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Abstract

A non-local dynamic homogenization technique for the anal-
ysis of a viscoelastic heterogeneous material which displays
a periodic microstructure is herein proposed. The asymp-
totic expansion of the micro-displacement field in the trans-
formed Laplace domain allows obtaining, from the expres-
sion of the micro-scale field equations, a set of recursive dif-
ferential problems defined over the periodic unit cell. Con-
sequently, the cell problems are derived in terms of pertur-
bation functions depending on the geometrical and physical-
mechanical properties of the material and its microstructural
heterogeneities. A down-scaling relation is formulated in a
consistent form, which correlates the microscopic to the macro-
scopic transformed displacement field and its gradients through
the perturbation functions. Average field equations of infi-
nite order are determined by substituting the down-scale re-
lation into the micro-field equation. Based on a variational
approach, the macroscopic field equations of a non-local con-
tinuum is delivered and the local and non-local overall con-
stitutive and inertial tensors of the homogenized continuum
are determined. The problem of wave propagation in case of
a bi-phase layered material with orthotropic phases and axis
of orthotropy parallel to the direction of layers is investigated
as an example. In such a case, the local and non-local over-
all constitutive and inertial tensors are determined analyti-
cally and the dispersion curves obtained from the non-local
homogenized model are analysed.
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Chapter 1

Introduction

In this Chapter a detailed description of the thesis contents is presented.
The role of viscoelastic composites in industry is analysed and particular
remark is then given to the viscoelastic relation and its historical devel-
opment. Finally the homogenization theory is introduced.

1.1 Structure of the thesis and motivations

In the present thesis, a dynamic asymptotic-variational homogenization
method applied to a viscoelastic material with a periodic microstructure
is proposed.

In Chapter 2, the field equations at the micro-scale, which describe the
heterogeneous viscoelastic material, are determined in the time domain
and converted into the Laplace domain, with the help of the two-sided
Laplace transform. The micro-displacement field is written in terms of an
asymptotic expansion in the transformed Laplace domain and its substi-
tution into the field equations produce a sequence of recursive differ-
ential problems defined over the periodic unit cell. Then, solvability
conditions are imposed to such nonhomogeneous recursive cell prob-
lems to determine the down-scaling relation, linking the microscopic
transformed displacement field to the macroscopic one and its gradients
through the perturbation functions. Such functions rely on the geomet-

1



rical and physical-mechanical properties of the material and measure
the microstructural heterogeneities. Average field equations of infinite
order are determined by substituting the down-scale relation into the
micro-field equation. The formal solution is provided with the help of
an asymptotic expansion of the transformed macro-displacement. Then
the overall constitutive tensors and the overall inertial tensor related to
the homogenized continuum are derived in the Laplace domain for the
class of periodic viscoelastic materials, after introducing the energy-like
functional in the Laplace domain. Finally, the Euler-Lagrangian differen-
tial equation at the macro-scale is determined and expressed in terms of
the transformed macro-displacement and its gradients up to the fourth
order.

In Chapter 3, the variational-asymptotic homogenization technique is
applied to a bi-phase layered material with isotropic phases subject to
periodic body forces. The solution of the homogenized problem is com-
pared with the one established from the heterogeneous problem to ver-
ify the reliability of the proposed homogenization procedure. Finally, the
problem of wave propagation and the related dispersion curves are stud-
ied. Concluding remarks complete the thesis. Viscoelastic materials can
be combined with other materials to produce performing structures that
are mostly employed in the aircraft sector, Fig. r'_-l

1E. Cocchieri Botelho, R.A. Silva, L.C. Pardini, M.C. Rezende. A review on the develop-
ment and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft
structures. Mat. Res. vol.9 no.3, (2006).

Figure 1: glare structure picked from the lower part of an airplane.



1.2 State of the art

1.2.1 Composite materials and their applications

Over the last few years, the technological progress encouraged a fast
development of composite materials, stemming from the assemblage of
two or more materials. Composites play a crucial role for various ap-
plications in civil, naval, aerospace and mechanical engineering, since
they boast remarkable mechanical and physico-chemical properties even
more challenging than their individual components, such as high strength,
corrosion and thermal resistance, enhanced durability, light weight and
ease handling. Composites usually consist of a matrix and a reinforcement.
According to the type of the reiforcement, composites can be modelled
as laminates (layered media), particulates or fibre reinforced. Laminates
are made of plates which are sandwiched together and each plate can be
a composite itself, Fig. QHParticulates consist of a host material in which
small inclusions are incorporated, Fig. @ ﬂ Fibre reinforced composites
include a matrix endowed with fibers, which influence the direction of
the composite, Fig. 4

Among them, the class of polymer matrix composites is very promising
since they can achieve performances superior to metals with a reduced

2Mechanics of composite materials lab, Tel Aviv University.
3Scienza e Ingegneria dei Materiali: una Introduzione, Edises Napoli, 2008, p. 582.

laminate

Repeating Unit Cell

constituent_~]
materials

Figure 2: laminate composite.



weight. The matrix is usually a resin (epoxy or polyester) with high
toughness, reinforced by fibers (glass, aramid, boron, etc.) which have
very high strength. The combination of the two materials is very effec-
tive: the matrix diffuses the load among the fibers and protects them
from abrasion, fracture, and damage. At the same time, the reinforcing
fibres increase the overall strength and stiffness of the composite. Simi-
larly, in laminates, the polymeric matrix is used to bond other materials
together and increase the toughness of the composite, see e.g. photo-
voltaic modules, Paggi et al. (2016). To reduce the cost of synthetic fiber-
reinforced composites and produce environmentally sustainable mate-
rials, bio-fibre-reinforced polymer composites, Dhakal et al. (2018), are
very promising and are becoming increasing popular in emergent coun-
tries. The variant of hybrid composites, where synthetic and natural fiber
reinforcements are mixed together offer also a possible trade-off solution.
The material is said to be a composite with periodic or quasi-periodic mi-
crostructure if the heterogeneities of the reinforcement are sufficiently
regular. The constitutive response of polymeric composites and their
variants is that of viscoelastic materials, which exhibit creep and stress
relaxation phenomena.

An intense knowledge of the behaviour of viscoelastic materials allows
manufacturing devices and machinary, which can be applied to a wide
range of fields, including biomedical, industrial, defence and construc-
tion. For example, graphite/epoxy composites are broadly used for space
vehicles and structures thanks to their different advantages such as re-
duced weight, better control of thermal distortions and enhanced struc-
tural stiffness.



Figure 3: composite with black carbon particles.

Figure 4: composite made of cellulose fibres and resinous matrix.



1.2.2 Viscoelastic relation

Historically the behaviour of viscoelastic materials has been analyzed by
combining properly springs and dashpots.

Voight-Kelvin model

Among the classical models for viscoelasticity, (Skrzypek and Ganczarski
(2015)), one of the most remarkable is the the Voight-Kelvin model, which
is characterized by a linear spring element and a linear dashpot element
connected in parallel, Fig. [B}(a), where the spring represents the elastic
solid behavior and the dashpot describes the fluid behavior. The total
stress applied to the model is subdivided into the stress applied to the
spring, o, and the stress applied to the dashpot o4, as

o(t) = os(t) + oq(t). (1.1)

If the model undergoes a stress o(t), the spring and the dashpot deform
by an equal amount since they are connected in parallel. Thus, the to-
tal strain e(¢) is equal to the strain related to the spring ¢, and the strain
related to the dashpot ¢4 i.e., e(t) = €5(t) = €q(t). The stress-strain re-
lationship for the spring and the stress-strain rate relationship for the
dashpot are written as

Us(t) = Ess(t) Jd(t) = néd(t)v (12)

(a)

Figure 5: (a) Voigt-Kelvin model—(b) creep strain at constant stress input



where F is the spring stiffness and 7 is the viscosity of the material. Re-

placing relations into Eq. leads to
o(t) = Ees(t) + néa(t). (1.3)
Since €(t) = e5(t) = €4(t), it results
o(t) = Be(t) + né(t), 1.4)
which can be rewritten as
e(t) +£(). (1.5)

The Voight-Kelvin model is a two-parameter (£ and ) viscoelastic mo-
del, described by Eq. (I.5), which links stress to strain. If a constant stress
o = 01 = cost, (¢ = 0), is applied to the model, the nonhomogeneous
differential equation is retrieved

g1 E .
— = —¢(t) + £(¢). (1.6)
QR
The homogeneous equation of Eq. is an equation of separate vari-
ables ) 5
E=_2, 1.7)
€ n
whose general integral is
_E
e(t) = CR(t)e( t). (1.8)

By performing the variation of integration constant C'R(t) with initial
condition £(0) = 0, the solution of Eq. (1.6) is

e(t) = % [1 - e(_gt)} (1.9
or

c(t) = 1CR(t), CR(t) = %[1 - e<5t)] (1.10)



Function CR(t) is the creep function of the Voight-Kelvin model, which
identifies the response to the unitary stress o;. The Voight-Kelvin model
does not take into account the instantaneous elasticity and so CR(0) = 0,
Fig. [B}(b). If the model undergoes a stress o(t), the variation of Eq.
leads to

CR(t) = 717@(5/)0(15), (1.11)

whose general intergral is expressed as

CR(t) = CRy + %} /Ot e(%6>0(§)d£. (1.12)

Replacing Eq. (1.12) in Eq. (1.8), with initial condition £(0) = 0, leads to
CR; = 0 such that the solition for £(t) is

e(t) = le<7%t) /Ot e<%5>a(§)d§ =

n

_ % /Ot (50-0) o (€)d€. (1.13)

The intergation by parts applied to Eq. (1.13) yields to the integral repre-
sentation of the Voight-Kelvin model

oty 1 (! (J(tfo) .

t)=—— = ! dg. 1.14
Similarly, if the Voight-Kelvin model is subjected to a constant strain ;
at t = 0 from the initial stress level o1 = Ee¢;, the model does not present
a stress relaxation effect. In this particular case, the application of the
constant strain input, €, at ¢ = 0, can be accomplished with an infinite

initial stress response o (0) — oo, such that
o(t) = ne1d(t) + Eer H(t), (1.15)

where H (t) is the Heaviside unit function, describing the constant stress
in the spring, followed by the infinite stress input in dashpot governed

8



Figure 6: (a) Maxwell mechanical model-(b) creep curve under constant
loading

by the ¢-Dirac function. The ralaxation function in the Voight-Kelvin
model is

G(t) = E(1 + %5@)), (1.16)

which is the response to the imposed unitary strain ;.
Maxwell model
The Maxwell model is represented by a linear elastic spring connected
with a linear viscous dashpot element in series, Fig. [6}(a). If the model
undergoes a stress o (t), which is equally applied on the spring and on the
dashpot (o(t) = 05(t) = 04(t)), the deriving strain ¢(t) is decomposed as
e(t) = es(t)+ea(t). By following a procedure similar to the Voight-Kelvin
model, the viscoelastic behaviour is described by the following equation
gt) = % + 07(;), or of(t)+ Ed(t) = né(t). (1.17)
By performing an integration of Eq. with ¢ = 01 = const, (¢ = 0),
and imposing the initial condition £(0) = %, it results

c(t) = o (% + %t) (1.18)

where the creep function for the Maxwell model is determined as

e(t) = 01CR(t), CR(t) = (% + %]t) (1.19)

9



R I e
ET]

Figure 7: (a) standard model-(b) creep at constant stress input with instan-
taneous elastic strain built-in

If the Maxwell model undergoes a constant strain €1, the stress relaxation
from the initial stress level 01 = Feq att = 0tot — oo is modelled as

o(t) = 016<_%), (1.20)

where the rate of stress decrease changes from the initial 6(0) = % to
& (00) = 0. From Eq. (1.20), the relaxation function is G(t) = Ee ™',
Standard model

The Voight-Kelvin and the Maxwell models herein described are very
intuitive, although they show strong limitations. The Voigt-Kelvin mo-
del is not able to describe the instantaneous elastic strain effect, whereas
the linear creep function at constant stress input related to the Maxwell
model does not confirm the experimental tests. Thus, as alternative the
three-parameter standard model is proposed. Such a model consists of a
spring element (£) and a Voight-Kelvin element (F4, ) connected in se-
ries as depicted in Fig. [/}(a). The differential equation of the standard
model is

e(t) = o(t) + —L—(t). (1.21)

nkE

E L+ E

When a step function ¢ = 01 = const, (¢ = 0), is applied to the model
and Eq. (1.21) is integrated with the initial condition £(0) = %, it results

2(t) = % [(1 v Egl) - 516(%)} (1.22)
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where the creep function corresponding with the standard model is

£(t) = o1 CR(D), CMD;K1+E)£é("O] (123)
In Fig. [7HDb), it is represented the horizontal asymptote of (t) curve,
where the definition } = + + E is employed. If the standard model un-
dergoes a constant strain at ¢ = 0, the stress continuously decreases from
the initial level E¢; to the asymptotically approached value He (t — o0),
such that stress relaxation function of the standard model is

_ H(t) H(t)\ _+
J(t)—Eé‘l[T‘i’(l*T)e >:|, (124)
where n = 11— = E and so the relaxation function is
E1 E1 _EB+Ey
= " . 12
¢®) <E+a+E+&€ ) 1.25)

Burgers model

The standard model has an horizontal asymptote (strain stabilization) for
t — oo which usually is not observed in the experiments, indeed creep
strain shows an infinite increase with time. Therefore, the Burgers mo-
del is introduced to define such a behaviour. The model is made of the
Maxwell element, (E1,71), and the Voigt-Kelvin element, (E5,72), con-
nected in series, as represented in Fig. The differential constitutive
equation of Burgers model is written as

mmnz . o2 .. (771 mn 772)
—&(t —_-+ = 1.2
LR S(0) +me(t) = g0+ (1 + 1+ )50 +o(t). (126)
Eq. (1.26) is a second-order linear differential equation in terms of strain
and stress with constant coefficients, since it depends on the Young’s
moduli £, E, and the viscosity parameters n; and .. By applying a
step stress input at t = 0 to the Burgers model, the integration of Eq.
(1.26), with initial conditions £(0) = % and £(0) = ok + o, implies
Ey,  Ei P2y

m)E@+HHEﬁ—wﬂ) (1.27)
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Figure 8: Burgers model

where the creep function referred to the Burgers model model is

1 FEs Fy =By,
(t) = 1 CR(), CR() = 5 (1 F [1 e D (1.28)
The Boltzmann superposition principle
Let £(t) be a shear strain acting on a given material and let o(¢) be the
effect deriving from this cause. Thus, a variation in the shear strain at
time ¢; produces an effect occurring at some time ¢ > ¢;, which can be
written as (Martinez-Boza et al. (2001)):

U(t) = G(t - tl)éa(tl), (129)

where G(t—t1) is the relaxation function which is a decreasing function of
(t —t1). To compute the stress produced by a strain, occurring at time ¢o,
the incremental response of the material to the second strain is supposed
to be independent on the previous one and so it results

o(t) = G(t — t1)d0(t1) + G(t — t2)d0(t). (1.30)

In case of a series of N changes in the shear strain, taking place at a
different time ¢;, the cumulative stress is fromulated as

N
o(t) = G(t—t:)de;. (1.31)
i=1
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If the change in strain takes place continuously, the integral may raplace
the sum as

o(t) = [ Gt — 7)de(r), (132)

which can be reformulated as
t
o(t) = / Glt — 1)é(r)dr. (133)

The lower limit infers that all the strains that have taken place in the
past will contribute to the effect at the current time ¢. The Eq.
will be used in the Chapter 2 for a 3-D case. An analogous procedure
can be performed to obtain the stress in terms of the strain and the creep
function, .

e(t) = / CR(t —T)o(r)dr. (1.34)
The limitation of the classical models is due to the fact that, to obtain an
acceptable approximation level, they could become too difficult to man-
age. The fractional derivative model allows greater flexibility, since the
derivation order can vary to obtain a constitutive law suitable for the
material. In the elastic solids, the stress is proportional to the zero-order
derivative of the strain, whereas for the liquids the stress is proportional
to the first derivative ot the strain. Thus, it is clear to suppose that for
the viscoelastic materials the stress is proportional to the derivative of
real order of the strain. This hypothesis led to the design of a mathemat-
ical model called Spring-Pot, whose schematic representation is shown
in Fig. Pl By manipulating the kernel of Eq. and by recalling the
definition of the Caputo derivative, (Lakshmikantham et al. (2009)), of
order n of a function f(t), Df(t) = F(nia) I ( ) dr, the

t_T)(a+1—n)

governing equation of the Spring-Pot is written as

Ca b _
o(t) = m/ e(r)(t —7)" %1 = CoDfe(t), 0<a<1, (1.35)

—00

where T is the Gamma function and the coefficient C,, can be obtained
sperimentally, (Di Paola et al.).
In Di Paola et al. (2011), it is emphasized the validity of fractional model
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Figure 9: Spring-Pot structure.

to study viscoelastic behavior. It is proven that if relaxation test is well
fitted by a power law decay, then the fractional constitutive law involv-
ing Caputo’s derivative shows up. Consequently, the constitutive law is
governed by a fractional differential equation. Fractional calculus is seen
as an extension of the classical differential calculus and fractional oper-
ators are convolution integrals with power law kernel. There is point
in observing that such a constitutive law can capture both relaxation
and creep behavior just identifying only two parameters. This remark
avoids the use of combining simple models as Maxwell and/or Kelvin,
twhich rely on several parameters for capturing both creep and relax-
ation tests. Moreover, to validate the fractional model, two polymers of
different chemical physical properties are tested. For each of them both
relaxation and creep test are carried out, with different values of ampli-
tudes and always the theoretical relaxation and creep functions overlap
the experimental data leading to the conclusion that the fractional model
can properly capture the viscoelastic behavior. In Di Paola et al. (2014), it
is shown that the best fitting performed by taking or not into account the
initial ramp provides very different parameters and then the constitutive
law is strongly influenced by the real experimental test. It is also shown
that by accounting for the effective strain (or stress) history leads to an
impressive matching between experimental tests and results obtained by
using Boltzmann superposition principle and power law as candidate for
the best fitting procedure. As a concluding remark, it is assessed that in
every experimental test the rate of the initial ramp or the time at which
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the unitary (constant value of) strain (or stress) is attained must be al-
ways declared. In Ezzat et al. (2015), a simply method is introduced in
the field of generalized thermo-viscoelasticity with one and two relax-
ation times and applied to three different problems. This method gives
exact solutions in the Laplace transform domain without any assumed
restrictions on either the temperature or the displacement distributions.
A numerical method based on a Fourier-series expansion is used for the
inversion process. The method used in the paper is applicable to a wide
range of thermoelasticity problems. It can be applied to problems, which
are described by the linearized Navier—Stokes equations for thermoelec-
tric fluid, were the governing equations are coupled. Representative re-
sults for the all functions for generalized theory are distinctly different
from those obtained for the coupled theory. This due to the fact that
thermal waves in the coupled theory travel with an infinite speed of
propagation as opposed to finite speed in the generalized case. It is clear
that for small values of time the solution is localized in a finite region.
This region grows with increasing time and its edge is the location of
the wave front. In Colinas-Armijo et al. (2016), an approach to separate
the elastic and the viscous phase in the fractional stress—strain relation is
provided with the aid of an equivalent classical model (Kelvin—Voigt or
Maxwell). For such equivalent model the parameters are selected by an
optimization procedure. Once the parameters of the equivalent model
are defined, characteristic times of fractional viscoelasticity are defined
as ratio between viscosity and stiffness. In the numerical applications,
three kinds of different excitations are considered, that is, harmonic, peri-
odic, and pseudo-stochastic. It is shown that, for any periodic excitation,
the equivalent models have some important features: (i) the dissipated
energy per cycle at steady-state coincides with the Staverman-Schwarzl
formulation of the fractional model, (ii) the elastic and the viscous coef-
ficients of the equivalent model are strictly related to the storage and the
loss modulus, respectively.
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1.2.3 Homogenization models

Composites are characterized by a multiscale nature, since the size of the
individual heterogenities ¢ is much smaller than the dimension of the
entire body L ie. ¢ < L. Consequently, their physical and mechani-
cal properties can be analysed either from a macroscopic or from a mi-
croscopic standpoint. Both the approaches present several drawbacks:
the macroscopic approach may not accurately capture the microscopic
mechanisms and the interconnections between the various constituents.
On the other side, the microscopic approach could reproduce an over-
whelming quantity of information but of scarce concern. Based on the
premises above, a multiscale analysis model, consisting of a synergy be-
tween the macroscopic and the microscopic approach, represents a chal-
lenging compromise to overcome the limitations of the two models.

In such a framework, the pioneering works of Maxwell, 1954; Voigt, 1889;
Reuss, 1929; Rayleigh, 1871; and Einstein, 1906 envisioned the homoge-
nization theory as a promising methodology to recognize and model the
effects of the microscopic behaviour on the overall properties of mate-
rials. Furthermore, the employment of such a theory prevents the high
computational costs required to tackle an heterogeneous system.

In particular, Maxwell (1954) derived the effective conductivity of a di-
lute particulate composite. Reuss (1929) proposed a multipole method
to determine the effective electrical conductivity of a periodic array of
cylinders. Rayleigh (1871) determined the effective elastic properties of
a composite and Einstein (1906) found the effective viscosity of a dilute
suspension of rigid spheres in a viscous fluid. Later, homogenization ap-
poaches were devoted to problems in electrical conductivity, magnetism,
electro-magnetism, thermoelasticity, porous media, fracture dynamics,
fluid dynamics, as well as viscoelasticity and elasticity.

Three main classes of homogenization techniques are possible to esti-
mate the overall static and dynamic properties of composites with peri-
odic microstructures: the computational techniques, the asymptotic and
the asymptotic-variational techniques. The basic idea of the three ho-
mogenization methods is to replace an heterogeneous material at the
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Figure 10: heterogeneous domain vs. homogeneous domain.

micro-scale with an equivalent homogenous material at the macro-scale,
which can be modelled through either a first order (Cauchy) or a non-local
continuum, Fig. ﬁ

Generally, the macro-scale length stands for the dimension of the do-
main, whereas the micro-scale length characterizes the size of the rep-
resentative volume element (RVE) or unit cell of the material, which is
the smallest part of the composite containing a great number of infor-
mation on the geometrical and mechanical properties at the microscopic
level, Fig. ﬂ A first-order computational homogenization is a proce-
dure that can be articulated in four steps (Geere et al. (2010)): (1) the
RVE is isolated from the periodic domain; (2) boundary conditions at the
micro-scale are provided from the macroscopic input variables and they
are applied to the RVE (transition from macro to micro); (3) the macro-
scopic output variables are performed from the study of the deformed
microstructural RVE (transition from micro to macro); (4) the (numerical)

4D. Bracho. Consistent Asymptotic Homogenization Method for La ice Structures Based
on the Virtual Power Principle. (2016). All theses. 2546.

5Y.M. Shabana, N. Noda. Numerical evaluation of the thermomechanical effective prop-
erties of a functionally graded material using the homogenization method. International
Journal of Solids and Structures, Vol 45, Issues 11 — 12, Pages 3494 — 3506, 2008.
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Figure 11: macroscopic, microscopic domain and unit cell.

relation between the macroscopic input and output variables are recov-
ered.

As it is emphasized in Bacigalupo et al., 2016a; Fantoni et al., 2017; and
Kouznetsova et al., 2004, a first order homogenization procedure may not
take into account the size-effects and the non-local phenomena related to
the micro-scale length. As a result, a first order homogenization proce-
dure does not provide a exhaustive modelling of composites in presence
of high gradients of stresses, deformations, temperature, chemical po-
tential, heat and mass fluxes and waves dispersion. Therefore, non-local
higher order homogenization techniques can be deemed as an alternative
strategy. Indeed, such approaches supply constitutive relations related to
an equivalent higher order continuum, embedding characteristic scale-
lengths connected with the microstructural effects. The term “non-local”
points out that the state of deformation at a certain point of the domain
relies on the deformation in its closer points. There are three fundamen-
tal groups of non-local continua: the multipolar, the micromorphic and the
strain-gradient continua.

Green and Rivlin (1964), proposed a continuum theory based on mul-
tipolar displacement and velocity fields subjected to multipolar body
forces and surface tractions of arbitrary order. Such a theory was inspired
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by a work on generalized stresses, generalized velocities, body and sur-
face forces by Truesdell and Toupin (1960). Multipolar field variables can
be found in theories concerning beams, plates and shells arising from
the passage from a three-dimensional problem to a one-dimensional or
a two-dimensional problem. Green and Rivlin introduced an energy
balance including multipolar tractions and body forces with their work-
conjugate multipolar velocities. Multipolar stresses can be derived either
by applying such an energy balance to a tetrahedron or from multipolar
tractions by supposing that the tractions relies linearly on the unit nor-
mal vector or on its dual. As a result, n-polar stresses are tensors of rank
n+1. Moreover the energy balance enables to determine the local balance
equations. The autors proved that an oriented domain can be seen as a
special case of a multipolar continuum. Oriented domain are governed
by a number of independent vectors, the so-called directors, connected
to a material point of the continuum.

Eringen and Suhubu (1964), proposed a micromorphic continuum
theory, which is supposed to be the most accurate top-down microscale
approach. Micromorphic theory aims at predicting physical phenom-
ena at atomic, molecular and nano level. As a consequence, a material
point may have more degrees of freedom than the only three degrees
of freedom in classical field theory. Despite that, the molecules that
compose the internal structure of the material points withstand defor-
mations and rotations produced by the displacements and rotations of
their constituent atoms. Micromorphic theory conceives a material do-
main as a continuous collection of deformable particles, characterized by
a proper finite size and inner structure, whereas classical continuum me-
chanics desccribed a material domain as a continuous collection of ma-
terial points with infinitesimal size and without inner structure. In ad-
dition, Eringen considered the deformable particle as a geometric point
described by some vectors, indicating the orientations and the intrinsic
deformations of all the material points in the deformable particle. This
is in line with the classical description where a material point in a con-
tinuum is provided with physical properties such as mass density, dis-
placement vector, electric field, stress tensor, etc. Thus micromorphic
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theory describe several physical phenomena, which otherwise cannot be
described by classical field theories.

Standard continuum mechanics takes into account state functions re-
lying only on local deformation meaures. On the other hand, strain
gradient theories take place when gradients of deformation of a certain
order are introduced. Non-linear elastic strain gradient continua were
studied by Toupin (1964), whereas the linear elastic theory was devel-
opped by Mindlin and Eshell (1968), integrating the elastic strain en-
ergy density with the spatial gradients of the strains. By supposing that
stresses and hyper-stresses are provided by the partial derivatives of the
strain energy density with respect to the strains and the strain gradi-
ents, constitutive relations are obtained, whereas the Hamilton’s prin-
ciple provides a local equilibrium statement. Concerning with linear
materials, the constitutive relations are written in terms of the elastic-
ity tensors. In the simplest case, the stresses and the strains are asso-
ciated to the fourth-order elasticity tensor, whereas hyper-stresses and
strain gradients are related by a sixth-order tensor. Including the first
and the second gradients of the strains, a linear second order strain gra-
dient elasticity theory was proposed by Mindlin (1964), where sixteen
material parameters are taken into account for an isotropic second or-
der strain gradient domain. Simplified material laws were proposed by
many authors, as Koiter, 1964; Kleinert, 1989; Yang et al., 2002; Aifantis,
2003; and Fleck and Hutchinson, 2001. The effective properties of two-
phase composites with a linear couple-stress constitutive law for each
phase have been estimated by Smyshlyaev and Fleck (1995). Such out-
comes were employed to carry out the overall non-linear behaviour of
the composites with a plastic strain-gradient constitutive model for the
phases, (Sanchez-Palencia (1974)), and of a polycrystalline aggregate of
single crystals with a strain-gradient constitutive law for each slip sys-
tem. Drugan and Willis (1996), proposed a non-local effective consti-
tutive equation for linearly elastic composites by performing the equi-
librium equation with respect to stress polarization and ensemble aver-
aging. Generally, three main classes of homogenization techniques are
possible: the asymptotic techniques (Bensoussan et al., 1978; Bakhvalov
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and Panasenko, 1984; Gambin and Kroner, 1989; Allaire, 1992; Meguid
and Kalamkarov, 1994; Boutin, 1996; Andrianov et al., 2008; Panasenko,
2009; T.H. Tran and Bonnet, 2012; Bacigalupo, 2014), the variational-
asymptotic techniques (Smyshlyaev and Cherednichenko, 2000; Smyshlyaev,
2009; Bacigalupo and Gambarotta, 2014b; Bacigalupo et al., 2014) and
many identification approaches, involving the analytical (Bigoni and Dru-
gan, 2007; Bacca et al., 2013a; Bacca et al., 2013b; Bacigalupo and Gam-
barotta, 2013) and the computational techniques (Forest and Sab, 1998;
Kouznetsova et al., 2002; Forest, 2002; Kouznetsova et al., 2004; Kacz-
marczyk et al., 2008; Yuan et al., 2008; Bacigalupo and Gambarotta, 2010;
Forest and Trinh, 2011; Addessi et al., 2013; Zah and Miehe, 2013). In
particular, Smyshlyaev and Cherednichenko (2000) paved the way for a
combined asymptotic-variational method, based on suitable minimum
functional energy. Moreover, the method guarantees the ellipticity of the
higher-order homogenized equations and provides excellent approxima-
tions of the overall properties of composites.

In case of viscoelastic materials with a periodic microstructure, there are
still few contributions devoted to homogenization techniques applied
to this particular class of composites and three groups can be distin-
guished: the analytical identification techniques (Hashin, 1965; Hashin,
1970; Chen and Lakes, 1993; Masson and Zaoui, 1999; Beurthey and Za-
oui, 2000; Masson et al., 2012; Meaud and Hulbert, 2013; Hoang-Duc et
al., 2013); the computational techniques (Ohno et al., 2000; Haasemann
and Ulbricht, 2010; Tran et al., 2011 and Q. Chen and Geng, 2017) and
the asymptotic techniques (Francfort et al., 1983, Francfort and Suquet,
1986; Yi et al., 1998; Lahellec and Suquet, 2007; Suquet, 2012 and Hui and
Oskay, 2013).

According to the identification analytical techniques, Hashin (1965) shows
the connection between the macro- scopic elastic and viscoelastic stress-
strain relations of multiphase elastic and viscoelastic media by means
of the correspondence principle and some results for viscoelastic stress-
strain relations of multiphase media are provided. Hashin (1970) em-
ployed the correspondence principle to derive expressions for effective
com- plex moduli of viscoelastic composites. Chen and Lakes (1993) in-
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vestigated the viscoelastic properties of composites to identify structures
that prompt a combination of high stiffness and high loss tangent. There-
fore, laminates having Voigt and Reuss structure and composite mate-
rials achieving the Hashin-Shtrikman bounds on stiffness are assessed
through the correspondence principle. Masson and Zaoui (1999) ana-
lyzed a new Hill-type approach in case of rate-dependent elastoplastic
heterogeneous materials. The associated linearization method reckons
on an affine formulation rathen than the Hills incremental one and on
the employment of the correspondence principle to derive the concen-
tration problem. In Beurthey and Zaoui (2000), the relaxation spectra
of a two-phase isotropic material whose phases are isotropic Maxwell
media are analytically determined in accordance with the generalized
self-consistent schemes. Such spectra show evident discrepancies that
are related to the different underneath morphology, either symmetri-
cal (polycrystal-type) or asymmetrical (composite-type). In Masson et
al. (2012), an approximate self-consistent modelling is analysed to de-
termine the effective viscoelastic response of polycrystals that shows an
ageing constitutive behaviour. Meaud and Hulbert (2013) detected the
effective dynamic moduli and loss factors of Reuss and Voigt compos-
ites in response to a uniaxial harmonic load. By means of the viscoelas-
tic correspondence principle, the formulae for Reuss and Voigt compos-
ites of infinite dimensions are determined. Moreover, it is observed that
the effective loss factor of a Reuss composite depends on the values of
the Poisson’s ratio and bulk loss factors of the constituent materials. In
Hoang-Duc et al. (2013), an approximate solution for retrieving the ef-
fective behavior of linear viscoelastic heterogeneous media in the case of
elastic inclusions embedded within a viscoelastic matrix is outlined. The
solution in the Laplace-Carson domain is determined through the gen-
eralized self-consistent model and the simplification is determined in an
explicit expression of the inverse Laplace transform.

In the context of the computational homogenization techniques, Ohno
et al. (2000) dealt with an homogenization model for elastic-viscoplastic
periodic materials, which allows determining the macroscopic and the
microscopic stress and strain states in nonlinear time-dependent peri-
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odic materials and it encompasses any problem where the history of
the macro-strain and the macro-stress depends upon the time. Haase-
mann and Ulbricht (2010) considered a microstructure where all the con-
stituents are linear viscoelastic. The constitutive laws at the microscale
were converted into a Laplace-Carson domain, where the constitutive
equations have a quite similar form to those of a linear elastic material
and then a homogenization approach based on the Hill-Mandel condi-
tion was exploited. The Laplace-Carson transform associated with the
application of a finite element method enables the computation of the
relaxation tensor in the Laplace domain and the inverse Laplace-Carson
transformation provides the material properties in the time domain. Tran
et al. (2011) presented a computational homogenization method to de-
termine the response of a linear viscoelastic heterogeneous material. The
components of the relaxation tensor, which appear in the constitutive law
at the macro-scale, are numerically determined in the time domain, with-
out involving the Laplace transform. The employment of computational
techniques is very attractive thanks to its simplicity, but they could not
challenge dynamic problems and they could show some disadvantage
in case of homogenization in micro- morphic non-local and higher-order
continua (Forest and Trinh, 2011; Bacigalupo and Gambarotta, 2010a;
Bacigalupo, 2014).

Concerning with the asymptotic techniques applied to viscoelastic ma-
terials, Francfort et al. (1983) developed an homogenization technique
in the quasi-static framework applied to a linear viscoelastic solid. In
particular, the homogenized stress field is formulated in terms of the ho-
mogenized elastic and viscous tensor components. Moreover, the ex-
pression of corresponding fourth-order kernel is derived and is proven
to be symmetric and exponentially decreasing. The existence and the
uniqueness of the solution related to the homogenized problem is de-
termined by means of a fixed point method, inspired by the Cauchy-
Lipschitz technique. Francfort and Suquet (1986) investigated a general
theory of viscoelastic material of Kelvin-Voigt type and, in a homoge-
nization theory framework, determined the existence and uniqueness of
the solution of an initial boundary value problem in terms of displace-
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ment and temperature for a bounded domain. The behavior of the dis-
placement field is investigated when the inhomogeneities become dense
in the domain. Moreover, the displacement field is found to converge
(weakly) to the displacement of a body consisting of an homogeneous
material which is no more of Kelvin-Voigt type but a material with fad-
ing memory. A theorem of strong convergence for the strain rate field is
assessed, without any assumption on the regularity of the displacement
field of the homogenized problem. This theorem allows homogenizing
the mechanical dissipa- tion and finally homogenizing the energy equa-
tion. Lahellec and Suquet (2007) analyzed an approximate scheme in
the time domain for deriving the effective response of linear viscoelastic
composites. Suquet (2012) studied of the effective behavior of compos-
ites made of linear viscoelastic phases. Hui and Oskay (2013) proposed
a second order homogenized method with multiple length scales for de-
tecting wave propagation in a one dimensional viscoelastic composite
material, by proceeding with an asymptotic expansion of the governing
system of equations defined in the time domain and then recast into the
Laplace domain. Srivastava and Nemat-Nasser (2014) studied the prob-
lem of reflection at the interface of a layered periodic composite and its
dynamic homogenized equivalent. In particular, a two-phase composite
and a three-phase composite, which exhibits negative effective proper-
ties over its second branch, is proved. Based upon the reflected energy
profile of the two cases, it is observable that there are good arguments
for considering the second branch of a three-phase composite as a true
negative branch with negative group velocity. Through arguments of cal-
culated reflected energy;, it is observed that infinite-domain homogeniza-
tion is much more applicable to finite cases of the three-phase composite
than it is to the two-phase composite. In fact, the reliability of dynamic
homogenization extends to most of the first branch (negligible reflection)
for the three-phase composite. This is in contrast with a periodic compos-
ite without local resonance where the approximation of homogenization
worsens with increasing frequency over the first branch and is demon-
strably bad on the second branch. The effect of the interface location on
the applicability of homogenization is also considered.
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Motivated by the state-of-the-art literature on homogenization, the present
study proposes a dynamic variational-asymptotic homogenization tech-
nique for the analysis of a viscoelastic material with periodic microstruc-
ture, modelled as a non-local continuum, in line with the asymptotic and
variational-asymptotic methods proposed in Smyshlyaev and Chered-
nichenko (2000) and with the studies related to the variational principles
for linear viscoelasticity in Fabrizio and Morro (1992) and Leitman (1966).
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Chapter 2

Dynamic asymptotic
homogenization model for
periodic viscoelastic
materials

In the present chapter, the asymptotic expansion of the micro- displace-
ment field in the transformed Laplace domain allows to obtain, from the
expression of the micro-scale field equations, a set of recursive differ-
ential problems defined over the periodic unit cell. Consequently, the
cell problems are derived in terms of perturbation functions depending
on the geometrical and physical-mechanical properties of the material
and its microstructural heterogeneities. A down-scaling relation is for-
mulated in a consistent form, which correlates the microscopic to the
macroscopic transformed displacement field and its gradients through
the perturbation functions. Average field equations of infinite order are
determined by substituting the down-scale relation into the micro-field
equation. Based on a variational approach, the macroscopic field equa-
tions of a non-local continuum are delivered and the local and non-local
overall constitutive and inertial tensors of the homogenized continuum
are determined. Finally, the problem of wave propagation and the re-
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lated dispersion curves is studied.

2.1 Problem setting and field equation in the time
domain

Let 2 be a three-dimensional viscoelastic heterogeneous material that
displays a periodic microstructure. A generic point of the material is
identified by the position vector ¢ = x1e; + x2e2 + x3e3, related to a sys-
tem of coordinates with origin at point O and orthogonal base {e;, e5, e3}.
Let A = [0,¢] x [0, d¢] x [0, €] be a periodic cell with characteristic size .
A is described by three orthogonal periodicity vectors vy, v and v3 de-
fined as v; = d1e; = ceq, v2 = dyey = dees and vz = dzes = ces. The
material domain is set up by the repetition of the cell A in accordance
with the directions of v;, v, and vs, see Fig. Since the material is A-
periodic, the micro relaxation tensor G™(x, t) = Glinpei @ e; @ e ® ey,
which depends on time and accounts for the viscoelastic effects, and the
material density p™ () comply with the following conditions:

G"(x + v, t) = G™(x,t), i=1,2,3 Vx e A, (2.1)

P (@ + v, t) = p" (e, t), i=1,2,3 Vae A (2.2)

The micro stress o(x,t) constitutive relation, which models the vis-
coelastic elements of the heterogeneous material, is expressed in terms
of the hereditary integral, Christensen (2012):

o(x,t) = /t G™(x,t — 7)é(x, T)dT, (2.3)

where the superscript m refers to the microscale and e(x, t) = ¢;;e; ® e;
is the micro strain tensor. Moreover, ¢t denotes the time coordinate and
the superimposed dot indicates time derivative. The material under-
goes small displacements and so the micro strain tensor is defined as
e(z,t) = 3(Vu(z,t) + VTu(x,t)), where Vu is the gradient of the mi-
cro displacement u(x, t). In the time domain, the deformation response
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Figure 12: heterogeneous and homogeneous 3D domain € with periodic
cell A and the corresponding nondimensional cell Q.

of the material under dynamic loading is expressed by the momentum
balance equation:

V- O'(x7t) + b(:I:, t) = pm(m)u(a:, t)a (24)

where u(x,t) is the micro-displacement field and b(x,t) are the body
forces.

In the derivation of the theory, the heterogeneous material is supposed
to be subjected to a system of L-periodic body forces b(x,t), with zero
mean values over £ = [0, L] x [0,dL].

The structural (or macroscopic) length L is assumed to be much greater
than the microstructural length ¢, i.e. L>> ¢, to allow the scales separa-
tion condition and so £ is considered as an actual representative portion
of the material. Let Q = [0, 1] x [0, 6] be the nondimensional cell repro-
ducing the periodic microstructure. Q is determined by rescaling the
size of the periodic cell A for the characteristic length €. Accordingly,
two variables are introduced to differentiate the two scales, namely the
macroscopic (or slow) one, z € A, which measures the slow fluctuations,
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and the microscopic (or fast) variable, § = £ € Q, which measures the
fast propagation of the signal.
Thanks to cell 9, the properties and may be rewritten in terms
of the microscopic variable £ and so G™ and p™ are assumed to be Q-
periodic and defined on Q as

G"(x,t) =G (& =x/e,t), p"(x,t) =p"(x/e,t). (2.5)

Bearing in mind the definition of the strain tensor €, the minor simmetry
of the relaxation tensor G™ is applied to € in the integral (2.3) and the
substitution of Eq. (2.3) into Eq. (2.4) yields to

K x
V- [/ Gm(g,t - T)V’[L(a:,T)dT} + b(x,t) = p"(x)u(x,t). (2.6)
Denoting with [[f]] = f/(Z) — f/(X) the jump of the function values f at
the interface ¥ between two different phases i and j in the periodic cell
A, the following fully-bonded interface conditions hold

t
[[(2)]] e = 0, H/WG (2.t=7) Vi@, ydrn]|| =0, @7)
where n represents the outward normal to the interface . Since G™ and
p"™ are Q-periodic and the body forces are £-periodic, the micro displace-
ment depends on both the slow variable z and the fast one £ and can be
expressed as

2.2 Field equation in the Laplace domain

The two-sided Laplace transform of an arbitrary, real valued, time vary-
ing function, f € R, is defined as Paley and Wiener (1934)

—+oo

L(f(t)):f(s):/ f(t)estdt, seC, (2.8)

— 00
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where the Laplace argument, s, and the Laplace transform, f, are com-
plex valued (i.e. f : C — C). The derivative rule for the Laplace trans-

form is provided by
o" A
c( aﬁt)) = 5" f(s), 2.9)
and the convolution rule of f; and f> is given as
L(>f1(t) * f2(t)) = L(f1(1))L(f2(2)), (2.10)

Equation governing the periodic viscoelastic material in the time
domain will be recast in the Laplace domain employing the Laplace trans-
form (2.8), the convolution rule and the derivative rule (2.9).
Therefore, in the Laplace domain, it results

© (o () (002 )1 = (2) (2 )
or, in other terms:

V- [©m<§,s>sVﬁ(§,w,sﬂ + b(x,s) = pm(—> 2'&(%,3},3), (2.11)

3

where @& and Vi represent the micro-displacement field and the gradient
of the micro-displacement field converted in the Laplace domain. More-
over G™ is the micro-relaxation tensor and b(zx, s) are the body forces
transformed in the Laplace domain. In addition, it is convenient to con-
sider C™ (%, s) = sG™ (f, s)

The governing equation of the periodic viscoelastic material defined in
the Laplace domain is

V- (C™Va) + b= p"s*a. (2.12)

Denoting with [[f]] = f4(Z) — f/(X) the jump of the function values f
at the interface ¥ between two phases i and j in the periodic cell A4, the
following continuity conditions hold for a perfectly bonded interface

ftolees 0. [ (2.5)va(e.2.5) ]

where n represents the outward normal to the interface 3. Eq. (2.12),
which models the periodic viscoelastic material in the Laplace domain,

=0, (213)
[ IS
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shows a structure similar to the equation characterizing an elastic mate-
rial, apart from the presence of the complex frequency s, which affects
the constitutive tensors. Moreover, the micro-relaxation tensor G™ is a
general kernel that describes the behaviour and the properties of a vis-
coelastic material. The solution of Eq. is too expensive from both
a numerical and an analytical point of view, because the coefficients are
Q-periodic.

In order to cope with such a drawback, it is convenient to employ a non-
local asymptotic homogenization technique to turn the heterogeneous
material into an equivalent homogeneous one. Such a procedure gener-
ates equations, equivalent to (2.12), whose coefficients are not affected by
oscillations and their solutions are close to those of the original equation.
Moreover, the computational cost to solve (2.12) significantly reduces.

In the equivalent homogenized material, by c0n51der1ng a reference sys-
tem {O, e, ez, e3}, the macro-displacement transformed in the Laplace
domain is denoted as U (z) = UM e;, with respect to a point x, and the

transformed displacement gradiend is defined as Vﬁ(a:) = ngvf e1Res®
€3.

2.3 Asymptotic expansion of the microscopic dis-
placement

Based on the asymptotic approach developed in Smyshlyaev and Chered-

nichenko (2000) and Bacigalupo (2014), the micro displacement u is ex-

pressed as an asymptotic expansion in terms of the parameter ¢ that sep-
arates the slow « variable from the fast one £ = 2

Up (:L' — t) Zelug —uh (ac,g,t)—i—su(l)( 5 )—1—52 (2)( ,;,t)—i—

+0(e). (2.14)
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The Laplace transform (2.8) is applied to Eq. (2.14) and leads to
+oo
x N N "
E(uh(ﬂl,;,t)) :;glu( (0)<w = s)—i—sug)(w = s)+

+ &% (2) (m, E, s) +0(e%), (2.15)
€

which is equivalent to the asymptotic expansion of the micro displace-
ment performed in the time domain. Let us consider the formula

sl T)- [P MO -

0 1
_ in (@, &) + i ” , 2.16
[axk n(x,§) k| _s (2.16)
which introduces the macroscopic derivative %ﬁh and the microscopic
derivative @y, ;, in the transformed Laplace domain, and let us apply it to
the asymptotic expansion (2.15), leading to:

D . x oa!”  oalV o0l
D.ﬁku(a%s_i) n [81‘k +€Bxk te 8$k +}+
1
+- (08,4 + call) + =202, +. ” . (2.17)

The asymptotic technique searches for the solution of Eq. as a de-
composition in increasing powers of the microscopic lenght €. To this
purpose, the replacement of the asymptotic expansion into the
microscopic field equation in the Laplace domain and the rear-
rangement of the terms with equal power ¢ yield the asymptotic field
equation

-1[(Am 81120) ~(1) i m  ~(0)
(Czyhkuh k) te€ [( zghk( Dy +uh,k>>,j+ &rj( ijhk U, k)}‘*‘

o 00 0 (am (000 4 . s (0
o [ (G 2)) e (G +a2) s+
P i :
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A o), 3 () oo

+ 0(52)] ] —0. (2.18)

Interface conditions are rephrased with respect to the fast variable
£ since the micro dlsplacement ap(z, &) is supposed to be Q—periodic
with respect to £ and smooth in the slow variable z. Indicating with 3,
the interface between two different phases in the unit cell Q and consid-
ering the asymptotic expansion (2.15) of the micro displacement, inter-
face conditions read

(3R ) WS ) SR

+(0)
o), + (108 G +82) ]|

Recursive differential problems and their solutions

The asymptotic field equation (2.18) produces a set of recursive differ-

ential problems that determine sequentially the solutions @°, 4'... In

particular, at the order 72, the differential problem, which stems from
problem (2.18), is

(Coii) =1 @) (220)

with interface conditions

8] ees, =0 (53 ]|, =0
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The solvabiliy condition of this differential problem, in the class of Q—periodic

solutions GELO), implies that fi(o)(sc) = 0 and so the differential problem

(2.20) develops in the form

m_ »(0) _
(Comii) =0 (2.21)
The solution results to be
i\ (x, €, 5) = UM (z, ), (2.22)

where UM (x, s) is the transformed macroscopic displacement that does
not depend on the microstructure.

Bearing in mind the solution (2.22), the differential problem from
(2.18), at the order £, is

X UM
(Cijhkuglli> + l]hk‘j 8h :fi(l)(w), (223)

since UM wx = 0. Its interface conditions are

| ([ G T ) ]

Similarly, the solvability condition in the class of Q—periodic functions
ensures that

. o ™M)
17(@) = (Cliu ) 5 (224)

where ((+)) = | Q‘ [l o(")d€ and |Q| = . Moreover, the Q-periodicity of the

components C’[?h . and the divergence theorem entail f" (z) = 0 and the
differential problem

(1) oupM UM
(thkuh k) + 1jhk] o =0, V B (2.25)
has the following solution
UM
N&O) P
( £’ ) hpq1 (E)qua (226)



where N, 15;1101) is the perturbation function, which depends on the fast vari-
able €. The perturbation functions are supposed to have zero mean over

the unit cell Q and so IV, }(L; qo ) complies with the normalization condition

(10 (1, 0) _
Nopar ) = 11 / N0 () dg = 0. (227)

Furthermore, the perturbation functions exclusively depend on the ge-
ometry and on the mechanical properties of the microstructure. The dif-
ferential problem at the order ¢° is

<Am (3@21)+A<2>>> +i<Am (8ﬂ20)+A<1>>) m 20 —
ik gy, Up, & g 0wy \ e gy Unk))—P (),

(2.28)
with interface conditions

A (1)
6, =0 (1 :zhk<i:7:+ﬂ%>>n4ﬂ@=o

Considering the solutlons 2) and (2.26) of the differential problems
at the order 72 and ¢!, respectlvely, the differential problem (2.28) is
turned into

m 2 (2) N<10> m N0 )) 20
whkuhk j+ Z]hk hpq: + ith1+ Uhk hpar,k axq18$,7+

2UM f(2)( ), (2.29)

with interface conditions

A . 920 M
[N, =0 ([l M2 5 )], =0

Again, solvability condition of differential problem (2.29) in the class of
Q—periodic functions and the divergence theorem lead to

@) (1.0) 82U]VI
— p m\ 27T M
fz’ (w> - < ijhq1 + Cljhthpql >a$q16$]‘ - <p >8 Uz (230)
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and, consequentely, the solution of the differential problem at the order
elis .
2 0) 82 UM

(2 2) 2
N0 7&% oo+ s2UM, (2.31)

(@€, 5) =

where N }(;’2) is the perturbation function depending on the parameter s.

Higher order recursive differential problems

The recursive differential problems are established at the order ¢, 2,
e2®=1 and 2%, with w € Z and @ > 2 and they are helpful to formu-
late the cell problems.

Taking account of the solutions and related to the differen-
tial problems at the order ¢! and &Y, respectively, the differential prob-
lem at the order ¢, stemmed from equation (2.18), is

(3 Am - Ar(2,0) (2,0)
(Cuhkuh k:) y + (( ilcthhpm!Jz) T zkhJthqlqz,j""

UM
LOVy_“ "p
+ ( zth2Nth1 )) 0xq, 014, Oy,

Am (2,2) m (2,2) m (1,0) 8UA']W (3)
+ {( iiha N ) + lethth Nipgr | } or. fi7 (@),
J @

with interface conditions

58] o, = e

R ) [

q1
The solvability condition of differential problem (2.32) in the class of
Q—periodic functions and the divergence theorem provide

3) (2,0) (1,0) 0y
— p
£0@) = (CitniNingns + (Clra e )V 5o +
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>523@M

+<Am N@2) _ oy (10) 7
0xq,

iqrhj* " hp,j ipq1

(2.34)

and consequentely the solution of the differential problem at the order ¢
is

(3 0) N s
( € ) hpq1qw33quaxq23xqs + hpq1 aqu'

Considering the solutions (2.31) and (2.35) related to the differential
problems at the order € and ¢, respectively, the differential problem at
the order €2, derived from equation (2.18), is

. (4 Am (3,0) (2,0)
(Czjhkuh k) t (( ikthhpqlqzqs,) + lqahthpq1q2+

(2.35)

47T M
+(Am N30 )) oV,
ikhj* " hpqiq2q3,j aquax@axqsaxk
R R ouM
m (3,2) (2,2) m (3,2) (2,0) ] .2
+ [( ithQthql) + mhqlth + CigonkNnpar e — P Nipq1q2:|8 (c)xz +
1
- NS0 = 1 (@), (2.36)
with interface conditions
A(4)” ’ _
i =0, 2.37
H: h £ex; ( )
UM ouM
m (4) N(S 0) N(Q 2) 277°p
H( ijhk (uh k hpa1a2as gy, 91024202430}, + 0xq, +

0*UM
(3,2) 52 P
N —L2 ) )n, =0.
T Nhpay ® aquaxk))”ﬂﬂ ‘5621 0
The solvability condition of differential problem (2.36) in the class of
Q—periodic functions and the divergence theorem yield

i
0x4,0%4,0x4,0x};

(4) _ (2,0) (3,0)
fi (:13) - <( ZQShthIJQMfz + 1khJNhPQ1Q2q37j)>
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N(2 2) Am N(3 2) mN(2 0) 8UI£W mN(2a2) 47TM
+ zqth1 igahk S - <p ip >S Up s

hpqi,k ipq1q2 Oy,
(2.38)
and the solution of the differential problem at the order 2 reads
A7TM 27T M
@) (5, ¢,5) = N0 U, LoNG) 2 U,
’ hpq1 024394 O O 4, 0T, 024, hpgigs® 04,024,
+ N sM, (2.39)

The generic recursive differential problem of the odd order 2?~1, with
wEZand w > 2,1s

(2@+1) 1 A (2,0)
(Cz]hkuh k )] + 2+ 1 E : ithszrlththqum j+
P*(q) ’
20+1{7M
A (2%,0) A (26—1,0) 0 p
+ szw+1hj thcn Q2,7 + 1925+1ha20 " " hpgr---q2a-1 | o oz +
q1--- q2%+1

1 A (2@,2) (2@-1,2)
+ 2w — 1 Z {( ithz@71thq1...q2@,2> + Zqu 1hqaa— 2thth G2 — 3+
P*(q)

+ Cm N(Qw 2) . mN(Qw 1,0)

1925 —1hj " hpqr...q20 2,5 ipq1...q2m—1

2w—17TM
] R

amfh 31)(12“}7 1

" 1 A (2@,2n)
Z 51” Tn_l’_l Pz(:) {( ijhtI2m+1—2nthtn---qszm)’j—"_
n=1 “(q

+ C’m N(2U~)*172") C«m N(2ﬁ/,2n)

iq2w+1—2nhq2o—2n hpq1~~~q2ﬁ:—172n iq2w+1—2nhi’ " hpgi...qaw—2n,j

20+1—2n7TM
(2w—1,2n—2) 9 Up

2n
iPq1---g2m+1—2n 8%‘,1 s+
1

"'axq2ﬁ+172n
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. ; 12521 OUT
N (202 N (282 N (20-1,20-2) 20 _
+ |:( ghth f(pr ")) + thhk Igpul}c “) - pm ip;l] v :| 61.: 7Y =
»J 1

1 Am (2w)
= m E <Czq2w+1 hj thq1 q2@7.7'+
P*(q)

8271;+1UM

(2w—1)
+ N, e
1qzw+1hqzw hpq1...q2m — 1>3$q1 8$q2w+1

(2w—1,2) (2w,2)
}: mw 1hqza— 2NhPQ1-~~qzm 3 + zqzw 1h]NhPQ1~~Q2w—2J+

P*(q)
20—17TM
prNGED =0, s21
e axl}l axqzm—l
n=w-—1 1 ( )
A 20-1,2n
+ Z 61" m Z <C{32'1D+1—2nhq2u')72nthq1~"q2'@7172n+
n=1 P*(q)
(20.2n) (20-1.2n—2) §2o+1-2n M
m w,2n m w—1,2n— p 2n
+Czqzw+1 2ththq1...q2,;,,2n,j_ Nlpql -q2d+1-2n aqu amq2m+172ns +
ooy QU
<C2qlhkN}(Liu];2w) mNZ(;;ll) 1,20—2) >8xp s2w (240)
q1
and their interface conditions are
~ (2041
Hu}(l ot )m -0 (2.41)
£ex,
and
2m+1f]M
- (2041) 1 (m N 20.0) ) 0 P
H( CL N | 2 \Clfnans s Niga, aqu...axqler

39



20— 177 M
(2w 2) 0 U 32+
Z 1Jh92w 1 hpq1 9202 ) Or. . 0Lgy.

P*(q)

n=w-— 1 1

+ g 5171 X
0 —2n+1
n=1 +
20+1—2n7TM
% N(2w 2n) 9 Up 52n+
1th2w+1 2’ Thpgiq2a—2n ) §p O
P* (q q1i-* q2@w+1—2n

o 0 OUM
(2w,2w) p 2% ) _
+ z]hq1th aqu s )nJ” ‘5621 =0.

The generic recursive differential problem of the even order 2% is

(20+2) 1 Am (2+1)
(CZJhk“hk )i + 20 + 2 § : [( ithzm+2thq1-~qm+1)j+
P~ (q) ’

H20+2 0M

(264+1) (2@)
+ “12w+2hJthq1 Q2w+1)]+ 142w+2hq2w+1thq1 26 | . O +
q1- q2%+-2

1 A (2+1,2) (2w,2)
+% Z |:( Z;'Lh(lmbNhPlelszl) +C’lnqﬁ;wh‘lmﬂfl]\fhpth~~<12u";72+

P*(q)
_ 82u~;ﬁM
N (20+1.2) m p7(20) P 2
+ CZLM; hpth Qa1 P Nipthmtmm] 5$q1~~5$q2m 7+

n=w-—
(2w+1,2n)
Z 51" 22w 2n+2 Z [( ijhqam— 2n+2thq1..4q2@,2n+1 j+

P*(q)
¢ (2,2n) L om (2@+1,2n)
“12w 2n+2hq2a+1-2n" " hpq1...q25—2n iq2w+2—2nhJ” " hpqr...qaa11—2n,]
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20+2—2n7TM
(2,2n—2) 0 U}

- 2n
P qulquJrzfzn] s+

0%q, - 0Tqys 0o,

* %[( ”hQQN}(j:;lH 2w)>, + “12}“11 Nf(tiﬁ)’%) + ZqthNiEiZU1+Jl "y
NG O V)
™ 1‘11hf12Nf(LiU772w) + “IthNf(L?)Z};_]l 0 le(;;Z;w ? (‘3;9;%;;,1282er
_ N 2m1+ : S (G Nt

P*(q)
+ zq2w+2hq2w+1Nf(ziq;)l) q2w>M+

813(11 3zq2w+2

1 A (2w,2)
+ 20 Z <ng2’7’hq217’—1 Nhimh --<Q2ﬂx72+

P(q)
2w 7T M

m N(20+1.2) (2@) 0 Up )

+Czq2w hpth gzo—1,7 P ipql"‘q2ﬁ>m8 +
n=w-—1 1
_— > (2,2n)

’ 2:1 61” —2n+2 Z <C{g2@72"+2hq2"3+1*2n NhP‘Zlnﬂszzn_'_

" P*(q)
+Cm (20+1,2n) _mar(20,2n-2) §rot2=2n M

1q2w+2—2nhi " hpqi...q2a+1-2n,] p iPq1-..q2m+2—2n Oz O
qi--: q2H+2—2n

(2w+1,2@0) o (240,25 —2)
ig2hj th(h \J szql q2 +

1 A 0,210
—1—7[(_7" N(22)+

iq2hqy
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526 rum -
N(2w+1 2w) N(2w,2w—2) p 52w

iq1hj h ipg2q
ql J Paz,) 1Pg2q1
aqu (9:)3q2

(2w,2w)
“11h(J2 Nhlﬂw b + +
(2W,20)\ T M 210
—{(p" N, YU, s, (2.42)
and their interface conditions are

[[ﬁwarQ)” ’gezl =0 243

and

82w+2 UM

{{( A ﬂ(21D+2) ( (2w+1 0) 4
ijhk“h,k § : 1jhqawt2 hpq ~q2p+1
P*(q) e 637!11 axqmwrz

1 2d+1,2 82wﬁM
S (T )y ey

hpqr--.g2a0-1) § B
X X
P (q) qi1 q2w
n=w-—
1 A (2w
m w+1,2n)
2_: 51" D— 2+ 2 2 : ( ith21ﬂ—2n+2NhPQI~~-q2u'1—2n+1)X

P*(q)

2W+2—2n7TM
X 4 Up s2n+
81‘q1 "'633‘]2@4»272%

(2d+1,2im) o120\ U o
A s ) LB T

a‘rfh aqu
(2.44)

N | =

2.4 Cell problems and perturbation functions

In the previous section, the solutions ﬁg ) uzl), Af), ... have been es-
tablished. Such solutions are employed to formulate the cell problems,
which are classified according to the even power of the parameter s.
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Cell problems related to s’

The substitution of solution (2.26) into problem (2.25) leads to the follow-

ing cell problem at the order ¢+

(1,0 m
(Cl]hthpql) k) + C?,]pql J 0’ (245)
with interface conditions derived in terms of the perturbation function
1,0
Nf(tpql),k
(1,0) — (1,0) —
[0, =0 L[5 (Mials bt ) |, =0

(2.46)
where dp,,, and dy4, are the Kronecker delta functions. Once the perturba-
tion function N, ,(l;’qol)’ ., has been determined, and thanks to equation (2.29)
and its solution (2:31), the cell problem at the order ¢° is derived and the
symmetrized version with respect to indices ¢; and g2 is

(2,0) 1 (1,0) (1,0)
(Cl]hk}thqlqg k) . + 5 [( ikhqo thql ) + ngzpql (Clqzhk?thql k)+

(1,0) m (1,0)
+ ( 1khQ1thq2> +CHI1P¢I2 ( 1Q1hthpq2, ):| -

1 (1,0 A 1,0
= §< iq2hq (Czqghk:thql)k) + 1q1hq2 + ( iqlhklepqg),k)>7 (247)
with interface conditions
(2’0) —
HNimlqu ‘5621 —0, (2.48)

(2,0) 1 (1,0) | (1,0) -
H(thk hparqz kT 2( Zthzthql zahqlthqz )) JH ‘5621 =0.

The solution of the cell problem (2.47) and (2.48) is the perturbation func-
tion N>% " The cell problem at the order e withw € Zand w > 11is

ipq1qa
(w+2,0) 1 A (w+1,0)
(Cuhthpql qw+2,k) j + w+ 2 [( ir?h%uthmmqwﬂ):j_‘_

P=(q)
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(w+1,0) (w,0) _
+ lqw+2hJthq1 quw +1]+ qu+2hqw+1 hpqi...qw |

_ Am (w+1,0) Am (w,0)
w2 Z <Clqw+2hJthq1 “GQu+1,J + Oi(I711+2hQU)+1thql.“qw>’ (2.49)
P*(q)

and the corresponding interface conditions are

HN%Z??_’&HH ‘5621 =0 (2.50)

(w+2,0) N(wtL0) —
H( z]hthpq1 Qu/+27k w+2 Z Uhqw+2 hpth qw+1>nj]H§e§h =0

where symbol P*(q) denotes all the possible permutations of the multi-
index g = ¢, qo, ..., ¢ that does not exhibit fixed indices, see [Al The res-
olution of cell problem (2.49) allows determining the form of the pertur-

2,0
bation function N “ 1>
Pq1---quw+2"

Cell problems related to s*

The substitution of solution (2.3 into Eq. (2:29) generates the cell prob-
lem at the order &°

( UhkN}(Li i)) =i = *5¢p<pm>, (2.51)
with interface conditions:

HN(; 2)H ‘sezl =0, HC”’”“N*(‘?’?H ’gezl =0 (2.52)

as well as the cell problem (2.47), which is related to the case s°. From the
resolution of problem and (2.52), the perturbation function Ni(;’m
is derived.

The perturbation function Ng’q ) is the solution of the cell problem ob-
tained at the order ¢!

3,2 2,2 2,2 1,0
( thka(zpql)k) + [( tthlN( )),j + quthf(Lp J) le(PlI1):| =
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— /0 (2,2) m a7(1,0)
- < ZILlthhp,j - P Nipql >7 (253)
with interface conditions
(3,2) . A (3,2) Am (2,2) .
|:|:Nipq1 ]]’6621 —07 |:|:Cijhthpqhk -+ ithlth )nj:|i|‘€€21 = 0
54)

Meanwhile, at the order €2, the perturbation function Ni(;q’lez is the solu-
tion of the cell problem

2 (4,2) L (3.2) A 22 | A (3,2)
( Z’Lhthquz,k)jJri{( {?hquhpql)vj+ ;22hQ1th + Z'7Zz>hk]\/vhpq1,kJr

m a7(2,0) Am (3,2) Am (2,2) m (3,2)
P thquzz +( ith1thqz )i+ iq1hquhp + Ciq1hthpqz,k+

1 . R
_pmN(QvO) :| _ 7< m N}(j)ﬂ) +Cz'7¢r;2hkN(3’2) pmN(ZO) +

hpg2q1 9 \ig2ha hpgi,k hpgiqz
Am (2,2) Am (3,2)  _ mar(2,0)
iq1hgz th + Ciql hthpqz,k p NhPCI2Q1 >’ (2.55)

whose interface conditions read

¥l e, =0 (2.56)

Am nr(4,2) Liam (32, Am o A(3:2) _
H(C’ijhthpqqu,k + 5( z’thzthq1 ith1NhPQZ ))m” ’gez =0
1

Finally, at the order e¥t2 withw € Z and w > 1, the perturbation func-

tion N, (IZH’Q) is derived from the cell problem
1Pq1---quw+2

A (w+4,2) 1 A (w+3,2)
(Oghthpqlwqu,k) j + w2 K ;?hQ'w+2NhPQI"~Q'w+1) j+
, s 7

*(q)
A (w+2,2) Am (w+3,2) _mar(wt2) o
iqw+2hqw+1thq1~..qw+ iqw+2thhpq1-~qw+17j p Nipq1mqw+2 -
1 A ( A
o m w+2,2) m (w+3,2)
T w42 Z < iqw+2hqrw+1thq1~-.qw + iqw+2thhpq1...qw+1,j+
P*(q)
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mNﬁw+27O) > (257)

1Ppq1-.-quw42/"

equipped with the interface conditions

HNi%ﬁ-’;iHH ‘ cen, =0 (2.58)

- (w+4,2) 1 Am (w+3,2) _ _
H( ithw+2thq1...qq,,+2,k + w+2 et < ithw+2thq1-~qw+1))nJH ‘gezl =0.

Cell problems related to s*"

The cell problems related to power s>" are here devised and their cor-

responding perturbation functions are established. At the order £(2"~2),

with n € Z and n > 2, the cell problem is

(Cljhthink2n)> - p,,LNi(;nfzgn&) _ _<pmNi(irﬁz,znfz)>7 (2.59)

»J

with interface conditions

HN”(PMM)H ’gezl =0 H thkN;(LZLan)H ’gezl =0 (260

and its solution is the perturbation function N, i(p2n,2n)'

Whereas at the order £(>"~1), the perturbation function N;; (an 1) is the

solution of the cell problem

2n+1,2n 2n,2n 2n 2n
( 1jhka(rpq1 k )) j + |:< zth1Nl(1p )> + Czq1hthpk )

2n—1,2n—2 2n,2n 2n—1,2n—2
o mNZ(qu )} < quhka(lpk ) —p Ni(pql )>, (2.61)

with interface conditions:

N(2n+1,2n)]:| } —0,
|:|: 1Pq1 e,
hpqi,k tjhqy

2n+1,2n A 2n,2n
[(ComaNam ™ + G, N >)njm5621=o. (2.62)
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The cell problem evaluated for (> is

Am (2n+2,2n) 1 Am (2n+1,2n) Am (2n,2n)
( 131k Nhipgy gz )j+2 iihas Nhpay ;7 Claana N ™+

Am (2n+1,2n)  m ar(2n,2n—-2) Am, (2n+1,2n)
+ igzhj thql J p Nipcn q2 + 1jhqy NhPQz j+

A (2n,2n) A (2n+1,2n) 2n,2n—2)|
iq1hga Vip i1hi Vhpaes P Nipagsan } =
1 Am (2n,2n) | Am (2n+1,2n)  m Ar(2n,2n—2)
< 9 ~ig2hq1 th iq2hj thq1 J — P Nigg)ey
Am (2n,2n) Am (2n+1,2n) m ar(2n,2n—2)
iqihas Vhp 100 Vhpazi P Nipgsq s (2.63)
with interface conditions
(2n+2,2n) _
HN@W H LEZI —0, (2.64)

A (2n+2,2n) | L (A (2n+1,2n) | A (2n+1,2n) _
H( Z’lhk hpqiqz,k +§( Z}lhq2thq1 th%NthZ ))nj”’gezl =9

and its solution is the perturbation function N 22"

Pa1 a2
turbation function Ng;ﬁ_zzif") is the solution of the cell problem for
Ew+2n

. Finally, the per-

Am (w+2n+2,2n) 1 Am (w+2n+1,2n)
< ijhthpql.A.qurg,k) j + w+ 2 ithw+2thq1...qw+1 j+
’ P*(q) ’

Am (w+2n,2n) Am _N(w+2n+1,2n) _ mar(wt+2n,2n-2)|
iquw+2hquwt1 hpqi...quw Zq1u+2h] hPQI---Q'w+11j iPq1 - Qut2 -

_ 1 < Am (w+2n,2n) Am (w+2n+1,2n)
T w42 P iquw+2hqu+1” " hpar...quw iquw+2hi* Y hpgr...quy1,d
q
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mNﬁuJ+2n,2n—2)>, (265)

pq1.--qu+2

whose interface conditions are

(w+2n+2,2n) o
HNiPlh-quJrz ” ’6621 =0, (266)

(w+2n+2,2n) 1 A (w+2n+1,2n) ) o
H( ZJhthpql -qu+2,k + w+ 2 (Cithqw+2thq1mqw+1 ))nJH ‘5621 =0.
P*(q)
In Smyshlyaev and Cherednichenko (2000) and Bacigalupo (2014), it is
emphasized that the uniqueness of the perturbation functions N, }(L;Z) gi
derived from the cell problems (2.45)-(2.66), is guaranteed by i 1mposmg

the normalization condition (N }(L;;T') o L) =0.

2.5 Down-scaling relation and up-scaling rela-
tion.

The down-scaling relation referred to the transformed micro-displacement
is expressed as an asymptotic expansion of powers of the microscopic
length ¢ relying on the transformed macro-displacement UM (z, s), its
gradients and the Q-periodic perturbation functions. Such functions are
delivered by solving the cell problems that are listed in the Section 2.4.
Therefore, the replacement of the solutions of the recursive differential
problems (2.22), (2.26), (2.31), 2.35) and (2.39) into the asymptotic ex-
pansion (2.15) enables establishing the transformed micro-displacement

ah(wvg? S) as

ﬁh(aj = s) = ( Z N NI aaZ:w )’5_

L= (2.67)
1,j=0 lq|=l ©

. UMt
= (O (@,5) + eVl ()52 +<

q1

UM
(2,0) P
N
( wvasas () 0x410x 42 i

. UM oUM
NGO + 2 (N O 5 gy * Mo (©5 G )

8$q18$q28$q3 8l‘q1
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A7TM M
e4< (4,0) U, (4,2) aZUp

, 2
hpq1929394 (S) thq1qz (5)5

0241024207 430% g4 0x410T 42

+ N,g‘;”(g)s‘*z?y) + 0(55)) ‘E:%.

InEq. (2.67), |¢| describes the length of the multi-index and the derivative

L 1
with respect to g is written as %( ) — 61?1( )x Moreover, the perturba-

aq

tion function N ,g(; 0 stands for the Kronecker delta Onp. There is point
N]Eiil +1,25)
fected by the microstructural inhomogeneities of the material and this

in observing that the Q-periodic perturbation functions are af-
is emphasized by their dependency on the fast variable £ = Z. On the
other hand, the transformed macro displacement UM (z, s) is L-periodic
and relies on the slow variable « and the time. The transformed macro-
displacement field is supposed to be the mean value of the transformed
micro-displacement field over the unit cell Q

UM (x,1) = <ah (m g +e, s)> (2.68)

Eq. is said to be the up-scaling relation and it links the transformed
macro-displacement field with the transformed micro-displacement field.
In Eq. the variable { € Q identifies a family of translations of
the heterogeneous domain with respect to the L—periodic body forces
b(x,t), see Bacigalupo (2014). Therefore, the transformed body forces in
the Laplace space b(x, t) are L—periodic.

2.6 Average field equations of infinite order and
macroscopic problems

Replacing the down-scaling relation (2.67) into the micro-field Eq. (2.12)
and assembling the terms with equal powers of ¢, the average field equa-
tions of infinite order read, at the second order €2,

27T M 37T M
o PV oo 20N 1 (n<3,o> U, (32) , 00" >+

n; _— \ - 7
1Pq192 8$q1 arqz wp 1Pq19293 8$q1 61.(12 8-73113 117111 6l‘q1
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477 M oM
(4,0) 9 Up (4,2) 52 82Up n(4 4) 4UM>

+ e? (nipql 429344 ipq1q2 ip
0x4,0%4,0x4,0x,, 0xq,0xq,

.+ bi(x,8) =0, (2.69)

where the coefficients of the gradients of the transformed macro-displacement
are the known terms of the corresponding cell problems. Thus, it results

Ml = ;< oty + Crmtk Nipar e + Clmngs + Cli e Nipg i), (270)
ni? = 8, (™), 2.71)
= 5 2 oo+ Ol Vi)

o (2.72)

N = (0" Nt = Clini Ni 3, (2.73)

nl(;;]21)112 - 2< mNz(qu?zzz - wthlN(2 ) Clqﬂthtil) le(quzh—l—

- quthN(z 2~ glhkN}(Lii),k>> (2.74)

where w € Z and w > 1. Eq.(2.69) is expanded at the infinite order as

30 "0

Mipq O, +

o OO n22) 2071 il
aio U7 0 +zg 3

W92 Oy Ox
q1 q2 lg|=n+3

UM “+oo
2 27+4,27+4
+ ZE7L+1 Z E;L;LS, ) 2 Z€2n+2 (2n+4,20+4) 2!L+4UM+

lg|l=n+1

+oo ) _— an+1UM
~ 5, ~
_ § €2n+n+3 § ngp;lJrnJr n—44) 2n+4 P + bl(ﬂﬁ, 8) — 0,
£ Oz
n;n=0 lg|=n+1

(2.75)
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where

(wta,2) 1 ( m (w20
PqL-Gut2 T g, +9 ipq1---Gu+2
P=(q)
_ Am (w+2,2) _ Am (w+3,2)
Ciqw+2hqw+1thql...qw Ciqw+2thhpq1...qw+1,j>v (2'76)
(27+4,2744) _ ; m Ar(2042,272+42)
Mip = (" Ny, ) (2.77)
(27+5,2744) __ ; m nr(2043,272+2) Am (2744,27+4)
ipq1 - <p Nipzh - Ciqlhthp,k >7 (278)
(246,27 +4) 1< m @A) Am (2Ata2nte) |
ipq1q2 - ipq1q2 ig2hq1*  hp
A (2745,27+4) mAr(204+4,2042)  Am (2R+4,274-2)
tq2hj thtn WJ + Nipqz q1 tq1hqz th +
Am (2745,27+4)
iqihj thqz \J >’
@Atwt62a+wt+d) 1 Z ( mN(2ﬁ+w+4,2ﬁ+2)+
iPq1.. Qw2 - w2 iPq1..-Qut2
P*(q)
A (2At+w+4,27+4)  Am (27+w+5,27+4)
iquwt2hquwi17  hpqr...qu iqw+2thhpq1---qw+1,j >’ (2.79)

withw € Z, w > 1, 7 € Z and 7 > 0. The average field equations of
infinite order (2.75) are formally solved by performing an asymptotic
expansion of the transformed macro-displacement Uzﬂw () in power of ¢,

namely
+oo
Ulﬁw(w) = ZsjUg(w). (2.80)
=0
The substitution of Eq. into Eq. leads to
2 (0 (1
o0 (50 aizl%gx; saiz%gw; + ) — 2V U + OO + )+
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377(0) 377(1)
renl? L ( Uy 07Uy o)+
P B Oy 0Ty, 0xgq,...0T 4,
~ (0 (1
20 ( Uy s +...)+
ipq1---qa 83),11.--8-%'(14 aqu...al',M
~(0) (1)
. (32) 2(8Up Up
+.—eng,,s Oy, +€6qu +...>+
~ (0 ~ (1
_ 22 2( 62U1§) 5 62U1§) + )+
PN\ Oy, 0xg, Org,0xq,

o=l Vst (00 + 0W 4. = 508 (00 400 +.) + .+

p

+elni 4(88%? + E%Uxi) + )+
s 4(682050) o ) bt
2 g, 0 g, 04,02,
T ad S
— S0 6(82108{; aii%i; + ) F o+ bi(m,s) =0, (2.81)

which provides the following macroscopic recursive problems for the
different orders of €. Namely, at the order Y it results

2o 0°0"

1pq192 8mQ1 axqz

- n§§,2)8201§0) + bi(x) =0, (2.82)
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at the order ¢ the problem is

~ (1 (0
(20 82U;E ) (2 2) 2U(1) 430 33U( ) _ 322 aU ~0
1pq192 aqu axqz 71”(11 -q3 aqu 833(13 1pq1 8qu ?
(2.83)
instead at the order ¢2 it reads
~ (2 ~(1
Lo 007 o 200 430 Uy
1pq192 aqu axlp w 11741 -q3 aqu 633(13
~(0 ~(0
+n(4’0) 784U1§) n(32) 28U n&2) 2782[]12) —pWBt0 — g
pq1-.-94 aqu ...(9xq4 1PQ1 aqu 'LPQUJQ al‘ql axqz , p
(2.84)

A generic recursive problem, at odd order e2?~!, with @ € Z and @ > 2
is

r(2w—1
(2@—1,0)% n(2w 1,2w—-1) 2U (2w— 1)+
Pz 8xfh axQQ ?

2w+1 0) aTU(2w+l T)
D0 k)
r=3 |q|=r Tq
2w+1 ar QU(2w+l ™)

ey Y Al

r=3 |q|=r—2

W—3+d24
(1= Gag) Z g2n+4 (n(_2n+4,2n+4)01()2w—3—2n))+

p

[0} (rt242n.2n44) 8T_QU£2711—1—7‘—21’L)
+ Z Z nipq ’ axq +
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W, 20 DT w,sw U(
_ p(20.20) 2 wU() p(20:29) 20 Yp _ — 0, (2.85)

ip Mipgy &rq
1

whereas a generic recursive problem at even order 2% is

277 (2) 20+2 rr(20+1—1)
(2,0) 9°Up o (20:20) 2F e 00 U
Ripgiga aquaxqz Mip U Jr ; HZ ipg +
q|=r
242 )aT,QUv(ZzD—i-Q—T)

BB DD DR S

r=3 ‘q‘:r—Q

2w —2n T_Qﬁ(Zﬁ)fern)

(r+242n,2n+4) 0 D
+ Z Z Tipq 3% +

r=3 |q|=r—2

- ngw+2 ,20+2) 211)+2U(0) =0, (286)

where n € Z and n > 2. There is no point in managing the averaged
equation of infinite order (2.75). Furthermore, the ellepticity of the differ-
ential problem could be not guaranteed if Eq. is truncated at a cer-
tain order. To overcome such a disadvantage, an asymptotic-variational
approach is pursued.

2.7 Asymptotic expansion of the energy and sec-
ond order homogenization

A finite order governing equation is herein provided by exploiting a
variational-asymptotic procedure, see Smyshlyaev and Cherednichenko
(2000) and Bacigalupo (2014). Let A be the energy-like functional, Fab-
rizio and Morro (1992), written in terms of the energy-like density A, at
the micro-scale and referred to the periodic domain L,

r 1 me . 1 m A
A:/L/\m(m,g)dw:/L(ip u*u—l—QVu*(G * V) u*b)daz.
(2.87)
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Let £(A) be the energy-like functional in the Laplace domain, which is
expressed in terms of the energy-like density ), in the Laplace domain

A:LZ(A):/L;\,,L< )d:r;—/L(;pmSQ'&-'&+;Vﬁ:GmVﬁ—Z-:g))dsc,

where the symbol : denotes the second order inner product.

The tranformed energy-like functional A and its corresponding energy-
like density A\ are influenced by the translation variable ¢ € Q. Such a
variable is introduced because the actual “phase” of the microstructure is
undetectable and a family of translated microstructures is taken into ac-
count. Therefore, the transformed micro-relaxation tensor G™ depends

on the translation variable ¢ and it may be written as GmS (:c, f) =

G™(x, 2 + () and the perturbation functions N }(L; qol )N ,gi qol )qz ., which

are solutions of the cell problems previously determined, reckon on vari-
able ¢.

The energy-like density ), in the Laplace domain complies with the
property ;\§n (m, %) = Xm (a:, f + C) and so the Laplace transform of
the energy-like functional A, depending on the parameter ¢, is

AS=A(¢) = /L}gL (a: g)dm :/Lim (m,§+c)dm. (2.89)

Let A, be the average transformed energy-like functional at the microscale

A=) = gy [ A = g [ A@ac= [ (2.7 1) o

(2.90)

where the Fubini theorem is applied.

The average transformed energy-like functional (A¢) at the microscale
does not rely on the translation variable ¢ because the energy-like func-
tional A¢ is averaged with respect to the translated realizations of the mi-
crostructure and so the transformed energy-like density at the microscale
satisfies

Gl 2 40)) = g [ (2 4 ¢ac =
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_ Iél /Q Ao (,€)dE = (A, ). (2.91)

Two methods are herein proposed to determine the governing field equa-
tion at the macroscale and the overall constitutive and inertial tensors.

2.7.1  Approximation of the energy-like functional through truncation of its
asymptotic expansion

Let us consider the down scaling relation related to the transformed micro-
displacement @(x, &, s), i.e.

TM
ou,

n(@,€,5) = Un(@,5) + eNjpy) (€) 5
q1

hpqa

(2.92)

2 n(20) 0°0" (2.2) 4y 277 M
+ € (thq1q2 (6)7 + N (5)3 U >+

PuM

3( N3:0) (3,2) 29%Yp 4y
+e ( (é) D102 2005 hpar (€)S oot ) + O(e%)

hpq1q293

Let us replace the down scaling relation into the tranformed energy-
like functional and let us suppose that A,, is truncated at the sec-
ond order. After applying the divergence theorem, the transformed energy-
like functional at the second order is

Ml = [ @ g)de = 552(om) [ 0110 de (2.93)
L L
ouM
2/ m a7(1,0 M
+es?(p NT(pql)>/L87pUT dx+
R ouM
+es} (G B BE) / S UMt
L

hkpgqy Zq
1

: JUM  grpM
+es( ;LnkijB(LO) B >/L o —dxt

hkpgs “ijrwiwsz 8.’1),11 3Iw163€w2
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1 oUM oM
+8282<*pmN}51’0)N(1’0) _ pmN(2,0) >/ » OU; da
L

pq1 = hrgs TPq1q2
2 O0xq, Oz,

R R oUM gprM
2.3 m (1,0) (3,2) m (2,0) (2,2) P s
+ €75 (Ghij Bripg Bisras — Ghkii Bhkparas Bijr ) . Oz, Oz, dx+

2 47, mar(2,2 A M 7T M
+e2st(pm NG )>/LUp UM da+

1, - NN
+ 25 ZﬁcijB,(i’i)B.(Q’Z))/LU;VIUTde—&-

2 Jr
14 (1,0) 1(1,0) 8[7;5\/1 oUM
+ §5< hkij Bhipay Bijrw, ) ; aquaTwldw‘*‘

1. UM M
2 m (2,0) (2,0) P r
+e S< 5 hkithkpth q2 Bijrwlwz > /L aqu 61;(12 6xw1 axwz da+

52 Ué\/l 52 UTM

1, 04, 0% gy Oy, Oy,

+ < A;znkingl’o) BB >

ijrw1 P hkpgigaws dx — % / UMb, dx.
L
It is important to note that second-order gradients of the transformed
macro-displacement are takent into account as well as the first-order gra-
dient of the displacement (i.e., strain), by generalizing the standard con-
tinuum mechanics.
The localization tensors, appearing in Eq. (2.93), assume the form

1,0 1,0
Bl(lkpgl = 6hP6kQ1 + Ni(qul),k7 (294)
20 _ 1 (1,0) (1,0) (2,0)
Bhkp(]1q2 - 5 (6kq2 th{h + 6kQ1 thq2 ) + thq1q27k;7 (2.95)
Biy = Ny (2.96)
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1
B3O _ g(équN(z’O) n 5kq1N(2’0) n 5kq2N(2’0) ) + N(3.0)

hkpqiq2q3 hpg1q2 hpg2q3 hpgsq1 hpq192q3,k’
(2.97)
(3,2) _ (2,2) (3,2)
Bhkpfh - 51“11 th + thql,k' (2.98)

The localization tensors are periodic functions with respect to the fast
coordinate £ since the perturbation functions and their gradients are Q-
periodic functions. Both B}(i’ggl 4 and B}(i;?;l 1qs AT€ Symmetrized in @
with respect to the indices ¢1, g2 and ¢1, g2, ¢3, respectively.

The governing equation of a non-local homogeneous continuum is de-
livered by determining the stability condition of the transformed energy-
like functional AZ!, which is found to be the first variation of the average

transformed energy-like functional §AZ!.

Such a variation §A,,, is computed by applying the Gateaux deriva-
tive, Fabrizio and Morro (1992)

o N N d -~ N N
SR (UM 5UM) = %Am(UtM +775UtM)‘ . (2.99)

According to 2.99), let A,,, (UM 4 1dUM) be written in terms of the direc-
tion 6UM as

« N N 1 N o A N
RO+ 30M) = 52m) [ (O + 0602 O 4060 b+

ouM QSUM .
—+ 2 N (1,0) / P p U VI 6[7[\4 d
§ 5( TPq1 > 7 (81,(11 n aqu )( T + n T ) Z

. ouM  9sUM\ 5
3(cm g0 p2.2) / ( P P\ (M 1 psTMVa
tés < hkij = hkpq, “ijr > I aqu +1n aqu )( r tnoU, ) T+

. oM ysUuM 20 M 250 M
+68<GanijB(1’0) BEY) >/ ( Epn—2 )( ah +7 L )d:c—f—
L

hkpgr —ijrwiwe Oxq, Oxq, 0Ty Ty Oy 0Ty
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UM asUM M TM
+5282<%pmN<1,0>N<1,0>>/< v, 2 )(3UT 420U )der
L

hpay ™ hraz Oxqq Oxqq 0xqy O0xqy

N(20) >/ (6(7;‘/[ 35(7;”)(8071.\4 n UM
L

2.2 m
- d
©F <p "PaLaz O0zq, +n O0zq, 0zq, K 0z, ) S

R oUM UM\ oM M
423G B B(3,2)>/< » » )(8U,. N AU}
L

1y dx
3P hkpa1 Zijraz Oy, n 0z, 0z, g Oy, ) -

2 .3// m
— &5 (G

UM 9sUM\ soUM M
B0 B<2,2>>/L( b P )(8% L1

; dx+
J T hkpqiqa T igr 8qu N aqu 3mq2 n 81}12 )

2 47 mar(2,2 oM S MY (M oM
2 NG) [ (O + 00O + 180N o+

1 . . . R .
+%5° (G By BE) / (@, +n60,") (0 +ndU;")de+

QUM QUM ;oUM  9sUM
Logm o 5o / P » r "\
+ 23< hkij = hkpqy 'L]rw1> I (8{17q1 8(Eq1 )(8.’1771)1 +77 8l‘wl ) T+

+€2S<}Amﬁj3<2m BEO, ., — Oy BLOBEY )

2 hkpgiq2 "~ tjrwiws ijrwy — hkpgigqawa
X/( o2UM N UM )( 92UM O2UM )dw+
1 \0%q, 0, "aquaxqz 0%y, Oy, ”azwlaxw
- / (UM 4+ nsUm™)bydee. (2.100)
L

In accordance with the Gateaux derivative (2.99), after performing the
derivative of A, (UM + ndUM) with respect to 7, the condition n = 0 is
imposed to (2.100) yielding to

o ~ N 1 ~ N ~ N
OA (UM, 6UM) = 5s2<pM> / (SUMUM + sUMUM)da+ (2.101)
L
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oUuM osUM
2 N(l,O) / P UM P U]V[ d
+ 2e(NILY) L(aqu Mt a0} )da+

R AUM ouM
3/Am (1,00 (2,2) P_TM P M
+€s < hkithkpqlBijr >/L aqu UT. + aqu 5UT‘ d.’I:Jr

(10 g0 oUM g2sUM  05UM  p20M

om B 2 d
+ es( hkij = hkpqy Pijrwiws L g, Oy, Oy, Dg, Oy, Oy, z+
1 UM psuM  9sUM oM
2.2 m A7(1,0) A7(1,0) p r p r
— —p™mN N, d
=7 <2p hoay th2> L anl 83?(12 67:% 61‘(12 v
T M A M TM o T M
_ 6282<pmN(2’O) > / aUP 66UT + aéUp 8UT de+
PR/ f Qxg,  Og, Oxg, O0xg,
R oUM gsrM  9sUM girM
2.3/ Am “B(I’O) B_(?’aQ) / p T p r \d
+&75° (Gl hkpq qu2> L (aqu 0z, + O0zxg, O0xg, ) i
R OUM gsUM  95UM UM
2.3 m ”B(250) B(22) / ( p T p i )d
[SIC) < hkij 2 hkpqiqeijr > . 83:,11 8$q2 aqu aqu T+

L2 (NG 4 NG / UMM da
L

1 . . .
+e%5” ¢ ZlkijBf(LQk’p?)B'(Q,Q) +G;znkijB;(if)B'@’z)>/LUéV[(;Uydw‘F

9 iJr iJp

oUY! 9sUM 98U oUM

m  p(1,0) (1,0) P r z -

_ B B d.
23< nkij Bhipg, Bijrws ) /L Oxq, Oy, O0xq, Oy, v

TM osT S
2 MRk s L 6qu 8l‘w1 837111 al‘wl
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1 -
2 m (2,0) (2,0) _ Am (1,0) (3,0)
te S<§ hkithkalth Bij”vlwz Gh/ﬂJ UTwlBhkPquIzwz x

)d:c-i—

/( UM 92UM PPUM  PPUM

0%q,02q, 0Ty, 0%,  O0%q,0%g, OTry, 0T,

- / ST byda.
L

The integration by parts applied to (2.101) issues line integrals along the
boundary 0L that vanish because of the L-periodicity of the transformed
macro-displacement Ué” and the antiperiodicity of the outward normal

vectors, resulting

SA (UM, STM) = $2(pm) / OM§TM a4
L

o0
+es(pM (N0 _ N0 / " 560 gy
L

TPq1 prrqi Zq
1

ouM

1,0 2,2 1,0 2,2

- 5$3< h’“JB;Lkpt; Bl(JT = hkl]Bﬁbk'ﬂgl Bz(Jp )> / amz 5Ude+
1

(1,0) 1(2,0) 63(: M
B;, B> S oU d:c—l—
+ €S< hkij = hkpq: zgr1u1w2> . 8171111 axwz 8£qu r

s p(10) 1(2,0) o°Uy!
Blo p Y s
1 0T, 024, 04,

r M
_€S< hkij = hkrwi = ijpgiwa 6Ur dx+

22k 0 o) L (.0 (1.0 0*0," SUM dat
es 2 hpq1 hrqz 2 hrqz =" hpgq1 (%Uqlaxqz
82UM
2.2/, m (2,0) (2,0) M
— s (p"(Nys ) 4+ N> )>/ SUM da+
P‘hqz Prq2q91 8$q1 8%‘,12
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UM
2 (1,0) p(3,2) Am (2,0) (2,2) M
— 25 GHii Bk Birar — Gitkii Bukpanas Bi >/ Dy, 02y, UM da+

M
2 3/Am (1,0) (3,2) (2,0) (2 2) M
+e’s < hk)lthk"I"qu'L]pql ?kithququ Jp / aqu axqz 6U d$+
e (NG N [ 0600 da
L
1, 2,2) (2,2 2,2) (2,2 AM F
%% ma B BEY + G B B /L UM UM dac+
1 1,0) (1,0) (1,00 p(1,0) ruY M
- 2 < hkl]Bék)p()hB’L]’l‘wl + thlthkrwlB’(’ > L 6UT da+

iipq
1, 0%y, 024,

14
2 —
+e 3(2

oluM .
hkng(2 0)  p(2.0) / T P SUM dz+

Ppaias iz 02 4,0, O,
P 1

oM X
— 2@ B B / P SUM d+

1jrw1 " hkpgiqzws
1 024,024, 0Ty, Oy,

1 20 o 0! w
2 Am P A
+e S<§ hkithk"l‘wlwg 1jPq192 / 8qu aqu 5‘$w1 8xw2 5Ur dx+

2 . /Am B(l 0) B(S 0) 84[)‘;\/1 6UMd
— € 5< hkij2ijpqr hkru;1w2q2> L 8mq16$q283}w16$w2 r T+

- / SUMbyda.
L

The major simmetry property fulfilled by the viscoelastic tensor G, 7
ie. GA’,;”,CU = G‘;?hk, is employed to Eq. (2.102), leading to

SAINOM sUM) = 2 (p™) / UMsUM da+ (2.103)
L
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ouM
+ es?(p™ (N0 — N(LO)Y) / a—PaU,{”dm
L

TPq1 prq1 g
1

. . ouM
m 1,0 2,2 m 1,0 2,2
+es%( hkijB}(zkpngz(jr ) - hkijB;Lkrngz(jp )>/ D P sUM dx+
L Oq
. PUM .
m __B(lvo) B(270) —pchMd
+ 55< hkij =2 hkpq, z]7w1w2> I axwl 8xw28xq1 r T+
. PUM .
m 1,0 2,0
- €S< hkijB}(Lkm)ulBi(qu)lwg> L 5U7{V[dw+

1 0%y, 0%, 0 g,

UM
o 5282 <pmN(1,O)N(1,O) _ p’m(N(Q,O) + N(Q,O) )>/ 717607Mdm+
L

hpqi ~ "hrqs Pqiq2 Prg2q1 3% 8xq
1 2

R . o2UM
2.3 (1,0) (3,2) (2,0) (2,2) p M
—&s < hmkithkpqlBijrqg - ;Lnk:ithkpqlquijp > . aquaz% 6UT dx+
(1,0) (3,2) (2,0) (2,2) 02UM
2 _3//-m ) ) Am s ) p A M
+e75%( hkithqugBijplh - hlm‘thququ ip ) Liaqua% oUY dz+
L2 (NG 4 NG / UMM da
L
+ 255 (G By BY) /L UM UM dac-+
R UM
_s(Gm pLo) p(10) / P sEMy
5( hkij = hkpqi zyrw1> I 5$w151‘q1 T T+
R UM .
2 m (2,0) (2,0) P M
B B U d
+ € 5< hkij hkpqiqz z]7w1w2>/L 8Iw26$wlaxq18xq2 r T+
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(1, 0) (3,0) 840M r M
—528< hkl]Bhqul / ax b (SU,, d.’IH-
wo

1JPq1q2w2 axwl awa axqz

otUM .
_82S< hszB(l ) (30) /ax P 5U7Mdm—|—
wo

hkpql ijrwiwaq2 0Ty 5xq amq
1 1 2

- / SUMbyda,
L

(2,0)

N0
qul ’ Nipqwz and the

1,0 2,0 3,2
localization tensors Bf(mp;lr Békpc)h e Bf(Lk:p; is taken into account.

where the Q—periodicity of the functions G, s

The first variation §AZ/ must vanish for all admissible §UM and so the
Euler-Lagrangian differential equation associated with the variational
problem (2.103) in the Laplace domain is

~ aUM 82 M "
oM - 2 - M
s?pUM + 5% p(Lipg, — Itqw)aTzl — 5 pligypg, O qlaxqz +s pItpUp =
) X aUJ\I ) 820]%
3 P 331 P
— B (Jips — Jrgip) =+ BJL T
s ( tpqi tlhp) 8£Eq1 +s tqapq1 aqu ax(p
. aQUM . X 630]\1
- SSprUy + $Gtripa: m + 8(Yeripgira — Ytnrzpql)m
UM A
— 58} + by, (2.104)

trepti@ Oy Oxg, 0Ty, 0T,

which is formulated in terms of the transformed macro-displacement
and its gradients up to the fourth order. The components of the con-
stitutive tensors in the Laplace domain related to the homogenized con-
tinuum are defined as

A 1,0 1,0
Gt?”lPQl = < hkUB;Lk;p;le(ﬂrb (2105)
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v Am 1,0 2,0
)/trlp(II re — 6( hkijB}(thr)l Bi(qu)lrl >7 (2106)

ﬁmrzpql = qultTITZ = &( ;znkijBi(ngngz(j‘Qigzr2>a (2.107)

Stesraparas = & Cikis Bl an Bhtirsra (2:108)

- GZ“MJ-BS,ESE Bf(gc}?;lqzm - GZZijBi(;;’;?;)l Bi(flzgn)lmqﬁv

Juom = £{Gkis Bripn, B, (2.109)

jtqlp = jptql = 5< A%ijBi(zlqu)l Bg},}z)% (2.110)
. 2 2

Tty = Juip + Tt = %< ATkijB;(i’,?)Bfff» + %( A%jBﬁ’f)Bgf) =

= (Gl Bry, B, (2.111)

jthzpql = j;thtqz = _52<_ AzlkijBf(ltz?ngi(;tia) + G%ijBf(lQIJz?;lqugI;2)+

— G B Bipa, + Cliii Biiana B, (2112)

where the components C;”’?;l a1 Yir, pqirs and St of the constitutive

trirapqiqe
tensors in the Laplace domain are computed due to the micro-fluctuation

functions N i(,i Z’O), N i(,f 17;? )and N i(s i;?;- Such tensors are in accordance with
the ones determined in Bagigalupo and Gambarotta (2014b).

The transformed inertial tensor components are given as
p= ("), (2.113)

- 1
Lipg, = e<pmN“’°>>;, (2.114)
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2 1
Tigyp = Iptg, = €(p™N, (1’°)>;, (2.115)

ptar

1

B, = fp+ Ly = 2(p™ (N2 + Néf’z)));, (2.116)
Iy, = 5:<pmN£§’2)>, (2.117)
Ly = 8,02<p””‘N1§f 2y, 2.118)
jtq2pq1 = 52<PmNi(L;)fl)Nf(é£) - Pm(Nt(;é?gm + Nt(p2q72211)>%' (2119)

The Euler-Lagrange Eq. (2.104), which has been derived through the
truncation of the average transformed energy-like functional and the
asymptotic development of the transformed micro-dispacement, is char-
acterized by positive definite constitutive tensors. Thus, it is clear that
the existence and the uniqueness of the solution of the dynamic problem
is guaranteed by the validity of the Legendre-Hadamard condition.

2.7.2  Approximation of the energy-like functional through truncation of
the down-scaling relation

An alternative approach is here presented to evaluate the overall consti-
tutive and inertial tensors. To this purpose, the gradient referred to the
down-scaling relation (2.92) is approximated at the first order as
- 3 TM 27 TM
(DUh>I _ U | yao U7 E( (Lo)_ 97Uy
Dxy, Oxy, hpavk 9z, hrar 9, Oz,

+ (2.120)

2,0) 82 (A]]W

P (2,2) 20T M
F Nipasaa (&) 5+ N ()50 ).



Moreover, the transformed micro-displacement at the second order is
formulated as

~TT 3 (1,0) 8UI§V[
uh (513,57 8) = Uh((B, S) + Eth;h (5)87—’_ (2121)

xfh

oM

2 (Ar(2,0)
te (N &) 0x4,074,

hpqiq2

2,2 S
+N2 >(5)52U]£4),

where the perturbation functions are helpful to determine a consistent
approximation of the gradient at the first order. Then, the gradient ap-

proximation (Eq. (2.120)) and the displacement approximation (Eq. (2.121))
are replaced into the transformed energy-like functional (2.90), which is

approximated at the second order as

Al = / (N (2, €))dx = %s2<pm> / UMUM da—+ (2.122)
L L

UM
+682<pmN(1’0)>/ L UM+
L 8'73111

TPq1

3/ Am (1,0) (2,2) aUéw AMd
+e8°(Ghkij Bripg Bijr ) | 52Uy de+
L awa

BILO pCO ovy oPuM

+€S<A;Lnk:i‘ hk jrwiw
J Pq1 Jrwiw2 I a$q1 3$w13$w2

1 UM oM
2.2/ mar(1,0) A7(1,0) _ mar(2,0) P T
+e%s <2p Nipir Norgs — P Nrpq1q2> D2y Ot dz+

R oUM irM

2.3 m (270) (272) r
+e%s7(— hkij Bhkpa: g Bijr >/Lip dx+
+€2s4<pmNT(§’2)>/LUéwadx+
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1, am 2,2) (2,2 AP
+5235§< hkijBl(zkp)Bi(jr ) LU;yUf-V[dCU“‘

UM oM
—L T dz+

LA (1,0) 1(1,0)
+ =5 m ; By B\
2 < hk > L aqu 3zw1

J 7 hkpgr T ijrwy

1. Uy UM MG
2 m (2,0) (2,0) P M
+e€ S<§ hki_thkpqlq2Bijrw1w2> . aqu aqu amwléxwz dx — /L Uh bhdm
In accordance with the procedure proposed in the previous section, the
Euler-Lagrangian equation deriving from the first variation of the trans-
formed energy-like functional (2.122) in the Laplace domain is

N . 2 oUM . 92UM P
s*pUM + 82 p(ILipg, — Itqw)aTI;l — 8" pligopg, m + 54plpr1£w =
. M 277 M
= —Sj(jt — jt )LUP — ngtQ 78 Up
b anp 6xlh pa 6‘77111 aqu
e . 92UM . 5 PUM
- SSprUzy + 5Giripgs W;xn + $(Yeripgirs — Yinrzpql)m
. UM .
— 55?2 P by, 2.123
SOtrirapqiqe 014,04, 0%, 0Ty, + o ( )

where the overall inertial tensors are (2.113), (2.114), (2.116), (2.119) and

the overall constitutive tensors are 2.105), (2.106), (2.109), 2.111) respec-
tively, and

A A 2,0 2,0
S rapnas = EXGIBEY B (2.124)

72 _ 72
J tgapqr T J,

Am 2,0 2,2 2 2,0 22
pqltqz:_52< hkijB( 1 )+thijB( ) B! )>.

hkpqi1q2 " ijp hktqaqr gt
(2.125)
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By applying the inverse Laplace transform £~! to Eq. (2.104) and Eq.
(2.123), the field equation at the macro-scale related to Eq. (2.4) is recast
in the time domain as
M M
. ou, o0?U,

M ~ p ﬁ o-qu _
U + p(Lipg, — Liqip) * N Pligapa; * Dy, Oy, +pl,xU, =

z 5UZJ)\4

. g o*UM
= —(Jtpql - thlp) * : S

__pP _ %« — P
tq2pq1
aml]l 8.’)3,]1 axqz

27TM 37TM
- Jf * U.M + Giripg * % + (Yer pqira — Y/fr rapq ) * L
SO W Oy, 0y ! S 9, Oy, Oy,

M

%
0x4,0% 4, 0%y, 0%y,

_ St

trir2pqiqz

+ by, (2.126)

where the superscript ¢ = 1 denotes that the tensors J}QQ pq and St Pargs
derive from the procedure described in Subsection[2.7.1 where the energy-
like functional is approximated by means of its asymptotic expansion.
The superscript i = 2 points out that the tensors J7,, ., and S7. ... 0
elicit from the approach presented in Subsection[2.7.2]

Moreover, the symbol * stands for the convolution and the time deriva-
tive can be moved from the constitutive tensor to the variable.

The constitutive tensor components in the time domain are

G e = L7HGE ), (2.127)
Yersparrs — Yirerapa) = £ Virsparrs — Yiryrapn): (2.128)
Strvraparas = £ (Strraparas)s (2.129)
Jivar — Jearp = L5 (Fpar — Jearn))s (2.130)
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=L (5T} 00 ) (2.131)

jZ‘I?I)(h
Jb =V (sJ? (2.132)
tp (S tp)7 .

with ¢ = {1, 2}, whereas in the time domain the inertial tensor compo-
nents and the acceleration result to be

Itpar — Lrarp) = £ gy — Lrarp), (2.133)
Tiqapq, = Lil(ftqapql)a (2.134)
If, = L7MI}), (2.135)
UM = £=Y(s2UM). (2.136)

In case of a locally homogeneous material, i.e. if the miscrostructure
disappears, the perturbation functions NN, i(}:l,o), N, i(,fl’g),...., N, i(;l’gg are zero
(1,0)

and the components of the localization tensors vanish except for By, - ,

hkpg
motion of a classical homogeneous continuum is retrieved.

which becomes B{?) = %(%pékql + 5h,q16kp> and so the equation of
The problem of the numerical inverse Laplace transform has been exten-
sively investigated in the literature, and different methods of solution
have been proposed. A review of the methods can be found in Davies
and Martin (1979). Moreover, Donolato (2002) proposed a method for
inverting the Laplace-Carson transform by considering its property of
conserving the physical dimensions of the original function. Therefore,
the transform can be converted into a Mellin deconvolution problem,
which is approximately solved by a differential method. In the work of
Selivanov and Chernoivan (2007), a method for the numerical inversion
of the Laplace transform using Pade approximation is proposed, which
takes into account the viscoelastic characteristics of material.

Form an analytical point of view, see Paley (1934), the inverse Laplace
transform of a function f(s) is defined as

R x+1i00 .
£V (f(s) = F1) 1/ ¢ f(s)ds, (2.137)

2mi T —100
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which is evaluated as

1 x+100 is 2 . .
f(t):%/xim Cfeds= 3 R, (2.138)
poles of  f(s)

where R denotes the residual of f(s)e'*. In case of polar singularities,

f(s) is written as a rational function, namely f(s) = g(s) Such a fun-

action has n poles, which can be divided into h groups. Each of them
consists of 1, (k = 1..h), coincident poles, namely py,...,pp, are poles char-
acterized by the moltiplicities r4,...,r;, greater or equal to 1. Under those
assumptions, f(s) is rewritten as

N P(s) h Tk Ry,
s) = ,
= o Gro o ;; (s +py)rettt
(2.139)
where the residuals Ry, related to f(s) are found as
1 d=t o P(3)
T = (I1—1)! [dsl—1 ((S ) Q(S)ﬂs:pk’l =l k=1
(2.140)
Finally, the inverse Laplace transform f(¢) has the form
h 7k R
£(t) = ML gri—lo=prt, (2.141)
0= 250

2.7.3  Dispersive wave propagation

The Laplace and the Fourier transforms are applied to Eq. with
respect to time ¢ and to the slow variable  to obtain the field equation at
the macro-scale within the frequency and the wave vector domain.

In particular, the two-sided Fourier transform of an arbitrary function
f(z) is defined as Paley (1934):

+oo “+oo

f(z)e*®de = / f(x)et=ode, kcR?

Fi(a) = fo = |
o (2.142)

—00
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where k is a bidimensional vector and so the field equation at the macroscale

in the transformed space is rephrased as

s’ pUM + 32PL<jtpq1 + —ftfnp)ﬁéwkql + Szpjtquql Uéwkql kg, + 54.01:3;:0;5\/[ =

- SSL(Jtpql - th1p)UZ])\/[kq1 - SBthzpqu;éV[klh kg, +

- Ssjpry - SGtrlpqlﬁqul kr, — SL()A/tnpqlrz - thnmpql )Uvziwkh krykq,+

— s8I UM kg, ks bov biry + by, 3= {1,2}. (2.143)

trirapqiq2 7 p
The vector k is written respect to the wave director vector n as k = kn
(k = ||k|| and ||n|| = 1), therefore the Eq. (2.143) becomes

2 M | 2 (7 z A M 2 7 AM 2 4 7 SM

s7pUp" + 8" pt(Lipg, + Ligp)Uy " kng, + 8" pligypg, Uy kg ng, + s prpUp =
3.7 7 A M 3 7 AM 2 574 FrM

= —=5"U(Jipgy — Jtrp)Up kngy — 8" Jigopn Up K"y Mg, — 8 JtupUp +

- SGtTlPQl Uzﬁwk2n(hn7'2 - SL(YtT'lptZlT‘z - }/t7‘17'21)¢h)Uéwkgnﬁn?'znm+

— 55! IX]MkA‘nqln%nﬁnrz + lx)t, i={1,2}. (2.144)

trirepqiqe ~ p

In case of an orthotropic material, the motion equation in the Laplace
domain (2.123) along the direction eg (3 = 1, 2) is rephased as

2 M 2 7 U, 4 7 FrM
s°pU," — s"plapas—F—> + 5 plaaUy = (2.145)
3566
N 92UM L R 92U M . 9tM
371 « 5 M e} 7 [}
=s Jaﬂaﬁiax% — 5" JaaUy +3Ga6aﬂ78x% - Ssaﬁﬁaﬁﬂiax% ;

withi={1,2} and a = 1, 2.
The Fourier transform (2.142) is applied to Eq. (2.145) with respect to
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the slow variable « to retrieve the Christoffel equation depending on the
complex angular frequency s and the wave vector kg,

(s%p + Spragagk% + stploe + sgjéﬁaﬁk% + 5% Joa + séaﬁagk%Jr

+ 558 5505k UM (ks s) =0, i ={1,2}, (2.146)
where U (kg, s) stands for the Fourier transform of the transformed macro-
displacement Uz, s). The Christoffel equation (2.146) defines the wave
propagation in the viscoelastic medium that is embedded in the Laplace-
Fourier space. The dispersion function stemmed from Eq. (2.146) is

s2p + Spraﬂaﬂk?g + s4pf(m + S3j(ix[3a6k%’ + 8% Jpat

+ 5Gapaskd + 585055k =0, i={1,2}. (2.147)

The dispersion function describes the waves that propagate through the
viscoelastic homogenized continuum with complex frequency s and wave
vector kg. It is worth noting that the complex group velocity might con-
tain information about the energy transport as well as the energy dissi-
pated in the medium, (Gerasik and Stastna (2010)), by interpreting the
physical meaning of the imaginary part in the circumstance of a loss rate
and the real part related to the axial wavenumber, see Sharma (2008) and
Wolff et al. (2018).

Novelties and outline This Chapter dealt with the description of
the field equations in the time domain and in the Laplace domain at
the microscale. The recursive differential problems and their solutions
are shown, in particular the higher order recursive differential problems
are detailed and the cell problems and the related perturbation functions
are introduced. The average field equations of infinite order is properly
described. Moreover, by means of a variational approach, the overall
constitutive tensors and the overall inertial tensor related to the homog-
enized continuum are derived in the Laplace domain for the class of peri-
odic viscoelastic materials, after introducing the energy-like functional in
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the Laplace domain. Later, the Euler-Lagrangian differential equation at
the macro-scale is determined and expressed in terms of the transformed
macro-displacement and its gradients up to the fourth order. Finally, the
problem of wave propagation and the related dispersion curves is anal-
ysed.
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Chapter 3

Assessment of the accuracy
of the homogenized model
and application to a
bi-phase layered material

3.1 Homogenization of a bi-phase layered ma-
terial

The model proposed in Chapter [2|is herein applied to a domain made
of two layered materials, which have thickness s; and s3, and subject to
L-periodic body forces b(x,t). The domain displays orthotropic phases
and the orthotropic axis is supposed to be parallel to the direction e;, see
Fig. In case of isotropic phases, for the plane-stress state we have
E = E and 7 = v, whereas for the plane-strain state £ = £ and
v = 1%, where F is the Young’s modulus and v is the Poisson’s ratio.
For sake of simplicity but without loss of generality, the components of
the viscoelastic tensor are

3 i i -+ i i ot
Gl = Googo = Gini (€77 +7),  Gliss = Giisele” ™ +17),
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Figure 13: heterogeneous 2D domain with its layered periodic cell.

Glors = Gisvale ™ +7), i€{1,2}, 7v€R, 3.1)
where G, = %, = 1E~~2 and Gisy, = (1+ 5 are the equilib-

rium elastic modulus, Fabrizio and Morro (1992), with Go%, = Ghss,. It
can be noticed that the viscoelastic tensor can be deemed as a term of the
Prony series (Ferry (1989)) and so the proposed homogenization tech-
nique can be applied to any kind of sufficiently regular kernel, since the
overall constitutive and inertial tensor components have a general struc-
ture. In addition, 7, stands for the relaxation time and the superscript
i represents either phase 1 or the phase 2. The Laplace transform (2.8)
applied to the components of the viscoelastic tensor leads to

G E omsQ4m 1 o B ms(l49)+1
LT 222 52 (s A1) 0 M2 102 s(sT 1)
. E 7501 1
i st tl g s eRr 3.2)

RI2T 904 0) s(st+1)

Moreover, there is point in observing that in case of the transformed con-
stitutive tensor G™ characterizing a Maxwell viscosity model, the Egs.

76



(3.2) depend on the mechanical properties, the relaxation time 7, as well
as the complex parameter s. Finally the relation C™ (%, s) = sG™ (%, s)
provides the viscoelastic tensor components as

E 7s(1479)+1 Gi Ev 15(1+7)+1
—2  (st,+1) 0 M52 (s1,.41)

i _ i _
C11111 - C’2222 - 1

9

i E  1s(1+7)+1
12790 +0)  (s7+1)

. ie{1,2}, veR (3.3)

The transformed components of the viscoelastic tensor (3.3) are employed
to determine the perturbation functions of first, second and third order
(see the following paragraphs for explicit details).

To simplify the matter, the following dimensionless quantities are intro-
duced

E - i | s
Tp:&v TE:"ila ng:& 727 77:713 1:172
P2 FEy S2. | p2 S2

where r, stands for the ratio between the densities, r is the ratio be-
tween the Young’s moduli related to phase 1 and phase 2, 7/ is the relax-
ation time associated to phase 1 and phase 2, respectively, and 7 is the
ratio between the thicknesses of the layers s; and ss.

Perturbation functions of first order NV }(41);10)

The micro-fluctuation functions N, ,(l;’qo)i are analytically obtained by solv-
ing the first cell problems (2.45) and considering Fig. 13| The superscript
i = {1, 2} stands for the phase 1 and the phase 2 and they are formulated

as
(1 0)1 (011122 - 6112122) 52
Nojy ™ == A9 A (34)
C3299 M + Caa99
n (011122 - CA'12122) &2
1,0
N2(11 2 =

C32921 + Cag9
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(Chaoo — Coma) &2
NG = =2 - (35)
C3a90 M+ C3g99

n (621222 - CA'22222) )
C3901 + Cgo9

170 2
N2(22 =

M e
NGO _ A0 <01212 ClQlQ) &2 56
112 121 v A , '

Cia12m + Ciara

=

n (011212 - CA'12212) &

_ (1,002 _
= Nppy * = o )
Cia12m + Cia1o

(1,0
Niia
Such functions depend on the fast variable &, since the microstructure

enjoys the simmetry property. In the following it is assumed that the
coordinate &; is centered in both layers.

Perturbation functions of second order N, ,(;q(?

The perturbation functions N, (200 i — 41,2}, deriving from the cell

hpgr 7/
problem (2.47) are:

N1(§7101)1 = AN+ A, (3.7)
*7\71(%101)2 = Bf1i11&5 + Bl
NG = 42,0,63 + Ay, (3.8)
N3? = B3 &3 + B,

2,0
]\72(222)1 = A§222§§ + A3222, (3.9)
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2,0
]\72(222)2 = B3y90&5 + Byo,
2,0
]\71(122)1 = AT19063 + Al (3.10)

(2,0)2 _ p2 2 0
Nitas ™ = Bi122&5 + Biiaa,

2 2 2 2
where the constants A7,,,, A1y, BYi11, BYi11, A3911, A%11, B3ar1, Bdai1,
2 0 2 0 2 0 2 0 :
A3999, Ad995, Biago, Boogs, Af122, Al122, Biiao and Byi,, are determined
as follows
2,0 2,1
A2 — _1 Allll + 77A1111 (3 11)
Hir= 9 A9 A1 A1 ’
(n+1) (szzz n+ C’2222) Cla1z

0,3 0,2 0,1 0,0
0 17 <A1111 n”®+ A +A111177+A1111> 312
111 = 57 D (e i 2 al ) (3.12)
(n+1) 922211 T C2292 ) Cia12 Cia12

2,1 2,2
1 nBiin + 7’ Biin
2 (n+1) (022222 =+ 621222> Charz

(3.13)

0,3 0,2 0,1 0,0
0 17 (_2A1111 n*+ B n® + Bl n— %Auu)
Bnu = ﬂ 4 A A o o ) (3-14)
(n+1) (02222 n+ 02222> Cia12 Carz

1 Clias Aoz
A3y = 3 7 1122 - — (3.15)
(01212 1+ 01212) Cl909
A0 A12127 (611122 12C3hp + 3 Clygo 0 Coany + 2 Cygg 621222)
2211 — — 3/~ - N N >
24(n+1) <012212 n+ C'11212) C3299 Canan
(3.16)
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C?2,,,Ch
Bgzu = _w/@mu (3-17)
C222201122

B0 (2 Cli921*Ca90 + 31 CFiap Clagg + CTing 021222) Aq2127
2211 — 3/ A N - - )
24(n+1) (05212 n+ C’11212> C3292 Ca909

(3.18)

Aoooo
A2 = — . 3.19
2227 g C3290 1 +2Clgo G19)

A +2
Afpgy = — 22221 (1 +2) (3.20)

A~ A 27
24 <C22222 n+ 621222) (n+1)

By = —0A390s, (3.21)
2n+1

38222 = _mAnga (3-22)
A

A gy = 22 (3.23)

20 1n+2C15,

Aq212m (n+2)

A(1)122 == 9 o 5 (3-24)
24 (01212 n+ C'1212) (n+1)

B%122 = —7714%1227 (3.25)
2n+1

By = —mA?uz’ (3.26)

with Aja1g = (Clarg — Clao ) and Agage = (Cgs — Coaas ) -

The constants that characterize the perturbation functions of the second

80



order Eq. (3.11), Eq. (3.12), Eq. (3.13), Eq. (3.14), which are A%’loll, A%lln,

0,3 0,2 40,1 0,0 2,1 2,2 0,2 0,1
AT Al AT s Al Biins Biiin Bajss and Bajy,, assume the form

AT, = (012122 + CA’11212) Cligs — (Chigs)*+

— Chi95 Clora — ChagaArnnn,

A?’lon = 0111222 + (Cllzu - CA'12122) é11122+

— Cf195 Clara — Clago A1,

AN = Chopg (A1122C’11212 — Cligy CA'12122JF) +

~ 2 ~
— (Chig2)” + C3a99 A1111,

02 - 2 oAl o ro )2
Al = 48119901915 — Cligy —2C 155 Chigp + 3 (Chigg) +

+ (3292 + 3C3200) A1111Clop,

Ay =5 <A1122C’11212 -3 0111222 +3C 120 012122) +
+ (3 Caazs A1111) Charat

+2Cas ((05122)2 — Cliz2 Cigo + Chooo A1111) ;
AN, =205, (A1122012212) +

1 2 A1 A2 A1
— Cliag” + Cliao Cliag + Cogop At111,
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



~ 2 R ~ ~ ~
B%fu = (CF122)” + A1111CT 190 + Cha1a Cligg + Cago A111, (3.33)
2,1 2 A A A
Biii = —Cligy + (012122 - C’12212) Cligo+ (3.34)
C?,.,,C? Clooy A
+ Ci122 Ci212 + Caa2p At111,
0,2 A A A - 2\ ~
By = (5A1122012212 +3C1199 Cligs — 3(Chiao) ) Claiat
- (3 C322 Allllé%mz) +
2 N N ~ a
=2 (=Cliz” + Chizy Chizy + Gy Arint ) Chna, (3:35)

A1
2CT 129 A2 2

2 A A 1
B?ilu =3(Cliza — ((Cia2) +2CTa15) 3 (Ciize) )+

_ 407515012
3

C2 R .
—3A1111 ( 23222 + 6’21222)6'11212. (3.36)
where the constants A1111 and Aq122 assume the form Aj111 = (6’11111 — 012111)

and Ay = (é%122 - CA’%122>-

Perturbation functions N ,(”2?’2)

The perturbation functions N, ,gi’g)", i = {1,2}, obtained by performing
the cell problem (2.51) are:

NP = 43,68 + AY, (3.37)

Nl(%z)z = B%lfg + B?la
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NG = 42,62 + A, (3.38)

N2(§72)2 = B3,& + By,

where the constants A?,, AY,, B3, BY,, A3,, AS,, B3, and BS, assume the
form

A=t pe) (3.39)
2 (n+1)Clyyy’
o 1 (pr—p2) 7 (012212 12 +3Ch1am +2 CA'11212>
A= = e , (3.40)
o1 (N +1)" Claro
1
B%I __ (p1—p2)n (3.41)
2 (n+1)Chy,
B 1 (p1—p2) 7 (2(712212 1 +3Clhn+ 6'11212> (3.42)
11 = 54 ’ :
24 Chas (n+1)* Chas
1 —
A3, =3 An—p2) (3.43)
(1 +1) Capo9
o 1 (p1—p2)m (622222 12 +3C3h00m +2 CA’21222)
Ap=—r - e , (3.44)
5202 (M +1)" U999
B2, = L (pi=p2)n (3.45)
- 2 (n+1)Cyyy
0 1 (p1=p2)m (20222277 +3Cypan + 02222>
By = (3.46)

24 02222 (n+ 1) C'2222

83



(b)

0.10 0.10

0.06 04 0.05
Re(s)  0.02 : Tm(s) °

0.08

Figure 14: (a) dimensionless real part 9‘{6(]\72(;‘2) )E2/ps vs. the real part of s,
Re(s), and the coordinate &2. (b) Dimensionless real part 9‘{6(]\72(3 ’2))E‘2 /p2

vs. the imaginary part of s, Jm(s), and &2, obtained for r, = rg = 7. = 10,
i=1,2in =i =02n=1andy=1.

Figure 15: (a) dimensionless imaginary part Im(N2?)Es/ps vs. the real
part Re(s) and &:. (b) Dimensionless imaginary part Jm(Ng’”)Eg /p2 Vs.
Jm(s) and &, obtained forr, =rg =7 =10,1 = 1,2, 01 =, =0.2,n =1
and vy = 1.
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In Figs. and (I5), the Poisson ratios are assumed to be equal for
both phases 71 = 3 = 0.2, the dimensionless relaxation time is Té =10,
i = 1,2. the ratio between the Young’s moduli is rg = 10, the ratio
between the densities is 7, = 10, the dimensionless relaxation time is
i =10, i = 1,2, the ratio between the thicknesses is 7 = 1 and the pa-
rameter v = 1. The perturbation function N2(§ 2 is analytically computed
with respect to the phase 1 and the phase 2 by solving the cell problem
[2.51) supplied with the interface conditions in Sec. and the

(2.2) .

structure of N,5* is reported in terms of the geometric and mechanical

properties of the periodic domain in Eq. (3.38). Such function depends
on the fast variable £;, which is perpendicular to the transversal direc-
tion e, as well as on the complex parameter s. The perturbation func-

Re(N§3 ) By

= and

(2.2) &
tion is non-dimensionalized as ”TZ and its real part

f?m(N22 )E2

its imaginary part are taken into account since s is a complex

2.2)
number. Fig. (a) shows the real part of % along the periodic cell
vs. the real part of s, Re(s), and the vertical coordinate &,. Fig. [14}(b) de-

Re(N{5?) Eo
2

picts the dependence of with respect to the imaginary part

of s, Im(s), and &. The imaginary part of Y222 5 shown in Fig.[1 I(a)
vs. Re(s) and in Fig. [I5}(b) vs. Im(s), by Varymg the vertical coordinate

&2

)

Perturbation functions NN, ,EWS

The non-vanishing micro-fluctuation functlons N, ,S‘; 6225, , = {1,2}, ob-

tained by performing the cell problem (2.49), with w = 1, are:

N2(111)1 = 4311118 + 4311116, (347)

3,0)2
N2(111)1 = B3111& + By e,

3,0
]\71(122)21 = A3 199065 + Al129262, (3.48)

85



]\71(?7202)22 = Bi122263 + Bliagoba,
Nl(giol)ll = Ay11185 + Alain e, (3.49)
N2 = B + Bl
N33Os = A35000€3 + Abgynoo, (3.50)

(3,002 _ p3 3 1
Nioroo = B3agaas + Bagooaas

3 1 3 1 3 1 3
where the constants 45,111, 431111, Bii111, Bai111, Al1222, At1220, Bii222,

1 3 1 3 1 3 1 3 1
Bii292, Ata111, Al2111, Bi2111, Biz111, Ad2029, Az9099, Biaggs and Bigggs
read

3,1 3,0
Ao111m + A

A§1111 = o Al 1 P (3.51)
18 (02222 n+ C’2222) (n+1) Clay9 Canen
1,4 1,3 1,2 , ,
Al = (A un* + Aot n® + Ay’ + A§1111177 + A%lolll)
2 )
N . A -~ A
72 (022222 n+ 021222) (n+1) C11212 C21222 012212
(3.52)
3,2 3,1
B3, = n(Byi111M + Baiin) (3.53)
18 <022222 n+ 021222> (1 +1) Cfa15 Cgop
1,4 1,3 1,2 , ,
Bl = n(Byiiun* + Baiinm® + Bt + 3211111177 + 3211%11)
2 )
A A 1A ~ A
72 <C22222 n+ 021222) (n+1) 012212 022222 C11212
(3.54)
5 Aq212 (C%mz n + (6’11212 +2 CAY12212) 772)
Af190 = + (3.55)

A2 A1 2 2
18 (01212 n+ 01212) (n+1)
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A1212( (2 Clyy + CA’12212) n+ CA'11212)

+ 2
18 (Ol2212 n+ 011212) (n+ 1)2

b

Aq212 (*% 012212 773 + (% 011212 - %012212) 772)

A2 A1 2 2
18 (01212 1+ C1212> (n+1)

1 —
A11222 - +

(—% Clors + CA'12212) nA1212

18 <01212 1+ 01212> (n+ 1)2

+

)

B3 _ nAi212

1222 g Ciyom+18 C’112127

1 nAi212 ((4 CA'11212 -6 CA'12212) 772)
B0 =

2 ( A A\
72 (n+1) (0121277+C1212)

A1212( (_6 Cly+3 CA'12212> U CA'11212)

+ - —
72 (n+1) (0%212 n+ C’11212>
A3 (A 1211177 + A1211177 + A121117I + A12111)
12111 = 3 3
18 ( 12121+ 01212> 0%222 0%212 02222 (n+1)
1,3
Al (A n? +A1211177 +A1211177 +A12111)
12111 = 3 i 3
72 (01212 n+ 01212> Cazz Cloro Clane (n+1)
A~ 2 A~ ~
5 N Ai212 <C12111 C3a95 — CPiay” — CHiag 012212>
Byyin = — »

18 <01212 n+ ClQlZ) C(2222 01212

87

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)



1,3 1,2 11 1,0
n(Bis111m° + Bisin® + Bisiun' + Bisi)
2
- - 3 ~ A A
72 <012212 n+ 011212) (n+1) C’22222 C’12212 021222

Biyyy = , (3.62)

where the constant A5, has the form Ajg1p = (Clo1g — 10 ) -

The constants that appear in the perturbation functions Eq. (3.51)-Eq.
depend on the geometric and mechanical properties of the phases
1 and 2 and for sake of simplcity are not reported here.

Agzzo (022222 n + (021222 +2 CA'22222) 772)

A2 A1 2 2
18 (02222 n+ C’2222> (n+1)

Adppz0 = — + (3.63)

Agooo (2 Clons + 022222) 1+ Clay

A2 A1 2 2
18 <O2222 n+ 02222) (n+1)

)

Ag299 (—i C3ao 1 + (% C3a29 — 3022222> 772)

A3gon = — " - 3 " + (3.64)
18 <022222 1+ C'21222> (n+1)
(—% Clyoo + CA'22222) nA2222
_ - - . ,
18 (022222 1+ 021222> (n+ 1)2
s Aoooo (773622222 + (021222 +2 CA'22222) 772) n
B399 = + (3.65)

(n+1)* (C2 )
n+ 9222 M + Ca299

( (2 Clyoo + CA'22222) n+ CA*21222)A222277

+ — —
(n+1) <022222 n+ 021222)

b
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Aggzo ((021222 - % 022222> 772 - iczlzm) n

1 _
B22222 -

_|_

(_% 021222 + %022222) NA2229

18(n+ 1)2 (622222 n+ 021222>

2 (A2 A1 2
18(n+1) (02222 n+ 02222)

(3.66)

where the constants Asgg2 assumes the form Asggg = (6’21222 — 6'22222)

Perturbation functions V }(Lif)

The perturbation functions N }(li’;)i, i = {1,2}, obtained by performing

the cell problem (2.53) are:

Nz(f’lz)l = A31,65 + A&,
]\72(?12)2 = B311& + Boyi o,
Nl(g’lz)l = A3,,65 + Al &,
Nl(gf)z = Bi5& + Bisi&o,
Nl(?’zz)l = A31,83 + Al o6,
Nl(?,22)2 = B?lzgg + 311125%
N2(3,22)1 = A35083 + Adooo,

3,2
N2(22 2 = Bi9o&5 + Bagola,
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(3.68)

(3.69)
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3 1 3 1 3 1 3 1 3

where the constants A5, A311, B311, Bai1, Ate1, A1, Bia1, Biai, Afia,
1 3 1 1 3 1 3 1

Alv2, Bi1a, Bi1a, Biag, Adga, Azgo, Biog and By, are

3
A211

1
A211

3
B211

3
A121

1
A121

1

3,1 3,0
Agpn + Ajiy

6 (n+1) (05222 n+ C21222> Cla12 Cagan

1,4 4 1,3 3 1,2 2

1,1 1,0
1 on(Asin® + Ao’ + Ao + Asiin + Ashy)

24

3,2 3,1
n(Byi1n + Byiy)

| =

1,4 1,3 1,2 1,1 1,0
_ 1 n(Agn* + A + Ain® + Agiin + Aghy

(n+1) (022222 n+ 021222) CP212 Cano

2
4/ - A N A A
(n+1) <O22222 n+ 021222> Cla12 Clana Chorn

)

24

(n+ 1)4 (CA’22222 n+ CA'21222)

3,1 3,0
UA121 + A121

6 (n+1) (0%212 n+ CA*11212) Clarz

2’

1,4 1,3 1,2 1,1 1,0
(At + Aisn® + Aisn® + Apn + Ayy)

24

)
A 2

2
W/~
(n+1) <012212 n+ 011212) CP212 Clara

3,2 3,1
n(Bisn + Bi)

2 ~ ~ b
6 (74 1) Chyo (012212 1+ 011212)

1,4 1,3 1,2 1,1 1,0
_ n(Bisin' + Bisin® + Biyn® + By n + Biy)

2
4 (A - 2 4
24 (n+1) <012212 1+ 011212> CPa12 Clara

(— (1 +3) p1+2p2) Cloyy

J

Cty1am + 011212> (n+1)Clypy

90

)

2 2 1
C’1212 C(2222 C11212

)

)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)



1,4 1,3 1,2 11 1,0
n(Apon® + Ayon® + Ajion® + Ajon + Ajly)

Afyy = ” Sa— S (3.80)
24 (01212 n+ C'1212) (n+1) Cia12 Clarz
o A él 02 ~
B3 (((Pl - %) Ciarz + 12§2p2> n— 2322 4+ Clyy (p1— L;)) Ui
112 — N - N )
3 (012212 1+ 011212> (n+1)Ciayy
(3.81)
4 3 2 1 0
Bl — 77(3%12774 + 3%12773 + 3%12772 + thﬂ + B%m) (3.82)
112 = o o %A ) .
24 (n+1) (01212 n+ C1212) Cia12 Cla1z
A3 — 1 (=(m+3)p1+2p2) Clags +2C3505m p2 (3.83)
200 = " ~ " .
6 (03222 n+ C’21222> (1 +1) Cg99
4 3, , , ,0
AL — 77(A§22774 + Aé232773 + Aézzzﬂz + A§21277 + Aéz(z) (3.84)
22 4 (A2 A1 2 A 1 A2 ’ ‘
24 (n+1) <02222 n+ 02222) Cl992 Cd09
3 (((% + 1) Coozy + CA'21222) 77) n
3222 - o M o + (385)
3 (02222 -+ szz) (n+1) C3a90
(%2 C3on + (1 —52) 6'522277)
3 (6122222 n+ 021222) (n+1) CA’22222
Blint + BL3S + BL2n? + BLLn + BLY
Bly, — 1n(Bajan 222 222 222 222). (3.86)

2
1/ A A N N
24 (n+1) (022222 n+ C'21222) Cla92 C3pas

The constants that appear in the perturbation functions Eq. (3.71)-Eq.(3.86)
are not reported here, for sake of simplicity.
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In Figs. and (17), the Poisson ratios are assumed to be equal for
both phases 71 = 3 = 0.2, the dimensionless relaxation time is Tgi =10,
i = 1,2. the ratio between the Young’s moduli is rg = 10, the ratio
between the densities is r, = 10, the dimensionless relaxation time is
TZ = 10, ¢ = 1,2, the ratio between the thicknesses is n = 1 and the pa-
rameter v = 1. The cell problem equipped with the interface condi-
tions provides the perturbation function N2(:23,22) and its formulation
is explicitely expressed in Eq. (3.70), where there is point in noticing
they take into account the effect of the microstructural heterogeneities of
the domain. The real part and the imaginary part of the dimensionless

(3.2) g (3.2))
. . NSPE . . Re(NS5y ) E
perturbation function —222—2 are considered, which are ReNaz )Bo

2
(3,2)\ & (3,2) 7
M(N;%)Ez. Fig. (a) and Fig. (b) show how the real part of Nozs B

P2
depends on the real and the imaginary parts of s, by varying the vertical

coordinate &. Fig. [I7}(a) and Fig. [I7}(b) show that the imaginary part

and

0.10 0.08

0.06 0.04
Re(s) ~— 0.02

Figure 16: (a) dimensionless real part of the perturbation function NQ(g’QZ),
Re(NSSDVEs/pa, vs. the real part of s, Re(s), and the coordinate &>. (b)
Dimensionless real part ERe(NQ(g’QZ) )E2/p2 vs. the imaginary part of s, Im(s),
and &2, obtained for r, = 10, rg = 10, 7. = 10, on = 2 = 0.2, ¢ = 10,
i=1,2n=1andy=1.
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0.001-

-0.001
- 0.0011 -0.002
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- 0.002 ~0.0047 0.4

. 0.10
0, 0.05 7
ITm(s) -0.05

0.08' T
Re(s) " om

Figure 17: (a) dimensionless imaginary part Im(NSP)Es /s vs. the real
part Re(s) and &:. (b) Dimensionless imaginary part Jm(NQ(S’;))EQ /p2 Vs.
Jm(s) and &, obtained forr, =rg =7 =10,i = 1,2, 01 =2 =0.2,n =1
and vy = 1.

(3.2)

of ﬁzzgzﬁ depends on PRe(s) and Im(s), by changing the vertical coor-

dinate &5.

In Fig. [T4}[15)and Fig. .! 17 it is emphasized that the dimensionless per-
Re(N. )E2 Im(N$Z2NE,y and Re(ND ) By jm(N2(§22>)E2

P2 p2 ’
are Q-periodic, they have Vamshmg mean values over the unit cell Q and

turbation functions

smooth along the boundaries of Q, as expected.

Overall inertial terms and overall consitutive tensors

The perturbation functions of first, second and third order are helpful
to determine the overall transformed inertial tensors, which appear in
the dispersion relation (2.146). They are specialized according to the ge-
ometry of the layered domain in Fig. By taking into account the
approach presented in Subsection [2.7.1} the transformed inertial tensor
componenets appearing in Eq. assume the form:

. 1
Toior = (" (NGONGY) - 2pmN§§’ﬁ)>;v (3.87)
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- 1,0) (1,0 2,0), 1
I900 = 52<Pm(N2(22 )N2(22 )) - QPWN2(222)>;7

. (2,2 2,2)\\ 1
Lo = 2(p™ (N> + N3 ))>;a
- m o ~r(1,0) A+(1,0 moar(2,0) 1
11212:52@ (N1(12)N1(12))—2P N1(122)>;v

2 - 1,0) A-(1,0 2,00, 1
L = 52<P l<N2(11 )Nz(n )) - 2PmN1(111)>;v

R 1
I = 52<Pm(N1(%72) + Nl(%z)»;

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

Referred to the Eq. (2.146), the constitutive tensor components in the

Laplace space are

Jin = (GBS BEY),

Jay = e%(Gaana BSyy) BS3Y),

Guinn = (G B B + Gaona B BSY) +
+2G12 By B,

Goi21 = Gi212 = <G2222-B§§’201)B£;201)>7

Gaaz = <G222QB§;202)B$7202)>»

Jhior = —€2(2G 2B, BGY — 2G1012 Bl Bis) +
— 2G 12102 B45) By — 2G1o12BYy3) BS3Y),
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(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)



A A 1,0) (3,2 A 2,0 2,2
J11212 = *52<*2G1212B§212)B§212) + 2G1212B§212)2B§21 )>a (3.99)
5 A 1,0) (3,2 A 2,0 2,2
J390 = _52<_2G2222B§222)B§222) + 2G2222B§222)2B§22 )>7
&1 2 A (1,0) (3,0) A (2,0) (2,0)
St = € (=2Gu1 Bi111 Bt + G212 Bioiii Bioiin + (3.100)
A 2,0 2,0 A 2,0 2,0 A 1,0) (3,0
+ G1212B£111)13§111)1 + +2G121QB§211)1B§111)1 - 2G22223§211)B£211)11+
a 1,0 3,0 A 1,0 3,0
- 2G112ZB§211)B£111)11 - 2G22113§111)B§211)11>7
A A 2,0 2,0 A 2,0 2,0
Shi1o11 = 52<G111135121)1B§121)1 + 2671112235121)1B§221)1+ (3.101)
A 2,0 2,0 A 1,0) (3,0 A 1,0) (3,0
+ G2222B§221)1B§221)1 - 2G1212B§212)B£211)1 - 2G1212B§221)]3£221)11+
A 1,0) (3,0 A 1,0) (3,0 A 1,0) (3,0
- 2G1212B§121)B£221)11 - 2G12123£221)B§121)11 - 2G12123§121)B£121)11>-
The inertial and constitutive tensor components described in Subsection
coincide with those ones from (3.87) to (3.97), whereas the inertial

and constitutive tensor components from (3.98) to (3.101) are slightly dif-

ferent because the localization tensors B,(li’ﬁ;l 1205 and B}(i’i;l disappear

in the formulation and so they assume the form:

I3y = —€2(2C121: B B + 261212 BS i B, (3.102)
Jhio1 = —e2(2G 112 B BSY) + 2Ga00 BGY B, (3.103)
Tz = =€ (2G1212 B3 h Bis), (3.104)
J3a00 = _52<2G2222B§§§02)23§§§2)>7 (3.105)
S = 4G22 B BT + Grana B, BO) + (3.106)
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A 2,0) (2,0
+é° <2G1212B§211)1B§111)1>a

5 A 2,0) (2,0 A 2,0) (2,0
S3i1011 = 52<G111135121)13§121)1 + 2G1122B§121)13§221)1>+ (3.107)

A 2,0) (2,0
+e° <G22223é221)1 B§221)1 ).

The transformed inertial tensor components Ji1, j12111 and I, referred
to the wave propagation along the transversal direction e, are taken into
account. They are affected by the complex angular frequency s and their

7 By g2 Ea ..
Ji1 s Jii11 s and 11 o
e2sapy 7 e2s2p2 e2py *
The second order transformed inertial tensor component is computed by

means of Eq. (3.93) and, due to the presence of the complex frequency

dimensionless components are written as

iy B2 Re(Jir)y/ 22
1y 5y . o e(11)y/ 23 - .
s, is decomposed into its real part —5——— and its imagi-

€252p2 £252p2

0.9
0897

1.0
().9().8
0.7 N
Re(s) 70403 Lgy

0.6

Figure 18: (a) dimensionless real part component Re(.J11)4/ % /e%s2p2 Vs.
the real part of s, Re(s), and the imaginary part of s, Jm(s). (b) Dimension-
less imaginary part component Jm (.J3; )4/ % /€%s2p2 vs. the real part of s,

Re(s), and the imaginary part of s, Jm(s), obtained for r, = rg = 7! = 10,
1=1,2,01=02=02,n=1landy=1.
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() B2 Re(Ji1)y| 52
nary part Ve Fig. (a) shows the behaviour of —5—\">

2522 2522
by varying the real part and the imaginary part of s. Specifically, it can
5,5, 1S symmetric with respect to the
Me(s)-axis and, by decreasing the values of the real part of s, the up-

Re(Ju)y/ 22

€252p2

be observed that the real part of

ward concavity of increases. In Fig. (b), the imaginary

3m(j11) @
e 2 is plotted with respect to the real part of s, Re(s), and

the imaginary part of s, Jm(s). The function assumes either positive or

part

negative values and it is symmetric with respect to zero.
111 By
€2p2

puted by means of Eq. (2.117) and its real part %ﬂ?éz and its imag-
inary part %ﬁ;& are considered. In Figs. (a) and (b), the de-

is com-

The transformed second order inertial tensor component

—g}i: 0.041
-0.12 0.03
-0.133 0.02]
'g‘}‘;_ 0.01
~0.15 o]
:8'12_- -0.01]
~0.187 ~0.027
ey -0.031
_0‘20_' 0.4 -0.04- 0.4
0.20
0.15 oTo -0.2 IM(s) ITm(s)
: -0.4
Re(s) 0.05 Re(s) 0.05

Figure 19: (a) dimensionless real part component Re(I11)Es/e%s2 vs. the
real part of s, Re(s), and the imaginary part of s, Jm(s). (b) Dimensionless
component Im(I11)Ez/e?s2 vs. the real part of s, Re(s), and the imaginary
part of s, Jm(s), obtained for r, = rg = Té =10,i=1,2,0n = 2 = 0.2,
n=1land~y=1.
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I1)E
and jm(z“) 2

pendency of %e(hpl)& on the real part and the imaginary

part of s is shown. Fig. |1 (a) ensures that %;)EQ assumes only neg-
ative values and it is symmetric with respect to fRe(s)-axis. Moreover,
by decreasing the real part of s, the downward concavity is more em-
phasized. Fig. (b) depicts the symmetry of M with respect to

zero. Finally, in Figs. R0} (a) and R0}(b), the real part of the dimensionless

. . Re(Ji111) E2
fourth order inertial tensor component ————"\—

E
jm(']nu)\/ p22

e2s2p2
complex frequency s. It is worth noticing that the inertial tensor compo-

S and its imaginary

part are plotted vs. the real and the imaginary parts of the
nent j11111 stemming from the approach 1 is vanishing.

Fig. .-(a ) shows that the magnitudes of the constitutive tensor com-
ponents S};1,,, and S2,,,;, determined for the compressional waves

Figure 20: (a) dimensionless real part component %e(jfln)g/% /€522
vs. the real part of s, Re(s), and the imaginary part of s, IJm(s). (a) Di-

mensionless imaginary part component Jm(J?11)y/ % /%522 vs. the real

part of s, Re(s), and the imaginary part of s, 3m(s). Both are retrieved for
ro=rg=7=10,i=1,2,01 =, =02,np=1land vy = 1.
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along the direction e, are compared in terms of the magnitude of s =
\/Re(s)? + Im(s)? and the non-dimensional Young’s modulus rg. As
15 < rg < 1, the magnitude |5}, 1111| decreases more steadily than

|52, 1111 | and both are equal to zero when the material is homogeneous,
i.e. when rg = 1. With increasing the non-dimensional Young’s modu-
lus 7, a significant rise in [S7;,,,| is observed as compared to [S1;;14]-
Finally, as |s| goes up, |S1,,,,;| decreases more slowly than |S53,,,,,]. In
Fig. (b), the magnitudes of S 51, and 52,5, are plotted with re-
spect to the magnitude of the complex angular frequency |s| and the
non-dimensional Young’s modulus 7. They are computed for the shear
waves travelling along the layering direction e;. It can be observed that
if & < rp < 1, the magnitudes of S3;,5,; and S3,,5;; decrease down
to zero when the material is homogeneous. A rise in rg (with rg > 1)
makes |53, 111 | and |S3,,5,, | increasing rapidly. Moreover, growth in the

0.7 0.12
0.6 0.10
0.5] 0.08
0.4 b
03] 0.067
0.2 0.04]

14
1219
|S| 6 4 2

12
Is1 7108 6 g2 )
Figure 21: (a) magnitudes of the constitutive tensor S1,11,; and [S711111]
(red) are compared with |.§f11111\ (violet) by varying the dimensionless
Young’s modulus rz and the magnitude of s. (b) Magnitudes |.§%11211|
(gold) and |5’§11211| (green) are compared with respect to rz and |s|. (a)
and (b) are obtained for r, = 10, 7 =10, = 1,2, 01 =02 = 0.2, =1 and
the argument of s is zero and v = 1.
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magnitude of s leads | 53,51, | and |53, ,51, | to decrease. The discrepancy
between the magnitude of S},,,,, (red) and S?,,,,, (violet) (Fig. 2T)-(a))
and between the magnitude of S53,,;, (gold) and S%,,5;, (green) (Fig.
(21)-(b)) can be observed as r increases, whereas such a discrepancy de-
creases as the magnitude of s increases. Fig. 22}(a) depicts the behaviour
of the magnitudes of the transformed viscoelastic components G212 re-
lated to the shear wave travelling along e;. It is observed that the trend
of |G1212| steadely increases by a rise in the Young’s modulus and by
varying the magnitude of the complex frequency s. Fig. 22}(b) shows
the magnitude of the transformed viscoelastic components G111, con-
cerning with the compressional wave along e;. The magnitude |C¥1111|
significantly grows up in the interval {5 < rg < 4, by varying |s|, and
then its trend becomes a plateau.

1.0

0.8

0.6
0.47

0.2

20g
10 4219
Is] 8 6 4

Figure 22: (a) magnitudes of the constitutive component G212 and |G1212|
are depicted by varying the dimensionless Young’s modulus 7 and the
magnitude of s. (b) Magnitudes of the component G111 and |Gi111] are
represented by changing the dimensionless Young’s modulus rz and the
magnitude of s. Both are obtained for r, = 8 =10,i=1,2,in =2 = 0.2,
n = 1, the argument of s is zero and v = 1.

100



Let us consider a 2-D heterogeneous layered domain Fig. |13|subject to
L-periodic harmonic body forces b = Taebﬁxﬁ ,with £k = 1,2, .., ap-
plied in the direction of the orthogonal symmetry axis z, where «, 5 =
1,2, T, € Rand * = —1. A horizontal (or vertical) sample of length
L = L, (= L) is taken into account since the body forces and the hetero-
geneous domain are periodic. The solution of the heterogeneous model
is provided by a numerical procedure accounting for the actual hetero-
geneous composition of the layered composite and it is compared with
the solution stemming from the homogenized model. For sake of sim-
plicity, only the static case is considered and the field equation (2.145) is
rephrased as

. orUM pluM
SGaﬂaﬂW - SSQM&MW}‘; = —ba, (3.108)

with ¢ = {1,2} and the indices o and § are not summed. The shear
problem takes place for oo # /5 whereas the compressional problem for
o = f. The transformed macro-displacement is determined from Eq.

(3.108)) as

- Lg\2 ba
UM (25) = (2%) = : (3.109)
A 27k aBBaBp
SGaﬁaﬁ [1 + (Lff ) Gapas }
with ¢ = 1,2 and k& = 1,2,.. The dimensionless transformed macro-

displacement is written as

x TM B
w_ Yo b1 (3.110)

(e L 2
Ta(32)

where E; is the Young’s modulus related to the phase 1. In Figs. (23)-
([5), the material is in plane stress condition, the sample has a length
L/e = 11, with amplitude T, = 1 N/ mm?, the Poisson ratios are equal
for both phases, 71 = 7, = 0.2, the ratio between the thicknessesisn = 1,
the parameter v is ¥ = 1, whereas the relaxation time is 7/, i = 1,2, the
ratio between the densities is r,, the dimensionless complex frequency is
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% and the ratio between the Young’s moduli r g are assumed

Sc = 882/
to vary.
In Fig. and (24), the relaxation times are assumed to be the same for
both the phases, Tgl = Tf = 5, the ratio between the densities and the ra-
tio between the Young’s moduli are r, = r, = 10 and the dimensionless
complex frequency s, assumes different values.

In Fig. [23}(a) the magnitude of the dimensionless transformed macro-
displacement (3.110), with a = 1 along the direction 1, is compared
with the solution provided by a finite element analysis of the heteroge-
neous domain equipped with proper periodic boundary conditions on

the displacement. The continuous curve stands for the analytical di-

Figure 23: magnitude of the dimensionless macro-displacement component

UM (1) induced by the harmonic body force b1 (z1) (a) and U2 (21) caused
by b2(x1) (b) along direction ;. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds). The red curves are
obtained by setting the dimensionless complex freqeuncy s = —2, the
blue curves are obtained for s; = —0.5 and the green ones are given for
s¢ = —0.3, with7! =5,i € 1,2,7r5 =7, = 10,01 = % = 0.2,7 = 1 and
v=1.

102



mensionless transformed macro-displacement UM (z,), which is derived
from the method 1 and provides the overall constitutive tensor S
Eq. (3:100). The dotted curve represents the analytical dimensionless
transformed macro- displacement UM (z,) and derives from the alter-
native method 2, which provides the overall constitutive tensor S2 101,
Eq. (3.106). Finally the diamonds stand for the numerical results related
to the heterogeneous model and obtained from the corresponding micro-
scopic solution through the up-scaling relation and considering the
imaginary part of the body force b; = T sin %xh with k& = 1. In Fig.

(a), three values for the dimensionless complex frequency s, = ssa/ %
are considered: the red curves and diamonds are obtained for s, = —2,

Figure 24: magnitude of the dimensionless macro-displacement component

UM (2) induced by the harmonic body force b (z2) (a) and U2 (22) caused
by b2(x2) (b) along direction x». The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds). The red curves are
obtained by setting the dimensionless complex frequency s = —2, the
blue curves are obtained for s; = —0.5 and the green ones are given for
s¢ = —0.3, with7! =5,i € 1,2,7r5 =7, = 10,01 = % = 0.2,7 = 1 and
v=1.
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Figure 25: (a) magnitude of the dimensionless macro-displacement com-
ponent UM (z1) induced by the harmonic body force by (1) along z1. (b)
Magnitude of the dimensionless macro-displacement component U2 (z:)
induced by the harmonic body force bz (1) along z1. The curves are ob-
tained with different relaxation times related to phase 1 and phase 2: 7! = 1,
72 = 2 (red), 7! = 2, 72 = 4 (blue) and 7! = 10, 72 = 20 (green), with
rg = r, = 10, s¢ = —0.5,v = 1 and n = 1. (c) Magnitude of the di-
mensionless macro- displacement component U} (z1) induced by the har-
monic body force bl(acl) along z1. (d) Magnitude of the dimensionless
macro-displacement component UM () induced by the harmonic body
force bo(x1) along z1. The curves are obtained as rz = 1 (red), rz = 3
(blue) and rr = 9 (green), by considering 7! = 2,72 = 5,5, = —0.5, 7y = 1
andn = 1.
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the blue curves and diamonds are given for s = —0.5 and finally the
green ones stand for s, = —0.3. In Fig. 23}(b) the magnitude of the an-
alytical dimensionless transformed macro-displacement U2 (), which
is obtained from the method 1 (continuous curve), and the transformed
macro-displacement stemming from the method 2 (dotted curve) are put
in relation with the heterogeneous solution (diamonds) for three increas-
ing values of s, which are s, = —2 (red one), s = —0.5 (blue one)
and s¢ = —0.3 (green one). Both for the compressional and the shear
problems (a) and (b), there is a very good agreement between the
solution of the homogenized models and the numerical solution of the
heterogeneous approach. Along the orthotropic direction x5, the overall
constitutive tensors Siyy 9y and Shymess, With i = 1,2, are equal to zero
and so the transformed macro-displacement assumes the form

o
[}

6 E.10
T

Figure 26: magnitude of the dimensionless macro-displacement component

UM (1) induced by the harmonic body force b1 (z1) (a) and U2 (21) caused
by b2 (1) (b) along direction ;. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds). The green curves are
obtained for s¢ = —0.3, with 7/ = 5,7 € 1,2, rg =7, = 10,01 = i = 0.2,
n=1land~y=1.
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2 2 Yo sin 37 . .
UM(zy) = (5—;) %, with @ = 1,2. Therefore, the magnitude

of the dimensionless macro-displacement field U M (x5) (Fig. (a)) and
the magnitude of the dimensionless macro-displacement U2 (x5) (Fig.
24}(b)), represented by continuous curves, are compared with the numer-
ical macro-displacements associated with the heterogeneous model (dia-
monds), by varying the dimensionless complex frequency s. as: s¢ = —2
(red one), sc = —0.5 (blue one) and s, = —0.3 (green one).

In Figs. —(a) and —(b), the magnitudes of the dimensionless trans-
formed macro-displacement, UJM (z1) j = 1,2, along 7 and deriving
from method 1 (continuous curve) and method 2 (dotted curve) are com-
pared with the numerical solution related to the heterogeneous domain
(diamonds), by assuming different relaxation times for each phase, i.e.

o
(39}

i 6§10

Figure 27: magnitude of the dimensionless macro-displacement component

UM (2) induced by the harmonic body force b1 (z2) (a) and U2 (22) caused
by ba(z2) (b) along direction x2. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds).The green curves are
obtained by setting the dimensionless parameter s; = —0.3, with 7/ = 5,
1€1,2,rg=r,=10,01 =0, =02,np=1land vy = 1.
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! # 72. In particular, in Figs. 25)-(a) and (25)-(b), the red curves are
obtained for 7} = 1, 72 = 2, the blue curves for 7! = 2, 72 = 4 and
the green ones for 7! = 10, 72 = 20. The magnitude of the dimension-

less macro-displacement field UM () (Fig. (25)-(c)) and the magnitude
of the dimensionless macro-displacement U2 (z,) (Fig. (25)-(d)) deriv-
ing from method 1 (continuous curve) and method 2 (dotted curve) are
compared with the numerical macro-displacements corresponding with
the heterogeneous model (diamonds), by varying the ratio between the
Young’s moduli rg. The red curves are obtained by choosing rg = 1,
the blue curves for g = 3, and the green ones for rg = 9, with two dif-
ferent and fixed relaxation times for each phase, 7! = 2 and 72 = 5. For
the compressional problems (—(a), —(c)) and for the shear problems
(—(b), —(d)), a good agreement is observed between the solution of

0.8
0.6
0.44
0.2
0.
-0.21
-0.41
-0.6{ _ .
o |0% e [y G

0 2 4 6 8.1 0 2 4 6 8_10

|03 )| 12, )
6-1

Figure 28: magnitude of the dimensionless macro-displacement component

UM (a) and U2 (b) caused by the harmonic body forces ba along direction
x1. The solution given by the homogeneous method 1 (continuous and red
curves) and method 2 (dotted and red curves) are compared with the di-
mensionless transformed micro-displacement e (black curves). The red
curves are obtained by setting the dimensionless parameter s = —2, with
ti=5,i€1,2,rg=r,=10,1 = =0.2,p=1landy = 1.
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both homogenized models and the numerical solution of the heteroge-
neous method.

In Figs. ([@6)-@9), the material is in plane stress condition, the sample
has a length L/e = 11, with amplitude Y, = 1 N/mm?, the Poisson
ratios are equal for both phases, 71 = U, = 0.2, the ratio between the
thicknesses is 7 = 1, the parameter 7 is v = 1, the relaxation time is
TZ = 5,4 = 1,2, the ratio between the densities is r, = 10, the dimen-
sionless complex frequency is s; = ssa/ \/% = —0.3 (for Figs. 26)-27)
and s; = ssa/ % = —2 (for Figs. (28)-(29)) and the ratio between the
Young’s moduli is rg = 10.

In Figs. @ and @ the harmonic body forces are supposed to be b, =
T, sin ﬁ—zxa. In Fig. (a) a comparison between the magnitude of

[

N [ZdeSIAAEN] |08 x2)| | ()|

0 3 3 6 8,10 6 3 F 6 810
L L

Figure 29: magnitude of the dimensionless macro-displacement component

oM (a) and UM (b) caused by the harmonic body forces b along direction
x2. The solution given by the homogeneous method 1 (continuous and red
curves) and method 2 (dotted and red curves) are compared with the di-
mensionless transformed micro-displacement . (black curves). The red
curves are obtained for sc = —2, with 7/ = 5,4 € 1,2, rg = r, = 10,
ih=1ip=02n=1andy= 1.
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the dimensionless macro-displacement UM (z,), derived from the appro-
aches involving the overall constitutive tensors Si1111, withi = 1,2, and
the solution of the heterogeneous problem is shown by setting s = —0.3.
The continuous curve derives from the analytical solution, Eq.
with ¢ = 1, and the dotted curve is related to the one with ¢ = 2. In Fig
(b) the magnitude of the dimensionless macro-displacement U2 (x;),
derived from the approaches relying on the overall constitutive tensors
Sii1211, 7 = 1,2, and the heterogeneous solution (diamonds) are per-
formed by imposing s. = —0.3. The continuous curve is related to the
analytical solution, Eq. with ¢ = 2, and the dotted curve stands
for the one with ¢ = 1. 3

The magnitude of the dimensionless macro-displacement field UM (5)
(Fig. R7}(a)) and the magnitude of the dimensionless macro-displacement
UM () (Fig. @-(b)), represented by continuous curves, are compared
with the numerical macro-displacements associated with the heteroge-
neous model (diamonds), by taking into account the dimensionless com-
plex frequency s = —0.3. In Fig. [26|and [27] the effectiveness of the pro-
posed homogenized models is well assessed because of the good agree-
ment between the observed results.

In Fig (a) the magnitudes of the dimensionless transformed macro-
displacement UM (1), obtained from approach 1 (continuous and red
curve) and approach 2 (dotted and red curve), are compared with the
magnitude of the dimensionless micro-displacement ﬁl(xl), Eq. ,
represented by a continuous and a black curve and obtained by consid-
ering the mean line of the section. In Fig[28}(b) a comparison between
the magnitudes of the dimensionless transformed macro-displacement
UM (z,), from approach 1 (continuous and red curve) and from approach
2 (dotted and red curve), and the magnitude of the dimensionless micro-
displacement ’EL2($1), obtained numerically, (continuous and black line)
is performed, by setting the dimensionless complex frequency as s, =
—2.

Finally, the magnitude of the dimensionless macro-displacement field

UlM(a:g) (Fig. (a)) and the magnitude of the dimensionless macro-

109



displacement U2 () (Fig. (b)), represented by red curve, are com-
pared with the numerical micro-displacements i (z2) and T (x2), asso-
ciated with the heterogeneous model (diamonds), by taking into account
the dlmensmnless complex frequency s. = —2.

In Figs. 23)-(a), @5)-(a), @5)-(c), 26)-(a), 26)-(b) and (28)-(a), it is clear to
see a discrepancy between the two homogenized methods, represented
by the continuous curves and the dotted curves. Such a discrepancy
arises from Fig. (2I)-(a) and @1)-(b).

Finally, the magnitudes of the transformed constitutive tensor G111 (Fig.
(B0)-(a)) and G212 (Fig. (30)-(b)), represented by the green line, are com-
pared with the Voigt-Reuss bounds by varying the ratio related to phase
1, ¢1 = # It can be seen that |G1212| coincides with the Voigt bound
(red), thus the proposed method complies with the Voigt-Reuss bounds
for viscoelastic materials through the corresponding principles, see Hashin
and Shtrikman (1963); Hashin (1965); Hashin (1970); Chen and Lakes
(1993); and Christensen (2012).

109 .
|G1114] (@) 09 |Gz ®)
08
.
06
05
04
03

02

0.1
1 0 02 04 0.6 08 1
0 02 04 0.6 08 1

¢1 ¢1

Figure 30: (a) magnitude of the constitutive tensor G'1111, obtained with the
homogenized method (green), is compared with the Voigt-Reuss bounds,
with respect to ¢1 = # (b) The magnitude of the constitutive tensor

G212, obtained with the homogenized method (green), is compared with

the Voigt-Reuss bounds, with respect to the volumetric ratio ¢1 = ;7. The

values are fixed as: rg = 7'2 =s.=10,i=1,2,n=1landy=1.
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The dispersion relation (2.147) is an implicit function depending on the

real part of s, Re(s), its imaginary part, Jm(s), and the wave number
ks, B = 1,2, which have been non-dimensionalized as Re(s)sz ~Im(s)sz
Ey Ey

P2

and kge. Eq. provides the dispersion curves related to the ciy—
namic homogenization model and its simplified version presented in Sec.
(2.7.2).

The dispersion curves obtained with two homogenized approaches are
compared in Figs. (31), (32), (33), (34) and (B5), where it is possible to ob-
serve the dual nature of the viscoelastic material that is reflected by the
presence of the complex parameter s. Infact, its real part is related to the
viscosity of the material whereas its imaginary part deals with its elastic
behaviour. Therefore, the dispersion curves lay both on the real axis of
s, which describes the wave propagation, and its imaginary axis, which
characterizes the damping.

In Figs. and (32), the dispersion curves, which are related to the com-
pressional and the shear waves along the direction e, and achieved with
the homogenized models (dark line), are compared with the generalized
dispersion function (light line) for longitudinal wave propagation in a
periodic layered composite proposed by Rytov (1956), (see Appendix B).
In Fig. (3I)-(a), the parameter v is chosen to assume different values,
whereas the values of the dimensionless parameters are set as n = 1,
i =0p=027r,=rg=10and 7! = 1,i = 1,2. In particular, Fig. (31)-(a)
shows the curves related to the compressional waves as v = 1/10 (red),
v = 1/2 )blue and v = 1 (green). When  decreases the effect of the vis-
cosity is less detectable because the curves approach the imaginary axes
of the complex frequency. In Fig. (3I)-(b), the dimensionless relaxation
time 77 is supposed to vary, whereas the values of the dimensionless pa-
rameters are setasn =1, =, = 0.2,r, = rg = 10 and v = 1/10. Fig.
(B1)-(b) shows that by increasing the relaxation time 7 up to high values
(1 = 00) the green curve approaches the imaginary axes of the complex
frequency. For low values (7! = 1 and 77 = 1/3) the related curves (the
red and the blue one) are strongly affected by the viscoelastic response.
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In Fig. BI)-(c), the dimensionless ratio between the thicknesses of the
material 7 is supposed to vary, whereas the values of the dimensionless
parameters are set as iy = 0y = 0.2, 7, = rg = 10, Té = 1land v = 1/10.
Fig. (31)-(c) depicts three dispersion curves obtained for n = 2 (blue), for
n =1 (red) and for n = 1/2 (green). In Fig. (31)-(d), the ratio between the
densities r, and the ratio between the Young’s moduli rg are assumed
to vary, whereas the values of the dimensionless parameters are set as
=10y =02n=117=1and v = 1/10. Fig. (3I)-(d) shows three
dispersion curves derived for r, = rg = 10 (red), r, = rg = 20 (blue)
and r, = rg = 50 (green). From the diagrams of Fig. (8I), the disper-
sion curves derived from the proposed homogenized models are in good
agreement with the ones related to the heterogeneous material obtained
with the exact theory of Floquet-Bloch in the range of [0, 7/2].

Fig. represents the dispersion curves related to the shear waves
along the direction e; normal to the layers in terms of the dimensionless
wave number ke € [0,27]. In Fig. (32)-(a), the parameter ~ is supposed
to assume different values, whereas the values of the dimensionless pa-
rameters aresetasn =1, = =0.2,r, =rg = 10and Tf =2,1=1,2.
In Fig. (32)-(a), the red curve corresponds to v = 1/10, the blue one to
v = 1/5 and the green one to v = 1/2. In Fig. (32)-(b), the dimensionless
relaxation time 77, i = 1,2, is supposed to vary, whereas the values of
the dimensionless parameters are set as v = 1 /10,71 =1, r, =rg = 10,
7y = 1 = 0.2. In Fig. -(b), the red curve is related to Tg =1/2,
the green one to 77 = 1 and the blue one to 7! = 2. By increasing the
value of the dimensionless relaxation time, the viscosity effect becomes
less evident. Fig. (32)-(c) is obtained by varying the dimensionless ratio
between the thicknesses of the material 7, with the following dimension-
less parameters 7! = 1,7, = rg = 10, 7 = » = 0.2 and v = 1/10.
Fig. (32)-(c) shows three dispersion curves stemming from the heteroge-
neous and the homogenized models, where the blue curves are obtained
for n = 2, the red oness for n = 1 and the green ones for n = 1/2. Fig.
(32)-(d) is derived by varying the ratio between the densities and ratio
between the Young’s moduli r, = rg, with the following dimensionless
parameters 7! = 1,7 = 1, i = » = 0.2 and v = 1/10. Fig. (32)-(d)
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illustrates the dispersion curves obtained for r, = rg = 10 (red), the blue
r, =rg = 15 (blue) and for r, = rg = 20 (green).

In Figs. and (32), it is clear to see that the discrepancy between the
phase velocity and the group velocity, which is noticeable in the hetero-
geneous model, generates dispersion phenomena that are well described
by the proposed homogenized models at the second order in contrast
with the first order homogenized model which is not able to capture the
dispersion phenomena.

Fig. and Fig. show the behavior of the dimensionless real part
of s in terms of the dimensionless imaginary part of s and the dimen-
sionless wave number kje. In case of dispersion curves related to com-
pressional and shear waves along the layering axis e;, the wave number
k1€ belongs to the interval [0, 7/2], where the dispersione curves derived
from approach 1 (thicker line) and approach 2 (thinner line) are com-
pared. Fig. (33)-(a) shows the dispersion curves obtained by varying
the parameter vy, whereas the dimensionless parameters are assumed as
Tgi =2i=12n=1r,=rg=10and 7y =, = 0.2. Fig. —(a)
shows the curves related to the compressional waves and corresponding
toy = 1/20 (red), v = 1/10 (blue) and v = 1/5 (green). As 7 goes up
the curves gradually increase. Fig. (33)-(b) depicts the dispersion curves
obtained with different values of the relaxation time TZ, 1 = 1,2, which
is the same for both phases, whereas the dimensionless parameters are
assumed asy =1/10,n =1,r, = rg = 10 and &, = 7, = 0.2. In partic-
ular, for low values of Tj, namely TZ = 1/20, which is represented by the
red curve, and Tj = 1/10, identified by the blue curve, the viscoelastic-
ity strongly affects the dispersion curves, which are enterely embedded
in the real and the imaginary plane. By increasing the relaxation time
7! = 00, the elastic behaviour is retrieved (green curve) and the curve is
squeezed in the imaginary axes of the complex frequency. Fig. (33)-(c)
highlights the trends of three curves developed by setting three differ-
ent values of the ratio between the thicknesses of the material  and by
assuming the dimensionless parameters as rg = r, = 10, 77 = 2 and
v = 1/10 and 71 = Py = 0.2. The red curve is obtained for n = 5, the
blue one for n = 3 and the green one for n = 1/2. Finally, Fig. (33)-(d)
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Figure 31: compressional waves along the normal direction e; derived from
two homogenized approaches (dark line) and from the heterogeneous one
(light line) (a) for: v = 1/10 (red curves), v = 1/5 (blue curves) and v = 1
(green curves), with 77 = 2,4 = 1,2, = land r, = rg = 10. (b) is
obtained for: 7! = 1/3 (red), 7o = 2 (blue) and 7! = oo (green). (c) is
derived for: n = 2 (blue), n = 1 (red), and n = 1/2 (green). (d) is derived
for: r, = rg =10 (red), r, = re = 20 (blue) and r, = rg = 50 (green), with
U1 =102 =0.2.
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Figure 32: shear waves along the normal direction e» derived from two
homogenized approaches (dark line) and from the heterogeneous one (light
line) (a) by varying v as v = 1/10 (red curves), v = 1/5 (blue curves) and
v = 1/2 (green curves). (b) is obtained for: 7/ = 1/2 (red), 7. = 1 (green)
and 7! = 2 (blue). (c) is derived for: n = 2 (blue) n = 1 (red) and n = 1/2
(green). (d) is retrieved for: r, = rg = 10 (red), r, = rg = 15 (blue) and
r, = rE = 20 (green), with o, = 0, = 0.2.
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Figure 33: compressional waves along the layering direction e; derived
from two approaches (a) by varying « as v = 1/20 (red curves), v = 1/10
(blue curves) and v = 1/5 (green curves). (b) is obtained for: 77 = 1/20
(blue), 77 = 1/10 (red) and 7. = oo (green). (c) is derived for: n = 5 (red),
n = 3 (blue) and n = 1/2 (green). (d) is retrieved for: r, = rg = 50 (blue),
r, =rp = 30 (red) and r, = rg = 5 (green), with 7, = 7, = 0.2.
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Figure 34: shear waves along the layering direction e; derived from two
approaches (a) by modifying v as v = 1/5 (red curves), v = 1/10 (blue
curves) and v = 1/30 (green curves). (b) is obtained for: 7! = 2 (blue), ¢ =
5 (red) and 7. = oo (green). (c) is derived for: n = 1/5 (blue), n = 1 (red)
and n = 4 (green). (d) is obtained for: r, = rg = 50 (red), r, = rg = 25
(blue), and r, = rg = 10 (green), with 71 = 7> = 0.2.
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Figure 35: shear waves along the layering direction e; (a) and the normal
direction e (b) deriving from the homogenized method 1 (thicker line) and
the homogenized method 2 (thinner line) for different values of the ratio
between the densities and ratio between the Young’s moduli: 7, = rg =
1 (red), r, = re = 10 (blue) and r, = rg = 100 (green), by fixing the
dimensionless relaxation time as Tj = oowithty =0, =0.2,n7n=1and
v = 1/10.

represents how for three increasing values of the ratio between the den-
sities and ratio between the Young’s moduli, r, = rg, the related curves
are influenced, by fixing v = 1/10, Tj = 2 and n = 1. The green curve is
given with r, = rg = 5, the red one with r, = rg = 30 and the blue one
corresponds to 7, = rg = 50.

In Fig. dispersion curves related to the shear waves along the axes
e; are taken into account and the curves achieved from approach 1 and
approach 2 are compared. Fig. (34)-(a) shows the dispersion curves ob-
tained by varying the parameter v, whereas the dimensionless parame-
ters are set as Tj =2,n=1andr, =rg = 10and 71 = v, = 0.2. In Fig.
(34)-(a), the red curve corresponds to v = 1/5, the blue one to v = 1/10
and the green one to v = 1/30. As y goes up the curves steadily decrease.
Fig. -(b) is obtained by varying the relaxation time TZ, i € 1,2, by tak-
ing into account the dimensionless parameters asn = 1, r, = rg = 10,
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v = 1/10 and 7y = 0 = 0.2. In particular, Fig. (34)-(b) shows that by
increasing the relaxation time 7! up to high values (7! = co) the green
curve is achieved and so the viscoelastic effect is negligible. As the re-
laxation time assumes low values (7! = 2 and 7! = 5) the corresponding
curves (the red and the blue one) are strongly influenced by the viscoelas-
tic response. In Fig. (34)-(c), by setting three values for the dimensionless
ratio between the thicknesses of the material 7, the following curves are
obtained: the blue curve stems from n = 1/5, the red one from n = 1
and the green one from n = 4, with fixed values of the dimensionless
parameters v = 1/10, 7! = 2, r, = rgp = 10 and 75 = 1, = 0.2. Fig.
(34)-(d) shows the curves obtained for three values of the ratio between
the densities and ratio between the Young’s moduli, r, = rg. The green
one relates to r, = rg = 10, the blue curve corresponds with the value
r, = rg = 25 and the red one r, = rg = 50, with the fixed parameters
v =1/10, 78 =2,n = 1and in = i = 0.2. From Figs. B33)-(a), B3)-(c)
and (34)-(d), it is clear that there is a slight difference between the disper-
sion curves obtained from the two homogenized models in the range of
the considered dimensionless wave number k;e.

Fig. (35)-(a) and (B5)-(b) show the dispersion curves related to the shear
waves along the direction e; and ey, respectively. The dimensionless pa-
rameters are set as v = 1/10, » = 1 and o1 = 5 = 0.2. The dispersion
curves are obtained from the homogenized method 1 (thicker line) and
method 2 (thinner line) by varying the ratio between the densities and
ratio between the Young’s moduli and by fixing the dimensionless relax-
ation time as 7! = oo to retrieve the elasic case. The red lines are obtained
for r, = rg = 1, the blue one for r, = rg = 10 and the green one for
r, = rp = 100. The green curve of Fig. (35)-(a) and the blue curve of Fig.
(B5)-(b) show an appreciable difference between the two homogenized
models. In Fig. (35), there is point in observing that the dispersion phe-
nomenon is emphasized by the non-linearity of the dispersion curves as
a consequence of the variation of the ratio between the densities and ratio
between the Young’s moduli. Moreover, in Fig. (35)-(a), it is clear that the
group velocity, which describes the velocity at which the wave envelope
propagates, is greater than the velocity phase, describing the velocity of
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the individual harmonic contribution. Such an issue is emphasized in
the the green curve. Finally, in Fig. (35)-(b) the phase velocity is greater
than the group velocity and so the individual harmonic contribution has
a speed of travel greater than the wave envelope, which ca be observed
in the blue curve.
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Chapter 4

Conclusions

The thesis proposed a variational-asymptotic homogenization model for
viscoelastic materials having a periodic microstructure. Specifically, the
field equations at the micro-scale have been derived and transposed into
the Laplace domain to treat viscoelasticity, relying on the complex fre-
quency and the micro-relaxation tensor. Next, the down-scaling relation
and the up-scaling relation have been detailed. In particular, the down-
scaling relation relates the transformed micro-displacement field to the
transformed macro-displacement field and its gradients by means of the
perturbation functions, which are the solutions of the cell problems de-
fined over the unit cell Q. Perturbation functions are Q-periodic and
have vanishing mean values over the unit cell. On the other hand, the
up-scaling relation defines the transformed macro-displacement field as
the mean value of the transformed micro-displacement field over the unit
cell Q. By introducing the down-scaling relation into the field equations
at the micro-scale of the viscoelastic material, the average field equations
of infinite order have been determined. Their truncation at an arbitrary
order could not ensure the ellipticity of the differential problem. To avoid
such an issue, two methods, based on a variational-asymptotic approach,
have been invoked. According to the first method, the down-scaling
relation is replaced into the transformed energy-like functional, which
is truncated at the second order. By imposing the first variation of the
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truncated energy-like functional equal to zero, the field equation at the
macro-scale and the overall inertial and constitutive tensors have been
determined. In the second method, the gradient related to the down-
scaling relation has been approximated at the first order and the trans-
formed micro-displacement has been truncated at second order. Both are
introduced into the transformed energy-like functional and, from its first
variation, the field equation at the macro-scale and the corresponding
overall inertial and constitutive tensors have been derived. In both meth-
ods, the overall constitutive tensors depend on the localization functions,
whereas the overall inertial tensors are expressed through the perturba-
tion functions. In the limit case of an homogeneous material without het-
erogeneities, the perturbation functions consistently become identically
equal to zero, the components of the localization tensors vanish and the
equation of motion of the classical continuum has been retrieved.

To assess the accuracy of the homogenized model herein analysed and
its validity limits, a bimaterial periodically-layered composite with or-
thotropic phases endowed with an orthotropy axis parallel to the layer
direction has been considered. In this case, the micro-fluctuation func-
tions and the components of the overall inertial and constitutive tensors
have been derived in an analytic way and their dependence on the real
part and on the imaginary part of the complex frequency has been em-
phasized. Without loss of generality, it is specialized in case of isotropic
phases. Moreover, a detailed study of the dispersion function, deriving
from the generalized Christoffel equation for shear and compressional
waves along two orthogonal axis, is performed. A good agreement has
been pointed out between the dispersion curves derived from the ho-
mogenized methods and those retrieved from the heterogeneous mate-
rial with the Floquet-Bloch approach. Finally, the analytical solutions
for the transformed macro-displacement field derived from the two ho-
mogenized models and subjected to £L—periodic forces have been com-
pared with the reference numerical solution obtained from a finite ele-
ment analysis of the heterogeneous model in order to evaluate the forced
response in the transformed domain. A good agreement between the
three models has been achieved, proving the validity of the proposed
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homogenized methods.

The variational-asymptotic homogenization method herein proposed is
helpful to describe the dispersive properties of a viscoelastic material and
to detect the effective viscoelastic properties of many composite materi-
als and it may be adopted for the manufacture and the design of more
efficient and sophisticated devices, for a large spectra of applications.
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Appendix A

Symmetrization of the
localization tensors

In order to perform the symmetrization of a tensor Zyxpg,...q, With re-
spect to the indices ¢;...g,, the set P*(¢), which consists of all permuta-
tions with no fixed indices, is considered. For instance, if |¢| = n, it re-

sults that P*(q) = {f1 = (ql = q1,G2 = G255 G = Qn>7 s fn = (fh —

Ans Q2 —> q1y ooy Qn — G2 } and the tensor Zjpq, .. 4, is symmetrized with
respect to qy, ..., g, as

1 1
n Z Zhkpqy...qn = ;(thpql.-.qn +ot thPQn‘]lqu)‘
- P(q) )

In particular, if |¢| = 2 then the permutations set P*(g) with no fixed
points is P*(q) = {fl = (lh - q,q2 — Q2),f2 = ((h — 2,02 —

ql) } and the symmetrization with respect to ¢; and ¢- of the localization

tensor B}(Lifg()h{p = (5kq2 N, ,S;)ﬁ) + N, iﬁfl)@, k) results
20 _1 (1,0) (1,0) | Ar(2,0) 20\ _
Bikpaias = 9 (6’“12 Nppg, T Oka1 Nipgy + Nipg/gp 6 NhPQ2‘117k) =
1 (1,0) (1,0) (2,0)
= 5 (Oraa M) + S N ) + N2 (A1)
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In case of |g| = 3, the permutations set P*(¢) having no fixed points is
P*(q) = {fl = <(I1 — 1,92 = 42,43 — qg),fz = (Ch - 92,42 —
q3,q3 — ql) Jf3 = (q1 — 3,92 = q1,q3 — q2>} and the localization ten-

sor B}(i’g;l was = (6kq3 N, ,(li’qol)% +N ,Sifl)% . k) is symmetrized with respect
to q1, g2 and g3 as
@o  _1 (2,0) (2,0) (2,0)

Bhkpaigags = 3 (6kf13thq1q2 + 0kar Vipgage T Okas Nppggq, +

(3,0) (3,0) (3,0) —
+ thqlqzqs,k + thq2Q3q1»k + thqsqlqz,k) -

1 (2,0) (2,0) (2,0) (3,0)

= 3 <6k’J3 thth2 + Ok th‘lzqa + Ohgs NhPsth) + ththzqu’ (A2)

as it appears in Eq. (2.94).

Appendix B

Generalized dispersion function

Rytov (1956) proposed the exact dispersion relation for wave propagat-
ing in a periodic layered composite transversal to the layers. In the
present paper the dispersion relation has been generalized by consider-
ing complex frequency modulus and evaluated via the correspondence
principle as follows

1
cos(kqe) = cos (wﬂ>cos(w3—2) + 7<@ + @)sin(ws—l)cos(wsﬁ),
c1 Co 2\pac2  p1c1 c1 C2

where w = 2,5 = Re(s) + Im(s) and ¢; = 1/ % is the velocity of the
compressional o = 3 and shear o # 3 waves along the direction e; and
referred to the i-th layer i = 1, 2.
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