
IMT School for Advanced Studies, Lucca

Lucca, Italy

Cancer tissue classification
from DCE-MRI data

using pattern recognition techniques

PhD Program in Image Analysis

XXX Cycle

By

Maria Venianaki

2018

http://www.imtlucca.it
mailto:maria.venianaki@imtlucca.it




The dissertation of Maria Venianaki is currently under
approval by:

Program Coordinator: Prof. Rocco de Nicola, IMT School for Advanced
Studies Lucca

Supervisor: Prof. Rocco De Nicola, IMT School for Advanced Studies
Lucca

Supervisor: Dr. Ovidio Salvetti, National Research Council of Italy

Supervisor: Prof. Kostas Marias, Technological Educational Institute of
Crete & Foundation for Research and Technology – Hellas

The dissertation of Maria Venianaki is under review by:

Nikolaos Papanikolaou, Champalimaud Foundation

Prof. Leontios Hadjileontiadis, Aristotle University of Thessaloniki &
Khalifa University



IMT School for Advanced Studies, Lucca

2018

http://www.imtlucca.it




Contents

List of Figures viii

List of Tables xv

Acknowledgements xvii

Vita and Publications xx

Abstract xxiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Importance of understanding tumor environment
in oncology . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Role of imaging . . . . . . . . . . . . . . . . . . . . . 5
1.2 DCE-MRI correlation with tumor heterogeneity and hypoxia 6
1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 12

2 DCE-MRI fundamentals and analysis methods 13
2.1 Overview of DCE-MRI . . . . . . . . . . . . . . . . . . . . . 13
2.2 DCE-MRI analysis methods . . . . . . . . . . . . . . . . . . 15

2.2.1 Model-based analysis methods . . . . . . . . . . . . 15
2.2.2 Model-free analysis methods . . . . . . . . . . . . . 20

2.3 Pattern Recognition techniques for automatic TIC shape
classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



3 Methods 28
3.1 NMF methodology and initial results . . . . . . . . . . . . . 29

3.1.1 NMF mathematical background . . . . . . . . . . . 30
3.1.2 Evaluation of state of the art NMF implementations 33
3.1.3 Initialization of the BU-NMF algorithm . . . . . . . 37
3.1.4 Initial results of the BU-NMF algorithm on a syn-

thetic dataset . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Data pre-processing methods . . . . . . . . . . . . . . . . . 49
3.3 Statistical analysis methods . . . . . . . . . . . . . . . . . . 50

4 Results 52
4.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 MRI visualization and analysis tools . . . . . . . . . 55
4.2 Case study I: Three sarcoma patients . . . . . . . . . . . . . 55

4.2.1 Statistical analysis results . . . . . . . . . . . . . . . 58
4.2.2 Qualitative findings from histopathological reports 61

4.3 Case study II: Two MPNST patients . . . . . . . . . . . . . 63
4.3.1 Examination of intensity plots of classified pixels . 63

4.4 Case study III: Liposarcoma patient follow-up after ILP . . 69
4.5 Case study IV: Preliminary histopathological results for a

liposarcoma patient . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Case study V: Breast cancer dataset . . . . . . . . . . . . . . 77

5 Conclusions and Future Work 84
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References 94

vii



List of Figures

1 An illustration of the three distinct tumor areas that are
commonly present in tumors: in the center there is the
necrotic core which is surrounded by the hypoxic penum-
bra and finally the active tumor, called normoxia. . . . . . 4

2 An overview of the image analysis framework used in this
thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 An example of a DCE-MRI sequence obtained from a pa-
tient with a high-grade liposarcoma. . . . . . . . . . . . . . 15

4 DCE-MRI data acquisition and analysis for a breast can-
cer patient: 1) image acquisition over time, 2) definition
of the tumor’s region of interest (ROI) and calculation of
the feeding vessel arterial input function (AIF), 3) conver-
sion of signal intensity to concentration, and 4) derivation
of physiological parameters by applying pharmacokinetic
modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Two-compartment model showing one compartment rep-
resenting the plasma space while the other compartment
is the tissue space. The contrast agent leaves the plasma
space at a rate represented by ktrans and returns by kep =

ktrans/ve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Example of a time intensity curve with annotated some

extracted empirical parameters including wash-in, wash-
out, TTP, baseline and maximum. . . . . . . . . . . . . . . . 21

viii



7 The three most common time intensity curve enhancement
types, where Type 1 (red) is characterized by persistent
slow enhancement of the SI, Type 2 (blue) by initial en-
hancement followed by some wash-out and Type 3 (green)
by fast enhancement and fast wash-out. . . . . . . . . . . . 23

8 Methodology flowchart. . . . . . . . . . . . . . . . . . . . . 29
9 Matlab’s nnmf algorithm results for a sarcoma patient: (a)

plots of the three NMF component when the ALS method
was used, and (b) plots of the three NMF component when
a combination of the multiplicative update and the ALS
methods was used. . . . . . . . . . . . . . . . . . . . . . . . 35

10 NMF algorithm from NMF:DTU toolbox results applied to
a sarcoma patient: (a) plots of the three NMF component
when the multiplicative update method was used, and (b)
plots of the three NMF component when the ALS method
was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Sparse NMF algorithm from NMF MATLAB toolbox ap-
plied to a sarcoma patient. Plots of the two NMF compo-
nents since the third component was represented by a zero
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12 BU-NMF algorithm applied to a sarcoma patient. Plots of
the three identified NMF components. . . . . . . . . . . . . 36

13 PR analysis results for a patient with lower limb MPNST:
(a)-(b) plots of the three NMF components and the corre-
sponding composite color map for one random initializa-
tion, and (c)-(d) plots of the three NMF components and
the corresponding composite color map for a different ran-
dom initialization. The composite color maps in (b) and
(d) illustrate the percentage contribution of each compo-
nent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

14 Number of iterations required for the BU-NMF algorithm
convergence for each of 50 consecutive runs initialized ran-
domly each time for three different sarcoma patients. . . . 39

ix



15 BU-NMF results initialized with the NNDSVDQ method
for a patient with lower limb MPNST: (a) plots of the three
NMF components, and (b) the corresponding composite
color map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 Initialization of the BU-NMF algorithm utilizing the wash-
in part of the dynamic curves: (a) wash-in map, and (b)
the corresponding three-area classification derived from
k-means clustering, with green clusters representing the
high wash-in areas, red representing the moderate wash-
in areas and blue representing the low or no wash-in areas. 41

17 PR analysis results using the wash-in map initialization:
(a)-(c) plots of the three NMF components, (d)-(f) the cor-
responding spatial maps of the NMF components, and (g)
the composite color map depicting the percentage contri-
bution of the hypoxic (red), well-perfused (green) and necrotic
(blue) components. . . . . . . . . . . . . . . . . . . . . . . . 41

18 Initialization of the BU-NMF algorithm utilizing the ktrans

parameter of ETM: (a) the ktrans map, and (b) the corre-
sponding three-area classification derived from k-means
clustering, with green clusters areas of high perfusion, red
representing areas of moderate perfusion and blue repre-
senting areas of low or no perfusion. . . . . . . . . . . . . . 44

19 PR analysis results using the PK map initialization: (a)-
(c) plots of the three NMF components, (d)-(f) the corre-
sponding spatial maps of the NMF components, and (g)
the composite color map depicting the percentage contri-
bution of the hypoxic (red), well-perfused (green) and necrotic
(blue) components. . . . . . . . . . . . . . . . . . . . . . . . 44

20 Four principal components found by PCA and their per-
centage contribution to the total data variability: (a)-(c) the
first three components have the greatest contribution, and
(d) the fourth one is mainly associated with noise. . . . . . 46

x



21 Synthetic data matrices used for the formation of the input
matrixA = W ∗H . Left: 10×3 basis matrixW . Right: Plots
of the three columns of the 3× 50 coefficient matrix H . . . 48

22 Initialization synthetic data matrices used for the imple-
mentation of the BU-NMF algorithm. Left: basis matrix
W0. Right: Coefficient matrix H0. . . . . . . . . . . . . . . . 48

23 BU-NMF algorithm applied to synthetic data. Plots of the
three identified NMF components. . . . . . . . . . . . . . . 48

24 Pre-processing steps applied on the intensity curve of a
pixel from a patient with lower limb MPNST. Pre-contrast
phase was first removed, then the baseline, and finally
smoothing was applied to the data. . . . . . . . . . . . . . . 49

25 Analysis workflow of the proposed framework for analy-
sis of the breast cancer dataset. DCE biomarkers are ex-
tracted from model-free and model-based methods and
are used for statistical analysis. Afterwards, a univariate
predictive analysis was applied to all the statistically sig-
nificant biomarkers. . . . . . . . . . . . . . . . . . . . . . . . 51

26 PR analysis results for Patient #1: (a)-(b) plots of the three
NMF components and the corresponding composite color
map using the wash-in map initialization, and (c)-(d) plots
of the three NMF components and the corresponding com-
posite color map using the PK map initialization. The com-
posite color maps in (b) and (d) describe the percentage
contribution of the well-perfused (green), hypoxic (blue),
and necrotic (red) components. . . . . . . . . . . . . . . . . 57

xi



27 PR analysis results for Patient #2: (a)-(b) plots of the three
NMF components and the corresponding composite color
map using the wash-in map initialization, and (c)-(d) plots
of the three NMF components and the corresponding com-
posite color map using the PK map initialization. The com-
posite color maps in (b) and (d) describe the percentage
contribution of the well-perfused (green), hypoxic (blue),
and necrotic (red) components. . . . . . . . . . . . . . . . . 57

28 PR analysis results for Patient #3: (a)-(b) plots of the three
NMF components and the corresponding composite color
map using the wash-in map initialization, and (c)-(d) plots
of the three NMF components and the corresponding com-
posite color map using the PK map initialization. The com-
posite color maps in (b) and (d) describe the percentage
contribution of the well-perfused (green), hypoxic (blue),
and necrotic (red) components. . . . . . . . . . . . . . . . . 58

29 PR analysis results for Patient #1: (a)-(c) plots of the three
components, i.e. well-perfused, hypoxic, and necrotic re-
spectively, and (d) composite color map showing the per-
centage contribution to each pixel of the well-perfused (green),
hypoxic (blue) and necrotic (red) components. . . . . . . . 64

30 PR analysis results for Patient #4: (a)-(b) plots of the two
components, i.e. well-perfused, and hypoxic respectively,
and (c) composite color map showing the percentage con-
tribution to each pixel of the well-perfused (green) and hy-
poxic (blue) components. . . . . . . . . . . . . . . . . . . . . 65

31 Intensity plots of image pixels clustered as well-perfused,
hypoxic and necrotic at threshold 0.5 for Patient #1. . . . . 67

32 Intensity plots of image pixels clustered as well-perfused,
hypoxic and necrotic at threshold 0.7 for Patient #1. . . . . 67

33 Intensity plots of image pixels clustered as well-perfused,
hypoxic and necrotic at threshold 0.8 for Patient #1. . . . . 67

34 Intensity plots of image pixels clustered as well-perfused
and hypoxic at threshold 0.5 for Patient #4. . . . . . . . . . 68

xii



35 Intensity plots of image pixels clustered as well-perfused
and hypoxic at threshold 0.7 for Patient #4. . . . . . . . . . 68

36 Intensity plots of image pixels clustered as well-perfused
and hypoxic at threshold 0.8 for Patient #4. . . . . . . . . . 68

37 CD34 stain highlights the thin-walled mostly arborizing
vasculature (Original magnification ×200). . . . . . . . . . 71

38 PR analysis results for Patient #5 before TNF therapy: (a)
plots of the three NMF components, and (b) the corre-
sponding composite color map describing the percentage
contribution of the well-perfused (green), hypoxic (blue),
and necrotic (red) components. The hypoxic pattern (blue)
is the principal pattern before TNF therapy. . . . . . . . . . 72

39 Screenshot from in-house built software platform for DCE
longitudinal analysis (LAA+15). Pixel-based parametric
(ktrans) maps from a single tumor slice: (a) before, and (b)
after TNF therapy. . . . . . . . . . . . . . . . . . . . . . . . . 72

40 PR analysis results for Patient #5 after TNF therapy: (a)
plots of the three NMF components, and (b) the corre-
sponding composite color map describing the percentage
contribution of the well-perfused (green), hypoxic (blue),
and necrotic (red) components. The necrotic pattern (red)
is the dominant pattern after TNF therapy. . . . . . . . . . 73

41 DCE-MRI model-free and model-based results for Patient
#6: (a) plots of the two identified BU-NMF components,
i.e. the well-perfused (green) and the necrotic (red) com-
ponents, (b) BU-NMF composite color map showing per-
centage contribution of each component to image pixels,
and (c) ktrans map extracted from the ETM pharmacoki-
netic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

42 Image obtained from H&E stained tumor sections depict-
ing the necrotic behavior of a dedifferentiated liposarcoma
(Original magnification ×20). . . . . . . . . . . . . . . . . . 76

xiii



43 BU-NMF results compared with H&E images of Patient
#6. Left: BU-NMF composite color map extracted for a se-
lected ROI. Center: Images from H&E stained tumor sec-
tions from necrotic and well-differentiated areas of the ex-
cised tumor (Original magnification ×200). Right: Biopsy
images of corresponding parts of the excised tumor right
after surgery. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

44 BU-NMF results compared with HIF-1α image for Patient
#6. Left: BU-NMF composite color map, extracted for a se-
lected ROI, consisting of well-perfused (green) and necrotic
(red) areas. Right: HIF-1α (Original magnification ×200).
The HIF-1α image shows areas of expression (dense pink)
corresponded to BU-NMF well-differentiated areas, and
areas of no expression (bright pink) corresponded to BU-
NMF necrotic areas. . . . . . . . . . . . . . . . . . . . . . . . 77

45 The three resulted BU-NMF components for a pCR pa-
tient. Green curve is the well-perfused component, blue
is the hypoxic and red is the necrotic one complying with
the theoretical type 3, 2 and 1 curves respectively. . . . . . 79

46 BU-NMF composite color map showing percentage con-
tribution of the well-perfused (green), hypoxic (blue) and
necrotic (red) components: (a) without thresholding, and
with application of (b) maximum threshold, (c) threshold
of 0.4, and (d) threshold of 0.5. . . . . . . . . . . . . . . . . . 81

47 The maps of the hypoxic percentage contribution, a model-
free prediction significant biomarker, from a non-pCR pa-
tient and a pCR patient for the baseline (first and third col-
umn) and follow-up (second and fourth column) studies. . 82

xiv



List of Tables

1 Correlation (%) between the hypoxic, well-perfused and
necrotic components using the two initialization schemes
for the BU-NMF algorithm. Pt stands for Patient, HYP for
Hypoxic, WP for Well-perfused, and NEC for Necrotic . . 59

2 Correlation (%) between the BU-NMF (wash-in initialized)
and the ktrans (clustered by k-means) hypoxic, well-perfused
and necrotic components for Patient #1. HYP stands for
Hypoxic, WP for Well-perfused, and NEC for Necrotic . . 60

3 Correlation (%) between the ktrans map and the hypoxic
map extracted from BU-NMF with different initialization
schemes. Pt stands for Patient, and HYP for Hypoxic . . . 60

4 Correlation (%) between hypoxic maps extracted from the
ktrans map and BU-NMF and corresponding ktrans bounds.
Pt stands for Patient . . . . . . . . . . . . . . . . . . . . . . . 61

5 Percentage of pixels (%) clustered as purely WP, HYP or
NEC when a classification threshold between 50-80% is
applied on the BU-NMF classification results for Patient
#1. HYP stands for Hypoxic, WP for Well-perfused, and
NEC for Necrotic . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Percentage of pixels (%) clustered as purely WP, HYP or
NEC when a classification threshold between 50-80% is
applied on the BU-NMF classification results for Patient
#2. HYP stands for Hypoxic, WP for Well-perfused, and
NEC for Necrotic . . . . . . . . . . . . . . . . . . . . . . . . 66

xv



7 Model-free and model-based statistical analysis results for
breast cancer dataset. Classifiers’ acronyms: clf1 stands
for ensemble adaboost with decision trees of level one, clf2
for extreme gradient boosting linear, clf3 for support vec-
tor machine with linear kernel, clf4 for random forest, and
clf5 for k-nearest neighbor. . . . . . . . . . . . . . . . . . . . 83

xvi



Acknowledgements

This thesis would not have been possible without the sup-
port and guidance of a number of wonderful people. I am
using this opportunity to express my gratitude to everyone
who supported me throughout the course of this thesis.

Firstly, I would like to express my sincere gratitude to my ad-
visor, Prof. De Nicola for trusting and supporting me during
all these years and for giving me the opportunity to partic-
ipate in many conferences and meeting other researchers. I
owe my deepest gratefulness to my co-advisor Dr. Ovidio
Salvetti for his continuous support during the PhD, for his
encouragement, for his valuable suggestions and advice. I
would also like to profoundly thank my co-advisor Prof.
Kostas Marias for hosting me as a visiting researcher at the
Computational BioMedicine laboratory at ICS/FORTH and
for giving me the opportunity to work in such an inspiring
and multidisciplinary environment and to collaborate with
many great researchers and clinicians. His patience, moti-
vation, support and scientific advice helped me during the
course of all my research period in Greece as well as the writ-
ing of this thesis.

I owe a debt of gratitude to the following staff of the Univer-
sity General Hospital of Heraklion: Prof. Apostolos Karan-
tanas, Prof. Thomas Maris, Prof. Eelco de Bree and Dr. Eleni
Lagoudaki. I am deeply grateful to each one of them for their
support, guidance, clinical insights and most importantly for
making it possible to carry out this work by giving me their
approval to use MR imaging and histopathology data of the
University General Hospital of Heraklion. This thesis would

xvii



not have been possible without their continuous support and
assistance.

I am also greatly thankful to the reviewers: Nikolaos
Papanikolaou and Prof. Leontios Hadjileontiadis for their
valuable comments and suggestions. I really appreciate the
time they spent for reading my thesis and for their great sug-
gestions that helped improving it.

I am also very thankful to my colleagues of the CBML group
at FORTH for the fruitful discussions, suggestions, support
and for all the funny moments spent together. Special thanks
go to Lefteris for the great help and guidance since the be-
ginning of my visiting period at FORTH and to Katerina for
the collaboration and suggestions during the last year of my
PhD.

I would like to thank all my friends for their encouragement,
support and understanding. Thank you Eleni and
Emmanouela for always being there in the happy and the
difficult moments even though being far away. Thank you
Giorgos, Natasa, Mary, Haris, Katerina and Anna for all the
nice moments we have spent together and for your patience
and understanding when times were difficult! I am also very
grateful to my cousin, Manolis who has helped me a lot when
moving to Heraklion and has been a great friend whenever I
needed him.

Last but not least, I would like to dedicate this work to my
family for their love and encouragement. To my mother, who
has always been a great example of inspiration, trust and
strength and has supported me during all my achievements,
including this work. To my father, for his support and his
guidance in critical decisions. And of course to my sister, Eva
who has always been of great support and motivation to me
and has helped me many times with her beautiful and strong
character and her wise advice.

xviii



Most of the material in this thesis has been published. In par-
ticular: part of Chapter 3 and part of Chapter 4 are based on
(VKN+16; VSdB+18) coauthored with Kontopodis E., Niki-
foraki K., de Bree E., Maris T., Karantanas A., Salvetti O. and
Marias K. The second case study from Chapter 4 was adapted
based on (VKdB+18), coauthored with the same authors as in
(VKN+16; VSdB+18) while the third case study from Chap-
ter 4 was adapted based on (NMV+18) coauthored with Niki-
foraki K., Manikis G., Kontopodis E., Lagoudaki E., Maris T.,
Marias K., de Bree E. and Karantanas A. Finally, one adapted
case study (Case study V) from Chapter 4 is based on
(KVM+on), coauthored with Kontopodis E., Manikis G., Niki-
foraki K., Salvetii O., Papadaki E., Papadakis G., Karantanas
A. and Marias K.

xix



Vita

Mach 22, 1986 Born, Chania, Greece

2003-2009 MEng Electrical & Computer Engineering
Faculty of Engineering
Aristotle University of Thessaloniki, Greece

2009-2010 MSc Biomedical Engineering
Imperial College London, United Kingdom

2011-2012 International e-health tenders and R&D projects
Tesan Spa, Vicenza, Italy

2012-2014 Telecare & Telemedicine Business Development and
R&D
TBS Group, Trieste, Italy

2014-2018 Ph.D in Image Analysis
IMT School for Advanced studies Lucca, Italy

2016-2018 Visiting Research Student
Computational BioMedicine Laboratory
Institute of Computer Science
Foundation for Research and Technology – Hellas
Heraklion, Greece

xx



Publications

1. M. Venianaki, E. Kontopodis, K. Nikiforaki, E. de Bree, O. Salvetti, K. Marias,
“A model-free approach for imaging tumor hypoxia from DCE-MRI data,”
in CGI’16 - 33rd Computer Graphics International, pp. 105-108, 2016.

2. M. Venianaki*, E. Kontopodis*, K. Nikiforaki, E. de Bree, T. Maris,
A. Karantanas, O. Salvetti, K. Marias, “Improving hypoxia map estima-
tion by using model-free classification techniques in DCE-MRI images,”
2016 IEEE International Conference on Imaging Systems and Techniques (IST),
pp. 183-188, 2016.

3. M. Venianaki, O. Salvetti, E. de Bree, T. Maris, A. Karantanas, E. Kon-
topodis, K. Nikiforaki, K. Marias, “Pattern recognition and pharmacoki-
netic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma,”
Multimedia Tools and Applications, vol. 77, no. 8, pp. 9417-9439, 2018.

4. M. Venianaki, A. Karantanas, E. de Bree, T. Maris, E. Kontopodis, K.
Nikiforaki, O. Salvetti, K. Marias, “Assessment of soft-tissue sarcomas
perfusion using data-driven techniques,” 2018 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI), pp. 353-356, 2018.

5. E. Kontopodis, G. C. Manikis, K. Nikiforaki, M. Venianaki, K. Marias,
T. Maris, A. Karantanas, E. Papadaki, “Incremental diagnostic infor-
mation obtained via novel Dynamic Contrast Enhanced (DCE) Magnetic
Resonance Imaging (MRI) framework applied on Multiple Sclerosis (MS)
patients,” 2018 IEEE EMBS International Conference on Biomedical & Health
Informatics (BHI), pp. 46-49, 2018.

6. K. Nikiforaki, G. C. Manikis, M. Venianaki, E. Kontopodis, E. Lagoudaki,
T. Maris, K. Marias, E. de Bree, A. Karantanas, “Perfusion and Oxygena-
tion Changes after Isolated Limb Perfusion with TNF - α in Lower Limb
Sarcoma: A Case Report,” Biomedical Research and Reviews, vol. 1, no. 1,
p. 101, 2018.

7. K. Nikiforaki, G. C. Manikis, M. Venianaki, E. Kontopodis, E. Lagoudaki,
E. de Bree, T. Maris, K. Marias, A. Karantanas, “[OA022] T2 and T* re-
laxometry of benign and malignant lipomatous tumors,” Physica Medica:
European Journal of Medical Physics, vol. 52, no. 1, pp. 9-10, 2018.

8. E. Kontopodis*, M. Venianaki*, G. C. Manikis, K. Nikiforaki, O. Salvetti,
E. Papadaki, G. Z. Papadakis, A. Karantanas, K. Marias, “Investigat-
ing the role of model-based and model-free imaging biomarkers as early
predictors of neoadjuvant breast cancer therapy outcome,” IEEE Journal of
Biomedical and Health Informatics, submitted for publication.

xxi



Presentations

1. M. Venianaki, “A model-free approach for imaging tumor hypoxia from
DCE-MRI data,” at CGI’16 - 33rd Computer Graphics International, Herak-
lion, Greece, 2016.

2. M. Venianaki, “Improving hypoxia map estimation by using model-free
classification techniques in DCE-MRI images,” at 2016 IEEE International
Conference on Imaging Systems and Techniques (IST), Chania, Greece, 2016.

3. M. Venianaki, “Assessment of soft-tissue sarcomas perfusion using data-
driven techniques,” at 2018 IEEE EMBS International Conference on Biomed-
ical & Health Informatics (BHI), Las Vegas, NV, USA, 2018.

4. M. Venianaki, “Incremental diagnostic information obtained via novel Dy-
namic Contrast Enhanced (DCE) Magnetic Resonance Imaging (MRI) frame-
work applied on Multiple Sclerosis (MS) patients,” at 2018 IEEE EMBS In-
ternational Conference on Biomedical & Health Informatics (BHI), Las Vegas,
NV, USA, 2018.

xxii



Abstract

Cancer research has significantly advanced in recent years
mainly through developments in medical genomics and bioin-
formatics. It is expected that such approaches will result in
more durable tumor control and fewer side effects compared
with conventional treatments such as radiotherapy or chemo-
therapy. From the imaging standpoint, non-invasive imaging
biomarkers (IBs) that assess angiogenic response and tumor
environment at an early stage of therapy are of utmost im-
portance since they could provide useful insights into ther-
apy planning. However, the extraction of IBs is still an open
problem since there are no standardized imaging protocols
yet or established methods for the robust extraction of IBs.
DCE-MRI is amongst the most promising non-invasive func-
tional imaging modalities while compartmental pharmacoki-
netic (PK) modeling is the most common technique used for
DCE-MRI data analysis. However, PK models suffer from a
number of limitations such as modeling complexity, which
often leads to variability in the computed biomarkers. To ad-
dress these problems, alternative DCE-MRI biomarker extrac-
tion strategies coupled with a profound understanding of the
physiological meaning of IBs is a sine qua non condition. To
this end, a more recent model-free approach has been sug-
gested in literature for the analysis of DCE-MRI data, which
relies on the shape classification of the time-signal uptake
curves of image pixels in a selected tumor region of interest.
This thesis is centered on this new approach and the clinical
question whether model-free DCE-MRI data analysis has the
potential to provide robust, clinically significant biomarkers
using pattern recognition and image analysis techniques.
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Chapter 1

Introduction

Imaging cancer physiology is a great challenge since cancer exhibits a
very heterogeneous behavior depending on the organ, the person, the
grade. Malignant cells are biologically and morphologically different
even within the same tumor. This thesis investigates the link between
tumor pathophysiology and significant physiological imaging charac-
teristics acquired from dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI).

There is a large number of candidate MR imaging biomarkers (IBs)
that we are able to measure today, yet we still need to prove the exact
correlation of these biomarkers with the underlying tumor biology be-
fore they can be used in the clinical setting. There are also diverse ways of
obtaining MR measurements in many different organs of the body using
advanced MR imaging techniques, such as Diffusion-weighted magnetic
resonance imaging (DWI or DW-MRI) and DCE-MRI, as well as innova-
tive multiparametric protocols which improve the MR imaging overall
diagnostic accuracy. As cancer research progresses, new biomarkers are
discovered and we have better understanding of how to measure them
properly. However, we need to gain further insight into the meaning
of these MR biomarkers and find out how they relate to the biological
changes that take place in cancer disease. To understand the biological
meaning and significance of MR IBs is of great importance; it forms a
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novel study area, which goes beyond data acquisition skills and image
analysis skills requiring close collaboration by skilled biologists, radiol-
ogists, engineers and histologists. In the recently published IB roadmap
(OAA+17), there are key recommendations for the clinical translation of
cancer IBs aiming to accelerate their use as decision-making tools. This
review emphasizes the complex procedures and the various prerequi-
sites required for IBs so that their clinical validity is accepted and they
can ultimately be integrated into routine patient management.

To this end, in this thesis sophisticated pattern recognition techniques
were employed for the extraction of meaningful pathophysiological bio-
markers from DCE-MRI data. In particular, tumor tissue was classified
into physiologically meaningful regions with high, medium and low per-
fusion, i.e. well-perfused, hypoxic and necrotic regions respectively. The
primary goal of this work is the development of an image analysis al-
gorithm for the automatic recognition of certain enhancement patterns
that are associated with specific tumor physiology characteristics such
as hypoxia. The importance of uncovering the specific features of tumor
environment as well as the potential of segmenting tumor areas directly
from DCE-MRI imaging data are discussed in the following sections.

1.1 Motivation

This section includes the main motivation behind this thesis. Firstly, we
discuss the complex nature of the tumor environment focusing particu-
larly on hypoxia, which is a major cancer hallmark. Subsequently, we
explore the role of imaging techniques as an approach of describing the
specific tumor characteristics.

1.1.1 Importance of understanding tumor environment in
oncology

Tumors are biologically and morphologically heterogeneous, similarly
to organs, exhibiting considerable variation in vasculature and function
(CJ00). They have unique physiology making drug delivery very chal-
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lenging in some cases. In particular, the vascular microenvironment is
one of the major determinants of the tumor’s pathophysiological state.
In this thesis, we sought to identify certain features of the tumor vascu-
lature, such as hypoxia, which play a key role in the tumor’s response to
therapy.

Hypoxia is a pathological condition emanating from poor oxygen to
tissue and it was first evidenced in 1955 in a lung tumor study that it
could be associated with negative impact on the effectiveness of radio-
therapy (TG55). Hypoxia is present in most malignant solid tumors yet
it is hard to define the hypoxic condition of a tumor only through its
anatomy since hypoxia exhibits a heterogeneous profile and is not de-
pendent on the size, stage or type of a tumor. Tumors are associated with
abnormal rapid formation of new blood vessels, in an aim to overcome
the increased oxygen and other nutrient demands during tumor growth.
However, tumor newly-formed vessels are typically dysfunctional im-
peding proper vessel-to-tissue delivery of both oxygen and chemother-
apy drugs. Eventually, the augmented interstitial fluid pressure is fol-
lowed by a subsequent decrease of tumor perfusion, further favoring
tumor hypoxia (FJ07). Hypoxia-inducible factor 1-alpha (HIF-1α) is an
oxygen-regulated transcription factor, which is the major transcriptional
regulator of hypoxia. Its overexpression has been associated with re-
duced survival rates in colorectal cancer (BNS+10) and it has also been
linked to poor prognosis in breast, head and neck, cervix and brain tu-
mors (BSO+00; KGS+02; SSS+02; ZZS+00). HIF-1α induces the tran-
scription of the vascular endothelial growth factor (VEGF) among other
genes. VEGF holds an important role in angiogenesis and it is usually
overexpressed in human tumors.

As shown in Figure 1, three different areas of interest are usually iden-
tified in the tumor (JMG+14); the necrotic core, the hypoxic penumbra
and the active tumor, sometimes called normoxia. This might be an ideal
shape for the approximation of tumor areas however, it generally applies
that tumor grows from the core towards the outside of the tissue. It has
been reported in several studies that hypoxia is linked with more disease
aggressiveness, recurrence and resistance to chemotherapy and radio-

3



Figure 1: An illustration of the three distinct tumor areas that are com-
monly present in tumors: in the center there is the necrotic core which is
surrounded by the hypoxic penumbra and finally the active tumor, called
normoxia.

therapy (DFHM15; HSM+96; MF05). What is more, hypoxia has been
proven to be a strong prognostic indicator for poor patient outcome. In
particular, hypoxia has been associated with low overall survival and
disease-free survival rates in a large study of head and neck cancer pa-
tients (NBR+05).

In light of the above, defining the presence as well as the extent of
hypoxia in a tumor is of utmost importance since it can play a key role in
tumor characterization and lead to more accurate and effective treatment
strategies which will eventually improve patient outcomes. Among the
different approaches used to identify hypoxia, the polarographic elec-
trodes have been traditionally used especially in older studies for assess-
ing the oxygenation status of solid tumors (VHM07). However, this in-
vasive method is not suitable for large clinical trials thus new imaging
techniques and computational methods have been developed in order
to extract information about hypoxia and assess non-invasively its prog-
nostic ability.
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1.1.2 Role of imaging

Imaging technologies are the backbone of oncology and are an essential
tool for locating, measuring, monitoring and staging tumors. The ability
to image the tumor heterogeneity can provide useful prognostic and di-
agnostic information including a variety of factors that influence tumor
growth and response to treatment.

The direct measurement of tumor physiological properties usually in-
volves invasive procedures such as the use of polarographic electrodes
for the direct measurement of tissue oxygen concentration. More specif-
ically, for the assessment of tumor hypoxia several techniques have been
used (WLA+14), including pO2 electrode measurements and immuno-
histochemistry of exogenous markers e.g. pimonidazole (PIMO). How-
ever, they are both invasive and of limited ability to globally assess hy-
poxia since they target restricted areas of the tumor. On the contrary,
non-invasive imaging offers several advantages, including high resolu-
tion, repeatability of measurements on the same subject, assessment of
difficult to reach tumors, and potential application to image-guided ther-
apy.

Most of the major imaging modalities have been used in the inves-
tigation of tumor microvasculature, including MRI, positron emission
tomography (PET), ultrasound, computed tomography (CT), as well as
single photon emission computed tomography (SPECT). MRI provides
exceptional functional and structural information on tumor vasculature
and physiology at high spatial resolution. PET on the other hand can
measure sensitively and quantitatively local concentrations of radioac-
tive molecular targets of interest, such as 18F-fluoromisonidazole (18F-
Fmiso). 18F-Fmiso PET is currently investigated at a great extent as a
method of imaging tumor oxygenation (KRE+92; LS07). However, its
spatial resolution is coarse while it is also a more expensive technique
compared to MRI. DCE-CT is a contrast enhanced imaging technique,
which can estimate blood volume and blood flow in tumors. Previous
studies (LMS+05; MLJ+08) have shown correlation between CT perfu-
sion findings and tumor angiogenesis and microvessel density. CT per-

5



fusion is not so widespread though, as it is associated with high radi-
ation exposure. Contrast-enhanced ultrasound has the ability to depict
vessels and assess tumor angiogenesis (BOM+09; KCG+07) yet it has cer-
tain limitations such as low spatial resolution and restricted field of view.
In some cases, multi-modality imaging has been used such as PET/MRI
(CAC+09) and PET/CT (MSB+11).

In our work, we focus on MRI techniques since they are widely used
in hospitals and can provide both structural and functional information
regarding tumor physiology at fine spatial resolution. MRI methods,
including DCE-MRI (KMK+99; Tof97), blood-oxygen-level dependent
(BOLD) MRI (OLKT90) and magnetic resonance spectroscopy (MRS)
(PCB+07), are some examples of the different techniques used provid-
ing high-spatial resolution functional information.

In particular, DCE-MRI is the technique we will be concerned with
in our research. This non-invasive imaging technique offers high spa-
tial resolution, can be performed on clinical MRI scanners with standard
specifications and can yield information concerning tissue oxygenation
and vascularization. Its basic principle is that a paramagnetic contrast
agent (CA) is injected into the tissue and changes the MR signal intensity
depending on the local tissue concentration. When tumors grow, their
vascular network is growing as well in order to support the tissue’s in-
creased needs for nutrients and oxygen. However, the vascular network
created during tumor growth is quite abnormal and heterogeneous com-
pared to the vascular network of normal tissue. Therefore, the DCE-MRI
technique with its contrast enhancement ability is appropriate for high
resolution measurements of the perfusion heterogeneity in tumors.

1.2 DCE-MRI correlation with tumor heterogene-
ity and hypoxia

DCE-MRI is a perfusion imaging technique that has the advantage to
provide both anatomical and functional information. There have been
various encouraging theoretical and experimental findings in many dif-
ferent clinical applications suggesting that DCE-MRI can play an impor-
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tant clinical role in the early detection of diseases in different organs,
such as breast, brain and prostate cancer, multiple sclerosis, rheumatoid
arthritis and liver tumors (KKM+15; OS01; BEJ+99; HTG+94).

DCE-MRI is of great interest to oncologists and has an increasing
number of clinical post-processing applications, which have given
promising results not only in cancer diagnosis but also in the staging
of tumor, in assessing treatment response (choice of therapy and therapy
monitoring) as well as in describing tumor heterogeneity (OS01; OJP+12;
PGM+00). An interesting study (MdAGB+15) has shown that DCE-MRI
was capable of classifying BI-RADS category 4 breast lesions similarly to
mammography and ultrasound. Furthermore, the technique has shown
promising results in predicting response to therapy and differentiating
between benign and malignant lesions (FJM+16; SAM+16).

Regarding hypoxia, DCE-MRI in combination with powerful compu-
tational analysis techniques seems to be an attractive choice for evaluat-
ing hypoxia without using radioactive tracers such as in the case of PET.
In previous studies, DCE-MRI has been directly correlated with tumor
oxygenation measured by polarographic electrodes (CCL+00) while its
ability to quantify tumor vessel leakage renders it the modality of choice
for quantifying tumor environment in well-perfused, hypoxic or necrotic
image areas through pattern recognition techniques (CAT+17).

DCE-MRI has also been associated with histopathology in previous
studies for the detection of hypoxia or for treatment prediction. In
(SMG+17), histopathological parameters (tumor proliferation index and
microvessel density parameters) from patients with head and neck squa-
mous cell carcinoma (HNSCC) have been correlated with DCE pharma-
cokinetic (PK) parameters (kep, k

trans, ve). In (KWS+99), the DCE pa-
rameter kep was proven to be closely correlated with VEGF expression in
breast tumors. Correlations have been also found between DCE-MRI pa-
rameters and PIMO and CA9 staining in head and neck cancer patients
(NCCE+09), suggesting that DCE parameters could potentially be used
as reliable estimators of tumor hypoxia. In (ZLG+15), important cor-
relations were also found between semi-quantitative DCE-MRI param-
eters and histopathological parameters, such as hematoxylin and eosin
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(H&E), PIMO and VEGF in a maxillofacial VX2 rabbit model. In light
of the above, DCE-MRI parameters are an attractive choice to be used as
surrogate hypoxia markers.

In (LWS+15), DCE-MRI data from 124 breast cancer patients were ob-
tained and pharmacokinetic parameters were evaluated against histo-
logical parameters in order to assess if they can be useful in prediction
of patient prognosis. It was shown that there was a positive correlation
between the mean ktrans or kep values and the CD105 expression level.
On the other hand, there was no correlation of the pharmacokinetic pa-
rameters with CD31, indicating that CD105 in combination with ktrans

and/or kep might be a better marker for breast cancer diagnosis.
In this thesis, we first investigate the principles of DCE-MRI and the

various related data-analysis approaches. Although several DCE-MRI
analysis methods have already been clinically applied, a number of is-
sues concerning the imaging protocols and the analytical methods ham-
pers their optimized utilization and standardization. Quantitative anal-
ysis through pharmacokinetic modeling, empirical parametric models
and model-free analysis based on DCE time-intensity curve analysis are
the three main methods that are considered in this thesis. The focus is on
the latter one since it uses fewer assumptions and can be combined with
pattern recognition techniques in order to reveal IBs about tumor physi-
ology such as its vasculature, oxygenation or heterogeneity. Specifically,
a block update non-negative matrix factorization (BU-NMF) algorithm
was used on DCE-MRI data from sarcoma and breast cancer patients.

Similar PR techniques have also been used in previous studies
(HAS+13; SHS+12) on prostate cancer data for the clustering of tumor
area in regions with different perfusion trends (well-perfused, hypoxic,
and necrotic). In these studies, PR results were validated against PET
and ex vivo immunohistochemistry (PIMO) findings for hypoxic areas,
against H&E findings for necrotic areas and against a pharmacokinetic
model for well-perfused areas in a limited number of pre-clinical studies.
In (SHS+12) NMF has been applied for the segmentation of rat prostate
cancer DCE data. However, in our work we used an improved BU-NMF
algorithm with a robust initialization method. This is discussed in detail
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in Section 3.1. What is more important, herein the algorithm was used
on human patient data whereas previous works (HAS+13; SHS+12) were
performed on pre-clinical studies with limited number of data.

1.3 Problem statement

As discussed in the previous section, computational, PR techniques for
understanding DCE-MRI tissue pathophysiology based on extracted IBs
are of utmost clinical importance. The main reasons lie in the non-invasive
nature of DCE-MRI as well as its wide clinical use in several applications
in oncology.

This thesis aims to contribute with novel work in defining image-
based quantitative measures able to discriminate/segment the main
tumor-environment image components namely well-perfused, hypoxic
and necrotic areas. It is important to clarify that the main intended con-
tribution is focused on correlating the automatically segmented image
areas with the actual tumor microenvironment and in particular hy-
poxia, which plays a critical role in predicting therapy outcome as early
as possible.

To achieve these goals, in this thesis we use pattern recognition (PR)
for the quantitative pathophysiological analysis of DCE-MRI data. Specif-
ically, the focus is on the automatic analysis of time intensity curves in
order to extract underlying patterns, which can potentially be associated
to tumor physiological properties such as vasculature, oxygenation and
permeability. In particular, our efforts aimed at:

1. Building of a suitable system for the analysis of time intensity
curves: after having selected a suitable PR method, the BU-NMF al-
gorithm, we implemented a fast, computationally efficient and ac-
curate system, which automatically segments tumor areas accord-
ing to their perfusion characteristics and extracts model-free IBs.

2. Comparison of our model-free results to pharmacokinetic model
analysis results and correlation to physiological properties: the most
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challenging part of our research is to quantify our results and re-
late them with physiological parameters. We applied state of the
art model-based methods on DCE-MRI sarcoma patient data and
compared the model-based biomarkers with the model-free ones.
Correlation to physiological properties was performed by qualita-
tive interpretation of obtained results with respect to previous lit-
erature findings and by comparison to histopathological findings
even though these were limited.

3. Finally, all proposed methods and novel analysis frameworks were
validated on longitudinal patient data (breast cancer) in order to
retrospectively determine their predictive efficiency of the outcome
(response vs non-response).

One of the key challenges in our research is the development of an ef-
ficient statistical classifier which will be tested on many different cancer
representative cases with the purpose of validating the efficacy and ac-
curacy of our methods. To this end, we tested our methods on different
types of cancer of the same or different organs, including sarcoma and
breast cancer data as previously explained.

A flowchart of the proposed methodology is presented in Figure 2
including the main implementation steps.
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Figure 2: An overview of the image analysis framework used in this thesis.
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1.4 Structure of the thesis

Chapter 1 includes the introduction to the problem of this thesis and the
motivation behind it. The clinical problem of describing the tumor envi-
ronment as well as the role of imaging in solving it are described. We also
state the research objectives of this research. At the end of the chapter,
we present the outline of the thesis.

In Chapter 2 we discuss the state of the art in the areas of our interest.
These areas include our selected technique for imaging tumor physiol-
ogy, i.e. the DCE-MRI technique, its principles, advantages and limita-
tions in comparison to other imaging techniques. We then present the
background of the pattern recognition techniques that have been used
for the analysis of DCE-MRI data in the past years and mention the re-
sults obtained by them.

We then continue with Chapter 3 in which we describe the methods
utilized in this thesis. The main subjects explained in this Chapter in-
clude the description of the NMF problem as well as the algorithms that
have been proposed in previous studies for solving it. We then present
in detail the algorithm selected for our experiments, i.e. the BU-NMF
algorithm and the initialization methods used for increasing its robust-
ness. Finally, the methods used for the data pre-processing and for the
statistical analysis of our results are presented.

Chapter 4 begins with the data acquisition procedure followed for
both the sarcoma and the breast cancer datasets. Subsequently, the find-
ings from five different case studies are demonstrated, four concerning
the sarcoma dataset and one the breast cancer dataset. In each case study,
the clinical questions and the obtained results from our methods are pre-
sented.

The thesis concludes with Chapter 5 which contains a summary of
the main findings obtained during the course of the PhD thesis. Re-
sults are discussed in terms of their advantages compared to previous
works. Possible limitations regarding both methods and results are also
explored which is then used as directions for future work.
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Chapter 2

DCE-MRI fundamentals
and analysis methods

This chapter includes an overview of the principles of the DCE-MRI tech-
nique. We start with a description of the fundamentals of DCE-MRI and
afterwards, the most common analysis methods of DCE-MRI data are in-
troduced. Finally, we present a summary about currently available pat-
tern recognition techniques that are used for DCE-MRI data analysis and
we discuss the advantages of this analysis method.

2.1 Overview of DCE-MRI

DCE-MRI is a widely used imaging technique and in particular in the
field of radiology it can be an important additional tool in the assess-
ment of tumors. The main asset of this technique is its safety since it does
not involve ionizing radiation. What is more, it is repeatable, offers high
spatial resolution and it can be performed on clinical MRI scanners with
standard specifications. Most importantly, it also represents an earlier
marker of tumor response since it has the ability to show physiologic al-
terations which occur before changes in morphology thus it outperforms
conventional static MR imaging.

DCE-MRI is essentially the acquisition of serial T1-weighted MRI se-
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quences before, during, and after the intravenous injection of an MR
contrast medium, which is usually a low-molecular-weight gadolinium
chelate. The scans are acquired for approximately 3 to 10 minutes while
the CA is injected. In Figure 3 we see an example of four consecutive MRI
scans, two acquired before and the other two after CA injection, from a
patient with liposarcoma on the left foot. As the CA moves from the
blood into the tissue, there is a change in the signal intensity of the T1-
weighted image during and after the injection that depends on the vas-
cularization and on the permeability of the tissue. This time-dependent
signal intensity, or as it is commonly called time intensity curve (TIC), in
the tissues is recorded from the MRI and is further analyzed so that it can
provide parameters that are useful for diagnosis. More specifically, after
CA administration there is a fast initial enhancement, which is then fol-
lowed by wash-out. Even though this enhancement is typically higher in
case of tumors with respect to normal tissue, there is significant hetero-
geneity in different types of tumors as well as in areas within the same
tumor due to the different CA uptake. Therefore, DCE-MRI comprises
a more realistic approach in describing the complex tumor biology com-
pared to conventional MRI (Tof10). It also provides higher image con-
trast since T1 relaxation time increases while the CA diffuses from the
arteries to the extravascular extracellular space (EES), eventually leading
to increased signal enhancement (Atl09).

As for the DCE-MRI protocol, multi-slice or three-dimensional se-
quences are usually employed which can be acquired rapidly. Images are
typically acquired using the spoiled gradient echo (SPGR) technique al-
lowing for short repetition times. Some commonly used scanner specifi-
cations are: repetition time of 3-10ms, various flip angles, echo time¡5ms,
and acquisition matrix between 128x128 and 256x256 (JPM+05; MTD+03).
Spatial resolution is usually of a few millimeters in order to have a sat-
isfactory signal-to-noise ratio. This affects also the temporal resolution
as well as the number of slices that can be acquired, which is usually no
more than 25. Consequently, there is always a trade-off between all these
factors in order to achieve the best sampling at fine spatial resolution
(Jac04).
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Figure 3: An example of a DCE-MRI sequence obtained from a patient with
a high-grade liposarcoma.

2.2 DCE-MRI analysis methods

There are several DCE-MRI data analytic approaches, including both
model-free and model-based methods (YG09). Comparison of the var-
ious published results on DCE-MRI data analysis, is a quite challeng-
ing process, due to various factors: diverse DCE-MRI acquisition proto-
cols; large variety of post-processing approaches; different disease types,
treatment settings and numbers of subjects. In light of the above, there is
no standardized method for the analysis of DCE-MRI data yet, and ex-
isting methods can roughly be categorized into the following groups: a)
model-based analysis using pharmacokinetic models and b) model-free
analysis based on features extracted from the DCE time intensity curves.
The fundamentals of these approaches are described in the following sec-
tions.

2.2.1 Model-based analysis methods

As highlighted in the previous section, the CA used for DCE-MR imag-
ing leads to a rapid initial signal enhancement in tumor lesions in the first
few seconds after being administered to the patient. This happens in the
case of tumor lesions, either benign or malignant, however in normal tis-
sue signal enhancement is not expected to increase the same as in tumor
lesions. The signal enhancement and the CA concentration are closely
linked, however their correlation is not straightforward since it can be
influenced by various components, including tissue physiological prop-
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erties or experimental factors. In general, the distribution of CA consists
of three principal phases: a) the uptake phase, where the concentration
in the plasma initially rises above baseline and there is a net leakage of
contrast from the blood vessels into the EES, b) the plateau/equilibrium
phase, where there is maximum signal enhancement with an equilibrium
of the CA concentration between the vascular space and EES, and c) the
wash-out phase, where the CA decreases since it starts leaving the tissue
and gets out of the body through the kidneys. As for the tissue concen-
tration, it is more complex to know when it increases or decreases since
it depends on tissue physiological properties.

The first physiological models developed for DCE-MRI data analysis
relied on the principles of tracer kinetics (Ket51; PB85) and considered
both the CA uptake and wash-out phase as described in the previous
paragraph. Pharmacokinetic models also rely on similar considerations
and by using certain assumptions they attempt to mathematically de-
scribe the relation of CA concentration with the tissue physiological pa-
rameters (TGL+99).

The main four steps describing the pharmacokinetic DCE-MRI data
analysis (OJP+12) are presented below and are also depicted in Figure 4:

1. Acquisition of a sequence of T1-weighted MR images before, dur-
ing and after the intravenous injection of the CA.

2. Definition of the tumor’s region of interest (ROI) and estimation
of the concentration in the arterial blood known as arterial input
function (AIF).

3. Conversion of MR signal intensity into concentration values.

4. Extraction of quantitative pharmacokinetic parameters through ap-
plication of a pharmacokinetic model on each pixel.

In order to perform quantification of CA kinetics from signal intensi-
ties, the CA concentration should be computed at each time point of the
dynamic scan. However, this is quite complex since the relationship be-
tween CA concentration and signal intensity which can generally be con-
sidered as linear, it becomes non-linear when CA concentration is high.
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Figure 4: DCE-MRI data acquisition and analysis for a breast cancer pa-
tient: 1) image acquisition over time, 2) definition of the tumor’s region of
interest (ROI) and calculation of the feeding vessel arterial input function
(AIF), 3) conversion of signal intensity to concentration, and 4) derivation
of physiological parameters by applying pharmacokinetic modeling.

DCE-MRI pharmacokinetic analysis models are most often
bi-compartmental, consisting of the blood plasma and the EES compart-
ments, and rely on tracer kinetics as explained previously (Tof97). Multi-
compartmental models have also been proposed in literature (PKH+99),
however the bi-compartmental model is the most widely accepted mo-
del, since it can provide a quite good fitting of DCE-MRI data.

The bi-compartmental model does not include the intracellular space
compartment, since the CA does not go into the intracellular space. This
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compartmental scheme is shown in Figure 5. It is worth to say that a
bi-compartmental model does not take into account the complex tumor
biology.

The Tofts pharmacokinetic model (TK91; TBS95) is the most com-
monly used model in literature, and is described by Equation 2.1. It is
considered a single-compartment model since it excludes the contribu-
tion from vascular plasma.

∂Ct(t)

∂t
= ktrans

(
Ca(t)− Ct(t)

ve

)
(2.1)

where Ct(t) is the CA concentration in the EES, Ca(t) is the CA concen-
tration in the arterial blood (AIF: Arterial Input Function), ve is the vol-
ume of EES and ktrans represents the transfer constant from the plasma
space into the EES. The solution of the above equation reduces to Equa-
tion 2.2:

Ct(t) = [ktranse−kept] ~ Ca(t) (2.2)

where kep = ktrans/ve is the transfer constant from EES to the plasma
space. Both ktrans and kep are measured in [min−1].

The extended or modified Tofts model (ETM) (Tof97) considers the
additional contribution in the vasculature of the blood plasma fraction
vpCp(t). Based on this consideration, the unknown parameters are ktrans,
ve, and vp. Using the convolution theorem, the solution is given by Equa-
tion 2.3:

Ct(t) = [ktranse−kept + vp] ~ Ca(t) (2.3)

The extended Tofts model produces reliable results for highly vascu-
larized tumors in contrast to the Tofts model which is only applied for
weakly vascularized tissues (SB11). Nevertheless, both models can yield
to erroneous parameter calculation in cases of high vascularization while
making correct data fitting. In addition, both models mistakenly assume
that that the CA enters the tissue artery immediately after injection and
that the CA immediately reaches the tissue (SB12).
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Figure 5: Two-compartment model showing one compartment represent-
ing the plasma space while the other compartment is the tissue space. The
contrast agent leaves the plasma space at a rate represented by ktrans and
returns by kep = ktrans/ve.

The Hoffmann model (HBK+95) stems from the Brix model (BSP+91)
for fast bolus injection, and relies on the assumption that the CA moves
slowly from the blood plasma to the EES. The model includes a direct
association between signal intensity and CA exchange rates and does not
require either estimation of AIF or MR quantification. The basic equation
describing the Hoffmann model is given by Equation 2.4:

S(t)

S0
= 1 +AHkep

(
e−kept − e−kelt

kel − kep

)
(2.4)

where S(t) is the MR signal course from tissue and S0 is the MR signal
before CA injection. The fitting parameters are: kep ; AH , which approx-
imately corresponds to the size of the EES; and kel, the renal elimination
constant.

The Gamma Capillary Transit Time model (GCTT) (Sch12) combines
four different PK models: Tofts model, ETM, Adiabatic Tissue Homo-
geneity Model (ATH), and Two Compartment Exchange Model (2CX).
The GCTT model introduces a new parameter (a−1), which is the width
of the distribution of the capillary transit times within a tissue voxel, and
it has been shown that it represents the heterogeneity of tissue microcir-
culation and microvasculature (Sch12; BSRZ+12).

The pharmacokinetic-based analysis is quantitative since it measures
intrinsic properties of the tissue. However, these models suffer from a
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number of limitations, such as the complex mathematical formulations.
Additionally, measurement of the blood AIF is also required for the mo-
del fitting, which is prone to errors (HM04). What is more, the conversion
from signal intensity into CA concentration is quite complex as it is af-
fected by the pre-contrast T1 relaxation rate, the CA relaxivity and the
specific tissue properties. The fitting algorithms used for the calculation
of model parameters are also time-consuming and they often do not lead
to local minima convergence or even no convergence at all (RIS+06). An-
other important issue is that it is difficult to achieve both high temporal
and spatial resolution so there is always a trade-off between them in or-
der to keep an acceptable signal to noise ratio (FHGKD01; HRL98). Fur-
thermore, pharmacokinetic models often simplify the tissue perfusion
process, resulting in weak correlation between the derived DCE-MRI pa-
rameters and the actual stage of the tumor (EHL+03). Last but not least,
these methods may have limited reproducibility in different implemen-
tations since they include many assumptions and depend on the specific
tissue properties as explained previously.

In order to overcome the aforementioned limitations of PK models,
data-driven methods relying on classification of the signal-time curves
have been proposed in literature, as it will be discussed in the next sec-
tion.

2.2.2 Model-free analysis methods

(a) Parametric analysis of time intensity curves

An alternative approach for obtaining useful information from
DCE-MRI is by analyzing the pattern of dynamic T1-weighted in-
tensity curves by extracting empirical parameters. Various empiri-
cal parameters are reported to have the potential to be used in can-
cer diagnosis. Several studies reported early wash-in and faster
wash-out rates of contrast agent in prostatic carcinoma (KHC+05;
PODG+03; RRE+03). Padhani et al. showed significant differences
in signal intensity variables, i.e. mean gradient and maximum sig-
nal intensity (PGM+00). Maximum intensity time ratio (MITR) has
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Figure 6: Example of a time intensity curve with annotated some extracted
empirical parameters including wash-in, wash-out, TTP, baseline and max-
imum.

been proposed to distinguish the benign from malignant breast
masses (FASW93; GLL+04). The definitions of these parameters
are based on four landmarks on the time intensity curve: the base-
line signal intensity, the maximum signal intensity, 10% of the max-
imum signal enhancement and 90% of maximum signal enhance-
ment, as shown in Figure 6.

Several of these parameters are implemented in parametric analy-
sis software (PST+98) and have been correlated with cancer tissue
properties and response to treatment (PGM+00; PMG+01). The ad-
vantage of this approach is that the definitions and computation of
these parameters are simple. It does not require converting the MR
signal intensities into contrast agent concentrations. However, it
is difficult to derive physiologic information such as permeability
from these parameters.

(b) Classification of time intensity curves

The uptake curve of a dynamic scan is an indicator of the tissue
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permeability to the CA. In particular, areas with lower permeabil-
ity and perfusion tend to present a slower enhancement and the
signal decreases only after the completion of the DCE-MRI scan.
There has been a lot of interest in identifying specific types of the
TIC shapes in the analyzed tissues and using them as a potential
diagnostic tool in cancer disease (vdWVH+98; vRHTB01; VL00).
TIC shapes can vary across a wide range of patterns but the most
common ones are three (Figure 7): Type 1: Signal intensity con-
tinues to increase persistently over time, Type 2: Signal intensity
initially increases but then it reaches a plateau and Type 3: Signal
intensity has a fast initial increase and then decreases after reach-
ing the highest point. Type 3 is considered as indication for ma-
lignancy but type 1 and 2 curves can be found in cancer as well.
Although this approach is sometimes described as heuristic it has
been widely investigated in the last few years for the assessment of
DCE-MRI.

In the last decade, a new approach has given added value to the
pure TIC shape analysis. It involves the analysis of curves in a
pixel-by-pixel fashion, in every single pixel acquired by the DCE-
MRI scan sequence instead of the typical ROI dependent evalua-
tion of averaged TICs (KBB+07; LdJvdS+07; YCYK12). Compared
to the heuristic shape analysis method, this approach gives results
that are more robust and less user and MRI protocol dependent.
In the ROI based analysis, signal averaging in the ROI results in
failing to consider important characteristics of the lesion. On the
other hand, the pixel-by pixel analysis has been suggested in order
to take into account the cancer spatial heterogeneity which is very
important especially in the case of large heterogeneous lesions. Tis-
sue heterogeneity can be assessed more efficiently using the pixel-
by-pixel analysis as it offers higher sensitivity to spatial changes in
TIC shapes.

Many recent studies use the pixel-wise analysis to perform TIC
shape analysis (LM08; KBCB10) as an alternative of the quantita-
tive pharmacokinetic models. The basic limitation of this approach
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Figure 7: The three most common time intensity curve enhancement types,
where Type 1 (red) is characterized by persistent slow enhancement of the
SI, Type 2 (blue) by initial enhancement followed by some wash-out and
Type 3 (green) by fast enhancement and fast wash-out.

is the definition of the number of required classes and yet there
is no standard procedure for estimating it. In some studies they
have attempted towards the automatic detection of the number of
classes for example by using principal component analysis (PCA)
in (EBR+10) or by using statistical tests (CAT+17) however it still
remains an open issue that needs further investigation.

2.3 Pattern Recognition techniques for automatic
TIC shape classification

Several image analysis techniques have been used in the literature in or-
der to solve the TIC shape analysis problem. In particular, in the last few
years, a number of studies have used PR techniques in order to achieve
classification of the DCE-MRI data. The basic concept of PR techniques
relies on the use of statistical classifiers for the automatic detection of
classes that are naturally present in the DCE-MRI datasets and which are
then associated with certain enhancement patterns. The main scope of
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this thesis is to utilize PR techniques for the automatic extraction of pat-
terns that can be translated into tumor physiologic characteristics and to
this end we present an overview of state of the art literature where PR
methods which have been applied on DCE-MRI data.

Many types of classifiers exist, including both supervised and un-
supervised ones, and we will describe below the use of them for the
analysis of DCE-MRI data. A comprehensive review of the model-free
methods and their application to breast DCE-MRI data analysis has been
published by Eyal et al. (ED09).

The most commonly used unsupervised method is PCA. In (TSG+04)
Twellmann et al. used PCA to analyze breast DCE images of six pa-
tients. The PCA decomposition resulted in three significant eigenvectors
and the receiver operating characteristics (ROC) curve analysis of the
projection coefficients of the three eigenvectors indicated that in particu-
lar the second eigenvector gave high area under the curve (AUC) value,
Az=0.996.

Another commonly used unsupervised method is independent com-
ponent analysis (ICA) and its difference from PCA is the fact that it as-
sumes that the signal we want to decompose is a linear combination of
statistically independent non-Gaussian signals. Yoo et al. (YGCHHK02)
used ICA to analyze breast DCE-MRI data from a six patient dataset. The
ICA decomposition resulted in seven components and qualitative evalu-
ation of the curves in each component was performed. In malignant tu-
mors there were identified two types of enhancement patterns whereas
in benign lesions there was present only one enhancement pattern. No
quantitative measures were used in this work to assess its accuracy.

Artificial neural networks (ANNs) have been used in many studies
(KCK+08; LKB01; TLN05) for breast DCE-MRI data analysis. Lucht et al.
(LKB01) attempted the classification of TICs in a dataset of 264 patients
by using eight different ANN configurations consisting of three layers.
The best obtained classification results showed 84% sensitivity and 81%
specificity. Twellmann et al. (TLN05) implemented an ANN-based clas-
sifier called adaptive tissue characterization network (ATCN) that com-
bines both supervised and unsupervised methods in order to classify the
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tissue as normal, benign or malignant. ROC curve analysis for each case
gave a mean Az =0.988 for malignant versus both normal and benign tis-
sue and Az=0.987 for benign versus both normal and malignant tissue.

Support vector machines have been used by Levman et al. (LLC+08)
for discriminating malignant and benign breast lesions. They tested three
different kernels (linear, polynomial, and radial basis function) and they
also examined the effects of variations in four temporal feature vectors.
The highest area under the ROC curve achieved was 0.74 and it was ob-
tained when using a radial basis function kernel on the 4th feature vector.

Studies have also been conducted to include morphological and ki-
netic features in CAD schemes. Szabo et al. (SWBA04) analyzed 105
breast lesions by using six ANN models with different kinetic and mor-
phological parameters. Poor performance was obtained when all fea-
tures were used, however when selecting a specific subset of morpholog-
ical and kinetic features, a high performance of Az=0.849 was achieved.

Meinel et al. (MSB+07) used backpropagation neural network to clas-
sify a combined set of shape and kinetic features from the segmented
breast tumor region. Zheng et al. (ZEB+09) applied discrete Fourier
transformation (DFT) to kinetic curves and extracted Hu’s moment in-
variants from the DFT coefficients of selected two-dimensional images.

In (HKJ+15) Haq et al. used data-driven empirical parameters as
well as features from PCA in combination with the least absolute shrink-
age and selection operator (LASSO) for prostate cancer detection in 16
patients. They built a predictive model using the aforementioned ex-
tracted features and the support vector machine classifier with leave-
one-patient-out cross validation achieving area under the ROC curve of
86%.

In (WGCL16), texture analysis was applied on DCE-MRI sub-regions
derived from k-means clustering analysis. Results from 35 breast cancer
patients showed that the longitudinal change of four Haralick texture
features extracted from the sub-region associated with fast washout, was
predictive of response to neoadjuvant chemotherapy (NAC) with AUCs
varying between 75 and 80%. This is a similar approach with previous
work from our group, (KKM+15) in which classification was achieved,
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by utilizing glioblastoma tumor sub-regions segmented according to vas-
cular heterogeneity derived from PK modeling.

In (HAS+13; SHS+12), DCE-MRI prostate cancer data have been an-
alyzed using two different PR methods, leading to a three-area classifi-
cation of the tumor in well-perfused, necrotic and hypoxic regions. In
(HAS+13) DCE-MRI data from a rat prostate tumor model were ana-
lyzed with a Gaussian Mixture Model (GMM)-based classification of the
time intensity curves, which is an unsupervised learning method. In or-
der to test their classification results, they investigated the spatial over-
lap between the three perfusion tumor areas detected by the GMM-based
classification and the equivalent areas determined from ‘standard’
histopathological or PK methods, i.e. with hypoxic areas identified by
the hypoxia marker PIMO, necrotic areas identified by hematoxylin-eosin
(H&E) and well-perfused areas derived from the Hoffmann pharmacoki-
netic model (HBK+95). They obtained 0.84±0.09 overlap for the perfused
area, 0.64±0.15 overlap for the necrotic area and 0.72±0.17 overlap for
the hypoxic region.

Stoyanova et al. (SHS+12) have localized hypoxic regions inside tu-
mor areas using PCA along with constrained NMF (cNMF) (SDB+04) on
DCE-MRI data. They analyzed four rat prostate cancer tumors of dif-
ferent size, identified three significant principal components using PCA
and then cNMF was applied to the data resulting in three basic sig-
nal versus time curves carrying different weights for each pixel. These
weights are represented as composite color maps which refer to necrotic
(blue/black), well-perfused (red) and hypoxic (green) tissue areas. This
method has managed to classify the CA uptake of tumor tissue into well-
perfused, hypoxic and necrotic compartments. The results have also
been compared to corresponding areas identified previously in (CAC+09)
where multimodality imaging data was used.

In (CAT+17) a statistical method was applied on principal compo-
nents derived from DCE-MRI data for the automatic detection of the
number of tumor areas that have dissimilar perfusion (well-perfused,
hypoxic and necrotic). Afterwards, this number was used in constrained
NMF in order to automatically identify the classes of tumor tissue based
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on their enhancement profile. This results in tumor tissue mapping based
on the identified classes. This method is applied on synthetic data, 2 pre-
clinical models and 2 clinical data (sarcoma and prostate). Results were
compared to histopathological information only for the clinical prostate
cancer case.

To summarize, several DCE-MRI model-free analysis methods have
been proposed in previous studies for cancer diagnosis or monitoring of
treatment response. All these methods have their advantages and draw-
backs. For example, ANNs have the capability of learning and model-
ing complex and non-linear problems however they usually require long
computational times which is problematic in the case of large datasets
and are strongly dependent on the MRI protocol. PCA on the other hand
is a very simple and fast algorithm however it lacks in physical inter-
pretation compared to NMF. To this end, we have decided to use the
block-update non-negative matrix factorization algorithm (BU-NMF) for
the experiments performed in this thesis. BU-NMF is an advanced NMF
algorithm and its principles are described in detail in Section 3.1. We
opted for using NMF instead of PCA also because NMF was demon-
strated to be more pertinent to parts-based representations (LS99) due to
its non-negativity constraints. In addition, NMF has been applied for the
segmentation of rat prostate cancer DCE data (SHS+12) as explained pre-
viously. Since such studies strongly indicate that DCE-MRI parameters
convey hypoxia information, it is important to try to define automatic
methods to extract hypoxia maps from DCE-MRI functional images. De-
sign of a rapid and accurate image analysis algorithm for DCE-MRI data
may have great impact on the evaluation of drug delivery as well as the
development of specific treatments with antiangiogenic agents. To this
end, herein we present a machine learning, model-free method that au-
tomatically decomposes the image in three dominant components cor-
responding to necrotic, hypoxic and well-perfused areas. What is more,
in our study we use an improved BU-NMF algorithm with a robust ini-
tialization method. More importantly, herein the algorithm is used on
human patient data whereas previous similar works (HAS+13; SHS+12)
were performed on pre-clinical studies with limited number of data.
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Chapter 3

Methods

The main scope of this thesis, as described previously, is to obtain a
clinically useful categorization of the tumor environment in an auto-
matic, non-invasive fashion based on information extracted from DCE-
MRI data. Images often contain redundant information since adjacent
pixels in an image are highly correlated. To this end, dimensionality
reduction algorithms are typically used to extract the important infor-
mation from the image, while incurring very little error. Matrix factor-
ization and principal component analysis are among the most popular
methods for data representation in a lower-rank space. NMF, due to its
non-negativity constraints, is distinguished from other matrix factoriza-
tion methods such as PCA. NMF results have more obvious visual inter-
pretation and since it allows only additive combinations, it is suitable for
uniting parts to generate a whole, leading to parts-based representations
(LS99). In our work, we want to identify certain patterns associated with
cancer physiology and NMF learns to represent our MRI data as a lin-
ear combination of basis images, called patterns, each of them carrying
a different weight. In this way, we can identify the pattern followed by
each pixel as well as the contribution of the other patterns to each pixel
of the image. This allows for a visual representation, which qualitatively
resembles the nature of cancer behavior. As a result, NMF consists in
a relatively simple, fast and efficient method for segmenting the tumor
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Figure 8: Methodology flowchart.

area in smaller clusters with potentially physiological interpretation. In
this thesis, we have used an advanced NMF algorithm and to increase
its robustness we extended it to be invariant of initialization, which is a
common issue in solving the NMF problem. We introduced two innova-
tive data-driven initialization techniques which both gave reproducible
results, thus BU-NMF was rendered an efficient tool for solving the au-
tomatic TIC classification problem of DCE-MRI data.

In this chapter, we first discuss the basic principles of the NMF prob-
lem and in particular, we describe the BU-NMF algorithm and its ini-
tialization methods. Subsequently, the data pre-processing procedure is
introduced. The chapter concludes with the description of the statisti-
cal methods used for the analysis of our results. The main steps of our
methodology are depicted in Figure 8.

3.1 NMF methodology and initial results

In this section, we begin with a brief introduction to the NMF problem
and we describe the most popular algorithms that have been used for the
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solution of the NMF problem. Then, we describe the BU-NMF algorithm,
which is the algorithm we have selected to employ for our experiments.
In addition, we explore the main existing BU-NMF initialization appro-
aches and we introduce two novel data-driven initialization methods.
Finally, we present some initial results of the BU-NMF algorithm when
applied on a synthetic dataset.

3.1.1 NMF mathematical background

The basic NMF problem consists in finding an approximate decomposi-
tion of a large dimension data matrix A of size m × n into two low-rank
nonnegative matrices, m× k matrix W and k×n matrix H . The ultimate
aim is to minimize the functional:

f(W,H) =
1

2
‖A−WH‖2F , subject to W,H ≥ 0 (3.1)

The value of k is usually selected such that k << min(m,n) which
confirms the fact that the product W ∗ H , named the NMF of matrix A,
equivalents to a compressed form of A. In practice, it corresponds to the
number of basic patterns that NMF is going to use in order to represent
the data in A.

The minimization of Equation 3.1 involves some significant challenges.
It implies the lack of convexity in bothW andH , thus the existence of lo-
cal minima. In addition, there is no unique solution of the minimization
problem in Equation 3.1 since the solution matrices W and H could also
be replaced by an infinite number of other solution pairs, such as WS

and S−1H for any nonnegative invertible matrix S having a nonnegative
inverse S−1.

The NMF problem has been approached by several numerical meth-
ods resulting in different solutions (BBL+07). Lee and Seung (LS01) es-
tablished the first well-known NMF algorithm that is based on multi-
plicative update rules in order to minimize the Euclidean distance de-
scribed in Equation 3.1. Particularly, it can be shown that the square
Euclidean distance measure used in Equation 3.1 is nonincreasing under
the iterative updated rules (BBL+07) presented in Algorithm 1.
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Algorithm 1 - Multiplicative update
W = rand(m, k); % initialize W as random dense matrix
H = rand(k, n); % initialize H as random dense matrix
for i = 1 : maxiter

H = H.∗(WTA)./(WTWH + 10−9))

W = W.∗(AHT )./(WHHT + 10−9))

end

Alternating least squares (ALS) algorithms (PT94) are significantly
faster to converge with respect to the multiplicative update algorithms
and are based on the fact that while the minimization problem in Equa-
tion 3.1 is not convex in bothW andH , it is convex in eitherW orH . The
update rules used are presented in Algorithm 2 (BBL+07).

Algorithm 2 - Alternating least squares
W = rand(m, k); % initialize W as random dense matrix

% or use another initialization
for i = 1 : maxiter

(LS) Solve for H in matrix equation WTWH = WTA

(NONNEG) Set all negative elements in H to 0

(LS) Solve for W in matrix equation HHTWT = HAT

(NONNEG) Set all negative elements in W to 0

end

Sometimes additional constraints are applied to the standard NMF,
such as smoothness and sparsity constraints. Smoothness constraints are
typically used in order to compensate for the noise present in the data.
On the other hand, sparseness is used in order to control the degree of
sparseness of the NMF representation leading to parts-based representa-
tions with enhanced interpretability. To enforce sparsity on H , penalty
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terms are used and the cost function in Equation 3.1 is extended as shown
in Equation 3.2 (KP07):

f(W,H) =
1

2
‖A−WH‖2F +

η

2
‖W‖2F +

λ

2

n∑
i=1

‖hi‖21,

subject to W,H ≥ 0

(3.2)

where hi is the ith column of H , η > 0 is a parameter to suppress‖W‖2F
and λ > 0 is a regularization parameter to balance the trade-off be-
tween the accuracy of the approximation and the sparseness of matrixH .
This sparse NMF formulation is based on alternating non-negativity con-
strained least squares and further details of the algorithm can be found
in (KP07).

In our work, we opted for an algorithm based on a gradient descent
method, the BU-NMF algorithm, which is an efficient algorithm with
simple update steps and offering global convergence under certain as-
sumptions (XY13). It relies on regularized multi-convex optimization,
which is a method used in problems characterized by non-convexity and
non-smoothness.

A set of points is called block multiconvex if its projection to each
block of variables is convex but can be generally nonconvex. We con-
sider a variable x, which consists of s blocks (x1, . . . , xs), a set X that is a
closed and block multiconvex subset ofRn, f is a differentiable and block
multiconvex function, and (r1, . . . , rs) are extended value convex func-
tions. The optimization problem is described by Equation 3.3 as initially
described in (XY13):

min
x∈X

F (x1, . . . , xs) = f(x1, . . . , xs) +

s∑
i=1

ri(xi) (3.3)

In Algorithm 3 it is presented the BU-NMF algorithm we used for
our analysis by choosing one of the three proposed choices of update
schemes in (XY13).
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Algorithm 3 - Block-coordinate update method

Initialization: choose two initial points (x−1
1 , . . . , x−1

s ) = (x0
1, . . . , x

0
s)

for k = 1, 2, . . .do
for i = 1, 2, . . . , sdo

xki ← arg min
x∈X

〈ĝki , xi − x̂k−1
i 〉+

Lk−1
i

2

∥∥∥xi − x̂k−1
i

∥∥∥2

+ ri(xi) (update)a

end for
if stopping criteria are satisfied then

return (xk1 , . . . , x
k
s)

end if
end for

a In the update scheme formula used in Algorithm 3, xki is the value of xi
after its kth update, x̂k−1

i denotes an extrapolated point, ĝki is the block-
partial gradient of f at x̂k−1

i and Lk−1
i is the Lipschitz constant of5fki .

In (XY13) it was shown that the BU-NMF algorithm, when tested on
synthetic, hyperspectral and real image datasets, it gave faster and more
accurate results compared to other algorithms, such as multiplicative up-
date, ALS, alternating direction method (ADM) and Blockpivot.

3.1.2 Evaluation of state of the art NMF implementations

In the following paragraphs, we give a short introduction to some state of
the art Matlab toolboxes which contain algorithms for solving the NMF
problem. We also present results from the implementation of all the NMF
algorithms on a soft tissue sarcoma patient case and in particular on a
lower limb malignant peripheral nerve sheath tumor (MPNST). In this
way, we aim to figure out which of these algorithms can provide effective
results on the TIC shape classification of a real patient cancer case. For all
implementations, the NMF initialization was performed using the wash-
in map, a method that is described in Section 3.1.3.

33



A brief description of these algorithms is given below:

• Matlab nnmf function

We initially used the nnmf function provided by Matlab. This func-
tion solves the matrix factorization problem by using either the
ALS algorithm or the multiplicative update algorithm. We first
used the default ALS algorithm for our experiment since it tends to
converge faster compared to the multiplicative algorithm and it is
also less sensitive to initialization choices. Results from the imple-
mentation of the algorithm on sarcoma patient data are presented
in Figure 9a.

In order to optimize the results, we also tried a combination of the
multiplicative algorithm and the ALS algorithm. We first calcu-
lated W and H using the multiplicative algorithm and then we
used these two matrices as initialization for running the NMF with
the ALS algorithm. Results are shown in Figure 9b. We notice that
the curves obtained only by using the ALS algorithm are smoother
and are a more reliable reconstruction of the initial data compared
to using both the multiplicative and the ALS algorithm.

• NMF:DTU toolbox

The NMF:DTU Toolbox (KSW+02) contains 5 NMF optimization
algorithms from which we tested the multiplicative update and the
alternating least squares methods. Results from the two methods
are presented in Figure 10a and Figure 10b respectively.

• NMF MATLAB Toolbox

We have also tested the nmf algorithm with sparse constraints
(Equation 3.3) provided by The NMF MATLAB Toolbox (LN13).
The results of the algorithm’s implementation on sarcoma patient
data are presented in Figure 11. We see that the sparse NMF al-
gorithm identified only two curves instead of the three expected
ones.
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Figure 9: Matlab’s nnmf algorithm results for a sarcoma patient: (a) plots of
the three NMF component when the ALS method was used, and (b) plots of
the three NMF component when a combination of the multiplicative update
and the ALS methods was used.

Figure 10: NMF algorithm from NMF:DTU toolbox results applied to a sar-
coma patient: (a) plots of the three NMF component when the multiplicative
update method was used, and (b) plots of the three NMF component when
the ALS method was used.

• BU-NMF

The code for the BU-NMF algorithm was obtained from (XY). The
results of the BU-NMF algorithm when tested on sarcoma patient
data are depicted in Figure 12.

From the above figures, we notice that the BU-NMF algorithm gave
the best results when tested on real DCE-MRI data since the algorithm
identified three distinct types of curves with shapes which correspond
well to the shapes of three theoretically expected types of curves ex-
plained in Section 2.2.2. After extensive experimentation, this method
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Figure 11: Sparse NMF algorithm from NMF MATLAB toolbox applied to
a sarcoma patient. Plots of the two NMF components since the third com-
ponent was represented by a zero plot.

Figure 12: BU-NMF algorithm applied to a sarcoma patient. Plots of the
three identified NMF components.

yielded the most robust and clinically significant results. For this reason,
we have decided to employ this specific algorithm for our experiments.
In the following section, we investigate the application of different ini-
tialization methods we have tried for the implementation of the BU-NMF
algorithm.
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3.1.3 Initialization of the BU-NMF algorithm

After having selected the BU-NMF algorithm as the most suitable PR
method for our clinical experiments, we also need to decide upon some
parameters which are required for its effective implementation. The main
NMF problem, as stated before, is to reconstruct our input matrix A of
sizem×n, using two lower-rank matrices, W of sizem×k andH , of size
k × n. Therefore, in order to run the BU-NMF algorithm we need first
to initialize these two matrices and also to select a value for the parame-
ter k which principally corresponds to the number of basic patterns that
NMF is going to use in order to represent the data inA. Robust initializa-
tion is of utmost importance since we need to guarantee the algorithm’s
reproducibility so that it can be used in the clinical setting. In the fol-
lowing paragraphs, we describe in detail the procedure followed for the
selection of these parameters.

(I) Low-rank matrices initialization
Different initialization methodologies have been tested for the two low-
rank matrices W and H used by the NMF algorithm however, effective
initialization still remains an open problem. A brief description for some
of the initialization approaches we have tested in our work is presented
below with particular focus on two novel data-driven approaches intro-
duced in our work. The following approaches concern the initialization
of the basis matrixW . As for the initialization of the coefficient matrixH ,
after computing the initial weight matrix W0, the H0 matrix was initial-
ized by the least squares solution of A = W0 ∗ H0 where A is our given
MR image data.

(i) Random initialization

The matrices W and H are typically initialized with random non-
negative values in the standard NMF algorithm before the begin-
ning of the iteration steps. In our case, the BU-NMF initialization
relied on taking random values from the Gaussian distribution for
the basis matrix W .
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Random initialization of the BU-NMF algorithm was proven not
to be repeatable in our experiments as it gave ambiguous results
when running it for multiple times (VKN+16). For a patient with
lower limb MPNST, we ran the BU-NMF algorithm with two differ-
ent random initializations and the results were completely differ-
ent. We can see in Figure 13 that BU-NMF in one case converged to
a non-interpretable solution and only nine iterations were required
(Figures 13 a, b). However, when the algorithm was initialized with
different random values, it converged to interpretable results (Fig-
ures 13 c, d) and 376 iterations were required for convergence.

The number of iterations required for convergence of the BU-NMF
algorithm, when ran for 50 times, is shown in Figure 14 for three
different sarcoma patients. Fifty consecutive runs have been car-
ried out by using the same ROI in each run, and different random
values per pixel were produced each time for the algorithm initial-
ization. The sets of points with the three different colors depicted
in Figure 14 correspond to each one of the three different patients.

For all three patients, the BU-NMF algorithm sometimes converged
to interpretable solutions while others it did not. As explained be-
fore for the lower limb MPNST patient, when it converged to a
non-interpretable solution, only a few iterations were required. On
the other hand, when the algorithm converged to interpretable re-
sults, a greater number of iterations were required. Therefore, we
concluded that the random initialization approach did not yield
reproducible results and we opted for different initialization tech-
niques, which are explained later in this section.

(ii) NNDSVDQ initialization

An alternate approach for initializing the NMF algorithm was pro-
posed by Boutsidis and Gallopoulos in (BG08) and included an
SVD-based initialization, which showed significant enhancement
of the speed of the NMF algorithm in minimizing the cost function.
Results of this initialization approach when tested on a sarcoma
patient are presented in Figure 15.

38



Figure 13: PR analysis results for a patient with lower limb MPNST: (a)-(b)
plots of the three NMF components and the corresponding composite color
map for one random initialization, and (c)-(d) plots of the three NMF com-
ponents and the corresponding composite color map for a different random
initialization. The composite color maps in (b) and (d) illustrate the percent-
age contribution of each component.

Figure 14: Number of iterations required for the BU-NMF algorithm con-
vergence for each of 50 consecutive runs initialized randomly each time for
three different sarcoma patients.
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Figure 15: BU-NMF results initialized with the NNDSVDQ method for a
patient with lower limb MPNST: (a) plots of the three NMF components,
and (b) the corresponding composite color map.

(iii) Proposed sophisticated initialization methods

Two novel methods have also been tested, including a PK model
as well as a simple gradient method, which were introduced in
one of our published studies (VKN+16) in order to address the
repeatability issues of the random initialization. Results showed
that when tested on the same patient data, similar results were ob-
tained from both methods, which were also repeatable. These ini-
tialization methods relied on information extracted directly from
the data allowing for a more realistic initialization of the BU-NMF
algorithm. In particular, the wash-in and the ktrans maps were uti-
lized for the initialization of the BU-NMF algorithm.

(iii.a) Wash-in initialization

For the wash-in initialization approach, the BU-NMF algorithm
was initialized by classifying the tumor area in three subareas us-
ing the wash-in map extracted from the first part of the time-signal
curve related to each individual pixel. A three-region classifica-
tion map was derived from the wash-in map using the k-means
algorithm. We tested this method on a patient with neck pleomor-
phic liposarcoma. Firstly, the wash-in map (Figure 16a) was used
to classify the ROI into three regions as shown in Figure 16b, by
using the k-means clustering algorithm.
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Figure 16: Initialization of the BU-NMF algorithm utilizing the wash-in part
of the dynamic curves: (a) wash-in map, and (b) the corresponding three-
area classification derived from k-means clustering, with green clusters rep-
resenting the high wash-in areas, red representing the moderate wash-in
areas and blue representing the low or no wash-in areas.

Figure 17: PR analysis results using the wash-in map initialization: (a)-
(c) plots of the three NMF components, (d)-(f) the corresponding spatial
maps of the NMF components, and (g) the composite color map depicting
the percentage contribution of the hypoxic (red), well-perfused (green) and
necrotic (blue) components.

Green clusters are related with the high wash-in areas, red with
moderate wash-in and blue with low or no wash-in. This compos-
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ite color map was used for the BU-NMF initialization by assigning
every pixel to a single component.

The NMF components derived from the initialization of the wash-
in map are shown in Figures 17a, b and c. Next to the plot of each
component, the spatial map of the corresponding weight contri-
bution is depicted in Figures 17d, e and f. Finally, in the last figure
(Figure 17g) we can see the composite color map illustrating the
hypoxic (red), well-perfused (green) and necrotic (blue) regions.

In the composite color map presented in Figure 17g, it is apparent
that for every pixel there is a mixed contribution from all three
patterns by different percentages as shown in Figures 17d, e and f.
We can notice the consistency in the dynamics of the three curves
with the three most common tumor enhancing curve types that
were described in Section 2.2.2.

(iii.b) PK initialization

For the PK initialization approach, the PK model used in our anal-
ysis was the ETM, and more specifically we used the ktrans param-
eter. As explained in Section 2.2.1), ETM is more reliable for highly
vascularized tissues. The contrast agent leaves the plasma space
and enters the EES at a rate represented by ktrans and returns by
kep = ktrans/ve, which is the exchange rate from EES to the plasma
space where ve is the volume of EES. Both ktrans and kep are mea-
sured in [min−1]. In our experiments, the AIF was calculated from
a large vessel within the region of interest and for the signal to
contrast conversion, the method of variable flip angles (VFA) was
applied.

The reason for using the ktrans parameter is due to the fact that
it is indicative of necrotic regions (SCW+09) and necrosis is asso-
ciated with no enhancement regions having zero or close to zero
ktrans values. On the other hand, well-perfused areas are those
associated with high wash-in and wash-out values corresponding
to high ktrans and kep accordingly. Last, it is important to mention
that hypoxic regions are expected to have intermediate perfusion
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values, therefore it is hard to identify them in a straightforward
way from the PK map. To overcome the difficulty of approximat-
ing the hypoxic regions, three-region clustering of the ktrans map
was performed using the k-means algorithm, resulting in a better
distinction between the areas having different perfusion values.
We tested this iniatialization approach on a patient with neck pleo-
morphic liposarcoma, the same one used for the wash-in initializa-
tion described previously. The parametric ktrans map for this pa-
tient is shown in Figure 18a. Similarly to the wash-in initialization
approach, k-means clustering was applied to the ktrans map re-
sulting in the three regions classification, displayed in Figure 18b.
Green clusters are related with areas of high perfusion, red with
areas of moderate perfusion and blue with areas of low or no per-
fusion.
The NMF components derived from the initialization of the ktrans

map are shown in Figures 19a, b and c. In addition, the spatial
distribution of the magnitudes of the corresponding patterns are
depicted in Figures 19d, e and f. Figure 19g shows the composite
color map of the three components, with the hypoxic area shown
as red, the well-perfused area shown as green and the necrotic area
shown as blue.
We notice that the theoretical assumptions for the three tumor mi-
croenvironments and the shape of their curve type coincide with
the NMF region map and the associated NMF components. It is
apparent that despite the fact that the initialization maps of the
two approaches are not identical (Figure 16b, Figure 18b), the de-
rived spatial distributions of the PR components, are almost iden-
tical (Figure 17g, Figure 19g).

The initialization maps of wash-in and PK approaches are depicted
in Figure 16b and Figure 18b respectively. The two maps show
significant correlation in the necrotic (blue) region whereas there
is not exact correspondence for the hypoxic and well-perfused re-
gions. After extensive experimentation, we concluded that these
initialization approaches are robust in terms of repeatability. In
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Figure 18: Initialization of the BU-NMF algorithm utilizing the ktrans pa-
rameter of ETM: (a) the ktrans map, and (b) the corresponding three-area
classification derived from k-means clustering, with green clusters areas of
high perfusion, red representing areas of moderate perfusion and blue rep-
resenting areas of low or no perfusion.

Figure 19: PR analysis results using the PK map initialization: (a)-(c) plots
of the three NMF components, (d)-(f) the corresponding spatial maps of the
NMF components, and (g) the composite color map depicting the percent-
age contribution of the hypoxic (red), well-perfused (green) and necrotic
(blue) components.

particular, the wash-in approach always converged after 214 iter-
ations while the PK one converged after 196 iterations and both
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yielded the same regions. Therefore, results were reproducible
when examining the same patient in contrast to the random ini-
tialization, which yielded random results after every run of the
BU-NMF algorithm. In addition to this, the fact that in both initial-
ization cases the three different NMF components have the shape
of the theoretically expected DCE curves (Section 2.2.2), it further
confirms the efficiency of the BU-NMF algorithm, in combination
with these two initialization approaches, in automatically charac-
terizing the enhancement profiles.

(II) Selection of number of classes k

(i) PCA for the selection of k

The choice of the k components in the NMF problem is usually
problem dependent however, k is usually chosen such that k >

min(m,n) thus W ∗ H can be thought of as a compressed form of
the data in A.

In order to decide about the number of components that the BU-
NMF is going to seek, we performed PCA on our pre-processed
data which gave us the number of principal components needed
in order to retain the 99% of the data variance which is a common
heuristic used when PCA is applied on images.

The temporal curves of the first four principal components are il-
lustrated in Figure 20 together with their percentage contribution
to the data variability. We can see that the first three principal com-
ponents represent more than 99% of the total data variability while
the fourth one is more related to noise. Based on this result, only
three patterns are expected when using the NMF algorithm. There-
fore, NMF is parametrized to decompose the MR signal by com-
bining properly the three basic components.

(ii) Statistical method for the selection of k

A second method that we tested for the selection of k, is based on
statistical tests and has been introduced in (CAT+17). After the im-
plementation of PCA two statistical tests are used on the identified
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Figure 20: Four principal components found by PCA and their percentage
contribution to the total data variability: (a)-(c) the first three components
have the greatest contribution, and (d) the fourth one is mainly associated
with noise.

principal components, namely the F-test and the Shapiro-Wilk test.
The F-test is applied on the signal-related PCs and finds the num-
ber of consecutive PCs satisfying the test. The Shapiro-Wilk test on
the other hand is applied on the noise-related Pcs and defines the
number of consecutive PCs that failed the test. Then, k is defined as
the minimum of these two numbers calculated from the two tests.
However, the tests did not work on the sarcoma data which is also
in line with (CAT+17) since it worked only on a simulated dataset
and not on clinical patient data.

3.1.4 Initial results of the BU-NMF algorithm on a syn-
thetic dataset

We first tested the PR method on synthetic data in order to understand
whether NMF is capable of producing an effective matrix reconstruction.

We create the input matrixX of size 10×50 using two other matrices:
the basis matrix W is a 10 × 3 matrix and the coefficient matrix H is
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a 3 × 50 matrix (Figure 21). The coefficient matrix is designed so that
plots of the three patterns have the shape of the three common types 1,
2 and 3 as described previously (Figure 7). The basis matrix includes
the percentage contributions of the three patterns. So, we have three
combinations of 100% contribution from patterns 1, 2 and 3 respectively
and 0% contribution from the other two. The remaining seven rows of
W matrix include combinations of 50% contributions from 2 patterns and
0% from the third or 25% from 2 patterns and 50% from the third one and
one row is for equal contribution from all 3 patterns.

For the NMF initialization, we first initialized the basis matrix. We
created a 10× 3 matrix W0 where each row had a value=1 in only one of
the three columns. The column was decided by computing the wash-out
slope of each row of X according to the following rule:

• if slope is greater than 0, the third column of W0 is assigned to 1

(Type 3 curve)

• if slope is equal to 0, the second column ofW0 is assigned to 1 (Type
2 curve)

• if slope is smaller than 0, the first column of W0 is assigned to 1

(Type 1 curve)

Afterwards, the coefficient matrix H0 was computed as the least
squares solution of X = W0 × W0. The initialization procedure is de-
picted in Figure 22.

In Figure 23, we present the results of the BU-NMF algorithm on the
synthetic dataset using the aforementioned manual initialization. We see
that the BU-NMF successfully reconstructed the three theoretically ex-
pected curves that were given as input. These results are encouraging
towards the selection of the BU-NMF algorithm for the automatic TIC
classification problem we want to solve on the real cancer data, which
will be presented in the following chapter.
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Figure 21: Synthetic data matrices used for the formation of the input matrix
A = W ∗H . Left: 10 × 3 basis matrix W . Right: Plots of the three columns
of the 3× 50 coefficient matrix H .

Figure 22: Initialization synthetic data matrices used for the implementation
of the BU-NMF algorithm. Left: basis matrix W0. Right: Coefficient matrix
H0.

Figure 23: BU-NMF algorithm applied to synthetic data. Plots of the three
identified NMF components.
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3.2 Data pre-processing methods

The pre-contrast phase of the MR signal was first removed from the raw
signal. A small number of pre-contrast acquisitions were obtained in
order to observe the effect of the CA to MR signal intensity. Afterwards,
the baseline was removed in order to extract the net effect of CA uptake
on the signal intensity.

Finally, the smoothing spline method was implemented in order to re-
move the noise from the dynamic DCE-MRI data and obtain a smoother
signal. In particular, a cubic smoothing spline algorithm was applied
to the data for fitting a smooth curve to the noisy MR signal. In Fig-
ure 24, we can see the plots resulting from all the previously described
pre-processing steps applied to the original intensity curve of a specific
image pixel from the lower limb MPNST patient.

Figure 24: Pre-processing steps applied on the intensity curve of a pixel
from a patient with lower limb MPNST. Pre-contrast phase was first re-
moved, then the baseline, and finally smoothing was applied to the data.
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3.3 Statistical analysis methods

For the statistical analysis of our datasets we used different methods for
the two datasets. More specifically, for the soft-tissue sarcoma dataset
we used the Pearson’s linear correlation coefficient and shows the lin-
ear relationship between two sets of data (Pea96). The correlation coeffi-
cient equals to the covariance of two variables divided by the product of
their standard deviations and takes values that range between -1 and +1.
A perfect positive correlation is represented by the value +1, while the
value 0 indicates no correlation and -1 indicates a perfect negative corre-
lation. The closer the coefficient values are to +1 and -1, the stronger the
relationship is between the variables.

For the breast cancer dataset, a more sophisticated statistical analysis
was performed (KVM+on). Statistical analysis was employed using R
software (v.3.3) and results were displayed as mean± standard deviation
(mean ± s.d.). The complete workflow of the procedure is presented in
Figure 25.

Firstly, a univariate analysis with the non-parametric Mann-Whitney
test was applied to all calculated biomarkers to reveal any differences
between the two populations (response vs non-response). For all tests,
a p − value of less than 5% was considered as statistical significant. A
univariate predictive analysis framework was next conducted to further
utilize all biomarkers that achieved a p−value < 0.05 using five different
classifiers. The main scope of this study was twofold; a) to validate the
discriminative power of the proposed by the statistical analysis biomark-
ers through a predictive analysis infrastructure using several classifiers,
and b) assess their predictive accuracy in an unbiased way using sub-
sets of the examined dataset that were not used for training. Initially, the
examined cohort was randomly divided into stratified test and train sets
comprising 20% and 80% of each examined biomarker respectively. A re-
peated k-fold cross validation was next performed at the training phase
to prevent or reduce any overfitting issues. K-fold cross validation was
repeated 10 times with k equal to 3 due to sparsity of the training set.
At the testing phase, all statistically significant biomarkers and models
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Figure 25: Analysis workflow of the proposed framework for analysis of the
breast cancer dataset. DCE biomarkers are extracted from model-free and
model-based methods and are used for statistical analysis. Afterwards, a
univariate predictive analysis was applied to all the statistically significant
biomarkers.

were validated using the “unseen” test sets. To better assess the gener-
alization performance of the biomarkers, the aforementioned steps were
repeated 50 times using exactly the same input data during each itera-
tion and their performance was provided quantitatively using mean and
standard deviation of the AUC, F1 score, accuracy, sensitivity and speci-
ficity.

To examine whether a combination of the statistically significant bio-
markers would potentially increase the results in terms of the predictive
accuracy, a wrapper feature selection using recursive feature elimination
(RFE) and the five suggested classifiers was applied to the examined co-
hort. For the convenience of the reader, ensemble adaboost with decision
trees of level one, extreme gradient boosting linear, support vector ma-
chine with linear kernel, random forest, and the k-nearest neighbor were
presented using acronyms clf1, clf2, clf3, clf4 and clf5, respectively.
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Chapter 4

Results

During the course of this thesis, we have used different datasets for our
experiments such as glioblastoma, endometria, sarcoma and breast can-
cer data. However, we encountered difficulties with certain datasets,
thus our research focused on sarcoma and breast cancer data. The sar-
coma dataset included six patients, four with liposarcoma (Patients #2,
#3, #5, and #6) and two with MPNST (Patients #1 and #4). All MRI scans
for the sarcoma dataset were provided anonymously by the Department
of Medical Imaging of the University General Hospital of Heraklion after
getting approval by the local Ethical Committee. The fully anonymized
data were obtained from patients who underwent both conventional and
DCE-MRI examinations. After the diagnosis of soft tissue sarcoma was
established by core needle biopsy, surgical resection of the lesion was
performed in all cases. Histopathology figures and findings were pro-
vided anonymously by the Department of Pathology of the University
General Hospital of Heraklion. The breast cancer dataset we used in-
cluded 35 patients and was a publicly available dataset (LAA+16).

In this chapter, we present five different case studies, four concerning
the sarcoma dataset and one the breast cancer dataset. We first describe
details of the MRI acquisition protocols used for the two datasets. Then,
the MRI visualization and analysis tools used in this thesis are presented.
Subsequently, the clinical questions and the results of our methods for
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each case study are presented in Sections 4.2-4.6. The main results stem
from the model-free PR approach using the BU-NMF algorithm. In ad-
dition, the PR results were compared in some cases with other methods,
such as with model-based DCE and DW-MRI methods.

The results reported in Chapter 4 are based on the publications
(VKN+16; VSdB+18; VKdB+18; NMV+18) and on (KVM+on) that has
been recently submitted for publication:

• M. Venianaki*, E. Kontopodis*, K. Nikiforaki, E. de Bree, T.
Maris, A. Karantanas, O. Salvetti, K. Marias, “Improving hy-
poxia map estimation by using model-free classification techniques
in DCE-MRI images,” 2016 IEEE International Conference on Imaging
Systems and Techniques (IST), pp. 183-188, 2016.

• M. Venianaki, O. Salvetti, E. de Bree, T. Maris, A. Karantanas, E.
Kontopodis, K. Nikiforaki, K. Marias, “Pattern recognition and
pharmacokinetic methods on DCE-MRI data for tumor hypoxia
mapping in sarcoma,” Multimedia Tools and Applications, vol. 77,
no. 8, pp. 9417-9439, 2018.

• M. Venianaki, A. Karantanas, E. de Bree, T. Maris, E. Kon-
topodis, K. Nikiforaki, O. Salvetti, K. Marias, “Assessment of
soft-tissue sarcomas perfusion using data-driven techniques,” 2018
IEEE EMBS International Conference on Biomedical & Health Informat-
ics (BHI), pp. 353-356, 2018.

• K. Nikiforaki, G. C. Manikis, M. Venianaki, E. Kontopodis, E.
Lagoudaki, T. Maris, K. Marias, E. de Bree, A. Karantanas, “Perfu-
sion and Oxygenation Changes after Isolated Limb Perfusion with
TNF - α in Lower Limb Sarcoma: A Case Report,” Biomedical Re-
search and Reviews, vol. 1, no. 1, p. 101, 2018.

• E. Kontopodis*, M. Venianaki*, G. C. Manikis, K. Nikiforaki, O.
Salvetti, E. Papadaki, G. Z. Papadakis, A. Karantanas, K. Marias,
“Investigating the role of model-based and model-free IBs as early
predictors of neoadjuvant breast cancer therapy outcome,” IEEE
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Journal of Biomedical and Health Informatics, submitted for publica-
tion.

4.1 Data acquisition

The MRI data used in this thesis were obtained using specific acquisition
protocols. In this section, we give a brief description of the MRI protocols
used for both the sarcoma and breast cancer datasets.

• MRI protocol for sarcoma dataset

Patients were imaged in a 1.5T Siemens-Erlangen scanner. The
CA gadopentetate dimeglumine (Gd-DTPA), 0.1 mmol/kg body
weight, was injected intravenously before the DCE-MRI. Six sep-
arate T1-weighted (w) MR sequences were obtained before the CA
injection, with variable flip angles of 5◦, 10◦, 15◦, 20◦, 30◦ and 60◦.
T1-w MR sequences were acquired with fast three-dimensional
spoiled gradient echo (SPGR) (TR = 7 ms, TE = 3.23 ms, FA =

15◦, temporal resolution 6.44 s, 14 slices and 45 time points for
DCE-MRI protocol). The acquisition matrix was 192 × 121 for all
sarcoma patients except for Patient #6 which was 320 × 288. Voxel
size was 1.04× 1.65× 5 mm for Patients #1, #3, #4, and #5. For Pa-
tient #2 voxel size was 1.15×1.82×5 mmwhile for Patient #6 it was
1.25 × 1.39 × 4 mm. Datasets were co-registered to the DCE-MRI
arterial phase (maximum signal-to-noise ratio).

• MRI protocol for breast cancer dataset

DCE and multiple flip angles (mFAs) data were acquired on a 3.0T

Philips Achieva MR scanner using a 16-channel bilateral breast coil.
The acquisition of mFAs included flip angles from 2◦ to 20◦ by 2
degrees increment, whereas DCE flip angle was 20◦. Imaging pa-
rameters for both DCE and mFAs protocols were TR = 7.9 ms,
TE = 4.6 ms, 192 × 192 × 20 image resolution, 220 × 220 mm2

field of view (FOV) and slice thickness 5mm, while in DCE tem-
poral resolution was 16 s and 25 dynamic acquisitions were ac-
quired. The Gd-DTPA CA was administered via a power injector
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using 0.1 mmol/kg. A detailed description of the DCE protocol is
provided in (LAA+15).

4.1.1 MRI visualization and analysis tools

Osirix Dicom viewer was used in order to visualize and save appropri-
ately the DCE-MRI images. We loaded the DICOM folder with the DCE
images provided by the University General Hospital of Heraklion on a
DVD-ROM drive. Osirix was used on an Apple MacBook Pro having
2.6GHz Intel Core i5 processor with 8 GB RAM. In order to import the
desired data in the Osirix database we click on File→Import→DICOM
file(s) and then select the Dicom folder we want to import. Afterwards,
while being on the Documents DB window, we select the imported folder
and we click on the arrow on the left of patient’s name to expand the con-
tents of the folder. We then find the perfusion folders we are interested
in, we double click on each of them and then click on Export→ DICOM
file(s) and save them in a folder of our preference. In order to proceed to
the next step of our data analysis, we had to create two folders, the ‘per-
fusion’ folder containing the DCE perfusion data and the ‘angles’ folder
containing all the different angles that were considered under the MRI
protocol.

A dedicated software tool was employed for the DCE-MRI data anal-
ysis (KKS+16). Design of ROIs was implemented in this tool as well as
calculation of the pharmacokinetic parameters.

All the numerical results presented in this work have been obtained
by Matlab 8.1.0.604 (R2013a) implemented on an Intel Core 2 i7-4770 pro-
cessor, 3.4 GHz with 16 GB RAM.

4.2 Case study I: Three sarcoma patients

Soft-tissue sarcomas are malignant neoplasms usually arising from soft
tissues, like muscle, fat, blood vessels but can also start from any part
of the body. They exhibit high heterogeneity with more than 50 dif-
ferent subtypes identified, yet they are quite rare in humans compared
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to other cancers. In our first case study, our main aim was to charac-
terize the heterogeneous environment of three sarcomas through au-
tomatic TIC shape classification and associate the enhancement pat-
terns to necrotic, hypoxic and well-perfused areas. The robustness
of two novel initialization methods used for the BU-NMF has also
been investigated. Finally, we have also tried to associate some lim-
ited histopathological results with the algorithmic findings.

In this section, we present results from three male patients, with me-
dian age 58 years, who were diagnosed with soft tissue sarcomas, and
more specifically:
Patient #1: lower limb (calf) MPNST classified as poorly differentiated
(Grade III) MPNST with large necrotic areas.
Patient #2: thigh pleomorphic liposarcoma with several necrotic regions.
Patient #3: neck pleomorphic liposarcoma with necrotic regions centrally
in the tumor.

Results from both the wash-in and PK map initialization of the BU-
NMF algorithm are illustrated in the following figures. In Figures 26,
27 and 28 the results from the BU-NMF implementation using wash-in
initialization, are presented for Patients #1, #2 and #3 respectively. In Fig-
ures 26a, 27a and 28a the plots of the three NMF components are depicted
and in Figures 26b, 27b and 28b the corresponding composite color maps
are illustrated, showing the contribution of the three components to each
individual voxel. Each image voxel is characterized by a mixture of well-
perfused (green), hypoxic (blue) and necrotic (red) regions. The results
of the PR analysis using the PK map initialization, containing the NMF
plots are shown in Figures 26c, 27c and 28c while the composite color
maps are depicted in Figures 26d, 27d and 28d for each of the three pa-
tients respectively. We notice that for all three patients, the three differ-
ent NMF components have the shape of the theoretically expected DCE
curves (Figure 7), confirming the efficiency of the BU-NMF algorithm in
automatically characterizing the enhancement profiles. In addition, con-
sidering the apparent high variability in the initial conditions the method
in all cases yields consistent results.
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Figure 26: PR analysis results for Patient #1: (a)-(b) plots of the three NMF
components and the corresponding composite color map using the wash-in
map initialization, and (c)-(d) plots of the three NMF components and the
corresponding composite color map using the PK map initialization. The
composite color maps in (b) and (d) describe the percentage contribution of
the well-perfused (green), hypoxic (blue), and necrotic (red) components.

Figure 27: PR analysis results for Patient #2: (a)-(b) plots of the three NMF
components and the corresponding composite color map using the wash-in
map initialization, and (c)-(d) plots of the three NMF components and the
corresponding composite color map using the PK map initialization. The
composite color maps in (b) and (d) describe the percentage contribution of
the well-perfused (green), hypoxic (blue), and necrotic (red) components.
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Figure 28: PR analysis results for Patient #3: (a)-(b) plots of the three NMF
components and the corresponding composite color map using the wash-in
map initialization, and (c)-(d) plots of the three NMF components and the
corresponding composite color map using the PK map initialization. The
composite color maps in (b) and (d) describe the percentage contribution of
the well-perfused (green), hypoxic (blue), and necrotic (red) components.

4.2.1 Statistical analysis results

Statistical analysis of our results was performed using Pearson’s linear
correlation coefficient in order to investigate the correspondence between
the hypoxic, well-perfused and necrotic components derived from the
two BU-NMF initialization approaches. The correlation coefficient can
range between -1 and +1, which we corresponded to percentages rang-
ing between -100% and 100%. All image correlations described in the
following paragraphs have been computed following image background
removal, thus taking into account only the tumor ROI pixels. The results
are presented in Table 1 for all three patients.

We notice that the highest correlation percentages (greater than 91%)
appear when the same components from the two different BU-NMF im-
plementations are compared e.g. hypoxic component from wash-in ini-
tialization with hypoxic component from PK initialization. As expected,
all comparisons of different components exhibit either low or negative
correlations.

The relationship between the BU-NMF classification and the ktrans
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Table 1: Correlation (%) between the hypoxic, well-perfused and necrotic
components using the two initialization schemes for the BU-NMF algo-
rithm. Pt stands for Patient, HYP for Hypoxic, WP for Well-perfused, and
NEC for Necrotic

Wash-in
HYP WP NEC

PK Pt #1 Pt #2 Pt #3 Pt #1 Pt #2 Pt #3 Pt #1 Pt #2 Pt #3

HYP 98.1 99.6 96.4 -17.1 -12.4 -25.7 -74.6 -85.1 -76.4
WP -4.3 5.7 -18.9 99.8 91.1 98.8 -51.3 -49.0 -46.4
NEC -87.8 -82.1 -71.4 -43.4 -45.6 -44.7 99.1 97.0 98.2

map three-region classification using k-means clustering, was also in-
vestigated and the derived correlation percentages are presented in Ta-
ble 2. The BU-NMF classification results were obtained from Patient #1
using the wash-in initialization method. Similar results were obtained
when the PK initialization was chosen instead. Correlation is dominant
when the same regions are compared even though percentages are not
as high as in Table 1, ranging between 38.4% and 66.9%. The necrotic
components show the highest correlation (66.9%) whereas well-perfused
and hypoxic components show lower correlation, i.e. 46.0% and 38.4%
respectively. This might be due to the fact that the ktrans parameter is in-
dicative of necrotic regions, as explained in Section 3.1.3, but is not able
to distinguish well between the well-perfused and hypoxic regions when
a simple classification method as k-means is used. Negative or low cor-
relation percentages were observed when different components from the
two methods were described.

In order to get a further understanding of the extracted tumor hy-
poxic regions, we focused on comparing only the hypoxic map extracted
from the BU-NMF algorithm with the entire ktrans map (Table 3). Corre-
lation percentages varied between 23.7-43.2%, which does not give very
much evidence of correlation between the two methods.

Subsequently, we applied a double thresholding technique on the
ktrans image in order to approximate the location of the hypoxic region
in the tumor. The rationale for this is that the hypoxic areas will exhibit
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Table 2: Correlation (%) between the BU-NMF (wash-in initialized) and the
ktrans (clustered by k-means) hypoxic, well-perfused and necrotic compo-
nents for Patient #1. HYP stands for Hypoxic, WP for Well-perfused, and
NEC for Necrotic

ktrans

BU-NMF HYP WP NEC
HYP 38.4 6.9 -42.9
WP 23.8 46.0 -54.9
NEC -0.5 -31.2 66.9

Table 3: Correlation (%) between the ktrans map and the hypoxic map ex-
tracted from BU-NMF with different initialization schemes. Pt stands for
Patient, and HYP for Hypoxic

ktrans versus BU-NMF
HYP map / Wash-in

ktrans versus BU-NMF
HYP map / PK

Pt #1 32.3 23.7
Pt #2 43.2 39.4
Pt #3 38.9 40.5
Mean 38.1 34.5

a ktrans profile greater than the necrotic (ktrans = 0) but less than the
well-perfused areas (ktrans → 1). We tested different threshold values
and we identified the upper and lower bounds in the ktrans image that
lead to the highest correlation between the image derived from ktrans

thresholding and the hypoxic region derived from BU-NMF (Table 4). It
is noticeable that for all three patients the mean of these bounds was ly-
ing in a range between 0.15 and 0.76 approximately, with ktrans taking
on values in a range of 0-1, leading to a maximum mean correlation with
BU-NMF results of around 52% (i.e. mean of 51.1% and 53.6% which
are the mean maximum correlations for wash-in and PK initialization).
From this, we could assume that the necrotic image regions according
to our classification exhibit ktrans values lower than 0.15, well-perfused
exhibit ktrans more than 0.76 and hypoxic regions lie in between these
two thresholds. This assumption is reasonable since the hypoxic ktrans
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Table 4: Correlation (%) between hypoxic maps extracted from the ktrans

map and BU-NMF and corresponding ktrans bounds. Pt stands for Patient

ktrans versus BU-NMF with Wash-in ktrans versus BU-NMF with PK

Correlation
(%)

ktrans

lower
bound

ktrans

upper
bound

Correlation
(%)

ktrans

lower
bound

ktrans

upper
bound

Pt #1 53.0 0.14 0.52 48.6 0.12 0.70
Pt #2 57.7 0.06 0.77 55.8 0.05 0.77
Pt #3 50.2 0.28 0.76 49.0 0.29 0.81
Mean 53.6 0.16 0.68 51.1 0.15 0.76

range is in line with findings claiming that the bulk of the tumor con-
sists mainly of hypoxia; hence, the periphery of the tumor, which typi-
cally relates to the normoxic/well-perfused area, occupies smaller space
(SCW+09; NTC+13). Necrotic regions instead are those with ktrans close
to zero, occupying a smaller space with respect to hypoxia. However, in
our case the necrotic region seemed to be overestimated by a small per-
centage of 15%, which can be explained by the limitation of MR imaging
resolution and partial volume effect. As a result, voxels with values close
to zero that are adjacent to necrotic regions with ktrans = 0 may also be
considered as necrotic. Similar assumptions for the ktrans range were
used in a recent study (ROT+15), which deals with the delineation of tu-
mor physiological regions through the application of a cancer predictive
model aiming to predict patients’ glioblastoma progress.

Hence, we conclude that from the double thresholding technique we
used on the ktrans image, the BU-NMF hypoxic regions best correlated
to ktrans image with values between 0.15 and 0.76 approximately, well-
perfused areas to ktrans above 0.76 and necrotic regions to ktrans below
0.15. These results are in agreement with published results and findings
on tumor hypoxia as explained in the previous paragraph.

4.2.2 Qualitative findings from histopathological reports

After permission, tissue slides of the surgical specimens of three patients
were retrieved from the archive of the Pathology Laboratory of the Uni-
versity General Hospital of Heraklion and were histopathologically re-
evaluated by a certified pathologist. Furthermore, FFPE (formalin-fixed
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paraffin-embedded) blocks of the areas of interest were also retrieved
and 3µm thick tissue sections were cut and were mounted on charged
glass to perform immunohistochemistry. Specifically, Ki67 (Clone MIB-1,
mouse monoclonal antibody, DAKO) and CD34 (Clone QBEnd-10 mouse
monoclonal antibody, DAKO) antibodies were applied at validated dilu-
tions and incubation times. The findings indicated consistency in the
morphological characterization of the three lesions regarding the exis-
tence of necrotic areas sporadically distributed within the tumors. In
addition, all three tumors have been characterized by regionally high
proliferation rates.

Specifically, for Patient #1 who was diagnosed with MPNST sarcoma,
the immunohistochemical biopsy evaluation demonstrated: a) high cell
proliferation index (Ki67), b) high cellularity, and c) positive values of
CD34 endothelial marker indicating high microvessel density. We can
assume that regions with high cellularity and vascularization might indi-
cate either lack of adequate oxygenation of the tumor, hence hypoxic re-
gions, or presence of well-perfused areas. This finding is also confirmed
by the BU-NMF analysis results for Patient #1, which showed the pres-
ence of both well-perfused and hypoxic regions in the tumor (Figure 26).

To summarize, results of this first case study indicated that it is pos-
sible to characterize the heterogeneity of three different sarcomas using
our model-free method. The three BU-NMF components identified for
the three patients had the characteristic shapes of the three theoretical
enhancement patterns, thus resulted in discrimination of well-perfused,
hypoxic and necrotic areas within each of the three tumors. The ex-
istence of necrotic areas in the three tumors has also been confirmed
by the histopathological reports of the three patients. From the double
thresholding technique we used on the ktrans image, we identified ktrans

ranges for each of the three regions, i.e. hypoxic regions best correlated
to ktrans image with values between 0.15 and 0.76, well-perfused areas
to ktrans above 0.76 and necrotic regions to ktrans below 0.15 which are
in agreement with (SCW+09; NTC+13) as explained previously. In terms
of the BU-NMF algorithm initialization, we have shown the robustness
of both the ktrans and PK map initialization methods since they gave
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consistent tumor classification results for all three patients.

4.3 Case study II: Two MPNST patients

Among the experiments carried out in this thesis, we have examined two
patients having the same type of tumor, MPNST according to histopatho-
logical evaluation. However, the perfusion profiles were completely dif-
ferent in the two tumors, in the sense that one of them did not exhibit any
necrosis at all. To this end, in the specific case study we investigated the
possibility to automatically assess differences in the same type of tu-
mor based on PR. By comparing PR classification results between the
two cases, it is possible to reveal early indication of tumor grading,
something which is currently achieved only through histopathology.

The first patient, mentioned as Patient #1, was affected by lower limb
MPNST with large necrotic areas, as explained in Section 4.2, while the
second patient, mentioned as Patient #4, was affected by upper limb
(humerus) MPNST which was classified as well-moderately differenti-
ated (Grade I-II) MPNST with no presence of necrotic areas. In Figures
29a, b and c the plots of the three NMF components for Patient #1 are il-
lustrated and in Figure 29d the ROI pixels are colored as a mixture of the
three components, the well-perfused(green), hypoxic (blue) and necrotic
(red) component. The results of the PR analysis for Patient #4 are shown
in Figure 30 and in contrast to the other patient, only two components
are identified instead of three, the well-perfused and hypoxic one. We
notice that the shape of the well-perfused curves in Figures 29a and 30a
and of the hypoxic curves in Figures 29b and 30b are similar for both pa-
tients and are also in line with the theoretically expected DCE curves as
explained in Section 2.2.2.

4.3.1 Examination of intensity plots of classified pixels

The robustness of the BU-NMF algorithm was further tested by exam-
ining the DCE intensity plots of the pixels classified by the algorithm as
well-perfused (WP), necrotic (NEC) or hypoxic (HYP) in order to explore
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Figure 29: PR analysis results for Patient #1: (a)-(c) plots of the three com-
ponents, i.e. well-perfused, hypoxic, and necrotic respectively, and (d) com-
posite color map showing the percentage contribution to each pixel of the
well-perfused (green), hypoxic (blue) and necrotic (red) components.

if they are consistent.
Following the BU-NMF classification, pixels were further classified

in unique WP, HYP and NEC clusters. This included normalization of
the NMF weight values between 0-1 and further classification of the pix-
els by assigning to them one of the three components according to the
following criteria:

• Pixel x is HYP if and only if the NMF weight of the hypoxic com-
ponent of the pixel > threshold

• Pixel y is WP if and only if the NMF weight of the well-perfused
component of the pixel > threshold

• Pixel z is NEC if and only if the NMF weight of the necrotic com-
ponent of the pixel > threshold

where threshold = [0.5, 0.6, 0.7, 0.8]. This range of thresholds was chosen
due to our working hypothesis that a pixel is characterized as HYP, WP
or NEC when it is comprised at least 0.5 (50%) of one of the three com-
ponents against the total value that is derived from all three components
and equals to 1.

In Tables 5 and 6, the total percentages of the WP, HYP and NEC
pixels are presented when different threshold criteria are applied for Pa-
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Figure 30: PR analysis results for Patient #4: (a)-(b) plots of the two compo-
nents, i.e. well-perfused, and hypoxic respectively, and (c) composite color
map showing the percentage contribution to each pixel of the well-perfused
(green) and hypoxic (blue) components.

tients #1 and #4 respectively. We can see that as the threshold becomes
stricter i.e. the higher value it has, a smaller percentage of pixels are clus-
tered as HYP, WP or NEC. This is something expected since the cancer
environment is heterogeneously perfused so each pixel does not have a
completely distinct perfusion profile due to the inherent limited resolu-
tion.

In Figures 31, 32 and 33 the intensity plots of a number of clustered
WP, HYP and NEC pixels from Patient #1 are depicted for different clas-
sification thresholds at 50%, 70% and 80% respectively. We randomly
selected around twenty pixels from each category (WP, HYP and NEC)
and depicted their intensity curves for each classification threshold. Sim-
ilarly, in Figures 34, 35 and 36 the intensity plots of a number of clustered
WP, HYP and NEC pixels from Patient #4 are depicted for the different
thresholds, i.e. 50%, 70% and 80% respectively.

From the intensity curves shown in Figures 31-36 it can be seen that as
the threshold increases, the image pixels are clustered into more homo-
geneous areas (especially the WP pixels) with respect to their enhance-
ment profiles. The HYP curves show also a little delay in reaching the
maximum with respect to WP curves, which agrees with the theoretical
DCE curves of Type 2 which show delayed enhancement compared to
the Type 3 curves (KMK+99). Furthermore, the delayed enhancement of
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Table 5: Percentage of pixels (%) clustered as purely WP, HYP or NEC when
a classification threshold between 50-80% is applied on the BU-NMF classifi-
cation results for Patient #1. HYP stands for Hypoxic, WP for Well-perfused,
and NEC for Necrotic

Threshold for
classification

HYP WP NEC

50% 31.7 5.1 42.1
60% 19.6 2.5 30.7
70% 9.9 1.0 21.1
80% 3.5 0.4 10.8

Table 6: Percentage of pixels (%) clustered as purely WP, HYP or NEC when
a classification threshold between 50-80% is applied on the BU-NMF classifi-
cation results for Patient #2. HYP stands for Hypoxic, WP for Well-perfused,
and NEC for Necrotic

Threshold for
classification

HYP WP NEC

50% 65.7 34.3 0
60% 45.4 17.1 0
70% 21.8 6.3 0
80% 9.7 2.9 0

the HYP curves is in agreement with 18F-Fmiso PET studies reporting
that HYP regions show enhancement at later times after CA injection,
with lower initial activity than WP areas but more persistent enhance-
ment through time (CAC+09). Finally, the shapes of the WP, HYP and
NEC intensity curves look similar to the corresponding WP (Figures 29a
and 30a), HYP (Figures 29b and 30b) and NEC (Figure 29c) pattern curves
found by the BU-NMF. This finding strengthens the effectiveness of our
method in finding the correct enhancement pattern of each image pixel.

To summarize, in Case study II the BU-NMF algorithm was applied
on two MPNST sarcomas and identified three different patterns in Pa-
tient #1 and two in Patient #4, with the NEC pattern missing in the lat-
ter. This was in accordance with the histopathological report of Patient
#4, which indicated lack of NEC regions. These findings could assist in
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Figure 31: Intensity plots of image pixels clustered as well-perfused, hy-
poxic and necrotic at threshold 0.5 for Patient #1.

Figure 32: Intensity plots of image pixels clustered as well-perfused, hy-
poxic and necrotic at threshold 0.7 for Patient #1.

Figure 33: Intensity plots of image pixels clustered as well-perfused, hy-
poxic and necrotic at threshold 0.8 for Patient #1.

classification of the malignancy grade by identifying different number
of patterns in tumors of the same type. A second classification step was
implemented after the BU-NMF, by applying four different thresholds in
order to assign to each pixel a single component and not a mixture of all
the identified BU-NMF components. The percentages of WP, HYP and
NEC pixels were calculated for each threshold and for each patient sep-
arately showing that the higher the threshold, the fewer were the pixels
that were classified as purely WP, NEC or HYP.
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Figure 34: Intensity plots of image pixels clustered as well-perfused and
hypoxic at threshold 0.5 for Patient #4.

Figure 35: Intensity plots of image pixels clustered as well-perfused and
hypoxic at threshold 0.7 for Patient #4.

Figure 36: Intensity plots of image pixels clustered as well-perfused and
hypoxic at threshold 0.8 for Patient #4.
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4.4 Case study III: Liposarcoma patient follow-
up after ILP

In this case study, we have examined a particular case of a young pa-
tient with a high-grade myxoid liposarcoma on the left foot, mentioned
as Patient #5, who underwent isolated limb perfusion (ILP) with tumor
necrosis factor alpha (TNF-α) and melphalan, which is a quite novel tech-
nique. MRI scans, provided anonymously by the Department of Medi-
cal Imaging of the University General Hospital of Heraklion, were an-
alyzed before and after the therapy after getting approval by the local
Ethical Committee. Histopathological figures and findings were pro-
vided anonymously by the Department of Pathology of the University
General Hospital of Heraklion. Three different techniques have been
used for the evaluation of tumor response to therapy, DCE-MRI, DW-
MRI and T2* relaxometry (T2*r). To our knowledge, MRI analysis of
TNF induced perfusion has only been studied in animals (PWTH+04)
and has shown changes in endothelial permeability after therapy as
measured by perfusion biomarkers. This case study assesses the vas-
cularity changes in a lower limb sarcoma after ILP with TNF-α, based
on non-invasive MRI methods. To this end, clinically relevant perfusion
biomarkers extracted from DCE-MRI, DW-MRI and T2*r have been used
for the evaluation of tumor response to therapy for the patient with high
grade myxoid liposarcoma.

ILP has been used for locally advanced soft tissue sarcoma of the ex-
tremities in order to avoid amputative surgery when wide excision is
not feasible (JH16). This therapy helps in reducing tumor size so that a
marginal excision of the tumor can be performed after a few weeks of
therapy administration. ILP is usually combined with TNF-α and mel-
phalan. The reason behind this is that TNF-α is linked with increased
uptake of chemotherapeutic drugs, such as melphalan, into the tumor as
well as with selective destruction of tumor neovascularization (LKL01).
In addition, increased vessel permeability and reduced interstitial pres-
sure have been reported among the early effects of TNF-α administration
(JG96) which can induce a huge increase (up to six-fold) of melphalan up-
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take into the tumor (dWtHdB+00). Conversely, late antivascular effects
including endothelial apoptosis and tumor vessel disintegration, which
may eventually lead to tumor necrosis, are best elucidated using imag-
ing methods before and after ILP with TNF-α (RYB+98) and this is also
the main subject of our work in this case study.

In this case study, a myxoid-fleshy structure in the tissue was ob-
served at histological examination of the lesion of Patient #5. The le-
sion presented a subtle multinodular conformation, exhibited areas of
variable cellular density with enhancement of cellularity at the periph-
ery, and was composed of bland fusiform or round cells suspended in-
dividually in a myxoid matrix with a prominent network of arborizing
thin-walled capillary vessels, often in a ‘chicken-footprint’ configuration
(Figure 37).

With regards to the DCE-MRI data, the BU-NMF algorithm was ap-
plied in order to identify the main enhancement patterns which charac-
terize the tumor before and after therapy. In addition, the pharmacoki-
netic ktrans metrics was measured using the ETM model.

In addition to the DCE-MRI method, the DW-MRI method can also
provide metrics indicative of vascularity. Intravoxel incoherent motion
(IVIM) model of DW-MRI may separate microcirculatory from thermal
diffusion effects and can be used to study microcirculatory blood flow
properties by estimating the microperfusion fraction f (Fed17), i.e. the
fraction of DW-MRI signal arising from incoherent blood flow motion.

A third MRI method related to blood supply, is BOLD-MRI, which in-
directly measures the total amount of deoxyhemoglobin (dHb) levels in
a voxel. Conceptually, the paramagnetic nature of deoxyhemoglobin as
opposed to oxyhemoglobin, accelerates T2* relaxation, shortening thus
T2* constants of tissue around the blood vessels. Importantly, dHb lev-
els depend on a number of concurrent phenomena such as blood flow,
blood oxygenation, vasculature, hemoglobin levels etc. (HRM+01). Be-
cause of the complex interplay between blood supply and oxygen extrac-
tion, changes in oxygen delivery (blood flow) are not directly related to
changes of oxygen consumption and dHb changes do not always match
the expected action of the vascular stimulus. T2*r can provide infor-
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Figure 37: CD34 stain highlights the thin-walled mostly arborizing vascu-
lature (Original magnification ×200).

mation regarding tumor microenvironment as it reflects tissue oxygen
bioavailability. Larger T2* tissue constants as a result of lower dHb con-
centration, may indicate lower blood flow, lower tissue oxygenation, de-
ficient vascular network etc., and is consistent with tumor response to
therapy (RLH+17).

The BU-NMF results showed that before therapy there is prevalence
of the hypoxic enhancement pattern, i.e. 68.59% (Figure 38). In ad-
dition, baseline perfusion study showed strong enhancement and fur-
ther post processing with specific DCE and DW-MRI software (KKS+16;
MNPM16) evaluated high ktrans (mean 0.424 mL/g/min) (Figure 39a)
and f values (mean 33.5%), indicating functional vessel network to the
neoplasm. T2*r showed a mean value for the 3D tumor ROI of 72 ms.

In addition to the MRI measures, some quantitative immunohisto-
chemistry results (CD34) were also computed regarding intratumoral
microvessel density (iMVD) before therapy. The CD34-stained neoplas-
tic vasculature, consisted mostly in fine arborizing vessels with diameter
greater than 0.6 mm and newly formed vessels of one to three endothe-
lial cells. Vessel rich hot spots areas were located in the tumor periphery
and interestingly correlated closely with the areas having the highest tu-
mor cell proliferation activity (Figure 37). Two methods were used to
assess iMVD: a) microvessel counting (WSWF91), and b) the relative mi-
crovessel area estimate (‘Chalkley count’) (Cha43). The absolute num-
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Figure 38: PR analysis results for Patient #5 before TNF therapy: (a) plots
of the three NMF components, and (b) the corresponding composite color
map describing the percentage contribution of the well-perfused (green),
hypoxic (blue), and necrotic (red) components. The hypoxic pattern (blue)
is the principal pattern before TNF therapy.

Figure 39: Screenshot from in-house built software platform for DCE lon-
gitudinal analysis (LAA+15). Pixel-based parametric (ktrans) maps from a
single tumor slice: (a) before, and (b) after TNF therapy.

ber of the vessel count obtained in the three fields (×200) was 290, 282
and 264, respectively, resulting in a mean of 280.3 vessels. Chalkley grid
score of each hot spot was 14, 18 and 16, respectively, resulting in a mean
Chalkley count of 16. In light of the above, we can assume that regions
with positive iMVD thus with high vascularization, might indicate ei-
ther lack of adequate oxygenation of the tumor, hence hypoxic regions,
or presence of well-perfused areas. This is in accordance with the afore-
mentioned MRI findings, i.e. high ktrans and f values, prevalence of the
hypoxic component and small T2* constant.

Since follow-up MRI was performed two months after therapy, our
work focused on the late vascularity changes, such as tumor vessel dis-
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Figure 40: PR analysis results for Patient #5 after TNF therapy: (a) plots
of the three NMF components, and (b) the corresponding composite color
map describing the percentage contribution of the well-perfused (green),
hypoxic (blue), and necrotic (red) components. The necrotic pattern (red) is
the dominant pattern after TNF therapy.

integration and endothelial apoptosis. Identical protocol showed min-
imal foci of enhancement and reduced number of pixels (873 before vs
618 pixels assigned as tumor after therapy, counted in 128 × 128 DW-
MRI images) in the ROI volume. In addition to the shrinkage of the tu-
mor enhancement area, response to therapy was also confirmed by our
PR approach, which showed that after therapy the necrotic enhancement
pattern is dominant, representing a percentage of 97.83% of image pixels
(Figure 40). The transition of the tumor from the hypoxic to the necrotic
state is in line with the expected outcome of the ILP with TNF-α therapy
as explained in the beginning of this section. The ktrans and f metrics
showed also remarkably reduced perfusion (Figure 39b) and blood flow
respectively in the whole tumor volume (mean ktrans was reduced from
0.424 to 0.099 mL/g/min and mean f was reduced from 33.5 to 7.3%),
strongly indicating severe impairment of the vessel network. In addi-
tion, T2* relaxation became slower after therapy (mean T2* was increased
from 72 to 82 ms), implying decreased levels of deoxyhemoglobin thus
deprived oxygen supply. All the aforementioned MRI findings suggest
that the tumor positively responded to therapy. More importantly, our
PR method results compare favorably to results from widely accepted
MRI biomarkers, such as ktrans and f biomarkers, which is encouraging
in prediction of response to therapy using model-free biomarkers.
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To summarize, in Case study III the BU-NMF method has detected
a shift from hypoxic to necrotic state of the tumor after ILP with TNF-α
therapy confirming response to therapy. Three additional MRI methods
gave results that were consistent with response to therapy, further con-
firming the efficiency of our model-free method. Although there is no
absolute threshold to characterize tumor proliferation, hypoxia or necro-
sis, relative changes of perfusion characteristics such as the BU-NMF ex-
tracted principal enhancement patterns before and after therapy could
be used to effectively assess response after therapy.

4.5 Case study IV: Preliminary histopathologi-
cal results for a liposarcoma patient

In the following, we present results from a patient who was diagnosed
with retroperitoneal dedifferentiated liposarcoma, mentioned as Patient
#6. The clinical question we want to explore in this case study is
whether we can correlate DCE-MRI findings with results from histo-
pathology and more specifically with H&E and HIF-1α findings.

We have first performed our PR method for the specific liposarcoma,
using the BU-NMF algorithm resulting in two components with the
necrotic component being the dominant one (91.83%) in contrast to the
well-perfused one (8.17%) represented by the red and green plots respec-
tively in Figure 41a. It is noticeable that the two curves have comparable
shapes to the theoretical ones (Figure 7). The BU-NMF composite color
map (Figure 41b) also seems to correspond well with the ktrans map (Fig-
ure 41c) obtained from the ETM model when examined for a specific tu-
mor slice and ROI. Necrotic areas depicted as red in the BU-NMF map
corresponded well to the low ktrans areas, shown as blue in Figure 41c.
Well-perfused, i.e. green areas in the BU-NMF map also corresponded
well to medium (green) ktrans areas with the exception of some well-
perfused areas in the upper left of the ROI (Figure 41b) in the BU-NMF
map, which were mismatched with low ktrans areas in the ktrans map.

As a next step to our analysis, we tried to associate the DCE-MRI
findings with the histopathological findings. In particular, the existence
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Figure 41: DCE-MRI model-free and model-based results for Patient #6: (a)
plots of the two identified BU-NMF components, i.e. the well-perfused
(green) and the necrotic (red) components, (b) BU-NMF composite color
map showing percentage contribution of each component to image pixels,
and (c) ktrans map extracted from the ETM pharmacokinetic model.

of necrotic areas was firstly assessed on H&E stained tumor sections (Fig-
ure 42) sampled at positions corresponding to the middle slice of the MRI
images. The bright pink color in the major part of the H&E image sug-
gests large necrotic areas in the specific tumor.

Apart from the necrotic pattern, which seems to dominate the specific
tumor, there is also a small area evident in the upper part of the tissue
section in Figure 42, which shows a different structure and corresponds
to the structure of a well-differentiated tumor area. The extracted BU-
NMF map as well as the H&E images taken from two locations of the two
heterogeneous tumor areas are shown in Figure 43. The corresponding
biopsy sections of these two areas are also depicted in the right part of
Figure 43.

Besides the H&E findings, we have also examined histopathological
images obtained after the immunohistochemical staining of tumor sec-
tions with the HIF-1α antibody (mouse monoclonal clone ESSE122, Ab-
cam) and compared them with DCE-MR images as shown in Figure 44.
In the right part of Figure 44 we see the photo of a specific area of the tu-
mor section after immunohistochemical staining with HIF-1α. The area
was chosen with special care so that it corresponded to the DCE-MRI ROI
which exhibited heterogeneous perfusion. HIF-1α staining also demon-
strated heterogeneous performance and the areas of expression (well-
differentiated areas) are depicted as dense areas at the rims of the necro-
sis in the figure, in contrast to the null expression in the necrotic area
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Figure 42: Image obtained from H&E stained tumor sections depicting the
necrotic behavior of a dedifferentiated liposarcoma (Original magnification
×20).

Figure 43: BU-NMF results compared with H&E images of Patient #6. Left:
BU-NMF composite color map extracted for a selected ROI. Center: Images
from H&E stained tumor sections from necrotic and well-differentiated ar-
eas of the excised tumor (Original magnification ×200). Right: Biopsy im-
ages of corresponding parts of the excised tumor right after surgery.

sparse and necrotic areas where it was not expressed and were associ-
ated to necrotic areas in the BU-NMF map.

To summarize, in Case study IV we have examined the BU-NMF
method on a dedifferentiated liposarcoma and compared results with
histopathological H&E and HIF-1α images. BU-NMF identified the pres-
ence of necrotic and well-perfused areas, which were also present in the
histopathological images. However, correlation of DCE-MRI and histo-
pathology needs to be further investigated by assessing more histopatho-
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Figure 44: BU-NMF results compared with HIF-1α image for Patient #6.
Left: BU-NMF composite color map, extracted for a selected ROI, consisting
of well-perfused (green) and necrotic (red) areas. Right: HIF-1α (Original
magnification ×200). The HIF-1α image shows areas of expression (dense
pink) corresponded to BU-NMF well-differentiated areas, and areas of no
expression (bright pink) corresponded to BU-NMF necrotic areas.

logical parameters and extract quantitative information from them.

4.6 Case study V: Breast cancer dataset

Breast cancer is the most frequent cancer diagnosed in women world-
wide (FSD+15) and is the leading cause of cancer deaths among women.
NAC is considered the gold standard for locally advanced breast can-
cer treatment as it can lead to a more successful breast surgery by re-
ducing the tumor size that needs to be excised and by possibly curing
micrometastases earlier than adjuvant treatment (LMY+10).

In this particular case study, the clinical motivation was to under-
stand whether DCE model-free biomarkers can predict treatment re-
sponse early in the course of NAC therapy. To the best of our knowl-
edge, this is a novel study employing imaging-based tumor environ-
ment classification PR techniques for predicting NAC response. In ad-
dition, compartmental model-based biomarkers were also used in order
to align our analysis with previous ones based on DCE-MRI and also
identify possible correlations of model-based, PR biomarkers with re-
spect to NAC prediction.

In this case study, a public available dataset was analyzed (LAA+15;
LAA+16; CVS+13) which included DCE-MRI, DW-MRI and PET/CT
data from breast cancer patients acquired before, during and at the end
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of NAC. The complete breast cancer dataset includes 59 patients with
histologically-proven breast cancer of stage II/III. The details of the spe-
cific therapeutic regimens followed for each patient are available in
(LAA+15). Moreover, each patient was classified as pathological com-
plete response (pCR) or non-pCR according to a biopsy specimen ac-
quired at the end of all NAC sessions. Complete response was associated
to the lack of tumor residual in both breast and lymph nodes which is in
accordance with Sataloff (SMP+95).

From the 59 patients included in the complete dataset, 20 patients
had only PET/CT exams so these were excluded. From the remaining 39
patients four patients were excluded since they had only one DCE exam,
so the dataset that was analysed in this study included 35 patients with
two or three DCE longitudinal imaging studies. The analysed patient
cohort included 12 pCR and 23 non-pCR patients, having a baseline and
a follow-up exam whereas few of them (4 pCR and 8 non-pCR) had also
a second follow-up exam.

In the following paragraphs, we describe the results of the PR and
the model-based methods applied to the breast cancer dataset. For the
statistical analysis of the dataset, the prognostic value of four model-
based (ktrans, kep, ve, vp) and three model-free (well-perfused, hypoxic,
necrotic) biomarkers, measured at each imaging time point, as well as
their percentage changes from baseline to first follow-up (∆ktrans, ∆kep,
∆ve, ∆vp, ∆well-perfused, ∆hypoxic and ∆necrotic) were investigated.

The slope and time to peak of the curves assigned to hypoxic and
well-perfused PR components were first calculated and then the mean
percentage differences between the two components were computed for
all exams. Results confirmed our initial hypothesis about the shapes of
Type 2 and Type 3 enhancement curves (Figure 7). Specifically, the mean
percentage differences showed 72% increased slope and 189% decreased
time to peak of the well-perfused component compared to the hypoxic
one. This is illustrated in Figure 45 where the three BU-NMF components
from a pCR patient are depicted. This initial test was a quality control
assessment of our proposed method in order to ensure consistency across
all patient data.
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Figure 45: The three resulted BU-NMF components for a pCR patient.
Green curve is the well-perfused component, blue is the hypoxic and red
is the necrotic one complying with the theoretical type 3, 2 and 1 curves
respectively.

For the statistical analysis of the DCE model-free derived features,
the data fed to the statistical algorithm were organized as follows: the
tumor ROI of each exam was clustered by the BU-NMF algorithm in
three areas based on the three derived BU-NMF components. After-
wards, three different threshold criteria were used in order to assign a
unique cluster to each pixel. In particular, a pixel was characterized as
well-perfused, hypoxic or necrotic depending on a) the BU-NMF com-
ponent (well-perfused, hypoxic or necrotic) with the greatest percent-
age contribution in the pixel (threshold 1), or b) the BU-NMF component
(well-perfused, hypoxic or necrotic) with the highest percentage contri-
bution in the pixel provided that this contribution is greater than 0.4,
otherwise this pixel is omitted from clustering (threshold 2) or c) the BU-
NMF component (well-perfused, hypoxic or necrotic) with the greatest
percentage contribution in the pixel provided that this contribution is
greater than 0.5, otherwise this pixel is omitted from clustering (thresh-
old 3). In the rest of the thesis, the three aforementioned thresholds will
be mentioned as thr1, thr2 and thr3. Afterwards, the percentage num-
ber of well-perfused, hypoxic and necrotic pixels against the total num-
ber of ROI pixels from each exam were computed for every threshold.
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Therefore, for each exam 18 different percentages were calculated includ-
ing the well-perfused, hypoxic, necrotic, ∆well-perfused, ∆hypoxic and
∆necrotic percentages for each of the three thresholds, thr1, thr2 and
thr3.

In Figure 46a, the results of the BU-NMF algorithm for a non-pCR
breast cancer patient are presented, where the percentage contribution
of the three PR components is depicted for all the ROI pixels. After ap-
plication of maximum threshold, i.e. the pixel is characterized accord-
ing to the BU-NMF component with the greatest percentage contribution
(Figure 46b), each pixel is assigned to a single component. For stricter
thresholds of 0.4 and 0.5 (Figures 46c and d) some pixels which do not
have high enough contribution of any of the three components are not
included at all in the BU-NMF clustering and are depicted as black in
Figures 46c and d. The hypothesis in adding these thresholds is that
we effectively increase classification accuracy by only considering pixels
with stronger percentage contributions in one of the three tumor envi-
ronment image classes.

For the model-based analysis, the DCE exams were processed using a
specific software platform for DCE longitudinal analysis written in Mat-
lab (KKS+16). For SI to contrast agent concentration conversion, mFAs
data were used. Considering the absence of an artery or vein in the FOV
of the majority of DCE exams, a theoretical arterial input function (AIF)
from Weinmann (WLM84) was used for all analyses. It should be con-
sidered that assuming the same theoretical AIF for all patients may in-
fluence the accuracy of the extracted biomarkers. That said, image-based
AIF computation is also prone to errors since large vessels may be out
of the FOV or may suffer from partial volume effect, or may have an
inaccurate flow profile especially for image acquisition in sagittal plane.

The PK analysis was based on the Extended Tofts Model (Tof97), that
estimates the volume transfer constant ktrans [min−1], the interstitium to
plasma rate constant kep [min−1], the interstitial volume ve (dimension-
less) and the plasma volume vp (dimensionless). Extracted biomarkers
were then limited in ranges with biological significance i.e. ktrans < 5

[min−1], ve < 1 and vp < 1, whereas pixels with values out of these
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Figure 46: BU-NMF composite color map showing percentage contribution
of the well-perfused (green), hypoxic (blue) and necrotic (red) components:
(a) without thresholding, and with application of (b) maximum threshold,
(c) threshold of 0.4, and (d) threshold of 0.5.

ranges were excluded from the statistical analyses. Finally, for every
model-based resulted biomarker (ktrans, kep, ve, vp) the mean, median
and 5th, 15th, 80th and 90th percentiles were computed respectively for
the statistical analysis.

From the statistical analysis, three measures of the model-free hy-
poxic percentage biomarker were revealed to have statistical significance
(p-value<0.05) at the first follow-up, namely hypoxic thr1, hypoxic thr2,
∆hypoxic thr2. In Figure 47 the extracted map of the hypoxic biomarker
is depicted for both a non-pCR (first 2 columns) and a pCR patient (last
2 columns) for the baseline and the first follow-up exam. Regarding the
model-based biomarkers, five measures from two model-based biomark-
ers were revealed to have statistical significance at the first follow-up,
namely kep median, ve median, ve mean, ve 80th percentile and ve 90th

percentile.
As a second step, five classifiers were utilized in order to test the pre-

dictive ability of the model-free biomarkers. The model-free and model-
based biomarkers that showed non-random predictive value (sensitivity
or specificity >50%) as well as their percentages of AUC, F1 score, sen-
sitivity and specificity are presented in Table 7. Median values of kep
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Figure 47: The maps of the hypoxic percentage contribution, a model-free
prediction significant biomarker, from a non-pCR patient and a pCR patient
for the baseline (first and third column) and follow-up (second and fourth
column) studies.

and ve PK biomarkers showed good predictive performance on the first
follow-up using ensemble adaboost with decision trees of level one and
extreme gradient boosting linear classifiers respectively. It is worth men-
tioning that the hypoxic component (threshold 2) was found to be the
best pCR predictor in three different classifiers at the first follow-up
study showing consistent accuracy results. The extreme gradient boost-
ing linear classifier gave the best results of hypoxic threshold 2 compo-
nent, with AUC 90.4%, F1 88.5%, sensitivity 74.0% and specificity 90.5%.
Hypoxic component showed also high predictive ability on threshold 1,
which further confirms the robustness of this biomarker in predicting
treatment outcome without being biased from the thresholding proce-
dure. What is more, the only statistical significant percentage change
measure was the ∆hypoxic thr2 with AUC 76.8% when using the en-
semble adaboost with decision trees of level one classifier. The other two
classifiers used in the statistical analysis, i.e. support vector machine
with linear kernel and k-nearest neighbor classifiers represented by the
two last rows in Table 7 gave results with sensitivity lower than 50% so
they were not considered as giving significant predictive results.

As a last step of the statistical analysis, multivariate analysis was per-
formed yet no combination of the model-free and model-based biomark-
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Table 7: Model-free and model-based statistical analysis results for breast
cancer dataset. Classifiers’ acronyms: clf1 stands for ensemble adaboost
with decision trees of level one, clf2 for extreme gradient boosting linear,
clf3 for support vector machine with linear kernel, clf4 for random forest,
and clf5 for k-nearest neighbor.

Classifier Biomarker
AUC %

(mean±s.d.)
F1 %

(mean±s.d.)
Sensitivity %
(mean±s.d.)

Specificity %
(mean±s.d.)

clf2 hypoxic thr2 90.4±15.1 88.5±14.9 74.0±41.9 90.5±15.1
clf4 hypoxic thr2 88.6±14.7 81.5±15.4 82.0±33.1 82.5±20.4
clf1 hypoxic thr2 86.8±16.2 74.4±16.2 63.0±37.5 86.0±21.5
clf1 hypoxic thr1 73.4±17.3 60.3±16.2 67.0±35.9 62.5±22.2
clf1 ∆hypoxic thr2 76.8±17.0 65.3±17.3 75.0±29.0 67.5±26.8
clf1 kep median 73.4±18.0 64.5±17.1 68.0±36.1 68.5±23.6
clf2 kep median 67.3±17.3 61.3±18.0 50.0±39.1 73.5±21.7
clf2 ve median 72.6±20.2 71.0±19.4 67.0±31.3 84.0±18.7
clf1 ve mean 69.9±19.6 62.1±16.3 63.0±28.2 73.0±25.7
clf2 ve mean 69.6±20.0 65.4±17.6 61.0±27.3 83.0±19.8
clf1 ve 80th %ile 69.4±17.8 65.0±16.5 56.0±34.5 79.5±20.0
clf1 ve median 68.4±20.3 68.5±19.5 68.0±29.9 80.0±21.4
clf1 ve 90th %ile 67.8±16.5 57.5±19.1 58.0±32.5 66.0±24.6
clf3 ve 80th %ile 85.0±15.6 62.3±16.6 11.0±23.2 96.0±10.5
clf5 hypoxic thr2 80.0±16.6 73.5±19.3 48.0±39.1 89.5±19.6

ers resulted in better prediction outcome at follow-up with respect to
the univariate analysis. The best result from multivariate analysis, was
obtained by combining recursively all statistically significant classifiers
except mean and 80th percentile of ve at first follow-up, using extreme
gradient boosting linear classifier (AUC 77.8).

To summarize, results of our predictive analysis revealed the abil-
ity of two model-free (hypoxic and ∆hypoxic) and two model-based
(kep and ve) biomarkers to predict therapy response and discriminate
successfully responders from non-responders with the DCE-MRI image-
derived hypoxic component of the model-free approach outperforming
all other IBs exhibiting an AUC 90.4% in predicting pCR patients in the
first follow-up examination.
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Chapter 5

Conclusions and Future
Work

In this thesis, we investigated the potential of a model-free approach to
describe the heterogeneous perfusion components of the cancer environ-
ment by applying PR techniques directly on DCE-MRI data. Describing
the perfusion heterogeneity of a tumor in a non-invasive way is of ut-
most importance since it can play a key role in tumor characterization
and lead to more effective treatment planning. Our main research goal
was to build a reliable and efficient algorithmic tool for extracting patho-
physiological parameters that is neither protocol nor tumor dependent.
The objective of the proposed algorithm was to be able to provide clin-
ically meaningful physiological properties of tumor for clinical decision
support. More specifically, the identification of chemo/radio-resistant
hypoxic areas in the tumor was the ultimate goal of this thesis since it is
among the hallmarks of cancer and can affect significantly drug delivery
leading to ineffective therapeutic regimens.

In order to approach the problem of tumor segmentation, we used
an extension of the NMF algorithm and more specifically the BU-NMF, a
fast matrix factorization algorithm suitable for non-negative data. Adja-
cent pixels in images often contain similar information thus dimension-
ality reduction algorithms, such as the BU-NMF, are used in order to
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speed up image processing by using part and not the whole information
contained in the image. The algorithm was applied directly on DCE-
MRI data obtained from patients affected by sarcoma and breast cancer.
Two novel initialization methods were introduced, the wash-in and PK
initialization, in order to increase robustness and reproducibility of the
algorithm.

Regarding the sarcoma dataset, six sarcoma cases have been studied
in total including four liposarcomas (two pleomorphic, one dedifferenti-
ated and one myxoid), and two MPNST cases. In Case studies I, III and
IV additional results were obtained by implementation of the quantita-
tive pharmacokinetic ETM model as well as by histopathological qualita-
tive information provided by experienced histopathologists. In the third
case study, DW-MRI and T2*r data were also used in order to provide
complementary information to DCE-MRI. The main aim for the sarcoma
dataset was to characterize the heterogeneous environment of the sarco-
mas using model-free methods while for each sarcoma case study, there
was also a more specific clinical question, and these are explained in the
following paragraphs. In all four case studies, the three most common
theoretically expected types of DCE tissue curve shapes, i.e. Types 1,
2 and 3, were present in the results of the BU-NMF algorithm as being
the dominant patterns that represent the signal and were associated with
necrotic, hypoxic and well-perfused areas in the tumor respectively. In
two of the patients though (Patient #4 and Patient #6) only two of the
three aforementioned patterns were identified which was in accordance
with the histopathological findings for these patients.

In Case study I, in addition to the automatic characterization of the tu-
mor environment in the three sarcomas, the robustness of the two novel
methods used for the initialization of the BU-NMF algorithm was also
examined. It was shown that the well-perfused, hypoxic and necrotic
components extracted from the two BU-NMF implementations (wash-in
and PK initialized), correlated well between them while there was also a
positive correlation with the same components extracted from the ktrans

map with a simple k-means clustering. Small positive correlations were
observed when comparing the ktrans image with the hypoxic component
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of BU-NMF. The correlations were significantly improved, i.e. improve-
ment of 41% for wash-in and 48% for PK initialization, when only a con-
strained (via double thresholding) part of the ktrans map was compared
against the hypoxic BU-NMF image. What is more, from the double
thresholding technique we used on the ktrans image, the BU-NMF hy-
poxic regions best correlated to ktrans image with values between 0.15
and 0.76 approximately, well-perfused areas to ktrans above 0.76 and
necrotic regions to ktrans below 0.15. These results are in agreement with
published results and findings on tumor hypoxia (SCW+09; NTC+13) as
explained in Section 4.2.1. The histopathological findings indicated the
presence of necrotic and well-perfused areas in all three lesions, how-
ever the detection of hypoxic regions would need further analysis since
we only obtained immunohistochemistry results for one of the three pa-
tients.

In Case study II, the main goal was to assess perfusion differences
in the same type of tumor (MPNST) based on PR. The BU-NMF algo-
rithm was initialized by the ktrans map and resulted in identifying three
different patterns in Patient #1 and two in Patient #4, which was due to
the lack of necrotic regions in Patient #4. A second step of classification
was implemented after the BU-NMF in order to assign to each pixel a
single component since the BU-NMF assigns a mixture of all the identi-
fied components to each image pixel. Experiments with different clas-
sification thresholds were made and the percentages of well-perfused,
hypoxic and necrotic pixels were computed for each threshold showing
that the higher the threshold, the fewer were the pixels that were identi-
fied as purely well-perfused, necrotic or hypoxic.

In Case study III, we aimed to assess the follow-up of a liposarcoma
patient by examining perfusion changes after therapy though different
MRI modalities. It was shown that mean value shifts in all biomarkers
(ktrans, f, T2*) stemming from different methods (DCE-MRI, DW-MRI,
T2*r respectively) are in accordance with the change of the characteris-
tic dominant perfusion curve of the tumor volume supporting the hy-
pothesis of response to therapy. All metrics composed a complete mul-
tifaceted analysis that is in line with the radiological interpretation. BU-
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NMF has successfully identified the three expected theoretical curves
with the dominant pattern being hypoxia before therapy while after ther-
apy necrosis prevailed.

Concerning Case study IV, we compared some preliminary histopatho-
logical results with DCE-MRI findings. In particular, images from H&E
staining as well as from the HIF-1α factor have shown the presence two
different perfusion profiles, the well-differentiated and the necrotic one.
The BU-NMF algorithm has also produced similar results since it iden-
tified two different patterns, the necrotic pattern that was dominant and
the well-perfused pattern that had smaller contribution.

For the breast cancer dataset, DCE-MRI data from a public available
dataset, consisting of 35 breast cancer patients undergoing NAC, were
analysed in order to investigate the role of model-free IBs in predicting
the treatment outcome as early as possible. BU-NMF was utilized for
the extraction of model-free biomarkers, which were the hypoxic, well-
perfused and necrotic percentages of pixels that were identified as hav-
ing the respective curve pattern. What is more, the three dominant pat-
terns of the DCE time intensity signal curves were identified in the exam-
ined patients. Quantitative parameters were also calculated from ETM
pharmacokinetic analysis. Statistical results indicated that DCE model-
free biomarkers can discriminate responders from non-responders after
the first cycle of NAC with a high percentage of accuracy (AUC 90.4%,
F1 score 88.5%, Sensitivity 74%, Specificity 90.5%). In addition, three
more DCE biomarkers were found to predict therapy outcome after the
first cycle of NAC, i.e. ∆hypoxic (AUC 76.8%), kep (AUC 73.4%) and ve

(AUC 72.6%).
The PR method used in our experiments has a number of advantages.

First of all, it gave fast (around 25s execution time on an Intel Core 2 i7-
4770 processor, 3.4 GHz with 16 GB RAM) when ran on a Matlab com-
piler (version 8.1.0.604 R2013a). The two novel BU-NMF initialization
schemes were proven to have repeatable results, always converging af-
ter a precise number of iterations for each patient. In addition, the results
obtained did not depend on complex fitting or initialization procedures
in contrast to computationally expensive PK models, which require non-
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linear fitting schemes that may lead to local extrema problems. In our
method, the user is in charge only of the tumor ROI selection, whereas
for PK models there is need to select certain parameters in advance such
as the AIF (ED09) which is subjective and prone to error. Last but not
least, in contrast to model-based approaches, our method does not make
any assumptions on the underlying biology since it is purely data-driven.

Regarding the sarcoma dataset, in all six sarcoma patients the BU-
NMF algorithm identified the dominant perfusion patterns characteriz-
ing the tumor environment and these were in line with the theoretical en-
hancement patterns. Furthermore, the robustness of the two presented
initialization methods was demonstrated in Case study I, giving very
similar results for both initialization schemes (see Section 4.2). In Case
study II, different number of patterns were identified in two patients
with MPNST which is encouraging for possible determination of the
grade of tumor malignancy using model-free, non-invasive techniques in
patients with the same tumor type. In Case study III, results from three
non-invasive MRI methods on a liposarcoma after ILP with TNF-α iden-
tified similar perfusion changes confirming response to therapy. These
results are promising since MRI analysis of TNF induced perfusion has
only been studied in animals (PWTH+04). The limited histopatholog-
ical results that were available in Case studies I, III and IV were very
positive in the sense that they gave comparable results to the BU-NMF
method. More specifically, necrotic areas that showed no signal enhance-
ment in DCE-MRI and were characterized with the BU-NMF necrotic
pattern were also confirmed through H&E staining of tissue sections. In
addition, in Case study IV the hypoxia factor HIF-1α confirmed the pres-
ence of both well-differentiated and necrotic areas, which were in ac-
cordance with the BU-NMF and the pharmacokinetic DCE-MRI results.
NMF has also been applied for the segmentation of rat prostate cancer
DCE data (SHS+12) and results have been compared to histopathology
findings. However, in our study we used an improved BU-NMF algo-
rithm using two novel, data-driven initialization methods. Moreover,
herein the algorithm was used on human patient data whereas previous
works (HAS+13; SHS+12) were performed on pre-clinical studies with
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limited number of data.
Concerning the breast cancer dataset, this paper presents a novel ap-

proach proposing the use of PR defined tumor environment (hypoxic,
well-perfused and necrotic) image clusters for predicting NAC response.
The presented BU-NMF framework systematically classified tumor DCE-
MRI image pixels into regions with enhancement profiles matching those
of the actual tumor environment. Previous studies exploited the con-
cept of segmenting part of the tumor to increase predictive power. In
(KKM+15), the segmentation of the tumor regions of interest based on a
vascular heterogeneity measure further enhanced the predictive power
of model-based IBs in a glioblastoma multiforme study whereas in
(WGCL16), an image clustering method followed by texture analysis in-
creased pCR prediction in a breast cancer patient cohort. However, both
approaches failed to demonstrate the physiological meaning of the more
predictive image cluster on the basis of theoretically expected DCE-MRI
enhancement profiles.

To strengthen the value of our results in the breast cancer study, we
also considered well-known compartmental-based IBs but the PR de-
rived hypoxic component outperformed all others within the thorough
statistical analysis methodology presented. Although it is very hard to
validate any DCE-MRI image-driven measure of hypoxia, the results
support the hypothesis that the NMF-based hypoxic image component
is related to the actual hypoxic part of the tumor. The strong predictive
power of this component is an indicator in favor of this assumption for
two reasons: first, hypoxia has been reported as predictor of response in
NAC (GBB+06; URC+12) and secondly, the morphology of the delayed
enhancement curve of the hypoxic component as depicted in Figure 45,
is in agreement with 18F-Fmiso PET studies reporting that hypoxic re-
gions enhance at later times after injection demonstrating lower initial
activity than well-perfused areas but are more persistent through time
(CAC+09).

Our results also compare favorably to previous DCE-MRI studies with
promising results (WGCL16; ALH+13; LAA+14) in the same dataset re-
garding prediction of breast cancer treatment outcome using quantitative
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and semi-quantitative DCE measures. However, the obtained results of
the aforementioned studies were obtained only from a subset of the orig-
inal dataset. In particular, in (ALH+13) 21 breast cancer patients were
examined using solely semi-quantitative measures whereas in (LAA+14)
28 breast patients were analysed using both semi-quantitative and quan-
titative DCE measures. In both these studies, certain thresholds also
were applied in order to exclude non-enhancing and slow enhancing
pixels, which could lead to erroneous results, as the slow-enhancing pix-
els (necrotic) can provide valuable information. Another strength of our
study compared to previous ones, is the fact that the predictive ability
of the biomarkers was computed using more robust statistical univari-
ate and multivariate techniques. In (WGCL16), PCA and k-means clus-
tering methods have been used in combination with texture analysis to
predict pCR in 35 patients of the breast cancer dataset. However, PCA
lacks in physical interpretation compared to NMF, which was demon-
strated to be more pertinent to parts-based representations (LS99) due
to its non-negativity constraints. Because of this, their results were not
directly associated with description of the tumor environment and with
the theoretically defined DCE-MRI enhancement profiles.

An obvious limitation of the current work is further validation against
a larger patient cohort as well correlation to histopathology and immuno-
histochemistry results, which was only available for a limited number
of sarcoma patients. It is important to stress that the current work fo-
cused mainly on the PR method and more specifically on demonstrating
the increased stability and invariance to initial conditions and on corre-
lating the automatically extracted regions to the theoretically expected
curves and to the well-known ktrans variable. Interestingly, our results
show that by constraining the ktrans parametrized image within a double
threshold (lower to exclude necrosis and upper to exclude well-perfused
areas), the correlation to our extracted hypoxic components increases
significantly. This is an encouraging indication that our data-based ap-
proach is able to produce clinically significant results related to tumor
hypoxia, a hypothesis that needs further investigation in order to be con-
firmed.
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The work on the breast cancer dataset has also a few limitations,
which are mainly linked to the publicly available dataset. Firstly, there
wass diversity in the specific therapeutic regimens followed for each pa-
tient. In addition, the cohort was of relatively small size (35) with 23 non-
pCR and only 12 pCR patients, which calls for similar follow-up studies
with larger patient cohorts in the future. Finally, the DCE dataset was
characterized by low temporal resolution (16 s) which can affect the mea-
surement of the dynamic enhancement at the early enhancement time.
That said, all these are limitations inherent to the dataset and have been
pointed out in the previous studies (LAA+15; LAA+14).

5.1 Future work

Future research activities will aim at implementing the BU-NMF algo-
rithm on more case studies and different types of cancer. Another pos-
sible research direction is to apply different PR techniques and compare
the results with those stemming from the BU-NMF algorithm. An ul-
timate goal would be to establish model-free biomarkers, such as the
hypoxic one, as reliable prognostic cancer indicators or as predictors of
response to therapy as it was shown in Case study V.

More specifically for the sarcoma dataset, we are already in the pro-
cess of collecting new data from sarcoma patients who have been subject
to surgery and their excised histologic tissue sections have been elab-
orated by histopathologists in order to extract quantitative biomarkers.
The main plan for future work is to compare our computational results
from the model-free and model-based approach with quantitative
histopathological parameters. All the tissue sections analyzed compu-
tationally, will be histopathologically examined for morphological fea-
tures, while additional immunohistochemistry will identify biomarkers
such as HIF-1α, which will be afterwards translated to hypoxia and other
related cancer hallmarks.

What is more, further work and analysis on a large series of tumor im-
age data and of different tumor types will be performed in order to con-
firm our results and investigate the correlations between model-based,
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model-free methods and histopathology in the same or different tumor
malignancies. Benign soft tissue tumors will also be studied in order
to compare their perfusion characteristics against those of the malignant
tumors.

As for the breast cancer dataset, since tumor hypoxia is indeed a pre-
dictor of NAC response the next step is also to propose further validation
regarding the correlation of the DCE-MRI image-derived hypoxic com-
ponent to the underlying molecular/genetic characteristics of hypoxia
such as the HIFs transcription factors that respond to decreases in avail-
able oxygen in the cellular environment.

To summarize, results from the five examined case studies indicate
that it is possible to assess tumor hypoxia noninvasively using only DCE-
MRI data together with some post-processing computational methods.
The overall results suggest that PR image segmentation methods can be
a more robust (model-free) and purely data-driven (independent from
imaging parameters) alternative to model-based IBs, which also require
subjective interaction steps (e.g. AIF calculation). Although, more so-
phisticated techniques such as PET imaging with hypoxia tracers can
provide more quantitative/specific hypoxia information, extracting tu-
mor hypoxia information directly from DCE-MRI has the potential to
offer significant clinical benefits since it is a widely-used, cost-effective
technique in cancer diagnosis and management. In this sense, the work
presented in this thesis may also contribute to the growing field of radio-
genomics in cancer aiming to maximize the tumor information derived
from medical images and provide early markers of hypoxia or other can-
cer hallmarks. This in turn will allow more precise clinical management
decisions for patients at earlier stages, while being non-invasive and
associated with minimal patient discomfort. Achieving hypoxic image
area delineation as well as characterization of the diverse perfusion ar-
eas present in heterogeneous tumors, will be also useful in guiding core
needle biopsy so that it targets the most representative areas of the tu-
mor. In addition, this method could help in tumor differentiation based
on the extracted MRI perfusion maps improving in this way the surgical
decision making. Finally, the comparison of the PR classification results
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for tumors of the same type could be an indicator of the tumor grading
at the MRI stage and before surgery. Tumor grading is decided based on
the morphology of tumor cells when examined under the microscope. In
Case study II, we saw that two MPNST patients diagnosed with different
morphology characteristics, they also had a different number of patterns
identified by the BU-NMF method. To this end, by testing more cases
of the same cancer type, we could classify the tumors in low, average or
high grade based on the perfusion classification patterns extracted by the
BU-NMF.
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