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Abstract

Modelling, characterising and detecting the structure of com-
plex networks is of primary importance to understand the
dynamics of the systems considered. This is especially true
for economic and financial networks, whose structural organ-
isation deeply affects their resilience to shock propagation.
Many real world networks are characterised by the presence
of mesoscale structures: while a lot of attention has been fo-
cused on the community structure, many real-world networks
are characterised by core-periphery, bow-tie and bipartite struc-
tures, especially so economic and financial networks. In this
thesis we present new methods to model and detect these
mesoscale structures. We apply these methods to characterise
the structure of real-world economic and financial networks.
Using maximum entropy networks encoding different levels
of information, we model the structure of the international
trade network and of national interbank exposures networks.
We find that constraining local information is enough to re-
construct the mesoscale structure of these networks: hence,
we introduce a new method to detect statistically significant
bimodular structures, based on the connectivity within and
between network modules. We also apply our method to mul-
tiplex networks. In particular, to unravel different types of
corporate networks, we construct a new multilayer dataset
of company interactions: we find that the disaggregate net-
work describes a small corporate world, but that these differ-
ent company interactions are characterised by vastly different
topological properties.

xiii



Chapter 1

Introduction

The great recession provides a prime example of the importance of net-
works in economics and finance. Why did a German bank suffer from
a failing sub-prime mortgage in the United States? As we now know
there are many steps between these events; reselling, repackaging, indi-
rect exposures through various actors: a chain of events. Mapping this
interconnectedness helps to untangle the complex system of our econ-
omy.

Networks have always existed in the economy of the world. Think
of trading webs like the silk road, or the vast colonial trading networks
that gave rise to the first stocks [51]. With network theory we can study
the efficiency, robustness and resilience to shocks of these interacting sys-
tems. In recent years networks contributed a lot to the understanding of
systemic risk in the economy [87, 17, 105]. Traditionally risk is mainly
an individual attribute; e.g. the probability a company defaults or an in-
dividual fails to deliver is estimated from the state of its affairs. What
crises illustrate is systemic risk rather than individual risks; the risk of a
company default not due to the poor state of its own balance sheet, but
due to external factors like a failing supplier. For the individuals in the
system this is an indirect effect, that affects them by their connections to
others. For the system as a whole, such risks are linked to the internal
structure [83].
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Spreading is a main aspect of systemic risk. Spreading phenomena
are present in many fields, like epidemics in biology, and spreading of
influence in social science. The systems in which spreading takes place
are almost always heterogeneous systems. This means the subjects do
not all have the same properties, but, more importantly, that the number
of interactions characterizing their activity is broadly distributed across
agents. The key here is that spreading is very much dependent on the
structure of the interactions between the individuals. For example, in
disease spreading there is an epidemic threshold of connectivity below
which basically no spreading will occur, but if the connectivity exceeds
this threshold the whole network will be affected [89].

Crisis or epidemics often start with shocks. One of the simplest ex-
amples of shocks in the financial system is defaults in a network of out-
standing loans [5, 28, 1]. Financial institutions form a network through
loans they get from each other. If in such a network one player defaults
on its loan, this shock travels to the neighbours of this player, and might
cause further defaults there. As such this shock can spread through the
network.

The structure of a network plays a very important role in this spread-
ing dynamics [83]. It is easy to imagine that a shock that hits a central
player spreads more easily than a shock on poorly connected player [19].
However an interconnected core can also bring resilience in some cases,
by ”spreading out the pain”, or dividing the impact of the shock to mul-
tiple neighbours [1]. Shocks are far from the only relevant phenomena
which highlight the importance of network structure, but especially in
an economic setting they provide a simple accessible illustration.

The structure of networks can be described in many ways [89]. On
the microscale there exist a vast amount of centrality measures that de-
scribe various kinds of importance of the individual actor. Looking at
the aggregate of such microscale properties can describe the network
as a whole, i.e. the macroscale. The macroscale analyses question like
whether the system consists of equal players, or of few important and
many fractional players. In-between these two scales is what is proba-
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bly most visibly recognizable for network structure: the mesoscale, the
properties of groups of nodes. Is the network clustered into groups? Is
there a group of central player who everyone connects to?

For many economic and financial systems the network structure on
this scale resembles a staged hierarchy: at the centre we find a group of
significantly interconnected players, outside this ’core’ we find groups
of players that are mainly only connected to this core group [84, 20]. An
example is the structure of the network of banks [40]. In the centre are
’core’ banks, the often called ’too big to fail’ institutions, which trade a lot
among themselves. In fact, network science has shown that the systemic
risk comes from institution that are ’too central’, rather than too big [18].

We can describe the structure of networks in many ways. Seemingly
endless centrality measures have been defined to rank the importance
of players, and we know a lot about the macroscale distributions of lo-
cal properties, such as scale free distribution where the structure of the
network looks similar at different levels of aggregation [89, 30]. On the
mesoscale most attention focusses on community detection [52, 53, 73];
identifying clusters of nodes whose internal connectivity is significantly
large. Communities however do not represent the only kind of mesoscale
structures characterizing real world networks. Other examples are core-
periphery structures, bow-tie structures and bipartite structures.

In this thesis we focus on such mesoscale network structures. In Chapter
2 we will analyse various alternative models to account for these struc-
tures and show the minimal information required to describe these sys-
tems. We illustrate the performance of these various models on networks
from economics and finance. In Chapter 3 we build on the insights we
gain from these real-world applications, and focus on the detection of
these mesoscale structures. We will present a novel way to identify the
different building blocks of the mesoscale structures.

With applications on real world data we can show the relevance of
more theoretical work. In collaboration with the Dutch central bank and
later the central bank of Mexico, we started to develop tools to analyse
and quantify the mesoscale structure of interbank exposure networks.
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Real world data however always brings challenges and often complica-
tions. In this work we discovered at a late stage of the project serious
data quality issues. The methods we present in Chapters 2 and 3 have
been applied to other financial and economic networks, as well as vari-
ous other real-world networks. In fact, these methods are perfectly gen-
eral and can be applied to any network structure.

Chapter 4 is instead completely devoted to the study of real-world
corporate systems. We will unravel the structure of different types of
links between companies, such as ownership ties and research collabora-
tions. Analysing the networks of these different interactions in parallel
will give us the opportunity to characterise the differences in structure of
different types of company interactions.

Finally, in Chapter 5, we show a spin-off application of the network
model framework we use in Chapter 2. We propose a new method for
link prediction in bipartite graphs, such as graphs describing consumer
purchases. In fact, we apply this method to predict missing links in
movie preferences. First, however we introduce some network theory,
and give an overview of the subject of economic and financial networks.

1.1 An introduction to network theory

We start here with a very brief introduction to network theory. For excel-
lent, more comprehensive material we refer the reader to [31, 89].

Graph / Network

A graph or network consists of points or nodes which are connected by
links or edges (we will use these terms interchangeably). Nodes repre-
sent the actors in the system; e.g. individuals or companies. An edge
between two nodes indicates the existence of some relation between the
two nodes. Edges can be undirected or directed, specifying the direction
of the flow of the connection. The number of edges connected to a node
is called the node-degree. As an example, in an interbank network, nodes
indicate banks and nodes are linked to indicate the presence of a loan or
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Layer 1

Layer 2

Figure 1: Example of a graph with three nodes and two edges (Left) and a
multiplex graph with two layers (Right).

exposure between two banks.

Multilayer networks

Multilayer graphs can represent multiple types of relations in one system.
A layer is the (sub-)graph which represents the network of a single type
of interaction. The special case where the set of nodes is the same in all
layers, is also called a multiplex graph. In the example of an interbank
network, layers could represent different types of exposures, like short-
term, long-term, mortgage, etc. Every layer then represents the connec-
tions specific to a single type of exposure. An aggregate network can be
created by collapsing all layers into a single layer.

Network properties

Network properties describe different characteristics of the network, or
of the nodes. The link-density is the general measure for how intercon-
nected the network is. It is defined by the fraction observed edges over
the number possible edges. The average path length is a measure of dis-
tance between any random selected pair of nodes. It is defined as the
average number of edges that constitutes the shortest paths (chain of
connected edges) between all pairs of nodes. There are endless more
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Figure 2: Scale of network structures: individual node properties on the
micro-scale, the structure of groups of nodes on the meso-scale, and the distri-
bution of microscale properties on the macro-scale.

network properties describing the centrality of nodes or the tendency to
close triangle paths, but these are the main properties used in this thesis.

1.2 Micro - meso - macro

The structure of networks is defined at different scales. On the smallest
scale, the micro-scale, we find characteristics of single nodes and edges;
the degree of a node is such a microscale property. On the other side of
the spectrum are macro-scale properties. These can be seen as the proper-
ties of the distribution of the micro-scale characteristics, e.g. the degree
distribution. In-between these ends we have meso-scale structures. These
consists of groups of nodes or edges, e.g. clusters.

Early networks science furthered a lot the micro and macro, char-
acterizing nodes with the many centrality measures and characterising
degree distributions. On the meso-scale, community detection has by far
received the most attention. Network communities are usually defined
as groups of nodes that have significant intra-cluster connectivity and
a sparse inter-cluster connectivity. Many methods exist to detect com-
munities, like the widely used modularity [88] or the more recent pro-
posed surprise [4]. Community structure is found in many real world
networks. In economic and financial networks modular structures have
been identified as for example trading blocks in the worldwide trading
networks [12] and clusters in the corporate board membership networks
[125]. In fact, these network communities can often relate to well known
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communities
core-

periphery bipartite

Figure 3: Adjacency matrix representation of some meso-scale structures,
when the nodes in the matrix are properly ordered according to their clus-
tering. Darker colours indicate higher edge-density. Blocks on the diagonal
(from the top left to the bottom right) signify intra-cluster connectivity, off-
diagonal blocks show inter-cluster connectivity. We formally introduce these
structures in Section 2.3.1.

groups as sectors and product classes [113, 103].
Real-world networks however show more mesoscale structures than

just communities, examples are bow-tie, core-periphery and bipartite struc-
tures. Opposite to communities, these structures do have a significant
inter-cluster connectivity, see also Figure 3. We will formally introduce
some of these structures in Section 2.3.1. Interbank networks have been
shown to display a core-periphery like structure [70], while for example
corporate ownership networks can show bow-tie structures [125]. Bipar-
tite structures have significant inter-cluster connectivity and intra-cluster
connectivity is very sparse. Note that here we intend bipartite struc-
tures in monopartite networks, not the more common bipartite graphs
that describe the connectivity between two different classes where intra-
cluster links are not allowed. Interbank networks might often have a
core-periphery structure, but can also manifest bipartite structures [13].

1.3 A minimal introduction to null models

In this section we introduce various graph models used in this thesis.
Null models provide a baseline for comparison of the characteristics of
an observed system. Generally speaking, we can have multiple null
models, incorporating different levels of information or characteristics

7



of the observed system. Null models allow significant structures to be
revealed in observed networks, or equivalently, to identify which char-
acteristics of the observed network can be explained by (the characteris-
tics of) the null model. For example, if a null model generates exactly the
same network as an observed one, we can ’use’ the characteristics of the
null model to describe the observed process.

A graph model is a method or set of rules to generate a network. In
general a graph model does not generate a specific network configura-
tion, but rather an ensemble of networks adhering to the set of model
rules.

One of the simplest models is a Random Graph, which generates ran-
dom graphs with a sole constraint on the overall edge density. The exis-
tence of an edge between every pair of nodes is simply proportional to
the overall density; hence the name Random Graph. The Directed Ran-
dom Graph (DRG) is the version of this model with directed edges. This
model is further discussed in appendix A.

The Configuration Model (CM) is the name for a collection of mod-
els which is based on constraining the degree distribution or sequence.
Therefore the ensemble of graphs is constrained by the degree sequence
instead of the density as for the random graph. The CM can be under-
stood as building the network up from the degree sequence, or the se-
quence of stubs. Randomly matching all these stubs together creates one
configuration of the model. This random process can also be understood
with the idea of entropy of the system.

Maximum entropy networks

We will discuss briefly how the maximum entropy principle helps to
analyse networks. A key observation on this framework is that the maxi-
mum entropy procedure provides the least-biased distribution given our
constraints.

Entropy is a measure in physics (Gibbs entropy) or information the-
ory (Shannon entropy) that indicates ’uncertainty’ or ’disorder’ [71]. More
precisely, entropy measures the multiplicity of a state. In terms of net-
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works, this multiplicity can be seen as the number of possible configura-
tions of nodes and edges that satisfy certain constraints. Disordered, or
random states tend to have high multiplicity of equivalence states. This
is why we can say maximizing entropy is equal to maximizing disorder
[67]. We can think of maximally uncertain as least biased, by making no
assumptions on distributions other than the constraints in the model.

Broadly speaking, the graph ensemble is the set of all network con-
figurations that are compatible with a given set of constraints. A basic
constraint on a binary graph can be the number of nodes of a graph. In
this case the ensemble ranges from a graph with zero edges where all
nodes are isolated, to a fully connected graph where all nodes are con-
nected to all other nodes. The graph model would define how likely it is
to encounter any of these configurations: it defines a probability distribu-
tion over the ensemble.

Boltzmann stated that systems in nature always tend to maximize en-
tropy. So why do networks often show ordered hierarchical structures,
instead of totally random structures? This observation indicates that
there are forces acting on the system to favour specific configurations.
The order appears because the system is not an isolated boundary-less
system, but there are driving forces on the system that push the system
into certain ordered states [67].

With a maximum entropy graph model we evaluate the probability of
an observed network configuration under the null model. In this way we
can identify significant structures with respect to the maximally random
state of the model we define.

This framework is popular in network analysis because it defines the
probability distribution over the graph ensemble in the least biased way,
i.e. maximally random under the set of chosen constraints [89]. The
flexibility on choosing the constraints of the model provide another ad-
vantage. One can analyse complex systems step by step, by imposing
increasingly less trivial constraints to inspect a system’s level of self-
organisation.
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Exponential random graph framework

We now formally introduce the Exponential Random Graph (ERG), the
graph model resulting from entropy maximization. We define G the
grandcanonical ensemble of graphs. Grandcanonical signifies that we
use soft constraints; the constraints must be satisfied by the ensemble on
average. The set of constraints we impose on the model is ~C(G). Equiva-
lent to graph G we can also write the corresponding adjacency matrix A.
The Shannon entropy under a given set of constraints ~C(A) reads [109]

S = −
∑
A∈G

P (A) lnP (A). (1.1)

The probability coefficient P (A) is now assigned to every graph in the
ensemble. This defines the constraint-optimization problem. The result
is the well-known exponential distribution

P (A|~θ) = e−H(A,~θ)/Z(~θ), (1.2)

where ~θ expresses the Lagrange multipliers. The Hamiltonian expressing
the imposed set of constraints is

H(A, ~θ) = ~θ · ~C(A), (1.3)

and the partition function for normalization of the distribution function
is

Z(~θ) =
∑
A∈G

e−H(A,~θ). (1.4)

Degree-informed null models: Directed Configuration Model (DCM)

From this specification of the exponential random graph we define spe-
cific null models by setting the constraints ~C(A). We can make null mod-
els for observed graphs with the actual observed characteristics, rather
than picking for example a standard degree distribution. As an illus-
tration of this process we will now derive the Directed Configuration
Model. This model constraints the directed degree sequence. This rel-
ative simple version of the configuration model has proven informative
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in many cases [110, 102, 37, 38]. Further models will be introduced in
Chapter 2 and formally defined in Appendix A.

The Directed Configuration Model (DCM) is obtained by restricting
the degree sequence of the model. Typically we restrict the degree se-
quence to the observed degree sequence of the network that we intend
to model. Let A∗ be the adjacency matrix of a real unweighed directed
graph with entries aij indicating the presence of a link between node
i and node j. The directed degree sequences are given by ~kin(A∗) =∑
j(6=i) aij for the in-degrees and ~kout(A∗) =

∑
j(6=i) aji for the out- de-

grees. The constraints for the DCM are these directed degree sequences:
~C(A) = ~kin(A) + ~kout(A). With this specific constraint the Hamiltonian
reads

H(G, ~α, ~β) =
∑
i

(αik
in
i (G) + βik

out
i (G)) (1.5)

=
∑
i 6=j

(αi + βj)aij (1.6)

Upon defining xi ≡ e−αi and yi ≡ e−βi , the multipliers induce probabil-
ity coefficients reading

pij =
xiyj

1 + xiyj
(1.7)

to be numerically determined by solving the likelihood equations{
kini = 〈kini 〉, ∀ i
kouti = 〈kouti 〉, ∀ i

(1.8)

with the expected in- and out-degrees reading 〈kini 〉 =
∑
j(6=i) pij and

〈kouti 〉 =
∑
j( 6=i) pji. Explicitly we usually solve the system of equation{

kini =
∑
j 6=i

xjyi
1+xjyi

, ∀ i
kouti =

∑
j 6=i

xiyj
1+xiyj

, ∀ i (1.9)

The Directed Random Graph model (DRG) can be recovered as a par-
ticular case of the DCM, obtained by posing αi ≡ α and βj ≡ β in Eq.
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1.5. The only coefficient pij ≡ p is determined by solving the equation
L = 〈L〉 with L =

∑
i 6=j aij and 〈L〉 =

∑
i6=j p, where L is the total num-

ber of edges in the graph.

Configuration model solutions

The CM can be implemented numerically or analytically. By randomly
generating the graphs matching the node-stubs or randomizing a net-
work respecting the degree sequence constraints, one can numerically
generate graphs according to the model. The second method is the ana-
lytical approach by which we seek to specifically write down expressions
that describe the ensemble characteristics. The computational method
has limitations and can be computationally expensive [109]. Throughout
this thesis we use a specific analytical method that solves the maximum
entropy contraint optimization, solving the system of equation for the
Lagrange estimators. This solution specifies directly expected values of
network topological characteristics and all link probabilities. More de-
tails can be found in [109].
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1.3.1 Recipe to implement maximum entropy null models
for observed networks

To recap, the general procedure to create null models for real-world graphs
using the maximum entropy framework is as follows:

I) Observed graph G∗

II) Set model constraints
~C(A), for example the
degree sequence

III) The constraint defines the
ensemble of graphs G

IV) Solve maximum entropy
constraint optimization to
find probability distribu-
tion over the ensemble:
probability per graph
P (A|~θ)

V) Find:

– all edge-probabilities pij
⇒ used for link predic-
tion in Chapter 5

– observed graph proba-
bility or likelihood
⇒ used for reconstruc-
tion in Chapter 2

P (G∗|~θ)
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1.3.2 Applications of maximum entropy

The maximum entropy framework has been proven very successful in
a wide range of tasks [107]. A relevant application is the task of net-
work reconstruction, where the objective is to reconstruct graphs from
partial information. There are many situations in which part of the net-
work structure is unknown, or at least not available. Confidentiality
in the financial sector often prohibits an institution from revealing the
counter parties involved in their deals or loans. This means the inter-
action network has to be reconstructed from for example the number of
deals per institution (degree sequence) [7]. Recent works have shown
the differences between reconstruction methods and which information
is required for these models. For reconstructing credit networks, recon-
struction from only the edge weights works well [99]. Analysis of world-
wide exports (World Trade Web - WTW) showed information about edge
weights might not be superior than the binary information on links when
reconstructing the WTW network [108].

A task similar to reconstruction is missing link prediction. Whereas
in reconstruction usually all individuals and the number of connections
they have are known, in link prediction there is an entire subset of edges
unknown. As a spin-off work of the maximum entropy framework, we
will discuss link prediction in bipartite networks. Link prediction is the
task of predicting or proposing most likely links in a graph. For bipartite
networks this can be used for example as recommendation systems, sug-
gesting (bipartite) links between consumers and products. In Chapter
5 we use link probabilities from the maximum entropy graph model to
predict links in real world networks, such as film suggestions and bank-
asset links.

Pattern detection is another useful application of the maximum en-
tropy framework. We can for example determine the over- or under-
representation of certain small network motifs in an observed network
[110]. Coupled with a time dimension this allows to quantify the evolu-
tion of network structure over time [102]. We will use a similar approach
in Chapter 3 when analysing changes in core-periphery structures of real
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world networks.

1.4 Economic and financial networks -
an overview

Many actions in economics and finance evolve around exchanges or trans-
actions. Systems with many interacting agents can be seen as networks
of interactions. When the agents are persons, networks can represent
for example consumer behaviour, like linking customers to purchases.
For agents that are companies, common networks are interbank network
- loans between banks - and production networks, detailing the various
steps in the production of goods. On a larger scale, one can see the aggre-
gate of production networks as sectoral input-output networks, describ-
ing flow between sectors. Worldwide, the transnational flow of goods
translates to the World Trade Web, the network of imports and exports
between countries.

1.4.1 Economic networks

Studies of economic networks, like the world trade web, have increased
the understanding of economic phenomena such as the industrial growth
of countries. In many instances network analysis highlight also the fra-
gility of the global economy. It has been shown that relatively small lo-
calized shocks can initiate avalanches in production networks describ-
ing supplier relations [34]. From the network of countries and their ex-
ports one can also identify industrial specilization among countries [112,
66]. For companies, or corporate networks, networks are fore example
used to map the chains of ownership of companies. These ownership
networks have revealed a small corporate world; a large concentration
of ultimate ownership in a small group of core companies in this com-
plex network [125]. The relations between companies have also been
described by financial ties.
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1.4.2 Financial networks

Financial networks focus on the flow, or at least the exposure, of capital.
The great financial recession has put a focus on the analysis of intercon-
nectedness in the financial system. Networks provide a good framework
to represent this interconectedness as networks are build of relations. A
lot of research has focussed on so called interbank networks. These de-
scribe transactions, or exposures between banks, but also wider financial
institutions. Studies of these networks have identified as a key revela-
tion the importance of second order effects in systemic risk. Meaning
indirect network effects can be as important as direct shocks for the sta-
bility financial institutions [62, 57]. The interconnectedness also comes
from indirect channels, rather than direct bilateral links such as a loan
between two parties. This indirect effect is illustrated by so called over-
lapping exposures. A shock to an asset or sector will affect all parties
that have an exposure to that asset or sector. This provides an indirect
channel of shock propagation between financial institutions [29, 28]. A
final type of financial networks are the ones describing stock markets.
Stock prices can contain a lot of information about the state of compa-
nies and the wider markets. Networks constructed from the stocks can
reveal significant patterns in this underlying information [84, 23, 119]

1.4.3 Enriched Models

For certain applications the best models of the (dynamics of the) net-
work take into account some of the underlying economics in addittion
to the network structure [105]. Systemic risk in financial network can
be approached from a pure network analysis, as an epidemic spread-
ing process [87]. More sophisticated models however take into account
the structure of the balance sheets of the banks [18, 83]. The network
of worldwide imports and exports or economic growth of countries are
other examples where mixed models perform well [68].
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1.4.4 Methods and structure

The structure of these networks is generally described by significant topo-
logical characteristics. General descriptions as scale free properties and
degree distributions can reveal overall clustered structures or homoge-
nous ones. Recently some doubt has been cast over the widespread clas-
sification of power-law distributions [39, 124]. Null models as discussed
before are a powerful tool to reveal significant structure as small graph
motifs and communities [11, 110] as also described in Section 1.3.2. Com-
munity detection has received a lot of attention in economic networks fo-
cussed on detecting specilisations of countries and companies [112]. The
mesoscale structure of many financial and economic networks has been
found different from communities. The network of world trade has been
characterized as core-periphery [108], interbank networks are often found
to exhibit some core-periphery structure [70], but also bipartite structures
[13]. The flow of control in ownership networks can be described by a
bow-tie structures [125]. For the detection and characterisation of these
meso-scale structure different techniques are used. For core-periphery
structure most recent studies use modifications of the Borgatti model
[24]; a score function indicating the extent to which a given graph par-
tition deviates from an ideal core-periphery structure. Such measures
have limitations, as a high dependency on node degree and no embed-
ded significance evaluation.

1.5 New methods for mesoscale network struc-
tures

In this thesis we will propose new methods for the analysis of mesoscale
network structures, and use these methods to analyse various real-world
economic and financial systems. In the next chapter we will clarify which
null models fit best with the observed modular structures in real-world
economic and financial networks. In Chapter 3 we propose a measure
based on connectivity to try and overcome some of the limitations in de-
tecting core-periphery structures with alternative methods similar to the
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Borgatti model. Finally we look at the interplay of certain of these eco-
nomic/financial networks. Almost exclusively this research looks at the
single types of networks in isolation, instead of the entire ecosystem. As
described before, the mesoscale structure is then often characterised as
core-periphery or bow-tie [125, 132]. However many of these networks
are inherently linked; e.g. a company subsidiary is both linked in the
production chain and the ownership chain to the parent company. With
new data on corporate networks we will disentangle the aggregate cor-
porate network and reveal that the layers in this multiplex show different
mesoscale structures.
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Chapter 2

Reconstructing Mesoscale
Network Structures

The content of this chapter was published in the journal Complexity, see [123].

In this chapter we look at null models for mesoscale network structures
and the question of whether information on this modular structure should
be incorporated in these models. When facing the problem of recon-
structing complex mesoscale network structures, it is generally believed
that (null) models encoding the nodes organization into modules must
be employed. Here we focus on two block structures that characterize
the empirical mesoscale organization of many real-world networks, i.e.
the bow-tie and the core-periphery ones, with the aim of quantifying the
minimal amount of topological information that needs to be enforced in
order to reproduce the topological details of the former. Our analysis
shows that constraining the network degree sequence is often enough to
reproduce such structures, as confirmed by model selection criteria as
AIC or BIC. Furthermore, as a byproduct, we enrich the toolbox for the
analysis of bipartite networks. Both the bow-tie and the core-periphery
structures, in fact, partition the networks into asymmetric blocks charac-
terized by binary, directed connections, thus calling for the extension of
a recently-proposed method to randomize undirected, bipartite networks
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to the directed case.

2.1 Null models for mesoscale network struc-
tures

The analysis of mesoscale network structures is a topic of great interest
within the community of network scientists: much attention, however,
has been received by the community-detection topic [52, 53, 73], while
the analysis of other meso-structures has remained far less explored.

In this chapter we aim to contribute to this stream of research, by ex-
ploring the effectiveness of null models that constrain only local informa-
tion in reproducing complex meso-structures. When approaching such a
problem it is, in fact, commonly believed that models encoding the nodes
organization into modules must be employed: here we test this hypoth-
esis, by comparing models that enforce topological information like the
total number of links, the degree sequences and the reciprocity structure
with their block-wise counterparts.

To this aim, we have considered real-world networks whose topolog-
ical structure is empirically characterized by bow-tie and core-periphery
structures: both are characterized by a central, cohesive subgraph sur-
rounded by a loosely-connected set of nodes [41]. In the first case, how-
ever, the central part of the network has a fan-in and a fan-out compo-
nent, respectively entering into and exiting from it.

In order to do so, we compare competing null models and apply
model selection criteria in order to unambiguously determine the ”win-
ner”, i.e. the one carrying the right amount of information to account for
the inspected structures. Remarkably, all null models considered in this
chapter can be recovered within the same framework, i.e. the entropy-
maximization one introduced in Chapter 1, which has been proven to
be rather effective for both pattern detection and real-world networks
reconstruction [109, 85].

When studying these mesoscale structures, it is evident that analysing
the way nodes cluster together unavoidably leads to the analysis of the
way such modules interact. The interactions between two clusters of nodes
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Strongly Connected Core
IN component OUT component

Figure 4: Schematic visualisation of a bow-tie network structure.

are described by a bipartite network. In fact, the adjacency matrix of the
clustered structure is characterized by diagonal square blocks (i.e. the
adjacency matrices of the modules themselves) and off-diagonal rectan-
gular blocks (i.e. the adjacency matrices of the bipartite networks encod-
ing their interactions). Among the many, available, network represen-
tations, the bipartite one has recently received much attention [115, 36].
This, in turn, has led to the definition of algorithms for randomizing [74,
46, 114, 104], reconstructing [111] or projecting [120, 103] undirected, bi-
partite networks. The directed case, however, has not yet been explored,
thus calling for the definition of techniques to approach the study of this
kind of networks as well. Our method will be employed to analyse eco-
nomic and financial networks. More specifically, we will focus on two
systems: the World Trade Web and the Dutch Interbank Network. As we
will show, while the former can be empirically characterized by a par-
tial bow-tie structure, the latter is characterized by the co-existence of a
core-periphery -like structure and a proper bow-tie one, the second one
carrying a larger amount of information about the system evolution than
the first one.
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2.2 Data

We consider two real world systems for the present analysis; one eco-
nomic network, the World Trade Web, and one financial network, the
Dutch Interbank Network.

The World Trade Web. We consider yearly bilateral data on exports
and imports from the UN COMTRADE database [128], from 1992 to
2002. We limit ourselves to considering the World Trade Web (WTW
hereafter) in its binary, directed representation at the aggregate level. In
order to perform a temporal analysis and compare different years, we re-
strict ourselves to a balanced panel of N = 162 countries (present in the
data throughout the considered interval). Accordingly, for a given year
t, atij = 1 (atij = 0) means that country i has registered a non-null (null)
export towards country j.

The Dutch Interbank Network. We consider a dataset where nodes
are Dutch banks and a link from node i to node j indicates that bank i
has an exposure larger than 1.5 million euros and with maturity shorter
than one year, towards a creditor bank j [70]. We consider 44 quarterly
snapshots of the Dutch Interbank Network (DIN hereafter), from 1998Q1
to 2008Q4. The last year in the sample represents the year during which
the recent financial crisis became manifest.

2.3 Methods

Let us, first, define the modular structures that we consider in this chap-
ter. The partitioning of the data with respect to these modules will be
imposed by the specific modular structure, and will thus be fixed rather
than fitted. We then continue to explain which competing null models
we will use. Finally we introduce the model selection criteria used to
compare the explanatory power of these competing models.
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2.3.1 Modular structure

Let us now provide an algebraic representation of the mesoscale struc-
tures considered in this chapter, i.e. the bow-tie and the core-periphery
ones, as described informally in 1. Networks whose topology is empir-
ically characterised by a core-periphery structure can be represented as
follows:

A =

(
A• A>

A⊥ A◦

)
; (2.1)

the adjacency matrix A is composed by four distinct blocks: while the
square adjacency matrices A• and A◦ lying along the diagonal represent
the core and the periphery modules, the two rectangular (in the most
general case), off-diagonal matrices A> and A⊥ represent the (bipar-
tite) networks through which they interact. Usually, the link densities
of the matrices above satisfy the chain of relationships c(A•) > c(A>) '
c(A⊥) > c(A◦), i.e. the core module is (much) denser than the periphery
module.

Notice that the two matrices A> and A⊥ bring genuinely different
information: while the generic entry a>cp = 1 (a>cp = 0) indicates that a
directed link from the node c in the core to the node p in the periphery
is present (absent), the generic entry a⊥pc = 1 (a⊥pc = 0) indicates that a
directed link from the periphery node p to the core node c is present (ab-
sent). In other words, in order to fully describe the topological structure
of one, directed bipartite network, two matrices are, in fact, needed. Natu-
rally, in case the network A is undirected, A• = [A•]T, A◦ = [A◦]T and
A> = [A⊥]T, which restores the symmetry of the whole adjacency ma-
trix (i.e. A = AT).

While the definition of core-periphery structure is quite intuitive, the
definition of bow-tie structure, on the other hand, is based on the concept
of node reachability: node i is reachable from node j if a path exists from
node i to node j (a path being defined as a sequence of adjacent links
connecting i with j). According to this definition, each node is assigned
to one of the sets described in [129]. The definition of the three most
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relevant ones follows:

• SCC: each node in the Strongly Connected Component (SCC) is
reachable from any other node belonging to the SCC;

• IN: each node in the SCC is reachable from any node belonging to
the IN-component;

• OUT: each node in OUT-component is reachable from any node
belonging to the SCC.

According to the definitions above, networks whose topology is em-
pirically characterised by a bow-tie structure can be represented by the
following adjacency matrix

A =

 Ai A〉 0
0 As A〉〉

0 0 Ao

 (2.2)

the three blocks As, Ai and Ao representing the SCC, IN- and OUT-
component respectively. The off-diagonal matrices A〉 and A〉〉, instead,
represent the (bipartite) networks through which they interact.

Notice that the partitioning of the graph in these modules is imposed
by our definition of the bow-tie structure. In our data applications the
core-module of the core-periphery structure will also be taken as the
SCC, as argued in more detail when we discuss the data characteristics.

2.3.2 Null models

To explorer if specific information about nodes group membership is re-
quire to reconstruct these mesoscale structures, we consider two sets of
null models:

• constraining local information,

• constraining local information and group membership of the nodes.
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Throughout these sets we consider three classes of null models: density
informed, degree informed, and reciprocity informed.

We use the null models from the maximum entropy framework as
introduced in Chapter 1. The three classes of null models we consider
put constraints on an increasing amount of information of the graph. As
a basic model we use the Directed Random Graph (DRG), which puts a
sole constraint on the edge density, denoted by l. The Directed Configura-
tion Model (DCM) only uses the directed degree sequences; the in-degree
sequence ~kin and out-degree sequence ~kout. When analysing directed
networks, however, a non-trivial piece of information to be taken into
account is represented by reciprocity [60]. Therefore we also use the Re-
ciprocated Configuration Model (RCM) which restricts the reciprocated de-
gree sequence (in-, out- and reciprocated-degrees of the nodes: ~kin, ~kout,
~krec).

The models that also constrain the group membership of the nodes
are denoted by the prefix Block (or the abbreviated B). The block version
of the DRG is also known as the Stochastic Block Model (SBM). For the
DCM and RCM the block versions are indicated as the Block Configura-
tion Model (BCM) and the Block Reciprocated Configuration Model (BRCM).
These models put exactly the same constraints as their corresponding
non-block models, but are solved within all blocks of the core-periphery
or bow-tie structure. Again, the block-structure is known in all cases,
as we will expand on when introducing the data. In Appendix A we
provide the full specification and derivation of these models.

To sum up, we will look at the following models, both with and with-
out information about the modular structure of the network.

2.3.3 Model selection criteria

Although rising the number of parameters in order to better reproduce
the observations is tempting, the risk of overfitting should be, neverthe-
less, avoided. Introducing the information of the group membership of
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Without block information With block information
Constraints Constraints

DRG l SBM l within and between blocks
DCM ~kin, ~kout BCM ~kin, ~kout within and between blocks
RCM ~kin, ~kout, ~krec BRCM ~kin, ~kout, ~krec within and between blocks

Table 1: Competing mesoscale null models

the nodes with the block models gives such a rise in parameters. A cri-
terion to identify the best model out of a basket of possible ones is, thus,
needed. In what follows, we will adopt the Akaike Information Criterion
(AIC hereafter)

AIC = −2L(A) + 2K +
2K(K + 1)

n−K − 1
(2.3)

and the Bayesian Information Criterion (BIC hereafter)

BIC = −2L(A) +K lnn (2.4)

whose first addendum, in both cases, is proportional to the log-likelihood
of the null model under analysis,K is the number of parameters defining
the model and n is the sample size (set, as usual, at N(N − 1)). Both AIC
and BIC are minimum for the best explanatory model in the basket [27].

In order to make Eqs. 2.3 and 2.4 more explicit, let us call B the num-
ber of blocks our network has been divided into (i.e. the diagonal blocks
of the matrix A). While the Directed Random Graph (DRG) is defined
by just one parameter, KDRG = 1, the Stochastic Block Model (SBM) is
defined by KSBM = B2 parameter (as can be verified upon inspecting
definitions 2.1 and 2.2). Specifying the degree sequence leads to a fur-
ther rise of the number of parameters: the Directed Configuration Model
(DCM) is, in fact, defined by KDCM = 2N , and the Block Configuration
Model (BCM) is defined by KBCM = 2NB (each node, in fact, “needs”
two parameters per block: one for the in-degree and one for the out-
degree). Accounting also for the information provided by the reciprocity
requires a number of parameters to be specified that is KRCM = 3N

for the Reciprocal Configuration Model (RCM) and KBRCM = 3NB for
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the Block Reciprocal Configuration Model (BRCM - each node, in fact,
“needs” three parameters per block).

The model selection framework based upon the two information cri-
teria above allows the probability that a given model m is the best ap-
proximating model to be calculated as well, via the so-called AIC weights
and BIC weights, defined as

wm =
e−∆m/2∑
m e
−∆m/2

(2.5)

with ∆m = AICm − min{AICm}m and ∆m = BICm − min{BICm}m,
respectively.
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2.3.4 Recipe for reconstruction of mesoscale network struc-
tures

To recap, the general procedure to evaluate the reconstruction of mesoscale
structures follows:

I) Observed graph G∗, with
fixed modular partition

II) Model the graph with
the maximum entropy
framework using different
constraints:
DRG & BlockDRG (or
SBM)

DCM & BlockDCM (or
BCM)

RCM & BlockRCM
(BRCM)

III) Evaluate model fit with
AIC and BIC model selec-
tion criteria to compensate
for the rise in parameters.

P (G∗|~θDRG) P (G∗|~θSBM )

P (G∗|~θDCM ) P (G∗|~θBCM )

P (G∗|~θRCM ) P (G∗|~θBRCM )
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2.4 Reconstructing mesoscale structures in eco-
nomic and financial networks

The World Trade Web. Although the WTW has been deeply studied
throughout the years [106, 55, 50, 86], the analysis of its mesoscale or-
ganization has, so far, received far less attention [10, 117]. Interestingly,
checking for the applicability of the bow-tie definition provided above,
the WTW appears as being partitioned into a SCC and an IN-component
only, the OUT-component being completely missing (see Fig. 5). Accord-
ing to the algebraic representation introduced at the beginning of this
chapter, the WTW mesoscale structure is represented by the following
adjacency matrix

AWTW =

(
Ai A〉

0 As

)
(2.6)

with Ai = 0 throughout our temporal interval. This implies that the
nodes belonging to the IN-component do not establish internal relation-
ships, their links are pointing towards the SCC nodes only (via the A〉

block). Interestingly, the percentage of nodes belonging to the SCC stea-
dily increases with time: from the 32% in 1992 to almost the 75% in 2002.
Since the total number of nodes does not vary across the considered tem-
poral interval, the IN-component shrinks accordingly. These results re-
fine the picture drawn in [10], where only the largest connected compo-
nent was considered.

From a macroeconomic point of view, the increasing number of nodes
within the SCC may evidence a sort of ongoing globalization process
[10]. It is interesting to notice that the inclusion of (whole subsets of)
countries within the SCC seems to be related to the existence of trade
agreements. Examples are provided by Commonwealth nations - all of
which are part of the SCC since 1993 - European nations (EU as a whole
joined the SCC in 1994, the same year of the EEA agreement) and the case
of USA (NAFTA entered into force in 1994 as well). From a purely topo-
logical perspective, an interesting dynamics takes place: as shown in Fig.
6, the reciprocal degree of nodes belonging to the SCC keeps rising. Since
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Figure 5: Top-left panel: the WTW bow-tie structure, composed by the SCC
and the IN-component only. The other panels show clockwise the coun-
tries belonging to the SCC (in colors) and the countries belonging to the
IN-component (in gray) in 1993, 1998 and 2002, respectively. Countries be-
longing to the SCC keep rising their reciprocated degree (see also Fig. 6);
richest world countries (Canada, Europe, Japan - in dark red) are always
characterized by the largest values of reciprocated degree.

all nodes are characterized by a rather stable in-degree value, this find-
ing points out the tendency of such countries to reciprocate previously-
established connections by creating new out-going links (i.e. to consoli-
date existing trade relationships). Beside revealing that the high value of
reciprocity within the SCC is one of the causes behind the existence of a
large number of paths within it, the overall effect of this dynamics seems,
thus, to be that of fostering trade exchanges between the members of the
SCC.

Let us now analyse what kind of topological information is actually
needed in order to explain the mesoscale WTW structure. To this aim,
let us summing up the observations about the actual structure of the
WTW by imagining a densely-connected, highly-reciprocated SCC (c(As) '
r(As) ' 0.8 throughout our temporal interval).

The need of considering a block model becomes evident when com-
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Figure 6: Dynamics of the in-degree (defined as hi =
∑

j(6=i) aji) and of the
reciprocated degree (defined as k↔i =

∑
j(6=i) aijaji) of a sample of coun-

tries (Italy, in green; Japan, in black; China, in red; Russia, in blue; India, in
brown; USA, in purple; Australia, in orange): while the in-degree remains
rather stable across time, the value of the reciprocated degree keeps rising
once the country has joined the SCC. Such a dynamics can be interpreted as
a signal of ongoing integration [10].

paring the homogeneous benchmark provided by the DRG with its block-
wise counterpart, i.e. the SBM (see Fig. 7): the SBM outperforms the
DRG since the network is “composed” by parts characterized by very
different link-densities (c(As) ∈ [0.75, 0.9] and c(Ai) = 0) that cannot be
reproduced with just one, global parameter.

Generally speaking, however, benchmarks encoding the degrees het-
erogeneity are to be preferred. Interestingly, (both) non-block models
outperform block models, indicating that specifying additional informa-
tion to the one encoded into local properties is indeed unnecessary. This
is not surprising, however, when considering that the nodes belonging
to the IN-component have zero in-degrees. The latter, in fact, are exactly
reproduced by both the DCM and the RCM: the “peripheral” part of the
network under analysis is, thus, automatically explained by a simpler
kind of statistics with no need to invoke any a priori partition.

Let us compare our degree-informed models over the A〉 and As sub-
graphs. In the first case, the information carried by reciprocity is encoded
into the degree sequence. The resultL(A〉)BCM = L(A〉)BRCM is, in fact,
rooted into the observation that the links from the IN-component to the
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Figure 7: Evolution of the AIC and BIC values for the WTW across the years
1992-2002: while the SBM (blue trend) must be preferred to the traditional
DRG (being the network composed by parts with different link densities),
heterogeneous benchmarks are, generally speaking, to be preferred. Al-
though the DCM and the RCM are characterized by very similar AIC values,
AIC and BIC weights let always the DCM win.

SCC are not reciprocated. The same consideration together with the ob-
servation that the large r(AS) value is due to reciprocal connections es-
tablished between nodes within the SCC, leads to the result L(A〉)BCM =

L(A〉)BRCM ' L(A〉)RCM ; similarly, L(AS)BRCM ' L(AS)RCM . As
a consequence, being the two likelihood values (overall) very similar,
the model with a larger number of parameters is more “penalized” (i.e.
AICBRCM > AICRCM ). On the other hand, comparing the BCM and
the DCM on the SCC leads to the conclusion that, as the latter enlarges,
L(AS)BCM ' L(AS)DCM , since the largest contribution to the nodes
degrees comes from the connections established with other nodes within
the SCC itself.

Apparently, thus, two non-block models compete, i.e. the DCM and
the RCM (see Fig. 6). However, by computing AIC and BIC weights for
each model m in our basket

wm =
e−∆m/2∑
m e
−∆m/2

(2.7)

(with ∆m = AICm − min{AICm}m and ∆m = BICm − min{BICm}m,
respectively) one finds that the DCM always wins. The explanation of
this result lies in the fact the WTW reciprocity is compatible with the
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Figure 8: Evolution of the DIN bow-tie structure (the SCC is shown in gray,
the IN-component is shown in blue and the OUT-component is shown in
green). The crisis period (last four points) is signalled by a sharp decrease
of the SCC and IN- components size (and a corresponding increase of the
OUT-component size). The size of the SCC, however, starts shrinking in
2004Q1 (deviating from the approximately constant trend observed since
1998Q1), seemingly constituting an additional, early-warning signal of the
upcoming crisis. On the other hand, the DIN core (shown in orange) doesn’t
undergo any significant variation throughout the whole temporal interval.

DCM prediction, as the computation of the index ρ = r−〈r〉
1−r reveals (it

amounts at' 0.05 throughout our time interval) [59]. In other words, the
seemingly peculiar mesoscale structure of the WTW is, to a good extent,
reproduced by just specifying local constraints (in this case, the degree
sequence).

The Dutch Interbank Network. According to the axiomatic model in
[40], the DIN has been described as characterized by a well-defined core-
periphery structure [70]. However, as it has been pointed out elsewhere
[110], such a mesoscale organization is compatible with the predictions
provided either by the DCM or the RCM, depending on the topological
quantity inspected.
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Figure 9: Evolution of the AIC and BIC values for the DIN across the quar-
ters 1998Q1-2008Q4: while the SBM (blue trend) must be preferred to the
traditional DRG (being the network composed by parts with different link
densities), heterogeneous benchmarks are, generally speaking, to be pre-
ferred. Although the DCM wins in the vast majority of cases (both for
the bow-tie and the core-periphery organizations), quarters exist where the
DCM and the RCM compete. BIC, on the other hand, lets the SBM win when
analysing the DIN core-periphery structure.

Notably, the DIN is also characterized by a certain degree of bow-
tieness, given the presence of an SCC, an IN-component and, differently
from the WTW, also a non-vanishing OUT-component: both the AI and
the AO blocks, however, are empty, and nodes belonging to the IN- and
OUT- components are not directly linked with each other (but only via
the SCC nodes). From a purely empirical point of view, the evolution
of the DIN bow-tie structure is much more informative than the evolu-
tion of its core-periphery structure: as Fig. 8 shows, while the size of the
DIN SCC, in 2008, reduces to more than half its pre-crisis value - thus
providing an additional, structural indicator of it - the number of nodes
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belonging to the core shows no significant variations across the same pe-
riod. However, the SCC starts shrinking well before 2008, a dynamics
seemingly constituting an additional early-warning signal of the upcom-
ing, topological change affecting the DIN. The IN-component, in turn,
shrinks as well, while the OUT-component enlarges.

In order to individuate the best model to explain the DIN bow-tie
structure, let us notice that its SCC can be imagined as a weakly-connected,
weakly-reciprocated subgraph (c(As) . 0.1 and r(As) ' 0.3, except in 2008
where the SCC reciprocity drops to ' 0.15). More precisely, c(As) &

c(A) � c(A•), i.e. while the SCC connectance basically coincides with
the one of the whole network, the core is much denser, an empirical ob-
servation that explains why the SBM provides a better explanation of the
core-periphery structure (in fact, the AIC and BIC values for the SBM
and the DRG are closer when considering the bow-tie structure - see Fig.
9).

Generally speaking, however, models accounting for the degree het-
erogeneity are to be preferred. As for the WTW, zero in-degree and
zero out-degrees are exactly reproduced by non-block models like the
DCM and the RCM. On top of this, the low reciprocity value of the DIN
(amounting at . 0.3) allows us to imagine it playing a minor role in de-
termining the nodes’ degrees. As a consequence, the DCM and the RCM
can be interpreted as different ways to rewrite the same (configuration)
model. More quantitatively, L(A)RCM & L(A)DCM .

Deviations from this idealized picture, however, exist. This is partic-
ularly evident when analysing the As block, to fully understand which
reciprocity indeed plays a role (in fact, L(As)BRCM > L(As)BCM ); when
considering the “peripheral” blocks, instead, one concludes that
L(A〉)BRCM ' L(A〉)BCM ,L(A〉)RCM & L(A〉)DCM andL(A〉〉)BRCM '
L(A〉〉)BCM , L(A〉〉)RCM & L(A〉〉)DCM (since the links from the IN-
component to the SCC and from the SCC to the OUT-component are not
reciprocated).

Consistently, AIC and BIC weights let the DCM win in the vast major-
ity of cases, although in some periods the DCM and the RCM compete.
Overall, this is valid when considering the DIN core-periphery structure
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too.

2.5 Discussion

The WTW and the DIN represent two real-world systems characterized
by (apparently) non-trivial mesoscale structures: while the first one is
characterized by a (partial) bow-tie organization, in the second one the
bow-tie partition co-exists with a core-periphery partition. Both kinds
of mesoscale structures are characterized by interacting blocks whose in-
ternal topology is commonly believed to be determined by a non-trivial
interplay between nodes connectivity and the reciprocity of connections.
It is, thus, interesting to ask ourselves the extent to which such structures
are, instead, accounted for by purely local information.

Remarkably, what our analysis points out is that specifying the de-
gree sequences is often enough to reproduce these mesoscale structures,
thus suggesting that the observed modules emerge as a consequence of
local connectivity patterns between nodes: for example, the absence of
incoming/outgoing connections for a set of nodes naturally leads them
to be identified as an IN-/OUT-component.

Differences between systems, naturally, exist. Let us notice that, con-
trarily to what observed in the WTW case, AIC and BIC provide different
answers to the question concerning the performance of block models in
explaining the DIN core-periphery structure: while the Akaike criterion
ranks the BCM first, the Bayesian criterion assigns the highest score to
the SBM in the vast majority of temporal snapshots. If, on the one hand,
this saves the role potentially played by blocks, on the other it points out
that the large difference between the core and periphery connectivity val-
ues [110] provides - by itself - an effective explanation of this mesoscale
organization.

A second comment about the DIN concerns the observation that, when
considering the core-periphery structure, the AIC values of block models
overlap with the AIC values of the simpler models to a larger extent (see
Fig. 9): this may be a consequence of the fact that the core-periphery par-
tition is, in some sense, less “neat” than the bow-tie one (the requirement
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that nodes within the IN- and OUT- components have zero in- or out-
degree represents a quite strong constraint); only apparently, however,
the core-periphery organization seems to require additional information
to be explained, as the explicit calculations of the Akaike weights con-
firms.

A third comment concerns reciprocity: although it plays a role in the
definition of the “core” parts (i.e. the SCC and the properly-defined
core), its explanatory power is much more limited than expected: as a
result, the degree sequence seems to encode all relevant information to
reproduce the mesoscale structures considered in the present paper, thus
questioning the role supposedly played by some kind of higher-level in-
formation - e.g. a partition into blocks - to explain them.
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Chapter 3

Detecting Mesoscale
Network Structures

The content of this chapter is under review as a paper submitted to EuroPhysics
Letters, and made public as a pre-print article on arXiv, see [122].

In Chapter 2 we look at null models for mesoscale network structures.
We find that core-periphery and bow-tie structures in real-world eco-
nomic and financial systems can be modelled with the configuration mo-
del, without specifically embedding the modular structure in this model,
i.e. the observed modular structure is often not significant under the
configuration model. In this chapter we propose a new method to detect
these bimodular structures, using a more simplistic null model under
which we can identify statistically-significant bimodular structures. It is
based on a modification of the surprise, recently proposed for detecting
communities. Our variant allows for bimodular node partitions to be
revealed, by letting links to be placed either 1) within the core part and
between the core and the periphery parts or 2) just between the (empty)
layers of a bipartite network. From a technical point of view, this is
achieved by employing a multinomial hypergeometric distribution in-
stead of the traditional (binomial) hypergeometric one; as in the latter
case, this allows a p-value to be assigned to any given (bi)partition of
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the nodes. Our method has a clear advantage over some classic methods
that search for the model best fitting an observed structure: we employ
a benchmark that makes the statistical significance of a given structure
explicit. In addition, besides having a method that works for undirected
and directed graphs, we have a natural extension to analyse weighted
graphs. We apply our method to various economic and financial systems
to reveal significant core-periphery and bipartite structures.

3.1 Detecting core-periphery and bipartite struc-
tures

The intuitive notion of core-periphery network, as a structure consisting
of a densely-connected bunch of nodes (i.e. the core) and low-degree
nodes preferentially connected to the core (i.e. the periphery ones) has
been firstly formalized by Borgatti & Everett: in [24] a score function
indicating the extent to which a given graph partition deviates from an
ideal core-periphery structure (whose core is fully connected and whose
periphery nodes are only linked to the core ones) was defined. Several
later works adopted the same approach [70, 54, 25], accompanying the
error score with a significance level, computed on a properly-generated
ensemble of networks (see [41] for a review on the topic). Detection of
bipartitiveness has been approached similarly, by quantifying the devi-
ation of an observed graph partition from the ideal bipartite graph with
edges existing only between layers and not within them [69, 48].

Conversely, in recent years the detection of mesoscale structures has
been faced by adopting a bottom-up approach, i.e. by defining a bench-
mark model against which to compare the actual network structure: in
[133] the authors aim at identifying the most likely generative model that
may have produced a given partition, in [13, 14] the authors compare the
likelihood values of a Stochastic Block Model tuned to reproduce either
a core-periphery or a bipartite structure; similarly, in [77] the authors
adopt a Random Graph Model to find multiple core-periphery pairs in
networks and in [76] the same authors employ the Configuration Model
as a benchmark, showing that a single core-periphery structure can never
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be significant under it, seemingly confirming the findings we presented
in 2.

In this chapter we illustrate a novel method to detect statistically-
significant bimodular structures (i.e. either bipartite or core-periphery
ones - as shown in Fig. 3). To this aim, we build upon the results of the
papers [3, 4, 90] and on the very last comment that can be found in [118],
by adopting a surprise-like score function. Our choice is dictated by the
versatility of this kind of quantity, allowing us to consider undirected as
well as directed (binary) networks. This is a desirable feature many of
the aforementioned algorithms do not have.

3.2 Methods

For traditional community detection, the surprise measure was intro-
duced to represent a simple function whose maximization reveals the
community structure of a network [3, 4]. This distribution function eval-
uates the link-density within clusters and in-between clusters. Where
traditional surprise has a good performance in detecting traditional com-
munity structures, let us here first discuss the limitations of traditional
surprise whenever employed to detect bimodular structures. In what
follows we will implement the following definition of surprise [3, 4, 90]

S ≡
∑
i≥l∗

(
Vint
i

)(
V−Vint
L−i

)(
V
L

) (3.1)

(the sum runs up to the value i = min{L, Vint}) where V = N(N − 1)

is the volume of the network, coinciding with the total number of nodes
pairs, Vint is the total number of intracluster pairs (i.e. the number of
nodes pairs within the individuated communities), L is the total number
of links and l∗ is the observed number of intracluster links (i.e. within
the individuated communities). The hypergeometric distribution shown
in Eq. 3.1 describes the probability of observing i successes in L draws
(without replacement) from a finite population of size V that contains
exactly Vint objects with the desired feature (in our case, being an intr-
acluster pair), each draw being either a success or a failure. Surprise is
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the p-value of such an hypergeometric distribution, testing the statistical
significance of the observed partition against the null hypothesis that the
intracluster link density pint = l∗

Vint
is compatible with the density p = L

V

predicted by the Directed Random Graph Model.

3.2.1 The limitations of surprise

While traditional surprise S is suited for community detection, it suf-
fers from several limitations whenever employed to detect bimodular
mesoscale structures.

Bipartite networks. Let us first consider a purely bipartite network, as
the one shown in Fig. 3, whose first and second layer consist of N1 and
N2 nodes respectively. Since we would like S to reveal two (empty) com-
munities, we would be tempted to instantiate Eq. 3.1 with the values
V = (N1 + N2)(N1 + N2 − 1), Vint = N1(N1 − 1) + N2(N2 − 1) and
l∗ = 0; upon considering, however, that L ≤ Vint, the explicit computa-
tion of S reveals that S = 1 (as follows from the Vandermonde identity).
Since S is nothing else than a p-value, a significant partition is expected
to satisfy S ≤ Sth, with Sth usually chosen to attain the value 0.01 or
0.05. In our case, however, the opposite result is obtained: the considered
(bi)partition cannot be significant, independently from the actual number
of connections characterizing the considered configuration. This exam-
ple highlights one of the limitations of the definition provided in Eq. 3.1.

Star-like networks. Let us now consider proper core-periphery net-
works: according to the intuitive definition provided in [24], such config-
urations are characterized by a densely-connected portion, i.e. the core
(in the ideal case cc ' 1) and a sparsely-connected portion, i.e. the pe-
riphery (in the ideal case cp ' 0). The density of the intermediate portion
is variable, although the chain of inequalities cp ≤ ccp ≤ cc is always
assumed to hold. Let us consider a peculiar example of this kind of net-
works, i.e. a configuration with a fully connected core plus a periphery
of nodes, each of which is connected to just one core node (for the mo-
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ment, let us suppose that the number of core nodes coincides with the
number of periphery nodes - see Fig. 10). Let us now instantiate S on a
partition that identifies each periphery node as a community on its own
while considering the core as a traditional community. If we consider
a core portion of N1 nodes and N2 = N1 peripheral nodes, we have
V = (N1 +N2)(N1 +N2 − 1), Vint = N1(N1 − 1), L = N1(N1 − 1) + 2N1

and l∗ = N1(N1 − 1). In this case, only the addendum corresponding to
V −Vint = 3N2

1 −N1 = 2N1 +N1(N1−1)+2N1(N1−1) survives, leading
to

S =

(
N1(3N1−1)

2N1

)(
2N1(2N1−1)
N1(N1+1)

) (3.2)

which is of the order of 10−3 for N1 = 3 and rapidly decreases as N1

grows (see Fig. 10). Since S < Sth = 0.01, such a partition is recov-
ered as significant. As confirmed by running the PACO algorithm [90],
such a configuration - constituted by an unreasonably large number of
single-nodes communities - is indeed recognized as the optimal one. For
the sake of comparison, let us calculate S for the “reasonable” parti-
tion identifying the core and the periphery as two separate communi-
ties: in this case, V = (N1 + N2)(N1 + N2 − 1), Vint = 2N1(N1 − 1),
L = N1(N1 − 1) + 2N1 and l∗ = N1(N1 − 1). As our explicit calculation
reveals, such a partition can indeed be significant but it is not the optimal
one (see also Fig. 10).

k-star networks. Let us now generalize the star-like network model, by
considering a graph with k peripheral nodes linked to each core node.
Instantiating S by considering each group of k leaves as a community on
its own leads to

S =

L∑
i=l∗

(
Vint
i

)(
V−Vint
L−i

)(
V
L

) (3.3)

with V = (N1 + kN1)(N1 + kN1 − 1), Vint = N1(N1 − 1) + N1k(k − 1),
L = N1(N1−1)+2kN1 and l∗ = N1(N1−1) (as long as k ≥ 3, in fact, L ≤
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Figure 10: Lower panel: traditional surprise computed for the two parti-
tions shown in the top panels. The red line refers to the partition consti-
tuted by 6 communities (top left panel), the blue line referes to the partition
constituted by 2 communities (top right panel) and the black, dashed line
corresponds to the value Sth = 0.01. As the number of core nodes is risen,
both partitions become increasingly significant; the former, however, is al-
ways more significant than the latter. The network configuration shown in
the top left panel is, in fact, recognized as the optimal one, as further con-
firmed by running the PACO algorithm [90].

Vint). The expression defined by Eq. 3.3 is significant only under certain
conditions: in particular, a) for a given N1 value, as k grows surprise
becomes increasingly non-significant; b) for a given k value, as N1 grows
surprise becomes increasingly significant. Since the k nodes linked to
each core node should be always considered as non constituting separate
communities, irrespectively from the value of k, the findings above point
out another detectability limit of surprise that, for certain values of the
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Figure 11: Traditional surprise optimization on a k-star network would lead
to identify each group of peripherical nodes as a community on its own, al-
though the intracluster density is zero. More precisely, for a given number
of leaves (k = 3, 4, 5, 10, 20 as indicated by the red, orange, yellow, green,
blue line respectively - lower left panel), as the number of core nodes rises,
surprise is found to be increasingly significant. Consistently, for a given
number of core nodes (N1 = 5, 6, 7, 10 as indicated by the red, orange, yel-
low, green line respectively - lower right panel), as the number of leaves
rises, surprise is increasingly non-significant (the black, dashed line corre-
sponds to the value Sth = 0.01). These findings point out the existence
of a region of the parameter space where surprise misinterprets the planet
partition.

parameters, misinterprets the (planted) partition under analysis - it is,
in fact, true that, for small networks, surprise optimization retrieves the
aforementioned partition as non-significant; rising the number of core
nodes, however, leads it to be detected as significant again (see also Fig.
11).
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3.2.2 A bimodular surprise

The previous examples have shown that traditional surprise is still af-
fected by a sort of resolution limit, whenever employed to detect bimod-
ular structures. In order to overcome such a limitation, we introduce a
variant of traditional surprise, specifically designed to detect bimodular
mesoscale structures.

Whenever community detection is carried out by maximizing the sur-
prise, links are understood as belonging to two different categories, i.e.
the internal ones (the ones within clusters) and the external ones (the ones
between clusters). On the other hand, whenever one is interested in de-
tecting bimodular structures (be they bipartite or core-periphery), three
different “species” of links are needed (e.g. core, core-periphery and pe-
riphery links). This is the reason why we need to consider the multino-
mial version of the surprise, whose definition reads

S‖ ≡
∑
i≥l∗c

∑
j≥l∗cp

(
Vc
i

)(
Vcp
j

)(V−(Vc+Vcp)
L−(i+j)

)(
V
L

) (3.4)

and that we will refer to as to the bimodular surprise. The index c labels the
core part and the index cp labels the core-periphery part; whenever con-
sidering bipartite networks, the core-periphery portion will be assumed
to indicate the inter-layer portion.

The presence of three different binomial coefficients allows three dif-
ferent kinds of links to be accounted for. From a technical point of view,
S‖ is a p-value computed on a multivariate hypergeometric distribution
describing the probability of i+ j successes in L draws (without replace-
ment), from a finite population of size V that contains exactly Vc objects
with a (first) specific feature and Vcp objects with a (second) specific fea-
ture, wherein each draw is either a success or a failure. Analogously to
the univariate case, i+ j ∈ [l∗c + l∗cp,min{L, Vc + Vcp}].

Bipartite networks. Let us now calculate S‖ for the bipartite case con-
sidered above, defined by the parameters values Vc = N1(N1 − 1) (here,
the label c indicates the internal volume of one of the two layers), Vcp =
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2N1N2, l∗c = 0 and L = l∗cp. Since only one addendum survives, our
bimodular surprise reads

S‖ =

(
2N1N2

l∗cp

)
(

(N1+N2)(N1+N2−1)
l∗cp

) (3.5)

which can be significant, as it should be: in fact, a number of inter-layer
links exists above which the observed bipartite structure is significantly
denser than its random counterpart (see also Fig. 12). Notice that Eq. 3.5
can be directly employed to test the significance of any bipartite config-
uration where no intra-layer links are observed: in other words, Eq. 3.5
tests the significance of the observed link density in this network portion
against the null hypothesis that it is compatible with the one predicted
by the Directed Random Graph Model.

Star-like networks. In the case of star-like networks, our parameters
read Vc = N1(N1 − 1) and Vcp = 2N2

1 : since, however, l∗c = N1(N1 − 1),
the (only) sum indexed by j reduces to the single addendum

S‖ =

(
2N2

1
2N1

)(
2N1(2N1−1)
N1(N1+1)

) , (3.6)

which is ' 10−4 for N1 = 3 and decreases (the corresponding partition,
thus, becomes more and more significant) as N1 increases. Notice that
the traditional surprise would identify a community structure - with each
peripheral node counted as a community on its own - with a comparable
significance (see also Fig. 11): S‖, however, is able to recover the ground-
truth structure of the observed network.

k-star networks. Analogously, in the k-star case our parameters read
V = (N1 + kN1)(N1 + kN1 − 1), Vc = N1(N1 − 1), Vcp = 2kN2

1 , l∗c =

N1(N1 − 1) and l∗cp = 2kN1. Again, thus, the (only) sum indexed by j

reduces to just one addendum
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S‖ =

(
2kN2

1
2kN1

)(
(N1+kN1)(N1+kN1−1)

N1(N1−1)+2kN1

) , (3.7)

whose behaviour is shown in Fig. 12: briefly speaking, both in case the
numberN1 of core nodes rises, while keeping the number of leaves fixed,
and the number k of leaves rises, while keeping the number of core nodes
fixed, the bimodular surprise becomes increasingly significant, always
recovering the ground-truth partition.

3.2.3 Asymptotic results

The presence of binomial coefficients in the definition of S‖ may cause
its explicit computation to be demanding from a purely numerical point
of view. In order to speed up the computation of S‖, this subsection is
devoted to derive some asymptotic results. Similar calculations for what
concerns the traditional surprise have been carried out in [118].

Let us start by considering Eq. 3.5. By Stirling expanding the bino-
mial coefficients appearing in it, one obtains the expression

S‖ =

(
Vcp
l∗cp

)(
V
l∗cp

) ' pl
∗
cp(1− p)V−l

∗
cp

p
l∗cp
cp (1− pcp)Vcp−l

∗
cp

(3.8)

having defined p ≡ l∗cp
V and pcp ≡

l∗cp
Vcp

(see the Appendix for the details
of the calculations). The expression above makes it explicit that a given
(bi)partition is statistically significant if the link density of the inter-layer
network portion is large enough to let it be distinguishable from a typical
configuration of the Directed Random Graph Model. In the sparse case,

Eq. 3.8 reduces to S‖ '
(

p
pcp

)l∗cp
.

Let us now move to the core-periphery case and consider partitions
satisfying the condition l∗c + l∗cp = L < Vc + Vcp: in this case, one can
derive the result

S‖ '
pL(1− p)V−L

p
l∗c
c (1− pc)Vc−l∗c · p

l∗cp
cp (1− pcp)Vcp−l

∗
cp

(3.9)
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Figure 12: Upper panel: behaviour of S‖ as a function of l∗cp, for a bipartite
network with N1 = N2 = 5. The blue, solid line corresponds to the (full) ex-
pression shown in Eq. 3.5; the blue, dashed line corresponds to the asymp-
totic expression shown in Eq. 3.8 and the cyan, dashed line corresponds to
its sparse-case approximation; for values l∗cp & 10 (corresponding to link
densities c & 0.1) the sparse-case approximation becomes increasingly less
accurate. Lower panel: behaviour of S‖ for k-star network configurations
(star-like networks are recovered as a particular case, when k = 1). For a
given number of core nodes (N1 = 3, 4, 5, 6 as indicated by the red, orange,
yellow, green line respectively), as the number of leaves rises, surprise be-
comes increasingly significant. The black, dashed line corresponds to the
value Sth = 0.01 in both cases.

having defined p ≡ L
V =

l∗c+l∗cp
V , pc ≡ l∗c

Vc
and pcp ≡

l∗cp
Vcp

. Even if in-
terpreting Eq. 3.9 is less straightforward, it is, however, clear that the
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significance of the observed partition is a consequence of the interplay
between the link density value of the core and core-periphery regions
(the link density of the periphery has been supposed to be zero - see also
the Appendix for the details of the calculations). Notice also that as the
core density is supposed to be zero as well, pl

∗
c
c = 0 (a result that is rigor-

ously valid only in the limit l∗c → 0), L = l∗cp and Eq. 3.8 is recovered.

3.3 Detecting mesoscale structures in socio-eco-
nomic and financial networks

Let us now move to analyse real-world systems with this bimodular sur-
prise. We will start with various social and technical network examples,
which are widely used in network science as graphs with community
structure. Moving beyond these consistency tests, we analyse the bimod-
ular structure of various economic and financial networks. We will em-
ploy our novel definition of surprise to understand if the considered net-
works have a significant bimodular structure (i.e. either bipartite or core-
periphery). To this aim, we will search for the partition which minimizes
S‖ (i.e. the optimal one) by employing a modified version of the PACO
algorithm [90] whose pseudocode is shown in Appendix. Although, for
the sake of generality, our discussion has focused on directed networks,
in what follows we will consider directed as well as undirected networks.

Social networks. Let us start our analysis by considering a number of
social networks (see Fig. 13). As a first example, let us consider the
Zachary Karate Club. Although the latter is commonly employed as a
benchmark for community detection, it is also characterized by a clear
bimodular structure whose core nodes are represented by the masters,
their close disciples and a fifth node “bridging” the two masters. Upon
looking at the subgraphs constituted by the masters’ ego-networks, al-
most ideal (i.e. a la Borgatti) core-periphery networks are observable.

A similar comment can be done when considering the network of
relationships among “Les Miserables” characters: the main characters
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(e.g. Valjean, Javert, Cosette, Marius) belong to the core, while the large
number of secondary characters linked to them constitute the periphery
of such a network (see, for example, the nodes linked to Valjean); intu-
itively, again, core nodes are very densely inter-connected while the pe-
riphery internal link density is very low. As for the Zachary Karate Club
network, there seem to be (core) nodes bridging two dense core subsets.

Let us now consider the (connected component of the) NetSci co-
authorship network [127]. A core-periphery structure is, again, recov-
ered (although the core is not very dense) where core nodes represent
senior scientists (e.g. Stanely, Barabasi, Watts, Kertesz) and periphery
nodes represent younger colleagues, students, etc. It is interesting to ob-
serve that the senior scientists share relatively few direct connections,
while being connected to a plethora of younger collaborators; even more
so, the structure of the co-authorship network seems to reflect the struc-
ture of the underlying collaboration network, with each research group
seemingly being quite separated from the others.

A fourth social network is the one showing the relationships between
US political blogs [2]. Any two blogs are linked if one of the two ref-
erences the other. As shown in Fig. 14, a core of the most influen-
tial blogs (be they republican or democratic), surrounded by a periph-
ery of loosely connected, less important blogs is clearly visible. Dif-
ferently from the community structure that illustrates republican blogs
and democratic blogs as belonging to different groups [72], our core-
periphery structure highlights a different organizing principle, based on
the blogs overall importance, irrespectively from their political orienta-
tion. Interestingly enough, the value of bimodular surprise indicates that
a core-periphery structure is more significant than the traditional repub-
licans versus democrats community structure.

Technical networks. A different example of networks is the US airports
one (see Fig. 14). Core airports are the ones of New York, Indianapolis,
Salt Lake City, Seattle, etc. The periphery airports are preferentially at-
tached to the core ones. It shares interesting similarities with the NetSci
co-authorship network: each core airport, in fact, seems to be surrounded
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by a quite large number of periphery airports, sharing relatively few in-
ternal connections.

3.3.1 Economic networks

Let us now consider an economic network, i.e. the World Trade Web
(WTW) in the years 1960, 1980 and 2000: as usual, nodes are world coun-
tries and links are trade relationships (i.e. exports, imports) between
them. Upon running our bimodular surprise optimization we find a
clear core-periphery structure with the core including the richest coun-
tries and several developing nations and the periphery including some of
the poorest nations (e.g. several African nations throughout our dataset
- see also Fig. 15). We also observe an interesting dynamics, causing the
core size to rise (it represents the ' 30% of nodes in 1992 and the ' 60%

of nodes in 2002) and progressively include countries previously belong-
ing to the periphery. Such a dynamics - that can be interpreted as a signal
of ongoing integration - confirms the results found in [123], where it was
shown that the size of the WTW strongly connected component (SCC)
increases with time as well. Although the SCC and the core portion of
the World Trade Web do not perfectly overlap, many similarities between
the two structures are indeed observable.

For a second economic network, we analyse the the production net-
work of the United States. This network shows the input-output rela-
tions between sectors in the US [34]. Input-output networks show pro-
duction networks on a sectoral level. The nodes in the network represent
sectors of the US economy and edges indicate an input-supply between
the sectors. Typical sectors here are: wholesale trade, advertisement and
road transportation. Data comes from the US Bureau of Economic Analy-
sis and describes the input-output data for the year 2002 [126]. In the net-
work observe a particular core-periphery structure, where the core nodes
have a relative small in-degree, but a relative higher out-degree, see Fig.
16. The core of the network thus consists of sectors that are mainly at the
origins of the production network, although vastly connected to all other
sectors.
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3.3.2 Financial networks

Let us now consider a financial network, i.e. e-MID, the electronic Italian
Interbank Market. Here, we compare two different datasets: the first one
collects the 2005-2010 interbank transactions during the so-called main-
tenance periods [65]; the second one collects interbank transactions on a
daily basis from 1999 to 2012 [13, 14]. The main difference between the
two datasets lies in their level of aggregation: notice, in fact, the first one
basically collects data on a monthly basis.

Let us start by analysing the first dataset. As Fig. 17 shows, its struc-
ture undergoes an interesting evolution: after an initial period of two
years, where a large periphery of loosely connected nodes (' 70%) exists,
a transient period of one year (i.e. 2007) during which the percentage of
nodes belonging to the core rises, is visible. Afterwards, an equilibrium
situation seems to be re-established with the percentage of core and pe-
riphery nodes basically coinciding. Even if the total number of banks
registered in the dataset steadily decreases after 2007, this doesn’t seem
to affect the type of banks belonging to the core and to the periphery, i.e.
Italian and foreign banks, respectively.

Let us now move to the analysis of the second dataset. As Fig. 18
shows, the link density analysis of the portions in which our bimodu-
lar surprise partitions the network reveals that, overall, a core-periphery
structure seems to better characterize the daily data than a bipartite struc-
ture (two snapshots of the network are explicitly shown, illustrating the
values of link density characterizing the three network portions). It should
however be noticed that this picture seems to be less correct from 2008
on. In the last portion of the first panel of Fig. 18, in fact, it can be ob-
served that a bipartite structures occur more often.
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(a) Les Miserables
(b) Zachary Karate Club

(c) NetScience

Figure 13: Bimodular structure of three real-world social networks (core
nodes are drawn in black and periphery nodes are drawn in white). The
core-periphery structure of the network of relationships among “Les Miser-
ables” characters; the main characters (e.g. Valjean, Javert, Cosette, Marius)
belong to the core. The Zachary Karate Club shows that while the two mas-
ters (plus some close disciples) belong to the core, the remaining disciples
create a periphery around them, shaping a structure that is reminescent of
the Borgatti & Everett ideal structure [24]. In the NetScience co-authorship
network we observe that while the senior scientists belong to the core - al-
though sharing few direct connections - younger colleagues/students be-
long to node-specific peripheries connected to the former ones.
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Figure 14: Upper panel: core-periphery structure of the US political blogs
[2]: a core of the most influential blogs (be they republican or democratic),
surrounded by a periphery of loosely connected, less important blogs is
clearly visible. Notice that blogs are grouped independently from their po-
litical orientation. Lower panel: core-periphery structure of US airports. As
for the NetSci co-authorship network, each core airport seems to be sur-
rounded by a quite large number of periphery airports, sharing relatively
few connections between themselves.
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Figure 15: Core-periphery structure of the World Trade Web (black: core
nodes; gray: periphery nodes). Loosely speaking, while the richest and
several developing countries are found to belong to the core, the poorest
nations belong to the periphery (e.g. several African nations, throughout
our dataset). Notice that core size increases with time: apparently, thus,
the system becomes increasingly integrated, confirming a result found in
[123], where it was shown that the size of the WTW strongly connected
component increases with time as well.
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Figure 16: Core-periphery structure of the US production network. Both
graphs show the same network layout and core-periphery structure, but
the node size is scaled by the in/out degree. We observe a particular core-
periphery structure, where the core nodes have a relative small in-degree,
but a relative higher out-degree. The core of the network consists of sectors
that are mainly at the origins of the production network, although vastly
connected to all other sectors.
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Figure 17: Core-periphery structure of e-MID maintenance periods (gray:
core nodes; white: periphery nodes). After an initial period of two years
characterized by an approximately constant value of the core and periphery
size, a structural change takes place in 2007 and the percentage of nodes
belonging to the core steadily rises until 2008. Afterwards, an equilibrium
seems to be re-established. This may be due to a decrease in the total num-
ber of nodes which, however, does not affect the type of banks belonging to
the core (Italian banks) and to the periphery (foreign banks). Networks are
directed but we have omitted the link directionality for the sake of readabil-
ity.
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Figure 18: Mesoscale structure of e-MID daily data (gray: core nodes;
white: periphery nodes). During the first snapshot, the chain of inequali-
ties cp < ccp < cc holds. During the second snapshot, instead, a config-
uration for which cp ' cc < ccp is observed, indicating the presence of a
bipartite structure (when referring to bipartite structures, the label cp will
be assumed to indicate the inter-layer portion). Although for the vast ma-
jority of snapshots a core-periphery structure seems to be better represent
the e-MID structure, the number of times a bipartite structure is observed
increases after 2008. Networks are directed but we have omitted the link
directionality for the sake of readability.
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3.4 Discussion

It is hard to underestimate the importance of the presence of core-periphery
structures in real-world networks: while the authors in [95] show that the
most robust topology against random failures is the core-periphery one,
understanding the relationship between a given node systemicness and
its coreness is of paramount importance in finance [83]. In the same field,
a core-periphery structure is believed to reflect the “essential” function of
banks: the core ones tie the periphery ones into a single market through
their intermediation activity [40].

Here we have proposed a novel measure for bimodular mesoscale
structures detection. To this aim we have adopted a surprise-like score
function, by considering the multivariate version of the quantity pro-
posed in [90]. Employing this kind of quantities implements a bottom-
up approach, where the modular structure is extrapolated from the data
and not imposed a priori as in previous approaches [24, 14].

Most importantly, such a comparison is based on a properly-defined
null model, allowing the significance of a partition to be quantified via,
e.g. a p-value. As for the traditional surprise, the reference model is
the Directed Random Graph Model that constrains the total number of
observed connections, while randomizing everything else. The choice of
employing such a benchmark is dictated by a number of recent results,
pointing out that several mesoscale structures of interest (e.g. the core-
periphery one, the bow-tie one, etc.) are actually compatible with - and
hence undetectable under - a null model constraining the entire degree
sequence [70, 76].

While solving the problem of consistently comparing an observed
structure with a “random” model of it, our approach also solves a second
drawback affecting the methods in [40, 24] and pointed out in [76]: ideal
structures as the ones searched by algorithms a la Borgatti are very re-
liant on the nodes degree, with the core often composed of just the nodes
with the largest number of neighbors. This is not necessarily true when
a benchmark is adopted for comparison [133]: as previously discussed,
the significance of a given partition detected by surprise results from the

59



interplay between the link density values of the different network areas.
This also sheds light on the relationship between apparently conflict-

ing structures co-existing within the same network configuration: gen-
erally speaking, traditional and bimodular surprise optimization should
be considered complementary (rather than mutually exclusive) steps of
a more general analysis. As the example of the US political blogs con-
firms, it is indeed possible that a community structure co-exists with a
core-periphery structure; a second, less trivial, example is provided by
the World Trade Web, whose community structure has been studied in
[12] but whose significance has, then, been questioned [96].

The two approaches to mesoscale structures detection that, so far,
have been proposed in literature, i.e. comparing an observed structure
with a benchmark [77, 76] and searching for the model best fitting a given
partition [133, 13, 14, 72] can be supposed to be complementary, since a
non-significant structure under a given benchmark is surely more com-
patible with it. Employing a benchmark, however, actually provides an
advantage, i.e. making the statistical significance of a given structure
explicit - something that remains “implict” when employing the fitting
procedure. In other words, searching for the best fit pushes one to en-
rich the model with an increasing amount information whose relevance
cannot be easily clarified. Such a problem seems to affect all likelihood-
based algorithms unless a more refined criterion to judge the goodness
of a fit is employed: solutions like the one of adopting criteria like the
Akaike Information Criterion et similia have been proposed [26].

The present work calls for a generalization to weighted mesoscale struc-
tures detection, a field where relatively little has been done so far [90, 49].
We present the first preliminary results of our work in this direction in
appendix B.
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Chapter 4

Unraveling the Multilayer
Structure of Corporate
Networks

The content of this chapter was published as an invited paper for the Focus on
Multilayer Networks of the New Journal of Physics as [121].

Various company interactions can be described by networks, for instance
the ownership networks and the board membership networks. The meso-
scale structure of some of these corporate networks has been described
as core-periphery and bow-tie. Using the bimodular surprise introduced
in the previous chapter, we find that the aggregate of these interaction
indeed shows a significant core-periphery structure. In this chapter we
unravel this corporate network by analysing the different layers making
up the aggregate corporate network. To this end we construct a new
multiplex network of interactions between companies in Germany and
in the United Kingdom, combining ownership links, social ties through
joint board directors, R&D collaborations and stock correlations in one
linked multiplex dataset. We describe the features of this network and
show that the (mesoscale) structure of the different types of connection
complement each other and together make an even smaller corporate
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world than previously reported.

4.1 Corporate networks

Under corporate networks we consider all networks that describe in-
teractions between companies. We have discussed how important the
topology of economic and financial networks is for our understanding
of these systems and phenomena like systemic stability. Corporate net-
works have also been analysed for such phenomena. In [16, 43] the au-
thors study spreading processes of influence on the network of interlock-
ing board members. Through board members that work for multiple
companies, decision-making spreads and this network has been shown
to exhibit herd behaviour. These board interlocks can limit competition
as they obstruct independent decisions by boards [132].

Ownership networks constructed from (partial) ownership stakes of
corporate entities are another type of corporate networks. These net-
works have revealed a small corporate world; a large concentration of
ultimate ownership in a small group of core companies in this network
[125]. In [101], ownership networks are studied to find the role of sub-
sidiaries in control of large parent companies.

Also innovation dynamics have been studied by networks of R&D
partnerships, showing for example the effective outsourcing of research
by big corporations to start-ups [116]. On the financial side, corporate
networks can be constructed from stock price correlations. With tech-
niques like network backbone extraction one can identify influential com-
panies from these networks [119, 23]. These studies have shown how
networks can be used to study the dynamics of competition and innova-
tion, or identify the influence of the corporate topology one some notion
of control and influence between corporations.

Most research until now studied these different types of corporate
networks in isolation. However, corporate networks are strongly inter-
connected; e.g. a cascading effect between board members will influence
stock market fluctuations and vice versa. We therefore argue that these
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systems should be studied in parallel, not in isolation. In this chapter
we will unravel the aggregate corporate network and characterise the
topology of the different layers of this system. To this end we construct a
new multilayer network of interactions between companies. We identify
four main connections: ownership links, social ties through board members,
research collaborations, and stock correlations.

4.2 Data

We construct a unique multiplex dataset where we go beyond just listed
companies and include all registered companies in Germany and in the
United Kingdom and Ireland. The company information comes from
the Amadeus database from Bureau van Dijk, this includes stock prices,
ownership details, names of directors in the boards, patent data, and
audit firm details. The data reflects the state of all registered companies
in those countries as in February 2018. Daily stock prices are collected in
the 2-year window before this date.

We select companies registered in Germany with at least 10 employ-
ees (if employee data is not available this is estimated by taking the in-
dustry average based on revenue). For the United Kingdom and Ireland
we study all listed companies from data that comprises 1312 companies
that are listed and registered within these countries.

Networks with links of different types are described by multilayer
networks, where every layer corresponds to the interaction graph of a
single type of interaction. The subset of these networks where there are
no edges between nodes in different layers, is also called multiplex net-
works. In recent years both theory and applications of multilayer net-
works has shown that this richer description of a network can give a bet-
ter representation than aggregate of single layer networks [45, 75, 22]. An
example is the separation of long-term and short-term interbank expo-
sures that can lead to a different estimation of systemic risk in the bank-
ing system [9]. This is driven by the fact that there are often multiple
drivers of an effect, and as these are often connected but have different
structures, the single or aggregate layers might under- or overestimate
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the network effects.

4.2.1 Networks

• Ownership. Ownership ties are constructed from shareholder data
[61]. We are interested in cross-shareholding for companies in our
dataset, i.e. instances where the shareholder of a company is of
itself a company in our data. We thus disregards all shareholders
that are foreign or individuals.

Ownership can be defined in various ways. Strict ownership is
usually set as stake of > 50%. For control and influence a smaller
stake (5, 10, 20%) is often considered sufficient [91, 97]. Peer effects
of ownership can be robust under these different definitions [125].
We construct an edge between companies i and j when company i
has a stake ≥ 10% in company j following [125].

• Board of Directors. The board membership network describes com-
panies that are linked through directors. The board makes strategic
decisions for the company. Decision making can spread through
directors that sit in multiple boards [16]. In this network an edge
exists between company i and j when the boards of directors of
company i and company j have a least one director in common.
This can also be seen as the company-side projection of the bipar-
tite network of directors and the companies they serve. We rely
on unique person identifiers in the database, which prevents any
problem with name disambiguation.

• Research. From patent application data we obtain two kinds of
links; (i) companies that are joint assignees (owners) of a patent and
(ii) inventors that worked for multiple companies at the same time.
The first case is a clear sign of joint research which led to the joint
patent application. Following other studies on R&D networks [63,
131], we also exploit inventors that appear on multiple patents with
different assignee companies, i.e. inventors working with multiple
companies. This can be used as a proxy of joint research [33]. Be-
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cause of the long term characteristics of joint research projects, we
use the patent application data between 2016-2018 (such a 2-year
backward window is also used in [63, 33]).

• Stock Correlations. From stock price time-series we can identify sig-
nificant relations between stocks. Here we follow earlier studies
[23, 84], constructing a minimum spanning tree to identify a back-
bone network of important links. The method extracts a backbone
network from pairwise correlations between the time-series. The
pairwise correlations are computed on the logarithmic daily re-
turns of a stock price. For stock s with price p, the daily log-return
is : rst = log pst − log pst−1. We use a 2-year window of the stock
time-series in order to have ns < nt, for a well behaved multi-
ple pairwise correlation matrix (in the Appendix we show that our
results are robust also under a shorter time window). The 2-year
window in combination with daily returns, rather than daily clos-
ing prices make the time series more comparable and diminishes
effects of long term trends. In a further regression exercise we also
use the full set of pairwise correlations without extracting the back-
bone network.
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Figure 19: Multilayer network of listed German companies showing: cross-
stockholding ownership network, joint board directors network, research
interactions, minimum spanning tree of stock correlations and the aggre-
gate. We show a multiplex layout; the position of nodes is the same throughout
the layers, but isolated nodes in a layer are not shown. Nodes are coloured
by their MultiRank centrality in the multiplex. The visualization illustrates
clearly that these interactions have different structures. We observe for ex-
ample that the research collaborations are really concentrated in the core of
this multiplex. All multiplex figures are created with the MuxViz software
[44]. This figure has been published under CC licence in [121].

4.3 Network topology of the corporate multilayer
network

In this section we first describe the network topology of the various
company-to-company interactions. We then discuss the significance of
the multiplex structure and show that all layers convey different struc-
tural information.

4.3.1 Layer descriptions

The network of German companies results in a multiplex of over a hun-
dred thousand companies, where the layers describing different types of
company interactions are all described by different networks statistics.

66



Ownership Board Research Stock Aggregate
German Nodes 49385 90690 3744 105005
companies Edges 38594 308123 8420 335213

Average Degree 1.56 6.80 4.50 6.38
Assortativity -0.03 1.00 -0.18 0.98

Germany listed Nodes 86 330 64 535 535
companies only Edges 54 504 212 534 1214

Average Degree 1.26 3.05 6.62 2.00 4.54
Assortativity -0.18 0.48 -0.42 -0.03 0.29

UK listed Nodes 301 1043 25 1312 1312
companies Edges 293 2778 25 1311 4354

Average Degree 1.95 5.33 2.00 2.00 6.64
Assortativity -0.51 0.69 -0.19 -0.21 -0.11

Table 2: Multiplex descriptive statistics

For all German companies that have at least one connection to another
company, we obtain an aggregate network of 105005 companies. 89% of
the companies are connected through a joint board member, and slightly
less than half of the companies are connected through an ownership link,
see Table 2. The network of research interactions is much smaller com-
pared to the other layers, but with an average degree of 4.5, this is more
densely connected than the ownership topology which has only 1.26.
The largest contribution of links in the aggregate network comes from
board interactions. From the assortativity of the layers, the tendency of
nodes to connect with nodes of the same size (degree), we see that while
through board members companies connect very much to similar size
companies, this effect is non existing in the ownership network. In the
research network assortativity is negative, -0.51, driven by larger compa-
nies that collaborate with smaller companies (start-ups).
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Listed companies

We will focus on listed companies, as more layers of the multiplex struc-
ture are specified. The subset of German companies that are listed has
similar descriptive statistics to those of all German companies. When
we compare the characteristics of the subset of listed companies to those
of the whole system, many of the dynamics between the layers are the
same, see Table 2. I.e. the relative differences in number of nodes, edges,
average degree and assortativity between the layers is broadly conserved.
This is in principle not surprising, however, in this case the subset com-
prises of a particular set of the most ’important’ and mainly biggest com-
panies in terms of turnover etc. Nearly all companies are connected by
board members, showing the potentially large influence of this more in-
formal network.

United Kingdom

For listed firms in the UK we observe a reasonable similarity to the Ger-
man network, in terms of the assortativity of the different interactions
and the relative sizes of the different layers. Main differences are a more
dense board membership network, with an average degree of 5, and less
research interactions, as the UK economy in general is more geared to-
wards less research intensive services than the German economy, see Ta-
ble 2.

Core-periphery structure of the aggregate corporate network

With the the bimodular surprise method introduced in the previous chap-
ter we analyse whether this corporate network has a core-periphery struc-
ture. Fig. 20 shows the core-periphery structure as revealed by modular
surprise on the aggregate of the multiplex of German listed companies.

4.3.2 Multiplex structure

In the previous section we described the topology of the isolated layers,
but we are interested in these interactions in parallel. We want to un-
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Figure 20: Core-periphery structure of the aggregate of the German multi-
plex of listed companies as revealed by bimodular surprise.

derstand whether we need to distinguish these different interactions, or
whether the aggregate would suffice. As the multiplex literature is a re-
cent one, there is not one established method to evaluate this question
of the relevance of the multilayer structure. Therefore we answer this
with three different available methods for the analysis of the multiplex
structure:
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1. the node and edge overlap of the layers;

2. the structural reducibility;

3. a network regression.

All these three methods on their own will show that all layers are signif-
icant and that the multiplex representation has an added value.

Node and edge overlap

Node and edge overlap shows similarities between the layers and the
level of connectedness. The node and edge overlap in two networks is
measured by the fraction of nodes (edges) that occur in both networks
over the aggregate number of nodes (edges) in those two networks. Re-
sults in Table 3 indicate that all layers are connected since a significant
fraction of the nodes overlaps. The overlapping edges are however fewer.
This holds both for the German companies and the UK companies. The
low edge overlap indicates that the different layers do not replicate many
connections specified in other layers and thus that these corporate networks
do not simply overlap.

Structural reducibility

Structural reducibility is a recently introduced measure [45] for multi-
layer networks that indicates whether pairs of layers can be aggregated
based on redundant information. The information encoded in a network
can be quantified by the entropy. The structural reducibility quantity cal-
culates the relative entropy between a network of multiple layers and its
aggregate. By analysing whether some layers can be aggregated, without
loosing distinguishability from the aggregate, one can find the configura-
tion of the multilayer that maximises the information in the system. The
information is quantified by the entropy (Von Neumann entropy) of the
network. Formally we maximise the value

q(G) = 1− combined entropy of the multiplex
entropy of the aggregated network

(4.1)
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(a) Node overlap of German multiplex

Ownership Board Research Stock
Ownership 1
Board 0.767 1
Research 0.190 0.174 1
Stock 0.742 0.950 0.170 1

(b) Edge overlap of German multiplex

Ownership Board Research Stock
Ownership 1
Board 0.067 1
Research 0.015 0.044 1
Stock 0.007 0.016 0.023 1

(c) Node overlap of UK multiplex

Ownership Board Research Stock
Ownership 1
Board 0.235 1
Research 0.019 0.023 1
Stock 0.236 0.827 0.020 1

(d) Edge overlap of UK multiplex

Ownership Board Research Stock
Ownership 1
Board 0.006 1
Research 0 0.001 1
Stock 0 0.009 0 1

Table 3: Layer overlap. Overlap of nodes and edges between the layers, as
measured by the fraction of nodes/edges which appear in both layers over
the aggregate number of nodes/edges of the two layers. Edge overlap is
smaller than the node overlap, indicating layers are complementary. Nodes
can be the same in the layers but the connections between them are different,
this creates larger connected structures.
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Figure 21: Structural reducibility of the multiplex based on entropy of the
layers. The relative entropy q measures the structural information of the
multiplex compared to its aggregate. The larger q, the more distinguish-
able the multiplex is from the aggregate network. When none of the layers
are aggregated the entropy is maximal. I.e. none of the layers are struc-
turally reducible based on redundant structural information measured from
the entropy. For a complete description of the multiplex we do require all
information encoded in all layers/types of interactions. This figure has been
published under CC licence in [121].

See the Appendix for details and the formal introduction of this method.
Calculating the structural reducibility quality between all the layers, we
find the the optimal structure is the multiplex with all original layers
present, see Fig. 21. This indicates that all layers convey different structural
information.

Multiplex network regression

A third way we can probe the significance of the different layers is by
means of a regression. The multiplex network describes different types
of interaction between the actors. With a regression we can test the ex-
planatory power of these interactions for an observed interaction. For
sparse networks a classic regression, where observations are formed by
all possible edges (all adjacency matrix entries), one would regress with
many zero entries. We use a newly proposed method more suited for
network regressions that uses a graph null model to look at significant
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links. It is well known that interactions described by a network structure
should be tested against a null model, to see which part of the observed
network can be explained by randomness. With a null model we an-
swer the question: out of the many combinations the network structure
could possible be configured, how (im)probable is the empirically ob-
served structure? This way we can filter out observed interactions that
arise from randomness from combinatorial factors.

To this end we use a recently introduced network regression model
that uses a generalised hypergeometric graph ensemble as the graph null
model. This regression estimates the influence of a layer of the multiplex
and, using the null model, tests the statistical significance of the layer
structure on observed interactions. A detailed explanation can be found
in [35]. We setup a regression to see if the stock correlations can (in part)
be explained by the network structures:

stock correlation ∼ ownership ties + board ties + research ties (4.2)

As dependent variable we take the pairwise correlation values between
all stock time-series and scale them to integer values in the interval [0, 100],
as the multiplex regression model allows for the dependent variable to
be weighted (positive, integer) - See [35] for details on this regression
method. The dependent variables are the unweighed network structures;
the Ownership network, the Board network and the Research network.
The regression identifies all dependent variables to be significant in explaining
the stock correlations, see Table 4. In C.2 we show that this result is robust
with respect to the 2-year window of the stock data as discussed in Sec-
tion 4.2.

On the basis of the above we conclude that the different layers have
distinct information to convey. The three different methods have shown
the significance of all layers in the multiplex. These results highlight that
the different channels of influence between companies have very differ-
ent structures. The complementary characteristics of the different layers
show that the corporate world is an even smaller one than previously re-
ported based on the studies of ownership [15] or the board membership
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Table 4: Multiplex network regression on pairwise stock correlations. All
layers are found significant independent variables for explaining the stock
correlations.

German stock correlations UK stock correlations

Coef. SE Coef. SE

Board 0.44 *** 0.49 ***
Ownership 0.89 *** 0.72 ***
Research 0.40 *** 1.39 ***

* p < 0.05, ** p < 0.01, *** p < 0.001.

network [43].

4.3.3 Network structure and company characteristics

We now take the first steps to explorer the interaction of the network
structure and company characteristics of this multilayer structure. The
small world network that we described before is characterised by the
presence of hub nodes. Such core nodes act as connectors of different
parts of the network. We calculate the centrality of the nodes within
the separate layers, and with the MultiRank centrality [98] quantify the
node prominence in the multiplex. We regress node centralities on com-
pany characteristics like revenue, stock return, revenue growth, and the
Sharpe ratio of the stock returns, in an ordinary least squares regression.
We find that centrality in the multiplex is significantly correlated to rev-
enue of the companies - see the appendix for more details. Larger com-
panies, as measures by revenue, are more central in the network. The
result is not necessarily surprising [125], as larger companies have more
resources to form connections, like subsidiaries and R&D collaborations.

Now, we look at the position of the companies in the network, re-
lated to the stock performances. We measure stock performance with the
Sharpe ratio instead of the direct stock returns. This ratio evaluates mean
returns compensated for (high) volatility of the stock. A high Sharpe ra-
tio corresponds to a high return and low volatility: a consistent steady
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high return. The Sharpe ratio is calculated from the returns of a portfolio
of stocks r as:

S =
〈d〉
σd
, (4.3)

where d = rportfolio− rrisk free. We take the risk free return on capital as zero
(an assumption which is valid as the return on German governmental
bonds is currently zero, or even negative). We calculate the centrality
also in the multiplex excluding the stock interactions layer.

Because not all layers are well connected with the presence of a giant
component, we qualify the core-periphery structure by centrality rather
than with the bimodular surprise. Calculating the Sharpe ratio of the
portfolio of the highest ranked quantile, using the MultiRank centrality
ranking on the multiplex network, we find the core companies perform
significantly better compared to the rest of the network. In fact, we find a
Sharpe ratio for the portfolio of companies in the core of 0.37, while only
0.18 for the rest of the network for the German multiplex (0.21 versus
0.07 for the UK multiplex). However, this effect seems mostly driven by
the companies with largest revenue, rather than uniformly by all compa-
nies in the core. These preliminary results on the dynamics behind the
multiplex structure indicate a relation between company performance
and network formation, and invite more research on this topic.

4.4 Discussion

In this chapter we have described a uniquely compiled dataset which
combines various known company-to-company interaction networks into
one single multiplex structure. The layers of this system describe differ-
ent types of interactions between the same set of companies. We have
included ownership ties, social ties through joint board members, R&D
collaborations, and stock correlations. With three separate methods we
show the significance of the multiplex structure. Node and edge over-
lap highlights that different types of ties connect different sets of players;
i.e. the structures are not overlapping and the layers complement each
other. The structural reducibility quality was used to show that all layers
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are structurally different and irreducible from an information theory per-
spective. In the third method we used a regression model to estimate the
explanatory power of the multiplex structure on all pairwise stock cor-
relations. The independent variables of network structures of ownership
network, board membership network and R&D network were all found
to be significant estimators of the structure in the stock correlations.

These three methods confirmed that the multiplex representation is
different to the single layers or the aggregate, and that these interactions
have different structures. For company interactions this indicates studies
of peer effects of control should take these multiple connections into ac-
count. We evaluated the characteristics of companies related to the multi-
plex structure. These initial results indicate a relation between company
performance and multiplex centrality.

Our results show that the corporate world is an even smaller world
than the small world already described by various previous studies on
corporate control and studies of the ’old boys network’ of board rooms.
The significance of the different layers of the corporate multiplex invite
more research on the interconnectedness of diverse economic and finan-
cial networks.
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Chapter 5

Maximum Entropy
Approach to Link
Prediction in Bipartite
Networks

The content of this chapter is published as a pre-print article on ArXiv, see [8].

The same maximum entropy framework we used in Chapter 2 for re-
construction of network structures from limited information, can be ex-
ploit for link prediction. In fact, as stated before, this framework has
been successfully applied in detection of significant structures, recon-
struction, pattern recognition in networks, and recently to link predic-
tion in monopartite networks. We will now extend this work to bipartite
graphs. We test our method on two real world networks with different
topological characteristics. Our performances are compared to state-of-
the-art methods, and the results show that our entropy-based approach
has a good overall performance.
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5.1 Introduction

Until now we discussed monopartite networks; the connections between
one class of nodes. Within these systems we briefly discussed bipartite
networks; those describing the connections between two groups of nodes
in the mesoscale structure e.g. connections between core and periphery.
In general, bipartite networks describe the connections between two dif-
ferent classes of nodes, as customer-products [79] or countries and their
exports [113, 103]. In fact, often monopartite networks are actually a
projection of a bipartite network; a co-author network is the author-side
projection of the bipartite network of authors and publications.

As argued for mesoscale structures, the network topology is relevant
for many networks processes, such as diffusion phenomena and network
resilience. Incomplete or incorrect knowledge over the network topology
can cause biases in such analysis. Unfortunately, in real-world networks,
the relationships among nodes are not always fully observable, and are
subject to frequent changes over time. To overcome these issues, the ob-
jective of link prediction is to uncover unobserved or missing connec-
tions or forecast the emergence of future relationships from the current
topological structure of the network [81, 32, 92].

The link prediction problem is an active research field and many meth-
ods have been proposed in the literature. Some methods make use of
local information, i.e. at node level, while others are based on global ap-
proaches. In the following we will concentrate on the first class of meth-
ods. Also, we can distinguish methods based on similarity measures or
likelihood functions. However, only few of the methods proposed in the
literature have been applied in the case of bipartite networks [130, 42,
58]. Among the algorithms which admit bipartite configurations, there
are several classes of techiques, such as global and kernel-based meth-
ods [78], extensions of results in monopartite networks to bipartite[42]
and projections on the monopartite [58, 130].

In a recent work, the entropy-based approach as introduced in Chap-
ter 1 was used for link predictions in (monopartite) trade networks, show-
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Figure 22: Visualization of a bipartite graph. A subgraph of the Venezuelan
Banks and Assets bipartite network is shown, with banks on one layer linked
to the assets they hold on the other layer.

ing good performances [93]. Here we extend this approach to the bipar-
tite case on social and financial networks. As we will see in the follow-
ing, the entropy-based approach has a good performance with respect to
other available methods, as in the monopartite case [93].

5.2 Methods

Let us indicate the two layers of the bipartite network as > and ⊥; nodes
on the layer > are identified by Latin indices and nodes on the layer ⊥
with Greek ones. The number of nodes of the two layers is respectively
N> and N⊥. A bipartite network is described by a biadjacency matrix,
i.e. the rectangular matrix MN>×N⊥ whose entries miα are 1 if there is
an edge connecting i and α and 0 otherwise.

Let us indicate with the symbol L =
∑
i,αmiα the corresponding set

of observed links and with the symbol U = N> ×N⊥ the set of all nodes
pair: as a consequence, U\L is the set of non-existent links in the net-
work. In order to study the performance of a link prediction algorithm,
the list of edges is usually divided into two separate sets: the training
set LT , used in the ”calibration” phase of a given prediction algorithm,
and a probe set LP=L\LT which is the set of removed links for testing the
algorithm, thus constituting the actual ”prediction target”. From those
definitions, we can indicate with MT the portion of the adjacency matrix
corresponding to the training set. Finally, the union of the missing-links
set and the non-existent links set LN≡U\LT will be referred to as to the set
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of non-observed links.
The following procedure is followed to test our link prediction method

and to compare it with alternative algorithms:

1. the 10% of links are randomly removed. This operation is repeated
10 times;

2. on each of the reduced matrices we apply the link prediction algo-
rithms;

3. the performance of each algorithm is evaluated by means of dif-
ferent evaluation measures which are then averaged across the 10
iterations.

5.2.1 Link prediction methods

Link-prediction algorithms output a list of scores to be assigned to non-
observed links. The classification algorithms can be divided in two main
classes:

• Similarity-based algorithms which employ local, quasi-local or
global information, such as, respectively, the nodes degree, the de-
gree of common neighbours and the length of paths connecting any
two nodes;

• Likelihood-based algorithms defined by a likelihood function who-
se maximization provides the probability that any two nodes are
connected.

The local similarity algorithm are based on the fact that the likelihood of
an interaction between two non-adjacent nodes is strongly related with
mechanisms of organization involving their first and/or second neigh-
bour nodes. Upon indicating with N(i) and N(α) respectively the set
of neighbours of i and α and with N(N(i)) and N(N(α)) respectively
the set of the second-order neighbours of the nodes i and α, the main
similarity indexes are the following:
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• Common neighbours (CN):

sCNiα = |(N(i) ∩N(N(α))) ∪ (N(α) ∩N(N(i)))| (5.1)

is an index counting the neighbors touched by the quadrangles that
pass through the nodes i and α. In a bipartite network, of course,
nodes in opposite layers cannot have common neighbors. There-
fore instead of triangular closing in a monopartite graph, here we
have this quadrangular closing: common neighbors defined as a
closed quadrangular path on the two layers, see also [42];

• Resource Allocation (RA):

sRAiα =
∑

z∈((N(i)∩N(N(α)))∪(N(α)∩N(N(i))))

1

|N(z)|

assigns a different weight to the common neighbours of nodes i
and α based on its degree;

• Preferential Attachment (PA):

sPAiα = ki · kα

is simply the degree product of nodes i and α, can be used in bi-
partite networks.

• Cosine Similarity (CS):

sCSiα =
sCNiα√
|ki · kα|

is based on the Cosine distance between two vectors of same length
[82].

In contrast to the existing node-neighborhood-based approaches, the link
prediction strategy of other similarity-based models focuses no longer
only on groups of common nodes and their node neighbours, but also
on the organization of the links between them. In those models, the in-
formation content related with the CN nodes is complemented with the
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topological information emerging from the interactions between them.
In order to demonstrate the validity of this theory on several classes of
networks, different classical node-based link prediction techniques like
CN, JC, RA and PA were reinterpreted. This mathematical reformulation
represents the Cannistraci variations[42] of CN, RA and PA respectively
renamed Cannistraci-Alanis-Ravasi (CAR), Cannistraci Resource Alloca-
tion (CRA) and Cannistraci Preferential Attachment (CPA) and defined
in the following way:

• CAR index:
sCARiα = sCNiα · sLCLiα

• CRA index:

sRAiα =
∑

z∈((N(i)∩N(N(α)))∪(N(α)∩N(N(i))))

|γ(z)|
|N(z)|

• CPA index:

sCPAiα = ei · eα + ei · sCARiα + eα · sCARiα + (sCARiα )2

where sLCLiα counts the links between the common neighbours of nodes
i and α, |γ(z)| is the number of links of z with the other neighbours of i
and α, while e(i) and e(α) are the number of external links respectively
of nodes i and α.

5.2.2 The Bipartite Configuration Model approach

In our method, the probabilities of the Bipartite Configuration Model
[104] (BiCM) are used as score function for predicting links [93].

Following the same maximum entropy framework laid out in the in-
troduction, we derive the Bipartite Configuration Model. For bipartite
graphs we denote the biadjacency matrix as M, to differentiate from the
adjacency matrix for monopartite graphs A. The degree sequences of the
two layers are indicates as: ~k> for the degree sequence of the nodes in
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Table 5: Data description of the MovieLens graph, and the Venezuelan
Banks and Assets graph

Graph Users
(Banks)

Items Nodes Edges Avg.
De-
gree

Avg.
De-
gree
(Users)

Avg.
De-
gree
(Items)

ML 943 1682 2625 100000 76.19 106.04 59.45
VBA1 45 20 65 912 28.06 20.27 45.60

the top layer, and ~k⊥ for the bottom layer of the bipartite graph. The
ensemble of graphs are in this case all bipartite graphs possible under
the constraints. The constraints for the BiCM are the degree sequences
of both layers; ~k>∗ =

〈
~k>
〉

for the top layer, and ~k⊥∗ =
〈
~k⊥
〉

for the
bottom layer. The Hamiltonian of Eq. 1.3 with these constraints is

H(M, ~α, ~β) =
∑
i

αik
>
i +

∑
j

βjk
⊥
j . (5.2)

As such the probability per graph is

P (M, ~α, ~β) =
e−H(M,~α,~β)

Z(~α, ~β)
. (5.3)

Upon defining xi ≡ e−αi and yi ≡ e−βi , we can write the probability per
graph as

P (M, ~α, ~β) =
∏
i,j

(xiyj)
mij

1 + xiyj
. (5.4)

We can interpret the term xiyj
1+xiyj

as the probabilities per link. The system
of equation we solve to find the value of the Lagrange multipliers α and
β is {

k>i =
∑
j

e−αi+βj

1+e−αi+βj
, ∀ i

k⊥j =
∑
i

e−αi+βj

1+e−αi+βj
, ∀ j.

(5.5)

5.2.3 Evaluation measures

After the link-prediction algorithm has been performed, a number of sta-
tistical indices can be used to test its effectiveness. The first index we
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have considered is the True Positive Rate (TPR) (also known with the name
of precision) which is the percentage of missing-links that are correctly
recovered, namely the number Lm of correctly identified missing-links,
within the list of the first |EP | links with the largest score. The TPR is
defined as:

TPR =
Lm
|LP |

(5.6)

Another evaluation index is the area under the ROC curve, or (AUC). This
measures evaluates how many times a method (correctly) assigns a high-
er score to a missing link with respect to a non existent one. It is formally
defined as:

AUC =
n′ + 0.5n′′

n
(5.7)

Specifically, for each combination of a missing and non-existent link, if
the former scores higher than the latter, the index n′ is raised by one
unit. If the two links have the same score, n′′ is raised. The denominator
is given by the product of the number of missing links times the number
of non-existent ones. If all scores were i.i.d. the AUC value should be dis-
tributed around an expected value of 1/2: therefore, the extent to which
the AUC value exceeds 0.5 provides an indication of how much better the
algorithm performs than pure chance. Finally, the last index, called accu-
racy (ACC), quantifies the percentage of correctly classified links, namely
both the missing ones and the non-existent ones Lne, with respect to the
total number of non-observed links |LN |:

ACC =
Lm + Lne
|LN |

(5.8)

5.3 Data

The following datasets have been employed to test the link-prediction
method:

• MovieLens (ML): MovieLens [64] datasets were collected by the
GroupLens Research Project at the University of Minnesota. This
data set consists of 100000 ratings (1-5) from 943 users on 1682
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movies. Each user has rated at least 20 movies and is character-
ized by some demographic information, such as age, job, sex, state
and zipcode. The data was collected through the MovieLens web
site (movielens.umn.edu) during the seven-month period from
September 19th, 1997 through April 22nd, 1998. For the set of
movies, there is information on the release year, title and genre.
Each user can review a movie with a score that ranges from 1 to 5,
according to his level of appreciation. We binarize the network by
drawing an edge for a user-movie pair if the user has reviewed the
movie;

• Venezuelan Banks and Assets (VBA): Bipartite networks of posi-
tions that 69 Venezuelan banks hold in 20 asset classes in the period
between December 2013 and June 2015. The dataset was firstly pre-
sented and analyzed in [80]. The binarized network has an edge
between a bank-asset pair, if the position the bank held in the asset
class has a value greater than zero at a given timestamp.

The generic statistics of the graphs produced from the datasets that were
used in this analysis are provided in Table 5.

5.4 Results

The results of the algorithm performances are presented in Table 6 and
Fig. 23 for the MovieLens data set, and the metrics comparison for the
Venezuelan Banks and Assets are in the Figures 24a, 24b and 24c. The
results of the link prediction in bipartite networks are averaged over 10
iterations for each method, with exception for the BiCM method for the
MovieLens data set the average is taken from 7 iterations. Table 6 shows
the averaged measure and the standard deviation (SD).

The results for our entropy based algorithm (BiCM) are comparable
and show strong performance as opposed to the benchmark algorithms.
For the MovieLens network BiCM comes in third place for the accuracy
(ACC) measure and is the fourth best algorithm for the precision (TPR)
and AUC (see Table 6) and is closely trailing the best performers. For the
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Table 6: Comparison of link prediction methods: MovieLens performance
comparison, in italic the performance of our BiCM method.

Method ACC (SD) TPR (SD) AUC (SD)
BiCM 0.98873 (0.00003) 0.15658 (0.002) 0.8946 (0.002)
cosine 0.98836 (0.00005) 0.12905 (0.004) 0.8903 (0.0007)
car 0.98917 (0.00003) 0.18975 (0.003) 0.9028 (0.001)
CN 0.98860 (0.00003) 0.14713 (0.002) 0.8868 (0.0009)
cpa 0.98917 (0.00003) 0.18975 (0.003) 0.9028 (0.001)
cra 0.98929 (0.00003) 0.19856 (0.002) 0.9163 (0.001)
PA 0.98873 (0.00003) 0.15672 (0.002) 0.8932 (0.001)
RA 0.98793 (0.00004) 0.09712 (0.003) 0.8863 (0.0007)

Venezuelan Banks and Assets networks, BiCM link prediction algorithm
is among the best five performers in precision and accuracy measures
(see Fig. 24a for multiple time periods) while the three other methods are
further behind. Furthermore, inspecting the Fig. 24c it can be observed
that BiCM method dominates the others in AUC measure. For all algo-
rithms in the Venezuelan Banks and Assets network analysis, precision
ranges between 0.3875 and 0.7818, accuracy is between 0.8877 and 0.9577,
and AUC values change from 0.8958 to 0.9730. All algorithms perform
better on the Venezuelan Banks and Assets than on the MovieLens data
set with respect to precision measure, i.e. the rate of true positive values.
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Figure 23: Link prediction performance on the MovieLens dataset, a bi-
partite graph of users linked to movies they reviewed. The BiCM method
performs on par with the alternative methods on all evaluation measures.
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(a) Precision

(b) Accuracy

(c) AUC

Figure 24: Link prediction performance on the Venezuelan Banks and As-
sets dataset, a bipartite graph which describes the types of assets in which
banks held a position at various time-snapshots between December 2013
and June 2015. Performance is measured by Accuracy, Precision and AUC.
The BiCM method is among the best performing methods in all time snap-
shots, and has best performance in some of these.
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5.5 Discussion

Link-prediction is a method that can be leveraged for a wide array of
tasks, as compensating for missing information [81]. Recently, it was
proposed to employ entropy based null-model probabilities [94, 59, 109]
as score function for predicting links [93]: missing links with high prob-
ability are likely to be present. In this chapter we extend this approach
to bipartite networks, thus using as score function the probability of the
bipartite configuration model [104].

In order to test our predictions, we first randomly remove a fraction
of the links present in the real network and then use our procedure to
predict the same amount of links. On the real world bipartite networks
of user-movie ratings and bank-asset positions, we compared the perfor-
mances of our proposed method to seven alternative local information
based methods. On all datasets and all evaluation measures our method
is able to consistently predict missing links.

It is not surprising that our approach has better performances on fi-
nancial data, than on the social network of Movielens [64]: indeed in
the latter case it is known that a collaborative filtering recommendation
system [100] was employed [64]. Nevertheless, our results have similar
performances with other known methods. Moreover, it is remarkable
that our approach, that is based on local constraints has performances of
the same order of quasi-local methods as the bipartite extension of Can-
nistraci corrected scores[32, 42]. For financial networks, for which the
bipartite configuration model is known for having good performances,
results are more promising: the BiCM induced link prediction is among
the top link prediction methods on the tested datasets.

Our method can be naturally extended to (bipartite) review networks,
as the ones in which a users can give a rating to a certain item. While the
prediction of both the existence of links and their strength is not triv-
ial, the recent extension to bipartite score network of the configuration
model[21] makes the task more promising, thus overcoming the limita-
tions of competing algorithms [32, 42].
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Chapter 6

Conclusion

Networks arise naturally in economical and financial systems as these
evolve around exchanges and transactions. In the past years, new data
availability has driven new ways of analysing these systems. With data,
for example on bank-to-bank loans, the analysis of these systems has
moved away from assumption-rich macroscopic descriptions. In these
interacting systems there has been a shift to model interactions between
the actors in the system with the tools of complex networks theory. Com-
plex networks represent heterogeneous systems characterized by emerg-
ing properties driven by interactions rather than individual characteris-
tics: network science provides methods and tools to extract significant
information from these systems.

In this thesis, we have presented novel methods for the analysis of
mesoscale network structures and applied such methods to study real-
world economic and financial networks. While a lot of attention has
been focused on the community structure, many real world networks
are characterized by mesoscale structures like core-periphery and bipar-
titions, especially so for economic and financial networks: whereas com-
munities are characterized by a higher internal connectivity, the former
mesoscale structures actually do have a significant connectivity between
clusters. Detecting the presence of mesoscale structures in complex net-
works is of primary importance [53, 73]. This is especially true for fi-
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nancial networks, whose structural organization deeply affects their re-
silience to shock propagation, node failures, etc. [40, 70, 54, 83].

When considering mesoscale structures, it is generally believed that
null models encoding the modular organisation of nodes must be em-
ployed. We have explored the effectiveness of null models that constrain
only local information in explaining mesoscale structures as the bow-tie
and core-periphery structures. This was done by comparing competing
null models and analysing their relative performance using model selec-
tion criteria. Specifically, we have considered the directed random graph,
constraining the network edge density, the directed configuration model,
constraining the directed degree sequence, and the reciprocated configu-
ration model, which puts constraints on the reciprocated network degree
sequence, beside their block-wise version, i.e. models encoding node-
membership information. The World Trade Web, the network of world-
wide bilateral import and exports, and eMID, the Italian interbank expo-
sure network, provide the real world systems with a meso-scale structure
to check model performances. Using AIC and BIC model selection cri-
teria we found that it is often enough to constrain the network degree
sequence, for reproducing the mesoscale structures.

The null models encoding the modular structure partition the net-
work into asymmetric blocks, characterised by binary directed connec-
tions. In the process of defining these null models, we therefore also
enriched the toolbox for analysis of bipartite networks by extending a
recently proposed method to randomise undirected, bipartite, networks
to the directed case; defining the directed bipartite configuration model
[103, 113].

Our findings on the reconstruction of mesoscale structures indicate
that these structures are often explained by the information encoded into
the degree sequence, i.e. are compatible with the configuration model
prediction. Another recent work also points out that a core-periphery
structure cannot be significant under the configuration model [76]. To
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still be able to detect such a core-periphery structure as a significant par-
tition, we adopt a modification of the surprise, recently proposed for de-
tecting communities [3, 4, 90, 118], thus turning to a “tuned down” null
model, i.e. the (directed) random graph. Our variant allows for bimodu-
lar nodes partitions to be revealed, by letting links to be placed either 1)
within the core part and between the core and the periphery parts or 2)
just between the (empty) layers of a bipartite network. We evaluate such
a partition of nodes with a multinomial hypergeometric distribution, an
adaptation form the binomial hypergeometric one used in surprise, to
allow for three types of links. This distribution allows a p-value to be
assigned to any given (bi)partition of the nodes: we find core-periphery
and bipartite structure by identifying the partition of the nodes that min-
imises this p-value, i.e. finding the most significant bimodular structure.
To illustrate the performance of our method, we reported the results of
its application to several real-world networks, including social, economic
and financial ones.

The search for the partition which minimises bimodular surprise is
increasingly computationally heavy for larger networks. We therefore
introduced a search heuristic. It is based on a modification of the PACO
heuristic introduced for surprise [90], and is driven by a greedy process
which cycles through all sorted edges.

Other methods exist to detect core-periphery structures, mainly the
ones derived from the Borgatti model [24, 70, 54, 25], which defines a
distance function of an observed network to an idealised core-periphery
structure. These methods are in general very reliant on node degree [76],
with the core often composed of just the nodes with the largest number
of neighbours. Bimodular surprise is driven by the interplay of link den-
sity values of the different network areas. By employing a benchmark,
our method also has the advantage of making the statistical significance
of a given structure explicit. Fitting methods ’a la Borgatti’ leave this im-
plicit, which pushes one to enrich the model with an increasing amount
of information whose relevance cannot be easily clarified.

We have, then, moved to study corporate networks. The latter can
be considered to be a mixture of economic and financial systems. Stock-
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correlation networks describe a more financial system, where ownership
between firms describe a more economical system. Several types of cor-
porate networks have been studied before, such as ownership networks,
research collaboration networks, and social networks of the boardroom
elite [101, 132, 16, 43, 116]. These analyses have shaped our understand-
ing of many important economic systems, like the concentration of own-
ership into a small group of corporation, and the spread of decision mak-
ing in businesses through the social network of company directors [125,
16]. These studies have characterized many corporate networks as core
periphery and bow-tie mesoscale structures. However, these networks
have been studied almost exclusively in isolation. They are, in fact, all
part of the complex system of firm interactions. We therefore studied
these interactions in parallel and evaluated the structure of the disag-
gregated network. To this end, we constructed a new multilayer net-
work dataset on interactions between companies in Germany and in the
United Kingdom, combining ownership links, social ties through joint
board directors, R&D collaborations and stock correlations in one linked
multiplex dataset. We have described the features of this network with
several network measures. With three separate methods we have shown
the significance of layers within the aggregate multiplex structure; the
node- and edge-overlap, the structural reducibility and a multiplex net-
work regression. All these three methods confirm that the multiplex rep-
resentation has an added value over the single layers. These results show
that corporate control, boardroom influence and other connections have
different but connected structures. This multilayer network shows that
the corporate world is an even smaller world than the small world al-
ready described by various previous studies on corporate control and
the ’old boys network’ of board rooms.

As a side application of null models, we have approached the prob-
lem of link prediction in bipartite networks. We again employed the
maximum entorpy framework, building on a recent paper where this
was used for monopartite networks [93]. The bipartite configuration
model, in fact, defines all possible edge probabilities of the “null graph”.
The unobserved edges with highest probability are used for the link im-
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putation problem. The MovieLens dataset, describing movie preferences
of individuals, and the bipartite network of Venezuelan banks linked to
the assets they hold have been used to test our method. We remove a
random given fraction of the links in these datasets and use our link
prediction method to predict these removed links. When compared to
alternative state of the art link prediction methods, our bipartite config-
uration model method has almost always on par or better results than
existing methods. An advantage of our method is that it only uses lo-
cal information, e.g. degree sequences, where alternative measures use
quasi-local information requiring the complete network configuration.

Throughout this thesis we have leveraged existing and newly pro-
posed methods for the analysis of the (mesoscale) structure of economic,
financial and corporate networks. We find that many of these systems
show a modular organisation characterised by core-periphery, bow-tie, and
bipartite structures. Our methods revealed the evolution of specific mod-
ules of the mesoscale structure in networks of global trade and exposures
between banks. The overall mesoscale structure of these systems is how-
ever characterised as a stable core-periphery structure. We showed that
the way in which network data is aggregated matters for the classifica-
tion of the network structure. The mesoscale structure of Italian inter-
bank loans is sometimes revealed as a bipartite structure when describ-
ing short time periods, and described as a core-periphery structure for
longer time aggregation. For corporate networks, as we unravel the ag-
gregate network and evaluate the different layers of this multilayer net-
work, we found that the structure of the layers and the aggregate have
vastly different characteristics.
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Appendix A

Null Models

The null models used for reconstruction and link prediction are spe-
cific versions of the Exponential Random Graph Model as introduced in
Chapter 1. In this appendix we derive the models used in Chapters 2 and
5 from this general model. In Chapter 2 we use models containing both
node-specific local information and group membership of the nodes. We
will start by deriving the model for the general case constraining the de-
gree sequence and specifying the block-structure, and then continue to
the other models by setting specific constraints.

We denote the adjacency matrix of a graph with A, whose the entry
aij signals the presence of a link between node i and node j. The degree
of a node is ki.

Degree informed

This first class of null models are the so-called degree-informed null mod-
els. Here specifically we will include information on the block structure
in the models. All null models in this class are defined by constraints
encoding node-specific local information (i.e. the directed degree se-
quences), and the membership of nodes to specified groups (labelled by
the symbols {gi}). Building on the Exponential Random Graph formal-
ism introduced in Section 1.3, we combine these two kinds of informa-
tion, obtaining block-specific directed degree sequences, definable
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kr→si = δgir
∑
j( 6=i)

δgjsaij , ∀ i, r, s (A.1)

hs→ri = δgir
∑
j(6=i)

δgjsaji, ∀ i, r, s (A.2)

with kr→si indicating the contribution to the out-degree of node i (be-
longing to block r) coming from block s (and analogously for hs→ri ). Re-
markably, all null models in this class induce a probability for the generic
network configuration A reading

P (A) =
∏
i 6=j

p
aij
ij (1− pij)1−aij (A.3)

with different null models inducing different functional forms for the
edge-probability coefficients {pij}.

Reciprocity informed

When analysing directed networks, however, a non-trivial piece of infor-
mation to be taken into account is represented by reciprocity [60]. For
this reason, a second class of null models, the one including the so-called
reciprocity-informed null models, is considered as well. Null models in this
class are defined by constraints encoding the (non) reciprocal degree se-
quences, beside the usual nodes membership. In the most general case,
the constraints defining such models can be written as

k
rs−→
i = δgir

∑
j(6=i)

δgjsa
→
ij , ∀ i, r, s (A.4)

k
rs←−
i = δgir

∑
j(6=i)

δgjsa
←
ij , ∀ i, r, s (A.5)

k
rs←→
i = δgir

∑
j(6=i)

δgjsa
↔
ij , ∀ i, r, s. (A.6)
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with a→ij = aij(1− aji), a←ij = aji(1− aij) and a↔ij = aijaji [60] and k
rs←→
i

indicating the contribution to the reciprocal degree of node i (belonging
to block r) coming from block s. All models in this second class induce a
probability for the network A reading

P (A) =
∏
i<j

(p→ij )a
→
ij (p←ij )a

←
ij (p↔ij )a

↔
ij (p=ij )a

=
ij ; (A.7)

as before, different null models induce different functional forms for the
probability coefficients {p→ij }, {p←ij }, {p↔ij }, {p=ij }.

For both classes of models, the likelihood function associated with
P (A) reads L(A) = lnP (A) = ln

[∏
b P (A(b))

]
=
∑
b lnP (A(b)). The

second passage follows from the observation that each null model we
consider in this chapter treats different nodes pairs as independent, thus
inducing a factorized form of the probability coefficient P (A) over the
aforementioned blocks.

Block Configuration Model (BCM)

All null models in the first class are particular cases of the following
hamiltonian

H =
∑
i6=j

(α
gi→gj
i + β

gi→gj
j )aij =

=
∑
i6=j

∑
r

∑
s

δgirδgjs(α
r→s
i + βr→sj )aij (A.8)

an expression inducing the following probability coefficients

pij =
x
gi→gj
i y

gi→gj
j

1 + x
gi→gj
i y

gi→gj
j

(A.9)

(where xi = e−α
gi→gj
i and yi = e−β

gi→gj
i ) to be numerically determined

by solving the likelihood equations
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{
kr→si = 〈kr→si 〉, ∀ i, r, s
hs→ri = 〈hs→ri 〉, ∀ i, r, s (A.10)

with 〈kr→si 〉 = δgir
∑
j(6=i) δgjspij and 〈hs→ri 〉 = δgir

∑
j( 6=i) δgjspji.

Notice that the directed version of the Stochastic Block Model (SBM),
the block model of the Directed Random Graph, can be recovered as a
special case of the BCM, by posing αgi→gji = αgi→gj and βgi→gjj = βgi→gj

in Eq. A.8 and solving the equations Lrs = 〈Lrs〉, ∀ r, s with Lrs =∑
i 6=j δgirδgjsaij and 〈Lrs〉 =

∑
i 6=j δgirδgjspij .

The BCM extends the results in [72, 56] to the directed case. Inter-
estingly, upon identifying αgi→gji ≡ αi +

wgigj
2 and β

gi→gj
j ≡ βj +

wgigj
2

the directed degree-corrected SBM (ddc-SBM) of [72] is recovered. Upon re-
taining all multipliers in Eq. A.8 and defining xi ≡ e−αi , yi ≡ e−βi and
χgigj ≡ e

−wgigj , one finds that

pij =
xiyjχgigj

1 + xiyjχgigj
; (A.11)

although formally equivalent, the expressions A.11 and A.9 are not when
coming to estimate the unknown parameters: Eq. A.11 is, in fact, deter-
mined by solving the equations ki = 〈ki〉, ∀ i

hi = 〈hi〉, ∀ i
Lrs = 〈Lrs〉, ∀ r, s

(A.12)

The BCM in fact extends the results in [72, 134] to the non-sparse case.

Directed Configuration Model (DCM)

The local information model not specifying the block structure can be
derived from the same A.8 equations by not encoding any block mem-
bership information. The DCM is obtained by posing αgi→gji = αi and
β
gi→gj
j = βj in Eq. A.8. Upon defining xi ≡ e−αi and yi ≡ e−βi , the

surviving multipliers induce probability coefficients reading

pij =
xiyj

1 + xiyj
(A.13)
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to be numerically determined by solving the likelihood equations{
ki = 〈ki〉, ∀ i
hi = 〈hi〉, ∀ i

(A.14)

with the out- and in-degrees reading ki =
∑
j( 6=i) aij and hi =

∑
j( 6=i) aji

respectively and 〈ki〉 =
∑
j(6=i) pij , 〈hi〉 =

∑
j(6=i) pji.

The Directed Random Graph Model (DRG) can be recovered as a par-
ticular case of the DCM, obtained by posing αi ≡ α and βj ≡ β in Eq.
A.8. The only coefficient pij ≡ p is determined by solving the equation
L = 〈L〉with L =

∑
i 6=j aij and 〈L〉 =

∑
i 6=j p.

Reciprocal Configuration Model (RCM)

We will now take into account the reciprocity of the network connec-
tions, by taking information from the reciprocated (or non-reciprocated)
degrees. The RCM is defined by the following probability coefficients

p→ij =
xiyj

1 + xiyj + yjxi + zizj
, (A.15)

p←ij =
xjyi

1 + xiyj + yixj + zizj
, (A.16)

p↔ij =
zizj

1 + xiyj + yixj + zizj
(A.17)

to be numerically determined by solving the likelihood equations k→i = 〈k→i 〉, ∀ i
k←i = 〈k←i 〉, ∀ i
k↔i = 〈k↔i 〉, ∀ i

(A.18)

with 〈k→i 〉 =
∑
j(6=i) p

→
ij , 〈k←i 〉 =

∑
j(6=i) p

←
ij , 〈k↔i 〉 =

∑
j(6=i) p

↔
ij .

Block Reciprocal Configuration Model (BRCM)

The RCM can be re-defined in same block-wise fashion as the DCM, by
specifying the probability coefficients defined by Eqs. A.15, A.16, A.17
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for each block. A Block Reciprocal Configuration Model (BRCM) remains
naturally defined, being determined by the system of equations

k
rs−→
i = 〈k

rs−→
i 〉, ∀ i, r, s (A.19)

k
rs←−
i = 〈k

rs←−
i 〉, ∀ i, r, s (A.20)

k
rs←→
i = 〈k

rs←→
i 〉, ∀ i, r, s (A.21)

with obvious meaning of the symbols.

Off-diagonal matrices

As the group membership might induce a partition of the adjacency ma-
trix with asymmetric off-diagonal matrices, let us explicitly solve the
BCM in the two, off-diagonal matrices A> and A⊥ (as in Eq. 2.1). In
order to fix the formalism, let us suppose the two off-diagonal blocks A>

and A⊥ to have dimensions C×P and P ×C, respectively. Analogously
to the undirected case [104], solving the DCM within the off-diagonal
blocks of the matrix A induces the following probability coefficients

P (A>) =
∏
c

∏
p

p
a>cp
cp (1− pcp)1−a>cp (A.22)

and

P (A⊥) =
∏
p

∏
c

q
a⊥pc
pc (1− qpc)1−a⊥pc ; (A.23)

the probability that a link from a core node c to a periphery node p ex-

ists is pcp ≡
x>c y

>
p

1+x>c y
>
p

and the probability that a link from a periphery

node p to a core node c exists is qpc ≡
x⊥p y

⊥
c

1+x⊥p y
⊥
c

. Consistently, the vec-

tor ~x = {~x>c , ~x⊥p } is coupled to the outgoing degrees, while the vector
~y = {~y⊥c , ~y>p } is coupled to the incoming degrees.

The aforementioned probability coefficients are determined via the
likelihood condition in A.10. Let us notice that the out-degree of core
nodes and the in-degree of periphery nodes are measured on the matrix
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A>; the converse is true for the matrix A⊥. More quantitatively, upon
indicating with {~k,~h} the core and periphery nodes degrees, one has

koutc =
∑
p

a>cp, k
in
c =

∑
p

a⊥pc, ∀ c (A.24)

and

houtp =
∑
c

a⊥pc, h
in
p =

∑
c

a>cp, ∀ p. (A.25)

The estimation step, thus, reads
koutc =

∑
p pcp, ∀ c,

houtp =
∑
c qpc, ∀ p,

kinc =
∑
p qpc, ∀ c,

hinp =
∑
c pcp, ∀ p.

(A.26)

The SBM can be recovered by posing pcp ≡ p and qcp ≡ q, to be
estimated by solving

p =
L>

C · P
=

∑
c,p a

>
cp

C · P
and q =

L⊥

C · P
=

∑
c,p a

⊥
cp

C · P
(A.27)

with obvious meaning of the symbols.

Inserting the information about reciprocity into a bipartite null model
leads to the following probability coefficient

P (B) =
∏
c

∏
p

(p→cp)a
→
cp(p←cp)a

←
cp(p↔cp)a

↔
cp(p=cp)a

=
cp (A.28)

that “mixes” the information coming from the two biadjacency matrices
A> and A⊥ (whence the choice of a different symbol, B, to indicate the
bipartite network as a whole). The new variables read a→cp = a>cp(1−a⊥pc),
a←cp = a⊥pc(1 − a>cp), a↔cp = a>cpa

⊥
pc and a=cp = (1 − a>cp)(1 − a⊥pc): while a→cp

indicates that a non-reciprocated link is present from the core node c to
the periphery node p, a←cp indicates that a non-reciprocated link is present
from the periphery node p to the core node c; naturally, a↔cp indicates that
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both links are present between nodes c and p and a=cp indicates that no
link is present between the same nodes.

The probability coefficients defining our bipartite, reciprocal model
read

p→cp =
xcrp

1 + xcrp + ycsp + zctp
, (A.29)

p←cp =
ycsp

1 + xcrp + ycsp + zctp
, (A.30)

p↔cp =
zctp

1 + xcrp + ycsp + zctp
, (A.31)

p=cp =
1

1 + xcrp + ycsp + zctp
, (A.32)

whose numerical value is determined by the following sufficient statis-
tics, i.e. the reciprocal and non-reciprocal degrees of both core nodes

k→c =
∑
p

a→cp, k
←
c =

∑
p

a←cp, k
↔
c =

∑
p

a↔cp (A.33)

(with c = 1 . . . C) and periphery nodes

h→p =
∑
c

a←cp, h
←
p =

∑
c

a→cp, h
↔
p =

∑
c

a↔cp (A.34)

(with p = 1 . . . P ). Notice that the binary variables defining h←p (h→p )
are the ones defining also k→c (k←c ): in fact, the non-reciprocated links
outgoing from the core (periphery) are the same links incoming into the
periphery (core). Finally, the estimation step for such a model reads

k→c =
∑
p p
→
cp, ∀ c,

h→p =
∑
c p
←
cp, ∀ p,

k←c =
∑
p p
←
cp, ∀ c,

h←p =
∑
c p
→
cp, ∀ p,

k↔c =
∑
p p
↔
cp, ∀ c,

h↔p =
∑
c p
↔
cp, ∀ p.

(A.35)
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Appendix B

Bimodular Surprise

B.1 Numerical approximations

The computation of binomial coefficients for large graphs can quickly
become numerically demanding. In order to simplify the calculations
of our bimodular surprise, let us proceed by steps. First, let us Stirling
approximating the binomial coefficients:

(
Vc
i

)
'

[
(pc)

i (1− pc)Vc−i
]−1

, (B.1)(
Vcp
j

)
'

[
(pcp)

j (1− pcp)Vcp−j
]−1

, (B.2)(
Vp

L− (i+ j)

)
'

[
(pp)

L−(i+j) (1− pp)Vp−(L−(i+j))
]−1

, (B.3)(
V

L

)
'

[
pL (1− p)V−L

]−1

(B.4)

having defined V − (Vc + Vcp) ≡ Vp, p ≡ L
V , pc ≡ i

Vc
, pcp ≡ j

Vcp
, pp ≡

L−(i+j)
Vp

. As a second step, let us substitute the expressions above into
Eq. 3.4:
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S‖ '
∑
i≥l∗c

∑
j≥l∗cp

(
p
pp

)L (
1−p
1−pp

)V−L (
pp
pc

)i (
1−pp
1−pc

)Vc−i
·
(
pp
pcp

)j (
1−pp
1−pcp

)Vcp−j
; (B.5)

in order to obtain a more explicit expression, let us limit ourselves to
consider the leading term of the summation in Eq. B.5 that is readily
obtained upon substituting i with l∗c and j with l∗cp:

S‖ '
(
p
pp

)L (
1−p
1−pp

)V−L (
pp
pc

)l∗c ( 1−pp
1−pc

)Vc−l∗c
·
(
pp
pcp

)l∗cp ( 1−pp
1−pcp

)Vcp−l∗cp
(B.6)

where, now, pc ≡ l∗c
Vc

, pcp ≡
l∗cp
Vcp

, pp ≡
L−(l∗c+l∗cp)

Vp
. Eq. B.6 already makes

intuitively clear that our bimodular surprise is likely to be significant
either when pc ' pp but pcp � pc ' pp (i.e. in the case of bipartite
networks - notice that Eq. 3.8 is recovered whenL = l∗cp) or when pc � pp

and pcp � pp (i.e. in the core-periphery case - notice that Eq. 3.9 is
recovered when L = l∗c + l∗cp).

A numerical check of the validity of the proposed approximation is
shown in Fig. 25, where it is computed for k-star networks and compared
to the full expression in Eq. 3.4.

Numerical surprise optimization:
a modified PACO algorithm

In what follows we show a modified version of the PACO (PArtition-
ing Cost Optimization) algorithm pseudocode [90] by running which the
partition that minimizes surprise can be found. The PACO algorithm
implements an approach that is heuristic in nature since an exhaustive
search of all possible partitions is not feasible when dealing with large
graphs.

The idea is that of assigning every node to either one of two subsets
- interpretable as the core and the periphery or the layers of a bipartite
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Figure 25: Numerical check of the validity of the approximation shown in
Eq. B.6, computed for k-star networks and compared to the full expression
in Eq. 3.4.

graph - by running a greedy process that takes as input pairs of nodes
connected by an edge and evaluates whether those two nodes should
belong to the same subset or not: the choice that minimizes the surprise
is the one that is actually implemented. In order to speed up the cal-
culations, the original PACO algorithm takes edges that are previously
sorted according to their decreasing value of Jaccard index. Since the lat-
ter quantifies the fraction of common neighbours of the two connected
nodes, nodes pairs with larger Jaccard index are also the ones most likely
to be assigned to the same subset (e.g. a community).

Since for pure bipartite graphs the Jaccard index - as defined above
- is zero for all edges (nodes connected by an edge always lie on dif-
ferent layers) we need to modify the score according to which we sort
the edges. In our modified version of the PACO algorithm we sort links
according to the number of z-motifs they belong to, the latter being de-
fined as ziα =

∑
β,j aiβaiαaαj : in other words, we evaluate the number

of times a generic link is the “middle” one of a path whose length is 3. As
with the original PACO algorithm, we progressively consider all edges,
sorted as described above, evaluating whether the linked pairs should
belong to the same subset or not.

As a final step, we consider a number of random reassignments of
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nodes with the aim of preventing the possibility of getting stuck in a lo-
cal minimum (a random move consists of selecting 3 random nodes be-
longing to the same group and evaluating if assigning them to different
subsets would further minimize surprise).

The algorithm described above performs quite well in finding the
global minimum of surprise on a range of different configurations we
have tested. When considering low-density bipartite graphs, however,
the algorithm does not always succeed in reaching the global minimum.
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1: function CALCULATEANDUPDATESURPRISE(C,C ′)
2: S ← calculateSurprise(C)
3: S′ ← calculateSurprise(C ′)
4: if S′ < S then
5: C ← C ′

6: S ← S′

7: end if
8: return C
9: end function

10:
11: C ← array of length N randomly initialized with binary entries (0 or

1);
12: E ← sorted edges in decreasing order;
13: for edge (u, v) ∈ E do
14: C ′ ← C
15: if C ′[u] 6= C[v] then
16: C ′[u]← C[v]
17: C ←CALCULATEANDUPDATESURPRISE(C,C ′)
18: else
19: C ′[u]← 1− C[v]
20: C ←CALCULATEANDUPDATESURPRISE(C,C ′)
21: end if
22: ⇒ randomly switch node membership for n = 3 nodes in the

same partition and accept move if S‖ decreases;
23: end for
24: ⇒ repeat several times the for-loop to improve the chance of finding

the optimal partition.

Table 7: Pseudocode for the PACO optimization heuristic for the minimali-
sation of bimodular surprise.
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Figure 26: Two example networks with a connected clique, and a node with
a higher degree than the nodes in the clique. Despite the higher degree these
nodes are not classified as core-nodes by bimodular surprise. This illustrates
that bimodular surprise does not solely rely on the degree of nodes, but also
about the connections with other nodes in the same partition.

B.2 Core classification - node degree

We have pointed out that several alternative methods for core-periphery
detection are highly correlated with node degree; the core nodes are ba-
sically the nodes with highest degree. With two examples we illustrate
that nodes with high degree are not necessarily classified as core nodes
by bimodular surprise. We create a toy graph with a central clique of
nodes which are fully connected between them. to each of these clique
nodes we connect a node. This creates a clear core-periphery structure.
In the first example we connect several additional nodes to one of the pe-
ripheral nodes, see Fig. 26. This peripheral node now has a higher degree
than the nodes in the clique. Despite this higher degree bimodular sur-
prise classifies only the clique as the core partition. In the second exam-
ple we connect one of the peripheral nodes to all other peripheral nodes.
Also in this case the peripheral nodes now has a higher degree than the
nodes in the clique. Bimodular surprise classified also in this case only
the clique as core nodes. These examples illustrate that a core-periphery
structure as revealed by bimodular surprise is not purely related to the
node degree.
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B.3 Weighted bimodular surprise

We now introduce the extension to the bimodular surprise to carry out
the detection of mesoscale structures accounting for weights.

B.3.1 Method

We introduce a score function for carrying out the detection of weighted
mesoscale structures adapted from the unweighed case of presented in
Chapter 3. Let us start with the detection of communities, that is an
adaptation of the traditional surprise, Eq. 3.1, to the weighted case:

SW ≡
W∑

w=W∗int

(
Vint+w−1

w

)(
V−Vint+W−w

W−w
)(

V+W
W

) , (B.7)

where V = N(N−1)
2 andW the total weight of the edges. The comparison

is carried out with the Weighted Random Graph.

For what concerns the detection of core-periphery structures we in-
troduce a score function, adapted from the bimodular surprise we pro-
posed in Chapter 3 in Eq. 3.4 we can consider the multinomial negative
hypergeometric distribution:

SW|| ≡
∑
i

∑
j

(
Vc+i−1

i

)(
Vcp+j−1

j

)(Vp+W−(i+j)
W−(i+j)

)
((N2 )+W

W

) . (B.8)

B.3.2 Results

Results on toy-models show that a high weight of the edge of a node
can compensate for the lack of many connection to the node. In the case
of a k-star core-periphery graph, peripheral nodes will be classified as
belonging to the core if the weight on the edge to the core is increased
sufficiently, see Fig. 27.

Similarly when we introduce significant weights on internal links of
a revealed bipartition, the newly revealed partition can switch to include
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Figure 27: Core-periphery graph, the colour of the nodes indicate the two
revealed partitions. When the weight on link to a peripheral nodes is in-
creased sufficiently, such a node will be revealed as part of the core.

Figure 28: Bipartite graph, the color of the nodes indicate the two revealed
partitions. When the weight on a few intra-cluster links is increased suf-
ficiently the revealed partition by the weighted bimodular surprise turns
from bipartite to core-periphery like.

the high weight edges in the ’core’, see Fig. 28.
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Appendix C

Multilayer Structure of
Corporate Networks

C.1 Structural reducibility framework

The structural reducibility measure evaluates whether some layers of a
multilayer network can be aggregated without loss of distinguishabil-
ity from the aggregate [45]. Let our multiplex of four layers be, A =

{A1, A2, A3, A4}, where Aα denotes the adjacency matrix of layer α. The

Von Neumann entropy of this multiplex is H(A) =
4∑
1
hAα , where hAα =

−
N∑
i=1

λi log2(λi), the Von Neumann entropy of N ×N layer α with eigen-

values λ. We now sum two or more of the layers to find multiplex Ã.
The measure we are maximizing, the relative entropy is q(Ã) = 1− H(Ã)

hA
,

where hA is the entropy of the aggregate of all layers.

C.2 Robustness of the multiplex regression

We test the multiplex network regression for robustness towards the 2-
year time window we have considered for the stock-correlations. This
window was chosen to have a well-behaved multiple pairwise correla-
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Table 8: Robustness of the multiplex network regression on pairwise stock
correlations. All layers are found significant independent variables for ex-
plaining the stock correlations, both for the 2-year and 1-year time window
of stock correlations.

German stock correlations UK stock correlations

2-year 1-year 2-year 1-year

Coef. SE Coef. SE Coef. SE Coef. SE

Board 0.44 *** 0.47 *** 0.49 *** 0.13 ***
Ownership 0.89 *** 1.06 *** 0.72 *** 0.18 ***
Research 0.40 *** 0.40 *** 1.39 *** 1.34 ***

* p < 0.05, ** p < 0.01, *** p < 0.001.

tions matrix. The regression results are robust under a different time win-
dow. In Table 8 we show the regression both for the 2-year time window,
and a 1-year time window (the entire year of 2017). Most importantly, in
both cases all variables are significant, the magnitude of the coefficients
varies but the relations between them are conserved.

C.3 Node properties regression

To establish properties of nodes that can drive the network dynamics
we perform a simple regression of company properties to see which of
these variables might drive the node ranking in the network. We include
company characteristics revenue, revenue growth, average log return,
Sharpe ratio in an ordinary least squares regression:

node ranking ∼ 〈revenue〉+ 〈revenue growth〉+ 〈return〉+ 〈Sharpe ratio〉.
(C.1)

We find that only revenue is a significant independent value of the node
ranking. This results is robust for the multiplex ranking (with and with-
out the stock interactions layer) and with the node centrality (PageRank)
from the single layers.
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C.4 Applications

We illustrate the use of this multiplex approach with two further exam-
ples of an interactions network of two companies before a partial take-
over, and a network structure that shows clustering around audit firm
choice.

C.4.1 Interwoven relations before a partial takeover: EON
- RWE

The interactions between two German energy companies reveal different
interactions throughout the network. Company mergers and takeovers
are sometimes preceded by collaborations between the companies. From
our network point of view these relations can be visualised, to help un-
derstand how interwoven companies are, but also to highlight possible
conflicts of interest. As an example of the this we look at the recent deal
between German energy conglomerates EON and RWE. In July 2018 the
two companies reached a deal where EON will acquire the Innogy sub-
sidiary of RWE, and RWE will end up with a significant stake in EON
[47]. Our multiplex dataset shows a snapshot of the network from early
2018, well before the announcement of this deal. However we can ob-
serve a number of directors which are working both for EON and the
RWE subsidiary, as well as a number of ownership ties between sub-
sidiaries of the two companies, see Fig. 29.

C.4.2 Clustered auditor choice

Peer effects, whether through the old boys boardroom network or through
herd behaviour, can steer decision making. All exchange traded com-
panies must have their finances checked every year by an auditor. Big
companies usually choose for one of the ’Big Four’ audit firms: KPMG,
Ernst&Young, PriceWaterhouseCoopers, and Deloitte. While there is a
choice, a recent Financial Times article explains that there are limitations
to this free choice [6]. Audit firms also do consultancy jobs for firms,
which presents a conflict for also auditing the books. There are also ex-
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Figure 29: The multiplex network of Ownership and Board interactions be-
tween German energy conglomerates EON and RWE shows the firms are in-
terconnected well before a partial takeover took place. This network shows
relations months before the announcement of a deal in which EON (red)
agreed to acquire the Innogy subsidiary (green) of RWE (blue). The two
larger nodes are the stock market traded parent entities. Differences in con-
nections in the two visualised layers show certain subsidiaries of EON that
are connected to EON by ownership, but that are solely connected through
common directors with RWE. Differences in these layers show the insight to
gain from multiple types of corporate ties. This figure has been published
under CC licence in [121].

amples where directors of a company are former partners at auditing
firms, and therefore create a conflict of interest with that auditing firm
[6]. The same goes for the relations between companies that we have
described in our multiplex network. We can ask whether there is any re-
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lation between existing connections between companies and their choice
of an auditing firm. With our multiplex network, a simple test is to check
whether connected nodes (companies) are more likely to use the same
audit firm. For a given audit firm we calculate for all nodes, n, the aver-
age number of neighbours that use that audit firm. We then compare this
average fraction of neighbours which uses an audit firm for all nodes,
with the fraction for just the nodes that use that audit firm:

fn =
∑
n

neighbors with audit firm x
total number of neighbors

(C.2)

fnauditor =
∑

nwith audit firm x

neighbors with audit firm x
total number of neighbors

(C.3)

We calculate these fractions for each of the big four audit firms indi-
vidually. We find that companies which use the same audit firm are more
connected among themselves than to other firms, especially for connec-
tions from the Board membership network. This suggests that there is
a certain clustering of audit firm choice for connected firms. This effect
might be due to other factors, as the co-evolution of the node attribute
values (audit firm) and the network structure. The point is that results
can be different on different layers of the multiplex and to show how a
multiplex network can help in evaluating such questions.
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Figure 30: Firms that are connected are more likely to use the same audit
firm, especially in the Board layer. Shown side by side is the average fraction
of neighbours of a node that use the same indicated audit firm; for all nodes
and for just the nodes of that that use that audit firm. The higher fraction
for nodes of just the auditor indicates that connected firms are more likely
to use the same audit firm compared to unconnected firms. There seems
to be a relation between o.a. common board members and the choice for a
specific audit firm. Such relation is not observed in the the stock interaction
network. This figure has been published under CC licence in [121].
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Appendix D

Alternative Link Prediction
Methods

D.1 Other link prediction methods in terms of
quantities per node

In the present section, the score functions introduced in Section 5.2.1 are
rewrited in terms of the biadjacency matrix. The rationale is to pro-
vide a consistent formal framework in which all quantities can be ex-
pressed. Let us start with the CN: the bipartite extension of the Common
Neighbours[42] is the number of nodes in the subgraph defined by the
first neighbours of nodes (i,α). In other words, the Common Neighbors
counts the number of nodes involved in at least one “quadrangular”[42]
(or X-motif [104]) if i and α were present. This can be expressed as:

sCNiα =
∑
j

mjαΘHeaviside(
∑
β

miβmjβ)

+
∑
β

miβΘHeaviside(
∑
j

mjαmjβ),
(D.1)

where ΘHeaviside is the Heaviside function which has a value equal to 1 if
its argument is positive and to 0 otherwise. The first term in Eq. (D.1)
considers the number of nodes of the layer> that are involved in, at least,
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one quadrangular insisting on (i,α), the second is the analogous for the
layer ⊥. It is important to notice which it is not necessary to set j 6= i or
β 6= α in the summations since miα = 0.

In the Resource Allocation, each of the terms contributing to sCNiα is
weighted by the inverse of its degree, thus:

sRAiα =
∑
j

mjα

kj
ΘHeaviside(

∑
β

miβmjβ)

+
∑
β

miβ

kβ
ΘHeaviside(

∑
j

mjαmjβ),
(D.2)

where we implicitly consider mjα/kj = 0 if both the numerator and the
denominator are 0.

In this formal framework, the expression of Local Community Links
(LCL) is much simpler, since it is defined as the number of links in the
subgraph defined by the neighbors of (i, α). In fact, it is the number of
quadrangular that would be closed by the presence of the link (i, α), i.e.

sLCLiα =
∑
j,β

mjαmiβmjβ . (D.3)

By construction, the value of the (bipartite) sLCLiα is limited from below
by sCNiα . The quantity γ[42] defined in Section 5.2 represents the degree
in the subgraph of the neighbors of (i, α). For a given node j ∈ >, γ(j),
it can expressed as:

γ(j) = mjα

∑
β

miβmjβ

while the expression for a generic node β ∈ ⊥ is analogous.
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