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Abstract

The present work is a collection of articles [133, 134, 135] that, in broad
terms, are dedicated to the development of statistical models for the anal-
ysis of social networks. Two main approaches are adopted throughout
this manuscript that, despite being substantially different in their nature,
are also complementary and accompanied by an active and relevant sci-
entific background.
From one side, following the statistical physics literature regarding the
study of networks, we develop models based on the topology of the ob-
served graphs: these methods are built starting from the activity of each
node, i.e. its degree, and this information is preserved on average in the
benchmark structure. Therefore any successive analysis that compares
observed and expected quantities to detect relevant behaviours is, in-
deed, identifying quantities that cannot be simply reproduced by a mo-
del built on the information regarding solely network topology.
On the other side, we also analyse the stream of literature that focuses on
generative models. In this framework, the network topology plays a role
in the definition of the temporal evolution of the node-related link proba-
bility, synthesized in the preferential attachment rule that is a function of
nodes’ degrees. We enrich this formulation in order to take into account
also some individual features of the nodes, not related to the network
structure. This addition gives a fundamental contribution in reproduc-
ing the evolution of the considered network.
Which of the two approaches provides a more accurate benchmark is of-
ten argument of debate. In this work we have developed theoretical tools
and tested them with real-world applications, for both the presented
cases. The results of our analyses show that the information provided
by these two complementary methodologies can reveal equally valuable
in reproducing different aspects of the systems object of study.



Chapter 1

Introduction to Complex
Networks

In nature, many observable phenomena can be described starting from
the interactions among a collection of objects. In many cases the objects
involved may be numerous and these existing relations are often non-
trivial. Just consider the examples of the Internet or the World Wide
Web [1, 2, 3, 4, 5]: in this framework, the objects are represented by a
huge amount of documents while their interactions are hyperlinks con-
nections between one document and another. Another example is the
brain [6, 7], that represents the set of interactions among a large number
of neurons through synapses. Because of their structural “complexity”,
these natural systems are often described with the term complex systems
and the research of appropriate tools to analyse them has been increasing
and developing since the last century. In this regard, the use of graphs as
skeletons [8] for these systems has become popular and successful and
the behaviour of many complex systems has been modeled and studied
by means of these mathematical instruments.

One of the branches of the complex systems community has focused
its attention in employing network tools with the purpose of model-
ing the social interactions and interpersonal relationships within pop-
ulations of individuals. These kind of relations may have different ori-
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gins. For instance, one may be interested in analysing the friendship re-
lations within a social network context [9], or the collaborations among
the group of scholars in academia [10, 11, 12, 13], or the collaborations
among actors that work together when filming a movie [14, 15]. The ar-
eas of the academic research focused on the analysis of several aspects
of the human behaviour and sphere are said to be devoted to the study
of social networks. It has been argued that social networks are different
with respect to the other types of networks [16], because of their overall
architecture and the properties of the relations connecting individuals.
The rest of this work will be mostly dedicated to the analysis of this kind
of systems and each chapter will provide an ad-hoc introduction and de-
scription of the type of social network object of study.

It is common in literature to use the term “network” to denote the
real-world phenomenon object of study, while the term “graph” is often
used to indicate the mathematical object used to model the observed real-
world network. The same rule will be followed (in general) also in this
work, even though sometimes the terms will be mentioned interchange-
ably.

1.1 The basics

Consider the simple problem of representing the network of friendship
relations among people belonging to the same social group. This situa-
tion can be easily represented as a graph G = (N , E), being N the set of
individuals in the group and E ⊆ N × N the set of pairwise friendship
interactions. Therefore, the generic object (i, j) ∈ E indicates a friendship
relation between individuals i and j.

However, in practice there always exists a gap between the real set
of friendship relations among these people and the way in which these
connections are represented with a network fashion. Indeed there are sev-
eral possible approaches to detect the friendship relations among a set
of agents. One possibility could be to check who is friend with whom
on some online social network (e.g. Facebook). If two users are friends
on Facebook, then we can (presumably) infer that they are also friends
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in the real life. Another possibility could be asking each of them to list
the names of their friends; in this case we may observe asymmetric rela-
tions, as shown in [9]. Indeed, the fact that i perceives j as one of her/his
friends does not necessarily imply that j has also mentioned her/him.
For instance in [9] some students from US high and junior-high schools
are asked to list the names of their friends and the authors observe that
most of the links in which lower-classes students mention higher-classes
ones as their friends are non-reciprocated. Finally, one might employ
some additional information, for instance verify if any of these people go
to the same school, or practice to the same gym, or attend the same music
class. In this latter case, we may consider friends all people attending the
same music class, or going to the same school or practicing to the same
gym. Then, the network of friendships is built simply adding a friend-
ship relation (i, j) ∈ E whenever we observe i and j to be connected in
one of the previously listed ways.

Notice that any of these procedures would lead to a completely dif-
ferent set of pairwise interactions. The element (i, j) ∈ E in the first
approach indicates that i and j are friends on Facebook. A simple exam-
ple of graph resulting from this construction method is shown in top-left
panel of Figure 1, where the grey circles denote the considered users. All
edges are reciprocated, since if i is friend with j on Facebook, it is not
possible that j decides not to be friend with i. This kind of graphs are
undirected.

On the contrary, non-reciprocated edges are possible with the second
approach, since in this case (i, j) ∈ E means that i has listed j as one of
her/his friends, thus it does not necessarily imply that also j has listed i
as one of her/his friends. Therefore (i, j) ∈ E does not imply (j, i) ∈ E . A
real-world example of this situation is provided in [9], where the authors
show that unreciprocated friendships are often motivated by reasons re-
lated to the social role covered by the individuals in the considered con-
text: in most of the cases, people from lower classes claim friendship
relations with people belonging to higher classes at school. This kind of
graphs are directed and are graphically represented in top-right panel of
Figure 1 where the direction of the arrow indicates who has listed whom

3



as her/his friend.
Finally, in the last approach the network of friendships is built start-

ing from an auxiliary information: the edge (i, j) ∈ E actually indicates
that i and j do some kind of activity together, either they go to the same
school, or practice to the same gym, or attend the same music class,
just to mention a couple of examples. Thus we preliminary represent
a network of users and (for instance) school classes, as shown in bottom
panel of Figure 1. Gray circles indicate agents while black squares repre-
sent school classes: two users being connected to the same black square
means that they attend one class together at school. Therefore we simply
infer that they are likely to be friends with each other and include (i, j)

in the set of friendship relations E . Graphs as the one represented in bot-
tom panel of Figure 1 are called bipartite. As in the simple friendship
example, bipartite networks involve two different types of nodes and no
edges between nodes of the same type are observed.

For the sake of simplicity, we have considered friendship as a binary
relation, meaning that i can only “be” or “not be” friend with j and it is
not possible to observe that i is “less” or “more” friend with j than with
somebody else. When this possibility is considered, an edge indicating
friendship between i and j is accompanied by a weight quantifying the
intensity of their relation. Such kind of networks are called weighted. The
rest of this work will mainly deal with directed or undirected bipartite
networks. Thus, in what follows I will provide a more formal definition
of these kinds of graphs and of the most important quantities employed
to describe them.

1.1.1 Adjacency matrix

The first element that needs to be introduced is the adjacency matrix of a
graph. Any undirected network G = (N , E) admits an equivalent rep-
resentation in terms of its adjacency matrix A = {ai,j : i, j ∈ N} with
binary entries

ai,j =

{
1 if (i, j) ∈ E
0 otherwise.

(1.1)

4



Figure 1: Graphical representation of simple examples of undirected, di-
rected and bipartite graphs. The top-left panel shows reciprocated relations
between individuals; the top-right panel shows directed edges, therefore
possibly non-reciprocated relations; the bottom panel shows relations in-
volving two different sets of units in the network.
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Matrix A has shape N × N where N = card(N ) is the total number of
nodes in the network, while its number of edges E = card(E) is given by

E =
∑
i≤j

ai,j .

Indicating with N ∗ = {1, . . . , 10} the set of friends and with E∗ the
set of friendship relations (in what follows we will distinguish the nota-
tion according to the mechanism used to collect the friendship interac-
tions) the adjacency matrix representing the undirected friendship net-
work G∗ = (N ∗, E∗) in top-left panel of Figure 1 is the following

A∗ =



0 0 1 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1 1 1
1 0 0 1 1 1 1 0 0 0
1 1 1 0 1 1 0 0 1 1
1 0 1 1 0 1 1 0 1 1
0 1 1 1 1 0 0 0 1 0
0 1 1 0 1 0 0 1 1 1
1 1 0 0 0 0 1 0 1 1
1 1 0 1 1 1 1 1 0 1
1 1 0 1 1 0 1 1 1 0


The asterisk ∗ notation is used whenever dealing with an observed graph,
as in this case, and will be adopted hereafter. In other words, any entry
a∗i,j is equal to 1 whenever users i and j are friends with each other in
graph G∗ and 0 otherwise. Notice that A∗ is symmetric, since the edges
in the network of Facebook friendships are reciprocated. Therefore, if
both (i, j) ∈ E∗ and (j, i) ∈ E∗ then a∗i,j = a∗j,i = 1. Moreover, all elements
along the diagonal are set equal to zero since no user can be “friend with
her/himself”. Networks of this kind are said to have no self-loops. Even
when not directly specified, all applications of this work will consider
networks without self-loops.

Consider instead the directed network of friendship relations G∗Di =

(N ∗, E∗Di) introduced in top-right panel of Figure 1. The friendship adja-
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cency matrix induced by this graph is the following

A∗ =



0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 1 1 1 1 0
0 0 0 1 1 0 1 0 0 0
0 1 1 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0 0
0 1 0 0 1 0 0 1 1 1
1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 1 1 1 0 1
1 1 0 1 1 0 0 1 1 0


.

In this case the entry a∗i,j = 1 indicates that i has listed j as one of her/his
friends, thus the resulting matrix may not be symmetric, since (i, j) ∈ E∗Di

does not necessarily imply that (j, i) ∈ E∗Di. As in the undirected case, the
adjacency matrix of a directed network has shape N ×N , while the total
number of edges in the graph can be recovered as

E =
∑
i 6=j

ai,j .

1.1.2 Bipartite networks

Consider the last example introduced in the previous section. In this
case the friendship network has been inferred starting from a different
structure, the network of users and school classes, where a link connect-
ing a student and a class indicates that the girl/boy attends that course
at school. This kind of graphs are called bipartite. In a bipartite net-
work, the set of nodes N can be partitioned in two subsets of vertices
L = {1, . . . , NL} and Γ = {1, . . . , NΓ} called layers and only edges con-
necting nodes belonging to different layers are possible. In what follows,
Latin and Greek letters will be respectively used to index nodes on the
first and second layer of the network. Any bipartite, undirected graph
GBi = (L,Γ, EBi) can be represented by means of its biadjacency matrix
M = {mi,α : i ∈ L,α ∈ Γ}with binary entries

mi,α =

{
1 if (i, α) ∈ EBi

0 otherwise.
(1.2)
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Matrix M has shape NL ×NΓ and, as in its monopartite counterpart, the
total number of edges can be recovered as

E =
∑
i,α

mi,α.

Indicating again with L∗ = {1, . . . , 6} the set of classes at school and
with Γ∗ = {1, . . . , 10} the set of friends, the bipartite network of school-
mates and classes G∗Bi = (L∗,Γ∗, E∗Bi) reproduced in bottom panel of
Figure 1 has the following biadjacency matrix

M∗ =


1 0 1 0 1 1 0 1 1 0
1 1 0 1 1 1 1 1 0 0
0 1 0 0 0 1 1 1 0 1
1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0


where each entry m∗i,α = 1 if user i attends class α and m∗i,α = 0 oth-
erwise. At this point, in order to reconstruct the network of friendship
relations between individuals, we take into account the following quan-
tities ∑

α

m∗i,αm
∗
j,α ∀i, j ∈ N

that simply indicate the number of classes that i and j attend together.
Whenever this quantity is greater than zero, nodes i and j attend at least
one class together and the edge (i, j) is added to the set of edges E∗ of
the network of friendship, since we consider likely that i and j can be
friends with each other.

The notation introduced in this paragraph will be used also in the
following sections. I will use the terms G = (N , E) for undirected and
monopartite networks, while the simple generalizations GDi = (N , EDi)

and GBi = (L,Γ, EBi) will be used respectively for directed and bipartite
networks. In general, the names used for the adjacency matrices will
be chosen in each application, in order to maximise the clarity of the
expressions.
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1.1.3 Nodes’ degrees

Given any undirected network G and its adjacency matrix A, the number
of edges incident to node i can be recovered by means of the following
quantity

ki =
∑
j∈N

ai,j ∀i ∈ N .

The term ki is the degree of node i and is obtained as the sum of the
elements in the i-th row (or column) of the adjacency matrix. For the
undirected case in the friendship example, this quantity can be easily in-
terpreted as the number of friends that user i has on Facebook. Instead,
when considering directed networks, the two following similar quanti-
ties can be considered

kouti =
∑
j∈N

ai,j , and

kini =
∑
j∈N

aj,i ∀i ∈ N

respectively called out-degree and in-degree of node i and indicating the
number of out-going and in-going links incident to node i. In terms of the
friendship network introduced in the previous section, such quantities
respectively represent the number of users listed by i as her/his friends
and the number of users who have listed i as one of their friend. Finally,
when dealing with bipartite networks, the definition of node degrees can
be easily extended as follows

ki =
∑
α∈Γ

mi,α ∀i ∈ L

kα =
∑
i∈L

mi,α ∀α ∈ Γ

specifying a degree sequence for each layer in the network. Their inter-
pretation in the friendship example is analogous to the previous ones:
the degree of node i indicates the number of classes attended by i, while
the degree of α denotes the number of students enrolled in class α.
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Notice that the following sequence of equalities involving node de-
grees holds for simple networks

E =
1

2

∑
i 6=j

ai,j =
1

2

∑
i∈N

ki

while it straightforwardly translates to the cases of directed and bipartite
networks as follows

E =
∑
i 6=j

ai,j =
∑
i∈N

kouti =
∑
i∈N

kini

and
E =

∑
i,α

mi,α =
∑
i∈L

ki =
∑
α∈Γ

kα.

1.1.4 Network quantities

Whenever studying a real-world system, the goal is to understand its
structure at a global level and to study the relations intervening among
its parts. In this regard, there are some fundamental quantities that need
to be analysed, providing information both at a global and local level
of the graph. For the sake of simplicity, only the definition related to
the monopartite, undirected case will be provided, since in most of the
cases the extension to the bipartite or directed setting is simply straight-
forward.

Paths

Two different edges that are incident to the same vertex are called con-
secutive. Therefore, a path is a sequence of consecutive edges connecting
a pair of nodes in the network. The length of a path is the number of
consecutive edges in the path.

Distance

Given two nodes of a graph i, j ∈ N we define the distance between
them `(i, j) as the length of the shortest path connecting i and j. The
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assumption `(i, j) = +∞ is used whenever node i cannot be reached
from node j. It is worth to notice that the concepts of length and distance
are intended as topological quantities: they simply refer to the required
number of edges that need to be walked on in order to move along the
whole path, they have nothing to do with the real geographical distance
between i and j.

Diameter

Given D = {`(i, j) : i, j ∈ N} the set of distances between any pair of
nodes in the network, the diameter of the network can be computed as
D = max(D) and represents the distance between the two farthest nodes
in the network.

Average shortest-path-length

The average shortest-path-length of a connected network is computed as

〈`〉 =
2

N(N − 1)

∑
i,j∈N

`(i, j)

and represents the average value of the distances between any pair of
nodes in the network.

Connectivity

A graph is connected whenever there exists a path connecting any pair
of nodes in the network. As a consequence, a connected component of a
graph is a set of vertices such that any pair of nodes can be connected
by a path. I will use the notation ν to indicate the number of connected
components of a graph.

Connectance

The connectance of a graph d is defined as

d =
2E

N(N − 1)
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and simply represents the ratio between the number of actually observed
edges E and the total number of possible ones

(
N
2

)
.

Clustering

The clustering coefficient for node i ∈ N is defined as

Ci =
2τi

ki(ki − 1)
=

∑
j 6=i
∑
k 6=i,j ai,jaj,kai,k∑

j 6=i
∑
k 6=i,j ai,jai,k

(1.3)

where the term τi represents the number of closed triangles in which
node i is involved. This means that the previous quantity indicates the
ratio of i’s neighbours that are themselves connected to each other. Start-
ing from this definition, the average clustering coefficient C of the whole
graph is obtained as

C =
1

N

∑
i∈N

Ci

averaging the values Ci overall the set of nodes in the network. A net-
work with high clustering C has a high percentage of closed triplets,
therefore two neighbours of the same nodes have a high chance to be
neighbours themselves.

Assortativity

The assortativity coefficient s measures the correlation between degrees
of pairs of connected nodes. s assumes values within the interval [−1, 1]:
s = 1 indicates assortative patterns, links are observed between nodes of
similar degrees; s = −1 indicates disassortative patterns, so connections
are observed mostly between nodes with different degrees; while s = 0

indicates absence of correlation.
An alternative way to analyse the correlations between node degrees

is studying the trend observed in the average nearest-neighbour-degree. This
quantity is defined as

knni =

∑
j 6=i ai,jkj

ki
=

∑
j 6=i
∑
k 6=j ai,jaj,k∑
j 6=i ai,j

∀i ∈ N (1.4)
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and indicates the average value of the degrees shown by i’s neighbours.
Averaging this quantity with respect to all nodes in the network having
the same degree and plotting its trend, it is possible to understand the as-
sortativity patterns: if the trend is increasing the network is assortative,
if the trend is decreasing the network is disassortative.

Among the previously listed quantities, the most studied in the scien-
tific literature are probably the clustering and assortativity coefficients.
The reason becomes clear if we simply consider their interpretation in
the case of the friendship network: a high clustering coefficient related
to person i indicates that a high fraction of i’s friends are also friend with
each other, while an increasing (or decreasing) assortativity pattern de-
notes that there is a positive (negative) correlation between the degrees
of the people, i.e. (non) popular guys tend to be friends with other pop-
ular guys. In both cases, these quantities provide important information
regarding the topological structure of the friendship network.

In this first section we introduced the most important, although es-
sential, quantities related to the study of real-world social network. The
remainder of this Chapter will be mainly devoted to the introduction of
the most well-known and studied network models.

1.2 Network models

The interest in network models finds its roots in the field of graph theory
during the mid years of the last century, when the mathematicians Paul
Erdös and Alfréd Rényi developed the Random Graph model. Accord-
ing to it, starting from an initial set of disconnected nodes, each pair of
vertices is connected at random with fixed probability [17, 18, 20]. Their
proposal has been considered of crucial importance in the field and the
properties of the networks generated with such a mechanism have been
largely studied.

Nevertheless, the choice of the Erdös-Rényi model needed to be re-
considered since many observable properties of real-world networks sub-
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stantially deviate from its expectation, the most remarkable example be-
ing the distribution of node degress in a (sufficiently large) network,
that is approximately Poisson distributed in a Random Graph. In con-
trast, many empirical findings show that real-world networks such as
the Internet [1, 4, 5] or the World Wide Web [2, 3] or metabolic net-
works [20, 21] have a degree distribution that is Exponentially or Power-
Law distributed and therefore significantly deviate from the random be-
haviour. Those networks are called scale-free because of the property
of scale invariance of their degree distribution [19, 22]. For this rea-
sons, much effort has been devoted to the development of network mod-
els that could reproduce the real networks behaviour. This section pro-
poses a review of the network models literature, presenting the following
ones: Random Graph, Barabási-Albert, Fitness and Exponential Random
Graph.

1.2.1 Erdös-Rényi Random Graph

In the seminal Erdös-Rényi Random Graph, N nodes are connected by
E edges drawn uniformly at random from the set of

(
N
2

)
possible edges.

Therefore, a simple null model for a real-world network can be defined
simply considering the two following components:

• an ensemble of graphs G, defined as the set of all graphs withN nodes
and E edges, and

• a probability distribution over the ensemble, essentially representing
the probability to observe each graph in the set G.

The number of networks in such an ensemble can be obtained comput-
ing all the possible ways of drawing E edges among a set of

(
N
2

)
possible

ones. With this definition, all the network configurations are equiproba-
ble and this probability is equal to

P (G) =

(N(N−1)
2

E

)−1

for G ∈ G.

14



However, the most studied version of the Erdös-Rényi Random Graph
does not fix the number of edges a priori and is also known as bino-
mial model [17, 18, 20, 23]. It prescribes to start from an initial set of N
nodes and each of the

(
N
2

)
possible edges between them is independently

drawn with fixed probability p ∈ (0, 1). Notice that the two extreme cases
p = 0 and p = 1 have been excluded since they would generate the trivial
situations of fully disconnected and fully connected graphs, respectively.
More formally, using the notation introduced in Section 1.1 and Subsec-
tion 1.1.4 for a generic graph G ∈ G, each entry ai,j of G’s adjacency
matrix is treated as an independent, Bernoulli-distributed random vari-
able with parameter

P (ai,j = 1) = p

P (ai,j = 0) = 1− p
(1.5)

for i, j = 1, . . . , N . Therefore, the total number of edges in the network
E =

∑
i<j ai,j is a Binomial random variable with expected value in the

ensemble of graphs G given by the sum of the expected values of each
binary variable ai,j , i.e.

〈E〉 =
∑
i<j

〈ai,j〉 =
N(N − 1)

2
p. (1.6)

Thus, the probability to “pick” each of the graphs in the ensemble can be
expressed as a function of the total number of present links. For instance,
each graph G ∈ G with E edges is observed with probability

P (G|E) = pE(1− p)
N(N−1)

2 −E .

Degree distribution in Erdös-Rényi Random Graph

In the Random Graph model, each link of the network is treated as an
independent and Bernoulli-distributed random variable with fixed pa-
rameter p ∈ (0, 1). As a consequence, using again the notation intro-
duced in Section 1.1 and Subsection 1.1.4, the degree of node i ∈ N ,
ki =

∑
j∈N ai,j is a Binomial random variable and assumes value k

whenever k of the possible edges with the remaining N − 1 vertices are
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present in the system, while all the otherN −1−k are not realized. Since
there are

(
N−1
k

)
possible ways of selecting k neighbours from a set of

N − 1 nodes, the degree distribution for node i is the following

P (ki = k) =

(
N − 1

k

)
pk(1− p)N−1−k (1.7)

with 0 ≤ k ≤ N − 1. At this point, the probability that a node picked
at random has degree k can be derived considering the random variable
Xk representing the number of nodes in the network having degree k
(the notation is borrowed from [20]). It has been shown in [20] that Xk

has approximately a Poisson distribution

P (Xk = κ) = e−λk
λκk
κ!

(1.8)

with 0 ≤ κ ≤ N and expected value, derived from equation (1.7), equal
to

〈Xk〉 = NP (ki = k) = λk.

However, the authors in [20, 24] show that the distribution in equation
(1.8) does not show significant deviations from its average value. Thus,
with a good accuracy, the degree distribution of a Random Graph can be
approximated with the Binomial distribution

P (ki = k) ≈ 〈Xk〉
N

=

(
N − 1

k

)
pk(1− p)N−1−k

that, for sufficiently large N , converges to the Poisson distribution

P (ki = k) ≈ e−pN (pN)k

k!
= e−〈k〉

〈k〉k

k!

that represents the probability that a node picked at random from the
set of vertices has degree k. The previous equation highlights that the
majority of the nodes in an Erdös-Rényi Random Graph has a degree
approximately equal to the expected value 〈k〉 = Npwhile more extreme
values of the degrees are less likely to appear. The result is graphically
represented in Figure 2: the three presented distributions have different
average degrees, 〈k〉 = 2 for the blue squares, 〈k〉 = 5 for the orange
circles and 〈k〉 = 10 for the green stars. In all these cases the highest
probability is assigned to degree values close to the average 〈k〉.
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Figure 2: Three examples of Poisson degree distributions with different av-
erage degree 〈k〉. The blue squares indicate 〈k〉 = 2, the orange circles are
with 〈k〉 = 5 while the green stars denote 〈k〉 = 10. Notice that the majority
of nodes shows a degree value close to the average one.

1.2.2 Barabási-Albert model

As stated in the previous Section 1.2, many real-world networks are char-
acterized by a degree sequence that is Exponentially or Power-Law dis-
tributed, therefore significantly different from the shape displayed by
random graphs. For this reason, much effort has been developed in try-
ing to understand what is the driving mechanism for this phenomenon.

The problem was first addressed by [19, 20, 22]. Their model is based
on two fundamental ingredients that drive the formation of a network
with Power-Law degree distribution: first, the network is not assumed
to have a fixed dimension but it grows in time with the addition of new
nodes at every time step; second, the new edges between nodes are not
placed at random but the probability that a new edge is connected to an
already existing node depends on the degree of the existing node itself.
Given these two driving rules, the algorithm develops according to the
following steps:
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1. The model starts at time t1 = 1 with an initial set of N1 nodes,
randomly connected by E1 edges. In order to obtain no isolated
nodes, it is necessary that each vertex has at least one link, to have
a positive probability of connection for all nodes.

2. At every timestep t ≥ 2 a new node is added with a fixed number of
new edges e that connects it to the other vertices already present in
the system. Therefore, at timestep t, the network will be composed
of Nt nodes and Et edges where

Nt = t+N1

Et = E1 + et
(1.9)

since only one new node with a fixed number of edges e is added
at every time-step. Extending the notation introduced in Section
1.1 to the time-dependent formalism, in what follows the term Nt
is used to indicate the set of nodes present in the system at time t
while ki,t is used for the degree of node i at time t.

3. The probability of connecting new-entry nodes to the already exist-
ing ones is regulated by a mechanism called preferential attachment,
that works as follows: the probability of a new-entry node to be
connected to an already existing node i ∈ Nt−1 is directly propor-
tional to i’s degree until time t− 1. In symbols

pi,t =
ki,t−1∑

j∈Nt−1
kj,t−1

. (1.10)

Equation (1.10) states that nodes with larger degrees have a higher prob-
ability to be connected to the newcomers, thus they are also likely to
become hubs in the network. On the contrary nodes with lower degrees
are likely to remain less connected. This mechanism is also known with
the term rich-gets-richer. Both numerical simulations and analytical re-
sults show that the network evolves in such a way that the final degree
sequence has approximately a Power-Law degree distribution with pa-
rameter close to γ = 3

P (ki = k) ∝ k−γ

18



1 10
k

10 8

10 6

10 4

10 2

100

P(
k)

Exponential with = 1
Power Law with = 2
Power Law with = 3

Figure 3: Comparison between many real-world networks degree distribu-
tion, that show a Power Law behaviour (the blue dotdashed line is obtained
with γ = 2, while the green and continuous one is characterised by γ = 3)
and the Exponential degree distribution (in orange, with λ = 1).

as shown in [19]. A graphical representation of this behaviour is pro-
vided in Figure 3. The blue dotdashed line represents a Power-Law dis-
tribution with parameter γ = 2, while the green continuous line is ob-
tained with γ = 3. Both cases are compared with the orange dashed
line, representing an Exponential distribution with parameter λ = 1.
Clearly, the main difference between these distributions is related to their
behaviour for large degrees, since the Exponential decay is much faster
than the one observed for the Power-Law case.

Example. A toy example of the Scale-Free model is proposed in Figure
4. In this case the initial configuration is made by the setN1 = {1, 2, 3} of
N1 = 3 nodes andE1 = 3 edges, thus all nodes have the same probability
of attracting new neighbours equal to pi,2 = 1/3 for all i = 1, 2, 3. When
node 4 joins the system at time t = 2 with e = 1 new edges, it chooses
uniformly at random node 1 as neighbour. Therefore node 1 acquires
the highest probability of gaining new neighbours equal to p1,3 = 3/8
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Figure 4: The Figure shows three consecutive timesteps of the Scale-Free
model. In this case the initial set is made ofN1 = 3 nodes andE1 = 3 edges.
At each timestep a new node enters the system showing e = 1 new edges.
New nodes are depicted in red while old ones in dark green. The probability
to form a link with the existing nodes is increasing with the degree of the
nodes already present in the system.

contrarily to the other nodes with p2,3 = p3,3 = 2/8 and p4,3 = 1/8. The
same procedure is repeated at time t = 3. So, with the arrival of node
5, the probabilities to form links with the newcomers become p1,4 = 2/5,
p2,4 = p3,4 = 1/5 and p3,4 = p4,4 = 1/10.

Connection with urn processes

An interesting property of the preferential attachment rule is that it can
be explained with an urn process. Indicate with ti the arrival time of
node i ∈ Nt−1 in equation (1.10), with 1 ≤ ti ≤ t − 1 and suppose to
have an urn with balls of two colours, say red and black. The initial
number of balls in the urn is ki,ti +

∑
j∈Nti−1

kj,ti−1, while the number
of black balls in the urn depends on the degree of node i at the time of
its arrival: if ti = 1 then i is one of the N1 nodes present in the system at
time t1 = 1, thus the number of black balls in the urn equals the degree
of node i at time ti = 1 (that, in turns, depends on the configuration of
the E1 edges present in the system at time t = 1). If instead ti > 1 then
the number of black balls in the urn is equal to e, i.e. the number of new
edges brought in the system by node i at the time of its arrival. Then,
perform an extraction from the urn for each t > ti. If the drawn ball is
black then node t establishes a link with node i and an additional black
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ball enters the urn. On the contrary, if the extracted ball is red, node t
does not establish a link with i and another red ball is added to the urn.
Thus, equation (1.10) represents the probability to extract a black ball at
timestep t.

Further developments of the model

The preferential attachment mechanism was already present in the sci-
entific literature but in a slightly different form [25, 26]. However, the
Barabási-Albert model boosted the attractiveness of complex networks
and many other scholars delved into the investigation of the properties of
generative models (nice reviews on the subject can be found in [27, 28]).

However, the Scale-Free model is known to suffer of the “first-move
advantage”, i.e. the fact that older nodes have a greater degree by con-
struction. Thus, in subsequent contributions, its recipe was enriched
with other ingredients in order to face this issue. One of the most re-
markable ones are the fitness variables: the fitness is a quantity defined at
node level that measures the intrinsic ability of the vertex to collect links.
These quantities have been introduced in [29, 30] with a multiplicative
effect on nodes’ degrees, with the purpose of amplifying or dampening
the preferential attachment effect. Therefore the presence of the fitnesses
in the model permits to overcome the first-move advantage and allows
younger nodes to easily grow as well.

In addition to the mentioned contributions, some other works have
been proposed that try to relate the scale-free behaviour of the systems
(i.e. the power-law degree distribution) with different generative mech-
anisms involving the fitnesses. In [31] the authors assign a fitness vari-
able to every node, representing an intrinsic property of the vertex in the
considered system. Then, arcs between pairs of vertices are drawn with
a probability that depends on the fitnesses of the involved nodes only.
Therefore, also the scale-free behaviour is explained as a result of the fit-
nesses’ contribution only. The following section describes the generative
model presented in [31].
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1.2.3 Fitness model

As stated in the previous paragraph, the generative network model pre-
sented in [31] represents the first contribution in which the scale-free be-
haviour of a system is explained in terms of the importance of each node
and not as a function of its popularity (i.e. preferential attachment rule).
The dynamical version of the model works as follows:

1. Start with an initial set of N1 nodes. Each node i of the system is
assigned a fitness variable xi, a real number representing the im-
portance of such a node in the system. In this framework, the fit-
nesses are treated as i.i.d. random numbers, distributed according
to a given probability distribution that we denote with φ.

2. The set of edges at time t = 1 is determined as follows: for each pair
of nodes (i, j) the presence of a link connecting them is established
with probability

pi,j = f(xi, xj). (1.11)

Essentially, the presence of a link between i and j is determined as
a function of the importance of both nodes, measured according to
the values of their fitness variables.

3. At every timestep t ≥ 2 a new set of nodes is added to the system,
each of them accompanied by its fitness variable. Edges between
old and new vertices are again established according to the rule in
equation (1.11).

The authors in [31] show that the choice of power-law or exponen-
tially distributed fitnesses, that correspond to the cases φ(x) ∼ x−γ with
γ ≥ 2 and φ(x) ∼ e−x, leads to the generation of scale-free networks. In
this case, the simulations and computations have been performed with
a threshold rule as link probability, i.e. pi,j = Θ[xi + xj − z]. The term
Θ is the Heaviside step function, equal to one whenever its argument is
greater than zero and equal to zero otherwise. Essentially, an arc between
nodes i and j exists only when the sum of their fitnesses is greater than
a fixed threshold, that in this case is equal to z.
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The idea of importance of a node was already presented in the litera-
ture by [30]. The results in [31] strenghten its relevance simply excluding
the “rich-get-richer” rule from the method. Moreover, the model pre-
sented here is dynamic and aimed at explaining the generation of simple
networks only. However, its static formulation or its extension to the
case of directed networks are trivial, the first one being obtained simply
excluding step 3 from the algorithm. Other possible extensions may in-
clude time dependence in the definition of the fitnesses: for instance, the
authors in [32] introduce fitnesses which values decay with time in order
to take nodes’ ageing into account.

Besides generative models, nodes’ fitnesses can be employed to de-
scribe the structure of real networks also in other contexts, by correlating
their value to some attributes of the nodes not directly specified in the
definition of the network [31]. In the following section, inspired by [31],
we will describe the Configuration Model methods, that follow this line
of research. Also in this case, the fitnesses are defined at node level and
are responsible for nodes’ degrees, but they are derived from an entropy
maximization procedure. In the Exponential Random Graph framework,
starting from the measurements of some properties on a real-world net-
work (e.g. number of edges, clustering coefficient and so forth), the mo-
del is specified defining a suitable ensemble of graphs and a probability
distribution over it. The aim is to obtain the probability distribution over
the ensemble that identifies the networks that best reproduce the prop-
erties of interest [33].

1.2.4 Randomizing a real-world network

This section exploits the Exponential Random Graph Models framework
in order to construct a randomized counterpart (i.e. the equivalent of a
statistical null-model) for a specific real-world network of interest. Again,
the asterisk ∗ notation will be used for observed quantities, such as the
observed graph G∗ or the observed adjacency matrix A∗. Given some
properties of the observed network that we want to preserve in the ran-
domized counterpart, we construct a suitable ensemble of possible net-
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works and a probability distribution upon it, that satisfies (on average)
the set of imposed constraints being however maximally random. The
passages in this section are a collection of the results presented in [33, 34,
35, 36, 37].

Let G be the ensemble of graphs consisting of all networks of the same
type as G∗ (binary/weighted and/or directed/undirected) and with the
same number of nodes N . Each graph G ∈ G in the ensemble is assigned
an occurrence probability P (G) such that∑

G∈G

P (G) = 1. (1.12)

The shape of the probability distribution over the ensemble P (G) needs
to be determined once a set of properties of the real-world network G∗

(i.e. constraints) are enforced in the model. Let ~X be a vector of graph
observables for which we have an empirical measurement in the real-
network G∗. We would like to obtain a probability distribution over the
ensemble such that, for each observable Xi

〈Xi〉 =
∑
G∈G

Xi(G)P (G) = Xi(G
∗) (1.13)

the expected value of the quantities ~X overall the ensemble coincides
with the values of ~X observed in the real-world graph G∗. Here the
notation ~X(·) is used to indicate that the quantities ~X are computed on
the network in brackets. The desired probability distribution is the one
that maximizes the Entropy

S = −
∑
G∈G

P (G) lnP (G)

under the set of constraints in equation (1.13) and the normalization con-
dition in equation (1.12). In order to do so, we first construct the La-
grange function introducing the Lagrange multipliers α and ~θ

L = S + α
(

1−
∑
G∈G

P (G)
)

+
∑
i

θi

(
〈Xi〉 −

∑
G∈G

Xi(G)P (G)
)
.

The partial derivative of L with respect to P (G) is the following
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∂L

∂P (G)
= lnP (G) + 1 + α+

∑
i

θiXi(G)

for all graphs G ∈ G. Imposing the partial derivative equal to zero we
obtain the solution of the maximisation problem

P (G|α, ~θ) = exp
(
− (1 + α)−

∑
i

θiXi(G)
)

that is most commonly written as

P (G|~θ) =
exp

(
−H(G, ~θ)

)
Z(~θ)

(1.14)

where H(G, ~θ) is the Hamiltonian of the problem

H(G, ~θ) =
∑
i

θiXi(G) (1.15)

and Z(~θ) is a normalizing factor called partition function

Z(~θ) = exp (α+ 1) =
∑
G∈G

exp
(
−H(G, ~θ)

)
. (1.16)

Equations (1.14)-(1.16) specify the Exponential Random Graph model,
that consists in finding the probability distribution (conditional on the
values of the parameters ~θ) over the ensemble of graphs G that satisfies
on average the set of constraints ~X while keeping all the rest maximally
random. Notice that we are dealing with a grand-canonical ensemble of
graphs, meaning that the imposed constraints are satisfied on average
overall the set of graphs and not “pointwise” on each graph G ∈ G.
Therefore, graphs in which the constraints are not satisfied still belong to
the ensemble.

At this point, the purpose of the analysis is the definition of the ran-
domized counterpart of the specific real-world network G∗. Thus the
probability distribution P (G|~θ) has to be calibrated with the vector of La-
grange multipliers ~θ∗ that assign the highest probability to G∗. In other
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words, the probability distribution needs to be centered on G∗. In order
to do so we maximise the following log-likelihood function

L(~θ|G∗) = lnP (G∗|~θ)
= −H(G∗, ~θ)− lnZ(~θ) (1.17)

that represents the probability to obtain the network of interest G∗. Equa-
tion (1.17) is maximised by the vector of parameters ~θ∗ ensuring that the
average values in the ensemble of the quantities ~X is equal to their empir-
ical values on the network G∗. Thus, for the Exponential Random Graph
models, the maximum likelihood estimate of the parameters ~θ guaran-
tees that the enforced constraints on the observables ~X are met in the
ensemble:

〈Xi〉~θ∗ =
∑
G∈G

Xi(G)P (G|~θ∗) = Xi(G
∗) (1.18)

for all i. As in [35], the notation 〈·〉~θ∗ is used to indicate that the expected
value in the ensemble is computed under the conditional probability dis-
tribution P (G|~θ∗), calibrated on the maximum likelihood estimates of
the parameters ~θ∗.

The constraints introduced in the problem ~X are topological quan-
tities of the real-world network, therefore they need to be established
according to the nature of the network itself. For instance, for binary and
undirected networks the degree of each node is used as a constraint: the
second of the two following sections will present the Exponential Ran-
dom Graph problem for this set of constraints. The first one represents
an even simpler case, in which only the expected number of edges is
preserved in the system: it shows that the Random Graph model can be
addressed in the Exponential Random Graph framework imposing the
total number of observed edges as a constraint of the problem.

Constraining on the number of edges: Random Graphs

Consider the simple network G∗ with fixed number of nodes N . The
graph can be equivalently represented with its N × N adjacency matrix
A∗, with entries ai,j = 1 if node i is connected to j and ai,j = 0 otherwise.
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Suppose to be interested in constructing a null model for such real-
world network and to be interested in preserving the total number of
edges E on average in the ensemble. The problem presented in the pre-
vious section needs to be specified for this particular case. The Hamilto-
nian of the problem with this single constraint reads as follows

H(G, θ) = θ E(G) = θ
∑
i<j

ai,j (1.19)

where θ is the real-valued Lagrange multiplier, while the partition func-
tion is

Z(θ) =
∑
G∈G

exp
(
− θ

∑
i<j

ai,j

)
=
∏
i<j

∑
G∈G

exp(−θ ai,j)

=
∏
i<j

(
1 + exp(−θ)

)(N2 )
.

(1.20)

Notice that the last steps are valid since the sum runs over all the bi-
nary entries of the adjacency matrix. Plugging equations (1.19) and (1.20)
into the general expression (1.14) and using the substitution exp(−θ) = x,
we obtain the following probability distribution over the graphs ensem-
ble

P (G|x) =
∏
i<j

exp(−θ ai,j)(
1 + exp(−θ)

)(N2 )

=
∏
i<j

xai,j(
1 + x

)(N2 )

= xE
(

1 + x
)−(N2 )

=
( x

1 + x

)E(
1− x

1 + x

)(N2 )−E

= pE(1− p)(
N
2 )−E .

(1.21)
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Notice that in equation (1.21) each entry of the adjacency matrix is treated
as an independent and Bernoulli distributed random variable, with dif-
ferent probabilities of success equal to

p =
x

1 + x

therefore the probability associated to the entire graph is simply given by
the product of these marginals. In order to obtain a maximum likelihood
estimate for the parameter x, we need to maximize the log-likelihood
function given by

L(x|G∗) = lnP (G∗|x)

= E(G∗) ln(x)−
(
N

2

)
ln(1 + x)

(1.22)

and the result is the estimate x∗ > 0 that guarantees that the enforced
constraint on the expected number of links is met, on average, in the
ensemble. The same solution x∗ can be obtained solving the following
equation

∂L(x|G∗)
∂ x

=
E(G∗)

x
−
(
N

2

)
1

1 + x
= 0

that corresponds to the First Order Condition of the maximum likelihood
problem. Rearranging the terms it is possible to obtain an analytical ex-
pression for the expected number of edges in the graph ensemble

E(G∗) =

(
N

2

)
x∗

1 + x∗
= 〈E〉θ∗ (1.23)

since the term
p∗ =

x∗

1 + x∗
= 〈ai,j〉θ∗ for i 6= j

represents the probability to observe a link between any pair of nodes in
the system. Notice that the previous equation (1.23) represents a specific
case for the general framework proposed in equation (1.18), in which the
total number of edges in the graph is imposed as the only constraint.
Again the notation 〈·〉θ∗ is borrowed from [35] and represents the ex-
pected value in the ensemble of the quantity in parentheses computed
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under the conditional probability distributionP (G|x∗) where x∗ = exp(−θ∗)
is the maximum likelihood estimate of the Lagrangian multiplier of the
problem. Notice also that the probability p is invariant for any edge. This
result shows that the binomial model in Section 1.2.1 is actually an Expo-
nential Random Graph model, obtained when the observed number of
edges E is fixed as constraint in the graphs ensemble.

Constraining on the degree sequence: Generalized Random Graphs

Consider again the graph G∗ of the previous example, with fixed number
of nodes N , E edges and adjacency matrix A∗. In this case the interest is
still in finding a suitable null model for the graphs G∗, but preserving the
degree observed for each node, i.e. the degree sequence of the network.
The Hamiltonian of the problem becomes

H(G, ~θ) =

N∑
i=1

θiki(G) =
∑
i<j

(θi + θj)ai,j (1.24)

while the partition function is

Z(~θ) =
∑
G∈G

exp
(
−
∑
i<j

(θi + θj)ai,j

)
=
∏
i<j

∑
G∈G

exp
(
− (θi + θj)ai,j

)
=
∏
i<j

(
1 + exp(−θi − θj)

)
.

(1.25)

Again the last step holds since the sum runs over all the binary entries of
the adjacency matrix. Plugging equations (1.24) and (1.25) into (1.14) and
using the substitution exp(−θi) = xi for all i ∈ N we get the following
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probability distribution over the graphs ensemble

P (G|~x) =
∏
i<j

exp
(
− (θi + θj)ai,j

)
1 + exp(−θi − θj)

=
∏
i<j

(xi xj)
ai,j

1 + xi xj

=
∏
i<j

( xi xj
1 + xi xj

)ai,j(
1− xi xj

1 + xi xj

)(1−ai,j)

=
∏
i<j

p
ai,j
i,j (1− pi,j)1−ai,j .

(1.26)

Notice that in equation (1.26) each entry of the adjacency matrix is treated
as an independent and Bernoulli-distributed random variable, with dif-
ferent probabilities of success equal to

pi,j =
xi xj

1 + xi xj
for i 6= j

therefore the probability associated to the entire graph is simply given by
the product of these marginals. The log-likelihood to maximise, in order
to obtain an estimate for the vector of parameters ~x, is given by

L(~x|G∗) = lnP (G∗|~x)

=
∑
i

ki(G
∗) ln(xi)−

∑
i<j

ln(1 + xi xj)
(1.27)

and the result is the estimate ~x∗ that guarantees that the constraints on
the expected degree sequence are satisfied, on average, in the ensemble.
The same solution ~x∗ can be derived solving the set of coupled equations

∂L(~x|G∗)
∂ xi

=
ki(G

∗)

xi
−
∑
i<j

xj
1 + xi xj

= 0 ∀i = 1, . . . , N

corresponding to the First Order Condition of the problem. Rearranging
the terms, the expected degree of each node can be easily recovered as

ki(G
∗) =

∑
i 6=j

x∗i x
∗
j

1 + x∗i x
∗
j

= 〈ki〉~θ∗ ∀i = 1, . . . , N (1.28)
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and corresponds to the sum of the expected number of edges incident to
node i. Indeed, the term

p∗i,j =
x∗i x

∗
j

1 + x∗i x
∗
j

= 〈ai,j〉~θ∗ ∀i 6= j

represents the probability that nodes i and j are connected in the graph.
As in the previous example, equation (1.28) specifies equation (1.18) when-
ever the expected value of the degree of each node in the ensemble is
fixed equal to its observed value. Also in this case, the notation 〈·〉~θ∗
indicates the expected value of the quantity in parentheses under the
probability distribution P (G|~x∗), being x∗i = exp(−θ∗i ) for all i ∈ N the
maximum likelihood estimate of the Lagrangian multipliers vector.

1.3 The role of null models

The entrance of null models into the complex systems literature has been
mostly driven by the requirement of explaining some behaviours and
characteristics of observed real-world networks. For instance, the Barabási-
Albert model model has been developed in order to shed light on the
mechanism responsible for power-law distributed degree distributions.
The reasoning behind the Exponential Random Graph framework goes
in the same direction: given a real-world network of interest G∗, a null
model for it is constructed first introducing an ensemble of graphs with
the same number of nodes as G∗, then defining a probability distribu-
tion over the ensemble, that is determined maximizing the entropy of the
system while fixing certain network quantities as constraints. Thus, the
ensemble G will preserve such properties on average, while keeping all
the rest maximally random. Moreover, once the parameters of the prob-
ability distribution over G are estimated with the maximum likelihood
principle, the distribution is centered on G∗ and any other topological
quantity can be unbiasedly estimated taking its average value on the en-
semble. Let Y be a certain topological property that can be computed on
G∗. Using the same notation introduced in the previous paragraph, the
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quantity
〈Y 〉 ~θ∗ =

∑
G∈G

Y (G)P (G| ~θ∗) (1.29)

represents the randomized value of Y in the maximum-entropy graphs en-
semble [35]. Thus, comparing 〈Y 〉 ~θ∗ with Y (G∗) (that is the value of
the topological property Y computed on the real-world graph G∗) it is
possible to assess whether Y can be reconstructed starting from the en-
forced constraints only ~X or its value in the observed network requires
additional information to be interpreted. However, the computation of
the quantity in equation (1.29) strictly depends on the possibility to write
equation (1.14) in a simpler form, without enumerating the entire set of
graphs in the ensemble G. This is possible only when considering con-
straints that are expressed in terms of the entries of the adjacency matrix
of G [35].

Once the development of a null model for G∗ is completed, the ex-
pected value of a certain network quantity 〈Y 〉~θ∗ in the ensemble can
be obtained starting from its definition. For instance, the ensemble ex-
pected value of the average nearest neighbour degree 〈knni 〉~θ∗ can be ob-
tained from equation (1.4). However, in order to facilitate this computa-
tion, a possible approximation of this quantity can be considered, simply
substituting the expected values p∗i,j = 〈ai,j〉~θ∗ obtained from the model
into the expression of Y . For instance, for the cases of ANND or cluster-
ing coefficient ensamble average, it is sufficient to replace ai,j with p∗i,j
into equations (1.3) and (1.4) to obtain an approximation of the expected
quantities

〈knni 〉~θ∗ ≈
∑
j 6=i
∑
k 6=j p

∗
i,j p

∗
j,k∑

j 6=i p
∗
i,j

〈Ci〉~θ∗ ≈
∑
j 6=i
∑
k 6=i,j p

∗
i,j p

∗
j,k p

∗
i,k∑

j 6=i
∑
k 6=i,j p

∗
i,jp
∗
i,k

.

(1.30)

This is the procedure adopted in [35, 36, 37, 133]. The comparison of
these expected quantities with the values observed in the real-world net-
work has a straightforward interpretation: whenever the average nearest-
neighbour-degree (or the clustering coefficient) trend in the observed
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graph resembles the average value in the ensemble, then we can con-
clude that the correlation (or clustering) patterns shown in the network
can be substantially driven by the imposed constraints. On the contrary,
in case the two trends show significant deviations, the assortativity and
clustering patterns may be the result of a different underlying mecha-
nism and the imposed constraints are not sufficient by themselves to re-
produce these behaviours.

The presented ones are only two of the possible applications of the
Exponential Random Graph framework. The randomization method can
be easily adjusted to the cases of directed networks, specifying both the
in- and out-degrees as a constraint [35], or weighted networks, either
specifying the strength sequence only [35] or enhancing it with the de-
gree sequence [37], or bipartite networks, specifying the degree sequence
for both layers [36]. This last case will be briefly introduced in the follow-
ing section, before discussing a method to recover monopartite networks
starting from an initial bipartite structure.

1.3.1 Quantifying nodes’ similarity in bipartite networks

In Section 1.1.2 of the Introduction we have proposed a simple example,
in which the network of friendships within a group of people has been re-
covered starting from an initial bipartite structure, that takes into account
the classes attended at school by each person in the group. This situation
is an extremely simple example of projection of a bipartite network onto
one of its layer. Indeed, starting from the initial bipartite structure that
involves people and classes, we quantify the similarity between pairs
of agents simply counting the number of classes they attend together at
school. Using the same notation as in Section 1.1.2, this quantity is equal
to

Vi,j =
∑
α∈Γ

mi,αmj,α

for all i, j ∈ L, where Vi,j is the number of common neighbours (V-motifs
hereafter) involving the pair (i, j). See Figure 5 for a pictorial represen-
tation of these topological objects. A naı̈ve projection method of a bipar-
tite network onto one of its layers simply prescribes to connect a pair of
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i j k

α β

Figure 5: Graphical representation of two V-motifs: the first one V i,jα sees i
and j that share α as a common neighbour on the opposite layer, while the
second one, V j,kβ , has j and k that are both neighbours of node β.

agents whenever they share at least one common neighbour in the bipar-
tite structure. Thus the adjacency matrix of the final projected network
will be given by A = {ai,j : i, j ∈ L} where ai,j = Θ(Vi,j) and Θ is the
Heaviside step function, equal to 1 whenever Vi,j > 0 and 0 otherwise.
Therefore, in the friendship network, two agents are considered friends
if they attend at least one class together.

As a matter of fact, projecting the information contained in a bipartite
network on one of its layers is the traditional way of analysing many col-
laboration systems [19]. However, the naı̈ve procedure described so far
often generates a very dense projection, especially when the dimension
of the graph increases. For this reason, many methods have been pro-
posed in order to filter the final set of edges and evaluate the statistical
significance of pairwise connections. In what follows we will review the
proposal of [38].

Consider a bipartite network G∗Bi with biadjacency matrix M∗. A
benchmark model for this structure can be easily obtained extending the
Exponential Random Graph framework introduced in Section 1.2.4 to
the bipartite framework. In other words, the degree sequence involv-
ing nodes of both layers needs to be specified as constraint of the prob-
lem. Refer to [36] for a review of this methodology. Once the maximum-
likelihood estimate of the Lagrange multipliers for the nodes of both lay-
ers (~x ∗, ~y ∗) have been obtained, it is possible to recover the connection
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probability for any pair of nodes in the system, as follows

p∗i,α =
x∗i y

∗
α

1 + x∗i y
∗
α

∀i ∈ L,α ∈ Γ

and p∗i,α is also the parameter of the Bernoulli-distributed random vari-
able representing the edge m∗i,α between nodes i and α. Therefore, de-
noting with V i,jα = m∗i,αm

∗
j,α the Bernoulli-distributed random variable

indicating the presence of the common neighbour α between i and j, its
distribution is simply given by

P (V i,jα = 1) = p∗i,αp
∗
j,α

P (V i,jα = 0) = 1− p∗i,αp∗j,α

for all i, j ∈ L and α ∈ Γ. Moreover, the previous term can be generalized
to consider the number of common neighbours between i and j. Since all
V-motifs are independent random variables with different probabilities
of success, the number of common neighbours between i and j in the
null model is given by

〈Vi,j〉 =
∑
α∈Γ

p∗i,αp
∗
j,α

for all i, j ∈ L, that is the parameter of the Poisson-Binomial random
variable [39, 40]

V ∗i,j =
∑
α∈Γ

V i,jα =
∑
α∈Γ

m∗i,αm
∗
j,α

indicating the observed number of common neighbours between i and
j. At this point, the set of null hypotheses{

H0 : ai,j = 0

H1 : ai,j = 1 for all i, j

associated to each potential link in the projected network is tested. In
other words, the significance of the observed number of motifs V ∗i,j is
tested through the computation of the following p-value

p-value(V ∗i,j) =
∑

Vi,j≥V ∗i,j

fPB(Vi,j)
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where the term fPB is used to indicate the Poisson-Binomial probability
mass function [39, 40]. Repeating this procedure for all pairs of nodes
in the graph, it is possible to obtain a squared matrix collecting the p-
values associated to each potential link. Then, all p-values will be com-
pared with a threshold value pth in order to assess their significance. The
numerical value of pth is established through the False Discovery Rate
procedure [41] that prescribes to

1. sort the vector of p-values in ascending order;

2. select the largest integer î satisfying

p-value î ≤
îξ

NLNΓ
(1.31)

where ξ is the chosen significance level;

3. consider pth = p-value î as the threshold value.

Then, all hypotheses which p-value is smaller than or equal to the thresh-
old must be rejected, while we are not able to reject all hypotheses whose
p-value is greater than pth. In other words, the existance (i.e. significance)
of each link is treated as a separate null hypothesis to test and only the
edges associated to rejected hypotheses are included in the final projec-
tion. In the remainder, when using this method we will consider ξ = 0.05

as the significance value.

It is important to highlight that this validation procedure returns the
validated network of the links assciated to rejected hypotheses. There-
fore, an edge in the final network indicates that the number of common
neighbours between a pair of nodes was significantly higher than the
model’s expected value, under the assumption of independence of each
link and under the considered set of topological constraints imposed in
the null model’s construction. In other words, the shape of the validated
network strictly depends on the chosen benchmark model.
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1.4 Outline of the work

The remainder of this work will be mainly focused on the analysis of the
behaviour of the agents that are active in specific social network contexts.
In this Section I will summarize the contents presented in each Chapter.

As highlighted in paragraph 1.3, the presented ones are only two of
the possible applications of the Exponential Random Graph framework.
Chapter 2 of this work provides a formal definition of rating networks
specifying their topology and their interpretation in the real-world. Then
the problems regarding the construction of a suitable null model for this
kind of graphs is addressed, since the tools available for weighted net-
works turn out to be not appropriate in this context. Therefore, we ex-
tend the Exponential Random Graph framework for this specific type of
networks, providing the theoretical background as well as some appli-
cations to real-world e-commerce datasets. The ability of the null model
to reproduce some network properties (i.e. the neighbour connectivity
and the number of Checkerbord motifs) is tested against some alterna-
tive models and the obtained results are discussed in great details. The
comparison of observed properties with their ensemble averages is a tool
available to understand to which extent the purchase activity of the users
can be explained starting from their previous purchases. Indeed, with
this model we obtain the probability that a users positively or negatively
review a certain product, discounting for her/his previous purchase pat-
terns.

Chapter 3 investigates how the users in the online social network of
Twitter interact during the context of the electoral campaign that took
place in Italy last March 2018. Using the projection and validation meth-
ods introduced in this Chapter, we have identified four groups of strongly
connected verified users. We have also studied which of them turn out
to be the most central in the validated network and studied how the
remaining non-verified users interact with the four communities, high-
lighting a strongly polarized behaviour. Then, classifying the non-verified
users according to their polarization values, we have studied which are
the most used hashtags, noticing that the four communities tend to men-

37



tion their own coalition, followed by the major competitors. Finally, we
have extended the validation procedure to bipartite directed networks:
starting from the bipartite and directed network of tweets and retweets,
we have projected and validated this structure in order to obtain a fi-
nal directed network of retweets, in which a directed edge between two
users exists if the second retweets the first one a significantly high num-
ber of times. We have studied how the information propagates in this
graph identifying the most influential users and spreaders (i.e. the nodes
with the highest out- and in-degrees respectively). The majority of the
interactions still appear between users belonging to the same group. Fi-
nally, the analysis has been focused on the structure of the subgraphs
made by the previous division in community. Interestingly, a sharp divi-
sion is still present after the validation and some signals of internal split
are also present, especially for the case of the righ-leaning community.

Finally, Chapter 4 presents a stochastic model that reproduces the ac-
tivities of a set of users in a social networks context. Given a system of
agents, the work describes a model for the formation of the bipartite net-
work of agents’ actions and their features. This is a novelty in this liter-
ature, since we are only interested in describing the evolution of agents’
activity and not in explaining how the connections among agents grow.
Moreover, the choice of the features shown by each action is driven by a
rule that we call preferential attachment with weights: the probability that
a new action shows one of the features already present in the system
does not only depend on the “popularity” of that feature (i.e. the num-
ber of previous actions showing it), but is also affected by some individ-
ual traits of the agents or the features themselves, synthesized in certain
quantities called “weights”. These weights can have different definitions
and meanings according to the considered setting. We show some the-
oretical properties of the model and provide statistical tools for the pa-
rameters’ estimation. Then, the model has been tested on three different
datasets, two of them describe scientifical collaborations in different re-
search fields while the third one collects publications on a well-known
online social network. The numerical results of the analyses are provided
and discussed.
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Abstract

In the last years, due to the great diffusion of e-commerce, online rating plat-

forms quickly became a common tool for purchase recommendations. However,

instruments for their analysis did not evolve at the same speed. Indeed, inter-

esting information about users habits and taste can be recovered just considering

the bipartite network of users and products, in which links represent products’

purchases and have different weights due to the score assigned to the item in

users’ reviews. With respect to other weighted bipartite networks, in these sys-

tems we observe a maximum possible weight per link, that limits the variability

of the outcomes. In the present article we propose an entropy-based randomiza-

tion method for this type of networks (i.e. bipartite rating networks) by extend-

ing the Configuration Model framework: the randomized network satisfies the

constraints of the degree per rating, i.e. the number of given ratings received by

the specified product or assigned by the single user. We first show that such a

null model is able to reproduce several non-trivial features of the real network

better than other null models. Then, using our model as benchmark, we project

the information contained in the real system on one of the layers; in order to pro-

vide an interpretation of the projected network, we run the Louvain community

detection algorithm on the obtained graph and discuss the observed division in

clusters. We are able to detect groups of music albums due to the consumers’

taste or communities of movies due to their audience. Finally, we show that our

method is also able to handle the special case of categorical bipartite network: we

consider the bipartite categorical network of scientific journals recognized for the

scientific qualification in Economics and Statistics. In the end, from the outcome

of our method, the probability that each user appreciates every product can be

easily recovered. Therefore, this information may be employed in future applica-

tions to implement a more detailed recommendation system that also takes into

account information regarding the topology of the observed network.
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2.1 Introduction

As mentioned in the previous Chapter 1, this part of the work deals with
the problem of developing a suitable null model for bipartite rating net-
works. In this specific case, the two disjoint sets of nodes characterizing
bipartite networks are represented by individuals and purchased items,
while edges represent users’ reviews and are weighted by the numerical
score received by the product (e.g. see for example the well-known Ama-
zon review system). Figure 6 provides a graphical representation of an
example of rating network. Here, the three consumers on the upper layer
purchase technological products on the lower layer from an e-commerce
website. The edges connecting pairs of nodes identify reviews of prod-
ucts given by the three consumers and the stars associated to an edge
represent the level of appreciation of the product.

These kind of graphs have been mostly studied from a machine learn-
ing and computer science perspective, in order to train models able to
recommend items to people, based on their taste and preferences. Dif-
ferent methodologies are employed for this purpose, see [42] for a thor-
ough review of the literature on the topic and the recorded progresses.
In this work we focus on a different approach, providing an analytical
tool that could reveal useful in the development of a recommendation
system based on network topology. More specifically, we will adapt the
Configuration Model framework, introduced in Chapter 1, to be suitable
for this kind of graphs. In order to do so, we first need to identify the
appropriate quantities that have to be included in the problem’s specifi-
cation as constraints.

Rating networks may be interpreted as classical weighted networks,
which edges are weighted by a finite set of discrete scores. In this con-
text, suitable constraints are represented by the specification of nodes’
strengths only (as in the Weighted Configuration Model, in [35]). Because
of the extremely poor predictive power of vertices’ strengths, an enriched
version of the previous model has been introduced (the Enhanced Con-
figuration Model) in [43]; this method adds the topology as additional in-
formation. However, the presence (in our framework) of a finite number
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Figure 6: Graphical representation of a rating network. In this case three
consumers buy technological products and assign them reviews with a
score representing their level of appreciation of the item (e.g. the Amazon’s
review system) [136].

of discrete weights complicates the problem formulation and increases
the required computational effort. For these reasons, a preliminar “bina-
rization” procedure is often employed (it is the approach of [38], but it is
also common in recommendation systems, like in [44]), by thresholding
the edges’ weights. In this way, the resulting network is binary and can
be easily randomised with the Bipartite Configuration Model in [36].

In this Chapter we propose an alternative approach, constraining not
only on the presence of positive reviews, but on the exact ratings distri-
bution for each node. Due to its application, we indicate it in the fol-
lowing as Bipartite Score Configuration Model (BiSCM). The peculiarity
of our approach is that we avoid the scores-related problems by spec-
ifying a multi-degree for each node in the network, i.e. by specifying the
entire distribution of scores received by a node. We will show that the addi-
tion of more constraints allows to define a more restrictive null model,
thus to reproduce with higher accuracy the features of the original net-
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work. Let us highlight that our approach is general enough to allow
to randomize bipartite signed networks (as a subset of rating networks)
and bipartite categorical networks, the latter being a subject to which, to
the best of our knowledge, there is a substantial scarcity of theoretical
and analytical tools. For instance, while there are different proposals for
measuring the similarity among items in categorical datasets [45], non-
trivial null-models and benchmarks are practically absent. The present
methodology tries to fill this gap.

The rest of this Chapter is structured as follows. In Section 2.2 we
provide a formal definition of rating networks and explain the details of
the entire ensemble construction procedure. In Section 2.3 we discuss
potential limitations of the model, mainly due to its computational com-
plexity, and describe some possible extensions to the cases of signed and
categorical networks. In Section 2.4 we provide an outline of the method-
ology: we first define a possible generalization of the definition of some
well-known topological quantities and see how our model is able to re-
produce them; then we explain how our method can be introduced in
the projection and validation procedure proposed in [38]. In Section 2.5
we describe the datasets used to develop the analysis, while in Section 2.6
we show the main results regarding the motifs and assortativity analyses.
Moreover, we also describe the communities found in the projected and
validated networks. Finally, we discuss possible future developments of
the method in Section 2.7. The details regarding the development of the
considered models are provided in Appendix A.

2.2 The model

In this section, we first introduce the required notation and then explain
the necessary steps to construct the null model. As explained in previ-
ous Chapter 1, a bipartite network is a network which set of nodes can
be partitioned in two subsets (i.e. layers), such that only edges between
nodes belonging to different layers can be observed. The notation used
in this chapter resembles the one introduced in Chapter 1: the symbols
L, Γ and EBi will be used to indicate respectively the sets of nodes in the
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two layers and the set of edges in the network; the number of elements
in the three previous sets will be denoted as NL, NΓ and E respectively.
Finally, we will use N = NL +NΓ for the total number of vertices in the
graph.

A bipartite rating network can be entirely specified by its NL × NΓ

biadjacency matrix M = {mi,α : i ∈ L,α ∈ Γ} where the entry mi,α = β

indicates that product i has been reviewed and assigned score β by user
α and mi,α = 0 otherwise. In what follows, we only deal with the
case in which users are required to assign integer scores and the num-
ber of possible scores is known, denoted from now on as βmax, so that
β ∈ {1, . . . , βmax}. Therefore, a null model for this kind of graphs is spec-
ified considering a benchmark ensemble of bipartite graphs GBiS, with
constant number of vertices per layer, respectively equal to NL and NΓ.
For the sake of simplicity, a binary representation of M’s entries will be
considered, defining mi,α,β = δ(mi,α, β) for all β, where δ is the classical
Kronecker delta function. By doing so, we have

mi,α,β =

{
1 if mi,α = β

0 otherwise.
(2.1)

then the variable mi,α,β will be equal to 1 if node α has reviewed node i
with the numerical score β andmi,α,β = 0 otherwise. We use the notation

ki,β(M) =
∑
α

mi,α,β i = 1, . . . , NL (2.2)

kα,β(M) =
∑
i

mi,α,β α = 1, . . . , NΓ (2.3)

to indicate the number of reviews with score β respectively assigned by
a generic user α, in equation (2.2), and received by a generic product i, in
equation (2.3). Notice that, as in the previous chapter, the terms ki,β(M)

or kα,β(M) are used to indicate, respectively, that the degree of nodes
i and α are computed on the network represented by the biadjacency
matrix M. The specification of equations (2.2)-(2.3) for all β = 1, . . . , βmax

defines the distribution of scores received by each node and constitute
the fundamental constraints of our problem.
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At this point we look for the probability distribution maximising the
(Shannon’s) Entropy

S = −
∑
M

P (M) lnP (M) (2.4)

under the constraints on the expected degrees, i.e.

〈ki,β〉 = ki,β for i = 1, . . . , NL

〈kα,β〉 = kα,β for α = 1, . . . , NΓ

with β = 1, . . . , βmax. In other words, we consider the probability distri-
bution over the ensemble such that the expected degree of each node, for
every possible rating, equals on average an observed value while keep-
ing all the rest maximally random. The solution to this bipartite maxi-
mization problem gives the following probability distribution over the
ensemble

P (M|~x, ~y) =
∏
i,α

qi,α(mi,α|~x, ~y) (2.5)

where ~x is a NLβmax dimensioned vector of Lagrangian multipliers that
controls for the expected degree for each possible rating for users, while
~y is the analogousNΓβmax dimensioned vector of Lagrangian multipliers
for the products. The quantity

qi,α(mi,α|~x, ~y) =

∏
β(xi,β yα,β)δ(mi,α,β)

1 +
∑
β xi,β yα,β

(2.6)

is the probability mass function of the discrete random variablemi,α that
takes values on the set {0, 1, . . . , βmax}. Refer to Appendix A for addi-
tional details. Notice that each node has been assigned a vectorial La-
grangian multiplier (~xi if it belongs to the layer L, ~yα if it belongs to the
layer Γ) of dimension βmax. Thus the probability to observe a single pos-
itive outcome, i.e. a link with rating β, can be expressed as

pi,α,β =
xi,β yα,β

1 +
∑
β xi,β yα,β

(2.7)

for all i, α and β. Therefore, the outcome of our method allows to easily
recover the probability that each user assigns a given score to all items,
for all observed rating levels in the network.
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In order to determine the numerical values for our Lagrangian multi-
pliers, let us consider a specific real-world rating network M∗, for which
the degree sequences {ki,β(M∗) : i ∈ L∗, β = 1, . . . , βmax} and {kα,β(M∗) :

α ∈ Γ∗, β = 1, . . . , βmax} are known for all nodes in the network. Again,
the starred notation is used to indicate the sets of nodes in the observed
network. Thus, at this stage, the graphs ensemble is built in such a way
that there is a correspondence between the observed sets of nodes L∗ and
Γ∗ and the sets of nodes in each graph of GBiS. The log-likelihood defined
by equation (2.5) is given by

L(~x, ~y|M∗) =
∑
i,β

ki,β(M∗) lnxi,β +
∑
α,β

kα,β(M∗) ln yα,β

−
∑
i,α

ln
(

1 +
∑
β

xi,β yα,β

)
(2.8)

The maximization procedure consists in determining the specific param-
eters’ values (~x ∗, ~y ∗) that maximize the probability to observe the net-
work of interest M∗. The solution can be equivalently derived solving
the following system of Nβmax coupled equations

〈ki,β〉 =
∑
α

xi,β yα,β
1 +

∑
β xi,β yα,β

= ki,β(M∗)

〈kα,β〉 =
∑
i

xi,β yα,β
1 +

∑
β xi,β yα,β

= kα,β(M∗) (2.9)

for i ∈ L∗, α ∈ Γ∗ and β = 1, . . . , βmax. Clearly, the system in (2.9) is
obtained specifying the First Order Conditions for equation (2.8), i.e. set-
ting its partial derivatives equal to zero. In other words, the equations in
(2.9) underline that the solution of the maximum likelihood problem in
equations (2.8) is exactly the vector (~x ∗, ~y ∗) ensuring that the expected
degree sequence coincides, for each score, with the observed one. For the
applications presented in this work we have solved the system in equa-
tion (2.9). Once the null model construction is completed, the probability
to observe a review with score β between nodes i and α can be easily
recovered from the maximum likelihood estimates (~x ∗, ~y ∗), as follows

p∗i,α,β =
x∗i,β y

∗
α,β

1 +
∑
β x
∗
i,β y

∗
α,β

.
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It is worth noting again that these values are calibrated on the data.
Due to the properties of the maximum likelihood estimates, the vector
(~x ∗, ~y ∗) ensures that the expected degree of each node overall the ensem-
ble, computed under the conditional probability distributionP (M|~x ∗, ~y ∗),
concides with its observed value. This statements is translated into the
following sequence of equalities

〈ki,β〉~θ∗ =
∑

M∈GBiS

ki,β(M)P (M|~x ∗, ~y ∗)

=
∑
α∈Γ∗

∑
M∈GBiS

mi,αP (M|~x ∗, ~y ∗)

=
∑
α∈Γ∗

p∗i,α,β = ki,β(M∗)

(2.10)

and analogously for nodes on the other layer. In equation (2.10) the term
M is used to indicate the biadjacency matrix of each graph in the ensem-
ble GBiS. Equation (2.10) also implies that the randomized value of the
degrees (or, in general, any network-related quantity that can be com-
puted as a function of the biadjacency matrix entries) has a probability
distribution over the ensemble that is centered on the observed value and
therefore can be unbiasedly estimated.

2.3 Discussion on the model

In this Section we focus our attention on different aspects related to the
null model’s construction. In particular, obtaining the maximum likeli-
hood solution of the model may become a hard task in terms of complex-
ity, depending on the dimension of the considered graph and the total
number of available rating levels. Therefore we here propose a possible
alternative to approximate such a solution. Moreover, we also discuss
some possible extensions of the same method to different categories of
graphs.
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2.3.1 Computational complexity

The null model’s calibration (i.e. the determination of a numerical value
for the Lagrange multipliers ~x and ~y) may easily become costly, since the
number of unknowns of the problem grows linearly with the number of
nodes in the network N and the number of observed scores βmax. As
a rule of thumb, the time needed to obtain the link probabilities for a
network of 525 × 25 nodes with a connectance of order 0.5 (therefore
extremely high) is approximately three hours on a single process of a
Intel(R) Xeon(R) CPU E5-2650 v2, 2.60 GHz server. However, this value
should be considered as an upper bound for such a number of nodes,
since the higher the connectance the higher the computation time (and
0.5 is a quite high connectance value). Regarding the fitnesses calculation
(i.e. the Lagrangian multipliers), the complexity of the problem scales as
O (βmax(NL +NΓ)).

For this reason, for extremely large and sparse systems, a possible
approximation is here provided. As in the standard model presented in
[46], for our Chung-Lu Approximation we define the fitness variables
associated to each node to be proportional to nodes’ degrees, as follows

xclai,β =
ki,β√
Eβ

and xclaα,β =
kα,β√
Eβ

. (2.11)

Then, to relax the constraints required, the connection probability be-
tween each pair of nodes in the network are obtained as

pclai,α,β =

{
xclai,β x

cla
α,β if ki,β kα,β ≤ Eβ

1 otherwise
(2.12)

for all i = 1, . . . , NL, α = 1, . . . , NΓ and β = 1, . . . , βmax. The term Eβ =∑
i,αmi,α,β in equations (2.11) and (2.12) identifies the total number of

observed links for each score present in the data. Figure 7 provides a
graphical comparison of the two definitions of probability for the ML
network. It is evident that equation (2.12) systematically overestimates
the BiSCM values, especially for high probabilities.
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Figure 7: Graphical comparison of the two definitions of probabilities for
one of the considered datasets, i.e. the MovieLens network [53, 138]. The
plot shows pi,α,β on the x-axis and pclai,α,β on the y-axis.
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2.3.2 Possible extensions

It is worth noting that no assumption has been made so far concerning
the nature of the different entries of the adjacency matrix, but for the fact
that they are mutually exclusive. Therefore, our method is completely
general and can be employed in many different applications. For in-
stance, this framework can be intended as describing a multiedge net-
work in which βmax is the maximum number of edges allowed between
any pair of nodes. Other possible extensions can be towards the cases
of signed networks or categorical networks. In the former case, the dif-
ferent values of scores would be β ∈ {+1,−1}, indicating respectively
presence of a positive and a negative link. In the latter case instead, each
score β is simply assigned one of the possible realisations of a categorical
variable: we will present an application to this kind of data in one of the
following sections.

2.4 General methodology for the analysis

In order to test how accurately the proposed model reproduces the ob-
served networks, we employ the following methodology: we first ran-
domize the networks using the procedure explained in Section 2.2. Then,
once the numerical estimates of the Lagrangian multipliers are obtained,
we analytically calculate the ensemble expected value of some network-
related quantities and we compare the observed values of such quanti-
ties with the model’s average. Finally, again with the purpose of test-
ing the accuracy of the obtained probabilities per link and per score, we
employ a projection method to construct monopartite networks of prod-
ucts. Then we perform a community detection analysis and interpret the
resulting groups. In the following Subsection 2.4.1 we provide a detailed
description and interpretation of the topological quantities involved in
the analysis, while Subsection 2.4.2 explains the necessary steps to per-
form the projection and validation procedures.
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2.4.1 Higher order topological benchmark

Whenever dealing with numerical scores (let us exclude the case of cate-
gorical scores for the moment; we will discuss this situation later on),
we are able to distinguish “positive” from “negative” reviews. More
specifically, since in all cases βmax is known, we fix a threshold score to
βth < βmax and we interpret each review as “positive” whenever the re-
vied product has received a score greater than or equal to the threshold,
meaning that it has been appreciated by the user. Clearly, the “nega-
tive” reviews are analogously defined as those that have been assigned
a score smaller than the threshold, meaning that the user who assigned
the review was not satisfied by the purchase. Therefore, at the end of
the described randomisation procedure, we can separately consider the
two categories of reviews defining a signed version of the original bi-
adjacency matrix, indicated as M = {mi,α : i ∈ L,α ∈ Γ}, which en-
tries can assume values mi,α = +1 or mi,α = −1 whenever a positive
(i.e. βth ≤ β ≤ βmax) or, respectively, negative (i.e. 1 ≤ β < βth) re-
view was registered in the observed data, and mi,α = 0 otherwise. In
what follows, the analysis has been performed using the binarisation
m+
i,α = δ(mi,α,+1) and m−i,α = δ(mi,α,−1) where δ is again the Kro-

necker delta function. Clearly the shortcuts m+
i,α or m−i,α indicate the

presence of a score respectively greater or smaller than the threshold and
can also be trivially defined in terms of the original data as

m+
i,α =

{
1 if mi,α ≥ βth
0 otherwise

m−i,α =

{
1 if 1 ≤ mi,α < βth

0 otherwise

Moreover, we denote the quantities

k+
i (M) =

∑
α

m+
i,α

k−i (M) =
∑
α

m−i,α
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respectively positive degree and negative degree, to indicate the number of
edges with positive or negative reviews incident to node i. The previous
quantities are equivalently defined for the nodes on the opposite layer.
Finally, the null models associated to positive and negative reviews can
be easily obtained from the result of the previous randomization proce-
dure. Indeed, the entries of the probability matrices associated to posi-
tive and negative reviews can be computed as〈

m+
i,α

〉
= p+

i,α =
∑
β≥βth

pi,α,β

〈
m−i,α

〉
= p−i,α =

∑
β<βth

pi,α,β

where the terms pi,α,β are defined in equation (2.7) and represent the
probability that user i reviews product α with a numerical score equal to
β.

On the available datasets, we first analyse the correlation between
neighbour nodes’ degrees introducing a signed version of the classical
average nearest neighbor degree (ANND). We separately analyse all pos-
sible combinations of positive/negative neighbours and positive/negative
degrees, as follows

kppi (M) =

∑
αm

+
i,αk

+
α

k+
i

kpni (M) =

∑
αm

+
i,αk

−
α

k+
i

knpi (M) =

∑
αm

−
i,αk

+
α

k−i

knni (M) =

∑
αm

−
i,αk

−
α

k−i
.

(2.13)

In the previous equations, the first apex letter is referred to the sign of
the edges incident to i, while the second one indicates the sign of i’s
neighbour degree. In other words, the terms kppi or kpni in the equations
in (2.13) respectively identify the average positive or negative degree of
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Figure 8: Checkerboard-like motifs. In this representation, continuous lines
represent positive reviews while dashed lines represent the negative ones.

node i’s positive neighbours or, otherwise stated, the positive or nega-
tive degree of the other nodes that have assigned a positive review to i.
Clearly, replacing positive with negative sign, we obtain the analogous
interpretation for knpi and knni .

Then, we compute the number of signed checkerboard-like motifs ci
[47] for each node, as follows

ci(M) =
∑
α,β

∑
j

m+
i,βm

+
j,αm

−
i,αm

−
j,β (2.14)

Equations (2.13) and (2.14) are analogously defined for column nodes α.
The number of checkerboard-like motifs a node is involved represents
the number of times we observe a pair of products that receives conflict-
ing reviews from a pair of users. Considering the pictorial representa-
tion in Figure 8, we have that the products (i, j) receive opposite reviews
from the two users (α, β): in this case, user α has appreciated product
j and instead disliked i, while for β we observe different preferences.
Trivially, continuous edges represent positive reviews while dashed rep-
resent negative ones.

2.4.2 Monopartite projections

A possible way to analyse collaboration systems [19] (e.g. actors in the
movie system), is to project the information contained in a bipartite net-
work on one of the layers, then considering the statistical significance
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of their common connections. From various attempts on boards [48] to
more recent approaches [49], several works [38, 50, 51, 52] applied a simi-
lar idea, making use of the Bipartite Configuration Model. Summarizing,
once the probability for the single bipartite link is calculated, it is possi-
ble to compute the probability that a pair of nodes shares a link with an
item on the opposite layer. Such a pattern can be represented by a V-
motif (see Figure 5). If the probabilities per link {pi,α : i ∈ L,α ∈ Γ} are
independent, the probability to observe the single V-motif of Figure 5 is
simply given by the product P (V i,jα = 1) = pi,αpj,α. Thus, the number of
common neighbours between i and j is a random variable with Poisson-
Binomial distribution [39, 40], i.e. the distribution of NΓ independent
Bernoulli events, each with different (in general) probabilities. Compar-
ing the observation on the real network with their theoretical Poisson
Binomial distribution, it is possible to calculate a p-value for each pair of
nodes on the same layer. After a multiple hypothesis testing procedure
it is possible to state which connections of the monopartite projection
are statistically relevant, therefore which are the nodes that share more
connections than expected by the null model. See Section 1.3.1 of the
previous Chapter for a more detailed description of this method.

In the present chapter, as an application of the BiSCM null-model as
a benchmark, we shall extend such a procedure to rating networks, con-
sidering pairs of items that receive both positive reviews from the same
customer. Indeed, the inclusion of extra constraints in the randomization
phase, allows to construct a more restrictive null model. This fact is con-
firmed by the results of our validation procedure, since all validated net-
works are characterised by a very low connectance and the communities
observed have a very precise interpretation (as shown in the following
sections). If we set the threshold for positive reviews at βth, the proba-
bility to simultaneously observe positive reviews for the items (i, j) from
the same customer α is given by

P (V i,jα = 1) = p+
i,α p

+
j,α. (2.15)

Now, the algorithm follows exactly the same steps of the original pro-
cedure: from the probability that both items receive a positive review
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from the same customer (2.15) we calculate the distribution of common
good reviews. Although several methods are available in the literature,
we employ the False Discovery Rate procedure [41] to validate the pre-
viously calculated p-values, since it permits to have a stricter control on
the false positives. The entire procedure has been reviewed in Section
1.3.1 of the Introduction.

2.5 Datasets

The following datasets have been employed to test the proposed method-
ology.

• MovieLens 100k (ML): Bipartite network that collects 100,000 mo-
vies’ ratings. The website’s users are characterized by some in-
dividual features, such as age, job, sex, state and zipcode. For
the set of movies we have information on the release year, title
and genre. Each user can review a movie with a numerical score
β ∈ {1, 2, 3, 4, 5} according to her/his level of appreciation. We
consider as positive all reviews assigned a score greater than or
equal to βth = 3. The data has been downloaded from the reposi-
tory [138] while any additional information is provided in [53].

• Amazon: We collected three datasets involving different categories
of products. From [139] we downloaded the Musical Instruments
(MI) and Digital Music (DM) datasets, that respectively collect pur-
chases of musical instruments and CDs or vinyls (the latter had to
be further sampled due to its high dimensions). The data about
Smartphones (SM) and related products has instead been down-
loaded from [140]. For all of them, the possible numerical ratings
for each purchase are β ∈ {1, 2, 3, 4, 5}. As in the previous case, we
consider as positive all reviews that receive a score greater than or
equal to βth = 3.

• Anvur (AN) is the acronym for “Associazione Nazionale di Valu-
tazione del sistema Universitario e della Ricerca”, an Italian agency
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N NL NΓ E d + −
ML 2588 1645 943 100000 6.36 · 10−2 0.83 0.17
MI 2329 900 1429 10261 7.98 · 10−3 0.95 0.05
SM 16172 2256 13916 15817 5.04 · 10−4 0.73 0.27
DM 7000 2500 4500 36774 3.27 · 10−3 0.91 0.09
AN 1396 15 1381 14903 7.19 · 10−1

Table 1: Data description

that evaluates the quality of the Universities and research systems
and determines which journals are considered top journals (and
so the most influent) in any scientific area. For this application
we have downloaded the free dataset [141] regarding the journals’
classification in the scientific area of Economics and Statistics (Area
13). We then constructed the bipartite network of journals and sci-
entific areas, in which a link exists if the journal is considered a top
journal in the scientific area of interest. The two different scores
are indicated in the original table as β ∈ {green, red}. The first one
indicates that the journal is currently considered a top journal, the
second one instead indicates that the journal was considered a top
journal only until December 2017: all later publications will not re-
ceive the same classification.

A more detailed description of the datasets is provided in Table 1, where
d denotes the connectance of the networks, while the symbols + and −
indicate the percentage of positive and negative edges in each dataset
(when available).

2.6 Results

For each dataset we employ the procedure described in Section 2.2 to
construct the benchmark model. So we obtain a set of βmax probability
matrices, one for every rating level, collecting the probability to observe
the different ratings for each pair of nodes in the network.

Once the Lagrange multipliers’ values (~x ∗, ~y ∗) are obtained from the
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likelihood maximisation problem in equation (2.8), the expected quanti-
ties 〈kppi 〉, 〈k

pn
i 〉, 〈k

np
i 〉, 〈knni 〉 and 〈ci〉 across the ensemble can be analyti-

cally computed starting from their formulation in equations (2.13)–(2.14).
However for the following analysis, instead of the exact computation
of these topological quantities, we have considered the approximation
obtained simply replacing the terms m+

i,α and m−i,α in equations (2.13)–
(2.14) with their expected values p+

i,α and p−i,α. The same procedure has
been followed in [35, 36]. Moreover, again following the instructions
in [35] we have also identified a confidence region of two standard de-
viations around the average values. The comparison of observed and
expected quantities indicates whether these higher order network prop-
erties can be explained by lower order topological structures, i.e. the con-
straints imposed on nodes’ degrees, or require further investigation since
they represent an indication of some correlation patterns in the observed
network. Figures 9–13 show the results of this comparative analysis on
the MovieLens dataset. All the expected values have been computed av-
eraging the values of kppi , kpni , knpi , knni and ci over the number of nodes
having the same degree in the network. In order to provide a reliable
analysis of the proposed model, we compare the BiSCM performance
with some alternative ones: weighted configuration model (WCM), par-
tial bipartite score configuration model (PCM) and Erdös-Rényi random
graph (RG). The main difference among their construction relies in the
specification of the imposed constraints. However, we refer to Appendix
A for a full description of these alternative models. Red lines show the
average connectivity and number of checkerboards estimated by BiSCM
(top-left panels). Magenta, blue and green lines represent instead the
same quantities estimated by WCM, PCM and RG, respectively. In most
of the cases, the overall data trend is well captured by our ensemble.
For the case of kppi , some observations remain outside the two standard
deviations range, suggesting the possibility of extra correlations that can-
not be directly traced back to the degree sequence alone, despite the full
specification of scores’ distribution. The analysis of the other null mod-
els would lead to completely unreliable conclusions, since in most of the
cases, the induced ANND baseline is not able to capture the data over-
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all trend. This is true especially for the cases of WCM and RG. The best
performing alternative null model is the Partial BiSCM, that relies on the
same type of constraints upon which the BiSCM is based but imposed on
a single layer.

Due to the evident difference on the percentage of positive and nega-
tive observed reviews, a different type of analysis has been performed on
the remaining datasets, taking into consideration positive reviews only:
the BiSCM outperforms even in this case, as the Appendix shows.

2.6.1 Monopartite Communities

For three of our datasets we have reported the results of the projection
analysis. The ML and DM networks have been binarized and then pro-
jected on the products layer, i.e. the movies and musical products layers
respectively. The AN dataset has instead been projected onto both layers,
considering separately the two sets of edges representing “green” and
“red” links. All projection algorithms require to connect a pair of nodes
in the monopartite network whenever they share a common neighbor
in the bipartite graph. However, our projected edges have been further
validated using the procedure presented in [38] and explained in Section
2.4.2. In order to discuss the structure of the validated network, we apply
the Louvain modularity-based community detection algorithm [54] that
allows to detect clusters of nodes. However, this method is well known
to be order-dependent [55]. Therefore, to overcome this limitation, we
consider the outcome of several runs of the algorithm, obtained reshuf-
fling the initial order of the nodes, following the recipe of [38]. Inter-
estingly enough, this approach greatly increases the performance of the
original algorithm and behaves similarly to the Combo algorithm [56].
In the following discussion we consider the partition in communities de-
tected by the best performing algorithm between reshuffled Louvain and
Combo.
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Figure 9: Application of the method to the ML network. The panels report
ci versus k+i . The red line shows the expected values computed with our
method. Magenta, blue and green lines are instead the expected values un-
der WCM, PCM and Erdös-Rényi RG. The area of ±2 standard deviations
around the average value has been reproduced with dashed linestyle.

59



0 100 200 300 400 500
k +

i

0

100

200

300

400

500

kpp i

Movielens Degree VS ANND

0 100 200 300 400 500
k +

i

0

100

200

300

400

500

600

kpp i

Movielens Degree VS ANND - Weighted CM

0 100 200 300 400 500
k +

i

0

100

200

300

400

500

kpp i

Movielens Degree VS ANND - Partial CM

0 100 200 300 400 500
k +

i

0

100

200

300

400

500

kpp i

Movielens Degree VS ANND - Random Graph

Figure 10: Application of the method to the ML network. The panels report
kppi versus k+i . The red line shows the expected values computed with our
method. Magenta, blue and green lines are instead the expected values un-
der WCM, PCM and Erdös-Rényi RG. The area of ±2 standard deviations
around the average value has been reproduced with dashed linestyle.
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Figure 11: Application of the method to the ML network. The panels report
kpni versus k+i . The red line shows the expected values computed with our
method. Magenta, blue and green lines are instead the expected values un-
der WCM, PCM and Erdös-Rényi RG. The area of ±2 standard deviations
around the average value has been reproduced with dashed linestyle.
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Figure 12: Application of the method to the ML network. The panels report
knpi versus k−i . The red line shows the expected values computed with our
method. Magenta, blue and green lines are instead the expected values un-
der WCM, PCM and Erdös-Rényi RG. The area of ±2 standard deviations
around the average value has been reproduced with dashed linestyle.
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Figure 13: Application of the method to the ML network. The panels report
knni versus k−i . The red line shows the expected values computed with our
method. Magenta, blue and green lines are instead the expected values un-
der WCM, PCM and Erdös-Rényi RG. The area of ±2 standard deviations
around the average value has been reproduced with dashed linestyle.
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MovieLens

The partition in communities (obtained with the reshuffled Louvain al-
gorithm, with a modularity of 0.451 and approximately 0.2% higher than
the analogous Combo value) does not follow any genre-based division,
as previously observed in [38], but rather identifies some characteris-
tics shared by the movies’ audience. The result of the community de-
tection procedure is shown in Figure 14. Our method is able to de-
tect movies released in 1996/97 the year before the survey (in orange),
such as “Mission Impossible”, “Independence Day”, “Donnie Brasco”.
So this group of movies may be characterized by the curiosity of users
towards new releases. A second group collects family movies (as they
were called in [38]) , including “Cinderella”, “101 Dalmatians”, “Home
Alone” or “Mrs Doubtfire” (in green). In the blue community we find
more “adult” movies, as the “Alien” saga, the episodes of “Die Hard”,
“Escape from New York”, “Judge Dredd”, ”Conan the Barbarian”, as
well as “Terminator” episodes, and some westerns like “The Good, the
Bad and the Ugly” and “Young guns”. In this block we have also cult mo-
vies, such as “Blade Runner”, “Star Wars”, “Back to the Future”. In the
lime community we find horror titles, such as “Tales From the Crypt”
episodes, “A Nightmare on Elm street” and “Bram Stoker’s Dracula”.
The red community groups together Europen production movies (“Cin-
ema Paradiso”, “Mediterraneo”, “Four Weddings and a Funeral”, “Jean
de Florette”, “Como agua para chocolate”), but also US Independent pro-
duction (as “Raising Arizona”, “Clerks” or “Night on Earth”). Movies
inspired by books or theatrical plays (“Emma”, “Richard III”, “Sense
and Sensibility”, “Othello”) can be found in the pink community. In
the last relevant block we find classical Hollywood movies (in yellow)
such as “Casablanca”, “Ben Hur”, “Once upon a time in America”, “Taxi
Driver”. Interestingly, this group also collects Hitchcock’s filmography
(“Vertigo”, “Psycho”, “Rebecca”, “Rear Window”). Some smaller com-
munities have however a very clear and defined characterization. For
instance we have the community of all Wallace&Gromit short animation
movies or the group of French production dramas (in magenta). Our
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Figure 14: Graphical representation of the most numerous communities for
ML networks. After the validation procedure, a standard modularity-based
community detection algorithm is performed and the communities are here
represented in different colors.

results are in substantial agreement with those of [38], but for the differ-
ent connectance values of the BiCM- and the BiSCM-induced projection
networks. Such behaviour is not surprising, because of the different con-
straints imposed by the two models. Indeed the BiSCM fixes the degree
sequence for each rating in the bipartite network, while the BiCM only
enforces the degree sequence of positive ratings (i.e. merging the infor-
mation of 3, 4 and 5 stars). Therefore, while the former is more restric-
tive, the latter allows for greater fluctuations. This effect can be observed
in the connectance of the validated projections, that is 0.87% for BiSCM
against a value of 1.17% for the BiCM.

Digital Music

With respect to the previous ML case, here we obtain smaller and more
precise groups of artists. In this case, the communities have been de-
tected via the Combo algorithm and the final configuration has a mod-
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ularity 0.874, approximately 0.001% higher than the reshuffled Louvain
best partition value. For the DM network, each community reveals a
specific genre or combination of genres. A pictorial representation of
the most numerous communities of the validated network is provided in
Figure 15.

We have the small light green community with two classic rock En-
glish bands, both of them characterised by a fusion with classical ar-
rangements (Moody Blues and Electric Light Orchestra). Different clus-
ters collect different shades of rock: the hard rock/heavy metal com-
munity is in blue (Loverboy, Alice Cooper, Van Halen, Scorpions, Deep
Purple, Lynyrd Skynyrd) while the progressive rock is in green (Premi-
ata Forneria Marconi, Soft Machine) and experimental rock in magenta.
In dark violet we find the grunge rock and related similar tendencies,
such as Alice in Chains, Pearl Jam, Soundgarden, as well as Red Hot
Chilli Peppers, Iggy and the Stooges and the MC5. In indian red there
is a community including Elton John, Billy Joel, the Genesis as well as
Phil Collins and Peter Gabriel in their solo career. The sea green and in-
digo groups represent respectively female R&B singers (Whitney Hous-
ton, Aretha Franklin, Alicia Keys, Nelly Furtado) and female folk/pop
ones (Alanis Morisette, Anastacia, Vanessa Carlton, Dido). The rap genre
is divided between east coast and west coast hip hop, gangsta rap and
a mixed community with the most famous artists (Eminem, Jay Z, 2
Pac, 50 Cent, D12), respectively depicted in light blue, dark magenta,
lime and yellow. The isolated community in violet collects jazz con-
tributors (Thelonious Monk, Miles Davis, Cannonball Adderley, Charles
Mingus, Sonny Rollins), while the red one contains almost exclusively
James Brown albums. A folk/country community (almost exclusively
composed by John Denver and Gordon Lightfoot albums) is represented
in gold. We finally have the grey and white groups with indie rock artists
(Radiohead, Bon Iver, Of Monsters and Men) and the R&B singers and
songwriters in pink (Marvin Gaye, Johnny Gill, Luther Vandross). In or-
ange there is the community of folk/rock/ blues, including Bob Dylan,
Jimi Hendrix, Eric Clapton, the Who, Paul Simon but also the subsequent
Elvis Costello and Bruce Springsteen. It is interesting to find here even
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Figure 15: Graphical representation of the most numerous communities for
DM networks. After the validation procedure, a standard modularity-based
community detection algorithm is performed and the communities are here
represented in different colors.

Robert Johnson, the legendary bluesman, who was a source of inspira-
tion for the artists in this community. The community of soul-funk (the
Jackson 5, Barry White, Stevie Wonder, the Commodores, the Parliament,
Sly and the Family Stone, Prince, the Isley Brothers) is in cyan. It is in-
teresting to note that some Jamiroquai albums have been detected in this
latter community, since several experts compared the first production of
this artist to Stevie Wonder [142]. Some smaller communities have not
been included in the plot due to their low number of participants. How-
ever their interpretation is still clear, since they generally collect single
artists (Leonard Cohen) or identify a very specific music genre (such as
the group of white rappers Insane Clown Posse and Anybody Killa of
genre horrorcore).
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The case of categorical scores

As previously highlighted, in this section we present one of the possi-
ble extensions of the methodology. More specifically, we show an ap-
plication to the case in which the distinct scores represent different re-
alizations of a nominal variable. In this case, we use the Anvur dataset
presented in the Section 2.5, where the categorical scores represent the
classification of journals in the considered scientific areas, i.e. currently
top journals or top journals only until December 2017.

First of all, we construct the benchmark model following the proce-
dure explained in Section 2.2. By doing so, we obtain two probability
matrices, one for each β, representing the probability that each journal is
currently considered a top journal in each scientific sector or it is consid-
ered a top journal only until December 2017. Then, the analysis proceeds
differently with respect to the previous cases. Indeed, due to the impos-
sibility to fix a threshold beta given the nature of the analysed scores,
we validate the projected networks using the two probability matrices
as separate benchmarks. Through the validation on the scientific sec-
tors layer we are able to understand which groups of subjects share a
significant number of common neighbours, i.e. they both consider the
same journals as relevant for the topic of interest. The validation on the
other layer instead identifies the groups of journals that are considered
top journals (or not) for the same scientific area in the Economics and
Statistics field.

Figure 16 shows the communities identified after the validation on
the scientific sectors layer, using the benchmark model obtained with
β = green. However, we got the same result with the other benchmark
model, with β = red. Clearly the three disconnected communities rep-
resent the division in different research topics: the sea green community
identifies the two macro areas 13/A and 13/C, respectively correspond-
ing to Economics and Economic History; the other two pink and orange
groups instead represent the sectors 13/B and 13/D, respectively corre-
sponding to the research fields of Business Administration and Statistics.
Conversely, the validation on the other layer does not recognize any sig-
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Figure 16: Graphical representation of the communities identified in the An-
vur dataset. The validation procedure has been performed on the scientific
sectors layer.

nificant link between pairs of journals, with both the considered bench-
marks. This result is not so surprising, since a similar behaviour was pre-
viously observed when projecting the World Trade Web [38, 52]: when
the rectangularity of the bipartite network, i.e. the ratio between the two
dimensions of the layers, is particularly high, the most numerous layer
has a lower variability due to the smaller dimension of the support of the
Poisson-Binomial distribution. Moreover, since the effective significance
threshold of FDR is even reduced by the total number of nodes’ pairs
on the layer, the possibility of finding a significant p-value is further re-
duced.

2.7 Discussion and conclusions

In everyday web experience we encounter many different examples of
online review platforms: from Amazon customer ratings, to Tripadvisor
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or Anobii, just to mention the most renowned ones. All these services
provide an incredible source of information: indeed they are currently
used to train recommendation systems, in order to show possible items’
commercials that resemble customers’ taste [44, 57, 58, 60, 61, 62]. Never-
theless, to the best of our knowledge, a proper method to use as a bench-
mark model for this kind of systems is not available in the literature.

In order to fill this gap, we follow the research line of entropy- based
null models [33, 34, 35] that provides an unbiased framework. In the
case of score networks, the main difficulty resides in considering mutu-
ally exclusive outputs for each entry of the biadjacency matrix, i.e. hav-
ing different possible scores with different probabilities. Our approach
resembles the one presented in [37] for the reciprocal configuration mo-
del. In that case, four mutually exclusive possibilities were observable
for every pair of nodes: no link, an exclusively outgoing link, an exclu-
sively ingoing link or a reciprocal link. Following this track, we were
able to extend the Configuration Model framework to rating networks.
We have shown that our method can be applied to many other types of
networks, such as signed networks or categorical bipartite network.

Once the randomization procedure is complete, many types of analy-
sis are possible. We first show that the obtained benchmark ensemble is
able to capture some non trivial network information, like the abundance
of topological patterns such as the extensions of the ANND and bipar-
tite motifs to rating networks. Then, another application was proposed:
the model was employed as the benchmark for the validation procedure
presented in [38], in order to filter the information contained in one of
the two layers. Otherwise stated, if the number of edges’ co-occurences
is significantly higher than the null model expected value, then a link
between the involved nodes is validated. In this sense, we compare the
real network with the expected value of the BiSCM randomization: the
disagreements are signals of non-trivial similarities among nodes on the
same layer and therefore a link between them is included in the projec-
tion. The result of such a procedure is a monopartite undirected network
describing nodes belonging to the same layer performing similarly in the
bipartite system. In order to have a clear understanding of the structure
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of the projected network, we run the Louvain community detection algo-
rithm on it. Analysing the Amazon Digital Music dataset [139] we were
able to uncover communities of music albums based on customers taste.
Analysing the dataset of [138] it was instead possible to refine the com-
munity detection of [38]: indeed our model is more constrained than the
one proposed there and introduces more filters than the simple BiCM
after the binarization. Finally, we provide an example of possible ap-
plication to the case of categorical networks. In this case, the standard
division of research areas has been recovered just observing the number
of top journals they share.

Therefore, the knowledge of the success probability, for every score
level, for every pair of nodes in the system, may provide significant in-
sights regarding customers’ purchase habits and preferences. Moreover,
our methodology recovers these values unbiasedly and with no a-priori
information about the involved users, but simply observing the topology
of the network itself. Therefore, it may be suitable for different future ap-
plications. As an example, in the last years entropy-based configuration
models [33, 34, 35] were successfully used for link prediction [59]. In-
deed, a similar approach can be addressed to tackle the problem of pre-
dicting links in a review context using BiSCM, taking advantage of the
general properties of Configuration Models. We leave this analysis for
future developments of the research.
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Chapter 3

Extracting significant
signals of news
consumption from social
networks: the case of
Twitter in the Italian
political elections

This Chapter is a joint work with my supervisors Prof. Guido Caldarelli and

Dr. Fabio Saracco, and Prof. Renaud Lambiotte, my supervisor during the three

months I spent as a vising student at the University of Oxford. The full text of the

article is also available from the arXiv repository, preprint number 1901.07933.
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Abstract

According to the Eurobarometer report about EU media use of May 2018, the

number of European citizens who consult on-line social networks for accessing

information is considerably increasing. In this work we analyze approximately

106 tweets exchanged during the last Italian elections. By using an entropy-

based null model discounting the activity of users, we first identify potential

political alliances within the group of verified accounts: if two verified users

are retweeted more than expected by the non-verified ones, they are likely to

be related. Then, we derive the users’ affiliation to a coalition measuring the

polarization of unverified accounts. Finally, we study the bipartite directed rep-

resentation of the tweets and retweets network, in which tweets and users are

collected on the two layers. Users with the highest out-degree identify the most

popular ones, whereas highest out-degree posts are the most “viral”. We iden-

tify significant content spreaders by statistically validating the connections that

cannot be explained by users’ tweeting activity and posts’ virality by using an

entropy-based null model as benchmark. The analysis of the directed network

of validated retweets reveals signals of the alliances formed after the elections,

highlighting commonalities of interests before the event of the national elections.
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3.1 Introduction

The phenomenon of diffusion in disordered media is a standard prob-
lem in Statistical Physics [64]: it has been described following different
approaches, see for example the studies dealing with invasion [65] or
percolation [66]. Moreover, in the recent years, the interconnection be-
tween individuals in the society formed a different non-regular lattice on
which news and gossip propagate from one person to another one [67].
Indeed, the way Europeans have approached news and information has
drastically changed: according to the last Eurobarometer report about
EU media use [68], printed press is consulted everyday by 28% of the
EU citizens, following a decreasing trend, while it is never consulted by
approximately 20% of them. On the other hand, the daily access to the
Internet increased up to the 65% of the population (starting from a 45%
in 2010) and the increase in the percentage of citizens using everyday on-
line social network for accessing information is even more striking, going
from 18% in 2010 to 42% in 2017. This movement towards new technolo-
gies, beside being different from country to country (for instance, in Bel-
gium the everyday access to the web concerns the 72% of the population
against the 53% of Italy), is paradoxically in opposition to a general dis-
trust towards new media: only 20% of the population declared to trust
the contents available in on-line social networks, 34% trusts the Internet
in general, while radio (59%) and TV (51%) are considered more reliable.

In order to provide a global understanding of the structure and dy-
namic of these new media that are directly affecting our daily life, stud-
ies based on complex networks [8, 109] tackled different aspects of these
phenomena. Different works analyzed the raising of grass-root demo-
cratic protests as Arab springs [69], Occupy Wall Street [70] or the Span-
ish “Indignados” [71]. Analogously, the dynamics of the electoral cam-
paign online media has a relatively long literature, focusing, from time to
time, on USA [72, 73, 74, 75, 76, 77, 78], Australia [79, 80], Norway [81],
Spain [82], Italy [83, 84, 85], France [86] and UK [87, 88]. In general,
the shift from mediated to disintermediated news consumption has led
to a range of documented phenomena: users tend to focus on informa-
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tion reinforcing their opinion (this is the phenomenon of confirmation
bias [89, 90, 91, 92, 93]) and to group in clusters of people with similar
viewpoints, forming the so called echo chambers [90, 91, 92, 93, 94, 95].
The different dynamics that the public debate follows on social-network
platforms is also remarkable: the time evolution of viral non-verified
contents is more persistent than the verified equivalent [91] and “neg-
ative” messages spread faster than “positive” ones, even if the latter
reach on average a wider audience [96]. Moreover, the analysis of time
evolution of the activities in social platforms helps to predict the trend
of retweets [97], the interactions of a single user with her/his neigh-
bours [98] and to detect future developments of information campaign
at an early stage [99] or “astroturf” campaigns [86].

Extracting information from on-line social networks is often compli-
cated by their complex, intertwined organization and their strong hetero-
geneity. Thus, salient features can be identified as significant deviations
from carefully-constructed null models. The instructions given in Chap-
ter 1, Subsection 1.2.4, provide a general framework for the analysis of
real-world networks [105, 106], since they allow to build an unbiased
entropy-based null-model following the information theory derivation
of statistical physics [100]. It is probably worth stressing again the cru-
cial role played by the constraints in the above framework: in order to
provide a reliable benchmark, the constraints should represent an im-
portant property of the system under analysis. Depending on the ap-
plication, they may represent either the total number of links, as in the
Erdös-Rényi null model, or the degree sequence [33, 34, 35] (both these
cases have been carefully described in Subsection 1.2.4) or other topolog-
ical properties for the real network of interest [37, 101, 102, 103, 104, 133].

In the present work, we analyze approximately 106 tweets exchanged
during the last Italian elections held in March 2018. Using entropy-based
null-models, we are able to detect non-trivial patterns in the diffusion of
viral contents and different diffusion strategies depending on the polar-
ization of users. We employ a first undirected representation of the net-
work of retweets by distinguishing between certified and non-certified
users. The former group is predominantly composed of celebrities and
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official accounts, including politicians, newspapers, etc. We then derive
the single user affiliations to a political alliance, first identifying groups
of verified users by their interaction with the opposite layer, following
the recipe of [38, 50]. Indeed, if two verified users are retweeted more
than expected by non-verified ones, they are likely to be related. In other
words, we exploit the way normal accounts consume the news on the
social networks, in order to detect groups of strongly connected certified
users. We analyse the community organisation of the resulting network
and measure the polarization of unverified users: as observed in other
studies [89, 90, 91, 92, 93, 94, 95, 107, 108], people tend to interact just
with a single community, strongly polarizing their opinions. Indeed, we
confirm this observation in the Italian elections of 2018. Finally, we study
a bipartite and directed representation of the users’ tweets and retweets
network, in order to identify significant news consumers. In this context,
we detect both the most popular and most significant content spread-
ers for the different communities. In the former case, we focus only on
the users with the highest out-degree, in the latter case we statistically
validate the directed connections that cannot be simply explained by the
“virality” of the tweets and the tweet/retweet activity of the users. We
indeed highlight different aspects of the diffusion of information on the
network of users. This last validation is an extension of the approach
of [38, 50] to direct bipartite networks.

The rest of the Chapter is structured as follows: in Section 3.2 we
first introduce the dataset, describing how the data has been gathered
and some of the available information; then we describe the employed
network-based representations, as well as the necessary methods to anal-
yse the considered networks in Section 3.3. The outcomes of the different
analyses are described in Section 3.4, whereas we summarize research
questions, results and this work’s contribution in the final Section 3.5.
Refer to Appendix B for a detailed description of the ensemble construc-
tion method.
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3.2 Dataset

By means of the Twitter API, we have downloaded a sample of all tweets
posted on Twitter from January 28 to March 19, 2018. The query has
been performed with the only requirement that each post must contain
at least one of a set of elections-related keywords in Italian language,
such as “elezioni”, “elezioni2018”, “4marzo”, “4marzo2018”, meaning
“elections”, “elections2018”, “4march”, “4march2018” respectively. This
process returned approximately 1 million tweets.

Each of them provides several information regarding the tweet or its
author, such as: a unique tweet ID; the date and time in which the post
was created; the first 140 characters of the text; the unique identifier of
the user who published the post, as well as her/his screen name, account
name and the description that appears in her/his profile page; a Boolean
variable indicating whether the user’s account has been certified as au-
thentic; the geographical coordinates of the place where the post was
published, when available due to users’ privacy restrictions; the number
of replies and retweets the post has received; a list of entities contained in
the post, such as hashtags, url addresses, users mentions, symbols, me-
dia; the language used in the text; a Boolean variable indicating whether
the post contains possibly sensitive content; a Boolean variable indicat-
ing whether the tweet is actually a retweet of a previous post. Notice
that, in case we are dealing with a retweet, the same material is available
for the original tweet as well. Moreover, due to the structure of the data
provided by the API, it is not possible to identify chains of sequential
retweets. For instance, if A posts something, then B retweets from A and
C retweets from B’s retweet, the data simply indicates that both B and C
have retweeted some content from the initial user A.

3.3 General methodology for the analysis

The outline of our analysis is split into three major steps: in the first part
we focus on the identification of some groups of verified accounts: us-
ing tools borrowed from network analysis we identify four communities
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of strongly connected accounts and we consider them as “labels” for the
verified users included in the data. Then, we aim at extending the as-
signment of these categories also to the group of non-verified accounts.
In order to do so, we propose a possible definition of polarization index
and we compute it for all the non-certified users, in order to determine
their affiliation. Finally, we propose a novel representation of the tweet-
ing and retweeting activity as a bipartite and directed network. Using
this framework, we are able to construct a suitable null model for this
graph and employ it to detect the most active users in terms of interac-
tions with the others. Each of the previous steps will be further explained
in the following Subsections.

3.3.1 Classification of verified users

In this paragraph we describe the methods employed in order to identify
groups of strongly connected verified accounts. Once detected, we try to
interpret those communities and we consider them as “labels” to classify
the involved users.

Bipartite network of verified and non-verified users

As a first step, we have split the sample of available and Italian-speaking
users in two categories, the groups of verified and non-verified users. Each
account can request to be verified by the system: by doing so, Twitter
guarantees that the account is authentic. This kind of procedure is, in
general, applied to all those people who are considered of public interest.
Therefore, we expect the accounts of famous people, politicians, news-
papers, TV channels, radio channels etc. to be included into the set of
verified users, while all the remaining users to belong to the other set.

Using the notation introduced in Chapter 1, we denote with T =

{Jan28, . . . , Mar19} the set of days in our observation period and we in-
dicate with Lt and Γt respectively the sets

Lt = {i : i is an active, verified user during day t}
Γt = {α : α is an active, non-verified user during day t}
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for t ∈ T . Therefore Lt and Γt represent the sets of unique users, re-
spectively verified and non-verified, who posted some contents (tweets
and/or retweets) on Twitter during day t. Given this division, we con-
struct a first bipartite network from the data, the network of retweets
between verified and non-verified users during the whole period G∗Bi =

(L,Γ, EBi), with

L =
⋃
t∈T

Lt, Γ =
⋃
t∈T

Γt

and EBi ⊆ L × Γ. Thus, the network is built with the sets of verified and
non-verified users who were active during the considered time period.

By definition of bipartite networks, with this representation we ex-
clude all the cases in which two certified (or non-certified) users retweet
each other. We do so since we are interested in exploiting the way nor-
mal people consume the news to detect connected groups of certified
users. Moreover, notice that in this case the edge (i, α) ∈ EBi indicates
that either i or α has retweeted the other’s content at least once during the
considered time period, we do not take into account the specific number
of retweets observed between a couple of users. Notice also that at this
step we do not consider the direction of the edges, therefore in principle
we do not know who is the author of the post and who is the second one
who shares the content. However, the activity of the verified users (es-
pecially political figures) is often limited to posting content on the social
media, while the actions of retweeting, replying and sharing are mostly
due to their audience, i.e. non-verified accounts, as shown in Figure 17
for the cases of tweets and retweets.

We denote with M∗ = {m∗i,α : i ∈ L and α ∈ Γ} the biadjacency
matrix of the real network G∗Bi where its entriesm∗i,α are equal to 1 if there
exists at least one retweet between nodes i and α and 0 otherwise. The
final number of nodes and edges in the network is specified in Table 2.
As introduced in Section 3.1, this bipartite network of retweets between
verified and non-verified users is used to detect political alliances among
the verified accounts, as well as to identify the affiliation of non-verified
users towards such a division.
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NL NΓ E 〈k〉 kmin kmax d
Retweets 866 44058 102508 4.56 1 5862 0.003

Table 2: Some quantities in the network of retweets between verified and
non-verified users: number of nodes per layer, total number of edges
(i.e. retweets), average degree, minimum and maximum value of the ob-
served degrees, connectance of the network.

Identifying connected groups of certified users

In order to understand whether the audience is polarized towards the
source of information that better resembles their ideology, we first need
to identify groups of connected users that (potentially) represent the cur-
rent Italian political scenario. With this purpose in mind, we use the
bipartite network G∗Bi described in the previous paragraph and we first
build a null model for this observed graph using the methodology ex-
plained in Section 1.2.4 of Chapter 1. Essentially, we build a null model
for this kind of networks using the degree sequence of both layers as
constraints of the problem. Refer to [36] for a detailed summary of the
method.

Once the bipartite network of interactions is built, we perform a pro-
jection procedure on the verified users layer. In other words, we con-
struct a new monopartite network of verified users in which an edge be-
tween two users exists whenever they have interacted at least once with
the same non-verified account. This procedure is analogous to the steps
explained in Chapter 1, Section 1.3.1.

However, one drawback of this naı̈ve method is that it often gener-
ates an extremely connected projection, expecially with very rectangular
graphs, i.e. graphs for which the dimension of the layer upon which we
are projecting is much smaller compared to the dimension of the other
layer, as in our case. For this reason, we employ the statistical procedure
introduced in Chapter 1, Section 1.3.1 with the purpose of establishing
the statistical significance of the number of common neighbours shared
by a pair of nodes. The existance of each link is considered as a separate
null hypothesis to test. Whenever two users share a number of common
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neighbours that is significantly higher than the expected value of the null
model, the hypothesis is rejected [38]. At the end of the validation pro-
cedure, only those pairs of users that share a significantly high number of
interactions with the same set of uncertified nodes will be connected in
the monopartite network of certified accounts.

Given the projected and validated network of retweets, we have per-
formed a reshuffled community detection procedure, i.e. the Louvain
algorithm [54] runs several times with a rearranged nodes’ ordering and
the partition with the highest modularity is selected; in this way we over-
come the original algorithm’s order dependence [55]. With this proce-
dure we identify ten groups of non-isolated nodes. However, for the fol-
lowing analyses we focus on a subset of four of them, being those with
a remarkable number of nodes (more than a hundred) and a non-trivial
interpretation.

It is worth noting that, contrarily to the majority of studies on the
same subject, the identification of clusters among verified users has not
been studied simply attaching a suitable label to each unit. On the con-
trary, users in the same community share a significantly high number
of non-verified users that have retweeted their content. Indeed, a vali-
dated edge between users i and j indicates that a high number of non-
verified accounts who shared contents posted by i has also retweeted
posts published by j and therefore they are considered similar by a ma-
jority of their audience and followers. Therefore, in our application, the
behaviour of the non-certified accounts is the driver for the division in
clusters.

3.3.2 Classification of non-verified users

Once a division in communities for the verified users has been detected,
we try to extend the same division also to the group of non-verified users.
In the following paragraphs we explain the procedures employed to per-
form this kind of analysis.
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Polarization index

Once identified four groups of verified users, we want to analyse how
the remaining accounts interact with them. The goal is to study whether
the audience is polarized towards the source of information that better
resembles their ideology or uniformly shares contents from accounts of
different political orientation.
Indicate with Cc for c = 1, 2, 3, 4 the sets of verified users identified at the
end of the phase above. Also indicate with

Vα = {i : i ∈ L and m∗i,α = 1} (3.1)

the set of neighbours of the non-verified user α ∈ Γ in the bipartite net-
work of verified/unverified users, i.e. the set of verified users node α has
interacted with. The polarisation index for α is

ρα = max({Iα,c : c = 1, 2, 3, 4}) for α ∈ Γ (3.2)

with

Iα,c =
|Cc ∩ Vα|
|Vα|

for c = 1, 2, 3, 4. (3.3)

The term Iα,c denotes the fraction of α’s interactions towards community
c, i.e. the ratio of α’s neighbours belonging to community c. This index
has the following characteristics: is bounded in [0, 1], therefore ρα = 0

means that no interaction has been observed with the four groups; values
of ρα close to 1/4 indicate that user α equally interacts with the four
clusters; for all the other values, the greater ρα the higher the inequality
in the number of interactions with the four communities (i.e. ρα close to
1 means that user α almost always has interacted with the same group).

Once a possible definition of polarization index has been provided,
the goal is to employ it to extend the division in community also to the set
of non-verified users. In other words, we “assign” to each non-verified
user the label of the community with whom she/he interacted the most.

3.3.3 Influence analysis

In this Section we first propose a bipartite and directed representation of
the tweet/retweet network. Then this representation will be employed to
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project and validate the network onto the users layer, in order to identify
pairs of users that significantly interact with the same tweets. Finally, we
analyse the subgraphs made by the previously identified communities
and isolate the most-retweeting and most-retweeted nodes.

Directed network of information flow

Consider the entire set of available users U = L∪Γ who tweeted and/or
retweeted something during the overall time period. Then, consider the
set of posts published on Twitter during T

P =
⋃
t∈T

Pt with Pt = {p : p is a tweet posted on Twitter during t}

and the sets of all tweets T ⊆ U × P and retweets R ⊆ P × U observed
on the social network during T , i.e.

T =
⋃
t∈T
Tt andR =

⋃
t∈T
Rt

where Tt andRt are

Tt = {(i, p) : user i has tweeted post p during t}
Rt = {(p, j) : user j has retweeted post p during t}

respectively the sets of tweets and retweets observed in each single day.
The number of nodes in the two sets U and P will be respectively indi-
cated with the terms NU and NP . A directed edge (i, p) ∈ T indicates
that user i is the original creator of post p, while an edge on the opposite
direction (p, j) ∈ R shows that j has retweeted tweet p at least one time
during the elections days T . Such a situation is shown in the left panel
of Figure 18. In the picture, i is a user who publishes two posts p and
q during the election days; user j retweets post p and user k retweets
post q. Notice that, as already highlighted in Section 3.2, we cannot keep
track of chains of sequential retweets. Therefore, the edge (q, k) does not
necessarily mean that k has retweeted directly from i’s post: it is possi-
ble (less likely though) that k has retweeted post q from one of user i’s
retweets. Another particular case is self-retweet: Twitter allows the users
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to retweet their own posts, either directly from the original tweet or from
somebody else’s retweet. With this network representation, these cases
can be illustrated as in right panel of Figure 18, where the retweet by i
itself is indicated with the red arrow. However, this type of edges have
been excluded from the analysis, since they represent a very small per-
centage of the overall number of links and we are rather interested in
how people from the same political coalition interact with each other to
boost the visibility of their opinion.

This bipartite and directed network G∗BiD can be represented by means
of two biadjacency matrices, one for the tweets T∗ = {t∗i,p : i ∈ U and p ∈
P} and the other one for the retweets R∗ = {r∗p,j : p ∈ P and j ∈ U}. Es-
sentially t∗i,p = 1 if user i has tweeted post p and 0 otherwise and r∗p,j = 1

whether or not at least one retweet to post p by user j is observed during
T . As previously highlighted, the bipartite, directed network of tweet-
ing and retweeting activity will be employed in the following Sections in
order to detect the significant spreaders of Twitter viral contents.

Bipartite Directed Configuration Model

For the current analysis we are interested in determining which are the
most pervasive tweet flows, discounting both the activity of users and
the virality of tweets. Otherwise stated, we want to measure which are
the non-trivial patterns observed in the network, not explained by the
degree sequence for both layers, and describe the structure of the actual
system. Therefore, let us represent the graph of tweeting and retweeting
activity as a bipartite and directed network G∗BiD, in which the two layers
collect the available users and tweets. Its non-symmetric adjacency ma-
trix D has the following structure

D =

(
0NU×NU T∗NU×NP
R∗NP×NU 0NP×NP

)
, (3.4)

where T∗ is the sub-matrix related to the tweets and R∗ the one for
retweets. A user i tweeting post p is represented by the entry t∗i,p = 1

of matrix T∗. Analogously, the event of user j retweeting post p is repre-
sented by the entry r∗p,j = 1 of the matrix R∗.
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The topology of this kind of graphs has been previously analyzed
in [104] within the framework of a graph with core-perifery structure.
However, a difference with the current case is that we have set the diag-
onal blocks equal to zero, because we cannot observe directed edges con-
necting solely users or tweets. In [104] the authors provide an entropy-
base method to develop an unbiased null-model for this kind of graphs.
The entire procedure is provided in Appendix B, here we just summarize
the main steps. Let us use the following terms

kouti (T∗) =
∑
p∈P

t∗i,p and kini (R∗) =
∑
p∈P

r∗p,i

to indicate respectively the out-going degree of users i, i.e. the number
of her/his tweets that have been retweeted at least once, and her/his in-
going degree, i.e. the number of posts that user i retweeted. Analogously,
the number of retweets of post p is

koutp (R∗) =
∑
i∈U

r∗p,i

while the number of authors of a generic post p is trivially

kinp (T∗) =
∑
i∈U

t∗i,p = 1

for all p ∈ P , since each post cannot have more than one author.
Following the same steps of the previous section [105, 106] a null

model for a bipartite directed network can be built simply considering
the ensemble of bipartite directed graphs GBiD with the same number of
nodes per layer as G∗BiD and a probability distribution upon it. It can be
shown that the probability distribution over the ensemble factorizes in
two independent terms, both analogous to the BiCM, one related to the
network of tweets and another one for the retweets, as follows

P (GBiD|~z, ~ζ;~z ′, ~ζ ′)

=

[∏
i,p

(qi,p)
ti,p(1− qi,p)1−ti,p

]
·

[∏
i′,p′

(q′p′,i′)
rp′,i′ (1− q′p′,i′)1−rp′,i′

]
(3.5)
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where tip and rp′i′ are the entries of the biadjacency matrices of the net-
works of tweets and retweets while

qi,p =
zi ζp

1 + zi ζp
and q′p′,i′ =

z′i′ζ
′
p′

1 + z′i′ζ
′
p′

are the probability of existance for the entries ti,p and rp′,i′ , respectively.
Notice that (~z, ~ζ) and (~z ′, ~ζ ′) are theNU - andNP -dimensioned Lagrange
multipliers of the model and their numerical values can be determined
from the data, choosing the values (~z∗, ~ζ∗) and ((~z ′)∗, (~ζ ′)∗) that solve
the systems in equations (B.4) and (B.5) or equivalently that maximize
the likelihood equations (B.3). However, because of the fact that each
post has just one author, the Lagrangian multipliers of the tweets for T

are invariant for each node, i.e.

qi,p =
z∗i ζ

∗

1 + z∗i ζ
∗ , ∀p ∈ P.

Thus, imposing that the in-degree for all posts is always equal to 1, we
get that

qi,p =
kouti (T∗)

NP
, ∀p ∈ P. (3.6)

meaning that the probability that user i tweets post p simply depends on
the number of other tweets posted by the same user. Let us remark that,
due to the grand-canonical construction, this randomization also consid-
ers “non-physical” configuration, since the equality 〈kinp 〉 = 1∀p ∈ P

is enforced on average overall the ensemble and not pointwise for each
configuration. The target of providing a more stringent null-model for
tweeting will be the focus of future research. Moreover, in principle
we could have considered the bipartite reciprocated configuration mo-
del presented in [104] but since we explicitly neglected the case of auto-
retweet, there is no difference between the original model and the one
employed here.

Validation of the projected directed network

The bipartite and directed network introduced in Section 3.3.3 is a sim-
ple, bipartite and directed representation of the tweet and retweet rela-
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tions among the set of available users. Essentially, a directed edge (i, p)

between user i and post p represents user i tweeting post p on the social
network for the first time. By constrast, a directed edge (p, j) with j 6= i

denotes a retweet of user j to the same post p.
In this Section we aim at extending the projection and validation pro-

cedure proposed in the Introdiction, Section 1.3.1, to the case of bipartite
and directed networks. The extension is quite straightforward: the re-
sulting monopartite network has the set of all users as nodes, whereas
the set of directed potential edges is simply characterized by the set of
pairs among all users. Then, the significance of each potential edge is
evaluated.

Consider the potential directed edge (i, j). As in the original mecha-
nism, the quantity

V ∗i,j =
∑
p∈P

t∗i,pr
∗
p,j

simply counts the number of i’s tweets that have been retweeted by j. In
other words, V ∗i,j identifies the number of times j has acted as a spreader
for i, retweeting content posted by her/him. Note that, in general, Vi,j 6=
Vj,i. Using the null model’s expected value of this quantity we are able
to infer the statistical significance of the tight between i and j. Since the
probabilities per link are independent, the expected number of retweets
from j to i’s posts is given by the following expression

〈Vi,j〉 =
∑
p∈P

qi,p q
′
p,j (3.7)

that is the parameter of the Poisson-Binomial random variable Vi,j [39,
40]. Indeed, each Vi,j is the sum of independent and Bernoulli-distributed
variables, each of them with probability distribution

P (t∗i,pr
∗
p,j = 1) = qi,p q

′
p,j

P (t∗i,pr
∗
p,j = 0) = 1− qi,p q′p,j ∀p ∈ P.

Notice that the previous term is the probability that j retweets some post
p published by i. Due to the simplification of (3.6) the expected number
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of V-motifs (3.7) can be rewritten as

〈Vi,j〉 =
kouti (T∗)

NP

∑
p∈P

q′p,j =
kouti (T∗)kinj (R∗)

NP
.

Therefore, the statistical significance of each directed edge (i, j) can be
tested computing the following quantity

p-value(V ∗i,j) =
∑

Vi,j≥V ∗i,j

fPB(Vi,j)

for all i, j ∈ P , that simply implements the p-value of a Poisson-Binomial
distribution [39, 40]. In other words, each directed link in the final net-
work is treated as a null hypothesis to test and only those links associ-
ated to rejected hypotheses will be included in the final directed network.
However, because of the large number of potential edges in our graph,
we here employ a simple approximation of the quantity in the last equa-
tion, given by the following expression

p-value(V ∗i,j) =
∑

Vi,j≥V ∗i,j

fPoi(Vi,j).

Essentially, we are simply approximating the p-value of a Poisson-Binomial
distribution with the same quantity computed for a Poisson distribution,
with the same parameter. The precision of such an approximation has
been determined by Le Cam’s Theorem, stating that

NP∑
Vi,j=0

|fPB(Vi,j)− fPoi(Vi,j)| < 2

NP∑
p=1

(qi,pq
′
p,j)

2.

In other words, the Poisson approximation is good whenever the ex-
pected number of successes is small.

The outcome of this procedure returns a squared NU × NU matrix
collecting the significance of each link. At this point, each p-value is
compared with a threshold value pth obtained with the False Discovery
Rate procedure proposed in [41] and revised in Subsection 1.3.1. Thus,
the existance of each edge is treated as a separate null hypothesis to test
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[38, 137] and only the links associated to rejected hypotheses have to
be included in the validated network: whenever p-value(V ∗i,j) ≤ pth, j is
considered a significant spreader of i’s tweets and the directed edge (i, j)

is included in the validated network of information flows F = {fi,j :

i, j ∈ U}.
In order to understand how viral news propagate through the vali-

dated network, we consider the division in communities detected in the
first paragraph and analyse the percentage of retweets coming from in-
side of the same community and the percentage that, instead, derives
from the other ones. In other words, given the division in clusters {Cc :

c = 1, 2, 3, 4} identified with the previous steps, we define as Si = {j :

fij = 1} the set of spreaders for node i, i.e. the set of significant retweet-
ers of node i. The significant information flow from node i towards each
community is indicated as

Fi,c =
|Cc ∩ Si|
|Si|

for c = 1, 2, 3, 4, (3.8)

that simply denotes the fraction of i’s retweets coming from community
c. The distribution of these quantities for all nodes in the validated net-
work may shed light on how the users distribute their attention patterns
with respect to the tweets posted by the various alliances. The results of
this kind of analyses will be discussed in the next Section.

3.4 Results

In this Section we discuss the results of the overall analyses performed
on the dataset.

3.4.1 Groups of verified accounts

We here discuss the division in communities detected within the vali-
dated network of verified users, which construction has been described
in Section 3.3.1.

Two blocks identify quite well the groups of Movimento 5 Stelle (from
now on M5S) and right-leaning politicians. For instance, in the former
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we find the accounts M5S Camera, M5S Senato, M5S Europa and Movi-
mento 5 Stelle, as well as the politicians Danilo Toninelli or Luigi Di
Maio. Instead in the latter we see the accounts Forza Italia, Lega - Salvini
Premier, Gruppo FI Camera, Fratelli d’Italia, Noi con Salvini as well as
the users Silvio Berlusconi, Matteo Salvini, Renato Brunetta or Giorgia
Meloni. The two remaining communities are instead more heteroge-
neous. In one of them we find a high number of radios, newspapers
or newscasts, such as Rai Radio 2, Radio 105, RTL 102.5, Tg Rai, Tg La7,
Sky Tg 24, Rai News, la Repubblica, Il Corriere della Sera, Il Post. Since
the majority of nodes refers to official accounts of news media, we char-
acterize this group as the one collecting news spreaders and informa-
tion channels. Finally, the last community encompasses some politicians
within the left-leaning parties, such as Matteo Renzi and some other fig-
ures belonging to the Democratic party (included the account of the Par-
tito Democratico itself). Therefore we use this interpretation for the last
detected community.

Given the division in political alliances, we start analyzing the topo-
logical characteristics of the subgraphs made by each group. An impor-
tant insight on users’ behaviour comes from the observation of the hash-
tags used by verified users. Excluding the set of keywords used to extract
the data, Figures 19 and 20 reproduce the hashtags used more frequently
by the verified users of each community, selecting those with a frequency
higher than or equal to the 0.5% of the total number of hashtags in the
single community. All political (i.e. yellow, red and blue) communities
have the name of their own party as the most mentioned tag; indeed we
observe, respectively, the hashtags m5s, pd and centrodestra in their first
position. Nevertheless, the second most used hashtag refers to the main
opponent of the political alliance represented by the community. It is
curious that this word is the Movimento 5 Stelle for both the right- and
left-leaning alliances, since it was effectively the most voted party at the
elections. Instead, the second most used hashtag by Movimento 5 Stelle
is renzi, leader of the Partito Democratico at the moment of the elections,
governing at that time. Also the major exponents of the other parties are
mentioned, for instance berlusconi, salvini and dimaio appear in the left-
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and right-leaning parties, as well as in the M5S one and the mixed group.
Even if the frequencies of the hashtags are comparable, summarising, all
alliances have the name of their own coalition as the most frequent one,
followed by the names of the major competitors.

In addition to that, in the projected and validated network of verified
users we also analyse the centrality of the involved users. In Appendix
B we provide a list of the first fifty most central users in the validated
network of retweets, together with their political affiliation with respect
to the four identified groups. It is interesting to observe that the first
positions are covered by medias and journalists. The majority of these
figures are affiliated with the purple community, however we also ob-
serve users from the other political groups. For instance, we see Il Fatto
Quotidiano, Peter Gomez and IlSole24ORE in the top ten most central
users, the first two being affiliated with the M5S community, while the
latter being classified into the left-leaning group.

3.4.2 Polarization of non-verified accounts

As stated in Section 3.3.2, the goal of introducing a polarization index
was to extend the division in clusters obtained for the verified users also
to the non-verified ones. In this Section we describe the results of such
analysis.

The choice of the polarization index introduced in Section 3.3.2 has
been mostly driven by the observation of users’ interactions with the
communities, graphically represented in top panel of Figure 21. Each
square in the heatmap reproduces the average value of the quantity on
the x-axis, computed over the set of non-verified users belonging to the
community on the y-axis. Essentially, each square indicates the fraction
of retweets directed towards each of the four listed communities (notice
that the row-sum is not equal to one since a small amount of retweets has
also been directed towards the remaining communities, not analysed in
this work). Most of the non-verified users have an extremely unbalanced
distribution of interactions with the members of the political alliances,
registering the most numerous activity with other members of their own
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community. Instead, in bottom panel of Figure 21 we represent the his-
togram of the polarization values obtained for the non-verified users.
Many non-verified users show high values of polarization index, mean-
ing that their attention patterns are mostly focused towards a limited
group of political characters.

Figure 22 shows the biadjacency matrix of the bipartite network of
verified and non-verified users. The coloured blocks identify the four
communities in which the users have been classified: the red and blue
blocks respectively identify the groups of left-leaning and right-leaning
politicians; the yellow community collects the available political figures
within the M5S party, while the violet group represents the information
channels community. The rows of the matrix have been ordered accord-
ing to the division in communities of the verified users, while the non-
verified users have been sorted according to their political affiliation,
i.e. the number of interactions towards each group, that is equivalent to
the computation of the numerator of the term in equation (3.3) for all the
available communities. Such a matrix exhibits a block structure along the
diagonal, indicating a greater number of interactions towards the “pre-
ferred” community with respect to the others and therefore a higher den-
sity of links within the blocks with respect to the external density.

3.4.3 Influence analysis

At this point, we proceed with the identification of the significant sources
of Twitter viral content. Inspired by the work of [78] we propose a bipar-
tite and directed network of information flow, which construction has
been described in Section 3.3.3. Very briefly, the users on the upper layer
tweet and retweet the posts represented on the lower layer. As in [78], at
first we simply project the original network of tweets and retweets onto
the users layer: a directed edge between users i and j in the projected
graph indicates that j has retweeted i’s posts at least one time.

A list of the nodes with the highest in- and out-degrees per commu-
nity can be found in Appendix B. The nodes with highest out-going de-
grees represent the users that have been retweeted most in the system,
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while the nodes with the highest in-degree are those who retweet most.
The symbol 3 next to the name indicates that the user has been verified
by the system. The top 20 most retweeted users in each group are mostly
certified, because of the fact that, especially during the elections days,
they are extremely active with the purpose of enlarging their pool of vot-
ers. Instead, the most retweeting users in each community are mostly
uncertified. In this case, the symbols 7 and • have been used to indi-
cate respectively suspended users and users that cannot be found by the
Twitter API. It is interesting that some of the most retweeting accounts
have been suspended, by Twitter or by the other users: there is one sus-
pended account in the M5S coalition and two others in the right-leaning
one. Moreover, we also identify three accounts in the violet community
that cannot be found by the Twitter API. However, as previously stated,
this table only shows the first users with the highest in-degree. As a mat-
ter of fact, we have checked all the non-verified accounts with positive
in- and out-degrees in the subgraphs generated by each community and
we have recorded the percentage of suspended users: approximately 1%
of the accounts have been suspended in the M5S community. This per-
centage slightly decreases in the information channels community and in
the left-leaning one while increases in the right-leaning group, being the
percentages respectively equal to 0.8% and 0.6% and 3%. The percentage
of accounts that cannot be identified by the Twitter API are instead equal
to 2% for the M5S and information channel communities while 3% for
the left- and right-leaning communities.

However, these findings are not really explanatory in identifying the
most effective users in the directed network of retweets, since we are
missing a benchmark for stating if j is a significant contributor of the
popularity of i’s posts. The identification of such significant tights will
be performed following the steps described in Section 3.3.3.

A pictorial representation of the validated network of information
flow is provided in Figure 23. Nodes’ colour identifies the user’s commu-
nity while nodes’ dimension indicates their out-degree in the validated
graph. The structure of this network is better represented in Figures 24–
27. Each plot focuses on the structure of the subgraphs of the directed
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network generated by each community. Nodes dimension is directly
proportional to their out-degrees in the subgraph, therefore the larger the
node, the higher the number of times that user has been retweeted by the
other accounts. Nodes colour is instead related to whether the account
has been verified or not: blue for verified users, orange for non-verified
ones.

The first plot is related to the M5S community and shows strongly
connected block of (mostly non-verified) nodes that retweets among them-
selves and with the verified accounts of the community, the most central
of which are the Twitter accounts of the newspaper Il Fatto Quotidiano
and its journalists Marco Travaglio, Peter Gomez and Antonio Padellaro.
In the other communities journalists and newspapers do not form such a
strong core. It is interesting to notice that the M5S political leader Luigi
Di Maio does not belong to this big community, but is located in a small
community outside this large component.

The second plot represents the purple community. The most central
nodes are the verified accounts of newspapers (see for example La Re-
pubblica or Il Corriere della Sera) and information channels (such as Sky
TG24, Tg La7, Agenzia Ansa or Rainews). Some politicians such as Pietro
Grasso or Giuseppe Civati are present in this group, together with the
political parties of Rifondazione and Potere al Popolo. These politicians
represent the most extreme, left-leaning orientation and that have not en-
countered a commonality of interests and supporters with the accounts
in the community of Partito Democratico and indeed they belong to dif-
ferent communities.

In the plot associated to the left-leaning community (the third one) we
identify a central block of mostly non-verified users. The most retweeted
figures are Matteo Renzi and the account of Partito Democratico, as shown
by their high values of out-degrees. The remaining verified nodes are
mostly well-known characters in the political scenario (such as Maria
Elena Boschi and Carlo Calenda), as well as newspapers (see for exam-
ple Il Foglio or IlSole24Ore). Among the non-verified users we have the
accounts of the Partito Democratico political parties related to the areas
of Milan and Rome.
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Finally, the plot associated to the right-leaning community is char-
acterised by two quite separate clusters; one of them is centered on the
accounts of people belonging to Lega Nord, such as Matteo Salvini, Clau-
dio Borghi and the party Lega-Salvini Premier. On the other side there
are the accounts of Forza Italia and Gruppo FI Camera and some of its
exponents like Silvio Berlusconi or Renato Brunetta. The two verified
nodes of Giorgia Meloni and Fratelli d’Italia (the political party she is
leading) receive retweets from both sides, nevertheless being closer to
the Lega pole. Another popular node is CasaPound, that has its own cir-
cle of retweeters and share some interactions with the subgroup of Lega
Nord.

In order to understand how viral news propagate through the vali-
dated network, we analyse the percentage of retweets coming from in-
side of the same community and the percentage that, instead, derives
from the other ones. The results are shown in Figure 28. Despite the
fact that the distribution appears fuzzier after the validation, we still no-
tice that a higher number of retweets comes from users from the same
community. Even after the validation, communities three and four ap-
pear well connected and there are less interactions from other groups.
Instead, we observe a higher number of interactions among communi-
ties one, two and three. The interactions between two and three con-
firm what stated before: in addition to the information channels, the for-
mer collects the political figures with left-oriented ideology but that have
not encountered a commonality of interests and supporters with the ac-
counts in the first community. Moreover, the interactions with group two
are due to the fact that this group collects the news spreaders and infor-
mation channels and it is plausible that accounts from different commu-
nities have shared their contents.

3.5 Discussion and conclusions

This work is focused on the identification of the sources of Twitter vi-
ral content during the last Italian electoral campaign of 2018. We have
gathered the data from the Twitter API during the month before the elec-
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tions. As a first step, we have exploited the way people consume news
on the social media to identify four groups of strongly connected veri-
fied users: two certified users are connected in the validated network of
retweets if a significantly high number of non-certified people retweets
content published by both of them. By construction, the behaviour of
non-certified accounts is thus exploited to understand the division of the
political sphere into clusters.

An analysis of the obtained communities shows that the most central
accounts are mostly newspapers, journalists and information channels in
general, each of them belonging to one of the previously listed clusters.
Looking at the hashtags included in the posts published by the groups,
we manage to interpret these coalitions and we also see that the most
used keywords in each alliance are referred to the party itself and its
members, followed by keywords related to political competitors.

Given the obtained division in political alliances, we have studied
the behaviour of the remaining non-verified users towards these groups.
More specifically, we have observed the fraction of retweets directed to-
wards each coalition: we observe a strongly polarized behaviour, since
the majority of the uncertified accounts in the bipartite network of retweets
mostly interacts with one community only. In order to strengthen this re-
sult, we also perform a different analysis comparing the distribution of
polarization values observed for users with the same number of inter-
actions. Also in this case, the distribution is skewed towards the higher
values, indicating a focus towards the same group of users. Refer to Ap-
pendix B for a pictorial representation of this phenomenon.

As a second step, we have focused our attention on the identification
of significant news spreaders. Following the method presented in [78]
we have constructed the directed network of retweets among users and
we have selected the names with the highest out-degree and in-degree.
Many of the former are verified, since they are extremely active during
the electoral campaign in order to enlarge their pool of voters. Instead,
the latter are mostly non-certified users, some of which have also been
suspended by Twitter or by some other users.

In order to validate our findings, we have constructed the bipartite
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and directed network of tweets and retweets introduced in Section 3.3.3
and performed the validation procedure explained in the same Section.
The outcome of this analysis is a monopartite, directed network of users,
in which an edge from i to j indicates that the latter has retweeted con-
tents posted by the former a significantly high number of times (i.e. where
the significance is evaluated through the null model that takes into ac-
count the information regarding the number of tweets and retweets posted
by each user and the number of retweets received by any post). The vi-
sualization of this validated network helps in understanding the actual
composition of each coalition, as well as the possible interconnections
between them. For instance, we have observed that the majority of the
connections between one community and another one happens between
verified and unverified users (where probably the latter has retweeted
some posts coming from the former). However, we also see connections
involving newspapers and information channels belonging to different
coalitions, confirming again their essential role and centrality in spread-
ing news on the social networks. Finally, we have analyzed the origin of
the retweets received by each community: even though the distribution
seems less polarized in this case, we clearly see that a higher percentage
of the retweets received by a community comes from users belonging to
the community itself, showing that most of the interactions still derive
from the same sphere of influence.

In our view, the methodological contributions of this work are mani-
fold. A first contribution resides in the fact that, at odds with a majority
of other works dealing with the same topic, our dataset was not manu-
ally labelled: we identified groups of strongly connected users starting
from the behaviour of non-certified ones and how they interact with the
certified users. Despite this data-driven approach for classifying the ac-
counts, we managed to identify four clusters of users that are closely
aligned with the Italian political division. Therefore, how people con-
sume the news and interact with the main political figures helps to shed
light on the actual division of the verified users according to their politi-
cal orientation.

Our second contribution resides in the representation of the network
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of activities on Twitter as a bipartite, directed network. We employed
the null model proposed in [104] to identify the significant information
flows between pairs of users and different communities. Using the same
method, it would be interesting to analyze the users that significantly
retweets their own contents, to boost their visibility. Other interesting
lines of research, left for future investigation, include a validation of our
approach to a corpus of different elections, in order to identify potential
regularities or differences between countries, and the use of tools from
natural language processing to infer how positively- and negatively- con-
noted tweets are distributed across the communities.
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Figure 17: Number of tweets and retweets per user per day, considering sep-
arately the number of tweets posted by verified and non-verified accounts.
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p q
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Figure 18: Left: User i is a central user and publishes two posts p and q
during the elections. Users j and k respectively retweet the same posts p
and q at least one time. Right: illustration of the case in which i retweets
one of her/his own posts (the red arrow). This case is excluded from the
analysis.
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Figure 19: Hashtags with frequence higher than 0.5% of total num-
ber of hashtags used by the groups of verified users in M5S and in-
formation channels communities, excluding “elezioni”, “elezioni2018”,
“elezionipolitiche”, “4marzo”, “4marzo2018”, “marzo2018”, “politiche”,
“politiche2018”, “elezionipolitiche2018”, “elezioni4marzo2018”. The rep-
resented color scales have been obtained rescaling the original frequencies
between 0 and 1.
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Figure 20: Hashtags with frequence higher than 0.5% of total number
of hashtags used by the groups of verified users in left- and right-
leaningcommunities, excluding “elezioni”, “elezioni2018”, “elezion-
ipolitiche”, “4marzo”, “4marzo2018”, “marzo2018”, “politiche”,
“politiche2018”, “elezionipolitiche2018”, “elezioni4marzo2018”. The
represented color scales have been obtained rescaling the original frequen-
cies between 0 and 1.
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Figure 21: Top: heatmap reproducing the average fraction of interactions to-
wards each community, for subsets of non-verified users. Each square in the
heatmap indicates the average value of the quantity reported on the x-axis,
computed over the set of non-verified users belonging to the community on
the y-axis. Bottom: histogram of obtained polarization values.
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Figure 22: Biadjacency matrix of the network of retweets between verified
and non-verified users. The coloured blocks identify the four communities
of verified users obtained with the community detection method: yellow for
M5S, red and blue respectively for left- and right-leaning alliances and pur-
ple for the information channels community. The rows of the matrix have
been ordered according to the division in communities, while the columns
are sorted according to the political affiliation of non-verified users, i.e. the
number of interactions with each group.
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Figure 23: Validated and directed network of retweets. Entire directed
network of retweets after the bipartite validation procedure. An edge
from i to j indicates that j has retweeted i a significantly high number of
times. Nodes’ colour identifies the community to which the user belongs
(red for left-leaning, yellow for M5S, purple for information channels and
blue for right-leaning communities) while nodes’ dimension indicates their
out-degree in the validated graph (i.e. how often their posts have been
retweeted a significantly high number of times). Note that the blue nodes
are divided into 2 subcommunities, one closer to the M5S community, the
other closer to the left-leaning one.
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Figure 24: Most retweeted users in group C1. Nodes’ dimension is pro-
portional to the out-degree in the subgraph generated by the community
(i.e. number of retweets received from users from the same community).
The blue color indicates that the node is verified, while orange is not veri-
fied.
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Figure 25: Most retweeted users in groups C2. Nodes’ dimension is pro-
portional to the out-degree in the subgraph generated by the community
(i.e. number of retweets received from users from the same community).
The blue color indicates that the node is verified, while orange is not veri-
fied.
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Figure 26: Most retweeted users in groups C3. Nodes’ dimension is pro-
portional to the out-degree in the subgraph generated by the community
(i.e. number of retweets received from users from the same community).
The blue color indicates that the node is verified, while orange is not veri-
fied.
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Figure 27: Most retweeted users in groups C4. Nodes’ dimension is pro-
portional to the out-degree in the subgraph generated by the community
(i.e. number of retweets received from users from the same community).
The blue color indicates that the node is verified, while orange is not veri-
fied.
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Figure 28: Heatmap reproducing the average number of retweets coming
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Chapter 4

Collaboration and
followership: a stochastic
model for activities in
social networks

This Chapter is a joint work with my supervisors Prof. Irene Crimaldi and Dr.

Fabio Saracco. The full text of the article is also available from the arXiv reposi-

tory, preprint number 1811.00418.
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Abstract

In this work we investigate how future actions are influenced by the previous

ones, in the specific contexts of scientific collaborations and friendships in online

social networks. We are not interested in modeling the process of link formation

between the agents themselves, we instead describe the activity of the agents,

providing a model for the formation of the bipartite network of actions and their fea-
tures. Therefore we only require to know the chronological order in which the

actions are performed and not the order in which the agents are observed. More-

over, the total number of possible features is not specified a priori but is allowed

to increase along time, and new actions can independently show some new-entry

features or exhibit some of the old ones. The choice of the old features is driven

by a degree-fitness method. With this term we mean that the probability that a

new action shows one of the old features does not solely depend on the “popu-

larity” of that feature (i.e. the number of previous actions showing it) but is also

affected by some individual traits of the agents or the features themselves, syn-

thesized in certain quantities called “fitnesses” or “weights”, that have different

shapes and meaning according to the specific setting considered. We show some

theoretical properties of the model and provide statistical tools for the parame-

ters’ estimation. The model has been tested on three different datasets and the

numerical results are provided and here discussed.
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4.1 Introduction

This Chapter is introduced into the stream of literature regarding stochas-
tic models for the formation and evolution of bipartite networks. This
topic finds its root into the well-known preferential attachment model
proposed in [110], in which the authors provide an explanation of the
power-law distribution of node degrees in the World Wide Web (WWW).
The success of their proposal resides in the fact that only the simple pref-
erential attachment rule that drives the formation of links is able to re-
produce, with good accuracy, the degree distribution of many real-world
networks. However, successive works enriched the model with other in-
gredients in order to overcome the “first move advantage” (i.e. the fact
that older nodes have greater degrees by construction), thus permitting
to younger nodes to easily grow. For instance, the authors in [29, 30]
introduce the fitness, a quantity defined at node level that measures the
intrinsic ability of the vertex to collect links. This new variable has been
introduced with a multiplicative effect on nodes’ degrees, therefore its
role is to amplify or dampen the preferential attachment contribution.
Later [31] has extended the potential of the fitnesses, building a gener-
ative model that solely embeds fitnesses and not node degrees. In this
case, a fitness variable is assigned to every node, representing an intrin-
sic property of the vertex in the system. Then, a link between a pair of
nodes is expressed as a function of the nodes’ fitnesses only. By modify-
ing their distribution, fitnesses only are able to reproduce the power-law
degree distributions present in many networks.

The main novelty of the previous works was not in the specification
of the model per se, but in providing an explanation for the structure of
the examined networks. Indeed, in most of the fitness methods, some
attributes of the nodes not directly observed in the network define the
structure of the graph itself. For instance, [32] introduces fitnesses that
vary over time, giving an explanation to the limited in time growth in
citation of most of the papers.

All previous efforts were devoted to monopartite, directed or undi-
rected, networks. A much smaller number of contributions is available
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for the description of the evolution of bipartite networks. Some exam-
ples in this direction have been proposed for specific datasets. For in-
stance, in [121] the authors propose a generative model to study the
bipartite network of lawyers and clients that develops according to a
recommendation process: more popular attorneys are also more likely
to be hired by new clients. Furthermore, the authors in [122] provide
a framework in which the simultaneous evolution of two systems has
been studied. Indeed, they analyse communities of scientists considering
both the monopartite network describing the interactions among agents
and the bipartite semantic network in which the agents are associated to
the concepts they use. Another example is [123], in which the structure
of the (growing) bipartite trade network was reproduced by assigning
links with sequential preferential attachment. In order to describe the
generation of an innovative product, following the idea of the “adjacent
possibles” [124], new nodes (i.e. new products) are derived by the struc-
ture of an unobserved monopartite network of products describing the
hierarchical productive process relations. Therefore, the evolution of the
bipartite system is due to the simultaneous dynamics of an unobserved
evolving network.

Following the stream of literature regarding network models based
on a latent attribute structure, a new model was introduced in [125].
In this context, nodes sequentially join the considered network, each of
them showing a set of features. Each node can either exhibit new features
or adopt some of the features already present in the network. This choice
is regulated by a preferential attachment rule: the larger the number of
nodes showing a certain feature, the greater the probability that future
nodes will have it too. The total number of possible features is not speci-
fied a priori but is allowed to increase in time. Differently from [119, 126],
each node has been assigned a fitness variable that accounts for nodes’
personal ability to transmit its own features to future nodes. Starting
from here, the model in [127] introduces some novelties in the previous
context: the probability to exhibit one of the features already present in
the network is defined as a mixture (i.e. a convex combination) of ran-
dom choice and preferential attachment. However, neither fitnesses nor
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weights are introduced in the model, so that all nodes are assumed to
have equal capabilities in transmitting their personal features to the new-
comers.

The present work moves along the same research line of the previ-
ously mentioned papers [125, 127] but with a different spirit. The main
drawback of these two models resides in the assumed chronological or-
der of nodes’ arrivals, which may tipically be unknown (or non-relevant)
in many real-world systems. In the present paper we overcome this lim-
itation: given a system of n agents, we provide a model for the formation
of the bipartite network of agents’ actions and their features. Therefore, this
model can also be applied to all settings in which the agents of interest
are not observed in a specific chronological order, because the assump-
tion on the chronological order is specified on the agents’ actions only.
Furthermore the probability to exhibit one of the features already ob-
served is defined as a mixture of random choice and “preferential attach-
ment with weights”, i.e. the probability of connection depends both on the
features’ degrees and the fitness of the agents involved and/or of the fea-
tures themselves. These weights can have different shapes and meaning
according to the specific setting considered: the weight at time-step t of
the observed feature c can depend on some characteristics of c itself, or
it can be directly established by the agent performing action t, or it may
represent the “inclination” of the agent performing action t in adopting
the previous observed features, or it may implicitly due to some prop-
erties of the agent performing the previous action j with c among its
features (for instance, her/his ability to transmit her/his own features).
We analyse two datasets of scientific publications (respectively arXiv for
Theoretical High Energy Physics, or more briefly Hep-Th, and IEEE for
Automatic Driving) and a dataset of posts of Instagram. We not only
obtain a good fit of our model to the data, but our analysis also results
useful in order to highlight interesting aspects of the activity of the three
considered social networks.

The rest of the Chapter is so organized. In Section 4.2 we illustrate in
detail the proposed model for the formation of the actions-features bipar-
tite network. In Section 4.3 we explain the meaning of the model param-
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eters and the role of the weights introduced into the preferential attach-
ment term. In Sections 4.4 we describe the general methodology used
to analyse the data, while in Section 4.5 we describe the three datasets
employed to test the model. We describe the results of the application
of the model to the data in Section 4.6 while we summarize the overall
contents of the work and recap the main findings in the last Section 4.7.
The material collected in Appendix C is the following: some asymptotic
results regarding the behavior of the total number of features and the
mean number of edges in the actions-features bipartite network are col-
lected in Subsections C.1-C.2, while Subsection C.3 contains a description
of the statistical tools used for the estimation of the model parameters.

4.2 The model

Suppose to have a system of n agents that sequentially perform actions
along time. Each agent can perform more than one action. In this frame-
work, the running of time coincides with the flow of the actions and so
sometimes we use the expression “time-step t” in order to indicate the
time of action t. Each action is characterized by a finite number of fea-
tures and different actions can share one or more features. Notice that we
do not specify a priori the total number of possible features in the system
but we allow this number to increase in time. In what follows, we de-
scribe the model for the dynamical evolution of the bipartite network
that collects actors’ actions on one side and the corresponding features
of interest on the other side. We denote by M the biadjacency matrix
related to this network.

The dynamics starts with the observation of the first action, performed
by an agent of the considered system, that shows N1 features, where N1

is assumed Poisson distributed with parameter α > 0. This distribution
will be denoted from now on by the symbol Poi(α). We number the ob-
served features with the index c from 1 to N1 and we set m1,c = 1 for
c = 1, . . . , N1.

It is worth noting that, in order to adapt the notation to the one intro-
duced in Chapter 1, the term Nt should be used to denote the total num-
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ber of nodes present in the system at time t. However, the running of the
time-steps of the model coincides with the flow of the actions, thus the
number of actions performed at each time-step is a deterministic quan-
tity always equal to 1. Therefore, I decided to employ a slight abuse of
notation and use the term Nt to identify the number of new features in-
troduced in the network at time t (i.e. the number of new nodes in one
of the layers only), since the total number of nodes observed at time t on
the two layers of the actions-features network can be easily recovered as
a function of this quantity, as follows

t+

t∑
j=1

Nj for t ≥ 1. (4.1)

Moreover, I will denote with Lt the quantity

Lt =

t∑
j=1

Nj (4.2)

that is the total number of different features observed until time t. As
a matter of fact, in Chapter 1 of this thesis we used L to denote the set
of nodes on one layer only in a bipartite network and NL to indicate its
cardinality. However, in this case I will use the symbol L for the second
quantity, in order to keep the notation as simple as possible due to the
time-dependence that we are about to introduce.

Then, for each consecutive action t ≥ 2, we have:

1. Action t exhibits some old features, meaning that these features
have already been shown by some of the previous actions {1, . . . , t−
1}. More precisely, the new action t can independently display each
old feature c ∈ {1, . . . , Lt−1}with probability

pt,c =
δ

2
+ (1− δ)

∑t−1
j=1mj,cwt,j,c

bt
(4.3)

where δ ∈ [0, 1] is a parameter of the model, mj,c = 1 if action j

shows feature c andmj,c = 0 otherwise andwt,j,c ≥ 0 is the random
weight associated to feature c measured at the time of action t, that
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can be related to the course of previous actions j. Finally bt is a suit-
able normalizing factor ensuring that the term

∑t−1
j=1mj,cwt,j,c/bt

belongs to [0, 1]. We will refer to quantity (4.3) as the inclusion prob-
ability of feature c at time-step t.

2. Action t can also exhibit a number of new features Nt, where Nt is
assumed Poi(λt)-distributed with parameter

λt =
α

t1−β
, (4.4)

where β ∈ [0, 1] is a model parameter. The variable Nt is supposed
independent of {N1, . . . , Nt−1} and of all the appeared old features
and their weights (including those of action t).

With the observation of action t, all the matrix elements mt,c with c ∈
{1, . . . , Lt} are set equal to 1 if action t shows feature c and equal to 0

otherwise.

Example. Here is an example of a M matrix with t = 3 actions:

M =

 1 1 1 1 0 0 0 0 0
1 0 1 0 1 1 0 0 0
1 0 1 1 0 1 1 1 1

 .

In grey we highlight the new features for each action: we have that the
first three actions show respectively N1 = 4, N2 = 2, N3 = 3 new fea-
tures, and so the total number of characteristics at each timestep becomes
L1 = 4, L2 = 6 and L3 = 9. For each action t, we have mt,c = 1

for each c ∈ {Lt−1 + 1, . . . , Lt}. Moreover, some elements mt,c, with
c ∈ {1, . . . , Lt−1}, are equal to 1 and they represent the features brought
by previous actions exhibited also by action t.

It may be worth noting that our model resembles the one known as
the Indian Buffet Process in Bayesian Statistics [128, 129, 130], but in-
deed there are significant differences in the definition of the inclusion
probabilities: in particular, the main differences reside in the mixture pa-
rameter δ and the weightswt,j,c. Moreover, Bayesian Statistics deals with
exchangeable sequences, while here we do not require this property. As a
consequence, the role played by each parameter in (4.3) and (4.4) results
more straightforward and easy to be implemented.
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4.3 Discussion on the model

We now discuss the meaning of the model parameters α, β and δ and
the role of the random weights wt,j,c. Appendix C provides asymptotic
results regarding the total number of features and edges observed in the
network, as well as the statistical tools employed to estimate the model
parameters.

4.3.1 The model parameters

In the above model dynamics, the probability distribution of the random
number Nt of new features brought by action t is regulated by the pair
of parameters (α, β), as stated in equation (4.4). Specifically, the larger α
the higher the total number of new features brought by an action, while
β controls the asymptotic behavior of the random variable Lt in equation
4.2, i.e. the total number of features observed for the first t actions, as a
function of t.

Analysing equation (4.3) of the above model dynamics, we see that,
for a generic action t, both the parameter δ and the random weights wt,j,c
affect the number of old features (c = 1, . . . , Lt−1) also shown by action
t. Specifically, the value δ = 1 corresponds to the pure i.i.d. case with in-
clusion probability equal to 1/2: an action can exhibit each feature with
probability 1/2 independently of the other actions and features. Instead
the value δ = 0 corresponds to the case in which the inclusion probabil-
ity pt,c entirely depends on the (normalized) total weight associated to
feature c at the time of action t, i.e. to the quantity∑t−1

j=1mj,cwt,j,c

bt
. (4.5)

In equation (4.5), the term wt,j,c ≥ 0 is the random weight at time-step t
associated to feature c that can be related to the course of previous actions
j. We denote this case as the pure weighted preferential attachment case since
the larger the total weight of feature c, the greater the probability that
also the new action will show feature c. Finally, when δ ∈ (0, 1), we have
a mixture of the two cases above: the smaller δ, the more significant is
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the role played by the weighted preferential attachment in spreading the
observed features to new actions. In the sequel we will refer to (4.5) as
the weighted preferential attachment term.

4.3.2 Meaning of the random weights

Regarding the weights, the possible ways in which they can be defined
benefit of a great flexibility. Of course their meaning has to be discussed
in relation to the particular application considered. For instance, the
weight wt,j,c can be directly assigned by the agent performing action t

to feature c in connection with the previous action j, or it may represent
the inclination of the agent performing action t of adopting the previ-
ous observed features, or it may implicitly due to some properties of the
agent performing the previous action j (for instance, her/his ability to
transmit her/his own features). We here describe some general interest-
ing frameworks:

a. Constant weights. By setting wt,j,c = 1 for all t, j, c with normal-
izing factor bt = t, then all the observed features have the same
weight. Then the sum in the numerator of (4.5) becomes the pop-
ularity of feature c, the total number of previous actions that have
already exhibited feature c. Therefore, the quantity in equation (4.5)
essentially represents its average popularity (we divide by t instead
of t − 1 in order to avoid the quantity (4.5) to be exactly equal to
1 for all the first N1 features). In this case the actions-features dy-
namics coincides with the nodes-features dynamics considered in
[127].

b. Weights depending on past actions. Assume that a positive ran-
dom variable xi (with i = 1, . . . , n) is associated to each agent in
order to describe her/his ability to transmit the features of her/his
actions to the others. This random variable can be interpreted as
a static fitness as defined in [29, 30, 31]. In this case the weights
wt,j,c can be defined as xi(j) or a function of this quantity, where
i(j) denotes the agent performing action j. In particular, we have
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wt,j,c = wj so the weights only depend on j. Hence, the weight
of a feature c is only due to the fitness of the agent that performs
an action with c among its features and the sum in the numerator
of (4.5) becomes the total weight of feature c due to the agents that
have previously exihibited it in their actions. The quantity

bt = κ+

t−1∑
h=1

wh

can be chosen as normalizing factor, i.e. we basically normalize by
the total fitness of the agents that have performed actions 1, . . . , t−
1. Notice that the previous case can be seen as a special case of the
present one, taking xi = 1 and κ = 1. Moreover, another interest-
ing element to observe is that the weighted preferential attachment
term (4.5) can be explained with an urn process, as follows.

Example. For each feature c, let t(c) be the first action that has c
as one of its features and image to have an urn with balls of two
colors, say red and black, and associate an extraction from the urn
to each action t ≥ t(c) + 1. The initial total number of balls in
the urn is κ +

∑t(c)
h=1 wh, of which wt(c) red. At each time-step t ≥

t(c)+1, if the extracted ball is red then action t exhibits feature c and
the composition of the urn is updated with wt red balls; otherwise,
action t does not exhibit feature c and the composition of the urn
is updated with wt black balls. Therefore quantity (4.5) gives the
probability of extracting a red ball at time-step t. This is essentially
the nodes-features dynamics considered in [127] with δ = 0 only.

If we have xi ≤ 1, an alternative normalizing factor is bt = t. In
this case the quantity (4.5) is the empirical mean of the random
variables mj,cwj , with j = 1, . . . , t−1 (again we divide by t instead
of t− 1 for the same reason explained above).

c. Weights depending on past actions and on time. Case b. can be
extended to consider fitness variables that change along time, so
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that we have wt,j,c = wj,t defined in terms of xi(j),t where i(j) de-
notes the agent that performs action j and xi(j),t is her/his fitness
at the time-step of action t, thus following prescription similar to
those of [32, 118]. We can also extend it to the case in which the ac-
tions can be performed in collaboration by more than one agent. In
this case the weight wj,t can be defined as a function of the fitness
at time-step t of all the agents performing action j.

d. Weights depending on features and on time. We can set wt,j,c =

wt,c for all j, c, t with bt = t so that the term (4.5) becomes the av-
erage popularity of feature c adjusted by the quantity wt,c. For
instance, we can choose wc,t as a decreasing function of t∗(c) =

max{j : 1 ≤ j ≤ t − 1 and mj,c = 1} that is the last action be-
fore action t that has c among its features. By doing so, the average
popularity of c in equation (4.5) is discounted by the lenght of time
between the last appearence of feature c and t. Another possibility
could be to choose a weight wt,c in order to give more relevance to
the features already shown by the same agent performing action t
in the previous actions. More precisely, we can denote by i(j) the
agent that performs action j and, for each action t, we can define
wt,c as an increasing function of the sum

∑
j=1,...,t−1,i(j)=i(t)mj,c

so that the more an agent has exhibited feature c in her/his own
previous actions, the greater the probability that also her/his new
action will show feature c. An additional possibility is to eliminate
the dependence on t and consider weights wt,j,c = wc, where wc
can be seen as a “fitness” random variable associated to feature c.

e. Weights depending on time. We can modify case b. giving a dif-
ferent meaning to xi. Indeed, we can associate to each agent i a
positive random variable xi in order to describe her/his inclination
of adopting the already appeared features. Then we can define the
weight wt,j,c as xi(t) or a function of it, where i(t) denotes the agent
performing action t. In this way, we have wt,j,c = wt for all j, c, t,
that is the weights only depend on the “inclination” of the agent
performing the action and, if we set bt = t as in case d., the term
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(4.5) becomes the average popularity of feature c adjusted by the
quantity wt.

f. Weights depending on features and past actions. Finally, we can
take wt,j,c = wj,c (i.e. depending on j and c, but not on t) in or-
der to represent the weight given by the agent performing action
j to feature c exhibited in this action. Therefore the total weight of
feature c at time-step t is the total weight given to feature c by the
agents who performed the previous actions.

These are just general examples of possible weights. We refer to the fol-
lowing applications to real datasets for special cases of the above exam-
ples. It is worth noting that the weights wt,j,c may be not independent.
For example, given case e. we have exactly the same weight for all the
actions performed by the same agent.

4.4 General methodology for the analysis

We here provide a detailed outline of the performed analyses used for
the considered case studies.

4.4.1 Estimation of the model parameters

For each application we sort the considered activities in chronological
order, the features are instead sorted according to their arrival time in the
system. Then we construct the features matrix M, which entries are equal
tomt,c = 1 if action t shows feature c andmt,c = 0 otherwise. We provide
the estimated values of the parameters α, β, δ of the model by means of
the tools illustrated in Section C.3. For each parameter p ∈ {α, β, δ} we
also give the averaged value p of the estimates on a set of R realizations
of the model and the related mean squared error MSE(p). The detailed
procedure works as follows: starting from the estimated values α̂, β̂, δ̂
and the observed chosen weights, we generate a sample of R simulated
actions-features matrices and we estimate again the parameters on each
realization, obtaining the values α̂r, β̂r, δ̂r for r = 1, . . . , R. Then we
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compute, for each parameter p ∈ {α, β, δ}, the average estimate p over
all the simulations and the MSE(p), as follows

p =
1

R

R∑
r=1

p̂r MSE(p) =
1

R

R∑
r=1

(p̂r − p̂)2
. (4.6)

4.4.2 Check of the asymptotic behaviors

We consider the behavior of the total number of observed features Lt
along the time-steps t and we compare it with the theoretical quantity
of the model (see Subsection C.1 for its derivation). In particular, for
each application we verify that the power-law exponent matches the es-
timated parameter β. Moreover, we consider the behavior of the total
number Et of edges in the real actions-features matrix and we compare
it with the mean number 〈Et〉 of edges obtained averaging over R simu-
lated actions-features matrices.

4.4.3 Comparison between real and simulated network and
relevance of the weights

We compare the real and simulated network on the basis of the following
indicators:

LT = total number of features exhibited by the observed T actions,

OT =
1

(T − 1)

T∑
t=2

Ot with Ot =

Lt−1∑
c=1

mt,c

NT =
1

T

T∑
t=1

Nt.

(4.7)

For each action t, with 2 ≤ t ≤ T , the quantity Ot is the number of old
features shown by action t and Nt = Lt − Lt−1 is the number of new
features brought by action t. The indicators OT and NT provide the av-
eraged values overall the set of observed actions. These indicators are
computed for the real network, for the simulated network by the model
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described in Section 4.2 with the chosen weights and, in order to evaluate
the relevance of the weights inside the dynamics, we also compute them
considering all weights equal to 1. In particular, for the simulated matri-
ces, the provided values are an average on R realizations. Essentially, for
each indicator I ∈ {LT , OT , NT } the tables provide the average value

I =
1

R

R∑
r=1

Ir

where the term Ir denotes the quantity I computed on the r-th simula-
tion of the model. Finally, in order to properly compare the observed
values with the model’s estimates, we also provide the standard devia-
tion of the estimates, again over a set of R simulations, i.e. the square
root of the following quantity

σ2
I =

1

R

R∑
r=1

(
Ir − I

)2
Furthermore, in order to take into account also the not-exhibited “old”
features (i.e. the zeros in the matrix M), we check also the number of
“correspondences”, that is we compute the following indicators:

m1 =
1

R

R∑
r=1

msimr
1 and m2 =

1

R

R∑
r=1

msimr
2 , (4.8)

where

msimr
1 =

1

T − 1

T∑
t=2

msimr
1 (t) with

msimr
1 (t) =

1

min(Lret−1, L
simr
t−1 , c∗)

min(Lret−1,L
simr
t−1 ,c∗)∑

c=1

I{mret,c=msimrt,c }

and

msimr
2 =

1

T − 1

T∑
t=2

msimr
2 (t) with

msimr
2 (t) =

|Lret − L
simr
t |

Lret
.
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In the above formulas, we use the apex abbreviation re or simr to indi-
cate whether the considered quantity is related to the real network or the
r-th realization of the simulated network, respectively. The meaning of
the above indicators is the following. Given a realization r of the simu-
lated network, for a certain action t, the quantity msimr

1 (t) calculates the
total number of correctly attributed old features among the features in
{1, . . . , c∗}, while msimr

2 (t) computes the relative error in the total num-
ber of observed features. Then, msimr

1 and msimr
2 are the corresponding

averaged values overall the set of observed actions, and m1 and m2 are
the averaged values over the R realizations of the simulated network.
Values of m1 and m2 respectively close to 1 and 0 indicate that a very
high fraction of features has been correctly allocated by our model and
that the relative error in the total number of observed features is very
low.

4.4.4 Predictive power of the model

We perform a prediction analysis on the actions-features matrix. More
precisely, once a time-step t∗ < T is fixed, we estimate the model param-
eters on the training set corresponding to the set of actions observed at
t = 1, . . . , t∗. We then employ those estimates to simulate the dynamics
of the actions-features network related to the remaining set of actions at
times t = t∗ + 1, . . . , T . Finally, taking the features really observed for
these last actions as test set, we evaluate the goodness of our predictions
by computing the following indicators:

m∗1 =
1

R

R∑
r=1

m∗,simr1 and m∗2 =
1

R

R∑
r=1

m∗,simr2 , (4.9)
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where

m∗,simr1 =
1

T − t∗
T∑

t=t∗+1

m∗,simr1 (t) with

m∗,simr1 (t) =
1

min(Lret−1, L
simr
t−1 , c∗)

min(Lret−1,L
simr
t−1 ,c∗)∑

c=1

I{mret,c=msimrt,c }

and

m∗,simr2 =
1

T − t∗
T∑

t=t∗+1

m∗,simr2 (t) with

m∗,simr2 (t) =
|Lret − L

simr
t |

Lret
.

The interpretation of these quantities is similar to the one proposed in
the previous section. Given a realization r of the simulated network, for
a certain action t, with t∗ + 1 ≤ t ≤ T , the quantity m∗,simr1 (t) calculates
the total number of correctly attributed old features among the features
in {1, . . . , c∗}, while m∗,simr2 (t) computes the relative error in the total
number of observed features. Then, m∗,simr1 and m∗,simr2 are the corre-
sponding averaged values over the test set of actions, andm∗1 andm∗2 are
the averaged values over the R realizations of the simulated network.
Values of m∗1 and m∗2 respectively close to 1 and 0 indicate that, starting
from the observation of the first t∗ actions, a very high fraction of features
has been correctly predicted by our model and that the relative error in
the total number of observed features is very low.

Regarding the prediction, it is worthwhile to note that if the weights
chosen in the model do not depend on t, then it is not necessary to know
the agents performing the actions t∗ + 1, . . . , T , but it is enough to have
complete information about the actions in the training set 1, . . . , t∗. Oth-
erwise, if the weights depend on t, we need to assume also the knowl-
edge of all the agents performing the actions at time-steps t∗ + 1, . . . , T ,
in order to take the right weights in the simulation of the model at each
time-step t = t∗ + 1, . . . , T and predict the corresponding features.
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4.5 Datasets

In the present work we employ three different datasets. This section bre-
fly describes each dataset and how it has been obtained. The complete
description of the data cleaning process is provided in Appendix C.

• IEEE dataset for Automatic Driving. For our first application we
have downloaded (on June 26, 2018) all papers published between
2000 and 2003 present in the IEEE database [144] in the scientific
research field of Automatic Driving. We have performed the re-
search following the same criteria as in [127], selecting all papers
containing at least one of the keywords: Lane Departure Warning,
Lane Keeping Assist, Blindspot Detection, Rear Collision Warning,
Front Distance Warning, Autonomous Emergency Braking, Pedes-
trian Detection, Traffic Jam Assist, Adaptive Cruise Control, Au-
tomatic Lane Change, Traffic Sign Recognition, SemiAutonomous
Parking, Remote Parking, Driver Distraction Monitor, V2V or V2I
or V2X, Co-Operative Driving, Telematics & Vehicles, and Night vi-
sion. For each paper we have at our disposal all the bibliographic
records, such as title, full abstract, authors’ names, keywords, year
of publication, date in which the paper was added to the IEEE
database, and many others.

• ArXiv dataset for Theoretical High Energy Physics. Our second
application of the model has been performed with the arXiv dataset
of publications in the scientific area of Theoretical High Energy
Physics (Hep-Th), freely available from [131, 143]. The dataset col-
lects a sample of text files reporting the full frontispiece of each
paper, so we have information on: arXiv id number, submission
date, name and email of the author who made the submission, ti-
tle, authors’ names and the entire text of the abstract.

• Instagram dataset. This dataset has been kindly provided by Prof.
Emilio Ferrara [145] and a more detailed description of it can be
found in [132]. Very briefly, the dataset has been crawled through
the Instagram API between January 20 and February 17, 2014 and
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collects public media (with their author, timestamp and set of hash-
tags) as well as users information (with their list of followers and
followees) of a set of 2100 anonymized partecipants to 72 popular
photographic contests that took place between October 2010 and
February 2014. The overall media dataset records more than one
million posts but, with the purpose of maximizing the density of
our actions-features matrix, we considered only those posts pub-
lished during the weekends in the crawling period (Jan 20 to Feb
17, 2014) in which at least five hashtags are used.

4.6 Results

In the present section we provide the results of our analysis, that consists
in the application of the method to each dataset.

4.6.1 IEEE dataset for Automatic Driving

For our first application we have used the IEEE dataset for Automatic
Driving described in the previous section. For each paper we have at
our disposal all the bibliographic records, such as title, full abstract, au-
thors’ names, keywords, year of publication, date in which the paper was
added to the IEEE database, and many others. The papers have been
sorted chronologically according to the date in which they were added
to the database. We have considered all nouns and adjectives (from now
on “key-words”) included in the title or abstract as the features of our
model and sorted them according to their arrival time. See Appendix C
for a more detailed description of the data preparation procedure. The
features matrix obtained at the end of the cleaning procedure collects
T = 492 papers (actions) recorded in the period 2000 − 2003 and in-
volving n = 1251 distinct authors (agents) and containing LT = 4553

key-words (features). The binary entry mt,c of the actions-features ma-
trix indicates whether feature c is present into the title or the abstract of
the paper recorded at time-step t. A pictorial representation of the matrix
is provided in Figure 29.
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Figure 29: IEEE Automatic Driving. Observed actions-features matrix with
dimensions T × LT = 492 × 4553. Black dots represent 1 while white dots
represent 0.

p p̂ p MSE(p)

α 68.534 68.699 14.699
β 0.5962 0.5963 0.0001

δ with xpubi,t ≈ 2.22 · 10−16 ≈ 4.36 · 10−5 ≈ 5.90 · 10−9

δ with xcoli,t ≈ 2.26 · 10−16 ≈ 5.01 · 10−5 ≈ 6.82 · 10−9

Table 3: IEEE Automatic Driving. Estimation of the model parameters. The
average values p and the parameters’ MSE are computed over R = 100
realizations of the model. See Section 4.4 for further details.

For this application, we use weigths of the third type in Section 4.3.2.
Indeed, at each time-step t, we associate to each author i a “fitness” vari-
able xi,t that quantifies the influence of author i in the considered re-
search field, and we define the weights as

wt,j,c = wt,j = e−1/yt,j with yt,j = max{xi,t : i ∈ J (j)} where

J (j) = set of the agents performing action j .
(4.10)

Therefore the inclusion probability in equation (4.3) reads as

pt,c =
δ

2
+ (1− δ)

∑t−1
j=1mj,c e

−1/yt,j

t
. (4.11)
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Figure 30: IEEE Automatic Driving. Left: Plot of ln(Lt) as a function of
ln(t), with the power-law trend. The red dots refer to the real data and the
black line gives the theoretical regression line with slope β̂. Right: Asymp-
totic behavior of the number of edges in the actions-features network. Red
dots refer to Et of the real data, while the black line shows 〈Et〉 obtained by
the model with xpubi,t (averaging over R = 100 simulations).
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The term yt,j is the maximum among the fitness variables xi,t at time-step
t of the authors i ∈ J (j), i.e. those who published the paper appeared at
time-step j. A high value of xi,t should identify a person who is relevant
in the considered research field so that it is likely that other scholars use
the same features of her/his actions, that essentially are the keywords
related to her/his research. As a consequence, in the preferential attach-
ment term, we give to each old feature c a weight that is increasing with
respect to the fitness variables of the authors who included c in their pa-
pers. We analyse two different fitness variables:

xpubi,t = (number of author i’s publications until time t− 1) + 1 (4.12)

and

xcoli,t = (number of author i’s collaborators until time t− 1) + 1. (4.13)

Note that we count the publications or collaborators until time-step t−1,
that is until a time-step before the publication time of paper t and 1 is
added in order to avoid division by zero in the previous formula (4.10).
The performed analysis follows the outline explained in Section 4.4: we
first estimate the model’s parameters, obtaining the results in Table 3.
According to it, the weighted preferential attachment term (4.5) plays a
predominant role, due to the estimated value obtained for the parameter
δ that is approximately zero. Figure 30 provides in the left panel a log-log
plot of the cumulative count of new features (key-words) as a function
of time (see the red dots) that clearly shows a power-law behavior. This
agrees with the theoretical property of the model stated in Appendix C,
Subsection C.1, according to which the power-law exponent has to be
equal to the parameter β. This fact is checked in the plot by the black
line, which slope is the estimated value of the parameter β.

The goodness of fit of our model to the dataset has been evaluated
through the computation of the quantities (4.7) and (4.8). These results
are shown in Tables 4 and 5. Table 4 shows that our model reproduces the
total number LT of features observed at the end of the observation pe-
riod T , as well as the average number of new features NT in all the three
considered cases. The average number of old features (i.e. the quantity
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Matrix LT σLT OT σOT NT σNT

real 4553 31.54 9.25

weights with xpubi,t 4558 68.19 32.13 1.29 9.26 0.14

weights with xcoli,t 4548 63.00 54.20 2.88 9.25 0.13
weights = 1 4551 71.50 134.7 3.48 9.25 0.15

Table 4: IEEE Automatic Driving. Comparison between real and simulated
networks by means of the indicators (4.7). We also include an estimate of
the variations around the average values, through the computation of the
sample standard deviations. See Section 4.4 for further details.

weights with xpubi,t m1 m2

c∗ = 4553 (all observed features) 0.97 0.047
c∗ = 100 0.88
c∗ = 200 0.90
c∗ = 300 0.91

weights with xcoli,t m1 m2

c∗ = 4553 (all observed features) 0.96 0.049
c∗ = 100 0.83
c∗ = 200 0.86
c∗ = 300 0.88

weights = 1 m1 m2

c∗ = 4553 (all observed features) 0.93 0.049
c∗ = 100 0.55
c∗ = 200 0.64
c∗ = 300 0.70

Table 5: IEEE Automatic Driving. Comparison between real and simu-
lated matrices by means of the indicators (4.8). The first row of each ta-
ble evaluates the indicators on the whole matrix (c∗ = 4553), while the
other rows show the results computing the indicators only on the first c∗

(= 100, 200, 300) features.
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weights with xpubi,t m∗1 m∗2

t∗ = 369 and c∗ = 4553 0.99 0.017
t∗ = 246 and c∗ = 4553 0.98 0.060
t∗ = 123 and c∗ = 4553 0.98 0.114

t∗ = 369 and c∗ = 200 0.93
t∗ = 246 and c∗ = 200 0.93
t∗ = 123 and c∗ = 200 0.93

Table 6: IEEE Automatic Driving. Predictions on the actions-features ma-
trix. The indicators (4.9) are computed for different levels of information
used as “training set”: more precisely, the different t∗ correspond to 75%,
50% and 25% of the set of the actions, respectively. Moreover, the indicators
are computed on the whole matrix (c∗ = 4553) and also taking into account
only the first c∗ = 200 features.

OT ) is well reproduced only in the case with xpubi,t (that is the case with
the fitness based on the number of publications). Table 5 also indicates
that the model with xpubi,t , or with xcoli,t , shows a better performance than
the one with all the weights equal to one. More precisely, the values ob-
tained for the indicator m2 are almost the same for all the three cases
(the average error on the total number of arrived features is around 5%);
while the most significant differences are in the values of the indicator
m1. Indeed, for the model with the fitness xpubi,t , the computed value of
m1 ranges from 88% to 97%, pointing out that a high percentage of the
entries in the actions-features matrix have been correctly inferred by the
model. The same value for the model with the fitness xcoli,t ranges from
83% to 96%, and, for the model with all the weights equal to 1, it ranges
from 55% to 93%. The differences with respect to the case with all the
weights equal to 1 are more evident when we select the first c∗ features:
indeed, with xpubi,t we succeed to infer the value of at least 88% of the en-
tries; while with all the weights equal to 1 the percentage remains under
70%. This means that the major difference in the performance of the dif-
ferent considered weights is in the first features, that are those for which
the preferential attachment term is more relevant, since they appeared in
the system at an earlier stage. At this point, we choose the model that
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takes into account the authors’ number of publications as the best per-
forming one for the considered dataset and in the following analysis we
focus on it.

In Table 6 we evaluate the predictive power of the model: we estimate
the parameters of the model only on a subset of the observed actions,
respectively the 75%, 50% and 25% of the total observations; we then
predict the features for the “future” actions {t∗ + 1, . . . , T} and compare
the predicted and observed results by means of the indicators in (4.9)
over the whole set of features and only on a portion of it. The indicator
m∗1 ranges from 93% to 99%. Finally, in the right panel of Figure 30, we
provide the asymptotic behavior of the number of edges in the actions-
features network: more precisely, the red dots represent the total number
Et of edges observed in the real actions-features matrix at each time-
step; while the continuous black line shows the mean number 〈Et〉 of
edges obtained averaging over R = 100 simulations of the model with
the chosen weights.

It is worth noting that the difference in performance between the two
definitions of fitness variables has a straightforward interpretation: in the
considered case, i.e. for the publications in the area of Automatic Driving
in the considered period, the relevance of an author (with respect to the
probability of transmitting her/his features) is better measured by con-
sidering the number of her/his publications rather than the number of
her/his co-authors. As we will see later on, we get a different result for
our second application.

4.6.2 ArXiv dataset for Theoretical High Energy Physics

Our second application of the model has been performed with the arXiv
dataset of publications in the scientific area of Theoretical High Energy
Physics (Hep-Th) [131]. From the original format we isolate the submis-
sion date and the identity number of the paper, in order to sort all papers
(actions) chronologically. Then, with the final purpose of constructing
the features matrix, we consider all key-words included either in the
main title or in the abstract as the features of the papers and we sort
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Figure 31: arXiv High Energy Physics. Observed actions-features matrix
with dimensions T × LT = 10603 × 22304. Black dots represent 1 while
white dots represent 0.

p p̂ p MSE(p)

α 40.812 40.940 2.4816
β 0.6305 0.6303 2.34 · 10−5

δ with xpubi,t ≈ 2.22 · 10−16 ≈ 1.41 · 10−6 ≈ 3.56 · 10−12

δ with xcoli,t ≈ 2.22 · 10−16 ≈ 1.06 · 10−5 ≈ 2.31 · 10−12

Table 7: arXiv High Energy Physics. Estimates of the model parameters.
The average values p and the parameters’MSE are computed overR = 100
realizations of the model. See Section 4.4 for further details.

them according to their time of appearence. The complete data prepara-
tion phase is described in Appendix C. Finally, we construct the features
matrix M, which elements mt,c = 1 if paper t includes key-word c ei-
ther in the title or in the abstract and mt,c = 0 otherwise. For this phase
we have considered all papers published from 2000 to 2003 and included
in the repository. The result is shown in Figure 31, where the observed
actions-features matrix collects T = 10603 papers (actions) registered be-
tween 2000 and 2003 and LT = 22304 key-words appeared in the title
or in the abstract (features), while the total number of involved authors
(agents) is n = 5633.

The weights for this application are defined as in the previous one,
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Matrix LT σLT OT σOT NT σNT

real 22304 28.42 2.10

weights with xpubi,t 22305 145.83 15.37 0.41 2.10 0.02

weights with xcoli,t 22317 148.35 18.79 0.70 2.10 0.02
weights = 1 22313 147.35 97.16 5.16 2.10 0.02

Table 8: arXiv High Energy Physics. Comparison between real and simu-
lated networks by means of the indicators (4.7). We also include an estimate
of the variations around the average values, through the computation of the
sample standard deviations. See Section 4.4 for further details.

weights with xpubi,t m1 m2

c∗ = 22304 (all observed features) 0.995 0.022
c∗ = 5576 0.992
c∗ = 11152 0.994
c∗ = 16728 0.995

weights with xcoli,t m1 m2

c∗ = 22304 (all observed features) 0.995 0.021
c∗ = 5576 0.991
c∗ = 11152 0.994
c∗ = 16728 0.994

weights = 1 m1 m2

c∗ = 22304 (all observed features) 0.987 0.021
c∗ = 5576 0.976
c∗ = 11152 0.985
c∗ = 16728 0.986

Table 9: arXiv High Energy Physics. Comparison between real and sim-
ulated matrices by means of the indicators (4.8). The first row of each
table evaluates the indicators on the entire matrix (c∗ = 22304), while
the others show the results computing the indicators only on the first c∗

(= 5576, 11152, 16728) features.
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Figure 32: arXiv High Energy Physics. Left: Plot of ln(Lt) as a function of
ln(t), with the power-law trend. The red dots refer to the real data and the
black line gives the theoretical regression line with slope β̂. Right: Asymp-
totic behavior of the number of edges in the actions-features network. Red
dots refer to Et of the real data, while the black line shows 〈Et〉 obtained by
the model with xcoli,t (averaging over R = 100 simulations).

described in equation (4.10). We consider again the two different defini-
tions for the fitness term xi,t (see equations (4.12) and (4.13)). For both
the definitions of fitness, we perform the analysis following the method-
ology explained in Section 4.4. We first estimate the model’s parameters,
obtaining the results in Table 7.

We see that the weighted preferential attachment term (4.5) is the ma-
jor contributor due to the estimated value obtained for the parameter δ
that is essentially zero. Figure 32 provides in the left panel a log-log plot
of the cumulative count of new features (key-words) as a function of time
(see the red dots), that clearly shows a power-law behavior. This agrees
with the theoretical property of the model stated in Appendix C accord-
ing to which the power-law exponent has to be equal to the parameter
β. This fact is checked in the plot by the black line, which slope is the
estimated value of the parameter β.

The goodness of fit of our model to the dataset has been evaluated
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through the computation of the quantities (4.7) and (4.8). These results
are shown in Table 8 and Table 9. Table 8 shows that our model is able
to reproduce the total number LT of features observed at the end of the
observation period T and the average number of new features NT . In-
stead, the average number of old features (i.e. the quantity OT ) is under-
estimated by the model with the weights based on xpubi,t and xcoli,t , while it
is widely over-estimated in the case with all the weights equal to 1. The
discrepancy in the values is smaller for the case with xcoli,t (that is the case
with the fitness based on the number of collaborators). Table 9 shows
that the performance of the model in reproducing the data are compara-
ble, with both the considered definitions of fitness and they are also good
for the case with all weights equal to one.

At this point, we choose the model that takes into account the au-
thors’ number of collaborations and the last analysis focuses on it. In
Table 10 we evaluate the predictive power of the model: we estimate
the parameters only on a subset of the observed actions, respectively the
75%, 50% and 25% of the total observations; we then predict the features
for the “future” actions {t∗ + 1, . . . , T} and compare the predicted and
observed results by means of the indicators in (4.9) over the whole set
of features and only on a portion of it. In particular, we obtain that the
indicator m∗1 is almost always equal to 99%. Finally, in the right panel of
Figure 32, we provide the asymptotic behavior of the number of edges in
the actions-features network: more precisely, the red dots represent the
total number Et of edges observed in the real actions-features matrix at
each time-step; while the continuous black line shows the mean number
〈Et〉 of edges obtained averaging over R = 100 simulations of the model
with the chosen weights.

Contrarily to the previous case, in this application we observe a com-
parable performance of the model with both the considered definitions
of fitness. This means that, for the publications in High Energy Physics
in the considered period, both the number of co-authors and the number
of publications of an author can be considered as reasonable measures in
order to evaluate her/his relevance in the research field.
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weights with xcoli,t m∗1 m∗2

t∗ = 7952 and c∗ = 22304 0.997 0.006
t∗ = 5302 and c∗ = 22304 0.997 0.026
t∗ = 2651 and c∗ = 22304 0.996 0.035

t∗ = 7952 and c∗ = 11152 0.996
t∗ = 5302 and c∗ = 11152 0.996
t∗ = 2651 and c∗ = 11152 0.996

Table 10: arXiv High Energy Physics. Predictions on the actions-features
matrix. The indicators (4.9) are computed for different levels of information
used as “training set”: more precisely, the different t∗ correspond to 75%,
50% and 25% of the set of the actions, respectively. Moreover, the indicators
are computed on the whole matrix (c∗ = 22304) and also taking into account
only the first c∗ = 11152 features.

4.6.3 Instagram dataset

In this section we apply the proposed model to the dataset of the social
network of Instagram, presented in [132]. The procedure of posts selec-
tion yields a sample of T = 2151 posts (actions) and LT = 5890 hashtags
(features). The available posts were ordered chronologically according to
the associate timestamp of publication and the hashtags (features) were
sorted in terms of their first appearence in a post. After this first phase
of data arrangement, we construct the actions-features matrix M, with
mt,c = 1 if post t contains hashtag c and mt,c = 0 otherwise. The re-
sulting matrix is shown in Figure 33, with non-zero values indicated by
black points.

For this application, we chose weights that depend on an indicator
related to the underlying Instagram network (see Subsection 4.3.2). Pre-
cisely, we associate to each agent i the variable xi defined as the number
of agents i’s followers, among those who were active during the crawling
period and we set

wt,j,c = wt = e−xi(t) , (4.14)

where i(t) denotes the agent performing action t. Therefore the inclusion

140



Figure 33: Instagram. Observed actions-features matrix, with dimesions
T ×LT = 2151× 5890. Black dots represent 1 while white dots represent 0.

probability for hashtag c becomes

pt,c =
δ

2
+ (1− δ)

∑t−1
j=1mj,c

t
e−xi(t) , (4.15)

where the average popularity of hashtag c is exponentially discounted
by the factor xi(t). The decision to introduce such kind of weights was
driven by the following consideration. A user with a very high number
of followers identifies a person who is very popular on the social net-
works, an “influencer” in the extreme case. As a consequence, it may be
reasonable to think that she/he is less affected by other people’s posts
and, consequently, less prone to use “old” hashtags. For this user, the
average popularity of c in the inclusion probability pt,c should be less
relevant. On the contrary, a user with a low number of followers may be
more incline to follow the current trends and the others’ preferences and
choices. It is worthwhile to point out that in the definition of the weights,
we considered the number of followers of an user as fixed to the value
we observed at the end of the period of observation. In general, it may
change in time, depending on the changes in her/his network of “virtual
friendships”. However, we assume it to be constant because of the short
time span considered.

The performed analysis follows the outline explained in Section 4.4
(for the simulated matrices, all the considered quantities have been av-
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Figure 34: Instagram. Left: Plot of ln(Lt) as a function of ln(t), with the
power-law trend. The red dots refer to the real data and the black line gives
the theoretical regression line with slope β̂. Right: Asymptotic behavior
of the number of edges in the actions-features network. Red dots refer to
Et of the real data, while the black line shows 〈Et〉 obtained by the model
(averaging over R = 100 simulations).

eraged over R = 100 realizations of the model). We first estimate the
model’s parameters, obtaining the results in Table 11. The weighted pref-
erential attachment term (4.5) plays again an important role, but slightly
lower than in the previous cases, since the inclusion probability is ob-
tained with δ = 0.6%. Figure 34 provides in the left panel a log-log plot
of the cumulative count of new features (hashtags) as a function of time
(see the red dots), that clearly shows a power-law behavior. This agrees
with the theoretical property of the model stated in Appendix C, accord-
ing to which the power-law exponent has to be equal to the parameter
β. This fact is checked in the plot by the black line, whose slope is the
estimated value of the parameter β.

The goodness of fit of our model to the dataset has been evaluated
through the computation of the quantities (4.7) and (4.8). These results
are shown in Table 12 and Table 13. Table 12 shows that our model is per-
fectly able to reproduce the total number LT of features observed at the
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p p̂ p MSE(p)

α 37.895 37.843 4.516
β 0.5897 0.5900 7.89 · 10−5

δ with weights (4.14) 0.0063 0.0062 2.70 · 10−8

Table 11: Instagram: Estimation of the model parameters. The average
values p and the parameters’MSE are computed overR = 100 realizations
of the model. See Section 4.4 for further details.

Matrix (with T = 2151) LT σLT OT σOT NT σNT

real 5890 14.23 2.74
weights (4.14) 5885 42.39 13.56 0.24 2.74 0.02
weights = 1 5899 73.00 80.03 5.20 2.74 0.04

Table 12: Instagram. Comparison between real and simulated networks by
means of the indicators (4.7). We also include an estimate of the variations
around the average values through the computation of the sample standard
deviations. See Section 4.4 for further details.

end of the observation period T , as well as the average number of new
featuresNT in both the considered cases. The average number of old fea-
tures (i.e. the quantity OT ) shows a good agreement with the observed
quantity in the case of the model with the chosen weights, contrarily to
the model with all the weights equal to one for which we obtain a much
higher value. Also Table 13 indicates that the model with the chosen
weights shows a better performance than the one with all the weights
equal to one. More precisely, the values obtained for the indicator m2 are
almost the same for both cases (the average error on the total number of
arrived features is around 4%); while the most significant differences are
in the values of the indicator m1. Indeed, for the model with the chosen
weights, the computed values ofm1 range from 97% to 99%, pointing out
that a high percentage of the entries in the actions-features matrix have
been correctly inferred by the model. The differences are more evident
when we select the first c∗ features: indeed, with the chosen weights we
succeed to infer the values of at least 97% of the entries; while with all
the weights equal to 1 the percentage remains under 86%. This means
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weights (4.14) m1 m2

c∗ = 5890 (all observed features) 0.99 0.037
c∗ = 100 0.97
c∗ = 250 0.98
c∗ = 500 0.98

weights = 1 m1 m2

c∗ = 5890 (all observed features) 0.97 0.037
c∗ = 100 0.63
c∗ = 250 0.77
c∗ = 500 0.86

Table 13: Instagram. Comparison between real and simulated matrices by
means of the indicators (4.8). The first row of each table evaluates the indica-
tors on the whole matrix (c∗ = 5890), while the other rows show the results
computing the indicators only on the first c∗ (= 100, 250, 500) features.

that the major difference in the performance of the different considered
weights is in the first features, that are those for which the preferential
attachment term is more relevant.

In Table 14 we evaluate the predictive power of the model with the
chosen weights: we estimate the parameters of the model only on a sub-
set of the observed actions, respectively the 75%, 50% and 25% of the
total observations; we then predict the features for the “future” actions
{t∗+1, . . . , T} and compare the predicted and observed results by means
of the indicators in (4.9) over the whole set of features and only on a por-
tion of it. The indicator m∗1 ranges from 97% to 99%. Finally, in the right
panel of Figure 34, we provide the asymptotic behavior of the number of
edges in the actions-features network: more precisely, the red dots rep-
resent the total number Et of edges observed in the real actions-features
matrix at each time-step; while the continuous black line shows the mean
number 〈Et〉 of edges obtained averaging over R = 100 simulations of
the model with the chosen weights.
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weights (4.14) m∗1 m∗2

t∗ = 1613 and c∗ = 5890 0.99 0.006
t∗ = 1076 and c∗ = 5890 0.99 0.031
t∗ = 538 and c∗ = 5890 0.99 0.099

t∗ = 1613 and c∗ = 250 0.98
t∗ = 1076 and c∗ = 250 0.98
t∗ = 538 and c∗ = 250 0.97

Table 14: Instagram. Predictions on the actions-features matrix. The indica-
tors (4.9) are computed for different levels of information used as “training
set”: more precisely, the different t∗ correspond to 75%, 50% and 25% of
the set of the actions, respectively. Moreover, the indicators are computed
on the whole matrix (c∗ = 5890) and also taking into account only the first
c∗ = 250 features.

4.6.4 Summary of the results

In all the three cases we selected the weights depending on a fitness vari-
able. In the first two applications (IEEE and arXiv), the fitness variable
measures the “ability” of the agents (authors) to transmit the features
(keywords) of their actions (publications). In the third application (In-
stragram) the fitness variable quantifies the “inclination” of the agents
(users) to follow the features (hashtags) of the previous actions (posts).
From the performed analyses of the actions-features bipartite networks,
we get the following main common issues for the three applications:

• The preferential attachment rule plays a relevant role in the forma-
tion of the actions-features network, because of the small estimated
values obtained for the parameter δ. In particular, in the first two
applications, the estimated value of δ is very close to zero.

• The considered indicators (4.7), (4.8) and (4.9), and the plots regard-
ing the behavior in time of the total number of observed features Lt
and the total number of edges Et show a very good fit between the
model with the chosen weights and the real datasets. In particular,
the power-law behavior of Lt perfectly matches the theoretical one
with the estimated parameter β as the power-law exponent, and a
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high percentage of the entries of the actions-features matrix is suc-
cessfully inferred with the model. Moreover, a good performance
is also obtained when making a prediction analysis, i.e. testing the
percentage of the entries that are successfully recovered by the mo-
del providing it with different levels of information.

• With respect to the “flat weights”, i.e. all weights equal to 1, the
chosen weights guarantee a much better agreement with the real
actions-features matrices. Among the indicators in (4.7), the one
that mostly highlights this is OT . Moreover, the difference in the
performance of the model with different weights is also particu-
larly evident when we consider a subset of the overall set of ob-
served features for the computation of the indicators m1 in (4.8)
and m∗1 in (4.9). Indeed, the first features are those for which the
preferential attachment term is more relevant.

4.7 Discussion and conclusions

In this work we have presented our contribution to the stream of litera-
ture regarding stochastic models for bipartite networks formation. With
respect to the previous publications, our paper introduces some novel-
ties. First of all, given a system of agents, we are not interested in mod-
eling the process of link formation between the agents themselves, we
instead define a model that describes the activity of the agents, study-
ing the behavior in time of agents’ actions and the features shown by
these actions. This issue allows to amplify the range of possible applica-
tions, since we only assume to know the chronological order in which we
observe the agents’ actions, and not the order in which the agents arrive.
Second, we extend the concept of “preferential attachment with weights”
[29, 30] to this framework. The weights can have different shapes and
meaning according to the specific setting considered and play an impor-
tant role since the probability that a future action shows a certain feature
depends, not only on its “popularity” (i.e. the number of previous ac-
tions showing the feature) as stated by the preferential attachment rule,
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but also on some characteristics of the agents and/or the features them-
selves. For instance, the weights may provide information regarding the
“ability” of an agent to transmit the features of her/his actions to the fu-
ture actions, or the “inclination” of an agent to adopt the features shown
in the past.

Summarizing, we first provide a full description of the model dy-
namics and interpretation of the included parameters and variables, also
showing some theoretical results regarding the asymptotic properties of
some important quantities. Moreover, we illustrate the necessary tools in
order to estimate the parameters of the model and we consider three dif-
ferent applications. For each of them, we evaluate the goodness of fit of
the model to the data by checking the theoretical asymptotic properties
of the model in the real data, by comparing several indicators computed
both on the real and simulated matrices, as well as testing the ability of
the model as a predictive instrument in order to forecast which features
will be shown by future actions. All our analyses point out a very good
fit of our model and a very good performance of the adopted tools in all
the three considered cases.

Our model and the related analysis have been able to detect some
interesting aspects that characterize the different examined contexts. In
the first two applications (IEEE and arXiv) we examined the publications
in the scientific areas of Automatic Driving and of High Energy Physics
(briefly Hep-Th) and we took into account two kinds of fitness variables
for the authors: one based on the number of publications and the other
based on the number of collaborators. Our study reveals that, for Hep-
Th, both the number of publications of an author and the number of
her/his collaborators are able to provide a good agreement with real
data, while for Automatic Driving we found a better performance of the
model with the weights based on the number of publications. Probably
this difference is due to the fact that, while the Physics of High Energies
is quite an old subject in which different branches developed, Automatic
Driving is a much more recent, and so limited, research area. See for
example the observed values of T and LT , the number of publications
and the number of keywords in the considered period, that are much
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smaller for Automatic Driving than the ones observed for Hep-Th. The
behavior of on-line social networks is completely different: we examine
the dataset of Instagram, with posts considered as actions and hashtag
as features. We observed that the less followers a user has the higher the
number of “old” hashtag used. This could be related to the fact that less
popular users tend to re-use many “old” hashtags in order to increase
their visibility, while highly famous users do not feel the need of im-
proving their popularity and focus on few “old” hashtags only. Indeed,
this behavior shows a completely different role of the “on-line follower-
ship” relations respect to coauthorships: while collaborations incentive
the usage of a high number of existing features, the number of followers
takes to a limited usage of existing hashtags.
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Chapter 5

Conclusions

This work explores some of the many facets of social network analysis:
each chapter takes into account a different type of social network and is
based on appropriate tools to analyse it. We here summarize the main
topics this work has dealt with and the main findings of the manuscript.

Chapter 2 is focused on the analysis of rating networks. These graphs
are essentially bipartite networks of reviews, which nodes represent users
and the products they purchase on e-commerce websites, while the edges
are weighted by the numerical score assigned to the purchase. We first
provide a formal definition of these systems in terms of a network struc-
ture, then we deal with the problem of constructing a suitable null model
for their analysis. At first we extended the frameworks of the Weighted
Configuration Model and Erdös-Rényi Random Graph to the case of net-
works with a finite sequence of integer weights (i.e. the case considered
here). However, these tools turned out to be unsuitable to represent the
main topological quantities of these systems. Therefore, we proceeded
with the extension of the Configuration Model framework to the specific
case of rating networks, introducing the entire distribution of scores re-
ceived by a node as constraint of the problem. Essentially, the main nov-
elty of this approach is that we do not simply specify the overall score
received by a node but we constrain over the specific number of reviews
with a given rating. The introduction of this enlarged pool of constraints
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allows to build a more restrictive null model that is able to reproduce the
main topological quantities better than the analysed alternatives. More-
over, our method recovers the probability that a user positively or neg-
atively reviews a specific product in an unbiased way and without any
a-priori information regarding users’ habits. Therefore, this information
may be taken into account in future developments of recommendation
systems, in order to account for network topology and discount for the
tendency of a user to give a specific score-review to an item.

Chapter 3 instead deals with the topic of online social networks. We
have collected a dataset regarding the tweets posted during the last Ital-
ian elections that took place in March 2018. At first, since this kind of data
is not labeled (and a manual classification procedure would lead to a very
expensive work), we have exploited the way people consume the news
in order to identify groups of connected verified accounts. With this pro-
cedure we managed to classify the certified users in different coalitions,
that mostly overlap with the observed division in political parties. This
first kind of analysis highlights that, despite the data-driven approach
used to label the data, the users’ behaviour on the social networks pro-
vides some insights regarding one’s political opinion and point of view.
The same division has been extended also to non-verified accounts by
means of a polarization index that we define, that essentially counts
the amount of interactions towards each community. In this case our
analysis confirms the results already present in the literature regarding
this topic: users in online social network contexts tend to share contents
that reflect their pre-existing ideology while ignoring the conflicting ones
[89, 90, 91, 92, 93]. Finally, we propose a representation of the tweeting
and retweeting activity as a bipartite and directed network, that collects
users on one layer and tweets on the opposite one. In this graph, an
outgoing edge connecting a user to a tweet indicates that the account
has tweeted the post for the first time; a link in the opposite direction,
connecting instead a tweet to a user, indicates that the post has been
retweeted by the account at least once. A null model for this kind of
networks has been already presented in the literature by [104]; we briefly
review the methodology and then we employ this ensemble construction
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method to extend the projection and validation procedure presented in
[38] to the directed case. By doing so, in the resulting monopartite and
directed network of users we manage to identify the most prominent
content-sharers, that have been mostly retweeted during the observation
period. The obtained network reveals interesting topological structures
internal to the political coalitions, that also provide some insights regard-
ing future political alliances: indeed we detect a significant flow of tweets
between the Lega and M5S, the two political parties that built a coalition
after the election, to form a new government.

Finally, Chapter 4 analyses the two cases of collaboration networks [10]
and online social networks. More specifically, it presents a stochastic mo-
del that reproduces the activity of a set of users in a generic social net-
work. This element per se represents a novelty in this literature, since we
are not interested in modeling the formation of links among the users;
on the contrary, we only describe the evolution of the system involving
users’ actions and the features shown by these actions. Therefore the mo-
del does not require to know the order in which the actors appear, that
in many situations could be unknown or not relevant, but solely spec-
ifies the order in which the actions are performed. We introduce a rule
called “preferential attachment with weights” that partially regulates the
formation of links in the bipartite actions-features network: each action
can independently show a set of new features (not present in the sys-
tem when the action is performed) of adopt one of the already-existing
features. The choice of the old features is not only driven by the popular-
ity of such characteristics (i.e. the number of previous actions showing
them, that is the classical preferential attachment mechanism) but is also
affected by certain quantities, called “weights”, that take into account
some personal traits of the actions’ performers. These weights have var-
ious interpretations according to the considered settings: we provide
some possible examples, together with their interpretation. Moreover,
we show some theoretical properties of the model and introduce statis-
tical tools for the parameters’ estimation. Finally we apply the model to
three different datasets: two of them describe scientific collaboration in
different research fields (the arXive dataset for Theoretical High Energy
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Physics and the IEEE dataset for Automatic Driving), the third one in-
stead collects posts published on the online social network of Instagram.
For each case we specify the employed definition of weights and provide
a detailed description of the obtained results and their discussion.

In summary, this thesis deals with a very popular topic nowadays
that is the study of social networks: the approaches implemented for
their analysis are substantially different but equally relevant in their find-
ings to describe the systems in question. In broad terms, one aspect that
these chapters highlight is the importance of using benchmarks to ex-
tract information from an, otherwise very complicated, system. At first
we have provided an entropy-based model useful to describe bipartite
rating networks; then the construction of a suitable model for the social
network of Twitter manages to identify the significant content spread-
ers and shed light on the structural skeleton of this architecture. In both
cases considered in Chapters 2 and 3, the topology of the network, i.e. the
activity of the involved nodes, is solely employed to construct a reference
null-model. Therefore we may conclude that any significant behaviour
is detected discounting for the activity of nodes, net of the graph topology.
On the contrary the generative model presented in Chapter 4 considers a
wider range of elements to describe a system: the graph topology, i.e. the
information about nodes’ degrees summarized in the preferential attach-
ment rule, is enriched with additional ingredients, the weights, that take
into account some aspects of the actions’ performers or the actions them-
selves. In the considered cases we find good agreement in how the model
manages to describe and reproduce the system under analysis, therefore
we may consider these approaches to network modeling equally valu-
able, although extremely different in their nature. Another aspect that
is worth stressing the attention on is the temporal representation of the
network considered in the three chapters. On the one hand, the models
introduced in Chapters 2 and 3 only consider a snapshot representation
of the system, disregarding whether there has been a temporal evolution
of the network; on the other, the work in Chapter 4 observes the graph at
different instants, describing the evolution in time of the system.

In conclusion, while dealing with the analysis of social networks, this
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work provides an overview of different but complementary methodolo-
gies to describe these systems. The main differences reside in the “philos-
ophy” behind the model construction, i.e. whether the topology or other
nodes-related features may provide a more accurate benchmark, and in
the temporal representation of the graph. We have provided theoretical
tools and real-world applications of both cases and the obtained results
show that both these approaches turn out to be valuable in reproducing
several aspects of the systems under analysis.
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Appendix A

This Chapter provides the details regarding the development of each null
model used in Chapter 2. First of all we explain the passages of the Bipar-
tite Score CM computation. Then we proceed explaining the calculations
for all the proposed alternative models, i.e. the Weighted CM with trun-
cated sequence of possible weights, the Partial Score CM and Random
Graph CM. Finally, we show the results of some other performed analy-
ses that have not been included in the main body ofthe work.

A.1 Bipartite Score Configuration Model

The general formulation of the probability distribution over the ensem-
ble of graphs is given by

P (G|~ηβ , ~θβ) =
exp(−H(G, ~ηβ , ~θβ))

Z(~ηβ , ~θβ)
(A.1)

where the term H(G) is the Hamiltonian of the problem and Z is a nor-
malizing factor called partition function. Imposing the constraints on the
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degree sequence in the Hamiltonian formulation we get

H(G, ~ηβ , ~θβ) =
∑
β

(∑
i

ki,β(G) · ηi,β +
∑
α

kα,β(G) · θα,β

)

=
∑
β

(∑
i,α

mi,α,β ηi,β +
∑
i,α

mi,α,β θα,β

)
=
∑
β

∑
i,α

mi,α,β (ηi,β + θα,β) ,

(A.2)

meaning that we impose the degree values per ratings have to be pre-
served and be equal to their expected values in the ensemble. The com-
putation of the partition function returns instead

Z(~ηβ , ~θβ) =
∑
G∈G

exp
(
−
∑
β

∑
i,α

(ηi,β + θα,β)mi,α,β

)
=
∏
i,α

∑
G∈G

exp
(
−
∑
β

(ηi,β + θα,β)mi,α,β

)
=
∏
i,α

[
1 +

∑
β

exp (−ηi,β − θα,β)
] (A.3)

where the last step is justified by the fact that all mi,α,β are mutually ex-
clusive, so the presence of an edge with rating β̂ excludes all the others
(i.e. mi,α,β̂ = 1 implies mi,α,β = 0 for all β 6= β̂). Implementing equa-
tions (A.2) and (A.3) in (A.1) and using the substitution xi,β = e−ηi,β and
yα,β = e−θα,β we get (2.5), as follows

P (G|~x, ~y) =
∏
i,α

exp
(
−
∑
βmi,α,β (ηi,β + θα,β)

)
1 +

∑
β exp (−ηi,β − θα,β)

=
∏
i,α

∏
β (xi,β yα,β)

mi,α,β

1 +
∑
β xi,β yα,β

(A.4)

Finally, the log-likelihood in equation (2.8) can be obtained simply com-
puting L(~x, ~y|G∗) = logP (G∗|~x, ~y) while the system is obtained as the
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first order conditions of equation (2.8), as follows

∂L(~x, ~y|G∗)
∂ xi,β

=
ki,β(G∗)

xi,β
−
∑
α

yα,β
1 +

∑
β xi,β yα,β

= 0 for all i, β

∂L(~x, ~y|G∗)
∂ yα,β

=
kα,β(G∗)

yα,β
−
∑
i

xi,β
1 +

∑
β xi,β yα,β

= 0 for all α, β

(A.5)

Rearranging the terms in the previous equation (A.5) we immediately
obtain the analytical expression for the expected degree of each node,
that corresponds to the system in equation (2.9).

A.2 Bipartite Weighted Configuration Model with
truncated sequence of weights

We here propose a new formulation for the Weighted CM. We denote it
with the term truncated since, in the presented framework, the possible
weights assume integer values and only a finite range of weights are
allowed. Therefore, the CM formulation has to be modified accordingly.

The general formulation of the probability distribution over the en-
semble of graphs is given by

P (G|~η, ~θ) =
exp(−H(G, ~η, ~θ))

Z(~η, ~θ)
(A.6)

In this case, we need to impose the observed strength sequence as a con-
straint. By doing so, the expected strength of each node in the ensemble
is preserved equal to its observed value. Following the notation intro-
duced in Chapter 2, the strengths are defined as follows

si(G) =
∑
α

mi,α for all i ∈ L

sα(G) =
∑
i

mi,α for all α ∈ Γ (A.7)
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Therefore, the Hamiltonian of the problem reads as

H(G, ~η, ~θ) =
∑
i

si(G) · ηi +
∑
α

sα(G) · θα

=
∑
i,α

mi,α ηi +
∑
i,α

mi,α θα

=
∑
i,α

mi,α (ηi + θα) .

(A.8)

Using the substitution xi = e−ηi and yα = e−θα , the partition function
becomes

Z(~η, ~θ) =
∑
G∈G

exp
(
−
∑
i,α

mi,α (ηi + θα)
)

=
∏
i,α

∑
G∈G

exp
(
mi,α (ηi + θα)

)
=
∏
i,α

∑
mi,α

(xi yα)mi,α

=
∏
i,α

1− (xi yα)
βmax+1

1− xi yα
.

(A.9)

It is worth to notice that the last two passages hold since the scores are
mutually exclusive, therefore mi,α,β̂ = 1 implies mi,α,β = 0 for all β 6= β̂.
Implementing equations (A.8) and (A.9) into (A.6) we obtain the follow-
ing probability distribution over the graphs ensemble

P (G|~x, ~y) =
∏
i,α

(1− xi yα)(xi yα)mi,α

1− (xi yα)βmax+1
. (A.10)

where the terms

pi,α,β =
(1− xi yα)(xi yα)β

1− (xi yα)βmax+1
. (A.11)

represent the probability to observe a link with rating β between nodes
i and α. Notice that the previous equation (A.11) identifies a truncated
geometric distribution with parameter xi yα and β ∈ {1, . . . , βmax}. The
log-likelihood of the problem can be obtained asL(~x, ~y|G∗) = logP (G∗|~x, ~y)
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and takes the following form

L(~x, ~y|G∗) =
∑
i

si(G
∗) log(xi) +

∑
α

sα(G∗) log(yα)

+
∑
i,α

log(1− xi yα)−
∑
i,α

log
[
1− (xi yα)βmax+1

]
.

(A.12)

Taking the partial derivatives of the log-likelihood we get

∂L(~x, ~y|G∗)
∂xi

=
si(G

∗)

xi
−
∑
α

yα
1− xi yα

+
∑
α

(βmax + 1)yα(xi yα)βmax

1− (xi yα)βmax+1

∂L(~x, ~y|G∗)
∂yα

=
sα(G∗)

yα
−
∑
i

xi
1− xi yα

+
∑
i

(βmax + 1)xi(xi yα)βmax

1− (xi yα)βmax+1

(A.13)

for all i ∈ L and α ∈ Γ. Setting the previous equations equal to zero and
rearranging the terms we easily obtain an analytical expression for the
expected strength sequence

si(G
∗) =

∑
α

xi yα
[
βmax(xi yα)βmax+1 − (βmax + 1)(xi yα)βmax + 1

]
(1− xi yα) [1− (xi yα)βmax+1]

sα(G∗) =
∑
i

xi yα
[
βmax(xi yα)βmax+1 − (βmax + 1)(xi yα)βmax + 1

]
(1− xi yα) [1− (xi yα)βmax+1]

(A.14)

for all i ∈ L and α ∈ Γ.

A.3 Bipartite Partial Score Configuration Model

In this section we provide a less-constrained version of the Bipartite Score
CM, called for this reason Partial Score CM. Instead of constraining on
the entire observed degree sequence, we only impose as constraints the
empirical degree sequence observed in one of the layers, for each rating
level.
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The probability distribution over the ensemble of graphs is given by

P (G|~ηβ) =
exp(−H(G, ~ηβ))

Z(~ηβ)
(A.15)

and the expression for the Hamiltonian reads as follows

H(G, ~ηβ) =
∑
i,β

ki,β(G) · ηi,β =
∑
β

∑
i,α

mi,α,β ηi,β (A.16)

Notice that in the previous equation (A.16) we include the sequence {ki,β}i∈L
for all β as constraints of the problem, that represents the degree se-
quence for nodes in L for each score level. The Hamiltonian is equiv-
alently defined with the degree sequence on the other layer Γ. The parti-
tion function of the problem is instead

Z(~ηβ) =
∑
G∈G

exp
(
−
∑
β

∑
i,α

mi,α,β ηi,β

)
=
∏
i,α

∑
G∈G

exp
(
−
∑
β

mi,α,β ηi,β

)
=
∏
i,α

[
1 +

∑
β

exp(−ηi,β)
] (A.17)

Again, the last passage is justified by the fact the all betas are mutually
exclusive. Plugging equations (A.16) and (A.17) into (A.15) and using
the substitution e−ηi,β = xi,β we obtain the following probability distri-
bution over the graphs ensemble

P (G|~x) =
∏
i,α

exp
(
−
∑
βmi,α,β ηi,β

)
1 +

∑
β exp(−ηi,β)

=
∏
i,α

∏
β (xi,β)

mi,α,β

1 +
∑
β xi,β

=
∏
i

∏
β (xi,β)

ki,β(
1 +

∑
β xi,β

)NΓ

(A.18)

where the single terms

pi,β =
xi,β

1 +
∑
β xi,β

=
ki,β
NΓ

(A.19)
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simply identifies the probability to observe a link with score β incident
to node i and coincides with the empirical frequency observed for score
β. Notice that the previous probability in equation (A.19) is invariant for
α ∈ Γ. Therefore, each edge (i, α) with score β can be observed with
constant probability for all α ∈ Γ. As in the previous cases, the log-
likelihood of the problem can be obtained as L(~x|G∗) = logP (G∗|~x) and
takes the following expression

L(~x|G∗) =
∑
i,β

ki,β(G∗) log(xi,β)−
∑
i

NΓ log
(

1 +
∑
β

xi,β

)
(A.20)

Finally, the First Order Conditions of equation (A.20) are

∂L(~x|G∗)
∂xi,β

=
ki,β(G∗)

xi,β
− NΓ

1 +
∑
β xi,β

= 0 for all i, β (A.21)

and rearranging the terms we immediately obtain the analytical expres-
sion for the expected degrees, as

ki,β(G∗) =
NΓ xi,β

1 +
∑
β xi,β

= 〈ki,β〉 for all i, β. (A.22)

In other words, the expected number of links with score β incident to
node i can be obtained multiplying the number of nodes on layer Γ by
the probability to observe an edge with score β.

A.4 Bipartite Score Random Graph

In the last section we propose a generalisation of the Random Graph
CM adapted to the case of rating networks. In this case, the entropy
is maximised under the set of constraints specifying the total number of
edges observed for each score level, denoted as Eβ .

Again, the probability distribution over the ensemble is given by

P (G|~θ) =
exp

(
−H(G, ~θ)

)
Z(~θ)

(A.23)
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where the Hamiltonian of the problem is given by

H(G, ~θ) =
∑
β

θβ · Eβ(G) =
∑
β

θβ
∑
i,α

mi,α,β (A.24)

Notice that the observed number of edges for each rating level is pre-
served in the ensemble, i.e. is fixed equal to its expected value. The par-
tition function takes the form

Z(~θ) =
∑
G∈G

exp
(
−
∑
β

θβ
∑
i,α

mi,α,β

)
=
∏
i,α

∑
G∈G

exp
(
−
∑
β

θβmi,α,β

)
=
∏
i,α

[
1 +

∑
β

exp (−θβ)
] (A.25)

Again, the last two passages hold since the score levels are mutually ex-
clusive. Plugging equations (A.24) and (A.25) into (A.23) and using the
substitution e−θβ = xβ we obtain the following expression for the prob-
ability distribution over the ensemble of graphs

P (G|~x) =
∏
i,α

exp
(
−
∑
β θβmi,α,β

)
1 +

∑
β exp (−θβ)

=
∏
i,α

∏
β (xβ)

mi,α,β

1 +
∑
β xβ

=

∏
β (xβ)

Eβ(
1 +

∑
β xβ

)NLNΓ

(A.26)

where the terms
pβ =

xβ
1 +

∑
β xβ

=
Eβ

NLNΓ
(A.27)

denotes the probability to observe a link of score β between any pair
of nodes. Notice that the previous probability is invariant for all pairs
of nodes and coincides with the empirical frequency of observed edges
for the considered rating. As in the previous cases, the log-likelihood
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associated to equation (A.26) can be computed asL(~x|G∗) = logP (G∗|~x)

and in this case takes the following form

L(~x|G∗) =
∑
β

Eβ(G∗) log(xβ)−NLNΓ log
(

1 +
∑
β

xβ

)
(A.28)

The First Order Conditions associated to equation (A.28) can be com-
puted as

∂L(~x|G∗)
∂xβ

=
Eβ(G∗)

xβ
− NLNΓ

1 +
∑
β xβ

= 0 for all β (A.29)

and rearranging the terms we can easily obtain the analytical expression
for the expected number of edges

Eβ(G∗) =
NLNΓ xβ

1 +
∑
β xβ

= 〈Eβ〉 for all β (A.30)

In other words, the expected number of edges with rating β can be ob-
tained simply multiplying the total number of possible links NLNΓ by
the probability to observe a link with score β.

A.5 Further analyses of higher topological quan-
tities: positive reviews only

In order to check the capability of the model of reproducing just positive
ratings, we use a threshold score βth to construct a binarized version
of the original matrix, Mo = {mo

i,α : i ∈ L,α ∈ Γ}. In this case the
matrix entries can assume valuesmo

i,α ∈ {1, 0}. However, while the entry
mo
i,α = 1 indicates the presence of a positive (i.e. βth ≤ β ≤ βmax) review

in the original data, the other value mo
i,α = 0 is used for both the absence

of a link and the presence of a negative review (i.e. 1 ≤ β < βth). The
associated probability matrix is indicated as 〈Mo〉, which entries

〈
mo
i,α

〉
represent the probability to observe a score greater than the threshold
from user i to node α. In this setting, we use the standard definition of
node degrees,

ki(M
o) =

∑
α

mo
i,α for all i ∈ L
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and the correlation between neighbors’ degrees is studied with the clas-
sical definition of average-nearest-neighbour degree,

knni (Mo) =

∑
α

∑
jm

o
i,αm

o
j,α∑

αm
o
i,α

for all i ∈ L.

The results are presented in Figures 35-37. For these applications we have
considered βth = 3. In all cases our method is perfectly able to iden-
tify the data’s overall trend. Despite few observations still lie outside
the confidence region, we can state that the correlation between neigh-
bors’ degrees may be interpreted as a consequence of the network topol-
ogy, whenever the full distribution of received scores is specified in the
null model construction. On the other hand, the other ensembles sig-
nificatively underestimate the observed traces (PCM and RG for all the
datasets, WCM only for the Amazons’), leading to the conclusion that
their underlying constraints are not significatively explanatory to repro-
duce the present assortativity patterns.
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Figure 35: Application of the method to the MI network. All plots represent
knni versus ki. Red lines show the expectation values computed with our
method. Magenta, blue and green lines are instead the expectation values
under WCM, PCM and Erdös-Rényi RG. The area of±2 standard deviations
around the average value is represented in dashed linestyle.
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Figure 36: Application of the method to the SM network. All plots represent
knni versus ki. Red lines show the expectation values computed with our
method. Magenta, blue and green lines are instead the expectation values
under WCM, PCM and Erdös-Rényi RG. The area of±2 standard deviations
around the average value is represented in dashed linestyle.
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Figure 37: Application of the method to the DM network. All plots repre-
sent knni versus ki. Red lines show the expectation values computed with
our method. Magenta, blue and green lines are instead the expectation val-
ues under WCM, PCM and Erdös-Rényi RG. The area of ±2 standard devi-
ations around the average value is represented in dashed linestyle.
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Appendix B

This Chapter collects additional information that were not included into
the main body of Chapter 3, in order to ease the presentation of the re-
sults. First we review the steps employed to construct an entropy-based
null model for a bipartite and directed network, as presented in [104].
Then we provide additional figures and tables, with relative captions,
not included in the main body of the Chapter.

B.1 Bipartite Directed Configuration Model

As mentioned in Chapter 3, we represent the tweeting and retweeting ac-
tivity by means of a bipartite and directed network G∗BiD = (U,P, T ,R),
that collects users and tweets in the two layers. Using the same notation
as in Section 3.3.3, an outgoing edge (i, p) ∈ T indicates that user i has
tweeted post p on the online social network, while an edge in the oppo-
site direction (p, j) ∈ R shows that j 6= i has retweeted the same post at
least once during the election days.

The authors in [104] show that the structure of one bipartite and di-
rected network can be entirely described with two biadjacency matrices,
one for the tweets, i.e. the matrix T∗, and another for the retweets, i.e. the
matrix R∗, that are the two off-diagonal blocks of the matrix in equa-
tion (3.4). At this point, the two bipartite simple networks can be sepa-
rately randomized by means of the standard Bipartite Configuration Mo-
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del [36]. We sketch the passages here in order to introduce the notation.
Let

H(T, ~η, ~θ) =
∑
i∈U

ηi k
out
i +

∑
p∈P

θp k
in
p

=
∑
i,p

(ηi + θp)ti,p

be the Hamiltonian of the problem for the biadjacency matrix of the
tweets T∗, in which we have imposed a set of constraints on the out-
going degrees of the users and the in-going degrees of the tweets. Es-
sentially, those two quantities represent the number of tweets posted by
a single user and the number of authors of a tweet. In the main text we
have described how this second quantity is trivially equal to one for all
posts and the consequences of this simplification. However, herefrom
we keep the notation general. The parameters of the problem (~η, ~θ) have
respectively dimension NU and NP .

A similar expression can be obtained for the biadjacency matrix of the
retweets R∗, but in this case the two alternative quantities kini and koutp

need to be fixed, representing respectively the number of retweets per-
formed by a user and received by a tweet. In this case the Hamiltonian
of the problem is the following

H(R, ~η ′, ~θ ′) =
∑
i′∈U

η′i′ k
in
i′ +

∑
p′∈P

θ′p′ k
out
p′

=
∑
i′,p′

(η′i′ + θ′p′)rp′,i′

The partition function for the matrix T∗ is given by

Z(~η, ~θ) =
∑
T

exp
[
−
∑
i,p

(ηi + θp)ti,p

]
=
∏
i,p

∑
T

exp [−(ηi + θp)ti,p]

=
∏
i,p

[1 + exp(ηi + θp)]
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Therefore, the probability distribution over the ensemble of bipartite graphs
can be expressed as

P (T|~η, ~θ) =
∏
i,p

exp [−(ηi + θp)ti,p]

1 + exp(−ηi − θp)

=
∏
i,p

(ziζp)
ti,p

1 + ziζp

=
∏
i,p

q
ti,p
i,p (1− qi,p)1−ti,p

(B.1)

where the terms

qi,p =
ziζp

1 + ziζp

represent the probability to observe the directed link (i, p) and are ob-
tained after the substitution exp(−ηi) = zi and exp(−θp) = ζp.
Analogously, starting from the expression of the Hamiltonian for the bi-
partite graph R∗, the following partition function can be recovered

Z(~η ′, ~θ ′) =
∑
R

exp
[
−
∑
i′,p′

(η′i′ + θ′p′)rp′,i′
]

=
∏
i′,p′

∑
R

exp
[
−(η′i′ + θ′p′)rp′,i′

]
=
∏
i′,p′

[
1 + exp(η′i′ + θ′p′)

]
while the proability distribution over this second ensemble of bipartite
graphs can be expressed as

P (R|~η ′, ~θ ′) =
∏
i′,p′

exp
[
−(η′i′ + θ′p′)rp′,i′

]
1 + exp(−η′i′ − θ′p′)

=
∏
i′,p′

(z′i′ζ
′
p′)

rp′,i′

1 + z′i′ζ
′
p′

=
∏
i′,p′

(q′p′,i′)
rp′,i′ (1− q′p′,i′)1−rp′,i′

(B.2)
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where, as in the previous case, the terms

q′p′,i′ =
z′i′ζ
′
p′

1 + z′i′ζ
′
p′

represent the probability to observe the directed link (p′, i′) and are ob-
tained after the substitution exp(−η′i′) = z′i′ and exp(−θ′p′) = ζ ′p′ .
Therefore, as stated in Chapter 3, the product of the two terms in equa-
tions (B.1) and (B.2) leads to the full expression of the probability distri-
bution defined over the ensemble of bipartite and directed graphs, pro-
vided in equation (3.5). It is worth noticing that the two vectors of multi-
pliers ~z and ~z ′ (and equivalently for ~ζ and ~ζ ′) are associated to the same
set of nodes in the two models, i.e. the set of users (tweets). However, the
different notation is due to the fact that different constraints are imposed
in the two frameworks.

In order to determine a numerical value for the involved Lagrangian
multipliers, the following log-likelihood functions need to be maximized

L(~z, ~ζ|T∗) =
∑
i

kouti (T∗) ln(zi) +
∑
p

kinp ln(ζp)−
∑
i,p

ln (1 + ziζp)

L(~z ′, ~ζ ′|R∗) =
∑
i′

kini′ (R∗) ln(z′i′) +
∑
p′

koutp′ (R∗) ln(ζ ′p′)−
∑
i′,p′

ln
(
1 + z′i′ζ

′
p′
)

(B.3)

or, equivalently, one needs to choose the values (~z∗, ~ζ∗) and ((~z ′)∗, (~ζ ′)∗)

that solve the following systems of coupled equations

〈kouti 〉 =
∑
p∈P

qi,p = kouti (T∗) ∀i ∈ U

〈kinp 〉 =
∑
i∈U

qi,p = kinp (T∗) ∀p ∈ P
(B.4)

and

〈kini′ 〉 =
∑
p′∈P

q′p′,i′ = kini′ (R∗) ∀i′ ∈ U

〈koutp′ 〉 =
∑
i′∈U

q′p′,i′ = koutp′ (R∗) ∀p′ ∈ P
(B.5)
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B.2 Additional Tables and Figures

Figure 38 represents the distribution of the polarization values observed
for users with the same number of interactions. Also in this case, the
distribution is skewed towards the higher values, indicating a focus to-
wards the same group of users.

Table 15 represents a list of the most central users in the validated net-
work of verified users.

Tables 16 and 17 provide a list of the most retweeted users in the pro-
jected network of retweets, while Tables 18 and 19 list the most active
users in terms of retweeting posts.

Figure 38: Distribution of the polarization indices, conditioned on the total
number of interactions observed for each users.
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community users centrality index
la Repubblica 0.0532
Agenzia ANSA 0.0382
Il Fatto Quotidiano 0.0300
Sky TG24 0.0292
Corriere della Sera 0.0285
YouTrend 0.0247
Rainews 0.0228
Peter Gomez 0.0152
Il Post 0.0142
IlSole24ORE 0.0137
Matteo Renzi 0.0133
Tg La7 0.0124
Ferruccio de Bortoli 0.0117
Marco Castelnuovo 0.0104
Internazionale 0.0100
Il Foglio 0.0100
Lorenzo Pregliasco 0.0095
Confindustria 0.0093
Agi Agenzia Italia 0.0086
Vittorio Zucconi 0.0085
Selvaggia Lucarelli 0.0072
Pietro Grasso 0.0071
Tgcom24 0.0069
Partito Democratico 0.0067
diMartedı̀ 0.0066
La Stampa 0.0066
Stefano Feltri 0.0066
L’Espresso 0.0065
Giuseppe Smorto 0.0063
Ficarra e Picone 0.0062
Rai Radio1 0.0061
Il Viminale 0.0061
Ezio Mauro 0.0057
Movimento 5 Stelle 0.0057
Anna Ascani 0.0055
insopportabile 0.0055
Agenzia DIRE 0.0054
Matteo Salvini 0.0053
Fabio Chiusi 0.0052
Riccardo Puglisi 0.0052
Luca Tentoni 0.0051
Paolo Attivissimo 0.0045
RTL 102.5 0.0045
Franz Russo 0.0044
Matteo Pedrosi 0.0042
Marco Travaglio 0.0041
trashitaliano.it 0.0041
Tommaso Labate 0.0040
Giorgio La Porta 0.0040
Sebastiano Messina 0.0038

Table 15: List of the most central users in the validated network of verified
users. The coloured dot left to the name indicates the political affiliation of
the user according to our division in community.
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Community Community
Il Fatto Quotidiano 3 la Repubblica 3
Peter Gomez 3 Agenzia ANSA 3
Non Voto il PD trashitaliano.it 3
Elio Lannutti Sky TG24 3
Manlio Di Stefano 3 YouTrend 3
Kid Stardust Corriere della Sera 3
Marco Travaglio 3 Il Post 3
Antonio Bordin Rainews 3
Ficarra e Picone 3 Tg La7 3
Movimento 5 Stelle 3 Pietro Grasso 3
dukana Rolling Stone Italia 3
Damiano Repubblica Tv
Sere Vuole Votare sheldøn
luisella costamagna Paola.
Arsenale K Fran Altomare 3
Selvaggia Lucarelli 3 Homme à projets
Emilio Carelli Tg2
Ferruccio de Bortoli 3 Rai Radio2 3
sicut vuole votare Alessandro Masala 3
carlo sibilia 3 Giuseppe Civati 3
Luca Miniero Donna Chisciotte
Commentatore Libero Alessandro Alciato 3
Nicola Morra 3 Daniela Collu 3

Table 16: Following the approach of [78] we build the monopartite and
directed network of retweets, in which an edge (i, j) indicates that j has
retweeted i at least once. Then we select the directed subgraph generated
by each community and here we report the list of the most retweeted users
within the subgraphs of M5S and information channels communities. The
symbol 3next to the name indicates that the account has been verified.

173



Community Community
Matteo Renzi 3 Matteo Salvini 3
Partito Democratico 3 Claudio Borghi A. 3
Vittorio Zucconi 3 Giorgio La Porta 3
Claudio Cerasa Giorgia Meloni 3
Eugenio Cardi Silvio Berlusconi 3
IlSole24ORE 3 Dr. Alice Weidel 3
Sebastiano Messina 3 Patrizia Rametta
Alessia Morani 3 Forza Italia 3
Il Foglio 3 Lega - Salvini Premier 3
Pietro Raffa 3 CasaPound Italia
jacopo iacoboni Barbara Raval
Riccardo Magi 3 Simone Di Stefano
Daniele Cinà Renato Brunetta 3
mattia feltri 3 Ale
Lorenzo Pregliasco 3 Alessandro Meluzzi
Anna Ascani 3 SONIA GROTTO
ConteZero Fratelli d’Italia 3
Internazionale 3 Tgcom24 3
Carlo Calenda 3 Gruppo FI Camera 3
Marco Castelnuovo 3 Annagrazia Calabria
Davide Serra 3 ForzaItalia ELEZIONI
Marco Cappato 3 Luca Battanta
insopportabile 3 angelo ra

Table 17: Following the approach of [78] we build the monopartite and
directed network of retweets, in which an edge (i, j) indicates that j has
retweeted i at least once. Then we select the directed subgraph generated
by each community and here we report the list of the most retweeted users
within the subgraphs of left- and right-leaning communities. The symbol
3next to the name indicates that the account has been verified.
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Community Community
Demian Yexil GIOVANNI PANARIELLO
Salvatore Cos. pulcedacqua
marino29b Dome Buratti
Stefjazz Beatrice Gallo
A MARZO ABBIAMO IL DOVERE DI VOTARLI VIA max
Maria AriWelcome
Luisa Loffredo Ito
Massimo c h i a r a •
Serenella Gio B.
Libellula Benevolence
Sergio Magugliani Marco Borrano
Sherlock5Stelle giuliana •
MAURIZIO Apudte
Ori Davide Segat •
jan Quisque de populo
marinella Andrea Lisimberti
sonia oliva Monica
CELESTINO N. Pio Bove
Claudio Cocchi l¡sa
Elisabetta Prighel Torakjkj #iosonoantifascista
Vincenzo Lentini ariadne
tagliamoglilatestfivestars 7 s.
ANDREA ZANETTIN Debora

Table 18: Following the approach of [78] we build the monopartite and
directed network of retweets, in which an edge (i, j) indicates that j has
retweeted i at least once. Then we select the directed subgraph generated
by each community and here we report the list of the most retweeting users
within the subgraphs of M5S and information channels communities. The
symbols 3, 7 and • next to the name respectively indicate that the account
has been verified, suspended or has not been found by the Twitter API.
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Community Community
Conci ForzaItalia ELEZIONI
Daniele Dellavedova Marcello Menna
Anna Iesu GUI
carla martinelli Forza Italia
Paolo Re maria
vilma d’ippolito Simona F.
ser -get-to Alessandro Ritacco
Davide Scotti SONIA GROTTO
mamma orsa Grazia
Roberto Locatelli Nando
Mariarita Martegiani Nando4cats
ranocchia mariuccia frigerio
aleteja Paolo Caminiti
Maurizio SÌ Gruppo FI Camera
broncos 71 Forza Italia Online 7
Amaro Elena 7
Angelina Scanu #antifascista #il4marzovotoPD Forza Italia Roma
Annalisa ILoveBlack
1N0 Qualunque mari
Lia FI Veneto ELEZIONI
Brutus patrizia gatto
bb Il Mattinale
Mitı̀ Vigliero Simone Furlan

Table 19: Following the approach of [78] we build the monopartite and
directed network of retweets, in which an edge (i, j) indicates that j has
retweeted i at least once. Then we select the directed subgraph generated
by each community and here we report the list of the most retweeting users
within the subgraphs of left- and right-leaning communities. The symbols
3, 7 and • next to the name respectively indicate that the account has been
verified, suspended or has not been found by the Twitter API.
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Appendix C

This Chapter provides some theoretical results regarding the stochastic
model presented in Chapter 4. First, in Sections C.1 and C.2, we de-
scribe the asymptotic behavior of the total number of features along time
and we show some analytical findings regarding the asymptotic behav-
ior of the mean number of edges in the actions-features bipartite net-
work. Then, in Section C.3, we provide some statistical tools in order to
estimate the parameters of the model. Finally, in the last Section C.4, we
illustrate the employed data cleaning procedure.

C.1 Asymptotic behaviour of the total number
of features

The random variable Lt =
∑t
j=1Nj , that represents the total number of

features present in the system at time-step t, has the following asymp-
totic behaviors as t→ +∞:

a) for β = 0, we have a logarithmic behavior of Lt, that is Lt/ ln(t)→
α almost surely;

b) for β ∈ (0, 1], we obtain a power-law behavior, i.e. Lt/tβ → α/β

almost surely.

The proof of these two statements is exactly the same as in [127], since
the weights do not affect Lt.
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C.2 Asymptotic behaviour of the mean number
of edges

We here analyze the asymptotic behaviour of 〈Et〉 = E[Et], where Et is
the total number of edges in the actions-features network at time-step t,
that is the total number of ones in the matrix M until time-step t. A first
remark is that we have

Et =

t∑
u=1

∑
c:Tc=u

kc,t, (C.1)

where we denote by Tc the arrival time-step of feature c and

kc,t =

t∑
j=1

mj,c = 1 +

t∑
j=Tc+1

mj,c (C.2)

is the degree of feature c at time-step t. Hence, we can write

E[Et|Tc ∀c with Tc ≤ t] =

t∑
u=1

card({c : Tc = u}) E[kc,t|Tc = u]

=

t∑
u=1

NuE[kc,t|Tc = u],

(C.3)

where we recall that Nu is Poi(λu)-distributed with λu = α/u1−β . In the
following subsections, we go further with the computations in the two
extreme cases δ = 1 and δ = 0 since the behaviour for a general δ is
a mixture of the two previous ones. A graphical representation of the
evolution of 〈Et〉 in the considered cases is provided in Figures 39 and
40, where the values are averaged over a sample of R = 100 simulations.

The case δ = 1

In this case the inclusion probability of a feature c at time-step t simply

is pt,c =
1

2
. Therefore, since (C.2), we have

E[kc,t|Tc = tc] = 1 +
t− tc

2
∼ t/2.
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Hence, by (C.3) and the above approximation, we can approximate 〈Et〉
by the quantity

t

2

t∑
u=1

λu =
αt

2

t∑
u=1

uβ−1 ∼ αt1+β

2β
. (C.4)

The case with δ = 0 and the weights equal to a constant

Let us assume δ = 0 and wt,j,c equal to a constant w ∈]0, 1] for all j, c, t,
so that the inclusion probability of a feature c at time-step t is

pt,c =
kc,t−1

t
w.

Let us set 〈kc,t〉 = E[kc,t|Tc = tc] and observe that we have

〈kc,t〉 =1 + w

t∑
τ=tc+1

〈kc,τ−1〉
τ

=1 + w

[
t−1∑

τ=tc+1

〈kc,τ−1〉
τ

+
〈kc,τ−1〉

t

]

=1 + w

t−1∑
τ=tc+1

〈kc,τ−1〉
τ

+
w

t

[
1 + w

t−1∑
τ=tc+1

〈kc,τ−1〉
τ

]

=
(

1 +
w

t

)[
1 + w

t−1∑
τ=tc+1

〈kc,τ−1〉
τ

]
= · · ·

=
(

1 +
w

t

)(
1 +

w

t− 1

)
· · ·
(

1 +
w

tc + 1

)
=
tc!

t!
· (t+ w) · (t− 1 + w) · · · (tc + 1 + w)

=
tc!

t!
· (t+ w) · (t− 1 + w) · · · (tc + 1 + w) · (tk + w) · · · (w + 1) · w

(tc + w) · · · (w + 1) · w
.

Using the properties of the Γ-function, we can write

〈kc,t〉 =
tc!

t!

Γ(t+ w + 1)!

Γ(tc + w + 1)!
=

Γ(tc + 1)

Γ(t+ 1)

Γ(t+ w + 1)!

Γ(tc + w + 1)!
∼
( t
tc

)w
. (C.5)
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Therefore, by (C.3) and the above approximation, we can approximate
〈Et〉 by the quantity

t∑
u=1

λu
tw

uw
= αtw

t∑
u=1

uβ−w−1

∼

αt
β ln(t) if w = β,

α

β − w
(tβ − tw) ∼ αtmax{w,β}

|w − β|
if w 6= β.

(C.6)

Remark: It is worthwhile to note that in the case of weights of the form
wt,j,c = wt for all j, c, t, where the random variables wt take values in
[0, 1], are identically distributed with mean value equal to µw, and each
of them is independent of all the past until time-step t−1, we get for 〈Et〉
the same asymptotic behavior as above, but with w = µw.

The case with δ = 0 and the weights depending only on c

Let us assume δ = 0 and wt,j,c = wc for all j, c, t, where the random vari-
ables wc take values in [0, 1], are independent and identically distributed
with probability density function ρ, and each of them independent of the
arrival time-step Tc of the feature. Moreover, we focus on the case β < 1,
that is more interesting then the case β = 1. In this case the inclusion
probability is

pt,c =
kc,t−1

t
wc.

Using the same computations done above, we get

E[kc,t|Tc = tc, wc] ∼
( t
tc

)wc
and so we can approximate E[kc,t|Tc = tc] by

∫ 1

0

(
t

tc

)w
ρ(w) dw. Hence,

using (C.3), we can approximate 〈Et〉 by

t∑
u=1

λu

∫ 1

0

(
t

u

)w
ρ(w)dw =

∫ 1

0

tw
t∑

u=1

λuu
−wρ(w)dw =

α

∫ 1

0

tw
t∑

u=1

u−(w−β+1)ρ(w)dw = αtβ
∫ 1

0

tw−β − 1

w − β
ρ(w)dw.

(C.7)
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Therefore the asymptotic behavior of 〈Et〉 depends on the asymptotic
behavior of the above integral. In the sequel we analyze the case of the
uniform distribution and the one of the “truncated” exponential distri-
bution. To this purpose, we employ the Exponential integral

Ei(y) = −
∫ +∞

−y

e−x

x
dx =

∫ y

−∞

ev

v
dv,

which has the property limy→+∞
ey

yEi(y) = 1.

Example. Uniform distribution on [0, 1]

If ρ(w) = 1, ∀w ∈ [0, 1] and equal to zero otherwise, we can compute the
above integral and approximate 〈Et〉 by

αtβ

{∫ (1−β) ln(t)

−β ln(t)

ev

v
dv −

∫ 1−β

−β

1

v
dv

}

= αtβ
{

Ei[(1− β) ln(t)]− Ei[−β ln(t)] + ln
( β

1− β

)} (C.8)

Using the asymptotic properties of the Exponential integral, we find that
the above quantity behavies for t→ +∞ as

αt

(1− β) ln(t)
.

Example. Exponential distribution on [0, 1]

If ρ(w) = e1−w/(e − 1) for w ∈ [0, 1] and equal to zero otherwise, the
computation of the above integral leads to the approximation for 〈Et〉
given by

αe1−β

(e− 1)
tβ

{
−
∫ 1−β

−β

e−x

x
dx+

∫ (1−β)(ln(t)−1)

−β(ln(t)−1)

ev

v
dv

}

=
αe1−β

(e− 1)
tβ
{

Ei[β]− Ei[−(1− β)] + Ei[(1− β)(ln(t)− 1)]− Ei[−β(ln(t)− 1)]
}
.

(C.9)

Using the asymptotic properties of the Exponential integral, we find that
the asymptotic behavior for t→ +∞ of the above quantity is given by

αt

(e− 1)(1− β) ln(t)
.
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C.3 Estimation of the model parameters

We here provide some statistical tools in order to estimate the parameters
of the model introduced in Chapter 4.

The parameters α and β

The parameters α and β can be estimated using a maximum likelihood
method, that is maximizing the probability to observe the given sequence
of new features introduced in the system. More precisely, if we ob-
serve a number of T actions, we maximize the probability to observe
{N1 = n1, N2 = n2, . . . , NT = nT }. Since all the random variables Nt are
assumed independent Poisson distributed, we have

P (N1 = n1, . . . , NT = nT ) = P (N1 = n1)

T∏
t=2

P (Nt = nt)

= P (N1 = n1 = card{c : m1,c = 1})×

×
T∏
t=2

P (Nt = nt = card{c > Lt−1 : mt,c = 1})

= Poi(α){n1}
T∏
t=2

Poi (λt) {nt}.

(C.10)

Hence, we choose as estimates the pair (α̂, β̂) that maximizes function
(C.10), or equivalently its log-likelihood expression

ln (Poi(α){n1}) +

T∑
t=2

ln (Poi (λt) {nt}) .

The parameter δ

An estimate for the parameter δ is obtained maximizing the probability
to observe the given actions-features matrix, i.e. maximizing the prob-
ability to observe the given biadjacency matrix rows {M1 = m1,M2 =
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Figure 39: Evolution of 〈Et〉, i.e. the mean number of edges along time.
From top-left to bottom we have the cases: δ = 1 and weights equal to 1;
δ = 0 and weights equal to a constant w (the blue triangles represent the
case with w 6= β, while the red dots show the case w = β); δ = 0 and
weights depending only on t with uniform distribution on [0, 1] (the blue
triangles show the case with the mean value µw 6= β, while the red dots
describe the case with µw = β). All simulations have been performed with
α = 30 and β = 0.6 (unless otherwise specified in the legend).
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Figure 40: Evolution of 〈Et〉, i.e. the mean number of edges along time. The
Figure correspond to the case of δ = 0 and weights depending only on c.
Each panel considers a different distribution for the weights: uniform dis-
tribution (top panel) and truncated exponential distribution (bottom panel).
The continuous lines refer to the values of the integrals (C.8) and (C.9), re-
spectively, while the dashed lines show the final approximations. All simu-
lations have been performed with α = 30 and β = 0.6
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m2, . . . ,MT = mT }. More precisely, we have

P (M1 = m1, . . . ,MT = mT )P (M1 = m1)

T∏
t=2

P (Mt = mt|M1, . . . ,Mt−1)

= P (N1 = n1 = card{c : m1,c = 1})×

×
T∏
t=2

P (Mt,c = mt,c for c = 1, . . . , Lt−1,

Nt = nt = card{c > Lt−1 : mt,c = 1}|M1, . . . ,Mt−1)

= Poi (α) {n1}
T∏
t=2

Poi (λt) {nt}


Lt−1∏
c=1

p
mt,c
t,c (1− pt,c))1−mt,c

 ,

where pt,c and λt are defined in (4.3) and (4.4), respectively. Hence, we
choose δ̂ that maximizes P (M1 = m1, . . . ,MT = mT ). Since many terms
in the previous equation do not depend on δ, the problem simplifies into
the choice of the value of δ̂ that maximizes the following function

T∏
t=2

Lt−1∏
c=1

p
mt,c
t,c (1− pt,c)1−mt,c (C.11)

or, equivalently, taking the logarithm,

T∑
t=2

Lt−1∑
c=1

mt,c ln (pt,c) + (1−mt,c) ln (1− pt,c) . (C.12)

It is worthwhile to note that the expression of the weights inside the in-
clusion probability (4.3) may possibly contain a parameter η. In this case,
we maximize the above functions with respect to (δ, η).

C.4 Data cleaning procedure

For the arXive and IEEE datasets, the data preparation procedure has
been carried out using the Python package NodeBox [146] that allows
to perform different grammar analyses on the English language. We
use the library to categorise (as noun, adjective, adverb or verb) each
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word in all title’s or abstract’s sentences, with the final purpose of se-
lecting nouns and adjectives only. Then, all selected words are modified
substituting capital letters with lowercases and transforming all plurals
into singulars, again using the NodeBox package. Finally, we also re-
move special words such as “study”, “analysis” or “paper”, that may
often appear in the abstract text but are not relevant for the descrip-
tion of the topic and for the purpose of our analysis. Authors names
are similarly treated. Indeed, from each name we replace capital letters
with lowercases and we modify it by considering only the initial letter
for each reported name and the entire surname. To make an example,
names such as “Peter Kaste” or “P. Jacob” are respectively transformed
into “p.kaste” and ”p.jacob”. One drawback of this kind of analysis is
that authors with more than one names who reported all of them or just
some in different publications cannot be distinguished. Indeed, in this
situation they would appear as distinct. For example “A. N. Leznov”,
“A. Leznov” or “Andrey Leznov” may probably identify the same per-
son who reported respectively two initials, one initial or the full name in
different papers. However, with this transformation they appear as two
distinct authors, since they are respectively represented by the abbrevi-
ations “a.n.leznov” and “a.leznov”. Despite this fact, no further disam-
biguation is performed on the names, since it would be computationally
very expensive and beyond the purpose of our analysis.
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