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Abstract

The main motivations for studying reversible computing comes
from the promise that reversible computation (and circuits)
would lead to more energy efficient computers. Besides cir-
cuits, nowadays, reversibility is studied in many other do-
mains. This thesis studies the expressiveness of the causal-
consistent reversibility (a well-known notion of reversibility
for concurrent systems) in CCS and π-calculus.

First, we show that by means of encodings, LTSs of Reversible
CCS (introduced by Danos and Krivine) and CCS with Com-
munications Keys (introduced by Phillips and Ulidowski) are
isomorphic up to some structural transformations of processes.
An explanation of this result is the existence of one causality
notion in CCS.

In π-calculus, two forms of dependences between the actions
give rise to different causal semantics. The main difference is
how the parallel extrusion of the same name is treated. We
consider three approaches to parallel extrusion problem rep-
resented with causal semantics introduced by Boreale et al;
Crafa et al; and Cristescu et al. To study them, we devise a
framework for reversible π-calculi, parametric with respect to
the data structure used to keep track of information about a
name extrusions. We show that reversibility induced by our
framework is causally-consistent and prove causal correspon-
dence between the semantics given by Boreale et al, and the
corresponding instance of the framework.
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Chapter 1

Introduction

This thesis studies the relations between different models for reversible
concurrent computations and provides a common framework in which
different models can be compared. These models are based on process
algebras. A process algebra can be seen as formal language endowed with
very few basic primitives necessary to describe a system behaviour from
an abstract point of view.

Starting from the calculus of communicating systems (CCS), a widely
adopted process algebra, we investigate the expressive power of two
well-known reversible extensions of CCS. We will investigate whether
these two extensions are equivalent, what will allow us to have results
transfer from one model to the other, and vice versa.

By moving to a more complex model featuring name creation (π-
calculus) and name passing (e.g., names can be sent as value) there are
several proposals on what its causal semantics should be. We then propose
a reversible framework able to map some of these proposals, and we
highlight the differences among them.

1.1 Reversibility and Causality

The main motivation for studying reversible computing dates back to the
60’s when Landauer [48] discovered that only irreversible computation
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generates heat. The aim was to reduce heat dissipation in computing
machinery, and thus achieve higher density and speed. Since then there
has been a huge debate whether the Landaure’s principle is practically
valid [2; 12; 29].

Today, reversibility is studied in different domains: biological and
chemical modelling [18; 25; 46; 68; 69], since many biochemical reactions
are by nature reversible; program debugging [13; 28; 30; 54; 81] and test-
ing [75], where during debugging time program can go back to the state
where certain conditions are met; quantum computing [33], since most
operations are naturally reversible; thermodynamical physics [5]; and
reliable systems, where many models such as transactions [35], system-
recovery schemes [27] and checkpoint-rollback protocols [47], rely on
some forms of undo. Distributed reversible actions can represent the
structural blocks for different transactional models [24; 49] and recovery
schemes.

An important property of reversible system is ability to detect the last
action of a computation. In a sequential setting, reversibility is well under-
stood [42], since there is only one order of the computation, executions of
the backward steps start from the very last action that system performed.
For instance, if the system performed actions abc, then the backward
steps start from the very last action c followed by b and a. The appli-
cation of reversibility in sequential setting is given with Janus [56; 78],
the first reversible-structured programming language; and RFUN [79],
the reversible functional programming language. The main interest is in
reducing the garbage size [80] and executing the reversible simulation
without generating the garbage data [4]. A reversible object-oriented
language JouleR with the implementation based on Janus, is given in [74].

Recent work on reversing imperative programming languages is given
in [38; 39] where a state-saving approach to reverse an imperative program
is used. One of the main challenges was modification of the initially
defined method to support parallelism.

Reversibility in a concurrent setting is more complex. For instance, if
system a.b | c performs forward actions a, c and b, one could ask what is a
correct backward computation? One of the solutions could be executing
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backward actions in the opposite order of the forward steps, i.e. reversing
b, followed by c and then a in the end. Is it possible to reverse actions
with ordering c, b, a? In the concurrent setting, notion of the last action
is not clearly defined. A suitable definition of what is the last action in a
concurrent system is given by notion of causally-consistent reversibility.
It is presented by Danos and Krivine for reversible CCS [23]. Causally-
consistent reversibility connects causality and reversibility of a concurrent
system through the definition of the last action: an action can be reversed
(considered as the last one), only if all its consequences have been reversed.
Aside from causal-consistent reversibility, other works consider different
notions of reversibility: out-of-causal order [64; 66; 68; 69; 76] and back-
tracking [39; 64]. They are mostly used to model different biochemical
systems.

In this thesis, we focus on causal-consistent reversibility for concurrent
systems described via process algebras [11], in particular: Calculus of
Communicating Systems (CCS) [60] and π-calculus [73].

Beside in the setting of process algebra, there are some recent works
in which reversibility is studied in terms of Petri Nets [7; 8; 9; 64]. Re-
versibility in [7; 9] is achieved by adding reversed versions of the chosen
transitions in a Petri Net. Another approach to reversibility in Petri Net is
given in [64] and it is obtained by distinguishing between two notions of
tokens: notion of base tokens, which represent the basic entities occurring
in the system identified with unique names; and bonds tokens, new type
of token created by transitions. By reversing a transition, all tokens are
shifted from the outgoing edges to the incoming places of the transition
and bonds created by transition are interrupted. The authors give se-
mantics that capture three different types of reversibility: backtracking,
causal reversibility and out-of-causal-order reversibility. The encoding of
reversible Petri nets into a coloured Petri nets [41] is given in [8].

A process algebra can be seen as a tool for the high-level description of
interactions, communications, and synchronisations between a collection
of independent processes. It also provides algebraic laws that allow
process descriptions to be manipulated and analysed, and permit formal
reasoning about equivalences between processes (e.g. using bisimulation).
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To make a concurrent calculus reversible, we need to answer on two
challenges at the same time: how to keep track of past actions and how to
ensure that causality relation between the actions will be respected.

In CCS, there is only one notion of causality, so-called structural causal-
ity, which is induced by the prefixing operator ’.’ and by synchronisations.
Despite this intuition, there exist two different approaches to reversibil-
ity in CCS, namely Reversible CCS (RCCS), introduced by Danos and
Krivine [23] and CCS with communication keys (CCSK), introduced by
Phillips and Ulidowski [70]. In Section 1.2 we will review these two ap-
proaches and all the works that have sprang from them. Differently from
CCS, in π-calculus exist two kinds of dependences between the actions:
subject (structural) and the object dependency. Different interpretation of
the object dependency give rise to different causal semantics for π-calculus
which we recall through a common example in Section 1.3.

1.2 Reversibility in CCS

The first approach to reversibility in CCS is introduced in [23], where the
main idea is to attach memories to every CCS process. History information
of the process is kept into the memories organised as stacks of events, with
the very last event that process did, on the top of the stack. The reversible
process is of the form m.P , where m is a memory and P is a CCS process.
Memory shared by two processes in parallel, needs to be duplicated and
attached to both processes separately, through the structural rule. Two
obtained reversible processes evolve independently. In Section 2.1, we
give more details about RCCS.

In [70], Phillips and Ulidowski presented a general method for revers-
ing process calculi, given in a SOS [71] format. The reversible extension
is obtained through two main points: communication keys attached to
every action used to uniquely identify actions; and every operator of the
calculus is made static. The second reversible CCS, called CCS with com-
munication keys (CCSK) is obtained by applying method given in [70]
on CCS. Executed actions are not discarded, but annotated with the com-
munication keys. Thanks to that and static operators, history information
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is spread along the structure of the process, hence there is no need for
external memories. In Section 2.2, we give more details about CCSK.

Two approaches mentioned above, have evolved independently for
more than 10 years, giving rise to many extensions and results, for RCCS
[3; 20; 22; 24; 25; 43] and CCSK [34; 45; 46; 65; 67; 68; 77]. Some of
them finds their application in dependable systems or biology and chem-
istry modelling, while some are used for studying different models of
reversibility.

Distinction between reversible and irreversible (commit) actions in
RCCS is used to describe transactions [24], where commit of the successful
transaction, is modelled by irreversible action. A method for the verifi-
cation of distributed systems which uses an algorithm of relative causal
compression was proposed in [43]. The processes one wants to verify
must use a generic backtracking mechanism. Additionally, the original
RCCS [23] is improved by simplifying the handling of memories and by
making the splitting through the parallel composition commutative. The
approach to reversibility introduced in RCCS is shifted and adapted to
π-calculus [20].

Different biochemical systems can be modelled by extensions of RCCS
and CCSK. In particular, transcription of a protein in DNA, can be de-
scribed by CCS-R [25], calculus based on RCCS. The asynchronous RCCS
[23] can be encoded into a eversible structures given in [18], used to model
DNA three-domains stand.

An extension of the CCSK with the execution control mechanism
which allows one to control the direction of the computation, is given
in [68]. Process X , controlled by Y is represented as X〈Y 〉. In this way
the computation direction of the process X is dictated by the controller Y .
For instance, if X = a.b.b and Y = b.a, then X〈Y 〉 executes until the first
action b in X is executed (from the left in textual representation) and then
reverse until it does not undo the action a. The new obtained calculus is
used to model the ERK signalling pathway, which delivers signals from
the membrane of a cell to its nucleus. This was the first process calculus
for so called out-of-causal order reversible computation (computation in
which reversible steps are not respecting causality). While in [68] control
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mechanism is external to the process it controls and can have global scope,
in [44; 45; 46], authors introduced reversible process calculus CCB with a
prefixing operator inspired by the model of covalent bonding. The new
prefixing operator provides a local control of the direction of computation.
The new prefix is of the form (s; b).P , where s is a sequence of actions
or executed actions and b is a weak action. Action b can happen only
provided that all actions in s were executed. Performing b then forces
undoing one of the past actions in s, let say it is action a ∈ s. Then bond
is promoted from the weak b to the the strong a, after what, weak action b
can bond again. This type of locally controlled reversibility is shown to be
suitably to model hydration of formaldehyde in water into methanediol.

A subcalculus of RCCS (RCCS without auto-concurrency, auto-conflict
and recursion) can be modelled in configuration structures [3]. The au-
thors studied relation induced on configuration structures by the barbed
back-and-forth congruence. The interpretation of RCCS in rigid families
is given in [22]. In rigid families causality and concurrency are derived
from a partial order (precedence) which is specific to each run of a process.
They are suitable for reversible calculi because the inclusion between
sets dictates the allowed forward and backward transitions. The authors
proposed a certain correction criteria which their model enjoys.

While RCCS can be represented with rigid families, CCSK can be seen
as an example of the more general concept, given in [65], where prime
graphs are used as an equivalent model to labelled prime event structures.
In [66; 67] authors investigate conflict and causation for event structures
with reversibility. To gain on expressiveness, regarding to the reversible
form of prime event structure (RPES), they obtain more general model,
reversible asymmetric event structures (RAES). Continuing work on re-
versible event structures, in [77] is proposed how to model reversible
concurrent computation in two different reversible event structures: one
defined with causation and prevention relations (Reversible Asymmet-
ric Event Structures) and other by enabling relation (Reversible Event
Structures).

Reversibility in CCSK is controlled by adding rollback operator and
Roll-CCSK is obtained in [34]. Authors defined a category of reversible
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bundle event structures and used its causal subcategory to define CCSK
semantics. Additionally they defined a category of reversible extended
bundle event structures and model Roll-CCSK with it.

Differently from CCS, in π-calculus exist two kinds of dependences be-
tween the actions: subject (structural) and the object dependency. Different
interpretation of the object dependency give rise to different causal se-
mantics for π-calculus, revised in Section 1.3.

1.3 Causality in π-calculus

In the π-calculus, differently form the CCS, possibility of creating a new
channel names and treating channels as sent values, is allowed. In this
way π-calculus can describe concurrent systems whose network configu-
ration may change during the computation. As name creation is enabled,
computing without forgetting becomes difficult because of the variable
substitutions and more in general value passing.

Causal dependencies between the actions in π-calculus were studied
by Boreale and Sangiorgi in [14], where two forms of causal dependencies
were separated : subject (structural) and the object dependency. As in
CCS, subject dependency in the π-calculus is determined by the nesting of
the prefixes and by synchronisation. For instance, in the process ba.c(x),
action c(x) structurally depends on the output action ba. Object depen-
dency is generated by extruding (or opening) a name. To illustrate it,
consider the process νa(ba | a(x)), the output action ba extrudes bound
name a and in that way enable execution of the action a(x). Therefore, we
say that action a(x) is object dependent on the action ba. The interesting
problem that raises up from the object causality is a parallel extrusion of
the same name. For instance, if we consider the process νa(ba | ca | a(x)),
discussion is about which of the extrusions will cause the action a(x).
Depending on the solution to this problem we have different causal se-
mantics for the π-calculus. Here we give the intuition of them trough the
common example of the parallel extrusion problem, where actions are
executed in the following order ba, ca, a(x).
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• Boreale and Sangiorgi causal semantics. The compositional causal
semantics for standard (forward only) π-calculus is given in [14]. To
keep track about the structural dependences, authors introduced a
causal term K :: A, where K represents a set of the structural causes
of the process A. Object dependency is defined on the run of the
process and solution for the example of the parallel extrusion of the
same name is that the first extrusion of the name a will cause both
actions ca and a(x). In general, first extrusion of a bound name,
cause every action using that name in any position (subject or the
object one). More details are given in Section 4.1.

• A data-flow analysis of the π-calculus. In [40], authors represented
the semantics of the CCS and π-calculus with the data-flow charts.
Intuitively, processes can be seen as the set of the functions, while
names are represented as points in the domain. For instance, domain
for CCS is domain of vertical natural numbers N v, while for π-
calculus, due to dynamical change of the process, domain is more
complex. The authors do not distinguish between two types of
causality (processes νa(ba | a(x)) and νa(ba.a(x)), translated to the
chart semantics are equated). Regarding to our common example,
we have that the final order of the action would be that the first
action ba triggers both following actions using the name a.

• Montanari and Pistore semantics for the π-calculus. π-calculus seman-
tics represented in the terms of graph rewriting, is given in [61].
Processes are represented as graphs, while evolution is given with
graph rewriting rules. The global part of the graph keeps track of
the free names, while the local part models the rest. In our common
example, we have that the extrusions of the name can be executed
in parallel and the input action a(x) pick one of them as its cause.

• A petri nets semantics for the π-calculus. In the [17] authors represents
the semantics of the π-calculus with the Petri Nets equipped with
the inhibitor arcs. Intuitively, the state is represented by the number
of tokens in each place where every token is decorated with its past
(i.e. event which produce it). The inhibitors are used to prevent
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transitions with a bounded name. An event can happen if every
inhibiting place is empty (there is no token in it). Causal depen-
dences are defined as: an event is caused by the set of events that
produce the tokens that it uses. Regarding to our example, we have
that the first extrusion ba will cause other two action using name a
(regardless of the position in the label).

• Degano and Priami semnatics. In [26], authors studied order between
the actions in π-calculus and distinguish between causality rela-
tion and precedence. Following [14], they considered two types
of dependences: structural and link (object) one, while precedence
is defined as temporal dependency. The union between causality
and precedence is defined as enabling relation. For instance in the
common example νa(ba | ca | a(x)), where actions are executed in

the following order ba−→ ca−→ a(x)−−−→, we have that the output ba has: a
temporal precedence over the output ca; and it is object cause of the
action a(x).

The order between the actions is recorded by specifying which com-
ponent of the process is performing a move. To uniquely identify the
actions, authors used labels of the form ϑµ and ϑ〈‖0 ϑ0µ0, ‖1 ϑ1µ1〉
where ϑ ∈ {‖0, ‖1}∗ represents the position of the subprocess per-
forming the action, and µ0 = b(x) iff µ1 is either ba or b〈νa〉, or vice
versa. To record that the left or the right component in the process
is executing, tag ‖0 or ‖1 is used. In [26], authors stated that by ab-
stracting away from the technique to keep track about the causality,
the order of the cations induced by their semantics coincides with
the one in [14; 17].

• Crafa, Varacca and Yoshida semantics. A compositional event structure
semantics for the forward π-calculus is introduced in [19]. The event
structure semantics of the π-calculus process is represented as a pair
(E,X), where E is the prime event structure and X is a set of bound
names. Structural causality is tracked by causal relation of E, while
the object one is defined with the notion of permitted configuration.
In the common example, we would have that extrusions of the name
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a are executed concurrently, while the action a(x) depends on one
of the extruders (configurations {ba, a(x)} and {ca, a(x)} are both
permitted), but it is not necessary to record on which one. We recall
this notion of causality in Section 4.2.

• Cristescu, Krivine and Varacca causal semantics. A compositional se-
mantics for the reversible π-calculus is introduced in [20]. The
approach to reversibility is similar as in [23] for Reversible CCS,
but adapted to the π-calculus. Past information is recorded into the
memory attached to every process. A reversible process has the
form of m . P , where m is a memory and P is π-calculus process.
Dependences induced by extruding of the name are captured by
context causality. In the case of common example, actions ba and ca
are executed concurrently, while the input action a(x) can choose
one of the extruders for its cause, exactly which one is determined
by the context. The chosen cause will be saved in the memory of
the process together with the action and its identifier. Detailed
description of the reversible semantics is given in Section 4.3.

• Reversible π-calculus represented with the rigid families. In [21] authors
introduced a rigid families as a causal model for the π-calculus.
Rigid families are the model based on the configuration structures
with a partial order relation defined on events. It is a temporal
relation between events in the run of a process. The authors showed
weak form of the correspondence between reversible process in-
troduced in [20] and their translation in rigid families. There is a
slight difference between these two reversible semantics, since in
the rigid families temporal order is explicit as well as the causal one.
Considering our common example, causality is similar as the one
in [20].

• A stable non-interleaving operational semantics for the π-calculus. In [37],
authors give the early causal semantics for the π-calculus defined
with transition:
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(H̄,H) ` P α−−→
u,D

(H̄ ′, H ′) ` P ′

where u is a location label, identifying the location of the prefixes in
the term involved into a transition; histories D recording the past
extruding events that non-output names in α depend on, and H̄,H
are extrusion histories which in the parallel composition record the
location on the prefixes that extrude, receive a name, respectively.
Link or object causality is captured by histories. Considering our
example we have that input action a(x) depends on the one of the
extruders. Hence event representing the action a(x) is spilt based
on the extrusion history.

Additionally, authors argued about difference in the link causality,
depending on wether early or late semantics is used. To illustrate
this, consider the π-calculus process (νa)(νb)(ca | db | a(x)). Taking
into account early semantics, after extrusions of the names a and
b, the input action could be labelled with a(b) (extruded name b is
received over the channel a). In this case, bout names in the input
action are extruded in the past, hence, action a(b) depends on both
extruders. If late semantics is considered, then this situation does
not exist, since name is substituted in the continuation of the input
prefix, after the synchronisation.

• Reversible high-order π-calculus (ρπ). Reversible asynchronous higher-
order π-calculus [51; 52] relies on simple name tags for identifying
threads and on process terms called memories which are in charge
of storing a single computation. Its operational semantics given in
terms of reduction semantic and it preserves the classical structural
congruence laws of the π-calculus. Reversibility in ρπ is causally
consistent and the causal information used to support reversibility
in ρπ is consistent with the one used in [14]. Since ρπ is given
in terms of reduction semantic, we will not consider the common
example.
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1.4 Contributions of the thesis

This thesis contributes to the better understanding of the relations between
the different approaches to reversibility in CCS [50; 58] and provides a
framework able to express different causality notions for π-calculus [59].

Given a two reversible extensions of the CCS, namely RCCS and CCSK,
a natural question arises: are these two reversible calculi equivalent? This
question is relevant, since the two approaches have evolved indepen-
dently for more than 10 years. By proving equivalence between these two
methods for reversing CCS, we show that from an abstract point of view
there exists only one reversible CCS.

We give a positive answer to the question above, showing that the
labeled transition systems of CCSK and RCCS (up to a few structural
transformations on processes) are isomorphic. The consequence of iso-
morphism is that they can be equated by any behavioral equivalence,
such as bisimilarity or trace equivalence. The proof of isomorphism relies
on two encodings, one from CCSK to RCCS and the other in the opposite
direction. We proved correctness of our encoding in terms of operational
correspondence. Additionally, we showed that no uniform encoding
can exist since reachable RCCS processes are not closed under parallel
composition.

In the second part of the thesis, we focus on the causal semantics
for π-calculus. Different interpretations of the object causality lead to
different causal semantics for the π-calculus. We mainly consider three
different causal semantics: causal semantics introduced by Boreale and
Sangiorgi [14], notions of causality introduced by Crafa, Varacca and
Yoshida [19] (both semantics are given for forward only π-calculus) and
causal semantics for reversible π-calculus, given by Cristescu, Krivine
and Varacca [20].

To study different approaches to causality in π-calculus, represented
by three causal semantics mentioned above, in the context of reversible
computation, we need a model which can express different notions of
causality. We observed that object causality depends on the extruded
names and on how information about the extruders is stored. Therefore,
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we devise a framework for reversible π-calculi, parametric with respect to
the data structure that stores information about the extrusions of a name.
As a reversing method, we extended the approach given in CCSK [70],
limited to calculi defined with GSOS [1] inference rules (e.g., CCS, CSP) to
work with π-calculus. Different approaches to causality in π-calculus, can
be obtained by using a different data structures. Additionally, the frame-
work adds reversibility to the semantics that were defined only for the
forward computations. Hence, it permits different orders of the causally-
consistent backwards steps. We proved that reversibility introduced by
the framework is causally-consistent and show causal correspondence
between causal semantic given in [14] and corresponding instance of the
framework. Additionally, we give the idea of the causal bisimulation that
can be defined on the framework.

1.5 Outline

The rest of the thesis is structured in the following way:

Chapter 2 recalls two reversible extensions of CCS, namely RCCS and
CCSK and points out the syntactical differences between them.

Chapter 3 introduces two encodings, one of CCSK into RCCS (Sec-
tion 3.1) and another one of RCCS into CCSK (Section 3.2) and
prove their correctness. Then we show an isomorphism between
label transition systems of CCSK and RCCS (up to some structural
transformation on processes) relying on two encodings (Section 3.3).
Finally, thanks to our results, we show how is possible to bring some
properties from one calculus to the other one (Section 3.4).

Chapter 4 recalls syntax and semantics of the π-calculus, and its three
well-known causal extensions: causal semantics introduced by Bore-
ale and Sangiorgi, notions of causality introduced by Crafa, Varacca
and Yoshida (both semantics are given for forward only π-calculus)
and causal semantics for reversible π-calculus, given by Cristescu,
Krivine and Varacca.
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Chapter 5 introduces a syntax (Section 5.2) and operational semantics
(Section 5.3) of a framework for reversible π-calculi. After that in Sec-
tion 5.4, we define the data structures with operations on them and
map observed causal semantics into the framework. We proved that
reversibility in our framework is well defined by proving standard
properties for reversible calculus, Loop Lemma, Square Lemma and
causal consistency (Section 5.5). Finally, in Section 5.6, we show
causal correspondence between causal semantic given in [14] and
corresponding instance of the framework. In the end of this Chapter
(Section 5.7), we present the idea about causal bisimulation defined
on the framework.

Chapter 6 concludes our work and discuss perspectives of future work.
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Chapter 2

Causality and Reversibility
in CCS (background knowledge)

In this Chapter we shall give the background knowledge necessary to
obtain results of the thesis stated in Chapter 3.

We recall two reversible extensions of CCS [60] (Calculus of Com-
municating Systems), namely RCCS [23; 43] and CCSK [70]. In RCCS,
reversibility is achieved by adding a memory to every CCS process in
which all the necessary information are stored. CCSK is a reversible cal-
culus obtained as a result of applying a general approach [70] to a CCS.
There is a slight difference in the CCS considered by these two reversible
calculi. As addition to that, neither of underlying CCSs do not take into
account recursion operator. However, following the guidance in [43; 70]
it can be easily added to both calculi. The CCS considered by RCCS is
defined with a guarded choice and it features silent actions, while CCS
considered by CCSK allows unguarded choice but it features no τ actions.
In our research, we focused on the reversibility mechanisms, therefore,
to uniform technical handling and to have a finer correspondence, we
considered as the base of both reversible calculi, CCS used in [23; 43]. It is
defined with guarded choice and it features τ actions. It also do not take
into account recursion.

Let A be a set of actions ranged over by a, and A the corresponding
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(CCS Processes) P,Q ::= 0 |
∑
i∈I

αi.Pi | (P | Q) | P\a

(Actions) α ::= a | a | τ

Figure 1: CCS syntax

set of co-actions, that is A = {a | a ∈ A}. We let µ, λ and their decorated
versions to range over the set Act = A ∪ A, while we let α, β and their
decorated versions to range over the set Actτ = Act ∪ {τ}, where τ /∈ Act

is the silent action.
The syntax of the CCS is presented in Figure 1. 0 represents the idle

process. A prefix (or action) can be an input a, an output a or the silent
action τ . The choice operator is represented with

∑
i∈I αi.Pi, where Pi

stands for the continuation to be executed after the actions αi. We write
αj .Pj + Q where Q =

∑
i∈I\{j} αi.Pi to highlight a specific alternative,

otherwise we write α.P for unary choice. We assume that if I = ∅,
then

∑
i∈I αi.Pi = 0. A parallel composition of processes P and Q is

represented with P | Q, while P\a denotes that name a is restricted to the
process P (scope of the name a is process P ). The set of all CCS processes
is denoted with P .

In the CCS, restriction is the only binder. We write n(P ) for the set of
names of a process P , and, respectively, fn(P ) and bn(P ) for the sets of
free and bound names. Set of bound names is formally defined as:

Definition 1 Set of a bound names of the given process P ,written as bn(P ), is
inductively defined on the structure of the π-calculus process as:

bn(P | Q) = bn(P ) | bn(Q) bn(
∑
i∈I

αi.Pi) =
⋃
i∈I

bn(Pi)

bn(νa(P )) = {a} ∪ bn(P )

Names which are not bound, are free.

Now we give a definition for the LTS, used to obtain the operational
semantics of the calculi.

16



Definition 2 (LTS) A labeled transition system (LTS) is a triple 〈P,L,→〉
where P is a set of states, L a set of labels, and→⊆ P × L × P a transition
relation. We write P l−→ P ′ when 〈P, l, P ′〉 ∈→.

Using the definition of LTS (Definition 2), we give a definition of the
operational semantics for CCS.

Definition 3 (CCS Semantics) The operational semantics of CCS is defined
as LTS (P,−→, Actτ ), where P is the set of CCS processes and Actτ is the set of
labels. Transition relations −→ is the smallest relations induced by the rules in
Figure 1.

The semantics of CCS is given in Figure 2. Process α.P can execute
the action α, by applying the rule ACT. Performed action is discarded
and computations continues with the process P . Rule SUM handles the
choice operator. Rule PAR-L (PAR-R) allows left (right) component in the
paralel composition to perform action α. Two processes can communicate
through the rule SYN. Rule RES allows restricted process to execute the
action α, with condition that α is not a restricted name. In order to have a
better intuition about CCS semantics we give the following example.

Example 1 Let us consider process P = a.b+ c | d and execution of the
action a:

a.b+ c | d a−→ b | d

Note that action a is consumed and discarded together with the alternative
process c in the choice operator. The resulting process can b | d continue
further execution.

2.1 Reversible CCS

In this Section we recall Reversible CCS [23; 43]. The first approach to
reversibility in CCS was introduced in [23]. It differs from the presenta-
tion in [43] in a way how memories and splitting of the memory through
the parallel composition are handled. In this work we will use the rep-
resentation of RCCS appeared in [43] since it simplifies our technical
development. However, as remarked in [43], the two presentations are
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(ACT)
α.P

α−→ P

(SUM)
Pj

α−→ P ′j j ∈ I∑
i∈I

Pi
α−→ P ′j

(PAR-L)
P

α−→ P ′

P | Q α−→ P ′ | Q

(PAR-R)
Q

α−→ Q′

P | Q α−→ P | Q′

(SYN)

P
a−→ P ′ Q

ā−→ Q′

P | Q τ−→ P ′ | Q′

(RES)
P

α−→ P ′ α /∈ {a, ā}
P\a α−→ P ′\a

Figure 2: CCS semantics

(RCCS Processes) R,S ::= m . P | (R | S) | R\a
(Memories) m ::= 〈〉 | 〈k, α,Q〉 ·m | 〈↑〉 ·m

Figure 3: RCCS syntax

conceptually the same. More details about the differences between two
representations shall be given in Remark 1.

In RCCS, reversibility is achieved by adding a memory to each process.
All necessary informations about the past actions are stored in the memo-
ries, organised as a stacks (memory event representing the last action that
was executed is placed on the top of the stack).

Let K be an infinitive denumerable set of action keys, ranged over
k, h, w, . . . We assume that sets Act and Actτ have the same definition
as for CCS and that, K ∩ Act = ∅. Let ActK = Act × K be the set of
pairs formed by an action µ and a key k. In the same way we define
ActKτ = Actτ ×K.

The syntax of RCCS is presented in Figure 3. Reversible processes
are built on the top of CCS by adding a memory to every CCS process.
Monitored process is a term of a form m . P , where m is a memory and
P is a CCS process. A parallel composition of two reversible processes
R and S is given by R | S, while R\a represents the fact that name a is
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restricted in process R. Memories are denoted with m and represented
as stack of events. The memory event representing the last action that
reversible process performed is on the top of the stack (on the left in the
textual representation). The empty memory is represented with 〈〉. A
memory event which keeps track of the action that monitored process did
is denoted with 〈k, α,Q〉, where elements of a triple are action α, identified
with the key k and alternative process Q, discarded by execution of the
action α. Event 〈↑〉 symbolise the fact that process was split in two parallel
subprocesses. We denote by Mem the set of all memories. We let e to range
over events and write e ·m for the memory obtained by pushing event e
on the top of the given memory m. We shall introduce the operator @ to
emphasise the case when two memories m1 and m2 are given1. We write
m1@m2 for the memory obtained by pushing all the elements in m1 on
top of m2 (preserving their order). We will assume that the operator · has
precedence over @. The @ operator is formally defined as follows.

Definition 4 We define m1@m2 by structural induction on m1:

〈〉@m2 = m2

(e ·m1)@m2 = e · (m1@m2)

To make a direct connection between keys in two reversible calculi,
we define a function computing the set of keys in a given memory or in a
given process. This function is not presented in [43].

Definition 5 The set of keys in a memory m, or in a RCCS process R, written
respectively key(m) and key(R), is inductively defined as follows:

key(〈↑〉 ·m) = key(m) key(〈k, α,Q〉 ·m) = {k} ∪ key(m)

key(〈〉) = ∅ key(m . P ) = key(m)

key(R\a) = key(R) key(R | S) = key(R) ∪ key(S)

As in CCS, the only binder in RCCS is the restriction. The functions
n, fn and bn can be extended to RCCS processes and memories. Based
on Definition 2, we can give a definition of the operational semantics for
RCCS.

1Operator @ is not appearing in [23; 43]
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Definition 6 (RCCS Semantics) The operational semantics of RCCS is de-
fined as a pair of LTSs on the same set of states and set of labels: a forward LTS
(PR,−→, ActKτ ) and a backward LTS (PR, , ActKτ ), where PR is the set of
RCCS processes. We define
=−→ ∪ . Transition relations −→ and are
the smallest relations induced by the rules in Figure 4 (left and right columns,
respectively). Both relations exploit the structural congruence relation ≡, which
is the smallest congruence on RCCS processes containing the rules in Figure 5.

The RCCS semantics is given in Figure 4. Let us comment on the for-
ward rules (left column). Rule R-ACT generates a fresh new key k which
is bound to the executing action α. A new memory event 〈k, α,Q〉, is
created and stored on the top of the memory stack. Rule R-PAR-L allows
left component of the parallel composition to execute a forward action
α, under the condition that k /∈ key(S) (the key k of the executing action
is not used by the parallel process). This check guarantees uniqueness
of the keys. Similar for the rule R-PAR-R. The communication between
two parallel processes can be done through the rule R-SYN. To do so,
processes have to match both the action α and the key k. Rule R-RES
allows a restricted process to move under the condition that the executed
action is not the restricted name. Rule R-EQUIV allows one to exploit
structural congruence.

Structural rules are given in Figure 5. Rule SPLIT allows a monitored
process with a toplevel parallel composition to split by duplicating the
memory and annotating both memories with 〈↑〉. Obtained monitored
processes can continue their computing independently. We give the fol-
lowing example to illustrate semantics of RCCS.

Example 2 Let us consider CCS process P = a.b+ c | d from Example 1.
The initial RCCS process in this case is R = 〈〉 . (a.b+ c | d). To execute
action a, process R, needs first to split parallel composition into two
separated components by applying structural rule SPLIT:

〈〉 . (a.b+ c | d) ≡ 〈↑〉 · 〈〉 . a.b+ c | 〈↑〉 · 〈〉 . d

Now, action a identified by k can be executed. Then we have:

〈↑〉 · 〈〉 . a.b+ c | 〈↑〉 · 〈〉 . d k,a−−→ 〈k, a, c〉 · 〈↑〉 · 〈〉 . b | 〈↑〉 · 〈〉 . d = R′
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(R-ACT)
k /∈ key(m)

m . α.P +Q
k,α−−→ 〈k, α,Q〉 ·m . P

(R-ACT•)
k /∈ key(m)

〈k, α,Q〉 ·m . P
k,α

m . α.P +Q

(R-PAR-L)

R
k,α−−→ R′ k /∈ key(S)

R | S k,α−−→ R′ | S

(R-PAR-L•)

R
k,α

R′ k /∈ key(S)

R | S
k,α

R′ | S

(R-PAR-R)

S
k,α−−→ S′ k /∈ key(R)

R | S k,α−−→ R | S′

(R-PAR-R•)

S
k,α

S′ k /∈ key(R)

R | S
k,α

R | S′

(R-SYN)

R
k,α−−→ R′ S

k,ᾱ−−→ S′

R | S k,τ−−→ R′ | S′

(R-SYN•)

R
k,α

R′ S
k,ᾱ

S′

R | S
k,τ

R′ | S′

(R-RES)

R
k,α−−→ R′ α /∈ {a, ā}

R\a k,α−−→ R′\a

(R-RES•)

R
k,α

R′ α /∈ {a, ā}

R\a
k,α

R′\a

(R-EQUIV)

R ≡ R′ R′
k,α−−→ S′ S′ ≡ S

R
k,α−−→ S

(R-EQUIV•)

R ≡ R′ R′
k,α

S′ S′ ≡ S

R
k,α

S

Figure 4: RCCS semantics

(SPLIT) m . (P | Q) ≡ 〈↑〉 ·m . P | 〈↑〉 ·m . Q
(RES) m . P\a ≡ (m . P )\a if a /∈ fn(m)
(α-CONV) R ≡ S if R =α S

Figure 5: RCCS structural laws

21



We can notice that executed action, together with identifier and alternative
process c is saved in the memory of the process. Differently from the
Example 1, resulting process R′ is able to execute the backward action,
by restoring the information from the memory 〈k, a, c〉.

If restricted name is not in the memory of a process, restriction can
be pushed outside of monitored processes, by applying the rule RES.
Structural rule α-CONV2 is not appearing neither in [23] nor [43]. We add
it to allow one to exploit α-conversion. Why it is necessary, we can see in
the following example.

Example 3 Le us consider a monitored process R:

R = 〈k, a,0〉 · 〈〉 . (b\a)

According to RCCS semantics, the process R is a deadlocked process
and it cannot execute the forward action b. The only possibility for R
to execute forward is to apply structural rule RES to move restriction
outside of the monitored process. This cannot be done because of the side
condition of the rule. This problem can be solved by α-conversion rule
α-CONV:

〈k, a,0〉 · 〈〉 . (b\a) ≡ 〈k, a,0〉 · 〈〉 . (b\c) ≡ (〈k, a,0〉 · 〈〉 . b)\c w,b−−→

As we can notice, process (〈k, a,0〉 · 〈〉 . b)\c can execute forward action b.

Backward rules are given in Figure 4 (right column). All the rules are
symmetric to the forward one. We shall comment just the interesting ones.
Monitored process can revert its last action through the rule R-ACT•. It is
done by taking the event from the top of the memory stack and using its
information to bring process back the state before the action was executed.
Rule R-PAR-L• (R-PAR-R•) allows left (right) component in the parallel
composition to execute a backward action, under the condition that the
key k of the action does not belong to monitored processes in parallel.
With this condition, partial undo of some synchronisations is avoided. In
the following example, we explain why this check is necessary and give
an intuition how semantics works.

2As far as we know, in RCCS literature, α-conversion appears first time in [3]
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Example 4 Let us consider the RCCS process R = m1 . a.P | m2 . a.Q.
There are two possibilities for process R to move forward:

• process R can perform two independent actions: forward input a
and output a, identified with keys k and k1, respectively:

m1 . a.P | m2 . a.Q
k,a−−→ 〈k, a,0〉 ·m1 . P | m2 . Q

k1,a−−−→ 〈k, a,0〉 ·m1 . P | 〈k1, a,0〉 ·m2 . Q = R1

From the process R1 to restore the process R, backward actions can
be executed in any order, for example:

〈k, a,0〉 ·m1 . P | 〈k1, a,0〉 ·m2 . Q
k,a

m1 . P | 〈k1, a,0〉 ·m2 . Q

k1,a
m1 . a.P | m2 . a.Q = R

• process R can perform a synchronisation on the channel a.

m1 . a.P | m2 . a.Q
k,τ−−→ 〈k, a,0〉 ·m1 . P | 〈k, a,0〉 ·m2 . Q = R2

Executing the backward step from process R2, From process R2, it
is not possible that just one part of the parallel composition undoes
its action with key k. For instance, the right component cannot
undo its action unless the left component undoes its action too. It is
forbidden by the side condition in rule R-PAR-R•.

Suppose that we avoid the side condition of the rule R-PAR-R•,
then we would have the following transition (not normally allowed):

〈k, a,0〉·m1.P | 〈k, a,0〉·m2.Q
k,a
〈k, a,0〉·m1.a.P | m2.Q = R3

Process R3 is obtained if the left parallel component in R synchro-
nises with the environment and process R2 is obtained when the
two parallel components in R synchronise with each other. We can
notice that process R3 is a legal future of the process R, but not the
legal past state of R2.

Remark 1 In the RCCS introduced in [23], memories were defined as:

(Memories) m ::= 〈〉 | 〈m∗, α,Q〉 ·m | 〈1〉 ·m | 〈2〉 ·m

23



wherem∗ can be either a memorym (if process synchronised with another
monitored process which memory was m); or ∗ if process synchronised
with its environment. Events 〈1〉 and 〈2〉 indicate that monitored process
with a toplevel parallel operator was split along a parallel composition
according to the following structural rule:

m . (P | Q) ≡ 〈1〉 ·m . P | 〈2〉 ·m . Q

As we can notice, in the presentation of RCCS [43] that we use, m∗
is replaced with the unique action keys and event 〈↑〉 is used instead of
〈1〉 and 〈2〉. The improvements of the calculus, stated above, simplified
the handling of memories and made the splitting through the parallel
composition commutative. For instance, given two CCS processes P =
a.b | c and Q = c | a.b, after execution of the action a in RCCS, we obtain
processes P ′ = 〈∗, a,0〉 · 〈1〉 · 〈〉.b | 〈2〉 · 〈〉.c and Q′ = 〈1〉 · 〈〉.c | 〈∗, a,0〉 ·
〈2〉 · 〈〉 . b. We can notice that action b is not identified with the same
past memory in the processes P ′ and Q′, since 〈∗, a,0〉 · 〈1〉 · 〈〉 . b 6=
〈∗, a,0〉 · 〈2〉 · 〈〉 . b.

In the following we will consider only reachable processes, as standard
in the RCCS literature.

Definition 7 (Reachable Process) A RCCS process R is initial if it has the
form 〈〉 . P . A RCCS process R is reachable if it can be derived from an initial
process by using the rules in Figures 4 and 5.

As stated before, one of the main property of reversible calculi, is the
Loop Lemma [23, Lemma 6], which states that any reduction step can be
undone.

Lemma 1 (RCCS Loop Lemma) For each pair of reachable RCCS processes

R and R′, R k,α−−→ R′ iff R′
k,α

R.

The proof follows from the symmetry between the forward and the
backward rules.

2.2 CCS with Communication Keys

In this Section we present a reversible CCS obtained by applying the
general approach introduced in [70] on the CCS version underlying RCCS
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(CCSK Processes) X,Y ::= 0 |
∑
i∈I

πi.Xi | (X | Y ) | X\a

(CCSK Prefixes) π ::= α | α[k]

Figure 6: CCSK syntax

(defined in the beginning of this Chapter). As we already mentioned, two
CCSs differs in the definition of the choice operator and silent prefixes.
The obtained calculus, we will call CCSK since it is very similar to the one
in [70].

In [70] the authors present a reversible extensions for process calculi
defined by using Structural Operational Semantics (SOS) [71] rules. The
used format is a subset of a path format [6] consisting of dynamic and
static rules. The difference between this two types of rules is that in the
dynamic one, operator is destroyed by the transition, while in the static
one operator remains after the application of the rule. For instance, in
CCS, dynamic rule would be the rule SUM, while the static one would be
the rule PAR-L. To illustrate this, consider a CCS process P = P1 | P2. By
applying the rule for parallel, we obtain the precess P ′ = P ′1 | P2, where
the operator for parallel is present in the process P ′ as well. On the other
hand, if we consider CCS process Q = Q1 +Q2, after applying the rule
SUM, where action is executed on the process Q1, we obtain Q′ = Q′1. In
the process Q′, we can notice that operator + disappeared.

The main ideas of the approach in [70] are to make all the operators of
the CCS static and to use a communication keys to identify the actions.
To make operators static, performed actions shall not be discarded, but
annotated as having been performed and saved in the structure of the
process, representing its past. Result of having all the operators static
is that there is no loss of information, therefore, there is no need to use
external memory.

The syntax of CCSK is presented in Figure 6. The difference regarding
the CCS is that prefix α might be annotated with identifier k, called key,
written as α[k]. We will use the same set of keys K as in RCCS since they
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have the same role in both calculi.
As for RCCS, the only binder in CCSK is restriction. Functions n, fn

and bn can be extend from CCS to CCSK in expected way. We also define
a function computing the set of keys in a given CCSK process.

Definition 8 The set of keys of a process X , written key(X), is inductively
defined as follows:

key(α.P ) = key(0) = ∅ key(α[k].X) = {k} ∪ key(X)

key(X | Y ) = key(X) ∪ key(Y ) key(
∑
i∈I

πi.Xi) =
⋃
i∈I

key(πi.Xi)

key(X\a) = key(X)

Definition 9 A key k is fresh in a process X , written fresh(k,X) if k 6∈
key(X).

The notion of a standard process is defined bellow.

Definition 10 (Standard process) A CCSK process X is standard, written
std(X), if key(X) = ∅.

As we can notice, standard CCSK process coincide with CCS process.

Notation 1 In the following, we may drop the predicate std(X) and
instead of it use simply P to highlight that CCSK process X is actually
CCS process (process P do not contain keys).

We can now define the operational semantics of CCSK based on Defi-
nition 2.

Definition 11 (CCSK Semantics) The operational semantics of CCSK is de-
fined as a pair of LTSs on the same set of states and set of labels: a forward LTS
(PK ,−→, ActKτ ) and a backward LTS (PK , , ActKτ ), where PK is the set of
CCSK processes. We define
=−→ ∪ . Transition relations −→ and are the
smallest relations induced by the rules in Figures 7 and 8, respectively and closed
under α-conversion =α.

Note that only structural congruence rule included in the semantics of
CCSK is α-conversion.
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(K-ACT1)

α.P
α[k]−−→ α[k].P

(K-ACT2)

X
β[h]−−→ X ′ k 6= h

α[k].X
β[h]−−→ α[k].X ′

(K-RES)

X
α[k]−−→ X ′ α /∈ {a, ā}

X\a α[k]−−→ X ′\a

(K-SUM)

Xj
α[k]−−→ X ′j ∀i 6= j.Xi = X ′i ∧ std(Xi)∑

i∈I

Xi
α[k]−−→

∑
i∈I

X ′i

(K-PAR-L)

X
α[k]−−→ X ′ fresh(k, Y )

X | Y α[k]−−→ X ′ | Y

(K-PAR-R)

Y
α[k]−−→ Y ′ fresh(k,X)

X | Y α[k]−−→ X | Y ′

(K-SYN)

X
α[k]−−→ X ′ Y

ᾱ[k]−−→ Y ′ α 6= τ

X | Y τ [k]−−→ X ′ | Y ′

Figure 7: CCSK forward semantics

Remark 2 The general rule format introduced in [70] does not exploit any
structural congruence, including α-conversion. Nevertheless, addition of
α-conversion is straightforward by following the instructions of how to
deal with structural congruence, given in [70]. To have direct match with
RCCS we added α-conversion in our version of CCSK.

Rules for forward transitions are given in Figure 7. Differently from the
classic CCS rule for prefix, in the rule K-ACT1, prefix α is not discarded.
The fresh new key k is generated and associated with the action α, which
after the execution becomes α[k]. The annotated prefix α[k] represents
the past of the CCSK process α[k].P . Rule K-ACT2 inductively allows a
prefixed process α[k].X to execute ifX can execute. The choice operator is
handled by rule K-SUM. As we can notice there is no loss of information
by applying this rule. To be more precise, if one of the alternatives, for
instance Xj by performing an action α[k] becomes X ′j , then the whole
process performs the same action. The other alternatives, need to be a
standard (CCS) processes and they do not change. It is necessary to be
standard processes to ensure that non of alternatives were executed in
the past. Rule K-PAR-L (K-PAR-R) allows left (right) component in the

27



(K-ACT1•)

α[k].P
α[k]

α.P

(K-ACT2•)

X
β[h]

X ′ k 6= h

α[k].X
β[h]

α[k].X ′

(K-RES•)

X
α[k]

X ′ α /∈ {a, ā}

X\a
α[k]

X ′\a

(K-SUM•)

Xj
α[k]

X ′j ∀i 6= j.Xi = X ′i ∧ std(Xi)∑
i∈I

Xi
α[k] ∑

i∈I

X ′i

(K-PAR-L•)

X
α[k]

X ′ fresh(k, Y )

X | Y
α[k]

X ′ | Y

(K-PAR-R•)

Y
α[k]

Y ′ fresh(k,X)

X | Y
α[k]

X | Y ′

(K-SYN•)

X
α[k]

X ′ Y
ᾱ[k]

Y ′ α 6= τ

X | Y
τ [k]

X ′ | Y ′

Figure 8: CCSK backward semantics

parallel composition to execute an action α[k] with condition that the key
k is not used by the other processes in parallel. Two processes in parallel
can communicate by matching the name of the action and key, through
the rule K-SYN. Rule K-RES deals with restriction in the classical CCS
way. Backward rules are symmetric to the forward ones and they are
presented in Figure 8.

To give an intuition how semantics works, let us consider the following
example.

Example 5 Let us consider CCS process P = a.b+ c | d and execution of
the action a identified with key k:

a.b+ c | d a[k]−−→ a[k].b+ c | d = X ′

Note that consumed action a, annotated with the key k, remains in the
resulting process. Since choice operator is static, alternative process c is
not discarded. The process a[k].b + c | d can perform the same forward
steps as process b | d. The backward action removes key k from the
process X ′ and initial process P is obtained.
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As in RCCS, we shall consider only reachable processes.

Definition 12 (Reachable Process) A CCSK process X is initial if it is stan-
dard, hence a CCS process. A CCSK process X is reachable if it can be derived
from an initial process P by using the rules in Figures 7 and 8.

We define the structural property of reachable CCSK processes stating
that at most one process among the all alternative processes in the choice
operator can be executed, the rest of them must be CCS process. This
property is not presented in [23; 43].

Property 1 (Sum form) IfX is a reachable CCSK process andX =
∑
i∈I πi.Xi,

then there exists maximum one index j ∈ I such that πj = αj [k]. Furthermore,
for each i 6= j, Xi is a CCS process (std(Xi) holds).

Proof The proof is by induction on the length of the derivation from an
initial process to the process X , and by case analysis on the last applied
rule. �

As for RCCS, the Loop Lemma [70, Proposition 5.1] in CCSK holds.

Lemma 2 (CCSK Loop Lemma) For each pair of reachable CCSK processes

X and X ′, X
α[k]−−→ X ′ iff X ′

α[k]
X .

The proof follows from the symmetry between forward and backward
rules.
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Chapter 3

Encodings and
Isomorphism between
RCCS and CCSK

In the Sections 2.1 and 2.2 we revised two approaches to reversibility in
CCS, namely RCCS and CCSK, respectively. Having a two reversible
calculi, some natural questions arise: How we can relate these two calculi?
Are they equivalent? To answer on this questions we started with the
idea of proving bisimilarity between RCCS and CCSK. In [58] we proved
that RCCS is at least expressive as CCSK (the proof relies on the encoding
of CCSK into RCCS) and presented the idea of the encoding of RCCS
into CCSK. In the further work, we redefine both encoding functions
presented in [58] with the aim to prove stronger result. In [50] we proved
that label transition systems of CCSK and RCCS are isomorphic.

In this Chapter, we show an isomorphism between label transition
systems of CCSK and RCCS (up to some structural transformation on
processes) relying on two encodings. As an outcome of the isomorphism,
these two calculi can be equated by any behavioral equivalence, such as
bisilimilarity or trace equivalence. We devise two encodings, one of CCSK
into RCCS (Section 3.1) and another one of RCCS into CCSK (Section 3.2)
and prove their correctness. The interesting fact about encodings is that
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non of them is uniform. Moreover, no uniform encoding can exist since
reachable RCCS processes are not closed under parallel composition.
Thanks to our results, we show how is possible to bring some properties
from one calculus to the other one.

The notion of encoding. Encoding is used as criterion for comparing
the expressive power of two languages. There are a different interpreta-
tions of what are the properties that good encoding needs to satisfy. In
this work we will use the notion of the uniform encoding given in [62],
stated as follows:

Definition 13 An encoding J·K is uniform iff it is:

homomorphic with respect to the paralel operator: given two processes, P
and Q, we have that LP | QM = LP M | LQM;

renaming preserving: given a process P and an injective renaming function σ
which maps names into names, we have that LPσM = LP Mσ.

The homomorphism of the paralel operator ensures that two paralel
processes are translated into two paralel processes, while renaming guar-
antees that translation does not depend on the channel names.

To prove the correctness of an encoding we shall require that two cal-
culi have the same computations [31]. This idea is formalized through the
operational correspondence result, which ensures that every computation in
one calculi can be mimicked by its translation and that every computation
of the translated process corresponds to some computation of the original
initial calculi. In the following we give the definition of the operational
correspondence.

Process calculus can be represented as a triple L = (P,−→,�), where P
is a set of processes, −→ is an operational semantics and � is behavioural
equivalence (usually congruence).

Definition 14 (Operational correspondence) Given two calculiLi = (Pi,−→i

,�i), where i ∈ {1, 2}, the encoding J·K : L1 −→ L2 is operationally correspond-
ing if holds:

• for every transition P −→1 P
′ exist a transition JP K −→2�2 JP ′K;
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• for every transition JP K −→2 Q, there exists a process P ′ such that P −→1

P ′ and Q −→2�2 JP ′K

This Chapter is based on the works done in [58] and [50].

Outline. In the Section 3.1 we present encoding of CCSK into RCCS and
we prove the operational correspondence. The encoding in the opposite
direction (translation of RCCS into CCSK) and its correctness, are shown
in Section 3.2. Proof of isomorphism and no existence of uniform encoding
are given in Section 3.3. By exploiting a developed theory, we show some
cross-fertilisation results in Section 3.4.

3.1 Encoding CCSK into RCCS

In this Section we shall present the encoding of CCSK into RCCS and
prove an operational correspondence result.

The main difference between CCSK and RCCS is on how they keep
track of the past actions. In RCCS the information about past actions is
stored into a memory of a process, while in CCSK the history informa-
tion is saved in the structure along the whole process. Duplicating the
memory every time when having parallel composition in RCCS, has as
a consequence that one process in CCSK can correspond to the composi-
tion of several monitored processes in RCCS. For instance, CCSK process
X = a[k].(b[w].P | Q) corresponds to RCCS process

R = 〈w, b,0〉 · 〈↑〉 · 〈k, a,0〉 · 〈〉 . P | 〈↑〉 · 〈k, a,0〉 · 〈〉 . Q

Processes X and R are both derived form the CCS process a.(b.P | Q) by
executing actions a and b identified with the keys k andw, respectively. As
we can notice, process X corresponds to the composition of two parallel
monitored processes in R.

Therefore, the encoding needs inductively to examine the structure
of the CCSK process X , to able to reconstruct the final memory of the
each monitored process in R. Every annotated prefix in X needs to have
corresponding memory event in R.
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JXK = JX, 〈〉K

JP,mK = m . P

Jα[k].X +
∑
j∈J

αj .Pj ,mK = JX, 〈k, α,
∑
j∈J

αj .Pj〉 ·mK

JX | Y,mK = JX, 〈↑〉 ·mK | JY, 〈↑〉 ·mK

JX\a,mK = JX{b/a},mK\b
if b /∈ fn(m) ∧ (b = a ∨ b /∈ fn(X))

Figure 9: Encoding of CCSK into RCCS

Before giving the definition of encoding function, we would like to
recall that P denotes a standard (CCS) process, while X and R stands for
CCSK and RCCS process, respectively. We let PK and PR to be sets of
reachable RCCS and CCSK processes.

The encoding function J·K : PK → PR is defined in terms of an auxil-
iary encoding function J·K : PK×Mem→ PR, which takes a RCCS memory
as additional argument. For the sake of simplicity we use the same no-
tation for both functions. This does not create any confusion since two
function can be easily distinguished by the number of the arguments.

The encoding functions are defined in Figure 9. As we already pointed
out, the encoding needs inductively to go through the structure of the
CCSK process to be able to built the corresponding memories of the RCCS
process. This gives us intuition why is necessary for encoding to take
memory m as an additional argument.

The translation of the process X results into calling JX, 〈〉K with the
empty memory as parameter. A standard (CCS) process P with a memory
m is encoded as the monitored process m . P , since process P has no
computational history.

The encoding of the non standard process X is done by structural in-
duction. Considering the choice operator and thanks to the Property 1, we
have that exactly one alternative corresponds to a non standard process.
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In our case it will be α[k].X , while the rest of the alternatives
∑
j∈J αj .Pj

are standard CCS processes. The action event 〈k, α,
∑
j∈J αj .Pj〉 added

to the memory argument consists of the executed action α identified by
the key k while the alternative was

∑
j∈J αj .Pj .

The parallel and the restriction operators of CCSK are mapped to the
corresponding operators of RCCS. In the case of the parallel composition,
it is necessary to split encoding of the parallel composition into two
independent encodings. At the same time, memory m is duplicated and
annotated with 〈↑〉. In RCCS, through the structural congruence rule RES,
restrictions are always pushed on the top of the monitored process. It can
be done only under the condition that restricted name is not occurring
in the memory of the process (Section 2.1, Figure 5). To capture this
behaviour, encoding rule for restriction replaces the name a with the new
name b, which is granted to not occur free by the side conditions. In this
way the encoding avoid capturing free names. If a is not occur in the
memory m, then one can choose b = a.

In order to have better intuition of how the encoding works let us
consider the following example.

Example 6 Let X = a + b + c[k].(d[h] | P ). The encoding of X can be
computed as:

JXK = JX, 〈〉K
= Ja+ b+ c[k].(d[h] | P ), 〈〉K
= Jd[h] | P, 〈k, c, a+ b〉 · 〈〉K
= Jd[h], 〈↑〉 · 〈k, c, a+ b〉 · 〈〉K | JP, 〈↑〉 · 〈k, c, a+ b〉 · 〈〉K
= J0, 〈h, d,0〉 · 〈↑〉 · 〈k, c, a+ b〉 · 〈〉K | 〈↑〉 · 〈k, c, a+ b〉 · 〈〉 . P
= 〈h, d,0〉 · 〈↑〉 · 〈k, c, a+ b〉 · 〈〉 . 0 | 〈↑〉 · 〈k, c, a+ b〉 · 〈〉 . P = R

As we can notice CCSK process X corresponds to the composition of the
monitored processes (R).

Remark 3 The renaming of a name in the rule for restriction, makes the
encoding nondeterministic in the choice of bound names. This is not an
issue since both the calculi feature α-conversion, hence from now on we
will consider the encoding as deterministic.
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To simplify the technicalities, we make the following assumption stating
that sets of the free and bound names of the process JXK are disjunctive.

Assumption 1 We always choose JXK in such a way that bn(JXK)∩fn(JXK) =
∅.

To highlight the necessity for renaming in the rule for restriction, we give
the following example:

Example 7 Let X = a[k].(P\a). The encoding of X can be computed as:

JXK = JX, 〈〉K
= Ja[k].(P\a), 〈〉K
= JP\a, 〈k, a,0〉 · 〈〉K
= JP{b/a}, 〈k, a,0〉 · 〈〉K\b
= (〈k, a,0〉 · 〈〉 . P{b/a})\b

We can notice that Assumption 1 is satisfied, since renaming avoids to
capture the occurrence of name a in the memory 〈k, a,0〉 · 〈〉.

Before stating the operational correspondence of the encoding, we
need some auxiliary results. Any RCCS process R can be seen as a context
CR built from parallel and restriction operators. The context contains
numbered holes filled by monitored processes. Therefore, we shall use
the following notation:

Notation 2 We shall write a RCCS process R as CR[1 7→ m1 . P1, . . . , n 7→
mn . Pn], or more compactly, as CRi∈{1,...,n}[i 7→ mi . Pi]. If R is not relevant
we may drop it. If R = CR[1 7→ m1 . P1, . . . , n 7→ mn . Pn] then we write
process R@m as CR[1 7→ m1@m . P1, . . . , n 7→ mn@m . Pn].

The notation above is used to establish useful properties of the encod-
ing of CCSK processes.

Lemma 3 Let X be a CCSK process. There exist CJX,〈〉K, n, m1, . . . , mn, P1,
. . . , Pn such that, for each RCCS memory m, we have

JX,mK = CJX,〈〉K[1 7→ m1@m . P1, . . . , n 7→ mn@m . Pn]

Proof The proof is by induction on the derivation of JX,mK:
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• if X = P then by applying the encoding, we have JX,mK = m.P =

CJX,〈〉K[m . P ] as desired (with CJX,〈〉K[•] = •, n = 1, m1 = 〈〉 and
P1 = P );

• if X = α[k].X ′ +
∑
j∈J αj .Qj then by applying the encoding, we

have JX,mK = JX ′, 〈k, α,
∑
j∈J αj .Qj〉 ·mK. To simplify the nota-

tion, we shall write e instead of 〈k, α,
∑
j∈J αj .Qj〉, hence, we have

JX,mK = JX ′, e ·mK.

By inductive hypothesis we get

JX ′, e ·mK = CJX′,〈〉K[1 7→ m1@e ·m . P1, . . . , n 7→ mn@e ·m . Pn]

as desired, by selecting CJX,〈〉K = CJX′,〈〉K;

• if X = X ′ | X ′′ then by applying the encoding, we have JX,mK =
JX ′, 〈↑〉 ·mK | JX ′′, 〈↑〉 ·mK, and by inductive hypotheses:

JX ′, 〈↑〉 ·mK = C′JX
′,〈〉K[1 7→ m′1@〈↑〉 ·m . P1, . . . , n1 7→ m′n1

@〈↑〉 ·m . Pn1 ]

JX ′′, 〈↑〉 ·mK = C′′JX
′′,〈〉K[1 7→ m′′1 @〈↑〉 ·m . P ′1, . . . , n2 7→ m′′n2

@〈↑〉 ·m . P ′n2
]

The thesis follows since

JX,mK = CJX,〈〉K[1 7→ m′1@〈↑〉 ·m . P1, . . . , n1 7→ m′n1
@〈↑〉 ·m . Pn1 ,

n1 + 1 7→ m′′1 @〈↑〉 ·m . P ′1, . . . , n1 + n2 7→ m′′n2
@〈↑〉 ·m . P ′n2

]

where CJX,〈〉K = C ′JX
′,〈〉K | C ′′′JX′′,〈〉K with C ′′′JX

′′,〈〉K equal to
C ′′JX

′′,〈〉K but for having hole numbers increased by n1.

• if X = X ′\a then by applying the encoding, we have JX ′\a,mK =

JX ′{b/a},mK\b with b /∈ fn(m) ∧ (b = a ∨ b /∈ fn(X)).
By inductive hypothesis we have:

JX ′{b/a},mK = CJX′{b/a},〈〉K[1 7→ m1@m.P1, . . . , n 7→ mn@m.Pn]

Hence:

JX ′{b/a},mK\b = CJX′{b/a},〈〉K[1 7→ m1@m.P1, . . . , n 7→ mn@m.Pn]\b

as desired, by selecting CJX,〈〉K = CJX′{b/a},〈〉K\b.
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The thesis follows by noticing that m is only inserted into monitored
processes, and has no impact on the other parts of the term. �

In following, we show a property for RCCS transitions which allows
us to isolate the impact of structural congruence inside transitions. In
other words, we define a relation −_ which is not influenced by the
structural congruence.

Definition 15 The relation −_ is the smallest relation induced by the rules in
Figure 4, left column, except rule R-EQUIV.

As we can notice from the definitions of the relations −_ and −→, we
have −_ ⊂−→.

Lemma 4 If there is a RCCS transition R k,α−−→ S then there exist R′ ≡ R and

S′ ≡ S such that R′
k,α
−−_ S′.

Proof The proof is by induction on the derivation of the transition R
k,α−−→

S, with a case analysis on the last applied rule:

• Rule R-ACT: the thesis holds trivially, since R-ACT is an axiom.
We can choose R′ = R, S′ = S.

• Rule R-PAR-L: we have that R = R1 | R2 and S = S1 | R2, with

premise R1
k,α−−→ S1. By inductive hypothesis there exist R′1 ≡ R1

and S′1 ≡ S1 such that R′1
k,α
−−_ S′1. By congruence we have R ≡

R′1 | R2 and S ≡ S′1 | R2, and, by applying rule R-PAR-L with

premise R′1
k,α
−−_ S′1, we obtain R′1 | R2

k,α
−−_ S′1 | R2, as desired.

• Rule R-PAR-R: similar to the case above.

• Rule R-SYN: similar to the case above.

• Rule R-RES: we have that R = R1\a and S = S1\a, with premise

R1
k,α−−→ S1 and α /∈ {a, a}. By inductive hypothesis there exist R′1 ≡

R1 and S′1 ≡ S1 such that R′1
k,α
−−_ S′1. By congruence R ≡ R′1\a and

S ≡ S′1\a, and, by applying rule R-RES with premise R′1
k,α
−−_ S′1,

we obtain R′1\a
k,α
−−_ S′1\a, as desired.
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• Rule R-EQUIV: we have as premises R ≡ R1, R1
k,α
−−_ S1, and

S1 ≡ S. By inductive hypothesis there exist R′1 ≡ R1 and S′1 ≡ S1

such thatR′1
k,α
−−_ S′1. We can conclude by noticing thatR ≡ R1 ≡ R′1

and S ≡ S1 ≡ S′1, as desired. �

In RCCS, the context does not change by performing a forward action
without structural congruence influence. The only possibility to change
the context is via structural congruence. This is formally stated in the
following lemma showing that by executing transition −_, corresponding
memory events are added to the parallel components which performed
transition, without changing the context.

Lemma 5 For each forward RCCS transition derived without using rule
R-EQUIV:

CR[1 7→ m1 . P1, . . . , n 7→ mn . Pn]
k,α
−−_ S

we have:

S = CR[1 7→ m′′1@m1 . P
′
1, . . . , n 7→ m′′n@mn . P

′
n]

where 〈↑〉 6∈ m′′i for each i ∈ {1, . . . , n}.

Proof The proof is by induction on the derivation of the transition
k,α
−−_.

As the relation −_ is not induced by the rule R-EQUIV, we can con-
clude that lemma holds by noticing that the RCCS derivation rules only
add memories to their monitored processes do not bring any changes to
the structure of the context (only structural congruence may change the
context). �

The following lemmas are proving that in RCCS, memory has no
impact on forward transitions. For instance, if we take two monitored
processes R = m . α.P and R1 = m1 . α.P which differ only for the
memories m and m1, we can notice that both of them can perform action
α regardless to the given memories.

This observation is formally stated in the Lemma 8. We prove this
results in three steps, first we consider transitions derived without struc-
tural congruence, then we examine structural congruence and in the end
we combine the two results.
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Lemma 6 There is a forward transition:

CR[1 7→ m1 . P1, . . . , n 7→ mn . Pn]
k,α
−−_

CR[1 7→ m′1@m1 . P
′
1, . . . , n 7→ m′n@mn . P

′
n]

iff there is a forward transition

CR[1 7→ 〈〉 . P1, . . . , n 7→ 〈〉 . Pn]
k,α
−−_ CR[1 7→ m′1 . P

′
1, . . . , n 7→ m′n . P

′
n]

Proof The proof is by rule inspection. Application of the derivation rules
for the transition −_ is not influenced by the memory that monitors the
process. �

We can now proceed to the next step and show that memories do
not influence structural congruence. The required condition is that name
capturing needs to be avoided.

Lemma 7 If R ≡ S then, for each memory m such that (bn(R) ∪ bn(S)) ∩
fn(m) = ∅, R@m ≡ S@m.

Proof By induction on the derivation of R ≡ S. The only interesting case
is the base one, corresponding to the application of an axiom. We have a
case analysis on the applied axiom.

SPLIT: we have R = m′ . (P | Q) and S = 〈↑〉 · m′ . P | 〈↑〉 · m′ . Q.
By adding the same memory m to the processes R and S we get
R@m = m′@m.(P | Q) and S@m = 〈↑〉 ·m′@m.P | 〈↑〉 ·m′@m.Q.

By applying the SPLIT axiom to the process R@m we get m′@m .

(P | Q) ≡ 〈↑〉 ·m′@m . P | 〈↑〉 ·m′@m . Q as desired.

RES: we have R = m′ . (P\a) and S = (m′ . P )\a with a /∈ fn(m′).
By adding the same memory m to the processes R and S we get
R@m = m′@m . (P\a) and S@m = (m′@m . P )\a.

By applying the axiom RES to the process R@m we get m′@m .

(P\a) ≡ (m′@m . P )\a as desired. Note that a /∈ fn(m′) from the
side condition of the inductive hypothesis and a /∈ fn(m) from the
statement of the lemma. With these observations, the side condition
of the rule RES holds (a /∈ m′@m).
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α: we have R ≡ S since R =α S. By adding the same memory m to
both R and S we still have R@m =α S@m (note that since (bn(R) ∪
bn(S)) ∩ fn(m) = ∅ then m is not changed by α-conversion), which
implies R@m ≡ S@m, as desired. �

Now, we can combine results from the Lemmas 6 and 7, and in follow-
ing lemma, show that memory does not affect forward transitions.

Lemma 8 For every forward transition R k,α−−→ R′ in RCCS and each memory

m such that (bn(R) ∪ bn(R′)) ∩ fn(m) = ∅, we have R@m
k,α−−→ R′@m.

Proof By applying Lemma 4 we have that there exist S and S′ such that

R ≡ S
k,α
−−_ S′ ≡ R′. By α-conversion we can choose S and S′ such that

(bn(S) ∪ bn(S′)) ∩ fn(m) = ∅.
Since memories have no impact on structural congruence (Lemma 7)

from R ≡ S we can derive R@m ≡ S@m. Thanks to Lemma 5, S
k,α
−−_

S′ has the form needed by Lemma 6, which by applying, we obtain

S@m
k,α
−−_ S′@m. Applying again Lemma 7 on S′ ≡ R′, we can derive

S′@m ≡ R′@m. By applying rule R-EQUIV we obtain R@m
k,α−−→ R′@m,

as desired. �

Now we have all necessary auxiliary lemmas, both forward and back-
ward, to show operational correspondence. With the next two theorems
we prove that by having reachable CCSK process X and its encoding
R = JX, 〈〉K, if X does an action α in CCSK, then process R does the same
action in RCCS. Resulting process in RCCS is equal to the encoding of the
resulting process in CCSK. We start by proving forward correctness.

Theorem 1 (Forward Correctness) Let X be a reachable CCSK process and

R = JX, 〈〉K. For each CCSK transition X
α[k]−−→ X ′ there exists a corresponding

RCCS transition R k,α−−→ R′ with JX ′, 〈〉K = R′.

Proof The proof is by induction on the derivation of the transitionX
α[k]−−→

X ′ and by case analysis on the last applied rule.

40



K-ACT1: We have α.P
α[k]−−→ α[k].P with α ∈ {a, ā, τ}. By applying the

encoding
Jα.P, 〈〉K = 〈〉 . α.P

Then, by using RCCS rule R-ACT we get 〈〉.α.P k,α−−→ 〈k, α,0〉·〈〉.P ,
with Jα[k].P, 〈〉K = 〈k, α,0〉 · 〈〉 . P .

K-ACT2: We have α[k].X
β[h]−−→ α[k].X ′ with premise X

β[h]−−→ X ′. Let
R = JX, 〈〉K. By applying the inductive hypothesis we have that

R
h,β−−→ R′, with R′ = JX ′, 〈〉K. By applying the encoding, we

have Jα[k].X, 〈〉K = JX, 〈k, α,0〉 · 〈〉K and thanks to Lemma 3 we
get Jα[k].X, 〈〉K = R@〈k, α,0〉 · 〈〉. Let a be the name in α. By
Assumption 1, a /∈ bn(R) ∪ bn(R′). By applying Lemma 8 we

have that R@〈k, α,0〉 · 〈〉 h,β−−→ R′@〈k, α,0〉 · 〈〉. The thesis fol-
lows since Jα[k].X, 〈〉K = R@〈k, α,0〉 · 〈〉 and, thanks to Lemma 3,
Jα[k].X ′, 〈〉K = R′@〈k, α,0〉 · 〈〉.

K-SUM: We have
∑
i∈I Xi

α[k]−−→
∑
i∈I X

′
i with premise Xj

α[k]−−→ X ′j .

We have two cases depending on whether Xj is a CCS process or
not. If it is a CCS process then the proof is analogue to the case
K-ACT1. If not, it is analogue to the case K-ACT2, with the only
difference that the additional memory element has the choice of
discarded processes in the last field instead of 0.

K-PAR-L: We have X | Y α[k]−−→ X ′ | Y with premise X
α[k]−−→ X ′.

Thanks to the definition of the encoding we have that JX | Y, 〈〉K =

JX, 〈↑〉 · 〈〉K | JY, 〈↑〉 · 〈〉K. Thanks to Lemma 3 we have that

JX, 〈↑〉 · 〈〉K = JX, 〈〉K@〈↑〉 · 〈〉

By inductive hypothesis we have that JX, 〈〉K = R
k,α−−→ R′ = JX ′, 〈〉K.

Thanks to Lemma 8 (the condition is trivially satisfied since fn(〈↑
〉 · 〈〉) = ∅) we have that R@〈↑〉 · 〈〉 k,α−−→ R′@〈↑〉 · 〈〉. Thanks to
Lemma 3 we have R′@〈↑〉 · 〈〉 = JX ′, 〈↑〉 · 〈〉K. By applying RCCS
rule R-PAR-L we have that

JX, 〈↑〉 · 〈〉K | JY, 〈↑〉 · 〈〉K k,α−−→ R′@〈↑〉 · 〈〉 | JY, 〈↑〉 · 〈〉K
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We can conclude by noticing that

R′@〈↑〉 · 〈〉 | JY, 〈↑〉 · 〈〉K = JX ′, 〈↑〉 · 〈〉K | JY, 〈↑〉 · 〈〉K = JX ′ | Y, 〈〉K

K-PAR-R: This case is symmetric to the previous one.

K-SYN: We have X | Y τ [k]−−→ X ′ | Y ′ with premises X
α[k]−−→ X ′ and

Y
ᾱ[k]−−→ Y ′.

Thanks to the definition of the encoding we have that JX | Y, 〈〉K =

JX, 〈↑〉 · 〈〉K | JY, 〈↑〉 · 〈〉K. By inductive hypothesis we have that

JX, 〈〉K k,α−−→ R′ = JX ′, 〈〉K and JY, 〈〉K k,α−−→ S′ = JY ′, 〈〉K. Thanks to
Lemma 3 and Lemma 8 (the condition is trivially satisfied since
fn(〈↑〉 · 〈〉) = ∅) we have that:

JX, 〈↑〉 · 〈〉K k,α−−→ R′@〈↑〉 · 〈〉 = JX ′, 〈↑〉 · 〈〉K

Similarly, we have that:

JY, 〈↑〉 · 〈〉K k,α−−→ S′@〈↑〉 · 〈〉 = JY ′, 〈↑〉 · 〈〉K

By applying RCCS rule R-SYN we have that

JX, 〈↑〉 · 〈〉K | JY, 〈↑〉 · 〈〉K k,τ−−→ JX ′, 〈↑〉 · 〈〉K | JY ′, 〈↑〉 · 〈〉K

We can conclude by noticing that

JX ′, 〈↑〉 · 〈〉K | JY ′, 〈↑〉 · 〈〉K = JX ′ | Y ′, 〈〉K

K-RES: We have X\a α[k]−−→ X ′\a with premise X
α[k]−−→ X ′. From the

definition of the encoding we have that JX\a, 〈〉K = JX{b/a}, 〈〉K\b
with b = a ∨ b /∈ fn(X). From inductive hypothesis we have that

JX, 〈〉K k,α−−→ JX ′, 〈〉K. Since α /∈ {a, ā} we have JX{b/a}, 〈〉K
k,α−−→

JX ′{b/a}, 〈〉K. By applying RCCS rule R-RES we get

JX{b/a}, 〈〉K\b
k,α−−→ JX ′{b/a}, 〈〉K\b = JX ′\a, 〈〉K

as desired.
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α-conversion: We have X
α[k]−−→ X ′ with premise X ′′

α[k]−−→ X ′′′, X =α

X ′′ and X ′ =α X ′′′. From inductive hypothesis we have that

JX ′′, 〈〉K k,α−−→ JX ′′′, 〈〉K. By applying RCCS α-conversion we get

JX, 〈〉K k,α−−→ JX ′, 〈〉K as desired. �

Theorem 2 (Backward Correctness) Let X be a reachable CCSK process and

R = JX, 〈〉K. For each CCSK transition X
α[k]

X ′ there exists a corresponding

RCCS transition R
k,α

R′ with JX ′, 〈〉K = R′.

Proof From CCSK Loop Lemma (Lemma 2) we have that X
α[k]

X ′

implies X ′
α[k]−−→ X . By Theorem 1 we have that there exists a corre-

sponding RCCS transition R′
k,α−−→ R with JX, 〈〉K = R and JX ′, 〈〉K = R′.

By applying RCCS Loop Lemma (Lemma 1) we have that R
k,α

R′, as
desired. �

Up to know, we have proved that every transition done by reachable
process X in CCSK can be mimic by its encoding JX, 〈〉K in RCCS, where
resulting process is encoding of the result process in CCSK. Now we
need to show the opposite direction, that every transition of the process
R = JX, 〈〉K in RCCS, can be mimic by processX in CCSK, where resulting
process in RCCS is congruent with the encoding of the result process in
CCSK.

Theorem 3 (Forward Completeness) Let X be a reachable CCSK process

and R = JX, 〈〉K. For each RCCS transition R k,α−−→ R′ there exists a correspond-

ing CCSK transition X
α[k]−−→ X ′ with R′ ≡ JX ′, 〈〉K.

Proof Thanks to Lemma 4 we can equivalently write the statement as
follows: for each reachable CCSK process X and RCCS processes R and
R′′, such that R = JX, 〈〉K and R′′ ≡ R, if there exists a RCCS transition

R′′
k,α
−−_ R′, then there exists a corresponding CCSK transition X

α[k]−−→ X ′,
with R′ ≡ JX ′, 〈〉K. When considering R′′ ≡ R we will not consider
α-conversion, since it can be trivially matched by CCSK α-conversion.
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Now the proof is by structural induction on X with a case analysis on

the last applied rule in the derivation of R′′
k,α
−−_ R′. We have two main

cases, depending on whether X is a standard process P or not.
In the first case X = P , and we proceed by performing a structural

induction on P .

P = α.P1 : we have that R = Jα.P1, 〈〉K and by applying the encoding

Jα.P1, 〈〉K = 〈〉 . α.P1

Since we cannot apply any structural rule (beyond α-conversion),
then R′′ = R.

Then, the only applicable rule is R-ACT, and we get

〈〉 . α.P1
k,α
−−_ 〈k, α,0〉 · 〈〉 . P1 = R′

In CCSK, process α.P1 can do the same action α by applying the
rule K-ACT1 and we get

α.P1
α[k]−−→ α[k].P1

Since Jα[k].P1, 〈〉K = R′ we are done.

P =
∑
l∈I αl.Pl : we haveR = J

∑
l∈I αl.Pl, 〈〉K. By applying the encoding

we have:
J
∑
l∈I

αl.Pl, 〈〉K = 〈〉 .
∑
l∈I

αl.Pl

Since no structural congruence (beyond α-conversion) can be ap-
plied R′′ = R. The only applicable rule is R-ACT and we have

〈〉 .
∑
l∈I

αl.Pl
k,αj−−_ 〈k, αj ,

∑
l∈I\{j}

αl.Pl〉 · 〈〉 . Pj

By using CCSK rule K-ACT1 (since P is a CCS process) followed
by K-SUM we can derive
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∑
l∈I

αl.Pl
αj [k]−−−→ αj [k].Pj +

∑
l∈I\{j}

αl.Pl

We can conclude by noticing that

Jαj [k].Pj +
∑

l∈I\{j}

αl.Pl, 〈〉K = JPj , 〈k, αj ,
∑

l∈I\{j}

αl.Pl〉 · 〈〉K =

〈k, αj ,
∑

l∈I\{j}

αl.Pl〉 · 〈〉 . Pj

as desired.

P = P1 | P2 : we have that R = JP1 | P2, 〈〉K and by applying the encod-
ing

JP1 | P2, 〈〉K = 〈〉 . P1 | P2

We have now two possibilities for R′′ ≡ R: either R′′ = R or
R′′ = 〈↑〉 · 〈〉 . P1 | 〈↑〉 · 〈〉 . P2. In the first case no rule can be
applied and we are done. Let us consider the second one. Now we
distinguish three cases depending on whether the last applied rule
is R-PAR-L, R-PAR-R or R-SYN.

If R-PAR-L is applied, then we have that

〈↑〉 · 〈〉 . P1 | 〈↑〉 · 〈〉 . P2
k,α
−−_ R1 | 〈↑〉 · 〈〉 . P2

with premise 〈↑〉 · 〈〉 . P1
k,α
−−_ R1. Thanks to Lemma 6 we can derive

〈〉 . P1
k,α
−−_ R′ with R1 = R′@〈↑〉 · 〈〉.

Since 〈〉 . P1 = JP1, 〈〉K we can apply the inductive hypothesis and

get P1
α[k]−−→ X ′ with JX ′, 〈〉K = R′. We can now apply CCSK rule

K-PAR-L and derive

P1 | P2
α[k]−−→ X ′ | P2

By applying the encoding, we have

JX ′ | P2, 〈〉K = JX ′, 〈↑〉 · 〈〉K | JP2, 〈↑〉 · 〈〉K
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By applying Lemma 3 on JX ′, 〈〉K = R′ we can derive JX ′, 〈↑〉 · 〈〉K =

R1. We can now conclude that

JX ′, 〈↑〉 · 〈〉K | JP2, 〈↑〉 · 〈〉K = R1 | 〈↑〉 · 〈〉 . P2

as desired.

If R-PAR-R is applied we can reason as in the previous case. If
R-SYN is applied, we use twice the inductive hypothesis and we
reason as in the previous cases.

P = P1\a : we have that R = JP1\a, 〈〉K and by applying the encoding

JP1\a, 〈〉K = 〈〉 . (P1\a)

We have two possibilities for R′′ ≡ R: either R′′ = R or R′′ =

(〈〉 . P1)\a. In the first case no rule can be applied and we are done.
Let us consider the second one. The only applicable rule is R-RES.
We get

(〈〉 . P1)\a
k,α
−−_ R1\a

with premise 〈〉 . P1
k,α
−−_ R1, where α /∈ {a, a}.

Since 〈〉.P1 = JP1, 〈〉K we can apply the inductive hypothesis and get

that P1
α[k]−−→ X ′ with JX ′, 〈〉K = R1. The thesis follows by applying

the CCSK rule K-RES on the process P1\a .

In the second case process X is not standard. We proceed by structural
induction on X .

X = α[k].Y : we have thatR = Jα[k].Y, 〈〉K, and by applying the encoding

Jα[k].Y, 〈〉K = JY, 〈k, α,0〉 · 〈〉K

Take any RCCS transition

JY, 〈k, α,0〉 · 〈〉K ≡ R′′
h,β
−−_ R′

Let a be the name in α. By Assumption 1 a /∈ bn(JY, 〈k, α,0〉 · 〈〉K).
Also, working up to α-conversion we can assume that a /∈ bn(R′′) ∪
bn(R′).
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Since memory has no impact on the structural congruence (Lemma 7)
there exists S′′ ≡ JY, 〈〉K such thatR′′ = S′′@〈k, α,0〉·〈〉. By Lemma 6

we have that S′′
h,β
−−_ S′ with R′ = S′@〈k, α,0〉 · 〈〉. By applying the

inductive hypothesis on JY, 〈〉K ≡ S′′ h,β−−→ S′we have that Y
β[h]−−→ Y ′

with JY ′, 〈〉K ≡ S′.

By applying CCSK rule K-ACT2 with the premiss Y
β[h]−−→ Y ′,

we can also derive α[k].Y
β[h]−−→ α[k].Y ′. The thesis follows since

Jα[k].Y ′, 〈〉K = JY ′, 〈k, α,0〉 · 〈〉K ≡ R′ thanks to Lemma 3.

X = αj [k].Xj +
∑
l∈I\{j}Xl : we have thatR = Jαj [k].Xj +

∑
l∈I\{j}Xl, 〈〉K,

and by applying the encoding

Jαj [k].Xj +
∑

l∈I\{j}

Xl, 〈〉K = JXj , 〈k, αj ,
∑

l∈I\{j}

Xl〉 · 〈〉K

Take any RCCS transition

JXj , 〈k, αj ,
∑

l∈I\{j}

Xl〉 · 〈〉K ≡ R′′
h,β
−−_ R′

Let R′′′ = JXj , 〈k, αj ,
∑
l∈I\{j}Xl〉 · 〈〉K. From Assumption 1 we

have that fn(〈k, αj ,
∑
l∈I\{j}Xl〉 · 〈〉) ∩ bn(R′′′) = ∅. Also, working

up to α-conversion we can assume that fn(〈k, αj ,
∑
l∈I\{j}Xl〉 ·〈〉)∩

(bn(R′′) ∪ bn(R′)) = ∅.

Since memory has no impact on structural congruence (Lemma 7)
there exists S′′ ≡ JXj , 〈〉K such thatR′′ = S′′@〈k, αj ,

∑
l∈I\{j}Xl〉·〈〉.

By Lemma 6 we have that S′′
h,β
−−_ S′withR′ = S′@〈k, αj ,

∑
l∈I\{j}Xl〉·

〈〉. By applying the inductive hypothesis on JXj , 〈〉K ≡ S′′
h,β−−→ S′

we have that Xj
β[h]−−→ X ′j with JX ′j , 〈〉K ≡ S′.

By applying CCSK rule K-ACT2 and K-SUM we can also derive

αj [k].Xj +
∑

l∈L\{j}

Xl
β[h]−−→ αj [k].X ′j +

∑
l∈L\{j}

Xl
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The thesis follows since

Jαj [k].X ′j +
∑

l∈L\{j}

Xl, 〈〉K = JX ′j , 〈k, αj ,
∑

l∈L\{j}

Xl〉 · 〈〉K ≡ R′

thanks to Lemma 3.

X = Y1 | Y2 : we have that R = JY1 | Y2, 〈〉K, and by applying the encod-
ing we obtain

JY1 | Y2, 〈〉K = JY1, 〈↑〉 · 〈〉K | JY2, 〈↑〉 · 〈〉K

Take any term R′′ ≡ JY1, 〈↑〉 · 〈〉K | JY2, 〈↑〉 · 〈〉K. There are two cases:
either R′′ = R′′1 | R′′2 with R′′1 ≡ JY1, 〈↑〉 · 〈〉K and R′′2 ≡ JY2, 〈↑〉 · 〈〉K,
or the two parallel sub-processes have been merged by applying the
(SPLIT) rule from right to left. In this last case no transition can be
performed. Let us consider the first case. We have a case analysis
depending on whether the last applied rule is R-PAR-L, R-PAR-R
or R-SYN.

If rule R-PAR-L is applied we have that R′′1 | R′′2
k,α
−−_ S′′1 | R′′2

with hypothesis R′′1
k,α
−−_ S′′1 . Moreover, from Lemma 6 (condition is

verified since fn(〈↑〉 · 〈〉) = ∅) there exist R′′′1 such that R′′1 = R′′′1 @〈↑
〉 · 〈〉 and R′′′1

k,α
−−_ S′′′1 , where S′′1 = S′′′1 @〈↑〉 · 〈〉.

Since R′′′1 ≡ JY1, 〈〉K we can apply the inductive hypothesis and
obtain that

Y1
α[k]−−→ Y ′1 with JY ′1 , 〈〉K ≡ S′′′1

We can now apply CCSK rule K-PAR-L and derive the transition

Y1 | Y2
α[k]−−→ Y ′1 | Y2

and we conclude by noticing that

JY ′1 | Y2, 〈〉K = JY ′1 , 〈↑〉 · 〈〉K | JY2, 〈↑〉 · 〈〉K ≡ S′′1 | R′′2

The other two cases are similar.
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X = Y \a : we have that R = JY \a, 〈〉K and by applying the encoding
JY \a, 〈〉K = JY {b/a}, 〈〉K\b with b = a ∨ b /∈ fn(Y ). Take any term
R′′ ≡ JY {b/a}, 〈〉K\b. There are two cases: either R′′ = R′′1\b with
R′′1 ≡ JY {b/a}, 〈〉K, or the restriction has been put back inside the
term using structural rule RES. In this last case no transition can be
performed. Let us consider the first case. The only applicable rule is

R-RES. We have R′′1\b
k,α
−−_ R′′′\b with hypothesis R′′1

k,α
−−_ R′′′. By

applying the inductive hypothesis we obtain that

Y {b/a}
α[k]−−→ Y ′{b/a}

with Y ′{b/a} ≡ R′′′. By applying CCSK rule K-RES we also have

Y {b/a}\b
α[k]−−→ Y ′{b/a}\b

The thesis follows since JY ′\a, 〈〉K = JY ′{b/a}, 〈〉K\b ≡ R′′′\b. �

Theorem 4 (Backward Completeness) Let X be a reachable CCSK process

and R = JX, 〈〉K. For each RCCS transition R
k,α

R′ there exists a correspond-

ing CCSK transition X
α[k]

X ′ with R′ ≡ JX ′, 〈〉K.

Proof From RCCS Loop Lemma (Lemma 1) we have that R′
k,α−−→ R

in RCCS. From Theorem 3 we have that X ′
α[k]−−→ X with JX, 〈〉K ≡ R

and JX ′, 〈〉K = R′. By applying RCCS rule R-EQUIV to R′
k,α−−→ R and

R ≡ JX, 〈〉K we have thatR′
k,α−−→ JX, 〈〉K. By applying CCSK Loop Lemma

(Lemma 2) we have that X
α[k]

X ′. �

3.2 Encoding RCCS into CCSK

In this Section we give the first encoding of RCCS into CCSK, appeared
in [58] and discuss a difficulties behind it. After that we present the new
encoding function and prove operational correspondence result.

As we already pointed out, the main difference between RCCS and
CCSK is in the way how they keep track of the past actions. To be able
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to manipulate over monitored processes in RCCS it is necessary to use
the additional structural congruence rules. One of them is structural rule
SPLIT which split a parallel composition of processes sharing the same
memory into a parallel composition of different monitored processes. In
this way, the obtained processes can evolve independently. In the CCSK,
history information is saved in the structure of the process and there is no
need for the structural rules. Therefore, the encoding of RCCS has to be
able, to collect partially encoded processes which have the same part of
the memory and to merge them. For instance, let us take RCCS process

R = 〈h, β,0〉 · 〈↑〉 · 〈k, α,Q〉 · 〈〉 . P1 | 〈↑〉 · 〈k, α,Q〉 · 〈〉 . γ.P2

As we mentioned, the encoding function, while translating process R
needs to be aware that two subprocesses have equal part of the memory
(〈↑〉 · 〈k, α,Q〉 · 〈〉) and to join them. To be able to do that, and to obtain
corresponding process X = α[k].(β[h].P1 | γ.P2) +Q in CCSK, encoding
has to reason not just on the every component of the parallel composition
separately, but on the whole process as well.

There are two ways of looking into the memory of a RCCS process:
either left (last action) or right (very first action). If we look from the left
then the encoding is:

Encoding from the left. Taking into account structure of the monitored
process and observation stated above, we define translation of RCCS
process through two encoding functions. They encode a memory of the
monitored process starting from the very last memory event (left in the
textual representation). The function L·M will encode monitored processes
on the local level and it is inductively defined as follows:

LR | SM = LRM | LSM L〈〉, XM = X

LR\AM = LRM\A L〈k, α,Q〉 ·m,XM = Lm,α[k].X +QM

Lm . P M = Lm,P M L〈↑〉 ·m,XM = H〈↑〉 ·m,XI

As we can see, the encoding of a monitored process Lm,P M proceeds
as long as in memory m it does not encounter a split event 〈↑〉. In that
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state, encoding freezes and produces partially encoded process of the
form H〈↑〉 ·m,XI.

To continue with encoding, it is necessary to track down another
partially encoded process H〈↑〉 ·m,Y I with the same memory and join
them into parallel composition with shared memory Hm,X | Y I. For
this purpose we introduce the function δ(·) which will reason on the
global level and be in charge of putting together two partially encoded
CCSK processes sharing the same memory. The function δ(·) is defined as
follows:

δ
(∏

H〈↑〉 ·ml, XlI |
∏

H〈↑〉 ·mt, XtI |
∏

H〈↑〉 ·mz, XzI
)

=

δ
(∏

Lml, Xl | XtM |
∏

H〈↑〉 ·mz, XzI
)

if ∀l ∈ L∃t ∈ T s.t ml = mt

δ(X) = X

The function δ applies again the encoding L·M on the joined processes until
an entire CCSK process has been obtained.

In the definition of encoding functions stated above, naturally, we
were thinking about translation of the memory of the monitored process
starting from the left to the right, i.e. starting from the element on the top
of the stack. This way of reasoning, even by redefining existing functions,
is showed to be unsuitable for proving operational correspondence. For
this reason, we took a different approach, presented in the further text.

Encoding of RCCS into CCSK As we stated before, the encoding needs
to translate together the monitored processes having the same memory
part m. Since in RCCS, memory is duplicated every time when monitored
process has parallel composition on the top level, encoding of the memory
m should start from the very first action that process did i.e. the oldest
action (right in the textual representation), differently from the initial
encoding definition given in the paragraph above. To illustrate this, we
give the following example.

Example 8 Let us take the RCCS process

R = 〈h, β,0〉 · 〈↑〉 · 〈k, α,Q〉 · 〈〉 . P1 | 〈↑〉 · 〈k, α,Q〉 · 〈〉 . P2
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Instead to start to encode memories of the monitored subprocesses from
the left in the textual representation, one should start from the right by
taking the part of the memory that is the same for both subprocesses,
that is 〈k, α,Q〉 and build from it the CCSK context C = α[k].[•] +Q. The
translation of the rest of the memories continue inside the context C.

Before stating the definition of the encoding, we need to introduce an
auxiliary function and a history context. We define a trimming function δ
to remove the split events 〈↑〉 from the memory, starting from the right side
of it. For instance, the result of applying δ to the memory 〈↑〉 · 〈k, α,Q〉 · 〈↑
〉 · 〈↑〉 · 〈〉 is 〈↑〉 · 〈k, α,Q〉 · 〈〉. The trimming function δ is defined as follows:

Definition 16 The function δ : Mem→ Mem, is inductively defined as follows:

δ(m@〈↑〉 · 〈〉) = δ(m) δ(〈〉) = 〈〉
δ(m@〈k, α,Q〉 · 〈〉) = m@〈k, α,Q〉 · 〈〉

Now we introduce the notion of history context which represents the
correspondence between RCCS memory without 〈↑〉 elements and the
CCSK context.

Definition 17 (History Context) Given a memory m such that 〈↑〉 6∈ m, the
corresponding history context Hm is defined as follows:

H〈〉 = •
H〈k,α,0〉·m = Hm[α[k].•]
H〈k,α,Q〉·m = Hm[α[k]. •+Q] if Q 6= 0

To illustrate definition above, consider RCCS process 〈h, b,0〉 · 〈k, a,Q〉.P .
History context, of the given memory 〈h, b,0〉 · 〈k, a,Q〉, is defined as

H〈h,b,0〉·〈k,a,Q〉[P ] = H〈k,a,Q〉[b[h].P ] = H〈〉[a[k].b[h].P +Q]

Finally, we can give a definition of the encoding function. Let us recall
that P is a standard CCS process and PK and PR are the sets of, CCSK
and RCCS processes, respectively. The encoding function L·M : PR → PK
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is inductively defined as follows:

LR\aM = LRM\a

LCl∈L[l 7→ ml@(〈↑〉 ·m) . Pl]M = Hm[Cl∈L[l 7→ Lδ(ml) . PlM]]

if 〈↑〉 6∈ m and the top operator in C is |

Lm . P M = Hm[P ]

Let us comment on the rules. The rule for restriction is design to push
restriction outside of the encoding. Collection of the common parts of the
memories is done by the function L·M. It examines the memory starting
form the oldest element (right in the textual representation) and takes
the common part m such that 〈↑〉 /∈ m. The common memory m is used
for reconstructing the CCSK structure by history context Hm. The first
split element from the right is discarded and the rest of the memories ml

are being trimmed by function δ and kept for further encoding. In this
way, processes that were split by using SPLIT rule in RCCS, are merged
under the common memory. Single monitored process m . P is encoded
by translating the memory m into the history context Hm, which builds
the history part of the CCSK process.

We would like to remark that in the second rule, notation C is used
to represent contexts in both calculi, CCSK and RCCS. We justify this
abuse of notation with the fact that context C is composed by parallel and
restriction operators, which are available in both calculi.

The intuition how encoding works is given in the following example.

Example 9 Let us take the RCCS process R:

R = 〈k, d,0〉 · 〈↑〉 · 〈↑〉 · 〈〉 . a | 〈↑〉 · 〈↑〉 · 〈〉 . b | 〈↑〉 · 〈〉 . c
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Its encoding in CCSK is:

LRM = L〈k, d,0〉 · 〈↑〉 · 〈↑〉 · 〈〉 . a | 〈↑〉 · 〈↑〉 · 〈〉 . b | 〈↑〉 · 〈〉 . cM (3.1)
= H〈〉[Lδ(〈k, d,0〉 · 〈↑〉 · 〈〉) . aM | Lδ(〈↑〉 · 〈〉) . bM | Lδ(〈〉) . cM] (3.2)
= L〈k, d,0〉 · 〈〉 . aM | L〈〉 . bM | L〈〉 . cM (3.3)
= H〈k,d,0〉·〈〉[a] | H〈〉[b] | H〈〉[c] (3.4)
= H〈〉[d[k].a] | b | c (3.5)
= d[k].a | b | c (3.6)

In (3.2), we can notice that the memory part that was the same for all three
subprocesses is only the empty memory 〈〉 which build the context H〈〉.
The first split event from the right, is consumed by encoding function and
removed from each memory. The translation of the rest of the memories
continue inside of the context H〈〉.

In what follows we show some auxiliary results, necessary to prove
the operational correspondence of the encoding.

Definition 18 Given a context Cl∈L[l 7→ •l] we denote with hl the number of
parallel composition operators in the path connecting •l to the root in the syntax
tree of Cl∈L[l 7→ •l].

The following lemma states that history context with some memory
m can be decomposed into two contexts with the memories m1 and m2

where m = m1@m2.

Lemma 9 For any memory m1@m2, such that 〈↑〉 /∈ m1,m2, and reachable
CCSK process X, we have that Hm1@m2 [X] = Hm2 [Hm1 [X]]

Proof The proof is by induction on the length of m1.

• The base case is when m1 = 〈〉. In this case:

Hm1@m2 [X] = Hm2 [X]

since m1@m2 = m2 and:

Hm2
[Hm1

[X]] = Hm2
[X]

since Hm1
= •. The thesis follows.
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• The inductive case is when m1 = 〈k, α,0〉 ·m′1. We have that:

Hm1@m2 [X] = H(〈k,α,0〉·m′1)@m2
[X] = Hm′1@m2

[α[k].X]

By applying inductive hypothesis on m′1@m2 we have:

Hm′1@m2
[α[k].X] = Hm2

[Hm′1 [α[k].X]] = Hm2
[H〈k,α,0〉·m′1 [X]]

as desired.

The case where we have Q instead of 0 is analogous. �

Lemma 10 For each reachable RCCS process of the form Cl∈L[l 7→ m′l . Pl], if
m′l = ml@〈↑〉 ·m′′l where 〈↑〉 6∈ m′′l then we have

ml = δ(ml)@(〈↑〉hl−1 · 〈〉)

Proof By induction on the number of steps leading from an initial RCCS
process to Cl∈L[l 7→ m′l . Pl].

• The base case is trivial, since the memory of an initial process never
contains 〈↑〉 elements (memory of an initial process is empty, 〈〉). Let
us consider the inductive case.

• If the reduction is derived without using structural congruence, the
thesis follows by inductive hypothesis using Lemma 5.

If structural congruence is used, let us consider the application of
a single axiom. If the axiom is (RES) or (α), then the thesis follows
by inductive hypothesis. If the axiom is (SPLIT), then a memory
with depth hl is split into two memories with depth hl + 1, and a
〈↑〉 element is added to both of them. For all the other memories the
depth is unchanged and no 〈↑〉 element is added. The thesis follows
by inductive hypothesis. �

Lemma 11 For each reachable CCSK process X and history context Hm we have

JHm[X], 〈〉K = JX, 〈〉K@m

Proof The proof is by structural induction on m.
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• The base case when m = 〈〉 is trivial.

• Let us consider the case m = 〈k, α,0〉 ·m′ (the case with Q instead
of 0 is analogous). By definition of history context we have

JH〈k,α,0〉·m′ [X], 〈〉K = JHm′ [α[k].X], 〈〉K

By inductive hypothesis we have

JHm′ [α[k].X], 〈〉K = Jα[k].X, 〈〉K@m′

From the definition of the J·, ·K encoding we get

Jα[k].X, 〈〉K@m′ = JX, 〈k, α,0〉 · 〈〉K@m′

From Lemma 3 we have

JX, 〈k, α,0〉 · 〈〉K@m′ = JX, 〈〉K@(〈k, α,0〉 ·m′)

as desired. �

Now we can show the main result of this Section stating that RCCS
is more abstract than CCSK. The proof of the result is done in two steps.
First, we show that by taking an RCCS process R and encoding it to CCSK
and encoding result back in RCCS, we obtain the initial process R. After
that we prove that if we start from a CCSK process X , encode it to RCCS
and then back to CCSK we obtain normalisation of X , not exactly the
process X from which we started.

Theorem 5 Let R be a reachable RCCS process. Then JLRM, 〈〉K = R.

Proof The proof is by induction on the derivation of LRM.

LR\aM : by using the definitions of the encodings we get

JLR\aM, 〈〉K = JLRM\a, 〈〉K = JLRM, 〈〉K\a

since a 6∈ fn(〈〉), and by applying the inductive hypothesis we have
that JLRM, 〈〉K\a = R\a, as desired.
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LCl∈L[l 7→ ml@(〈↑〉 ·m) . Pl]M with 〈↑〉 6∈ m: by using the definition of
the encoding L·M

JLCl∈L[l 7→ ml@(〈↑〉 ·m) . Pl]M, 〈〉K = JHm[Cl∈L[l 7→ Lδ(ml) . PlM]], 〈〉K

By using Lemma 11 we have:

JHm[Cl∈L[l 7→ Lδ(ml) . PlM]], 〈〉K = JCl∈L[l 7→ Lδ(ml) . PlM], 〈〉K@m

From the definition of J·, ·K we have:

JCl∈L[l 7→ Lδ(ml) . PlM], 〈〉K@m = (Cl∈L[l 7→ JLδ(ml) . PlM, 〈↑〉hl · 〈〉K])@m

By applying Lemma 3 we have:

(Cl∈L[l 7→ JLδ(ml) . PlM, 〈↑〉hl · 〈〉K])@m =

(Cl∈L[l 7→ JLδ(ml) . PlM, 〈〉K@〈↑〉hl · 〈〉])@m

By inductive hypothesis we have:

(Cl∈L[l 7→ JLδ(ml) . PlM, 〈〉K@〈↑〉hl · 〈〉])@m =

(Cl∈L[l 7→ (δ(ml) . Pl)@〈↑〉hl · 〈〉])@m

By definition of append we have:

(Cl∈L[l 7→ (δ(ml).Pl)@〈↑〉hl ·〈〉])@m = Cl∈L[l 7→ δ(ml)@(〈↑〉hl ·〈〉)@m.Pl]

The thesis follows thanks to Lemma 10.

Lm . P M : by definition of L·M we have Lm . P M = Hm[P ]. By applying J·, 〈〉K
we get:

JLm . P M, 〈〉K = JHm[P ], 〈〉K

By applying Lemma 11 and the definition of the J·, ·K encoding we
have:

JHm[P ], 〈〉K = JP, 〈〉K@m = (〈〉 . P )@m = m . P

as desired. �

To prove the converse of Theorem above (Theorem 5), we need to
introduce the notion of a normal form for CCSK processes. Essentially,
normal form pushes all the restrictions in the non-standard part of a
sequential process on the top level. Precisely, normal form of the CCSK
process is defined as:

57



Definition 19 (CCSK normal form) The normal form nf(X) of a CCSK
process X is a CCSK process Y obtained from X by applying as many times as
possible the following rewriting rules (in any context):

• α[k].(X1\a)→ (α[k].X1{b/a})\b if b /∈ fn(α.0) ∧ (b = a ∨ b /∈ fn(X1))

• α[k].(X1\a) +Q→ (α[k].X1{b/a}+Q)\b
if b /∈ fn(α.Q) ∧ (b = a ∨ b /∈ fn(X1))

where X1 is not a standard process.

Let us note that nf(·) avoid capturing free names, mimicking the
behaviour of the encoding J·K. In the following examples, we show the
necessity for the normal form nf(·).

Example 10 Let us consider the CCSK process X = a[k].(b[w].P )\a. Its
encoding into CCSK is:

Ja[k].(b[w].P )\a, 〈〉K = J(b[w].P )\a, 〈k, a,0〉 · 〈〉K
= J(b[w].P{c/a}), 〈k, a,0〉 · 〈〉K\c
= JP{c/a}, 〈w, b,0〉 · 〈k, a,0〉 · 〈〉K\c
= (〈w, b,0〉 · 〈k, a,0〉 · 〈〉 . P{c/a})\c = R

Let m = 〈w, b,0〉 · 〈k, a,0〉 · 〈〉. By applying the encoding L·M on the process
R, we obtain:

L(m . P{c/a})\cM = L(m . P{c/a})M\c
= Hm[P{c/a}]\c
= (a[k].b[w].P{c/a})\c

We have that initial CCSK processX 6= (a[k].b[w].P{c/a})\c, but nf(X) =α

(a[k].b[w].P{c/a})\c.

Remark 4 We would like to highlight the fact that reduction to normal
form is the identity if all the restrictions are in the standard part of the
process. For example, consider a CCSK process X = a[k].(P\a). Its
encoding to RCCS is:

Ja[k].(P\a), 〈〉K = JP\a, 〈k, a,0〉 · 〈〉K = 〈k, a,0〉 · 〈〉 . (P\a)
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If we apply the encoding L·M to 〈k, a,0〉 · 〈〉 . (P\a) we obtain:

L〈k, a,0〉 · 〈〉 . (P\a)M = H〈k,a,0〉·〈〉[P\a] = a[k].(P\a) = X = nf(X)

If we use a different definition of normal form nf•(·)that allows to push
out restrictions also from the standard part of processes (we could done
it by removing the part of the Definition 19 stating that X1 cannot be a
standard process), we would have that:

nf•(X) = (a[k].P{b/a})\b

but in that case LJX, 〈〉KM 6= nf•(X) and this is not what we wanted.

We shall highlight that processes with the same normal form have the
same behaviour. This is shown by the following lemma.

Lemma 12 Let X and Y be CCSK processes such that nf(X) = nf(Y ). Then

X
α[k]−−→ X ′ iff Y

α[k]−−→ Y ′ with nf(X ′) = nf(Y ′), and similarly for backward
transitions.

Proof The proof is by induction on the number of the application of the
rewriting rules used to compute the normal form, both in the direction
used for normalization and in the opposite direction. From the definition
of the normal form (Definition 19) it is easy to see that lemma holds for
a single application of the rules. Inductive step follows directly form
the inductive hypothesis and the fact that lemma is holding for a single
application of the rewriting rule. �

With the next lemma we show some properties of the encoding func-
tion L·M.

Lemma 13 For each memory m and reachable RCCS processes R and S we
have:

1. LR@mM = nf(Hm[LRM]) where 〈↑〉 /∈ m

2. LR@〈↑〉 · 〈〉 | S@〈↑〉 · 〈〉M = LRM | LSM

Proof The proof of item (1) is by structural induction on R, with a case
analysis according to its form.
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R = R′\a: we have L(R′\a)@mM = LR′@mM\a with a /∈ m.

By inductive hypothesis LR′@mM = nf(Hm[LR′M]), hence LR′@mM\a =

nf(Hm[LR′M])\a. Thanks to the definition of the encoding L·M and of
normal form, we have:

nf(Hm[LR′M])\a = nf(Hm[LR′M\a]) = nf(Hm[LR′\aM]) = nf(Hm[LRM])

as desired.

R = Cl∈L[l 7→ ml@(〈↑〉 ·m′) . Pl]: by applying encoding L·M onR, we have:

LRM = LCl∈L[l 7→ ml@(〈↑〉 ·m′) . Pl]M = Hm′ [Cl∈L[l 7→ Lδ(ml) . PlM]]

hence:

LR@mM =LCl∈L[l 7→ ml@(〈↑〉 ·m′) . Pl]@mM =

Hm′@m[Cl∈L[l 7→ Lδ(ml) . PlM]] =

Hm[Hm′ [Cl∈L[l 7→ Lδ(ml) . PlM]]] = Hm[LRM]

where we used Lemma 9. Note that Hm[LRM] = nf(Hm[LRM]) since
Hm and Hm′ do not contain restrictions, the top operator of context C
is a parallel composition, and the encoding of monitored processes
produces CCSK processes already in normal form. Hence, the thesis
follows.

R = m′ . P : by applying encoding L·M on R, we have Lm′ . P M = Hm′ [P ],
hence

L(m′ . P )@mM = Hm′@m[P ] = Hm[Hm′ [P ]] = Hm[LRM].

Note that Hm[LRM] = nf(Hm[LRM]) since Hm and Hm′ do not contain
restrictions, and P is standard. Hence, the thesis follows.

Item (2) follows immediately from the definition of the encoding,
noting that H〈〉 = •. �

Having all the necessary properties, we can prove the following theo-
rem stating that encoding of the CCSK processX into RCCS, and encoding
it back to CCSK is equal up to α-conversion to the normal form of the
process X .
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Theorem 6 Let X be a reachable CCSK process. Then LJX, 〈〉KM =α nf(X).

Proof The proof is by structural induction on X , with a case analysis on
the form of X . We first consider the case of standard processes, that is
X = P .

X = P : by using the definitions of encodings J·K and L·M we have:

LJP, 〈〉KM = L〈〉 . P M = H〈〉[P ] = P = nf(P )

as desired.

We now consider non-standard processes.

X = α[k].Y +
∑
j∈J αj .Pj : by using the definition of encoding J·K, we

have:

LJα[k].Y +
∑
j∈J

αj .Pj , 〈〉KM = LJY, 〈k, α,
∑
j∈J

αj .Pj〉 · 〈〉KM

Thanks to Lemma 3 we have:

LJY, 〈k, α,
∑
j∈J

αj .Pj〉 · 〈〉KM = LJY, 〈〉K@〈k, α,
∑
j∈J

αj .Pj〉 · 〈〉M

By Lemma 13 we have:

LJY, 〈〉K@〈k, α,
∑
j∈J

αj .Pj〉 · 〈〉M = nf(H〈k,α,
∑

j∈J αj .Pj〉[LJY, 〈〉KM])

Thanks to the inductive hypothesis we have LJY, 〈〉KM =α nf(Y ), and
hence:

nf(H〈k,α,
∑

j∈J αj .Pj〉[LJY, 〈〉KM]) =αnf(H〈k,α,
∑

j∈J αj .Pj〉[nf(Y )]) =

nf(α[k].nf(Y ) +
∑
j∈J

αj .Pj) =

nf(α[k].Y +
∑
j∈J

αj .Pj)

as desired.
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X = X1 | X2: by definition of the encodingJ·K, we have:

LJX1 | X2, 〈〉KM = LJX1, 〈↑〉 · 〈〉K | JX2, 〈↑〉 · 〈〉KM

Thanks to Lemma 3 we can rewrite JX1, 〈↑〉 · 〈〉K and JX2, 〈↑〉 · 〈〉K as:

JX1, 〈↑〉 · 〈〉K = C
JX1,〈〉K
i∈I [i 7→ mi@(〈↑〉 · 〈〉) . Pi] =

C
JX1,〈〉K
i∈I [i 7→ mi . Pi]@(〈↑〉 · 〈〉) =

JX1, 〈〉K@(〈↑〉 · 〈〉)
JX2, 〈↑〉 · 〈〉K = C

JX2,〈〉K
j∈J [j 7→ mj@(〈↑〉 · 〈〉) . Pj ] =

C
JX2,〈〉K
j∈J [j 7→ mj . Pj ]@(〈↑〉 · 〈〉) =

JX2, 〈〉K@(〈↑〉 · 〈〉)

and obtain:

LJX1 | X2, 〈〉KM = LJX1, 〈〉K@(〈↑〉 · 〈〉) | JX2, 〈〉K@(〈↑〉 · 〈〉)M

Thanks to Lemma 13 we have:

LJX1 | X2, 〈〉KM = LJX1, 〈〉KM | LJX2, 〈〉KM)

By inductive hypothesis we have that LJX1, 〈〉KM =α nf(X1) and
LJX2, 〈〉KM =α nf(X2). Moreover, by definition of the normal form
we have that:

nf(X1 | X2) = nf(X1) | nf(X2)

Then we can conclude by noticing that:

LJX1, 〈〉KM | LJX2, 〈〉KM =α nf(X1) | nf(X2) = nf(X1 | X2) = nf(X)

as desired.

X = X1\a: by using the definition of encodings J·K and L·M, we have:

LJX1\a, 〈〉KM = LJX1, 〈〉K\aM = LJX1, 〈〉KM\a

By inductive hypothesis we have LJX1, 〈〉KM =α nf(X1) and we can
conclude by noticing that:

LJX1, 〈〉KM\a =α nf(X1)\a = nf(X1\a) = nf(X)

�
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We can now prove operational correspondence results for the encoding.

Theorem 7 (Forward Correctness and Completeness) LetR and S be two

reachable RCCS processes. There exists an RCCS transition R k,α−−→ S iff there

exists a CCSK transition LRM
α[k]−−→ LS′M with S ≡ S′.

Proof (⇒) Since from Theorem 5 we haveR = JLRM, 〈〉K and S = JLSM, 〈〉K,

we get JLRM, 〈〉K k,α−−→ JLSM, 〈〉K, then by Theorem 3 we have that

LRM
α[k]−−→ LS′M with S′ ≡ S.

(⇐) If LRM
α[k]−−→ LS′M with S′ ≡ S, then by Theorem 1 we have that

JLRM, 〈〉K k,α−−→ JLS′M, 〈〉K. Then from Theorem 5 we have R
k,α−−→ S′.

The thesis follows by applying RCCS rule R-EQUIV. �

Theorem 8 (Backward Correctness and Completeness) Let R and S be

two reachable RCCS processes. There exists an RCCS transition R
k,α

S

iff there exists a CCSK transition LRM
α[k]

LS′M with S ≡ S′.

Proof The proof is similar to the one of Theorem 7. �

3.3 Isomorphism

In this Section we show that the LTS of RCCS up to structural congruence
and the LTS of CCSK up to α-conversion and normal form, are isomor-
phic. The proof relies on the operational correspondence results for two
encodings that we presented in the Sections 3.1 and 3.2. After that we
argue about the uniform encoding.

We start with introducing the notion of isomorphism defined between
two LTSs and the concept of the LTS up to equivalence relation.

Definition 20 (LTS Isomorphism) Two LTSs LTSi : 〈Pi,Li,→i〉, with i ∈
{1, 2} are isomorphic iff there exist two bijective functions γL : L1 → L2 and

γP : P1 → P2 such that P1
α−→ P2 iff γP (P1)

γL(α)−−−−→ γP (P2).
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Definition 21 (LTS up to equivalence) Given an LTS : 〈P,L,→〉 and an
equivalence relation ∼ on P , we denote by [P ] the equivalence class of P ∈ P .
We define the LTS up to ∼ as LTS∼ : 〈P∼,L,→∼〉 where P∼ is the set of
equivalence classes of P modulo ∼, and [P1]

l−→∼ [P2] iff there exist P1 ∈ [P1]

and P2 ∈ [P2] such that P1
l−→ P2.

Before stating the main theorem, we need a few auxiliary lemmas.

Lemma 14 For each CCSK processes X and Y , JX, 〈〉K ≡ JY, 〈〉K implies
JX, 〈〉K = JY, 〈〉K.

Proof RCCS structural congruence just allows one to split threads with a
toplevel parallel composition, and to put restrictions which are at toplevel
inside threads outside the same threads. One can easily notice that in
the encoding threads correspond to standard processes, hence parallel
threads are split and restrictions moved outside iff the corresponding
processes are not standard. The thesis follows. �

On CCSK processes, equivalence relation ccsk∼ , is defined as follows:

X
ccsk∼ Y iff nf(X) =α nf(Y ). If we take RCCS processes we consider

structural congruence as equivalence relation.

Lemma 15 Let X and Y be CCSK processes. If X ccsk∼ Y then JX, 〈〉K =α

JY, 〈〉K.

Proof By definition of ccsk∼ we have nf(X) =α nf(Y ). It is trivial to see
that encoding CCSK processes equal up to α-conversion gives RCCS
processes equivalent up to α-conversion. One can also notice that the
encoding moves all the restrictions in the non-standard part outside the
corresponding process, hence the thesis follows. �

With the next theorem, we will prove our main result showing that
forward LTSs of RCCS and CCSK are isomorphic. The same is holding
for the backward ones.

Theorem 9 (RCCS and CCSK are isomorphic) The forward LTS of RCCS
up to structural congruence is isomorphic to the forward LTS of CCSK up to
ccsk∼ . Both LTSs are restricted to reachable processes. The same result holds for
backward LTSs.
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Proof We will show that thesis holds for the forward LTSs. The thesis for
backward LTSs follows by using the Loop Lemma for CCSK (Lemma 2)
and RCCS (Lemma 1).

The function on labels mapping α[k] to k, α is trivially bijective. The
function on states maps an equivalence class of CCSK processes [X]

into [JX, 〈〉K]. We remark that the function is well defined thanks to
Lemma 15. In order to show that it is bijective we show that the function
L·M is its inverse. It is easy to see that also function L·M is well defined on
equivalence classes since structural congruence just allows one to move
restrictions and parallel composition between monitored processes and
processes, but this difference is immaterial in CCSK. Also, both calculi
have α-conversion. Given an RCCS process R we have JLRM, 〈〉K = R from
Theorem 5. Given a CCSK process X we have LJX, 〈〉KM =α nf(X) from
Theorem 6. This proves bijectivity.

We need to show that [X1]
α[k]−−→ccsk∼

[X2] iff [JX1, 〈〉K]
k,α−−→≡ [JX2, 〈〉K].

By expanding the definitions of LTS up to equivalence, we need to show

that there exist X ′1 and X ′2 such that X ′1
α[k]−−→ X ′2 with nf(X ′1) =α nf(X1)

and nf(X ′2) =α nf(X2) iff there exist S1 and S2 such that JX1, 〈〉K ≡
S1

k,α−−→ S2 ≡ JX2, 〈〉K. By applying RCCS rule R-EQUIV the second part

can be equivalently written as JX1, 〈〉K
k,α−−→ JX2, 〈〉K.

Let us show the implication from left to right. Using Lemma 12 we

obtain nf(X ′1)
α[k]−−→ X ′′2 with nf(X ′′2 ) = nf(X ′2). Using again Lemma 12

and α-conversion we get X1
α[k]−−→ X ′′′2 with nf(X ′′′2 ) =α nf(X ′′2 ). As

a result we also have nf(X ′′′2 ) =α nf(X ′2). From Theorem 1 we have

JX1, 〈〉K
k,α−−→ JX ′′′2 , 〈〉K. From Lemma 15 we have JX ′′′2 , 〈〉K =α JX ′2, 〈〉K as

desired.
Let us show the implication from right to left. From JX1, 〈〉K

k,α−−→
JX2, 〈〉K using Theorem 3 we have thatX1

α[k]−−→ X ′2 in CCSK, with JX2, 〈〉K ≡
JX ′2, 〈〉K. From Lemma 14 we have that JX2, 〈〉K = JX ′2, 〈〉K. The thesis
follows. �

We would like to remark that proving isomorphism between two
calculi, implies that they can be equated by any behavioural equivalence,
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including back and forth bisimilarity used in [58]. Even the result that
we have shown is very strong, it is obtained via encodings which are not
uniform [62]. We recall below the notion of uniform encoding.

Definition 22 (Uniform Encoding) An encoding L·M is uniform iff it is:

homomorphic w.r.t. the parallel composition operator: given two processes,
R1 and R2, LR1 | R2M = LR1M | LR2M,

renaming preserving: given a process R and an injective renaming function σ
mapping names to names and keys to keys, LRσM = LRMσ.

The definition above differs from the Definition 13 for the fact that we
require renamings to map keys to keys and names to names. The reason
for it, is that in CCSK and RCCS, keys and names belongs to different sets
and should not be mixed.

With the next proposition we show that our encoding of CCSK into
RCCS is not uniform.

Proposition 1 The encoding J•K of CCSK into RCCS is not uniform.

Proof It is easy to see that the encoding is not homomorphic w.r.t. parallel
composition, since:

Ja | bK = Ja | b, 〈〉K = Ja, 〈↑〉 · 〈〉K | Jb, 〈↑〉 · 〈〉K = 〈↑〉 · 〈〉 . a | 〈↑〉 · 〈〉 . b

is not equal to:

JaK | JbK = Ja, 〈〉K | Jb, 〈〉K = 〈〉 . a | 〈〉 . b

Notably, this last process is not reachable in RCCS. �

With the next proposition we show that reachable processes in RCCS
are not closed under parallel composition. Hence, the fact that the encod-
ing is not uniform is not surprising.

Proposition 2 Given two reachable RCCS processes R and S, there is no con-
text C[1 7→ ·, 2 7→ ·] such that C[1 7→ R, 2 7→ S] is reachable.
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Proof Consider a reachable process R. It is easy to show by induction on
the derivation from the initial process to R that the following invariant
holds: each memory m inside R contains a number of 〈↑〉 elements equal
to the number of parallel composition operators in the path from the root
to m. Given that C adds at least one parallel composition operator in the
path to R and to S, if the invariant holds for R and S it cannot hold for
their parallel composition. Note in fact that additional 〈↑〉 elements need
to be added inside memories, hence cannot be part of the C context. �

Consequence of the proposition above is that encoding from CCSK to
RCCS that map parallel operator of CCSK into parallel operator of RCCS
(what was required for uniform encoding) does not exist. Moreover, there
is no encoding that can map the CCSK parallel operator to any RCCS
context.

Considering encoding from RCCS to CCSK, it is not possible to state
an uniformity result. Since reachable RCCS processes are not closed
under parallel composition, the terms in the statement would not be all
reachable.

3.4 Cross-fertilisation Results

In this Section we shall show some cross-fertilization results by using the
theory developed in the previous sections.

Namely, we bring the Reverse Diamond Property from CCSK into RCCS,
and in opposite direction, we import Parabolic Lemma of RCCS into CCSK.
As addition to that, we add the irreversible actions to CCSK following
the guidance in [23; 43]. We would like to remark that CCSK Parabolic
Lemma has been proved in the literature [70, Lemma 5.12], yet the direct
proof is more complex than importing the result from RCCS.

The Reverse Diamond Property [70, Proposition 5.10], stated below,
shows that backward transitions are confluent.

Property 2 (CCSK Reverse Diamond Property) Let X , Y and Z be reach-
able CCSK processes.

1. if X
α[k]

Y and X
β[k]

Z then α = β and Y = Z.
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2. if X
α[k]

Y and X
β[h]

Z with k 6= h then there exists W such that

Y
β[h]

W and Z
α[k]

W .

By bringing the result above to the RCCS, we obtain following prop-
erty:

Property 3 (RCCS Reverse Diamond Property) LetR,R1 andR2 be reach-
able RCCS processes.

1. if R
k,α

R1 and R
k,β

R2 then α = β and R1 ≡ R2.

2. if R
k,α

R1 and R
h,β

R2 with k 6= h then there exists S such that

R1

h,β
S and R2

k,α
S.

Proof We have two cases, one for each item in the statement.

1. By hypothesis we have that R
k,α

R1 and R
k,β

R2. By apply-

ing Theorem 8 we have that LRM
α[k]

LR′1M with R′1 ≡ R1 and

LRM
β[k]

LR′2M with R′2 ≡ R2. By Reverse Diamond Property on
CCSK transitions (Property 2) we have that LR′1M = LR′2M and α = β.
By Theorem 5 we have that JLR′1M, 〈〉K = R′1 and JLR′2M, 〈〉K = R′2,
with R′1 = R′2. Since R1 ≡ R′1 and R′2 ≡ R′2 we also have R1 ≡ R2

as desired.

2. By hypothesis we have that R
k,α

R1 and R
h,β

R2 with k 6= h.

By applying Theorem 8 we have that LRM
α[k]

LR′1M with R′1 ≡ R1

and LRM
β[h]

LR′2M with R′2 ≡ R2. Since, k 6= h by Reverse Diamond
Property on CCSK transitions (Property 2) we have that there exists

W such that LR′1M
β[h]

W and LR′2M
α[k]

W . Let S be a RCCS

process such that LSM = W . By Theorem 8 we have that LR′1M
β[h]

LSM implies R′1
h,β

S′ with S′ ≡ S, and LR′2M
α[k]

LSM implies

R′2
k,α

S′′ with S′′ ≡ S. Since R1 ≡ R′1, S′ ≡ S, R2 ≡ R′2 and
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S′′ ≡ S, by applying RCCS rule R-EQUIV we have that R1

h,β
S

and R2

k,α
S, as desired. �

Reversible computation can be decomposed into a backward only
computation followed by forward only computation. This is stated in
Parabolic Lemma [23, Lemma 10]. Intuitively, this means that the process
can first go backward so to enable as many choices as possible, and then
go only forward.

Proposition 3 (RCCS Parabolic Lemma) For any reachable RCCS process
R, if R
 · · ·
 S, then there exists R′ such that R ∗ R′ →∗ S.

The proof of the Parabolic Lemma for CCSK by exploiting the isomor-
phism of two reversible calculi is shown with a following proposition.

Proposition 4 (CCSK Parabolic Lemma) For any reachable CCSK process
X , if X 
 · · ·
 Y , then there exists X ′ such that X  ∗ X ′ →∗ Y .

Proof By hypothesis we have that X 
 · · · 
 Y . Let R = JX, 〈〉K and
S = JY, 〈〉K. We can apply Theorem 1 to each forward transition and
Theorem 2 to each backward transition to obtain a sequence of transitions
R = JX, 〈〉K
 · · ·
 JY, 〈〉K = S. We can then apply Proposition 3 to the
sequence of transitions above and obtain that there exists R′ such that
R ∗ R′ →∗ S. Since R ∗ R′ with R = JX, 〈〉K by applying Theorem 4
(and rule R-EQUIV) we have that X  ∗ X ′ with JX ′, 〈〉K ≡ R′. From
the reduction R′ →∗ S, by applying Theorem 3 (and rule R-EQUIV) we
obtain that X ′ →∗ Y with JY, 〈〉K ≡ S, as desired. �

Irreversible actions in CCSK. Irreversible or commit actions are the
actions which cannot be backtracked. When executing an irreversible
action, all the actions executed before on the same term sequentially, are
blocked and unable to be backtracked as well. For instance, consider the
process a.b.P , where b is the commit action. After the execution of the
actions a and b, we have process a[k].b[h].P , where action b cannot be
undone. As a consequence, action a is blocked and cannot be reversed as
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(CCSK Processes) X,Y ::= 0 |
∑
i∈I

πi.Xi | (X | Y ) | X\a

(CCSK Prefixes) π ::= α | α[k] | α | α[∗]

Figure 10: CCSK with irreversible actions syntax

well. Following the approach given in [23; 43], irreversible actions can be
added into CCSK that we defined in Section 2.2.

The set of the actions Act is divided into two disjunctive sets A and Ai,
representing sets of reversible and irreversible actions, respectively. We
let µ, λ to range over set Actτ = Aτ ∪ Aiτ , while α, β will represent only
reversible actions (α, β ∈ Aτ = A ∪ {τ}) and α, β only irreversible ones
(α, β ∈ Aiτ = Ai ∪ {τ}).

The syntax of CCSK with irreversible actions is given in Figure 10.
The only difference in respect to CCSK is in the prefix definition. An
irreversible action α can be annotated only with element ∗ that will tell us
that executed action cannot be reversed. In this case, there is no need of
recording the key of the executed action, since after its execution, there is
no possible backward step on the same prefix.

Semantics is given in Figure 11. The only difference is in the rule
KI-COMMIT and KI-SYN. By applying rule KI-COMMIT, action α

is annotated with the ∗ that will behave as a tag, telling us that this ac-
tion cannot be reverted. The obtained process can continue execution in
the forward direction, but it is not able to go backward. The difference
between rules KI-SYN1 and KI-SYN2 is that first one allows synchroni-
sation of the reversible actions and the second one is considering commit
actions. The backward rules are symmetric to the forward one, with rule
KI-COMMIT being an exception. There is no backward rule for commit
action. To have intuition about semantics for commit actions, we give the
following example:

Example 11 Let us consider the process P = a.c.P | b.c̄. By executing the
actions a[k] and b[h], we obtain the CCSK process X = a[k].c.P | b[h].c̄.
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(KI-ACT1)

α.P
α[k]−−→ α[k].P

(KI-ACT2)

X
λ[h]−−→ X ′ k 6= h

α[k].X
λ[h]−−→ α[k].X ′

(KI-COMMIT)

α.P
α[k]−−→ α[∗].P

(KI-SUM)

Xj
λ[k]−−→ X ′j ∀i 6= j.Xi = X ′i ∧ std(Xi)∑

i∈I
Xi

λ[k]−−→
∑
i∈I

X ′i

(KI-PAR-L)

X
λ[k]−−→ X ′ fresh(k, Y )

X | Y λ[k]−−→ X ′ | Y

(KI-PAR-R)

Y
λ[k]−−→ Y ′ fresh(k,X)

X | Y λ[k]−−→ X | Y ′

(KI-SYN1)

X
α[k]−−→ X ′ Y

ᾱ[k]−−→ Y ′ α 6= τ

X | Y τ [k]−−→ X ′ | Y ′

(KI-SYN2)

X
α[k]−−→ X ′ Y

ᾱ[k]−−→ Y ′ α 6= τ

X | Y τ [k]−−→ X ′ | Y ′

(KI-RES)

X
λ[k]−−→ X ′ λ /∈ {a, ā, a, ā}

X\a λ[k]−−→ X ′\a

Figure 11: CCSK with irreversible actions forward semantics

By applying rule KI-SYN with the premises a[k].c.P
c[w]−−→ a[k].c[∗].P and

b[h].c̄
c̄[w]−−→ b[h].c̄[∗], we obtain:

X = a[k].c.P | b[h].c̄
τ [w]−−−→ a[k].c[∗].P | b[h].c̄[∗] = Y

The only possible computation for the process Y is to continue forward
execution by executing the forward actions of the process P . There is no
possible backward execution since processes a[k].c[∗].P and b[h].c̄[∗] are
blocked with element [*].
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Chapter 4

Causality notions in
π-calculus (background

knowledge)

In this Section we recall syntax and semantics of the π-calculus [73], and
use it as a base for its three well-known causal extensions.

In π-calculus is the process calculus that allows one to naturally ex-
press processes which can dynamically change their structure. The im-
portant property of π-calculus is name mobility, i.e. capability of sending
names along channels where received names can be used as channel
names in the future communications. Process can send (extrude) private
name to the environment and make it free for the future computations.

Let assume an existence of two mutually disjoint infinite sets: the set
of names N , ranged over a, b, c and the set of variables V , ranged over
x, y.

Syntax of π-calculus is given in Figure 12. Processes are given by
productions P,Q. Idle process is represented with 0. A prefixed process
is written as π.P , where prefix can be: an output ba, where name a is sent
over a channel b, an input b(x), where a certain name will be received over
a channel b and bound to variable x or the silent action τ . In the prefixes
ba and b(x), name b is used in subject position, while name a and variable
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x are in the object position. To get the subject and object of a prefix, we
use operators sub(·) and obj(·). The above definitions and operators are
extended to actions as well Parallel composition of processes P and Q is
represented with P | Q, while νa(P ) represents that name a is restricted
in P . The action α can be: the same as prefix π (an input, an output and
the τ -action) or bound output b〈νa〉 in which bound name a is sent over a
channel b. We let α to range over set of all actions, denoted with Act.

In π-calculus we have two binder construct: name a bound via restric-
tion operator in the process P , written as νa(P ), and variable x bound in
input prefixed process b(x).P . In following, we define the functions that
compute sets of bound names and variables.

Definition 23 (Set of bound names/variables) The sets of bound names and
variables of the given process P , written as bn(P ) and bv(P ) , respectively, are
defined as:

bn(P | Q) = bn(P ) ∪ bn(Q) bv(P | Q) = bv(P ) ∪ bv(Q)

bn(νa(P )) = bn(P ) ∪ {a} bv(νa(P )) = bv(P )

bn(ba.P ) = bn(P ) bv(ba.P ) = bv(P )

bn(a(x).P ) = bn(P ) bv(a(x).P ) = bv(P ) ∪ {x}

Sets of the free names and variables of the process P are defined as fn(P ) =
n(P ) \ bn(P ) and fv(P ) = v(P ) \ bv(P ) where n(P ) and v(P ) denote the sets
of all names and variables appearing in process P . Notation above is extended to
the actions as well:

bn(ba) = ∅ bv(ba) = ∅
bn(a(x)) = ∅ bv(a(x)) = {x}
bn(b〈νa〉) = {a} bv(b〈νa〉) = ∅

Given a process P , we represent the set of its bound names and variables,
written bound(P ) as bound(P ) = bn(P ) ∪ bv(P ). Similarly, set of the free
names and variables is written as free(P ).

Notation 3 To make notation uniform through all semantics concerning
π-calculus, we write:

• an output, an input and bound output actions as ba, b(x) and b〈νa〉,
respectively. (As they are defined for π-calculus in Figure 12)
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(Processes) P,Q ::= 0 | π.P | (P | Q) | νa(P )

(Prefixes) π ::= ba | b(x) | τ
(Actions) α ::= π | b〈νa〉

Figure 12: π-calculus syntax

• P to specify that process is classic π-calculus process.

Now we give the operational semantics for the π-calculus.

Definition 24 (π-calculus Semantics) The operational semantics of π-calculus
is defined as LTS (P,−→, Act) where P is the set of π-calculus processes and Act

is the set of actions. Transition relations −→ is the smallest relations induced by
the rules in Figure 13.

Late semantics for the π-calculus is given in Figure 13. Process π.P can
perform an action π through the rule ACT. The action is transformed into
a label and the computation continues with the process P . Rule PAR-L
allows left component in the parallel composition to execute the action α
provided that the bound names of α are not free in the process in parallel
Q. Similar for the rule PAR-R. Two processes can communicate through
rules COM and CLOSE where necessary substitution is applied on the
variable x. Rule RES allows restricted process to perform the action α if
restricted name is not one of the names in α. Process can extrude (i.e. send
name to the environment and make it free for the future computations) a
restricted name over a rule OPEN.

In order to have a better intuition about semantics of the π-calculus,
we give the following example.

Example 12 Consider the process P = νa(ba | ca | a(x)) where name a
is restricted in the process P . To execute the action a(x) we first need to
’open’ the name a. For instance, it can be done by action c〈νa〉 where rule
OPEN is applied:

νa(ba | ca | a(x))
c〈νa〉−−−→ ba | a(x)
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(ACT)
π.P

π−→ P

(PAR-L)
P

α−→ P ′ bound(α) ∩ free(Q) = ∅
P | Q α−→ P ′ | Q

(PAR-R)
Q

α−→ Q′ bound(α) ∩ free(P ) = ∅
P | Q α−→ P | Q′

(COM)

P
ba−→ P ′ Q

b(x)−−→ Q′

P | Q τ−→ P ′ | Q′{a/x}

(CLOSE)

P
b〈νa〉−−−→ P ′ Q

b(x)−−→ Q′

P | Q τ−→ νa(P ′ | Q′{a/x})

(RES)
P

α−→ P ′ a /∈ n(α)

νa(P )
α−→ νa(P ′)

(OPEN)

P
ba−→ P ′ a 6= b

νa(P )
b〈νa〉−−−→ P ′

Figure 13: π-calculus semantics

In the resulting process ba | a(x) name a is free and now, both actions can
be executed. Let us perform first the output on the channel b and then the
action a(x):

ba | a(x)
ba−→ a(x)

a(x)−−−→ 0

In the following, we recall some notions on transitions in π-calculus
(transitions are represented as t : P

α−→ Q).

Definition 25 Given two transitions t1 and t2, they are:

• coinitial if they have the same source, i.e. t1 : P
α−→ P1 and t2 : P

β−→ P2;

• cofinal if they have the same target, i.e. t1 : P1
α−→ Q and t2 : P2

β−→ Q;

• composable if target of one is source of the other transition, i.e. t1 : P
α−→

Q and t2 : Q
β−→ Q1;

A trace is a sequence of pairwise composable transitions, written as t1; t2. The
empty trace is denoted with ε.

Causality in π-calculus. Causality in π-calculus was studied in [14],
where authors defined two forms of causal dependencies: subject (struc-
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tural) and the object (link) dependency. Subject dependency in the π-
calculus is determined by nesting of the prefixes. For instance, in the
process ba.cd, the action cd structurally depend on the action ba. The
object dependency is induced by extrusion of a name. For example, in
the process νa(ba | a(x)), the output action ba needs to be executed before
the input action on the channel a. In that way, after the execution of the
bound output b〈νa〉, name a is free. The interesting problem while defin-
ing object causality for the π-calculus is parallel extrusion of the same
name. For instance, in the process νa(ba | ba | a(x)) if both extrusions
are executed before the action a(x) (as in Example 12), there are different
interpretations about which of the actions ba and ca actually causes the
input action. Therefore, diverse definition of the object dependency yield
to different approaches to causality in π-calculus.

In this document we will consider three different approaches to causal-
ity in π-calculus, and the main causal semantics representing them [14;
19; 20], are given in Sections 4.1, 4.2 and 4.3, respectively.

4.1 Causal semantics by Boreale and Sangiorgi

In this Section we revise a compositional causal semantics for standard
π-calculus (forward only) introduced in [14].

Originally the causal semantics was defined for a polyadic π-calculus,
with early semantics for inputs. Here we adapt the causal semantics to
work with monadic π-calculus and late input semantics.

The authors distinguish between two forms of dependencies: subject
and the object. While the object dependence can be detected from the
trace (run) that process did, to track the subject one, authors introduced a
causal term, defined on the top of π-calculus 1. Every visible transition
is bound with unique cause k ∈ K, where K is a set of causes. Let N
and V be the infinitive, countable sets of names and variables such that
N ∩ V ∩ K = ∅.

1We use the π-calculus which syntax and semantics are defined in Figures 12 and 13
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The syntax of the causal process is defined as follows:

(Causal process) A,B ::= P | K :: A | A | B | νa(A)

where P is a π-calculus process. In causal term K :: A, set K records that
every action performed by A depends on K. Two causal processes can be
composed in parallel by A | B and name a can be restricted in the process
A. Set of the causes appearing in the causal process A is denoted with
K(A) and its definition is given bellow.

Definition 26 (Set of the causes) The set of the causes of a given causal pro-
cess A, written as K(A), is inductively defined on the structure of the causal
term as:

K(A | B) = K(A) ∪ K(B) K(K :: A) = K ∪ K(A)

K(νa(A)) = K(A) K(P ) = ∅

In what follows, we give the definition of the labels on the transitions
and operational semantics of the causal term.

Definition 27 (Label on the transition) Label on the transition of the causal
process is defined as A k:α−−→

K
A′, where cause set K contains causes of all the

actions that trigger the action α, k is the cause associated to α and α ::=
ba | b(x) | b〈νa〉 | τ .

Rules for causal semantics are given in Figure 14. Causes are intro-
duced into the processes by the rules BS-OUT and BS-IN. A new cause k
is attached to the executing action. Rule BS-CAU allows a causal process
K′ :: A to move if A can move, while cause set K′ is preserved. Rules BS-
OPEN and BS-RES are defined in usual way. The communication between
two causal processes can be done through rules BS-COM and BS-CLOSE,
while necessary substitution is applied. Notation A′1[k  K2] indicates
the fact that cause k needs to be replaced with the set K2. The condition
k /∈ K(A1, A2) ensures that cause k is fresh. The synchronisation rules,
merge the cause sets of processes that communicate and do not produce
a new cause bound to τ . The reason for this is because τ action do not
impose causes to future actions. In order to have a better intuition of how
semantics work, we give the following example.
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Example 13 Let us consider the π-calculus processP = ab.cd.0 | ea1.c(x).Q.
Process P can perform the output on the channel a, and we have:

ab.cd.0 | ea1.c(x).Q
k:ab−−→
∅
{k} :: cd.0 | ea1.c(x).Q = A

We can notice that cause k is bound to the action ab, and saved in the
resulting process. Since P was π-calculus process, the cause set K is empty.
To continue execution, process A can perform the output on the channel
e:

k :: cd.0 | ea1.c(x).Q
k1:ea1−−−−→
∅
{k} :: cd.0 | {k1} :: c(x).Q

The two actions executed do not depend structurally and this is the
reason why cause set is empty in both cases. Now we can synchronise
two processes in parallel:

k :: cd.0 | k1 :: c(x).Q
τ−→ {k, k1} :: 0 | {k1, k} :: Q{d/x}

As we can notice, after the communication, cause sets {k} and {k1} are
merged meaning that the actions of Q will structurally depend on both
actions ab and ea1.

Remark 5 In the original version of the causal semantics [14], labels on

transitions are defined as A α−−→
K; k

A′. We use the notation A
k:α−−→
K

A′ to

simplify the comparison given in Section 5.6. For the same reason we
divided original rule for communication COM from [14] into two rules:
BS-COM and BS-CLOSE.

The subject causality is given by cause sets attached to the process,
while the object one is defined on the trace that process did. The first
action that extrudes a bound name causes every further action using that
name in subject or object position of the label. To illustrate this, we give
the following example.

Example 14 Let us consider a process P = νa(ba | ca | a(x)) and the
trace:

νa(ba | ca | a(x))
k:b〈νa〉−−−−−→
∅

A1
k1:ca−−−→
∅

A2
k2:a(x)−−−−→
∅

{k} :: 0 | {k1} :: 0 | {k2} :: 0

where A1 = {k} :: 0 | ca | a(x) and A2 = {k} :: 0 | {k1} :: 0 | a(x). The
action b〈νa〉 extrudes name a and cause other two actions: ca where name
a is in the object position and a(x) where a is in the subject position.
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(BS-OUT) ba.A k:ba−−→
∅

k :: A (BS-IN) b(x).A
k:b(x)−−−−→
∅

k :: A

(BS-CAU)
A

k:α−−→
K

A′

K
′ :: A

k:α−−→
K,K′

K
′ :: A′

(BS-PAR)
A1

k:α−−→
K

A′1 bound(α) ∩ free(A2) 6= ∅

A1 | A2
k:α−−→
K

A′1 | A2

(BS-COM)
A1

k:ba−−→
K1

A′1 A2
k:b(x)−−−−→
K2

A′2 k /∈ K(A1, A2)

A1 | A2
τ−→ A′1[k  K2] | A′2{a/x}[k  K1]

(BS-OPEN)
A

k:ba−−→
K

A′

νa A
k:b〈νa〉−−−−−→

K
A′

(BS-RES)
A

k:α−−→
K

A′ a /∈ n(α)

νa A
k:α−−→
K

νa A′

(BS-CLOSE)
A1

k:b〈νa〉−−−−−→
K1

A′1 A2
k:b(x)−−−−→
K2

A′2 k /∈ K(A1, A2)

A1 | A2
τ−→ νa(A′1[k  K2] | A′2{a/x}[k  K1])

Figure 14: Causal semantics rules

We adapt the definition of object causality to the late semantics defined
on the traces of the causal process A.

Definition 28 (object causality) In a traceA1
k1:α1−−−→
K1

A2 · · ·An
kn:αn−−−−→
Kn

An+1

where A1 is a π-calculus process P , if

• αi = b〈νa〉 where a ∩ fn(Ai) = ∅ and for all j < i, a ∩ n(αj) = ∅ we
say that name a is introduced in αi. Action αh is object dependent on
αi, 1 6 i < h 6 n, if there is a name introduced in αi which is among the
free names of αh.

• αi = b(x) where x ∩ fn(Ai) = ∅ and for all j < i, x ∩ v(αj) = ∅ we say
that variable x is introduced in αi. Action αh is object dependent on
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αi, 1 6 i < h 6 n, if there is a variable introduced in αi which is among
the free variables of αh.

4.2 Causal semantics by Crafa, Varacca and Yoshida

The authors introduced a compositional event structure semantics for the
forward π-calculus [19]. They represent a process as a pair (E,X), where
E is a prime event structure and X is a set of bound names. Structural
causality is encoded by causal relation of E, while the object one is de-
fined through the notion of permitted configuration (Definition 31). In the
following, we recall definition of the prime event structure, given in [19].

Definition 29 (Labelled Prime Event Structures) A labelled prime event struc-
ture is a tuple E = 〈E,≤,^, λ〉 such that

• E is a set of events ranged over e;

• 〈E,≤〉 represents the partial and it is also called causal order;

• for every e ∈ E, enabling set of e, [e) := {e′|e′ < e} is finite;

• conflict relation ^ is an irreflexive and symmetric relation for which
holds: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 ^ e3 then e2 ^ e3;

• labelling function λ : E −→ L, where L is a set of labels, associates a label
to every event in E

The actions from the π-calculus are represented with labels, while
events depict the occurrences of the actions. With labels, we are able
to identify events representing different occurrences of the same name.
The computation in event structure is captured by configurations which
represent the trace of the event structure in which events are causally
ordered.

The semantics of the π-calculus (given in Figure 12) represented with
prime event structures, is defined in Figure 15. Idle process is represented
with empty pair. Prefixed process π.P is defined as event structure π.EP ,
where prefix operation adds a minimal element π bellow every element
in the event structure EP (the event structure that represents the process
P ). The set of the bound names XP is the same as one of process P (i.e.
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0 = (∅, ∅)
π.P = (π.EP ,XP )

νa(P ) = (EP ,XP ∪ {a})
P | Q = (EP ‖π EQ,XP ∪XQ)

Figure 15: Event structure semantics for π-calculus

XP = fn(P )). Restriction operator adds restricted name a into a set of
bound names XP , while the event structure is the same as for process
P . Parallel composition of two processes merge sets of bound names
for processes P and Q, while the resulting event structure is defined
through the parallel composition operator for event structures ‖π , defined
as categorical product followed by relabelling and restriction:

E1 ‖π E2 = ((E1 ×E2)[fπ][er])\{bad}

where restriction operation on the event structures E\a, removes from E

element labelled with a and events that are above it (i.e. events that are
causally dependent on a) and relabelling E[f ] compose function λ of E
with f , where f : L −→ L′ and L and L′ are two sets of labels. Labelling
function of a new event structure is f ◦ λ.

Intuitively, relabelling function fπ is defined to relabel: every pair
(a(x), ab) into τx→b, symbolising that during the synchronisation, name b
substitutes variable x; pairs like (y(x), ab) into (y(x), ab)x→b representing
that decision if the synchronisation is correct (if action αy→b in which
variable y is substituted with name a happened before, then synchronisa-
tion will be correct) is postponed; each pair (a(x), cb), where channels are
different names, into bad (meaning that synchronisation is not allowed).

Example 15 Let as consider the process P3 = P1 | P2 where P1 = a(x).cd
and P2 = ab. The event structures E1,E2 and E3 given in Figure 15,
represent processes P1, P2 and P3, respectively. Causal order is repre-
sented with the straight lines, while conflict is represented with dotted
lines. From the event structure E3 we can conclude that we have two
possibilities for the computation: or action a(x) will execute and trigger
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E1 :

a(x)

cd

E2 :

ab

E3 :

a(x)

cd

τx→b

cd

ab

Figure 16: The event structures representing processes P1, P2 and P3

the action cd, while in parallel input action ab can be performed; or pro-
cesses will synchronise and then trigger the action cd. We can notice that
synchronisation pair (a(x), ab) is relabelled into τx→b.

The relabelling function fπ is formally defined as follows.

Definition 30 (Relabelling function) Let L = {b(x), ba, τ} be the set of the
labels in π-calculus without bound output, and let L′ = L ∪ {(α, β)x→b|α, β ∈
L} ∪ {τx→b, bad} be extended set of labels, where bad is a distinguished label.
With Pom(L′) are denoted partially ordered multisets of L′ (pomsets). The
relabelling function fπ : Pom(L′)× (L′ ] {∗} × L′ ] {∗}) −→ L′ is defined as
follows:

fπ(X, 〈a(y), ab〉) = τy→b

fπ(X, 〈a(y), cb〉) = bad

fπ(X, 〈a(x), yc〉) =

{
τx→c if αy→a ∈ X
(a(x), yc)x→c otherwise

fπ(X, 〈y(x), ab〉) =

{
τx→b if αy→a ∈ X
(y(x), ab)x→b otherwise

fπ(X, 〈y(x), ∗〉) =

{
a(x) if αy→a ∈ X
y(x) otherwise

fπ(X, 〈yb, ∗〉) =

{
ab if αy→a ∈ X
yb otherwise

fπ(X, 〈α, ∗〉) = α

fπ(X, 〈α, β〉) = bad
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After synchronisation has been completed, the information carried by
the τ actions is not needed anymore. For that reason, second relabelling
function er is defined to delete the subscript of the τ actions. In order to
have a better intuition about the semantics, we show one more example.

Example 16 Let us consider process P = P1 | P2 | P3 where P1 = ad,
P2 = a(z).(c(x) | zb) and P3 = ac. The event structures representing
processes P1, P2 and P3 are given bellow:

ad
E1 :

a(z)

c(x) zb(c(x), zb)x→b

E2 :

ac
E3 :

The pair (c(x), zb) is relabelled as (c(x), zb)x→b representing the fact
that synchronisation will happen if the input action a(z) receive the name
c. The event structure representing the process P is shown bellow

a(z)

c(x) zb(c(x), zb)x→b

τz→c ac

τx→b cbc(x)

τz→dad

c(x) dbbad

There are two possibilities for the synchronisation, pairs (a(z), ad) and
(a(z), ac) and this is represented by τz→d and τz→c. If the communication
τz→d happen, further synchronisation pair (c(x), zd) is relabelled to bad

(generally, event bad is omitted). If synchronisation τz→c, it allows further
communication on the channel c and τx→b is obtained.

To represent disjunctive (object) causality, the authors use so-called the
inclusive approach, in which, to execute an action with a bound subject
it is required that at least one extruder of the bound name was executed
previously, but it is not necessary to record which one. To model it, they
introduce the notion of permitted configurations, where a configuration is
permitted if beside the action with a bound subject, contains the action
that extruded the bound name. Formally:
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Definition 31 (Permitted configurations) Let (E,X) be an event structure
where X is a set of bound names and e ↑= {e′|e ≤ e′} for some event e ∈ E.
A configuration C of E is permitted in (E,X) whenever for any event e ∈ C
which label has in the subject position a ∈ X,

• C\e ↑ is permitted and

• C\e ↑ contains an event which label is an output action with name a in
the object position of the label

Definition 32 (Subject and Object causality) Let the event structure seman-
tics of the π-calculus process P , be P = (EP ,XP ) and events e1, e2 ∈ EP ,
then

• e2 is subject dependent on e1 if e1 ≤EP
e2;

• e2 is object dependent on e1 if the label of e1 is the output of the name
a ∈ XP where name a is also the subject of the label of e2; and exists a
configuration C permitted in (EP ,XP ), where e1, e2 ∈ C.

To have an intuition about the causality and permitted configuration,
we give the following example.

Example 17 Let us consider the process P = νa(ba | ca.d(y) | a(x)), The
semantics of the process π represented with the event structures is P =
EP ,XP ), where XP = {a}. From Definition 32 action d(y) is structurally
dependent on the action ca. Action a(x) is object dependent on the actions
ba and ca, since permitted configurations are C1 = {ba, a(x)} and C2 =
{ca, a(x)}.

Definition 33 (Concurrent Events) Two events are concurrent if they are
not causally related and not in conflict.

The object causality defined above ensures that at least one of the
extruders precedes action with a bound subject. To track exact extruder,
it is possible by duplicating action with a bound subject and letting
every copy to depend on different extruders. For example, process
P = νa(ba | ca | a(x)) is represented as:

ba ca

a(x) a(x)
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where actions a(x) are in conflict: or a(x) will depend on action ba or a(x)

will depend on action ca.

4.3 Causal semantics for reversible π-calculus
by Cristescu, Krivine and Varacca

In [20], authors presented a compositional semantics for the reversible
π-calculus (Rπ). Reversibility is obtained by extending approach of RCCS
to the π-calculus. History information is saved in the memories (organised
as stacks of events) attached to every π-calculus process.

Let I be the set of action identifiers ranged over i, j, k with a special
symbol ∗ ∈ I representing a partial synchronisation. We let ∆, Γ to range
over subsets of I.

Syntax of Rπ processes is given in Figure 17. Reversible processes
R,S are built on the top of standard π-calculus processes (we use π-
calculus defined in Figure 12). As for RCCS, 0 is the idle process and
term m . P is called monitored process, where m is a memory and P is
a standard π-calculus process. Parallel composition of two monitored
processes is represented with R | S. The restriction νaΓ(R), annotated
with set Γ (initially empty), will behave as a classic π-calculus restriction
when Γ = ∅, otherwise it represents the memory in which information
about the extrusions of the name a are kept. Memories are organised as a
stacks of events with the event representing the last action that process
did, on the top of the stack (left in textual representation). Events 〈〉 and
〈↑〉 symbolise the empty memory and split of the parallel composition,
respectively. Memory event 〈i, k, π〉 contains identifier i, contextual cause
k and event label π of the executed action. If executed action was output
or bound output, event label is ba; if process performed input action
without synchronisation, the event label is b[∗/x] and it stands for partial
synchronisation; if communication happened and name a is received over
channel b, then it is written as b[a/x]. We let e to range over memory
events. To have access to the identifier, contextual cause and label of
the even e, we write id(e), c(e) and l(e), respectively. The actions are
represented with α. Difference with π-calculus is that in the bound output
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(Rπ processes) R, S ::= 0 | m . P | (R | S) | νaΓ(R)

(Memories) m ::= 〈〉 | 〈i, k, π〉.m | 〈↑〉.m
(Event labels) π ::= ba | b[∗/x] | b[a/x]

(Actions) α ::= ba | b(x) | b〈νaΓ〉 | τ

Figure 17: Rπ syntax

action, bound name a is annotated with the set Γ.
Labels on the transitions are defined as follows:

Definition 34 The label ζ of a transition t : R
ζ−→ S has a form:

ζ ::= (i, j, k) : γ with γ ::= α | α−

where i ∈ I\{∗}, j, k ∈ I are identifier, instantiator and contextual cause of the
transition t. Label α− stands for the negative (backward) transition.

Substitutions in Rπ are not executed directly but simply logged in
event labels. Indeed the calculus uses what is called explicit substitution,
which is implemented by looking up into the memories. This is why
processes need to search in their memories for the public name of a
channel in order to check that a synchronisation is possible.

Definition 35 For all process of the form m . β.P , where prefix β = b(x) or
β = ba, public label of β, m[β], is defined as follows:

〈〉[a] = a (〈i, k, b[∗/x]〉.m)[x] = x

m[b(x)] = m[b](x) (〈↑〉.m)[a] = m[a]

m[ba] = m[b]m[a] (e.m)[a] = m[a]

(〈i, k, b[c/x]〉.m)[x] = c

In the following we define two ways to update the memory: synchro-
nisation update (substitution) and contextual cause update.

Definition 36 The synchronisation update, written as R[a/x]@i substitute a
partial synchronisation label [∗/x] with a complete synchronisation label [a/x]
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in the event identified with i:

(R | S)[a/x]@i = R[a/x]@i | S[a/x]@i (νbΓR)[a/x]@i = νbΓ(R)[a/x]@i

(〈i, , b[∗/x]〉.m . P )[a/x]@i = 〈i, , b[a/x]〉.m . P (m . P )[a/x]@i = m . P

Definition can be extended to the contextual cause update, written asR[k/k′]@i

that substitute old cause k′ with a new one k in the event identified with i:

(R | S)[k/k′]@i = R[k/k′]@i | S[k/k′]@i (νbΓR)[k/k′]@i = νbΓ(R)[k/k′]@i

(〈i, k′, 〉.m . P )[k/k′]@i = 〈i, k, 〉.m . P (m . P )[k/k′]@i = m . P

Now we give the definitions of the three relations on the memory
events that author considered.

Definition 37 (Relations on events) Let R be a monitored process, the rela-
tions on the memory events of R are defined as follows:

structural causal relation : event e is structurally dependent on event e′ in
R, written as e′ @R e if exist m ∈ R such that m = m2.e.m1.e

′.m0, for
some m2,m1,m0.

contextual causal relation : event e is contextually dependent on event e′ in
R, written as e′ ≺R e if c(e) = id(e′).

instantiation relation : event e is instantiated by event e′ in R, written as
e′  R e if e′ @R e and l(e′) = b[a/x] for some a, b, x where x is in the
subject position in l(e). For all memories m, it is written instm(x) = i if
there is some event 〈i, k, b[a/x]〉 in m that instantiates x.

If relations hold on events, then it will hold on identifiers and contextual causes
as well. The same notation is used.

Example 18 Let us consider the process

R = νc{i2}(〈i1, ∗, ab〉.P | 〈i3, i2, nd〉.Q | 〈i4, ∗, xa〉.〈i2, ∗, en〉.〈i1, ∗, a[b/x]〉.0)

The relations between events are:

• 〈i1, ∗, a[b/x]〉 @R 〈i2, ∗, en〉 event i2 structurally depend on the event
i1

• 〈i2, ∗, en〉 ≺R 〈i3, i2, nd〉 event i2 is contextual cause of the event i3,
since c(i3) = id(i2)
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• 〈i1, ∗, a[b/x]〉  R 〈i4, ∗, xa〉 event i1 instantiate the event i4, since
inst〈i4,∗,xa〉.〈i2,∗,en〉.〈i1,∗,a[b/x]〉(x) = i1

Operational semantics of Rπ contains two groups of rules: positive,
given in Figure 18 and negative, obtained from the positive by inversion
([20, Definition 2.4]).

(IN)
i /∈ m j = instm(b)

m . b(x).P
(i,j,∗):m[b(x)]−−−−−−−−−→ 〈i, ∗, b[∗/x]〉.m . P

(OUT)
i /∈ m j = instm(b)

m . ba.P
(i,j,∗):m[ba]−−−−−−−−→ 〈i, ∗, ba〉.m . P

(OPEN)
R

(i,j,k):α−−−−−→ R′ α = ba ∨ α = b̄〈νaΓ′〉

νaΓR
(i,j,k):b〈νaΓ〉−−−−−−−−−→ νaΓ+1R

′

(CAUSE REF)
R

(i,j,k):α−−−−−→ R′ a ∈ subj(α) ∧ k = k′ or ∃k′ ∈ Γ k  R k
′

νaΓR
(i,j,k′):α−−−−−−→ νaΓR

′
[k′/k]@i

(COM)
R

(i,j,k):ba−−−−−−→ R′ S
(i,j′,k′):b(x)−−−−−−−−→ S′ k =∗ j

′ ∧ k′ =∗ j

R | S (i,∗,∗):τ−−−−−→ R′ | S′[a/x]@i

(CLOSE)
R

(i,j,k):b̄〈νaΓ〉−−−−−−−−−→ R′ S
(i,j′,k′):b(x)−−−−−−−−→ S′ k =∗ j

′ ∧ k′ =∗ j

R | S (i,∗,∗):τ−−−−−→ νaΓ(R′ | S′[a/x]@i)

(PAR)
R

(i,j,k):α−−−−−→ R′

R | S (i,j,k):α−−−−−→ R′ | S
(MEM)

R ≡ S ζ−→ S′ ≡ R′

R
ζ−→ R′

(NEW)
R

ζ−→ R′ a /∈ ζ

νaΓR
ζ−→ νaΓR

′

Figure 18: Rπ forward semantics
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(SPLIT) m . (P | Q) ≡ (〈↑〉.m . P | 〈↑〉.m . Q)

(RES) m . νa(P ) ≡ νa∅(m . P ) with a /∈ m

Figure 19: Rπ structural laws

Let us comment on the rules. Rules IN and OUT generate a fresh new
identifier i bound to the performed action. New event e is added in the
stack and attached to the memorym from the left in textual representation.
Every time when rule OPEN is applied, the identifier of the performed
action is added to the set Γ. The restriction νaΓ is not discarded after
the execution (as in standard π-calculus), but together with the identifier
of the action, kept in the result process. In this way, information about
extruders of the name a is preserved. Rule CAUSE REF is used to update
the contextual cause (if it is necessary) when executing action is passing
the memory νaΓ. It can be applied only when Γ 6= ∅. The new cause
k′ can be the same as the old one k, or can be chosen from the set Γ

under the condition that it was instantiate by old cause, i.e. k  R k
′. To

communicate through the rules COM and CLOSE, two processes need
to agree about the communication channel, identifier and to satisfy side
condition which ensures that cause of the one process corresponds to
the instantiator of the another process (=∗ is defined to be true if k = j′

or one of the elements is ∗). Additional condition in the rule CLOSE is
that a /∈ fn(S) whenever Γ = ∅. Rules PAR, MEM and NEW (rule for
restriction) are defined as usual.

Structural rules are given in Figure 19. Parallel composition of pro-
cesses sharing the memory m splits into two monitored process with the
memory 〈↑〉.m (memory is duplicated and annotated with split event).
Two resulting processes can continue with computing independently.
Through the rule RES, restriction is pushed on the toplevel of monitored
process with a condition that restricted name is not appearing in the
memory of the process.

In order to have intuition of how semantics works, we show following
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examples.

Example 19 Let us consider process R = νb∅(ab.c | d) | a(x).x̄. Process
νb∅(ab.c | d) can extrude a private name b over channel a and then com-
municate with the rest of the process R through the rule CLOSE. We
have:

νb∅(ab.c | d) | a(x).x̄
(i,∗,∗):τ−−−−−→ νb∅(νbi(〈i, ∗, ab〉 . c | d) | 〈i, ∗, a[b/x]〉 . x̄)

Thanks to memory νbi, we know that before the action i, the scope of the
name b was process ab.c | d.

Example 20 Let us consider a monitored processR = 〈〉.νa∅(ba | ca | a(x))
and actions to be executed, ca, ba, identified by i1, i2, respectively. The
computation is presented bellow (the split events in the memories and
empty memories are omitted):

R
(i1,∗,∗):c〈νa∅〉−−−−−−−−−→ νa{i1}(ba | 〈i1, ∗, ca〉 . 0 | a(x))

(i2,∗,∗):b〈νa{i1}〉−−−−−−−−−−−→ νa{i1,i2}(〈i2, ∗, ba〉 . 0 | 〈i1, ∗, ca〉 . 0 | a(x)) = S

Two actions are executed concurrently and both of them can be seen as
extruders of the name a. Input action on the name a can pick its cause
from the set Γ = {i1, i2}. Which action will be selected, depends on the
context of the process, while in this case, we can chose randomly. By
taking the output action on the channel b as a cause, we have:

S
(i3,∗,i2):a(x)−−−−−−−−→ νa{i1,i2}(〈i2, ∗, ba〉 . 0 | 〈i1, ∗, ca〉 . 0 | 〈i3, i2, a[∗/x]〉 . 0)

We can notice that identifier i2 is saved in the memory event 〈i3, i2, a[∗/x]〉,
therefore, the action with identifier i3 needs to be reversed before the one
with identifier i2. The event i1 can be reversed at any time.

Definition 38 (Causality on the transitions) Given a two transitions t1 :

R
(i1,j1,k1):γ1−−−−−−−−→ S and t2 : S

(i2,j2,k2):γ2−−−−−−−−→ T , where t1 is not opposite of t2, we
have that:

• t1 @ t2, t1 structurally cause transition t2, if i1 @T i2 or i2 @R i1

• t1 ≺ t2, t1 contextually cause transition t2, if i1 ≺T i2 or i2 ≺R i1
Transition t1 cause transition t2, written as t1 < t2 if t1 @ t2 or t1 ≺ t2.
Transitions are concurrent if they are not causally related.
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Chapter 5

Parametric Framework for
Reversible π-Calculi

Three different semantics revised in Chapter 4 represent three different
approaches to the problem of parallel extrusion of the same name. This
problem depicts the essence of the object causality of the mentioned causal
semantics. As an example, consider the process

νa(ba | ca | a(x))

where the discussion is on who will cause the input a(x) In this work, we
consider the following approaches to the problem above:

• The classical and most used approach is the one where the order
of the actions that extrude name a is important and only the first
of them is the cause of the action a(x). There exist different causal
semantics representing this idea [14; 17; 26] and all of them are
defined for the standard π-calculus. We group together these seman-
tics, since in [26] authors stated that after abstracting away from the
models used to keep track of the causal dependences, the final order
between the actions induced by their semantics coincides with the
one given in [14; 17].

• Causal semantics introduced in [19] represents approach in which
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action a(x), from the example above, depends on one of the ex-
truders, but there is no need to record on which one exactly. This
semantics is defined for the standard (forward-only) π-calculus as
well.

• The first compositional semantics for reversible π-calculus, intro-
duced in [20], explains the problem above as: the action a(x) de-
pends on one of the extruders, which are executed concurrently.
Exactly which one is decided by the context.

To study different approaches to causality in π-calculus (mentioned
above) in the context of reversible computation, we need a model which
can express different notions of causality. We start from the observation
that object causality depends on the extruded names and how information
about the extruder are stored. So the idea is to devise a framework for
reversible π-calculi, parametric with respect to the data structure that
stores information about the extrusions of a name. Different approaches
to parallel extrusion problem can be obtained by using a different data
structures. Additionally, the framework adds reversibility to the semantics
that were defined only for the forward computations. Hence, it permits
different orders of the causally-consistent backwards steps.

A preliminary discussion about causal semantics for π-calculus and
initial idea about the framework is given [57]. We argued that it it was
necessary to add causal information to the silent actions in the seman-
tics [14].

This Chapter is based on our work introduced in [59], where we de-
velop the idea behind the framework without adding causal information
to the τ -actions. Here, we present a parametric framework for reversible
π-calculi starting with an informal introduction of it, given in Section 5.1,
followed by definitions of its syntax (Section 5.2) and operational seman-
tics (Section 5.3). After that in Section 5.4, we define the data structures
with operations on them and map observed causal semantics into the
framework. We proved that reversibility in our framework is well defined
by proving standard properties for reversible calculus, Loop Lemma,
Square Lemma and causal consistency given in Section 5.5 (Lemma 18
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,Lemma 20, Theorem 10 ,respectively). Additionally, in Section 5.6, we
show causal correspondence between causal semantic given in [14] and
corresponding instance of the framework. In the end of this Chapter
(Section 5.7), we present the idea about causal bisimulation.

5.1 Informal presentation

General approach to devise a reversible extensions for the CCS-like calculi
defined through SOS rules is given in [70]. The main ideas behind this
approach are to make each operator of a calculus static and to use commu-
nication keys to uniquely identify the actions. While dynamic operators as
choice or prefix are forgetful operators, in the static one, there is no loss of
information. For instance, if we consider a CCS process P = a.Q1 | a.Q2

the synchronisation between parallel components of the process P is:

a.Q1 | a.Q2
τ [i]−−→ a[i].Q1 | a[i].Q2

As we already pointed out in Section 2.2, prefixes a and a are not dis-
carded, but annotated with a communication key i. Decorated prefixes are
used only for the backward steps, hence resulting process can continue
forward computing behaving as process Q1 | Q2. We expand this idea on
the more complex setting, π-calculus, where possibility of creating new
channel names and treating channels as sent values is enabled. For in-
stance, by adapting the process P to the π-calculus, we have computation:

a(x).Q1 | ab.Q2
i:τ−−→ a(x)[i].Q1{b

i

/x} | ab[i].Q2

In the substitution {bi/x}, variable x is substituted by the name b deco-
rated with the key i. Decorations on the names keep track of the substitu-
tions occurring during the communications. In the example, it means that
variable x is substituted with the name b in the synchronisation identified
by the key i.

Remark 6 We could keep track about the substitution of the name dif-
ferently. For example, we could record in the memory, beside the key i
also the state of the process before the substitution, as it is done in [51].
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Applying this approach to the π-calculus example above, we would have
computation:

a(x).Q1 | ab.Q2
i:τ−−→ a(x)[i, Q1].Q1{b/x} | ab[i].Q2

As we can notice the input prefix is annotated with both key and the
state of the process Q1 before the substitution. This approach is memory
consuming, but allows one to keep track of the substitution while consid-
ering the calculi in which sent values can be processes as higher-order
π-calculus [72].

In π-calculus, by addopting the static way of bookkeeping the past
actions that process did as in [70], we avoid using the structural SPLIT

rule of Rπ [20]. As we mentioned in Section 4.3 (Figure 17), monitored
process in Rπ, has the form m . P , where memory m keeps track of the
past events of the process. One drawback of this approach is necessity of
split rule to enable parallel composition of the processes sharing the same
memory to perform the forward action. The structural rule of the form

m . (P | Q) ≡ 〈↑〉 ·m . P | 〈↑〉 ·m . Q

is not associative and, as shown in [51], brings undesired feature in
which equivalent processes performing the same action may become
non-equivalent processes.

Besides keeping track about the actions executed in the past of the
process, framework has to remember the actions which extruded the
certain name. Following the idea introduced in [20], this can be done by
using the contextual cause of an action. For example in the computation

νa (ba | a(x).P )
i:b〈νa〉−−−−→ νa{i}(ba[i] | a(x).P )

j:a(x)−−−−→ νa{i}(ba[i] | a(x)[j, i].P )

we can notice that after the extrusion of the name a (first action per-
formed), the restriction νa is not discarded as in the standard π-calculus,
but transformed into the memory νa{i}. In this way, the fact that name a
is extruded by the action i, is recorded. The memory νa{i} is not behaving
as a restriction operator any more, hence name a is free and the input
action on the channel a can be executed. The contextual cause of the
action a(x) is i and this is recorded in the process a(x)[j, i].P .
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5.2 Syntax of the framework

In this Section we present the syntax of the framework.
We assume the existence of the denumerable infinite mutually disjoint

sets: the set of names N , the set of keys K, and the set of variables V ,
ranged over names a, b, c, keys i, j, k and variables x, y. We let ∗ to be a
distinguished key such that K∗ = K ∪ {∗}.

The syntax of the framework is presented in Figure 20. The standard
π-calculus (we use definition of the π-calculus given in Figures 12 and 13)
processes are given by P,Q productions. The idle process is represented
with 0. The output prefixed process ba.P indicates the fact that name
a can be sent over a channel b, while the input prefixed process b(x).P

symbolises that some name can be received and bound to variable x over
a channel b. Parallel composition of two processes is represented with
P | Q, while νa(P ) symbolises the fact that name a is restricted in P .

Reversible processes given by X,Y productions are defined on the top
of the π-calculus processes. Differently from the standard π-calculus,
performed actions are not discarded, but annotated and kept into the
structure of a process, representing its history. A reversible process P

behaves as a standard π-calculus process P , only decorated with insta-
niators. The instantiators are used to keep track of the substitutions.
The prefix b

j
aj1 [i,K] is called a past output and it records the fact that

in the past, process performed an output action identified by key i and
that the contextual cause set of the executed action was K ⊆ K∗. Prefix
bj(x)[i,K].X represents a past input recording the fact that executed action
was the input action identified by key i and its contextual cause set was K.
Parallel composition of two reversible processes X and Y is represented
with X | Y . Inspired by [20], the restriction operator νa∆ is decorated
with the memory ∆ which keeps track of the extruders of the name a.
When ∆ is empty (empty(∆) = true, we will give the precise definition in
the further text), νa∆ will act as the classical restriction operator νa of the
π-calculus. We denote the set of reversible processes with X .

Notation 4 If the prefix of the process is not relevant, we will denote it
with π. Hence, we have π = b

j
aj1 or π = bj(x). To specify that j is the
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X, Y ::= P | bjaj1 [i,K].X | bj(x)[i,K].X | X | Y | νa∆(X)

P, Q ::= 0 | ba.P | b(x).P | P | Q | νa(P )

Figure 20: Syntax of the framework

instantiator of one of the names in the prefix π, we will use notation j ∈ π
if π = cjdj1 or π = cj1dj or cj(x) for some c, d ∈ N and j1 ∈ K∗. We shall
use notation b∗ in the subject or object position of the label to specify that
name b has no instantiator (name b). We denote with K = {∗} the fact
that there is no action that caused executing action.

To simplify representation of the reversible process and make manip-
ulation with it easier, we define history and general contexts. A history
context is represents the executed prefixes of a process. For instance, the
process X = b

∗
a∗[i,K].c∗a∗[i′,K ′].P can be written as X = H[P], where

H[•] = b
∗
a∗[i,K].c∗a∗[i′,K ′].•. On the top of the history context, we de-

fine a general context by adding parallel and restriction operators. For
instance, process Z | Y | X can be written as C[X] where C[•] = Z | Y | •.
Formally, we have:

Definition 39 (History and General context) History contexts H and gen-
eral contexts C are reversible processes with a hole •, defined by the following
grammar:

H ::= • | π[i,K]. • C ::= H[•] | X | • | νa∆(•)

Notions of bound names and bound variables in the framework are
defined in usual way. There are two construct with binders: νa∆(X)

when ∆ is empty, in which the scope of name a is processX ; and b(x).P in
which scope of the variable x is process P. We denote sets of bound names
and variables of a given process X with bn(X) and bv(X), respectively.
When there is no need to distinguish them, we shall write bound(X) =

bn(X) ∪ bv(X). Formally:

Definition 40 (Bound names and variables) The set of the bound names
and variables of the process X , written as bound(X) is defined by induction on
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the process structure:

bound(X | Y ) = bound(X) | bound(Y )

bound(νa∆(X)) = bound(X) when ∆ is not empty
bound(νa∆(X)) = {a} ∪ bound(X) when ∆ is empty

bound(ba.X) = bound(X)

bound(a(x).X) = {x} ∪ bound(X)

bound(P) = bound(P ) where P is π-calculus process

The names and variables which are not bound, are free. The set of free names and
variables of the process X is denoted by free(X).

The framework is parametric with respect to the data structure ∆

which we define as an interface (in the style of a Java interface) by giving
the operations that it has to offer.

Definition 41 ∆ is a data structure with the following defined operations:

(i) init : ∆→ ∆ initialises the data structure

(ii) empty : ∆→ bool predicate telling whether ∆ is empty

(iii) + : ∆×K → ∆ operation adding a key to ∆

(iv) #i : ∆×K → ∆ operation removing a key from ∆

(v) ∈: ∆×K → bool predicate telling whether a key belongs to ∆

In what follows, we give a brief description of a three instances of the
data structure ∆: sets, sets indexed with an element and sets indexed
with a set. The precise definitions of the operations on each data structure
are given in Section 5.4 when we describe how these three instances will
capture the three different notions of causality for π-calculus.

Set. Data structure is a set Γ containing keys (i.e. Γ ⊆ K) of all the
actions that extruded name a. The idea behind the memory νaΓ is that
any of the keys contained in Γ can be a contextual cause for some ac-
tion having in the subject position name a. For example in the process
νa{i1,i2}(Y | a(x)) the contextual cause of the action a(x) can be chosen
from the set Γ = {i1, i2}.
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Indexed set. Data structure is an indexed set Γw, where set Γ is a
set containing keys (Γ ⊆ K) of all the actions that extruded name a

and w is the key of the first action that extruded name a. In this case
contextual cause for name a is exactly w. For instance in the process
νa{i1,i2}i1

(Y | a(x)) the contextual cause of the action a(x) is w = i1. We
shall write w = ∗ if there is no action that extruded name a.

Set indexed with a set. Data structure is a set indexed with a set
ΓΩ, where Γ is a set containing keys of all the actions that extruded
name a and Ω ∈ K∗ is a set containing keys of the extruders of name
a which are not part of the communication. The idea behind νaΓΩ

is
that the contextual cause for the name a is a set Ω. For example, in the
process νa{i1,i2,i3}{i1,i3}

(Y | a(x)) the contextual cause of the action a(x)

is Ω = {i1, i3}. We write Ω = {∗} when there is no action that extruded
name a and is not part of the synchronisation.

5.3 Operational semantics of the framework

The grammar of the labels defined on the transition t : X
µ−→ Y is:

µ ::= (i,K, j) : α α ::= ba | b(x) | b〈νa∆〉 | τ

The triple (i,K, j) contains the key i that identifies the action α, the con-
textual cause set K ⊆ K∗ and the instantiator j ∈ K∗ of the action α. The
action α can be: standard input and output on the channel b, symbolised
with b(x) and ba, respectively; the silent action or action b〈νa∆〉 that rep-
resents the classical bound output from the π-calculus, when ∆ is empty
(empty(∆) = true), otherwise stands for free output decorated with a
memory ∆.

We let A to be the set of all actions ranged over by α. The set of the
all possible labels is defined as L = K × K∗ × K∗ × A. In the following
definition we give the operational semantics of the framework.

Definition 42 (Operational Semantics) The operational semantics of the re-
versible framework is given as a pair of two LTSs defined on the same set of
reversible processes and set of labels: a forward LTS (X ,L,−→→) and a backward
LTS (X ,L, ). We define −→=−→→ ∪ , where −→→ is the least transition
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relation induced by the rules in Figures 21 and 22; and is the least transition
relation induced by the rules in Figure 23.

Now we define the function key(·) which computes the set of keys in
a given process and we specify the notion of the fresh (new) key.

Definition 43 (Process keys) The set of communication keys of a process
X , written key(X), is inductively defined as follows:

key(X | Y ) = key(X) ∪ key(Y ) key(π[i,K].X) = {i} ∪ key(X)

key(νa∆(X)) = key(X) key(P) = ∅

Definition 44 A key i is fresh in a process X , written fresh(i,X) if i 6∈
key(X).

In the further text we give forward and the backward rules of our
framework defined with a late semantics for inputs. Forward rules are
divided into two groups, depending on whether they are common to all
the instances of the framework (rules which are independent from the
data structure) or they are parametric with respect to ∆.

Common rules are given in Figure 21, where H is a history context
(Definition 39). As we can notice, in the rules OUT1 and IN1, executed
actions remain in the structure of the process. Moreover, these rules gen-
erates the fresh key i and bound it to the executing action. The performed
actions are annotated with the memory [i,K], where i and K are the key
of the action and its cause set. A prefixed process H[X] can perform a
forward step if process X can execute it. This is depicted by the rules
OUT2 and IN2. Rule for parallel composition PAR allows process to ex-
ecute the action α, under the condition that key i is not used by other
process in parallel (i /∈ Y ). This condition guarantees uniqueness of the
action keys. Rule COM allows synchronisation between two processes in
parallel which satisfy the condition K =∗ j

′ ∧ K ′ =∗ j (K =∗ j stands
for: K = j or ∗ ∈ K or j = ∗; for instance, if K = {∗, i1} and j = i2,
equality holds since ∗ ∈ K). Additionally, in the rule COM, the necessary
substitution is applied to the continuation of the input process in the fol-
lowing way: every occurrence of variable x ∈ fn(Y ′) is substituted with
the name a decorated with the key i of the executed action. In this way,
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(OUT1) b
j
aj1 .P

(i,K,j):ba−−−−−−→→ b
j
aj1 [i,K].P

(OUT2)
X

(i,K,j):ba−−−−−−→→ X ′ fresh(i, H[X])

H[X]
(i,K,j):ba−−−−−−→→ H[X ′]

(IN1) bj(x).P
(i,K,j):b(x)−−−−−−−→→ bj(x)[i,K].P

(IN2)
X

(i,K,j):b(x)−−−−−−−→→ X ′ fresh(i, H[X])

H[X]
(i,K,j):b(x)−−−−−−−→→ H[X ′]

(PAR)
X

(i,K,j):α−−−−−−→→ X ′ i /∈ Y bound(α) ∩ free(Y ) = ∅

X | Y (i,K,j):α−−−−−−→→ X ′ | Y

(COM)
X

(i,K,j):ba−−−−−−→→ X ′ Y
(i,K′,j′):b(x)−−−−−−−−→→ Y ′ K =∗ j

′ ∧ K′ =∗ j

X | Y (i,∗,∗):τ−−−−−→→ X ′ | Y ′{a
i

/x}

Figure 21: Common rules for all instances of the framework.

future computations of the process Y ′{ai/x} will be aware that variable x
was substituted with the name a during the synchronisation identified
by i. In ai, the key i is called the instantiator and used only to track the
substitution, not to define a name. For instance, having the reversible
process b

j
a∗.P | bj′(x).P′, the communication between them is allowed

even if they do not have the same instantiators on the channel b.

In order to have better intuition about the rules presented above, we
give the following example.

Example 21 Let X = b
∗
a∗.0 | b∗(x).xc∗ be a reversible process. Process

X has two possibilities for executing forward actions:

• an output action ba and an input action b(x) can be performed. In
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(CAUSE REF)
X

(i,K,j):α−−−−−−→→ X′ a ∈ sub(α) empty(∆) 6= true Cause(∆,K,K′)

νa∆(X)
(i,K′,j):α−−−−−−−→→ νa∆(X′[K′/K]@i)

(OPEN)
X

(i,K,j):α−−−−−−→→ X′ α = ba ∨ α = b〈νa∆′ 〉 Update(∆,K,K′)

νa∆(X)
(i,K′,j):b〈νa∆〉−−−−−−−−−−−→→ νa∆+i(X

′
[K′/K]@i)

(CLOSE)
X

(i,K,j):b〈νa∆〉−−−−−−−−−−→→ X′ Y
(i,K′,j′):b(x)−−−−−−−−−→→ Y ′ K =∗ j

′ ∧ K′ =∗ j

X | Y (i,∗,∗):τ−−−−−−→→ νa∆(X′#i | Y
′{a

i
/x})

(RES)
X

(i,K,j):α−−−−−−→→ X′ a /∈ α

νa∆(X)
(i,K,j):α−−−−−−→→ νa∆(X′)

Figure 22: Parametric rules

this case actions synchronise with the environment:

b
∗
a∗.0 | b∗(x).xc∗

(i,∗,∗):ba−−−−−−→→ b
∗
a∗[i, ∗].0 | b∗(x).xc∗

(i′,∗,∗):b(x)−−−−−−−→→ b
∗
a∗[i, ∗].0 | b∗(x)[i′, ∗].xc∗ = Y1

As we can notice, the output action ba is identified by key i, while
the input action is identified by key i′.

• Two parallel components of the process X can synchronise over the
channel b, and we have:

b
∗
a∗.0 | b∗(x).xc∗

(i,∗,∗):τ−−−−−→→ b
∗
a∗[i, ∗].0 | b∗(x)[i, ∗].aic∗ = Y2

We can notice that during the synchronisation identified with key i,
variable x was substituted with the received name a decorated with
the key i. In this way substitution of a name is recorded.

Parametric rules are represented in Figure 22. Depending on the used
data structure, the mechanism for choosing a contextual cause differs. For
this reason, we introduce two new predicates Cause(·) and Update(·). We
will give the precise definitions for the predicates when we discuss how
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to map different causal semantics into the framework (Section 5.4). The
intuition behind the predicates is that they define how contextual cause
is chosen from the memory delta. Hence, by instantiating ∆ with the
specific data structure, Cause(·) and Update(·) need to be implemented
differently.

Every time when action α, with a ∈ α, is passing the restriction νa∆, it
is necessary to check if the contextual cause set needs to be modified. If
name a is in the subject position of the label α and empty(∆) = false, then
rule CAUSE REF is used, otherwise, if name a is in the object position, rule
OPEN is applied. Rule CAUSE REF can be used only if name awas already
extruded by some other action in the past and in this case predicate
Cause(∆,K,K ′) ensures that contextual cause set K will be substituted
with new cause set K ′. Additionally predicate Cause(∆,K,K ′) gives
definition of the cause setK ′. The contextual cause update operation defined
on the process X , written as X[K′/K]@i updates the contextual cause K of
the action identified by i with the new cause K ′. Formally:

Definition 45 (Contextual Cause Update) The contextual cause update
of the process X , written X[K′/K]@i is defined as follows:

(X | Y )[K′/K]@i = X[K′/K]@i | Y[K′/K]@i H[π[i,K].X][K′/K]@i = H[π[i,K′].X]

(νa∆(X))[K′/K]@i = νa∆(X)[K′/K]@i H[π[j,K].X][K′/K]@i = H[π[j,K].X]

We use this operation in rules CAUSE REF and OPEN. Restricted name can
be sent out to the environment (extruded) by applying the rule OPEN. In
this case, we need to record what was the key of the action that extruded
restricted name. For this reason key i is added into the memory ∆. The
predicate Update(∆,K,K ′) in the rule OPEN defines what will be the new
contextual cause set K ′. Rule CLOSE allows synchronisation between two
processes when bound output is included. Additional condition on the
rule, needs to be satisfied. In the resulting process, after execution of the
τ -action, we can notice the operator #i defined on the data structure. Dif-
ferent data structures requires different implementations of it (Section 5.4).
Here we give just intuition: operator #i removes from data structure
∆, the keys of the actions that extruded restricted name but are part of
synchronisations. This is necessary, since in causal semantics [14; 19],
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τ -actions do not bring the causal information. Rule RES is defined in the
usual way. Better intuition of how parametric rules work, will be given
by means of examples in Section 5.4.

Backward rules are presented in Figure 23 and they are symmetric to
the forward ones. To simplify the proofs, we keep the predicates, even
if they are not necessary for the backward transition (there is no non-
determinism while reversing the actions, since every action is identified
by unique key).

In order to have better understanding of the backward rules, we shall
give the following example.

Example 22 We consider the following processes from Example 21:

• Y1 = b
∗
a∗[i, ∗].0 | b∗(x)[i′, ∗].xc∗; The backward actions that can

be performed by the process Y1 are: the input on the channel b
identified with key i′ and the output on the channel b identified
with key i. These backward steps can be executed in any order, for
example, we undo first the input and then the output:

Y1 = b
∗
a∗[i, ∗].0 | b∗(x)[i′, ∗].xc∗

(i′,∗,∗):b(x)
b
∗
a∗[i, ∗].0 | b∗(x).xc∗

(i,∗,∗):ba
b
∗
a∗.0 | b∗(x).xc∗ = X

The history part of the process Y1 has all necessary information to
reverse those two actions.

• Y2 = b
∗
a∗[i, ∗].0 | b∗(x)[i, ∗].aic∗; The only possible backward step

for process Y2 is undoing the synchronisation done over the channel
b:

b
∗
a∗[i, ∗].0 | b∗(x)[i, ∗].aic∗

(i,∗,∗):τ
b
∗
a∗.0 | b∗(x).xc∗ = X

As we can notice, the substitution is also reversed and name ai is
substituted with variable x as it was in the initial state of the process
X .

Remark 7 The framework can be easily equipped with the choice opera-
tor (+) by making the operator static as in [70].
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(OUT1•) b
j
aj1 [i,K].P

(i,K,j):ba
b
j
aaj1 .P

(OUT2•)
X ′

(i,K,j):ba
X fresh(i, H[X])

H[X ′]
(i,K,j):ba

H[X]

(IN1•) bj(x)[i,K].P
(i,K,j):b(x)

bj(x).P

(IN2•)
X ′

(i,K,j):b(x)
X fresh(i, H[X])

H[X ′]
(i,K,j):b(x)

H[X]

(PAR•)
X ′

(i,K,j):α
X i /∈ Y

X ′ | Y
(i,K,j):α

X | Y

(RES•)
X ′

(i,K,j):α
X a /∈ α

νa∆(X ′)
(i,K,j):α

νa∆(X)

(COM•)
X ′

(i,K,j):ba
X Y ′

(i,K′,j′):b(x)
Y K =∗ j

′ ∧ K′ =∗ j

X ′ | Y ′
(i,∗,∗):τ

X | Y {x/ai}

(OPEN•)
X ′

(i,K,j):α
X α = ba ∨ α = b〈νa∆′〉 Update(∆,K,K′)

νa∆+i(X
′)

(i,K′,j):b〈νa∆〉
νa∆(X)

(CAUSE REF•)
X ′

(i,K,j):α
X a ∈ sub(α) empty(∆) 6= true Cause(∆,K,K′)

νa∆(X ′)
(i,K′,j):α

νa∆(X)

(CLOSE•)
X ′

(i,K,j):b〈νa∆〉
X Y ′

(i,K′,j′):b(x)
Y K =∗ j

′ ∧ K′ =∗ j

νa∆(X ′ | Y ′)
(i,∗,∗):τ

X | Y {x/ai}

Figure 23: Backward rules.
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5.4 Mapping three causal semantics

In this Section we show how causality notions induced by three different
causal semantics [14; 19; 20] can be mapped in our framework. We do it
by defining the operators from Definition 41 for the specific data structure,
and by giving definitions for predicates in Figure 22.

5.4.1 Reversible semantics for the π-calculus

A compositional semantics for the reversible π-calculus, given by Cristescu
et al [20] is revised in Section 4.3. History information is kept in the mem-
ory attached to every process. A reversible process is of the form m . P ,
where m is a memory and P is the standard π-calculus process. The
extruder information is kept in the construct νaΓ, which behaves as a
classical π-calculus restriction when set Γ is empty, otherwise it serves as
a memory.

Naturally, to capture this behaviour, we shall use set Γ as data structure
∆. We now implement the operations of Definition 41 as follows:

Definition 46 (Operations on a set) The operations on a set Γ are defined as:

(i) init(Γ) = ∅

(ii) empty(Γ) = true, when Γ = ∅

(iii) + is the classical addition of elements to a set

(iv) #i is defined as the identity, that is ∆
#i

= Γ
#i

= Γ.

(v) i ∈ Γ the key i belongs to the set Γ

Data structure is initialised when Γ = ∅ and it implies that empty(Γ) =

true, as expected. The operation #i is define as identity, while + and i ∈ Γ

are classical operations defined on the set.
To capture notion of causality introduced in [20], we need to adapt

definition of the instantiation relation (Definition 37) to our framework
and define it on the past prefixes. For instance in the process

b∗(x)[i1,K1].ai1c∗[i2,K2].Y
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actions i1 and i2 are in instantiation relation, since action i1 instantiate
name a. We can see it in the past prefix ai1c∗[i2,K2] where name a is
decorated with the key i1. Formally, the instantiation relation on the
prefixes is defined as follows.

Definition 47 (Instantiation relation on the framework) Two keys i1 and
i2 such that i1, i2 ∈ key(X) andX = C[bj1(x)[i1,K1].Y ] with Y = C ′[π[i2,K2].Z]
where j2 ∈ π , are in instantiation relation, denoted with i1  X i2, if j2 = i1.
If i1  X i2 holds, we will write K1  X K2.

Note that since the actions in [20] can be caused only through the
subject of the label, contextual cause set K is a singleton. Now we can
give the last definition necessary to obtain the Rπ causality, definitions of
the predicates from the rules in Figure 22.

Definition 48 (Rπ causality) To capture Rπ causality, data structure is in-
stantiated with the set Γ and the predicates from Figure 22 are defined as:

1. Cause(Γ,K,K ′) stands for K ′ = K or ∃K ′ ∈ Γ K  X K ′;

2. Update(Γ,K,K ′) stands for K ′ = K.

The predicate Update(Γ,K,K ′), used in rule CAUSE REF means that the
new cause K ′ is the same as the old one, denoted with K. The first
predicate defined above, Cause(Γ,K,K ′), is used in the rule CAUSE REF

and it defines how the new contextual cause K ′ is chosen. To illustrate
this, we give the following examples.

Example 23 Let us consider the process X = νa∅(b
∗
a∗ | c∗a∗ | a∗(x))

where we have parallel extrusion of the same name a. By extruding the
name a with the rule OPEN twice, on the channels b and c, we obtain a
process:

νa{i1,i2}(b
∗
a∗[i1, ∗] | c∗a∗[i2, ∗] | a∗(x))

The rule CAUSE REF is used for the execution of the third action where
action a(x) can choose its cause from the set {i1, i2}. By choosing, for
example, i2 as a cause, we obtain the process:

νa{i1,i2}(b
∗
a[i1, ∗] | c∗a[i2, ∗] | a∗(x)[i3, i2])
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In the memory [i3, i2] we can see that the action identified with key i3
needs to be reversed before the action with key i2. Process b

∗
a[i1, ∗] can

execute a backward step at any time with the rule OPEN•.

Let us show one more example where instantiation relation is used
while choosing the new cause K ′.

Example 24 Consider the process X = νa{i3,4}(νa{i1,i2}(a
∗(x))) where

i1  X i3 and i2  X i4. For the sake of simplicity, we omitted the history
part of the process X . By passing the restriction operator νa{i1,i2}, action
a(x) can choose between two causes, i1 and i2 (by applying the rule
CAUSE REF). Let assume that i1 is chosen. To pass the restriction νa{i3,i4},
one more time rule CAUSE REF is applied and we have:

νa{i1,i2}(a
∗(x))

(i,i1,∗):a(x)−−−−−−−−→→ νa{i1,i2}(a
∗(x)[i, i1]) i3 ∈ Γ i1  X i3

νa{i3,i4}(νa{i1,i2}(a
∗(x)))

(i,i3,∗):a(x)−−−−−−−−→→ νa{i3,i4}(νa{i1,i2}(a
∗(x)[i, i3]))

where we can notice that in the premises, contextual cause was i1 and
that is saved in the resulting process νa{i1,i2}(a

∗(x)[i, i1]). Passing the
restriction νa{i3,i4}, action a(x) needs to take another cause, since i1 /∈
{i3, i4} and the chosen cause is K ′ = i3 since i1  X i3. Contextual cause
i3 is then recorded in the final process νa{i3,i4}(νa{i1,i2}(a

∗(x)[i, i3])).

5.4.2 Boreale and Sangiorgi causal semantics

A compositional causal semantics for standard π-calculus was introduced
by Boreale and Sangiorgi [14]. We have revised this causal semantics in
Section 4.1, where we did not take into account replication operator and
we define it with late (rather than early, as it was originally given) seman-
tics. In this section we describe how to capture the notion of causality
induced by [14] with our framework.

The authors separated dependences between the actions in two groups:
subject and the object dependency. The subject one is captured by the causal
term K :: A, where the set of causes K records that every action performed
by A depends on K. The object dependency is given on the trace of the
process (Definition 28) and intuitively it says that: the first input action
with the variable x, let say a(x), shall cause every other action using
variable x in any position of the label (this part of definition is captured
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in the framework by structure of the process. A more detailed discussion
about it can be find in Section 5.6); the first action that extrudes restricted
name shall cause every future action using that name in any position of
the label (subject or the object). Since we have that only the first extrusion
of bound name will cause the the rest of the actions using that name, we
shall use indexed set Γw for the data structure ∆. The operations given in
Definition 41 that data structures offers, are defined on the indexed set in
the following way.

Definition 49 (Operations on an indexed set) The operations on an indexed
set Γw are defined as:

(i) init(Γw) = ∅∗

(ii) empty(Γw) = true, when Γ = ∅ ∧ w = ∗

(iii) operation + is defined as: Γw + i =

{
(Γ ∪ {i})i, when w = ∗
(Γ ∪ {i})w, when w 6= ∗

(iv) operation #i is defined inductively as:

(X | Y )#i = X#i | Y#i (H[X])#i = H[X#i] (P)#i = P

(νaΓi
X)#i = νaΓ∗X#i (νaΓw

X)#i = νaΓw
X#i

(v) i ∈ Γw the key i belongs to the set Γ, regardless of w (e.g. i ∈ {i}∗)

The data structure is initialised when init(Γw) = ∅∗ and it implies
that empty(Γw) = true, as expected. The + operator is defined as: the key
added to the Γw will be added to the set Γ and on the place of w if w = ∗,
otherwise it will be added just to the set Γ. For instance, after adding key
i3 to the {i1, i2}∗ we obtain {i1, i2, i3}i3 . Operation #i, substitute value of
w in Γw with element ∗, when w = i. For example, the result of applying
operation #i on {i, i1}i is {i, i1}∗. The operation of belonging is defined
on the set Γ in the classical way, regardless the index w. For instance, the
key i belongs to the indexed set {i1, i}i1 .

To capture the causality defined in Section 4.1, we give definitions for
the predicates in Figure 22.
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Definition 50 (Boreale and Sangiorgi causal semantics) To capture Borale
and Sangiorgi causality the data structure ∆ is instantiated with indexed set Γw
and the predicates from Figure 22 are defined as:

1. Cause(Γw,K,K
′) stands for K ′ = K ∪ {w}

2. Update(Γw,K,K
′) stands for K ′ = K ∪ {w}

From the object causality definition, we have that an output action can
be caused through the subject and object position of a label. For instance,

consider a process νa(νb(cb | da | ba)) and its trace
c〈νb〉−−−→ d〈νa〉−−−→ ba−→. The

action ba depends on the both actions executed before (on the first one
because it extrudes the name b and on the second one because it extrudes
name a). For this reason, predicates Cause(·) and Update(·) define the
new cause set K ′ by adding the value of w to the old set of the causes K.
In this way, both causes from the example before will be saved in K ′.

We remark that silent actions do not exhibit or impose contextual
causes. We give the following example to have a better intuition about
framework expressing Boreale and Sangiorgi causality.

Example 25 Consider the process X = νa∅∗(b
∗
a∗ | c∗a∗ | a∗(x)). By

extruding the name a over the channel b (rule OPEN is applied), we obtain
the process:

νa{i1}i1 (b
∗
a∗[i1, ∗] | c∗a∗ | a∗(x))

From the memory {i1}i1 we have that w = i1. By executing the actions
ca with the rule OPEN and a(x) with the rule CAUSE REF, predicates on
the rules Update(·) and Cause(·) ensure that key i1 = w will be added to
cause sets. We obtain the process:

νa{i1,i2}i1 (b
∗
a∗[i1, ∗] | c∗a∗[i2, {i1, ∗}] | a∗(x)[i3, {i1, ∗}])

In the memories [i2, {i1, ∗}] and [i3, {i1, ∗}] we can notice that the
executed actions are caused by action i1 and for this reason the action i1
needs to be reversed last. The actions i2 and i3 can be reversed in any
order.
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5.4.3 Crafa, Varacca and Yoshida causal semantics

A compositional event structure semantics for the forward π-calculus is
introduced in [19]. In Section 4.2 we revised the causal semantics given
in [19], where we use as the base the π-calculus defined in Figure 12.
The process is represented as a pair (E,X), where E is the prime event
structure and X is a set of bound names. The object causality on events
(Definition 32) is defined as: the action with a restricted name in the
subject position, can be executed if at least one of the actions that extruded
restricted name was executed in the past. It is not necessary to record
which one. In case of parallel extrusion of the same name, for instance
in process νa(ba | ca | a(x)) action a(x) can be caused by any of the
extrusions (configurations {ba, a(x)} and {ca, a(x)} are both permitted),
without recording the actual extruder.

The consequence of this approach is that events do not have unique
causal history. In [22] authors discussed that this type of causality cannot
be expressed when processes with contexts are considered. For example,
in the process P = νa(ba | ca | a(x)), the cause of the action a(x) is either
ba or ca but if context is added to this process (i.e. we consider close
term), the ambiguity of the cause choice is lost. The choice of the cause is
determined by the context (for instance, we can add context b(y).yd to the
process P and in this case we know that action a(x) is caused by ba).

In our framework, reversibility is causally-consistent, hence we need
to keep track of the causes. If not, by executing backward actions, we
could reach a state that is not consistent (not consistent state would be
the state where the action that extrude restricted name is reversed, while
action that using that name in the subject position is not). For this reason,
we consider two possibilities for keeping track of causes: the first option
is to choose one of the possible extruders and save it in the history of the
process and the second one would be to record all of them that happened
before the action with a restricted name in the subject position. If we
would go with the first approach, we would obtain a notion of causality
that is similar to causality given in [20]. In the following we concentrate
on the second approach with the idea that since we do not know the exact
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extruder that caused the action with bound subject, we record the whole
set of them that happened in the past. Hence, the data structure that can
be used to represent the whole set of extruders is: set indexed with a set
ΓΩ. The reason why two sets are necessary is because the τ -actions do
not impose causes. Every extruder will be recorded in the set Γ and in
that way we will keep track about the scope of the restricted name, while
extruders which are not part of synchronisations will be saved in Ω. The
operations given in Definition 41 that data structures offers, are defined
on the set indexed with a set in the following way.

Definition 51 (Operations on a set indexed with a set) The operations on
a set indexed with a set (ΓΩ) are defined as:

(i) init(ΓΩ) = ∅{∗}

(ii) empty(ΓΩ) = true, when Γ = ∅ ∧ Ω = {∗}

(iii) operation + is defined as: (ΓΩ) + i = (Γ ∪ {i})(Ω∪{i})

(iv) operation #i is defined inductively as:

(X | Y )#i = X#i | Y#i (νaΓΩ
X)#i = νaΓΩ\{i}X#i

(H[X])#i = H[X#i] (P)#i = P

(v) i ∈ ΓΩ the key i belongs to the set Γ, regardless Ω (e.g. i ∈ {i}{∗})

The data structure is initialised when init(ΓΩ) = ∅{∗} and it implies
that empty(Γ{∗}) = true. The + operator is defined by adding the key
into both sets. For instance, the result of adding key i to the data structure
{i1, i2}{i2} is {i1, i2, i}{i2,i}. The operation #i, removes the key i from
the set Ω. For example, if we apply operation #i to the data structure
{i1, i2, i}{i2,i}, we obtain {i1, i2, i}{i2} (the key i is deleted from the set
Ω = {i2, i}). The operation of belonging is defined on the set Γ in classical
way, regardless to the set Ω. For instance, the key i belongs to the data
structure {i1, i}{i1}.

To obtain revised causality introduced in [19] where we keep track of
the extruders in the way described above, we need to give definition of
the predicates in Figure 22.
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Definition 52 (Revised Crafa, Varacca and Yoshida causal semntics) If an
indexed set ΓΩ is chosen as a data structure for a memory ∆, the predicates are
defined as:

1. Cause(ΓΩ,K,K
′) stands for K ′ = K ∪ Ω

2. Update(ΓΩ,K,K
′) stands for K ′ = K

In the definition above we can notice that the new cause K ′ in the
predicate Cause(ΓΩ,K,K

′), gathers all extrusions of a restricted name
executed previously, which are not part of the synchronisation. With the
following example we give the idea of how the mechanism works.

Example 26 Let us consider the process X = νa∅{∗}(b
∗
a∗ | c∗a∗ | a∗(x)).

By extruding name a on the channels b and c (by applying rule OPEN),
we obtain the process:

νa{i1,i2}{∗,i1,i2}
(b
∗
a∗[i1, ∗] | c∗a∗[i2, ∗] | a∗(x))

As we can notice, keys i1 and i2 are added in the data structure ΓΩ in both
sets. From Definition 52 we have that the cause of the action a(x) will be
the whole set {∗, i1, i2}. By executing the input action we obtain process:

νa{i1,i2}{∗,i1,i2}
(b
∗
a[i1, ∗] | c∗a[i2, ∗] | a∗(x)[i3, {∗, i1, i2}])

From reversible point of view, action a(x) needs to be reversed first one
(we can notice it in the memory [i3, {∗, i1, i2}]). The other two actions can
be reversed in any order.

5.5 Properties of the framework

In this Section we show that our framework enjoys typical properties of
reversible process calculi [20; 23; 51; 70]: correspondence with the base
calculus (in our case it is π-calculus and it is given in Section 5.5.1); prop-
erty declaring that every step can be undone, what is in the literature
usually stated as Loop Lemma (Lemma 18); permutation of the concur-
rent transitions, specified as Square (Diamond) Lemma (Lemma 20) and
property stating that reversibility induced by the framework is causally
consistent (Theorem 10). All the properties defined on the framework are
limited to the reachable processes given with the following definition.
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Definition 53 (Initial and Reachable process) A reversible process X is ini-
tial if it is derived from a π-calculus process P where all the restricting operators
are initialised and in every prefix, names are decorated with a distinguished
symbol ∗. A reversible process is reachable if it can be derived from an initial
process by using the rules in Figures 21, 22 and 23.

5.5.1 π-calculus correspondence

We start by showing that our framework is conservative extension of
the π-calculus. First we define an erasing function ϕ which removes past
information from a given reversible processX and in that way obtains a π-
calculus process. After that we show a forward operational correspondence
between a reversible process X and its projection on the π-calculus ϕ(X).

Definition 54 (Erasing function) Let P and X be the sets of π-calculus and
reversible processes, respectively. The function ϕ : X → P that maps reversible
processes to the π-calculus, is inductively defined as follows:

ϕ(X | Y ) = ϕ(X) | ϕ(Y ) ϕ(b
j
aj
′
.P) = ba.ϕ(P)

ϕ(νa∆(X)) = ϕ(X) if empty(∆) = false ϕ(bj(x).P) = b(x).ϕ(P)

ϕ(νa∆(X)) = νa ϕ(X) if empty(∆) = true ϕ(0) = 0

ϕ(H[X]) = ϕ(X)

The erasing function can be extended to labels as:

ϕ((i,K, j) : α) = ϕ(α) ϕ(ba) = ba

ϕ(b〈νa∆〉) = b〈νa〉 when empty(∆) = true ϕ(b(x)) = b(x)

ϕ(b〈νa∆〉) = ba when empty(∆) = false ϕ(τ) = τ

As we can notice in the definition above, erasing function eliminates
history of the process (past prefixes) and restriction operators νa∆ when
∆ is not empty. Additionally, it removes instantiators from the process
that needs to be executed (P). From the labels, function ϕ deletes the
triple (i,K, j) and transform bound b〈νa∆〉 to the free output, when ∆ is
not empty.

In what follows, we give the forward operational correspondence
between reversible process X and π-calculus process ϕ(X). We start by
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showing that every forward action that reversible process perform can
be mimic by the π-calculus. We shall use −→→π to specify that transition
belong to the semantics of the π-calculus.

Lemma 16 If exists a transition X µ−→→ Y then ϕ(X)
ϕ(µ)−−−→→π ϕ(Y ).

Proof The proof is by induction on the derivation tree of the transition
X

µ−→→ Y with the case analysis on the last applied rule. �

Now we give the converse of Lemma 16.

Lemma 17 If there is a transition P
ϕ(µ)−−−→→π Q then for all reachable X such

that ϕ(X) = P , there is a transition X µ−→→ Y with ϕ(Y ) = Q.

Proof The proof is by induction on the derivation tree of the transition

P
ϕ(µ)−−−→→π Q. �

By combining the two previous lemmata we can state that the rela-
tion between a process X and its corresponding π term P is a strong
bisimulation. Formally:

Corollary 1 The relation given by (X,ϕ(X)), for all reachable processes X , is
a strong bisimulation.

5.5.2 Causal-consistency of the reversible framework

In this Section we show that reversibility induced by our parametric
framework is defined correctly. Most of the proof outlines are adapted
from [20; 23] with more complex disscusions due to the generality of our
framework. The first important property is stating that every transition
(reduction step) can be undone. In the literature it is depicted with the
so-called Loop Lemma ([23, Lemma 6]) which we adapt to the framework
as:

Lemma 18 (Loop Lemma) For every reachable process X and forward transi-

tion t : X
µ−→→ Y there exists a backward transition t′ : Y

µ
X , and conversely.
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Proof The proof follows from the symmetry of the forward and the back-
ward rules. �

Followed by the symmetry of the rules, we define reverse transitions.

Definition 55 (Reverse transition) The reverse transition of a transition t :

X
µ−→→ Y , written t•, is the transition with the same label and the opposite

direction t• : Y
µ
X , and vice versa. Thus (t•)• = t.

An important component for reversibility is causal relation between the
actions. It is possible to reverse an action α only if all the actions that
were caused by α, were reversed previously. In this way, one avoids to
reach states that are not consistent. For instance, in the reversible pro-
cess νa{i1}(ba[i1, ∗] | a(x)[i2, {i1}]), obtained from the π-calculus process
νa(ba | a(x)), if the action with a key i1 would be reversed first, we reach
the state that is not consistent (it is impossible to have a state in which
action with a bound subject is executed before the restricted name was
extruded and became a free name).

In the following, we give a definition of the causality relation on the
framework, regardless of the used data structure. It is represented as the
union of the structural and object causality. We start by defining structural
dependences between two past prefixes. For instance, in the reversible
process X = ba[i,K].cd[i′,K ′], past prefix with key i is structural cause of
the past prefix with key i′. Formally:

Definition 56 (Structural cause on the past prefixes) For every two keys i1
and i2 such that i1, i2 ∈ key(X), we say that past prefix with the key i1 is a
structural cause of the past prefix with the key i2 in the process X , written as
i1 @X i2 if X = C[π[i1,K1].Y ] and i2 ∈ key(Y ).

We extend definition of the structural cause on the past prefixes to the
transitions.

Definition 57 (Structural causality) Transition t1 : X
(i1,K1,j1):α1−−−−−−−−→ X ′ is

a structural cause of transition t2 : X ′′
(i2,K2,j2):α2−−−−−−−−→ X ′′′, written t1 @ t2,

if i1 @X′′′ i2 or i2 @X i1 if transitions are backward. Structural causality,
denoted with v, is obtained by reflexive and transitive closure of @.
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Now we show some examples of structural causality between transi-
tions.

Example 27 Let us consider the process X = ba.cd and forward transi-
tions:

t1 : X
(i,K,j):ba−−−−−−→→ ba[i,K].cd and

t2 : ba[i,K].cd
(i′,K′,j′):cd−−−−−−−−→→ ba[i,K].cd[i′,K ′]

In the process X ′ = ba[i,K].cd[i′,K ′], by using Definition 56, we have
i @X′ i′. Since key i identifies transition t1 and key i′ transition t2, we
have that t1 @ t2.

Example 28 If we take the resulting process from the example above and
use it as initial state for the backward transition, i.e. we consider process
X = ba[i,K].cd[i′,K ′] and backward transitions:

t1 : X
(i′,K′,j′):cd

ba[i,K].cd and

t2 : ba[i,K].cd
(i,K,j):ba

ba.cd

In the process X = ba[i,K].cd[i′,K ′], by using Definition 56 for the back-
ward transitions, we have i @X i′ what implies that t1 @ t2.

We define object causality directly on the transitions and use contex-
tual cause set K to keep track of it.

Definition 58 (Object causality) Transition t1 : X
(i1,K1,j1):α1−−−−−−−−→ X ′ is an

object cause of transition t2 : X ′
(i2,K2,j2):α2−−−−−−−−→ X ′′, written t1 < t2, if i1 ∈ K2

or i2 ∈ K1 (for the backward transition) and t1 6= t•2. Object causality, denoted
with�, is obtained by reflexive and transitive closure of <.

Example 29 Consider the process X = νa∆(b
∗
a∗ | a∗(z)) and computa-

tion:
(i1,∗,∗):b〈νa∆〉−−−−−−−−−→ (i2,{i1},∗):a(z)−−−−−−−−−−→

We can notice that i1 ∈ K2, since K2 = {i1} what implies that the second
transition is caused by the first one.
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Definition 59 (Causality relation and concurrency) The causality relation
≺ is the reflexive and transitive closure of structural and object cause: ≺= (v
∪ �)∗. Two transitions are concurrent if they are not causally related.

We now give some additional properties and definitions necessary to
prove our main results, Square Lemma (Lemma 20) and causal-consistency
(Theorem 10). We start by showing the following property stating that in
a reachable reversible process all restriction νa∆ of the same name a are
nested.

Lemma 19 If process X = C[νa∆(Y ) | Y ′] is reachable, then νa∆′ /∈ Y ′, for
all non-empty ∆ and ∆′ (empty(∆) = false and empty(∆′) = false).

Proof The proof is by induction on the trace that leads to the process X :
X1 −→ · · · −→ Xn −→ X , where X1 is an initial reversible process1, and last
applied rule on the transition Xn −→ X . Base case is trivial, since for every
νa∆ ∈ X1, empty(∆) = true. In the inductive case, we have that in the
transition Xn −→ X , property holds for Xn. The proof continues by case
analysis on the last applied rule on the transition Xn −→ X . More details
can be found in Appendix A. �

Before stating the permutation of concurrent transitions, we need to
define an equivalence on the labels of the transitions.

Definition 60 (Label equivalence) Label equivalence, =λ, is the least equiv-
alence relation satisfying: (i,K, j) : b〈νa∆〉 =λ (i,K, j) : b〈νa∆′〉 for all
i, j,K, a, b and ∆,∆′ ⊆ K. (Having an indexed set Γw for ∆ we disregard
index w, and observe Γ ⊆ K.)

The label equivalence is necessary since actions are bringing information
about ∆ into the labels. By permuting the transitions, content of ∆ is
changing. To illustrate this, let us consider the following example.

Example 30 Consider the process X = νa∅(b
∗
a∗ | c∗a∗) and the case

when ∆ = Γ. For instance, process X can first execute output on the

1From Definition 53 we have that the reversible process X is initial when all its names
are decorated with the ∗ and for all restrictions νa∆, for some name a, ∆ is empty
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channel b identified with the key i1 and then output on the channel c with
key i2, and we have:

X
(i1,∗,∗):b〈νa∅〉−−−−−−−−−→ νa{i1}(b

∗
a∗[i1, ∗] | c∗a∗)

(i2,∗,∗):c〈νa{i1}〉−−−−−−−−−−−→ νa{i1,i2}(b
∗
a∗[i1, ∗] | c∗a∗[i2, ∗]) = X1

Now, if we execute actions in the opposite order, we have:

X
(i2,∗,∗):c〈νa∅〉−−−−−−−−−→ νa{i2}(b

∗
a∗ | c∗a∗[i2, ∗])

(i1,∗,∗):b〈νa{i2}〉−−−−−−−−−−−→ νa{i1,i2}(b
∗
a∗[i1, ∗] | c∗a∗[i2, ∗]) = X2

We can notice that the resulting processes in both computations are the
same, i.e. X1 = X2. In the labels of the transitions, we can see that
(i1, ∗, ∗) : b〈νa∅〉 =λ (i1, ∗, ∗) : b〈νa{i2}〉, since the only difference is in
the set Γ. Similar for the transitions on the channel c, we have (i2, ∗, ∗) :
c〈νa{i1}〉 =λ (i2, ∗, ∗) : c〈νa∅〉.

Notation 5 From the fact that all restriction of the same name are nested
(Lemma 19) and the design of the framework, we can write a reversible
process X as: X = νãn∆n

Cn[. . . νã0∆0
C0[X1]], where contexts of the

process that do not contain any restriction on a are represented with
the C0, . . . Cn and νãl∆l

= νãl1∆l1
. . . νãln∆ln

. For the sake of simplicity
we shall assume that the vector of names νãl∆l

is a singleton and write:
X = νa∆n

Cn[. . . νa∆0
C0[X1]].

With the next properties, we show how in the transition t : X
(i,K,j):α−−−−−−→

X ′, executing action α influences the resulting process X ′. Depending
of the nature of action α, just one part of it or whole precess X ′ will be
modified.

Property 4 Given a process X = νa∆nCn[. . . νa∆0C0[X1]], and transition

t : X
(i,K,j):α−−−−−−→ X ′, where α 6= τ , executed by any component in X , there are

two possibilities for modifying the resulting process X ′, depending on the nature
of the action α:

• if α = b〈νa∆〉, for some name b, then transition t modifies the component
on which it is executed and all the restrictions on the name a before it;
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• if α 6= b〈νa∆〉, then transition t modifies only the component on which it
is executed:

Proof The proof follows directly from the semantics of the framework.�

For instance, consider the process X = νa∆nCn[. . . νa∆0C0[X1]] and

transition t : X
(i,K,j):α−−−−−−→ X ′, where α 6= τ . Let us assume that transition t

is performed by the process X1. Then we have:

• if α = b〈νa∆〉, for some name b; transition t modifies the process X1

and all the restrictions, since all of them are before X1, and we have:

t : X
(i,K,j):b〈νa∆n 〉−−−−−−−−−−→ νa∆′n

Cn[. . . νa∆′0
C0[X ′1]]

Every time when action α passes the restriction on the name a, rule
OPEN is applied and key i is added to ∆.

• if α 6= b〈νa∆〉, then transition t modifies only the process X1:

t : X
(i,K,j):α−−−−−−→ νa∆nCn[. . . νa∆0C0[X ′1]]

Property 5 Given a process X = νa∆nCn[. . . νa∆0C0[X1]], and transition

t : X
(i,∗,∗):τ−−−−−→ X ′, there are two possibilities for modifying the resulting process

X ′, depending whether one or two contexts are involved into the transition t:

• if one context is included, then transition t modifies just that context

• if two contexts are involved and name a is used in the object position such
that rules CLOSE and CLOSE• can be applied, then transition t modifies
both contexts with the first restrictions before them and restrictions on the
name a between the contexts; otherwise, transition t modifies just the two
contexts.

Proof The proof is straightforward from the rules for communication.�

For example, given a process X = νa∆n
Cn[. . . νa∆0

C0[X1]], and tran-

sition t : X
(i,∗,∗):τ−−−−−→ X ′, we have:
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• if the communication happened in the process X1, then

t : C[X1]
(i,∗,∗):τ−−−−−→ C[X ′1]

for some context C. We can notice that transition t modifies only the
elements of the process X1, not the context C, and we have:

t : νa∆nCn[. . . νa∆0C0[X1]]
(i,∗,∗):τ−−−−−→ νa∆nCn[. . . νa∆0C0[X ′1]]

• if communication involves two contexts Ci[•], Cj [•] and name a is
used in object position, rules CLOSE or CLOSE• can be applied. We
have the following transition:

t : νa∆nCn[. . . νa∆iCi[. . . νa∆jCj [νa∆0C0[X1]]]]
(i,∗,∗):τ−−−−−→

νa∆nCn[. . . νa′∆′iC
′
i[. . . νa∆′j

C′j [νa∆0C0[X1]]]]

where the number of restrictions in νa′∆′i
, depends on whether

forward (rule CLOSE adds a restriction) or backward (rule CLOSE•

removes a restriction) rule is used.

Now, we have all necessary definitions to show the so-called Square
Lemma stating that concurrent transitions of the framework can be per-
muted where permutations is allowed up to label equivalence.

Lemma 20 (Square Lemma) If t1 : X
µ1−→ Y and t2 : Y

µ2−→ Z are two

concurrent transitions, there exist t′2 : X
µ′2−→ Y1 and t′1 : Y1

µ′1−→ Z where
µi =λ µ

′
i.

Proof The proof is by case analysis on the form of the transitions t1 and
t2. We shall consider four main cases on whether transitions t1 and t2 are
synchronisations or not and then proceed with induction on the structure
of the process while checking all possible combination of the rules applied
on the transitions t1 and t2. More details about the proof, can be found in
Appendix A. �

We write t2 = t′2/t1 for a residual of t′2 after t1. Additionally, we bring
from the π-calculus standard notions on the transitions (Definition 25).
Two transitions that have the same source, are called coinitial; if they have
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the same target, they are cofinal and if target of one is source of the other
transition, they are called composable. We denote with t1; t2 a sequence of
pairwise composable transitions that is called trace. Empty trace is written
as ε.

Now we revise the definition of equivalence up-to permutation intro-
duced in [23]. It is an adaptation of equivalence between traces intro-
duced in [15; 55] which additionally removes from the trace a transitions
triggered in both directions. It basically states that concurrent actions
can be permuted and that trace composed by transition and its inverse is
equivalent to the empty trace. Formally:

Definition 61 (Equivalence up-to permutation) Equivalence up-to permu-
tation, ∼, is the least equivalence relation on the traces, satisfying:

t1; (t2/t1) ∼ t2; (t1/t2) t; t• ∼ ε

In the following we give some properties defined on the transitions,
necessary to show the main result of this section: causal-consistency of
the framework.

Definition 62 Two transitions t1 and t2 are prefix equivalent, written t1 =p

t2 if they add or remove the same past element π[i,K] from the history context of
a process.

We would like to remind that history context is built from the past
prefixes. For example, in the process a∗b∗[i,K].c∗(x).P, the history context
is H = a∗b∗[i,K].•, while in the process a∗b∗.c∗(x).P, the history context
is empty (i.e. H = •).

Example 31 Given the process a∗b∗.P1 | a∗b∗.P2, we have two transitions

t1 : a∗b∗.P1 | a∗b∗.P2
(i,∗,∗):ab−−−−−−→→ a∗b∗[i, ∗].P1 | a∗b∗.P2

t2 : a∗b∗.P1 | a∗b∗.P2
(i,∗,∗):ab−−−−−−→→ a∗b∗.P1 | a∗b∗[i, ∗].P2

Transitions t1 and t2 are not the same, but they are prefix equivalent
because they add the same past element into the history. The LTS ensures
that keys are unique in the process.
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Lemma 21 If transitions t1 and t2 are prefix equivalent, coinitial and they are
on exactly the same prefix in a process, then t1 = t2.

Proof The proof follows from the fact that keys are unique and that
transitions are coinitial on the same prefix. �

The following lemma states that reversible computation can be rear-
ranged as the backward-only transitions, followed by the forward-only
one.

Lemma 22 (Parabolic traces) Let s be a trace. Then there exist a backward-
only trace r and a forward-only trace r′ such that s ∼ r; r′.

Proof The proof is by induction on the length of s and the distance be-
tween the very first transition in s and the pair of transitions contradicting
the statement of the lemma. More details can be found in Appendix A.�

With the next lemma we show that if s1 and s2 are two coinitial and
cofinal traces and s2 is made just of the forward transitions, then exist
the trace s′1 forward-only equivalent to the s1. Intuitively, backward
transitions of the trace s1 can be deleted, since s1 and s2 are coinitial and
cofinal and s2 is forward-only.

Lemma 23 Let us denote with s1 and s2 two coinitial and cofinal traces, where
s2 is forward only. Then there exists a forward-only trace s′1, shorter or equal to
s1, such that s1 ∼ s′1.

Proof The proof is by induction on the length of s1. Full proof can be
found in Appendix A. �

Now we can show the main result of this Section stating that reversibil-
ity in our framework is causally-consistent. In the other words, we prove
that while executing backward actions in the framework, causality is
respected.

Theorem 10 (Causal-consistency) Two traces are coinitial and cofinal if and
only if they are equivalent up-to permutation.
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Proof Let us denote two traces with s1 and s2. If s1 ∼ s2 then from the
definition of ∼ (Definition 61) we can conclude that they are coinitial and
cofinal.

Let us suppose that s1 and s2 are coinitial and cofinal. From the
Lemma 22 we can suppose that they are parabolic. We shall reason
by induction on the lengths of s1, s2 and on the depth of the very first
disagreement between them. Full proof can be found in Appendix A. �

5.6 Correspondence with Boreale and Sangiorgi’s
semantics

In this Section we prove a causal correspondence between Boreale and
Sangiorgi’s late semantics, revised in Section 4.1, and our framework
when data structure ∆ is instantiated with the indexed set Γw.

We first point out the difference on structural causality in both settings
by looking at the traces of processes.

Since the framework is meant for reversible computation (Lemma 18:
every forward action can be undone), every action has its corresponding
key, including τ -actions, what is not the case in [14], where synchronisa-
tion only merges cause sets of the actions that communicate. Additionally,
for the same reason, the framework keeps track of every action that was
executed, while semantics in [14], just records sets of the causes that
trigger the performing action. We give the following example to clarify it.

Example 32 Let us consider the π-calculus process P = ba.cd | ea1.c(x).Q.
By executing two output actions on the channel b and e and synchronisa-
tion on the channel c, we obtain:

• in [14], the resulting process is A = {i1, i2} :: 0 | {i1, i2} :: Q where
keys i1 and i2 correspond to actions ba and ea1, respectively. We
can notice that τ -action just merged the cause sets {i1} and {i2}. For
more details about the computation, see Example 13.

• in our framework, the resulting process is

X = ba[i1, ∗].cd[i3, ∗] | ea1[i2, ∗].c(x)[i3, ∗].Q

As we can notice, τ -action is identified by the key i3.
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Another difference is that in [14], the executing action brings its cause
set into the label of the transition, while in the framework, structural cause
set is defined in the resulting process of the transition. In order to better
understand the difference, we give one simple example.

Example 33 Consider the π-calculus process P = ba.cd.ef :

• in [14], actions ba with i1 and cd with i2 can be performed and we
obtain the causal process A = {i1, i2} :: ef . The transition for the
action ef is

{i1, i2} :: cd
i3:ef−−−−→
{i1,i2}

{i1, i2, i3} :: 0

We can notice that in the label of the transition we can see the whole
set of the causes that cause action ef .

• in the framework, the same actions are performed and obtained
reversible process is X = ba[i1, ∗].cd[i2, ∗].ef . The transition for the
action ef is

ba[i1, ∗].cd[i2, ∗].ef
(i3,∗,∗):ef−−−−−−→→ ba[i1, ∗].cd[i2, ∗].ef [i3, ∗] = X ′

The structural causality is defined on prefixes of the resulting pro-
cess X ′ (Definition 56), hence the set of the structural causes of the
action with the key i3 can be computed after the execution.

Notation 6 To distinguish labels of two semantics, we write:

• transition from [14] as A
ζ−→
K
A1, where

ζ = i : β and β = ba | b(x) | b〈νa〉 | τ

and i ∈ K (K is infinite denumerable set of keys);

• transition from the framework as X
µ−→→ XKF

1 , where µ = (i,K, j) :
α and α = ba | b(x) | b〈νa∆〉 | τ with i ∈ K, j ∈ K∗, K ⊂ K∗ and KF

is the set of the keys belonging to the actions that structurally cause
the action µ.

Now we give the definition of the function γ(·) that translate the label
from the framework µ into a label from Boreale and Sangiorgi’s semantics
ζ:
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Definition 63 The function γ that maps label from the framework µ, with a
label from [14] ζ, is inductively defined as follows:

γ((i,K, j) : α) = i : γ(α) when α 6= τ γ((i, ∗, ∗) : τ) = τ

γ(b〈νa∆〉) = b〈νa〉 when empty(∆) = true γ(b(x)) = b(x)

γ(b〈νa∆〉) = ba when empty(∆) = false γ(ba) = ba

Focusing on structural causality, the main difference between two
semantics is in the τ -actions, as illustrated with Example 32. Therefore,
we need to provide the connection between structural cause sets K andKF

of these two semantics. The idea is to represent structural dependences
between keys in the reversible process X as a directed graph (digraph)
and by removing the nodes (keys) belonging to τ -actions, obtain the cause
set K of the corresponding causal process A.

Before showing the example that illustrates our method, we give a
basic notions about the graphs [36]. A directed graph or digraph G = (V,E)

consists of the non-empty set of vertices V (nodes) and the set of directed
edges E = {(v1, v2)|where v1, v2 ∈ V }. In the edge (v1, v2), v1 is a source
vertex of the edge, while v2 is a target vertex.

In order to illustrate the method which connects structural cause sets
K and KF , we give the following example.

Example 34 Let us consider the π-calculus process

P = ba.cd | b1a1.c(x).bc.b2a2 | fe.b(y)

where the actions ba, b1a1, τc, fe, τb and b2a2 are identified with the keys
i1, i2, i3, i4, i5 and i6, respectively.

• in [14] semantics, the resulting process is

A = {i1, i2} :: 0 | {i1, i2, i4} :: {i6} :: 0 | {i1, i2, i4} :: 0

As we can notice, τ -actions do not have keys, hence i3, i5 are not inA.
We separated set {i6} from the rest of the cause set to emphasise the
fact that action with key i6 depends on the cause set K = {i1, i2, i4}.

• in the resulting process of the framework, we are interested just in
the keys, not in the executed actions, hence, for the sake of simplicity,
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we omit everything in the history of the process, except keys. The
result of the computation above is i1.i3.0 | i2.i3.i5.i6.0 | i4.i5.0. We
can represent dependences between the keys as digraph G = (V,E),
given bellow:

i5i4

i5 i6

i3i2

i3i1

In the digraph G, nodes represents keys and directed edge i −→ i′

means that key i causes key i′. From the graph, we can notice that
cause set of the action with key i6 is KF = {i1, i2, i3, i4, i5}. If we
remove all bidirectional edges, join the nodes that they connect (keys
belong to synchronisations) and rename them into τi, we obtain the
subgraph G′ = (V ′, E′):

τ1
i4

i6

τ2
i2

i1

Now, if we take the set of vertices V ′ and remove all τi nodes, we obtain
the cause set K of the action i6 in Boreale and Sangiorgi’s semantics (K =
V ′ \ {τi}).

The whole algorithm of connecting sets KF and K, illustrated in exam-
ple 34 is called Removing Keys from a Set written as Rem(KF ) = K. In the
further text we formally define the method Rem.

Suppose that we have two transitions:

t : X
µ−→→ XKF

1 and t′ : A
ζ−→
K
A1

with γ(µ) = ζ and processes X and A, translated in π-calculus, give the
same process P , i.e. ϕ(X) = λ(A) = P . The same holds fo the processes
XKF

1 and A1, i.e., we haveϕ(XKF
1 ) = λ(A1) = Q. The function ϕ(·)
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is the same as erasing function from Definition 54 with additional rule
ϕ(XKF ) = ϕ(X) that removes the setKF from the reversible process. The
function λ that translates causal term into π-calculus process is defined
as:

Definition 64 The erasing function λ that maps causal processes from Boreale
and Sangiorgi’s semantics to the π-calculus is inductively defined as follows:

λ(A | A′) = λ(A) | λ(A′) λ(K :: A) = λ(A)

λ(νa(A)) = νa(λ(A)) λ(P ) = P

The structural dependences between the past prefixes belonging to
the history of the process X involved into the execution of the action
α ∈ t, t′ can be represented with digraph in the following way: keys
belonging to the past prefixes are represented as vertices of the digraph
(the same keys which are representing synchronisation, are represented
by two vertices with the same name); structural dependences between the
keys are represented by directed edges where between the same vertices
we shall have edges in both directions. Formally, we have:

Definition 65 Given a transition t : X
(i,K,j):α−−−−−−→→ XKF

1 the structural de-
pendences between the past prefixes involved in the execution of the action α
contained in the history of the reversible process XKF

1 can be represented as a
digraph G = (V,E), in the following way:

− ∀ π[i1,K] ∈ XKF
1 ∧ i1 vXKF

1
i =⇒ i ∈ V

− ∀ i1, i2 ∈ V such that π[i1,K].π′[i2,K
′] ∈ XKF

1 =⇒ (i1, i2) ∈ E′

− E = E′ ∪ {(i1, i2)| when i1, i2 ∈ V ∧ i1 = i2}
∪ {(i2, i1)| when i1, i2 ∈ V ∧ i2 = i1}

where V is a multiset of vertices and E is a set of directed edges. Having a
digraph G = (V,E), structural cause set of the action α is KF = V \ {i}.

Since bidirectional edges represent dependency flow between vertices
with the same name, we can remove them and join two vertices into one,
renamed to τ . This operation is known as edge contraction [36]. Here we
adapt it to bidirectional edges as follows:
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Definition 66 (Bidirectional edge contraction) Bidirectional edge contrac-
tion is an operation defined on the directed graph G = (V,E), as follows:

• E′ = E \ ((i1, i2) ∪ (i2, i1)) when i1 = i2

• V ′ = (V \ {i1, i2}) ∪ {τ}
• ∀(i, il), (il, i) ∈ E where l ∈ {1, 2}, we have that (i, τ), (τ, i) ∈ E′,

where G′ = (V ′, E′) is the obtained subgraph.

In words, the above definition removes bidirectional edge and sub-
stitute two nodes that it connects with the τ node. Additionally, all the
edges that have source or target in the removed nodes will have source or
target in τ node. For instance, let G = (V,E) be directed graph and G′ be
the subgraph obtained from the graph G by applying Definition 66:

i3

i3

i2

i1 i4
G : τ

i2

i1 i4
G′ :

From the representations of the graphsG andG′ above, we can notice that
nodes labeled with i3 together with the bidirectional edge, are substituted
with the node τ . At the same time, edge (i1, i3) becomes (i1, τ), and
similar for the rest of edges containing nodes i3.

By applying bidirectional edge contraction (Definition 66) on every
bidirectional edge of a graph G = (V,E), we obtain a subgraph G′ =

(V ′, E′) in which all pairs of the same vertices are joined and renamed as
τl, for l = 1, 2, ... Set V ′ differs from the multiset V in having τl vertices
instead of the pairs of vertices labeled with the same name (originally
belonging to silent moves in the framework). Hence, we can conclude
that K = V ′ \ ({i} ∪ τl).

The method ‘Removing Keys from a Set’, denoted as Rem is formally
defined as.

Definition 67 (Method Rem) Given a two transitions t : X
µ−→→ XKF

1 with

µ = (i,K, j) : α and t′ : A
ζ−→
K
A1, where γ(µ) = ζ and ϕ(X) = λ(A) = P

and ϕ(XKF
1 ) = λ(A1) = Q, correspondence between sets KF and K is defined

through method Rem, given with following steps:
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• structural dependences in the process XKF
1 involved in the transition t are

represented as digraph G = (V,E) (Definition 65), where KF = V \ {i};

• by applying Definition 66 on every bidirectional edge in G = (V,E),
the subgraph G′ = (V ′, E′) is obtained, where V ′ \ ({i} ∪ τl) = K (τl
represents all the nodes obtained by bidirectional edge contraction)

Now we have all auxiliary definitions and lemmata necessary to prove
the structural correspondence between two causal semantics.

Lemma 24 (Structural correspondence) Starting from initial π-calculus pro-
cess P , where P = λ(A1) = ϕ(X1), we have:

1. if A1
ζ1−→
K1

A2 . . . An
ζn−→
Kn

An+1 is a trace in causal semantics [14], then

exists a trace X1
µ1−→→ XKF1

2 . . . X
KFn−1
n

µn−−→→ XKFn
n+1 and KFi in the

framework, such that for all i, λ(Ai) = ϕ(XKFi
i ), ζi = γ(µi) and

Rem(KFi) = Ki, for i = 1, ..., n.

2. if X1
µ1−→→ XKF1

2 . . . X
KFn−1
n

µn−−→→ XKFn
n+1 is a trace in the framework,

then exists a trace A1
ζ1−→
K1

A2 . . . An
ζn−→
Kn

An+1 in causal semantics,

where for all i, λ(Ai) = ϕ(XKFi
i ), ζi = γ(µi) and Rem(KFi) = Ki, for

i = 1, ..., n.

Proof Both directions (1. and 2.) are proved by induction on the length of
the computation followed by induction on the structure of the π-calculus

process P and last applied rule on the transition t, where t : An
ζn−→
Kn

An+1

and t′ : X
KFn−1
n

µn−−→→ XKFn
n+1 . Full proof is given in Appendix B. �

The object causality in Boreale and Sangiorgi’s semantics is defined
on the trace of a process (Definition 28). The first action that extrudes
a bound name will cause all the future actions using that name in any
position of the label.

We can define object causality induced by the framework, on the
forward trace of a reversible process. Previously it was defined on two
consecutive transitions (Definition 58).
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Definition 68 (Object causality on the trace in the framework) In the trace

t1 : X1
(i1,K1,j1):α1−−−−−−−−→ X2 · · · tn : Xn

(in,Kn,j1):αn−−−−−−−−−→ Xn+1, transition th is an
object cause of transition tl, written 1 ≤ th < tl ≤ n, if ih ∈ Kl

The next theorem will prove causal correspondence between causality
in the framework when memory ∆ is instantiated with Γw and Boreale
and Sangiorgi’s late causal semantics.

Theorem 11 (Causal correspondence) The reflexive and transitive closure
of causality introduced in [14] coincides with the causality of the framework
when ∆ = Γw.

Proof The proof relies on Lemma 24 and the fact that object dependence
induced by input action in Boreale and Sangiorgi’s semantics is subject
dependence as well. By design of the framework and definitions for
predicates Cause(·) and Update(·) the first extrusion of a name will cause
every other action using that name (this is accomplished with the rules
OPEN and CAUSE REF). In Definition 28 object dependence induced by an
input action is also the structural one, and the one induced by extrusion
coincides with object dependence in the framework.

5.7 Causal Bisimulation

In this Section we give a brief description of the causal bisimulation de-
fined on the framework. We introduce the notion of causal bisimulation
which abstracts away from the notion of causality used, and does not
distinguish object from the subject causality. Additionally, bisimulation
distinguishes forward steps from backward steps, since mixing them leads
to an equivalence which is coarser than weak bisimulation (see [51]).

In the following, we define when two transition are caused by the same
actions in the past. We recall that set of the structural causes Kt of the

transition t : X
(i,K,j):α−−−−−−→ XKt

1 is defined as Kt = {i′ ∈ key(X1)|i′ vX1
i}.

Then, two transitions t1 and t2 are caused by the same actions in the past
if:
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Definition 69 Two transitions t1 : X
(i,K1,j):α−−−−−−→ X

Kt1
1 and t2 : Y

(i,K2,j):α−−−−−−→
Y
Kt2
1 where Kt1 and Kt2 are sets of the structural causes of the transitions t1

and t2, are caused by the same actions in the past if Kt1 ∪K1 = Kt2 ∪K2.

Now we give the definition of the causal bisimulation which do not
distinguish between two types of dependences (object and the subject
one). We define it for the forward and for the backward transitions.

Definition 70 (Causal Bisimulation) A symmetric relation R ⊆ X × X is
a causal bisimulation if XRY implies:

(i) if t1 : X
(i,K1,j):α−−−−−−→→ X ′ then there exist Y ′ and t2 such that t2 : Y

(i,K2,j):α−−−−−−→→
Y ′ and X ′RY ′, and the two transitions are caused by the same actions in
the past;

(ii) if t1 : X
(i,K1,j):α

X ′ then there exist Y ′ and t2 such that t2 : Y
(i,K2,j):α

Y ′ and X ′RY ′, and the two transitions are caused by the same action in
the past.

Two reversible processes X and Y are causally bisimilar, written X ≈ Y , if
XRY for some causal bisimulationR.

Let us note that because of communication keys (and other causal infor-
mation) two τ actions are also considered different if they refer to two
different synchronisations. We now show how by using different notions
of causality (and semantics) two processes can be considered causally
bisimilar or not.

Example 35 Let us consider reversible processes:

X = νa∅(b
∗
a∗.c∗a∗ + c∗a∗.b

∗
a∗) and Y = νa∅(b

∗
a∗ | c∗a∗)

These two processes are not causally bisimilar if we consider Rπ causality
or [19], but they are if we consider the causal semantics given in [14].

In Rπ causality, after executing the action ba with the key i we obtain
the processes

X ′ = νa{i}(b
∗
a∗[i, ∗].c∗a∗ + c∗a∗.b

∗
a∗) and Y ′ = νa{i}(b

∗
a∗[i, ∗] | c∗a∗)

The execution of the action ca in the processX ′ has structural dependency
on the first action, while in the process Y ′ it is concurrent with the action
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ba. Hence processes X and Y are not causally bisimilar. Similar for the
semantics in [19].

In causal notion induced by [14], after executing the action ba with
key i we obtain the processes X ′ = νa{i}i(b

∗
a∗[i, ∗].c∗a∗ + c∗a∗.b

∗
a∗) and

Y ′ = νa{i}i(b
∗
a∗[i, ∗] | c∗a∗). The action ba is the very first action that

extruded name a. The execution of the action ca with the key i′ in the
process X ′ has structural and object dependency on the first action, and
in the process Y ′ has object dependency on the first action. Therefore,
resulting processes are: X ′′ = νa{i,i′}i(b

∗
a∗[i, ∗].c∗a∗[i′, {∗, i′}]+c∗a∗.b∗a∗)

and Y ′ = νa{i,i′}i(b
∗
a∗[i, ∗]. | c∗a∗[i′, {∗, i′}]). Hence, in both processes

action ca is caused by the first action and we have that X and Y are
causally bisimilar.
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Chapter 6

Conclusion and Future
work

In this thesis we studied the expressiveness of the causal-consistent re-
versibility in the CCS [60] and π-calculus [73].

We have shown that the LTSs of two main forms of reversible CCS,
namely RCCS [23] and CCSK [70], are isomorphic, hence they are different
syntactic representations for the same behaviors. An explanation of this
result is the existence of one causality notion in CCS. Nevertheless, the
syntactic differences have an impact on their possible uses and extensions.
The proof of the isomorphism relies on two encodings one of CCSK into
RCCS and another one of RCCS into CCSK. The interesting fact about
encodings is that non of them is uniform. Moreover, we have shown that
no uniform encoding can exist since reachable RCCS processes are not
closed under parallel composition.

Moving to the π-calculus, dependences between the actions can be
caused by the structure of the process (structural dependence) or by
extruding a name (object dependence). Different interpretations of the
object dependence, give rise to many causal semantics for π-calculus.
We mainly study three of them [14; 19; 20] representing three different
approaches to causality in π-calculus. For that purpose, we devise a
framework for reversible π-calculi, parametric with respect to the data
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structure that stores information about the extrusions of a name. Different
approaches to causality in π-calculus can be obtained by using a different
data structures. We proved that reversibility introduced by the framework
is causally-consistent and show causal correspondence between causal
semantics given in [14] and corresponding instance of the framework. Ad-
ditionally, we give the idea of the causal bisimulation that can be defined
on the framework as a starting point in developing the behavioural theory
of the framework.

Future works. The number of concurrent reversible calculi and lan-
guages is increasing, but there is very little literature on the relations
between them. We are only aware of [53], where a classification of the
different approaches is presented. However, the classification is just at
a descriptive level. Hence, the problem of understanding the relations
between different approaches stays open, and we plan to further investi-
gate it in future work. We note that the approach of CCSK is very close
to event transition systems [16], which are related also to some classes
of event structures and of Petri Nets. Further analysis of this connection
may give insight on the classes of calculi to which the CCSK approach
can be applied and the ones to which it cannot be applied.

Regarding to π-calculus, as a future work we plan to prove causal
correspondence with the semantics [19; 20] and to continue working
towards a more parametric framework and to compare it with [37; 63].
Moreover it would be interesting to implement our framework in the
psi-calculi framework [10], and to develop further behavioural theory
of our framework and show how the framework can be used to study
different notions of causality [32].
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Appendix A

In this Section we give the detailed proofs from Section 5.5.2.

Lemma 19. If process X = C[νa∆(Y ) | Y ′] is reachable, then νa∆′ /∈ Y ′,
for all non-empty ∆ and ∆′ (empty(∆) = false and empty(∆′) = false).

Proof The proof is by induction on the trace that leads to the process X :
X1 −→ · · · −→ Xn −→ X , where X1 is an initial reversible process1, and last
applied rule on the transition Xn −→ X . Base case is trivial, since for every
νa∆ ∈ X1, empty(∆) = true. In the inductive case, we have that in the
transition Xn −→ X , property holds for Xn. We continue by case analysis
on the last applied rule on the transition Xn −→ X :

• rule PAR

Y0
(i,K,j):α−−−−−−→→ Y1 i /∈ Y ′ bound(α) ∩ free(Y ′) = ∅

Y0 | Y ′
(i,K,j):α−−−−−−→→ Y1 | Y ′

where property holds for Y0 | Y ′. We proceed with the following
cases:

– if νa∆ ∈ Y0, then by inductive hypothesis νa∆′ /∈ Y ′. After the
execution of the action α, property is preserved and it holds in
Y1 | Y ′ as well.

1From Definition 53 we have that the reversible process X is initial when all its names
are decorated with the ∗ and for all restrictions νa∆, for some name a, ∆ is empty
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– if νa∆ ∈ Y ′, then by inductive hypothesis νa∆′ /∈ Y0, when
∆,∆′ are not empty (name a is free in Y ′, since ∆ is not empty).
To satisfy the property, we need to show that νa∆′ /∈ Y1 holds.
Let us suppose the opposite, that νa∆′ ∈ Y1. Then some re-
striction νa∆′′ needs to belong to Y0 and the only possibility
is νa∆′′ ∈ Y0 when empty(∆′′) = true. In that case, action
α = b〈νa∆′′〉, where empty(∆′′) = true, is executed, what is
in the contradiction with the side condition in the rule PAR,
since bound action a is between the free names in Y ′. Hence,
νa∆′ /∈ Y1 and property holds.

• rule COM

Y0
(i,K,j):bc−−−−−−→→ Y1 Y ′0

(i,K′,j′):b(x)−−−−−−−−→→ Y ′1 K =∗ j
′ ∧ K ′ =∗ j

Y0 | Y ′0
(i,∗,∗):τ−−−−−→→ Y1 | Y ′1{c

i

/x}

where property holds for Y0 | Y ′0 . We proceed with the following
cases:

– if νa∆ ∈ Y0, then by inductive hypothesis νa∆′ /∈ Y ′0 , when
∆,∆′ are not empty. We need to show that νa∆′ /∈ Y ′1{c

i

/x}.
If c = a, then by design of the framework, action bc should be
b〈νa∆′′〉, for some ∆′′ and rule CLOSE should be applied.
If c 6= a, then νa∆′ /∈ Y ′1 since a is not in the object position
of the output action bc. Hence, for the process Y1 | Y ′1{c

i

/x}
property holds

– if νa∆ ∈ Y ′0 , then by inductive hypothesis νa∆′ /∈ Y0, when
∆,∆′ are not empty. Since the action bc is executed on the Y0,
there is no possibility for νa∆′ to belong to the process Y1, and
we have νa∆′ /∈ Y1 and property holds.

For the rest of the rules, property trivially holds. �

Lemma 20. (Square Lemma) If t1 : X
µ1−→ Y and t2 : Y

µ2−→ Z are two

concurrent transitions, there exist t′2 : X
µ′2−→ Y1 and t′1 : Y1

µ′1−→ Z where
µi =λ µ

′
i.
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Proof The proof is by case analysis on the form of the transitions t1 and
t2. We shall consider four main cases on whether transitions t1 and t2 are
synchronisations or not and then proceed with induction on the structure
of the process while checking all possible combination of the rules applied
on the transitions t1 and t2. We show just interesting cases when the
restriction of a name is involved and reversible process is written in the
form X = νa∆n

Cn[. . . νa∆0
C0[X1]] (Notation 5).

We proceed with case analysis on whether transitions t1 and t2 are
synchronisations or not:

1. t1 and t2 are not synchronisations. We need to prove that by chang-
ing the order of the transitions we shall obtain the same process. We
consider the cases where transitions t1 and t2 modify not just their
own context, but also other contexts or restrictions.

Let us assume that transition t1 modifies process X1 and that per-
formed action is α1 = b〈νa∆〉. By the Property 4,we have

t1 : X
µ1−→ νa∆′n

Cn[. . . νa∆′0
C0[X ′1]]

where µ1 = (i1,K1, j1) : b〈νa∆〉. Let α2 be the action of the transi-
tion t2. If a /∈ α2 then t2 modifies just its own context (Property 4)
and it is not prevented by the restrictions on a. Let us consider the
case when a ∈ α2. We continue the proof with the induction on the
structure of the process.

• The base case of induction is to prove that if

νa∆(X1 | X2)
µ1−→ νa∆′1

(X ′1 | X2)
µ2−→ νa∆′(X

′
1 | X ′2)

then

νa∆(X1 | X2)
µ′2−→ νa∆′2

(X1 | X ′2)
µ′1−→ νa∆′(X

′
1 | X ′2)

Since t1 has performed action α1 = b〈νa∆〉, rules OPEN and
OPEN• can be used. We consider just the interesting cases
when on t1 is applied rule OPEN and continue with the case
analysis on the rules that can be applied on t2 such that a ∈ α2.
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− Rule OPEN applied on t2. We have

νa∆(X1 | X2)
(i1,K1,j1):b〈νa∆〉−−−−−−−−−−−→→ νa∆+i1(X ′1 | X2)

(i2,K2,j2):c〈νa∆+i1
〉

−−−−−−−−−−−−−→→ νa∆+i1+i2(X ′1 | X ′2)

where X2
(i2,K,j2):c〈νa∆′ 〉−−−−−−−−−−−→→ X ′2. If i1 ∈ K2 then transition t1

cause transition t2 and this is not the case (they are concurrent).
If i1 ∈ K, then by definition of the predicate Update(·) on the
rule OPEN, we will have i1 ∈ K2. Therefore, i1 /∈ K,K2 and
we can safely commute transitions and obtain:

νa∆(X1 | X2)
(i2,K2,j2):c〈νa∆〉−−−−−−−−−−−→→ νa∆+i2(X1 | X ′2)

(i1,K1,j1):b〈νa∆+i2 〉−−−−−−−−−−−−−→→ νa∆+i1+i2(X ′1 | X ′2)

as desired. The labels of transitions t1 and t′1 are not equal;
they are label equivalent, i.e. µ1 =λ µ

′
1.

− Rule CAUSE REF applied on t2. We have

νa∆(X1 | X2)
(i1,K1,j1):b〈νa∆〉−−−−−−−−−−−→→ νa∆+i1(X ′1 | X2)

(i2,K2,j2):α−−−−−−−−→→ νa∆+i1(X ′1 | X ′2)

with X2
(i2,K,j2):α−−−−−−−→→ X ′2 and a ∈ sub(α). If i1 ∈ K2 then transi-

tion t1 cause transition t2 and this is not the case, they are con-
current. If i1 ∈ K, then by definition of the predicate Cause(·)
from the rule CAUSE REF we have three cases: if ∆ = Γ, then
by i1 ∈ K and i1 /∈ K2, we have K  X2

K2 what implies that
i1 is a synchronisation and that is not the case; if ∆ = Γw, then
by the predicate Cause(·), new cause set K2 is the union of the
old cause set K and w, therefore i1 ∈ K implies i1 ∈ K2, what
is not the case; similar if ∆ = ΓΩ. Hence i1 /∈ K,K2 and we
can commute transitions:

νa∆(X1 | X2)
(i2,K2,j2):α−−−−−−−−→→ νa∆(X1 | X ′2)

(i1,K1,j1):b〈νa∆〉−−−−−−−−−−−→→ νa∆+i1(X ′1 | X ′2)
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• In the inductive case it is necessary to show that ifX
µ1−→ Y

µ2−→

Z and X
µ′2−→ Y1

µ′1−→ Z, then the following holds

νa∆X
µ1−→ νa∆′1

Y
µ2−→ νa∆′Z and νa∆X

µ′2−→ νa∆′2
Y1

µ′1−→ νa∆′Z

Zi | X
µ1−→ Zi | Y

µ2−→ Zi | Z and Zi | X
µ′2−→ Zi | Y1

µ′1−→ Zi | Z

Both subcases are straightforward.

2. t2 is a synchronisation and t1 is not. We observe the case when t1
is performing an action b〈νa∆〉 (the rest of the cases are straightfor-
ward). In this case, the applied rule could be OPEN or OPEN•.

If t2 is a synchronisation which does not involve name a or involve
just one component of the process X , then by Property 5 the case is
trivial.

We shall consider the case when transition t2 involves two contexts
Ci[•] and Cj [•] of the process X written as:

X = νa∆n
Cn[. . . νa∆i

Ci[. . . νa∆j
Cj [νa∆0

C0[X1]]]]

and name a is used in the object position of the label α2 of t2. Then
rules CLOSE and CLOSE• can be applied. Now we proceed with the
induction on the structure of the process.

• In the base case, since transitions will modify contexts just up
to νa∆i

, we can reason on process X written as:

X = νa∆i
Ci[. . . νa∆j

Cj [X1]]]

Now we combine rules applied on transition t1 with the one
applied on t2 and we have:
− Rule OPEN applied on t1 and rule CLOSE on t2. We assume
that transition t1 is executed on the component X1. Then we
have:

νa∆i
Ci[. . . νa∆j

Cj [X1]]
(i1,K1,j1):b〈νa∆i

〉
−−−−−−−−−−−−→→

νa∆i+i1Ci[. . . νa∆j+i1Cj [X
′
1]]

(i2,∗,∗):τ−−−−−−→→
νa∆i+i1νa∆′+i1C

′
i[. . . νa∆′j+i1C

′
j [X

′
1]] = Z

139



where νa∆+i1 ∈ Ci[. . . νa∆j+i1Cj [X
′
1]]. To permute transitions,

we need to be sure that transition t1 do not cause transition
t2. Since t2 is synchronisation, we need to check if t1 cause
transition that are involved in the communication, but then
we have to check if lemma hold for transition that are not
synchronisations and that is done in the case 1. Hence, we
commute transitions and obtain:

νa∆iCi[. . . νa∆jCj [X1]]
(i2,∗,∗):τ−−−−−−→→

νa∆i
νa∆′C

′
i[. . . νa∆′j

C ′j [X1]]
(i1,K1,j1):b〈νa∆i

〉
−−−−−−−−−−−−→→

νa∆i+i1νa∆′+i1C
′
i[. . . νa∆′j+i1C

′
j [X

′
1]] = Z

where νa∆ ∈ Ci[. . . νa∆j
Cj [X1]]. We have Z = Z, as desired.

− Rule OPEN• applied on t1 and rule CLOSE on the t2. We
have:

νa∆i+i1Ci[. . . νa∆j+i1Cj [X1]]
(i1,K1,j1):b〈νa∆i

〉

νa∆i
Ci[. . . νa∆j

Cj [X
′
1]]

(i2,∗,∗):τ−−−−−−→→
νa∆i

νa∆′C
′
i[. . . νa∆′j

C ′j [X
′
1]] = Z

where νa∆ ∈ Ci[. . . νa∆j
Cj [X

′
1]]. It is not possible that back-

ward transition t1 cause transition t2 and we can swap transi-
tions and obtain:

νa∆i+i1Ci[. . . νa∆j+i1Cj [X1]]
(i2,∗,∗):τ−−−−−−→→

νa∆i+i1νa∆′+i1C
′
i[. . . νa∆′j+i1C

′
j [X1]]

(i1,K1,j1):b〈νa∆i
〉

νa∆iνa∆′C
′
i[. . . νa∆′j

C ′j [X
′
1]] = Z

where νa∆+i1 ∈ Ci[. . . νa∆j+i1Cj [X1]].

− Similarly for the rules OPEN and OPEN• combined with rule
CLOSE•.

• The inductive case is trivial since t1 only modifies processes in
the context, not the context by itself. Considering the synchroni-

sation t : X1
(i,∗,∗):τ−−−−−→ X ′1, we have t : C[νa∆(X1 | X2)]

(i,∗,∗):τ−−−−−→
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C[νa∆(X ′1 | X2)] where we can notice that transition tmodified
just X1 (Property 5).

3. The case when t1 is a synchronisation and t2 is not, is similar to the
one above.

4. t1 and t2 are synchronisations. We consider the cases when syn-
chronisations involve two different components of the process X .
Assume that t1 is a synchronisation between process X1 where out-
put is executed and context Cj where input is performed; while t2
is a synchronisation between input in context Ci and output in Ck.
Since transitions will modify contexts just up to νa∆i

, we can reason
on process X written as:

X = νa∆i
Ci[. . . νa∆j

Cj [. . . νa∆k
Ck[X1]]]

We continue with the case analysis depending whether name a is in
the subject or in the object position in the transitions t1 and t2.

• name a is in the object position in both transitions; in this case,
rules CLOSE and CLOSE• can be used. Let us consider the case
when rule CLOSE is applied on t1 and on t2; the rest of the
cases are similar. We have

νa∆iCi[. . . νa∆jCj [. . . νa∆kCk[X1]]]
(i1,∗,∗):τ−−−−−−→→

νa∆iCi[. . . νa∆jνa∆′C
′
j [. . . νa∆′

k
Ck[X ′1]]]

(i2,∗,∗):τ−−−−−−→→

νa∆iνa∆′′
l
C′i[. . . νa∆′j

νa∆′′C
′
j [. . . νa∆′′

k
C′k[X ′1]]]

where νa∆ ∈ Cj [. . . νa∆k
Ck[X1]] and

νa∆′l
∈ Ci[. . . νa∆j

νa∆′C
′
j [. . . νa∆′k

Ck[X ′1]]]. To permute transi-
tions, we need to ensure that transition t1 is not the cause of
transition t2. Since both of transitions are synchronisations we
need to check if the output transition involved in t1 causes the
output transition involved in t2. This is covered with the case
1. when we proved that lemma holds for a single transitions.
Now we can safely swap the transitions and transition t′2 is:

νa∆i
Ci[. . . νa∆j

Cj [. . . νa∆k
Ck[X1]]]

(i2,∗,∗):τ−−−−−−→→
νa∆iνa∆′′l

C ′i[. . . νa∆′j
Cj [. . . νa∆′k

C ′k[X1]]]
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where νa∆l
∈ Ci[. . . νa∆jCj [. . . νa∆k

Ck[X1]]]. The derivation
for the transition t′1 is:

νa∆i
νa∆′′l

C ′i[. . . νa∆′j
Cj [. . . νa∆′k

C ′k[X1]]]
(i1,∗,∗):τ−−−−−−→→

νa∆iνa∆′′l
C ′i[. . . νa∆′j

νa∆′′C
′
j [. . . νa∆′′k

C ′k[X ′1]]]

where νa∆′ ∈ Cj [. . . νa∆′k
C ′k[X1]], as desired.

• name a is in the object position in transition t1 and in the subject
in t2. In this case, rules CLOSE and CLOSE• can be applied on
t1 and COM and COM• on t2. Let us consider the case when
CLOSE is applied on t1 and COM on t2. The rest of the cases
are similar. By executing rule CLOSE on t1, we have:

νa∆iCi[. . . νa∆jCj [. . . νa∆k
Ck[X1]]]

(i1,∗,∗):τ−−−−−−→→
νa∆i

Ci[. . . νa∆j
νa∆+i1C

′
j [. . . νa∆k+i1Ck[X ′1]]]

where νa∆ ∈ Cj [. . . νa∆k
Ck[X1]]]. By executing the rule COM

we are changing just contexts Ci and Ck, not the restrictions.

νa∆i
Ci[. . . νa∆j

νa∆+i1C
′
j [. . . νa∆k+i1Ck[X ′1]]]

(i2,∗,∗):τ−−−−−−→→
νa∆i

C ′i[. . . νa∆j
νa∆+i1C

′
j [. . . νa∆k+i1C

′
k[X ′1]]]

To permute transitions, we need to ensure that transition t1

is not the cause of transition t2. Since both of transitions are
synchronisations we need to check if the output action involved
in t1 causes the output or the input action involved in transition
t2. This is covered with the case 1. when we proved that lemma
holds for a single transitions t1 and t2. Hence, we can swap
transitions and obtain:

νa∆iCi[. . . νa∆jCj [. . . νa∆k
Ck[X1]]]

(i2,∗,∗):τ−−−−−−→→

νa∆i
C ′i[. . . νa∆j

Cj [. . . νa∆k
C ′k[X1]]]

(i1,∗,∗):τ−−−−−−→→
νa∆i

C ′i[. . . νa∆j
νa∆+i1C

′
j [. . . νa∆k+i1C

′
k[X ′1]]]

where νa∆ ∈ Cj [. . . νa∆k
C ′k[X1]]] since transition t2 does not

change restrictions. �
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We use the standard notation and write t2 = t′2/t1 for a residual of t′2
after t1. Additionally, we bring from the π-calculus standard notions on
the transitions (Definition 25). Two transitions that have the same source,
are called coinitial; if they have the same target, they are cofinal and if
target of one is source of the other transition, they are called composable.
We denote with t1; t2 a sequence of pairwise composable transitions that
is called trace. Empty trace is written as ε.

Lemma 22. (Parabolic traces) Let s be a trace. Then there exist a backward-
only trace r and a forward-only trace r′ such that s ∼ r; r′.

Proof The proof is by induction on the length of s and the distance be-
tween the very first transition in s and the pair of transitions contradicting
the statement of the lemma. Let suppose that this is a pair of transitions
t1; t2. Then we have:

t1 : X
(i1,k1,j1):α1−−−−−−−−→→ Y t2 : Y

(i2,k2,j2):α2

Z

We have two cases depending if the keys of t1 and t2 are the same or not.

• if i1 = i2, then by the fact that keys are unique in a reversible process,
to execute from the process Y the transition t2 with the key i2 = i1,
transition t2 needs to be the reverse of the transition t1 i.e. t2 = t•1.
Hence, we can eliminate transitions t1 and t2 (from Definition 61 we
have t1; t•1 ∼ ε) and decrease the length of s.

• if i1 6= i2, then we have two possibilities:

– t1 and t2 are concurrent; then we can apply Lemma 20 and
swap them. In this way we decrease the distance between the
very first transition in s and the pair of transitions contradicting
the statement of the lemma.

– t1 and t2 are causally dependent; this case is impossible. They
cannot be structural or object dependent since transitions t1
and t2 are consecutive and t2 is the backward one. �
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Lemma 23. Let us denote with s1 and s2 two coinitial and cofinal traces,
where s2 is forward only. Then there exists a forward-only trace s′1, shorter
or equal to s1, such that s1 ∼ s′1.

Proof The proof is by induction on the length of s1. If s1 is forward-only
then s′1 = s1. If not, by Lemma 22, we can assume that s1 is parabolic,
and write it as s1 = u; t1; t2; v where t1; t2 is the only pair of consecutive
transitions in the opposite direction; u; t1 is backward-only and t2; v is
forward-only. Since traces s1 and s2 are coinitial and cofinal and s2 is
a forward-only, we can notice that the history element which transition
t1 takes out of the history, some transition in t2; v needs to put back,
otherwise, the difference will stay visible (i.e. s1 and s2 would not be
cofinal). Let us denote with t′ the first such transition. To preserve the
same target in the end of the traces s1 and s2 , we have that t′ is exact
inverse of the transition t1 i.e. since t1 is backward transition, we have
t′ = t•1. We can rewrite s1 as u; t1; t2; v1; t′; v2 where trace t2; v1; t′; v2 is
forward-only.

We proceed by showing that t1 is concurrent with all transitions up to
t′. Let us suppose opposite, that there exists some transition t′′ between t1
and t′ such that t1 and t′′ are causal. Depending on the type of cause we
can distinguish two cases:

• if t1 and t′′ are structural causal then we have a contradiction with
the hypothesis that t′ is the first transition that will put back the
history element that t1 deletes.

• the case when t1 and t′′ are object causal is impossible, since t1 is a
backward transition and t′′ is forward.

We can conclude that transition t1 is concurrent with all transitions be-
tween t1 and t′. By Lemma 20 we can swap t1 with each transitions up to
t′ and by Definition 61 we have s1 ∼ u; t2; v1; t1; t′; v2. By the same defini-
tion (Definition 61) we have s1 ∼ u; t2; v1; v2 (since t•1 = t′, we can erase
the transitions because t1; t′ ∼ ε). In this way, the length of s1 decreases
and we can apply the inductive hypothesis. �
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Theorem 10. (Causal-consistency) Two traces are coinitial and cofinal if
and only if they are equivalent up-to permutation.

Proof Let us denote two traces with s1 and s2. If s1 ∼ s2 then from the
definition of ∼ (Definition 61) we can conclude that they are coinitial and
cofinal.

Let us suppose that s1 and s2 are coinitial and cofinal. From the
Lemma 22 we can suppose that they are parabolic. We shall reason
by induction on the lengths of s1, s2 and on the depth of the very first
disagreement between them. We shall denote it with the pair t1, t2. Then
we can write the traces s1 and s2 as

s1 = u1; t1; v1 s2 = u2; t2; v2

where u1 ∼ u2. Depending on whether t1 and t2 are forward or not, we
have the following cases:

• t1 is forward and t2 is backward. Since s1 is parabolic we have that
u1 is backward-only and v1 is forward-only. From u1 ∼ u2 we have
that u1 and u2 are coinitial and cofinal, hence the traces t1; v1 and
t2; v2 are coinitial and cofinal (s1 and s2 are cofinal) where t1; v1 is
forward only.

Now we can apply Lemma 23 on the traces t1; v1 and t2; v2 and we
have that there exists a trace s′2 (forward-only), shorter or equal to
t2; v2 such that s′2 ∼ t2; v2. If it is equal then t2 needs to be forward
and this is in contradiction with the fact that t2 is backward. If it is
shorter then we proceed by induction with u2; s′2 shorter.

• t1 and t2 are forward. Then t1; v1 and t2; v2 are coinitial, cofinal and
forward-only. We have two cases depending on whether t1 and t2
are concurrent or not.

– if t1 and t2 are concurrent then whatever t1 puts in the history,
v2 needs to do the same. Let t′1 be the first such transition, then
t′1 ∈ v2 and t′1 =p t1. Now we can rewrite t2; v2 as t2; v′2; t′1; v′′2
and show that t′1 is concurrent with all transitions in v′2:
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∗ t′1 is the first transition on the same prefix as t1 (since t1; v1

and t2; v2 are coinitial, cofinal and forward-only). Hence,
it is not structural causal with any transition in t2; v′2.

∗ from t′1 =p t1, cause sets of both transition are the same
and since t1 is coinitial with t2; v′2 and t2; v′2 are forward-
only, transition t1 cannot have as contextual cause any
transition from t2; v′2.

We can conclude that transitions t1 and t2 are concurrent and
from Lemma 20 we have:

t2; v2 = t2; v′2; t′1; v′′2 ∼ t′1; t2; v′2; v′′2 .

Since t′1 =p t1, they are on the exactly the same prefix and they
are coinitial, from Lemma 21 we have that t′1 = t1. Without
changing the length of s1 and s2 we obtain the first disagree-
ment pair later and we can rely on the inductive hypothesis.

– the case when t1 and t2 are causally related is impossible since
they are both forward, and coinitial.

• The proof is similar if both transitions t1 and t2 are backward.
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Appendix B

In this Section we give the full proofs from Section 5.6.

Lemma 24. (Structural correspondence) Starting from initial π-calculus
process P , where P = λ(A1) = ϕ(X1), we have:

1. if A1
ζ1−→
K1

A2 . . . An
ζn−→
Kn

An+1 is a trace in causal semantics [14], then

exists a trace X1
µ1−→→ XKF1

2 . . . X
KFn−1
n

µn−−→→ XKFn
n+1 and KFi in the

framework, such that for all i, λ(Ai) = ϕ(XKFi
i ), ζi = γ(µi) and

Rem(KFi) = Ki, for i = 1, ..., n.

2. if X1
µ1−→→ XKF1

2 . . . X
KFn−1
n

µn−−→→ XKFn
n+1 is a trace in the framework,

then exists a trace A1
ζ1−→
K1

A2 . . . An
ζn−→
Kn

An+1 in causal semantics,

where for all i, λ(Ai) = ϕ(XKFi
i ), ζi = γ(µi) and Rem(KFi) = Ki, for

i = 1, ..., n.

Proof Both directions (1. and 2.) are proved by induction on the length
of the computation. Let us consider the direction 1.

(I) The base case is given by a single transition, and there is no cause;
hence, K1 = KF1 = ∅. We proceed by induction on the structure of the π-

calculus process P and applied rule on the transition t, where t : A1
ζ1−→ A2

and t′ : X1
µ1−→→ X2 with P = λ(A1) = ϕ(X1).

• P = π.P ′ where π = ba or π = b(x); Rules that can be applied in
Boreale and Sangiorgi’s semantics are BS-OUT and BS-IN. We show
the case when rule BS-OUT is applied; the other case is similar.
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We have π.P ′ i1:π−−→ {i1} :: P ′ = A2 where λ(A2) = P ′.

In the framework we can execute the corresponding action by apply-

ing the rule OUT1 and we have π∗.P ′
(i1,∗,∗):π−−−−−−→→ π∗[i1, ∗].P′ = X2

with π∗ = b
∗
a∗ and ϕ(X2) = P ′ as desired.

• P = Q | Q′; Rules that can be applied in Boreale and Sangiorgi’s
semantics are BS-PAR, BS-COM and BS-CLOSE. We show the case
when rule BS-CLOSE is used; the rest of the cases are similar.

Since rule BS-CLOSE is applied on the process Q | Q′ one of the
parallel components needs to extrude a bound name. Let it be a
process Q = νa(Q1). Then we have

νa(Q1) | Q′ τ−→ νa(Q2 | Q′′{a/x}) = A2

with the premises νa(Q1)
i1:b〈νa〉−−−−−→ Q2 and Q′

i1:b(x)−−−−→ Q′′, for some
name b. Since τ actions do not impose causes and there is no cause
set to merge, we have λ(A2) = νa(Q2 | Q′′{a/x}).

In the framework we can execute the corresponding synchronisation
by applying the rule CLOSE and we have:

νa∅∗(Q1) | Q′ (i1,∗,∗):τ−−−−−−→→ νa∅∗(νa{i1}∗(Y1) | Y ′′{a
i1
/x}) = X2

with the premises νa∅∗(Q1)
(i1,∗,∗):b〈νa∅∗ 〉−−−−−−−−−−→→ νa{i1}ı1

(Y1), whereϕ(Y1) =

Q2; and Q′
(i1,∗,∗):b(x)−−−−−−−→→ Y ′′ where ϕ(Y ′′) = Q′′. Then we have

ϕ(νa∅∗(νa{i1}∗(Y1) | Y ′′{a
i1
/x})) = νa(Q2 | Q′′{a/x})

as desired.

• P = νa(P ′); Rules that can be applied in Boreale and Sangiorgi’s
semantics are BS-RES and BS-OPEN, depending if the name a be-
longs to the executing action or not.. We show the case when rule
BS-OPEN is applied; the other case is similar to the one above.
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If the rule BS-OPEN is applied on the process νa(P ′), executed
action extrudes name a, and we have:

νa(P ′)
i1:b〈νa〉−−−−−→ {i1} :: P ′′ = A2

with the premise P ′ i1:ba−−−→ {i1} :: P ′′. By discarding cause set {i1}
we have λ(A2) = P ′′.

We can match the same action in the framework and apply rule
OPEN on the process νa∅∗(P

′) and obtain:

νa∅∗(P
′)

(i1,∗,∗):b〈νa∅∗ 〉−−−−−−−−−−→→ νa{i1}i1
(Y ′) = X2

with the premise P ′
(i1,∗,∗):ba−−−−−−→→ Y ′ where ϕ(Y ′) = P ′′. By discarding

the elements of the history from the process X2, we have ϕ(X2) =

P ′′ as desired.

(II) In the inductive case we let sBS : A1
ζ1−→
K1

A2 . . . An
ζn−→
Kn

An+1 be the

trace on causal processes and sF : X1
µ1−→→ XKF1

2 . . . X
KFn−1
n

µn−−→→ XKFn
n+1

the trace in the framework, where λ(A1) = ϕ(X1) = P ; and let us suppose
that the inductive hypothesis holds for these two traces. By inductive
hypothesis, we have that λ(Ai) = ϕ(XKFi

i ) = Pi and in the framework
there exist sets KFi, such that Rem(KFi) = Ki for all i = 1, . . . , n.

To show the inductive step, let

t : sBS
ζn+1−−−→
Kn+1

An+2 and t′ : sF
µn+1−−−→→ X

KFn+1

n+2

be two corresponding computations. We need to prove two statements:
(1) Rem(KFn+1) = Kn+1 and (2) λ(An+2) = ϕ(X

KFn+1

n+2 ).
To prove (1) we should look at the action ζn because it is the last action

that can influence the cause set Kn+1 (cause set Kn+1 does not depend on
the action ζn+1). There are two main cases:

• action ζn is the direct structural cause of the action ζn+1. Then we
have that action ζn is a visible action and Kn+1 = Kn ∪ {in}. By
inductive hypothesis, we have that there exist KFn, µn ∈ sF such
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that γ(µn) = ζn and Rem(KFn) = Kn. The action µn is identified
with a key in and it is a visible one; therefore we have KFn+1 =

KFn∪{in}. The method Rem (Definition 67) does not remove keys of
the visible actions and we have Rem(KFn∪{in}) = Kn∪{in} = Kn+1

as desired.

• action ζn is not the direct cause of the action ζn+1; then ζn = in : τ or
ζn happened on a different component in the parallel composition
from the action ζn+1.

- If ζn = in : τ , then there exist Kj , Kh ∈ sBS such that Kj is a cause
set of the input action and Kh is a cause set of the output action
which participate in the τ move. Since τ actions merge cause sets,
we have that Kn+1 = Kj ∪ Kh.

In the framework, a τ move is composed of the same input and
output actions as in the trace on the causal processes. Hence, there
exist KFj , KFh ∈ sF , and by inductive hypothesis Rem(KFj) =

Kj and Rem(KFh) = Kh. Since in the framework the τ -action is
identified with the key in we have that KFn+1 = KFj ∪KFh ∪ {in}.
By Definition 67, method Rem removes keys belonging to the τ

actions, hence, we have Rem(KFj ∪KFh ∪{in}) = Kj ∪ Kh = Kn+1 as
desired.

- If ζn happened on a different component in the parallel compo-
sition, there exist Kh+1, ζh ∈ sBS where ζh is the last action on the
same component in the parallel composition as ζn+1. Then we have
that Kn+1 = Kh+1, since ζh was the last action before ζn+1.

By inductive hypothesis, in the framework, there exist KFh+1, µh ∈
sF , where γ(µh) = ζh and Rem(KFh+1) = Kh+1. By the same obser-
vation we have KFh+1 = KFn+1 as desired.

We prove the case (2) by induction on the structure of the π-calculus
process P , where λ(An+1) = ϕ(XKFn

n+1 ) = Pn+1 and the last applied rule

on the transition t, where t : An+1
ζn+1−−−→
Kn+1

An+2 and t′ : XKFn
n+1

µn+1−−−→→

X
KFn+1

n+2 .
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The reasoning is similar to that for the base case. (Using the fact that
Rem(KFn+1) = Kn+1, we ensure that for an action ζn+1 there exists just
one corresponding action µn+1, such that γ(µn+1) = ζn+1.)

Remark 8 The rule BS-CAU inductively allows a causal processA = KB ::
P to execute if process P can execute, while the executed action brings its
cause set KB . In the framework, it is done with the rules IN2 and OUT2,
which inductively allow a reversible process to move, independent of its
history.

Direction 2. is proved by induction on the length of the computation
(similarly to 1.).

(I) The base case is given by a single transition, and we have that there
is no cause, hence, KF1 = KB1 = ∅. We proceed by induction on the
structure of the π-calculus process P and the applied rule on the transition

t, where t : X1
µ1−→→ X2 and t′ : A1

ζ1−→ A2 with P = λ(A1) = ϕ(X1). The
proof continues with showing correspondence between the rules that can
be applied on processes X1 and A1, similarly to the case 1.

(II) In inductive case we let sF : X1
µ1−→→ XKF1

2 . . . X
KFn−1
n

µn−−→→ XKFn
n+1

be the trace in the framework and sBS : A1
ζ1−→
K1

A2 . . . An
ζn−→
Kn

An+1 be

the trace on causal processes, where ϕ(X1) = λ(A1) = P . We suppose
that the inductive hypothesis holds for these two traces and we have that
ϕ(XKFi

i ) = λ(Ai) = Pi and Rem(KFi) = Ki for all i = 1, . . . , n.
To prove the inductive step, let

t : sF
µn+1−−−→→ X

KFn+1

n+2 and t′ : sBS
ζn+1−−−→
Kn+1

An+2

be two corresponding computations. We need to prove two statements:
(1) Rem(KFn+1) = Kn+1 and (2) λ(ϕ(X

KFn+1

n+2 ) = An+2).
To prove (1) we should look at the action µn because it can influence

cause set KFn+1 (cause set KFn+1 does not depend on the action µn+1).
There are three cases:

• action µn is the direct structural cause of the action µn+1 and it is a
visible action; then we have KFn+1 = KFn ∪ {in}.
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By inductive hypothesis, we have that there exist Kn, ζn ∈ sBS such
that γ(µn) = ζn and Rem(KFn) = Kn. Since µn is visible, ζn needs to
be too and it is identified with the key in. We have Kn+1 = Kn ∪ {in}
as desired.

• action µn is the direct structural cause of the action µn+1 and it is
a silent action. In the framework we have KFn+1 = KFn ∪ {in},
since silent action is identified with the key in. Cause set KFn of
the τ action contains cause sets of the communicating actions (input
and the output ones). Hence, there exist KFj , KFh ∈ sF such that
KFn = KFj ∪KFh.

By inductive hypothesis, we know that there exist Kj , Kh ∈ sBS

such that Rem(KFj) = Kj and Rem(KFh) = Kh. Since silent actions on
causal processes just merge two cause sets, we have Kn+1 = Kj ∪ Kh.
Method Rem (Definition 67) removes keys belonging to τ actions,
hence we have Rem(KFn∪{in}) = Rem(KFj∪KFh) = Kj∪Kh = Kn+1

as desired.

• action µn is not the direct cause of the action µn+1; then µn happened
on a different component in the parallel composition from the action
µn+1. In this case, there exist KFh+1, µh ∈ sF where µh is the last
action on the same component in the parallel composition as µn+1.
Hence, action µh is direct cause of the action µn+1 and we have the
same reasoning as in the cases above.

We prove case (2) by induction on the structure of the π-calculus process
Pn+1, where ϕ(XKFn

n+1 ) = λ(An+1) = Pn1
and last applied rule on the

transitions t and t′. The reasoning is similar to the base case. (Using the
fact that Rem(KFn+1) = Kn+1, we ensure that for an action µn+1 there
exists just one corresponding action ζn+1, such that γ(µn+1) = ζn+1). �

Remark 9 In the framework, rule CAUSE REF can be applied to update
cause set K of the action using an extruded name in the subject position.
This rule does not influence the structure of the process X , it just records
actions that have extruded bound names.
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[32] G. Gößler, O. Sokolsky, and J.-B. Stefani. Counterfactual causality from first
principles? In CREST@ETAPS 2017, Uppsala, Sweden, 29th April 2017., pages
47–53, 2017. 134

[33] J. Grattage. A functional quantum programming language. In LICS, pages
249–258, Washington, DC, USA, 2005. IEEE Computer Society. 2

[34] E. Graversen, I. Phillips, and N. Yoshida. Event structure semantics of
(controlled) reversible CCS. In Reversible Computation - 10th International
Conference, RC 2018, Leicester, UK, September 12-14, 2018, Proceedings, pages
102–122, 2018. 5, 6

[35] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1992. 2

[36] F. Harary. Graph theory. Addison-Wesley, 1991. 125, 127

[37] T. T. Hildebrandt, C. Johansen, and H. Normann. A stable non-interleaving
early operational semantics for the pi-calculus. In Language and Automata The-
ory and Applications - 11th International Conference, LATA 2017, Umeå, Sweden,
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