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Abstract

Network science has provided a set of powerful theoretical
results for the description of critical phenomena in complex
systems. These represent fundamental tools for the design
and control of real networked systems with concrete and prac-
tical applications. Many of these results have been, how-
ever, formulated in the framework of independent networks,
i.e., closed systems that do not interact with nor depend on
other networks. This is a weak hypothesis because in the real-
world networks cannot be considered as independent enti-
ties. For instance, critical infrastructure are very often and
intentionally coupled together: the functioning of the net-
works of water and food supply, communications, fuel, fi-
nancial transactions and power generation and transmission
depend one on the other. For this reason, many of the classical
results of network science have been questioned, and recent
research has provided evidence that many of the results valid
for isolated networks are indeed not verified for interacting
(or so called multilayer) networked systems. With this thesis
we present new results in the field of both linear and non-
linear dynamical processes in the context of multilayer net-
works, namely diffusion and percolation. While diffusion is
naturally related to the concept of walks and navigability of
a network, percolation addresses the concept of stability and
resilience of a network under random and targeted attacks.
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Chapter 1

Introduction

Complex systems have been one of the main research topic in modern
science for the last decades. As a matter of fact most of real-world sys-
tems involve large amounts of agents interacting by means of both ran-
dom and non-random patterns. In several cases these non-trivial inter-
action structures are able to produce a macroscopic collective behaviour
which can hardly be forecast from local microscopic observations: this is
indeed one of the fundamental features of a complex system. The whole
spectrum of properties defining a complex system is in general very broad,
and has naturally found uncountable applications in a remarkable va-
riety of more specific disciplines, ranging from physics and economics
to biology and sociology. This multidisciplinary aspect, together with
the development of modern technologies, led to a growing interest to-
wards complexity science. Indeed the study of complex systems often re-
quires advanced methods in order to both store and manipulate massive
amounts of data gathered from real-world systems. These techniques
take part in defining the fields of Big Data and Data Science, thanks to
which we now are able to statistically infer relations and dependencies
in extrimely large datasets with low information density. However, even
tough measuring correlations between observed quantities is crucial and
indispensable, mathamatical models are needed in order to have a full
understanding of complex systems. One of the most important frame-
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works thanks to which we are able to construct such models is given by
Network Theory.
Loosely speaking a network is a collection of nodes (or vertices) connected
by links (or edges). In its simplest instance a network is undirected and
unweighted, meaning that links either exist or not exist and do not have
a direction. To give a simple example, this picture can be adopted if
we want to represent friendships, or generic symmetric relationships
among a given number of people. On the other hand many systems
require edges to be weighted, meaning that every link is associated to a
real number rather than a binary one. Building on the previous example
we could define the weight of a relationship to be a function of interac-
tion rates, therefore an edge connecting two close friends would weight
more that one connecting two people that barely know each other. We
can then further postulate that there are some ”famous” people, which
are known by the majority of the community, but on the other hand they
do not know/interact with each one. This additional information would
characterize each link with a specific direction in order to distinguish, in
social-networks parlance, ”followers” from ”following”.
It is therefore understood that networks first of all provide us an incredi-
bly powerful tool in order to visualize the underlying structures of com-
plex systems, but of course this is not the whole story. As a matter of
fact each network also defines a particular topological space on which
complex dynamical processes take place. Our common sense relies on
the usual continuous 3-dimensional space: every-day physics happens
in an environment where, having fixed a reference frame, positions can
uniquely be specified by the use of three real numbers named coordinates.
Since ”our” space (even if limited) is continuous, uncountably many po-
sitions can be represented, implying that for any two points A and B

there exists an infinite amount of ways to connect them. In the case of
networks the rules are significantly different: first the space is not con-
tinuous, meaning that ”points” (nodes) constitute a countable set, hence a
coordinate system is not required and nodes are instead labeled by an
integer i. Moreover the links connecting the nodes form a countable
set as well, which implies that the total number of possible paths con-
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Figure 1: Difference between a generic network (right panel) and a square
lattice (left panel). While in the square lattice all nodes have the same degree
in the more general case of fig. b) the degree varies from node to node. Here
the red node is the hub, i.e. the node with the highest degree, while the blue
nodes are the leaves.

necting A and B is again countable. A simple example of a space with
such rules is the square lattice (see fig. 1a), which is a common way to
discretize continuous 2-dimensional space. A N × N square lattice is
made of N2 nodes and, neglecting boudary terms, approximately 2N2

edges. Furthermore each node has approximately four neighbors, mean-
ing that starting from point A only four nodes can be reached in one
step. In the more general case of a network (fig. 1b) the number of neigh-
bors, which is defined as degree, is not the same for every node i: a node
with a high degree is called hub, while a node with only one connection
is usually called leaf (see fig. 1). This fundamental topological feature
provides a first insight on how a node can be different or, depending
on the specific context, more important than other nodes. For instance, a
random walker in the network of fig.(1b) will likely visit the hub more
often with respect to the other nodes. In general, different topologies
will significantly affect in different ways the output of dynamical pro-
cesses taking place in those particular structures. In what follows we
show how the specific processes of diffusion and percolation are described
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in the complex-networks environment, and how their general outcome
is affected by different topologies. While diffusion is naturally related to
the concept of walks and navigability of a network, percolation is deeply
related to phase transitions theory, and addresses the concept of stability
and resilience of a network under random and targeted attacks.
The discussion here is intentionally very elementary and introductory,
starting from classic examples from physics and followed by a general-
ization to the complex-networks environment.

1.1 Diffusion in complex networks

In physics the heat diffusion equation for the state function u(x, y, z, t) is
described by the following parabolic partial differential equation:

∂u

∂t
= α∇2u, (1.1)

where ∇2 is the Laplacian differential operator and α is a positive con-
stant. While in continuous 3-dimensional space the Laplacian is given
by the divergence of the gradient (applied to a scalar field), in one dimen-
sion it simply reduces to the usual second derivative. Therefore eq. (1.1)
in one dimension reads:

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
. (1.2)

In order to numerically solve equation (1.2) it is a common practice to
perform a discretization over both space and time. For our purpose here
we consider only the space discretization. The continuous x coordinate
is then replaced by the discrete index i ∈ Z, and every component xi is
equally spaced by a fixed small amount ∆x. Then, instead of u(x, t) we
consider its discretized version ui(t). Overall, the second derivative is
appriximated as follows:

∂2u

∂x2

∣∣∣
xi
' ui−1 − 2ui + ui+1

∆x2
. (1.3)
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Figure 2: Pictorial representation of the discretized real line.

By using this approximation we can rearrange eq. (1.2) in the following
matrix form:

∂u(t)

∂t
= α′Lu, (1.4)

where u(t) denotes the column vector with components ui(t), α′ = α/∆x2

and is the L is the matrix defined by the following entries:

Lij =

 −2 if i = j
1 if j = i+ 1 or j = i− 1
0 otherwise

(1.5)

Equation (1.5) defines the Laplacian matrix L. It is immediate to verify
that L is symmetrical and has a 0 eigenvalue corresponding to the fixed
state uf = (1, 1, 1, . . . ), which physically speaking corrensponds to the
state with uniform temperature. Furthermore we can see that L encodes
the topology of the discretized real line x (see fig. 2). Indeed we can
interpret the discretized real line as a simple network were every node
i has two neighbors, namely i − 1 and i + 1. Hence we can associate
each diagonal entry of L to the numer of neighbors (or degree) of site i
and every off-diagonal element of Lij to an edge connecting node i to its
following. It is therefore convenient to express L as the difference:

L = A−D, (1.6)

where A is the adjacency matrix

Aij =

{
1 if i is connected to j
0 otherwise (1.7)

5



and D is the diagonal matrix of degrees.
Even though this representation might seem too elaborated for simple
heat diffusion in one dimension, it is very important to point out that it
can be applied to any kind of topological structure. The adjacency matrix
A defined in eq. (1.7) is aN×N (withN the number of nodes) binary sim-
metric matrix which uniquely represents every undirected unweighted
graph. To be more general, any real-valued non-symmetric matrix is the
representation of certain a directed weighted graph. The association be-
tween graphs and adjacency matrices is therefore a one-to-one relation-
ship. Besides that, the diagonal degree matrix D can be easily derived
from A:

D = Diag(Auf ), (1.8)

where uf is again the costant 1 column vector defined above.
Having defined the matrices A and D we can extend the simple heat-
diffusion problem to any network. It is costumary in the literature to
define the Laplacian matrix as

L = D −A, (1.9)

hence the heat equation takes the form:

∂x
∂t

= −αLx, (1.10)

where x here is the nodes vector.
Thanks to the definition (1.9) the Laplacian matrix L is, for an undirected
unweighted graph, a symmetric semi-positive definite matrix. This im-
plies that all the eigenvalues λi are positive real numbers and the evolu-
tion of any state φ =

∑
i civi, where vi are the unit-norm eigenvectors, is

governed by:
ci(t) = ci(0)e−λit = ci(0)et/τi , (1.11)

where the ci(0) are determined by initial conditions and τi = λ−1
i ∀i.

From eq. (1.11) we clearly see that any given initial state φ approach ex-
ponentially to the equilibrium state corresponding to the 0 eigenmode.
As mentioned above the 0 eigenmode is trivial and is always the same
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regardless of the network topology. On the other hand the strictly posi-
tive part of the laplacian spectrum determines the speed of convergence
towards the equilibrium and depends strongly on the topological fea-
tures of the network. In particular it is natural to define the relaxation
time of a network as the largest τi, which corresponds to the ”slowest”
eigenmode. The relaxation time then corresponds to the second smallest
eigenvalue of the laplacian matrix, which is often denoted as λ2. This
particular eigenvalue is also known algebraic connectivity or Fiedler value
and its corresponding eigenvector is known as Fiedler Vector. The spe-
cific value of λ2 depends on the topology of the network: first λ2 = 0 if
and only if the network is disconnected, and is upper bounded by the
connectivity κ (JVM08), that is the minimum number of nodes or edges to
be removed in order to disconnect a given graph. Further analytical ex-
pressions for the algebraic connectivity can be derived in the case of very
specific structures, for istance λ2 = N for a N -nodes complete graph or
λ2 = 2(1 − cos(π/N)) for a cycle graph with the same number of nodes
(NdA07).
In general the algebraic connectivity constitutes a topological quantity of
fundamental relevance whose properties have been exploited in many
applied research fields ranging from network navigability to synchro-
nization (NAC14; ADGK+08) (see Chapter 2 for further details).

1.2 Phase Transitions in complex networks

1.2.1 The Ising model

Another fundamental topic in modern physics is the one of phase tran-
sitions. In order to have a quick impression on what a phase transition
actually is, we start by considering the main steps required to under-
stand the Ising Model, which is a fundamental mathematical model of
ferromagnetism.
In its simplest instance the Ising model consists in a set of discrete vari-
ables si = ±1 representing magnetic dipole moments or spins arranged in
an infinite d-dimensional lattice. The Hamiltonian function of the system
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(which represents the energy of a given spin configuration) reads:

H = −J
∑
〈i,j〉

sisj − h
∑
i

si, (1.12)

where J > 0 is given constant related to interaction strenght, h is a an ex-
ternal constant magnetic field and

∑
〈i,j〉 represents the sum over nearest

neighbors.
For our purpose it is sufficient to restict the problem to the Hamiltonian
of one specific spin s0:

Hs0 = −s0(h+ J

z∑
i

si), (1.13)

where z = 2d here is degree of spin s0, i.e. the number of nearest neigh-
bors.
Here first we define as order parameter the average magnetization m =

〈si〉. The order paramenter distinguishes between two possible phases
of the system:

• A nonmagnetic (disordered) phase where on average each spins vari-
able can assume the value 1 or −1 with same probability, hence
m = 0.

• An magnetic (ordered) phase where the spin values 1 and−1 do not
give zero average, hence m 6= 0.

As a second step we adopt the common mean-field approximation which
consists in substituting each random variable si with its expectation value
m, therefore neglecting fluctuations. The Hamiltonian Hs0 can then be
approximated by:

HMF
s0 = −s0(h+ zJm) = −s0heff , (1.14)

where we defined the effective field heff = h+ zJm.
The goal is to characterize the behavior of the order parameter m as
the external temperature T changes. Although the temperature T is not
explicitly present in eqs. (1.12) and (1.13), in equilibrium statistical me-
chanics it is assumed that the system is at thermal equilibrium with the
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external environment. This assumption, together with other important
postulates (Hua87), allows to define a specific measure associating each
possible state/configuration σ of the system to a given, temperature-
dependent probability Pσ as follows:

Pσ =
e
−H(σ)
kBT

Z
, (1.15)

where kB is the Boltzmann constant and the normalization term Z =∑
{σ} exp

[
−H(σ)
kBT

]
defines the Canonical partition funcion.

In our case the Hamiltonian of eq. (1.13) depends only on the two possi-
ble values of the variable s0, therefore it is straightforward to compute:

〈s0〉 =
∑
s0=±1

s0P (s0) = tanh

(
heff
kBT

)
. (1.16)

Applying again the mean field argument, hence assuming 〈s0〉 = m, fi-
nally yields the self-consistent equation:

m = tanh

(
h+ zJm

kBT

)
. (1.17)

Although equation (1.17) cannot be solved analytically, very important
features can be deduced as temperature T decreases, even in the simple
case h = 0 – hence with no external magnetic field. As we can see from
figure (3) there is a particular threshold Tc above which only the solution
m = 0 exists, while when T < Tc two additional symmetric solutions
appear. The critical temperature Tc can be easily obtained by computing
the first derivative with respect to m of eq. (1.17) evaluated at m = 0,
which gives:

Tc =
zJ

kB
⇒ βc =

1

zJ
, (1.18)

where we adopted the common convention β = [kBT ]−1.
Tc (or βc) therefore identifies a critical value that marks a clear boundary
between the ordered phase and the disordered one. At this critical point
the order parameter is continuous but it shows a singularity in its first
derivative: for this reason the above described transistion is classified as
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Figure 3: Graphical solution of eq. (1.17) (left panel). As T < Tc two non-
trivial solutions appears, giving rise to a second-order phase transition. The
whole phase diagram for the two solutions is pictorially represented on the
right panel.

a continuous or second-order 1 phase transition; on the other hand when
the order parameter is discountinuous at the critical point the transtion
is classified as first-order or discontinuous.

1.2.2 The SIR Model

Even though the mathematics shown here might seem specific for this
very special case, the essential key concepts presented above also ap-
ply in other radically different contexts. Indeed, using the same heuris-
tic we could think of representing the spreading of a disease inside a
population by replacing lattice sites with individuals and spin variables
with health status variables. Then, while in statistical physics time evo-

1The ”second-order” expression comes from the orginal Ehrenfest classification based on
the discountinuity of the n-th derivative of the thermodynamic free energy F . In the case

of the Ising model the susceptibility χ = ∂2F
∂h2

diverges at the critical point, while the
magnetization m = ∂F

∂h
does not, therefore it is a second-order phase transition according

to this definition. In the modern interpretation of critical phenomena, second-order phase
transitions are explained in term of spontaneous symmetry breaking: for instance in the case
of the Ising model this reduces to the fact that for T < Tc the original Z2 symmetry for the
spin variables is broken, which means m = 〈si〉 assumes a non-zero value.
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lution is driven by entropy maximization, in epidemiology there exist
several models defining the evolution of the system, but nevertheless
very strong analogies appear. Among these models one of the most pop-
ular is the SIR model, where each individual can be either in state S
(susceptible), or in state I (infected) or in state R (removed). For the sake
of simplicity let us consider again the mean-field case for the moment,
hence every random pair of individuals can interact. Then the suscep-
tibiles are infected at a constant rate β, while the infected recovers at a
constant rate µ and the recovered cannot be infected anymore. Given
s(t), i(t) and r(t) the fraction of susceptible/infected/recovered individ-
uals at time t (hence s(t) + i(t) + r(t) = 1 ∀t), we have the nonlinear
dynamical system:

di

dt
= βis− µi = µi

(
β

µ
s− 1

)
(1.19)

ds

dt
= −βis (1.20)

dr

dt
= µi. (1.21)

First we note that from eq. (1.20), for any given initial condition s(0) the
function s(t) decreases over time. This implies from eq. (1.19) that if
β
µs(0) > 1 there will be an epidemic outbreak while on the contraty there
will not. In any case, at the end of the outbreak all the infected individ-
uals will recover, therefore we have the asymptotic condition i(∞) = 0,
which implies r(∞) + s(∞) = 1. We are then interested in finding the
asymptotic value r(∞) in order to characterize the damage of the out-
break. This value can be worked out dividing eq. (1.20) by eq. (1.21),
which allows to immediatly integrate s as a function of r:

s(t) = s(0) exp

[
−β
µ
r(t)

]
, (1.22)

where for sake of simplicity we reasonably assumed r(0) = 0.
By using the above mentioned asymptotic relation we readily get the
trascendental equation:

r(∞) = 1− s(0) exp [−R0r(∞)] , (1.23)
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Figure 4: Graphical solution of eq. (1.23) (left panel). R0 = 1 marks a
second-order phase transition analogous to the one of figure (3). The phase
diagram is pictorially represented on the right panel.

where we defined the basic reproduction numberR0 = β/µ. Equation (1.23)
naturally reminds of the trascendental equation (1.17), especially in the
case where s(0) ' 1. As a matter of fact even if s(0) is very close to 1, if
R0 is larger then 1 there will be an epidemic outbreak, and the particular
value R0 = 1 marks a continuous phase transition for the order parame-
ter r(∞) (see figure 4).
Equations (1.19)(1.20)(1.21) can be straightforwardly generalized to the
context of homogeneous networks, where each node interacts on average
with 〈k〉 other nodes, where 〈k〉 is the average degree of the network. The
result here is the same of the mean field case, though having redefined
R0 = 〈k〉β/µ.
A more realistic model is given by the heterogeneous (or degree-based) mean-
field theory (PSCMV14; GDM03). In this context the variables s, i and r

are replaced by sk, ik and rk (with sk + ik + rk = 1), that are the ratios
of susceptible/infected/removed individuals with degree k. The time
evolution for this model can be written as (GDM03):

drk
dt

= ik (1.24)

dik
dt

= −ik + βk[1− ik]
∑
k′

k′ − 1

k′
P (k′|k)ik′ , (1.25)
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where without loss of generality we set µ = 1, and P (k′|k) is the proba-
bility that a node of degree k has a neighbor of degree k′. Moreover, the
factor (k′ − 1)/k′ in eq. (1.25) takes account of the fact that in the SIR
model an infected node cannot back-propagate the disease to the neigh-
bor that originally infected it.
For the heterogeneous mean-field SIR model, the order parameter is de-
fined as r∞ =

∑
k P (k)rk(∞). In the hypothesis of uncorrelated net-

works, hence withP (k′|k) = k′P (k′)/k, by linearization of eqs. (1.25)(1.24)
we readily get (PSCMV14; GDM03):

βc =
〈k〉

〈k2〉 − 〈k〉
, (1.26)

where all the averages are performed with respect to the measure in-
duced by the degree distribution P (k) – hence 〈k2〉 =

∑
k2P (k).

From eq. (1.26) we can see how the topology of the network affect the epi-
demic threshold: in particular if P (k) is Poisson distributed (which the
case of classical Erdös-Rényi random graph) we have R0 = 1/〈K〉, while
if P (k) = δkz (case of regular random graph) we have R0 = 1/(z − 1).
Again these relations remind of eq. (1.18) where the critical value βc is
given by the inverse of the local interaction stranght. More interesting is
the case of P (k) = k−γ , hence when the degree distribution is a power-
law, which is the topology that characterizes the so-called scale-free net-
works. In particular if we have γ ≤ 3 the second moment of the degree
distribution 〈k2〉 diverges, which gives the critical relationR0 = 0. Hence
for this particular class of networks even an extremely small value of the
infectivity β is sufficient to generate an epidemic outbreak. This last fact
is extremely important in order to model epidemics and opinion dynam-
ics among real-world networks. As a matter of fact most of every-day life
networks from social networks to the internet itself often show scale-free
behavior (CSN09).

1.2.3 Percolation and network resilience

The SIR model has been recognized to be equivalent to the process of
bond percolation (Gra83; New02), that is perhaps one of the simplest math-
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f = 0.8 f = 0.85

f = 0.95f = 0.90

Figure 5: Bond percolation process on an random Erdös-Rényi network of
N = 300 nodes and average degree 〈k〉 = 10. For each panel the red nodes
represent the LCC and f denotes the removed fraction of links.

ematical processes showing a genuine second-order phase transition. In
this framework, given a network G, we consider each link to be retained
with probability p and removed with probability f = 1− p. On the other
hand, the same process applied to nodes rather than links defines site per-
colation. In both cases the goal is to keep track of the relative size S of the
graph’s Largest Connected Component (LCC) as p varies (see figure 13):
the largest the values of S is, the more the network keeps being overall
connected. Percolation processess therefore play a fundamental role in
describing the resilience of a network under random attacks or random
failures. Even though the general problem is fairly hard to solve, an-
alytical solutions can be provided in the case of both uncorrelated and
loop-free networks using the formalism of generating functions (Wil06).
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Let us define as u the probabilty that a randomly chosen edge e does not
belong to the LCC: this happens when either e has been removed (with
probabilty 1 − p) or when e has not been removed and it is connected
to a node which does not belong to the LCC via its ajacent links (e ex-
cluded). Therefore the following self-consistent equation can be defined
(Wil06; GDM03):

u = 1− p+ pg1(u) with g1(u) =
∑
k

(k + 1)P (k + 1)

〈k〉
uk. (1.27)

Having solved eq. (1.27), the relative size S of the LCC is then given by:

S = p(1− g0(u)) with g0(u) =
∑
k

P (k)uk. (1.28)

Even though (1.27) has to be solved numerically for every considered
network, it is possible to derive an analytical threshold for the existence
of non trivial solutions. As a matter of fact, while u = 1 is always a trivial
solution of eq. (1.27), an additional non-trivial solution to the equation
may exists since both its left-hand and the right-hand side are defined
by two increasing monotone functions and the slope of the right-hand
side depends on the external parameter p. Again, this is exactly the same
picture of both eq. (1.23) and eq. (1.17). The critical threshold pc for the
existence of a non-trivial solution of eq. (1.27) is found again by com-
puting the derivative with respect to u of both sides evaluated in u = 1,
which yields:

pc =
1

g′1(1)
=

〈k〉
〈k2〉 − 〈k〉

. (1.29)

While u = 1 corresponds to S = 0 (from eq. (1.28)), for p > pc we have
that S assumes increasing positive values as p gets closer to 1, and the
resulting phase diagram is again of the same kind of fig.(4b). Moreover
we can clearly see that the critical relations (1.29) and (1.26) are identical.
Overall, the set of removed nodes by an SIR epidemic outbreak origi-
nated from a single node is equivalent to the cluster of the bond percola-
tion problem to which the initial node belongs, with p = 1− e−R0 . Given
this last fact we know that bond percolation and SIR epidemic are essen-

15



Figure 6: Bond percolation process on an Erdös-Rényi random network
with N = 300 nodes and average degree 〈k〉 = 10. For each fixed value
of the removal probability 1 − p, the resulting output for S and χ were av-
eraged over 100 realizations of the same process. On the left panel red dots
denote the obtained numerical value for S, while the continuous black line
represents the numerical solution of eq. (1.28). On the right panel red dots
are associated to the numerical output for the susceptibility χ, while the ver-
tical dashed line represents the pseudo-critical threshold of eq. (1.29), which
in the case of Erdös-Rényi networks reduces to pc = 1/〈k〉 = 0.1.

tially two equivalent problems, both characterized by network’s topol-
ogy. For instance, as we have seen above, a scale-free network with ex-
ponent γ ≤ 3 spreads diseases very easily: on the other hand this feature
corresponds to an extreme resilience under random attacks, i.e. all links
need to be removed in order to dismantle the network completely.

Introduction to finite sizes effects

In all the examples we have seen so far a continuous phase transition
is defined by a discontinuity of the order parameter in its first deriva-
tive. However the discontinuous behavior of the order parameter holds
only in the thermodynamic limit, hence when the number of nodes N →
∞. Discontinuities are in general smoothed by finite-size effects (see fig-
ure 6a). In the context of locally tree-like networks (hence for networks
with a decreasing loop density as N increases), eq. (1.29) rather defines
a pseudo-critical threshold pc(N) which approaches the real percolation
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threshold only in the thermodynamic limit. In order to have the best nu-
merical estimate of the percolation threshold it is customary to compute
the numerical susceptibility χ, which can be defined as:

χ =
Var(S)

〈S〉
, (1.30)

where here the average is defined on the set of random realizations of
the percolation process at fixed removal probability 1 − p. While in the
thermodynamic limit the susceptibility χ diverges as p → pc, at all finite
sizes χ does not diverge around the critical point, but it rather reaches a
maximum χmax. Therefore χmax is a common way to give a best numer-
ical estimate of the percolation transition at finite sizes (see figure 6b).
In general on a finite network of size N , the order parameter scales ac-
cording in the following way (RC15a):

B = N−
β
ν F (|p− pc|N

1
ν ), (1.31)

where β, ν > 0 are two positive constants named critical exponents and F
is a scaling function. Moreover for the pseudo-critical threshold pc(N)

we have the following power law decay towards the real threshold pc

(RC15a):
pc(N)− pc ∝ N

1
ν . (1.32)

Overall, at p = pc(N) we have S ∼ Nβ/ν and χmax ∼ N1−β/ν . The par-
ticular values for the critical exponents depend on the network topology
and identify the so-called universality classes, which describe in a uni-
versal manner the critical percolation properties of different kind of net-
works (see (DGM08) for further details).

1.3 Single layer vs Multilayer

In the previous sections we have stressed several times how the output of
a dynamical process is affected by the topology of the network in which
takes place, however we mainly focused on the effect of the degree dis-
tribution P (k) and its first moments, such as the average degree 〈k〉. For
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instance, eq. (1.29) holds under the locally-tree like ansatz, hence when
any loop-effect is avoided. Indeed, the effect of higher-order topological
properties such as the clustering coefficient (which is related to the density
of closed triangles in the graph) is still an argument of debate, especially
in the field of percolation (SBn06; RC16a). Nevertheless lower-order
properties are able to satisfactorily cover a large number of cases, except
when we deal with multi-layer networks. In fact multilayer networks
are characterized by a given number of networks (called layers) and an
interconnection structure between the layers. In many real-life systems
it is often needed to differentiate between the type of interconnections:
for insitance, two friends might follow each other in Twitter while they
might not in Instagram, or cities that might be connected or not when
different airlines companies are considered. These cases present more
information to be encoded in our mathematical formalism: indeed, the
adjacency matrix is often substituted by higher dimensional objects such
adjancency tensors (DDSRC+13; DDGPA16) or supra-adjacency matrices
(see next chapter). Multilayer networks have been deeply investigated
in recent years, showing critical properties not accessible to single layer
structures, such as structural transition as well as multiple, discontinu-
ous and hybrid phase transtition.

A more detailed treatment of multilayer networks will be given in the
next chapters. In particular, Chapter (2) reports our recent work on mul-
tiple structural transitions in interacting networks (RACC18b). In this
work, thanks to the use of first order perturbation theory, we generalize
previous results reporting a single structural transition in the algebraic
connectivity to the more general result of z multiple structural transi-
tion, where z is the number of network layers.
Chapter (3) reports our latest contribution in the field of percolation in
multilayer networks (RACC18a). In particular we deal with the specific
case of weakly-incterconnected networks, showing an anomalous behav-
ior of the observed susceptibility caused by random abrupt jumps in the
order parameter. Moreover, a finite-size scaling analysis in the abrupt
region supports the hypothesis of a genuine first-order phase transition.
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Finally in Chapter (4) we present a recent in-depth study on bond perco-
lation which aims to exploit the information provided by the complement
of a given graph in order to numerically construct better estimates for
the bond percolation threshold. The method presented may be applied
to both single and multilayer networks (RGG19).
We conclude with a discussion on the importance of results and future
developments in Chapter (5).
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Chapter 2

Multiple structural
transitions in interacting
networks

2.1 Interconnected networks

Interconnected (or interdependent) networks are a natural representa-
tion of complex systems composed by several networks interacting with
each other (DDSRC+13; KAB+14; BBC+14; Gar16). It is known that
those interactions are able to make such systems significantly different
from isolated networks by both a structural and dynamical point of view
(Rad14; DDGPA16). As a matter of fact dissimilar behaviours have been
reported in navigability (DDSRGA14), communicability (EGGn14), ro-
bustness (BPP+10; GBHS11; GGDDG+15), percolation (HKCH11; BD14;
HCG+16), epidemics (SMSBn12; DHS12; WX12a; GGA13), and synchro-
nization (HPL+06; ASEG+14).

Within the field of interconnected networks, the Laplacian matrix
constitutes a fundamental mathematical object to which much attention
has been devoted recently (RA13; GDGGGn+13; SRDDK+13; MHWMD14;
SGCM14; DSSVM15; SADS+16; VM16). Given an undirected graph G,
the Laplacian matrix L is defined asD−A, whereA is the adjacency ma-
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trix ofG (its generic elementAij = 1 if i and j are connected, andAij = 0

otherwise) and D is the diagonal matrix of degrees, which be written as
D = diag(A |1〉), where |1〉 denotes the column vector with all entries
equal to 1 1. Since the laplacian matrix can also be written as L =MTM
(where M is the network incidence matrix 2), it trivially follows that
L is positive semidefinite, meaning that all of its eigenvalues are non-
negative. Furthermore by construction row/column sums of L are all
zero, in fact L |1〉 = A |1〉−A |1〉 = |0〉. The Laplacian matrix therefore al-
ways admits λ1(L) = 0 as the smallest eigenvalue, corresponding to the
eigenvector |1〉. The second-smallest eigenvalue of the spectrum, λ2(L),
defined as the algebraic connectivity of the graph, reflects how much con-
nected the overall graph is (Fie75). Indeed, λ2(L) is different from zero if
and only if the graph is connected; otherwise, its degeneracy equals the
number of disconnected components of the graph. The value of λ2(L) is
determined as:

λ2(L) = min
|v〉∈V

〈v|L|v〉 (2.1)

where |v〉 ∈ V is such that 〈v|1〉 = 0 and 〈v|v〉 = 1, and V is the set of
normalized eigenvectors of L.

The Laplacian spectrum is typically used in order to characterize both
structural properties of the networked system, such as connectivity, di-
ameter and number of spanning trees (Moh91; JVM08), as well as dy-
namical properties, such as diffusion and synchronization (ADG07; ADGK+08;
SDM08). Recently, Radicchi and Arenas (RA13) showed that the pro-
cess of building independent network layers into a multiplex network—
which is a peculiar type of multilayer interconnected network in which
nodes replicate at each layer—undergoes a structural transition in the
algebraic connectivity as interconnections are formed. Specifically, let
us define q ∈ [0, 1] as the interaction strenght between two network
layers, meaning that we assign the same weight q to every inteconnec-
tion link. It was shown (RA13) that λ2(q) is an increasing monotonic

1In this chapter we adopt the bra-ket notation, hence |v〉 indicates a generic column
vector while 〈v| = |v〉T indicates a generic row vector.

2The incidence matrix M is of size N × E (with N the number of nodes and E the
number of edges) and has entriesMij = 1 if node i and edge j are incident and 0 otherwise.
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function which presents a sharp critical point qc at which ∂λ2/∂q is dis-
countinuous. For q < qc the two networks are structurally distinguish-
able (and the system behavior is not affected by their detailed topology
but depends only on the interconnection structure), whereas, for q > qc

the interconnected network functions as a whole (and topological effects
do play a role). Later, Darabi Sahneh et al. (DSSVM15) found an ex-
act solution for qc. Moreover, they observed that the structural transi-
tion disappears when one of the network layers has vanishing algebraic
connectivity: layers of such interconnected network topologies become
indistinguishable, despite very weak coupling between them. Martı́n-
Hernández et al. (MHWMD14) further showed that, for a multiplex,
there exists a critical number of diagonal interlinks beyond which any
further inclusion does not enhance the algebraic connectivity of the sys-
tem at all, whereas, for a randomly interconnected system, there exists a
critical number of random interlinks beyond which algebraic connectiv-
ity increments at half of the original rate. Van Mieghem (VM16) further
computed the nontrivial eigenmode of the Laplacian for a regular topo-
logical structure of interconnections.

In what follows we blend this research line of studying structural
transitions in interacting networks. In order to tackle general topologies
of both network layers and interconnections we use the approximation
given by first order pertubation theory. Perturbation theory has already
found several application in network science, for instance to study the
Laplacian eigenvalues of scale-free networks (KM07), to analyze spec-
tral properties of networks with community structure (CGO09), to iden-
tify important nodes within communities (WDF11), to find the relation
between eigenvector and topological perturbations (YWL+14), to ana-
lyze the localization properties of Laplacian eigenvectors on random net-
works (HN17) and, in the context of multiplex networks, to unveil the
time scales of diffusive processes (GDGGGn+13; SRDDK+13). The un-
derlying idea of perturbation theory is to treat an operator acting on the
system as the sum of an unperturbed part, which in our context refers to
isolated network layers and for which the exact solution may exist, and
a perturbation, given by the interconnections between these layers. For a
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Introducing perturbation

Figure 7: Pictorial representation of the unperturbed system (disconnected
networks) and the perturbed one (interconnected networks).

more detailed treatment of perturbation theory see Appendix A.

Our proposal constitutes a very general framework for the analysis of
structural transitions in the most wide scope of interconnected/interdependent
multilayer networks. The analytical characterization of such transitions
in this approximation regime represents a step forward in the direction
of having a closed theory of multilayer networks.

2.2 Perturbative approach for the spectrum of
the graph Laplacian

We focus on studying the variation of the Laplacian matrix spectrum
when the perturbation is introduced. The perturbation here is naturally
identified with the introduction of the interconnection links (see figure 7).
We start with the simplest case of two connected, undirected unweighted
networks A and B, with N and M nodes each, respectively. Intercon-
nections are randomly established between these networks, and are de-
scribed by a generic N ×M adjacency matrix Q. The supra-Laplacian
of the whole system can be represented with the four-blocks (N +M)×
(N +M) matrix (RA13):

L =

(
LA +KA −Q
−QT LB +KB

)
, (2.2)
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where LA and LB are the Laplacian matrices of each network, while
KA = diag(Q |1〉) and KB = diag(QT |1〉) are the diagonal matrices of
inter-degrees. To apply perturbation theory, we split L into an unper-
turbed part L0 and a perturbation V :

L = L0 + V =

(
LA 0
0 LB

)
+

(
KA −Q
−QT KB

)
. (2.3)

We denote, for L0, the unperturbed spectrum of eigenvalues as E(0)
n and

its associated orthonormal basis of eigenvectors as |n(0)〉. Without loss of
generality we can write the unperturbed spectrum as:

E(0)
n = {0, 0, λ2(LA), λ2(LB), . . . }, (2.4)

where λ2(LA) and λ2(LB) are the algebraic connectivities of layer A and
B respectively. Note that in this case we have a 2-fold degeneracy in the
0 eigenvalue, since by definition the unperturbed system consists of two
disconnected components. After having introduced the interconnection
matrix Q the full spectrum reads:

En = {ε0, ε1, λ2(LA) + ε2, λ2(LB) + ε3, . . . }, (2.5)

where εn is the correction to the n-th eigenvalue of the unperturbed spec-
trum. Perturbation theory then consists in defining for each n the follow-
ing series:

εn = ε(1)
n + ε(2)

n + ε(3)
n + . . . , (2.6)

where we define ε(1)
n to be the first order correction, ε(2)

n the second order
correction and so on (see Appendix A for further details).
For the non-degenerate part of E(0)

n first-order correction reads:

ε(1)
n = 〈n(0)|V|n(0)〉 , (2.7)

so that the spectrum of L at first order would be simply given by:

E(1)
n = E(0)

n + 〈n(0)|V|n(0)〉 . (2.8)
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However we have to resolve the 2-fold degeneracy in the 0 eigenvalue
for L0. In order to do so we can introduce the unperturbed eigenstates:

|+(0)〉 =
1√

N +M

(
|1〉
|1〉

)

|−(0)〉 =
1√

N +M

( √M
N |1〉

−
√

N
M |1〉

)
as the orthonormal basis for such a degenerate sub-space (VM16). Since
the perturbation V becomes diagonal when represented in this basis (i.e.,
〈+(0)|V|−(0)〉 = 〈−(0)|V|+(0)〉 = 0), we immediately get the eigenvalues
corresponding to |+(0)〉 and |−(0)〉:

ε
(1)
0 = 〈+(0)|V|+(0)〉 = 0, (2.9)

ε
(1)
1 = 〈−(0)|V|−(0)〉 =

τ(Q)

µ
, (2.10)

where τ(Q) = 〈1|Q|1〉 ≡
∑
ij Qij and µ = NM/(N + M). Note that

ε
(1)
1 depends only on N , M and τ(Q) (which is just the total number of

interconnection links). Remarkably, eq. (2.9) reminds of the classical two-
body problem of two masses N and M mutually interacting by means of
a coupling force of intensity τ(Q) (VM16): ε(1)

0 gives the acceleration for
the center of mass while ε(1)

1 is the relative acceleration between the two
masses.

We then consider the smallest non-zero eigenvalues of the unper-
turbed state L0 given by the algebraic connectivities of either network
A or B. Denoting as |vA〉 the Fiedler vector of network A, that is the nor-
malized eigenvector corresponding to λ2(LA), we pose |v(0)

A 〉 =
(|vA〉
|0〉
)
.

The first order correction to λ2(LA) is, according to both eq. (2.7) and the
notation adopted in eq. (2.5)

ε
(1)
2 = 〈v(0)

A |V|v
(0)
A 〉 ≡ 〈vA|KA|vA〉 . (2.11)

Analogously, denoting as |vB〉 the Fiedler vector of network B, and pos-
ing |v(0)

B 〉 =
( |0〉
|vB〉
)
, we have:

ε
(1)
3 = 〈v(0)

B |V|v
(0)
B 〉 ≡ 〈vB|KB|vB〉 . (2.12)
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Hence, the first order correction to the algebraic connectivity of A and B
is given only by the degree configuration of the perturbation term pro-
jected on the Fiedler vector of LA and LB respectively, independently
on the particular topology of this perturbation term. Thus, both Eqs.
(2.11) and (2.12) can be lower and upper bounded by the minimum and
maximum interdegree connectivity, whereas λ2(LA) and λ2(LB) can be
upper bounded by the minimum degrees of layer A and B, respectively
(JVM08).

Overall, at first order in perturbation theory we have:

λ2(L) = min

{
τ(Q)

µ
, λ2(LA) + 〈vA|KA|vA〉 , λ2(LB) + 〈vB|KB|vB〉

}
.

(2.13)
Since ε(1)

1 is the correction to the zero eigenvalue, we have that if τ(Q)

is small enough then λ2(L) = ε
(1)
1 . In this phase the algebraic connec-

tivity depends only on both the total number of interconnetion links and
the sizes of the two interacting networks A and B, meaning that it is
not affected by their topology. However, when τ(Q) grows, the second
and third smallest eigenvalues of the interacting network might swap
(MHWMD14). This happens when

τ(Q)/µ = min {λ2(LA) + 〈vA|KA|vA〉 , λ2(LB) + 〈vB|KB|vB〉} .

Note that if one of the networks A and B has a vanishing algebraic con-
nectivity, the transition point disappears (VM16). This happens, e.g., for
a class of scale-free networks where λ2(LA) ∼ (lnN)−2 (SDM08). Impor-
tantly, an additional swapping may also occur for the algebraic connec-
tivities of the two network layers, i.e., when and if

λ2(LA) + 〈vA|KA|vA〉 = λ2(LB) + 〈vB|KB|vB〉 .

To get a qualitative insight on the system behavior, in the following we
consider two particular situations, diagonal and random interactions.

2.2.1 Diagonal interactions (Multiplex)

In a multiplex network, A and B have the same number of nodes (N =

M ) and Q = qI is proportional to the N × N identity matrix. While
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the minimization problem of eq. (2.1) can be solved exactly in this case
(RA13; DSSVM15), using perturbation theory leads to:

λ2(L) = q + min {q, λ2(LA), λ2(LB)} . (2.14)

Since the ordering of λ2(LA) and λ2(LB) is fixed, there is only one eigen-
value swapping at qc ' min {λ2(LA), λ2(LB)}.

When the two networksA and B are identical, then λ2(LA) = λ2(LB).
Resolving this additional degeneracy with eigenvectors 1√

2

(|vA〉
|vA〉
)

and 1√
2

( |vA〉
−|vA〉

)
leads to first order corrections for λ2(LA) equal to 0 and 2q, hence qc '
λ2(LA)/2 (it is halved with respect to the non-degenerate case) (MHWMD14).
Furthermore, note that in this particular case first order approximation
is exact, meaning that ε(1)

n = εn ∀n. As a matter of fact in this case L0

commutes with perturbation V , therefore the same unperturbed set of
orthonormal eigenvectors |n(0)〉 diagonalizes L0 and V simultaneously,
implying that the correction given by eq. (2.7) is exactly the difference
between the perturbed spectrum En and the unperturbed one E(0)

n . To
prove that [L0,V] = 0, since L0 and V are symmetric matrices, it is suffi-
cient to verify that L0V is symmetric3:

L0V =

(
LA 0
0 LB

)(
qI −qI
−qI qI

)
= q

(
LA LA
LB LB

)
,

therefore L0V is symmetric only if LA = LB.

2.2.2 Random interactions

A more general situation is described by an N ×M interaction matrix
Q assuming the form of an Erdös-Rényi random graph with connection
probability q. This setting resembles that of an individual network with
two communitiesA and B which are randomly interconnected (CGO09).
In order to proceed, we use a mean field approximation by replacing all
matrix elements Qij with their expectation value q. Again in this regime
L0 commutes with V , implying that first-order approximation is exact.

3 Given two symmetric matrices A and B their product AB is symmetric if and only if
A commutes with B.
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Figure 8: Heat-map of λ2(L) (upper panel) and of ∂λ2(L)/∂q (lower panel)
for two interacting Erdös-Rényi graphs of N = 200 nodes each and link
probability p. The solid line is the curve described by eq. (2.16).
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Figure 9: Behavior of λ2(L) given by eq. (2.15) for M < N and: (a)
λ2(LA) < λ2(LB); (b) λ2(LA) > λ2(LB) and λ2(LA)/N < λ2(LB)/M ; (c)
λ2(LA) > λ2(LB) and λ2(LA)/N > λ2(LB)/M . Vertical dashed and dotted
lines mark qc and q′c, respectively.

Indeed, verifying that L0V is symmetric is again quite straightforward:

L0V =

(
LA 0
0 LB

)(
MqIN −q |1N 〉 〈1M |

−q |1M 〉 〈1N | NqIM

)
=

=

(
MqLA 0

0 NqLB

)
,

where |1N 〉 and |1M 〉 denote the constant 1 vectors of dimension N and
M respectively, and IN,M is the N or M dimensional identity matrix.
Note that in order to get this result we used the general fact thatL |1〉 = 0.
Overall, for this particular setting eq. (2.13) becomes:

E[λ2(L)] = min {(N +M)q, λ2(LA) + qM, λ2(LB) + qN} . (2.15)

Again in the special case of A and B identical (which also implies
N = M ), resolving the degeneracy λ2(LA) = λ2(LB) with eigenvec-
tors 1√

2

(|vA〉
|vA〉
)

and 1√
2

( |vA〉
−|vA〉

)
leads to first order corrections both equal

to Nq, so that also in this case there is only one eigenvalue swapping
at qc ' λ2(LA)/N (MHWMD14). Under the mean-field approximation,
these conclusions hold also if the two networks are identical on expecta-
tion. For instance, consider A and B to be Erdös-Rényi random graphs
with the same number of nodes and connection probability p. In order to
have an analytical estimate for the the algebraic connectivities we first
approximate λ2(A) and λ2(B) with the minimum degree of networks
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A and B respectively 4 (JVM08) and then we use the approximation of
the minum degree of an Erdös-Rényi graph which can be deduced from
(Bol81). Dropping terms below O(

√
N logN), we have

E[λ2(LA)] = E[λ2(LB)] ' Np−
√

2p(1− p)N logN,

hence
qc ≈ p−

√
2p(1− p)(logN)/N (2.16)

(see Fig. 8). In the limit N →∞, qc → p as
√

logN/N : the transition at qc
is therefore well defined even in the thermodynamic limit.

To discuss the more general setting of A and B having different sizes
and topologies, without loss of generality we setM < N . Then if λ2(LA) <

λ2(LB), eq. (2.15) tells us that the algebraic connectivity of A grows at a
slower rate than that of B, and they never become equal: only one eigen-
value swapping is possible, occurring again at

qc = λ2(LA)/N. (2.17)

Instead if λ2(LA) > λ2(LB), the first eigenvalue swapping occurs at
qc = min {λ2(LA)/N, λ2(LB)/M}. Moreover, also the two algebraic con-
nectivities of A and B swap at

q′c =
λ2(LA)− λ2(LB)

N −M
. (2.18)

Such a transition is actually observed for λ2(L) only when qc < q′c, imply-
ing λ2(LA)/N > λ2(LB)/M and when q′c < 1, implying λ2(LA) + M <

λ2(LB)+N . Figure 9 illustrates the different situations. Note that the sec-
ond transition happens even for λ2(LB) → 0 (i.e., when B is a scale-free
network): qc → 0 but q′c 6= 0, provided λ2(LA) remains finite yet smaller
than N − M . The phase diagram of Fig. 10 refers instead to A and B
being Erdös-Rényi random graphs with connection probabilities pA and
pB respectively. In the thermodynamic limit and for r = M/N < 1 finite,
for pA < pB one transitions is observed at qc ' pA, whereas, for pA > pB

4In general λ2 ≤ κ < kmin, where κ is the graph connectivity and kmin is the minimum
degree (JVM08).

30



0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

p
B

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

λ2

q

Figure 10: Heat-map of ∂λ2(L)/∂q for two interacting Erdös-Rényi graphs
of N = 600, pA = 0.5, M = 400 and varying pB . The three phases are
delimited by the curve of eq. (2.16) with p = pB (solid line) and with p = pA
(dashed-dotted line), plus the curve of eq. (2.18) (dashed line). Indeed,
for pB & 0.51(7) we are in the case λ2(LA)/N < λ2(LB)/M , hence there
is only one transition at qc = λ2(LA)/N ' 0.402(5). Instead for pB .
0.51(7) the first transition lies at qc = λ2(LB)/M , and the second one at
q′c = [λ2(LA)− λ2(LB)]/(N −M) as long as pB & 0.19(5). The triple point
lies at qt = λ2(LA)/N = λ2(LB)/M .

two transitions are observed at qc ' pB and q′c ' (pA − rpB)(1− r), pro-
vided q′c < 1. The triple point obtains at pA = pB = q, i.e., when the
whole system is homogeneous.

The double transition of the algebraic connectivity described above
is extremely important in the context of diffusion processes, since, as we
mentioned in the Introduction, λ−1

2 (L) is equal to the relaxation time τ
for the diffusion equation ẋ = −Lx (DLR15; MPL17). In the regime of
small q, diffusion on the system depends only on the interconnection
structure. The first transition occurs when the layer with the smallest
normalized algebraic connectivity (be it λ2(A)/N or λ2(B)/M ) starts de-
termining the diffusion process. The second transition then occurs when

31



Figure 11: Inverse relaxation time τ−1 for the diffusion process ẋ = −Lx on
two Erdös-Rényi randomly interconnected networks with N = 450, pA =
0.45, M = 300, pB = 0.3 and varying q. Red points refer to numerical
simulations, whereas, the blue solid line indicates the first order mean field
approximation of λ2(L) of eq. (2.15).

the other layer becomes dominant, and can be observed because the two
algebraic connectivities grow at different rates (N 6= M ) as q increases.
Note that the system becomes completely homogeneous only at the triple
point qt, when neither A nor B nor interconnections are dominant. Fig-
ure 11 shows that values of τ−1 obtained from numerical simulations of
such diffusion processes on random interacting networks do agree well
with first order mean field approximation of λ2.

2.3 Perturbative approach for the spectrum of
the adjacency matrix

Perturbation theory can successfully be applied also in the computation
of the leading eigenvalue of the supra-adjacency matrix C of two inter-
acting networks. Again we can interpret C as the sum of an imperturbed
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part and a perturbation

C = C0 +W =

(
A 0
0 B

)
+

(
0 Q
QT 0

)
, (2.19)

where A and B are the adjacency matrices of the two layers and Q is
the adjacency matrix of the inteconnections. We denote by {αi}Ni=1 and
{|ai〉}Ni=1 the set of eigenvalues and eigenvectors of A, ordered such that
α1 > α2 ≥ · · · ≥ αN , and by {βj}Mj=1 and {|bj〉}Mj=1 the set of eigenvalues
and eigenvectors of B, again ordered such that β1 > β2 ≥ · · · ≥ βM .
We assume both networks to be strongly connected, so that both α1 and
β1 are not degenerate in their respective spectrum. We also suppose,
without loss of generality, α1 ≥ β1. The sets

{Γ(0)
c }N+M

c=1 = {{αi}Ni=1, {βj}Mj=1}

and

{|c(0)〉}N+M
c=1 =

{{(
|ai〉
|0〉

)}N
i=1

,

{(
|0〉
|bj〉

)}M
j=1

}
are thus the unperturbed spectrum of eigenvalues and its associated or-
thonormal basis of eigenvectors for C0.

If α1 = β1, we need to resolve the degeneracy with the unperturbed
eigenstates |+(0)〉 = 1√

2

(|a1〉
|b1〉
)

and |−(0)〉 = 1√
2

( |a1〉
−|b1〉

)
. We have

〈+(0)|W|−(0)〉 = 〈−(0)|W|+(0)〉 = 0,

and:

γ
(1)
+ = 〈+(0)|W|+(0)〉 = 〈a1|Q|b1〉 , (2.20)

γ
(1)
− = 〈−(0)|W|−(0)〉 = −〈a1|Q|b1〉 . (2.21)

On the other hand there is no degeneracy when α1 > β1. In this case,
however, first-order corrections to all eigenvalues induced by the pertur-
bation vanish since the interaction matrixQ is different from 0 only in its
off-diagonal blocks, therefore:

γ(1)
c = 〈c(0)|W|c(0)〉 = 0. (2.22)
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Hence we have to resort to second-order corrections (see Appendix A).
For α1 we have:

γ
(2)
1 =

M∑
j=1

| 〈a1|Q|bj〉 |2

α1 − βj
, (2.23)

where we used 〈bj |QT|ai〉 = 〈ai|Q|bj〉 ∀i, j. If also β1 is non degenerate,
then

γ
(2)
N+1 =

N∑
i=1

| 〈ai|Q|b1〉 |2

β1 − αi
. (2.24)

It turns out, however, that second-order corrections fail to capture the be-
havior of Γ1 (see Figure 12). In order to obtain a non-vanishing first-order
correction, we have to define the unperturbed system and the perturba-
tion as

C = C̃0 + W̃ =

(
A 0
0 B + ∆I

)
+

(
0 Q
QT −∆I

)
, (2.25)

where ∆ = α1 − β1: we shift the whole unperturbed spectrum of B by
∆, so that α1 is now a degenerate eigenvalue for C̃0 with respect to the
same eigenvectors |a1〉 and |b1〉. Using the same unperturbed eigenstates
|+(0)〉 and |−(0)〉 as above, we obtain 〈+(0)|W̃|−(0)〉 = 〈−(0)|W̃|+(0)〉 =

∆/2, 〈+(0)|W̃|+(0)〉 = 〈a1|Q|b1〉−∆/2 and 〈−(0)|W̃|−(0)〉 = −〈a1|Q|b1〉−
∆/2, that is a non-diagonal projection of W̃ on the degenerate eigenspace
spanned by |+(0)〉 and |−(0)〉. Therefore we need to solve the secular
equation with respect to the unkonwn first order correction γ̃(1):

det

(
〈+(0)|W̃|+(0)〉 − γ̃(1) 〈+(0)|W̃|−(0)〉
〈−(0)|W̃|+(0)〉 〈−(0)|W̃|−(0)〉 − γ̃(1)

)
= 0, (2.26)

which yields:

γ̃
(1)
± = −∆

2
±
√

∆2

4
+ [〈a1|Q|b1〉]2. (2.27)

Eq. (2.27) correctly reduces to eq. (2.20) if ∆ = 0, and to γ̃(1)
+ = 0 and

γ̃
(1)
− = −∆ if Q vanishes (which is trivially correct).

All of the above formulas can be further specified for simple instances
of the interaction matrix. For a multiplex network, N = M and Q = qI,
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hence:
〈ai|Q|bj〉 = q 〈ai|bj〉 . (2.28)

Instead for two randomly interacting networks,Q is an Erdös-Rényi ran-
dom graph with connectivity q. Using the mean field approximation
Q = q |1〉 〈1| leads to:

〈ai|Q|bj〉 = q 〈ai|1〉 〈1|bj〉 . (2.29)

2.3.1 Random regular and Erdös-Rényi network layers

More can be said when both A and B are d-regular graphs. In this case,
it is α1 = dA, |a1〉 = 1√

N
|1〉, β1 = dB , |b1〉 = 1√

M
|1〉. Besides, for suf-

ficiently large network sizes, most d-regular graphs have all their other
eigenvalues bounded above by 2

√
d− 1 + ε (with ε > 0) (Fri03). Thus,

provided dB � 2
√
dA − 1, α1 and β1 are by far the largest eigenvalues

of the unperturbed system. Finally, eigenvectors corresponding to other
eigenvalues are orthogonal to |1〉, hence 〈1|ai〉 = 〈1|bj〉 = 0 for 6= 1 and
j 6= 1.

Thus in a multiplex framework where N = M it is |a1〉 ≡ |b1〉. Using
eq. (2.28) and the eigenvectors orthogonality relations, we have 〈a1|Q|bj〉 =

qδ1j and 〈ai|Q|b1〉 = qδi1. In the degenerate case we get γ(1)
± = ±q,

whereas, in the non-degenerate case it is γ̃(1)
± = −∆/2 ±

√
∆2/4 + q2

and γ(2)
1 = q2/(α1 − β1) = −γ(2)

N+1.
In the random interaction framework instead, using eq. (2.29) and

again the eigenvectors orthogonality relations, we have 〈a1|Q|bj〉 = q
√
NMδ1j

and 〈ai|Q|b1〉 = q
√
NMδi1. In the degenerate case we get γ(1)

± = ±q
√
NM ,

and in the non-degenerate one γ̃
(1)
± = −∆/2 ±

√
∆2/4 + q2NM and

γ
(2)
1 = q2NM/(α1 − β1) = −γ(2)

N+1.
Finally note that a d-regular graph of size N is, under the mean field

approximation, equivalent to an Erdös-Rényi random graph with same
size and connectivity p = d/(N − 1). Hence, the above results approxi-
mately hold also for A and B being Erdös-Rényi random graphs, in par-
ticular by posing α1 = pA(N − 1) and β1 = pB(M − 1) (see Fig. 12).

This approach can be rather useful for estimating the bond percola-
tion threshold fc of two strongly interacting random networks, where
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Figure 12: Largest eigenvalue of C as a function of q for two interacting
Erdös-Rényi graphs ofN = M = 100, pA = 0.5 and pB = 0.1, together with
first-order corrections of eq. (2.22), second-order corrections of eq. (2.23),
and first-order corrections of eq. (2.27).

the magnitude of the interaction is given by the value of q. As a matter
of fact when the value of q is small enough the two layers are in a regime
of weak interaction, therefore two percolation thresholds associated to
different second-order phase transitions may be observed depending on
the different topologies of the two layers (HCG+16)(CdSBn14). However
very weak interaction between layers can also induce abrupt transitions
in the order parameter, therefore second-order phase transition theory
does not apply: we are going to provide a detailed explanation of this
phenomenon in the next chapter.

On the other hand, while for an individual Erdös-Rényi network layer
fc is given by the inverse of the largest eigenvalue of adjacency matrix
Γ1 (BBCR10a) (or in general is lower-bounded by Γ−1

1 (RC16a)), Figure 13
shows that for two strongly interacting layers, where q is not negligible,
the percolation threshold is actually determined by eq. (2.27).
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Figure 13: Numerical value of the susceptibility χ as a function of the bond
occupation probability f for 400 realizations of the process on two random
ER interacting networks with N = 150, pA = 0.1, M = 100, pB = 0.5 and
q = 0.5. The solid black line denotes the mean field first-order correction
to Γ−1

1 of eq. (2.27), whereas, the dashed and dashed-dotted lines denote
the percolation thresholds of individual layers k−1

1 = (MpB)−1 and k−1
2 =

(NpA)−1. It is Σ = k1 + k2 and ∆ = k1 − k2.
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Chapter 3

Fragility and anomalous
susceptibility of weakly
interacting networks

3.1 Percolation in multilayer networks

Multilayer networks have been shown to exhibit critical percolation prop-
erties which are different from what is observed for a single isolated
network—namely, a single continuous phase transition (CNSW00; NSW01)
whose properties depend on the kind of process (RC15a) and on the net-
work features (CbAH02a; CPS10). Indeed, the presence of interconnec-
tions between the network layers can give rise to supercritical phenom-
ena such as abrupt or multiple phase transitions.

For instance interdependent networks—that is, two (or more) net-
works whose nodes are interconnected by dependency links, such that
the removal of a node in a network causes the instantaneous removal of
the dependent nodes in the other networks—have a discontinuous per-
colation transition (BPP+10; GBHS11; PBH11; SBC+12; BDGM12). Fur-
ther introducing interdependence probabilities (meaning that only some
of the dependency links actually exist), multiple percolation phase tran-
sitions can occur in these systems (BD14), whereas, introducing redun-
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dant interdependencies among layers boosts the robustness of the sys-
tem (RB17). For “weak” interdependence, i.e., a finite probability that a
node is not removed when its dependent neighbours are, mixed perco-
lation transitions are observed, for which each network layer undergoes
its own distinct transition (either discontinuous or continuous) (LESL18).
And when interdependent networks are enriched with antagonistic in-
teractions, which prevent antagonist nodes to be part of the same perco-
lation cluster, the percolation process can become bistable, meaning that
either of the two networks is allowed to percolate (ZB13a; ZB13b). Note
that the sharp transition usually observed in interdependent networks is
actually smoothed (and eventually goes back to being continuous) by the
presence of link overlaps between the various layers (LLJW13; CLZ+13;
HZZ+13). Assortative correlations in particular lead to recurrent hybrid
phase transitions (BBdC+16; LCS+16). On the contrary, the presence of
highly anti-correlated layers lead to multiple transitions indicating that
each layer can percolate independently (HCG+16).

Interacting networks (or network of networks) are different from in-
terdependent networks in that the connections between the network lay-
ers are ordinary links that thus take part in the percolation process. A
system of this kind is therefore equivalent to a single modular network,
characterised by a percolation threshold that is typically lower than in
homogeneous networks—with a giant cluster appearing for a smaller to-
tal number of links (LD09). A case of particular interest arises when the
interaction between the network layers is weak, meaning that there is a
sufficiently small number of interlinks between network layers, so that
the removal of a few of them can easily separate the network layers into
isolated modules (SKK+15). This setup is common for neural systems,
and therefore of major relevance to understand the resilience of neural
processing (HI97). Weakly interacting networks are characterised by a
mixed percolation phase, in which only one or some of the network lay-
ers do percolate (DHS12; MPMG14). In particular, Colomer-de-Simón &
Boguñá (CdSBn14) identified multiple percolation transitions when the
coupling between the different layers vanishes in the thermodynamic
limit. In order to account for the emergence of coexisting percolating
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clusters, Faqeeh et al. (FMCdSG16) developed a modular message pass-
ing approach. In any event, the appearance of these coexisting clusters
in weakly interacting networks is a fundamental source of error for per-
colation theory.

In what follows we develop a simple mathematical framework that
allows estimating the most likely critical threshold at which the merging
of coexisting clusters occurs in weakly interacting networks. Moreover,
we characterise the percolation process in terms of a powder keg: due to
the scarcity of the interlinks, the aggregation of the coexisting giant clus-
ters is delayed, therefore giving rise to an abrupt percolation transition.

3.2 The intrinsic powder keg of weakly inter-
acting networks

To illustrate the percolation properties of weakly interacting networks,
we consider as in Figure 14 two layers A (with NA nodes and average
degree kA) and B (with NB nodes and average degree kB), that are in-
terconnected by a small number I of links (I � min{NAkA, NBkB}) 1.
The bond percolation process consists in retaining each link of the sys-
tem with occupation probability f and otherwise removing it. To sim-
ulate the process, we use the method proposed by Newman and Ziff
(NZ00a): for each realisation, we start from a system configuration with
no connections, and then sequentially add links in a random order. f is
thus the fraction of links added to the system. In such a situation, we
may observe large jumps for the order parameter S, that is, the size of
the giant cluster spanning both layers. These jumps can be understood
as resulting from the addition of one of the I interlinks after the forma-
tion of the two giant clusters SA and SB of layer A and B, respectively.
Indeed, differently from what happens for standard percolation, when
such interlink is about to be added the two giant clusters already contain
a number of nodes that is proportional to the system size. According to

1For the sake of readability here we decided to adopt a different notation for layers sizes
compared to the one used in the previous chapter, hence layers sizes here are denoted as
NA,NB instead of N,M .
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A

B

Figure 14: Upper panel: pictorial representation of two weakly interact-
ing networks A and B, in which the interconnection links I are much less
than the intra-layer links. Lower panel: two different instances of the per-
colation process on an interacting network composed by two Erdös-Rényi
layers (N = 500 nodes and average degree k = 10 each) connected by
I = 5 interconnection links. Each realisation is obtained as follows. Start-
ing from an empty network, links are first randomly added (forward) up to
half the total number of links, and then randomly removed (backward) until
the network is empty again. The hysteresis cycle appearing in both cases
are remarkably different, because of the large variability of the percolation
threshold.
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the definition of Friedman et al. (FL09), this configuration corresponds to
a powder keg, which is “ignited” as soon as that interconnection is added
causing a discontinuous jump in the size of the giant component. Note
that if a system is initialised as a powder keg, then even a random link
addition rule causes a discontinuous transition: as in our case, the forma-
tion of the giant cluster spanning both layers is not hindered by specific
link selection rules (ADS09; GCB+11; NLT11; NTG12; DN15), but is nat-
urally delayed by the structure of the interconnections itself. However,
the absence of any particular link selection criterion causes a large uncer-
tainty for the abrupt percolation threshold (see fig. 14). Note that since
the process of adding links is arbitrary, the probability to activate one of
the I interconnection links before the formation of the two giant cluster
is a non vanishing quantity: in this particular case we do not expect to
observe a significant jump for S. To work out a rough estimate for this
phenomenon let us define as Πτ the probability that at discrete time τ
(hence after the random addition of τ links) none of the I interconnetion
links has been yet activated. For sake of simplicity let us consider the
two layers to be characterised by the same percolation threshold fc and
let E be the total number of edges. It is then possibible to write:

Πτ =

(
1− I

E

)(
1− I

E − 1

)
. . .

(
1− I

E − τ + 1

)
=

(
E−τ
I

)(
E
I

) , (3.1)

which in the case of weak interaction and small times (hence I � {E,E−
τ}) can be approximated as

Πτ
∼=

(E − τ)I

EI
=
(

1− τ

E

)I
. (3.2)

Note that in general we can express fc as a critical edge density to be
achieved at a critical time τc, hence fc = τc/E. By plugging the latter in
eq. (3.2) we obtain:

Πτc
∼= (1− fc)I . (3.3)

In figure (14) we considered two Erdös-Rényi layers of 500 nodes each
with same average connectivity k = 10 (therefore fc ' 1/k = 0.1 for each
layer), connected by I = 5 interconnection links. The approximation of
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eq. (3.3) then tells us that Πτc ∼ 0.6 for this case, meaning that a signifi-
cant discontinuos jump would reasonably be unlikely to be observed in
the 40% of the cases. However with this very rough approximation we
are neglecting the fact that, in order to observe a discontinuous jump in
S, a randomly added interconnection link must also connect two nodes
wich belong to the percolating clusters of the two layers.

3.3 Model for the anomalous susceptibility and
percolation threshold

In order to gain a more quantitative insight on the described phenomenol-
ogy, we define the probability PI that at least one of the I interconnec-
tions is added and actually connects the two giant clusters SA and SB

(FMCdSG16):

PI = 1−
[
1−

(
N

NA
SA

)(
N

NB
SB

)
f

]I
= 1−

[
1− N

µ
SASBf

]I
, (3.4)

whereN = NA+NB is the total number of nodes, the normalisation coef-
ficients before SA and SB respectively denote their maximum sizeNA/N
andNB/N , and µ = NANB

NA+NB
is the reduced number of nodes (equivalently

to the concept of reduced mass for the classical two-body problem) 2.
Without loss of generality, we set the percolating thresholds fA and fB

of the individual layers A and B respectively such that fA < fB (the de-
generate case fA = fB is discussed below). This implies that on average
and for layers of the same nature we have SA > SB for any given value
of f such that both clusters exist. Hence, for f > fB , the percolation clus-
ter S of the whole system is either that of layer A if SA and SB are not
connected, or abruptly jumps to SA + SB provided that SA and SB are
connected—which happens with probability PI . In formulas,

S =

{
SA + SB with probability PI
SA otherwise (3.5)

2 Note that in the case NA = NB , if we assume that almost every node belongs to the
percolating cluster ofA orB (hence SA = SB ∼ 1/2) we correctly obtain PI(fc) = 1−Πτc
according to the approximation of eq. (3.3).
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Overall, we have a first continuous transition at f1 = fA (the standard
percolation transition when layer A percolates), and a second discon-
tinuous transition at f2 when layer B percolates and at least one active
interconnection is established between the two layers. Yet, because of
the dichotomy characterising the outcome of the process for f ' f2, the
average value 〈S〉 = SA + SBPI is not representative at all of what hap-
pens in the system. We thus study the behaviour of the susceptibility
χ = NVar(S)/〈S〉 (CdSBn14). For f > fB each layer has its own percolat-
ing cluster, and thus the only contribution to χ comes from the Bernoulli
trial described by eq. (3.5):

χD = N
S2
BPI(1− PI)
SA + SBPI

. (3.6)

Note that χD gives a non-vanishing contribution to the total susceptibil-
ity χ only in the weakly interacting regime, that is, when the Bernoulli
trial of eq. (3.5) is not trivial. Indeed, eq. (3.4) tells us that for I → 0 (as
for the case of disconnected layers) we have PI → 0, and when I is very
large (as is the case of strongly connected layers, see section below) we
have PI → 1. In both cases χD → 0. For fixed I , however, χD achieves
its maximum for the value of f which maximises the uncertainty of the
Bernoulli trial, at which the discontinuous jump of S is more likely to
occur. We thus identify f2 with the value for f which maximises χD.

3.4 Real and artificial networks

These simple mathematical arguments are indeed able to capture the be-
haviour of the susceptibility both in real and model networks. We first
consider in Figure (15) the duplex (two-layer multiplex) formed by a pair
of coupled air transportation networks, where each layer consists of the
airports (nodes) and flight routes (links) operated by a given company,
and the interlinks are the airports served by both companies. We see that
the susceptibility of the two individual layers χC cannot capture the ob-
served behaviour of χ computed numerically. The difference between χ
and χC is instead very well represented by χD. In particular, from fig-
ure (15b) we can see that χD can give a dominant contribution to the
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whole susceptibility χ. In this case standards methods for the estimation
of the percolation threshold (such as looking at the inverse of the leading
eigenvalue of the Hashimoto non-backtracking matrix (KNZ14a) ) fail
significantly.

A more precise assessment of our methodology is given by consider-
ing two Erdös-Rényi weakly interacting networks with the same number
of nodesNA = NB = N/2 and average degrees kA and kB . We start from
the implicit form of SA and SB in the thermodynamic limit:

SX = 1
2

(
1− e−2fkXSX

)
(3.7)

withX = {A,B}. The above expression is obtained from the usual equa-
tion for a single Erdös-Rényi network, namely S = 1 − e−fkS , using the
substitution S → 2S (as SX refers to only one layer with half of the N
nodes). We thus obtain the same solution of the single network scaled
by a factor 1/2, as well as the same percolation threshold fX = k−1

X . The
value of f which maximises χD of eq. (3.6) for fixed SA and SB is given
by the following implicit equation

[1− 4f2SASB ]I = 1 +
SA −

√
S2
A + SASB
SB

, (3.8)

where both SA and SB are functions of f2 according to eq. (3.7). Note
that eq. (3.8) returns f2 = 1 − (2 −

√
2)1/I in the limit SA,B → 1/2. This

regime corresponds to the case I � kA,B , for which we can safely assume
that both layers will fully percolate before the activation of at least one
interconnection link as f increases, leading to a value of f2 which does
not depend on kA nor kB . Since eq. (3.8) is difficult to handle, we can
approximate f2 with the values that maximises Var(S) instead of χD.
For a Bernoulli trial we simply have PI(f2) = 1/2, implying f2 = [1 −
2−1/I ]/[4SASB ]. With the further assumption SA ' 1/2 (hence when
layer A has already percolated) we have f2 = [1 − 2−1/I ]/[2SB ]. Using
eq. (3.7) we finally get the analytic solution:

f2 =
1− 2−1/I

1− exp[−kB(1− 2−1/I)]
. (3.9)

In the limit SB → 1/2 this expression simplifies to f2 = 1− 2−1/I , which
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Figure 15: We consider the duplex formed by the transportation network
Lufthansa-Ryainair (upper panel) and Lufthansa-Easyjet (lower panel)
(CGGZ+13), in which each layer is made up of airports (nodes) and flight
routes (links) operated by a company. The layers are characterised by
NLH = 106 and 〈k〉LH = 4.604, NFR = 128 and 〈k〉FR = 9.391, NU2 = 99
and 〈k〉U2 = 6.202. The interconnection links in each case are the airports in
which both companies operate: we have ILH−FR = 36 and ILH−U2 = 51.
Red dots denote numerically computed values of χ from 400 realisations of
the bond percolation process, χD is given by eq. (3.6) and χC is the sus-
ceptibility of the corresponding non-interacting system. λNB is the leading
eigenvalue of the non-backtracking matrix of the network, whose inverse
is a good approximation for the percolation threshold of sparse networks
(KNZ14a).
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Figure 16: Plot of eq. (3.9) for 4 different values of I and kB = 20.

is very close to the value that maximises χD in the same regime. Figure
(16) shows the plot of f2 for different values of I .

In the degenerate case kA = kB = k, we have SA = SB = SX which
leads to the simpler expressions:

〈S〉 = SX(1 + PI), χD = N
SXPI(1− PI)

1 + PI
, (3.10)

and thus the value of f which maximises χD at fixed SX is simply given
by the implicit expression PI(f2) =

√
2 − 1, implying f2 = [1 − (2 −√

2)1/I ]/[4S2]. Plugging the latter in eq. (3.7) yields

f2 =
1− (2−

√
2)1/I{

1− exp

[
−k
√
f2(1− (2−

√
2)1/I)

]}2 , (3.11)

that can be easily solved numerically.
As shown in Figure 17, in the case of two weakly interacting Erdös-Rényi
networks with different average degrees, the numerical evaluation of
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χD by means of eq. (3.6) fits very well the observed anomalous sus-
ceptibility, and the numerical solution of eq. (3.9) gives with good ap-
proximation the position of the maximum of χ. In the degenerate case
kA = kB , eq. (3.11) provides an even better approximation for the max-
imum of χ. Analysing single realisation of the percolation process, we
confirm that f2 marks the region in which S is subject to discontinuous
jumps. However, this discontinuous behaviour is lost by averaging the
outcomes of the percolation process over many realisations, for which S
becomes 〈S〉 = SA + PISB which fails to represent the outcome of the
process.

3.5 Finite size scaling

A finite-size scaling analysis was carried out for the cases of two coupled
Erdös-Rényi layers and two coupled Barabási-Albert layers with differ-
ent average connectivities. For each of the two settings we considered
networks made of two layers of size NA,B equal to 100, 500, 2500, 12500.
According to standard percolation theory, the maximum of the suscep-
tibility diverges around the critical value fc according to the power law
χ(fc) ∼ N1−β/ν , while for the relative size of the giant component we
have S(fc) ∼ N−β/ν (CdSBn14; RC15a). Our analysis, reported in Figure
18, shows that the scaling properties around f1 and f2 are significantly
different. While S(f1) and χ(f1) exhibit the usual power law scaling
typical of second-order phase transitions (with different exponents ac-
cording to the two different topologies of the network layers), S(f2) does
not scale with N in both examples, which implies β/ν = 0. This in turn
implies χ(f2) ∼ N . It is important here to give some further details on
how the system has been scaled. In (CdSBn14) the existence of a double
percolation transition was verified under the assumptions of both con-
stant core/periphery average degree and sub-linear scaling of the total
number of core-periphery interconnetions (yielding a vanishing average
core-periphery degree), which translates as I ∝ Nα, with 0 ≤ α < 1. All
the numerical results presented here above were obtained in the case of
constant kA,B and I , hence in the case α = 0. This particular choice has
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χDf )

Figure 17: Panels (a-c) are heat maps of the susceptibility of two Erdös-Rényi cou-
pled networks with NA = NB = 500 nodes, kA = 20, I = 5 and kB varying from
0 to kA. Panel (a) reports χ obtained from numerical simulations of the percolation
process, whereas, panel (b) reports χD from numerical solutions of eq. (3.6). In both
cases, the continuous white line gives the relation f = k−1

B that marks the boundary
for the region in which percolating clusters exist in both layers, and the dashed white
line reports values of f2 as given by eq. (3.9). Panel (c) reports the difference between
the two values, which is high only in the vertical strip corresponding to χC . Panels
(d-f) instead report S and χ for the degenerate case of two Erdös-Rényi interacting
layers with NA = NB = 500 and kA = kB = 20, and I = 5. In all three cases,
the dashed vertical line denotes the percolation threshold of the individual layers,
whereas, the dashed-dotted line marks f2 as derived from eq. (3.11). Panel (d) re-
ports a single realisation of the process and Panel (e) reports averages of the same
process over 300 realisations. In both cases, red dots are the observed values of S,
blue crosses and green dots are the observed values of SA and SB respectively, and
the red line gives the numerical estimate of 〈S〉 derived from eq. (3.5). Panel (f) fi-
nally reports the observed susceptibility (red dots) averaged over 300 realisations of
the process, as well as the numerical value of χD (continuous black line).
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been motivated by the fact that in our approximation regime f2 is essen-
tially a function of kA, kB , I (see section 3.4). Furthermore if we assume
both layers to be particularly dense, the dependence from kA,B eventu-
ally disappears, hence the transition can be decribed only in terms of I ,
independently from the topologies of A and B. As a matter of fact in
this rather extreme situation we can safely assume that both layers will
percolate before the discontinuous transition, which implies SA,B ' 1/2

at f = f2. As discussed in section 3.4, in this case f2 depends only on I .
Overall from our results we can deduce that these particular scaling prop-
erties, that is the failure of finite size scaling relations (β/ν = 0) and the
extensive character of the susceptibility (χ(f2) ∼ N ), show a clear trade-
mark of a first order phase transition (RF09). This fact essentially implies
that on average the abrupt transition due to delyed aggregation of coex-
isting percolation clusters is discountinuos even in the thermodynamic
limit.

3.6 Strongly Interacting Networks

To conclude we consider the case of strongly interacting Erdös-Rényi lay-
ers, that we define by I ≥ max{kA, kB}. As shown in Figure 19 (where
kA > kB), as soon as I > kA the height of the second peak drastically
decreases, while the corresponding value of f2 approaches k−1

B , that is,
the percolation threshold of the sparser layer. As a matter of fact if we
consider (3.9), the result is simply obtained thanks to the following first-
order Taylor expansion:

f2 =
1− 2−1/I

1− exp[−kB(1− 2−1/I)]

I→∞−→ 1− 2−1/I

1− 1 + kB(1− 2−1/I)
=

1

kB
.

Indeed when I → ∞ we have PI ' 1 as soon as the percolating clus-
ter appears in layer B: the process bears no uncertainty related to the
interconnections, therefore contribution of χD vanishes and χ simply be-
comes that of the ordinary percolation process for the Erdös-Rényi layer
B.
Finally, if I & NkA,B then the total average degree is significantly af-
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Figure 18: Finite size scaling analysis. Top panels report the case of two
weakly interacting Erdös-Rényi layers with kA = 20, kB = 10 and I = 5, for
different sizeN . From (b) we see that while S(f1) shows a power law decay
with exponent β/ν = 0.31 ± 0.04 (which is consistent with the mean-field
values β = 1 and ν = 3), S(f2) does not scale with N . Accordingly to those
values, from (a) we can verify the different divergence rates for the two
peaks of the susceptibility, and in particular we see that the divergence of
χ(f2) is almost linear. Bottom panels instead report the case of two weakly
interacting Barabási-Albert layers with mA = 20, mB = 10 and I = 5, for
different size N . Again we see that while S(f1) and χ(f1) show a scaling
behaviour ruled by the topology of the layers, S(f2) and χ(f2) show the
same behaviour of the Erdös-Rényi case: the one characteristic of first-order
phase transitions.
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Figure 19: The case of strongly connected layers. Heatmap of the suscepti-
bility χ for two Erdös-Rényi layers of N = 500 with kA = 20, kB = 10 and
0 < I < 100. For every fixed value of I , χ is averaged over 400 realisations
of the bond percolation process. The continuous white line represents the
theoretical prediction from eq. (3.9), which for large values of I converges
to k−1

B = 0.1.
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fected and we are in the regime illustrated in the previous chapter, that
is the regime on which perturbation theory to the largest eigenvalue of
the adjacency matrix may apply. Indeed, in this case we expect to see
only one maximum in the suscpetibilty, since χD ∼= 0 and since I grows
linearly with N (CdSBn14). We can therefore use the correction given by
eq. (2.27) in order to estimate value of the single percolation threshold
f1.
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Chapter 4

Numerical Assessment of
the percolation threshold
using complement
networks

Percolation properties in network models (be they sparse treelike graphs
(CbAH02b) or clustered networks (SBn06; New09)) are often consider-
ably different from those of real-world networks—which feature a highly
more complex topology. Recently, percolation has been reformulated as
a message passing process which takes as input the detailed topology
of a given network to predict percolation-related observables (KNZ14b;
HP14), and which implies that the bond percolation threshold πc of the
network is bounded from below by the leading eigenvalue of its non-
backtracking matrix (HN14). This approach has been then generalized
to clustered networks (RC16b), in order to go beyond the locally treelike
approximation which is not reliable for networks with high density of
edges and short loops (Rad15). However, the method comes at a price
of much higher computational complexity, and is not particularly satis-
factory for bond percolation processes. Another important aspect of the
message passing approach is that it describes network percolation in the
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thermodynamic limit, and as such cannot be precisely applied to finite
graphs (TdCDM17). Indeed, the very percolation transition is ill defined
in finite systems.

4.1 Numerical methods and preliminary results

Numerical simulations of the percolation process obtain the value of the
percolation threshold pc using Monte Carlo techniques (NZ00b). Given
Q independent realizations of the process at fixed percolation probabil-
ity p, and the relative size of the largest cluster in the network sq(p), q =

1, . . . , Q in the q-th realization, the percolation strength at p is estimated
as S(p) = 1

Q

∑
q sq(p), and the susceptibility as χ(p) = 1

Q·S(p)

∑
q[sq(p)]

2−
S(p). As we showed in the previous chapter, the best estimate of the per-
colation threshold is then the value of p at which the susceptibility is
maximal. As the simulated system is finite, such defined pseudo-critical
threshold pc(N) decays towards the percolation threshold as pc(N)−pc ∼
N−1/ν , where N is the (finite) size of the network (RC15b).

Figure 20 shows, for the bond percolation problem, the relation be-
tween the value pc obtained in numerical simulations and the theoretical
πc given by the inverse of the leading eigenvalue of the non-backtracking
matrix (λmax). The plot is obtained by considering a total of 79 networks
of different sizes N (varying approximately from 20 to 890), 23 of which
are empirical while the remaining 56 are artificially generated accord-
ing to four different random network models: Erdös-Rényi (ER), Regu-
lar (RG), Barabási-Albert (BA) and Watts-Strogatz (SW) (New03). Points
are well fitted by a linear relation pc = πc/β with χ2/ν = 4.34, where
however the value of β = 0.791 ± 0.019 is different from unity: numeri-
cal and theoretical percolation thresholds do not coincide, yet their ratio
appears to be constant across a variety of empirical and model networks
of different size. While assessing the general validity of such an empir-
ical evidence needs further statistical analysis, this relation can be quite
valuable for correcting the theoretical value of πc for finite, non-treelike
networks.
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Figure 20: Plot of Npc versus Nπc = N/λmax, where λmax is the leading
eigenvalue of the non-backtracking matrix, for several model and empirical
networks. Note that accounting for the factor N allows to compare net-
works of different size. The black solid line is the linear fit pc = πc/β.
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4.2 Introduction of the complement graph and
further results

Here we explore the possibility to improve such an empirical relation us-
ing the concept of complement graph. The complement of a graph G is the
graph Ḡ with the same vertex set, but whose edges are those which are
not present in G (CE83; GY98). The union graph of G and Ḡ is therefore
a complete graph. Hence, if we indicate K as the adjacency of the com-
plete graph and A as the adjacency matrix of G, the adjacency matrix of
Ḡ is simply defined as (see also Appendix B):

Āij = Kij −Aij = 1− δij −Aij , (4.1)

where δ is the usual Kronecker delta. For further details about the prop-
erties of complement graphs see Appendix B.
Complement graphs are found since long in the mathematic literature,
for instance to address the graph coloring problem (NG56), to develop
graph compression schemes (KOT98) and search algorithms (IY98), to
study network synchronizability (DLC08), to assess graph hyperbolicity
(BRST11) and domination numbers (HW04). The common approach of
these studies is to prove rigorous results for graphs with a small number
of vertices (AH79; Xu87; PRS03). Here, for the first time to our knowl-
edge, we use complement graphs in the context of percolation on large-
scale complex networks. In particular, we investigate on the existence of
a complement relation for the percolation threshold pc of a given graph
G and the complement percolation threshold p̄c of Ḡ.

Now, since the complement of a sparse network is dense, in the ther-
modynamic limit the percolation threshold of Ḡ converges to the inverse
of the leading eigenvalue of the adjacency matrix of Ḡ (BBCR10b). In the
simple case of ER networks, for N → ∞ it is pc ' 1/〈k〉 = 1/[(N − 1)f ]

(where f is the probability of existence of an edge), and thus the follow-
ing relation should hold:

1

(N − 1)pc
+

1

(N − 1)p̄c
' 1 (4.2)
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(an analogous complement relation of the two critical points also holds
for regular graphs). The heuristics behind eq. (4.2) can indeed be ex-
tended also to the case of Erdös-Rényi multilayer networks. As a matter
of fact if we consider two Erdös-Rényi layers of same sizeN/2 and densi-
ties p1 and p2, connected by an Erdös-Rényi interaction matrix of density
q 1, we can use the first-order correction to the leading eigenvalue of the
adjancency matrix of eq. (2.27) and write the relation:

λAmax + λ̄Amax
N

=
1

2

(
1 +

√
∆2

4
+ q2 +

√
∆2

4
+ (1− q)2

)
, (4.3)

where ∆ = |p1 − p2|.
As we can see from eq. (4.3) if ∆ = 0 (hence when p1 = p2) we essentially
end up with the same approximation given by eq. (4.2). On the other
hand when ∆ is large compared to q or 1 − q (due to the q ↔ 1 − q

simmetry) we have a non trivial correction to (λAmax + λ̄Amax)/N , up to a
maximum value of (3 +

√
5)/4 ' 1.31 which is realized in the extreme

cases (q = 0,∆ = 1) and (q = 1,∆ = 1) (see figure 21).
As Figure 22 shows, eq. (4.2) slightly overestimates the relation between
pc and p̄c, as they do not add up to unity. In particular, the theoretical
curve seems to constitute a boundary in the (pc, p̄c) plane, and data are
better fitted by a shifted linear relation

1

(N − 1)pc
+

1

(N − 1)p̄c
= α < 1, (4.4)

with α = 0.889± 0.008 and χ2/ν = 3.68. The same behavior is observed
in Figure 23 for theoretical values of the percolation threshold, obtained
as the inverse of leading eigenvalue of the non-backtracking matrices
(KNZ14a).

Building on the analysis of Figure 20, we then studied the relation

pc + p̄c =
1

β′

(
1

λmax
+

1

λ̄max

)
. (4.5)

1The complement graph is obtained by performing the substitutions p1 → 1−p1, p2 →
1− p2, q → 1− q.
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Figure 21: Heatmap representing eq. 4.3, with 0 ≤ ∆ ≤ 1 and 0 ≤ q ≤ 1.
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Figure 22: Plot of p−1
c versus p̄−1

c for various networks of different sizes.
The solid black line is eq. (4.2), while the solid red line is the linear fit of
data.
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Figure 23: Plot of λmax versus λ̄max for various networks of different sizes.

As shown in Figure 24, eqn.(4.5) fits the data quite well, and much better
than the fit of Figure 20. From the fit we obtained β′ = 0.856± 0.010 and
χ2/ν = 1.16. This factor can therefore be used to improve the estimate of
the percolation threshold on finite, non treelike networks.

To show that this is the case, in Figure (25) we compare different esti-
mates of the numerical percolation threshold, obtained as either the lead-
ing eigenvalues of the adjacency matrix λAmax or of the non-backtracking
matrix λNBmax, eventually corrected by the β′ factor. We indeed see that β′

can be used to improve, on average, the approximation given by theoret-
ical models.
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eigenvalue of the non-backtracking matrix, for several model and empirical
networks. The black solid line is the linear fit of eq. (4.5).
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Chapter 5

Conclusions

Here we summarize all the results presented in the previous chapters
and discuss their practical relevance as well as possible future develop-
ments.
In Chapter 2 we emplyed a perturbative approach in order to study the
connectivity properties for a general class of interacting multilayer net-
works. We generalized previous results (RA13; MHWMD14; DSSVM15)
showing the presence of multiple structural transitions (i.e. multiple
eigenvalue crossings in the algebraic connectivity) for interacting net-
works as interconnections are formed. This fact has a direct consequence
on many physical dynamical systems which are governed by the lapla-
cian spectrum, e.g., diffusive processes. We have shown that beyond the
first eigenvalue crossing, there might be as much as Z − 1 additional
transitions, where Z is the number of network layers. In each of these
regimes, the relaxation time of a diffusive processes on the entire system
is set by a single layer. We further showed that, at first order in pertur-
bation theory, the growth of the algebraic connectivity of each network
layer depends only on the degree sequence of the interactions (projected
on the respective Fiedler vector), and not on the actual interaction topol-
ogy. We finally showed results of perturbation theory applied to the ad-
jacency matrix of the interconnected network, which can be rather use-
ful to identify percolation transitions on strongly interacting networks.
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These findings have, therefore, important implications in the design of
robust interconnected networked system, particularly when the func-
tioning of the entire system crucially depends on one or a few network
layers.

In Chapter 3 we dealt with bond percolation properties of interacting
networks, with a particular attention to weakly interacting ones. This
class of systems encompass the very important cases of multilayer/modular
networks with very sparse connections within the layers/modules. We
reported the existence of discontinuous jumps in the relative size of the
giant component S, happening since the percolating cluster of the sparser
layer can give either a full or zero contribution to the giant cluster of the
whole system. Furthermore we observed that in this case the abrupt tran-
sition does not have a definite threshold, but can occur for a wide range
of values of the bond occupation probability. This causes an anoma-
lous behaviour of the susceptibility, which we captured using simple
probabilistic arguments. We successfully tested our predictions in both
synthetic and real systems. Finally, from finite-size scaling analysis we
showed that the critical behaviour of both S and χ in the abrupt region
exhibits the features of a genuine first-order phase transition. These re-
sults may change our understanding of the fragility of weakly interacting
structures, since we are able to predict when abrupt first-order transi-
tions (such as catastrophic failures) are more likely to occur. Concrete
implications of our results apply to neural systems (with a major rele-
vance to understand the resilience of neural processing), multiplex trans-
portation networks, as well as networks with metapopulation structures
(WX12b; SSC13; HSMS13; WTSA14; RTGX17).

Finally in Chapter 4 we presented an in-depth study conducted on
both synthetic and real network datasets, which allows us to propose a
method to correct the numerical estimate of the percolation threshold.
We first showed the existence of an empirical linear relation between the
observed threshold and its model predicted value across a large number
of real and model networks and subsequently we explored the possibility
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to improve such an empirical relation using the concept of complement
graph. More precisely, we revealed the existence of an empirical linear
relation between the inverse of the percolation threshold of a given graph
and that of its complement. This relation applies to both single and mul-
tilayer structures and can eventually be used in order to build a more
accurate estimate to the observed value of the percolation threshold. We
believe that the corrective factor β′ is related to finite size effects and non
treelike structures, however this hypothesis needs further investigation.
Overall, while our approach is just at infant stage and our findings are
only preliminary, they may have important concrete applications.

To conclude, with this thesis we present new important results in the
field of critical phenomena in multilayer network structures. Our find-
ings provide both numerical and analytical tools which can be applied in
the understanding of diffusion of epidemics, catastrophic failures, habits
adoption, information, opinions in our multilayer-structured societies.
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Appendix A

Perturbation Theory

A.1 Nondegenerate Case

Here we recall the basic notions of Perturbation Theory (PT) that we used
in Chapter 2.
In PT we consider a given operator H to be represented as the sum of
an unperturbed part H0 and a perturbation V moltiplied by a factor λ
which indicates the strenght of the perturbation, therefore

H = H0 + λV. (A.1)

From here on we assume H to be symmetric, or self-adjoint in the case
of complex entries. This is indeed the case of Laplacian and Adajan-
cency matrices for undirected graphs, as well as the case of the eigen-
value problem for the time-independent Schrödinger equation in quan-
tum mechanics (Sak94). In general, the same approach can be furtherly
extended to the case of non-symmectric matrices (Mar01).
Since H0 is symmetric we assume to know the unperturbed real spetrum
E

(0)
n together with its corresponing set of othogonal and normalized eigen-

vectors |n(0)〉, which overall satisfies:

H0 |n(0)〉 = E(0)
n |n(0)〉 . (A.2)
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We then seek the solution of the perturbed system

H |n〉λ = E(λ)
n |n〉λ (A.3)

in the form:

|n〉λ = |n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ . . . , (A.4)

E(λ)
n = E(0)

n + λε(1)
n + λ2ε(2)

n + . . . . (A.5)

Let’s now assume E(0)
n to be non-degenerate: by substituting eqs. (A.5)

(A.4) (A.1) into eq. (A.3) and keeping only the terms at most proportional
to λ, we easily get the first-order correction:

ε(1)
n = 〈n(0)|V |n(0)〉 (A.6)

together with the new set of normalized eigenstates:

|n(1)〉 =
∑
k 6=n

|k〉 1

E
(0)
n − E(0)

k

〈k|V |n(0)〉 , (A.7)

where |k〉 here indicates are the normalized eigenstates of H0. As we
can see from eq. (A.7), the assumption of having a non-degenerate un-
perturbed spectrum is fundamental otherwise at least one of the vectors
belonging to the first-order set |n(1)〉would present a divergent term.
In order to compute the second-order solution we need both the first-
order and the unperturbed solution. In general the system can be solved
recursively, and the solution to the L-th order is given by:

ε(L)
n = 〈n(0)|V |n(L−1)〉 . (A.8)

For istance the second-order correction reads:

ε(2)
n = 〈n(0)|V |n(1)〉 =

∑
k 6=n

| 〈k|V |n(0)〉 |2

E
(0)
n − E(0)

k

. (A.9)

Note that at every order in perturbation theory there is no explicit depen-
dency on λ. As a matter of fact λ is only needed in order to identify each
approximation regime, but it doesn’t affect the final results concretely. In
most applications λ is in fact usually replaced by unity (Mar01).
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A.2 Degenerate Case

As we said here above, if the unperturbed spectrum E
(0)
n is degenerate,

then equation (A.7) and higher order corrections might diverge, therefore
we need to take a different approach. In fact we are going to assume that
in this case the perturbation only mixes the degenerate states, therefore
we are going to solve the problem exactly for that subset of states. Let’s
assume thatH0 posses g0 ∈ N degenerate eigenstates |m〉, with respect to
the degenerate eigenvalueE(0)

D . We now assume that a generic perturbed
eigenstate |ψj〉 belongs to the degenerate eingenspace spanned by |m〉,
hence:

|ψj〉 =
∑
i

|mi〉 〈mi|ψj〉 =
∑
i

cij |mi〉 , (A.10)

where we used the identity
∑
i |mi〉 〈mi| = 1.

Having set λ = 1, eq. (A.1) applied to ψj then reads:

(H0 + V ) |ψj〉 = (H0 + V )
∑
i

cij |mi〉 = Ej
∑
i

cij |mi〉 .

Since by assumption H0 |mi〉 = E
(0)
D |mi〉, we easily obtain:∑

i

cij

[
〈mk|V |mi〉 − δik(Ej − E(0)

D )
]

= 0, (A.11)

where we used 〈mk|mi〉 = δik.
If we now define the projection of the perturbation onto the degenerate
subspace Ṽij ≡ 〈mk|V |mi〉 and the corrections ε(1)

j ≡ Ej−E
(0)
D , eq. (A.11)

is then satisfied if and only if:

det(Ṽ − ε(1)1) = 0. (A.12)

Note that eq. (A.12) correctly reduces to eq. (A.6) in the case of Ṽ being
one-dimensional, i.e. in the non-degenerate case. In general the secular
equation (A.12) admits g0 roots: in case they are all distinct the degener-
acy is then completely lifted, otherwise is only partially lifted.
To conclude, if the unperturbed spectrum presents several degenerate
eigenvalues we first project the perturbation onto each degenerate sub-
space and solve eq. (A.12) untill each degeneracy is completely lifted,
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or equivalently for each degenerate subspace we find a new basis wich
diagonalizes Ṽ . At the same time we apply standard non-degenerate
perturbation thery to the rest of the spectrum.

68



Appendix B

Definition and main
properties of the
complement network

Formally, let Aij be the generic element of the adjacency matrix A asso-
ciated with a given binary undirected graph G of N vertices, such that
Aij = 1 if an edge between vertices i and j exists, and Aij = 0 otherwise.
The adjacency matrix of the complement graph Ḡ is defined through

Āij = 1− δij −Aij , (B.1)

where δij is the Kronecker delta which excludes self loops from Ḡ, and
1− δij ≡ Kij defines the adjacency matrix of the complete graph.
From definition (B.1) it follows trivially that

ki + k̄i = N − 1 ∀i (B.2)

E + Ē =

(
N

2

)
(B.3)

ρ+ ρ̄ = 1, (B.4)

where ki, E and ρ denote the degree of (number of edges incident with)
generic vertex i, the number of edges and the edge density respectively.
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Thus, given the degree distribution P (k), the distribution of the comple-
ment degree is obtained as

P̄ (k̄) = P (N − 1− k̄), (B.5)

i.e., as the reflection of P (k) on the N−1
2 vertical axis. Notably, the degree

distribution of both a regular graph and an Erdös-Rényi graph (ER) are
invariant under this transformation: the complement of a regular graph
is a regular graph, as the complement of an ER is an ER. In particular,
the complement of an ER with connection probability f is an ER with
connection probability 1− f .

Moving to higher-order properties, we consider the relation between
the number of triangles (closed loop of length 3) of a graph, which is
given by TrA3

6 , and that of its complement. We then define the quantity:

Σ4 ≡
TrA3 + TrĀ3

6
.

By direct substitution of eq. B.1 we obtain:

Σ4 =

(
N

3

)
− 1

2

∑
i

kik̄i. (B.6)

As such, both cases ki = 0 and k̄i = 0 ∀i (empty and complete graph) lead
to Σ4 =

(
N
3

)
as expected. Furthermore note that the degree configuration

that minimizes Σ4 is the one a regular graph with ki = N−1
2 . As a matter

of fact:

∂Σ4
∂kj

= −1

2

∑
i

[δij(N − 1− 2ki)]
!
= 0⇔ kj =

N − 1

2
.

This configuration is indeed a local minimum since ∂Σ4
∂ki∂kj

= 1.
As for transitivity, a complementarity relation can be written also for the

local clustering coefficient ci =
∑
j 6=i

∑
k 6=i,j AijAjkAik
ki(ki−1) :

ciki(ki − 1) + c̄ik̄i(k̄i − 1) = knni ki + k̄nni k̄i − ki − k̄i − kik̄i, (B.7)

where knni =
∑
j 6=i Aijkj

ki
is the average nearest-neighbors degree.
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Alex Arenas. Navigability of interconnected networks under
random failures. Proceedings of the National Academy of Sciences,
111(23):8351–8356, 2014. 20

[DGM08] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Criti-
cal phenomena in complex networks. Review of Modern Physics,
80:1275–1335, 2008. 17

[DHS12] Mark Dickison, S. Havlin, and H. E. Stanley. Epidemics on in-
terconnected networks. Physical Review E, 85:066109, 2012. 20,
39

[DLC08] Zhisheng Duan, Chao Liu, and Guanrong Chen. Network syn-
chronizability analysis: The theory of subgraphs and comple-
mentary graphs. Physica D: Nonlinear Phenomena, 237(7):1006–
1012, 2008. 57

[DLR15] Jean-Charles Delvenne, Renaud Lambiotte, and Luis E. C.
Rocha. Diffusion on networked systems is a question of time
or structure. Nature Communications, 6:7366, 2015. 31

73



[DN15] Raissa M. DSouza and Jan Nagler. Anomalous critical and su-
percritical phenomena in explosive percolation. Nature Physics,
11:531, 2015. 42

[DSSVM15] Faryad Darabi Sahneh, Caterina Scoglio, and Piet Van Mieghem.
Exact coupling threshold for structural transition reveals diver-
sified behaviors in interconnected networks. Physical Review E,
92:040801, 2015. 20, 22, 27, 62

[EGGn14] Ernesto Estrada and Jesús Gómez-Gardeñes. Communicability
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Guilera, S. Gómez, and A. Arenas. Spectral properties of the
laplacian of multiplex networks. Physical Review E, 88:032807,
2013. 20, 22

[SSC13] F. D. Sahneh, C. Scoglio, and F. N. Chowdhury. Effect of cou-
pling on the epidemic threshold in interconnected complex net-
works: A spectral analysis. In 2013 American Control Conference,
pages 2307–2312, 2013. 63

80



[TdCDM17] G. Timár, R. A. da Costa, S. N. Dorogovtsev, and J. F. F. Mendes.
Nonbacktracking expansion of finite graphs. Physical Review E,
95:042322, 2017. 55

[VM16] P. Van Mieghem. Interconnectivity structure of a general inter-
dependent network. Physical Review E, 93:042305, 2016. 20, 22,
25, 26

[WDF11] Yang Wang, Zengru Di, and Ying Fan. Identifying and character-
izing nodes important to community structure using the spec-
trum of the graph. PLoS ONE, 6(11):1–10, 2011. 22

[Wil06] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., Nat-
ick, MA, USA, 2006. 14, 15

[WTSA14] Bing Wang, Gouhei Tanaka, Hideyuki Suzuki, and Kazuyuki Ai-
hara. Epidemic spread on interconnected metapopulation net-
works. Physical Review E, 90:032806, 2014. 63

[WX12a] Y. Wang and G. Xiao. Epidemics spreading in interconnected
complex networks. Physics Letters A, 376(42):2689–2696, 2012. 20

[WX12b] Y. Wang and G. Xiao. Epidemics spreading in interconnected
complex networks. Physics Letters A, 376(42):2689 – 2696, 2012.
63

[Xu87] Shao-ji Xu. Some parameters of graph and its complement. Dis-
crete Mathematics, 65(2):197–207, 1987. 57

[YWL+14] Xin Yan, Yang Wu, Xiaohui Li, Chunlin Li, and Yaogai Hu.
Eigenvector perturbations of complex networks. Physica A: Sta-
tistical Mechanics and its Applications, 408(Supplement C):106–
118, 2014. 22

[ZB13a] Kun Zhao and Ginestra Bianconi. Percolation on interacting,
antagonistic networks. Journal of Statistical Mechanics: Theory and
Experiment, 2013(05):P05005, 2013. 39

[ZB13b] Kun Zhao and Ginestra Bianconi. Percolation on interdependent
networks with a fraction of antagonistic interactions. Journal of
Statistical Physics, 152(6):1069–1083, 2013. 39





Unless otherwise expressly stated, all original material of whatever
nature created by Giacomo Rapisardi and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:giacomo.rapisardi@imtlucca.it

	Abstract
	1 Introduction
	1.1 Diffusion in complex networks
	1.2 Phase Transitions in complex networks
	1.2.1 The Ising model
	1.2.2 The SIR Model
	1.2.3 Percolation and network resilience

	1.3 Single layer vs Multilayer

	2 Multiple structural transitions in interacting networks
	2.1 Interconnected networks
	2.2 Perturbative approach for the spectrum of the graph Laplacian
	2.2.1 Diagonal interactions (Multiplex)
	2.2.2 Random interactions

	2.3 Perturbative approach for the spectrum of the adjacency matrix
	2.3.1 Random regular and Erdös-Rényi network layers


	3 Fragility and anomalous susceptibility of weakly interacting networks
	3.1 Percolation in multilayer networks
	3.2 The intrinsic powder keg of weakly interacting networks
	3.3 Model for the anomalous susceptibility and percolation threshold
	3.4 Real and artificial networks
	3.5 Finite size scaling
	3.6 Strongly Interacting Networks

	4 Numerical Assessment of the percolation threshold using complement networks
	4.1 Numerical methods and preliminary results
	4.2 Introduction of the complement graph and further results

	5 Conclusions
	A Perturbation Theory
	A.1 Nondegenerate Case
	A.2 Degenerate Case

	B Definition and main properties of the complement network
	References

