Θ ` P . ∆ with ∆ balanced implies Γ; Θ ` Q . ∆′

with ∆′ balanced. As usual we have two cases depending of if m = a
or if m = r. In the former case we can conclude directly by inductive
hypothesis and rule (SNEW). If m = r by inductive hypothesis r+ and r−

duals belong to dom(∆′) and we can apply rule (SNEWR) to conclude.
Inductive Case:(PAR) We have Ṗ = P |Q and Q̇ = P ′|Q. By inductive hy-
pothesis we know that P and P ′ are typed respectively in some balanced
equal linear environments ∆1 and ∆′. Moreover by hypothesis and rule
(SPAR) there exists ∆2 that types Q and ∆1,∆2 is defined and balanced.
The thesis follows since ∆′,∆2 = ∆̇′ is defined and balanced with ∆̇ and
∆̇′ balanced equal, by the fact that ∆1 and ∆′ are balanced equal.
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Inductive Case:(STR) Follows directly by inductive inductive hypothesis
and Lemma 5.11.

Following (76) to formalise type safety, we need the some auxiliary
notions. A rp-process is a process prefixed by subject rp (such as rp!(ṽ).P
and rp?((x)).P ). Next, a r-redex is the parallel composition of a rp-process
with a rp-process, i.e. either of form rp!(ṽ).P |rp?(x̃).Q or of the form
rp!〈〈κ〉〉.P |rp?((x)).Q or of the form rp!(l).P |Σni=1r

p?(li).Pi. Then P is an
error if P ≡ (νm̃)(Q1|Q2|Q3) for some Q3 and for some r, Q1 is a rp-
process and Q2 is a rp-process that do not form a r-redex, or Q1 and Q2

for some r are two rp processes. We then have:

Theorem 5.13 (Safety). A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are
not errors. The proof is by reductio ad absurdum, assuming error pro-
cesses typable. When P |Q is the parallel composition of a rp-process and
a rp-process that do not form a r-redex, there are several cases to con-
sider. They are all alike; take for example the pair of two inputs. We have
Γ; Θ ` P . ∆1, r

p :?(S̃).T and Γ; Θ ` Q . ∆2, r
p :?(S̃).U for some ∆1, ∆2

and S̃, T, U but the resulting environment is not balanced contradicting
the hypothesis of the subject reduction. In the case when P and Q are
two rp processes then Γ; Θ ` P .∆1, r

p : T and Γ; Θ ` Q .∆1, r
p : U for

some ∆1,∆2, T, U but the rule (SPAR) would not applicable contradicting
the hypothesis of typability.

5.4 A syntax directed type system

In this section we introduce a syntax directed version of the previ-
ous type system. Typing judgments are of the form Γ; Θ s̀d P .∆ where
environments are the same as above. First of all to obtain a full syntax di-
rected type system we need to solve the problem of the non-deterministic
introduction of ended sessions. The type system in Figure 31 uses (SWEAK)

to add ended sessions. Here we introduce a linear access function with in
mind the idea to insert in the linear environment an ended session only
when it is strictly necessary. Linear access is of the form ∆ ` κ : T ⇒ ∆′

in which we input ∆ and κ and we obtain in output the type T of κ and
the ∆′ resulting from ∆ without the assumption on κ. The idea is very
simple, we ask to the linear access function accessing ∆ to retrieve an
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assumption about a session κ and if no assumption about κ exists then it
returns an ended session. Accordingly we define ∆ ` κ : T, κ′ : U ⇒ ∆′

which allows to access two sessions per time. The linear access function
is reported in Figure 32.

Syntax directed typing rules in Figure 33 exploit both the linear ac-
cess function and the subtyping relation ∆↓{κ̃} ≤ ∆′ to get rid of the
rule (SWEAK). Rule (SACCSD) accesses ∆ to retrieve the type of x : T ′ then
it concludes if the type assumed for v is less than T ′, this last check is
necessary due to the lack of (SWEAK); rule (SREQSD) is similar. Rules (SINSD)

and (SOUTSD) add an input and an output action respectively to the type
of the current session κ, similar for (SCHOICESD) which judges κ as an
internal choice with only one option labeled with l. Before discussing
(SBRANCHSD) let us take a look to the rule (SIFD) which is in part similar.
In rule (SIFSD) we allow the process in each branch to be typed with
a different ∆i as long as there exists a common ∆↓⋃2

i=1 dom(∆i)
≤ ∆i.

(Notice that we limit the domain of the subtyping relation.) The case is
subtle and we need such check since it can be the case that one branch
has some ended sessions that the other branch ignores, since a spurious
ended session can be introduced by means of a throw instruction (see
rule (STHROWSD)). As an example consider a little variant of the Example
5.2, a(x).b(y).c(z).if test then x!〈〈y〉〉.0 else x!〈〈z〉〉.0 it is easy to see that
the process is typed in ` and then we want it to be typed in s̀d as well.
Consider the first branch, typed as Γ; Θ s̀d x!〈〈y〉〉.0.x :!(end),y : end and
the second branch is typed as Γ; Θ s̀d x!〈〈z〉〉.0 .x :!(end), z : end then the
entire if-then-else instruction is typed with ∆ = x :!(end),y : end, z : end
since ∆↓{x,y, z} ≤ x :!(end),y : end and ∆↓{x,y, z} ≤ x :!(end), z : end.

Another solution would be to disallow delegation of ended sessions
adding a premise of the form U 6= end in both rules (SCATCH) and (SCATCHSD)

(as the solution proposed in (6)). However we prefer to retain the full
treatment rather than introducing this new kind of constraint.

Rule (SBRANCHSD) is similar but it allows the current session κ to have
a different type Ti for each branch so we can judge the process as an ex-
ternal choice. We use the function same to handle the case in which equal
labels are offered. Rule (SCATCHSD) checks, by means of subtyping, that the
received session is used in accordance in the body P . Interestingly this
check could be avoided in the presence of a complete subtyping relation,
which automatically checks the sent sessions are also in subtyping rela-
tion. As already discussed we do not use the subtyping in depth since
we employ the syntactic unifier to solve the set of constraints.
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∆, κ : T ` κ : T ⇒ ∆
κ /∈ dom(∆)

∆ ` κ : end⇒ ∆

∆, κ : T, κ′ : U ` κ : T, κ′ : U ⇒ ∆
{κ, κ′} ∩ dom(∆) = ∅

∆ ` κ : end, κ′ : end⇒ ∆

κ /∈ dom(∆)

∆, κ′ : T ` κ : end, κ′ : T ⇒ ∆

κ′ /∈ dom(∆)

∆, κ : T ` κ : T, κ′ : end⇒ ∆

Figure 32: Linear access function

(SNILSD)
Γ; Θ s̀d 0 . ∅

(SACCSD)
Γ; Θ s̀d P .∆ ∆ ` x : T ′ ⇒ ∆′ Γ ` v : [T ] T ≤ T ′

Γ; Θ s̀d v(x).P .∆′

(SREQSD)
Γ; Θ s̀d P .∆ ∆ ` x : T ′ ⇒ ∆′ Γ ` v : [T ] T ′ ≤ T

Γ; Θ s̀d v(x).P .∆′

(SINSD)
Γ, x̃ : S̃; Θ s̀d P .∆ ∆ ` κ : T ⇒ ∆′

Γ; Θ s̀d κ?(x̃).P .∆′, κ :?(S̃).T

(SOUTSD)
Γ; Θ s̀d P .∆ Γ s̀d ṽ : S̃ ∆ ` κ : T ⇒ ∆′

Γ; Θ s̀d κ!(ṽ).P .∆′, κ :!(S̃).T

(SBRANCHSD)
∅ ⊂ I = {1, . . . , n}
∀i ∈ I (Γ; Θ s̀d Pi .∆i ∆i ` κ : Ti ⇒ ∆′i ∆′

↓
⋃n
i=1 dom(∆′i)

≤ ∆′i)

Γ; Θ s̀d Σni=1κ?(li).Pi .∆′, κ : &{same(lj : Tj)}j∈I
(SCHOICESD)
Γ; Θ s̀d P .∆ ∆ ` κ : T ⇒ ∆′

Γ; Θ s̀d κ!(l).P .∆′, κ : ⊕{l : T}

(SCATCHSD)
Γ; Θ s̀d P .∆ ∆ ` κ : T,x : U ⇒ ∆′ U ′ ≤ U

Γ; Θ s̀d κ?((x)).P .∆′, κ :?(U ′).T

(STHROWSD)
Γ; Θ s̀d P .∆ ∆ ` κ : T ⇒ ∆′

Γ; Θ s̀d κ!〈〈κ′〉〉.P .∆′, κ :!(U).T, κ′ : U

(SPARSD)
Γ; Θ s̀d P .∆1 Γ; Θ s̀d Q .∆2

Γ; Θ s̀d P |Q .∆1,∆2

(SIFSD)
(Γ s̀d vi : S Γ; Θ s̀d Pi .∆i ∆

↓
⋃2
i=1 dom(∆i)

≤ ∆i) i ∈ {1, 2}

Γ; Θ s̀d if v1 = v2 then P1 else P2 .∆

(SNEWRSD)
Γ; Θ s̀d P .∆ ∆ ` r+ : T ′, r− : T ′′ ⇒ ∆′ T ′′ ≤ T ′

Γ; Θ s̀d (νr)P .∆′

(SNEWSD)
Γ, a : S; Θ s̀d P .∆

Γ; Θ s̀d (νa)P .∆

(SRECSD)
Γ; Θ, X : κ̃T̃ s̀d P . κ̃ : T̃ ′ κ̃ : T̃↓{κ̃} ≤ κ̃ : T̃ ′ {κ̃} = fpn(P )

Γ; Θ s̀d rec X.P . κ̃ : T̃

(SPVARSD)
Γ; Θ, X : κ̃T̃ s̀d X . κ̃ : T

Figure 33: Syntax directed typing rules
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same(l1 : T1, . . . , ln : Tn) =

{
l1 : T1, same(l2 : T2 . . . , ln : Tn)) if l1 /∈ {l2, . . . , ln}
same(l2 : T2, . . . , li : U, . . . , ln : Tn) if l1 = li and U ≤ T1, Ti

same(l : T ) = l : T

Figure 34: same function

Rule (SNEWRSD) uses the linear access to obtain the type of each polar-
ized r and then it checks their compatibility. Finally rule (SRECSD) uses the
subtyping relation between linear environments with domain limited to
the free polarized names of P .

Example 5.14. Letting Tα = µα.?(int).α and Θ = X : xTα, Y : ∅ and
Γ = a : [Tα], b : [?(int)], Proxy from Example 5.1 is typed as:

Γ, x; int; Θ s̀d X . x : Tα x : Tα ` y : end⇒ x : Tα
(SOUTSD)

Γ, x : int; Θ s̀d y!(x).X . x : Tα,y :!(int)
(SREQSD)

Γ, x : int; Θ s̀d b(y).y!(x).X . x : Tα
(SINSD)

Γ; Θ s̀d x?(x).b(y).y!(x).X . x :?(int).Tα Tα ≤?(int).Tα
(SRECSD)

Γ; Θ s̀d rec X.x?(x).b(y).y!(x).X . x : Tα
(SACCSD)

Γ;Y : ∅ s̀d a(x).rec X.x?(x).b(y).y!(x).X . ∅ Γ;Y : ∅ s̀d Y . x : ∅
(SPARSD)

Γ;Y : ∅ s̀d a(x).rec X.x?(x).b(y).y!(x).X|Y . ∅
(SRECSD)

Γ; ∅ s̀d Proxy . ∅

Compare this typing with the one reported in Example 5.4 and notice
that each application of the rule (SWEAK) is now checked inline.

We now prove the soundness of the syntax directed typing rules.

Proposition 5.15 (Soundness). If Γ; Θ s̀d P .∆ then Γ; Θ ` P .∆.

Proof. The proof is by induction on the typing derivation of Γ; Θ s̀d P .∆
with case analysis on the last applied rule. Base cases are (SNILSD) and
(SRECSD) and they are both straightforward. In the inductive cases when
the last applied rule is:

• (SACCSD) and Ṗ = v(x).P and Γ; Θ s̀d v(x).P .∆. We have two cases
depending whether ∆ ` x : end ⇒ ∆ or not. In the former case
the judgment follows directly by induction and rule (SWEAK). In the
latter case we have ∆ ` x : T ′ ⇒ ∆′ for some T ′ or ∆ = ∆′,x : T ′

and Γ ` v : [T ] for some T ≤ T ′. The result follows applying rule
(SWEAK) on ∆′,x : T ′ and rule (SACC) to conclude.
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• (SREQSD) similar to the previous case.

• (SIFSD) and Ṗ = if v1 = v2 then P1 else P2 and Γ; Θ s̀d Pi .∆i and
Γ; Θ s̀d Ṗ .∆ for some ∆ ≤ ∆i (we omitted the domain restriction)
for i ∈ {1, 2}. The thesis follows applying (SWEAK) in order to have
Γ; Θ ` Pi .∆ and (SIF) to conclude.

• (SINSD) and Ṗ = κ?(x̃).P and Γ, x̃ : S̃; Θ s̀d P . ∆ and by induction
Γ, x̃ : S̃; Θ ` P . ∆. In order to apply the rule (SIN) we use (SWEAK) if
κ /∈ dom(∆) and conclude.

• (SOUTSD), (SCHOICESD), (SCATCHSD) and (STHROWSD) similar to the previous
case.

• (SRECSD) and Ṗ = rec X.P and Γ; Θ, X : k̃T̃ s̀d P . k̃ : T̃ ′ and by
induction Γ; Θ, X : k̃T̃ ` P . k̃ : T̃ ′ where k̃ : T̃ ≤ k̃ : T̃ ′. The
conclusion follows applying rules (SWEAK) and (SREC).

• (SNEWRSD) and Ṗ = (νr)P and Γ; Θ s̀d P . ∆ and ∆ ` r+ : T ′, r− :
T ′′ ⇒ ∆′ and by induction Γ; Θ ` P . ∆. If either r+ /∈ dom(∆) or
r− /∈ dom(∆) then it must be the case T ′, T ′′ equal to end which
conclude applying (SWEAK). Otherwise ∆ = ∆′, r+ : T ′, r− : T ′′ and
T ′′ ≤ T ′ and Γ; Θ s̀d Ṗ . ∆′ and by an application of the the rule
(SWEAK) we obtain ∆′, r+ : T ′′, r− : T ′′ which allows to conclude
Γ; Θ ` Ṗ .∆′ with rule (SNEWR).

• (SNEWSD) follows directly by induction.

• (SBRANCHSD) and Ṗ = Σni=1κ?(li).Pi and Γ; Θ s̀d Pi . ∆i and ∆i ` κ :
Ti ⇒ ∆′i and ∆ ≤ ∆′i for some ∆ and by induction Γ; Θ ` Pi . ∆i

where i ∈ {1, . . . , n}. We can conclude using the rule (SWEAK) on each
∆i = ∆′i, κ : Ti to obtain ∆, κ : Ui where Ui is the type returned by
same relative to the usage of session κ by the process Pi; notice that
by definition of same it holds that Ti ≤ Ui for all i. This allows to
conclude with (SBRANCH) Γ; Θ ` Ṗ .∆, κ : &{same(lj : Tj)}j∈J}.

The completeness theorem proves that each judgment produced by `
is produced also by s̀d with a greater linear environment.

Proposition 5.16 (Completeness). If Γ; Θ ` P . ∆ then there exists ∆′ s.t.
Γ; Θ s̀d P .∆′ and ∆ ≤ ∆′.
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Proof. The proof is by induction on the typing derivation of Γ; Θ ` P .∆
with case analysis on the last applied rule. Base cases are immediate and
follow by the reflexivity of ≤ i.e.:∆ ≤ ∆ for any ∆. In the inductive cases
when the last applied rule is:

• (SACC) and Ṗ = v(x).P and Γ; Θ ` P . ∆1,x : T and by induction
Γ; Θ s̀d P . ∆2 for some ∆2 s.t. ∆1,x : T ≤ ∆2. By definition
∆2 ` x : T ′ ⇒ ∆′2 for some ∆′2 s.t. ∆1 ≤ ∆′2 and T ≤ T ′ which
allows to conclude by an application of the rule (SACCSD).

• (SIF) and Ṗ = if v1 = v2 then P1 else P2 and Γ; Θ ` Pi . ∆
and by induction Γ; Θ s̀d Pi . ∆i for some ∆i s.t. ∆ ≤ ∆i and
i ∈ {1, 2}. By definition and by the last equation there exists ∆′ s.t.
∆′↓⋃2

i=1 dom(∆i)
≤ ∆i and ∆ ≤ ∆′ which allows the application of

rule (SIFSD) to conclude with Γ; Θ s̀d Ṗ .∆′.

• (SREC) and Ṗ = rec X.P and Γ; Θ, X : κ̃T̃ ` P . κ̃ : T̃ and by
induction Γ; Θ, X : κ̃T̃ s̀d P . κ̃ : T̃ ′ where κ̃ : T̃ ≤ κ̃ : T̃ ′. (Notice
that the set {κ̃} is returned also by the inductive hypothesis since
each T̃ is different from end.) Since {κ̃} = fpn(P ), by definition
κ̃ : T̃↓fpn(P ) ≤ κ̃ : T̃ ′ which concludes by rule (SRECSD).

• (SIN) and Ṗ = κ?(x̃).P and Γ, x̃ : S̃; Θ ` P . ∆1, κ : T and by
induction Γ, x̃ : S̃; Θ s̀d P . ∆2 with ∆1, κ : T ≤ ∆2. By definition
∆2 ` κ : T ′ ⇒ ∆′2 for some ∆′2 s.t. ∆1 ≤ ∆′2 and T ≤ T ′. The result
follows since ?(S̃).T ≤?(S̃).T ′ holds for any S̃.

• (SOUT) and (STHROW) similar to the previous case.

• (SNEWR) and Ṗ = (νr)P and Γ; Θ ` P . ∆1, r
+ : T, r− : T and by

induction Γ; Θ s̀d P .∆2 and ∆1, r
+ : T, r− : T ≤ ∆2. By definition

we have ∆2 ` r+ : T ′, r− : T ′′ ⇒ ∆′2 and T ≤ T ′ and T ≤ T ′′

and ∆1 ≤ ∆′2. As usual T ′′ ≤ T and by transitivity T ′′ ≤ T ′ which
allows to conclude with (SNEWRSD).

• (SBRANCH) and Ṗ = Σni=1κ?(li).Pi and Γ; Θ ` Pi . ∆1, κ : Ti and by
induction Γ; Θ s̀d Pi .∆2,i and ∆1, κ : Ti ≤ ∆2,i and i ∈ {1, . . . , n}.
By definition ∆2,i ` κ : T ′i ⇒ ∆′2,i, Ti ≤ T ′i and ∆1 ≤ ∆′2,i and
we can find ∆′′ s.t. ∆′′↓⋃ni=1 dom(∆′2,i)

≤ ∆′2,i and ∆1 ≤ ∆′′ and as

discussed in the proof of Theorem 4.40, &{li : Ti}i∈J ≤ &{same(li :
T ′i )i∈I} for each J ⊆ I and Ti ≤ T ′i and i ∈ J . The conclusion
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follows applying (SBRANCHSD) to obtain Γ; Θ ` Ṗ .∆′′, κ : &{same(li :
T ′i )i∈I}.

• (SCATCH) and Ṗ = κ?((x)).P and Γ; Θ ` P . ∆1, κ : T,x : U and
Γ; Θ ` Ṗ . ∆1, κ :?(U).T and by induction Γ; Θ s̀d P . ∆2 with
∆1, κ : T,x : U ≤ ∆2. By definition we have ∆2 ` κ : T ′,x :
U ′ ⇒ ∆′2 and T ≤ T ′ and U ≤ U ′ and ∆1 ≤ ∆′2. We can conclude
applying rule (SCATCHSD) to obtain Γ; Θ ` Ṗ .∆′2, κ :?(U).T ′.

• (SPAR) and Ṗ = P1|P2 and Γ; Θ ` Pi.∆i and by induction Γ; Θ s̀d Pi.
∆′i and ∆i ≤ ∆′i for i ∈ {1, 2}. The conclusion follows since ∆1,∆2

implies ∆′1,∆
′
2 since by definition of ∆i ≤ ∆′i, dom(∆′i) ⊆ dom(∆i).

• (SNEW) follows directly by induction.

• (SWEAK) follows directly by transitivity of ≤ between linear environ-
ments.

As we have done before we can define an algorithm to extract a set
of constraints starting from a process, s.t. if the set of constraints is satis-
fied for some substitution then the process is typable and vice versa. The
algorithm INF (Figure 35) takes a process P , a standard typing environ-
ment Γ and a process environment Θ and returns a set of constraints C
and a linear typing environment ∆. In the algorithm we use ∆1 ≤c ∆2

defined as:

∆1 ≤c ∆2 =
{(∆1(κ) ≤ ∆2(κ)) | κ ∈ dom(∆1) ∩ dom(∆2)}
∪{(∆1(κ) = end) | κ ∈ dom(∆1) \ dom(∆2)}

≤c generates constraints relative to the subtyping relation among lin-
ear environments since ≤c enjoys the following property.

Lemma 5.17. If σ � ∆1 ≤c ∆2 then σ∆1 ≤ σ∆2.

Proof. Follows directly by the definition of ∆1 ≤c ∆2 and the definition
of ∆1 ≤ ∆2.

Proposition 5.18 (Soundness and Completeness of INF). Let
INF(P,Γ,Θ) = (C,∆). σ � C iff σΓ;σΘ s̀d P . σ∆.
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VALUEINF(x,Γ)=Γ(x) VALUEINF(s,Γ)=Γ(s) VALUEINF(n,Γ)=int
INF(0,Γ,Θ)= (∅, ∅)
INF(v(x).P ,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ) in ∆ ` x : T ⇒ ∆′

in (C ∪ {α ≤ T} ∪ {Γ(v) = [α]},∆′) (where α fresh)
INF(v(x).P ,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ) in ∆ ` x : T ⇒ ∆′

in (C ∪ {T ≤ α} ∪ {Γ(v) = [α]},∆′) (where α fresh)
INF(κ?(x1, . . . , xn).P ,Γ,Θ)=

let (C,∆)=INF(P,Γ ∪ {x1 : β1, . . . , xn : βn},Θ) β1, ., βn fresh
in ∆ ` κ : T ⇒ ∆′ in (C,∆′ ∪ {κ :?(β1, . . . , βn).T})

INF(κ!(v1, . . . , vn).P ,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ) in ∆ ` κ : T ⇒ ∆′

in let S1=VALUEINF(v1,Γ)......Sn=VALUEINF(vn,Γ)
in (C,∆′ ∪ {κ :!(S1, . . . ,Sn).T})

INF(κ!〈〈κ′〉〉.P ,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ) in ∆ ` κ : T ⇒ ∆′

in (C, (∆′ ∪ {κ :!(α).T , κ′ : α})) (where α fresh)
INF(κ?((x)).P ,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ) in ∆ ` κ : T ,x : U ⇒ ∆′

in (C ∪ {α ≤ U},∆′ ∪ {κ :?(α).T}) (where α fresh)
INF(if v1 = v2 then P else Q,Γ,Θ)= let (C,∆1)=INF(P,Γ,Θ) in

let (C1,∆2)=INF(Q,Γ,Θ) in
let S1=VALUEINF(v1,Γ) in let S2=VALUEINF(v2,Γ)
in let ∆ = κ̃ : α̃ where κ̃ =

⋃2
i=1 dom(∆i) and α̃ fresh

in (C ∪ C1 ∪ {S1 = S2} ∪∆ ≤c ∆1 ∪∆ ≤c ∆2,∆)
INF((νa)P,Γ,Θ)= INF(P,Γ ∪ {a : β},Θ) (where β fresh)
INF((νr)P,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ) in ∆ ` r+ : T ′, r− : T ′′ ⇒ ∆′

in (C ∪ {T ′′ ≤ T ′},∆′)
INF(P |Q,Γ,Θ)= let (C1,∆1)=INF(P,Γ,Θ) in

let (C2,∆2)=INF(Q,Γ,Θ) in
in (C1 ∪ C2,∆1,∆2)

INF(Σni=1κ?(li).Pi,Γ,Θ)=
let (C1,∆1)=INF(Pi,Γ,Θ)......(Cn,∆n)=INF(Pn,Γ,Θ)
in ∆i ` κ : Ti ⇒ ∆′i i ∈ {1, . . . , n}
in let ∆ = κ̃ : α̃ where κ̃ =

⋃n
i=1 dom(∆′i) and α̃ fresh

in let (C′, l̃′ : T ′) = same(l1 : T1, . . . , ln : Tn)

in (C′ ∪ C1 ∪ . . . ∪ Cn ∪∆ ≤c ∆′1 ∪ . . . ∪∆ ≤c ∆′n,∆ ∪ {κ : &{l̃′ : T ′}})
where each type variables generated by same is fresh

INF(κ!(l).P ,Γ,Θ)= let (C,∆)=INF(P,Γ,Θ)
in ∆ ` κ : T ⇒ ∆′

in (C,∆′ ∪ {κ : ⊕{l : T}})
INF(rec X.P ,Γ,Θ)=let κ1, . . . , κn=fpn(P ) in

let (C, κ1 : T ′1, . . . , κn : T ′n)=INF(P,Γ,Θ ∪ {X : κ1αX1 , . . . , κnαXn})
in (C ∪ {αX1 ≤ T

′
1, . . . , αXn ≤ T

′
n}, κ1 : αX1 , . . . , κn : αXn)

INF(X,Γ,Θ)= (∅, κ̃ : T̃) if Θ(X) = κ̃T̃

Figure 35: The algorithm to extract constraints in Ocaml-like syntax
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Proof. ⇒) The proof is by induction on the recursive structure of a run
of INF(P,Γ,Θ) = (C,∆). Base cases are when Ṗ = X or Ṗ = 0 and
the empty set of constraints is solved by any substitution which allows
also the conclusion with both rules (SPVARSD) and (SNILSD). We report some
inductive cases, when the case relative to:

• Ṗ = v(x).P is applied we have INF(P,Γ,Θ) = (C,∆)
and ∆ ` x : T ⇒ ∆′ and σ � C ∪ {α ≤
T,Γ(v) = [α]} and by induction σΓ;σΘ s̀d P . σ∆ then

(SACCSD)
σΓ;σΘ s̀d P . σ∆ σ∆ ` x : σT ⇒ σ∆′ σΓ ` v : [σα] σα ≤ σT

σΓ;σΘ s̀d v(x).P . σ∆′
.

• Ṗ = κ?((x)).P is applied we have INF(P,Γ,Θ) = (C,∆) and ∆ ` κ :
T,x : U ⇒ ∆′ and σ � C ∪ {α ≤ U} and by induction σΓ;σΘ s̀d

P . σ∆ then
(SCATCHSD)
σΓ;σΘ s̀d P . σ∆ σ∆ ` κ : σT,x : σU ⇒ σ∆′ σα ≤ σU

σΓ;σΘ s̀d κ?((x)).P . σ∆′, κ : σ?(U).T

.

• Ṗ = if v1 = v2 then P1 else P2 is applied, letting i ∈ {1, 2}
we have INF(Pi,Γ,Θ) = (Ci,∆i) and VALUEINF(vi,Γ) = Si
and σ � C1 ∪ C2 ∪ {S1 = S2} ∪ ∆ ≤c ∆1 ∪ ∆ ≤c ∆2

and ∆ is s.t. dom(∆) = dom(∆1) ∪ dom(∆2) and for all
κ ∈ dom(∆) then ∆(κ) is a fresh variable and by in-
duction σΓ;σΘ s̀d Pi . σ∆i which suffices to conclude

(SIFSD)
(Γ s̀d vi : σSi σΓ;σΘ s̀d Pi . σ∆i σ∆

↓
⋃2
i=1 dom(∆i)

≤ σ∆i) i ∈ {1, 2}

σΓ;σΘ s̀d if v1 = v2 then P1 else P2 . σ∆

.

Notice that σ � ∆ ≤c ∆i implies σ∆↓⋃2
i=1 dom(∆i)

≤ σ∆i follows by
Lemma 5.17.

• Ṗ = rec X.P is applied we have INF(P,Γ,Θ ∪ {X :
κ1αX1 , . . . , κnαXn}) = (C, κ1 : T ′1, . . . , κn : T ′n) and {κ̃} = fpn(P )
and σ � C∪{αX1 ≤ T ′1, . . . , αXn ≤ T ′n}which it suffices to conclude

(SRECSD)
σΓ;σΘ, X : κ1σα1, . . . , κnσαn s̀d P . κ1 : σT ′1, . . . , κn : σT ′n
(κ1 : σα1, . . . , κn : σαn)↓fpn(P ) ≤ κ1 : σT ′1, . . . , κn : σT ′n

σΓ;σΘ s̀d rec X.P . κ1 : σα1, . . . , κn : σαn

.

⇐) The proof is similar to the other direction with opposite implications.
We report some inductive cases. When the case is relative to:

• Ṗ = (νr)P is applied we have INF(P,Γ,Θ) = (C,∆) and σΘ;σΓ `
P . σ∆ and ∆ ` r+ : T ′, r− : T ′′ ⇒ ∆′ and σT ′ ≤ σT ′′ or σ �
C ∪ {T ′ ≤ T ′′} since by induction σ � C holds.
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• Ṗ = P1|P2 and letting i ∈ {1, 2} we have INF(Pi, Γ, Θ) = (Ci, Δi)
and by induction σ � Ci which allows to conclude σ � C1 ∪ C2.

Example 5.19. Take the three processes of Example 5.1, with Γ = a :
[αa], b : [αb] the set of constraints generated by INF(Proxy,Γ, ∅) is

!(βx) ≤ αb αX ≤?(βx).αX αa ≤ αX

the set of constraints generated by INF(Server,Γ, ∅) is

αb ≤?(βx1)

the set of constraints generated by INF(Client,Γ, ∅) is

αX1 ≤!(int).!(int).αX1 αX1 ≤ αa

Example 5.20. Take the process of Example 5.2, with Γ = a : [αa], b : [αb]
the set of constraints generated by INF(Nulldel, Γ, ∅) is

αb ≤!(αx) αa ≤ αx end ≤ αa αx1 ≤ end ?(αx1) ≤ αb

5.4.1 The solve algorithm

In this section we try to solve in an automatic manner the set of con-
straints generated by INF. This time the task is not easy due to the session
delegation and cyclic constraint dependencies (generated by recursive
processes) which allows a type variable to appear anywhere in each con-
straint. Next we introduce some context notation which mainly we use
to identify the place where a certain type variable appear. We consider
the following set of n-holes session type contexts:

� ::= [[·]] | end | α | ?(S̃).� | !(S̃).� | &{li : �i}i∈I | ⊕ {li : �i}i∈I | μα.�

The usual operation �[[T1, . . . , Tn]] of filling holes in � with the tuple
T1, . . . , Tn is defined only if (fv(T1) ∪ . . . ∪ fv(Tn)) ∩ bv(�) = ∅. If � is
a n-holes context we write

#»

T for T1, . . . , Tn since each Ti is possibly not
distinct, while

#»

T ≤ #»

U is the point-wise extension of the subtyping rela-
tion.

The following lemma says that the subtyping relation is closed by
session type contexts.
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Lemma 5.21. If
#»

T ≤ #»

U then �[[
#»

T ]] ≤ �[[
#»

U ]] for all �.

Proof. We prove that R = {(�[[
#»

T ]],�[[
#»

U ]])| #»T ≤ #»

U} is a type simu-
lation relation. Note that R contains all pairs (T, U) such that T ≤
U (by taking the identity context � = [[·]]) and (T, T ) as T ≤ T .
The proof is by inspection of the shape of �, for example if � =
μα.�′ we have two cases depending if α if free in �′ or not. In
the latter case we have, after unfold is applied, (�′[[

#»

T ]],�′[[
#»

U ]]) ∈
R which concludes. Otherwise we have, after unfold is applied,
(�′′[[T1, . . . , Ti,

#»

T , Ti+1, . . . , Tn]],�′′[[U1, . . . , Ui,
#»

U,Ui+1, . . . , Un]]) ∈ R for
some �′′, i and

#»

T = T1, . . . , Tn and
#»

U = U1, . . . , Un which concludes.

Next we try to write down a solving algorithm based on the naive
intuition that we attempt to insert each constraint of the form α ≤ T
in each other constraint where α appears under some context � try-
ing to find some type mismatching. In fact using Lemma 5.21 we can
turn a constraint of the form α ≤ T into an equal constraint of the
form �[[α]] ≤ �[[T ]] and then using the transitivity of ≤ merge two con-
straints, for example if α ≤ T and T1 ≤ �[[α]] we have �[[α]] ≤ �[[T ]]
and then T1 ≤ �[[T ]]. In the same way we can merge a constraint
α ≤ T with a constraint �[[α]] ≤ T1 applying Lemma 5.21 on T ≤ α
instead. The following solve algorithm takes a set of constraints and
tries to discover if there exists a substitution that satisfies such set:
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solve(C):

1. if S1 = S2, C′ then solve(σS1=S2C)

2. if T1 ≤ T2, C′ when the variables in the set fv(T1 ≤ T2) \
fcv(T1 ≤ T2) have unique occurrence in T1 ≤ T2 and do not
appear in C′ then solve(σT1≤T2

C′)

3. if α ≤ T1, . . . , α ≤ Tn, T
′
1 ≤ C′1[[α]], . . . , T ′m ≤ C′m[[α]],C′′1 [[α]] ≤

T ′′1 , . . . ,C
′′
k [[α]] ≤ T ′′k , C′ when either m > 0 or k > 0

and each T ′i can be optionally overlined and there not ex-
ist in C′,C′1, . . . ,C′m,C′′1 , . . . ,C′′k , any occurrence of α then
solve(C′ ∪ I ∪ J) where:

I =


T ′1 ≤ C′1[[µα(T1)]], . . . , . . . , T ′1 ≤ C′1[[µα(Tn)]]

...
. . . . . .

...
T ′m ≤ C′m[[µα(T1)]], . . . , . . . , T ′m ≤ C′m[[µα(Tn)]]


J =


C′′1 [[µα(T1)]] ≤ T ′′1 , . . . , . . . , C′′1 [[µα(Tn)]] ≤ T ′′1

...
. . . . . .

...
C′′k [[µα(T1)]] ≤ T ′′k , . . . , . . . , C′′k [[µα(Tn)]] ≤ T ′′k


4. if α ≤ T1, . . . , α ≤ Tn, C′ when there not

exist in C′ any constraint involving α then

ρ=localsolve(
⋃n
i,j=1{µα(Ti)

c
∧µα(Tj)}) and solve(ρC′)

5. if T1 ≤ α, . . . , Tn ≤ α, C′ when there not
exist in C′ any constraint involving α then

ρ=localsolve(
⋃n
i,j=1{µα(Ti)

c
∧µα(Tj)}) and solve(ρC′)

6. if C = ∅ then success else fail

We informally describe the algorithm. In line 1 we solve the unification
constraints, in line 2 we solve inequalities s.t. σT1≤T2

is the most general
solver (see Proposition 3.30). In line 3 we take all constraints involving
α and then we merge them in all possible ways by means of sets I and
J . Either the set of constraints with C′i[[α]] or the set of constraints with
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C′′j [[α]] can be optional but at least one of these is mandatory else line 4 is
applied. Intuitively if we cannot mix αwith other constraints then we are
forced to solve all constraints involving α locally. The condition of each
T ′i optionally overlined means that we can have both constraints of the
form T ′i ≤ C′i[[α]] or of the form T ′i ≤ C′i[[α]].

We take care to postpone the solution of constraints involving α
where α appears elsewhere in other constraints (e.g. in a context like
C[[!(α).T ]]) since it means that e.g. α is involved in a session delegation.
We use the function µα(T ) to close the recursion, defined as: µα(T ) =
µα.T if α ∈ (fv(T ) \ fcv(T )) or µα(T ) = T if α /∈ fv(T ) or undefined other-
wise.

Lines 4 and 5 compute locally the meet and the join with the help of
localsolve. Notice that in lines 4 and 5 the integer n can be also equal to 1,
i.e. there is only one constraint of the form α ≤ T or only one constraint
of the form T ≤ α.

Lemma 5.22. solve terminates.

Proof. We define an order on C which also serves as a measure for ter-
mination. We identify the set α(C) = {α|α ≤ T ∈ C}. At each iteration
either decrement, the cardinality of |α(C)| (line 3) or the number of total
constraints (lines 1,2,4,6). The well founded order C < C′ is defined if
|α(C)| < |α(C′)| or if |α(C)| = |α(C′)| and |C| < |C′|. Since each recursive
invocation of solve preserves this order we are authorized also to induct
on its recursive structure.

The following is a technical lemma which allows to extract a type U
and its counterpart from a subtyping relation. If U does not give its con-
tribute to the subtyping relation, e.g. because it is under a not considered
choice, then the subtyping relation also holds for any type in place of U .

Lemma 5.23. If T ≤ C[[U ]] then either there exists C′, T ′ s.t. T = C′[[T ′]] and
T ′ ≤ U or T ≤ C[[V ]] for any V .

Proof. We simply run the subtyping algorithm until a conclusion of the
form T ′ ≤ U is encountered. If such conclusion is never encountered then
U is unnecessary in the subtyping algorithm. Remember that the context
is not allowed do bind any type variables in U so U is never unfolded
by a recursion. We also must take care marking U to avoid clashing with
alias of U within context C.
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In order to state the completeness of the resolution algorithm we
classify some cyclic dependencies among constraints. In particular we
extract dependencies among constraints that yield the function µα un-
defined and dependencies that prevent applicability of lines 2,3,4,5 of
solve due to cyclic dependencies among α and the rest of constraints
set C′ e.g. constraints of the form α ≤!(α) and α1 ≤!(α2), α2 ≤?(α1) re-
spectively.

Definition 5.24 (Cyclic dependencies). A list of constraints T1 ≤
T ′1, . . . , Tn+1 ≤ T ′n+1 is α1, . . . , αn-dependent if ∀i ∈ 1, . . . , n, αi ∈
(fcv(Ti) ∪ fcv(T ′i )) and αi ∈ (fv(Ti+1) ∪ fv(T ′i+1)) \ (fcv(Ti+1) ∪ fcv(T ′i+1)).
A α1, . . . , αn-dependent list of constraints is a cycle if α1 = αn.

Definition 5.25 (Cyclic dependencies into a set). A set C contains a
α1, . . . , αn-dependency if there exists a α1, . . . , αn-dependent list of con-
straints T1 ≤ T ′1, . . . , Tn+1 ≤ T ′n+1 s.t. for all i, Ti ≤ T ′i ∈ C. A set of con-
straints C contains a cycle if it contains a α1, . . . , αn-dependency which is
a cycle.

Definition 5.26 (Non-admitted dependencies). A set C of constraints has
a non-admitted dependency if applying the resolution steps of solve zero
or more times it reduces to some C′ which contains a cycle.

In the following we assume sets of constraints that has not non-
admitted dependencies. Notice that the solve reported in Figure 23
does not need such definitions as they are accounted implicitly by the
algorithm (i.e. keeping constraints relative to service invocation).

We now prove that every time solve succeeds on a certain set of
constraints C then there exists a substitution that solves C. Vice versa if a
substitution that solves C exists and neither line 4 nor line 5 are applied
and line 6 is applied with the empty set then solve succeeds. This means
that solve makes the most general decisions as long as it is not asked to
solve locally constraints. In fact, if one of those lines of solve is applied it
means that we have some constraints containing a session type variable
that has no direct dependencies with other constraints. Thus solve is
complete for closed systems without free names and if for each partner
in the system it is also specified the dual counterpart i.e. for each service
request there is at least one service accept and vice versa. We call such
process fully specified process. One can simply verify this fact by inspecting
INF that with the above hypothesis does not generate constraints with
open dependencies. First we note that for each constraint of the form
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V ≤ C[[α′]] (where V is optionally overlined) or of the form C[[α′]] ≤ V
there exists at least one respective constraint of the form α′ ≤ T . Let
us proceed by case inspection on INF observing rules that generate free
variables that are not free communicated variables.

• The case for the if-then-else has ∆ in the conclusions but we gener-
ate the set of constraints ∆ ≤c ∆1 ∪∆ ≤c ∆2.

• The case for the external choice is similar to the previous one.

• The case for process variable generates free variables in the con-
clusion but since the process is closed there exists for each α′ a
constraint of the form α′ ≤ T inserted by the relative recursion
construct.

• The case for a throw instruction generates a free variable in the con-
clusion but since the process is fully specified there exists a relative
catch instruction that generates a constraint of the form α′′ ≤ U
and a relative constraint (due to a constraint generated for the ses-
sion, subject of the delegation) that unifies α′ with α′′. Moreover
α′ appears only in two constraints, the current one with C[[α′]] and
as argument of the the constraint relative to the throw. The same
holds for α′′.

• The case for service request generate a constraint of the form T ′ ≤
α′ but there exists a service accept with at least a relative constraint
of the form α′ ≤ T .

Notice that also the converse is true, for every constraint of the form
α′ ≤ T there exists a relative constraint either of the form V ≤ C[[α′]]
(where V is optionally overlined) or of the form C[[α′]] ≤ V since the pro-
cess has not free names. Furthermore one can simply prove (by induction
on INF observing that only fresh variables are generated) that in both
α ≤ C[[α′]] and in C[[α′]] ≤ α, α′ has a single occurrence in C[[α′]] but for
recursion. However recursion implies a cycle among free variables that
are not free communicated variables (notice that these dependencies are
different from those defined in Definition 5.24), then we can solve the
cycle in the inverse order, starting from the constraint relative to the re-
cursion construct towards the constraint relative to the process variable.
Hence, line 3 of solve is applied until a set of constraints with only free
variables that are also free communicated variables is obtained and line
2 of solve removes all remaining constraints by applying the syntactic
unifier.
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Theorem 5.27 (Soundness and Completeness of solve). Let C s.t.
(C,∆) = INF(P,Γ,Θ). If solve (C) = success then there exists σ such that
σ � C and dom(σ) ⊆ var(C). Vice versa if C has not non-admitted dependen-
cies and neither lines 4 nor 5 of the algorithm are applied and line 6 is applied
with the empty set of constraints then if there exists σ such that σ � C then
solve (C) = success .

Proof. ⇒) By induction on the recursive structure of a run of solve with
case analysis on the last applied line of the algorithm. In the base case
when the line 6 of the algorithm is applied C = ∅ and the empty set of
constraints is solved by the empty substitution. In the inductive cases
when the last line is:

• line 1 and solve(S1 = S2, C), then by induction there exists σ s.t.
σ � σS1=S2C and by Lemma 3.33, σS1=S2σ � C and by definition
σS1=S2σ � S1 = S2, C. Notice that the composition is defined since
by induction dom(σ) ⊆ var(σS1=S2C) (see the similar proof of The-
orem 4.34).

• line 2 it is similar to the previous case.

• line 3 and C = α ≤ T1, . . . , α ≤ Tn, T
′
1 ≤ C′1[[α]], . . . , T ′m ≤

C′m[[α]],C′′1 [[α]] ≤ T ′′1 , . . . ,C
′′
k [[α]] ≤ T ′′k , C′ and solve(C) = success

and the two sets I and J defined consequently. By induction
solve (C′ ∪ I ∪J) = success implies there exists σ s.t. σ � C′ ∪ I ∪J .
Applying Lemma 5.23 we define

I ′ =


U1 ≤ µα(T1), . . . , U1 ≤ µα(Tn)

...
. . .

...
Um ≤ µα(T1), . . . , Um ≤ µα(Tn)


J ′ =


µα(T1) ≤ U ′1, . . . , µα(Tn) ≤ U ′1

...
. . .

...
µα(T1) ≤ U ′k, . . . , µα(Tn) ≤ U ′k


where each element is optional and depends on the result of
Lemma 5.23 if or not µα(T1) contributes to the subtyping relation.
For simplicity we consider only the case for I ′ alone other cases are
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similar. Set I ′ gives the following inequalities:

σ(Ui ≤
n∨
j=1

(µα(Tj))) for all i ∈ {1, . . . ,m} (5.1)

σ(
m∧
i=1

(Ui) ≤ µα(Tj)) for all j ∈ {1, . . . , n} (5.2)

The result follows substituting α either with σ(
∨n
j=1(µα(Tj)) ∨∧m

i=1(Ui)) or with σ(
∨n
j=1(µα(Tj)) ∧

∧m
i=1(Ui)), e.g. letting Tα =

σ(
∨n
i=j(µα(Tj)) ∨

∧m
i=1(Ui)) we have [Tα/α]σ(Ui ≤ α) (by equa-

tion (5.1)) for all i ∈ {1, . . . ,m} and [Tα/α]σ(α ≤ Tj) for all
j ∈ {1, . . . , n}. Notice that the algorithm does not apply any alpha
renaming since at each iteration the set of free names is different,
then we can safely reverse the function µα(T ). However, in general
the converse of Lemma 4.24, which is used to reverse µα(T ), does
not hold.

• line 4 and α ≤ T1, . . . , α ≤ Tn, C and by induction there exists σ s.t.
σ � ρC. By Lemma 3.34 we know that exists ρ and the intersection
among all the pairs holds then we can use Lemma 3.33 to conclude
ρσ � α ≤ T1, . . . , α ≤ Tn, C.

• line 5 this case is similar to the previous one but in addition we
compute the intersection of each Ti which is the least upper bound
of each Ti.

⇐) We proceed by induction on the resolution steps of solve with case
analysis on the last applied line of the algorithm. As we have done in the
proof of Theorem 4.34 we must also prove that the substitution used by
the inductive hypothesis is implied by the premise. In the base case the
empty substitution solves the empty set of constraints (which is empty
by hypothesis). In the inductive cases when the last line is:

• lines 1 and 2 similar to the relative cases in the proof of Theorem
4.34.

• line 3 and C = α ≤ T1, . . . , α ≤ Tn, T
′
1 ≤ C′1[[α]], . . . , T ′m ≤

C′m[[α]],C′′1 [[α]] ≤ T ′′1 , . . . ,C
′′
k [[α]] ≤ T ′′k , C′ and σ � C and the two sets

I and J defined consequently. We show that a generic element of I
and J is solved by σ. Take σ � α ≤ Ti, T

′
j ≤ C′[[α]], by Lemma 5.21
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and Lemma 4.24 (which is applicable by hypothesis as C has not
non-admitted dependencies) σ � C′[[α]] ≤ C′[[µα(Ti)]], T ′j ≤ C′[[α]]
and by transitivity σ � T ′j ≤ C′[[µα(Ti)]]. Take σ � α ≤ Ti,C′′[[α]] ≤
T ′′j and σ � C′′[[µα(Ti)]] ≤ C′′[[α]],C′′[[α]] ≤ T ′′j and we can conclude
by transitivity.

Example 5.28. We apply solve to the set of constraints gen-
erated in the Example 5.19. In the first column we report the
line of solve applied at each step. After two iterations we have

3 αa ≤ µαX .?(βx).αX !(βx) ≤ αb
µαX1 .?(int).?(int).αX1 ≤ αa αb ≤?(βx1)

2
µαX .?(βx).αX ≤ µαX1 .?(int).?(int).αX1

!(βx) ≤ αb αb ≤?(βx1)

3 !(int) ≤ αb αb ≤?(βx1)

2 ?(int) ≤?(βx1)

6 success

Example 5.29. We apply solve to the set of constraints generated in the
Example 5.20

3 αb ≤!(αx) αa ≤ αx end ≤ αa αx1 ≤ end ?(αx1 ) ≤ αb
3 end ≤ αx αb ≤!(αx) αx1 ≤ end ?(αx1 ) ≤ αb
2 ?(αx1 ) ≤!(αx) end ≤ αx αx1 ≤ end
3 end ≤ αx αx ≤ end
2 end ≤ end
6 success

5.5 Further issues on the completeness of
solve

Theorem 5.27 proves a general result on the completeness of solve
without making any assumption on the type of constraints it can handle.
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We showed in Section 3.4.1 that in order to achieve the completeness of
solve in the general case at least one has to implement the exponential
version of localsolve (and to prove Claim 3.4.1). Let us now make an as-
sumption about the constraint set in order to do better with respect to the
completeness. We consider a closed process P typed without assump-
tions in Γ (i.e. the set of constraints returned by (C,∆) = INF(P, ∅, ∅))
and we show that in this manner solve is complete up-to non-admitted
dependencies. In order to prove that, we first observe that localsolve re-
ported in Figure 11 is also complete in the following sense:

Proposition 5.30. If ρ � C and variables in fv(C) \ fcv(C) have a unique oc-
currence in C then there exists σ s.t. σ =localsolve(C) and ρ = σ∗σ

′ for some
σ∗, σ

′ s.t. dom(σ) = dom(σ∗) and for all α ∈ dom(σ) if α ∈ fcv(C) then
σ(α) = σ∗(α).

Proof. The proof is by induction on the resolution steps of localsolve(C).
If line 1 is applied the proof is similar to the proof of Theorem 4.34. If line

2 is applied ρ � α
c
∧T, C and we must prove that this implies ρ′ � [T /α]C.

Since by hypothesis α /∈ fv(C) then any substitution for α holds so take ρ′

obtained from ρ removing the substitution for α then [T /α]ρ′ � C, which
concludes by an application of Lemma 3.33. If the line 3 is applied we
can conclude with Lemma 3.32.

Finally we can states the completeness of solve.

Theorem 5.31. Let C s.t. (C,∆) = INF(P, ∅, ∅) and C has not non-admitted
dependencies. If σ � C then solve (C) = success .

Proof. The proof is by induction on the resolution steps of solve. We
proceed considering the excluded cases from the completeness stated in
Theorem 5.27. In particular each constraint of the form V ≤ C[[α′]] (where
V optionally overlined) or of the form C[[α′]] ≤ V where C 6= [[·]] that does
not have a respective constraint of the form α′ ≤ T is due to a throw
instruction. In this case α′ has linear occurrence in C. Hence when lines
4 and 5 of solve are applied we can use Proposition 5.30.

To conclude we must prove that line 6 is applied with the empty set
of constraints which is immediate since every remaining constraint is of
the form T1 ≤ T2 with T1 and T2 different from a type variable. However
T1 ≤ T2 fits the pre-condition of line 2 because it can only be created
using line 3.
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The previous theorem says that if solve fails on a certain process
P then the set of constraints generated by INF for P has non-admitted
dependencies. We now characterize all such processes P . For simplic-
ity we do not consider delegation; construction with delegation is more
involved and does not add nothing interesting. First of all we observe
that every service accept and every service request relative to a service
v is constrained with the same fresh session type variable exploiting as-
sumptions in Γ. Consequently we can refer a service by its associated
session type variable and vice versa we can use a session type variable
to refer a service.

The support function unified(v) returns w if the session type variable
relative to v is unified with the session type variable relative to w during
the running of solve on a certain set of constraints or it returns v other-
wise (we omit the set of constraints which is clear from the context from
time to time). Given a process P with all free and bound names different
we build the graph GP = (V,E) such that:

• the set of vertexes V is the set
{w|v(x).Q or v(x).Q is a subprocess of P for some Q,x and
unified(v) = w}

• the set of edges E is the set {(v′, w′)|v(x).Q or v(x).Q is a subpro-
cess of P and w is either sent or received through x and unified(v) =
v′ and unified(w) = w′ and w′ ∈ V }

The construction of GP is simple, we reason up-to unification in order
to identify variables with the real service they are instantiated with. It is
easy to see that the set of constraints generated by INF(P,Γ,Θ) has not
non-admitted dependencies iff GP is acyclic. In order to prove that we
introduce a further definition which extends dependency to a generic set
of constraints.

Definition 5.32 (α1, . . . , αn-dependency into a set). A set C of constraints
has an α1, . . . , αn-dependency if applying the resolution steps of solve
zero or more times it reduces to some C′ which contains a set α1, . . . , αn-
dependent.

Lemma 5.33. Let P a process s.t. GP = (V,E) is acyclic and there exist C,∆
s.t. (C,∆) = INF(P,Γ,Θ) and v ∈ dom(Γ) implies Γ(v) = β for some β fresh.
For each edge in E corresponds an α, α′-dependency in C and vice-versa.
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Proof. ⇒) The proof is by induction on the recursive structure of a run
of INF(P,Γ,Θ) with case analysis on the last applied rule. We sketch ser-
vice accept case when Ṗ = v(x).P and Ċ = C ∪ {α ≤ T} ∪ {Γ(v) = [α]}.
The unification constraint unifies the type of α with every service ac-
cept and service request relative to v. Applying the resolution steps of
solve, α ≤ T is turned to a constraint of the form α′ ≤ U where U is
the type of x and the session type variable α′ is relative to the service
w s.t. unified(v) = w. In particular an α′, α′′-dependency is created if the
service associated with α′′ is either sent or received through x and an
α′′′, α′-dependency is created if w is either received or sent through the
service associated with α′′′. We can conclude by induction since the proof
mimes the construction of Gv(x).P relative to v.
⇐) The proof directly follow by the construction ofGP and the definition
of α, α′-dependency.

Corollary 5.34. Let P a process. If GP is acyclic and there exist C,∆ s.t.
(C,∆) = INF(P, ∅, ∅) then C does not contain non-admitted dependencies.

Proof. The proof follows directly applying Lemma 5.33.

Let us now show some examples of the graph construction.

Example 5.35. In this example we show a process CY C and its graph
GCY C which has a cycle (a, b), (b, a).

CY C = a(x).x!(b) | b(y).y?(x) | a(x).x?(y).y(y).y!(a)

GCY C = ?>=<89:;a ))?>=<89:;bjj

The cycle is relative to the non-admitted dependency ?([αb]) ≤ αa, αb ≤
!([αa]) (we simplified the unification constraints where y has been unified
with b) generated by INF(CY C, ∅, ∅).

Example 5.36. Consider the process

NCY C = a(x).x!(b) | a(x).x?(x).x(y).y!(b)

GNCY C = ?>=<89:;a ))?>=<89:;b kk

Since GNCY C has a cycle by Lemma 5.33, INF(NCY C, ∅, ∅) = (C, ∅) gen-
erates non-admitted dependencies.
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1 let rec solve c =
2 let dis = solveunification(c) in
3 while (!zero <>[]) do
4 while (!alpha <>[]) do
5 alpha:= get alpha diseq;
6 (match !alpha
7 with Subtype(Vart(id), ):: l ->
8 lalpha:= find alpha id diseq;
9 diseq:=remove list diseq lalpha

10 lc:= find free alpha id diseq;
11 lc1:= find free alpha1 id diseq;
12 lnc:= find free not alpha id diseq;
13 if (!lc=[] and !lc1=[] and !lnc=[])
14 then
15 let sub=localsolve lalpha in
16 diseq:= apply sub sub (remove list diseq lalpha)
17 else
18 res:= create i matrix !lc !lalpha;
19 res1:=create i matrix !lc1 !lalpha;
20 res2:=create j matrix !lnc !lalpha;
21 diseq:=(remove list diseq (lc1@lc@lnc))@res@res1@res2;
22 | -> ());
23 done;
24 zero:= find non constr var diseq
25 (match !zero with
26 | Dsubtype(t1, t2):: l -> let sub = subtype(dual t1, t2) in
27 diseq:= apply sub sub (remove list diseq [Dsubtype(t1, t2)])
28 | -> ());
29 alpha:=[Subtype(Endt, Endt)];
30 done;

Figure 36: An implementation of the solve algorithm

5.5.1 Solve implementation

The solve algorithm is given by pattern matching on the set of con-
straints in input. We now briefly discuss a possible implementation used
in TypSes which we believe better clarify how solve works in practice.
The code of the algorithm is reported in Figure 36. For an elegant imple-
mentation we use the imperative features of Ocaml. Apart from the line
2 which solves the unification constraints, the main code is composed of
two nested while. The internal while, lines 4-22, simulates the cases 3 and
4 of solve and it is applied as many time as possible. In line 5 we find
a constraint of the form α ≤ T such that α does not appear elsewhere
as the argument of either an input or an output action. If at least one of
such constraint is found we extract id the identifier of type variable in
the constraint (line 7). With the help of id we collect four lists: lalpha
which is a list of all the constraints of the form id ≤ Ti, lc which is a list
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of all constraints of the form T ′i ≤ C[[id]], lc1 which is a list of all con-
straints of the form T ′′j ≤ C′[[id]] and lnc which is a list of all constraints
of the form C′′[[id]] ≤ T ′′′k . Notice in case 3 of solve we do not have the
analogous of the list lc1 since we handle this case imposing the condi-
tion “each T ′i can be optionally overlined”. These four fresh lists lalpha,
lc, lc1 and lnc are used to create the sets I and J of the solve which
are called res, res1 (for I) and res2 (for J) here. If I and J are empty
we use the localsolve function (lines 15-16). Just before exiting the
internal while (line 21) we update the set of constraints (diseq) adding
the newly created ones and removing the existing ones. In lines 24-28
we solve a subtyping constraint that fits the premise of case 2 of solve,
in order to obtain the syntactic unifier (sub) computed by means of the
function subtype. We have two types of possible subtype constraints
depending if the first member is or not overlined, indicated respectively
with Subtype and Dsubtype. Thus in line 26 we handle the Dsubtype
constraints (the case 2 of solve) using the function dual to compute the
dual of a session type. In few words we remove the overline from a con-
straint effectively computing its dual without caring about free variables.
Exit from the internal while is guaranteed because in line 9 we remove
lalpha from diseq while exit from the external while is guaranteed
because we remove the Dsubtype constraint from diseq. For sake of
simplicity we omit in Figure 36, line 5 of solve since its implementation
is simple and should be placed after line 29.

5.6 Encodings

In this section we introduce two encodings: from the standard π-
calculus to HVK-X and from CST to HVK-X. In order to prove the va-
lidity of our encodings we proceed differently from the standard way
(35; 62). We do prove the validity of an encoding showing that each en-
coded process is typable in HVK-X if and only if it is typable in the source
calculus.
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(PI-VAR)
Γ, x : π ` x : π

(PI-NIL)
Γ ` 0

(PI-IN)
Γ, ỹ : π̃ ` P Γ ` v : [π̃]

Γ ` v(ỹ).P

(PI-OUT)
Γ ` P Γ ` v : [π̃] Γ ` w̃ : π̃

Γ ` v〈w̃〉.P

(PI-CHAN)
Γ, a : π ` a : π

(PI-PAR)
Γ ` P Γ ` Q

Γ ` P|Q

(PI-REST)
Γ, a : π ` P
Γ ` (νa)P

(PI-PVAR)
Γ ` X

(PI-REC)
Γ ` P

Γ ` rec X.P

Figure 37: Simply typed π-calculus

enc(0) = 0 enc(v(ỹ).P) = v(x).x?(ỹ).enc(P)
enc(v〈w̃〉.P) = v(x).x!(w̃).enc(P)
enc(P|Q) = enc(P)|enc(Q) enc((νa)P) = (νa)enc(P)
enc(X) = X enc(rec X.P) = rec X.enc(P)

Figure 38: Encoding of the π-calculus processes

enc([]) = [?(end)] enc([π1, . . . ,πn]) = [?(enc(π1), . . . , enc(πn))]

Figure 39: Encoding of the π-calculus types

5.6.1 Encoding the π-calculus

We report the syntax of a π-calculus process P and the syntax of a
π-calculus simply types π.

P,Q ::= 0 | v(ỹ).P | v〈w̃〉.P | P|Q | (νa)P | X | rec X.P
π ::= [] | [π̃]

Syntax is standard: we only use recursion instead of replication and the
distinction between variables and channels ranged over by x, y, . . . and
by a, b, . . . respectively, instead of using a unique syntactic category for
names. Values which are both channel and variables are ranged over by
v, w, . . .. Types π can be a channel in which one can output a null tu-
ple or a channel in which one can output a tuple of type π̃. In the simply
typed π-calculus each channel can be used to send and receive values of a
unique type. Typing rules of the simply typed π-calculus are reported in
Figure 37. Typing judgments are of the form Γ ` P (we use an overload-
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ing of Γ without risk of clash). The encoding function enc from π-calculus
processes to HVK-X processes is shown in Figure 38. The only non-trivial
cases are those relative to channel input, which is modeled as a service
accept that inputs a tuple, and to channel output which is modeled as a
service request which outputs a tuple. Since types have a different syn-
tax we also encode them in Figure 39. Remember that in HVK-X type
discipline we assume only the type of the service accept so the null tuple
channel is encoded as a service that expects to input an ended session
and the same for [π̃] which is encoded as a service that reads a tuple.

The following theorem proves the soundness of enc but one can think
of the theorem as the fact that the session type discipline used in a sim-
ple request-response manner has the same power as the simply typed
π-calculus.

Theorem 5.37 (Soundness and Completeness of enc(P)). Γ ` P iff
enc(Γ); Θ ` enc(P) . ∅ for some Θ s.t. X ∈ fpv(P ) implies Θ = Θ′, X : ∅.

Proof. ⇒) The proof is by induction on the typing derivation of Γ ` P
with case analysis on the last applied rule. Base cases are when the rules
(PI-NIL) and (PI-PVAR) are applied and they are immediate to check. In the
inductive cases, when the last applied rule is:

• (PI-IN) and Ṗ = v(ỹ).P, and
(PI-IN)
Γ, ỹ : π̃ ` P Γ ` v : [π̃]

Γ ` v(ỹ).P
, by induction

enc(Γ), ỹ : enc(π̃); Θ ` enc(P ) . ∅ for some suitable Θ which al-
lows us to conclude by

enc(Γ), ỹ : enc(π̃); Θ ` enc(P ) . ∅
(SWEAK)

enc(Γ), ỹ : enc(π̃); Θ ` enc(P ) . x : end
(SIN)

enc(Γ); Θ ` x?(ỹ).enc(P ) . x :?(enc(π̃)) enc(Γ) ` v : [?(enc(π̃))]
(SACC)

enc(Γ); Θ ` v(x).x?(ỹ).enc(P ) . ∅

• (PI-OUT) and Ṗ = v〈w̃〉.P and
(PI-OUT)
Γ ` P Γ ` v : [π̃] Γ ` w̃ : π̃

Γ ` v〈w̃〉.P
, by induc-

tion we have enc(Γ); Θ ` enc(P ) . ∅ for some suitable Θ which
allows us to conclude by:

enc(Γ); Θ ` enc(P ) . ∅
(SWEAK)

enc(Γ); Θ ` enc(P ) . x : end enc(Γ) ` w̃ : enc(π̃)
(SOUT)

enc(Γ); Θ ` x!(w̃).enc(P ) . x : !(enc(π̃)) enc(Γ) ` v : [?(enc(π̃))]
(SREQ)

enc(Γ); Θ ` v(x).x!(w̃).enc(P ) . ∅
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• (PI-REC) and Ṗ = rec X.P and
(PI-REC)

Γ ` P

Γ ` rec X.P

, by induction we have

that enc(Γ); Θ, X : ∅ ` enc(P ) . ∅ for some suitable Θ then we can
directly conclude with rule (SREC) Γ; Θ ` rec X.enc(P ) . ∅ since
fpn(P ) = ∅, by Lemma 5.8.

• (PI-PAR), (PI-REST) the result follows directly by induction.

⇐)The proof is by induction on enc(P) with case analysis on the last
applied rule. Base cases: when P = X and enc(Γ); Θ, X : ∅ ` X . ∅
implies Γ ` X and when P = 0 and enc(Γ); Θ ` 0 . ∅ implies Γ ` 0. In
the inductive case when the last applied rule is:

• enc(v(ỹ).P) is similar to the case for (PI-IN) with inverse implications.

• enc(v〈w̃〉.P) is similar to the case for (PI-OUT) with inverse implica-
tions.

• enc(P |Q), enc((νa)P) follow directly by induction.

• enc(rec X.P) and
(SREC)
enc(Γ); Θ, X : ∅ ` enc(P) . ∅
enc(Γ); Θ ` rec X.enc(P) . ∅

and by induction Γ `

P and we can conclude with rule (PI-REC).

Example 5.38. The ping server takes a channel and sends a null tu-
ple in response to advise the client that it still correctly working. We
show how its encoding by means of enc is typed in HVK-X. The
π-calculus process relative to the ping server is the following P =
rec X.(ping(r).r〈〉|X) | (νr1)ping(r1).r1() and it can be typed using the
rule if Figure 37 as ping : [[]] ` P . We now consider its encoding enc(P ) =
rec X.(ping(x).x?(r).r(x).x!() | X)(νr1)ping(x).x!(r1).r1(x).x?() which
is a well-typed HVK-X process ping : [?([?()])]; ∅ ` enc(P ) . ∅. In particu-
lar the following is a fragment of the proof tree.

ping : [?([?()])], r : [?()];X : ∅ ` 0 . ∅
(SWEAK)

ping : [?([?()])], r : [?()];X : ∅ ` 0 . x : end
(SOUT)

ping : [?([?()])], r : [?()];X : ∅ ` x!() . x :!()
(SREQ)

ping : [?([?()])], r : [?()];X : ∅ ` r(x).x!() . ∅
(SWEAK)

ping : [?([?()])], r : [?()];X : ∅ ` r(x).x!() . x : end
(SIN)

ping : [?([?()])];X : ∅ ` x?(r).r(x).x!() . x :?([?()])
(SACC)

ping : [?([?()])];X : ∅ ` ping(x).x?(r).r(x).x!() . ∅
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5.6.2 Encoding CST

We now try to encode CST in HVK-X proving the the correspondence
between type system defined in Figure 16 and type system defined in
Figure 31. This time the encoding is more tricky, due to the different ses-
sion management policies taken in each calculus.

The first problem arises with recursion. Consider for example
the CST process rec X.〈5〉.a.〈5〉.X of infinite nested declarations of
a which outputs 5 two times once invoked. Notice that the pro-
cess is well-typed assuming a : [!(int).!(int)]. The obvious encoding
rec X.κ!(5).a(x).x!(5).X does not work since after the unfolding of
the recursion we have 〈5〉.a.〈5〉.rec X.〈5〉.a.〈5〉.X from one side and
κ!(5).a(x).x!(5).rec X.κ!(5).a(x).x!(5).X from the other side which are
two very different processes: in the former case only two outputs are
performed in the current session while in the latter case infinite outputs
are performed on κ. The solution to the problem is using a process defi-
nition with at most two parameters (the current session c and the parent
session p) for each rec instruction. Thus the correct encoding for the

previous process is X(κ) def= c!(5).a(x).x!(5).X(x) in X(c) which uses
a process definition that takes only the current session c. The parent ses-
sion is ignored since no actions are performed and no assumptions about
processes with ended session are allowed.

The encoding of process definitions starting from the general recur-
sion (that we already have) is standard (for instance see (60) Section 9.5)
and the technique uses the replication together with a new fresh name in
place of each recursive call, for example the definition of X(c) above is
modeled as:

rec Y.aX(y).y?((c)).a(x).x!(5).aX(y1).y1!〈〈x〉〉.0 | Y

in which we create a new replicated service aX used to catch the current
c and after writing the integer 5 on both the current session and the new
created session x, it recursively invokes aX throwing x as parameter, i.e.
x will become the new parent session. It is simple to see that the process
is typed with Γ = aX : [?(!(int))], a : [!(int).!(int)] and Θ = Y : ∅.

For simplicity however we take (only for this subsection) as built in

process definitions of the formX(κ̃) def= P in Q in which the declaration
of X with the list of parameters κ̃ has Q as its scope. (More generally,
process definitions in (76) allows passing also variables besides sessions
which could be easily accommodated here as well.) We present the new
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typing rules for process definitions:

(SDEF)
Γ; Θ, X : T̃ ` P . κ̃ : T̃ Γ; Θ, X : T̃ ` Q .∆

Γ; Θ ` X(κ̃)
def
= P in Q .∆

(SDEFVAR)
Γ; Θ, X : T̃ ` X(κ̃) . κ̃ : T̃

These rules are the same as in (76) where differently from our type sys-
tem assumptions on process variables are only a list of types since the
relative subjects will be extracted from the list of parameters. Interest-
ingly the problem due to unguarded recursion returns also here e.g.
rec X(κ1).X(κ1) allows a linear environment of the form κ1 : T where T
can be any session types. We assume the consistency checks also here, so
for example when we encode the CST process rec X.X (which is typed

with end) as X(κ1, κ2) def= X(κ1, κ2) in X(c, p) we assume X is typed
also with two ends. For the sake of completeness we report also the syn-
tax directed version of the rules

(SDEFSD)
Γ; Θ, X : T̃ s̀d P . k̃ : T̃ ′ κ̃ : T̃ ≤ κ̃ : T̃ ′ Γ; Θ, X : T̃ s̀d Q .∆

Γ; Θ s̀d X(κ̃)
def
= P in Q .∆

(SDEFVARSD)
Γ; Θ, X : T̃ s̀d X(κ̃) . κ̃ : T̃

and the code for constraint extraction:

INF(X(κ1, . . . , κn)
def
= P in Q,Γ,Θ)=

in let (C, κ1 : T1, . . . , κn : Tn)=
INF(P,Γ,Θ ∪ {X : αX1 , . . . , αXn})

in let (C1,∆)=INF(Q,Γ,Θ ∪ {X : αX1 , . . . , αXn})
in (C ∪ C1 ∪ {αX1 ≤ T1, . . . , αXn ≤ Tn},∆)

INF(X,Γ,Θ)= (∅, κ1 : T1, . . . , κn : Tn) where Θ(X) = T1, . . . , Tn

Since the number of parameters in a process definition can vary from 0
to 2 and strictly depend of the opened sessions we need a further envi-
ronment to store assumptions about the number of parameters required
to call a certain process definition. The param-environment Λ is defined by
the following grammar:

Λ ::= Λ, X : 0 | Λ, X : 1 | Λ, X : 2 | ∅

then the usual operation of Λ, X : n and the definition of dom(Λ) are stan-
dard. An assumption of the form X : n indicates we expect the process
definition X to take n parameters with 0 ≤ n ≤ 2.

We present our encoding in Figure 40. Without risk of confusion we
use P,Q to refer both CST and HVK-X processes: it will be the context to
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enc(0, c, p,Λ) = 0
enc(v.P, c, p,Λ) = v(x).enc(P,x, c,Λ) x fresh
enc(v.P, c, p,Λ) = v(x).enc(P,x, c,Λ) x fresh
enc(rq . P, c, p,Λ) = enc(P, rp, c,Λ)

enc
( if v = w then
P else Q

, c, p,Λ
)

=
if v = w then
enc(P, c, p,Λ) else enc(Q, c, p,Λ)

enc((x̃).P, c, p,Λ) = c?(x̃).enc(P, c, p,Λ) c 6= ε
enc(Σni=1(li).Pi, c, p,Λ) = Σni=1c?(li).enc(Pi, c, p,Λ) c 6= ε
enc(〈ṽ〉.P, c, p,Λ) = c!(ṽ).enc(P, c, p,Λ) c 6= ε
enc(〈l〉.P, c, p,Λ) = c!(l).enc(P, c, p,Λ) c 6= ε
enc(return ṽ.P, c, p,Λ) = p!(ṽ).enc(P, c, p,Λ) p 6= ε

enc(P |Q, c, p,Λ) =

{
enc(P, c, p,Λ)|enc(Q, ε, ε,Λ) if noactions(Q)
enc(P, ε, ε,Λ)|enc(Q, c, p,Λ) if noactions(P )

enc(P > x̃ > Q, c, p,Λ) =



enc(P, c, p,Λ) if noactions(P )

(νr)
(
enc(P, r+, ε, ∅)|
r−?(x̃).enc(Q, c, p,Λ)

) if noretact(P ) and
fpv(P ) = ∅ and
r fresh and
fpn(Q) = ∅

enc((νm)P, c, p,Λ) = (νm)enc(P, c, p,Λ)

enc(rec X.P, c, p,Λ) =



X
def
=

enc(P, ε, ε, Λ, X : 0) in X
if noactions(P )

X(κ)
def
=

enc(P, κ, ε,Λ , X : 1) in X(c)
if noretact(P )

X(κ1, κ2)
def
=

enc(P, κ1, κ2,Λ , X : 2) in X(c, p)
otherwise

enc(X, c, p, Λ, X : 2) = X(c, p)
enc(X, c, p, Λ, X : 1) = X(c)
enc(X, c, p, Λ, X : 0) = X

Figure 40: Encoding CST in HVK-X

disambiguate their meaning from time to time. Also we use c, p to range
over both session variables and a special mark ε that stays indicating no
communication operations are possible on a certain session. enc takes
a CST process and two session variables (possibly ε) that represent both
the current and the parent session, a param-environment Λ with assump-
tions about the number of parameters in a process definition and returns
an HVK-X process which (as we shall prove) is well typed if and only if
the original process is well typed.

Some comments about the encoding function follow. The function
noactions(P ) holds if both nocuract(P ) and noretact(P ) hold which are
the same predicates defined in Figure 17. In the case of service defini-
tions, enc(v.P, c, p) creates a new service accept and a new session vari-
able x, used as current session, in the encoding of the body P . The encod-
ing of a service invocation is similar, while the encoding of a session end
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(rq .P ) simply uses rq as the current session and c as the new parent ses-
sion. Communication primitives are encoded as communications on the
current session c while a return instruction corresponds to an output in
the parent session p. The encoding of P |Q checks which subprocess be-
tween P or Q does not perform actions. On one hand two ε’s are used to
encode the subprocess with no actions. On the other hand the good ses-
sions c, p are used to encode the process which performs some actions.
The encoding of a pipe has two subcases depending of the function pipe,
in the first subcase when P does not perform any actions then we just en-
code P with the correct sessions c, p. In the second case of the pipe when
P outputs a tuple we create a new fresh session r: r+ is used to encode
P so as to receive the tuple while a reading on r− blocks the execution of
Q until a tuple is received. Notice that in both the encoding of a parallel
composition and of a pipe we use the same syntactic restrictions used in
the relative typing rules of CST. Hence if enc fails due to the premises of
rules for parallel composition and pipe the process is not well-typed.

The encoding of a process definitions adds an assumption in
the param-environment based on the predicate noactions(P ) and
noretact(P ) and the encoding of a process variable uses these assump-
tions in order to build the correct function call. Following lemmas are the
equivalent of the Weakening Lemma and of the Strengthening Lemma,
used to add and remove assumptions from Λ in the encoding.

Lemma 5.39. If enc(P, c, p,Λ) = Q and X /∈ fpv(P ) then enc(P, c, p, Λ, X :
n) = Q. Vice versa if enc(P, c, p, Λ, X : n) = Q and X /∈ fpv(P ) then
enc(P, c, p,Λ) = Q.

Proof. By straightforward induction on the definitions of enc(P, c, p,Λ) =
Q and enc(P, c, p, Λ, X : n) = Q respectively.

The following is an example of the encoding of a recursive process.

Example 5.40. Consider the process NEST = recX.a.〈5〉.X and
NEST ′ = recX.a.〈5〉.return 5.X then enc(NEST, c, p, ∅) =
X

def= a(x).x!(5).X in X and enc(NEST ′, c, p, ∅) = X(κ) def=
a(x).x!(5).κ!(5).X(x) in X(c).

In the encoding we use functions noretact and noactions to statically
guess if the process has type end. Unfortunately this reasoning works
only in the following direction:

Lemma 5.41. Let Γ; Θ ` P : T ;U ;L. If U = end then noretact(P ).
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Proof. The proof is by induction on the typing derivation of Γ; Θ ` P :
T ;U ;Lwith case analysis on the last applied rule. We prove the inductive
case when the last applied rule is (TPARL). By hypothesis Γ; Θ ` P |Q :
T ;U ;L1 ] L2 and Γ; Θ ` P : T ;U ;L1 and Γ; Θ ` Q : end; end;L2 and by
induction noretact(Q) and if U = end then noretact(P ) which concludes.

Lemma 5.42. Let Γ; Θ ` P : T ;U ;L. If T = end and U = end then
noactions(P ).

Proof. The proof is by induction on the typing derivation of Γ; Θ ` P :
T ;U ;Lwith case analysis on the last applied rule. We prove the inductive
case when the last applied rule is (TPIPE). By hypothesis Γ; Θ ` P > x̃ >
Q : T ;U ;L and Γ; Θ ` Q : T1;U1; ∅ for some T1 and U1 by induction if
T1 = U1 = end then nocuract(Q) and noretact(Q) which concludes since
(T,U) = (end, end) = pipe(T2, end, end, S̃) for any T2 and S̃.

The converse of the previous two lemmas does not hold, this means
that we cannot statically guess when the type of a process (especially
an open one) is end. As a simple counterexample consider the process
a : [end];X : end; !(int) ` a.X : end; !(int); ∅ in which noactions(a.X)
holds but the process has a type different from end; end.

Think of to the INF algorithm in Figure 25 where we used the or key-
word to overcome this limitation. Here we use another solution instead
of trying, we assume the following hypotheses.

Hypothesis 1. Let Γ; Θ ` P : T ;U ;L. If noretact(P ) then U = end.

Hypothesis 2. Let Γ; Θ ` P : T ;U ;L. If noactions(P ) then T = end and
U = end.

Notice that previous hypotheses are Lemmas for closed processes
which trivially hold due to the consistency checks in the rule for recur-
sion.

Lemma 5.43. Let Γ; ∅ ` P : T ;U ;L. If noretact(P ) then U = end.

Lemma 5.44. Let Γ; ∅ ` P : T ;U ;L. If noactions(P ) then T = end and
U = end.

We believe that these hypotheses are not an issue since if a process
does not perform observable actions then it should be typed in a con-
sistent manner. Assuming these two hypotheses we prove the sound-
ness and completeness of our encoding. We now define a mapping from
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CST environments to HVK-X environments used in the proof of Theo-
rem 5.45. Given a CST standard typing environment Γ, we indicate with
Γ̆ the same standard typing environment without assumptions on ses-
sion names:

Γ̆ =


Γ̆(a) = Γ(a) if a ∈ dom(Γ)
Γ̆(x) = Γ(x) if x ∈ dom(Γ)
Γ̆(rp) undefined

Given a CTS process environment Θ we indicate with Θ̆Λ the following
mapping, where we assume dom(Λ) = dom(Θ):

Θ̆Λ′ =


Θ̆Λ,X:0(X) = ∅ if Θ(X) = end; end
Θ̆Λ,X:1(X) = T if Θ(X) = T ; end
Θ̆Λ,X:2(X) = T,U if Θ(X) = T ;U
undefined otherwise

Γ̆ and Θ̆Λ will be our standard environments for the encoded process
(notice now they are valid HVK-X typing environments), removed as-
sumptions from Γ are used together with the triple T ;U ;L to build the
linear environment for the encoded process.

Theorem 5.45 (Soundness and Completeness of enc). Let P a process and
c, p two fresh session variables s.t. c /∈ fn(P ) and p /∈ fn(P ). Γ; Θ ` P : T ;U ;L
iff

1. Γ̆; Θ̆Λ ` enc(P, c, p,Λ) .∆, c : T, p : U

2. if U = end then Γ̆; Θ̆Λ ` enc(P, c, ε,Λ) .∆, c : T

3. if T = end and U = end then Γ̆; Θ̆Λ ` enc(P, ε, ε,Λ) .∆

where ∆ is s.t. L = dom(∆) and for each rp ∈ dom(∆) then Γ(rp) = [∆(rp)].

Proof. ⇒) The proof is by induction on the typing derivation of Γ; Θ ` P :
T ;U ;Lwe prove only the first statement the others are similar. Base cases
are (TNIL)

Γ; Θ ` 0 : end; end; ∅ and using rule (SWEAK) we can conclude Γ̆; Θ̆Λ `
0.c : end, p : end and (TPVAR)

Γ; Θ, X : T ;U ` X : T ;U ; ∅ and we can conclude with
(SDEFVAR)
Γ̆; Θ̆, X : T, UΛ,X:2 ` X(c, p) . c : T ; p : U

. In the inductive case when the last
applied rule is:
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• (TNEWR) and Ṗ = (νr)P and Γ, r+ : [T ], r− : [T ]; Θ ` P : T ′;U ;L
and by induction either Γ̆; Θ̆Λ ` enc(P, c, p,Λ) .∆, c : T ′, p : U ; r+ :
T, r− : T if L ∩ {r+, r−} = {r+, r−} or Γ̆; Θ̆Λ ` enc(P, c, p,Λ) .
∆, c : T ′, p : U if L ∩ {r+, r−} = ∅. In the first case we can directly
conclude applying rule (SNEWR) in the second case we can conclude
after applying rule (SWEAK) to obtain Γ̆; Θ̆Λ ` enc(P, c, p,Λ) . ∆, c :
T ′, p : U, r+ : end, r− : end and then conclude by rule (SNEWR).

• (TIF) and Ṗ = if v1 = v2 then P1 else P2 and Γ; Θ ` Ṗ :
T ;U ;L and by hypothesis, letting i ∈ {1, 2}, Γ; Θ ` Pi : T ;U ;L
and by induction Γ̆; Θ̆Λ ` enc(Pi, c, p,Λ) . ∆, c : T, p : U . We
can conclude by using rule (SIF) to obtain Γ̆; Θ̆Λ ` if v1 =
v2 then enc(P1, c, p,Λ) else enc(P2, c, p,Λ) .∆, c : T, p : U .

• (TIN) and Ṗ = (x̃).P and Γ; Θ ` Ṗ :?(S̃).T ;U ;L and Γ, x̃ : S̃; Θ `
P : T ;U ;L and by induction Γ̆, x̃ : S̃; Θ̆Λ ` enc(P, c, p,Λ) . ∆, c :
T, p : U and we can conclude by an application of the rule (SIN) with
Γ̆; Θ̆Λ ` enc(P, c, p,Λ) .∆, c :?(S̃).T, p : U .

• (TOUT),(TRET), (TCHOICE) and (TBRANCH) similar to the previous case.

• (TPARL) and Ṗ = P1|P2 and Γ; Θ ` P1 : T ;U ;L1 and Γ; Θ `
P2 : end; end;L2 and by Lemma 5.42 noations(P2) holds. By in-
duction Γ̆; Θ̆Λ ` enc(P1, c, p,Λ) . ∆1, c : T ; p : U and Γ̆; Θ̆Λ `
enc(P2, ε, ε,Λ) . ∆2 and we can conclude with rule (SPAR) Γ̆; Θ̆Λ `
enc(P1, c, p,Λ)|enc(P2, ε, ε,Λ) . ∆1,∆2, c : T, p : U , where ∆1,∆2 is
defined because L1 ] L2 and c, p are disjoint with dom(∆2) since
their freshness.

• (TPARR) similar to the previous case.

• (TREC) and Ṗ = rec X.P and Γ; Θ, X : T ;U ` P : T ;U ; ∅. If
¬noactions(P ) and ¬noretact(P ) by induction we have Γ̆; Θ̆, X :
T,UΛ,X:2 ` enc(P, κ1, κ2, Λ, X : 2) . κ1 : T, κ2 : U and we can

use rules (SDEF) and (SDEFVAR) to conclude Γ̆; Θ̆Λ ` X(κ1, κ2) def=
enc(P, κ1, κ2, Λ, X : 2) in X(c, p) . c : T, p : U . The other case
when noactions(P ) and when noretact(P ) hold are similar.

• (TDEF) and Ṗ = v.P and Γ; Θ ` P : T ;U ;L and Γ ` v : [T ] and by
induction Γ̆; Θ̆Λ ` enc(P,x, c,Λ) . ∆,x : T, c : U and by definition
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Γ̆ ` v : [T ] and applying (SWEAK) and (SACC) we conclude Γ̆; Θ̆Λ `
a(x).enc(P, c, p,Λ) .∆, c : U, p : end.

• (TINV) similar to the previous case

• (TSES) and Ṗ = rq . P and Γ; Θ ` P : T ;U ;L and by induction
Γ̆; Θ̆Λ ` enc(P, rq, c,Λ) . ∆, rp : T, c : U and we can conclude ap-
plying (TWEAK) to add the assumption p : end in the linear environ-
ment. (Notice that rq becomes part of the linear environment of the
conclusion since it is added to L in the conclusion of rule (TSES)).

• (TPIPE) and Ṗ = P > x̃ > Q we have two cases depending of the
type of P . If Γ; ∅ ` P :!(S̃); end then noactions(P ) does not hold
(since it would contradict the Lemma 5.42) and Γ, x̃ : S̃; Θ ` Q :
T ;U ; ∅ and by induction Γ̆; ∅ ` enc(P, r+, ε, ∅) . ∆1, r

+ :!(S̃) and
Γ̆, x̃ : S̃; Θ̆Λ ` enc(Q, c, p,Λ) . c : T, p : U . By Lemma 5.39 and the
Weakening Lemma we have Γ̆; Θ̆Λ ` enc(P, r+, ε,Λ) . ∆1, r

+ :!(S̃)
and we can use the following derivation tree:

Γ̆, x̃ : S̃; Θ̆Λ ` enc(Q, c, p,Λ) . c : T, p : U

Γ̆, x̃ : S̃; Θ̆Λ ` enc(Q, c, p,Λ) . c : T, p : U, r− : end

Γ̆; Θ̆Λ ` r−?(x̃).enc(Q, c, p,Λ) . c : T, p : U, r− :?(S̃)

??

Lemma 5.8 and Weakening Lemma︷ ︸︸ ︷
Γ̆; Θ̆Λ ` enc(P, r+

, ε,Λ) .∆1, r
+

:!(S̃) ??

Γ̆; Θ̆Λ ` enc(P, r+, ε,Λ)|r−?(x̃).enc(Q, c, p,Λ) .∆1, r
+ :!(S̃), c : T, p : U, r− :?(S̃)

Γ̆; Θ̆Λ ` (νr)enc(P, r+, ε,Λ)|r−?(x̃).enc(Q, c, p,Λ) .∆1, c : T, p : U

• (TWEAK) follows by induction and by rule (SWEAK).

• (TNEW) follows directly by induction.

⇐) The proof is by induction on the recursive structure of enc(P, c, p,Λ)
with case analysis on the last applied rule, we prove only the first
statement the other are similar. In the base case relative to 0 we have
Γ̆; Θ̆Λ ` enc(0, c, p,Λ) . c : end, p : end and Γ; Θ ` 0 : end; end; ∅. In the
base case relative to a process variable X we have Γ̆; Θ̆, X : T ;UΛ,X:2 `
enc(X, c, p, Λ, X : 2) . c : T, p : U and Γ; Θ, X : T ;U ` X : T ;U ; ∅. In the
inductive case when the last applied rule is:
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• enc(v.P, c, p,Λ) and Γ̆; Θ̆Λ ` v(x).enc(P,x, c,Λ) . ∆, c : U, p : end
and Γ̆; Θ̆Λ ` enc(P,x, c,Λ) .∆,x : T, c : U, p : end and by induction
Γ; Θ ` P : T ;U ;L and L = dom(∆) and Γ ` v : [T ]. Applying (TDEF)

we obtain Γ; Θ ` v.P : U ; end;L which concludes.

• enc(v.P, p, c,Λ) similar to the previous case.

• enc(rq .P, c, p,Λ) and Γ̆; Θ̆Λ ` enc(rq .P, c, p,Λ).∆, rq : T, c : U, p :
end and Γ̆; Θ̆Λ ` enc(P, rq, c,Λ) . ∆, c : U, rq : T and by induction
Γ; Θ ` P : T ;U ;L and Γ ` rq : [T ] which allows to conclude by rule
(TSES) Γ; Θ ` rq . P : U ; end;L ] {rq}.

• enc(if v1 = v2 then P1 else P2, c, p,Λ) and Γ̆; Θ̆Λ `
enc(Pi, c, p,Λ) . ∆, c : T, p : U and Γ̆; Θ̆Λ ` enc(if v1 =
v2 then P1 else P2, c, p,Λ) . ∆, c : T, p : U . By induction Γ; Θ `
Pi : T ;U ;L and we can conclude with rule (TIF).

• enc(P1|P2, c, p,Λ) and we have two similar cases. Consider
noactions(P2) holds, we have Γ̆; Θ̆Λ ` enc(P1, c, p,Λ) .∆1, c : T, p :
U and Γ̆; Θ̆Λ ` enc(P2, ε, ε,Λ) .∆2 and Γ̆; Θ̆Λ ` enc(P1|P2, c, p,Λ) .
∆1,∆2, c : T, p : U . By induction and by Hypothesis 2 we have
Γ; Θ ` P1 : T ;U ;L1 and Γ; Θ ` P2 : end; end;L2 and we can con-
clude with rule (TPARL).

• enc(P > x̃ > Q, c, p,Λ) and we have two cases. Consider the case
noretact(P ). Using the Strengthening Lemma (since fpv(P ) = ∅)
and Lemma 5.39 we obtain Γ̆; ∅ ` enc(P, r+, ε, ∅) . ∆1, r

+ : T .
By induction and by Hypothesis 1, Γ; ∅ ` P : T ′; end;L also
Γ̆, x̃ : S̃; Θ̆Λ ` enc(Q, c, p,Λ) . ∆2, c : T, p : U implies by induc-
tion Γ, x̃ : S̃; Θ ` Q : T ;U ;L1. Since fpn(Q) = ∅ and Q is well typed
by the induction hypothesis in order not to contradict Lemma 4.13
it must be L1 = ∅ and consequently ∆2 = ∅. Also since by hypoth-
esis enc(P > x̃ > Q, c, p,Λ) is well typed and r is fresh, T ′ =!(S̃).
Finally since Γ̆; Θ̆Λ ` enc(P > x̃ > Q, c, p,Λ) . ∆1, c : T, p : U we
can apply (TPIPE) to conclude Γ; Θ ` P > x̃ > Q : T ;U ;L. The case
where noactions(P ) holds is simpler.

• enc(rec X.P, c, p,Λ) and if ¬noactions(P ) and ¬noretact(P ) then
Γ̆; Θ̆, X : T ;UΛ,X:2 ` enc(P, κ1, κ2, Λ, X : 2) . κ1 : T, κ2 : U and by
induction Γ; Θ, X : T,U ` P : T ;U ; ∅ which allows to conclude by
an application of the rule (TREC). The other cases when noactions(P )
and noretac(P ) are similar.

165



• enc(〈l〉.P, c, p,Λ) and Γ̆; Θ̆Λ ` P .∆, c : T, p : U and Γ̆; Θ̆Λ ` 〈l〉.P .
∆, c : ⊕{li : Ti}i∈I , p : U and by induction Γ; Θ ` P . T ;U ;L and
we can conclude by an application of the rule (TCHOICE).

• enc(〈ṽ〉.P, c, p,Λ), enc(〈(x̃).P, c, p,Λ), enc(Σni=1(li).Pi, c, p,Λ) and
enc(return ṽ.P, c, p,Λ) are similar to the previous case.

• enc((νr)P, c, p,Λ) and Γ̆; Θ̆Λ ` enc(P, c, p,Λ) . ∆, r+ : T, r− : T , c :
T, p : U and by induction Γ, r+ : [T ], r− : [T ],Θ ` P : T ;U ;L and
we can conclude with an application of the rule (TNEWR).

• enc((νa)P, c, p,Λ) and Γ̆, a : [T ]; Θ̆Λ ` enc(P, c, p,Λ) .∆, c : T, p : U
and by induction Γ, a : [T ], Θ̆ ` P : T ;U ;L and we can conclude
with an application of the rule (TNEW).

Example 5.46. Consider the process P = P1|P2 where P1 = (x).return x
and P2 = a.〈5〉. Process P communicates in the current session and at
the same time it offers a service a. Process P1 is correctly typed with
Γ; ∅ ` P1 :?(int); !(int); ∅ while P2 is correctly typed with Γ; ∅ ` P2 :
end; end; ∅ where, Γ = a : [!(int)], x : int. Now take enc(P, c, p) since
noactions(P2) holds enc(P1, c, p) = c?(x).p!(x) is typed with Γ; ∅ `
enc(P1, c, p) . c :?(int), p :!(int) and enc(P2, ε, ε) = a(x).x!(5) is typed
with Γ; ∅ ` enc(P2, c

′, p′) . ∅. Finally Γ; ∅ ` P :?(int); !(int); ∅ and
Γ; ∅ ` enc(P, c, p) . c :?(int), p :!(int).

The previous theorem can be used to check the typability of every
CST process on the base of an existing type checker for HVK-X.

5.7 Concluding remarks on HVK-X and encod-
ing functions

In this chapter we have introduced a full session calculus with delega-
tion (which we call HVK-X) inspired to (76), but with general recursion.
We have modified the original type system adding a rule to weaken as-
sumptions (SWEAK): both substituting a type of a session with a direct sub-
type and adding ended sessions. Due to these differences and the addi-
tional possibility of service extrusion we have proved the subject reduc-
tion, which does not hold directly from (76). Subsequently we have intro-
duced a syntax directed type system, which replaces rule (SWEAK) adding
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an inline subtype checking and a function, which we call linear access,
to access variables in a linear environment. We have shown both the cor-
rectness and the completeness of this new syntax directed type system.
Given its syntax directed nature we have developed an algorithm to ex-
tract a set of constraints which are satisfied if and only if the original
process is well-typed. Finding a solution of these automatically gener-
ated constraints is not easy due to the presence of session delegation,
name extrusion and cyclic recursive constraints. We have introduce our
solving algorithm solve, that exploits transitivity and context closure
of the subtyping relation to merge couple of constraints. We have shown
that if solve succeeds then there exists a solution to the constraint sets
given in input. On the other hand the completeness holds only for closed
processes without free names.

Finally we have encoded both the standard π-calculus and CST in
HVK-X. These encodings have been made keeping in mind that a ty-
pable process should imply the encoded process typable and vice versa.
Of course this is a weak result and does not imply any relation on the
operational semantics of two calculi, but it is a useful way to debug type
systems as well as a way to use a unique implementation of the type
checker. For example with the first encoding we have witnessed that us-
ing session communications to communicate only a value in each ses-
sion, degenerate to the simply typed π-calculus. The second encoding
instead shows the disciplinated nature of CST with respect to the session
instantiation.
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Chapter 6

Progress and comparison
with related works

We prove in this Chapter the progress property of CST which turns
out to be a direct consequence of the subject reduction. The progress
property for HVK-X can be proved used the same technique proposed
in (26).

We also give a detailed comparison with our source of inspiration and
we discuss the other related works. We describe CaSPiS by means of ex-
amples, we show the particularity of the calculus proposed in (37) with
the special type ⊥ and then we show the π-calculus with sessions pro-
posed by Gay and Hole. We also discuss the similarities with the other
existent literature.

6.1 A more powerful guarantee: The Progress
Property

In this section we aim to exploit our results so to prove more pow-
erful guarantees than session safety. The first property we are interested
in is called progress in literature (26) and it is used to check deadlock of
opened sessions. In that work authors provide a type system to type-
check processes with the progress property for the calculus in (76). They
first introduce a type system that handles the interleaving of opened ses-
sion in such a manner that no acyclic dependencies within opened ses-
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sion arise. The problem of checking deadlock among opened sessions is
simpler than the deadlock freedom in general due to the session linear-
ity. To this aim it suffices to check the acyclicity of the order induced by
the sequence of session subjects in a process.

The remaining problem is relative to check that each service request
and each service accept actually succeeds. Since we are in a service ori-
ented scenario this problem is faced differently and the progress theorem
is stated consequently. In fact each time a process gets stuck either on a
service request or on a service accept we can provide specification of the
needed partner building a process using only the type information. The
new partner composed in parallel with the stuck process allows the en-
tire system to proceed.

Let us do the same with CST. We already proved a similar property in
(15) but here we have the recursion operator missed in that work and we
do not have an LTS to rely on, for the observation of the actions taking

place in a specific session. First of all we define a relation P
λ−→ that

allows the inspection of the active actions within a certain session where
λ is defined by the following grammar:

λ ::= rp : (x̃) | rp : 〈ṽ〉 | rp : (li)i∈I | rp : 〈l〉 | ι

In order to avoid usual problems with the alpha renaming of bound

names we define P λ−→ only on process without restrictions, using the
CST evaluation contexts:

C ::= [[·]] | C|P | rp . C | C > x̃ > P Crp ::= rp . ([[·]]|P )
D ::= C[[C′ | C′′]] Dr ::= D[[C′rp ,C

′′
rp ]]

Definition 6.1. Let P λ−→ the least relation s.t.

• If P ≡ C[[Crp [[(x̃).P ′]]]] then P
rp:(x̃)−→

• If P ≡ C[[Crp [[〈ṽ〉.P ′]]]] then P
rp:〈ṽ〉−→

• If P ≡ C[[Crp [[Crq1 [[return ṽ.P ′]]]]]] then P
rp:〈ṽ〉−→

• If P ≡ C[[Crp [[Σni=1.(li).Pi]]]] then P
rp:(li)i∈I−→ and I = {1, . . . , n}

• If P ≡ C[[Crp [[〈l〉.P ′]]]] then P
rp:〈l〉−→

• If P ≡ C[[a.P ′]] then P ι−→
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• If P ≡ C[[a.P ′]] then P ι−→

All cases are simple but the case for external choice that returns the

entire set of offered labels. Notice that the definition of P λ−→ does not
account for the pipe since it will be accounted for by Proposition 6.9.

We also define P 0−→ to characterize all processes that are terminated,
think of for example to the process 0 > x̃ > P .

Definition 6.2. Let P be a process. We write P 0−→ if there do not exist

P ′, m̃ and λ s.t. P ≡ (νm̃)P ′ and P ′ λ−→.

As usual we write →∗ for the transitive and reflexive closure of the
transition relation → (the transition relation of CST defined in Section
4.2) and we call P ′ a derivative of P if P →∗ P ′. Also we write P → if
there exists Q s.t. P → Q and we write P 9 if not P →. We now define
formally the deadlock freedom property.

Definition 6.3 (Deadlock-free). A process P is deadlock-free if for each Q
s.t. P →∗ Q then either Q→ or Q 0−→.

In few words in each step the process must be able either to proceed
or it must be ended with success. For example the process a.b | a.b is
deadlock free but b.a | a.b is not.

Definition 6.4 (Progress). A well-typed process P has the progress prop-
erty if for eachQ s.t. P →∗ Q then eitherQ→ or there exists a well-typed
Q′ s.t. Q|Q′ is well-typed with Q′ 9 and Q′|Q→ or Q 0−→.

Formally progress provides a third choice, the process Q can be itself
stuck but composed in parallel with an another process Q′ (also stuck)
allows the system to evolve. The condition on the fact that Q′ has no
derivative is important since allows only those Q′ which actually partic-
ipate to the progress of the entire process. Also, since the type system
already checks the linearity of opened sessions, the only possibility for
Q′ to participate to the progress is to offer either a service accept or a
service request to locally solve the deadlock.

The progress property is weaker than the deadlock freedom property.
For example the process (νa)(a.r− . (x))|r+ . 〈5〉 has not the progress
property (since a is restricted) and it is deadlocked while a.r−.(x)|r+.〈5〉
has the progress property (since a is not restricted) but it is deadlocked.
Notice that all the previous examples are well-typed CST processes.
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We define a relation that captures all pairs of opened session which
are in father/children relation and we also take its transitive closure.

Definition 6.5 (Session nesting relation). Let R be a generic syntactic CST
context and S a generic syntactic CST context without the production
rp . [[·]] and P a process with all bound names and free names different
then we let r1 ≺P r2 iff P ≡ S[[rp1 . R[[rq2 . Q]]]] for some contexts S,R and
let <P the transitive closure of ≺P .

We are interested to all processes that have P s.t. ≺P is irreflexive
since it means that do not exist cyclic dependencies among sessions that
can cause deadlock. We prove that since the management of sessions is
left to the operational semantics it is not the case that a process with-
out deadlock due to the session nesting relation introduces a deadlock
during its evaluation.

Lemma 6.6. Let P a process s.t. Γ; Θ ` P : T ;U ;L and <P irreflexive. If
P → Q then <Q is irreflexive.

Proof. The proof is by induction on the derivation of P → Q with case
analysis on the last applied rule. All cases are simple, and in particular
the case for rule (INV) holds because it chooses a fresh session name.

The next lemma relates the P λ−→ relation to the actual process redex.

Lemma 6.7. If P
rp:(x̃)−→ and P

rp:〈ṽ〉−→ then either P ≡ Dr[[(x̃).P ′, 〈ṽ〉.Q′]] or

P ≡ Dr[[(x̃).P,Crq1 [[return ṽ.Q]]]] for some Dr, Crq1 , P ′, and Q′. If P
rp:(li)i∈I−→

and P
rp:〈l〉−→ then P ≡ Dr[[Σni=1(li).Pi, 〈l〉.Q′]] for some Dr, P1, . . . , Pn, Q′ and

{l1, . . . , ln} = {li|i ∈ I}.

Proof. The proof comes directly from the definition of P λ−→ and from
the definition of a context Dr.

The following is an important lemma which says that in a recursive
process the first action described by T and U is actually a real action in
the body of the recursion P . This fact is important since in Proposition 6.9
we require unfolded processes in order to disallow recursion constructs
appearing during the induction. To this end in fact we consider always
an unfolded version of the process and this lemma says that we always
encounter the actions we need before encounter the next recursion con-
struct.
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Lemma 6.8. Let rec X.P s.t. Γ, ∅ ` rec X.P : T ;U ;L then the first action in
either T or U (an input or an output or an internal choice or an external choice)
is relative to a corresponding action in P .

Proof. Since the process we are considering is closed we have by the
consistency check that either T or U different from end implies either
¬nocuract(P ) or ¬noretact(P ).

Finally we are now ready to formulate the progress of CST valid for
the outermost (in terms of ≺-relation) active sessions. In fact, if one of
such sessions has a pending action enabled then it is either guaranteed
that after a finite number of steps a suitable synchronization is accom-
plished or a service invocation/declaration is issued.

Proposition 6.9. Let P a process s.t. all recursions are unfolded at least once
and P ≡ (νm̃)Q and Γ; ∅ ` Q : T ;U ;L and <Q irreflexive. For any session
r in Q if @C,Crp , P ′, m̃ and w̃ such that Q ≡ (νm̃)C[[Crp [[return w̃.P ′]]]] all
the following hold:

(I) if Q
rp:(x̃)−→ then Q→∗r

p:〈ṽ〉−→ ∨Q→∗ ι−→

(II) if Q
rp:〈ṽ〉−→ then Q→∗r

p:(x̃)−→ ∨Q→∗ ι−→

(III) if Q
rp:(li)i∈I−→ then there exists lj ∈ {li|i ∈ I} s.t. Q →∗r

p:〈lj〉−→
∨Q→∗ ι−→

(IV) if Q
rp:〈l〉−→ then Q→∗r

p:(li)i∈I−→ and l ∈ {li|i ∈ I} ∨Q→∗
ι−→

(V) if Q ≡ (νm̃)C[[Crp [[P ′ > x̃ > Q′]]]] for some m̃, x̃,C,Crp , P ′, Q′ s.t.

Γ′; ∅ ` P ′ :!(S̃);U ;L for some Γ′ then C[[Crp [[P ′]]]] →∗r
p:〈ṽ〉−→ ∨

C[[Crp [[P ′]]]]→∗ ι−→

Proof. The proof is by induction on the length llns(r,Q) of the longest
nesting sequence induced by ≺Q and starting with r; that is the longest
sequence of the form r ≺Q r1 ≺Q r2 ≺Q . . . ≺Q rn−1 ≺Q rn, and then
on the structure of the processes. Notice that the well foundedness is due
to the fact that by hypothesis <Q is irreflexive so no cyclic dependencies
are possible. More precisely, the well-founded order we consider for the
induction is defined on pairs (rp, Q) by letting (rp1

1 , Q1) < (rp2
2 , Q2) be

the least transitive relation satisfying:
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• (rp1
1 , Q1) < (rp2

2 , Q2) if llns(r1, Q1) < llns(r2, Q2),

• (rp,C[[Crp [[Q1]]]]) < (rp,C[[Crp [[Q2]]]]) if llns(r,Q1) = llns(r,Q2) and
Q1 is a subterm of Q2[ṽ/x̃] for suitable ṽ

We start proving (I) which together with subject reduction is

(I) if Q
rp:(x̃)−→ and Γ1, r

p : [?(S̃).T ], rp : [!(S̃).T ] ` Q : V1;V2;L then

Q→∗r
p:〈ṽ〉−→ ∨Q→∗ ι−→

We can read previous statements as “a session side must respect, after
a certain number of steps, the obligation imposed by its type unless it
postpones the obligation with a new service action”. If rp : [?(S̃).T ] it
means that Γ; ∅ ` Q′ :!(S̃).T ;U ;L′ for some U,L′ where Q ≡ C[[rp . Q′]]
for some Γ,C and Q′. The entire proof is completely type-driven, the key
idea is that we consider only rules able to yield !(S̃).T in the conclusion.
For ease of readability and since a runtime process we are considering,
cannot have free process variables we use a triple Γ ` P : T ;U as a
typing judgment, and we also utilize in addition variables W ,R to range
over processes.
Base cases: The bases cases are those prefixes compatible with an rp out-
put action.

(TOUT)
Γ′, ṽ : S̃ ` W : T ;U

Γ′, ṽ : S̃ ` 〈ṽ〉.W :!(S̃).T ;U

(TSES)
Γ′, rq1 : [T ′], ṽ : S̃ ` return ṽ.W : T ′; !(S̃).T

Γ′, rq1 : [T ′], ṽ : S̃ ` rq1 . return ṽ.W :!(S̃).T ; end
(TINV)
Γ′, v : [T ′] ` W : T ′; !(S̃).T

Γ′, v : [T ′] ` v.W :!(S̃).T ; end

(TDEF)
Γ′, v : [T ′] ` W : T ′; !(S̃).T

Γ′, v : [T ′] ` v.W :!(S̃).T ; end

in these cases we have either Q
rp:〈ṽ〉−→ or Q ι−→ which concludes.

Inductive cases:

• When Q′ is a parallel composition:

(TPARL)
Γ ` W :!(S̃).T ;U Γ ` R : end; end

Γ ` W |R :!(S̃).T ;U

(TPARR)
Γ ` W : end; end Γ ` R :!(S̃).T ;U

Γ ` W |R :!(S̃).T ;U

The thesis follows by induction hypothesis on C[[rp . W ]] for
(TparL) and C[[rp . R]] for (TparR).
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• When Q′ is an if-then-else:

(TIF)
Γ ` vi : S1 i = 1, 2 Γ ` W :!(S̃).T ;U Γ ` R :!(S̃).T ;U

Γ ` if v1 = v2 then W else R :!(S̃).T ;U

The thesis follows by induction hypothesis either on C[[rp . W ]] or
C[[rp . R]] depending on the evaluation of the if guard.

• When Q′ is a pipe:

(TPIPE)
Γ ` W :!(S̃′); end Γ, x̃ : S̃′ ` R :!(S̃).T ;U

Γ ` W > x̃ > R :!(S̃).T ;U

We apply the induction hypothesis case (V) on C[[rp . W ]]. If

C[[rp . W ]] →∗r
p:〈ṽ′〉−→ C[[rp . W ′]] then C[[rp . (W > x̃ > R)]] →∗

C[[rp . (W ′ > x̃ > R)|R[ṽ
′
/x̃]]], and then the thesis follows by induc-

tion hypothesis on C[[rp . R[ṽ
′
/x̃]]]. The thesis follows directly from

the inductive hypothesis, if C[[rp . W ]]→∗ ι−→.

• When Q′ is a restriction:

(TNEW)
Γ, s : S′ ` W :!(S̃).T ;U

Γ ` (νs)W :!(S̃).T ;U

(TNEWR)
Γ, r+

1 : [T ′], r−1 : [T ′] ` W :!(S̃).T ;U

Γ ` (νr)W :!(S̃).T ;U

Follows directly by inductive hypothesis on C[[rp . W ]].

• When Q′ is a recursion (where ? is the consistency check):

(TREC)
Γ ` (W :!(S̃).T ;U)?

Γ ` rec X.W :!(S̃).T ;U

By Lemma 6.8 this case cannot happen since we should have found
the output action relative to !(S̃) before encountering the recursion
operator remember in fact we have unfolded all recursions once.

• In case of a nested session rq1 we have W with different shapes.

(TSES)
Γ′, rq1 : [T ′] ` W : T ′; !(S̃).T

Γ′, rq1 : [T ′] ` rq1 . W :!(S̃).T ; end
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– In caseW is an if-then-else, a recursion and a name restriction,
the thesis follows directly by the application of the inductive
hypothesis; the other cases follow.

– In case of an input inside a nested session

(TSES)
Γ′, rq1 : [T ′] ` (ỹ).W : T ′; !(S̃).T

Γ′, rq1 : [T ′] ` rq1 . (ỹ).W :!(S̃).T ; end

Since Q
rq1 :(ỹ)
−→ and r ≺Q r1 then by induction hypothesis we

have two cases. Q →∗
rq1 :〈ṽ′〉
−→ and then by Lemma 6.7 we have

a further reduction step. The thesis follows by another appli-
cation of the induction hypothesis on C[[rp . (rq1 . W )]]. Other-
wise if Q→∗ ι−→ the thesis follows directly.

– Cases relative to other actions within a nested session

(TSES)
Γ′, rq1 : [T ′] ` 〈w̃〉.W : T ′; !(S̃).T

Γ′, rq1 : [T ′] ` rq1 . 〈w̃〉.W :!(S̃).T ; end

(TSES)
Γ′, rq1 : [T ′] ` 〈l〉.W : T ′; !(S̃).T

Γ′, rq1 : [T ′] ` rq1 . 〈l〉.W :!(S̃).T ; end
(TSES)

Γ′, rq1 : [T ′] `
∑n
i=1(li).Wi : T ′; !(S̃).T

Γ′, rq1 : [T ′] ` rq1 .
∑n
i=1(li).Wi :!(S̃).T ; end

are similar to the previous one.
– In case of a parallel composition within a nested session:

Γ′, rq1 : [T ′] ` W : end; end Γ′, rq1 : [T ′] ` R : T ′; !(S̃).T
(TPARR)

Γ′, rq1 : [T ′] ` (W |R) : T ′; !(S̃).T
(TSES)

Γ′, rq1 : [T ′] ` rq1 . (W |R) :!(S̃).T ; end

Γ′, rq1 : [T ′] ` W : T ′; !(S̃).T Γ′, rq1 : [T ′] ` R : end; end
(TPARL)

Γ′, rq1 : [T ′] ` (W |R) : T ′; !(S̃).T
(TSES)

Γ′, rq1 : [T ′] ` rq1 . (W |R) :!(S̃).T ; end

Thesis follows directly by induction on the process producing
the output.

– In case of a pipe within a nested session:

Γ′, rq1 : [T ′] ` W :!(S̃′); end Γ′, rq1 : [T ′], ỹ : S̃′ ` R : T ′; !(S̃).T
(TPIPE)

Γ′, rq1 : [T ′] ` W > ỹ > R : T ′; !(S̃).T
(TSES)

Γ′, rq1 : [T ′] ` rq1 . (W > ỹ > R) :!(S̃).T ; end
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We apply the induction hypothesis case (V)

on C[[rp . (rq1 . W )]]. If C[[rp . (rq1 . W )]] →∗
rq1〈w̃〉−→

C[[rp . (rq1 . W
′)]] then C[[rp . (rq1 . (W > ỹ > R))]] →∗

C[[rp . (rq1 . (W ′ > ỹ > R)|R[ṽ/ỹ])]], and then the thesis
follows by induction hypothesis on C[[rp . (rq1 . W

′)]]. If
instead C[[rp . (rq1 . W )]] →∗ ι−→ then the thesis follows
directly.

– The case of a nested recursion cannot happen since by Lemma
6.8 we should have found the return output before encounter
the recursion operator.

Statement (II) together with subject reduction is

(II) if Q
rp:〈ṽ〉−→ and Γ1, r

p : [!(S̃).T ], rp : [?(S̃).T ]; ∅ ` Q : V1, V2;L then

Q→∗r
p:(x̃)−→ ∨Q→∗ ι−→

Base cases: The base case is the prefix compatible with an rp input action.

(TIN)
Γ, x̃ : S̃ ` W : T ;U

Γ ` (x̃).W :?(S̃).T ;U

in this case we have Q
rp:(x̃)−→ which concludes.

Inductive cases: The inductive cases comprise parallel composition, if-
then-else, pipe and restrictions all similar to previous case.
Statement (III) together with subject reduction is

(III) if Q
rp:(li)i∈I−→ and Γ1, r

p : [⊕{lj : Tj}j∈J ], rp : [⊕{lj : Tj}j∈J ]; ∅ `
Q : V1, V2;L and {lj |j ∈ J} ⊆ {li|i ∈ I} then there exists k s.t.

Q→∗r
p:〈lk〉−→ and lk ∈ {lj |j ∈ J} ∨Q→∗

ι−→

Base cases: The base case is the prefix compatible compatible with an rp

label choice action.
(TCHOICE)
l = lk ∈ {lj |j ∈ J} Γ ` W : Tk;U

Γ ` 〈l〉.W : ⊕{lj : Tj}j∈J ;U

in this case we have Q
rp:〈l〉−→ which concludes.

Inductive cases: The inductive cases comprise parallel composition, if-
then-else, pipe and restrictions all similar case (I).
Statement (IV) together with subject reduction is
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1 let transitiveclousure g l=
2 (List.iter (fun i->
3 (List.iter (fun j->
4 (List.iter (fun k->
5 if ((Hashtbl.mem g (i,k))=true) &&
6 ((Hashtbl.mem g (k,j))=true) &&
7 ((Hashtbl.mem g (i,j))=false)
8 then (Hashtbl.add g (i,j) true)
9 else ()) l) )l) )l)

10 let loop p=let g=getsessgraph p in
11 let l=listsession p in (transitiveclousure g l);
12 (List.fold right (fun s y->(Hashtbl.mem g (s,s)) or y) l false)

Figure 41: The transitive closure of the session relation

(IV) if Q
rp:〈l〉−→ and Γ1, r

p : [&{lj : Tj}j∈J ], rp : [&{lj : Tj}j∈J ]; ∅ ` Q :

V1;V2;L then Q →∗r
p:(li)i∈I−→ and l ∈ {lj |j ∈ J} ⊆ {li|i ∈ J} ∨

Q→∗ ι−→

Base cases: The base case is the prefix compatible with an rp label
guarded sum action.

(TBRANCH)
∅ ⊂ J ⊆ I = {1, . . . , n} ∀i ∈ IΓ ` Wi : Ti;U

Γ ` Σni=1(li).Wi : &{lj : Tj}j∈J ;U

The inductive cases comprise parallel composition, if-then-else, pipe
and restrictions all similar case (I).
Inductive cases: The inductive cases comprise rules: (TPARL), (TPARR), (TIF),
(TPIPE), (TNEW), (TNEWR), (TREC) and they are all similar to previous case.
Finally, statement (V) we have Q ≡ (νm̃)C[[Crp [[P ′ > x̃ > Q′]]]] and it is
similar to statement (I) with case analysis on the typing of Γ′; ∅ ` P ′ :
!(S̃);U ;L.

The previous proposition ensures a very powerful property: a process
can stuck only on either service invocations or either service definitions.
With the progress property we introduce into the stuck process respec-
tively either the service definition or the service invocation in order to
allow the communications within opened sessions to complete. Let us
show the progress property for CST.

Theorem 6.10 (CST Progress). Let P a process without service restrictions. If
Γ; ∅ ` P : T ;U ;L and <P is irreflexive then P has the progress property.
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Proof. Let P →∗ P ′ since each process and its unfoldings have the
same reductions by rule (REC) of the operational semantics the Proposi-
tion 6.9 says that if <′P irreflexive (which is the case by Lemma 6.6) and
Γ′; ∅ ` P ′ : T ;U ;L (which is the case by Subject Reduction) then P ′

should need either a service invocation or either a service definition. The
result follows providing a mapping similar to that defined in (26) (which
is simpler here due the lack of session delegation) that takes a type and
returns a process. For simplicity we show such mapping for a monadic
CST.

B(!(int).T ) = 〈5〉.B(T )
B(!([U ]).T ) = 〈a〉.B(T ) a fresh
B(?(S).T ) = (x).B(T )
B(⊕{li : Ti}i∈I) = 〈lk〉.B(Tk) lk ∈ {l|li ∈ I}
B(&{li : Ti}i∈I) = Σi∈I(li).B(Ti)
B(µα.T ) = rec Xα.B(T )
B(α) = Xα

B(end) = 0

Hence if P ′ is stuck on the definition of a then P ′|a.B(T ) → otherwise if
P ′ is stuck on the invocation of a then P ′|a.B(T )→.

The statement of the Progress Theorem can be generalized removing
the condition on the service restrictions modifying the type system to
collect the set of bound service names. Hence if a service is bound, the
body of the service definition and the body of the service invocation are
required to be typed with L equal to the empty set.

Next we tackle the problem of algorithmically check irreflexivity of
the transitive closure of a session nesting relation. We can make such
check using an adaption of the Bellman-Ford algorithm reported in Fig-
ure 41. Such algorithm is a dynamic programming algorithm and has a
complexity of n3 where n is the number of sessions we are considering.
The algorithm takes g which is the adjacency matrix that contains the
session nesting relation and a list l that contains all the sessions in the
session nesting relation. We report the algorithm which is interestingly
straightforward since each session name is distinct. When the algorithm
ends if g does not contain elements in the diagonal then the transitive
closure is irreflexive otherwise not. The same algorithm can be used to
compute the transitive closure required in (4; 26) to check the acyclicity
of the dependencies among session types. If the aim is only checking the
acyclicity of a graph the Depth First Search (DFS) algorithm can be used
instead which has a lower complexity bound.
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6.2 Revisiting our sources of inspiration

In this section we compare our work with our main sources of inspi-
ration. We describe CaSPiS (9) by means of an example to have a flavor
of the calculus, which it suffices since the proposal has not any type dis-
cipline. We present the original calculus introduced in (37), which we call
SL, since it checks linearity of session without polarity information and
finally we introduce the π-calculus for session types, which we call π-ST,
introduced in (33).

6.2.1 CaSPiS

CaSPiS is a calculus described in (9) and directly derived from SCC
(8). We gently introduce the calculus by means of a few simple examples
since the calculus inspired CST but in this manner we can outline the ad-
ditions the presence of session types require. First of all the operational
semantics in the original proposal is given by means of a labeled transi-
tion system. We find reductions more suitable in a context where types
are used. For example in CaSPiS the operational semantics is given in a
early style, where the rule for input locally guesses the received value.
Of course the subject reduction does not hold for this rule (one can mod-
ify the calculus to allow type annotations in each binder in order to have
typed labels in the LTS, like the proposal in (1)) since one can receive any
possible value with a very different type.

Within CaSPiS service definitions are rendered as

a.P

where a is the service name and P is the body defining the service be-
havior. P can be seen as a process that receives/sends values from/to
the client side and then activates the corresponding computational activ-
ities. For instance,

succ.(?x)〈x+ 1〉

models a service that, after receiving an integer, sends back the successor
of the received value.

Service invocations can be seen as specific instances of output pre-
fixed processes and they are rendered as

a.P
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where a is the name of the service to invoke while P is the process im-
plementing the client-side protocol for interacting with the new instance
of a. As an example, a client for the simple service described above will
be written in CaSPiS as

succ.〈5〉(?y)〈y〉↑

After succ is invoked, argument 5 is passed on to the service side and the
client waits for a value from the server: the received value will be substi-
tuted for y and returned as the overall result of the service invocation.

A service invocation leads to the activation of a new session and a
fresh, private, name r is used to bind the two sides of the session. For
instance, the interaction of the client and of the service described above
triggers the session

(νr)
(
r � 〈5 + 1〉 | r � (?y)〈y〉↑

)
Notice that r is created without polarity annotations. Value 6 is computed
at the service-side and then received at the client side; the remaining ac-
tivity is then performed by the client-side of the session

r � 〈6〉↑

that emits the value 6 outside of the session and becomes

r � 0

where 0 denotes the empty process.
More generally, within sessions, communication is bi-directional, in

the sense that the interacting peers can exchange data in both directions.
Values returned outside of the session (to the enclosing environment)
with the return operator 〈.〉↑ can be used for invoking other services.
Indeed, processes can be composed by using the pipe operator

P > Q

A new instance of process Q is activated in correspondence of each
of the values produced by P that Q can receive. For instance, what fol-
lows is a client that invokes the service succ and then prints the obtained
result:

〈5〉 > (?x)succ.〈x〉(?y)〈y〉↑ > (?z)print.〈z〉
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In CST the syntax of the pipe operator is P > x̃ > Q we syntactically
constraints Q to input the value communicated by P .

To improve usability, structured values are permitted; services are in-
voked using structured values that, via pattern matching, drive usage of
the exchanged information.

Using this approach, each service can provide different methods cor-
responding to the exposed activities. For instance:

calculator. (“sum”, ?x, ?y)〈“result”, x+ y〉
+ (“sub”, ?x, ?y)〈“result”, x− y〉
+ (“mul”, ?x, ?y)〈“result”, x ∗ y〉
+ (“div”, ?x, ?y)〈“result”, x/y〉

models a service calculator that exposes the methods for computing the
basic arithmetic operations. Notice in CST we have a limited form of pat-
tern matching supported by means of choices. This service can be in-
voked as follows:

calculator.〈“sum”, 2, 4〉(“result”, ?y)〈y〉↑

A similar approach is used for session interaction. Indeed, thanks
to tags and pattern matching, more sophisticated protocols can be pro-
grammed for both the server and client side of a session. For instance, a
service-side can reply to a client request with different values denoting
the status of the execution:

r � (“fail”, ?x)P1 + (“result”, ?y)P2

Finally CaSPiS is equipped also with primitives for handling session
closure. These primitives are useful to garbage-collect terminated ses-
sions and, most importantly, to explicitly program session termination in
order to manage abnormal events or timeouts. We do not describe this
part of CaSPiS since it is not supported in the type discipline.

6.2.2 The Honda-Vasconcelos-Kubo Session Typing Sys-
tem

In this section we review the original calculus described in (76). Ac-
tually the work describes two different calculi the one reported below
and another one with session polarity similar to HVK-X in Chapter 5 but
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P,Q ::= request a(k) in P (session request)
| accept a(k) in P (session acceptance)
| k![ṽ];P (data sending)
| k?(x̃) in P (data reception)
| k / l;P (label selection)
| k . {l1 : P1|| . . . ||ln : Pn} (label choice)
| throw k[k′];P (session sending)
| catch k(k′);P (session reception)
| if v1 = v2 then P else Q (if-then-else)
| P |Q (parallel)
| inact (inaction)
| (νm)P (restriction)
| def D in P (recursion)
| X[ṽk̃] (process variable)

D ::=
X1(x̃1k̃1) = P1 and . . .
and Xn(x̃nk̃n) = Pn

(declarations)

Figure 42: Syntax of SL

without subtyping and general recursion. We report only the first calcu-
lus which is interesting since it keeps linearity without annotating any
polarity information just using a special type ⊥ to indicate session on
which no further interaction is possible. We refer to this calculus as Ses-
sion Language or SL for short. Regarding the other calculus with polarity
we prefer presenting the π-calculus with session types by Gay and Hole
instead, which is the first work to introduce the idea of polarity.

The syntax of SL assumes the usual set of infinite collections but in
addition uses k, . . . for session names.

Then processes ranged over by P,Q, . . . are given by the grammar in
Figure 42. We stress the fact that k is very different from the κ of HVK-X
here k is actually a session not a session variable. Binders are k?(x̃) in P
for x̃ in P , X(x̃, k̃) = P for x̃ and k̃ in P , (νm)P for m in P . Further-
more accept a(k) in P and accept a(k) in P and catch k′(k);P bind
k in P and binders for process variables are each process definition in
def D in P . The differences with HVK-X are the presence of process def-
inition which allows both a tuple of variables and a tuple of sessions as
parameters but the lack of name extrusion i.e. SL has a service a in both
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P |inact ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)
(νm)P |Q ≡ (νm)(P |Q) if m /∈ fn(Q)

(νm)0 ≡ 0
def D in inact ≡ inact

(νm)def D in P ≡ def D in (νm)P if m /∈ fn(Q)
(def D in P )|Q ≡ def D in (P |Q) if bpv(D) ∩ fpv(Q) = ∅

def D in (def D′in P )|Q ≡ def D and def D′ in P if bpv(D) ∩ bpv(D′) = ∅

Figure 43: The structural congruence of SL

(LINK) (accept a(k) in P1)|(request a(k) in P2)→ (νk)(P1|P2)
(COM) (k![ṽ];P1)|(k?(x̃) in P2)→ (νk)(P1|P2)

(LABEL) (k / li;P )|(k . {l1 : P1|| . . . ||ln : Pn})→ P |Pi (1 ≤ i ≤ n)
(PASS) (throw k[k′];P )|(catch k(k′);P )→ P1|P2

(IF1) if v = v then P1 else P2 → P1

(IF2) if v = w then P1 else P2 → P2 (v 6= w)
(DEF) def D in (X[ṽk̃]|Q)→ def D in (P [ṽ/x̃ ]|Q) (X(x̃k̃) = P ∈ D)

(SCOP)P → P ′ ⇒ (νm)P → (νm)P ′

(PAR)P → P ′ ⇒ P |Q→ P ′|Q
(DEFIN)P → P ′ ⇒ def D in P → def D in P ′

(STR)P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q⇒ P → Q

Figure 44: The operational semantics of SL

the accept and the request instruction instead of a value v. The struc-
tural congruence in Figure 43 allows floating of restrictions and associa-
tivity of process definition with respect to the parallel composition. The
last rule groups together nested process definitions and bpv is the set
of bound process variables. The operational semantics of SL is reported
in Figure 44. Notice the difference in rule (LINK) which directly creates a
binder for k as a private session for P1 and P2. Rule (PASS) expects k′ to
be the same session in order to synchronize. The essence of this rule is re-
lated to a trick in a rule of the operational semantics of a variant of the
π-calculus called the πI-calculus (67). This calculus restricts name pass-
ing to the bound private name passing. Moreover if k′ is free in P2 the
communication never happens since the impossibility of alpha renaming
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S ::= int | (T, T )
T ::= ?(S̃).T | ?(T ).U | &{l1 : T1, . . . , ln : Tn} | end | ⊥ |

!(S̃).T | !(T ).U | ⊕ {l1 : T1, . . . , ln : Tn} | α | µα.T

Figure 45: Syntax of session types for SL

the bound sessions to syntactically match k′.
Eventually we now introduce the set of types employed in SL in Fig-

ure 45 and the type system in Figure 46. The type relative to a service
collects both the dual types relative to both ends of a communication. A
special type ⊥ is introduced in the session type syntax. The idea behind
the ⊥ type is simple, since we want a session k to appear at most twice
in a process we substitute the type of k with ⊥ if k appears dual in the
linear environment of both P and Q during the typing of P |Q. Only re-
strictions of sessions with type⊥ are allowed in rule (CRES). The following
definition used in rule (CONC) formally defines this intuition:

Definition 6.11. Linear environments ∆1 and ∆2 are compatible, written
∆1 � ∆2, if ∆1(k) = ∆1(k) for all k ∈ dom(∆1) ∩ dom(∆2). When ∆1 �
∆2, the composition of ∆1 and ∆2, written ∆1 ◦ ∆2, is given as a linear
environment such that (∆1◦∆2)(k) is (1)⊥, if k ∈ dom(∆1)∩dom(∆2); (2),
∆i(k) if k ∈ dom(∆i) \ dom(∆i+1 mod 2) for i ∈ {1, 2}; and (3) undefined
otherwise.

We now outline the differences with our type system. Axioms (VAR)

and (INACT) introduce all the ended sessions necessary during the typing
derivation. We do the same but using (SWEAK) and the subtyping relation
among linear environments. Rule (BOT) allows transformation of ended
sessions to ⊥ sessions. The case is tricky, and without this rule Subject
Congruence fails in presence of delegation of ended sessions. We show
an example of typing derivation of this case which we believe it is very
useful to better understand how this type system works.

Example 6.12. Take the process throw k[k′]; inact|inact structural con-
gruent to throw k[k′]; inact. One possible typing is the following:

∅; ∅ ` inact . k : end
(THR)

∅; ∅ ` throw k[k′]; inact . k′ : end, k :!(end) ∅; ∅ ` inact . k′ : end
(CONC)

∅; ∅ ` throw k[k′]; inact|inact . k′ : ⊥, k :!(end)

184



(BOT)
Γ; Θ ` P .∆, k : end

Γ; Θ ` P .∆, k : ⊥

(INACT)
Γ; Θ ` inact . k̃ : ẽnd

(ACC)
Γ ` a : (T, T ) Γ; Θ ` P .∆, k : T

Γ; Θ ` accept a(k) in P .∆

(REQ)
Γ ` a : (T, T ) Γ; Θ ` P .∆, k : T

Γ; Θ ` request a(k) in P .∆
(SEND)
Γ ` ṽ : S̃ Γ; Θ ` P .∆, k : T

Γ; Θ ` k![ṽ];P .∆, k :!(S̃).T

(RCV)
Γ, x̃ : S̃; Θ ` P .∆, k : T

Γ; Θ ` k?(x̃) in P .∆, k :?(S̃).T
(BR)

Γ; Θ ` P1 .∆, k : T1 . . . Γ; Θ ` Pn .∆, k : Tn

Γ; Θ ` k . {l1 : P1|| . . . ||ln : Pn} .∆,&{l1 : T1, . . . , ln : Tn}
(SEL)

Γ; Θ ` P .∆, k : Tj (1 ≤ j ≤ n)

Γ; Θ ` k / lj ;P .∆,⊕{l1 : T1, . . . , ln : Tn}
(THR)

Γ; Θ ` P .∆, k : T

Γ; Θ ` throw k[k′];P .∆, k :!(U).T, k′ : U

(CAT)
Γ; Θ ` P .∆, k : T, k′ : U

Γ; Θ ` catch k(k′) in P .∆, k :?(U).T
(CONC)
Γ; Θ ` P .∆ Γ; Θ ` Q .∆′ ∆ � ∆′

Γ; Θ ` P |Q .∆ ◦∆′

(IF)
Γ ` vi : S Γ; Θ ` P .∆ Γ; Θ ` Q .∆

Γ; Θ ` if v1 = v2 then P else Q .∆

(NRES)
Γ, a : S; Θ ` P .∆

Γ; Θ ` (νa)P .∆

(CRES)
Γ; Θ, k : ⊥ ` P .∆

Γ; Θ ` (νk)P .∆

(VAR)
Γ ` ṽ : S̃

Γ; Θ, X : S̃T̃ ` X[ṽk̃] . k̃ : T̃ , k̃′ : ẽnd
(DEF)
Γ; Θ, X : S̃T̃ ` Γ, x̃ : S̃ . k̃ : T̃ Γ; Θ, X : S̃T̃ ` Q .∆

Γ; Θ ` def X(x̃k̃) = P in Q .∆

Figure 46: The SL type system

∅; ∅ ` inact . k : end
(THR)

∅; ∅ ` throw k[k′]; inact . k′ : end, k :!(end)
(BOT)

∅; ∅ ` throw k[k′]; inact . k′ : ⊥, k :!(end)

Notice how thanks to the rule (BOT) both processes are typed in the same
linear environment. We shown the pathological typing, the process can
also be typed assuming k′ different from end and in these other cases
typing is simpler since k′ cannot be part of the linear environment rela-
tives to inact.

Another peculiarity of this type system is that subtyping relation is
not considered explicitly. The subtyping is implicitly achieved with rule
(SEL) which adds arbitrary branches in order to satisfy the duality con-
dition in both rules (ACC) and (REQ). With this limitation (BR) is too con-
strained and for example it disallows the presence of replicas of a service
with different behaviors. We report the statement of the subject reduction

185



theorem.

Theorem 6.13 (see Theorem 2.10 in (76)). If Γ; Θ ` P .∆ and P → Q then
Γ; Θ ` Q .∆

The particularity of this type system is that the linear environment
stays unchanged during reductions.

As a final observation it is simple to use the same techniques we em-
ployed for HVK-X to extract the set of constraints from this type system
without polarities. The main change is in the rule for parallel composi-
tion which should generate the same constraints that in HVK-X we gen-
erate for session restriction. We think that it should be simple to adapt
the type discipline of HVK-X in order to extract constraints for this type
system too. Also it would not hard to prove that each well-typed process
in the second of the calculi reported in (76) is also a well typed HVK-X
process (assuming the encoding of process definition).

6.2.3 The Gay-Hole Session Typing System

Gay and Hole studied the subtyping relation directly in the π-calculus
with session types, πST for short. As usual for the π-calculus they assume
only the existence of a collection of names, together with a collection of
labels. However names may be polarized, occurring as either x+ or x−

or simply as x. The syntax of πST is reported in Figure 47, and here xp

can be only x to represent a standard π-calculus channel. The definition
of free names is slightly non-standard. Binding occurrences of names are
x in (νx : S)P and ỹ in xp?[ỹ : S̃].P , with the particularity that in (νx :
S)P either x or both x+ and x− may occur in P and both are bound. In
xp?[ỹ : S̃].P for each y ∈ {ỹ} only y unpolarized may occur in P . Binders
are annotated with only sort types S since in this calculus each T can
be also an S (Figure 48). The type ˆ[S1, . . . , Sn] represents the type of a
standard π-calculus channel in which we can either transmit or receive
values of type S1, . . . , Sn. Recursion is provided also at level of sorts since
for example one can write x![x] and x is allowed to be typed as µα.ˆ[α].
As we showed in the typing of Example 4.5 we do not need this addition
because in our case the recursion is always guarded by a session type
even when using a service definition in its own body.

The structural congruence is reported in Figure 49. It allows removing
ended session from only the nil process (since as usual the nil process
allows only ended sessions in its typing) and it forbids the floating of
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P,Q ::= 0 (terminated process)
| P |Q (parallel combination)
| !P (replication)
| xp?[y1 : S1, . . . , yn : Sn].P (input)
| xp![yp1

1 , . . . , ypnn ].P (output)
| (νx : S)P (channel creation)
| xp . {l1 : P1, . . . , ln : Pn} (branch)
| xp / l.P (choice)

Figure 47: Syntax of πST

T ::= α | end | ?(S1, . . . , Sn).T | !(S1, . . . , Sn).T
&{l1 : T1, . . . , ln : Tn} | ⊕ {l1 : T1, . . . , ln : Tn} | µα.T

S ::= α | T | ˆ[S1, . . . , Sn] | µα.S

Figure 48: Syntax of πST types

a binder if the binder is relative to an ended session since no further
communications are allowed. The operational semantics given in Figure

50 is the standard reductions semantics enriched with labels. In P
λ,l−→ Q,

λ is the subject of the communication (rule (R-COM)) and l is a label in case
the reduction is relative to a label selection (rule (R-SELECT)). These two
parameters of the reduction relation are used to reduce the session type
annotated in the relative binder (rule (R-NEWS)) by means of the function
tail. As special labels they use τ for silent action in which the name is
hidden and to stay for any label l. Other rules are standard.

The type system for πST is reported in Figure 51 and type judgments
are of the form Γ ` P . In rule (T-NIL) the premise Γ completed, means
that all the session types contained in Γ must be ended which is similar
to require a linear environment of the form κ̃ : ẽnd and in rule (T-REP)

the premise Γ unlimited means that Γ must not contain any session type
which is similar to require an empty linear environment. Linearity of
session types is kept by means of the operator of environment composi-
tion Γ1 + Γ2 (first introduced in (47)), which definition is rather long but
simple, it disallows a session with the same polarity to appear twice in
Γ1,Γ2. Rule (T-IN) allows the actual type annotated in the binder to be a
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P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R !P ≡ P |!P
(νx : S)P |Q ≡ (νx : S)(P |Q) if x, x+, x− /∈ fn(Q) and T 6= end

(νx : T )0 ≡ 0 if T is not a session type
(νx : end)0 ≡ 0 (νx : S)(νy : S′)P ≡ (νy : S′)(νx : S)P

Figure 49: Structural congruence of πST

(R-COM)

xp![ỹ : T̃ ].P |xp![z̃q̃ ].Q
x,−→ P [z̃

q̃
/ỹ ]|Q

(R-SELECT)
p is either + or − 1 ≤ i ≤ n

xp . {l1 : P1, . . . , ln : Pn}|xp / li.P
x,li−→ Pi|Q

(R-NEW)

P
λ,l−→ P ′ λ 6= x S is not a session type

(νx : S)P
λ,l−→ (νx : T )P ′

(R-NEWS)

P
x,l−→ P ′

(νx : T )
τ,−→ (νx : tail(T, l))P ′

(R-PAR)

P
λ,l−→ P ′

P |Q λ,l−→ P ′|Q

(R-CONG)

P ′ ≡ P P
λ,l−→ Q Q ≡ Q′

P ′
λ,l−→ Q′

tail(?(S̃).T, ) = T tail(!(S̃).T, ) = T tail(&{li : Ti}i∈I , li) = Ti
tail(⊕{li : Ti}i∈I , li) = Ti tail(µα.T, l) = tail(T [µα.T /α], l)

Figure 50: Operational semantics of πST

subtype of the assumed type since we can use a type less than to what
is prescribed without errors. Rule (T-OUT) behaves contravariant with re-
spect to the type annotated since we can annotate a less type than the
actual one without incurring in any errors. In our type system we ob-
tain a similar effect by using rule (SWEAK). Moreover rule (T-OUT) makes a
clever usage of the environment composition, the fact that it appears in
the premise disallows P to use any of the outputted sessions. In this type
system rule (T-OFFER) allows a selection of a subset of the real offered labels
but differently from us, they allow the remaining branch to not be typed
at all. Instead we type all the processes appearing in a choice in order to
allow achieving the completeness of the syntax directed rules.

We report the subtyping relation which is slight different from the
one we used, since it allows both S and T to be in the relation (remember
that every S is also a T here).

Definition 6.14 (Subtyping). A relation R ⊆ Type × Type is a type sim-
ulation if (T,U) ∈ R implies the following conditions:

1. If unfold(S) = ˆ[S1, . . . , Sn] then unfold(S′) = ˆ[S′1, . . . , S
′
n] and for
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(T-NIL)
Γ completed

Γ ` 0

(T-PAR)
Γ1 ` P Γ2 ` Q
Γ1 + Γ2 ` P |Q

(T-REP)
Γ ` P Γ unlimited

Γ `!P
(T-NEW)
Γ, x : T ` P T is not a session type

Γ ` (νx : T )P

(T-NEWS)
Γ, x+ : T, x− : U ` P T⊥cU

Γ ` (νx : T )P
(T-INS)
Γ, xp : T, ỹ : S̃′ ` P S̃′′ ≤ S̃′

Γ, xp :?(S̃′′).T ` x?[ỹ : S̃′].P

(T-OUTS)
Γ, xp : T ` P S̃′ ≤ S̃′′

(Γ, xp :!(S̃′′).T ) + ỹq̃ : S̃′ ` xp![ỹq̃ ].P
(T-IN)
Γ, x : ˆ[S̃′′], ỹ : S̃′ ` P S̃′′ ≤ S̃′

Γ, x : ˆ[S̃′′] ` x?[ỹ : S̃′].P

(T-OUTS)
Γ, x : ˆ[S′′] ` P S̃′ ≤ S̃′′

(Γ, x : ˆ[S′′]) + ỹq̃ : S̃′ ` xp![ỹq̃ ].P
(T-OFFER)

J ⊆ I ∀i ∈ J.(Γ, xp;Tj ` Pj)
Γ, xp : &{lj : Tj}j∈J ` xp . {li : Pi}i∈I

(T-CHOOSE)
l = li ∈ {l1, . . . , ln} Γ, xp : Ti ` P

Γ, xp : ⊕{l1 : T1, . . . , ln : Tn} ` xp / l.P

Figure 51: The type system of πST

all i ∈ {1, . . . , n}, (Si, S′i) ∈ R and (S′i, Si) ∈ R.

2. If unfold(S) =?(S1, . . . , Sn).T then unfold(S′) =?(S′1, . . . , S
′
n).U and

(T,U) ∈ R and for all i ∈ {1, . . . , n}, (Si, S′i) ∈ R.

3. If unfold(S) =!(S1, . . . , Sn).T then unfold(S′) =!(S′1, . . . , S
′
n).U and

(T,U) ∈ R and for all i ∈ {1, . . . , n}, (S′i, Si) ∈ R.

4. If unfold(S) = &{l1 : T1, . . . , lm : Tm} then unfold(S′) = &{l1 :
U1, . . . , ln : Un} and m ≤ n and for all i ∈ {1, . . . ,m}, (Ti, Ui) ∈ R.

5. If unfold(S) = ⊕{l1 : T1, . . . , lm : Tm} then unfold(S′) = ⊕{l1 :
U1, . . . , ln : Un} and n ≤ m and for all i ∈ {1, . . . , n}, (Ti, Ui) ∈ R.

6. If unfold(S) = end then unfold(S′) = end.

The co-inductive subtyping relation ≤ is defined by S ≤ S′ if and only if
there exists a type simulation R such that (S, S′) ∈ R.

Finally the rule (T-NEWS) uses T⊥cU to checks the duality of two ses-
sion types allowing infinite types with different representation to be dual
e.g. µα.!(int).α⊥cµα.?(int).?(int).α. The duality relation is defined on
only session types (which set is pointed with SType) by the following
co-inductive definition:

Definition 6.15 (Duality). A relation R ⊆ SType × SType is a duality
relation if (T,U) ∈ R implies the following conditions:
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1. If unfold(T ) =?(S1, . . . , Sn).T ′ then unfold(U) =?(S′1, . . . , S
′
n).U ′

and (T ′, U ′) ∈ R and for all i ∈ {1, . . . , n}, (Si, S′i) ∈ R and
(S′i, Si) ∈ R.

2. If unfold(T ) =!(S1, . . . , Sn).T ′ then unfold(U) =!(S′1, . . . , S
′
n).U ′ and

(T ′, U ′) ∈ R and for all i ∈ {1, . . . , n}, (Si, S′i) ∈ R and (S′i, Si) ∈ R.

3. If unfold(S) = &{l1 : T1, . . . , ln : Tn} then unfold(S′) = &{l1 :
U1, . . . , ln : Un} and for all i ∈ {1, . . . , n}, (Ti, Ui) ∈ R.

4. If unfold(S) = ⊕{l1 : T1, . . . , ln : Tn} then unfold(S′) = ⊕{l1 :
U1, . . . , ln : Un} and for all i ∈ {1, . . . , n}, (Ti, Ui) ∈ R.

5. If unfold(S) = end then unfold(S′) = end.

The co-inductive duality relation ⊥c is defined by T⊥cU if and only if
there exists a duality relation R such that (T,U) ∈ R.

Again we do the same by means of the rule (SWEAK) since one can easily
prove that T⊥cU iff T ≶ U . We end this section reporting the Subject
Reduction Theorem for this type system.

Theorem 6.16 (see Theorem 1 in (33)). Subject Reduction

1. If Γ ` P and P τ,−→ Q then Γ ` Q.

2. If Γ, x+ : T, x− : U ` P and T⊥cU and P
x,l−→ Q then Γ, x+ :

tail(T, l), x− : tail(U, l) ` Q.

3. If Γ, x : T ` P and P x,−→ Q then Γ, x : T ` Q.

The first point is relative to restricted communications, the second
point is relative to session types and the third point is relative to stan-
dard π-calculus communications. Notice that after the reduction ⊥c de-
generates to the syntactic duality since it holds that T⊥cT .

6.3 Other related works

There is a lot work on type reconstruction for the π-calculus (70), Tyco
(71; 73), and lambda-calculus with records and recursive types, however
the problem addressed here is slight different. The novelty of this work
is that it discovers the typability of a process using session types that are
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specified in width (due to the possibly infinite sequence of actions) and in
depth (due to the types of the values exchanged). For example in a object
calculus the type of each object comprises only the set of its methods
(similar to an unique external choice) and the type discipline uses kinds
to exhibit the principal type. Kinds used in (73) permit constraining the
type of an object using the set of its methods. It is not clear how to adopt
kinds for the principal typing of a session type. Here we are in presence
of dual communications so the kinds must account for both parties in
the conversation. Moreover one has to introduce something similar to
(72) constraining the entire (possible) infinite tree built from a session
type. What we do here is to check a set of constraints at the type system
level using the subtyping relation.

Regarding the works done on π-calculus they cannot be directly used
here since the presence of subtyping while type discipline for the π-
calculus uses unification (either on finite or on infinite trees) to recon-
struct channel sorts. The same is applied to the lambda calculus with
functional type (74).

Also existing reconstruction algorithms for recursion are relative to
channels that recursively use themselves, it is something like the type
inference of the type of a recursive data structure (list,tree,. . . ). These al-
gorithms use unification among infinite trees, here we address the prob-
lem of discovering the behavior of a recursion intended as a construct to
build unbounded sequences of actions. The case is similar to the solution
of recursive behaviors given in (45) but they use the channel sorting dis-
cipline of the simply typed π-calculus as basis and they have replication
in place of the general recursion. The theory of unification of infinite trees
can be used also here (as we have showed in Example 4.37) for a service
that recursively uses itself.

Using co-inductive definitions in the type system is certainly not new
(40; 45; 46; 49) but here we can use the power of the co-induction proof
method (34) conscious of the presence of a simple algorithm for checking
it.

There are a lot of works on session types. In (32) they used session
types in BASS, an ambient like calculus. It also interesting how they mod-
ified the operational semantics in order to count the number of opened
sessions: then an ambient is allowed to move only if it does not have
opened sessions with its parent. In (6) they studied the correspondence
assertion for session types. The notion of correspondence assertions was
introduced by Woo and Lam (75) for stating expected authenticity prop-
erties formally. In (42) they studied the problem of type inference of cor-
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respondence assertions for the π-calculus. It is not clear how to adapt
type inference of correspondence assertions and correspondence asser-
tions studied for session types with our results. The main point is that
the type system proposed in (6) is an ordered type system in which the
order of assumptions in a typing environments is relevant. In particu-
lar assumptions depend on each other since a substitution is used in the
rule for output to track the exchanged values. Tracking values allows the
automatic verification of assertions. Also session types are used in (12)
to represent component interface and to study the problem of compo-
nent adaptation resulting in a high level notation for writing component
adaptor.

In (38) they studied multiparty session types, whose problem was
first introduced in (7) to type a multipoint communication. In a mul-
tipoint communication, one side, for example the one that perform a
request, waits for other n participants that issue an accept. However,
their calculus called DCMS (distributed calculus with multipoint session
types) is asynchronous and allows starting a conversation without wait-
ing all the parties. During the conversation the side who performed a
request is allowed to communicate with the other n sides while each one
of the n sides is allowed to communicate only with the requesting side.
For instance in the proposed ATM scenario (7), the ATM can communi-
cate both with the bank and with the customer. The ATM is called the
master endpoint while both the bank and the customer are slave end-
points. Each party in the conversation is identified by a location and ses-
sion types are annotated with location too. For example, ?cl(int).!bk(int)
is a fragment of the ATM type relative to a conversation with both the
client (pointed with cl) and the bank (pointed with bk). From the type
of a master endpoint one can obtain the type of each slave endpoint by
the so-called projection operation. The duality is a slight complex and
is obtained equating the projection of a slave with the dual type of the
slave endpoints. We think the main problem in reusing our results in
DCMS would be related to give a solution of to set of constraints con-
taining projections whose definition is rather involved. Subsequently in
(38) they generalize the problem to n parties communicating with each
other by means of a global type. A global type is a high level description
of the communication that reports the global choreography of the process
for instance A→ B : κ(int).G is the global type that describes a commu-
nication from A to B using the session channel κ to send an integer and
then it behaves as prescribed by G. Having the global type specification
simplifies the definition of projection in such a manner that constraints
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involving projection can be reduced to duality constraints. In fact, in (29)
they argued that the type inference of multiparty sessions types can be
reduced to the type inference of local dyadic session types.

In (26) they studied the progress property for session types and the
type system uses a similar rule to our (SWEAK) in order to add ended as-
sumptions, however the subtyping relation is not mentioned at all. We
think that the mechanism they used for checking the acyclicity of opened
session can be implemented on top of HVK-X without changing in the
type system in a similar manner to what they do in (4) where there are
in fact two different type systems: one for session safety and another one
for progress.

There are also a lot of calculi specifically designed for service oriented
computing such as (16; 17; 54) (just to cite few). As we discussed in Chap-
ter 2 we choose CST since its mechanism for the instantiation of session
types naturally arise specializing those in (33; 76).

The two proposals in (20; 51) are derived from SCC: the conversa-
tion calculus and the stream based service centered calculus (SSCC). The
conversation calculus extends SCC with directional communications to-
wards the current session, the parent session and the dual session while
in SCC only outputs are allowed towards the first two sessions. This is
achieved by orienting the subject of each communication instead of using
the pipe and the return constructs. SSCC uses a stream to return values
by means of the feed primitive. A stream can be seen to as a container of
values and feeded values can be read accessing the stream by its name.
The type system proposed in SSCC resembles the type system of CST but
a stream (differently from the return values of CST) can contain only one
type of values and the calculus allows only for a sequence of inputs and
outputs without choices.

There are a lot of practical works on implementation of session types
(23; 30; 39) and how to use session types in a standard programming
language. Also in (27) they propose a type inference algorithm for session
types without the presence of choices and delegation; we guess that it
is straightforward to adapt the present theory for their object oriented
language.

Finally in (21; 52) they studied the problem of checking the communi-
cation safety (or the compliance) treating session types as a specific term
of a process algebra: a contract. With contracts one can face the prob-
lem reusing classical theory (24). In (53) they spelled out the connection
between contracts and session types. In (11) they studied service compo-
sition (not only one client and one service) by means of contract and the
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subcontract relation that allows replacing a group of compliant contracts
with one of their subcontract obtaining a new compliant composition.

6.4 Final remarks on CST progress

In this chapter we have proved the progress property for CST which
is a direct consequence of the subject reduction with the additional cost
of computing the transitive closure of the session nesting relation. The
transitive closure can be efficiently computed by means of the Bellman-
Ford algorithm which is simpler due to the fact that session names can
be used directly as the identifier of the respective edge in the graph. Also
the same algorithm can be used to compute the reflexive closure needed
for the progress property of HVK-X (26).
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Chapter 7

Conclusion

The contribute of this thesis in centered around the session types
framework first introduced in (37). Session types are already a well stud-
ied paradigm (6; 26; 28; 33; 37; 76) but here we have studied how is it
possible to relieve the programmer from the burden of annotating pro-
grams with types. We started our study from the subtyping relation ≤
introduced by Gay and Hole in (33). Actually this subtyping relation is
a pre-order since the antisymmetry is lost due the fact that the same in-
finite type can have several finite representations e.g.: µα.!(int).α and
!(int).µα.!(int).α are the equivalent representations of the type corre-
sponding to an infinite sequence of outputs of integer values. Starting
from this subtyping pre-order we have considered the derived notion of
equivalence relation taking ≶= ≤ ∩ ≤− .

As it is common when one must deal with type reconstruction we
have studied the notion of intersection T1∧T2 algebraically derived from
the subtyping relation. In fact, we have defined the intersection of two
session types as the greatest lower bound (modulo≶). We have provided
a co-inductive characterization of the intersection and we have devel-
oped an algorithm capable to compute the intersection of two session
types and to return one of its finite representations.

Since we are studying the problem of type reconstruction we need to
deal with types possibly containing free type variables. We face the prob-
lem simplifying the original proposal by removing the subtyping relation
in depth, used for session delegation. With this simplification we intro-
duce the important notion of syntactic unifier, for the subtyping relation
and for the meet exists relation. This syntactic unifier is the equivalent to
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the most general unifier. However, it remains the most general as long as
set of free variables is equal to the set of the free communicated variables.
We have also introduced a correct algorithm that returns a substitution
in case of constraints with free variables.

We have proved some nice properties about session types and the
respective subtyping relation. All of this is reported in Chapter 3, that
can serve as a useful source for these readers interested in the more ab-
stract results of this thesis. For example we have proved that the duality
switches the order of the operators for the subtyping relation so that the
join of two session types can be reduced to the meet of two session types.
We also have proved some lattice-like properties, for instance we define
the relation minorant that captures the (possibly infinite) set of minorants
of two session types and we have proved that the existence of a lower
bound implies the existence of the greatest lower bound (see Lemma
3.13).

In Chapter 4 we have studied how to embed the session types frame-
work in a calculus directly derived from CaSPiS (9). This calculus pro-
vides an excellent setting for studying the type reconstruction of session
types. We call this calculus CaSPiS for Session Types, or CST. The good
thing about CST is that it allows managing only two sessions per time,
the current one (used to talk with a partner) and the parent one (used to
talk with the parent session which encloses the current one).

We have first introduced a non syntax directed type system which has
its main source of non-determinism in the rule (TWEAK)(see Figure 16), for
session types relaxation. Another problem we have faced is the inference
of recursive behaviors.

Given the limited number of sessions that one can handle each time,
we have studied a very naive approach to the type inference of recursion,
that is if a session has a certain type T then the corresponding replicated
version has type µα.T . To this end we have introduced the so-callled •-
machinery that introduces a • symbol as a placeholder for a recursion
variable. Again thanks to the •-machinery we have proved some inter-
esting properties about session types. For example if T ≤ U then sub-
stituting one or more trailing end with a recursion variable α in order
to obtain the two types T ′ and U ′ one can conclude µα.T ′ ≤ µα.U ′. The
converse is more surprising if two recursive types are in subtyping re-
lation µα.T1 ≤ µα.U1 we can find two equivalent representations s.t.
µα.T1 ≶ µα.T ′1 and µα.U1 ≶ µα.U ′1 in order to replace recursion with •
and obtain two types that are still in subtyping relation. The proof of this
fact comes directly from the representation of the intersection returned
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by our algorithm for meet that expands the two types in order to have
two equivalent types (in the sense of ≶) with the same syntactic struc-
ture.

Next to avoid type variables relative to the recursion we have intro-
duced a type system that collects a set of types for each session. For exam-
ple when we find an if-then-else we compute the union of the two types
returned by each branch. This syntax directed type system uses sets and
the •-machinery to infer the type of a recursion and an in-line subtyp-
ing checking to get rid of the rule (TWEAK). The correspondence with the
original type system holds only for the correctness part (since it does not
support recursion for nested services) if there exists the intersection of
each type contained in the set relative to the current session. We propose
INF, an algorithm that is able to extract a set of constraints that are sat-
isfied if and only if the process is typable in the set based type system.
Our solve algorithm can be used to solve a set of constraints generated
by INF and it succeeds if and only if there exists a substitution that satis-
fies the set of constraints. As a consequence of using this syntax directed
type system with sets we have a very simple solve algorithm and conse-
quently an elegant proof of its soundness and completeness. In fact using
sets we avoid inserting free variables in a type, thus we can use the syn-
tactic unifier to solve each constraint. We conclude Chapter 4 introducing
a sound and complete syntax-directed type system with the correspond-
ing INF algorithm. However we did not show the corresponding solve
algorithm as the one introduced in Chapter 5 can be used instead.

In Chapter 5 we study the type inference of session types for the orig-
inal calculus proposed in (76) which we call HVK-X from the initials of
the original authors. We do not retain the original name due to some dif-
ferences. First of all we choose full recursion in place of process definition
second we allow service name extrusion (with the consequent possibil-
ity of the dynamic refinement of service accepts and service requests). As
we have done before for CST, we have first introduced a syntax directed
type system to get rid of the rule (TWEAK). To this end we ideate a func-
tion for accessing linear environments (used to store assumptions about
opened sessions) that introduces ended sessions only when it is strictly
necessary. However this is not sufficient to avoid completely ended ses-
sions since spurious ended sessions can be introduced by means of a
throw instruction. We remedy to the presence of spurious sessions using
a subtyping relation between linear environments that limits the domain
of action of the subtyping relation in the introduction of ended sessions.
The relative INF algorithm extracts a set of constraints which has cyclic
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dependencies, arbitrary free variables and whose types are constrained
by means of the duality relation. We propose our solve algorithm which
is correct, but complete only partially. In particular the completeness is
achieved if the analyzed process is closed and has not free names.

An interesting fact is that one can study a type system with sets for
this calculus too. At a first glance it is also correct and complete without
delegation and one can prove formally this fact. How is it possible, if in
CST (that has no session delegation) we achieved only the correctness
with the set syntax directed type system? The answer to this question is
given by the encoding function: recursion in CST is encoded using ses-
sion delegation in HVK-X. For this reason and also for debugging pur-
poses it is nice to show two encodings. We prove the goodness of these
encodings showing the correspondence between type systems, instead of
giving an operational correspondence. The first encoding we proposed is
from the π-calculus to HVK-X: we have shown that a well typed process
in the simply typed π-calculus is also well typed when encoded in HVK-
X and vice versa. One can think of this result as the fact that session types
used just as a simply request-response interactions degenerate to the sim-
ply typed π-calculus whose type discipline only checks that each channel
is used to send and receive only one type of values. The second encoding
we have proposed is from CST to HVK-X and the result is very surprising
since each well typed process in CST is a well typed encoded process in
HVK-X and vice versa. Notwithstanding, the encoding function is weak,
if we try to relate a processes with its encoding we have the same gran-
ularity of the type system. In fact, the correspondence between type sys-
tems holds even if we would add into the encoding an arbitrary process
Q typed with the same standard environment but with the empty linear
environment regardless if Q is executed or not. The problem is that the
execution of Q can interfere with the execution of the encoded process
consuming shared names and session types are not powerful enough to
capture this fact.

As far as properties of the subtyping relation are concerned, we have
proved in Chapter 5 that the subtyping relation is preserved by arbitrary
n-holes contexts. This fact is not obvious since for example recursion is
able to duplicate each hole appearing in a context.

In Chapter 6 we have shown the differences with our major sources of
inspirations comparing them with our work so one can better appreciate
the differences and the similarities. We have shown also how to prove a
more powerful property then the session safety which is a direct conse-
quence of the subject reduction. The progress property (here we prove
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it for CST) ensures that the dependencies among opened sessions are
not cyclic, and then it provides a way to specify a new process that al-
lows the entire system to proceed. This process is composed in parallel
with the original stuck process and it is either an accept or a request on
a missed service. The deadlock freedom property instead checks that in
fact not only the dependencies among opened sessions are not cyclic but
also that the system provides all the service accepts and all the service re-
quests it requires for a correct termination. We have concluded Chapter
6 with an overview of the related works.

7.1 Future work

We have studied session types as a framework for interactions among
services. One can try to fit session types in real standards. It is easy to see
that using WSDL-like or RPC patterns with session types they degener-
ate to the simply typed π-calculus. It is also possible to model WSDL-2
interactions which can optionally generate fault messages by means of
choices. We can also find a way to directly model WSCL (3) and its activ-
ity diagrams or maybe to model local parties in a chorography written in
WS-CDL. Moreover other standards can be used to secure the message
exchanging such as WS-SecureConversation (5). We can spend a lot of
efforts providing a mapping to these standards versus session types, but
such a task would not contribute substantially to our research outcome
which has a more formal flavor and can be applied in different settings.
In fact, here we consolidated a theory that can be used whenever two par-
ties communicate with a sequence of bidirectional messages exchanging.
We have shown how to achieve additional flexibility using branching,
delegation and recursion for an unbounded (not known a priori) con-
versation. Web Services are certainly the closest paradigm that actually
exists but not the only one. Take for example the REST architecture. In
a nutshell (see (65) for a detailed discussion about REST), entire systems
are modeled in REST by means of resources. On each resource only four
basic actions are possible: creating a new resource, updating a resource,
removing a resource and reading the state of a resource. Every system
can be modeled by a set of resources that offers these basic actions. The
closest paradigm to a REST architecture is client-side Javascript with
HTTP used to offer resources by means of an URL. On each URL one
can make a basic action by means of the basic standard actions of the
HTTP protocol (POST,GET and DELETE). One can map session types

199



also in this paradigm providing for example a resource that allows for
the creation of new sessions. This resource first waits two parties asking
for a private communication and then it releases a new session resource.
Subsequently, standard HTTP actions GETs are used to read and POSTs
are used to send according to the fact that each time each party provides
the identifier of the session resource. REST with RUBY is a paradigm ac-
tually used more and more frequently than Web service standards, every
applications we run in a browser are going to become resource oriented.
Moreover they actually are services provided by means of a set of re-
sources.

The point is that one can try to apply the session type framework to
existing standards, but standards in computer science are often replaced
by new ones. Hoping that we have provided a well founded theory in-
spired from service oriented architecture but that can be used every time
two parties need to communicate using non trivial protocols. The calculi
we have outlined are used to focus only on communication primitives
but people have started studying how to embed it in everyday program-
ming language like Java (27; 39). Perhaps one can say that with session
types support, Java is more service oriented than before or one can sim-
ply say, we studied a paradigm to simplify the life of programmers in
developing communicating applications. As witness of this fact we pro-
pose the SOAM machine (14), an abstract machine which can communi-
cate only using sessions. We prove its expressive power providing three
encodings for three different calculi, which in particular comprise the en-
coding of ORC (22), closer to the REST architecture than the other calculi
available in literature.

200



Appendix

In this appendix we show some running examples of TypSes see
Chapter 5 for technical details.

The ATM example

We have encoded in HVK-X the Example 4.1 from (37). The syntax of
TypSes is slight different, in order to have a clear readability of the source
code.

new a in (rec X.accept a(k).k?(id).k|>
deposit:request b(h).k?(amt).h<|deposit.h!(id,amt).X
||withdraw:request b(h).k?(amt).h<|withdraw.h!(id,amt).

h|>success:k<|dispense.k!(amt).X
|| failure:k<|overdraft.X

||balance:request b(h).h<|balance.h?(amt).k!(amt).X |
request a(k).k!(12345).k<|withdraw.k!(58).k|>dispense:k?(amt)

||overdraft:O )

The ATM accepts requests on a and uses b to communicate with the
bank. Initially the ATM requires the id of the user and then it allows
either deposit or withdraw or balance requests. Once one of those
options is chosen by the user a connection is established with the bank on
b. The bank actually performs the required task and then responds to the
ATM which provides the output to the user. For example overdraft
can be viewed as the exception handling code, e.g. to display an error
message to the user. Notice that the definition of b is missing so we ex-
pect to use localsolve.

Running TypSes we obtain the following constraints:

\scriptsize
[alpha11]=s(alpha1)
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alpha11<=?( s(alpha3)).&{deposit:?( s(alpha9)).end ,
withdraw:?( s(alpha6)).alpha7 ,
balance:!( s(alpha4)).end , }

[alpha10]=s(alpha2)

\oplus{deposit:!( s(alpha3) s(alpha9)).end , } d<= alpha10

[alpha8]=s(alpha2)

\oplus{withdraw:!( s(alpha3) s(alpha6)).&{success:end ,
failure:end , } , } d<= alpha8

alpha7<=\oplus{dispense:!( s(alpha6)).end , }

alpha7<=\oplus{overdraft:end , }

[alpha5]=s(alpha2)

\oplus{balance:?( s(alpha4)).end , } d<= alpha5

[alpha13]=s(alpha1)

!( int).\oplus{withdraw:!( int).&{dispense:?( s(alpha12)).end ,
overdraft:end , } , } d<= alpha13

where <= is the subtyping relation and d<= is the subtyping of the
form T ≤ U with the first member overlined and variables of the form
s(alpha) are type variables for sorts. After some iterations of solve
we obtain the following output:

\oplus{balance:?( s(alpha4)).end , } d<= alpha5

\oplus{withdraw:!( int int).&{success:end ,
failure:end , } , } d<= alpha5

\oplus{deposit:!( int s(alpha9)).end , } d<= alpha5

!( int).\oplus{withdraw:!( int).&{dispense:?( s(alpha12)).end ,
overdraft:end , } , } d<=

?( int).&{deposit:?( s(alpha9)).end ,
withdraw:?( int).\oplus{dispense:!( int).end , } ,
balance:!( s(alpha4)).end , }

------
\oplus{balance:?( s(alpha4)).end , } d<= alpha5

\oplus{withdraw:!( int int).&{success:end ,
failure:end , } , } d<= alpha5

\oplus{deposit:!( int s(alpha9)).end , } d<= alpha5

------

The process is typable!
Elapsed Time: 0.015sec
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where ------ separates each resolution step of the algorithm. In the
penultimate line TypSes checks the compatibility of the two specifica-
tions of service a relative to the ATM and in the last step the algorithm
uses localsolve to locally decide the type of b.

The FTP example

We have encoded in HVK-X the Example 4.3 from (37) with two
threads.

new b in (rec FTPD.accept pid(s).request b(k).throw k(s).FTPD |
rec FTPTHREAD.accept b(k).catch k(s).s?(userid,passwd).

request nis(j).j<|checkuser.j!(userid,passwd).
j|>invalid:s<|sorry.O

||valid:s<|welcome.rec ACTIONS.
s|>get:s?(file).ACTIONS
||put:s?(file).ACTIONS
||bye:FTPTHREAD |

rec FTPTHREAD.accept b(k).catch k(s).s?(userid,passwd).
request nis(j).j<|checkuser.j!(userid,passwd).

j|>invalid:s<|sorry.O
||valid:s<|welcome.rec ACTIONS.
s|>get:s?(file).ACTIONS
||put:s?(file).ACTIONS
||bye:FTPTHREAD |

| request pid(s).s!(123,123).s|>sorry:O||welcome:s<|bye.O

This example uses session delegation in order to distribute the workload
among different FTPTHREAD available. Here (this is not the case of (37))
we can have different specifications of each thread b as long as these
specifications are compatible with the client. Running TypSes we obtain:

The process is typable!
Elapsed Time: 0.156sec

In order to get a type error one can for instance modify the client omitting
the specification of the branch labeled with sorry then:

Error protocols
\oplus{welcome:&{get:?( int).&{bye:end , } , } , } and
\oplus{sorry:end , }

are incompatible
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Nested CST recursion

Consider the following source code of the CST process
rec X.a.〈5〉.return 5.X | a.(x).(x):

new b in new a in (rec X.a?.5.return 5.X | a!.(x).(x) )

Running TypSes with the SCC option we obtain:

rec X.(accept aX(k2).catch k2 (k3).
accept a(k4).k4!( 5).k3!( 5).

request aX(k5).throw k5 (k4).0|X)
|request a(k1).k1?( x).k1?( x).0)
The process is typable!
Elapsed Time: 0.sec

The encoded process uses the replicated service aX and delegation in
order to encode process definition.

CST Proxy

We report the code of a proxy server capable to invoke a new defini-
tion of the service a for each client request

(b?.rec X.(y).(a!.y.return 5>(x)>X)) /*proxy*/
|(a?.(x)) /*service*/
|(b!.rec X.5.X)) /*client*/

and then as expected

((accept b(k6).new aX in
Rec X.(accept aX(k7).catch k7 (k8).k8?( y).newS k9 in
(request a(k11).k11!( y).k9ˆ+!(5).0|k9ˆ-?( x).
request aX(k10).throw k10 (k8).0)|X)|accept a(k5).k5?( x).0)|
request b(k1).new aX in
Rec X.(accept aX(k2).catch k2 (k3).k3!( 5).
request aX(k4).throw k4 (k3).0|X))

The process is typable!
Elapsed Time: 0.sec

where we encoded the pipe using a new fresh session k9 declared by
means of the operator newS. k9ˆ+, k9ˆ- stay for the positive and the
negative polarity of k9. Notice also that the encoded process is alpha
renamed in order to have all names different.
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π-calculus factorial

We report the code of the factorial written in π-calculus. We use the
feature of TypSes that allows importing external functions. These func-
tions have a simply functional type and their presence can be an easy
addition also in the theory.

import sub:int,int->int;
import mul:int,int->int;

new fatt in (rec X.(fatt?(x,r).
if x=1 then r!(0)
else

new r1 in
(fatt!(sub(x,1),r1).r1?(res).r!(mul(res,x)))|X)

| new r in (fatt!(5,r).r?(x)) )

We import (with the import construct) two functions in order to subtract
(sub) and to multiply (mul) two integers. We use the second channel r
to reply with the result of the factorial of x. Running TypSes with the
simply typed π-calculus option we obtain:
new fatt1 in (Rec X6.(accept fatt1(pi7).pi7?( x8 r9).
if (x=1) then request r9(pi15).pi15!( 0).0
else new r110 in request fatt1(pi11).pi11!( sub( x8 1) r110).
accept r110(pi12).pi12?( res13).request r9(pi14).pi14!(mul( res13 x8))
|X6)|

new r2 in request fatt1(pi3).pi3!( 5 r2).accept r2(pi4).pi4?( x5).0)
The process is typable!
Elapsed Time: 0.015sec

The only possible typing errors are due to the tuple length and sort
mismatching. For example if we invoke the factwithout the reply chan-
nel

import sub:int,int->int;
import mul:int,int->int;

new fatt in (rec X.(fatt?(x,r).
if x=1 then r!(0)
else
new r1 in
(fatt!(sub(x,1),r1).r1?(res).r!(mul(res,x)))|X)

| (fatt!(5) )

205



and then

Error protocols
?( int).end

with
?( int [alpha7]).end

are incompatible

or if we use a channel to send values with different types

import sub:int,int->int;
import mul:int,int->int;

new fatt in (rec X.(fatt?(x,r).
if x=1 then r!(0)
else

new r1 in
(fatt!(sub(x,1),r1).r1?(res).r!(mul(res,x)))|X)

| new r in new r2 in (fatt!(r2,r).r?(x)) )

and then

Unification error cannot unify
[alpha12]

with
int
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