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Abstract

This dissertation presents an alternative approach to formu-
late and solve optimization problems arising in real-time mo-
del predictive control (MPC). First it has been shown that by
using a quadratic penalty function, the linear MPC optim-
ization problem can be formulated as a least-squares prob-
lem subject to bounded variables while directly employing
models in their input/output form. A theoretical analysis
on stability and optimality is included with a comparison
against the conventional condensed approach based on lin-
ear state-space models. These concepts are straightforwardly
extended for fast nonlinear MPC with bounded variables.
An active-set algorithm based on a novel application of lin-
ear algebra methods is proposed for efficiently solving the
resulting box-constrained (nonlinear) least-squares problems
with global convergence, numerical robustness, and easy de-
ployability on industrial embedded hardware platforms. Fi-
nally, new methods and tools are devised for maximizing
efficiency of the solution algorithm considering the numer-
ically sparse structure of the non-condensed MPC problem.
Based on these methods, the problem construction phase in
MPC design is systematically eliminated by parameterizing
the optimization algorithm such that it can adapt to real-time
changes in the model and tuning parameters while signific-
antly reducing memory and computational complexity with
a potentially self-contained matrix-free implementation. Nu-
merical simulation results included in this thesis testify the
potential, applicability, numerical robustness and efficiency
of the proposed methods for practical real-time embedded
MPC.
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Chapter 1

Introduction

1.1 Motivation and research objectives

Model predictive control (MPC) is an advanced control method that is
capable of controlling complex systems whose dynamical behaviour may
be characterized by means of a mathematical model. Its ability to con-
trol multivariable systems while handling constraints has made it one
of the most popular methods in advanced control engineering practice
with an ever growing range of applications in several industries. MPC
evolved over the years from a method developed for controlling slow
processes [1, 2] to an advanced multivariable control method that is ap-
plicable even to fast-sampling applications, such as in the automotive
and aerospace domains [3, 4]. This evolution has been possible because
of the significant amount of research on computationally efficient real-
time MPC algorithms. For an incomplete list of such efforts and tools the
reader is referred to [5–9]. Despite the success of MPC, demand for faster
numerical algorithms for a wider scope of applications has been reported
for instance in [4]. A common approach to reducing computational load
is to solve the MPC problem suboptimally, see for instance [5, 9]. How-
ever, even such MPC approaches have limitations that could be prohib-
itive in some resource-constrained applications, especially in the case of
(parameter-varying) nonlinear MPC (NMPC). This denotes that there is
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still a large scope of improvement.
This thesis presents an alternative approach to formulate and solve

optimization problems arising in real-time model predictive control. The
proposed methods aim to stimulate the practical use of MPC in resource
constrained applications. They are designed with the motivation to
bridge the gap between MPC theory and industrial practice by taking
into consideration that: data-based black-box models are often identified
as difference equations in input/output (I/O) form; the control variables
are often subject to simple bounds; numerically robust algorithms are re-
quired for accuracy in limited precision computing which is common in
embedded hardware platforms; an easy general deployment needs min-
imization of calibration requirements; stand-alone code is required for
embedded implementation. The main idea studied to meet these needs
was to tailor the MPC problem formulation using penalty functions such
that fast and simple optimization solvers can be employed. The resulting
optimization problems can be solved using box-constrained (nonlinear)
least-squares algorithms, which were researched in exhaustive detail.

1.2 Thesis outline and contributions

The thesis is structured into two parts: the first part (Chapters 2-
3) focuses on MPC problem formulations whereas the following part
(Chapters 4-6) focuses on optimization algorithms and their implement-
ation. We refer to [10] for terminology and basic concepts about MPC.
For details about constrained optimization algorithms and relevant ter-
minology used in this thesis we refer to [11]. The content in this thesis
is mainly based on the work published in [12–15]. First it has been
shown how the linear MPC optimization problem can be formulated
as a least-squares problem subject to bounded variables while directly
employing models in their I/O form. A theoretical analysis on stability
and optimality is included with a comparison against the conventional
condensed approach based on linear state-space models. These concepts
are straightforwardly extended for fast nonlinear MPC. An active-set al-
gorithm based on a novel application of linear algebra methods is pro-
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posed for efficiently solving the resulting box-constrained (nonlinear)
least squares problems with global convergence, numerical robustness,
and easy deployability on industrial embedded hardware platforms. Fi-
nally, new methods and tools are devised for maximizing efficiency of
the solution algorithm considering the numerically sparse structure of
the non-condensed MPC problem. Based on these methods, the problem
construction phase in MPC design is systematically eliminated by para-
meterizing the optimization algorithm such that it can adapt to real-time
changes in the model and tuning parameters while significantly reducing
memory and computational complexity with a potentially self-contained
matrix-free implementation. Numerical simulation results included in
this thesis testify the potential, applicability, numerical robustness and
efficiency of the proposed methods.

The chapter-wise contribution is described in detail as follows

• Chapter 2, Fast model predictive control based on linear in-
put/output models:

This chapter introduces a fast and simple model predictive control
approach for multivariable discrete-time linear systems described
by input/output models subject to bound constraints on inputs
and outputs. The proposed method employs a relaxation of the
dynamic equality constraints by means of a quadratic penalty func-
tion so that the resulting real-time optimization becomes a (sparse),
always feasible, bounded-variable least-squares (BVLS) problem.
Conditions on the penalty parameter are derived for maintain-
ing closed-loop stability when relaxing the dynamic equality con-
straints. The approach is not only very simple to formulate, but
also leads to a fast way of both constructing and solving the MPC
problem in real time, a feature that is especially attractive when
the linear model changes on line, such as when the model is ob-
tained by linearizing a nonlinear model, by evaluating a linear
parameter-varying model, or by recursive system identification.
A comparison with the conventional state-space based MPC ap-
proach is shown in an example, demonstrating the effectiveness of

3



the proposed method. The content of this chapter is mostly based
on [12].

• Chapter 3, Nonlinear model predictive control problem formula-
tions:

In this chapter, we present an approach for real-time nonlinear
model predictive control (NMPC) of constrained multivariable dy-
namical systems described by nonlinear difference equations. The
NMPC problem is formulated by means of a quadratic penalty
function as an always feasible, sparse nonlinear least-squares prob-
lem subject to box constraints on the decision variables. Linear
time-invariant and linear time-varying model predictive control
based on BVLS are special cases of the proposed NMPC frame-
work. The proposed formulation and its benefits are demonstrated
through a typical numerical example in simulation. An alternat-
ive approach based on the augmented-Lagrangian method is also
discussed. It is shown that inspite of fundamental differences with
the former approach, the nonlinear non-convex optimization prob-
lem in this case as well can be formulated to have exactly the same
structure, which is favorable to employ fast solution methods. The
content of this chapter includes excerpts from [13] and [15].

• Chapter 4, Bounded-variable least-squares solver:

In this chapter, a numerically robust solver for least-squares prob-
lems with bounded variables is presented for applications includ-
ing, but not limited to, model predictive control. The proposed
BVLS algorithm solves the problem efficiently by employing a re-
cursive QR factorization method based on Gram-Schmidt ortho-
gonalization. A reorthogonalization procedure that iteratively re-
fines the QR factors provides numerical robustness for the de-
scribed primal active-set method, which solves a system of linear
equations in each of its iteration via recursive updates. The per-
formance of the proposed BVLS solver, which is implemented in C
without external software libraries, is compared in terms of compu-
tational efficiency against state-of-the-art quadratic programming
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solvers for small to medium-sized random BVLS problems and a
typical example of embedded linear MPC application. The numer-
ical tests demonstrate that the solver performs very well even when
solving ill-conditioned problems in single precision floating-point
arithmetic. Preliminary results in a hardware-in-the-loop setting
based on BVLS-based MPC of a mildly nonlinear system with the
proposed optimization solver embedded on a programmable lo-
gic controller are included, which demonstrate the success of the
methods in practically addressing key issues such as numerical ro-
bustness. This chapter’s content is mainly based on [14].

• Chapter 5, Bounded-variable nonlinear least squares:

In order to efficiently solve the NMPC problems described in
Chapter 3, it is desirable to have a solution method that benefits
from warmstarting information, is robust to problem scaling, and
exploits structure of the problem. This chapter, which is based on
excerpts from [13] and [15], presents an efficient solution algorithm
which has the aforementioned advantageous attributes. The pro-
posed solver is a primal feasible line-search method which solves a
sequence of BVLS problems until convergence. It can also be seen
as an extension of the Gauss-Newton method to handle box con-
straints. A theoretical analysis of its global convergence property
is included. Numerical results based on a typical NMPC example
show that the proposed solver is computationally more efficient
than the considered benchmarks by a considerable margin.

• Chapter 6, Methods and tools for efficient non-condensed model
predictive control:

This chapter presents a new approach to solving linear and non-
linear model predictive control (MPC) problems that requires min-
imal memory footprint and throughput and is particularly suitable
when the model and/or controller parameters change at runtime.
Typically MPC requires two phases: 1) construct an optimization
problem based on the given MPC parameters (prediction model,
tuning weights, prediction horizon, and constraints), which results

5



in a quadratic or nonlinear programming problem, and then 2) call
an optimization algorithm to solve the resulting problem. In the
proposed approach the problem construction step is systematically
eliminated, as in the optimization algorithm problem matrices are
expressed in terms of abstract functions of the MPC parameters.
Furthermore, when using BVLS, an effective use of these operat-
ors allows one to exploit sparsity in matrix factors without con-
ventional sparse linear algebra routines while significantly redu-
cing computations. Parameterizing the optimization algorithms in
terms of model and tuning parameters not only makes the control-
ler inherently adaptive to any real-time changes in these paramet-
ers, but also obviates code-generation requirements. The versatility
of the proposed implementation allows one to have a unifying al-
gorithmic framework based on active-set methods with bounded
variables that can cope with linear, nonlinear, and adaptive MPC
variants based on a broad class of models. The theoretical and nu-
merical results in this chapter are based on [15].

Concluding remarks that highlight the contributions of this thesis and
notes on relevant open problems for future research are included in
Chapter 7.
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Chapter 2

Fast model predictive
control based on linear
input/output models

2.1 Introduction

The early formulations of Model Predictive Control (MPC), such as Dy-
namic Matrix Control (DMC) and Generalized Predictive Control (GPC)
were based on linear input/ouput models, such as impulse or step re-
sponse models and transfer functions [16]. On the other hand, most
modern MPC algorithms for multivariable systems are formulated based
on state-space models. However, black-box models are often identified
from input/output (I/O) data, such as via recursive least squares in an
adaptive control setting, and therefore require a state-space realization
before they can be used by MPC [17]. When the model changes in real
time, for example in the case of linear parameter-varying (LPV) systems,
converting the black-box model to state-space form and constructing the
corresponding quadratic programming (QP) matrices might be compu-
tationally demanding, sometimes even more time-consuming than solv-
ing the QP problem. Moreover, dealing directly with I/O models avoids
implementing a state estimator, which also adds some numerical burden
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and memory occupancy.

In MPC based on I/O models two main approaches are possible for
constructing the QP problem. In the “condensed” approach the output
variables are eliminated by substitution, exploiting the linear difference
equations of the model. As a result, the optimization vector is restric-
ted to the sequence of input moves and the resulting QP problem is
dense from a numerical linear algebra perspective. In the non-condensed
approach, the output variables are also kept as optimization variables,
which results in a larger, but sparse, QP problem subject to linear equal-
ity and inequality constraints.

In our proposed approach we keep the sparse formulation but also
eliminate equality constraints by using a quadratic penalty function that
relaxes them. The resulting optimization problem, when only subject to
lower and upper bounds on variables, is always feasible. Not only does
this approach simplify the resulting optimization problem, but it can
be interpreted as an alternative way of softening the output constraints,
since the error term in satisfying the output equation can be equivalently
treated as a relaxation term of the output constraint.

In fact, in practical MPC algorithms feasibility is commonly guar-
anteed via softening of output constraints by introducing slack vari-
ables [10, Section 13.5], [18, 19]. A disadvantage of this approach is that
even though the output variables are only subject to box constraints, with
the introduction of slack variable(s) the constraints become general (non-
box) inequality constraints. This restricts the class of QP solvers that
can be used to solve the optimization problem. Instead, the proposed
method is similar to the quadratic penalty method (QPM) with single
iteration [11, Section 17.1], which guarantees feasibility of the optimiza-
tion problem without introducing slack variables, and can be solved by
Bounded-Variable Least Squares (BVLS), for which simple and efficient
algorithms exist [20–22]. Algorithms for BVLS will be discussed later in
Chapter 4.

Results for guaranteeing stability when using I/O models in MPC
have existed in the literature for a long time, see, e.g., [23,24]. For the un-
constrained case, we will show that an existing stabilizing MPC control-
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ler based on an I/O model, such as one obtained in [24], is guaranteed to
remain stable in the relaxed BVLS formulation if the penalty on violating
the equality constraints is chosen to be sufficiently large.

This chapter is organized as follows. We first introduce the BVLS ap-
proach based on multivariable discrete-time linear I/O models without
stability considerations in Section 2.2. Infeasibility handling is discussed
in Section 2.3, where the performance of the proposed formulation is also
compared with the soft-constrained MPC approach. In Section 2.4 we
analyze the theoretical optimality and closed-loop stability properties of
the BVLS approach. Finally, the practical advantages of the approach are
demonstrated in Section 2.5, where the proposed method based on I/O
models, which we refer to as the “BVLS approach”, is compared on a
multivariable application example in terms of speed of execution against
the standard MPC approach based on state-space models. Final conclu-
sions are drawn in Section 2.6 on the potential benefits and drawbacks of
the proposed method.

Notation. A ∈ Rm×n denotes a real matrix with m rows and n

columns; rank(A), A>, A−1 (if A is square) and A† denote its rank, trans-
pose, inverse (if it exists) and pseudo-inverse, respectively. Rm denotes
the set of real vectors of dimension m. For a vector a ∈ Rm, ‖a‖2 denotes
its Euclidean norm, ‖a‖22= a>a. The notation |·| represents the absolute
value. Matrix I denotes the identity matrix, and 0 denotes a matrix of all
zeros.

2.2 Linear input/output models and problem
formulation

2.2.1 Linear prediction model

We refer to the time-invariant input/output model typically used in ARX
system identification [25], consisting of a noise-free MIMO ARX model
with ny outputs (vector y) and nu inputs (vector u) described by the dif-
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ference equations

yl(k) =

ny∑
i=1

na∑
j=1

a
(l)
i,jyi(k − j) +

nu∑
i=1

nb∑
j=1

b
(l)
i,jui(k − j) (2.1)

where yl is the lth output and ul is the lth input, na = max(n
(p)
i,j ),

nb = 1 + max(n
(z)
i,j ), and n

(p)
i,j , n(z)

i,j are the number of poles and zeros,
respectively, of the transfer function between the ith output and the jth

input for all i ∈ {1, 2, . . . , ny}, j ∈ {1, 2, . . . , nu}. The coefficients a(l)
i,j de-

note the dependence of the ith output delayed by j samples and the lth

output at time instant k, while b(l)i,j denotes the model coefficient between
the ith input delayed by j samples and the lth output at time instant k.
Note that (2.1) also includes the case of input delays by simply setting
the leading coefficients b(l)i,j equal to zero. In matrix notation, (2.1) can be
written as

y(k) =

na∑
j=1

Ajy(k − j) +

nb∑
j=1

Bju(k − j) (2.2)

where

Aj =


a

(1)
1,j a

(1)
2,j · · · a

(1)
ny,j

a
(2)
1,j a

(2)
2,j · · · a

(2)
ny,j

...
...

...
...

a
(ny)
1,j a

(ny)
2,j · · · a

(ny)
ny,j

 ∈ Rny×ny ,∀j ∈ {1, 2, . . . , na};

Bj =


b
(1)
1,j b

(1)
2,j · · · b

(1)
nu,j

b
(2)
1,j b

(2)
2,j · · · b

(2)
nu,j

...
...

...
...

b
(ny)
1,j b

(ny)
2,j · · · b

(ny)
nu,j

 ∈ Rny×nu ,∀j ∈ {1, 2, . . . , nb};

Aj = 0,∀j > na, and Bj = 0,∀j > nb.

2.2.2 Performance index

We consider a finite prediction horizon of Np time steps and take
u(k + j − 1), y(k + j) as the optimization variables, ∀j ∈ {1, 2, . . . , Np}.
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To possibly reduce computational effort, we consider a con-
trol horizon of Nu steps, Nu ≤ Np, which replaces variables
u(k +Nu), u(k +Nu + 1), . . . , u(k +Np − 1) with u(k +Nu − 1). The
following convex quadratic cost function is used

min
u(·),y(·)

J(k) = min
u(·),y(·)

Np∑
j=1

1

2
‖Wy(y(k + j)− yr)‖22

+

Nu−2∑
j=0

1

2
‖Wu(u(k + j)− ur)‖22

+
1

2
(Np −Nu + 1)‖Wu(u(k +Nu − 1)− ur)‖22 (2.3)

where Wy ∈ Rny×ny and Wu ∈ Rnu×nu are positive semidefinite tun-
ing weights, and yr, ur are the steady-state references for outputs and
inputs, respectively. The latter are usually computed by static optim-
ization of higher-level performance objectives. Practically, these refer-
ences may be altered for offset-free tracking by estimating steady-state
offset. Alternatively, to enforce offset-free tracking or penalize input in-
crements, the same cost function that is described later in its compact
form in (2.8a), can also accomodate squared weights on input increments
u(k)− u(k − 1),∀k, which corresponds to having appropriate entries in
additional rows augmented to the matrix of weights on the vector of de-
cision variables, which contains all the input variables.

In case only a vector vr collecting (a subset of) the output references
is provided to MPC for tracking, a reference vector ur for the inputs and
ỹr for the outputs for which a set-point has not been specified, which is
consistent with model (2.2), can be obtained by solving the linear system

vr = Fyr = F

na∑
j=1

Aj︸ ︷︷ ︸
Ar

yr + F

nb∑
j=1

Bj︸ ︷︷ ︸
Br

ur

with respect to ur, ỹr, where F contains rows of the identity matrix I

that extract the known references vr from the full output reference vec-
tor. If Avr denotes the matrix obtained by collecting the columns of Ar
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corresponding to vr and Ãr the matrix collecting the remaining columns
corresponding to ỹr, solving the linear system

[
Ãr Br

] [ỹr
ur

]
= (I −Avr)vr

provides the required values for yr and ur.

2.2.3 Constraints

The prediction model (2.2) defines the following equality constraints on
the output variables

y(k+ l) =

na∑
j=1

Ajy(k− j+ l) +

nb∑
j=1

Bju(k− j+ l),∀l ∈ {1, 2, . . . , Np}.

(2.4)

In order to have a sparse formulation as motivated in [9, 26] and avoid
substituting variables via (2.4) in the cost function, we keep the dynamic
constraints (2.4) in the following implicit form

Gz(k) = Hφ(k) = g(k), (2.5)

where G ∈ RNp·ny×(Nu·nu+Np·ny), H ∈ RNp·ny×(na·ny+nb·nu−nu),
φ ∈ Rna·ny+nb·nu−nu denotes the initial condition vector and

z(k) =



u(k)
y(k + 1)
u(k + 1)
y(k + 2)

...
u(k +Nu − 1)
y(k +Nu)

y(k +Nu + 1)
...

y(k +Np − 1)
y(k +Np)



∈ R(Nu·nu+Np·ny)
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denotes the vector of decision variables. Based on the order of de-
cision variables in z, the structure of matrix G depends on the values
of na, nb, Nu and Np such that in general

G =



−B1 I 0 0 · · · · · · 0
−B2 −A1 −B1 I 0 · · · · · · 0

...
. . .

. . .
...

−BNc −ANc−1 −BNc−1 −ANc−2 · · · −B1 I 0 · · · 0

−BNc+1 −ANc −BNc −ANc−1 · · · −B3 −A2

2∑
i=1

−Bi −A1 I 0 · · · 0

−BNc+2 −ANc+1
. . . · · · −B4 −A3

3∑
i=1

−Bi −A2 −A1 I 0 · · · 0

...
. . .

. . .
. . . 0

−BNp
−ANp−1 −BNp−1 −ANp−2 · · · −BNp−Nc+2 −ANp−Nc+1

Np−Nc+1∑
i=1

−Bi −ANp−Nc −ANp−Nc−1 −ANp−Nc−2 · · · −A1 I


(2.6)

and

g(k) =



A1 A2 · · · · Ana B2 B3 · · · Bnb

A2 · · · · Ana 0 B3 · · · Bnb
0

... . .
.

. .
. ...

... . .
.

. .
. ...

· Bnb
0 · · · 0

· 0 · · · · · · 0
Ana

0 · · · 0 · · · ·
0 · · · · · · 0 · · · ·
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 0 · · · · · · 0


︸ ︷︷ ︸

=H



y(k)
y(k − 1)

...
·

y(k − na + 1)
u(k − 1)
u(k − 2)

...
u(k − nb + 1)


︸ ︷︷ ︸

=φ

.

For the typical case of Nu = Np, such that Nu > τ with τ = 1 +

max{na, nb}, we have that
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G =



−B1 I 0 · · · 0

−B2 −A1 −B1 I 0 · · · 0

...
. . .

. . .
. . .

. . .
...

−Bτ −Aτ−1 · · · −B1 I 0 · · · 0

0 −Bτ −Aτ−1 · · · −B1 I
. . .

...

...
. . .

. . .
. . .

...

...
. . .

. . . −Bτ −Aτ−1 · · · −B1 I 0

0 · · · 0 −Bτ −Aτ−1 · · · −B1 I


is not only sparse but also a block-band matrix. Further details on prob-
lem sparsity and its exploitation within the optimization algorithm for
computational benefits are discussed in Chapter 6.

In addition to the constraints defined above, we want to impose the
following box constraints

¯
u(k + j) ≤ u(k + j) ≤ ū(k + j),∀j ∈ {0, 1, . . . , Nu − 1} (2.7a)

¯
y(k + j) ≤ y(k + j) ≤ ȳ(k + j),∀j ∈ {1, 2, . . . , Np} (2.7b)

where we assume
¯
u(k) ≤ ū(k),

¯
y(k) ≤ ȳ(k), and that

¯
u(k), ū(k),

¯
y(k),

ȳ(k) may also take infinite values.
Bounds on rate of change of variables would result in gen-

eral inequalities and are thus not included in order to have a
simpler optimization problem, which will be discussed in de-
tail in the following section. However, bounds on the first
input increment ∆umin ≤ u(k)− u(k − 1) ≤ ∆umax can be imposed
by replacing

¯
u(k) with max{

¯
u(k), u(k − 1) + ∆umin} and ū(k) with

min{ū(k), u(k − 1) + ∆umax}. The disadvantage of excluding remaining
rate constraints can be partially compensated by penalizing the rate of
change of variables in the cost function as discussed earlier, which does
not alter the type of the optimization problem.
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2.2.4 Optimization problem

For receding horizon control, we need to solve the following convex
quadratic programming (QP) problem

min
z(k)

1

2
‖Wz(z(k)− zr)‖22 (2.8a)

s.t. Gz(k)− g(k) = 0 (2.8b)

¯
z(k) ≤ z(k) ≤ z̄(k) (2.8c)

at each time step k, where Wz ∈ R(Nu·nu+Np·ny)×(Nu·nu+Np·ny) is a block
diagonal matrix constructed by diagonally stacking the weights on in-
puts and outputs according to the arrangement of elements in z. Vector
zr contains the steady-state references for the decision variables and

¯
z, z̄

denote the lower and upper bounds, respectively, obtained from (2.7).
By using a quadratic penalty function to relax the equality constraints

in (2.8), we reformulate problem (2.8) as the following BVLS problem

min
¯
z(k)≤z(k)≤z̄(k)

1

2
‖Wz(z(k)− zr)‖22+

ρ

2
‖Gz(k)− g(k)‖22

or, equivalently,

min
¯
z(k)≤z(k)≤z̄(k)

1

2

∥∥∥∥[ Wz√
ρG

]
z(k)−

[
Wzzr√
ρg(k)

]∥∥∥∥2

2

(2.9)

where the penalty parameter ρ > 0 is a large weight.
The reformulation based on quadratic penalty function is done for the
following reasons:

(i) Penalizing the equality constraints makes problem (2.9) always feas-
ible;

(ii) No dual variables need to be optimized to handle the equality con-
straints;

(iii) No additional slack decision variables are introduced for softening
output constraints, which would lead to linear inequalities of general
type (cf. Section 2.3.1);
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(iv) The BVLS problem (2.9) may be simpler and computationally cheaper
to solve than the constrained QP (2.8).

We note that the tuning weights that comprise Wz were only assumed
to be positive semidefinite, which could result in a non-strictly convex
QP that is harder to solve in general. However, while solving (2.9), the
Hessian of the equivalent QP problem remains positive definite as long

as the matrix
[
Wz√
ρG

]
has full rank. Hence, the matrix of tuning weights

can be semidefinite as long as the aforementioned condition is satisfied,
which is less restrictive than the typical case in which all the weights
must be positive for strict convexity of the optimization problem.

Relaxing the equality constraints as in (2.9) also has an engineering
justification: As the prediction model (2.1) is only an approximate rep-
resentation of the real system dynamics, (opportunistic) violations of the
linear dynamic model equations will only affect the quality of predic-
tions, depending on the magnitude of the violation. As shown in the
next toy example, we can make the violation small enough by appropri-
ately tuning ρ, so that the violation is negligible when problem (2.8) is
feasible, and performance is comparable to that of the soft-constrained
MPC approach in case of infeasibilities (cf. Section 2.3).

2.2.5 Example

Figure 2.1 shows a SISO Linear Time-Invariant (LTI) system in which the
position y of a sliding mass m = 1.5 kg is controlled by an external input
force F against the action of a spring with stiffness κ = 1.5 N·m−1 and a
damper with damping coefficient c = 0.4 N·s·m−1. The continuous-time
model

m
d2y

dt2
+ c

dy

dt
+ κy(t) = F (t)

can be converted to the following ARX form (2.2) with a sampling time
of 0.1 s and zero-order hold on the input

y(k+ 1) = 1.9638y(k)− 0.9737y(k− 1) + 0.0033(u(k) + u(k− 1)), (2.10)

where the input variable u = F .
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κ

c

F
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Figure 2.1: Mass-spring-damper system.

For MPC we set Np = 10, Nu = 5, Wy = 10, Wu = 1,
√
ρ = 103.

The maximum magnitude of the input force is 2 N, while the mass is
constrained to move within 0.4 m to the right and 0.1 m to the left. The
output set-point yr is 0.2 m to the right which implies that the steady-
state input reference ur is 0.3 N. The initial condition is y(k) = 0.1 m,
y(k − 1) = 0 and u(k − 1) = 0.

Figure 2.2 shows that offset-free tracking is achieved while satisfying the
constraints, and that the controller performance is not compromised by
relaxing the dynamic constraints. The bottom plot in Figure 2.2 shows
that the violation of equality constraints is minimal during the transi-
ent and zero at steady-state, when there is no incentive in violating the
equality constraints. Finally, Figure 2.3 analyzes the effect of ρ on the
resulting error introduced in the model equations.

2.3 Infeasibility handling

Infeasibility may arise while solving (2.8) because output con-
straints (2.7b) are not satisfiable at a given sample time, due for instance
to unexpected disturbances, modeling errors, or to an excessively short
prediction horizon Np. This section investigates the way infeasibility is
handled by the BVLS approach as compared to a more standard soft-
constraint approach applied to the MPC formulation based on an I/O
model.
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Figure 2.2: Closed-loop simulation: controller performance.
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Figure 2.3: Maximum perturbation introduced in the linear dynamics as a
function of the penalty ρ.

2.3.1 Soft-constrained MPC

We call the “standard approach” when an exact penalty function is used
in the formulation to penalize slack variables, which relaxes the output
constraints [10, Sect. 13.5], therefore getting the following QP

min
u(·),y(·),ε

J(k) + σ1 · ε+ σ2 · ε2 (2.11a)

s.t. y(k + l) =

na∑
j=1

Ajy(k − j + l) +

nb∑
j=1

Bju(k − j + l), (2.11b)

¯
y(k + l)− ε

¯
V ≤ y(k + l) ≤ ȳ(k + l) + εV̄,∀l ∈ {1, 2, . . . , Np}, (2.11c)

¯
u(k + l) ≤ u(k + l) ≤ ū(k + l),∀l ∈ {0, 1, . . . , Nu − 1}, (2.11d)

ε ≥ 0, (2.11e)

where ε denotes the scalar slack variable,
¯
V and V̄ are vectors with all

elements > 0, and J(k) as defined in (2.3). The penalties σ1 and σ2 are
chosen such that σ1 is greater than the infinity norm of the vector of op-
timal Lagrange multipliers of (2.11), and σ2 is a small penalty included in
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Figure 2.4: Value of slack variable ε on solving the soft constrained problem
(2.11) and violation of the equality constraint (2.10) at each time step where
ŷ is obtained from z by solving problem (2.9). ε > 0 indicates time instants
with output constraint relaxation.

order to have a smooth function. This ensures that the output constraints
are relaxed only when no feasible solution exists.

2.3.2 Comparison of BVLS and soft-constrained MPC for-
mulations

The BVLS approach takes a different philosophy in perturbing the MPC
problem formulation to handle infeasibility: instead of allowing a viola-
tion of output constraints as in (2.11), the linear model (2.2) is perturbed
as little as possible to make them satisfiable.

We compare the two formulations (2.9) and (2.11) on the mass-spring-
damper system example of Section 2.2.5. In order to test infeasibility
handling, harder constraints are imposed such that the problem (2.8) is
infeasible, with the same remaining MPC tuning parameters: the max-
imum input force magnitude is constrained to be 1.2 N and the spring
cannot extend more than 0.2 m. Figures 2.4 and 2.5 demonstrate the ana-
logy between the two formulations in handling infeasibility. From Fig-
ure 2.4 it is clear that the BVLS approach relaxes the equality constraints
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Figure 2.5: Closed-loop simulation of mass-spring-damper system with
soft-constrained MPC and BVLS formulations.

only when the problem is infeasible, the same way the soft-constraint
approach activates a nonzero slack variable. As a result, even though
the two problem formulations are different, for this example the traject-
ories are almost indistinguishable during times of infeasibility. In order
to compare the influence of the relaxations in both cases, we assess the
input and output trajectories as shown in Figure 2.5. In general, the in-
put and output trajectories in the two cases might not be identical as
this also depends on how much the equality constraints are relaxed in
the BVLS case. In the soft constrained case, the equality constraints are
strictly satisfied and only the output inequality constraints are relaxed.
In the BVLS case, the box constraints are actually strictly satisfied while
solving the problem, however, the outputs violate bounds in reality due

21



to the prediction error caused by relaxation of equality constraints.

2.4 Optimality and stability analysis

We analyze the effects of introducing the quadratic penalty function for
softening the dynamic constraints (2.4). First, we explore the analogy
between the QP and the BVLS problem formulations described earlier.
Then, we derive the conditions for closed-loop stability of the BVLS for-
mulation. For simplicity, we consider a regulation problem without in-
equality constraints, that is we analyze local stability around zero when

¯
y(k) < 0 < ȳ(k) and

¯
u(k) < 0 < ū(k). Problem (2.8) becomes

min
z

1

2
‖Wzz‖22 (2.12a)

s.t. Gz − g = 0 (2.12b)

(the parentheses indicating the time step have been dropped for simpli-
city of notation). Note that the QP (2.12) has a unique minimizer, i.e.
(2.12) is strictly convex, if Wz has full rank (implying a positive definite
Hessian matrix: W>z Wz > 0) and G has full row rank (implying linear
independence constraint qualification [10]).

By moving the equality constraints (2.12b) in the cost function, we
obtain the following unconstrained least-squares problem

min
z

1

2

∥∥∥∥[√ρGWz

]
z −

[√
ρg
0

]∥∥∥∥2

2

(2.13)

The convergence theory of QPM is well established (cf. [11, Section 17.1]),
which clarifies that by using larger values of ρ, one can reduce the sub-
optimality caused due to the relaxation of the equality constraints.

Let z?ρ be the solution of the least-squares problem (2.13), then it can
be expressed as

z?ρ = (W>z Wz︸ ︷︷ ︸
W

+G>ρG)−1G>ρg, (2.14)

where the matrix (W +G>ρG) is symmetric positive definite, and hence
invertible, because it is the sum of a positive-definite matrix (W ) with a
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positive-semidefinite matrix G>G. The expression for z?ρ in (2.14) does
not make the influence of ρ on the solution quite apparent. Hence,
we next discuss Theorem 2.1, which shows that the solutions of (2.12)
and (2.13) coincide when ρ → +∞, a special case of [11, Theorem 17.1],
with a detailed alternative proof that provides an intuitive comparison
of the analytical solutions of (2.12) and (2.13).

Theorem 2.1 Let z? and z?ρ denote the solutions of problem (2.12) and (2.13)
respectively, with Wz assumed to have full rank and G as defined in (2.6). Then
as ρ→ +∞, z?ρ → z?.

Proof: G ∈ RNp·ny︸ ︷︷ ︸
mG

× (Nu · nu +Np · ny)︸ ︷︷ ︸
nG

always has lesser number of

rows than columns because clearly, nG > mG. Hence, the equality con-
straint (2.12b) can be eliminated using the singular value decomposition
(SVD)

G = U
[
Σ 0

] [V >1
V >2

]
︸ ︷︷ ︸
V >

,

where U and V are orthogonal matrices and hence V >1 V2 = V >2 V1 =

0. As defined in (2.6), G has linearly independent rows i.e., G has full
rank, which implies that it has mG non-zero singular values. Hence, the
diagonal matrix Σ ∈ RmG×mG , which contains the square root of the non-
zero eigen values of G>G or GG> in its diagonal entries, is invertible.
Solving the system of linear equations (2.12b) gives the following linear
system

U
[
Σ 0

]
V >z = g. (2.15)

Let z = V ν = V1ν1 + V2ν2. From (2.15) we get

ν1 = Σ−1U>g

and problem (2.12) reduces to the unconstrained least-squares problem

min
ν2

1

2
‖WzV2ν2 − (−WzV1ν1)‖22. (2.16)
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Since V2 ∈ RnG×(nG−mG) has orthonormal columns, rank(V2) = nG−mG

(full rank). We know that

rank(WzV2) ≤ min {rank(Wz), rank(V2)} , i.e.,

rank(WzV2) ≤ nG −mG. (2.17)

From Sylvester’s rank inequality,

rank(Wz) + rank(V2)− nG ≤ rank(WzV2), i.e.,

nG −mG ≤ rank(WzV2). (2.18)

Comparing (2.17) and (2.18), we infer that rank(WzV2) = nG−mG, which
implies that WzV2 has full column rank i.e., (WzV2)>WzV2 > 0. Hence,
the solution of (2.16) is unique and may be expressed as

ν?2 = −[(WzV2)>WzV2)]−1V >2 W>z Wz︸ ︷︷ ︸
W

V1ν1

= −(V >2 WV2)−1V >2 WV1Σ−1U>g.

Reconstructing z from ν1 and ν2 gives

z? = [I − V2(V >2 WV2)−1V >2 W ]V1Σ−1U>g. (2.19)

Again, using the SVD of G, problem (2.13) can be rewritten as

min
z

1

2

∥∥∥∥[√ρU [Σ 0
]
V >

Wz

]
z −

[√
ρg
0

]∥∥∥∥2

2

= min
z

1

2

∥∥∥∥[U
[
Σ 0

]
1√
ρWzV

]
V >z −

[
g
0

]∥∥∥∥2

2

, (2.20)

since V is orthogonal. The solution z?ρ of the above least-squares problem
(2.20) is computed as follows:

V >z?ρ =

[
UΣ 0
Wz√
ρV1

Wz√
ρV2

]†
︸ ︷︷ ︸

Γ†

[
g
0

]
,
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where Γ>Γ > 0 because WzV , and hence Γ, has full column rank, which
can easily be proven via the same steps discussed earlier in proving that
WzV2 has full column rank. Based on the fact that V and U are ortho-
gonal, we obtain,

z?ρ = V
(
Γ>Γ

)−1
Γ>
[
g
0

]

= V

[
Σ2 + V >1

W
ρ V1 V >1

W
ρ V2

V >2
W
ρ V1 V >2

W
ρ V2

]−1

︸ ︷︷ ︸ K L
M N

−1

[
ΣU>g

0

]
.

Since Γ>Γ is a symmetric positive-definite matrix, from the Schur com-
plement condition for positive definiteness, we have that the matrices N
and (K−LN−1M) are both positive definite and thus, invertible. There-
fore, using the matrix inversion lemma, we can write

z?ρ = V

[
(K − LN−1M)−1 ∗

−N−1M(K − LN−1M)−1 ∗

] [
ΣU>g

0

]
=
[
V1 V2

] [ (K − LN−1M)−1ΣU>g

−N−1M(K − LN−1M)−1ΣU>g

]
= (V1 − V2N

−1M)(K − LN−1M)−1ΣU>g

=⇒ z?ρ = (V1 − V2(V >2 WV2)−1V >2 WV1)×(
Σ2 +

V >1 WV1 − V >1 WV2(V >2 WV2)−1V >2 WV1

ρ

)−1

×

ΣU>g. (2.21)

Evaluating the limit ρ→ +∞ on both sides of (2.21) leads to
z?ρ → [I − V2(V >2 WV2)−1V >2 W ]V1Σ−1U>g, i.e., limρ→+∞ z?ρ = z?. �

Comparing z? from (2.19) with z?ρ in (2.21) shows that a sufficiently
large penalty ρ may result in negligible suboptimality. This also explains
Figure 2.3 in which it was observed that the suboptimality introduced
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by penalizing equality constraints monotonically decreases in magnitude
with increase in the penalty parameter ρ.

Considering that increasing ρ influences numerical conditioning of
problem (2.9), as is the case when using penalty functions in soft-
constrained MPC, its value must be tuned to be not too large, depending
on the available computing precision. This issue is discussed further in
Section 3.5.3 through a nonlinear system example, which is more challen-
ging as compared to the one discussed earlier in Section 2.2.5. Next The-
orem 2.2 proves the existence of a lower bound on the penalty parameter
ρ such that, if the MPC controller is stabilizing under dynamic equality
constraints, it remains stable under the relaxation via a quadratic penalty
function reformulation as in (2.12).

Theorem 2.2 Consider the regulation problem (2.12) and let

ζ(k + 1) = Aζ(k) + Bu(k)

be a state-space realization of (2.2), which we assume to be stabilizable, such that
ζ(k) , [(y>(k − n + 1) · · · y>(k)) (u>(k − n + 1) · · ·u>(k − 1))]> ∈ Rnζ
and n = max(na, nb − 1), nζ = n · ny + (n − 1) · nu. The receding horizon
control law can then be described as

u(k) = Λz?(k)

= Λ[I − V2(V >2 WV2)−1V >2 W ]V1Σ−1U>S︸ ︷︷ ︸
K

ζ(k) (2.22)

where Λ =
[
I 0 · · · 0

]
∈ Rnu×(Nu·nu+Np·nζ), g(k) = Sζ(k) such that

S =
[
A> 0

]> ∈ RNp·nζ×nζ , and K ∈ Rnu×nζ is the feedback gain. Simil-
arly, for problem (2.13), referring (2.14), the control law is

uρ(k) = Λz?ρ(k) = Λ(W +G>ρG)−1G>ρS︸ ︷︷ ︸
Kρ

ζ(k) (2.23)

Assuming that the control law (2.22) is asymptotically stabilizing, there exists a
finite value ρ∗ such that the control law (2.23) is also asymptotically stabilizing
∀ρ > ρ?.
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Proof: Let m , max(|eig(A + BK)|), where eig() denotes the set of ei-
genvalues of its argument. By the asymptotic closed-loop stability prop-
erty of the control law (2.22) we have that

0 ≤ m < 1

Let σ = 1
ρ . The continuous dependence of the roots of a polynomial on its

coefficients implies that the eigenvalues of a matrix depend continuously
on its entries. The continuity property of linear, absolute value, and max

functions implies that max(|eig(A+BK 1
σ

)|) is also a continuous function
of σ and is equal to m for σ = 0. Therefore,

∀γ > 0 ∃δ > 0 :
∣∣∣max(|eig(A+ BK 1

σ
)|)−m

∣∣∣ ≤ γ,∀0 ≤ σ ≤ δ (2.24)

In particular, for any γ such that 0 < γ < 1−m we have that
max(|eig(A+ BK 1

σ
)|) < 1. Let for example γ = 1−m

2 and define ρ∗ = 1
δ

for any δ satisfying (2.24). Then for any ρ > ρ∗ the corresponding MPC
controller is asymptotically stabilizing. �

From Theorem 2.2 we can thus state the theoretical lower bound on
the penalty parameter ρ to be the solution of the following optimization
problem

min ρ

s.t. max(|eig(A+ BΛ(W +G>ρG)−1G>ρS)|) < 1.

A way to start with an asymptotically stabilizing (non-relaxed) MPC con-
troller is to adopt the approach described in [24]. As proved in [24], in-
cluding the following terminal constraint

ζ(Np + n− 1) = 0χ = ζr (2.25)

guarantees closed-loop stability, where
ζr = [(y>r · · · y>r )︸ ︷︷ ︸

n times

(u>r · · ·u>r )︸ ︷︷ ︸
n−1 times

]> ∈ Rnζ and provided that Np ≥ n. For the

regulation problem, 0χ = 0. By substituting (2.2) in the above terminal
constraint (2.25), n · ny equality constraints of the form G1z = g1 are
obtained which can be included in (2.5). Theorem 2.2 allows us to relax
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such equality constraints by penalizing their violation and still guar-
antee closed-loop asymptotic stability, provided that ρ is a sufficiently
large penalty as in Theorem 2.2.

2.5 Comparison with state-space model based
approach

We compare our BVLS-based approach (2.9) against the conventional
condensed QP approach [10] based on a state-space realization of the
ARX model and condensed QP problem

min
ξ

1

2
ξ>Hξ + f>ξ (2.26a)

s.t. Πξ ≤ θ (2.26b)

where ξ ∈ Rnξ is the vector of decision variables (i.e.,
predicted inputs and slack variable for soft constraints),
nξ = Np · nu + 1,Π ∈ R(2Np·(nu+ny)+1×nξ), and θ ∈ R2Np·(nu+ny)+1

are such that (2.26b) imposes box constraints on the input and output
variables, and non-negativity constraint on the slack variable.

We consider the open-loop unstable discrete-time transfer function
and state-space model of the AFTI-F16 aircraft [27] under the settings
of the demo afti16.m in [28]. The system under consideration has 4
states, 2 inputs and 2 outputs. The tuning parameters are the same for
both MPC formulations (2.9) and (2.26a) in order to compare the res-
ulting performances. As the main purpose here is only to compare the
BVLS formulation versus the condensed QP approach based on state-
space models (QPss), we use MATLAB’s interior-point method for QP
in quadprog to solve the QPss (2.26a), and its box-constrained version
to solve 2 BVLS (2.9). A comparison using state-of-the-art QP solvers for
the same example is included in Chapter 4, which discusses the proposed

2The MPC problems have been formulated and solved in MATLAB R2015b using sparse
matrix operations where applicable for both cases in order to compare most efficient im-
plementations. The code has been run on a Macbook Pro 2.6 GHz Intel Core i5 with 8GB
RAM.
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Figure 2.6: Simulation results of the AFTI-F16 aircraft control problem:
Worst-case CPU time to solve the BVLS problem based on I/O model and
condensed QP (QPss) based on state-space model. The BVLS problem has
4Np variables with 8Np constraints whereas the QP problem has 2Np + 1
variables with 8Np + 1 constraints.

BVLS solver in detail. It is worth noting that for the considered example,
due to unstable open-loop dynamics, the Hessian matrix in (2.26a) tends
to become ill-conditioned with increase in the prediction horizon and
beyond a certain large value it can even cause numerical overflow. This
is clearly because the Hessian contains higher powers of the system mat-
rix, therefore scaling its eigen values with the prediction horizon.

Figure 2.6 shows that even though the BVLS problem has almost
twice the number of primal variables to be optimized, it is solved faster
due to simpler constraints. However, this benefit due to simpler con-
straints strongly depends on the solution algorithm. This also motivates
the research on solution algorithms that best exploit the simplicity of the
optimization problem, which is discussed in Chapter 4.

Fewer computations are involved in constructing the BVLS problem
(these are online computations in case of linear models that change in
real time) as compared to the condensed QP one, as shown in Figure
2.7. This makes the BVLS approach a better option in the LPV setting,
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Figure 2.7: Simulation results of the AFTI-F16 aircraft control problem:
Comparison of the CPU time required to construct the MPC problems (2.9)
and (2.26a) against prediction horizon.
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Figure 2.8: Simulation results of the AFTI-F16 aircraft control problem:
Comparison of the worst-case CPU time required to update the MPC prob-
lem before passing to the solver at each step.
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where the problem is constructed on line. Moreover, even in the LTI
case one has to update vectors θ, g on line. Figure 2.8 shows that the
BVLS approach requires fewer computations for such a type of update.
Note also that the computations required for state estimation (including
constructing the observer matrices in the LPV case) that is needed by the
condensed QP approach have not been taken into account, which would
make the BVLS approach even more favorable.

2.6 Conclusions

In this chapter we have proposed an MPC approach based on linear I/O
models and BVLS optimization. The obtained results suggest that the
BVLS approach may be favorable in both the LTI and adaptive (or LPV)
case, and especially for the latter case it may considerably reduce the on-
line computations. A potential drawback of the BVLS approach is the
risk of numerical ill-conditioning due to the use of large penalty val-
ues, an issue that could appear also in soft-constrained MPC formula-
tions. This issue is addressed in Chapter 4 which describes a numeric-
ally robust BVLS solver that is well-suited for the considered problems.
Furthermore, an implementation that exploits structure of the proposed
MPC problem formulation and is efficient in terms of both memory and
computations is discussed in Chapter 6.
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Chapter 3

Nonlinear model predictive
control problem
formulations

3.1 Introduction

Nonlinear Model Predictive Control (NMPC) is a popular control
strategy which is able to deal with constrained nonlinear systems. How-
ever, a common obstacle is the need for solving a nonconvex optimiza-
tion problem within a stipulated sampling period. A common approach
in tackling this issue is developing efficient algorithms tailored to NMPC
problems. Often, a suboptimal solution which can be computed fast and
efficiently is preferred over a precise one that requires longer computa-
tional times [5]. Many different tools have been developed for this pur-
pose, see e.g. [29–35]. In this work instead, we follow a different ap-
proach and formulate the NMPC problem in a simple way such that it
becomes possible to employ existing fast optimization algorithms.

The quadratic penalty method (QPM) [11] converts a constrained
nonlinear optimization problem to a sequence of unconstrained ones,
which are solved suboptimally such that the penalty parameter is in-
creased at each instance, until a solution that satisfies termination criteria
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is achieved. Using a large enough value of the penalty parameter yields
an approximately optimal solution in a single iteration. The need of ad-
equately selecting the penalty parameter to balance accuracy of the solu-
tion and ill-conditioning of the problem made this approach not the most
appealing for general-purpose solvers. In NMPC, however, small con-
straints violations are typically negligible compared to model inaccuracy
and external perturbations acting on the system. Therefore, the quad-
ratic penalty method is very appealing for such applications due to the
possibility of developing efficient implementations. Similar to the linear
MPC case, we propose to use a single iteration of the quadratic penalty
method which keeps simple bounds on the decision variables as such
and relaxes the equality constraints via a quadratic penalty function. The
obtained problem is bound-constrained nonlinear least-squares (NLLS),
which can be solved by employing the Gauss-Newton method [21] and
a Bounded-Variable Least-Squares (BVLS) solver, which is both efficient
and numerically robust.

As opposed to standard infeasibility handling approaches which re-
lax the output constraints [19, 30], we relax the equality constraints re-
lated to the model of the system. As discussed earlier, the main motiv-
ations for such a choice are that 1) it preserves feasibility of the optim-
ization problem, similarly to the output constraint relaxation, and 2) the
available model is an approximate representation of the true system.The
benefits of the proposed method are demonstrated and summarized with
an example that is commonly considered in the NMPC literature. In par-
ticular, we show that the constraint violation is not significant unless the
original problem becomes infeasible, and therefore, the control perform-
ance is not deteriorated.

We first define in Section 3.2 the class of models, perfomance in-
dex, and constraints that are typically considered for formulating NMPC
problems. Based on that, the benchmark NMPC problem formula-
tions which we consider are described in Section 3.3, whereas the pro-
posed NMPC formulation based on an iteration of the quadratic penalty
method is described in Section 3.4, including a brief discussion on an
alternative approach based on the augmented Lagrangian method [11].
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Numerical results and their discussion are presented in Section 3.5 with
concluding remarks in Section 3.6.

Notation. For a vector a ∈ Rm, its p-norm is ‖a‖p, jth element is a(j).
The set of integers in the closed interval between a and b is denoted as
[a, b]. The remaining notation is same as described in Chapter 2.

3.2 Preliminaries

We describe the system dynamics by using the following discrete-time
input-output model

f(Yk, Uk, Vk) = 0, (3.1)

where we define the inputs and outputs, respectively, at a given discrete-
time step k as Uk = (uk−nb

, . . . , uk−1), uk ∈ Rnu , Yk = (yk−na
, . . . , yk),

yk ∈ Rny . Vector Vk = (vk−nc
, . . . , vk−1), vk ∈ Rnv defines a meas-

ured disturbance and 0 represents a zero vector. Function
f : Rnany × Rnbnu × Rncnv → Rny is in general nonlinear, where na, nb

and nc define the model order. We assume f to be differentiable. The
class of nonlinear models of the form (3.1) includes, for instance, state-
space models and the noise-free polynomial NARX (nonlinear autore-
gressive exogenous) models [36].

As discussed in the case of linear MPC, we consider a convex quad-
ratic performance index ‘P’, which is separable in time and a typical
choice for regulation and reference tracking in MPC:

P(k) =

Np∑
j=1

1

2
‖W

1
2
y (yk+j − ȳk+j)‖22+

Nu−2∑
j=0

1

2
‖W

1
2
u (uk+j − ūk+j)‖22

+
1

2
(Np −Nu + 1) · ‖W

1
2
u (uk+Nu−1 − ūk+Nu−1)‖22, (3.2)

where Np and Nu denote the prediction and control horizon respect-
ively. Matrices Wy ∈ Rny×ny and Wu ∈ Rnu×nu are positive semidefin-
ite tuning weights, and ȳ, ū denote the references for outputs and in-
puts, respectively. In general, the proposed NMPC approach described
in Section 3.4 is not limited to the above-mentioned performance index.
Depending on the control objectives, any cost function that results in a
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sum of squares of linear or differentiable nonlinear functions may be con-
sidered in order to formulate the NMPC problem.

In order to exploit an efficient solution algorithm, the only inequality
constraints that we consider are simple bounds on the optimization vari-
ables. General soft inequality constraints (3.3) can be converted to the
considered setting by introducing slack variables ν ∈ Rni having non-
negativity constraints such that

g(wk) ≤ 0 becomes, (3.3)

g(wk) + νk = 0 and νk ≥ 0,

where wk = (uk, . . . , uk+Nu−1, yk+1, . . . , yk+Np), zk = (wk, νk);
g : R(nz−ni) → Rni is assumed to be differentiable, while nz and ni

denote the number of decision variables and general inequality con-
straints, respectively. We summarise all NMPC constraints at each time
step k as

h(zk, φk) = 0 (3.4)

pk ≤ zk ≤ qk (3.5)

where pk, qk are vectors defining bounds on the input and output vari-
ables, and non-negativity constraint on the slack variables. Vector
φk = (uk−nb+1, . . . , uk−1, yk, . . . , yk−na+1) denotes the initial condition.
Some components of zk may be unbounded and in that case those
bounds are passed to the proposed solver as the largest negative or posit-
ive floating-point number in the computing platform. Hence, practically,
pk, qk ∈ Rnz . Owing to the construction of equalities (3.4), it is worth
noting that the Jacobian matrix of h w.r.t. z evaluated at any given zk is
sparse, with its sparsity pattern depending on the chosen model (3.1).

3.3 Conventional formulations

3.3.1 Constrained NLP

Employing the performance index (3.2) and the constraint set defined
by (3.4) and (3.5), the NMPC problem can be defined as the following
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constrained NLP

min
zk

1

2
‖W (zk − z̄)‖22 (3.6a)

s.t. h(zk, φk) = 0, (3.6b)

pk ≤ zk ≤ qk, (3.6c)

where, W ∈ R(nz−ni)×ni is block-sparse and is constructed from the
square root of the tuning weights (Wy,Wu) defined in (3.2), z̄ is construc-
ted from the input and output references such that the elements corres-
ponding to slack variables are zero. While one usually avoids the use
of slack variables in the definition of the general (nonlinear) inequalit-
ies (3.3), we abide by this definition, since it is required by the formula-
tion proposed in Section 3.4.

3.3.2 Soft-constrained NLP

In practice, due to unmodeled dynamics and perturbations acting on
the system, the imposed constraints might become impossible to satisfy
such that Problem (3.6) becomes infeasible. In order to preserve feasib-
ility, a common approach is to introduce additional slack variable(s) ε
in the problem to relax the output constraints, which then become soft
constraints. Details regarding this approach based on exact penalty func-
tions may be referred in [10,18]. For completeness, we provide a possible
relaxation of (3.6) using an exact penalty approach.

min
zk,ε

1

2
‖W (zk − z̄)‖22+

σ1

2
‖ε‖22+σ2ε (3.7a)

s.t. h(zk, φk) = 0, (3.7b)

pk − V ε ≤ zk ≤ qk + V ε, (3.7c)

ε ≥ 0, (3.7d)

where V is a matrix with all elements non-negative such that only the
output constraints are relaxed and the remaining constraints are strictly
satisfied. The tuning weights σ1, σ2 are such that σ1 ≥ 0 is a small
weight, and σ2 > 0 is a large weight which ensures that ε > 0 only when
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Problem (3.6) becomes infeasible and ε = 0 otherwise. Problem (3.7),
which we will refer to as ‘NLP-soft’ can be solved by an NLP solver. In
this thesis, however, we propose to use a different reformulation of (3.6)
which allows us to use simple and fast optimization algorithms.

3.4 Eliminating equality constraints

Handling equality constraints via penalty functions, or an augmented
Lagrangian method, has proven to be effective for efficiently solving con-
strained optimization problems [11, 37]. This section shows how sim-
ilar methods can be applied to efficiently solve MPC problems of the
form (3.6). In order to employ fast solution methods, the general con-
strained problem (3.6) can be simplified as a box-constrained nonlinear
least-squares (NLLS-box) problem by using a quadratic penalty function
and consequently eliminating the equality constraints (3.4) such that (3.6)
becomes

min
pk≤zk≤qk

1

2

∥∥∥∥ 1√
ρWk(zk − z̄k)

hk(zk, φk)

∥∥∥∥2

2

≡ min
pk≤zk≤qk

1

2
‖rk(zk)‖22, (3.8)

where the penalty parameter ρ is a positive scalar and r : Rnz → Rnr
denotes the vector of residuals. We propose the reformulation (3.8) of
problem (3.6) for the following reasons:

1. Penalizing the violation of equality constraints makes problem (3.8)
always feasible;

2. While solving (3.8), since we do not include additional slack vari-
ables to soften constraints, the function hk does not need to be ana-
lytic beyond bounds, which is discussed in further detail in Sec-
tion 5.3 (cf. Remark 5.2);

3. No dual variables need to be optimized to handle equality con-
straints;

4. Problem (3.8) is simpler to solve as compared to (3.6), for instance,
when using SQP algorithms (cf. Chapter 5), initializing a feasible
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guess is straightforward, the subproblems are feasible even with
inconsistent linearizations of hk, and convergence impeding phe-
nomena such as the Maratos effect [11] are implicitly avoided.

Unlike QPM [11, Framework 17.1], in which a sequence of problems are
solved with gradually increasing values of ρ in each iteration, we pro-
pose to solve only one problem with a large value of ρ for solving (3.6),
owing to the fact that a good initial guess is often available in MPC. It has
been proven in Theorem 2.1 that for a quadratic cost (3.6a) subject to only
consistent linear equality constraints, a single QPM iteration with suffi-
ciently large penalty ρ may result in negligible suboptimality. This has
been clearly demonstrated by numerical examples in Chapter 2 for the
linear MPC case and later in Section 3.5 for the general case. A practical
upper bound on ρ depends on the computing precision and numerical
robustness of the optimization solver such that the Jacobian of the vector
of residuals in (3.8) is numerically full-rank. The parameter ρ is tuned
based on the fact that a higher value results in lower suboptimality at the
cost of problem scaling which may affect the convergence rate of the ad-
opted solution methods. A theoretical lower bound on ρ exists and has
been derived in Section 2.4 for the case of LTI systems based on closed-
loop stability conditions. The extension of such a result to the general
case is not immediate and will not be tackled in this thesis.

An alternative approach to solve the optimization problem (3.6)
without the equality constraints (3.4) is the bound-constrained Lag-
rangian method (BLM) [11, Algorithm 17.4], which can efficiently
be solved by iteratively using the nonlinear gradient projection al-
gorithm [11]. At each iteration (i) of the BLM, one solves

z
(i+1)
k = arg min

pk≤zk≤qk

1

2

∥∥∥∥ Wk(zk − z̄k)√
ρ(i)hk(zk, φk)

∥∥∥∥2

2

+ Λ>k
(i)
hk(zk, φk) (3.9)

where Λ denotes the vector of Lagrange multipliers corresponding to
the equality constraints, and updates the estimates Λ(i) and ρ(i), until
convergence (cf. [11, Algorithm 17.4]).
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Proposition 3.1 The optimization problem (3.9) is equivalent to the NLLS-box
problem

z
(i+1)
k = arg minpk≤zk≤qk

1

2

∥∥∥∥∥∥
1√
ρ(i)

Wk(zk − z̄k)

hk(zk, φk) +
Λ

(i)
k

ρ(i)

∥∥∥∥∥∥
2

2

(3.10)

Proof: We have that problem

arg minpk≤zk≤qk
1

2

∥∥∥∥ Wk(zk − z̄k)√
ρ(i)hk(zk, φk)

∥∥∥∥2

2

+Λ>k
(i)
hk(zk, φk)

and arg minpk≤zk≤qk
1

2
‖Wk(zk − z̄k)‖22 +H(zk),

whereH(zk)

=
ρ(i)

2
‖hk(zk, φk)‖22 + Λ>k

(i)
hk(zk, φk) +

∥∥∥Λ
(i)
k

∥∥∥2

2

2ρ(i)

=
ρ(i)

2

‖hk(zk, φk)‖22 +
2Λ>k

(i)
hk(zk, φk)

ρ(i)
+

∥∥∥∥∥Λ
(i)
k

ρ(i)

∥∥∥∥∥
2

2


=
ρ(i)

2

(
hk(zk, φk) +

Λ
(i)
k

ρ(i)

)>(
hk(zk, φk) +

Λ
(i)
k

ρ(i)

)

=
ρ(i)

2

∥∥∥∥∥hk(zk, φk) +
Λ

(i)
k

ρ(i)

∥∥∥∥∥
2

2

, are equivalent.

Scaling by the constant 1/ρ(i) yields the result. �

Remark 3.1 Proposition 3.1 holds for any sum-of-squares cost function
with (3.6a) as the special case, for instance ‖S(zk)‖22, where S is any vector-
valued function.

Proposition 3.1 shows that we can employ the same NLLS-box solvers
to solve (3.9), which may be more efficient and numerically robust (cf.
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Chapters 5,6) as compared to the use of other NLP solvers. When using
BLM, sequences of z(i)

k and Λ
(i)
k respectively converge to their optimal

values z?k and Λ?k whereas hk(z?k, φk) ≈ 0, numerically. Then via Pro-
position 3.1, we note that for a fixed value of ρ� ‖Λ?k‖∞ in the equality-

constrained case, we obtain hk
(
z

(i+1)
k , φk

)
≈ Λ

(i+1)
k /ρ ≈ 0 [11, Chapter

17], which is simply the solution obtained using a single iteration of QPM
for the same ρ and is consistent with the special case described via The-
orem 2.1.

Although with BLM it is possible to initialize ρ to aribtrarily low val-
ues and solve numerically easier problems, which is its main advantage
over QPM, the final value of ρ is not guaranteed to remain low. A main
disadvantage of BLM over QPM is that it needs problem (3.6) to be feas-
ible, otherwise the problem must be formulated with soft constraints on
output variables [18], which typically results in the use of penalty func-
tions with large values of the penalty parameter and non-box inequal-
ity constraints, making the problems relatively more difficult to solve.
Moreover, even if the feasibility of (3.6) is given, it may take significantly
longer to solve multiple instances of (3.9) as compared to a single itera-
tion of QPM with a large penalty, which is more suitable for MPC prob-
lems where slight suboptimality may be preferable to a longer computa-
tion time. However, in the presence of hard general (nonlinear) inequality
constraints where QPM might not be applicable, using BLM for feasible
problems with the proposed solver and sparsity exploiting methods de-
scribed in Chapter 6 may be an efficient alternative. BLM is not discussed
further as the scope of this paper is limited to MPC problems with box
constraints on decision variables.

3.5 Numerical example

In this section, the proposed NMPC formulation is tested for perform-
ance in simulations. It is compared against the performance of bench-
mark NLP formulations (3.6) and (3.7) in terms of quality of control.

3.5.1 Simulation setup

For the purpose of illustration, we consider the Continuous Stirred Tank
Reactor (CSTR) [38], which is common in the process industry and is an
open-loop unstable system with highly nonlinear dynamics. All simula-
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tions have been performed in MATLAB R2015b3 using the continuous-
time model of the CSTR system present in the model predictive control
toolbox as a reference for the true system. Discretizing the model equa-
tions using the forward Euler method with a sampling period ts = 6
seconds and substituting the model parameters, the following nonlinear
discrete-time prediction model of the form (3.1) is obtained which rep-
resents the continuous-time model accurately enough:

Tk+1 = Tk + ts(Tfk − 1.3Tk + κ1CAke
−5963.6
Tk + 0.3Tjk), (3.11a)

CAk+1
= CAk + ts(CAfk − κ2CAke

−5963.6
Tk − CAk), (3.11b)

where constants κ1 = 416375136, κ2 = 34930800; T, Tj and Tf respectively
denote the temperatures of the reactor, jacket coolant and the feedstream
in K; CA and CAf respectively denote the concentration of reagent in the
reactor and the feedstream in kgmol/m3. The control objective here is
to manipulate the input Tj in order to keep CA at the desired set-point in
the presence of measured disturbances Tf and CAf. The simulation setup
here is kept similar to the CSTR demo in the MPC toolbox of MATLAB.
For testing the controller in reference tracking of the concentration CA,
a ramp reference as shown in Figure 3.1 is considered. The correspond-
ing temperature references for the jacket coolant and reactor are com-
puted from (3.11) by assuming the measured disturbances to be constant
in prediction. In order to test the controller’s performance in regula-
tion, the feedstream temperature is fluctuated as a sinusoid with white
measurement noise acting on all temperature states. The constraints4

that must be satisfied are upper and lower bounds on the variables and
input rate. In order to handle the input rate constraints while having
only box constraints on variables, only the bounds on the first input in-
crement in predictions are imposed. This is done by replacing the lower
bound ukmin by max{ukmin , uk−1 + ∆umin} and the upper bound ukmax by
min{ukmax , uk−1 + ∆umax}where u represents the input, ∆u its increment
with limits indicated by the subscript.

The MPC problems are formulated as described in Sections 3.3-3.4.
The NLP problems (3.6), (3.7) are solved using MATLAB’s ‘fmincon’
solver with SQP.

3The codes have been run on a Macbook Pro 2.6 GHz Intel Core i5 with 8GB RAM.
4The reactor’s temperature is constrained in the range of 300-400 K whereas its concen-

tration lies within 0-10 kgmol/m3. The input is constrained within the range of 240-360 K
and its rate is limited within ±2 K/min.
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Figure 3.1: Performance in tracking and regulation using formulation (3.8).

3.5.2 Control performance comparison

Figure 3.1 demonstrates the quality of performance in reference tracking
and regulation of the proposed NMPC approach. The prediction hori-
zon is set to 10 steps and the control horizon to 1 step. The weight on the
coolant’s and reactor’s temperature tracking error is set to 1 and 10 re-
spectively, whereas the weight on reactor concentration’s tracking error
is set to 100. The value of the penalty parameter (

√
ρ) in (3.8) is set to 104.

The solvers are initialized with the feasible initial guess z = 0.5(p + q)
and future warmstarts are derived by using the shift-initialization tech-
nique [5, 39] such that the next initial guess is a shifted sequence of the
previous one and projected in the set of box constraints.
We compare the cost function values achieved with the considered for-
mulations in Figure 3.2. We also observe that the equality constraints are
almost strictly satisfied by the proposed NMPC approach even though
they were relaxed with a quadratic penalty function. In conclusion, the
same quality of performance is achieved as compared to the NLP formu-
lation (3.6) due to a negligible difference between the optimal value of
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Figure 3.2: Comparison of the optimized cost for the problem formula-
tions (3.6), (3.8).

the cost functions achieved in the two cases.

3.5.3 Choice of the penalty parameter

Recall that the penalty parameter ρ must be tuned to be large enough,
such that the model mismatch is within a tolerable limit as observed in
the above example. An immediate question that arises is, what is a large
enough value? Figure 3.3 shows the variation in the nonlinear equality
constraint violation w.r.t.

√
ρ for the considered example. Although we

infer that practically there are no strict rules to tune ρ within a broad
range, the following main issues must be considered before tuning ρ in
order to avoid extreme values:

1. An increase in ρ beyond a certain value raises risk of numerical
ill-conditioning and may result in slower convergence of the op-
timization algorithm, depending on its type. In fact, as observed
in Figure 3.3, beyond a certain threshold, instead of a reduction in
the nonlinear equality constraint violation, an increase in ρ will in-
crease the constraint violation due to numerical errors. Hence, the
numerical robustness of the solution algorithm must be considered

43



Figure 3.3: Equality constraint violations versus ρ for NMPC of CSTR sim-
ulations in double precision floating-point arithmetic5. Duration of each
simulation was 1500 steps of 6 seconds.

before tuning ρ. If the algorithm is sensitive to problem scaling, the
value of ρmust be chosen to suitably trade-off control performance
with numerical robustness. For MPC formulations employing pen-
alty functions, it is thus more practical and preferable to use those
numerically robust methods that are scantly sensitive to problem
scaling, which is an issue addressed in Chapter 4.

2. The floating-point precision of the computing platform is a hard
limiting factor for the choice of ρ because a loss of precision is equi-
valent to a worse numerical conditioning of the problem. Thus,
the largeness of ρ is relative to the available computing precision as
numerical errors become larger in reduced precision even without
altering the penalty parameter.

3. In order to have strictly convex QP subproblems, the condition
number of the resulting Hessian must be lower than the reciprocal
of machine precision. As this condition number is directly scaled

5The machine epsilon of the computer used for this simulation was ≈ 2 × 10−16 in
double precision floating-point arithmetic and ≈ 10−7 in single precision.
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by ρ, a failure of the aforementioned condition makes the occurence
of a numerical failure likely, as the Hessian would be numerically
semi-definite even though theoretically it may not be the case and
upper bounds on numerical error with any arithmetic operations
involving the Hessian would be too large.

In Figure 3.3, the NLLS-box problems were solved using the algorithm
proposed in Chapter 5 (BVNLLS), based on the Gauss-Newton method,
which has linear least-squares subproblems instead of QPs. The Hes-
sian matrix, which has a squared condition number in comparison to
the matrix in the equivalent least-squares problem, is neither created nor
factorized as will be clarified then. Thus, based on the issues discussed
earlier, an SQP algorithm with QP subproblems, such as fmincon, could
potentially start suffering from numerical errors for much lower values
of ρ, approximately the square root of what was observed in the case with
BVNLLS in Figure 3.3. The same would become even worse with a re-
duced floating-point precision. This topic which is focused on numerical
methods will be discussed in further detail in Chapters 4 and 5.

3.5.4 Infeasibility handling performance comparison

Finally, the way in which infeasibility is handled by the formula-
tions (3.7) and (3.8) is compared through a simulation scenario with the
CSTR system, such that the reactor temperature reference (373.13 K) ex-
ceeds the reduced upper bound (370 K). As shown in Figure 3.4, given
the short prediction horizon (Np = 10, Nu = 1), formulation (3.6) be-
comes inapplicable as the constraints become too strict to satisfy when
the reactor temperature almost reaches its limit and the coolant temper-
ature cannot reach fast enough in time to a value that would satisfy the
constraints. The slack variable ε in (3.7) is only active when (3.6) is in-
feasible (cf. Figure 3.5). Comparing this against the equality constraints’
relaxation in the NLLS-box case, it is clear that the constraint violations
occur noticeably and essentially so, only when the NLP problem (3.6)
becomes infeasible. Figure 3.4 shows that the trajectories in both cases
coincide due to actuator saturation, which leads to the same inputs com-
puted during instances of infeasibility. In general, one might expect dif-
ferent trajectories if the infeasibilities arise when the actuator limits are
far. This is because in the NLLS-box case a model mismatch is intro-
duced during times of infeasibility while satisfying bounds, whereas in
the other case the output bounds are relaxed while strictly satisfying the
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Figure 3.4: Closed-loop trajectories using the NLLS-box and soft-
constrained NLP approaches.

equality constraints that represent an approximate future behaviour of
the system. This fact is observed in the bottom part of Figure 3.5 where
we compare the value of the performance index, which is a function of
the predicted sequence of inputs and outputs. The way infeasibility is
handled in both cases is similar to the linear MPC case, which was thor-
oughly discussed in Chapter 2.

3.6 Conclusions

This chapter discussed an NMPC approach based on simple box-
constrained nonlinear least-squares formulations, by extending the ideas
discussed for linear MPC in the previous chapter. The main idea pro-
posed was to employ a quadratic penalty function, which eliminates the
nonlinear equality constraints from the problem and makes it always
feasible. It was also shown that by simply completing the squares, the
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Figure 3.5: Constraint relaxation comparison between the NLLS-box and
soft-constrained NLP approaches.

augmented-Lagrangian formulation can also be set to have a nonlin-
ear least-squares cost function. Results suggest that the approach can
be an appealing alternative in practical applications where simple and
fast optimization solvers are preferable. The following chapters describe
solution algorithms in order to efficiently solve MPC problems that are
formulated as proposed earlier. In Chapter 6, the NMPC formulation
proposed in this chapter is applied in a more general setting based on
parameter-varying nonlinear models.
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Chapter 4

Bounded-variable least
squares solver

4.1 Introduction

Linear least-squares (LS) problems with simple bounds on variables
arise in several applications of considerable importance in many areas
of engineering and applied science [20]. Several algorithms exist that
efficiently solve bounded-variable least-squares (BVLS) or quadratic
programming (QP) problems including the ones encountered in mo-
del predictive control (MPC) and are based on first-order methods
such as Nesterov’s fast gradient-projection method [22], the accelerated
dual gradient-projection method (GPAD) [40], the alternating direction
method of multipliers (ADMM) [41,42]. Because of the penalty functions
often used in MPC for practical feasibility guarantee [10, 18, 19] through
constraint relaxations, however, first-order methods require suitable pre-
conditioners due to poor scaling of the problem. This makes active-set
methods an attractive alternative for faster solution of small to medium-
sized optimization problems arising in embedded MPC, due to their
scarce sensitivity to problem scaling. For an overview of state-of-the-
art methods in solving QP problems for MPC the reader is referred to
the recent papers [7, 8].

In primal active-set methods such as BVLS [20] and nonnegative
least-squares (NNLS) [43], at each iteration a change in the working act-
ive set corresponds to adding or removing a column from the matrix
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used to solve an unconstrained linear least-squares (LS) subproblem. By
recursively updating the matrix factors, computations are significantly
reduced. However, round-off error may accumulate, for example due
to imperfect orthogonalization when using QR factorization. The main
contribution of this chapter includes methods which aim at overcoming
such limitations without compromising numerical robustness through
an effective application of stable QR update routines [44] for BVLS.

This work is mainly motivated by the application of BVLS in fast lin-
ear and nonlinear MPC as discussed in Chapters 2 and 3, in order to solve
optimization problems of the form

min
l≤x≤u

1

2
‖f(x)‖22, s.t. h(x) = 0, (4.1)

where x is the vector of decision variables with bounds l and u, and
h(x) = 0 represents constraints arising from the prediction of system
dynamics and general inequality constraints transformed to equalities
using non-negative slack variables. The functions f and h are assumed
to be first-order differentiable. Problem (4.1) can be efficiently solved us-
ing BVLS through a single iteration of the quadratic penalty method [11],
by transforming (4.1) to the following simple form:

min
l≤x≤u

1

2
‖f(x)‖22+

ρ

2
‖h(x)‖22,

where the quadratic penalty parameter ρ > 0 is large. The resulting
LS subproblems may have a high condition number and require QR up-
date routines that are robust against numerical errors due to potential
poor conditioning. The implementation of stable QR update methods
described here for BVLS is straightforwardly applicable to the special
case of NNLS, an algorithm which can also be applied to solve general
QPs for embedded MPC as shown in [45].

This chapter is organized as follows. Section 4.2 briefly describes the
baseline BVLS algorithm of [20] and its scope for improvement. The
proposed algorithm, which employs robust and recursive QR factoriz-
ation, is described in Section 4.4. In Section 4.5, a new approach to re-
cursively update the right hand side (RHS) of the triangular system of
equations obtained when solving BVLS via the primal active-set method
is described while summarizing the stable QR update procedures. Com-
parison results with competitive solution methods and the performance
of the proposed solver in single precision are presented in Section 4.6.
Concluding remarks are included in Section 4.7.
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Notation. We denote the set of real vectors of dimension m as Rm; a
real matrix with m rows and n columns as A ∈ Rm×n, its transpose as
A>, its inverse as A−1 and its jth column as Aj . For a vector a ∈ Rm, its
p-norm is ‖a‖p, its jth element is aj , and ‖a‖22= a>a. A vector or matrix of
appropriate dimension(s) with all its elements zero is represented by 0.
An identity matrix of appropriate dimensions is denoted by I . An empty
matrix is denoted by [ ]. If F denotes a set of indices, then its cardinality
is denoted by |F| and its jth element as Fj . AF is a matrix formed from
the columns of A corresponding to the indices in the index set F and aF
forms a vector (or set) with elements of the vector (or set) a as indexed in
F .

4.2 Baseline BVLS algorithm

This section recalls the algorithm based on the primal active-set method
of [11, Algorithm 16.3] for solving the following bounded variable least-
squares problem

J(x) = min
l≤x≤u

1

2
‖Ax− b‖22, (4.2)

where A ∈ Rm×n,m ≥ n, b ∈ Rm, and l, u ∈ Rn represent consistent
lower and upper bounds respectively on the vector of decision variables
x ∈ Rn. To keep the algorithm description simple, we assume that x has
finite bounds, although the algorithm can be easily extended to handle
components that have no lower and/or upper bound.

Assumption 4.1 A is full column rank and l ≤ u.

For example, Assumption 4.1 is satisfied when (4.2) is obtained from an
MPC problem as shown in Chapter 2. Stark and Parker’s version6 of the
BVLS algorithm [20], which is outlined via Algorithm 4.1, has two main
loops, as is typical of primal active-set methods. The inner loop (Steps 9-
18) of Algorithm 4.1 runs until primal feasibility (assessed in Step 10) is
achieved in a finite number of iterations and the outer loop (Steps 3-8)
runs until the remaining convergence criteria assessed in Steps 5-6 are
satisfied. The Lagrange multipliers are simply derived from the gradient
vector w and the index (t?) corresponding to the most negative one is

6We refer to the pseudo-code in [20] and their referenced Fortran 77 implementation
retrieved from http://lib.stat.cmu.edu/general/bvls.
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Algorithm 4.1 BVLS Algorithm of Stark and Parker [20]
Inputs: LS matrices A, b; lower bounds l; upper bounds u; initial guess

x ∈ Rn (warm-start), otherwise x = l (cold-start);

1: L ← {j|x(j) ≤ l(j)};
U ← {j|x(j) ≥ u(j)};
F ← {j|l(j) < x(j) < u(j)};
if warm-start then execute Steps 2 - 4 and then go to Step 9;

2: xF ← (lF + uF )/2; xL ← lL; xU ← uU ;
3: p← (b−Ax); w ← A>p;
4: p← p+AFxF ;
5: t? ← min(arg maxt∈L∪U stwt), where st = 1 if t ∈ L and st = −1 if
t ∈ U ; τ ← maxt∈L∪U stwt;

6: If L = U = ∅ or τ ≤ 0, then go to Step 19; (KKT test)
7: F ← F ∪ t?; if t? ∈ L, L ← L \ t? else U ← U \ t?;
8: p← p+At?xt? ;
9: If F 6= ∅, then z ← arg minz‖AFz − p‖22;

10: If lFj ≤ zj ≤ uFj∀j ∈ {1, · · · , |F|} or F = ∅, then xF ← z and go to
Step 3;

11: I ← {Fj |lFj > zj or zj > uFj , j ∈ {1, ..., |F|}};

12: α← min

{
1, min
j∈{1,···,|F|},Fj∈I

{∣∣∣ lFj−xFjzj−xFj

∣∣∣ , ∣∣∣uFj−xFjzj−xFj

∣∣∣}};

13: xF ← xF + α (z − xF );
14: L′ ←

{
Fj |xFj ≤ lFj , j ∈ {1, · · · , |F|}

}
;

15: U ′ ←
{
Fj |xFj ≥ uFj , j ∈ {1, · · · , |F|}

}
;

16: F ← F \ (L′ ∪ U ′);
17: L ← L ∪ L′; U ← U ∪ U ′; p← p−AL′xL′ −AU ′xU ′ ;
18: Go to Step 9;
19: x? ← x ;
20: end.

Outputs: Solution x? of (4.2), active set of lower and upper bounds L
and U respectively, set of free variables F .
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introduced in the index set of free variables (F) in order to initialize the
inner loop. In [20], the unconstrained LS problems in Algorithm 4.1 are
solved by computing the QR factorization with column pivoting from
scratch at each iteration in order to enforce numerical stability, at the
price of an increase in computational effort.

4.3 Solving unconstrained least-squares prob-
lems

Due to a sum-of-squares cost function, and constraints in the form of
simple bounds, the equality constrained QP subproblems that arise in
the primal active-set method [11, Algorithm 16.3] simplify to uncon-
strained linear least-squares while solving BVLS problems. The LS sub-
problems can be solved efficiently by decomposing the coefficient matrix
through QR factorization, or by forming and solving normal equations
through the Cholesky or LDL> factorization, or by the conjugate gradi-
ent method [21, 46]. This is due to the fact that the R factor from the QR
factorization of a tall matrix A is theoretically equivalent to the Cholesky
factor of the corresponding Hessian matrix A>A [21]. Even though nor-
mal equations could be computationally cheaper if the equivalent QP
matrices are provided, it has been proven to be an unstable method for
LS problems [47], and QR factorization is preferred in general. This is
clear due to the fact that the QP equivalent of LS problem (4.3) is always
worse-conditioned [48] because the condition number of the factorized
matrix i.e. the Hessian of the QP is squared as compared to that of the
coefficient matrix of the LS problem.

In Algorithm 4.1, a change in the working active set in each itera-
tion corresponds to adding or removing a column from the matrix that
is factorized in the previous iteration. Hence, it is possible to exploit
the information from the previously computed factors in order to update
them in a recursive manner [45]. Even though this may significantly re-
duce computations, it is prone to round-off error accumulation, for in-
stance, due to imperfect orthogonalization of the Q factor in a recurs-
ive QR factorization method. Hence, numerically stable update routines
are required for applications at the cost of additional computations. The
problems of computing and updating matrix factorizations for LS prob-
lems have been addressed in exhaustive detail in the literature, for in-
stance in [21,46,49] and [43]. There are three main methods to solve LS by
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QR factorization: the Householder method, Givens rotation method, and
the modified Gram-Schmidt (MGS) orthogonalization procedure [46]. In
order to compute the solution of the single LS problem

L(x) = min
x∈Rn
‖Ax− b‖22 (4.3)

with full-rank matrix A = QR,A ∈ Rm×n,m ≥ n, it suffices to com-
pute only the R factor (R ∈ Rn×n) for which the Householder or Givens
method is typically employed and requires 2n2(m−n/3) or 3n2(m−n/3)
floating-point operations (flops), respectively [46]. For the same purpose,
the MGS method needs 2mn2 flops while it also explicitly computes the
Q factor of the “economic” or “thin” QR decomposition A = QR where
Q ∈ Rm×n and R ∈ Rn×n. All the three QR methods are numerically
stable and provide an equivalent solution provided that orthogonaliza-
tion errors are avoided, especially in the case of MGS by computing the
factors for the augmented system

[
A b

]
instead, as described by [47,

Theorem 19.2]. The QR update procedures described in [46] when insert-
ing a column in the corresponding matrix, and for the NNLS algorithm
of [43], rely on the assumption that the “full” QR factorization is available
beforehand. However, for solving a sequence of related LS problems,
explicitly computing the first k columns of the full orthogonal matrix
factor (Q ∈ Rm×m) by the Householder method requires an additional
4mnk − 2(m+ k)n2 + (4/3)n3 flops [46]. This computational burden can
be avoided by using instead the more efficient algorithms for stable QR
updates described in [44], which is based on Gram-Schmidt (GS) ortho-
gonalization. Not only does this method save the explicit computation of
the full Q factor, but it also is effective in terms of memory since at most
n columns of Q are stored. Moreover, it provides numerical robustness
when the columns of A are nearly dependent, by reorthogonalizing the
added column to the orthonormal basis until orthogonality is achieved
upto working precision or a tolerance specification. This makes the pro-
cedures for QR updates described in [44] very suitable for application in
primal active-set algorithms such as BVLS and NNLS.

4.4 Robust BVLS solver based on QR updates

In this section we propose a variant of Algorithm 4.1 that aims at minim-
izing computations while maintaining numerical stability. The approach
is summarized in Algorithm 4.2 and the reader is referred to [20] for an
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Algorithm 4.2 Robust BVLS based on recursive QR updates
Inputs: Matrices A, b, l, u; feasibility tolerance γ > 0.

1: x ← (l + u)/2; F ← {1, · · · , n}; U ,L ← ∅; ι ← 0; t′ ← −1; t′′ ← −2;
t′′′ ← −3; t◦ ← 0; p← b−A(L∪U)x(L∪U);

2: {Q,R, d} ← gs(A, p,F); Go to Step 14;
3: p← b−A(L∪U)x(L∪U);
4: w ← p−AFxF ; w(L∪U) ← A>(L∪U)w;
5: If (L ∪ U = ∅) or (max(wL) ≤ γ and min(wU ) ≥ −γ), go to Step 36;
6: t? ← min(arg maxt∈L∪U stwt), where st = 1 if t ∈ L and st = −1 if
t ∈ U ;

7: if t′′′ = t′ and t′′ = t?, then
8: if t◦ = 1, go to Step 36 end if;
9: wt? , wt′ ← 0; t◦ ← 1; go to Step 5

10: end if
11: t′′′ ← t′′; t′′ ← t′; t′ ← t?; if t? ∈ L, ι← −1 else ι← 1;
12: F ← F ∪ {t?}; if t? ∈ L, L ← L \ {t?} else U ← U \ {t?};
13: {Q,R, d} ← qrinsert(Q,R, d, p,At? , xt? ,F , t?);
14: If F 6= ∅, then z ←solve triu(R, d);
15: if (ι = −1 and zj < lt?) or (ι = 1 and zj > ut?), where Fj = t?, then
16: {Q,R, d} ← qrdelete(Q,R, d, xt? ,F , t?);
17: if ι = −1, L ← L ∪ {t?}; else U ← U ∪ {t?}; end if
18: F ← F \ {t?}; wt? ← 0; go to Step 5;
19: end if
20: If (lFj − γ) ≤ zj ≤ (uFj + γ) ∀j ∈ {1, · · · , |F|} or F = ∅, then xF ← z

and go to Step 3;
21: ι← 0; I ← {Fj |lFj > zj or zj > uFj , j ∈ {1, ..., |F|}};

22: α← min

{
1, min
j∈{1,···,|F|},Fj∈I

(∣∣∣ lFj−xFjzj−xFj

∣∣∣ , ∣∣∣uFj−xFjzj−xFj

∣∣∣)};

23: κ← argj α; k ← |F|;
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24: for j ∈ {1, · · · , k} do xFj ← xFj + α(zj − xFj );
25: if xFj ≤ lFj + γ or (j = κ and zκ < lFκ ) then
26: {Q,R, d} ← qrdelete(Q,R, d, xFj ,F ,Fj);
27: L ← L ∪ Fj ; F ← F \ Fj ;
28: else
29: if xFj ≥ uFj − γ or (j = κ and zκ > uFκ ) then
30: {Q,R, d} ← qrdelete(Q,R, d, xFj ,F ,Fj);
31: U ← U ∪ Fj ; F ← F \ Fj ;
32: end if
33: end if
34: end for;
35: Go to Step 14;
36: end.

37: procedure gs(A, p,F)
38: Q← [ ]; R← [ ];
39: for j ∈ F do
40: {q, r, ρ} ← orthogonalize(Aj , Q,R); (Algorithm 4.3)

41: Q←
[
Q q

]
; R←

[
R r
0 ρ

]
;

42: end for
43: {∼, d,∼} ← orthogonalize(p,Q,R);
44: end procedure

Outputs: Primal solution x of (4.2), Active set of lower and upper
bounds L and U respectively, set F of free variables.
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easy understanding of the main steps. The idea is to employ a different
approach for QR factorization and recursive updates that cost only a frac-
tion of the computations required to solve an LS problem from scratch.
At initialization, all variables are placed in the free set (Step 1) unless an
initial guess is provided. Next, a thin QR factorization (cf. Theorem 4.1 in
Section 4.5) is computed in Step 2 (unless provided) by using the Gram-
Schmidt orthogonalization procedure gs, before subsequent updates in
the inner (Steps 14-35) and outer (Steps 3-13) loops through the stable up-
date procedures qrinsert (cf. Lemma 4.1 in Section 4.5) and qrdelete
(cf. Lemma 4.2 in Section 4.5). The unconstrained least-squares problem
solved at each iteration is

min
z

1

2
‖AFz − p‖22, (4.4)

where p, the RHS of the linear system, can be computed by the relation
in Step 3 of Algorithm 4.2. Using thin QR factorization, AF = QR, solv-
ing (4.4) reduces to solving the linear triangular system

Rz = Q>p = d (4.5)

in Step 14 by the back-substitution procedure solve triu. Unlike [20],
or approaches in which the RHS of the triangular system (d) to solve
the least-squares problem is explicitly computed through O(mn) opera-
tions [46], our approach recursively updates vector d (cf. Propositions 4.1
and 4.2 in Section 4.5) and avoids computing the matrix-vector product
Q>p in (4.5), at each iteration of the algorithm. In order to avoid in-
troducing orthogonalization errors due to the product with Q> in (4.5),
vector d is initialized (Step 43) instead from the thin QR factors of the
augmented system as described in [47, Ch. 19]. Unlike Algorithm 4.1, in
which the whole negative gradient vector is computed, we only compute
elements of the negative gradient corresponding to the active set of con-
straints as the Lagrange multipliers corresponding to the free set are zero
by construction. Moreover, Step 4 of Algorithm 4.1 is not executed; by
performing Steps 3-4 of Algorithm 4.2 instead, which saves an additional
4m|F| flops over Algorithm 4.1 each time the outer loop is executed.

4.4.1 Initialization

Cold-start

Algorithm 4.2 is initialized with all variables in the free set (Step 1) as
the initial guess. This is done in order to have a thin QR factorization of
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matrix A (Step 2) before subsequent updates. In practice this approach
is more likely7 to work faster than the case in which all variables are
initialized at a bound because: a) The outer loop (Steps 3-13) iterations
in which the QR factorization is incrementally updated costs more flops
on an average than the inner loop (Steps 14-35) ones in which the QR
factors are reduced in dimension; b) the outer loop iterations involve
matrix vector multiplications (Steps 3, 4), which in total comprise the
most time-consuming part of the algorithm after Step 2; c) having a thin
QR factorization of the whole matrix A ensures that the number of outer
loop iterations are minimal. Besides that, the inner loop operations are
numerically less sensitive than the outer loop ones and hence make the
choice of a full free-set initialization a preferred approach.

Warm-start

Following the warm-starting procedure of Algorithm 4.1, it is possible
to warm-start Algorithm 4.2 by initializing the active sets based on
the entries in the initial guess for the primal solution. Next, after ex-
ecuting Steps 3, one needs to compute the thin QR factorization of
matrix

[
AF p

]
by the modified Gram-Schmidt method as described

in [47] or by recursive QR factorization (successive calls to Algorithm 4.3
orthogonalize i.e., the reorthogonalization based GS procedure gs)
for better numerical robustness and then skip to Step 14. The rest of the
algorithm follows the same flow as Algorithm 4.2. However, this might
not improve the efficiency of the solver unless the warm-start has most of
its entries in the optimal active set. It is worth noting that the algorithm
can also benefit from the QR factorization associated with the guess solu-
tion, which is an important feature in the context of MPC as detailed in
Remark 4.1. This prevents recomputing the QR factors of A in Step 2,
which reduces most of the computational burden while computing the
solution.

Remark 4.1 In the case of embedded MPC of linear time-invariant systems
using BVLS, the QR factors of A can be precomputed offline for cold-start.
Moreover, during successive calls to the solver, since the matrix A does not
change, the previously computed solution and its associated QR factors can be
used for warm-starting in order to significantly reduce the computational bur-
den. Note that if the bounds vary, the components of the initial guess must be

7In general, the execution time with both approaches for initialization i.e. full or empty
free set, differs and depends on the cardinality of the free set at the optimal solution.
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modified accordingly in order to have its active sets unchanged from the previous
solution. As an additional precaution against error accumulation due to such
reuse of the QR factors, they can be reset by not providing them to the solver
at every N th call, where N can be tuned depending on the problem size, desired
accuracy, and computing precision.

4.4.2 Finite termination and anti-cycling procedures

The convergence proof of Algorithm 4.2 follows the ones of [11, Al-
gorithm 16.3] and BVLS in [20]. However, due to rounding errors
in finite-precision computations (especially when working in single-
precision floating-point arithmetic), the inner loop (Steps 14-35) may not
terminate when the computed α (cf. Step 22) results in no component
of F entering an active set of bounds. Numerical error in the gradient
(Step 4) may cause failure in satisfying dual feasibility, and cycling of
the outer loop. Moreover, when the columns of A are nearly linearly
dependent, the algorithm may cycle [20]. As a possible consequence:

1. a component t? inserted in an active set of bounds is introduced in
the free set in the immediate next step;

2. as a result, after the least-squares step, another component t̂ gets
inserted in an active set of bounds;

3. in the next iteration, t̂ immediately gets inserted in the free set and
causes t? to be inserted back in the active set, causing a cycle.

We summarize below the measures included in the proposed algorithm
in order to avoid the above described cycles, extending the ideas de-
scribed in [20, 43]. Convergence of the inner loop is guaranteed by in-
cluding a feasibility tolerance γ (typically between machine precision
and 10−6) and by moving at least the index κ (Step 23) in the respect-
ive active set at each iteration, such that κ accounts for the value of α
as done in [43]. As suggested in [20], unnecessary failure in satisfying
dual feasiblity conditions is detected by Step 15 which signals if the com-
ponent most recently introduced in the free set would immediately enter
an active set of bounds. Steps 16-18 set the Lagrange multiplier of the
corresponding component to zero and the algorithm steps back to a ter-
mination check (Step 5). Cycling between a pair of free components is
detected by storing (Step 11) and comparing the previous three values of
the index t? introduced in the free set as shown in Step 7 of Algorithm 4.2.
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The Lagrange multipliers corresponding to the cycling components t?

and t̂ are set to zero in Step 9 and the algorithm then steps back to ter-
mination check. If the termination check fails and no other change in F
results in termination, we infer that the algorithm will not converge any
further. So, the outer loop terminates having the test in Step 7 satisfied
for a second instance (Step 9) due to the cycling of a pair of components.
Hence, the algorithm itself terminates. In any case, in all the practical ap-
plications in which the solver is used on line, such as in embedded MPC,
a bound on the maximum number of iterations is enforced to guarantee
termination, where this bound depends on problem size and real-time
requirements.

4.5 Recursive thin QR factorization

In this section, we recall the stable QR update procedures of [44] which
are adopted in Algorithm 4.2, in the context of active-set changes. Based
on that, we derive the recursive relations which update the RHS of (4.5).

Theorem 4.1 (Thin QR factorization) Let A ∈ Rm×n be a full rank matrix
withm > n. LetAF ∈ Rm×|F| be formed from a subset of the columns ofA, in-
dexed by the set of indices F ⊆ {1, 2, · · · , n}, |F|≤ n. Then there exists a mat-
rix Q ∈ Rm×|F| with orthonormal columns, and a full rank upper-triangular
matrix R ∈ R|F|×|F| such that AF = QR.

Proof: We prove the theorem by induction on the cardinality |F| of F .
We first prove the theorem for the trivial case of |F|= 1, where we can
write

AF1
= Q(1)R(1),

Q(1) = AF1
/‖AF1

‖2,
and R(1) = ‖AF1‖2.

Assume that the theorem holds ∀F of cardinality |F|= k−1. For a generic
set F of k indices, if F ′ denotes its first k − 1 indices, we can write

AF =
[
AF ′ AFk

]
.

Considering that |F ′|= k − 1, using the induction hypothesis we can
state that ∃ Q(k−1) orthonormal and R(k−1) full rank upper triangular,
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such that AF ′ = Q(k−1)R(k−1). Since A is full rank (Assumption 4.1), via
Gram-Schmidt orthogonalization [44] we can find an orthonormal vector
q ∈ Rm (q>Q(k−1) = 0), a vector r ∈ R(k−1), and a scalar ρ 6= 0 such that

AFk = Q(k−1)r + ρq.

Thus, we can rewrite

AF =
[
AF ′ AFk

]
=
[
Q(k−1)R(k−1) Q(k−1)r + qρ

]
= Q(k)R(k),

where

Q(k) =
[
Q(k) q

]
and R(k) =

[
R(k−1) r

0 ρ

]
.

Matrix Q(k) has orthonormal columns and R(k) is full rank upper trian-
gular by inspection, which proves the theorem for |F|= k. �

Remark 4.2 In [44], in order to enforce precise orthogonality the Gram-
Schmidt procedure on any vector is repeated in situations when numerical can-
cellation is detected and is termed reorthogonalization. If the ratio ‖AFk −
Q(k−1)r‖2/‖AFk‖2 is small or if ρ is extremely small, loss of orthogonality
is likely and the same ratio is used to determine whether reorthogonalization
must be performed [44]. This argument yields Algorithm 4.3 that iteratively
“refines” the computed vectors by reducing orthogonality loss. The parameter
η in Algorithm 4.3 sets an upper bound on the loss of orthogonality as shown
by the detailed error analysis in [44]. Increasing η increases the chance of re-
orthogonalization and tightens the tolerance on orthogonality closer to the ma-
chine precision. We use η = 1/

√
2 and kmax = 4 in Algorithm 4.3 based on

Algorithm 4.3 Orthogonalization procedure [44]

1: r0 ← 0, v0 ← v, 0 << η < 1;
2: for k = 1, 2, · · · ,until ‖vk‖2> η‖vk−1‖2 or k = kmax do:
3: sk ← Q>vk−1;
4: rk ← rk−1 + sk;
5: vk ← vk−1 −Qsk;
6: end for
7: r ← rk; ρ← ‖vk‖2; q ← vk/ρ;
8: end.
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the analysis in [44]. Note that the iterations shown in Algorithm 4.3 refer to
classical Gram-Schmidt orthogonalization, but for a numerically robust imple-
mentation we use the theoretically equivalent Modified Gram-Schmidt iterations
(cf. [21, Algorithm 2.4.4], [47, Algorithm 8.1]). For double precision computa-
tions, reorthogonalizations may not be performed at all for small to medium
sized problems, unless they are ill-conditioned.

Based on Theorem 4.1, Lemma 4.1 and 4.2 respectively delineate the
recursive relations that update the thin QR factorization when an index
is either inserted or deleted arbitrarily from the set F .

Lemma 4.1 Given AF = QR, if AF̄ = Q̄R̄ denotes the thin QR factorization
of AF̄ for F̄ := F ∪ {t?} and |F̄ |= k + 1 with k < n, then there exists an
orthogonal matrix G, two vectors q, r, and a scalar ρ, such that

Q̄ =
[
Q q

]
G>,

R̄ = G

[
RF ′ r RF ′′

0 ρ 0

]
,

where F ′ := {j|Fj < t?, j ∈ {1, · · · , k}}
and F ′′ := {j|Fj > t?, j ∈ {1, · · · , k}} .

Proof: WithAF ′ ∈ Rm×|F ′|, AF ′′ ∈ Rm×(k−|F ′|), andAt? as the inserted
column, considering R =

[
RF ′ RF ′′

]
, we have the following relations

AF̄ =
[
AFF′ At? AFF′′

]
=
[
Q At?

] [RF ′ 0 RF ′′

0 1 0

]
.

By orthogonalizingAt? via Algorithm 4.3, i.e., by the Gram-Schmidt pro-
cedure [44], we obtain

At? = Qr + ρq, and hence (4.6)

AF̄ =
[
Q q

]︸ ︷︷ ︸
Q̃

[
RF ′ r RF ′′

0 ρ 0

]
︸ ︷︷ ︸

R̃

, (4.7)

where q, r and ρ are computed such that Q̃ has orthonormal columns
and R̃ has subdiagonal elements in its (|F ′|+1)th column. These subdi-
agonal elements can be zeroed-out by successive application of Givens
matrices [46], which converts R̃ to the upper triangular matrix

R̄ = GR̃, (4.8)
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where G ∈ R|F̄|×|F̄| denotes the product of the Givens matrices, which
are orthogonal by definition. Hence, G>G = I , and from (4.7)-(4.8),
AF̄ = Q̃G>GR̃ = Q̃G>R̄, which implies that Q̄ = Q̃G>. �

Lemma 4.2 Given AF = QR, if AF̂ = Q̂R̂ denotes the thin QR factorization
of AF̂ for F̂ := F \ {t?}, then there exists a matrix H such that

Q̂ = QH>

and R̂ = HRF̃ ,

where F̃ := {j|Fj 6= t?, j ∈ {1, · · · , |F|}}.

Proof: Given AF = QR, with F ′ and F ′′ as defined in Lemma 4.1, we
have

AF =
[
AFF′ At? AFF′′

]
= Q

[
RF ′ r̃ RF ′′

]
, (4.9)

AF̂ =
[
AFF′ AFF′′

]
= Q

[
RF ′ RF ′′

]
= QRF̃ ,

where RF̃ is upper Hessenberg [46]. Zeroing the off-diagonal elements
of RF̃ using Givens rotations, we obtain

G′RF̃ =

[
R̂
0

]
,

where G′ ∈ R|F|×|F| denotes the product of the Givens matrices. Hence,

R̂ = EG′RF̃ = HRF̃ ,

where

E =
[
I 0

]>
and H = EG′.

Since G′ is orthogonal,

G′
>
E>EG′ = I,

which implies that H>H = I . As

AF = Q̂R̂ = QRF̃ = QH>HRF̃ ,

we obtain Q̂ = QH>. �

62



Remark 4.3 Updating the thin QR factorization when inserting or de-
leting a column as above requires 4lm(k + 1) + 6|F ′′|(m+ |F ′′|/2) and
6|F ′′|(m+ |F ′′|/2) flops (floating-point operations excluding indexing and
looping overhead) respectively, where l denotes the number of orthogonaliza-
tions performed and the remaining terms are defined in Lemma 4.1. The update
routines are numerically stable as precise orthogonality is retained during the
recursions.

Proposition 4.1 Consider d = Q>p as defined in (4.5) where AF = QR, and
the updated factorization AF̄ = Q̄R̄ for F̄ = F ∪ {t?} as in Lemma 4.1. The
update d̄ of d can be obtained recursively as d̄ = Gd̃, where

d̃ =

[
d+ rxt?

q>p+ ρxt?

]
and xt? denotes the t?th element of solution vector x at the current iteration of
Algorithm 4.2 when solving (4.2).

Proof: From (4.5), we have

d = Q>p, and (4.10)

d̄ = Q̄>p̄, (4.11)

where p̄ denotes the vector p of (4.5) after an index t? is inserted in the
free set F . Then by its definition,

p̄ = p+At?xt? . (4.12)

Using Lemma 4.1 and substituting (4.12) in (4.11) gives

d̄ = G
[
Q q

]>
(p+At?xt?). (4.13)

On substituting (4.6) in (4.13), we get

d̄ = G
[
Q q

]>
(p+Qrxt? + ρqxt?)

= G

[
Q>p+Q>Qrxt? + ρQ>qxt?

q>p+ q>Qrxt? + ρq>qxt?

]
. (4.14)

Since Q has orthonormal columns and q is orthogonal to the span of Q,
we have Q>Q = I , q>q = 1, Q>q = 0 and q>Q = 0. Hence, by substitut-
ing these relations and (4.10), (4.14) simplifies as

d̄ = G

[
d+ rxt?

q>p+ ρxt?

]
. (4.15)
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�
Proposition 4.1 shows through (4.15) that computing d̃ from d only

needs 2(|F|+m + 1) flops and d̄ is obtained by using 6|F ′′| flops for ap-
plying the Givens rotations [46] on d̃. Updating d to d̄ without the re-
cursive relation (4.15) would cost 2m(|F|+2) flops instead, due to the
computations in (4.12) and (4.11), at each iteration of the outer loop of
Algorithm 4.2. Proposition 4.2 establishes the recursive relation to up-
date d for the case in which an index is removed from the free set F .

Proposition 4.2 Consider d = Q>p as defined in (4.5) where AF = QR, and
the updated factorization AF̂ = Q̂R̂ for F̂ = F \ t? as in Lemma 4.2, then the
update d̂ of d can be obtained recursively as d̂ = H(d− r̃xt?).

Proof: Let p̂ denote the vector p of (4.5) after an index t? is removed
from F , then

p̂ = p−At?xt? , (4.16)

where from (4.9) the deleted column

At? = Qr̃. (4.17)

From (4.5), (4.16), (4.17), and Lemma 4.2,

d̂ = Q̂>p̂ = HQ>(p−Qr̃xt?).

On substituting Q>Q = I and (4.10) in the above equation, we get

d̂ = H(d− r̃xt?). (4.18)

�
Updating d to d̂ recursively via (4.18) needs only 2|F|+6(|F ′′|−1) flops

instead of 2m|F| flops for computing Q̂>p̂ and (4.16), in each iteration of
the inner loop of Algorithm 4.2.

Remark 4.4 Even though the vector d is initialized with machine precision ac-
curacy, as a precaution to avoid the error accumulated over potentially several
recursive updates in large sized problems it is recommended to reinitialize d via
Step 43 in Algorithm 4.2 after every N iterations, with N chosen according to
the available computing precision.
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4.6 Numerical results

4.6.1 Random BVLS problems

This section describes the numerical results obtained in MATLAB by test-
ing the proposed solver (Algorithm 4.2) and various others on random
BVLS problems, which are generated as explained in Appendix 4.8.2.
In order to test for numerical robustness and performance while deal-
ing with ill-conditioned or nearly rank-deficient problems, the condition
number of the A matrix is set to 108 (≡ 1016 for the Hessian of the equi-
valent QP min

l≤x≤u
1
2x
>A>Ax− b>Ax).

The following solvers are considered for the numerical tests:

1. BVLS SP - Stark and Parker’s BVLS algorithm [20] implemented in
embedded MATLAB (cf. Algorithm 4.1);

2. RBVLS - proposed BVLS solver (Algorithm 4.2) coded in plain C
without any external libraries and interfaced with MATLAB using
a standard compiler in single and double precision;

3. BVLS2 - a variant of Algorithm 4.2 in which the number of ortho-
gonalizations in QR update procedures is restricted to one for faster
execution;

4. QPoases C - box-constrained variant of the open source QP solver
QPOASES version 3.2.0 [50] with C backend and main setting reli-
able, where we also enable settings that avoid additional computa-
tional overhead while solving nearly rank-deficient problems;

5. OSQP - solver version 0.3.0 of the QP method [42] based on ADMM
using sparse matrices and 5000 maximum iterations to limit its
maximum execution time;

6. Gurobi - the dual simplex algorithm of Gurobi 7.5.2 [51] was chosen
for the tests as it performed best amongst its other available al-
gorithms;

7. fastGP - Algorithm 4.4 (the fast gradient projection algorithm [22])
implemented in embedded MATLAB, with restart in every 50 off
3000 maximum iterations and termination criterion based on [52,
Equation 6.18], cf. Appendix 4.8.1;
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8. ODYSQP - ODYS QP solver8 [53];

9. CPLEX - primal simplex algorithm (method cplexlsqlin) of
CPLEX 12.6.3 [54].

For all solvers, the feasibility or optimality tolerance was set to 10−9

with all computations in double precision (machine precision ε ≈ 10−16),
except for the single precision (ε ≈ 10−7) version RBVLS single of Al-
gorithm 4.2, where the same tolerance was set to 10−6. The tolerances for
all solvers are relaxed to 10−6 for the MPC example in Section 4.6.2. For
first-order methods OSQP and fastGP, the tolerances are internally re-
laxed based on problem-specific termination criteria [42], [52]. All the
numerical tests have been run on a Macbook Pro 2.6 GHz Intel Core
i5 with 8GB RAM. All matrix operations have been computed through
plain C code interfaced to MATLAB R2015b. The execution time of each
solver is obtained from its internally measured time in order to avoid
counting the time for interfacing it with MATLAB.

In Figure 4.2, the cost function values compare the quality of the solu-
tion instead of the solution vector obtained from different solvers be-
cause in the presence of tolerances and poor-conditioning, the solution
values obtained may differ while numerically yielding the same value of
the cost function. The following conclusions may be drawn while refer-
ring Figures 4.1-4.2:

1. The proposed algorithm performs well in terms of both computa-
tional efficiency and accuracy as compared to the benchmark solv-
ers irrespective of the numerical conditioning of the problems.

2. The proposed solver with a single orthogonalization in QR up-
dates (BVLS2) has same accuracy as the Stark and Parker’s BVLS
algorithm (BVLS SP) in double precision and is faster by a signi-
ficant margin. By performing multiple orthogonalizations when
required, the RBVLS algorithm computes a solution with high ac-
curacy in all cases.

3. The accuracy of the propsed algorithm (RBVLS single) in single
precision depends on the loss of precision due to numerical condi-
tioning. However, it computes a solution which results in an error
of low order of magnitude ≈ 10−6 even when solving problems

8ODYS QP solver version “General purpose” 2017 has been used for all tests reported
in this chapter.
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Figure 4.1: Solver performance comparison for BVLS test problems with
condition number of matrix A = 108, 180 random instances for each
A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal act-
ive set.
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(a) Worst-case difference from the benchmark cost.
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Figure 4.2: Solver performance comparison for BVLS test problems with
condition number of matrix A = 108, 180 random instances for each
A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal act-
ive set. The optimal cost J of (4.2) obtained using each solver is compared
with the benchmark value Jref obtained using Gurobi. The legend for the
plots is same as in Figure 4.1a and is not included here for clarity by avoid-
ing overlap with the plots.
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with the reciprocal of a condition number comparable to the work-
ing machine precision.

4. The numerical results demonstrate that the proposed BVLS solver
is suitable for applications, such as embedded MPC, where numer-
ical robustness and computational efficiency are necessary require-
ments.

Additionally, results for test problems having better conditioned A mat-
rix with respective condition numbers 101, 104 are included in Ap-
pendix 4.8.3 in order to further demonstrate computational competitive-
ness, especially in comparison with solvers based on first-order methods
(cf. Figures 4.9a-4.11a). These results demonstrate that the error in com-
puting the solution increases for first-order methods with increase in the
condition number. This also influences their convergence rate, result-
ing in a performance slower than active-set method based solvers for
problems with large condition numbers. In order to demonstrate this,
details on the number of iterations taken by each solver for the test prob-
lems are included in Appendix 4.8.4. Figures 4.13-4.15 show that active-
set method based solvers are significantly less sensitive to the condition
number of the problem as compared to first-order methods.

4.6.2 Application: embedded linear model predictive
control

We now consider BVLS problems that arise when solving the MPC prob-
lem for control of an AFTI-F16 aircraft based on a linear time-invariant
(LTI) model described in Chapter 2. These problems have a high con-
dition number, a property typically encountered in MPC problems in-
volving the use of penalty functions and open-loop unstable prediction
models, which hinders the convergence of first-order methods such as
fastGP. In order to count only the time required for online computa-
tions, for all the QP solvers, the time required for computing the Hes-
sian matrix and its factors is not accounted, as it can be done offline once
and stored. For the same reason, the QPoases C and ODYSQP solv-
ers are provided with pre-computed dense matrix factorizations of the
Hessian, and in case of OSQP only solve time was measured. Since the
considered MPC optimization problem is numerically sparse, the solvers
OSQP, Gurobi, CPLEX and QPoases C are provided with sparse matrices
for a faster performance. The proposed algorithm is warm-started with
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the previous solution (cf. Remark 4.1 in Section 4.4) and all other solv-
ers are warm-started from the shifted previous solution from the second
instance onward, except for ODYSQP which is always cold-started. Fig-
ure 4.3a shows that the proposed algorithm is competitive in compu-
tational efficiency as compared to the benchmark solvers, whereas Fig-
ure 4.3b shows that it considerably exploits warm-starts. Although in
embedded MPC applications the worst-case CPU time is the most rel-
evant measure, as it is used to guarantee meeting hard real-time con-
straints, the average time may still be of interest when the same CPU is
shared with other tasks.

Recalling the comparison of the BVLS problem formulation based on
an I/O model against the condensed QP one based on state-space models
in Section 2.5, Figure 4.4 shows the same comparison as in Figure 2.6 but
with modern solvers. It was noted earlier in Section 2.5 that the benefits
of the BVLS formulation depend on the solution algorithm. In Figure 4.4,
we observe that: 1) there is a decrease in CPU time when using the BVLS
formulation with QPoases C as compared to the condensed QP one, and
2) the proposed solver is more efficient in exploiting the simple structure
of the optimization problem as compared to QPoases C. Moreover, there
is room for improvement as the comparisons only included a dense im-
plementation of BVLS2. In order to justify the usage of the sparse variant
of QPoases C in the comparisons in Figure 4.3, additional results using
the dense variant are included in Figure 4.4. Solvers exploiting the block-
sparse structure of MPC problems have a computational complexity that
scales linearly with Np [55, 56], and over a certain value of Np they may
outperform dense solvers, for which the computations scale quadratic-
ally, as seen in Figure 4.3. This aspect of adapting the proposed BVLS
algorithm for embedded MPC applications with a reduced requirement
for memory and computations, by exploiting the specific structure of the
resulting BVLS problems, is addressed in Chapter 6.

4.6.3 Hardware implementation on a programmable logic
controller

Programmable logic controllers (PLCs) are one of the most widely em-
ployed embedded control devices in industrial automation. This sec-
tion briefly describes a framework for implementing the MPC approach
based on the BVLS solver on a standard industrial PLC. Preliminary res-
ults based on hardware-in-the-loop (HiL) tests with a quadruple tank
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Figure 4.3: Solver performance comparison for BVLS formulation based
tracking-MPC simulation of AFTI-F16 aircraft. The number of decision vari-
ables and box constraints each = 4Np resulting in matrixA ∈ R6Np×4Np . For
each Np, the simulation is run for 100 time instances.
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Figure 4.4: Comparison of the performance (solver time) of QPoases C with
BVLS (2.9) and condensed QP (2.26a) formulations for the AFTI-F16 LTI
MPC problem. QPoases C sparse indicates the variant of QPoases C with
Hessian input in sparse format. The times are averaged over 50 instances
of the same simulation. The BVLS formulation has 4Np variables with 8Np

constraints whereas the condensed QP formulation has 2Np + 1 variables
with 8Np + 1 constraints (cf. Section 2.5).

system are included for illustration. The numerical results described
earlier in this chapter were based on a computer implementation of the
algorithms, which is much easier than implementation on industrial em-
bedded hardware platforms. Embedded optimization on an industrial
PLC poses some challenges that are not encountered in a computer im-
plementation. Some of the challenges that must be considered before a
practical application are:

1. A computer can execute ‘easy-to-code’ programs written in a wide
range of high-level languages using appropriate software whereas
in a PLC, programs must be written using the programming lan-
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Figure 4.5: Modicon M340 PLC of Schneider Electric used for the HiL tests.
The main specifications are 256kB data RAM, 1.16µs/flop [57].

guages of the IEC9 61131-3 standard, such as ‘Structured text’ (ST)
or ‘functional block diagrams’ (FBD). Structured text is relatively
a low-level programming language which has similarities to basic
programming languages such as C but with very limited function-
alities.

2. The entire source-code of the optimization algorithm must be a
single set of simple instructions without ‘functions’ that are com-
monly used in high-level programming languages. However, this
is platform dependent.

3. Optimization algorithms must be designed to be robust against nu-
merical errors that may be caused by precision loss because typ-
ically in PLCs, computations are carried out in single-precision
floating-point arithmetic.

4. Characteristics such as low random-access memory (RAM) and
slow computations are expected from standard industrial PLCs
(see Figure 4.5).

Thanks to the library-free implementation of the BVLS solver, it was
simple to code the same in ST. Porting problem data such as matrices and

9IEC is the abbreviation for International Electrotechnical Commission.
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working vectors for the solver, as well as the ST code into an FBD in the
PLC is a non-trivial issue. For this purpose we use the code-generation
library reported in [58].

Case study: Linear MPC of a quadruple tank system

We consider a quadruple water tank system where two of the tanks are
assembled above the other two. Two pumps control the water flows qa

and qb (i.e. the control inputs u), which are redirected to the tanks as
shown in Figure 4.6. Further details on its operation may be referred
in [58, Section 7A]. The control objective is to steer the heights (h1, h2) of
the lower tanks, which are the system outputs y, to the desired levels yr.

Figure 4.6: Quadruple tank system [59].

The nonlinear system dynamics is governed by the following ordin-
ary differential equations,

At
dh1

dt
= −a1

√
2gh1 + a3

√
2gh3 + γ1

qa

3600
(4.19a)

At
dh2

dt
= −a2

√
2gh2 + a4

√
2gh4 + γ2

qb

3600
(4.19b)
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At (m2) a1 (m2) a2 (m2) a3 (m2) a4 (m2) γ1 γ2

0.03 1.3 · 10−4 1.5 · 10−4 9.3 · 10−5 8.8 · 10−5 0.3 0.4

Table 4.1: Quadruple tank system parameters.

At
dh3

dt
= −a3

√
2gh3 + (1− γ2)

qb

3600
(4.19c)

At
dh4

dt
= −a4

√
2gh4 + (1− γ1)

qa

3600
, (4.19d)

where the values of the parameters are given in Table 4.1 and g = 9.81.
The system is subject to the following input and output constraints,

0 ≤ qa, qb ≤ 3 m3/h
0 ≤ h1, h2 ≤ 1.2 m

(4.20)

Based on linearization around the operating point (see Table 4.2) and
a zero-order hold discretization scheme with a sampling period of 5 s,
we obtain the following discrete-time linear ARX model

y(k) =

na∑
j=1

A(j)y(k − j) +

nb∑
j=1

B(j)u(k − j),

where na = nb = 4 and

A(1) = 3.8086I, A(2) = −5.4392I, A(3) = 3.4523I, A(4) = −0.8217I,

B(1) =

[
0.0135 0.0006
0.0005 0.0179

]
, B(2) =

[
−0.0387 −0.0005
−0.0005 −0.0515

]
,

B(3) =

[
0.0369 −0.0005
−0.0005 0.0493

]
, B(4) =

[
−0.0117 0.0005
0.0005 −0.0157

]
.

Based on the LTI model described above, the BVLS problem matrices
in (2.9) are constructed and stored along with the QR factors of the coef-
ficient matrix with single precision floating-point numbers. We set MPC

q0
a q0

b h0
1 h0

2 h0
3 h0

4

1.9 2.0 0.7175 0.7852 0.6594 0.8950

Table 4.2: Operating point parameters for the quadruple tank system.
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parameters Np = 9, Nu = 2,
√
ρ = 900, Wu = I and Wy = 5I . Based

on the implementation of RBVLS for single precision computations, the
HiL test was setup with the MPC algorithm embedded in the (real) PLC
shown in Figure 4.5 using the framework of [58] such that the sensors
and actuators are interfaced with a high-fidelity quadruple tank system
simulator. The MPC approach was tested through reference tracking and
disturbance rejection scenarios in HiL simulation. For the tracking prob-

lem, the output setpoints are set as yr =

[
0.7662
0.8885

]
m. For the disturbance

rejection test, an impulsive disturbance (a bucket of water) is added in
tank 1, which suddenly raises its height, while the quadruple tank’s I/O
variables must be maintained at the operating point (cf. Table 4.2). The
real-time closed-loop control results10 are shown in Figures 4.7 and 4.8.

We infer from Figure 4.7 that near-perfect reference tracking was ach-
ieved with a small offset because of model mismatch, which occurs as the
reference is not at the operating point. Moreover, the input references
were computed using the LTI model approximation at the operating
point, and discretization errors further contribute to model mismatch.
From the results of the disturbance rejection test shown in Figure 4.8, it is
seen that the disturbance is eliminated without steady-state offset, since
the reference is the same as the operating point. The main purpose of this
disturbance rejection test was to demonstrate a scenario in which some
of the box constraints become active (cf. Figure 4.8b), thereby testing all
routines of the active-set method based solver within the MPC algorithm.

It was noted that the MPC algorithm took 20-21 ms execution time,
which also includes internal PLC tasks and interface with system emula-
tion, at each sampling interval of 5 s. Based on times reported for internal
PLC tasks and tests performed with plain execution of the solver on the
PLC, the execution time of the BVLS solver was 16-18ms for the problem
size of 22 decision variables such that the initial QR factorization at the
first instance was provided offline. With online computation of the QR
factorization from scratch, the worst-case time at the first time step in-
creases to around 160ms. This gives a hint on the worst-case time for the
linear parameter varying MPC case, where the models would be updated
at each step. The total memory consumption of the control algorithm in-
cluding BVLS i.e. the code memory occupied in the PLC was around
116.08 kilo-bytes (kB), which is about 3.02% of the total 3840 kB. The

10The data in this subsection are courtesy of Pablo Krupa (University of Seville), who
setup and conducted the HiL experiment.
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Figure 4.7: Closed-loop trajectories of I/O variables during tracking MPC
of the quadruple tank system using PLC.
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Figure 4.8: Closed-loop trajectories of the quadruple tank system’s I/O vari-
ables during disturbance rejection tests using RBVLS based MPC on PLC.
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code memory requirement does not change with the problem. The data
memory occupied in the PLC for the tests described earlier was 11.06 kB
which is about 4.23% of the total 256 kB.

The preliminary results discussed above encourage future work with
further practical considerations such as inclusion of a disturbance estim-
ator or integral action for offset-free tracking. Implementation of meth-
ods described in Chapter 6 for nonlinear MPC with sparsity exploita-
tion, on the PLC platform, is planned for future work, from which we
expect the execution times to be potentially an order of magnitude lower
as compared to the numerically dense implementation while reducing
memory consumption.

4.7 Conclusions

In this chapter we presented a new method for solving BVLS problems.
The algorithm is numerically robust, is computationally efficient, and
is competitive with respect to state-of-the-art algorithms. The numer-
ical results demonstrate its competitiveness against fast solution meth-
ods in solving general small to medium sized BVLS problems such as
those arising in embedded MPC, that may also be nearly rank deficient.
Numerical stability has been observed even in single precision floating-
point arithmetic due to the proposed stable QR update procedures. The
hardware implementation of the robust BVLS solver on an industrial em-
bedded hardware platform, such as a PLC, illustrated that several engin-
eering challenges can be successfully addressed by employing the pro-
posed numerical methods.
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4.8 Appendix

4.8.1 Fast gradient projection algorithm

The implementation of the variant of Nesterov’s fast gradient projection
algorithm [22] to solve BVLS problems (4.2) considered in this thesis is
described via the following pseudo-code. Specifically, this implementa-
tion includes features such as ‘restart’ after every Nr iterations (set to 50
for the tests) with current iterate as new starting point for faster conver-
gence, and automatic termination.

Algorithm 4.4 fastGP algorithm
Inputs: Matrices A, b, l, u; initial guess x0; feasibility tolerance γ > 0;

maximum number of iterations mi; approximate Lipschitz constant
τ = max

(
eig
(
A>A

))
; µ = min

(
eig
(
A>A

))
; restart parameter Nr.

1: x← x0; y ← x0; i← 0; j ← 0; (Initialization)
2: τ ′ ← 2γ

( 1
µ−

1
τ )

; (termination parameter)

3: while i < mi do
4: g ← A>(Ay − b); (Gradient computation)
5: x← y − τg;
6: ∀k, xk ← min(max(xk, lk), uk); (Projection step)
7: i← i+ 1;
8: x′ ← x− x0;
9: if ‖y − x‖22< τ ′ then (Stopping criterion [52])

10: Go to Step 19; (Terminate algorithm)
11: end if
12: if round(i/Nr) = i/Nr and (y − x)>x′ > 0 then (Restart criterion)
13: y ← x; j ← 0; (Restart algorithm)
14: else
15: j ← j + 1;
16: y ← x+ j−1

j+2x
′

17: end if
18: x0 ← x;
19: end while

Outputs: Primal solution x of (4.2).
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4.8.2 Generation of random BVLS test problems

Through Algorithm 4.5, which is described via the following pseudo-
code, a set of 180 random problems is generated for each value of prob-
lem size considered. The test problems are generated with all possible
cardinality values (except full) of the optimal active set. The whole set
of problems is generated for each of the three different condition num-
ber values ofA : 10, 104 and 108. All the matrices are generated such that
they have the same numbers in both double and single precision. The
number of iterations or computations of the proposed active-set method
is directly related to the cardinality of the optimal active-set and hence,
we consider test problems including a whole range of cardinality values
(50% bounds active at the optimum on average). This gives a fair estim-
ate of the expected worst-case and average performance of the solver for
computing the solution of similarly conditioned random BVLS problems

Algorithm 4.5 Random BVLS test problems in MATLAB (pseudo-code)
Set the range of number of decision variables:

1: R ← {10, 20, · · · , 180};
Generate a set of random problems for each case inR:

2: for i ∈ R do
3: for j ∈ {1, 2, · · · , 180} do
4: n← i; (number of decision variables)
5: m← ceil(1.5 · n); (integer number of rows of A)
6: cr ← reciprocal of condition number of A;
7: rng(j); (set seed of the random number generator)
8: Generate a random dense matrix A of given size and reciprocal

of its condition number cr:
Aij ← full(sprand(m,n, 0.99, cr));

9: x← 100 · rand(n, 1); (Random vector of length n)
10: ū← max(x); l̄← min(x); (Bounds)

Set an unconstrained solution such that fixed number of bounds are
active at the optimum:

11: x{1,3,···,mod(j,i)} ← l̄ − 20; x{2,4,···,mod(j,i)} ← ū+ 20;
12: bij ← Aijx;

Output: Random BVLS problem min
l≤x≤u

‖Aijx− bij‖22
13: end for
14: end for
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not included in the test set. In order to test for numerical robustness and
performance while dealing with ill-conditioned or nearly rank-deficient
problems, the condition number of theAmatrix may be set to 108 (≡ 1016

for the Hessian of an equivalent QP).
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4.8.3 Numerical comparisons for random BVLS problems
with lower condition numbers
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(a) Worst-case computational time.
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Figure 4.9: Solver performance comparison for BVLS test problems with
condition number of matrix A = 104, 180 random instances for each
A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal act-
ive set.
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Figure 4.10: Solver performance comparison for BVLS test problems with
condition number of matrix A = 104, 180 random instances for each
A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal
active set. The optimal cost J of (4.2) obtained using each solver is com-
pared with the benchmark value Jref obtained using ODYSQP. The legend
for the plots is same as in Figure 4.9a and is not included here for clarity by
avoiding overlap with the plots.
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(a) Worst-case computational time.
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Figure 4.11: Solver performance comparison for BVLS test problems with
condition number of matrix A = 10, 180 random instances for each
A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal act-
ive set.
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(a) Worst-case difference from the benchmark cost.
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Figure 4.12: Solver performance comparison for BVLS test problems with
condition number of matrix A = 10, 180 random instances for each
A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal act-
ive set. The optimal cost J of (4.2) obtained using each solver is compared
with the benchmark value Jref obtained using ODYSQP.
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4.8.4 Iteration count of solvers in the numerical compar-
isons
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(a) Worst-case number of iterations.
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Figure 4.13: Number of iterations of each solver while solving the random
BVLS test problems with condition number of matrix A = 108, referring the
comparision in Figure 4.1.
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Figure 4.14: Number of iterations of each solver while solving the random
BVLS test problems with condition number of matrix A = 104, referring the
comparision in Figure 4.9.
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(a) Worst-case number of iterations.
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Figure 4.15: Number of iterations of each solver while solving the random
BVLS test problems with condition number of matrix A = 10, referring the
comparision in Figure 4.11.
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Chapter 5

Bounded-variable
nonlinear least squares

5.1 Introduction

In order to efficiently solve nonlinear MPC problems of the form (3.8), it
is desirable to have a solution method that benefits from warm-starting
information, is robust to problem scaling, and exploits the structure of
the problem. The bounded-variable nonlinear least-squares (BVNLLS)
method we propose in Algorithm 5.1 addresses such features. It can be
seen as either an ad hoc primal-feasible line-search SQP algorithm [11]
or an extension of the Gauss-Newton method [21, Section 9.2] to handle
box-constraints. The Gauss-Newton approximation of the Hessian is ef-
fective for nonlinear least-squares cost functions and it only needs first-
order information of the residual. Although the global convergence
property of BVNLLS follows that of line-search methods for problems
with simple bounds [37], we provide an alternative proof specific to
BVNLLS for an insightful overview, which also justifies the backtracking
rule (Steps 6-10 of Algorithm 5.1) analogous to the Armijo condition [11]
for the choice of step-size α.

The BVNLLS algorithm is described in Section 5.2 followed by a the-
oretical discussion on its global convergence in Section 5.3. Numerical
results comparing computational performance with other benchmark
solvers are included in Section 5.4 and are based on a typical nonlinear
MPC example in simulation.
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Notation. The jth element of a vector a is denoted in this chapter as
a(j). The set of real numbers between a and b, excluding a and including
b is denoted as (a, b] or [b, a). The gradient of a function f : Rn → R
at a point x̄ ∈ Rn is either denoted by ∇xf(x)|x̄ or ∇xf(x̄), the Hessian
matrix by ∇2

xf(x̄); the Jacobian of a vector function g : Rn → Rm by
Jxg(x)|x̄ or Jg(x̄).

5.2 Optimization algorithm

Problem (3.8) can be efficiently solved using the bounded-variable non-
linear least-squares (BVNLLS) algorithm described in Algorithm 5.1. The

Algorithm 5.1 Bounded-Variable Nonlinear Least Squares (BVNLLS)
solver
Inputs: Bounds p, q ∈ Rnz , feasible initial guess z ∈ Rnz , b = r(z), op-

timality tolerance γ ≥ 0, c ∈ (0, 0.5), τ ∈ (0, 1).

1: J ← Jzr (Linearization);
2: L ← {j|z(j) ≤ p(j)}; U ← {j|z(j) ≥ q(j)};
3: d← J>b (Compute gradient of the cost function);
λp(j)← d(j),∀j ∈ L; λq(j)← −d(j),∀j ∈ U ;

4: if λp(j) ≥ −γ,∀j ∈ L and λq(j) ≥ −γ,∀j ∈ U and
|d(j)|≤ γ,∀j /∈ L ∪ U then go to Step 12 (Stop if converged to a first-
order optimal point);

5: ∆z ← arg min
p−z≤∆z≤q−z

‖J∆z + b‖22 (Line search);

6: α = 1; θ ← cαd>∆z; ψ ← b>b; b← r(z + ∆z); Φ← b>b;
7: while Φ > ψ + θ do (Backtracking line search)
8: α← τα; θ ← αθ;
9: b← r(z + α∆z); Φ← b>b;

10: end while
11: z ← z + α∆z; go to Step 1 (Update the iterate);
12: z? ← z; λp(j)← 0,∀j /∈ L; λq(j)← 0,∀j /∈ U ;
13: end.

Outputs: Local or global optimum z? of (3.6), objective function value Φ
at z? , and Lagrange multiplier vectors λp and λq corresponding to
lower and upper bounds respectively.
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main idea is to solve the NLLS-box problem by an approach that follows
the steps of a Gauss-Newton Hessian approximation based Sequential
Quadratic Programming (SQP) [11] while exploiting the special structure
of (3.8). The Gauss-Newton method [21, Sec. 9.2] is a well known ap-
proach to solve Nonlinear Least Squares (NLLS) problems and is based
on a sequence of linear approximations of the residual function r(z)
in (3.8). BVNLLS is an extension of the Gauss-Newton method to handle
box-constraints, in which a box-constrained Least Squares (BVLS) prob-
lem is solved in each iteration until termination criteria are met. Based
on the Jacobian of the residual evaluated in Step 1 of Algorithm 5.1, we
can compute the step ∆z in Step 5 using the efficient BVLS algorithm
discussed in Chapter 4. Convergence of the BVNLLS algorithm that
involves Gauss-Newton step computations is ensured by including a
backtracking line-search method [11, Section 3.1] based on the Armijo-
Goldstein condition [21, Section 9.2.1], which forms Steps 6-10 of the
BVNLLS algorithm. Necessary and sufficient conditions for the termin-
ation of the algorithm are described as follows based on first-order op-
timality conditions that must be satisfied by a local or global minimum
of (3.8). We first note that Algorithm 5.1 starts with an initial guess (cold-
start or a warm-start) that satisfies the bounds. Moreover, since Step 5
of Algorithm 5.1 generates a step such that the next iterate also satisfies
the bounds, the primal feasibility condition of problem (3.8) is satisfied at
any iteration (cf. Lemma 5.1). Let us denote the Lagrange multipliers for
lower and upper bounds respectively as λl and λu, and the sets of active
lower and upper bounds respectively as L and U , as defined in Step 2.
In Algorithm 5.1, we denoted the gradient of the NLLS cost function at
iterate i as

d := J>r(z).

The following KKT conditions, which certify first-order optimality, are
satisfied by a local minimum of (3.8):

d− λl + λu = 0, (5.1a)
λl(j) = d(j), ∀j ∈ L, (5.1b)
λu(j) = −d(j), ∀j ∈ U , (5.1c)
d(j) = 0, ∀j ∈ {[1, nz]} \ {L ∪ U}, (5.1d)
d(j) ≥ 0, ∀j ∈ L, (5.1e)
d(j) ≤ 0, ∀j ∈ U . (5.1f)

where we used L ∩ U = ∅. This defines the termination criterion
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evaluated in Step 4 of Algorithm 5.1. The BVLS problem only has
simple bounds, which allows the corresponding convex QP to be solved
by a primal active-set method [11] by applying efficient linear algebra
routines to the smaller-dimensional space of the primal variables. For
generic QPs, instead, one needs to work in a higher dimensional space
which also includes the Lagrange multipliers. In BVLS, the Lagrange
multipliers corresponding to the active-set are obtained simply from re-
spective entries in the gradient vector of the least-squares cost. The same
characteristic is also present in BVNLLS, implied by (5.1) and Step 3 of
Algorithm 5.1. Moreover, for generic QPs, active-set methods require
one to form and factorize the Hessian matrix J>J , which has a condition
number squared as compared to that of the Jacobian matrix J . In our
setting, we expect to have a high condition number due to the necessity
of choosing the penalty parameter ρ large enough. This can cause ill-
conditioning while solving QPs based on the Hessian matrix even when
it does not occur in BVLS, in which the matrix that is factorized is the
Jacobian.

In summary, the above mentioned characteristics make BVNLLS
computationally efficient, and comparatively numerically robust. It is
also interesting to note that a single full Gauss-Newton step of Al-
gorithm 5.1 would generate a solution that is equivalent to the one pro-
duced by the Real-Time Iteration (RTI) scheme [5], a special case of lin-
ear time-varying MPC [39]. This solution can then be used to provide a
warmstart for the next time instant (cf. [32, 39]).

5.3 Global convergence

This section describes the global convergence property of BVNLLS when
solving nonlinear MPC problems of the form (3.8). At the ith iteration of
Algorithm 5.1, the search direction ∆z(i) is computed at Step 5 as

∆z(i) = arg minp̄≤∆ẑ≤q̄‖J∆ẑ + b‖22, (5.2)

where the Jacobian matrix J = Jzr
(
z(i−1)

)
is full rank, b = r

(
z(i−1)

)
,

p̄ = p − z(i−1) and q̄ = q − z(i−1), and p, q are the bounds (p < q) on z.
Since the lower and upper bound of any component of ∆z cannot both
be active at the same time, the optimal set of active constraint gradients
of (5.2) are always linearly independent. Hence, linear independence
constraint qualification holds. Based on this and the fact that the Hessian
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J>J > 0, problem (5.2) always has a unique set of optimal primal and
dual variables.

Lemma 5.1 (Primal feasibility) Consider that z(i) = z(i−1) + α∆z(i) as in
Step 11 at the ith iteration of Algorithm 5.1 with any α ∈ (0, 1]. If p ≤ z(0) ≤ q
and p̄ ≤ ∆z(i) ≤ q̄, then p ≤ z(i) ≤ q at all iterations i.

Proof: We prove the lemma by induction. The lemma clearly holds for
i = 0, as by assumption the initial guess z0 is feasible, p ≤ z(0) ≤ q.
Consider the ith iteration of Algorithm 5.1. From Step 5 we have that
p− z(i−1) ≤ ∆z(i) ≤ q − z(i−1), which multiplied by α, α > 0, gives

αp− αz(i−1) ≤ α∆z(i) ≤ αq − αz(i−1). (5.3)

By adding z(i−1) to each side of the inequalities in (5.3) we get

αp+ (1− α)z(i−1) ≤ z(i) ≤ αq + (1− α)z(i−1). (5.4)

By induction, let us assume that p ≤ z(i−1) ≤ q. Since α ≤ 1, we get the
further inequalities

αp+ (1− α)p ≤ z(i) ≤ αq + (1− α)q

or p ≤ z(i) ≤ q. �

Lemma 5.2 The search direction ∆z(i) given by (5.2) is a descent direction for
the cost function f(z) = 1

2‖r(z)‖
2
2 in (3.8).

Proof: If D (f(z), ∆z) denotes the directional derivative of f(z) in the
direction ∆z, then ∆z(i) is a descent direction if D

(
f
(
z(i−1)

)
, ∆z(i)

)
<

0. By definition of directional derivative [11, Appendix A],

D
(
f
(
z(i−1)

)
, ∆z(i)

)
= ∇zf

(
z(i−1)

)>
∆z(i). (5.5)

By substituting

∇zf
(
z(i−1)

)
= Jzr

(
z(i−1)

)>
r
(
z(i−1)

)
= J>b (5.6)

in (5.5) we get
D
(
f
(
z(i−1)

)
, ∆z(i)

)
= b>J∆z(i). (5.7)
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Since ∆z(i) solves the convex subproblem (5.2), the following Karush-
Kuhn-Tucker (KKT) conditions [10] hold:

J>
(
J∆z(i) + b

)
+ Λq̄ − Λp̄ = 0 (5.8a)

∆z(i) ≥ p̄ (5.8b)

∆z(i) ≤ q̄ (5.8c)
Λq̄,Λp̄ ≥ 0 (5.8d)

Λq̄(j)
(

∆z(i)(j)− q̄(j)
)

= 0 ∀j (5.8e)

Λp̄(j)
(
p̄(j)−∆z(i)(j)

)
= 0 ∀j, (5.8f)

where Λq̄ and Λp̄ denote the optimal Lagrange multipliers of subprob-
lem (5.2). From (5.8a) we have,

b>J∆z(i) = (Λp̄ − Λq̄)
>

∆z(i) −∆z(i)>J>J∆z(i). (5.9)

By substituting p̄ = p− z(i−1) and q̄ = q − z(i−1) in the complementarity
conditions (5.8e)-(5.8f), we can write

Λ>q̄

(
∆z(i) − q + z(i−1)

)
+ Λ>p̄

(
p− z(i−1) −∆z(i)

)
= 0,

i.e., (Λq̄ − Λp̄)
>∆z(i) = Λ>q̄ (q − z(i−1)) + Λ>p̄ (z(i−1) − p).

From (5.8b)-(5.8d) we have Λq̄,Λp̄ ≥ 0, and by Lemma 5.1 q − z(i−1) ≥ 0
as well as z(i−1) − p ≥ 0, which implies that

(Λq̄ − Λp̄)
>∆z(i) ≥ 0, i.e.,

(Λp̄ − Λq̄)
>∆z(i) ≤ 0. (5.10)

Since J is full rank, J>J > 0. Using this fact and Lemma 5.4 along
with (5.10) in (5.9) gives

b>J∆z(i) < 0. (5.11)

Considering (5.11) and (5.7), we have that the directional derivative for
the considered search direction is negative, which proves the lemma. �

Remark 5.1 In the proof of Lemma 5.2, the pair of Lagrange multipliers were
considered to be unique at optimality, which is theoretically true based on the
given problem (5.2). However, in general, the uniqueness of dual variables is
not required for (5.10) and Lemma 5.2 to hold.
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Remark 5.2 We infer from Lemma 5.1 and (5.8b)-(5.8c) that BVNLLS is a
primal-feasible method, which is an important property when the function r(z)
is not analytic beyond bounds [60].

Given this, we provide proof for the following lemmas which help to
prove global convergence via Theorem 5.1.

Lemma 5.3 If the solution of (5.2) is ∆z(i) = 0, then z(i−1) is a stationary
point satisfying the first-order optimality conditions of problem (3.8).

Proof: Given ∆z(i) = 0, we need to prove that z(i−1) satisfies the fol-
lowing first-order optimality conditions for problem (3.8):

Jzr(z)
>r(z) + λq − λp = 0 (5.12a)

p ≤ z ≤ q (5.12b)
λq, λp ≥ 0 (5.12c)

λq(j)(z(j)− q(j)) = λp(j)(p(j)− z(j)) = 0, ∀j, (5.12d)

where the optimal Lagrange multipliers are denoted by λp and λq for the
lower and upper bounds, respectively.

By substituting ∆z(i) = 0 in (5.8), and recalling q̄ = q − z(i−1) and
p̄ = p− z(i−1), we obtain

J>b+ Λq̄ − Λp̄ = 0, (5.13a)

p ≤ z(i−1) ≤ q, (5.13b)

Λq̄(j)(z
(i−1)(j)− q(j)) = 0 ∀j, (5.13c)

Λp̄(j)(p(j)− z(i−1)(j)) = 0 ∀j. (5.13d)

Clearly, considering (5.8d) along with the definitions of J , b, and (5.13),
we conclude that z(i−1), Λq̄ and Λp̄ solve the KKT system (5.12). �

Lemma 5.4 In Algorithm 5.1, ∆z(i) 6= 0 at any iteration.

Proof: We prove this lemma by contradiction. Assume that Al-
gorithm 5.1 reaches an iteration i where Step 5 is executed and returns
∆z(i) = 0. This implies that z(i−1) is a stationary point satisfying the
first-order optimality conditions of nonlinear problem (3.8), as shown
in Lemma 5.3. Then, the termination criterion in Step 4 would end
the algorithm without further computations, so that iteration i is never
reached, a contradiction. Note that in particular, if the initial guess z(0) is
optimal, ∆z(i) is never computed. �
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Theorem 5.1 (Global convergence of BVNLLS) Consider the optimiza-
tion problem (3.8) and define the scalar cost function f(z) = 1

2‖r(z)‖
2
2. At

each iteration i of Algorithm 5.1, there exists a scalar α ∈ (0, 1] such that

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
< cα∇f

(
z(i−1)

)>
∆z(i) (5.14)

with 0 < α ≤ 1 and 0 < c < 1, where z(i) = z(i−1) + α∆z(i).

Proof: Consider the Taylor series expansion of f
(
z(i)
)

f
(
z(i−1) + α∆z(i)

)
= f

(
z(i−1)

)
+ α∇zf

(
z(i−1)

)>
∆z(i)

+
α2

2
∆z(i)>∇2

zf
(
z(i−1)

)
∆z(i) + E(‖α∆z(i)‖3), (5.15)

where the term E
(
‖·‖3

)
represents the third order error. Also,

∇2
zf
(
z(i−1)

)
=

nr∑
j=1

rj

(
z(i−1)

)
∇2
zrj

(
z(i−1)

)
+ Jzr

(
z(i−1)

)>
Jzr
(
z(i−1)

)
= H + J>J, (5.16)

where rj denotes the jth element of the residual vector. By substituting
the relations (5.6) and (5.16) in (5.15) we get

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
= αb>J∆z(i)

+
α2

2
∆z(i)> (H + J>J

)
∆z(i) + E

(∥∥∥α∆z(i)
∥∥∥3
)
. (5.17)

Using (5.9), Equation (5.17) can be simplified as

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
=

− α(2− α)

2
∆z(i)>J>J∆z(i) + α(Λp̄ − Λq̄)

>∆z(i)

+
α2

2
∆z(i)>H∆z(i) + E

(∥∥∥α∆z(i)
∥∥∥3
)
. (5.18)
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Referring (5.6) and (5.9), on subtracting cα∇f(z(i−1))>∆z from both
sides of (5.18) we get

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
− cα∇f

(
z(i−1)

)>
∆z(i)

= −α(2− 2c− α)

2
∆z(i)>J>J∆z(i) + α(1− c)(Λp̄ − Λq̄)

>∆z(i)

+
α2

2
∆z(i)>H∆z(i) + E

(∥∥∥α∆z(i)
∥∥∥3
)
. (5.19)

Let

N̄ = − (2−2c−α)
2 ∆z(i)>J>J∆z(i) + (1− c)(Λp̄ − Λq̄)

>∆z(i).

From (5.10), Lemma 5.4, and from the facts that α ∈ (0, 1], c ∈ (0, 1), and
that matrix J has full rank (J>J > 0), we infer that N̄ must be negative
for sufficiently small α. Let

M̄ =
1

2
∆z(i)>H∆z(i) + E

(∥∥∥α∆z(i)
∥∥∥3
)

Then (5.19) can be written as

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
− cα∇f

(
z(i−1)

)>
∆z(i)

= αN̄ + α2M̄. (5.20)

Let αN̄ + α2M̄ + ε = 0, or ε = α
(
−αM̄ − N̄

)
. Clearly, since N̄ < 0, there

exists a value of α > 0 such that ε > 0. This proves that there exists a
positive value of α such that αN̄ + α2M̄ < 0. Hence from (5.20),

f
(
z(i−1) + α∆z(i)

)
− f

(
z(i−1)

)
− cα∇f

(
z(i−1)

)>
∆z(i) < 0,

for a sufficiently small positive value of α. �

Remark 5.3 In the case of linear MPC i.e., when hk(zk, φk) is linear in (3.8),
the bounded-variable least-squares (BVLS) problem (5.2) is solved only once as
the KKT conditions (5.12) coincide with (5.8). Moreover, the backtracking steps
are not required as the higher order terms in (5.15) are zero and Theorem 5.1
holds with α = 1 for any c ∈ (0, 1).
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Remark 5.4 Referring to (5.19), the value of c is practically kept below 0.5 in
Algorithm 5.1 in order to enforce fast convergence with full steps and is typically
chosen to be as small as 10−4 [11]. As seen in (5.19), since we only need the
matrix J to be full rank for convergence of BVNLLS, the matrix Wk in (3.8)
may be rank-deficient as long as J is full rank.

Remark 5.5 Suboptimality in solving the BVLS subproblems may result in a
smaller decrease in the cost between BVNLLS iterations than the theoretical
decrease indicated by Theorem 5.1. Hence, it is essential to have an accurate
BVLS solver in order to have fast convergence. For this reason, we advocate the
use of active-set methods to solve BVLS problems.

Each iteration of BVNLLS corresponds to solving a linear MPC problem,
a special case of (3.8). This allows one to have a common framework
for linear and nonlinear MPC in our approach. The BVLS problem (5.2)
can be solved efficiently and accurately by using a primal active-set al-
gorithm as shown in Chapter 4, which uses numerically robust recursive
QR factorization routines to solve the LS subproblems.

5.4 Numerical performance

The MPC problems are formulated as described in Section 3.3 for the
considered example described in Section 3.5. BVNLLS uses a MATLAB-
interfaced11 C implementation of the BVLS algorithm based on recursive
QR updates. The NLP problems (3.6), (3.7) are solved using MATLAB’s
‘fmincon’ solver with SQP and for comparisons, also the sparse NLP
solver ‘IPOPT’ [61] compiled in MATLAB with the ‘MA57’ linear sys-
tems solver. The solver IPOPT is considered with manually supplied ex-
act sparse Jacobian evaluation functions including sparsity pattern, and
an initial guess for the primal and dual variables in order to incorpor-
ate all benefits of the tool. The fmincon SQP solver of MATLAB is also
provided with gradient evaluation functions and a warmstart for faster
convergence. All the NLPs are solved until convergence so that each
solver gives the same quality of solution (cf. Section 3.5.2).

Figure 5.1 shows that the BVNLLS solver is considerably faster for
small to medium sized problems (30 to 150 decision variables and same

11The codes have been run in MATLAB R2015b on a Macbook Pro 2.6 GHz Intel Core
i5 with 8GB RAM. The time measurements only account for the solvers’ execution time by
excluding the time spent in interfacing data with MATLAB where applicable.
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Figure 5.1: CPU time for each solver during closed-loop simulation of the
CSTR w.r.t. prediction horizon (Np = Nu, number of variables and box con-
straints = 3Np, number of equality constraints = 2Np).

number of bilateral bound constraints). Note that the BVNLLS and
fmincon solvers have a numerically dense implementation whereas the
IPOPT solver uses sparse numerical methods. Observing these com-
parisons demonstrate that the BVNLLS based approach is an attract-
ive practical alternative to solve NMPC problems in real-time embed-
ded applications where computational complexity may restrict the use of
MPC. Moreover, the solver can be coded specifically to exploit problem-
dependent sparse structure of the matrices involved, which is a result
of the proposed NMPC formulation. Handling the sparse problem dir-
ectly would not only further speed up computations but also reduce the
memory requirements, which are characteristics suitable for a real-time
embedded implementation. This issue is addressed in detail in the next
chapter, which also includes further numerical comparisons.
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Chapter 6

Methods and tools for
efficient non-condensed
model predictive control

6.1 Introduction

A usual practice in MPC is to first formulate an optimization prob-
lem based on the prediction model and MPC tuning parameters, before
passing it in a standard form to an optimization solver. Such a problem
construction step can be performed offline when the prediction model
of the system is time-invariant, e.g. linear time-invariant (LTI) models,
whereas it needs to be repeated at each instance in case of parameter-
varying models, such as nonlinear models linearized at the current op-
erating point, or changes in MPC tuning parameters (such as predic-
tion horizon, control horizon, tuning weights, or sampling time). Often,
constructing the optimization problem requires a computational effort
comparable to that required for solving the optimization problem itself.
The same occurs in the recently proposed data-driven MPC scheme [62]
where, due to potentially time-varying model and/or tuning paramet-
ers, re-constructing the MPC optimization problem online becomes ne-
cessary, which significantly increases the computational load. Notwith-
standing these limitations of MPC, scarcely any effort has been made
to date to design a real-time MPC approach which does not need (re-
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)construction of the optimization problem with varying model and/or
MPC tuning parameters. Approaches which partially address this as-
pect for a limited class of linear parameter-varying (LPV) models with a
fixed MPC problem structure include [9, 63].

The methods proposed in this chapter aim at reducing the compu-
tational complexity of MPC while eliminating the optimization prob-
lem construction step even for the general case of nonlinear parameter-
varying systems, through algorithms that can adapt to changes in the
model and/or tuning parameters at runtime. The main ideas employed
for this purpose are: 1) a structured and sparse formulation of the MPC
problem through a quadratic penalty function in order to exploit simple
and fast solution methods, 2) replacing matrix instances via abstract op-
erators that map the model and tuning parameters to the result of the
required matrix operations in the optimization algorithm. The contri-
butions of this chapter also include methods to exploit problem sparsity
and efficiently implement the algorithms proposed in earlier chapters for
MPC based on box-constrained (nonlinear) least-squares.

In Chapter 4, it has been shown for the numerically dense case that, as
compared to solving an LS problem from scratch, employing a recursive
QR factorization scheme that exploits the relation between successive LS
problems can significantly increase computational speed without com-
promising numerical robustness, even without using advanced linear-
algebra libraries. In the sparse case, even though very efficient appro-
aches exist for solving a single LS problem using direct [64] or iterat-
ive [65] methods with sparse linear algebra libraries, to the best of the
author’s knowledge no methods have been reported for recursively up-
dating the sparse QR factorization of a matrix. A recursive approach
for sparse LU factorization has been described in [66]; however, such
an approach not only needs the storage of the matrix and its sparsity
pattern, which requires constructing the MPC problem and forming the
normal equations that could be numerically susceptible, but it also re-
lies on linear-algebra packages that could be cumbersome to code, espe-
cially in an embedded control platform. In this chapter, we present novel
methods for numerically stable sparse recursive QR factorization based
on Gram-Schmidt orthogonalization, which are easy to implement and
are very efficient even for small-size problems, therefore extending the
dense approach discussed in Chapter 4. Although the proposed meth-
ods are designed for the specific MPC application, i.e., to solve the sparse
LS problems having a specific parameter-dependent structure without
forming the matrix that is factorized, they may be applicable for other LS
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problems with block-sparse matrices having similar special structures.
This chapter is organized as follows. Section 6.2 describes the

considered general class of discrete-time models and MPC problem
formulation. A parameterized implementation of the BVNLLS al-
gorithm for solving MPC problems without the construction phase and
relying on the abstraction of matrix instances is described in Section 6.3.
Methods for sparse recursive thin QR factorization are described in
Section 6.4. Section 6.5 briefly reports numerical results based on a
nonlinear MPC (NMPC) benchmark example that clearly demonstrate
the excellent computational performance of the proposed methods
against other methods. Finally, Section 6.6 concludes the chapter.

Notation. For a vector a ∈ Rm, its jth element is a(j). If F denotes
a set of indices, AF denotes a matrix formed from columns of A cor-
responding to the indices in F . Given N square matrices A1, . . . , AN ,
of possible different orders, blockdiag(A1, . . . , AN ) is the block diagonal
matrix whose diagonal blocks are A1, . . . , AN .

For scalars a and b, min(a, b) and max(a, b) denote, respectively, the
minimum and maximum of the two values. Depending on the context,
(a, b] or [b, a) represent either the set of real numbers or integers between
a and b, excluding a and including b.

The gradient of a function f : Rn → R at a point x̄ ∈ Rn is either
denoted by ∇xf(x)|x̄ or ∇xf(x̄), the Hessian matrix by ∇2

xf(x̄); the Jac-
obian of a vector function g : Rn → Rm by Jxg(x)|x̄ or Jg(x̄).

Finite sets of elements are represented by curly braces containing the
elements; ∅ denotes the empty set. If a set A is a subset of set B (i.e., if
B is the superset of A), it is written as A ⊆ B (or alternatively B ⊇ A).
The symbols ∪,∩, and \ between two sets denote, respectively, set union,
intersection, and difference. The summation notation for sets is denoted
by
⋃

. The number of elements of a finite set A is denoted by |A|.

6.2 Nonlinear parameter-varying model

For maximum generality, the prediction model we use in MPC
is described by the following discrete-time multivariable nonlinear
parameter-varying dynamical model equation

M(Yk, Uk, Sk) = 0, (6.1)
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where k denotes the current sample step, Uk = (uk−nb
, . . . , uk−1) with

u ∈ Rnu the input vector, and Yk = (yk−na
, . . . , yk) with y ∈ Rny the

output vector. Vector Sk = (sk−nc
, . . . , sk−1), where s ∈ Rns , ns ≥ 0,

contains possible exogenous signals, such as measured disturbances.

We assume that function M : Rnany × Rnbnu × Rncns → Rny is
differentiable, where na, nb and nc denote the model order. Special
cases include deterministic nonlinear parameter-varying auto-regressive
exogenous (NLPV-ARX) models, state-space models (y = state vector,
na = nb = nc = 1), neural networks with a smooth activation function,
discretized first-principles models and differential algebraic equations.
Designing the MPC controller based on the input-output (I/O) differ-
ence equation (6.1) has several benefits such as: 1) data-based black-box
models which are often identified in I/O form do not need a state-space
realization for control, 2) a state estimator is not required when all out-
put and exogenous variables are measured, 3) input delays can easily be
incorporated in the model by simply shifting the sequence in Uk back-
wards in time.

The proposed MPC solution methods described later in this chapter
use a linearized version of the nonlinear dynamics about a computed
sequence of inputs and outputs in each iteration. That is why the mo-
del (6.1) was assumed to be differentiable, and we describe its linearized
version as follows. Linearizing (6.1) w.r.t. a sequence of inputs Û (that is,
Uk = Û + ∆U ) and outputs Ŷ (Yk = Ŷ −∆Y ) gives

M(Ŷ, Û, Sk) +
(

JYkM(Yk, Uk, Sk)
∣∣
Ŷ, Û

)
∆Y

+
(

JUkM(Yk, Uk, Sk)
∣∣
Ŷ, Û

)
∆U = 0,

which is equivalently written as the following affine parameter-varying
I/O model, i.e.,

−A (Sk)0 ∆yk =

na∑
j=1

A (Sk)j ∆yk−j +

nb∑
j=1

B (Sk)j ∆uk−j

+M(Ŷ, Û, Sk), (6.2)

where the Jacobian matrices
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A (Sk)j = Jyk−jM(Yk, Uk, Sk)
∣∣∣
Ŷ, Û

∈ Rny×ny , ∀j ∈ [0, na],

B (Sk)j = Juk−jM(Yk, Uk, Sk)
∣∣∣
Ŷ, Û

∈ Rny×nu , ∀j ∈ [1, nb].

Note that for the special case of LTI models in ARX form, in (6.2),
A0 would be an identity matrix whereas Sk would be absent and
M(Ŷ, Û) = 0, Ŷ = 0, Û = 0.

We recall the following performance index (P) for reference tracking
in MPC:

Pk =

Np∑
j=1

1

2
‖Wyk+j (yk+j − ȳk+j)‖22+

Nu−2∑
j=0

1

2
‖Wuk+j (uk+j − ūk+j)‖22

+
1

2
(Np −Nu + 1) · ‖Wuk+j (uk+Nu−1 − ūk+Nu−1)‖22, (6.3)

where vectors ȳ, ū denote output and input references, respectively. The
methods described later in this chapter can straightforwardly be exten-
ded to any performance index which is a sum of squares of linear or C 1

nonlinear functions. We will refer to the MPC optimization problem for-
mulation as described by (3.6) based on the cost function (6.3) subject to
constraints on the decision variables. In this chapter we will consider
equality constraints that arise from the prediction model (6.1), and re-
strict inequality constraints to only simple bounds on input and output
variables.

6.3 Abstracting matrix instances

6.3.1 Problem structure

The sparse structure of matrices Wk and ∇zhk(zk, φk)>, which form the
Jacobian J of the residual in (3.8), completely depends on the MPC tun-
ing parameters, model order, and the ordering of the decision variables.
By ordering the decision variables in vector zk as follows

zk =
[
u>k y

>
k+1 u

>
k+1 y

>
k+2 . . . u

>
k+Nu−1 y

>
k+Nu

y>k+Nu+1 . . . y
>
k+Np−1 y

>
k+Np

]> (6.4)
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we get the matrix structure described in (6.5), where the superscript of
matrices in parentheses denote the output prediction step the matrices
refer to.

Jhk(z) = ∇zhk(zk, φk)> =

B
(1)
1 A

(1)
0 0 0 · · · · · · 0

B
(2)
2 A

(2)
1 B

(2)
1 A

(2)
0 0 · · · · · · 0

...
. . .

. . .
...

B
(Nu)
Nu

A
(Nu)
Nu−1 · · · B

(Nu)
1 A

(Nu)
0 0 · · · 0

B
(Nu+1)
Nu+1 A

(Nu+1)
Nu

· · · B
(Nu+1)
3 A

(Nu+1)
2

2∑
i=1

B
(Nu+1)
i A

(Nu+1)
1 A

(Nu+1)
0 0 · · · 0

B
(Nu+2)
Nu+2 A

(Nu+2)
Nu+1

. . . · · · B
(Nu+2)
4 A

(Nu+2)
3

3∑
i=1

B
(Nu+2)
i A

(Nu+2)
2 A

(Nu+2)
1 A

(Nu+2)
0 0 · · · 0

...
. . .

. . .
...

...
. . . 0

B
(Np)
Np

A
(Np)
Np−1 · · · B

(Np)
Np−Nu+2 A

(Np)
Np−Nu+1

Np−Nu+1∑
i=1

B
(Np)
i A

(Np)
Np−Nu

A
(Np)
Np−Nu−1 · · · A

(Np)
1 A

(Np)
0


(6.5)

Note that we dropped the parentheses (Sk) in (6.5) to simplify the nota-
tion and, as defined in (6.2), A(Sk)j = 0, ∀j > na, and B(Sk)j = 0,
∀j > nb. Clearly, the Jacobian matrix Jhk of equality constraints only con-
sists of entries from the sequence of linear models of the form (6.2) linear-
ized around the initial guess trajectory. Considering the model paramet-
ers na, nb to be smaller than Np in (6.5), as illustrated in Figure 6.1, we
observe that the top-left part of Jhk is block sparse, the bottom-right part
has a block-banded structure, the bottom-left part has dense columns
corresponding to uk+Nu−1, whereas the top-right part is a zero matrix
with nyNu rows and ny ·(Np−Nu) columns. If na, nb are greater thanNp,
then Jhk would instead have its bottom-left part to be dense with block
lower-triangular structure in its top-left and bottom-right parts. All in all,
the sparsity pattern of Jhk is completely defined by the model paramet-
ers nu, ny , na, nb, and MPC horizonsNu,Np. Clearly, evaluating Jhk only
requires the sequence of linear models and the sparsity pattern informa-
tion. Note that in case the linear models are computed by a linearization
function, a memory/throughput tradeoff can be chosen here, as they can
be either computed once and stored (lowest throughput), or evaluated by
the linearization each time they are required (lowest memory allocation).
Finally, recalling (3.8), we obtain the full Jacobian matrix

J =

[
Wk

Jhk

]
(6.6)
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Figure 6.1: Sparsity pattern12 of Jhk for a random model with Np = 10,
Nu = 4, na = 2, nb = 4, nu = 2 and ny = 2.

required in Algorithm 5.1, where Wk is the block diagonal matrix

Wk = blockdiag(Wuk ,Wyk+1
,Wuk+1

,Wyk+2
, . . . ,

Wuk+Nu−1
,Wyk+Nu

,Wyk+Nu+1
, . . . ,Wyk+Np

)

In the sequel we assume for simplicity that all matrices Wu(·) ,Wy(·) are
diagonal, so that Wk is actually a diagonal matrix.

6.3.2 Abstract operators

All matrix-vector operations involving J in Algorithm 5.1 and in the
BVLS solver (Algorithm 4.2), including the matrix factorization routines

12The figure was originally generated using the spy function in MATLAB R2015b.
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that will be described in Section 6.4, only need the product of a column-
subset of J or a row-subset of J> with a vector. Hence, rather than expli-
citly forming and storing J , all the operations involving J can be repres-
ented by two operators Jix (ith column of J times a scalar x) and JtiX
(ith column of J times a vector X) defined by Algorithms 6.1 and 6.2, re-
spectively. The basic principle of both Algorithms 6.1 and 6.2 is to extract
non-zero entries indexed in J from the corresponding model coefficients

Algorithm 6.1 Operator Jix

Inputs: Output memory v = 0 ∈ Rnz+Npny ; vector w storing di-
agonal elements of Wk; scalar x; column number i; parameters
na, nb, nu, ny, Nu and Np.

1: v(i)← w(i) · x;
2: Find integers β ∈ [0, Np) and η ∈ [1, nu+ny] such that i = βny +nu ·

min(β, Nu − 1) + η;
3: n̄← Nunu + (Np + β)ny ; m← Nunu + 2Npny ; j ← 0;
4: if β 6= Nu − 1 or η > nu then
5: if η > nu, m̄← n̄+ nany else m̄← n̄+ nbny ;
6: for j′ ∈ {n̄, n̄+ ny, · · · ,min(m̄,m)− ny} do
7: if η > nu then ∀j′′ ∈ {1, · · · , ny},
8: v(j′ + j′′)← x ·A(β+j+1)

j (j′′, η − nu);
9: else

10: v(j′ + j′′)← x ·B(β+j+1)
j+1 (j′′, η);

11: end if
12: j ← j + 1;
13: end for
14: else
15: for j′ ∈ {n̄, n̄+ ny, · · · ,m− ny} do
16: j ← j + 1;

17: B̄(j′′)←
min(j, nb)∑
i′=1

Bβ+j
i′ (j′′, η), ∀j′′ ∈ [1, ny];

18: v(j′ + j′′)← x · B̄(j′′), ∀j′′ ∈ [1, ny];
19: end for
20: end if
21: end.

Output: Vector v = ith column of J in (5.2) scaled by x.
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Algorithm 6.2 Operator JtiX
Inputs: Vector w storing diagonal elements of Wk; vector X ; column

number i; parameters na, nb, nu, ny, Nu and Np.

1: v′ ← w(i) ·X(i);
2: Steps 2-3 of Algorithm 6.1;
3: if β 6= Nu − 1 or η > nu then
4: if η > nu, m̄← n̄+ nany else m̄← n̄+ nbny ;
5: for j′ ∈ {n̄, n̄+ ny, · · · ,min(m̄,m)− ny} do
6: if η > nu then ∀j′′ ∈ {1, · · · , ny},
7: v′ ← v′ +X(j′ + j′′) ·A(β+j+1)

j (j′′, η − nu);
8: else
9: v′ ← v′ +X(j′ + j′′) ·B(β+j+1)

j+1 (j′′, η);
10: end if
11: j ← j + 1;
12: end for
13: else
14: for j′ ∈ {n̄, n̄+ ny, · · · ,m− ny} do
15: Steps 16-17 of Algorithm 6.1;
16: v′ ← v′ +X(j′ + j′′) · B̄(j′′), ∀j′′ ∈ [1, ny];
17: end for
18: end if
19: end.

Output: v′ = inner product of ith row of J> in (5.2) and X .

based on the given model and MPC tuning parameters. Since the top
part Wk of J is a diagonal matrix, the first non-zero entry in any column
of J is obtained from the vector of weights (cf. Step 1 of Jix and JtiX).
The remaining steps only concern evaluating Jhk as in (6.5), in which
the coefficients in each column match the corresponding element in zk
as in (6.4). Referring to the sparsity pattern of Jhk in (6.5), each of its
columns only contains either model coefficients related to the input or
to the output, and in the columns corresponding to the inputs uk+Nu−1

some of the input coefficients are summed due to the finite control hori-
zon Nu < Np. The location of the first non-zero term in each column of
Jhk depends on the corresponding stage of the input or output variable
in prediction, whereas the last entry depends on na or nb andNp. Hence,
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in Step 2 of Algorithm 6.1, the integer β is computed such that βny + 1 is
the index of the first non-zero entry in Jhk(z) (cf. Steps 3, 6 and 15). The
integer η computed in the same step denotes the input or output chan-
nel to which the column corresponds, in order to accordingly index and
extract the coefficients to be scaled as shown in Steps 8, 10 and 17 of Al-
gorithm 6.1. Depending on the column index i of J , computing β and η
only needs a trivial number of integer operations including at most one
integer division, for instance, if i ≤ Nu(nu + ny), β is obtained by an
integer division of i by (nu + ny) and η = i − β(nu + ny). The same
computation is straightforward for the only other possible case in which
i > Nu(nu + ny).

Clearly, since the rows of J> are the columns of J , Algorithm 6.2 dif-
fers from Algorithm 6.1 only in Steps 7, 9 and 16 in which the scaled coef-
ficient is accumulated to the resulting inner product instead of a plain as-
signment operation. It is possible to easily extend Algorithm 6.2 for the
special case in which X in JtiX is the ith column of J i.e., to efficiently
compute the 2-norm of the ith column of J , which may be required in the
linear-algebra routines. Replacing the instances of J by Jix and JtiX in
the BVNLLS and in the inner BVLS solver has the following advantages:

1. The problem construction step in MPC is eliminated, as matrix J is
neither formed nor stored.

2. The code of the two operators does not change with any change in
the required data or dimensions as all the indexing steps are para-
meterized in terms of MPC tuning parameters, i.e., known data.
Hence, the resulting optimization solver does not need to be code-
generated with a change in problem dimensions or data. The same
fact also allows having a real-time variation in the MPC problem
data and tuning parameters without any change in the solver. A
structural change in the BVNLLS optimization problem formula-
tion, such as the type of performance index, is already decided in
the MPC design phase and can be simply accommodated by only
modifying Algorithms 6.1 and 6.2.

3. Unlike basic sparse-matrix storage schemes [65] which would store
the non-zeros of J along with indexing information, we only store
the sequence of linear models at most, resulting in a significantly
lower memory requirement. Alternatively, as mentioned earlier,
even the coefficients A(∗)

∗ , B(∗)
∗ can be generated during the execu-

tion of Algorithms 6.1- 6.2 using linearization functions applied on
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the current trajectory.

4. The number of floating-point operations (flops) involving instances
of J , both in the BVNLLS and the BVLS solvers, is minimal and
is reduced essentially to what sparse linear-algebra routines can
achieve.

5. A matrix-free implementation can be achieved when using Al-
gorithm 4.4 i.e. fast gradient projection [22] on primal problem to
solve (5.2) in BVNLLS, as the operators Jix and JtiX can be used
for computing the gradient. In addition, considering that even the
model coefficients are optional to store, the resulting NMPC al-
gorithm will have negligible increase in memory requirement w.r.t.
the prediction horizon.

As mentioned above, in applications with very restrictive memory re-
quirements, using the aforementioned methods with Algorithm 4.4, one
may employ a matrix-free solver similar to [67] and its references. How-
ever, when using the gradient-projection algorithm, its low memory us-
age may come at the cost of slow convergence due to its sensitivity to
problem scaling. The next section shows how the sparsity of the Jacobian
J can be further exploited for faster computations in the linear algebra
methods within the proposed BVLS solver i.e. Algorithm 4.2.

6.4 Sparse recursive thin QR factorization

The primal active-set method for solving BVLS problems proposed in
Chapter 4 efficiently solves a sequence of related LS problems using re-
cursive thin QR factorization. The reader is referred to Chapter 4 and
references [44, 46] for an overview on thin QR factorization and the re-
cursive update routines in the context of the BVLS solver. This section
shows how the sparsity of matrix J can be exploited for significantly
reducing the computations involved in the recursive updates of its QR
factors, without the use of sparse-matrix storage or conventional sparse
linear-algebra routines. The main idea is to have the location of non-
zeros in the matrix factors expressed in terms of model and MPC tuning
parameters, as described above. We first analyze how the sparse struc-
ture of column-subsets of J is reflected in their thin QR factors based on
Gram-Schmidt orthogonalization, then characterize the recursive update
routines.
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6.4.1 Gram-Schmidt orthogonalization

Recall that J ∈ Rm×n, where n = Nunu + Npny and m = n + Npny ,
i.e., m > n (see (3.8), (5.2), (6.4) and (6.5)). Let JF denote the matrix
formed from those columns of J with indices in the set F . Then there
exists a unique thin QR factorization [46, Theorem 5.2.3] of JF which
may be expressed via the Gram-Schmidt orthonormalization procedure
∀i ∈ [1, |F|] as

Q′i = JFi −
i−1∑
j=1

QjQ
>
j JFi , (6.7a)

Qi = Q′i/
∥∥∥Q′i∥∥∥

2
, (6.7b)

R(j, i) = Q>j JFi ,∀j ∈ [1, i− 1], (6.7c)

R(i, i) =
∥∥∥Q′i∥∥∥

2
, (6.7d)

where Q ∈ Rm×|F| := [Q1, Q2, · · · , Q|F|] has orthonormal columns,
R ∈ R|F|×|F| is upper triangular and JF = QR. In (6.7), with a slight
abuse of notation, the subscripts denote column number, i.e., Qi de-
notes the ith column of Q, whereas Fi denotes the ith index in F .
As shown in (6.7a), starting from the first column of JF , the proced-
ure constructs an orthogonal basis by sequentially orthogonalizing the
subsequent columns w.r.t. the basis. The orthogonalization proced-
ure shown in (6.7a) is referred to as the classical Gram-Schmidt (CGS)
method [46, Section 5.2.7]. Since the CGS method is practically prone
to numerical cancellation due to finite-precision arithmetic, we use the
modified Gram-Schmidt (MGS) method [46, Section 5.2.8] in which the
orthogonalization is performed using the working value of Q′i instead
of JFi in each iteration of the procedure. When applying MGS to solve
the linear system before recursive updates, we also orthogonalize the
right hand side (RHS) of the equations, i.e., we use an augmented system
of equations in order to compensate the orthogonalization error (cf. [47,
Chapter 19]). Moreover, for numerical robustness in limited precision,
in the proposed MGS procedure a reorthogonalization step is automat-
ically performed which iteratively refines the QR factors for reducing
the orthogonalization error in case it exceeds a given threshold (cf. Al-
gorithm 4.3, [44]).
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6.4.2 Sparsity analysis

In order to avoid redundant flops due to multiplying zero entries while
solving the LS problems without sparse storage schemes, we first de-
termine the sparsity pattern of Q and R approximately, based on the re-
lations described in (6.7). While doing so, the following notions will be
used.

Definition 6.1 (Non-zero structure) We define the non-zero structure of a
vector x to be the set of indices S(x) such that x(i) 6= 0, ∀i ∈ S(x), and
x(j) = 0, ∀j /∈ S(x).

Definition 6.2 (Predicted non-zero structure) If Ŝ(x) denotes the pre-
dicted non-zero structure of a vector x, then x(j) = 0 ∀j /∈ Ŝ(x) i.e.,
Ŝ(x) ⊇ S(x).

Based on the Definition 6.1, x = x′ implies

S(x) = S(x′). (6.8)

S(x′ + x′′) ⊆ {S(x′) ∪ S(x′′)} , (6.9)

which holds with equality, i.e., S(x′ + x′′) = {S(x′) ∪ S(x′′)}, if and only
if the set
{i|x′(i) + x′′(i) = 0, x′(i) 6= 0, x′′(i) 6= 0} = ∅. Likewise,

S(κx) ⊆ S(x), κ ∈ R,

because S(κx) = ∅ for κ = 0, whereas

S(κx) = S(x),∀κ ∈ R \ {0}. (6.10)

Theorem 6.1 Consider an arbitrary sparse matrix M ∈ Rn1×n2 of full rank
such that n1 ≥ n2 and let Q̃ denote the Q-factor from its thin QR factorization
i.e., M = Q̃R̃. The non-zero structure of each column Q̃i of Q̃ satisfies

S
(
Q̃i

)
⊆

i⋃
j=1

S (Mj) ,∀i ∈ [1, n2], (6.11a)

and S
(
Q̃1

)
= S (M1) . (6.11b)
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Proof: We consider the Gram-Schmidt orthogonalization procedure de-
scribed in (6.7) applied toM withF = [1, n2] (this simplifies the notation,
i.e., Fi = i). Referring to (6.7b), since Q̃′ represents an orthogonal basis
of the full rank matrix M with real numbers, 1/

∥∥∥Q̃′i∥∥∥ 6= 0 ∀i, and hence
from (6.10),

S
(
Q̃i

)
= S

(
Q̃′i

)
,∀i. (6.12)

From (6.7a),
Q̃′1 = M1. (6.13)

Thus, considering (6.13) with (6.8) and (6.12) proves (6.11b). Again, con-
sidering (6.7a) with (6.12) and (6.8),

S
(
Q̃i

)
= S

Mi −
i−1∑
j=1

Q̃jQ̃
>
j Mi

 = S

Mi +

i−1∑
j=1

Q̃jκj

 (6.14)

where κj = −Q̃>j Mi ∈ R,∀j ∈ [1, i − 1], as κj represents the result of an
inner product of two real vectors. From (6.9) and (6.14),

S
(
Q̃i

)
⊆

S (Mi) ∪


i−1⋃
j=1

S
(
Q̃j

)
 . (6.15)

Applying (6.15) recursively,

S
(
Q̃i

)
⊆




i⋃
j=2

S (Mj)

 ∪ S (Q̃1

) . (6.16)

Thus, substituting (6.11b) in (6.16) completes the proof. �

Corollary 6.1 Given i ∈ [1, n2] and j′ ∈ [1, n2],

if


j′⋃
j=1

S (Mj)

 ∩ S (Mi) = ∅, then R̃(j, i) = 0 ∀j ∈ [1, j′]. (6.17)

Proof: Based on result (6.11a) of Theorem 6.1, we can say that
i⋃

j=1

S (Mj) is a predicted non-zero structure of Q̃i i.e.,

i⋃
j=1

S (Mj) = Ŝ
(
Q̃i

)
, (6.18)
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and hence
Ŝ
(
Q̃i

)
= S (Mi) ∪ Ŝ

(
Q̃i−1

)
,∀i ∈ [1, n2]. (6.19)

If S
(
Q̃j

)
∩S (Mi) = ∅, then Q̃j and Mi have disjoint non-zero structures

and hence, referring to (6.7c),

S
(
Q̃j

)
∩ S (Mi) = ∅ =⇒ R(j, i) = Q̃>j Mi = 0. (6.20)

From (6.19) we have that

Ŝ
(
Q̃i

)
⊇ Ŝ

(
Q̃i′
)
,∀i′ < i. (6.21)

From (6.18), (6.21) and Definition 6.2, i.e., Ŝ
(
Q̃i

)
⊇ S

(
Q̃i

)
, it follows

that

{
j′⋃
j=1

S (Mj)

}
∩ S (Mi) = ∅ implies

Ŝ
(
Q̃j

)
∩ S (Mi) = ∅, ∀j < j′. The corollary result is then immediate

given (6.20). �
Theorem 6.1 and Corollary 6.1 establish rigorous upper bounds on

the non-zero structure of the QR factors based on the non-zero struc-
ture of the factorized matrix. Figure 6.2 shows a graphical illustration
through which it is easily possible to verify by inspection the relations
derived for estimating the sparsity pattern of the thin QR factorization
via Theorem 6.1 and Corollary 6.1.

Since the non-zero structure of JF is completely determined in terms
of model and tuning parameters as shown in Section 6.3.2, the predicted
non-zero structure of its QR factors consequently depends only on them,
as will be shown in the remaining part of this section.

Corollary 6.2 Consider the matrix J ∈ Rm×n whose first n rows form a
diagonal matrix and the last m − n rows contain Jhk(z) as shown in (6.5).
Let JF denote the matrix formed from the columns of J indexed in the in-
dex set F such that Fi+1 > Fi,∀i ∈ [1, |F|]. If Q ∈ Rm×|F| de-
notes the Q-factor from the thin QR factorization of JF , then ∀i ∈ [2, |F|],{

i⋃
j=1

{Fj}

}
∪ (n̄F1

,max (Bi−1,min (m̄Fi ,m))] = Ŝ (Qi), where the positive

integers n̄j′ , m̄j′ respectively denote the values of n̄, m̄ computed in Steps 2-5
of Algorithm 6.1 for j′th column of J , and B is an index set such that its ith
element stores the largest index of Ŝ (Qi).
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Figure 6.2: Sparsity pattern of Jacobian J and its thin QR factors, refer-
ring (6.6), (6.5), for a random NARX model with non-zero coefficients, non-
zero diagonal tuning weights, and parameters ny = 2, nu = 2, na = 2,
nb = 1, Np = 4, Nu = 3. The asterisks mark non-zero entries.
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Proof: Considering the structure of matrix J , Definition 6.1 and the fact
that min (m̄j ,m) > n̄j ≥ n ≥ |F|, ∀j by construction, we have that

S (JFi) = {Fi} ∪ (n̄Fi ,min (m̄Fi ,m)] . (6.22)

From (6.18) we note that
i⋃

j=1

S
(
JFj
)

= Ŝ (Qi), and using (6.22) we can

rewrite

Ŝ (Qi) =

i⋃
j=1

S
(
JFj
)

=


i⋃

j=1

{Fj}

 ∪


i⋃
j=1

(
n̄Fj ,min

(
m̄Fj ,m

)] ,

=


i⋃

j=1

{Fj}

 ∪ (n̄F1
,Bi] , (6.23)

because observing (6.5), Fj+1 > Fj implies n̄Fj ≤ n̄Fj+1 . From res-
ult (6.19), (6.22) and definition of set B,

Bi = max (Bi−1,min (m̄Fi ,m)) , (6.24)

which on substitution in (6.23) completes the proof. �
Note that from (6.22) and result (6.11b),

S (Q1) = S (JF1
) = {F1, (n̄F1

,min (m̄F1
,m)]} . (6.25)

By definition of set B we have B1 = min (m̄F1 ,m) from (6.25), and hence
Bi can be determined ∀i by using (6.24).

Corollary 6.3 Q(i, j) = 0 ∀i ∈ [1, n] \ F ,∀j ∈ [1, |F|]. Also, ∀j′ ∈ [1, |F|],
Q(i, j) = 0 ∀j ∈ [1, j′) such that i = Fj′ .

Proof: Let Q′′ denote the submatrix formed from the first n rows of Q.

Since n̄F1 > n, from Corollary 6.2 we can write
i⋃

j=1

{Fj} = Ŝ (Q′′i ). Thus,

referring this relation and Definition 6.2, if an index is not in the set F ,
the corresponding row of Q′′ and hence Q has no non-zero element. The
latter part is proved by (6.19) considering the facts that J is diagonal and
Fi+1 > Fi. �
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The relations derived in Corollaries 6.2, 6.3 can be visualized through
the graphical illustrations in Figures 6.3, 6.4. For instance, comparing
Figures 6.4a-6.4b or 6.4d-6.4e clearly shows that non-zero elements in
the first n rows of the thin Q factor are only in those ones indexed in F ,
as indicated by Corollary 6.3.

From Corollaries 6.2 and 6.3 we infer that the non-zero structure of all
the |F| columns of Q can be stored using a scalar for n̄F1

and two integer
vectors of dimension |F| containing the index sets F and B, where Bi =
max (min (m̄i,m) , m̄i−1). In order to only compute the non-zeros of R,
while constructing each of its column, we need to find and store a scalar
j′ as shown in Corollary 6.1. This is done by using the relations described
in Theorem 6.1, Corollary 6.1 and (6.23). Specifically, when computing
the ith column of R (i > 1), j′ is found by counting the number of times
Bj < n̄Fi for increasing values of j ∈

(
ĵ, i
)

until the condition is not

satisfied, where ĵ denotes the value of j′ for the (i− 1)th column of R.

6.4.3 Recursive updates

In the primal active-set method, a change in the active-set corresponds
to an index inserted in or deleted from the set F . We exploit the unique-
ness of thin QR factorization in order to update the structure indicating
sets F and B. When an index t is inserted in the active-set of bounds, the
last column of Q and the ith column of R are deleted such that t = Fi,
and the QR factorization is updated by applying Givens rotations that
triangularize R. In this case F is simply updated to F ′ = F \ {t} and
B is updated such that (6.24) is satisfied after removing its ith index.
Morover, using Corollary 6.3, the Givens rotations are not applied on
the tth row of Q which is simply zeroed. Figure 6.3 shows an example
with the exact sparsity pattern of the matrices before and after an update
in the active-set. On the other hand, when an index t is removed from
the active-set of bounds, F is updated to F ∪ {t} such that Fj+1 > Fj ,
∀j. If t is inserted in F in the jth position, an index is inserted in the jth
position of B using (6.24) and the elements with position greater than j
are updated to satisfy (6.24). Figure 6.4 shows an example where these
recursive updates rules can be applied to estimate the sparsity pattern.
Since the sparse structure of the updated QR factors is known during
recursive updates, using F , B and Corollary 6.3, the flops for applying
Givens rotations on rows of Q and matrix-vector multiplications in the
Gram-Schmidt (re)orthogonalization procedure are performed only on
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Figure 6.3: Illustration showing changes in sparsity pattern of JF formed
from columns of the Jacobian matrix J in Figure 6.2a, and its thin QR
factors (obtained without reorthogonalization) when an index is removed
from the set F , which is updated to F ′ = F \ {3}. Referring Corol-
lary 6.2, n̄F1 = n̄F′1 = 15, and the set B can be recursively updated from
{16, 20, 20, 22} to {16, 20, 22}. The asterisks mark non-zero entries.
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Figure 6.4: Illustration showing changes in sparsity pattern of JF formed
from columns of the Jacobian matrix J in Figure 6.2a, and its thin QR factors
when an index is inserted in the set F , which is updated to F ′′ = F ∪ {6}.
Referring Corollary 6.2, n̄F1 = n̄F′′1 = 15, and the set B can be recursively
updated from {16, 20, 20, 22} to {16, 20, 20, 20, 22}. The asterisks mark non-
zero entries.
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non-zero elements. This makes the QR update routines significantly
faster as is reflected in the numerical results described in Section 6.5.

6.4.4 Advantages and limitations

The predicted non-zero structure of the Q-factor via (6.19) is exact if and
only if the set relation (6.11a) holds with equality. For (6.11a) to hold with
equality for Q, Q>j JFi must be non-zero for all pairs of indices i and j re-
ferring the CGS orthogonalization in (6.7a) and moreover the summation
of non-zeros in the RHS of (6.7a) must result in a non-zero. Even though
theoretically this may not be the case for the matrices that we consider,
due to finite precision computations which disallow perfect orthogonal-
ity, and the use of MGS with potentially multiple orthogonalizations to
compute columns of Q, the predicted non-zero structure of columns of
Q via Corollary 6.2 rarely contains indices of zero elements, i.e., numer-
ically it is an accurate estimate and often the exact non-zero structure.
Referring to Corollary 6.1 and Algorithm 4.3, the same fact leads to the
conclusion that if multiple orthogonalizations (for numerical robustness)
are performed, in the worst case, the upper-triangular part of theR factor
may have no zero elements. Nevertheless, the initial sparsity in R before
reorthogonalization is still exploited in its construction but the worst-
case fill-in makes it necessary to use R as a dense upper-triangular matrix
when solving the triangular system by back-substitution to compute the
solution of the underlying LS problem.

From Theorem 6.1, we observe that the predicted non-zero structure
of columns Qj ,∀j ≥ i, would contain at least the indices of non-zero ele-
ments in the ith column of JF . Hence, in case Nu < Np, referring the
analysis in Section 6.4.2, the fill-in of Q can be reduced by a re-ordering
of the decision variable vector in (6.4) such that the columns of J corres-
ponding to the variables uk+Nu−1 are moved to become its last columns.
Note that even though this re-ordering does not optimize the fill-in of Q,
for which dedicated routines exist in literature (cf. [64]), it still allows a
relatively simple and a computationally effective implementation of re-
cursive thin QR factorization for the matrix of interest through a straight-
forward extension of the methods described in Section 6.4.3.

In order to benefit computationally from the recursive updates, a full
storage of the thin QR factors is required. This causes greater memory
requirement beyond a certain large problem size where a sparse-storage
scheme would need smaller memory considering that with conventional
sparse linear algebra, one would only compute and store the R factor
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while always solving the LS problem from scratch instead. However,
the latter approach could turn out to be computationally much more ex-
pensive. Using the techniques discussed in Sections 6.4.2 and 6.4.3 with
a sparse-storage scheme could address this limitation specific to large-
scale problems for memory-constrained applications but it needs a much
more intricate implementation with cumbersome indexing, that is bey-
ond the scope of this thesis.

6.5 Numerical results

6.5.1 Software framework

In order to implement the (nonlinear) MPC controller based on formula-
tion (3.8) or (3.10), one only needs the code for Algorithm 5.1. The inner
BVLS solver may be alternatively replaced by another algorithm that ex-
ploits sparsity via the abstract operators for instance the fast gradient
projection algorithm we mentioned earlier i.e., Algorithm 4.4. Besides,
routines that evaluate the model (6.1) and the Jacobian matrices i.e., the
model coefficients in (6.2) are required from the user in order to evaluate
the residual and perform the linearization step (or alternatively finite-
differences) in BVNLLS. Note that an optimized self-contained code for
these routines can easily be generated or derived by using symbolic tools
such as those of MATLAB or the excellent open-source software Cas-
ADi [68]. This signifies that, except for the user-defined model and tun-
ing parameters, the software does not need any code-generation, as for
a given class of performance indices the code for Algorithms 5.1, 6.1-
6.2 does not change with the application. The user is only required to
provide the MPC tuning parameters and a symbolic expression for the
model (6.1), which eases the deployment of the proposed MPC solution
algorithm in embedded control hardware.

6.5.2 Computational performance

The results presented in this section are based on a library-free C im-
plementation of BVNLLS based on Algorithms 6.1 and 6.2, and the BVLS
solver based on sparse recursive thin QR factorization routines discussed
in Section 6.4. The reader is referred to Section 5.4 for details on simula-
tion settings and benchmark solvers related to the following discussion.
All the non-convex optimization problems in the simulations referred
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below were solved until convergence, on a Macbook Pro equipped with
8GB RAM and 2.6 GHz Intel Core i5 processor. Figure 6.5 shows that
the proposed methods allow BVNLLS to outperform its dense linear al-
gebra based variant even on small-sized test problems by almost an or-
der of magnitude on average. As compared to other solvers which are
instead applied to the benchmark formulation (3.6), i.e. the SQP solver
(fmincon) of MATLAB and the interior-point solver (IPOPT) of [61], a
reduction in computational time by around two orders of magnitude
is observed for the small-sized test problems. This reduction can be
credited to the fact that IPOPT, which is based on sparse linear-algebra
routines, is more effective for large-sized problems, and that BVNLLS
exploits warmstarts based on the previously computed solution which
is provided from the second instance onwards. Figure 6.6 suggests that
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Figure 6.5: Computational time spent by each solver during NMPC sim-
ulation of CSTR for increasing values of Np = Nu = n/3, n set of box-
constraints and 2Np equality constraints.
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despite being based on an active-set algorithm, the proposed sparsity-
exploiting methods empower BVNLLS to significantly outperform the
benchmarks even for large-sized problems.
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Figure 6.6: Computational time spent by each solver during NMPC simula-
tion of CSTR for large values ofNp = Nu = n/3 with n set of box-constraints
and 2Np equality constraints.

6.6 Conclusions

This chapter presented a new approach to solving constrained linear and
nonlinear MPC problems that, by relaxing the equality constraints gen-
erated by the prediction model into quadratic penalties, allows the use
of a very efficient bounded-variable nonlinear least squares solver. The
linear algebra behind the latter has been specialized in detail to take into
account the particular structure of the MPC problem, so that the resulting
required memory footprint and throughput are minimized for efficient
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real-time implementation, without the need of any external advanced
linear algebra library.
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Chapter 7

Conclusions

The main objective of this thesis was to address issues that limit the
application of model predictive control (MPC) in fast-sampled systems
with nonlinear and/or varying dynamics, resource constraints, and par-
ticular requirements for embedded implementation. Considering the
significant applicability of data-driven or black-box linear models which
are often identified in input/output (I/O) form, we developed an MPC
approach that directly employs them for greater computational effi-
ciency, unlike modern linear MPC design approaches which rely on
their state-space realization. The results presented in this thesis sug-
gest that formulating the MPC optimization problems in a structured
non-condensed manner that allows the application of fast solution al-
gorithms, can give rise to implementations that may be significantly
faster than existing approaches for linear and nonlinear MPC. Research
on algorithms that exploit sparsity in the MPC optimization problems
has been mainly on first-order and interior-point solvers in literature,
with scant attention to problems with varying model and MPC tun-
ing parameters. In this thesis, we have shown that by implementing
active-set algorithms which take advantage of warmstarts and the sparse
problem structure by efficiently updating matrix factorizations, it is pos-
sible to achieve a better numerical performance and adaptation to MPC
parameters compared to many other existing algorithms, even for large
problem sizes. Moreover, this is achieved without using external lin-
ear algebra packages, and with numerical robustness in single precision,
which is often necessary to have for code deployment in industrial em-
bedded hardware platforms. These results are thus expected to broaden
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the scope of MPC in applications where resource constraints may have
formerly restricted its use.

7.1 Summary of contributions

• Chapter 2 presented two main ideas related to linear MPC. The first
idea was to show how the MPC optimization problem can be for-
mulated based on a linear I/O model in order to achieve a faster
performance as compared to the conventional state-space based
approach. The second idea focussed on formulating the problem
in a way that grants the application of fast and simple optimiza-
tion solvers while handling infeasibility. We also showed how sta-
bility enforcing constraints can be imposed with such a formula-
tion based on I/O models. The results demonstrated that having a
simple sparse formulation allows fast construction of the optimiz-
ation problem which is suitable for linear parameter-varying MPC.

• The results for linear MPC were extended to the nonlinear case in
Chapter 3 where we discussed simple box-constrained nonlinear
least-squares problem formulations that result in a special sparse
structure of the matrices involved. The main idea was to use pen-
alty functions that eliminate nonlinear equality constraints. The
same chapter also included a discussion on the relation between an
iteration of the quadratic penalty method (QPM) with the bound-
constrained augmented-Lagrangian approach. It was shown via
a numerical example that using the proposed approach that is a
single iteration of the QPM, infeasibility can be implicitly handled
and at the same time the solution can be achieved with negligible
suboptimality by appropriately tuning the penalty parameter.

• The latter part of the thesis focussed on fast solution algorithms
that maximize the benefits of the proposed formulations. Chapter 4
presented a primal active-set method based solver, which is very
efficient due to a novel implementation of linear algebra meth-
ods. Specifically, numerically stable methods for recursive thin QR
factorization were discussed in context of the primal active-set al-
gorithm. A numerical comparison of the solver with existing meth-
ods was included along with a discussion on hardware implement-
ation aspects.
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• Chapter 5 focussed on the proposed algorithm for solving box-
constrained nonlinear least-squares problems. Specifically, we pro-
posed a simple line-search algorithm that employs the BVLS solver
discussed in Chapter 4 for computing the search directions. It
was shown with a theoretical proof that the proposed algorithm is
globally convergent. Numerical results showed that with the pro-
posed implementation, a superior computational performance can
be achieved w.r.t. the benchmark solvers.

• The solvers discussed in Chapters 4-5 focussed on algorithmic
development without taking into account the sparse nature of
the non-condensed MPC problems. This issue was addressed in
Chapter 6, where we developed new methods for exploiting prob-
lem sparsity using the proposed solvers. It was shown that while
doing so, the problem construction step in MPC design can be elim-
inated by abstracting matrix instances in the solution algorithm,
which is parameterized in terms of model and tuning parameters.
This allows for significantly fast implementations which are also
very suitable for applications where model and tuning parameters
may vary in real time. These methods thus make it possible to have
a stand-alone algorithmic framework free from code-generation re-
quirements for linear, nonlinear and adaptive MPC variants based
on a given problem formulation. Moreover, the same framework
allows to trade-off memory and computations by appropriately
choosing the BVLS solver and fine-tuning the code of abstract mat-
rix operators.

• Another important novel contribution of this thesis was the devel-
opment of efficient methods for sparse recursive thin QR factoriz-
ation, for their application in the proposed active-set algorithms in
relevance to the considered non-condensed MPC formulations. In
active-set methods for box-constrained least-squares problems, the
overdetermined linear system solved in each iteration has varying
size and sparsity pattern, making it complicated to exploit sparsity.
We theoretically analyzed the sparsity pattern and its variation in
each iteration by using the matrix relations from Gram-Schmidt or-
thogonalization, and proposed easy to implement tricks through
which maximum benefits of problem sparsity can be derived. This
content was also included in Chapter 6 where numerical results
demonstrate that these techniques result in considerably faster im-
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plementations of the proposed solvers, which may significantly
outperform existing benchmarks.

7.2 Open problems for future research

Considering that the methods discussed in this thesis add contributions
to the existing literature on optimization for MPC, in this section we
discuss possible extensions and relevant problems that remain to be ad-
dressed, for which further research is highly encouraged.

• Broader implementation: Although the proposed MPC approach
is based on a very broad class of models, the discussion in this
thesis was limited to a quadratic performance index for refer-
ence tracking problems and to simple bounds on variables as con-
straints. It was shown that the same methods can be extended for
problems with different sum-of-squares cost functions and with in-
equality constraints of general type if their slight relaxation is toler-
able. However, such a generic implementation needs further effort,
which may be motivated in future by applications with such spe-
cifications.

• Matrix-free implementation: Methods for achieving an NMPC
solver with scant memory usage were discussed in this thesis but
not implemented. A comparison of such methods with existing
implementations would give a broader insight on the trade-off
between memory and computations. The author plans to test such
algorithms in future on industrial embedded hardware platforms.

• Methods to avoid ill-conditioning: The quadratic penalty func-
tion based formulation of MPC problems inherently causes the
linear systems solved in the proposed BVLS algorithm to have a
high condition number. For this issue, numerically stable linear
algebra methods were discussed in Chapter 4. Specifically, or-
thogonal decomposition methods were discussed, for which the
condition number of the factorized matrix is square root as com-
pared to the matrix of normal equations. However, using the tech-
niques described in [11, Section 17.1], one can reformulate the nor-
mal equations to a well-conditioned system of linear equations in
higher dimension (cf. [11, Equations 17.20-17.21]) through the in-
troduction of as many additional variables as the number of equal-
ity constraints (that are eliminated through the quadratic penalty).
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Using this technique with the methods proposed in this thesis,
the resulting reformulated linear systems would need the (recurs-
ive) factorization of a symmetric positive definite matrix, which
would change in BVLS iterations only by insertion or deletion of
a given row and column. This can be efficiently solved via re-
cursive Cholesky factorization or alternatively by recursive QR fac-
torization. The advantage of numerical robustness with this ap-
proach, which was not discussed in this thesis, comes at the cost of
solving a larger linear system in each iteration of the BVLS solver.
Moreover, development of methods to avoid potential numerical
error accumulation if one uses recursive Cholesky factorization and
methods to exploit sparsity while using this approach, remain as
unsolved challenges. Thorough research is required to quantify the
pros and cons of this approach, which could be a useful alternative
for the linear algebra involved in BVLS for QPM based MPC in em-
bedded platforms relying on low precision computing.

• Bound-constrained augmented-Lagrangian method (BLM): Even
though we discussed in Chapter 3 that this method has limitations
concerning computational efficiency, and convergence in case of
problem infeasibility, it is an interesting approach considering that
general (nonlinear) constraints may be handled without relaxation.
This framework was barely explored and was not tested in this
thesis but given its ability to handle such constraints precisely, it is
expected to perform well in cases where the QPM based approach
cannot be applied, for instance, to generate hot-starts for mixed-
integer problems or hybrid MPC problems [69], by considering the
integer variables as (real) continuous ones subject to strict quad-
ratic equality constraints. This is based on the fact that for sum-
of-squares cost functions, the BLM subproblems can be formulated
as box-constrained nonlinear least-squares problems as shown in
Chapter 3 in order to benefit from the efficient solution methods
already described in this thesis (cf. Chapters 5 and 6).

• Stability analysis for nonlinear MPC: The focus of this thesis was
partial towards efficient solution methods for MPC and discussion
on stability analysis was limited to the linear time-invariant MPC
case, where we proved that under certain conditions stability can
be enforced despite of relaxtion of the equality constraints. Unfor-
tunately, this issue was not addressed for the nonlinear MPC case.
However, considering that the relaxation of the nonlinear equality
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constraints due to suboptimality can also be considered as an un-
certainty in the prediction model, there are relevant articles in the
literature which might tackle this theoretical issue; specifically, the
reader is referred to the work of D. Limon et al., cf. [70, 71].

• Numerical analysis and exact complexity certification: Limited
numerical precision in embedded platforms can be a challenging
problem from an implemention perspective. This thesis partially
addressed this issue in Chapter 4 by using numerically stable linear
algebra routines for BVLS, which may work well in practice. How-
ever, a thorough complexity certification analysis is required for
establishing practical guarantees by knowing the worst case num-
ber of iterations through which worst-case numerical error bounds
may also be derived. Several research articles existing in the recent
literature address this problem based on complexity certification
of the optimization algorithm and aid in deriving bounds on nu-
merical error for a fixed-point implementation. In [52, 72–74] such
results have been established for first-order methods whereas in-
terestingly, in [75, 76] these results are discussed for active-set QP
algorithms. An extension of such results to the proposed BVLS
algorithm would significantly increase its appeal from a practical
viewpoint. However, this topic needs much further research in or-
der to verify whether such an extension is possible.
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