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Abstract

Due to their simplicity and versatility, splitting algorithms are
often the methods of choice for many optimization problems
arising in engineering. “Splitting” complexproblems into sim-
pler subtasks, their complexity scales well with problem size,
making them particularly suitable for large-scale applications
where other popular methods such as IP or SQP cannot be
employed.
There are, however, two major downsides: 1) there is no sat-
isfactory theory in support of their employment for noncon-
vex problems, and 2) their efficacy is severely affected by ill
conditioning. Many attempts have been made to overcome
these issues, but only incomplete or case-specific theories
have been established, and some enhancements have been
proposed which however either fail to preserve the simplicity
of the original algorithms, or can only offer local convergence
guarantees.
This thesis aims at overcoming these downsides. First, we
provide novel tight convergence results for the popular DRS
andADMMschemes for nonconvexproblems, through an ele-
gant unified framework reminiscent of Lyapunov stability the-
ory. “Proximal envelopes”, whose analysis is here extended
to nonconvex problems, prove to be the suitable Lyapunov
functions. Furthermore, based on these results we develop
enhancements of splitting algorithms, the first that 1) pre-
serve complexity and convergence properties, 2) are suitable
for nonconvex problems, and 3) achieve asymptotic superlin-
ear rates.
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Chapter 1

Introduction

Operator splitting techniques (also known as proximal algorithms), in-
troduced in the 50’s for solving PDEs and optimal control problems,
have been successfully used to reduce complex problems into a series of
simpler subproblems. The most well-known operator splitting methods
are the alternating direction method of multipliers (ADMM), forward-
backward splitting (FBS) also known as proximal gradient method in
composite convex minimization, Douglas-Rachford splitting (DRS) and
the alternating minimization method (AMM) [77]. Operator splitting
techniques pose several advantages over traditional optimization meth-
ods such as sequential quadratic programming and interior point meth-
ods: (1) they can easily handle nonsmooth terms and abstract linear op-
erators, (2) each iteration requires only simple arithmetic operations, (3)
the algorithms scale gracefully as the dimension of the problem increases,
and (4) they naturally lead to parallel and distributed implementation.
Therefore, operator splitting methods cope well with limited amount of
hardware resources making them particularly attractive for (embedded)
control [96], signal processing [29], and distributed optimization [15, 53].

The key idea behind these techniques when applied to convex opti-
mization is to reformulate the optimality conditions of the problem at
hand into a problem of finding a fixed point of a nonexpansive operator
and then apply relaxed fixed-point iterations. Although sometimes a fast
convergence rate can be observed, the norm of the fixed-point residual
decreases, at best, with Q-linear rate, and due to an inherent sensitivity
to ill conditioning oftentimes the Q-factor is close to one. Moreover, all
operator splittingmethods are basically “open loop”, since the tuning pa-
rameters, such as stepsizes and preconditioning, must be set before their
execution. In fact, suchmethods are very sensitive to the choice of param-
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eters. All these are serious obstacles when it comes to using such types of
algorithms when speed and efficiency are imperative, as it is the case of
real-time applications on embedded hardware.

As an attempt to solve the issue, people have considered the em-
ployment of variable metrics to reshape the geometry of the problem
and enhance convergence rate [30]. However, unless such metrics have
a very specific structure, even for simple problems the cost of operating
in the new geometry outweights the benefits. Another interesting ap-
proach that is gaining more and more popularity tries to exploit possible
sparsity patterns by means of chordal decomposition techniques [111].
These methods can improve scalability and reduce memory usage, but
unless the problem comes with an inherent sparse structure they yield
no tangible benefit.

Alternatively, the task of searching fixed points of an operatorT can be
translated to that of finding zeros of the corresponding residualR � id−T.
Many methods with fast asymptotic convergence rates such as Newton-
type exist that canbe employed for efficiently solvingnonlinear equations,
see, e.g., [38, §7] and [54]. However, such methods converge only when
close enough to the solution, and in order to globalize the convergence
there comes the need of a merit function to perform a line search along
candidate directions of descent. The typical choice of the square resid-
ual ‖Rx‖2 unfortunately is of no use, as in meaningful applications R is
nonsmooth. On top of this, even when a suitable merit function is found
one still needs to deal with the frequent pathology of linesearch methods
in nonsmooth optimization that inhibits the achievement of fast conver-
gence rates, well known for SQP-type algorithms and referred to as the
Maratos effect [68], see also [54, §6.2].

The already tough challenge of overcoming these issues becomes ex-
ceptionally complicated if one further drops the assumption of convexity.
Indeed, although originally designed and analyzed for convex problems,
many splitting algorithms have been observed to perform well when ap-
plied to certain classes of structured nonconvex optimization problems.
However, yet two more major issues have to be taken into account. First,
the elegant link with monotone operator theory onto which the conver-
gence of many splitting algorithms is based no longer holds. Secondly,
many regularity properties are lost in the transition, to an extent that
well-behaved Lipschitz-continuous mappings give way to operators that
are defined only in a set-valued sense.

Proximal envelopes proved to be a valuable tool for addressing these
issues. First introduced in [78, 79], these functions generalize the well-

2



knownMoreau envelope together with its connections with the proximal
point algorithm to other splitting schemes. Some splitting algorithms
were shown to be equivalent to gradient methods on the corresponding
envelopes, leading to the reformulation of nonsmooth and constrained
problems as the unconstrainedminimization of smooth functionswhence
classical Newton-type methods can be employed. This promising ap-
proach finds however two main limitations. First, it can only be applied
to problems where functions are either smooth or convex. Secondly, it
does not fully respect the simplicity of the original splitting algorithms,
as it requires additional operations such as Hessian evaluations.

1.1 Contributions and structure the thesis

Inspired by such achievements, yet aware of their limitations, this the-
sis proposes new envelope-based algorithms that (i) are suitable for fully
nonconvex problems, (ii) share operation and iteration complexity with
plain splitting algorithms, and (iii) achieve fast asymptotic rates of con-
vergence (under local assumptions) without suffering pathological be-
haviors such as the Maratos effect. Envelope functions are also shown to
be valuable tools for extending the convergence analysis of classical split-
ting algorithms to the nonconvex settings. In fact, the in-depth analysis
of different splitting schemes in a setting as much general as possible led
to the discovery of many common patterns.

♠ These are discussed inChapter 2, were a new framework for the analy-
sis of nonconvex splitting algorithms is introduced. The commondenomi-
nator is identified in the presence of a “proximal”majorization-minimization
component in every step, that is to say, an operation involving the mini-
mization of an (at least quadratic) upper bound of the original problem.
Classical proximal algorithms, possibly up to a change of variable, are
thus reinterpreted in this context.

♠ In Chapter 3, an envelope function is defined for each algorithm in the
proposed framework, and its regularity properties and basic inequalities
are discussed in full generality. Based on these findings, a convergence
theory for proximal algorithms is developed.

♠ Building on the investigated convergence framework, Chapter 4 pro-
poses a new envelope-based globalization strategy that allows to cus-
tomize splitting algorithms with arbitrary update directions. Without
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any further assumption, the scheme is shown to accept unit stepsize
when the selected directions are superlinear (in the sense of [38, §7.5]),
proving its robustness against pathologies such as the Maratos effect.
The employment of quasi-Newton directions is also investigated, and a
Broyden scheme is shown to yield superlinear convergence under some
assumptions at the limit point.

Although the leading ideas have been sketched in an oral exposition,1 the
material of the three chapters summarized above has been exclusively
developed in the writing of the thesis. The three chapters outlined next
are instead based on published or submitted papers, although suitably
amended so as to conform with the proposed general framework for the
sake of a more uniform and compact exposition.

♠ Chapter 5 deals with the forward-backward splitting algorithm (FBS).
Thanks to the general convergence analysis developed in the previous
chapters, once FBS is shown to fit in the investigated framework, inclu-
sive of a possible relaxation parameter λ its convergence is inferred with
literally no effort. To the best of our knowledge, this is the first result
that extends the convergence of FBS for nonconvex problems with λ , 1.
Quasi-Newton enhancements are also presented, and the efficacy of the
methodology is then verified with numerical simulations.

Based on:
A. Themelis, L. Stella and P. Patrinos. Forward-backward envelope for the sum
of two nonconvex functions: further properties and nonmonotone linesearch algo-
rithms, SIAM Journal on Optimization 2018 28(3):2274-2303, 2018.
https://epubs.siam.org/doi/10.1137/16M1080240

L. Stella, A. Themelis, P. Sopasakis and P. Patrinos, “A simple and efficient
algorithm for nonlinear model predictive control,” 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Melbourne, VIC, 2017, pp.
1939–1944. http://ieeexplore.ieee.org/document/8263933/

A. Sathya, P. Sopasakis, R. Van Parys, A. Themelis, G. Pipeleers and P.
Patrinos,
“Embeddednonlinearmodel predictive control for obstacle avoidanceusing
PANOC,”
2018 European Control Conference (ECC), Limassol, 2018 (to appear)

1A. Themelis, Proximal envelopes. ECC 2018 Workshop on “Advances in Distributed and
Large-Scale Optimization,” Limassol (Cyprus), Jun. 12-15, 2018. http://www.ecc18.eu/
index.php/workshop-6/
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♠ Chapter 6 deals with the Douglas-Rachford splitting algorithm (DRS).
Although some convergence results could directly be derived with the
same quick arguments employed for FBS, thanks to a more sophisticated
analysis we identified the tightest possible range of parameters enabling
convergence. The optimality of the findings is assessed by means of suit-
able counterexamples. A quasi-NewtonDRS algorithm is then presented;
this was already discussed in the first submission of the preprint [103],
but has been removed from the last version due to space limitations.

Based on:
A. Themelis and P. Patrinos. Douglas-Rachford splitting and ADMM for non-
convex optimization: tight convergence results
(passed 1st review round in the SIAM Journal on Optimization since August 2018)
https://arxiv.org/abs/1709.05747

♠ Chapter 7 deals with the ADMM algorithm. Expanding on a primal
equivalence of the algorithms, the tight convergence results derived in
the previous chapter are translated into tight results for ADMM. Also for
ADMM the employment of quasi-Newton directions is considered, and
the induced speed-up confirmed with numerical simulations.

Based on:
A. Themelis and P. Patrinos. Douglas-Rachford splitting and ADMM for non-
convex optimization: tight convergence results
(passed 1st review round in the SIAM Journal on Optimization since August 2018)
https://arxiv.org/abs/1709.05747

♠ Although not directly related to envelope functions, the framework
investigated inChapter 8 reflects the pursuit of certified fastmethods that
preserve operation and iteration complexity as plain splitting algorithms.
This is indeed the role of theSuperMann scheme, an algorithmic framework
that applies to any splitting algorithm, although only limited to the convex
case. The name owes to an intended pun involving the superlinear rates
it achieves and the fact that it generalizesMann-type iterations. As it was
the case of the envelope-based algorithms, a Broyden method is shown
to yield the desired superlinear rates of convergence under assumptions
at the limit point; surprisingly, however, no isolatedness of the solution
is required, but merely metric subregularity.

Based on:
A. Themelis and P. Patrinos. SuperMann: a superlinearly convergent algo-
rithm for finding fixed points of nonexpansive operators (2016)
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(under 2nd review round in the IEEE Transactions on Automatic Control journal
since March 2018)
https://arxiv.org/abs/1609.06955

P. Sopasakis, A. Themelis, J. Suykens and P. Patrinos,
“A primal-dual line search method and applications in image processing,”
2017 25th European Signal Processing Conference (EUSIPCO), Kos, 2017,
pp. 1065–1069.
http://ieeexplore.ieee.org/document/8081371/
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1.2 Preliminary material

Our notation is standard and follows that of optimization and analysis
books[10, 18, 50, 88, 92]. For the sake of clarity we now properly specify
the adopted conventions, and briefly recap known definitions and facts.
The interested reader is referred to the above-mentionedmonographs for
the details.

The set of natural numbers is denoted by �, and we adopt the con-
vention that 0 ∈ �. The sets of integer and real numbers are denoted by
� and �, respectively. The set of extended-real numbers is denoted by
�B �∪ {∞}. Unless differently specified, we adopt the convention that
1/0 � ∞.

Given a , b ∈ � we indicate with (a , b) B {x ∈ � | a < x < b} and
[a , b] B {x ∈ �∪ {−∞} | a ≤ x ≤ b}, respectively, the open and closed
(possibly extended-real) intervals having a and b as endpoints. Intervals
(a , b] and [a , b) are defined accordingly. Occasionally, (a , b) may also
indicate a pair or a vector in �2, however the context will always be
explicit enough to avoid confusion. The set of positive real numbers is
indicated as �+ B [0,∞), and that of strictly positive real numbers as
�++ B (0,∞).

The positive and negative parts of r ∈ � are defined as [r]+ B
max {0, r} and [r]− B max {0,−r}, respectively. Notice that [r]+ and
[r]− are positive numbers such that r � [r]+ − [r]−.

The sum of two sets A, B ⊆ �n is meant in the Minkowski sense,
namely A + B � {a + b | a ∈ A, b ∈ B}; the difference is defined accord-
ingly. In case A � {a} is a singleton, we will write a + B as shorthand for
{a} + B, and similarly if B is a singleton.

The closure and interior of E ⊆ �n are denoted as cl E and int E,
respectively. The boundary of E is bdry E B cl E \ int E. With B(x; r) and
B(x; r) we indicate, respectively, the open and closed balls centered at x
with radius r.

1.2.1 Matrices and vectors
The n × n identity matrix is denoted as In , and the �n vector with all
elements equal to 1 is as 1n ; whenever n is clear from context we simply
write I and 1, respectively. We use the Kronecker symbol δi , j for the
(i , j)-th entry of I.

Given v ∈ �n , withdiag v we indicate the n×n diagonalmatrixwhose
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i-th diagonal entry is vi .
With Sym(�n), Sym+(�n) and Sym++(�n) we denote respectively

the set of symmetric, symmetric positive semidefinite, and symmetric
positive definite matrices in �n×n .

The minimum and maximum eigenvalues of H ∈ Sym(�n) are de-
noted as λmin(H) and λmax(H), respectively. For Q , R ∈ Sym(Rn) we
write Q � R to indicate that Q − R ∈ Sym+(�n), and similarly Q � R in-
dicates that Q − R ∈ Sym++(�n). Any matrix Q ∈ Sym+(�n) induces the
semi-norm ‖ · ‖Q on �n , where ‖x‖2Q B 〈x ,Qx〉; in case Q � I, that is,
for the Euclidean norm, we omit the subscript and simply write ‖ · ‖. No
ambiguity occurs in adopting the same notation for the induced matrix
norm, namely ‖M‖ B max {‖Mx‖ | x ∈ �n , ‖x‖ � 1} for M ∈ �n×n .

1.2.2 Sequences

The notation (ak)k∈K represents a sequence indexed by elements of the set
K, and given a set E we write (ak)k∈K ⊂ E to indicate that ak ∈ E for all
indices k ∈ K. We say that (ak)k∈K ⊂ �n is summable if

∑
k∈K ‖ak ‖ is finite,

and square-summable if (‖ak ‖2)k∈K is summable. As a shorthand notation
we may write (xk)k∈� ∈ `1 and (xk)k∈� ∈ `2 to indicate that (xk)k∈� is
summable and square summable, respectively.

We say that the sequence converges to a point a ∈ �n

• Q-linearly if there exists ρ ∈ [0, 1) such that ‖ak+1 − a‖ ≤ ρ‖ak − a‖
for all k’s;

• R-linearly if there exists a sequence (εk)k∈� Q-linearly convergent
to 0 such that ‖ak − a‖ ≤ εk ;

• superlinearly if either ak � a for some k ∈ �, or ‖ak+1−a‖/‖ak−a‖ → 0
as k →∞.

1.2.3 Extended-real-valued functions
Given a function h : �n → �, its epigraph is the set

epi h B {(x , α) ∈ �n ×� | h(x) ≤ α},
while its domain is

dom h B {x ∈ �n | h(x) < ∞},
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and for α ∈ � its α-level set is
lev≤α h B {x ∈ �n | h(x) ≤ α}.

Function h is said to be lower semicontinuous (lsc) if epi h is a closed set
in �n+1 (equivalently, h is said to be closed); equivalently, h is lsc iff for
all x̄ ∈ �n it holds that

h(x̄) ≤ lim inf
x→x̄

h(x).

All level sets of an lsc function are closed. We say that h is proper if
dom h , ∅, and that it is level bounded if for all α ∈ � the level set
lev≤α h is a bounded subset of �n .

The indicator function of a set S ⊆ �n is the function δS : �n → �
defined as

δS(x) �
{
0 if x ∈ S,
∞ otherwise.

If S is nonempty and closed, then δS is proper and lsc.
h : �n → � is said to be strictly continuous at x̄ ∈ dom h if

limsup
x ,y→x̄

x , y

‖h(x) − h(y)‖
‖x − y‖ < ∞.

Having h strictly continuous at every point of a set D ⊆ dom h is equiva-
lent to h being locally Lipschitz continuous on D [92, §9].

1.2.4 Self-mappings
In this subsection we analyze single-valued mappings from �n to itself.
Given µ > 0, a function G : �n → �n is said to be µ-cocoercive if

〈G(x) − G(y), x − y〉 ≥ µ‖G(x) − G(y)‖2 ∀x , y ∈ �n , (1.1)
and µ-strongly monotone if

〈G(x) − G(y), x − y〉 ≥ µ‖x − y‖2 ∀x , y ∈ �n . (1.2)

We say that G is monotone if (either of) the inequalities above hold with
µ � 0. Notice that the identity mapping id : �n → �n is an example
of cocoercive and strongly monotone mapping, and that, more generally,
µ-cocoercivity implies µ−1-Lipschitz continuity.
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Lemma 1.1. Any L-Lipschitz continuous and µ-strongly monotone mapping
G : �n → �n is a Lipschitz homeomorphism; that is, other than being Lipschitz
continuous, it is also invertible and its inverse is Lipschitz continuous as well
(with modulus µ−1).

Proof. By upper bounding the inner product of (1.2) with the Cauchy-
Schwartz inequality we obtain

µ‖x − y‖2 ≤ ‖x − y‖‖G(x) − G(y)‖ ∀x , y ∈ �n .

In particular, G is injective, and if it has an inverse that must be µ−1-
Lipschitz continuous.Moreover, since ψ(x) B G(x)−µx is monotone and
continuous, [92, Ex. 12.7 and Thm. 12.12] ensures that G(x) � ψ(x) + µx
is also surjective, hence the claim.

1.2.5 Set-valued mappings
We use the notation H : �n ⇒ �m to indicate a point-to-set function
H : �n → P(�m), where P(�m) is the power set of �m (the set of all
subsets of �m). The graph of H is the set

gph H B
{(x , y) ∈ �n ×�m | y ∈ H(x)} ,

while its domain is
dom H B {x ∈ �n | H(x) , ∅}.

We say that H is outer semicontinuous (osc) at x̄ ∈ dom H if for any
ε > 0 there exists δ > 0 such that H(x) ⊆ H(x̄)+B(0; ε) for all x ∈ B(0; δ).
In particular, this implies that whenever (xk)k∈� ⊆ dom H converges to
x and (yk)k∈� converges to y with yk ∈ H(xk) for all k, it holds that
y ∈ H(x). We say that H is osc (without mention of a point) if H is osc at
every point of its domain or, equivalently, if gph H is a closed subset of
�n ×�m (notice that this notion does not reduce to lower semicontinuity
for a single-valued function H).

For notational simplicity, in case H(x) is a singletonwemay sometimes
treat it as a point rather than a set, allowing notational abuses such as
H(x) � y as opposed to H(x) � {

y
}
.

The projection onto a nonempty and closed set S ⊆ �n will be meant
in the set-valued sense; namely, ΠS : �n ⇒ �n is defined by ΠS(x) �
argminz∈S ‖z − x‖.

Given F : �n ⇒ �n , we say that a point x is fixed (for F) if x ∈ F(x),
while x is a zero (of F) if 0 ∈ F(x). The fixed set (i.e., the sets of fixed
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points) and the zero set (i.e., the sets of fixed zeros) of F are respectively
denoted by

fix F B {x ∈ �n | x ∈ F(x)},
and

zer F B {x ∈ �n | 0 ∈ H(x)}.

1.2.6 Subdifferential

Given a proper and lsc function h : �n → �, we denote by ∂̂h : �n ⇒ �n

the regular subdifferential of h, where

v ∈ ∂̂h(x̄) ⇔ lim inf
x→x̄
x , x̄

h(x) − h(x̄) − 〈v , x − x̄〉
‖x − x̄‖ ≥ 0. (1.3)

The (limiting) subdifferential of h is ∂h : �n ⇒ �n , where v ∈ ∂h(x̄) iff
there exists a sequence (xk , vk)k∈� ⊆ gph ∂̂h such that

lim
k→∞
(xk , h(xk), vk) � (x , h(x), v).

The set of horizon subgradients of h at x is ∂∞h(x), defined as ∂h(x)
except that vk → v is meant in the “cosmic” sense, namely λk vk → v for
some λk ↘ 0.

Finally, the Bouligand subdifferential of h at x is ∂B h : �n ⇒ �n ,
where v ∈ ∂B h(x̄) iff there exists a sequence (xk)k∈� → x such that h is
differentiable at xk for all k’s and ∇h(xk) → v as k →∞.

Lemma 1.2 ([92, Thm. 10.1]). Let h : �n → � be proper and lsc. If x̄ is a local
minimizer for h, then 0 ∈ ∂̂h(x̄).
Lemma 1.3 (Basic subdifferential rules). Let g , h : �n → � be proper and
lsc functions. For all x̄ ∈ �n the following hold:

(i) For any t > 0 one has ∂(th)(x̄) � t∂h(x) and ∂̂(th)(x̄) � t∂̂h(x).
(ii) h is strictly continuous at x̄ iff x̄ ∈ dom h and ∂∞h(x̄) � {0}.
(iii) If h is strictly continuous at x̄, then ∂(g + h)(x̄) ⊆ ∂g(x̄) + ∂h(x̄).
(iv) If h is strictly continuous at x̄ and ∂h(x̄) has at most one element, then h

is strictly differentiable at x̄.
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(v) If h is differentiable at x̄, then ∂̂h(x) � {∇h(x̄)}.
(vi) If h is continuously differentiable around x̄, then

• ∂h(x̄) � ∂̂h(x̄) � {∇h(x̄)},
• ∂(g + h)(x̄) � ∂g(x̄) + ∇h(x̄), and
• ∂̂(g + h)(x̄) � ∂̂g(x̄) + ∇h(x̄).

Proof.

♠ 1.3(i). See [92, Eq. (10.6)].

♠ 1.3(ii). See [92, Thm. 9.13].

♠ 1.3(iii). See [92, Ex. 10.10].

♠ 1.3(iv). See [92, Thm. 9.18].

♠ 1.3(v) & 1.3(vi). See [92, Ex. 8.8].

1.2.7 (Hypo)convexity
A convex combination of two points x , y ∈ �n is any point (1 − t)x + t y
with t ∈ [0, 1]. A set D ⊆ �n is convex if whenever x , y ∈ D also any
of their convex combinations belongs to D. The convex hull of a set
E ⊆ �n , denoted as conv E, is the smallest convex set that contains E (the
intersection of convex sets is still convex). Specifically,

conv E B
{∑k

i�1 αi xi | k ∈ �, xi ∈ E, αi ≥ 0,
∑k

i�1 αi � 1
}
.

A function h : �n → � is convex if epi f is a convex set; equivalently, h
is convex if for any x , y ∈ �n and t ∈ [0, 1] it holds that h((1− t)x + t y) ≤
(1 − t)h(x) + th(y). In particular, the domain of a convex function is a
convex set.

Given σ ∈ �, we say that a function h : �n → � is σ-hypoconvex
if h − σ

2 ‖ · ‖2 is a convex function. Thus, convexity is equivalent to 0-
hypoconvexity; if σ > 0, then not only is h convex, but it is said to be
strongly convexwithmodulus σ > 0 (or σ-strongly convex). Any strongly
convex function is level bounded and has a unique minimizer.

Lemma 1.4. Let a function h : �n → � and σ ∈ � be fixed. The following are
equivalent:
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(a) h is σ-hypoconvex.

(b) h(y) ≥ h(x)+ 〈vx , y− x〉+σ‖x− y‖2 for all x , y ∈ �n and vx ∈ ∂h(x).
(c) 〈vx − vy , x − y〉 ≥ σ‖x − y‖2 for all x , y ∈ �n , vx ∈ ∂h(x) and

vy ∈ ∂h(y).
Proof. These are well-known facts when σ � 0, that is, for convex func-
tions, see e.g., [10, Thm. 20.25]. The other claims readily followbyapplying
the equivalence to the convex function ψ(x) � h(x) − σ

2 ‖x‖2, in light of
the fact that ∂ψ(x) � ∂h(x) − σx, as it follows from Lem. 1.3(vi).

1.2.8 Smoothness
The class of functions h : �n → � that are k times continuously dif-
ferentiable is denoted as Ck(�n). We write h ∈ C1,1(�n) to indicate that
h ∈ C1(�n) and that ∇h is Lipschitz continuous with modulus Lh . To
simplify the terminology, we will say that such an h is Lh-smooth.

Definition 1.5. We say that R : �n → �n is

(i) strictly differentiable at x̄ if the Jacobian matrix JR(x̄) B ( ∂Ri
∂x j
(x̄)) i , j

exists and

lim
(y ,z)→(x̄ ,x̄)

y,z

Ry − Rx − JR(x̄)(y − x)
‖y − x‖ � 0; (1.4)

(ii) semidifferentiable at x̄ if there exists a continuous and positively homo-
geneous function DR(x̄) : �n → �n , called the semiderivative of R at
x̄, such that

Rx � Rx̄ + DR(x̄)[x − x̄] + o(‖x − x̄‖);

(iii) calmly semidifferentiable at x̄ if there exists a neighborhood Ux̄ of x̄ in
which R is semidifferentiable and such that for all w ∈ �n with ‖w‖ � 1
the function Ux̄ 3 x 7→ DR(x)[w] is Lipschitz continuous at x̄.

Due to an ambiguity in the literature, strict differentiability is some-
times referred to as strong differentiability [52, 76]. We choose to stick
the proposed terminology, following [92]. Semidifferentiability is clearly
a milder property than differentiability in that the mapping DR(x̄) needs
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not be linear. More precisely, as long as R is strictly continuous, then
semidifferentiability is equivalent todirectional differentiability [38, Prop.
3.1.3] and the semiderivative is sometimes called B-derivative [52, 38]. The
three concepts in Definition 1.5 are related as (iii)⇒ (i)⇒ (ii) [76, Thm.
2] and neither requires the existence of the (classical) Jacobian around x̄.

Theorem 1.6. Let ψ ∈ C1(�n) be a convex function. The following are equiva-
lent:

(i) ψ is Lψ-smooth.

(ii) 1
Lψ ‖∇ψ(x) − ∇ψ(y)‖2 ≤ 〈∇ψ(x) − ∇ψ(y), x − y〉 for all x , y ∈ �n .

(iii) 0 ≤ 〈∇ψ(x) − ∇ψ(y), x − y〉 ≤ Lψ‖x − y‖2 for all x , y ∈ �n .

(iv) ψ(y) ≥ ψ(x)+ 〈∇ψ(x), y−x〉+ 1
2Lψ ‖∇ψ(y)−∇ψ(x)‖2 for all x , y ∈ �n .

Proof. See [71, Thm. 2.1.5].

Lemma 1.7. Let h ∈ C1(�n) and σ ∈ � be fixed. The following are equivalent:

(a) h is σ-hypoconvex.

(b) h(y) ≥ h(x) + 〈∇h(x), y − x〉 + σ
2 ‖x − y‖2 for all x , y ∈ �n .

(c) 〈∇h(x) − ∇h(y), y − x〉 ≥ σ‖x − y‖2 for all x , y ∈ �n .

Proof. Direct consequence of Lem. 1.4, in light of the fact that ∂h � ∇h, cf.
Lem. 1.3(vi).

Hypoconvexity of smooth functions

If h ∈ C1,1(�n) is Lh-smooth, then so is −h, and from Lemma 1.7 we
then infer that h is (−Lh)-hypoconvex. In fact, while hypoconvexity of h
amounts to the existence of a quadratic lower bound for h at any point,
similarly, smoothness entails the existence of a quadratic upper bound. In
general, however, a smooth function could be σ-hypoconvex for some σ
not necessarily equal to, but at least larger or equal than −L f . Of course,
the upper bound in (1.5) forces σ ≤ L f . This leads to the following result.

Theorem 1.8. Any function h ∈ C1,1(�n) is σh-hypoconvex for some σh ∈
[−Lh , Lh]. In fact, for any h ∈ C1(�n) the following properties are equivalent:

(a) h is Lh-smooth and σh-hypoconvex.
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(b) σh ≥ −Lh and for all x , y ∈ �n

σh
2 ‖x − y‖2 ≤ h(y) − [

h(x) + 〈∇h(x), y − x〉] ≤ Lh
2 ‖y − x‖2. (1.5)

(c) σh ≥ −Lh and for all x , y ∈ �n

(Lh + σh)〈∇h(x) −∇h(y), x − y〉 ≥ σhLh ‖x − y‖2 + ‖∇h(x) −∇h(y)‖2.

(d) σh ≥ −Lh and for all x , y ∈ �n

σh ‖x − y‖2 ≤ 〈∇h(x) − ∇h(y), x − y〉 ≤ Lh ‖x − y‖2. (1.6)

Clearly, all the claims remain valid if σh is replaced by any σ ∈ [−Lh , σh]; in
particular, one can always consider σh � −Lh .2

Proof. That h is (−Lh)-hypoconvex has already been discussed.

♠ 1.8(a)⇒ 1.8(b). Follows from Lem. 1.7 and [19, Prop. A.24].

♠ 1.8(b) ⇒ 1.8(c). The claim is trivial if σh � Lh , for this corresponds
to having h �

Lh
2 ‖ · ‖2. Otherwise, the lower bound in (1.5) implies σh-

hypoconvexity of h, as it follows fromLem. 1.7. The upper bound, instead,
ensures that the function ψ(x) � Lh

2 ‖x‖2 − h(x) satisfies
ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉 ∀x , y ∈ �n .

Therefore, ψ is convex, as it follows from Lem. 1.7(b). We have

0 ≤ 〈∇ψ(x) − ∇ψ(y), x − y〉
� Lh ‖x − y‖2 − 〈∇h(x) − ∇h(y), x − y〉 (1.7)
≤ (Lh − σh)‖x − y‖2 ,

where the first inequality follows from Thm. 1.6(iii). From Thm. 1.6 we
then conclude that ψ is (convex and) Lψ-smooth, with Lψ � Lh−σh , hence
that we may replace 0 in the first term of the chain of inequalities with

1
Lψ ‖∇ψ(x) − ∇ψ(y)‖2. Inequality (1.7) then becomes

1
Lh−σh

‖∇ψ(x) − ∇ψ(y)‖2 ≤ Lh ‖x − y‖2 − 〈∇h(x) − ∇h(y), x − y〉.
2If σh ≥ −Lh and Lh ≥ 0 are not imposed, then the smoothness modulus Lh in Thm.

1.8(a) has to be replaced by max {|Lh |, |σh |}.
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Multiplying by the strictly positive constant Lh − σh yields

Lh(Lh − σh)‖x − y‖2 − (Lh − σh)〈∇h(x) − ∇h(y), x − y〉
≥ ‖∇ψ(x) − ∇ψ(y)‖2
� L2

h ‖x − y‖2 + ‖∇h(x) − ∇h(y)‖2 − 2Lh 〈∇h(x) − ∇h(y), x − y〉.
By suitably rearranging, the sought inequality follows.

♠ 1.8(c)⇒ 1.8(d). Expressing the inequality in terms of ψ B h − σ
2 ‖ · ‖2,

we have

‖∇ψ(x) − ∇ψ(y)‖2 + σ2
h ‖x − y‖2 + 2σh 〈∇ψ(x) − ∇ψ(y), x − y〉

≤ (Lh + σh)〈∇ψ(x) − ∇ψ(y), x − y〉 + (Lh + σh)σh ‖x − y‖2 − σhLh ‖x − y‖2
� (Lh + σh)〈∇ψ(x) − ∇ψ(y), x − y〉 + σ2

h ‖x − y‖2 ,
hence

(Lh − σh)〈∇ψ(x) − ∇ψ(y), x − y〉 ≥ ‖∇ψ(x) − ∇ψ(y)‖2.
This shows that ∇ψ is 1

Lh−σh
-cocoercive, hence that ψ is convex and (Lh −

σh)-smooth in light of Thm. 1.6(ii). We then have

σh ‖x − y‖2 ≤ σh ‖x − y‖2 + 〈∇ψ(x) − ∇ψ(y), x − y〉 ≤ Lh ‖x − y‖2 ,
where the inequalities is due to Thm. 1.6(iii). The claim then follows from
the fact that σh ‖x − y‖2 + 〈∇ψ(x) −∇ψ(y), x − y〉 � 〈∇h(x) −∇h(y), x − y〉.
♠ 1.8(d) ⇒ 1.8(a). σh-hypoconvexity follows from Lem. 1.7. The upper
bound in (1.6) implies that the function ψ(x) � Lh

2 ‖x‖2 − h(x) is convex.
We may now trace the proof of the implication ‘1.8(b)⇒ 1.8(c)’ to infer
that ψ is (Lh − σh)-smooth, hence that h is Lh-smooth.

Theorem 1.9 (Lower bounds for smooth functions). Let h ∈ C1,1(�n) be
Lh-smooth and σh-hypoconvex. Then, for all x , y ∈ �n it holds that

h(y) ≥ h(x) + 〈∇h(x), y − x〉 + ρ(y , x),
where either

(i) ρ(y , x) � σh
2 ‖y − x‖2, or

(ii) ρ(y , x) � − |σh |Lh
2(Lh−|σh |) ‖y − x‖2 + 1

2(Lh−|σh |) ‖∇h(y) − ∇h(x)‖2 (provided
that |σh | < Lh).
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Clearly, all inequalities remain valid if one replaces σh and Lh with σ and L,
respectively, as long as L ≥ Lh and −L ≤ σ ≤ σh .

Proof.

♠ 1.9(i). The inequality in 1.9(i)was already shown in Thm. 1.8(b).

♠ 1.9(ii). Function ψ B h − σ
2 ‖ · ‖2 is Lψ-smooth and convex, with Lψ �

Lh − σh . Expressing the inequality in Thm. 1.6(iv) with respect to h, one
obtains

h(y) ≥ h(x) + 〈∇h(x), y − x〉 + σh Lh
2(Lh−σh ) ‖y − x‖2

+
1

2(Lh−σh ) ‖∇h(y) − ∇h(x)‖2 − σh
2(Lh−σh ) 〈∇h(y) − ∇h(x), y − x〉

If σh ≤ 0, then the coefficient of the scalar product in the second line is
positive, and we can use further lower bound by means of the inequality
in Thm. 1.8(c); the claimed inequality follows after easy algebraic manip-
ulations, having |σh | � −σh in this case.
Otherwise, wemay instead use the upper bound in Thm. 1.8(d), and again
the sought inequality follows after trivial algebra, having |σh | � σh in this
case.

We remark that in Theorem 1.9(ii), in the strongly convex case one
could also use the inequality in [71, Thm. 2.1.10], namely

〈∇h(y) − ∇h(x), y − x〉 ≤ 1
µh
‖y − x‖2

and holding for any µh-strongly convex and smooth function h. However,
one can easily verify that this choice results in a bound looser than the
one already provided in Theorem 1.9(i), which is why the upper bound
in Thm. 1.8(d)was selected instead.

1.2.9 Proximal map and Moreau envelope
The proximal mapping of h : �n → � with parameter γ > 0 is the set-
valued map proxγh : �n ⇒ dom h defined as

proxγh(x) B argmin
w∈�n

{
h(w) + 1

2γ ‖w − x‖2
}
. (1.8)

We say that a function h is prox-bounded if h+ 1
2γ ‖ · ‖2 is lower bounded for

some γ > 0. The supremum of all such γ—which is possibly infinite, as
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it is the case when h is lower bounded or convex— is the threshold of prox-
boundedness of h, denoted as γh . The value function of the minimization
problem defining the proximal mapping is the Moreau envelope with
parameter γ, denoted hγ : �n → �, namely.

hγ(x) B inf
w∈�n

{
h(w) + 1

2γ ‖w − x‖2
}
. (1.9)

Some basic properties of proxγh and hγ are collected in the following
result.

Proposition 1.10. Let h : �n → � be proper, lsc and prox-bounded. Then, for
every γ ∈ (0, γh) the following hold:

(i) proxγh is osc, locally bounded, and nonempty- and compact-valued.

(ii) hγ : �→ � is real valued and strictly continuous.

(iii) For all x ∈ �n , ∂̂hγ(x) � {∇hγ(x)} if hγ is differentiable at x, and is
empty otherwise.

(iv) ∂hγ(x) � ∂B hγ(x) ⊆ 1
γ (x − proxγh(x)) for all x ∈ �n .

(v) hγ is differentiable at x iff proxγh(x) � {x̄} is a singleton, in which case
∇hγ(x) � 1

γ (x − x̄) and, in fact, hγ is strictly differentiable at x.

(vi) 1
γ (x − x̄) ∈ ∂̂h(x̄) for all x ∈ �n and x̄ ∈ proxγh(x).

Proof.

♠ 1.10(i). See [92, Thm. 1.25].

♠ 1.10(ii). See [92, Thm. 10.32].

♠ 1.10(iii). Follows from [92, Cor. 9.21 and Thm. 10.32].

♠ 1.10(iv). Follows from 1.10(iii) and the definition of Bouligand subdif-
ferential.

♠ 1.10(v). hγ is differentiable at x iff so is −hγ, in which case

{−∇hγ(x)} � ∂(−hγ(x)) � − 1
γ

(
x − conv proxγh(x)

)
,

where the equalities follow from [92, Thm. 9.18 and Ex. 10.32]; the same
references ensure also that hγ is in fact strictly differentiable at x in this
case. The equations above holds iff proxγh is a singleton, and the claimed
formula for ∇hγ(x) then also follows.
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♠ 1.10(vi). Since x̄ minimizes ψ(w) � h(w) + 1
2γ ‖w − x‖2, the necessary

optimality conditions (cf. Lem. 1.2) read 0 ∈ ∂̂ψ(x̄) � ∂̂h(x̄) + 1
γ (x̄ − x),

where the equality follows from Lem. 1.3(vi).

Lemma 1.11. Let h : �n → � be γh-prox-bounded. Then, for every σ ∈ �
the function h̃ B h +

σ
2 ‖ · ‖2 is prox-bounded with threshold γh̃ ≥ 1

γ−1
h +[σ]− .

Moreover, for all γ ∈ (
0,min

{
γh̃ , 1/[σ]−

})
proxγh̃(x) � prox γ

1+γσ h
( 1

1+γσ x
)

and
h̃γ(x) � h

γ
1+γσ

( 1
1+γσ x

)
+

σ
2(1+γσ) ‖x‖2.

Proof. For γ > 0 and x , w ∈ �n , we have

h̃(w) + 1
2γ ‖w − x‖2 � h(w) + σ

2 ‖w‖2 + 1
2γ ‖w − x‖2

� h(w) + 1
2
(
σ +

1
γ

) ‖w‖2 − 1
γ 〈w , x〉 + 1

2γ ‖x‖2

� h(w) + 1
2 γ

1+γσ

w − 1
1+γσ x

2
+

σ
2(1+γσ) ‖x‖2.

If γ is in bounded as in the statement, then the coefficient of the quadratic
term in w is strictly positive and strictly larger than 1

2γh
. By taking the

minimizers and minimum with respect to w we obtain the claimed ex-
pressions of proxγh̃ and h̃γ.

Regularity properties

Theorem 1.12 (Proximal properties of hypoconvex functions). Suppose
that h : �n → � is σ-hypoconvex. Then, h is prox-bounded with γh ≥ 1/[σ]−.
Moreover, for all γ ∈ (0, 1/[σ]−) the following hold:

(i) proxγh is single valued and satisfies proxγh � (id + γ∂h)−1; that is, for
any x ∈ �n ,proxγh(x) is the only point u ∈ �n such that x ∈ u+γ∂h(u).

(ii) proxγh is 1
1+γσ -Lipschitz continuous and (1 + γσ)-cocoercive, and for

xi ∈ �n with ui B proxγh(xi), i � 1, 2, one has

(1 + γσ)‖u1 − u2‖2 ≤ 〈u1 − u2 , x1 − x2〉 ≤ 1
1+γσ ‖x1 − x2‖2. (1.10)
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(iii) TheMoreau envelope hγ is differentiablewith∇hγ(x) � 1
γ (x−proxγh(x));

in fact, it is Lhγ -smooth and σhγ -hypoconvex, with Lhγ � max
{

1
γ ,

|σ |
1+γσ

}
and σhγ �

σ
1+γσ .

(iv) If h is twice differentiable at u B proxγh(x), then

• proxγh is differentiable at x with J proxγh(x) �
[
I+γ∇2h(u)]−1, and

• hγ is twice differentiable at x with ∇2hγ(x) � 1
γ

[
I − J proxγh(x)

]
.

Proof. If σ ≥ 0 then h is convex and thus prox-bounded with threshold
γh � ∞ � 1/[σ]−. Otherwise, for any r > −σ � −[σ]− we have that

h(x) + r
2 ‖x‖2 � h(x) − σ

2 ‖x‖2
convex

+
r+σ

2
>0

‖x‖2

is strongly convex, hence lower bounded. By considering γ � 1/r it readily
follows that γh ≥ 1/[σ]−.

Let now γ ∈ (0, 1/[σ]−) be fixed.
♠ 1.12(i). Fix x ∈ �n and consider the function ψ(w) � 1

2 ‖w−x‖2+γh(w).
Observe that ψ is (1+γσ)-strongly convex (with 1+γσ > 0); by definition
of proxγh we have

u ∈ proxγh(x) ⇔ u ∈ argminψ ⇔ 0 ∈ ∂̂ψ(u) � γ∂̂h(u) + u − x ,

where the second implication follows from Lem. 1.2 and the last one from
Lem.s 1.3(i) and 1.3(vi).

♠ 1.12(ii). Let x1 , x2 ∈ �n be fixed, and consider ui B proxγh(xi), i � 1, 2.
If u1 � u2 there is nothing to show, thus let us suppose that u1 , u2. Then,
due to 1.12(i), vi B

1
γ (xi − ui) ∈ ∂̂h(ui), i � 1, 2. We have

‖u1 − u2‖‖x1 − x2‖ ≥ 〈u1 − u2 , x1 − x2〉
� ‖u1 − u2‖2 + γ〈v1 − v2 , u1 − u2〉
≥ (1 + γσ)‖u1 − u2‖2 ,

where the last inequality follows from Lem. 1.4(c). This shows the first
inequality in (1.10), as well as the claimed Lipschitz continuity by simply
dividing by ‖u1 − u2‖. In turn, the second inequality in (1.10) follows by
using Lipschitz continuity on the term ‖u1 − u2‖.
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♠ 1.12(iii). From Prop. 1.10 it follows that hγ is a strictly continuous
function on �n with ∂hγ(x) ⊆ {(x−u)/γ}, where u B proxγh(x). By in-
voking Lem. 1.3(iv) we conclude that hγ is everywhere differentiable
with ∇hγ(x) � 1

γ (x − proxγh(x)). Let x1 , x2 ∈ �n be fixed, and consider
ui B proxγh(xi), i � 1, 2. Then,

〈∇hγ(x1) − ∇hγ(x2), x1 − x2〉 � 1
γ ‖x1 − x2‖2 − 1

γ 〈u1 − u2 , x1 − x2〉
(1.10)
≥ σ

1+γσ ‖x1 − x2‖2 ,

proving the claimed hypoconvexity, as it follows from Lem. 1.7. From
(1.10) it also follows that the scalar product in thefirst line of the inequality
above is positive, hence

〈∇hγ(x1) − ∇hγ(x2), x1 − x2〉 ≤ 1
γ ‖x1 − x2‖2.

From Thm. 1.8 we infer that ∇hγ is Lipschitz continuous with modulus
Lhγ � max

{
1
γ ,

|σ |
1+γσ

}
as claimed.

♠ 1.12(iv). Since∇hγ �
1
γ (id−proxγh), it suffices to prove the claim for hγ.

For convex h, the assert is shown in [58, Thm. 3.1]. If h is σ-hypoconvex
with σ < 0, then h̃ � f − σ

2 ‖ · ‖2 is convex and satisfies

hγ(x) � h̃
γ

1+γσ
( 1

1+γσ x
)
+

σ
2(1+γσ) ‖x‖2

see Lem. 1.11. Using the chain rule of differentiation and rearranging
with simple algebra the claimed expression follows.

Theorem 1.13 (Proximal properties of smooth functions). Suppose that
h ∈ C1,1(�n) is Lh-smooth and σh-hypoconvex. Then, additionally to all the
claims of Thm. 1.12, for all γ ∈ (0, 1/[σh ]−) the following also hold:

(i) The point u � proxγh(s) is the only one such that u + γ∇h(u) � s.

(ii) proxγh is 1
1+γLh

-strongly monotone: for xi ∈ �n with ui B proxγh(xi),
i � 1, 2, one has

1
1+γLh

‖x1 − x2‖2 ≤ 〈u1 − u2 , x1 − x2〉. (1.11)

(iii) The Moreau envelope hγ is Lhγ -smooth with Lhγ � max
{

Lh
1+γLh

, |σh |
1+γσh

}
.
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Proof. 1.13(i) directly follows from Thm. 1.12(i), since ∂h � ∇h. Now, let
xi , ui , i � 1, 2, as in the statement be fixed.

♠ 1.13(ii). Define ψ(x) B γh(x)+ 1
2 ‖x‖2 and observe that ψ is Lψ-smooth

and σψ-strongly convex, with Lψ � 1 + γLh and σψ � 1 + γσh . It follows
from Thm. 1.12(i) that xi � ∇ψ(ui), i � 1, 2. Cocoercivity of ∇ψ, see Thm.
1.6(ii), then implies

〈u1 − u2 , x1 − x2〉 � 〈u1 − u2 ,∇ψ(u1) − ∇ψ(u2)〉
≥ 1

1+γLh
‖∇ψ(u1) − ∇ψ(u2)‖2 ,

�
1

1+γLh
‖x1 − x2‖2 ,

hence the claimed strong monotonicity.

♠ 1.13(iii). From Thm. 1.12(iii) we have that ∇hγ(xi) � 1
γ (xi − ui), hence

σh
1+γσh

‖x1 − x2‖2 ≤ 〈∇hγ(x1) − ∇hγ(x2), x1 − x2〉
�

1
γ ‖x1 − x2‖2 − 1

γ 〈u1 − u2 , x1 − x2〉
�

1
γ

(
1 − 1

1+γLh

)
‖x1 − x2‖2 �

Lh
1+γLh

‖x1 − x2‖2 ,

where the first inequality follows from hypoconvexity of hγ, see Thm.
1.12(iii), and the second one from the proven strong monotonicity of
proxγh .

1.2.10 Image function
The notion of image function, also known as infimal post-composition or
epi-composition [8, 10, 92] will play an important role in Chapter 7.

Definition 1.14 (Image function). Given h : �n → � and a linear operator
C ∈ �m×n , the image function (Ch) : �m → [−∞,+∞] is defined as

(Ch)(s) B inf
w∈�n
{h(w) | Cw � s}.

Proposition 1.15. Let h : �n → � be proper and lsc, and C ∈ �p×n . Suppose
that for some β > 0 the set-valued function Xβ : �p ⇒ �n defined by

Xβ(s) B argmin
x∈�n

{
h(x) + β

2 ‖Cx − s‖2
}
, (1.12)

is nonempty for all s ∈ �p . Then,
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(i) The image function (Ch) is proper.
(ii) (Ch)(Cxβ) � h(xβ) for all s ∈ �p and xβ ∈ Xβ(s).
(iii) prox(Ch)/β � CXβ.

Proof.

♠ 1.15(i). If s̄ < C dom h, then (Ch)(s̄) � ∞. Otherwise, suppose s̄ � Cx̄
for some x̄ ∈ dom h. Then,

−∞ < min
x

{
h(x) + β

2 ‖Cx − s̄‖2
}
≤ inf

x: Cx�s̄

{
h(x) + β

2 ‖Cx − s̄‖2
}

(def)
� (Ch)(s̄),

which is upper bounded by the finite quantity h(x̄).
♠ 1.15(ii). Since C(xβ+v) � Cxβ iff v ∈ ker C, for all s ∈ �p and xβ ∈ Xβ(s)
necessarily h(xβ) ≤ h(xβ + v). Consequently,
(Ch)(Cxβ) ≤ h(xβ) ≤ inf

v∈ker C
h(xβ + v) � inf

x: Cx�Cxβ
h(x) � (Ch)(Cxβ).

♠ 1.15(iii). Fix s̄ ∈ �p , and let xβ ∈ Xβ(s̄). Then, from 1.15(ii) and the
optimality of xβ we have

(Ch)(Cxβ) + β
2 ‖Cxβ − s̄‖2 � h(xβ) + β

2 ‖Cxβ − s̄‖2 ≤ h(x) + β
2 ‖Cx − s̄‖2

for all x ∈ �n . In particular, this holds for all s ∈ �p and x such that
Cx � s, hence

(Ch)(Cxβ)+ β
2 ‖Cxβ−s̄‖2 ≤ inf

x:Cx�s

{
h(x) + β

2 ‖Cx − s̄‖2
}
� (Ch)(s)+ β

2 ‖s−s̄‖2

proving CXβ(s̄) ⊆ prox(Ch)/β(s̄). Similar reasonings yield the other inclu-
sion too.

Proposition 1.16. For an lsc function h : �n → � and C ∈ �p×n , let
X : �p ⇒ �n be defined as

X(s) B argmin
x∈�n

{h(x) | Cx � s}. (1.13)

Then, for all s̄ ∈ C dom h and x̄ ∈ X(s̄) it holds that

C>∂̂(Ch)(s̄) ⊆ ∂̂h(x̄).
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Proof. Let v̄ ∈ ∂̂(Ch)(Cx̄). Then,

lim inf
x→x̄
x , x̄

h(x) − h(x̄) − 〈C>v̄ , x − x̄〉
‖x − x̄‖

� lim inf
x→x̄
x , x̄

h(x) − (Ch)(Cx̄) − 〈v̄ , C(x − x̄)〉
‖x − x̄‖

≥ lim inf
x→x̄
x , x̄

(Ch)(Cx) − (Ch)(Cx̄) − 〈v̄ , C(x − x̄)〉
‖x − x̄‖

� lim inf
x→x̄
x , x̄

(Ch)(Cx) − (Ch)(Cx̄) − 〈v̄ , C(x − x̄)〉
‖C(x − x̄)‖

‖C(x − x̄)‖
‖x − x̄‖

≥ 0,

where in the last inequality we used the fact that v̄ ∈ ∂̂(Ch)(Cx̄).
In order to proceed to the next result, we first need to introduce the

following important notion for parametric minimization.

Definition 1.17 (Locally uniform level boundedness [92, Def. 1.16]). We
say that a function M : �m ×�n → �with values M(w , x) is level bounded
in w locally uniformly in x if for all α ∈ � and x̄ ∈ �n there exists ε > 0
such that the set

{(w , x) ∈ �m ×�n | M(w , x) ≤ α, ‖x − x̄‖ ≤ ε}
is bounded.

Theorem 1.18. Let h : �n → � be lsc and C ∈ �p×n . Suppose that for some
β > 0 the function h +

β
2 ‖C · − s‖2 is level bounded for all s ∈ �p . Then, the

following hold:

(i) (Ch) is proper and lsc.
(ii) For all s ∈ C dom h the set of minimizers X(s) as in (1.13) is nonempty;

moreover, X is locally bounded, and it is osc with respect to (Ch)-attentive
convergence: for all s̄ ∈ C dom h

limsup
k→∞

X(sk) ⊆ X(s̄)

whenever
(
sk , (Ch)(sk)) → (

s̄ , (Ch)(s̄)) as k →∞.

24



(iii) For all s̄ ∈ C dom h and x̄ ∈ X(s̄) one has

C>∂(Ch)(s̄) ⊆
⋃

x̄∈X(s̄)
∂h(x̄).

Proof. The level boundedness condition ensures that H(x , s) B h(x) +
δ{0}(Cx− s) is level bounded in x, locally uniformly in s, cf. Def. 1.17. The
first two claims then follow from [92, Thm. 1.32].

Let v̄ ∈ ∂(Ch)(s̄) be fixed. Then, there exits a sequence (sk , vk)k∈� ⊆
gph ∂̂h such that

(
sk , (Ch)(sk), vk ) → (

s̄ , (Ch)(s̄), v̄)
as k → ∞. For each

k ∈ � let xk ∈ X(sk); then, (xk)k∈� is bounded and all its accumulation
points belong to X(s̄); thus, up to possibly extracting, xk → x̄ for some
x̄ ∈ X(s̄) as k →∞. Then,

C>v̄ � lim
k→∞

C>vk
1.16
∈ limsup

k→∞
∂̂h(xk) ⊆ ∂h(x̄),

where the last inclusion follows from the definition of ∂h and the fact that

h(xk) � (Ch)(sk) → (Ch)(s̄) � h(x̄).
The claimed inclusion then follows from the arbitrarity of v̄ ∈ ∂(Ch)(s̄).

Lemma 1.19. Let h : �n → � be convex and C ∈ �p×n be surjective. Then,
(Ch) is convex, and as long as the set of minimizers X(s̄) is nonempty (see
(1.13)), it holds that

∂(Ch)(s̄) � {
y | A>y ∈ ∂h(x̄)} ,

where x̄ is any element of X(s̄). In particular, if h is differentiable at some point
in X(s̄), then (Ch) is differentiable at s̄.

Proof. See [50, Thm. D.4.5.1 and Cor. D.4.5.2].
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Chapter 2

A general framework for the analysis of
nonconvex splitting algorithms

2.1 Analysis of fixed-point iterations
A Lyapunov stability approach

One of the most appealing properties of splitting algorithms is their
twofold simplicity. First, in most applications their main building blocks
amount to relatively cheap algebraic operations; secondly, they are inher-
ently modular, as the same operations are repeated in a recursive fashion
through a time-invariant black box. As a result, a splitting algorithm can
be efficiently implemented with few lines of code. There is also an im-
portant theoretical advantage enabled by such a recursive nature, as the
analysis of different algorithms, to a certain extent, can be reduced to that
of the common underlying framework of fixed-point iterations.

As a prelude to the thesis, in this section we bring the investigated
algorithms down to the essential, in attempt to detect the minimal re-
quirements needed for the development of a sensible theory. To this end,
we start by considering fixed-point iterations of the form

s0 ∈ �n , sk+1 ∈ F (sk), k � 0, 1, . . . (FP)

where the set-valued fixed-pointmappingF complieswith the following
requirement.
Assumption 2.I. F : �n ⇒ �n is osc and nonempty valued (i.e., with full
domain).

In the next sections we will then specialize this framework to cases
in which the fixed-point mapping has a particular structure, yet still
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general enough to cover a vast range of splitting algorithms for nonconvex
optimization. We begin with an asymptotic analysis of (FP).

Proposition 2.1. Suppose that the sequence (sk)k∈� generated by (FP) satisfies
‖sk − sk+1‖ → 0 as k → ∞. Then, all its accumulation points are fixed points
of F . Conversely, for any s̄ ∈ F there exists s0 ∈ �n such that the sequence
(sk)k∈� generated by (FP) starting from s0 converges to s̄.

Proof. For an arbitrary accumulation point s̄, consider a strictly increasing
sequence (k j) j∈� ⊆ � such that sk j → s̄ as j →∞. Since ‖sk j+1− sk j ‖ → 0,
the shifted sequence (sk j+1) j∈� also converges to s̄. Thus,

s̄ � lim
j→∞

sk j+1 ∈ limsup
j→∞

F (sk j ) ⊆ F (s̄),

where the last inclusion is due to outer semicontinuity of F .
Finally, if s̄ ∈ fixF then it suffices to take sk ≡ s̄ for all k ∈ � to obtain

the desired sequence converging to s̄.

Having the fixed-point residual sk − sk+1 vanishing is a necessary
requirement for ensuring that all accumulation points are fixed. To see
this, consider the mapping

F (s) �

{−1} if s > 0,
{0,±1} if s � 0,
{1} otherwise,

(2.1)

defined on �. It can be easily verified that F is osc and that 0 is the
uniquefixedpoint.However, starting from s0 , 0, thefixed-point iteration
sequencewill be sk � sgn(s0)(−1)k , hencewith±1 as accumulationpoints,
none of which belongs to fixF .

Having ‖sk − sk+1‖ → 0 as k → ∞ plays a fundamental role from
an algorithmic perspective; for instance, termination criteria based on
(the norm of) the fixed-point residual can be imposed, which will be
satisfied in a finite number of iterations. However, Proposition 2.1 only
investigates the consequences of having the residual vanishing, but it
gives no hint as to how such condition can be guaranteed. As the example
(2.1) demonstrates, Assumption 2.I alone is not enough for this purpose,
and the challenge then turns to providing sufficient properties broad
enough to cover the widest possible range of fixed-point iterations. As it
will better detailed in Chapter 8, one such condition involves Lipschitzian
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properties of F , such as contractiveness or averagedness, which turn
out to be general enough to cover algorithms stemming from monotone
operators theory. A key property of such iteration is the so-called Fejér
monotonicity, which entails the existence of a constant c > 0 such that

dist(F (s), fixF )2 ≤ dist(s , fixF )2 − c
2 ‖s − F (s)‖2. (2.2)

From a dynamical system perspective, the square distance (from the fixed
set) acts as a “potential function” that stabilizes the dynamical system
sk+1 � F (sk). Due to the lower boundedness of the distance function, one
can telescope the inequality above for the fixed-point iterations sk+1 �

F (sk) to infer that (‖sk − sk+1‖2)k∈� is summable, hence in particular that
‖sk − sk+1‖ → 0 as k →∞.

Although such a requirement is still too restrictive to encompass the
set-valued operators of nonconvex splitting algorithms, the dynamical
system interpretation of (2.2) is surely inspirational. Indeed, as long as
it is only the vanishing of the fixed-point residual that is concerned, it
really makes no difference whether it is the square distance rather than
an arbitrary lower bounded function to act as a potential. This is the
key point of our analysis, which indeed boils down to the existence of a
potential function that behaves the sameway the square distance does for
Fejér-monotonic sequences (with the duemodifications to account for the
possible set-valued nature of F ). This leads to the following definition.

Definition 2.2 (Lyapunov function). We say thatL : �n → � is aLyapunov
function for (FP) if it satisfies the following properties:

p1 Lower Boundedness: inf L > −∞.

p2 Sufficient Decrease: there exists a “sufficient decrease constant”
c > 0 such that

L(s+) ≤ L(s) − c
2 ‖s − s+‖2 for all s ∈ �n and s+ ∈ F (s).

Wenowproceed to formalize the intuition that anyLyapunov function
as in Definition 2.2 is a suitable replacement for the square distance in
(2.2). The following result will be useful in this perspective.

Lemma 2.3. Suppose that (sk)k∈� ⊆ �n is bounded and satisfies ‖sk−sk+1‖ →
0 as k →∞. Then, the set of accumulation points ω of (xk)k∈� is nonempty and
compact, and such that dist(sk , ω) → 0 as k →∞.
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Proof. This is shown in [22, Rem. 5], although due to a typo boundedness
is not mentioned.

Theorem 2.4 (Subsequential convergence). Suppose that a fixed-point map-
ping F as in Assumption 2.I admits a Lyapunov functionL. Then, the following
hold for the fixed-point iterations (FP):

(i) The fixed-point residual (‖sk − sk+1‖)k∈� is square-summable; in partic-
ular, min j≤k ‖s j − s j+1‖ ∈ O(1/√k).

(ii) Every accumulation point of (sk)k∈� satisfies s̄ ∈ fixF .

(iii) If (sk)k∈� is bounded (as it is the case when L is level bounded), then the
set of accumulation points ω is nonempty, compact and connected, and
dist(sk , ω) → 0 as k →∞.

Proof.
♠ 2.4(i). The sufficient decrease property of L ensures the existence of a
constant c > 0 such that

L(sk+1) ≤ L(sk) − c
2 ‖sk − sk+1‖2 ∀k ∈ �.

Since L is real valued, for any K ≥ 1 we may telescope the inequality for
k � 1, 2, . . . , K to arrive to

K∑
k�1
‖sk − sk+1‖2 ≤ 2

c

K∑
k�1

(
L(sk) − L(sk+1)

)
�

2
c
(L(s1) − L(sK+1))

≤ 2
c
(L(s1) − inf L)

.

Since L is lower bounded, the partial sums
∑K

k�1 ‖sk − sk+1‖2 are upper
bounded by a same finite constant for all K ≥ 1. By letting K →∞, square
summability follows. As to the claimed O(1/√k) rate, notice that, for all
K ∈ �,

∞ > S B
∞∑

k�0
‖sk − sk+1‖2 ≥

K∑
k�0
‖sk − sk+1‖2 ≥

K∑
k�0

min
j≤k
‖s j − s j+1‖2

≥ (K + 1)min
j≤K
‖s j − s j+1‖2 ,

where in the last inequality we used the decreasing behavior of the se-
quence (min j≤k ‖s j − s j+1‖2)k∈�. Thus, min j≤K ‖s j − s j+1‖ ≤

√
S/K+1 for all

K ∈ �.

30



♠ 2.4(ii)&2.4(iii). Since ‖sk−sk+1‖ → 0, the first assert follows fromProp.
2.1, and the second from Lem. 2.3.

We conclude the section with a remark on some properties relating
fixed-point mappings and their Lyapunov functions.

Lemma 2.5. Suppose that the fixed-point mapping F as in Assumption 2.I
admits a Lyapunov function L. Then,

(i) F (s) is compact for all s ∈ �n .

(ii) L(s) − inf L ≥ c
2 ‖s − s̄‖2 for all s ∈ �n and s̄ ∈ F (s).

In particular,

(iii) F (s?) � {s?} for all s? ∈ argminL (hence argminL ⊆ fixF ).

Proof. The set F (s) must be bounded for all s ∈ �n , for otherwise either
the lower boundedness 2.2.p1 or the sufficient decrease property 2.2.p2
would be violated. That F (s) is closed holds regardless of whether F
admits a Lyapunov function or not, owing to the fact that any sequence
contained in F (s) has, by definition of osc, all accumulation points in
F (s). Moreover, for any s̄ ∈ F (s)we have

L(s) − inf L ≥ L(s) − L(s̄) ≥ c
2 ‖s − s̄‖2

where the second inequality follows from the sufficient decrease property.
The last claim follows straightforwardly.

We terminate here the abstract fixed-point framework and begin to
specialize the study to the solution of nonconvex optimization problems.
The rest of the chapter is dedicated to establishing the class of inves-
tigated fixed-point mappings. In Chapter 3 we will then analyze their
convergence by introducing proximal envelopes, which will prove to be
particularly suitable Lyapunov functions.

2.2 Fixed-point iterations in optimization
The challenges of nonconvexity

We now begin to specialize the fixed-point framework (FP) for solving
optimization problems

minimize
x∈�n

ϕ(x), (P)
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where ϕ : �n → � is a proper, lsc, extended-real valued function with
nonempty set of minimizers. Unless differently specified, these minimal
requirements on the cost function ϕ will be assumed in the sequel.

There are two main issues that need be addressed. First, the mapping
F must be consistent with the investigated problem, as the limit points of
its fixed-point iterations must somehow be related to the solutions of (P).
This, in turn, raises the issue of properly definingwhat a “solution” is, for
“solving” (P) may acquire a meaning broader than that of finding mini-
mizers of ϕ. This second point arises because of the possible nonconvex
nature of ϕ. Under convexity, instead, first-order optimality is necessary
and sufficient for global optimality, and indeed splitting algorithms ad-
dress the equivalent problem of finding first-order optimal points; the
sought (global) minimizers are then obtained, up to possibly operating
a change of variable (as it is the case of the Douglas-Rachford splitting
where a proximal mapping relates fixed points of the operator with so-
lutions to the optimization problem). Although this is not the case in the
more general framework investigated here, once againwe shall gain some
insight from the convex realm.

In the previous section we characterized the limit point(s) of fixed-
point iterations of F as those belonging to fixF . The idea is then to
seek fixed points of F , all of which, up to possibly operating a change
of variable, shall satisfy some necessary condition for optimality for (P).
This leads to the following criterion of compatibility between the fixed-
point mapping F and problem (P).

Definition 2.6 (Compatibility). We say that a fixed-point mapping F : �n ⇒
�n is compatible with problem (P) if the following properties are satisfied:

p1 F complies with Assumption 2.I.

p2 There exists an LG-Lipschitz continuous and µG-stronglymonotone function
G : �n → �n such that

argminϕ ⊆ G(fixF ) ⊆ zer ∂̂ϕ.

The strongmonotonicity of G implies, in particular, that G is invertible
with µ−1

G -Lipschitz inverse.As expectable, the lack of convexitymay result
in the need of additional assumptions on the problem, and these will
happen to ensure this apparently overly restrictive property.

The majorization-minimization (MM) principle will be the core of our
approach. As the name suggests, an MM step amounts to the minimiza-
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tion of a surrogate function that is pointwise greater than the real ob-
jective ϕ. Our algorithmic framework will consist of “generalized” MM
schemes, in which “pure” MM steps may composed with the transfor-
mation mapping G appearing in Definition 2.6. The rest of the chapter
is devoted to developing the needed theory. We begin with the analysis
of “pure” MM schemes, and later complete the picture by including the
claimed generalization.

2.3 Proximal majorization-minimization
PMM schemes

As the name suggests, majorization-minimization algorithms address the
minimization of a function ϕ by iteratively minimizing a larger surrogate
function, or model. The approach is convenient whenever the minimiza-
tion of the model is easier than that of the original function ϕ. A classical
definition of majorizing model can be formulated as follows [57].

Definition 2.7 (Majorizing model). The functionM : �n × �n → � is a
majorizing model for the proper, lsc, and lower bounded function ϕ if

p1 M(x ; x) � ϕ(x ) for all x ∈ �n , and

p2 M(w; x) ≥ ϕ(w) for all x , w ∈ �n .

The collection of all majorizing models for ϕ is denoted byMϕ.

GivenamodelM, amajorizationminimization (MM) step at x consists
of selecting x+ ∈ argminwM(w; x); due to the tangency condition 2.7.p1,
one can easily infer that any such x+ satisfiesϕ(x+) ≤ ϕ(x). Let us consider
two (de)motivating examples.

Example 2.8 (Maximal model). Let

M0(w; x) B
{
ϕ(x) if w � x,
∞ otherwise.

Then,M0 is a majorizing model for ϕ, in fact it is the pointwise largest
such function. However, this model is quite useless for the sake of mini-
mizing ϕ, for one MM step at any point x ∈ �n necessarily yields x+ � x
if x ∈ dom ϕ, and no x+ even exists otherwise.
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Example 2.9 (Minimal model). Let

M(w; x) B ϕ(w).
This time,M is thepointwise smallestmajorizingmodel forϕ. Once again
this model turns out to be of no help in the minimization of ϕ, being one
MM step as hard as directly minimizing ϕ. In fact, argminwM(w; x) �
argminϕ for any x ∈ �n .

These two examples are a clear indication that for the sake of a sensible
theory some additional requirements on the employed models are in
order. This is indeed the objective of the next section.

2.3.1 Proximal majorizing models
In accordance with the quadratic majorization in definition (1.8) of prox-
imal mapping, we will restrict the analysis to “proximal” majorizing
models, defined as follows.
Definition 2.10 (Proximalmajorizingmodel). The functionM(w; x) : �n×
�n → � is a proximal majorizing model for ϕ if
p0 M is lsc,

p1 M(x ; x) � ϕ(x) for all x ∈ �n , and

p2 there exist m1 ,m2 > 0 such that

ϕ(w) + m1
2 ‖w − x‖2 ≤ M(w; x) ≤ ϕ(w) + m2

2 ‖w − x‖2
for all x , w ∈ �n .

The collection of all proximal majorizing models for ϕ is denoted byMϕ.
To streamline the notation, we may omit the ‘majorizing’ part and

refer to elements ofMϕ simply as proximal models.
Definition 2.11 (Continuity of proximal models). We say that a proximal
model M is continuous if the sections x 7→ M(w; x) are continuous for all
w ∈ �n .

An MM step relative to a proximal majorizing modelM will be re-
ferred to as a proximal MM (PMM) step. The set-valued mapping that
associates a point x to all its proximalMM steps throughM will be called
PMM mapping, and denoted as TM . Namely, TM : �n ⇒ �n is defined
as

TM(x) B argmin
w∈�n

M(w; x). (2.3)

34



Example 2.12 (Proximal point). For γ > 0, let

Mpp
γ (w; x) B ϕ(x) + 1

2γ ‖w − x‖2.
Clearly,Mpp

γ is a proximal majorizing model, specifically with m1 � m2 �

1/γ as parameters in property 2.10.p2. The associated PMM mapping is
TMpp

γ � proxγϕ, the proximal mapping of ϕ with parameter γ.

In the next subsection we list some of the advantages that the prop-
erties of proximal majorizing models pose over the classical Definition
2.7.

2.3.2 Properties
Theorem 2.13 (Regularity of the PMM mapping). For any proximal ma-
jorizing model M ∈ Mϕ, the PMM mapping TM is osc, nonempty- and
compact-valued. In particular, TM satisfies Assumption 2.I.

Proof. Due to the lower bound in 2.10.p2, we have

M(w; x) ≥ ϕ(w) + m1
2 ‖w − x‖2 ≥ inf ϕ +

m1
2 ‖w − x‖2.

Sinceϕ is proper and lower bounded, it holds that inf ϕ ∈ �and therefore
M is level bounded in w locally uniformly in x, cf. Def. 1.17. Moreover,
for any z ∈ dom ϕ (such z exists due to properness of ϕ) we have

inf
w∈�n
M(w; x) ≤ M(z; x) ≤ ϕ(z) + m2

2 ‖z − x‖2 < ∞,

hence the parametric infimumwith respect to w is everywhere finite. The
claimed properties of TM then follow from [92, Thm. 1.17].

Lemma 2.14 (Basic inequality). LetM ∈ Mϕ and x ∈ �n be fixed. Then,

M(x̄; x) ≤ ϕ(x) for all x̄ ∈ TM(x),
and equality holds iff x ∈ fixTM .

Proof. For any x̄ ∈ TM(x)we have

ϕ(x)
2.10.p1
�M(x; x) ≥ inf

w∈�n
M(w; x) (def)�M(x̄; x).

Thus, equality holds iffM(x; x) � infw∈�nM(w; x), which is equivalent
to having x ∈ argminw∈�nM(w; x) (def)� TM(x).
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We conclude the subsection with a useful inequality that relates the
normof the subgradients after oneMMstepwith the fixed-point residual.

Lemma 2.15 (An error-bound-like inequality). LetM be a proximal model
for ϕ, and suppose that the difference δ(w) BM(w; x) − ϕ(w) is differentiable
with Lδ-Lipschitz gradient. Then,

dist(0, ∂̂ϕ(x̄)) ≤ Lδ‖x − x̄‖ for all x ∈ �n and x̄ ∈ TM(x).

Proof. Due to property 2.10.p2, it holds that

m1
2 ‖w − x‖2 ≤ δ(w) ≤ m2

2 ‖w − x‖2 ,

and in particular ∇δ(x) � 0. Combined with the Lδ-Lipschitz continuity
of ∇δ, we obtain ‖∇δ(x̄)‖ ≤ Lδ‖x − x̄‖. Since x̄ minimizes w 7→ M(w; x),
we have

0 ∈ ∂̂wM(x̄; x) � ∂̂ϕ(x̄) + ∇δ(x̄),
hence −∇δ(x̄) ∈ ∂̂ϕ(x̄). Thus, dist(0, ϕ̂(x̄)) ≤ ‖ − ∇δ(x̄)‖ ≤ Lδ‖x − x̄‖.

The requirements for δ in Lemma 2.15 are actually restrictive, but
they suffice to our purposes. Indeed, if δ is strictly continuous, then the
inclusion (as opposed to equality) 0 ∈ ∂̂wM(x̄; x) ⊆ ∂̂ϕ(x̄) + ∂̂δ(x̄) still
holds (cf. Lem. 1.3(iii)), and we then infer that −v ∈ ∂̂ϕ(x̄) for some
v ∈ ∂̂δ(x̄). In order to ensure a bound of the form ‖v‖ ≤ L‖x − x̄‖, it then
suffices to require the following calmness condition: there exists L ≥ 0
such that

max
v∈∂̂δ(w)

‖v‖ ≤ L‖w − x‖ for all w ∈ �n .

Thus, we infer from [92, Thm. 9.13(a)-(f)] that a sufficient condition for
Lemma 2.15 to hold is having δ locally Lipschitz-continuous with modulus
growing at most linearly with respect to ‖w − x‖ (which is indeed the case
when δ is Lipschitz-differentiable).

The inequality in Lemma 2.15 is closely related to the error bound
condition under which linear convergence of some proximal algorithms
can be established, see [66, 36]. The key difference is that an error bound
would require the subdifferential at x, as opposed to the one at x̄ ∈
TM(x). Although less powerful, the given inequality has still some useful
consequences.
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2.3.3 Partial ordering
As the extreme Examples 2.8 and 2.9 confirm, it is intuitive that the
more a model M penalizes points (w; x) far from (x; x), the more the
minimizers defining TM will be close to x, hence the likelier for x to
be a fixed point. In this sense, being a fixed point for a “high” model
may be regarded as a loose property; on the contrary, if x is fixed with
respect to a “low” model, the extreme scenario depicted in Example 2.9
may suggest that x is closer to be a (local) optimum. In the next pages we
will confirm this intuition, and we will indeed quantify, to some extent,
local optimality of a point in terms of howmuch a model can be “pushed
down”without affecting the status of being afixedpoint. “Pushingdown”
is to be meant in the sense of considering a lower model; it thus becomes
necessary to formalize how models can be compared one another. An
intuitive such option is to define a pointwise ordering, agreeing thatM
is lower thanM′ ifM(w; x) ≤ M′(w; x) holds for all points x , w ∈ �n .
Nevertheless, to enforce some degree of uniformity when comparing
models it is convenient to work with a coarser partial ordering, which we
define next.

Definition 2.16. Given two majorizing modelsM ,M′ ∈ Mϕ, we writeM ≺
M′ to indicate thatM ≤ M′ pointwise, and

M(w; x) <M′(w; x) for all (w; x) ∈ domM with w , x.

The relation M � M′ then indicates that either M � M′ or M ≺ M′; the
relations � and � are defined accordingly.

The restriction w , x in Definition 2.16 rules out points on the diago-
nal {(x; x) | x ∈ �n} where all elements ofMϕ must agree, as prescribed
by property 2.7.p1. Further restricting to points (w; x) ∈ domM ensures
that infinite values are not compared. In the case of proximal models
M ,M′ ∈ Mϕ, in light of property 2.10.p2 havingM(w; x) � ∞ is equiv-
alent to having x < dom ϕ, and in particular all proximal models have
same domain. Thus,M ≺M′ for proximalmodels indicates that the strict
inequality < holds pointwise wherever theM andM′ can differ.

Lemma 2.17 (Existence of extrema). Relative to the partial ordering �, any
family A ⊆ Mϕ of proximal models admits an (lsc) supremum and an infimum
in Mϕ. In particular, the family of all proximal models has (w; x) 7→ ϕ(w) as
infimum andM0 as in Example 2.8 as supremum.
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Proof. That (w; x) 7→ ϕ(w) andM0 are the extrema ofMϕ is trivial. Sup-
pose thatA , ∅, and consider the pointwise supremum M̄ B sup(A , ≥).
Clearly, M̄ ∈ Mϕ, and since proximal models are lsc by definition, it fol-
lows from [92, Prop. 1.26(a)] that M̄ is lsc as well. Notice thatM � M′
implies the pointwise inequality M ≤ M′, hence one can easily verify
that M̄ is the sought supremum. The claim for the infimum is similar,
except that lower semicontinuity cannot be deduced.

Although they always exist, extrema of families of majorizing models
shouldbe treatedwith care, lest intuitiveproperties of total order relations
are mistakenly attributed to a partial ordering such as �. For instance,
having sup(A , �) � M0 for a family A of majorizing models does not
imply, given a model M̄, the existence of a model M ∈ A such that
M � M̄. To see this, consider

M̄(w; x) B ϕ(w) + ‖w − x‖2

and A B {Mk | k ∈ �}, where

Mk(w; x) B ϕ(w) + 1
2 ‖w − x‖2 + k‖w − x‖.

Then, (A , �) is even totally ordered and its supremum is M0, yet no
modelMk satisfiesMk � M̄ (in fact, not evenMk ≥ M̄). For this reason,
it will be convenient to work with totally ordered families.

The following result shows how by raising proximal models towards
the supremumM0 the pathological behavior depicted in Example 2.8 is
approached.

Lemma 2.18. Let (Mk)k∈� ⊂ (Mϕ , �) be an increasing sequence of proximal
models such that sup(Mk)k∈� � M0. Then, limsupk→∞ TMk (x) � {x} for
any x ∈ dom ϕ.

Proof. Due to property 2.10.p2 and since (Mk)k∈� is increasing, there
exists m1 > 0 (independent from k) such that

Mk(w; z) ≥ ϕ(w) + m1
2 ‖w − z‖2 for all w , z ∈ �n and k ∈ �. (2.4)

Let x ∈ dom ϕ be fixed and let x̄k ∈ TMk (x) be arbitrary. We have

ϕ(x)
2.14
≥ Mk(x̄k ; x)

(2.4)
≥ ϕ(x̄k) + m1

2 ‖x − x̄k ‖2 ≥ inf ϕ +
m1
2 ‖x − x̄k ‖2.
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Since ϕ(x) < ∞, it follows that (x̄k)k∈� is bounded. To arrive to a contra-
diction, suppose that a subsequence (x̄k j ) j∈� converges to a point x̄ , x,
and let B B B(x̄; ‖x − x̄‖). Then, with similar arguments we obtain

ϕ(x)
2.14
≥ limsup

j∈�
M jk (x̄ jk ; x) ≥ limsup

j∈�
inf
w∈B
Mk j (w; x) � ∞,

where the second inequality follows from the fact that x̄k j ∈ B for large
enough j’s, and the last equality from the fact thatM0(w; x) � ∞ for all
w ∈ B. This contradicts the fact that x ∈ dom ϕ.

2.4 Criticality

In this section we finally establish the intuitive connections brought forth
in the previous section linking fixed points with local optima. As a
byproduct, the compatibility (in the sense of Definition 2.6) of a PMM
mapping TM and the minimization of ϕ will be established. Theorem
2.22will then provide a first hint in support of the chosen partial ordering
between models. Further evidence will be given later on with the intro-
duction in Definition 2.31 of a “threshold” function, that measures the
“optimality” of a point by analyzing the fixed sets of sufficiently large
models.

We begin by establishing a terminology to replace the vague term
“solution” (to problem (P)) with a more specific dedicated expression. A
constructive way to assess whether a point complies with this definition
will be given in Corollary 2.24.

Definition 2.19 (Criticality). We say that x̄ ∈ �n is a critical point for ϕ if
there exists a proximal modelM ∈ Mϕ such that x̄ ∈ fixTM .

Criticality is a halfway property strictly between optimality and sta-
tionarity, as shown in the next result.

Proposition 2.20 (Higher-order stationarity of critical points). Suppose
that x̄ is critical for ϕ; then,

ϕ(x) − ϕ(x̄) ≥ O(‖x − x̄‖2).

In particular, not only 0 ∈ ∂̂ϕ(x̄), but for all ϑ ∈ [0, 1) the following stronger
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stationarity property holds:

lim inf
x→x̄
x , x̄

ϕ(x) − ϕ(x̄)
‖x − x̄‖1+ϑ ≥ 0. (2.5)

Proof. LetM ∈ Mϕ be such that x̄ ∈ fixTM . We have,

ϕ(x) − ϕ(x̄)
2.10.p1
� ϕ(x) −M(x̄; x̄)

2.10.p2
≥ M(x; x̄) − m2

2 ‖x − x̄‖2 −M(x̄; x̄)
≥ inf

w∈�n
M(w; x̄) −M(x̄; x̄) − m2

2 ‖x − x̄‖2

� − m2
2 ‖x − x̄‖2 ,

where the last equality follows from the fact that x̄ ∈ TM(x̄).
The bound ϑ < 1 in the higher-order stationarity property (2.5) is

tight, and we need to accept the fact that saddle points or maxima cannot
be avoided, as shown in the next example.

Example 2.21. Consider ϕ : �2 → � given by

ϕ(x) � max
{−1, (x1 − x2)2 − 3

2 x2
2
}
,

which has a saddle point at x̄ � (0, 0). However, x̄ also happens to be
critical: consider the proximal point model Mpp

γ of Example 2.12 with
γ < 1/2. Then

TMpp
γ (x̄) � proxγϕ(0, 0) � {(0, 0)} � {x̄}.

The next result shows that the partial ordering � among proximal
models is paralleled by an inclusion of the fixed sets, in the sense that
the lower the model, the stronger the property of being a fixed point.
It also shows an interesting fact when the relation is strict which will
be important later on in the thesis when regularity properties will be
discussed.

Theorem 2.22. For any pair of proximal modelsM ,M′ ∈ Mϕ, the following
hold:

(i) IfM � M′, then fixTM ⊆ fixTM′ .
(ii) IfM ≺M′, then TM′(x) � {x} for all x ∈ fixTM .

Proof. To ease the notation, let us denote T B TM and T ′ B TM′ .
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♠ 2.22(i). Let x ∈ fixT . Then, for all x̄′ ∈ T ′(x)we have

ϕ(x)
2.10.p1
�M(x; x) ≤ M(x̄′; x) ≤ M′(x̄′; x) (def)� inf

w∈�n
M′(w; x)

≤ M′(x; x)
2.10.p1
� ϕ(x),

where the first inequality follows from the fact that x ∈ T (x). Therefore,
M′(x; x) � infw∈�nM′(w; x), hence x ∈ T ′(x).
♠ 2.22(ii). Let x̄′ ∈ T ′(x); to arrive to a contradiction, suppose that x̄′ , x.
Then,M(x̄′; x) ≤ M′(x̄′; x) < ∞, henceM(x̄′; x) <M′(x̄′; x), cf. Def. 2.16.
We have

ϕ(x)
2.14
�M′(x̄′; x) >M(x̄′; x) ≥ inf

w∈�n
M(w; x) �M(x; x)

2.10.p1
� ϕ(x),

where the second equality follows from the fact that x ∈ T (x). Thus, we
obtained the contradiction ϕ(x) > ϕ(x).
Corollary 2.23. Let x̄ be a critical point for ϕ, and let A ⊂ (Mϕ , �) be a totally
ordered family of proximal models such that sup A � M0. Then, there exists
M ∈ A such that x̄ ∈ fixTM .

Proof. Suppose that x̄ ∈ fix M̄ for some proximal model M̄ (not neces-
sarily in A ), and let (Mk)k∈� ⊆ A be an increasing sequence pointwise
converging toM0. For k ∈ �, let x̄k ∈ TMk (x). From Lem. 2.18 it follows
that (x̄k)k∈� is contained in a bounded set B (x is critical, and in particu-
lar x ∈ dom ϕ). Then, there exists k ∈ � such thatMk(w; x) ≥ M̄(w; x)
for all w ∈ B. Thus,

ϕ(x)
2.10.p1
� M̄(x; x) � inf

w∈�n
M̄(w; x) ≤ M̄(x̄k ; x) ≤ Mk(x̄k ; x)

2.14
≤ ϕ(x),

from which we infer thatMk(x̄k ; x) � ϕ(x). Lem. 2.14 then ensures that
x ∈ TMk (x).

Notice that, although closely related, the result cannot be shown by
directly invoking Thm. 2.22(i). In fact, the existence of a model in A
greater thanM cannot be guaranteed, as discussed in Section 2.3.3.

As seen in Example 2.12, proxγϕ is a PMM mapping, specifically the
one relative to the proximal modelMpp

γ (w; x) � ϕ(w) + 1
2γ ‖w − x‖2. The

family PP � (Mpp
γ )γ>0 is totally ordered and satisfies Mpp

γ ↗ M0 as
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γ ↘ 0. Corollary 2.23 can thus be invoked, resulting in the following
constructive criterion for checking whether a point is critical or not.

Corollary 2.24. A point x̄ is critical for ϕ iff there exists γ > 0 such that
x̄ ∈ proxγϕ(x̄).

The next result completes the assert of Proposition 2.20 by providing
a converse implication: local minimizers are critical points, and critical
points are almost second-order optimal.

Theorem 2.25 (Criticality of local minima). Let x be a local minimum of ϕ;
then x is critical. In fact, for any totally ordered family A ⊂ (Mϕ , �) of proximal
models satisfying sup A �M0 there existsM ∈ A such that x ∈ fixTM .

Proof. Since A is totally ordered, there exists a sequence (Mk)k∈� ⊆ A

such thatMk ↗M0 as k →∞. To ease the notation, let T k B TMk . Due
to property 2.10.p2 and the monotonicity of (Mk)k∈�, there exists m1 > 0
such thatMk(w; x) ≥ ϕ(w)+ m1

2 ‖w− x‖2 for all x , w ∈ �n . Let x be a local
minimum for ϕ, and for all k ∈ � let x̄k ∈ T k(x). It follows from Lem.
2.18 that x̄k → x as k → ∞. In particular, since x is a local minimum,
there exists k̄′ ∈ � such that ϕ(x̄k) ≥ ϕ(x) for all k ≥ k̄′. Therefore,

ϕ(x)
2.14
≥ Mk̄′(x̄ k̄′ ; x) ≥ ϕ(x̄ k̄′) + m1

2 ‖x − x̄ k̄′ ‖2 ≥ ϕ(x) + m1
2 ‖x − x̄ k̄′ ‖2 ,

where the second inequality follows from the fact that x̄ k̄′ ∈ T k̄′(x). We
then conclude that x � x̄ k̄′ ∈ T k̄′(x).

2.5 Generalized proximal majorization-minimization
GPMM schemes

Given a proximal model M ∈ Mϕ, the regularity properties assessed
in Theorem 2.13 ensure that F � TM fits into the general fixed-point
framework (FP). Apart from having all accumulation points critical for ϕ,
hence being compatiblewithproblem (P) in the sense ofDefinition 2.6, such
a “pure” majorization-minimization scheme has also the advantage of
being adescent algorithmon the cost function, in the sense that (ϕ(xk))k∈�
is monotonically (strictly) decreasing. However, limiting the analysis to
these iterative schemes only would rule out many splitting algorithms
that do not have a “pure” MM nature, such as the Douglas-Rachford
splitting or the sibling ADMM. For the sake of developing a universal
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theory, we sacrifice the simplicity of a pure MM scheme by including
possible change of variable G as introduced in Definition 2.6.

Definition 2.26 (Generalized proximal MM schemes). Given

p1 a proximal modelM : �n ×�n → � for ϕ, and

p2 a transient mapping G : �n → �n , that is, an LG-Lipschitz
continuous and µG-strongly monotone mapping

with F ∼ (M ,G) we indicate the collection of fixed-point map-
pings F λ : �n → �n , indexed over a relaxation parameter
λ , 0, defined as

F λ B id − λ(id − TM) ◦ G. (2.6)

Fixed-point iterations of F λ constitute a generalized proximal
MM (GPMM) scheme, or simply (pure) proximal MM (PMM)
scheme in case G ≡ id.

It follows from Lemma 1.1 that transients are invertible and their in-
verse is Lipschitz continuous as well. Although these requirements of
Lipschitz continuity and strong monotonicity could actually be dropped,
as plain or strict continuity would suffice to our purposes in most cases,
however for the sake of a simpler exposition we prefer to stick to these
assumptions, which, in any case, will be satisfied in all the investigated
splitting algorithms. The next result assesses the fundamental compati-
bility of the scheme (2.6) and the optimization problem (P); the role of
G as transition from the fixed-point variable s of the mappings F λ to
the optimization variable x will then be clear. In particular, we will see
that from fixed points of G we can recover stationary points of ϕ, due to
a one-to-one correspondence with fixed points of the pure MM scheme
TM .

Theorem 2.27 (Compatibility of GPMM schemes). Let M ∈ Mϕ be a
proximal model for ϕ. Then, for every continuous bĳection G : �n → �n and
λ ∈ � \ {0}, the mapping F λ : �n ⇒ �n as in (2.6) is osc, with F λ(s)
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nonempty and compact for all s ∈ �n . Moreover, the following inclusions hold:

argminϕ ⊆ G(fixF λ) � fixTM ⊆ zer ∂̂ϕ. (2.7)

In particular, the fixed-point mapping F λ is compatible with ϕ.

Proof. The properties of F λ follow from the similar ones of TM shown
in Thm. 2.13 and the continuity of G. We have

s̄ ∈ F λ(s̄) ⇔ s̄ ∈ s̄ − λ [
G(s̄) − TM (

G(s̄)) ] ⇔ G(s̄) ∈ TM (
G(s̄)) ,

where the first implication follows from the definition of F λ, and the
second one from the invertibility of G and the fact that λ , 0. Thus,
G(fixF λ) � fixTM . Suppose now that x ∈ argminϕ and let x̄ ∈ TM(x).
Then,

min ϕ
2.10.p1
�M(x , x) ≥ M(x̄ , x)

2.10.p2
≥ ϕ(x̄)+ m1

2 ‖x − x̄‖2 ≥ min ϕ +
m1
2 ‖x − x̄‖2 ,

from which it follows that x̄ � x, hence the inclusion argminϕ ⊆ fix T.
Finally, the inclusion fixTM ⊆ zer ∂̂ϕ follows from Prop. 2.20.

2.6 Representation of proximal algorithms
To finalize the general framework investigated in this chapter, let us for-
mallydefinehow to represent aproximal algorithm in termsofmajorizing
models and transient functions. To this end, for the sake of an example
let us consider the most elementary MM scheme, namely, the proximal
point algorithm (PPA). As briefly discussed in Example 2.12, for γ > 0
we have that proxγϕ is the (pure) PMM mapping TM(x) relative to the
proximal modelM(w; x) � ϕ(x) + 1

2γ ‖w − x‖2. Thus, the modelM (to-
gether with the identity transient mapping G � id) in the generalized
MM framework captures PPAwith all possible relaxation parameters, yet
is bound to a unique stepsize γ, having

F λ(s) � (1 − λ)s + λ proxγϕ(s)
for all λ , 0. This is somehowanunavoidable consequence of thedifferent
nature of γ and λ, the former being intrisic in the fixed-point black box,
and the latter simply amounting to an a-posteriori averaging.
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This is readily solved by identifying PPA with a family of models
PP � (Mpp

γ )γ>0 indexed over a parameter γ. Minimal requirements on
the parametrization γ 7→ MA

γ facilitate operating with such a collection,
and the inclusion of possible transients allows to recover all generalized
PMM schemes. This leads to the following definition.

Definition 2.28. A generalized proximal MM (GPMM) algorithm for
problem (P) is a collection

A � (MA
γ ,Gγ)γ∈(0,γ̄)

indexed over a stepsize parameter γ ranging between 0 and γ̄ ∈ (0,∞], where
p1 (MA

γ ,Gγ) is a GPMM scheme as in (2.6) for all γ ∈ (0, γ̄],
p2 MA

γ ≺ MA
γ′ whenever 0 < γ < γ′ < γ̄ (hence in particular the models

form a totally ordered family), and

p3 supγ∈(0,γ̄)MA
γ �M0 (equivalently,MA

γ ↗M0 as γ↘ 0 pointwise).

Example 2.29 (Proximal point as a GPMM algorithm). The proximal
point algorithm fits into the GPMM framework through the following
representation:

PP � (Mpp
γ , id)γ>0 where Mpp

γ (w; x) � ϕ(w) + 1
2γ ‖w − x‖2.

In particular, m1(γ) � m2(γ) � 1/γ and LGγ � µGγ � 1 are the constants in
properties 2.10.p2 and 2.26.p2.

2.6.1 Notational conventions
To give more emphasis to the GPMM family and to the parameters γ and
λ, we will adopt the following conventions:

• Aλ will indicate the GPMM algorithm with relaxation parameter
λ. The GPMM fixed-point mapping with stepsize γ and relaxation
λ will thus be indicated by F Aλ

γ .

• We will write TA
γ in place of TMA

γ (this definition is independent
of λ); in particular,

F Aλ
γ B id − λ(id − TA

γ ) ◦ Gγ . (2.8)
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• The symbols m1(γ) and m2(γ) will denote the constants m1 and
m2 in property 2.10.p2, respectively, relative to the proximal model
MA

γ . Similarly, µGγ and LGγ will denote the strong convexity and
Lipschitz moduli, respectively, of the transients Gγ as in property
2.26.p2. Whenever clear from context, γmay be removed to ease the
notation.

• When Gγ ≡ id for all γ ∈ (0, γ̄), that is, when representing a pure
PMM algorithm, the transients Gγ may be omitted from the nota-
tion.

It is also convenient to introduce the residual mapping RA
γ : �n ⇒ �n ,

given by

RA
γ (s) B 1

γ

(
id − TA

γ

) ◦ Gγ(s), (2.9)

so that the GPMM fixed-point mapping F Aλ
γ can be expressed as

F Aλ
γ (s) � s − λγRA

γ (s).

To ease the notation and avoid repetitions, unless differently spec-
ified, it will be assumed that A � (MA

γ ,Gγ)γ∈(0,γ̄) is a GPMM
algorithm for (the proper and lsc) function ϕ : �n → � and that
γ ∈ (0, γ̄) is a stepsize.

2.6.2 The criticality threshold
The following result is an adaptation of Theorem 2.22 to GPMM algo-
rithms, owing to property 2.28.p2; simply put, the higher the value of γ,
the stronger the property of being a fixed point of TA

γ .

Proposition 2.30. Whenever 0 < γ < γ′ < γ̄ it holds that fixTA
γ ⊇ fixTA

γ′ .

Recall fromCorollary 2.23 that in every totally ordered family ofmod-
els withM0 as supremum, for all critical points x there exists a frontier
model above which x is fixed, and below which x is not. In light of prop-
erties 2.28.p2 and 2.28.p3, we can thus represent the criticality threshold in
terms of the parameter γ, as in the following definition.
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Definition 2.31 (Criticality threshold). The criticality threshold of a
GPMM algorithm A � (MA

γ ,Gγ)γ∈(0,γ̄) is the function ΓA : �n → [0, γ̄]
defined as

ΓA (x) B sup
{
γ ∈ (0, γ̄) | x ∈ fixTA

γ

}
,

with the convention sup ∅ � 0. In other words, ΓA (x) is the unique index in
[0, γ̄] such that
p1 TA

γ (x) � {x} for all γ < ΓA (x), and
p2 x < TA

γ (x) for all γ > ΓA (x).
In particular, a point x is critical iff ΓA (x) > 0.

It is important to observe that the characterization of criticality of a
point x highlighted in Definition 2.31, namely the fact that ΓA (x) > 0,
does not depend on the GPMM algorithm A . This confirms the criterion
proposed in Corollary 2.24 where A � PP, the proximal point algorithm,
was considered. In other words, if x is a critical, then for every GPMM
algorithm A it is a fixed point of the PMM mapping TA

γ for all stepsizes
small enough. In the next chapters wewill see how the criticality threshold
plays a fundamental role in establishing regularity properties of envelope
functions at critical points.

Example 2.32. Relative to the proper, lsc, and lower bounded function
ϕ : �→ � defined by

ϕ(x) � 1
2 x2

+ δ�(x),
let us consider the proximal point algorithm as in Example 2.29. Notice
that every point x ∈ dom ϕ � � is a local minimum, hence it must be
critical as ensured by Theorem 2.25. In fact, it can be easily verified that

proxγϕ(x) � Π�
( x

1+γ
)

for all x ∈ �,

and that the inclusion Π�
( x

1+γ
) 3 x holds iff x ∈ � and γ < 1/2|n | (with

‘ 1
0 � ∞’). Thus,

Γpp(x) �

∞ if x � 0,

1
2|n | if x ∈ � \ {0},
0 if x < �

is the criticality threshold of the proximal point algorithm for ϕ.
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The fact that the global minimum x � 0 has the highest threshold
is not a coincidence. This is a straightforward consequence of properties
2.10.p1 and 2.10.p2 of proximal models.

Proposition 2.33 (Total criticality of global minima). Let x? ∈ argminϕ.
Then, TA

γ (x?) � {x?} for every γ ∈ (0, γ̄). In particular, ΓA (x?) � γ̄.
Notice that strong local minimality is not enough to ensure total criti-

cality, as Example 2.32 clearly demonstrates.
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Chapter 3

Proximal envelopes
MM Lyapunov functions

3.1 Majorization-minimization value functions
The smoothness properties of the Moreau envelope of a proper, convex,
and lsc function ϕ (cf. Thm. 1.12(iii)) make it possible to address the
constrained and nonsmooth minimization of ϕ by means of gradient
descent on the smooth envelope function ϕγ with stepsize 0 < τ < 2/Lϕγ �
2γ. As first noticed by Rockafellar [89], this simply amounts to (relaxed)
fixed-point iterations of the proximal point operator, namely

x+
� (1 − λ)x + λ proxγϕ(x), (3.1)

where λ � τ/γ ∈ (0, 2) is a relaxation parameter. The scheme, known as
proximal point algorithm and first introduced by Martinet [69], is well
covered by the broad theory of monotone operators, where convergence
properties can be easily derived with simple tools of Fejérian monotonic-
ity, see e.g., [10, Thm.s 23.41 and 27.1]. Nevertheless, not only does the
interpretation as gradient method provide a beautiful theoretical link,
but it also enables the employment of acceleration techniques exclusively
stemming from smooth unconstrained optimization, such as Nesterov’s
extrapolation [47] or quasi-Newton schemes [27], see also [17] for exten-
sions to the dual formulation.

Even if ϕ is nonconvex, although not anymore differentiable the
Moreau envelope still exhibits more regularity over the original func-
tion ϕ, being it real valued (as opposed to extended-real valued) and,
in fact, strictly continuous (cf. Prop. 1.10(ii)). The quadratic penalty ap-
pearing in the subproblem that defines the proximal mapping (1.8) has a
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regularization effect on function ϕ when considering the value function
ϕγ, namely, the Moreau envelope.

The appeal of the Moreau envelope goes beyond its regularity. Proxi-
mal point iterations x+ ∈ proxγϕ(x) are easily seen to generate a sequence
such that

ϕ(x+) ≤ ϕ(x) − 1
2γ ‖x − x+‖2 ,

and one can expand the arguments in the proof of Theorem 2.4 to infer
that every accumulationpoint of the sequence is stationary; in termsof the
fixed-point framework of Section 2.1, the cost function ϕ itself, although
extended-real valued, serves as Lyapunov function for proximal point
iterations. This, however, is no longer the case if one considers relaxed
iterations as in (3.1) with λ , 1; as a matter of fact, the nonconvexity of
dom ϕ may result in having ϕ(x+) � ∞. This limitation is readily solved
if one considers the Moreau envelope instead, for it can be easily verified
that relaxed proximal point iterations (3.1) satisfy

ϕγ(x+) ≤ ϕγ(x) − 2−λ
2λγ ‖x − x+‖2; (3.2)

see Example 3.19 for the details. Real valuedness (and lower bounded-
ness) of ϕγ make the Moreau envelope a suitable Lyapunov function for
the fixed-point iterations (3.1) for any λ ∈ (0, 2), and one can again in-
fer (subsequential) convergence of the proximal point algorithm for any
relaxation λ ∈ (0, 2), as opposed to λ � 1 only.

These observations suggest to extend the definition of envelope func-
tion to the more general, yet closely related, proximal majorizing models
investigated in the previous chapter. While all the argumentations can
quite easily be extended for all pure proximal MM algorithms, the pres-
ence of transient functions Gγ makes the analysis of generalized proximal
MM algorithms more complicated. Once again, it is important to clearly
distinguish the variable s of the fixed-point mapping F Aλ

γ from the opti-
mization variable x. This distinction will require the introduction of two
envelope functions, a model envelope (M-envelope) that operates on the
optimization variable x, and an algorithmic envelope (F -envelope) that op-
erates on the fixed-point variable s. In case of pureMM schemes, the two
will coincide; more generally, they are related by the transient mapping
Gγ.

Definition 3.1 (M- and F -envelope functions). Let A � (MA
γ ,Gγ)γ∈(0,γ̄)

be a GPMM algorithm for ϕ. TheM-envelope (ormodel envelope) of ϕ with
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parameter γ ∈ (0, γ̄) is the function ϕMA
γ : �n → � given by

ϕM
A
γ (x) B min

w∈�n
MA

γ (w; x)

(independent of the transient Gγ), while its F -envelope (or algorithmic en-
velope) is ϕA

γ : �n → � defined by

ϕA
γ (s) B ϕM

A
γ

(
Gγ(s)

)
� min

w∈�n
MA

γ

(
w; Gγ(s)

)
.

Notice that for all x ∈ �n and x̄ ∈ TA
γ (x) one has

ϕM
A
γ (x) �MA

γ (x̄; x),
and similarly, for all s ∈ �n

ϕA
γ (s) �MA

γ (x̄; x), where x � Gγ(s) and x̄ ∈ TA
γ (x).

In particular, evaluating the M- and F -envelopes requires exactly the
same operations needed for one iteration of the GPMM algorithm with
stepsize γ. Therefore, once a GPMM step has been performed, the evalu-
ation of the envelopes comes at the sole cost of evaluating the proximal model at
known points.

3.2 Properties

3.2.1 Inequalities
The following result extends some known inequalities relating a function
to its Moreau envelope.

Theorem 3.2 (M-envelope: sandwich property). For all x ∈ �n the follow-
ing hold for theM-envelope:

(i) ϕM
A
γ (x) ≤ ϕ(x), with equality holding iff x ∈ TA

γ (x).

(ii) −m2
2 ‖x − x̄‖2 ≤ ϕ(x̄) − ϕMA

γ (x) ≤ − m1
2 ‖x − x̄‖2 for all x̄ ∈ TA

γ (x).

(iii) inf ϕMA
γ � inf ϕ and argminϕMA

γ � argminϕ.

Proof.
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♠ 3.2(i). We have ϕM
A
γ (x) � infw∈�nMA

γ (w; x) ≤ MA
γ (x; x) � ϕ(x),

where the last equality is due to 2.10.p1. From this we also easily infer the
claimed necessary and sufficient condition for equality.

♠ 3.2(ii). Bydefinition ofTA
γ , for all points x̄ ∈ TA

γ (x)wehaveϕM
A
γ (x) �

MA
γ (x̄; x) and the claimed inequalities follow from the bounds in 2.10.p2.

♠ 3.2(iii). Consider a sequence (xk)k∈� such that ϕM
A
γ (xk) → inf ϕMA

γ ,
and for all k ∈ � let x̄k ∈ TA

γ (xk). We have

inf ϕMA
γ
3.2(i)
≤ inf ϕ ≤ ϕ(x̄k)

3.2(ii)
≤ ϕMA

γ (xk) → inf ϕMA
γ as k →∞,

proving that inf ϕMA
γ � inf ϕ. Combined with the inequality ϕM

A
γ ≤ ϕ

we infer that argminϕ ⊆ argminϕMA
γ .

Suppose now that x ∈ argminϕMA
γ and let x̄ ∈ TA

γ (x); from 3.2(ii) we
have that

inf ϕMA
γ ≤ ϕ(x̄)

3.2(ii)
≤ ϕMA

γ (x) − m1
2 ‖x − x̄‖2 � inf ϕMA

γ − m1
2 ‖x − x̄‖2 ,

hence x � x̄ ∈ argminϕ.

A trivial change of variable yields the following equivalent result
involving the F -envelope.

Corollary 3.3 (F -envelope: sandwich property). For all s ∈ �n , denoting
x B Gγ(s),

(i) ϕA
γ (s) ≤ ϕ(x), with equality holding iff x ∈ TA

γ (x).
(ii) −m2

2 ‖x − x̄‖2 ≤ ϕ(x̄) − ϕA
γ (s) ≤ − m1

2 ‖x − x̄‖2 for all x̄ ∈ TA
γ (x).

(iii) inf ϕA
γ � inf ϕ and Gγ(argminϕMA

γ ) � argminϕ.

Proposition 3.4 (Connection with the Moreau envelope). We have

ϕ1/m1 ≤ ϕMA
γ � ϕA

γ ◦ G−1
γ ≤ ϕ1/m2 .

Proof. Let x ∈ �n and x̄ ∈ TA
γ (x) be fixed. We have

ϕM
A
γ (x) �MA

γ (x̄; x)
2.10.p2
≥ ϕ(x̄) + m1

2 ‖x − x̄‖2 ≥ ϕ1/m1(x).
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Moreover, for all p ∈ proxϕ/m2
(x)we have

ϕ1/m2(x) � ϕ(p) + m2
2 ‖x − p‖2

2.10.p2
≥ MA

γ (p; x) ≥ ϕMA
γ (x).

The following result shows that local minimizers of ϕ are stable with
respect to fixed-point iterations of TA

γ .

Proposition 3.5 (Stability of minimizers). Let x? be a local minimum for ϕ.
Then, for all γ < ΓA (x?) there exists ε � ε(γ) > 0 such that

ϕ(x̄) ≥ ϕMA
γ (x̄) ≥ ϕ(x?) for all x ∈ B(x?; ε) and x̄ ∈ TA

γ (x).

Proof. The inequality ϕ(x̄) ≥ ϕM
A
γ (x̄) is due to Thm. 3.2(i) and holds

globally. As to the other inequality, since TA
γ (x?) � {x?}, cf. property

2.31.p1, we may invoke Thm. 3.6 to infer that x? is a local minimum for
ϕM

A
γ . The claim now follows from the outer semicontinuity of TA

γ , cf.
Thm. 2.13. In fact, for an arbitrary sequence (xk , x̄k)k∈� ⊂ gphTA

γ with
xk → x? as k → ∞, necessarily x̄k → x?, hence eventually ϕM

A
γ (x̄k) ≥

ϕM
A
γ (x?) � ϕ(x?), where the equality follows from Thm. 3.2(i).

3.2.2 Equivalence

Theorem 3.6 (Equivalence of local minimality). For any s̄ ∈ fixF Aλ
γ , de-

noting x̄ B Gγ(s̄) (hence x̄ ∈ fixTA
γ ), the following statements are equivalent:

(a) x̄ is a (strong) local minimum for ϕM
A
γ .

(b) s̄ is a (strong) local minimum for ϕA
γ .

When any of the property above holds, then x̄ is a (strong) local minimum for
ϕ; the converse implication holds provided that TA

γ (x̄) � {x̄} (or, equivalently,
that F Aλ

γ (s̄) � {s̄}).
Proof. The equivalence of (strong) localminimality between the envelopes
is a direct consequence of the Lipschitz continuity and Lipschitz invert-
ibility of Gγ. That (strong) local minimality for ϕM

A
γ implies that for ϕ

follows from the fact that ϕM
A
γ “supports” ϕ at x̄, namely that ϕM

A
γ ≤ ϕ

and ϕM
A
γ (x̄) � ϕ(x̄), cf. Thm. 3.2(i).
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It remains to show the converse. Suppose that TA
γ (x̄) � {x̄} and that

there exists µ ≥ 0 such that ϕ(x) ≥ ϕ(x̄) + µ
2 ‖x − x̄‖2 for all x sufficiently

close to x̄. Let δ B 1
2 min

{
µ,m1

} ≥ 0, and note that δ � 0 iff µ � 0. Thus,
contrary to the claim suppose that for all k ∈ � there exists xk ∈ B(x̄; 1/k)
such that ϕM

A
γ (xk) < ϕMA

γ (x̄) + δ
2 ‖xk − x̄‖2. Let x̄k ∈ TA

γ (xk); since TA
γ

is osc and TA
γ (x̄) � {x̄}, necessarily x̄k → x̄ as k →∞. We have

ϕ(x̄k)
3.2(i)
≤ ϕMA

γ (xk) − m1
2 ‖xk − x̄k ‖2

< ϕM
A
γ (x̄) + δ

2 ‖xk − x̄‖2 − m1
2 ‖xk − x̄k ‖2

� ϕ(x̄) + δ
2 ‖xk − x̄‖2 − m1

2 ‖xk − x̄k ‖2.
By using the inequality 1

2 ‖a − c‖2 ≤ ‖a − b‖2 + ‖b − c‖2 holding for all
vectors a , b , c ∈ �n , we have

ϕ(x̄k) < ϕ(x̄) + δ‖ x̄k − x̄‖2 + (
δ − m1

2
) ‖xk − x̄k ‖2

≤ ϕ(x̄) + µ
2 ‖ x̄k − x̄‖2 ,

where the last inequality follows from the definition of δ. Thus, we obtain
ϕ(x̄k) < ϕ(x̄) + µ

2 ‖ x̄k − x̄‖2 for all k ∈ �, hence the contradiction since x̄k

is arbitrarily close to x̄k .

The necessity of single valuedness ofTA
γ (x̄) for inferring the converse

implication can be demonstrated with a simple example. Consider the
proximal point algorithm as in Example 2.29 applied to the minimization
of ϕ(x) B 1

2 x2 + δ{0,1}(x) on �. Clearly, x̄ � 1 is a strong local minimum,
and it can be easily verified that

x̄ � 1

γ � 1
γ � 1/2

Figure 3.1: Where the PMM mapping
TA
γ is not single valued, local minimality

may fail to be preserved. The pathology oc-
curs at the criticality threshold; for smaller
stepsizes, (strong) local minimality is in-
stead preserved.
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proxγϕ(1) �


1 if γ < 1,
{0, 1} if γ � 1,
0 otherwise.

For every γ < 1 � Γpp(x̄), the single valuedness of proxγϕ(x̄) results in
the strong local minimality of x̄ for the envelope function ϕγ, inherited
by that on the original function ϕ. On the contrary, for γ � 1 the point
x̄ is not even stationary for ϕγ, in the sense that 0 < ∂̂ϕγ(x̄). Figure 3.1
provides a graphical representation of the pathology occurring at the
threshold value γ � 1.

Theorem 3.7 (Equivalence of level boundedness). The following are equiv-
alent:

(a) ϕ is level bounded;

(b) ϕM
A
γ is level bounded;

(c) ϕA
γ is level bounded.

Proof.

♠ 3.7(b) ⇒ 3.7(a). From Thm. 3.2(i) we know that ϕM
A
γ ≤ ϕ, hence if

ϕM
A
γ is level bounded then so is ϕ.

♠ 3.7(b)⇐ 3.7(a). Suppose that ϕM
A
γ is not level bounded. Then, there

exists α ∈ � and (xk)k∈� ⊆ lev≤α ϕM
A
γ such that ‖xk ‖ → ∞ as k → ∞.

For all k ∈ �, let x̄k ∈ TA
γ (xk); then, it follows from Thm. 3.2(ii) that

ϕ(x̄k) ≤ ϕMA
γ (xk) − m1

2 ‖xk − x̄k ‖2 ≤ α − m1
2 ‖xk − x̄k ‖2 for all k ∈ �.

If (x̄k)k∈� is bounded, then ϕ is lower unbounded; otherwise, ‖ x̄k ‖ → ∞
as k →∞. Either way, ϕ cannot be level bounded.

♠ 3.7(b)⇔ 3.7(c). This follows from the continuity of Gγ and G−1
γ , as any

continuous function maps bounded sets to bounded sets.

3.2.3 Regularity

Proposition 3.8 (Continuity). Both ϕM
A
γ and ϕA

γ are lsc and with full do-
main. If, additionally, the modelMA

γ is continuous (cf. Def. 2.11), then ϕM
A
γ

and ϕA
γ are continuous.
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Proof. The claim on the MA
γ -envelope follows from [92, Thm. 1.17(c)]

(which applies, as shown in the proof of Thm. 2.13). In particular, the full
domainproperty is a consequence of the fact thatargminwMA

γ (w; x) , ∅
for all x ∈ �n . Since ϕA

γ � ϕM
A
γ ◦Gγ and Gγ is continuous, all the claims

are equally valid for the F -envelope.

Proposition 3.9 (Quadratic upper bound). For all x , x? ∈ �n it holds that

ϕA
γ (G−1

γ (x)) (def)� ϕM
A
γ (x) ≤ ϕ(x?) + m2

2 ‖x − x?‖2.
Proof. This is a direct consequence of the quadratic upper boundproperty
2.10.p2 ofMA

γ :

ϕM
A
γ (x) (def)� min

w∈�n
MA

γ (w; x) ≤ MA
γ (x?; x)

2.10.p2
≤ ϕ(x?) + m2

2 ‖x − x?‖2.

3.2.4 The KL property
As disclosed at the beginning of the chapter, proximal envelopes will
be shown to be suitable Lyapunov functions for fixed-point iterations of
GPMM algorithms. Once this is proven, subsequential convergence of
the algorithms can be deduced from the more general analysis detailed
in Theorem 2.4. Nevertheless, there are favorable cases in which global
convergence to a unique limit point can be established, even with asymp-
totic linear rates. The key ingredient is the so-called Kurdyka-Łojasiewicz
property, which we define next.

Definition 3.10 (KL property). A proper and lsc function h : �n → �has the
Kurdyka-Łojasiewicz property (KL property) at x? ∈ dom ∂h if there exist
a concave desingularizing function (or KL function) ψ : [0, η] → [0,+∞)
for some η > 0 and a neighborhood Ux? of x?, such that

p1 ψ(0) � 0;

p2 ψ is C1 with ψ′ > 0 on (0, η);
p3 for all x ∈ Ux? s.t. h(x?) < h(x) < h(x?) + η it holds that

ψ′
(
h(x) − h(x?)

)
dist

(
0, ∂h(x)) ≥ 1. (3.3)

Lemma 3.11 (Uniformized KL function [22, Lem. 6]). Suppose that a func-
tion h is constant on a compact nonempty and connected set ω, with value, say,

56



h?. If h has the KL property at all points x? ∈ ω, then there exist η, ε > 0 and a
function ψ : [0, η] → [0,∞) such that
p1 ψ(0) � 0;

p2 ψ is C1 with ψ′ > 0 on (0, η);
p3 for all points x such that dist(x , ω) < ε and h? < h(x) < h? + η it holds

that
ψ′

(
h(x) − h?

)
dist

(
0, ∂h(x)) ≥ 1. (3.4)

TheKL property is amild requirement enjoyed by semialgebraic func-
tions and by subanalytic functions which are continuous on their domain
[21, 20] see also [64, 65, 56]. We remind that a set A ⊆ �n is semialgebraic
if it can be expressed as

A �

p⋃
i�1

q⋂
j�1

{
x ∈ �m | Pi j(x) � 0, Qi j(x) < 0

}
for some polynomial functions Pi j ,Qi j : �n → �, and that a function
h : �n → �m (in fact, even set valued h : �n ⇒ �m) is semialgebraic
if gph h is a semialgebraic subset of �n+m . Since semialgebraic functions
are closed under parametric minimization, semialgebraic models yield
semialgebraic evelopes. More precisely, in all such cases the desingular-
izing function can be taken of the form ψ(s) � ρsϑ for some ρ > 0 and
ϑ ∈ (0, 1], in which case it is usually referred to as a Łojasiewicz function.
The following results states this formally.

Theorem 3.12 (Łojasiewicz property for semialgebraic models). Suppose
that the proximal model MA

γ is semialgebraic. Then, ϕM
A
γ is semialgebraic,

and in particular has the Łojasiewicz property. The same holds for ϕA
γ if Gγ is

semialgebraic.

Proof. As detailed in [6, §2], parametric minimization of a semialgebraic
function is still semialgebraic, hence ϕM

A
γ is semialgebraic and thus has

the Łojasiewicz property [21]. The claim on ϕA
γ follows from the fact that

semialgebraicity is preserved under composition [20, Prop. 2.2.6(i)].

Theorem 3.13. Suppose that ϕM
A
γ is strictly continuous. Then, for every

nonempty set ω ⊆ �n the following are equivalent:
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(a) ϕM
A
γ has the KL property on ω.

(b) ϕA
γ has the KL property on G−1

γ (ω).
In fact, up to strictly positive scalings, there is a one-to-one correspondence
between the KL functions for ϕA

γ and those for ϕM
A
γ .

Proof. We will prove the result for arbitrary strictly continuous functions
h : �n → � and Lipschitz homeomorphisms G : �n → �n .

Let x̄ ∈ ω be fixed and let L be a Lipschitz modulus for G−1. By
combining Lem. 1.3(ii) with [92, Thm.s 10.49 and 9.62] we have that

∂(h ◦ G)(x) ⊆ {
M>v | M ∈ ∂CG(x), v ∈ ∂h(G(x))} for all x ∈ ωε.

Due to L-Lipschitz continuity of G−1
γ , it holds that ‖M>v‖ ≥ 1

L ‖v‖ for any
M ∈ ∂CG(x̄) and v ∈ �n . Therefore,

dist
(
0, ∂(h ◦ G)(x̄)) ≥ min

{‖M>v‖ | M ∈ ∂CG(x̄), v ∈ ∂h(G(x̄))}
≥ 1

L min {‖v‖ | v ∈ ∂h(G(x̄))}
�

1
L dist

(
0, ∂h(G(x̄))) .

Suppose now that ψ is a KL function for h at G(x̄). Then, for x close
enough to x̄ and with h(G(x)) > h(G(x̄)) we have that h(G(x)) − h(G(x̄))
is in the domain of ψ, hence

dist
(
0, ∂(h ◦ G)(x)) ≥ 1

L dist
(
0, ∂h(G(x))) ≥ 1

Lψ(h(G(x))−h(G(x̄))) ,

proving that Lψ is a KL function for h ◦ G at x̄. By interchanging G with
G−1, the converse implication is similarly derived.

Proposition 3.14 (Residual nonsingularity andŁojasiewicz property). Let
s? be a fixed point for F Aλ

γ . Suppose that the following hold:

a1 RA
γ is differentiable at s? with nonsingular Jacobian JRA

γ (s?).
a2 there exists m > 0 such that dist(0, ∂ϕA

γ (s)) ≤ m dist(0,RA
γ (s)) holds for

all s close to s?.

Then, ϕA
γ has the Łojasiewicz property with exponent ϑ � 1/2 at s?.
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Proof. Let ψ(t) � ct1/2 with c > 0 to be determined. For s close to s?,
necessarilyRA

γ is single valued.Moreover, thenonsingularity assumption
entails the existence of α > 0 such that ‖RA

γ (s)‖ ≥ α‖s − s?‖. Here,
we used the fact that s? is critical and hence RA

γ (s?) � 0. Whenever
ϕA
γ (s) > ϕ? B ϕA

γ (s?), we have

ψ′
(
ϕA
γ (s) − ϕ?

)
dist

(
0, ∂ϕA

γ (s)
)
�

c

2
√
ϕA
γ (s) − ϕ?

dist
(
0, ∂ϕA

γ (s)
)

≥ cm

2
√
ϕA
γ (s) − ϕ?

‖RA
γ (s)‖

≥ cmα√
2m2

,

where in the last inequality we used the quadratic bound of Prop. 3.9. By
taking c �

√
2m2
mα we obtain the sought Łojasiewicz function ψ.

3.3 Lyapunov functions forproximal algorithms
Weare now ready to showhowproximal envelopes fit into the fixed-point
Lyapunov framework for ensuring convergence of GPMM algorithms.
Specifically, we will show that the F -envelope ϕA

γ serves as Lyapunov
function for the GPMM iterations of F Aλ

γ , provided that the stepsize γ
is small enough and that the relaxation λ is sufficiently close to 1. To
this end, it will suffice to show that ϕA

γ satisfies the sufficient decrease
property 2.2.p1, as formalized in the next result.

Lemma 3.15 (Necessity and sufficiency of the sufficient decrease). The
F -envelope ϕA

γ is a Lyapunov function for F Aλ
γ iff there exists c > 0 such that

ϕA
γ (s̄) ≤ ϕA

γ (s) − c
2 ‖s − s̄‖2

holds for all s ∈ �n and s̄ ∈ F Aλ
γ (s).

Proof. Since inf ϕA
γ � inf ϕ and since ϕA

γ has full domain, cf. Cor. 3.3(iii)
and Prop. 3.8, both the lower boundedness prescribed by property 2.2.p1
and the real valuedness are covered. The only missing ingredient is the
sufficient decrease property 2.2.p2, which is exactly what required in the
statement.

59



3.3.1 Sufficient decrease: a-priori estimates
In this subsection we provide sufficient conditions involving the parame-
ters m1, m2, LGγ and µGγ of properties 2.10.p2 and 2.26.p2 (all depending
on the stepsize γ), that ensure that the F -envelope is a Lyapunov func-
tion for the GPMMfixed-point iterations of F Aλ

γ . Although possibly very
loose estimates, they can be computed with elementary algebra without
the need of any in-depth analysis, resulting in easy criteria for determin-
ing ranges of stepsizes γ and relaxation parameters λ with which F Aλ

γ
fixed-point iterations are (subsequentially) convergent. In the dedicated
Chapter 6, a more sophisticated analysis will tighten such ranges for the
Douglas-Rachford splitting; in fact, (some of) the given ranges will prove
to be optimal.

Theorem 3.16. For all λ , 0, s ∈ �n , and s+ ∈ F Aλ
γ (s) it holds that

ϕA
γ (s+) ≤ ϕA

γ (s) −
m2
2

(2µGγ

λ
− 1 − m1/m2

λ2 − L2
Gγ

)
‖s − s+‖2. (3.5)

Proof. Let x B Gγ(s) and x+ B Gγ(s+); then, there exists x̄ ∈ TA
γ (x) such

that s+ � s − λ(x − x̄). We have

ϕA
γ (s+) � ϕM

A
γ (x+) ≤ MA

γ (x̄; x+)
2.10.p2
≤ ϕ(x̄) + m2

2 ‖x+ − x̄‖2
3.2(ii)
≤ ϕMA

γ (x) − m1
2 ‖x − x̄‖2 + m2

2 ‖x+ − x̄‖2.
� ϕA

γ (s) − m1
2 ‖x − x̄‖2

+
m2
2 ‖x+ − x‖2 + m2

2 ‖x − x̄‖2 − m2〈x − x+ , x − x̄〉.

Since x − x̄ �
1
λ (s − s+), the inequality becomes

ϕA
γ (s+) ≤ ϕA

γ (s) + m2−m1
2λ2 ‖s − s+‖2 + m2

2 ‖x+ − x‖2 − m2
λ 〈x − x+ , s − s+〉

≤ ϕA
γ (s) −

(
m2µG
λ − m2−m1

2λ2 − m2L2
G

2

)
‖s − s+‖2 ,

hence the claimed expression.

Corollary 3.17 (Sufficient decrease of GPMM schemes). Let ρMγ
B m1/m2,

ρGγ B µGγ/LGγ , and ∆ B ρ2
Gγ
− (1 − ρMγ

). If ∆ > 0, then ϕA
γ is a Lyapunov

60



function for F Aλ
γ provided that

ρGγ −
√
∆

LGγ

< λ <
ρGγ +

√
∆

LGγ

.

In particular, for any such stepsize γ and relaxation λ the convergence results of
Theorem 3.20 apply to the fixed-point iterations of F Aλ

γ .

Proof. One can easily check that the specified range of λ’s ensure that the
coefficient of ‖s − s+‖2 in (3.5) is strictly negative, hence that ϕA

γ satisfies
the sufficient decrease property 2.2.p2. The claim then follows from Lem.
3.15.

Whether a stepsize γ exists such that the quantity ∆ as in the state-
ment is strictly positive depends on the proximal model constants m1 ,m2
and on the transient constants LGγ and µGγ . For instance, if the ratio
ρGγ �

µGγ/LGγ is bounded away from zero and the ratio ρMA
γ

� m1(γ)/m2(γ)
converges to 1 as γ↘ 0, then for small enough stepsizes γ Corollary 3.17
applies. Although apparently restrictive, this will turn out to be the case
in all the investigated algorithms.

For pure PMM schemes, instead, the analysis is much simpler and
actually the result holds for any stepsize, provided that the relaxation λ
is selected close enough to 1. This fact, a direct consequence of Corollary
3.17 and stated next, extends and details the analysis of the proximal
point algorithm discussed at the beginning of the chapter, see Example
3.19.

Corollary 3.18 (Sufficient decrease of PMM schemes). Suppose that Gγ ≡
id for all γ’s (hence F Aλ

γ ≡ TA
γ and ϕA

γ ≡ ϕM
A
γ ). Then, for all λ , 0, x ∈ �n

and x+ ∈ F Aλ
γ (x) it holds that

ϕA
γ (x+) ≤ ϕA

γ (x) − m2
2λ2

(
m1
m2
− (1 − λ)2

)
‖x − x+‖2.

In particular, if 1 −
√

m1/m2 < λ < 1 +
√

m1/m2, then ϕA
γ � ϕM

A
γ is a Lypunov

function for F Aλ
γ , hence the convergence results of Theorem 3.20 apply to its

fixed-point iterations.

Proof. The inequality follows from Thm. 3.16 and the feasible range from
Cor. 3.17; in fact, Gγ � id is µGγ -strongly monotone and LGγ -Lipschitz
continuous with µGγ � LGγ � 1.
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Example 3.19 (Proximal point algorithm). As detailed in Example 2.29,
the proximal point is a pure PMM algorithm with m1(γ) � m2(γ) � 1/γ.
Its model and algorithmic envelopes coincide, and equal the Moreau
envelope ϕγ. Corollary 3.18 then readily applies, resulting in

ϕγ(x+) ≤ ϕγ(x) − 2−λ
2γλ ‖x − x+‖2

for all x+ ∈ F ppλ
γ (x) � (1 − λ)x + λ proxγϕ(x), thus confirming what

revealed in (3.2).

3.4 Convergence of GPMM algorithms
We conclude the chapter by furnishing the claimed convergence results
of GPMMalgorithms. As expected, subsequential convergencewill easily
follow from the similar result in the more general fixed-point framework
that opened Chapter 2. The KL property, discussed and analyzed in Sec-
tion 3.2.4, will allow the development of stronger convergence results,
which will pattern the similar ones shown in particular cases, see e.g., [5].

Theorem 3.20. Consider the fixed-point iterations (sk)k∈� generated by F Aλ
γ ,

and let xk B Gγ(sk). If ϕA
γ satisfies the sufficient decrease property 2.2.p2 for

F Aλ
γ , then the following hold:

(i) The fixed-point residual (dist(0,RA
γ (sk)))k∈� is square summable; in

particular, min j≤k dist(0,RA
γ (s j)) ∈ O(1/√k).

(ii) The set ω of accumulation points of the sequence (xk)k∈� satisfies ω ⊆
fixTA

γ ⊆ zer ∂̂ϕ.

(iii) If ϕ is level bounded, then (sk)k∈� and (xk)k∈� are bounded, and ω is
a nonempty, compact, and connected set satisfying dist(xk , ω) → 0 as
k →∞.

(iv) ϕM
A
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕMA
γ (xk))k∈�.

Proof. We know from Lem. 3.15 that ϕA
γ is a Lyapunov function for F Aλ

γ .
Moreover, by definition of F Aλ

γ , for all k ∈ � there exists x̄k ∈ TA
γ (xk)

such that sk+1 � sk − λ(xk − x̄k).
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♠ 3.20(i). Follows from Thm. 2.4(i) together with the fact that

dist(xk ,TA
γ (xk)) ≤ ‖xk − x̄k ‖ � 1

λ ‖sk − sk+1‖.

♠ 3.20(ii). Follows from Thm. 2.4(ii) and (2.7).

♠ 3.20(iii). Follows from Thm. 2.4(iii) together with the fact that the con-
tinuous function Gγ maps bounded sets to bounded sets.

♠ 3.20(iv). That ϕM
A
γ ≡ ϕ on ω follows from Thm. 3.2(i) in light of the

inclusion ω ⊆ fixTA
γ . Due to properties 2.2.p1 and 2.2.p2 of Lyapunov

functions, the sequence (ϕMA
γ (xk))k∈� � (ϕA

γ (sk))k∈� is decreasing and
admits a finite limit, be it ϕ?. From Thm. 3.2(ii) we have that���ϕ(x̄k) − ϕMA

γ (xk)
��� ≤ m2

2 ‖xk − x̄k ‖2 ,

and since ‖xk − x̄k ‖ → 0 we infer that ϕ(x̄k) → ϕ?. Let x? ∈ ω be fixed,
and consider a subsequence (x jk )k∈� that converges to x?. Then, also
(x̄ jk )k∈� → x?. We have

ϕ(x?) ≤ ϕ? ≤ ϕMA
γ (x jk ) ≤ MA

γ (x?; x jk )
2.10.p2
≤ ϕ(x?) + m2

2 ‖x jk − x?‖2

where the first inequality is due to lower semicontinuity, the second
one to the fact that (ϕMA

γ (xk))k∈� is decreasing, and the third one from
the definition ofMA

γ -envelopes. Since (x jk )k∈� → x?, we conclude that
ϕ(x?) � ϕ?, and the claim follows from the arbitrarity of x? ∈ ω.
Theorem 3.21 (Global convergence). Suppose that the following hold:

a1 ϕ is level bounded;

a2 ϕA
γ satisfies the sufficient decrease property 2.2.p2 for F Aλ

γ ;

a3 ϕM
A
γ has the KL property;

a4 there exists m > 0 such that dist(0, ∂ϕMA
γ (x)) ≤ m dist(x ,TA

γ (x)) holds
for all x close to fixTA

γ .

Let (sk)k∈� be a sequence generated by fixed-point iterations of F Aλ
γ , and let

xk B Gγ(sk). Then, the following hold:
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(i) (xk)k∈� converges to a point x? ∈ fixTA
γ ⊆ zer ∂̂ϕ (hence (sk)k∈�

converges to G−1
γ (x?)).

(ii) The fixed-point residual (dist(0,RA
γ (sk)))k∈� is summable, and in par-

ticular min j≤k dist(0,RA
γ (sk)) ∈ O(1/k).

Proof. From Thm.s 3.20(iii) and 3.20(iv)we have that the sequence (xk)k∈�
remains bounded, that the set of accumulation points ω is a nonempty,
compact and connected set such that dist(xk , ω) → 0 as k → ∞, and
that ϕM

A
γ is constant on ω. Let ϕ? be the value of ϕM

A
γ on ω. Let the

constants δ, ε > 0 and the uniformized KL function ψ be as in Lem. 3.11.
Up to possibly discarding the first iterates, without loss of generality we
may assume that dist(xk , ω) < ε and ϕMA

γ (xk) < ϕ? + η for all k ∈ �, so
that

∆k B ψ
(
ϕM

A
γ (xk) − ϕ?

)
are well-defined quantities for all k ∈ �. Similarly, we may also assume
that all points xk are close enough to ω ⊆ fixTA

γ so that the bound
3.21a4 holds. Let c > 0 be the sufficient decrease constant of the Lyapunov
function ϕA

γ (cf. 2.2.p2), and let x̄k ∈ TA
γ (xk) be such that sk+1 � sk −

λ(xk − x̄k). Then,

ϕM
A
γ (xk) − ϕMA

γ (xk+1) � ϕA
γ (sk) − ϕA

γ (sk+1)
≥ c

2 ‖sk − sk+1‖2 �
cλ2

2 ‖xk − x̄k ‖2 (3.6)

We have

∆k − ∆k+1 ≥ ψ′
(
ϕM

A
γ (xk) − ϕ?

) (
ϕM

A
γ (xk) − ϕMA

γ (xk+1))
3.11.p3
≥ 1

dist
(
0, ∂ϕM

A
γ (xk)) (ϕMA

γ (xk) − ϕMA
γ (xk+1))

(3.6)
≥ cλ2‖xk − x̄k ‖2

2 dist
(
0, ∂ϕM

A
γ (xk))

3.21a4
≥ cλ2‖xk − x̄k ‖2

2m dist
(
xk ,TA

γ (xk))
≥ cλ2

2m
‖xk − x̄k ‖. (3.7)
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We may then telescope the inequality to obtain

∆0 ≥
∑
k∈�

(
∆k − ∆k+1

) ≥ cλ2

2m

∑
k∈�
‖xk − x̄k ‖ � cλ2

2m

∑
k∈�
‖sk − sk+1‖ ,

where the first inequality follows from the fact that ∆k ≥ 0. This shows
that the sequence (sk)k∈� has finite length, and therefore is convergent,
hence so is (xk)k∈� due to continuity of Gγ. That the limit of (xk)k∈�
belongs to fixTA

γ ⊆ zer ∂̂ϕ is a consequence of Thm. 3.20(ii), and the
claim on the rate of convergence can be shown by arguing as in the proof
of Thm. 2.4(i).

Theorem 3.22 (Linear convergence). Suppose that the assumptions of The-
orem 3.21 are satisfied, and that the KL function can be taken of the form
ψ(t) � ctϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈�, (xk)k∈�,
and dist(0,RA

γ (sk)) are R-linearly convergent.

Proof. Let xk B Gγ(sk) and rk B xk − x̄k . We know from Thm. 3.21 that
the sequence (xk)k∈� converges to a point x?, and that rk → 0 as k →∞.
For all k’s large enough such that xk is sufficiently close to x?, we have

‖rk ‖ ≥ dist(xk ,TA
γ (xk))

3.21a4

≥ 1
m dist

(
0, ∂ϕM

A
γ (xk))

(due to 3.21a3) ≥ 1
mψ′

(
ϕM

A
γ (xk) − ϕ(x?)

)
�

1
mcϑ

(
ϕM

A
γ (xk) − ϕ(x?)

)1−ϑ
. (3.8)

Therefore,

∆k B ψ
(
ϕM

A
γ (xk) − ϕ(x?)

)
� c

(
ϕM

A
γ (xk) − ϕ(x?)

)ϑ ≤ c
(
mcϑ‖rk ‖) ϑ

1−ϑ ,

where the last inequality follows from (3.8). Since rk → 0 as k → ∞, for
all k’s large enough it holds that mcϑ‖rk ‖ ≤ 1. Moreover, having ϑ ≥ 1/2
implies that ϑ

1−ϑ ≥ 1, hence
(
mcϑ‖rk ‖) ϑ

1−ϑ ≤ mcϑ‖rk ‖ for all k’s large
enough. We may thus continue the inequality as

∆k ≤ mc2ϑ‖rk ‖. (3.9)
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Let Bk B
∑

j≥k ‖r j ‖. Then,

‖sk − s?‖ ≤
∑
j≥k

‖s j − s j+1‖ � λ
∑
j≥k

‖x j − x̄ j ‖ � λBk . (3.10)

We have

Bk �

∑
j≥k

‖r j ‖
(3.7)
≤ 2m

cλ2

∑
j≥k

(∆ j − ∆ j+1) � 2m
cλ2∆k

(due to (3.9)) ≤ 2ϑm2c
λ2 ‖rk ‖ � 2ϑm2c

λ2 (Bk − Bk+1).

By suitably rearranging, we obtain that for all k’s large enough it holds
that

Bk+1 ≤
(
1 − λ2

2ϑm2c

)
Bk ,

hence, that (Bk)k∈� is asymptotically Q-linearly convergent. The claimed
R-linear convergence rates then follow from (3.10) and from the fact that
‖rk ‖ ≤ Bk .
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Chapter 4

Acceleration of nonconvex splitting
algorithms

4.1 A new backtracking paradigm
for continuous Lyapunov functions

In the next chapters we will see that, under due assumptions, many
splitting algorithms fit into the proposed GPMM framework. In this per-
spective, the theory developed so far serves a twofold purpose. First, it
establishes a novel (and unified) convergence analysis of known splitting
algorithms applied to nonconvex problems. Secondly, it sets the ground
for building new methods on top of the known ones, which at negligible
additional cost per iteration may result in an outstanding performance
boost. This chapter deals with this second objective. Interestingly, most (if
not all) known splitting algorithms that fit into the generalized proximal
MM framework are based on continuousmodels, in the sense of Definition
2.11.As a result, not only are the correspondingM- andF -envelope func-
tions real valued, but they are also continuous, as ensured by Proposition
3.8.

Continuity of the Lyapunov function is the key property over which
this chapter depends. In fact, although the same arguments could even
be applied to the abstract Lyapunov framework briefly investigated in
Section 2.1 by simply restricting the analysis to continuous functions L,
now that we are well acquainted with proximal envelopes and GPMM
algorithms this degree of generality is no longer needed. Nevertheless,
for the sake of understanding how plain continuity can be of any use, let
us suppose that L ∈ C0(�n) is a Lyapunov function for some osc and
nonempty-valued fixed-point mapping F : �n ⇒ �n , and let c > 0 be
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the sufficient decrease constant as in property 2.2.p2. Suppose that the
current iterate is s ∈ �n , and let d ∈ �n be an arbitrary candidate up-
date direction at s. What d is, and how it is retrieved is irrelevant at the
moment; suffice it to say that the choice of an update direction d repre-
sents our degree of freedom for extending a known (splitting) algorithm
while maintaining its (subsequential) convergence properties, and that
“ideally” we would like to replace the fixed-point update s 7→ s+ ∈ F (s)
with the chosen s+ � s + d, for we have reason to believe this choice will
lead us closer to a fixed point of F . In order to distinguish between the
proposed modification and the original fixed-point iteration, let us es-
tablish the convention of denoting s̄ ∈ F (s) (as opposed to s+ which we
shall reserve to the modified update), and refer to it as a nominal update.
Let us also suppose that the current iterate s is not a fixed point of F ,
for otherwise a solution would be found and there would be no reason
to investigate any further. Due to the sufficient decrease property of the
Lyapunov function L, we know that

L(s̄) ≤ L(s) − c
2 ‖s − s̄‖2 for any nominal update s̄ ∈ F (s).

However, nothing can be said as to whether L(s + d) is also (sufficiently)
smaller than L(s) or not, nor can we hope to enforce the condition with
a classical backtracking s + τd for small τ > 0, as no notion of descent is
known to L (which is continuous but not necessarily differentiable), and
on top of that the direction d is even arbitrary. Is there a way to design
a linesearch ensuring that the wanted update, or something close to it,
also satisfies a sufficient decrease? Here is where continuity comes into
the picture.

Let us replace the sufficient decrease constant c with a smaller value,
say, αc for some α ∈ (0, 1). Then, not only does s̄ satisfy the sufficent
decrease with constant αc, but due to continuity of L so do all the points
around:

L(s′) ≤ L(s) − αc
2 ‖s − s̄‖2 ∀s′ close to s̄. (4.1)

The idea is then to “push” the candidate update s + d towards the “safe”
update s̄ until the relaxed decrease condition (4.1) holds. One way to
do so is through a linesearch along the segment connecting the “ideal”
update s + d and the “safe” nominal update s̄, resulting in the following
backtracking paradigm:
τ← 1
repeat

s+ � (1 − τ)s̄ + τ(s + d)
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until L(s+) ≤ L(s) − αc
2 ‖s − s̄‖2.

The caveat of this approach is that it assumes that L is an explicit
function, in the sense that its value can be computed at any point. On
the contrary, this was not an issue in the previous chapters where only
nominal algorithms were investigated. To underline the significance of
the claim, recall that for convex splitting algorithms L � dist( · , fixF )2
is a suitable Lyapunov function, cf. (2.2), and such is in fact continuous.
Unfortunately, however, such an L is of no use, as its value, in mean-
ingful problems, cannot be evaluated. A solution to this problem will be
proposed in Chapter 8, where by means of properties of projections and
averaged mappings L will be approximated with available information.

This solution, however, does not apply in the nonconvex setting in-
vestigated here, which is where envelope functions yet again prove their
worth. Indeed, when L � ϕA

γ is an envelope function one evaluation
requires only one nominal step: any s̄ ∈ F Aλ

γ (s) is expressed as

s̄ � s − λ(x − x̄) ∃x̄ ∈ TA
γ (x),

hence
ϕA
γ (s) � ϕM

A
γ (x) �MA

γ (x̄; x).

4.2 The CLyD algorithmic framework
CLyD (Alg. 4.1) recaps what hinted in the previous section in a rigorous
way. The next results shows that the subsequential convergence proper-
ties of the underlying nominal algorithm are maintained.

Theorem 4.1 (Subsequential convergence of (nonmonotone) CLyD). The
following hold for the iterates generated by CLyD (Alg. 4.1) with tolerance ε � 0:

(i) The residual (‖xk− x̄k ‖)k∈� is square-summable; in particular, it vanishes
with rate min j≤k dist(x j ,TA

γ (x j)) ∈ O(1/√k).
(ii) The set ω of accumulation points of (xk)k∈� satisfies ω ⊆ fixTA

γ ⊆
zer ∂̂ϕ.

If, additionally, ‖dk ‖ → 0 as k →∞, then the following also hold:

(iii) If ϕ is level bounded, then (sk)k∈�, (xk)k∈�, (s̄k)k∈�, and (x̄k)k∈� are
bounded, and ω is a nonempty, compact and connected set satisfying
dist(xk , ω) → 0 as k →∞.
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Algorithm 4.1. Continuous-Lyapunov Descent framework

Require • γ, λ s.t. the continuous function ϕA
γ satisfies the

sufficient decrease 2.2.p2 with c > 0 for F Aλ
γ

• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial iterate s0 ∈ �n

• tolerance ε > 0

Provide x∗ with dist
(
x∗ ,TA

γ (x∗)
) ≤ ε

1: for k � 0, 1, 2, . . . do

2: Do one nominal F Aλ
γ -step: xk � Gγ(sk)

x̄k ∈ TA
γ (sk)

s̄k � sk − λ(xk − x̄k)
3: if ‖xk − x̄k ‖ ≤ ε then
4: return x∗ � x̄k

5: Select an update direction dk ∈ �n at sk

6: Let τk ∈
{
2−i | i ∈ �}

be the largest such that

ϕA
γ (sk+1) ≤ ϕA

γ (sk) − α c
2 ‖sk − s̄k ‖2 , (4.2)

where sk+1 B (1 − τk)s̄k + τk(sk + dk)

(iv) ϕM
A
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕMA
γ (xk))k∈�.

All the claims remain valid if the linesearch condition (4.2) is replaced by the
following nonmonotone version:

ϕA
γ (sk+1) ≤ L̄k − α c

2 ‖sk − s̄k ‖2 , (4.3)

where, for any sequence (pk)k∈� ⊆ [0, 1] bounded away from 0, L̄k are recur-
sively defined as follows:

L̄k B

{
ϕA
γ (s0) if k � 0,
(1 − pk)L̄k−1 + pkϕA

γ (sk) otherwise.

Proof. The feasibility of the linesearch for arbitrary directions dk has been
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extensively discussed in the previous section. Moreover, the first part of
the proof is similar to that of Thm. 3.20, so we simply outline the details.

♠ 4.1(i). We have∑
k∈�
‖sk − s̄k ‖2

(4.2)
≤ 2
αc

∑
k∈�

(
ϕA
γ (sk) − ϕA

γ (sk+1)) ≤ 2
αc

(
ϕA
γ (s0) − inf ϕ

)2.2.p1
< ∞,

where in the third inequality we used the fact that inf ϕA
γ � inf ϕ, cf.

Cor. 3.3(iii).

♠ 4.1(ii). Suppose that a subsequence (sk j ) j∈� converges to a point s?.
Since (‖sk − s̄k ‖)k∈� → 0, it also holds that s̄k j → s? as j →∞. Thus,

s? � lim
j→∞

s̄k j ∈ limsup
j→∞

F Aλ
γ (sk j ) ⊆ F Aλ

γ (s?),

where the last inclusion follows from the fact that F Aλ
γ is osc.

♠ 4.1(iii). Since (sk)k∈� ⊂ lev≤ϕA
γ (s0), the sequence is bounded provided

ϕA
γ is level bounded, which in turn is equivalent to having ϕ level

bounded, cf. Thm. 3.7. Then, due to continuity of Gγ, necessarily also
(xk)k∈� is bounded.

If, additionally, ‖dk ‖ → 0 as k → ∞, then since τk ∈ [0, 1] for all k’s we
have

‖sk+1− sk ‖ � (1−τk)s̄k
+τk(sk

+dk)− sk
 ≤ (1−τk)‖sk− s̄k ‖+τk ‖dk ‖ → 0

as k →∞. The proof now follows from Lem. 2.3.

Let us now prove the claim for the nonmonotone variant. We start by
showing that the linesearch is indeed feasible, and that for all k ∈ � the
following hold:

(v) L̄k ≥ ϕA
γ (sk).

(vi) L̄k+1 ≤ L̄k − pk+1αc‖sk − s̄k ‖2.
For k � 0, inequality 4.1(v) holds as equality, and in particular the non-
monotone linesearch condition (4.3) is satisfied by small enough step-
sizes. Suppose now that up to iteration k ≥ 0 the inequality holds and in
particular the nonmonotone linesearch is feasible; then,

L̄k+1 � (1 − pk+1)L̄k + pk+1ϕ
A
γ (sk+1)
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≥ (1 − pk+1)ϕA
γ (sk+1) + pk+1ϕ

A
γ (sk+1)

� ϕA
γ (sk+1),

where in the inequality the nonmonotone linesearch (4.3) was used.
Hence, 4.1(v) holds for all k’s, and the linesearch is always feasible. The in-
equality in 4.1(vi) then readily follows from the fact that L̄k+1 ≥ ϕA

γ (sk+1).
In particular, L̄k ≥ inf ϕA

γ > −∞ for all k; wemay then telescope the line-
search inequality (4.3) to arrive to

∞ > L̄0 − inf ϕA
γ ≥ αc

∑
k∈�

pk ‖sk − s̄k ‖2 ≥ αcpmin
∑
k∈�
‖sk − s̄k ‖2 ,

where pmin B inf k∈� pk , which is strictly positive by assumption. We
may now trace the proof of the monotone variant to arrive to the same
conclusions.

4.3 Choice of directions
Although the proposed algorithmic framework is robust to any choice of
directions dk , on the contrary its efficacy is greatly affected by the specific
selection. This section provides an overview on some update directions
dk that can be conveniently considered.

The termination criterion for CLyD (Alg. 4.1) is based on (the norm
of) the fixed-point residual of the underlying splitting schemes

RA
γ (s) � 1

γ (x − x̄) � 1
γλ (s+ − s).

Under some assumptions, which will be investigated case by case in the
remaining chapters, close to critical points the residual mapping RA

γ
becomes a well-behaved single-valued function, possibly enjoying Lips-
chitzian or differentiability properties. As a result, one ends up solving a
system of nonlinear equations, namely finding s? such that RA

γ (s?) � 0.
As a way to speed up convergence, one possibility is to employ direc-

tions stemming from fast methods for nonlinear equations, namely

dk
� − HkRA

γ (sk),

where the linear operator Hk mimicks JRA
γ (sk)−1. When the residual is

differentiable or admits some Jacobian approximations, one can indeed
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consider an exact Newton step as update direction. However, the combi-
nation of nonconvexity and nonsmoothness in the investigated problems
makes this property quite uncommon. Moreover, even when this is the
case, the computation of (generalized) Jacobians and the consequent so-
lution of linear system to retrieve the Newton direction fails to preserve
the simple oracle of the nominal splitting algorithms.

For these reasons,we limit the analysis to quasi-Newton schemeswhich,
starting from any invertible matrix H0 (typically a positve multiple of the
identity) perform low-rank updates based on available quantities. Such
quantities are pairs of vectors (pk , qk), where pk is the difference between
consecutive iterates and qk the difference of the fixed-point residuals:{

pk � sk+1 − sk

qk � rk+1 − rk ,
with rk B 1

λγ (sk − s̄k) ∈ RA
γ (sk). (4.4)

We will now list a few update rules for Hk based on the indicated pairs.

4.3.1 (L-)BFGS
Start with H0 � 0 and update as follows:

Hk+1 � Hk +
〈pk , qk〉 + 〈Hk qk , qk〉

(〈pk , qk〉)2 pk p>k−
Hk qk s>k + sk q>kHk

〈pk , qk〉 .

Whenever 〈pk , qk〉 ≤ 0, one can either set Hk+1 � Hk or use a different
vector pk as proposed in [86]. The limited-memory variant L-BFGS [74,
Alg. 7.4], which does not require storage of full matrices Hk or matrix-
vector products but only storage of the last few pairs and scalar products,
can be conveniently considered.

Although very well performing in practice, to the best of our knowl-
edge fast convergence of BFGS can only be shown when the Jacobian at
the limit point is symmetric, which hardly ever holds in our framework.
We suspect, however, that the well performance of BFGS derives from
the observation that, when it exists, the Jacobian of RA

γ is similar to a
symmetric matrix.

4.3.2 A modified Broyden scheme

Fix ϑ̄ ∈ (0, 1), e.g., ϑ̄ � 0.2, an invertible matrix H0, and update as follows:

Hk+1 � Hk +
pk − Hk qk

〈pk , (1/ϑk − 1)pk + Hk qk〉 p
>
kHk (4.5a)
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where

ϑk B

{
1 if |γk | ≥ ϑ̄
1−sgn(γk )ϑ̄

1−γk
if |γk | < ϑ̄ and γk B

〈Hk qk , pk〉
‖pk ‖2 , (4.5b)

with the convention that sgn 0 � 1. The original Broyden formula [25]
corresponds to ϑk ≡ 1, whereas this specific selection ensures that all
matrices Hk are invertible [85]. Under some regularity assumptions at the
limit point, in Theorem 4.7 this modified Broyden method will be shown
to trigger superlinear convergence.

We should remark, however, that extensive numerical evidence seems
to agree that BFGS directions as in Section 4.3.1 yield the best perfor-
mance. In fact, with as little as a five-to-ten-vector buffer, the limited
memory L-BFGS is extremely beneficial and requires negligible algebraic
operations (few scalar products only per iteration). For the time being,
the Broyden scheme investigated here serves only for theoretical pur-
poses. Nevertheless, it will find a practical utility in Chapter 8, where a
limited-memory variant will be also proposed.

4.3.3 Anderson acceleration
Fix a buffer size m ≥ 1 and start with H0 � I. For k ≥ 1, let

Hk � I + (Pk − Qk)(Q>kQk)−1Q>k,
where the columns of matrix Pk are the last vectors pk−M , · · · , pk−1 and
those ofQk are the last vectors qk−M , · · · , qk−1, with M � min {k ,m}. IfQk
is not full-column rank, for x ∈ �M the product (Q>kQk)−1x is meant in a
least-square sense. This is a limited-memory scheme, which requires only
the storage of few vectors and the solution of a small M×M linear system.
Anderson acceleration originated in [2]; here we use the interpretation
well explained in [39] of (inverse) multi-secant update: Hk is the matrix
closest to the identity (with respect to the Frobenius norm) among those
satisfying HkQk � Pk .

4.4 Global and (super)linear convergence
Theorem 4.2 (Global convergence). Consider the iterates generated by CLyD
(Alg. 4.1) with tolerance ε � 0. Suppose that the following hold:
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a1 ϕ is level bounded;

a2 TheM-envelope ϕM
A
γ has the KL property;

a3 there exists m > 0 such that dist(0, ∂ϕMA
γ (x)) ≤ m dist(x ,TA

γ (x)) holds
for all x close to fixTA

γ ;

a4 there exists D > 0 such that ‖dk ‖ ≤ D‖sk − s̄k ‖ for all k’s.

Then, the following hold:

(i) (xk)k∈� converges to a point x? ∈ fixTA
γ ⊆ zer ∂̂ϕ (hence (sk)k∈�

converges to G−1
γ (x?)).

(ii) The residual is summable and in particular min j≤k dist(xk ,TA
γ (xk)) ∈

O(1/k).
Proof. Let L be a Lipschitz modulus for Gγ and G−1

γ . We have

ϕA
γ (sk) − ϕA

γ (sk+1) ≥ α c
2 ‖sk − s̄k ‖2 ≥ α c

2L2 ‖xk − x̄k ‖2 ,
which is exactly the inequality (3.6) in Thm. 3.21 (with a different con-
stant). We may thus trace the proof therein up to equation (3.7) to infer
that (‖xk − x̄k ‖)k∈� is summable. Moreover,

‖sk+1 − sk ‖ ≤ (1 − τk)‖sk − s̄k ‖ + τk ‖dk ‖
4.2a4
≤ (1 + D)‖sk − s̄k ‖

≤ (1 + D)L‖xk − x̄k ‖ ,
proving that (‖sk+1 − sk ‖)k∈� is summable too, and thus converges to a
point s?. Because of Lipschitz continuity, also (xk)k∈� converges to some
point x?, in fact, to x? � G−1

γ (s?). That x? ∈ fixTA
γ ⊆ zer ∂̂ϕ follows from

Thm. 4.1(ii).

Theorem 4.3 (Linear convergence). Suppose that the assumptions of Theorem
4.2 are satisfied, and that the KL function can be taken of the form ψ(s) �
csϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈�, (xk)k∈�, and
dist(xk ,TA

γ (xk)) are R-linearly convergent.

Proof. The proof is exactly the same as that of Thm. 3.22, with the only
exception that in (3.10) the inequality ‖s j − s j+1‖ ≤ L‖x j − x̄ j ‖ is to be
used, as opposed to the equality ‖s j − s j+1‖ � λ‖x j − x̄ j ‖ therein.
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4.5 Superlinear convergence
In the sequel, we will make use of the notion of superlinear directions
that we define next.

Definition 4.4 (Superlinear directions [38, §7.5]). We say that (dk)k∈� are
superlinearly convergent directions for a sequence (sk)k∈� converging to a
point s? if

lim
k→∞
‖sk + dk − s?‖
‖sk − s?‖ � 0.

The next result consititutes a key component of the methodology, as it
shows that the proposed algorithm does not suffer from theMaratos effect
[68], a well-known obstacle for fast local methods that inhibits the accep-
tance of the unit stepsize. On the contrary, we will show that whenever
the directions (dk)k∈� of CLyD (Alg. 4.1) are superlinear, then indeed the
unit stepsize is eventually always accepted, and the algorithm reduces to
the (undamped) local method sk+1 � sk + dk , and (xk)k∈� then converges
superlinearly.

Theorem 4.5 (Acceptance of the unit stepsize and superlinear conver-
gence). Consider the iterates generated by CLyD (Alg. 4.1). Suppose that the
following hold:

a1 (xk)k∈� converges to a strong local minimum of ϕ;

a2 (dk)k∈� are superlinearly convergent directions with respect to (sk)k∈�;
a3 γ , ΓA (x?);
Then, there exists k̄ ∈ � such that

ϕA
γ (sk

+ dk) ≤ ϕA
γ (sk) − α c

2 ‖sk − s̄k ‖2 for all k ≥ k̄.

In particular, eventually the iterates reduce to sk+1 � sk + dk and converge
superlinearly.

Proof. Let L be a Lipschitz modulus for the transient mapping Gγ and its
inverse. We know from Thm. 3.6 and the property 2.31.p1 of the criticality
threshold that s? � G−1

γ (s?) is a strong local minimum for ϕA
γ : there exist

ε, µ > 0 such that

ϕA
γ (s) − ϕ? ≥ µ

2 ‖s − s?‖2 ∀s ∈ B(s?; ε),
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where ϕ? B ϕA
γ (s?) � ϕ(x?) (the second equality is due to Cor. 3.3(i)).

Combined with the quadratic upper bound of the F -envelope, see Prop.
3.9, we obtain

ϕA
γ (sk + dk) − ϕ?
ϕA
γ (sk) − ϕ?

≤ m2
µ

‖Gγ(sk + dk) − x?‖2
‖xk − x?‖2 ≤ m2L2

µ

‖sk + dk − s?‖2
‖sk − s?‖2 ,

holding for all k’s sufficiently large. In particular,

εk B
ϕA
γ (sk + dk) − ϕ?
ϕA
γ (sk) − ϕ?

→ 0 as k →∞.

Thus, for all k’s large enough we have that εk ≤ 1− α, and also ϕA
γ (s̄k) �

ϕM
A
γ (x̄k) ≥ ϕ? as ensured by Prop. 3.5. Hence, eventually,

ϕA
γ (sk

+ dk) − ϕA
γ (sk) � (

ϕA
γ (sk

+ dk) − ϕ?
) − (

ϕA
γ (sk) − ϕ?

)
� (εk − 1)(ϕA

γ (sk) − ϕA
γ (s̄k))

≤ − α c
2 ‖sk − s̄k ‖2 ,

which proves the claim.

Theorem 4.6 (Dennis-Moré condition). Consider the iterates generated by
CLyD (Alg. 4.1). Suppose that the following hold:

a1 (sk)k∈� converges to a point s? at which RA
γ is strictly differentiable and

with nonsingular Jacobian JRA
γ (s?).

a2 The Dennis-Moré condition holds:

lim
k→∞
‖RA

γ (sk) + JRA
γ (s?)dk ‖

‖dk ‖ � 0. (4.6)

Then, (dk)k∈� are superlinearly convergent directions with respect to (sk)k∈�.

Proof. The Dennis-Moré condition (4.6) implies that

0←
RA
γ (sk) + JRA

γ (s?)dk − RA
γ (sk + dk)

‖dk ‖ +
RA
γ (sk + dk)
‖dk ‖

77



as k → ∞. Due to strict differentiability, the first term on the right-hand
side vanishes, hence so does the second. Moreover, nonsingularity of
RA
γ (s?) implies that there exists α > 0 such that

‖RA
γ (s)‖ � ‖RA

γ (s) − RA
γ (s?)‖ ≥ α‖s − s?‖

holds for all s close to s?. Here, the first equality is due to the fact that
Gγ(s?) is critical, hence 0 � RA

γ (s?) (equality, as opposed to inclusion,
holds due to the assumption of differentiability). We thus have

0←
‖RA

γ (sk + dk)‖
‖dk ‖ ≥ α ‖s

k + dk − s?‖
‖dk ‖

≥ α ‖sk + dk − s?‖
‖sk + dk − s?‖ + ‖sk − s?‖

� α

‖sk+dk−s?‖
‖sk−s?‖

1 +
‖sk+dk−s?‖
‖sk−s?‖

,

as k →∞, and in particular ‖s
k+dk−s?‖
‖sk−s?‖ → 0.

We conclude the section showing that employing Broyden directions
(4.5) enables superlinear convergence rates, provided thatRA

γ is Lipschitz
continuously semidifferentiable at the limit point, see [52].

Theorem 4.7 (Superlinear convergence with Broyden directions). Con-
sider the iterates generated by CLyD (Alg. 4.1) with directions dk selected with
the modified Broyden method of Section 4.3.2. Suppose that the following hold:

a1 (sk)k∈� converges to a point s? at which RA
γ is Lipschitz-continuously

semidifferentiable and with nonsingular Jacobian JRA
γ (s?) (in particular,

RA
γ is strictly differentiable there).

a2 there exists m > 0 such that dist(0, ∂ϕA
γ (s)) ≤ m dist(0,RA

γ (s)) holds for
all s close to s?.

Then, the Dennis-Moré condition (4.6) is satisfied, and in particular all the
claims of Theorem 4.6 hold.

Proof. Denote G? B JRA
γ (s?), and recall that pk ∈ RA

γ (sk). We have

‖qk − G?pk ‖
‖pk ‖ �

‖RA
γ (sk+1) − RA

γ (sk) − G?(sk+1 − sk)‖
‖sk+1 − sk ‖ ,
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and since sk → x?, due to [52, Lem. 2.2] there exists L > 0 such that
‖qk−G?pk ‖
‖pk ‖ ≤ L max

{‖sk+1 − x?‖ , ‖sk − x?‖} for k large enough. Conse-

quently, due to Thm. 3.22 and Prop. 3.14, ‖qk−G?pk ‖
‖pk ‖ is summable. Let

Bk B H−1
k and Ek B Bk − G?, and let ‖ · ‖F denote the Frobenius norm.

With a simple modification of the proofs of [52, Thm. 4.1] and [4, Lem.
4.4] that takes into account the scalar ϑk ∈ [ϑ̄, 2 − ϑ̄], we obtain

‖Ek+1‖F ≤
Ek

(
I − ϑk

pk (pk )>
‖pk ‖2

)
F
+ ϑk

‖qk − G?pk ‖
‖pk ‖

≤ ‖Ek ‖F −
ϑ̄(2 − ϑ̄)
2‖Ek ‖F

‖Ek pk ‖2
‖pk ‖2 .

Consequently, (‖Ek ‖F)k∈� is decreasing, and in particular its supremum
Ē B sup(‖Ek ‖F)k∈� is finite. By rearranging the inequality above, we
obtain

ϑ̄(2 − ϑ̄)
2Ē

∑
k∈�

‖Ek pk ‖2
‖pk ‖2 ≤

∑
k∈�

ϑ̄(2 − ϑ̄)
2‖Ek ‖F

‖Ek pk ‖2
‖pk ‖2

≤
∑
k∈�
(‖Ek ‖F − ‖Ek+1‖F)

≤ ‖E0‖F .

Therefore, since pk � sk+1 − sk � τk dk � −τk HkRA
γ (sk), we have that

‖Ek pk ‖
‖pk ‖ �

‖(Bk − G?)pk ‖
‖pk ‖ �

‖RA
γ (sk) + G?dk ‖
‖dk ‖

is square summable, proving the claimed Dennis-Moré condition (4.6).
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Chapter 5

Forward-backward splitting

5.1 Introduction
We now consider composite minimization problems

minimize
x∈�n

ϕ(x) ≡ f (x) + g(x) (5.1)

under the following requirements, which will be assumed throughout
the chapter without further mention.

Assumption 5.I (FBS: basic assumption). In problem (5.1)

a1 f ∈ C1,1(�n) is L f -smooth and σ f -hypoconvex;

a2 g : �n → � is proper and lsc;

a3 a solution exists, that is, argminϕ , ∅.
Both f and g are allowed to be nonconvex, making (5.1) prototypic

for a plethora of applications spanning signal and image processing,
machine learning, statistics, control and system identification. A well
known algorithm addressing (5.1) is forward-backward splitting (FBS), also
known as proximal gradient method, amounting to fixed-point iterations

x+ ∈ proxγg
(
x − γ∇ f (x)) , (5.2)

where γ > 0 is a stepsize parameter.
The name forward-backward splitting is a loan frommonotone operator

theory, where given amaximallymonotone (set-valued) operator A and a
cocoercive (single-valued) operator B, the problem of finding x ∈ zer(A+
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B) is addressed by interleaving forward steps id − γB and backward steps
(id + γA)−1 for some stepsize parameter γ > 0. In fact, when both f
and g are convex, problem (5.4) is equivalent to finding x ∈ zer ∂ϕ �

zer(A + B), where A B ∂g is maximally monotone, and B B ∇ f is
L−1

f -cocoercive [10, Cor. 18.17 and Thm. 20.25]. In this case, the forward
step becomes a gradient descent id − γ∇ f and the backward step the
proximal mapping proxγg [10, Prop. 16.44], hence the name proximal
gradient method in optimization. Thanks to this theoretical link, when both
f and g are convex, relaxed fixed-point iterations of the (single-valued)
forward-backward operator, namely

xk+1
� (1 − λk)xk

+ λk proxγg
(
xk − γ∇ f (xk)) ,

are known to converge to a minimizer of ϕ for any stepsize γ ∈ (0, 2/L f )
and any choice of relaxation parameters (λk)k∈� ⊂

(
0, 2−γ/2L f

)
as long as∑

k∈� λk
(
2− γ/2L f −λk

)
� ∞ [10, Cor. 28.9]. Moreover, FBS enjoys a global

rate O(1/k) in terms of objective value, and accelerated variants, also
known as fast forward-backward splitting (FFBS) or accelerated proximal
gradient method, can be derived thanks to the work of Nesterov [70, 106,
14, 72], that only require minimal additional computations per iteration
but achieve the optimal global convergence rate of order o(1/k2) [7].

When f and/or g are nonconvex, convergence results can be es-
tablished by viewing FBS as a (pure) PMM algorithm. As we will see
in the next section, this requires reducing the range of the stepsize to
γ ∈ (0, 1/L f ). Before that, let us first observe that proximal gradient itera-
tions (5.2) are well defined for any stepsize in such range.
Remark 5.1 (Feasible stepsizes for FBS). For all x ∈ �n it holds that

inf ϕ ≤ f (x) + g(x) ≤ f (0) + 〈∇ f (0), x〉 + L f
2 ‖x‖2 + g(x),

hence, for all r > L f the function x 7→ g(x) + r
2 ‖x‖2 is lower bounded.

It then follows from the definition of prox-boundedness that g is prox-
bounded with threshold γg ≥ 1/L f . Proposition 1.10 then ensures that
proxγg is nonempty-valued for any stepsize γ < 1/L f , thus forward-
backward iterations (5.2) are well defined.

5.2 FBS as a PMM algorithm
We now show that FBS is a pure PMM scheme, that is to say, FBS fits into
the fixed-point iteration framework (2.6) with Gγ ≡ id. To facilitate the
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Forward-backward splitting FB ∼ (Mfb
γ )γ∈(0,1/L f )

γ̄ : 1/L f (ensures m1 > 0)

Mfb
γ (w; x) : g(w) + f (x) + 〈∇ f (x), w − x〉 + 1

2γ ‖w − x‖2 (5.4)

T fb
γ (x) : proxγg

(
x − γ∇ f (x))

Rfb
γ (x) : 1

γ (x − T fb
γ (x)) (2.9)

ϕfb
γ (x) : f (x) − γ

2 ‖∇ f (x)‖2 + gγ(x − γ∇ f (x)) (5.7)

m1(γ) : 1−γL f
γ (5.5)

m2(γ) : 1−γσ f
γ (5.5)

Lδ :
1−γσ f
γ Lem. 2.15

Table 5.1: Forward-backward splitting with stepsize γ ∈ (0, 1/L f ): parameters of the
proximal model. The F -envelope, denoted as ϕfb

γ , is the forward-backward envelope
function.

reading, all the elements and the parameters are summarized in Table
5.1.

Let us consider one iteration x 7→ x+ with stepsize γ < 1/L f . We have

x+ ∈ proxγg
(
x − γ∇ f (x))

� argmin
w∈�n

{
g(w) + 1

2γ ‖w − x + γ∇ f (x)‖2
}

(5.3)

� argmin
w∈�n

{
g(w) + 〈∇ f (x), w − x〉 + 1

2γ ‖w − x‖2 + γ
2 ‖∇ f (x)‖2

}
.

By adding the constant quantity f (x)− γ
2 ‖∇ f (x)‖2 into the function being

minimized, we obtain that x+ ∈ argminw∈�nMfb
γ (w; x), where

Mfb
γ (w; x) B g(w) + f (x) + 〈∇ f (x), w − x〉 + 1

2γ ‖w − x‖2. (5.4)

It follows from the quadratic bound (1.5) thatMfb
γ is a proximal model
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for ϕ with
m1 �

1−γL f
γ and m2 �

1−γσ f
γ (5.5)

as constants in property 2.10.p2.

Lemma 5.2. For any x ∈ �n , the difference

δ(w) BMfb
γ (w; x) − ϕ(w) � f (x) + 〈∇ f (x), w − x〉 − f (w) + 1

2γ ‖w − x‖2

is Lδ-Lipschitz differentiable with Lδ �
1−γσ f
γ . In particular, for any x ∈ �n and

x̄ ∈ T fb
γ (x) it holds that

dist(0, ∂̂ϕ(x̄)) ≤ 1−γσ f
γ ‖x − x̄‖.

Proof. Since ∇δ(w) � 1
γ

(
w − γ∇ f (w)) − 1

γ

(
x − γ∇ f (x)) , for all w , w′ ∈ �n

it holds that

〈∇δ(w) − ∇δ(w′), w − w′〉 � ‖w − w′‖2 − γ〈∇ f (w) − ∇ f (w′), w − w′〉.
From (1.5) we then obtain that the scalar product is bounded as

1−γL f
γ ‖w − w′‖2 ≤ 〈∇δ(w) − ∇δ(w′), w − w′〉 ≤ 1−γσ f

γ ‖w − w′‖2 ,

hence the claimed Lipschitz continuity. The rest of the proof then follows
from Lem. 2.15.

5.3 Forward-backward envelope
Consistently with Definition 3.1 and since FBS is a pure PMM scheme
(the transient function is Gγ � id), we have

ϕfb
γ (x) (def)� min

w∈�n
Mfb

γ (w; x)

� min
w∈�n

{
g(w) + f (x) + 〈∇ f (x), w − x〉 + 1

2γ ‖w − x‖2
}
. (5.6)

We name this function forward-backward envelope (FBE), andwedenote
it by ϕfb

γ . Since the minimum in (5.3) is, by definition, gγ(x−γ∇ f (x)), and
in passing to (5.4) the term f (x) − γ

2 ‖∇ f (x)‖2 was added, we easily infer
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the following alternative expression of the FBE in terms of the Moreau
envelope of g:

ϕfb
γ (x) � f (x) − γ

2 ‖∇ f (x)‖2 + gγ(x − γ∇ f (x)). (5.7)

The FBEwas first introduced in [78] for convex problemswith f twice
continuously differentiable, and later generalized in [98] by discarding
the nonconvexity assumption of f . Under these assumptions the FBEwas
shown to be continuously differentiable, see [97, 80] for further details and
more differentiabilty properties. Themore general analysis dealt herewas
investigated in [104]; all the results are special cases of the unified analysis
provided in Chapter 3.

Theorem 5.3 (FBE: sandwich property). Let γ ∈ (0, 1/L f ) be fixed. For all
x ∈ �n the following hold:

(i) ϕfb
γ (x) ≤ ϕ(x), with equality holding iff x ∈ T fb

γ (x).

(ii) 1−γL f
2γ ‖x − x̄‖2 ≤ ϕfb

γ (x) − ϕ(x̄) ≤ 1−γσ f
2γ ‖x − x̄‖2 for all x̄ ∈ T fb

γ (x).
(iii) inf ϕfb

γ � inf ϕ and argminϕfb
γ � argminϕ.

Proof. Follows from Theorem 3.2(ii), since m1(γ) � 1−γL f
2γ and m2(γ) �

1−γσ f
2γ , cf. Table 5.1.

Theorem 5.4 (FBE: equivalence of local minimality). Let γ ∈ (0, 1/L f ) and
x̄ ∈ fixT fb

γ be fixed. The following hold:

(i) If x̄ is a (strong) local minimum for ϕfb
γ , then it is a (strong) local minimum

for ϕ.

(ii) If T fb
γ (x̄) � {x̄}, (e.g., if γ < Γfb(x̄)) then the converse also holds.

Proof. See Theorem 3.6.

Theorem 5.5 (FBE: Equivalence of level boundedness). For any γ ∈
(0, 1/L f ), ϕ is level bounded iff ϕfb

γ is level bounded.

Proof. See Theorem 3.7.
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5.3.1 Regularity properties
Since f , ∇ f , and gγ are strictly continuous, the following regularity prop-
erty of the FBE is immediately deduced from the expression (5.7).

Proposition 5.6 (Strict continuity of the FBE). For any γ ∈ (0, 1/L f ) the FBE
ϕfb
γ is a strictly continuous function.

Notice that (nonstrict) continuity of ϕfb
γ could directly be inferred

from Proposition 3.8, being the sections x 7→ Mfb
γ (w; x) continuous for

any w ∈ �n .

Proposition 5.7. If x̄ is critical, then for all γ ∈ (0, Γfb(x̄)) theMoreau envelope
gγ is strictly differentiable at x̄ − γ∇ f (x̄) with ∇gγ(x̄ − γ∇ f (x̄)) � −∇ f (x̄).

In particular, if f is (strictly) twice differentiable at x̄, then ϕfb
γ is (strictly)

differentiable at x̄ with ∇ϕfb
γ (x̄) � 0.

Proof. It follows from Prop. 1.10 that gγ is strictly continuous with

∂gγ
(
x̄ − γ∇ f (x̄)) ⊆ 1

γ

[
x̄ − γ∇ f (x̄) − T fb

γ (x̄)
]2.31.p1
�

{−∇ f (x̄)} ,
and the claim on gγ then follows by invoking Lem. 1.3(iv). The last part
follows from the chain rule of differentiation.

5.3.2 First-order differentiability

In the favorable case in which g is convex and f ∈ C2(�n), the FBE enjoys
global continuous differentiability [98]. In our setting, prox-regularity
acts as a surrogate of convexity; the interested reader is referred to [92,
§13.F] for a detailed discussion.

Definition 5.8 (Prox-regularity). Function g is said to be prox-regular at
x0 for v0 ∈ ∂g(x0) if there exist ρ, ε > 0 such that for all x′ ∈ B(x0; ε) and

(x , v) ∈ gph ∂g s.t. x ∈ B(x0; ε), v ∈ B(v0; ε), and g(x) ≤ g(x0) + ε

it holds that g(x′) ≥ g(x) + 〈v , x′ − x〉 − ρ
2 ‖x′ − x‖2.

Lemma 5.9 ([92, Ex. 13.35]). Function g is prox-regular at x? for v̄ iff g−〈v̄ , ·〉
is prox-regular at x̄ for 0.
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To help better visualize this definition we consider the local geomet-
rical property that it entails on the function’s epigraph [84, Cor. 3.4, Thm.
3.5]. If g is prox-regular at x0 for v0 for some constants ε, ρ > 0 as in Def-
inition 5.8, then there exists a neighborhood of (x0 + v0/ρ, g(x0) − 1/ρ) in
which the projection on epi g ∩ (

B(x0; ε) ×B(v0; ε)) is single-valued.
Prox-regularity is a mild requirement enjoyed globally and for any

subgradient by all convex functions, with ε � +∞ and ρ � 0. When g
is prox-regular at x0 for v0, then for sufficiently small γ > 0 the Moreau
envelope gγ is continuously differentiable in a neighborhood of x0 + γv0
[84]. To our purposes, when needed, prox-regularity of g will be required
only at critical points x?, and only for the subgradient−∇ f (x?). Therefore,
with a slight abuse of terminology we define prox-regularity of critical
points as follows.

Definition 5.10 (Prox-regularity of critical points). We say that a critical
point x? is prox-regular if g is prox-regular at x? for −∇ f (x?).

Clearly, if g is convex then any critical point is prox-regular. Prox-
regularity of critical points is really a mild requirement, also considering
that the fact of being critical itself entails some regularity properties as
shown in Proposition 5.7. Examples where a critical point fails to be prox-
regular are of challenging construction; before illustrating a cumbersome
such instance in Example 5.13, we first prove an important result that
connects prox-regularity with first-order properties of the FBE.

Theorem 5.11 (Continuous differentiability of ϕfb
γ and error bound). Let

x? be a prox-regular critical point. Then, for all γ ∈ (0, Γfb(x?)) there exists a
neighborhood Ux? of x? on which the following properties hold:

(i) T fb
γ and Rfb

γ are strictly continuous, and in particular single-valued.

(ii) dist(0, ∂ϕfb
γ (x)) ≤ (1 − γσ f )‖Rfb

γ (x)‖; in fact, it suffices to have Rfb
γ (x)

single-valued for this to hold.

(iii) If f is of class C2 (resp. C2+) around x?, then ϕfb
γ ∈ C1 (resp. ϕfb

γ ∈ C1+)
with ∇ϕfb

γ � [I − γ∇2 f ]Rfb
γ .

Proof. Due to property 2.31.p1 of the criticality threshold, we have that
Mfb

γ (x?; x?) < Mfb
γ (x; x?) whenever x , x?. Expanding as in (5.4), the

inequality reduces to

g(x) > g(x?) − 〈∇ f (x?), x − x?〉 − 1
2γ ‖x − x?‖2 ∀x ∈ �n \ {x?}. (5.8)
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From [84, Thm. 4.4] applied to the “tilted” function x 7→ g(x+x?)−g(x?)−
〈∇ f (x?), x〉 and in light of Lem. 5.9, it follows that there is a neighborhood
V of x?−γ∇ f (x?) in which proxγg is strictly continuous and gγ is of class
C1+ with

∇gγ(x) � γ−1 (x − proxγg(x)
) ∀x ∈ V.

♠ 5.11(i). Follows from the fact that strict continuity is preserved under
composition.

♠ 5.11(ii). Since ∇ f is strictly continuous, it is differentiable on a set D
with negligible complement in�n . Due to the chain rule of differentiation
and the fact that gγ ∈ C1, ϕfb

γ is differentiable on D, with

∇ϕfb
γ (w) �

(
I − γ∇2 f (w)) (∇ f (w) + ∇gγ(w − γ∇ f (w)))

�
(
I − γ∇2 f (w)) (∇ f (w) + 1

γ

(
w − γ∇ f (w) − T fb

γ (w)
))

�
(
I − γ∇2 f (w))Rfb

γ (w) (5.9)

for all w ∈ D, where the second equality follows from Prop. 1.10(iv) and
the chain rule of differentiation. We may then invoke [92, Thm. 9.61] to
infer that

∂ϕfb
γ (x) ⊇ ∂Bϕ

fb
γ (x)

�

{
v ∈ �n | ∃(xk)k∈� ⊂ D : xk → x , ∇ϕfb

γ (xk) → v
}

� limsup
D3w→x

(
I − γ∇2 f (w))Rfb

γ (w).

Therefore,

dist
(
0, ∂ϕfb

γ (x)
) ≤ dist

(
0, limsup

D3w→x

(
I − γ∇2 f (w))Rfb

γ (w)
)

≤ (1 − γσ f )dist
(
0, limsup

D3w→x
Rfb
γ (w)

)
� (1 − γσ f )dist

(
0, Rfb

γ (x)
)
, (5.10)

where the last equality follows from osc and single valuedness of Rfb
γ at

x.

♠ 5.11(iii). If f is C2 around x? and ∇ f is continuous, by possibly nar-
rowing Ux? we may assume that f ∈ C2(Ux?) and x − γ∇ f (x) ∈ V for all
x ∈ Ux? . The claimed expression for ∇ϕfb

γ follows from (5.9).
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Since prox-regularity is enjoyed globally by convex functions, the fol-
lowing special case is a straightforward consequence.

Corollary 5.12 (First-order properties for convex g). Suppose that g is
convex and that f ∈ C2(�n) (resp. f ∈ C2+(�n)). Then, for all γ > 0 all the
properties in Theorem 5.11 hold globally (i.e., for all x? ∈ �n with Ux? � �n).

When f � 0, Theorem 5.11 restates the known fact that if g is prox-
regular at x? for 0 ∈ ∂g(x?), then gγ is continuously differentiable around
x? with ∇gγ(x) � 1

γ (x − proxγg(x)). Notice that the bound γ < Γfb(x?)
is tight: in general, for γ � Γfb(x?) no continuity of T fb

γ nor continuous
differentiability of ϕfb

γ around x? can be guaranteed. In fact, even when
x? is Γfb(x?)-critical, T fb

γ might even fail to be single-valued and ϕfb
γ

differentiable at x?. To see this, let us consider once again function ϕ as in
Section 3.2.2. This time, simply for the sake of generalizing the analysis,
let us decompose it as ϕ � f + g, where

f (x) � 1
2 x2 and g(x) � δ{0,1}(x).

Clearly, f is L f -smooth and σ f hypoconvex with L f � σ f � 1, and the FB
operator is

T fb
γ (x) � Π{0,1}((1 − γ)x).

In particular,

T fb
γ (1) � Π{0,1}(1 − γ) �


1 if γ < 1/2,
{0, 1} if γ � 1/2,
0 otherwise,

which indicates that x̄ � 1 has FB-criticality threshold Γfb(x̄) � 1/2. From
the expression (5.7) we can write the FBE as

ϕfb
γ (x) � 1−γ

2 ‖x‖2 + 1
2γ dist((1 − γ)x , S)2.

At the critical point x � 1, which satisfies Γfb(1) � 1/2, g is prox-regular
for any subgradient. For any γ ∈ (0, 1/2) it is easy to see that ϕfb

γ is dif-
ferentiable in a neighborhood of x � 1. However, for γ � 1/2 the distance
function has a first-order singularity in x � 1, due to the 2-valuedness of
T fb
γ (1) � ΠS(1/2) � {0, 1}. As shown in the picture above, the scenario is

much similar to what observed in Figure 3.1 for the case of the proximal
point algorithm (i.e., with f � 0 in the decomposition of ϕ).

The next example depicts a different kind of pathological situation,
namely the lack of prox regularity at critical points.
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x̄ � 1

γ � 0.5
γ � 0.4

Figure 5.1: Around prox-regular
critical points the FBE ϕfb

γ is contin-
uously differentiable, provided that
the stepsize γ is smaller than the crit-
icality threshold.

Example 5.13 (Prox-nonregularity of critical points). Consider ϕ � f + g
where f (x) � 1

2 x2, g(x) � δS(x) and S � {1/n | n ∈ �≥1} ∪ {0}. For x0 � 0
we have Γfb(x0) � +∞, however g fails to be prox-regular at x0 for v0 �

0 � −∇ f (x0). For any ρ > 0 and for any neighborhood V of (0, 0) in gph g
it is always possible to find a point arbitrarily close to (0,−1/ρ)withmulti-
valued projection on V . Specifically, themidpoint Pn �

( 1
2 ( 1

n +
1

n+1 ), −1/ρ)
has 2-valued projection on gph g for any n ∈ �≥1, being it Πgph g(Pn) �
{1/n, 1/n+1}. By considering a large n, Pn can be made arbitrarily close to
(0,−1/ρ) and at the same time its projection(s) arbitrarily close to (0, 0).
It follows that g cannot be prox-regular at 0 for 0, for otherwise such
projections would be single-valued close enough to (0, 0) [84, Cor. 3.4 and
Thm. 3.5]. As a result, gγ(x) � 1

2γ dist(x , S)2 is not differentiable around
x � 0, and indeed at each midpoint 1

2 ( 1
n +

1
n+1 ) for n ∈ �≥1 it has a

nonsmooth spike.

To underline how unfortunate the situation depicted in Example 5.13
is, notice that adding a linear term λx to f for any λ , 0, yet leaving
g unchanged, restores the desired prox-regularity of each critical point.
Indeed, this is trivially true for any nonzero critical point; besides, g is
prox-regular at 0 for any λ ∈ (0,−∞), while for any λ < 0 the point 0
is not critical. The reason why prox-regularity fails to hold in the above
example is due to the density of isolated points close to 0.

5.3.3 Second-order differentiability
In this section we discuss sufficient conditions for twice-differentiability
of the FBE at critical points. Additionally to prox-regularity, which is
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needed for local continuous differentiability, we will also need general-
ized second-order properties of g. The interested reader is referred to [92,
§13] for an extensive discussion on epi-differentiability.

Assumption 5.II. With respect to a given critical point x?

(i) ∇2 f exists and is (strictly) continuous around x?;

(ii) g is prox-regular and (strictly) twice epi-differentiable at x? for
−∇ f (x?), with its second order epi-derivative being generalized
quadratic:

d2 g(x?|−∇ f (x?))[d] � 〈d ,Md〉 + δS(d), ∀d ∈ �n (5.11)

where S ⊆ �n is a linear subspace and M ∈ �n×n . Without loss of
generality we take M symmetric, and such that range(M) ⊆ S and
ker(M) ⊇ S⊥.1

We say that the assumptions are “strictly” satisfied if the stronger condi-
tions in parenthesis hold.

Twice epi-differentiability of g is a mild requirement, and cases where
d2 g is generalized quadratic are abundant [90, 91, 81, 82]. Moreover,
prox-regular and C2-partly smooth functions g (see [59, 32]) comprise a
wide class of functions that strictly satisfy Assumption 5.II(ii) at a critical
point x? provided that strict complementarity holds, namely if −∇ f (x?) ∈
relint ∂g(x?). In fact, it follows from [32, Thm. 28] applied to the tilted
function g̃ � g + 〈∇ f (x?), · 〉 (which is still C2-partly smooth and prox-
regular at x?, cf. [59, Cor. 4.6] and Lem. 5.9) that proxγ g̃ is continuously
differentiable around x? for γ small enough (in fact, for γ < Γfb(x?)). From
[83, Thm 4.1(g)] we then obtain that g̃ is strictly twice epi-differentiable at
x? with generalized quadratic second-order epiderivative, and the claim
follows by tilting back to g.

We now show that the properties required in Assumption 5.II are all
that is needed for ensuring first-order properties of the proximalmapping
and second-order properties of the FBE at critical points. The result is
more general than the one in [98], as here g is allowed to be nonconvex.

Theorem 5.14 (Twice differentiability of ϕfb
γ ). Suppose that Assumption

5.II is (strictly) satisfied with respect to a critical point x?. Then, for any γ ∈
(0, Γfb(x?))

1This can indeed be done without loss of generality: if M and S satisfy (5.11), then it
suffices to replace M with M′ � 1

2 ΠS(M + M>)ΠS to ensure the desired properties.
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(i) proxγg is (strictly) differentiable at x? − γ∇ f (x?) with symmetric and
positive semidefinite Jacobian

Pγ(x?) B J proxγg(x? − γ∇ f (x?)); (5.12)

(ii) Rfb
γ is (strictly) differentiable at x? with Jacobian

JRfb
γ (x?) � 1

γ

[
I − Pγ(x?)Qγ(x?)

]
, (5.13)

where Qγ B I − γ∇2 f ;

(iii) ϕfb
γ is (strictly) twice differentiable at x? with symmetric Hessian

∇2ϕfb
γ (x?) � Qγ(x?)JRfb

γ (x?). (5.14)

Proof.

♠ 5.14(i). It follows from [83, Thm.s 3.8 and 4.1] that proxγg is (strictly)
differentiable at x? − γ∇ f (x?) iff g (strictly) satisfies assumption 5.II(ii).
Consequently, if f is of class C2 around x? (and in particular strictly
differentiable at x? [92, Cor. 9.19]), Rfb

γ (x) � x − proxγg
(
x − γ∇ f (x)) is

(strictly) differentiable at x? with Jacobian as in (5.13) due to the chain
rule of differentiation (and the fact that strict differentiability is preserved
by composition). For γ′ ∈ (γ, Γfb(x?)) and w ∈ �n we have

d2 g(x?|−∇ f (x?))[w] � lim inf
w′→w
τ→0+

g(x? + τw′) − g(x?) + τ〈∇ f (x?), w〉
τ2/2

(due to (5.8)) ≥ − 1
γ′ ‖w‖2.

The expression (5.11) of the second-order epi-derivative then implies
〈Mw , w〉 ≥ − 1

γ′ ‖w‖2 for all w ∈ �n (since Mw � 0 for w ∈ S⊥). Therefore,
λmin(M) ≥ − 1/γ′ > − 1/γ, proving I + γM to be positive definite, and in
particular invertible. To obtain an expression for Pγ(x?) � J proxγg(x? −
γ∇ f (x?)) we can apply [92, Ex. 13.45] to the function g + 〈∇ f (x?), · 〉
so that, letting d2 g � d2 g(x?|−∇ f (x?))[ · ] and ΠS the idempotent and
symmetric projection matrix on S,

Pγ(x?)d � prox(γ/2)d2 g(d) � argmin
d′∈S

{
1
2 〈d′,Md′〉 + 1

2γ ‖d′ − d‖2
}

� ΠS argmin
d′∈�n

{
1
2 〈ΠS d′,M ΠS d′〉 + 1

2γ ‖ΠS d′ − d‖2
}
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� ΠS
(
ΠS[I + γM]ΠS

)†ΠS d

� ΠS[I + γM]−1 ΠS , (5.15)

where † indicates the pseudo-inverse, and last equality is due to [16,
Facts 6.4.12(i)-(ii) and 6.1.6(xxxii)]. Apparently, JPγ(x?) is symmetric and
positive semidefinite.

♠ 5.14(ii). With basic calculus rules it can be easily verified that, since
Rfb
γ (x?) � 0, ∇ϕfb

γ � QγRfb
γ is (strictly) differentiable at x? provided that

Qγ is (strictly) continuous at x? and Rfb
γ is (strictly) differentiable at x?.

♠ 5.14(iii). A simple application of the chain rule proves (5.14); moreover,
combined with (5.13) we obtain

∇2ϕfb
γ (x?) � 1

γ

[
Qγ(x?) −Qγ(x?)Pγ(x?)Qγ(x?)

]
,

and since both Qγ(x?) and Pγ(x?) are symmetric, so is ∇2ϕ(x?).

Again,when f ≡ 0Theorem5.14 covers thedifferentiability properties
of the proximal mapping (and consequently the second-order properties
of the Moreau envelope, due to the identity ∇gγ(x) � 1

γ (x − proxγg(x)))
as discussed in [83].

We now provide a key result that links nonsingularity of the Jacobian
of the forward-backward residual Rfb

γ to strong (local) minimality for the
original cost ϕ and for the FBE ϕfb

γ , under the generalized second-order
properties of Assumption 5.II.

Theorem 5.15 (Conditions for strong local minimality). Suppose that As-
sumption 5.II is satisfied with respect to a critical point x?, and let γ ∈
(0,min

{
Γfb(x?), 1/L f

}). The following are equivalent:
(a) x? is a strong local minimum for ϕ.

(b) x? is a local minimum for ϕ and JRfb
γ (x?) is nonsingular.

(c) the (symmetric) matrix ∇2ϕfb
γ (x?) is positive definite.

(d) x? is a strong local minimum for ϕfb
γ .

(e) x? is a local minimum for ϕfb
γ and JRfb

γ (x?) is nonsingular.
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Algorithm 5.1. Forward-backward splitting with relaxation

Require • initial iterate x0 ∈ �n

• stepsize γ ∈ (0, 1/L f )
• tolerance ε > 0
• relaxation λ ∈ (

1 − √κ, 1 +
√
κ
)
, where κ B 1−γL f

1−γσ f
.

Provide x∗ with ϕ(x∗) ≤ ϕ(x0) and dist(0, ∂̂ϕ(x∗)) ≤ ε.
1: for k � 0, 1, . . . do
2: x̄k ∈ proxγg

(
xk − γ∇ f (xk))

3: if 1
2γ ‖xk − x̄k ‖ ≤ ε then

4: return x∗ � x̄k

5: xk+1 � (1 − λ)xk + λx̄k

5.4 Convergence results
Theorem 5.16 (Finite termination of relaxed FBS). The iterates generated by
FBS (Alg. 5.1) satisfy

ϕfb
γ (xk+1) ≤ ϕfb

γ (xk) − 1−γσ f

2γλ2

(
1−γL f
1−γσ f

− (1 − λ)2
)
‖xk − xk+1‖2.

In particular, the algorithm terminates in a finite number of iterations and yields
a point x∗ satisfying dist(0, ∂̂ϕ(x∗)) ≤ ε.
Proof. It follows from Thm. 3.20 and Cor. 3.18 that for any ε > 0 the algo-
rithm terminates in a finite number of iterations. That dist(0, ∂̂ϕ(x∗)) ≤ ε
follows from Lem. 5.2, by observing that 1 − γσ f ≤ 1 + γσ f ≤ 2.

Let us now analyze the asymptotic behavior of relaxed FBS without
termination criterion, that is, when setting the tolerance as ε � 0 in FBS
(Alg. 5.1).

Theorem 5.17 (Asymptotic convergence of relaxed FBS). Consider the iter-
ates generated by FBS (Alg. 5.1) with tolerance ε � 0. The following hold:

(i) The forward-backward residual (‖xk − x̄k ‖)k∈� is square-summable; in
particular, min j≤k ‖x j − x̄ j ‖ ∈ O(1/√k).
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(ii) The set ω of accumulation points of (xk)k∈� satisfies ω ⊆ fixT fb
γ ⊆

zer ∂̂ϕ.
(iii) If ϕ is level bounded, then (xk)k∈� is bounded, and ω is a nonempty,

compact and connected set satisfying dist(xk , ω) → 0 as k →∞.

(iv) ϕfb
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence
(ϕfb

γ (xk))k∈� (or, equivalently, of (ϕ(x̄k))k∈�.
Proof. Follows from Thm. 3.20 in light of Cor. 3.18.

Theorem 5.18 (Global convergence of relaxed FBS). Consider the iterates
generated by FBS (Alg. 5.1) with tolerance ε � 0, and suppose that the following
hold:

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10.

a3 ϕfb
γ has the KL property.

Then, the following hold:

(i) (xk)k∈� converges to a point x? ∈ fixT fb
γ ⊆ zer ∂̂ϕ.

(ii) The forward-backward residual (‖xk − x̄k ‖)k∈� is summable, and in par-
ticular min j≤k ‖x j − x̄ j ‖ ∈ O(1/k).

Proof. Follows from Thm. 3.21, in light of Cor. 3.18 and Thm. 5.11(ii).

Theorem 5.19 (Linear convergence of relaxed FBS). Consider the iterates
generated by FBS (Alg. 5.1) with tolerance ε � 0, and suppose that the following
hold:

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10.

a3 ϕfb
γ has the KL property and the KL function is of the form ψ(s) � csϑ for

some c > 0 and ϑ ≥ 1/2.
Then, the sequences (xk)k∈� and (dist(0,Rfb

γ (xk)))k∈� are R-linearly conver-
gent.

Proof. Follows from Thm. 3.22, in light of Cor. 3.18 and Thm. 5.11(ii).
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5.5 A quasi-Newton FBS

Algorithm 5.2. CLyD-FBS

Require • stepsize γ ∈ (0, 1/L f )
• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial iterate x0 ∈ �n

• tolerance ε > 0

Provide x∗ with dist
(
0, ∂ϕ(x∗)

) ≤ ε
1: for k � 0, 1, 2, . . . do
2: Do one nominal FB-step: x̄k ∈ proxγg

(
xk − γ∇ f (xk))

3: if 1
2γ ‖xk − x̄k ‖ ≤ ε then

4: return x∗ � x̄k

5: Select an update direction dk ∈ �n at xk

6: Let τk ∈
{
2−i | i ∈ �}

be the largest such that

ϕfb
γ (xk+1) ≤ ϕfb

γ (xk) − α 1−γL f
2γ ‖xk − x̄k ‖2 , (5.16)

where xk+1 B (1 − τk)x̄k + τk(xk + dk)

Theorem 5.20 (Subsequential convergence of (nonmonotone) CLyD-FBS).
The following hold for the iterates generated by CLyD-FBS (Alg. 5.2) with
tolerance ε � 0:

(i) The residual (‖xk− x̄k ‖)k∈� is square-summable; in particular, it vanishes
with rate min j≤k dist(x j ,T fb

γ (x j)) ∈ O(1/√k).
(ii) The set ω of accumulation points of (xk)k∈� satisfies ω ⊆ fixT fb

γ ⊆
zer ∂̂ϕ.

If, additionally, ‖dk ‖ → 0 as k →∞, then the following also hold:

(iii) If ϕ is level bounded, then (xk)k∈� and (x̄k)k∈� are bounded, and ω is
a nonempty, compact and connected set satisfying dist(xk , ω) → 0 as
k →∞.
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(iv) ϕfb
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence
(ϕfb

γ (xk))k∈�.
All the claims remain valid if the linesearch condition (5.16) is replaced by the
following nonmonotone version:

ϕfb
γ (xk+1) ≤ L̄k − α c

2 ‖xk − x̄k ‖2 , (5.17)

where, for any sequence (pk)k∈� ⊆ [0, 1] bounded away from 0, L̄k are recur-
sively defined as follows:

L̄k B

{
ϕfb
γ (x0) if k � 0,
(1 − pk)L̄k−1 + pkϕfb

γ (xk) otherwise.
Proof. Follows from Theorem 4.1.

5.5.1 Global and (super)linear convergence
Theorem 5.21 (Global convergence). Suppose that the following hold for the
iterates generated by CLyD-FBS (Alg. 5.2) with tolerance ε � 0.

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10.

a3 The FBE ϕfb
γ has the KL property.

a4 there exists D > 0 such that ‖dk ‖ ≤ D‖xk − x̄k ‖ for all k’s.

Then, the following hold:

(i) (xk)k∈� converges to a point x? ∈ fixT fb
γ ⊆ zer ∂̂ϕ.

(ii) The residual is summable and in particular min j≤k dist(x j ,T fb
γ (x j)) ∈

O(1/k).
Proof. Follows from Theorems 5.11(ii) and 4.2.

Theorem 5.22 (Linear convergence). Suppose that the assumptions of The-
orem 5.21 are satisfied, and that the KL function can be taken of the form
ψ(s) � csϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈�, (xk)k∈�,
and dist(xk ,T fb

γ (xk)) are R-linearly convergent.
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Proof. Follows from Theorem 4.3.

Theorem 5.23 (Acceptance of the unit stepsize and superlinear conver-
gence). Consider the iterates generated by CLyD-FBS (Alg. 5.2). Suppose that
the following hold:

a1 (xk)k∈� converges to a strong local minimum of ϕ;

a2 (dk)k∈� are superlinearly convergent directions with respect to (xk)k∈�;
a3 γ , Γfb(x?).
Then, there exists k̄ ∈ � such that

ϕfb
γ (sk

+ dk) ≤ ϕfb
γ (sk) − α 1−γL f

2γ ‖xk − x̄k ‖2 for all k ≥ k̄.

In particular, eventually the iterates reduce to xk+1 � xk + dk and converge
superlinearly.

Proof. Follows from Theorem 4.5.

Theorem 5.24 (Dennis-Moré condition). Consider the iterates generated by
CLyD-FBS (Alg. 5.2). Suppose that the following hold:

a1 (xk)k∈� converges to a strong local minimum x? at which Assumption 5.II
is (strictly) satisfied.

a2 The Dennis-Moré condition holds:

lim
k→∞
‖Rfb

γ (xk) + JRfb
γ (x?)dk ‖

‖dk ‖ � 0. (5.18)

Then, (dk)k∈� are superlinearly convergent directions with respect to (xk)k∈�.
Proof. If follows from Theorems 5.14(ii) and 5.15 that Rfb

γ is strictly differ-
entiable at x? and has nonsingular Jacobian there. The proof then follows
from Theorem 4.6.

Theorem 5.25 (Superlinear convergence with Broyden directions). Con-
sider the iterates generated by CLyD-FBS (Alg. 5.2) with directions dk selected
with Broyden method (4.5). Suppose that the following hold:

a1 (xk)k∈� converges to a point x? at which Rfb
γ is Lipschitz-continuously

semidifferentiable and with nonsingular Jacobian JRfb
γ (x?) (in particular,

Rfb
γ is strictly differentiable there).
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Then, the Dennis-Moré condition (5.18) is satisfied, and in particular all the
claims of Theorem 5.24 hold.

Proof. Follows fromTheorem4.7 togetherwith the observation that single
valuedness of Rfb

γ around x? (due to semidifferentiability) ensures the
required error bound assumption 4.7a2, cf. Thm. 5.11(ii).

5.6 Simulations

We now present numerical results with the proposed method. In CLyD-
FBS (Alg. 5.2) we used the nonmonotone variant described in Theorem
5.20 with (pk)k∈� selected as in [110, 63], namely: pk � (ηQk + 1)−1, where
η � 0.85 and

Qk �

{
1 if k � 0,
ηQk−1 + 1 otherwise.

We performed experiments with the following choices of update direc-
tions:

• Broyden (modified) as in Section 4.3.2 with ϑ̄ � 10−4;

• BFGS as in Section 4.3.1;

• L-BFGS, namely the limited-memory variant of BFGS as in [74, Alg.
7.4] with memory 10.

We only show the results with full quasi-Newton updates (Broyden,
BFGS) for one of the examples: for the other experiments we focus on
L-BFGS, which is better suited for large-scale problems. Although JRfb

γ is
nonsymmetric at the critical points in general, we observed that the sym-
metric updates of BFGS and L-BFGS perform very well in practice and
outperform the Broyden method.

We compared CLyD-FBS (Alg. 5.2) with the nominal FBS, the inertial
FBS (denoted IFBS) proposed in [23, Eq. (7)] with parameter β � 0.2,
and the nonmonotone accelerated FBS (denoted AFBS) proposed in [63,
Alg. 2] for fully nonconvex problems. All experiments were performed
in MATLAB. The implementation of the methods used in the tests is
available online.2

2http://github.com/kul-forbes/ForBES
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5.6.1 Dictionary learning
Expressing large data by means of only few elements from a collection
of vectors is an important problem in machine learning and signal pro-
cessing. The challenge is finding such a collection of vectors, known as
dictionary, that can accurately represent data signals in the sparsest way.
In mathematical terms, given m signals y1 , . . . , ym ∈ �n we wish to find
k dictionary atoms d1 , . . . , dk ∈ �n in such a way that each y j can be rep-
resented, or accurately approximated, as a sparse linear combination of
them. If we stack the data in a matrix Y ∈ �n×m , and the dictionary atoms
in a matrix D ∈ �n×k (to be found), the problem can be expressed as
follows [1]

minimize
D ,C

1
2 ‖Y − DC‖2F subject to ‖di ‖2 � 1 i � 1, . . . , k ,

‖c j ‖0 ≤ N j � 1, . . . ,m ,
‖c j ‖∞ ≤ T j � 1, . . . ,m ,

(5.19)

where C � [c1 , . . . , cm] ∈ �k×m is a matrix containing the sought coef-
ficients, and N ∈ � and T > 0 are parameters. Differently from [1], we
bound the set of feasible points by means of the `∞-norm constraint; this
artificial constraint ensures that ∇ f is globally Lipschitz continuous over
the feasible domain. Moreover, we explicitly constrain the norm of the
dictionary atoms: this causes no loss of generality, as the objective value
of (5.19) is unchanged if the j-th atom d j and the j-th row of C are scaled
by reciprocal factors.

The problem can be expressed in the canonical form (5.1) by letting
f (D , C) � 1

2 ‖Y − DC‖2F and g(D , C) � δS(D , C), where

S �
{
D ∈ �n×k | ‖d j ‖2 � 1, j � 1 . . . k

} × {
C ∈ �k×m | ‖c j ‖0 ≤N

‖c j ‖∞≤T,
j � 1 . . .m

}
is the product of Euclidean spheres and box-constrained `0 balls. Both f
and g are nonconvex in this case. The projection of (D , C) onto S is simple
and column-wise separable: the columns d j of D are scaled by their `2
norm, while the N largest coefficients (in absolute value) of the columns
c j of C are projected onto the box [−T, T] and the other ones are set to
zero, see e.g., [13, Alg. 3 and Ex. 4.6].

We tested our algorithm on 50 problems with N � 3, n � 20, m � 500
and k � 50, for a total of 26000 variables each. We chose T � 106 as a large
bound for `∞ norm of the columns of C. Problemswere generated accord-
ing to [1, §V.A]: first, a dictionary Dgen ∈ �20×50 was randomly generated
with normal entries, and each columnwas normalized to one. Then, ama-
trix Cgen ∈ �50×500 was constructed with 3 normally distributed nonzero
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Figure 5.2: Dictionary learning. Performance profiles of FBS, AFBS and CLyD-
FBS (Alg. 5.2) with L-BFGS directions when applied to 50 randomly generated
problems with n � 20, m � 500, k � 50, T � 106 and N � 3. The algorithms
are executed until tolerance ‖Rfb

γ (xk)‖ ≤ 10−4 is reached. In the great majority of
cases, the employment of L-BFGS directions with the proposed framework reaches
a critical point significantly faster than FBS and its nonconvex accelerated variant
AFBS.

coefficients per column. Thenwe setY � CgenDgen+V , whereV ∈ �20×500

is a matrix with normally distributed entries with variance 10−2.

We compared FBS, AFBS and CLyD-FBS (Alg. 5.2)(L-BFGS), using a
backtracking procedure to adaptively adjust the stepsize γ. IFBS could
not be applied due to the lack of an adaptive stepsize-selection rule for
the algorithm [23]. Moreover, we did not test CLyD-FBS (Alg. 5.2) with
Broyden and (full) BFGS directions because of the prohibitive overhead
of storing and operating with 26000 × 26000 matrices.

Figure 5.2 shows the performance profile of the algorithms by com-
paring the time needed to reach an accuracy of ‖rk ‖ ≤ 10−4 starting from
(D0 , C0) � (0, 0). In most of the cases, CLyD-FBS (Alg. 5.2)(L-BFGS) ex-
hibited a speedup of a factor 5-to-100 with respect to FBS, and 3-to-60
with respect to AFBS, at reaching a critical point.
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5.6.2 Nonconvex sparse approximation
Here we consider the problem of finding a sparse solution x ∈ �n to a
least-squares problem Ax � b, where A ∈ �m×n and b ∈ �m . Sparsity
can be induced by constraining or penalizing the `0 quasi-norm of x,
namely the number of nonzero elements of x, but due to the challenges
of nonconvexity it is often the case that the `1 norm is used instead. As
well explained and documented in [108], the use of the (square root of
the) `1/2 quasi-norm, namely ‖x‖1/2

1/2 �
∑n

i�1 |xi |1/2, is in some sense optimal
in trading-off representativeness of the solution and numerical simplicity
of the `0 and `1 approaches, respectively. The problem then becomes

minimize
x∈�n

1
2 ‖Ax − b‖22 + λ‖x‖1/2

1/2 , (5.20)

where λ > 0 is a regularization parameter. Function ‖x‖1/2
1/2 is separable,

and its proximal mapping can be computed in closed form as follows, see
[108, Thm. 1]:[

prox
γ‖·‖1/21/2

(x)
]

i
�

2
3

(
1 + cos 2

3

(
π − arccos γ

8(|xi |/3)−3/2
))

xi , i � 1, . . . , n.

We ran numerical experiments consistently with the setting of [33,
Sec. 8.2]. We considered different scenarios obtained by changing the
regularization term λ and the size of A, keeping a constant column-to-
row ratio of n/m � 5 for matrix A. Matrix A was generated with random
Gaussian entries, with zero mean and variance 1/m, while vector b was
generated as b � Axorig + v where xorig ∈ �n was randomly generated
with k � 5 nonzero normally distributed entries, and v ∈ �n is a noise
vector with zero mean and variance 1/m.

For each scenario, we solved 100 randomly generated problems and
compared the performance of all algorithms in terms of CPU time to
reach an accuracy of ‖rk ‖ ≤ 10−6. For all algorithms and problems, we
used x0 � 0 as the starting iterate. Average and worst-case performance
of the algorithms in each of the nine scenarios are illustrated in Table 5.2;
apparently, CLyD-FBS (Alg. 5.2) is significantly faster than FBS, IFBS and
AFBS, even in a worst-case-to-average comparison.

Figure 5.3 shows the convergence rates of the algorithms in one of the
generated problems. Since CLyD-FBS (Alg. 5.2) employs a linesearch, and
therefore the complexity of each iteration is unknown a priori,we recorded
the number of matrix-vector products by A and A>performed during the
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n λ FBS IFBS AFBS ZeroFPR(L-BFGS)
avg/max (s) avg/max (s) avg/max (s) avg/max (s)

500 0.10 0.141/0.405 0.159/0.449 0.135/0.221 0.037/0.088
0.03 0.498/2.548 0.688/3.962 0.274/0.430 0.084/0.126
0.01 1.305/5.445 1.721/4.942 0.570/1.157 0.152/0.560

1000 0.10 0.176/0.287 0.231/0.659 0.228/0.483 0.021/0.077
0.03 0.576/2.756 0.645/4.165 0.382/0.841 0.091/0.275
0.01 1.864/9.740 2.391/8.311 0.795/1.446 0.222/0.438

2000 0.10 0.291/0.599 0.392/0.719 0.393/0.640 0.025/0.055
0.03 0.553/1.841 0.602/3.270 0.464/0.702 0.088/0.198
0.01 2.108/10.934 2.439/8.010 0.979/1.411 0.271/0.464

Table 5.2:Nonconvex sparse approximation. The table shows average andmaximum
CPU time required to reach ‖Rfb

γ (xk)‖ ≤ 10−6 in 100 random experiments. Each
algorithm was run on the same set of randomly generated problems, with x0 � 0.

iterations, and displayed it on the horizontal axis. Apparently, CLyD-
FBS (Alg. 5.2) with Broyden directions achieves superlinear convergence,
beating the linear of FBS, IFBS and AFBS. This comparison also confirms
the claimed great performance of (L-)BFGS directions.
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Figure 5.3: Nonconvex sparse approximation. Convergence of fixed-point residual
and cost in FBS, IFBS, AFBS and CLyD-FBS (Alg. 5.2), for different choices of the
search directions and for n � 1500, λ � 0.03.
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Chapter 6

Douglas-Rachford splitting

6.1 Introduction
First introduced in [35] for finding numerical solutions of heat differen-
tial equations, the Douglas-Rachford splitting (DRS) is now considered
a textbook algorithm in convex optimization or, more generally, in mono-
tone inclusion problems. Similarly to FBS, the objective to be minimized
is split as the sum of two functions, resulting in the following canonical
framework addressed by DRS:

minimize
s∈�p

ϕ(s) ≡ ϕ1(s) + ϕ2(s). (6.1)

Here, ϕ1 , ϕ2 : �p → � are proper, lower semicontinuous (lsc), extended-
real-valued functions. Starting from some s ∈ �p , one iteration of DRS
applied to (6.1)with stepsize γ > 0 and relaxationparameter λ > 0 amounts
to 

u ∈ proxγϕ1(s)
v ∈ proxγϕ2(2u − s)
s+ � s + λ(v − u).

(DRS)

The case λ � 1 corresponds to the classical DRS, whereas for λ � 2 the
scheme is also known as Peaceman-Rachford splitting (PRS). When both
ϕ1 and ϕ2 are convex functions, DRS iterations are known to converge
for any γ > 0 and λ ∈ (0, 2), yielding a minimizer of ϕ [10, Cor. 28.3].

Although the scheme does not involve any gradients and is thus ap-
plicable even when both functions ϕ1 and ϕ2 are nonsmooth, in order to
frame it as a generalized PMM scheme we will need to work under the
same assumptions as FBS.
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Assumption 6.I (DRS: basic assumption). In problem (6.1)

a1 ϕ1 ∈ C1,1(�n) is Lϕ1 -smooth and σϕ1 -hypoconvex;

a2 ϕ2 : �n → � is proper and lsc;

a3 a solution exists, that is, argminϕ , ∅.
Clearly, one can repropose the same remark about prox-boundedness

of ϕ2 discussed in Remark 5.1.

Remark 6.1 (Feasible stepsizes for DRS). Both functions ϕ1 and ϕ2 are
prox-bounded with threshold at least 1/Lϕ1 (the claim on ϕ1 follows from
Thm. 1.13). In particular, for any stepsize γ < 1/Lϕ1 DRS iterations are well
defined.

These are indeed the same assumptions under which global conver-
gence of nonconvex DRS applied to general problems have been estab-
lished [62, 60], specifically for the cases λ � 1 and λ � 2; other results
are problem-specific andmostly concernedwith local convergence. These
mainly focus on feasibility problems, where the goal is to find points in
the intersection of nonempty closed sets A and B subjected to some regu-
larity conditions. This is done by applyingDRS to theminimization of the
sum of the indicator functions ϕ1 � δA and ϕ2 � δB . The minimization
subproblems in DRS then reduce to (set-valued) projections onto either
set, regardless of the stepsize parameter γ > 0. This is the case of [9], for
instance, where A and B are finite unions of convex sets. Local linear con-
vergence when A is affine, under some conditions on the (nonconvex) set
B, are shown in [49, 48].

Although this particular application of DRS does not complywith our
requirements, as ϕ1 fails to be Lipschitz-differentiable, however replacing
δA with ϕ1 �

1
2 dist2

A yields an equivalent problem which fits into our
framework when A is a convex set. In terms of DRS iterations, this simply
amounts to replacing ΠA, the projection onto set A, with a “relaxed”
version ΠA,t B (1 − t)id + t ΠA for some t ∈ (0, 1). Then, it can be easily
verified that for any α, β ∈ (0,+∞] one DRS-step applied to

minimize
s∈�p

α
2 dist2

A(s) + β
2 dist2

B(s) (6.2)

results in
s+ ∈ (1 − λ/2)s + λ/2 ΠB,q ΠA,p s (6.3)

for p �
2αγ

1+αγ and q �
2βγ

1+βγ . Notice that (6.3) is the λ/2-relaxation of the
“methodof alternating (p , q)-relaxedprojections” ((p , q)-MARP) [12]. The
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(non-relaxed) (p , q)-MARP is recovered by setting λ � 2, that is, by ap-
plying PRS to (6.2). Local linear convergence of MARP was shown when
A and B, both possibly nonconvex, satisfy some constraint qualifications,
and also global convergence when some other requirements are met.
When set A is convex, then α

2 dist2
A is convex and α-Lipschitz differen-

tiable; our theory then ensures convergence of the fixed-point residual
and subsequential convergence of the iterations (6.3) for any λ ∈ (0, 2),
p ∈ (0, 1) and q ∈ (0, 1], without any requirements on the (nonempty
closed) set B. Here, q � 1 is obtained by replacing β

2 dist2
B with δB , which

can be interpreted as the hard penalization obtained by letting β � ∞.
Although the non-relaxed MARP is not covered due to the non-strong
convexity of dist2

A, however λ can be set arbitrarily close to 2.
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Figure 6.1:Maximum stepsize γ ensuring convergence of DRS (Fig. 6.1a) and PRS
(Fig. 6.1b); comparison of our bounds (blue plot) with [62] for DRS and [60] for
PRS. On the x-axis the ratio between hypoconvexity parameter σ and the Lipschitz
modulus L of the gradient of the smooth function. On the y-axis, the supremum of
stepsize γ such that the algorithms converge.

The work [62] presents the first general analysis of global convergence
of (non-relaxed) DRS for fully nonconvex problems where one function
is Lipschitz differentiable. In [60] PRS is also considered under the ad-
ditional requirement that the smooth function is strongly convex with
strong-convexity/Lipschitz moduli ratio of at least 2/3. Both papers show
that for sufficiently small stepsizes one iteration of DRS or PRS yields a
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sufficient decrease on an augmented Lagrangian. However, due to the
lower unboundedness of the augmented Lagrangian the vanishing of the
fixed-point residual could not be shown, unless ϕ has bounded level sets.

Other than completing the analysis to all relaxation parameters λ ∈
(0, 4), as opposed to λ ∈ {1, 2}, we improve their results by showing
convergence for a considerably larger range of stepsizes and, in the case
of PRS,with no restriction on the strong convexitymodulus of the smooth
function. We also show that our bounds are optimal whenever λ ∈ (0, 2].
The extent of the improvement is evident in the comparisons outlined in
Figure 6.1.

6.2 DRS as a GPMM algorithm
We now show that under Assumption 6.I, DRS and all its relaxation fit
into the generalized PMM scheme (2.6). As done for FBS, to facilitate the
reading all the elements and the parameters are summarized in Table 6.1.

Let us consider one DRS iteration s 7→ (u , v , s+) with stepsize γ <
1/Lϕ1 . Since ϕ1 is differentiable, variable u � proxγϕ1(s) satisfies ∇ϕ1(u) �
1
γ (s − u), as it follows from Proposition 1.10(vi). Then, the v-update boils
down to

v ∈ proxγϕ2(2u − s) � proxγϕ2

(
u − γ∇ϕ1(u)

)
, (6.4)

which is a forward-backward step at u. As seen in the previous chapter,
FBS is the pure PMM scheme (Mfb

γ )γ∈(0,1/Lϕ1 )
; we thus can write DRS

iterations as

s+ � s + λ(v − u)
∈ s − λ (

id − T fb
γ

)(u)
� s − λ (

id − T fb
γ

) ◦ proxγϕ1(s). (6.5)

It follows that DRS fits into the generalized framework, identified as

DR ∼ (Mfb
γ , proxγϕ1)γ∈(0,1/Lϕ1 ). (6.6)

With this identification, we can condensate (6.6) into

s+ ∈ F drλ
γ (s) B s + λ(v − u),

where u , v are as in (DRS).
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Douglas-Rachford splitting DR ∼ (Mdr
γ , proxγϕ1)γ∈(0,1/Lϕ1 )

γ̄ : 1/Lϕ1

Mdr
γ : Mfb

γ same MMmodel

T dr
γ : T fb

γ as FBS with

m1(γ) : 1−γLϕ1
γ f � ϕ1 and g � ϕ2

m2(γ) : 1−γσϕ1
γ (see Table 5.1)

Lδ :
1−γσϕ1

γ

Rdr
γ (s) : u−v

γ (with u , v as in (DRS)) (6.5)

ϕdr
γ : ϕfb

γ ◦ proxγϕ1 (5.7)

Gγ : proxγϕ1 (6.5)

G−1
γ : id + γ∇ϕ1 Rem. 6.2

µGγ : 1
1+γLϕ1

Rem. 6.2

LGγ : 1
1+γσϕ1

Rem. 6.2

Table 6.1: Douglas-Rachford splitting with stepsize γ ∈ (0, 1/Lϕ1 ): parameters of
the proximal model. Being based on the same proximal MM model as FBS, theM-
envelope ϕM

dr
γ � ϕM

fb
γ � ϕfb

γ is the FBE. The F -envelope, denoted as ϕdr
γ , is the

Douglas-Rachford envelope function ϕdr
γ � ϕfb

γ ◦ proxγϕ1 .

Remark 6.2. In light of Theorem 1.13, the transient mapping Gγ �

proxγϕ1 is µGγ -strongly monotone and LGγ -Lipschitz continuous, with

µGγ �
1

1+γLϕ1
and LGγ �

1
1+γσϕ1

.

Consequently, the inverse of Gγ, namely

G−1
γ � id + γ∇ϕ1 ,
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is (1+γLϕ1)-Lipschitz continuous and (1+γσϕ1)-strongly monotone.

Since the proximal model of DRS is the same as that of FBS, the error
bound in Lemma 5.2 can be imported verbatim.

Lemma 6.3. Let s 7→ (u , v , s+) be a DRS update with stepsize γ ∈ (0, 1/Lϕ1).
Then,

dist(0, ∂̂ϕ(v)) ≤ 1−γσ f
γ ‖u − v‖.

6.3 Douglas-Rachford envelope
The F -envelope associated to the GPMM scheme DRS is the Douglas-
Rachford envelope (DRE), namely

ϕdr
γ (s) B ϕfb

γ ◦ proxγϕ1(s). (6.7)

A glance at the expression (5.6) of the FBE shows that

ϕdr
γ (s) � ϕ1(u) + ϕ2(v) + 〈∇ϕ1(u), v − u〉 + 1

2 ‖v − u‖2 (6.8)

� L1/γ(u , v , 1
γ (u − s)), (6.9)

where (u , v) are the variables appearing in one iteration of DRS starting
from s, and L1/γ is the (1/γ)-augmented Lagrangian associated to the
equivalent problem formulation

minimize
x ,z∈�n

ϕ1(x) + ϕ2(z) subject to x − z � 0,

namely,

L1/γ(x , z , y) � ϕ1(x) + ϕ2(z) + 〈y , x − z〉 + 1
2γ ‖x − z‖2.

In fact, the Lagrange multiplier is

y � − ∇ϕ1(u) � 1
γ (s − u), (6.10)

as it follows from Theorem 1.13(i).
The DRE was first introduced in [79] for convex problems with ϕ1

twice continuously differentiable. Under these assumptions the DREwas
shown to be continuously differentiable. The more general analysis dealt
here was investigated in [103]. Further properties of the DRE can be
imported verbatim from the unified analysis provided in Chapter 3.
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Theorem 6.4 (DRE: sandwich property). Let γ ∈ (0, 1/Lϕ1) be fixed. For all
s ∈ �n , u � proxγϕ1(s), and v ∈ proxγϕ2(2u − s), the following hold:

(i) ϕdr
γ (s) ≤ ϕ(u), with equality holding iff s ∈ F drλ

γ (s).

(ii) 1−γLϕ1
2 ‖u − v‖2 ≤ ϕdr

γ (s) − ϕ(v) ≤ 1−γσϕ1
2 ‖u − v‖2.

(iii) inf ϕfb
γ � inf ϕ and proxγϕ1(argminϕfb

γ ) � argminϕ.

Proof. Follows from Cor. 3.3.

Theorem 6.5 (DRE: equivalence of local minimality). Let γ ∈ (0, 1/Lϕ1),
s̄ ∈ fixF drλ

γ , and ū B proxγϕ1(s̄) be fixed. The following hold:

(i) If s̄ is a (strong) local minimum forϕdr
γ , then ū is a (strong) local minimum

for ϕ.

(ii) If F drλ
γ (s̄) � {s̄}, (e.g., if γ < Γdr(ū)) then the converse also holds.

Proof. See Thm. 3.6.

Theorem 6.6 (DRE: Equivalence of level boundedness). For any γ ∈
(0, 1/Lϕ1), ϕ is level bounded iff ϕfb

γ is level bounded.

Proof. See Thm. 3.7.

6.3.1 Regularity properties
Proposition 6.7 (Strict continuity of the DRE). For any γ ∈ (0, 1/Lϕ1) the
DRE ϕdr

γ is a strictly continuous function.

Proof. Since ϕdr
γ � ϕfb

γ ◦proxγϕ1 , the claim follows from the strict continu-
ity of ϕfb

γ and the Lipschitz continuity of proxγϕ1 , cf. Prop. 5.6 and Rem.
6.2.

Proposition 6.8. Suppose that F drλ
γ (s̄) � {s̄}, and that ϕ1 is (strictly) twice

differentiable at s̄. Then, ϕdr
γ is (strictly) differentiable at s̄ with ∇ϕdr

γ (s̄) � 0.

Proof. Let ū B proxγϕ1(s̄). Then, since T dr
γ � T fb

γ we have that T fb
γ (ū) �

{ū}, and Prop. 6.8 ensures that ϕfb
γ is (strictly) differentiable at ū with

∇ϕfb
γ (ū) � 0. Then, for all si and ui B proxγϕ1(si), i � 1, 2, we have that

|ϕdr
γ (s1) − ϕdr

γ (s2)|
‖s1 − s2‖ �

|ϕfb
γ (u1) − ϕfb

γ (u2)|
‖s1 − s2‖ ≤ (1 + γLϕ1)

|ϕfb
γ (u1) − ϕfb

γ (u2)|
‖u1 − u2‖
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where the last equality follows from the strong monotonicity of proxγϕ1 ,
cf. Rem. 6.2. (Strict) differentiability of ϕdr

γ at s̄ with ∇ϕdr
γ (s̄) � 0 then

easily follows from that of ϕfb
γ , cf. Prop. 5.7.

6.3.2 The DRE as a Lyapunov function
We now proceed to showing that the DRE can conveniently serve as
Lyapunov function for DRS, so that one can directly import all the con-
vergence results developed in the general framework of Section 3.3.

A first result can be derived from Theorem 3.16 with no effort by sim-
ply plugging the constants m1 ,m2 , µGγ , LGγ corresponding to the GPMM
scheme of DRS with stepsize γ, cf. Table 6.1. Indeed, after simple algebra
one obtains that the ϕdr

γ is a Lyapunov function for F drλ
γ provided that

ξ B γLϕ1 solves the following cubic inequality

(1 − p + p3)ξ3
+ (2 − 2p + p2)ξ2

+ (1 − 2p)ξ − 1 < 0, (6.11)

where p B σϕ1/Lϕ1 ∈ [−1, 1], and that λ is bounded in some range con-
tained in (0, 2). Although for any p ∈ [−1, 1] one can always find small
enough stepsizes γ such that ξ � γLϕ1 satisfies (6.11), it turns out that
this estimate is extremely loose. The following result uses more sophis-
ticated inequalities and provides sensibly better ranges. In fact, we will
show in Section 6.4.1 that for any relaxation λ ∈ (0, 2] the given bounds
are tight, and in fact DRS is not ensured to converge otherwise. For the
sake of a comparison, in the worst-case scenario p � −1, (6.11) imposes
γLϕ1 <

√
5−2
2 ≈ 0.24 and additional constraints on λ, whereas the tight

bound is γLϕ1 < 1−λ/2 for any λ ∈ (0, 2); ifϕ1 is convex, hence p � 0, (6.11)
imposes γLϕ1 < 0.47, while the tight bound is γLϕ1 < 1 for any λ ∈ (0, 2).
The result also investigates the employment of stepsizes λ ∈ [2, 4); it will
also be shown that no guarantee of convergence of DRS can be established
for λ < (0, 4).
Theorem 6.9. Consider one DRS update s 7→ (u , v , s+) for some relaxation λ
and stepsize γ < min

{
2−λ

2[σϕ1 ]− ,
1

Lϕ1

}
. Then,

ϕdr
γ (s) − ϕdr

γ (s+) ≥ c ‖u − v‖2 (6.12)

where c is a strictly positive constant defined as

c B λ
(1+γLϕ1 )2

(
2−λ
2γ − max

{
[σϕ1]− , Lϕ1(γLϕ1− λ

2 )
})
.
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If ϕ1 is strongly convex, then (6.12) also holds for

2 ≤ λ < 4
1+
√

1−p
and pλ−δ

4σϕ1
< γ <

pλ+δ
4σϕ1

,

where
p B σϕ1/Lϕ1 and δ B

√
(pλ)2 − 8p(λ − 2),

in which case
c B λ

(1+γLϕ1 )2
(

2−λ
2γ + σϕ1( λ2 − γLϕ1)

)
.

Proof. Recall that

ϕdr
γ (s+) � ϕfb

γ (u+)
� min

w∈�n

{
ϕ1(u+) + ϕ2(w) + 〈∇ϕ1(u+), w − u+〉 + 1

2γ ‖w − u+‖2
}

and that the minimum is attained at w � v+. Therefore,

ϕdr
γ (s+) ≤ ϕ1(u+) + 〈∇ϕ1(u+), v − u+〉 + ϕ2(v) + 1

2γ ‖u+ − v‖2
� ϕ1(u+) + 〈∇ϕ1(u+), u − u+〉 + 〈∇ϕ1(u+), v − u〉 + ϕ2(v)

+
1

2γ ‖u+ − v‖2
Thm. 1.9

≤ ϕ1(u) − ρ(u , u+) + 〈∇ϕ1(u+), v − u〉 + ϕ2(v) + 1
2γ ‖u+ − v‖2

� ϕ1(u) − ρ(u , u+) + 〈∇ϕ1( u ), v − u〉 + ϕ2(v) + 1
2γ ‖u+ − v‖2

+ 〈∇ϕ1(u+) − ∇ϕ1(u), v − u〉
� ϕ1(u) − ρ(u , u+) + 〈∇ϕ1( u ), v − u〉 + ϕ2(v) + 1

2γ ‖u+ − v‖2
+ 〈∇ϕ1(u+) − ∇ϕ1(u), v − u〉

� ϕ1(u) − ρ(u , u+) + 〈∇ϕ1( u ), v − u〉 + ϕ2(v) + 1
2γ ‖ u − v‖2

+ 〈∇ϕ1(u+) − ∇ϕ1(u), v − u〉 + 1
2γ ‖u − u+‖2

+
1
γ 〈u+ − u , u − v〉

� ϕdr
γ (s) − ρ(u , u+) + 〈∇ϕ1(u+) − ∇ϕ1(u), v − u〉 + 1

2γ ‖u − u+‖2
+

1
γ 〈u+ − u , u − v〉

Since u − v �
1
λ (s − s+) � 1

λ (u − u+) + γ
λ (∇ϕ1(u) − ∇ϕ1(u+)), as it follows

from Theorem 1.13, it all simplifies to

ϕdr
γ (s)−ϕdr

γ (s+) ≥ 2−λ
2γλ ‖u−u+‖2− γλ ‖∇ϕ1(u+)−∇ϕ1(u)‖2+ρ(u , u+). (6.13)
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It will suffice to show that

ϕdr
γ (s) − ϕdr

γ (s+) ≥ c̄ ‖u − u+‖2 ,

where c̄ B λ2

(1+γLϕ1 )2
c and c is as in the statement. In fact, inequality (6.12)

will then follow from the fact that

‖u − u+‖2 ≥ 1
(1+γLϕ1 )2

‖s − s+‖2 �
λ2

(1+γLϕ1 )2
‖u − v‖2 ,

where the inequality is due to strong monotonicity of proxγϕ1 , see (1.11).
We now proceed by cases.

♠ Case 1: λ ∈ (0, 2).
Let σ B min

{
σ f , 0

}
and L ≥ Lϕ1 be such that L + σ > 0; the value of

such an L will be fixed later. Then, σ ≤ 0 and ϕ1 is σ-hypoconvex and
L-smooth. Let us choose ρ(u , u+) as in Theorem 1.9(ii). Inequality (6.13)
then becomes
ϕdr
γ (s)−ϕdr

γ (s+)
L ≥

(
2−λ
2λξ +

p
2(1+p)

)
‖u+−u‖2+ 1

L2

(
1

2(1+p)− ξλ
)
‖∇ϕ1(u+)−∇ϕ1(u)‖2 ,

where ξ B γL and p B σϕ1/L ∈ (−1, 0]. Since ∇ϕ1 is Lϕ1 -Lipschitz contin-
uous, the claim holds provided that

c̄
L
�


2−λ
2λξ +

p
2(1+p) if 0 < 1

2(1+p) − ξ
λ ,

2−λ
2λξ +

p
2(1+p) +

L2
ϕ1

L2

(
1

2(1+p) − ξ
λ

)
otherwise,

(6.14)

is strictly positive.
Now, let us consider two subcases:

• Case 1a: 0 < λ ≤ 2(1 + σϕ1/Lϕ1).
Then, σϕ1 ≥ − 2−λ

2 Lϕ1 > −Lϕ1 and we can take L � Lϕ1 . Conse-
quently, p � σϕ1/Lϕ1 , ξ � γLϕ1 , and (6.14) becomes

c̄ �
2−λ
2λγ +

{ σϕ1
2(1+p) if γ < λ

2(Lϕ1+σϕ1 )
Lϕ1

2 −
γL2

ϕ1
λ otherwise.

By imposing c̄ > 0 we obtain the following conditions on γ and λ:{
0 < 2−λ

2λγ +
σϕ1

2(1+p)
γ < λ

2(Lϕ1+σϕ1 )
∪

{
0 < 2−λ

2λγ +
Lϕ1

2 −
γL2

ϕ1
λ

γ ≥ λ
2(Lϕ1+σϕ1 )
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and since we are considering the case σϕ1 ≥ − 2−λ
2 Lϕ1 , this reduces

to
γ < λ

2(Lϕ1+σϕ1 ) ∪
λ

2(Lϕ1+σϕ1 ) ≤ γ < 1/Lϕ1 ,

that is, γ < 1/Lϕ1 . As to the coefficient c̄, since

2−λ
2λγ +

σϕ1
2(1+p) ≤ 2−λ

2λγ +
Lϕ1

2 −
γL2

ϕ1
λ ⇔ γ ≤ λ

2(Lϕ1+σϕ1 ) ,

we conclude that c̄ �
2−λ
2λγ + min

{
σϕ1

2(1+p) ,
Lϕ1

2 −
γL2

ϕ1
λ

}
.

• Case 1b: 2(1 + σϕ1/Lϕ1) < λ < 2.

Then, σϕ1 < − 2−λ
2 Lϕ1 and we can take L �

−2σϕ1
2−λ > Lϕ1 . Therefore,

p � − 2−λ
2 , ξ �

−2σϕ1
2−λ γ, and (6.14) becomes

c �
2−λ
2λγ +


σϕ1
λ if γ < 2−λ

−2σϕ1
σϕ1
λ −

γL2
ϕ1
λ +

2−λ
−2σϕ1λ

L2
ϕ1 otherwise.

(6.15)

By imposing c̄ > 0 this reduces to{
0 < 2−λ

2λγ +
σϕ1
λ

γ < 2−λ
−2σϕ1

∪
0 < σϕ1

λ −
γL2

ϕ1
λ +

2−λ
−2σϕ1λ

L2
ϕ1

γ ≥ 2−λ
−2σϕ1

and with simple algebra we arrive to
γ < 2−λ

−2σϕ1
∪ 2−λ

−2σϕ1
≤ γ < 2−λ

−2σϕ1

that is, γ < 2−λ
−2σϕ1

. From (6.15) it follows that c̄ �
2−λ
2λγ +

σϕ1
λ .

♠ Case 2: λ ≥ 2.
In this case we need to assume that ϕ1 is strongly convex, that is, that
σh > 0. Instead of considering a single expression of ρ, wewill rather take
a convex combination of those in Theorems 1.9(i) and 1.9(ii). However,
since ϕ1 is in particular 0-hypoconvex (i.e., plainly convex), we may take
the expression in Theorem 1.9(i) with hypoconvexity modulus σ � 0.
Thus,

ρ(u , u+) � (1 − α) σϕ1
2 ‖u − u+‖2 + α 1

2Lϕ1
‖∇ϕ1(u) − ∇ϕ1(u+)‖2 ,
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for some α ∈ [0, 1] to be determined. (6.13) then becomes
ϕdr
γ (s)−ϕdr

γ (s+)
Lϕ1

≥
(

2−λ
2λξ +

(1−α)p
2

)
‖u−u+‖2+ 1

L2
ϕ1

(
α
2 − ξ

λ

)
‖∇ϕ1(u)−∇ϕ1(u+)‖2 ,

where ξ B γLϕ1 and p B σϕ1/Lϕ1 ∈ (0, 1]. By taking α � 2ξ/λ, the co-
efficient multiplying the gradient norm vanishes; this choice is feasible,
since λ ≥ 2 and ξ ∈ (0, 1) (γ ranges in (0, 1/Lϕ1), cf. (6.6)), thus ensuring
α ∈ [0, 1]. We then obtain c̄

Lϕ1
�

2−λ
2λξ +

(λ−2ξ)p
2λ . Imposing c̄ > 0 results in

the following second-order equation in variable ξ,

2pξ2 − pλξ + (λ − 2) < 0. (6.16)

The discriminant is
∆ B (pλ)2 − 8p(λ − 2),

which, for λ ≥ 2, is strictly positive iff

2 ≤ λ < 4
1+
√

1−p
∨ λ > 4

1−
√

1−p
.

For these values of λ, the solution to (6.16) is
pλ−δ

4p < ξ <
pλ+δ

4p ,

where δ B
√
∆ �

√(pλ)2 − 8p(λ − 2). However, the case λ ≥ 4 has to be
discarded, as pλ−δ

4p > 1 in this case, contradicting the fact that ξ < 1. To
see this, suppose λ ≥ 4. Then,

pλ−δ
4p < 1 ⇔ p(λ − 4) < δ

⇔ p2(λ − 4)2 < (pλ)2 − 8p(λ − 2)
⇔ p(2 − λ) < 2 − λ
⇔ p > 1,

which is impossible. Here, in the second and fourth implication we used
the assumption λ ≥ 4.
Thus, the only feasible ranges are

2 ≤ λ < 4
1+
√

1−σϕ1/Lϕ1
and pλ−δ

4σϕ1
< γ <

pλ+δ
4σϕ1

,

in which case
c̄ �

1
λ

(
2−λ
2γ + σϕ1( λ2 − γLϕ1)

)
.
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The proof is completed.

Corollary 6.10. For any stepsize γ and relaxation λ as in Theorem 6.9, the
DRE ϕdr

γ is a Lyapunov function for the fixed-point iterations of F drλ
γ .

6.4 Convergence results

Algorithm 6.1. Douglas-Rachford splitting with relaxation

Require • initial iterate s0 ∈ �n ;
• tolerance ε > 0;
• stepsize and relaxation γ, λ > 0 as follows:

0 < γ < min
{

2−λ
2[σϕ1 ]− ,

1
Lϕ1

}
and λ ∈ (0, 2), or

pλ−δ
4σϕ1

< γ <
pλ+δ
4σϕ1

and 2 ≤ λ < 4
1+
√

1−p
,

where p B σϕ1/Lϕ1 and δ B
√(pλ)2 − 8p(λ − 2).

Provide x∗ with ϕdr
γ (x∗) ≤ ϕdr

γ (x0) and dist(0, ∂̂ϕ(x∗)) ≤ ε.
1: for k � 0, 1, . . . do
2: uk � proxγϕ1(sk)
3: vk ∈ proxγϕ2(2uk − sk)
4: if 1

2γ ‖uk − vk ‖ ≤ ε then
5: return x∗ � vk

6: sk+1 � sk + λ(vk − uk)

Theorem 6.11 (Finite termination of relaxed DRS). The iterates generated
by DRS (Alg. 6.1) satisfy

ϕdr
γ (sk+1) ≤ ϕdr

γ (sk) − c
2 ‖uk − vk ‖2 ,

where c > 0 is as in Theorem 6.9. In particular, the algorithm terminates in a
finite number of iterations and yields a point x∗ satisfying dist(0, ∂̂ϕ(x∗)) ≤ ε.
Proof. Follows from Thm. 3.20 in light of Cor. 3.18 and Lem. 6.3. The fact
that dist(0, ∂̂ϕ(x∗)) ≤ ε follows the same arguments as in the proof of
Thm. 5.16.

117



Theorem 6.12 (Asymptotic convergence of relaxed DRS). Consider the
iterates generated by DRS (Alg. 6.1) with tolerance ε � 0. The following hold:

(i) The Douglas-Rachford residual (‖uk − vk ‖)k∈� is square-summable; in
particular, min j≤k ‖u j − v j ‖ ∈ O(1/√k).

(ii) The set ω of accumulation points of (vk)k∈� satisfies ω ⊆ fixT fb
γ ⊆

zer ∂̂ϕ.
(iii) If ϕ is level bounded, then ((sk , uk , vk))k∈� is bounded, and ω is a

nonempty, compact and connected set satisfying dist(vk , ω) → 0 as
k →∞.

(iv) ϕdr
γ ≡ ϕ on (id + γ∇ϕ1)(ω), the value being the limit of the (decreasing)

sequence (ϕdr
γ (sk))k∈� (or, equivalently, of (ϕ(vk))k∈�.

Proof. Follows from Thm. 3.20 in light of Cor. 6.10.

Since both proxγϕ1 and its inverse are (continuous and) strongly
monotone, it is easy to verify that ϕdr

γ has the KL property iff so does
ϕfb
γ ; the same arguments extends to the Lojasiewicz property, in which

case the exponent is also preserved.

Theorem 6.13 (Global convergence of relaxed DRS). Consider the iterates
generated by DRS (Alg. 6.1) with tolerance ε � 0, and suppose that the following
hold:

a1 ϕ is level bounded;

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10 (with f � ϕ1 and g � ϕ2).

a3 ϕdr
γ (or, equivalently, ϕfb

γ ) has the KL property.

Then, the following hold:

(i) (vk)k∈� converges to a point x? ∈ fixT fb
γ ⊆ zer ∂̂ϕ.

(ii) The Douglas-Rachford residual (‖uk − vk ‖)k∈� is summable, and in par-
ticular min j≤k ‖u j − v j ‖ ∈ O(1/k).

Proof. Follows fromThm. 3.21, in light of Cor. 6.10 andThm. 5.11(ii) (since
ϕfb
γ is theM-envelope of DRS).
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Theorem 6.14 (Linear convergence of relaxed DRS). Consider the iterates
generated by DRS (Alg. 6.1) with tolerance ε � 0, and suppose that the following
hold:

a1 ϕ is level bounded;

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10 (with f � ϕ1 and g � ϕ2).

a3 ϕdr
γ (or, equivalently, ϕfb

γ ) has the KL property and the KL function is of the
form ψ(s) � csϑ for some c > 0 and ϑ ≥ 1/2.

Then, the sequences (vk)k∈� and (dist(0,Rdr
γ (sk)))k∈� are R-linearly conver-

gent.

Proof. Follows fromThm. 3.22, in light of Cor. 6.10 andThm. 5.11(ii) (since
ϕfb
γ is theM-envelope of DRS).

6.4.1 Tightness of the ranges
When both ϕ1 and ϕ2 are convex and ϕ1 + ϕ2 attains a minimum, well-
known results stemming from monotone operator theory guarantee that
for any λ ∈ (0, 2) and γ > 0 the residual uk − vk generated by DRS
iterations vanishes (see e.g., [10, Cor. 28.3]). In fact, the whole sequence
(uk)k∈� converges and ϕ1 needs not even be differentiable in this case.
On the contrary, when ϕ2 is nonconvex then the bound γ < 1/Lϕ1 plays a
crucial role, as the next example shows.

Example 6.15 (Necessity of γ < 1/Lϕ1 ).

Fix L > 0, σ ∈ [−L, L] and t > 1, and let
ϕ � ϕ1 + ϕ2, where

ϕ1(x) �
{ L

2 x2 if x ≤ t,
L
2 x2 − L−σ

2 (x − t)2 otherwise,

and

ϕ2(x) � δ{0,1}(x). t

ϕ1

1−1
dom ϕ2

Notice that dom ϕ � {±1}, and therefore ±1 are the unique stationary
points of ϕ (in fact, they are also global minimizers). Moreover, ϕ1 ∈
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C1,1(�)with Lϕ1 � L and σϕ1 � σ, andproxγϕ1 iswell defined iff γ < 1/[σ]−.
More precisely,

proxγϕ1(s) �
{ s

1+γL if s ≤ t(1 + γL)
s−γ(L−σ)t

1+γσ otherwise,
and proxγϕ2 � sgn

where sgn(0) � {±1}. Suppose that γ ≥ 1/L and fix λ > 0. Then, one DRS
iteration produces vk � − sgn(sk) if sk ≤ t(1 + γL) and in particular the
DRS-residual is

uk − vk ∈
{

sk

1+γL + sgn(sk) if sk ≤ t(1 + γL)
sk

1+γσ − γ(L−σ)t
1+γσ − vk otherwise,

where vk is either 1 or −1 in the second case. In particular, if uk − vk → 0,
then

min
{�� sk

1+γL + sgn(sk)��, �� sk

1+γσ − L−σ
1+γσγt − 1

��, �� sk

1+γσ − L−σ
1+γσγt + 1

��} → 0.

Notice that the first element in the set above is always larger than 1, and
therefore eventually sk will be always close to either (L−σ)γt+(1+γσ) or
(L−σ)γt−(1+γσ), both of which are strictly smaller than t(1+γL) (since
t > 1). Therefore, eventually sk ≤ t(1 + γL) and the residual will then be
uk − vk �

sk

1+γL + sgn(sk)which is bounded away from zero, contradicting
the fact that uk − vk → 0.

Notice that in Example 6.15 we actually showed that for γ ≥ 1/Lϕ1 DRS
fails to converge for any λ > 0 regardless of the starting point s0. This
was possible by allowing a too large stepsize γ; the next example shows
the necessity of bounding λ.
Example 6.16 (Necessity of 0 < λ < 2(1 + γσ)).
Fix L > 0 and σ ∈ [−L, L], and consider
ϕ � ϕ1 + ϕ2 where

ϕ1(x) �
{ σ

2 x2 if x ≤ 1,
σ
2 x2 + L−σ

2 (x − 1)2 otherwise.

and

ϕ2(x) � δ{0}(x).

1 ϕ1
dom ϕ2

For any sk one DRS iteration produces vk � 0, and in particular the
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DR-residual is

uk − vk
� uk

�

{ sk

1+γσ if sk ≤ 1 + γσ,
sk+γ(L−σ)

1+γL otherwise .

Suppose that λ ≥ 2(1 + γσ); then it is easy to check that starting from
s0 , 0 we have sk , 0 for all k. Moreover, if the DRS-residual converges
to 0, then min

{|sk |, |sk + γ(L − σ)|} → 0 and in particular, eventually
sk ≤ 1 + γσ. The iterations will then reduce to

sk+1
� sk

+ λ(vk − uk) � (
1 − λ

1+γσ
)
sk .

Since λ ≥ 2(1+ γσ) and sk , 0 for all k, we have
��sk+1/sk

�� ≥ 1, contradicting
the fact that sk → 0.

Let us draw some conclusions:

• The nonsmooth function ϕ2 is (strongly) convex in Example 6.16, there-
fore even for fully convex formulations the bound 0 < λ < 2(1 + γσϕ1)
needs be satisfied.

• If λ > 2 (which is feasible only if ϕ1 is strongly convex, i.e., if σϕ1 > 0),
then, regardless of whether also ϕ2 is (strongly) convex or not, we
obtain that the stepsize must be lower bounded as γ > λ−2

2σϕ1
.

• If ϕ1 is not strongly convex, i.e., if σϕ1 ≤ 0, we infer the bound λ ∈ (0, 2):
thismeans, for instance, that even in the fully convex case, plain (nonstrong)
convexity of ϕ1 is not enough to guarantee convergence of the Peaceman-
Rachford splitting.

• Combined with the bound γ < 1/Lϕ1 shown in Example 6.15, we infer
that (at least when ϕ2 is nonconvex) necessarily 0 < λ < 2(1+ pϕ1) and
consequently λ ∈ (0, 4).
In particular we can infer the following:

Theorem 6.17 (Tightness). Unless the generality of Assumption 6.I is sacri-
ficed, when λ ∈ (0, 2) or ϕ1 is not strongly convex the bound

γ < min
{

1
Lϕ1
, 2−λ

2[σϕ1 ]−
}

is tight for ensuring convergence of DRS. Similarly, PRS (i.e., DRS with λ � 2)
is ensured to converge iff ϕ1 is strongly convex and γ < 1/Lϕ1 .
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6.5 A quasi-Newton DRS

Algorithm 6.2. CLyD-DRS

Require • stepsize γ, relaxation λ, and sufficient decrease constant
c as in Thm. 6.9

• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial iterate s0 ∈ �n

• tolerance ε > 0

Provide x∗ with dist
(
0, ∂ϕ(x∗)

) ≤ ε
1: for k � 0, 1, 2, . . . do
2: Do one nominal DR-step: uk � proxγϕ1(sk)

vk ∈ proxγϕ2(2uk − sk)
s̄k � sk + λ(vk − uk)

3: if 1
2γ ‖uk − vk ‖ ≤ ε then

4: return x∗ � vk

5: Select an update direction dk ∈ �n at sk

6: Let τk ∈
{
2−i | i ∈ �}

be the largest such that

ϕdr
γ (sk+1) ≤ ϕdr

γ (sk) − αc
2 ‖uk − vk ‖2 , (6.17)

where sk+1 B (1 − τk)s̄k + τk(sk + dk)

Theorem 6.18 (CLyD-DRS (nonmonotone): subsequential convergence).
The following hold for the iterates generated by CLyD-DRS (Alg. 6.2) with
tolerance ε � 0:

(i) The residual (‖uk−vk ‖)k∈� is square-summable; in particular, it vanishes
with rate min j≤k dist(s j , F drλ

γ (s j)) ∈ O(1/√k).
(ii) The set ω of accumulation points of (uk)k∈� satisfies ω ⊆ fixT dr

γ ⊆
zer ∂̂ϕ.

If, additionally, ‖dk ‖ → 0 as k →∞, then the following also hold:
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(iii) If ϕ is level bounded, then (uk)k∈� and (vk)k∈� are bounded, and ω is
a nonempty, compact and connected set satisfying dist(vk , ω) → 0 as
k →∞.

(iv) ϕdr
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence
(ϕdr

γ (sk))k∈�.
All the claims remain valid if the linesearch condition (6.17) is replaced by the
following nonmonotone version:

ϕdr
γ (sk+1) ≤ L̄k − α c

2 ‖uk − vk ‖2 , (6.18)

where, for any sequence (pk)k∈� ⊆ [0, 1] bounded away from 0, L̄k are recur-
sively defined as follows:

L̄k B

{
ϕdr
γ (s0) if k � 0,
(1 − pk)L̄k−1 + pkϕdr

γ (sk) otherwise.

Proof. Follows from Theorem 4.1.

6.5.1 Global and (super)linear convergence
Theorem 6.19 (Global convergence). Suppose that the following hold for the
iterates generated by CLyD-DRS (Alg. 6.2) with tolerance ε � 0.

a1 ϕ is level bounded.

a2 All accumulation points of the sequence (vk)k∈� are prox-regular, in the
sense of Definition 5.10.

a3 The DRE ϕdr
γ has the KL property.

a4 there exists D > 0 such that ‖dk ‖ ≤ D‖uk − vk ‖ for all k’s.

Then, the following hold:

(i) (vk)k∈� converges to a point x? ∈ fixT dr
γ ⊆ zer ∂̂ϕ.

(ii) The residual is summable and in particular min j≤k dist(s j , F drλ
γ (s j)) ∈

O(1/k).
Proof. Follows fromTheorems5.11(ii) and4.2 (sinceϕfb

γ is theM-envelope
of DRS).
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Theorem 6.20 (Linear convergence). Suppose that the assumptions of The-
orem 6.19 are satisfied, and that the KL function can be taken of the form
ψ(s) � csϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈�, (vk)k∈�,
and dist(sk , F drλ

γ (sk)) are R-linearly convergent.

Proof. Follows from Theorem 4.3.

Theorem 6.21 (Acceptance of the unit stepsize and superlinear conver-
gence). Consider the iterates generated by CLyD-DRS (Alg. 6.2). Suppose that
the following hold:

a1 (uk)k∈� converges to a strong local minimum u? of ϕ;

a2 (dk)k∈� are superlinearly convergent directions with respect to (sk)k∈�;
a3 γ , Γdr(u?);
Then, there exists k̄ ∈ � such that

ϕdr
γ (sk

+ dk) ≤ ϕdr
γ (sk) − αc

2 ‖uk − vk ‖2 for all k ≥ k̄.

In particular, eventually the iterates reduce to sk+1 � sk + dk and converge
superlinearly.

Proof. Follows from Theorem 4.5.

Theorem 6.22 (Dennis-Moré condition). Consider the iterates generated by
CLyD-DRS (Alg. 6.2). Suppose that the following hold:

a1 (uk)k∈� converges to a strong local minimum u? at which Assumption 5.II
is (strictly) satisfied (with f � ϕ1 and g � ϕ2).

a2 The Dennis-Moré condition holds:

lim
k→∞
‖Rdr

γ (sk) + JRdr
γ (x?)dk ‖

‖dk ‖ � 0. (6.19)

Then, (dk)k∈� are superlinearly convergent directions with respect to (sk)k∈�.
Proof. Follows from the same arguments of Thm. 5.24.

Theorem 6.23 (Superlinear convergence with Broyden directions). Con-
sider the iterates generated by CLyD-DRS (Alg. 6.2) with directions dk selected
with Broyden method (4.5). Suppose that the following hold:
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a1 (uk)k∈� converges to a point u? at which Rdr
γ is Lipschitz-continuously

semidifferentiable and with nonsingular Jacobian JRdr
γ (u?) (in particular,

Rdr
γ is strictly differentiable there).

Then, the Dennis-Moré condition (6.19) is satisfied, and in particular all the
claims of Theorem 6.22 hold.

Proof. Follows from the same arguments of Thm. 5.25.
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Chapter 7

Alternating direction method of multipliers

7.1 Introduction
Closely related to DRS and possibly even more popular is the alternat-
ing direction method of multipliers (ADMM), first appeared in [44, 41],
see also [43] for a recent historical overview. ADMM addresses linearly
constrained optimization problems

minimize
(x ,z)∈�m×�n

f (x) + g(z) subject to Ax + Bz � b (7.1)

where f : �m → �, g : �n → �, A ∈ �p×m , B ∈ �p×n and b ∈ �p . Starting
from some z ∈ dom g and y ∈ �p , one ADMM iteration amounts to the
following steps: 

x+ ∈ argmin Lβ( · , z , y)
y+ � y + β(Ax+ + Bz − b)
z+ ∈ argmin Lβ(x+ , · , y+).

(7.2)

Here, the penalty parameter β > 0 plays the role of a stepsize, and

Lβ(x , z , y) B f (x) + g(z) + 〈y ,Ax + Bz − b〉 + β
2 ‖Ax + Bz − b‖2 (7.3)

is the β-augmented Lagrangian of (7.1) with y ∈ �p as Lagrange equality
multiplier. For convexproblemsADMMisDRSapplied to adual formula-
tion [40], and its convergence properties for arbitrary penalty parameters
β > 0 are well documented in the literature, see e.g., [24]. ADMM can be
seen as fixed-point iterations on the Lagrange multiplier y, with x and
z serving as intermediate variables as u and v do in DRS iterations, and
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for this reason the y-update is usually the last. For reasons that will soon
be clear, as well as to preserve the alphabetical order of the variables,
we consider this “shifted” version; the classical ADMM is recovered by
simply starting the update from the z-update.1

Relaxing ADMM with some parameter λ requires the introduction
of an in-between variable y+/2. For the sake of completeness we will thus
study the following more general formulation:

y+/2 � y − β(1 − λ)(Ax + Bz − b)
x+ ∈ argmin Lβ( · , z , y+/2)
y+ � y+/2 + β(Ax+ + Bz − b)
z+ ∈ argmin Lβ(x+ , · , y+).

(ADMM)

Clearly, when λ � 1 (that is, in absence of relaxation) one has y+/2 � y
and the scheme reduces to the unrelaxed ADMM version (7.2).

As detailed in the next section, the numerous attempts to extend the
applicability of ADMM to nonconvex problems brought forth a patch-
work of standalone results, possibly involving implicit constants and
burdened with non-trivial assumptions. However, hidden in the convex
setting the recent work [109] established a universal primal equivalence
of ADMM and DRS: under no assumptions, one ADMM update can be
retrieved by one of DRS applied to an equivalent problem reformulation.
This is the milestone of our approach, as the analysis of ADMM can be
simplified down to that of DRS, well covered in the previous chapter.

7.1.1 Overview on nonconvex ADMM
Before proceeding with our analysis, let us briefly summarize some re-
lated work on nonconvex ADMM. In [107] convergence of ADMM is
studied for problems of the form

minimize
x�(x0 ...xp ),z

g(x) +∑p
i�0 fi(xi) + h(z) subject to Ax + Bz � 0.

Although it addresses a more general class of problem than (7.1), when
specialized to the classical two-function formulation dealt here it relies on

1Conventionally, updates follow theorder (x , z , y),whereas the shiftedversionofADMM
here proposed would update z first, then x, and lastly y. Of course, it is simply a matter of
swapping the primal variables x and z and the functions f and g in problem formulation
(7.1), hence there is really no loss of generality in the update order adopted here.
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numerous assumptions. These include Lipschitz continuous minimizers
of all ADMM subproblems (in particular, uniqueness of their solution)
and uniform boundedness of the subgradient of the nonsmooth term,
whereas we allow for multiple minimizers and make almost no require-
ment on the nonsmooth function. For instance, the requirements rule out
interesting cases involving discrete variables or rank constraints. More-
over, the analysis is limited to showing convergence for ‘large enough’
penalty parameters, and the given bounds involve implicit constants that
are not readily available.

−1 −0.5 0 0.5 1

1/4L

1/2L

3/4L

1/L

hypoconvexity/Lipschitz ratio σ/L

Range of 1/β in ADMM (λ � 1)

Ours
Hong et al. / Li-Pong
Guo-Han-Wu
Gonçalves et al.

Figure 7.1: Maximum inverse of the
penalty paramenter 1/β ensuring con-
vergence of ADMM; comparison be-
tween our bounds (blue plot) and
[45, 46, 51, 61]; [107] is not considered
due to the unknown range of parame-
ters. On the x-axis the ratio between
hypoconvexity and smoothness mod-
uli of the image function (A f ). The
analysis is made for a common frame-
work: 2-block ADMM with no Breg-
man or proximal terms, A invertible
and B identity. Notice that, due to the
proved analogy of DRS and ADMM,
our theoretical bounds coincide in Fig.
6.1a and 7.1.

In [51] a class of nonconvex problems with more than two functions
is presented and variants of ADMM with deterministic and random up-
dates are discussed. The paper provides a nice theory and explicit bounds
for the penalty paramenter in ADMM, which agree with ours when the
smooth function is convex but are more restrictive by a factor of

√
2 oth-

erwise (cf. Fig. 7.1 for a more detailed comparison). The main limitation
of the proposed approach, however, is that the theory only allows for
functions either convex or smooth, differently from ours where the non-
smooth term can basically be anything. Once again, many interesting
applications are not covered.

The work [61] studies a proximal ADMM where a possible Bregman
divergence term in the second block update is considered. By discarding
the Bregman term so as to recover the original ADMM scheme, the same
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bound on the stepsize as in [51] is found. Another proximal variant is
proposed in [45], under less restrictive assumptions related to the concept
of smoothness relative to amatrix that wewill introduce in Definition 7.6.
When matrix B (A, in our notation) has full-column rank, the proximal
term can be discarded and their method reduces to the classical ADMM.

The problem addressed in [46] is fully covered by our analysis, as they
consider ADMM for (7.1) where f is L-Lipschitz continuously differen-
tiable and B is the identity matrix. Their bound β > 2L for the penalty
parameter is more conservative than ours; in fact, the two coincide only
in a worst case scenario.

7.2 Auniversal equivalenceofADMMandDRS
In this section we show step by step how to express ADMM as DRS on an
equivalent problem. Although this fact has already been established in
[109, Thm. 1],2 it is nevertheless constructive to detail themath in order to
(1) have a clear picture as to how variables in both algorithms are related,
(2) verify that indeed the arguments in the cited work do not rely on
convexity or other assumptions, and (3) that the equivalence covers also
the relaxed versions.

7.2.1 An unconstrained problem reformulation
We start by eliminating the linear coupling between x and z and bring the
problem into the form (P) addressed by DRS. To this end, let us introduce
a slack variable s ∈ �p and rewrite (7.1) as

minimize
x ,z ,s

f (x) + g(z) subject to Ax � s , Bz � b − s .

Since the problem is independent of the order of minimization [92, Prop.
1.35] we may minimize first with respect to (x , z) to arrive to

minimize
s∈�p

inf
x∈�m

{
f (x) | Ax � s

}
+ inf

z∈�n

{
g(z) | Bz � b − s

}
.

The two parametric infima define two image functions, cf. Definition 1.14:
indeed, ADMM problem formulation (7.1) can be expressed as

minimize
s∈�p

(A f )(s) + (Bg)(b − s), (7.4)

2UnrelaxedADMMon (7.1) is shown to coincidewithunrelaxedADMMonanequivalent
problem of the form minimize ϕ1(s)+ ϕ2(t) subject to s � t. This, in turn, is easily seen to
be exactly unrelaxed DRS applied to minimize ϕ1(s) + ϕ2(−s).
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which is exactly (P) with ϕ1 � (A f ) and ϕ2 � (Bg)(b − · ). Apparently,
unless A and B are injective the correspondence between variable s in
(7.4) and variables x , z in (7.1) may fail to be one to one, as s is associated
to sets of variables x ∈ X(s) and z ∈ Z(s) defined as

X(s) B argmin
x∈�m

{
f (x) | Ax � s

}
and

Z(s) B argmin
z∈�n

{
g(z) | Bz � b − s

}
.

7.2.2 From ADMM to DRS
To show the claimed equivalence, it remains to show that DRS applied to

minimize
s∈�p

ϕ1(s) + ϕ2(s)

with ϕ1 � (A f ) and ϕ2 � (Bg)(b − · ) is equivalent to ADMM applied
to the original formulation (7.1). To this end, as shown in Proposition
1.15(iii)we have that

proxγϕ1(s) � A argmin
x∈�m

{
f (x) + 1

2γ ‖Ax − s‖2
}
.

Similarly, with a simple change of variable one obtains that

proxγϕ2(s) � b − B argmin
z∈�n

{
g(z) + 1

2γ ‖Bz + s − b‖2
}
.

The u-update of DRS then becomes

uk
� Axk ,

where xk ∈ �m is any such that

xk ∈ argmin
x∈�m

{
f (x) + 1

2γ ‖Ax − sk ‖2
}
. (7.5)

As to the v-update, we have

vk ∈ proxγϕ2(2uk − sk) � b − Bzk ,

where zk ∈ �n is any such that

zk ∈ argmin
z∈�n

{
g(z) + 1

2γ ‖Bz + 2uk − sk − b‖2
}
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� argmin
z∈�n

{
g(z) + 1

2γ ‖2Axk
+ Bz − sk − b‖2

}
.

In order to get rid of variable sk , let us introduce

yk B 1
γ (uk − sk) � 1

γ (Axk − sk), (7.6a)

so that the z-update takes a form closely related to that ofADMM, namely

zk ∈ argmin
z∈�n

{
g(z) + 1

2γ ‖Axk
+ Bz − b + γyk ‖2

}
. (7.6b)

However, replacing sk into expression (7.5) results in an implicit x-update
of the form xk ∈ argminx

{
f (x) + 1

2γ ‖Ax − Axk + γyk ‖2
}
. This inconve-

nience is readily solved by analyzing the update of the newly introduced
variable yk : we have

γyk+1
� Axk+1 − sk+1

� Axk+1 − sk − λ(uk − vk)
� Axk+1 − Axk

+ γyk − λ(Axk
+ Bzk − b),

hence, by shifting the index k ← k − 1 one obtains

γyk − Axk
� − Axk−1

+ γyk−1 − λ(Axk−1
+ Bzk−1 − b).

For notational convenience and in accordance with the ADMM scheme,
let us introduce the half-way variable

yk+1/2 B yk − 1
γ (1 − λ)(Axk

+ Bzk − b), (7.6c)

so that
yk+1

� yk+1/2
+

1
γ (Axk+1

+ Bzk − b), (7.6d)

and
γyk − Axk

� Bzk−1 − b + γyk+1/2.

Wemay now plug this equality into (7.5) to arrive to an explicit x-update
of the form

xk ∈ argmin
x∈�m

{
f (x) + 1

2γ
Ax + Bzk−1 − b + γyk−1/22

}
. (7.6e)
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By putting together (7.6c), (7.6e), (7.6d), and (7.6b) one arrives to

yk+1/2 � yk − 1
γ (1 − λ)(Axk + Bzk − b)

xk+1 ∈ argminx

{
f (x) + 1

2γ
Ax + Bzk − b + γyk+1/22

}
yk+1 � yk+1/2 + 1

γ (Axk+1 + Bzk − b)
zk+1 ∈ argminz

{
g(z) + 1

2γ
Axk+1 + Bz − b + γyk+1

2
}
,

which is exactly ADMMwith penalty β � 1/γ. The following result states
this fact more rigorously, and emphasizes an important connection be-
tween the DRE ϕdr

γ and the augmented Lagrangian Lβ.

Theorem 7.1 (Primal equivalence of DRS and ADMM). Starting from a
triplet (x , y , z) ∈ �m×�p×�n , consider an ADMM-update applied to problem
(7.1) with relaxation λ and large enough penalty β > 0 so that any ADMM
minimization subproblem has solutions. Let ϕ1 � (A f ), ϕ2 � (Bg)(b − · ), and
γ � 1/β. Then, there exist s+ , u+ , v+ satisfying

u+ ∈ proxγϕ1(s+),
v+ ∈ proxγϕ2(2u+ − s+),

and such that


s+ � Ax+ − γy+ ,

u+ � Ax+ ,

v+ � b − Bz+.

Moreover,

(i) ϕ1(u+) � (A f )(Ax+) � f (x+),
(ii) ϕ2(v+) � (Bg)(Bg+) � g(z+),
(iii) −y+ ∈ ∂̂ϕ1(u+) � ∂̂(A f )(Ax+), and
(iv) −A>y+ ∈ ∂̂ f (x+).

If, additionally, A has full row rank, ϕ1 ∈ C1,1(�p) is Lϕ1 -smooth, and β > Lϕ1 ,
then it also holds that

(v) dist(−B>y+ , ∂̂g(z+)) ≤ 3β‖B‖‖Ax+ + z+ − b‖, and
(vi) ϕdr

γ (s+) � Lβ(x+ , z+ , y+).
Proof. The first part of the statement has already been shown; it remains
to prove the numbered claims. That ϕ1(u+) � f (x+) directly follows from
Prop. 1.15(ii); similarly, since

ϕ2(v+) � (Bg)(b − v+) � (Bg)(Bz+),
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one also has ϕ2(v+) � g(z+). Moreover, since u+ ∈ proxγϕ1(s+),

−y+
�

1
γ (s+ − u+)

1.10(vi)
∈ ∂̂ϕ1(u+) � ∂̂ϕ1(Ax+).

In turn, from Prop. 1.16 we also have that −A>y+ ∈ ∂̂ f (x+).
If ϕ1 is smooth (which entails surjectivity of A, for otherwise ϕ1 has

not full domain), and γ � 1/β < 1/Lϕ1 , then ∇ϕ1(u+) � − y+ and one can
use the expression (6.8) of the DRE to obtain

ϕdr
γ (s+) � ϕ1(u+) + ϕ2(v+) + 〈∇ϕ1(u+), v+ − u+〉 + 1

2γ ‖v+ − u+‖2

� f (x+) + g(z+) + 〈y+ ,Ax+
+ Bz+ − b〉 + β

2 ‖Ax+
+ Bz+ − b‖2 ,

which is exactly Lβ(x+ , z+ , y+). Moreover,

(β − σϕ1)‖Axk
+ Bzk − b‖

6.3
≥ dist

(
0, ∂̂(ϕ1 + ϕ2)(vk))

� dist
(−∇(A f )(vk), ∂̂ϕ2(vk))

� dist
(∇(A f )(vk), ∂̂(Bg)(Bvk)) , (7.7)

where in the last equality we used the identity ∂̂
(
h◦(b− ·)) � −∂̂h◦(b− ·)

holding for any proper lsc function h, see [92, Ex. 10.7]. Smoothness of ϕ1
implies that

‖yk
+ ∇(A f )(vk)‖

7.1(iii)
� ‖∇(A f )(uk) − ∇(A f )(vk)‖
≤ Lϕ1 ‖uk − vk ‖
� Lϕ1 ‖Axk

+ Bzk − b‖. (7.8)

Therefore,

(β − σϕ1)‖B‖‖Axk
+ Bzk − b‖

(7.7)
≥ dist

(
B>∇(A f )(vk), B>∂̂(Bg)(vk))

≥ dist
(
B>∇(A f )(vk), ∂̂g(zk)) ,

(7.8)
≥ dist

(−B>yk , ∂̂g(zk))
−Lϕ1 ‖B‖‖Axk

+ Bzk − b‖ ,

where the second inequality is due to the inclusion B>∂̂(Bg)(vk) ⊆ ∂̂g(zk),
see Thm. 7.1(ii) and Prop. 1.16. The bound 7.1(v) then follows from the
fact that σϕ1 ≥ −Lϕ1 > −β.
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7.3 Convergence results

Algorithm 7.1. ADMM with relaxation

Require • initial triplet (x0 , z0 , y0) ∈ �m × dom g ×�n

• tolerance ε > 0
• stepsize and relaxation γ, λ > 0 as follows:

β > max
{

2[σϕ1 ]−
2−λ , Lϕ1

}
and λ ∈ (0, 2), or

4σϕ1
pλ+δ < β <

4σϕ1
pλ−δ and 2 ≤ λ < 4

1+
√

1−p
,

where ϕ1 � (A f ), ϕ2 � (Bg)(b − · ),
p B σϕ1/Lϕ1 , and δ B

√(pλ)2 − 8p(λ − 2).
Provide KKT-suboptimal (x∗ , z∗ , y∗), in the sense that

• ‖Ax∗ + Bz∗ − b‖ ≤ ε
β ,

• −A>y∗ ∈ ∂̂ f (x∗), and
• dist(−B>y∗ , ∂̂g(z∗)) ≤ 3‖B‖ε.

1: for k � 0, 1, . . . do
2: yk+1/2 � yk − β(1 − λ)(Axk + Bzk − b)
3: xk+1 ∈ argminx Lβ(x , zk , yk+1/2)
4: yk+1 � yk+1/2 + β(Axk+1 + Bzk − b)
5: zk+1 ∈ argminz Lβ(xk+1 , z , yk+1)
6: if β‖Axk+1 + Bzk+1 − b‖ ≤ ε then

7: return (x∗ , z∗ , y∗) � (xk+1 , zk+1 , yk+1)

In order to extend the theory developed for DRS to ADMM we shall
impose that ϕ1 and ϕ2 as in (7.4) comply with Assumption 6.I.

Assumption 7.I (Basic requirements for ADMM). The following hold for
problem (7.1):

a1 (A f ) ∈ C1,1(�p) (in particular, A has full row rank).
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a2 (Bg) : �p → � is lsc.

a3 A solution exists, that is, argmin F , 0, where

F(x , z) B f (x) + g(z) + δ{0}(Ax + Bz − b). (7.9)

Theorem 7.2 (Finite termination of relaxed ADMM). The iterates generated
by ADMM (Alg. 7.1) satisfy

Lβ(xk+1 , zk+1 , yk+1) ≤ Lβ(xk , zk , yk) − c‖Axk
+ Bzk − b‖2 ,

where c > 0 is as in Theorem 6.9 with γ � 1/β. In particular, the algorithm ter-
minates in a finite number of iterations and yields a triplet (x∗ , z∗ , y∗) satisfying

? ‖Ax∗ + Bz∗ − b‖ ≤ ε
β ,

? −A>y∗ ∈ ∂̂ f (x∗), and
? dist(−B>y∗ , ∂̂g(z∗)) ≤ 3‖B‖ε.

Proof. It suffices to show the claimed KKT-suboptimality of the yielded
triplet, as the rest follows from Thm. 6.12 in light of the equivalence pro-
vided in Thm. 7.1. From Thm. 7.1(iv)we know that −A>yk ∈ ∂̂ f (xk) holds
for all k’s, and in particular −y∗ ∈ ∂̂ f (x∗). Similarly, the last condition
follows from Thm. 7.1(v).

Theorem 7.3 (Asymptotic convergence of ADMM). The following hold for
the iterates generated by ADMM (Alg. 7.1):

(i) Lβ(xk+1 , zk+1 , yk+1) ≤ Lβ(xk , zk , yk) − c
2 ‖Axk + Bzk − b‖2, where c is

as in Theorem 6.9 with γ � 1/β and ϕ1 � (A f ). In particular, the residual
(Axk + Bzk − b)k∈� vanishes with min j≤k ‖Ax j + Bz j − b‖ � o(1/√k);

(ii) all cluster points (x , z , y) of ((xk , zk , yk))k∈� satisfy the KKT conditions

• −A>y ∈ ∂ f (x),
• −B>y ∈ ∂g(z),
• Ax + Bz � b,

and attain the same cost f (x) + g(z), this being the limit of the sequence
(Lβ(xk , zk , yk))k∈�;
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(iii) the sequence ((Axk , Bzk , yk))k∈� is bounded provided that F(x , z) as
defined in (7.9) is level bounded.

Proof.

♠ 7.3(i) and 7.3(iii). Follows from Thm. 6.12 in light of the equivalence
Thm. 7.1, by observing that level boundedness of F implies that of ϕ B
(A f )+ (Bg): for every α ∈ � and s ∈ lev≤α ϕ there exist (x , z) ∈ lev≤α+1 F
such that Ax � b − Bz � s.

♠ 7.3(ii). Follows from Thm. 7.2 and the osc of ∂ f and ∂g ( f - and g-
attentive, respectively).

As a consequence of the Tarski-Seidenberg theorem, functions ϕ1 B
(A f ) and ϕ2 B (Bg)(b − · ) are semialgebraic provided f and g are, see
e.g., [20]. In fact, (A f ) is the result of the parametric minimization of G(s , x)
over variable x, where G(s , x) � f (x) + δ{0}(Ax − s), and as such

epi(A f ) � cl
(
epi(A f )) � cl (Π�p epi G).

Here, the first equality is due to the assumption of lsc of (A f ), and the
second follows from [92, Prop. 1.18]. Then, since G is semi-algebraic if so
is f , and since the closure of a semi-algebraic set is still semi-algebraic, we
conclude that (A f ) is semi-algebraic. Clearly, the same arguments hold
for (Bg)(b − · ).

Therefore, sufficient conditions for global convergence of ADMM
(Alg. 7.1) follow from the similar result for DRS (Alg. 6.1), through
the primal equivalence of the algorithms illustrated in Theorem 7.1. We
should emphasize, however, that the equivalence identifies uk � Axk and
vk � b − Bzk , and thus only convergence of (Axk)k∈� and (Bzk)k∈� can be
deduced (as opposed to that of (xk)k∈� and (zk)k∈�).
Theorem 7.4 (Global convergence of relaxedADMM). Consider the iterates
generated by ADMM (Alg. 7.1) with tolerance ε � 0, and suppose that the
following hold:

a1 F(x , z) defined in (7.9) is level bounded.

a2 f and g are semialgebraic.

a3 All accumulation points of the sequence (Axk)k∈� are prox-regular, in the
sense of Definition 5.10 (with f ← (A f ) and g ← (Bg)(b − · )).

Then, the following hold:
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(i) The sequence ((Axk , Bzk , yk)k∈� is convergent.

(ii) TheADMMresidual (‖Axk+Bzk−b‖)k∈� is summable, and in particular
min j≤k ‖Ax j + Bz j − b‖ ∈ O(1/k).

7.4 Sufficient conditions
In this section we provide some sufficient conditions on f and g ensuring
that Assumption 7.I is satisfied.

7.4.1 Lower semicontinuity
Proposition 7.5 (Lsc of (Bg)). Suppose that B ∈ �p×n and the proper and lsc
function g : �m → � satisfy Assumption 7.I. Then, (Bg) is proper. Moreover,
it is also lsc provided that for all z̄ ∈ dom g, either

(i) the set Z(s) B argminz
{

g(z) | Bz � s
}
is nonempty and dist(0, Z(s))

is bounded for all s ∈ B dom g close to Bz̄,

(ii) or lim infd→d̄ , t→∞ g(td) ≥ infd∈ker B g(z̄ + d) for all d̄ ∈ ker B \ {0}.
Proof. Properness is shown in Prop. 1.15. Suppose now that (sk)k∈� ⊆
lev≤α(Bg) for some α ∈ � and that sk → s̄. Then, due to the characteri-
zation of [92, Thm. 1.6] it suffices to show that s̄ ∈ lev≤α(Bg).
♠ 7.5(i). The assumption ensures the existence of a bounded sequence
(zk)k∈� such that eventually Bzk � sk and (Bg)(sk) � g(zk). By possibly
extracting, zk → z̄ and necessarily Bz̄ � s̄. Then,

(Bg)(s̄) ≤ g(z̄) ≤ lim inf
k→∞

g(zk) � lim inf
k→∞

(Bg)(sk) ≤ α,

hence s̄ ∈ lev≤α(Bg).
♠ 7.5(ii). Let (zk)k∈� be such that Bzk � sk and g(zk) ≤ (Bg)(sk) + 1/k for
all k ∈ �. If there exists a convergent subsequence, then the claim follows
with a similar reasoning as in the proof of 7.5(i). Suppose, instead, that
tk B ‖zk ‖ → ∞ as k → ∞ (up to possibly extracting), and let dk B

zk
tk
.

By possibly extracting, dk → d̄ for some d̄ with ‖ d̄‖ � 1, and since
B(zk − z̄) � sk − s̄ → 0, necessarily d̄ ∈ ker B. Then,

(Bg)(s̄) � inf
d∈ker B

g(z̄ + d) ≤ lim inf
k→∞

g(tk dk) � lim inf
k→∞

g(xk)
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≤ lim inf
k→∞

(Bg)(sk) + 1
k ≤ α,

proving s̄ ∈ lev≤α(Bg).
The requirement in Proposition 7.5(i) is weaker than Lipschitz conti-

nuity of the map s 7→ Z(s), which is the standing assumption in [107]
for the analysis of ADMM. In fact, we do not even require uniqueness or
boundedness of the sets ofminimizers. Notice that Assumption 7.I is only
invoked to infer that (Bg) is proper. Moreover, whenever the inequality
in Proposition 7.5(ii) holds, then it is actually an equality. Its role can be
better visualized by considering g : �2 → � defined as

g(x , y) �


1 if y ≤ 1,
−|x | if 0 < |x |y < 1,
1 − q(|x y |)(1 + |x |) otherwise

(7.10)

where q(t) � 1
2 (1−cos πt). Notice that g ∈ C1(�2), and that g and B � [1 0]

areADMM-feasible,meaning thatargminw∈�2

{
g(w) + β

2 ‖Aw − s‖2
}
, ∅

for any β > 0 and s ∈ �.However, (Bg)(s) � −|s | if s , 0while (Bg)(0) � 1,
resulting in the lack of lsc at s � 0. Along ker B � {0} × �, by keeping
x constant g attains minimum at {x} × [x−1 ,∞) for x , 0, which escapes
to infinity as x → 0, and g(x , x−1) � −|x | → 0. However, if instead
x � 0 is fixed (as opposed to x → 0), then the pathology comes from
the fact that g(0, · ) ≡ 1 > 0, which contradicts the condition imposed
in Proposition 7.5(ii). This example also shows that g ∈ C1(�n) is not
enough a requirement for (Bg) to be lsc.

The limit inferior is somehowrelated to the asymptotic function, defined
as g∞(d̄) B lim infd→d̄ , t→∞

g(td)
t , see e.g., [8]. The referenced book pro-

vides other sufficient conditionsbasedon thebehavior of g∞ onker B\{0}.
Unlike ours, such conditions ensure also nonemptyness of the set X(s) for
all s ∈ B dom g, and are in this sense less general. To see this, it suffices
to modify (7.10) as follows

g(x , y) �


1 if y ≤ 1,
−|x | if 0 < |x |y < 1,
e−x2 − q(|x y |)(e−x2

+ |x |) otherwise.

The sufficient condition dictated by Proposition 7.5(ii) is satisfied. In fact,
the function (Bg)(s) � −|s | is lsc, however argminw

{
g(w) | Bw � 0

}
is

empty.
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7.4.2 Smoothness

We now turn to the smoothness requirement of (A f ). To this end, we
introduce the notion of smoothness with respect to a matrix, as follows

Definition 7.6 (Smoothness relative to a matrix). We say that a function
h : �n → � is smooth relative to a matrix C ∈ �p×n , and we write
h ∈ C1,1

C (dom h), if h is differentiable on its domain and∇h satisfies the following
Lipschitz condition: there exist Lh ,C and σh ,C with |σh ,C | ≤ Lh ,C such that

σh ,C ‖C(x − y)‖2 ≤ 〈∇h(x) − ∇h(y), x − y〉 ≤ Lh ,C ‖C(x − y)‖2 (7.11)

whenever ∇h(x),∇h(y) ∈ range C>.

This condition is similar to that considered in [45], where Πrange A>∇ f
is required to be Lipschitz. The paper analyzes convergence of a proximal
ADMM; standard ADMM can be recovered when matrix B is invertible,
in which case both conditions reduce to Lipschitz differentiability of f . In
general, our condition applies to a smaller set of points only, as it can be
verified with f (x , y) � 1

2 x2 y2 and A � [1 0]. In fact, Πrange A>∇ f (x , y) �(x y2

0
)
is not Lipschitz continuous; however, ∇ f (x , y) ∈ range A>iff x y � 0,

in which case ∇ f ≡ 0. Then, f is smooth relative to B with L f ,B � 0.
To better understand how this notion of regularity comes into the

picture, notice that if f is differentiable, then ∇ f (x) ∈ range A>on some
domainU if there exists a differentiable function q : AU → � such that
f (x) � q(Ax). Then, it is easy to verify that f is smooth relative to B
if the local “reparametrization” q is smooth (on its domain). From an a
posteriori perspective, if (A f ) is smooth (in the classical sense), then due
to the relation A>∇(A f )(Azs) � ∇ f (zs) holding for zs ∈ argminz:Az�s f (z)
(cf. Prop. 1.16), it is apparent that q serves as (A f ). Therefore, smoothness
relative to B is somewhat aminimal requirement for ensuring smoothness
of (A f ).

Theorem 7.7 (Smoothness of (A f )). Let f : �n → � be lsc and A ∈ �p×n be
surjective (full-row rank). Suppose that there exists β ≥ 0 such that the function
f + β

2 ‖A · − s‖2 is level bounded for all s ∈ �p . Then, the image function (A f )
is smooth on �p , provided that either

(i) f ∈ C1,1
A (�n), in which case L(A f ) � L f ,A and σ(A f ) � σ f ,A,
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(ii) or f ∈ C1,1(�n), and X(s) B argmin
{

f (x) | Ax � s
}
is single-valued

and Lipschitz continuous with modulus M, in which case

L(A f ) � L f M2 and σ(A f ) �
{
σ f/‖A‖2 if σ f ≥ 0,
σ f M2 σ f < 0;

(iii) or f ∈ C1,1(�n) is convex, in which case L(A f ) �
L f

σ f +(A>A) and σ(A f ) �
σ f/‖A‖2.

Proof. We know from Thm. 1.18 that (A f ) is proper and lsc. Moreover,
since f is differentiable, observe that

∂∞H(x ,Ax) � range
(
A>

I

)
for all x ∈ dom f . We may then apply [92, Cor. 10.14] to arrive to

∂∞(A f )(s) ⊆
⋃

x∈X(s)

{
y | (0, y) ∈ ∂∞H(x , s)} � ker A>� {0},

holding for all s ∈ �p . By virtue of [92, Thm. 9.13], we conclude that (A f )
is strictly continuous and has nonempty subdifferential on�p . Fix si ∈ �p

and yi ∈ ∂(A f )(si), i � 1, 2, and let us proceed by cases.

♠ 7.7(i) and 7.7(ii). It follows from Prop. 1.16 and Lem. 1.3(v) that

A>yi ∈ ∂ f (xi) �
{∇ f (xi)

}
for some xi ∈ X(si), i � 1, 2. Therefore,

〈y1 − y2 , s1 − s2〉 � 〈y1 − y2 ,Ax1 − Ax2〉 � 〈A>y1 − A>y2 , x1 − x2〉
� 〈∇ f (x1) − ∇ f (x2), x1 − x2〉.

If 7.7(i) holds, since ∇ f (xi) � A>yi ∈ range A>, i � 1, 2, smoothness of f
relative to A implies

σ f ,A‖s1 − s2‖2 � σ f ,A‖Ax1 − Ax2‖2
≤ 〈y1 − y2 , s1 − s2〉 ≤ L f ,A‖Ax1 − Ax2‖2 � L f ,A‖s1 − s2‖2

for all si ∈ �p and yi ∈ ∂(A f )(si), i � 1, 2.
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Otherwise, if 7.7(ii) holds, then

σ f ‖x1 − x2‖2 ≤ 〈y1 − y2 , s1 − s2〉 ≤ L f ‖x1 − x2‖2

and from the bound 1
‖B‖ ‖s1 − s2‖ ≤ ‖x1 − x2‖ ≤ M‖s1 − s2‖ we obtain

σ(A f )‖s1 − s2‖2 ≤ 〈y1 − y2 , s1 − s2〉 ≤ L(A f )‖s1 − s2‖2

with the constants σ(A f ) and L(A f ) as in the statement.
Eitherway, for all si there is atmost one subgradient yi ∈ ∂(A f ), and from
[92, Thm. 9.18] we conclude that necessarily such is yi � ∇(A f )(si). The
claimed smoothness and hypoconvexity then follow by invoking Thm.
1.8.

♠ 7.7(iii). It follows fromLem. 1.19 that (A f ) is a convex anddifferentiable
function satisfying ∇(A f )(s) � y, where y satisfies A>y � ∇ f (x) and x is
any element of X(s). For yi � ∇(A f )(si), i � 1, 2, we have

〈s1 − s2 , y1 − y2〉 � 〈Ax1 − Ax2 , y1 − y2〉 � 〈x1 − x2 ,A>y1 − A>y2〉
� 〈x1 − x2 ,∇ f (x1) − ∇ f (x2)〉.

Hence, from Thm. 1.8 and [71, Thm. 2.1.5], since A>yi � ∇ f (xi), we have
1

L f
‖A>(y1 − y2)‖2 ≤ 〈s1 − s2 , y1 − y2〉 ≤ 1

σ f
‖A>(y1 − y2)‖2 ,

where in the second inequality we assumed σ f > 0 (convexity of (A f )
already implies σ(A f ) ≥ 0, hence for σ f � 0 there is nothing to show). We
may further upper bound as 〈s1 − s2 , y1 − y2〉 ≤ ‖A‖

2

σ f
‖y1 − y2‖2, and infer

σ f/‖A‖2-strong convexity of (A f ) by virtue of Thm. 1.8. Similarly, we may
further lower bound as

〈s1 − s2 , y1 − y2〉 ≥ σ+(A>A)
L f
‖Πrange A(y1 − y2)‖2 �

σ+(A>A)
L f
‖y1 − y2‖2 ,

to obtain L f

σ+(A>A) -smoothness of (A f ). Here, the second inequality is a
known fact (see e.g., [45, Lem. A.2]), and the last equality is due to the fact
that A is surjective.

Notice that the condition in Theorem 7.7(ii) covers the case when f ∈
C1,1(�n) and A has full column rank (hence is invertible), in which case
M � 1/σ+(A). This is somehow trivial, since necessarily (A f )(s) � f ◦ A−1

in this case.
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7.5 A quasi-Newton ADMM
In light of the equivalence shown in Theorem 7.1 we can directly translate
CLyD-DRS (Alg. 6.2) into a corresponding ADMM enhancement. The
following result, easily deducible from the proof of the Theorem 7.1,
shows how to convert a DRS update s 7→ (u , v) in terms of an ADMM
update.

Lemma 7.8. Starting from a point s̄ ∈ �p , consider a DRS-update s̄ 7→ (ū , v̄)
with stepsize γ � 1/β for ϕ1 � (A f ) and ϕ2 � (Bg)(b − · ). Let y0 ∈ �p and
z0 ∈ dom g be any such that

s̄ � b − Bz0 − 1
β y0.

Then, ϕdr
γ (s̄) � Lβ(x̄ , z̄ , ȳ), where

x̄ � argminx L (x , z0 , y0)
ȳ � y0 + β(Ax̄ + Bz0 − b)
z̄ ∈ argminz L (x̄ , z , ȳ).

In fact, ū � Ax̄ and v̄ � b − Bz̄.

With some algebraic manipulations on CLyD-DRS (Alg. 6.2) using
this result, one obtains the ADMM variant CLyD-ADMM (Alg. 7.2), that
inherits the convergence guarantees shown in the previous chapter. For
the sake of describing the nonmonotone linesearch variant, we restate the
subsequential convergence statement.

Theorem 7.9 (CLyD-ADMM (nonmonotone): subseq. convergence). The
following hold for the iterates generated by CLyD-ADMM (Alg. 7.2) with toler-
ance ε � 0:

(i) The residual (‖rk ‖)k∈� is square-summable; in particular, it vanishes with
rate min j≤k ‖r j ‖ ∈ O(1/√k).

(ii) all cluster points (x , z , y) of ((xk , zk , yk))k∈� satisfy the KKT conditions

• −A>y ∈ ∂ f (x),
• −B>y ∈ ∂g(z),
• Ax + Bz � b.
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Algorithm 7.2. CLyD-ADMM

Require • penaly β and relaxation λ as in ADMM (Alg. 7.1)
• sufficient decrease constant c as in Thm. 7.3
• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial triplet (x−1 , y−1 , z−1)
• tolerance ε > 0

Provide KKT-suboptimal (x∗ , z∗ , y∗), in the sense that
• ‖Ax∗ + Bz∗ − b‖ ≤ ε

β ,
• −A>y∗ ∈ ∂̂ f (x∗), and
• dist(−B>y∗ , ∂̂g(z∗)) ≤ 3‖B‖ε.

(for brevity, rk B Axk + Bzk − b)
1: Do a nominal ADMM-step: y−1/2 � y−1 − β(1 − λ)r−1

x0 � argminx Lβ(x , z−1 , y−1/2)
y0 � y−1/2 + β(Ax0 + Bz−1 − b)
z0 ∈ argminz Lβ(x0 , z , y0)

2: for k � 0, 1, 2, . . . do
3: if β‖rk ‖ ≤ ε then
4: return (x∗ , y∗ , z∗) � (xk , yk , zk)
5: Select an update direction dk ∈ �p at yk

6: Let τk ∈
{
2−i | i ∈ �}

be the largest such that

Lβ(xk+1 , zk+1 , yk+1) ≤ Lβ(xk , zk , yk) − αc
2 ‖rk ‖2 , (7.12)

where yk+1/2 � yk−β [ (1−λ(1−τk)
)
rk+τk dk

]
and (xk+1 , zk+1 , yk+1)

comes from a nominal ADMM-step:
xk+1 � argminx Lβ(x , zk , yk+1/2)
yk+1 � yk+1/2 + β(Axk+1 + Bzk − b)
zk+1 ∈ argminz Lβ(xk+1 , z , yk+1).
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If, additionally, ‖dk ‖ → 0 as k →∞, then the following also hold:

(iii) the sequence ((Axk , Bzk , yk))k∈� is bounded provided that F(x , z) as
defined in (7.9) is level bounded.

(iv) all cluster points (x , z , y) of ((xk , zk , yk))k∈� attain the same cost f (x)+
g(z), this being the limit of the sequence (Lβ(xk , zk , yk))k∈�.

All the claims remain valid if the linesearch condition (7.12) is replaced by the
following nonmonotone version:

Lβ(xk+1 , zk+1 , yk+1) ≤ L̄k − αc
2 ‖rk ‖2 , (7.13)

where, for any sequence (pk)k∈� ⊆ [0, 1] bounded away from 0, L̄k are recur-
sively defined as follows:

L̄k B

{
Lβ(x0 , z0 , y0) if k � 0,
(1 − pk)L̄k−1 + pkLβ(xk , zk , yk) otherwise.

7.6 Simulations

7.6.1 Sparse principal component analysis
Given a data matrix W ∈ �m×n , the goal of sparse principal component
analysis (SPCA) is to explain as much variability in the data by using only
few variables, say, k � n. Denoting Σ B W>W the covariance matrix of
W , this can be done by solving the following problem:

maximize
z∈�n

〈z ,Σz〉 subject to ‖z‖ � 1, ‖z‖0 ≤ k ,

where the `0-quasi-norm ‖z‖0 denotes the number of nonzero elements
of vector z. Although the constraint ‖z‖ � 1 can be convexified to ‖z‖ ≤ 1
without affecting the solution, the problem is still inherently noncon-
vex due to the `0-constraint and the concavity of the cost function, being
the maximization of 〈z ,Σz〉 equal to the minimization of −〈z ,Σz〉. Com-
plying with Assumption 6.I, DRS can be readily applied to this prob-
lem. However, as the problem size grows a big limitation is the need
to store and operate with large matrices. To account for this issue, we
consider the following consensus formuluation: having fixed a number of
agents N ≥ 1, decompose matrix W into N row blocks W1 , . . . ,WN so
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that W> � [W>1 · · · W>N] and 〈z ,Σz〉 � ∑N
i�1 ‖Wi z‖2, introduce N copies

x1 , . . . , xN of z (stacked in a vector x ∈ �nN ), and solve

minimize
x∈�Nn ,z∈�n

−
N∑

i�1
‖Wi xi ‖2 subject to ‖z‖ � 1, ‖z‖0 ≤ k ,

xi � z , i � 1 . . .N.

Denoting as
Z B {z ∈ �n | ‖z‖ � 1, ‖z‖0 ≤ k}

the feasible domain, the problem can be cast in ADMM form as

minimize
x∈�Nn ,z∈�n

N∑
i�1
−‖Wi xi ‖2︸          ︷︷          ︸

f (x)

+ δZ(z)︸︷︷︸
g(z)

subject to x �
©«

I
...
I

ª®®¬z. (7.14)

Apparently, the ADMM matrix B ∈ �nN×n is the vertical stacking of N
many n×n (negative) identity matrices, A is the nN ×nN identity matrix
and b is the zero �nN vector. Notice that Assumption 7.I is satisfied, as
range A � �nN and (A f ) � f has Lipschitz-continuous gradient with
modulus L(A f ) � L f � maxi�1...N ‖Wi ‖ ≤ ‖W ‖.

Notice that the z-update as prescribed by ADMM comes at negligible
cost, since

argmin
z∈�n

{
δZ(z) + β

2 ‖x − Az‖2
}
� ΠZ

( 1
N

∑N
i�1 xi

) ∀x ∈ �nN ,

andΠZ(z) amounts to setting to zero the n−k smallest components of z (in
absolute value), and then projecting on the `2-sphere by simply dividing
by the norm. The x-update, instead, amounts to solving (in parallel) a
(small) linear system for i � 1 . . .N :

argmin
xi∈�n

{
−‖Wi xi ‖2 + β

2 ‖xi − z‖2
}
� (βI −W>i Wi)−1βz

� z + W>i (βI −WiW>i )−1Wi z ,

where the second equality uses theWoodbury identity. The Cholesky fac-
tors of the mi×mi matrix βI−WiW>i (where mi denotes the number of rows
of the block Wi), i � 1 . . .N , can be computed offline to efficiently solve
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the linear systems at each x-update, resulting in O
(∑N

i�1 m2
i

)
memory re-

quirement, as opposed to O(N2) � O
(∑N

i�1 mi
)2 (let alone the operational

cost) needed for the original single-agent problem expression.
This consensus reformulation, however, increases the problem size

and thus the ill conditioning, and for moderate values of m, n and N
the convergence of plain ADMM is already prohibitively slow, cf. Figure
7.2. On the contrary, the adoption of L-BFGS directions in CLyD-ADMM
(Alg. 7.2) robustifies the performance at the negligible cost of few scalar
products per iteration.

Figure 7.2 shows the result of a random simulation. We considered
a randomly generated data matrix W ∈ �200×4000 with sparsity 0.2, and
we split W in N blocks of equal size as in (7.14) with N ∈ {5, 10, 25, 50}.
In each experiment the penalty parameter in both CLyD-ADMM (Alg.
7.2) and the nominal ADMM was set to β � 2.1L(A f ). We selected L-
BFGS directions with memory 10, and σ � 10−4 as sufficient decrease
parameter (largely below the maximum value for all instances). Both
algorithms were started at the same randomly generated initial point,
and the tolerance was set to ε � 10−6.
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Figure 7.2: Comparison between ADMM (in blue) and the L-BFGS enhancement
(in red) for the consensus SPCA problem (7.14) for different number of agents
N � 5, 10, 25, 50. On the x-axis, the number of linear systems solved (needed
for the x-update), which in the case of plain ADMM coincides with the number
of iterations. This is the unique expensive operation, as the z-update is negligible.
Coordinate (x , y) in the plot indicates the minimum ADMM residual y achieved
after x many solutions of linear systems. Apparently, ADMM is severly affected
by N , whereas the great performance of the L-BFGS enhancement through CLyD-
ADMM (Alg. 7.2) remains stable.
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Chapter 8

SuperMann
A universal CLyD framework for convex splitting algorithms

8.1 Introduction
After the in-depth analysis on nonconvex problems carried out so far, in
this final chapter we investigate what more we can do when the problem
at hand is instead convex. In doing so, we will stick to the objective of
deriving fast methods that preserve operation and iteration complexity
as plain splitting algorithms. The result will be a universal scheme that
globalizes Newton-type methods of most splitting algorithms defined on
real Hilbert spaces. Admittedly with an intended pun, since it exhibits
superlinear convergence rates and generalizes the Krasnosel’skiı̌-Mann
iterations we name our algorithm SuperMann. Furthermore, we show
that the modified Broyden method discussed in Section 4.3.2 fits into this
framework and enables superlinear asymptotic convergence rates. One
of the most appealing properties of SuperMann is that, contrary to the
envelope-based approaches, achieving superlinear convergence does not
necessitate nonsingularity of the Jacobian at the solution, but the milder
property of metric subregularity. This relaxation considerably widens the
range of problemswhich can be solved efficiently, in that, for instance, the
solutions need not be isolated for superlinear convergence to take place.

To some extent, SuperMann can be identified as an “approximate”-
CLyD globalization framework, where the continuous Lyapunov poten-
tial is the (implicit and unknown) function L � dist( · , fixF )2. Given an
arbitrary update direction d at s, a novel hyperplane projection step en-
sures that for stepsizes τ small enough the update s+ � s+(τ; d) satisfies
a sufficient decrease on L. Therefore, although the true value of L re-
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mains unknown, the sufficient decrease can be suitably lower bounded,
hence the interpretation as an approximate-continuous-Lyapunov descent
algorithm.Most importantly, wewill show that also SuperMann is robust
against theMaratos effect, as anytime the directions are superlinear,1 unit
stepsize is eventually accepted.

8.1.1 Contributions
The contributions can be summarized as follows:

(1) In Section 8.4 we design a universal algorithmic framework (Al-
gorithm 8.1) for finding fixed points of nonexpansive operators,
which generalizes the classical Krasnosel’skiı̌-Mann scheme and
possessess its same global and local convergence properties.

(2) In Section 8.5we introduce anovel separatinghyperplaneprojection
tailored for nonexpansive mappings; based on this, in Definition
8.11 we then propose a generalized KM iteration (GKM).

(3) We define a line search based on the novel projection, suited for any
nonexpansive operator and update direction (Theorem 8.12).

(4) In Section 8.6 we combine these ideas and derive the SuperMann
scheme (Alg. 8.2), an algorithm that

• globalizes the convergence of Newton-type methods for find-
ing fixed points of nonexpansive operators (Theorem 8.13);

• reduces to the local method xk+1 � xk + dk when the directions
dk are superlinear, as it is the case for the modified Broyden
scheme of Section 4.3.2 (Theorems 8.16 and 8.19);

• has superlinear convergence guarantees without the usual re-
quirement of nonsingularity of the Jacobian at the limit point,
but simply under metric subregularity; in particular, the solu-
tion need not be unique!

8.1.2 Chapter organization
The chapter is organized as follows. Section 8.2 serves as an informal in-
troduction to highlight the known limitations of fixed-point iterations and

1The definition of superlinear directions meant here is slightly different from the one
given in Definition 4.4. The intended notion will be given in Definition 8.14.
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to motivate our interest in Newton-type methods with some toy exam-
ples. The formal presentation begins in Section 8.3 with the introduction
of some basic notation and known facts. In Section 8.4 we define the prob-
lem at hand and propose a general abstract algorithmic framework for
solving it. In Section 8.5 we provide a generalization of the classical KM
iterations that is key for the global convergence and performance of Su-
perMann, an algorithm which is presented and analyzed in Section 8.6.
Finally, in Section 8.7 we show how the theoretical findings are backed
up by promising numerical simulations, where SuperMann dramatically
improves classical splitting schemes.

8.2 Motivating examples

Given a nonexpansive operator T : �n → �n , consider the problem of
finding afixedpoint, i.e., a point x? ∈ �n such that x? � Tx?. The indepen-
dent works of Krasnosel’skiı̌ and Mann [55, 67] provided a very elegant
solutionwhich is simply based on recursive iterations x+ � (1−α)x+αTx
with α ∈ (0, ᾱ) for some ᾱ ≥ 1. The method, known as Krasnosel’skiı̌-
Mann scheme or KM scheme for short, has been studied intensively ever
since, also because it generalizes a plethora of optimization algorithms.
It is well known that the scheme is globally convergent with square-
summable and monotonically decreasing residual R � id − T (in norm),
and also locally Q-linearly convergent if R is metrically subregular at
the limit point x?. Metric subregularity basically amounts to requiring
the distance from the set of solutions to be upper bounded by a multiple
of the norm of R for all points sufficiently close to x?; it is quite mild a re-
quirement — for instance, it does not entail x? to be an isolated solution
— and as such linear convergence is quite frequent in practice. However,
the major drawback of the KM scheme is its high sensitivity to ill con-
ditioning of the problem, and cases where convergence is prohibitively
slow in practice despite the theoretical (sub)linear rate are also abundant.
Illustrative examples can be easily constructed for the problem of find-
ing a point in the intersection of two closed convex sets C1 and C2 with
C1∩C2 , ∅. The problem can be solved bymeans of fixed-point iterations
of the (nonexpansive) alternating projections operator T � ΠC2 ◦ΠC1 .

In Figure 8.1 we consider the case of two polyhedral cones, namely

C1 �
{

x ∈ �2 | 0.1x1 ≤ x2 ≤ 0.2x1
}
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and
C2 �

{
x ∈ �2 | 0.3x1 ≤ x2 ≤ 0.35x1

}
.

Alternating projections is then linearly convergent (to the unique inter-
section point 0) due to the fact that R � id − T is piecewise affine and
hence globally metrically subregular. However, the convergence is ex-
tremely slow due to the pathological small angle between the two cones,
as it is apparent in Figure 8.1.
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Figure 8.1: Alternating projections on polyhedral cones.
R � id −ΠC2 ◦ΠC1 is globally metrically subregular, however the Q-linear con-
vergence of the KM scheme is very slow.

As an attempt to overcome this frequent phenomenon, [42] proposes a
foretracking linesearch heuristic which is particularly effective when sub-
sequent fixed-point iterations proceed along almost parallel directions.
Iteration-wise, in such instances the line search does yield a considerable
improvement upon the plain KM scheme; however, each foretrack pre-
scribes extra evaluations of T and unless T has a specific structure the
computational overhead might outweight the advantages. Moreover, its
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Figure 8.2: Alternating projections on ball
and tangent line.
With or without line search the KM scheme is
not linearly convergent due to the fact that the
residual R is not metrically subregular at x?.

asymptotic convergence rates do not improve upon the plain KM scheme.
Figure 8.2 illustrates this fact relative to

C1 �
{

x ∈ �2 | x2
1 + x2

2 ≤ 1
}

and C2 �
{

x ∈ �2 | x1 � 1
}
.

Despite a good performance on early iterations, the line search cannot
improve the asymptotic sublinear rate of the plain KM scheme due to the
fact that the residual is not metrically subregular at the (unique) solution
x? � (1, 0). In particular, it is evident that medium-to-high accuracy can-
not be achieved in a reasonable number of iterationswith eithermethods.

In response to this limitation there comes the need to include some
“first-order-like information”. Specifically, the problem of finding a fixed
point of T can be rephrased in terms of solving the system of nonlinear
(monotone) equations Rx � 0, which could possibly be solved efficiently
with Newton-type methods. In the toy simulations of this section, the
purple lines correspond to the semismooth Newton iterations

x+
� x − G−1Rx for some G ∈ ∂CRx ,

where ∂CR is the Clarke generalized Jacobian of R (the convex hull of
the Bouligand subdifferential, see [38, Def. 7.1.1]). Interestingly, in the
proposed simulations this method exhibits fast convergence even when
the limit point is a non isolated solution, as in the case of the second-
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Figure 8.3:Alternating projections on second-order cone and tangent plane.
In contrast with the slow sublinear rate of KM both with and without line search, and
despite the non isolatedness of any solution, Broyden scheme exhibits an appealing
linear convergence rate.

order cone C1 �

{
x ∈ �3 | x3 ≥ 0.1

√
x2

1 + x2
2

}
and the tangent plane C2 �{

x ∈ �3 | x3 � 0.1x2
}
considered in Figure 8.3.

However, computing the generalized Jacobian might be too demand-
ing and require extra information not available in close form. For this
reason we focus on quasi-Newtonmethods

x+
� x − HRx ,

where the linear operator H is progressively updated with only evalua-
tions of R and direct linear algebra in such a way that the vector HRx is
asymptotically a good approximation of aNewton direction G−1Rx. The yel-
low lines in the simulations of this section correspond to H being selected
with Broyden quasi-Newton method.

The crucial issue is convergence itself. Though in these trivial simu-
lations it is not the case, it is well known that Newton-type methods in
general converge onlywhen close to a solution, andmay even diverge oth-
erwise. In fact, globalizing the convergence of Newton-type methods is a
key challenge in optimization, as the dedicated recent book [54] confirms.

In this chapterwe provide the SuperMann scheme, a globalization strat-
egy for Newton-type methods (or any local scheme in general) that ap-
plies to any (nonsmooth) monotone equation deriving from fixed-point
iterations of nonexpansive operators. Our method covers almost all split-
ting schemes in convex optimization, such as forward-backward splitting
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(FBS, also known as proximal gradient method), Douglas-Rachford split-
ting (DRS) and the alternating direction method of multipliers (ADMM),
to name a few. We also provide sufficient conditions at the limit point
under which the method reduces to the local scheme and converges su-
perlinearly.

8.3 Notation and known results

8.3.1 Hilbert spaces and bounded linear operators
Throughout the chapter, H is a real separable Hilbert space endowed
with an inner product 〈 · , · 〉 and with induced norm ‖ · ‖. The Euclidean
norm and scalar product are denoted as ‖ · ‖2 and 〈 · , · 〉2 , respectively. For
x̄ ∈ H and r > 0, the open ball centered at x̄ with radius r is indicated as
B(x̄; r) B {x ∈ H | ‖x − x̄‖ < r}. For a closed and nonempty convex set
C ⊆ H we let ΠC denote the projection operator on C.

Given (xk)k∈� ⊂ H and x ∈ H wewrite xk → x and xk ⇀ x to denote,
respectively, strong andweak convergence of (xk)k∈� to x. The set of weak
sequential cluster points of (xk)k∈� is indicated asW(xk)k∈�.

The set of bounded linear operatorsH →H is denoted as B(H). The
adjoint operator of L ∈ B(H) is indicated as L∗, i.e., the unique operator
in B(H) such that 〈Lx , y〉 � 〈x , L∗y〉 for all x , y ∈ H .

8.3.2 Nonexpansive operators and Fejér sequences
We now briefly recap some known definitions and results of nonexpan-
sive operator theory that will be used in the chapter.

Definition 8.1. An operator T : H →H is said to be

(i) nonexpansive (NE) if ‖Tx − T y‖ ≤ ‖x − y‖ for all x , y ∈ H ;

(ii) averaged if it is α-averaged for some α ∈ (0, 1), i.e., if there exists a
nonexpansive operator S : H →H such that T � (1 − α)id + αS;

(iii) firmly nonexpansive (FNE) if it is 1/2 − avera ged.

Clearly, for any NE operator T the residual R � id−T is monotone, in
the sense that 〈Rx − Ry , x − y〉 ≥ 0 for all x , y ∈ H ; if T is additionally
FNE, then not only is R monotone, but it is FNE as well. For notational
convenience we extend the definition of α-averagedness to the case α � 1
which reduces to plain nonexpansiveness.
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Given an operator T : H →H we let

zer T B {z ∈ H | Tz � 0} and fix T B {z ∈ H | Tz � z}
denote the set of its zeros and fixed points, respectively. For λ ∈ � we
define the λ-averaging of T as

Tλ B (1 − λ)id + λT.

Notice that
id − Tλ � λ(id − T) for all λ ∈ �, (8.1)

and therefore fix Tλ � fix T for all λ , 0. Moreover, if T is α-averaged
and λ ∈ (0, 1/α], then

Tλ is αλ-averaged (8.2)

[10, Prop. 4.40] and in particular T1/2α is FNE.

Definition 8.2. Relative to a nonempty set S ⊆ H , a sequence (xk)k∈� ⊂ H is

(i) Fejér (-monotone) if ‖xk+1 − s‖ ≤ ‖xk − s‖ for all k ∈ � and s ∈ S;

(ii) quasi-Fejér (monotone) if for all s ∈ S there exists a summable sequence
(εk(s))k∈� such that

‖xk+1 − s‖2 ≤ ‖xk − s‖2 + εk(s) ∀k ∈ �.

This definition of quasi-Fejér monotonicity is taken from [28] where it
is referred to as of type III, and generalizes the classical definition [37].

Theorem 8.3. Let T : H →H be an NE operator with fix T , ∅, and suppose
that (xk)k∈� ⊂ H is quasi-Fejér with respect to fix T. If (xk − Txk)k∈� → 0,
then there exists x? ∈ fix T such that xk ⇀ x?.

Proof. From [28, Prop. 3.7(i)] we haveW(xk)k∈� , ∅; in turn, from [10,
Cor. 4.28] we infer thatW(xk)k∈� ⊆ fix T. The claim then follows from
[28, Thm. 3.8].

8.4 General abstract framework
Unless differently specified, in the rest of the chapter we work under the
following assumption.
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Algorithm 8.1 General framework for finding a fixed point of the α-aver-
aged operator T with residual R � id − T

Require x0 ∈ H , c0 , c1 , q ∈ [0, 1), σ > 0
Initialize η0 � rsafe � ‖Rx0‖, k � 0

1. If Rxk � 0, then stop.

2. If ‖Rxk ‖ ≤ c0ηk , then set ηk+1 � ‖Rxk ‖, proceed with a blind
update xk+1 and go to step 4.

3. Set ηk+1 � ηk and select xk+1 such that

3(a) either the safe condition ‖Rxk ‖ ≤ rsafe holds, and xk+1 is edu-
cated:

‖Rxk+1‖ ≤ c1 ‖Rxk ‖
in which case update rsafe � ‖Rxk+1‖ + qk ;

3(b) or it is Fejérianwith respect to fix T:

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − σ‖Rxk ‖2 ∀z ∈ fix T. (8.4)

4. Set k ← k + 1 and go to step 1.

Assumption 8.I. T : H → H is an α-averaged operator for some α ∈
(0, 1] and with fix T , ∅. With R B id − T we denote its (2α-Lipschitz
continuous) fixed-point residual.

We also stick to this notation, so that, whenever mentioned, T, R, and
α are as in Assumption 8.I. Our goal is to find a fixed point of T, or,
equivalently, a zero of R:

find x? ∈ fix T � zer R. (8.3)

In this section we introduce Algorithm 8.1, an abstract procedure to
solve problem (8.3). The scheme is not implementable in and of itself, as
it gives no hint as to how to compute each of the iterates, but it rather
serves as a comprehensive ground framework for a class of algorithms
with global convergence guarantees. In Section 8.6 we will derive the Su-
perMann scheme, an implementable instance which also enjoys appealing
asymptotic properties.

The general framework prescribes three kinds of updates.
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K0) Blind updates. Inspired from [27], whenever the residual ‖Rxk ‖
at iteration k has sufficiently decreased with respect to past iterates
we allow for an uncontrolled update. For an efficient implementa-
tion such guess should be somehow reasonable and not completely
a “blind” guess; however, for the sake of global convergence the
proposed scheme is robust to any choice.

K1) Educated updates. To encourage favorable updates, similarly to
what has been proposed in [54, §5.3.1] and [38, §8.3.2] an educated
guess xk+1 is accepted whenever the candidate residual is sufficiently
smaller than the current.

K2) Safeguard (Fejérian) updates. This last kind of updates is similar to
K1 as it is also based on the goodness of xk+1 with respect to xk . The
difference is that instead of checking the residual, what needs be
sufficiently decreased is the distance from each point in fix T. This is
meant in a Fejérian fashion as in Definition 8.2.

Blind K0- and educated K1-updates are somehow complementary: the for-
mer is enabledwhen enoughprogress has beenmade in the past, whereas
the latter when the candidate update yields a sufficient improvement.
Progress and improvement are meant in terms of a linear decrease of (the
norm of) the residual; at iteration k, K0 is enabled if ‖Rxk ‖ ≤ c0‖Rx k̄ ‖,
where c0 ∈ [0, 1) is a user-defined constant and k̄ is the last blind iteration
before k; K1 is enabled if ‖Rxk+1‖ ≤ c1‖Rxk ‖ where c1 ∈ [0, 1) is another
user-defined constant and xk+1 is the candidate next iterate. To ensure
global convergence, educated updates are authorized only if the current
residual ‖Rxk ‖ is not larger than ‖Rx k̃+1‖ (up to a linearly decreasing
error q k̃); here k̃ denotes the last K1-update before k.

While blind K0- and educated K1-updates are in charge of the asymp-
totic behavior, what makes the algorithm convergent are safeguard K2-
iterations.

8.4.1 Global weak convergence
To establish a notation, we partition the set of iteration indices K ⊆ �
as K0 ∪ K1 ∪ K2. Namely, relative to Algorithm 8.1, K0 K1 and K2 denote
the sets of indices k passing the test at steps 2, 3(a) and 3(b), respectively.
Furthermore, we index the sets K0 and K1 of blind and educated updates
as

K0 � {k1 , k2 , · · ·}, K1 �
{

k′1 , k
′
2 , · · ·

}
. (8.5)
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To rule out trivialities, throughout the chapter we work under the
assumption that a solution is not found in a finite number of steps, so
that the residual of each iterate is always nonzero. As long as it is well
defined, the algorithm therefore produces an infinite number of iterates.

Theorem 8.4 (Global convergence of the general framework Algorithm
8.1). Consider the iterates generated by Algorithm 8.1 and suppose that for all
k it is always possible to find a point xk+1 complying with the requirements of
either step 2, 3(a) or 3(b), and further satisfying

‖xk+1 − xk ‖ ≤ D‖Rxk ‖ ∀k ∈ K0 ∪ K1 (8.6)

for some constant D ≥ 0. Then,

(i) (xk)k∈� is quasi-Fejér monotone with respect to fix T;

(ii) Rxk → 0 with (‖Rxk ‖)k∈� ∈ `2;

(iii) (xk)k∈� converges weakly to a point x? ∈ fix T;

(iv) if c0 > 0 the number of blind updates at step 2 is infinite.

Proof.

♠ 8.4(i): we start observing that because of (8.6) and the triangular in-
equality, for all k ∈ K0 ∪ K1 we have

‖xk+1 − z‖ ≤ ‖xk − z‖ + D‖Rxk ‖ ∀z ∈ fix T (8.7)
and since R is 2α-Lipschitz continuous we also have that

‖Rxk+1‖ ≤ ‖Rxk ‖ + ‖Rxk+1 − Rxk ‖ ≤ (1 + 2αD)‖Rxk ‖. (8.8)

Combining [28, Prop. 3.2(i)] with (8.4) and (8.7), it follows that in order
to prove quasi-Fejér monotonicity it suffices to show that the sequence
(‖Rxk ‖)k∈K0∪K1

is summable. Let K0 and K1 be indexed as in (8.5). Since
ηk is kept constant whenever k < K0,

ηk` � ‖Rxk`−1 ‖ ≤ c0ηk`−1 ≤ · · · ≤ c`−1
0 ηk1 � c`−1

0 η0 ∀k` ∈ K0. (8.9)

In particular, (‖Rxk` ‖)k`∈K0
is summable (regardless ofwhether K0 is finite

or not).
As for k′` ∈ K1, the safeguard parameter rsafe ensures that

‖Rxk′` ‖ ≤ ‖Rxk′`−1+1‖ + qk′`−1 ≤ c1‖Rxk′`−1
‖ + qk′`−1 ≤ c1‖Rxk′`−1

‖ + q`−1
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holds for all k′` ∈ K1. Iterating the inequality, for any ρ ∈ (0, 1) such that
ρ > max

{
c1 , q

}
we have

‖Rxk′` ‖ ≤ ρ`−1‖Rxk′1 ‖ +
`−1∑
i�1

c i−1
1 ρ`−i ≤ Cρ` (8.10)

where C B 1
ρ

(
‖Rxk′1 ‖ +

∑
i∈� (c1/ρ)i

)
< ∞. In particular, also (‖Rxk ‖)k∈K1

is summable.

♠ 8.4(ii): due to quasi-Fejér monotonicity, for all z ∈ fix T there exists
(εk(z))k∈� ∈ `+1 such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + εk(z).

Combining this with (8.4) and telescoping the inequalities, we obtain that
for all z ∈ fix T

‖x0 − z‖2 ≥ σ
∑
k∈K2

‖Rxk ‖2 −
∑

k∈K0∪K1

εk(z). (8.11)

Since the sequence (εk(z))k∈K0∪K1
is summable, then so is (‖Rxk ‖2)k∈K2

.
In turn, since (‖Rxk ‖)k∈K0∪K1

is also summable it follows that the whole
sequence of residuals is square-summable.

♠ 8.4(iii): follows by combining 8.4(ii) with Thm. 8.3.

♠ 8.4(iv): trivially follows from the already proven point 8.4(ii), together
with the observation that since ηk is kept constant whenever k < K0, the
condition ‖Rxk ‖ ≤ c0ηk will be satisfied infinitely often if c0 > 0.

8.4.2 Local linear convergence
More can be said about the convergence rates if the mapping R possesses
metric subregularity. Differently from (bounded) linear regularity [11],
metric subregularity is a local property andas such it ismoregeneral. For a
(possibly multivalued) operator R, metric subregularity at x̄ is equivalent
to calmness of R−1 at Rx̄ [34, Thm 3.2], and is a weaker condition than
metric regularity and Aubin property. We refer the reader to [92, §9] for
an extensive discussion.
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Definition 8.5 (Metric subregularity at zeros). Let R : H → H and x̄ ∈
zer R. R is metrically subregular at x̄ if there exist ε, γ > 0 such that

dist(x , zer R) ≤ γ‖Rx‖ ∀x ∈ B(x̄; ε). (8.12)

γ and ε are (one) modulus and (one) radius of subregularity of R at x̄,
respectively.

In finite-dimensional spaces, if R is differentiable at x̄ ∈ zer R and x̄ is
isolated in zer R (e.g., if it is the unique zero), then metric subregularity
is equivalent to nonsingularity of JRx̄. Metric subregularity is however a
muchweakerproperty thannonsingularity of the Jacobian, firstly because
it does not assume differentiability, and secondly because it can cope
with ‘wide’ regions of zeros; for instance, any piecewise linear mapping
is globally metrically subregular [87].

If the residual R � id − T of the α-averaged operator T is metrically
subregular at x̄ ∈ zer R � fix T with modulus γ and radius ε, then

1
γ dist(x , fix T) ≤ ‖Rx‖ ≤ 2α dist(x , fix T) ∀x ∈ B(x̄; ε). (8.13)

Consequently, if ‖Rxk ‖ → 0 for some sequence (xk)k∈� ⊂ H , so does
dist(xk , fix T) with the same asymptotic rate of convergence, and vicev-
ersa.Metric subregularity is the key property underwhich the residual in
the classical KM scheme achieves linear convergence; in Theorem 8.8 we
show that this asymptotic behavior is preserved in the general framework
of Algorithm 8.1. We first need to prove two lemmas.

Lemma 8.6 (Asymptotic properties of K0 and K1). Suppose the hypotheses
of Theorem 8.4 hold and let (xk)k∈� be the sequence generated by Algorithm 8.1.
Then,

(i) (‖Rxk ‖)k∈K0
is Q-linearly convergent;

(ii) (‖Rxk ‖)k∈K1
is R-linearly convergent;

(iii) if c0 > 0 then for some % ∈ (0, 1] and β ∈ �
`0(k) ≥ % `1(k) − β ∀k ∈ �,

where ` j(k) B #
{

k′ ∈ K j | k′ ≤ k
}
, j � 0, 1, 2, is the number of times K j

was visited up to iteration k.

Proof.
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♠ 8.6(i) and 8.6(ii): already shown in (8.9) and (8.10).

♠ 8.6(iii): if c1 � 0, then K1 � ∅ and the claim trivially holds with % � 1
and β � 0. Otherwise, from (8.10) and due to the definition of `1(k) there
exist C > 0 and ρ ∈ (0, 1) such that

‖Rxk ‖ ≤ Cρ`1(k) ∀k ∈ K1.

If k ∈ K1, then ‖Rxk ‖ didn’t pass the test at step 2, therefore

Cρ`1(k) ≥ ‖Rxk ‖ ≥ ηk

(8.9)
� ‖Rx0‖c`0(k)

0 .

The proof now follows by simply taking the logarithm on the outer in-
equality.

Lemma 8.7. Let (uk)k∈� ⊂ [0,+∞) be a sequence, and let K1 , K2 ⊆ � be such
that � � K1 ∪ K2. Let K1 be indexed as K1 �

{
k′0 , k

′
1 . . .

}
, and suppose that

there exist a , b > 0 and ρ ∈ (0, 1) such that
uk+1 ≤ auk for all k ∈ �,

uk′` ≤ bρ` for all k′` ∈ K1 ,
uk+1 ≤ ρuk for all k ∈ K2.

Then, there exists σ ∈ (0, 1) such that uk ≤ abσk .

Proof. To exclude trivialities we assume that K1 and K2 are both infinite.
To arrive to a contradiction, for all σ ∈ (0, 1) let k � k(σ) be the minimum
such that uk > abσk . Let σ ≥ ρ be fixed. If k − 1 ∈ K2, then

ρuk−1 ≥ uk > abσk ≥ abρσk−1

and therefore uk−1 > abσk−1 which contradicts minimality of k. It follows
that necessarily k − 1 ∈ K1, hence k − 1 � k′` ∈ K1 for some ` ∈ �. For all
n ∈ �, let k′`n

� k(ρ1/n) − 1, i.e., the minimum such that uk′`n
+1 > abρ

k′
`n

+1
n .

Combining with the property of K1 we obtain

abρ
k′
`n

+1
n < uk′`n

+1 ≤ auk′`n
≤ abρ`n (8.14)

and in particular `n ≤ k′`n
n . This means that up to k � k′`n

there are at most
k/n elements in K1, and consequently at least k − k/n in K2. Therefore,

bρ
k+1

n
(8.14)
< uk ≤ ak/nρk−k/n u0.
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Taking the k-th square root on the outer inequality we are left with

(1/ρ)1−2/n−1/nk < (u0/b)1/k a1/n .

Letting n → +∞, so that also k → +∞, we arrive to the contradiction
ρ ≥ 1.

Theorem 8.8 (Linear convergence of the general framework Algorithm
8.1). Suppose that the hypotheses of Theorem 8.4 hold, and suppose further
that (xk)k∈� converges strongly to a point x? (this being true if H is finite
dimensional) at which R is metrically subregular.

Then, (xk)k∈� and (Rxk)k∈� are R-linearly convergent.

Proof. Letting ek B dist(xk , fix T), because of (8.8) and (8.13) there exists
B > 1 such that

‖Rxk+1‖ ≤ B‖Rxk ‖ and ek+1 ≤ Bek ∀k ∈ �. (8.15)

Suppose that R is metrically subregular at x? with radius ε > 0 and
modulus γ > 0; since xk → x?, up to an index shifting without loss of
generality we may assume that (xk)k∈� ⊂ B(x?; ε). Let zk � Πfix T xk , so
that ek � ‖xk − zk ‖; combining (8.4) and (8.13) we obtain

e2
k+1 ≤ ‖xk+1 − zk ‖2 ≤ ‖xk − zk ‖2 − σ‖Rxk ‖2 ≤ ρ2e2

k ∀k ∈ K2 (8.16)

where ρ B
√

1 − σ/γ2 ∈ (0, 1). By possibly enlarging ρ we assume ρ ≥
max {c0 , c1}.

If c0 � 0, then K0 � ∅ and using Lem. 8.6(ii) and (8.15) we may
invoke Lem. 8.7 to infer R-linear convergence of the sequence (ek)k∈� and
conclude the proof.

Therefore, let us suppose that c0 > 0, so that by Thm. 8.4(iv) the set
K0 contains infinite many indices. We now show that there exists n ∈ �
such that every n consecutive indices at least one is in K0. Let k ∈ K0 be
fixed and suppose that k + 1 . . . k + n + 1 < K0.

• If c1 � 0 then K1 � ∅ and all such indices belong to K2. Then,

‖Rxk+n+1‖
(8.13)
≤ 2αek+n+1

(8.16)
≤ 2αρn ek+1

(8.15)
≤ 2αBρn ek

(8.13)
≤ 2αγBρn ‖Rxk ‖.

Since k + n + 1 < K0, then ‖Rxk+n+1‖ failed the test at step 3 and
therefore

c0‖Rxk ‖ � c0ηk+n+1 < ‖Rxk+n+1‖ ≤ 2αγBρn ‖Rxk ‖
which proves that n cannot be arbitrarily large.
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• If instead c1 > 0, let n1 be the number of indices among k+1 . . . k+n
that belong to K1, and n2 � n−n1 those belonging to K2. Then, from
iteration k+1 to k+n+1 the distance from the fixed set has reduced
n2 times (at least) by a factor ρ and, due to (8.15), increased at most
by a factor B the remaining n1 times:

‖Rxk+n+1‖
(8.13)
≤ 2αek+n+1 ≤ 2αρn2 Bn1 ek+1

(8.15)
≤ 2αρn2 Bn1+1ek

(8.13)
≤ 2αγρn2 Bn1+1‖Rxk ‖.

Again, since k + n + 1 < K0 we have c0‖Rxk ‖ < 2αγρn2 Bn1+1‖Rxk ‖,
and therefore

n1 >
ln c0/2αγ

ln B − 1 +
ln 1/ρ
ln B n2.

In particular, for large n the number n1 of indices in K1 grows
proportionallywith respect to n, and fromLem. 8.6(iii)we conclude
once again that n cannot be arbitrarily large (since the number of
visits to K0 does not change from k + 1 to k + n).

So far we proved that there exists n ∈ � such that every n indices at
least one belongs to K0. In particular, indexing K0 � {k0 , k1 · · ·} we have
that k` ≤ n`, hence for all k` ∈ K0

‖Rxk` ‖ ≤ c`0 ‖Rx0‖ ≤
(
c

1/n
0

) k` ‖Rx0‖ ∀k` ∈ K0. (8.17)

Moreover, any k ∈ � is at most n − 1 indices away from the nearest
previous index k` ∈ K0; combined with (8.17) and invoking (8.15) we
obtain

‖Rxk ‖ ≤ Bn−1‖Rx0‖
(
c

1/n
0

) k` ≤ Bn−1‖Rx0‖
(
c

1/n
0

) k

proving the sought R-linear convergence of (‖Rxk ‖)k∈�. It follows that
for some b > 0 and r ∈ (0, 1)we have ‖Rxk ‖ ≤ brk for all k ∈ �; then,

‖xk − x?‖ ≤
∑
j≥k

‖x j+1 − x j ‖
(8.6)
≤ D

∑
j≥k

‖Rx j ‖ ≤ bD
∑
j≥k

r j
�

bD
1 − r

rk

where in the second inequality we used the bound (8.6), which also holds
for k ∈ K2 (up to possibly enlarging D) due to the fact that for k ∈ K2
under metric subregularity we have

‖xk+1 − xk ‖ ≤ ‖xk+1 − zk ‖ + ‖xk − zk ‖ ≤ 2ek

(8.13)
≤ 2γ‖Rxk ‖.

This shows that (xk)k∈� is R-linearly convergent too.
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8.4.3 Main idea

Being interested in solving the nonlinear equation (8.3), one could think of
implementing one of the many existing fast methods for nonlinear equa-
tions that achieve fast asymptotic rates, such as Newton-type schemes.
At each iteration, such schemes compute an update direction dk and pre-
scribe steps of the form xk+1 � xk + τk dk , where τk > 0 is a stepsize that
needs be sufficiently small in order for the method to enjoy global con-
vergence; on the other hand, fast asymptotic rates are ensured if τk � 1
is eventually always accepted. The stepsize is a crucial feature of fast
methods, and a feasible τk is usually backtracked with a line search on a
smooth merit function. Unfortunately, in meaningful applications of the
problem at hand arising from fixed-point theory the residual mapping R
is nonsmooth, and the typical merit function x 7→ ‖Rx‖2 does not meet
the necessary smoothness requirement.

What we propose in this chapter is a hybrid scheme that allows for
the employment of any (fast) method for solving nonlinear equations,
with global convergence guarantees that do not require smoothness, but
which is based only on the nonexpansiveness of T. Once fast directions
dk are selected, Algorithm 8.1 can be specialized as follows:

1) blind updates as in step 2 shall be of the form xk+1 � xk + dk ;

2) educated updates as in step 3(a) shall be of the form xk+1 � xk + τk dk ,
with τk small enough so as to ensure the acceptance condition
‖Rxk+1‖ ≤ c1‖Rxk ‖;

3) safeguard updates as in step 3(b) shall be employed as last resort both
for globalization purposes and for well definedness of the scheme.

Ideally, the scheme should eventually reduce to the local scheme xk+1 �

xk + dk when good directions dk are used.
In Section 8.5 we address the problem of providing explicit safeguard

updates that comply with the quasi-Fejér monotonicity requirement of
step 3(b). Because of the arbitrarity of the other two updates, once we
succeed in this task Algorithm 8.1 will be of practical implementation. In
Section 8.6 we will then discuss specific K0- and K1-updates to be used at
steps 2 and 3(a) that ensure global and fast convergence, yet maintaining
the simplicity of fixed-point iterations of T (evaluations of T and direct
linear algebra).
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8.5 Generalized Mann Iterations

8.5.1 The classical Krasnosel’skiı̌-Mann scheme
Starting from a point x0 ∈ H , the classical Krasnosel’skiı̌-Mann scheme
(KM) performs the following updates

xk+1 � Tλk xk � (1 − λk)xk + λkTxk (8.18)

and converges weakly to a fixed point of T provided that λk ∈ [0, 1/α] and
(λk(1/α − λk))k∈� < `1 [10, Thm. 5.14]. The key property of KM iterations
is Fejér monotonicity:

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − λk(1/α − λk)‖Rxk ‖2 ∀z ∈ fix T.

In particular, in Algorithm 8.1 KM iterations can be used as safeguard
updates at step 3(b). The drawback of such a selection is that it com-
pletely discards the hypothetical fast update direction dk that blind and
educated updates try to enforce. This is particularly penalizing when the
local method for computing the directions dk is a quasi-Newton scheme;
such methods are indeed very sensitive to past iterations, and discarding
directions is neither theoretically sound nor beneficial in practice.

In this section we provide alternative safeguard updates that while
ensuring the desirable Fejér monotonicity are also amenable to taking
into account arbitrary directions. The key idea lies in intepreting KM
iterations as projections onto suitable half-spaces (see Fig. 8.4), and then
exploiting known properties of projections. These facts are shown in
the next result. To this end, let us remark that the projection ΠC onto
a nonempty closed and convex set C is FNE [10, Prop. 4.16], and that
consequently its λ-averaging ΠC,λ is λ/2-averaged for any λ ∈ (0, 2], as it
follows from (8.2).

Proposition 8.9 (KM iterations as projections). For x ∈ H , define

Cx � CT,α
x B

{
z ∈ H | ‖Rx‖2 − 2α〈Rx , x − z〉 ≤ 0

}
. (8.19)

Then,

(i) x ∈ Cx iff x ∈ fix T;

(ii) fix T �
⋂

x∈H Cx ;

(iii) for any λ ∈ [0, 1/α] it holds that Tλx � ΠCx ,2αλ x � (1 − 2αλ)x +

2αλΠCx x.
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•

z x

Tx

Figure 8.4: Mann iteration of a FNE operator T as projection on Cx (the blue
half-space, as defined in (8.19) for α � 1/2). The outer circle is the set of all possible
images of a nonexpansive operator, given that z is a fixed point. The inner circle
corresponds to the possible images of firmly nonexpansive operators. Notice that Cx
separates x from z as long as Tx is contained in the small circle, which characterizes
firm nonexpansiveness.

Proof. The set Cx can be equivalently expressed as

Cx �
{

z ∈ H | 〈x − T1/2αx , z − T1/2αx〉 ≤ 0
}
.

8.9(i) is of immediate verification, and 8.9(ii) then follows from [10, Cor.
4.25] combined with (8.2).

We now show 8.9(iii). If Rx � 0, then x ∈ fix T and Cx � H , and the
claim is trivial. Otherwise, notice that

Cx �
{

z ∈ H | 〈Rx , z〉 ≤ 〈Rx , x − 1
2αRx〉} (8.20)

and the claim can be readily verified using the formula for the projection
on a halfspace Hv ,β B

{
z ∈ H | 〈v , z〉 ≤ β}

ΠHv ,β x � x − [〈v , x〉 − β]+‖v‖2 v (8.21)

defined for v ∈ H \ {0} and β ∈ � [10, Ex. 29.20(iii)].
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8.5.2 Generalized Mann projections
Though particularly attractive for its simplicity and global convergence
properties, the KM scheme (8.18) finds its main drawback in its conver-
gence rate, being Q-linear at best and highly sensitive to ill conditioning
of the problem. In response to these issues, Algorithm 8.1 allows for the
integration of fast local methods still ensuring global convergence prop-
erties. The efficiency of the resulting scheme, which will be proven later
on, is based on an ad hoc selection of safeguard updates for step 3(b) which
is based on the following generalization of Proposition 8.9.

Proposition 8.10. Suppose that x , w ∈ H are such that

ρ B ‖Rw‖2 − 2α〈Rw , w − x〉 > 0. (8.22)

For λ ∈ [0, 1/α] let
x+ B x − λ ρ

‖Rw‖2 Rw. (8.23)

Then, the following hold:

(i) x+ � ΠCw ,2αλ x where Cw � CT,α
w as in (8.19);

(ii) ‖x+ − z‖2 ≤ ‖x − z‖2 − λ(1/α − λ) ρ2

‖Rw‖2 ∀z ∈ fix T.

Proof. 8.10(i) easily follows from (8.20) and (8.21), since by condition (8.22)
the positive part in the formula may be omitted. In turn, 8.10(ii) follows
from [10, Prop. 4.35(iii)] by observing that ΠCw ,2αλ is αλ-averaged due to
[10, Prop. 4.16] and (8.2), and thatfix T ⊆ Cw as shown in Prop. 8.9(ii).

Notice that condition (8.22) is equivalent to x < Cw . Therefore, Propo-
sition 8.10(ii) states that whenever a point x lies outside the half-space Cw
for some w ∈ H , since fix T ⊆ Cw (cf. Prop. 8.9) the projection onto Cw
moves closer to fix T. This means that after moving from x along a can-
didate direction d to the point w � x + d, even though w might be farther
from fix T the point x+ � ΠCw x is not. We may then use this projection
as a safeguard step to prevent from diverging from the set of fixed points.
Based on this, we define a generalized KM update along a direction d.

Definition 8.11 (GKM update). A generalized KM update (GKM) at x
along d for the α-averaged operator T : H →H with relaxation λ ∈ [0, 1/α] is

x+ B

{
x if w ∈ fix T
x − λ [ρ]+

‖Rw‖2 Rw othwerwise,
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Figure 8.5: SuperMann iteration of a FNE operator T as projection on Cw .
(a) the darker orange region represents the area in which Tw must lie given the
points x, Tx and the fixed point z as prescribed by firm nonexpansiveness of T.
(b) if Tw lies (also) in the ball Bx ,w as in (8.25), then the half-space Cw (shaded in
orange) separates x from w, which is to be avoided.
(c) when w is close enough to x the feasible region for Tw has empty intersection
with Bx ,w and Cw does not contain x.

where w � x + d and ρ B ‖Rw‖2−2α〈Rw , w− x〉. In particular, d � 0 yields
the classical KM update x+ � Tλx.

8.5.3 Line search for GKM
It is evident fromDefinition 8.11 that aGKMupdate trivializes to x+ � x if
either w ∈ fix T or ρ ≤ 0. Having w ∈ fix T corresponds to having found a
solution to problem (8.3), and the case deserves no further investigation.
In this section we address the remaining case ρ ≤ 0, showing how it
can be avoided by simply introducing a suitable line search. In order
to recover the same global convergence properties of the classical KM
scheme we need something more than simply imposing ρ > 0. The next
result addresses this requirement, showing further that it is achieved for
any direction d by sufficiently small stepsizes.

Theorem 8.12. Let x , d ∈ H and σ ∈ [0, 1) be fixed, and consider

τ̄ �

{ 1 if d � 0
1−σ
4α
‖Rx‖
‖d‖ otherwise.

Then, for all τ ∈ (0, τ̄] the point w � x + τd satisfies

ρ B ‖Rw‖2 − 2α〈Rw , w − x〉 ≥ σ‖Rw‖‖Rx‖. (8.24)
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Proof. Let a constant c ≥ 0 to be determined be such that

τ‖d‖ � ‖w − x‖ ≤ c‖Rx‖.
Observe that ρ � 4α2〈w − T1/2αw , x − T1/2αw〉, and recall from (8.1) and
(8.2) that T1/2α is FNE with residual id − T1/2α � 1

2αR. Then,

ρ � 4α2 (‖w − T1/2αw‖2 + 〈w − T1/2αw , x − w〉)
using Cauchy-Schwartz inequality,

≥ 4α2‖w − T1/2αw‖ (‖w − T1/2αw‖ − ‖x − w‖)
the bound on ‖x − w‖,

≥ 2α‖Rw‖ (‖w − T1/2αw‖ − 2αc‖x − T1/2αx‖)
the (reverse) triangular inequality,

≥ 2α‖Rw‖ ((1 − 2αc)‖x − T1/2αx‖ − ‖(id − T1/2α)w − (id − T1/2α)x‖
)

the nonexpansiveness of id − T1/2α
≥ 2α‖Rw‖ ( 1−2αc

2α ‖Rx‖ − ‖w − x‖)
and again the bound on ‖w − x‖,

≥ (1 − 4αc)‖Rw‖‖Rx‖
equating σ � 1 − 4αc the assert follows.

Notice that if d � 0, then ρ � ‖Rx‖2 ≥ σ‖Rx‖2 for any σ ∈ [0, 1), and
therefore the line search condition (8.24) is always satisfied; in particular,
the classical KM step x+ � Tx is always accepted regardless of the value
of σ.

Let us now observe how a GKM projection extends the classical KM
depicted in Figure 8.4 and how the line search works. In the following
we use the notation of Theorem 8.12, and for the sake of simplicity we
consider σ � 0 in (8.24) and a FNE operator T. Suppose that the fixed
point z and the points x, Tx, and w are as in Figure 8.5a; due to firm
nonexpansiveness, the image Tw of w is somewhere in both the orange
circles. We want to avoid the unfavorable situation depicted in Figure
8.5b, where the couple (w , Tw) generates a halfspace Cw that contains x,
i.e., such that ρ ≤ 0: in fact, with simple algebra it can be seen that ρ ≤ 0
iff Tw belongs to the dashed circle of Figure 8.5b:

Bx ,w B {w̄ | 〈w − w̄ , x − w̄〉 ≤ 0}. (8.25)

170



Since thedashedorange circle (inwhichTw must lie) is simply the transla-
tion by a vector Tx− x of Bx ,w , both having diameter τ‖d‖, for sufficiently
small τ the two have empty intersection, meaning that ρ > 0 regardless
of where Tw is.

8.6 The SuperMann scheme
In this section we introduce the SuperMann scheme (Alg. 8.2), a special
instance of the general framework of Algorithm 8.1 that employs GKM
updates as safeguard K2-steps. While the global worst-case convergence
properties of SuperMann are the same as for the classical KM scheme,
its asymptotic behavior is determined by how blind K0- and educated K1-
updates are selected. In Section 8.6.2 we will characterize the “quality”
of update directions and the mild requirements under which superlinear
convergence rates are attained; in particular, Section 8.6.3 is dedicated to
the analysis of quasi-Newton Broyden directions.

The scheme follows the samephilosophyof the general abstract frame-
work. The main idea is globalizing a local method for solving the mono-
tone equation Rx � 0, in such a way that when the iterates get close
enough to a solution the fast convergence of the local method is au-
tomatically triggered. Approaching a solution is possible thanks to the
generalized KM updates (step 5(b)), provided enough backtracking is
performed, as ensured by Prop. 8.10(ii) and Thm. 8.12. When a basin
of fast (i.e., superlinear) attraction for the local method is reached, the
(norm of) Rx will decrease more than linearly, and the condition trig-
gering the educated updates of step 5(a) (which is checked first) will be
verified without performing any backtracking.

To discuss its global and local convergence properties we stick to the
same notation of the general framework of Algorithm 8.1, denoting the
sets of blind, educated, and safeguard updates as K0, K1 and K2, respectively.

8.6.1 Global and linear convergence
To comply with (8.6), we impose the following requirement on the mag-
nitude of the directions (see also Rem. 8.20).

Assumption 8.II. There exists a constant D ≥ 0 such that the directions
(dk)k∈� in the SuperMann scheme (Alg. 8.2) satisfy

‖dk ‖ ≤ D‖Rxk ‖ ∀k ∈ �. (8.26)
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Algorithm 8.2 SuperMann scheme for solving (8.3), given an α-averaged
operator T with residual R � id − T

Require x0 ∈ H , c0 , c1 , q ∈ [0, 1), β, σ ∈ (0, 1), λ ∈ (0, 1/α).
Initialize η0 � rsafe � ‖Rx0‖, k � 0

1. If Rxk � 0, then stop.

2. Choose an update direction dk ∈ H
3. (K0) If ‖Rxk ‖ ≤ c0ηk , then set ηk+1 � ‖Rxk ‖, proceed with a blind

update xk+1� wkB xk+dk and go to step 6.

4. Set ηk+1 � ηk and τk � 1.

5. Let wk � xk + τk dk .

5(a) (K1) If the safe condition ‖Rxk ‖ ≤ rsafe holds and wk is educated:

‖Rwk ‖ ≤ c1‖Rxk ‖
then set xk+1 � wk , update rsafe � ‖Rwk ‖ + qk , and go to step
6.

5(b) (K2) If ρk B ‖Rwk ‖2 − 2α〈Rwk , wk − xk〉 ≥ σ‖Rwk ‖‖Rxk ‖
then set

xk+1 � xk − λ
ρk

‖Rwk ‖2 Rwk

otherwise set τk ← βτk and go to step 5.

6. Set k ← k + 1 and go to step 1.

Theorem 8.13 (Global and linear convergence of the SuperMann scheme).
Consider the iterates generated by the SuperMann scheme (Alg. 8.2) with (dk)k∈�
selected so as to satisfy Assumption 8.II. Then,

(i) (xk)k∈� is quasi-Fejér monotone with respect to fix T;

(ii) τk � 1 if dk � 0, and τk ≥ min
{
β 1−σ

4αD , 1
}
otherwise.

(iii) Rxk → 0 with (‖Rxk ‖)k∈� ∈ `2;

(iv) (xk)k∈� converges weakly to a point x? ∈ fix T;

(v) if c0 > 0 the number of blind updates at step 3 is infinite.
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Moreover, if (xk)k∈� converges strongly to a point x? (this being true if H is
finite dimensional) at which R is metrically subregular, then

(vi) (xk)k∈� and (Rxk)k∈� are R-linearly convergent.

Proof. Because of Thm. 8.12 we know that for any direction dk a feasible
stepsize τk complying with the requirements of step 5(b) will eventually
be found, lower bounded as in 8.13(ii) due to Thm. 8.12 and assumption
8.II. In particular, the scheme iswell defined.Moreover, fromProp. 8.10(ii)
we have that there exists a constant σ > 0 such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − σ‖Rxk ‖2 for all k ∈ K2 and z ∈ fix T.

It follows that the SuperMann scheme is a special case of Alg. 8.1 and the
proof entirely follows from Thm.s 8.4 and 8.8.

8.6.2 Superlinear convergence
Thoughglobal convercence of theSuperMann scheme is independent of the
choice of the directions dk , its performance and tail convergence surely
does. We characterize the quality of the directions dk in terms of the
following definition.

Definition 8.14 (Superlinear directions for the SuperMann scheme). Rela-
tive to the sequence (xk)k∈� generated by the SuperMann scheme, we say that
(dk)k∈� ⊂ H are superlinear directions if the following limit holds

lim
k→∞
‖R(xk + dk)‖
‖Rxk ‖ � 0.

Remark 8.15. Definition 8.14 makes no mention of a limit point x? of the
sequence (xk)k∈�, differently from the previously given Definition 4.4,
taken from [38, §7.5] and that instead requires ‖xk+dk−x?‖

‖xk−x?‖ to be vanishing
with no mention of R. Due to 2α-Lipschitz continuity of R, whenever the
directions dk are bounded as in (8.26) we have

‖R(xk + dk)‖
‖Rxk ‖ ≤ 2αD

‖xk + dk − x?‖
‖dk ‖ .

Invoking [38, Lem. 7.5.7] it follows that Definition 8.14 is implied by the
one in [38] and is therefore more general.
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Theorem 8.16. Consider the iterates generated by the SuperMann scheme (Alg.
8.2) with either c0 > 0 or c1 > 0, and with (dk)k∈� being superlinear directions
as in Definition 8.14. Then,

(i) eventually, stepsize τk � 1 is always accepted and safeguard updates K2
are deactivated (i.e., the scheme reduces to the local method xk+1 � xk+dk);

(ii) (Rxk)k∈� converges Q-superlinearly;

(iii) if the directions dk satisfy Assumption 8.II, then (xk)k∈� converges R-
superlinearly;

(iv) if c0 > 0, then the complement of K0 is finite.

Proof.

♠ 8.16(i): let w0
k B xk + dk . Superlinear convergence of (dk)k∈� then reads

‖Rw0
k ‖

‖Rxk ‖ → 0. In particular, if c1 > 0 then there exists k̄ ∈ � such that
‖Rw0

k ‖ ≤ c1‖Rxk ‖ for all k ≥ k̄, i.e., the point w0
k � xk + dk will always

pass condition at step 5(a) resulting in xk+1 � w0
k � xk + dk for all k ≥ k̄.

Similarly, if c0 > 0 then K0 is infinite as shown in Thm. 8.13(v); moreover,
for ` ∈ �

‖Rxk`+1‖
ηk`+1

�
‖Rxk`+1‖
‖Rxk` ‖

�
‖R(xk` + dk` )‖
‖Rxk` ‖

→ 0 as ` →∞

and therefore the ratio eventually is always smaller than c0, resulting in
k`+1 ∈ K0 for ` large enough. Consequently, the sequencewill eventually
reduce to xk+1 � xk + dk .

♠ 8.16(ii) and 8.16(iii): Q-superlinear convergence of (Rxk)k∈� follows
from the fact that xk+1 � xk + dk for k ≥ k̄. In particular, (‖Rxk ‖)k∈� is
summable and there exists a sequence (δk)k∈� → 0 such that ‖Rxk+1‖ ≤
δk ‖Rxk ‖ for all k. If ‖dk ‖ ≤ D‖Rxk ‖ for some D > 0, then∑

k≥k̄

‖xk+1 − xk ‖ ≤ D
∑
k≥k̄

‖Rxk ‖ < ∞

which implies that (xk)k∈� is a Cauchy sequence, and hence converges to
a point, be it x?. Moreover, by possibly enlarging D so as to account for
the iterates k < k̄, we have

‖xk − x?‖ ≤
∑
j≥k

‖x j+1 − x j ‖ ≤ D
∑
j≥k

‖Rx j ‖
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≤ Dδ0δ1 · · · δk−1
∑
j∈�
‖Rx j ‖ C ∆k .

This shows that (xk)k∈� is R-superlinearly convergent, since ∆k+1/∆k �

δk → 0.
♠ 8.16(iv): already shown in the proof of 8.16(i).

Theorem 8.16 shows that when the directions dk are good, then even-
tually the SuperMann scheme reduces to the local method xk+1 � xk + dk
and consequently inherits its local convergence properties. The following
result specializes to the choice of semismooth Newton directions.
Corollary 8.17 (Superlinear convergence for semismooth Newton direc-
tions). Suppose thatH is finite dimensional, and that R is semismooth. Consider
the iterates generated by the SuperMann scheme (Alg. 8.2) with either c0 > 0 or
c1 > 0 and directions dk chosen as solutions of

(Gk + µkid)dk � −Rxk for some Gk ∈ ∂CRxk (8.27)

where ∂CR denotes the Clarke generalized Jacobian of R and 0 ≤ µk → 0.
Suppose that the sequence (xk)k∈� converges to a point x? at which all the
elements in ∂CR are nonsingular.

Then, (dk)k∈� are superlinear directions as in Definition 8.14, and in partic-
ular all the claims of Theorem 8.16 hold.

Proof. Any Gk ∈ ∂CR is positive semidefinite due to the monotonicity of
R, and therefore dk as in (8.27) is well defined for any µk > 0. The bound
(8.26) holds due to [38, Thm. 7.5.2]. Moreover,

‖Rxk + Gk dk ‖
‖dk ‖ � µk → 0

as k → ∞, and the proof follows invoking [38, Thm. 7.5.8(a)] and Rem.
8.15.

Notice that since ∂CR � id − ∂T, nonsingularity of the elements in
∂CR(x?) is equivalent to having ‖G‖ < 1 for all G ∈ ∂T(x?), i.e., that T is
a local contraction around x?.

However, in the same spirit of the previous chapters we are oriented
towards choices of directions that (1) are defined for any nonexpansive
mapping, regardless of the (generalized) first-order properties, and that
(2) require exactly the same black-box oracle as the original KM scheme.
Once again we shall thus investigate the employment of quasi-Newton
directions.
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Theorem 8.18 (Dennis-Moré criterion for superlinear convergence). Con-
sider the iterates generated by the SuperMann scheme (Alg. 8.2) and suppose
that (xk)k∈� converges strongly to a point x? at which R is strictly differentiable.
Suppose further that the update directions (dk)k∈� satisfy Assumption 8.II and
the Dennis-Moré condition

lim
k→∞
‖Rxk + JR(x?)dk ‖

‖dk ‖ � 0. (8.28)

Then, the directions dk are superlinear as in Definition 8.14. In particular, all
the claims of Theorem 8.16 hold.

Proof.

0
(8.28)
� lim

k→∞

Rxk + JR(x?)dk +
(
R(xk + dk) − R(xk + dk)

)
‖dk ‖

� lim
k→∞

R(xk + dk)


‖dk ‖
(8.26)
≥ 1

D
lim
k→∞

R(xk + dk)


‖Rxk ‖
where in the second equalitywe used strict differentiability of R at x?.

8.6.3 The modified Broyden scheme
In practical application the Hilbert space H is finite dimensional, and
consequently it can be identified with �n . Consistently with the discus-
sion in Section 4.3, the computation of quasi-Newton directions dk in the
SuperMann scheme amounts to selecting

dk � −Hk Rxk , (8.29)

where Hk are linear operators recursively definedwith low-rank updates.
To avoid notational clashes, we indicate such pairs of vectors as (sk , yk)
instead of (pk , qk) as in (4.4). In particular,{

sk � wk − xk
yk � Rwk − Rxk .

(8.30)

Contrary to what experienced with the envelope-based approach, the
Broyden scheme seems to be more beneficial than BFGS.
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Theorem 8.19 (Superlinear convergence of the SuperMann scheme with
Broyden directions). Suppose that H is finite dimensional. Consider the se-
quence (xk)k∈� generated by the SuperMann scheme (Alg. 8.2), (dk)k∈� being
selected with the modified Broyden scheme of (4.3.2) for some ϑ̄ ∈ (0, 1) and
with pairs as in (8.30).

Suppose that (Hk)k∈� remains bounded, and that R is calmly semidifferen-
tiable andmetrically subregular at the limit x? of (xk)k∈�. Then, (dk)k∈� satisfies
the Dennis-Moré condition (8.28). In particular, all the claims of Theorem 8.18
hold.

Proof. LetG? � JRx? ∈ �n×n and let ‖·‖ denote theEuclideannorm. From
[52, Lem. 2.2] we have that there exist a constant L and a neighborhood
Ux? of x? such that

‖yk − G?sk ‖
‖sk ‖ �

‖Rwk − Rxk − G?(wk − xk)‖
‖wk − xk ‖

≤ L max {‖xk − x?‖ , ‖wk − x?‖}.
Because of (8.26), the fact that τk ≤ 1, and the triangular inequality we
have ‖wk − x?‖ ≤ ‖xk − x?‖ + D‖Rxk ‖ and consequently∑

k∈�

‖yk − G?sk ‖
‖sk ‖ ≤ L

∑
k∈�

(‖xk − x?‖ + D‖Rxk ‖
)
< ∞

where the last inequality follows from Thm. 8.13(vi).
Let Ek � Bk − G? and let ‖ · ‖F denote the Frobenius norm. With a

simple modification of the proofs of [52, Thm. 4.1] and [4, Lem. 4.4] that
takes into account the scalar ϑk ∈ [ϑ̄, 2 − ϑ̄]we obtain

‖Ek+1‖F ≤
Ek

(
id − ϑk

sk s>k
‖sk ‖2

)
F
+ ϑk

‖yk − G?sk ‖
‖sk ‖

≤ ‖Ek ‖F −
ϑ̄(2 − ϑ̄)
2‖Ek ‖F

‖Ek sk ‖2
‖sk ‖2

The last term on the right-hand side, be it σk , is summable and therefore
the sequence (Ek)k∈� is bounded. Let Ē B sup(‖Ek ‖F)k∈�, then

‖Ek+1‖F − ‖Ek ‖F ≤ σk − ϑ̄(2 − ϑ̄)2Ē

( ‖(Bk − G?)sk ‖
‖sk ‖

)2

.
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Telescoping the above inequality, summability of σk ensures that of the
sequence ‖(Bk−G?)sk ‖2

‖sk ‖2 , proving in particular the claimedDennis-Moré con-
dition (8.28).

Remark 8.20. It follows from Theorem 8.13(iv) that the SuperMann scheme
is globally convergent as long as ‖dk ‖ ≤ D‖Rxk ‖ for some constant D. To
enforce it we may select a (large) constant D > 0 and as a possible choice
truncate dk ← D ‖Rxk ‖

‖dk ‖ dk whenever dk does not satisfy (8.26).

Let us observe that in order to achieve superlinear convergence the
SuperMann scheme does not require nonsingularity of the Jacobian at the solu-
tion. This is the standard requirement for asymptotic properties of quasi-
Newton schemes,which is needed to showfirst that themethod converges
at least linearly. [4] generalizes this property invoking the concepts of
(strong) metric (sub)regularity (see also [34] for an extensive review on
these properties). However, if R is strictly differentiable at x?, then strong
subregularity, regularity and strong regularity are equivalent to injectiv-
ity, surjectivity and invertibility of JR(x?), respectively, these conditions
being all equivalent for mappings H → H with H finite dimensional.
In particular, contrary to the SuperMann scheme standard approaches re-
quire the solution x? at least to be isolated, a property that rules outmany
interesting applications (cf. §8.7.1).

Restarted (modified) Broyden scheme

Algorithm 8.3 Restarted Broyden scheme with memory m

Input: old buffers S, S̃; new pair (s , y); current Rx
Output: new buffers S, S̃; update direction d
1: d ← −Rx, s̃ ← y
2: for i � 1 . . . #S do

s̃ ← s̃ + 〈si , s̃〉2 s̃i , d ← d + 〈si , d〉2 s̃i

3: compute ϑ as in (4.5b) with γ �
1
‖s‖22
〈s̃ , s〉2

4: s̃ ← ϑ
(1−ϑ+ϑγ)‖s‖22

(s − s̃), d ← d + 〈s , d〉2 s̃

5: if #S � m then S, S̃← [ ] else S← [S, s], S̃← [S̃, s̃]

Broyden scheme requires storing and operating with n × n matrices,
where n is thedimensionof theoptimizationvariable, and is consequently
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feasible in practice only for small problems. Alternatively, one can restrict
Broyden update rule to only the most recent pairs of vectors (si , yi). As
detailed in Algorithm 8.3, this can be done by keeping track of the last
vectors si and some auxiliary vectors s̃i �

si−Hi ỹi
〈si ,Hi ỹi〉2 . These are stored in

some buffers S and S̃, which are initially empty and can contain up to
m vectors. The memory m is a small integer typically between 3 and 20;
when the memory is full, the buffers are emptied and Broyden scheme
is restarted. The choice of a restarted rather than a limited-memory variant
obviates theneedof anested for-loop to account forPowell’smodification.

8.6.4 Parameters selection in SuperMann
As shown in Theorem 8.16, the SuperMann scheme makes sense as long
as either c0 > 0 or c1 > 0; indeed, safeguard K2-steps are only needed for
globalization, while it is blind K0- and educated K1-steps that exploit the
quality of the directions dk . Evidently, K1-updates are more reliable than
K0-updates in that they take into account the residual of the candidate
next point. As such, it is advisable to select c1 close to 1 and use small
values of c0 if more conservatism and robustness are desired. To further
favor K1-updates, the parameter q used for updating the safeguard rsafe
at step 5(a)may be also chosen very close to 1.

As to safeguard K2-steps, a small value of σ makes condition (8.24)
easier to satisfy and results in fewer backtrackings; the averaging factor
λ may be chosen equal to 1 whenever possible, i.e., if α � 1 (which is
the typical case when, e.g., T comes from splitting schemes in convex
optimization), or any close value otherwise. In the simulations of Section
8.7 we used c0 � c1 � q � 0.99, σ � 0.1, λ � 1 and β � 1/2. For a matter of
scaling, we multiplied the summable term qk by ‖Rx0‖ in updating the
parameter rsafe at step 5(a). The directions were computed according to
the restarted modified Broyden scheme (Alg. 8.3) with memory m � 20
and ϑ̄ � 0.2; we applied the truncation rule as in Remark 8.20 with
D � 104. We also imposed a maximum of 8 backtrackings after which a
nominal Vũ-Condat iteration would be executed.

8.6.5 Comparisons with other methods
Hybrid global and local phase algorithms

Blind K0-updates in the SuperMann scheme are inspired from [27, Alg. 1],
and so is the notation K0 � {k0 , k1 , . . .}.
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Educated K1- and safeguard K2-updates instead play the role of in-
ner- and outer-phases in the general algorithmic framework described
in [54, §5.3] for finding a zero of a candidate merit function ϕ (e.g.
ϕ(x) � 1

2 ‖Rx‖2 in our case). Differently from [54, Alg. 5.16] where all
previous inner-phase iterations are discarded as soon as the required suf-
ficient decrease is notmet, the SuperMann scheme allows for an alternation
of phases that eventually stabilizes on the fast local one, provided the so-
lution is sufficiently regular. Our scheme is more in the flavor of [54, Alg.
5.19], although with less conservative requirements for triggering inner
K1-updates (ϕ(xk+1) is here compared with ϕ(xk), whereas in the cited
scheme with the smallest past value).

Inexact Newton methods for monotone equations

TheGKMupdates are closely related to the extra-gradient steps described
in [94, Alg. 2.1]. This work introduces an inexact Newton algorithm for
solving systems of continuous monotone equations Rx � 0, where id−R
needs not be nonexpansive. At a given point x, first a direction d is
computed as (possibly approximate) solution of Gd � −Rx, where G is
some positive definite matrix; then, an intermediate point w � x + τd is
retrieved with a line search on τ that ensures the condition

‖Rw‖2 − 〈Rw , x − Tw〉 ≤ − στ‖d‖2 (8.31)

for some σ > 0; here, we defined T B id − R to highlight the symmetry
with (8.19). Finally, the new iterate is given by

x+
� ΠHw x where Hw B

{
z ∈ H | ‖Rw‖2 − 〈Rw , z − Tw〉 ≥ 0

}
.

(8.32)
Letting Cw be the half-space as in Prop. 8.10, so that x+

GKM � ΠCw x
(for simplicity we set λ � 1), for the half-spaces (8.32) it holds that

zer R ⊆ Cw ⊆ Hw ,

the last inclusion holding as equality iff Rw � 0. This means that in
the GKM scheme, the same w yields an iterate x+

GKM which is closer to
any z ∈ zer R with respect to x+ (cf. Fig. 8.6). Notice further that the
hyperplanes delimiting the two half-spaces are parallel, with bdry Cw
passing by Tw (or T1/2αw for generic α’s) and bdry Hw by w.

The requirement of positive definiteness of matrix G in defining the
update direction d is due to the fact that [94] addresses a broader class of
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Figure 8.6: The positive definiteness of G prevents the update directions d in the
scheme of [94] to point in the gray-shaded area. As a result, differently from the
GKM scheme the cited algorithm is not robust to any choice of direction (e.g., it
cannot accept the one as in Figure 8.5). In any case, the half-space Cw onto which
x is projected according to the GKM scheme is properly contained in the half-space
Hw corresponding to the update of [94]; consequently, the GKM update is always
closer to any solution.

monotone operators; we instead exploited at full the nonexpansiveness
of id − R and as a result have complete freedom in selecting d (Fig. 8.6a)
and better projections (Fig. 8.6c).

Line-search for KM

The recent work [42] proposes an acceleration of the classical KM scheme
for finding a fixed point of an α-averaged operator T based on a line
search on the relaxation parameter. Namely, instead of the nominalupdate
x̄ � Tλx with λ ∈ [0, 1/α] as in (8.18), values λ′ > 1/α are first tested and
the update x+ � Tλ′x is accepted as long as ‖Rx+‖ ≤ c1‖Rx̄‖ holds for
some constant c1 ∈ (0, 1).

In the setting of the SuperMann scheme, this corresponds to selecting
dk � −Rxk , discarding blind updates (i.e., setting c0 � 0), foretracking
educated updates and using plain KM iterations as safeguard steps. Con-
vergence can be enhanced and the method is attractive when T � S2 ◦ S1
is the composition of an affine mapping S1 and a cheap operator S2, in
which case the line search is inexpensive. However, though preserving
the same theoretical convergence guarantees of KM (hence of the Super-
Mann scheme), it does not improve its best-case local linear rate.

Although other choices dk may also be considered, however fast di-
rections such as Newton-type ones would be discarded and replaced by
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nominal KMupdates every time the candidate point xk+dk does notmeet
some requirements. Avoiding this take-it-or-leave-it behavior is exactly
the primary goal of GKM iterations, so that candidate good directions
are never discarded.

8.7 Simulations
We conclude with some numerical examples to give tangible evidence
of the robustifying and enhancing effect that the SuperMann scheme has
on fixed-point iterations. In all simulations we deactivated blind updates
by setting c0 � 0, and we selected σ � 10−3 for safeguard updates and
c1 � q � 1−σ for educatedupdates.Due toproblemsizeweused restarted
Broyden directions with a memory buffer of 20 vectors.

8.7.1 Cone programs
We consider cone problems of the form

minimize
x∈�n

〈c , x〉 s.t. Ax + s � b , s ∈ K (8.33)

whereK is a nonempty closed convex cone. Almost any convex program
can be recast as (8.33), and many convex optimization solvers address
problems by first translating them into this form. The KKT conditions for
optimality of the primal-dual couple

((x?, s?), (y?, r?)) are
Ax? + s? � b , s? ∈ K, A>y? + c � r?, r? � 0, y? ∈ K?, c>x? + b>y? � 0

where K ∗ is the dual cone of K . A recently developed conic solver for
(8.33) is SCS [75], which solves the corresponding so-called homogeneous
self-dual embedding

find u ∈ C s.t. Qu ∈ C∗ (8.34)

where

C � �n ×K ∗ ×�+ and Q �


0 A> c
−A 0 b
−c> −b> 0

 .
Problem (8.34) can be equivalently reformulated as the variational in-
equality

find u ∈ C s.t. 0 ∈ Qu + NC(u). (8.35)
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Indeed, for all u ∈ C we have

NC(u) �
{

y | 〈v − u , y〉 ≤ 0 ∀v ∈ C} � {u}⊥ ∩ {
y | 〈v , y〉 ≤ 0 ∀v ∈ C}

� {u}⊥ ∩ (−C∗)

where the second equality followsby considering, e.g., v �
1
2 u and v �

3
2 u,

which both belong to C being it a cone. From this equivalence and the
fact that Qu ∈ {u}⊥ for any u due to the skew symmetry of Q, the
equivalence of (8.34) and (8.35) is apparent. This leads to the short and
elegant interpretationof SCSasDouglas-Rachford splitting (DRS) applied
to the splitting NC + Q in (8.35), which, after a well known change of
variables and index shifting, reads

ũk+1 ≈ (I + Q)−1(uk + vk)
uk+1 � ΠC(ũk+1 − vk)
vk+1 � vk − ũk+1 + uk+1.

(8.36)

The “≈” symbol refers to the fact that vk may be retrieved inexactly
by means of conjugate gradient method (CG); see [75] for a detailed
discussion.

Here we consider instead DRS applied to the (equivalent) splitting
Q + NC in (8.35), namely

vk+1 ≈ (I + Q)−1(uk)
wk+1 � ΠC(2vk+1 − uk)
uk+1 � uk + wk+1 − vk+1.

(8.37)

For any initial point u0, the variable vk converges to a solution to (8.35)
[10, Thm. 26.11]. DRS is a (firmly) nonexpansive operator and as such
it can be integrated in the SuperMann scheme with λ ∈ (0, 2); in these
simulations we set λ � 1.

We run a cone problem (8.33) of size m � 487 and n � 325, with
dens(A) � 0.01 and cond(A) � 100, both by solving exactly the linear
systems and by adopting the CG technique. C is the cartesian product
of all the primitive cones implemented in SCS solver: positive orthant,
second-order, positive semidefinite, (dual) exponential, and (dual) power
cones. We reported primal residual, dual residual, and duality gap; con-
sistently with SCS’ termination criterion, the algorithm is stopped when
all these quantities are below some tolerance [75, §3.5], which we set to
10−6.
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Figure 8.7: Comparison between Splitting Cone Solver [75] (blue) and its enhance-
ment with the SuperMann scheme for solving a cone program (8.33).
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(a) On the x-axis the number of times a linear system is solved, the most expensive
operation, needed for computing the resolvent of Q. SCS performs quite well, however its
super-enhancement converges considerably faster in terms of operations.
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(b) Comparison with respect to the same problem, but with linear systems solved approx-
imately with CG on a reduced system. On the x-axis the number of times the operators
A and A>are called, which amount to the most expensive operations. Apparently, solving
the system inexactly does not affect the comparison between SCS and super-SCS.

Notice that if u solves (8.34), or equivalently (8.35), then so does any
multiple tu with t > 0. In particular no isolated solution exists, and
therefore whenever the residual R of the DRS operator is differentiable
at a solution u?, JR(u?) is singular. Fortunately, the SuperMann scheme
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does not necessitate nonsingularity of the Jacobian but merely metric
subregularity, the same property that enables linear convergence rate
of the original DRS (or equivalently SCS). In particular, whenever the
original SCS scheme is linearly convergent, the SuperMann enhancement
is provably superlinear provided that R is strictly differentiable at the
limit point. However, since restarted Broyden directions are implemented
instead of the full-memory method, rather than superlinear convergence
we expect an “extremely steep” linear convergence.

In Figure 8.7 we can observe how the original SCS scheme (blue)
converges at a fair linear rate; however, its super-enhancement greatly
outperforms it both when solving linear systems exactly and approxi-
mately.

8.7.2 Lasso
We consider a lasso problem

minimize
x∈�n

1
2 ‖Ax − b‖2 + ν‖x‖1

where A ∈ �m×n , b ∈ �m and ν > 0. In Figure 8.7 the comparison of
forward-backward splitting (or proximal gradient, in blue) and its super-
enhanced version (red) on a random problem with m � 1500 n � 5000
and ν � 10−2. On the x-axis the number of matvecs, being them the most
expensive operations of FB and hence of super-FB, and on the y-axis the
fixed-point residual. Though superlinear convergence cannot be observed
due to the fact that a limited-memory method is used for computing
directions, however an outstanding speedup is noticeable.

8.7.3 Constrained linear optimal control
For matrices At and Bt of suitable size, t � 0, . . . ,N − 1, consider a state-
input dynamical system

xt+1 � At xt + Bt ut , t � 0, . . . ,N − 1, (8.38a)

where the x0 ∈ �nx is given, and the next states xt ∈ �nx are deter-
mined by the user-defined inputs uτ ∈ �nu , τ � 0, . . . , t − 1. States
x � (x1 , . . . , xN ) canbe expressed in termsof the inputs u � (u0 , . . . , uN−1)
through a linear operator L ∈ �Nnx×Nnu as x � Lu + b for some constant
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Figure 8.7: Comparison between FBS and Super-
FBS (using modified Broyden limited-memory di-
rections) in a lasso problem.

b ∈ �Nnx . The goal is to choose inputs that minimize a cost

`(u , x) �
N−1∑
t�0

`t(ut , xt) + `N (xN ) (8.38b)

subject to some constraints

xt+1 ∈ Xt+1 , ut ∈ Ut , t � 0, . . . ,N − 1. (8.38c)

Vũ-Condat splitting

The constraint sets in (8.38c) are typically simple and easy to project
onto (boxes, Euclidean balls. . . ). However, while simple input constraints
can be easily handled, due to the coupling enforced by the dynamics
(8.38a), expressing Xt+1 in terms of the optimization variable u results
in much more complicated sets (polyhedra, ellipsoids. . . ). To avoid this
complication we make use of the extremely versatile algorithm that Vũ-
Condat three-term splitting offers [31, Alg. 3.1]. In its general form, the
algorithm addresses problems of the form

minimize
x∈�n

f (x) + g(x) + h(Lx) (8.39)

where f : �n → � is convex with L f -Lipschitz continuous gradient,
g : �n → � and h : �m → � are convex, and L ∈ �n×m , by iterating the
following steps: {

x+ � proxτg
(
x − τ(∇ f (x) + L>y))

y+ � proxτh∗
(
y + σL(2x+ − x)) . (8.40)

186



Here, 0 < τ < 2
L f

and 0 < σ < 1
‖L‖2

( 1
τ −

L f
2
)
are stepsizes, and y ∈ �m

is a Lagrange multiplier. Vũ-Condat splitting is a primal-dual method
that generalizes FBS by allowing an extra nonsmooth term h and a linear
operator L (by neglecting h and L one recovers the proximal gradient
iterations of FBS).

The optimal control problem (8.38) can be cast into Vũ-Condat split-
ting form (8.39) by simply letting f (u) � `(u , Lu), g � δU and h �

δX( · + b), where U � U0 × · · · × UN−1 and X � X1 × · · · × XN (in par-
ticular, n � Nnu and m � Nnx). Then, proxτg � ΠU and proxσh∗(y) �
y − σΠX(σ−1 y + b) + b. Notice that ΠU and ΠX are fully decoupled as
the projection of each input and state onto the corresponding constraint
set. Moreover, the full matrix L needs not be computed, as both L and L>
can be treated as abstract operators that simulate forward and backward
dynamics.

Apparently, the appeal of Vũ-Condat splitting in addressing the op-
timal control problem lies in the extreme simplicity of its operations and
low memory requirements, making it particularly suited for medium-to-
large-scale problems in which traditional interior point algorithms fail.
However, like all first-order methods it is extremely sensitive to ill con-
ditioning, which gets worse as the problem size increases. Fortunately,
this splitting fits into the SuperMann framework. The operator T that
maps (x , y) into (x+ , y+) as in (8.40) is averaged in the Hilbert space
HP , where HP is defined as �n × �m equipped with the scalar product
〈z , z′〉P B 〈z , Pz′〉, where P B

(
τ−1I −L>
−L σ−1I

)
[31, proof of Thm. 3.1].

Oscillating masses experiment

We tried this approach on the benchmark problem of controlling a chain
of oscillatingmasses connected by springs andwith both ends attached to
walls. The chain is composed of 2K bodies of unitmass subject to a viscous
friction of 0.1, the springs have elastic constant 1 and no damping, and
the system is controlled through K actuators, each being a force acting on
a pair of masses, as depicted in Figure 8.8. Therefore nx � 4K (the states
are the displacement from the rest position and velocity of each mass)
and nu � K. The inputs are constrained in [−2, 2], while the position and
velocity of each mass is constrained in [−5, 5].

The continuous-time system was discretized with a sampling time
Ts � 0.1s. We considered quadratic stage costs 1

2 x>Qx for the states and
1
2 u>u for the inputs, where Q is diagonal positive definite with random
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diagonal entries, and generated a random (feasible) initial state x0. No-
tice that a QP reformulation would require the computation of the full
cost matrix, differently from the splitting approach where only the small
dynamics matrices A and B are needed, as L and L>can be abstract oper-
ators.

u1

u2

· · ·

uK−1

uK

Figure 8.8: Oscillating masses

We simulated different scenarios for all combinations of K ∈ {8, 16}
and N ∈ {10, 20, 30, 40, 50}. We compared Vu-Condat splitting (VC) with
its ‘super’ enhancement (SuperVC); parameters were set as detailed in
Section 8.6.4. Table 8.1 offers an overview of the experiment: SuperVC
is roughly 13 times faster on average and 21 times better in worst-case
performance than VC algorithm in reaching the termination criterion
‖Rxk ‖ ≤ 10−4‖Rx0‖.

Number of calls to L and L>(×103)
K � 8 N � 10 N � 20 N � 30 N � 40 N � 50

avg max avg max avg max avg max avg max
VC 19.0 337.1 15.0 174.4 25.0 400+ 21.0 136.5 16.0 61.9

SVC 1.0 5.5 1.0 4.3 2.0 19.3 2.0 10.9 2.0 6.6

K � 16 N � 10 N � 20 N � 30 N � 40 N � 50
avg max avg max avg max avg max avg max

VC 62.0 400+ 30.0 344.9 30.0 400+ 65.0 400+ 29.0 318.6
SVC 4.0 39.5 2.0 11.6 3.0 46.6 8.0 58.1 3.0 26.1

Table 8.1: Comparison between Vũ-Condat algorithm (VC) and its “super” en-
hancement (SuperVC) in solving the oscillating masses problem with ‖Rxk ‖ ≤
10−4‖Rx0‖ as termination criterion. Average and worst performances among 25
simulations with randomly generated starting point x0 for each combination of
K ∈ {8, 16} and N ∈ {10, 20, 30, 40, 50}. The tables compare the number of calls
to the operators L and L>, which are the expensive operations (the rest are projections
on boxes). In four problems Vũ-Condat exceeded 4 · 105 many calls (corresponding
to 105 iterations) and was stopped prematurely.
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Conclusions

In this thesis we carried out an in-depth analysis of splitting algorithms in
the nonconvex setting. Themain contribution and novelty of themethod-
ology is twofold:

• We pioneered a general framework where splitting algorithms are
represented and identified by two components: an innermajorizing
model, and an outer transformation mapping. The properties of
what we defined “proximal” models set the ground for building a
solid theory of convergence, reminiscent of that of Lyapunov type
that ensures stability of dynamical systems. Proximal envelopes, here
generalized for any splitting algorithm covered by the framework,
proved to be suitable such Lyapunov functions.

• Building upon the proposed framework, a new linesearch strat-
egy was proposed. Solely based on the continuity of the Lyapunov
functions, property enjoyed by the investigated proximal envelopes,
the Continuous-Lyapunov Descent paradigm (CLyD) allows to cus-
tomize any proximal algorithm with arbitrary update directions.
Once again proximal envelopes prove to be the perfect Lyapunov
candidates, as (1) they allow to preserve the operational complex-
ity of the underlying splitting algorithms, and (2) robustify CLyD
against the Maratos effect: when good directions are selected, uni-
tary stepsize is eventually always accepted and fast convergence
thus triggered.

For both the forward-backward and the Douglas-Rachford splittings, it
is shown how the solution of elementary algebraic inequalities is enough
for obtaining bounds on stepsizes and relaxation parameters so as to
ensure convergence. Nevertheless, with more sophisticated analysis of
the Douglas-Rachford envelope, tight convergence result were derived.
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In light of a primal equivalence between the algorithms, as a byproduct
tight convergence results for ADMMwere easily inferred.

A CLyD-like framework restricted to convex splitting algorithms was
also proposed. Although bound to convexity, the SuperMann scheme al-
lows to accelerate pretty much any splitting algorithm, including those
with a purely primal-dual nature that cannot be captured by proximal
envelopes, as it is the case of the recent Vũ-Condat splitting.

Future directions

This thesis already accomplished someof the open researchdirections ad-
vanced in [97], such as a higher-order analysis of the Douglas-Rachford
envelope, the derivation of Douglas-Rachford splitting-based Newton-
type methods, and the consequent adaptation of the findings to the
ADMM. Nevertheless, other promising workplans such as the integra-
tion with augmented Lagrangian methods therein suggested have not
been covered yet. In this perspective, we believe that the CLyD frame-
work constitutes a valid tool for the achievement of such goals.

The analysis of other algorithms such as the proximal ADMM and
the Chambolle-Pock splitting [26] in a fully nonconvex setting is already
being investigated. Partially presented at an invited workshop of the 2018
European Control Conference, the study is providing further evidence
in support of the potential of the proximal framework pioneered in the
thesis.

Nevertheless, further extensions are also being taken into considera-
tion:

• Bregman-type models. A challenging yet extremely powerful possible
generalization of the framework consists in replacing the quadratic
bounds defining the proximal models with a nonsymmetric Bregman
distance. Embracing Bregman-type extensions of popular algorithms
in a unified framework and consequently simplify their arduous con-
vergence analysis is an attractive prospect: not only would this consid-
erably widen the range of covered methods, but it would also open the
possibility to provide new purely primal interpretations of algorithms
that are so far only understood through duality arguments, such as the
Vũ-Condat splitting. Thus, similarly to what done in the thesis with
the ADMM, nonconvex (and quasi-Newton) primal-dual algorithms
would then be possible.
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• Block-coordinate and matrix-free variants. When facing the “big-data” re-
ality, operating with huge variables and/or matrices may constitute a
problem. Do to their amenability to operate on small portions of the
problem at a time, incorporating randomized and block-coordinate
variants in the investigated framework would create a major impact on
modern huge-scale applications such as those arising inmachine learn-
ing. An efficient management of matrices and even high-order tensors
is already being investigated for the funded EOS SeLMA project,2 and
applications on embedded hardware with low memory and computa-
tional capabilities have already produced promising accomplishments
[3, 93].

• Higher-order smoothing.The seemingly impractical employmentof third-
order information in smooth minimization was recently shown to be
feasible in some special cases [73]. A question then arises as to whether
the proximal framework can be extended so that envelopes may take
advantage of higher order smoothness, in such a way that more prob-
lems can be solved with the third-order techniques proposed. Mo-
tivated by the known smoothing effect that proximal minimization
reflects on the Moreau envelope, an intuitive approach would be to
analyze higher-order properties of the envelope functions in attempt
to broaden the class of problems for which such a method is “imple-
mentable”. Alternatively, the investigated frameworkmay be restricted
to higher-order MMmodels, although this option may lead to difficult
evaluations of the resulting MM mapping (the inner minimization
problems).

Ultimately, it would be desirable to address some technical questions
that, although supported by much evidence, so far have only been con-
jectured. One of these regards the often observed good performance of
BFGS directions in the CLyD framework. We suppose that this behavior
owes to fact that, despite being nonsymmetric, the involved Jacobians are
similar to symmetric and positive definite matrices, hence in particular
have all strictly positive eigenvalues. We also consider analyzing the it-
erations from a manifold perspective, whence results on partly smooth
functions may prove to be useful [59, 32].

Another still unanswered issue relates to the assumptions needed for
ensuring global and linear convergence of proximal algorithms and their

2Structured Low-Rank Matrix/Tensor Approximation, https://www.esat.kuleuven.
be/stadius/selma/. Fonds de la Recherche Scientifique — FNRS and the Fonds Weten-
schappelĳk Onderzoek — Vlaanderen under EOS Project 30468160 (SeLMA).
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CLyD enhancements. In particular, we have reasons to believe that the
requirement of prox-regularity needed for the FBE to satisfy the error
bound inequality as in Theorem 5.11(ii) could be dropped. As equation
(5.10) indicates, answering the conjecture boils down to showingwhether
or not for arbitrary proper, lsc, and prox-bounded functions g the follow-
ing equality holds

limsup
w→x
w , x

proxγg(w) � proxγg(x),

stronger than the mere inclusion ‘⊆’ ensured by outer semicontinuity of
proxγg . The closest we got to a positive answer is by either assuming the
nonsmooth term to be an indicator function, or the proximal mapping to
be at most two-valued (around the critical points of interest).

In the same spirit, succeeding in reducing the assumptions to ensure
superlinear convergence of the investigated algorithms would also be ex-
tremely appealing. A first step in this direction was obtained with the Su-
perMann scheme, which was shown to achieve superlinear convergence
under no nonsingularity requirements, but merely metric subregular-
ity (and suitable regularity assumptions). A similar result was recently
achieved in [101], where the semismooth forward-backward truncated-
Newton method first proposed in [80] was suitably adapted to the CLyD
framework. Other than considerably simplifying the convergence anal-
ysis, this modification was the turning point that allowed to drop the
nonsingularity assumption and to further reduce the other needed regu-
larity requirements.
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splitting with applications to monotone inclusions in duality. Optimization,
63(9):1289–1318, 2014.

[31] Laurent Condat. A primal-dual splitting method for convex optimization
involving lipschitzian, proximable and linear composite terms. Journal of
Optimization Theory and Applications, 158(2):460–479, 2013.

[32] Aris Daniilidis, Warren Hare, and Jérôme Malick. Geometrical interpreta-
tion of the predictor-corrector type algorithms in structured optimization
problems. Optimization, 55(5-6):481–503, 2006.

[33] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinan Gün-
türk. Iteratively reweighted least squares minimization for sparse recovery.
Communications on Pure and Applied Mathematics, 63(1):1–38, 2010.

[34] Asen L. Dontchev and R. Tyrrell Rockafellar. Regularity and conditioning
of solutionmappings in variational analysis. Set-ValuedAnalysis, 12(1-2):79–
109, 2004.

[35] Jim Douglas and Henry H. Rachford. On the numerical solution of heat
conduction problems in two and three space variables. Transactions of the
American Mathematical Society, 82(2):421–439, 1956.

[36] Dmitriy Drusvyatskiy and Adrian S. Lewis. Error bounds, quadratic
growth, and linear convergence of proximal methods. Mathematics of Oper-
ations Research, 2018.

195



[37] Yuri M. Ermol’ev and A. D. Tuniev. Random Fejér and quasi-Fejér se-
quences. Theory of Optimal Solutions—Akademiya Nauk Ukrainskoı SSR Kiev,
2:76–83, 1968.

[38] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequal-
ities and complementarity problems, volume II. Springer, 2003.

[39] Haw-ren Fang and Yousef Saad. Two classes of multisecant methods for
nonlinear acceleration. Numerical Linear Algebra with Applications, 16(3):197–
221, 2009.

[40] Daniel Gabay. Chapter IX applications of the method of multipliers to
variational inequalities. In Michel F. and Roland G., editors, Augmented
Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value
Problems, volume 15 of Studies in Mathematics and Its Applications, pages
299–331. Elsevier, 1983.

[41] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of
nonlinear variational problemsviafinite element approximation. Computers
& Mathematics with Applications, 2(1):17–40, 1976.

[42] Pontus Giselsson, Mattias Fält, and Stephen Boyd. Line search for averaged
operator iteration. In 2016 IEEE 55th Conference on Decision and Control
(CDC), pages 1015–1022, Dec 2016.

[43] Roland Glowinski. On alternating direction methods of multipliers: A
historical perspective. In W. Fitzgibbon, Y. A. Kuznetsov, P. Neittaanmäki,
and O. Pironneau, editors,Modeling, Simulation and Optimization for Science
and Technology, pages 59–82. Springer Netherlands, Dordrecht, 2014.

[44] Roland Glowinski and Americo Marrocco. Sur l’approximation, par élé-
ments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe
de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling
and Numerical Analysis - Modélisation Mathématique et Analyse Numérique,
9(R2):41–76, 1975.

[45] Max L. N. Goncalves, Jefferson G. Melo, and Renato D. C. Monteiro. Con-
vergence rate bounds for a proximal ADMM with over-relaxation stepsize
parameter for solving nonconvex linearly constrained problems. ArXiv
e-prints, February 2017.

[46] Ke Guo, Deren Han, and Ting-Ting Wu. Convergence of alternating direc-
tion method for minimizing sum of two nonconvex functions with linear
constraints. International Journal of Computer Mathematics, 94(8):1653–1669,
2017.

[47] Osman Güler. New proximal point algorithms for convex minimization.
SIAM Journal on Optimization, 2(4):649–664, 1992.

[48] Robert Hesse, Russel Luke, and Patrick Neumann. Alternating projections
and Douglas-Rachford for sparse affine feasibility. IEEE Transactions on
Signal Processing, 62(18):4868–4881, Sept 2014.

196



[49] Robert Hesse and Russell Luke. Nonconvex notions of regularity and con-
vergence of fundamental algorithms for feasibility problems. SIAM Journal
on Optimization, 23(4):2397–2419, 2013.

[50] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Con-
vex Analysis. Grundlehren Text Editions. Springer Berlin Heidelberg, 2012.

[51] Mingyi Hong, Zhi-Quan Luo, andMeisam Razaviyayn. Convergence anal-
ysis of alternating directionmethod ofmultipliers for a family of nonconvex
problems. SIAM Journal on Optimization, 26(1):337–364, 2016.

[52] Chi-Ming Ip and JerzyKyparisis. Local convergence of quasi-Newtonmeth-
ods for B-differentiable equations.Mathematical Programming, 56(1-3):71–89,
1992.

[53] Franck Iutzeler, Pascal Bianchi, PhilippeCiblat, andWalidHachem. Explicit
convergence rate of a distributed alternating direction method of multipli-
ers. IEEE Transactions on Automatic Control, 61(4):892–904, April 2016.

[54] Alexey F. Izmailov and Mikhail V. Solodov. Newton-type methods for opti-
mization and variational problems. Springer, 2014.

[55] Mark A. Krasnosel’skii. Two remarks on the method of successive approx-
imations. Uspekhi Matematicheskikh Nauk, 10(1):123–127, 1955.

[56] Krzysztof Kurdyka. On gradients of functions definable in o-minimal struc-
tures. Annales de l’institut Fourier, 48(3):769–783, 1998.

[57] Kenneth Lange. MM Optimization Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2016.

[58] Claude Lemaréchal and Claudia Sagastizábal. Practical aspects of the
Moreau-Yosida regularization: Theoretical preliminaries. SIAM Journal on
Optimization, 7(2):367–385, 1997.

[59] Adrian S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM Journal
on Optimization, 13(3):702–725, 2002.

[60] Guoyin Li, Tianxiang Liu, and TingKei Pong. Peaceman–Rachford splitting
for a class of nonconvex optimization problems. Computational Optimization
and Applications, 68(2):407–436, Nov 2017.

[61] Guoyin Li and Ting Kei Pong. Global convergence of splitting meth-
ods for nonconvex composite optimization. SIAM Journal on Optimization,
25(4):2434–2460, 2015.

[62] Guoyin Li and Ting Kei Pong. Douglas-Rachford splitting for nonconvex
optimization with application to nonconvex feasibility problems. Mathe-
matical Programming, 159(1):371–401, Sep 2016.

[63] Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for
nonconvex programming. In Advances in Neural Information Processing Sys-
tems 28, pages 379–387. 2015.

197



[64] Stanislaw Łojasiewicz. Une propriété topologique des sous-ensembles an-
alytiques réels. Les équations aux dérivées partielles, pages 87–89, 1963.

[65] Stanislaw Łojasiewicz. Sur la géométrie semi- et sous- analytique. Annales
de l’institut Fourier, 43(5):1575–1595, 1993.

[66] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of
feasible descentmethods: a general approach. Annals of Operations Research,
46(1):157–178, Mar 1993.

[67] W. Robert Mann. Mean value methods in iteration. Proceedings of the
American Mathematical Society, 4(3):506–510, 1953.

[68] Nicholas Maratos. Exact penalty function algorithms for finite dimensional and
control optimization problems. PhD thesis, Imperial College London (Univer-
sity of London), 1978.

[69] Bernard Martinet. Brève communication. Régularisation d’inéquations va-
riationnelles par approximations successives. Revue française d’informatique
et de recherche opérationnelle. Série rouge, 4(R3):154–158, 1970.

[70] Yuri Nesterov. A method of solving a convex programming problem with
convergence rate o(1/k2). Soviet Mathematics Doklady, 27, 1983.

[71] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,
volume 87. Springer, 2003.

[72] Yurii Nesterov. Gradient methods for minimizing composite functions.
Mathematical Programming, 140(1):125–161, Aug 2013.

[73] YuriiNesterov. Implementable tensormethods in unconstrained convex op-
timization. Technical report, UC Louvain, Center for Operations Research
and Econometrics (CORE), Belgium, 2018.

[74] JorgeNocedal and StephenWright.Numerical optimization. Springer Science
& Business Media, 2006.

[75] Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic
optimization via operator splitting andhomogeneous self-dual embedding.
Journal of Optimization Theory and Applications, 169(3):1042–1068, jun 2016.

[76] Jong-Shi Pang. Newton’s method for B-differentiable equations. Mathemat-
ics of Operations Research, 15(2):311–341, 1990.

[77] Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim.,
1(3):127–239, January 2014.

[78] Panagiotis Patrinos and Alberto Bemporad. Proximal Newton methods for
convex composite optimization. In 52nd IEEE Conference on Decision and
Control, pages 2358–2363, 2013.

[79] Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad. Douglas-
Rachford splitting: Complexity estimates and accelerated variants. In 53rd
IEEE Conference on Decision and Control, pages 4234–4239, Dec 2014.

198



[80] Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad. Forward-
backward truncated Newton methods for convex composite optimization.
ArXiv e-prints, feb 2014.

[81] René A. Poliquin and R. Tyrrell Rockafellar. Amenable functions in opti-
mization. Nonsmooth optimization: methods and applications, pages 338–353,
1992.

[82] René A. Poliquin and R. Tyrrell Rockafellar. Second-order nonsmooth anal-
ysis in nonlinear programming. Recent advances in nonsmooth optimization,
pages 322–349, 1995.

[83] René A. Poliquin and R. Tyrrell Rockafellar. Generalized Hessian prop-
erties of regularized nonsmooth functions. SIAM Journal on Optimization,
6(4):1121–1137, 1996.

[84] RenéA. Poliquin and R. Tyrrell Rockafellar. Prox-regular functions in varia-
tional analysis. Transactions of theAmericanMathematical Society, 348(5):1805–
1838, 1996.

[85] Michael Powell. A hybrid method for nonlinear equations. In Numerical
Methods for Nonlinear Algebraic Equations, chapter 6, pages 87–144. Gordon
and Breach, London, 1970.

[86] Michael J.D. Powell. A fast algorithm for nonlinearly constrained optimiza-
tion calculations. InG.A.Watson, editor,Numerical Analysis, pages 144–157,
Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[87] StephenM. Robinson. Some continuity properties of polyhedral multifunc-
tions. InMathematical Programming at Oberwolfach, pages 206–214. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1981.

[88] R. Tyrrell Rockafellar. Convex analysis. 1970.
[89] R. Tyrrell Rockafellar. Monotone operators and the proximal point algo-

rithm. SIAM Journal on Control and Optimization, 14(5):877–898, 1976.
[90] R. Tyrrell Rockafellar. First- and second-order epi-differentiability in non-

linear programming. Transactions of the American Mathematical Society,
307(1):75–108, 1988.

[91] R. Tyrrell Rockafellar. Second-order optimality conditions in nonlinear
programming obtained byway of epi-derivatives. Mathematics of Operations
Research, 14(3):462–484, 1989.

[92] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis, volume 317.
Springer Science & Business Media, 2011.

[93] Ajay S. Sathya, Pantelis Sopasakis, Ruben Van Parys, Andreas Themelis,
Goele Pipeleers, andPanosPatrinos. Embeddednonlinearmodel predictive
control for obstacle avoidance using PANOC. In 2018 European Control
Conference (ECC), pages 1523–1528, 2018. to appear.

199



[94] Michael V. Solodov and Benav F Svaiter. A globally convergent inexact
Newton method for systems of monotone equations. In Reformulation:
Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pages 355–
369. Springer, 1998.

[95] Pantelis Sopasakis, Andreas Themelis, Johann Suykens, and Panagiotis Pa-
trinos. A primal-dual line search method and applications in image pro-
cessing. In 2017 25th European Signal ProcessingConference (EUSIPCO), pages
1065–1069, Aug 2017.

[96] Giorgos Stathopoulos, Harsh Shukla, Alexander Szucs, Ye Pu, and Colin N.
Jones. Operator splitting methods in control. Foundations and Trends in
Systems and Control, 3(3):249–362, 2016.

[97] Lorenzo Stella. Proximal Envelopes: Smooth Optimization Algorithms for Non-
smooth Problems. PhD thesis, KU Leuven, Belgium, 2017.

[98] Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos. Forward-
backward quasi-Newton methods for nonsmooth optimization problems.
Computational Optimization and Applications, 67(3):443–487, Jul 2017.

[99] Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos. Newton-type
alternating minimization algorithm for convex optimization. IEEE Transac-
tion on Automatic Control, 64(2), February 2019. to appear.

[100] Lorenzo Stella, Andreas Themelis, Pantelis Sopasakis, and Panagiotis Pa-
trinos. A simple and efficient algorithm for nonlinear model predictive
control. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
pages 1939–1944, Dec 2017.

[101] Andreas Themelis, Masoud Ahookhosh, and Panagiotis Patrinos. On the
acceleration of forward-backward splitting via an inexact Newton method.
In R. Luke, H. Bauschke, and R. Burachik, editors, Splitting Algorithms,
Modern Operator Theory, and Applications. Springer. submitted in August
2018.

[102] Andreas Themelis and Panagiotis Patrinos. SuperMann: a superlinearly
convergent algorithm for finding fixed points of nonexpansive operators.
ArXiv e-prints, Sep 2016.

[103] Andreas Themelis and Panagiotis Patrinos. Douglas-Rachford splitting
and ADMM for nonconvex optimization: tight convergence results. ArXiv
e-prints, Sep 2017.

[104] Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos. Forward-
backward envelope for the sum of two nonconvex functions: Further prop-
erties and nonmonotone linesearch algorithms. SIAM Journal on Optimiza-
tion, 28(3):2274–2303, 2018.

[105] Andreas Themelis, Silvia Villa, Panagiotis Patrinos, andAlberto Bemporad.
Stochastic gradientmethods for stochasticmodel predictive control. In 2016
European Control Conference (ECC), pages 154–159, June 2016.

200



[106] Paul Tseng. On accelerated proximal gradient methods for convex-concave
optimization. Technical report, 2008. Submitted to SIAM Journal on Opti-
mization.

[107] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of ADMM in
nonconvex nonsmooth optimization. ArXiv e-prints, November 2015.

[108] Zongben Xu, Xiangyu Chang, Fengmin Xu, and Hai Zhang. l1/2 regu-
larization: a thresholding representation theory and a fast solver. IEEE
Transactions on neural networks and learning systems, 23(7):1013–1027, 2012.

[109] Ming Yan and Wotao Yin. Self equivalence of the alternating direction
method of multipliers. In R. Glowinski, S. J. Osher, and W. Yin, editors,
Splitting Methods in Communication, Imaging, Science, and Engineering, pages
165–194. Springer International Publishing, Cham, 2016.

[110] Hongchao Zhang and William W. Hager. A nonmonotone line search
technique and its application to unconstrained optimization. SIAM Journal
on Optimization, 14(4):1043–1056, 2004.

[111] Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart,
and Andrew Wynn. Fast ADMM for semidefinite programs with chordal
sparsity. In 2017 American Control Conference (ACC), pages 3335–3340, May
2017.





Unless otherwise expressly stated, all original material of whatever
nature created by Andreas Themelis and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.
Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.
Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:andreas.themelis@imtlucca.it

	Contents
	Abstract
	1 Introduction
	1.1 Contributions and structure the thesis
	1.2 Preliminary material
	1.2.1 Matrices and vectors
	1.2.2 Sequences
	1.2.3 Extended-real-valued functions
	1.2.4 Self-mappings
	1.2.5 Set-valued mappings
	1.2.6 Subdifferential
	1.2.7 (Hypo)convexity
	1.2.8 Smoothness
	1.2.9 Proximal map and Moreau envelope
	1.2.10 Image function


	2 A general framework for the analysis of nonconvex splitting algorithms
	2.1 Analysis of fixed-point iterations
	2.2 Fixed-point iterations in optimization
	2.3 Proximal majorization-minimization
	2.3.1 Proximal majorizing models
	2.3.2 Properties
	2.3.3 Partial ordering

	2.4 Criticality
	2.5 Generalized proximal majorization-minimization
	2.6 Representation of proximal algorithms
	2.6.1 Notational conventions
	2.6.2 The criticality threshold


	3 Proximal envelopes
	3.1 Majorization-minimization value functions
	3.2 Properties
	3.2.1 Inequalities
	3.2.2 Equivalence
	3.2.3 Regularity
	3.2.4 The KL property

	3.3 Lyapunov functions for proximal algorithms
	3.3.1 Sufficient decrease: a-priori estimates

	3.4 Convergence of GPMM algorithms

	4 Acceleration of nonconvex splitting algorithms
	4.1 A new backtracking paradigm
	4.2 The CLyD algorithmic framework
	4.3 Choice of directions
	4.3.1 (L-)BFGS
	4.3.2 A modified Broyden scheme
	4.3.3 Anderson acceleration

	4.4 Global and (super)linear convergence
	4.5 Superlinear convergence

	5 Forward-backward splitting
	5.1 Introduction
	5.2 FBS as a PMM algorithm
	5.3 Forward-backward envelope
	5.3.1 Regularity properties
	5.3.2 First-order differentiability
	5.3.3 Second-order differentiability

	5.4 Convergence results
	5.5 A quasi-Newton FBS
	5.5.1 Global and (super)linear convergence

	5.6 Simulations
	5.6.1 Dictionary learning
	5.6.2 Nonconvex sparse approximation


	6 Douglas-Rachford splitting
	6.1 Introduction
	6.2 DRS as a GPMM algorithm
	6.3 Douglas-Rachford envelope
	6.3.1 Regularity properties
	6.3.2 The DRE as a Lyapunov function

	6.4 Convergence results
	6.4.1 Tightness of the ranges

	6.5 A quasi-Newton DRS
	6.5.1 Global and (super)linear convergence


	7 Alternating direction method of multipliers
	7.1 Introduction
	7.1.1 Overview on nonconvex ADMM

	7.2 A universal equivalence of ADMM and DRS
	7.2.1 An unconstrained problem reformulation
	7.2.2 From ADMM to DRS

	7.3 Convergence results
	7.4 Sufficient conditions
	7.4.1 Lower semicontinuity
	7.4.2 Smoothness

	7.5 A quasi-Newton ADMM
	7.6 Simulations
	7.6.1 Sparse principal component analysis


	8 SuperMann
	8.1 Introduction
	8.1.1 Contributions
	8.1.2 Chapter organization

	8.2 Motivating examples
	8.3 Notation and known results
	8.3.1 Hilbert spaces and bounded linear operators
	8.3.2 Nonexpansive operators and Fejér sequences

	8.4 General abstract framework
	8.4.1 Global weak convergence
	8.4.2 Local linear convergence
	8.4.3 Main idea

	8.5 Generalized Mann Iterations
	8.5.1 The classical Krasnosel'skii-Mann scheme
	8.5.2 Generalized Mann projections
	8.5.3 Line search for GKM

	8.6 The SuperMann scheme
	8.6.1 Global and linear convergence
	8.6.2 Superlinear convergence
	8.6.3 The modified Broyden scheme
	8.6.4 Parameters selection in SuperMann
	8.6.5 Comparisons with other methods

	8.7 Simulations
	8.7.1 Cone programs
	8.7.2 Lasso
	8.7.3 Constrained linear optimal control


	Conclusions
	Future directions

	References

