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Abstract

The work presented in this thesis focuses on an issue that
very commonly arise when studying a network: missing in-
formation. There are many phenomena that can cause such
a lack of knowledge, but prior to any attempt at studying
the data, it is desirable to have a knowledge of the network
at hand that is as complete as possible. Here I will address
specifically two types of missing information problems, namely
network reconstruction and link prediction. In the former case,
the network structure is hidden, the only information we have
access to is the size of the network and some aggregate node-
specific quantity. In the context of link prediction we face a
different issue: there is a real underlying network that rep-
resents the phenomenon we want to study, of which we can
only observe an incomplete version where some links are not
present. Our goal will be to identify the most likely candi-
dates to be the missing links and, for weighted networks,
their intensity. Both problem will be tackled using entropy-
based methods, that guarantee the results to be unbiased. The
thesis presents advancements on three major fronts. It gen-
eralizes the formalism for network reconstruction, propos-
ing a flexible methodology that allows to include any prior
topological knowledge and to derive a compatible, unbiased
weighted distribution. It proposes a new approach to link
prediction, whose key idea is to tune reconstruction models
on the accessible portion of network to infer the partially-
observed portion, i.e. the most likely missing links. Finally,
in the case of weighted prediction, unlike the vast majority of
alternative methods, it provides an explicit recipe to estimate
the links weights, together with their confidence intervals.

xvi



Chapter 1

Introduction

I could have begun by arguing that networks are everywhere and virtu-
ally any discipline can benefit from studying how the interconnectedness
of the entities of a system affects the overall phenomenology, but I am
confident that if you are reading this work you are already aware of this.
What I want to do, is to tell you why I think my thesis might interest you.
If you just have a practical problem, and a network that needs to be com-
pleted before you can work with it, I hope you will find some useful
recipes that apply to your case, and we will soon release the correspond-
ing code to make the application of such recipes fast and pain-free.
If you are, like me, interested in theory as well, I believe that the dis-
cussions on the differences between reconstruction methods in terms of
the implied network generative processes, and the new proposed flexible
framework will interest you. In this case, I think you will like the second
Chapter in particular. If you are somehow in between those two worlds,
and are searching for a principled method to “fill the gaps” in your data,
I would suggest to look for answers into Chapters 3 and 4.

The work presented in this thesis focuses on an issue that very commonly
arise when approaching the study of a network: missing information.
There are many phenomena that can cause such a lack of knowledge:
when studying inter-bank loans, for instance, the detailed information
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concerning the structure of the network is not available due to privacy
regulations. In biological networks, the discovery of connection between
entities of the system often involves experiments that are costly, both
in economic terms and time-wise. Thus the network structure at any
point in time might be only partially available. When dealing with in-
ternational data, the different countries involved might release data with
different timings, thus making it necessary to infer part of the data struc-
ture. Moreover, one wish to account for the possibility that the recorded
data is partially incorrect, either due to human error or to the nature of
the process we wish to study. Regardless of the reason that caused the
lack of information, prior to any attempt at studying the data, it is desir-
able to have a knowledge of the network at hand that is as complete as
possible. Here I will address specifically two types of missing informa-
tion problems, namely network reconstruction and link prediction.

In the context of network reconstruction the network structure is par-
tially or completely hidden, the only information we have access to is
the size - i.e. the number of nodes - of the network and some aggregate
node-specific measurable quantity. We will refer to this information as
observables or constraints. The first observation we need to make is that
there will be many possible network configurations that are compatible
with the same set of constraints (think, for example, of all the possible
networks of N nodes having L links). Two different ways exist to en-
force the aforementioned constraints: exactly or on average. We will later
discuss in detail the differences between these two options. Figure 1.1

Figure 1.1: Illustration of the network reconstruction problem. Figure
adapted from [64].
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illustrates the network reconstruction problem in the second case. No-
tice that the flat part of the distribution over the graph ensemble, in the
third panel of the figure, represents the fact that all networks that real-
ize the constraints are assigned the same (maximum) probability, since
they are undistinguishable given the available information. Regardless
of whether we imposed the constraints strictly or not, once we have as-
signed a probability to each graph, the expected value of any quantity
of interest can be computed by averaging over the compatible configura-
tions [63].
In the context of link prediction we face a different issue. Let us assume
that there is a real underlying network that correctly represents the phe-
nomenon we want to study, of which we can only observe an incomplete
version where some links are not present. Our goal will be to identify
the most likely candidates to be the missing links. If we are dealing with
weighted networks, i.e. networks whose links have different intensities,
the purpose of the link prediction procedure is also to estimate the links
weights. See Figure 1.2 for a graphic representation of the link predic-
tion problem, both for binary and weighted networks. Unlike the case
of reconstruction, the outcome of the link prediction algorithm will be a
single network realization, with the same number of links as the under-
lying network.

Before starting to introduce the concepts that we will need to build upon
in the corpus of the thesis, let me underline the degree of novelty of the
work and its main contributions. The thesis presents advancements on
three major fronts.

1. It generalizes the formalism for network reconstruction, proposing
a flexible methodology that allows to include any prior topological
knowledge and to derive a compatible, unbiased weighted distri-
bution1.

2. On the link prediction front, we propose a new approach, whose

1A Python routine of our method will be also shortly released, allowing for a fast and
straightforward application of it also by non-experts.
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Figure 1.2: Illustration of the link prediction problem, for binary networks
(top) and weighted networks (bottom). Some links of the real network are
not observed (dashed red lines). The procedure returns the most likely can-
didates to be the missing links (green lines), and in the weighted case, an
estimate of the links weights (represented by the line width).

key idea is to move from the evidence that a network is recon-
structable to make inference on missing links. That is, we tune re-
construction models on the accessible portion of network to infer
the partially-observed portion, i.e. the links most likely to be miss-
ing.

3. Finally, in the case of weighted prediction, we provide an explicit
recipe to estimate the weights to be attributed to the imputed links,
together with confidence intervals for such estimates. Our algo-
rithm substantially enriches the literature on the topic, represent-
ing one of the very few methods for weights estimation not resting
on any a posteriori parameters estimation.

4



1.1 Basic definitions and notation

We will start from the basic definitions, introduce some notation and
present the key concepts upon which this study is based and from which
evolves. The interested reader will find references to more comprehen-
sive accounts [11].

Definition 1. A graph (or network) G = (V, E) is defined by a couple, where
V is the set of elements, called nodes or vertices and E is the set of edges.
An edge is a pair of nodes and represents the existence of a link between
one node and the other.

We will generally use the term graph to indicate the mathematical ab-
stract representation of a system, and the term network to refer to a real
instance of such structure, derived from some real world phenomenon.

If there is a link between nodes i and j we say that they are connected.
The neighbours of node i are all nodes connected to i.

Definition 2. A graph is directed if the edges have a direction associated
to them. In this case, an edge becomes an ordered pair on nodes, which
represents the existence of a link from one node to the other. A weighted
graph is a graph whose edges are given a weight, i.e. a scalar number
representing the intensity of the connection.

Figure 1.3 shows the representation of different types of graphs, bi-
nary and weighted, directed and undirected.
Each graph admits a standard mathematical representation. Denoting
with N the number of nodes in the graph we can define

Definition 3. The adjacency matrix A = {aij} of a graph is aN×N matrix
whose rows and columns are associated to the graph nodes. We have

aij =

{
1 there is a link from i to j
0 otherwise.

(1.1)

In the case of weighted networks, the adjacency matrix W is a N × N
matrix for whichwij is the value of the link weight if i and j are connected,
and zero otherwise.

5



Figure 1.3: Examples of different types of graphs. Top line shows binary
graphs, undirected (left) and directed (right). Bottom line shows weighted
graphs: undirected (left) and directed (right).

As an example, the adjacency matrices of the toy networks of Figure

6



1.3 read as

A =


0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0

 Ad =


0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0



W =


0 0 0 5 2 8
0 0 0 0 1 0
0 0 0 0 0 3
5 0 0 0 0 0
2 1 0 0 0 0
8 0 3 0 0 0

 Wd =


0 0 0 5 0 8
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 0 3 0 0 0



. (1.2)

We denoted with apex d the adjacencies relative to directed graphs. We
observe that when the network is undirected, the adjacency matrix is sym-
metric.

When we deal with a weighted network, the purely topological infor-
mation is encoded in the binary adjacency matrix, defined as A = Θ(W),
where Θ(·) is the Heaviside step function. This is a convenient notation,
and the step function is applied element by element. In its standard for-
mulation H is not defined in zero, therefore we apply the definition

H(x) = 1(0,∞)(x), (1.3)

which implies

Θ(wij) =

{
1 if wij > 0

0 otherwise.
(1.4)

Once we have this representation of a graph we can use it to express
many of the key quantities we are interested in measuring. We start from
two very basic ones: the node degree and strength.

Definition 4. In the case of undirected networks, the node degree is the
number of connections of a node. It can be computed summing all the
entries of the binary adjacency matrix of the row or column relative to
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the node. For node i we have

ki =
∑
j

aij =
∑
j

aji. (1.5)

The degree sequence of a graph is the non-increasing sequence of its nodes
degrees. In the case of directed networks we define the in-degree as the
number of incoming links and the out-degree as the number of outgoing
links of a node. We have

kini =
∑
j

aji kouti =
∑
j

aij . (1.6)

In the case of weighted networks we can also define

Definition 5. For undirected networks, the node strength is the total flux
going through a node, that is the sum of the weights of all the links pass-
ing through the node. It can be computed summing all the entries of the
weighted adjacency matrix of the row or column relative to the node. For
node i we have

si =
∑
j

wij =
∑
j

wji. (1.7)

The strength sequence of a graph is the non-increasing sequence of the
nodes strengths. In the case of directed networks, we define the in-
strength as the total incoming flux and the out-strength as the total out-
going flux of a node. We have

sini =
∑
j

wji souti =
∑
j

wij . (1.8)

1.1.1 Bipartite graphs

So far, we considered graphs where all the nodes played the same role
and can connect with all other nodes in the graph. There exist types of
graphs for which this is no longer true.

Definition 6. A bipartite graph is a graph whose nodes can be divided
into two disjoint sets, called layers, such that all links connect a node in
a layer to a node in the other layer.

We will denote the layers as > and ⊥. The nodes of the > layer will
be indicated with Latin letters and the ones from the ⊥ ones with Greek
letters. Figure 1.4 presents an example of a bipartite graph.
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Figure 1.4: Example of bipartite graph.

Definition 7. Given a bipartite graph with N> nodes in layer > and N⊥
in layer⊥, the bipartite adjacency matrix M is theN1×N2 matrix such that

miα =

{
1 if i and α are connected
0 otherwise.

(1.9)

As an example, the graph in Figure 1.4 has adjacency matrix

M =

1 1 1 0
1 0 0 1
1 0 1 0


Definition 8. The degree of a node is given by

k>i =
∑
α

miα k⊥α =
∑
i

miα (1.10)

depending on the layer it belongs to.

The degree sequences of a bipartite graph are the degree sequences of
each layer. The degree sequences of the example graph of Figure 1.4 are

~k > = {3, 2, 2} ~k⊥ = {3, 2, 1, 1}.

1.2 Graph Ensembles and the ERG model

When we talk about the complex properties of a network we refer to all the
phenomena that we observe on the network that are not easily ascribable

9



to the local properties of the single entities composing the system. Local
constraints, like the node degree or strength, are important because they
represent a natural way to estimate the node “importance” and therefore
to estimate the impact of such factor on the patterns of interconnections.
In order to identify these complex phenomena, one will find the need to
pose the question: what are the properties of a network that derive di-
rectly from its local characteristics?
To answer this question we introduce the concept of a graph ensemble.
A graph ensemble G = {G} is the set of all graphs that satisfy certain
constraints. In what follows, the graphs of an ensemble will always have
the same number of nodes. There is a choice to be made when building
the ensemble. One option is to require all the graphs in the ensemble
to satisfy the constraints strictly, e.g. we take all graphs of 4 nodes with
degree sequence {3, 2, 2, 1}. This originates what is called a microcanoni-
cal ensemble, in analogy with Statistical Physics. Another possibility is to
relax the requirement and to only ask that the desired quantities are pre-
served on average over the ensemble. This originates a (grand) canonical
ensemble. Figure 1.5 illustrates the difference between the two ensemble
choices. In the following we will focus on the latter ensemble structure
because it is more resilient to error in the imposed constraints. In fact,
the microcanonical ensemble assigns null probability to all graphs that
have values of constraints that do not exactly correspond to the observed
ones. Now, let us assume that instead of having access to the exact con-
straints, ~C∗, calculated on the network we want to reconstruct, G∗, we
observed a slightly perturbed version ~Cp. If applying the microcanoni-
cal ensemble, then G∗ will be assigned zero probability, since the value
of the constraints does not coincide with ~Cp. In the canonical case, in-
stead, G∗ will have a non-null probability that, for small perturbations
of ~C∗, will be close to the maximum probability. This characteristic will
be fundamental in the context of link prediction, as we shall see.
When building a canonical ensemble of graphs, it will contain all the
possible graphs of given number of nodes. It is clear, that not all this
graphs are equally likely to give rise to the initial degree sequence. It
appears evident that those graphs need to be weighted by a probability

10



Figure 1.5: Illustration of the difference between microcanonical (above)
and canonical (below) ensembles. The former assign non-zero probabil-
ity only to the graphs that satisfy the constraints exactly, thus inducing
an uniform distribution over the admissible configurations, while the latter
consider all graphs, assigning maximum (and equal) probability to all the
graphs satisfying the constraints, but allows for other graph configurations.
Figure from [64].

that represents how likely they are to originate the selected observable.
To determine this probability distribution rigorously, we will introduce
the Exponential Random Graph framework. For a concise but interesting
presentation of the topic the reader can refer to [21].

1.2.1 The Exponential Random Graph model

We start with a network G∗, which we want to model. We select a cer-
tain observable ~C to study its impact on the structure of the considered
network. We measure the values of the observable on G∗, obtaining
~C∗ = C∗1 , ..., C

∗
r . We build the ensemble G of all networks that have

the same number of nodes as G∗ and the same types of links (e.g. di-
rected/undirected, binary or weighted). Our goal is to find a distribution

11



P over G such that the expected value of the observable ~C, with respect
to P , matches a target value, ~Ct. (Tipically such target value will corre-
spond to the observed value of the constraints, i.e. ~Ct = ~C∗). That is we
want to determine P such that

〈Cα〉P =
∑
G∈G

Cα(G)P (G) = Ctα ∀α = 1, ..., r. (1.11)

The procedure to determine such distribution comes from information
theory ans statistical mechanics [36, 37, 17]. This involves the maximiza-
tion of the Shannon entropy of the problem. The rationale of this ap-
proach is that maximizing such quantity under a set of constraints will
allow us to find the distribution, among the ones allowed by the infor-
mation we have, that is maximally random. This is equivalent to say that
we will obtain an unbiased distribution, that does not use any assumption
on the data except from the information we have from the observables.
In the words of Jaynes [37], given a set of constraints, referred to as data,

[The maximum entropy distribution] in effect creates a model
for which those data would have been sufficient statistics.

Therefore, in order to determine the distribution P over G that satisfies
Eq. 1.11, we need to maximize the quantity

S(P ) = −
∑
G∈G

P (G) logP (G), (1.12)

under two set of constraints: a simple normalization condition∑
G∈G P (G) = 1, and the condition from (1.11). Therefore the observ-

able we selected will act as the problem constraints, and this explain the
subtle idea of indicating such constraints with the letter ~C. In order to
perform this constrained maximization we express the Lagrangian of the
problem as

L = S(P ) + µ

(
1−

∑
G∈G

P (G)

)
+
∑
α

λα

(
C∗α −

∑
G∈G

Cα(G)P (G)

)
(1.13)

12



Differentiating the Lagrangian with respect to P and setting it equal to
zero yields

∂L

∂P (G)
= − logP (G) + 1− µ−

∑
α

λαCα(G) = 0 (1.14)

We denote with
H(G) =

∑
α

λαCα(G), (1.15)

the Hamiltonian associated with the constraints, and solving for P we
obtain

P (G) =
e−H(G)

Z
, (1.16)

where Z =
∑

G e−H(G) is the partition function that assures that the
normalization condition is satisfied. Equation (1.16) represents the func-
tional form of the distribution over G given by the Exponential Random
Graph model. The specific functional form of P will be further specified
when a choice for the constraints will be made.

1.2.2 Parameter estimation

In the previous Section we have seen how to generate a network ensem-
ble with a probability distribution that ensures that a set of constraints
is satisfied on average. However, we have not yet explained how to de-
termine the values of the ~λ parameters, that are the Lagrange multipliers
associated with the constraints. Our goal is to determine the value ~λ∗

such that the desired constraints are satisfied. Previous works [25, 63]
showed that for the particular class of problems given by the ERG frame-
work, the choice that ensures that the constraints match the target value
~C∗ is given by the parameters that maximize the likelihood of the prob-
lem. Therefore the parameter estimation becomes a maximum likelihood
problem. The parameters ~λ∗ can therefore be determined as

~λ∗ = argmax
~λ

L(~λ), (1.17)

where
L(~λ) = logP (G|~λ). (1.18)
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1.2.3 Relation between Entropy and Likelihood

We indicated with ~λ∗ the value of the parameters in (1.13) such that the
constraints are satisfied, that is such that

〈~C〉∗ = 〈~C〉(~λ∗) =
∑

G

~C(G)P (G|~λ∗) = ~C(G∗) = ~C∗. (1.19)

Now, we can rewrite (1.12) as

S(P ) = −
∑

G

P (G)[−H(G)− logZ]

=
∑

G

P (G)H(G) + logZ

= 〈H〉+ logZ

= 〈H〉 −H(G)− logP (G).

(1.20)

When we evaluate this in ~λ ≡ ~λ∗, we obtain

S(~λ∗) = S(P~λ∗) = 〈H〉(~λ∗)−H∗ − logP (G|~λ∗) (1.21)

Now, using (1.19), we have

〈H〉(~λ∗) =
∑
α

λ∗α〈Cα〉(~λ∗) =
∑
α

λ∗αC
∗
α = H∗. (1.22)

Therefore, (1.21) becomes

S(~λ∗) = − logP (G|~λ∗). (1.23)

1.3 Reconstruction Methods

The ERG framework has a natural application for the task of network
reconstruction. In this setting we have a network on which we wish to
perform some analysis, but that we are unable to observe. The only in-
formation we have access to is the size of the network and some aggre-
gate node-specific measurable quantities, which we will call observables
or constraints. In binary networks it typically is the degree sequence and
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in weighted ones it typically is the strength sequence and link density
for instance. Our objective is to reconstruct the full network given those
observables. It is easy to see that this problem can be framed within the
ERG model, which will be the starting point of all the methods presented
in the following. Each method will be fully determined once the set of ob-
servables/constraints is defined. We will now outline a few maximum-
entropy methods that have been proposed in the literature for the task
of network reconstruction, for binary and weighted networks. We will
present the directed version of each method, since the undirected case
follows easily as a natural simplification. The first model presented is
devoted to the reconstruction of binary networks.

1.3.1 Directed Binary Configuration Model

Following the notation introduced in Section 1.1, we denote (the adja-
cency matrix of) a binary graph with A. The quantity that we assume
to be able to observe from a hidden/unavailable network is the degree
sequence. This choice of constraints originates a widely studied class
of models called Configuration Model [54]. Since we are dealing with
directed networks, we are going to constrain both the in- and out- de-
gree sequences. The model here presented was introduced in [63]. The
Hamiltonian of the problem reads

H(A) =
∑
i

[αik
out
i (A) + βik

in
i (A)] =

∑
i6=j

(αi + βj)aij . (1.24)

As a consequence the partition function becomes

Z =
∑
A

e−H(A) =
∏
i 6=j

(1 + e−αi−βj ). (1.25)

The overall distribution the reads

P (A) =
∏
i 6=j

p
aij
ij (1− pij)(1−aij), (1.26)

with
pij =

xiyj
1 + xiyj

, (1.27)
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where xi = e−αi and yj = e−βj . Equation (1.26) tells us that the overall
distribution factorizes, that is that the probability of a link being present
between two nodes is independent of the presence of other links.
In order to determine the value of the coefficients in (1.26), we maximize
the likelihood from (1.18), that in this case reads

L(~x, ~y) =
∑
i

[kouti (A∗) log xi + kini (A∗) log yi]−
∑
i6=j

log(1 + xiyj). (1.28)

This implies the conditions,

〈kouti 〉 =
∑
j 6=i

pij =
∑
j 6=i

xiyj
1 + xiyj

= k∗outi

〈kini 〉 =
∑
j 6=i

pji =
∑
j 6=i

xjyi
1 + xjyi

= k∗ini

, (1.29)

which correspond to imposing the preservation of the constraints.
The complexity of the algorithm is the one of solving a system of 2N

coupled equations.

1.3.2 Directed Enhanced Configuration Model -
discrete case

The extension to the weighted case of the binary configuration model
involves the choice of both binary and weighted constraints: the in- and
out- degree sequences and in- and out- strength sequences. In fact, it has
been shown in the paper that first proposed the undirected version of the
model [48], that the information contained in the degree sequence is not
reducible to the one contained in the strength sequence. In this case the
Shannon entropy to be maximized is expressed as

S = −
∑
W

Q(W) logQ(W), (1.30)

relative to the probability distribution over the space of the weighted
graph configuration with given number of nodes. The constraints derive
from keeping constant, on average, the in- and out- degree and strength
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sequences:
〈kouti 〉 =

∑
W

Q(W)kouti (W)

〈kini 〉 =
∑
W

Q(W)kini (W)

〈souti 〉 =
∑
W

Q(W)souti (W)

〈sini 〉 =
∑
W

Q(W)sini (W)

(1.31)

The probability distribution, as in the general ERG framework, takes the
functional form

Q(W) =
e−H(W)

Z
, (1.32)

where Z =
∑

W e−H(W) is the partition function and

H(W) =

N∑
i=1

[
αouti kouti (W) + αini k

in
i (W)+

+βouti souti (W) + βini s
in
i (W)

]
=
∑
i,j

[
(αouti + αinj )Θ[wij ] + (βouti + βinj )wij

]
.

From this we can compute

Z =
∑
W

e−H(W) =
∏
i,j

 ∞∑
wij=0

e−(αouti +αinj )Θ[wij ]−(βouti +βinj )wij


=

∏
i,j

1 + e−(αouti +αinj )
∞∑

wij=0

e−(βouti +βinj )wij

 =

=
∏
i,j

[
1 +

e−(αouti +αinj )

eβ
out
i +βinj − 1

]
. (1.33)

which implies

Q(W) =
∏
i,j

qij(w) =
∏
i,j

(
xouti xinj

)Θ[w] (
youti yinj

)w
(1− youti yinj )

1− youti yinj + xouti xinj y
out
i yinj

. (1.34)
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Therefore we have

pij = 1− qij(0) =
xouti xinj y

out
i yinj

1− youti yinj + xouti xinj y
out
i yinj

(1.35)

〈wij〉 =
pij

1− youti yinj
. (1.36)

The likelihood function corresponding to (1.18) is given by

L(W∗) = lnQ(W∗) =
∑
i,j

ln qij(w
∗
ij) =

=
∑
i

(
kout∗i lnxouti + kin∗i lnxini − sout∗i log youti + sin∗i log yini

)
+

−
∑
i,j

ln
(
1− youti yinj + xouti xinj y

out
i yinj

)
. (1.37)

Differentiating the likelihood expression with respect to the parameters
yields the system of 4N interdependent equations

〈kouti 〉 =
∑
j 6=i

pij =
∑
j 6=i

xouti xinj y
out
i yinj

1− youti yinj + xouti xinj y
out
i yinj

= k∗outi

〈kini 〉 =
∑
j 6=i

pji =
∑
j 6=i

xoutj xini y
out
j yini

1− youtj yini + xoutj xini y
out
j yini

= k∗ini

〈souti 〉 =
∑
j 6=i

〈wij〉 =
∑
j 6=i

pij
1− youti yinj

= s∗outi

〈kini 〉 =
∑
j 6=i

〈wij〉 =
∑
j 6=i

pji
1− youtj yini

= s∗ini .

(1.38)

1.3.3 Directed Enhanced Configuration Model -
continuous case

In this Section we extend the model presented in the previous section by
assuming the link weights to be continuous. 2

In this case the Shannon entropy to be maximized is expressed as

S = −
∫
W

Q(W) logQ(W), (1.39)

2We are aware that a paper treating the continuous case is currently in progress [15],
however the extension here presented was developed independently.
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relative to the probability distribution over the space of the weighted
graph configuration with given number of nodes. The constraints derive
from keeping constant, on average, the in- and out-degree and strength
sequences:

〈kouti 〉 =

∫
W

Q(W)kouti (W)

〈kini 〉 =

∫
W

Q(W)kini (W)

〈souti 〉 =

∫
W

Q(W)souti (W)

〈sini 〉 =

∫
W

Q(W)sini (W)

(1.40)

The probability distribution, as in the general Exponential Random Graph
framework [54], takes the functional form

Q(W) =
e−H(W)

Z
, (1.41)

where Z =
∫
W
e−H(W) is the partition function and

H(W) =

N∑
i=1

[
αouti kouti (W) + αini k

in
i (W)+

+βouti souti (W) + βini s
in
i (W)

]
=
∑
i,j

[
(αouti + αinj )Θ[wij ] + (βouti + βinj )wij

]
From this we can compute

Z =

∫
W

e−H(W) =

=
∏
i,j

∫ ∞
0

[
δwij ,0+Θ(wij)

]
e−(αouti +αinj )Θ[wij ]−(βouti +βinj )wijdwij =

=
∏
i,j

[
1 + e−(αouti +αinj )

∫ ∞
0

e−(βouti +βinj )wijdwij

]
=

=
∏
i,j

[
1 +

e−(αouti +αinj )

βouti + βinj

]
. (1.42)
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which implies

Q(W) =
∏
i,j

qij(w) =
∏
i,j

(
xouti xinj

)Θ[w]
e−(βouti +βinj )w

1 + xouti xinj /(β
out
i + βinj )

, (1.43)

from which we have

pij = 1− qij(0) =
[
1 + (βouti + βinj )/(xouti xinj )

]−1
, (1.44)

〈wij〉 =
pij

βouti + βinj
(1.45)

The likelihood function to maximize to estimate the model parameter
reads

L(W∗) = lnQ(W∗) =
∑
i,j

ln qij(w
∗
ij) =

=
∑
i

(
kout∗i lnxouti + kin∗i lnxini − sout∗i βouti − sin∗i βini

)
−

−
∑
i,j

ln

(
1 +

xouti xinj
βouti + βinj

)
. (1.46)

Differentiating the likelihood expression with respect to the parameters
yields the system of 4N interdependent equations

〈kouti 〉 =
∑
j 6=i

pij =
∑
j 6=i

[
1 + (βouti + βinj )/(xouti xinj )

]−1
= k∗outi

〈kini 〉 =
∑
j 6=i

pji =
∑
j 6=i

[
1 + (βoutj + βini )/(xoutj xini )

]−1
= k∗ini

〈souti 〉 =
∑
j 6=i

〈wij〉 =
∑
j 6=i

pij
βouti + βinj

= s∗outi

〈kini 〉 =
∑
j 6=i

〈wij〉 =
∑
j 6=i

pij
βoutj + βini

= s∗ini .

(1.47)

1.3.4 Density corrected Gravity Model

The methods presented so far all assume the knowledge of the degree se-
quences of the network to reconstruct. However, there are cases in which
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this information is not available. For instance, in the case of interbank
loans networks, we typically have access only to the strength sequences
and the total density. In this case, a different reconstruction method has
been proposed [14], which takes the name of density-corrected Gravity
Model (dcGM). This method relies on the heuristic observation that the
node in- and out- strengths are correlated with the Lagrange multiplier
induced by the in- and out-degrees, that is the xi and yj parameter from
(1.27). From this, we can write xouti =

√
asouti and xouti =

√
bsini , that

implies, for z =
√
ab,

pij =
zsouti sinj

1 + zsouti sinj
(1.48)

The only parameter to be determined is z. To do so, we impose the
preservation of the total network density 〈L〉. This gives

〈L〉 =
∑
i

pij =
∑
i

zsouti sinj
1 + zsouti sinj

= L (1.49)

This determines the linkage probabilities. As for the link weights, the
model imposes the expected weight

〈wij〉 =
souti sinj
Wtot

. (1.50)

This expression is common to several different models, for instance the
MaxEnt algorithm [71, 70]. Empirically, it has shown good agreement
with the data, see Figure 1.6 for a comparison between real and expected
weights on a snapshot of the World Trade Web dataset. This model has
been extended to the case in which we only have knowledge on the den-
sity of a subset of the graph [66]. In the same work, the authors also
propose a solution for an undesirable property of the dcGM: it does not
guarantee the preservation of strengths exactly, due to the need of con-
sidering diagonal terms of the form 〈wii〉 to ensure that strengths are
correctly replicated. The reader can find the details in [66].
In order to have the expected value of the weights equal to (1.50), the
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Figure 1.6: Comparison between the real weights and the estimates from
(1.50) on a snapshot from the World Trade Web dataset. The plot is in log-
log scale and the diagonal line is shown for reference.

model uses a Bernoullian recipe

wij =

{
souti sinj
Wtotpij

with probability pij
0 otherwise

, (1.51)

that is, a link is drawn with probability pij from (1.48), and its weight is

set to souti sinj
Wtotpij

. This characteristic of the model implies that, when assum-
ing continuous weights, the likelihood of reproducing any real world
network is zero.
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Chapter 2

Generalized inference for
efficient reconstruction of
weighted networks

This Chapter is based on the work [53], currently under submission,
by F. Parisi, T. Squartini and D. Garlaschelli.

Abstract

Addressing the network reconstruction problem means fac-
ing the double challenge represented by the estimation of topol-
ogy and of link weights. Among the methods proposed so
far, some attribute weights on a binary configuration using a
completely separate methodology, while others assume that
the binary and weighted constraints jointly determine the fi-
nal configuration. Here we develop a flexible framework that
allows to include any prior topological knowledge and to de-
rive a compatible unbiased weighted distribution. Our for-
mulation clearly points out that to derive such a distribution
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the knowledge of the whole binary distribution is necessary, as
opposed to a single binary realization. In fact, either if only
one configuration is considered or weights are added deter-
ministically, the likelihood of observing any real network is
always zero (assuming continuous weights): therefore, our
method has an a priori advantage with respect to the alter-
native ones, returning a non-zero likelihood for the actual
configuration. To this aim, we extend the classical model
selection framework, by proposing a generalized likelihood
functional that takes as input conditional probability distri-
butions. Another key point of our method is the final model
complexity: we propose two specifications of our conditional
framework whose numerical implementation is greatly sim-
plified with respect to analogous algorithms.

2.1 Introduction

Network reconstruction is an active field of research within the broader
field of complex networks [67, 16]. Addressing the network reconstruc-
tion problem means facing the double challenge represented by the es-
timation of topology and link weights. The task at end consists in de-
termining both binary and weighted distributions, and to understand
the interplay between them. Among the methods proposed so far, some
assume that the binary and weighted constraints jointly determine the fi-
nal configuration in terms of both topology and weights while others at-
tribute weights to the binary configuration using a completely separate
methodology [3, 30]. Amidst the former ones, a special mention is de-
served by the Enhanced Configuration Model [48] . This is defined by si-
multaneously constraining the degrees and the strengths of nodes which
jointly affect the estimation of the two sets of quantities, the linkage prob-
abilities and the weight estimates. Since these are jointly determined on
the basis of the same information (i.e. constraints), this implies the im-
possibility to include purely topological additional information. Exam-
ples of algorithms belonging to the second group are those iteratively
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adjusting the link weights (e.g. via the RAS recipe [5]) on top of some
previously-determined topological structure, in such a way to satisfy the
constraints concerning strengths a posteriori. This approach has encoun-
tered critiques in [22]. It is important to notice that this kind of proce-
dure assigns weights deterministically, and therefore the likelihood of
observing any real matrix is exactly zero, assuming continuous weights.
There exist also two-steps algorithms [13] that attempt at overcome the
lack of binary information for the topological estimation. However, they
have an elevated complexity (the second step requires the solution of the
ECM) and the two step procedure is only heuristically motivated. Here
we develop a theoretical framework that provides an analytical, unbi-
ased procedure to estimate the weighted structure of a network, once
its topology has been determined, thus extending the Exponential Ran-
dom Graph framework to deal with cases that appeared tractable only
via heuristic approaches. The prior information on the topological struc-
ture (either already available or obtained using a method of choice) and a
number of weighted constraints are taken as input. Subsequently, we de-
rive the unbiased link weight probability. The latter is determined by the
maximization of the key quantity of our approach, i.e. the conditional
entropy of the weighted distribution given the binary one.
As it will be proven, once the weights are treated as continuous random
variables, their distribution, conditional on the existence of a link, is ex-
ponential. This consideration also allows to determine confidence inter-
vals for the weights estimates. Another desirable property of the model,
in its second specification, is its computational simplicity, as it does not
require the numerical solution of several coupled non-linear equations.
We indicate the binary adjacency matrix of the network as A, and we as-
sume that it is a realization from a random variable A. Analogously, the
weighted adjacency matrix associated with the graph, W, comes from a
random variableW . The probability mass function of the event {A = A}
is denoted with P (A), while Q(W|A) indicates the conditional multi-
variate probability density function ofW belonging to a neighbourhood
of W, given A = A. We denote the entries of the weighted adjacency
matrix, W, as wij and their binary counterparts as aij = Θ(wij), where
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Θ is the Heaviside step function defined in (1.3).
The chapter is organized as follows: in Section 2.2 the proposed Con-

ditional Reconstruction Method (CReM) is analytically derived in the
general case, with subsections 2.2.2 and 2.2.3 containing two different
specifications of the model deriving from different constraint choices.
Section 2.3 presents two alternative methods for model comparison. We
apply them to test the relative performance of the two specifications of
the CReM and the DECM model (See Section 1.3.3) on different real-
world datasets. Finally, in 2.4 we comment on the results and presents
the final remarks.

2.2 Methods

2.2.1 Conditional Reconstruction Method (CReM)

Input The procedure takes as input P (A), the distribution over the
space of the binary configurations. This can be available as prior (prob-
abilistic) information or computed using any available method. Possible
choices for such distribution include for instance the recipes from the
DBCM (see Section 1.3.1) or the dcGM (see Section 1.3.4), however it is
important to notice that the following results are valid for any choice of
P (A). Moreover, the CReM requires a set of weighted constraints ~C(W)

to be imposed when deriving the weighted distribution. The uncondi-
tional ensemble average of such quantities will correspond to the desired
target value. This can be chosen to be an observed quantity or any other
value of choice.

Output The goal of this second step is to derive the distribution of the
weighted configurations conditional on the binary one. To achieve this,
we maximize over Q(W|A) the conditional entropy [17]

S(W|A) = −
∑
A

P (A)

∫
WA

Q(W|A) logQ(W|A)dW. (2.1)

We assume that the weights are continuous. We stress that the distri-
bution Q(W|A) determined by the second step is relative only to the W
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compatible with A, that is such that Θ(W) = A. We will use the compact
notation WA to indicate all the W s.t. Θ(W) = A. For all W′ /∈WA we
have by definition Q(W′|A) ≡ 0.

Our goal is to maximize, with respect toQ(W|A), the expression (2.1)
under a set of constraints:

1.
∫
WA

Q(W|A)dW = 1 ∀A

2.
∑

A

∫
WA

P (A)Q(W|A)Cα(W)dW = C∗α, ∀α.

The first equation imposes the normalization of the conditional proba-
bilities: since also P (A) is normalized, notice that condition 1. implies∫
W
Q(W)dW = 1. In the second equation ~C(W) = {Cα(W)}α repre-

sents the desired set of constraints taken as input.
The problem Lagrangian can be written as

L =−
∑
A

∫
WA

P (A)Q(W|A) logQ(W|A)dW+

+
∑
A

µ(A)

(
1−

∫
WA

Q(W|A)dW

)
+

+
∑
α

λα

(
C∗α −

∑
A

∫
WA

P (A)Q(W|A)Cα(W)dW

)
.

(2.2)

Differentiating this expression with respect to Q(W|A) and equating to
zero, we obtain

Q(W|A) =
e−

∑
α λαCα(W)∫

WA
e−

∑
α λαCα(W)dW

=
e−H(W)

ZA
, (2.3)

where H(W) =
∑
α λαCα(W) is the Hamiltonian and the parameter µ

guarantees that condition 1. is satisfied. The final form for the condi-
tional distribution of the weighted configuration is obtained choosing
which constraints we wish to impose.

Functional form of likelihood function In alignment with previous re-
sults on maximum entropy methods [25, 63, 65], we wish to formulate
our problem in terms of maximum likelihood estimation. That is, we
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want to be able to re-state the problem is such a form that allows to de-
termine the values of the Lagrange multipliers ~λ of (2.2) by solving a
maximum likelihood problem. See Section 1.2.3 for the standard case.

Let us consider the integral term of the conditional entropy defined
in (2.1). Using (2.3) we can write∫

WA

Q(W|A) logQ(W|A)dW =∫
WA

Q(W|A)[−H(W)− logZA] = 〈H〉A − logZA.

(2.4)

Let us now define ~λ∗ as the value of the parameters for which the con-
straints are realized, that is

〈~C〉(~λ∗) =
∑
A

P (A)

∫
WA

~C(W)Q(W|A,~λ∗) = ~C∗. (2.5)

When we evaluate the conditional entropy for such parameter choice,
since for both method specifications H is linear in wij , we obtain

S(~λ∗) = −
∑
A

P (A)[〈H〉A(~λ∗)− logZA(~λ∗)]

= −
∑
A

P (A) logQ(〈W〉∗|A),
(2.6)

where 〈W〉∗ indicates the unconditional ensemble average of W when
the desired constraints are satisfied.
The last equation conveys meaningful information: we started from the
expression of the conditional entropy which averages both with respect
to the binary configuration and to the weighted one. Imposing certain
constraints to be satisfied on average, we determine the value of the vec-
tor of parameters ~λ∗. When (2.1) is evaluated in ~λ∗, it does no longer
contain the averaging with respect to weighted configurations, but in-
stead a single term, logQ(〈W〉∗|A), that is then averaged over the space
of binary configurations.
Therefore, the functional form of the likelihood function that preserves
the dual relation between entropy and likelihood that we have in the
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standard case is given by the generalized likelihood

G(~λ) =
∑
A

P (A) logQ(〈W〉|A). (2.7)

This correspondence between entropy and likelihood has another im-
portant consequence: the entropy, when evaluated in ~λ∗, itself becomes
a measure of goodness of fit of the model. Let us observe that the esti-
mation of parameter is a more general problem, arising for instance in
the case of parameters estimation for the generative model of a known
system, as treated in [almog2015gdp].
We are now going to derive the full specification of the model for two dif-
ferent constraint choices: the strength sequences (CReMA) and the con-
ditional weights (CReMB).

2.2.2 CReMA

For each node i the in- and out- degree and in- and out- strength can be
expressed as kouti =

∑
j Θ(wij), kini =

∑
j Θ(wji), souti

∑
j wij and sini =∑

j wji. Imposing the preservation of the strength sequences results in
an Hamiltonian function of the form:

H(W) =
∑
i

(βouti souti + βini s
in
i ) =

∑
i 6=j

(βouti + βinj )wij . (2.8)

The partition function can be expressed as

ZA =
∏
i 6=j

[∫ ∞
0

e−(βouti +βinj )wijdwij

]aij
=
∏
i 6=j

(
1

βouti + βinj

)aij
. (2.9)

Finally, using expression (2.3), we can write

Q(W|A) =
∏
i

e−(βouti souti +βini sini )
∏
i6=j

(βouti + βinj )aij , (2.10)

which implies

qij(w|aij) = (βouti + βinj )aije−(βouti +βinj )w (2.11)
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qij(w|aij = 1) = (βouti + βinj )e−(βouti +βinj )w (2.12)

that shows that the weight distribution, conditional on the existence of a
link, follows an exponential distribution of parameter βouti + βinj .

In order to determine the values of the vector of parameters βout and
βin, we maximize the expression of the conditional likelihood, that, sub-
stituting the results just derived into (2.7), reads as follows

GA = −
∑
i

(sout∗i βouti + sin∗i βini ) +
∑
i6=j

fij log(βouti + βinj ) (2.13)

The expression fij =
∑

A P (A)aij represents the value of aij averaged
over the ensemble of binary configurations. This general formulation im-
plies no assumption on the structure of link interdependencies given by
P (A). For instance, in the case of the micro-canonical ensemble, where
the degree are constrained sharply and not on average on the ensemble,
P (A) is constant on all graphs with the same degree sequence. When
P (A) factorizes fij corresponds to the quantity denoted with pij in the
literature [67], that is the linkage probability, which is independent from
link to link.
Differentiating (2.13) with respect to βouti and βini , ∀i, yields the system
of 2N coupled equations souti =

∑
j

fij
βouti +βinj

sini =
∑
j

fij
βouti +βinj

⇒ 〈wij〉 =
fij

βouti + βinj
. (2.14)

where fij is taken as given and therefore excluded from the estimation
procedure.

2.2.3 CReMB

In Figure 2.1, we can see, in blue circles, the comparison between the
weight estimates delivered from the CReMA model versus the real weights
in blue. The red crosses represent the same comparison but with respect
to the weight estimates taken from the density-corrected Gravity Model
[14]

wij =
souti sinj
Wtot

, (2.15)
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Figure 2.1: Comparison between real observed weights and expected one
according to the CReMA model (blue) and the Gravity Model (red), in a
log-log scale.

where Wtot =
∑
i s
out
i =

∑
i s
in
i is the total weight of the network. We

can see that the latter estimates shows a better agreement with the data.
Therefore, we wish to find a different model specification that allows us
to introduce such a functional form for the weight estimates. To do so, in
the conditional entropy maximization we formally constrain the values
of the weights. In this case, the Hamiltonian reads

H(W) =
∑
i6=j

βijwij . (2.16)

The derivation is analogous to the previous case. Given (2.3), the condi-
tional weight distribution will be

Q(W|A) =
∏
i 6=j

e−βijwij(
1
βij

)aij =
∏
i 6=j

e−βijwij (βij)
aij . (2.17)

As a consequence, also in this case the conditional weight distribution
follows an exponential distribution of parameter βij , since

qij(wij |aij = 1) = βije
−βijwij . (2.18)
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The generalized likelihood function, given (2.7), can be expressed as

GB =
∑
A

P (A)

−∑
i 6=j

(
w∗ijβij + aij log βij

)
=
∑
i 6=j

(
−w∗ijβij + fij log βij

)
.

(2.19)

Differentiating with respect to βij leads to the equation

w∗ij =
fij
βij

. (2.20)

Clearly, we cannot really observe the link weights (or there would be
no need for reconstruction), but we formally imposed such constraints
in order to be able to use the weight estimates from (2.15), which shows
good agreement with the data. Such a choice uses as input only the
strength sequences of the graph. As a consequence the sufficient statis-
tics for CReMA and CReMB are the same: the strength sequences.
If we equate expressions (2.15) and (2.20) we see that to determine the
matrix of coefficients β we only have to compute

βij =
Wtot fij
souti sinj

. (2.21)

2.3 Comparing the two reconstruction methods

In this section we will examine the relative performances of the two spec-
ifications of CReM and the DECM model (in its continuous specification,
as presented in Section 1.3.3). We will propose two different techniques
to carry out the comparison, and then comment on the results.

2.3.1 Likelihood-based comparison

The first possible approach is to compare the models through their (gen-
eralized) likelihood G. Given any observed strength sequences (or strength
and degree for the DECM) we solve the constrained entropy maximiza-
tion. In particular, we solve the likelihood equations characterizing the
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Figure 2.2: Likelihood comparison on the WTW and E-mid datasets respec-
tively. Red line indicates CReMA and blue line CReMB .

two models, i.e. for CReMA we determine the vectors βout and βin by
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solving the system of equations (2.14), for CReMB , we compute the
quantities (2.21) and for the DECM we determine the parameters val-
ues solving the system (1.47). For both models A and B, we used as prior
binary distribution the linkage probabilities from the dcGM model (See
(1.48) in the Section 1.3.4 for details), since methods using such probabil-
ity form have won several independent horse races [anand2018missing,
mazzarisi2017methods, ramadiah2017reconstructing].

Once we have obtained those parameters, we can compute the likeli-
hood of observing the original network by reconstructing it through the
different models. In Figure 2.2 we can see the comparison of the val-
ues of the (generalized) likelihood relative to models CReMA, CReMB

and DECM, on several snapshots of two different real world datasets,
the World Trade Web and the E-mid [33]. Since G is the (weighted aver-
age of) the logarithm of a probability, takes negative values. The closer
its value is to zero, the better the model explains the data. Therefore,
when using the likelihood to compare two models, we shall prefer the
model with the highest values of G. As we can see from the figure, the
CReMB performs better in the WTW dataset, while the performances are
extremely similar on the E-mid one.

Generalized AIC test A very common test for model selection is the
Akaike Information Criterion (AIC) [2]. For a given set of data, for a
generic model m, the standard AIC recipe, reads AICm = 2km−2Lm can
be generalized to the use of a generalized likelihood G as

GAICm = 2km − 2Gm (2.22)

where k is the number of estimated parameters of the model and G the
value of the model generalized likelihood computed on the observed
data. The number of parameters estimated by each model is kDECM =

4N , kCReMA
= 2N + 1, and kCReMB

= 2N + 1.
The additional parameter comes from constraining the link density,

as with the dcGM recipe (see Section 1.3.4 for details). For both CReMA

and CReMB the sufficient statistics are the vectors of in and out strengths
and the total density of links. Given this observation, we note that the
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Figure 2.3: Illustration of the procedure for building confidence intervals
around the conditional expected weight w̃ = 〈wij |aij = 1〉.

AIC test will yield the same model ranking as the pure likelihood com-
parison, since the best performance was awarded to CReMB , followed
by CReMA and finally by the DECM. Since also in terms of complexity
the ranking is coincident, the AIC comparison ranks again the CReMB

first, followed by CReMA and finally by the DECM.
Given the good performance of CReMB and its low complexity, we rec-
ommend this choice and we will soon release a code to make its applica-
tion fast and straight-forward.

2.3.2 Confidence Intervals-based comparison

In order to introduce the second comparison method, we need to make
some observations about the conditional weight distribution Q(W|A).
For all the methods, this distribution factorizes in the product of the in-
dividual terms qij(w|aij). For CReMA, this term reads

qij(w|aij) = (βouti + βinj )aije−(βouti +βinj )w (2.23)
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Figure 2.4: Comparison on the proportion of weights falling into the confi-
dence interval relative to the considered method, for the WTW and E-mid
datasets respectively, with value q+ = q− = 0.25. Red line indicates CReMA
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given the compatibility requirement we have qij(w|aij = 0) = δw,o.
Moreover we observe that

qij(w|aij = 1) = (βouti + βinj )e−(βouti +βinj )w, (2.24)
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which means that the weight distribution, conditional on the existence of
a link, follows an exponential distribution of parameter βouti + βinj .
The same observation holds for CReMB , where the exponential param-
eter is now given by βij . We observe that both models show the same
functional form of the weighted conditional distribution as the DECM
(see (1.43)). However the numerical values of the parameters character-
izing the distribution are different.1 Let us denote the parameter of the
exponential distribution as λij so to keep the reasoning general.
Given the knowledge on the weight distribution we can build confidence
intervals around the expected value of the weight. Figure 2.3 gives an il-
lustration of the procedure. The conditional expected value of the weight
estimate is indicated as w̃. The blue curve represents the probability den-
sity function of the exponential distribution of parameter λij . Our goal is
to determine the extreme of the confidence interval,w− andw+, in such a
way that the area under the pdf comprised between the expected weight
and w− is equal to the desired confidence level q−, and analogously for
the upper part of the interval. This is achieved by solving∫ 〈wij |aij=1〉

w−
λije

−λijwijdwij = q−, (2.25)

leading to

w− = − ln[e−λij〈wij |aij=1〉 + q−]

λij
= − ln[e−1 + q−]

λij
(2.26)

and ∫ w+

w=〈wij |aij=1〉
λije

−λijwijdwij = q+, (2.27)

leading to

w+ = − ln[e−λij〈wij |aij=1〉 − q+]

λij
= − ln[e−1 − q+]

λij
. (2.28)

In this way, upon deciding on the desired confidence levels q− and q+,
we are able to define confidence interval for the conditional expected

1Although DECM and CReMA appear to have the same parameters, their values are
obtained solving different systems and they will therefore be different in value.
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weights. Notice that such a confidence interval is not symmetric, given
the peculiar form of the underlying probability distribution (i.e. expo-
nential). Although both the ECM and the DECM can provide an error
estimation, its computation is much easier within the novel, continuous
framework considered here. Finally, given the confidence intervals for
each weight estimate, we can compute the proportion of real weights
that fall into the confidence interval relative to their estimate. We can
do this for all methods, using the same q+ and q− and the different λij .
The results are shown in Figure 2.4. As for the likelihood-based compari-
son, model B shows a comparable or better performance than method A,
thus confirming our previous considerations. Notice that both the ECM
[48] and the DECM provide an error estimation as well; its computation,
however, is much easier within the novel, continuous framework consid-
ered here.

2.4 Discussion

The method introduced in this chapter aims at filling a methodological
gap. Several proposed procedures for network reconstruction, combine
different steps to carry out the estimation of topology and of weights,
thus introducing biases in the whole procedure. A first source of bias
is encountered when a probabilistic recipe for topological reconstruction
is forced to produce a single outcome instead of considering the entire
ensemble of admissible configurations. This choice implies a null likeli-
hood of reproducing the actual network. A second source of bias is en-
countered when the weights structure is deterministically imposed via
a recipe like the RAS one. Again, this recipe ensures a zero likelihood
of reproducing the real underlying network: the probability of correctly
“guessing” all the link weights is null, assuming continuous weights.
Here we reconcile the two aspects, by providing a recipe that clarifies
how weights should be determined, once an algorithm for determining
the topology of a given network is implemented (be it either probabilistic
or deterministic). Notice that the key concept of our approach, i.e. con-
ditional entropy, generalizes traditional approaches which, instead, aim
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at jointly determine a given network structure: this is immediately seen
by rewriting the probability distribution coming from Shannon entropy
maximization as in (2.3).
However, although it is clear how the topology of a network should rep-
resent a constrain for the weighted configuration, it is not necessarily true
that the weighted configuration has as well an impact of the topology.
The CReM assumes only the first dependency, but allows the network
topology to be unaware of the weighted configuration.
On a more practical level, the solution of both CReMA and CReMB re-
quire a lower complexity with respect to the DECM. The latter one, in
fact, requires the solution of a system of 4N four-wise dependent equa-
tion, while CReMA only involves a system of 2N paired equations. CReMB

on the other hand, despite being formally similar in derivation, does not
require to solve any system of equations, since the involved parameters
are computed via the recipe (2.21). In addition to this, CReMB shows
better or comparable performance with respect the alternative methods,
both in terms of likelihood and confidence interval-based comparisons.
For this reason, it is the method we recommend choosing.
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Chapter 3

Entropy-based approach to
missing-links prediction

The work presented in this Chapter is based on the publication [52]
by F. Parisi, T. Squartini and G. Caldarelli.

Abstract

Link-prediction is an active research field within network the-
ory, aiming at uncovering missing connections or predicting
the emergence of future relationships from the observed net-
work structure. This chapter represents our contribution to
the stream of research concerning missing links prediction for
binary networks. Here, we propose an entropy-based method
to predict a given percentage of missing links, by identify-
ing them with the most probable non-observed ones. The
probability coefficients are computed by solving opportunely
defined null-models over the accessible network structure.
Upon comparing our likelihood based, local method with the
most popular algorithms over a set of economic, financial and
food networks, we find ours to perform best, as pointed out
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by a number of statistical indicators (e.g. the precision, the
area under the ROC curve, etc.). Moreover, the entropy-based
formalism adopted in the present work allows us to straight-
forwardly extend the link-prediction exercise to directed net-
works as well, thus overcoming one of the main limitations
of current algorithms. The higher accuracy achievable by em-
ploying these methods - together with their larger flexibility
- makes them strong competitors of available link-prediction
algorithms.

3.1 Introduction

Link-prediction is an active research field within network theory, aiming
at uncovering missing connections (e.g. in incomplete datasets) or pre-
dicting the emergence of future relationships from the observed network
structure. Loosely speaking, the missing links prediction problem can
be stated by asking the following question: given a snapshot of a network,
can the next most-likely links to be established be predicted? Such an issue is
relevant in many research areas, such as social networks [44, 55, 10, 35],
protein networks [8, 60], brain networks [12], etc.

To this aim, several algorithms have been proposed so far. Overall,
“recipes” for link-prediction can be classified as belonging to either two
main classes, similarity-based algorithms or likelihood-based algorithms [46,
75]. Both classes of algorithms output a list of scores to be assigned to
non-observed links: while the similarity-based ones may employ local
[7], quasi-local [12, 34, 61, 57, 1, 76] or global information [38, 47, 75]
(e.g. the nodes degree, the degree of common neighbours and the length
of paths connecting any two nodes, respectively), the likelihood-based
ones [29, 69, 51] are defined by a likelihood function whose maximiza-
tion provides the probability that any two nodes are connected. This is
usually achieved by assuming that some kind of benchmark information
is known and by treating it as a constraint to account for. An alternative
classification distinguishes between algorithms employing purely struc-
tural information (either binary or weighted [46]) and algorithms making
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use of some kind of external information as well (e.g. nodes attributes
[43]).

This chapter represents our contribution to the stream of research
concerning missing links prediction for binary networks. A novel al-
gorithm is proposed, building upon a series of results concerning con-
strained entropy-maximization [54, 25, 63]. In a nutshell, we advance the
hypothesis that the tasks of predicting missing links and reconstructing
a given network structure share many similarities worth to be further ex-
plored. The method we propose in the present work makes a first step
in this direction, by employing entropy-based null-models to approach
the link-prediction problem. As a last remark, we notice that while the
problem of missing links prediction is usually associated to the problem of
spurious links identification, here we only address the former one.

The remainder of the Chapter is organized as follows. In Section
3.2 an overview of the missing links prediction problem is provided, to-
gether with a detailed description of the method we propose here. Sec-
tion 3.3 contains a synthetic description of the datasets used for testing
our methods. In Section 3.4, we compare our method with the most com-
mon link-prediction algorithms and we comment on the results in Sec-
tion 3.5.

3.2 Methods

In order to fix the formalism, let us briefly reformulate the link-prediction
problem ab initio.

Let us indicate with the symbol A the adjacency matrix of the ob-
served network and with the symbol E the corresponding set of observed
links: as a consequence, upon indicating with U the set of all nodes pairs,
U \ E will be referred to as to the set of non-existent links. In order to
fully control a given recipe for link-prediction, the link set is usually par-
titioned into a training set, ET , and a probe set, EP = E \ ET . The former
is used in the “calibration” phase of a given prediction algorithm, while
the latter is used for testing it: links belonging to EP are, in fact, re-
moved, thus constituting the actual “prediction target”. We denote with
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|EP | ≡ Lmiss the cardinality of the probe set, corresponding to the num-
ber of missing links. Naturally, the adjacency matrix is partitioned as
well: the portion of it corresponding to the training set will be indicated
with the symbol AT . The union of the missing links set and the non-
existent links set EN = EP ∪ U \E ≡ U \ET will be referred to as to the
set of non-observed links.

Link-prediction algorithms output a list of scores to be assigned to
non-observed links. Upon indicating with i and j the nodes constitut-
ing the extremes of non-observed links, the most traditional recipes are
quickly reviewed below. In what follows, we will focus on the algorithms
employing either local or quasi-local information.

Link-prediction for undirected networks

• The simplest recipe to define scores is based the number of com-
mon neighbours (CN) of i and j

sCNij = |Γ(i) ∩ Γ(j)|; (3.1)

• a slightly more elaborate function of it is represented by the Jaccard
coefficient (J), which discounts the information encoded into the
size of the nodes neighbourhoods:

sJij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

=
sCNij

ki + kj − sCNij
; (3.2)

• algorithms based on the information provided by nodes degrees
exist. The simplest example is provided by the one inspired to
the preferential attachment (PA) mechanism, whose generic score
reads

sPAij = ki · kj ; (3.3)

• other, instead, are defined by the inverse of some kind of function
of the neighbours degree (according to the original Adamic-Adar -
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AA - prescription or subsequent variations, as the resource alloca-
tion - RA - one)

sRAij =
∑

l∈Γ(i)∩Γ(j)

1

kl
, sAAij =

∑
l∈Γ(i)∩Γ(j)

1

ln kl
; (3.4)

• modifications of the aforementioned indices have been recently pro-
posed, encoding information on the link density of the neighbour-
hood of each pair of nodes. These indices are the so-called CAR-
based ones [12] and prescribe to “correct” the scores above by adding
a factor |γ(l)|, counting how many neighbours of node l ∈ Γ(i) ∩
Γ(j) are also common neighbours of i and j. More explicitly

sCARij = sCNij ·
∑

l∈Γ(i)∩Γ(j)

|γ(l)|
2

, (3.5)

sCJCij =
sCARij

|Γ(i) ∪ Γ(j)|
, (3.6)

sCPAij = (ei + sCARij ) · (ej + sCARij ), (3.7)

sCRAij =
∑

l∈Γ(i)∩Γ(j)

γl
kl
, (3.8)

sCAAij =
∑

l∈Γ(i)∩Γ(j)

γl
ln kl

(3.9)

where ei indicates the external degree of node i, i.e. the number of
neighbours of i that are not neighbours of j.

Entropy-based approach to link-prediction

The rationale of our method is based upon the concept of network recon-
structability. In other words, provided that the accessible portion AT of
a network is satisfactorily reproduced by a given amount of topological
information, it is reasonable to suppose that the latter allows the inaccessi-
ble portion to be inferred with reasonable accuracy as well. Invoking the
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aforementioned concept allows us to rephrase the link imputation prob-
lem within the network reconstruction framework, making it possible to
employ the techniques developed there.

From a technical point of view, our algorithm is a local, likelihood-
based one. It rests upon the information provided by local, topological
quantities, which are enforced as constraints of a maximization proce-
dure defined within the Exponential Random Graph (ERG) framework
[54, 63]. In the case of binary, undirected networks, constraints are rep-
resented by nodes degrees, i.e. ~k(AT ) and the ERG framework leads to
the maximization of the likelihood function L = lnP (AT ) where

P (AT ) =
∏
i<j

p
aij
ij (1− pij)1−aij (3.10)

and pij =
xixj

1+xixj
. The numerical value of the unknown coefficients ~x is

obtained upon solving the system of equations

ki(A
T ) =

∑
j(6=i)

pij =
∑
j(6=i)

xixj
1 + xixj

∀ i (3.11)

(Section 1.3.1 shows the derivation of the condition above in the directed
case, the undirected case represents a straightforward simplification).
Our algorithm, which is trained on AT , prescribes to interpret the proba-
bility coefficients {pij}ij∈EN assigned to the non-observed links, as scores
to carry out the link-prediction: upon sorting the coefficients {pij}ij∈EN
in decreasing order, the first Lmiss largest ones are naturally interpreted
as pointing out the Lmiss most probable missing links (notice that such a
prescription is based on the assumption that the number of missing links
is known, although their identity is not: as a consequence, this number
is retained). In other words, the reconstructability assumption underly-
ing our method leads us to interpret the non-observed links which have
been assigned the largest probability coefficients as the ones that are most
likely to appear given the chosen constraints.

Our recipe has a remarkable, equivalent formulation. In fact, the sub-
set Σ∗ of Lmiss links characterized by the largest probability coefficients
identifies the subgraph satisfying the relationship
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Σ∗ =
argmax

Σ:|E|(Σ)=Lmiss
P (Σ|AT ) (3.12)

with P (Σ|AT ) =
∏

i<j

ij∈EN
p
σij
ij (1 − pij)σij . Since the maximum value of

such a product is achieved once the Lmiss largest factors are selected, the
generic entry σ∗ij obeys the following rule: σ∗ij = 1 if ij belongs to the
set of Lmiss most probable missing links and σ∗ij = 0 otherwise; in other
words, Σ∗ is the subgraph with largest probability among the ones with
precisely Lmiss links. In the remainder of the chapter, this approach will
be named after the null-model employed to calculate the link scores, i.e.
UBCM (Undirected Binary Configuration Model) [63].

Link-prediction for directed networks

Remarkably, our algorithm can be generalized to approach the missing
links prediction problem in directed networks as well. It is enough to
maximize the likelihoodL = lnP (AT ) where, now, P (AT ) =

∏
i 6=j p

aij
ij (1−

pij)
1−aij by solving the system of equations{

kouti (AT ) =
∑
j( 6=i) pij =

∑
j( 6=i)

xiyj
1+xiyj

∀ i
kini (AT ) =

∑
j( 6=i) pji =

∑
j( 6=i)

xjyi
1+xjyi

∀ i
(3.13)

and consider the coefficients {pij}ij∈EN as scores to be assigned to the
non-observed links (see the Section 1.3.1 for the derivation of the condi-
tion above). The proper prediction step is still carried out by applying the
recipe defined by eq. 3.12, with the only difference that, now, the product
runs over the directed pairs of nodes. In the remainder of the chapter, this
approach will be named after the null-model employed to calculate the
link scores, i.e. DBCM (Directed Binary Configuration Model) [63].

Notice, instead, that no unambiguous ways to generalize traditional
scores exist. Here we have adopted the (directed) extensions listed below,
with the aim of accounting for link directionality whenever possible:

• when considering directed networks, the concept of common neigh-
bours can be replaced by the concepts of “successors” and “prede-
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cessors”, i.e. the nodes respectively “pointed by” and “pointing to”
a given node. Upon indicating the set of “successors” of i with ΓS

and the set of “predecessors” of j with ΓP , the CN index can be
generalized as follows

sCNij = |ΓS(i) ∩ ΓP (j)|; (3.14)

• building upon the directed version of the CN index, the Jaccard
index reads

sJij =
|ΓS(i) ∩ ΓP (j)|
|ΓS(i) ∪ ΓP (j)|

=
sCNij

kouti + kinj − sCNij
; (3.15)

• the RA and AA indices can be straightforwardly generalized as fol-
lows:

sRAij =
∑

l∈Γ(i)∩Γ(j)

1

ktotl
, sAAij =

∑
l∈Γ(i)∩Γ(j)

1

ln ktotl
(3.16)

with ktoti = kouti + kini ;

• the PA score admits two different generalizations: one employing
the total degree of nodes

s
PA′I
ij = ktoti · ktotj (3.17)

and the other employing the nodes out- and in-degree

s
PA′II
ij = kouti · kinj ; (3.18)

• while the CAR-based indices are not straightforwardly generaliz-
able to the directed case, other scores exist aiming at extending the
concept of “closed triad” to account for link directionality [59], the
triadic closure index (TC) is defined as:

sTCij =
∑

l∈Γ(i)∩Γ(j)

wi,j,l · w(l); (3.19)
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here, the “triad weight” wi,j,l =
#Ti→j,l+#Ti↔j,l

#Ti,j,l
is defined by the

(global) number #Ti,j,l of observed, open triads of the particular
kind Ti,j,l, the (global) number #Ti→j,l of observed, closed triads
via a directed link from i to j and the (global) number #Ti↔j,l of
observed, closed triads via a reciprocal link between i and j; w(l) is,
instead, a node-specific weight that can be set either to w(l) = 1

kl
or

to 1. In order to avoid misinterpretations, we set the weight to 1.

Testing link-prediction

Once a link-prediction algorithm has been defined, a number of statisti-
cal indices exist to test its effectiveness. In what follows we will briefly
review the ones we have employed in the present work to compare the
aforementioned algorithms. The first index we have considered is the
true positive rate (also known with the name of precision), defined as

TPR =
Lr

Lmiss
(3.20)

and quantifying the percentage of missing links that are correctly recov-
ered (i.e. the number Lr of rightly identified missing links within the list
of the first Lmiss links with the largest score). A similar-in-spirit index is
the accuracy

ACC =
Lr + Lne
|EN |

, (3.21)

quantifying the percentage of correctly classified links (i.e. both the miss-
ing ones and the non-existent ones) with respect to the total number of
non-observed links. The third index we consider is the traditional area
under the ROC curve, or AUC, proxied by the number

AUC =
n′ + n′′/2

n
; (3.22)

n′ counts the number of times a missing-link is assigned a higher prob-
ability than to a non-existent one, while n′′ accounts for the number of
times they are assigned an equal probability. The denominator n coin-
cides with the total number of comparisons (i.e. the number of missing
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links times the number of non-existent links). This index is intended to
quantify the probability that any missing-link is assigned a score that is
larger than the score assigned to any non-observed link. If all scores were
i.i.d. the AUC value should be distributed around an expected value of
1/2: therefore, the extent to which the AUC value exceeds 0.5 provides an
indication of how much better the algorithm performs than pure chance.

The set of missing links is usually randomly removed: we have fol-
lowed such a procedure, by 1) randomly removing the 10% of links 10
times, 2) quantifying the performance of the algorithms above, by com-
puting the three aforementioned indices over each sample, 3) averaging
these values over the sample set (the sample standard deviation is used
to proxy the estimation error.)

3.3 Data

Our approach to link-prediction has been tested on a number of eco-
nomic and financial datasets (see table 3.1) and on several food-webs
(see table 3.2).

As a first dataset, we have considered the World Trade Web (WTW)
across a period of 51 years, i.e. from 1950 to 2000. The dataset in [26]
collects yearly, bilateral, aggregated data on exports and imports (the
generic entry magg

ij (y) is the sum of the single commodity-specific trade
exchanges between i and j during the year y). The binary, directed rep-
resentation of the WTW we have considered here has been obtained by
linking any two nodes whenever the corresponding element magg

ij (y) is
strictly positive, i.e. aij(y) = Θ[magg

ij (y)].
As a second dataset, we have considered the Dutch Interbank Net-

work (DIN) across a period of 11 years, i.e. from 1998 to 2008 [41]. Such a
dataset collects quarterly data on exposures between Dutch banks, larger
than 1.5 million euros and with maturity shorter than one year.

As a third dataset, we have considered the e-MID (i.e. the electronic
Market for Interbank Deposits) network in a series of 61 temporal snap-
shots, corresponding to the maintenance periods (and ranging from 2005
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World Trade Web
BUN N L 〈k〉

145 [85,187] 5901 [1678,10254] 76.3 [39.5,109.7]
BDN L 〈k〉

10604 [2871,20107] 68.2 [33.8,107.5]
e-MID

BUN N L 〈k〉
152 [107,170] 1755 [742,2333] 22.5 [13.4,28.6]

BDN L 〈k〉
1827 [754,2477] 11.7 [6.8,14.9]

Dutch Interbank Network
BUN N L 〈k〉

99 [92,104] 675 [444,1025] 13.6 [8.9,20.1]
BDN L 〈k〉

773 [512,1207] 7.8 [5.2,11.8]

Table 3.1: Network statistics for both the undirected (BUN) and directed
(BDN) version of the World Trade Web, e-MID and the Dutch Interbank
Network: for each quantity (number of nodes N , number of links L and
average degree 〈k〉) the mean value across the temporal snapshots and the
range are reported.
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Food-webs N L 〈k〉
Chesapeake Bay 39 177 4.54
Lower Chesapeake Bay 37 178 4.81
Middle Chesapeake Bay 37 209 5.65
Upper Chesapeake Bay 37 215 5.81
Everglades Marshes 69 916 13.28
Florida Bay 128 2106 16.45
Grassland 88 137 1.56
Little Rock Lake 183 2494 13.63
Maspalomas Lagoon 24 82 3.42
Michigan Lake 39 221 5.67
Mondego Estuary 46 400 8.70
Narragansett Bay 35 220 6.29
Rhode River Watershed 19 53 2.79
Silwood Park 154 370 2.40
St Marks River 54 356 6.59
St Marks Seagrass 49 226 4.61
St Martin Island 45 224 4.98
Ythan Estuary 135 601 4.45

Table 3.2: Network statistics (number of nodes N , number of links L and
average degree 〈k〉 for the directed version of 18 different food-webs [63].

to 2010). In this case, links represent granted loans [33]. As for the WTW,
the binary, directed representations of both the DIN and e-MID have
been obtained by linking any two nodes whenever a positive weight is
observed between them.

The three real-world systems above are defined by directed connec-
tions. In order to evaluate the performance of the link-prediction algo-
rithms considered in the present work on undirected networks, we have
properly symmetrized the adjacency matrices of these systems, accord-
ing to the prescription asymij = aij + aji − aijaji.

Food-webs, instead, are considered in their binary, directed version
only: if species i preys on species j, a directed link is drawn from j to i.
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3.4 Results

The performance of our link-prediction algorithm is shown in Figures
3.1 to 3.5 for the WTW, the DIN and e-MID datasets respectively while te
results for the food-webs are reported in Figure 3.6. Figure 3.1 has been
enlarge to facilitate the understanding, all other figures are organized in
an analogous way.

As a general comment, our method performs better than the other
algorithms, with respect to all considered indices. The success of the
method is particularly evident when considering the AUC index, proxy-
ing the probability of (correctly) assigning a larger score to a missing-link
than to a non-existent link.

We argue the success of our algorithm to rest upon a core result that
has been verified in a number of previous works [63, 62, 13]: the (purely)
topological structure of the networks considered here can be reconstructed,
to a large degree of accuracy, by enforcing the information encoded into
the degree sequences alone; very likely, thus, the same amount of infor-
mation also defines an accurate recipe to spot potential missing links.
Otherwise stated, the level of “complexity” of the considered networks
seems to be largely encoded into the degree sequences, thus requiring
(just) their enforcement to be fully accounted for.

The founding principle of our approach is, thus, radically different
from the one inspiring other link-prediction algorithms: we aim at find-
ing the (most likely) generative process for the network at hand, while
other methods define increasingly detailed procedures with little con-
trol on the “quality” of the included information. This becomes evi-
dent when considering that other algorithms (i.e. the CN, J, RA, AA
and the CAR-based ones) employ a larger amount of information than
the UBCM- and DBCM-based ones: while the latter take as input just the
nodes degrees, the former exploit the information provided by the whole
set of common neighbours. This may indicate that the information en-
coded into the neighbourhood of any two nodes - supposedly provid-
ing more information than the one encoded into the degrees alone - is,
actually, a mere consequence of lower-order statistics (i.e. the degrees
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themselves).
This also sheds light on the reason why our algorithm is less sen-

sitive than others to the original value of link density: provided that
our entropy-based recipes successfully individuate the process generat-
ing the networks at hand, the number of observed links is automatically
accounted for.

Our comparison also points out that one of the factors determining
the goodness of a given link-prediction algorithm concerns how the avail-
able information is used. An illustrative example is provided by the per-
formance of the PA algorithm defined by eq. 3.17, requiring the same
basic knowledge of our entropy-based recipes, i.e. the degree sequences
of nodes. As clear upon inspecting the e-MID directed case, the assump-
tion that any two nodes establish a connection with a probability that
is proportional to their total degrees fails to capture the process shaping
the network structure; entropy-maximization, on the other hand, makes
a better use of the available information, by retaining the information on
link directionality (that indeed plays a role, completely ignored by the
aforementioned PA prescription).

Interestingly, the DBCM recipe described in the Section 3.2 induces
the “correct”, directed generalization of the PA algorithm, defined by eq.
3.18 and outperforming the one defined by eq. 3.17. For sparse networks,
in fact, the DBCM probability coefficients can be approximated as follows

pDBCM
ij '

kouti · kinj
L

(3.23)

a simplified prescription that performs very similarly to the entropy-
based algorithm on the DIN and e-MID; on dense networks - as the WTW
- the DBCM performs much better, instead. The UBCM, on the other
hand, reduces to pUBCM

ij ∝ ki · kj , i.e. the undirected PA prescription
defined by eq. 3.3.

Finally, let us comment on the performance of the TC index. The
algorithm employing it has been designed to provide a solution to the
problem of forecasting new connections among social networks users.
By definition, it only predicts new links among disconnected nodes, disre-
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garding all nodes pairs connected by, e.g. a non-reciprocated link. This
explains the poor performance of the algorithm in our context, despite it
performs satisfactorily to solve the specific task it was designed for [59].

3.5 Discussion

Whenever judging the performance of a given link-prediction algorithm,
one should consider both the amount of information it requires and the
way in which this is employed to carry out the prediction step. While
the usual link-prediction algorithms assume the existence of some node-
specific tendency at a microscopic level (e.g. social agents tend to close
triads), ours focuses on the most likely process that may have generated
the considered network. The guessed process is, first, trained on the visi-
ble portion of the network and, then, employed to infer the (supposedly)
unknown portion of the network: the “homogeneity” assumption under-
lying the whole procedure leads us to expect that a model satisfactorily
reproducing the accessible part of a system is also effective in spotting
potential missing links.

One of the most effective recipes to tune generative processes is the
one based on the entropy-maximization: beside guaranteeing that the
available information is encoded in the least-biased way, the ERG frame-
work is also very flexible, being applicable to both undirected and di-
rected networks; other algorithms, on the contrary, rest upon concepts
unambiguously defined only for undirected networks (an example is
provided by the whole family of CAR indicators, whose core concept
- i.e. the “local community links” factor |γ(l)| - does not admit a straight-
forward generalization).

Although every newly-proposed algorithm fosters the idea to be ap-
plicable to different kinds of systems, the effectiveness of a given (null)
model depends on the particular system at hand: while economic, fi-
nancial and food networks seem to be largely explained by the degree
sequences, other systems may require a different (or additional) kind of
information.

The results obtained so far on undirected, as well as directed, binary

54



networks push us to look for further extensions of the proposed link-
prediction technique. Interesting perspectives are represented by bipar-
tite and weighted networks, for which the link- and weight-imputation
topics are still little explored. This will be the topic of the next chapter.
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Figure 3.2: Comparison of link-prediction algorithms when applied to the
undirected version of the DIN (top) and E-mid (bottom). The panels are
organized as in Figure 3.1. Our entropy-based approach (dark blue line) to
link-prediction performs better than other algorithms, across the vast ma-
jority of temporal snapshots.
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Figure 3.3: Comparison of link-prediction algorithms when applied to the
directed version of the WTW. The panels are organized as in Figure 3.1. Our
entropy-based approach (dark blue line) to link-prediction performs better
than other algorithms, across the vast majority of temporal snapshots.

Figure 3.4: Comparison of link-prediction algorithms when applied to the
directed version of e-MID. The panels are organized as in Figure 3.1. Our
entropy-based approach (dark blue line)to link-prediction performs better
than other algorithms, across the vast majority of temporal snapshots.
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Figure 3.5: Comparison of link-prediction algorithms when applied to the
directed version of the e-MID. The panels are organized as in Figure 3.1. Our
entropy-based approach (dark blue line) to link-prediction performs better
than other algorithms, across the vast majority of temporal snapshots.

Figure 3.6: Comparison of link-prediction algorithms when applied to the
(directed version) of the food-webs. Our entropy-based approach to link-
prediction performs better than the other algorithms. Here, we have re-
tained only the recipe sPA′′

ij ∝ kout
i · kin

j .
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Chapter 4

Two extensions to the
missing-link prediction
framework

The part of this chapter on bipartite link prediction is based on [6]
by M. Baltakiene, K. Baltakys, D. Cardamone, F. Parisi, T. Radicioni, M.

Torricelli, J. A. van Lidth de Jeude, and F. Saracco
Result of a project carried out during the workshop Complexity72h

Lucca 7-11 May 2018
The part concerning link and weights prediction on weighted networks is the

result of joint work with T. Squartini and has not been published yet.

Abstract

In this chapter we aim at broadening the spectrum of appli-
cability of the entropy-based methods for link prediction by
moving in two different directions: we will consider weighted
and bipartite networks. In the first case the problem of link
prediction is two-fold: not only we need to identify the “iden-
tity” of the missing link, but we also need to decide which
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weight to attribute to the freshly imputed links. The vast ma-
jority of methods for link prediction in weighted networks,
however, does not provide a procedure for weight estima-
tion. Here we propose a new approach based on the idea
that the reconstructability of a network guarantees that cer-
tain network characteristics, as the most probable missing
link or the value of the link weights, can successfully be in-
ferred. We discuss different possible choices concerning the
null model used: we will show that entropy-based methods
have better performances with respect to the alternatives and
they also provide, unlike the others, weight estimates and
the corresponding confidence intervals. The second exten-
sion we deal with in this chapter is the one to bipartite net-
works. Here we apply as a null model the Bipartite Config-
uration Model (BiCM) that represents the natural extension
to the bipartite case of the DBCM model used in the case of
binary monopartite networks. We will show that our method
has a very good performance. Remarkably, in cases where
it is not the ”race winner”, it achieves a comparable perfor-
mance with respect to alternative algorithms, but employing
a significantly smaller amount of information.

4.1 Introduction

In the previous chapter we introduced the problem of link prediction, its
importance and some of the current techniques to tackle this issue. How-
ever, we focused only on binary monopartite networks. This is the main
limitation of the methods currently present in the literature on the topic:
they are devised to be applied to the simplest network structures and
are not readily applicable to other scenarios. In this chapter we aim at
broadening the spectrum of applicability of the entropy-based methods
for link prediction by moving in two different directions: we will con-
sider weighted and bipartite networks.
In the first case the problem of link prediction is two-fold: not only
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we need to identify the missing link, but we also need to decide which
weight to attribute to the freshly imputed links. The vast majority of
methods for link prediction in weighted networks, however, does not
provide a procedure for weight estimation, thus limiting themselves to
the task of inferring the network topology from weights. Amid these
methods, one uses standard similarity measure as predictors for a super-
vised machine learning algorithm [56]. This methods is focused on so-
cial networks and aims at exploring whether adding weight information
improves the link prediction performance. The results are inconclusive
since it appears that the link prediction performance is improved by the
weighted information only on certain datasets. In [73] the authors ex-
tend their previous work, which used path entropy as a score for link
prediction, to accomodate weighted information. The authors of [77] use
a mutual information approach for link prediction and explore the rela-
tive importance of weak and strong ties for the inference of missing links.
In [72] a bayesian framework is applied by proposing a weighted version
of the Local Naive Bayes algorithm. The authors focus their comparison
on social networks, in particular collaboration networks.
Among the methods that allow for proper weight inference , in [75] the
estimation is based on the consideration that the link weights are propor-
tional to the similarity measures used for the binary imputation. How-
ever they estimate this proportionality parameter a posteriori using the -
in principle - unobservable part of the data, thus making the method in-
applicable to real missing links problems.
In another work [49], the authors devise an interesting, and fairly com-
plex, method for weight estimation, which is uses in combination with
some standard link prediction measures. The method is tailored specifi-
cally for social networks but can be applied to other domains. The main
drawback of this method is that the binary part of the prediction, that
is the identification of the missing links, is carried out using the weights
themselves as a similarity measure. This choice implicitly assumes that
the existence and intensity of a link derive from the same process, in
opposition to other stances in the literature [24]. For more details see
the discussion on the interplay between binary topology and weighted
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structure in Chapter 2. In this work we will focus on local (node specific)
similarity-based algorithms.

We propose a new approach based on methods developed for the task
of network reconstruction. As in the binary case, the key idea is that the
reconstructability of a network guarantees that certain network character-
istics, as the most probable missing link or the value of the link weights,
can successfully be inferred. However, in the weighted case we discuss
several possible choices concerning the null model used to reconstruct
the network: one, the Directed Enhanced Configuration Model (DECM)
[15], that assumes that the binary and weighted structure of a network
are jointly determined in the network formation process. Moreover, we
apply the two specifications of the CReM method, CReMA and CReMB ,
presented in Chapter 2. We will show that all three entropy-based meth-
ods have better performances with respect to the alternatives and they
also provide, unlike the others, a method to obtain estimates for the link
weights and their confidence interval. We will also show that CReMB

is characterize by a better or comparable performance with respect to
CReMA and DECM, and a much lower complexity. We will therefore
recommend the choice of CReMB for the task of link and weights predic-
tion.

The second extension we deal with in this chapter is the one to bipartite
networks. Many real-world system can be represented as bipartite net-
works [28, 40], such as collaboration and co-authorships networks [50],
recommendation networks [45, 9], financial networks of banks and assets
[27], biological mutualistic networks [20, 68, 4] and trade networks [32,
18]. Standard approaches for their analysis quite often rely on the pro-
jection on one of the layers, but the information contained in the original
bipartite network can provide important insights for the comprehension
of the phenomena under analysis [58]. However, only few of the meth-
ods proposed in the literature have been applied in the case of bipar-
tite networks[74, 19, 23]. Among the algorithms which admit bipartite
configurations, there are several classes of techiques, such as global and
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kernel-based methods[39], extensions of results in monopartite networks
to bipartite [19] and projections on the monopartite [23, 74].

Here we apply as a null model the Bipartite Configuration Model (BiCM)
that represents the natural extension to the bipartite case of the DBCM
model used in the case of binary monopartite networks. We will show
that our method has a very good performance. Remarkably, in where
cases it is not the ”race winner”, it achieves a comparable performance
with respect to alternative algorithms, employing a significantly smaller
amount of information.

This chapter is organized as follows: Section 4.2 introduces the meth-
ods used for weighted link prediction, starting from the methods from
the literature and then presenting and discussing the three options for
the maximum entropy methods. Section 4.3 has an analogous outline for
the methods concerning bipartite link prediction. Section 4.3 describes
the bipartite datasets, while the datasets for weighted prediction coin-
cide with the ones used in the previous chapter. Section 4.4 presents the
results of the weighted prediction first, and of the bipartite one succes-
sively. Finally, Section 4.5 presents the final remarks.

4.2 Methods for Weighted Networks

We will use the same notation as in the previous chapter concerning the
link prediction problem definition. As far as comparison methods are
concerned, we compare with some methods taken from the literature
[77], extending to the weighted case some standard metrics. As in the
binary case, we focus on the algorithms employing either local or quasi-
local information.

Similarity measures for weighted directed networks

• Weighted Common neighbors (WCN): The common neighbours
index can be extended to the weighted case (WCN) by computing,
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between nodes i and j, the quantity

sWCN
ij =

∑
z∈S(i)∩P (j)

(wiz + wzj), (4.1)

where S(i) is the sut of successors of node i, that is all the nodes k
such that there is a link from i to k, while P (j) is the set of prede-
cessors of node j, that is all nodes h such that there is a link from
h to j. The intersection of these sets gives all the nodes that are the
middle node in the paths of length two from i to j.

• Weighted Jaccard (WJ): the weighted Jaccard coefficient (WJ), which
discounts the information encoded into the size of the nodes neigh-
bourhoods, reads:

sWJ
ij =

∑
z∈S(i)∩P (j)

wiz + wzj
souti + sinj

; (4.2)

• Weighted Preferential Attachment (WPA): the preferential attach-
ment rule, that prescribes the probability of a link to be quantified
by the product of the link degrees, can be modified by considering
the link strengths

sWPA
ij = souti ∗ sinj ; (4.3)

• Weighted Adamic-Adar (WAA): another common neighbours-based
measures, defined by the inverse of a function of the neighbours
degree, the original Adamic-Adar , can be extended to account for
the node strengths

sWAA
ij =

∑
z∈S(i)∩P (j)

wiz + wzj
log(1 + stotz )

; (4.4)

• Weighted Resource Allocation (WRA): Similar in spirit to the Adamic-
Adar index, the Resource Allocation uses a different averaging tech-
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nique.

sWRA
ij =

∑
z∈S(i)∩P (j)

wiz + wzj
stotz

, (4.5)

Entropy-based approach to weighted link-prediction

As for the binary case, the idea at the base of our link prediction method
is that a model that is able to reconstruct the properties of a network
given aggregate information can also be applied to the identification of
the most probable missing links. This is achieved by computing the link-
age probabilities through the desired reconstruction method and then
drawing the unobserved link with highest probability. In the case of
weighted networks, though, the identification of the missing link does
not exhaust the problem: it is also necessary to assign a weight to the
imputed links. While in the previous chapter we had a single choice for
the entropy based reconstruction method, here we propose different al-
ternatives. They encode different assumptions on the network formation
process and on the weight structure. Specifically, we will use

DECM The Directed Enhanced Configuration Model, continuous case;

CReMA The Conditional Reconstruction Method, specification A;

CReMB The Conditional Reconstruction Method, specification B.

These three methods have been introduced in the previous chapters, so
we will briefly recall their main specifications.

Directed Enhanced Configuration Model The DECM is based on the
assumptions that the topology and weighted structure of a network are
jointly determined in the network formation process. This method chooses
as constraints the in- and out- degree and strength sequences, that will
be preserved, on average, over the ensemble of weighted configurations.
The quantities ~xout and ~xin are (a transformation of) the Lagrange multi-
pliers associated to the binary constraints (i.e. degree sequences), while
~βout and ~βin are the Lagrange multipliers associated with the weighted
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constraints (i.e. strength sequences). The DECM model is characterized
by the linkage probability (i.e. the probability of a link existing from node
i to node j) given by

pDECMij =
[
1 + (βouti + βinj )/(xouti xinj )

]−1
, (4.6)

while the probability of observing a link of weigh w, given the existence
of a link from i to j reads

qDECMij (w > 0) = pDECMij (βouti + βinj )e−(βouti +βinj )w. (4.7)

As a consequence, the expected weight is

〈wij〉DECM =
pDECMij

βouti + βinj
⇒ 〈wij |aij = 1〉DECM =

1

βouti + βinj
, (4.8)

where the last expression is the conditional expected weight, that is the
value of the expected weight given that a link is present.

Conditional Reconstruction Method The CReM models rely on a dif-
ferent assumption, regarding the network formation process, with re-
spect to the DECM. In this case, in fact, we consider the network topology
to be generated first, as a realization of a random variable, and then the
weighted configuration is determined, compatibly with the given topol-
ogy. As explained in Chapter 2, the CReM takes as input a distribu-
tion over the space of binary configurations and weighted constraints.
Many choices are available for the computation of this binary distribu-
tion. Given the good results obtained in the previous chapter, here we
choose to use the linkage probabilities given by the Directed Binary Con-
figuration Model (DBCM). Therefore for both CReMA and CReMB we
have

pDBCMij =
xouti xinj

1 + xouti xinj
, (4.9)

where, as before, ~xout and ~xin are (a transformation of) the Lagrange
multipliers associated to the binary constraints (i.e. degree sequences).
Let us specify the notation: when we use the same letter to denote the
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parameters of different models, we do so to stress the fact that they play
the same role, that is for instance they are the Lagrange multipliers asso-
ciated to the same constraints. However the same parameters will have
different values in different models, since their value will be obtained
solving different systems. 1

As far as the weight estimation is concerned the two model specification
provide different recipes.

A. The Conditional Reconstruction Method, specification A (CReMA

) uses the observed strength sequences as constraints, keeping the
ensemble average of such quantities equal to the observed value.
The weight distribution for this model takes the form

qCReMA
ij (w > 0) = pDBCMij (βouti + βinj )e−(βouti +βinj )w. (4.10)

This differs from (4.7) in two ways: first of all the binary proba-
bility is different, since CReMA uses the linkage probabilities (4.9).
Moreover, as previously observed, the values of the parameters ~β
will be different for DECM and CReMA . From (4.10) we have

〈wij〉CReMA =
pDBCMij

βouti + βinj
⇒ 〈wij |aij = 1〉CReMA =

1

βouti + βinj
,

(4.11)

B. The Conditional Reconstruction Method, specification A (CReMB

) imposes that the ensemble average of the link weights is equal to
the quantity that has been empirically shown to be a good proxy
for the link weights, that is the product of the node strengths over

the total weight of the network: wij ∼
souti sinj
Wtot

. The functional form
of the weight distribution is

qCReMB
ij (w > 0) = pDBCMij (βij)e

−βijw. (4.12)

1To be fully precise we should use a notation of the kind ~xDECM and ~xDBCM . How-
ever this would make the formulae very difficult to read. Therefore we will simply use the
same parameter notation since it will be clear to which model they refer.
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Imposing that the expected weights correspond to the desired quan-
tities yields

〈wij〉CReMB =
souti sinj
Wtot

⇒ 〈wij |aij = 1〉CReMB =
souti sinj

WtotpDBCMij

.

(4.13)
Although this method is formally derived in an analogous way
with respect to CReMA , it does not require the solution of a system
of equation for determining the value of the matrix of parameters
β, since (4.12) and (4.13) imply

βij =
Wtotp

DBCM
ij

souti sinj
. (4.14)

For all three methods the link prediction procedure follows the same
steps

1. We solve the model and obtain pij and 〈wij |aij = 1〉.

2. We rank the pij probabilities in descending order.

3. We draw the Lmiss unobserved links with highest probability.

4. We assign to the imputed link the conditional expected weights
〈wij |aij = 1〉.

Let us observe that, in principle, we could have decide to use as score
for the link prediction the qij probability evaluated in 〈wij |aij = 1〉.
This would correspond to compute the probability of observing a weight
equal to the estimated one. Testing this alternative approach showed
a diminished performance. This indicates that to predict the topology
alone the linkage probability should be preferred over the overall one.

Testing link and weights predictions

To test the effectiveness of our link prediction methods against the alter-
natives, we need to consider the performances on two different tasks: the
binary link prediction and the weight estimation. With respect to the first
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task, we will use the same indicators introduced in the previous chapter:
accuracy, precision and area under the ROC curve (AUC).
As far as the weight estimate is concerned, first we remark once again
that the comparison methods do not allow to estimate the link weights,
therefore we will compare only the three entropy-based models. We will
compare only the imputed part of the matrix with the real counterpart,
since the rest of the matrices will coincide. We denote with wobsij the real
observed weights and with westij the model estimates, relative to the im-
puted part of the matrix. Since some measures are designed to take as
input vectors and not matrices, we will vectorialize the weights matri-
ces, denoting them as ~wobs and ~west. To quantify the models relative
performances we will use two quantities:

Cos sim The first indicator is simply the cosine similarity between the
vectors of real weights and estimated ones. Since we want a mea-
sure that is disentangled from the correctness of the binary predic-
tion, we only consider the couples of weights where both the real
ad imputed weights are non-zero.

Cos sim =
~wobs · ~west

‖~wobs‖2 · ‖~west‖2
(4.15)

Prop CI The second indicator requires a bit more explanation. As we
can see from the expressions (4.7), (4.10) and (4.12), for all three
methods the distribution of weights conditional on the existence of
a link follows an exponential distribution, whose parameters are
model specific. This observation allows us to compute confidence
intervals for the weight estimates. (See Section 2.3.2 in Chapter 2
for details.) Therefore we can use as a second indicator the propor-
tion of real weights that fall into the confidence interval relative to
their estimate.

Prop CI =
|wobsij ∈ CI{westij }|

L miss
, (4.16)

where N is the number of nodes.

The evaluation procedure was carried out in the following way:
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1. Starting from a fully observable weighted adjacency matrix, W, we
remove 10% of its links at random, creating the incomplete matrix
Ŵ.

2. For any given method m we run the link prediction algorithm that
returns a matrix Rm, with the same number of links than W.

3. We compute all the evaluation measures on Rm.

4. We repeat steps 1. to 3. for 10 times and we compute the average
of the evaluation measures.

4.3 Methods for Binary Bipartite Networks

As in the previous section, we will start outlining some of the standard
local-based similarity measures for link prediction for bipartite graphs,
and some extensions to these, proposed recently. Subsequently we will
delineate the maximum entropy approach that we propose.

Let us recall the notation introduced in Chapter 1 for bipartite graphs:
we indicate the two layers of the bipartite network as > and ⊥; nodes on
the layer > are identified by Latin indices and nodes on the layer ⊥with
Greek ones. The number of nodes of the two layers is respectively N>

and N⊥. A bipartite network is described by a bi-adjacency matrix, i.e.
the rectangular matrix MN>×N⊥ whose entries miα are 1 if there is an
edge connecting i and α and 0 otherwise.

Similarity measures for binary bipartite networks

• Common neighbors (CN):

CN(i, α) = (N(i) ∩N(N(α))) ∪ (N(α) ∩N(N(i)))

sCNiα = |CN(i, α)|
(4.17)

is an index counting the number of paths of length three going from
node i to node α plus the number of paths of length three going
from node α to node i;
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• Resource Allocation (RA):

sRAiα =
∑

z∈CN(i,α)

1

|N(z)|

assigns a different weight to the common neighbors of nodes i and
α based on its degree;

• Preferential Attachment (PA):

sPAiα = ki · kα

is simply the degree product of nodes i and α, can be used in bi-
partite networks.

• Cosine Similarity (CS):

sCSiα =
sCNiα√
ki · kα

is based on the Cosine distance between two vectors of same length.

In contrast to the existing node-neighborhood-based approaches, the link
prediction strategy of other similarity-based models focuses no longer
only on groups of common nodes and their node neighbours, but also on
the organization of the links between them. In those models, the informa-
tion content related with the CN nodes is complemented with the topo-
logical information emerging from the interactions between them. This
mathematical reformulation represents the Cannistraci variations[19] of
CN, RA and PA respectively renamed Cannistraci-Alanis-Ravasi (CAR),
Cannistraci Resource Allocation (CRA) and Cannistraci Preferential At-
tachment (CPA) and defined in the following way:

• CAR index:
sCARiα = sCNiα · sLCLiα

• CRA index:

sCRAiα =
∑

z∈CN(i,α)

|γ(z)|
|N(z)|

72



• CPA index:

sCPAiα = ei · eα + ei · sCARiα + eα · sCARiα + (sCARiα )2

where sLCLiα counts the links between the common neighbors of nodes i
and α, |γ(z)| is the number of links of z with the other neighbors of i and
α, while e(i) and e(α) are the number of external links respectively of
nodes i and α, where external links means links that are directed toward
a node that is not in the set of common neighbors of i and α.

Entropy-based approach to bipartite link-prediction

In complete analogy with the monopartite binary case, we apply a null
model to reconstruct the network based on the information used as con-
straints. In this case we constrain the degree-sequence of each layer. The
resulting model is the Bipartite Configuration Model. We briefly recall
its specification.

pBiCMiα =
xiyα

1 + xiyα
, (4.18)

where ~x is a transformation of the Lagrange multiplier associated to the
degree of the nodes in the > layer, and ~y is the analogous for the ⊥ layer.
That is their value is determined by solving the system of equations{∑

α piα = k∗i∑
i piα = k∗α.

(4.19)

where ~k∗ are the values of the node degrees computed on the observed
part of the network. The linkage probability (4.18) will play the role of
our score function for the prediction task.

Data

For the weighted prediction we use the directed weighted version of the
World Trade Web (WTW) and Italian Electronic Market for Interbank De-
posits (E-mid) described in the previous chapter. As far as bipartite net-
works are concerned, we use two different datasets:
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• MovieLens (ML): MovieLens[31] datasets were collected by the
GroupLens Research Project at the University of Minnesota. This
data set consists of 100000 ratings (1-5) from 943 users on 1682
movies. Each user has rated at least 20 movies and is character-
ized by some demographic information, such as age, job, sex, state
and zipcode. The data was collected through the MovieLens web
site (movielens.umn.edu) during the seven-month period from
September 19th, 1997 through April 22nd, 1998. For the set of
movies, there is information on the release year, title and genre.
Each user can review a movie with a score that ranges from 1 to 5,
according to his level of appreciation. We binarize the network by
drawing an edge for a user-movie pair if the user has reviewed the
movie;

• Venezuelan Banks and Assets (VBA): Bipartite networks of posi-
tions that 69 Venezuelan banks hold in 20 asset classes in the period
between December 2013 and June 2015. The dataset was firstly pre-
sented and analyzed in [42]. The binarized network has an edge
between a bank-asset pair, if the position the bank held in the asset
class has a value greater than zero at a given timestamp.

The network statistics for these datasets are presented in Table 4.1

Table 4.1: Data description of the MovieLens graph, and the Venezuelan
Banks and Assets graph

Graph Users
(Banks)

Items Nodes Edges Avg.
De-
gree

Avg.
De-
gree
(Users)

Avg.
De-
gree
(Items)

ML 943 1682 2625 100000 76.19 106.04 59.45
VBA2 45 20 65 912 28.06 20.27 45.60
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Figure 4.1: Comparison of link-prediction algorithms in the weighted di-
rected case on the WTW dataset. Left panel: evolution of precision; middle
panel: evolution of accuracy; right panel: evolution of AUC. The entropy-
based approaches to link-prediction perform better than other algorithms,
across almost all temporal snapshots.

4.4 Results

Weighted link prediction

Figures 4.1 and 4.2 show the comparison between the topological indica-
tors for the weighted link prediction. We can see that, on both datasets,
the performance of the entropy-based methods is superior to the compar-
ison methods on all three indicators. Moreover we observe that CReMA

and CReMB are coincident, since they use the same linkage probabilities.
With few exception, they also perform better than the DECM method.
This is remarkable because they have a lower complexity and, CReMB

in particular, is of much faster solution. In light of this result we can
recommend the choice of the CReM method over the DECM. As far
as the weight imputation is concerned, Figure 4.3 illustrates the good-
ness of agreement between the weight estimates and the real observed
weights. In this case we observe that CReMB has better performance on
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Figure 4.2: Comparison of link-prediction algorithms in the weighted di-
rected case on the E-mid dataset. Left panel: evolution of precision; middle
panel: evolution of accuracy; right panel: evolution of AUC. The entropy-
based approaches to link-prediction perform better than other algorithms,
across almost all temporal snapshots.

both datasets for almost all time snapshots. As a side note, the reason for
which we can observe fewer data points for the DECM method is sim-
ply because of its elevated complexity, that implies a very slow solution.
For comparative purposes we then selected only a subset of the temporal
instances. This gives an additional motivation for preferring the CReM
methods.

Bipartite link prediction

The results of the algorithm performances are presented in Table 4.2 and
Figure 4.4 for the MovieLens data set, and the metrics comparison for the
Venezuelan Banks and Assets are in the Figure 4.5.
The results of the link prediction in bipartite networks are averaged over
10 iterations for each method. Table 4.2 shows the averaged measure and
the standard deviation (SD).
The results for our entropy based algorithm (BiCM) are comparable and
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Figure 4.3: Comparison of weights estimations on the WTW (top) and E-
mid (bottom) datasets. Left panel: evolution of cosine similarity; right
panel: evolution of the proportion of real weights falling in the confidence
interval of their estimates. The CReMB model has a comparable or batter
performance on all time snapshots.

show strong performance as opposed to the other algorithms. For the
Venezuelan Banks and Assets networks, BiCM link prediction algorithm
is among the leaders for the precision and accuracy measures (see Fig-
ure 4.5 for multiple time periods). Furthermore, inspecting the Figure
4.5 it can be observed that BiCM method dominates the others in AUC
measure. For the MovieLens network BiCM comes in third place for the
accuracy (ACC) measure and is the fourth best algorithm for the preci-
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Table 4.2: Results: MovieLens performance comparison

Method ACC (SD) TPR (SD) AUC (SD)
BiCM 0.98873 (0.00003) 0.15658 (0.002) 0.8946 (0.002)
cosine 0.98836 (0.00005) 0.12905 (0.004) 0.8903 (0.0007)
car 0.98917 (0.00003) 0.18975 (0.003) 0.9028 (0.001)
CN 0.98860 (0.00003) 0.14713 (0.002) 0.8868 (0.0009)
cpa 0.98917 (0.00003) 0.18975 (0.003) 0.9028 (0.001)
cra 0.98929 (0.00003) 0.19856 (0.002) 0.9163 (0.001)
PA 0.98873 (0.00003) 0.15672 (0.002) 0.8932 (0.001)
RA 0.98793 (0.00004) 0.09712 (0.003) 0.8863 (0.0007)

sion and AUC (see Table 4.2) and is closely trailing the best performers.
It is important to observe that although the BiCM is not the best per-

former in absolute terms, it achieves comparable performances with re-
spect to the alternatives making use of a considerably smaller amount
of information. In fact, it only requires the knowledge of the degree se-
quences of the two layers, while other comparison methods require at
least to run over all the common neighbours and at most to account for
how interconnected those neighbours are. The only method that takes as
input the same information, the Preferential Attachment, shows a con-
siderably poorer performance, implying that the BiCM makes an optimal
use of the input information.

4.5 Discussion

This chapter presented two different ways to enrich the range of applica-
bility of the entropy-based approach for link prediction: we considered
the case of weighted and bipartite networks.
The proposed methods significantly enrich the existing literature. When
considering weighted networks, the vast majority of algorithms only al-
lows for missing link prediction disregarding the issue of estimating the
weights to be attributed to the links. Among the few methods that al-
low for weight estimation, some have hidden parameters that are tuned
a posteriori [75], while others, using the weights estimates themselves
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Figure 4.4: Link prediction performance on the MovieLens dataset, a bi-
partite graph of users linked to movies they reviewed. The BiCM method
performs on par with the alternative methods on all evaluation measures.

as scores for the binary prediction, de facto assume that the topology
of the network is implied in the weight estimates [49]. Here we pro-
posed a general framework that allows to rigorously estimate the most
likely missing links and their weights in a probabilistic way. We also
provide a way to compute confidence intervals for the missing link. We
proposed three different null models to be used for the task, and we ob-
served that the one that was performing best on most cases was also the
one of lowest algorithmic complexity. We therefore concluded that such
method, based on the CReMB null model, is preferable over the alterna-
tives. We will soon release a routine for link prediction via CReMB to
make its application straightforward also for non-experts. One more ob-
servation is due on the different performances of DECM and CReM with
respect to the topological estimation. The DECM incorporates in the bi-
nary linkage probabilities the Lagrange multipliers relative to both the
degree and the strength sequence, while CReM uses the DBCM linkage
probabilities, that only impose the preservation of the degrees. In other
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Figure 4.5: Link prediction performance on the Venezuelan Banks and As-
sets dataset. Performance is measured by Precision (top), Accuracy (middle)
and AUC (bottom).
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words, the DECM includes the weighted information also in the binary
linkage probability, while the CReM does not. As we can see from Fig-
ures 4.1 and 4.2, there is not a clear winner between this two different ap-
proaches. This confirms other studies in the literature that showed that
adding weight information in the topology prediction phase can some-
times improve and sometimes worsen the performance.

On the front of bipartite network we presented an extension to the method
of the previous chapter based on the Bipartite Configuration Model. This
methods enriches the literature on bipartite prediction. The prediction
results show good (even if not best) performances with respect to the
alternative methods. It is to be noted, though, that all other methods
use significantly more information, relying on the exploration of all the
common neighbours of two nodes, or even the number of link connect-
ing such common neighbours. The BiCM approach on the other hand
only requires the degree sequence of each layer, making it a better can-
didate especially for dense datasets, where the exploration of all com-
mon neighbours and their interconnectivity can result to be very costly,if
not completely infeasible, in terms of calculation time and memory re-
quired. The only method that uses the same amount of information as
the BiCM, Preferential Attachment, shows a significantly poorer perfor-
mance, suggesting that our method achieves an optimal use of the input
information.
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Chapter 5

Conclusion

All good things come to an end, and thankfully, also all other things. Be-
fore leaving you to your happily ever after, let me conclude this work
by going through the main achievements and underlying the open paths
that still lie ahead of us.
Despite the ever increasing amount of data available for all sorts of as-
pects of human life and various fields of science, it is very often the
case that such data is still incomplete, partially incorrect or inaccessi-
ble. Privacy regulations forbid the disclosure of sensitive information,
costly experiments slow down the acquisition process, misalignment of
international regulations results in delays in data availability, observa-
tion and transmission processes cause the data to be partially inexact or
incomplete. Statistical studies have underlined how rigorously account
for missing information is vital to avoid introducing biases in the results.
Therefore many scholars have devoted their efforts in the creation of pro-
cedures to perform such tasks. In the particular case of complex net-
works, the literature is rich with methods devised to perform both tasks
we have focused on: network reconstruction and link imputation. Yet, as
all authors before us likely did, we claim that our solutions fill a method-
ological gap in the literature. If you are still not convinced of this, besides
questioning my explanatory abilities, I should try to clarify our contribu-
tions.
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In the network reconstruction case, we focus on weighted networks. We
observed that the works proposed in the literature follow two main lines:
in some cases, they attribute weights deterministically on top of a binary
distribution, thus completely separating the task of reconstructing the
network topological structure and its weighted characteristics. In this
way not only the interplay between link formation and link intensity is
neglected, but the fact that the methods choose a single realization out of
a binary distribution and add weights deterministically implies that the
likelihood of reproducing any real matrix is null. On the other end of the
spectrum, we have methods, like the (D)ECM, that rigorously estimates
an unbiased weighted distribution, but assume that both topology and
weights are jointly determined by binary and weighted constraints. That
is, the implicit assumption of the method is that not only the network
topology affects the weight distribution, as it is clearly the case, but also
the reverse is true: the parameters relative to the weighted constraints
appear in the expression of the binary distribution. However, the latter
implication does not necessarily hold. In general it is possible that in the
network formation process the structure is first determined and then the
link intensity adjusted.
Our approach sits in between these two lines of methodology. In fact, we
aim at deriving a flexible method that allows all the available topologi-
cal information to be used, and which determines an unbiased weighted
distribution taking into account the binary one. Let us be more spe-
cific. We start with some knowledge over the binary distribution of a
weighted network. This can be achieved because of prior information
or by solving any binary model. We suggested two possible choices for
such model, depending on the information available, but the user can
make any choice. Adding to this prior information some weighted con-
straints (i.e. the strength sequences) we derived an unbiased weighted
distribution conditional on the binary one. In this way we achieve several
desirable characteristics: flexibility in the choice of the binary model, al-
lowing for different types of binary information to be used; derivation
of an unbiased weighted distribution based upon the binary one. As
a consequence the likelihood of observing the real network is not null.
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Moreover, in the second specification of the model, CReMB , the method
is efficient and fast since it does not require the solution of systems of
coupled equations, like the DECM does. From a methodological point of
view, we applied the maximum entropy framework but with an impor-
tant difference: the key quantity to be maximized is now the conditional
entropy of the weighted distribution given the binary one. In order to
perform the parameter estimation part, we proposed a new functional,
the generalized likelihood, that, as the name suggests, extend the concept of
likelihood by averaging over the space of all possible binary configura-
tions. The comparison we carried out with two different methodologies
shows that the Conditional Reconstruction Method has better or compa-
rable performances with respect to the ECM (which had been shown to
have very good performances in the reconstruction task), but with a sig-
nificantly lowered the complexity.
As far as the link imputation problem is concerned, our approach re-
lies on an idea that is different in spirit from many methods proposed in
the literature. We move from the concept of reconstructability of a net-
work: if we are able to find a method that, given some observables, is
able to satisfactorily reconstruct the network structure, than such model
will also be able to deliver meaningful insights on the unobserved part
of a partially observed network. A few observations are due: first of all,
the reader might remember that, when introducing the concept of net-
work ensemble and the ERG model, we pointed out that the choice of
using a canonical ensemble (as opposed to the micro-canonical), besides
simplifying the mathematical tractability of the problem, was also fun-
damental because it allowed perturbations of the network observables.
In the case of link imputation this is a strict necessity: since we only
have access to a part of the network, any quantity measured on it will be
perturbed with respect to the “real” value relative to the underlying hid-
den network. When using reconstruction methods for link imputation
we therefore rely on a few assumptions: the network observable we se-
lected is “explanatory enough” to allow for a satisfactory reconstruction
of the network characteristics; the network is “homogeneous enough”
that the information on the observed part is also meaningful with respect
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to the unobserved one and, consequently, that the perturbation of the ob-
servables given by the incomplete information is “small enough” not to
biased the reconstruction procedure. With regard to the first assump-
tion, we are now in a better position with respect to the network recon-
struction task, since we can select virtually any observable: the network
structure and its characteristics are known, although only partially. The
second assumption implies that we assume the unobserved part of the
network not to be structurally different from the observed one. Whether
or not this assumption holds depends on the reason for which part of
the network is not observed. Given this observations, it is expectable
that the proposed method might fail when the reconstruction is not suc-
cessful. For instance, in the case of networks with a strong community
structure. In this case, in fact, a null model based on the knowledge of
degree and strength sequence does not contain sufficient information of
the community structure and therefore fails to capture structural prop-
erties of the graph. However, the proposed framework is flexible and
allows the use of virtually any null model of choice. If the linkage proba-
bilities are computed by solving a model that accounts for communities,
the results might improve. This represents a possible future extension of
the current work.
Still on the imputation problem, we presented two extensions: the one
relative to bipartite graphs represented an interesting exercise, contribut-
ing to a literature that is much less flourishing than its monopartite coun-
terpart. The extensions to weighted networks, on the other hand, is par-
ticularly interesting because it contributes to a problem that is strongly
under-represented in existing works: the estimation of link weights. Al-
most all methods that account for weighted information in the link im-
putation procedure do not propose a procedure to infer the intensity of
the link weights. As we previously noted, the only two methods, to the
best of our knowledge, that allow such estimation need to be take with
care. In one case [75], the authors estimate the model parameter on the
inaccessible portion of the data, thus making the method concretely in-
applicable in real missing link problems. The second paper [49], presents
an interesting and fairly complicated methodology, targeted to the case
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of social networks. The main drawback of this approach is given by the
fact that it uses the weights estimates themselves as scores for the im-
putation of the missing links. This corresponds to a strong assumption
with respect to the interplay of topology and weighted structure, as we
discussed at length in Chapter 2. Therefore, our method presents a mean-
ingful advancement with respect to state of the art methods. Moreover,
since the use of reconstruction methods returns not only linkage prob-
abilities and expected weights, but the complete specification of binary
and weighted distributions, we are able to compute confidence intervals
for the weight estimates.
In conclusion, the work presented in this thesis addresses some interest-
ing issues but also opens the door to more questions. It remains to be
investigated how to estimate the proportion of a missing links given a
partially observed network, or how to account for the presence of spuri-
ous links. The latter problem might seem like a trivial extension, but it is
actually quite subtle. I hope we will be able to address these and other
issues in the future so that we can say: “the best is yet to come”.
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