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with the homogenized method (green), is compared with
the Voigt-Reuss bounds, with respect to φ1 = η

η+1 . (b) The
magnitude of the constitutive tensor Ĝ1212, obtained with
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Abstract

A non-local dynamic homogenization technique for the anal-
ysis of a viscoelastic heterogeneous material which displays
a periodic microstructure is herein proposed. The asymp-
totic expansion of the micro-displacement field in the trans-
formed Laplace domain allows obtaining, from the expres-
sion of the micro-scale field equations, a set of recursive dif-
ferential problems defined over the periodic unit cell. Con-
sequently, the cell problems are derived in terms of pertur-
bation functions depending on the geometrical and physical-
mechanical properties of the material and its microstructural
heterogeneities. A down-scaling relation is formulated in a
consistent form, which correlates the microscopic to the macro-
scopic transformed displacement field and its gradients through
the perturbation functions. Average field equations of infi-
nite order are determined by substituting the down-scale re-
lation into the micro-field equation. Based on a variational
approach, the macroscopic field equations of a non-local con-
tinuum is delivered and the local and non-local overall con-
stitutive and inertial tensors of the homogenized continuum
are determined. The problem of wave propagation in case of
a bi-phase layered material with orthotropic phases and axis
of orthotropy parallel to the direction of layers is investigated
as an example. In such a case, the local and non-local over-
all constitutive and inertial tensors are determined analyti-
cally and the dispersion curves obtained from the non-local
homogenized model are analysed.

xviii



Chapter 1

Introduction

In this Chapter a detailed description of the thesis contents is presented.
The role of viscoelastic composites in industry is analysed and particular
remark is then given to the viscoelastic relation and its historical devel-
opment. Finally the homogenization theory is introduced.

1.1 Structure of the thesis and motivations

In the present thesis, a dynamic asymptotic-variational homogenization
method applied to a viscoelastic material with a periodic microstructure
is proposed.
In Chapter 2, the field equations at the micro-scale, which describe the
heterogeneous viscoelastic material, are determined in the time domain
and converted into the Laplace domain, with the help of the two-sided
Laplace transform. The micro-displacement field is written in terms of an
asymptotic expansion in the transformed Laplace domain and its substi-
tution into the field equations produce a sequence of recursive differ-
ential problems defined over the periodic unit cell. Then, solvability
conditions are imposed to such nonhomogeneous recursive cell prob-
lems to determine the down-scaling relation, linking the microscopic
transformed displacement field to the macroscopic one and its gradients
through the perturbation functions. Such functions rely on the geomet-
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rical and physical-mechanical properties of the material and measure
the microstructural heterogeneities. Average field equations of infinite
order are determined by substituting the down-scale relation into the
micro-field equation. The formal solution is provided with the help of
an asymptotic expansion of the transformed macro-displacement. Then
the overall constitutive tensors and the overall inertial tensor related to
the homogenized continuum are derived in the Laplace domain for the
class of periodic viscoelastic materials, after introducing the energy-like
functional in the Laplace domain. Finally, the Euler-Lagrangian differen-
tial equation at the macro-scale is determined and expressed in terms of
the transformed macro-displacement and its gradients up to the fourth
order.
In Chapter 3, the variational-asymptotic homogenization technique is
applied to a bi-phase layered material with isotropic phases subject to
periodic body forces. The solution of the homogenized problem is com-
pared with the one established from the heterogeneous problem to ver-
ify the reliability of the proposed homogenization procedure. Finally, the
problem of wave propagation and the related dispersion curves are stud-
ied. Concluding remarks complete the thesis. Viscoelastic materials can
be combined with other materials to produce performing structures that
are mostly employed in the aircraft sector, Fig. 1, 1

1E. Cocchieri Botelho, R.A. Silva, L.C. Pardini, M.C. Rezende. A review on the develop-
ment and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft
structures. Mat. Res. vol.9 no.3, (2006).

		

Figure 1: glare structure picked from the lower part of an airplane.
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1.2 State of the art

1.2.1 Composite materials and their applications

Over the last few years, the technological progress encouraged a fast
development of composite materials, stemming from the assemblage of
two or more materials. Composites play a crucial role for various ap-
plications in civil, naval, aerospace and mechanical engineering, since
they boast remarkable mechanical and physico-chemical properties even
more challenging than their individual components, such as high strength,
corrosion and thermal resistance, enhanced durability, light weight and
ease handling. Composites usually consist of a matrix and a reinforcement.
According to the type of the reiforcement, composites can be modelled
as laminates (layered media), particulates or fibre reinforced. Laminates
are made of plates which are sandwiched together and each plate can be
a composite itself, Fig. 2, 2 Particulates consist of a host material in which
small inclusions are incorporated, Fig. 3, 3. Fibre reinforced composites
include a matrix endowed with fibers, which influence the direction of
the composite, Fig. 4.
Among them, the class of polymer matrix composites is very promising
since they can achieve performances superior to metals with a reduced

2Mechanics of composite materials lab, Tel Aviv University.
3Scienza e Ingegneria dei Materiali: una Introduzione, Edises Napoli, 2008, p. 582.

Figure 2: laminate composite.
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weight. The matrix is usually a resin (epoxy or polyester) with high
toughness, reinforced by fibers (glass, aramid, boron, etc.) which have
very high strength. The combination of the two materials is very effec-
tive: the matrix diffuses the load among the fibers and protects them
from abrasion, fracture, and damage. At the same time, the reinforcing
fibres increase the overall strength and stiffness of the composite. Simi-
larly, in laminates, the polymeric matrix is used to bond other materials
together and increase the toughness of the composite, see e.g. photo-
voltaic modules, Paggi et al. (2016). To reduce the cost of synthetic fiber-
reinforced composites and produce environmentally sustainable mate-
rials, bio-fibre-reinforced polymer composites, Dhakal et al. (2018), are
very promising and are becoming increasing popular in emergent coun-
tries. The variant of hybrid composites, where synthetic and natural fiber
reinforcements are mixed together offer also a possible trade-off solution.
The material is said to be a composite with periodic or quasi-periodic mi-
crostructure if the heterogeneities of the reinforcement are sufficiently
regular. The constitutive response of polymeric composites and their
variants is that of viscoelastic materials, which exhibit creep and stress
relaxation phenomena.
An intense knowledge of the behaviour of viscoelastic materials allows
manufacturing devices and machinary, which can be applied to a wide
range of fields, including biomedical, industrial, defence and construc-
tion. For example, graphite/epoxy composites are broadly used for space
vehicles and structures thanks to their different advantages such as re-
duced weight, better control of thermal distortions and enhanced struc-
tural stiffness.

4



A.Pegoretti                                                                                           COMPOSITI STRUTTURALI PER L’INGEGNERIA INDUSTRIALE

La microstruttura dei materiali compositi particellari

Epossidica - particelle di vetro

T.Kawaguchi and R.A. Pearson, Polymer, 44, 4239 (2003)

Gomma - particelle di carbon black

Goodyear Tire & Rubber Company
in Callister WD, Scienza e Ingegneria dei Materiali: una
Introduzione, Edises  Napoli, 2008, p 582.

Figure 3: composite with black carbon particles.

Figure 4: composite made of cellulose fibres and resinous matrix.
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1.2.2 Viscoelastic relation

Historically the behaviour of viscoelastic materials has been analyzed by
combining properly springs and dashpots.
Voight-Kelvin model
Among the classical models for viscoelasticity, (Skrzypek and Ganczarski
(2015)), one of the most remarkable is the the Voight-Kelvin model, which
is characterized by a linear spring element and a linear dashpot element
connected in parallel, Fig. 5-(a), where the spring represents the elastic
solid behavior and the dashpot describes the fluid behavior. The total
stress applied to the model is subdivided into the stress applied to the
spring, σs, and the stress applied to the dashpot ,σd, as

σ(t) = σs(t) + σd(t). (1.1)

If the model undergoes a stress σ(t), the spring and the dashpot deform
by an equal amount since they are connected in parallel. Thus, the to-
tal strain ε(t) is equal to the strain related to the spring εs and the strain
related to the dashpot εd i.e., ε(t) = εs(t) = εd(t). The stress-strain re-
lationship for the spring and the stress-strain rate relationship for the
dashpot are written as

σs(t) = Eεs(t) σd(t) = ηε̇d(t), (1.2)

2 Constitutive Equations for Isotropic and Anisotropic Linear … 59

decomposition of the strain or the stain rate ε̇ = ε̇H+ε̇η is used, we arrive at equation
of the Maxwell model, hence

ε̇ = σ̇

E
+ σ

η
or σ + η

E
σ̇ = ηε̇ (2.2)

When the integration of above equation at constant stress σ = σ1 = const (σ̇ = 0)
and initial condition ε(0) = σ1/E is performed, we arrive at the creep function given
as, see Fig. 2.1b

ε = σ1

(
1
E

+ 1
η
t
)

(2.3)

or
ε = σ1 JM(t), JM(t) = 1

E
+ t

η
(2.4)

The time function JM(t) is the creep compliance function of the Maxwell model.

2.1.2 Voigt–Kelvin Model

TheVoigt–Kelvinmodel (V–K) consists of a linear spring element and a linear dashpot
element which are connected in parallel as shown in Fig. 2.2a. Adopting the additive
separation of stress into two parts applied to the spring σH = Eε and to the dashpot
ση = ηε̇ with ε = εH = εη , the differential equation of the V–K model takes the
form

ε̇ + E
η

ε = σ

η
(2.5)

If a constant stress σ = σ1 = const (σ̇ = 0) is applied to the V–K model, we arrive
at nonhomogeneous differential equation

ε̇ + E
η

ε = σ1

η
(2.6)

Fig. 2.2 Voigt–Kelvin
model: a mechanical
scheme, b creep strain at
constant stress input

(a) (b)

Figure 5: (a) Voigt-Kelvin model–(b) creep strain at constant stress input
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where E is the spring stiffness and η is the viscosity of the material. Re-
placing relations (1.2) into Eq. (1.1) leads to

σ(t) = Eεs(t) + ηε̇d(t). (1.3)

Since ε(t) = εs(t) = εd(t), it results

σ(t) = Eε(t) + ηε̇(t), (1.4)

which can be rewritten as

σ(t)

η
=
E

η
ε(t) + ε̇(t). (1.5)

The Voight-Kelvin model is a two-parameter (E and η) viscoelastic mo-
del, described by Eq. (1.5), which links stress to strain. If a constant stress
σ = σ1 = cost, (σ̇ = 0), is applied to the model, the nonhomogeneous
differential equation is retrieved

σ1

η
=
E

η
ε(t) + ε̇(t). (1.6)

The homogeneous equation of Eq. (1.6) is an equation of separate vari-
ables

ε̇

ε
= −E

η
, (1.7)

whose general integral is

ε(t) = CR(t)e

(
−Eη t

)
. (1.8)

By performing the variation of integration constant CR(t) with initial
condition ε(0) = 0, the solution of Eq. (1.6) is

ε(t) =
σ1

E

[
1− e

(
−Eη t

)]
(1.9)

or

ε(t) = σ1CR(t), CR(t) =
1

E

[
1− e

(
−Eη t

)]
. (1.10)
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Function CR(t) is the creep function of the Voight-Kelvin model, which
identifies the response to the unitary stress σ1. The Voight-Kelvin model
does not take into account the instantaneous elasticity and so CR(0) = 0,
Fig. 5-(b). If the model undergoes a stress σ(t), the variation of Eq. (1.8)
leads to

˙CR(t) =
1

η
e

(
E
η t

)
σ(t), (1.11)

whose general intergral is expressed as

˙CR(t) = CR1 +
1

η

∫ t

0

e

(
E
η ξ

)
σ(ξ)dξ. (1.12)

Replacing Eq. (1.12) in Eq. (1.8), with initial condition ε(0) = 0, leads to
CR1 = 0 such that the solition for ε(t) is

ε(t) =
1

η
e

(
−Eη t

) ∫ t

0

e

(
E
η ξ

)
σ(ξ)dξ =

=
1

η

∫ t

0

e

(
−Eη (t−ξ)

)
σ(ξ)dξ. (1.13)

The intergation by parts applied to Eq. (1.13) yields to the integral repre-
sentation of the Voight-Kelvin model

ε(t) =
σ(t)

E
− 1

E

∫ t

0

e

(
−Eη (t−ξ)

)
σ̇(ξ)dξ. (1.14)

Similarly, if the Voight-Kelvin model is subjected to a constant strain ε1

at t = 0 from the initial stress level σ1 = Eε1, the model does not present
a stress relaxation effect. In this particular case, the application of the
constant strain input, ε1, at t = 0, can be accomplished with an infinite
initial stress response σ(0)→∞, such that

σ(t) = ηε1δ(t) + Eε1H(t), (1.15)

where H(t) is the Heaviside unit function, describing the constant stress
in the spring, followed by the infinite stress input in dashpot governed

8



58 J.J. Skrzypek and A.W. Ganczarski

2.1 Selected Uniaxial Models of the Isotropic
Linear Viscoelastic Materials

Creep phenomena at elevated temperature are usually treated as nonlinear creep phe-
nomenon problems. There exists broad literature in the field of nonlinear creep, for
example, creep anisotropy Findley et al. [4], survey on constitutive models of non-
linear creep Skrzypek [13], Betten [2], interaction creep and plasticity Krempl [6],
coupling of creep and damage Skrzypek [14], Skrzypek and Ganczarski [15], creep
fatigue damage Murakami [7], and nonconventional creep models of anisotropic
material Altenbach [1] and others.

At the beginning, we confine to the commonly used uniaxial isotropic linear vis-
coelastic models for which a general differential equation models may be written as

p0σ + p1σ̇ + p2σ̈ + · · · pa
∂aσ

∂ta
= q0ε + q1ε̇ + · · · pb

∂bε

∂tb
(2.1)

where p0, p1, . . . , q0, q1, . . . denote material constants, and constitutive equation
is a linear function of the stress σ, strain ε, and their time derivatives σ̇, σ̈, etc.,
and ε̇, ε̈, etc. In such a case by the use of the Laplace transformation L { f (t)} =
f̂ (s) =

∞∫
0
e−stdt , a linear viscoelastic problem can be reduced to associated fictitious

elastic problem in terms of the transformed variable s, σ̂i j (x, s), then the viscoelastic
problemσi j (x, t) is obtained by the inverseLaplace transformation. Symbol { } stands
here for function argument of the Laplace transformation and should not be confused
with the Voigt vector notation.

2.1.1 Maxwell Model

The uniaxial Maxwell model (M) consists of a linear elastic spring εH = σ/E
and a linear viscous dashpot element ε̇η = σ/η connected in a series, Fig. 2.1.
Differentiation of the first formula with time yields ε̇H = σ̇/E . When the additive

Fig. 2.1 Maxwell’s
material: a mechanical
model, b creep curve under
constant loading

(a) (b)

Figure 6: (a) Maxwell mechanical model–(b) creep curve under constant
loading

by the δ-Dirac function. The ralaxation function in the Voight-Kelvin
model is

G(t) = E
(

1 +
η

E
δ(t)

)
, (1.16)

which is the response to the imposed unitary strain ε1.
Maxwell model
The Maxwell model is represented by a linear elastic spring connected
with a linear viscous dashpot element in series, Fig. 6-(a). If the model
undergoes a stress σ(t), which is equally applied on the spring and on the
dashpot (σ(t) = σs(t) = σd(t)), the deriving strain ε(t) is decomposed as
ε(t) = εs(t)+εd(t). By following a procedure similar to the Voight-Kelvin
model, the viscoelastic behaviour is described by the following equation

ε̇(t) =
σ̇(t)

E
+
σ(t)

η
, or σ(t) +

η

E
σ̇(t) = ηε̇(t). (1.17)

By performing an integration of Eq. (1.17) with σ = σ1 = const, (σ̇ = 0),
and imposing the initial condition ε(0) = σ1

E , it results

ε(t) = σ1

( 1

E
+

1

η
t
)
, (1.18)

where the creep function for the Maxwell model is determined as

ε(t) = σ1CR(t), CR(t) =
( 1

E
+

1

η
t
)
. (1.19)
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62 J.J. Skrzypek and A.W. Ganczarski

2.1.3 Standard Model

The Maxwell and the Voigt–Kelvin two-element uniaxial models described in the
Sects. 2.1.1 and 2.1.2 are very simple, although they exhibit strong limitations. The
linear creep function at constant stress input corresponding to the Maxwell model
does not confirm experiments, whereas the Voigt–Kelvinmodel is not capable to cap-
ture the instantaneous elastic strain effect. Trying to overcome the above objections,
the commonly used three-parameter standard model is composed of two parts, a
spring element (E) and the V–K unit (E1, η) connected in a series as shown in
Fig. 2.3a.

The differential equation of the standardmodel can be derived in an analogousway
as for the Maxwell and the Voigt–Kelvin simple models, such that after necessary
rearrangement used, the following is obtained

ηE
E1 + E

ε̇ + E1E
E1 + E

ε = σ + η

E1 + E
σ̇ (2.19)

The simple creep function, when the standard model is subjected to a step function
σ = σ1 = const (σ̇ = 0) and integrated with the initial condition ε(0) = σ1/E
used, takes one of two equivalent forms

ε = σ1

E

[(
1+ E

E1

)
− E

E1
exp

(
− E1

η
t
)]

(2.20)

or

ε = σ1 J s(t), J s(t) = 1
E

[(
1+ E

E1

)
− E

E1
exp

(
− E1

η
t
)]

(2.21)

if the time-dependent creep compliance function characterizing the standard model
J s(t) is used. Note the horizontal asymptote of ε(t) curve as shown in Fig. 2.3b with
the new definition used: 1/H = 1/E + 1/E1.

(a) (b)

Fig. 2.3 The standard model: a mechanical scheme, b creep at constant stress input with
instantaneous elastic strain built-inFigure 7: (a) standard model–(b) creep at constant stress input with instan-

taneous elastic strain built-in

If the Maxwell model undergoes a constant strain ε1, the stress relaxation
from the initial stress level σ1 = Eε1 at t = 0 to t→∞ is modelled as

σ(t) = σ1e

(
−Etη

)
, (1.20)

where the rate of stress decrease changes from the initial σ̇(0) = σ1E
η to

σ̇(∞) = 0. From Eq. (1.20), the relaxation function is G(t) = Ee−
E
η t.

Standard model
The Voight-Kelvin and the Maxwell models herein described are very
intuitive, although they show strong limitations. The Voigt-Kelvin mo-
del is not able to describe the instantaneous elastic strain effect, whereas
the linear creep function at constant stress input related to the Maxwell
model does not confirm the experimental tests. Thus, as alternative the
three-parameter standard model is proposed. Such a model consists of a
spring element (E) and a Voight-Kelvin element (E1, η) connected in se-
ries as depicted in Fig. 7-(a). The differential equation of the standard
model is

ηE

E1 + E
ε̇(t) +

E1E

E1 + E
ε(t) = σ(t) +

η

E1 + E
σ̇(t). (1.21)

When a step function σ = σ1 = const, (σ̇ = 0), is applied to the model
and Eq. (1.21) is integrated with the initial condition ε(0) = σ1

E , it results

ε(t) =
σ1

E

[(
1 +

E

E1

)
− E

E1
e

(
−E1

η t

)]
, (1.22)
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where the creep function corresponding with the standard model is

ε(t) = σ1CR(t), CR(t) =
1

E

[(
1 +

E

E1

)
− E

E1
e

(
−E1

η t

)]
. (1.23)

In Fig. 7-(b), it is represented the horizontal asymptote of ε(t) curve,
where the definition 1

H = 1
E + 1

E1
is employed. If the standard model un-

dergoes a constant strain at t = 0, the stress continuously decreases from
the initial levelEε1 to the asymptotically approached valueHε1(t→∞),
such that stress relaxation function of the standard model is

σ(t) = Eε1

[H(t)

E
+
(

1− H(t)

E

)
e−

t
n

)]
, (1.24)

where n = η
E+E1

and so the relaxation function is

G(t) = E
( E1

E + E1
+

E1

E + E1
e−

E+E1
η

)
. (1.25)

Burgers model
The standard model has an horizontal asymptote (strain stabilization) for
t → ∞ which usually is not observed in the experiments, indeed creep
strain shows an infinite increase with time. Therefore, the Burgers mo-
del is introduced to define such a behaviour. The model is made of the
Maxwell element, (E1, η1), and the Voigt-Kelvin element, (E2, η2), con-
nected in series, as represented in Fig. 8. The differential constitutive
equation of Burgers model is written as

η1η2

E2
ε̈(t) + η1ε̇(t) =

η1η2

E1E2
ε̈(t) +

( η1

E1
+
η1

E2
+
η2

E2

)
σ̇(t) + σ(t). (1.26)

Eq. (1.26) is a second-order linear differential equation in terms of strain
and stress with constant coefficients, since it depends on the Young’s
moduli E1, E2 and the viscosity parameters η1 and η2. By applying a
step stress input at t = 0 to the Burgers model, the integration of Eq.
(1.26), with initial conditions ε(0) = σ1

E and ε̇(0) = σ1

η1
+ σ1

η2
, implies

ε(t) =
σ1

E1

(
1 +

E2

η1
t+

E1

E1

[
1− e

−E2
η2

t
])
, (1.27)

11



Figure 8: Burgers model

where the creep function referred to the Burgers model model is

ε(t) = σ1CR(t), CR(t) =
1

E1

(
1 +

E2

η1
t+

E1

E1

[
1− e

−E2
η2

t
])
. (1.28)

The Boltzmann superposition principle
Let ε(t) be a shear strain acting on a given material and let σ(t) be the
effect deriving from this cause. Thus, a variation in the shear strain at
time t1 produces an effect occurring at some time t > t1, which can be
written as (Martinez-Boza et al. (2001)):

σ(t) = G(t− t1)δσ(t1), (1.29)

whereG(t−t1) is the relaxation function which is a decreasing function of
(t− t1). To compute the stress produced by a strain, occurring at time t2,
the incremental response of the material to the second strain is supposed
to be independent on the previous one and so it results

σ(t) = G(t− t1)δσ(t1) +G(t− t2)δσ(t2). (1.30)

In case of a series of N changes in the shear strain, taking place at a
different time ti, the cumulative stress is fromulated as

σ(t) =

N∑
i=1

G(t− ti)δεi. (1.31)
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If the change in strain takes place continuously, the integral may raplace
the sum as

σ(t) =

∫ t

−∞
G(t− τ)dε(τ), (1.32)

which can be reformulated as

σ(t) =

∫ t

−∞
G(t− τ)ε̇(τ)dτ. (1.33)

The lower limit infers that all the strains that have taken place in the
past will contribute to the effect at the current time t. The Eq. (1.33)
will be used in the Chapter 2 for a 3-D case. An analogous procedure
can be performed to obtain the stress in terms of the strain and the creep
function,

ε(t) =

∫ t

−∞
CR(t− τ)σ̇(τ)dτ. (1.34)

The limitation of the classical models is due to the fact that, to obtain an
acceptable approximation level, they could become too difficult to man-
age. The fractional derivative model allows greater flexibility, since the
derivation order can vary to obtain a constitutive law suitable for the
material. In the elastic solids, the stress is proportional to the zero-order
derivative of the strain, whereas for the liquids the stress is proportional
to the first derivative ot the strain. Thus, it is clear to suppose that for
the viscoelastic materials the stress is proportional to the derivative of
real order of the strain. This hypothesis led to the design of a mathemat-
ical model called Spring-Pot, whose schematic representation is shown
in Fig. 9. By manipulating the kernel of Eq. (1.33) and by recalling the
definition of the Caputo derivative, (Lakshmikantham et al. (2009)), of
order n of a function f(t), Dα

t f(t) = 1
Γ(n−α)

∫ t
−∞

fn(τ)
(t−τ)(α+1−n) dτ , the

governing equation of the Spring-Pot is written as

σ(t) =
Cα

Γ(1− α)

∫ t

−∞
ε̇(τ)(t− τ)−αdτ = CαD

α
t ε(t), 0 ≤ α ≤ 1, (1.35)

where Γ is the Gamma function and the coefficient Cα can be obtained
sperimentally, (Di Paola et al.).
In Di Paola et al. (2011), it is emphasized the validity of fractional model
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68 3. La Viscoelasticità Lineare

porta sempre ad una forma esponenziale della funzione di risposta, in antitesi
con l’esperienza di Nutting che invece propone un modello con legge di potenza.

Il modello alle derivate frazionarie (FDM fractional di↵erential model) con-
sente una maggiore flessibilità con un minor numero di parametri concentrati
da calibrare, il che si traduce in una semplificazione notevole. La flessibilità di
tale modello è data dal fatto che l’ordine di derivazione può variare al fine di
ottenere una legge costitutiva adatta al materiale in questione.

Nei solidi elastici lo sforzo è proporzionale alla derivata di ordine zero della
deformazione, mentre per i liquidi lo sforzo è proporzionale alla derivata prima
della deformazione, quindi risulta naturale supporre che per i materiali viscoe-
lastici lo sforzo sia proporzionale alla derivata di ordine reale, intermedio tra 0
e 1, della deformazione nel tempo. Tale ipotesi portò a concepire un modello
matematico detto Spring-Pot la cui rappresentazione schematica è mostrata in
Figura 3.13.

C , 
(t)

(t)

Figura 3.13: Lo Spring-Pot.

L’equazione di governo dello Spring-Pot proposta da Scott Blair [40], [41],
[42], è la seguente:

�(t) = E 0D
↵
t "(t), (0  ↵  1) (3.31)

in cui ↵ e E sono costanti dipendenti dal materiale.
Successivamente A. N. Gerasimov sugger̀ı un’analoga espressione per gene-

ralizzare la legge base della deformazione, ricorrendo alla derivata frazionaria
di Caputo:

�(t) = k C
�1D↵

t "(t), (0  ↵  1) (3.32)

in cui k è una costante del materiale che può essere vista come una viscosità
generalizzata. È utile precisare che l’espressione di Scott-Blair (3.31) e quella

Figure 9: Spring-Pot structure.

to study viscoelastic behavior. It is proven that if relaxation test is well
fitted by a power law decay, then the fractional constitutive law involv-
ing Caputo’s derivative shows up. Consequently, the constitutive law is
governed by a fractional differential equation. Fractional calculus is seen
as an extension of the classical differential calculus and fractional oper-
ators are convolution integrals with power law kernel. There is point
in observing that such a constitutive law can capture both relaxation
and creep behavior just identifying only two parameters. This remark
avoids the use of combining simple models as Maxwell and/or Kelvin,
twhich rely on several parameters for capturing both creep and relax-
ation tests. Moreover, to validate the fractional model, two polymers of
different chemical physical properties are tested. For each of them both
relaxation and creep test are carried out, with different values of ampli-
tudes and always the theoretical relaxation and creep functions overlap
the experimental data leading to the conclusion that the fractional model
can properly capture the viscoelastic behavior. In Di Paola et al. (2014), it
is shown that the best fitting performed by taking or not into account the
initial ramp provides very different parameters and then the constitutive
law is strongly influenced by the real experimental test. It is also shown
that by accounting for the effective strain (or stress) history leads to an
impressive matching between experimental tests and results obtained by
using Boltzmann superposition principle and power law as candidate for
the best fitting procedure. As a concluding remark, it is assessed that in
every experimental test the rate of the initial ramp or the time at which
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the unitary (constant value of) strain (or stress) is attained must be al-
ways declared. In Ezzat et al. (2015), a simply method is introduced in
the field of generalized thermo-viscoelasticity with one and two relax-
ation times and applied to three different problems. This method gives
exact solutions in the Laplace transform domain without any assumed
restrictions on either the temperature or the displacement distributions.
A numerical method based on a Fourier-series expansion is used for the
inversion process. The method used in the paper is applicable to a wide
range of thermoelasticity problems. It can be applied to problems, which
are described by the linearized Navier–Stokes equations for thermoelec-
tric fluid, were the governing equations are coupled. Representative re-
sults for the all functions for generalized theory are distinctly different
from those obtained for the coupled theory. This due to the fact that
thermal waves in the coupled theory travel with an infinite speed of
propagation as opposed to finite speed in the generalized case. It is clear
that for small values of time the solution is localized in a finite region.
This region grows with increasing time and its edge is the location of
the wave front. In Colinas-Armijo et al. (2016), an approach to separate
the elastic and the viscous phase in the fractional stress–strain relation is
provided with the aid of an equivalent classical model (Kelvin–Voigt or
Maxwell). For such equivalent model the parameters are selected by an
optimization procedure. Once the parameters of the equivalent model
are defined, characteristic times of fractional viscoelasticity are defined
as ratio between viscosity and stiffness. In the numerical applications,
three kinds of different excitations are considered, that is, harmonic, peri-
odic, and pseudo-stochastic. It is shown that, for any periodic excitation,
the equivalent models have some important features: (i) the dissipated
energy per cycle at steady-state coincides with the Staverman–Schwarzl
formulation of the fractional model, (ii) the elastic and the viscous coef-
ficients of the equivalent model are strictly related to the storage and the
loss modulus, respectively.

15



1.2.3 Homogenization models

Composites are characterized by a multiscale nature, since the size of the
individual heterogenities ε is much smaller than the dimension of the
entire body L i.e. ε ≤ L. Consequently, their physical and mechani-
cal properties can be analysed either from a macroscopic or from a mi-
croscopic standpoint. Both the approaches present several drawbacks:
the macroscopic approach may not accurately capture the microscopic
mechanisms and the interconnections between the various constituents.
On the other side, the microscopic approach could reproduce an over-
whelming quantity of information but of scarce concern. Based on the
premises above, a multiscale analysis model, consisting of a synergy be-
tween the macroscopic and the microscopic approach, represents a chal-
lenging compromise to overcome the limitations of the two models.
In such a framework, the pioneering works of Maxwell, 1954; Voigt, 1889;
Reuss, 1929; Rayleigh, 1871; and Einstein, 1906 envisioned the homoge-
nization theory as a promising methodology to recognize and model the
effects of the microscopic behaviour on the overall properties of mate-
rials. Furthermore, the employment of such a theory prevents the high
computational costs required to tackle an heterogeneous system.
In particular, Maxwell (1954) derived the effective conductivity of a di-
lute particulate composite. Reuss (1929) proposed a multipole method
to determine the effective electrical conductivity of a periodic array of
cylinders. Rayleigh (1871) determined the effective elastic properties of
a composite and Einstein (1906) found the effective viscosity of a dilute
suspension of rigid spheres in a viscous fluid. Later, homogenization ap-
poaches were devoted to problems in electrical conductivity, magnetism,
electro-magnetism, thermoelasticity, porous media, fracture dynamics,
fluid dynamics, as well as viscoelasticity and elasticity.
Three main classes of homogenization techniques are possible to esti-
mate the overall static and dynamic properties of composites with peri-
odic microstructures: the computational techniques, the asymptotic and
the asymptotic-variational techniques. The basic idea of the three ho-
mogenization methods is to replace an heterogeneous material at the
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1.2 The problem of homogenization

Computational methods for solving elasticity problems that involve large numbers of re-

peating structures is not practical; it calls for a considerable amount of computational resources.

If the object to be modeled contains a vast number of this repeating structure, i.e. the unit cell,

it follows that its behavior should approach that of a body consisting of a continuous material.

The purpose of the homogenization process is to find the e↵ective properties for the heterogeneous

material as if it were a continuous medium. The process is explained graphically in 1.2.

Figure 1.2: The homogenization problem

Several approaches have been considered when attempting to homogenize lattice structures.

Often mentioned in the literature is the method employed by Gibson and Ashby [23], which consists

in studying the modes of deformation of the unit cell walls under specific loads. E↵ective properties

of the material are found by assuming cell walls behave as Euler Bernoulli beams. It has been

pointed out by Arabnejad and Pasini [4] that the method gives adequate solutions for simple

topologies and loads. However, as the unit cell structure increases in complexity, the solution is

not easy to find. Furthermore, understanding how cell topology deforms under loading is necessary

and not always obvious.

Therefore, more recent approaches aim to find a more generalized method of homogeniza-

tion, one that does not require extensive topology analysis and can be equally applied to describe

di↵erent and more complex geometries. Energy methods, like the one used by Kumar and McDow-

ell [30], try to carry displacement of nodes in the lattice to a continuum via Taylor expansions.

3

Figure 10: heterogeneous domain vs. homogeneous domain.

micro-scale with an equivalent homogenous material at the macro-scale,
which can be modelled through either a first order (Cauchy) or a non-local
continuum, Fig. 10, 4.
Generally, the macro-scale length stands for the dimension of the do-
main, whereas the micro-scale length characterizes the size of the rep-
resentative volume element (RVE) or unit cell of the material, which is
the smallest part of the composite containing a great number of infor-
mation on the geometrical and mechanical properties at the microscopic
level, Fig. 11 5. A first-order computational homogenization is a proce-
dure that can be articulated in four steps (Geere et al. (2010)): (1) the
RVE is isolated from the periodic domain; (2) boundary conditions at the
micro-scale are provided from the macroscopic input variables and they
are applied to the RVE (transition from macro to micro); (3) the macro-
scopic output variables are performed from the study of the deformed
microstructural RVE (transition from micro to macro); (4) the (numerical)

4D. Bracho. Consistent Asymptotic Homogenization Method for La ice Structures Based
on the Virtual Power Principle. (2016). All theses. 2546.

5Y.M. Shabana, N. Noda. Numerical evaluation of the thermomechanical effective prop-
erties of a functionally graded material using the homogenization method. International
Journal of Solids and Structures, Vol 45, Issues 11− 12, Pages 3494− 3506, 2008.
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Figure 11: macroscopic, microscopic domain and unit cell.

relation between the macroscopic input and output variables are recov-
ered.
As it is emphasized in Bacigalupo et al., 2016a; Fantoni et al., 2017; and
Kouznetsova et al., 2004, a first order homogenization procedure may not
take into account the size-effects and the non-local phenomena related to
the micro-scale length. As a result, a first order homogenization proce-
dure does not provide a exhaustive modelling of composites in presence
of high gradients of stresses, deformations, temperature, chemical po-
tential, heat and mass fluxes and waves dispersion. Therefore, non-local
higher order homogenization techniques can be deemed as an alternative
strategy. Indeed, such approaches supply constitutive relations related to
an equivalent higher order continuum, embedding characteristic scale-
lengths connected with the microstructural effects. The term ”non-local”
points out that the state of deformation at a certain point of the domain
relies on the deformation in its closer points. There are three fundamen-
tal groups of non-local continua: the multipolar, the micromorphic and the
strain-gradient continua.

Green and Rivlin (1964), proposed a continuum theory based on mul-
tipolar displacement and velocity fields subjected to multipolar body
forces and surface tractions of arbitrary order. Such a theory was inspired

18



by a work on generalized stresses, generalized velocities, body and sur-
face forces by Truesdell and Toupin (1960). Multipolar field variables can
be found in theories concerning beams, plates and shells arising from
the passage from a three-dimensional problem to a one-dimensional or
a two-dimensional problem. Green and Rivlin introduced an energy
balance including multipolar tractions and body forces with their work-
conjugate multipolar velocities. Multipolar stresses can be derived either
by applying such an energy balance to a tetrahedron or from multipolar
tractions by supposing that the tractions relies linearly on the unit nor-
mal vector or on its dual. As a result, n-polar stresses are tensors of rank
n+1. Moreover the energy balance enables to determine the local balance
equations. The autors proved that an oriented domain can be seen as a
special case of a multipolar continuum. Oriented domain are governed
by a number of independent vectors, the so-called directors, connected
to a material point of the continuum.

Eringen and Suhubu (1964), proposed a micromorphic continuum
theory, which is supposed to be the most accurate top-down microscale
approach. Micromorphic theory aims at predicting physical phenom-
ena at atomic, molecular and nano level. As a consequence, a material
point may have more degrees of freedom than the only three degrees
of freedom in classical field theory. Despite that, the molecules that
compose the internal structure of the material points withstand defor-
mations and rotations produced by the displacements and rotations of
their constituent atoms. Micromorphic theory conceives a material do-
main as a continuous collection of deformable particles, characterized by
a proper finite size and inner structure, whereas classical continuum me-
chanics desccribed a material domain as a continuous collection of ma-
terial points with infinitesimal size and without inner structure. In ad-
dition, Eringen considered the deformable particle as a geometric point
described by some vectors, indicating the orientations and the intrinsic
deformations of all the material points in the deformable particle. This
is in line with the classical description where a material point in a con-
tinuum is provided with physical properties such as mass density, dis-
placement vector, electric field, stress tensor, etc. Thus micromorphic
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theory describe several physical phenomena, which otherwise cannot be
described by classical field theories.
Standard continuum mechanics takes into account state functions re-
lying only on local deformation meaures. On the other hand, strain
gradient theories take place when gradients of deformation of a certain
order are introduced. Non-linear elastic strain gradient continua were
studied by Toupin (1964), whereas the linear elastic theory was devel-
opped by Mindlin and Eshell (1968), integrating the elastic strain en-
ergy density with the spatial gradients of the strains. By supposing that
stresses and hyper-stresses are provided by the partial derivatives of the
strain energy density with respect to the strains and the strain gradi-
ents, constitutive relations are obtained, whereas the Hamilton’s prin-
ciple provides a local equilibrium statement. Concerning with linear
materials, the constitutive relations are written in terms of the elastic-
ity tensors. In the simplest case, the stresses and the strains are asso-
ciated to the fourth-order elasticity tensor, whereas hyper-stresses and
strain gradients are related by a sixth-order tensor. Including the first
and the second gradients of the strains, a linear second order strain gra-
dient elasticity theory was proposed by Mindlin (1964), where sixteen
material parameters are taken into account for an isotropic second or-
der strain gradient domain. Simplified material laws were proposed by
many authors, as Koiter, 1964; Kleinert, 1989; Yang et al., 2002; Aifantis,
2003; and Fleck and Hutchinson, 2001. The effective properties of two-
phase composites with a linear couple-stress constitutive law for each
phase have been estimated by Smyshlyaev and Fleck (1995). Such out-
comes were employed to carry out the overall non-linear behaviour of
the composites with a plastic strain-gradient constitutive model for the
phases, (Sanchez-Palencia (1974)), and of a polycrystalline aggregate of
single crystals with a strain-gradient constitutive law for each slip sys-
tem. Drugan and Willis (1996), proposed a non-local effective consti-
tutive equation for linearly elastic composites by performing the equi-
librium equation with respect to stress polarization and ensemble aver-
aging. Generally, three main classes of homogenization techniques are
possible: the asymptotic techniques (Bensoussan et al., 1978; Bakhvalov
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and Panasenko, 1984; Gambin and Kroner, 1989; Allaire, 1992; Meguid
and Kalamkarov, 1994; Boutin, 1996; Andrianov et al., 2008; Panasenko,
2009; T.H. Tran and Bonnet, 2012; Bacigalupo, 2014), the variational-
asymptotic techniques (Smyshlyaev and Cherednichenko, 2000; Smyshlyaev,
2009; Bacigalupo and Gambarotta, 2014b; Bacigalupo et al., 2014) and
many identification approaches, involving the analytical (Bigoni and Dru-
gan, 2007; Bacca et al., 2013a; Bacca et al., 2013b; Bacigalupo and Gam-
barotta, 2013) and the computational techniques (Forest and Sab, 1998;
Kouznetsova et al., 2002; Forest, 2002; Kouznetsova et al., 2004; Kacz-
marczyk et al., 2008; Yuan et al., 2008; Bacigalupo and Gambarotta, 2010;
Forest and Trinh, 2011; Addessi et al., 2013; Zah and Miehe, 2013). In
particular, Smyshlyaev and Cherednichenko (2000) paved the way for a
combined asymptotic-variational method, based on suitable minimum
functional energy. Moreover, the method guarantees the ellipticity of the
higher-order homogenized equations and provides excellent approxima-
tions of the overall properties of composites.
In case of viscoelastic materials with a periodic microstructure, there are
still few contributions devoted to homogenization techniques applied
to this particular class of composites and three groups can be distin-
guished: the analytical identification techniques (Hashin, 1965; Hashin,
1970; Chen and Lakes, 1993; Masson and Zaoui, 1999; Beurthey and Za-
oui, 2000; Masson et al., 2012; Meaud and Hulbert, 2013; Hoang-Duc et
al., 2013); the computational techniques (Ohno et al., 2000; Haasemann
and Ulbricht, 2010; Tran et al., 2011 and Q. Chen and Geng, 2017) and
the asymptotic techniques (Francfort et al., 1983, Francfort and Suquet,
1986; Yi et al., 1998; Lahellec and Suquet, 2007; Suquet, 2012 and Hui and
Oskay, 2013).
According to the identification analytical techniques, Hashin (1965) shows
the connection between the macro- scopic elastic and viscoelastic stress-
strain relations of multiphase elastic and viscoelastic media by means
of the correspondence principle and some results for viscoelastic stress-
strain relations of multiphase media are provided. Hashin (1970) em-
ployed the correspondence principle to derive expressions for effective
com- plex moduli of viscoelastic composites. Chen and Lakes (1993) in-
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vestigated the viscoelastic properties of composites to identify structures
that prompt a combination of high stiffness and high loss tangent. There-
fore, laminates having Voigt and Reuss structure and composite mate-
rials achieving the Hashin-Shtrikman bounds on stiffness are assessed
through the correspondence principle. Masson and Zaoui (1999) ana-
lyzed a new Hill-type approach in case of rate-dependent elastoplastic
heterogeneous materials. The associated linearization method reckons
on an affine formulation rathen than the Hills incremental one and on
the employment of the correspondence principle to derive the concen-
tration problem. In Beurthey and Zaoui (2000), the relaxation spectra
of a two-phase isotropic material whose phases are isotropic Maxwell
media are analytically determined in accordance with the generalized
self-consistent schemes. Such spectra show evident discrepancies that
are related to the different underneath morphology, either symmetri-
cal (polycrystal-type) or asymmetrical (composite-type). In Masson et
al. (2012), an approximate self-consistent modelling is analysed to de-
termine the effective viscoelastic response of polycrystals that shows an
ageing constitutive behaviour. Meaud and Hulbert (2013) detected the
effective dynamic moduli and loss factors of Reuss and Voigt compos-
ites in response to a uniaxial harmonic load. By means of the viscoelas-
tic correspondence principle, the formulae for Reuss and Voigt compos-
ites of infinite dimensions are determined. Moreover, it is observed that
the effective loss factor of a Reuss composite depends on the values of
the Poisson’s ratio and bulk loss factors of the constituent materials. In
Hoang-Duc et al. (2013), an approximate solution for retrieving the ef-
fective behavior of linear viscoelastic heterogeneous media in the case of
elastic inclusions embedded within a viscoelastic matrix is outlined. The
solution in the Laplace-Carson domain is determined through the gen-
eralized self-consistent model and the simplification is determined in an
explicit expression of the inverse Laplace transform.
In the context of the computational homogenization techniques, Ohno
et al. (2000) dealt with an homogenization model for elastic-viscoplastic
periodic materials, which allows determining the macroscopic and the
microscopic stress and strain states in nonlinear time-dependent peri-
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odic materials and it encompasses any problem where the history of
the macro-strain and the macro-stress depends upon the time. Haase-
mann and Ulbricht (2010) considered a microstructure where all the con-
stituents are linear viscoelastic. The constitutive laws at the microscale
were converted into a Laplace-Carson domain, where the constitutive
equations have a quite similar form to those of a linear elastic material
and then a homogenization approach based on the Hill-Mandel condi-
tion was exploited. The Laplace-Carson transform associated with the
application of a finite element method enables the computation of the
relaxation tensor in the Laplace domain and the inverse Laplace-Carson
transformation provides the material properties in the time domain. Tran
et al. (2011) presented a computational homogenization method to de-
termine the response of a linear viscoelastic heterogeneous material. The
components of the relaxation tensor, which appear in the constitutive law
at the macro-scale, are numerically determined in the time domain, with-
out involving the Laplace transform. The employment of computational
techniques is very attractive thanks to its simplicity, but they could not
challenge dynamic problems and they could show some disadvantage
in case of homogenization in micro- morphic non-local and higher-order
continua (Forest and Trinh, 2011; Bacigalupo and Gambarotta, 2010a;
Bacigalupo, 2014).
Concerning with the asymptotic techniques applied to viscoelastic ma-
terials, Francfort et al. (1983) developed an homogenization technique
in the quasi-static framework applied to a linear viscoelastic solid. In
particular, the homogenized stress field is formulated in terms of the ho-
mogenized elastic and viscous tensor components. Moreover, the ex-
pression of corresponding fourth-order kernel is derived and is proven
to be symmetric and exponentially decreasing. The existence and the
uniqueness of the solution related to the homogenized problem is de-
termined by means of a fixed point method, inspired by the Cauchy-
Lipschitz technique. Francfort and Suquet (1986) investigated a general
theory of viscoelastic material of Kelvin-Voigt type and, in a homoge-
nization theory framework, determined the existence and uniqueness of
the solution of an initial boundary value problem in terms of displace-
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ment and temperature for a bounded domain. The behavior of the dis-
placement field is investigated when the inhomogeneities become dense
in the domain. Moreover, the displacement field is found to converge
(weakly) to the displacement of a body consisting of an homogeneous
material which is no more of Kelvin-Voigt type but a material with fad-
ing memory. A theorem of strong convergence for the strain rate field is
assessed, without any assumption on the regularity of the displacement
field of the homogenized problem. This theorem allows homogenizing
the mechanical dissipa- tion and finally homogenizing the energy equa-
tion. Lahellec and Suquet (2007) analyzed an approximate scheme in
the time domain for deriving the effective response of linear viscoelastic
composites. Suquet (2012) studied of the effective behavior of compos-
ites made of linear viscoelastic phases. Hui and Oskay (2013) proposed
a second order homogenized method with multiple length scales for de-
tecting wave propagation in a one dimensional viscoelastic composite
material, by proceeding with an asymptotic expansion of the governing
system of equations defined in the time domain and then recast into the
Laplace domain. Srivastava and Nemat-Nasser (2014) studied the prob-
lem of reflection at the interface of a layered periodic composite and its
dynamic homogenized equivalent. In particular, a two-phase composite
and a three-phase composite, which exhibits negative effective proper-
ties over its second branch, is proved. Based upon the reflected energy
profile of the two cases, it is observable that there are good arguments
for considering the second branch of a three-phase composite as a true
negative branch with negative group velocity. Through arguments of cal-
culated reflected energy, it is observed that infinite-domain homogeniza-
tion is much more applicable to finite cases of the three-phase composite
than it is to the two-phase composite. In fact, the reliability of dynamic
homogenization extends to most of the first branch (negligible reflection)
for the three-phase composite. This is in contrast with a periodic compos-
ite without local resonance where the approximation of homogenization
worsens with increasing frequency over the first branch and is demon-
strably bad on the second branch. The effect of the interface location on
the applicability of homogenization is also considered.
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Motivated by the state-of-the-art literature on homogenization, the present
study proposes a dynamic variational-asymptotic homogenization tech-
nique for the analysis of a viscoelastic material with periodic microstruc-
ture, modelled as a non-local continuum, in line with the asymptotic and
variational-asymptotic methods proposed in Smyshlyaev and Chered-
nichenko (2000) and with the studies related to the variational principles
for linear viscoelasticity in Fabrizio and Morro (1992) and Leitman (1966).
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Chapter 2

Dynamic asymptotic
homogenization model for
periodic viscoelastic
materials

In the present chapter, the asymptotic expansion of the micro- displace-
ment field in the transformed Laplace domain allows to obtain, from the
expression of the micro-scale field equations, a set of recursive differ-
ential problems defined over the periodic unit cell. Consequently, the
cell problems are derived in terms of perturbation functions depending
on the geometrical and physical-mechanical properties of the material
and its microstructural heterogeneities. A down-scaling relation is for-
mulated in a consistent form, which correlates the microscopic to the
macroscopic transformed displacement field and its gradients through
the perturbation functions. Average field equations of infinite order are
determined by substituting the down-scale relation into the micro-field
equation. Based on a variational approach, the macroscopic field equa-
tions of a non-local continuum are delivered and the local and non-local
overall constitutive and inertial tensors of the homogenized continuum
are determined. Finally, the problem of wave propagation and the re-
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lated dispersion curves is studied.

2.1 Problem setting and field equation in the time
domain

Let Ω be a three-dimensional viscoelastic heterogeneous material that
displays a periodic microstructure. A generic point of the material is
identified by the position vector x = x1e1 +x2e2 +x3e3, related to a sys-
tem of coordinates with origin at pointO and orthogonal base {e1, e2, e3}.
Let A = [0, ε] × [0, δε] × [0, ε] be a periodic cell with characteristic size ε.
A is described by three orthogonal periodicity vectors v1, v2 and v3 de-
fined as v1 = d1e1 = εe1, v2 = d2e2 = δεe2 and v3 = d3e3 = εe3. The
material domain is set up by the repetition of the cell A in accordance
with the directions of v1, v2 and v3, see Fig. 12. Since the material is A-
periodic, the micro relaxation tensor Gm(x, t) = Gmijhkei ⊗ ej ⊗ eh ⊗ ek,
which depends on time and accounts for the viscoelastic effects, and the
material density ρm(x) comply with the following conditions:

Gm(x+ vi, t) = Gm(x, t), i = 1, 2, 3 ∀x ∈ A, (2.1)

ρm(x+ vi, t) = ρm(x, t), i = 1, 2, 3 ∀x ∈ A. (2.2)

The micro stress σ(x, t) constitutive relation, which models the vis-
coelastic elements of the heterogeneous material, is expressed in terms
of the hereditary integral, Christensen (2012):

σ(x, t) =

∫ t

−∞
Gm(x, t− τ)ε̇(x, τ)dτ, (2.3)

where the superscript m refers to the microscale and ε(x, t) = εijei ⊗ ej
is the micro strain tensor. Moreover, t denotes the time coordinate and
the superimposed dot indicates time derivative. The material under-
goes small displacements and so the micro strain tensor is defined as
ε(x, t) = 1

2 (∇u(x, t) + ∇Tu(x, t)), where ∇u is the gradient of the mi-
cro displacement u(x, t). In the time domain, the deformation response
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Figure 12: heterogeneous and homogeneous 3D domain Ω with periodic
cell A and the corresponding nondimensional cellQ.

of the material under dynamic loading is expressed by the momentum
balance equation:

∇ · σ(x, t) + b(x, t) = ρm(x)ü(x, t), (2.4)

where u(x, t) is the micro-displacement field and b(x, t) are the body
forces.
In the derivation of the theory, the heterogeneous material is supposed
to be subjected to a system of L-periodic body forces b(x, t), with zero
mean values over L = [0, L]× [0, δL].
The structural (or macroscopic) length L is assumed to be much greater
than the microstructural length ε, i.e. L>> ε, to allow the scales separa-
tion condition and so L is considered as an actual representative portion
of the material. Let Q = [0, 1] × [0, δ] be the nondimensional cell repro-
ducing the periodic microstructure. Q is determined by rescaling the
size of the periodic cell A for the characteristic length ε. Accordingly,
two variables are introduced to differentiate the two scales, namely the
macroscopic (or slow) one, x ∈ A, which measures the slow fluctuations,
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and the microscopic (or fast) variable, ξ = x
ε ∈ Q, which measures the

fast propagation of the signal.
Thanks to cellQ, the properties (2.1) and (2.2) may be rewritten in terms
of the microscopic variable ξ and so Gm and ρm are assumed to be Q-
periodic and defined on Q as

Gm(x, t) = Gm(ξ = x/ε, t), ρm(x, t) = ρm(x/ε, t). (2.5)

Bearing in mind the definition of the strain tensor ε, the minor simmetry
of the relaxation tensor Gm is applied to ε̇ in the integral (2.3) and the
substitution of Eq. (2.3) into Eq. (2.4) yields to

∇ ·
[ ∫ t

−∞
Gm
(x
ε
, t− τ

)
∇u̇(x, τ)dτ

]
+ b(x, t) = ρm(x)ü(x, t). (2.6)

Denoting with [[f ]] = f i(Σ)− f j(Σ) the jump of the function values f at
the interface Σ between two different phases i and j in the periodic cell
A, the following fully-bonded interface conditions hold

[[u(x)]]|x∈Σ = 0,
[[ ∫ t

−∞
Gm
(x
ε
, t−τ

)
∇u̇(x, τ)dτ ·n

]]∣∣∣
x∈Σ

= 0, (2.7)

where n represents the outward normal to the interface Σ. Since Gm and
ρm areQ-periodic and the body forces are L-periodic, the micro displace-
ment depends on both the slow variable x and the fast one ξ and can be
expressed as

u = u
(
x,
x

ε
, t
)
.

2.2 Field equation in the Laplace domain

The two-sided Laplace transform of an arbitrary, real valued, time vary-
ing function, f ∈ R, is defined as Paley and Wiener (1934)

L(f(t)) = f̂(s) =

∫ +∞

−∞
f(t)e−stdt, s ∈ C, (2.8)
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where the Laplace argument, s, and the Laplace transform, f̂ , are com-
plex valued (i.e. f̂ : C → C ). The derivative rule for the Laplace trans-
form is provided by

L
(∂nf(t)

∂tn

)
= snf̂(s), (2.9)

and the convolution rule of f1 and f2 is given as

L(f1(t) ∗ f2(t)) = L(f1(t))L(f2(t)), (2.10)

Equation (2.6) governing the periodic viscoelastic material in the time
domain will be recast in the Laplace domain employing the Laplace trans-
form (2.8), the convolution rule (2.10) and the derivative rule (2.9).
Therefore, in the Laplace domain, it results

∇·
[
L
(
Gm
(x
ε
, t
))
L
(
∇u̇
(x
ε
,x, t

))]
+L(b(x, t)) = ρm

(x
ε

)
L
(
ü
(x
ε
,x, t

))
or, in other terms:

∇ ·
[
Ĝm
(x
ε
, s
)
s∇û

(x
ε
,x, s

)]
+ b̂(x, s) = ρm

(x
ε

)
s2û

(x
ε
,x, s

)
, (2.11)

where û and∇û represent the micro-displacement field and the gradient
of the micro-displacement field converted in the Laplace domain. More-
over Ĝm is the micro-relaxation tensor and b̂(x, s) are the body forces
transformed in the Laplace domain. In addition, it is convenient to con-
sider Ĉm

(
x
ε , s
)

= sĜm
(
x
ε , s
)

.
The governing equation of the periodic viscoelastic material defined in
the Laplace domain is

∇ · (Ĉm∇û) + b̂ = ρms2û. (2.12)

Denoting with [[f ]] = f i(Σ) − f j(Σ) the jump of the function values f
at the interface Σ between two phases i and j in the periodic cell A, the
following continuity conditions hold for a perfectly bonded interface

[[û(x)]]|x∈Σ = 0,
[[(

Ĉm
(x
ε
, s
)
∇û
(
x,
x

ε
, s
))
· n
]]∣∣∣

x∈Σ
= 0, (2.13)

where n represents the outward normal to the interface Σ. Eq. (2.12),
which models the periodic viscoelastic material in the Laplace domain,
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shows a structure similar to the equation characterizing an elastic mate-
rial, apart from the presence of the complex frequency s, which affects
the constitutive tensors. Moreover, the micro-relaxation tensor Ĝm is a
general kernel that describes the behaviour and the properties of a vis-
coelastic material. The solution of Eq. (2.12) is too expensive from both
a numerical and an analytical point of view, because the coefficients are
Q-periodic.
In order to cope with such a drawback, it is convenient to employ a non-
local asymptotic homogenization technique to turn the heterogeneous
material into an equivalent homogeneous one. Such a procedure gener-
ates equations, equivalent to (2.12), whose coefficients are not affected by
oscillations and their solutions are close to those of the original equation.
Moreover, the computational cost to solve (2.12) significantly reduces.
In the equivalent homogenized material, by considering a reference sys-
tem {O, e1, e2, e3}, the macro-displacement transformed in the Laplace
domain is denoted as Û(x) = ÛMi ei, with respect to a point x, and the

transformed displacement gradiend is defined as∇Û(x) =
∂ÛMi
∂xj

e1⊗e2⊗
e3.

2.3 Asymptotic expansion of the microscopic dis-
placement

Based on the asymptotic approach developed in Smyshlyaev and Chered-
nichenko (2000) and Bacigalupo (2014), the micro displacement u is ex-
pressed as an asymptotic expansion in terms of the parameter ε that sep-
arates the slow x variable from the fast one ξ = x

ε ,

uh

(
x,
x

ε
, t
)

=

+∞∑
l=0

εlu
(l)
h = u

(0)
h

(
x,
x

ε
, t
)

+εu
(1)
h

(
x,
x

ε
, t
)

+ε2u
(2)
h

(
x,
x

ε
, t
)

+

+ O(ε3). (2.14)
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The Laplace transform (2.8) is applied to Eq. (2.14) and leads to

L
(
uh

(
x,
x

ε
, t
))

=
+∞∑
l=0

εlû
(l)
h = û

(0)
h

(
x,
x

ε
, s
)

+ εû
(1)
h

(
x,
x

ε
, s
)

+

+ ε2û
(2)
h

(
x,
x

ε
, s
)

+ O(ε3), (2.15)

which is equivalent to the asymptotic expansion of the micro displace-
ment performed in the time domain. Let us consider the formula

D

Dxk
û
(
x, ξ =

x

ε

)
=
[∂ûh(x, ξ)

∂xk
+
∂ûh(x, ξ)

∂ξk

∂ξk
∂xk

]∣∣∣
ξ= x

ε

=

=
[ ∂

∂xk
ûh(x, ξ) +

1

ε
ûh,k

]∣∣∣
ξ= x

ε

, (2.16)

which introduces the macroscopic derivative ∂
∂xk

ûh and the microscopic
derivative ûh,k in the transformed Laplace domain, and let us apply it to
the asymptotic expansion (2.15), leading to:

D

Dxk
û
(
x, ξ =

x

ε

)
=
[∂û(0)

h

∂xk
+ ε

∂û
(1)
h

∂xk
+ ε2 ∂û

(2)
h

∂xk
+ ...

]
+

+
1

ε

[
û0
h,k + εû

(1)
h,k + ε2û

(2)
h,k + ...

]∣∣∣
ξ= x

ε

. (2.17)

The asymptotic technique searches for the solution of Eq. (2.12) as a de-
composition in increasing powers of the microscopic lenght ε. To this
purpose, the replacement of the asymptotic expansion (2.15) into the
microscopic field equation (2.12) in the Laplace domain and the rear-
rangement of the terms with equal power ε yield the asymptotic field
equation

ε−2
(
Ĉmijhkû

(0)
h,k

)
,j

+ ε−1
[(
Ĉmijhk

(∂û(0)
h

∂xk
+ û

(1)
h,k

))
,j

+
∂

∂xj

(
Ĉmijhkû

(0)
h,k

)]
+

+ε0
[(
Ĉmijhk

(∂û(1)
h

∂xk
+û

(2)
h,k

))
,j

+
∂

∂xj

(
Ĉmijhk

(∂û(0)
h

∂xk
+û

(1)
h,k

))
+b̂i−ρms2u

(0)
h

]
+
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ε
[(
Ĉmijhk

(∂û(2)
h

∂xk
+ û

(3)
h,k

))
,j

+
∂

∂xj

(
Ĉmijhk

(∂û(1)
h

∂xk
+ û

(2)
h,k

))
− ρms2û

(1)
h

]
+

+ O(ε2)
]∣∣∣
ξ= x

ε

= 0. (2.18)

Interface conditions (2.13) are rephrased with respect to the fast variable
ξ since the micro displacement ûh(x, ξ) is supposed to be Q−periodic
with respect to ξ and smooth in the slow variable x. Indicating with Σ1

the interface between two different phases in the unit cell Q and consid-
ering the asymptotic expansion (2.15) of the micro displacement, inter-
face conditions read[[
û

(0)
h

]]∣∣∣
ξ∈Σ1

+ ε
[[
û

(1)
h

]]∣∣∣
ξ∈Σ1

+ ε2
[[
û

(2)
h

]]∣∣∣
ξ∈Σ1

+ ... = 0 (2.19)

1

ε

[[(
Ĉmijhkû

(0)
h,k

)
nj

]]∣∣∣
ξ∈Σ1

+ ε0
[[(

Ĉmijhk

(∂û(0)
h

∂x̂k
+ û

(1)
h,k

))
nj

]]∣∣∣
ξ∈Σ1

+

+ ε
[[(

Ĉmijhk

(∂û(1)
h

∂x̂k
+ û

(2)
h,k

))
nj

]]∣∣∣
ξ∈Σ1

+

+ ε2
[[(

Ĉmijhk

(∂û(2)
h

∂x̂k
+ û

(3)
h,k

))
nj

]]∣∣∣
ξ∈Σ1

+ ...+ = 0.

Recursive differential problems and their solutions

The asymptotic field equation (2.18) produces a set of recursive differ-
ential problems that determine sequentially the solutions û0, û1... In
particular, at the order ε−2, the differential problem, which stems from
problem (2.18), is (

Ĉmijhkû
(0)
h,k

)
,j

= f
(0)
i (x), (2.20)

with interface conditions[[
û

(0)
h

]]∣∣∣
ξ∈Σ1

= 0
[[(

Ĉmijhkû
(0)
h,k

)
nj

]]∣∣∣
ξ∈Σ1

= 0.
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The solvabiliy condition of this differential problem, in the class ofQ−periodic
solutions û(0)

h , implies that f (0)
i (x) = 0 and so the differential problem

(2.20) develops in the form(
Ĉmijhkû

(0)
h,k

)
,j

= 0. (2.21)

The solution results to be

û
(0)
h (x, ξ, s) = ÛMh (x, s), (2.22)

where ÛMh (x, s) is the transformed macroscopic displacement that does
not depend on the microstructure.

Bearing in mind the solution (2.22), the differential problem from
(2.18), at the order ε−1, is(

Ĉmijhkû
(1)
h,k

)
,j

+ Ĉmijhk,j
∂ÛMh
∂xk

= f
(1)
i (x), (2.23)

since ÛMh,k = 0. Its interface conditions are

[[
û

(1)
h

]]∣∣∣
ξ∈Σ1

= 0
[[(

Ĉmijhk

(
û

(1)
h,k +

∂ÛMh
∂xk

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

Similarly, the solvability condition in the class of Q−periodic functions
ensures that

f
(1)
i (x) = 〈Ĉmijhk,j〉

∂Û
(M)
h

∂xk
, (2.24)

where 〈(·)〉 = 1
|Q|
∫
Q(·)dξ and |Q| = δ. Moreover, theQ-periodicity of the

components Ĉmijhk and the divergence theorem entail f (1)
i (x) = 0 and the

differential problem

(
Ĉmijhkû

(1)
h,k

)
,j

+ Ĉmijhk,j
∂ÛMh
∂xk

= 0, ∀∂Û
M
h

∂xk
(2.25)

has the following solution

û
(1)
h (x, ξ, s) = N

(1,0)
hpq1

(ξ)
∂ÛMp
∂xq1

, (2.26)
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whereN (1,0)
hpq1

is the perturbation function, which depends on the fast vari-
able ξ. The perturbation functions are supposed to have zero mean over
the unit cell Q and so N (1,0)

hpq1
complies with the normalization condition

〈N (1,0)
hpq1
〉 =

1

|Q|

∫
Q
N

(1,0)
hpq1

(ξ)dξ = 0. (2.27)

Furthermore, the perturbation functions exclusively depend on the ge-
ometry and on the mechanical properties of the microstructure. The dif-
ferential problem at the order ε0 is

(
Ĉmijhk

(∂û(1)
h

∂xk
+û

(2)
h,k

))
,j

+
∂

∂xj

(
Ĉmijhk

(∂û(0)
h

∂xk
+û

(1)
h,k

))
−ρms2û

(0)
i = f

(2)
i (x),

(2.28)
with interface conditions[[

û
(2)
h

]]∣∣∣
ξ∈Σ1

= 0
[[(

Ĉmijhk

(∂û(1)
h

∂x̂k
+ û

(2)
h,k

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

Considering the solutions (2.22) and (2.26) of the differential problems
at the order ε−2 and ε−1, respectively, the differential problem (2.28) is
turned into(
Ĉmijhkû

(2)
h,k

)
,j

+
((
ĈmijhkN

(1,0)
hpq1

)
,j

+ Ĉmijhq1 +
(
ĈmijhkN

(1,0)
hpq1,k

)) ∂2ÛMp
∂xq1∂xj

+

− ρms2ÛMi = f
(2)
i (x), (2.29)

with interface conditions[[
û

(2)
h

]]∣∣∣
ξ∈Σ1

= 0,
[[(

Ĉmijhk

(
û

(2)
h,k +N

(1,0)
hpq1

∂2ÛMp
∂xq1∂xk

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

Again, solvability condition of differential problem (2.29) in the class of
Q−periodic functions and the divergence theorem lead to

f
(2)
i (x) = 〈Ĉmijhq1 + ĈmijhkN

(1,0)
hpq1,k

〉 ∂
2ÛMp

∂xq1∂xj
− 〈ρm〉s2ÛMi (2.30)

35



and, consequentely, the solution of the differential problem at the order
ε0 is

û
(2)
h (x, ξ, s) = N

(2,0)
hpq1q2

∂2ÛMp
∂xq1∂xq2

+N
(2,2)
hp s2UMp , (2.31)

where N (2,2)
hp is the perturbation function depending on the parameter s.

Higher order recursive differential problems

The recursive differential problems are established at the order ε, ε2,
ε2w̃−1 and ε2w̃, with w̃ ∈ Z and w̃ ≥ 2 and they are helpful to formu-
late the cell problems.
Taking account of the solutions (2.26) and (2.31) related to the differen-
tial problems at the order ε−1 and ε0, respectively, the differential prob-
lem at the order ε, stemmed from equation (2.18), is(
Ĉmijhkû

(3)
h,k

)
,j

+
((
ĈmikhjN

(2,0)
hpq1q2

)
,k

+ ĈmikhjN
(2,0)
hpq1q2,j

+

+
(
Ĉmijhq2N

(1,0)
hpq1

)) ∂3ÛMp
∂xq1∂xq2∂xk

+

+
[(
Ĉmijhq1N

(2,2)
)
,j

+ Ĉmiq1hjN
(2,2)
hp,j − ρmN

(1,0)
ipq1

]
s2
∂ÛMp
∂xq1

= f
(3)
i (x),

(2.32)

with interface conditions [[
û

(3)
h

]]∣∣∣
ξ∈Σ1

= 0, (2.33)

[[(
Ĉmijhk

(
û

(3)
h,k +N

(2,0)
hpq1q2

∂3ÛMp
∂xq1∂xq2∂xk

+N (2,2)s2
∂ÛMp
∂xq1

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

The solvability condition of differential problem (2.32) in the class of
Q−periodic functions and the divergence theorem provide

f
(3)
i (x) =

〈
ĈmikhjN

(2,0)
hpq1q2,j

+
(
Ĉmikhq2N

(1,0)
hpq1

)〉 ∂3ÛMp
∂xq1∂xq2∂xk

+
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+
〈
Ĉmiq1hjN

(2,2)
hp,j − ρmN

(1,0)
ipq1

〉
s2
∂ÛMp
∂xq1

, (2.34)

and consequentely the solution of the differential problem at the order ε
is

û
(3)
h (x, ξ, s) = N

(3,0)
hpq1q2q3

∂3ÛMp
∂xq1∂xq2∂xq3

+N
(3,2)
hpq1

s2
∂ÛMp
∂xq1

. (2.35)

Considering the solutions (2.31) and (2.35) related to the differential
problems at the order ε0 and ε, respectively, the differential problem at
the order ε2, derived from equation (2.18), is(
Ĉmijhkû

(4)
h,k

)
,j

+
((
ĈmikhjN

(3,0)
hpq1q2q3

)
,k

+ Ĉmiq3hkN
(2,0)
hpq1q2

+

+
(
ĈmikhjN

(3,0)
hpq1q2q3,j

)) ∂4ÛMp
∂xq1∂xq2∂xq3∂xk

+

+
[(
Ĉmijhq2N

(3,2)
hpq1

)
,j

+ Ĉmiq2hq1N
(2,2)
hp + Ĉmiq2hkN

(3,2)
hpq1,k

− ρmN (2,0)
ipq1q2

]
s2
∂ÛMp
∂xq1

+

− ρmN (2,2)
ip s4ÛMp = f

(4)
i (x), (2.36)

with interface conditions [[
û

(4)
h

]]∣∣∣
ξ∈Σ1

= 0, (2.37)

[[(
Ĉmijhk

(
û

(4)
h,k +N

(3,0)
hpq1q2q3

∂4ÛMp
∂xq1∂xq2∂xq3∂xk

+N (2,2)s2
∂ÛMp
∂xq1

+

+N
(3,2)
hpq1

s2
∂2ÛMp
∂xq1∂xk

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

The solvability condition of differential problem (2.36) in the class of
Q−periodic functions and the divergence theorem yield

f
(4)
i (x) =

〈(
Ĉmiq3hkN

(2,0)
hpq1q2

+ ĈmikhjN
(3,0)
hpq1q2q3,j

)〉 ∂4ÛMp
∂xq1∂xq2∂xq3∂xk

+
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+
〈
Ĉmiq2hq1N

(2,2)
hp + Ĉmiq2hkN

(3,2)
hpq1,k

− ρmN (2,0)
ipq1q2

〉
s2
∂ÛMp
∂xq1

− 〈ρmN (2,2)
ip 〉s4ÛMp ,

(2.38)

and the solution of the differential problem at the order ε2 reads

û
(4)
h (x, ξ, s) = N

(4,0)
hpq1q2q3q4

∂4ÛMp
∂xq1∂xq2∂xq3∂xq4

+N
(4,2)
hpq1q2

s2
∂2ÛMp
∂xq1∂xq2

+

+N
(4,4)
hp s4ÛMp . (2.39)

The generic recursive differential problem of the odd order ε2w̃−1, with
w̃ ∈ Z and w̃ ≥ 2, is

(Ĉmijhku
(2w̃+1)
h,k )j +

1

2w̃ + 1

∑
P∗(q)

[(
Ĉmijhq2w̃+1

N
(2w̃,0)
hpq1...q2w̃

)
,j

+

+ Ĉmiq2w̃+1hjN
(2w̃,0)
hpq1...q2w̃,j

+ Ĉmiq2w̃+1hq2w̃N
(2w̃−1,0)
hpq1...q2w̃−1

] ∂2w̃+1ÛMp
∂xq1 ...∂xq2w̃+1

+

+
1

2w̃ − 1

∑
P∗(q)

[(
Ĉmijhq2w̃−1

N
(2w̃,2)
hpq1...q2w̃−2

)
,j

+ Ĉmiq2w̃−1hq2w̃−2
N

(2w̃−1,2)
hpq1...q2w̃−3

+

+ Ĉmiq2w̃−1hjN
(2w̃,2)
hpq1...q2w̃−2,j

− ρmN (2w̃−1,0)
ipq1...q2w̃−1

] ∂2w̃−1ÛMp
∂xq1 ...∂xq2w̃−1

s2+

+

n=w̃−1∑
n=1

(1− δ1n)
1

2w̃ − 2n+ 1

∑
P∗(q)

[(
Ĉmijhq2w̃+1−2n

N
(2w̃,2n)
hpq1...q2w̃−2n

)
,j

+

+ Ĉmiq2w̃+1−2nhq2w̃−2n
N

(2w̃−1,2n)
hpq1...q2w̃−1−2n

+ Ĉmiq2w̃+1−2nhjN
(2w̃,2n)
hpq1...q2w̃−2n,j

+

− ρmN (2w̃−1,2n−2)
ipq1...q2w̃+1−2n

] ∂2w̃+1−2nÛMp
∂xq1 ...∂xq2w̃+1−2n

s2n+
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+
[(
Ĉmijhq1N

(2w̃,2n)
hp

)
,j

+ Ĉmiq1hkN
(2w̃,2w̃)
hp,k − ρmN (2w̃−1,2w̃−2)

ipq1

]∂Ûmp
∂xq1

s2w̃ =

=
1

2w̃ + 1

∑
P∗(q)

〈Ĉmiq2w̃+1hjN
(2w̃)
hpq1...q2w̃,j

+

+ Ĉmiq2w̃+1hq2w̃N
(2w̃−1)
hpq1...q2w̃−1

〉 ∂2w̃+1ÛMp
∂xq1 ...∂xq2w̃+1

+

+
1

2w̃ − 2

∑
P∗(q)

〈Ĉmiq2w̃−1hq2w̃−2
N

(2w̃−1,2)
hpq1...q2w̃−3

+ Ĉmiq2w̃−1hjN
(2w̃,2)
hpq1...q2w̃−2,j

+

− ρmN (2w̃−1)
ipq1...q2w̃−1

〉 ∂2w̃−1ÛMp
∂xq1 ...∂xq2w̃−1

s2+

+

n=w̃−1∑
n=1

(1− δ1n)
1

2w̃ − 2n+ 1

∑
P∗(q)

〈Ĉmiq2w̃+1−2nhq2w̃−2n
N

(2w̃−1,2n)
hpq1...q2w̃−1−2n

+

+ Ĉmiq2w̃+1−2nhjN
(2w̃,2n)
hpq1...q2w̃−2n,j

− ρmN (2w̃−1,2n−2)
ipq1...q2w̃+1−2n

〉 ∂2w̃+1−2nÛMp
∂xq1 ...∂xq2w̃+1−2n

s2n+

+ 〈Ĉmiq1hkN
(2w̃,2w̃)
hp,k − ρmN (2w̃−1,2w̃−2)

ipq1
〉∂Û

m
p

∂xq1
s2w̃ (2.40)

and their interface conditions are[[
û

(2w̃+1)
h

]]∣∣∣
ξ∈Σ1

= 0 (2.41)

and[[(
Ĉmijhkû

(2w̃+1)
h,k +

1

2w̃ + 1

∑
P∗(q)

(
Ĉmijhq2w̃+1

N
(2w̃,0)
hpq1...q2w̃

) ∂2w̃+1ÛMp
∂xq1 ...∂xq2w̃+1

+
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+
1

2w̃ − 1

∑
P∗(q)

(
Ĉmijhq2w̃−1

N
(2w̃,2)
hpq1...q2w̃−2

) ∂2w̃−1ÛMp
∂xq1 ...∂xq2w̃−1

s2+

+

n=w̃−1∑
n=1

(1− δ1n)
1

2w̃ − 2n+ 1
×

×
∑
P∗(q)

(
Ĉmijhq2w̃+1−2n

N
(2w̃,2n)
hpq1...q2w̃−2n

) ∂2w̃+1−2nÛMp
∂xq1 ...∂xq2w̃+1−2n

s2n+

+ Ĉmijhq1N
(2w̃,2w̃)
hp

∂ÛMp
∂xq1

s2w̃
)
nj

]]∣∣∣
ξ∈Σ1

= 0.

The generic recursive differential problem of the even order ε2w̃ is

(Ĉmijhku
(2w̃+2)
h,k )j +

1

2w̃ + 2

∑
P∗(q)

[(
Ĉmijhq2w̃+2

N
(2w̃+1)
hpq1...q2w̃+1

)
,j

+

+ Ĉmiq2w̃+2hjN
(2w̃+1)
hpq1...q2w̃+1,j

+ Ĉmiq2w̃+2hq2w̃+1
N

(2w̃)
hpq1...q2w̃

] ∂2w̃+2ÛMp
∂xq1 ...∂xq2w̃+2

+

+
1

2w̃

∑
P∗(q)

[(
Ĉmijhq2w̃N

(2w̃+1,2)
hpq1...q2w̃−1

)
,j

+ Ĉmiq2w̃hq2w̃−1
N

(2w̃,2)
hpq1...q2w̃−2

+

+ Ĉmiq2w̃hjN
(2w̃+1,2)
hpq1...q2w̃−1,j

− ρmN (2w̃)
ipq1...q2w̃

] ∂2w̃ÛMp
∂xq1 ...∂xq2w̃

s2+

+

n=w̃−1∑
n=1

(1− δ1n)
1

22w̃−2n+2

∑
P∗(q)

[(
Ĉmijhq2w̃−2n+2

N
(2w̃+1,2n)
hpq1...q2w̃−2n+1

)
,j

+

+ Ĉmiq2w̃−2n+2hq2w̃+1−2n
N

(2w̃,2n)
hpq1...q2w̃−2n

+ Ĉmiq2w̃+2−2nhjN
(2w̃+1,2n)
hpq1...q2w̃+1−2n,j

+
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− ρmN (2w̃,2n−2)
ipq1...q2w̃+2−2n

] ∂2w̃+2−2nÛMp
∂xq1 ...∂xq2w̃+2−2n

s2n+

+
1

2

[(
Ĉmijhq2N

(2w̃+1,2ŵ)
hpq1

)
,j

+ Ĉmiq2hq1N
(2w̃,2w̃)
hp + Ĉmiq2hjN

(2w̃+1,2w̃)
hpq1,j

+

− ρmN (2w̃,2w̃−2)
ipq1q2

+ Ĉmijhq1N
(2w̃+1,2ŵ)
hpq2

)
,j

+

+ Ĉmiq1hq2N
(2w̃,2w̃)
hp + Ĉmiq1hjN

(2w̃+1,2w̃)
hpq2,j

− ρmN (2w̃,2w̃−2)
ipq2q1

] ∂2Ûmp
∂xq1∂xq2

s2w̃+

− ρmN (2w̃,2w̃)
ip ÛMp s2w̃ =

1

2w̃ + 2

∑
P∗(q)

〈Ĉmiq2m̃+2hjN
(2w̃+1)
hpq1...q2w̃+1,j

+ Ĉmiq2w̃+2hq2w̃+1
N

(2w̃)
hpq1...q2w̃

〉 ∂2w̃+2ÛMp
∂xq1 ...∂xq2w̃+2

+

+
1

2w̃

∑
P (q)

〈Ĉmiq2w̃hq2w̃−1
N

(2w̃,2)
hpq1...q2w̃−2

+

+ Ĉmiq2w̃hjN
(2w̃+1,2)
hpq1...q2w̃−1,j

− ρmN (2w̃)
ipq1...q2w̃

〉 ∂2w̃ÛMp
∂xq1 ...∂xq2w̃

s2+

+

n=w̃−1∑
n=1

(1− δ1n)
1

2w̃ − 2n+ 2

∑
P∗(q)

〈Ĉmiq2w̃−2n+2hq2w̃+1−2n
N

(2w̃,2n)
hpq1...q2w̃−2n

+

+ Ĉmiq2w̃+2−2nhjN
(2w̃+1,2n)
hpq1...q2w̃+1−2n,j

− ρmN (2w̃,2n−2)
ipq1...q2w̃+2−2n

〉 ∂2w̃+2−2nÛMp
∂xq1 ...∂xq2w̃+2−2n

s2n+

+
1

2

[(
Ĉmiq2hq1N

(2w̃,2w̃)
hp + Ĉmiq2hjN

(2w̃+1,2w̃)
hpq1,j

− ρmN (2w̃,2w̃−2)
ipq1q2

+

41



+ Ĉmiq1hq2N
(2w̃,2w̃)
hp + Ĉmiq1hjN

(2w̃+1,2w̃)
hpq2,j

− ρmN (2w̃,2w̃−2)
ipq2q1

] ∂2Ûmp
∂xq1∂xq2

s2w̃+

− 〈ρmN (2w̃,2w̃)
ip 〉ÛMp s2w̃, (2.42)

and their interface conditions are[[
û

(2w̃+2)
h

]]∣∣∣
ξ∈Σ1

= 0 (2.43)

and[[(
Ĉmijhkû

(2w̃+2)
h,k +

1

2w̃ + 2

∑
P∗(q)

(
Ĉmijhq2w̃+2

N
(2w̃+1,0)
hpq1...q2w̃+1

) ∂2w̃+2ÛMp
∂xq1 ...∂xq2w̃+2

+

+
1

2w̃

∑
P∗(q)

(
Ĉmijhq2w̃N

(2w̃+1,2)
hpq1...q2w̃−1

) ∂2w̃ÛMp
∂xq1 ...∂xq2w̃

s2+

+

n=w̃−1∑
n=1

(1− δ1n)
1

2w̃ − 2n+ 2

∑
P∗(q)

(
Ĉmijhq2w̃−2n+2

N
(2w̃+1,2n)
hpq1...q2w̃−2n+1

)
X

X
∂2w̃+2−2nÛMp

∂xq1 ...∂xq2w̃+2−2n

s2n+

+
1

2

[(
Ĉmijhq2N

(2w̃+1,2m̃)
hpq1

+ Ĉmijhq1N
(2w̃+1,2w̃)
hpq2

) ∂2ÛMp
∂xq1∂xq2

s2w̃
])
nj

]]∣∣∣
ξ∈Σ1

= 0.

(2.44)

2.4 Cell problems and perturbation functions

In the previous section, the solutions û(0)
h , û(1)

h , û(2)
h , ... have been es-

tablished. Such solutions are employed to formulate the cell problems,
which are classified according to the even power of the parameter s.
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Cell problems related to s0

The substitution of solution (2.26) into problem (2.25) leads to the follow-
ing cell problem at the order ε−1(

ĈmijhkN
(1,0)
hpq1,k

)
,j

+ Ĉmijpq1,j = 0, (2.45)

with interface conditions derived in terms of the perturbation function
N

(1,0)
hpq1,k[[

N
(1,0)
ipq1

]]∣∣∣
ξ∈Σ1

= 0
[[(

Ĉmijhk

(
N

(1,0)
hpq1,k

+ δhpδkq1

))
nj

]]∣∣∣
ξ∈Σ1

= 0,

(2.46)
where δhp and δkq1 are the Kronecker delta functions. Once the perturba-
tion function N (1,0)

hpq1,k
has been determined, and thanks to equation (2.29)

and its solution (2.31), the cell problem at the order ε0 is derived and the
symmetrized version with respect to indices q1 and q2 is(
ĈmijhkN

(2,0)
hpq1q2,k

)
,j

+
1

2

[(
Ĉmikhq2N

(1,0)
hpq1

)
,k

+ Ĉmiq2pq1 +
(
Ĉmiq2hkN

(1,0)
hpq1,k

)
+

+
(
Ĉmikhq1N

(1,0)
hpq2

)
,k

+ Ĉmiq1pq2 +
(
Ĉmiq1hkN

(1,0)
hpq2,k

)]
=

=
1

2
〈Ĉmiq2hq1 +

(
Ĉmiq2hkN

(1,0)
hpq1,k

)
+ Ĉmiq1hq2 +

(
Ĉmiq1hkN

(1,0)
hpq2,k

)
〉, (2.47)

with interface conditions [[
N

(2,0)
ipq1q2

]]∣∣∣
ξ∈Σ1

= 0, (2.48)

[[(
ĈmijhkN

(2,0)
hpq1q2,k

+
1

2

(
Ĉmijhq2N

(1,0)
hpq1

+ Ĉmijhq1N
(1,0)
hpq2

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

The solution of the cell problem (2.47) and (2.48) is the perturbation func-
tion N (2,0)

ipq1q2
. The cell problem at the order εw with w ∈ Z and w ≥ 1 is(

ĈmijhkN
(w+2,0)
hpq1...qw+2,k

)
,j

+
1

w + 2

∑
P∗(q)

[
(Ĉmijhqw+2

N
(w+1,0)
hpq1...qw+1

),j+
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+ Ĉmiqw+2hjN
(w+1,0)
hpq1...qw+1,j

+ Ĉmiqw+2hqw+1
N

(w,0)
hpq1...qw

]
=

=
1

w + 2

∑
P∗(q)

〈Ĉmiqw+2hjN
(w+1,0)
hpq1...qw+1,j

+ Ĉmiqw+2hqw+1
N

(w,0)
hpq1...qw

〉, (2.49)

and the corresponding interface conditions are[[
N

(w+2,0)
ipq1...qw+2

]]∣∣∣
ξ∈Σ1

= 0 (2.50)

[[(
ĈmijhkN

(w+2,0)
hpq1...qw+2,k

+
1

w + 2

∑
P∗(q)

Ĉmijhqw+2
N

(w+1,0)
hpq1...qw+1

)
nj

]]∣∣∣
ξ∈Σ1

= 0,

where symbol P∗(q) denotes all the possible permutations of the multi-
index q = q1, q2, ..., ql that does not exhibit fixed indices, see A. The res-
olution of cell problem (2.49) allows determining the form of the pertur-
bation function N (w+2,0)

ipq1...qw+2
.

Cell problems related to s2

The substitution of solution (2.31) into Eq. (2.29) generates the cell prob-
lem at the order ε0(

ĈmijhkN
(2,2)
hp,k

)
,j
− ρmδip = −δip

〈
ρm
〉
, (2.51)

with interface conditions:[[
N

(2,2)
ip

]]∣∣∣
ξ∈Σ1

= 0,
[[
ĈmijhkN

(2,2)
hp,k

]]∣∣∣
ξ∈Σ1

= 0, (2.52)

as well as the cell problem (2.47), which is related to the case s0. From the
resolution of problem (2.51) and (2.52), the perturbation function N

(2,2)
ip

is derived.
The perturbation function N

(3,2)
ipq1

is the solution of the cell problem ob-
tained at the order ε1(
ĈmijhkN

(3,2)
hpq1,k

)
j

+
[
(Ĉmijhq1N

(2,2)
hp ),j + Ĉmiq1hjN

(2,2)
hp,j − ρmN

(1,0)
ipq1

]
=
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=
〈
Ĉmiq1hjN

(2,2)
hp,j − ρmN

(1,0)
ipq1

〉
, (2.53)

with interface conditions[[
N

(3,2)
ipq1

]]∣∣∣
ξ∈Σ1

= 0,
[[
ĈmijhkN

(3,2)
hpq1,k

+ Ĉmijhq1N
(2,2)
hp )nj

]]∣∣∣
ξ∈Σ1

= 0.

(2.54)
Meanwhile, at the order ε2, the perturbation function N (4,2)

ipq1q2
is the solu-

tion of the cell problem(
ĈmijhkN

(4,2)
hpq1q2,k

)
,j

+
1

2

[
(Ĉmijhq2N

(3,2)
hpq1

),j + Ĉmiq2hq1N
(2,2)
hp + Ĉmiq2hkN

(3,2)
hpq1,k

+

− ρmN (2,0)
hpq1q2

+ (Ĉmijhq1N
(3,2)
hpq2

),j + Ĉmiq1hq2N
(2,2)
hp + Ĉmiq1hkN

(3,2)
hpq2,k

+

− ρmN (2,0)
hpq2q1

]
=

1

2
〈Ĉmiq2hq1N

(2,2)
hp + Ĉmiq2hkN

(3,2)
hpq1,k

− ρmN (2,0)
hpq1q2

+

+ Ĉmiq1hq2N
(2,2)
hp + Ĉmiq1hkN

(3,2)
hpq2,k

− ρmN (2,0)
hpq2q1

〉, (2.55)

whose interface conditions read[[
N

(4,2)
ipq1q2

]]∣∣∣
ξ∈Σ1

= 0, (2.56)

[[(
ĈmijhkN

(4,2)
hpq1q2,k

+
1

2

(
Ĉmijhq2N

(3,2)
hpq1

+ Ĉmijhq1N
(3,2)
hpq2

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

Finally, at the order εw+2, with w ∈ Z and w ≥ 1, the perturbation func-
tion N (w+4,2)

ipq1...qw+2
is derived from the cell problem(

ĈmijhkN
(w+4,2)
hpq1....qw+2,k

)
,j

+
1

w + 2

∑
P∗(q)

[(
Ĉmijhqw+2

N
(w+3,2)
hpq1...qw+1

)
,j

+

+ Ĉmiqw+2hqw+1
N

(w+2,2)
hpq1....qw

+ Ĉmiqw+2hjN
(w+3,2)
hpq1...qw+1,j

− ρmN (w+2)
ipq1...qw+2

]
=

=
1

w + 2

∑
P∗(q)

〈Ĉmiqw+2hqw+1
N

(w+2,2)
hpq1....qw

+ Ĉmiqw+2hjN
(w+3,2)
hpq1...qw+1,j

+
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− ρmN (w+2,0)
ipq1...qw+2

〉, (2.57)

equipped with the interface conditions[[
N

(w+4,2)
ipq1...qw+2

]]∣∣∣
ξ∈Σ1

= 0, (2.58)

[[(
Ĉmijhqw+2

N
(w+4,2)
hpq1...qw+2,k

+
1

w + 2

∑
P∗(q)

(
Ĉmijhqw+2

N
(w+3,2)
hpq1...qw+1

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

Cell problems related to s2n

The cell problems related to power s2n are here devised and their cor-
responding perturbation functions are established. At the order ε(2n−2),
with n ∈ Z and n ≥ 2, the cell problem is

(
ĈmijhkN

(2n,2n)
hp,k

)
,j
− ρmN (2n−2,2n−2)

ip = −〈ρmN (2n−2,2n−2)
ip 〉, (2.59)

with interface conditions[[
N

(2n,2n)
ip

]]∣∣∣
ξ∈Σ1

= 0,
[[
ĈmijhkN

(2n,2n)
hp,k

]]∣∣∣
ξ∈Σ1

= 0, (2.60)

and its solution is the perturbation function N (2n,2n)
ip .

Whereas at the order ε(2n−1), the perturbation function N (2n+1,2n)
ipq1

is the
solution of the cell problem(
ĈmijhkN

(2n+1,2n)
hpq1,k

)
,j

+
[(
Ĉmijhq1N

(2n,2n)
hp

)
,j

+ Ĉmiq1hkN
(2n,2n)
hp,k +

− ρmN (2n−1,2n−2)
ipq1

]
=
〈
Ĉmiq1hkN

(2n,2n)
hp,k − ρmN (2n−1,2n−2)

ipq1

〉
, (2.61)

with interface conditions:[[
N

(2n+1,2n)
ipq1

]]∣∣∣
ξ∈Σ1

= 0,

[[
(ĈmijhkN

(2n+1,2n)
hpq1,k

+ Ĉmijhq1N
(2n,2n)
hp )nj

]]∣∣∣
ξ∈Σ1

= 0. (2.62)
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The cell problem evaluated for ε(2n) is(
ĈmijhkN

(2n+2,2n)
hpq1q2,k

)
,j

+
1

2

[(
Ĉmijhq2N

(2n+1,2n)
hpq1

)
,j

+ Ĉmiq2hq1N
(2n,2n)
hp +

+ Ĉmiq2hjN
(2n+1,2n)
hpq1,j

− ρmN (2n,2n−2)
ipq1q2

+
(
Ĉmijhq1N

(2n+1,2n)
hpq2

)
,j

+

+ Ĉmiq1hq2N
(2n,2n)
hp + Ĉmiq1hjN

(2n+1,2n)
hpq2,j

− ρmN (2n,2n−2)
ipq2q1

]
=

〈1

2
Ĉmiq2hq1N

(2n,2n)
hp + Ĉmiq2hjN

(2n+1,2n)
hpq1,j

− ρmN (2n,2n−2)
ipq1q2

+

+ Ĉmiq1hq2N
(2n,2n)
hp + Ĉmiq1hjN

(2n+1,2n)
hpq2,j

− ρmN (2n,2n−2)
ipq2q1

〉, (2.63)

with interface conditions[[
N

(2n+2,2n)
ipq1q2

]]∣∣∣
ξ∈Σ1

= 0, (2.64)

[[(
ĈmijhkN

(2n+2,2n)
hpq1q2,k

+
1

2

(
Ĉmijhq2N

(2n+1,2n)
hpq1

+ Ĉmijhq1N
(2n+1,2n)
hpq2

))
nj

]]∣∣∣
ξ∈Σ1

= 0,

and its solution is the perturbation function N (2n+2,2n)
ipq1q2

. Finally, the per-

turbation function N
(w+2n+2,2n)
ipq1...qw+2

is the solution of the cell problem for
εw+2n(
ĈmijhkN

(w+2n+2,2n)
hpq1...qw+2,k

)
,j

+
1

w + 2

∑
P∗(q)

[(
Ĉmijhqw+2

N
(w+2n+1,2n)
hpq1...qw+1

)
,j

+

+ Ĉmiqw+2hqw+1
N

(w+2n,2n)
hpq1...qw

+ Ĉmiqw+2hjN
(w+2n+1,2n)
hpq1...qw+1,j

− ρmN (w+2n,2n−2)
ipq1...qw+2

]
=

=
1

w + 2

∑
P (q)

〈Ĉmiqw+2hqw+1
N

(w+2n,2n)
hpq1...qw

+ Ĉmiqw+2hjN
(w+2n+1,2n)
hpq1...qw+1,j

+
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− ρmN (w+2n,2n−2)
ipq1...qw+2

〉, (2.65)

whose interface conditions are[[
N

(w+2n+2,2n)
ipq1...qw+2

]]∣∣∣
ξ∈Σ1

= 0, (2.66)

[[(
ĈmijhkN

(w+2n+2,2n)
hpq1...qw+2,k

+
1

w + 2

∑
P∗(q)

(
Ĉmijhqw+2

N
(w+2n+1,2n)
hpq1...qw+1

))
nj

]]∣∣∣
ξ∈Σ1

= 0.

In Smyshlyaev and Cherednichenko (2000) and Bacigalupo (2014), it is
emphasized that the uniqueness of the perturbation functionsN (i,2r)

hpq1...qi−2r
,

derived from the cell problems (2.45)-(2.66), is guaranteed by imposing
the normalization condition 〈N (i,2r)

hpq1...qi−2r
〉 = 0.

2.5 Down-scaling relation and up-scaling rela-
tion.

The down-scaling relation referred to the transformed micro-displacement
is expressed as an asymptotic expansion of powers of the microscopic
length ε relying on the transformed macro-displacement ÛMh (x, s), its
gradients and the Q-periodic perturbation functions. Such functions are
delivered by solving the cell problems that are listed in the Section 2.4.
Therefore, the replacement of the solutions of the recursive differential
problems (2.22), (2.26), (2.31), (2.35) and (2.39) into the asymptotic ex-
pansion (2.15) enables establishing the transformed micro-displacement
ûh(x, ξ, s) as

ûh

(
x,
x

ε
, s
)

=
( +∞∑
l,j=0

εj+l
∑
|q|=l

N
(2j+l,2j)
hpq (ξ)

∂lÛMp
∂xq

s2j
)∣∣∣
ξ= x

ε

= (2.67)

=
(
ÛMh (x, s) + εN

(1,0)
hpq1

(ξ)
∂ÛMp
∂xq1

+ ε2
(
N

(2,0)
hpq1q2

(ξ)
∂2ÛMp
∂xq1∂xq2

+

+N
(2,2)
hp (ξ)s2ÛMp

)
+ ε3

(
N

(3,0)
hpq1q2q3

(ξ)
∂3ÛMp

∂xq1∂xq2∂xq3
+N

(3,2)
hpq1

(ξ)s2
∂ÛMp
∂xq1

)
+
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ε4
(
N

(4,0)
hpq1q2q3q4

(ξ)
∂4ÛMp

∂xq1∂xq2∂xq3∂xq4
+N

(4,2)
hpq1q2

(ξ)s2
∂2ÛMp
∂xq1∂xq2

+

+N
(4,4)
hp (ξ)s4ÛMp

)
+O(ε5)

)∣∣∣
ξ= x

ε

.

In Eq. (2.67), |q| describes the length of the multi-index and the derivative
with respect to q is written as ∂l(·)

∂xq
= ∂l(·)

∂xq1 ...xql
. Moreover, the perturba-

tion function N
(0,0)
hp stands for the Kronecker delta δhp. There is point

in observing that theQ-periodic perturbation functions N (2j+l,2j)
hpq are af-

fected by the microstructural inhomogeneities of the material and this
is emphasized by their dependency on the fast variable ξ = x

ε . On the
other hand, the transformed macro displacement ÛMh (x, s) is L-periodic
and relies on the slow variable x and the time. The transformed macro-
displacement field is supposed to be the mean value of the transformed
micro-displacement field over the unit cell Q

ÛMh (x, t) =
〈
ûh

(
x,
x

ε
+ ζ, s

)〉
. (2.68)

Eq. (2.68) is said to be the up-scaling relation and it links the transformed
macro-displacement field with the transformed micro-displacement field.
In Eq. (2.68) the variable ζ ∈ Q identifies a family of translations of
the heterogeneous domain with respect to the L−periodic body forces
b(x, t), see Bacigalupo (2014). Therefore, the transformed body forces in
the Laplace space b̂(x, t) are L−periodic.

2.6 Average field equations of infinite order and
macroscopic problems

Replacing the down-scaling relation (2.67) into the micro-field Eq. (2.12)
and assembling the terms with equal powers of ε, the average field equa-
tions of infinite order read, at the second order ε2,

n
(2,0)
ipq1q2

∂2ÛMp
∂xq1∂xq2

− n(2,2)
ip s2ÛMp + ε

(
n

(3,0)
ipq1q2q3

∂3ÛMp
∂xq1∂xq2∂xq3

+ n
(3,2)
ipq1

s2
∂ÛMp
∂xq1

)
+
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+ ε2
(
n

(4,0)
ipq1q2q3q4

∂4ÛMp
∂xq1∂xq2∂xq3∂xq4

+ n
(4,2)
ipq1q2

s2
∂2ÛMp
∂xq1∂xq2

− n(4,4)
ip s4ÛMp

)
+ ..

...+ b̂i(x, s) = 0, (2.69)

where the coefficients of the gradients of the transformed macro-displacement
are the known terms of the corresponding cell problems. Thus, it results

n
(2,0)
ipq1q2

=
1

2
〈Ĉmiq2hq1 + Ĉmiq2hkN

(1,0)
hpq1,k

+ Ĉmiq1hq2 + Ĉmiq1hkN
(1,0)
hpq2,k

〉, (2.70)

n
(2,2)
ip = δip〈ρm〉, (2.71)

n
(w+2,0)
ipq1...qw+2

=
1

w + 2

∑
P∗(q)

〈Ĉmiqw+2hjN
(w+1,0)
hpq1...qw+1,j

+ Ĉmiqw+2hqw+1
N

(w,0)
hpq1...qw

〉,

(2.72)

n
(3,2)
ipq1

= 〈ρmN (1,0)
ipq1

− Ĉmiq1hjN
(2,2)
hp,j 〉, (2.73)

n
(4,2)
ipq1q2

=
1

2
〈ρmN (2,0)

ipq1q2
− Ĉmiq2hq1N

(2,2)
hp − Ĉmiq2hkN

(3,2)
hpq1,k

+ ρmN
(2,0)
ipq2q1

+

− Ĉmiq1hq2N
(2,2)
hp − Ĉmiq1hkN

(3,2)
hpq2,k

〉, (2.74)

where w ∈ Z and w ≥ 1. Eq.(2.69) is expanded at the infinite order as

n
(2,0)
ipq1q2

∂2ÛMp
∂xq1∂xq2

− n(2,2)
ip s2ÛMp +

+∞∑
n=0

εn+1
∑
|q|=n+3

n
(n+3,0)
ipq

∂n+3ÛMp
∂xq

+

+

+∞∑
n=0

εn+1
∑
|q|=n+1

n
(n+3,2)
ipq s2

∂n+1ÛMp
∂xq

−
+∞∑
ñ=0

ε2ñ+2n
(2ñ+4,2ñ+4)
ip s2ñ+4ÛMp +

−
+∞∑
ñ,n=0

ε2ñ+n+3
∑
|q|=n+1

n
(2ñ+n+5,2ñ+4)
ipq s2ñ+4

∂n+1ÛMp
∂xq

+ b̂i(x, s) = 0,

(2.75)
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where

n
(w+4,2)
ipq1...qw+2

=
1

w + 2

∑
P∗(q)

〈ρmN (w+2,0)
ipq1...qw+2

+

− Ĉmiqw+2hqw+1
N

(w+2,2)
hpq1...qw

− Ĉmiqw+2hjN
(w+3,2)
hpq1...qw+1,j

〉, (2.76)

n
(2ñ+4,2ñ+4)
ip = 〈ρmN (2ñ+2,2ñ+2)

ip 〉, (2.77)

n
(2ñ+5,2ñ+4)
ipq1

= 〈ρmN (2ñ+3,2ñ+2)
ipq1

− Ĉmiq1hkN
(2ñ+4,2ñ+4)
hp,k 〉, (2.78)

n
(2ñ+6,2ñ+4)
ipq1q2

=
1

2
〈ρmN (2ñ+4,2ñ+4)

ipq1q2
− Ĉmiq2hq1N

(2ñ+4,2ñ+4)
hp +

− Ĉmiq2hjN
(2ñ+5,2ñ+4)
hpq1,j

+ ρmN
(2ñ+4,2ñ+2)
ipq2q1

− Ĉmiq1hq2N
(2ñ+4,2ñ+2)
hp +

− Ĉmiq1hjN
(2ñ+5,2ñ+4)
hpq2,j

〉,

n
(2ñ+w+6,2ñ+w+4)
ipq1...qw+2

=
1

w + 2

∑
P∗(q)

〈ρmN (2ñ+w+4,2ñ+2)
ipq1...qw+2

+

− Ĉmiqw+2hqw+1
N

(2ñ+w+4,2ñ+4)
hpq1...qw

− Ĉmiqw+2hjN
(2ñ+w+5,2ñ+4)
hpq1...qw+1,j

〉, (2.79)

with w ∈ Z, w ≥ 1, ñ ∈ Z and ñ ≥ 0. The average field equations of
infinite order (2.75) are formally solved by performing an asymptotic
expansion of the transformed macro-displacement ÛMp (x) in power of ε,
namely

ÛMp (x) =

+∞∑
j=0

εjU jp (x). (2.80)

The substitution of Eq. (2.80) into Eq. (2.75) leads to

n
(2,0)
ipq1q2

(
ε0 ∂2Û

(0)
p

∂xq1∂xq2
+ ε

∂2Û
(1)
p

∂xq1∂xq2
+ ...

)
− n(2,2)

ip s2(Û (0)
p + εÛ (1)

p + ...)+
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+ εn
(3,0)
ipq1...q3

( ∂3Û
(0)
p

∂xq1 ...∂xq3
+ ε

∂3Û
(1)
p

∂xq1 ...∂xq3
+ ...

)
+

+ ε2n
(4,0)
ipq1...q4

( ∂4Û
(0)
p

∂xq1 ...∂xq4
+ ε

∂4Û
(1)
p

∂xq1 ...∂xq4
+ ...

)
+

+ ...− εn(3,2)
ipq1

s2
(∂Û (0)

p

∂xq1
+ ε

∂Û
(1)
p

∂xq1
+ ...

)
+

− ε2n
(4,2)
ipq1q2

s2
( ∂2Û

(0)
p

∂xq1∂xq2
+ ε

∂2Û
(1)
p

∂xq1∂xq2
+ ...

)
+

+ ...− ε2n
(4,4)
ip s4

(
Û (0)
p + εÛ (1) + ...

)
− ε4n

(6,6)
ip s6

(
Û (0)
p + εÛ (1) + ...

)
+ ...+

+ ε3n
(5,4)
ipq1

s4
(∂Û (0)

p

∂xq1
+ ε

∂Û
(1)
p

∂xq1
+ ...

)
+

− ε4n
(6,4)
ipq1q2

s4
( ∂2Û

(0)
p

∂xq1∂xq2
+ ε

∂2Û
(1)
p

∂xq1∂xq2
+ ...

)
+ ...+

+ ε5n
(7,6)
ipq1

s6
(∂8Û

(0)
p

∂xq1
+ ε

∂Û
(1)
p

∂xq1
+ ...

)
+

− ε6n
(8,6)
ipq1q2

s6
( ∂2Û

(0)
p

∂xq1∂xq2
+ ε

∂2Û
(1)
p

∂xq1∂xq2
+ ...

)
+ ...+ b̂i(x, s) = 0, (2.81)

which provides the following macroscopic recursive problems for the
different orders of ε. Namely, at the order ε0 it results

n
(2,0)
ipq1q2

∂2Û
(0)
p

∂xq1∂xq2
− n(2,2)

ip s2Û (0)
p + bi(x) = 0, (2.82)
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at the order ε the problem is

n
(2,0)
ipq1q2

∂2Û
(1)
p

∂xq1∂xq2
− n(2,2)

ip s2Û (1)
p + n

(3,0)
ipq1...q3

∂3Û
(0)
p

∂xq1 ...∂xq3
− n(3,2)

ipq1
s2 ∂Û

(0)
p

∂xq1
= 0,

(2.83)

instead at the order ε2 it reads

n
(2,0)
ipq1q2

∂2Û
(2)
p

∂xq1∂xq2
− n(2,2)

ip s2Û (2)
p + n

(3,0)
ipq1...q3

∂3Û
(1)
p

∂xq1 ...∂xq3
+

+ n
(4,0)
ipq1...q4

∂4Û
(0)
p

∂xq1 ...∂xq4
− n(3,2)

ipq1
s2 ∂Û

(0)
p

∂xq1
− n(4,2)

ipq1q2
s2 ∂2Û

(0)
p

∂xq1∂xq2
− n(4,4)

ip s4Û0
p = 0.

(2.84)

A generic recursive problem, at odd order ε2w̃−1, with w̃ ∈ Z and w̃ ≥ 2

is

n
(2w̃−1,0)
ipq1q2

∂2Û
(2w̃−1)
p

∂xq1∂xq2
− n(2w̃−1,2w̃−1)

ip s2Û (2w̃−1)
p +

+

2w̃+1∑
r=3

∑
|q|=r

n
(r,0)
ipq

∂rÛ
(2w̃+1−r)
p

∂xq
+

− s2
2w̃+1∑
r=3

∑
|q|=r−2

n
(r,2)
ipq

∂r−2Û
(2w̃+1−r)
p

∂xq
+

− (1− δ2w̃)

w̃−3+δ2w̃∑
n=0

s2n+4
(
n

(2n+4,2n+4)
ip Û (2w̃−3−2n)

p

)
+

+

2w̃−1−2n∑
r=3

∑
|q|=r−2

n
(r+2+2n,2n+4)
ipq

∂r−2Û
(2w̃−1−r−2n)
p

∂xq
+
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− n(2w̃,2w̃)
ip s2w̃Û (1)

p − n(2w̃,2w̃)
ipq1

s2w̃ Û
(0)
p

∂xq1
= 0, (2.85)

whereas a generic recursive problem at even order ε2w̃ is

n
(2w̃,0)
ipq1q2

∂2Û
(2w̃)
p

∂xq1∂xq2
− n(2w̃,2w̃)

ip s2Û (2w̃)
p +

2w̃+2∑
r=3

∑
|q|=r

n
(r,0)
ipg

∂rÛ
(2w̃+1−r)
p

∂xq
+

− s2
2w̃+2∑
r=3

∑
|q|=r−2

n
(r,2)
ipq

∂r−2Û
(2w̃+2−r)
p

∂xq
+

+

2w̃−2n∑
r=3

∑
|q|=r−2

n
(r+2+2n,2n+4)
ipq

∂r−2Û
(2w̃−r−2n)
p

∂xq
+

− n(2w̃+2,2w̃+2)
ip s2w̃+2Û (0)

p = 0, (2.86)

where n ∈ Z and n ≥ 2. There is no point in managing the averaged
equation of infinite order (2.75). Furthermore, the ellepticity of the differ-
ential problem could be not guaranteed if Eq. (2.75) is truncated at a cer-
tain order. To overcome such a disadvantage, an asymptotic-variational
approach is pursued.

2.7 Asymptotic expansion of the energy and sec-
ond order homogenization

A finite order governing equation is herein provided by exploiting a
variational-asymptotic procedure, see Smyshlyaev and Cherednichenko
(2000) and Bacigalupo (2014). Let Λ be the energy-like functional, Fab-
rizio and Morro (1992), written in terms of the energy-like density λm at
the micro-scale and referred to the periodic domain L,

Λ =

∫
L

λm

(
x,
x

ε

)
dx =

∫
L

(1

2
ρmu̇ ∗ u̇+

1

2
∇u ∗ (Gm ∗ ∇u̇)− u ∗ b

)
dx.

(2.87)
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Let L(Λ) be the energy-like functional in the Laplace domain, which is
expressed in terms of the energy-like density λ̂m in the Laplace domain

Λ̂ = L(Λ) =

∫
L

λ̂m

(
x,
x

ε

)
dx =

∫
L

(1

2
ρms2û · û+

1

2
∇û : Ĝm∇û− û · b̂

)
dx,

(2.88)

where the symbol : denotes the second order inner product.
The tranformed energy-like functional Λ̂ and its corresponding energy-
like density λ̂m are influenced by the translation variable ζ ∈ Q. Such a
variable is introduced because the actual ”phase” of the microstructure is
undetectable and a family of translated microstructures is taken into ac-
count. Therefore, the transformed micro-relaxation tensor Ĝm depends
on the translation variable ζ and it may be written as Ĝm,ζ

(
x, xε

)
=

Ĝm
(
x, xε + ζ

)
and the perturbation functions N (1,0)

hpq1
, N

(2,0)
hpq1q2

, ...., which
are solutions of the cell problems previously determined, reckon on vari-
able ζ.
The energy-like density λ̂m in the Laplace domain complies with the
property λ̂ζm

(
x, xε

)
= λ̂m

(
x, xε + ζ

)
and so the Laplace transform of

the energy-like functional Λ, depending on the parameter ζ, is

Λ̂ζ = Λ̂(ζ) =

∫
L

λ̂ζm

(
x,
x

ε

)
dx =

∫
L

λ̂m

(
x,
x

ε
+ ζ
)
dx. (2.89)

Let Λ̂m be the average transformed energy-like functional at the microscale

Λ̂m=̇〈Λ̂ζ〉 =
1

|Q|

∫
Q

Λ̂ζdζ =
1

|Q|

∫
Q

Λ̂(ζ)dζ =

∫
L

〈
λ̂m

(
x,
x

ε
+ ζ
)〉
dx,

(2.90)

where the Fubini theorem is applied.
The average transformed energy-like functional 〈Λ̂ζ〉 at the microscale
does not rely on the translation variable ζ because the energy-like func-
tional Λ̂ζ is averaged with respect to the translated realizations of the mi-
crostructure and so the transformed energy-like density at the microscale
satisfies〈
λ̂m

(
x,
x

ε
+ ζ
)〉

=
1

|Q|

∫
Q
λ̂m

(
x,
x

ε
+ ζ
)
dζ =
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=
1

|Q|

∫
Q
λ̂m

(
x, ξ

)
dξ = 〈λ̂m(x, ξ)〉. (2.91)

Two methods are herein proposed to determine the governing field equa-
tion at the macroscale and the overall constitutive and inertial tensors.

2.7.1 Approximation of the energy-like functional through truncation of its
asymptotic expansion

Let us consider the down scaling relation related to the transformed micro-
displacement û(x, ξ, s), i.e.

ûh(x, ξ, s) = Ûh(x, s) + εN
(1,0)
hpq1

(ξ)
∂ÛMp
∂xq1

+ (2.92)

+ ε2
(
N

(2,0)
hpq1q2

(ξ)
∂2ÛMp
∂xq1∂xq2

+N
(2,2)
hp (ξ)s2ÛMp

)
+

+ ε3
(
N

(3,0)
hpq1q2q3

(ξ)
∂3ÛMp

∂xq1∂xq2∂xq3
+N

(3,2)
hpq1

(ξ)s2
∂ÛMp
∂xq1

)
+O(ε4).

Let us replace the down scaling relation (2.92) into the tranformed energy-
like functional (2.89) and let us suppose that Λ̂m is truncated at the sec-
ond order. After applying the divergence theorem, the transformed energy-
like functional at the second order is

Λ̂IIm =

∫
L

〈λ̂IIm (x, ξ)〉dx =
1

2
s2〈ρm〉

∫
L

ÛMh ÛMh dx+ (2.93)

+ εs2〈ρmN (1,0)
rpq1 〉

∫
L

∂ÛMp
∂xq1

ÛMr dx+

+ εs3〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijr 〉

∫
L

∂ÛMp
∂xq1

ÛMr dx+

+ εs〈ĜmhkijB(1,0)
hkpq1

B
(2,0)
ijrw1w2

〉
∫
L

∂ÛMp
∂xq1

∂2ÛMr
∂xw1

∂xw2

dx+
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+ ε2s2
〈1

2
ρmN

(1,0)
hpq1

N
(1,0)
hrq2

− ρmN (2,0)
rpq1q2

〉∫
L

∂ÛMp
∂xq1

∂ÛMr
∂xq2

dx+

+ ε2s3〈ĜmhkijB(1,0)
hkpq1

B
(3,2)
ijrq2

− ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijr 〉

∫
L

∂ÛMp
∂xq1

∂ÛMr
∂xq2

dx+

+ ε2s4〈ρmN (2,2)
rp 〉

∫
L

ÛMp ÛMr dx+

+ ε2s5 1

2
〈ĜmhkijB(2,2)

hkp B
(2,2)
ijr 〉

∫
L

ÛMp ÛMr dx+

+
1

2
s〈ĜmhkijB(1,0)

hkpq1
B

(1,0)
ijrw1

〉
∫
L

∂ÛMp
∂xq1

∂ÛMr
∂xw1

dx+

+ ε2s
〈1

2
ĜmhkijB

(2,0)
hkpq1q2

B
(2,0)
ijrw1w2

〉∫
L

∂2ÛMp
∂xq1∂xq2

∂2ÛMr
∂xw1

∂xw2

dx+

+
〈
ĜmhkijB

(1,0)
ijrw1

B
(3,0)
hkpq1q2w2

〉∫
L

∂2ÛMp
∂xq1∂xq2

∂2ÛMr
∂xw1

∂xw2

dx− 1

s

∫
L

ÛMh bhdx.

It is important to note that second-order gradients of the transformed
macro-displacement are takent into account as well as the first-order gra-
dient of the displacement (i.e., strain), by generalizing the standard con-
tinuum mechanics.

The localization tensors, appearing in Eq. (2.93), assume the form

B
(1,0)
hkpq1

= δhpδkq1 +N
(1,0)
hpq1,k

, (2.94)

B
(2,0)
hkpq1q2

=
1

2

(
δkq2N

(1,0)
hpq1

+ δkq1N
(1,0)
hpq2

)
+N

(2,0)
hpq1q2,k

, (2.95)

B
(2,2)
hkp = N

(2,2)
hp,k , (2.96)
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B
(3,0)
hkpq1q2q3

=
1

3

(
δkq3N

(2,0)
hpq1q2

+ δkq1N
(2,0)
hpq2q3

+ δkq2N
(2,0)
hpq3q1

)
+N

(3,0)
hpq1q2q3,k

,

(2.97)

B
(3,2)
hkpq1

= δkq1N
(2,2)
hp +N

(3,2)
hpq1,k

. (2.98)

The localization tensors are periodic functions with respect to the fast
coordinate ξ since the perturbation functions and their gradients are Q-
periodic functions. Both B

(2,0)
hkpq1q2

and B
(3,0)
hkpq1q2q3

are symmetrized in A
with respect to the indices q1, q2 and q1, q2, q3, respectively.
The governing equation of a non-local homogeneous continuum is de-
livered by determining the stability condition of the transformed energy-
like functional Λ̂IIm , which is found to be the first variation of the average
transformed energy-like functional δΛ̂IIm .

Such a variation δΛ̂m is computed by applying the Gâteaux deriva-
tive, Fabrizio and Morro (1992)

δΛ̂m(ÛMt , δÛMt ) =
d

dη
Λ̂m(ÛMt + ηδÛMt )

∣∣∣
η=0

. (2.99)

According to (2.99), let Λ̂m(ÛMt +ηδÛMt ) be written in terms of the direc-
tion δÛMt as

Λ̂m(ÛMt + ηδÛMt ) =
1

2
s2〈ρm〉

∫
L

(ÛMt + ηδÛMt )(ÛMt + ηδÛMt )dx+

+ s2ε〈N (1,0)
rpq1 〉

∫
L

(∂ÛMp
∂xq1

+ η
∂δÛMp
∂xq1

)
(ÛMr + ηδÛMr )dx+

+ εs3〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijr 〉

∫
L

(∂ÛMp
∂xq1

+ η
∂δÛMp
∂xq1

)
(ÛMr + ηδÛMr )dx+

+εs〈ĜmhkijB
(1,0)
hkpq1

B
(2,0)
ijrw1w2

〉
∫
L

(
∂ÛMp

∂xq1
+ η

∂δÛMp

∂xq1

)(
∂2ÛMr

∂xw1∂xw2

+ η
∂2δÛMr
∂xw1∂xw2

)
dx+
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+ε2s2
〈
1

2
ρmN

(1,0)
hpq1

N
(1,0)
hrq2

〉 ∫
L

(
∂ÛMp

∂xq1
+ η

∂δÛMp

∂xq1

)(
∂ÛMr
∂xq2

+ η
∂δÛMr
∂xq2

)
dx+

− ε2s2
〈
ρmN (2,0)

rpq1q2

〉∫
L

(∂ÛMp
∂xq1

+ η
∂δÛMp
∂xq1

)(∂ÛMr
∂xq2

+ η
∂δÛMr
∂xq2

)
dx+

+ ε2s3〈ĜmhkijB(1,0)
hkpq1

B
(3,2)
ijrq2
〉
∫
L

(∂ÛMp
∂xq1

+ η
∂δÛMp
∂xq1

)(∂ÛMr
∂xq2

+ η
∂δÛMr
∂xq2

)
dx+

− ε2s3〈ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijr 〉

∫
L

(∂ÛMp
∂xq1

+ η
∂δÛMp
∂xq1

)(∂ÛMr
∂xq2

+ η
∂δÛMr
∂xq2

)
dx+

+ ε2s4〈ρmN (2,2)
rp 〉

∫
L

(ÛMp + ηδÛMp )(ÛMr + ηδÛMr )dx+

+ ε2s5 1

2
〈ĜmhkijB(2,2)

hkp B
(2,2)
ijr 〉

∫
L

(ÛMp + ηδÛMp )(ÛMr + ηδÛMr )dx+

+
1

2
s〈ĜmhkijB(1,0)

hkpq1
B

(1,0)
ijrw1

〉
∫
L

(∂ÛMp
∂xq1

+ η
∂δÛMp
∂xq1

)(∂ÛMr
∂xw1

+ η
∂δÛMr
∂xw1

)
dx+

+ ε2s
〈1

2
ĜmhkijB

(2,0)
hkpq1q2

B
(2,0)
ijrw1w2

− ĜmhkijB(1,0)
ijrw1

B
(3,0)
hkpq1q2w2

〉
×

×
∫
L

( ∂2ÛMp
∂xq1∂xq2

+ η
∂2δÛMr
∂xq1∂xq2

)( ∂2ÛMr
∂xw1∂xw2

+ η
∂2δÛMr
∂xw1∂xw2

)
dx+

−
∫
L

(ÛMt + ηδÛmt )b̂tdx. (2.100)

In accordance with the Gâteaux derivative (2.99), after performing the
derivative of Λ̂m(ÛMt + ηδÛMt ) with respect to η, the condition η = 0 is
imposed to (2.100) yielding to

δΛ̂m(ÛMt , δÛMt ) =
1

2
s2〈ρm〉

∫
L

(δÛMt ÛMt + δÛMt ÛMt )dx+ (2.101)
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+ s2ε〈N (1,0)
rpq1 〉

∫
L

(∂ÛMp
∂xq1

ÛMr +
∂δÛMp
∂xq1

ÛMr

)
dx+

+ εs3〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijr 〉

∫
L

∂δÛMp
∂xq1

ÛMr +
∂ÛMp
∂xq1

δÛMr dx+

+ εs〈ĜmhkijB(1,0)
hkpq1

B
(2,0)
ijrw1w2

〉
∫
L

∂ÛMp
∂xq1

∂2δÛMr
∂xw1∂xw2

+
∂δÛMp
∂xq1

∂2ÛMr
∂xw1∂xw2

dx+

− ε2s2
〈1

2
ρmN

(1,0)
hpq1

N
(1,0)
hrq2

〉∫
L

∂ÛMp
∂xq1

∂δÛMr
∂xq2

+
∂δÛMp
∂xq1

∂ÛMr
∂xq2

dx+

− ε2s2
〈
ρmN (2,0)

rpq1q2

〉∫
L

∂ÛMp
∂xq1

∂δÛMr
∂xq2

+
∂δÛMp
∂xq1

∂ÛMr
∂xq2

dx+

+ ε2s3〈ĜmhkijB(1,0)
hkpq1

B
(3,2)
ijrq2
〉
∫
L

(∂ÛMp
∂xq1

∂δÛMr
∂xq2

+
∂δÛMp
∂xq1

∂ÛMr
∂xq2

)
dx+

− ε2s3〈ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijr 〉

∫
L

(∂ÛMp
∂xq1

∂δÛMr
∂xq2

+
∂δÛMp
∂xq1

∂ÛMr
∂xq2

)
dx+

+ ε2s4〈ρm(N (2,2)
rp +N (2,2)

pr )〉
∫
L

ÛMp δÛMr dx+

+ ε2s5 1

2
〈ĜmhkijB(2,2)

hkp B
(2,2)
ijr + ĜmhkijB

(2,2)
hkr B

(2,2)
ijp 〉

∫
L

ÛMp δÛMr dx+

− 1

2
s〈ĜmhkijB(1,0)

hkpq1
B

(1,0)
ijrw1

〉
∫
L

∂ÛMp
∂xq1

∂δÛMr
∂xw1

+
∂δÛMp
∂xq1

∂ÛMr
∂xw1

dx+

− 1

2
s〈ĜmhkijB(1,0)

hkrw1
B

(1,0)
ijpq1
〉
∫
L

∂ÛMp
∂xq1

∂δÛMr
∂xw1

+
∂δÛMp
∂xq1

∂ÛMr
∂xw1

dx+
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+ ε2s
〈1

2
ĜmhkijB

(2,0)
hkpq1q2

B
(2,0)
ijrw1w2

− ĜmhkijB(1,0)
ijrw1

B
(3,0)
hkpq1q2w2

〉
×

∫
L

( ∂2ÛMp
∂xq1∂xq2

∂2δÛMr
∂xw1

∂xw2

+
∂2δÛMr
∂xq1∂xq2

∂2ÛMr
∂xw1

∂xw2

)
dx+

−
∫
L

δÛmt b̂tdx.

The integration by parts applied to (2.101) issues line integrals along the
boundary ∂L that vanish because of the L-periodicity of the transformed
macro-displacement ÛMp and the antiperiodicity of the outward normal
vectors, resulting

δΛ̂m(ÛMt , δÛMt ) = s2〈ρm〉
∫
L

ÛMt δÛMt dx+ (2.102)

+ εs2〈ρm(N (1,0)
rpq1 −N (1,0)

prq1 )〉
∫
L

∂ÛMp
∂xq1

δÛMr dx+

+ εs3〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijr − ĜmhkijB

(1,0)
hkrq1

B
(2,2)
ijp 〉

∫
L

∂ÛMp
∂xq1

δÛMr dx+

+ εs〈ĜmhkijB(1,0)
hkpq1

B
(2,0)
ijrw1w2

〉
∫
L

∂3ÛMp
∂xw1∂xw2∂xq1

δÛMr dx+

− εs〈ĜmhkijB(1,0)
hkrw1

B
(2,0)
ijpq1w2

〉
∫
L

∂3ÛMp
∂xw1

∂xw2
∂xq1

δÛMr dx+

− ε2s2〈1
2
ρmN

(1,0)
hpq1

N
(1,0)
hrq2

+
1

2
ρmN

(1,0)
hrq2

N
(1,0)
hpq1
〉
∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+

− ε2s2〈ρm(N (2,0)
rpq1q2 +N (2,0)

prq2q1)〉
∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+
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− ε2s3〈ĜmhkijB(1,0)
hkpq1

B
(3,2)
ijrq2

− ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijp 〉

∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+

+ ε2s3〈ĜmhkijB(1,0)
hkrq2

B
(3,2)
ijpq1

− ĜmhkijB(2,0)
hkrq2q1

B
(2,2)
ijp 〉

∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+

+ ε2s4〈ρm(N (2,2)
rp +N (2,2)

pr )〉
∫
L

ÛMp δÛMr dx+

+ ε2s5 1

2
〈ĜmhkijB(2,2)

hkp B
(2,2)
ijr + ĜmhkijB

(2,2)
hkr B

(2,2)
ijp 〉

∫
L

ÛMp δÛMr dx+

− 1

2
s〈ĜmhkijB(1,0)

hkpq1
B

(1,0)
ijrw1

+ ĜmhkijB
(1,0)
hkrw1

B
(1,0)
ijpq1
〉
∫
L

∂2ÛMp
∂xw1

∂xq1
δÛMr dx+

+ ε2s〈1
2
ĜmhkijB

(2,0)
hkpq1q2

B
(2,0)
ijrw1w2

〉
∫
L

∂4ÛMp
∂xq1∂xq2∂xw1

∂xw2

δÛMr dx+

− ε2s〈ĜmhkijB(1,0)
ijrw1

B
(3,0)
hkpq1q2w2

〉
∫
L

∂4ÛMp
∂xq1∂xq2∂xw1

∂xw2

δÛMr dx+

+ ε2s〈1
2
ĜmhkijB

(2,0)
hkrw1w2

B
(2,0)
ijpq1q2

〉
∫
L

∂4ÛMp
∂xq1∂xq2∂xw1

∂xw2

δÛMr dx+

− ε2s〈ĜmhkijB(1,0)
ijpq1

B
(3,0)
hkrw1w2q2

〉
∫
L

∂4ÛMp
∂xq1∂xq2∂xw1

∂xw2

δÛMr dx+

−
∫
L

δÛMt b̂tdx.

The major simmetry property fulfilled by the viscoelastic tensor Ĝmhkij ,
i.e. Ĝmhkij = Ĝmijhk, is employed to Eq. (2.102), leading to

δΛ̂IIm (ÛMt , δÛMt ) = s2〈ρm〉
∫
L

ÛMt δÛMt dx+ (2.103)
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+ εs2〈ρm(N (1,0)
rpq1 −N (1,0)

prq1 )〉
∫
L

∂ÛMp
∂xq1

δÛMr dx+

+ εs3〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijr − ĜmhkijB

(1,0)
hkrq1

B
(2,2)
ijp 〉

∫
L

∂ÛMp
∂xq1

δÛMr dx+

+ εs〈ĜmhkijB(1,0)
hkpq1

B
(2,0)
ijrw1w2

〉
∫
L

∂3ÛMp
∂xw1∂xw2∂xq1

δÛMr dx+

− εs〈ĜmhkijB(1,0)
hkrw1

B
(2,0)
ijpq1w2

〉
∫
L

∂3ÛMp
∂xw1∂xw2∂xq1

δÛMr dx+

− ε2s2〈ρmN (1,0)
hpq1

N
(1,0)
hrq2

− ρm(N (2,0)
rpq1q2 +N (2,0)

prq2q1)〉
∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+

− ε2s3〈ĜmhkijB(1,0)
hkpq1

B
(3,2)
ijrq2

− ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijp 〉

∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+

+ ε2s3〈ĜmhkijB(1,0)
hkrq2

B
(3,2)
ijpq1

− ĜmhkijB(2,0)
hkrq2q1

B
(2,2)
ijp 〉

∫
L

∂2ÛMp
∂xq1∂xq2

δÛMr dx+

+ ε2s4〈ρm(N (2,2)
rp +N (2,2)

pr )〉
∫
L

ÛMp δÛMr dx+

+ ε2s5〈ĜmhkijB(2,2)
hkp B

(2,2)
ijr 〉

∫
L

ÛMp δÛMr dx+

− s〈ĜmhkijB(1,0)
hkpq1

B
(1,0)
ijrw1

〉
∫
L

∂2ÛMp
∂xw1

∂xq1
δÛMr dx+

+ ε2s〈ĜmhkijB(2,0)
hkpq1q2

B
(2,0)
ijrw1w2

〉
∫
L

∂4ÛMp
∂xw2

∂xw1
∂xq1∂xq2

δÛMr dx+
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− ε2s〈ĜmhkijB(1,0)
hkrq1

B
(3,0)
ijpq1q2w2

〉
∫
L

∂4ÛMp
∂xw2

∂xw1
∂xq1∂xq2

δÛMr dx+

− ε2s〈ĜmhkijB(1,0)
hkpq1

B
(3,0)
ijrw1w2q2

〉
∫
L

∂4ÛMp
∂xw2∂xw1∂xq1∂xq2

δÛMr dx+

−
∫
L

δÛMt b̂tdx,

where the Q−periodicity of the functions Ĝmhkij , N
(1,0)
ipq1

, N (2,0)
ipq1q2

and the

localization tensors B(1,0)
hkpq1

, B(2,0)
hkpq1q2

,..., B(3,2)
hkpq1

is taken into account.

The first variation δΛ̂IIm must vanish for all admissible δÛMt and so the
Euler-Lagrangian differential equation associated with the variational
problem (2.103) in the Laplace domain is

s2ρÛMt + s2ρ(Îtpq1 − ˆ̃Itq1p)
∂ÛMp
∂xq1

− s2ρÎtq2pq1
∂2ÛMp
∂xq1∂xq2

+ s4ρÎ]tpÛ
M
p =

− s3(Ĵtpq1 − ˆ̃Jtq1p)
∂ÛMp
∂xq1

+ s3Ĵ1
tq2pq1

∂2ÛMp
∂xq1∂xq2

+

− s5Ĵ]tpÛ
M
p + sĜtr1pq1

∂2ÛMp
∂xq1∂xr1

+ s(Ŷtr1pq1r2 − ˆ̃Ytr1r2pq1)
∂3ÛMp

∂xr1∂xr2∂xq1
+

− sŜ1
tr1r2pq1q2

∂4ÛMp
∂xq1∂xq2∂xr1∂xr2

+ b̂t, (2.104)

which is formulated in terms of the transformed macro-displacement
and its gradients up to the fourth order. The components of the con-
stitutive tensors in the Laplace domain related to the homogenized con-
tinuum are defined as

Ĝtr1pq1 = 〈ĜmhkijB(1,0)
hkpq1

B
(1,0)
ijtr1
〉, (2.105)
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Ŷtr1pq1r2 = ε〈ĜmhkijB(1,0)
hktr1

B
(2,0)
ijpq1r1

〉, (2.106)

ˆ̃Ytr1r2pq1 = Ŷpq1tr1r2 = ε〈ĜmhkijB(1,0)
hkpq1

B
(2,0)
ijtr1r2

〉, (2.107)

Ŝ1
tr1r2pq1q2 = ε2〈ĜmhkijB(2,0)

hkpq1q2
B

(2,0)
hktr1r2

+ (2.108)

− ĜmhkijB(1,0)
ijtr1

B
(3,0)
hkpq1q2r2

− ĜmhkijB(1,0)
ijpq1

B
(3,0)
hktr1r2q2

〉,

Ĵtpq1 = ε〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijt 〉, (2.109)

ˆ̃Jtq1p = Ĵptq1 = ε〈ĜmhkijB(1,0)
hktq1

B
(2,2)
ijp 〉, (2.110)

Ĵ]tp = Ĵtp + ˆ̃Jpt =
ε2

2
〈ĜmhkijB(2,2)

hkp B
(2,2)
ijt 〉+

ε2

2
〈ĜmhkijB(2,2)

hkt B
(2,2)
ijp 〉 =

= ε2〈ĜmhkijB(2,2)
hkp B

(2,2)
ijt 〉, (2.111)

Ĵ1
tq2pq1 = Ĵ1

pq1tq2 = −ε2〈−ĜmhkijB(1,0)
hkpq1

B
(3,2)
ijtq2

+ ĜmhkijB
(2,0)
hkpq1q2

B
(2,2)
ijp +

− ĜmhkijB(1,0)
hktq2

B
(3,2)
ijpq1

+ ĜmhkijB
(2,0)
hktq2q1

B
(2,2)
ijt 〉, (2.112)

where the components Ĝmtr1pq1 , Ŷtr1pq1r2 and Ŝ1
tr1r2pq1q2 of the constitutive

tensors in the Laplace domain are computed due to the micro-fluctuation
functions N (1,0)

ikl , N (2,0)
iklp and N

(3,0)
iklpq . Such tensors are in accordance with

the ones determined in Bagigalupo and Gambarotta (2014b).

The transformed inertial tensor components are given as

ρ = 〈ρm〉, (2.113)

Îtpq1 = ε〈ρmN (1,0)
tpq1 〉

1

ρ
, (2.114)
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ˆ̃Itq1p = Îptq1 = ε〈ρmN (1,0)
ptq1 〉

1

ρ
, (2.115)

Î]pt = Îtp + ˆ̃Ipt = ε2〈ρm(N
(2,2)
tp +N

(2,2)
pt )〉1

ρ
, (2.116)

Îtp =
ε2

ρ
〈ρmN (2,2)

tp 〉, (2.117)

ˆ̃Ipt =
ε2

ρ
〈ρmN (2,2)

pt 〉, (2.118)

Îtq2pq1 = ε2〈ρmN (1,0)
hpq1

N
(1,0)
htq2

− ρm(N
(2,0)
tpq1q2 +N

(2,0)
tpq2q1)〉1

ρ
. (2.119)

The Euler-Lagrange Eq. (2.104), which has been derived through the
truncation of the average transformed energy-like functional and the
asymptotic development of the transformed micro-dispacement, is char-
acterized by positive definite constitutive tensors. Thus, it is clear that
the existence and the uniqueness of the solution of the dynamic problem
is guaranteed by the validity of the Legendre-Hadamard condition.

2.7.2 Approximation of the energy-like functional through truncation of
the down-scaling relation

An alternative approach is here presented to evaluate the overall consti-
tutive and inertial tensors. To this purpose, the gradient referred to the
down-scaling relation (2.92) is approximated at the first order as

(Dûh
Dxk

)I
=
∂Ûh
∂xk

+N
(1,0)
hpq1,k

∂ÛMp
∂xq1

+ ε
(
N

(1,0)
hpq1

∂2ÛMp
∂xq1∂xq2

+ (2.120)

+N
(2,0)
hpq1q2,k

(ξ)
∂2ÛMp
∂xq1∂xq2

+N
(2,2)
hp,k (ξ)s2ÛMp

)
.
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Moreover, the transformed micro-displacement at the second order is
formulated as

ûIIh (x, ξ, s) = Ûh(x, s) + εN
(1,0)
hpq1

(ξ)
∂ÛMp
∂xq1

+ (2.121)

+ ε2
(
N

(2,0)
hpq1q2

(ξ)
∂2ÛMp
∂xq1∂xq2

+N
(2,2)
hp (ξ)s2ÛMp

)
,

where the perturbation functions are helpful to determine a consistent
approximation of the gradient at the first order. Then, the gradient ap-
proximation (Eq. (2.120)) and the displacement approximation (Eq. (2.121))
are replaced into the transformed energy-like functional (2.90), which is
approximated at the second order as

Λ̂IIm =

∫
L

〈λ̂IIm (x, ξ)〉dx =
1

2
s2〈ρm〉

∫
L

ÛMh ÛMh dx+ (2.122)

+ εs2〈ρmN (1,0)
rpq1 〉

∫
L

∂ÛMp
∂xq1

ÛMr dx+

+ εs3〈ĜmhkijB(1,0)
hkpq1

B
(2,2)
ijr 〉

∫
L

∂ÛMp
∂xq1

ÛMr dx+

+ εs〈ĜmhkijB(1,0)
hkpq1

B
(2,0)
ijrw1w2

〉
∫
L

∂ÛMp
∂xq1

∂2ÛMr
∂xw1

∂xw2

dx+

+ ε2s2
〈1

2
ρmN

(1,0)
hpq1

N
(1,0)
hrq2

− ρmN (2,0)
rpq1q2

〉∫
L

∂ÛMp
∂xq1

∂ÛMr
∂xq2

dx+

+ ε2s3〈−ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijr 〉

∫
L

∂ÛMp
∂xq1

∂ÛMr
∂xq2

dx+

+ ε2s4〈ρmN (2,2)
rp 〉

∫
L

ÛMp ÛMr dx+
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+ ε2s5 1

2
〈ĜmhkijB(2,2)

hkp B
(2,2)
ijr 〉

∫
L

ÛMp ÛMr dx+

+
1

2
s〈ĜmhkijB(1,0)

hkpq1
B

(1,0)
ijrw1

〉
∫
L

∂ÛMp
∂xq1

∂ÛMr
∂xw1

dx+

+ ε2s
〈1

2
ĜmhkijB

(2,0)
hkpq1q2

B
(2,0)
ijrw1w2

〉∫
L

∂2ÛMp
∂xq1∂xq2

∂2ÛMr
∂xw1∂xw2

dx−
∫
L

ÛMh b̂hdx.

In accordance with the procedure proposed in the previous section, the
Euler-Lagrangian equation deriving from the first variation of the trans-
formed energy-like functional (2.122) in the Laplace domain is

s2ρÛMt + s2ρ(Îtpq1 − ˆ̃Itq1p)
∂ÛMp
∂xq1

− s2ρÎtq2pq1
∂2ÛMp
∂xq1∂xq2

+ s4ρÎ]tpÛ
M
p =

= −s3(Ĵtpq1 − ˆ̃Jtq1p)
∂ÛMp
∂xq1

− s3Ĵ2
tq2pq1

∂2ÛMp
∂xq1∂xq2

+

− s5Ĵ]tpÛ
M
p + sĜtr1pq1

∂2ÛMp
∂xq1∂xr1

+ s(Ŷtr1pq1r2 − ˆ̃Ytr1r2pq1)
∂3ÛMp

∂xr1∂xr2∂xq1
+

− sŜ2
tr1r2pq1q2

∂4ÛMp
∂xq1∂xq2∂xr1∂xr2

+ b̂t, (2.123)

where the overall inertial tensors are (2.113), (2.114), (2.116), (2.119) and
the overall constitutive tensors are (2.105), (2.106), (2.109), (2.111) respec-
tively, and

Ŝ2
tr1r2pq1q2 = ε2〈ĜmhkijB(2,0)

hkpq1q2
B

(2,0)
hktr1r2

〉, (2.124)

Ĵ2
tq2pq1 = Ĵ2

pq1tq2 = −ε2〈ĜmhkijB(2,0)
hkpq1q2

B
(2,2)
ijp + ĜmhkijB

(2,0)
hktq2q1

B
(2,2)
ijt 〉.

(2.125)
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By applying the inverse Laplace transform L−1 to Eq. (2.104) and Eq.
(2.123), the field equation at the macro-scale related to Eq. (2.4) is recast
in the time domain as

ρÜMt + ρ(Itpq1 − Ĩtq1p) ∗
∂ÜMp
∂xq1

− ρItq2pq1 ∗
∂2ÜMp
∂xq1∂xq2

+ ρI]tp ∗
....
U
M
p =

= −(J̇tpq1 − ˙̃Jtq1p) ∗
∂ÜMp
∂xq1

− J̇ itq2pq1 ∗
∂2ÜMp
∂xq1∂xq2

+

− J̇]tp ∗
....
U
M
p +Gtr1pq1 ∗

∂2U̇Mp
∂xq1∂xr1

+ (Ytr1pq1r2 − Ỹtr1r2pq1) ∗ ∂3U̇Mp
∂xr1∂xr2∂xq1

+

− Sitr1r2pq1q2 ∗
∂4U̇Mp

∂xq1∂xq2∂xr1∂xr2
+ bt, (2.126)

where the superscript i = 1 denotes that the tensors J1
tq2pq1 and S1

tr1r2pq1q2

derive from the procedure described in Subsection 2.7.1, where the energy-
like functional is approximated by means of its asymptotic expansion.
The superscript i = 2 points out that the tensors J2

tq2pq1 and S2
tr1r2pq1q2

elicit from the approach presented in Subsection 2.7.2.
Moreover, the symbol ∗ stands for the convolution and the time deriva-
tive can be moved from the constitutive tensor to the variable.
The constitutive tensor components in the time domain are

Gmtr1pq1 = L−1(Ĝmtr1pq1), (2.127)

(Ytr1pq1r2 − Ỹtr1r2pq1) = L−1(Ŷtr1pq1r2 − ˆ̃Ytr1r2pq1), (2.128)

Sitr1r2pq1q2 = L−1(Ŝitr1r2pq1q2), (2.129)

J̇tpq1 − ˙̃Jtq1p = L−1(s(Ĵtpq1 − ˆ̃Jtq1p)), (2.130)
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J̇ itq2pq1 = L−1(sĴ itq2pq1), (2.131)

J̇]tp = L−1(sĴ]tp), (2.132)

with i = {1, 2}, whereas in the time domain the inertial tensor compo-
nents and the acceleration result to be

(Itpq1 − Ĩtq1p) = L−1(Îtpq1 − ˆ̃Itq1p), (2.133)

Itq2pq1 = L−1(Îtq2pq1), (2.134)

I]tp = L−1(Î]tp), (2.135)

ÜMt = L−1(s2ÛMt ). (2.136)

In case of a locally homogeneous material, i.e. if the miscrostructure
disappears, the perturbation functions N (1,0)

ikl , N (2,0)
iklp ,...., N (3,0)

iklpq are zero

and the components of the localization tensors vanish except for B(1,0)
hkpq1

,

which becomes B(1,0)
hkpq1

= 1
2

(
δhpδkq1 + δhq1δkp

)
and so the equation of

motion of a classical homogeneous continuum is retrieved.
The problem of the numerical inverse Laplace transform has been exten-
sively investigated in the literature, and different methods of solution
have been proposed. A review of the methods can be found in Davies
and Martin (1979). Moreover, Donolato (2002) proposed a method for
inverting the Laplace-Carson transform by considering its property of
conserving the physical dimensions of the original function. Therefore,
the transform can be converted into a Mellin deconvolution problem,
which is approximately solved by a differential method. In the work of
Selivanov and Chernoivan (2007), a method for the numerical inversion
of the Laplace transform using Padè approximation is proposed, which
takes into account the viscoelastic characteristics of material.
Form an analytical point of view, see Paley (1934), the inverse Laplace
transform of a function f̂(s) is defined as

L−1(f̂(s)) = f(t) =
1

2πi

∫ x+i∞

x−i∞
etsf̂(s)ds, (2.137)
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which is evaluated as

f(t) =
1

2πi

∫ x+i∞

x−i∞
etsf̂(s)ds =

∑
poles of f̂(s)

R(f̂(s)ets), (2.138)

where R denotes the residual of f̂(s)ets. In case of polar singularities,
f̂(s) is written as a rational function, namely f̂(s) = P (s)

Q(s) . Such a fun-
action has n poles, which can be divided into h groups. Each of them
consists of rk, (k = 1..h), coincident poles, namely p1,...,ph are poles char-
acterized by the moltiplicities r1,...,rh, greater or equal to 1. Under those
assumptions, f̂(s) is rewritten as

f̂(s) =
P (s)

(s+ p1)r1(s+ p1)r2 ...(s+ p1)rk
=

h∑
k=1

rk∑
l=1

Rkl
(s+ p1)rk−l+1

,

(2.139)

where the residuals Rkl related to f̂(s) are found as

Rkl =
1

(l − 1)!

[ dl−1

dsl−1

(
(s+ pk)rk

P (s)

Q(s)

)]
s=pk

, l = 1...rk, k = 1...h.

(2.140)

Finally, the inverse Laplace transform f(t) has the form

f(t) =

h∑
k=1

rk∑
l=1

Rkl
(rk − l)

trk−le−pkt. (2.141)

2.7.3 Dispersive wave propagation

The Laplace and the Fourier transforms are applied to Eq. (2.126) with
respect to time t and to the slow variable x to obtain the field equation at
the macro-scale within the frequency and the wave vector domain.
In particular, the two-sided Fourier transform of an arbitrary function
f(x) is defined as Paley (1934):

F(f(x)) = f̌(k) =

∫ +∞

−∞
f(x)eιk·xdx =

∫ +∞

−∞
f(x)eιksxsdx, k ∈ R2,

(2.142)
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where k is a bidimensional vector and so the field equation at the macroscale
in the transformed space is rephrased as

s2ρ
ˇ̂
UMt + s2ρι(Îtpq1 + ˆ̃Itq1p)

ˇ̂
UMp kq1 + s2ρÎtq2pq1

ˇ̂
UMp kq1kq2 + s4ρÎ]tp

ˇ̂
UMp =

− s3ι(Ĵtpq1 − ˆ̃Jtq1p)
ˇ̂
UMp kq1 − s3Ĵtq2pq1

ˇ̂
UMp kq1kq2+

− s5Ĵ]tp
ˇ̂
UMp − sĜtr1pq1 ˇ̂

UMp kq1kr2 − sι(Ŷtr1pq1r2 − ˆ̃Ytr1r2pq1)
ˇ̂
UMp kr1kr2kq1+

− sŜitr1r2pq1q2
ˇ̂
UMp kq1kq2kr1kr2 +

ˇ̂
bt, i = {1, 2}. (2.143)

The vector k is written respect to the wave director vector n as k = kn

(k = ||k|| and ||n|| = 1), therefore the Eq. (2.143) becomes

s2ρ
ˇ̂
UMt + s2ρι(Îtpq1 + ˆ̃Itq1p)

ˇ̂
UMp knq1 + s2ρÎtq2pq1

ˇ̂
UMp k2nq1nq2 + s4ρÎ]tp

ˇ̂
UMp =

= −s3ι(Ĵtpq1 − ˆ̃Jtq1p)
ˇ̂
UMp knq1 − s3Ĵ itq2pq1

ˇ̂
UMp k2nq1nq2 − s5Ĵ]tp

ˇ̂
UMp +

− sĜtr1pq1 ˇ̂
UMp k2nq1nr2 − sι(Ŷtr1pq1r2 − ˆ̃Ytr1r2pq1)

ˇ̂
UMp k3nr1nr2nq1+

− sŜitr1r2pq1q2
ˇ̂
UMp k4nq1nq2nr1nr2 +

ˇ̂
bt, i = {1, 2}. (2.144)

In case of an orthotropic material, the motion equation in the Laplace
domain (2.123) along the direction eβ (β = 1, 2) is rephased as

s2ρÛMα − s2ρÎαβαβ
∂2Ûα
∂x2

β

+ s4ρÎααÛ
M
α = (2.145)

= s3Ĵ iαβαβ
∂2ÛMα
∂x2

β

− s5ĴααÛ
M
α + sĜαβαβ

∂2ÛMα
∂x2

β

− sŜiαββαββ
∂4ÛMα
∂x4

β

,

with i = {1, 2} and α = 1, 2.
The Fourier transform (2.142) is applied to Eq. (2.145) with respect to
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the slow variable x to retrieve the Christoffel equation depending on the
complex angular frequency s and the wave vector kβ ,

(s2ρ+ s2ρÎαβαβk
2
β + s4ρÎαα + s3Ĵ iαβαβk

2
β + s5Ĵαα + sĜαβαβk

2
β+

+ sŜiαββαββk
4
β)

ˇ̂
UMα (kβ , s) = 0, i = {1, 2}, (2.146)

where ˇ̂
U(kβ , s) stands for the Fourier transform of the transformed macro-

displacement Û(x, s). The Christoffel equation (2.146) defines the wave
propagation in the viscoelastic medium that is embedded in the Laplace-
Fourier space. The dispersion function stemmed from Eq. (2.146) is

s2ρ+ s2ρÎαβαβk
2
β + s4ρÎαα + s3Ĵ iαβαβk

2
β + s5Ĵαα+

+ sĜαβαβk
2
β + sŜiαββαββk

4
β = 0, i = {1, 2}. (2.147)

The dispersion function describes the waves that propagate through the
viscoelastic homogenized continuum with complex frequency s and wave
vector kβ . It is worth noting that the complex group velocity might con-
tain information about the energy transport as well as the energy dissi-
pated in the medium, (Gerasik and Stastna (2010)), by interpreting the
physical meaning of the imaginary part in the circumstance of a loss rate
and the real part related to the axial wavenumber, see Sharma (2008) and
Wolff et al. (2018).

Novelties and outline This Chapter dealt with the description of
the field equations in the time domain and in the Laplace domain at
the microscale. The recursive differential problems and their solutions
are shown, in particular the higher order recursive differential problems
are detailed and the cell problems and the related perturbation functions
are introduced. The average field equations of infinite order is properly
described. Moreover, by means of a variational approach, the overall
constitutive tensors and the overall inertial tensor related to the homog-
enized continuum are derived in the Laplace domain for the class of peri-
odic viscoelastic materials, after introducing the energy-like functional in
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the Laplace domain. Later, the Euler-Lagrangian differential equation at
the macro-scale is determined and expressed in terms of the transformed
macro-displacement and its gradients up to the fourth order. Finally, the
problem of wave propagation and the related dispersion curves is anal-
ysed.
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Chapter 3

Assessment of the accuracy
of the homogenized model
and application to a
bi-phase layered material

3.1 Homogenization of a bi-phase layered ma-
terial

The model proposed in Chapter 2 is herein applied to a domain made
of two layered materials, which have thickness s1 and s2, and subject to
L-periodic body forces b(x, t). The domain displays orthotropic phases
and the orthotropic axis is supposed to be parallel to the direction e1, see
Fig. 13. In case of isotropic phases, for the plane-stress state we have
Ẽ = E and ν̃ = ν, whereas for the plane-strain state Ẽ = E

1−ν2 and
ν̃ = ν

1−ν , where E is the Young’s modulus and ν is the Poisson’s ratio.
For sake of simplicity but without loss of generality, the components of
the viscoelastic tensor are

Gi1111 = Gi2222 = Gi,∞1111(e−
t
τr + γ), Gi1122 = Gi,∞1122(e−

t
τr + γ),

75



!	
	

!! 	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

!!	

!!	

!!, !!	
	

!!	

!!
2 	

!!
2 	
	

!	 !!	
	

!!, !!	

Figure 13: heterogeneous 2D domain with its layered periodic cell.

Gi1212 = Gi,∞1212(e−
t
τr + γ), i ∈ {1, 2}, γ ∈ R, (3.1)

where Gi,∞1111 = Ẽ
1−ν̃2 , Gi,∞1122 = Ẽν̃

1−ν̃2 and Gi,∞1212 = Ẽ
2(1+ν̃) are the equilib-

rium elastic modulus, Fabrizio and Morro (1992), with Gi,∞1111 = Gi,∞2222. It
can be noticed that the viscoelastic tensor can be deemed as a term of the
Prony series (Ferry (1989)) and so the proposed homogenization tech-
nique can be applied to any kind of sufficiently regular kernel, since the
overall constitutive and inertial tensor components have a general struc-
ture. In addition, τr stands for the relaxation time and the superscript
i represents either phase 1 or the phase 2. The Laplace transform (2.8)
applied to the components of the viscoelastic tensor (3.1) leads to

Ĝi1111 = Ĝi2222 =
Ẽ

1− ν̃2

τrs(1 + γ) + 1

s(sτr + 1)
, Ĝi1122 =

Ẽν̃

1− ν̃2

τrs(1 + γ) + 1

s(sτr + 1)
,

Ĝi1212 =
Ẽ

2(1 + ν̃)

τrs(1 + γ) + 1

s(sτr + 1)
, i ∈ {1, 2}, γ ∈ R. (3.2)

Moreover, there is point in observing that in case of the transformed con-
stitutive tensor Ĝm characterizing a Maxwell viscosity model, the Eqs.
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(3.2) depend on the mechanical properties, the relaxation time τr as well
as the complex parameter s. Finally the relation Ĉm

(
x
ε , s
)

= sĜm
(
x
ε , s
)

provides the viscoelastic tensor components as

Ĉi1111 = Ĉi2222 =
Ẽ

1− ν̃2

τrs(1 + γ) + 1

(sτr + 1)
, Ĉi1122 =

Ẽν̃

1− ν̃2

τrs(1 + γ) + 1

(sτr + 1)
,

Ĉi1212 =
Ẽ

2(1 + ν̃)

τrs(1 + γ) + 1

(sτr + 1)
, i ∈ {1, 2}, γ ∈ R. (3.3)

The transformed components of the viscoelastic tensor (3.3) are employed
to determine the perturbation functions of first, second and third order
(see the following paragraphs for explicit details).
To simplify the matter, the following dimensionless quantities are intro-
duced

rρ =
ρ1

ρ2
, rE =

Ẽ1

Ẽ2

, τ iς =
τ ir
s2

√
Ẽ2

ρ2
, η =

s1

s2
, i = 1, 2.

where rρ stands for the ratio between the densities, rE is the ratio be-
tween the Young’s moduli related to phase 1 and phase 2, τ iς is the relax-
ation time associated to phase 1 and phase 2, respectively, and η is the
ratio between the thicknesses of the layers s1 and s2.

Perturbation functions of first order N (1,0)
hpq

The micro-fluctuation functionsN (1,0)i
hpq are analytically obtained by solv-

ing the first cell problems (2.45) and considering Fig. 13. The superscript
i = {1, 2} stands for the phase 1 and the phase 2 and they are formulated
as

N
(1,0)1
211 = −

(
Ĉ1

1122 − Ĉ2
1122

)
ξ2

Ĉ2
2222 η + Ĉ1

2222

, (3.4)

N
(1,0)2
211 =

η
(
Ĉ1

1122 − Ĉ2
1122

)
ξ2

Ĉ2
2222 η + Ĉ1

2222

,
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N
(1,0)1
222 = −

(
Ĉ1

2222 − Ĉ2
2222

)
ξ2

Ĉ2
2222 η + Ĉ1

2222

(3.5)

N
(1,0)2
222 =

η
(
Ĉ1

2222 − Ĉ2
2222

)
ξ2

Ĉ2
2222 η + Ĉ1

2222

,

N
(1,0)1
112 = N

(1,0)1
121 = −

(
Ĉ1

1212 − Ĉ2
1212

)
ξ2

Ĉ2
1212 η + Ĉ1

1212

, (3.6)

N
(1,0)2
112 = N

(1,0)2
121 =

η
(
Ĉ1

1212 − Ĉ2
1212

)
ξ2

Ĉ2
1212 η + Ĉ1

1212

.

Such functions depend on the fast variable ξ, since the microstructure
enjoys the simmetry property. In the following it is assumed that the
coordinate ξ2 is centered in both layers.

Perturbation functions of second order N (2,0)
hpqr

The perturbation functions N (2,0)i
hpqr , i = {1, 2}, deriving from the cell

problem (2.47) are:

N
(2,0)1
1111 = A2

1111ξ
2
2 +A0

1111, (3.7)

N
(2,0)2
1111 = B2

1111ξ
2
2 +B0

1111,

N
(2,0)1
2211 = A2

2211ξ
2
2 +A0

2211, (3.8)

N
(2,0)2
2211 = B2

2211ξ
2
2 +B0

2211,

N
(2,0)1
2222 = A2

2222ξ
2
2 +A0

2222, (3.9)
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N
(2,0)2
2222 = B2

2222ξ
2
2 +B0

2222,

N
(2,0)1
1122 = A2

1122ξ
2
2 +A0

1122, (3.10)

N
(2,0)2
1122 = B2

1122ξ
2
2 +B0

1122,

where the constants A2
1111, A0

1111, B2
1111, B0

1111, A2
2211, A0

2211, B2
2211, B0

2211,
A2

2222, A0
2222, B2

2222, B0
2222, A2

1122, A0
1122, B2

1122 and B0
1122 are determined

as follows

A2
1111 = −1

2

A2,0
1111 + ηA2,1

1111

(η + 1)
(
Ĉ2

2222 η + Ĉ1
2222

)
Ĉ1

1212

, (3.11)

A0
1111 =

1

24

η
(
A0,3

1111 η
3 +A0,2

1111 η
2 +A0,1

1111 η +A0,0
1111

)
(η + 1)

4
(
Ĉ2

2222 η + Ĉ1
2222

)
Ĉ2

1212 Ĉ
1
1212

, (3.12)

B2
1111 =

1

2

ηB2,1
1111 + η2B2,2

1111

(η + 1)
(
Ĉ2

2222 η + Ĉ1
2222

)
Ĉ2

1212

, (3.13)

B0
1111 =

1

24

η
(
−2A0,3

1111 η
3 +B0,2

1111 η
2 +B0,1

1111 η − 1
2A

0,0
1111

)
(η + 1)

4
(
Ĉ2

2222 η + Ĉ1
2222

)
Ĉ1

1212 Ĉ
2
1212

, (3.14)

A2
2211 =

1

2

Ĉ1
1122 ∆1212(

Ĉ2
1212 η + Ĉ1

1212

)
Ĉ1

2222

, (3.15)

A0
2211 = −

∆1212η
(
C1

1122 η
2Ĉ2

2222 + 3C1
1122 η Ĉ

2
2222 + 2C2

1122 Ĉ
1
2222

)
24 (η + 1)

3
(
Ĉ2

1212 η + Ĉ1
1212

)
Ĉ2

2222 Ĉ
1
2222

,

(3.16)
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B2
2211 = −ηC

2
1122Ĉ

1
2222

Ĉ2
2222C

1
1122

A2
2211, (3.17)

B0
2211 =

(
2C1

1122 η
2Ĉ2

2222 + 3 η C2
1122 Ĉ

1
2222 + C2

1122 Ĉ
1
2222

)
∆1212η

24 (η + 1)
3
(
Ĉ2

1212 η + Ĉ1
1212

)
Ĉ2

2222 Ĉ
1
2222

,

(3.18)

A2
2222 =

∆2222

2 Ĉ2
2222 η + 2 Ĉ1

2222

, (3.19)

A0
2222 = − ∆2222η (η + 2)

24
(
Ĉ2

2222 η + Ĉ1
2222

)
(η + 1)

2
, (3.20)

B2
2222 = −ηA2

2222, (3.21)

B0
2222 = −2η + 1

η + 2
A0

2222, (3.22)

A2
1122 =

∆1212

2 Ĉ2
1212 η + 2 Ĉ1

1212

, (3.23)

A0
1122 = − ∆1212η (η + 2)

24
(
Ĉ2

1212 η + Ĉ1
1212

)
(η + 1)

2
, (3.24)

B2
1122 = −ηA2

1122, (3.25)

B0
1122 = −2η + 1

η + 2
A0

1122, (3.26)

with ∆1212 =
(
Ĉ1

1212 − Ĉ2
1212

)
and ∆2222 =

(
Ĉ1

2222 − Ĉ2
2222

)
.

The constants that characterize the perturbation functions of the second
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order Eq. (3.11), Eq. (3.12), Eq. (3.13), Eq. (3.14), which are A2,0
1111, A2,1

1111,
A0,3

1111, A0,2
1111,A0,1

1111, A0,0
1111, B2,1

1111, B2,2
1111, B0,2

2222 and B0,1
2222, assume the form

A2,1
1111 =

(
Ĉ2

1122 + Ĉ1
1212

)
Ĉ1

1122 − (Ĉ2
1122)2+ (3.27)

− Ĉ2
1122 Ĉ

1
1212 − Ĉ2

2222∆1111,

A2,0
1111 = C1

1122
2

+
(
Ĉ1

1212 − Ĉ2
1122

)
Ĉ1

1122+ (3.28)

− Ĉ2
1122 Ĉ

1
1212 − Ĉ1

2222 ∆1111,

A0,3
1111 = Ĉ2

1212

(
∆1122Ĉ

1
1212 − Ĉ1

1122 Ĉ
2
1122+

)
+ (3.29)

− (Ĉ2
1122)

2
+ Ĉ2

2222 ∆1111,

A0,2
1111 = 4 ∆1122Ĉ

1
1212 − C1

1122
2 − 2 Ĉ1

1122 Ĉ
2
1122 + 3 (Ĉ2

1122)
2
+

+ (Ĉ1
2222 + 3Ĉ2

2222)∆1111Ĉ
2
1212, (3.30)

A0,1
1111 = 5

(
∆1122Ĉ

1
1212 − 3C1

1122
2

+ 3 Ĉ1
1122 Ĉ

2
1122

)
+ (3.31)

+
(

3 Ĉ1
2222 ∆1111

)
Ĉ2

1212+

+ 2 Ĉ1
1212

(
(Ĉ2

1122)
2 − Ĉ1

1122 Ĉ
2
1122 + Ĉ2

2222 ∆1111

)
,

A0,0
1111 = 2 Ĉ1

1212

(
∆1122Ĉ

2
1212

)
+ (3.32)

− C1
1122

2
+ Ĉ1

1122 Ĉ
2
1122 + Ĉ1

2222 ∆1111,
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B2,2
1111 = (Ĉ2

1122)
2

+ ∆1111Ĉ
2
1122 + Ĉ2

1212 Ĉ
1
1122 + Ĉ2

2222 ∆1111, (3.33)

B2,1
1111 = −C1

1122
2

+
(
Ĉ2

1122 − Ĉ2
1212

)
Ĉ1

1122+ (3.34)

+ Ĉ2
1122 Ĉ

2
1212 + Ĉ1

2222 ∆1111,

B0,2
1111 =

(
5∆1122Ĉ

2
1212 + 3 Ĉ1

1122 Ĉ
2
1122 − 3 (Ĉ2

1122)
2
)
Ĉ1

1212+

−
(

3 Ĉ2
2222 ∆1111Ĉ

1
1212

)
+

− 2
(
−C1

1122
2

+ Ĉ1
1122 Ĉ

2
1122 + Ĉ1

2222 ∆1111

)
Ĉ2

1212, (3.35)

B0,1
1111 = 3 (C1

1122
2 − ( (Ĉ2

1122) + 2 Ĉ2
1212)

2Ĉ1
1122

3
− 1

3
(Ĉ2

1122)
2

)+

− 4Ĉ2
1212Ĉ

2
1122

3
− 3∆1111

( Ĉ2
2222

3
+ Ĉ1

2222

)
Ĉ1

1212. (3.36)

where the constants ∆1111 and ∆1122 assume the form ∆1111 =
(
Ĉ1

1111 − Ĉ2
1111

)
and ∆1122 =

(
Ĉ1

1122 − Ĉ2
1122

)
.

Perturbation functions N
(2,2)
hp

The perturbation functions N (2,2)i
hp , i = {1, 2}, obtained by performing

the cell problem (2.51) are:

N
(2,2)1
11 = A2

11ξ
2
2 +A0

11, (3.37)

N
(2,2)2
11 = B2

11ξ
2
2 +B0

11,
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N
(2,2)1
22 = A2

22ξ
2
2 +A0

22, (3.38)

N
(2,2)2
22 = B2

22ξ
2
2 +B0

22,

where the constantsA2
11,A0

11,B2
11,B0

11,A2
22,A0

22,B2
22 andB0

22 assume the
form

A2
11 =

1

2

(ρ1 − ρ2)

(η + 1) Ĉ1
1212

, (3.39)

A0
11 = − 1

24

(ρ1 − ρ2) η
(
Ĉ2

1212 η
2 + 3 Ĉ2

1212 η + 2 Ĉ1
1212

)
Ĉ2

1212 (η + 1)
4
Ĉ1

1212

, (3.40)

B2
11 = −1

2

(ρ1 − ρ2) η

(η + 1) Ĉ2
1212

, (3.41)

B0
11 =

1

24

(ρ1 − ρ2) η
(

2Ĉ2
1212 η

2 + 3 Ĉ1
1212 η + Ĉ1

1212

)
Ĉ2

1212 (η + 1)
4
Ĉ1

1212

, (3.42)

A2
22 =

1

2

(ρ1 − ρ2)

(η + 1) Ĉ1
2222

, (3.43)

A0
22 = − 1

24

(ρ1 − ρ2) η
(
Ĉ2

2222 η
2 + 3 Ĉ2

2222 η + 2 Ĉ1
2222

)
Ĉ2

2222 (η + 1)
4
Ĉ1

2222

, (3.44)

B2
22 = −1

2

(ρ1 − ρ2) η

(η + 1) Ĉ2
2222

, (3.45)

B0
22 =

1

24

(ρ1 − ρ2) η
(

2Ĉ2
2222 η

2 + 3 Ĉ1
2222 η + Ĉ1

2222

)
Ĉ2

2222 (η + 1)
4
Ĉ1

2222

. (3.46)
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Figure 14: (a) dimensionless real part Re(N̂ (2,2)
22 )Ẽ2/ρ2 vs. the real part of s,

Re(s), and the coordinate ξ2. (b) Dimensionless real part Re(N̂ (2,2)
22 )Ẽ2/ρ2

vs. the imaginary part of s, Im(s), and ξ2, obtained for rρ = rE = τ iς = 10,
i = 1, 2, ν̃1 = ν̃2 = 0.2, η = 1 and γ = 1.
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Figure 15: (a) dimensionless imaginary part Im(N̂
(2,2)
22 )Ẽ2/ρ2 vs. the real

part Re(s) and ξ2. (b) Dimensionless imaginary part Im(N̂
(2,2)
22 )Ẽ2/ρ2 vs.

Im(s) and ξ2, obtained for rρ = rE = τ iς = 10, i = 1, 2, ν̃1 = ν̃2 = 0.2, η = 1
and γ = 1.
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In Figs. (14) and (15), the Poisson ratios are assumed to be equal for
both phases ν̃1 = ν̃2 = 0.2, the dimensionless relaxation time is τ iς = 10,
i = 1, 2. the ratio between the Young’s moduli is rE = 10, the ratio
between the densities is rρ = 10, the dimensionless relaxation time is
τ iς = 10, i = 1, 2, the ratio between the thicknesses is η = 1 and the pa-
rameter γ = 1. The perturbation functionN (2,2)

22 is analytically computed
with respect to the phase 1 and the phase 2 by solving the cell problem
(2.51) supplied with the interface conditions (2.52) in Sec. 2.4 and the
structure of N (2,2)

22 is reported in terms of the geometric and mechanical
properties of the periodic domain in Eq. (3.38). Such function depends
on the fast variable ξ2, which is perpendicular to the transversal direc-
tion e1, as well as on the complex parameter s. The perturbation func-

tion is non-dimensionalized as N
(2,2)
22 Ẽ2

ρ2
and its real part Re(N

(2,2)
22 )Ẽ2

ρ2
and

its imaginary part Im(N
(2,2)
22 )Ẽ2

ρ2
are taken into account since s is a complex

number. Fig. 14-(a) shows the real part of N
(2,2)
22 Ẽ2

ρ2
along the periodic cell

vs. the real part of s, Re(s), and the vertical coordinate ξ2. Fig. 14-(b) de-

picts the dependence of Re(N
(2,2)
22 )Ẽ2

ρ2
with respect to the imaginary part

of s, Im(s), and ξ2. The imaginary part of N
(2,2)
22 Ẽ2

ρ2
is shown in Fig. 15-(a)

vs. Re(s) and in Fig. 15-(b) vs. Im(s), by varying the vertical coordinate
ξ2.

Perturbation functions N
(3,0)
hpqrs

The non-vanishing micro-fluctuation functions N (3,0)i
hpqrs , i = {1, 2}, ob-

tained by performing the cell problem (2.49), with w = 1, are:

N
(3,0)1
21111 = A3

21111ξ
3
2 +A1

21111ξ2, (3.47)

N
(3,0)2
21111 = B3

21111ξ
3
2 +B1

21111ξ2,

N
(3,0)1
11222 = A3

11222ξ
3
2 +A1

11222ξ2, (3.48)
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N
(3,0)2
11222 = B3

11222ξ
3
2 +B1

11222ξ2,

N
(3,0)1
12111 = A3

12111ξ
3
2 +A1

12111ξ2, (3.49)

N
(3,0)2
12111 = B3

12111ξ
3
2 +B1

12111ξ2,

N
(3,0)1
22222 = A3

22222ξ
3
2 +A1

22222ξ2, (3.50)

N
(3,0)2
22222 = B3

22222ξ
3
2 +B1

22222ξ2,

where the constants A3
21111, A1

21111, B3
21111, B1

21111, A3
11222, A1

11222, B3
11222,

B1
11222, A3

12111, A1
12111, B3

12111, B1
12111, A3

22222, A1
22222, B3

22222 and B1
22222

read

A3
21111 =

A3,1
21111η +A3,0

21111

18
(
Ĉ2

2222 η + Ĉ1
2222

)
(η + 1) Ĉ1

1212 Ĉ
1
2222

, (3.51)

A1
21111 =

η(A1,4
21111η

4 +A1,3
21111η

3 +A1,2
21111η

2 +A1,1
21111η +A1,0

21111)

72
(
Ĉ2

2222 η + Ĉ1
2222

)2

(η + 1)
4
Ĉ1

1212 Ĉ
1
2222 Ĉ

2
1212

,

(3.52)

B3
21111 =

η(B3,2
21111η +B3,1

21111)

18
(
Ĉ2

2222 η + Ĉ1
2222

)
(η + 1) Ĉ2

1212 Ĉ
2
2222

, (3.53)

B1
21111 =

η(B1,4
21111η

4 +B1,3
21111η

3 +B1,2
21111η

2 +B1,1
21111η +B1,0

21111)

72
(
Ĉ2

2222 η + Ĉ1
2222

)2

(η + 1)
4
Ĉ2

1212 Ĉ
2
2222 Ĉ

1
1212

,

(3.54)

A3
11222 =

∆1212

(
Ĉ2

1212 η
3 +

(
Ĉ1

1212 + 2 Ĉ2
1212

)
η2
)

18
(
Ĉ2

1212 η + Ĉ1
1212

)2

(η + 1)
2

+ (3.55)
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+
∆1212

((
2 Ĉ1

1212 + Ĉ2
1212

)
η + Ĉ1

1212

)
18
(
Ĉ2

1212 η + Ĉ1
1212

)2

(η + 1)
2

,

A1
11222 = −

∆1212

(
− 1

4 Ĉ
2
1212 η

3 +
(

3
4 Ĉ

1
1212 − 3

2 Ĉ
2
1212

)
η2
)

18
(
Ĉ2

1212 η + Ĉ1
1212

)2

(η + 1)
2

+ (3.56)

+

(
− 3

2 Ĉ
1
1212 + Ĉ2

1212

)
η∆1212

18
(
Ĉ2

1212 η + Ĉ1
1212

)2

(η + 1)
2
,

B3
11222 =

η∆1212

18 Ĉ2
1212 η + 18 Ĉ1

1212

, (3.57)

B1
11222 =

η∆1212

((
4 Ĉ1

1212 − 6 Ĉ2
1212

)
η2
)

72 (η + 1)
2
(
Ĉ2

1212 η + Ĉ1
1212

)2 + (3.58)

+
∆1212

((
−6 Ĉ1

1212 + 3 Ĉ2
1212

)
η − Ĉ1

1212

)
72 (η + 1)

2
(
Ĉ2

1212 η + Ĉ1
1212

)2 +

A3
12111 =

η(A3,3
12111η

3 +A3,2
12111η

2 +A3,1
12111η

1 +A3,0
12111)

18
(
Ĉ2

1212 η + Ĉ1
1212

)2

Ĉ1
2222 Ĉ

1
1212 Ĉ

2
2222 (η + 1)

3
, (3.59)

A1
12111 =

η(A1,3
12111η

3 +A1,2
12111η

2 +A1,1
12111η

1 +A1,0
12111)

72
(
Ĉ2

1212 η + Ĉ1
1212

)2

Ĉ1
2222 Ĉ

1
1212 Ĉ

2
2222 (η + 1)

3
, (3.60)

B3
12111 = −

η∆1212

(
C2

1111 Ĉ
2
2222 − C2

1122
2 − Ĉ2

1122 Ĉ
2
1212

)
18
(
Ĉ2

1212 η + Ĉ1
1212

)
Ĉ2

2222 Ĉ
2
1212

, (3.61)
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B1
12111 =

η(B1,3
12111η

3 +B1,2
12111η

2 +B1,1
12111η

1 +B1,0
12111)

72
(
Ĉ2

1212 η + Ĉ1
1212

)2

(η + 1)
3
Ĉ2

2222 Ĉ
2
1212 Ĉ

1
2222

, (3.62)

where the constant ∆1212 has the form ∆1212 =
(
Ĉ1

1212 − Ĉ2
1212

)
.

The constants that appear in the perturbation functions Eq. (3.51)-Eq.
(3.62) depend on the geometric and mechanical properties of the phases
1 and 2 and for sake of simplcity are not reported here.

A3
22222 = −

∆2222

(
Ĉ2

2222 η
3 +

(
Ĉ1

2222 + 2 Ĉ2
2222

)
η2
)

18
(
Ĉ2

2222 η + Ĉ1
2222

)2

(η + 1)
2

+ (3.63)

−
∆2222

(
2 Ĉ1

2222 + Ĉ2
2222

)
η + Ĉ1

2222

18
(
Ĉ2

2222 η + Ĉ1
2222

)2

(η + 1)
2

,

A1
22222 = −

∆2222

(
− 1

4 Ĉ
2
2222 η

3 +
(

3
4 Ĉ

1
2222 − 3

2 Ĉ
2
2222

)
η2
)

18
(
Ĉ2

2222 η + Ĉ1
2222

)2

(η + 1)
2

+ (3.64)

−

(
− 3

2 Ĉ
1
2222 + Ĉ2

2222

)
η∆2222

18
(
Ĉ2

2222 η + Ĉ1
2222

)2

(η + 1)
2
,

B3
22222 =

∆2222

(
η3Ĉ2

2222 +
(
Ĉ1

2222 + 2 Ĉ2
2222

)
η2
)
η

(η + 1)
2
(
Ĉ2

2222 η + Ĉ1
2222

)2 + (3.65)

+

((
2 Ĉ1

2222 + Ĉ2
2222

)
η + Ĉ1

2222

)
∆2222η

(η + 1)
2
(
Ĉ2

2222 η + Ĉ1
2222

)2 ,
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B1
22222 =

∆2222

((
Ĉ1

2222 − 3
2 Ĉ

2
2222

)
η2 − 1

4 Ĉ
1
2222

)
η

18 (η + 1)
2
(
Ĉ2

2222 η + Ĉ1
2222

)2 + (3.66)

+

(
− 3

2 Ĉ
1
2222 + 3

4 Ĉ
2
2222

)
η∆2222

18 (η + 1)
2
(
Ĉ2

2222 η + Ĉ1
2222

)2 ,

where the constants ∆2222 assumes the form ∆2222 =
(
Ĉ1

2222 − Ĉ2
2222

)
.

Perturbation functions N
(3,2)
hpq

The perturbation functions N (3,2)i
hpq , i = {1, 2}, obtained by performing

the cell problem (2.53) are:

N
(3,2)1
211 = A3

211ξ
3
2 +A1

211ξ2, (3.67)

N
(3,2)2
211 = B3

211ξ
3
2 +B1

211ξ2,

N
(3,2)1
121 = A3

121ξ
3
2 +A1

121ξ2, (3.68)

N
(3,2)2
121 = B3

121ξ
3
2 +B1

121ξ2,

N
(3,2)1
112 = A3

112ξ
3
2 +A1

112ξ2, (3.69)

N
(3,2)2
112 = B3

112ξ
3
2 +B1

112ξ2,

N
(3,2)1
222 = A3

222ξ
3
2 +A1

222ξ2, (3.70)

N
(3,2)2
222 = B3

222ξ
3
2 +B1

222ξ2,
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where the constants A3
211, A1

211, B3
211, B1

211, A3
121, A1

121, B3
121, B1

121, A3
112,

A1
112, B3

112, B1
112, B1

122, A3
222, A1

222, B3
222 and B1

222 are

A3
211 =

1

6

A3,1
211η +A3,0

211

(η + 1)
(
Ĉ2

2222 η + Ĉ1
2222

)
Ĉ1

1212 Ĉ
1
2222

, (3.71)

A1
211 =

1

24

η(A1,4
211η

4 +A1,3
211η

3 +A1,2
211η

2 +A1,1
211η +A1,0

211)

(η + 1)
4
(
Ĉ2

2222 η + Ĉ1
2222

)2

Ĉ1
1212 Ĉ

1
2222 Ĉ

2
1212

, (3.72)

B3
211 =

1

6

η(B3,2
211η +B3,1

211)

(η + 1)
(
Ĉ2

2222 η + Ĉ1
2222

)
Ĉ2

1212 Ĉ
2
2222

, (3.73)

B1
211 =

1

24

η(A1,4
211η

4 +A1,3
211η

3 +A1,2
211η

2 +A1,1
211η +A1,0

211)

(η + 1)
4
(
Ĉ2

2222 η + Ĉ1
2222

)2

Ĉ2
1212 Ĉ

2
2222 Ĉ

1
1212

, (3.74)

A3
121 =

ηA3,1
121 +A3,0

121

6 (η + 1)
(
Ĉ2

1212 η + Ĉ1
1212

)
C1

1212
2
, (3.75)

A1
121 =

η(A1,4
121η

4 +A1,3
121η

3 +A1,2
121η

2 +A1,1
121η +A1,0

121)

24 (η + 1)
4
(
Ĉ2

1212 η + C1
1212

)2

Ĉ2
1212 C

1
1212

2
, (3.76)

B3
121 =

η(B3,2
121η +B3,1

121)

6 (η + 1)C2
1212

2
(
Ĉ2

1212 η + Ĉ1
1212

) , (3.77)

B1
121 =

η(B1,4
121η

4 +B1,3
121η

3 +B1,2
121η

2 +B1,1
121η +B1,0

121)

24 (η + 1)
4
(
Ĉ2

1212 η + Ĉ1
1212

)2

C2
1212

2
Ĉ1

1212

, (3.78)

A3
112 =

1

6

(− (η + 3) ρ1 + 2 ρ2) Ĉ1
1212(

Ĉ2
1212 η + Ĉ1

1212

)
(η + 1) Ĉ1

1212

, (3.79)
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A1
112 =

η(A1,4
112η

4 +A1,3
112η

3 +A1,2
112η

2 +A1,1
112η +A1,0

112)

24
(
Ĉ2

1212 η + Ĉ1
1212

)2

(η + 1)
4
Ĉ2

1212 Ĉ
1
1212

, (3.80)

B3
112 =

(((
ρ1 − 3ρ2

2

)
Ĉ2

1212 +
Ĉ1

1212ρ2
2

)
η − ρ2Ĉ

2
1212

2 + Ĉ1
1212

(
ρ1 − ρ2

2

))
η

3
(
Ĉ2

1212 η + Ĉ1
1212

)
(η + 1) Ĉ2

1212

,

(3.81)

B1
112 =

η(B1,4
112η

4 +B1,3
112η

3 +B1,2
112η

2 +B1,1
112η +B1,0

112)

24 (η + 1)
4
(
Ĉ2

1212 η + Ĉ1
1212

)2

Ĉ2
1212 Ĉ

1
1212

, (3.82)

A3
222 =

1

6

(− (η + 3) ρ1 + 2 ρ2) Ĉ1
2222 + 2 Ĉ2

2222 η ρ2(
Ĉ2

2222 η + Ĉ1
2222

)
(η + 1) Ĉ1

2222

, (3.83)

A1
222 =

η(A1,4
222η

4 +A1,3
222η

3 +A1,2
222η

2 +A1,1
222η +A1,0

222)

24 (η + 1)
4
(
Ĉ2

2222 η + Ĉ1
2222

)2

Ĉ1
2222 Ĉ

2
2222

, (3.84)

B3
222 =

(((
3ρ2
2 + ρ1

)
Ĉ2

2222 + ρ2
2 Ĉ1

2222

)
η
)
η

3
(
Ĉ2

2222 η + Ĉ1
2222

)
(η + 1) Ĉ2

2222

+ (3.85)

−

(
ρ2
2 Ĉ2

2222 +
(
ρ1 − ρ2

2

)
Ĉ1

2222η
)

3
(
Ĉ2

2222 η + Ĉ1
2222

)
(η + 1) Ĉ2

2222

,

B1
222 =

η(B1,4
222η

4 +B1,3
222η

3 +B1,2
222η

2 +B1,1
222η +B1,0

222)

24 (η + 1)
4
(
Ĉ2

2222 η + Ĉ1
2222

)2

Ĉ1
2222 Ĉ

2
2222

. (3.86)

The constants that appear in the perturbation functions Eq. (3.71)-Eq.(3.86)
are not reported here, for sake of simplicity.
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In Figs. (16) and (17), the Poisson ratios are assumed to be equal for
both phases ν̃1 = ν̃2 = 0.2, the dimensionless relaxation time is τ iς = 10,
i = 1, 2. the ratio between the Young’s moduli is rE = 10, the ratio
between the densities is rρ = 10, the dimensionless relaxation time is
τ iς = 10, i = 1, 2, the ratio between the thicknesses is η = 1 and the pa-
rameter γ = 1. The cell problem (2.53) equipped with the interface condi-
tions (2.54) provides the perturbation function N (3,2)

222 and its formulation
is explicitely expressed in Eq. (3.70), where there is point in noticing
they take into account the effect of the microstructural heterogeneities of
the domain. The real part and the imaginary part of the dimensionless

perturbation function N
(3,2)
222 Ẽ2

ρ2
are considered, which are Re(N

(3,2)
222 )Ẽ2

ρ2
and

Im(N
(3,2)
222 )Ẽ2

ρ2
. Fig. 16-(a) and Fig. 16-(b) show how the real part of N

(3,2)
222 Ẽ2

ρ2

depends on the real and the imaginary parts of s, by varying the vertical
coordinate ξ2. Fig. 17-(a) and Fig. 17-(b) show that the imaginary part
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Figure 16: (a) dimensionless real part of the perturbation function N̂
(3,2)
222 ,

Re(N̂
(3,2)
222 )Ẽ2/ρ2, vs. the real part of s, Re(s), and the coordinate ξ2. (b)

Dimensionless real part Re(N̂ (3,2)
222 )Ẽ2/ρ2 vs. the imaginary part of s, Im(s),

and ξ2, obtained for rρ = 10, rE = 10, τς = 10, ν̃1 = ν̃2 = 0.2, τ iς = 10,
i = 1, 2 η = 1 and γ = 1.
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Figure 17: (a) dimensionless imaginary part Im(N̂
(3,2)
222 )Ẽ2/ρ2 vs. the real

part Re(s) and ξ2. (b) Dimensionless imaginary part Im(N̂
(3,2)
222 )Ẽ2/ρ2 vs.

Im(s) and ξ2, obtained for rρ = rE = τ iς = 10, i = 1, 2, ν̃1 = ν̃2 = 0.2, η = 1
and γ = 1.

of N
(3,2)
222 Ẽ2

ρ2
depends on Re(s) and Im(s), by changing the vertical coor-

dinate ξ2.
In Fig. 14, 15 and Fig. 16, 17, it is emphasized that the dimensionless per-

turbation functions Re(N
(2,2)
22 )Ẽ2

ρ2
, Im(N

(2,2)
22 )Ẽ2

ρ2
and Re(N

(3,2)
222 )Ẽ2

ρ2
, Im(N

(3,2)
222 )Ẽ2

ρ2

areQ-periodic, they have vanishing mean values over the unit cellQ and
smooth along the boundaries of Q, as expected.

Overall inertial terms and overall consitutive tensors

The perturbation functions of first, second and third order are helpful
to determine the overall transformed inertial tensors, which appear in
the dispersion relation (2.146). They are specialized according to the ge-
ometry of the layered domain in Fig. 13. By taking into account the
approach presented in Subsection 2.7.1, the transformed inertial tensor
componenets appearing in Eq. (2.146) assume the form:

Î2121 = ε2〈ρm(N
(1,0)
121 N

(1,0)
121 )− 2ρmN

(2,0)
2211 〉

1

ρ
, (3.87)
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Î2222 = ε2〈ρm(N
(1,0)
222 N

(1,0)
222 )− 2ρmN

(2,0)
2222 〉

1

ρ
, (3.88)

Î22 = ε2〈ρm(N
(2,2)
22 +N

(2,2)
22 )〉1

ρ
, (3.89)

Î1212 = ε2〈ρm(N
(1,0)
112 N

(1,0)
112 )− 2ρmN

(2,0)
1122 〉

1

ρ
, (3.90)

Î1111 = ε2〈ρm(N
(1,0)
211 N

(1,0)
211 )− 2ρmN

(2,0)
1111 〉

1

ρ
, (3.91)

Î11 = ε2〈ρm(N
(2,2)
11 +N

(2,2)
11 )〉1

ρ
. (3.92)

Referred to the Eq. (2.146), the constitutive tensor components in the
Laplace space are

Ĵ11 = ε2〈Ĝ1212B
(2,2)
121 B

(2,2)
121 〉, (3.93)

Ĵ22 = ε2〈Ĝ2222B
(2,2)
222 B

(2,2)
222 〉, (3.94)

Ĝ1111 = 〈Ĝ1111B
(1,0)
1111B

(1,0)
1111 + Ĝ2222B

(1,0)
2211B

(1,0)
2211 + (3.95)

+ 2Ĝ1122B
(1,0)
2211B

(1,0)
1111 〉,

Ĝ2121 = Ĝ1212 = 〈Ĝ2222B
(1,0)
2221B

(1,0)
2221 〉, (3.96)

Ĝ2222 = 〈Ĝ2222B
(1,0)
2222B

(1,0)
2222 〉, (3.97)

Ĵ1
2121 = −ε2〈2Ĝ1122B

(2,0)
11211B

(2,2)
222 − 2Ĝ1212B

(1,0)
1221B

(3,2)
1221 +

− 2Ĝ1212B
(1,0)
2121B

(3,2)
1221 − 2Ĝ1212B

(1,0)
2121B

(3,2)
2121 〉, (3.98)
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Ĵ1
1212 = −ε2〈−2Ĝ1212B

(1,0)
1212B

(3,2)
1212 + 2Ĝ1212B

(2,0)
12122B

(2,2)
121 〉, (3.99)

Ĵ1
2222 = −ε2〈−2Ĝ2222B

(1,0)
2222B

(3,2)
2222 + 2Ĝ2222B

(2,0)
22222B

(2,2)
222 〉,

Ŝ1
111111 = ε2〈−2Ĝ1111B

(1,0)
1111B

(3,0)
111111 + Ĝ1212B

(2,0)
12111B

(2,0)
12111+ (3.100)

+ Ĝ1212B
(2,0)
21111B

(2,0)
21111 + +2Ĝ1212B

(2,0)
12111B

(2,0)
21111 − 2Ĝ2222B

(1,0)
2211B

(3,0)
221111+

− 2Ĝ1122B
(1,0)
2211B

(3,0)
111111 − 2Ĝ2211B

(1,0)
1111B

(3,0)
221111〉,

Ŝ1
211211 = ε2〈Ĝ1111B

(2,0)
11211B

(2,0)
11211 + 2Ĝ1122B

(2,0)
11211B

(2,0)
22211+ (3.101)

+ Ĝ2222B
(2,0)
22211B

(2,0)
22211 − 2Ĝ1212B

(1,0)
1212B

(3,0)
12111 − 2Ĝ1212B

(1,0)
1221B

(3,0)
122111+

− 2Ĝ1212B
(1,0)
2121B

(3,0)
122111 − 2Ĝ1212B

(1,0)
1221B

(3,0)
212111 − 2Ĝ1212B

(1,0)
2121B

(3,0)
212111〉.

The inertial and constitutive tensor components described in Subsection
2.7.2 coincide with those ones from (3.87) to (3.97), whereas the inertial
and constitutive tensor components from (3.98) to (3.101) are slightly dif-
ferent because the localization tensors B(3,0)

hkpq1q2q3
and B

(3,2)
hkpq1

disappear
in the formulation and so they assume the form:

Ĵ2
1111 = −ε2〈2Ĝ1212B

(2,0)
12111B

(2,2)
121 + 2Ĝ1212B

(2,0)
21111B

(2,2)
121 〉, (3.102)

Ĵ2
2121 = −ε2〈2Ĝ1122B

(2,0)
11211B

(2,2)
222 + 2Ĝ2222B

(2,0)
22211B

(2,2)
222 〉, (3.103)

Ĵ2
1212 = −ε2〈2Ĝ1212B

(2,0)
12122B

(2,2)
121 〉, (3.104)

Ĵ2
2222 = −ε2〈2Ĝ2222B

(2,0)
22222B

(2,2)
222 〉, (3.105)

Ŝ2
111111 = ε2〈Ĝ1212B

(2,0)
12111B

(2,0)
12111 + Ĝ1212B

(2,0)
21111B

(2,0)
21111〉+ (3.106)
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+ ε2〈2Ĝ1212B
(2,0)
12111B

(2,0)
21111〉,

Ŝ2
211211 = ε2〈Ĝ1111B

(2,0)
11211B

(2,0)
11211 + 2Ĝ1122B

(2,0)
11211B

(2,0)
22211〉+ (3.107)

+ ε2〈Ĝ2222B
(2,0)
22211B

(2,0)
22211〉.

The transformed inertial tensor components Ĵ11, Ĵ2
1111 and Î11, referred

to the wave propagation along the transversal direction e1, are taken into
account. They are affected by the complex angular frequency s and their

dimensionless components are written as
Ĵ11

√
Ẽ2
ρ2

ε2s2ρ2
,
Ĵ2
1111

√
Ẽ2
ρ2

ε2s2ρ2
and Î11Ẽ2

ε2ρ2
.

The second order transformed inertial tensor component is computed by
means of Eq. (3.93) and, due to the presence of the complex frequency

s,
Ĵ11

√
Ẽ2
ρ2

ε2s2ρ2
is decomposed into its real part

Re(Ĵ11)

√
Ẽ2
ρ2

ε2s2ρ2
and its imagi-
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Figure 18: (a) dimensionless real part component Re(Ĵ11)
√

Ẽ2
ρ2
/ε2s2ρ2 vs.

the real part of s, Re(s), and the imaginary part of s, Im(s). (b) Dimension-

less imaginary part component Im(Ĵ2
11)

√
Ẽ2
ρ2
/ε2s2ρ2 vs. the real part of s,

Re(s), and the imaginary part of s, Im(s), obtained for rρ = rE = τ iς = 10,
i = 1, 2, ν̃1 = ν̃2 = 0.2, η = 1 and γ = 1.
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nary part
Im(Ĵ11)

√
Ẽ2
ρ2

ε2s2ρ2
. Fig. 18-(a) shows the behaviour of

Re(Ĵ11)

√
Ẽ2
ρ2

ε2s2ρ2

by varying the real part and the imaginary part of s. Specifically, it can

be observed that the real part of
Ĵ11

√
Ẽ2
ρ2

ε2s2ρ2
is symmetric with respect to the

Re(s)-axis and, by decreasing the values of the real part of s, the up-

ward concavity of
Re(Ĵ11)

√
Ẽ2
ρ2

ε2s2ρ2
increases. In Fig. 18-(b), the imaginary

part
Im(Ĵ11)

√
Ẽ2
ρ2

ε2s2ρ2
is plotted with respect to the real part of s, Re(s), and

the imaginary part of s, Im(s). The function assumes either positive or
negative values and it is symmetric with respect to zero.
The transformed second order inertial tensor component Î11Ẽ2

ε2ρ2
is com-

puted by means of Eq. (2.117) and its real part Re(Î11)Ẽ2

ε2ρ2
and its imag-

inary part Im(Î11)Ẽ2

ε2ρ2
are considered. In Figs. 19-(a) and 19-(b), the de-
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Figure 19: (a) dimensionless real part component Re(Î11)Ẽ2/ε
2s2 vs. the

real part of s, Re(s), and the imaginary part of s, Im(s). (b) Dimensionless
component Im(Î11)Ẽ2/ε

2s2 vs. the real part of s, Re(s), and the imaginary
part of s, Im(s), obtained for rρ = rE = τ iς = 10, i = 1, 2, ν̃1 = ν̃2 = 0.2,
η = 1 and γ = 1.
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pendency of Re(Î11)Ẽ2

ε2ρ2
and Im(Î11)Ẽ2

ε2ρ2
on the real part and the imaginary

part of s is shown. Fig. 19-(a) ensures that Re(Î11)Ẽ2

ε2ρ2
assumes only neg-

ative values and it is symmetric with respect to Re(s)-axis. Moreover,
by decreasing the real part of s, the downward concavity is more em-
phasized. Fig. 19-(b) depicts the symmetry of Im(Î11)Ẽ2

ε2ρ2
with respect to

zero. Finally, in Figs. 20-(a) and 20-(b), the real part of the dimensionless

fourth order inertial tensor component
Re(Ĵ2

1111)

√
Ẽ2
ρ2

ε2s2ρ2
and its imaginary

part
Im(Ĵ2

1111)

√
Ẽ2
ρ2

ε2s2ρ2
are plotted vs. the real and the imaginary parts of the

complex frequency s. It is worth noticing that the inertial tensor compo-
nent Ĵ1

1111 stemming from the approach 1 is vanishing.
Fig. 21-(a) shows that the magnitudes of the constitutive tensor com-
ponents Ŝ1

111111 and Ŝ2
111111, determined for the compressional waves
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Figure 20: (a) dimensionless real part component Re(Ĵ2
1111)

√
Ẽ2
ρ2
/ε2s2ρ2

vs. the real part of s, Re(s), and the imaginary part of s, Im(s). (a) Di-

mensionless imaginary part component Im(Ĵ2
1111)

√
Ẽ2
ρ2
/ε2s2ρ2 vs. the real

part of s, Re(s), and the imaginary part of s, Im(s). Both are retrieved for
rρ = rE = τ iς = 10, i = 1, 2, ν̃1 = ν̃2 = 0.2, η = 1 and γ = 1.
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along the direction e1, are compared in terms of the magnitude of s =√
Re(s)2 + Im(s)2 and the non-dimensional Young’s modulus rE . As

1
10 < rE < 1, the magnitude |Ŝ1

111111| decreases more steadily than
|Ŝ2

111111| and both are equal to zero when the material is homogeneous,
i.e. when rE = 1. With increasing the non-dimensional Young’s modu-
lus rE , a significant rise in |Ŝ2

111111| is observed as compared to |Ŝ1
111111|.

Finally, as |s| goes up, |Ŝ1
111111| decreases more slowly than |Ŝ2

111111|. In
Fig. 21-(b), the magnitudes of Ŝ1

211211 and Ŝ2
211211 are plotted with re-

spect to the magnitude of the complex angular frequency |s| and the
non-dimensional Young’s modulus rE . They are computed for the shear
waves travelling along the layering direction e1. It can be observed that
if 1

10 < rE < 1, the magnitudes of Ŝ1
211211 and Ŝ2

211211 decrease down
to zero when the material is homogeneous. A rise in rE (with rE > 1)
makes |Ŝ1

211211| and |Ŝ2
211211| increasing rapidly. Moreover, growth in the	
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Figure 21: (a) magnitudes of the constitutive tensor Ŝ1
111111 and |Ŝ1

111111|
(red) are compared with |Ŝ2

111111| (violet) by varying the dimensionless
Young’s modulus rE and the magnitude of s. (b) Magnitudes |Ŝ1

211211|
(gold) and |Ŝ2

211211| (green) are compared with respect to rE and |s|. (a)
and (b) are obtained for rρ = 10, τ iς = 10, i = 1, 2, ν̃1 = ν̃2 = 0.2, η = 1 and
the argument of s is zero and γ = 1.
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magnitude of s leads |Ŝ1
211211| and |Ŝ2

211211| to decrease. The discrepancy
between the magnitude of Ŝ1

111111 (red) and Ŝ2
111111 (violet) (Fig. (21)-(a))

and between the magnitude of Ŝ1
211211 (gold) and Ŝ2

211211 (green) (Fig.
(21)-(b)) can be observed as rE increases, whereas such a discrepancy de-
creases as the magnitude of s increases. Fig. 22-(a) depicts the behaviour
of the magnitudes of the transformed viscoelastic components Ĝ1212 re-
lated to the shear wave travelling along e2. It is observed that the trend
of |Ĝ1212| steadely increases by a rise in the Young’s modulus and by
varying the magnitude of the complex frequency s. Fig. 22-(b) shows
the magnitude of the transformed viscoelastic components Ĝ1111, con-
cerning with the compressional wave along e1. The magnitude |Ĝ1111|
significantly grows up in the interval 1

10 < rE < 4, by varying |s|, and
then its trend becomes a plateau.
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Figure 22: (a) magnitudes of the constitutive component Ĝ1212 and |Ĝ1212|
are depicted by varying the dimensionless Young’s modulus rE and the
magnitude of s. (b) Magnitudes of the component Ĝ1111 and |Ĝ1111| are
represented by changing the dimensionless Young’s modulus rE and the
magnitude of s. Both are obtained for rρ = τ iς = 10, i = 1, 2, ν̃1 = ν̃2 = 0.2,
η = 1, the argument of s is zero and γ = 1.
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Let us consider a 2-D heterogeneous layered domain Fig. 13 subject to

L-periodic harmonic body forces b̂α = Υαe
ι 2πkLβ

xβ
, with k = 1, 2, .., ap-

plied in the direction of the orthogonal symmetry axis xβ , where α, β =

1, 2, Υα ∈ R and ι2 = −1. A horizontal (or vertical) sample of length
L = L1(= L2) is taken into account since the body forces and the hetero-
geneous domain are periodic. The solution of the heterogeneous model
is provided by a numerical procedure accounting for the actual hetero-
geneous composition of the layered composite and it is compared with
the solution stemming from the homogenized model. For sake of sim-
plicity, only the static case is considered and the field equation (2.145) is
rephrased as

sĜαβαβ
∂2ÛMα
∂x2

β

− sŜiαββαββ
∂4ÛMα
∂x4

β

= −b̂α, (3.108)

with i = {1, 2} and the indices α and β are not summed. The shear
problem takes place for α 6= β whereas the compressional problem for
α = β. The transformed macro-displacement is determined from Eq.
(3.108) as

ÛMα (xβ) =
(Lβ

2π

)2 b̂α

sĜαβαβ

[
1 +

(
2πk
Lβ

)2 Ŝiαββαββ

Ĝαβαβ

] , (3.109)

with i = 1, 2 and k = 1, 2, .. The dimensionless transformed macro-
displacement is written as

˜̂
UMα =

ÛMα Ẽ1

Υα

(
Lβ
2π

)2 , (3.110)

where Ẽ1 is the Young’s modulus related to the phase 1. In Figs. (23)-
(25), the material is in plane stress condition, the sample has a length
L/ε = 11, with amplitude Υα = 1 N/mm3, the Poisson ratios are equal
for both phases, ν̃1 = ν̃2 = 0.2, the ratio between the thicknesses is η = 1,
the parameter γ is γ = 1, whereas the relaxation time is τ iς , i = 1, 2, the
ratio between the densities is rρ, the dimensionless complex frequency is
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sς = ss2/
√

Ẽ2

ρ2
and the ratio between the Young’s moduli rE are assumed

to vary.
In Fig. (23) and (24), the relaxation times are assumed to be the same for
both the phases, τ1

ς = τ2
ς = 5, the ratio between the densities and the ra-

tio between the Young’s moduli are rρ = rρ = 10 and the dimensionless
complex frequency sς assumes different values.
In Fig. 23-(a) the magnitude of the dimensionless transformed macro-
displacement (3.110), with α = 1 along the direction x1, is compared
with the solution provided by a finite element analysis of the heteroge-
neous domain equipped with proper periodic boundary conditions on
the displacement. The continuous curve stands for the analytical di-
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Figure 23: magnitude of the dimensionless macro-displacement component
˜̂
UM1 (x1) induced by the harmonic body force b̂1(x1) (a) and ˜̂

UM2 (x1) caused
by b̂2(x1) (b) along direction x1. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds). The red curves are
obtained by setting the dimensionless complex freqeuncy sς = −2, the
blue curves are obtained for sς = −0.5 and the green ones are given for
sς = −0.3, with τ iς = 5, i ∈ 1, 2, rE = rρ = 10, ν̃1 = ν̃2 = 0.2, η = 1 and
γ = 1.
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mensionless transformed macro-displacement ˜̂
UM1 (x1), which is derived

from the method 1 and provides the overall constitutive tensor Ŝ1
111111,

Eq. (3.100). The dotted curve represents the analytical dimensionless

transformed macro- displacement ˜̂
UM1 (x1) and derives from the alter-

native method 2, which provides the overall constitutive tensor Ŝ2
111111,

Eq. (3.106). Finally the diamonds stand for the numerical results related
to the heterogeneous model and obtained from the corresponding micro-
scopic solution through the up-scaling relation (2.68) and considering the
imaginary part of the body force b̂1 = Υ1 sin 2πk

L1
x1,with k = 1. In Fig. 23-

(a), three values for the dimensionless complex frequency sς = ss2/
√

Ẽ2

ρ2

are considered: the red curves and diamonds are obtained for sς = −2,
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Figure 24: magnitude of the dimensionless macro-displacement component
˜̂
UM1 (x2) induced by the harmonic body force b̂1(x2) (a) and ˜̂

UM2 (x2) caused
by b̂2(x2) (b) along direction x2. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds). The red curves are
obtained by setting the dimensionless complex frequency sς = −2, the
blue curves are obtained for sς = −0.5 and the green ones are given for
sς = −0.3, with τ iς = 5, i ∈ 1, 2, rE = rρ = 10, ν̃1 = ν̃2 = 0.2, η = 1 and
γ = 1.

103



	

!!!(!!) 	

	

!!
! 	

	

!!!(!!) 	

	

!!
! 	

	

!!
! 	

	

!!
! 	

	

!!!(!!) 	

	

!!!(!!) 	

	

(!)	 (!)	

(!)	(!)	

Figure 25: (a) magnitude of the dimensionless macro-displacement com-
ponent ÛM1 (x1) induced by the harmonic body force b̂1(x1) along x1. (b)
Magnitude of the dimensionless macro-displacement component ÛM2 (x1)

induced by the harmonic body force b̂2(x1) along x1. The curves are ob-
tained with different relaxation times related to phase 1 and phase 2: τ1ς = 1,
τ2ς = 2 (red), τ1ς = 2, τ2ς = 4 (blue) and τ1ς = 10, τ2ς = 20 (green), with
rE = rρ = 10, sς = −0.5, γ = 1 and η = 1. (c) Magnitude of the di-
mensionless macro-displacement component ÛM1 (x1) induced by the har-
monic body force b̂1(x1) along x1. (d) Magnitude of the dimensionless
macro-displacement component ÛM2 (x1) induced by the harmonic body
force b̂2(x1) along x1. The curves are obtained as rE = 1 (red), rE = 3
(blue) and rE = 9 (green), by considering τ1ς = 2,τ2ς = 5, sς = −0.5, γ = 1
and η = 1.
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the blue curves and diamonds are given for sς = −0.5 and finally the
green ones stand for sς = −0.3. In Fig. 23-(b) the magnitude of the an-

alytical dimensionless transformed macro-displacement ˜̂
UM2 (x1), which

is obtained from the method 1 (continuous curve), and the transformed
macro-displacement stemming from the method 2 (dotted curve) are put
in relation with the heterogeneous solution (diamonds) for three increas-
ing values of sς , which are sς = −2 (red one), sς = −0.5 (blue one)
and sς = −0.3 (green one). Both for the compressional and the shear
problems 23-(a) and 23-(b), there is a very good agreement between the
solution of the homogenized models and the numerical solution of the
heterogeneous approach. Along the orthotropic direction x2, the overall
constitutive tensors Ŝi122122 and Ŝi222222, with i = 1, 2, are equal to zero
and so the transformed macro-displacement (3.109) assumes the form
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Figure 26: magnitude of the dimensionless macro-displacement component
˜̂
UM1 (x1) induced by the harmonic body force b̂1(x1) (a) and ˜̂

UM2 (x1) caused
by b̂2(x1) (b) along direction x1. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds). The green curves are
obtained for sς = −0.3, with τ iς = 5, i ∈ 1, 2, rE = rρ = 10, ν̃1 = ν̃2 = 0.2,
η = 1 and γ = 1.
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ÛMα (x2) =
(
L2

2π

)2 Υα sin 2π
L2
x2

sĜα2α2
, with α = 1, 2. Therefore, the magnitude

of the dimensionless macro-displacement field ˜̂
UM1 (x2) (Fig. 24-(a)) and

the magnitude of the dimensionless macro-displacement ÛM2 (x2) (Fig.
24-(b)), represented by continuous curves, are compared with the numer-
ical macro-displacements associated with the heterogeneous model (dia-
monds), by varying the dimensionless complex frequency sς as: sς = −2

(red one), sς = −0.5 (blue one) and sς = −0.3 (green one).
In Figs. (25)-(a) and (25)-(b), the magnitudes of the dimensionless trans-

formed macro-displacement, ˜̂
UMj (x1) j = 1, 2, along x1 and deriving

from method 1 (continuous curve) and method 2 (dotted curve) are com-
pared with the numerical solution related to the heterogeneous domain
(diamonds), by assuming different relaxation times for each phase, i.e.	
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Figure 27: magnitude of the dimensionless macro-displacement component
˜̂
UM1 (x2) induced by the harmonic body force b̂1(x2) (a) and ˜̂

UM2 (x2) caused
by b̂2(x2) (b) along direction x2. The solution given by the homogenized
model 1 (continuous curves) and model 2 (dotted curves) are compared
with solution of the heterogeneous model (diamonds).The green curves are
obtained by setting the dimensionless parameter sς = −0.3, with τ iς = 5,
i ∈ 1, 2, rE = rρ = 10, ν̃1 = ν̃2 = 0.2, η = 1 and γ = 1.
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τ1
ς 6= τ2

ς . In particular, in Figs. (25)-(a) and (25)-(b), the red curves are
obtained for τ1

ς = 1, τ2
ς = 2, the blue curves for τ1

ς = 2, τ2
ς = 4 and

the green ones for τ1
ς = 10, τ2

ς = 20. The magnitude of the dimension-

less macro-displacement field ˜̂
UM1 (x1) (Fig. (25)-(c)) and the magnitude

of the dimensionless macro-displacement ÛM2 (x1) (Fig. (25)-(d)) deriv-
ing from method 1 (continuous curve) and method 2 (dotted curve) are
compared with the numerical macro-displacements corresponding with
the heterogeneous model (diamonds), by varying the ratio between the
Young’s moduli rE . The red curves are obtained by choosing rE = 1,
the blue curves for rE = 3, and the green ones for rE = 9, with two dif-
ferent and fixed relaxation times for each phase, τ1

ς = 2 and τ2
ς = 5. For

the compressional problems ((25)-(a), (25)-(c)) and for the shear problems
((25)-(b), (25)-(d)), a good agreement is observed between the solution of	
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Figure 28: magnitude of the dimensionless macro-displacement component
˜̂
UM1 (a) and ˜̂

UM2 (b) caused by the harmonic body forces b̂α along direction
x1. The solution given by the homogeneous method 1 (continuous and red
curves) and method 2 (dotted and red curves) are compared with the di-
mensionless transformed micro-displacement ˜̂uα (black curves). The red
curves are obtained by setting the dimensionless parameter sς = −2, with
τ iς = 5, i ∈ 1, 2, rE = rρ = 10, ν̃1 = ν̃2 = 0.2, η = 1 and γ = 1.
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both homogenized models and the numerical solution of the heteroge-
neous method.
In Figs. (26)-(29), the material is in plane stress condition, the sample
has a length L/ε = 11, with amplitude Υα = 1 N/mm3, the Poisson
ratios are equal for both phases, ν̃1 = ν̃2 = 0.2, the ratio between the
thicknesses is η = 1, the parameter γ is γ = 1, the relaxation time is
τ iς = 5, i = 1, 2, the ratio between the densities is rρ = 10, the dimen-

sionless complex frequency is sς = ss2/
√

Ẽ2

ρ2
= −0.3 (for Figs. (26)-(27))

and sς = ss2/
√

Ẽ2

ρ2
= −2 (for Figs. (28)-(29)) and the ratio between the

Young’s moduli is rE = 10.
In Figs. 26 and 27, the harmonic body forces are supposed to be b̂α =

Υα sin 4π
Lα
xα. In Fig. 26-(a) a comparison between the magnitude of	
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Figure 29: magnitude of the dimensionless macro-displacement component
˜̂
UM1 (a) and ˜̂

UM2 (b) caused by the harmonic body forces b̂α along direction
x2. The solution given by the homogeneous method 1 (continuous and red
curves) and method 2 (dotted and red curves) are compared with the di-
mensionless transformed micro-displacement ˜̂uα (black curves). The red
curves are obtained for sς = −2, with τ iς = 5, i ∈ 1, 2, rE = rρ = 10,
ν̃1 = ν̃2 = 0.2, η = 1 and γ = 1.
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the dimensionless macro-displacement ˜̂
UM1 (x1), derived from the appro-

aches involving the overall constitutive tensors Ŝi111111,with i = 1, 2, and
the solution of the heterogeneous problem is shown by setting sς = −0.3.
The continuous curve derives from the analytical solution, Eq. (3.109)
with i = 1, and the dotted curve is related to the one with i = 2. In Fig

26-(b) the magnitude of the dimensionless macro-displacement ˜̂
UM2 (x1),

derived from the approaches relying on the overall constitutive tensors
Ŝi211211, i = 1, 2, and the heterogeneous solution (diamonds) are per-
formed by imposing sς = −0.3. The continuous curve is related to the
analytical solution, Eq. (3.109) with i = 2, and the dotted curve stands
for the one with i = 1.
The magnitude of the dimensionless macro-displacement field ˜̂

UM1 (x2)

(Fig. 27-(a)) and the magnitude of the dimensionless macro-displacement
ÛM2 (x2) (Fig. 27-(b)), represented by continuous curves, are compared
with the numerical macro-displacements associated with the heteroge-
neous model (diamonds), by taking into account the dimensionless com-
plex frequency sς = −0.3. In Fig. 26 and 27, the effectiveness of the pro-
posed homogenized models is well assessed because of the good agree-
ment between the observed results.
In Fig 28-(a) the magnitudes of the dimensionless transformed macro-

displacement ˜̂
UM1 (x1), obtained from approach 1 (continuous and red

curve) and approach 2 (dotted and red curve), are compared with the
magnitude of the dimensionless micro-displacement ˜̂u1(x1), Eq. (2.67),
represented by a continuous and a black curve and obtained by consid-
ering the mean line of the section. In Fig 28-(b) a comparison between
the magnitudes of the dimensionless transformed macro-displacement
˜̂
UM2 (x1), from approach 1 (continuous and red curve) and from approach
2 (dotted and red curve), and the magnitude of the dimensionless micro-
displacement ˜̂u2(x1), obtained numerically, (continuous and black line)
is performed, by setting the dimensionless complex frequency as sς =

−2.
Finally, the magnitude of the dimensionless macro-displacement field
˜̂
UM1 (x2) (Fig. 29-(a)) and the magnitude of the dimensionless macro-
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displacement ÛM2 (x2) (Fig. 29-(b)), represented by red curve, are com-
pared with the numerical micro-displacements ˜̂u1(x2) and ˜̂u2(x2), asso-
ciated with the heterogeneous model (diamonds), by taking into account
the dimensionless complex frequency sς = −2.

In Figs. (23)-(a), (25)-(a), (25)-(c), (26)-(a), (26)-(b) and (28)-(a), it is clear to
see a discrepancy between the two homogenized methods, represented
by the continuous curves and the dotted curves. Such a discrepancy
arises from Fig. (21)-(a) and (21)-(b).
Finally, the magnitudes of the transformed constitutive tensor Ĝ1111 (Fig.
(30)-(a)) and Ĝ1212 (Fig. (30)-(b)), represented by the green line, are com-
pared with the Voigt-Reuss bounds by varying the ratio related to phase
1, φ1 = η

η+1 . It can be seen that |Ĝ1212| coincides with the Voigt bound
(red), thus the proposed method complies with the Voigt-Reuss bounds
for viscoelastic materials through the corresponding principles, see Hashin
and Shtrikman (1963); Hashin (1965); Hashin (1970); Chen and Lakes
(1993); and Christensen (2012).
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Figure 30: (a) magnitude of the constitutive tensor Ĝ1111, obtained with the
homogenized method (green), is compared with the Voigt-Reuss bounds,
with respect to φ1 = η

η+1
. (b) The magnitude of the constitutive tensor

Ĝ1212, obtained with the homogenized method (green), is compared with
the Voigt-Reuss bounds, with respect to the volumetric ratio φ1 = η

η+1
. The

values are fixed as: rE = τ iς = sς = 10, i = 1, 2, η = 1 and γ = 1.
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The dispersion relation (2.147) is an implicit function depending on the
real part of s, Re(s), its imaginary part, Im(s), and the wave number
kβ , β = 1, 2, which have been non-dimensionalized as Re(s)s2√

Ẽ2
ρ2

, Im(s)s2√
Ẽ2
ρ2

and kβε. Eq. (2.147) provides the dispersion curves related to the dy-
namic homogenization model and its simplified version presented in Sec.
(2.7.2).
The dispersion curves obtained with two homogenized approaches are
compared in Figs. (31), (32), (33), (34) and (35), where it is possible to ob-
serve the dual nature of the viscoelastic material that is reflected by the
presence of the complex parameter s. Infact, its real part is related to the
viscosity of the material whereas its imaginary part deals with its elastic
behaviour. Therefore, the dispersion curves lay both on the real axis of
s, which describes the wave propagation, and its imaginary axis, which
characterizes the damping.
In Figs. (31) and (32), the dispersion curves, which are related to the com-
pressional and the shear waves along the direction e2 and achieved with
the homogenized models (dark line), are compared with the generalized
dispersion function (light line) for longitudinal wave propagation in a
periodic layered composite proposed by Rytov (1956), (see Appendix B).
In Fig. (31)-(a), the parameter γ is chosen to assume different values,
whereas the values of the dimensionless parameters are set as η = 1,
ν̃1 = ν̃2 = 0.2, rρ = rE = 10 and τ iς = 1, i = 1, 2. In particular, Fig. (31)-(a)
shows the curves related to the compressional waves as γ = 1/10 (red),
γ = 1/2 )blue and γ = 1 (green). When γ decreases the effect of the vis-
cosity is less detectable because the curves approach the imaginary axes
of the complex frequency. In Fig. (31)-(b), the dimensionless relaxation
time τ iς is supposed to vary, whereas the values of the dimensionless pa-
rameters are set as η = 1, ν̃1 = ν̃2 = 0.2, rρ = rE = 10 and γ = 1/10. Fig.
(31)-(b) shows that by increasing the relaxation time τ iς up to high values
(τ iς = ∞) the green curve approaches the imaginary axes of the complex
frequency. For low values (τ iς = 1 and τ iς = 1/3) the related curves (the
red and the blue one) are strongly affected by the viscoelastic response.

111



In Fig. (31)-(c), the dimensionless ratio between the thicknesses of the
material η is supposed to vary, whereas the values of the dimensionless
parameters are set as ν̃1 = ν̃2 = 0.2, rρ = rE = 10, τ iς = 1 and γ = 1/10.
Fig. (31)-(c) depicts three dispersion curves obtained for η = 2 (blue), for
η = 1 (red) and for η = 1/2 (green). In Fig. (31)-(d), the ratio between the
densities rρ and the ratio between the Young’s moduli rE are assumed
to vary, whereas the values of the dimensionless parameters are set as
ν̃1 = ν̃2 = 0.2, η = 1, τ iς = 1 and γ = 1/10. Fig. (31)-(d) shows three
dispersion curves derived for rρ = rE = 10 (red), rρ = rE = 20 (blue)
and rρ = rE = 50 (green). From the diagrams of Fig. (31), the disper-
sion curves derived from the proposed homogenized models are in good
agreement with the ones related to the heterogeneous material obtained
with the exact theory of Floquet–Bloch in the range of [0, π/2].

Fig. (32) represents the dispersion curves related to the shear waves
along the direction e2 normal to the layers in terms of the dimensionless
wave number k2ε ∈ [0, 2π]. In Fig. (32)-(a), the parameter γ is supposed
to assume different values, whereas the values of the dimensionless pa-
rameters are set as η = 1, ν̃1 = ν̃2 = 0.2, rρ = rE = 10 and τ iς = 2, i = 1, 2.
In Fig. (32)-(a), the red curve corresponds to γ = 1/10, the blue one to
γ = 1/5 and the green one to γ = 1/2. In Fig. (32)-(b), the dimensionless
relaxation time τ iς , i = 1, 2, is supposed to vary, whereas the values of
the dimensionless parameters are set as γ = 1/10, η = 1, rρ = rE = 10,
ν̃1 = ν̃2 = 0.2. In Fig. (32)-(b), the red curve is related to τ iς = 1/2,
the green one to τ iς = 1 and the blue one to τ iς = 2. By increasing the
value of the dimensionless relaxation time, the viscosity effect becomes
less evident. Fig. (32)-(c) is obtained by varying the dimensionless ratio
between the thicknesses of the material η, with the following dimension-
less parameters τ iς = 1, rρ = rE = 10, ν̃1 = ν̃2 = 0.2 and γ = 1/10.
Fig. (32)-(c) shows three dispersion curves stemming from the heteroge-
neous and the homogenized models, where the blue curves are obtained
for η = 2, the red oness for η = 1 and the green ones for η = 1/2. Fig.
(32)-(d) is derived by varying the ratio between the densities and ratio
between the Young’s moduli rρ = rE , with the following dimensionless
parameters τ iς = 1, η = 1, ν̃1 = ν̃2 = 0.2 and γ = 1/10. Fig. (32)-(d)
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illustrates the dispersion curves obtained for rρ = rE = 10 (red), the blue
rρ = rE = 15 (blue) and for rρ = rE = 20 (green).
In Figs. (31) and (32), it is clear to see that the discrepancy between the
phase velocity and the group velocity, which is noticeable in the hetero-
geneous model, generates dispersion phenomena that are well described
by the proposed homogenized models at the second order in contrast
with the first order homogenized model which is not able to capture the
dispersion phenomena.
Fig. (33) and Fig. (34) show the behavior of the dimensionless real part
of s in terms of the dimensionless imaginary part of s and the dimen-
sionless wave number k1ε. In case of dispersion curves related to com-
pressional and shear waves along the layering axis e1, the wave number
k1ε belongs to the interval [0, π/2], where the dispersione curves derived
from approach 1 (thicker line) and approach 2 (thinner line) are com-
pared. Fig. (33)-(a) shows the dispersion curves obtained by varying
the parameter γ, whereas the dimensionless parameters are assumed as
τ iς = 2, i = 1, 2, η = 1, rρ = rE = 10 and ν̃1 = ν̃2 = 0.2. Fig. (33)-(a)
shows the curves related to the compressional waves and corresponding
to γ = 1/20 (red), γ = 1/10 (blue) and γ = 1/5 (green). As γ goes up
the curves gradually increase. Fig. (33)-(b) depicts the dispersion curves
obtained with different values of the relaxation time τ iς , i = 1, 2, which
is the same for both phases, whereas the dimensionless parameters are
assumed as γ = 1/10, η = 1, rρ = rE = 10 and ν̃1 = ν̃2 = 0.2. In partic-
ular, for low values of τ iς , namely τ iς = 1/20, which is represented by the
red curve, and τ iς = 1/10, identified by the blue curve, the viscoelastic-
ity strongly affects the dispersion curves, which are enterely embedded
in the real and the imaginary plane. By increasing the relaxation time
τ iς = ∞, the elastic behaviour is retrieved (green curve) and the curve is
squeezed in the imaginary axes of the complex frequency. Fig. (33)-(c)
highlights the trends of three curves developed by setting three differ-
ent values of the ratio between the thicknesses of the material η and by
assuming the dimensionless parameters as rE = rρ = 10, τ iς = 2 and
γ = 1/10 and ν̃1 = ν̃2 = 0.2. The red curve is obtained for η = 5, the
blue one for η = 3 and the green one for η = 1/2. Finally, Fig. (33)-(d)

113



	

	

	
	

a) 	
	
	

b) 	

(!)	 (!)	
	

!"(!)!!
!!
!!

	

	

!"(!)!!
!!
!!

	

	

!!!	 !!!	
	

!"(!)!!
!!
!!

	

	

!"(!)!!
!!
!!

	

	

	

(!)	
	

(!)	
	

!"(!)!!
!!
!!

	

	

!"(!)!!
!!
!!

	

	

!"(!)!!
!!
!!

	

	

!"(!)!!
!!
!!

	

	

!!!	
	

!!!	
	

Figure 31: compressional waves along the normal direction e2 derived from
two homogenized approaches (dark line) and from the heterogeneous one
(light line) (a) for: γ = 1/10 (red curves), γ = 1/5 (blue curves) and γ = 1
(green curves), with τ iς = 2, i = 1, 2, η = 1 and rρ = rE = 10. (b) is
obtained for: τ iς = 1/3 (red), τς = 2 (blue) and τ iς = ∞ (green). (c) is
derived for: η = 2 (blue), η = 1 (red), and η = 1/2 (green). (d) is derived
for: rρ = rE = 10 (red), rρ = rE = 20 (blue) and rρ = rE = 50 (green), with
ν̃1 = ν̃2 = 0.2.
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Figure 32: shear waves along the normal direction e2 derived from two
homogenized approaches (dark line) and from the heterogeneous one (light
line) (a) by varying γ as γ = 1/10 (red curves), γ = 1/5 (blue curves) and
γ = 1/2 (green curves). (b) is obtained for: τ iς = 1/2 (red), τς = 1 (green)
and τ iς = 2 (blue). (c) is derived for: η = 2 (blue) η = 1 (red) and η = 1/2
(green). (d) is retrieved for: rρ = rE = 10 (red), rρ = rE = 15 (blue) and
rρ = rE = 20 (green), with ν̃1 = ν̃2 = 0.2.
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Figure 33: compressional waves along the layering direction e1 derived
from two approaches (a) by varying γ as γ = 1/20 (red curves), γ = 1/10
(blue curves) and γ = 1/5 (green curves). (b) is obtained for: τ iς = 1/20
(blue), τ iς = 1/10 (red) and τς = ∞ (green). (c) is derived for: η = 5 (red),
η = 3 (blue) and η = 1/2 (green). (d) is retrieved for: rρ = rE = 50 (blue),
rρ = rE = 30 (red) and rρ = rE = 5 (green), with ν̃1 = ν̃2 = 0.2.
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Figure 34: shear waves along the layering direction e1 derived from two
approaches (a) by modifying γ as γ = 1/5 (red curves), γ = 1/10 (blue
curves) and γ = 1/30 (green curves). (b) is obtained for: τ iς = 2 (blue), τ iς =
5 (red) and τς = ∞ (green). (c) is derived for: η = 1/5 (blue), η = 1 (red)
and η = 4 (green). (d) is obtained for: rρ = rE = 50 (red), rρ = rE = 25
(blue), and rρ = rE = 10 (green), with ν̃1 = ν̃2 = 0.2.
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Figure 35: shear waves along the layering direction e1 (a) and the normal
direction e2 (b) deriving from the homogenized method 1 (thicker line) and
the homogenized method 2 (thinner line) for different values of the ratio
between the densities and ratio between the Young’s moduli: rρ = rE =
1 (red), rρ = rE = 10 (blue) and rρ = rE = 100 (green), by fixing the
dimensionless relaxation time as τ iς = ∞ with ν̃1 = ν̃2 = 0.2, η = 1 and
γ = 1/10.

represents how for three increasing values of the ratio between the den-
sities and ratio between the Young’s moduli, rρ = rE , the related curves
are influenced, by fixing γ = 1/10, τ iς = 2 and η = 1. The green curve is
given with rρ = rE = 5, the red one with rρ = rE = 30 and the blue one
corresponds to rρ = rE = 50.
In Fig. (34) dispersion curves related to the shear waves along the axes
e1 are taken into account and the curves achieved from approach 1 and
approach 2 are compared. Fig. (34)-(a) shows the dispersion curves ob-
tained by varying the parameter γ, whereas the dimensionless parame-
ters are set as τ iς = 2, η = 1 and rρ = rE = 10 and ν̃1 = ν̃2 = 0.2. In Fig.
(34)-(a), the red curve corresponds to γ = 1/5, the blue one to γ = 1/10

and the green one to γ = 1/30. As γ goes up the curves steadily decrease.
Fig. (34)-(b) is obtained by varying the relaxation time τ iς , i ∈ 1, 2, by tak-
ing into account the dimensionless parameters as η = 1, rρ = rE = 10,
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γ = 1/10 and ν̃1 = ν̃2 = 0.2. In particular, Fig. (34)-(b) shows that by
increasing the relaxation time τ iς up to high values (τ iς = ∞) the green
curve is achieved and so the viscoelastic effect is negligible. As the re-
laxation time assumes low values (τ iς = 2 and τ iς = 5) the corresponding
curves (the red and the blue one) are strongly influenced by the viscoelas-
tic response. In Fig. (34)-(c), by setting three values for the dimensionless
ratio between the thicknesses of the material η, the following curves are
obtained: the blue curve stems from η = 1/5, the red one from η = 1

and the green one from η = 4, with fixed values of the dimensionless
parameters γ = 1/10, τ iς = 2, rρ = rE = 10 and ν̃1 = ν̃2 = 0.2. Fig.
(34)-(d) shows the curves obtained for three values of the ratio between
the densities and ratio between the Young’s moduli, rρ = rE . The green
one relates to rρ = rE = 10, the blue curve corresponds with the value
rρ = rE = 25 and the red one rρ = rE = 50, with the fixed parameters
γ = 1/10, τ iς = 2, η = 1 and ν̃1 = ν̃2 = 0.2. From Figs. (33)-(a), (33)-(c)
and (34)-(d), it is clear that there is a slight difference between the disper-
sion curves obtained from the two homogenized models in the range of
the considered dimensionless wave number k1ε.
Fig. (35)-(a) and (35)-(b) show the dispersion curves related to the shear
waves along the direction e1 and e2, respectively. The dimensionless pa-
rameters are set as γ = 1/10, η = 1 and ν̃1 = ν̃2 = 0.2. The dispersion
curves are obtained from the homogenized method 1 (thicker line) and
method 2 (thinner line) by varying the ratio between the densities and
ratio between the Young’s moduli and by fixing the dimensionless relax-
ation time as τ iς =∞ to retrieve the elasic case. The red lines are obtained
for rρ = rE = 1, the blue one for rρ = rE = 10 and the green one for
rρ = rE = 100. The green curve of Fig. (35)-(a) and the blue curve of Fig.
(35)-(b) show an appreciable difference between the two homogenized
models. In Fig. (35), there is point in observing that the dispersion phe-
nomenon is emphasized by the non-linearity of the dispersion curves as
a consequence of the variation of the ratio between the densities and ratio
between the Young’s moduli. Moreover, in Fig. (35)-(a), it is clear that the
group velocity, which describes the velocity at which the wave envelope
propagates, is greater than the velocity phase, describing the velocity of
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the individual harmonic contribution. Such an issue is emphasized in
the the green curve. Finally, in Fig. (35)-(b) the phase velocity is greater
than the group velocity and so the individual harmonic contribution has
a speed of travel greater than the wave envelope, which ca be observed
in the blue curve.
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Chapter 4

Conclusions

The thesis proposed a variational-asymptotic homogenization model for
viscoelastic materials having a periodic microstructure. Specifically, the
field equations at the micro-scale have been derived and transposed into
the Laplace domain to treat viscoelasticity, relying on the complex fre-
quency and the micro-relaxation tensor. Next, the down-scaling relation
and the up-scaling relation have been detailed. In particular, the down-
scaling relation relates the transformed micro-displacement field to the
transformed macro-displacement field and its gradients by means of the
perturbation functions, which are the solutions of the cell problems de-
fined over the unit cell Q. Perturbation functions are Q-periodic and
have vanishing mean values over the unit cell. On the other hand, the
up-scaling relation defines the transformed macro-displacement field as
the mean value of the transformed micro-displacement field over the unit
cell Q. By introducing the down-scaling relation into the field equations
at the micro-scale of the viscoelastic material, the average field equations
of infinite order have been determined. Their truncation at an arbitrary
order could not ensure the ellipticity of the differential problem. To avoid
such an issue, two methods, based on a variational-asymptotic approach,
have been invoked. According to the first method, the down-scaling
relation is replaced into the transformed energy-like functional, which
is truncated at the second order. By imposing the first variation of the
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truncated energy-like functional equal to zero, the field equation at the
macro-scale and the overall inertial and constitutive tensors have been
determined. In the second method, the gradient related to the down-
scaling relation has been approximated at the first order and the trans-
formed micro-displacement has been truncated at second order. Both are
introduced into the transformed energy-like functional and, from its first
variation, the field equation at the macro-scale and the corresponding
overall inertial and constitutive tensors have been derived. In both meth-
ods, the overall constitutive tensors depend on the localization functions,
whereas the overall inertial tensors are expressed through the perturba-
tion functions. In the limit case of an homogeneous material without het-
erogeneities, the perturbation functions consistently become identically
equal to zero, the components of the localization tensors vanish and the
equation of motion of the classical continuum has been retrieved.
To assess the accuracy of the homogenized model herein analysed and
its validity limits, a bimaterial periodically-layered composite with or-
thotropic phases endowed with an orthotropy axis parallel to the layer
direction has been considered. In this case, the micro-fluctuation func-
tions and the components of the overall inertial and constitutive tensors
have been derived in an analytic way and their dependence on the real
part and on the imaginary part of the complex frequency has been em-
phasized. Without loss of generality, it is specialized in case of isotropic
phases. Moreover, a detailed study of the dispersion function, deriving
from the generalized Christoffel equation for shear and compressional
waves along two orthogonal axis, is performed. A good agreement has
been pointed out between the dispersion curves derived from the ho-
mogenized methods and those retrieved from the heterogeneous mate-
rial with the Floquet-Bloch approach. Finally, the analytical solutions
for the transformed macro-displacement field derived from the two ho-
mogenized models and subjected to L−periodic forces have been com-
pared with the reference numerical solution obtained from a finite ele-
ment analysis of the heterogeneous model in order to evaluate the forced
response in the transformed domain. A good agreement between the
three models has been achieved, proving the validity of the proposed
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homogenized methods.
The variational-asymptotic homogenization method herein proposed is
helpful to describe the dispersive properties of a viscoelastic material and
to detect the effective viscoelastic properties of many composite materi-
als and it may be adopted for the manufacture and the design of more
efficient and sophisticated devices, for a large spectra of applications.
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Appendix A

Symmetrization of the
localization tensors

In order to perform the symmetrization of a tensor Zhkpq1...qn with re-
spect to the indices q1...qn, the set P ∗(q), which consists of all permuta-
tions with no fixed indices, is considered. For instance, if |q| = n, it re-
sults that P ∗(q) =

{
f1 =

(
q1 → q1, q2 → q2, ..., qn → qn

)
, ..., fn =

(
q1 →

qn, q2 → q1, ..., qn → q2

)}
and the tensor Zhkpq1...qn is symmetrized with

respect to q1, ..., qn as

1

n

∑
P∗(q)

Zhkpq1...qn =
1

n

(
Zhkpq1...qn + ...+ Zhkpqnq1..q2

)
.

In particular, if |q| = 2 then the permutations set P ∗(q) with no fixed
points is P ∗(q) =

{
f1 =

(
q1 → q1, q2 → q2

)
, f2 =

(
q1 → q2, q2 →

q1

)}
and the symmetrization with respect to q1 and q2 of the localization

tensor B̃(2,0)
hkpq1q2

=
(
δkq2N

(1,0)
hpq1

+N
(2,0)
hpq1q2,k

)
results

B
(2,0)
hkpq1q2

=
1

2

(
δkq2N

(1,0)
hpq1

+ δkq1N
(1,0)
hpq2

+N
(2,0)
hpq1q2,k

+N
(2,0)
hpq2q1,k

)
=

=
1

2

(
δkq2N

(1,0)
hpq1

+ δkq1N
(1,0)
hpq2

)
+N

(2,0)
hpq1q2,k

. (A.1)
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In case of |q| = 3, the permutations set P ∗(q) having no fixed points is
P ∗(q) =

{
f1 =

(
q1 → q1, q2 → q2, q3 → q3

)
, f2 =

(
q1 → q2, q2 →

q3, q3 → q1

)
, f3 =

(
q1 → q3, q2 → q1, q3 → q2

)}
and the localization ten-

sor B̃(3,0)
hkpq1q2q3

=
(
δkq3N

(2,0)
hpq1q2

+N
(3,0)
hpq1q2q3,k

)
is symmetrized with respect

to q1, q2 and q3 as

B
(3,0)
hkpq1q2q3

=
1

3

(
δkq3N

(2,0)
hpq1q2

+ δkq1N
(2,0)
hpq2q3

+ δkq2N
(2,0)
hpq3q1

+

+N
(3,0)
hpq1q2q3,k

+N
(3,0)
hpq2q3q1,k

+N
(3,0)
hpq3q1q2,k

)
=

=
1

3

(
δkq3N

(2,0)
hpq1q2

+ δkq1N
(2,0)
hpq2q3

+ δkq2N
(2,0)
hpq3q1

)
+N

(3,0)
hpq1q2q3,k

, (A.2)

as it appears in Eq. (2.94).

Appendix B

Generalized dispersion function
Rytov (1956) proposed the exact dispersion relation for wave propagat-
ing in a periodic layered composite transversal to the layers. In the
present paper the dispersion relation has been generalized by consider-
ing complex frequency modulus and evaluated via the correspondence
principle as follows

cos(k2ε) = cos
(
ω
s1

c1

)
cos
(
ω
s2

c2

)
+

1

2

(ρ1c1
ρ2c2

+
ρ2c2
ρ1c1

)
sin
(
ω
s1

c1

)
cos
(
ω
s2

c2

)
,

where ω = s
ι , s = Re(s) + Im(s) and ci =

√
Ĉiαβαβ
ρi

is the velocity of the

compressional α = β and shear α 6= β waves along the direction e2 and
referred to the i-th layer i = 1, 2.
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