
IMT School for Advanced Studies, Lucca

Lucca, Italy

Supervised and Semi-Supervised Learning in
Vision using Deep Neural Networks

PhD Program in Institutions, Markets And Technologies

Curriculum in Computer Science

XXX Cycle

By

Soumali Roychowdhury

2019

http://www.imtlucca.it
mailto:soumali.roychowdhury@imtlucca.it

The dissertation of Soumali Roychowdhury is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT School for Advanced
Studies, Lucca

Supervisor: Prof. Michelangelo Diligenti, Università De Siena

Supervisor: Prof. Rocco De Nicola, IMT School for Advanced Studies,
Lucca

The dissertation of Soumali Roychowdhury has been
reviewed by:

Prof. Marco Lippi, Dipartimento di Scienze e Metodi dellà Ingegneria,
Universita reggio emilia e modena

Prof. Michele Lombardi, Department of Computer Science and Engi-
neering, Università di Bologna

IMT School for Advanced Studies, Lucca

2019

http://www.imtlucca.it

I dedicate this thesis to my parents, and to my beloved pets
for their unconditional love. I love you all dearly.

Contents

List of Figures xiii

List of Tables xvii

Acknowledgements xxxii

Vita and Publications xxxv

Abstract xxxviii

1 Introduction 1
1.1 Motivation of the thesis . 1
1.2 Overview of the thesis . 4

2 Integration of Logic and Learning 7
2.1 Related Works . 9

2.1.1 Symbolic Learning Methods 9
2.1.2 Integration of Logic and Learning : Hybrid Learn-

ing Methods . 11
2.1.3 Integration of Logic into Deep Learners 14

2.2 Semantic Based Regularization : Motivation 22

3 Semantic Semi-Supervised Learning 25
3.1 Definitions and Terminologies 26
3.2 First-Order Logic . 29
3.3 Learning with Constraints 30

3.3.1 Constraints and Logic 32
3.3.2 Translation of FOL clauses into constraints 37

3.4 Backpropagation with Logic Constraints 37

vii

3.4.1 Collective Classification 40
3.4.2 Optimization . 41

3.5 SBR as multi-layer architecture 44
3.6 Summary . 45

4 Machine Learning Methods and Frameworks for Vision Tasks 47
4.1 Methods and Deep Neural Network architectures used in

Vision Tasks . 49
4.2 Methods and Frameworks for Image Segmentation 62
4.3 Summary . 68

5 Image Classification 71
5.1 Simulators and Metrics . 72
5.2 Experimental Analysis on ANIMAL Dataset 73

5.2.1 Knowledge Domain 74
5.2.2 Experimental Settings 76
5.2.3 CNN Models . 78
5.2.4 Results . 78
5.2.5 Discussion . 89

5.3 Experimental Analysis on CIFAR-10 Dataset 90
5.3.1 Knowledge Domain 91
5.3.2 CNN Models . 93
5.3.3 Results . 95
5.3.4 Discussion . 102

5.4 Experimental Analysis on CIFAR-100 Dataset 103
5.4.1 Knowledge Domain 105
5.4.2 CNN models . 105
5.4.3 Results . 107
5.4.4 Discussion . 119

5.5 Experimental Analysis on ImageNet Dataset 124
5.5.1 Knowledge Domain 124
5.5.2 CNN Models . 126
5.5.3 Results . 126
5.5.4 Discussion . 137

5.6 Summary . 140

6 Video Classification 143
6.1 Dataset and Problem Description 144
6.2 Experimental Analysis . 144

6.2.1 Overview . 149

viii

6.2.2 Data Pre-processing 149
6.2.3 CNN Models . 150
6.2.4 Post Processing - Temporal smoothing 151
6.2.5 Results . 154

6.3 Summary . 159

7 Contaminant Separation 161
7.1 Introduction . 162
7.2 Related Works . 168

7.2.1 Semantic vs Instance segmentation models on nat-
ural images . 169

7.2.2 Semantic vs Instance segmentation on medical or
pathological images 170

7.2.3 Semantic vs Instance segmentation on other prob-
lem specific images 171

7.3 Experimental Methods and Evaluation 172
7.3.1 Dataset . 173
7.3.2 Evaluation Metrics 174
7.3.3 Modified Mask RCNN based end-to-end solution

with improved RPN 177
7.3.4 Modified UNET based end-to-end solution with

Watershed Transform 186
7.4 Summary . 198

8 Conclusion and Future Directions 201

A Chapter 5 and Chapter 6: Image Classification and Video Clas-
sification 205

A.0.1 Experimental Analysis on ANIMAL Dataset 205
A.0.2 Experimental Analysis on CIFAR-10 Dataset 211
A.0.3 Experimental Analysis on CIFAR-100 Dataset . . . 215
A.0.4 Experimental Analysis on ImageNet Dataset 240
A.0.5 Experimental Analysis on CATARACTS Dataset . . 249

B Chapter 7: Contaminants Separation 255
B.0.1 Modified Mask RCNN based end-to-end solution

with improved RPN 255
B.0.2 Modified UNET based end-to-end solution with

Watershed Transform 255

ix

References 259

x

List of Figures

1 Markov Logic Network representing some arbitrary pred-
icates on two datapoints that can be written in the form of
first order logic rules (RD06b). 10

2 Knowledge flow in KBANN (TS94). 12
3 Alternating convolution and pooling layers with fully con-

nected and classifier layers at the end, typically forms a
deep CNN model (LeC15). 15

4 The teacher network is iteratively obtained by projecting
the student network to a rule regularized subspace (HML+16). 16

5 A schematic representation of the Andreas et al. Deep
Compositional Question Answering Framework (ARDK15). 20

6 Forward propagation of the values in the expression tree
of a FOL formula for the grounding x = x̄ when using
the product t-norm. The output of the root node returns a
value in [0, 1] corresponding to the evaluation of the rule
for the given grounding. 36

7 The backpropagation of the error over the expression tree
for the grounding x = x̄ of the FOL rule ∀x[¬fA(x)] ∨
[fB(x) ∧ fC(x)] using the product t-norm. The backprop-
agated error reaches a leaf node and it is passed as error
derivative for a further backpropagation pass over the net-
work implementing the function in the leaf node. 39

8 Semantic Based Regularization multi-stage architecture. . . 44

9 Compares a linear convolutional layer with a mlpconv
layer (LCY13). 50

10 A deep Network in Network Model (NIN) (LCY13). 50

xi

11 A comparison of a plain block with a residual block having
identity connections (HZRS16a). 51

12 Comparison of original resents with different types ar-
rangement of the ReLU and BN layers finally lead to a
full pre-activation architecture (HZRS16b). 52

13 A comparison of different resents like basic, bottleneck,
wide and pyramidal residual architectures. 53

14 A block of ResNet is shown in the left whereas in the
right, it is converted into a block of ResNeXt with cardi-
nality of 32, having roughly the same complexity using a
set of 32 transformations and aggregating through a sum-
mation (XGD+16). 56

15 Inception module (SLJ+15). 57
16 Random Erasing and Random Cutout applied to few se-

lected natural images (ZZK+17; DT17). 60
17 A building block of FPN illustrating the lateral connection

from the bottom-up to the top-down pathway, merged by
addition (LDG+16). 63

18 An Example of Semantic Segmentation. 64
19 An Example of Instance Segmentation. 65
20 A schematic diagram of Mask RCNN illustrating the three

different heads: classification head, bounding box regres-
sor and the mask segmentation head. 66

21 A schematic diagram of UNET based on its original works
in (RFB15). The U-shpaed framework formed using a con-
tracting and an expanding path of alternate convolution
and pooling layers (RFB15). 68

22 CIFAR-10 taxonomical hierarchy representing the inter-
mediate and the final classes. 91

23 Three hierarchical levels including the fine, coarse classes
and the new 5 additional classes. 116

24 Four levels of hierarchical relationship exploited in Ima-
geNet dataset. 131

25 Tools used in the cataracts surgery (HLC+19). 146
26 Chord diagram illustrating tool co-occurrence in training

video frames (HLC+19). 148

xii

27 Particulate contamination: Residue from the manufactur-
ing process (Win). 163

28 Molecular contamination: Organic and inorganic films dur-
ing manufacturing (Win). 163

29 An example image of the contaminants on a wire meshed
membrane filter. 165

30 Another example image of the contaminants in the mem-
brane filter with lot more particles. 165

31 First part of the image shows a metal particle that reflects
the incident light, like mirrors such that the incident and
reflected light have the same oscillation direction whereas
the second part shows a non metal particle that modi-
fies or disturbs the incident light direction (mostly be-
cause light can intrude into the material), and therefore
light scattered from nonmetal particles is no more polar-
ized (Met10). 166

32 Semantic and Instance segmentation along with classified
objects are shown in the example (GOO+17). 168

33 Instance segmentation mask and classified objects based
on color of the image in Figure 29. 174

34 The ground truth annotation where red objects represent
metallic particles, blue represents the non-metallic parti-
cles and green represents fiber particles. At the top, the
zoomed version of a part of the image is shown. 182

35 This is a predicted mask where black markers represent
the errors in segmentation and classification. 183

36 The groundtruth annotation is on the left side and the pre-
dicted mask is on the right side of the image. 184

37 The two class ground truth used during training of the
modified UNET. 192

38 The modified UNET two class semantic segmentation prior
to post processing. The corresponding two class ground
truth image is in Figure 37. The errors are highlighted
with black lines. 193

xiii

39 The modified UNET two class semantic segmentation out-
put converted to three class instance output using con-
nected component and extent ratio. Because no post pro-
cessing is done on the overlapping instances, some of the
overlapping fibers and non metallic overlaps becomes a
large fiber particle. These errors are highlighted with black
lines. 194

40 The three class instance segmentation mask after post pro-
cessing the output of the modified UNET using watershed
transform and connected component labeling. The cor-
responding groundtruth image is in Figure 34. Here the
black lines highlight some of the closely spaced objects
that have been separated into individual instances after
watershed post-processing. 195

41 The image is a concatenation of three sub images each con-
taining the same objects. From left to right it represents the
ground truth, the semantic segmentation output and the
post processed output generating instances for a group of
very closely located non metallic objects. 196

xiv

List of Tables

1 The operations performed by single units of an expression
tree depending on the inputs x, y and the t-norm used. . . 34

2 The derivatives used in the backpropagation step depend-
ing on the t-norm used and the operation implemented
by the unit. Prod, Min, Luka and Weak-Luka are abbre-
viations for Product, Minimum, Lukasiewicz and Weak-
Lukasiewicz t-norm. 40

3 Number of parameters in each of the different configura-
tions of residual network architectures. # refers to the
number in the Layers and Parameters column. M is the
abbreviation for millions, α and γ are parameters specific
to the network architectures. 58

4 Datasets used in experiments of SBR. # Samples refer to
the number of training patterns present in each correspond-
ing dataset. 72

5 Prior knowledge used to train neural networks on Win-
ston Benchmark. 75

6 Accuracy over 7 final classes and F1 score for all classes
for a Fully Labeled Transductive setting using shallow
and deep classifiers with and without prior knowledge.
#Pat: number of training patterns. KM and KM+R: kernel
machine classifiers without and with rules respectively.
CNN, CNN+R and CNN+R+CC: deep CNN models with-
out rules, with rules and with collective classification re-
spectively using ConvR(I) and ConcR(II) sets. 80

xv

7 Comparison of the collective classification accuracies for
the 7 final classes for Fully Labeled Transductive setting
with 32 × 32 and 64 × 64 images of Winston benchmark.
Each row represents different subsets of training patterns
used. WL and WL(λkl): classification error rates for trans-
ductive training with rules using Weak Lukasiewicz t-norm
with constant and vanilla SBR, CC-WL and CC-WL(λkl):
collective classification using Weak Lukasiewicz t-norm
for constant and variable (λkl) values respectively. The
bold numbers in the table refer to the best performing t-
norm with two different image resolutions. 82

8 Accuracy (Acc) for the 7 final classes and F1 for all classes
in Partially Labeled Transductive setting using shallow
and deep classifiers compared with and without prior knowl-
edge. KM and KM+R : kernel machines trained without
and with rules respectively. CNN, CNN+R, CNN+R+CC:
baseline neural network, neural network with rules and
collective classification on neural networks with rules. . . . 85

9 Comparison of the classification and collective classifica-
tion accuracies for the 7 final classes for Partially Labeled
Transductive setting with 32×32 and 64×64 images. WL,
CC-WL: classification with rules and the collective classifi-
cation error rates using Weak Lukasiewicz t-norm in con-
stant SBR. WL(λkl), CC-WL(λkl): classification with rules
and the collective classification with Weak Lukasiewicz t-
norm in variable SBR. 86

10 Accuracy of 7 final classes and F1 for all classes of 32× 32
images using non transductive CNNs compared with and
without prior knowledge. CNN and CNN+R+CC: base-
line neural network and collective classification on neu-
ral networks with rules. I and II refers to the ConvR and
ConcR set of rules. 87

11 Accuracy of the 7 final classes and F1 score for all classes
in Non Transductive setting with 64 × 64 using CNNs
compared with and without prior knowledge. CNN and
CNN+R+CC: baseline neural network and collective clas-
sification on neural networks with rules. I and II refers to
the ConvR and ConcR set of rules. 87

xvi

12 Comparison of the collective classification accuracies for
the 7 final classes in Non Transductive setting with 32 ×
32 and 64 × 64 images of Winston benchmark. CC-WL
and CC-P: collective classification error rates with Weak
Lukasiewicz and Product t-norms in constant and variable
SBR. The bold numbers in the table refers to the highest
accuracies with 3325 supervisions on two different image
resolution using Weak Lukasiewicz t-norm. 88

13 Comparison of the Train, Prediction and Collective clas-
sification time with different subsets of training patterns
in transductive and non transductive learning. CNN-T,
CNN-P and CNN-CC: Train time, Prediction time (with-
out SBR) and Collective classification time respectively
for the baseline CNN network. CNNT-T, CNNT-P and
CNNT-CC: Train time, Prediction time and Collective clas-
sification time of the neural network when in transductive
learning mode in SBR. All the times are in seconds. 89

14 Prior knowledge used for the experiment simulations on
the CIFAR-10 dataset. 92

15 Deep CNN architectures and the data pre-processing tech-
niques used in CIFAR-10 . 93

16 Error rate for the 10 final classes for different deep archi-
tectures in non transductive learning with collective clas-
sification over the network outputs using different selec-
tion of t-norms with constant (λl) and predicate dependent
metaparameters, λkl . CC-WL and CC-P: the collective clas-
sification error rates using Weak Lukasiewicz and Product
t-norms. The bold numbers in the tables refer to the best
performing network or the ones where the improvement
is highly remarkable. 96

17 Comparison of the collective classification error rates of
the 10 final classes for two different selection of t-norms
using scarce training data in non transductive mode.%
Data: percentage of supervisions used in each deep net-
work. CNN, CC-WL and CC-P: neural network baseline,
neural network outputs improved with collective classifi-
cation using Weak Lukasiewicz and Product t-norms re-
spectively. 98

xvii

18 Error rate for the 10 final classes on CIFAR-10 for differ-
ent deep architectures and applying collective classifica-
tion over the network outputs using different selection
of t-norms with constant and predicate dependent meta-
parameters (λkl) in transductive mode. CNN, WL and
CC-WL: neural network baseline, neural network outputs
with rules and collective classification outputs using Weak
Lukasiewicz t-norm respectively. The bold number in the
table refer to the best performing network using the best
performing t-norm. 99

19 Transductive classification and collective classification er-
ror rates of the 10 final classes for Weak Lukasiewicz t-
norm using scarce training data. % Data: percentage of su-
pervisions used in each deep network. CNN, WL, WL(λkl),
CC-WL and CC-WL(λkl): neural network baseline, classifi-
cation outputs for transductive training, collective classifi-
cation output using Weak Lukasiewicz with constant and
predicate dependent regularizers respectively. 101

20 Comparison of the Train, Prediction and Collective classi-
fication time with different deep CNN networks in trans-
ductive and non transductive learning. NN-T, NN-P and
NN-CC: Train time, Prediction time and Collective classi-
fication time respectively for the baseline neural network.
NNT-T, NNT-P and NNT-CC: Train time, Prediction time
and Collective classification time of the respective neural
network when in transductive learning mode in SBR. All
the times are in hours. 102

21 The Super and the Fine classes in the CIFAR-100 dataset. . 104

22 Small sample of the 200 rules used for CIFAR-100 exper-
iments.The rules are divided into two groups: sample of
the 150 rules expressing the class taxonomy, and sample
of 50 hand-crafted rules to express additional semantic in-
formation. 106

xviii

23 Error rate for the 100 final classes for different deep ar-
chitectures in non transductive mode with collective clas-
sification over the network outputs using different selec-
tion of t-norms with constant λl. CNN, CC-WL, CC-P and
CC-HW: convolutional neural network baseline, collec-
tive classification on neural network outputs using Weak
Lukasiewicz, Product and Half-Weight Combination set-
ting. The bold numbers in the table refer to the best per-
forming network using different selection of t-norms. . . . 109

24 Error rate for the 100 final classes for different deep archi-
tectures in non transductive mode with collective classifi-
cation over the network outputs using different selection
of t-norms with variable λkl . CNN, CC-WL(λkl), CC-P(λkl)
and CC-HW(λkl): convolutional neural network baseline,
collective classification on neural network outputs using
Weak Lukasiewicz, Product and Half-Weight Combina-
tion setting. The bold numbers in the table refer to the best
performing network using different selection of t-norms. . 110

25 Comparison of the collective classification error rate for
the 100 final classes using scarce training data in non trans-
ductive mode with constant weight based SBR. % Data:
different amounts of supervisions used for training each
network. CNN, CC-WL, CC-P and CC-HW: convolutional
neural network baseline, collective classification on neural
network outputs using Weak Lukasiewicz, Product and
Half-Weight Combination setting. The bold numbers in
the table refer to the best performing network using dif-
ferent selection of t-norms. 111

26 Comparison of the collective classification error rate for
the 100 final classes using scarce training data in non trans-
ductive mode with vanilla SBR. % Data refers to the dif-
ferent amounts of supervisions used for training each net-
work. CNN, CC-WL(λkl), CC-P(λkl) and CC-HW(λkl): con-
volutional neural network baseline, collective classifica-
tion on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold
number in the table refer to the best performing network
using the best performing t-norm. 113

xix

27 Classification and Collective classification error rate for
the 100 final classes test set for different deep architec-
tures using different selection of t-norms with constant
λl in transductive mode. CNN, WL, CC-WL, HW and
CC-HW: convolutional neural network baseline, classifi-
cation error in transductive learning, collective classifica-
tion on neural network outputs using Weak Lukasiewicz
and Half-Weight Combination setting. The bold numbers
in the table refer to the best performing network using the
three selection of t-norms. 114

28 Classification and Collective classification error rate for
the 100 final classes on CIFAR-100 test set for different
deep architectures using different selection of t-norms with
variable λkl in transductive mode. CNN, WL(λkl), CC-
WL(λkl), HW(λkl) and CC-HW(λkl): convolutional neural
network baseline, transductive classification error rates
and collective classification on neural network outputs us-
ing Weak Lukasiewicz and Half-Weight Combination set-
ting. The bold numbers in the table refer to the best per-
forming network using different selection of t-norms. . . . 115

29 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures over 125
network outputs using different selection of t-norms with
constant λl in non transductive mode. CNN, CC-WL, CC-
P and CC-HW: convolutional neural network baseline,
collective classification on neural network outputs using
Weak Lukasiewicz, Product and Half-Weight Combina-
tion setting. The bold number in the table refer to the best
performing network using the best performing t-norm. . . 118

30 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures over 125
network outputs using different selection of t-norms with
variable λkl in non transductive mode. CNN, CC-WL(λkl),
CC-P(λkl) and CC-HW(λkl): convolutional neural network
baseline, collective classification on neural network out-
puts using Weak Lukasiewicz, Product and Half-Weight
Combination setting. The bold number in the table refer
to the best performing network using the best performing
t-norm. 119

xx

31 Classification and collective classification error rate for the
100 final classes with 125 outputs from different deep ar-
chitectures using different selection of t-norms with con-
stant λl in transductive mode. CNN, WL, CC-WL, HW
and CC-HW: convolutional neural network baseline, trans-
ductive classification outputs with rules, collective classifi-
cation on neural network outputs using Weak Lukasiewicz
and Half-Weight Combination setting. The bold number
in the table refer to the best performing network using the
best performing t-norm. 120

32 Classification and collective classification error rate for the
100 final classes on CIFAR-100 for different deep archi-
tectures using different selection of t-norms with variable
λkl in transductive mode. CNN, WL, CC-WL, HW and
CC-HW: convolutional neural network baseline, collec-
tive classification on neural network outputs using Weak
Lukasiewicz and Half-Weight Combination setting. The
bold number in the table refer to the best performing net-
work using the best performing t-norm. 121

33 Comparison of the Train, Prediction and Collective classi-
fication time with different deep CNN networks in trans-
ductive and non transductive learning with two levels of
hierarchy. NN-T, NN-P and NN-CC: Train time, Predic-
tion time and Collective classification time respectively for
the baseline neural network. NNT-T, NNT-P and NNT-
CC: Train time, Prediction time and Collective classifica-
tion time of the respective neural network when in trans-
ductive learning mode in SBR. All the times are in hours. . 122

34 Comparison of the Train, Prediction and Collective classi-
fication time with different deep CNN networks in trans-
ductive and non transductive learning with three levels
of hierarchy. NN-T, NN-P and NN-CC: Train time, Pre-
diction time and Collective classification time respectively
for the baseline neural network. NNT-T, NNT-P and NNT-
CC: Train time, Prediction time and Collective classifica-
tion time of the respective neural network when in trans-
ductive learning mode in SBR. All the times are in hours. . 123

35 Subset of ImageNet rules handcrafted to exploit the sysnet
information. 125

xxi

36 Second hierarchical level of ImageNet used in the Experi-
mental Simulation I. 128

37 Classification error rate for 1000 classes for different deep
architectures in a constant weight based SBR using 26 in-
termediate classes. CNN, CC-WL, CC-P and CC-HW: con-
volutional neural network baseline, collective classifica-
tion on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting.The bold
numbers in the table refer to the best performing network
with three selections of t-norms. 129

38 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a vanilla SBR using 26 inter-
mediate classes. CNN, CC-WL, CC-P and CC-HW: con-
volutional neural network baseline, collective classifica-
tion on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold
numbers in the table refer to the best performing network
using the best performing t-norm. 129

39 Comparison of the collective classification error rate for
1000 final classes of ImageNet using a subset of data and
26 intermediate predicates in non transductive mode with
constant λl values. % Data: percentage of supervisions
used during training. CNN, CC-WL, CC-P and CC-HW:
convolutional neural network baseline, collective classifi-
cation on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold
numbers in the table refer to the best performing network
with 50% supervisions using two selections of t-norms. . . 130

40 Comparison of the collective classification error rate for
1000 final classes using scarce training data and 26 inter-
mediate predicates in non transductive mode with vari-
able λl values. CNN, CC-WL, CC-P and CC-HW: convolu-
tional neural network baseline, collective classification on
neural network outputs using Weak Lukasiewicz, Product
and Half-Weight Combination setting. The bold numbers
in the table refer to the best performing network with 50%
supervisions for different selection of t-norms. 132

xxii

41 Classification error rate for 1000 classes for different deep
architectures in a constant weight based SBR using 581 in-
termediate classes. CNN refers to the baseline network,
CC-WL, CC-P and CC-HW: collective classification error
rates for Weak Lukasiewicz, Product and Half-Weight Com-
bination setting. The bold number in the table refer to the
best performing network using the best performing t-norm. 134

42 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a vanilla SBR (λkl) using
581 intermediate classes. CNN: the baseline network, CC-
WL, CC-P and CC-HW: collective classification error rates
for Weak Lukasiewicz, Product and Half-Weight Combi-
nation setting. The bold number in the table refer to the
best performing network using the best performing t-norm. 135

43 Comparison of the collective classification error rate for
1000 final classes using scarce training data with four lev-
els of hierarchical information with 581 intermediate pred-
icates in non transductive mode with constant λl values.
CNN: baseline network. CC-WL, CC-P and CC-HW: col-
lective classification error rates for Weak Lukasiewicz, Prod-
uct and Half-Weight Combination setting of t-norms. The
bold numbers in the table refer to the best performing net-
work with 50% supervisions using different selection of
t-norms. 136

44 Classification error rate for 1000 classes for different deep
architectures in a constant weight based SBR using 1605
intermediate classes. CC-WL, CC-P and CC-HW: collec-
tive classification error rates for Weak Lukasiewicz, Prod-
uct and Half-Weight Combination setting. The bold num-
ber in the table refer to the best performing network using
the best performing t-norm. 137

45 Classification error rate for 1000 classes for different deep
architectures in a vanilla SBR (λkl) using 1605 intermedi-
ate classes. CNN: the base line network, CC-WL, CC-P
and CC-HW: collective classification error rates for Weak
Lukasiewicz, Product and Half-Weight Combination. The
bold number in the refer to the best performing network
with half weight combination setting. 137

xxiii

46 Comparison of the collective classification error rate for
1000 final classes using scarce training data with 1605 in-
termediate predicates in non transductive mode with con-
stant λl values. % Data: percentage of supervision used in
each case. CNN: baseline network, CC-WL, CC-P and CC-
HW: collective classification error rates for Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold
numbers in the Table refer to the best performing network
with 50% supervisions for different selection of t-norms. . 138

47 Comparison of the collective classification error rate for
1000 final classes of ImageNet using scarce training data
and with 1605 intermediate predicates in non transductive
mode with variable λkl values. %Data refers to the percent-
age of supervision used in each case. CNN refers to the
baseline network, CC-WL, CC-P and CC-HW refers to the
collective classification error rates for Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold
numbers in the Table refer to the best performing network
with 50% supervisions for different selection of t-norms. . 139

48 Statistics about tool usage annotation in the CATARACTS
dataset. The first two columns indicate inter-rate agree-
ment (Cohens kappa), before and after adjudication (Adj.
is the abbreviation for adjudication); the largest changes
are in bold. The last column indicates the prevalence of
each tool in the training subset (percentage of training
frames), ignoring the frames where the experts disagree
about the usage of that tool, even after adjudication. 147

49 Prior knowledge for CATARACTS dataset. 153

50 Area under ROC curve for an average of 21 tools in the
four different experimental simulations. The column En-
semble refers to the CNN networks used, Sample refers to
the sampling techniques of the video frames during train-
ing and Smooth refers to the temporal smoothing tech-
nique used. Exp # refers to the experimental simulation
number. CC refers to collective classification in SBR with
the rules given in Table 49. 157

xxiv

51 Comparison of original MRCNN (abbreviated as Or. MR-
CNN) framework with the Modified MRCNN (abbrevi-
ated as Mod. MRCNN). SP, SR, CQ and F1 represents
the segmentation precision, recall, classification quotient
and F1-score respectively. Wghtd. is the abbreviation for
weighted. The bold numbers represent the highest seg-
mentation precision and the F1-score for the Modified MR-
CNN. 185

52 Comparison of original UNET (Or. UNET) and modi-
fied UNET (Mod. UNET) output using different CNN
encoders with and without watershed transform and test
time augmentations. Con Comp. is an abbreviation for
connected component analysis. Watershed transform post
processing is abbreviated as watershed trns. SP, SR, CQ
and F1 represents the segmentation precision, recall, clas-
sification quality and F1-score respectively. Bil. Interpol.
and Trans. Conv. are abbreviations for bilinear interpola-
tion and transposed convolution. The bold numbers rep-
resent the highest segmentation precision and the F1-score
for the Modified MRCNN. 197

53 Comparison of the classification accuracies using rules for
the 7 final classes for Fully Labeled Transductive setting of
Winston benchmark. 206

54 Comparison of the collective classification accuracies for
the 7 final classes for Fully Labeled Transductive setting
of Winston benchmark. 207

55 Comparison of the classification accuracies for the 7 final
classes trained with rules in Partially Labeled Transduc-
tive setting on Winston benchmark. 208

56 Comparison of the collective classification accuracies for
the 7 final classes for Partially Labeled Transductive set-
ting on Winston benchmark. 209

57 Comparison of the collective classification accuracies for
the 7 final classes in non transductive setting with 32× 32
and 64× 64 images of Winston benchmark. 210

xxv

58 Error rate for the 10 final classes on CIFAR-10 for different
deep architectures in non transductive learning and col-
lective classification over the network outputs using dif-
ferent selection of t-norms with constant metaparameters
or predicate dependent metaparameters λkl 212

59 Comparison of the collective classification error rate for
the 10 final classes using scarce training data in non trans-
ductive mode. 213

60 Error rate for the 10 final classes of CIFAR-10 for different
deep architectures in transductive learning and collective
classification over the network outputs using different se-
lection of t-norms with constant metaparameters or pred-
icate dependent metaparameters λkl 214

61 Rules used for CIFAR-100 experiments. The rules are di-
vided into two groups: First 150 rules expressing the class
taxonomy, and the next group of 50 hand-crafted rules ex-
press additional semantic information. 216

62 Error rate for the 100 final classes on CIFAR-100 for dif-
ferent deep architectures in non transductive mode with
collective classification using different selection of t-norms
with constant λl. 226

63 Error rate for the 100 final classes on CIFAR-100 for differ-
ent deep architectures in non transductive mode with col-
lective classification over the network outputs using dif-
ferent selection of t-norms with variable λkl 227

64 Comparison of the collective classification error rate for
the 100 final classes using scarce training data in non trans-
ductive mode with constant SBR. 228

65 Comparison of the collective classification error rate for
the 100 final classes using scarce training data in non trans-
ductive mode with vanilla SBR. 229

66 Classification error rate for the 100 final classes on CIFAR-
100 for different deep architectures using different selec-
tion of t-norms with constant λl in transductive mode. . . 230

67 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures using differ-
ent selection of t-norms with constant λl in transductive
mode. 231

xxvi

68 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures using differ-
ent selection of t-norms with variable λkl in transductive
mode. 232

69 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures using differ-
ent selection of t-norms with variable λkl in transductive
mode. 233

70 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures over 125
network outputs using different selection of t-norms with
constant λl in non transductive mode. 234

71 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures over 125
network outputs using different selection of t-norms with
variable λkl in non transductive mode. 235

72 Classification error rates for the 100 final classes with 125
outputs from different deep architectures using different
selection of t-norms with constant λl in transductive mode. 236

73 Collective classification error rates for the 100 final classes
with 125 outputs from different deep architectures using
different selection of t-norms with constant λl in transduc-
tive mode. 237

74 Classification error rate for the 100 final classes on CIFAR-
100 for different deep architectures using different selec-
tion of t-norms with variable λkl in transductive mode. . . 238

75 Collective classification error rate for the 100 final classes
on CIFAR-100 for different deep architectures using differ-
ent selection of t-norms with variable λkl in transductive
mode. 239

76 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a constant weight based
SBR using 26 intermediate classes. 241

77 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a vanilla SBR using 26 in-
termediate classes. 241

78 Comparison of the collective classification error rate for
1000 final classes of ImageNet using scarce training data
in non transductive mode with constant λl values. 242

xxvii

79 Comparison of the collective classification error rate for
1000 final classes of ImageNet using scarce training data
in non transductive mode with variable λl values. 243

80 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a constant weight based
SBR using 581 intermediate classes. 244

81 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a vanilla SBR using 581 in-
termediate classes. 244

82 Comparison of the collective classification error rate for
1000 final classes of ImageNet using scarce training data
in non transductive mode with constant λl values using
581 predicates. 245

83 Comparison of the collective classification error rate for
1000 final classes of ImageNet using scarce training data
and 581 predicates in non transductive mode with variable
λkl values. 246

84 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a constant weight based
SBR using 1605 intermediate classes. 247

85 Classification error rate for 1000 classes on ImageNet for
different deep architectures in a vanilla SBR using 1605 in-
termediate classes. 247

86 Comparison of the collective classification error rate for
1000 final classes of ImageNet using scarce training data
in non transductive mode with constant λl values using
1605 intermediate predicates. 248

87 Area under ROC curve for each tool using a trained CNN
ensemble of 3 deep CNNs on uniform sampling of frames
followed by using a median filtering model for temporal
correlation on the test predictions. 250

88 Area under ROC curve for each tool using a trained CNN
ensemble of 3 deep CNNs on selective sampling of frames
followed by using a median filtering model for temporal
correlation on the test predictions. 251

89 Area under ROC curve for each tool using a trained CNN
ensemble of 4 deep CNNs on selective sampling of frames
followed by using a median filtering model for temporal
correlation on the test predictions. 252

xxviii

90 Area under ROC curve for each tool using a trained CNN
ensemble of 4 deep CNNs on selective sampling of frames
followed by using a MRF model on the test predictions.
The final design of the DResSys is compared with the sec-
ond best solution of the challenge. 253

91 Area under ROC curve for each tool using a trained CNN
ensemble of 4 deep CNNs on selective sampling of frames
followed by collective classification using rules in the SBR
framework during inference. 254

92 Configuration of Modified Mask RCNN. 256

xxix

Acknowledgements

There are many people that have earned my gratitude for
their contribution in my PhD studies. More specifically, I
would like to thank six groups of people, without whom this
thesis would not have been possible: my thesis supervisors,
my PhD colleagues, my industrial collaborators, my funding
institution, my family and my pets.

First, I am indebted to my PhD advisors, Professor Michelan-
gelo Diligenti and Professor Rocco De Nicola, for supporting
me throughout during the past four and half years. I worked
closely with Prof. Michelangelo and he is my mentor, teacher
and guide. It all started in Spring 2015 when he agreed to
supervise me and it was my honor to get the great opportu-
nity to work with him and his other PhD students. On the
academic level, Prof. Michelangelo taught me the fundamen-
tals of conducting a scientific research in the area of machine
learning. Under his supervision, I learned how to understand
a research problem in depth, and then try to find a solution
to it, and finally publish the results. His suggestions have al-
ways been invaluable for me. He has always been very lively,
enthusiastic, and energetic. On a personal level, he inspired
me by his hardworking and passionate attitude. He has been
supporting me through all my thick and thins. He was very
instrumental in helping me shape up all my publications and
also the thesis. I am looking forward to continue working
with him even after my PhD studies. He is also a very nice
person to talk to and we always have very insightful discus-
sions about different kinds of topics starting from research to
travel to weather.

My other advisor, Prof. Rocco has always been my support
system in IMT School of Advanced Studies. He encouraged
me at every step and have always given me the freedom to
pursue various projects without any objection. I am very
grateful to him for all his scientific advices as well. I am

xxx

also thankful to the head of Artificial Intelligence group of
the Università De Siena, Professor Marco Gori. Prof. Marco
has been the person who actually inspired all of us with his
idea of using constraints in deep learning which is the core of
this research work. He will always remain as my role model
for a scientist.

I also like to thank the members of my PhD committee, Pro-
fessor Marco Lippi and Professor Michele Lombardi for all
their suggestions and comments on my thesis. Their feed-
backs have helped me to better connect all the different parts
of the thesis and design a smooth workflow.

I would like to thank my labmates in the Artficial Intelli-
gence lab of Università De Siena for their support whenever
I needed. I would like to specially mention Francesco Gian-
nini who was so kind that he once presented a paper on my
behalf when I could not attend a conference. Also this thesis,
would not have been possible without the intellectual con-
tribution of all the members of that lab who often gave me
suggestions and comments on the experiments. I would also
like to express my gratitude to my other PhD colleagues at
IMT School of Advanced Studies without whom I would not
have survived in a country whose language, people and cul-
ture were all new to me. They became my close friends in the
past few years and they all made me feel as if I know them
for years. I will always cherish the times spent with them as
the best memories of my life.

I am also grateful to my industrial collaborators, D-Wave
Technologies in Canada. The projects I worked on during
my internship formed a significant part of my thesis. I spent
a year working with them on two different projects and had a
great learning experience. There I had the chance to collabo-
rate with fantastic researchers in deep learning and computer
vision. More specifically, I would like to thank Dr. Arash
Vahdat for his great mentoring, continuous support and all
his guidance.

I also want to extend my love and thanks to all my childhood
friends (the list is too long!) for their lifelong friendship as
they have been wonderful throughout my life. They always

xxxi

made me smile despite any situation. Sometimes, I miss them
a lot as I am miles away from them.

I also owe my PhD thesis to IMT foundation for providing me
the financial support for pursuing my PhD dream. I thank
all the administrative staffs of the IMT community without
whose collaborative efforts, timely reminders and follow up
schedules, I would not be able to attend the conferences, sum-
mer schools or internships. I was able to secure travel grants
in the timely manner, get all the documentations ready for ev-
ery research period I spent outside IMT because of the won-
derful support I received from them.

Last but not least, I would like to express my deepest grat-
itude to my family and relatives and love to my pets. Al-
though I am far away from them, I remember them each and
every day and miss them terribly. This dissertation would not
have been possible without their warm love, continued pa-
tience, and endless support. Every single morning my mom
and dad remembered to call or text me just to ask if I am do-
ing good. Their unconditional love and support is something
that always makes me strong. My PhD is as much their dream
as it is mine. I also express my regards and care for my part-
ner, Abhi who often at times helped me with his jokes to ease
the pressure off, accompanied me during my summer school
and internship.I know I always have my family to count on
when times are rough. I also want to express my love to my
beloved cat, Shonai, who has passed on. I still miss her, espe-
cially because of the 11 long years of friendship that I shared
with her while growing up. Her playful activities made me
happy even at the most difficult days. I wished she was still
with me. Lastly, I want to mention about my present pet,
Shonai’s daughter Mushi whom I also love a lot and pray for
her good health and well being every single day. I also really
wish that she grows up as brave as her mother.

xxxii

Vita

February 13, 1987 Born, Durgapur, India

2009 Bachelor degree in Computer Science Engineering
Final mark: 8.96/10
West Bengal University of Technology, India

2013 Masters in Cybernetics and Artificial Intelligence
Distinction
University of Reading
England, UK

2019 Currently pursuing PhD in Computer Science
IMT - School for Advanced Studies Lucca
Working in collaboration with Università De Siena
D-Wave Technologies, Canada

xxxiii

Publications

1. Integrating Prior Knowledge into Deep Learning, ICMLA 2017:
920-923.

2. Image Classification Using Deep Learning and Prior Knowledge,
AAAI Workshops 2018: 336-343.

3. CATARACTS : Challenge on Automatic Tool Annotation for Cataracts
Surgery, Medical Image Analysis, Volume 52, February 2019, Pages
24-41.

4. Regularizing Deep Networks with Prior Knowledge: A Constraint-
based Approach, submitted to IEEE Transactions of Neural Net-
works and Learning Systems, TNNLS-2019-P-11577.

5. Improving Image and Video Classification using Prior Knowledge,
Submitted in ICMLA, 2019.

6. Instance Segmentation approaches from Contaminant Separation
in Cleanliness Analysis, Submitted in ICMLA, 2019.

Research Internships

1. DeepLearn 2017 Summer School, Bilbao, Spain (July, 2017).

2. Summer Internship in D-Wave Technologies Inc., Vancouver, Canada
(August, 2017 - November, 2017).

3. Winter Internship in D-Wave Technologies Inc., Vancouver, Canada
(December,2017 - May, 2018).

4. Poster Presentation in 1st IMT Research Symposium, Lucca, Italy
(July, 2018).

xxxiv

xxxv

Abstract

Deep learning has been a huge success in different vision
tasks like classification, object detection, segmentation etc.,
allowing to start from raw pixels to integrated deep neu-
ral models. This thesis aims to solve some of these vision
problems using several deep neural network architectures
in different ways. The first and the core part of this thesis
focuses on a learning framework that extends the previous
work on Semantic Based Regularization (SBR) to integrate
prior knowledge into deep learners. Deep neural networks
are empirical learners and therefore heavily depend on la-
beled examples, whereas knowledge based learners on the
other hand are not very efficient in solving complex vision
problems. Therefore, SBR is designed as a semi-supervised
framework that can tightly integrate empirical learners with
any available background knowledge to get the advantages
of learning from both perception and reasoning/knowledge.
The framework is learner agnostic and any learning machin-
ery can be used. In the earlier works of SBR, kernel machines
or shallow networks were used as learners. The approach
of the problem, concept of using multi-task logic functions
are borrowed form the previous works of SBR. But for the
first time, in this research work, the integration of logic con-
straints is done with deep neural networks. The thesis de-
fines a novel back propagation schema for optimization of
deep neural networks in SBR and also uses several heuris-
tics to integrate convex and concave logic constraints into
the deep learners. It also focuses on extensive experimen-
tal evaluations performed on multiple image classification
datasets to show how the integration of the prior knowledge
in deep learners can be used to boost the accuracy of sev-
eral neural architectures over their individual counterparts.
SBR is also used in a video classification problem to automat-
ically annotate surgical and non-surgical tools from videos of
cataracts surgery. This framework achieves a high accuracy

xxxvi

compared to the human annotators and the state-of-the-art
DResSys by enforcing temporal consistency among the con-
secutive video frames using prior knowledge in deep neu-
ral networks through collective classification during the in-
ference time. DResSys, an ensemble of deep convolutional
neural networks and a Markov Random Field based frame-
work (CNN-MRF) is used, whereas SBR replaces the MRF
graph with logical constraints for enforcing a regularization
in the temporal domain. Therefore, SBR and DResSys, two
deep learning based frameworks discussed in this thesis, are
able to distill prior knowledge into deep neural networks and
hence become useful tools for decision support during inter-
operative cataract surgeries, in report generation, in surgi-
cal training etc. Therefore, the first part of the thesis de-
signs scientific frameworks that enable exploiting the wealth
of domain knowledge and integrate it with deep convolu-
tional neural networks for solving many real world vision
problems and can be used in several industrial applications.
In the present world, a range of different businesses pos-
sess huge databases with visuals which are difficult to man-
age and make use of. Since they may not have an effective
method to make sense of all the visual data, it might end up
uncategorized and useless. If a visual database does not con-
tain meta data about the images or videos, categorizing it, is
a huge hassle. Classification of images and videos through
useful domain information using these unified frameworks
like SBR is a key solution. The second part of the thesis fo-
cuses on another vision problem of image segmentation and
this part of the thesis is more application-specific. However,
it can still be viewed as utilizing some universal and basic
domain knowledge techniques with deep learning models.
It designs two deep learning based frameworks and makes
a head to head comparison of the two approaches in terms
of speed, efficiency and cost. The frameworks are built for
automatic segmentation and classification of contaminants
for cleanliness analysis in automobile, aerospace or manufac-
turing industries. The frameworks are designed to meet the
foremost industry requirement of having an end-to-end so-
lution that is cheap, reliable, fast and accurate in comparison
to the traditional techniques presently used in the contami-

xxxvii

nant analysis and quality control process. These end-to-end
solutions when integrated with the simple optical acquisition
systems, will help in replacing the expensive slow systems
presently existing in the market.

xxxviii

Chapter 1

Introduction

1.1 Motivation of the thesis

The title of the thesis, Supervised and Semi-Supervised Learning in Vision
using Deep Neural Networks, gives a glimpse of the motivation of this re-
search work. It exploits the power of the deep neural networks in dif-
ferent vision tasks using supervised and semi-supervised learning tech-
niques. From a broad perspective, the thesis focuses on the integration
of domain specific knowledge with deep learning. Deep learning has
been a breakthrough in tasks like classification, object detection and seg-
mentation of images and videos, starting from raw pixels, learning com-
plex feature representations and developing trained neural models in an
integrated manner. Integration of domain knowledge in deep learning
has several practical applications in the field of computer and machine
vision. A range of different industries in different domains from health-
care to security, possess huge databases with visual content which are
difficult to use in a meaningful way without an effective method to make
sense of all the visual information. Therefore, most of the times the infor-
mation remain uncategorized and useless. If a visual database does not
contain meta-data about the images or videos in it, categorizing or label-
ing it is an expensive and tedious job. Classification and segmentation
of images and videos through domain knowledge integrated with deep
learning is an effective solution to this problem. It will become possible
to easily organize and categorize the visual database because it will al-
low for automatic classification and segmentation of images and videos

1

in large quantities. This will help the industry leaders to monetize their
visual content without investing countless hours for manual sorting, an-
notating and tagging. This thesis therefore explores some of these vision
problems and uses different deep neural networks and domain knowl-
edge to solve them. The thesis can be divided into two parts:

• The first part of the thesis discusses about the supervised and the
semi-supervised frameworks for different image and video classifi-
cation tasks. It focuses on a learning framework known as Semantic
Based Regularization (SBR) to integrate prior knowledge into deep
learners. Suppose a deep convolution network is to be used for a
classification problem, it always needs to learn from a lot of labeled
examples. Acquiring huge amounts of data is time consuming and
therefore, using of any available background knowledge to train
the learner is an efficient alternative as mentioned above. Injecting
prior knowledge into a learner provides any available high-level
knowledge like class dependencies to the learner. SBR, is therefore
a semi-supervised framework that can integrate empirical learners
like kernel machines or deep convolutional neural networks with
prior knowledge to get the advantages of learning from both per-
ception and reasoning. Learning in SBR is formulated as a multi-
task learning problem and the prior knowledge is expressed as a
collection of first-order logic clauses (FOL), where each task to be
learned corresponds to a predicate in the knowledge base. Each
knowledge statement is then translated into a constraint which can
be integrated into the learning process or used during inference to
enforce the consistency of the predictions of the deep learners. This
methodology is learner agnostic and therefore, any learning archi-
tecture can be used. Previously in the literature, the SBR frame-
work used kernel machines as the learning machinery. Kernel ma-
chines are shallow networks and hence the feature learning capa-
bility is limited. The definition of the SBR framework defined in
this thesis, the formulation of the multi-task learning problem are
equivalent to the prior works of SBR. But in this research work,
for the first time several deep convolutional neural networks (rich
feature learners) is integrated in the SBR framework. The theo-
retical foundation of SBR is extended for joint training of neural
networks with logical constraints. The thesis defines a novel and
efficient back-propagation schema, which computes gradient over
the expression tree of any arbitrary grounded FOL expression and

2

aims to seamlessly integrate prior knowledge into deep learners. It
also highlights the plans and heuristics of using non-convex log-
ical constraints in SBR. SBR is also able to enforce regularization
during the test time using collective classification on the outputs of
the deep learners and the thesis aims to experimentally verify the
benefits of collective classification through different types of sim-
ulations. The extensive experimental evaluations of this thesis use
SBR on multiple image classification datasets and a video classi-
fication dataset to show how the integration of the prior knowl-
edge can help to boost the accuracy of several deep architectures
over the networks trained without knowledge in different classi-
fication problems. This work for the first time makes a detailed
study with a large variety of deep CNN networks on large scale im-
age datasets like CIFAR-100 and ImageNet having numerous out-
put classes to learn. SBR is also used to solve a video classifica-
tion problem, where it competes with the state-of-the-art Markov
Random Field based framework working on the predictions of an
ensemble of deep neural networks to establish temporal consis-
tency among video frames. The task is to accurately annotate tools
from videos of cataracts surgery for decision support during inter-
operative surgeries or in report generation etc. This research work
for the first time aims to apply collective classification using the
SBR framework on neural network predictions to enforce a regu-
larization for establishing temporal coherence. This work aims to
make a significant contribution in the field of automation of tool
detection during surgeries using deep learning. Therefore, Chap-
ter 3, Chapter 5 and Chapter 6 constitutes the first part of the thesis
as described and they aim to seamlessly combine domain knowl-
edge with deep neural nets in different vision applications through
a general and fundamental approach, the Semantic Based Regular-
ization.

• The second part of the thesis focuses on image segmentation tasks
using deep convolutional neural networks. It can still be viewed as
using domain specific techniques (for example: watershed trans-
form and connected component analysis algorithms) that are in-
tegrated with neural networks in a cascaded fashion resulting in
the development of an end-to-end solution for industry based con-
taminant separation problem. In this research work, for the first
time, deep learning solutions are proposed for automatic segmen-

3

tation and classification of contaminants for cleanliness analysis
and quality control in automobile, aerospace or manufacturing in-
dustries. It adapts and uses several deep learning architectures
like Mask RCNN and UNET in building end-to-end segmentation
frameworks to solve the contaminant separation task. These frame-
works are designed with the aim to build end-to-end solutions for
these industries so as to replace the multi-stage expensive slow sys-
tems presently existing in these industries. This part of the thesis
is more application oriented. However, theoretically, it also high-
lights the novel techniques like improved region selection method-
ology in Mask RCNN, a superior objective function in UNET, inte-
grating domain specific post-processing techniques with the deep
learning frameworks etc. that aims to meet the challenges faced in
adapting the existing frameworks to the current problem. Chap-
ter 7 constitutes the second part of the thesis which aims to design
frameworks for solving the specific contaminant separation but not
limited to it.

Hence, both the parts of the thesis aim to integrate some domain knowl-
edge with deep learning for different types of vision tasks. The first part
introduces a fundamental and scientific approach whereas the second
part is a more application oriented solution.

1.2 Overview of the thesis

The thesis is structured into the following chapters as listed below:

• Chapter 2 includes a review of the literature of logic based learn-
ing systems, empirical learning systems and hybrid systems that
integrate logic and learning.

• Chapter 3 includes a detailed description and the mathematical for-
mulations of the Semantic Based Regularization (SBR) with deep
neural networks as its learning machinery. The chapter also dis-
cusses about different fuzzy logics, joint training and optimization
schema in SBR, the differences in constant and vanilla SBR, the
collective classification mechanism in SBR and convexity of con-
straints using different fuzzy logics.

4

• Chapter 4 includes a review of different deep neural networks and
machine learning techniques used for the vision tasks for this re-
search work. There are two types of frameworks, individual deep
CNN architectures like Residual networks, Inception networks etc.
used in image/video classification tasks and also the segmentation
frameworks like Mask RCNN and UNET used for image segmen-
tation. This chapter also describes the methods like semantic and
instance segmentation with examples.

• Chapter 5 includes the different experimental simulations on image
classification task using the Semantic Based Regularization frame-
work on Winston Animal, CIFAR-10, CIFAR-100 and ImageNet
datasets.

• Chapter 6 describes a video sequencing problem for cataracts tool
annotation during cataracts surgery. It reports the experimental
simulations performed with an end-to-end framework, DResSys,
which is a combination of a CNN ensemble and a probabilistic
Markov Random Field (MRF) graph. This framework is compared
with its counterpart where the Markov Random Field graph is re-
placed by the Semantic Based Regularization to enforce a mech-
anism of regularization on the outputs of the test set in order to
establish temporal consistencies among video frames.

• Chapter 7 discusses an industrial problem of identifying particle
contamination, measuring them and aiding their automatic removal
for cleanliness analysis in automobile, aerospace or manufactur-
ing industries etc. Two competing end-to-end deep learning based
approaches for object detection and segmentation are proposed
namely a Mask RCNN based approach with modified region pro-
posal selection criteria and a UNET based approach with efficient
post processing to separate instances of the same class.

• Chapter 8 summarizes the contributions of this research work and
also examines the pathway towards future works.

• The Appendix A contains the detailed experimental results (the
ones that could not be included in the Chapter 5 due to limited
space) of image classification tasks on Winston Animal, CIFAR-10,
CIFAR-100 and ImageNet datasets using different deep CNN ar-
chitectures integrated in constant and vanilla SBR with different

5

fuzzy logics. The Appendix A also contains per-tool basis AUC-
ROC scores of the cataracts tool annotations using different exper-
imental designs of the DResSys and SBR framework (Chapter 6).

• The Appendix B tabulates the different configuration parameters
and methods used in training the image segmentation frameworks
like Mask RCNN and UNET in Chapter 7.

6

Chapter 2

Integration of Logic and
Learning

In todays’ world of research, efforts have been continuously made to-
wards the development of artificially intelligent systems that can replace
human labor successfully in many contexts to perform jobs faster and
with higher accuracy. Designing artificially intelligent systems require
modeling the laws of human psychology and cognitive learning abilities
so that they can mimic how humans learn. Humans have two differ-
ent approaches to learn new things, known as inductive and deductive
learning.

The systems that learn about an object or about a situation from exam-
ples without actually having any particular explanation why the exam-
ples belong to that category of the object are referred to as non-symbolic,
sub-symbolic learners (Ben09; LeC15), perception based (DXYZ18) learn-
ers or empirical learners (TS94). They are data hungry systems that re-
quire intensive amount of labeled data or empirical examples, and the
availability of lot of data generally give them a competitive advantage
over the deductive learners in many applications. Artificial deep neu-
ral networks (DNN) are examples of sub-symbolic learners that have at-
tracted the most attention in artificial intelligence (AI) community in the
last few years. DNNs have achieved extraordinary performance in rec-
ognizing human faces (TYW14), objects (KSH12a; STE13) and in speech
recognition (HDY+12).

On the other hand, in a deductive learning approach, the system

7

learns from domain theory, prior knowledge or from a set of structured
logic rules that explain why a particular object belongs to a definite
category. Deductive learners are actually symbolic reasoners (RKT07;
KBB+12; Mug) and are typically based on logical and probabilistic in-
ference, allowing to perform high-level reasoning (possibly under un-
certainty) without having to deal with thousands of hyper-parameters.
Logic based AI systems have achieved human-level abilities in proving
mathematical theorems (NS56; CL97) and also in performing inductive
reasoning using relations (Mug) or logical information.

Since, the human mind flawlessly incorporates both these sources of
information to fill the gaps in the knowledge acquired, it is necessary
that if an artificially intelligent system mimicking the human mind is to
be designed, a synergy between both the phases of learning needs to be
established. There is a widespread belief that the ability to represent and
reason about structured objects and structure-sensitive processes is cru-
cial for any learner, and logic learning is well-suited in achieving this ob-
jective. On the other hand, empirical or sub-symbolic learners have prop-
erties which are not easily found in logic based systems such as, the abil-
ity to learn from perceived information, noise robustness, the ability to
adapt to new environments and the ability to have enhanced memories.
They are also more tractable and faster compared to their logic counter-
parts. However, in the recent works in deep learning, the sub-symbolic
approaches are mostly seen as black-boxes, whereas symbolic approaches
are generally easier to interpret and understand as long as they do not
contain recursive and complex rules. In modern AI, both approaches
co-exist with different levels of advantages and disadvantages. Both ap-
proaches assume to deal with complete and correct knowledge about the
problem to be solved. But for many real world applications, complete-
ness and correctness are extremely difficult to achieve. The advantages in
both of these types of learners should be exploited to the fullest to design
a good artificially intelligent system. Therefore, building hybrid learning
models where perception and reasoning are glued together, is one of the
most challenging and an open problem in AI and, recently, a lot of works,
often referred to as neuro-symbolic approaches (GLG08), have been pro-
posed. It is crucial to see how the symbolic and sub-symbolic approaches
affect each other in a single system and how advantages can be gained
from both.

8

2.1 Related Works

The connections between logic and learning have been studied exten-
sively in different systems in the last few decades. In the early years,
most emphasis had been given to hybrid models, where perceptual and
logic information was handled separately in different modules, whereas
in the recent years, the focus has shifted towards achieving a truly tight
integration between the two modules.

2.1.1 Symbolic Learning Methods

In symbolic learning, Statistical Relational Learning methods have been
very popular. The field of Statistical Relational Learning (SRL) provides
a large set of methods that integrate learning and logic like Markov Logic
Networks (MLN) (RD06b; GT07; KD05; RD06a; DR04; WD08) and Prob-
abilistic Soft Logic (PSL) (KBB+12; BMG10). Markov Logic Network
combine first-order logic and probabilistic graphical models. In MLN, a
weight is attached to each FOL formula that actually reflects how strong
a constraint is. Therefore, it can be defined as L which is a set of pairs
(Fi, wi), where Fi is a formula in first-order logic and wi is a real num-
ber together with a set of constants or datapoints C = {c1, c2,c|C|}
that can be viewed as the template for constructing the Markov Network
ML,C . An example of MLN graph is given in Figure 1 that shows some
grounded logic with two grounded datapoints A and B and some arbi-
trary predicates like Smokes, Friends, Cancer etc. The first order logic
rules corresponding to this MLN can be ∀(x)Smokes(x) → Cancer(x),
∀(x)(¬(∃yFriends(x, y)→ Smokes(x)) etc.

With a different set of constants, it will produce a different network
of different size. Each state of ML,C represents a possible interpreta-
tion where each state has its own set of objects, relations that hold be-
tween these objects and truth values of the grounded relations. MLNs
are defined as log linear models or products of potential functions. MLN
employs a differentiable approximation of FOL and allows to learn the
weight of each formula in the KB by maximizing the log likelihood or
the pseudo log likelihood of the training data from one or more rela-
tional databases. MLNs modularly incorporates a wide range of domain
knowledge, it can learn complex feature representations from the data
and soundly handle uncertainty. MLNs can tackle many SRL problems
like collective classification, link prediction, object identification etc.

Hybrid Markov Logic Networks (HMLNs) (WD08) extend MLNs to

9

Figure 1: Markov Logic Network representing some arbitrary predicates
on two datapoints that can be written in the form of first order logic
rules (RD06b).

deal with continuous variables or fuzzy first-order logic clauses. Knowl-
edge Based Model Construction (KBMC) is a combination of logic pro-
gramming and Bayesian networks (KDR02) where given a Horn clause
in the knowledge base, a KBMC answers a query by finding all the possi-
ble backward chaining proofs of the query and evidence atoms from each
other using a Bayesian network over all atoms in the proofs and then per-
forming an inference over this network. Actually a KBMC model can be
treated as a special case of Markov Logic Networks. Similarly, Probabilis-
tic Relational Models (PRM) (Kol99) are a combination of frame-based
systems and Bayesian networks that can also be converted into MLNs
by defining a predicate for each attribute of each class. Stochastic Logic
Programmings (SLP) is also a special case of MLNs that is a combination
of logic programming and log linear models as described in (Mug96).

Probabilistic Soft Logic (PSL), a probabilistic logic framework like hy-
brid MLNs, is relaxed to continuous fuzzy values in the range of [0, 1]
and considers only the FOL formulas with a conjunctive body and a
single literal head. Furthermore, the rule weights are restricted to only
non-negative values that capture the rule’s relative importance. PSL use
an undirected graphical model to represent a grounded FOL knowledge
base, and restricted the logic that can be processed to a fragment of FOL
corresponding to convex constraints. It builds a joint probabilistic model
over all its grounded FOL clauses and because of the soft truth values, in-
ference in PSL is a continuous optimization problem which can be solved
efficiently.

10

All these frameworks and many more like Relational Dependency
Networks (RLN) (NJ07), Structural Logistic Regression (SLR) (PPU03)
and Relational Markov Networks (RMN) (TAWK) that are architec-
turally similar to MLNs are more focused on logic reasoning without
any integration with deep learners. They are required to deal with large
number of weights and groundings in order to learn a complex model.

2.1.2 Integration of Logic and Learning : Hybrid Learning
Methods

Injecting symbolic knowledge into sub-symbolic learning via neural net-
works or kernel machines is not a new approach, there have been several
such hybrid learning systems designed since 1990. KBANN (Knowledge
Based Artificial Neural Network) (TS94) proposed by Towell et al., en-
coded symbolic rules into a neural network layer during network initial-
ization, which is later refined using a back-propagation schema. KBANN
is an example of hybrid learning system which is built with the motiva-
tion that the system should be able to use the information provided by
one source to offset the information missing from the other source. In
KBANN, the symbolic rules have a Prolog (Bra14) like notation. The
work flow of KBANN (also represented diagrammatically in Figure 2)
with the corresponding inputs and outputs are listed as :

• Given: A list of features used to describe examples, an approx-
imately correct domain theory in the form of propositional logic
(specifically Horn clauses) describing the problem to be solved and
a set of classified training examples.

• The domain theory is translated into a neural network and this al-
gorithm is called as the Rules-to-Network. This tries to effectively
insert approximately correct symbolic rules into the neural net.

• The neural network is then trained with the inserted knowledge
and external empirical training examples. A neural learning algo-
rithm is used for training the network.

• The trained network or the trained classifier is used to classify any
future example during the inference time.

The main disadvantage of KBANN is that, once the network is initial-
ized, the symbolic knowledge layer is totally frozen not allowing the two

11

Figure 2: Knowledge flow in KBANN (TS94).

layers to mutually improve the results of each other, therefore limiting
the generalization capabilities of KBANN. Also the rules that are used
in KBANN have several restrictions. When KBANN was developed, it
was difficult to train artificial neural networks due to limited hardware
capabilities and very high overhead costs.

In the works of Hitzler et al. (HHS04) in the year 2004, integration of
logic with neural networks have been demonstrated. They call this as the
connectionist system where certain semantic operators for propositional
logic programs are computed by feed forward neural networks, in a way
similar to KBANN.

However, in both of the above mentioned works, perceptual and logic
information are mostly handled in independent modules. The logic layer
is always frozen when learning is performed in the neural networks. This
limitation arises because of the barriers between the classical mathemat-
ical models that handle real numbers and the ones that handle logic rea-
soning. The knowledge improvement and the neural network weight
updates are two mutually exclusive modules and no joint learning takes
place.

There also have been several attempts in literature to integrate shal-
low networks like kernel machines with inductive logic programming.
In the works of (Hau99), convolutional kernels are built on infinite sets
whose elements are discrete structures like strings, trees and graphs. The
different family of kernels that can be generated include radial basis ker-
nels, kernels defined on joint Gibbs probability distributions, kernels
built from hidden Markov fields, regular expressions and ANOVA de-
compositions.

12

Muggleton et al. (MLAS05) proposed a general method for construct-
ing kernels for Support Vector Inductive Logic Programming (SVILP).
The kernel captures the semantic and syntactic relational information
contained in the data as well as provides the flexibility of using arbitrary
forms of structured and non-structured data coded in a relational way.
The SVILP approach is a form of generalization relative to background
knowledge, although the final combining function for the learned clauses
is a support vector machine rather than a logical conjunction.

Landwehr et al. (LPDRF06) introduced a very well known inductive
logic programming system combined with kernel machines known as
kFOIL, based on dynamic propositionalization where structure learning
correspond to inferring a suitable kernel on logical objects, and parame-
ter learning correspond to function learning in the resulting reproducing
Kernel Hilbert space.

All these approaches incorporated structures expressed in different
forms into kernels but most of the integrations does not reveal tight con-
nections. These approaches are also not suitable for multi-task learning
environments.

Another approach that imposes constraints in the perceptual space
was introduced in the studies of Fung et al. (FMS02). Knowledge Based
Support Vector Machine Classifiers seamlessly injects prior knowledge
in the form of polyhedral knowledge sets (that results in building con-
vex constraints) in the input space into a linear support vector machine
classifier. The modeled constraints represent the knowledge base quite
extensively and they have been applied to many real-world applications
like DNA sequencing and breast cancer prognosis. However, the exper-
imental results are not as good as a neural network based system like
KBANN (TS94)(architecture described earlier). Although, this approach
shows a simplified injection of logic into linear inequalities outperform-
ing purely logic based systems but they are not equipped to solve multi-
task learning using prior knowledge.

On the other hand, the initial works on Semantic Based Regulariza-
tion (SBR) (DGMR12) attempted to inject logic constraints into kernel
machines for multi-task classification problems by integrating perceptual
data and prior knowledge. SBR introduced the concept of a constraint,
which is also sufficiently general enough to represent different kinds of
sensorial data along with their relations and express abstract knowledge
on the tasks. The tight connections of logic and learning in SBR evolved
from the preliminary studies on FOL constraints and kernel machines
given in the works of Diligenti et al. (DGMR10b; DGMR10c; DGMR10a).

13

SBR encodes a multi-layer architecture using kernel machines at the in-
put layer, which provides input to the higher-level layers implementing
a fuzzy generalization of the FOL knowledge. Since, the fuzzy gener-
alization helps in defining real valued constraints, the information can
flow down to the lower layers and hence the whole framework can be
jointly trained and optimized. This actually helps SBR to preserve the
compactness and efficiency of the kernel machines to deal with the fea-
ture space representations at the input level, while also exploiting the full
expressive power of the FOL describing the higher level semantics.

Another predominant work referred to as Feature Description Logic
(FDL), described by Cumby et al. (CR03a; CR03b), which is actually a
relational language with clarity in syntax and semantics that can be eas-
ily used, via feature generation functions, to efficiently represent world
observations in a way that is suitable for any general purpose learning
algorithm. It has been shown that FDL allows to efficiently learn com-
plex relational representations where the size of the representations to be
learned are very large.

All the shallow and single layered neural architectures responsible
for transforming the raw input signals or features into problem specific
feature space, are effective in solving only the well constrained problems.
They have limited modeling and representational power both in terms of
features extracted from inputs and information learnt from these inputs.
Therefore, they are incapable of solving more complicated real world ap-
plications like those involving natural images or visual scenes effectively.
Also the information processing mechanisms in the human brain suggest
the need of deep architectures for extracting complex features and build-
ing internal representation from rich sensory inputs.

2.1.3 Integration of Logic into Deep Learners

Deep Learning refers to the class of machine learning techniques, de-
veloped largely since 2006 (LeC15; Ben09), where many stages of non-
linear information processing in hierarchical architectures are exploited
for classification and recognition problems. A deep learning network is
composed of simple but non-linear modules and each of them transform
the representation from one level (for example starting with raw input
pixels in case of images) into a representation at a higher level, a slightly
more abstract level. Deep learning lays at the intersection among the re-
search areas of neural networks, graphical modeling, optimization, pat-
tern recognition and signal processing. The popularity of deep learning

14

nowadays is mainly due to the availability of enormous amount of data,
increased chip processing abilities (example: GPU units), lower costs of
computational hardware and a big machine learning community actively
participating in information processing research.

One of the most traditional yet successful deep architecture is the
Convolutional Neural Network (CNN) (DYP12) with each module con-
sisting of alternate convolution and pooling layer having different filter
sizes to build complex feature maps from the inputs. Many such mod-
ules are stacked one above the other, followed by a few fully connected
layers, a loss function and a classifier layer thus forming a deep convo-
lutional neural network. A diagrammatic representation of a deep CNN
framework is shown in Figure 3.

Figure 3: Alternating convolution and pooling layers with fully connected
and classifier layers at the end, typically forms a deep CNN model (LeC15).

Deep CNNs have been found to be very effective in complex pattern
recognition tasks like image and video classification, keypoint detection,
image segmentation etc. Deep CNNs, like most other deep neural ar-
chitectures, are commonly trained using a large number of labeled data
points also known as supervised examples. When the datasets are mostly
unsupervised, this data can only be used to drive a proper initialization
of the weights in a pre-training phase (EBC+10; BLP+07). Since these
deep learners are sub-symbolic or empirical learners, the development
of powerful feature representations in these learners are still considered
to be very challenging without abundant supervised data. Also, in spite
of extensive studies in this field, the process is opaque and it is not clear
as how much amount of data is required for training any deep neural
network. Unfortunately, it is difficult and labor intensive to manually
annotate huge datasets in the era of Big data. Therefore, to convert the
empirical success of deep learning into a scalable solution, prior knowl-
edge can be incorporated into the learners along with scarce amount of

15

Figure 4: The teacher network is iteratively obtained by projecting the stu-
dent network to a rule regularized subspace (HML+16).

labeled examples with respect to the number of classes or categories to
be learnt. Injecting prior knowledge in the learning framework can po-
tentially allow to find better models by restricting the space where the
learner should search its optimal parameters. This mode of learning is
possibly more aligned to how the human brain learns, where high level
knowledge and low level sensory inputs play a joint role in learning.
After the popularity of deep learning, several works in this area have
emerged with specific applications and unified frameworks that inte-
grate logic and learning using deep neural networks.

The works of Hu et al. (HML+16) described an iterative distillation
method that transfers structured information of first-order logic rules
into the weights of the neural networks. This is achieved by forcing
the network (called as the student network) to emulate the predictions
of a rule-regularized teacher network, and evolving both networks iter-
atively throughout the training. The teacher network is constructed at
each iteration by adapting to the posterior regularization principle in the
logical constraint setting, where the formulation is a closed-form solu-
tion with low increase in the computational overhead. The entire frame-
work is agnostic to the type of neural architecture that can be used. The
trained network has been deployed to perform classification tasks like
sentiment analysis and sequence learning tasks like name entity recogni-
tion. The diagrammatic representation from the original works is shown
in Figure 4 where the neural network is defined as the conditional prob-

16

ability pθ(y|x), a prediction vector parameterized by weights θ with in-
puts x and outputs y. A rule regularized projection of pθ(y|x) is denoted
as q(y|x) which explicitly includes the rule constraints as regularization
terms.

Logic Tensor Networks (LTN) (SDdG17) is another similar frame-
work that integrated logic reasoning and learning based on fuzzy gener-
alization of FOL. LTNs have been applied on the task of semantic image
interpretation that extracts structured semantic description from images.
LTNs use a deep tensor network that allow learning from noisy data in
the presence of logical constraints and reasoning with logical formulas
that describe the general properties of the input data. A LTN is defined
as a first-order logic languageL, composed of three disjoint sets denoting
constants, functions and predicates. An example of the logical formula
can be ∀x(Cat(x) → ∃y(partOf(y, x) ∧ Tail(y))) meaning that every cat
should have a tail and exceptions are handled as these formulas are ex-
pressed in fuzzy FOL. Suppose, there is an image of a tailless cat, then
the FOL formula can be interpreted as every cat should normally have a
tail. In this formula, Cat(x), Tail(y) are predicates, the fuzzy generaliza-
tion of these predicates are the formulas and x, y are the constants or the
objects of the domain. Here, the outputs of the neural network predic-
tions are used as grounding values on which the logical constraints are
applied and thus the deep network is trained. Inference performed on
these logical tensor networks allows approximate reasoning on unseen
data to predict new facts.

There are also other independent studies of logic programming with
artificial neural networks applied to specific applications like breast can-
cer detection (Nev15), short text classification (WWZY17) etc.

All the above proposed solutions considers the reasoning layer as
frozen, without allowing to jointly train its parameters. Because of this,
it can work better only with hard constraints, while being less suitable
in presence of reasoning under uncertainty. They are also limited in the
kind of knowledge that can be integrated like usage of only quantified
variables mostly universally quantified variables, having a small set of
logic operators etc. Furthermore, in these networks the knowledge can
be injected only at training time but it can not be enforced during classi-
fication.

Another application of semantic knowledge and learning is Semantic
Sensitive Tensor Factorization (SSTF) described in the works of Nakat-
suji et al. (Nak16) that incorporates the semantics expressed by an object
vocabulary or taxonomy to factorize any tensor.

17

Minervini et al. (MR18) proposed to use prior knowledge in Natural
Language Processing (NLP) to correct the inconsistencies of an adversar-
ial example generator. They investigated the problem of automatically
generating adversarial examples that violate a set of given first-order
logic constraints in natural language inference. All these applications
show the immense power of prior knowledge that can be exploited to
improve the performance of any supervised learning system in a semi-
supervised manner.

Integration of logic is also shown in probabilistic frameworks like
TensorLog (Coh16). In TensorLog, each logic clause in the domain the-
ory is converted into a certain type of factor graph. Each logical variable
present in the clause gets associated with a random variable in the fac-
tor graph. Then, for each type of unknown variable to the factor graph,
the message passing steps that are required to perform Belief Propaga-
tion (BP) are unrolled into a differentiable function. Each function an-
swers for a particular combination of known and unknown variables in
the factor graph. This way Tensorlog develops a probabilistic deduc-
tive database, such that both compilation as well as inference modes are
efficient. In Tensorlog, compilation is linear in the size of the domain
theory and proof depth, whereas inference is linear in size of the deduc-
tive database and the message passing steps used in BP. Tensorlog has its
roots in some variants of Markov Logic Networks like Stochastic Logic
Programs (SLP) (Mug96). However, TensorLog is limited to reasoning
with less developed semantics and does not allow to optimize the learn-
ers while performing inference. The integration of the deep learners and
the knowledge base is not efficiently tight.

One other recent work, that involves a probabilistic framework with
logic constraints is called as Deep ProbLog (MDK+18) that extends the
popular ProbLog (RKT07; RFKE08), a probabilistic programming frame-
work. ProbLog is an efficient solver that defines a distribution over logic
programs by specifying for each clause the probability that it belongs
to a randomly sampled program, and these probabilities are mutually
independent. In a ProbLog program, there is a set of grounded proba-
bilistic facts and a set of rules. Deep ProbLog extends this framework
to deep learners and hence combines domain knowledge specified as
probabilistic facts and rules with the outputs of neural networks. The
parameters of the probabilistic facts and the neural networks are jointly
trained in Deep ProbLog. Given a Deep ProbLog program, its neural
network models, and a query used as a training example, first the pro-
gram is grounded with respect to the query and then learning is per-

18

formed using ProbLog (RKT07) machinery to calculate the gradient of
the loss. Following this, the parameters of probabilistic logic programs
and the neural network weights are updated after each optimization step
performed using standard gradient descent (whereas in ProbLog opti-
mization, it is done via Expectation Maximization or maximizing the log
likelihood). Deep ProbLog makes the assumption that each probabilistic
fact corresponds to an independent Boolean random variable (a mutual
independence assumption also made in ProbLog) to make the inference
tractable. This assumption limits the capability of both of these frame-
works as this is a strong restriction, since the sub-symbolic layer often
consists of several neural network layers sharing the weights.

Another most prominent recent line of related work focuses on de-
veloping differentiable framework for logical reasoning. It is a Prolog
based architecture introduced for theorem proving by Rocktäschel et
al. (RR16; MBRR18) known as Neural Theorem Prover (NTP). NTP is dif-
ferentiable with respect to symbol representations in a knowledge base
(KB) and therefore, can learn any representations of predicates, constants
and also first-order logic rules of predefined structure using backprop-
agation. NTPs use the backward chaining algorithm of Prolog to find
substitutions of free variables with constants of facts in a KB. During
training, it iterates over a set of known facts and optimizes the negative
log-likelihood of the success of proof of every fact based on all the other
facts. This has a huge limitation and does not scale to larger KB as it in-
vestigates all possible proofs. A NTP encodes relations as vectors using
a frozen pre-selected function (like cosine similarity). This can therefore
be ineffective in modeling relations of complex and multifaceted nature
(for example a relation friend(A,B) can be triggered by different re-
lationships of the representations in the embedding space). However,
most of the models discussed above requires to fully ground a KB (like
SBR, LTN, PSL etc.), while NTPs expands only the groundings on the
explored frontier, which can be more efficient in some cases. As they op-
erate on the distributed representations of symbols, a single handcrafted
rule can be leveraged for many proofs of queries with similar symbolic
representations.

An idea similar in spirit to Deep ProbLog and Neural Theorem Provers
but on a different task of visual question answering with neural networks
is addressed by Andreas et al. (ARDK15). In this work, each question is
decomposed into their linguistic sub-structure and these structures are
used to dynamically instantiate and learn neural module networks. All
these modular networks are jointly trained for question answering. The

19

schematic diagram in Figure 5 shows a natural image input to the CNN
that does object recognition to identify the dog, then there is also a natural
language parser to answer questions about the linguistic sub-structure
of the query like where is the dog?. Rather, than relying on a single deep
network architecture, this approach assembles a deep network on the
fly from a collection of specialized, jointly learned modules where each
module is responsible for an individual task.

Figure 5: A schematic representation of the Andreas et al. Deep Composi-
tional Question Answering Framework (ARDK15).

In the recent study of Xu et al. (XZF+18), a method is introduced that
involves a semantic loss function aimed to bridge the gap between neural
learning and logical constraints. This paper attempted to solve multi-
task learning problem which is also the main motivation of Semantic
Based Regularization (DGMR12). In the works of Xu et al., the semantic
knowledge is in the form of a logical constraint in Boolean logic. These
constraints can simply represent one-hot output encodings, or a more
complex structured output prediction constraint for combinatorial ob-
jects such as rankings, subgraphs and paths. The semantic knowledge
is applied to the outputs of the neural network through the semantic
loss function. It has been pointed out in their work that to preserve the
precise logical meaning of the rule, instead of making it continuous by
using fuzzy generalization, the differential semantic loss function is in-
troduced to capture the information of how well the outputs of the neu-

20

ral networks match a given constraint. The semantic loss is defined as
Ls = (α, p), a function of a constraint α in propositional logic, over vari-
ables x = x1, . . . , xn, and a vector of probabilities p for the same variables
x where element pi denotes the predicted probability of variable xi, and
corresponds to an output of the neural net. Semantic loss is added as
another regularization term that can be directly added to the supervised
loss to get the overall loss. This work is quite interesting when the out-
put space is simple but for multi-class classification problems, they use
circuit compilation techniques (Dar11) to build a Boolean circuit repre-
senting the semantic loss which seems to have a higher complexity and
overhead compared to the benefits obtained through integration of se-
mantic knowledge in deep learners. Also, this work is not able to apply
constraints during the inference time and their experimental simulator is
only restricted to solve classification problems in AI.

A slightly different way of combining perception (sub-symbolic learn-
ing) and reasoning (symbolic learning) have been seen in the recent work
of Dai et al. (DXYZ18) through a process called as Abductive Learning.
Abductive learning phenomena is close to human learning ability that in-
volves both perception and reasoning capability. When a differentiable
neural perception model (i.e a neural network) is coupled with a non dif-
ferentiable logical abduction module, learning becomes extremely diffi-
cult and to this solution, Dai et al. used a heuristic based trial and error
search approach. The neural network involved in perception learning
outputs symbols that aim to make symbolic hypothesis (formed by join-
ing symbols as first-order logic rules) consistent with each other. How-
ever, during training when the hypothesis is inconsistent, the logical ab-
duction module finds the incorrect output from the neural perception
module and corrects it. The neural network module and the abduction
module which are implemented as the learning machinery in this work
is known as Neural-Logical Machine (NLM). The NLM can exploit sym-
bolic knowledge while processing sub-symbolic data even in the form
of raw pixel images. This work is actually very similar to the Deep Pro-
log framework which deals with uncertainty of neural network’s output
with probabilistic reasoning. In NLM, a revision of hypothesis is done
iteratively replacing the neural network’s output with anonymous vari-
ables until a consistent hypothesis can be developed.

The integration of deep learning with Conditional Random Fields
(CRFs) (MH16) is also an alternative approach to enforce some structure
on the network output developed by Ma et al. This approach has been
proved to be quite successful on sequence labeling for natural language

21

processing tasks. Ma et al. built an end-to-end model with a combi-
nation of different networks. At first, they have a CNN that encodes
character-level information of a word into its character-level representa-
tion. Then they combine character and word-level representations and
feed them into a bi-directional LSTM for modeling contextual informa-
tion of each word. Finally, there is a sequential CRF to jointly decode la-
bels for the whole sentence. This end-to-end network actually integrates
large amounts of task-specific knowledge and empirical data in a single
system.

Deep Structured Models (LSRvdH15; CSYU14) use a graphical mo-
del to bridge sensorial and semantic information. These models extend
deep learners to learn complex feature representations considering the
dependencies between the output random variables. In the work of Chen
et al. (CSYU14), a learning algorithm is proposed that builds a struc-
tured model with arbitrary graphs along with deep features that together
form the potentials of a Markov Random Field (MRF). They showed
the effectiveness of these models in image tagging tasks whereas Lin et
al. (LSRvdH15) applied deep structured models in semantic image seg-
mentation tasks. However, both of these works are mainly focused on
imposing correlations or dependencies on the output random variables,
without any focus on logic reasoning.

Each of these frameworks have limitations either in their scope of us-
age or in the diversity of logic reasoning that can be integrated into the
learners or in the joint training capability of the frameworks or in enforc-
ing consistency of the prior knowledge during the inference. The main
motivation of the defining Semantic Based Regularization for deep learn-
ers as described in the next section is to overcome all these limitations.

2.2 Semantic Based Regularization : Motivation

As mentioned, Semantic Based Regularization (DGMR12; DGS15) is a
Statistical Relational Learning framework, that integrates the perception
and reasoning modules in a hybrid learning system. It is able to learn
from data examples and logic rules. Prior knowledge in SBR is expressed
via a set of FOL clauses and then relaxed into their continuous fuzzy
representations. The clauses can express different aspects of the learning
task like relationships among the patterns or among the classes or can
provide a partial definition of the mapping between the input and the
output.

22

Most of the previous literature on Semantic Based Regularization has
focused on Kernel Machines to implement the functions. SBR finds its
roots and inspirations in the works like Markov Logic Networks (RD06b;
LF09), Hidden Markov Logic Networks (WD08), ProbLog (RKT07) etc.
described in Section 2.1. SBR is also related to KBANN (TS94) as the rules
in SBR can be hierarchically structured and in this research work it uses
neural networks as the learning machinery similar to KBANN. In both of
these frameworks, many of the rules are used for providing intermediate
conclusions. These intermediate conclusions are further used to deter-
mine final conclusions or other intermediate conclusions during learn-
ing. The motivation of using neural networks in SBR, is the richness of
complex features that can be extracted by the deep neural networks from
raw data. For the first time, a multilayer perceptron was integrated in the
SBR framework in the works of Diligenti et al. (DGS16). Although, the
concepts of constraints in SBR, the multi-layer architecture and the defi-
nition of multi-task functions to integrate logic rules in SBR is identical in
this research work to the previous works of SBR, but in the present work
for the first time, SBR is integrated with several benchmark deep learn-
ers where it can learn complex feature representations as well as learn
any type of logical reasoning in the form of independent task functions
that are jointly trained in this hybrid architecture using a novel and effi-
cient back-propagation schema. This actually helps SBR to preserve the
compactness and efficiency of the deep neural networks to extract rich
and complex feature representations from the input, while also exploit-
ing the full expressive power of the FOL rules describing the higher level
knowledge. This framework is also structurally similar to Logic Tensor
Networks (SDdG17) and uses building blocks like constants, functions,
predicates and formulas from first-order propositional logic. However,
this framework has a competitive advantage over LTN as it can also ap-
ply the constraints during inference. In this thesis, it is shown for the
first time that SBR has the flexibility of integrating concave constraints
during learning with the help of different optimization heuristics. This
makes SBR scalable and effective for many real world industrial prob-
lems.

This thesis will show the application of SBR to image classification
and video classification tasks using benchmark deep learners to demon-
strate the power of the SBR framework in integration of prior knowledge
into these learners for vision tasks. The focus is on classification as in the
recent years, not only has deep learning achieved new levels of perfor-
mance on classification (KSH12b) but also classifying images and videos

23

is one such area where annotating huge datasets is an expensive and te-
dious work. Image and video classification can be found at the core of
everything from Facebook’s photo tagging to self-driving cars. Classi-
fication and recognition problems are behind the scenes in everything
from healthcare to security. But, to solve these problems and train su-
pervised neural networks, the quality of annotations available for most
of the image and video datasets are poor and noisy. As, for the deep
neural networks, the main limitations include heavy dependency of the
predictive accuracy on the labeled data, uninterpretable and counter in-
tuitive results of deep models and also the difficulty to encode human
intentions (SLJ+15; NYC14) for guiding models during learning without
direct supervision or ad-hoc initialization. These limitations can be ad-
dressed by integrating logic rules into DNNs and transferring human in-
tention and domain knowledge into neural models to regulate the learn-
ing process. Also, there have been several different types of CNN ar-
chitectures designed by the machine learning community to target im-
age and video classification for different applications, therefore, using
SBR framework and demonstrating its effectiveness with these learners
is a big contribution to the community. This research work, exploits the
power of SBR in dealing with classification problems using small and
large scale datasets and also training very deep neural networks effi-
ciently with logical constraints. Although the focus is on classification
tasks, the SBR framework is flexible enough to be extended in future to
other machine learning tasks as well.

24

Chapter 3

Semantic Semi-Supervised
Learning

In this chapter the Semantic Based Regularization (SBR) framework, an
unified approach to semi-supervised learning from constraints is de-
scribed in details.

Semantic Based Regularization, a Statistical Relational Learning frame-
work, that integrates the ability to learn from supervised examples and
data distribution with the exploitation of high level background knowl-
edge, that are an abstract and partial representation of the environment.
Prior knowledge is expressed as a collection of First-Order Logic (FOL)
clauses that are converted into real-valued constraints and applied on
any learner so that it learns in a semi-supervised manner. In SBR, the
constraints can also be applied during the test phase as a collective clas-
sification method of any learning problem that enforces the consistency
of predictions of the learned model using prior knowledge. The SBR
methodology is learner agnostic. It can integrate both shallow or deep
learners. In the earlier works, kernel machines was used as the mathe-
matical apparatus during learning whereas in this research work deep
neural networks are used for the first time as mentioned in the previous
chapters. The motivation of using deep learners as the learning appara-
tus in SBR is explained in Section 2.2. The novelty of this research work
lies in the integration of deep learners into SBR framework. This integra-
tion introduces several challenges in terms of training and optimization
of the neural networks, in terms of the type of constraints to be added etc.

25

The methodologies to address these challenges in a meaningful way are
the contributions of this research work that are described in this chapter.

SBR enforces a multi-task learning scheme, where each task to be
learned corresponds to a statement in the knowledge base. It provides a
very tight integration of learning and logic. This framework can be used
in vast range of machine learning applications like classification, gener-
ative or adversarial machine learning, collective classification etc. As al-
ready said, it imposes no restrictions on the type of learners to be used or
on the type of knowledge base that can be integrated. Efficiently integrat-
ing deep learners with any explicit knowledge about the task at hand, ac-
tually eliminates the necessity of labeling huge amounts of data which is
required for training any deep learning framework. Therefore, this semi-
supervised framework integrated with deep learners opens new doors
of practical applications. Some of the examples are mentioned in Sec-
tion 2.2.

Although framework design of SBR helps in bridging abstract de-
scriptions of the environment with collection of supervised and semi-
supervised examples, but learning is still hard in SBR, and depending
on the complexity of the added constraints, the function to be optimized
may not be convex. Hence classical optimization approaches cannot be
used. This chapter also describes the conditions under which SBR train-
ing becomes easy, how SBR training can be made end-to-end with seam-
less flow of information in either directions, how a large set of knowl-
edge can be expressed in SBR as a set of convex constraints and how op-
timization strategies and heuristics can be used to achieve good results
in SBR when integrated with deep learners. Although the definition of
SBR and its multi-layer architecture is identical to the previous works in
the literature, but training with neural networks using an efficient back
propagation schema and all the optimization strategies used are novel
contributions of this research work.

3.1 Definitions and Terminologies

1. Pattern : defined as an individual or an element of the dataset. It
can be a raw input or a pre-processed feature vector. Patterns are
constants and are the inputs to the SBR system. For example: A
50× 50 pixel image of a dog can be a pattern called p0.

2. Variable : are defined as holders for patterns. They can range over

26

patterns of a corresponding type and can take any value. For ex-
ample: x is a variable of image type that can hold any 50× 50 pixel
image p0, p1, . . . which can be an image of a dog or a cat etc.

3. Domain : determines a collection of individuals that share the same
space of representation and thus can be analyzed and manipulated
in a homogeneous way. The domains are filled with individual
patterns on which learning and reasoning are carried out. Each do-
main contains patterns of a particular type. For example: A domain
can collect a set of considered 50×50 pixel images, or the sentences
of a book as bag-of-words.

4. Term : defined as any expression that represents an object in the
domain. A term can consist of a pattern, a variable or a function
applied to a couple of terms. For example: p0, x, ID(x) are all
terms where p0 is a pattern, x is a variable and ID is a function that
tries to identify the category of the object.

5. Grounding : defined as a term containing no free variables. When
truth values are assigned to the variables, or to the functions con-
taining variables, it is considered to be grounded. For example:
ID(x = p0) is a ground term but ID(x) + ID(x = p0) is not a
ground term.

6. Predicate : defined as a function that maps or grounds the elements
of the input domains or the patterns to the truth values. So the
function ID used above is actually a predicate. Predicates are also
called as atoms. There are two types of predicates :

• LEARN or query or unknown.

• GIVEN or evidence or known.

LEARN predicate must be estimated during the learning process
whereas GIVEN predicate is already known for all of its ground-
ings.

7. Arity: defined as the number of arguments a predicate takes. Pred-
icates can take any number of arguments, but for each predicate
the number is fixed. For example: if A is an unary predicate, it can
always take only one argument.

27

8. Example: defined as grounding of a predicate or function with the
patterns in the domain. For example: ID can be a predicate that is
grounded using the patterns p0, p1 in the domain of images. The
grounded predicates are ID(p0) = 1 and ID(p1) = 0 which form
the two examples.

9. Function : is equivalent to predicate but is actually a real-valued
manifestation of a predicate. It maps elements from the input do-
main into elements of an output domain. A unary function takes as
input an element from a domain and transforms it into an element
of the same or another domain whereas a n-ary function takes as
input n elements, mapping them into an element of its output do-
main.

10. Rule : is any first-order logic clause in the Prenex Normal Form
(PNF) with universal and existential quantifiers. Rules are also
known as Formulas. Rules express the state of knowledge about
the tasks to be solved in the learning problem. The atoms of the
rules are predicates. For example: If there is a domain of animal
images, and there are two predicates BIRD and FLY defined on
it, the knowledge can be expressed as all the birds should fly using a
rule ∀x,BIRD(x)→ FLY (x).

11. Connective : used to define relationships between predicates. The
logical connectives are of different types: ∧ for weak conjunction,
∨ for weak disjunction, ⊗ for strong conjunction, ⊕ for strong dis-
junction,→ for implication and ¬ for negation.

12. Quantifier : defined as a statement that expresses some property
of a FOL formula and is true for some or all choices that could be
made for the formula. There are two types of quantifiers : universal
quantifier and existential quantifier. For example : In ∀x, ∀ is the
universal quantifier that says for any choice of x, the following is true.
In ∃x, ∃ is the existential quantifier that says for some choice of x, the
following is true.

13. Atomic Formula or atom : is just an alias of predicate defined as
building blocks of rules or formulas. Each FOL formula is recur-
sively constructed using logical connectives and quantifiers. Each
atomic formula is therefore a predicate applied to the objects in
the domain. For example : In the rule ∀x,BIRD(x) → FLY (x),

28

BIRD(x) and FLY (x) are referred to as atomic formula or atoms
or predicates.

14. Literal : defined as an atomic formula (atom) or its negation in first-
order logic. Literals are of two forms : positive literal which is an
atomic formula and a negative literal which is the negation of the
formula.

15. Constraint : defined as a continuous real valued conversion of a
logical rule using t-norms (described in details in Section 3.3). The
atoms of the constraints are the functions.

3.2 First-Order Logic

First-order logic is also known as predicate logic. It is actually composed
of sentences or FOL formulas that uses quantified variables and logical
connectives over objects or elements of the data. These sentences are
formed using predicates or atoms as defined in Section 3.1. While propo-
sitional logic deals with only simple declarative propositions, first-order
logic additionally covers predicates and quantifications.

The adjective first-order distinguishes first-order logic from higher-
order logic where there are predicates having predicates or functions as
arguments, or in which one or both of the predicate quantifiers or func-
tion quantifiers are permitted.

In first-order logic, it is often more convenient to deal with formulas
in which all the quantifiers have been moved to the front of the expres-
sion known as the Prenex Normal Form (PNF). A formula is in prenex
normal form if it is of the form (Q1, Q2 . . . , QnB) where Qi(i = 1, . . . n)
are ∀ or ∃ and the formula B is quantifier free. The string Q1, Q2 . . . Qn
is called the prefix and B is called the matrix. A formula with no quanti-
fiers is regarded as a trivial case of a prenex normal form. Clausal form
is a subset of first-order logic which is defined as a normal form in which
a FOL formula has an universal prefix (a string of universal quantifiers)
and a matrix (a quantifier-free conjunction of a clause). The clausal form
of first-order logic is also called as the Conjunctive Normal Form (CNF).
There is a more restrictive form of first-order logic called as Horn clauses,
which are clauses (a disjunction of literals) with at most one-positive lit-
eral. Horn clause was first pointed out by Alfred Horn in 1951 (Hor51).

Fuzzy logic allows the formulas of first-order logic to have continu-
ous values which makes first-order logic effective for mathematical opti-

29

mization. The term fuzzy logic was coined by L.A. Zadeh in 1965 (Zad65).
Classical first-order logic and propositional logic deal with boolean val-
ues or truth values but fuzzy logic, is in the form of probabilistic logic,
where variables have a truth degree that ranges in [0, 1] such that, 0
stands for False with certainty and 1 is True with certainty. Novak (Nov87)
first proposed fuzzy generalization of first-order logic. In Semantic Based
Regularization, logical constraints are expressed using fuzzy first-order
logic.

3.3 Learning with Constraints

The learning framework of Semantic Based Regularization (DGMR12;
DGS15) considers a multi-task learning problem where each task works
on an input domain of labeled and unlabeled data examples. Tasks can
be n-ary relations where the input is a tuple of patterns. Each input pat-
tern is described by a tuple Xk = xk|xk ∈ Dk, k = 1, . . . n which are
vectors of features and Dk is the input domain of the values of the k-th
predicate.

Let f = {f1, . . . , fT } indicate T multi-variate functions such that fk is
the function implementing the task k. It is associated to the set Xk, which
is a set of pattern inputs to the function with domain Dk (as described
above). The vector of values obtained by applying the function fk to the
set of patterns Xk is indicated as fk(Xk) = fk([x(1,k) . . . x(n,k)]), while
f(X) = f1(X1)∪f2(X2)∪ . . . collects the groundings for all the functions.
From a set of T functions that must be learned to solve the tasks, some
are known a priori. (evidence or GIVEN functions) whereas others are
unknown functions (query or LEARN functions) for the tasks.

When the T task functions have to meet a set of constraints that can be
expressed by functionals, φh : f1, f2 . . . fT → [0, 1], then the set ofH func-
tionals are provided such that f1 ∈ H1, . . . fT ∈ HT , where φh(f), 0 ≤
φh(f) ≤ 1, h = 1, . . . H describes the prior knowledge about the learning
task. These functionals define how the query functions should behave as
they force the function values to meet a set of first-order logic constraints.
These functionals can express properties of a single function or can cor-
relate the subset of (P |P ∈ T) functions to be learned. Learning can be
helped by exploiting these correlations, which limit the parameter space
where good solutions can be found and, potentially, allows to learn with
less examples. The function spacesHk are specific for each function since
the function domains are generally different from each other.

30

Each of the task function expressed using the corresponding function-
als can share the same sample of patterns (e.g. Xj = Xi, i 6= j). Although,
the explanation provided in this chapter is limited to unary predicates
(detailed explanations of n-ary predicates are avoided for simplicity), but
the framework can be trivially extended to predicates of any arity, ex-
pressing relations across multiple patterns. In the latter case, the pattern
representations associated to these functions are expressed as the combi-
nation of the patterns from a set of finite domains: Xj = Xj1×Xj2×

When the functions are grounded a priori. over a set of available pat-
terns, the groundings form the set of examples Ek ⊂ Xk provided as the
supervised labeled data for the learning task at hand. The learning task
is formulated as a constrained optimization or a risk minimization prob-
lem following the classical penalty approach. Therefore, the overall cost
function is given in Equation 3.1, as the summation of the three terms.

Ce[f(X)] =

T∑
k=1

(Reg︷ ︸︸ ︷
||fk||2 +

Labeled︷ ︸︸ ︷
λl
∑
x∈Ek

L(fk(x), yk(x))
)

+

Logic︷ ︸︸ ︷
H∑
h=1

λhLc
(
Φh
(
f(X)

))
(3.1)

The first term is a regularization term penalizing the non-smooth solu-
tions, Ek is the set of labeled data examples (⊂ Xk) available for the k-th
function, L(,) is the loss function, yk(x) is the target output value for the
pattern x for task k, λl is the weight of the labeled portion of the cost
function, Lc() is the loss function used for the constraint part and λh is
the weight for the h-th constraint. A higher value of λh makes it more
costly not respecting the constraint, and the constraint becomes hard as
λh → ∞. Thus the cost function enforces the constraints by penalizing
their violation on the sample of data and also forces the fitting of the
supervised data for each function.
There are two versions of SBR implemented in this research work based
on the values of weight of the labeled portion (λl). This is one of the new
addition to the SBR framework which was never before implemented in
the SBR literature with kernel machines.

• constant weight based SBR : The λl of the labeled portion is constant
and unified over all the predicates or functions of the learning task.

• vanilla or variable weight based SBR : The λl is function based where
different functions are assigned different weights denoted as λkl .

31

The weights assigned to the functions are proportional to the out-
puts of the learner that learns only from supervisions.

In this constraint minimization problem, the completely supervised
examples are likely to carry little information since the task constraints
are already expressed in the provided supervisions that are supposed
to be consistent with the given rules. However, the use of fully labeled
examples when exploited to enforce constraints may yield some bene-
fits when the labels are affected by noise. For example: Flickr is a large
database of images tagged by travelers and photographers but often the
labels are found to be noisy, mainly due to the collaborative tagging ac-
tivities of the users. In these cases, enforcing constraints on the fully la-
beled learning process, can be beneficial in handling the errors that may
occur with the learning model due to the presence of the noisy labels.

Also, the functionals Φh(f) implementing the constraints involve all
the values computed by the functions in f on their whole domains. It
may be complex to provide a closed form that can be efficiently dealt
with in the training process. Hence, it is assumed that these functionals
can be conveniently approximated by considering an appropriate sam-
pling in the function domains. In particular, the exact constraint func-
tionals are to be replaced by their approximations that exploit only the
values of the unknown functions.

Therefore, the learning problem can be better casted in a semi- super-
vised framework where it is assumed that a set of partially labeled exam-
ples are exploited together with an usually larger set of unlabeled exam-
ples. In particular, the choice of unsupervised examples can be exploited
in order to maximize the information available in the joint knowledge of
the a priori. rules and the labeled examples.

In the following section, the methodology of how to define the con-
straints and how to optimize the cost function are discussed in details.

3.3.1 Constraints and Logic

Let us assume that a first-order logic knowledge base (KB) is given,
whose predicates are either fully known a priori. (given) for all possi-
ble groundings or are approximated via the functions that are learned.
For example, in classification problems, a first-order logic knowledge
base can be defined to express how the classifiers should behave. In par-
ticular, each classifier corresponds to a predicate in the KB, while other

32

known predicates can be used during the training process. These ad-
ditional predicates are assumed to be given, meaning that their output
value is known a priori. for all possible groundings.

Any FOL clause in the knowledge base has an equivalent version in
PNF, that has all the quantifiers (∀,∃) and their associated quantified
variables at the beginning of the clause. With no loss of generality, FOL
clauses in the PNF forms are considered in this research work. Any quan-
tifier free expression defined over the set of atomic formulas is equivalent
to a sentence in the propositional logic. The expression is mapped in the
KB into a form suitable for optimization, that is a fuzzy generalization of
the expression.

Fuzzy FOL can transform any FOL knowledge into a real valued con-
straint. Fuzzy FOL uses t-norms (KMP00) to compute the degree of sat-
isfaction of the rule for a given grounding of the variables. A degree
of satisfaction of the FOL formula is obtained by iteratively grounding
the variables in a formula and aggregating the values using the average
and maximum operations over the obtained values for the universal and
existential quantifiers, respectively as discussed below.

T-norms and Grounded Expressions T-norms (known as triangular
norms) (KMP00) are used for converting a propositional logic expression
into a continuous and differentiable logical constraint.

A t-norm is a function t : [0, 1]× [0, 1]→ [0, 1], which has the following
properties:

• is continuous,

• is commutative (i.e. t(x, y) = t(y, x)),

• is associative (i.e. t(x, t(y, z)) = t(t(x, y), z)),

• is monotone (i.e. y ≤ z ⇒ t(x, y) ≤ t(x, z)),

• features a neutral element 1 (i.e. t(a, 1) = a).

A strict t-norm is also strictly monotone. A t-norm fuzzy logic is de-
fined by its t-norm t(a1, a2) that models the logical AND. A t-norm ex-
pression behaves as classical boolean logic when the variables assume
crisp values: 0 (False) or 1 (True).

Given a variable ā with continuous generalization a in [0, 1], its nega-
tion ¬ā corresponds 1 − a. Once the t-norm functions corresponding to

33

Table 1: The operations performed by single units of an expression tree
depending on the inputs x, y and the t-norm used.

op
t-norm Prod Min Luka Weak-Luka

x ∧ y x · y min(x, y) max(0, 1− x− y) min(x, y)
x ∨ y x+ y − x · y max(x, y) min(1, x+ y) min(1, x+ y)
¬x 1− x 1− x 1− x 1− x

x⇒ y min(1, y
x
) x < y?1 : y x < y?1 : y − x min(1, 1− x+ y)

the ∧ and ¬ are defined, they can be composed to generalize any logic
proposition. Different t-norm fuzzy logics have been proposed in the
literature. For example, given two Boolean values ā1, ā2 and their con-
tinuous generalizations a1, a2 in [0, 1]:

• Product t-norm is defined as: (ā1 ∧ ā2)→ t(a1, a2) = a1.a2.

• Minimum t-norm is defined as: (ā1 ∧ ā2)→ t(a1, a2) = min(a1, a2).

• Lukasiewicz t-norm is defined as: (ā1 ∧ ā2)→ t(a1, a2) = max(0, a1 +
a2 − 1).

The ∨ operator modeling logical OR is called the t-conorm and is con-
sequently defined by using the De-Morgan’s rule: (ā1 ∨ ā2) ≡ ¬(¬ā1 ∧
¬ā2)→ t(a1, a2) = 1− (1− a1)(1− a2).

The equivalence ā1 ⇒ ā2 ≡ ¬ā1 ∨ ā2 is used in classic logic to repre-
sent implications (modus ponens). However, this equivalence is not ap-
propriate to perform deductions with fuzzy variable values. Any t-norm
has a corresponding binary operator ⇒ called residuum, which is used
in fuzzy logic to generalize implications when dealing with continuous
variables.

A t-norm residuum provides a natural way to express human fuzzy
reasoning (Nov87), while being equivalent to modus ponens when fuzzy
variable values approach the extremes of the [0, 1] range. The residuum
allows to relax the condition of satisfaction for the implication, which is
satisfied as soon as the t-norm expression of the head has a higher truth
degree than the t-norm expression of the formula body.

For example, the product t-norm has a residuum defined as:

(ā1 ⇒ ā2)→ t(a1, a2) =

{
1 a1 ≤ a2

a2/a1 a1 > a2

34

while in Lukasiewicz t-norm, the residuum is defined as:

(ā1 ⇒ ā2)→ t(a1, a2) =

{
1 a1 ≤ a2

1− a1 + a2 a1 > a2

In propositional logic, a grounded expression is any fully grounded
FOL rule. An expression tree is built for each considered grounded FOL
rule, where the basic logic operations (¬,∧,∨,⇒) are replaced by a unit
computing the logic operation using a t-norm. The expression tree can
take as input, the output values of the grounded predicates, and then
recursively compute the output values of all the nodes in the expression
tree. The value obtained in the root node is the result of the evaluation of
the expression given the input grounded predicates. Table 1 details the
operations computed by the units in the forward step given the inputs
for different selections of the t-norm.

For example, consider the rule ∀x[¬A(x)]∨[B(x)∧C(x)] whereA,B,C
are three predicates that must be approximated (via learning) by the un-
known functions fA, fB , fC . For any given grounding, the expression
tree returns the output value: tE(f(x)) = 1−fA(x)+fA(x) ·fB(x) ·fC(x).
Figure 6 shows the expression tree and the computation that is per-
formed for the previous FOL rule grounded with x = x̄. As for another
example, lets consider the rule ∀x[¬A(x)] ∧ [B(x) ∨ C(x)]. Using the
Weak Lukasiewicz t-norm as reported in Table 1, the expression tree re-
turns the output value: tE(f(x)) = min(1−fA(x),min(1, fB(x)+fC(x))
for a given grounding x.

Quantifiers For the conversion, of any first-order logic expression into
PNF, the quantified variables are moved in the beginning of the expres-
sion. For example: If there is an expression, ∃x(P (x) ∧ ∀y(Q(y) →
R(x, y))), then moving the quantifier to the front gives the following,
∃x∀y(P (x)∧ (Q(y)→ R(x, y))). The quantified portion of the expression
is then processed recursively by moving backward from the inner to the
outer quantifiers in the PNF. As, already mentioned there are two types
of quantifiers: the universal quantifier (∀) and the existential quantifier
(∃). The degree of truth of a formula containing an expression E with a
universally quantified variable xi is the average of the t-norm general-
ization tE(·), when grounding xi over Xi given as:

Φ(f(X)) =
1

|Xi|
∑
xi∈Xi

tE
(
f([x,X/Xi])

)
(3.2)

35

OR

NOT AND

fA (x) fB (x) fC (x)

1� fA (x) fB (x) · fC (x)

tE (f(x)) = 1✁ f A (x) + fA (x) · fB (x) · fC (x)

Figure 6: Forward propagation of the values in the expression tree of a FOL
formula for the grounding x = x̄ when using the product t-norm. The out-
put of the root node returns a value in [0, 1] corresponding to the evaluation
of the rule for the given grounding.

In general, the universally quantified variable xi is defined as the mini-
mum of tE(·) obtained as the t-norm generalization of E when ground-
ing xi overXi, but in this research work, the min operator over the t-norm
values has been replaced by the average over the set. This definition al-
lows in faster convergence during training of the model because the min
operation directly depends only on one item over the set of groundings,
whereas the average depends on all elements and allows parallel opti-
mization of the entire set during training. The two formulations are also
consistent with each other.

In the previous example represented in Figure 6, would yield the fol-
lowing functional on replacing the quantifiers:

Φ(f(X)) =
1

|X |
∑
x∈X

tE
(
f(x)

)
=

1

|X |
∑
x∈X

1− fA(x)+fA(x) ·fB(x) ·fC(x)

For the existential quantifier, the truth degree is instead defined as the
maximum of the t-norm expression over the domain of the quantified
variable. When multiple universally or existentially quantified variables
are present, the conversion is recursively performed from the inner to
the outer variables as already stated. In particular, when only universal
quantifiers are present the aggregation is the overall average over each

36

grounding x:

Φ(f(X)) =
1

|X |
∑
x∈X

tE
(
f(x)

)
3.3.2 Translation of FOL clauses into constraints

Summarizing the conversion process of a FOL clause into a constraint
functional consists of the following three steps:

1. PREDICATE SUBSTITUTION: substitution of the predicates with
their continuous implementations realized by the functions f , map-
ping the output values into the interval [0, 1].

2. CONVERSION OF THE PROPOSITIONAL EXPRESSION: conver-
sion of the quantifier free expression where all the variables are
grounded following the process detailed above.

3. QUANTIFIER CONVERSION: conversion of the universal and the
existential quantifiers as explained above.

The form of the constraints depends on which t-norm has been used
to generalize the FOL rules. Whereas it is always true that all t-norms
are consistent with classical logic when variables assume crisp values
[0, 1], but the behavior of the various t-norms differs for the intermediate
values, ultimately leading to the formulation of different constraints.

3.4 Backpropagation with Logic Constraints

Equation 3.1 representing the cost function of the SBR can be optimized
via gradient descent, where the derivative of the cost function with re-
spect to the j-th weight of the i-th function wij is given as:

∂Ce
∂wij

=
∑
x∈Ei

∂L(fi(x), yk(x))

∂fi
· ∂fi
∂wij

+
∑
k

∂Ce
∂Lc
· ∂Lc
∂Φk

· ∂Φk
∂fi
· ∂fi
∂wij

(3.3)

the regularization term has been omitted to keep the notation simple.
Therefore, only the second and the third terms of the Equation 3.1 are
represented in the optimization Equation 3.3. Assuming that the fi(·)
are implemented by a neural network, the first term corresponds to the
classical labeled error which can be minimized via backpropagation.

37

Since t-norms guarantee that Φk is in the range [0, 1], setting Lc(·) =
L1(1, ·) = 1−· yields ∂Ce

∂Lc
= −1. The last step of the gradient computation

∂fi
∂wij

can also be computed via standard backpropagation step using the
underlying neural network. This learning schema natively generalizes to
the collective classification case (described in the next section) with the
only difference that when learning the output values in collective clas-
sification, no backpropagation down to the model weights is performed
(e.g. ∂fi

∂wij
is dropped).

This section shows how to efficiently compute the ∂Φk

∂fi
using a back-

propagation schema over the expression tree. It is demonstrated with
rules having universally quantified variables but the same ideas can be
trivially extended to rules including existentially quantified variables.
This backpropagation schema which helps to optimize any neural net-
work integrated with SBR using gradients over expression trees, is one of
the most important fundamental addition to the SBR framework, unique
from the previous works of SBR. A universally quantified rule is aggre-
gated over the groundings via the average operator and, therefore, all the
groundings should respect the grounded FOL formula. Learning can be
reduced to find the function values that respect the rule for all possible
groundings and backpropagation can be performed over the expression
tree built for the selected t-norm and each given grounding:

∂Φk
∂fi

=
1

|X |
∑
x∈X

∂tE (f(x))

∂fi

In particular, the forward propagation over the network is performed
for each single grounding of the variables, then the satisfaction error E
of the rule is computed based on the value at the root of the expression
tree. The computation of the gradient with respect to the model weights
is performed by using the chain rule backward over the expression tree:

∂E
∂on

= ∂E
∂op(n)

· ∂op(n)

∂on

where on is the output of the node n in the expression tree, p(n) indicates
the parent of node n in the tree. The root node is assumed to be the node
0 for which o0 = tE (f(x)) and the derivative error at the root node is:
∂E
∂o0

= − ∂Lc

∂Φk
.

For any node n, the derivative ∂op(n)

∂on
is determined by the used t-

38

OR

NOT AND

fA (x) fB (x) fC (x)

E

o0

E

o0
· (1 fB (x) · fC (x))

E

o0
· fA (x) · fC (x)

E

o0
· fA (x) · fB (x)

E

o0
· fA (x)E

o0
· (1 fB (x) · fC (x))

Figure 7: The backpropagation of the error over the expression tree for the
grounding x = x̄ of the FOL rule ∀x[¬fA(x)] ∨ [fB(x) ∧ fC(x)] using the
product t-norm. The backpropagated error reaches a leaf node and it is
passed as error derivative for a further backpropagation pass over the net-
work implementing the function in the leaf node.

norm and the logic operation t-norm(n) computed by the unit, such that

∂op(n)

∂on
= t-norm(p(n))′{l,r}

where the subscripts {l, r} indicate whether node n is the left or right
child of p(n). This is needed because the inputs to the logic operations
are generally not symmetric. The negation is a unary operation and re-
quires no subscripts. In particular, Table 2 details how the gradients are
backpropagated depending on the specific operation and the considered
t-norm.

This establishes an efficient gradient computation schema over the
expression tree, where the error of the considered FOL constraint is back-
propagated from the root to the leaves. Figure 7 shows the backpropa-
gation of the error for the example used across this paper ∀x[¬fA(x)] ∨
[fB(x)∧fC(x)]. At the bottom of the expression tree, the backpropagated
error reaches a leaf node, and it triggers a further backpropagation pass
over the network implementing the function stored in that node.

39

Table 2: The derivatives used in the backpropagation step depending on the
t-norm used and the operation implemented by the unit. Prod, Min, Luka
and Weak-Luka are abbreviations for Product, Minimum, Lukasiewicz and
Weak-Lukasiewicz t-norm.

t-norm′op
t-norm

Prod Min Luka Weak-Luka

(x ∧ y)′l =
∂(x∧y)

∂x
y y < x?y : 0 x+ y < 1?− 1 : y < x?y : 0

0

(x ∧ y)′r =
∂(x∧y)

∂y
x x < y?x : 0 x+ y < 1?− 1 : x < y?x : 0

0

(x ∨ y)′l =
∂(x∨y)

∂x
1− y y > x?y : 0 x+ y < 1?1 : 0 x+ y < 1?1

: 0

(x ∨ y)′r =
∂(x∨y)

∂y
1− x x > y?x : 0 x+ y < 1?1 : 0 x+ y < 1?1

: 0

(¬x)′ = ∂(¬x)
∂x

−1 −1 −1 −1
(x⇒ y)′l =

∂(x⇒y)
∂x

x < y?0 : 0 y > x?y : 1 x+ y < 1?
− y

2·x2 0 : −1
(x⇒ y)′r =

(∂x⇒y)
∂y

x < y?0 : x < y?0 : x > y?x : x+ y < 1?0 :

− 1
x

1 −1 1

3.4.1 Collective Classification

Collective classification (SNB+08) is also a Statistical Relational Learn-
ing (SRL) method. It is defined as the task of performing inference over
a set of instances that are connected among each other via a set of re-
lationships. In this context, collective classification is used to refine the
function output to be consistent with the FOL knowledge used during
training. One of the main advantages of the proposed method is that it
is by no means limited in the type of relationships that can be modeled.
There are several real world applications of collective classification like
enforcing temporal consistency during the test time on the consecutive
video frames in any video classification or video sequencing problem
like tracking a player in the soccer game videos, hyperlinked document
classification, predicting political affiliations based on online purchases
and interactions in social network analysis etc.

In particular, let fk(X ′k) indicate the vector of values obtained by eval-
uating the function fk over the data points of the test set X ′k. The set of
vectors is indicated as: f(X ′) = f1(X ′1) ∪ . . . ∪ fT (X ′T). If no neural net-
work has been trained for fk (no examples or no feature representations
are available during training), fk(X ′k) is assumed to be just filled with

40

default values equal to 0.5.
The prior knowledge in SBR is employed during the training time,

assuming that the learning process encodes the knowledge into the pa-
rameters via the training set. However, if the number of examples are
small, there is no guarantee that the prior knowledge will be respected
by the outputs on the test patterns. Hence, collective classification in
SBR helps to enforce the constraints also on the test data. Any types of
relationships between patterns, labels, set of features (if the features are
externally extracted as for SVMs) can be modeled.

Collective classification can be formulated as a minimization problem
that searches for the values f̄(X ′k) = f̄1(X ′1) ∪ . . . ∪ f̄T (X ′T) respecting
the FOL formulas on the test data, while being close to the prior values
established by the neural networks over the test data:

Ccc[f̄(X ′),f(X ′)] =
1

2

T∑
k=1

|f̄k(X ′k)−fk(X ′k)|2 + λl
∑
h

Lc

(
Φh
(
f̄
(
X ′)
))

The gradient computation in Equation 3.3 transparently generalizes to
the collective classification case and hence the collective classification ob-
jective function can be optimized using gradient descent. The only dif-
ference is that during collective classification, the weights of the trained
neural network are fixed, and no backpropagation down to the network
weights is performed. Hence, this provides a very elegant solution as
there is no additional complexity in the implementation of collective clas-
sification.

3.4.2 Optimization

Constraints and Local Minima The constraints resulting from a FOL
formula can be hard to optimize during learning. T-norms used to trans-
late first-order formulas into real valued constraints, do not guarantee
convexity unless attention is restricted only to Horn clauses. Every in-
dividual atom in the FOL clause, can have a number of possible assign-
ments for a given grounding of variables, and hence there can be several
local minimas in the expression generalizing the FOL formula to a con-
tinuous domain. The intractability of the FOL inference gets translated
into the SBR cost function and therefore that gets plagued by many local
minima.

41

Convexity of Constraints Optimization of the SBR cost function con-
verges relatively faster by increasing the proportion of convex constraints
that can be effectively exploited during learning. There are different pos-
sibilities to increase the proportion of convex constraints or build convex
constraints from FOL formulas.

T-norm-residua are consistent with modus ponens of classical logic at
the extremes of the variable range and also soften the conditions under
which the formula is verified. Also, the application of t-norm residua
to translate logic implications, significantly increases the proportion of
convex constraints that can be exploited during learning than that would
happen using a modes ponens based translation.

Application of negation (¬) to single atomic formulas results in form-
ing convex constraints but when negation is applied to arbitrary terms
(here a term is referred to an expression consisting of groups of atomic
formulas), convexity of constraints is not guaranteed.

Using specific t-norms like Lukasiewicz and Weak Lukasiewicz over
other t-norms help to exploit theorems and fundamental properties of the
chosen logic to get advantage of the learning strategy. Lukasiewicz logic
in either its strong (using strong conjunctions and disjunctions denoted
as ⊗ and ⊕) or weak (using weak conjunctions and disjunctions denoted
as ∧ and ∨) form (GDGM17) has advantage over other fuzzy logics like
Product and Minimum as it provides an equivalent prenex normal form
and a continuous involutive negation preserving the De-Morgan laws. It
is also to be noted, that the distributive property of connectives (conjunc-
tions and disjunctions) actually helps to define weak connectives from
strong connectives and vice versa in every fuzzy logics. Mc-Naughton
Theorem provides a functional representation of Lukasiewicz formulas
by piecewise linear functions. Exploiting this property, it is possible
to characterize the fragment of Lukasiewicz formulas to corresponding
convex functional constraints (GDGM17) and also an equivalent set of
linear constraints.

Optimization heuristics Employing the cost function defined by Equa-
tion 3.1 forces two issues. Direct optimization is not simple because
the Φh(·) can be non-convex and with a large number of local min-
ima (DGS15). Furthermore, the equation introduces many meta- param-
eters λkl , λh whose values must be determined. This section discusses
some heuristics that have been employed in SBR to mitigate these issues.

The optimization problem in SBR is generally intractable. However,

42

there is a large class of logic statements that have been shown to be able
to translate into a convex constraint (GDGM17). Therefore, the following
optimization strategy has been employed:

1. solve the optimization problem stated by Equation 3.1 using only
the convex constraints (e.g. λh 6= 0 iff Lc(Φh(·)) is convex). This
allows to efficiently find a good initial approximation of the best
solution.

2. add the other non-convex constraints, setting the corresponding
λh to non-zero values and continue the optimization until conver-
gence.

The optimization strategy explained above have never been used be-
fore in the literature where kernel machines were integrated in the SBR
framework. Therefore, it was not possible to add concave constraints
during learning which resulted in exploitation of limited number of logic
rules from the knowledge base.

Collective classification also aims to correct the output of the net-
works that are not consistent with the provided prior knowledge dur-
ing the test time. The first term of Equation 3.1 determines how much
to penalize deviating from the output provided by the neural networks.
It is clear that this cost should not be constant for all predicates, but it
depends on how reliable the output of a predicate is. In particular, the
cost should be high for the predicates that have been trained success-
fully and provide a very good accuracy metric measured over a valida-
tion set. On the other hand, a predicate scoring poorly on the validation
set is not reliable in its estimates and deviating the final output from the
predicate values should be allowed more easily during collective classi-
fication. Hence this framework of SBR having predicate based λkl values,
known as vanilla SBR makes the framework more flexible. In vanilla
SBR, λkl are set such that

λkl = λl ∗Acc(fk(X vk), yk(X vk)) ,

where X vk is the set of data points for the domain of fk in the validation
set, yk(X vk) are the corresponding desired outputs for the patterns in the
validation set for fk, Acc(·) is the accuracy metric and λl is the only re-
maining meta parameter to scale the overall regularization cost, which
can be set by maximizing the overall performance on the validation set.

Therefore, all these optimization heuristics and test time strategies
described above used to tightly integrate the deep neural networks with

43

Figure 8: Semantic Based Regularization multi-stage architecture.

logical constraints make the SBR framework more powerful and unified
for different kinds of application than its earlier versions.

3.5 SBR as multi-layer architecture

Given an arbitrary set of FOL logic clauses in the KB, SBR can be gen-
erally encoded by a multi-stage architectural framework. Let the FOL
formula to be computed using SBR be F : ∀x(P1(x)∧P2(x)) as shown in
Figure 8.

• Input Layer: does the computation of the query and evidence func-
tions for all possible groundings of the atomic formulas. The ground-
ings are the feature representations computed on the inputs of the
neural network learners. For example: In the Figure 8, pattern x
is the input to the neural network whose features are computed in
the input layer that is grounded to the predicates P1 and P2.

• Propositional Layer : the value of the t-norm expression for the propo-
sitional part of each FOL formula is computed for each of the com-

44

patible combination of the atomic formulas. For example: Using
appropriate t-norm, the grounded predicates are converted into
real valued functions f1(x) and f2(x).

• Quantifier Layer : the t-norm values computed at the propositional
layer are aggregated by the average or max operator for universal
or existential quantifiers respectively. The number of quantifier lay-
ers are not fixed as the aggregation of the outputs are recursively
nested according to the number of quantifiers in the FOL formula.
For example: For the rule F , the universal quantifier ∀ is replaced
by average operator in this layer.

• Output Layer : accumulates the summation of the contributions of
each atomic formula to build the entire FOL formula. For example:
In F , the output value of the FOL formula F is finally obtained in
this layer.

3.6 Summary

This chapter presents the SBR framework that integrates general prior
knowledge into deep learners, allowing to distill the knowledge into the
model weights during training. The backbone of the SBR framework is
based on the previous works of SBR on shallow networks. As already
stated, for the first time in this research work, it exploits the advantage
of rich feature learners that allows to learn from raw inputs rather than
pre-processed feature vectors. It also introduces several novel concepts
that forms the main contributions of this work like defining of the expres-
sion tree based backpropagation schema for joint training of deep CNN
networks with constraints, the comparison of constant weight based and
vanilla SBR (empirically compared in Chapter 5), comparison of using
different fuzzy logics during joint training in neural nets, combining dif-
ferent fuzzy logics on different subsets of rules to obtain optimum per-
formance gain (empirical results in Chapter 5) and most importantly the
ability of addition of concave constraints heuristically in the deep learn-
ers that helps to keep the optimization tractable and effective. It also ex-
tends the collective classification mechanism of SBR for neural network
predictions that was defined initially for kernel machines. All these ex-
tensions make the SBR framework a powerful mathematical approach
for semi-supervised learning, a scalable and unified pathway for large

45

scale classification tasks. This framework is used in the subsequent chap-
ters for experimental evaluation on different image and video classifi-
cation tasks and is shown to improve the accuracy of different state-of-
the-art deep neural architectures through injection of background knowl-
edge over their individual counterparts.

46

Chapter 4

Machine Learning Methods
and Frameworks for Vision
Tasks

This chapter presents an overview of deep learning and then briefly de-
scribes all the different deep learning frameworks used in the vision tasks
like image/video classification, image segmentation etc. in the following
chapters of the thesis. The chapter is broadly divided into two parts. The
first part introduces different deep convolutional neural networks and
probabilistic frameworks used in image and/or video classification tasks
described in Chapter 5 and Chapter 6 (the different neural learning ma-
chineries of the semantic based regularizer) and in Chapter 7 (describes
the backbone architectures of the segmentation frameworks like Mask
RCNN and UNET). The second part briefly describes the different image
segmentation frameworks like Mask RCNN and UNET used for solving
a real world problem of contaminant separation described in Chapter 7.

Deep Learning

Deep learning (BLP+07; LeC15; Hin12) is considered as a part of ma-
chine learning research with the focus on learning data representations.
Deep networks successfully integrate low/middle/high level features
and classifiers in an end-to-end multi-layer fashion. Deep learning has
been successfully applied to many applications like computer vision

47

(LHB04; LGRN09; KSH12b), phonetic recognition (KSH12a; FCNL13;
TJLB14; SLJ+15), audio processing (MDP+11; Hin12; SMKR13), drug dis-
covery (BLP+07) and many others.

In particular, Deep Convolutional Neural Networks (CNN) (LHB04;
LGRN09; KSH12b) have been shown to outperform shallow architec-
tures like support vector machines, random forest classifiers in many vi-
sion applications like image and video recognition, medical image anal-
ysis, document analysis, keypoint detection etc. Convolutional networks
are inspired by biological processes in which the connectivity pattern be-
tween the neurons resembles the organization of the animal visual cor-
tex. Individual cortical neurons respond to stimuli only in a restricted re-
gion of the visual field known as the receptive field. The receptive fields
of different neurons partially overlap such that they can cover the entire
visual field. The convolutional neural networks also have the convolu-
tional layer filters known as kernels that convolve over any input image
in a similar manner to build feature maps.

LeCun et al. established the framework of CNNs by developing a
multi-layer artificial neural network known as LeNet (LHB04) in the year
2004. LeNet was initially used for classification of handwritten digits
and could be trained with the backpropagation algorithm which made it
possible to recognize patterns directly from raw pixels thus eliminating
a need for a separate feature extraction mechanism. But even with all
these advantages, due to the lack of large training data and computa-
tional power at that time, LeNet failed to perform well on complex prob-
lems such as video classification. Since the proposal of LeNet, the ad-
vanced architecture, AlexNet was also developed and it became the win-
ner of the ImageNet challenge (KSH12a) in 2012, achieving an error rate
considerably lower than its non CNN competitors. Subsequently, ZF-
Net (ZF13), VGG (SZ14), Network in Network (NIN) (LCY13), GoogleNet
(SLJ+15), Residual Networks (HZRS16a), Inception Networks, Pyrami-
dal Residual Networks (HKK16) and Wide Residual Networks (ZK16)
were successfully proposed to demonstrate advances in neural network
architectures. These convolutional neural network models have been
built by leveraging their capacity to varying depths and breadths with-
out any loss in their performance. Various techniques have been sug-
gested to enable training of deeper neural networks, such as well- de-
signed initialization strategies (GB; HZRS15b), better optimizers, skip
connections, knowledge transfer, layer-wise training etc. With the invent
of higher computational power, using these deep neural networks in dif-
ferent applications have now become a reality. They have been applied to

48

several complex vision tasks and many of them achieved huge empirical
success.

4.1 Methods and Deep Neural Network archi-
tectures used in Vision Tasks

This section presents a brief description of the CNN models used in the
experimental simulations in the Chapter 5, Chapter 6 and Chapter 7.
Some of them have been used as an exact replication of their original
works while the others have been adapted to the classification and seg-
mentation tasks discussed in the following chapters.

For example: the implementation tweaks made to the original works
of the backbone networks used as the learning apparatus of Semantic
Based Regularization (SBR), mainly involves the addition of indepen-
dent softmax or sigmoid classification layers to address each level of
hierarchy in the datasets represented as the intermediate classes in the
experiments. To explain this further lets consider the CIFAR-100 dataset.
It has two taxonomical levels of hierarchy namely the coarse classes and
the fine classes. In SBR to exploit the hierarchical relationship between
the coarse and the fine classes, two softmax layers are added to each of
the deep CNN models (original works just have one layer outputting
the fine classes) used. One of these output layer contains the 20 coarse
classes whereas the other has 100 neurons for each of the fine classes.

Another example of how the deep CNN networks are adapted is
also given in Chapter 7 where a Mask RCNN (HGDG17) framework
is used for segmenting the contaminant particles for cleanliness anal-
ysis. In this modified Mask RCNN framework, a deep CNN architec-
ture ResNeXt-101-FPN is used as a feature extractor, a combination of a
ResNeXt (XGD+16) and FPN (KGHD19) CNN model.

Network-In-Network Models

Network In Network model (NIN) (LCY13) is a specialized model where
the linear filters of the traditional convolution layer have been replaced
by micro neural networks to abstract the data within the receptive field.
It helps to enhance the model discriminability for local patches within
the receptive field. The micro neural network is actually a multilayer
perceptron and is called as a mlpconv layer, which is an universal non-
linear function approximator. The mlpconv layer is used to obtain fea-

49

ture maps by sliding it over the input like any normal convolution layer.
It is desirable to use a universal function approximator for feature extrac-
tion of the local patches, as it is capable of approximating more abstract
representations of the latent concepts. Rectified linear unit is used as the
activation function in the mlpconv layers. Figure 9 shows the structural
difference between a linear convolutional layer and a mlpconv layer.

Figure 9: Compares a linear convolutional layer with a mlpconv
layer (LCY13).

Deep NIN models are implemented by stacking several mlpconv lay-
ers and putting sub-sampling layers in between mlpconv layers. A deep
NIN network so formed, is shown in Figure 10. The spatial average of
the feature maps from the last mlpconv layer is obtained through global
average pooling and then fed into the softmax logistic regression layer.

Figure 10: A deep Network in Network Model (NIN) (LCY13).

50

Resnet Models

Resnet models originally designed in the works of He et al. (HZRS16a) al-
low to find a compromise between large network depth that is needed to
perform complex vision tasks and the resulting complexity of the train-
ing involved. The residual networks address the problem of degradation
of training accuracies in deep convolutional neural networks by learning
residual functions with reference to the layer inputs that are easier to
optimize and have accuracy gains from considerably increased depth.
Instead of hoping that each few stacked layers will directly fit into an
underlying mapping as in most deep neural networks, in residual net-
works, layers are explicitly fitted to a residual mapping. Formally, the
desired underlying mapping is denoted asH(x), and let the stacked non-
linear layers fit another mapping F (x) := H(x)−x. The original mapping
is recasted into F (x) +x. The formulation of F (x) +x, can be realized by
feedforward neural networks with shortcut connections.

Figure 11: A comparison of a plain block with a residual block having iden-
tity connections (HZRS16a).

In residual networks, shortcut connections skip one or more layers,
they perform identity mapping and their outputs are added to the out-
puts of the stacked layers as shown in Figure 11. These shortcut connec-
tions neither add extra parameters nor any extra computational complex-
ity and the entire network can be trained using backpropagation mech-
anism. Deep residual networks are found to be more easily optimizable
than their plain counterparts. Any plain network can be easily converted
to its residual version by inserting shortcut connections when the inputs
and the outputs are of same the dimensions. But when the dimensions

51

increase, either extra zero entries are padded for extra dimensions or pro-
jection shortcuts are used to match the dimensions by performing 1 × 1
convolutions. Residual networks can be either basic residual networks
or bottleneck residual networks. For each residual function F , a stack of
3 layers are used in the bottleneck architecture whereas a stack of 2 layers
are used in basic residual networks. The comparison of the basic block
and bottleneck block is shown in the first two architectures of Figure 13.
The number of parameters at different depths of the residual networks
are summarized in Table 3.

Pre-activated Resnet Models

Pre-activated Resnets (HZRS16b) propose a new type of residual unit
that further improves generalization of the residual networks and makes
the training easier. In original residual networks, batch normalization
(BN layer) is used after each weight layer and rectified linear unit ac-
tivation (ReLU) is adopted after each BN except that the last ReLU is
after element wise addition. However, in Pre-activated resenets (PreRes-
nets) the activation functions (ReLU and/or Batch Normalization) are
rearranged. A comparison of the original Resnet with different types of
arrangement of the ReLU and BN layers is shown in Figure 12.

Figure 12: Comparison of original resents with different types arrangement
of the ReLU and BN layers finally lead to a full pre-activation architec-
ture (HZRS16b).

52

Figure 13: A comparison of different resents like basic, bottleneck, wide and
pyramidal residual architectures.

In PreResnets, both BN and ReLU are used as pre-activation of the
weight layers which improves regularization (reaches slightly higher
training loss at convergence) of the model and also eases optimization.
In the original residual unit, although the BN layer normalizes the sig-
nal but this is soon added as the input to the next weight layer, but in
the pre-activation units, the inputs to all the weight layers have been
normalized. PreResnets are also able to further exploit the dimension
of network depth. The number of parameters at different depths of the
PreResnets are compared with the parameters of other residual network
configurations in Table 3.

Pyramidal Resnet Models

One of the best performing network on CIFAR-10, CIFAR-100 and Im-
ageNet datasets is the Pyramidal Residual network (HKK16). In these
networks, the feature map dimension of all units are gradually increased
as a function of depth at which the layer occurs, resulting in a structure
similar to a pyramid.

There are two types of pyramidal residual nets in the original works
(HKK16) namely the additive and multiplicative networks with addition
based and multiplication based widening step factor respectively. In the
additive network, the feature map dimension increases linearly whereas
in multiplicative network, it increases geometrically. In pyramidal net-
works projection identity shortcuts cannot be used since the feature map
dimension differs among the individual residual units, therefore zero

53

padded identity shortcuts are used which are the skip connections. These
shortcuts do not add any additional parameters and hence do not lead
to the overfitting problem. Therefore, these networks have better gener-
alization capabilities. The pyramidal residual networks also have basic
block and bottleneck architectures as the normal residual networks and
their comparison is shown in Figure 13. The number of parameters at dif-
ferent depths of the additive and multiplicative pyramidal residual nets
are compared with the parameters of other residual networks in Table 3.

Resnets with Modified Residual Units

Pre-activated Resnets added a small modification to the original resid-
ual units by placing the activation layers before the weight layers, simi-
larly, it was also found empirically in the works of Han et al. (HKK16),
that the performance of the deep CNN networks are impacted largely
by the location and the number of ReLUs used in the each block of the
residual units. Therefore, a modified residual unit was designed by Han
et al. (HKK16) removing the first ReLU in the blocks of each residual
unit and also pre-activating each residual unit in the modified architec-
ture. This enhanced the performance during inference without adding
any extra hyper parameters. However, atleast one ReLU should exist in
each residual block to maintain the non-linearity.

Wide Residual Networks

Wide Residual networks (ZK16) are an improved version of the original
residual networks where the depth of the network is decreased while
increasing the width of the network. In very deep networks, it was
seen that although the gradient flowed through the network, nothing
was learned in many residual blocks, and this was formulated as the di-
minishing feature reuse problem. Therefore, the wide residual networks
have been designed to use fewer but wider blocks that learn more useful
representations than deeper networks. They are developed using three
simple modifications:

• Adding more convolutional layers per block.

• Widening the convolutional layers by adding more feature planes.

• Increasing the filter sizes in the convolutional layers.

54

There have been different widening factors for different wide resid-
ual architectures and some of them are summarized in Table 3 along with
the number of hyper parameters in each of the architectures. WideRes-
nets also have variations in configurations with and without dropouts
in each residual blocks. These networks are also faster to train than
their deeper counterparts as increasing width helps effectively balance
computations in a much more optimal way. With the original works
in wide residual networks (ZK16), it has been observed that widening
consistently improves performance across residual networks of different
depths. Also, increasing both depth and width helps until the number
of parameters becomes too high and then stronger regularization like
dropouts are needed.

ResNeXt Networks

ResNeXt (XGD+16) is another modified architecture that takes its inspi-
ration in different deep CNN models like Resnets, Wide Resnets, VGG
networks (SZ14) etc. It is a simple and highly modularized architecture
constructed by repeating any building block (like a residual block) by a
set of transformations of the same topology and then aggregating them
by summation. This results in a design of a homogeneous multi-branch
architecture that has few hyper parameters to be tuned. However, there
is a new dimension introduced known as the cardinality. It refers to the
size of the set of transformations used in the repeated blocks. It is an
essential factor in addition to the dimensions of depth and width of the
network. The repetition of the blocks follow two simple rules:

• When producing the spatial maps of the same size, the blocks share
the same hyper parameters,

• Each time when the spatial map is down sampled by a factor of
2, the width of the blocks is multiplied by a factor of 2. This en-
sures that the computational complexity is roughly the same for all
blocks.

In the original works (XGD+16) of ResNeXt, it has been empirically
demonstrated that because of the aggregated transformations, the new
architecture outperforms the original resnet module. The ResNeXt mod-
ule with a cardinality of 32 is designed using a set of 32 transformations
from a original resnet module as shown in Figure 14. The parameters

55

Figure 14: A block of ResNet is shown in the left whereas in the right, it is
converted into a block of ResNeXt with cardinality of 32, having roughly the
same complexity using a set of 32 transformations and aggregating through
a summation (XGD+16).

of few different sizes of ResNext networks are also given in Table 3 and
compared with other network architectures used in different vision tasks.

Inception Networks

Inception module was firstly introduced in Inception-v1/GoogLeNet
(SLJ+15). The input of every block or module goes through 1 × 1, 3 × 3
and 5×5 convolution layers, as well as simultaneous max pooling layers
and then concatenated together as the output for that module. A simple
inception module is represented in the Figure 15. Inception networks are
built using a collection of these inception modules.

Inception-v2 is the next version after Inception-v1 and it first used
batch normalization in the inception modules. Factorization was used in
the next version known as Inception-v3 to the reduce dimensionality of
the modules and to solve the overfitting problem. Each of these versions
show improvement over each other in different visual recognition tasks
especially in image classification. The most advanced version of Incep-
tion network without residual connections is the Inception-v4 (SVI+16)
which has similar architecture to Inception-v3 but has more inception
modules than the v3 version. However, there are also other versions of
inception architectures with residual or skip connections like Inception-

56

Figure 15: Inception module (SLJ+15).

Resnet-v2, Inception-Resnet-v4 etc. The parameters of some of the differ-
ent versions of Inception networks are summarized in Table 3.

NasNet Networks

NasNet are networks built from an efficient neural architecture search
(NAS) algorithm (ZVSL17) that denotes the process of automatically de-
signing artificial neural networks. Various approaches of NAS have de-
signed networks that are on par or even outperform the hand-designed
architectures. Methods for NAS can be categorized according to the fol-
lowing factors:

• Search space that defines which type of artificial neural network
(ANN) can be designed and optimized in principle.

• Search strategy defines which strategy is used to find optimal ANN’s
within the search space.

• Finally the performance estimation strategy is used to finalize on
the design.

In NAS, networks are searched on particular datasets. A controller
Recurrent Neural Network (RNN) samples child networks with differ-
ent convolutional architectures and then the child networks are trained

57

Table 3: Number of parameters in each of the different configurations of
residual network architectures. # refers to the number in the Layers and
Parameters column. M is the abbreviation for millions, α and γ are param-
eters specific to the network architectures.

CNN Networks # Layers # Parameters

Resnet

32 0.46 M
110 1.7 M
164 1.7 M
1202 19.4 M
50 25.6 M
101 44.5 M
152 60.2 M

PreResnet

110 1.7 M
164 1.7 M
1202 19.4 M
50 25.6 M
101 44.5 M
152 60.2 M

Additive PyramidNet

110, α = 84 3.8 M
110, α = 270 28.3 M
164, α = 84 3.8 M
164, α = 270 27.0 M
236, α = 220 26.8 M
272, α = 200 26.0 M
200, α = 200 62.1 M
200, α = 450 116.4 M

Multiplicative PyramidNet 110, α = 27 28.3 M

Wide Resnet
16, γ = 8 11.0 M
28, γ = 10 36.5 M
40, γ = 4 8.7 M

ResNeXt 50 25.0 M
101 44.0 M

Inception
v1 7.0 M
v2 7.0 M
v3 2.3 M

NasNet-A 3.3 M

to converge and obtain some accuracy on the validation set of the partic-
ular dataset. The resulting accuracies are used to update the controller

58

so that the controller will generate better architectures over time. The
controller weights are updated with policy gradient as described in the
works of Zoph et al. (ZVSL17). NasNet-A is a NAS architecture with ap-
proximately 3.3 M (shown in Table 3) parameters searched and built on
CIFAR-10 dataset.

Regularization of inputs

Residual Networks are sophisticated and efficient form of convolutional
neural networks that are used in several vision tasks. But for the complex
convolutional neural networks like residual models, with the increased
representational power gains that they possess, they also have the in-
creased probability of overfitting, leading to poor generalization ability
during inference. A learned model tends to represent random error or
noise instead of features from the underlying data distribution. To im-
prove the generalization, several regularization techniques such as data
augmentation, judicious addition of noise to activations, dropouts and
batch normalizations have been implemented.

In the image classification experiments using deep CNN in SBR, some
input based regularization techniques have been used, based on the
works of Zhong et al. (ZZK+17) and Terrance et al. (DT17). In the works
of Zhong et al., a technique called Random Erasing (ZZK+17) is pro-
posed in Wide Residual Networks. Occlusion is a critical factor in gen-
eralization of CNNs and it is desirable that invariance to various levels
of occlusion is achieved. It is hypothesized that when some parts of the
object are occluded, a strong classification model should be able to clas-
sify the object correctly. During training, an image within a mini-batch is
either randomly kept unchanged or a rectangular region in an image is
chosen and the real pixels in them are replaced with random values (in
the experimental evaluations, the mean-pixel values of the dataset are
assigned). For an image I in a mini-batch, the probability of it undergo-
ing random erasing is p, and the probability of it being kept unchanged
is 1 − p. Random erasing randomly selects a rectangle region Ie in an
image, and erases its pixels with random values. Assuming the size
of the training image is W × H , the area of the image is S = W × H .
A random erasing region Se is initialized, where Se/S is in the range
specified by minimum sl and maximum sh values. The aspect ratio of
erasing rectangle region is randomly initialized between r1 and r2 and
it is set to re. There are three parameters in random erasing: the eras-
ing probability p, the area ratio range of erasing region sl and sh, and

59

Figure 16: Random Erasing and Random Cutout applied to few selected
natural images (ZZK+17; DT17).

the aspect ratio range of erasing region r1 and r2 which are selected via
cross-validation. In this process of random erasing, data is augmented
on a huge scale as the training images are generated with various levels

60

of occlusion which helps to prevent the problem of overfitting in large
CNNs. Random erasing preserves the global structure of every input
image as it can be viewed as addition of noise to the image. Random
Erasing is also a lightweight method that does not require any extra pa-
rameter learning or memory consumption.

Another very similar regularization technique applied at the input
level is called as Random Cutout based on the works of Terrance et al.
(DT17). This technique randomly masks out squared regions of the in-
put image with zero values during each epoch of training. This method
also effectively augments the dataset with partially occluded versions of
the existing data samples. It is similar to the dropout technique except
here the dropout occurs at the input stage rather than at the intermediate
layers. A fixed-size zero mask is applied to a random location of each in-
put image where the size of the cutout region is a hyper parameter that
is determined via cross-validation. This improves the model robustness
and ultimately yields better model performance. This method performs
slightly better than random erasing, however the motivation is exactly
the same and this yields the present state-of-the-art results with wide
residual networks on CIFAR-10 and CIFAR-100 datasets. An example of
random erasing and random cutout are shown on natural images in Fig-
ure 16. The squares showing noisy masks are random erasing masks and
the zero gray masks represent the cutout technique.

Markov Random Fields

A Markov Random Field (MRF) is a probability distribution p over vari-
ables x1, . . . , xn defined by an undirected graph G, in which the nodes
correspond to variables xi. The probability p has the form:

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc) (4.1)

where C denotes the set of cliques (i.e. fully connected subgraphs) of G
and it is often referred to as the Markov blanket. The value of Z is:

Z =
∑

x1,...,xn

∏
c∈C

φc(xc) (4.2)

and it is called as a normalizing constant or a partition function that en-
sures that the distribution sums upto to 1. Thus, given a graph G, the
probability distribution may contain factors whose scope is any clique in

61

G, which can be a single node, an edge, a triangle, etc. Optimization in a
MRF problem involves finding the maximum of the joint probability over
the graph, usually with some of the variables given by some observed
data. Equivalently, as seen from the equations above, this can be done
by minimizing the total energy, which in turn requires the simultane-
ous minimization of all the clique potentials. The joint distribution over
the random variables of a first-order Markov chain can be factored into
a product of conditional distributions. This permits efficient inference.
The key to MRFs is that, with the use of local connections, information
can propagate a long way through the graph. This communication is im-
portant if we want to express some structure in which knowing the value
of one node tells us something important about the values of the other
nodes, possibly distant, nodes in the graph. Therefore, MRFs can be used
to force coherence of any structured classifier outputs. For example, in
videos when there is a temporal coherence among the adjacent frames, if
we use a non-linear classifier to classify the frames independently, then
MRF models can be used at the second stage to establish a temporal rela-
tionship among the consecutive frames and therefore improve the final
classification outputs of the first stage classifier. This kind of temporal
smoothing on the adjacent video frames in a video sequencing and tool
annotation task is performed in Section 6.2.

4.2 Methods and Frameworks for Image Seg-
mentation

Object detection and segmentation is another important vision task that
is being actively pursued by the deep learning community. This section
briefly describes the types of segmentation techniques like semantic and
instance segmentation used for different tasks. It also outlines the orig-
inal works of some of the segmentation model architectures specifically
Mask RCNN and UNET that are used in building end-to-end solutions
for the contaminant separation problem as described in Chapter 7. The
adaptations of these methods and frameworks and the tweakings from
their original works are described in more details in Chapter 7.

Feature Pyramid Networks

Detecting objects at different scales is a challenging task particularly for
small objects. One of the solution is to use a pyramid of the same image

62

Figure 17: A building block of FPN illustrating the lateral connection from
the bottom-up to the top-down pathway, merged by addition (LDG+16).

at different scales to detect objects but processing multiple scale images
is time consuming and not memory efficient if trained end-to-end. Alter-
natively, a pyramid of features from a single image input can be created
and used for an object detection and segmentation task. Feature Pyra-
mid Network (FPN) (LDG+16) is a feature extractor that is designed for
such pyramidal concept and is the present state-of-the-art feature extrac-
tor used in most object detectors.

FPN composes of a bottom-up and a top-down pathway. The bottom-
up pathway is the usual convolutional network for feature extraction. At
each level upward, the spatial resolution decreases with more high-level
structures being detected and also the semantic value for each layer in-
creases. However, the top-down pathway is used to construct higher
resolution layers from a semantically rich layer. While the reconstructed
layers are semantically strong but the locations of objects at the lower
layers are not precise after the rigorous downsampling and upsampling
processes. To take the advantages of both the pathways, lateral connec-
tions are added between the reconstructed layers and the corresponding
feature maps to extract more location accurate information. It also acts
as skip connections to make the training of the FPN easier. A schematic
representation of the bottom-up and the top-down pathway with the lat-

63

eral connections in a building block of FPN is shown in Figure 17. FPN
is not an object detector by itself. It is a feature detector that works with
object detectors like Region Proposal Network (RPN) (RHGS15) of Mask
RCNN.

In this thesis, Chapter 7 shows the effective use of feature pyramid
network that provides the input to the RPN of the image segmentation
framework, Mask RCNN (discussed in the Section 4.2) by extracting rich
feature maps from different image scales.

Semantic vs Instance Segmentation

Figure 18: An Example of Semantic Segmentation.

Semantic segmentation aims at grouping pixels of an image in a se-
mantically meaningful way into different categories. For example: Let
us consider an image as shown in Figure 18, pixels belonging to road,
persons, cars or trees each from a separate category and are therefore
grouped separately. So semantic segmentation does a pixel-wise classi-
fication as if the pixel is a part of the object like road, some car or some
person but it does not have any information about the boundaries of the
individual objects.

Instance segmentation on the other hand is the process of detecting
different instances of the same category. Instance segmentation systems
are looking for the look alike objects in the scene and any objects that
look different are ignored even if they belong to the same class as the
object considered. It has information about the object boundaries. It can

64

Figure 19: An Example of Instance Segmentation.

separate two or more overlapping objects of the same category. The in-
stance level segmentation of the image 18 is shown in Figure 19 where
different objects of the same category like persons are detected as person
1, person 2 etc. Another example differentiating semantic and instance
segmentation is also illustrated in Section 7.2.

Mask RCNN Model

Mask RCNN (MRCNN) is the state-of-art instance segmentation model
originally proposed by He et al. (HGDG17). It is a two stage object detec-
tion and segmentation framework (shown in Figure 20) where the first
stage scans the image and generates proposals using the Region Pro-
posal Network (RPN) and the second stage classifies the proposals and
generates bounding boxes and segmentation masks of the objects. Mask
RCNN extends its predecessor Faster RCNN (RHGS15) by adding an ex-
tra head to architecture for predicting segmentation masks on each Re-
gion of Interest (ROI) generated by the RPN network, in parallel to the
existing branches of Faster RCNN for classification and bounding box
regression.

The first stage of Mask RCNN contains a feature extractor and a RPN.
The feature extractor is a convolutional neural network that provides fea-
ture maps as inputs to the RPN network. The feature extractor used
in the Mask RCNN framework for the experiments of this thesis, is a
ResNeXt-101-FPN (ResNeXt and FPN have been briefly explained ear-

65

Figure 20: A schematic diagram of Mask RCNN illustrating the three dif-
ferent heads: classification head, bounding box regressor and the mask seg-
mentation head.

lier in this chapter and their implementation in the contaminants prob-
lem is given in Section 7.3) network which is a combination of ResNeXt
deep CNN and a FPN, a pyramidal feature extractor. The RPN is a
lightweight neural network that scans the feature maps of the image in
a sliding-window fashion and finds areas that contain the objects. The
regions of interest scanned by the RPN are called as anchors which are
defined as the bounding boxes of different sizes and aspect ratios, dis-
tributed over the feature map. The anchor selection criteria in the origi-
nal works (HGDG17) and the framework used in the experiments of the
thesis (discussed later in Section 7.3) are significantly different. Due to
the bounding box refinement step in the RPN that generates the Regions
of Interest (ROI) for the next stage of the Mask RCNN, there can be ROIs
of different sizes and shapes. Mask RCNN uses a quantization free tech-
nique called as ROI Align to resize all these ROI regions to fixed sizes.

The next stage of the Mask RCNN contains a mask branch, a bound-
ing box regression branch and an object classification branch. The mask
head is decoupled from the class and the bounding box head and there-
fore, it is able to segment objects from each ROI in a class agnostic fash-

66

ion. The mask head is a fully convolutional neural network that can pre-
dict one mask per class independently from the other masks for every
ROI. The entire Mask RCNN framework is trained end-to-end by min-
imizing the total training loss which is a multi-task loss function given
as the summation of 5 losses: the RPN classification loss, RPN bounding
box regression loss, the overall classification loss, the overall bounding
box prediction loss and the mask segmentation loss as in Equation 4.3.

L = LR-cls + LR-box + Lcls + Lbox + Lmask (4.3)

where, LR-cls is the RPN classification loss, LR-box is the RPN box pre-
diction loss, Lcls represents the classification loss, Lbox represents the
bounding box regression loss and Lmask represents the segmentation
loss.

UNET Model

The UNET is an U shaped network developed by Ronnenberger et al.
(RFB15) for biomedical image segmentation. The schematic diagram of
the architecture is given in Figure 21.

The networks consists of a contraction path and an expansion path.
The contracting path is a typical convolutional network that consists of
repeated convolutions, each followed by a Rectified Linear Unit (ReLU)
and a max pooling operation. During the contraction, the spatial infor-
mation is reduced while feature information is increased. The expan-
sive pathway combines the feature and the spatial information through
a sequence of upsampling and concatenations with high-resolution fea-
tures from the contracting path. The contraction path is also called as the
encoder of the network that help in capturing the context from images
whereas the expansion path is called as the decoder that enables precise
localization. UNET network is trained end-to-end to perform semantic
image segmentation and requires lesser amounts of labeled data than
any two stage segmentation frameworks like Mask RCNN.

In the original works of UNET (RFB15), a pre-computed weight map
is used and this is multiplied with the softmax weighted cross entropy
loss to train the model. The pre-computed weight map helps the network
to learn the small separation borders between the touching objects. The
separation border is extracted using morphological operations and then
the weight map is computed for each groundtruth segmentation mask
by assigning higher weights to these borders. With the use of a weight

67

Figure 21: A schematic diagram of UNET based on its original works
in (RFB15). The U-shpaed framework formed using a contracting and an
expanding path of alternate convolution and pooling layers (RFB15).

map, a semantic segmentation framework is forced to behave closely to
an instance segmentation framework. The weight map computation is
done according to the Equation 4.4.

w(x) = wc(x) + w0 · exp
(
− (d1(x) + d2(x))

2

2σ2

)
(4.4)

where c represents the number of classes in the segmentation task, wc
represents the weight map to balance the class frequencies, d1 denotes
the distance to the border of the nearest object and d2 represents the dis-
tance to the border of the second nearest object.

4.3 Summary

To summarize this chapter, it outlines the original works of different deep
learning frameworks and methods used and adapted in image/video

68

classification and image segmentation tasks in the following chapters of
the thesis. Some of these frameworks are used as learning machinery
integrated in SBR simulator for experimental analysis in Chapter 5 and
Chapter 6, whereas others are used as image segmentation frameworks
and backbone networks in Chapter 7.

69

Chapter 5

Image Classification

This chapter forms the core of the first part of the thesis and demonstrates
image classification with different benchmark datasets performed using
the simulators of SBR that are SBRS (Semantic Based Regularization Sim-
ulator : Caffe and C++ framework) and LYRICS (Learning Yourself Rea-
soning and Inference with Constraint Simulator: Tensorflow and Python
framework). The goal of this work is to exploit the power of SBR when
integrated with different deep CNN networks on both small and large
scale image datasets in supervised and semi-supervised setting. For each
of the datasets, different experimental conditions are set, different fuzzy
logics are compared, different backbone networks are tested and most
importantly optimization challenges are solved through different heuris-
tics depending on the number and type of constraints used for the par-
ticular dataset. The hypothesis that integration of prior knowledge with
rich feature learners like deep neural networks in scarcity of supervised
examples is greatly beneficial, is proved through the different ablation
studies described in this chapter. Therefore, this chapter provides em-
pirical evidences to support the usefulness of all the novel theoretical
additions of the SBR framework made through this research work.

An overview of the datasets used in this chapter are tabulated in Table 4.
The four datasets namely Winston Animal, CIFAR-10, CIFAR-100 and
ImageNet datasets are used with SBR framework to perform image clas-
sification using logical constraints. # in the Table 4 refers to the total
number of samples or images present in the respective dataset.

71

Table 4: Datasets used in experiments of SBR. # Samples refer to the num-
ber of training patterns present in each corresponding dataset.

Dataset Name # Samples Categories Domain
Winston ANIMAL 5005 7 Image
CIFAR-10 1 60K 10 Image
CIFAR-100 1 60K 100 Image
ImageNet 2 1.2M 1000 Image

5.1 Simulators and Metrics

Semantic Based Regularization Simulator (SBRS) is a software imple-
menting SBR in C++ and Caffe. Neural network learners are integrated
in SBRS using the deep learning package, Caffe. It can be used to express
first-order logical theory in Prenex Normal Form and declare domains
with different sorts of constants, predicates and functions and hence can
be used in any classical classification problem.

LYRICS is also another SBR based simulator which defines a declar-
ative language in Python and has a Tensorflow based environment that
drops the barrier to build very deep and complex neural network mod-
els and also integrates the available domain knowledge in any machine
learning tasks including classification, generative and adversarial ML,
sequence to sequence learning etc.

All the experiments of the ANIMAL dataset and the collective clas-
sification experiments using pretrained models of CIFAR-10, CIFAR-100
and ImageNet and also joint training in small convolutional neural net-
works like Resnet-20 are done in SBRS. Whereas all the joint training ex-
periments involving deep networks are performed in LYRICS as Tensor-
flow helps in efficient integration of these frameworks into SBR. Different
ablation studies are performed to show how to use the SBR framework
with scarce data points in semi-supervised settings or in transductive
learning tasks, how to heuristically add logical constraints yielding bet-
ter classification results, how to implement collective classification over
the test set etc. The wide range of the experimental evaluations per-
formed is one of the biggest strength of this thesis.

To measure the performance of the multi-label semi-supervised im-
age classification task, different metrics are used as listed below:

1https://www.cs.toronto.edu/˜kriz/cifar.html
2 http://www.image-net.org/

72

https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/

• Accuracy : Metric for the final or leaf classes in the classification
task that are exclusive and only one single class can trigger for each
pattern or datapoint (selected via argmax).

• Error rate : Metric obtained by subtracting accuracy from 100 and
expressed in terms of percentage.

• Precision : In multi-label classification, this metric tells about the
proportion of positive classifications that are actually correct. It
also gives an intuition of the false alarms in the classification task.

• Recall : In multi-label classification, this metric tells about the pro-
portion of actual labels that are classified correctly. It gives an intu-
ition of the misses with respect to the actual labels in the classifica-
tion task.

• F1-score : Defined as the harmonic mean of precision and recall. It
corresponds to the prediction of all the predicated classes including
the intermediate ones. Considering all the classes, the F1 metric
(F1 = 2×precision×recall

precision+recall) is used to measure the performance with
a 0.5 threshold over the outputs.

5.2 Experimental Analysis on ANIMAL Dataset

This image classification problem is based on the original benchmark
proposed by P.Winston (WH86), which was initially designed to show
the ability of logic programming for the determination of the class of an
animal from some partial clues. Unlike in the original challenge, no clues
are given as input to the classifier, but only the raw images are provided,
leaving it to the convolutional neural network (used as a learner in SBR)
the responsibility of developing the intermediate clues over which to per-
form the inference. The ANIMAL dataset has been previously used by
Diligenti et al. (DGS16) in kernel machine integrated SBR. Kernel Ma-
chines (KM) are shallow networks and cannot act as automatic feature
extractors like neural networks, these experimental evaluations will em-
pirically compare the previous results using KM with the neural network
integrated SBR.

The dataset is composed of 5005 images, a small subset from the Ima-
geNet database equally divided into 7 categories, each one representing
an animal class namely:

73

• ALBATROSS

• CHEETAH

• GIRAFFE

• OSTRICH

• PENGUIN

• TIGER

• ZEBRA

The images have been split into training, validation and test sets with
3325, 710 and 910 images respectively. The effect of logical constraints
in different semi-supervised settings are demonstrated through different
experimental simulations described in the Section 5.2.4. The experiments
are also performed by incremental addition of constraints using the opti-
mization heuristics where convex constraints are added before the non-
convex constraints.

The images of each animal present in the dataset occur at different
distances, angles, magnifications and poses. All images used in these
experiments have been resized to two different resolutions: 32 × 32 and
64× 64 pixels.

5.2.1 Knowledge Domain

The knowledge about the domain is expressed in terms of first order logic
rules as shown in Table 5. The rules are divided into two groups:

• The first set of rules are the ones that can be converted into con-
vex constraints as described in the Section 3.4.2. Let these rules be
called as ConvR denoting the convex rules.

• The second set of rules are the ones that are not guaranteed to be
converted into convex constraints. Let this set be named as ConcR
denoting the concave rules.

Different experiments are performed. Some of them use only ConvR
rules where all the constraints are guaranteed to be convex using any
t-norms and others use the whole set (ConvR and ConcR rules) where
convex as well as non-convex constraints are present depending on the

74

Table 5: Prior knowledge used to train neural networks on Winston Bench-
mark.

ConvR rules referring to the rules generating Convex constraints.

∀x HAIR(x)⇒MAMMAL(x)
∀x MILK(x)⇒MAMMAL(x)
∀x FEATHER(x)⇒ BIRD(x)
∀x FLY(x) ∧ LAYEGGS(x)⇒ BIRD(x)
∀x MAMMAL(x) ∧MEAT(x)⇒ CARNIVORE(x)
∀x MAMMAL(x) ∧ POINTEDTEETH(x) ∧ CLAWS(x) ∧ FORWARDEYES(x)⇒
CARNIVORE(x)
∀x MAMMAL(x) ∧ HOOFS(x)⇒ UNGULATE(x)
∀x MAMMAL(x) ∧ CUD(x)⇒ UNGULATE(x)
∀x MAMMAL(x) ∧ CUD(x)⇒ EVENTOED(x)
∀x CARNIVORE(x) ∧ TAWNY(x) ∧ DARKSPOTS(x)⇒ CHEETAH(x)
∀x CARNIVORE(x) ∧ TAWNY(x) ∧ BLACKSTRIPES(x)⇒ TIGER(x)
∀x UNGULATE(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ TAWNY(x) ∧
DARKSPOTS(x)⇒ GIRAFFE(x)
∀x BLACKSTRIPES(x) ∧ UNGULATE(x) ∧WHITE(x)⇒ ZEBRA(x)
∀x BIRD(x) ∧ ¬ FLY(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ BLACK(x)⇒
OSTRICH(x)
∀x BIRD(x) ∧ ¬ FLY(x) ∧ SWIM(x) ∧ BLACKWHITE(x)⇒ PENGUIN(x)
∀x BIRD(x) ∧ GOODFLIER(x)⇒ ALBATROSS(x)
∀x LAYEGGS(x)⇒ BIRD(x)

ConcR rules referring to the rules that are not guranteed to be Convex constraints.

∀x MAMMAL(x) ⊕ BIRD(x)
∀x HAIR(x) ⊕ FEATHER(x)
∀x DARKSPOTS(x)⇒¬ BLACKSTRIPES(x)
∀x BLACKSTRIPES(x)⇒¬ DARKSPOTS(x)
∀x TAWNY(x)⇒¬ BLACK(x) ∧ ¬WHITE(x)
∀x BLACK(x)⇒¬ TAWNY(x) ∧ ¬WHITE(x)
∀x WHITE(x)⇒¬ BLACK(x) ∧ ¬ TAWNY(x)
∀x WHITE(x)⇒¬ BLACK(x)
∀x WHITE(x)⇒¬ TAWNY(x)
∀x BLACK(x)⇒¬WHITE(x)
∀x BLACK(x)⇒¬ TAWNY(x)
∀x TAWNY(x)⇒¬ BLACK(x)
∀x TAWNY(x)⇒¬WHITE(x)
∀x CHEETAH(x) ⊕ TIGER(x) ⊕ GIRAFFE(x) ⊕ ZEBRA(x) ⊕ OSTRICH(x) ⊕
PENGUIN(x) ⊕ ALBATROSS(x)

75

choice of the t-norms used. Seven predicates in the knowledge base as
listed in the Table 5 correspond to the final animal classes, while the oth-
ers are intermediate predicates that help in determining the final classes
during the inference process. For example: HAIR, MAMMAL, MILK,
CARNIVORE etc. are intermediate predicates whereas CHEETAH, OS-
TRICH are final predicates. The rules are handcrafted based on prior
knowledge about the animal images. Almost all the rules in ConvR are
definitive rules which involve a residuum operator or a final class in it.
Most of the rules in ConcR set that involve an intermediate class or pred-
icate are called intermediate rules. The last rule in ConcR set with an
exclusive-OR operator states the fact that one and only one class should
be assigned to each image.

Rules are converted to constraints using different t-norms as men-
tioned in Table 1 in Chapter 3 using the Lukasiewicz fragment, the con-
straints are convex under certain conditions. Whereas when other t-
norms like Product and Minimum are used that does not guarantee con-
vexity, optimization heuristics as described in Section 3.4.2 are employed
during learning for better and faster convergence. In the experimen-
tal process, the rules are added incrementally (rules of ConvR set fol-
lowed by the ConcR set) to study the effect of prior knowledge and also
to demonstrate the effect of convexity of constraints.

5.2.2 Experimental Settings

The learning problem is also studied in different experimental settings:

• Transductive Fully Labeled: All the training, the validation and the
test patterns are available during training but only the class labels
of the training patterns are fully known a priori. FOL groundings
however, can contain training, validation and test data and the con-
straints can be enforced over all the available data patterns. Trans-
ductive learning has several practical applications in the field of
document classification, image classification from web where read-
ing through the content and deciding on the subject or category
of millions of documents or images is a tedious task to be exe-
cuted manually in order to obtain labeled data. Therefore, using
a small subset of labeled data in combination with a large set of
unlabeled data, creating a semi-supervised environment for trans-
ductive learning and then exploiting the domain knowledge is a
very feasible solution.

76

• Transductive Partially Labeled: All the patterns are available dur-
ing training in the transductive setting as described above but trans-
ductive partially labeled differs from its fully labeled counterpart,
as here a random subset of class labels are available for each pat-
tern during training. This emulates a scenario that could have hap-
pened on an image hosting site, where images are tagged by the
users of the social media, but the tags are incomplete and incon-
sistent, therefore, it is required to fill the missing tags by learning
and inference. The other real world applications are present in the
areas of anomaly detection, or in the detection of operating modes
in industrial equipment (pumps, turbines, etc.). For this experi-
mental setting, in particular, one third of the labels are randomly
selected to be kept as the training examples, while the others go to
the validation and the test sets.

• Non Transductive: The training data is composed of only the train-
ing patterns and all the training patterns are fully labeled during
training. The validation and the test patterns do not form a part
of the training data. The constraints are therefore expressed only
on the training patterns during training. For a non transductive
setting, when the labels are poorly annotated or are noisy, using of
logic rules can be beneficial. This happens in social network web-
sites where the labels associated with social images are valuable
source of information for tasks of image annotation, understand-
ing and retrieval but these labels are often found to be noisy, mainly
due to the collaborative tagging activities of the users. Therefore,
exploiting background knowledge in a fully labeled non transduc-
tive environment can help in designing a robust noise-free learning
model.

• Collective Classification: Theoretically described in Section 3.4.1.
In transductive context although constraints are already enforced
on the during training of the model, but still there is no guaran-
tee that the input representations are powerful enough to allow the
neural networks to respect the constraints on the test data, there-
fore collective classification searches for the values of the func-
tions in the test data respecting the FOL formulas while being
close to the prior values established by the neural networks. As
already stated in Section 3.4.1, since collective classification is ap-
plied during the inference time, it can be used to improve any sort
of independent classification applications like image recognition in

77

photo organization apps, classifying inappropriate and offensive
images automatically for social websites, classification of content
in news/sports videos etc.

5.2.3 CNN Models

The CNN model3, used for this dataset was previously one of the top
performers on the CIFAR-10 benchmark. The considered model contains
an input layer, followed by two convolutional layers with alternate pool-
ing layers and fully-connected layers (which forms the output layers)
making it a 6-layered neural network. The outputs from the first fully
connected layer gives the predictions of the final class labels and there-
fore contain 7 output neurons for the 7 final classes. Additional output
layers are added to classify the intermediate predicates and a sigmoid
function is used in these classification layers. The activation functions in
all the hidden layers are rectified linear units (ReLU), whereas a softmax
or sigmoid function is used in the output layers. Max pooling (overlap-
ping pooling with a kernel size of 3 and stride of 2) and local response
normalization are applied to the output of each of the convolution lay-
ers. The first convolutional layer convolves the input image with 32 ker-
nels of size 5 × 5 × 3 and a stride of 1. The second convolutional layer
takes pooled and response normalized output of the first convolutional
layer and filters it again with 32 kernels of the same size as the previous
ones. The weights of each of the convolutional layers and the fully con-
nected layers are initialized from a zero mean Gaussian distribution with
a standard deviation of 0.006 and 0.025 respectively. The neuron biases
are initialized with a constant value of 1.

5.2.4 Results

The general goal of these experimental simulations is to integrate logical
constraints with the deep CNN network using all the constraints (con-
vex and concave) to improve the classification accuracy over the kernel
machines trained with constraints and over the baseline CNN network
on this dataset. Although the CNN network used is a not a very deep
network, but still there are optimization challenges when integrated with

3http://www.github.com/BVLC/caffe/tree/master/examples/
cifar-10

78

http://www.github.com/BVLC/caffe/tree/master/examples/cifar-10
http://www.github.com/BVLC/caffe/tree/master/examples/cifar-10

constraints in SBR because of the presence of the concave constraints. Us-
ing optimization heuristics to meet these challenges and obtain a faster
convergence during training is an important contribution of this thesis.
The benefits of these heuristics are demonstrated through these experi-
mental evaluations. Another notable contribution of these experimental
studies, is the usefulness of using logical constraints in the presence of
scarce data examples. These studies are performed to highlight the fact
that SBR is a powerful semi-supervised framework.

The experimental simulations are performed in transductive mode
with fully and partially labeled examples and in non transductive mode
with collective classification. During joint learning, convex constraints
are generally added after 50 iterations followed by non convex con-
straints at a later stage. The simulations are done with constant weight
based SBR (where the regularization values are constant for all predi-
cates) and also with variable regularizers in vanilla SBR, both described
in Section 3.3. The benefits of using variable regularizers is also demon-
strated through the experimental results as it improves the accuracy over
its constant regularizing counterpart. Collective classification, another
important part of this work is also performed for 300 iterations for all the
simulations.

To measure the performance of this image classification task in the
SBR framework, accuracy over the final classes and F1 score over all
the 33 predicates are reported. The performance of the CNN is com-
pared with the kernel machine classifier using Gaussian kernels with
SIFT image feature representations which was first proposed in Diligenti
et al.(DGS16). The runtime, prediction time and the collective classifica-
tion time in SBR are also compared as an indicator of the performance.
The CNN model is trained in a GeForce 1080Ti GPU.

Experimental Simulation I :

This is a fully labeled transductive experiment on two different selection
of image resolutions: 32× 32 and 64× 64 pixels. The training, validation
and test patterns are all available during the training time and only the
training patterns are fully labeled. There are 3325, 710 and 910 images
in the training, validation and test sets respectively. The validation set is
used for the selection of parameter values like λl and λh for a constant
weight based SBR and values of λkl and λh for a vanilla SBR.

Results are reported for predictions over the test data for all predi-
cates using kernel machines and convolutional neural networks for dif-

79

Table 6: Accuracy over 7 final classes and F1 score for all classes for a
Fully Labeled Transductive setting using shallow and deep classifiers with
and without prior knowledge. #Pat: number of training patterns. KM
and KM+R: kernel machine classifiers without and with rules respectively.
CNN, CNN+R and CNN+R+CC: deep CNN models without rules, with
rules and with collective classification respectively using ConvR(I) and
ConcR(II) sets.

(32× 32 pixel Images)
#Pat KM KM+R CNN CNN+R CNN+R+CC

I I + II I I + II
Acc 3325 87.2 87.9 92.2 93.0 93.3 93.5 94.1
F1 43.2 44.0 48.0 49.5 50.4 56.0 57.3

Acc 2450 80.1 81.4 83.6 89.7 90.8 89.9 90.9
F1 41.7 43.2 47.3 47.8 49.5 55.1 55.9

Acc 1076 78.3 79.4 83.0 83.7 84.2 83.8 84.9
F1 39.0 40.3 41.9 41.9 44.8 41.9 45.0

Acc 500 76.4 78.7 80.5 80.6 81.0 81.6 81.8
F1 30.4 30.9 31.9 31.9 32.0 31.9 32.0

Acc 100 64.0 65.0 67.2 67.7 68.2 67.7 68.4
F1 20.0 20.0 21.0 21.8 22.3 21.8 22.9

(64× 64 pixel Images)
#Pat KM KM+R CNN CNN+R CNN+R+CC

I I + II I I + II
Acc 3325 89.6 89.9 95.7 95.8 96.4 96.9 97.2
F1 49.0 50.1 58.1 60.0 60.9 61.1 61.4

Acc 2450 81.7 82.6 85.2 91.7 92.0 92.4 93.9
F1 48.2 48.8 50.3 53.9 54.1 52.6 57.6

Acc 1076 79.9 80.7 83.4 83.9 84.9 84.7 85.2
F1 41.2 42.3 43.4 44.1 44.6 44.9 45.2

Acc 500 77.1 79.1 81.7 82.0 82.6 82.4 83.0
F1 33.3 33.5 34.2 34.9 35.3 34.7 35.9

Acc 100 65.2 65.9 68.4 68.9 69.0 69.6 70.0
F1 23.8 24.0 25.3 25.4 26.0 26.0 26.2

80

ferent resolutions of input images. F1 represents the F1 score over all
predicates in the KB and Acc refers to the accuracy measured over only
the 7 final classes. KM refers to the Kernel machines integrated in SBR,
whereas KM + R refers to the rules integrated with Kernel machines.
CNN, CNN + R refers to the convolutional neural networks without and
with rules in SBR respectively. CNN + R + CC refers to the collective clas-
sification process which further boosts up the accuracy during test time
over the corresponding neural network classification accuracy. I and II
in Table 5 refer to the set of rules, ConvR and ConcR.

A performance improvement is observed when more rules are used.
Addition of convex constraints followed by non-convex constraints yield
faster convergence of the training loss and also improves the over all test
accuracy when both the models are trained on equal number of itera-
tions. Following the optimization heuristics, the rules that are guaran-
teed to translate into convex constraints are tactfully added earlier in the
learning stage than the rules that do not guarantee convexity (ConvR set
of rules added before the ConcR set). To further demonstrate the effect
of convexity clearly, the experiment can be performed under different
conditions:

• Without addition of any constraints : No constraints scenario.

• Addition of only the constraints that are guaranteed to be convex
with any selection of t-norms : Rules of the ConvR set.

• Addition of all constraints at the beginning of the learning process
: ConvR and ConcR rules are added without considering the im-
portance of convexity.

• Addition of convex constraints followed by non-convex constraints
using optimization heuristics : ConcR rules are added for further
convergence in the learning process after ConvR rules. The heuris-
tic of adding the ConcR rules at a later stage have aided in mini-
mizing the loss during joint learning.

Table 6 reports the accuracy and F1 results of 32 × 32 and 64 × 64
pixel images using Weak Lukasiewicz t-norm as it is observed to per-
form better than the other t-norms. Weak Lukasiewicz fragment with
weak connectives have a number of positive implications during opti-
mization over Product and Minimum t-norms like it can be converted
into PNF and has involutive negation (GDGM17). It is also observed

81

Table 7: Comparison of the collective classification accuracies for the 7 final
classes for Fully Labeled Transductive setting with 32× 32 and 64× 64 im-
ages of Winston benchmark. Each row represents different subsets of train-
ing patterns used. WL and WL(λk

l): classification error rates for transduc-
tive training with rules using Weak Lukasiewicz t-norm with constant and
vanilla SBR, CC-WL and CC-WL(λk

l): collective classification using Weak
Lukasiewicz t-norm for constant and variable (λk

l) values respectively. The
bold numbers in the table refer to the best performing t-norm with two dif-
ferent image resolutions.

#Pat WL CC-WL WL(λkl) CC-WL(λkl)
(32× 32 pixel Images)

3325 93.3 94.1 94.2 94.4
2450 90.8 90.9 91.2 91.4
1076 84.2 84.9 85.0 85.3
500 81.0 81.8 81.9 82.0
100 68.2 68.4 68.8 69.0

(64× 64 pixel Images)
3325 96.4 97.2 97.5 97.8
2450 92.0 93.9 94.0 94.1
1076 84.9 85.2 85.3 85.4
500 82.6 83.0 83.0 83.0
100 69.0 70.0 70.1 70.3

that neural networks outperform kernel machines under any combina-
tion of rules used. This confirms the usefulness of the main objective of
this work, integrating neural networks in SBR. Deep neural networks are
able to learn complex features compared to kernel machines are there-
fore are better trained models. It is also seen that collective classification
improves accuracy at inference time over the results of independent clas-
sification.

To also demonstrate the performance of SBR and the effect of logical
constraints with a scarcity of training data points (higher degree of semi-
supervision), the neural networks are trained with different subsets of
patterns like 2450, 1076, 500 and 100. Table 7 shows Weak Lukasiewicz t-
norm integrated with rules applied on scarce training examples followed
by collective classification in constant weight based SBR and vanilla SBR
for two different image resolutions. The results demonstrate that when
the number of training patterns decrease from 3325 to 2450, the effect
of logical constraints is almost increased by 7% − 8%. This also demon-

82

strates how helpful and effective is prior knowledge in scarcity of labeled
examples in SBR. This demonstrates that SBR can be used efficiently in
any practical computer vision applications to distinguish objects, facial
expressions, food, natural landscapes, sports etc. having limited amount
of supervised examples in combination with a larger set of unsupervised
examples.

Although, in these experiments, a higher amount of increase in accu-
racy is predictable with further decrease of labeled examples, but prob-
ably this is not noticed as the accuracy drops during joint training with
lesser datapoints because the network suffers from overfitting with train-
ing samples lower than 500. However, the comparative results of all
the different t-norms (including Weak Lukasiewicz) are given in Table 53
and in Table 54 in Appendix A. For vanilla SBR, the λkl values are cho-
sen through cross-validation. In these comparisons, all the constraints
are applied from the ConvR and ConcR sets following the optimization
heuristics. In these tables, CC-WL and CC-WL (λkl) refers to the collective
classification error rates, whereas WL and WL (λkl) refers to classification
using rules with Weak Lukasiewicz t-norm in constant and vanilla SBR
respectively. The error in classification is found to be considerably low-
est when predicate based vanilla SBR is used with Weak-Lukasiewicz
t-norm compared to any other setting. It is also observed that vanilla
SBR framework performs better than its constant counterpart irrespec-
tive of the selection of the t-norm. This empirically shows that the novel
contribution of exploiting variable regularizers during training in SBR,
makes it a stronger framework for image classification problems.

The experimental simulation therefore draws in four important con-
clusions:

• Constraints show a greater effect with limited number of super-
vised examples, therefore confirming SBR as a semi-supervised
learner.

• Using the optimization heuristics, that allows the addition of non-
convex constraints after convex constraints, not only aid in faster
convergence but also help to improve the accuracy during the in-
ference time. This helps to gain the maximum advantage from the
constraints.

• Weak Lukasiewicz logic performs better than Product and Mini-
mum fuzzy logics in improving accuracies in normal as well as

83

in collective classification settings because of its advantages in pro-
viding greater proportion of convex constraints (comparison shown
in Table 53 and in Table 54 in Appendix A).

• Vanilla SBR performs better than constant weight based SBR as the
regularizers effect learning to a great extent. When the regularizers
are applied depending on the output of the neural network learner,
they help to correct the misclassified labels in a more efficient way
with the help of rules, therefore increasing the overall accuracy of
classification.

Experimental Simulation II :

This experiment simulates a partially labeled image classification task in
the transductive setting on both constant and vanilla SBR. The split of
the training, validation and test sets remain the same but all the data
points along with only one third of random labels from the three sets are
used in partially labeled transductive training. Results are reported with
the same naming conventions as in the previous simulation in Table 8
for 32 × 32 and 64 × 64 pixel images respectively for constant weight
based SBR with Weak-Lukasiewicz t-norm. The overall accuracy and F1-
score are seen to be higher in partially labeled simulation for any subset
of datapoints and for any types of learners than in fully labeled simula-
tion. This is because in partially labeled transductive learning, there is a
probability that some of the supervisions or labels of the test patterns are
selected randomly during training. KMs trained in partially labeled set-
ting tend to perform better than before and standard CNNs only slightly
outperform the KMs by a thin margin. The integration of prior knowl-
edge and the implicit inference mechanism triggered by the partial labels
during training is still beneficial to CNNs both when restricting the anal-
ysis to the final classes and also when considering the intermediate ones.

Similar to the previous simulation, Table 9 shows the classification
and collective classification results with Weak Lukasiewicz t-norm in
partially labeled setting for constant and vanilla SBR with different sub-
sets of training patterns.

The comparative results of all the different t-norms are given in Ta-
ble 55 and Table 56 in Appendix A. This experimental simulation also
confirms the same findings as demonstrated in the experimental simu-
lation I. Thus all the factors that actually contribute to the performance
gains are:

84

Table 8: Accuracy (Acc) for the 7 final classes and F1 for all classes in Par-
tially Labeled Transductive setting using shallow and deep classifiers com-
pared with and without prior knowledge. KM and KM+R : kernel machines
trained without and with rules respectively. CNN, CNN+R, CNN+R+CC:
baseline neural network, neural network with rules and collective classifi-
cation on neural networks with rules.

(32× 32 Images)
#Pat KM KM+R CNN CNN+R CNN+R+CC

I I + II I I + II
Acc 3325 87.6 91.8 92.8 93.3 94.2 95.7 96.1
F1 44.6 48.2 48.3 48.8 52.5 55.1 56.7

Acc 2450 82.8 84.9 85.0 91.0 91.2 91.9 92.1
F1 44.4 47.1 47.3 48.8 50.0 49.7 51.4

Acc 1076 78.7 80.9 83.1 83.9 84.2 84.1 85.0
F1 40.0 42.8 43.2 43.7 44.9 44.3 45.1

Acc 500 77.1 79.5 80.6 81.2 81.9 82.4 82.8
F1 32.7 32.9 33.1 33.3 34.6 33.8 35.0

Acc 100 65.1 67.1 68.2 68.8 69.2 69.6 70.4
F1 23.9 25.0 25.5 25.8 26.0 26.1 26.9

(64× 64 Images)
#Pat KM KM+R CNN CNN+R CNN+R+CC

I I + II I I + II
Acc 3325 90.9 95.4 95.9 96.1 97.7 97.4 98.9
F1 51.7 57.2 57.4 59.8 60.0 61.4 62.6

Acc 2450 83.9 85.9 86.1 92.1 92.9 93.2 94.1
F1 48.4 49.1 51.3 54.7 55.7 55.0 58.4

Acc 1076 80.7 81.9 83.5 84.9 85.1 85.2 85.8
F1 43.0 45.9 46.7 46.9 49.1 49.9 50.5

Acc 500 78.0 79.9 81.2 81.7 81.9 82.3 83.0
F1 38.7 39.9 40.8 41.3 41.8 42.6 43.0

Acc 100 70.1 72.1 73.2 73.8 74.6 75.2 75.4
F1 31.9 32.0 32.5 32.8 33.1 33.0 33.9

85

Table 9: Comparison of the classification and collective classification accu-
racies for the 7 final classes for Partially Labeled Transductive setting with
32 × 32 and 64 × 64 images. WL, CC-WL: classification with rules and the
collective classification error rates using Weak Lukasiewicz t-norm in con-
stant SBR. WL(λk

l), CC-WL(λk
l): classification with rules and the collective

classification with Weak Lukasiewicz t-norm in variable SBR.

#Pat WL CC-WL WL(λkl) CC-WL(λkl)
(32× 32 pixel images)

3325 94.2 96.1 96.3 96.8
2450 91.2 92.1 92.2 92.4
1076 84.2 85.0 85.3 85.6
500 81.9 82.8 82.9 83.0
100 69.2 70.4 70.5 70.7

(64× 64 pixel images)
3325 97.7 98.9 99.0 99.2
2450 92.9 94.1 94.5 94.9
1076 85.1 85.8 85.9 85.9
500 81.9 83.0 83.2 83.4
100 74.6 75.4 75.5 75.6

• Using Deep CNN learners as the learning machinery in SBR be-
cause of their ability to better learn representations from the input
images.

• Performing collective classification during inference to enforce log-
ical rules on the test predictions externally that is not applied by
the trained model.

• Addition of constraints using optimization strategies that enables
the usage of a larger set of domain knowledge than being limited
to only the convex set.

• Using predicate dependent regularizers in vanilla setting that helps
the learning model to regularize better.

Experimental Simulation III :

This experimental simulation represents a non transductive setting where
the training data consists of only the training patterns and does not in-

86

Table 10: Accuracy of 7 final classes and F1 for all classes of 32× 32 images
using non transductive CNNs compared with and without prior knowl-
edge. CNN and CNN+R+CC: baseline neural network and collective clas-
sification on neural networks with rules. I and II refers to the ConvR and
ConcR set of rules.

#Pat CNN CNN+R+CC
I I + II

Acc 3325 92.2 92.4 92.9
F1 48.0 55.2 56.4
Acc 2450 83.6 87.9 88.1
F1 47.3 53.1 54.2
Acc 1076 83.0 83.3 83.5
F1 41.9 40.9 42.1
Acc 500 80.5 80.9 81.2
F1 31.9 30.9 31.8
Acc 100 67.2 67.5 68.0
F1 20.0 21.0 21.5

Table 11: Accuracy of the 7 final classes and F1 score for all classes in Non
Transductive setting with 64 × 64 using CNNs compared with and with-
out prior knowledge. CNN and CNN+R+CC: baseline neural network and
collective classification on neural networks with rules. I and II refers to the
ConvR and ConcR set of rules.

#Pat CNN CNN+R+CC
I I + II

Acc 3325 95.7 96.2 96.5
F1 58.1 60.4 61.1
Acc 2450 85.2 91.0 92.0
F1 50.3 52.2 56.4
Acc 1076 83.4 83.9 84.7
F1 43.4 43.9 44.0
Acc 500 81.7 81.9 82.1
F1 34.2 34.1 34.9
Acc 100 68.4 68.7 69.4
F1 25.3 25.0 25.5

clude the validation and test patterns. The supervisions are also pro-
vided only for the training patterns. Non transductive experiments are
performed with image inputs of 32×32 pixels and 64×64 pixels. The sim-

87

Table 12: Comparison of the collective classification accuracies for the 7
final classes in Non Transductive setting with 32× 32 and 64× 64 images of
Winston benchmark. CC-WL and CC-P: collective classification error rates
with Weak Lukasiewicz and Product t-norms in constant and variable SBR.
The bold numbers in the table refers to the highest accuracies with 3325
supervisions on two different image resolution using Weak Lukasiewicz t-
norm.

#Pat CC-WL CC-WL(λkl) CC-P CC-P(λkl)
(32× 32 pixel Images)

3325 92.9 93.9 91.5 91.6
2450 88.1 90.1 87.9 88.0
1076 83.5 83.6 81.5 82.8
500 81.2 81.3 80.0 81.5
100 68.0 68.1 67.0 67.5

(64× 64 pixel Images)
3325 96.5 96.6 95.3 96.5
2450 92.0 93.1 91.9 92.5
1076 84.7 84.9 84.4 84.7
500 82.1 82.3 81.9 82.3
100 69.4 69.6 69.3 69.6

ulation results with constant weight based SBR using Weak-Lukasiewicz
t-norm are reported in Table 10 and Table 11 respectively.

In the non transductive setting, all the patterns in the training set
are fully supervised, therefore, using the logic rules during joint train-
ing simply replicate information conveyed by the supervisions. Hence,
to see any boost in performance using logic constraints, collective clas-
sification needs to be performed. However, as stated earlier for real
world applications, non transductive learning can also benefit from con-
straints without collective classification when the fully supervised exam-
ples have noisy or poorly annotated labels. But for this dataset, the labels
are clean and therefore, the improvement of accuracy using rules is seen
only when collective classification is applied.

To create a semi-supervised setting for the non transductive learning
in SBR, ablation studies are performed with different subsets of data ex-
amples varying between 3325 to 100 patterns. These ablation studies will
enable to see the benefits of using constraints in neural networks even in
non transductive models as they would have a mix of supervised and
unsupervised datapoints.

88

Table 13: Comparison of the Train, Prediction and Collective classification
time with different subsets of training patterns in transductive and non
transductive learning. CNN-T, CNN-P and CNN-CC: Train time, Prediction
time (without SBR) and Collective classification time respectively for the
baseline CNN network. CNNT-T, CNNT-P and CNNT-CC: Train time, Pre-
diction time and Collective classification time of the neural network when
in transductive learning mode in SBR. All the times are in seconds.

#Pat CNN-T CNN-P CNN-CC CNNT-T CNNT-P CNNT-CC
(32× 32 pixel Images)

3325 420 20 35 530 23 38
2450 260 20 35 460 23 38
1076 105 18 36 300 23 38
500 74 20 36 133 23 37
100 60 20 35 92 23 37

(64× 64 pixel Images)
3325 740 46 50 960 50 56
2450 455 45 50 350 49 56
1076 266 46 50 300 59 56
500 135 46 50 212 49 56
100 104 46 50 130 50 56

Comparisons are also made among Weak-Lukasiewicz and Product
t-norms with different image resolutions in constant and vanilla non
transductive SBR in Table 12. The comparisons with all other t-norms
(including Weak Lukasiewicz and Product) are reported in Table 57 of
Section A.0.1. Similar to the observations in transductive learning, the ex-
perimental simulation of non transductive learning also shows the ben-
efits of the Weak Lukasiewicz fragment over other fuzzy logics and the
benefits of using predicate dependent regularizers over constant regular-
izers.

5.2.5 Discussion

Through the extensive experimental evaluations on this dataset, it can
be concluded that the CNNs in general outperform kernel machines on
this image classification task, even when KMs are boosted using prior
knowledge via SBR because of the fact that CNNs can learn better in-
put representations than KM. This conclusion justifies the motivation of
integrating deep neural networks in SBR and makes a significant contri-
bution in the field of deep learning research. All the three experimental

89

simulations also confirms that integration of rules into deep learning is
more beneficial for tasks with scarcity of data examples. The other im-
portant addition is the further boost of the accuracy by applying the rules
via collective classification during the test phase. The vanilla SBR with
Weak Lukasiewicz t-norm in a partially labeled transductive setting per-
forms the best on this dataset. It obtains an image classification accuracy
of 99.2% which is approximately 4.3% higher than the CNN baseline and
almost 11% higher than KM baseline for 64 × 64 pixel images. The best
performing results on a 32 × 32 image is 96.8% which also outperforms
a KM by approximately 9% and a deep CNN baseline by almost 6.3%.
Through this research work, the state-of-the-art results are achieved on
this dataset thus providing solid evidence of the usefulness of applying
domain knowledge. There are also different novel concepts that are im-
plemented in these simulations like the vanilla setting in SBR and the
optimization strategies while joint training of the CNNs.

It is also important to note that the performance gain using rules in
SBR is obtained with negligible overhead of time. Table 13 demonstrates
that the time taken to train the 6-layered neural network on this dataset
is about 530 seconds using 3325 training patterns, 710 validation and 910
test patterns in the transductive mode and approximately 420 seconds
when the baseline network is trained in the non transductive mode us-
ing 32 × 32 pixel input images. The 6.3% increase in the accuracy ob-
tained over the baseline architecture using this model through collective
classification uses only 38 extra seconds which is a negligible overhead
if other alternatives (for example training the network with more super-
vised examples etc.) are to be considered. Also it is seen that the runtime
without SBR and with SBR differs in about 3−4 seconds which indicates
that when the network is trained with rules, it still remains time efficient.
Similar observation is also seen as reported in Table 13 when 64×64 pixel
images are used.

5.3 Experimental Analysis on CIFAR-10 Dataset

This image classification task is based on the benchmark and popular
dataset of the AI community known as CIFAR-104 (Canadian Institute
For Advanced Research). CIFAR-10 is composed of 50, 000 training and
10, 000 test images. Each pattern in the dataset is a 32 × 32 pixel RGB
natural image belonging to one of the 10 classes: AIRPLANE, AUTOMO-
BILE, BIRD, CAT, DEER, DOG, FROG, HORSE, SHIP, and TRUCK.

90

Using WordNet5 and additional common knowledge, a total of 15
classes have been recursively mapped into the hypernomy (a more gen-
eral concept) obtaining the hierarchical taxonomical structure as shown
in Figure 22. Using logic constraints all these 15 classes are integrated
into learning in SBR.

Figure 22: CIFAR-10 taxonomical hierarchy representing the intermediate
and the final classes.

5.3.1 Knowledge Domain

The prior knowledge used for this task is shown in the Table 14. The
knowledge base correlates the 10 output predicates (final classes of the
dataset), each corresponding to a class to predict (for example the predi-
cate DEER(x) will predict whether the pattern x is of the class deer), with
5 new predicates derived from the hierarchical information of WordNet
and added to the knowledge base. These extra predicates therefore, form
the intermediate classes in the classification task. They are learnt by the
neural networks as extra labels on each pattern and therefore additional
output layers with either a softmax or sigmoidal activation are used to
classify these labels.

For example, one classifier layer predicts the predicates ANIMAL or
TRANSPORT, one additional layer for the FLIES predicate and, finally,
one output layer for the predicates ONROAD and MAMMAL. Since,
each of the final classes either belongs to one of the intermediate classes
among ANIMAL or TRANSPORT, therefore, these two classes are mu-

5https://wordnet.princeton.edu
5https://www.cs.toronto.edu/˜kriz/cifar.html

91

https://wordnet.princeton.edu
https://www.cs.toronto.edu/~kriz/cifar.html

Table 14: Prior knowledge used for the experiment simulations on the
CIFAR-10 dataset.

∀x ANIMAL(x) ∨ TRANSPORT(x)
∀x TRANSPORT(x)⇒ AIRPLANE(x) ∨ SHIP(x) ∨ ONROAD(x)
∀x ONROAD(x)⇒ AUTOMOBILE(x) ∨ TRUCK(x)
∀x AIRPLANE(x)⇒ TRANSPORT(x)
∀x SHIP(x)⇒ TRANSPORT(x)
∀x ONROAD(x)⇒ TRANSPORT(x)
∀x AUTOMOBILE(x)⇒ ONROAD(x)
∀x TRUCK(x)⇒ ONROAD(x)
∀x ANIMAL(x)⇒ BIRD(x) ∨ FROG(x) ∨MAMMAL(x)
∀x BIRD(x)⇒ ANIMAL(x)
∀x FROG(x)⇒ ANIMAL(x)
∀x MAMMAL(x)⇒ CAT(x) ∨ DEER(x) ∨ DOG(x) ∨ HORSE(x)
∀x CAT(x)⇒MAMMAL(x)
∀x DOG(x)⇒MAMMAL(x)
∀x DEER(x)⇒MAMMAL(x)
∀x HORSE(x)⇒MAMMAL(x)(x)
∀x OTHERS(x)⇒ BIRD(x) ∨ FROG(x) ∨ SHIP(x) AIRPLANE(x)
∀x BIRD(x)⇒ OTHERS(x)
∀x FROG(x)⇒ OTHERS(x)
∀x SHIP(x)⇒ OTHERS(x)
∀x AIRPLANE(x)⇒ OTHERS(x)
∀x FLIES(x)⇒ BIRD(x) ∨ AIRPLANE(x)
∀x ¬ FLIES(x)⇒ CAT(x) ∨ DOG(x) ∨ HORSE(x) ∨ DEER(x) ∨ TRUCK(x)

∨ SHIP(x) ∨ AUTOMOBILE(x) ∨ FROG(x)
∀x CAT(x)⇒ ¬ FLIES(x)
∀x DOG(x)⇒ ¬ FLIES(x)
∀x HORSE(x)⇒ ¬ FLIES(x)
∀x DEER(x)⇒ ¬ FLIES(x)
∀x TRUCK(x)⇒ ¬ FLIES(x)
∀x SHIP(x)⇒ ¬ FLIES(x)
∀x AUTOMOBILE(x)⇒ ¬ FLIES(x)
∀x FROG(x)⇒ ¬ FLIES(x)
∀x BIRD(x)⇒ FLIES(x)
∀x AIRPLANE(x)⇒ FLIES(x)

tually exclusive. Hence the classifier layer that classifies each pattern as
either an ANIMAL or a TRANSPORT, has a softmax activation on it.

Thus the prior knowledge is enforced and integrated in deep learners
by structing this as a multi-label classification problem in the SBR frame-

92

Table 15: Deep CNN architectures and the data pre-processing techniques
used in CIFAR-10

CNN PR+AUG

NIN-50 ZCA + Global Contrast
Normalization

Resnet-20

4-Pixels Padding + Random Crop
Resnet-32
Resnet-44
Resnet-56
Resnet-110 + Horizontal Flip
Resnet-164
Resnet-1202
PreResnet-110 4-Pixels Padding + Random CropPreResnet-164
PreResnet-1202 + Horizontal Flip

work. The knowledge enforces the semantic consistency among the
trained classifiers. In the above knowledge base most of the rules have
a residua operator and hence the proportion of convex constraints gen-
erated are significantly greater. Also, using the Lukasiewicz and Weak
Lukasiewicz convex fragment, a lot of convex functional constraints are
also generated.

5.3.2 CNN Models

The experimental settings used for this classification task are a subset of
the settings described in Section 5.2.2 of the Winston Animal classifica-
tion problem. In transductive fully labeled, the neural network learners
are jointly trained from scratch along with the rules in SBR which pro-
vides a strong integration of the logic constraints with supervised exam-
ples.

Whereas in non transductive setting, pre-trained neural networks
from their original works are retrained only for the additional classi-
fier layers and a collective classification is performed. In order to exactly
reproduce the baseline results of different deep neural networks, their
publicly available implementations are trained with no change in their
architecture and training procedure except for the fully connected out-
put layers. The deep neural networks used on CIFAR-10 are listed below
as:

93

• Network in Network (NIN) model (LCY13) with 50 layers.

• Residual Networks (HZRS15a) with 20, 32, 44, 56, 110, 164 and 1202
layers.

• Pre-activated Residual networks (HZRS16b) with 110, 164 and 1202
layers.

• Pyramidal Residual networks (HKK16) with 110, 164, 200, 236 and
272 layers.

All these networks have been trained from scratch for 150 or 300 epochs
(depending on the network size) on 15 classes of CIFAR-10 using an ini-
tial learning rate of 0.1. A weight decay of 0.001, a momentum of 0.9 and
also a batch normalization are used. No dropouts are used except for the
NIN network, to be consistent with the original works. Simple data aug-
mentation techniques including translation and 4 pixels padding on each
side followed by a 32×32 random crop of the padded image and its hori-
zontal flip as described in Table 15. In Table 15, PR + AUG is abbreviated
for preprocessing and augmentation.

The NIN model have been trained using the same configuration as
used in the seminar paper (LCY13), including dropout, global contrast
normalization and ZCA whitening. All other parameters are same as in
the original works of Resnets (HZRS15a; HZRS16b; HKK16).

The parameters of λl and λkl of collective classification of a constant
weight based SBR and vanilla SBR respectively, are selected via cross
validation using the procedure described in Section 3.4.2. In vanilla SBR,
the value of the λkl for each predicate is chosen heuristically based on a
simple assumption that if the target class works well and have a high
classification accuracy from the CNNs, fewer corrections are required
using prior knowledge, as the deviations from the actual targets is min-
imal, therefore, a high regularizer (λkl value greater than 0.5) value is
chosen and vice versa. For example, the target classes like AIRPLANE,
BIRD and FROG have low classification accuracies using Resnets and
PreResnets, therefore, low regularizers (λkl = 0.2) are chosen for these
classes, whereas SHIP has the highest classification accuracy and there-
fore λkl = 0.9 is chosen.

During collective classification, the rules in the knowledge base repre-
sented in Table 14 are converted into constraints using different t-norms
depending on the experimental setting. Collective classification is per-
formed for 300 iterations with a learning rate of 0.01, an Adam optimizer

94

and a value of λh as 0.1. Also as described in Section 3.4.2, optimization
heuristics are applied by adding the convex constraints at the beginning
of the training followed by the other constraints.

5.3.3 Results

The main goal of the experimental simulations for this dataset remains
the same as of the previous one, but here the comparisons are done be-
tween the logic integrated CNN networks and their corresponding base-
line networks and not with kernel machines. In the previous works of
SBR integrated with kernel machines, only small datasets like Winston
Animal consisting of few thousand images were explored. For the first
time, this research work does exhaustive experimental simulations with
50, 000 datapoints and also handle deeper networks. Several deep CNN
architectures like Resnets, PreResnets etc. are evaluated against each
other using different fuzzy logics. The contributions of variable regular-
izers and collective classification is also emphasized through these sim-
ulations for all the CNN networks used on this dataset however, their
needs and roles remain identical as described for the Winston Animal
dataset. The results of the two different experimental simulations using
different t-norm settings: Non Transductive and Transductive Fully La-
beled with collective classification are discussed below.

Experimental Simulation I :

For CIFAR-10 dataset, the first experimental simulation is a non trans-
ductive setup with collective classification. Out of the 50, 000 supervised
datapoints, 45, 000 samples are used for training and the remaining 5000
datapoints are used in the validation set. This division is a standard
while using this benchmark dataset.

In a non transductive setting the neural networks are trained with su-
pervised examples and then rules are applied in collective classification
during inference. Although, the intermediate predicates are used in the
rules during collective classification, the accuracies are always reported
on the final 10 classes.

Table 16 compares the collective classification error rates obtained on
the test set from the trained CNN models. The comparison of the col-
lective classification error rates using all the t-norms that are used in
SBR is reported in Table 58 in Appendix A. The naming conventions like
CC-WL and CC-P represents the collective classification errors for two

95

Table 16: Error rate for the 10 final classes for different deep architectures
in non transductive learning with collective classification over the network
outputs using different selection of t-norms with constant (λl) and predi-
cate dependent metaparameters, λk

l . CC-WL and CC-P: the collective clas-
sification error rates using Weak Lukasiewicz and Product t-norms. The
bold numbers in the tables refer to the best performing network or the ones
where the improvement is highly remarkable.

Models CNN CC-WL CC-WL(λkl) CC-P CC-P(λkl)
NIN-50 8.8 8.7 8.7 8.8 8.7
Res-20 8.8 8.0 7.9 8.5 8.0
Res-32 7.5 7.1 6.9 7.1 6.9
Res-44 7.2 6.6 6.3 6.8 6.5
Res-56 6.9 6.4 6.0 6.5 6.3
Res-110 6.6 6.0 5.5 6.3 6.0
Res-164 5.9 5.8 5.5 6.0 5.8
Res-1202 7.9 5.2 5.1 5.2 5.1
PRes-110 6.4 6.2 6.1 6.2 6.1
PRes-164 5.5 5.2 5.2 5.3 5.3
PRes-1202 6.9 6.1 6.0 6.1 6.1
APN-110, α=48 4.6 4.6 4.4 4.6 4.5
APN-110, α=84 4.3 4.2 4.1 4.2 4.2
APN-110, α=270 3.7 3.6 3.6 3.7 3.7
APN-164, α=48 4.2 4.0 4.0 4.1 4.0
APN-164, α=84 4.0 4.0 3.7 4.0 3.7
APN-164, α=270 3.9 3.4 3.4 3.5 3.4
APN-200, α=240 3.5 3.4 3.4 3.4 3.4
APN-236, α=220 3.4 3.4 3.3 3.4 3.5
APN-272, α=200 3.3 3.2 3.1 3.3 3.2
MPN-110, α=8 4.5 4.4 4.3 4.4 4.4
MPN-110, α=27 4.1 3.9 3.8 4.0 3.8

different selection of t-norms namely Weak Lukasiewicz and Product re-
spectively. The CNN column refers to the baseline models where infer-
ence is performed without any prior knowledge. The accuracy values of
these models are replicated from the original works of the corresponding
CNN architectures. λl and λkl represents the regularizer parameters for
constant and vanilla SBR respectively.

The name of the deep CNN architectures are abbreviated to fit in
the Table 16 as : NIN abbreviated for Network in Network model, Res

96

for Resnets, PRes for Pre-activated resnets, APN and MPN for Additive
Pyramid Resnets and Multiplicative Pyramid Resnets respectively.

When these neural networks are trained from scratch, depending on
the size and the complexity of the networks, they take around 1−4 hours
for training with 45000 data examples. However, collective classification
for 300 iterations takes only about 3 − 15 minutes during inference on
test patterns which is a negligible overhead. The detailed comparison
of the training time, prediction time and collective classification time for
each network configuration of the different experimental simulations is
given in Table 20. Collective classification always pushes the error rates
considerably below their individual counterparts thus reconfirming its
usefulness.

From the results of different CNN architectures in the Table 16, it is
seen that the Weak Lukasiewicz t-norm outperforms the Product t-norm
(other t-norms are reported in Table 58 in Section A.0.2), confirming the
theoretical results presented in (GDGM17) which describes the optimiza-
tion advantages of Weak-Lukasiewicz t-norm.

Using predicate dependent regularizers also consistently improves
the results in all tested architectures. Improvements are especially large
for very deep networks like the 1202 layered Resnet and PreResnet which
showed significant performance degradation in the original works due
to overfitting. These are architecturally large networks and only 45000
examples are not sufficient for training, and therefore they generalize
poorly during inference time. Logic constraints suffice for the misclas-
sifications made during the test time by these very deep trained CNN
models. However, the proposed methodology brings a remarkable im-
provement as the error rate is dropped from 7.9% to 5.1% in Resnet-1202
network and from 6.9% to 6.0% in PreResnet-1202 network using Weak-
Lukasiewicz t-norm.

The Additive Pyramidal Resnet with 272 layers is the best performing
architecture among all others and it achieves an error rate of only 3.1%
on CIFAR-10, which to our best knowledge was state-of-the art when the
experiments were performed and published in the works of Roychowd-
hury et al. (RDG18).

An ablation study is performed using scarce data examples during
training. 10%, 20% and 50% of the training samples are used during
training to see the effect of logical constraints in semi-supervised setting.
The remaining training data is used as unsupervised data during train-
ing. Table 17 shows the classification error rates with a few selected deep
neural network models using variable percentage of training data using

97

Table 17: Comparison of the collective classification error rates of the 10
final classes for two different selection of t-norms using scarce training
data in non transductive mode.% Data: percentage of supervisions used
in each deep network. CNN, CC-WL and CC-P: neural network baseline,
neural network outputs improved with collective classification using Weak
Lukasiewicz and Product t-norms respectively.

Models %Data CNN CC-WL CC-WL(λk
l) CC-P CC-P(λk

l)

NIN-50
10 27.9 27.1 26.7 27.8 26.7
20 21.2 20.4 20.4 20.5 20.5
50 13.1 13.0 12.9 13.0 13.0

Res-20
10 27.1 26.4 26.2 26.5 26.3
20 20.7 19.2 19.0 19.5 19.2
50 12.5 12.3 12.1 12.4 12.1

Res-32
10 26.6 25.5 25.1 25.6 25.1
20 18.6 17.9 17.7 17.9 17.8
50 12.1 12.0 11.9 12.1 12.0

Res-44
10 25.4 25.1 25.0 25.2 25.2
20 19.0 17.9 17.4 17.9 17.5
50 12.1 11.9 11.8 12.0 11.9

Res-56
10 25.2 25.0 24.9 25.0 24.9
20 16.4 15.9 15.9 16.0 15.9
50 11.9 11.4 11.1 11.5 11.2

Res-110
10 24.8 24.7 24.1 24.7 24.1
20 15.1 15.0 14.8 15.1 14.9
50 10.1 10.0 9.9 10.0 10.0

PRes-110
10 24.0 23.8 23.6 23.8 23.7
20 14.8 14.3 13.9 14.4 14.1
50 10.0 9.9 9.8 9.9 9.8

APN-164, 10 22.9 22.8 22.7 22.8 22.7
20 13.6 13.4 13.3 13.4 13.3

α = 270 50 8.8 8.6 8.2 8.6 8.3

Weak-Lukasiewicz (CC-WL) t-norm and Product (CC-P) t-norm in con-
stant and vanilla SBR. The comparison with all other t-norms is given in
Table 59 in Section A.0.2.

It emerges that the reduction of the collective classification error rate
is larger when the training data is scarce. For example: In Resnet-32,
when only 10% of the supervised examples with logical rules are used,
the error rate is reduced by 1.5% whereas using all the training sam-
ples and the rules reduces the error rate by 0.6% from its counterpart
without logical rules. This experimental simulation on CIFAR-10 uses

98

Table 18: Error rate for the 10 final classes on CIFAR-10 for different deep ar-
chitectures and applying collective classification over the network outputs
using different selection of t-norms with constant and predicate dependent
metaparameters (λk

l) in transductive mode. CNN, WL and CC-WL: neural
network baseline, neural network outputs with rules and collective clas-
sification outputs using Weak Lukasiewicz t-norm respectively. The bold
number in the table refer to the best performing network using the best per-
forming t-norm.

Models CNN WL WL(λkl) CC-WL CC-WL(λkl)
NIN-50 8.8 8.2 8.2 8.1 8.1
Res-20 8.8 7.7 7.5 7.4 7.1
Res-32 7.5 6.8 6.7 6.6 6.5
Res-44 7.2 6.2 6.1 6.0 5.9
Res-56 6.9 6.2 6.1 5.9 5.8
Res-110 6.6 5.5 5.3 5.1 4.9
Res-164 5.9 5.2 5.1 4.9 4.7
Res-1202 7.9 4.9 4.8 4.7 4.5
PRes-110 6.4 5.8 5.8 5.8 5.7
PRes-164 5.5 5.0 5.0 4.9 4.9
PRes-1202 6.9 5.8 5.8 5.7 5.6
APN-110, α=48 4.6 4.0 3.9 3.8 3.7
APN-110, α=84 4.3 3.6 3.6 3.6 3.5
APN-110, α=270 3.7 3.0 3.0 2.9 2.8
APN-164, α=48 4.2 3.6 3.6 3.5 3.4
APN-164, α=84 4.0 3.1 3.0 2.8 2.7
APN-164, α=270 3.9 2.9 2.9 2.8 2.7
APN-200, α=240 3.4 2.8 2.8 2.7 2.6
APN-236, α=220 3.4 2.8 2.8 2.7 2.6
APN-272, α=200 3.3 2.7 2.7 2.6 2.5
MPN-110, α=8 4.5 3.9 3.8 3.7 3.6
MPN-110, α=27 4.1 3.4 3.4 3.4 3.3

deep CNN networks that are harder to train than the one used above in
the Winston Animal classification problem, but the power of SBR is still
pronounced when supervised examples are used in combination with a
large set of unsupervised images. Thus it can be concluded that logical
constraints can contribute to a greater extent in a scarcity of supervised
examples and therefore it reconfirms that SBR is a powerful tool for semi-
supervised learning irrespective of the size of the dataset or the depth of

99

the CNN networks.

Experimental Simulation II:

This simulation represents semi-supervised transductive learning such
that all the patterns in the dataset (i.e 60, 000 datapoints) are available
for training but only the supervisions of the training patterns (45, 000
supervisions available) are used in training while the other supervisions
are used for validation and test purposes.

Table 18 compares the classification and collective classification error
rates for different selection of CNN models using Weak Lukasiewicz t-
norm. The comparison results of all the t-norms is detailed in Table 60 in
Section A.0.2. λl and λkl represents the constant and vanilla SBR settings
for the given selection of t-norms. It is observed that Weak-Lukasiewicz
t-norm in vanilla SBR performs better even in transductive setting con-
firming the conclusions drawn from the findings in the non transductive
mode and from the Winston Animal simulations.

Transductive learning uses all the validation and test patterns dur-
ing training as unsupervised data in combination with the supervised
training patterns and in this way it creates a semi-supervised learning
environment as stated earlier. Here, the logical constraints play a role in
the training of the model and therefore gains provided by the logical con-
straints can be seen even without collective classification. The columns
WL and P shows the effect of using prior knowledge before collective
classification, and these gains are obtained by just using the rules in joint
learning. Collective classification and predicate based regularizers are
used to further boost the performance gains over the gains obtained from
joint learning.

Even in the transductive setting, Additive Pyramidal Residual net-
work with 272 layers is the best performing architecture that reduces
the error rate by 0.7% from its baseline using collective classification
in vanilla SBR. It is also noticed that the error rate is dropped between
0.6% to 1.1% in many other deep CNN architectures. Thus, once again
this confirms the power of prior knowledge in semi-supervised settings.
When using scarce datapoints in the transductive learning mode, it is
also seen the same behavior as noticed in the non transductive mode.
The observations are given in Table 19 demonstrating that the reduction
of the error rate is larger when the training data is scarce. For example: In
transductive learning, Resnet-32, using 10% of the supervised examples
and logical rules, the rules have a huge impact during training as well as

100

Table 19: Transductive classification and collective classification error rates
of the 10 final classes for Weak Lukasiewicz t-norm using scarce training
data. % Data: percentage of supervisions used in each deep network. CNN,
WL, WL(λk

l), CC-WL and CC-WL(λk
l): neural network baseline, classifica-

tion outputs for transductive training, collective classification output using
Weak Lukasiewicz with constant and predicate dependent regularizers re-
spectively.

Models %Data CNN WL WL(λkl) CC-WL CC-WL(λkl)

NIN-50
10 27.9 26.9 26.8 26.7 25.8
20 21.2 20.1 20.0 19.8 19.2
50 13.1 12.8 12.6 12.0 11.8

Res-20
10 27.1 25.9 25.8 25.5 25.0
20 20.7 19.0 18.9 18.5 18.2
50 12.5 12.0 11.8 11.6 11.3

Res-32
10 26.6 25.0 24.8 24.6 24.1
20 18.6 17.5 17.4 17.1 16.8
50 12.1 11.8 11.7 11.4 11.1

Res-44
10 25.4 24.7 24.6 24.2 24.0
20 19.0 17.5 17.4 17.0 16.9
50 12.1 11.5 11.4 11.2 10.9

Res-56
10 25.2 24.6 24.5 24.3 24.0
20 16.4 15.3 15.2 15.0 14.9
50 11.9 11.0 10.8 10.5 10.2

Res-110
10 24.8 24.1 24.0 23.7 23.1
20 15.1 14.7 14.5 14.2 14.1
50 10.1 9.9 9.8 9.5 9.1

PRes-110
10 24.0 23.2 23.1 23.0 22.7
20 14.8 14.0 14.0 13.9 13.4
50 10.0 9.8 9.8 9.7 9.2

APN-164, 10 22.9 22.5 22.4 22.2 21.8
20 13.6 13.1 13.1 13.0 12.4

α = 270 50 8.8 8.4 8.2 8.1 8.0

with collective classification during inference. The collective classifica-
tion error rate is reduced by 2.1% whereas using all the training samples
and the rules, the error rate is reduced by 1% from its counterpart with-
out logical rules.

101

Table 20: Comparison of the Train, Prediction and Collective classification
time with different deep CNN networks in transductive and non transduc-
tive learning. NN-T, NN-P and NN-CC: Train time, Prediction time and
Collective classification time respectively for the baseline neural network.
NNT-T, NNT-P and NNT-CC: Train time, Prediction time and Collective
classification time of the respective neural network when in transductive
learning mode in SBR. All the times are in hours.

Models NN-T NN-P NN-CC NNT-T NNT-P NNT-CC

NIN-50 1.50 0.04 0.05 2.10 0.05 0.05
Res-20 0.83 0.01 0.03 1.05 0.02 0.04
Res-32 1.05 0.01 0.02 1.10 0.02 0.04
Res-44 1.20 0.02 0.04 1.33 0.03 0.06
Res-56 1.37 0.03 0.05 1.83 0.04 0.07
Res-110 2.5 0.08 0.12 2.80 0.09 0.15
PRes-110 2.45 0.07 0.10 2.80 0.07 0.12
APN-164, 3.65 0.12 0.17 3.93 0.14 0.25
α = 270

5.3.4 Discussion

To summarize the main contributions of this research work on CIFAR-10,
it is observed that any deep CNN model with logical constraints outper-
forms the baseline counterparts in all conditions and especially when
there is a scarcity of supervised data. Collective classification also shows
its benefits and further amplifies the classification accuracies during in-
ference in both transductive and non transductive modes. The collec-
tive classification time is a very small overhead considering the benefits
it provides at the test time. The train, the prediction and the collective
classification time for the different CNN architectures used for the above
simulations are listed in Table 20. Such a thorough study of using logical
constraints with several deep architectures, using collective classification
in transductive and non transductive learning on CIFAR-10 is done for
the first time through this research work.

The experimental results show that Weak Lukasiewicz t-norm having
a lot of positive implications during optimization performs better than
other t-norms. The function based regularizers in vanilla SBR with Weak
Lukasiewicz t-norm in a transductive setting is the best performer on
this dataset. It obtains an image classification error rate of 2.5% which is
approximately 0.7% lower than the CNN baseline in transductive mode
and almost 0.8% lower than the CNN baseline in non transductive mode.

102

As described earlier, transductive learning is very useful for several real
world situations like image tagging in image hosting sites, anomaly de-
tection or detection of operating modes in industrial equipments, there-
fore the performance improvement obtained in SBR during transductive
learning is also a great benefit of this work for practical problems.

The ablation study performed using 10%, 20% and 50% further con-
firms the benefits of applying domain knowledge in the scarcity of data
examples and supports the hypothesis of this research work that SBR is
an effective semi-supervised learner irrespective of the CNN model used
as its backbone. The other notable observation is when the networks are
very deep, consisting of more than 1000 layers, they tend to overfit and
in these situations addition of background knowledge becomes partic-
ularly useful. This observation reveals an important aspect for training
very deep convolutional neural nets. Through, this research work for the
first time, the neural networks above 1000 layers are trained efficiently
and this opens new pathways of success for the deep learning commu-
nity.

Addition of more carefully handcrafted rules is expected to further
improve the performance. Although the classification accuracy for the
best performing network is significantly high (approximately 97.5%) and
there is less scope of improvement in this dataset but more constraints
can definitely help in further reducing the misclassification errors. The
knowledge base used in CIFAR-10 experimental simulations, contains
only few non-convex constraints, but this still confirms the hypothesis
that whenever the set of non-convex constraints increases, the heuristics
used in optimization can have a great impact on the performance.

5.4 Experimental Analysis on CIFAR-100 Dataset

The CIFAR-100 dataset is composed of 100 classes containing 600 images
for each class (Kri09)6. The images are split into training and test set,
such that there are 500 training and 100 test images per class, respec-
tively. The validation set is built with 5000 random datapoints from the
entire training set. In CIFAR-100, the number of images in each class is
only one-tenth of that in CIFAR-10 dataset but the total number of im-
ages are equal. The 100 classes in this dataset are grouped into 20 super-
classes determined using WordNet7 hierarchy. Each image comes with a

6https://www.cs.toronto.edu/˜kriz/cifar.html
7https://wordnet.princeton.edu

103

https://www.cs.toronto.edu/~kriz/cifar.html
https://wordnet.princeton.edu

Table 21: The Super and the Fine classes in the CIFAR-100 dataset.

SUPER CLASSES FINE CLASSES
AQUATIC MAMMALS BEAVER, DOLPHIN, OTTER, SEAL, WHALE
FISH AQUARIUM FISH, FLATFISH, RAY, SHARK,

TROUT
FLOWERS ORCHIDS, POPPIES, ROSES, SUNFLOWERS,

TULIPS
FOOD CONTAINERS BOTTLES, BOWLS, CANS, CUPS, PLATES
FRUITS AND VEGETABLES APPLES, MUSHROOMS, ORANGES, PEARS,

PEPPERS
HOUSEHOLD ELECTRICAL CLOCK, KEYBOARD, LAMP, PHONE,

TELEVISION
HOUSEHOLD FURNITURE BED, CHAIR, COUCH, TABLE,

WARDROBE
INSECTS BEE, BEETLE, BUTTERFLY, CATERPILLAR,

COCKROACH
LARGE CARNIVORES BEAR, LEOPARD, LION, TIGER, WOLF
MAN-MADE OUTDOOR BRIDGE, CASTLE, HOUSE, ROAD,

SKYSCRAPER
NATURAL OUTDOOR SCENES CLOUD, FOREST, MOUNTAIN, PLAIN, SEA
OMNIVORES AND HERBIVORES CAMEL, CATTLE, CHIMPANZEE,

ELEPHANT, KANGAROO
MEDIUM MAMMALS FOX, PORCUPINE, POSSUM, RACCOON,

SKUNK
INVERTEBRATES CRAB, LOBSTER, SNAIL, SPIDER, WORM
PEOPLE BABY, BOY, GIRL, MAN, WOMAN
REPTILE CROCODILE, DINOSAUR, LIZARD, SNAKE,

TURTLE
SMALL MAMMALS HAMSTER, MOUSE, RABBIT, SHREW,

SQUIRREL
TREE MAPLE, OAK, PALM, PINE, WILLOW
VEHICLE 1 BIKE, BUS, MOTORBIKE, PICKUP, TRAIN
VEHICLE 2 LAWN-MOWER, ROCKET, CAR, TANK,

TRACTOR

fine label (the class to which it belongs) and a coarse label (the superclass
to which it belongs). CIFAR-100 is a comparatively larger dataset with
respect to the number of classes to be learned for an image classification
problem. The aspect that makes this dataset very useful in the study
of SBR, is number of annotated images present in each class is compar-
atively very low to train any deep neural network, therefore, the need
to exploit prior knowledge is much higher than in Winston Animal or
CIFAR-10 datasets.

Each pattern in CIFAR-100 is a RGB image composed of 32 × 32 pix-
els and are natural images like in CIFAR-10. Each image is an one object

104

image with the object in different poses, angles and magnifications occu-
pying different positions in the image.

5.4.1 Knowledge Domain

The prior knowledge used for this task is divided into two groups: The
first group consists of 150 logic rules that correlates the fine classes with
the coarse/super classes in CIFAR-100. There are 100 fine predicates and
20 coarse predicates in the taxonomy. All these classes/predicates in
both the levels are mutually exclusive and hence, two output softmax
classifier layers are used in the CNNs while predicting these classes:
one classifying the super classes and the other separating the 100 fine
classes. The list of this class hierarchy is tabulated in Table 21. The sec-
ond group of knowledge predicates includes an extra 5 predicates that
expresses some additional semantic knowledge like whether an object
occurs indoor or outdoor, whether it should have wheels, etc. The 5 new
classes are: MAMMALS, HOUSEHOLD, OUTDOOR, TRANSPORT, HAS
WHEELS.

Therefore, any CNN network that expresses all these relationships
uses three sets of outputs: one with 100 outputs for the fine classes, one
having 20 outputs for the super classes and other one that expresses these
5 handcrafted additional classes. A small sample of the knowledge base
used in these experiments is reported in Table 22. The full set of rules is
given in Table 61 in Section A.0.3.

5.4.2 CNN models

CNN models are integrated in SBR in the same manner as described in
the experimental simulations of CIFAR-10 in Section 5.3.2.

Different configurations of deep CNN models are integrated in the
Tensorflow implementation of SBR following their architectural prop-
erties as in their original works (HZRS15a; HZRS16b; HKK16; ZK16;
ZZK+17; DT17).

32, 110, 164 layered Resnets, 164 layered Preactivated Resnets, 110,
164, 200, 236 and 272 layered Pyramidal Resnets, 16, 28 and 40 layered
Wide Residual networks with the widening factor of 4, 8 and 10 are used
to test the image classification performance on CIFAR-100 using SBR. 28
layered WideResnets (widening factor of 10) are also tested with images
regularized through random erasing and cut-out techniques as reported

105

Table 22: Small sample of the 200 rules used for CIFAR-100 experiments.The
rules are divided into two groups: sample of the 150 rules expressing the
class taxonomy, and sample of 50 hand-crafted rules to express additional
semantic information.

∀x AQUATIC MAMMALS(x)⇒ BEAVER(x) ∨DOLPHIN(x) ∨OTTER(x) ∨SEAL(x)
∨WHALE(x)
∀x BEAVER(x)⇒ AQUATIC MAMMALS(x)
∀x DOLPHIN(x)⇒ AQUATIC MAMMALS(x)
∀x OTTER(x)⇒ AQUATIC MAMMALS(x)
∀x SEAL(x)⇒ AQUATIC MAMMALS(x)
∀xWHALE(x)⇒ AQUATIC MAMMALS(x)

∀x VEHICLE 1(x)⇒ BIKE(x) ∨ BUS(x) ∨MOTORBIKE(x) ∨PICKUP TRUCK(x) ∨ TRAIN(x)
∀x VEHICLES 2(x)⇒ LAWN MOWER(x) ∨ ROCKET(x) ∨ STREETCAR(x) ∨ TANK(x)
∨ TRACTOR(x)
∀x BIKE(x)⇒ VEHICLE 1(x)
∀x BUS(x)⇒ VEHICLE 1(x)
∀xMOTORBIKE(x)⇒ VEHICLE 1(x)
∀x PICKUP(x)⇒ VEHICLE 1(x)
∀x TRAIN(x)⇒ VEHICLES 1(x)
∀x LAWN MOWER(x)⇒ VEHICLES 2(x)
∀x ROCKET(x)⇒ VEHICLES 2(x)
∀x STREETCAR(x)⇒ VEHICLES 2(x)
∀x TANK(x)⇒ VEHICLES 2(x)
∀x TRACTOR(x)⇒ VEHICLES 2(x)

∀xMAMMALS (x)⇒ LARGE CARNIVORES(x) ∨ OMNIVORES AND HERBIVORES(x)
∨MEDIUM MAMMALS(x) ∨ SMALL MAMMALS(x) ∨ AQUATIC MAMMALS(x)
∀x LARGE CARNIVORES(x)⇒MAMMALS(x)
∀x OMNIVORES AND HERBIVORES(x)⇒MAMMALS(x)
∀xMEDIUM MAMMALS(x)⇒MAMMALS(x)
∀x SMALL MAMMALS(x)⇒MAMMALS(x)
∀x AQUATIC MAMMALS(x)⇒MAMMALS(x)

∀x HAS WHEELS(x)⇒ BICYCLE(x) ∨ BUS(x) ∨MOTORCYCLE(x) ∨ PICKUP TRUCK(x) ∨
TRAIN(x) ∨ LAWN MOWER(x) ∨ STREETCAR(x) ∨ TANK(x) ∨ TRACTOR(x)
∀x BICYCLE(x)⇒ HAS WHEELS(x)
∀x BUS(x)⇒ HAS WHEELS(x)
∀xMOTORCYCLE(x)⇒ HAS WHEELS(x)
∀x PICKUP TRUCK(x)⇒ HAS WHEELS(x)
∀x TRAIN(x)⇒ HAS WHEELS(x)
∀x LAWN MOWER(x)⇒ HAS WHEELS(x)
∀x STREETCAR(x)⇒ HAS WHEELS(x)
∀x TANK(x)⇒ HAS WHEELS(x)
∀x TRACTOR(x)⇒ HAS WHEELS(x)

on the original paper (ZZK+17; DT17). These techniques are comple-
mented during training with other simple data augmentation like hori-
zontal flips and random crops. During training with these regularization
techniques, dropout was not used since it is believed that random eras-
ing and cut outs both are actually contiguous dropouts occurring at the

106

input level rather than at the neuron level.
All the models are initialized from the same weight initialization and

trained for 150 to 300 epochs (depending on the network size) similar to
the CIFAR-10 experiments. All the hyper parameter settings and other
data augmentation techniques are used consistently as in the original
works.

The hyperparameters of collective classification used for this dataset
are also similar to the CIFAR-10 experiments. The classification accu-
racies are always reported on the final 100 classes. In constant weight
based SBR, the λl values for all predicates is set to 1. Different settings
of rule injections are used for the experiments with different t-norms.
When variable or predicate dependent λkl are chosen, the classes like
BABY, BOY, LIZARD etc. that have low classification accuracies with
CNN networks, are traded with low regularizer values between 0 to 0.49
empirically, whereas the classes like APPLE, BOTTLE, CAN etc. have
high regularizers between 0.51 to 1.

In order to follow the optimization plans, different empirical analysis
are performed, like assigning the non-convex constraints a second pri-
ority or giving the non-convex constraints a lower weight (i.e lower λkh)
values.

5.4.3 Results

Four different experimental simulations are performed on this image
classification task as listed below.

• Non-Transductive simulation with collective classification using
different t-norms and different optimization strategies, expressing
the hierarchical relationship between the super classes and the fine
classes. Semi-supervised setting is artificially created by training
on a small percentage of supervised examples to take advantage of
logical constraints during joint training.

• Transductive simulation with collective classification using differ-
ent t-norms and optimization strategies, expressing the hierarchical
relationship between 120 super and fine classes.

• Non-Transductive simulation with collective classification using
different t-norms and different optimization strategies, using the
logical rules of the super and fine classes along with the hand
crafted rules for the additional classes. Semi-supervised setting

107

is also artificially created in this simulation by training on small
percentages of supervised examples.

• Transductive simulation with collective classification using differ-
ent t-norms and optimization strategies, expressing the same rela-
tionship between 125 classes: super, fine and the additional classes.

The main objective of these simulations is to study extensively the effects
of incrementally adding constraints in the SBR framework. The previous
works of SBR didnot use optimization strategies and therefore adding
of non convex constraints was not feasible. However, these experiments
for the first time empirically show how the number and the nature of
the domain rules affect the quality of the trained model. It also demon-
strates the benefits of adding constraints at different stages during the
learning and understanding how the simple domain knowledge of the
class hierarchy (i.e. it is not necessary to design complex rules in order
to improve classification accuracies) can be utilized to improve the clas-
sification outputs of the deep neural networks. Like the previous simu-
lations, these experiments emphasizes on the differences between trans-
ductive and non transductive learning in SBR and on the importance of
collective classification as the magnitude of the number of final classes
increase 10 times than CIFAR-10.

In these experimental simulations, a combination of different fuzzy
logics are used with different proportions of rules during a single train-
ing. This setting is known as Combination setting and it is hypothe-
sized to perform better than using an individual fuzzy logic like Weak
Lukasiewicz or Product for all the rules during a single training. Some-
times, few rules of the knowledge base is assigned lower priorities com-
pared to the others, and this setting is called as the Half-Weight Combi-
nation. The following experimental evaluations make an extensive study
about different approaches of using fuzzy logics during training in dif-
ferent CNN networks.

Experimental Simulation I :

Non transductive setup using 45000 supervised training samples drawn
randomly from 100 classes, the remaining 5000 examples used for vali-
dation and the 10, 000 datapoints for the test set.

Table 23 and Table 24 compares the collective classification error rates
in a constant weight based SBR and in a vanilla SBR respectively using

108

Table 23: Error rate for the 100 final classes for different deep architectures
in non transductive mode with collective classification over the network
outputs using different selection of t-norms with constant λl. CNN, CC-
WL, CC-P and CC-HW: convolutional neural network baseline, collective
classification on neural network outputs using Weak Lukasiewicz, Product
and Half-Weight Combination setting. The bold numbers in the table refer
to the best performing network using different selection of t-norms.

Models CNN CC-WL CC-P CC-HW
Res-32 29.5 28.2 28.7 28.4
Res-110 25.2 23.5 23.6 23.5
Res-164 25.2 23.8 24.0 23.8
PRes-164 24.3 22.4 22.7 22.4
APN-110,α=84 20.2 19.9 19.9 19.8
APN-110, α=270 18.3 18.0 18.2 18.0
APN-164, α=84 18.3 18.1 18.3 18.1
APN-164, α=270 17.0 16.9 16.9 16.9
APN-236, α=220 16.4 16.2 16.3 16.2
APN-272, α=200 16.4 16.0 16.2 16.0
MPN-110, α=27 18.8 18.5 18.6 18.5
WRes-16, γ=8 22.1 21.8 21.9 21.8
WRes-28, γ=10 20.5 20.3 20.4 20.3
WRes-40, γ=4 22.9 21.5 21.8 21.4
WRes-D-28, γ=10 20.0 19.9 20.0 19.9
WRes-D-RE-28, γ=10 17.7 16.4 16.5 16.4
WRes-D-C-28, γ=10 15.2 14.9 15.0 14.9

different t-norms with 150 rules created with the heirarchical informa-
tion of the super and the fine classes. Res, PRes, APN, MPN, WRes,
WRes-D, WRes-D-RE and WRes-D-C refers to Resnets, Pre-Activated
Resnets, Additive Pyramidal Resnets, Multiplicative Pyramidal Resnets,
Wide Resnets, Wide Resnets with dropout, Wide Resnets with dropout
and random erasing and Wide Resnets with dropout and cutouts re-
spectively (HZRS15a; HZRS16b; HKK16; ZK16; ZZK+17; DT17). Weak
Lukasiewicz, Product t-norms and Half-Weight Combination are used to
inject logical constraints into the CNN networks integrated in the SBR.
These are abbreviated as CC-WL, CC-P and CC-HW respectively in the
results Table 23 and Table 24.

As mentioned earlier different combinations of Lukasiewicz, Product
and Minimum t-norms are applied to different groups of rules in the rule

109

Table 24: Error rate for the 100 final classes for different deep architectures
in non transductive mode with collective classification over the network
outputs using different selection of t-norms with variable λk

l . CNN, CC-
WL(λk

l), CC-P(λk
l) and CC-HW(λk

l): convolutional neural network baseline,
collective classification on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold numbers in the ta-
ble refer to the best performing network using different selection of t-norms.

Models CNN CC-WL(λkl) CC-P(λkl) CC-HW(λkl)
Res-32 29.5 28.0 28.6 28.0
Res-110 25.2 22.8 22.9 22.8
Res-164 25.2 23.5 23.9 23.7
PRes-164 24.3 22.0 22.3 22.0
APN-110, α=84 20.2 19.8 19.9 19.8
APN-110, α=270 18.3 18.0 18.2 18.0
APN-164, α=84 18.3 18.1 18.2 18.1
APN-164, α=270 17.0 16.7 16.9 16.7
APN-236, α=220 16.4 16.0 16.3 16.1
APN-272, α=200 16.4 16.0 16.2 16.0
MPN-110, α=27 18.8 18.4 18.5 18.5
WRes-16, γ=8 22.1 21.7 21.8 21.7
WRes-28, γ=10 20.5 19.9 20.0 19.9
WRes-40, γ=4 22.9 21.4 21.7 21.4
WRes-D-28, γ=10 20.0 19.8 19.9 19.8
WRes-D-RE-28,γ=10 17.7 16.4 16.5 16.4
WRes-D-C-28, γ=10 15.2 14.8 15.0 14.7

set. For example, about 75 rules in the knowledge base are converted to
constraints using Lukasiewicz t-norm, some 40 rules are converted using
Minimum t-norm and the remaining rules use Product t-norms. Thus the
group of constraints built from the combination of different t-norms is re-
ferred to as Combination (C) setting. Some of the rules in the knowledge
base are also assigned lower priorities which means that they will be
added in the later stage of learning and these are the ones that have the
possibility of becoming non-convex (for example: the constraints created
from rules with the ∨ operator). Using different t-norms for different
groups of rules and then assigning lower priority (priority of 0.5) to the
concave rules is referred to as the Half-Weight Combination (HW) set-
ting. Comparison of all the t-norms for constant weight based SBR and
vanilla SBR of this simulation are detailed in Table 62 and in Table 63 in

110

Table 25: Comparison of the collective classification error rate for the 100
final classes using scarce training data in non transductive mode with con-
stant weight based SBR. % Data: different amounts of supervisions used
for training each network. CNN, CC-WL, CC-P and CC-HW: convolutional
neural network baseline, collective classification on neural network outputs
using Weak Lukasiewicz, Product and Half-Weight Combination setting.
The bold numbers in the table refer to the best performing network using
different selection of t-norms.

Models %Data CNN CC-WL CC-P CC-HW

Res-32
10 43.4 41.6 41.7 41.6
20 39.3 38.2 38.2 38.2
50 34.6 33.9 33.9 33.9

PRes-164
10 40.4 40.1 40.2 40.1
20 37.6 37.5 37.5 37.5
50 31.3 31.3 31.3 31.3

APN-236,α = 220
10 31.9 30.6 30.8 30.7
20 28.2 27.4 27.4 27.4
50 20.2 19.6 19.6 19.5

APN-272,α = 200
10 30.9 29.8 29.8 29.8
20 27.6 26.4 26.4 26.4
50 19.8 18.6 18.6 18.5

WRes-28,γ = 10
10 35.9 34.8 34.8 34.8
20 33.6 32.4 32.4 32.4
50 24.8 23.6 23.6 23.5

WRes-D-28,γ = 10
10 33.5 32.3 32.3 32.3
20 31.6 31.4 31.4 31.4
50 23.8 22.6 22.6 22.6

WRes-D-RE-28,γ = 10
10 29.3 27.2 27.2 27.2
20 27.2 26.1 26.2 26.2
50 19.4 18.2 18.3 18.3

WRes-D-C-28,γ = 10
10 28.8 26.8 26.8 26.8
20 26.2 25.5 25.5 25.5
50 18.8 17.2 17.3 17.1

Section A.0.3.
Weak Lukasiewicz t-norm and Half-Weight Combination setting are

found to be the ones that perform the best with most of the tested CNN
architectures in constant and vanilla SBR. A 28-layered wide residual net-
work with dropout and cutouts is one of the best performer, that reduces

111

the collective classification error rates from 15.2% to 14.9% in a constant
SBR and by further 0.2% in vanilla SBR. Weak Lukasiewicz fragment has
optimization advantages over other t-norms and Half-Weight Combina-
tion helps to use the different t-norms very tactfully with lower weights
to the rules that can introduce concavity, therefore facilitating faster train-
ing and better generalization capabilities of the CNNs. The Half-Weight
Combination setting helps to empirically demonstrate the advantages of
optimization heuristics. It supports the theoretical development made
in this research work by addition of the optimization plans to the SBR
framework thus making it easier to train better classification models. It
is also seen that vanilla SBR regulates the predicates based on the classi-
fication outputs of the CNNs, and therefore provides performance gains
even during collective classification in non transductive learning.

An ablation study is performed by selecting a few deep CNN archi-
tectures and using different t-norms with variable percentage of super-
vised data points. Table 25 and Table 26 shows the effect of logical con-
straints when 10%, 20% and 50% of supervised examples are used for
training with Weak-Lukasiewicz, Product t-norms and Half-Weight com-
bination setting in constant and vanilla SBR.

The collective classification error rate with constraints in constant
SBR is reduced by 1.5% from the baseline CNN when only 50% of the
supervisions are available during training compared to 0.24% reduction
when 100% of supervisions are available. In vanilla SBR, the collective
classification error rate is reduced by 2.17% with only 50% supervised
data compared to 0.4% reduction when 100% of supervised examples
are used. This confirms the advantages of the SBR logical framework in
semi-supervised learning also for classification datasets with compara-
tively large number of classes (100 to 125 classes). For the comparisons
with other t-norms in fuzzy logics, a detailed analysis is presented in
Table 64 and in Table 65 in Section A.0.3. All these results for non trans-
ductive learning aligns with the conclusions drawn for the multi-label
image classification on the Winston Animal dataset and CIFAR-10.

Experimental Simulation II :

Transductive simulation where training of the CNN models is performed
using all 110, 000 patterns out of which only 45, 000 supervisions are used
for training and the remaining supervisions are used for validation and
test operations.

Table 27 and Table 28 compares the collective classification error rates

112

Table 26: Comparison of the collective classification error rate for the 100 fi-
nal classes using scarce training data in non transductive mode with vanilla
SBR. % Data refers to the different amounts of supervisions used for training
each network. CNN, CC-WL(λk

l), CC-P(λk
l) and CC-HW(λk

l): convolutional
neural network baseline, collective classification on neural network outputs
using Weak Lukasiewicz, Product and Half-Weight Combination setting.
The bold number in the table refer to the best performing network using the
best performing t-norm.

Models %Data CNN CC-WL(λk
l) CC-P(λk

l) CC-HW(λk
l)

Res-32
10 43.4 40.1 40.2 40.1
20 39.3 37.4 37.4 37.5
50 34.6 31.0 31.0 30.9

PRes-164
10 40.4 38.1 38.1 38.2
20 37.6 36.0 36.0 35.9
50 31.3 29.9 30.0 29.9

APN-236, 10 31.9 29.8 29.8 29.8
20 28.2 26.4 26.4 26.4

α = 220 50 20.2 18.6 18.6 18.5

APN-272, 10 30.9 27.8 27.8 27.8
20 27.6 23.4 23.4 23.3

α = 200 50 19.8 17.6 17.6 17.5

WRes-28, 10 35.9 33.8 33.8 33.8
20 33.6 31.4 31.4 31.4

γ = 10 50 24.8 22.2 22.2 22.1

WRes-D-28, 10 33.5 29.7 29.7 29.7
20 31.6 28.4 28.5 28.4

γ = 10 50 23.8 21.5 21.5 21.5

WRes-D-RE-28, 10 29.3 26.9 26.9 26.9
20 27.2 25.4 25.4 25.4

γ = 10 50 19.4 17.6 17.6 17.6

WRes-D-C-28, 10 28.8 26.9 26.9 26.9
20 26.2 23.7 23.7 23.7

γ = 10 50 18.8 16.6 16.7 16.6

in a constant weight based SBR and vanilla SBR respectively with the 150
rules that exploits the coarse and fine class relationship as in the previous
simulation. The naming conventions in the tables remain the same.

It is observed that Weak Lukasiewicz t-norm performs well for most
of the deep CNN architectures even in transductive learning both in con-
stant and vanilla SBR. Using a wise and careful combination of differ-
ent fuzzy logics and assigning lower weights to the rules that can lead

113

Table 27: Classification and Collective classification error rate for the 100
final classes test set for different deep architectures using different selection
of t-norms with constant λl in transductive mode. CNN, WL, CC-WL, HW
and CC-HW: convolutional neural network baseline, classification error in
transductive learning, collective classification on neural network outputs
using Weak Lukasiewicz and Half-Weight Combination setting. The bold
numbers in the table refer to the best performing network using the three
selection of t-norms.

Models CNN WL CC-WL HW CC-HW
Res-32 29.5 26.2 26.0 26.1 26.0
Res-110 25.2 23.4 22.9 23.2 22.9
Res-164 25.2 22.8 22.6 22.8 22.5
PRes-164 24.3 21.8 21.4 21.6 21.4
APN-110,α=84 20.2 19.1 18.8 19.0 18.9
APN-110, α=270 18.3 17.0 16.7 17.0 16.7
APN-164, α=84 18.3 16.3 16.0 16.2 16.0
APN-164, α=270 17.0 16.1 15.8 16.0 15.8
APN-236, α=220 16.4 15.2 15.0 15.2 14.9
APN-272, α=200 16.4 14.7 14.5 14.6 14.5
MPN-110, α=27 18.8 17.1 16.8 17.0 16.8
WRes-16, γ=8 22.1 21.0 20.9 20.9 20.9
WRes-28, γ=10 20.5 19.2 19.0 19.2 19.0
WRes-40, γ=4 22.9 20.6 20.4 20.6 20.4
WRes-D-28, γ=10 20.0 19.2 19.0 19.1 18.9
WRes-D-RE-28, γ=10 17.7 15.2 15.1 15.2 15.1
WRes-D-C-28, γ=10 15.2 13.9 13.6 13.8 13.6

to concavity, helps in building an optimal set of constraints. In trans-
ductive learning mode, on CIFAR-100, the wide residual network with
28 layers having dropout at the neuron level and cut outs at the input
level achieves the highest performance gain. It reduces the classifica-
tion error rates from 15.2% to 13.8% in a constant SBR and by further
0.7% in vanilla SBR. Collective classification further pushes down the er-
ror rate by 0.3 − 0.4%. All the factors that contribute to this significant
performance gain of 2.5% are : using a combination of t-norms and opti-
mization heuristics (i.e introducing convex constraints at a earlier stage
of learning compared to the non convex constraints) during joint train-
ing, using predicate dependent regularizers on CNN outputs and using
collective classification at the test time. The flexibility of using differ-

114

Table 28: Classification and Collective classification error rate for the 100
final classes on CIFAR-100 test set for different deep architectures using dif-
ferent selection of t-norms with variable λk

l in transductive mode. CNN,
WL(λk

l), CC-WL(λk
l), HW(λk

l) and CC-HW(λk
l): convolutional neural net-

work baseline, transductive classification error rates and collective classifi-
cation on neural network outputs using Weak Lukasiewicz and Half-Weight
Combination setting. The bold numbers in the table refer to the best per-
forming network using different selection of t-norms.

Models CNN WL(λk
l) CC-WL(λk

l) HW(λk
l) CC-HW(λk

l)

Res-32 29.5 25.9 25.1 25.9 25.1
Res-110 25.2 21.9 21.7 21.8 21.7
Res-164 25.2 21.6 21.0 21.6 21.0
PRes-164 24.3 20.7 20.0 20.7 20.0
APN-110, α=84 20.2 18.1 17.8 18.1 17.8
APN-110, α=270 18.3 16.5 16.0 16.5 16.0
APN-164, α=84 18.3 15.9 15.1 15.9 15.1
APN-164, α=270 17.0 15.1 14.8 15.1 14.7
APN-236, α=220 16.4 13.8 13.0 13.8 13.0
APN-272, α=200 16.4 13.1 12.9 13.1 12.9
MPN-110, α=27 18.8 15.9 15.4 15.9 15.4
WRes-16, γ=8 22.1 20.9 20.8 20.9 20.7
WRes-28, γ=10 20.5 18.1 17.9 18.1 17.9
WRes-40, γ=4 22.9 19.8 19.4 19.8 19.4
WRes-D-28, 20.0 19.0 18.8 19.1 18.9

γ=10
WRes-D-RE-28, 17.7 15.1 15.0 15.1 15.0

γ=10
WRes-D-C-28, 15.2 13.2 12.8 13.1 12.7

γ=10

ent strategies to improve the classification results in the SBR framework,
makes it not only a powerful architecture but it also becomes an unified
tool that can be used in variety of real world applications targeted to
solve different kinds of problems. Detailed comparisons of all these sce-
narios with all other t-norms are given in Table 66, Table 67, Table 68 and
Table 69 in Section A.0.3.

The improvement in transductive learning is 2.5% using the same
rule set as compared to only 0.5% improvement over the baselines in
non transductive learning. During transductive learning, the validation
and the test patterns are also used during training without supervisions,

115

therefore, creating a semi-supervised learning environment in which the
rules have a greater effect that further reduces the error rates in classifica-
tion. These benefits can be used in real life applications like searching for
matching images by photographers from a huge database of noisy im-
ages. For example :the photographers can use a model trained (training
is done in transductive mode with few supervised examples and mil-
lions of unsupervised datapoints) to classify 100 categories and search
for a matching category in a few seconds.

Figure 23: Three hierarchical levels including the fine, coarse classes and
the new 5 additional classes.

Experimental Simulation III :

This shows a non transductive setup with 5 additional predicates. How-
ever, the number of supervised examples and the split of the training,
validation and test set remains exactly the same as in the experimen-
tal simulation I of CIFAR-100. With the addition of new predicates, the
CNNs are trained with additional classification layers. Hence instead of
the two class hierarchy that was present previously with the coarse and
fine classes, now another additional upper hierarchical level gets added.
This taxonomical structure is represented in the Figure 23.

116

Table 29 and Table 30 compares the collective classification error rates
in a constant weight based SBR and in a vanilla SBR respectively using
different t-norms with all the available rules created using 125 predicates.
A new set of 50 rules is created with the addition of the 5 new predi-
cates. All the naming conventions in the results table remain the same
as used in the previous experiments and the accuracies are always cal-
culated over the final 100 classes. Comparison with all the t-norms are
detailed in Table 70 and in Table 71 in Section A.0.3.

Half-Weight Combination setting (where combination of different
fuzzy logics are used for different set of rules and also priorities are as-
signed to rules following some heuristics), performs very well in most
of the tested CNN architectures in constant and vanilla SBR. With the
addition of new rules, the number of non-convex constraints increases
and hence, Half-Weight Combination setting which optimally inserts the
non convex constraints into the learning, outperforms even the Weak-
Lukasiewicz t-norm which by itself has several optimization advantages.

The 28-layered wide residual network with dropout and cut outs is
now seen to have a collective classification error rate of 14.1% in a con-
stant SBR and 14.0% in vanilla SBR with Half-Weight Combination set-
ting which is 1.2% lower than the deep neural network baseline model
trained without rules and about 0.7% lower than with a smaller subset
of rules. Thus incremental addition of more rules has shown its bene-
fits and this gain in performance is achieved. Therefore, taking a baby
step at a time, like adding more rules during joint learning, using predi-
cate based regularizers, applying collective classification have all cumu-
latively helped in achieving a accuracy gain with a promising margin.
These performance gain results empirically reconfirm that each of these
additions make SBR a complete unified approach for a semi-supervised
logic integrated deep learning based framework which is much more ad-
vanced than its previous version in the earlier works (DGS16).

Experimental Simulation IV :

Transductive simulation with 5 additional predicates/classes where all
110, 000 data patterns are used for training of the CNN models, out of
which only 45, 000 patterns are supervised during training and the re-
maining supervisions are used for validation and test operations. The
rule set is exactly the same as the rules used in the experimental simula-
tion III.

Table 31 and Table 32 compares the collective classification error rates

117

Table 29: Collective classification error rate for the 100 final classes on
CIFAR-100 for different deep architectures over 125 network outputs using
different selection of t-norms with constant λl in non transductive mode.
CNN, CC-WL, CC-P and CC-HW: convolutional neural network baseline,
collective classification on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting. The bold number in the ta-
ble refer to the best performing network using the best performing t-norm.

Models CNN CC-WL CC-P CC-HW
Res-32 29.5 27.5 28.2 27.4
Res-110 25.2 22.8 23.0 22.8
Res-164 25.2 22.8 23.9 22.8
PRes-164 24.3 21.7 21.8 22.6
APN-110,α=84 20.2 19.0 19.1 19.1
APN-110, α=270 18.3 17.2 17.5 17.2
APN-164, α=84 18.3 17.3 17.7 17.3
APN-164, α=270 17.0 16.1 16.2 16.0
APN-236, α=220 16.4 15.4 15.5 15.4
APN-272, α=200 16.4 15.4 15.4 15.3
MPN-110, α=27 18.8 17.7 17.8 17.7
WRes-16, γ=8 22.1 21.0 21.0 21.0
WRes-28, γ=10 20.5 19.6 19.8 19.7
WRes-40, γ=4 22.9 20.7 21.0 20.7
WRes-D-28, γ=10 20.0 19.2 19.2 19.1
WRes-D-RE-28, γ=10 17.7 15.7 15.7 15.6
WRes-D-C-28, γ=10 15.2 14.2 14.3 14.1

in a constant weight based SBR and vanilla SBR respectively in this trans-
ductive set up. Detailed analysis on all the t-norms is found in Table 72,
Table 73, Table 74 and Table 75 in appendix A.

With the addition of the new predicates, resulting into more con-
straints, and using optimization heuristics in the Half-Weight Combi-
nation setting is seen to be the best performer. During collective clas-
sification, the wide residual network with 28 layers, in a constant SBR
lowers the error rate by 0.6% from its counterpart that uses only hierar-
chical information of 120 predicates and by 1.2% from its baseline archi-
tecture which is not trained with any logical constraints. However in a
vanilla SBR, the reduction is observed to be 0.7% and 3.2% respectively.
Transductive mode already provides a semi-supervised environment for
learning, therefore the benefits of rules are quite predominant in this type

118

Table 30: Collective classification error rate for the 100 final classes on
CIFAR-100 for different deep architectures over 125 network outputs using
different selection of t-norms with variable λk

l in non transductive mode.
CNN, CC-WL(λk

l), CC-P(λk
l) and CC-HW(λk

l): convolutional neural net-
work baseline, collective classification on neural network outputs using
Weak Lukasiewicz, Product and Half-Weight Combination setting. The
bold number in the table refer to the best performing network using the
best performing t-norm.

Models CNN CC-WL(λkl) CC-P(λkl) CC-HW(λkl)
Res-32 29.5 27.2 28.0 27.0
Res-110 25.2 22.7 22.9 22.6
Res-164 25.2 22.6 23.0 22.6
PRes-164 24.3 21.2 21.6 21.2
APN-110, α=84 20.2 19.0 19.0 19.0
APN-110, α=270 18.3 17.1 17.2 17.1
APN-164, α=84 18.3 17.2 17.3 17.2
APN-164, α=270 17.0 16.0 16.0 15.9
APN-236, α=220 16.4 15.2 15.5 15.2
APN-272, α=200 16.4 15.1 15.9 15.0
MPN-110, α=27 18.8 17.4 17.6 17.3
WRes-16, γ=8 22.1 20.9 21.0 20.9
WRes-28, γ=10 20.5 19.2 19.4 19.2
WRes-40, γ=4 22.9 20.7 20.8 20.5
WRes-D-28, γ=10 20.0 19.0 19.1 19.0
WRes-D-RE-28,γ=10 17.7 15.5 15.7 15.5
WRes-D-C-28, γ=10 15.2 14.0 14.1 14.0

of learning.

5.4.4 Discussion

In the image classification task on CIFAR-100, the CNN models like
Resnets, Pyramidal Resnets and Wide Resnets used in combination with
different regularization techniques at the input level when integrated in
SBR and learned jointly with rules, the classification error rate is reduced
by approximately 3% − 4% in small networks to 5% in large networks.
As demonstrated in CIFAR-10 experiments, when the size of the net-
work increases, the importance of adding rules also increases because
the rules help in overcoming the problem faced due to overfitting. Con-

119

Table 31: Classification and collective classification error rate for the 100
final classes with 125 outputs from different deep architectures using differ-
ent selection of t-norms with constant λl in transductive mode. CNN, WL,
CC-WL, HW and CC-HW: convolutional neural network baseline, trans-
ductive classification outputs with rules, collective classification on neural
network outputs using Weak Lukasiewicz and Half-Weight Combination
setting. The bold number in the table refer to the best performing network
using the best performing t-norm.

Models CNN WL CC-WL HW CC-HW
Res-32 29.5 25.8 25.4 25.7 25.2
Res-110 25.2 22.7 22.1 22.6 22.0
Res-164 25.2 22.3 22.1 22.0 21.9
PRes-164 24.3 21.5 21.0 21.4 21.0
APN-110,α=84 20.2 18.9 18.6 18.8 18.6
APN-110, α=270 18.3 16.5 16.1 16.4 16.1
APN-164, α=84 18.3 16.0 15.6 16.0 15.6
APN-164, α=270 17.0 15.8 15.4 15.7 15.4
APN-236, α=220 16.4 14.9 14.7 14.8 14.7
APN-272, α=200 16.4 14.4 14.1 14.3 14.1
MPN-110, α=27 18.8 16.7 16.3 16.6 16.2
WRes-16, γ=8 22.1 20.8 20.3 20.7 20.3
WRes-28, γ=10 20.5 19.0 18.7 18.9 18.8
WRes-40, γ=4 22.9 20.4 20.1 20.2 20.1
WRes-D-28, γ=10 20.0 18.6 18.1 18.5 18.1
WRes-D-RE-28, γ=10 17.7 15.0 14.9 14.9 14.9
WRes-D-C-28, γ=10 15.2 13.5 13.1 13.4 13.0

sidering less than 500 supervisions are available for each class (few of
them are randomly selected and used in the validation process), during
training, the improvements happen only by the application of 200 logic
rules and some optimization heuristics with negligible computational
overhead. Apart from all the benefits of SBR observed in CIFAR-10, the
additional perspective obtained through the experimental evaluations in
CIFAR-100 is that the increase in the number of logic rules is beneficial
and results in creating better classification models. Therefore, this leads
to the finding that addition of more domain knowledge can better suffice
for the scarcity of supervisions.

Constructing the rules is also easy as they can be directly obtained
from the hierarchical information available in the WordNet taxonomy.

120

Table 32: Classification and collective classification error rate for the 100
final classes on CIFAR-100 for different deep architectures using different
selection of t-norms with variable λk

l in transductive mode. CNN, WL,
CC-WL, HW and CC-HW: convolutional neural network baseline, collec-
tive classification on neural network outputs using Weak Lukasiewicz and
Half-Weight Combination setting. The bold number in the table refer to the
best performing network using the best performing t-norm.

Models CNN WL(λk
l) CC-WL(λk

l) HW(λk
l) CC-HW(λk

l)

Res-32 29.5 25.2 24.9 25.3 24.8
Res-110 25.2 21.6 21.2 21.7 21.2
Res-164 25.2 21.0 20.6 21.0 20.5
PRes-164 24.3 20.3 19.9 20.3 19.8
APN-110, α=84 20.2 17.9 17.2 17.9 17.1
APN-110, α=270 18.3 15.8 15.4 15.9 15.4
APN-164, α=84 18.3 15.4 14.8 15.4 14.8
APN-164, α=270 17.0 15.0 14.3 15.1 14.2
APN-236, α=220 16.4 13.3 12.7 13.4 12.6
APN-272, α=200 16.4 13.1 12.1 13.1 12.0
MPN-110, α=27 18.8 15.6 14.4 15.5 14.4
WRes-16, γ=8 22.1 20.6 20.4 20.6 20.3
WRes-28, γ=10 20.5 17.8 17.1 17.9 17.1
WRes-40, γ=4 22.9 19.8 19.1 19.9 19.1
WRes-D-28, 20.0 18.5 18.3 18.5 18.2
γ=10
WRes-D-RE-28, 17.7 14.9 14.8 14.9 14.8
γ=10
WRes-D-C-28, 15.2 12.9 12.1 13.0 12.0
γ=10

The other conclusions obtained through the simulations on this dataset
remain the same as the previous ones: Using of techniques like predi-
cate dependent regularizers and collective classification, helps to further
improve the rule based learning strategies on CIFAR-100, the transduc-
tive simulations and the ablation studies with scarcity of supervisions,
demonstrate SBR as a powerful framework for semi-supervised learning.
All these techniques are used for the first time in the deep learning com-
munity with a rich variety of deep neural networks on CIFAR-100 and
this makes an important addition in the field of deep learning research
as a whole. Also, the experimental evaluations illustrates a simple but
novel methodology of using logical rules by combining different types of

121

Table 33: Comparison of the Train, Prediction and Collective classification
time with different deep CNN networks in transductive and non transduc-
tive learning with two levels of hierarchy. NN-T, NN-P and NN-CC: Train
time, Prediction time and Collective classification time respectively for the
baseline neural network. NNT-T, NNT-P and NNT-CC: Train time, Predic-
tion time and Collective classification time of the respective neural network
when in transductive learning mode in SBR. All the times are in hours.

Models NN-T NN-P NN-CC NNT-T NNT-P NNT-CC

Res-32 8.50 0.34 0.35 9.15 0.35 0.35
Res-110 32.50 1.50 1.54 32.83 1.83 1.87
Res-164 33.75 2.14 2.20 34.10 2.22 2.24
PRes-164 33.70 2.12 2.18 34.0 2.20 2.24
APN-110, α=84 49.59 3.25 3.28 50.50 3.30 3.36
APN-110, α=270 54.83 4.35 4.40 55.13 4.40 4.46
APN-164, α=84 53.83 3.27 3.30 54.13 3.32 3.38
APN-164, α=270 56.13 4.40 4.45 56.83 4.45 4.50
APN-236, α=220 65.83 5.45 5.52 66.13 5.54 5.58
APN-272, α=200 67.43 5.62 5.70 68.20 5.74 5.83
MPN-110, α=27 55.23 4.55 4.60 56.43 4.58 4.70
WRes-16, γ=8 33.50 1.83 2.14 33.83 2.13 2.87
WRes-28, γ=10 35.50 2.13 2.85 35.83 2.83 3.17
WRes-40, γ=4 36.50 2.83 3.15 36.83 3.50 3.47
WRes-D-28, 35.0 2.0 2.15 35.13 2.13 2.50
γ=10
WRes-D-RE-28, 35.2 2.0 2.18 35.23 2.13 2.50
γ=10
WRes-D-C-28, 35.13 2.0 2.16 35.20 2.53 2.50
γ=10

fuzzy logics during training. The use of Combination and Half-Weight
Combination setting has proved to be beneficial with almost all different
deep CNN architectures experimented in the above simulations. This
finding paves new pathways of research using SBR for the future works.
It would be interesting to study which combination of logical rules help
in image classification in which way, what would be best values for the
weights assigned to the rules (i.e. how should the rules be penalized
during the learning process), how can the weights (λh as described in
Equation 3.1) of these rules be learned in more principled way.

As described for the Winston Animal and CIFAR-10 datasets, it is im-
portant to note that the performance gain using rules and through collec-

122

Table 34: Comparison of the Train, Prediction and Collective classification
time with different deep CNN networks in transductive and non transduc-
tive learning with three levels of hierarchy. NN-T, NN-P and NN-CC: Train
time, Prediction time and Collective classification time respectively for the
baseline neural network. NNT-T, NNT-P and NNT-CC: Train time, Predic-
tion time and Collective classification time of the respective neural network
when in transductive learning mode in SBR. All the times are in hours.

Models NN-T NN-P NN-CC NNT-T NNT-P NNT-CC

Res-32 8.56 0.36 0.38 9.54 0.38 0.40
Res-110 32.54 1.60 1.64 33.10 2.10 2.87
Res-164 33.83 2.24 2.30 34.50 2.32 2.54
PRes-164 33.80 2.20 2.28 34.23 2.50 2.54
APN-110, α=84 50.59 3.65 3.68 51.50 3.80 3.88
APN-110, α=270 55.11 4.65 4.70 55.56 4.70 4.76
APN-164, α=84 54.50 3.67 3.70 54.83 3.72 3.78
APN-164, α=270 56.43 4.80 4.85 57.10 4.85 4.90
APN-236, α=220 65.92 5.60 5.62 66.43 6.14 6.18
APN-272, α=200 67.82 6.12 6.40 68.40 6.50 6.83
MPN-110, α=27 56.0 4.61 4.64 57.43 5.08 5.17
WRes-16, γ=8 33.80 2.14 2.32 34.13 2.53 2.87
WRes-28, γ=10 35.60 2.21 2.91 36.10 3.12 3.18
WRes-40, γ=4 36.80 2.87 3.25 36.85 3.56 3.67
WRes-D-28, 35.23 2.12 2.18 35.41 2.20 2.52
γ=10
WRes-D-RE-28, 35.33 2.10 2.28 35.42 2.15 2.52
γ=10
WRes-D-C-28, 35.25 2.11 2.26 35.50 2.51 2.53
γ=10

tive classification in SBR is obtained with negligible overhead of time in
both transductive and non transductive learning. Table 33 and Table 34
describes the time taken to train the different deep CNNs on this dataset
with two and three levels of hierarchy respectively. With three levels of
hierarchy, the training and the inference time increases by a small mar-
gin with the same networks when trained with two levels of hierarchy.
The addition of rules and collective classification benefits become more
predominant as the size of the dataset and the number of categories in-
crease to 100. Here, training of the baseline network from scratch takes
approximately 10 − 70 hours but the collective classification takes only
0.5 − 6 hours depending on the depth of the neural network. Therefore,

123

using rules in SBR with lesser amount of supervised examples and using
collective classification during the inference time, approximately 50−100
hours of training time can be saved which would otherwise be required
if more data patterns are used during training. Thus, the efficiency in
terms of accuracy and time makes the deep learning based SBR frame-
work versatile for different types of practical applications.

5.5 Experimental Analysis on ImageNet Dataset

This image classification task using logical constraints is performed on
the most popular image dataset known as ImageNet. ImageNet is an im-
age database organized according to the WordNet hierarchy composed
of 1000 classes (Kri09)8 used for ILSVRC challenges since 2010. For this
task, ILSVRC 2012 challenge dataset is used. This challenge has approx-
imately 1.3 million training images, 50000 validation images and 100K
test images.

Each of the images are mostly high resolution single object RGB im-
age. The input images used by different CNN architectures are resized
and cropped to 224×224 pixels. The images in this database are not only
arranged in 1000 categories but they also possess a number of non over-
lapping nodes and internodes. This indicates that each object category
also has several levels of hierarchy in the word sysnets. For example: the
category DOG have intertwining super classes like HUNTING DOG→
CARNIVORE→MAMMAL→ANIMAL. These semantic and hierarchi-
cal relationships of the ImageNet categories are explored to enforce the
logical constraints and establish semantic consistency among the inputs.

5.5.1 Knowledge Domain

The prior knowledge base used for this image classification task is cre-
ated using all the sysnet hierarchical information present in the Word-
Net hierarchy of this database. The knowledge base correlates the 1000
output predicates with different predicates that are additionally added
through hand crafted rules directly derived from this taxonomical archi-
tecture of the sysnets. Due to limitation of the resources, some of the
sysnet information is simplified for this research work. A subset of the
rules present in the knowledge base is shown in Table 35.

8https://http://image-net.org/challenges/LSVRC/

124

https://http://image-net.org/challenges/LSVRC/

Table 35: Subset of ImageNet rules handcrafted to exploit the sysnet infor-
mation.

∀x PERSON(x)∨ FOOD(x) ∨ ARTEFACT(x)∨ ANIMAL(x)∨ PLANT(x)

∀x ANIMAL(x) ⇒ AMPHIBIAN(x)∨ REPTILE (x) ∨ FISH (x) ∨ BIRD (x) ∨ MAMMAL (x) ∨ INVERTEBRATE(x)

∀x AMPHIBIAN(x)⇒ ANIMAL(x)
∀x REPTILE(x) ⇒ ANIMAL(x)
∀x AMPHIBIAN(x)⇒ BULLFROG(x) ∨ TREE FROG(x)∨ TAILED FROG(x) ∨ EUROPEAN FIRE SALAMANDER(x)

∨COMMON NEWT(x)∨ EFT (x) ∨ SPOTTED SALAMANDER (x)∨ AXOLOTL(x)
∀x BULLFROG (x)⇒ AMPHIBIAN (x)
∀x TREE FROG(x)⇒ AMPHIBIAN(x)
∀x TAILED FROG(x) ⇒AMPHIBIAN(x)
∀x EUROPEAN FIRE SALAMANDER (x)⇒ AMPHIBIAN (x)
∀x COMMON NEWT (x) ⇒ AMPHIBIAN(x)
∀x EFT (x) ⇒ AMPHIBIAN(x)
∀x SPOTTED SALAMANDER (x) ⇒ AMPHIBIAN(x)
∀x AXOLOTL (x)⇒ SALAMANDER(x)

∀x REPTILE (x)⇒ SNAKE(x)∨ CROCODILIAN (x) ∨ DINOSAUR (x) ∨ SAURIAN (x) ∨ TURTLE(x)
∀x SNAKE (x)⇒ REPTILE(x)
∀x CROCODILIAN (x)⇒ REPTILE (x)
∀x DINOSAUR (x) ⇒ REPTILE (x)
∀x SAURIAN (x)⇒ REPTILE(x)
∀x TURTLE (x) ⇒ REPTILE(x)
∀x SNAKE (x)⇒ VIPER(x) ∨ SEA SNAKE (x)∨∀x ELAPID(x) ∨ CONSTRICTOR (x)∨ COLUBRID SNAKE (x)
∀x VIPER (x)⇒ SNAKE (x)
∀x SEA SNAKE (x) ⇒ SNAKE(x)
∀x ELAPID (x) ⇒ SNAKE (x)
∀x CONSTRICTOR (x) ⇒ SNAKE(x)
∀x COLUBRID SNAKE (x) ⇒ SNAKE(x)
∀x VIPER (x)⇒ HORNED VIPER (x)∨ RATTLE SNAKE(x)
∀x HORNED VIPER (x)⇒ VIPER(x)
∀x RATTLE SNAKE (x) ⇒ VIPER(x)
∀x RATTLE SNAKE (x) ⇒ DIAMONDBACK (x)∨ SIDEWINDER(x)
∀x DIAMONDBACK (x) ⇒ RATTLE SNAKE(x)
∀x SIDEWINDER (x)⇒ RATTLE SNAKE(x)

∀x PERSON(x)⇒ PLAYER(x) ∨ RELATIVE(x)
∀x PLAYER(x)⇒ PERSON(x)
∀x RELATIVE(x) ⇒ PERSON(x)
∀x PLAYER(x)⇒ BALL PLAYER(x) ∨ SCUBA DIVER(x)
∀x RELATIVE(x) ⇒ GROOM(x)

∀x FOOD(x) ⇒ ITEM LIST(x) ∨ SOLID(x) ∨ SEMI SOLID(x)∨ LIQUID(x)
∀x ITEMLIST(x) ⇒ FOOD(x)
∀x SOLID(x)⇒ FOOD(x)
∀x SEMI SOLID(x)⇒ FOOD(x)
∀x LIQUID(x)⇒ FOOD(x)
∀x ITEMLIST(x) ⇒ MENU(x)
∀x MENU(x) ⇒ ITEMLIST(x)
∀x SOLID(x)⇒ ICE CREAM(x) ∨ ICE LOLLY(x) ∨MEAT(x) ∨ BAKERY(x)
∀x MEAT(x) ⇒ HOTDOG(x) ∨ POTPIE
∀x HOTDOG(x) ⇒ MEAT
∀x POTPIE(x)⇒ MEAT
∀x BAKERY(x)⇒ PIZZA(x)∨ MEAT LOAF(x) ∨ FRENCH LOAF(x) ∨ PRETZEL(x) ∨ DOUGH(x) ∨ POTPIE (x)

∨ BURRITO (x)∨ CHEESE BURGER (x)∨ BAGEL (x) ∨ CAKE
∀x PIZZA (x) ⇒ BAKERY(x)
∀x MEAT LOAF (x)⇒ BAKERY(x)
∀x FRENCH LOAF (x) ⇒ BAKERY(x)
∀x PRETZEL (x) ⇒ BAKERY(x)
∀x DOUGH (x) ⇒ BAKERY(x)
∀x POTPIE (x) ⇒ BAKERY(x)
∀x BURRITO (x) ⇒ BAKERY(x)
∀x CHEESE BURGER (x) ⇒ BAKERY(x)
∀x BAGEL (x) ⇒ BAKERY(x)
∀x CAKE (x)⇒ BAKERY(x)
∀x CAKE (x)⇒ TRIFLE(x)
∀x TRIFLE (x) ⇒ CAKE(x)
∀x SEMI SOLID (x) ⇒ MASHED POTATO(x) ∨ GUACAMOLE (x)∨ SAUCE(x)
∀x SAUCE (x)⇒ CARBONARA(x) ∨ CHOCOLATE SAUCE(x)
∀x MASHED POTATO (x) ⇒ SEMI SOLID(x)
∀x GUACAMOLE (x) ⇒ SEMI SOLID(x)
∀x SAUCE (x)⇒ SEMI SOLID(x)
∀x CARBONARA (x)⇒ SAUCE (x)
∀x CHOCOLATE SAUCE (x) ⇒ SAUCE(x)
∀x LIQUID (x)⇒ CONSOMME (x) ∨ EGGNOG (x) ∨ WINE(x)
∀x CONSOMME (x)⇒ LIQUID(x)
∀x EGGNOG (x) ⇒ LIQUID(x)
∀x WINE (x)⇒ LIQUID(x)
∀x WINE (x)⇒ RED WINE(x) 125

5.5.2 CNN Models

Each hierarchical level is represented through an additional classifier
layer while training any deep CNN architecture. These classifier lay-
ers either have a softmax activation if the considered classes in that layer
are mutually exclusive or a sigmoid activation if the considered classes
are interdependent. Therefore, architecturally the deep CNNs integrated
in the SBR for ImageNet resembles the CNNs used in CIFAR-10 and
CIFAR-100 except with minor differences in the number of output lay-
ers, training parameters etc. ImageNet is one of the largest annotated
image dataset available to the deep learning research community with
also large amount of sysnet information associated with it.

The integration of the baseline CNN models with SBR is also simi-
lar to the previous experimental simulations in Section 5.2 of this chap-
ter. As ImageNet is a very popular image classification dataset, there
are several pretrained deep CNN models publicly available. Pretrained
Residual networks, Pre-activated Residual networks and Additive Pyra-
midal Residual networks are retrained for several iterations with addi-
tional classifier layers and logical constraints to obtain the trained mod-
els with additional classes. Collective classification is then performed on
the test set using these models.

Resnets with 50, 101 and 152 layers, Pre-activated Resnets with 152
and 200 layers and Additive Pyramid Resnets with 200 layers are used to
test the image classification performance on ImageNet using SBR. All
these networks are trained with images resized along its shorter side
and randomly sampled from the range [256, 480] for scale augmenta-
tion (HZRS15a; HZRS16b; HKK16). A 224 × 224 crop is then randomly
sampled from an image or its horizontal flip, with per-pixel mean sepa-
rated as in the original works (HZRS15a).

Batch normalization is used after each convolution layer in these deep
networks. During fine tuning these CNN networks with additional clas-
sifier layers, a mini-batch size of 64 images are used. The retraining is
continued for 50 epochs with an initial learning rate of 0.001, a weight de-
cay of 0.0001 and a momentum of 0.9. The hyperparameters of collective
classification are identical to the ones used for the CIFAR experiments.

5.5.3 Results

A large dataset like ImageNet has never been tested before using do-
main knowledge integrated frameworks. Therefore, the empirical results

126

is a strength of this research work and a great addition to the research
community. Thorough experimental evaluations are conducted to ex-
ploit several levels of sysnet hierarchy and to take the advantage of these
hierarchical relationships. Experimental simulations on this dataset are
shown only for the non transductive setting because of the limitation
of resources. In non transductive learning, the patterns are fully super-
vised during training and hence the rules constructed from hierarchical
information are implicitly satisfied during training. However, the ad-
vantages provided by the rules can be gained by using the rules for col-
lective classification during the test time. The other scenario where rules
can be beneficial in non transductive learning is when the labels are poor
and noisy. The addition of logical rules into the deep learners in such
cases help in designing robust noise-free easily generalizable classifica-
tion models. Although, this aspect is not focused in this work but the
same SBR framework can be used to deal with such situation without
any need of theoretical modifications.

There are three experimental simulations implemented using this
dataset, exploiting different levels of hierarchical information. The main
goal of these experimental simulations is to emulate the scenario of in-
cremental addition of constraints where there are large number of classes
so as to demonstrate the benefit of increasing the number of constraints
on very large datasets, the benefit of using optimization heuristics for
concave constraints and the improvement that can be obtained by using
only collective classification on the baseline network predictions during
inference. The experiments on ImageNet using the SBR framework is
performed to reconfirm all the findings from Winston Animal, CIFAR-10
and CIFAR-100 datasets on a larger scale. This is just to prove that all
the advantages and capabilities of the SBR framework discussed earlier
is scalable and usable for real world scenarios in the era of Big data.

Experimental Simulation I :

This experimental simulation is performed with 1.3 million supervised
training examples belonging to 1000 classes. In this simulation only three
hierarchical levels have been considered. It includes 5 super classes, 21
intermediate classes and 1000 leaf classes. During this simulation, all
the classes present in each hierarchical level are mutually exclusive and
therefore, softmax activation is used in each of the output layers. The 5
super classes or the top hierarchical level classes are listed as:

127

Table 36: Second hierarchical level of ImageNet used in the Experimental
Simulation I.

TOP HIERARCHICAL LEVEL SECOND HIERARCHICAL LEVEL

PERSON PLAYER, RELATIVE

FOOD ITEMLIST, SEMI SOLID, SOLID, LIQUID

ANIMAL AMPHIBIAN, REPTILE, FISH, BIRD, MAMMAL,
INVERTEBRATE

ARTEFACT DECORATION, INSTRUMENTATION, STRUCTURE,
COVERING, HAY, FABRIC

PLANT FLOWER, FRUIT, FUNGUS

• PERSON

• FOOD

• ANIMAL

• ARTEFACT

• PLANT

Each of the super classes are divided into intermediate hierarchical level
described in the Table 36. And then the second hierarchical level is fur-
ther divided into 1000 leaf classes.

Table 37 and Table 38 compares the collective classification error rates
in a constant weight based SBR and in a vanilla SBR respectively using
different t-norms with all the taxonomical rules created with 1026 pred-
icates. The naming conventions used for the t-norms are the same as in
CIFAR-10 and CIFAR-100 simulations.

Weak Lukasiewicz, Product t-norms and Half-Weight Combination
setting are compared for different CNN architectures. For the remaining
types of t-norms, comparison studies are given in Table 76 and in Table 77
in Section A.0.4.

128

Table 37: Classification error rate for 1000 classes for different deep ar-
chitectures in a constant weight based SBR using 26 intermediate classes.
CNN, CC-WL, CC-P and CC-HW: convolutional neural network baseline,
collective classification on neural network outputs using Weak Lukasiewicz,
Product and Half-Weight Combination setting.The bold numbers in the ta-
ble refer to the best performing network with three selections of t-norms.

Models CNN CC-WL CC-P CC-HW
Res-50 24.7 24.5 24.6 24.5
Res-101 23.6 23.6 23.6 23.5
Res-152 23.0 22.8 22.9 22.8
PRes-152 22.2 22.0 22.1 22.0
PRes-200 21.9 21.8 21.8 21.8
APN-200 α=300 20.5 20.1 20.2 20.2
APN-200 α=450 20.1 20.0 20.1 19.9

Table 38: Classification error rate for 1000 classes on ImageNet for different
deep architectures in a vanilla SBR using 26 intermediate classes. CNN, CC-
WL, CC-P and CC-HW: convolutional neural network baseline, collective
classification on neural network outputs using Weak Lukasiewicz, Product
and Half-Weight Combination setting. The bold numbers in the table refer
to the best performing network using the best performing t-norm.

Models CNN CC-WL (λkl) CC-P (λkl) CC-HW (λkl)
Res-50 24.7 24.4 24.5 24.4
Res-101 23.6 23.5 23.6 23.5
Res-152 23.0 22.8 22.8 22.7
PRes-152 22.2 22.0 22.1 22.0
PRes-200 21.9 21.7 21.8 21.7
APN-200 α=300 20.5 20.0 20.2 20.1
APN-200 α=450 20.1 19.9 20.0 19.8

With three levels of hierarchical relationship that have been exploited
in this simulation, the collective classification error rate is reduced from
20.1% to 19.9% in Additive Pyramidal Resnets (the deep CNN that gives
the lowest error rate) with constant SBR and from 20.1% to 19.8% in
vanilla SBR using the Half-Weight Combination setting. In Half-Weight
Combination setting, a large set of rules use Weak Lukasiewicz con-
vex fragment and therefore, has optimization advantages and also Half-
Weight Combination setting has the advantage of using low weights
for non convex constraints at the later stage of learning for faster con-

129

Table 39: Comparison of the collective classification error rate for 1000 final
classes of ImageNet using a subset of data and 26 intermediate predicates in
non transductive mode with constant λl values. % Data: percentage of su-
pervisions used during training. CNN, CC-WL, CC-P and CC-HW: convo-
lutional neural network baseline, collective classification on neural network
outputs using Weak Lukasiewicz, Product and Half-Weight Combination
setting. The bold numbers in the table refer to the best performing network
with 50% supervisions using two selections of t-norms.

Models %Data CNN CC-WL CC-P CC-HW

Res-50
10 36.1 35.2 35.3 35.2
20 34.2 33.0 33.1 33.0
50 30.1 28.6 28.9 28.5

Res-101
10 35.1 34.0 33.9 33.9
20 33.7 31.9 31.9 31.9
50 28.5 25.8 25.9 25.8

Res-152
10 34.6 33.1 33.2 33.2
20 32.6 31.2 31.2 31.2
50 26.1 26.0 26.0 25.9

PRes-152
10 33.4 32.1 32.2 32.1
20 31.0 30.1 31.0 30.1
50 26.1 25.0 25.0 24.9

PRes-200
10 33.2 32.8 32.8 31.8
20 30.4 29.3 29.3 29.3
50 25.9 25.1 25.2 25.1

APN-200, α = 300
10 32.9 32.8 32.8 32.7
20 29.6 29.1 29.2 29.1
50 25.8 24.9 24.9 24.9

APN-200, α = 450
10 32.8 31.2 31.2 31.1
20 29.2 28.0 28.0 28.0
50 25.0 24.2 24.2 24.1

vergence. Predicate based regularizers in most CNN architectures help
in improving the collective classification on the test set as they effec-
tively regulate the effect of logical constraints based on the individual
outputs from the CNN. For this hierarchy, ANIMAL, DINOSAUR, PER-
SON, HOTDOG etc. classes have high classification outputs and hence
they use high regularizer values whereas classes like TRUFLE, DALMA-
TIANS, TABBY CATS have low classification probabilities and hence are
regulated with low regularizers chosen through cross validation. There-

130

fore, the benefits of using predicate regularizers in SBR even for large
datasets with numerous output classes is empirically proven through
the simulation.

Since in non transductive learning, all the training patterns are super-
vised during training and because all the patterns are cleanly labeled, the
logical rules are implicitly satisfied and hence the small improvement in
accuracies using logical constraints is only seen when collective classifi-
cation is used during inference. However, when a small subset of labels
are used during learning, leaving the rest of the training patterns as un-
supervised data, the effect of prior knowledge can be demonstrated on a
semi-supervised setting. Table 39 and Table 40 shows the collective clas-
sification error rates when using variable percentage of supervisions in
constant and vanilla SBR respectively.

Figure 24: Four levels of hierarchical relationship exploited in ImageNet
dataset.

Detailed study with all the other t-norms is given in Table 78 and Ta-
ble 79 in Section A.0.4. With only 50% of the supervisions, the collective
classification error reduces by 0.8% whereas using 100% of the supervi-
sions, reduces the error by 0.14%. Also, the difference in error rate be-
tween using 100% supervisions and 50% supervisions is approximately
3.4%. This shows when there are missing labels in a large dataset or
when it is very expensive and tedious to label all the datapoints, exploit-

131

Table 40: Comparison of the collective classification error rate for 1000
final classes using scarce training data and 26 intermediate predicates in
non transductive mode with variable λl values. CNN, CC-WL, CC-P and
CC-HW: convolutional neural network baseline, collective classification on
neural network outputs using Weak Lukasiewicz, Product and Half-Weight
Combination setting. The bold numbers in the table refer to the best per-
forming network with 50% supervisions for different selection of t-norms.

Models %Data CNN CC-WL CC-P CC-HW

Res-50
10 36.1 34.8 34.8 34.7
20 34.2 32.4 32.5 32.4
50 30.1 28.0 28.0 28.0

Res-101
10 35.1 33.4 33.5 33.4
20 33.7 31.2 31.3 31.2
50 28.5 25.3 25.4 25.3

Res-152
10 34.6 32.5 32.6 32.5
20 32.6 30.9 30.9 30.8
50 26.1 25.0 25.0 24.9

PRes-152
10 33.4 32.1 32.2 32.1
20 31.0 31.0 31.0 30.9
50 26.1 24.9 25.0 24.9

PRes-200
10 33.2 32.0 32.0 31.9
20 30.4 29.0 29.0 28.9
50 25.9 24.4 24.5 24.4

APN-200, α = 300
10 32.9 31.8 31.8 31.7
20 29.6 28.4 28.4 28.4
50 25.8 24.2 24.2 24.2

APN-200, α = 450
10 32.8 30.8 30.8 30.8
20 29.2 27.4 27.4 27.4
50 25.0 23.6 23.6 23.5

ing the background information available for the task in hand, logic rules
can be easily formulated and using these rules can help in providing
huge benefits in terms of resources used for labeling. There are several
businesses that can make enormous profits by building deep learning ap-
plications like image recognition or video classification products without
investing countless hours for manual sorting and labeling of data.

132

Experimental Simulation II :

This experimental simulation includes more taxonomical information
than the experimental simulation I, resulting into more predicates and
more rules. With more levels of hierarchy, greater amount of semantic
information is being exploited. It includes 5 super classes, 576 intermedi-
ate classes and 1000 leaf classes. Some of extended hierarchical structures
are given in Figure 24. The two examples below show the four levels of
hierarchical structure exploited in this simulation.

Depending on the hierarchical relationship between the classes, soft-
max activations are used if the classes are mutually exclusive or else
sigmoid activations are used in the classification layers. The different
t-norms, the CNN architectures and the split of training, validation and
test sets remain the same as in experimental simulation I in Section 5.5.3.

Table 41 and Table 42 compares the collective classification error rates
in a constant weight based SBR and in a vanilla SBR respectively using
different t-norms with all the taxonomical rules created with 1581 pred-
icates. With the addition of more rules, the collective classification accu-
racies are improved and also the importance of optimization heuristics is
better observed empirically.

With 4 levels of hierarchy and with about 580 intermediate predicates,
the collective classification error rates are further reduced from the pre-
vious experimental simulation (with 26 intermediate predicates) by 0.4%
in constant SBR and by 0.7% in vanilla SBR. It shows that using more
rules help in increasing the accuracy of classification in the trained mod-
els but further future studies are required to understand which kind of
rules help more and vice versa. And the results of this simulation shows
the path towards future works in this direction.

The Additive Pyramidal Resnets which is the best performing CNN
baseline with 4 levels of hierarchy reduces the error rates from 20.1% to
19.2% with the Half-Weight Combination setting. Comparisons with all
other t-norms are given in Table 80 and Table 81 in Section A.0.4.

When three levels of hierarchy are exploited, the difference of collec-
tive classification error rate between using 50% supervisions and 100%
supervisions is 3.4%, but when four levels of hierarchy are used, this gap
is further reduced to only 2% in constant SBR and 1% in vanilla SBR.
This shows that integration with logic and using of more rules, reduces
the need to provide high number of supervised examples. Datasets like
ImageNet have several levels of taxonomical information, and using this
as background knowledge helps in creating a large knowledge base auto-

133

Table 41: Classification error rate for 1000 classes for different deep architec-
tures in a constant weight based SBR using 581 intermediate classes. CNN
refers to the baseline network, CC-WL, CC-P and CC-HW: collective clas-
sification error rates for Weak Lukasiewicz, Product and Half-Weight Com-
bination setting. The bold number in the table refer to the best performing
network using the best performing t-norm.

Models CNN CC-WL CC-P CC-HW
Res-50 24.7 24.4 24.5 24.4
Res-101 23.6 23.5 23.5 23.5
Res-152 23.0 22.7 22.8 22.6
PRes-152 22.2 21.9 21.8 21.8
PRes-200 21.9 21.5 21.5 21.4
APN-200 α=300 20.5 20.0 20.1 20.0
APN-200 α=450 20.1 19.6 19.8 19.6

matically without much expertise from the WordNet. The results of lim-
ited number of supervisions for a constant SBR is shown in Table 43 for
three different settings of t-norms. For all other t-norms and for vanilla
SBR, the results are detailed in Section A.0.4 in Table 82 and Table 83
respectively.

Experimental Simulation III :

This experimental simulation further adds more predicates exploring all
the nodes and internodes in the WordNet hierarchy. For some of the
categories, there is a maximum of four levels of hierarchy to reach from
the super class to the leaf class as shown in Figure 24, but for some of
the leaf classes, there are a lot of intertwining nodes like: ANIMAL →
REPTILE→ SAURIAN→ LIZARD→ GREEN LIZARD.

In this experimental simulation, all the intermediate classes are used
to gain the full advantage of the taxonomical hierarchy in ImageNet. This
almost triples the number of intermediate predicates than the experimen-
tal simulation II and also expands the knowledge base to a great extent.
This simulation includes 5 super classes, 1600 intermediate classes and
1000 leaf classes. There are multiple classification output layers and de-
pending on the hierarchical relationship between the classes, softmax as
well as sigmoid activation is used in each of these output layers (soft-
max for exclusive classes and sigmoid for interdependent classes). Due
to the space limitations, the diagrammatic representation of all the class

134

Table 42: Classification error rate for 1000 classes on ImageNet for differ-
ent deep architectures in a vanilla SBR (λk

l) using 581 intermediate classes.
CNN: the baseline network, CC-WL, CC-P and CC-HW: collective classifi-
cation error rates for Weak Lukasiewicz, Product and Half-Weight Combi-
nation setting. The bold number in the table refer to the best performing
network using the best performing t-norm.

Models CNN CC-WL (λkl) CC-P (λkl) CC-HW (λkl)
Res-50 24.7 24.2 24.3 24.2
Res-101 23.6 23.3 23.4 23.2
Res-152 23.0 22.2 22.2 22.2
PRes-152 22.2 21.4 21.4 21.3
PRes-200 21.9 21.2 21.3 21.2
APN-200 α=300 20.5 19.7 19.8 19.7
APN-200 α=450 20.1 19.4 19.5 19.2

hierarchy is not provided.
Table 44 and Table 45 compares the collective classification error rates

in Weak-Lukasiewicz, Product t-norms and Half-Weight Combination
setting in a constant weight based SBR and in vanilla SBR respectively
using different t-norms. For the detailed comparison with all other t-
norms, Table 84 and Table 85 are given in Section A.0.4 for constant SBR
and vanilla SBR respectively.

With multiple levels of hierarchy and with about 1600 intermediate
predicates, the collective classification error rates are reduced further by
1.2% in constant SBR and by 2.0% in vanilla SBR. It is also seen that in non
transductive learning, if only 50% of the supervisions in a deep CNN mo-
del is used for a large dataset like ImageNet, in combination with the log-
ical rules, the collective classification accuracy is as high as using 100%
of the supervisions without logic rules in the same model. For example,
the Additive Pyramid Resnet-200 with 1.3 million supervised data exam-
ples but no logic rules, has a classification error rate of 20.1%, whereas
with only half of the supervised examples and using logical constraints,
the error rate obtained through collective classification at the inference
time is 20.9% in constant weight based SBR as shown in Table 46 and it
is 20.7% in vanilla SBR as shown in Table 47. With half of the labeled
data, the performance of the trained network is almost equivalent to the
network trained with millions of examples. This helps in achieving ben-
efits also in terms of computational overheads incurred in training these
huge networks. Therefore, this final experimental simulation not only

135

Table 43: Comparison of the collective classification error rate for 1000 fi-
nal classes using scarce training data with four levels of hierarchical infor-
mation with 581 intermediate predicates in non transductive mode with
constant λl values. CNN: baseline network. CC-WL, CC-P and CC-HW:
collective classification error rates for Weak Lukasiewicz, Product and Half-
Weight Combination setting of t-norms. The bold numbers in the table refer
to the best performing network with 50% supervisions using different se-
lection of t-norms.

Models %Data CNN CC-WL CC-P CC-HW

Res-50
10 36.1 34.9 34.9 34.7
20 34.2 32.4 32.5 32.4
50 30.1 27.6 27.6 27.5

Res-101
10 35.1 33.0 33.0 32.9
20 33.7 31.0 31.0 30.9
50 28.5 24.4 24.5 24.3

Res-152
10 34.6 31.9 32.0 31.9
20 32.6 29.2 29.2 29.2
50 26.1 24.4 24.5 24.3

PRes-152
10 33.4 31.4 31.2 31.1
20 31.0 28.8 29.0 28.9
50 26.1 24.1 24.2 24.1

PRes-200
10 33.2 31.1 31.2 31.1
20 30.4 28.9 28.9 28.8
50 25.9 23.1 23.2 23.1

APN-200, α = 300
10 32.9 30.8 30.8 30.8
20 29.6 27.0 27.0 27.0
50 25.8 23.9 23.9 23.9

APN-200, α = 450
10 32.8 29.7 29.8 29.8
20 29.2 26.0 26.0 26.0
50 25.0 21.8 21.8 21.7

proves SBR as a scalable semi-supervised framework, but also shows the
efficiency of the novel backpropagation schema and optimization strate-
gies succesfully implemented in this research work for a large dataset
and a large knowledge base. The detailed results with different t-norms
settings and scarce supervisions are given in Table 86 in Section A.0.4.

136

Table 44: Classification error rate for 1000 classes for different deep archi-
tectures in a constant weight based SBR using 1605 intermediate classes.
CC-WL, CC-P and CC-HW: collective classification error rates for Weak
Lukasiewicz, Product and Half-Weight Combination setting. The bold num-
ber in the table refer to the best performing network using the best perform-
ing t-norm.

Models CNN CC-WL CC-P CC-HW
Res-50 24.7 24.1 24.2 24.1
Res-101 23.6 23.1 23.1 23.1
Res-152 23.0 21.2 22.1 21.2
PRes-152 22.2 21.0 20.9 20.9
PRes-200 21.9 20.9 20.9 20.8
APN-200 α=300 20.5 19.2 19.3 19.2
APN-200 α=450 20.1 18.9 19.0 18.9

Table 45: Classification error rate for 1000 classes for different deep archi-
tectures in a vanilla SBR (λk

l) using 1605 intermediate classes. CNN: the
base line network, CC-WL, CC-P and CC-HW: collective classification error
rates for Weak Lukasiewicz, Product and Half-Weight Combination. The
bold number in the refer to the best performing network with half weight
combination setting.

Models CNN CC-WL (λkl) CC-P (λkl) CC-HW (λkl)
Res-50 24.7 23.8 23.9 23.8
Res-101 23.6 22.9 23.0 22.9
Res-152 23.0 21.3 21.3 21.3
PRes-152 22.2 20.9 20.9 20.9
PRes-200 21.9 20.3 20.4 20.3
APN-200 α=300 20.5 18.9 19.0 18.9
APN-200 α=450 20.1 18.1 18.2 18.1

5.5.4 Discussion

To summarize, CNN models like Resnets, Pre-activated Resnets and Ad-
ditive Pyramidal Resnets integrated with prior knowledge in the SBR
framework when trained with limited number of supervised examples
in non transductive mode, is seen to perform significantly better than the
individual baseline CNNs. It is also seen that collective classification dur-
ing inference helps to further improve the classification outputs of sev-
eral classes of the ImageNet dataset. The best performing network is the

137

Table 46: Comparison of the collective classification error rate for 1000 final
classes using scarce training data with 1605 intermediate predicates in non
transductive mode with constant λl values. % Data: percentage of supervi-
sion used in each case. CNN: baseline network, CC-WL, CC-P and CC-HW:
collective classification error rates for Weak Lukasiewicz, Product and Half-
Weight Combination setting. The bold numbers in the Table refer to the
best performing network with 50% supervisions for different selection of
t-norms.

Models %Data CNN CC-WL CC-P CC-HW

Res-50
10 36.1 33.9 34.0 33.7
20 34.2 31.2 31.2 31.1
50 30.1 26.5 26.8 26.4

Res-101
10 35.1 32.0 32.1 32.0
20 33.7 30.1 30.1 30.0
50 28.5 24.1 24.1 24.0

Res-152
10 34.6 31.0 31.0 31.0
20 32.6 28.9 28.9 28.8
50 26.1 24.0 24.0 24.0

PRes-152
10 33.4 30.9 30.9 30.9
20 31.0 28.1 28.1 28.0
50 26.1 24.0 24.0 23.9

PRes-200
10 33.2 30.9 31.0 30.9
20 30.4 27.9 27.9 27.9
50 25.9 22.2 22.3 22.2

APN-200, α = 300
10 32.8 29.8 29.9 29.8
20 29.6 26.8 26.8 26.8
50 25.8 23.1 23.2 23.2

APN-200, α = 450
10 32.8 28.2 28.2 28.1
20 29.2 25.5 25.5 25.5
50 25.0 20.9 21.0 20.9

Additive Pyramid Residual network with 200 layers that has a collective
classification error rate of 18.1% which is 2% lower than the baseline. Al-
though, this is not the present state-of-the-art, but the simulation results
prove that any network used with SBR can achieve a lower error rate
with the help of logical constraints and collective classification. Efficient
Net (TL19) is the present state-of-the-art deep CNN, results published in
the proceedings of ICML,2019, which has an error rate of 15.6% that is al-
most 2.5% lower than what is achieved in this research work. As a part of

138

Table 47: Comparison of the collective classification error rate for 1000 final
classes of ImageNet using scarce training data and with 1605 intermedi-
ate predicates in non transductive mode with variable λk

l values. %Data
refers to the percentage of supervision used in each case. CNN refers to the
baseline network, CC-WL, CC-P and CC-HW refers to the collective classi-
fication error rates for Weak Lukasiewicz, Product and Half-Weight Combi-
nation setting. The bold numbers in the Table refer to the best performing
network with 50% supervisions for different selection of t-norms.

Models %Data CNN CC-WL CC-P CC-HW

Res-50
10 36.1 33.7 33.8 33.7
20 34.2 31.8 31.9 31.8
50 30.1 26.9 27.0 26.9

Res-101
10 35.1 32.8 32.9 32.8
20 33.7 30.9 31.0 30.9
50 28.5 23.9 24.0 23.9

Res-152
10 34.6 30.5 30.6 30.5
20 32.6 28.2 28.3 28.2
50 26.1 23.7 23.7 23.7

PRes-152
10 33.4 31.1 31.1 31.1
20 31.0 28.0 28.0 27.9
50 26.1 23.9 24.0 23.9

PRes-200
10 33.2 31.0 31.0 31.0
20 30.4 28.1 28.1 28.0
50 25.9 22.4 22.5 22.4

APN-200, α = 300
10 32.9 30.0 30.1 30.0
20 29.6 26.8 26.84 26.8
50 25.8 23.2 23.2 23.2

APN-200, α = 450
10 32.8 29.0 29.0 29.0
20 29.2 25.9 25.9 25.9
50 25.0 20.7 20.7 20.7

the future work, it can be easily shown that using the same set of exper-
imental conditions as used in this work, a higher classification accuracy
can be obtained also with Efficient Net with ease. The other architectures
that have better classification results on ImageNet than Additive Pyra-
mid Nets like NasNet (ZVSL17), Dual Path Networks (DPN) (CLX+17),
AmoebaNet (RAHL18) etc. can be easily plugged as the learning ma-
chinery in SBR and the baseline results can be further boosted through
logical rules and collective classification exploiting the class hierarchy

139

information.
Significant accuracy gains are observed with Weak Lukasiewicz t-

norms and Half-Weight Combination setting, even when a very small
knowledge base is used, as they have optimization advantages over
other t-norms. As the knowledge base is expanded gradually, exploiting
more sysnet information with more intertwined classes and increasing
the number of logical rules, it not only improves the collective classifica-
tion performance, but also reduces the need of labeled examples. How-
ever, with the increase of the number of non-convex constraints in the
knowledge base, the need of carefully inducing the optimization strate-
gies becomes greater, and if this is not done, it negatively effects the
performance of the models. Labeling of huge datasets is not only an
expensive task but often the data is poorly labeled and using this data
for training makes the training input very noisy. Therefore, using prior
knowledge helps in designing better learning systems. Scaling several
logic integrated deep learners in the SBR framework for a large dataset
like ImageNet justifies SBR as a powerful tool for real world classifica-
tion applications in any field having a scarcity of labeled data and a huge
database of unlabeled data. This study also shows the benefits of pred-
icate based regularizers on the classification performance and makes a
detailed comparison of constant regularizers and variable regularizers
for each of the experimental simulations.

Similar, to the CIFAR-10 and CIFAR-100 experiments, the time over-
head for performing collective classification is only a small fraction (ap-
proximately 1

8 −
1
10) for each of these deep CNN networks compared to

their training time when trained from scratch.

5.6 Summary

To conclude, this chapter demonstrates the capabilities of SBR when in-
tegrated with deep learners on small and large scale image classifica-
tion problems. It empirically shows the advantage of each of the novel
techniques described in Chapter 3. The chapter starts with justifying the
benefits of replacing shallow networks like kernel machines with deep
neural networks in SBR through experimental simulations. It then con-
tinues to further reconfirm the hypothesis that SBR is designed to work
with scarce data examples and is able to reduce the dependency of deep
networks on labeled data. The variety and richness of the CNN net-
works tested in this chapter also proves the learner agnostic nature of

140

SBR. Then finally the chapter adds on to explain the practical benefits
of the optimization plans, the ability to add non convex constraints out-
lined in Section 3.4.2 through the detailed experimental analysis on dif-
ferent sized image datasets. These dimensions and capabilities of SBR
have never been explored before in the literature. Therefore, presence of
different features like using any type of learner effortlessly, training very
deep networks with logical rules using efficient backpropagation, using
variable regularizers, using constraints obtained through different fuzzy
logics, reducing the need of large amount of supervisions and the abil-
ity to integrate concave constraints makes SBR an unified framework for
any kind of image classification tasks.

141

Chapter 6

Video Classification

This chapter demonstrates a video classification and automatic tool an-
notation process for cataracts surgery (on publicly released CATARACTS
dataset) using prior information in a probabilistic framework with deep
learners (Convolutional Neural Networks and Markov Random Fields).
Here, an ensemble of Convolutional Neural Networks is integrated with
a Markov Random Field (CNN-MRF) (HLC+19). This framework is also
compared with the Semantic Based Regularization framework described
in Chapter 3 and Chapter 5 using the same ensemble of CNN networks as
DResSys as the underlying learners. Therefore, this chapter also empha-
sizes the power of SBR in solving multi-label video classification problem
by using prior knowledge in the form of constraints during test time. It
provides empirical evidence for the flexibility of SBR to be applied in
other domains like video classification or video sequencing. The general
domain knowledge about the cataracts surgery is exploited along with
the temporal coherence among consecutive video frames to design the
knowledge base (KB) in SBR. Extending deep learning techniques inde-
pendently to each video frame often leads to temporal inconsistencies
in the predictions. For example: a tool appearing in one video frame is
likely to be present in its prior and posterior video frame as well, if this
doesnot happen, it is most probably inconsistent. This phenomenon is
known as temporal coherence or temporal consistency. This property of
videos is exploited through rules in SBR and these rules aim to improve
the CNN ensemble predictions through collective classification during
inference. With the help of collective classification, SBR aims to com-
pete with well established traditional temporal smoothing techniques

143

like median filtering and random field optimizations. Application of
SBR on video classification problem is explored for the first time in this
research work.

6.1 Dataset and Problem Description

The CATARACTS dataset was released as a part of the CATARACTS
GRAND CHALLENGE 1 (The Challenge on Automatic Tool Annotation
for CATARACT Surgery), organized in 2017 for designing efficient so-
lutions for surgical workflow analysis, with potential applications in
report generation, surgical training and even real-time decision sup-
port. 14 teams participating in the challenge, submitted different deep
learning based approaches but DResSys, was the winning entry in the
CATARACTS challenge, designed as a part of this research work in col-
laboration with D-Wave Systems (HLC+19). The framework is able
to precisely locate surgical tools in the video frames, and also indicate
which tools are being used by the surgeon at each instant of the surgery.
The tool annotation performed using DResSys in some cases are better
than human interpretations or atleast comparable to the human annota-
tions. The motivation of this challenge from the perspective of the ben-
efits provided to the medical community as well as the previous works
related to this field are discussed in more details in the works of Hajj
et al. (HLC+19). In this research work, the design and the motivation
of DResSys is outlined and it is also shown that when the CNNs of the
DResSys are integrated in the SBR framework and prior knowledge is
exploited, the final classification results are comparable to the perfor-
mance of DResSys. This is a real world application of SBR and it lays the
stones of new research that can be conducted on different problems of
video classification like logo recognition in videos, activity recognition
in sports videos etc.

6.2 Experimental Analysis

The dataset for this challenge consists of 50 videos of phaco-emulsification
cataract surgeries performed in Brest University Hospital between Jan-
uary 22, 2015 and September 10, 2015. The surgeries had to be con-
ducted because of several reasons which included age related cataracts,

1https://cataracts.grand-challenge.org/

144

traumatic cataracts and refractive errors. The patients involved in the
surgery were aged 61 years on an average (minimum: 23, maximum: 83,
standard deviation: 10) including 38 females and 12 males. Consent was
obtained from all the patients before using their data for this challenge.
Surgeries had been performed by three surgeons: A renowned expert
who had an experience of 48 surgeries, an one-year experienced surgeon
with only 1 surgery experience and an intern also with 1 surgery experi-
ence. Surgeries were performed under an OPMI Lumera T-microscope.
Videos were recorded with a 180I camera (Toshiba, Tokyo, Japan) and a
MediCap USB200 recorder.

Each recorded video frame is 1920 × 1080 pixels and the frame rate
of recording is approximately 30 frames per second (fps). Each video
has been recorded for a duration of approximately 10 minutes and 56
seconds on average and in total, more than 9 hours of surgery videos are
present. For the purpose of the challenge, the dataset is evenly divided
into a training set and a test set of 25 videos each. There is a total of
21 surgical and non-surgical tools as shown in Figure 25 that have been
used during these surgeries. They are listed in Tool column of Table 48.
These 50 videos are divided into training and test sets in such a way that
each tool appears in the same number of videos for both the sets. No
exclusive validation set is provided, during the challenge.

To annotate the ground truth for the training and test sets, an elab-
orative procedure has been followed. All surgical tools in the videos
were first enumerated and labeled by the surgeons to specify the name
of each tool. Then, the usage of each tool in the videos was annotated
independently by two non-clinical experts. A tool was considered to
be in use whenever it was in contact with the eyeball and a timestamp
was recorded by both the experts at that very instant, and also when it
stopped touching the eyeball. Up to three tools could be used simulta-
neously: two by the surgeon performing the surgery and sometimes one
by an assistant. Annotations were performed at the level of the video
frames, using a web interface connected to a SQL database. Finally, an-
notations from both the non-clinical experts were adjudicated. Adjudica-
tion was a process undertaken when the two experts didn’t agree on the
name of the tool. During such times, the two experts watched the video
together and jointly determined the actual tool usage and from this a
probabilistic reference standard was obtained:

• 0 is the value of assigned when both experts agree that the tool is
not being used.

145

Figure 25: Tools used in the cataracts surgery (HLC+19).

146

Table 48: Statistics about tool usage annotation in the CATARACTS dataset.
The first two columns indicate inter-rate agreement (Cohens kappa), before
and after adjudication (Adj. is the abbreviation for adjudication); the largest
changes are in bold. The last column indicates the prevalence of each tool
in the training subset (percentage of training frames), ignoring the frames
where the experts disagree about the usage of that tool, even after adjudica-
tion.

Tool Before Adj. After Adj. % of frames
Biomarker 0.835 0.835 0.02
Charleux cannula 0.949 0.963 1.79
Hydrodissection cannula 0.868 0.982 2.43
Rycroft cannula 0.882 0.919 3.18
Viscoelastic cannula 0.860 0.975 2.54
Cotton 0.947 0.947 0.75
Capsulorhexis cystotome 0.994 0.995 4.42
Bonn forceps 0.793 0.798 1.10
Capsulorhexis forceps 0.836 0.849 1.62
Troutman forceps 0.764 0.764 0.26
Needle holder 0.630 0.630 0.08
Aspiration handpiece 0.995 0.995 14.20
Phacoemulsifier handpiece 0.996 0.997 15.30
Vitrectomy handpiece 0.998 0.998 2.76
Implant injector 0.980 0.980 1.41
Primary incision knife 0.959 0.961 0.70
Secondary incision knife 0.846 0.852 0.52
Micromanipulator 0.990 0.995 17.60
Suture needle 0.893 0.893 0.22
Mendez ring 0.941 0.953 0.10
Vannas scissors 0.823 0.823 0.04

• 1 is assigned when both experts agree that the tool is being used.

• 0.5 is assigned when the experts disagree among each other.

Inter-rate agreement, before and after adjudication, has been mea-
sured using Cohen’s Kappa (as described in Section A.0.5) for each tool
across all the video frames and have been reported in Table 48. A chord
diagram illustrating the co-occurrence of tools in training video frames
is reported in Figure 26. Tool usage predictions on the test videos are
evaluated against the annotation of the ground truth using the following

147

procedure : For each tool label T , the annotation performance for tool T
is defined as the area Az(T) under the receiver-operating characteristic
(AUC-ROC) curve. Frames associated with a disagreement between ex-
perts are ignored when computing the ROC curve. Then, a mean Az(T)
value over all tool labels T is defined.

Figure 26: Chord diagram illustrating tool co-occurrence in training video
frames (HLC+19).

148

6.2.1 Overview

DResSys uses an ensemble of different deep CNN architectures (Resnet-
50 (HZRS15a), Inception-v4 (SVI+16) and two NASNET-A (ZVSL17) net-
works with different input sizes) to make predictions on individual video
frames. Since there is always a temporal connectivity or correlation
among the adjacent frames, the predictions of CNN ensemble are fur-
ther smoothed with different procedures described below to get the final
predictions:

• Using a simple median filtering technique.

• Using markov random fields.

• Using logical rules and collective classification in the SBR frame-
work.

6.2.2 Data Pre-processing

Distributions of the labels in each of the 25 videos of the training set is
plotted (similar to Figure 26), that reflects the frequency of each anno-
tated tool in each video. Based on this result, the training data is divided
into two subsets: the training set and the validation set approximately
in the ratio of 5:1. It is necessary to have all the tools in the training set
to get the trained model that can be used for prediction, the division is
made in the best possible way so that most of the tools have the same dis-
tribution in the training and the validation set but if a tool is present in
only one of the videos, that video is placed in the training set. Validation
set therefore, consists of the videos numbered train04, train12 and train21
while the remaining videos are placed in the training set. Images are ex-
tracted from these videos using ffmpeg. The training videos are extracted
following two different procedures:

• 6 frames per second are extracted at an uniform rate from the train-
ing set. This generates a total of approximately 70K training im-
ages.

• The tool co-occurrence as highlighted in Figure 26, the class imbal-
ance problem exists amongst the tools, therefore, a selective mea-
sure of frame extraction is followed. All the frames within videos
containing the rare tools (for example, Biomarker, Vannas scissors)

149

are selected, but in parts of the videos with common tools, the sam-
ple rate is maintained at 6 frames/sec. Further, 40K frames at uni-
form rate are selected from amongst training frames that have no
tools. This selective frame sampling method provides a total of ap-
proximately 100K training images.

In both of the above scenarios, the validation set is constructed by ex-
tracting 6 frames per second uniformly from the validation videos. How-
ever for the test set, again two procedures are followed:

• 3 frames are extracted per second from the test videos. The trained
model performs the predictions on these frames and for the remain-
ing frames, the predictions are obtained through a simple interpo-
lation technique.

• The trained model performs predictions on all the frames of the test
videos. But this is computationally heavier and more time consum-
ing.

6.2.3 CNN Models

DResSys is a Tensorflow and Python based framework. The network ar-
chitecture used for training is a CNN ensemble of a 50-layer Residual
Network, Inception-v4 and two NASNet-A networks. Each of these net-
works are trained individually and then the ensemble is built by taking
a weighted geometric mean. The Resnet and the Inception-v4 architec-
tures, pretrained on ImageNet models are trained on Cataracts images
of 540× 960 pixels. NASNet-A is a much larger network requiring more
GPU memory, so two NASNet-A networks are trained with smaller im-
age inputs of 270 × 480 pixels and 337 × 600 pixels. The training data is
augmented by random horizontal flipping and cropping of images. Each
of the networks are trained on a GTX 1080Ti GPU.

Residual nets, Inception nets and NasNet-A nets are trained with the
Adam optimizer (KB14) using a weighted sigmoid cross entropy loss on
the tool labels to further help with the class imbalances. The weights
assigned to the different tool labels is chosen through cross validation.
Some of the rarest tools are not present in the videos of the validation
set, therefore for these tools, the weight is taken as 1, the highest possible
weight from the range of [0, 1]. Training ran for at most 13 epochs with
a batch size of 4 and a validation batch size of 7. The initial learning

150

rate for each network is 0.003 and it is decayed after every 6 epochs by a
weight decay of 0.1.

6.2.4 Post Processing - Temporal smoothing

Several smoothing approaches are explored to capture the dependence
of tool labels across consecutive frames in the videos. The goal of the
post processing step is to improve the classification output of the deep
CNN ensemble network by exploiting the temporal relationship that ex-
ists between video frames.

Median Filtering :

The first three experimental simulations as described in the next Sec-
tion 6.2.5 are based on a simple median filtering method with a kernel
size of 61. This technique tries to establish a temporal correlation by run-
ning a median filter through each video frame and replacing each frame
with the median of labels of its neighboring video frames during infer-
ence.

Markov Random Field Based Smoothing Model :

The fourth experimental simulation, designs the DResSys that includes
a Markov Random Field (MRF) based temporal smoothing model. The
MRF model provides a probability distribution across the time depen-
dent label space. Assume that y = y1, y2, . . . , yT represents the binary
label vector for a given tool in the output predictions where yt = 1/0
which indicates the presence/absence of the tool in a particular video
frame. The proposed MRF model has a chain-like structure and defines
a conditional probability distribution p(y|x) ∼ exp(E(y; x)) for the label
vector y given the video x using an energy function E(y; x)

E(y; x) =

T∑
t=1

a(st)yt +
w

2

T∑
t=1

∑
n∈N(t)

ytyn (6.1)

where N(t) = {t− 19, t− 17, . . . , t− 1, t+ 1, . . . , t+ 17, t+ 19} represents
the set of neighboring frames for the tth video frame, and therefore, pro-
vides a long-range temporal connectivity. The total variation is a lag of
38 frames that corresponds to approximately 1 second of recorded video.

151

In Equation 6.1, a(st) is the bias for the tth frame’s label which is com-
puted by shifting and scaling the output of the CNN ensemble frame-
level prediction score st of frame t. The scalar coupling parameter w
in Equation 6.1 enforces the label agreement between the neighboring
frames when w > 0.

The w parameter, the shift and scale parameters of the linear map
a(st) are all set by a grid search over the validation set that maximizes
the AUC-ROC average score for all the 21 tools. The shift, scaling and w
parameters are shared across all tools. Nevertheless, due to the shifting
and scaling of the ensemble neural network output (which does differ
across categories) a tool-specific MRF model is formed which is robust
against overfitting. The MRF model, p(y|x), represents the joint probabil-
ity distribution for all the labels in the temporal domain of a tool. Lastly,
in order to process the videos efficiently the MRF model is formed in
smaller segments of length ∼20,000 frames instead of the full length of
the video.

Collective Classification using Logical Rules in SBR :

The MRF based temporal smoothing of DResSys is compared with the
smoothing performed using the collective classification module of the
SBR framework. Temporal correlations among the video frames are es-
tablished through the logical rules. Some other specific prior knowledge
obtained from the problem domain at hand is also expressed in the form
of rules (For example: If a Surture needle is present, a Needle holder is also
present in that particular video frame and vice versa). The list of logi-
cal rules used for this simulation is tabulated in Table 49. The temporal
correlations are expressed using a new given predicate called as Succ (ab-
breviation of succession) that indicates the next frame. The grounding for
this predicate is built offline and is given as input to the SBR. This pred-
icate is associated with each of the 21 tool labels to indicate whether the
given tool is present or absent in the next frame i.e the tool label in the
next frame is 0 or 1 depending on the tool label of the current frame.
Therefore, this predicate when grounded with any tool label predicate
it helps to establish a consistency or a manifold. The tool labels in the
preceding or the succeeding frames in the temporal domain should be
related and maintain a regularized manifold. Therefore, these tempo-
ral rules along with the problem domain rules are collectively used for
collective classification in SBR on the test set predictions obtained as the
output of the CNN ensemble. This help to smooth the predictions of the

152

Table 49: Prior knowledge for CATARACTS dataset.

∀x Biomarker(x)∨ Charleux cannula(x)∨ Hydrodissection cannula(x)
∨ Rycroft cannula(x)∨ Viscoelastic cannula(x)∨ Cotton(x)∨
Capsulorhexis cystotome(x) ∨ Bonn Forceps(x)∨ Capsulorhexis forceps(x)
∨ Troutman forceps(x)∨ Needle holder(x)∨ Aspiration handpiece(x)
∨ Phacoemulsifier handpiece(x)∨ Vitrectomy handpiece(x)∨ Implant injector(x)
∨ Primary incision knife(x)∨ Secondary incision knife(x)∨Mendez ring(x)
∨Micromanipulator(x) ∨ Suture needle(x)∨ Vannas scissors(x)

∀x Biomarker(x)⇒ ¬ Charleux cannula(x) ∧ ¬ Hydrodissection cannula(x)∧
¬ Rycroft cannula(x)∧ ¬ Needle holder(x) ∧ ¬ Cotton(x) ∧ ¬ Bonn Forceps(x)
¬ Capsulorhexis cystotome(x) ∧ ¬ Capsulorhexis forceps(x) ∧
¬ Troutman forceps(x) ∧¬Mendez ring(x) Aspiration handpiece(x)∧
¬ Phacoemulsifier handpiece(x)∧ ¬ Primary incision knife(x)∧
¬ Implant injector(x) ∧ ¬ Vitrectomy handpiece(x) ∧¬Micromanipulator(x)
∧¬ Viscoelastic cannula(x) Secondary incision knife(x)∧¬ Suture needle(x)
∧¬ Vannas scissors(x)

∀x Needle holder(x)⇒ Suture needle(x)
∀x Suture needle(x)⇒ Needle holder(x)

∀x∀y Succ(x, y)∧ Biomarker(x)⇒Biomarker(y)
∀x∀y Succ(x, y)∧ Charleux cannula(x)⇒ Charleux cannula(y)
∀x∀y Succ(x, y)∧ Hydrodissection cannula(x)⇒ Hydrodissection cannula(y)
∀x∀y Succ(x, y)∧ Rycroft cannula(x)⇒ Rycroft cannula(y)
∀x∀y Succ(x, y)∧ Viscoelastic cannula(x)⇒ Viscoelastic cannula(y)
∀x∀y Succ(x, y)∧ Cotton(x)⇒ Cotton(y)
∀x∀y Succ(x, y)∧ Capsulorhexis cystotome(x)⇒ Capsulorhexis cystotome(y)
∀x∀y Succ(x, y)∧ Bonn Forceps(x)⇒ Bonn Forceps(y)
∀x∀y Succ(x, y)∧ Capsulorhexis forceps(x)⇒ Capsulorhexis forceps(y)
∀x∀y Succ(x, y)∧ Troutman forceps(x)⇒Troutman forceps(y)
∀x∀y Succ(x, y)∧ Needle holder(x)⇒ Needle holder(y)
∀x∀y Succ(x, y)∧ Aspiration handpiece(x)⇒ Aspiration handpiece(y)
∀x∀y Succ(x, y)∧ Phacoemulsifier handpiece(x)⇒ Phacoemulsifier handpiece(y)
∀x∀y Succ(x, y)∧ Vitrectomy handpiece(x)⇒ Vitrectomy handpiece(y)
∀x∀y Succ(x, y)∧Implant injector(x)⇒ Implant injector(y)
∀x∀y Succ(x, y)∧ Primary incision knife(x)⇒ Primary incision knife(y)
∀x∀y Succ(x, y)∧ Secondary incision knife(x)⇒ Secondary incision knife(y)
∀x∀y Succ(x, y)∧Micromanipulator(x)⇒Micromanipulator(y)
∀x∀y Succ(x, y)∧ Suture needle(x)⇒ Suture needle(y)
∀x∀y Succ(x, y)∧Mendez ring(x)⇒Mendez ring(y)
∀x∀y Succ(x, y)∧ Vannas scissors(x)⇒ Vannas scissors(y)

153

ensemble deep neural network and obtain a more generalizable model.

6.2.5 Results

The prediction probability of each of the trained CNN is obtained on the
validation set. Since 6 frames per second are sampled from each of the
validation video, the prediction probability of the missing frames are in-
terpolated using a 1D linear interpolation on the sampled frames. This
interpolation technique is chosen because the consecutive frames in the
videos always maintain the property of temporal similarity. The ROC
score for each trained frame-level CNN model is then calculated. For the
CNN ensemble, the ROC scores are aggregated using a weighted geo-
metric mean. The hyperparameters of each individual CNN, the weights
assigned to the aggregated CNN ensemble, the parameters of median fil-
tering and the parameters of the MRF model are all set by performing a
grid search over the validation set.

Although, two tools namely Viterectomy handpiece and Vannas scissors
are not present in the validation set, therefore, there is a small risk in
using these tuned hyper parameters on validation set during inference,
but it is assumed that if the hyper-parameters work well for 19 tools, it
should not fail in predicting the remaining two rare tools that are absent
from the validation set. It is later seen that this assumption works well
for the test set.

As already explained in the earlier sections, the main goal of this re-
search work is to accurately annotate the tools in the video frames of the
test set, however this raises several challenges that needs to be addressed
during these experimental analysis. The best possible framework design
needs to be determined that can be used for solving this video classifica-
tion problem. Some of the important challenges faced are:

• Determining the correct sampling technique of the training frames
to get the best trained CNN model.

• To effectively deal with the class imbalance problem of the tools in
the training videos.

• Choosing the CNN model to be trained and to find the suitable
technique of combining different CNN models if an ensemble is to
be build.

154

• To determine the optimal input size of the images that helps the
deep CNN networks to learn rich feature representations without
making the training time overhead abnormally high.

• To determine an optimal post processing technique to preserve the
temporal dependence among the consecutive video frames.

There are five different simulations performed under different condi-
tions with different CNN networks, training parameters, post processing
techniques etc. each aimed at meeting one or more or all of the above
mentioned challenges.

Experimental Simulation I :

In the first experimental simulation, the training is performed on uni-
form sampled frames at 6 fps for each of the training videos. Three dif-
ferent deep CNN architectures are trained on them: a 50 layered Resnet,
an Inception-v4 net with input images of size 540 × 960 pixels and one
NasNet-A architecture with an input image size of 270 × 480 pixels. A
CNN ensemble is constructed taking a weighted geometric mean of the
predictions of the individual CNNs which is then smoothed using me-
dian filtering with a kernel size of 61. The average prediction of all the
tools using each of the experimental simulations are aggregated and re-
ported in Table 50. However, per tool predictions for this simulation is
reported in Table 87 which shows the area under the AUC-ROC curve for
each tool on the test set. It shows that some of the common tools like Pha-
coemulsifier handpiece and Micromanipulator have a very high AUC-ROC
score of approximately 0.999 whereas for the tools that are very rare like
Biomarker and Mendez ring have low AUC-ROC score approximately be-
tween 0.72 to 0.78. This actually motivated the usage of selective sam-
pling of the training frames based on the presence of the tools in each
of the videos. Median filtering seems to perform well in establishing the
temporal coherence between the consecutive video frames. The average
prediction of all the tools after application of median filtering is seen to
increase by 1.5%. During inference, obtaining predictions on the sub-
sampled frames at a rate of 3 fps and using linear interpolation on the
remaining frames is not markedly different from obtaining predictions
on all the test frames, therefore, the results are not reported separately.

155

Experimental Simulation II :

In this experimental simulation the training is performed on selective
sampled frames based on the co-occurrence of tools as shown in Fig-
ure 26 but the trained CNN networks are identical to the experimental
simulation I. This simulation also relied on median filtering to establish
temporal correlation among the video frames. Table 88 reports the area
under the ROC curve for each tool on the test set using this experimen-
tal setup. However, the average of all the tools and a comparison with
other simulations is reported in Table 50. In this simulation, with selec-
tive sampling of the rare tools like Biomarker, the AUC-ROC score of the
tool improves to 0.9 from 0.72 and hence the overall average also rises
by 1.67% from the previous experimental simulation and by 3.2% from
the baseline CNN ensemble without temporal smoothing. The average
AUC-ROC score now becomes 0.970 from 0.954 in the experimental sim-
ulation I. Some of the tools however, has a AUC-ROC score slightly lower
than the previous simulation but this is because with the new set of train-
ing frames, the deep CNN models are trained having different weights
that leads to different predictions, but the increase/decrease in the AUC-
ROC score of the common tools are in a tolerance of 0.2 − 0.8%. In this
simulation, predictions are obtained on all the frames. Selective sam-
pling actually helps to deal with the class imbalance problem very effec-
tively and opens new doors to the real time usage of such a framework
for inter-operative decision support during cataract surgeries.

Experimental Simulation III :

Since the experimental simulation II suggests an improvement on the
overall performance of the AUC-ROC scores using selective sampling
of the training frames, this experimental simulation also uses selective
sampled frames. When the individual CNN architectures are evaluated
on the validation set, it is seen that NasNet-A is the highest perform-
ing deep CNN network. Another NasNet-A model is therefore added
to the CNN ensemble to further boost up the ROC scores of the indi-
vidual tools. Thus this experimental simulation meets the first 3 chal-
lenges mentioned above. It makes a wise sampling of the video frames,
tries to alleviate the class imbalance problem and also choose top per-
forming CNN networks for building the CNN ensemble. The temporal
smoothing is still performed using median filtering. Table 89 reports the
area under the ROC curve for each tool on the test set using this simu-

156

Table 50: Area under ROC curve for an average of 21 tools in the four differ-
ent experimental simulations. The column Ensemble refers to the CNN net-
works used, Sample refers to the sampling techniques of the video frames
during training and Smooth refers to the temporal smoothing technique
used. Exp # refers to the experimental simulation number. CC refers to
collective classification in SBR with the rules given in Table 49.

Exp# Ensemble Sample Smooth ROC-AUC
DResSys

Res-50, Incep-v4, Random No 0.940NasA-small Smoothing

I Res-50, Incep-v4, Random Median 0.954NasA-small Filtering

II Res-50, Incep-v4, Weight Median 0.970NasA-small Based Filtering
Res-50, Incep-v4, Weight No 0.972NasA-small, Based SmoothingNasA-large

III
Res-50, Incep-v4, Weight Median 0.980NasA-small, Based FilteringNasA-large

IV
Res-50, Incep-v4, Weight MRF 0.997NasA-small, Based FilteringNasA-large

V
Res-50, Incep-v4, Weight SBR 0.995NasA-small, Based (CC)NasA-large

lation. It shows that addition of another NasNet-A architecture with a
larger input size of 337 × 600 pixels to the CNN ensemble improves the
AUC-ROC of most of the tools by 0.04% to 0.08% and the overall average
AUC-ROC of all the tools is reported in Table 50. During inference in this
simulation, predictions are obtained on all the frames and this builds a
more accurate annotation model. The AUC-ROC score of this ensemble
of CNNs without median filtering is 0.972 which is already higher than
the previous experimental simulation and therefore, the contribution of
the additional NasNet-A architecture added to this ensemble can easily
be understood. However, using of median filtering further boosts the
AUC-ROC score to 0.980 with the same CNN ensemble.

157

Experimental Simulation IV :

This experimental simulation uses the CNN ensemble from the previous
simulation. However in this analysis, the predictions on the test set are
smoothed with a different temporal smoothing technique called as the
MRF smoothing as defined earlier in this chapter. Using a MRF model,
the average AUC-ROC scores of the tools have been boosted to a signifi-
cant extent of 1.73% from the median filtered smoothed model. It is seen
that almost all the tools have a score very close to 1. The detailed re-
sults on the test set is reported in Table 90 and the average is reported in
Table 50. This system with four different CNN networks forming an en-
semble with a combination of a MRF based smoothing model is called as
DResSys. DResSys was built as the part of the CATARACTS challenge.
The results of all other competing solutions for the CATRACTS challenge
and the detailed comparison among them are given in the works of Haji
et al. (HLC+19). Although, it might seem that these solutions differ by a
very thin margin, but during a surgical procedure, a small precision mat-
ters a lot. It has also been mentioned that the solutions were compared
to the human level performance and DResSys was found to be very close
to human grader results (the AUC-ROC average of the human grader is
0.998). Although it is not better than a human annotator in any of the
tools except for Cotton where DResSys even beats a human expert in an-
notating it across the video frames in the test set. Thus DResSys proves
to be an effective way of automating the tool annotations which not only
saves a lot of time but also brings sensitivity almost equal to that of a
professional human interpreter.

Experimental Simulation V :

This experimental simulation performs collective classification with the
rules described in Table 49 in the SBR framework. Collective classifica-
tion exploits the temporal correlations among the video frames to estab-
lish a regularized manifold between the preceding and the succeeding
frames. The predictions of the CNN ensemble obtained on the test set
in the experimental simulations III and IV are given as inputs during
collective classification in SBR. Some of the logical rules used establish
relationships among the 21 output tool categories whereas the others are
used to express the temporal relationships using the Succ predicate. Us-
ing collective classification on the test set in SBR, the overall AUC-ROC
scores of the tools have been boosted to a significant extent of 2.37% from

158

the corresponding baseline output of the CNN ensemble and by approx-
imately 4.3% from the experimental simulation I. Like the MRF based
smoothing model, SBR also brings the ROC scores of several tools very
close to 1. The detailed results of the individual tools is reported in Ta-
ble 91 and the average is reported in the bottom row of the Table 50.
These results are slightly lower than the previous simulation, the win-
ning entry of the CATARACTS challenge (DResSys). It varies by a very
small margin of 0.002 in the AUC-ROC score value which probably is
not very significant and also it is very close to human level performance.
Hence it demonstrates the power of SBR in establishing temporal coher-
ence or a regularized manifold in video classification problems.

The experimental simulation IV and V also addresses all the chal-
lenges that are mentioned in the beginning of Section 6.2.5. This research
work compares the SBR framework with the winning entry DResSys (the
state-of-the-art results in this problem) and achieves satisfying perfor-
mance. Both of these frameworks use deep CNN ensemble and encode
information from this ensemble into the post processing step. The exper-
imental simulation V also demonstrates that the prior knowledge when
used in collective classification mode in SBR can make significant contri-
bution in solving video classification problems. The constraints applied
during the test time, force the test patterns (test video frames in this task)
to respect them and establish consistency or a manifold (temporal con-
sistency in this task). Through, this task, it is reconfirmed that SBR is a
powerful and versatile framework that can tightly integrate logical rules
in deep learners effectively.

6.3 Summary

To summarize, the chapter describes an effective framework, DResSys
that is designed to perform cataracts tool annotation and in a form it
encodes prior knowledge from the CNN ensemble to establish temporal
relationships. Although, it has not been tested for other applications,
but still the framework is very flexible and has a lot of reusable modules
that can be used for multi-label video sequencing problems using deep
learners. There is a huge scope to use DResSys in the future for several
practical applications like in activity or motion recognition in videos for
different industries.

In this problem, DResSys achieves an average AUC-ROC score of
0.997 which is higher than any other competing solutions (HLC+19) or

159

frameworks and therefore is the present state-of-the-art for this appli-
cation. SBR framework however, provides a very tough competition to
DResSys and its contribution to this video classification problem is the
core part of this research work.

There has been a lot of challenges in the design of the deep learning
machinery used in DResSys and SBR that have been imposed mostly by
the dataset like the distribution of the tools have been highly unequal and
tools are often visually similar to each other (like Cannule and Forceps).
There have also been several other problems like uneven illumination,
zoom level variations, partial tool occlusion, motion and out-of-focus
blur in the input images. Most of these problems have been adequately
handled in either by the deep CNNs themselves, or by using of data aug-
mentation techniques, or using of re-sampling strategies, or designing of
adequate cost functions and smoothing techniques etc. The temporal se-
quencer is built with the motivation of using the prior knowledge from
the trained CNN ensemble in the MRF model to establish a temporal con-
nectivity and correcting the output errors of the CNNs. This sequencer is
seen to boost the performance of most of tools and develop a system that
can be used in real time for the inter-operative decision support during
cataract surgeries.

The collective classification framework of SBR on the other hand en-
codes prior information in the form of logical constraints and proves it-
self to be very beneficial for this kind of real world problems. The poten-
tial of SBR demonstrated in this work also paves new path of research
for using the SBR framework in similar problems like annotating human
movements in sports videos, gesture recognition in the gaming videos
etc. Instead of using rules only during the inference time through collec-
tive classification, it would be interesting to see how logical rules help in
such problems when joint learning takes place. This would help in ex-
ploring the full potential of SBR also for video classification problems as
it was empirically demonstrated for image classification in Chapter 5.

160

Chapter 7

Contaminant Separation

This chapter consists of the second part of the thesis and is focused
on image segmentation using deep convolutional neural networks. A
few frameworks dedicated to segmentation problems in computer vi-
sion have been already discussed in Section 4.2. This chapter is more
application oriented but it is closely related to the other part of the the-
sis as it tries to solve a vision task and uses deep learning methodolo-
gies to achieve the goal. In this chapter, the frameworks are adapted
and compared against each other in solving a real world problem of
separating contaminants from microscopy images for cleanliness anal-
ysis. However, the novel methodologies used in these frameworks are
reusable and scalable to other image and video segmentation problems
of the real world scenarios. This research work can also be viewed from
the perspective of using domain specific image segmentation techniques
(for example: watershed transform and connected component analy-
sis algorithms) that are integrated with neural networks in a cascaded
fashion, therefore building an end-to-end solutions for industry based
contaminant separation problem. The contaminant separation problem
is defined as locating, segmenting, analyzing and aiding the automatic
removal of the random shaped particles from their low contrast back-
ground (filters) images using an end-to-end framework that can be inte-
grated with optical microscopic acquisition systems. The analysis of the
particles during the process of removal involves determining the size,
shape and the count of the particles.

In this work, for the first time, cheap, accurate and time efficient deep
learning frameworks are proposed for automatic segmentation and clas-

161

sification of contaminants, replacing the expensive slow systems existing
in the automobile, aerospace or manufacturing industries. Apart from
the novelty in terms of the application, there have also been new algo-
rithmic techniques like region proposal selection criteria, different cost
functions, optimization tweaks, cascaded post processing tricks etc. in-
troduced as a part of this research work that makes improvement over
the existing benchmark frameworks like MaskRCNN (HGDG17) and
UNET (RFB15) if they would be used in their original forms to solve
this problem.

7.1 Introduction

Automotive, industrial and aerospace manufacturers are under constant
pressure to reduce their costs of production, improve operations, lower
the selling prices and still have high profits. To accomplish these goals,
manufacturers regularly seek new ways to improve efficiency of their
production process and continue delivering high quality products at
profitable prices. Maintaining specified levels of fluid and component
cleanliness can have a major effect on the reliability of the components
and systems involved, ultimately impacting the overall efficiency of the
operation. The entire system is subject to failure if any part of the fuel
system, braking system, hydraulic circuit, or electronics does not meet
the cleanliness requirements.

Key to managing component cleanliness is the measurement and
analysis of contaminants present in the production parts. Contamina-
tion analysis is therefore critical in understanding the source and the
root cause of component failure. There are several basic types of contam-
ination (Win) as listed below:

• Particulate contamination : Inanimate and inorganic particles such
as the residue from a manufacturing process (for example: particles
from abrasion or grinding, fibers from clothes or dust from the local
surroundings), and also biological and organic, such as bacteria,
fungi, spores, flakes of shed skin, or cell fragments. Example of
residues are shown in Figure 27.

• Molecular contamination : Organic and inorganic films, such as the
residue from additives during manufacturing, such as low temper-
ature lubricants or preservatives, or finger prints etc. Example of
films are shown in Figure 28

162

Figure 27: Particulate contamination: Residue from the manufacturing pro-
cess (Win).

In any industry, the assessment of cleanliness of the machine parts,
both before and after the product component undergoes a cleaning pro-
cess, is done either by using a direct or an indirect method.

Figure 28: Molecular contamination: Organic and inorganic films during
manufacturing (Win).

163

• A direct method involves the direct examination of the surfaces of
the parts without extraction or transfer of particles. This is nor-
mally performed with optical or electron microscopy. The advan-
tages of direct analysis involves no sampling losses and no extrac-
tion method is required. However, it is not a practical solution
when the substrate (component parts) have complex shapes and
sizes.

• An indirect method involves extraction or transfer of particles from
the substrate to an analytic medium. This is normally done by us-
ing a liquid or gas solvent, stripping, or tape lift, followed by eval-
uation using a microscopic analysis system. An indirect process of
component analysis is practical for components with complex ge-
ometries and the entire component can be examined, but the parti-
cle losses during the extraction process can take place, and higher
costs are involved due to the extraction method required, and also
very clean and controlled working conditions are required to avoid
cross-contamination.

For most of the industries, according to the ISO standard 16232, the
quantitative determination of the particulate contamination is done by
removal of the particles from the surface using an indirect method such
as sonication, pressure rinsing, functional test benches, agitation, and
then transferred onto a membrane filter, via filtration of the extraction
liquid. The total contamination is then deduced from the analysis.

Identifying particulate contamination, measuring them and helping
in their removal automatically is an industrial problem that has been
actively pursued since the year 2000. A particle analysis comprises an
evaluation of the particle characteristics with respect to number, size and
particle type, sometimes also the morphology of the particles. For the
analysis of the particle contamination after removal from the production
parts, the most popular automated technique is the imaging method.

Automated image analysis using simple optical electron microscopy
with traditional analysis techniques like thresholding, color segmenta-
tion etc. are not sufficient enough to detect and analyze the particles
for this problem. Especially, the metallic particles pose difficulties in
the automated evaluation. A metallic particle shows reflecting and non-
reflecting areas in optical images and contains corridors of similar bright-
ness as that of the background filter. An automatic analysis system there-
fore runs the risk of not detecting such particles as a whole, or assigning

164

Figure 29: An example image of the contaminants on a wire meshed mem-
brane filter.

Figure 30: Another example image of the contaminants in the membrane
filter with lot more particles.

them as several smaller particles. Sometimes also the very faint parti-
cles or stains on the background filters are not detected. Also, dedicated
magnification of the camera can limit the cameras field of view and larger

165

particles might be split between two or more images. Two images of con-
taminants acquired with a simple optical microscope are given in Fig-
ure 29 and Figure 30. Blue lines in the images mark some of the metallic
particles, very faint particles or very white particles that are difficult to
detect using simple traditional analysis techniques. With the require-
ment of higher accuracy in contaminant particle detection, the detection
ability of traditional object detection algorithms such as threshold seg-
mentation, edge detection, contour detection and level set segmentation
are unsatisfactory. Therefore, to fill this gap in research and to get bet-
ter detection and segmentation results, more complex machine learning
algorithms using deep CNNs are proposed for this problem.

At the present market, the best available detection and segmentation
systems (Met10) use polarized light for the detection of highly reflective
metallic particles and differentiate them from the dark, dull non metallic
particles. Usual light sources emit non polarized light that contains oscil-
lations in all directions. By passing through a linear polarizing foil (called
as a polarizer) the light has one (linear) oscillation direction. The metal
and the non metal particle scatters polarized light in different ways as
shown in Figure 31. Light after passing through metal particles remains
polarized whereas for non metallic particles, the polarized light is scat-
tered in all possible directions and therefore using a second polarizer-
analyzer system, it (Met10) is able to distinguish between metallic and
non metallic particles.

Figure 31: First part of the image shows a metal particle that reflects the in-
cident light, like mirrors such that the incident and reflected light have the
same oscillation direction whereas the second part shows a non metal par-
ticle that modifies or disturbs the incident light direction (mostly because
light can intrude into the material), and therefore light scattered from non-
metal particles is no more polarized (Met10).

The detection and contaminant separation capability of this system

166

is much higher than the ones using optical microscopy, however, the
acquisition and analysis of the images using this system is more time
consuming. Also the integrated software used in combination with the
polarizers and analyzers to analyze the polarized images, are quite so-
phisticated and the overall system is very expensive. The total time for
acquiring and analyzing about 200 images of 2048×2048 pixels is approx-
imately 15 minutes and the cost of the system is approximately 50, 000
USD ($50, 000). The main objective in the automobile, aerospace or man-
ufacturing industries is to get a detection system that is precise and accu-
rate and also economical with a high speed of operation (acquisition and
analysis to be completed is less than 5 minutes for an entire membrane
filter that contains almost 180− 200 2048× 2048 images).

Therefore, as a part of this thesis, two different deep learning so-
lutions are proposed for this contaminant separation problem. They
are compared against each other for the segmentation quality and for
the time required during inference. Each of the methods have its own
strengths that can be exploited depending on the requirements of the
specific industry. In contaminant separation, speed, accuracy and cost,
all the three factors should be kept optimal. Therefore, the use of ma-
chine learning seems very ideal. These are the three main challenges that
needs to be addressed and bridge the gap while designing any machine
learning solution for this problem.

The industries need to measure the structural and the categorical
properties of the particles, therefore, two end-to-end segmentation deep
neural models are proposed. These models help to segment and classify
the particles at the same time. The first approach uses a modified Mask
RCNN (HGDG17) (the original framework is described in the Section 4.2
and the adaptations to the contaminants problem are explained in this
chapter), an instance segmentation model. The second approach uses
a modified UNET (RFB15) (the original work is outlined in Section 4.2
whereas the modifications are detailed in this chapter), a semantic seg-
mentation model followed by image post processing. Each of the two
end-to-end solution generates classified object instances at the output.
Although both of these frameworks on their own solve two different
problems of instance and semantic segmentation but their performance
is not compared individually. But the performance of the pre-processing,
prediction and the post processing framework (end-to-end solution) to-
gether delivers object instances for both of these approaches. Therefore,
comparison of the end-to-end solution using Mask RCNN based frame-
work and UNET based framework is quite meaningful in the context

167

Figure 32: Semantic and Instance segmentation along with classified objects
are shown in the example (GOO+17).

of this research work. Both of these solutions bring down the cost of
the whole system to approximately 1/5th of that of the polarized sys-
tem. Also, the accuracy of the both the solutions are comparable and al-
most equal in terms of the segmentation and classification quality but the
UNET based system is significantly faster than the Mask RCNN based
system. The analysis time for 200 images with 4 GeForce-2080Ti GPUs for
a Mask RCNN integrated system takes approximately 5 minutes whereas
a UNET based system, can analyze an entire membrane filter (about 200
images) in approximately 1.15 minutes using only one GPU.

7.2 Related Works

Many applications need accurate and efficient segmentation mechanisms
like autonomous driving (EMGG09; Gei12; COR+16), human-machine
interaction (OWL15), image search engines (WWH+14), virtual or aug-
mented reality systems etc. Semantic and instance segmentation are the
high-level tasks (defined in Section 4.2) that pave the way towards com-
plete scene understanding. An example to differentiate the two segmen-
tation techniques is shown in Figure 32.

UNET and Mask RCNN models and their upgraded versions have
been applied in literature for different applications. Some of them have
very promising results and have helped in solving several real world
problems. In the next section, some of these works in different fields are
reviewed.

168

7.2.1 Semantic vs Instance segmentation models on natu-
ral images

The UNET (RFB15) is inspired by Fully Convolutional Network (FCN)
(LSD14) architecture and is shaped like a U having a contracting part
to compute features and an expanding part to spatially localize patterns
in the image as explained in details in the Section 4.2. UNET is capa-
ble of learning from a relatively small training set which gives it a huge
competitive advantage over many other semantic segmentation CNNs.
UNET architecture in its various forms have been used in different types
of segmentation tasks of natural images. One such example is given on
the left side of Figure 32 which shows the semantic segmentation results
and also tells us about the class of each object. UNET has been very
successfully applied to different datasets containing natural images like
PASCAL-VOC 1, COCO 2, Cityscapes 3 etc. TernausNet (IS18), a ver-
sion of UNET with VGG11 encoder pretrained on ImageNet obtained
the first place in the Carvana Image Masking Challenge 4 where it ef-
fectively segmented car images from the photo studio backgrounds. A
linear combination of several UNET networks known as stacked UNETs
(SUNETs) (SGDG18) have been developed by Shah et al. which itera-
tively combines features from different resolution scales. Stacked UNET
can leverage the information globalization power of UNETs in a deeper
network and is more capable of handling the complexity of natural im-
ages than plain UNET. They obtain the state-of-the-art results of natural
image segmentation on PASCAL VOC challenge 2018, but they are more
dense and computationally intensive.

The MaskRCNN (MRCNN) architecture (HGDG17) is an instance
segmentation model as described in Section 4.2 which has a proposal
network and deep CNNs to predict the bounding box coordinates, the
associated classes of the objects and also the binary masks of the objects.
Because of the presence of different modules, MRCNN is a more complex
network compared to UNET. The right side of Figure 32 demonstrates
an example of instance segmentation using MRCNN. Mask RCNN also
obtained the state-of-the-art results in instance segmentation on COCO,
PASCAL VOC and Cityscapes segmentation challenges in 2016. Yu et
al. (YTRW18) performed human instance segmentations on the Person

1www.host.robots.ox.ac.uk/pascal/VOC/
2www.cocodataset.org/
3www.cityscapes-dataset.com/
4www.kaggle.com/c/carvana-image-masking-challenge

169

www.host.robots.ox.ac.uk/pascal/VOC/
www.cocodataset.org/
www.cityscapes-dataset.com/
www.kaggle.com/c/carvana-image-masking-challenge

dataset (PIC) 5 at ECCV, 2018. In most of these tasks, MRCNN used
residual networks or feature pyramid networks as the backbone archi-
tecture that are pretrained on ImageNet dataset.

7.2.2 Semantic vs Instance segmentation on medical or
pathological images

UNET architecture (RFB15) was first applied on biological microscopy
images. It showed remarkable semantic segmentation results on the neu-
ral structures. The geometry of the neural structures is somewhat simi-
lar to the long fiber contaminants on the filter images present in the im-
ages used in this thesis. The similarity in the structure of the particles
is one of the motivation for using the UNET network. The UNET ar-
chitecture was also seen to achieve state-of-the-art results on ISBI cell
dataset (RFB15). Chang et al. proposed (CZY+18) 3-D UNET with multi-
class focal loss for brain tumor segmentation. Hybrid densely connected
UNET (H-DenseUNET), have been proposed by Li et al. (LCQ+17) for
liver and tumor segmentation during liver cancers. H-DenseUNET con-
sists of a 2-D DenseUNET for efficiently extracting intra-slice features
and a 3-D (CZY+18) counterpart for hierarchically aggregating volumet-
ric contexts for the segmentation purpose. Zhuang et al. (Zhu18) pro-
posed LadderNet, a multibranch convolutional neural network for se-
mantic segmentation, which has more paths of information flow. Ladder-
Net have been used in successfully segmenting lesions from the brains.
UNET++ (ZMRSTL18), is another architecture used for medical image
segmentation. It is a deeply-supervised encoder-decoder network where
the encoder and the decoder sub-networks are connected through a se-
ries of nested, dense skip pathways. UNET++ outperformed UNET ar-
chitecture across multiple medical image segmentation tasks like nodule
segmentation in the low-dose CT scans of chest, nuclei segmentation in
the microscopy images, liver segmentation in abdominal CT scans, and
polyp segmentation in colonoscopy videos. Chen et al. (CZH+18) pro-
posed a bridging architecture between two U-nets where they connect
each decoder layer of the first UNET with the corresponding encoder
layer of the second UNET, that directly inputs the features of the previ-
ous layers into the latter layers. This process reduces the training cost
and exhibits a better performance than using an ensemble of two UNETs
or a stacked UNET or UNET++. The hybrid and modified UNETs are ar-

5www.picdataset.com/

170

www.picdataset.com/

chitecturally more complex than plain UNET and therefore require more
inference time in dense prediction of pixels in high resolution images.
Alom et al. (AHY+18) proposed a slightly different network combining
UNET and recurrent residual networks to obtain a CNN model called
as R2U-Net that gave superior segmentation results than plain UNET or
residual UNET on blood vessel segmentation in retina images, skin can-
cer segmentation, and lung lesion segmentation problems.

MRCNN has not been used in the medical community extensively
but still applied in some of the works outlined here. Johnson et al. (Joh18)
and Xie et al. (XLZS18) have used Mask RCNN for automatic segmenta-
tion of the overlapping nuclei in a wide range of microscopic histopatho-
logical images, for a variety of cells acquired under different conditions.
Xie et al. (XSNT18) also used an improved MRCNN in breast tumor seg-
mentation and classification of ultrasound images. In the works of Zhao
et al. (ZYZ+18), MaskRCNN have been used for doing 3D biomedical
image segmentation and in the works of Liu et al. (LDD+18), MRCNN
helped in segmenting lung nodules from CT images. Liu et al. (LL18)
used an improved RPN network where ROI align mechanism is based
on bilinear interpolation for segmentation on ultrasound images.

7.2.3 Semantic vs Instance segmentation on other prob-
lem specific images

UNET have been successfully applied in many other real world problems
especially in satellite imaging as discussed here. Zhang et al. (ZLW17)
proposed a deep residual UNET for road extraction from aerial images
in the field of remote sensing image analysis. It combines the strengths
of residual learning and UNET. In DSTL Satellite Imagery Feature Detec-
tion Challenge 6, and Mapping Challenge 7, Ternaus-v4 (IS18), a variant
of UNET, detects buildings from satellite images and is one of the top
performer. The DSTL dataset has scarce labeled examples and UNET
performs well even in scarce data settings. Li et al. (LLY+18) designed a
network called DeepUNET that helped in pixel level sea-land segmenta-
tion from remote satellite images.

In the works of Jaspreet et al. (SS18), Mask RCNN is used for au-
tomatic detection and classification of damage in roads that helped in
maintenance and autonomous driving. Many remote sensing applica-

6www.kaggle.com/c/dstl-satellite-imagery-feature-detection
7www.crowdai.org/challenges/mapping-challenge

171

www.kaggle.com/c/dstl-satellite-imagery-feature-detection
www.crowdai.org/challenges/mapping-challenge

tions also require instance segmentation of roads and buildings in satel-
lite images and MRCNN has been the top performer in many competi-
tions using satellite images like DSTL and Mapping Challenge.

Therefore, all these varied applications suggest the immense power
and flexibility of both of these architectures in segmentation of different
types of images.

7.3 Experimental Methods and Evaluation

The main aim of this experimental analysis section is to develop an end-
to-end deep learning solution to segment individual contaminant parti-
cles for cleanliness analysis that can beat the existing solutions in terms
of accuracy and speed. The two solutions proposed are:

• Instance segmentation Mask RCNN model with refined regional
proposal network to detect and segment the non-overlapping as
well as the overlapping particles as separate instances through the
process of instantiation. This model is then connected to a post pro-
cessing module that implements panoptic segmentation which im-
plies that every pixel of the image can belong to one and only one
instance or object of that image. Since, Mask RCNN already out-
puts individual instances of objects, less amount of post processing
is required in this approach while developing the end-to-end solu-
tion for contaminant separation.

• Semantic segmentation UNET based model with refined cost func-
tion for faster convergence and better generalization capability.
This model does not help in the separation of the overlapping par-
ticles. Hence to separate the overlapping particles as different in-
stances or objects, this model is cascaded with traditional computer
vision modules like connected component analysis and watershed
transform. In this framework, several domain specific post pro-
cessing approaches are used to build the end-to-end solution of
contaminant separation.

The description of the contaminants dataset, the modified evaluation
metrics and the proposed solutions with Mask RCNN and UNET are
described in the following sections.

172

7.3.1 Dataset

The contaminant image is created by raster scanning the membrane fil-
ters mounted on a casket in an optical microscope. These membrane filter
samples have been collected from different industrial setups in the auto-
mobile sector. On scanning each filter, about 180 − 200 images, each of
2048× 2048 pixels are obtained. The total contaminants dataset used for
this research work is a collection of 25 membrane filter images collected
under varying lightning conditions resulting in a total of 5000 images,
each of size 2048× 2048 pixels. The images also vary greatly in magnifi-
cation, and the type of background filter used. Some of the background
filters are 5 micron wired mesh filters whereas others are 10/20 micron
wired meshes. The shapes and sizes of the particles present on each of the
filter also varies greatly. The number of particles present in each image
varies randomly from about 10 particles to approximately 2000 particles.
On an average there are 340 particles per image. Some examples of the
images have been shown earlier in Figure 29 and Figure 30. The particles
in the dataset are divided into three classes :

• Metal

• Non-metal

• Fiber

The dataset is annotated by humans using GNU Image Manipula-
tion Program (GIMP) as the annotation tool. Since, the objective of this
problem is to accurately measure the size and shape of the particles, each
image is annotated with a instance level segmentation mask. The parti-
cles in the segmentation masks of the ground truth annotations are rep-
resented in three different colors to represent the three classes. The metal
class objects have red mask, the non metal class objects are annotated
with blue mask and the fiber class objects are represented with green
mask. Figure 29 is annotated in Figure 33.

The images are divided into 3500 training images, 500 validation im-
ages and 1000 test images. This is a relatively small training set for train-
ing an instance based model like Mask RCNN. Each image is split into
16 equal parts for memory efficiency during training. Different data aug-
mentation techniques applied to input splits generate 168K images, each
of 512× 512 pixels. The imgaug library 8 is used for creating augmented

8www.imgaug.readthedocs.io/en/latest/

173

www.imgaug.readthedocs.io/en/latest/

Figure 33: Instance segmentation mask and classified objects based on color
of the image in Figure 29.

data. For example the different augmentations used are horizontal and
vertical flipping, rotating, scaling, adding gaussian noise etc. Since this
is a segmentation task, it is also necessary to perform the same augmen-
tation on the mask as on the original image while feeding the input into
any segmentation framework.

7.3.2 Evaluation Metrics

A new and meaningful set of evaluation metrics are defined for this in-
stance segmentation task that is based on the concepts of Intersection
over Union (IOU), True positives, False positives, True negatives, False
negatives and F1 score.

• Intersection over Union : It is also known as the Jaccard index, which
essentially is a method to quantify the percentage of overlap be-
tween the target/ground truth mask and the prediction mask. It
is the metric used in semantic segmentation. The intersection of
two masks A and B is given as (A ∩ B), comprised of the pixels
found in both the masks, whereas the union (A ∪ B) is the sum of
all pixels found either in the prediction or in the target mask. The
IOU thresholds are ranged from 0.05 to 0.95 and the intersection
over union mask is computed for each of the threshold value in

174

this research work.

IOU(A,B) =
(A ∩B)

(A ∪B)

• True Positives : It is observed when a prediction-ground truth in-
stance pair in the masks have an IOU score that exceeds a pre-
defined IOU threshold. Total number of prediction instances that
match the ground truth instances are called the true positives (TP).

• False Positives : It indicates when a predicted instance mask has
no associated ground truth instance mask. Total number of false
predicted instances that match no ground truth instances are called
as false positives (FP).

• False Negatives : It indicates a ground truth instance mask has no as-
sociated predicted instance mask. Total number of ground truth in-
stances that are missed and no corresponding prediction instances
are present are referred to as false negatives (FN).

• Segmentation Precision (SP) : It is defined for instance segmentation
and is effectively described as the number of correct instance seg-
mentations relative to the total number of segmentations. There-
fore, it is formulated as

SP =
TP

TP + FP

• Segmentation Recall (SR) : It is effectively described as the complete-
ness of the correct segmentations relative to the ground truth in-
stances. Therefore, formulated as

SR =
TP

TP + FN

• F1 Score : It is defined for the segmentation quality and it is the
harmonic mean of the segmentation precision and segmentation
recall for a given IOU threshold. Therefore, it is formulated as

F1 =
2× SP × SR
SP + SR

175

• Classification Quotient (CQ) : The segmentation precision is class ag-
nostic but the classification quotient is a factor that takes into con-
sideration the class performance. In case of instance segmentation
the True Precision (TPR) is defined as:

TPR =
TPc

TP + FP

where TPc is the number of true positives for the given class. There-
fore, TruePrecision of the instance segmentation model is the prod-
uct of segmentation precision and the classification quotient.

TPR = SP × CQ

. The classification quotient is defined as the number of true posi-
tives for a given class relative to the total number of true positives.

CQ =
TPc
TP

As mentioned earlier, the segmentation precision, segmentation re-
call, F1 score and classification quotient are all calculated for different
IOU thresholds ranging from 0.05 to 0.95. With the increase in the IOU
threshold during the inference time, the number of instances correctly
predicted decreases. After comparing the segmentation outputs at dif-
ferent IOU thresholds, the IOU threshold 0.7 is considered to be the one
which is most acceptable according to the required industry standard.
The segmentation precision, segmentation recall and F1 score are made
class agnostic because, sometimes, even when the particles are not cor-
rectly classified but are well segmented, it is good enough for the in-
dustries to get an estimation of the size and morphology of the particle
although the category of the particle is not correctly identified. Since, the
size of the contaminants poses a more dangerous risk than the class of
the particles, as bigger sized particles result in more wear and tear of the
machine parts, therefore, the solutions are pushed towards getting better
segmented instances.

176

7.3.3 Modified Mask RCNN based end-to-end solution
with improved RPN

Description

Mask RCNN is implemented based on its public implementation in Mat-
terport 9 and adapted to the contaminant separation problem. The Mask
RCNN is an intuitive extension of the Faster RCNN architecture with im-
proved properties and additional mask head for instance segmentation
(as described in Section 4.2) and the increase in computational overhead
due to these modifications is very small.

The modified Mask RCNN used in this research work have some dif-
ferences from the original works (HGDG17) as listed below:

1. in the backbone feature extraction network used,

2. in the selection criteria of anchors similar to the works of Liu et
al. (LL18), therefore different types of region proposals are gener-
ated from the Region Proposal Network (RPN),

3. and also an end-to-end panoptic post processing in the mask head
for removing the overlapping predictions of the instances.

All these modules changed in the original framework to suit the
needs of this problem are reusable and scalable to other similar segmen-
tation problems of road detection in aerial images, tomour segmentation
in medical images etc. For the feature extractor in the modified MRCNN,
the effective Feature Pyramid Network (FPN) (LDG+16) (explained in
Section 4.2) is used in combination with ResNeXt (XGD+16) with 50 lay-
ers (architecture explained in Section 4.2). FPN have a top-down archi-
tecture with lateral connections to build an in-network feature pyramid
from a single-scale input. Whereas, ResNeXt is an upgraded version of
the Resnet that increases the accuracy without increasing the complex-
ity of the parameters and also reduces the number of hyperparameters.
Therefore, using a ResNeXt-50-FPN backbone for feature extraction in
Mask RCNN gives excellent gains in both accuracy and speed. ResNeXt-
101 have also been experimented but there is no gain in performance
in terms of segmentation quality on the contaminants problem probably
because of the small dataset size in comparison to the network depth.

9www.github.com/matterport/Mask_RCNN

177

www.github.com/matterport/Mask_RCNN

For better segmentation of the image in the mask head, the ROI se-
lection is an important task. The ROIAlign technique removes the harsh
quantization of ROIPool (as explained in the works of He et al. (HGDG17)),
and henceforth, properly aligns the extracted features with the input. But
sometimes even the ROIAlign is not enough for making the best ROI. The
RPN layer selects the ROI region based on the IOU overlap between each
anchor and the ground truth bounding box. For each anchor, the RPN
generates two outputs :

• The anchor class which is either a foreground or a background
class. The foreground class is also called a positive anchor and it
implies that there is likely an object inside the anchor. An anchor is
a positive anchor only when it has an IOU overlap of 0.5 (HGDG17)
or greater with the ground truth box.

• The bounding box refinement is done by the RPN network after a
positive anchor is selected. A positive anchor although has a high
IOU overlap with the ground truth box but yet it might not be cen-
tered perfectly over the object. So the RPN estimates a delta value
(% change in x, y, width, height) to refine the anchor box so that it
fits the target object better. Using these RPN predictions, the top
anchors that are likely to contain the objects are selected and their
locations and sizes are refined. If several anchors overlap, non max
suppression is applied to select the good anchors and the num-
ber of good anchors selected depends on the non max suppression
threshold.

The refined proposals or regions of interest are then passed on to the
next stage by the region proposal network. However, this selection crite-
ria sometimes overlooks some of the deficiencies that might arise. Sup-
pose if there are two different anchors that overlap the ground truth box
with the same IOU, which anchor is more suitable for the image segmen-
tation task is difficult to decide. Sometimes one anchor can be slightly
smaller and tightly adhered to the target object, while the other can be
slightly bigger than the real object but both of them overlap the gound
truth box with the exact same IOU. Even though the RPN network has a
boundary regression correction, there is no guarantee that the modified
bounding box will include the target object perfectly. The best possible
anchor would actually be the one that covers the entire target object and
also desirably a small amount of background area (that is the second one
which is slightly bigger than the target object) information, rather than

178

tightly adhering to the target object. Therefore, to select the best pos-
sible anchor, a new anchor selection criteria is implemented. This new
selection criteria is based on the works of Liu et al. (LL18) :

1. An anchor is marked as positive if the IOU overlap with the ground
truth box is greater than 0.7, and a negative sample if the overlap
is less than 0.3 which means it does not contain the target object at
all. Anchors in between (i.e. cover an object by IOU ≥ 0.3 but <
0.7) are considered neutral and excluded from training.

2. In order to ensure that the extracted anchor does not lose the in-
formation of the target object, all the positive anchors are sorted by
the size of η where η represents the ratio of the overlap between
anchor and ground truth box in the ground truth, given as:

η =
Area(Anchor) ∩Area(Groundtruth)

Area(Groundtruth)

.

3. For all anchors with η = 1, they are sorted by their IOU overlap
values and a non max suppression is performed to select the best
anchors and then the boundaries of the anchor are refined using
RPN predictions.

The new anchor selection criteria has been seen to improve the regres-
sion parameters of the selected candidate boxes or ROIs, and therefore
better segmentation performances are obtained on the instances. The ex-
perimental results demonstrate this improvement empirically.

The mask head of the modified MRCNN relies on a fully convolu-
tional network (FCN) (LSD14) like in the original works on MRCNN
(HGDG17). For every selected ROI, am×mmask is predicted that allows
to maintain the explicitm×m spatial layout of the object and hence better
instance segmentations are performed. The mask loss Lmask (as defined
in the original works (HGDG17)) is defined only on positive ROIs. Also,
the mask and class predictions are decoupled, thus predicting a binary
mask for each class independently, without having competition among
the classes, and then relying on the networks ROI classification branch to
predict the category or the class. This enables parallel processing during
prediction of the class and the bounding box, with the binary mask for
each ROI.

179

Training and Inference

Images of size 2048×2048 pixels are split into 16 sub-images of 512×512
pixels during training. Each split of the image is then augmented us-
ing the data augmentation techniques in the imgaug library like random
horizontal or vertical flips, random rotations in the range from 90 to −90
degrees and also random scaling in the range of 0.5 to 2.0. The input is
normalized, with a mean pixel value of [129.5, 129.47, 129.56] for the R, G
and B channels respectively.

The backbone architecture for feature map computation is ResNeXt-
50-FPN, that uses the pretrained ImageNet weights during training. This
network shares features between the RPN and also with the bounding
box regression and the classification head. Images are trained in a mini-
batch of 8 images on 4, 2080Ti GPUs (2 images per GPU). Many other
backbone networks have also been tested but ResNeXt-50-FPN gives the
best performance during cross-validation for this problem.

The RPN anchors span 5 scales (chosen according to the range of sizes
of the contaminant particles) and 5 aspect ratios (chosen as 0.2, 0.5, 1, 2, 5
to generate anchors with different aspect ratios) in this framework, sim-
ilar to the works of Lin et al. (LDG+16). Mostly small anchor scales
(4, 8, 32, 80) are chosen because 80% of the particles in the images are less
than 80 pixels in size. During training, each image have 1000 sampled
ROIs, with a ratio of 0.67 positive to negative ROIs (Gir15). The non max
suppression (NMS) threshold during training is reduced to 0.4 from 0.5
(as in the original works) to generate more proposals because in many
images the distribution of contaminants is very dense and they can oc-
cur anywhere in the image. More proposals help to represent the image
in a better way having minimal chance of missing a region containing a
particle. The model is then trained for 100 epochs where each epoch con-
sists of 170K iterations. An Adam optimizer is used with the following
learning rate schedule as listed below:

• 25 epochs with learning rate 0.003,

• 25 epochs with learning rate 0.0001,

• 50 epochs with learning rate 0.00003.

A weight decay of 0.0001 and a momentum of 0.9 are used. The
mask loss (Lmask defined in Equation 4.3) in the modified Mask RCNN is
weighted 4 times more than the RPN (LR−cls and LR−box) and the classi-
fication losses (Lcls and Lbox) and it is seen to increase the segmentation

180

precision by 3.4%. The detailed configuration file of the modified MR-
CNN is provided in the Table 92 in Section B.0.1. It takes approximately
∼ 60 hours for training the model.

The original Matterport implementation of Mask RCNN uses only
one image during validation and this leads to problems in tuning the
hyperparameters well. Therefore, in this problem, the model uses 500
images to do cross-validation and selection of several parameters like
learning rate, feature extraction network, weights assigned to the mask
loss etc. An inference is performed using the modified MRCNN model
on image splits of 512 × 512 pixels. Then, 16 splits of each image are re-
connected to generate the entire 2048×2048 image in the post processing
stage. During inference, this model takes ∼ 400 ms to output an instance
segmentation mask of size 512 × 512 pixels and therefore a entire image
is predicted in 1.6 sec using 4 GPUs. Test time augmentations are also
performed consisting of horizontal and vertical flips, rotations and scal-
ing and this technique is seen to improve the segmentation precision by
5%. The NMS detection threshold in the modified MRCNN is reduced to
0.35 from 0.5 (in the original implementation) to help in better detection
of very small instance boundaries.

A post processing module is also placed after the mask head and used
only during inference to perform certain post processing operations in an
end-to-end fashion. The different post processing operations performed.

1. Closing small holes inside the masks using morphological opera-
tions (dilation followed by erosion - closing operation).

2. When the mask head of Mask RCNN does a pixel to pixel predic-
tion to generate the mask for each selected ROI, it does not take
into account the panoptic metric (KHG+18) which says that one
pixel in the image can only belong to one instance. Therefore, in
Mask RCNN often a single pixel is assigned to two or more ob-
ject instances. Thus a post processing of all the predicted masks
are done to remove all the overlapping pixels from the last added
mask.

3. All the instances that are smaller in size than 10 pixels are removed
because in the contaminants problem an objects smaller than this
threshold cannot be considered as a contaminant that can pose risk
in the production process.

181

Figure 34: The ground truth annotation where red objects represent metal-
lic particles, blue represents the non-metallic particles and green represents
fiber particles. At the top, the zoomed version of a part of the image is
shown.

Results

The results are shown by overlaying the mask (annotation or prediction)
on the image. The modified Mask RCNN predictions on a image is given
in Figure 35 and its corresponding ground truth annotation is given in
Figure 34. Comparing the prediction with the ground truth annotation,
it is seen that MRCNN segments the small and medium sized particles
quite well. MRCNN also behaves as a good classifier. Although the seg-
mentation and classification quality is good and precise in most of the
test images but sometimes with very dense images like in Figure 34, there
are few errors observed. The small rectangle at the top of each figure rep-
resents a small part of the image in its zoomed version. In Figure 35, the
black lines highlight the errors in segmentation or classification of the
particles. The different types of errors encountered and the possible rea-
sons are listed below:

• Some instances especially the long fiber as seen in the zoomed
window is splitted into four smaller instances as compared to its
ground truth where its a single instance (Figure 34). This is one of

182

Figure 35: This is a predicted mask where black markers represent the errors
in segmentation and classification.

the challenge faced by Mask RCNN in terms of the segmentation
quality. Thin and long objects are often not well detected because
of the downsampling errors that occur at different stages in the
MRCNN framework.

• Sometimes very light and faint colored instances are not detected.
Although, the modified RPN doesnot tightly adhere to the instance
when proposing the ROI region, but because of the nature of the
image, when ROI is proposed for an object which is very similar to
the background color, it is classified as a negative sample during
ROI selection.

• Sometimes a very thin line is observed dividing a single instance
into two separate instances. An object gets divided into two or
more parts because of the image splitting during inference time. A
large particle extending over a number of 512 × 512 splits is pre-
dicted as number of separate instances, however this can be solved
easily in the future works by using overlapping splits or some extra
post processing.

• Sometimes the objects are misclassified. This happens because of

183

Figure 36: The groundtruth annotation is on the left side and the predicted
mask is on the right side of the image.

the huge class imbalance problem that is present in the images. The
number of metallic and fiber particles are much less in proportion
to the number of non metallic particles. The class imbalance prob-
lem is not tackled rigorously because the observed average classi-
fication error was low and limited to only 4% during inference.

Another example of segmentation of a relatively non dense image
with fewer number of particles is shown in Figure 36. The larger red
instance in the image is splitted into two instances in the predicted mask.

The results of segmentation and classification are tabulated in Ta-
ble 52. The segmentation precision, segmentation recall and F1 score
are all calculated for a specific IOU threshold of 0.7. However, the true
precision is obtained as the product of segmentation precision and clas-
sification quotient. The original version of MRCNN is compared with
the modified MRCNN with a new improvement added every time to the
modified MRCNN framework. In the original MRCNN, ResNeXt-101-
FPN backbone network is used and the old RPN selection criteria is used.
In this framework, mask loss has unity weight and its contribution to the
total loss is the same as the contribution of the RPN and classification

184

Table 51: Comparison of original MRCNN (abbreviated as Or. MRCNN)
framework with the Modified MRCNN (abbreviated as Mod. MRCNN). SP,
SR, CQ and F1 represents the segmentation precision, recall, classification
quotient and F1-score respectively. Wghtd. is the abbreviation for weighted.
The bold numbers represent the highest segmentation precision and the F1-
score for the Modified MRCNN.

Model Techniques SP SR CQ F1
Or. MRCNN ResNeXt-101-FPN 76.55 77.24 90.10 76.89

Mod. MRCNN New RPN 80.46 82.11 92.09 81.28ResNeXt-101-FPN

Mod. MRCNN New RPN 80.31 82.46 91.85 81.37ResNeXt-50-FPN

Mod. MRCNN
New RPN

83.71 85.33 93.56 84.51ResNeXt-50-FPN
Wghtd. Mask Loss

Mod. MRCNN

New RPN

88.10 90.88 95.91 89.47ResNeXt-50-FPN
Wghtd. Mask Loss
Test Augmentation

Mod. MRCNN

New RPN

91.41 93.08 96.09 92.24
ResNeXt-50-FPN
Wghtd. Mask Loss
Test Augmentation
Post Processing

losses. The segmentation precision and recall on 1000 test images using
the original MRCNN is about 76.55 and 77.24 respectively. The calcu-
lated true precision (considering segmentation quality and correct clas-
sifications) is 68.97. However, in the modified MRCNN, the improved
selection criteria of the anchors in RPN network is used that obtains bet-
ter precision and recall values than its original counterpart. It is also
observed that the segmentation quality and the classification quotient of
ResNeXt-101-FPN is slightly lower than ResNeXt-50-FPN because of the
overfitting problem. Also, 101-layered ResNeXt is much slower during
inference than 50-layered ResNeXt, therefore ResNeXt-50-FPN is incor-
porated in the final version of the modified MRCNN. There are also other
modifications added to the modified MRCNN to improve the segmenta-
tion quality and the classification quotient like weighing the mask loss
higher than the RPN and classification losses, adding test time data aug-

185

mentations and also post processing the segmented masks. The best seg-
mentation precision and segmentation recall achieved with these modi-
fications in the adapted MRCNN framework is 91.41 and 93.08 respec-
tively. The calculated true precision in this case is 87.84 which is almost
18.9% higher in performance than the original MRCNN framework. This
confirms the significance of each theoretical modification added to the
framework to make it more suitable for this problem being able to meet
the different challenges posed by the problem. The performance gain
suggests empirically that each of these techniques make the Mask RCNN
framework more powerful and robust.

7.3.4 Modified UNET based end-to-end solution with Wa-
tershed Transform

The UNET based solution is designed to deal with the contaminant sepa-
ration problem not as an instance segmentation task but as a multi-class
semantic segmentation task. Although this treats the problem in a dif-
ferent way, but the desired output still remains the same. It is required
to obtain object instances through an end-to-end solution and therefore,
this semantic segmentation UNET framework is cascaded with heavy
post processing methodologies to build an instance segmentation output
that can be compared in terms of speed and quality of segmentation with
the MRCNN based end-to-end framework design. In comparison to the
complex Mask RCNN based framework which is a two stage detector
having a region proposal network and a mask segmentation network,
the UNET framework is much easier to train and optimize. Also UNET
is specialized to work even with small datasets as it does not require
a lot of training examples to perform well. The main objective of this
approach is to build a faster system with a simplified network that can
be better than the existing traditional solutions in terms of accuracy and
segmentation quality and on the other hand the solution should consist
of a simpler framework than Mask RCNN.

Since the UNET based framework treats the contaminant separation
problem as a multi-class semantic segmentation problem, the output of
the segmentation will segment two or more overlapping particles of the
same class as a single particle. As the industries need to measure the size
and the morphology of each single particle, therefore, a module perform-
ing connected component analysis and watershed transform is loosely
cascaded with the modified UNET framework. The objective of this post

186

processing module is to separate the overlapping objects into different
objects so as to get the true measure of the size and structure of the par-
ticle. The connected component labeling helps to provide the meaning
of instance or object to the semantic segmentation output of modified
UNET. All the 8-way neighboring pixels sharing the same label in the se-
mantic segmentation output, are treated as the part of the same instance
or object. Watershed transform is also a labeling algorithm that works
with markers that help in defining the boundary of each labeled region.
While training modified UNET, the borders of the objects are also trained
separately and the border outputs obtained on the test set act as markers
for the watershed transform during post processing of the segmentation
output from modified UNET. With the help of these markers, watershed
transform, a flooding technique for image segmentation helps to divide
the overlapping objects from a single instance to two or more instances.

Description

Vanilla UNET or original UNET implemented for histopathological im-
age segmentation (RFB15) is a semantic segmentation network that pre-
dicts a semantic mask which segments many overlapping instances or
closely spaced instances as a single connected component. In the orig-
inal UNET implementation, a weighted softmax cross entropy loss has
been used to train the full masks where the weights are determined from
a pre-computed weight map. The basic idea of the pre-computed weight
map is to assign weights to each class, where the foreground classes, the
touching borders between the closely spaced objects and the background
all belong to different classes and weighed separately according to the
Equation 4.4 in Section 4.2. The weight map helps to weight the borders
of close instances more thus forcing the network towards learning the
gaps between the close instances. In this implementation, the borders
are not used during training to make separation between the predicted
instances. It is assumed that the network will learn to separate the closely
spaced instances well using the weight map but it is necessary to learn
the borders and predict the borders during inference to use them at the
post processing stage to separate the overlapping instances. Therefore,
the adapted and modified UNET solution used in this research work con-
verts the ground truth masks into multi-class targets. It gives two masks
at the output: one that predicts the output classes and the other predicts
the borders. At the output of the network, the modified UNET has 2
classifier layers:

187

• The first classifier has 3 outputs, one each for the two classes, metal-
lic, non-metallic (the fiber class is merged with the non metallic
class) and the third one is the background class.

• The second classifier predicts the borders (in the ground truth la-
bels the borders are obtained as contours of the instances) and the
non borders (which can be objects of the two foreground classes or
the background other than the border pixels).

A pre-computed weight map is also used in this segmentation task
which is computed based on the works of Ronneberger et al. (RFB15)
(described in Section 4.2).

The encoder used in the modified UNET is Wide Resnet-40 (ZK16).
The modified UNET uses transposed convolution operations for up sam-
pling in its decoder layers. Transposed convolution has proved to be
empirically better than nearest neighbor and bilinear interpolation tech-
niques for contaminant separation.

The loss function used in the modified UNET is a combined pixel
wise softmax which consists of a three class weighted cross entropy loss
and a binary cross entropy loss along with a soft Jaccard loss (ISBS18).
The binary cross entropy loss and the weighted cross entropy loss are the
pixel-level classification losses denoted as H1 and H2 that are indepen-
dently applied to each output classifier layer. The weights of the H1 loss
is obtained from the precomputed weight map. The Jaccard loss is de-
noted as J1 and is based on the Jaccard index (described in Section B.0.2)
that measures the similarity between the pixels of the ground truth mask
and the predicted mask of each class using the Equation 7.1.

J1 =
1

n

2∑
c=1

wc

n∑
i=1

(yci ŷ
c
i

yci + ŷci − yci ŷci

)
(7.1)

where yci and ŷci are the binary value (label) and the corresponding pre-
dicted probability for the pixel i of the class c. The value of wc values are
chosen through cross validation based on the class frequencies of each
class. The two classes contributing to this loss are the metallic and the
non-metallic classes. Jaccard loss possibly penalizes pixels that violate
the localization property in the masks. This hypothesis is based on the
empirical results obtained by the addition of this loss during optimiza-
tion.

The final loss function is obtained by combining the classification
losses and the segmentation loss as in Equation 7.2.

188

L = αH + (1− α)(1− J1) (7.2)

where H = H1 + H2, the value α is chosen through cross-validation in
between the range from 0.6 to 0.9 and 0.7 is seen to be the best for the
experiments on contaminants.

Training and Inference

During pre-processing, a set of two class ground truth annotations are
created automatically from the given three class ground truth masks
(originally used in Mask RCNN training) such that the fiber class is
merged with the non-metallic class. It is known from the industry stan-
dards that fiber objects are always non metallic. Initially, the fiber par-
ticles are in the green channel of the ground truth masks, therefore af-
ter merging the blue and the green channel, each ground truth mask
contains either metallic or non-metallic objects. Therefore any pixel in
the ground truth annotation can have a value (255, 0, 0) indicating a red
pixel, or (0, 0, 255) indicating a blue pixel or (0, 0, 0) which indicates a
black or a background pixel. This set of ground truth labels are used
to train the softmax three class weighted cross entropy loss in the mod-
ified UNET. Another set of ground truth labels are extracted from the
three class ground truth instances and each of this is a binary label that
indicates a border (contours of the individual instances) or no border
(background) for training the binary cross entropy loss.

The pre-computed weight map w (as in Equation 4.4 as described in
Section 4.2) is multiplied with the three class weighted cross entropy loss
to generate the H1 classification loss. The first weight term in the weight
map w for each class (wc) is assigned from low to high value in the order:
background class (w1 = 0.2), foreground instance class (metallic or non-
metallic w2 = 0.3) and the borders between the closest objects or the
touching objects (w3 = 0.5). The weight bias w0 is equal to 10 and sigma
is 5. The weight map computation takes about 1.5 to 5.9 seconds for each
2048× 2048 ground truth mask depending on the number of foreground
instances and closely spaced borders in each mask.

Images of size 2048×2048 pixels are split into 16 tiles each of 512×512
pixels during training. Each split of the image undergoes heavy data
augmentation like piecewise affine transforms, elastic transforms, ran-
dom scaling, rotating in the range from −90 to 90 and flipping. This
helped the network to learn invariance to such deformations without the

189

need to have these transformations in the actual images.
The encoder architecture Wide Resnet-40 is pretrained on ImageNet

weights. Several other deep architectures are also experimented with like
Resnet-50, Resnet-101, Inception Resnet-v2, Wide Resnet-38 but Wide
Resnet-40 is the best performing encoder architecture. The results are
compared in the next section for the different encoder architectures. Mod-
ified UNET is trained using an Adam optimizer with a learning rate of
0.0002. The training is done for 1000 epochs. During training, for the
initial 2 epochs, the encoder weights are frozen and only the weights in
the decoder are trained. This helps in setting meaningful weights in the
decoder in a very efficient way. After 2 epochs, all the weights are un-
freezed and the network is trained in an end-to-end fashion. Images are
trained in a mini-batch of 4 images on a single 2080Ti GPU.

The segmentation or the Jaccard loss is weighed (0.3) lower than the
classification loss (0.7) and this is found to be better than weighing them
equally.

An inference is performed using the modified UNET model on image
splits of 512 × 512 pixels. Test time augmentations are also performed
consisting of horizontal and vertical flips, rotations and scaling and this
improves the segmentation precision by 2%. Each of the 16, 512 × 512
splits are now reconnected to generate a 2048×2048 prediction map. The
assignment of label to every pixel is decided during inference to build
the final prediction map that should resemble the two class ground truth
mask. The border pixel information will be used to separate touching
objects or overlapping objects. The first output softmax classifier pre-
dicts each pixel as either a red (metallic), blue (non-metallic) or black
(background) pixel. To resolve the class label, an argmax is applied to
the three outputs and the class label is assigned to that pixel. For ex-
ample, if the output of the classifier for the pixel i is (0.1, 0.7, 0.2), the
pixel is blue or a non-metallic pixel. Similarly, an argmax is applied to
the two outputs of the second binary classifier to assign every pixel as
the probability of being a border pixel or a non-border pixel. Therefore,
two predicted pixel maps for each image are obtained. For the next stage
of inference, a higher priority is given to the border- non border pixel
map, than to the object-class pixel map. If a pixel in the border pixel
map is not a border pixel, then the pixel in the final prediction map is
labeled from the object-class pixel map as either a metallic, non-metallic
or background pixel. However, if a pixel is present both in the border
pixel map and in the object-class pixel map, it is always considered as
the border pixel (assigning a higher priority to the borders), and hence it

190

is labeled as a green pixel denoting a border pixel in the final prediction
label. This sort of priority based assignment of labels to the pixels in the
prediction map helps to separate some of the closely spaced objects or
overlapping objects. After the decision of class labels are made for each
pixel, a 2048×2048 RGB mask is generated. A post processing module is
then attached to the prediction module that combines watershed trans-
form and some other post-processing techniques as listed below and fur-
ther improves the segmentation quality of closely spaced or overlapping
objects. The post processing is applied to the newly formed RGB mask
(where the red channel denotes the metallic labels, blue channel contains
non metallic labels and the green channel represents the border).

1. The green channel containing the border values is converted back
to border-no-border binary mask and used as the markers of the
watershed transform. The RGB (composed of the non zero values
in the red and blue channel) mask with the borders removed is also
converted into a binary mask and this is the other input to the wa-
tershed algorithm. Now using the border values as the markers
or the seeds of the watershed transform, the touching or overlap-
ping objects are further separated into individual instances. Then
the output binary mask is multiplied along the channels of the in-
put RGB mask to obtain the new refined RGB mask containing the
metallic and non metallic instances well separated.

2. The fiber objects are a part of the non metallic class in this new
RGB mask. A connected component analysis helps to extract the
individual instances in the predicted mask and also provide statis-
tics like the bounding box and area of each particle. A non metallic
particle is considered to be a fiber if the extent ratio (which is de-
fined as the ratio of the particle area relative to the total bounding
box area Parea

BBarea
) of the particle is less than 0.2.

3. Finally all the instances that are smaller in size than 10 pixels are
removed from the predicted mask. As already mentioned in the
MRCNN analysis that objects smaller than this threshold cannot
be considered as a contaminant particle that can pose risk in the
production process.

Thus an end-to-end segmentation model is designed by combining
smart techniques like a multi-class semantic segmentation framework
with multiple classifier layers targeting the objects and the border of

191

Figure 37: The two class ground truth used during training of the modified
UNET.

the closely spaced objects separately, combination of classification and
segmentation losses in a weighted manner, priority based class label as-
signment during inference, watershed transform and connected compo-
nent post processing. Thus the UNET based framework that has been
borrowed from the literature is adapted for the contaminant separation
problem with different novel techniques added to its architecture, that
makes the overall solution modular and flexible in all possible ways.
During inference, the modified UNET model takes ∼ 0.25 s to output
a segmentation mask and the post processing takes approximately 0.1 s
for each image of size 2048 × 2048 pixels. The total time for the entire
membrane filter analysis consisting of almost 200 images using modified
UNET and the cascaded post processing module is approximately 1.16
mins using a single 2080Ti GPU.

Results

The results of segmentation and classification are shown by overlaying
the mask on the actual image. The semantic predictions of the modified
UNET on two classes (the final prediction map is equal to the argmax
outputs from the first classifier layer of the new UNET) without any post

192

Figure 38: The modified UNET two class semantic segmentation prior to
post processing. The corresponding two class ground truth image is in Fig-
ure 37. The errors are highlighted with black lines.

processing for a test image is given in Figure 38 and its corresponding
instance level two class ground truth is shown in Figure 37. In this se-
mantic segmentation, the overlapping objects are predicted as a single
connected region. Because it is a pixel level classification, there is no in-
formation about the instances. By using connected component analysis,
it is possible to extract the instances from this pixel segmentation map.
The two class semantic segmentation output is converted into a three
class instance segmentation output using connected component and ex-
tent ratio information (recreating the fiber class) as shown in Figure 39
(even this does not use the information from the border pixel map). The
errors in classification are highlighted with black circles on the two class
predicted image (38) and the three class output image (39).

An instance labeling connected component analysis, helps to assign
labels or instance meaning to the segmented regions but still at this stage,
the closely spaced objects or overlapping objects are treated as a single
instance. This explains the need of using the information of the border
pixels and using post processing methods like watershed transform. Pri-
ority based assignment of border pixels and object pixels while building
the final segmentation map, watershed post processing with the border

193

Figure 39: The modified UNET two class semantic segmentation output
converted to three class instance output using connected component and ex-
tent ratio. Because no post processing is done on the overlapping instances,
some of the overlapping fibers and non metallic overlaps becomes a large
fiber particle. These errors are highlighted with black lines.

pixels acting as markers of the watershed transform algorithm in combi-
nation with connected component labeling and utilization of extent ratio
information helps in separating the overlapping objects and also generat-
ing an instance level three class segmentation mask as given in Figure 40.
Here the black markers highlights some of the separated instances using
the border pixels and the seeds of watershed for some overlapping or
closely spaced objects that previously belonged to a single particle. The
three class instance segmentation ground truth of this image is given in
Figure 34.

In all the prediction masks, it is seen that UNET not only segments
the small and medium sized particles well but also segments the long
and thin instances with a high precision. This framework also behaves as
a good classifier and the average classification error after post processing
is approximately 3% on the test set which is 1% lower than the MRCNN
classifier. In MRCNN, the objects located near the boundaries of the im-
age splits, gets segmented as two or more broken instances but in UNET
since the post processing is performed on the whole image and not on the

194

Figure 40: The three class instance segmentation mask after post processing
the output of the modified UNET using watershed transform and connected
component labeling. The corresponding groundtruth image is in Figure 34.
Here the black lines highlight some of the closely spaced objects that have
been separated into individual instances after watershed post-processing.

image splits, the connected component helps to rejoin the objects at the
split boundaries into a single region. The only strong challenge faced by
UNET is the closely located objects or the overlapping objects and its in-
ability to perform instance level segmentation. Therefore, three different
techniques have been used to separate these objects and overcome this
challenge wisely: a weight map is used in the training that weights the
borders of the closely spaced objects more forcing the network to learn
them as separate objects, priority based assignment of class labels where
border pixel map is given a higher priority while constructing the final
segmentation output, and watershed markers are used during post pro-
cessing. All these help in reducing the instance segmentation errors. Just
using the last two techniques mentioned reduces the errors from 22% to
10% on the test set.

An example that explains the post processing results of this end-to-
end modified UNET framework is given in Figure 41. The three sub
images from left to right represents the ground truth, the semantic seg-
mentation output and the post processed output generating instances

195

Figure 41: The image is a concatenation of three sub images each contain-
ing the same objects. From left to right it represents the ground truth, the
semantic segmentation output and the post processed output generating in-
stances for a group of very closely located non metallic objects.

for a group of very closely located non metallic objects using watershed
markers. The Figure 41 clearly demonstrates how the learning of border
pixels help in creating instances from the semantic output.

The results of segmentation and classification using this end-to-end
framework is tabulated in Table 52. The segmentation precision, segmen-
tation recall and F1 score are all calculated for an IOU threshold of 0.7 in
a way similar to that of the MRCNN framework to make fair compar-
isons. The original UNET is compared with the modified UNET having
the same backbone architecture and connected component analysis mod-
ule to give the meaning of instances to the semantic segmented regions.
The modified UNET has also been tested with different encoder archi-
tectures as explained above and some of them are compared in Table 52.
Different up-sampling techniques for the decoder layers of the UNET
have also been experimented with like nearest neighbor, bilinear interpo-
lation and transposed convolution. Few of them are compared in the Ta-
ble 52. Every time, a new technique is added, like an improved encoder
backbone, a new up-sampling technique, watershed post processing or
test time augmentation, the segmentation and the classification quotient
of the framework is evaluated. The best segmentation precision and seg-
mentation recall achieved with these modifications in the adapted UNET
based end-to-end framework is 90.01 and 92.40 respectively. The cal-
culated true precision in this case is 87.70 which is almost 16% higher
in performance than the modified UNET framework with the same en-
coder architecture and 23% higher than the original UNET framework
with Resnet-101 backbone. This huge performance gain confirms the hy-
pothesis that each of modifications added to the original UNET frame-
work is suitable for this problem.

196

Table 52: Comparison of original UNET (Or. UNET) and modified UNET
(Mod. UNET) output using different CNN encoders with and without wa-
tershed transform and test time augmentations. Con Comp. is an abbrevia-
tion for connected component analysis. Watershed transform post process-
ing is abbreviated as watershed trns. SP, SR, CQ and F1 represents the seg-
mentation precision, recall, classification quality and F1-score respectively.
Bil. Interpol. and Trans. Conv. are abbreviations for bilinear interpolation
and transposed convolution. The bold numbers represent the highest seg-
mentation precision and the F1-score for the Modified MRCNN.

Model Techniques SP SR CQ F1

Or. UNET Resnet-101 70.46 73.19 90.70 71.80Con Comp.

Mod. UNET Wide Resnet-38 75.10 75.41 91.05 75.25Con Comp.

Mod. UNET Wide Resnet-40 77.31 78.46 92.85 77.88Con Comp.

Mod. UNET

Wide Resnet-38

80.71 80.33 95.26 80.52Bil. Interpol.
Watershed Trns.
Con Comp.

Mod. UNET

Wide Resnet-38

80.91 80.45 95.26 80.68Trans. Conv.
Watershed Trns.
Con Comp.

Mod. UNET

Wide Resnet-40

86.91 89.23 97.0 88.05Bil. Interpol.
Watershed Trns.
Con Comp.

Mod. UNET

Wide Resnet-40

88.04 90.55 97.01 89.27Trans. Conv.
Watershed Trns.
Con Comp.

Mod. UNET

Wide Resnet-40

90.01 92.40 97.43 91.19
Trans. Conv.
Watershed Trns.
Con Comp.
Test Augmentation

The performance of this framework is comparable in precision and
classification accuracy with the MRCNN based framework proposed
previously. The classification performance of the UNET framework is

197

1% higher than the MRCNN framework whereas the true precision is
only 0.14% lower. The F1 score of this approach is 91.19 which is slightly
lower than the modified MRCNN framework which is 92.24. But the
biggest gains obtained using this approach are the gains in the training
time, simplicity in the optimization of the network and almost 4 times
gain in the inference speed.

7.4 Summary

The two different deep learning based approaches discussed in this chap-
ter to perform contaminant separation in cleanliness analysis and qual-
ity control, are very compact and efficient solutions in terms of cost, time
and accuracy. Although, there are still some challenges to overcome in
the future works but the success of these methods suggest that using
deep learners is the right direction for solving such real world problems.
Although the cost of an integrated system using any of the solutions
is much lower than the polarized system presently used in the market,
but UNET based framework is the definite winner and is more scalable
than MRCNN framework which is a heavier architecture to train and
has some associated overhead costs in terms of the use of more GPUs
and hardware requirements. Both of these solutions depend on the pre-
vious works in literature mostly for the framework design used, but it is
important to note the main contributions of this research work in terms
of originality, impact and usability.

• Definition of a ROI selection criteria in Mask RCNN to propose
better regions and obtain better quality of segmentation masks.

• Assignment of different weights to the mask loss, the RPN loss and
the classification loss in the objective function of MRCNN.

• Cascaded post processing module with the mask segmentation
head of MRCNN implementing panoptic segmentation metric.

• Transposed convolution in the up-sampling layers of the modified
UNET architecture.

• Using of multiple classification layers in the UNET for learning the
object masks and the border masks separately.

• Introducing the concept of extent ratio to differentiate particles of
different sizes and aspect ratios.

198

• New objective function developed with a combination of two dif-
ferent classification losses (three class weighted cross entropy and
binary cross entropy) and one segmentation loss (Jaccard loss).

• Using the pre-computed weight map during the training that pro-
vides higher weights to the borders of the closely spaced objects
forcing the network to learn them as separate objects.

• Assignment of higher priorities to border pixels than the object-
class pixels, a simple technique used in the modified UNET frame-
work for separating the overlapped or closely spaced objects from
a semantic segmentation output.

• An end-to-end solution cascaded with the UNET framework im-
plementing watershed transform and connected component anal-
ysis to further improve the instance level segmentation. This post
processing module has a huge impact on the segmentation qual-
ity of objects and hence helps to effectively solve the contaminant
separation problem.

• Test time augmentations in modified MRCNN and modified UNET
framework helps to improve the segmentation and classification
quality by 2− 3%.

There are also some suggested ways to further improve the segmenta-
tion and classification performance in future in each of these frameworks
using the following techniques:

• Using overlapping tiles in MRCNN to correct the segmentation er-
rors occurring for the objects present near the border of the image
splits.

• Deal with the class imbalance problem more efficiently in MRCNN
using weighted classification losses based on the class frequencies
or using focal losses (CZY+18; LGG+17).

• Using more efficient way to learn border pixels in UNET and there-
fore contribute towards better segmentation of the instances.

• Replace watershed transform algorithm with more efficient algo-
rithms like deep watershed transform (BU16), discriminative loss
(BNG17) etc. to obtain higher performance.

199

Chapter 8

Conclusion and Future
Directions

To conclude, the thesis consists of two parts. The core part of this re-
search work describe image and video classification using supervised
and semi-supervised deep learning techniques in combination with do-
main knowledge. The theoretical additions are supported empirically
through exhaustive experimental research conducted in this work. The
second part also relates certain domain specific image segmentation tech-
niques and deep learning approaches to solve a supervised instance seg-
mentation task.

To summarize, the first part of the thesis, it presents a statistical rela-
tional learning framework, that tightly integrates perception and reason-
ing together in a hybrid learning system known as Semantic based Reg-
ularization (SBR). The framework efficiently learns from data examples
and logic rules expressed via a set of FOL clauses and then relaxed into
their continuous fuzzy representations. In literature, the SBR framework
used kernel machines as its learning machinery and incorporated FOL
logic rules into the kernel machines. In this research work, for the first
time SBR integrates prior knowledge with different deep convolutional
neural networks. These integrated frameworks allow to learn complex
feature representations from raw inputs in a much more efficient way
as compared to the old kernel based shallow networks. The SBR dis-
tills prior knowledge into the model weights of the deep CNN learners
during training and therefore it effectively addresses the main limitation

201

of deep neural networks which is their heavy dependency on the avail-
ability of labeled data. The important and notable contributions of this
research work includes:

• Using deep neural networks as the learning machinery in SBR and
therefore improving the classification outputs over the shallow net-
works with experimental results demonstrated on image classifica-
tion datasets.

• Defining a novel and efficient backpropagation schema to optimize
deep neural networks with logical constraints making use of ex-
pression trees.

• Increasing the generalization ability of very deep neural networks
trained with supervised examples and prior knowledge which oth-
erwise overfit and have poor generalization ability when trained
with only supervised data examples.

• Demonstrating the benefits of training SBR in learning tasks with
scarcity of data examples in a semi-supervised environment mak-
ing it a very powerful and unified approach to be used in several
real world applications.

• Highlighting the importance of prior knowledge in transductive
learning emulating scenarios like photo tagging in social websites
where the labeled examples contain several missing tags.

• Confirming the empirically the theoretical findings of the posi-
tive implications during optimization while using certain types of
fuzzy logics like Weak-Lukasiewicz through experimental evalua-
tions on image classification problems.

• Using optimization heuristics for inserting concave constraints in
complex optimization problem of SBR, hence making SBR scalable
and flexible with respect to the size of the knowledge base and the
nature of domain knowledge that can be integrated.

• Demonstrating the advantages of using variable regularizers in
vanilla SBR depending on the outputs of supervised learners thus
providing higher degree of regularization and designing better trained
models.

202

• Enforcing consistency among the neural network predictions of the
test set by using collective classification with results demonstrated
on image and video classification tasks.

• Comparing the classification performance of a large collection of
deep neural networks integrated in SBR for the first time with dif-
ferent fuzzy logics on small, medium and learge sized image clas-
sification datasets.

• Enforcing temporal consistency among the video frames through
collective classification in a video sequencing and tool annotation
problem. The results of temporal smoothing using SBR fairly com-
petes with the state-of-the-art framework, DResSys on CATARACTS
dataset.

The extensive and the thorough experimental evaluations demonstrate
the effectiveness of all these techniques in SBR that help in improving
the accuracy of image and video classification tasks with different deep
neural architectures like residual networks, network in network mod-
els etc. and achieving the state-of-the-art results in many of them. The
experimental work done in this thesis provides solid evidence that in-
tegrating domain knowledge into deep neural networks has significant
benefits. Therefore, exploiting the available domain knowledge is ben-
eficial in many real world applications and future work will apply this
methodology to new application areas.

• Although the focus of this research using SBR is on image and
video classification, but the framework is flexible enough to be ex-
tended in future to other machine learning tasks like adversarial
and generative learning as well.

• In this work, the knowledge base (KB) used in the experiments
is mostly hand crafted or built from the taxonomical information
available in the WordNet hierarchy associated with most of the im-
age datasets. As a future work, it is necessary to study how to
automatically design the KB by learning the background knowl-
edge/rules from labeled data in a more principled way.

• Also, it would be useful to study the process of automatically as-
signing weights or priorities to the rules during the learning pro-
cess.

203

• The optimization strategies should also be explored and improved
by searching better the hypothesis space.

• Another interesting direction to explore as future work is the possi-
bility to deal with uncertainty in rules and using rules that are only
valid in a subset of the data patterns.

To summarize the second part of the thesis, that covers an indus-
trial problem of identifying particle contamination, measuring them and
helping in their automatic removal for cleanliness analysis, two compet-
ing deep learning based approaches of object detection and segmentation
are proposed namely modified Mask RCNN framework with improved
region proposal selection criteria and panoptic post processing and mod-
ified UNET with Jaccard loss and watershed post processing. Although
the second part of the thesis is bit different from the first part but it can
still be viewed on a broader perspective as using domain specific im-
age segmentation techniques with deep neural networks integrated in
a less sophisticated fashion but still aiming to solve vision tasks in a
supervised setting. Here, an industrial problem is solved using deep
learning approaches that are more efficient and accurate than the exist-
ing solutions in the market. They help in segmenting and classifying the
contaminant particles from the background filters and performing differ-
ent statistical analysis to determine the number, size, particle type, and
morphology of the particles. Although the frameworks used in solving
the industrial problem is dependent on the previous works in literature,
but there are significant amount of novel contributions added through
this research work that not only makes the existing frameworks more
powerful and more adaptable to real world problems but also shows the
pathway to build end-to-end solutions. The modifications of the existing
frameworks are summarized in Section 7.4. The success of the two ap-
proaches discussed in Chapter 7 suggest that using deep learners is the
right direction for solving this problem. Both of the solutions are com-
pact, easily integrable, portable and scalable to other related problems
in different industries like automobile, aerospace and manufacturing in-
dustries. For example: these solutions can be applied in detection of
roads in aerial satellite imagery, for counting red and white blood cells
in histopathological microscopic images etc. There are few weaknesses
of the proposed solutions as already discussed in Section 7.4 that can
be pursued as the future work to improve the system and design more
accurate solutions for such real world problems.

204

Appendix A

Chapter 5 and Chapter 6:
Image Classification and
Video Classification

A.0.1 Experimental Analysis on ANIMAL Dataset

Results

The following tables represent the comparative results of different t-
norms used in different experimental simulations in Chapter 5 on Win-
ston Animal image classification benchmark.

Table 53 and Table 54 compares all the different t-norms used with
rules and with collective classification in constant weight based SBR and
vanilla SBR for 32 × 32 and 64 × 64 pixel images on Fully transductive
setting of Winston Animal Benchmark. Table 55 and Table 56 compares
all the different t-norms used with rules and with collective classification
in constant weight based SBR and vanilla SBR for 32×32 and 64×64 pixel
images on Partially transductive setting of Winston Animal Benchmark.

Table 57 compares all the t-norms with different image resolutions in
constant and vanilla non transductive SBR. In all of these tables, the nam-
ing conventions like CC-WL and CC-WL (λkl) are Weak-Lukasiewicz,
CC-L and CC-L (λkl) are Lukasiewicz, CC-P and CC-P (λkl) are Product
and CC-M and CC-M (λkl) are Minimum t-norms used in collective clas-
sification in constant and vanilla SBR respectively.

205

Table 53: Comparison of the classification accuracies using rules for the 7 final classes for Fully Labeled Transductive
setting of Winston benchmark.

#Pat WL WL(λkl) L L(λkl) P P(λkl) M M(λkl)
32× 32 pixel Images

3325 93.3 94.2 93.2 93.8 93.3 93.8 93.1 93.8
2450 90.8 91.2 90.9 91.2 90.8 91.1 90.7 91.1
1076 84.2 85.0 84.1 84.8 84.1 84.8 84.1 84.9
500 81.0 81.9 81.0 81.7 81.0 81.7 81.0 81.6
100 68.2 68.8 68.1 68.7 68.0 68.8 68.0 68.8

64× 64 pixel Images
3325 96.4 97.5 96.1 97.2 96.0 97.2 96.0 97.1
2450 92.0 94.0 91.8 93.2 91.6 93.2 91.6 93.5
1076 84.9 85.3 84.2 85.0 84.2 85.0 84.2 85.0
500 82.6 83.0 82.1 82.9 82.1 82.8 82.1 82.8
100 69.0 70.1 69.0 69.8 69.0 69.9 69.0 69.9

206

Table 54: Comparison of the collective classification accuracies for the 7 final classes for Fully Labeled Transductive
setting of Winston benchmark.

#Pat CC-WL CC-WL(λkl) CC-L CC-L(λkl) CC-P CC-P(λkl) CC-M CC-M(λkl)
32× 32 pixel Images

3325 94.1 94.4 94.0 94.3 93.9 94.0 93.7 94.0
2450 90.9 91.4 90.9 91.4 90.8 91.3 90.7 91.2
1076 84.9 85.3 84.9 85.3 84.8 85.2 84.6 84.9
500 81.8 82.0 81.7 81.9 81.6 81.7 81.5 81.6
100 68.4 69.0 68.4 69.0 68.2 68.8 68.2 68.8

64× 64 pixel Images
3325 97.2 97.8 97.1 97.8 97.0 97.5 97.0 97.4
2450 93.9 94.1 93.8 94.1 93.5 93.8 93.5 93.7
1076 85.2 85.4 85.2 85.3 85.0 85.2 85.0 85.2
500 83.0 83.0 82.9 83.0 82.7 82.8 82.7 82.8
100 70.0 70.3 70.0 70.3 69.9 70.1 69.9 70.0

207

Table 55: Comparison of the classification accuracies for the 7 final classes trained with rules in Partially Labeled
Transductive setting on Winston benchmark.

#Pat WL WL(λkl) L L(λkl) P P(λkl) M M(λkl)
32× 32 pixel Images

3325 94.2 96.3 94.0 95.7 94.0 95.6 94.1 95.8
2450 91.2 92.2 91.0 91.6 91.2 91.7 91.2 91.7
1076 84.2 85.3 84.0 85.4 84.0 85.2 84.1 85.2
500 81.9 82.9 81.7 82.6 81.6 82.6 81.6 82.6
100 69.2 70.5 69.2 70.1 69.1 70.1 69.0 69.9

64× 64 pixel Images
3325 97.7 99.0 97.6 98.9 97.5 98.9 97.2 98.9
2450 92.9 94.5 92.9 94.4 92.8 94.5 92.7 94.4
1076 85.1 85.9 85.1 85.9 85.1 85.7 85.1 85.8
500 81.9 83.2 81.8 83.2 81.9 83.2 81.9 83.2
100 74.6 75.5 74.4 75.5 74.5 75.5 74.4 75.4

208

Table 56: Comparison of the collective classification accuracies for the 7 final classes for Partially Labeled Transduc-
tive setting on Winston benchmark.

#Pat CC-WL CC-WL(λkl) CC-L CC-L(λkl) CC-P CC-P(λkl) CC-M CC-M(λkl)
32× 32 pixel Images

3325 96.1 96.8 96.0 96.7 95.8 96.4 95.7 96.4
2450 92.1 92.4 92.0 92.3 91.8 92.0 91.7 91.9
1076 85.0 85.6 85.0 85.4 84.8 85.0 84.8 85.1
500 82.8 83.0 82.7 83.0 82.6 82.8 82.6 82.8
100 70.4 70.7 70.3 70.5 70.1 70.5 70.1 70.5

64× 64 pixel Images
3325 98.9 99.2 98.6 99.2 98.3 98.5 98.2 98.6
2450 94.1 94.9 94.1 94.9 94.0 94.5 94.0 94.4
1076 85.8 85.9 85.8 86.0 85.4 85.7 85.5 85.7
500 83.0 83.4 83.0 83.4 82.9 83.3 82.9 83.3
100 75.4 75.6 75.4 75.6 75.3 75.6 73.2 75.3

209

Table 57: Comparison of the collective classification accuracies for the 7 final classes in non transductive setting with
32× 32 and 64× 64 images of Winston benchmark.

#Pat CC-WL CC-WL(λkl) CC-L CC-L(λkl) CC-P CC-P(λkl) CC-M CC-M(λkl)
(32× 32 pixel Images)

3325 92.9 93.9 92.5 93.2 91.5 91.6 91.6 91.8
2450 88.1 90.1 87.9 89.2 87.9 88.0 87.9 88.0
1076 83.5 83.6 83.4 83.5 81.5 82.8 81.8 82.8
500 81.2 81.3 81.0 81.1 80.0 81.5 81.1 81.2
100 68.0 68.1 67.8 68.0 67.0 67.5 67.1 67.8

(64× 64 pixel Images)
3325 96.5 96.6 96.4 96.6 95.3 96.5 95.3 96.5
2450 92.0 93.1 91.9 92.8 91.9 92.5 91.9 92.2
1076 84.7 84.9 84.6 84.7 84.4 84.7 84.4 84.8
500 82.1 82.3 81.9 82.0 81.9 82.3 81.7 82.0
100 69.4 69.6 69.3 69.6 69.3 69.6 69.3 69.4

210

A.0.2 Experimental Analysis on CIFAR-10 Dataset

Results

Table 58 compares the collective classification error rates obtained on the
test set from the trained CNN models in the non transductive mode us-
ing different selection of t-norms.

Table 59represents the comparison of the collective classification error
rates for the 10 final classes on different t-norms using scarce training
data in CIFAR-10 experiments in non transductive mode.

Table 60 represents the error rate for the 10 final classes of CIFAR-
10 for different deep architectures in transductive learning using prior
knowledge. It also lists the collective classification errors over the net-
work outputs during inference. All the comparisons are made between
different t-norm selections and using constant and predicate dependent
regularizers.

In all of these tables, the naming conventions are the same as in the
ANIMAL dataset like CC-WL and CC-WL (λkl) are Weak-Lukaseiwicz,
CC-L and CC-L (λkl) are Lukaseiwicz, CC-P and CC-P (λkl) are Product
and CC-M and CC-M (λkl) are Minimum t-norms used in collective clas-
sification in constant and vanilla SBR respectively. The deep CNN ar-
chitecture names are presented in the columns called as Models. NIN
is abbreviated for Network in Network model, Res for Resnets, PRes for
Pre-activated Resnets, APN and MPN for Additive Pyramid Resnets and
Multiplicative Pyramid Resnets respectively.

211

Table 58: Error rate for the 10 final classes on CIFAR-10 for different deep architectures in non transductive learning
and collective classification over the network outputs using different selection of t-norms with constant metaparam-
eters or predicate dependent metaparameters λk

l .

Models CNN CC-WL CC-WL(λk
l) CC-L CC-L(λk

l) CC-P CC-P(λk
l) CC-M CC-M(λk

l)
NIN-50 8.81 8.71 8.66 8.77 8.68 8.78 8.70 8.79 8.71
Res-20 8.75 8.01 7.89 8.07 7.92 8.5 8.0 8.5 8.0
Res-32 7.51 7.09 6.88 7.12 6.92 7.13 6.92 7.13 6.93
Res-44 7.17 6.58 6.32 6.78 6.42 6.8 6.5 6.9 6.6
Res-56 6.97 6.39 6.01 6.44 6.13 6.52 6.29 6.56 6.31
Res-110 6.61 5.96 5.54 6.0 5.82 6.3 6.0 6.32 6.01
Res-164 5.93 5.76 5.53 5.88 5.61 6.0 5.8 6.0 5.84
Res-1202 7.93 5.17 5.07 5.19 5.10 5.23 5.1 5.3 5.15
PRes-110 6.37 6.15 6.10 6.21 6.15 6.17 6.12 6.18 6.13
PRes-164 5.46 5.20 5.15 5.36 5.20 5.30 5.26 5.31 5.21
PRes-1202 6.85 6.05 6.01 6.08 6.03 6.1 6.05 6.3 6.1
APN-110, α=48 4.62 4.6 4.43 4.6 4.48 4.6 4.5 4.6 4.52
APN-110, α=84 4.27 4.15 4.09 4.2 4.16 4.2 4.18 4.21 4.19
APN-110, α=270 3.73 3.64 3.60 3.70 3.67 3.7 3.65 3.7 3.64
APN-164, α=48 4.21 4.0 3.95 4.0 3.96 4.1 4.0 4.1 4.01
APN-164, α=84 3.96 3.95 3.66 3.95 3.67 3.95 3.7 3.95 3.72
APN-164, α=270 3.48 3.44 3.40 3.44 3.44 3.45 3.41 3.45 3.42
APN-200, α=240 3.44 3.40 3.38 3.41 3.39 3.41 3.40 3.41 3.40
APN-236, α=220 3.40 3.40 3.31 3.40 3.40 3.40 3.5 3.40 3.5
APN-272, α=200 3.31 3.30 3.22 3.30 3.25 3.31 3.25 3.32 3.26
MPN-110, α=8 4.50 4.39 4.30 4.40 4.32 4.41 4.35 4.41 4.35
MPN-110, α=27 4.06 3.94 3.8 3.95 3.8 3.98 3.81 3.91 3.84

212

Table 59: Comparison of the collective classification error rate for the 10 final classes using scarce training data in
non transductive mode.

Models %Data CNN CC-WL CC-WL(λk
l) CC-L CC-L(λk

l) CC-P CC-P(λk
l) CC-M CC-M(λk

l)

NIN-50
10 27.89 27.14 26.66 27.77 26.68 27.78 26.70 27.79 26.71
20 21.2 20.44 20.37 20.45 20.38 20.51 20.45 20.53 20.48
50 13.10 12.99 12.95 13.0 12.97 13.01 12.99 13.01 12.99

Res-20
10 27.13 26.44 26.21 26.47 26.23 26.5 26.25 26.51 26.27
20 20.7 19.23 19.01 19.41 19.12 19.45 19.2 19.45 19.19
50 12.46 12.32 12.1 12.35 12.11 12.36 12.12 12.36 12.12

Res-32
10 26.62 25.51 25.07 25.55 25.10 25.56 25.12 25.56 25.13
20 18.61 17.89 17.75 17.92 17.80 17.95 17.81 17.95 17.81
50 12.14 11.99 11.90 12.04 11.92 12.1 12.0 12.1 12.0

Res-44
10 25.36 25.12 25.04 25.24 25.18 25.24 25.18 25.24 25.18
20 19.02 17.98 17.44 17.99 17.47 17.99 17.47 17.99 17.47
50 12.08 11.94 11.82 11.97 11.85 12.01 11.9 12.01 11.95

Res-56
10 25.19 25.03 24.9 25.05 24.91 25.04 24.91 25.04 24.91
20 16.39 15.98 15.90 16.01 15.91 16.0 15.91 16.0 15.91
50 11.88 11.42 11.14 11.47 11.15 11.47 11.15 11.47 11.15

Res-110
10 24.78 24.67 24.10 24.69 24.10 24.70 24.11 24.70 24.11
20 15.14 15.01 14.84 15.05 14.88 15.06 14.90 15.06 14.90
50 10.14 10.10 10.0 10.11 10.01 10.12 10.05 10.12 10.05

PRes-110
10 23.96 23.78 23.64 23.81 23.67 23.81 23.67 23.81 23.67
20 14.77 14.32 13.98 14.35 14.0 14.35 14.1 14.40 14.30
50 9.99 9.91 9.85 9.92 9.87 9.91 9.88 9.91 9.88

APN-164, 10 22.85 22.78 22.67 22.80 22.70 22.80 22.70 22.80 22.70
20 13.56 13.41 13.30 13.40 13.30 13.42 13.32 13.42 13.32

α = 270 50 8.77 8.56 8.23 8.59 8.25 8.60 8.26 8.60 8.26

213

Table 60: Error rate for the 10 final classes of CIFAR-10 for different deep architectures in transductive learning and
collective classification over the network outputs using different selection of t-norms with constant metaparameters
or predicate dependent metaparameters λk

l .

Models CNN WL CC-WL CC-WL(λk
l) P CC-P CC-P(λk

l) M CC-M CC-M(λk
l)

NIN-50 8.81 8.21 8.12 8.07 8.25 8.18 8.1 8.3 8.2 8.19
Res-20 8.75 7.7 7.44 7.05 7.9 7.5 7.1 8.0 7.7 7.2
Res-32 7.51 6.85 6.6 6.46 6.9 6.7 6.5 6.9 6.75 6.6
Res-44 7.17 6.23 6.0 5.94 6.3 6.1 6.0 6.31 6.12 6.05
Res-56 6.97 6.2 5.94 5.81 6.2 6.0 5.85 6.21 6.01 5.85
Res-110 6.61 5.52 5.13 4.89 5.57 5.2 4.95 5.55 5.17 4.94
Res-164 5.93 5.2 4.92 4.7 5.28 4.98 4.72 5.29 4.99 4.75
Res-1202 7.93 4.91 4.74 4.5 4.92 4.75 4.55 4.93 4.83 4.67
PRes-110 6.37 5.88 5.82 5.75 5.89 5.82 5.76 5.90 5.85 5.77
PRes-164 5.46 5.02 4.98 4.91 5.05 5.0 4.95 5.05 5.0 4.95
PRes-1202 6.85 5.8 5.72 5.67 5.85 5.75 5.69 5.88 5.74 5.70
APN-110,α=48 4.62 4.0 3.84 3.7 4.05 3.9 3.8 4.06 3.9 3.8
APN-110,α=84 4.27 3.65 3.6 3.49 3.62 3.59 3.45 3.65 3.6 3.5
APN-110,α=270 3.73 3.04 2.99 2.88 3.05 3.0 2.9 3.1 3.06 3.0
APN-164,α=48 4.21 3.6 3.56 3.40 3.6 3.5 3.4 3.61 3.59 3.48
APN-164,α=84 3.96 3.1 2.8 2.67 3.1 2.9 2.7 3.1 2.9 2.8
APN-164,α=270 3.48 2.94 2.87 2.71 2.95 2.89 2.75 2.95 2.90 2.76
APN-200,α=240 3.44 2.88 2.78 2.67 2.89 2.8 2.7 2.9 2.81 2.74
APN-236,α=220 3.40 2.8 2.75 2.64 2.84 2.72 2.67 2.85 2.75 2.68
APN-272,α=200 3.31 2.7 2.61 2.56 2.78 2.64 2.59 2.78 2.65 2.59
MPN-110,α=8 4.50 3.89 3.7 3.66 3.88 3.71 3.67 3.9 3.75 3.68
MPN-110,α=27 4.06 3.49 3.41 3.36 3.50 3.42 3.38 3.5 3.43 3.40

214

A.0.3 Experimental Analysis on CIFAR-100 Dataset

The knowledge base used in CIFAR-100 experiments is given in the long
Table 61 below. The first set of rules exploits the hierarchical relationship
between super and fine classes whereas the next set of rules exploits the
relationship using the additional predicates.

215

Table 61: Rules used for CIFAR-100 experiments. The rules are divided into two groups: First 150 rules expressing
the class taxonomy, and the next group of 50 hand-crafted rules express additional semantic information.

∀X APPLE(X) ∨AQUARIUM FISH(X) ∨BABY(X) ∨BEAR(X) ∨BEAVER (X) ∨ BED(X) ∨BEE(X)
∨BEETLE(X) ∨BICYCLE(X) ∨BOTTLE(X) ∨BOWL (X) ∨BOY(X) ∨BRIDGE(X) ∨BUS(X)
∨BUTTERFLY(X) ∨CAMEL(X) ∨CAN(X) ∨CASTLE(X) ∨ CATERPILLAR(X) ∨CATTLE(X) ∨CHAIR(X)
∨CHIMPANZEE(X) ∨ CLOCK(X) ∨CLOUD(X) ∨COCKROACH(X) ∨COUCH(X) ∨CRAB(X)
∨ CROCODILE(X) ∨CUP(X) ∨DINOSAUR(X) ∨DOLPHIN(X) ∨ELEPHANT(X) ∨FLATFISH(X)
∨FOREST(X) ∨FOX(X) ∨GIRL(X) ∨HAMSTER(X) ∨HOUSE(X) ∨KANGAROO(X) ∨KEYBOARD(X)
∨LAMP(X) ∨ LAWN MOWER(X) ∨LEOPARD(X) ∨LION(X) ∨LIZARD(X) ∨LOBSTER(X) ∨MAN(X)
∨MAPLE TREE(X) ∨MOTORCYCLE(X) ∨MOUNTAIN(X) ∨MOUSE(X) ∨MUSHROOM(X)
∨OAK TREE(X) ∨ORANGE(X) ∨ORCHID(X) ∨OTTER(X) ∨PALM TREE(X) ∨PEAR(X)
∨PICKUP TRUCK(X) ∨PINE TREE(X) ∨PLAIN(X) ∨PLATE(X) ∨POPPY(X) ∨PORCUPINE(X)
∨POSSUM(X) ∨RABBIT(X) ∨RACCOON(X) ∨RAY(X) ∨ROAD(X) ∨ROCKET(X) ∨ROSE(X) ∨SEA(X)
∨SEAL(X) ∨SHARK(X) ∨SHREW(X) ∨SKUNK(X) ∨SKYSCRAPER(X) ∨SNAIL(X) ∨SNAKE(X)
∨SPIDER(X) ∨SQUIRREL(X) ∨ STREETCAR(X) ∨SUNFLOWER(X) ∨SWEET PEPPER(X) ∨TABLE(X)
∨TANK(X) ∨TELEPHONE(X) ∨TELEVISION(X) ∨TIGER(X) ∨ TRACTOR(X) ∨TRAIN(X) ∨TROUT(X)
∨TULIP(X) ∨TURTLE(X) ∨WARDROBE(X) ∨WHALE(X) ∨WILLOW TREE(X) ∨WOLF(X)
∨WOMAN(X) ∨WORM(X)

∀X AQUATIC MAMMALS(X) ∨FISH(X) ∨FLOWERS(X) ∨FOOD CONTAINERS(X)
∨ FRUIT AND VEGETABLES(X) ∨HOUSEHOLD ELECTRICAL (X) ∨HOUSEHOLD FURNITURE(X)
∨INSECTS(X) ∨ LARGE CARNIVORES(X) ∨MAN-MADE OUTDOOR (X)
∨ NATURAL OUTDOOR SCENES(X) ∨ OMNIVORES AND HERBIVORES(X) ∨MEDIUM MAMMALS(X)
∨INVERTEBRATES(X) ∨PEOPLE(X) ∨REPTILES(X) ∨SMALL MAMMALS(X) ∨TREES(X)
∨VEHICLES 1(X) ∨VEHICLES 2(X)

216

∀X AQUATIC MAMMALS(X)⇒ BEAVER(X) ∨DOLPHIN(X) ∨OTTER(X) ∨SEAL(X) ∨WHALE(X)
∀X BEAVER(X)⇒ AQUATIC MAMMALS(X)
∀X DOLPHIN(X)⇒ AQUATIC MAMMALS(X)
∀X OTTER(X)⇒ AQUATIC MAMMALS(X)
∀X SEAL(X)⇒ AQUATIC MAMMALS(X)
∀X WHALE(X)⇒ AQUATIC MAMMALS(X)

∀X FISH(X)⇒ AQUARIUM FISH(X) ∨FLATFISH(X) ∨RAY(X) ∨SHARK(X) ∨TROUT(X)
∀X AQUARIUM FISH(X)⇒ FISH(X)
∀X FLATFISH(X)⇒ FISH(X)
∀X RAY(X)⇒ FISH(X)
∀X SHARK(X)⇒ FISH (X)
∀X TROUT(X)⇒ FISH(X)

∀X FLOWERS(X)⇒ ORCHID(X) ∨POPPY(X) ∨ROSE(X) ∨SUNFLOWER(X) ∨TULIP(X)
∀X ORCHID(X)⇒ FLOWERS(X)
∀X POPPY(X)⇒ FLOWERS(X)
∀X ROSE(X)⇒ FLOWERS(X)
∀X SUNFLOWER(X)⇒ FLOWERS(X)
∀X TULIP(X)⇒ FLOWERS(X)

∀X FOOD CONTAINERS(X)⇒ BOTTLE(X) ∨BOWL(X) ∨CAN(X) ∨CUP(X) ∨PLATE(X)
∀X BOTTLE(X)⇒ FOOD CONTAINERS (X)
∀X BOWL(X)⇒ FOOD CONTAINERS (X)
∀X CAN(X)⇒ FOOD CONTAINERS (X)

217

∀X CUP(X)⇒ FOOD CONTAINERS (X)
∀X PLATE(X)⇒ FOOD CONTAINERS (X)

∀X FRUIT AND VEGETABLES(X)⇒ APPLE(X) ∨MUSHROOM(X) ∨ORANGE(X) ∨PEAR(X)
∨SWEET PEPPER(X)
∀X APPLE(X)⇒ FRUIT AND VEGETABLES(X)
∀X MUSHROOM(X)⇒ FRUIT AND VEGETABLES(X)
∀X ORANGE(X)⇒ FRUIT AND VEGETABLES(X)
∀X PEAR(X)⇒ FRUIT AND VEGETABLES(X)
∀X SWEET PEPPER(X)⇒ FRUIT AND VEGETABLES(X)
∀X HOUSEHOLD ELECTRICAL DEVICES(X)⇒ CLOCK(X) ∨KEYBOARD(X) ∨LAMP(X)
∨TELEPHONE(X) ∨TELEVISION(X)
∀X CLOCK(X)⇒ HOUSEHOLD ELECTRICAL DEVICES(X)
∀X KEYBOARD(X)⇒ HOUSEHOLD ELECTRICAL DEVICES(X)
∀X LAMP(X)⇒ HOUSEHOLD ELECTRICAL DEVICES(X)
∀X TELEPHONE(X)⇒ HOUSEHOLD ELECTRICAL DEVICES(X)
∀X TELEVISION(X)⇒ HOUSEHOLD ELECTRICAL DEVICES(X)

∀X HOUSEHOLD FURNITURE(X)⇒ BED(X) ∨ CHAIR(X) ∨COUCH(X) ∨TABLE(X) ∨WARDROBE(X)
∀X BED(X)⇒ HOUSEHOLD FURNITURE(X)
∀X CHAIR(X)⇒ HOUSEHOLD FURNITURE(X)
∀X COUCH(X)⇒ HOUSEHOLD FURNITURE(X)
∀X TABLE(X)⇒ HOUSEHOLD FURNITURE(X)
∀X WARDROBE(X)⇒ HOUSEHOLD FURNITURE(X)

218

∀X INSECTS(X)⇒ BEE(X) ∨ BEETLE(X) ∨ BUTTERFLY(X) ∨ CATERPILLAR(X) ∨ COCKROACH(X)
∀X BEE(X)⇒ INSECTS(X)
∀X BEETLE(X)⇒ INSECTS(X)
∀X BUTTERFLY(X)⇒ INSECTS(X)
∀X CATERPILLAR(X)⇒ INSECTS(X)
∀X COCKROACH(X)⇒ INSECTS(X)

∀X LARGE CARNIVORES(X)⇒ BEAR(X) ∨LEOPARD(X) ∨LION(X) ∨TIGER (X) ∨WOLF(X)
∀X BEAR(X)⇒ LARGE CARNIVORES(X)
∀X LEOPARD(X)⇒ LARGE CARNIVORES(X)
∀X LION(X)⇒ LARGE CARNIVORES(X)
∀X TIGER(X)⇒ LARGE CARNIVORES(X)
∀X WOLF(X)⇒ LARGE CARNIVORES(X)

∀X LARGE MAN-MADE OUTDOOR THINGS(X)⇒ BRIDGE(X) ∨CASTLE(X) ∨HOUSE(X) ∨ROAD(X)
∨SKYSCRAPER(X)
∀X BRIDGE(X)⇒ LARGE MAN-MADE OUTDOOR THINGS(X)
∀X CASTLE(X)⇒ LARGE MAN-MADE OUTDOOR THINGS(X)
∀X HOUSE(X)⇒ LARGE MAN-MADE OUTDOOR THINGS(X)
∀X ROAD(X)⇒ LARGE MAN-MADE OUTDOOR THINGS(X)
∀X SKYSCRAPER(X)⇒ LARGE MAN-MADE OUTDOOR THINGS(X)
∀X LARGE NATURAL OUTDOOR SCENES(X)⇒CLOUD(X) ∨FOREST(X) ∨MOUNTAIN(X)
∨PLAIN(X) ∨SEA(X)
∀X CLOUD(X)⇒ LARGE NATURAL OUTDOOR SCENES(X)
∀X FOREST(X)⇒ LARGE NATURAL OUTDOOR SCENES(X)

219

∀X MOUNTAIN(X)⇒ LARGE NATURAL OUTDOOR SCENES(X)
∀X PLAIN(X)⇒ LARGE NATURAL OUTDOOR SCENES(X)
∀X SEA(X)⇒ LARGE NATURAL OUTDOOR SCENES(X)

∀X LARGE OMNIVORES AND HERBIVORES(X)⇒ CAMEL(X) ∨ CATTLE(X) ∨ CHIMPANZEE(X)
∨ ELEPHANT(X) ∨ KANGAROO(X)
∀X CAMEL(X)⇒ LARGE OMNIVORES AND HERBIVORES(X)
∀X CATTLE(X)⇒ LARGE OMNIVORES AND HERBIVORES(X)
∀X CHIMPANZEE(X)⇒ LARGE OMNIVORES AND HERBIVORES(X)
∀X ELEPHANT(X)⇒ LARGE OMNIVORES AND HERBIVORES(X)
∀X KANGAROO(X)⇒ LARGE OMNIVORES AND HERBIVORES(X)

∀X MEDIUM MAMMALS(X)⇒ FOX(X) ∨ PORCUPINE(X) ∨ POSSUM(X) ∨ RACCOON(X)
∨ SKUNK(X)
∀X FOX(X)⇒MEDIUM MAMMALS(X)
∀X PORCUPINE(X)⇒MEDIUM MAMMALS(X)
∀X POSSUM(X)⇒MEDIUM MAMMALS(X)
∀X RACCOON(X)⇒MEDIUM MAMMALS(X)
∀X SKUNK(X)⇒MEDIUM MAMMALS(X)

∀X NON-INSECT INVERTEBRATES(X)⇒ CRAB(X) ∨ LOBSTER(X) ∨ SNAIL(X) ∨SPIDER(X)
∨WORM(X)
∀X CRAB(X)⇒ NON-INSECT INVERTEBRATES(X)
∀X LOBSTER(X)⇒ NON-INSECT INVERTEBRATES(X)
∀X SNAIL(X)⇒ NON-INSECT INVERTEBRATES(X)

220

∀X SPIDER(X)⇒ NON-INSECT INVERTEBRATES(X)
∀X WORM(X)⇒ NON-INSECT INVERTEBRATES(X)

∀X PEOPLE(X)⇒ BABY(X) ∨MAN(X) ∨WOMAN(X) ∨BOY(X) ∨GIRL(X)
∀X BABY(X)⇒ PEOPLE(X)
∀X BOY(X)⇒ PEOPLE(X)
∀X GIRL(X)⇒ PEOPLE(X)
∀X MAN(X)⇒ PEOPLE(X)
∀X WOMAN(X)⇒ PEOPLE(X)

∀X REPTILES(X)⇒ CROCODILE(X) ∨ DINOSAUR(X) ∨ LIZARD(X) ∨SNAKE(X) ∨ TURTLE(X)
∀X CROCODILE(X)⇒ REPTILES(X)
∀X DINOSAUR(X)⇒ REPTILES(X)
∀X LIZARD(X)⇒ REPTILES(X)
∀X SNAKE(X)⇒ REPTILES(X)
∀X TURTLE(X)⇒ REPTILES(X)

∀X SMALL MAMMALS(X)⇒ HAMSTER(X) ∨MOUSE(X) ∨ RABBIT(X) ∨SHREW(X) ∨ SQUIRREL(X)
∀X HAMSTER(X)⇒ SMALL MAMMALS(X)
∀X MOUSE(X)⇒ SMALL MAMMALS(X)
∀X RABBIT(X)⇒ SMALL MAMMALS(X)
∀X SHREW(X)⇒ SMALL MAMMALS(X)
∀X SQUIRREL(X)⇒ SMALL MAMMALS(X)

∀X TREES(X)⇒MAPLE TREE(X) ∨ OAK TREE(X) ∨ PALM TREE(X) ∨PINE TREE(X)
∨WILLOW TREE(X)

221

∀X MAPLE TREE(X)⇒ TREES(X)
∀X OAK TREE(X)⇒ TREES(X)
∀X PALM TREE(X)⇒ TREES(X)
∀X PINE TREE(X)⇒ TREES(X)
∀X WILLOW TREE(X)⇒ TREE(X)

∀X VEHICLE 1(X)⇒ BIKE(X) ∨ BUS(X) ∨MOTORBIKE(X) ∨PICKUP TRUCK(X) ∨ TRAIN(X)
∀X BIKE(X)⇒ VEHICLE 1(X)
∀X BUS(X)⇒ VEHICLE 1(X)
∀X MOTORBIKE(X)⇒ VEHICLE 1(X)
∀X PICKUP(X)⇒ VEHICLE 1(X)
∀X TRAIN(X)⇒ VEHICLES 1(X)

∀X VEHICLES 2(X)⇒ LAWN MOWER(X) ∨ ROCKET(X) ∨ STREETCAR(X) ∨ TANK(X) ∨ TRACTOR(X)
∀X LAWN MOWER(X)⇒ VEHICLES 2(X)
∀X ROCKET(X)⇒ VEHICLES 2(X)
∀X STREETCAR(X)⇒ VEHICLES 2(X)
∀X TANK(X)⇒ VEHICLES 2(X)
∀X TRACTOR(X)⇒ VEHICLES 2(X)

222

HAND CRAFTED RULES

∀X MAMMALS (X)⇒ LARGE CARNIVORES(X) ∨ OMNIVORES AND HERBIVORES(X)
∨MEDIUM MAMMALS(X) ∨ SMALL MAMMALS(X) ∨ AQUATIC MAMMALS(X)
∀X LARGE CARNIVORES(X)⇒MAMMALS(X)
∀X OMNIVORES AND HERBIVORES(X)⇒MAMMALS(X)
∀X MEDIUM MAMMALS(X)⇒MAMMALS(X)
∀X SMALL MAMMALS(X)⇒MAMMALS(X)
∀X AQUATIC MAMMALS(X)⇒MAMMALS(X)

∀X HOUSEHOLD(X)⇒ HOUSEHOLD ELECTRICAL DEVICES(X) ∨ HOUSEHOLD FURNITURE(X)
∨ FOOD CONTAINERS(X)
∀X HOUSEHOLD ELECTRICAL DEVICES(X)⇒ HOUSEHOLD(X)
∀X HOUSEHOLD FURNITURE(X)⇒ HOUSEHOLD(X)
∀X FOOD CONTAINERS(X)⇒ HOUSEHOLD(X)

∀X OUTDOOR(X)⇒ LARGE MAN-MADE OUTDOOR THINGS(X)
∨ LARGE NATURAL OUTDOOR SCENES(X) ∨ TREES(X)
∀X LARGE MAN-MADE OUTDOOR THINGS (X)⇒ OUTDOOR(X)
∀X LARGE NATURAL OUTDOOR SCENES(X)⇒ OUTDOOR(X)
∀X TREES(X)⇒ OUTDOOR(X)

∀X TRANSPORT(X)⇒ VEHICLES 1(X) ∨ VEHICLES 2(X)
∀X VEHICLES 1(X)⇒ TRANSPORT(X)
∀X VEHICLES 2(X)⇒ TRANSPORT(X)

223

∀X HAS WHEELS(X)⇒ BICYCLE(X) ∨ BUS(X) ∨MOTORCYCLE(X) ∨ PICKUP TRUCK(X) ∨ TRAIN(X)
∨ LAWN MOWER(X) ∨ STREETCAR(X) ∨ TANK(X) ∨ TRACTOR(X)
∀X BICYCLE(X)⇒ HAS WHEELS(X)
∀X BUS(X)⇒ HAS WHEELS(X)
∀X MOTORCYCLE(X)⇒ HAS WHEELS(X)
∀X PICKUP TRUCK(X)⇒ HAS WHEELS(X)
∀X TRAIN(X)⇒ HAS WHEELS(X)
∀X LAWN MOWER(X)⇒ HAS WHEELS(X)
∀X STREETCAR(X)⇒ HAS WHEELS(X)
∀X TANK(X)⇒ HAS WHEELS(X)
∀X TRACTOR(X)⇒ HAS WHEELS(X)

224

Results

Table 62 and Table 63 compares the collective classification error rates
in a constant weight based SBR and in a vanilla SBR in non transduc-
tive learning respectively using different t-norms for 150 rules created
with the hierarchical information of the super and the fine classes. Res,
PRes, APN, MPN, WRes, WRes-D, WRes-D-RE and WRes-D-C refers
to Resnets, Pre-Activated Resnets, Additive Pyramidal Resnets, Multi-
plicative Pyramidal Resnets, Wide Resnets, Wide Resnets with dropout,
Wide Resnets with dropout and random erasing and Wide Resnets with
dropout and cut outs respectively. Weak-Lukasiewicz, Lukasiewicz, Prod-
uct, Minimum t-norms and Combination and Half-Weight Combination
(different permutations of the t-norms mentioned earlier) are used to in-
ject logical constraints into the CNN networks integrated in the SBR.
They are abbreviated as CC-WL, CC-L, CC-P, CC-M, CC-C and CC-
HW respectively in constant SBR and CC-WL(λkl), CC-L(λkl), CC-P(λkl),
CC-M(λkl), CC-C(λkl) and CC-HW(λkl) in vanilla SBR. Table 64 and Ta-
ble 65 compares the collective classification error rates using scarce train-
ing data in non transductive mode in a constant weight based and in a
vanilla SBR respectively. All the abbreviations in these tables are iden-
tical to the ones described above. Table 66 and Table 68 demonstrates
the classification error rates whereas Table 67 and Table 69 demonstrates
the collective classification error rates when exploiting fine and coarse
classes in transductive mode for different selection of t-norms with con-
stant λl and variable λkl SBR. Table 70 and Table 71 demonstrates the
collective classification error rates for different deep architectures over
125 network outputs (the coarse and fine classes plus the additional 5
classes) using different selection of t-norms with constant and variable
regularizers in non transductive mode. Table 72 and Table 74 demon-
strates the classification error rates whereas Table 73 and Table 75 refers
to the identical experimental settings as in Table 70 and Table 71 respec-
tively with 125 output classes but in transductive mode.

225

Table 62: Error rate for the 100 final classes on CIFAR-100 for different deep architectures in non transductive mode
with collective classification using different selection of t-norms with constant λl.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-32 29.47 28.23 28.23 28.71 29.26 28.23 28.43
Res-110 25.16 23.46 23.47 23.56 24.02 23.45 23.45
Res-164 25.16 23.79 23.81 24.0 24.04 23.77 23.78
PRes-164 24.33 22.44 22.44 22.67 23.09 22.43 22.42
APN-110,α=84 20.21 19.88 19.88 19.94 20.0 19.85 19.85
APN-110, α=270 18.25 18.04 18.04 18.20 18.23 18.04 18.02
APN-164, α=84 18.32 18.11 18.11 18.26 18.27 18.10 18.09
APN-164, α=270 17.01 16.89 16.89 16.91 17.01 16.89 16.90
APN-236, α=220 16.37 16.21 16.22 16.33 16.37 16.21 16.20
APN-272, α=200 16.35 16.05 16.05 16.24 16.32 16.04 16.04
MPN-110, α=27 18.79 18.47 18.49 18.58 18.62 18.49 18.5
WRes-16, γ=8 22.07 21.79 21.79 21.88 22.01 21.78 21.79
WRes-28, γ=10 20.50 20.30 20.30 20.40 20.50 20.30 20.30
WRes-40, γ=4 22.89 21.49 21.49 21.8 22.05 21.45 21.44
WRes-D-28, γ=10 20.04 19.98 19.98 20.0 20.04 19.96 19.95
WRes-D-RE-28, γ=10 17.73 16.42 16.44 16.49 16.52 16.44 16.44
WRes-D-C-28, γ=10 15.2 14.96 14.96 15.0 15.2 14.96 14.96

226

Table 63: Error rate for the 100 final classes on CIFAR-100 for different deep architectures in non transductive mode
with collective classification over the network outputs using different selection of t-norms with variable λk

l .

Models CNN CC-WL(λk
l) CC-L(λk

l) CC-P(λk
l) CC-M(λk

l) CC-C(λk
l) CC-HW(λk

l)
Res-32 29.47 28.04 28.04 28.58 29.22 28.04 28.04
Res-110 25.16 22.76 22.76 22.91 23.54 22.74 22.75
Res-164 25.16 23.46 23.45 23.89 23.98 23.7 23.7
PRes-164 24.33 22.03 22.02 22.34 23.0 22.03 22.0
APN-110, α=84 20.21 19.83 19.83 19.91 19.98 19.8 19.8
APN-110, α=270 18.25 18.01 18.01 18.17 18.31 18.02 18.02
APN-164, α=84 18.32 18.09 18.07 18.19 18.23 18.07 18.07
APN-164, α=270 17.01 16.75 16.72 16.88 16.90 16.73 16.75
APN-236, α=220 16.37 16.01 16.01 16.33 16.33 16.0 16.12
APN-272, α=200 16.35 16.02 16.02 16.22 16.32 16.02 16.02
MPN-110, α=27 18.79 18.41 18.41 18.51 18.62 18.41 18.45
WRes-16, γ=8 22.07 21.75 21.75 21.82 22.01 21.74 21.74
WRes-28, γ=10 20.50 19.94 19.94 19.97 20.1 19.9 19.9
WRes-40, γ=4 22.89 21.42 21.44 21.7 21.99 21.42 21.42
WRes-D-28, γ=10 20.04 19.84 19.84 19.96 19.98 19.85 19.85
WRes-D-RE-28,γ=10 17.73 16.41 16.41 16.44 16.47 16.41 16.40
WRes-D-C-28, γ=10 15.2 14.81 14.81 14.99 14.99 14.80 14.79

227

Table 64: Comparison of the collective classification error rate for the 100 final classes using scarce training data in
non transductive mode with constant SBR.

Models %Data CNN CC-WL CC-L CC-P CC-M CC-C CC-HW

Res-32
10 43.44 41.57 41.58 41.66 41.69 41.56 41.60
20 39.27 38.18 38.19 38.19 38.19 38.17 38.19
50 34.56 33.91 33.91 33.93 33.93 33.90 33.92

PRes-164
10 40.41 40.05 40.1 40.2 40.2 40.05 40.1
20 37.59 37.49 37.50 37.50 37.50 37.49 37.49
50 31.34 31.31 31.30 31.32 31.32 31.30 31.32

APN-236, α = 220
10 31.85 30.57 30.67 30.80 30.70 30.50 30.70
20 28.16 27.41 27.40 27.40 27.42 27.40 27.40
50 20.19 19.56 19.6 19.61 19.61 19.52 19.55

APN-272, α = 200
10 30.85 29.78 29.79 29.80 29.79 29.80 29.80
20 27.56 26.41 26.40 26.40 26.41 26.39 26.40
50 19.77 18.56 18.57 18.59 18.59 18.56 18.56

WRes-28, γ = 10
10 35.85 34.78 34.79 34.80 34.79 34.78 34.80
20 33.56 32.41 32.40 32.40 32.40 32.39 32.40
50 24.77 23.56 23.56 23.59 23.60 23.55 23.56

WRes-D-28, γ = 10
10 33.5 32.30 32.31 32.31 32.31 32.29 32.30
20 31.56 31.41 31.42 31.43 31.43 31.41 31.40
50 23.77 22.56 22.57 22.59 22.59 22.56 22.59

WRes-D-RE-28, γ = 10
10 29.34 27.20 22.21 27.21 27.21 27.20 27.20
20 27.21 26.1 26.15 26.16 26.16 26.1 26.15
50 19.42 18.16 18.20 18.26 18.25 18.16 18.26

WRes-D-C-28, γ = 10
10 28.81 26.79 26.87 26.80 26.80 26.80 26.81
20 26.24 25.51 25.52 25.50 25.51 25.50 25.51
50 18.77 17.23 17.23 17.27 17.25 17.23 17.14

228

Table 65: Comparison of the collective classification error rate for the 100 final classes using scarce training data in
non transductive mode with vanilla SBR.

Models %Data CNN CC-WLλk
l CC-Lλk

l CC-Pλk
l CC-Mλk

l CC-Cλk
l CC-HWλk

l

Res-32
10 43.44 40.14 40.15 40.15 40.15 40.14 40.14
20 39.27 37.44 37.45 37.45 37.45 37.44 37.46
50 34.56 30.99 30.99 31.0 30.99 30.99 30.99

PRes-164
10 40.41 38.12 38.15 38.14 38.18 38.14 38.18
20 37.59 35.98 35.99 35.99 35.99 35.99 35.97
50 31.34 29.94 29.95 29.97 29.98 29.94 29.95

APN-236, α = 220
10 31.85 29.78 29.78 29.80 29.80 29.80 29.80
20 28.16 26.41 26.41 26.40 26.41 26.39 26.39
50 20.19 18.56 18.59 18.59 18.59 18.56 18.56

APN-272, α = 200
10 30.85 27.78 27.77 27.80 27.80 27.77 27.79
20 27.56 23.41 23.41 23.40 23.40 23.39 23.39
50 19.77 17.56 17.57 17.59 17.59 17.54 17.57

WRes-28, γ = 10
10 35.85 33.78 33.79 33.80 33.80 33.78 33.80
20 33.56 31.41 31.42 31.42 31.42 31.40 31.40
50 24.77 22.19 22.19 22.20 22.20 22.19 22.19

WRes-D-28, γ = 10
10 33.5 29.70 29.70 29.71 29.70 29.69 29.70
20 31.56 28.41 28.41 28.47 28.47 28.40 28.40
50 23.77 21.47 21.48 21.47 21.48 21.47 21.47

WRes-D-RE-28, γ = 10
10 29.34 26.90 26.91 26.90 26.90 26.90 26.90
20 27.21 25.41 25.40 25.40 25.41 25.39 25.40
50 19.42 17.56 17.63 17.59 17.59 17.55 17.56

WRes-D-C-28, γ = 10
10 28.81 26.88 26.89 26.89 26.89 26.86 26.89
20 26.24 23.68 23.70 23.70 23.70 23.62 23.68
50 18.77 16.61 16.63 16.69 16.65 16.60 16.61

229

Table 66: Classification error rate for the 100 final classes on CIFAR-100 for different deep architectures using differ-
ent selection of t-norms with constant λl in transductive mode.

Models CNN WL L P M C HW
Res-32 29.47 26.23 26.22 26.23 26.26 26.16 26.13
Res-110 25.16 23.40 23.45 23.46 23.49 23.44 23.24
Res-164 25.16 22.81 22.82 22.84 22.87 22.81 22.81
PRes-164 24.33 21.82 21.84 21.84 21.84 21.72 21.63
APN-110,α=84 20.21 19.10 19.11 19.11 19.10 19.10 19.05
APN-110, α=270 18.25 17.01 17.05 17.04 17.05 17.04 17.01
APN-164, α=84 18.32 16.31 16.35 16.36 16.37 16.29 16.21
APN-164, α=270 17.01 16.10 16.19 16.11 16.11 16.19 16.08
APN-236, α=220 16.37 15.17 15.18 15.18 15.18 15.18 15.17
APN-272, α=200 16.35 14.67 14.69 14.69 14.69 14.64 14.62
MPN-110, α=27 18.79 17.09 17.09 17.18 17.18 17.10 17.05
WRes-16, γ=8 22.07 21.04 21.10 21.14 21.14 20.99 20.92
WRes-28, γ=10 20.50 19.23 19.23 19.24 19.25 19.23 19.23
WRes-40, γ=4 22.89 20.55 20.54 20.57 20.59 20.54 20.57
WRes-D-28, γ=10 20.04 19.18 19.18 19.20 19.22 19.26 19.11
WRes-D-RE-28, γ=10 17.73 15.22 15.21 15.29 15.22 15.24 15.24
WRes-D-C-28, γ=10 15.20 13.90 14.11 14.11 14.12 13.90 13.80

230

Table 67: Collective classification error rate for the 100 final classes on CIFAR-100 for different deep architectures
using different selection of t-norms with constant λl in transductive mode.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-32 29.47 26.03 26.02 26.03 26.06 26.01 26.03
Res-110 25.16 22.90 22.91 22.92 23.02 22.90 22.92
Res-164 25.16 22.59 22.60 22.61 22.64 22.59 22.59
PRes-164 24.33 21.39 21.40 21.40 21.40 21.39 21.40
APN-110,α=84 20.21 18.82 18.83 18.84 19.01 18.82 18.85
APN-110, α=270 18.25 16.74 16.75 16.74 16.75 16.74 16.72
APN-164, α=84 18.32 16.01 16.0 16.06 16.07 16.0 16.01
APN-164, α=270 17.01 15.80 15.79 15.81 15.81 15.79 15.8
APN-236, α=220 16.37 14.97 14.98 14.98 14.98 14.98 14.97
APN-272, α=200 16.35 14.52 14.53 14.54 14.54 14.52 14.54
MPN-110, α=27 18.79 16.79 16.79 16.8 16.82 16.79 16.79
WRes-16, γ=8 22.07 20.91 20.91 20.94 20.94 20.90 20.92
WRes-28, γ=10 20.50 19.03 19.03 19.04 19.05 19.03 19.03
WRes-40, γ=4 22.89 20.40 20.39 20.41 20.45 20.40 20.44
WRes-D-28, γ=10 20.04 18.98 18.98 19.0 19.02 18.96 18.97
WRes-D-RE-28, γ=10 17.73 15.12 15.11 15.19 15.12 15.14 15.14
WRes-D-C-28, γ=10 15.20 13.60 13.61 13.61 13.62 13.60 13.60

231

Table 68: Collective classification error rate for the 100 final classes on CIFAR-100 for different deep architectures
using different selection of t-norms with variable λk

l in transductive mode.

Models CNN WL(λkl) L(λkl) P(λkl) M(λkl) C(λkl) HW(λkl)
Res-32 29.47 25.94 25.94 25.98 25.99 25.94 25.94
Res-110 25.16 21.92 21.93 21.91 21.94 21.84 21.85
Res-164 25.16 21.62 21.64 21.69 21.68 21.61 21.61
PRes-164 24.33 20.73 20.82 20.84 20.76 20.73 20.74
APN-110, α=84 20.21 18.13 18.13 18.19 18.19 18.08 18.08
APN-110, α=270 18.25 16.51 16.51 16.57 16.51 16.51 16.51
APN-164, α=84 18.32 15.89 15.87 15.89 15.93 15.87 15.87
APN-164, α=270 17.01 15.05 15.07 15.08 15.09 15.07 15.07
APN-236, α=220 16.37 13.81 13.81 13.83 13.83 13.80 13.82
APN-272, α=200 16.35 13.12 13.12 13.22 13.22 13.12 13.12
MPN-110, α=27 18.79 15.91 15.91 16.05 15.96 15.91 15.95
WRes-16, γ=8 22.07 20.95 20.95 20.99 20.98 20.94 20.94
WRes-28, γ=10 20.50 18.14 18.14 18.17 18.21 18.21 18.10
WRes-40, γ=4 22.89 19.82 19.84 19.87 19.89 19.82 19.82
WRes-D-28, γ=10 20.04 19.04 19.04 19.06 19.08 19.05 19.05
WRes-D-RE-28,γ=10 17.73 15.11 15.11 15.14 15.17 15.12 15.11
WRes-D-C-28, γ=10 15.20 13.21 13.21 13.29 13.29 13.21 13.19

232

Table 69: Collective classification error rate for the 100 final classes on CIFAR-100 for different deep architectures
using different selection of t-norms with variable λk

l in transductive mode.

Models CNN CC-WL(λk
l) CC-L(λk

l) CC-P(λk
l) CC-M(λk

l) CC-C(λk
l) CC-HW(λk

l)
Res-32 29.47 25.14 25.14 25.18 25.22 25.14 25.14
Res-110 25.16 21.72 21.73 21.81 21.84 21.74 21.75
Res-164 25.16 21.02 21.04 21.09 21.08 21.01 21.07
PRes-164 24.33 20.03 20.02 20.04 20.06 20.03 20.04
APN-110, α=84 20.21 17.83 17.83 17.89 17.89 17.8 17.8
APN-110, α=270 18.25 16.01 16.01 16.07 16.01 16.01 16.01
APN-164, α=84 18.32 15.09 15.07 15.09 15.13 15.07 15.07
APN-164, α=270 17.01 14.75 14.72 14.88 14.90 14.73 14.75
APN-236, α=220 16.37 13.01 13.01 13.03 13.03 13.0 13.02
APN-272, α=200 16.35 12.92 12.92 13.02 13.02 12.92 12.92
MPN-110, α=27 18.79 15.41 15.41 15.50 15.60 15.41 15.45
WRes-16, γ=8 22.07 20.75 20.75 20.82 20.80 20.74 20.74
WRes-28, γ=10 20.50 17.94 17.94 17.97 18.1 17.9 17.90
WRes-40, γ=4 22.89 19.42 19.44 19.47 19.49 19.42 19.42
WRes-D-28, γ=10 20.04 18.84 18.84 18.96 18.98 18.85 18.85
WRes-D-RE-28,γ=10 17.73 15.01 15.01 15.04 15.07 15.01 15.04
WRes-D-C-28, γ=10 15.20 12.81 12.81 12.99 12.99 12.81 12.79

233

Table 70: Collective classification error rate for the 100 final classes on CIFAR-100 for different deep architectures
over 125 network outputs using different selection of t-norms with constant λl in non transductive mode.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-32 29.47 27.5 27.5 28.2 28.81 27.5 27.44
Res-110 25.16 22.80 22.82 23.01 23.94 22.81 22.81
Res-164 25.16 22.81 22.82 23.94 23.98 22.81 22.80
PRes-164 24.33 21.65 21.64 21.83 22.34 22.65 22.64
APN-110,α=84 20.21 19.01 19.01 19.11 19.24 19.15 19.15
APN-110, α=270 18.25 17.22 17.22 17.51 17.64 17.22 17.21
APN-164, α=84 18.32 17.34 17.34 17.66 17.99 17.33 17.33
APN-164, α=270 17.01 16.05 16.05 16.22 16.28 16.04 16.04
APN-236, α=220 16.37 15.40 15.41 15.53 15.57 15.41 15.40
APN-272, α=200 16.35 15.35 15.35 15.42 15.52 15.34 15.34
MPN-110, α=27 18.79 17.74 17.72 17.83 17.92 17.72 17.70
WRes-16, γ=8 22.07 21.0 21.0 21.04 21.23 21.0 21.01
WRes-28, γ=10 20.5 19.6 19.7 19.8 19.9 19.7 19.7
WRes-40, γ=4 22.89 20.74 20.74 21.0 21.2 20.71 20.71
WRes-D-28, γ=10 20.04 19.16 19.16 19.2 19.3 19.16 19.15
WRes-D-RE-28, γ=10 17.73 15.67 15.67 15.70 15.72 15.67 15.67
WRes-D-C-28, γ=10 15.2 14.24 14.24 14.30 14.32 14.2 14.14

234

Table 71: Collective classification error rate for the 100 final classes on CIFAR-100 for different deep architectures
over 125 network outputs using different selection of t-norms with variable λk

l in non transductive mode.

Models CNN CC-WL(λk
l) CC-L(λk

l) CC-P(λk
l) CC-M(λk

l) CC-C(λk
l) CC-HW(λk

l)
Res-32 29.47 27.2 27.2 28.04 28.44 27.2 27.0
Res-110 25.16 22.68 22.68 22.90 23.50 22.65 22.65
Res-164 25.16 22.65 22.65 23.05 23.56 22.65 22.65
PRes-164 24.33 21.20 21.20 21.55 22.28 21.21 21.21
APN-110, α=84 20.21 18.99 18.99 19.01 19.18 19.0 19.0
APN-110, α=270 18.25 17.11 17.11 17.23 17.31 17.11 17.11
APN-164, α=84 18.32 17.16 17.16 17.25 17.25 17.16 17.16
APN-164, α=270 17.01 15.98 15.98 16.01 16.14 15.98 15.98
APN-236, α=220 16.37 15.20 15.20 15.53 15.53 15.2 15.20
APN-272, α=200 16.35 15.07 15.07 15.86 15.72 15.02 15.02
MPN-110, α=27 18.79 17.40 17.38 17.61 17.83 17.38 17.35
WRes-16, γ=8 22.07 20.94 20.93 21.0 21.20 20.90 20.94
WRes-28, γ=10 20.5 19.22 19.24 19.37 19.40 19.24 19.24
WRes-40, γ=4 22.89 20.66 20.65 20.82 21.0 20.46 20.46
WRes-D-28, γ=10 20.04 19.02 19.02 19.14 19.18 19.02 19.0
WRes-D-RE-28,γ=10 17.73 15.48 15.48 15.66 15.68 15.47 15.47
WRes-D-C-28, γ=10 15.20 14.05 14.10 14.14 14.14 14.0 14.0

235

Table 72: Classification error rates for the 100 final classes with 125 outputs from different deep architectures using
different selection of t-norms with constant λl in transductive mode.

Models CNN WL L P M C HW
Res-32 29.47 25.81 25.79 25.81 25.82 25.78 25.74
Res-110 25.16 22.68 22.69 22.69 22.69 22.68 22.64
Res-164 25.16 22.26 22.26 22.26 22.36 21.18 21.07
PRes-164 24.33 21.53 21.54 21.54 21.54 21.49 21.44
APN-110,α=84 20.21 18.91 18.93 18.94 18.89 18.82 18.60
APN-110, α=270 18.25 16.51 16.55 16.54 16.55 16.44 16.42
APN-164, α=84 18.32 16.04 16.10 16.16 16.17 16.05 16.04
APN-164, α=270 17.01 15.80 15.79 15.71 15.71 15.69 15.38
APN-236, α=220 16.37 14.91 14.90 14.91 14.91 14.87 14.84
APN-272, α=200 16.35 14.41 14.40 14.40 14.39 14.37 14.34
MPN-110, α=27 18.79 16.73 16.70 16.72 16.71 16.67 16.65
WRes-16, γ=8 22.07 20.80 20.81 20.80 20.79 20.74 20.74
WRes-28, γ=10 20.50 19.03 19.04 19.04 19.05 19.03 18.93
WRes-40, γ=4 22.89 20.41 20.43 20.44 20.40 20.32 20.27
WRes-D-28, γ=10 20.04 18.62 18.62 18.60 18.57 18.51 18.50
WRes-D-RE-28, γ=10 17.73 15.02 15.01 15.02 15.02 14.97 14.92
WRes-D-C-28, γ=10 15.20 13.55 13.56 13.55 13.56 13.48 13.41

236

Table 73: Collective classification error rates for the 100 final classes with 125 outputs from different deep architec-
tures using different selection of t-norms with constant λl in transductive mode.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-32 29.47 25.38 25.39 25.41 25.46 25.21 25.20
Res-110 25.16 22.06 22.10 22.09 22.94 22.02 22.02
Res-164 25.16 22.05 22.06 22.06 22.16 21.94 21.95
PRes-164 24.33 21.03 21.04 21.04 21.04 21.03 21.04
APN-110,α=84 20.21 18.61 18.63 18.64 18.81 18.62 18.60
APN-110, α=270 18.25 16.11 16.15 16.14 16.15 16.14 16.12
APN-164, α=84 18.32 15.60 15.60 15.66 15.67 15.60 15.58
APN-164, α=270 17.01 15.40 15.39 15.41 15.41 15.39 15.38
APN-236, α=220 16.37 14.71 14.78 14.78 14.78 14.70 14.70
APN-272, α=200 16.35 14.13 14.13 14.14 14.14 14.12 14.11
MPN-110, α=27 18.79 16.27 16.27 16.28 16.29 16.27 16.25
WRes-16, γ=8 22.07 20.30 20.31 20.34 20.34 20.30 20.29
WRes-28, γ=10 20.50 18.73 18.74 18.84 18.85 18.83 18.83
WRes-40, γ=4 22.89 20.11 20.13 20.14 20.15 20.10 20.09
WRes-D-28, γ=10 20.04 18.12 18.12 18.10 18.62 18.11 18.10
WRes-D-RE-28, γ=10 17.73 14.92 14.91 14.92 14.92 14.91 14.90
WRes-D-C-28, γ=10 15.20 13.05 13.06 13.05 13.06 13.04 13.01

237

Table 74: Classification error rate for the 100 final classes on CIFAR-100 for different deep architectures using differ-
ent selection of t-norms with variable λk

l in transductive mode.

Models CNN WL(λkl) L(λkl) P(λkl) M(λkl) C(λkl) HW(λkl)
Res-32 29.47 25.21 25.24 25.22 25.22 25.24 25.28
Res-110 25.16 21.62 21.63 21.61 21.64 21.62 21.68
Res-164 25.16 21.02 21.04 21.09 21.08 21.01 21.01
PRes-164 24.33 20.28 20.29 20.29 20.29 20.28 20.28
APN-110, α=84 20.21 17.91 17.93 17.99 17.99 17.88 17.88
APN-110, α=270 18.25 15.84 15.85 15.87 15.91 15.91 15.90
APN-164, α=84 18.32 15.39 15.37 15.39 15.38 15.37 15.37
APN-164, α=270 17.01 15.05 15.02 15.08 15.10 15.13 15.10
APN-236, α=220 16.37 13.33 13.31 13.33 13.33 13.40 13.42
APN-272, α=200 16.35 13.10 13.12 13.12 13.12 13.11 13.12
MPN-110, α=27 18.79 15.61 15.61 15.60 15.60 15.61 15.55
WRes-16, γ=8 22.07 20.57 20.57 20.58 20.58 20.54 20.57
WRes-28, γ=10 20.50 17.84 17.89 17.87 17.91 17.86 17.85
WRes-40, γ=4 22.89 19.82 19.84 19.84 19.84 19.89 19.88
WRes-D-28, γ=10 20.04 18.54 18.54 18.56 18.58 18.50 18.52
WRes-D-RE-28,γ=10 17.73 14.89 14.89 14.84 14.87 14.89 14.89
WRes-D-C-28, γ=10 15.20 12.90 12.91 12.99 12.99 12.98 12.98

238

Table 75: Collective classification error rate for the 100 final classes on CIFAR-100 for different deep architectures
using different selection of t-norms with variable λk

l in transductive mode.

Models CNN CC-WL(λk
l) CC-L(λk

l) CC-P(λk
l) CC-M(λk

l) CC-C(λk
l) CC-HW(λk

l)
Res-32 29.47 24.91 25.04 25.02 25.02 24.84 24.84
Res-110 25.16 21.22 21.23 21.31 21.34 21.22 21.20
Res-164 25.16 20.62 20.64 20.69 20.68 20.61 20.57
PRes-164 24.33 19.88 19.89 19.94 19.96 19.83 19.84
APN-110, α=84 20.21 17.16 17.13 17.19 17.19 17.08 17.08
APN-110, α=270 18.25 15.44 15.45 15.47 15.51 15.41 15.40
APN-164, α=84 18.32 14.79 14.77 14.79 14.83 14.77 14.77
APN-164, α=270 17.01 14.25 14.22 14.28 14.30 14.23 14.20
APN-236, α=220 16.37 12.67 12.61 12.63 12.63 12.60 13.62
APN-272, α=200 16.35 12.12 12.12 12.42 12.42 12.11 12.02
MPN-110, α=27 18.79 14.41 14.41 14.50 14.60 14.41 14.45
WRes-16, γ=8 22.07 20.37 20.37 20.38 20.38 20.34 20.34
WRes-28, γ=10 20.50 17.14 17.19 17.17 17.61 17.16 17.15
WRes-40, γ=4 22.89 19.12 19.14 19.14 19.14 19.12 19.12
WRes-D-28, γ=10 20.04 18.34 18.34 18.36 18.38 18.30 18.25
WRes-D-RE-28,γ=10 17.73 14.81 14.81 14.84 14.87 14.81 14.84
WRes-D-C-28, γ=10 15.20 12.10 12.11 12.19 12.19 12.08 12.08

239

A.0.4 Experimental Analysis on ImageNet Dataset

Results

Res, PRes, APN, MPN, WRes, WRes-D, WRes-D-RE and WRes-D-C refers
to Resnets, Pre-Activated Resnets, Additive Pyramidal Resnets, Multi-
plicative Pyramidal Resnets, Wide Resnets, Wide Resnets with dropout,
Wide Resnets with dropout and random erasing and Wide Resnets with
dropout and cutouts respectively. Weak-Lukasiewicz, Lukasiewicz, Prod-
uct, Minimum t-norms and Combination and Half-Weight-Combination
(different permutations of the t-norms mentioned earlier) are used to in-
ject logical constraints into the CNN networks integrated in the SBR.

They are abbreviated as CC-WL, CC-L, CC-P, CC-M, CC-C and CC-
HW respectively in constant SBR and CC-WL(λkl), CC-P(λkl), CC-M(λkl),
CC-C(λkl) and CC-HW(λkl) in vanilla SBR.

Table 76 and Table 77 represents the classification error rates with dif-
ferent t-norms for 1000 classes on ImageNet test set for different deep
architectures in a constant weight based and vanilla SBR respectively us-
ing 26 intermediate classes. Table 78 and Table 79 compares the collec-
tive classification error rates for different t-norm selections using scarce
training data in non transductive mode with constant λl and variable λkl
settings.

Table 80and Table 81 represents the classification error rates with dif-
ferent t-norms for different deep architectures in a constant weight based
and vanilla SBR respectively using 581 intermediate classes and 4 levels
of hierarchy. Table 82 and Table 83 compares the collective classification
error rates for different t-norm selections using scarce training data and
581 intermediate predicates in non transductive mode with constant λl
and variable λkl settings.

Table 84and Table 85 represents the classification error rates with dif-
ferent t-norms for different deep architectures in a constant weight based
and vanilla SBR respectively using 1605 intermediate classes and all lev-
els of hierarchy. Table 86 compares the collective classification error rates
for different t-norm selections using scarce training data and 1605 inter-
mediate predicates.

240

Table 76: Classification error rate for 1000 classes on ImageNet for different deep architectures in a constant weight
based SBR using 26 intermediate classes.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-50 24.70 24.46 24.49 24.56 24.56 24.48 24.49
Res-101 23.60 23.57 23.58 23.58 23.59 23.56 23.57
Res-152 23.0 22.80 22.82 22.95 22.95 22.82 22.80
PRes-152 22.20 22.05 22.05 22.14 22.15 22.05 22.06
PRes-200 21.90 21.78 21.78 21.80 21.83 21.80 21.78
APN-200 α=300 20.50 20.14 20.14 20.20 20.23 20.16 20.17
APN-200 α=450 20.10 19.96 20.06 20.08 20.09 19.96 19.96

Table 77: Classification error rate for 1000 classes on ImageNet for different deep architectures in a vanilla SBR using
26 intermediate classes.

Models CNN CC-WL (λk
l) CC-L (λk

l) CC-P (λk
l) CC-M (λk

l) CC-C (λk
l) CC-HW (λk

l)
Res-50 24.70 24.41 24.43 24.50 24.51 24.40 24.41
Res-101 23.60 23.52 23.55 23.56 23.57 23.52 23.52
Res-152 23.0 22.75 22.76 22.80 22.80 22.75 22.76
PRes-152 22.20 22.0 22.0 22.11 22.11 22.0 22.01
PRes-200 21.90 21.73 21.73 21.76 21.79 21.73 21.71
APN-200 α=300 20.50 20.03 20.03 20.17 20.13 20.04 20.07
APN-200 α=450 20.10 19.94 20.04 20.04 20.06 19.90 19.90

241

Table 78: Comparison of the collective classification error rate for 1000 final classes of ImageNet using scarce training
data in non transductive mode with constant λl values.

Models %Data CNN CC-WL CC-L CC-P CC-M CC-C CC-HW

Res-50
10 36.09 35.24 35.27 35.27 35.27 35.20 35.20
20 34.2 33.01 33.07 33.05 33.04 33.01 33.02
50 30.10 28.59 28.55 28.88 28.57 28.57 28.52

Res-101
10 35.13 33.94 33.91 33.87 33.87 33.92 33.90
20 33.7 31.93 31.91 31.91 31.92 31.90 31.90
50 28.46 25.83 25.83 25.85 25.84 25.83 25.82

Res-152
10 34.62 33.1 33.15 33.15 33.15 33.15 33.15
20 32.61 31.19 31.19 31.2 31.19 31.18 31.18
50 26.14 25.99 25.99 26.01 25.99 25.94 25.94

PRes-152
10 33.36 32.12 32.14 32.24 32.18 32.14 32.12
20 31.02 31.98 31.99 31.99 31.97 31.99 31.97
50 26.08 24.94 24.95 24.97 24.95 24.91 24.89

PRes-200
10 33.19 32.81 32.78 32.85 32.89 32.84 31.79
20 30.39 29.29 29.29 29.31 29.39 29.29 29.28
50 25.88 25.12 25.14 25.17 25.15 25.11 25.11

APN-200, α = 300
10 32.85 32.78 32.77 32.80 32.80 32.78 32.76
20 29.56 29.11 29.20 29.20 29.20 29.11 29.13
50 25.77 24.88 24.87 24.89 24.95 24.86 24.86

APN-200, α = 450
10 32.75 31.17 31.17 31.18 31.18 31.16 31.15
20 29.22 28.04 28.04 28.04 28.04 28.04 28.03
50 24.97 24.16 24.17 24.19 24.16 24.15 24.15

242

Table 79: Comparison of the collective classification error rate for 1000 final classes of ImageNet using scarce training
data in non transductive mode with variable λl values.

Models %Data CNN CC-WL CC-L CC-P CC-M CC-C CC-HW

Res-50
10 36.09 34.74 34.76 34.77 34.78 34.70 34.72
20 34.2 32.44 32.47 32.45 32.44 32.41 32.42
50 30.10 27.99 27.95 28.0 27.97 27.97 27.99

Res-101
10 35.13 33.44 33.41 33.47 33.47 33.42 33.40
20 33.7 31.23 31.21 31.31 31.32 31.20 31.20
50 28.46 25.32 25.31 25.35 25.41 25.30 25.32

Res-152
10 34.62 32.51 32.57 32.55 32.55 32.50 32.52
20 32.61 30.89 30.95 30.92 30.90 30.85 30.81
50 26.14 24.99 24.99 25.04 24.99 24.91 24.90

PRes-152
10 33.36 32.12 32.14 32.24 32.18 32.14 32.12
20 31.02 31.98 31.99 31.99 31.97 31.99 31.97
50 26.08 24.94 24.95 24.97 24.95 24.91 24.89

PRes-200
10 33.19 32.03 31.9 32.05 32.09 32.04 31.91
20 30.39 28.98 28.98 29.01 28.99 28.90 28.91
50 25.88 24.42 24.44 24.47 24.45 24.41 24.41

APN-200, α = 300
10 32.85 31.78 31.77 31.80 31.80 31.78 31.76
20 29.56 28.41 28.40 28.40 28.40 28.40 28.39
50 25.77 24.16 24.17 24.19 24.25 24.16 24.16

APN-200, α = 450
10 32.75 30.78 30.78 30.80 30.80 30.80 30.77
20 29.22 27.41 27.40 27.40 27.42 27.40 27.38
50 24.97 23.56 23.63 23.59 23.65 23.55 23.56

243

Table 80: Classification error rate for 1000 classes on ImageNet for different deep architectures in a constant weight
based SBR using 581 intermediate classes.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-50 24.70 24.40 24.41 24.46 24.46 24.38 24.39
Res-101 23.60 23.47 23.48 23.48 23.49 23.45 23.46
Res-152 23.0 22.65 22.72 22.75 22.75 22.62 22.60
PRes-152 22.20 21.85 21.85 21.84 21.85 21.80 21.80
PRes-200 21.90 21.48 21.48 21.49 21.48 21.40 21.41
APN-200 α=300 20.50 20.01 20.04 20.10 20.13 20.01 20.01
APN-200 α=450 20.10 19.56 19.6 19.8 19.79 19.56 19.55

Table 81: Classification error rate for 1000 classes on ImageNet for different deep architectures in a vanilla SBR using
581 intermediate classes.

Models CNN CC-WL (λk
l) CC-L (λk

l) CC-P (λk
l) CC-M (λk

l) CC-C (λk
l) CC-HW (λk

l)
Res-50 24.70 24.20 24.28 24.25 24.25 24.20 24.19
Res-101 23.60 23.29 23.35 23.36 23.37 23.22 23.22
Res-152 23.0 22.15 22.16 22.20 22.20 22.15 22.16
PRes-152 22.20 21.40 21.40 21.41 21.41 21.30 21.31
PRes-200 21.90 21.23 21.23 21.26 21.29 21.23 21.21
APN-200 α=300 20.50 19.73 19.73 19.77 19.83 19.64 19.67
APN-200 α=450 20.10 19.35 19.44 19.46 19.46 19.20 19.20

244

Table 82: Comparison of the collective classification error rate for 1000 final classes of ImageNet using scarce training
data in non transductive mode with constant λl values using 581 predicates.

Models %Data CNN CC-WL CC-L CC-P CC-M CC-C CC-HW

Res-50
10 36.09 34.88 34.87 34.87 34.82 34.70 34.70
20 34.2 32.41 32.47 32.45 32.44 32.41 32.42
50 30.10 27.55 27.45 27.58 27.56 27.54 27.51

Res-101
10 35.13 32.99 32.91 32.97 32.97 32.92 32.90
20 33.7 30.97 30.97 30.96 30.92 30.90 30.90
50 28.46 24.39 24.38 24.5 24.4 24.31 24.32

Res-152
10 34.62 31.91 31.95 31.95 31.95 31.95 31.95
20 32.61 29.19 29.19 29.20 29.19 29.18 29.18
50 26.14 24.39 24.39 24.49 24.49 24.44 24.34

PRes-152
10 33.36 31.41 31.44 31.24 31.18 31.14 31.12
20 31.02 28.84 28.89 28.99 30.17 28.89 28.87
50 26.08 24.14 24.15 24.17 24.15 24.11 24.09

PRes-200
10 33.19 31.11 31.18 31.15 31.19 31.14 31.09
20 30.39 28.89 28.89 28.91 28.99 28.79 28.78
50 25.88 23.12 23.14 23.17 23.15 23.11 23.11

APN-200, α = 300
10 32.85 30.78 30.77 30.80 30.80 30.78 30.76
20 29.56 27.01 27.02 27.02 27.02 27.01 27.01
50 25.77 23.90 23.87 23.89 23.95 23.86 23.86

APN-200, α = 450
10 32.75 29.70 29.71 29.78 29.78 29.76 29.75
20 29.22 26.04 26.04 26.04 26.04 26.04 26.03
50 24.97 21.77 21.77 21.79 21.76 21.75 21.75

245

Table 83: Comparison of the collective classification error rate for 1000 final classes of ImageNet using scarce training
data and 581 predicates in non transductive mode with variable λk

l values.

Models %Data CNN CC-WL CC-L CC-P CC-M CC-C CC-HW

Res-50
10 36.09 33.74 33.76 33.77 33.78 33.70 33.72
20 34.2 31.81 31.87 31.85 31.84 31.81 31.82
50 30.10 26.94 26.95 26.97 26.97 26.97 26.91

Res-101
10 35.13 32.84 32.89 32.87 32.87 32.82 32.80
20 33.7 30.93 30.95 30.95 30.95 30.90 30.90
50 28.46 23.93 23.91 23.95 23.94 23.93 23.92

Res-152
10 34.62 30.51 30.57 30.55 30.55 30.50 30.50
20 32.61 28.17 28.25 28.32 28.29 28.25 28.16
50 26.14 23.71 23.79 23.74 23.79 23.71 23.70

PRes-152
10 33.36 31.12 31.14 31.14 31.18 31.14 31.12
20 31.02 27.98 27.99 27.99 27.97 27.99 27.93
50 26.08 23.90 23.95 23.97 23.95 23.91 23.89

PRes-200
10 33.19 31.03 31.04 31.05 31.09 31.04 31.01
20 30.39 28.05 28.08 28.09 28.09 28.09 28.01
50 25.88 22.42 22.44 22.47 22.45 22.41 22.41

APN-200, α = 300
10 32.85 30.01 30.07 30.08 30.08 30.02 30.01
20 29.56 26.84 26.84 26.84 26.84 26.84 26.83
50 25.77 23.16 23.17 23.19 23.21 23.16 23.16

APN-200, α = 450
10 32.75 28.97 28.98 28.98 28.98 28.98 28.97
20 29.22 25.91 25.94 25.94 25.94 25.94 25.93
50 24.97 20.71 20.73 20.72 20.75 20.70 20.70

246

Table 84: Classification error rate for 1000 classes on ImageNet for different deep architectures in a constant weight
based SBR using 1605 intermediate classes.

Models CNN CC-WL CC-L CC-P CC-M CC-C CC-HW
Res-50 24.70 24.14 24.14 24.16 24.16 24.11 24.11
Res-101 23.60 23.07 23.08 23.08 23.09 23.05 23.06
Res-152 23.0 21.91 22.02 22.05 22.05 21.92 21.91
PRes-152 22.20 20.95 20.95 20.94 20.95 20.90 20.90
PRes-200 21.90 20.88 20.88 20.89 20.88 20.80 20.81
APN-200 α=300 20.50 19.24 19.24 19.30 19.33 19.21 19.21
APN-200 α=450 20.10 18.96 18.96 18.98 18.99 18.96 18.95

Table 85: Classification error rate for 1000 classes on ImageNet for different deep architectures in a vanilla SBR using
1605 intermediate classes.

Models CNN CC-WL (λk
l) CC-L (λk

l) CC-P (λk
l) CC-M (λk

l) CC-C (λk
l) CC-HW (λk

l)
Res-50 24.70 23.80 23.84 23.85 23.85 23.80 23.81
Res-101 23.60 22.90 22.95 22.96 22.97 22.92 22.92
Res-152 23.0 21.25 21.26 21.29 21.30 21.25 21.26
PRes-152 22.20 20.91 20.91 20.91 20.91 20.90 20.90
PRes-200 21.90 20.33 20.33 20.36 20.39 20.32 20.31
APN-200 α=300 20.50 18.93 18.93 18.97 18.98 18.90 18.90
APN-200 α=450 20.10 18.14 18.14 18.16 18.16 18.10 18.10

247

Table 86: Comparison of the collective classification error rate for 1000 final classes of ImageNet using scarce training
data in non transductive mode with constant λl values using 1605 intermediate predicates.

Models %Data CNN CC-WL CC-L CC-P CC-M CC-C CC-HW

Res-50
10 36.09 33.91 33.97 33.97 33.92 33.70 33.70
20 34.2 31.16 31.17 31.15 31.14 31.14 31.12
50 30.10 26.50 26.50 26.80 26.60 26.40 26.40

Res-101
10 35.13 32.02 32.01 32.07 32.07 32.02 32.0
20 33.7 30.07 30.07 30.06 30.02 30.0 30.0
50 28.46 24.03 24.08 24.05 24.04 24.01 24.01

Res-152
10 34.62 30.97 30.95 30.95 30.95 30.95 30.95
20 32.61 28.85 28.89 28.88 28.89 28.88 28.82
50 26.14 23.97 23.98 23.99 23.99 23.94 23.94

PRes-152
10 33.36 30.91 30.94 30.94 30.91 30.91 30.90
20 31.02 28.07 28.08 28.09 28.91 28.09 28.01
50 26.08 23.94 23.95 23.97 23.95 23.91 23.90

PRes-200
10 33.19 30.90 30.98 30.95 30.99 30.94 30.90
20 30.39 27.91 27.91 27.91 27.99 27.91 27.88
50 25.88 22.2 22.24 22.27 22.25 22.21 22.21

APN-200, α = 300
10 32.85 29.80 29.87 29.87 29.87 29.78 29.76
20 29.56 26.81 26.82 26.82 26.82 26.81 26.81
50 25.77 23.10 23.17 23.19 23.15 23.16 23.16

APN-200, α = 450
10 32.75 28.17 28.17 28.18 28.18 28.16 28.15
20 29.22 25.54 25.54 25.54 25.54 25.54 25.53
50 24.97 20.92 20.97 20.99 20.96 20.92 20.92

248

A.0.5 Experimental Analysis on CATARACTS Dataset

Cohen’s Kappa

Cohen’s Kappa (κ) is a coefficient used to measure the inter-rate agree-
ment between two raters for categorical variables (Coh60; Coh68). It is
considered to be a more robust measurement than the simple percent-
age of agreement, as it takes into account the possibility that agreement
between the raters occurs by chance.

Given N items classified into C mutually exclusive categories by 2
independent raters, Cohen’s Kappa κ can be calculated as:

κ =
p0 − pe
1− pe

(A.1)

where p0 is the relative observed agreement among raters and pe is
the hypothetical probability of chance agreement. If nci is the number of
times rater i predicted category c, pe will be:

pe =
1

N2

∑
c

nc1nc2 (A.2)

Cohen’s Kappa ranges between 0 and 1, where 0 is the agreement
only resulting from chance and 1 is perfect agreement between raters.
Substantial disagreement would have the κ falling in the range [0.10, 0.60],
substantial agreement would have κ value ranging between [0.61, 0.80],
and for nearly perfect agreement κ would fall in the range [0.81, 0.99].

Results

In all of the tables below, the AUC-ROC score for each annotated tool by
the CNN ensemble is listed using different techniques.

249

Table 87: Area under ROC curve for each tool using a trained CNN ensem-
ble of 3 deep CNNs on uniform sampling of frames followed by using a
median filtering model for temporal correlation on the test predictions.

Tool Name AUC-ROC
Biomarker 0.722
Charleux cannula 0.935
Hydrodissection cannula 0.983
Rycroft cannula 0.997
Viscoelastic cannula 0.935
Cotton 0.931
Capsulorhexis cystotome 0.999
Bonn forceps 0.970
Capsulorhexis forceps 0.995
Troutman forceps 0.952
Needle holder 0.981
Aspiration handpiece 0.998
Phacoemulsifier handpiece 0.999
Vitrectomy handpiece 0.989
Implant injector 0.989
Primary incision knife 0.991
Secondary incision knife 0.998
Micromanipulator 0.997
Suture needle 0.922
Mendez ring 0.781
Vannas scissors 0.985

250

Table 88: Area under ROC curve for each tool using a trained CNN ensem-
ble of 3 deep CNNs on selective sampling of frames followed by using a
median filtering model for temporal correlation on the test predictions.

Tool Name AUC-ROC
Biomarker 0.910
Charleux cannula 0.941
Hydrodissection cannula 0.980
Rycroft cannula 0.990
Viscoelastic cannula 0.930
Cotton 0.944
Capsulorhexis cystotome 0.987
Bonn forceps 0.969
Capsulorhexis forceps 0.981
Troutman forceps 0.962
Needle holder 0.979
Aspiration handpiece 0.981
Phacoemulsifier handpiece 0.997
Vitrectomy handpiece 0.988
Implant injector 0.988
Primary incision knife 0.994
Secondary incision knife 0.991
Micromanipulator 0.991
Suture needle 0.942
Mendez ring 0.947
Vannas scissors 0.981

251

Table 89: Area under ROC curve for each tool using a trained CNN ensem-
ble of 4 deep CNNs on selective sampling of frames followed by using a
median filtering model for temporal correlation on the test predictions.

Tool Name AUC-ROC
Biomarker 0.932
Charleux cannula 0.966
Hydrodissection cannula 0.984
Rycroft cannula 0.991
Viscoelastic cannula 0.955
Cotton 0.966
Capsulorhexis cystotome 0.988
Bonn forceps 0.985
Capsulorhexis forceps 0.980
Troutman forceps 0.971
Needle holder 0.985
Aspiration handpiece 0.985
Phacoemulsifier handpiece 0.996
Vitrectomy handpiece 0.988
Implant injector 0.989
Primary incision knife 0.991
Secondary incision knife 0.997
Micromanipulator 0.994
Suture needle 0.962
Mendez ring 0.969
Vannas scissors 0.982

252

Table 90: Area under ROC curve for each tool using a trained CNN en-
semble of 4 deep CNNs on selective sampling of frames followed by using
a MRF model on the test predictions. The final design of the DResSys is
compared with the second best solution of the challenge.

Tool Name AUC-ROC
DResSys LaTIM

Biomarker 0.999 0.985
Charleux cannula 0.989 0.984
Hydrodissection cannula 0.996 0.987
Rycroft cannula 0.998 0.995
Viscoelastic cannula 0.987 0.982
Cotton 0.999 0.998
Capsulorhexis cystotome 0.997 0.998
Bonn forceps 0.999 0.994
Capsulorhexis forceps 0.997 0.998
Troutman forceps 0.999 0.997
Needle holder 0.989 0.994
Aspiration handpiece 0.995 0.998
Phacoemulsifier handpiece 0.999 0.999
Vitrectomy handpiece 0.999 0.972
Implant injector 0.998 0.994
Primary incision knife 0.999 0.996
Secondary incision knife 0.999 0.999
Micromanipulator 0.999 0.998
Suture needle 0.999 0.999
Mendez ring 1.000 0.998
Vannas scissors 0.997 0.984

253

Table 91: Area under ROC curve for each tool using a trained CNN ensem-
ble of 4 deep CNNs on selective sampling of frames followed by collective
classification using rules in the SBR framework during inference.

Tool Name AUC-ROC
Biomarker 0.996
Charleux cannula 0.990
Hydrodissection cannula 0.996
Rycroft cannula 0.995
Viscoelastic cannula 0.987
Cotton 0.991
Capsulorhexis cystotome 0.995
Bonn forceps 0.996
Capsulorhexis forceps 0.997
Troutman forceps 0.997
Needle holder 0.981
Aspiration handpiece 0.995
Phacoemulsifier handpiece 0.991
Vitrectomy handpiece 0.989
Implant injector 0.989
Primary incision knife 0.996
Secondary incision knife 0.999
Micromanipulator 0.996
Suture needle 0.999
Mendez ring 0.996
Vannas scissors 0.997

254

Appendix B

Chapter 7: Contaminants
Separation

B.0.1 Modified Mask RCNN based end-to-end solution
with improved RPN

Mask RCNN configuration

The table 92 represents the configuration parameters used for training
and inference of the modified Mask RCNN model used in this thesis for
the contaminant separation problem. Each of the parameter names in the
left column are self explanatory. The parameter names preceded by the
keywordDETECTION are only used in the detection or inference time
whereas most of the parameters are used only during the training time.

The IMAGE MIN DIM and IMAGE MAX DIM represents the
input image height and width and in this case since we use the image
split, the input dimensions are 512, 512. The BATCH SIZE is defined
as the product of the IMAGES PER GPU ×GPU COUNT .

B.0.2 Modified UNET based end-to-end solution with Wa-
tershed Transform

Jaccard Index and Jaccard Loss

The Jaccard index, also known as Intersection over Union and the Jac-
card similarity coefficient (originally coined coefficient de communaut

255

Table 92: Configuration of Modified Mask RCNN.

PARAMETERS VALUES
BACKBONE STRIDES [4, 8, 16, 32, 64]
BATCH SIZE 8
BBOX STD DEV [0.1 0.1 0.2 0.2]
DETECTION MAX INSTANCES 500
DETECTION MIN CONFIDENCE 0.9
DETECTION NMS THRESHOLD 0.4
GPU COUNT 4
IMAGES PER GPU 2
IMAGE MAX DIM 512
IMAGE MIN DIM 512
IMAGE PADDING False
IMAGE SHAPE [512 512 3]
LEARNING MOMENTUM 0.9
LEARNING RATE 0.003
MASK POOL SIZE 14
MASK SHAPE [96, 96]
MAX GT INSTANCES 500
MEAN PIXEL [129.5 129.46 129.56]
MINI MASK SHAPE (96, 96)
NUM CLASSES 4
POOL SIZE 7
POST NMS ROIS INFERENCE 1000
POST NMS ROIS TRAINING 2000
ROI POSITIVE RATIO 0.67
RPN ANCHOR RATIOS [0.2, 0.5, 1, 2, 5]
RPN ANCHOR SCALES (4, 8, 32, 80, 128)
RPN ANCHOR STRIDE 2
RPN BBOX STD DEV [0.1 0.1 0.2 0.2]
RPN TRAIN ANCHORS PER IMAGE 1000
STEPS PER EPOCH 170000
TRAIN ROIS PER IMAGE 500
USE MINI MASK True
USE RPN ROIS True
VALIDATION STEPS 50
WEIGHT DECAY 0.0001

256

by Paul Jaccard), is a statistic used for comparing the similarity and di-
versity of sample sets. The Jaccard coefficient measures similarity be-
tween two finite sample sets, and is defined as the size of the intersection
divided by the size of the union of these sample sets:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
. (B.1)

Since, an image consists of pixels, the Jaccard index can be adapted in the
form of a loss for non discrete objects to be converted into a differentiable
form (IMO17) in the following way:

J =
1

n

m∑
c=1

wc

n∑
i=1

(yci ŷ
c
i

yci + ŷci − yci ŷci

)
(B.2)

where yci and ŷci are the binary values (labels) and the corresponding pre-
dicted probability for the pixel i of the class c. The value of wc values are
chosen through cross validation based on the class frequencies of each
class. The Jaccard loss penalizes for the errors in the segmentation qual-
ity.

257

References

[AHY+18] Md. Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, Tarek M.
Taha, and Vijayan K. Asari. Recurrent residual convolutional neu-
ral network based on u-net (r2u-net) for medical image segmenta-
tion. CoRR, abs/1802.06955, 2018. 171

[ARDK15] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein.
Deep compositional question answering with neural module net-
works. CoRR, abs/1511.02799, 2015. xiii, 19, 20

[Ben09] Yoshua Bengio. Learning deep architectures for ai. Found. Trends
Mach. Learn., 2(1):1–127, January 2009. 7, 14

[BLP+07] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle,
et al. Greedy layer-wise training of deep networks. Advances in
neural information processing systems, 19:153, 2007. 15, 47, 48

[BMG10] Matthias Broecheler, Lilyana Mihalkova, and Lise Getoor. Proba-
bilistic similarity logic. In Proceedings of the Twenty-Sixth Conference
on Uncertainty in Artificial Intelligence (UAI), pages 73–82, 2010. 9

[BNG17] Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic
instance segmentation with a discriminative loss function. CoRR,
abs/1708.02551, 2017. 199

[Bra14] Max Bramer. Logic Programming with Prolog. Springer Publishing
Company, Incorporated, 2nd edition, 2014. 11

[BU16] Min Bai and Raquel Urtasun. Deep watershed transform for in-
stance segmentation. CoRR, abs/1611.08303, 2016. 199

[CL97] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press, Inc., Orlando, FL,
USA, 1997. 8

259

[CLX+17] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan,
and Jiashi Feng. Dual path networks, 2017. 139

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales. Edu-
cational and Psychological Measurement, 20(1):37–46, 1960. 249

[Coh68] Jason A. Cohen. Weighted kappa: nominal scale agreement with
provision for scaled disagreement or partial credit. Psychological
bulletin, 70 4:213–20, 1968. 249

[Coh16] William W. Cohen. Tensorlog: A differentiable deductive database.
CoRR, abs/1605.06523, 2016. 18

[COR+16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene
understanding. CoRR, abs/1604.01685, 2016. 168

[CR03a] C. Cumby and D. Roth. Learning with feature description logics.
In Proceedings of the 12th international conference on Inductive logic
programming, pages 32–47. Springer, 2003. 14

[CR03b] C. Cumby and D. Roth. On kernel methods for relational learning.
In Proceedings of the Twentieth International Conference on Machine
Learning (ICML), pages 107–114, 2003. 14

[CSYU14] Liang-Chieh Chen, Alexander G. Schwing, Alan L. Yuille, and
Raquel Urtasun. Learning deep structured models. CoRR,
abs/1407.2538, 2014. 22

[CZH+18] Wanli Chen, Yue Zhang, Junjun He, Yu Qiao, Yifan Chen, Hongjian
Shi, and Xiaoying Tang. W-net: Bridged u-net for 2d medical im-
age segmentation. CoRR, abs/1807.04459, 2018. 170

[CZY+18] Jie Chang, Xiaoci Zhang, Minquan Ye, Daobin Huang, Peipei
Wang, and Chuanwen Yao. Brain tumor segmentation based on 3d
unet with multi-class focal loss. In 2018 11th International Congress
on Image and Signal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI), pages 1–5. IEEE, 2018. 170, 199

[Dar11] Adnan Darwiche. Sdd: A new canonical representation of propo-
sitional knowledge bases. In IJCAI, 2011. 21

[DGMR10a] M. Diligenti, M. Gori, M. Maggini, and L. Rigutini. Multitask
kernel-based learning with first-order logic constraints. In The 20th
International Conference on Inductive Logic Programming, 2010. 13

260

[DGMR10b] M. Diligenti, M. Gori, M. Maggini, and L. Rigutini. Multitask
Kernel-based Learning with Logic Constraints. In Proceedings of
the 19th European Conference on Artificial Intelligence, pages 433–438.
IOS Press, 2010. 13

[DGMR10c] M. Diligenti, M. Gori, M. Maggini, and L. Rigutini. Multitask
kernel-based learning with logic constraints. In The 19th European
Conference on Artificial Intelligence (ECAI), 2010. 13

[DGMR12] Michelangelo Diligenti, Marco Gori, Marco Maggini, and
Leonardo Rigutini. Bridging logic and kernel machines. Machine
learning, 86(1):57–88, 2012. 13, 20, 22, 30

[DGS15] Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-
based regularization for learning and inference. Artificial Intelli-
gence, 2015. 22, 30, 42

[DGS16] Michelangelo Diligenti, Marco Gori, and Vincenzo Scoca. Learning
efficiently in semantic based regularization. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 33–46. Springer, 2016. 23, 73, 79, 117

[DR04] Pedro Domingos and Matthew Richardson. Markov logic: A uni-
fying framework for statistical relational learning. In ICML-2004
Workshop on Statistical Relational Learning, pages 49–54, 2004. 9

[DT17] Terrance Devries and Graham W. Taylor. Improved regular-
ization of convolutional neural networks with cutout. CoRR,
abs/1708.04552, 2017. xiv, 59, 60, 61, 105, 106, 109

[DXYZ18] Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Tun-
neling neural perception and logic reasoning through abductive
learning. CoRR, abs/1802.01173, 2018. 7, 21

[DYP12] Li Deng, Dong Yu, and John Platt. Scalable stacking and learn-
ing for building deep architectures. In Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on, pages
2133–2136. IEEE, 2012. 15

[EBC+10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine
Manzagol, Pascal Vincent, and Samy Bengio. Why does unsuper-
vised pre-training help deep learning? J. Mach. Learn. Res., 11,
March 2010. 15

[EMGG09] Andreas Ess, Tobias Mueller, Helmut Grabner, and Luc Van Gool.
Segmentation-based urban traffic scene understanding. In BMVC,
2009. 168

261

[FCNL13] Clement Farabet, Camille Couprie, Laurent Najman, and Yann Le-
Cun. Learning hierarchical features for scene labeling. IEEE trans-
actions on pattern analysis and machine intelligence, 35(8):1915–1929,
2013. 48

[FMS02] Glenn M Fung, Olvi L Mangasarian, and Jude W Shavlik.
Knowledge-based support vector machine classifiers. In Advances
in neural information processing systems, pages 521–528, 2002. 13

[GB] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statis-
tics, pages 249–256. 48

[GDGM17] Francesco Giannini, Michelangelo Diligenti, Marco Gori, and
Marco Maggini. Learning łukasiewicz logic fragments by
quadratic programming. In Michelangelo Ceci, Jaakko Hollmén,
Ljupčo Todorovski, Celine Vens, and Sašo Džeroski, editors, Ma-
chine Learning and Knowledge Discovery in Databases, pages 410–426,
Cham, 2017. Springer International Publishing. 42, 43, 81, 97

[Gei12] Andreas Geiger. Are we ready for autonomous driving? the kitti
vision benchmark suite. In Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), CVPR ’12, pages
3354–3361, Washington, DC, USA, 2012. IEEE Computer Society.
168

[Gir15] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. 180

[GLG08] Artur S. d’Avila Garcez, Lus C. Lamb, and Dov M. Gabbay. Neural-
Symbolic Cognitive Reasoning. Springer Publishing Company, Incor-
porated, 1 edition, 2008. 8

[GOO+17] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Vic-
tor Villena-Martinez, and José Garcı́a Rodrı́guez. A review on
deep learning techniques applied to semantic segmentation. CoRR,
abs/1704.06857, 2017. xv, 168

[GT07] Lise Getoor and Ben Taskar. 2007. 9

[Hau99] D. Haussler. Convolution kernels on discrete structures. Technical
report, Department of Computer Science, University of California
at Santa Cruz, 1999. 12

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke,

262

Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of
four research groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012. 7

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick.
Mask R-CNN. CoRR, abs/1703.06870, 2017. 49, 65, 66, 162, 167,
169, 177, 178, 179

[HHS04] P. Hitzler, S. Holldobler, and A. K. Sedab. Logic programs and
connectionist networks. Journal of Applied Logic, 2(3):245–272, 2004.
12

[Hin12] Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltz-
mann Machines, pages 599–619. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. 47, 48

[HKK16] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal
residual networks. CoRR, abs/1610.02915, 2016. 48, 53, 54, 94, 105,
109, 126

[HLC+19] Hassan Al Hajj, Mathieu Lamard, Pierre-Henri Conze, Soumali
Roychowdhury, Xiaowei Hu, Gabija Marsalkaite, Odysseas Zisi-
mopoulos, Muneer Ahmad Dedmari, Fenqiang Zhao, Jonas Prell-
berg, Manish Sahu, Adrian Galdran, Teresa Araujo, Duc My
Vo, Chandan Panda, Navdeep Dahiya, Satoshi Kondo, Zheng-
bing Bian, Jonas Bialopetravicius, Chenghui Qiu, Sabrina Dill,
Anirban Mukhopadyay, Pedro Costa, Guilherme Aresta, Senthil
Ramamurthy, Sang-Woong Lee, Aurelio Campilho, Stefan Za-
chow, Shunren Xia, Sailesh Conjeti, Jogundas Armaitis, Pheng-
Ann Heng, Arash Vahdat, Beatrice Cochener, and Gwenole Quel-
lec. Cataracts: Challenge on automatic tool annotation for cataract
surgery. Medical Image Analysis, 52(2):24 – 41, 2019. xiv, 143, 144,
146, 148, 158, 159

[HML+16] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and
Eric P. Xing. Harnessing deep neural networks with logic rules.
CoRR, abs/1603.06318, 2016. xiii, 16

[Hor51] Alfred Horn. On sentences which are true of direct unions of alge-
bras. Journal of Symbolic Logic, 16(1):1421, 1951. 29

[HZRS15a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385,
2015. 94, 105, 109, 126, 149

263

[HZRS15b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. CoRR, abs/1502.01852, 2015. 48

[HZRS16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016. xiv, 48, 51

[HZRS16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In ECCV, 2016. xiv, 52, 94,
105, 109, 126

[IMO17] Vladimir Iglovikov, Sergey Mushinskiy, and Vladimir Osin. Satel-
lite imagery feature detection using deep convolutional neural net-
work: A kaggle competition. CoRR, abs/1706.06169, 2017. 257

[IS18] Vladimir Iglovikov and Alexey Shvets. Ternausnet: U-net with
VGG11 encoder pre-trained on imagenet for image segmentation.
CoRR, abs/1801.05746, 2018. 169, 171

[ISBS18] Vladimir I. Iglovikov, Selim S. Seferbekov, Alexander V. Buslaev,
and Alexey Shvets. Ternausnetv2: Fully convolutional network
for instance segmentation. CoRR, abs/1806.00844, 2018. 188

[Joh18] Jeremiah W. Johnson. Adapting mask-rcnn for automatic nucleus
segmentation. CoRR, abs/1805.00500, 2018. 171

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 150

[KBB+12] Angelika Kimmig, Stephen H. Bach, Matthias Broecheler, Bert
Huang, and Lise Getoor. A short introduction to probabilistic soft
logic. 2012. 8, 9

[KD05] Stanley Kok and Pedro Domingos. Learning the structure of
markov logic networks. In Proceedings of the 22nd International Con-
ference on Machine Learning (ICML), pages 441–448. ACM, 2005. 9

[KDR02] Kristian Kersting and Luc De Raedt. Towards combining inductive
logic programming with bayesian networks. 09 2002. 10

[KGHD19] Alexander Kirillov, Ross B. Girshick, Kaiming He, and Piotr Dollár.
Panoptic feature pyramid networks. CoRR, abs/1901.02446, 2019.
49

264

[KHG+18] Alexander Kirillov, Kaiming He, Ross B. Girshick, Carsten Rother,
and Piotr Dollár. Panoptic segmentation. CoRR, abs/1801.00868,
2018. 181

[KMP00] E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer
Academic Publisher, 2000. 33

[Kol99] Daphne Koller. Probabilistic relational models. In Proceedings of the
9th International Workshop on Inductive Logic Programming, ILP ’99,
1999. 10

[Kri09] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. 2009. 103, 124

[KSH12a] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012. 7, 48

[KSH12b] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012. 23, 48

[LCQ+17] Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu, and
Pheng-Ann Heng. H-denseunet: Hybrid densely connected unet
for liver and liver tumor segmentation from CT volumes. CoRR,
abs/1709.07330, 2017. 170

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network.
CoRR, abs/1312.4400, 2013. xiii, 48, 49, 50, 94

[LDD+18] Menglu Liu, Junyu Dong, Xinghui Dong, Hui Yu, and Lin Qi. Seg-
mentation of lung nodule in ct images based on mask r-cnn. In
2018 9th International Conference on Awareness Science and Technol-
ogy (iCAST), pages 1–6. IEEE, 2018. 171

[LDG+16] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath
Hariharan, and Serge J. Belongie. Feature pyramid networks for
object detection. CoRR, abs/1612.03144, 2016. xiv, 63, 177, 180

[LeC15] Yann LeCun. Deep learning. Nature, 521, 2015. xiii, 7, 14, 15, 47

265

[LF09] Marco Lippi and Paolo Frasconi. Prediction of protein β-
residue contacts by markov logic networks with grounding–
specific weights. Bioinformatics, 25(18):2326–2333, 2009. 23

[LGG+17] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. CoRR, abs/1708.02002,
2017. 199

[LGRN09] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y
Ng. Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Proceedings of the 26th
annual international conference on machine learning, pages 609–616.
ACM, 2009. 48

[LHB04] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods
for generic object recognition with invariance to pose and lighting.
In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Pro-
ceedings of the 2004 IEEE Computer Society Conference on, volume 2,
pages II–104. IEEE, 2004. 48

[LL18] Jun Liu and PengFei Li. A mask r-cnn model with improved re-
gion proposal network for medical ultrasound image. In Inter-
national Conference on Intelligent Computing, pages 26–33. Springer,
2018. 171, 177, 179

[LLY+18] Ruirui Li, Wenjie Liu, Lei Yang, Shihao Sun, Wei Hu, Fan Zhang,
and Wei Li. Deepunet: A deep fully convolutional network for
pixel-level sea-land segmentation. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, (99):1–9, 2018. 171

[LPDRF06] Niels Landwehr, Andrea Passerini, Luc De Raedt, and Paolo Fras-
coni. kfoil: Learning simple relational kernels. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 6, pages 389–394,
2006. 13

[LSD14] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. CoRR,
abs/1411.4038, 2014. 169, 179

[LSRvdH15] Guosheng Lin, Chunhua Shen, Ian D. Reid, and Anton van den
Hengel. Efficient piecewise training of deep structured models for
semantic segmentation. CoRR, abs/1504.01013, 2015. 22

[MBRR18] Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, and Sebas-
tian Riedel. Towards neural theorem proving at scale. CoRR,
abs/1807.08204, 2018. 19

266

[MDK+18] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig,
Thomas Demeester, and Luc De Raedt. Deepproblog: Neural prob-
abilistic logic programming. CoRR, abs/1805.10872, 2018. 18

[MDP+11] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and
Jan Černockỳ. Strategies for training large scale neural network
language models. In Automatic Speech Recognition and Understand-
ing (ASRU), 2011 IEEE Workshop on, pages 196–201. IEEE, 2011. 48

[Met10] DE) Metzger, Johann (Munich. Method for particle analysis and
particle analysis system, February 2010. xv, 166

[MH16] Xuezhe Ma and Eduard H. Hovy. End-to-end sequence labeling
via bi-directional lstm-cnns-crf. CoRR, abs/1603.01354, 2016. 21

[MLAS05] Stephen Muggleton, Huma Lodhi, Ata Amini, and Michael JE
Sternberg. Support vector inductive logic programming. In Dis-
covery science, pages 163–175. Springer, 2005. 13

[MR18] Pasquale Minervini and Sebastian Riedel. Adversarially regularis-
ing neural NLI models to integrate logical background knowledge.
CoRR, abs/1808.08609, 2018. 18

[Mug] Stephen Muggleton. Inductive logic programming: Derivations,
successes and shortcomings. SIGART Bull., pages 5–11. 8

[Mug96] Stephen Muggleton. Stochastic logic programs. In New Generation
Computing. Academic Press, 1996. 10, 18

[Nak16] Makoto Nakatsuji. Semantic sensitive simultaneous tensor factor-
ization. pages 411–427, 2016. 17

[Nev15] Gomes Vicente Santos Neves Machado Novais Paulo Neves,
Guimaraes. Logic programming and artificial neural networks in
breast cancer detection. In Advances in Computational Intelligence,
pages 211–224, 2015. 17

[NJ07] Jennifer Neville and David Jensen. Relational dependency net-
works. J. Mach. Learn. Res., 8, May 2007. 11

[Nov87] Vilém Novák. First-order fuzzy logic. Studia Logica, 46(1):87–109,
1987. 30, 34

[NS56] A. Newell and H. Simon. The logic theory machine–a complex in-
formation processing system. IRE Transactions on Information The-
ory, 2(3):61–79, 1956. 8

267

[NYC14] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural
networks are easily fooled: High confidence predictions for unrec-
ognizable images. CoRR, abs/1412.1897, 2014. 24

[OWL15] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Hands
deep in deep learning for hand pose estimation. CoRR,
abs/1502.06807, 2015. 168

[PPU03] Alexandrin Popescul, Rin Popescul, and Lyle H. Ungar. Structural
logistic regression for link analysis, 2003. 11

[RAHL18] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le.
Regularized evolution for image classifier architecture search,
2018. 139

[RD06a] M. Richardson and P. Domingos. Markov logic networks. Machine
Learning, 62(1–2):107–136, 2006. 9

[RD06b] Matthew Richardson and Pedro Domingos. Markov logic net-
works. Mach. Learn., 62(1-2):107–136, February 2006. xiii, 9, 10,
23

[RDG18] Soumali Roychowdhury, Michelangelo Diligenti, and Marco Gori.
Image classification using deep learning and prior knowledge,
2018. 97

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. CoRR,
abs/1505.04597, 2015. xiv, 67, 68, 162, 167, 169, 170, 187, 188

[RFKE08] L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton (Eds).
Probabilistic Inductive Logic Programming, volume 4911. Springer,
Lecture Notes in Artificial Intelligence, 2008. 18

[RHGS15] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster
R-CNN: towards real-time object detection with region proposal
networks. CoRR, abs/1506.01497, 2015. 64, 65

[RKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog:
A probabilistic prolog and its application in link discovery. In IJ-
CAI, pages 2462–2467, 2007. 8, 18, 19, 23

[RR16] Tim Rocktschel and Sebastian Riedel. Learning knowledge base
inference with neural theorem provers. pages 45–50, 01 2016. 19

268

[SDdG17] Luciano Serafini, Ivan Donadello, and Artur S. d’Avila Garcez.
Learning and reasoning in logic tensor networks: theory and ap-
plication to semantic image interpretation. In Proceedings of the
Symposium on Applied Computing, SAC 2017, Marrakech, Morocco,
April 3-7, 2017, pages 125–130, 2017. 17, 23

[SGDG18] Sohil Shah, Pallabi Ghosh, Larry S. Davis, and Tom Goldstein.
Stacked u-nets: A no-frills approach to natural image segmenta-
tion. CoRR, abs/1804.10343, 2018. 169

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1–9, 2015. xiv, 24, 48, 56, 57

[SMKR13] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and
Bhuvana Ramabhadran. Deep convolutional neural networks for
lvcsr. In Acoustics, speech and signal processing (ICASSP), 2013 IEEE
international conference on, pages 8614–8618. IEEE, 2013. 48

[SNB+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in net-
work data. AI magazine, 29(3):93, 2008. 40

[SS18] Janpreet Singh and Shashank Shekhar. Road damage detection
and classification in smartphone captured images using mask r-
cnn. arXiv preprint arXiv:1811.04535, 2018. 171

[STE13] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep
neural networks for object detection. In NIPS, 2013. 7

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016. 56, 149

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556,
2014. 48, 55

[TAWK] Ben Taskar, Pieter Abbeel, Ming-Fai Wong, and Daphne Koller. Re-
lational markov networks. 11

269

[TJLB14] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bre-
gler. Joint training of a convolutional network and a graphical mo-
del for human pose estimation. In Advances in neural information
processing systems, pages 1799–1807, 2014. 48

[TL19] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scal-
ing for convolutional neural networks, 2019. 138

[TS94] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based arti-
ficial neural networks. Artificial Intelligence, 70(1):119 – 165, 1994.
xiii, 7, 11, 12, 13, 23

[TYW14] Yaniv Taigman, Ming Yang, and Lior Wolf. L.: Deepface: Clos-
ing the gap to human-level performance in face verification. In In:
IEEE CVPR, 2014. 7

[WD08] J. Wang and P. Domingos. Hybrid markov logic networks. In Pro-
ceedings of the 23-rd AAAI Conference on Artificial Intelligence, pages
1106–1111, 2008. 9, 23

[WH86] Patrick Henry Winston and Berthold K Horn. Lisp. Addison Wes-
ley Pub., Reading, MA, 1986. 73

[Win] Particle contamination. https://www.leica-microsystems.
com/science-lab/cleanliness-analysis-in-\
relation-to-particulate-contamination/. xv, 162,
163

[WWH+14] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu,
Jianke Zhu, Yongdong Zhang, and Jintao Li. Deep learning for
content-based image retrieval: A comprehensive study. In Proceed-
ings of the 22Nd ACM International Conference on Multimedia, MM
’14, pages 157–166, New York, NY, USA, 2014. ACM. 168

[WWZY17] Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun Yan. Combin-
ing knowledge with deep convolutional neural networks for short
text classification. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages 2915–2921,
2017. 17

[XGD+16] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaim-
ing He. Aggregated residual transformations for deep neural net-
works. CoRR, abs/1611.05431, 2016. xiv, 49, 55, 56, 177

[XLZS18] Xinpeng Xie, Yuexiang Li, Menglu Zhang, and Linlin Shen. Ro-
bust segmentation of nucleus in histopathology images via mask

270

https://www.leica-microsystems.com/science-lab/cleanliness-analysis-in-\relation-to-particulate-contamination/
https://www.leica-microsystems.com/science-lab/cleanliness-analysis-in-\relation-to-particulate-contamination/
https://www.leica-microsystems.com/science-lab/cleanliness-analysis-in-\relation-to-particulate-contamination/

r-cnn. In International MICCAI Brainlesion Workshop, pages 428–436.
Springer, 2018. 171

[XSNT18] Xiaozheng Xie, Faqiang Shi, Jianwei Niu, and Xiaolan Tang. Breast
ultrasound image classification and segmentation using convolu-
tional neural networks. In Pacific Rim Conference on Multimedia,
pages 200–211. Springer, 2018. 171

[XZF+18] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy
Van den Broeck. A semantic loss function for deep learning with
symbolic knowledge. pages 5502–5511, 2018. 20

[YTRW18] Fan Yu, Xin Tan, Tongwei Ren, and Gangshan Wu. Human-centric
visual relation segmentation using mask r-cnn and vtranse. In Eu-
ropean Conference on Computer Vision, pages 582–589. Springer, 2018.
169

[Zad65] Lofti A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
30

[ZF13] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013. 48

[Zhu18] Juntang Zhuang. Laddernet: Multi-path networks based on u-net
for medical image segmentation. CoRR, abs/1810.07810, 2018. 170

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. CoRR, abs/1605.07146, 2016. 48, 54, 55, 105, 109, 188

[ZLW17] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extrac-
tion by deep residual u-net. CoRR, abs/1711.10684, 2017. 171

[ZMRSTL18] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. UNet++: A Nested U-Net Archi-
tecture for Medical Image Segmentation: 4th International Workshop,
DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018,
Proceedings, pages 3–11. 09 2018. 170

[ZVSL17] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le.
Learning transferable architectures for scalable image recognition.
CoRR, abs/1707.07012, 2017. 57, 59, 139, 149

[ZYZ+18] Zhuo Zhao, Lin Yang, Hao Zheng, Ian H Guldner, Siyuan Zhang,
and Danny Z Chen. Deep learning based instance segmentation
in 3d biomedical images using weak annotation. In International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pages 352–360. Springer, 2018. 171

271

[ZZK+17] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang.
Random erasing data augmentation. CoRR, abs/1708.04896, 2017.
xiv, 59, 60, 105, 106, 109

Unless otherwise expressly stated, all original material of whatever
nature created by Soumali Roychowdhury and included in this the-
sis, is licensed under a Creative Commons Attribution Noncommer-
cial Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:soumali.roychowdhury@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Motivation of the thesis
	1.2 Overview of the thesis

	2 Integration of Logic and Learning
	2.1 Related Works
	2.1.1 Symbolic Learning Methods
	2.1.2 Integration of Logic and Learning : Hybrid Learning Methods
	2.1.3 Integration of Logic into Deep Learners

	2.2 Semantic Based Regularization : Motivation

	3 Semantic Semi-Supervised Learning
	3.1 Definitions and Terminologies
	3.2 First-Order Logic
	3.3 Learning with Constraints
	3.3.1 Constraints and Logic
	3.3.2 Translation of FOL clauses into constraints

	3.4 Backpropagation with Logic Constraints
	3.4.1 Collective Classification
	3.4.2 Optimization

	3.5 SBR as multi-layer architecture
	3.6 Summary

	4 Machine Learning Methods and Frameworks for Vision Tasks
	4.1 Methods and Deep Neural Network architectures used in Vision Tasks
	4.2 Methods and Frameworks for Image Segmentation
	4.3 Summary

	5 Image Classification
	5.1 Simulators and Metrics
	5.2 Experimental Analysis on ANIMAL Dataset
	5.2.1 Knowledge Domain
	5.2.2 Experimental Settings
	5.2.3 CNN Models
	5.2.4 Results
	5.2.5 Discussion

	5.3 Experimental Analysis on CIFAR-10 Dataset
	5.3.1 Knowledge Domain
	5.3.2 CNN Models
	5.3.3 Results
	5.3.4 Discussion

	5.4 Experimental Analysis on CIFAR-100 Dataset
	5.4.1 Knowledge Domain
	5.4.2 CNN models
	5.4.3 Results
	5.4.4 Discussion

	5.5 Experimental Analysis on ImageNet Dataset
	5.5.1 Knowledge Domain
	5.5.2 CNN Models
	5.5.3 Results
	5.5.4 Discussion

	5.6 Summary

	6 Video Classification
	6.1 Dataset and Problem Description
	6.2 Experimental Analysis
	6.2.1 Overview
	6.2.2 Data Pre-processing
	6.2.3 CNN Models
	6.2.4 Post Processing - Temporal smoothing
	6.2.5 Results

	6.3 Summary

	7 Contaminant Separation
	7.1 Introduction
	7.2 Related Works
	7.2.1 Semantic vs Instance segmentation models on natural images
	7.2.2 Semantic vs Instance segmentation on medical or pathological images
	7.2.3 Semantic vs Instance segmentation on other problem specific images

	7.3 Experimental Methods and Evaluation
	7.3.1 Dataset
	7.3.2 Evaluation Metrics
	7.3.3 Modified Mask RCNN based end-to-end solution with improved RPN
	7.3.4 Modified UNET based end-to-end solution with Watershed Transform

	7.4 Summary

	8 Conclusion and Future Directions
	A Chapter 5 and Chapter 6: Image Classification and Video Classification
	A.0.1 Experimental Analysis on ANIMAL Dataset
	A.0.2 Experimental Analysis on CIFAR-10 Dataset
	A.0.3 Experimental Analysis on CIFAR-100 Dataset
	A.0.4 Experimental Analysis on ImageNet Dataset
	A.0.5 Experimental Analysis on CATARACTS Dataset

	B Chapter 7: Contaminants Separation
	B.0.1 Modified Mask RCNN based end-to-end solution with improved RPN
	B.0.2 Modified UNET based end-to-end solution with Watershed Transform

	References

