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Abstract 
 

In the last two decades, neuroscientists have tried to establish the 

way in which anatomically connected groups of neurons, despite 

displaying non synchronized neural activity, can work together 

according to a specific functional architecture. From a 

methodological perspective, the analysis of such neural 

organization requires the possibility to measure and integrate the 

information extracted from large portions of cortex. To this end, 

recent methodological advancements have prompted the 

emergence of a new approach, namely multi-voxel pattern 

analysis (MVPA). Most recent MVPA has also been bred with 

complex machine learning techniques, which allow to identify 

whether information is represented in a region (e.g., decoding), 

and how such information is coded in specific patterns of neural 

activity (e.g., encoding). 

Here, we discuss four MVPA algorithms successfully applied 

in three different functional Magnetic Resonance Imaging (fMRI) 

studies. In the first experiment, brain activity of the left fronto-

temporal cortex was analyzed using a rank-based multi-class 

decoding algorithm to identify which brain regions were able to 

discriminate the seven Italian vowels during their listening, 

imagery and utterance. Moreover, by means of a canonical 

correlation analysis, we linearly reconstructed an acoustic, 

frequency-based model of vowels, using the neural information 

extracted from the left superior temporal sulcus and the left 

inferior frontal gyrus. In the second experiment, four models, 

based on either perceptual or semantic features, were tested to 

predict brain activity of the left parietal cortex employing a 

representational similarity encoding algorithm. Finally, in the 

third fMRI experiment, using a multivariate technique, we were 
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able to recognize at the individual subject level memories of real 

autobiographical events, highlighting both the time frame at 

which the recollection occurred and the brain networks involved 

in such process. 

Overall, these studies tackle the role of machine learning 

algorithms applied to multivariate patterns of brain activity, and 

emphasize how the combination of these methods allows an 

assessment where the information is encoded, spread and 

organized in the human brain. 
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1. Introduction 
 

Brief introduction to decoding and encoding. In recent years, 

machine learning approaches have been successfully applied to 

multivariate neuroimaging data (Norman et al., 2006). Machine 

learning is a relatively novel branch in computer science to 

achieve computational learning and pattern recognition 

(Mitchell, 1997). While inferential statistics was conceived to 

provide evidence at a population level, computational statistics 

and machine learning aim to learn from data and to make 

reliable predictions on it. 

This new approach has becoming predominant in functional 

Magnetic Resonance Imaging (fMRI), since, by combining 

information across multiple voxels, the sensitivity to detect an 

effect of interest is ultimately increased (Haynes et al., 2015). 

Moreover, evidence suggested that the neural correlates of 

stimulus perception as well as of higher cognitive functions (i.e., 

mental representation) may be grounded in the activity of large 

ensemble of neurons, sampled across a wide pattern of blood-

oxygen-level dependent (BOLD) activity (Haxby et al., 2001; 

Kriegeskorte et al., 2008). Thus, the shift between analyses 

performed at single voxel level to analyses carried out on a large 

extent of voxels (i.e., multi-voxel pattern analysis -MVPA-) is 

favorable both from a methodological perspective and from a 

functional one. Indeed, this shift could be seen as the modern 

counterpart of the conceptual advancement between localism 

and holistic views of brain functioning during the history of 

neuropsychology (Norman et al., 2006). 

Techniques based on MVPA can be approximately divided in 

two broad categories, the decoding and encoding algorithms 

(Haynes et al., 2015). The decoding approach attempts to map 
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the neural activity into the space defined by stimulus features, 

whereas encoding does the opposite (Naselaris et al., 2011). In 

other words, in the encoding approach, one measures the effect 

of the modulation of the experimental variables on neural 

activity, whilst in the decoding procedure, one aims at revealing 

the dimensions represented in neural activity. Even if encoding 

techniques strictly require the development of specific feature-

based models, they are in general favourable, since they can in 

theory fully describe the neural space, while a decoding 

approach always offers a partial description. Moreover, a 

decoding procedure can be easily built upon a successful 

encoding model while the opposite is not always possible.  

In this view, the decoding is generally based on classification 

algorithms (Pereira et al., 2009) which use information 

distributed across multiple voxels (as in MVPA), while the 

encoding adopts a priori models crafted by the experimenter to 

predict neural activity mostly at single-voxel level (Mitchell et 

al., 2008; Naselaris et al., 2009, Huth et al., 2016). 

 

Our perspective. During my PhD, I implemented four different 

algorithms applied to three fMRI studies. These procedures have 

already been presented in the scientific literature, but here I 

adapted their analytical properties to our specific experimental 

designs and aims and, at the same time, improved their 

operational robustness. For these purposes, using Matlab 

(©TheMathWorks, Inc.), I developed:  

 a decoding algorithm based on rank accuracy to handle multi-

class scenarios, as described in a seminal paper by Mitchell 

and colleagues (Mitchell et al., 2004) (see Chapter 2);  

 a canonical correlation algorithm (Hotelling, 1936), to 

reconstruct multi-dimensional feature-based models using 
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information from multiple voxels, aiming to improve the 

current single-voxel encoding pipelines (Naselaris et al., 2011) 

(see Chapter 3); 

 a representational similarity analysis algorithm (Anderson et 

al., 2016b) applied across different models and groups (see 

Chapter 4);  

 an improved version of the algorithm originally proposed by 

Mitchell and colleagues (Mitchell et al., 2008), which merges 

encoding and decoding procedures in an integrated 

framework (see Chapter 5). 

In addition, all these procedures relied on permutation tests 

(Schreiber and Krekelberg, 2013) to obtain unbiased, robust 

estimation of statistical significance and were also developed and 

coded to limit their computational loads. 

 

Rank accuracy decoding algorithm. The first algorithm 

developed and tested in Rampinini and Handjaras et al., 2017 

(see Chapter 2) was adapted from an early work of Mitchell’s 

group (Mitchell et al., 2004). The procedure entails a searchlight 

(Kriegeskorte et al., 2006) and a rank-based classifier to handle 

multi-class data (see Figure 1.1). The rank-based algorithm 

offered many advantages, since it had a chance level centered on 

50% even if it was designed to handle multiple classes of stimuli, 

and it was fast from a computational viewpoint. Thus, rank-

based algorithms allowed the use of easily interpretable 

measures (e.g., sensitivity, specificity) and to plot receiver 

operating characteristic (ROC) curves (Hand et al., 2001) to 

interpret the results. 

The algorithm requires the acquisition of brain activity of n 

stimuli pertaining to m classes, where n must be larger than m 

(e.g., at least two stimuli for each class).  
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First, a spherical searchlight with a specific radius r (i.e., 

generally 6 to 10 mm) is moved throughout the volume of 

interest. Each time the sphere shifts in position, its center lays on 

a specific voxel and the patterns of neural responses elicited by 

the experimental stimuli are collected within the boundaries of 

the searchlight. Subsequently, selected response patterns are 

generally normalized and feed a cross-validation leave-one-

stimulus-out algorithm. For each iteration, a distance measure is 

computed between the pattern of the left-out stimulus and the 

patterns related to the m classes, assembled by averaging the 

remaining stimuli within-class. Usually, to represent pattern 

distances, a similarity measure is used (e.g., Pearson’s r 

correlation, Spearman’s , or cosine; see Kriegeskorte et al. 2008; 

Mitchell et al., 2008; Nili et al., 2014). 

Second, the collected distances for the left-out stimulus are 

converted into a rank-ordered list of the potential classes from 

the least likely category (higher distance, lower similarity, rank 

m) to the most likely (lower distance, higher similarity, rank 1). 

The rank list is then adjusted in a rank accuracy measure, so that 

the chance level is always 50% (corresponding to m/2 in the 

rank-ordered list), regardless of the number of classes involved. 

Accuracy measures of the stimuli pertaining to each class are 

averaged and ultimately the procedure generates an accuracy 

value for each class in each voxel and subject.  

Third, group accuracies are then obtained by averaging the 

accuracy measures across subjects, thus resulting in a group 

accuracy value at each voxel for each class. To assess the 

statistical significance, group accuracy values are tested against 

chance by using a permutation test (Pereira et al., 2009). Briefly, 

the membership of the stimuli to the classes is shuffled in order 

to generate k (e.g., minimum 1,000 iterations) permuted matrices. 
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Each permuted matrix is then used in the same searchlight 

procedure described above. The permutation test generates a set 

of k null accuracies for each class in each voxel and subject. Since 

the permutation schema is kept fixed across subjects, group-level 

null accuracies are obtained by simply averaging single subject 

null distributions (Winkler et al., 2016). Then, a one-sided rank-

order test is performed to obtain the empirical p-value for each 

voxel and class. 

 

 
Figure 1.1. The flowchart diagram depicts the searchlight procedure combined with a 

rank-based classifier to handle multi-class data. 
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Fourth, for the correction of multiple tests, one can adopt a 

family-wise error rate (FWE) correction or a False Discovery Rate 

(FDR) procedure (Genovese et al., 2002). Moreover, the 

permutation test offers two other robust opportunities to correct 

the results: 1) by directly extracting a null distribution of 

maximal accuracies across voxels and permutations; 2) by 

generating a null distribution of the largest clusters obtained 

when thresholding the null data at a voxel-level p-value of 

interest (Nichols et al., 2002; Eklund et al., 2015). Then, a one-

sided rank-order test is performed to obtain the threshold (at 

voxel level or related to the minimum cluster size) at the α-value 

of interest. 

 

Canonical Correlation Analysis to reconstruct multivariate 

models. The second algorithm developed and tested in 

Rampinini et al., 2019 (see Chapter 3) was conceived to linearly 

reconstruct stimulus models from BOLD activity in specific 

regions of interest (ROIs). We selected Canonical Correlation 

Analysis (CCA; Hotelling, 1936; Bilenko & Gallant, 2016) since it 

was conceived to find the best associations between two 

multidimensional variables. In the implementation proposed by 

Bilenko & Gallant (2016), the authors used CCA as a hyper-

alignment technique (Haxby et al., 2011), whereas here we 

exploited CCA to reconstruct a multidimensional model using 

information extracted from multiple voxels. Our approach aimed 

at overcoming the limitations of the current encoding pipelines 

which used a model to predict neural activity of single voxels.  

We first defined X as a matrix n*f, where n are the stimuli and 

f the stimulus features, and Y as a matrix n*v, where n are the 

patterns of brain activity evoked by the stimuli described in X 

and v are the voxels of a region of interest. Indeed, CCA 
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provides a set of basis vectors so to maximize the correlations 

between the projections of the variables of interest (i.e., canonical 

variables of X, Y) onto these basis vectors. 

The X matrix usually contains the descriptors of the stimuli 

(e.g., acoustic frequencies, semantic features), whereas the Y 

matrix instead consists of the elicited patterns of BOLD activity, 

normalized within each voxel. Since Y could be a non full-rank 

matrix, depending on the number of v voxels as compared to the 

n stimuli, Singular-Value Decomposition (SVD) is employed 

before performing CCA. In details, for each subject, the rank of Y 

was reduced by retaining the first eigenvectors to explain at least 

90% of total variance (thus to obtain a Yr, with n rows and d 

columns, where d is imposed ≥ f). Subsequently, within each 

subject, a leave-one-stimulus-out CCA is performed. Specifically, 

for each iteration, the canonical coefficients and variables -two 

matrices of (n-1)*f each- are estimated. Since the canonical 

variables could be rotated if compared to the original matrices X 

and Yr, within the cross-validation procedure, a procrustes 

analysis is performed to align the canonical variable of X to X 

and this linear transformation is retained. Then, for each of the 

left out stimuli, the canonical coefficients and the transformation 

matrix from the procrustes analysis are applied to the left-out 

exemplar of Yr to obtain a predicted canonical variable of Yr 

associated to the features space. As a goodness-of-fit measure, R2 

was computed between the group-averaged predicted canonical 

variable of Yr and the X matrix (see Figure 1.2). 
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Figure 1.2. The flowchart diagram depicts the Canonical Correlation Analysis procedure. 

 

The entire CCA procedure is validated by a permutation test 

(minimum 1,000 k iterations permutations): specifically, for each 

iteration, the labels of brain activity patterns (i.e., the rows of the 

Y matrix) are randomly shuffled and subjected to the leave-one-

stimulus-out CCA as described above. This procedure provides a 

R2 null distribution related to the group-level predicted canonical 

variables. A one-sided rank-order test is then carried out to 

derive the p-value associated with the original R2 measure.  

The main disadvantage of the CCA algorithm is the high 

computational load required to conduct a whole brain analysis. 
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For this reason, in Rampinini et al. (2019), we performed the 

CCA in few ROIs and correction for multiple comparisons was 

carried out using Bonferroni criterion. 

 

Representational Similarity Encoding analysis. The third 

algorithm developed and tested in Handjaras et al., 2017 (see 

Chapter 4) was an implementation of the one recently proposed 

by Anderson and colleagues (2016b). The Representational 

Similarity Encoding (RSE) merges Representational Similarity 

Analysis (RSA) and model-based encoding in a unique decoding 

approach and it is specifically designed to compare the 

performances of models with different dimensionality. Indeed, 

model encoding suffers of overfitting issues when high-

dimensional models are used as predictors of brain activity and 

often requires the estimation of several hyper-parameters 

(Haynes et al., 2015). To overcome these limitations, authors 

could acquire larger amount of data and adopt cross-validations 

techniques (Huth et al., 2016) which ultimately increased 

computational load. However, Anderson and colleagues 

(20016b) conceived a valid and fast alternative based on RSA. 

Representational spaces (RSs) are generally derived by 

measuring stimulus similarities both in the space defined by 

their descriptions (e.g., semantic space) and in the space defined 

by the elicited brain activity (i.e., neural space). These two RSs 

are created by simply comparing each pair of experimental 

conditions (i.e., stimulus features or patterns of brain activity) 

using similarity measures (e.g., Pearson’s r correlation, 

Spearman’s , or cosine; see Kriegeskorte et al. 2008; Mitchell et 

al., 2008) or even using classical metric ones (e.g., Euclidean or 

Manhattan distances; see Nili et al., 2014). The results of the 

procedure is a symmetric matrix n by n (where n are the number 
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of stimuli) of distances (e.g., 1-r), which serves as a global 

descriptor of brain regions and models (Kriegeskorte et al., 

2008b). 

In the RSE approach, first two RSs are created, one from the 

model space, one from the neural activity of a specific ROI. Then, 

a leave-two-stimulus-out cross-validation procedure is 

performed. Briefly, for each iteration, two stimuli are randomly 

selected and the corresponding rows (i.e., similarity vectors) in 

the two RSs are retained. Subsequently, the elements related to 

the two stimuli are removed from the similarity vectors, since 

they contains zero (i.e., the dissimilarity of the stimulus with 

itself) or their reciprocal similarity. Then, reduced similarity 

vectors representing neural and model information for the two 

left-out stimuli are compared with each other (i.e., Pearson’s r) 

and the score of similarity is converted in an accuracy measure 

(Mitchell et al., 2008; see Figure 1.3). 

Lastly, to assess the significance of the RSE analysis, the 

resulting accuracy value is tested against the null distribution 

from a permutation test in which both the neural and behavioral 

matrices are shuffled (1,000 permutations minimum, one-tailed 

rank test). 
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Figure 1.3. The flowchart diagram depicts the Representational Similarity Encoding 

procedure. 

 

Single subject MVPA using the encoding/decoding pipeline of 

Mitchell and colleagues (2008). The fourth algorithm developed 

and tested in Benuzzi et al., 2018 (see Chapter 4) was adapted 

from a pivotal paper of the Mitchell’s group (Mitchell et al., 

2008). 

Briefly, as proposed by Mitchell and colleagues (2008), a 

machine learning algorithm is used to predict BOLD activity 

employing encoding dimensions as predictors. Specifically, a 

least-squares multiple linear regression analysis nested within a 
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leave-two-stimuli-out cross-validation procedure, generates a set 

of learned weights able to predict the patterns of brain activity of 

the two left-out stimuli. Hence, for each iteration, the model is 

first trained with n-2 out of n stimuli, then only i voxels that 

shows the highest coefficient of determination R2 (e.g., 500) and 

with a cluster size larger than j voxels (e.g., 20, to remove small 

isolated clusters; see below) are considered. Once trained, the 

resulting algorithm is used to predict the fMRI activation within 

the selected voxels of the two left-out stimuli. Subsequently, 

accuracy is calculated by means of a decoding procedure, 

measuring the match between the predicted and the real BOLD 

patterns of the two left-out stimuli using a similarity measure 

(see Figure 1.4).  

Finally, the single-subject accuracy is tested for significance 

against the null distribution of accuracies generated with a 

permutation test by shuffling the labels of the rows of the 

encoding matrix (Schreiber and Krekelberg, 2013; Handjaras et 

al., 2015) (one-sided rank test). 

The developed algorithm has one major difference with the 

original one. Indeed, to reduce the computational load, Mitchell 

et al. (2008) performed the analysis by imposing a predetermined 

set of voxels outside the cross-validation loop, by preselecting 

only the brain voxels with a high ‚stability score‛ (i.e., low 

standard deviation across stimuli). This choice could lead in 

principle to a slight overfit of the data and in general could 

systematically conceal several brain regions from the analysis 

(Akama et al., 2018). In our implementation (Benuzzi et al., 2018; 

Leo et al., 2016; Handjaras et al., 2016), we decided to move the 

selection of voxels within the cross-validation loop, since the 

main goal of this algorithm is to measure the discrimination 

ability of the encoding matrix and not to specifically isolate the 
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voxels responsible for that. However, this algorithm might lead 

to small, noisy clusters included in the training steps. To avoid 

this possibility, we adopted the following countermeasures: 1) a 

spatial filter to isolate grey matter only regions; 2) a volume 

correction with an arbitrary minimum cluster size to remove 

small isolated clusters, which hardly encode model information 

and likely represent false positives (e.g., overfitting of the 

training set). Indeed, high-level semantic information (Handjaras 

et al., 2016), hand-specific motor synergies (Leo et al., 2016) and 

autobiographical memory (Benuzzi et al., 2018) are encoded in 

wide patches of cortex. This size is at least two order of 

magnitude larger than our arbitrary minimum cluster size of 

twenty voxels (Huth et al., 2016; Hardwich et al., 2018; Svoboda 

et al., 2006).  

Moreover, it should be noted that the choice of voxel space 

size mapping the encoding matrix is arbitrary, even if several 

studies estimated this parameter with similar pipelines, at least 

in semantic tasks (Shinkareva et al., 2011; Chang et al., 2011; 

Pereira et al., 2013). 
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Figure 1.4. The flowchart diagram depicts the procedure proposed by Mitchell et al. 

(2008). 

 

In addition, we introduced another slight deviation from the 

original methodological pipeline developed by Mitchell et al. 

(2008). While Mitchell and colleagues used raw fMRI signal as 

input for the encoding analysis, we extracted the brain 

hemodynamic activity related to each stimulus after a multiple 

regression analysis. This procedure was carried out at single-

subject level to better control for head movement, baseline 

activity and drift effects.  

Despite these limitations, this algorithm is one of the most 

used procedures to deal with distributed, sparse representations.  
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2. Decoding vowels using searchlight and rank 

accuracy algorithm  
 

Abstract 
 

Classical models of language localize speech perception in the 

left superior temporal and production in the inferior frontal 

cortex. Nonetheless, neuropsychological, structural and 

functional studies have questioned such subdivision, suggesting 

an interwoven organization of the speech function within these 

cortices.  

We tested whether sub-regions within frontal and temporal 

speech-related areas retain specific phonological representations 

during both perception and production. Using functional 

magnetic resonance imaging and multivoxel pattern analysis, we 

showed functional and spatial segregation across the left fronto-

temporal cortex during listening, imagery and production of 

vowels. In accordance with classical models of language and 

evidence from functional studies, the inferior frontal and 

superior temporal cortices discriminated among perceived and 

produced vowels respectively, also engaging in the non-classical, 

alternative function – i.e. perception in the inferior frontal and 

production in the superior temporal cortex. Crucially, though, 

contiguous and non-overlapping sub-regions within these hubs 

performed either the classical or non-classical function, the latter 

also representing non-linguistic sounds (i.e., pure tones). 

Extending previous results and in line with integration theories, 

our findings not only demonstrate that sensitivity to speech 

listening exists in production-related regions and vice versa, but 

they also suggest that the nature of such interwoven 

organization is built upon low-level perceptual features.  
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Introduction 
 

According to classical models of speech processing, superior 

temporal and inferior frontal brain regions are consistently 

involved in speech perception and production, respectively 

(Price, 2012).  However, theories dealing with the relationship 

between perceived and produced speech have long debated 

whether and to what extent perceptual and articulatory 

information are integrated in language acquisition and use, 

either assuming that perception shapes production, or that 

production influences perception (Galantucci et al., 2006).  

The phoneme-specific specialization of the superior temporal 

cortex in perception, as well as the specialization of a wide 

prefrontal territory around Broca's area in production, are well-

known in the literature of phonological competence (Bouchard et 

al., 2013; Chang et al., 2010). Interestingly, many recent studies 

revealed that brain activity specific to phonological stimuli could 

be indeed isolated in the classical foci pertaining to both 

perception and production, using functional neuroimaging or 

electrophysiology methods (Rampinini, 2017). In particular, the 

superior temporal cortex has been shown to represent the overall 

acoustic form of syllables (Evans et al., 2015), syllable-embedded 

perceived consonants or vowel categories (Zhang et al., 2016), 

and even tones when phonologically marked (Feng et al., 2017), 

while a precise account of motor involvement during production 

or imagery of phonemes has received less attention in the 

existing literature (Skipper et al., 2017).  

Such rich and mixed picture sparked other questions: do distinct 

brain regions support different aspects of speech processing 

(such as perception, imagery and production of phonemes)? Do 

they share specific phonological representations? 
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In the context of theories debating an interwoven organization of 

speech perception and production, the Motor Theory of Speech 

Perception (MTSP) (Galantucci et al., 2006) argued in favour of a 

covert articulatory rehearsal mechanism, which would take place 

implicitly and automatically whenever a speaker is exposed to 

language, thus connecting the two ends of the perception-

production continuum.  

In this respect, functional neuroimaging and electrophysiological 

studies have recently sought to determine the relationship 

between the perceptual and articulatory stages of speech, 

seeking perception-related information in frontal areas engaged 

by production tasks, and production-related information in 

temporal areas engaged by perception tasks (Tankus et al., 2012; 

Correia et al., 2015; Cheung et al., 2016; Arsenault et al., 2015; Lee 

et al., 2012; Markiewicz et al., 2016). In these studies, multivariate 

analyses were exploited to reveal similarities in informational 

content between regions previously inferred to perform different 

functions (through classical activation experiments): a mixed 

picture of shared information and cortical space as well was 

assessed, thus tangentially supporting integration models such 

as those described. 

Similarly, virtual and real lesion studies failed to validate an 

exact correspondence between language impairments and 

information represented in the frontotemporal speech network: 

damage in one area may, or may not, entail loss of function in 

the other, as even sub-regions within such well-known 

perimeters appear to support different functions (Schomers & 

Pulvermüller, 2016; Josephs, et al., 2006; Hickok et al., 2011; 

Ardila et al., 2016). The idea of an interwoven cortical 

organization of speech function is also favoured by structural 

studies that reveal a fine-grained cytoarchitectonic, connectivity- 
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and receptor-mapping-based parcellation of fronto-temporal 

language areas (Amunts et al., 2010; Anwander, et al., 2007; 

Catani, et al., 2005; Amunts & Zilles, 2012). Therefore, 

disentangling the nature of the perception-production interface 

appears far from straightforward.  

According to these indications, we tested whether sub-regions 

within the frontal and temporal speech areas retain specific, 

functionally segregated phonological representations during 

both perception and production, and whether a possible covert 

rehearsal mechanism could be elicited, through articulation 

imagery, to simulate the production-perception interface 

postulated by the MTSP. To this aim, using functional Magnetic 

Resonance Imaging (fMRI) and multivoxel pattern analysis 

(MVPA), we measured the spatial overlap of the brain regions 

involved in stimulus-specific representations during vowel 

perception (listening), and production (imagined and overt 

articulation). Within a set of phonemes, the basic units of words, 

we selected vowels since they retain acoustic features (i.e., 

formants) that can combine together, thus to distinguish them in 

a discrete manner. Moreover, formant combinations emerge 

from unique articulatory gestures, so that their processing 

depends upon the same perceptuo-motor model (Hardcastle et 

al., 2010), differently from consonants (Obleser et al., 2010). 

Particularly, while consonants need to be embedded in syllables 

to be fully heard and articulated, vowels are self-standing 

phonemes with high salience. Vowels act as syllabic nuclei, 

prosodic aggregating centres and, ultimately, can carry stress 

(whereas consonants cannot), around which the phonic profile of 

words organizes (Hardcastle et al., 2010). Therefore, vowels offer 

an interesting perspective to investigate the workings of the 

perceptual and motor stages of speech. 
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Thus, building on previous knowledge on phoneme 

representation in the brain, we tried to provide a finer 

characterization of the fronto-temporal language cortex: in fact, 

we compared modalities of perception, production and 

articulation imagery. Crucially, we also assessed whether sub-

regions within the frontal and temporal hubs of the speech 

network support high-level, fully phonological representations 

of vowels exclusively, rather than sharing sensitivity to lower-

level acoustic stimuli (pure tones), not pertaining to categorical 

perception of the salient, linguistic kind.  
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Materials and Methods 
 

Participants. Fifteen right-handed (Edinburgh Handedness 

Inventory, mean laterality index 0.79±0.17) healthy, mother-

tongue Italian monolingual speakers (9F; mean age 28.5 4.6 

years) participated in this study, after its approval by the Ethics 

Committee of the University of Pisa.  

 

Stimuli. The seven vowels of the Italian language ([i] [e] [ε] [a] [ɔ] 

[o] [u]) were selected as experimental stimuli, along with seven 

pure tones (450, 840, 1370, 1850, 2150, 2500, 2900 Hz). Pure tones 

are physically simpler sounds with no harmonic structure, 

whereas vowels, despite being periodic waves as well, are 

endowed with acoustic resonances at specific frequency 

bandwidths, determined by the vocal tract modifying the source 

signal produced by the laryngeal mechanism. This structure 

yields a continuous emission of sound with a fundamental 

frequency (F0) and a number of overtones called formants (e.g., 

F1, F2, F3), in a combination that is unique for each vowel. The 

seven vowels from the Italian phonemic inventory can be 

disambiguated by the two lower formants F1 and F2, with F0 

being constant (Figure 2.1) (Hardcastle et al., 2010). 

Three separate, 2s natural voice recordings of each vowel (21 

stimuli) were obtained from a female Italian speaker using Praat 

(©Paul Boersma and David Weenink) a 44100 Hz frequency 

sampling rate (F0: 191±2.3Hz) and spectrograms were visually 

inspected for abnormalities. Pure tones were selected by dividing 

the minimum/maximum mean F1 range of the vowel set into 

seven, equally distanced bins; the resulting values were 

approximated to the closest Bark scale value and then converted 

back to Hertz, so that all tones would lie within the sensitive 
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perceptual bands in a psychophysical model (Zwicker, 1961). In 

Audacity (©Audacity Team), seven tones were thus generated 

using the input-frequencies associated to the Bark value obtained 

through the aforementioned procedure. 

 

Experimental procedures. A slow event-related paradigm was 

implemented with Presentation (©Neurobehavioral Systems, 

Inc.) and comprised two perceptual tasks (tone perception and 

vowel listening), a vowel imagery task and a vowel production 

one. To increase the amplitude of individual BOLD responses 

during scan time, all perceived vowels and tones, as well as the 

execution of imagery and production, were made to last for 2 

whole seconds, with the duration signalled by a green fixation 

cross that would turn black during resting time. All perceptual 

stimuli (tones or vowels) were thus administered in trials 

comprising 2s stimulus presentation, then followed by 8s rest. 

Imagery/production stimuli were administered in trials 

comprising 2s stimulus presentation, 8s maintenance, 2s task 

execution and 8s rest. For the imagery task, participants were 

instructed to perform mental articulation of a heard vowel with 

their own voice and simulating speech in their mind without 

ever moving; for the production task, they were instructed to 

speak naturally and at a normal volume, with rubber wedges 

and pillows secured so as to avoid head motion without 

constraining the chin and jaw. In the perceptual tasks (tone 

perception and vowel listening) subjects were instructed to lay 

still and listen attentively to the presented stimuli.  Globally, 

functional scans were 47m long, divided in 10 runs. Each of the 

three vowel recordings was presented twice, thus to obtain 42 

trials randomized within and across tasks and subjects, with 

each sound, either vowel or tone, being equally represented.  
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BOLD activity was measured using GRE-EPI sequences on a GE 

Signa 3 Tesla scanner (TR/TE=2500/30ms; FA=75°; 2mm 

isovoxel; geometry: 128x128x37 axial slices). Brain anatomy was 

provided by a T1-weighted FSPGR sequence (TR=8.16; 

TE=3.18ms; FA=12°; 1mm isovoxel; geometry: 256x256x170 axial 

slices). Stimuli were presented using MR-compatible on-ear 

headphones (30dB noise-attenuation, 40Hz to 40kHz frequency 

response).  

 
  
Figure 2.1. Vowel acoustic and motor spaces. Here, an ideal representation of the 

perceptuo-motor vowel space can be appreciated through a sagittal view of the head and 

phonatory apparatus (top). The articulators are labelled and the relationship that lip and 

tongue positions entertain with the first and second formant (F1 and F2) can be seen from 

the trapezoid shape representing the Italian vowel system. Below, the real first- and 

second formant measurements from our experimental stimuli are plotted in the F1/F2 

space, reproducing a projection of the pictured perceptuo-motor vowel space. In this 

chart, averages for each vowel are represented with blue dots, while measures from 

single recordings are represented with smaller, red dots (see legend: rec - recording). 

 



 23 

 

fMRI pre-processing. The AFNI software package (Cox et al., 

1996) was used to pre-process functional MRI data. First, all 

acquired slices were temporally aligned within each volume 

(3dTshift), corrected for head movement (3dvolreg), spatially 

smoothed (3dmerge) with a 4mm FWHM Gaussian filter, and 

within each voxel every timepoint was divided by the mean of 

the time series. A multiple regression analysis was then 

performed on runs (3dDeconvolve), to identify stimulus-related 

BOLD patterns. Movement parameters and signal trends were 

included in this procedure as regressors of no interest. 

Specifically, we used TENT functions for the estimation of BOLD 

activity (T-values), focusing on the third time point (7.5 seconds) 

after the acoustic stimulus onset or task execution (imagery or 

production). By doing this, we aimed at limiting sensory-motor 

and maintenance-related information, possibly biasing the signal 

preceding vowel imagery and production (Leo et al, 2016; 

Connolly et al., 2012). BOLD activity related to the acoustic 

stimulation in the imagery and production tasks was discarded. 

Afterwards, T1 images were pre-processed in FSL (Jenkinson, et 

al., 2012) and nonlinearly registered (Andersson et al., 2007) to 

the Montreal Neurological Institute (MNI) standard space (2 mm 

iso-voxel; Fonov et al., 2009); then, the obtained deformation 

field was used to warp functional maps for each task type. 

 

Language-sensitive regions. Hereon, all analyses were 

performed within a pre-defined topic-based meta-analytic mask 

of language-sensitive regions. Specifically, the mask was selected 

from the Neurosynth database (Yarkoni et al., 2011), version 3, 

topic 21 out of 200, forward inference with a p<0.01 (False 

Discovery Rate -FDR- corrected)(Genovese et al., 2002; Poldrack, 
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et al., 2012). Keywords included terms related to language and 

phonological competence, among which were "speech, auditory, 

sounds, processing, perception, voice, pitch, listening, 

production, vocal, tones, voices, phonetic, syllable, linguistic, 

speaker, discrimination, spectral, vowel, language". The extent of 

the mask was 152,744 mm3 and comprised the bilateral posterior 

portion of the inferior and middle frontal gyrus, the left 

precentral sulcus, the bilateral superior temporal cortex, running 

more posteriorly in the left hemisphere; the left inferior temporal 

gyrus, supramarginal gyrus and angular gyrus, and the bilateral 

intraparietal sulcus and middle/inferior occipital gyrus. The 

mask also included the bilateral caudate nuclei, and the medial 

portion of the superior frontal gyrus (please refer to Figure 2.2). 

All analyses, both univariate and multivariate, were performed 

within this mask. 

 

Univariate Analysis. BOLD activity was used to perform one-

sample 2-tailed t-test voxel-wise (3dttest++; p<0.05, FDR 

corrected), thus comparing task activity versus rest in each 

modality.  

 

Multivariate Analysis. To assess stimulus discrimination 

accuracy in each task, the T-value maps were then used in four 

searchlight-based classifiers (Mitchell et al., 2004; Kriegeskorte et 

al., 2006) (rank accuracy; cosine similarity; 6mm searchlight 

radius), one for each task (tone perception, vowel listening, 

imagery and production). A cross-validation leave-one-stimulus-

out procedure was adopted to measure classification accuracy.  

Each classifier was conceived to discriminate among seven 

classes of stimuli: the seven tones in the tone perception task and 

the seven vowels in the listening, imagery and production tasks. 
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Accuracies emerging from the tone perception classifier would 

be used later on, to measure sensitivity to low-level features of 

acoustic stimuli within clusters defined by the vowel classifiers. 

Finally, the procedure generated a stimulus discrimination 

accuracy value for each task, in each voxel and subject. Group 

accuracies for tone perception, vowel listening, imagery and 

production were obtained by averaging all single-subject 

accuracy values, at each voxel. 

To assess significance, group accuracies were tested against 

chance by a permutation test (Winkler, et al. 2016; Pereira et al., 

2009; Nichols et al., 2002), where all stimulus-class labels were 

shuffled in order to generate 1,000 permuted matrices to be used 

in a multi-class searchlight-based classifier identical to the one 

described above. The entire procedure generated a set of 1,000 

single-subject null discrimination accuracies for each stimulus 

class, in each voxel, subject and task. Group null accuracies were 

obtained by averaging single-subject null accuracies in a 

distribution of 1,000 null accuracies for each voxel and stimulus 

class. Group accuracy maps were then corrected for multiple 

comparisons using AFNI: first, real smoothness in the data 

(resulting from pre-processing, anatomical and searchlight-

related smoothing) was estimated (3dFWHMx); later, cluster 

correction was performed using Monte Carlo simulations (the 

latest version of 3dClustSim, Gaussian kernel, 10,000 iterations - 

Cox, et al., 2017). This procedure preserved clusters larger than 

1,656 mm3 (p<0.05 at voxel level with α<0.05 for the correction 

for multiple comparisons). All the procedures were developed in 

Matlab (©TheMathWorks, Inc.), unless otherwise specified, 

through code developed in-house. 
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Cross-task accuracies. To assess whether vowel-sensitive clusters 

were specific to each task, we measured the averaged accuracies 

of each task within the masks defined by each of the others (e.g., 

accuracy of vowel listening within the vowel production mask; 

3dROIstats). The same procedure was applied to the null 

distribution used in the aforementioned permutation test, thus to 

obtain cluster-based accuracies and their associated statistical 

significance (1,000 permutations, one-tailed rank test, p<0.05). 

Finally, significance level was adjusted using Bonferroni’s 

correction for multiple comparisons (6 clusters by 3 tasks, 

p<0.0028 for pbonf<0.05). The same procedure was employed to 

assess whether vowel-sensitive clusters represented tone-related 

information as well, thus to assess their specificity to non-

linguistic versus linguistic stimuli; results were Bonferroni-

corrected as well (6 clusters by 1 task, p<0.0083 for pbonf<0.05).  
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Results 

 

Univariate results. To show regions activated by each of the four 

tasks, tone perception, vowel listening, imagery and production 

were subjected to one-sample, two-tailed, voxel-wise t tests 

against the resting condition (p<0.05, corrected for FDR, 

Genovese et al., 2002), within a topic-based meta-analytic mask 

of language-sensitive regions selected from the Neurosynth 

database.  

Figure 2.2 shows the results of this procedure and the extension 

of the mask. Particularly, the tone perception task activated the 

bilateral primary auditory cortex (Heschl's gyrus, HG) extending 

to the superior temporal cortex especially in the left hemisphere, 

along with the superior part of the precentral sulcus (PrCS) at the 

border with the precentral gyrus (PrCG). In the vowel listening 

task, HG and superior temporal cortex were activated bilaterally, 

with more posterior activations in the left hemisphere only; in 

the frontal cortex, this task activated the left inferior frontal 

sulcus (IFS) and the opercular portion of the inferior frontal 

cortex, the insular cortex (INS), and the horizontal ramus of the 

sylvian fissure, the right pars opercularis of the inferior frontal 

gyrus (IFGpOp), and a small part of the IFS. In the vowel 

imagery task the frontal cortex was activated in the bilateral 

(though mostly left) PrCS, left IFS and PrCG, right MFG/IFS and 

bilateral INS; moreover, this task activated significantly the right 

STS, left planum temporale and supramarginal gyrus (SMG), 

bilateral, though mostly left, intraparietal sulcus (IPS), left pMTG 

and inferior temporal gyrus (ITG), the bilateral middle/inferior 

occipital gyrus (MOG/IOG), and finally, the bilateral medial 

portion of the superior frontal gyrus (SFG) and caudate nuclei. 

The vowel production task showed significantly positive BOLD 
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responses in the bilateral superior temporal cortex extending to 

the planum temporale in the left hemisphere only, in the bilateral 

INS and PrCS, in left PrCG, in the medial SFG, and in left SMG; 

in this task, significant negative BOLD responses were observed 

in the left hemisphere, particularly in the left pars orbitalis, the 

vertical ramus of the sylvian fissure, anterior portion of the 

medial SFG, anterior and posterior portions of the STS. 

 
 
Figure 2.2. Univariate results. Here the results for one-sample, two-tailed t-tests are 

shown in each of the four tasks against the resting condition (dof=14; p<0.05, FDR 

corrected). These measures were conducted to assess which regions were activated in 

each task and restricted to a topic-based meta-analytic mask of language-sensitive regions 

from the Neurosynth database, whose extension can be appreciated in the top panel of 

this figure. 
 

Multivariate results. A multi-class searchlight-based classifier 

highlighted three sets of clusters, one for each vowel task, where 

pattern discrimination was successful. Figure 2.3 shows clusters 

on the cortical volume through axial slices, while Figure 2.4 
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shows the accuracy maps of all experimental tasks projected onto 

the lateral cortical surfaces. 

 

 

 
 
Figure 2.3. Here, significant searchlight classifier clusters are shown for the vowel tasks, 

represented on the cortical volume through axial slices. Colours were assigned by task, 

and any of their possible combinations were indicated as well in the circle legend. The 

almost complete contiguity of regions can be appreciated, as marginal overlap emerged 

only between imagery/production and imagery/listening. No voxels were shared by all 

three tasks. Labels are spelled as follows: STS - superior temporal sulcus; MTG - middle 

temporal gyrus; IFGpTri - inferior frontal gyrus, pars triangularis; STG - superior 

temporal gyrus; IFS - inferior temporal sulcus; MFG - middle frontal gyrus; IFGpOp - 

inferior frontal gyrus, pars opercularis; aINS - anterior insular cortex. 
 

Vowel listening, imagery and production dissociate in the left 

inferior frontal cortex. The left inferior frontal cortex (IFG, IFS) 

was engaged across all experimental conditions, with the 

addition of the right homologue in the imagery task only. 

Particularly, though, clusters of voxels within these macro-

regions responded specifically to each task (regions were 

labelled and their overlap with the result masks was interpreted 
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in accordance with the Harvard-Oxford Cortical Atlas). In 

details, during vowel listening, the pars triangularis of the left 

IFG represented vowels, crossing over anteriorly into the pars 

orbitalis. During vowel imagery, the left IFS and its right 

homologue intersected superiorly the middle frontal gyrus 

(MFG), with a relative overlap with the INS as well. During 

production, a slightly more posterior region within the left IFS 

was engaged, running inferiorly into the pars opercularis of the 

IFG, and superiorly into the MFG. 

 

 
 
Figure 2.4. Accuracy maps projected onto the lateral surfaces of the brain. Here we show 

regions where accuracy values were significant across the searchlight area defined by the 

selected Neurosynth topic-based meta-analytic map (top panel) in each task (bottom 

panels). The extension and location of these regions was validated through cluster 

correction in AFNI at a minimum cluster size of 207 voxels (p<0.05 at voxel level with 

α<0.05 for the correction for multiple comparisons). 

 

Vowel listening and imagery dissociate in the superior temporal 

cortex. Temporal regions representing vowels revealed that the 
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left STG and STS running posteriorly and inferiorly towards 

MTG, were engaged in listening, as well as performing imagery 

of vowels through covert articulation. Particularly, temporal 

regions representing vowels during listening were the left pSTS, 

extending into the pMTG. Vowel imagery engaged a nearby 

portion of the left pMTG extending superiorly into the STG and 

STS. No temporal regions represented vowels significantly 

during overt production.  

 

Measuring cross-task spatial segregation and tone sensitivity. No 

spatial overlap among tasks was revealed, except for a cluster of 

voxels in the IFS/MFG for vowel imagery and production, and a 

very small cluster in the MTG for vowel imagery and listening. 

Moreover, cross-task accuracy measurements revealed that the 

imagery-sensitive left pMTG-STG region also shared tone 

representations, as well as IFGpTri during vowel listening.  

Table 2.1 summarizes cross-task accuracy results from the 

calculations performed in each cluster from the vowel tasks, with 

the associated p value and standard errors (SE). Table 2.2 reports 

cross-task accuracies for the pure tones within the vowel clusters. 

 

 

Table 2.1. Cross-task accuracy measures between vowel tasks. Accuracy measures are 

shown here for each task in its own significant regions, but also compared to the other 

tasks by constraining the extraction of accuracy values for one task within the areas that 

were significant in each of the others. Significant values are reported in bold, and gray 

shading was used to highlight accuracy values within correspondent masks and tasks. Of 

note, accuracy values were significant only for a task within its own regions, showing no 
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functional overlap between modalities (accuracies were Bonferroni-corrected at 

pbonf<0.0028). 

 
 

 

 
Table 2.2. Cross-task accuracy measures of pure tone perception within each vowel mask. 

Tone perception accuracy results were constrained within the masks defined by the 

vowel classifier. Significant values are reported in bold. Of note, the Left IFGpTri from 

the vowel listening task and the Left pMTG-STG from the vowel imagery task were also 

able to represent tones significantly (accuracies were Bonferroni-corrected at 

pbonf<0.0083).  
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Discussion 
 

In this study we combined fMRI and MVPA to assess the 

functional organization of vowel listening, imagery and 

production. We explored the representation of vowels across 

these three modalities, as well as determining commonalities and 

differences with a tone perception control task in a frequency 

range close to that of our speech stimuli. Specifically, patches of 

cortex in inferior frontal and superior temporal regions retained 

information to significantly discriminate the seven vowels of the 

Italian language in each condition. Within these areas, 

contiguous, and just minimally overlapping clusters were 

sensitive to listening, imagery and production of speech sounds. 

Of note, left IFGpTri and left pMTG/STG shared sensitivity to 

both tones and vowels. 

 

Functional segregation and tone sensitivity in brain regions 

involved in vowel listening, imagery and production. Several 

functional studies have explored the representation of vowels, 

consonants and syllables in the fronto-temporal language areas 

(although more often considering one task at a time): some have 

highlighted their sensitivity to very fine-grained aspects of 

speech, such as formant structure, manner and place of 

articulation, and even speaker identity (Chang, et al., 2010; 

Formisano et al., 2008; Tankus et al., 2012; Bonte, et al., 2014), 

while others have highlighted the importance of a shared neural 

code for validating popular theories about the acquisition and 

processing of language (Cheung et al., 2016). Univariate results 

comparing each of the four tasks (tone perception, vowel 

listening, imagery and production) against resting condition 

highlighted a set of regions in line with previous findings that 
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revealed frontal and temporal involvement in language 

perception and production (Price, 2012). However, while 

classical univariate approaches sought to infer specific mental 

function by comparing regional average activations, and thus 

were amply exploited to investigate the spatial organization of 

speech, multivariate analyses show representational content 

similarities over regional engagement: this, together with a 

comprehensive comparison of speech modalities, can provide a 

finer characterization of the speech function across the fronto-

temporal language cortex.  

To provide a finer spatial and functional account of phonological 

processing and the production-perception interface, we ran a 

searchlight classifier of listened, imagined and produced vowels 

within a mask of neuroimaging studies of the language function. 

This procedure aimed at measuring the accuracy of vowel 

discrimination, and, most importantly, the spatial organization 

and possible overlap between regions controlling the three vowel 

tasks. Moreover, with the same procedure we attempted tone 

classification in frequencies close to those of our speech stimuli. 

Accuracies yielded by each vowel task were also measured in 

clusters resulting from the classifiers of all the other vowel tasks, 

as well as tone perception accuracies were tested in the vowel 

regions.  

Globally, our results revealed that speech tasks are indeed 

processed within two classically linguistic macro-regions in the 

frontal and temporal cortices. Particularly, though, we did not 

find production of vowels confined to the inferior frontal cortex, 

nor perception confined to the superior temporal cortex. Instead, 

both the inferior frontal and superior temporal cortices 

represented vowel-specific information in both perception and 

production (imagined as well as overt). Nonetheless, the three 
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vowel tasks engaged well-defined, bordering sub-portions of the 

inferior frontal and superior temporal hubs, a picture already 

sustained by lesion studies and pre-operative language function 

testing (Long et al., 2016).  Moreover, the vowel model was well 

represented in articulation imagery, a task whose aim was to 

simulate the articulatory rehearsal mechanism assumed by 

integration theories: even there, segregated regions revealed 

sensitivity to vowels in contrast with those clusters, adjoining 

though non-overlapping, which represented perceived and 

produced stimuli.  

Interestingly, though, while no vowel-sensitive regions 

retained above-chance accuracies for other tasks, two regions 

represented tones significantly, that is, the IFGpTri involved in 

listening and the pSTG-MTG involved in imagery of vowels (of 

note, the region identified in imagery as being tone-sensitive is 

spatially closer to the primary auditory cortex than the vowel-

specific region identified in vowel listening as pSTS-MTG). This 

result reveals that, while we have regions within the frontal and 

temporal cortices performing both production-related and 

perception-related functions in a segregated fashion, these areas 

also retain low-level non-linguistic information. Specifically, 

though, high-level information pertains only to the ‚classical‛ 

function associated to that area (production in the inferior frontal 

and perception in the superior temporal cortex), while the ‚non-

classical‛ associated function is not language-specific (perception 

in the inferior frontal and articulation imagery in the superior 

temporal cortex). Therefore, our findings seem to suggest that 

the brain retains a capacity for sub-specialization within the 

classical language fronto-temporal hubs.  
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Vowel listening, imagery and production dissociate in the left 

inferior frontal cortex. Our results showed how vowel listening, 

as well as vowel imagery and production, engage the left inferior 

frontal cortex, from the IFGpOp crossing over anteriorly into the 

IFGpTri, superiorly into the IFS and touching the MFG. Within 

the right hemisphere, vowel imagery engaged the IFS, MFG and 

aINS. However, vowel tasks engaged the broad ‚Broca’s 

territory‛ in a functionally segregated fashion: left IFGpOp 

engaged in vowel production, while the IFS engaged in vowel 

imagery (as well as its right homologue). Finally, a more anterior 

region in the IFGpTri engaged in vowel listening although it also 

represented tones, revealing to be non-specific for speech 

sounds.  

A debate exists on the role of the inferior frontal cortex in 

processing high- rather than low-level language functions in the 

healthy brain as well as in lesion studies: this region has been 

broadly implicated in syntactic working memory (Embick et al., 

2000), perceptuo-motor integration (Skipper et al., 2005) and 

phonetic/phonological representations (Papoutsi et al., 2009; 

Cheung et al., 2016). Furthermore, along the lines of a functional 

segregation argument, IFGpOp and IFGpTri within Broca’s area 

have been associated, respectively, to processes pertaining to 

syntax and semantics (Goucha et al., 2015). Still, early evidence 

from Positron Emission Tomography (PET) had already 

suggested that Broca’s area is primed by any phonological 

differences subtending semantic representations, and not by the 

processing of meaning per se (Demonet et al., 1992). Moreover, 

Heim and collaborators do not report additional activations in 

IFGpTri for semantic versus phonological fluency, with only the 

latter significantly activating IFGpOp (Heim et al., 2008).  
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Along these lines, some have ascribed the disrupted patterns 

of both complex syntactic comprehension and general speech 

production in Broca’s aphasia to a disturbance in the hierarchical 

chain-processing mechanism at the basis of the phonological 

loop, which may be controlled by IFGpOp and possibly IFGpTri 

(Davis et al., 2008). Recently, it was proposed that Broca’s area in 

particular mediates the transformation of perceptual information 

coming first into the superior temporal cortex, thus to be 

projected back to the PrCG as articulatory instructions for 

production (Flinker et al., 2015).  

The idea that locations anterior to the PrCG perform 

sensorimotor transformations and relay information back to the 

PrCG is in agreement with our findings. Furthermore, we were 

able to provide a finer characterization of the functional 

neuroanatomy of the IFG, showing sensitivity to perceived tones 

and vowels in the pars triangularis, and to produced vowels in 

the pars opercularis. Therefore, our results suggest that the 

language-related inferior frontal cortex, before anything else that 

may be of a higher level, is concerned at least with the 

representation of perceived speech, as well as non-speech 

sounds.  

The idea that IFGpTri supports simpler, non-linguistic 

representations, as we found in the cross-task accuracy 

measurements between vowel listening and tone perception, was 

previously hinted at by Reiterer and colleagues, who 

demonstrated IFGpTri involvement in processing tone frequency 

though not sound pressure, using a pitch versus volume 

discrimination task (Reiterer et al., 2008). On the other hand, 

Hickok and colleagues reported how IFG-lesioned patients show 

no auditory syllable discrimination deficits whatsoever (Hickok 

et al., 2011). Although this result may appear in disagreement 
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with ours, it is reasonable to speculate that the extensions and 

locations of lesions (as noted by the authors themselves) do not 

allow for a full comparison with ours and others’ functional 

results in the healthy brain (as also advised by Ardila and 

colleagues, 2016).  

Regarding the pars opercularis as the most posterior cluster 

showing vowel sensitivity, we found produced vowels 

represented discretely in IFGpOp. In its proximity, the PrCG has 

been associated to apraxia of speech (Dronkers, 1996), a 

disturbance in the articulatory aspects of production exclusively. 

Consistently, we were able to discriminate overtly produced 

vowels at the posterior border of the IFGpOp extending into the 

precentral sulcus. Instead, vowel imagery involved more 

anterior regions for the processing of intermediate phonological 

representations with no sensory output. These arguments appear 

to sustain the importance of this inferior frontal region at the 

perceptuo-motor interface for speech. 

All in all, our results suggest that both IFGpOp and IFGpTri 

do perform phonological computations, that is, a sub-lexical kind 

of processing at the basis of any higher-level function (from 

syntax to semantics, as already mentioned), and their spatial 

organization is rather driven by the speech task being 

performed, with perception and production completely 

detached, and perception being non-specific for speech sounds. 

In fact, some of those trying to reconcile the vast literature on 

inferior frontal cortex involvement in speech processing have 

argued that, if its engagement is a matter of perceptuo-motor 

interface, then the IFG as a whole should share activations 

related to different tasks in the speech loop (Iacoboni et al., 2008). 

This argument has been brought forward particularly by those 

sustaining that region sharing would constitute a 
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neurofunctional correlate of mainframes such as the MTSP 

(Galantucci et al., 2006). Our results, instead, reveal functional 

dissociation within the inferior frontal cortex for different tasks 

related to speech sound discrimination, and clarify at least the 

correlation of both IFGpOp and IFGpTri with phonological-level 

functions. 

The processing of produced and imagined speech in close-by 

regions, as well as more anterior and more rightward activations 

for imagined speech, were previously reported (Shuster et al., 

2005; Huang et al., 2002). In our results, we found a cluster of 

spatial overlap between the regions involved in produced and 

imagined vowels in the IFS/MFG. This location’s centre of mass 

was associated to cognitive processes related to working 

memory in the Neurosynth database (highest posterior 

probability: ‘retrieved’ 0.77, ‘memory retrieval’ 0.76, ‘wm task’ 

0.76). Of note, our subjects were asked to maintain and then 

retrieve a heard vowel thus to perform imagery or production, 

and the searchlight analysis was then conducted on the retrieval 

phase of the trials. In this sense, the small cluster of spatial 

overlap that we found between production and imagery could 

be explained as a common focus for the mnemonic-attentive 

component of the task (vowel retrieval). To reinforce this 

argument, cross-task accuracy measurements did not reveal 

shared sensitivity for produced and imagined vowels in this 

region, instead showing complete dissociation: in fact, that 

cluster of spatial overlap may be shared by the production and 

imagery-sensitive clusters for task-specific demands, and not 

information content representation. 

Finally, the involvement of the right IFS-MFG homologue, as 

well as aINS, in the imagery task would be justifiable in that 

these regions were shown to be involved in mental/imagined 
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speech (Hinke et al., 1993) and aphasia recovery in left IFG/IFS-

lesioned patients (Winhuisen et al., 2005). 

 

Vowel listening and imagery dissociate in the superior temporal 

cortex. In our study, the left superior and middle temporal 

cortices were largely engaged by vowel listening and vowel 

imagery. Regarding the engagement of the superior temporal 

cortex in perceived speech, a large body of evidence suggests 

that this region retains sensitivity to complex harmonic 

structures and, generally, spectral features down to a stimulus-

specific level, studied with both fMRI (Formisano et al., 2008)  

and ECoG (Chang et al., 2010; Mesgarani et al., 2014). The 

superior temporal cortex has been associated also to imagery of 

speech, arguing that the pSTG-pSTS-MTG macro-region 

supports both imagery and perception (Okada et al., 2006; 

Buchsbaum et al., 2001). Interestingly, though, our results 

showed that vowel listening and vowel imagery dissociate 

spatially, as in the inferior frontal cortex; moreover, pSTG-MTG 

retains tone-specific representations as well as imagined vowels. 

This reveals how, in the superior temporal cortex as well as the 

inferior frontal, the function classically associated to the region is 

language-specific, while the non-classical function shares 

sensitivity to lower-level stimuli.  

Among those who argued in favour of an integrated model, 

Murakami and colleagues (2015) found that repetitive 

transcranial magnetic stimulation over the left superior temporal 

cortex can disrupt phonological fluency, in that it suppresses 

muscular evoked potential facilitation in the primary motor 

cortex. This evidence may be of help in characterizing our vowel 

imagery result in left pSTS-MTG, in that it may validate the idea 

that mechanisms springing from inferior frontal, speech-
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generating areas modulate activity in speech-perceiving ones, 

during covert articulation (Shergill et al., 2002). It is worth 

mentioning again that vowels arise from a perceptuo-motor 

model, with formant structure being determined by unique 

articulator configurations. Such a model would contain both 

acoustic and motor information, and thus be represented equally 

well in superior temporal and inferior frontal areas. These 

findings are in agreement with previous results obtained with 

MVPA on functional brain imaging (Formisano et al., 2008) as 

well as electrocorticographic data (Chang et al., 2010) showing 

not only that the auditory cortex can encode vowel-specific 

information during perception, but also, that it can represent 

articulated speech sounds (Tankus et al., 2012). Particularly, 

though, HG, the primary auditory cortex, did not show 

sensitivity to single phonemes (Formisano et al., 2008), as our 

findings confirm, despite the exquisitely acoustic nature of the 

task. Nonetheless, in our results, HG was significantly activated 

during vowel listening (see Figure 2.3), although engaged in 

representing pure tones (see Figure 2.4): an extrapolation coming 

from MVPA is that HG is simply not representing vowels in the 

listening task, despite being activated, as can be seen from Figure 

2.2.. Of note, as explained in the Methods section, vowels are 

aggregates of formants above a fundamental frequency, which 

are perceived as a summation of the fundamental and the 

overtones, but also as discrete categories. Such kind of complex 

stimuli with heightened (linguistic) salience might be computed 

outside the psychophysically low-level HG (Santoro et al., 2017), 

as our findings seem to suggest in comparison with simpler 

tones that are, indeed, represented there. Finally, findings from 

task-dependent decoding of speaker and vowel identity (Bonte et 

al., 2014) reveal that the primary auditory cortex in the left 
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hemisphere actually represents speaker information over vowel 

information, which seems reasonable when we consider the 

higher frequential variability of different speakers (across which 

is the fundamental frequency that changes), rather than the small 

changes in different vowels uttered by the same speaker, related 

to harmonic structure over the same fundamental. 

Moreover, in Tankus and colleagues (2012), while STG was 

further probed to assess its ability to discriminate between a 

complex system of five vowels, the authors also showed how this 

classically auditory hub of the cortex actually represents 

articulated speech sounds as well. Nevertheless, while neurons 

in anterior locations such as the medial orbitofrontal cortex 

(MOF) and the right anterior cingulate cortex (rAC) responded to 

single or coupled vowels, in this study STG did not, in fact, 

reveal vowel specificity. In agreement with this study, we found 

STG activated by vowel production (Figure 2.2), but crucially it 

did not classify single vowels (Figure 2.4). 

Moreover, pSTS-MTG, previously shown to be engaged in 

articulation imagery over hearing imagery (Tian et al., 2016), 

shared sensitivity to mentally articulated vowels, as well as pure 

tones, in our data. This is supported by a study reporting conflict 

between vowel imagery and tone perception in the superior 

temporal cortex (Kauramäki et al., 2010). As in our findings, the 

region showing shared sensitivity to lower- and higher-level 

stimuli was significantly lateralized in the left, language-

dominant hemisphere. Moreover, in our results, the patterns of 

imagined vowels that were represented in left pSTS-MTG could 

not be ascribed to any acoustic feedback due to the inner nature 

of the task itself. In this region, tone sensitivity would therefore 

sustain higher-level representations pertaining to a non-classical 
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function associated to the location, as well as it did in the inferior 

frontal cortex.  

 

Limitations. Our study presented the following limitations. First, 

the sample size (n=15), as well as the decoding accuracy (average 

accuracy in our ROIs reached 57% across all the seven Italian 

vowels during the listening task), appeared to be relatively 

small. However, it should be noted that the first fMRI study 

which successfully discriminated listened vowels, acquired 

BOLD activity in seven subjects and obtained an average 

accuracy of 63% between three vowels only (i.e., a, i, u; 

Formisano et al., 2008). Indeed, these three cardinal vowels are 

commonly represented across languages and retain the highest 

acoustic and articulatory differences (Hardcastle et al., 2010). 

Second, the mental imagery task intrinsically required 

participants' compliance. Third, the experimental design had a 

fixed inter-stimulus interval (ISI) which may not represent a 

procedure statistically efficient (Dale, 1999). Nevertheless, we 

adopted a constant ISI since our machine learning algorithm 

relied on stimulus decoding across multiple trials and ISI-related 

differences in hemodynamic responses could have affected its 

performance. 

 

In conclusion, using fMRI we were able to discriminate the 

seven vowels of the Italian language in listening, articulation 

imagery, and production tasks. Globally, these three functions 

revealed spatial dissociation within language-related brain 

regions, as well as collateral sensitivity to tone representations: 

building on previous evidence, these findings provide a finer 

characterisation of the fronto-temporal language-related cortex. 

Notably, frontal brain regions classically associated to 
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production can also represent acoustic features of both linguistic 

and non-linguistic stimuli; similarly, temporal regions that 

process low-level acoustic features (pure tones) retain sensitivity 

to covertly produced vowels. Importantly, in line with 

integration theories, not only sensitivity to speech listening exists 

in production-related regions and vice versa, but the nature of 

such interwoven organisation is also built upon low-level 

perception.  
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3. Canonical Correlation Analysis to reconstruct 

acoustic features of vowels 
 

Abstract 
 

Classical studies have isolated a distributed network of temporal 

and frontal areas engaged in the neural representation of speech 

perception and production. With modern literature arguing 

against unique roles for these cortical regions, different theories 

have favored either neural code-sharing or cortical space-

sharing, thus trying to explain the intertwined spatial and 

functional organization of motor and acoustic components across 

the fronto-temporal cortical network. In this context, the focus of 

attention has recently shifted toward specific model fitting, 

aimed at motor and/or acoustic space reconstruction in brain 

activity within the language network. Here, we tested a model 

based on acoustic properties (formants), and one based on motor 

properties (articulation parameters), where model-free decoding 

of evoked fMRI activity during perception, imagery, and 

production of vowels had been successful. Results revealed that 

phonological information organizes around formant structure 

during the perception of vowels; interestingly, such a model was 

reconstructed in a broad temporal region, outside of the primary 

auditory cortex, but also in the pars triangularis of the left 

inferior frontal gyrus. Conversely, articulatory features were not 

associated with brain activity in these regions. Overall, our 

results call for a degree of interdependence based on acoustic 

information, between the frontal and temporal ends of the 

language network.  
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Introduction 
 

Classical models of language have long proposed a relatively 

clear subdivision of tasks between the inferior frontal and the 

superior temporal cortices, ascribing them to production and 

perception respectively (Damasio and Geschwind, 1984; 

Gernsbacher and Kaschak, 2003). Nevertheless, lesion studies, 

morphological and functional mapping of the cortex evoke a 

mixed picture concerning the control of perception and 

production of speech (Josephs et al., 2006; Hickok et al., 2011; 

Basilakos et al., 2015; Ardila et al., 2016; Schomers and 

Pulvermüller, 2016). 

Particularly, classical theories propose that, on one hand, 

perception of speech is organized around the primary auditory 

cortex in Heschl’s gyrus, borrowing a large patch of superior and 

middle temporal regions (Price, 2012); on the other hand, 

production would be coordinated by an area of the inferior 

frontal cortex, ranging from the ventral bank of the precentral 

gyrus toward the pars opercularis and the pars triangularis of 

the inferior frontal gyrus, the inferior frontal sulcus, and, more 

medially, the insular cortex (Penfield and Roberts, 1959). 

This subdivision, coming historically from 

neuropsychological evidence of speech disturbances (Poeppel 

and Hickok, 2004), makes sense when considering that the two 

hubs are organized around an auditory and a motor pivot 

(Heschl’s gyrus and the face-mouth area in the ventral precentral 

gyrus), although the issue of their exact involvement already 

surfaced at the dawn of modern neuroscience (Cole and Cole, 

1971; Boller, 1978). 

Eventually, the heightened precision of modern, in vivo, brain 

measures in physiology and pathology ended up supporting 
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such a complex picture, since an exact correspondence of 

perception/production speech deficits with the classical fronto-

temporal subdivision could not be validated by virtual lesion 

studies (Fadiga et al., 2002; D’Ausilio et al., 2009, 2012b). 

Moreover, cytoarchitecture, connectivity and receptor mapping 

results do suggest a fine-grained parcellation of frontal and 

temporal cortical regions responsible for speech (Catani and 

Jones, 2005; Anwander et al., 2006; Fullerton and Pandya, 2007; 

Hagmann et al., 2008; Amunts et al., 2010; Amunts and Zilles, 

2012). 

Functional neuroimaging and electrophysiology have 

therefore recently approached the issue of mapping the exact 

organization of the speech function, to characterize the fronto-

temporal continuum in terms of cortical space-sharing [i.e., 

engagement of the same region(s) by different tasks] and neural 

code-sharing (i.e., similar information content across regions and 

tasks) (Lee et al., 2012; Tankus et al., 2012; Grabski et al., 2013; 

Arsenault and Buchsbaum, 2015; Correia et al., 2015; Cheung et 

al., 2016; Markiewicz and Bohland, 2016). Considering this, such 

studies seemingly align to phonological theory by validating 

perceptuo-motor models of speech (Schwartz et al., 2012; 

Laurent et al., 2017), where phonemes embed motor and acoustic 

information. In fact, vowels are indeed represented by a model 

based on harmonic properties (formants) modulated by tongue-

lip positions: such a model is by all means based on acoustics, 

but it is also tightly linked to articulation (Ladefoged and Disner, 

2012). 

Previous fMRI attempts have been made to reconstruct 

formant space in the auditory cortex (Formisano et al., 2008; 

Bonte et al., 2014) with a model restricted to a subsample of 

vowels lying most distant in a space defined by their harmonic 
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structure. Electrocorticographic recordings have also shown 

similar results and demonstrated the fine-tuning of the temporal 

cortex to harmonic structure (Chang et al., 2010; Mesgarani et al., 

2014; Chakrabarti et al., 2015). In fact, the possibility of mutual 

intelligibility along the production-perception continuum, if 

demonstrated through shared encoding of neural information, 

might enrich the debate around the neurofunctional correlates of 

the motor theory of speech perception (MTSP; Liberman et al., 

1967), and, more generally, action-perception theories 

(Galantucci et al., 2006). 

In a previous study, a searchlight classifier on fMRI data 

obtained during listening, imagery and production of the seven 

Italian vowels, revealed that both the temporal and frontal hubs 

are sensitive to perception and production, each engaging in 

their classical, as well as non-classical function (Rampinini et al., 

2017). Particularly, though, vowel-specific information was 

decoded in a spatially and functionally segregated fashion: in the 

inferior frontal cortex, adjoining regions engaged in vowel 

production, motor imagery and listening along a postero-

anterior axis; in the superior temporal cortex, the same pattern 

was observed when information relative to perception and motor 

imagery of vowels was mapped by adjoining regions. Moreover, 

results from a control task of pure tone perception highlighted 

the fact that tone sensitivity was also present in the superior 

temporal and inferior frontal cortices, suggesting a role for these 

regions in processing low-level, non-strictly linguistic 

information. 

Despite evidence of functional and spatial segregation across 

the fronto-temporal speech cortex down to the phonological 

level, a question remained unsolved: which features in the 

stimuli better describe brain activity in these regions? To 
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investigate this issue, we sought to reconstruct formant and 

motor spaces from brain activity within each set of regions 

known to perform listening, imagery and production of the 

seven Italian vowels, using data acquired in our previous fMRI 

study and a multivariate procedure based on canonical 

correlation (Bilenko and Gallant, 2016).  
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Materials and Methods 
 

Formant Model. The seven vowels of the Italian language were 

selected as experimental stimuli (IPA: [i] [e] [ε] [a] [ɔ] [o] [u]). 

While pure tones do not retain any harmonic structure, vowels 

are endowed with acoustic resonances, due to the modulation of 

the glottal signal by the vocal tract acting as a resonance 

chamber. Modulation within the phonatory chamber endows the 

glottal signal (F0), produced by vocal fold vibration, with 

formants, i.e., harmonics rising in average frequency as multiples 

of the glottal signal. Along the vertical axis, first-formant (F1) 

height correlates inversely with tongue height: therefore, the 

lower one’s tongue, the more open the vowel, the higher 

frequency of the first formant. The second formant (F2) instead 

correlates directly with tongue advancement toward the lips. 

Formant space for the Italian vowels makes it so that each vowel 

is described by the joint and unique contribution of its first and 

second formant (Albano Leoni and Maturi, 1995): when first and 

second formant are represented one as a function of the other, 

their arrangement in formant space resembles a trapezoidal 

shape. 

Three recordings of each vowel (21 stimuli, each lasting 2 s) 

were obtained using Praat (©Paul Boersma and David Weenink) 

from a female, Italian mother-tongue speaker (44100 Hz 

frequency sampling rate; F0: 191 ± 2.3 Hz). In Praat, we 

generated spectrograms for each vowel so as to obtain formant 

listings for F1 and F2, with a time step of 0.01 ms and a 

frequency step of 0.05 Hz. Average F1 and F2 were obtained by 

mediating all sampled values within-vowel and are reported, 

together with the corresponding standard deviations, in Table 

3.1 and Figure 3.3. These values were converted from Hertz to 
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Bark and subsequently normalized defining  the formant model 

for this study. 

  
Table 3.1. Average F1 and F2 values and standard deviations for each stimulus 

 

Articulatory Model. Structural images of the original speaker’s 

head were used to construct a model based on measurements of 

the phonatory chamber as in Laukkanen et al. (2012), while the 

speaker pronounced the vowels. Structural imaging of the 

speaker uttering three repetitions of each vowel was obtained in 

a separate session from auditory recording. The speaker was 

instructed to position her mouth for the selected vowel right 

before the start of each scan, so as to image steady-state 

articulation. Scanning parameters were aimed at capturing 

relevant structures in the phonatory chamber; at the same time, 

each sequence needed to last as long as the speaker could 

maintain constant, controlled airflow while keeping motion to a 

minimum: with this goal, scanning time for each vowel lasted 21 

s. Structural T1-weighted images were acquired on a Siemens 

Symphony 1.5 Tesla scanner, equipped with a 12-channel head 

coil (TR/TE = 195/4.76 ms; FA = 70°; matrix geometry: 5 × 384 × 
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384, sagittal slices, partial coverage, voxel size 5 mm × 0.6 mm × 

0.6 mm, plus 1 mm gap). 

 

Figure 3.1. Here we show a sample vowel by its formant (left) and articulatory (right) 

representations, as described in Materials and Methods. Formant features represent F1 in 

blue and F2 in yellow (sampled time step = 0.025 s for display purposes; frequency step 

unaltered). On the top right, MRI-based articulatory features for the same vowel are 

indicated by red arrows, with numbers matching the anatomical description of the same 

measure in Materials and Methods. 

 

Three independent raters performed the MRI anatomical 

measurements. Particularly, fourteen distances were measured 

in ITK-SNAP (Yushkevich et al., 2006) as follows: (1) we 

measured from the tip of the tongue to the anterior edge of the 

alveolar ridge; (2) we connected the anterior edge of the hard 

palate to the anterior upper edge of the fourth vertebra, and in 

that direction we measured from the anterior part of the hard 

palate to the dorsum of the tongue; (3) we connected the 

lowermost edge of the jawbone contour to the upper edge of the 

fifth vertebra, and in that direction we measured from the 

posterior dorsum of the tongue, to the posterior edge of the hard 

palate, at a 90° angle with the direction line; (4) we connected the 

lowermost edge of the jawbone contour to the anterior edge of 

the Arch of Atlas, and in that direction we measured from the 

anterior tongue body to the soft palate; (5) we connected the 
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lowermost edge of the jawbone contour to half the distance 

between the anterior edge of the arch of Atlas and the upper 

edge of the third vertebra, and in that direction we measured 

from the posterior tongue body to the back wall of the pharynx; 

(6) we connected the lowermost edge of the jawbone contour to 

the upper edge of the third vertebra, and in that direction we 

measured from the upper tongue root to the back wall of the 

pharynx; (7) we connected the lowermost edge of the jawbone 

contour to the longitudinal midpoint of the third vertebra, and in 

that direction we measured from the lowermost tongue root to 

the lowermost back wall of the pharynx; (8) we connected the 

lowermost edge of the jawbone contour to the anterior upper 

edge of the fourth vertebra and in that direction we measured 

from the epiglottis to the back wall of the pharynx; (9) we 

connected the lowermost edge of the jawbone contour and the 

anterior lower edge of the fourth vertebra, and in that direction 

we measured from the root of the epiglottis to the back wall of 

the pharynx; (10) we measured lip opening by connecting the 

lips at their narrowest closure point; (11) we measured jaw 

opening by connecting the lowermost edge of the jawbone 

contour to the anterior end of the hard palate; (12) we measured 

the vertical extension of the entire vocal tract by tracing the 

distance between the posterior end of the vocal folds to the 

anterior lower arch of Atlas; (13) we measured the horizontal 

extension of the entire vocal tract by tracing the distance between 

the anterior arch of Atlas to the narrowest closure point between 

the lips; (14) in the naso-pharynx, we traced the distance between 

the highest point of the velum platinum and the edge of the 

sphenoid bone. As an example, Figure 3.1 reports the 

spectrogram of a vowel obtained in Praat and the MRI 
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measurements of the phonatory chamber for the same vowel, 

according to Laukkanen et al. (2012). 

Each rater produced a matrix of 21 rows (i.e., seven vowels 

with three repetitions each) and 14 columns (i.e., the fourteen 

anatomical distances). For each rating matrix, a representational 

dissimilarity matrix (RDM, cosine distance) was obtained, and 

subsequently the accordance (i.e., Pearson’s correlation 

coefficient) between the three RDMs was calculated to assess 

inter-rater variability. Furthermore, the three RDMs were 

averaged and non-metric multidimensional scaling was 

performed to reduce the original 14-dimensional space into two 

dimensions, thus approximating the dimensionality of the 

formant model. Finally, the two-dimensional matrix was 

normalized and aligned to the formant model (procrustes 

analysis using the rotational component only), to define the 

articulatory model as reported in Figure 3.3. 

 

Subjects. Fifteen right-handed (Edinburgh Handedness 

Inventory; laterality index 0.79 ± 0.17) healthy, mother-tongue 

Italian monolingual speakers (9F; mean age 28.5 ± 4.6 years) 

participated in the fMRI study, approved by the Ethics 

Committee of the University of Pisa. 

 

Stimuli. The seven vowels of the Italian language recorded 

during the experimental session, for the calculation of the 

formant model, were used as experimental stimuli (IPA: [i] [e] [ε] 

[a] [ɔ] [o] [u]). Moreover, by dividing the minimum/maximum 

average F1 range of the vowel set into seven bins, we also 

selected seven pure tones (450, 840, 1370, 1850, 2150, 2500, 2900 

Hz), whose frequencies in Hertz were converted first to the 
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closest Bark scale value, and then back to Hertz: this way, pure 

tones were made to fall into psychophysical sensitive bands for 

auditory perception. Then, pure tones were generated in 

Audacity (©Audacity Team; see Rampinini et al., 2017 for further 

details). 

 

Experimental Procedures. Using Presentation, we implemented a 

slow event-related paradigm (©Neurobehavioral Systems, Inc.) 

comprising two perceptual tasks defined as tone perception and 

vowel listening, a vowel articulation imagery task and a vowel 

production task. In perceptual trials, stimulus presentation lasted 

for 2 s and was followed by 8 s rest. Imagery/production trials 

started with 2 s stimulus presentation, then followed by 8 s 

maintenance phase, 2 s task execution (articulation imagery, or 

production of the same heard vowel) and finally 8 s rest. 

Globally, functional scans lasted 47 m, divided into 10 runs. All 

vowels and tones were presented twice to each subject, and their 

presentation order was randomized within and across tasks and 

subjects. 

Functional imaging was carried out through GRE-EPI sequences 

on a GE Signa 3 Tesla scanner equipped with an 8-channel head 

coil (TR/TE = 2500/30 ms; FA = 75°; 2 mm isovoxel; geometry: 

128 × 128 × 37 axial slices). Structural imaging was provided by 

T1-weighted FSPGR sequences (TR/TE = 8.16/3.18 ms; FA = 12°; 

1mm isovoxel; geometry: 256x256x170 axial slices). MR-

compatible on-ear headphones (30 dB noise-attenuation, 40 Hz to 

40 kHz frequency response) were used to achieve auditory 

stimulation. 

 

fMRI Pre-processing. Functional MRI data were preprocessed 

using the AFNI software package, by performing temporal 
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alignment of all acquired slices within each volume, head motion 

correction, spatial smoothing (4 mm FWHM Gaussian filter) and 

normalization. We then identified stimulus-related BOLD 

patterns by means of multiple linear regression, including 

movement parameters and signal trends as regressors of no 

interest (Rampinini et al., 2017). In FSL (Smith et al., 2004; 

Jenkinson et al., 2012) T-value maps of BOLD activity related to 

auditory stimulation (vowels, tones) or task execution (imagery, 

production) were warped to the Montreal Neurological Institute 

(MNI) standard space, according to a deformation field provided 

by the non-linear registration of T1 images of the same 

standards. 

 

Previously Reported Decoding Analysis. In our previous study, 

this dataset was analyzed to uncover brain regions involved in 

the discrimination of the four sets of stimuli. Using a 

multivariate decoding approach based on four searchlight 

classifiers (Kriegeskorte et al., 2006; Rampinini et al., 2017), we 

identified, within a pre-defined mask of language-sensitive 

cortex from the Neurosynth database (Yarkoni et al., 2011), a set 

of regions discriminating among seven classes of stimuli: the 

seven tones in the tone perception task and the seven vowels in 

the listening, imagery and production tasks (p < 0.05, corrected 

for multiple comparisons; see Figure 3.2). Moreover, accuracies 

emerging from the tone perception classifier had been used to 

measure sensitivity to low-level features of acoustic stimuli 

within regions identified by the vowel classifiers. 

 

Reconstructing Formant and Motor Features From Brain 

Activity. While a multivariate decoding approach had 

successfully detected brain regions representing vowels, it lacked 
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the ability to recognize the specific, underlying information 

encoded in those regions, as previous evidence from fMRI had 

hinted (Formisano et al., 2008; Bonte et al., 2014). We therefore 

tested here whether the formant and articulatory models were 

linearly associated to brain responses in the sets of regions 

representing listened, imagined and produced vowels, as well as 

pure tones. To this aim, instead of adopting a single-voxel 

encoding procedure (Naselaris et al., 2011), we selected 

Canonical Correlation Analysis (CCA; Hotelling, 1936; Bilenko 

and Gallant, 2016) as a multi-voxel technique which provided a 

set of canonical variables maximizing the correlation between the 

two input matrices, X (frequencies of the first two formants of 

our recorded vowels or, alternatively, the two dimensions 

extracted from the vocal tract articulatory parameters) and Y 

(brain activity in all the voxels of a region of interest). 

Specifically, in the formant model, the X matrix described our 

frequential, formant-based model in terms of F1 and F2 values of 

the vowel recordings (three for each vowel, as described in the 

Stimuli paragraph), whereas, in the articulatory model, the X 

matrix described the phonatory chamber measurements 

extracted from structural MRI acquired during vowel 

articulation. The Y matrix instead consisted of the elicited 

patterns of BOLD activity, normalized within each voxel of each 

region. Since Y was a non full-rank matrix, Singular-Value 

Decomposition (SVD) was employed before CCA. In details, for 

each brain region and subject, the rank of Y was reduced by 

retaining the first eigenvectors to explain at least 90% of total 

variance. Subsequently, for each region and within each subject, 

a leave-one-stimulus-out CCA was performed (Bilenko and 

Gallant, 2016) thus to obtain two predicted canonical 

components derived from BOLD activity maximally associated 
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to the two two-dimensional models. Afterward, predicted 

dimensions were aligned to the models (procrustes analysis 

using the rotational component only), and aggregated across 

subjects in each brain region. As a goodness-of-fit measure, R2 

was computed between group-level predicted dimensions and 

the models. For the formant model, the predicted formants were 

converted back to Hertz and mapped in the F1/F2 space (Figure 

3.3). 

The entire CCA procedure was validated by a permutation 

test (10,000 permutations): specifically, at each iteration, the 

labels of brain activity patterns (i.e., the rows of the Y matrix, 

prior to SVD) were randomly shuffled and subjected to a leave-

one-stimulus-out CCA in each subject. This procedure provided 

a null R2 distribution related to the group-level predicted 

dimensions. A one-sided rank-order test was carried out to 

derive the p-value associated with the original R2 measure 

(Tables 3.2–3.5). Subsequently, p-values were corrected for 

multiple comparisons by dividing the raw p-values by number 

of tests (i.e., six regions and three tasks, 18 tests). 

All the CCA procedure was developed using MATLAB 

R2016b (MathWorks Inc., Natick, MA, USA), whereas the 

canonical correlation function (canoncorr) relied on the Matlab 

implementation. 
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Results 

 

Previous Results. In a previous study, we sought to decode 

model-free information content from regions involved in vowel 

listening, imagery and production, and in tone perception 

(Rampinini et al., 2017). Using four searchlight classifiers of fMRI 

data, we extracted a set of regions performing above-chance 

classification of seven vowels or tones in each task. As depicted 

in Figure 2, vowel listening engaged the pars triangularis of the 

left inferior frontal gyrus (IFGpTri), extending into the pars 

orbitalis. Vowel imagery engaged the bilateral inferior frontal 

sulcus (IFS) and intersected the middle frontal gyrus (MFG), 

slightly overlapping with the insular cortex (INS) as well. 

Production engaged the left IFS though more posteriorly into the 

sulcus, extending into the pars opercularis of the IFG (IFGpOp), 

and the MFG. In the temporal cortex, vowel listening engaged 

the left posterior portion of the superior temporal sulcus and 

middle temporal gyrus (pSTS-pMTG). Vowel imagery as well 

engaged a bordering portion of the left pMTG extending 

superiorly into the superior temporal gyrus (STG) and superior 

temporal sulcus (STS), while no temporal regions were able to 

disambiguate vowels significantly during overt production. A 

small cluster of voxels in the IFS/MFG was shared by vowel 

imagery and production, as well as another very small one in the 

middle temporal gyrus (MTG) was shared by imagery and 

listening. Further testing revealed that the imagery-sensitive left 

pMTG-STG region also represented pure tones, as well as 

IFGpTri during vowel listening, while the shared clusters in the 

IFS-MFG and MTG did not share tone representations. 
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Figure 3.2. Searchlight classifier results from Rampinini et al. (2017). Each panel shows 

regions where model-free decoding was successful in each task. 

 

Model Quality Assessment. The articulatory model was 

constructed by three independent raters, who exhibited an 

elevated inter-rater accordance (mean = 0.94, min = 0.91, max = 

0.96). As depicted in Figure 3.3, both models retain low standard 

errors between repetitions of the same vowel. Despite the high 

collinearity between the two models (R2 = 0.90), some 

discrepancies in the relative distance between vowels can be 

appreciated in Figure 3.3. 
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Figure 3.3. Here we show formant space (top left) and articulatory space (top right). The 

bottom panel shows the reconstruction of formant space (bottom left and right) from 

group-level brain activity in the left pSTS-MTG (left, R2 = 0.40) and IFGpTri (right, R2 = 

0.39) through CCA. Dashed ellipses represent standard errors. Articulatory space 

reconstruction is not reported for lack of statistical significance. 

 

Current Results. Here, we employed CCA to assess whether 

formant and articulatory models, derived from the specific 

acoustic and articulation properties of our stimuli, could explain 

brain activity in frontal and temporal regions during vowel 

listening, articulation imagery, and production. We correlated 

the formant and articulatory models to brain activity in a region-

to-task fashion, i.e., vowel listening activity in vowel listening 
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regions, imagery activity in imagery regions, and production 

activity in production regions; moreover, we correlated the 

models to brain activity from each task, in regions pertaining to 

all the other tasks (e.g., we tested vowel listening brain data for 

correlation with the formant and articulatory models not only in 

vowel listening regions, but also in imagery and production 

regions). Moreover, brain activity evoked by vowel listening was 

correlated with the two models in tone perception regions. 
 

Formant Model. Globally, the correlation between formant 

model and brain activity was significant at group level for vowel 

listening data, in vowel listening regions (uncorrected p = 0.0001; 

Bonferroni-corrected p < 0.05). As reported in Table 3.2, the left 

pSTS-MTG yielded an R2 of 0.40 (CI 5th–95th: 0.24–0.52) and left 

IFGpTri yielded an R2 of 0.39 (CI 5th–95th: 0.20–0.53). For these 

two regions a reconstruction of vowel waveforms from brain 

activity was also accomplished (see Supplementary Material in 

Rampinini et al., 2019). The correlation between formant model 

and brain data did not reach significance in any other tasks and 

regions after correction for multiple comparisons. In tone 

perception regions (i.e., left STG/STS, left IFG and right IFG, see 

Figure 3.2), the correlation between formant model and brain 

data did not reach significance (Table 3.3). 

 

 
 

Table 3.2. CCA results in regions from vowel listening, imagery and perception (lines), 

between brain activity in each task (columns) and the formant model. 



 63 

 

 
 

Table 3.3. CCA results in tone perception regions, between vowel listening brain data and 

the formant model at group level. 

 

Articulatory Model. Globally, the correlation between 

articulatory model and brain data did not survive correction for 

multiple comparisons in any tasks or regions (Table 3.4). More 

importantly, comparison of the formant and motor bootstrap 

distributions revealed that the acoustic model fit significantly 

better than the motor model with brain activity in both left pSTS-

MTG and left IFGpTri (p < 0.05; pSTS-MTG CI 5th–95th: 0.01–

0.17; IFGpTri CI 5th–95th: 0.04–0.18; Figure 3.4). Articulatory 

model correlation with vowel listening brain activity in tone 

perception regions did not reach statistical significance (Table 

3.5). 

 

 
 
Table 3.4. CCA results in regions from vowel listening, imagery and perception (lines), 

between brain activity in each task (columns) and the articulatory model. 
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Table 3.5. CCA results in tone perception regions, between vowel listening brain data and 

the articulatory model at group level. 

 

 

 
Figure 3.4. Bootstrap-based performance comparison between the articulatory and 

formant models, in regions surviving Bonferroni correction (C.I.: 5–95th of the 

distribution obtained by computing their difference).  
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Discussion 
 

Model-free decoding of phonological information from our 

previous study, provided a finer characterization of how 

production and perception of low-level speech units (i.e., 

vowels) do organize across a wide patch of cortex (Rampinini et 

al., 2017). Here, we extended those results by testing a 

frequential, formant-based model and a motor, articulation-

based model on brain activity elicited during listening, imagery 

and production of vowels. As a result, we demonstrated that 

harmonic features (formant model) correlate with brain activity 

elicited by vowel listening, in the superior temporal sulcus and 

gyrus as shown in previous fMRI evidence (Formisano et al., 

2008; Bonte et al., 2014). Importantly, here we show that a sub-

region of the inferior frontal cortex, the pars triangularis, is tuned 

to formants during vowel listening. None of the other tasks 

reflected the formant model significantly, other than IFGpTri-

listening and pSTS-MTG-listening. Moreover, despite the high 

collinearity between the two models, the performance of the 

articulatory model was never superior to that of the formant 

model. 

 

Model Fitting and the Perception-Production Continuum. The 

organization of speech perception and production in the left 

hemisphere has long been debated in the neurosciences of 

language. In fact, the fronto-temporal macro-region seems to 

coordinate in such a way that, on one hand, the inferior frontal 

area performs production-related tasks, as expected from its 

‚classical‛ function (Dronkers, 1996; Skipper et al., 2005; Davis et 

al., 2008; Papoutsi et al., 2009), while also being engaged in 

perception tasks (Reiterer et al., 2008; Iacoboni, 2008; Flinker et 
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al., 2015; Cheung et al., 2016; Rampinini et al., 2017); in turn, the 

superior temporal area, classically associated to perception 

(Evans and Davis, 2015; Zhang et al., 2016; Feng et al., 2017), 

seems to engage in production as well, despite the topic having 

received less attention in literature (Okada and Hickok, 2006; 

Arsenault and Buchsbaum, 2015; Evans and Davis, 2015; 

Rampinini et al., 2017; Skipper et al., 2017). Finally, sensitivity to 

tones seems to engage sparse regions across the fronto-temporal 

speech cortex (Reiterer et al., 2008; Rampinini et al., 2017). This 

arrangement of phonological information, despite being widely 

distributed along the fronto-temporal continuum, seems 

characterized by spatial and functional segregation (Rampinini et 

al., 2017). Our previous results suggested interesting scenarios as 

to what ‚functional specificity‛ means: in this light, we 

hypothesized that a model fitting approach would provide 

insights on the representation of motor or acoustic information in 

those regions. Therefore, in this study, we assessed whether 

formant and/or articulatory information content is reflected in 

brain activity, in regions involved in listening and production 

tasks, already proven to retain a capacity for vowel 

discrimination. 

It is common knowledge in phonology that a perceptuo-

motor model, i.e., a space where motor and acoustic properties 

determine each other within the phonatory chamber, describes 

the makeup of vowels (Stevens and House, 1955; Ladefoged and 

Disner, 2012; Schwartz et al., 2012). This premise could have led 

to one of the following: two scenarios. First, formant and 

articulatory information could have been detected in brain 

activity on an all-out shared basis; therefore, data from all tasks 

could have reflected both models in their own regions and those 

from all other tasks, confirming that the acoustic and motor ends 
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of the continuum indeed weigh the same in terms of cortical 

processing. Second, a specific task-to-region configuration could 

have been detected, where information in listening and 

production regions reflected the formant and articulatory model, 

respectively. An all-out sharing of formant and articulatory 

information (i.e., the first scenario) would have pointed at an 

identical perceptuo-motor model being represented in regions 

involved in different tasks. A specific task-to-region scenario, 

instead, would have pointed at a subdivision of information that 

completely separates listened vowels from imagined or 

produced ones. Yet again, experimental phonology has long 

argued in favor of an elevated interdependence between the 

formant and articulatory models (Stevens and House, 1955; 

Moore, 1992; Dang and Honda, 2002), which is not new to 

neuroscience either, with evidence showing perception-related 

information in the ventral sensorimotor cortex and production-

related information in the superior temporal area (Arsenault and 

Buchsbaum, 2015; Cheung et al., 2016). Thus, it seemed 

reasonable to hypothesize a certain degree of mutual 

intelligibility between the frontal and temporal hubs, even 

maintaining that the two ends of the continuum retain their own 

specificity of function (Hickok et al., 2011; D’Ausilio et al., 

2012a). To what extent though, it remained to be assessed. 

In our results, vowel listening data reflected the formant 

model in a temporal and in a frontal region, providing a finer 

characterization of how tasks are co-managed by the temporal 

and frontal ends of the perception-production continuum, in line 

with the cited literature. Particularly, formant space was 

reconstructed in pSTS-MTG evoked by vowel listening, as 

expected from previous literature (Obleser et al., 2006; Formisano 

et al., 2008; Mesgarani et al., 2014), but also in IFGpTri, again in 
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the listening task. Yet, the formant model was insufficient to 

explain brain activity in imagery and production. These results 

are in agreement with previous associations of the superior 

temporal cortex with formant structure (Formisano et al., 2008). 

Moreover, they suggest that frontal regions engage in 

perception, specifically encoding formant representations. 

However, such behavior would be modulated by auditory 

stimulation, despite the historical association of this region to 

production. Finally, our results show that phonological 

information, such as that provided by formants, cannot be 

merely retrieved from tone-processing brain regions. 

These results, while contrasting an ‚all-out shared‛ scenario 

for the neural code subtending vowel representation, and not 

fully confirming a specific ‚task to region‛ one, seem to suggest 

a third, more complex idea: a model based on acoustic properties 

is indeed shared between regions engaging in speech processing, 

but not indiscriminately (Grabski et al., 2013; Conant et al., 2018). 

Instead, its fundamentally acoustic nature is reflected by activity 

in regions engaging in a listening task, and with higher-level 

stimuli only (vowels, and not tones). These may contain and 

organize around more relevant information, like specific motor 

synergies (Gick and Stavness, 2013; Leo et al., 2016) of the lip-

tongue complex (Conant et al., 2018): nonetheless, current 

limitations in the articulatory model restrict this argument, since, 

in our data, no production region contained articulatory 

information sufficient to survive statistical correction. Such 

discussion might, however, translate from neuroscience to 

phonology, by providing a finer characterization of vowel space, 

where apparently kinematics and acoustics do not weigh exactly 

the same in the brain, despite determining each other in the 

physics of articulation, as it is commonly taught (Stevens and 
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House, 1955; Moore, 1992; Dang and Honda, 2002; Ladefoged 

and Disner, 2012). 

 

Formants Are Encoded in Temporal and Frontal Regions. 

Previous fMRI and ECoG studies already reconstructed formant 

space in the broad superior temporal region (Obleser et al., 2006; 

Formisano et al., 2008; Mesgarani et al., 2014). In line with this, 

we show that even a subtle arrangement of vowels in formant 

space holds enough information to be represented significantly 

in both the left pSTS-MTG and IFGpTri, during vowel listening. 

This presumably indicates that the temporal cortex tunes itself to 

the specific formant combinations of a speaker’s native language, 

despite its complexity. Moreover, the formant model was 

explained by auditory brain activity (vowel listening) in regions 

emerging from the listening task only: one may expect such 

behavior from regions classically involved in auditory processes, 

i.e., portions of the superior temporal cortex, as reported by the 

cited literature; instead, vowel listening also engaged the inferior 

frontal gyrus in our previous study (Rampinini et al., 2017), and 

in these results, as well, the formant model was reflected there. 

This suggests that a region typical to production, as the IFG is, 

also reflects subtle harmonic properties during vowel listening. 

Coming back to the hypotheses outlined in the Introduction, 

these results hint at a degree of code-sharing which is subtler 

than an all-out scenario or a specific task-to-region one: IFGpTri 

may perform a non-classical function, only as it ‚listens to‛ the 

sounds of language, retrieving acoustic information in this one 

specific case. The sensitivity of IFG to acoustic properties is 

indirectly corroborated by a study from Markiewicz and 

Bohland (2016), where lifting the informational weight of 

harmonic structure disrupted the decoding accuracy of vowels 
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therein. The involvement of frontal regions seems consistent 

with other data supporting, to a certain degree, action-perception 

theories (Wilson et al., 2004; D’Ausilio et al., 2012a,b). On the 

other hand, while an interplay between temporal and frontal 

areas - already suggested by Luria (1966) -, is supported by 

computational models (Laurent et al., 2017), as well as by brain 

data and action-perception theories, the involvement of frontal 

regions in listening may be modulated by extreme circumstances 

-as noisy or masked speech- (Adank, 2012; D’Ausilio et al., 

2012b), learned stimuli over novel ones (Laurent et al., 2017), or 

task difficulty (Caramazza and Zurif, 1976). In this sense, 

IFGpTri representing auditory information may contribute to 

this sort of interplay. Nonetheless, our results do not provide an 

argument for the centrality, nor the causality of IFGpTri 

involvement in perception. 

 

Articulatory Model Fitting With Brain Activity. In phonology, 

the formant model is described as arising from vocal tract 

configurations unique to each vowel (Stevens and House, 1955; 

Moore, 1992; Albano Leoni and Maturi, 1995; Dang and Honda, 

2002; Ladefoged and Disner, 2012). However, it has to be 

recognized that practical difficulties in simultaneously 

combining brain activity measures with linguo- and palatograms 

have strongly limited a finer characterization of the cerebral 

vowel space defined through motor markers. Indeed, to this day, 

the authors found scarce evidence comparing articulation 

kinematics with brain activity (Bouchard et al., 2016; Conant et 

al., 2018). Considering the articulatory model, in our data we 

observed how it simply never outperformed the acoustic model: 

in fact, it did not survive correction for multiple comparisons, 

even in production regions. Considering this, the formant model 
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holds a higher signal-to-noise ratio, coming from known spectro-

temporal properties, while the definition of an optimal 

articulatory model is still open for discussion (Atal et al., 1978; 

Richmond et al., 2003; Toda et al., 2008). In fact, high-

dimensionality representations have frequently been derived by 

those reconstructing the phonatory chamber by modeling 

muscles, soft tissues, joints and cartilages (Beautemps et al., 

2001). Such complexity is usually managed, as we did here, by 

means of dimensionality reduction (Beautemps et al., 2001), to 

achieve whole representations of the phonatory chamber. 

Although a vowel model described by selecting the first two 

formants cannot equal the richness and complexity of our 

articulatory model, the brain does not seem to represent the 

latter either, in the pars triangularis, or in the pSTS-MTG. Of 

note, a simpler, two-column articulatory model based on 

measures maximally correlating with F1 and F2 yielded similar 

results (p > 0.05, Bonferroni-corrected). On the other hand, we 

point out that our articulatory model was built upon a speaker’s 

vocal tract that, ultimately, was not the same as that of each 

single fMRI subject. Therefore, even though the formant and 

articulatory models do entertain a close relationship (signaled by 

elevated collinearity in our data), caution needs to be exerted in 

defining them as interchangeable, as shown by literature and in 

our results with model fitting, which favored an acoustic model 

in regions emerging from acoustic tasks as reported elsewhere 

(Cheung et al., 2016). 

 

Formants and Tones Do Not Overlap. The superior temporal 

cortex has long been implicated in processing tones, natural 

sounds and words using fMRI (Specht and Reul, 2003). 

Moreover, it seems especially probed by exquisitely acoustic 
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dimensions such as timbre (Allen et al., 2018), harmonic 

structure (Formisano et al., 2008), and pitch, even when extracted 

from complex acoustic environments (De Angelis et al., 2018). 

There is also evidence of the inferior frontal cortex being broadly 

involved in language-related tone discrimination and learning 

(Asaridou et al., 2015; Kwok et al., 2016), as well as in encoding 

timbre and spectro-temporal features in music (Allen et al., 

2018), in attention-based representations of different sound types 

(Hausfeld et al., 2018) and, in general, in low-level phonological 

tasks, whether directly (Markiewicz and Bohland, 2016) or 

indirectly related to vowels (Archila-Meléndez et al., 2018). This 

joint pattern of acoustic information exchange by the frontal and 

temporal cortices may be mediated by the underlying structural 

connections (Kaas and Hackett, 2000) and the existence, in 

primates, of an auditory ‚what‛ stream (Rauschecker and Tian, 

2000) specialized in resolving vocalizations (Romanski and 

Averbeck, 2009). Such mechanism might facilitate functional 

association between the frontal and temporal cortices when, 

seemingly, input sounds retain a semantic value for humans 

(recognizing musical instruments, tonal meaning oppositions, or 

extracting pitch from naturalistic environments for selection of 

relevant information).  

Coherently, we used tones lying within psychophysical 

sensitivity bands, within the frequencies of the first formant, a 

harmonic dimension important for vowel disambiguation, which 

appeared to be represented across frontal and temporal cortices 

(Rampinini et al., 2017). Specifically, the left STS and the bilateral 

IFG represented pure tones, although separate from vowels in 

our previous study, and here, consistently, no tone-specific 

region held information relevant enough to reconstruct formant, 

nor articulatory space. Therefore, this result hinted at the 



 73 

possibility of more specific organization within these hubs of 

sound representation. 

In our previous study, the pars triangularis sub-perimeter 

coding for heard vowels also showed high accuracy in detecting 

tone information: in light of this, here we hypothesized the 

existence of a lower-to-higher-level flow of information, from 

sound to phoneme. Thus, when formant space was reconstructed 

from brain activity in the pars triangularis coding for heard 

vowels, we interpreted this result as the need for some degree of 

sensitivity to periodicity (frequency of pure tones) to represent 

harmonics (summated frequencies). Therefore, we suggest that 

harmony and pitch do interact, but the path is one-way from 

acoustics toward phonology (i.e., to construct meaningful sound 

representations in one’s own language), and not vice versa. 

Interestingly, we may be looking at formant specificity as, yet 

again, a higher-level property retained by few selected voxels 

within the pars triangularis, spatially distinct and responsible for 

harmonically complex, language-relevant sounds, implying that 

formant space representation is featured by neurons specifically 

coding for phonology. 

In summary, in the present study we assessed the association 

of brain activity with formant and articulatory spaces during 

listening, articulation imagery, and production of seven vowels 

in fMRI data. Results revealed that, as expected, temporal 

regions represented formants when engaged in perception; 

surprisingly, though, frontal regions as well encoded formants, 

but not vocal tract features, during vowel listening. Moreover, 

formant representation seems to be featured by a sub-set of 

voxels responsible specifically for higher level, strictly linguistic 

coding, since adjoining tone-sensitive regions did not retain 

formant-related information. 
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4. Representational Similarity Encoding analysis 

applied to semantic knowledge 

 

Abstract 
 

The organization of semantic information in the brain has been 

mainly explored through category-based models, on the 

assumption that categories broadly reflect the organization of 

conceptual knowledge. However, the analysis of concepts as 

individual entities, rather than as items belonging to distinct 

superordinate categories, may represent a significant 

advancement in the comprehension of how conceptual 

knowledge is encoded in the human brain. 

Here, we studied the individual representation of thirty concrete 

nouns from six different categories, across different sensory 

modalities (i.e., auditory and visual) and groups (i.e., sighted 

and congenitally blind individuals) in a core hub of the semantic 

network, the left angular gyrus, and in its neighboring regions 

within the lateral parietal cortex. Four models based on either 

perceptual or semantic features at different levels of complexity 

(i.e., low- or high-level) were used to predict fMRI brain activity 

using representational similarity encoding analysis. When 

controlling for the superordinate component, high-level models 

based on semantic and shape information led to significant 

encoding accuracies in the intraparietal sulcus only. This region 

is involved in feature binding and combination of concepts 

across multiple sensory modalities, suggesting its role in high-

level representation of conceptual knowledge. Moreover, when 

the information regarding superordinate categories is retained, a 

large extent of parietal cortex is engaged. This result indicates the 
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need to control for the coarse-level categorial organization when 

performing studies on higher-level processes related to the 

retrieval of semantic information.  
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Introduction 
 

The organization of semantic information in the human brain has 

been primarily explored through models based on categories. 

This domain-specific approach relies on the assumption, 

supported by neuropsychological and neuroimaging 

observations, that the categories of language (e.g., faces, places, 

body parts, tools, animals) broadly reflect the organization of 

conceptual knowledge in the human brain (Kemmerer, 2016; 

Mahon and Caramazza, 2009). 

However, rather than being limited to differentiating among a 

small number of broad superordinate categories, a deeper 

comprehension of conceptual knowledge organization at a 

neural level should characterize the semantic representation of 

individual entities (Charest et al., 2014; Clarke and Tyler, 2015; 

Mahon and Caramazza, 2011). In fact, despite the strong 

evidence in favor of a categorial organization of conceptual 

knowledge in the brain (Gainotti, 2010; Pulvermuller, 2013), 

category-based models tend to be over-simplified and often do 

not take into account those perceptual and semantic features 

(e.g., shape, size, function, emotion) involved in the finer-grained 

discrimination of individual concepts (Clarke and Tyler, 2015; 

Kemmerer, 2016). Typically, semantic studies limit at controlling 

those variables within broader and heterogeneous categories, 

thus restricting the emergence of individual item processing 

(Baldassi et al., 2013; Bona et al., 2015; Bracci and Op de Beeck, 

2016; Ghio et al., 2016; Kaiser et al., 2016; Proklova et al., 2016; 

Vigliocco et al., 2014; Wang et al., 2016). Furthermore, broader 

categories are often affected by a high degree of collinearity, as 

stimuli belonging to highly dissimilar categories according to a 

sensory-based description (e.g., faces and places), may also be 
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very dissimilar according to their semantic characterization. 

Thus, the labeling of certain brain regions might rely either on 

perceptual or semantic features (Carlson et al., 2014; Fernandino 

et al., 2016; Jozwik et al., 2016; Khaligh-Razavi and Kriegeskorte, 

2014). 

In addition, the transition from lower-level sensory-based 

representations towards higher-level conceptual representations 

is still ill defined. For instance, how entities that are similar for 

one or more perceptual features (e.g., shape: a tomato and a ball) 

are represented in the brain as semantically different remains to 

be understood (Bi et al., 2016; Clarke and Tyler, 2015; Kubilius et 

al., 2014; Rice et al., 2014; Tyler et al., 2013; Wang et al., 2016; 

Wang et al., 2015; Watson et al., 2016). 

To assess the extent to which the category-based organization 

relies on sensory information, our group recently adopted a 

property generation paradigm in sighted and congenitally blind 

individuals to demonstrate that the representation of semantic 

categories relies on a modality-independent brain network 

(Handjaras et al., 2016). Furthermore, the analysis of individual 

cortical regions showed that only a few of them (i.e., inferior 

parietal lobule and parahippocampal gyrus) contained distinct 

representations of items belonging to different semantic 

categories across presentation modalities (i.e., pictorial, verbal 

visual and verbal auditory forms or verbal auditory form in 

congenitally blind individuals) (Handjaras et al., 2016). 

In the present study, we intended to describe the 

representation, across different presentation modalities, of each 

of the thirty concrete nouns from six different categories, using 

part of the same dataset of Handjaras and colleagues (2016). 

Instead of encoding semantic information using a category-based 

model, here we characterized the representation of the 
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individual entities using a recent method for fMRI data analysis, 

called representational similarity encoding (Anderson et al., 

2016b), to combine representational similarity analysis and 

model-based encoding. In this methodological approach, two 

representational spaces were created, one from a priori model 

and one from the neural activity of a specific brain region. Then, 

a machine learning procedure learned to associate specific rows 

(i.e., similarity vectors) between the two representational spaces, 

ultimately generating an overall accuracy measure. 

Moreover, the conceptual representation was evaluated by 

focusing on the entities within each category (e.g., fruits: apple 

vs. cherry). This within-category encoding is therefore resistant 

to the effect of category membership and represents an adequate 

perspective to study how single concepts are processed in the 

brain. To disentangle the role of perceptual or semantic features 

and of their complexity (i.e., low- or high-level), we aimed at 

predicting brain activity using similarity encoding with four 

models: two semantic models that considered either the 

complete set of language-based features or a subset of these 

features related to perceptual properties only (Lenci et al., 2013), 

and two perceptual models, which provided higher-level 

descriptions of object shape, or merely focused on low-level 

visual features (Oliva & Torralba, 2001; van Eede et al., 2006). 

We focused the single-item encoding analysis on the angular 

gyrus and its neighboring regions within the left parietal cortex. 

The angular region has been solidly associated to a wide gamut 

of semantic tasks, and its activity during retrieval and processing 

of concrete nouns or combination of concepts (Binder et al., 2009; 

Price et al., 2015; Seghier, 2013) makes this region a strong 

candidate for semantic processing at a finer, single-item level. 

More importantly, neighboring regions to the angular gyrus 
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within the left lateral parietal cortex have been involved, to a 

different extent, in semantic processing, thus indicating the need 

for a more comprehensive characterization of conceptual 

representations within the parietal lobe (Binder et al., 2009; 

Jackson et al., 2016; Price, 2012). Therefore, the analyses were 

performed in a larger map of the left lateral parietal cortex that 

centered on the angular gyrus, as defined on both anatomical 

and functional criteria. The definition of different regions of 

interest (ROIs) assessed the different degree of involvement of 

specific regions in processing of individual concepts, and how 

such a processing is influenced by sensory modality.  
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Materials and Methods 
 

A representational similarity encoding (Anderson et al., 2016b) 

was applied to data collected in a fMRI experiment, in which 

sighted and blind participants were instructed to mentally 

generate properties related to a set of concrete nouns, as 

described in details in our previous study (Handjaras et al., 

2016). In brief, participants were divided in four groups 

according to the stimulus presentation modality (i.e., pictorial, 

verbal visual and verbal auditory forms for sighted individuals 

and verbal auditory form for congenitally blind individuals). 

Two semantic models were built on the set of concrete nouns 

and two alternative perceptual models were derived from the 

pictorial form of the stimuli. For each of the semantic and 

perceptual model, there was a descriptor for high-level features 

and one for lower-level information. The four models were then 

used to encode the specific brain activity pattern of each concept, 

in each group of subjects. 

 

Brief summary of the Handjaras et al. (2016) fMRI protocol and 

preprocessing. Brain activity was measured in fMRI with a slow 

event-related paradigm (gradient echo echoplanar images GRE-

EPI, GE SIGNA at 3T, equipped with an 8-channel head coil, TR 

2.5s, FA: 90°, TE 40ms, FOV = 24 cm, 37 axial slices, voxel size 

2x2x4 mm) in 20 right-handed Italian volunteers during a 

property generation task after either visual or auditory 

presentation of thirty concrete nouns of six semantic categories 

(i.e., vegetables, fruits, mammals, birds, tools, vehicles) (please 

refer to Supplementary Materials for the list of nouns). Two 

semantic categories (e.g., natural and artificial places) from 

Handjaras et al. (2016) were excluded here due to a specific 
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limitation of the shape-based perceptual model which required 

segmented stimuli (e.g., objects). Participants were divided into 

four groups accordingly to the stimulus presentation format: five 

sighted individuals were presented with a pictorial form of the 

forty nouns (M/F: 2/3 mean age ± SD: 29.2±12.8 yrs), five 

sighted individuals with a verbal visual form (i.e., written Italian 

words) (M/F: 3/2 mean age ± SD: 36.8±11.9 yrs), five sighted 

individuals with a verbal auditory form (i.e., spoken Italian 

words) (M/F: 2/3 mean age ± SD: 37.2±15 yrs) and five 

congenitally blind with a verbal auditory form (M/F: 2/3 mean 

age ± SD: 36.4±11.7 yrs). High resolution T1-weighted spoiled 

gradient recall images were obtained to provide detailed brain 

anatomy. 

During the visual presentation modality, subjects were 

presented either with images representing the written word 

(verbal visual form) or color pictures of concrete objects (pictorial 

form). Stimulus presentation lasted 3 seconds and was followed 

by a 7s-inter stimulus interval (ISI). During the auditory 

presentation modality, subjects were asked to listen to about 1s-

long words – referring to the same concrete nouns above – 

followed by 9s ISI. During each 10s-long trial, participants were 

instructed to mentally generate a set of features related to each 

concrete noun. Each run had two 15s-long blocks of rest, at its 

beginning and end, to obtain a measure of baseline activity. The 

stimuli were presented four times, using, for each repetition, a 

different image (for pictorial stimuli) or speaker (for auditory 

stimuli). The presentation order was randomized across 

repetitions and the stimuli were organized in five runs. 

The AFNI software package (Cox, 1996) was used to 

preprocess functional imaging data. All volumes from the 

different runs were temporally aligned, corrected for head 
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movement, spatially smoothed (4 mm) and scaled. Subsequently, 

a multiple regression analysis was performed to obtain t-score 

response patterns of each stimulus, which were included in the 

subsequent analyses. Each stimulus was modeled using five tent 

functions which covered the entire interval from its onset up to 

10 seconds, with a time step of 2.5 seconds. Only the t-score 

response patterns of the fourth tent function (7.5 seconds after 

stimulus onset), averaged across the four repetitions, were used 

as estimates of the BOLD response for each stimulus (Handjaras 

et al., 2015; Leo et al., 2016). Afterwards, FMRIB’s Nonlinear 

Image Registration tool (FNIRT) was used to register the fMRI 

volumes to standard space (MNI-152) and to resample the 

acquisition matrix to a 2 mm iso-voxel (Andersson et al., 2007; 

Smith et al., 2004). 

 

Regions of interest. For our measurement of single-item semantic 

information, we first defined a mask of the left angular gyrus 

both using the Automated Anatomical Labeling (AAL) Atlas 

(Tzourio-Mazoyer et al., 2002) and from a functional meta-

analysis using the Neurosynth database (Yarkoni et al., 2011). 

Due to the fact that recent evidence shows that semantic 

processing, albeit mostly centered on the angular gyrus, does 

involve neighboring regions as well (Binder et al., 2009; Jackson 

et al., 2016; Price, 2012), we expanded the area of interest to 

include a larger extent of left parietal cortex, using a mask 

divided into subregions which could be analyzed separately. 

First, the functional mask extracted from the Neurosynth 

database was superimposed to the functional brain atlas by 

Craddock et al. (2012). A parcellation to 200 ROIs was chosen 

using the temporal correlation between voxels time-courses as 

similarity metric; this criterion ensures high anatomic homology 
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and interpretability (Craddock et al., 2012). At last, eight ROIs 

were defined in the left lateral parietal cortex, which overlapped, 

at least partially, with the left angular gyrus defined via 

Neurosynth meta-analysis (Figure 4.1, 4.3 and Table 4.1). 

The bilateral Heschl gyri (HG) and the bilateral calcarine and 

pericalcarine cortex (Cal) were selected as control regions to 

assess whether the different presentation modalities could affect 

primary sensory regions. The HG and Cal regions were defined 

using the Jülich histological atlas of the FMRIB Software Library 

(Eickhoff et al., 2007; Smith et al., 2004). In addition, to control for 

the role of high-level perceptual features, we used the 

Neurosynth database and the mask obtained from its meta-

analytic map to define the left lateral occipital complex (LOC), a 

region involved in shape processing (Malach et al., 1995). The 

organization and spatial location of the regions of interest are 

represented in Table 4.1 and Figure 4.1. 

 

 
Table 4.1. Here are reported Volume (in L), X, Y and Z coordinates (LPI) in MNI space 

(in mm) for the center of mass of each region. L Ang AAL and L Ang NS refer to the 

functional mask of the angular gyrus extracted from the Neurosynth database (Yarkoni et 

al., 2011) and the anatomical definition of the angular gyrus using the Automated 

Anatomical Labeling (AAL) Atlas (Tzourio-Mazoyer et al., 2002) respectively. ID ROI 

indicates the number of each region of Figure 4.3 with the corresponding identification 

number (ID Craddock) from the atlas by Craddock et al. (2012). 
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Figure 4.1. As regions of interest, the left lateral parietal cortex was parcellated using the 

brain atlas by Craddock et al. (2012), while the functional and the anatomical masks of the 

angular gyrus were extracted from the Neurosynth database (Yarkoni et al., 2011) and the 

Automated Anatomical Labeling (AAL) Atlas respectively (Tzourio-Mazoyer et al., 2002) 

(Panel A). As control regions, we defined the left lateral occipital complex (LOC) using 

the Neurosynth database, and the bilateral Heschl gyri (HG) and the bilateral calcarine 

and pericalcarine cortex (Cal) using the Jülich histological atlas (Eickhoff et al., 2007) 

(Panel B). These regions were also detailed in Table 4.1. 

 

Semantic models. The Blind Italian Norming Data (BLIND) set, 

validated in an independent Italian sample of blind and sighted 

participants, was used to define the semantic model for the 

similarity encoding (Lenci et al., 2013). The concrete nouns of the 

BLIND study were a set of normalized stimuli that belong to 

various biological and artificial semantic categories, most of 

which are shared with previous norming studies (Connolly et al., 

2007; Kremer and Baroni, 2011; McRae et al., 2005). In the BLIND 

study, sighted and congenitally blind participants were 

presented with concept names and were asked to verbally list the 

features that describe the entities the words refer to. The features 
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produced by the subjects were not limited to sensory attributes 

of the stimuli (e.g., shape, size, color) but also included high-

level properties, such as associated events and abstract features 

(Lenci et al., 2013). The collected features were extracted, pooled 

across subjects to derive averaged representations of the nouns, 

using subjects’ production frequency as an estimate of feature 

salience (Handjaras et al., 2016; Lenci et al., 2013; Mitchell et al., 

2008). This procedure provided a feature space of 812 

dimensions (properties) for sighted and 743 for blind 

participants. As depicted in Figure 4.2, the collected features 

were used to assemble two semantic models for both sighted and 

blind individuals: one based on the whole feature space (i.e., 

high-level semantic model), one restricted to the perceptual 

features only (i.e., Property of Perceptual Type, PPE), 

corresponding to those qualities that can be directly perceived, 

such as magnitude, shape, taste, texture, smell, sound and color 

(i.e., low-level semantic model) (Wu & Barsalou, 2009; Lenci et 

al., 2013). 

Subsequently, representational spaces (RSs) were derived from 

the semantic models using correlation dissimilarity index (one 

minus Pearson’s r), obtaining four group-level dissimilarity 

matrices (i.e., for sighted and blind subjects) (Figure 4.2).  
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Figure 4.2. Figure depicts, on the left, the different presentation modalities used to evoke 

conceptual representations (pictorial, verbal visual and verbal auditory forms for sighted 

individuals and verbal auditory form for congenitally blind individuals). In the middle, 

the four models used for the encoding analyses are defined. Two semantic models, 

illustratively represented using word clouds, were built on the features generated in a 

behavioral experiment based on a property-generation task (Lenci et al., 2013): the high-

level model was based on the whole set of linguistic features while the low-level one was 

defined on a subset of these features restricted to perceptual properties. Moreover, two 

perceptual models were obtained from the pictorial form of the stimuli: the high-level 

perceptual model was built on the shape features of the images through shock-graphs 

(Sebastian et al., 2004), while the low-level one was the GIST based on Gabor filters (Oliva 

and Torralba, 2001). For example, according to the high-level semantic model a 

screwdriver was very similar to a hammer, while according to the high-level shape-based 

perceptual model, a screwdriver was more similar to a pencil than to a hammer. The 

Representational Spaces (RSs) extracted from the four models are depicted on the right. 

Dissimilarity measures are reported in details in the Methods section. 

 

 

Perceptual models. A high-level perceptual model was obtained 

from the shape features of the thirty images. First, all the 

pictorial stimuli were manually segmented and binarized. A 

skeletal representation of each stimulus was then computed by 

performing the medial axis transform (Blum, 1973). The 

dissimilarity between each pair of skeletal representations was 

then computed using the ShapeMatcher algorithm 
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(http://www.cs.toronto.edu/~dmac/ShapeMatcher/index.html

; van Eede et al., 2006) which builds the shock-graphs of each 

object and then estimates their pairwise distance by computing 

the deformation needed in order to match their shapes (Sebastian 

et al., 2004). The distances were then averaged across the four 

repetitions of each pictorial stimulus, which corresponded to 

four different pictures, to produce a shape-based RS. This high-

level perceptual description was used as a model to predict brain 

activity, similarly to what is performed on fMRI data by other 

authors (Leeds et al., 2013). 

Furthermore, to assess whether the patterns of neural response 

could be predicted also by differences in low-level image 

statistics of the different pictorial stimuli, we built a RS based on 

visual features (Oliva & Torralba, 2001; Rice et al., 2014). A global 

description of the spatial frequencies of each color image seen by 

the subjects during the pictorial presentation modality was 

estimated using the GIST model (Oliva and Torralba, 2001). 

Briefly, a GIST descriptor was computed by sampling the 

responses to Gabor filters with four different sizes and eight 

orientations; the GIST descriptor of each item was obtained by 

averaging the GIST descriptors of the four stimuli representing 

the item. The GIST descriptor of each item were then normalized 

and compared to each other using correlation dissimilarity 

index, generating a RS which was used as a low-level, perceptual 

model. 

For each RS of the four models, the within-category 

information was extracted, normalized within each category 

scaling to the maximum distance and compared across models 

(p<0.05, two tailed test, Bonferroni corrected for the number of 

comparisons, i.e., 15) (Table 4.2). Subsequently, within-category 

information of each model was used for the similarity encoding.  
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Representational similarity encoding analysis. The similarity 

encoding was recently proposed to merge representational 

similarity analysis and model-based encoding (Anderson et al., 

2016b). In this approach, two RSs, one derived from neural and 

one from semantic or perceptual data, are compared each other 

using a leave-two-stimulus-out strategy: the two left out vectors 

from both matrices are matched using the correlation coefficient 

hence to generate an accuracy measure. This approach is 

resistant to overfitting issues and does not require parameters 

estimation (for further details, please refer to Anderson et al, 

2016b). 

The RSs from fMRI data were computed within each ROI and 

subject, using the correlation distance. For each presentation 

modality, the five single-subject RSs were averaged and the 

resulting group-level RSs were compared to the models RS as 

specified above. The analysis was limited to the five concrete 

nouns within each of the six categories, thus performing only 60 

comparisons (i.e., within-category individual item encoding) 

instead of all the 435 comparisons (i.e., among-categories 

individual item encoding). 

The standard error of the accuracy value was estimated using a 

bootstrapping procedure (1,000 iterations) (Efron & Tibshirani, 

1994). Finally, to assess the significance of the encoding analysis, 

the resulting accuracy value was tested against the null 

distribution from a permutation test in which both the neural 

and behavioral matrices were shuffled (1,000 permutations, one-

tailed rank test).  

Moreover, within each ROI, accuracies of each presentation 

modality were averaged. The significance level was calculated by 

averaging null distributions obtained with a fixed permutation 



 89 

schema across presentation modalities (Nichols et al., 2002). The 

averaged accuracy was subsequently tested with a one-tailed 

rank test (1,000 permutations). 

Accuracies across presentation modalities were reported in Table 

4.3, 4.4, 4.5 and 4.6, while the averaged accuracy across 

presentation modalities was represented onto a brain mesh in 

Figure 4.3. All the p-values of the accuracies in Table 4.3, 4.4, 4.5 

and 4.6 were reported as uncorrected for multiple comparisons. 

Results from the left parietal cortex were corrected for Bonferroni 

when applicable (by adjusting the raw p-values evaluating the 

eight ROIs from the Craddock Atlas). 

The model definition and the similarity encoding approaches 

were accomplished by using Matlab (Matworks Inc., Natick, MA, 

USA), while Connectome Workbench was used to render the 

brain meshes in Figure 4.1, 4.3, and 4.4B. 

In addition, an alternative procedure based on the discrimination 

of each individual concrete noun irrespective of their 

membership to one of the six semantic categories (i.e., among-

categories individual item encoding) was performed using the 

high-level semantic model only: this procedure aimed at 

measuring the impact of the categorial organization on the 

classification accuracy (see Supplementary Materials of 

Handjaras et al., 2017).  
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Results 
 

The combined procedure to identify the angular gyrus on an 

anatomical and functional bases, and to parcellate the 

surrounding portion of left lateral parietal cortex using the brain 

atlas by Craddock et al. (2012), resulted in eight ROIs that 

comprised a wide extension of cortex from the posterior and 

middle part of intraparietal sulcus (IPS) to superior temporal 

lobule, angular and supramarginal gyri, as well as superior 

temporal gyrus, as depicted in Figure 4.1, and detailed in Table 

4.1. 

The within-category RSs obtained from the four models were 

compared to each other to assess models’ collinearity (p<0.05, 

Bonferroni corrected). Results were reported in Table 4.2. 

 

 
 
Table 4.2. Table reports the Pearson's r correlation coefficient between each model.  
* Indicates a significant correlation (p<0.05, Bonferroni corrected). 

 

The blind and the sighted within-category high-level semantic 

models were highly correlated (r=0.68, p<0.05, Bonferroni 

corrected). This is consistent with the high correlation value of 

the whole semantic RS between blind and sighted participants 

(r=0.94) previously reported (Handjaras et al., 2016). The other 

models retained relative lower, not significant correlations 

(p>0.05, Bonferroni corrected). 
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Table 4.3. Within-category individual item encoding accuracies for the high-level 

semantic model. Here are reported the accuracies in each ROI of the encoding procedure 

in each presentation modality (mean±standard error) for the semantic model based on 

the whole linguistic feature space. For Ang AAL, Ang NS, LOC, HG and Cal, please refer 

to Figure 4.1. * Indicates a successful encoding at p<0.05, Bonferroni corrected for the 

eight ROIs from the brain atlas by Craddock et al. (2012). 

 

The within-categories encoding analysis, performed in the left 

lateral parietal cortex, indicated a significant ability to 

discriminate individual concrete nouns using the high-level 

models (semantic and shape-based perceptual) in the posterior 

part of the IPS (ROI 2) and in the middle portion of the IPS, 

extending to the superior parietal lobule (ROI 3). Specifically, in 

ROI 2, we found an accuracy (average accuracy across 

presentation modalities ± standard error) of 63.8±1.9% for the 

semantic high-level model, 59.0±5.2% for the shape-based 

perceptual model (both p<0.05, Bonferroni corrected), while the 

low-level models resulted in a not significant accuracy: 

54.8±5.1% for the semantic model based on the perceptual 

features only and 42.1±3.9% for the GIST-based perceptual one 

(both p>0.05). 
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Table 4.4. Within-category individual item encoding accuracies for the high-level 

perceptual model. Here are reported the accuracies in each ROI of the encoding 

procedure in each presentation modality (mean±standard error) for the perceptual model 

based on shape features. For Ang AAL, Ang NS, LOC, HG and Cal, please refer to Figure 

4.1. * Indicates a successful encoding at p<0.05, Bonferroni corrected for the eight ROIs 

from the brain atlas by Craddock et al. (2012). 

 

 

 
 
Table 4.5. Within-category individual item encoding accuracies for the low-level semantic 

model. Here are reported the accuracies in each ROI of the encoding procedure in each 

presentation modality (mean±standard error) for the semantic model based on perceptual 

features only. For Ang AAL, Ang NS, LOC, HG and Cal, please refer to Figure 4.1.  

* Indicates a successful encoding at p<0.05, Bonferroni corrected for the eight ROIs from 

the brain atlas by Craddock et al. (2012). 

 

Similarly, in ROI 3, encoding analysis led to a significant 

accuracy for the high-level models (60.0±2.9% for the semantic 

and 60.2±1.6% for the perceptual one, both p<0.05, Bonferroni 

corrected) and the low-level semantic-based model (61.5±1.4%, 

p<0.05, Bonferroni corrected), while the low-level perceptual one 

was at chance level (47.1±3.7%, p>0.05, Bonferroni corrected). 
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These results were reported in details in Table 4.3, 4.4, 4.5 and 4.6 

and Figure 4.3. 

 

 
 
Table 4.6. Within-category individual item encoding accuracies for the low-level 

perceptual model. Here are reported the accuracies in each ROI of the encoding 

procedure in each presentation modality (mean±standard error) for the perceptual model 

based on GIST. For Ang AAL, Ang NS, LOC, HG and Cal, please refer to Figure 4.1.  

* Indicates a successful encoding at p<0.05, Bonferroni corrected for the eight ROIs from 

the brain atlas by Craddock et al. (2012). 

 

The two intraparietal ROIs were the only ones that reached 

significant accuracy across presentation modalities, as the 

analysis in the other regions of the left parietal cortex, and in the 

angular gyrus defined both on anatomical or functional 

constraints, did not reach the significance threshold for any 

model.  
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Figure 4.3. Encoding results. Figure depicts the mean accuracy across presentation 

modalities of the representational similarity encoding analysis of the four models in the 

left lateral parietal cortex. The significant accuracy values (p<0.05, Bonferroni corrected) 

are reported in bold font, the other values were not significant. Detailed results are 

reported for each ROI in Tables 4.3–4.6. 

 

In addition, the same analysis was performed on two primary 

sensory control regions, bilateral Heschl gyri (HG) and 

pericalcarine cortex (Cal) and in the left lateral occipital complex 

(LOC). Overall, the accuracy across presentation modalities in 

these ROIs did not reach the threshold for significance (p>0.05, 

uncorrected for multiple comparisons) apart for the high-level 

shape-based perceptual model, which achieved a significant 

discrimination in left LOC (56.0±3.7%, uncorrected p=0.040). 

Here, the similarity encoding procedure aimed at discriminating 

individual items within each category thus to control for possible 

biases related to the categorial organization. However, to obtain 

accuracies comparable to results from previous studies 
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(Anderson et al., 2016b; Mitchell et al., 2008), we performed the 

encoding analysis exploring the whole RS (i.e., among-categories 

procedure), without restricting to the within-category 

information. Results for the high-level semantic model only were 

depicted in Figure 4.4B. Briefly, the high-level semantic model 

yielded an overall increase of the accuracy values in the eight 

ROIs of the left lateral parietal cortex (i.e., +13.5±3.0% on 

average), when using models which were affected by categorial 

organization. Moreover, all the ROIs in the left parietal cortex 

resulted to be significant using the among-categories procedure 

(p<0.05, Bonferroni corrected). 

 

 

 



 96 

 
Figure 4.4. Comparison between the within-category and among-categories procedures. 

Panel A: a multidimensional scaling of the high-level semantic RS in sighted subjects. 

Within- and among- distances for a single item were represented with blue and red lines 

respectively. Overall, the mean of the within-distances represents about the 55% of the 

mean of the distances between all the possible pairs of semantic items belonging to 

different categories in the RS. Panel B left: overall accuracies for the within-category 

procedure. Panel B right: the overall accuracies for the among-categories procedure in the 

left lateral parietal cortex. The among-categories procedure yielded an overall increase of 

the accuracy values of +13.5±3.0% in the left parietal cortex, and all the eight ROIs from 

the Craddock's atlas resulted to be significant (p<0.05, Bonferroni corrected). The borders 

of the regions that reported an above chance accuracy are marked with a solid line.  
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Discussion 
 

To pursue a more comprehensive description of conceptual 

knowledge organization, this study investigated the specific 

representation of individual semantic concepts in the angular 

gyrus and in the neighboring cortical regions within the left 

lateral parietal cortex, as the extant literature strongly links this 

area to semantic processing. Patterns of brain activity related to 

thirty concrete nouns belonging to different categories were 

analyzed through similarity encoding. Our within-category 

procedure focused on the differences between items belonging to 

the same category, representing therefore a reliable description 

of single-item processing, rather than reflecting the 

superordinate information. In addition, we used four models – 

two based on linguistic features extracted by a property 

generation task, and two based on visual computational models 

applied to pictorial stimuli – to identify brain regions that encode 

semantic or perceptual properties of single items and to assess 

whether these representations were more tied to low-level or 

high-level features. 

 

Similarities and differences of the encoding models. The 

significant correlation between the high-level semantic models in 

sighted and congenitally blind individuals, as obtained using the 

within-category approach, confirms the similarity between their 

representations. Akin results have been previously obtained 

from the correlation of the whole semantic RS, without 

controlling for the role of category membership (Handjaras et al., 

2016). Therefore, the current finding suggests that the similar 

high-level semantic representations between the two groups do 

not merely originate from a common categorial ground 
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(Connolly et al., 2007). Conversely, no significant correlation was 

achieved when comparing all the semantic models (i.e., low- or 

high-level) with all other perceptual models, suggesting that the 

language- and sensory-based descriptions adopted in this study 

covered different features of the thirty concrete nouns. Of note, 

the low-level semantic model, albeit based on the subsample of 

features covering specific sensory information (e.g., shape or 

color) did not correlate significantly with the high-level semantic 

model, showing that the selection of features yielded an 

alternative description of the concrete nouns. Similarly, this low-

level semantic model did not correlate between sighted and 

blind individuals, indicating that it retains specific linguistic 

features shaped by sensory (i.e., visual or non visual) 

information (Lenci et al., 2013). 

 

Parietal regions encode perceptual and semantic representations. 

When selectively focusing on the left angular gyrus only – either 

anatomically or functionally defined – neither the high-level, nor 

the low-level models achieved significant accuracy. On the other 

hand, in the parcellated map that included also the surrounding 

parietal areas, the within-category procedure yielded a 

successful encoding of the thirty concrete nouns in the 

intraparietal regions for the high-level models, both semantic 

and shape-based. 

The left lateral parietal region is a key part of the 

frontoparietal network and is typically associated with 

attentional tasks focusing on specific features of a stimulus, i.e. 

feature-based attention (Liu et al., 2011; Liu et al., 2003), or on 

specific objects in complex environments, i.e. object-based 

attention (Corbetta and Shulman, 2002). However, other studies 

have reported processing of object features in posterior parietal 
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regions of the dorsal visual pathway to guide actions or motor 

behavior, and even suggested a strong similarity of object 

representation between posterior IPS and LOC (Konen and 

Kastner, 2008; Mruczec et al., 2013). In our study, we report 

above-chance accuracy for the shape-based model in ROI 2 and 

3, which comprises posterior and middle IPS and extends to 

superior parietal cortex. Of note, we consider the shape-based 

model as a high-level perceptual description of the items, since it 

relies on shock-graphs that are robust to object rotation and 

scaling (Van Eede et al., 2006). Therefore, our finding is in line 

with a very recent study showing that posterior IPS is not critical 

for perceptual judgments on object size or orientation 

(Chouinard et al., 2017), 

The low-level perceptual model did not reach above-chance 

accuracy thresholds neither in the lateral parietal cortex, nor in 

the primary sensory (though achieving 59.2±4.4%; p = 0.089 in 

Cal for the pictorial modality in sighted individuals) and lateral 

occipital areas chosen as control regions. This finding suggests 

that parietal regions do not encode low-level information and 

that our GIST-based perceptual model allows to control for low-

level visual features. Of note, this is in accordance with a 

previous fMRI report, which shows that IPS is recruited for 

object processing irrespective of spatial frequency modulation 

(Mahon et al., 2013). 

When considering semantic representations, we achieved 

above-chance accuracies in ROI 2 and ROI 3 for the high-level 

model, while the low-level one was significant in ROI 3 only. 

Our findings are consistent with the evidence that left posterior 

parietal areas are usually activated during experimental tasks 

involving retrieval and combination of concepts (Seghier and 

Price, 2012), and single-word processing during sentence reading 
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can even predict response patterns in this area (Anderson et al., 

2016a). Hence, both the functional role of the left lateral parietal 

cortex in semantic processing and autobiographical memory 

(Seghier and Price, 2012) and its anatomical location and 

connections (Binder et al., 2009; Friederici, 2009; Price, 2012) 

strengthen the hypothesis that the angular gyrus and its 

surrounding regions may represent a key hub to access high-

level content of sensory information. This area is also the 

putative human homologue of the lateral inferior parietal area of 

the monkey that processes individual items to match them with 

the superordinate categories they belong to (Freedman and 

Assad, 2006). Overall, these studies suggest a coding of high-

level features in the left intraparietal area, accounting for its role 

in memory retrieval, combination of concepts and other 

language-related functions (Price, 2012). 

In this study, left LOC showed above-chance accuracy for the 

high-level perceptual model only. This finding is therefore 

consistent with the literature suggesting the encoding of object 

features in this area (Malach et al., 1995; Downing et al., 2007; 

Konen and Kastner, 2008; Peelen et al, 2014; Papale et al., 2017; 

Papale et al., 2019). In addition, the below-chance accuracy of the 

high-level semantic model suggests that the role of this region 

could be more related to the processing of shape-based 

information. The results in LOC for the shape-based model are 

mainly driven by blind individuals and are in line with previous 

studies that identified LOC ability to process object features 

across different modalities (Peelen et al, 2014; Handjaras et al., 

2016; Amedi et al., 2007). 

 

Category-related properties strongly impact on single-item 

semantic encoding. To account for the impact of the categorial 
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organization of semantic information on single-item 

discrimination, the analysis was also performed with an among-

categories approach, thus comparing the activity patterns 

between all the possible pairs of concrete nouns. The results, 

reported in Supplementary Materials in Handjaras et al. (2017), 

show an increased accuracy in the Angular Gyrus (defined either 

anatomically or functionally) and in all the regions of the 

parcellated map. As consequence, all the ROIs in the left parietal 

cortex reached the significance threshold using the among-

categories procedure. 

To further describe the impact of superordinate information 

within the high-level semantic model, we measured the ratio of 

the distances between items from the same category and the 

distances between all the possible pairs of semantic items 

belonging to different categories, as depicted for illustrative 

purposes in Figure 4.4A. The resulting value of about 0.55 

suggests that superordinate categories play a sizable role: this 

contribute points out that the individual-item semantic encoding 

may be driven by the differences among superordinate 

categories, as the increased accuracy values in all ROIs for the 

among-categories encoding confirm (Figure 4.4B). This 

occurrence may arise from broader differences between stimuli, 

which can be related to the role of superordinate categories per 

se or by coarse-level distinctions (e.g., living vs. not-living). 

The relationship between individual semantic items and brain 

activity patterns during semantic processing have been recently 

questioned (Barsalou, 2017). In this account, the development of 

semantic tiles (i.e., the clusters of voxels homogeneously 

encoding groups of words, as described by Huth et al., 2016) 

may be shaped by concurrent coarse-level properties which 

emerge as principal components of the items and subsequently 
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guide their clustering (Huth et al., 2016; Barsalou, 2017). In other 

words, superordinate categories emerge from major differences 

between stimuli and can be therefore collinear with global 

properties of the stimuli (e.g., animacy, concreteness, function). 

Recently, some authors attempted to encode global properties in 

brain areas associated with semantic processes, reporting above-

chance discrimination for biological categories (Connolly et al., 

2012) and natural behaviors (Nastase et al., 2016) in wide cortical 

patches encompassing multiple brain areas. On the contrary, 

some individual and well-defined properties of objects (i.e., 

manipulability: Mahon et al., 2013) or animals (i.e., 

dangerousness: Connolly et al., 2016) were specifically decoded 

from brain activity in IPS. In light of this, the large extent of 

parietal cortex achieved in our study by the among-categories 

encoding of individual items should be interpreted as a lack in 

specificity, due to the major role played here by superordinate 

information and its associated global properties. Whether these 

global properties, widely distributed on the human cortex, retain 

an essential role in conceptual representations of individual 

items is still matter of debate (Barsalou et al., 2017). We speculate 

that areas like the Angular gyrus may process superordinate 

features only, therefore representing concepts at a higher level of 

abstraction through a hierarchical conjunctive coding (Barsalou, 

2016; Binder, 2016).  These results highlight the need to control 

for category-driven differences – as we did in our within-

category individual item encoding – as this represents the best 

possible way to disentangle the role of coarse and fine 

differences between concepts in semantic studies. 

 

The role of the property-generation task. methodological 

considerations and limitations. The results from the high- and 
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low-level models in the IPS suggest that this region is not simply 

recruited by sensory-specific information in a bottom-up manner 

(Ibos and Freedman, 2016), but, conversely, encodes higher-level 

feature-based representations. This is consistent with previous 

reports (Scolari et al., 2015) and with the overlapping activation 

of intraparietal cortex during semantic processing, previously 

observed in sighted and congenitally blind individuals during 

single word processing (Noppeney et al., 2003). Since results 

were above chance in both sighted and congenitally blind 

individuals, we posit that the left IPS encodes representations, 

independent from sensory modality and not related to visual 

imagery (Ricciardi et al., 2014a; Ricciardi et al., 2014b; Ricciardi 

and Pietrini, 2011).  

Of note, lateral and posterior parietal areas have been 

traditionally associated with feature binding tasks, during which 

object features processed in separate maps are spatially and 

temporally integrated to produce a unified perceptual and 

cognitive experience (Robertson, 2003; Scolari et al., 2015; 

Shafritz et al., 2002; Treisman and Gelade, 1980). Additional 

evidence of the binding role of parietal areas were provided by 

neuropsychological studies that showed patients with lesions in 

posterior parietal regions which fail to conjoin different visual 

features related to the same object (Friedman-Hill et al., 1995; 

Robertson et al., 1997; Treisman and Gelade, 1980). Even if we 

may suppose the binding of perceptual and semantic features to 

be fundamental for a finer-grained description of individual 

items, we cannot exclude that the within-category encoding in 

latero-posterior parietal cortex could be more related to the 

property generation task, rather than to conceptual processing. 

Indeed, the property generation task, similar to a feature binding 

task, relied on the association of properties to concrete nouns. 
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We assume that the nature of the task, combined with an 

analysis aimed at evidencing the differences between the 

representations of single nouns, could account for the 

recruitment of the intraparietal cortex (Bonnici et al., 2016; 

Handjaras et al., 2016; Pulvermuller, 2013). The extent of the 

association between the activity in posterior parietal regions and 

the task used should be investigated by future studies, in which 

single-item semantic processing is analyzed through different 

tasks which do not require an active manipulation of the words.  

 

Limitations. Some additional limitations of our study also should 

be highlighted. First, the analysis was conducted on a single 

group-level neural RS, obtained from the average of the five 

individual RSs for each presentation modality. While this can be 

considered as an estimation of a group-level representation 

(Carlson et al., 2014; Kriegeskorte et al., 2008), this RS does not 

consider differences between individual subjects (i.e., each 

subject’s own conceptual representation), that may play a greater 

role in single-item semantic studies as compared to studies 

employing category-based models (Charest et al., 2014). 

Moreover, group-level RSs, although commonly used to increase 

signal-to-noise ratio of fMRI activity patterns (Carlson et al., 

2014; Kriegeskorte et al., 2008) – a mandatory requirement to 

perform single item encoding – do not take into account the 

random-effect model. This limitation affects the generalizability 

of these findings. In addition, the within-category encoding was 

performed only on a small number of examples, as each category 

contained only five different items. Further studies may benefit 

greatly from more accurate models that compare a greater 

number of concrete nouns while controlling for their category 

membership. Finally, the analyses were performed on a single 
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parcellation of the left parietal cortex, chosen a priori on the basis 

of an atlas based on resting-state functional activity (Craddock et 

al., 2012). For this reason, we cannot exclude that different 

parcellation criteria (e.g., the choice of a different atlas or a 

different number of ROIs) can yield different results in the 

encoding analysis, mainly due to the dependence of the accuracy 

on the size and signal-to-noise ratio of the chosen ROIs.  

In addition, the sample size for each experimental group (n=5) 

might represent a criticism. While this number may appear 

relatively small for an univariate fMRI study, this is not the case 

for studies employing a RS pipeline, as the current one 

(Kriegeskorte et al. 2008; Kriegeskorte et al. 2013; Ejaz et al., 

2015). Notably, the first paper using this technique (Kriegeskorte 

et al. 2008), compared RSs obtained from two monkeys and four 

human subjects. In RS analysis, rather than the number of 

subjects, the total number of acquired trials represents the key 

factor to obtain stable RS. In addition, in a previous study 

(Handjaras et al., 2016), we tested the effect size stability using 

this experimental setup. We acquired data from a larger sample 

of subjects (n=10) employing the pictorial presentation modality. 

Subsequently, we measured the encoding accuracy when 

including in the analysis 1 to 10 subjects (Handjaras et al., 2016; 

Supplementary Figure 12). Results demonstrated that the 

encoding accuracy remained stable (mean accuracy in 5 subs 

77.3±6.4%; mean accuracy in the larger sample of 10 subs: 

77.2±5.2%, p=n.s.), supporting the robustness of the RS 

methodological approach. 

Another potential limitation regards the choice of averaging 

the encoding performances across different groups. Our 

previous study using the same data has reported that the 

semantic information in the left lateral parietal cortex is 
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consistent across all presentation modalities (Handjaras et al., 

2016). In addition, a recent study has reported highly similar 

activity patterns for pictorial and word-based representation of 

natural scenes in posterior IPS, showing that brain patterns 

elicited by pictures can be decoded by a classifier trained on 

words, and vice-versa (Kumar et al., 2017). This confirms that the 

presentation modality does not play an important role in driving 

semantic processing in this region. 

 

In conclusion, this study shows that the processing of high-

level features – both semantic and perceptual (i.e., shapes) 

engages to different degrees individual sub-regions of the left 

lateral parietal cortex, showing higher accuracy in the 

intraparietal sulcus, whose activity was predicted using a high-

level models that accounted for the differences between 

individual concepts. Conversely, high accuracy in a large extent 

of parietal cortex comprising the angular gyrus and its 

neighboring regions can be achieved only when the information 

regarding superordinate categories is retained. Overall, these 

results indicate the need to control for the coarse-level categorial 

organization when performing studies on higher-level processes 

related to the retrieval of semantic information, such as language 

and autobiographical memory. 
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5. Single subject decoding of autobiographical 

events 

 

Abstract 
 

‚Autobiographical memory‛ (AM) refers to remote memories 

from one's own life. Previous neuroimaging studies have 

highlighted that voluntary retrieval processes from AM involve 

different forms of memory and cognitive functions. Thus, a 

complex and widespread brain functional network has been 

found to support AM. The present functional magnetic 

resonance imaging (fMRI) study used a multivariate approach to 

determine whether neural activity within the AM circuit would 

recognize memories of real autobiographical events, and to 

evaluate individual differences in the recruitment of this 

network. Fourteen right-handed females took part in the study. 

During scanning, subjects were presented with sentences 

representing a detail of a highly emotional real event (positive or 

negative) and were asked to indicate whether the sentence 

described something that had or had not really happened to 

them. Group analysis showed a set of cortical areas able to 

discriminate the truthfulness of the recalled events: medial 

prefrontal cortex, posterior cingulate/retrosplenial cortex, 

precuneus, bilateral angular, superior frontal gyri, and early 

visual cortical areas. Single-subject results showed that the 

decoding occurred at different time points. No differences were 

found between recalling a positive or a negative event. Our 

results show that the entire AM network is engaged in 

monitoring the veracity of AMs. This process is not affected by 

the emotional valence of the experience but rather by individual 

differences in cognitive strategies used to retrieve AMs.  
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Introduction 
 

The expression Autobiographical memory (AM) refers to remote 

memories from one's own life which are characterized by a sense 

of subjective time, autonoetic awareness (Tulving, 2002), and 

feelings of emotional re-experience (Tulving, 1983; Tulving and 

Markowitsch, 1998). AM is part of episodic memory (i.e., the 

conscious recollection of experienced events), as opposed to 

semantic memory-i.e., the conscious recollection of factual 

information and general knowledge about the world (Tulving, 

2002). Neuropsychological and neuroimaging data support this 

notion of multiple systems of memory, each specialized in 

processing distinct types of information (Vargha-Khadem et al., 

1997; Cipolotti and Maguire, 2003) and subserved by distinct, 

functionally independent neural networks (Gabrieli, 1998; 

Cabeza and Nyberg, 2000; Tulving, 2002). 

As a matter of fact, neuropsychological studies support the 

functional dissociation between these memories: patients with 

medial temporal lobe lesions are defective in AM recall, but not 

in semantic memory tasks (Vargha-Khadem et al., 1997; Tulving 

and Markowitsch, 1998; Gadian et al., 2000). Conversely, patients 

with semantic dementia, who show damage in fronto-temporal 

regions, are impaired in semantic memory tasks (Neary et al., 

1999), whereas their AM is relatively spared (Snowden et al., 

1994; McKinnon et al., 2006). 

More recently, neuroimaging studies have disentangled the 

functional characteristics of the neural networks mediating 

specific memory systems. The left inferior prefrontal cortex and 

left posterior temporal areas are in general recruited during 

semantic retrieval (Vandenberghe et al., 1996; Wiggs et al., 1999; 

Graham et al., 2003), whereas right dorsolateral prefrontal areas 
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subserve episodic retrieval (Cabeza et al., 2004; Düzel et al., 2004; 

Gilboa, 2004). With respect to AM, functional neuroimaging 

studies focused on voluntary retrieval processes that involve 

different forms of memory and cognitive functions. In particular, 

recovering an autobiographical event requires a prolonged and 

effortful memory search about one's own life, combined with the 

retrieval of specific episodic knowledge about its contextual 

information. The retrieved memory content typically includes 

emotions and visual images, and is mediated by inferential and 

monitoring cognitive processes (Cabeza and St Jacques, 2007). 

A meta-analysis paper showed that, because of the multi-

modal nature of AM retrieval and of the heterogeneity of the 

tasks used in literature, different regions emerge during 

recollection (Svoboda et al., 2006). However, a core neural 

network for AMs comprises the left lateral prefrontal cortex (l-

PFC) for search and controlled processes; the medial prefrontal 

cortex (m-PFC) for self-referential processes; the hippocampus 

and the retrosplenial cortex for recollection; the amygdala for 

emotional processing; the occipital and cuneus/precuneus 

regions for visual imagery, and the ventromedial PFC (vm-PFC) 

regions for feeling-of-rightness and monitoring (Cabeza and St 

Jacques, 2007). 

Two additional issues are relevant for AM. First, AMs often 

exhibit a richer emotional content as compared to episodic and 

semantic memories. In particular, emotional life events are 

recalled better than non-emotional events (Holland and 

Kensinger, 2010). Second, several neuroimaging studies 

demonstrated a significant individual variability in AMs 

performance (Rypma et al., 2002; Schaefer et al., 2006; Miller and 

Van Horn, 2007). Typically, most of these studies evaluated the 

modulation of brain areas commonly activated across subjects, 
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and only a few studies considered the individual variability 

across the whole brain (McGonigle et al., 2000; Feredoes and 

Postle, 2007; Seghier et al., 2008). 

In spite of the importance of the mechanisms underlying the 

successful recollection from AM, only a few studies previously 

investigated this issue (Gilboa et al., 2004; Greenberg et al., 2005; 

Cabeza and St Jacques, 2007; Chen et al., 2017). Rather, many 

authors questioned whether brain functional patterns could 

differentiate between true memory, false memory (a common 

type of memory distortion in which individuals incorrectly 

believe they have already encountered a novel object or event), 

and deception. Regions within the prefrontal cortex have been 

related to these memory monitoring activities (Cabeza and St 

Jacques, 2007). Nonetheless, to the best of our knowledge, only 

one study evaluated recognition from AM (Harris et al., 2008). 

However, the authors used a wide range of stimuli 

(autobiographical, mathematical, geographical, religious, ethical, 

semantic, and factual) and results were presented irrespectively 

of the kind of memory involved. 

The present single-event fMRI study was designed to 

determine whether neural activity within the AM network, as 

identified by previous neuropsychological and neuroimaging 

studies, would recognize memories of real autobiographical 

events. Moreover, we examined whether retrieval of positive and 

negative emotional events from AM would exert distinctive 

effects on brain response. Specifically, we asked subjects to recall 

a highly emotional personal event (either her wedding or the 

funeral of a close relative) in a pre-scan semi-structured 

interview. During scanning, subjects were presented with 

sentences referring to a detail of the event recalled and were 

asked to indicate whether the detail actually belonged (true) or 
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not (false) to their AMs. Using a multivariate technique (Mitchell 

et al., 2008), we aimed at evaluating the neural network in each 

individual subject independently, so that we could identify both 

the time points at which the successful recollection occurred and 

the network involved in the process. Then, results from each 

subject were combined to identify the brain regions involved in 

the common cognitive mechanism underlying AM, thus 

accounting for individual differences in the recollection 

processes.  
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Materials and Methods 
 

Subjects. Inclusion criteria were: right-handed healthy females 

with no history of neurological or psychiatric diseases; no subject 

took any psychiatric medication at the time of the study; age 30–

45 years; having experienced either a highly positive (own 

wedding, being still married at the time of the experiment) or a 

highly negative (funeral of a loved one, who died suddenly) 

event in the recent past (range: 2–8 years). Consequently, 14 

subjects (mean age 37 ± 7 years; mean school-age 17 ± 2) were 

enrolled. This final group included: personnel from the 

University of Modena and Reggio Emilia staff, acquaintances 

and relatives of the authors. Only female volunteers participated 

to the study, as data in the literature indicate that gender 

influences memory, and particularly the emotional modulatory 

mechanism on memory storage (Cahill, 2010). All participants 

gave their written informed consent after the study procedures 

and potential risks had been explained. The study was 

conducted under protocols approved by the Local Modena 

Ethical Committee, in accordance with the ethical standards of 

the 2013 Declaration of Helsinki. 

 

Pre-scan interview session. From 2 to 8 days before fMRI 

scanning, a detailed description of highly emotional events was 

collected using a custom-made semi-structured interview. 

Indeed, the ‚pre-scan interview method‛ could be particularly 

useful to evaluate the common and individual neural network 

for retrieving AMs in neuroimaging studies. Eight participants 

were asked to describe a positive event (i.e., their wedding), 

whereas six participants to recall a negative event (i.e., the 

funeral of a loved one). The interview about the wedding day 
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consisted of 54 questions, organized in 4 different categories 

concerning: 1. the ceremony; 2. the wedding dress; 3. the 

wedding party; 4. the honeymoon. Four categories were also 

included in the funeral day's interview (32 questions): 1. the 

deceased's physical description at the time of his/her death; 2. 

the announcement of the death; 3. the last meeting; 4. the funeral. 

The answers were used to compose a true story. A second false 

story was written, modifying some details of the true story (e.g.: 

‚We got married in April‛: true; ‚We got married in September‛: 

false). The true stories consisted of information stored in the 

autobiographical memory (AM) of the participants, whereas the 

details of the false stories did not belong to their AM. 

 

Image acquisition and experimental setup of the fMRI session. 

Brain activity was measured using fMRI with a three-run event-

related design (gradient echo echoplanar images, Philips 

Achieva 3T, TR 2.0 s, FA: 80°, TE 35 ms, 30 axial slices, 80 × 80 

acquisition matrix, 3 × 3 × 4 mm voxel). High-resolution T1-

weighted spoiled gradient recall (TR = 9.9 ms, TE = 4.6 ms, 170 

sagittal slices, 1 mm isovoxel) images were obtained for each 

participant to provide detailed brain anatomy. 

Behavioral responses were collected during the scanning 

sessions by means of a custom-made software developed in 

Visual Basic. The same software was used to present stimuli via 

IFIS-SA System (MRI Device Corporation, WI, USA) remote 

display. 

During the scanning session, prior to the fMRI acquisition, 

subjects were asked to read both stories (i.e., the true and the 

false one) twice, in order to avoid the novelty effect of the 

incorrect information (Schomaker and Meeter, 2015). The order 

of presentation of the stories was counterbalanced between 
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subjects. The experimental stimuli were sentences representing a 

true or a false detail of the event described in the stories. The 

false and true item referring to the same AM detail differed only 

in one feature (i.e., He died in May vs. He died in April; My 

wedding dress was white vs. My wedding dress was ivory). 

During scanning, after a warning cue lasting 0.5 s, subjects were 

presented with a sentence (5.5 s). After a 12 s interval, subjects 

were asked to indicate whether the sentence belonged (true, T) or 

not (false, F) to their autobiographical memory by pressing one 

of two buttons on the keypad (2 s, Figure 5.1), followed by 10 s of 

inter-trial interval. Response times and accuracies were recorded. 

A total of 48 sentences (24 T and 24 F) were randomly presented 

to each subject in three runs. At the beginning and at the end of 

each run, a fixation cross was presented for 30 s to obtain a 

baseline measure of brain activity. Overall, each run lasted about 

9 min. The true-false responses given during scanning were 

subsequently used for the behavioral and functional analyses. 

 
Figure 5.1. Experimental protocol for the fMRI scan session. 

 

Behavioral analysis. A two-way ANOVA was performed on the 

response times with the following factors: group (two levels, 

wedding and funeral) and response (two levels, true and false). 
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Significance threshold was set at p < 0.05. Analyses were 

performed using SPSS 18 (SPSS Inc.). 

 

fMRI data preprocessing. The AFNI software package was used 

to analyze functional imaging data (Cox, 1996). All volumes from 

the different runs were processed to remove spikes (3dDespike), 

temporally aligned (3dTshift), corrected for head movements 

(3dvolreg), spatially smoothed (3dmerge, Gaussian kernel 5 mm, 

FWHM) and scaled to voxel mean. Motion spikes were estimated 

through the evaluation of Framewise Displacement (FD) 

implemented in FSL (Jenkinson et al., 2012), with a cutoff of 0.6 

mm (Power et al., 2012). Subsequently, a generalized least 

squares regression was performed (3dREMLfit) to model the 

motion spikes, movement parameters, signal trends and the 

temporal correlation structure with an ARMA(1,1) model, thus to 

remove nuisance signals from the data. Then, the residual signal 

for each voxel was normalized by subtracting the mean and 

dividing the result by its standard deviation. Afterwards, for 

each trial, the signal time points from the onset of the sentence to 

the motor response, were extracted and included in the 

multivariate analysis. A central moving average was computed 

(‚temporal smoothing‛) (Friston et al., 1995; Strappini et al., 

2017) by averaging the value of each point in time (‚reference 

point‛) and the value of the two points on either side of the 

reference point. By this procedure, we generated seven 

overlapping windows, from 2 to 14 s after sentence onset. The 

duration of the explored window was decided following 

previous studies which showed that the retrieval of detailed 

autobiographical memories can spread over a long time (e.g., up 

to 20 s) (Svoboda et al., 2006), but also in order to avoid any 

overlap with the motor response. 
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Subsequently, single subject time series data were registered 

to the MNI152 standard space using the nonlinear registration 

implemented in AFNI (3dQWarp), and the acquisition matrix 

was resampled to a 3 mm iso-voxel. Finally, to reduce 

computational effort in the subsequent steps, a spatial mask was 

applied to select gray matter voxels only. 

 

Single-subject decoding analysis. Since we were interested in 

selecting the subset of voxels with the highest discrimination 

ability in distinguishing between ‚true‛ and ‚false‛ responses, 

we used a modified version of the procedure originally adopted 

by Mitchell et al. (2008) and already validated on different 

datasets (Handjaras et al., 2016; Leo et al., 2016). Briefly, a 

machine-learning algorithm predicted the fMRI activation in the 

brain as a weighted sum of images, each one generated from a 

behavioral matrix (here, a binary vector which defined the ‚true‛ 

and ‚false‛ responses). In detail, a regression analysis, 

performed within a leave-two-stimuli-out cross-validation 

procedure, produced a learned scalar parameter that specifies 

the degree to which the dimension related to the truthfulness of 

the memories modulates the voxels activity. Hence, for each 

iteration of the cross-validation procedure, the model was first 

trained with 46 out of 48 stimuli (i.e., 23 ‚true‛ and 23 ‚false‛), 

then only the 2,000 voxels that showed the highest coefficient of 

determination R2 and with a cluster size larger than 20 voxels (to 

remove small isolated clusters) were considered. Once trained, 

the resulting algorithm was used to predict the fMRI activation 

within the selected 2,000 voxels of the two left-out stimuli (one 

related to a ‚true,‛ one to a ‚false‛ response). Afterward, 

prediction accuracy was evaluated with a simple match between 

the predicted and the real fMRI activations of the two left-out 
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stimuli using cosine similarity. This leave-two-out procedure 

was iterated 576 times, training and testing all possible stimulus 

pairs between the true and false items. A bootstrapping 

procedure was used to measure the standard error of the 

accuracy (1,000 iterations) (Efron and Tibshirani, 1993). The 

algorithm for the single-subject decoding analysis was applied 

for each subject and time point (i.e., from 2 to 14 s after sentence 

onset), thus generating an accuracy value and a decoding map 

with the subset of brain voxels used during the procedure. 

The single-subject accuracy was tested for significance against 

the null distribution of accuracies generated with a permutation 

test based on the same procedure defined above (Schreiber and 

Krekelberg, 2013; Handjaras et al., 2015). As the processing of 

false sentences does require the retrieval of information related 

to the true event counterpart, we adopted permutation tests: 

these are the most robust methods to assess statistical 

significance in conditions, such as our experiment, where the 

chance level is not necessarily centered on 50% and where the 

degrees of freedom are unknown, ranging between the number 

of the stimuli (i.e., 48) and the total number of comparisons (i.e., 

576) (Schreiber and Krekelberg, 2013; Berry et al., 2019). 

Moreover, as the null distribution was always created upon 

individual brain activity in each subject, the significance 

threshold reflected any possible bias in the data. Briefly, in each 

subject and time point, a null distribution of accuracies was built 

by shuffling the behavioral matrix during the training phase. The 

procedure was repeated 100 times (Winkler et al., 2016) for each 

time point, leading to a null distribution of 700 accuracy values 

across the whole time window. Each single-subject accuracy was 

therefore tested against the null distribution of accuracy values 
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to identify a common significance threshold across the time 

window (one-sided rank test, p < 0.05; Table 5.1 and Figure 5.2). 

 

Group level map. Subsequently, to measure the spatial 

consistency of the regions involved in autobiographical memory 

processing, a posterior probability map was built across the time 

windows by combining the single subject decoding maps at the 

time point with the highest accuracy value. This procedure 

therefore merged the most informative voxels involved in the 

‚true‛ and ‚false‛ responses irrespectively of the time at which 

the voxels were maximally engaged. We arbitrarily selected a 

threshold (p > 0.33, minimum cluster size of 20 voxels) that 

represented the probability of a voxel to be informative in at least 

5 subjects out of 14 (Figure 5.3; Leo et al., 2016). 

 

Assessing the reliability of the group level map. This group level 

map was the result of the aggregation of the single subject most 

discriminative voxels at different time points, in order to account 

for the possibility that individual subjects processed 

autobiographical memory content with different retrieval times. 

Therefore, we further tested the sparseness of the map obtained 

from this procedure, as we reasoned that the cognitive 

mechanisms underlying the discrimination of ‚true‛ and ‚false‛ 

responses would engage the same brain regions across subjects. 

Theoretically (e.g., assuming no variability across subjects), the 

ideal group map should include the same 2,000 voxels of the 

decoding procedure across all subjects and probability 

thresholds, albeit at different time points (Figure 5.4). On these 

assumptions, a permutation test was built by randomly 

combining the decoding maps at different time points across 

subjects and subsequently measuring the total number of voxels 
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at each probability threshold (10,000 iterations, p < 0.05) (Figure 

5.4). We hypothesized that our group map should have the lower 

number of voxels, as compared to the null distribution, thus 

indicating that brain regions involved in the process remained 

significantly stable across subjects (i.e., no sparseness). In 

addition, to assess the spatial overlap of the decoding maps 

considering the same retrieval time for all the subjects, we 

included in the aforementioned test the seven group maps 

obtained by aggregating the decoding maps at a fixed time point 

(e.g., group map at the 2 s time point). 

 

Assessing the differences between negative and positive 

memories. The group probability map was obtained by 

combining the subjects from the two groups, considering the 

discrimination between ‚true‛ and ‚false‛ responses 

irrespectively of the positive or negative emotional valence 

associated to the retrieved memory. Here we tested whether the 

different valence of the memories could affect when (i.e., the 

time point with the highest accuracy) or where (i.e., the brain 

regions involved in the process) the retrieval occurred. First, we 

compared the time points with the highest accuracy between the 

two groups (Mann-Whitney U test, two-tailed, p < 0.05). Second, 

we measured the spatial overlap within the two groups. To this 

aim, we first evaluated the spatial overlap of the decoding maps 

between the 14 subjects using the Sørensen-Dice (SD) coefficient 

(Dice, 1945; Kolasinski et al., 2016). Subsequently, the Ratio (R) 

between the averaged SD values within- and the averaged SD 

values between-groups was computed. R represents whether 

each group shows a higher within-group similarity (R > 1), a 

higher between-group similarity (R < 1), or a spatial overlap 
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between groups (R 1). Confidence intervals of R were obtained 

through a permutation test (10,000 iterations, p < 0.05). 

The multivariate pattern analyses were carried out using Matlab 

(Matworks Inc., Natick, MA, United States), while Connectome 

Workbench (Marcus et al., 2011) was used to render the brain 

meshes in Figure 5.3.  
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Results 
 

Behavioral results. Response times showed no significant effect 

for response [mean in s ± standard deviation; ‚True‛ trials: 1.15 

± 0.22; ‚False‛ trials: 1.19 ± 0.20; F(1, 11) = 0.12, p = 0.733] or group 

[weddings: 1.21 ± 0.22; funerals: 1.09 ± 0.17; F(1, 11) = 1.06, p = 

0.325], nor for their interaction [F(1, 11) = 0.57, p = 0.466]. Overall, 

this evidence indicated that at the button press (i.e., 17.5 s after 

sentence onset), the retrieval of the autobiographical information 

was already concluded regardless of the item truthfulness or 

valence. Response accuracy was at ceiling level (overall accuracy 

value across conditions: 98%). 

 

 
Figure 5.2. Diagram representing the accuracy of each subject and group (in green the 

negative one -the funeral of a loved one- and in red the positive event -wedding), at each 

time point. Significant time points (p < 0.05) are marked with a white border. 
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Single-subject decoding results. Since the time required for the 

retrieval of autobiographical memory may vary among subjects 

(Svoboda et al., 2006), we avoided a standard group level 

analysis, focusing only on the single subject decoding of ‚true‛ 

and ‚false‛ responses within a relative large time window, from 

2 s after trial onset up to 14 s. As reported in detail in Table 5.1 

and Figure 5.2, the decoding was successful in 12 out of 14 

subjects (p < 0.05), ranging from 65.7% to 86.8%, although it 

occurred at different time points (mean  ± standard deviation: 8 

± 4 s). Averaging the highest accuracies across time points and 

across all 14 subjects led to an overall mean accuracy of 71.4% 

with a standard error of 2.0%. 

 

 
 
Table 5.1. Table representing the raw accuracy value, its standard error and p-value of 

each subject and group at each time point. Significant time points (p < 0.05) are marked in 

bold. 

 

Group level map. To highlight brain regions involved in the 

discrimination of ‚true‛ and ‚false‛ responses, a posterior 

probability map was built across the whole time window, by 

combining the single subject decoding maps at the time point 



 123 

with the highest accuracy. The regions involved in the process 

are depicted in Figure 5.3. 

 

 
Figure 5.3. Spatial overlap of the decoding maps of all subjects across all time points (p > 

0.33, which represents the probability of a voxel to be informative in at least 5 out of 14 

subjects, irrespective of timing). L, Left; R, Right; RSC, retrosplenial cortex; PCC, posterior 

cingulate cortex; mPFC, medial prefrontal cortex. 

 

By applying a probabilistic threshold of p > 0.33 (i.e., the 

probability of a voxel to be informative in at least 5 out of 14 

subjects), irrespectively of timing, a broad set of cortical areas 

was identified, which comprised several bilateral nodes of the 

Default Mode Network (DMN), including medial prefrontal, 

superior frontal and angular regions, retrosplenial cortex, 

posterior cingulate and precuneus. Precuneus showed the 

highest overlap among subjects (i.e., nine). In addition, a large 

cluster was identified bilaterally in early visual cortical areas. 

Interestingly, in our experiment, other medial temporal lobe key 
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regions, such as the hippocampal and parahippocampal cortex 

and the amygdala, did not reveal enough discrimination capacity 

to detect true from false items. 

 

Reliability of the group level map. Individuals processed the 

autobiographical memory content with different retrieval times 

(Svoboda et al., 2006). Therefore, to test whether the cognitive 

mechanism underlying the discrimination of true and false 

contents is based on the engagement of the same brain regions 

across our subjects, we combined single subject decoding maps 

at different time points showing the lowest sparseness (i.e., 

highest spatial overlap), to built the best group probability map 

across subjects. The results, represented in Figure 5.4, suggest 

that the best map includes the lowest number of voxels, 

irrespective of the chosen probability threshold, as compared to a 

null distribution built by combining different single subject 

decoding maps at random time points (p < 0.05). Moreover, the 

seven group maps obtained by aggregating the single subjects 

decoding maps at each time point fell within the confidence 

intervals of the null distribution, thus indicating that a standard 

group level analysis would have led to a non-optimal result. 
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Figure 5.4. Assessment for the group level map. Since the group level map of Figure 5.3 

was the result of the aggregation of the individual subject decoding maps at different 

time points, we further tested its sparseness using a permutation test by randomly 

combining the decoding maps at different time points across subjects and subsequently 

measuring the total number of voxels at each probability threshold (p < 0.05). The ideal 

group map (e.g., no variability across subjects) is represented by the light blue line, the 

group level map is represented by the red curve, whereas the 95% confidence interval of 

the null distribution is outlined in gray. The group level map has a number of voxels 

lower than the null distribution, irrespective of the chosen probability threshold. 

Moreover, all the group maps obtained by aggregating the subjects' decoding maps at 

each of the seven fixed time points fell within the null distribution area (p < 0.05). 

 

Differences between negative and positive memories. First, we 

examined whether the discrimination between true and false 

events occurred using brain activity extracted at different time 

points in the two groups. No temporal differences were found 

between subjects who retrieved memories from their wedding 

and subjects who recalled events from the funeral of a loved 

person. Moreover, we tested whether there was a significant 

spatial overlap of the decoding maps between the two groups. 

To this aim, we developed an ad hoc measure R, based on the SD 

coefficient (Dice, 1945; Kolasinski et al., 2016), as detailed in the 

Methods section (see above). We were not able to demonstrate 

that the two groups had a specific decoding map, since the R 
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index fell within the confidence interval (R = 1.01, 95% 

confidence intervals: 0.91–1.16).  
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Discussion 
 

The present fMRI study was designed to determine whether 

neural activity can discriminate true from false memories of real 

autobiographical events, to investigate individual differences in 

AM processing, and to isolate specific effects of the emotional 

valence (i.e., positive or negative) on AMs. Given the subjective 

nature of autobiographical memories, a multivariate technique 

(Mitchell et al., 2008) was used to evaluate the retrieval process 

in each subject independently. Results showed that neural 

activity discriminated AMs in 12 out of 14 participants (mean 

accuracy ~71%) across a retrieval time of up to 14 s, although 

discrimination occurred at different time points across subjects. 

In addition, to overcome single subject differences, we examined 

the recognition of real AMs also at a group level by combining 

the individual decoding maps, and highlighted a set of brain 

regions which mainly overlaps with the AM core network (i.e., 

medial prefrontal, superior frontal and angular regions, 

retrosplenial cortex, posterior cingulate, precuneus and early 

visual areas) described by Cabeza and colleagues (Cabeza and St 

Jacques, 2007). Finally, we found no specific effects of either 

positive or negative emotional valence on AMs. 

Our experimental approach attempted to investigate 

individual differences in AM processing using a functional task. 

Indeed, neuroimaging studies have focused on behavioral scores 

or trait measures that can account for modulation effects in 

commonly activated brain areas (Miller and Van Horn, 2007). 

Usually, these studies included intra-scanner behavioral 

performance measures, such as accuracy (Callicott et al., 1999; 

Gray et al., 2003) or reaction time (Rypma et al., 2002; Wager et 

al., 2005; Schaefer et al., 2006). A small number of studies related 
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brain activation to tasks or measures administered outside of the 

scanner, including measures of working memory span or fluid 

intelligence (Gray et al., 2003; Geake and Hansen, 2005; Lee et al., 

2006) and measures of personality traits (Gray and Braver, 2002; 

Kumari et al., 2004). In particular, authors correlated the 

successful retrieval from episodic (Horn and Miller, 2008; King et 

al., 2015) or working memory (Rypma and D'Esposito, 2000) 

with neural activity in specific brain regions. However, only a 

few studies considered individual variability across the whole 

brain (McGonigle et al., 2000; Feredoes and Postle, 2007; Seghier 

et al., 2008). 

Several studies showed individual variability in performance 

and neural activity depending on age (Maillet and Rajah, 2014) 

and gender (Hill et al., 2014). With respect to AM studies, Piefke 

and Fink concluded that both factors influence the performance 

in AM tasks and its underlying neural mechanisms. In particular, 

aging and gender appear to affect the functional hemispheric 

lateralization of AM recollection and the degree of involvement 

of prefrontal, hippocampal, and parahippocampal brain areas 

(Piefke and Fink, 2005). 

As recently demonstrated, individual variability in cognitive 

strategies during AM retrieval, and particularly the tendency to 

recollect autobiographical memories from an egocentric 

perspective, exerted a significant effect on a pivotal region within 

the AM network, the precuneus, in line with the established role 

for this region in self-centered representations (Hebscher et al., 

2018). Indeed, this recent voxel-based morphometry study 

showed that larger precuneus volumes were associated with the 

tendency to recollect autobiographical memories from an 

egocentric perspective. In addition, Sheldon and colleagues 

evaluated the impact of individual differences during 
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autobiographical retrieval. Their results showed that self-

reported individual differences related to how the subject recalls 

past events were associated to the intrinsic connectivity between 

the medial temporal lobe structures and the other nodes of the 

AM network (Sheldon et al., 2016). 

The role of commonalities and differences between subjects, 

particularly in the time point at which recollection of AMs 

occurs, needs to be further investigated in order to uncover the 

association between brain activity and cognitive strategies used 

to retrieve AMs, as well as with personality traits. Our data 

showed that the retrieval of AMs relies on the same neural 

network across subjects, although with individual differences in 

the time course. 

At group level, we evaluated whether neural activity can 

discriminate true from false autobiographical events, finding a 

widespread set of brain regions which mainly overlaps with the 

previously identified AM network (Cabeza and St Jacques, 2007). 

The successful recollection from AM is still not fully 

understood. Rather, several studies investigated the issue of the 

‚feeling of rightness‛ phenomenon and suggested that the 

ventromedial PFC could be crucial. Indeed, the activation of this 

area is commonly observed in tasks requiring self-referential 

processing (Craik et al., 1999; Gusnard et al., 2001; Kelley et al., 

2002) and in decision making tasks under uncertainty, in control 

processes providing a ‚feeling of rightness‛ and in the 

processing of self-referential information that monitor the 

veracity of autobiographical memories (Gilboa, 2004). 

Other studies have examined the functional networks that 

subserve the subjective perceptions of familiarity and 

unfamiliarity in autobiographical recollection. A complex of 

fronto-parietal regions (lateral PFC and PPC) is involved in 
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cognitive and attentional control processes that guide the 

recovery of information from memory, as well as in the 

evaluative processes that monitor retrieval outcomes and guide 

mnemonic decisions (Tailby et al., 2017). 

Interestingly, key medial temporal regions, such as the 

hippocampal and parahippocampal cortical areas, did not retain 

enough ability to discriminate between true and false sentences 

in our experiment. This presumably depends on the adopted 

task: subjects were presented with sentences that could belong, 

or not, to their AM, but differed in one detail only. We speculate 

that, to monitor the veracity of autobiographical memories, 

subjects should access their AMs for processing both true and 

false sentences. Indeed, since the hippocampus is the structure 

engaged in the initial access to AMs (Daselaar et al., 2008), both 

types of trial may have recruited it to the same extent. 

Since our aim was to investigate which regions of the AM 

circuit can discriminate true from false AMs, we did not evaluate 

the recollection of other memories. Thus, we could not exclude 

that the same neural network could discriminate the truthfulness 

of other kind of memories. 

We also examined whether retrieval of positive and negative 

emotional events from AM would exert distinctive effects on 

brain response. First, we assessed whether the discrimination 

between true and false events in the two groups occurred using 

brain activity extracted at different time points. No temporal 

differences were found between subjects who retrieved 

memories from their wedding and subjects who recalled events 

from the funeral of a loved one. Moreover, we did not find any 

significant difference in the spatial overlap of the decoding maps 

of the two subgroups, thus suggesting that emotional valence 

did not affected neither the temporal nor the spatial pattern of 
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activity during the retrieval. Indeed, decoding negative and 

positive autobiographical episodes was a challenging task with 

fMRI data and in a previous attempt Nawa and colleagues 

reported accuracies at chance level using an across-participants 

approach, whereas only half of the sample yielded a significant 

decoding with a within-participant approach (Nawa and Ando, 

2014). 

The choice of evaluating the two events (i.e., weddings and 

funerals) was based on the extensive evidence that emotionally 

arousing experiences are well-remembered (Brown and Kulik, 

2003). Memories of unpleasant occasions, such as an automobile 

accident, a mugging, or the death of a loved one, are retrieved 

better than memories of routine days (Pillemer, 1984; Bohannon, 

1988; Conway, 1995; Neisser et al., 1996; Sharot et al., 2007). 

Memories of pleasant occasions, such as birthdays, holidays, and 

weddings, are also well-retained (Buchanan, 2007). Thus, the 

strength of the memories of events varies with the emotional 

significance of the events. 

The potential modulatory effect of the valence (either positive 

or negative) has been previously investigated, but with somehow 

conflicting results. In some cases, positive events were recalled 

more easily and directly with respect to negative ones, and led to 

an increased recovery of peripheral sensory and contextual 

details (Berntsen, 2002; Schaefer and Philippot, 2005; Kensinger 

and Schacter, 2006; Ford et al., 2009). The advantage for positive 

memories seems to be particularly evident when information is 

self-relevant (Holland and Kensinger, 2010) and some 

researchers have ascribed it to an overall bias toward accessing 

positive life experiences (Walker et al., 2003; Berntsen et al., 

2011). On the other hand, some studies suggested that positive 

autobiographical memories are remembered less specifically 
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than negative events (Walker et al., 2003), and that ‚tunnel 

memories‛—enhanced memory for the central details of an 

event—are limited to emotionally negative memories. Finally, 

negative past experiences are remembered with greater 

emotional intensity than positive memories (Berntsen, 2002). 

Our data suggest that monitoring the veracity of highly 

emotional autobiographical memories requires a unique network 

of brain regions, irrespectively of the positive or negative valence 

of the event. In line with previous neuropsychological and 

neuroimaging evidence, we found that this memory system is 

mostly right-lateralized. This could reflect the emotional re-

experiencing occurring during retrieval and is consistent with 

findings across different domains that suggest preferential right-

hemisphere involvement in emotional and in social cognitive 

processes (see Svoboda et al., 2006 for a review). 

 

In conclusion, we demonstrated that the entire AM network, 

with the exception of the medial temporal lobe regions, is 

engaged in monitoring the veracity of autobiographical 

memories. This process is mainly influenced by individual 

differences, rather than by the emotional valence of the 

experience. In line with previous neuroimaging studies (Miller 

and Van Horn, 2007), our data confirm that the patterns of brain 

activity during retrieval of AMs are consistent across subjects, 

though at different time points. This may be related to the 

unique manner in which subjects re-experience an 

autobiographical memory and to the different cognitive 

strategies used to process information. For this reason, a better 

understanding of the relationship between AM retrieval and the 

neural system that underlies this process should rely on the 

conjoint use of single-subject and group-level data analyses.  
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6. Conclusions 
 

In this dissertation, I described four MVPA algorithms 

successfully applied in three different fMRI studies. 

In the first experiment described in Chapter 2, a rank-based 

multi-class decoding algorithm was combined with a searchlight 

procedure to identify the regions in the left temporal and frontal 

cortex able to discriminate the seven Italian vowels during their 

listening, imagery and production. Furthermore, the BOLD 

activity of these regions was used to test the reconstruction of 

two possible alternative models, one based on motor, 

articulatory features and one comprising acoustic frequency-

based descriptions. This process was performed using canonical 

correlation analysis, as detailed in Chapter 3. 

In the second experiment reported in Chapter 4, we were able 

to predict brain activity of the left parietal areas elicited by thirty 

concrete nouns employing a representational similarity encoding 

algorithm. In this study, four different alternative models were 

tested: two semantic models built using language-based features, 

and two visual models, which provided a description of the 

shape of the objects and of their low-level spatial frequencies. 

 Finally, in the third fMRI experiment described in Chapter 5, 

we used a multivariate technique proposed by Mitchell and 

colleagues (2008) to recognize memories of real autobiographical 

events in each subject independently, highlighting both the time 

frame at which the successful recollection occurred and the brain 

networks involved in the process. 

Overall, all these studies highlight the increased sensitivity of 

the MVPA approach, while the statistical robustness of all the 

procedures was achieved by means of permutation tests 

(Schreiber and Krekelberg, 2013).  
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