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Abstract

Access to online electronic database and international patent
data harmonization has enabled more researchers to work
with patent data. This thesis joins the more recent studies
to apply network methodologies to patent data analysis in
order to understand the multi-variable interactions in inno-
vation, knowledge flows, and technological trends.

The first chapter focuses on technology cohort in the patent
family networks and citation networks to investigate how tech-
nologies are integrated in utility invention and the patterns
over time. The consistent technological groups found in this
analysis are compared to the authority-defined system and
provide a more complete coverage.

Chapter 2 focuses on community evolution over time. The
stabilized Louvain method is adopted to improve consistency
and stability of community detection. The majority mapping
algorithm is incorporated for community tracking across time
slices. A new method is developed to identify sets of central
nodes. A case study of patent filed by applicants in Germany
is used to demonstrate and verify the method and the results.

In the last chapter, I apply the methods developed from the
first two chapters to the pharmaceutical sector. Motivated
by the needs to encourage pharmaceutical R&D and promote
globalized innovation, I focus on the effects of being central
with a favorable balance in international market on being cen-
tral in global pharmaceutical R&D collaboration. The descrip-
tive results and a further regression analysis shows positive
effects from export “Coreness” on co-invention centrality. De-
spite causality is not fully resolved, our results show a fun-
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damental relationship between knowledge production and
trade in pharmaceuticals.

xvi



Chapter 1

Introduction

1.1 Background

As a way to protect intellectual property and reward inventions with
commercialized value, the patent system is known to generate informa-
tive indicators for analysis in technological innovation. The availability
of online electronic database and the efforts by worldwide patent au-
thorities to consolidate and harmonize patent data at international level
has made it possible for researchers to work with much more accessi-
ble patent data. Since the Sixties many researchers have used patent
data to measure patent quality, their economic value and possible im-
pact on technological developments and economy. Among the earlier
works, Zvi Griliches investigated the relationship of productivity growth
to R&D expenditure in industry (Gri98), William S. Comanor, and F. M.
Scherer used patent statistics to measure technical change (CS69). Later
researchers like Mariagrazia Squicciarini and Hlne Dernis established an
extended system of patent quality measures (SDC13a), and the global
economic crisis brought up more attention to the role of innovation in
economy, such as the analysis by Angela Hausman and Wesley J. John-
ston (HJ14).

However, most of the well-recognized conventional indicators are
straightforward measures, such as the number of patent applications
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and publications, time needed from filing to grant, number of different
technology classification codes involved, forward and backward citation
counts, etc. Such indicators may be used to track technological changes
and innovation, but when considered alone, will fall short due to sim-
plicity and lack of context, resulting in bias and sometimes contradicting
conclusions as shown in literature.

From 2000 onwards, more researchers started to apply network method-
ologies to patent data analysis in order to understand the multi-variable
interactions in innovation, knowledge flows, and technological trends.
The majority of these studies were based on individual patents, but no
investigation has been done from a cohort perspective.

In the light of this, this study takes the initiative to conduct patent
data analysis by applying network methods in the context of patent fam-
ilies, defined as a set of patent filings taken in various countries to claim
the same priority and to protect the same invention. The patent family
dataset represents patents deemed to have higher economic value in the
international market. It also eliminates the home bias of regional patent
authorities.

The patent database consists of multiple dimensions, including time,
geography (location of applicants and inventors) and technology sectors.
This thesis constructs networks on different dimensions and implements
different methods for community detection, temporal tracking and core
identification. The research involves both descriptive and quantitative
analysis, and the contributions are both methodological and practical, to
the literature of technological innovation.

1.2 Overview

1.2.1 Chapter 1

The first chapter focuses on technology clustering in the patent family
networks and citation networks to investigate how technologies from
different sectors are integrated in utility invention and the changes of
such integration patterns over time. Results of the network approach are

2



compared to the International Patent Classification system (IPC) which
has a authority-defined reference list for each subclass. on the OECD
Triadic Patent Family database, this study constructs a cohort network
based on the grouping of technologies in the same patent families, as
classified by the IPC, and a citation network based on citations between
subclasses of patent families citing each other. In both networks, the
nodes are the IPC subclasses.

I present a systematic network approach which obtains naturally formed
network communities identified using a Lumped Markov Chain method
proposed by Carlo Piccardi (Pic11). I define the intra-community close-
ness weighted by community-level persistence probability as an indica-
tor named coreness to measure the persistent centralness of a node in the
network. This indicator not only highlights the most central technologies
in each time slice, but also helps solve the problem of tracking unidenti-
fied communities continuously over time. Community cores with high-
est coreness throughout all the years can be traced across time slices,
making it possible to investigate two important community character-
istics: consistency (sets of nodes that are persistently found in the same
community with the cores) and changing trends (sets of nodes that are
less persistent, but show a continuous occurrence over time). Compared
to the authority-defined IPC references, the consistent node sets from my
analysis have a more accurate and complete coverage.

The results are verified against several other metrics, including sim-
ple patent counts and patent text similarity from a recent research (ACG18).
The proposed method can be generalized as a network-based approach
to study endogenous community properties of an exogenously devised
classification system. The application of this method may improve accu-
racy and efficiency of the IPC search platform by providing an improved
reference list for the searched subclass. It can also help detect the emer-
gence of new technological focus. However, the changing trends can be
fairly fluctuant due to marginality.
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1.2.2 Chapter 2

In this chapter, I focus on the patent family cohort network and con-
tinue with the efforts of analyzing community evolution over time. I
adopt the stabilized Louvain method for network community detection
to improve consistency and stability. Thomas Aynaud and Jean-Loup
Guillaume proposed this more stable modification to the classic Louvain
modularity optimization method by changing the initial network parti-
tion of each single time slice to the partition found in the previous time
slice (AG10a).

For community tracking, I incorporate the community mapping al-
gorithm from the work by Qinna Wang and Eric Fleury to identify mod-
ular overlaps, which are groups of nodes or sub-communities shared by
several communities (WF10a). The tracked communities are the ones
containing the largest overlap. I have also developed a new method to
identify the central nodes based on the temporal evolution of the net-
work structure itself: For each node found in a given community at the
initial time slice, the higher occurrence it has in the given community’s
tracked communities in the following time slices, the more central the
node is.

A case study of patent filed by applicants in Germany is used to
demonstrate and verify the application of the method and the results.
The results are verified against industry literature and robustness checks.
Methodologically, our method contributes to the literature of temporal
networks analysis with a new approach. In terms of application, it is the
first of such in patent data analysis. Compared to the non-network met-
rics and other conventional network measures, my method has found
similar results and is more efficient in showing which nodes are the most
central and investigating the evolution of the community containing cer-
tain technologies of interest.

1.2.3 Chapter 3

In this chapter, I apply the methods and experience from the first two
chapters to find the relationships between the innovation collaboration

4



network and the world input-output network, and focus on the pharma-
ceuticals sector, a R&D-driven sector with increasing innovation activi-
ties worldwide in the recent decades.

Literature suggests that cross-national knowledge diffusion can boost
overall globalization of innovation, and international R&D collabora-
tion in patenting is one of the ways of such diffusion. Researchers have
found innovation as a positive factor for firm-level and national export-
ing (Gre90; Wak98a; And99; RL02). This paper analyzes whether the pos-
itive relationship exists the other way around: How does export affect
innovation? I construct a cross-national inventor collaboration network
based on pharmaceutical patent co-inventions, and use the World Input-
Output Database as the international trade network. Through commu-
nity detection and centrality calculation for both networks, I demonstrate
how countries are grouped into communities in either network and how
the groupings change over time. Then I obtain a panel data set involving
each country’s “Coreness” in the co-invention network and the input-
output network. Together with other relevant variables, I perform re-
gression analysis. The result shows positive effects of being central with
a favorable balance in international market on being central in global
pharmaceutical R&D collaboration, but the effects of drug prices remain
inconclusive. This analysis may provide evidence for decision makers to
use trade strategies to enhance national R&D impact and contribute to
globalized innovation.

5



Chapter 2

Consistency and Trends of
Technological Innovations:
A Network Approach to the
International Patent
Classification Data

Abstract

Classifying patents by the technology areas they pertain is important to
enable information search and facilitate policy analysis and socio-economic
studies. Based on the OECD Triadic Patent Family database, this study
constructs a cohort network based on the grouping of IPC subclasses in
the same patent families, and a citation network based on citations be-
tween subclasses of patent families citing each other. This paper presents
a systematic analysis approach which obtains naturally formed network
clusters identified using a Lumped Markov Chain method, extracts com-
munity keys traceable over time, and investigates two important com-
munity characteristics: consistency and changing trends. The results are
verified against several other methods, including a recent research mea-
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suring patent text similarity. The proposed method contributes to the lit-
erature a network-based approach to study the endogenous community
properties of an exogenously devised classification system. The appli-
cation of this method may improve accuracy and efficiency of the IPC
search platform and help detect the emergence of new technologies.

2.1 Introduction

As a form of intellectual property, a patent grants the inventor and/or
owner of an invention a set of exclusive property rights to legally prevent
others from commercially exploiting the invention without the patent
owners permission. Patent search allows inventors and entrepreneurs to
avoid duplicate efforts and explore promising opportunities, and facili-
tates researchers and policy-makers to monitor technology development
activities. Such searches are based on patent attributes, among which
one of the most important is the technology field classification. A good
classification system has to categorize patents based on the technologies
their pertain accurately and efficiently, with an updated reflection of the
technological development trends.

This study integrates the OECD triadic family dataset with individual
patent information and citation data, along with additional datasets from
national patent authorities to construct a family-cohort network based on
patent family grouping, and a citation network based on citation connec-
tions across families. Using citation linkages to study scientific and tech-
nological landscapes and changes over time is a popular approach for the
analysis of both patents and scientific publications(BKB05; BBK08). In
our analysis we combine citation-based and patent family data to study
the patent landscape over time through the lens of network analysis.

In both networks, the nodes are subclass-level codes of the Interna-
tional Patent Classification (IPC) extracted from each patent’s classifica-
tion information. Assigning a patent with IPC codes that correctly and
thoroughly describe its nature is not only important in properly recog-
nizing the novelty values, but also determines the efficiency and costs
of patent filing and searching. Our analysis has found that naturally

7



formed network clusters contain more information than the IPC-defined
references can explain. This study also develops a measurement based
on the closeness centrality inside a cluster and the cluster’s persistence
to evaluate each node’s “coreness.” This indicator has been used to es-
tablish a systematic method for community tracking and analysis over
time.

2.2 Literature

The IPC system was established out of the Strasbourg Agreement of 1971
to provide a hierarchical technology classification system of language in-
dependent symbols for patents and utility models (WIP17a) and is now
used by more than 100 countries as the major or only classifying method.
The current IPC system is structured in four levels: The top level includes
eight “Sections” corresponding to very coarse technical fields, each sub-
divided into “Classes” at the second level, and then “Subclasses” on the
third level, and finally the finest level “Main groups” and “Subgroups.”
The 2016.01 edition IPC scheme includes 8 Sections, 130 Classes and 639
Subclasses. In this research the subclass codes with the first 4 digits are
used as Squicciarini and co-workers have done in their 2013 report on
OECD patent quality indicators to measure patent scope(SDC13b).

Despite the wide adoption and continuous updating, the discussion
over IPC’s limitations due to lack of precision and easiness of use has
been going on for decades. Harris et al pointed out that the IPC clas-
sifies an invention according to its function whereas the USPC not only
classifies based on the function but also on the industry, anticipated use,
intended effect, outcome, and structure (HAS10). Lai and Wu proposed
a new classification system based on co-citations to replace IPC or USPC
and improve categorization accuracy (LW05). When using the IPC sys-
tem to determine the patentability of an invention, the maximum appli-
cable protection for a filing, or to understand the innovative activities
in a certain field, non-patent-experts often face challenges of ensuring
accuracy and thoroughness of the search results. The current IPC on-
line platform provides two searching strategies: navigate through the

8



complete hierarchic IPC scheme, or search for potential matches by key-
words using the Catchwords feature. The IPC definitions (WIP16b) con-
tain specific information to facilitate search, including references, classi-
fications notes and indexing codes for hybrid systems. But the massive
documentation written in no plain language makes ordinary users prone
to mis-classification, under- or over-classification, causing prolonged fil-
ing processes and costs for revisions required by the patent authority of-
fices. Users from different application fields have attempted to develop
customized search strategies and tools to work with the IPC scheme
(Fog07; MJ05; VHAA+12; YRBY05; YP04). Most of them are based on
text or images in the patent documents using text mining, bibliometric
and semantics methods, and are usually applicable to a specific techno-
logical field only.

We introduce a systematic strategy to assist search with semi-automatic
suggestions and reduce the reliance on domain knowledge or exhaustive
understanding of the IPC scheme itself. Our method does not rely on se-
mantics or manipulation of the patent documents. The network perspec-
tive brings additional information not conveyed by the IPC definitions
or naive counting.g.

2.3 Data

The data used in this analysis is mainly retrieved from the February,
2016 edition OECD patent database (OEC17b), specifically, the Triadic
Patent Families (TPF) database, the REGPAT database, and the Citations
database. To complete the information not included in the OECD datasets,
we have also referred to data from the U.S. National Bureau of Economic
Research (NBER), distributed as a result of Lai and his colleagues’ work
(LDY+11). The JPO data is not included due to scarce matches with
OECD data in the available time period. IPC scheme of edition 2016.01
is used to decode the IPC codes (WIP16a).

The consolidated dataset consists of two parts: the triadic family dataset
and the citation dataset. The former is based on OECD TPF database,
where a patent family is defined as a set of patents taken at USPTO, EPO,
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PCT and JPO that share one or more priorities (OEC09; DK04). A fam-
ily may contain multiple patents, and each patent may be assigned with
multiple IPC codes, some of which might be duplicate among patents.
Patent years information comes from different databases, with complex-
ities such as one patent having several priority filings at different times
among which an earlier priority was granted later. In this study we con-
sistently define the earliest first priority year among all patents under
a family as the family Application Year. The consolidated TPF dataset
covers a time span from 1964 to 2014.

The citation dataset combines the OECD Citations database with the
consolidated TPF dataset. One citing patent could cite multiple patents,
vice versa. Mapping patent and family IDs, we have a master dataset
containing pairs of triadic families connected by citations relationships
as long as any of the citing family’s subordinate patents cites any of the
cited family’s the subordinate patents.

2.4 Network Construction

2.4.1 Family-Cohort Network

The family-cohort network directly stems from the consolidated TPF dataset.
It is a network expression of the way different technology classifications
are grouped into the same family. Only the families with more than one
unique subclass codes are used, and duplicates within each family are
disregarded. It is noteworthy that some earlier classifications might have
been redefined or restructured in the current IPC system. The result is a
symmetric 639 x 639 matrix in which the value of each element is the
number of shared families between the two subclasses indexed by the
row number and the column number. The diagonal values are all zeros
since only unique subclasses are considered. The sum of all the matrix
elements, i.e., the total number of shared families between every two dif-
ferent subclasses, is 9,700,490. In this family-cohort network, the more
edges between two nodes, the more different families they belong to are
in common.
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2.4.2 Citation Network

The citation network represents how IPC subclasses cite each other across
patent families. All the IPC subclasses of each citing and cited patent are
included. In other words, self-citing is included as found by Hall et al
that self-citations are generally more valuable than citations from exter-
nal patent in terms of market value (HJT05). The network matrix is also
639 x 639, but asymmetric and the element values sum up to 13,211,260,
representing the aggregated citation connections from each IPC subclass
of every patent in any citing families to each IPC subclass of every patent
in any cited families.

2.4.3 Temporal Networks

The 2 networks mentioned above are aggregated from all the available
years. in order to capture the changes over time, we split the data by year.
The family-cohort dataset is simply divided by the application year of
each family. For the citation dataset, it is divided by the cited family ap-
plication year over a 5-year forward period to consider forward citations
within 5 years. Forward citation stands for the citations a patent receives.
It’s been widely recognized as an indicator of a given patent’s technolog-
ical influences on subsequent technology development, and, to a certain
extent, the invention’s economic values (THJ97; HSV03; HJT05; SDC13b).
The 5-year window is an empirical setting based on the statistical distri-
bution of foward citation quantities over time: the majority (11.62%) of
the citations are from patents filed 2 years after the cited patent has been
filed, followed by 3 years (11.04%). Also, Squicciarini et al reported that
it typically takes 18 months from patent application to publication, and
showed that the distribution of forward citation numbers is extremely
similar between citation lags of 5 years and 7 years (SDC13b).

In order to build a network with sufficient connections, only the years
with above 0.1% of all patent family applications are used: 1978 to 2013.
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2.5 Network Analysis Methods

2.5.1 Community Identification

The network analysis is carried out in 3 stages: endogenous commu-
nity identification, community tracking over time, and the analysis of
the structure of the communities.

To identify the naturally formed network clusters, we use the ap-
proach proposed by Piccardi (Pic11). In his paper, Piccardi used a mea-
sure called Persistence Probability to evaluate the quality of a cluster.
The Persistence Probability is calculated from an approximate lumped
Markov chain model of the random walker (i.e., a reduced-order Markov
chain in which the communities of the original network become nodes)
derived from the original high-order Markov chain model. Persistence
Probability can be used as a threshold to find out the finest partition in a
given network satisfying the desired quality.

In an N–node network corresponding to an N–state Markov chain,
let wij be weight of the edge from node i to node j, then the probability
for the random walker to transition from i to j is

pij =
wij∑
j wij

(2.1)

Let πi be the probability of the random walker being at node i, and Cc

be a candidate cluster in the given network, the Persistence Probability
of Cc, defined as Ucc can be calculated as

Ucc =

∑
i,j∈Cc

πipij∑
i∈Cc

πi
(2.2)

The problem of community identification can be formulated as: max q
subject to Ucc ≥ α, c = 1,2,...,q, where q is the number of communities in
the entire network. When this method is applied to the family-cohort net-
work, nodes in the same α-community (or cluster) with Persistence Prob-
ability Ucc are IPC subclasses which tend to gather in the same patent
family at a certain likelihood. Larger Persistence Probability indicates
that the random walker is more likely to circulate inside the community
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than visiting another community. In the citation network, nodes in the
same cluster represent the IPC subclasses which tend to cite each other
at a certain Persistence Probability.

2.5.2 Community Tracking

For each year’s network, the clusters are identified by sequential num-
bers which are not compatible with another year because the sequen-
tial numbers cannot be anchored to a reference system such as the IPC
scheme titles. To understand how a certain endogenous community changes
over time requires a method to attach a non-network tag to it. We pro-
pose a method to track an endogenous community by its most represen-
tative member, referred to as the “key” hereinafter.

To do so, we have developed a measure named Coreness as the close-
ness centrality of a given node (IPC subclass) within community, weighted
by the Persistence Probability of its community. Utilizing the distance dij

calculated during community identification, Coreness Cic of node i in
community c is formulated as

Cic =
1

d̄ijn
n−1

Ucc =
n− 1

d̄ijn
Ucc, (2.3)

where n is the number of nodes in community c. Coreness is an indica-
tor of how centrally connected a subclass at community level consider-
ing the network-level community robustness. It can therefore be used to
compare all the nodes in a network, whether they are in the same com-
munity or not. We apply this measure to all the temporal networks. For
consistency, the networks of all years are divided into the same number
of endogenous communities. For each year, all the subclasses are ranked
by Coreness from high to low. We then calculate the average ranking
over time to find out the ideal subclass key candidates.

2.5.3 Community Characteristics Identification

In this study, we are interested in what remains stable for a key’s commu-
nity throughout all the examined years, and the non-incidental changes,
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represented by the disappearance or emergence of certain “trending”
subclasses in the community.

To improve robustness, we narrow down the range of community
members to the most persistent ones. As the number of communities N
increases, Persistence Probability drops and communities break down.
More persistent members with stronger connections to the community
key are more likely to stay as N increases. Based on the clustering results,
we set a stability threshold from N=4 to N=12 to cover the more mean-
ingful network divisions where the minimum Ucc is larger than 0.15. For
each year, only the subclasses remaining in the focal community for all
the Ns from 4 to 12 are considered as persistent. We also calculate persis-
tent members’ average Coreness rankings over different Ns to rank them
in each year.

For consistency, the threshold is set to an occurrence of or above 80%
of all times, i.e. a subclass needs to be found in the interested endogenous
community in at least 29 years out of the total span of 36 years. For
changing trends, an exploring criterion sets an occurrence of no more
than 60% of all times, among which at least 3 years are consecutive. So
a subclass must appear in the key’s community in 3 to 19 years to be
considered as a possible technology trend. These criteria help us reduce
the noise to focus on the most noteworthy community characteristics..

2.6 Results

2.6.1 Network Communities

We first examine the networks as an aggregate of all years and all fami-
lies. Using the community identification approach, for the family-cohort
network, the maximum cophenetic correlation coefficient C = 0.75437
is found when time horizon T = 1, meaning that only the neighboring
nodes with non-zero similarity can be candidates for the same commu-
nity members. The largest minimum Persistence Probability is min Ucc =
0.32664 for community number q from 2 to 6, and above 0.1 for q≤25. In
the citation network, the maximum cophenetic correlation coefficient C
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= 0.71717 is found with time horizon T = 1.
When split by year, in some years (e.g. 1978 to 1980) the connections

in the citation networks are too weak to form any identifiable communi-
ties. In other words, the only community is the entire network. This is
largely because the citation network contains fewer distinctive IPC sub-
classes, given that it is a subset of the family-cohort network as a result of
matching with the OECD citation dataset. In the first few years, the pro-
portion of patents with incomplete information and thus lower matching
rates is higher.

2.6.2 Traceable Endogenous Community Keys

We use the method described in Section 4.2 to calculate Coreness for each
of the 639 IPC subclasses from 1978 to 2013. Each temporal network is di-
vided into 8 communities for easier comparison to the 8 IPC sections. No
additional Persistence Probability threshold is applied so that all the par-
ticipating subclasses are covered. We use the average intra-community
Coreness ranking order - rather than the actual Coreness values to find
out the keys because the keys are defined as the representative of com-
munities regardless of community size or robustness.

We found that the IPC sections do not form a perfect one-to-one map-
ping with the endogenous communities. For example, subclass A61K
(preparations for medical, dental or toilet purposes) is a key subclass for
holding the top closeness centrality position inside its endogenous com-
munity, and it is also an ideal representative of Section A for having the
highest average Coreness ranking in this Section. But in Section D, even
the highest average Coreness ranking is out of 12. To summarize, the
IPC section grouping does not well reflect the actual grouping by inven-
tion families or citations. An endogenous community formed from real
classification assignments may stride over multiple IPC sections, and an
IPC section could include subclasses from more than one families. Actu-
ally such references to other subclasses within or cross sections can also
be found in the IPC definitions, including limiting references and non-
limiting references, as explained in the IPC Guide (WIP17b).

15



We use a set of keys to capture endogenous communities while rep-
resenting distinctive IPC sections as much as possible. In the following
results, A61K will be used as an example as one of the keys from the
family-cohort network. Information of the complete keys of both family-
cohort and citation networks is available upon request.

2.6.3 Endogenous Communities Characteristics

A more revealing way to present the results is 2D plotting, using the
rows to represent the 639 4-digit IPC codes and the columns to represent
the 36 years from 1978 to 2013. The rows are arranged according to the
IPC index, grouped by sections A to H as labeled along the Y axis on the
left. A non-white square at Row i and Column j means the ith subclass
is a persistent member in the jth year. The color coding is based on the
cross-N average Coreness ranking RiN, where red indicates the highest
ranking, i.e. largest cross-N Coreness, and white the lowest.

Figure 1 shows the distribution of the consistent subclasses in the en-
dogenous community centering A61K in the family-cohort network. It
can be observed that of all times, the most consistent community mem-
bers regardless of network clusters number are in Section A and Section
C, among which only a few are indicated in the IPC definitions as “ref-
erences,” as labeled out along the Y axis. This shows our results provide
richer information than the IPC and can help avoid potential misses in
IPC searching.

When looking into the potential trends over time, we found that not
all the subclasses meeting the “trend” criteria defined in Section 4.3 im-
ply a disappearing or emerging pattern. Some are just weaker consis-
tent candidates. We argue that it is better to perform the same analysis
with inputs from the text similarity network in Figure 2. It should be
recognized, though, that thorough interpretation and validation of such
“trends” requires domain knowledge and experts’ inputs.
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Figure 1: Consistency of the Endogenous Community of A61K Based on
Family-Cohort Network

17



2.7 Verification and Discussion

2.7.1 Verification of Markov Chain Network Clustering

To verify the validity of the Markov Chain network clustering method
used in this study, we compare it with the Louvain method for commu-
nity detection based on greedy modularity optimization (BGLL08). We
use the same temporal family-cohort network matrices as described in
Section 3.3. In both methods, the nodes with no connections have been
removed. To improve stability with the Louvain method, we check the
network structure using different resolution levels: 0.5, 0.8, 1, 1.2 and 1.5.
As explained by Lambiotte et al (LDB08a), in network partitioning, time
can be seen as an intrinsic resolution parameter that affects the scale of
network structure.

The result shows that the number of partitions decreases from res-
olution 0.5 to 1.2, and then increases with some temporal networks at
resolution 1.5. Lambiotte et al show a stability framework where the
stability of a partition in a continuous-time random walk process is a
non-increasing, convex function that goes toward zero when time ap-
proaches ∞. It can therefore be inferred that among the 5 tested levels,
resolution 1.2 when the average number of partitions is 4.89 may be the
closest to the limit where natural clustering cannot be identified going
beyond. The result from our method shows some largely overlapping
community structures. Moreover, the persistence probability of the en-
tire family-cohort network maintains at 0.32664 for community number
N from 4 to 6, and then drops slightly for N = 7 and 8. Therefore the
Louvain method would result in similar numbers of partitions as ours.

Using the Markov Chain community identification method we are
able to control the results by either specifying Persistence Probability or
the community number, a highly desired flexibility in practice. It easily
allows obtaining a certain number of communities as needed and helps
realize community tracking.
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2.7.2 Verification of Consistency Results

To further verify the consistency results is to compare it with the direct
counts of member subclasses in the given key’s community, a naive mea-
sure of how many times a subclass is connected with the key. To avoid
being affected by the total application volume variation from year to
year, we calculate the average ranking of the connection quantities over
the years. Although a simpler and more intuitive measure, the naive
counts ranking suffers from a shortcoming due to lack of global nor-
malization. For example, a certain subclass has more connections than
another other subclasses with key A, but it might actually have more
connections with key B.

As expected, the results are largely similar to the results of our net-
work method, but with differences due to the reason stated above. The
naive count results also have just a small portion overlapped with the
IPC-defined references, confirming the validity of additional information
brought by the network approach.

2.7.3 Verification with Patent Similarity Based on Text Match-
ing

In a most recent study, Arts et al used text matching to measure the tech-
nological similarity between individual patents (ACG18). The study ap-
plies a text-mining approach to the titles and abstracts of patents to cal-
culate the similarity between any two utility patents. They found that
the text-matched patents are significantly more likely to be in the same
family and to cite each other.

The “closest match” data shared in their paper contains the closest
text-matched patent filed in the same year for each patent. We looked
up these patent numbers in the OECD Triadic database and retrieved the
IPC subclass codes. Any two subclasses from the two matching patents
are assigned with the similarity index. The subclass-level similarities are
aggregated for each application year, and averaged by the number of
times they are in a pair of closest match of patents. The result is a matrix
of 639 x 639 for each year from 1978 to 2004, in which each element is
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the average similarity between two IPC subclasses. Thus, similarities be-
tween patents are converted to similarities between IPC subclasses. We
then apply the Markov chain clustering method to the networks, divide
the networks to 8 communities and find out the subclasses which are in
the same community with the keys defined in Section 5.2. The results are
in Figure 2.
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Figure 2: Comparison of Family-Cohort Network and Text-Match Similarity
Network for A61K
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Comparison with the family-cohort network shows that the most tem-
porally consistent community members are shared between the two net-
works, while the text-matched network has a sparser distribution. This
is likely because the wide coverage of key words makes it more sen-
sitive to changes. But as pointed out by the authors as limitations of
their work, patents with little discriminatory power, spelling variants
and synonyms, and missing context could all lead to false matching and
noises. Classifications assigned by the patent authorities are more con-
sistent. Nevertheless, the text-matching method will be a good reference
in technological changes detection.

2.8 Conclusion

To summarize, the systematic method based on a network approach pro-
vides an overview of how actual patent classifications are clustered and
distributed in terms of family-cohort and citations. Using Coreness as a
measurement, the most significant communities and their cores can be
identified and tracked over time, enabling the possibility to study the
characteristics of these communities, or actually, of the community con-
taining any given subclass of interest. Further filtered communities in-
clude only the most persistent members despite community breakdown.
The most consistent members with ≥80% occurrence of all the avail-
able years are partially overlapped with the IPC-defined references, yet
more informative. The method can improve the IPC search platform for
patent applicants and inventors, analysts interested in technology devel-
opment, national and regional patent authorities, and the international
classification system development.

While the consistency result has been verified using several other ap-
proaches, the technological changes result has a great potential in tech-
nological innovation trends detection, but needs further work. A refined
method is required to highlight the real signals while reducing noises. In
addition to the text similarity network, the method proposed by Miranda
et al to capture the temporal activities in the form of “pulses” (MDL+17)
could be considered for continued efforts in the future.
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Chapter 3

Community Evolution in
Patent Networks:
Technological Change and
Network Dynamics

Abstract

When studying patent data as a way to understand innovation and tech-
nological change, the conventional indicators might fall short, and cate-
gorizing technologies based on the existing classification systems used
by patent authorities could cause inaccuracy and misclassification, as
shown in literature. Gao et al. (GZR17a) have established a method
to analyze patent classes of similar technologies as network communi-
ties. In this paper, we adopt the stabilized Louvain method for network
community detection to improve consistency and stability. Incorporat-
ing the overlapping community mapping algorithm, we also develop a
new method to identify the central nodes based on the temporal evo-
lution of the network structure and track the changes of communities
over time. A case study of Germany’s patent data is used to demonstrate
and verify the application of the method and the results. Compared to
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the non-network metrics and conventional network measures, we offer a
heuristic approach with a dynamic view and more stable results.

3.1 Introduction

Patent data has attracted the interest of researchers as a way to mea-
sure and understand innovation and technological change, especially
with the increased availability of online electronic database and the ef-
forts made by worldwide patent authorities to consolidate and harmo-
nize patent data at international level (MDW+08b; OEC09).

Gao et al. (GZR17a) have introduced an approach to construct net-
works based on the OECD Triadic Patent Family database (DK04), to
identify communities and the community cores. The comparison against
the International Patent Classification (IPC) system (WIP17a; WIP17b)
shows that the endogenous communities can provide a more accurate
and complete list of potentially associated IPC classes for any given patent
class. This association is indicated by being the most consistent nodes in
the community containing the given node, as measured by an indica-
tor named coreness. However, that approach was unable to effectively
capture the temporal evolution of a community over time due to the dif-
ficulty in community tracking.

This paper continues to address this unsolved problem. For commu-
nity identification, we use an improved Louvain modularity optimiza-
tion algorithm. To define community cores, we have developed a heuris-
tic approach to detect the central groups of nodes based on the intrinsic
characteristics of the temporal networks. As for community tracking, we
use a method to find the “best match” based on majority nodes mapping
to the reference community. Verification and robustness checks show
that our findings are sound and reliable. We also present a case study to
demonstrate the real-world implications of our results.
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3.2 Background

Since the Sixties patent data has been used by many researchers to mea-
sure patent quality, their economic value and possible impact on techno-
logical developments and economy (GS63; CS69; Gri98; SDC13b; HJ14).
Most of the well-recognized conventional indicators are straightforward
measures, such as the number of patent applications and publications,
time needed from filing to grant (grant lag), number of different technol-
ogy classification codes involved (patent scope), forward and backward
citation counts, etc. Such indicators may be used to track technological
changes and innovation, but when considered alone, will fall short due
to their simplicity and lack of context, resulting in bias and sometimes
contradicting conclusions (BW08; DM15; HJT01; H+05; HSV03).

In the light of this, we carried out the previous research (GZR17a) to
study patent data from a network perspective (AAK16), which lays the
foundation for the motivation of this paper. More specifically, two types
of networks are constructed based on how individual patents grouped
into the same family, and how patents in different families cite each other.
In both networks, the nodes are the 4-digit subclass level IPC codes fol-
lowing WIPO’s IPC scheme of 2016 (WIP16a). This paper focuses on
the former type, the family cohort network, in which any two of the to-
tal of 639 nodes are connected when they are both found in patents of
the same patent family. The more times two subclasses nodes are found
to share the same family, the more intense they are linked in the net-
work. Based on this construction mechanism, a community of closely
connected nodes indicates that the represented technological fields are
more likely to be found in the same inventions. For example, pharma-
ceutical products in IPC class A61 and enzymology or microbiology in
class C12 frequently co-occur in patent families and they are found to be
in the same network community.

Application inventions usually involve more than one technology
field. A car, for example, consists of many parts serving different func-
tions. Innovations in molecular material science could stimulate the birth
of a new type of tire, or a more efficient type of fuel, which then brings a
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new design of engines involving mechanical and electronic innovations.
Along the technological trajectories there are many cases like this. To find
out how an established community of technological changes over time,
splitting up and merging with other technologies, is not only interesting
in the retrospective observation of technological development trends, but
also helps in understanding the interactions between science and tech-
nology and policy making, market drives and other socio-economic fac-
tors.

3.3 Data

The dataset used for the analysis is retrieved from the February, 2016
edition OECD patent database (OEC17b). In addition, ISO country codes
from the OECD REGPAT database (MDW+08b) are used to sort out patent
families by country.

In this paper, a patent family from a country is defined as a family
containing at least one patent of which at least one applicant is from that
country. The applicant’s country is used instead of the inventor’s coun-
try because the applicants designate the owners or party in control of
the invention, mostly firms (OEC09). Therefore it reflects the innovative
performance of the given country’s firms, while the inventor’s country
is usually the inventor’s professional address.

The REGPAT database is most reliable for OECD and EU countries
since it is based on two sources: patent applications to the European
Patent Office (EPO) and filed under the Patent Co-operation Treaty (PCT)
from 1977 to 2013. We chose to focus on Germany for our case study and
we use the data from year 1980 to 2013 for more consistent data quality.
Germany has the largest number of patent applications among all the
EU countries, and ranks third for patent production among the OECD
countries.
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3.4 Methodology

The analysis mainly consists of three parts, to be described in the follow-
ing paragraphs: community identification, central nodes identification
and community tracking over time.

3.4.1 Community Identification

In our previous study (GZR17a), we used the Lumped Markov Chain
method proposed by Carlo Piccardi (Pic11) to detect clusters in networks.
This method produces satisfying results for a single static network with
sufficiently strong clustering structure. However, for our purpose to an-
alyze the temporal evolution of a network, essentially a network in mul-
tiple time slices, this method would treat each time slice as a separate
network without connection to each other, which is not appropriate for
the continuous technological development issue of interest. Also, the
marginal results observed show that the detected community structure
is very sensitive to the input network. In other words, although the net-
work is not supposed to have dramatic change from one snapshot in time
to the next, a small change could cause significant transformation in the
resulting communities.

To better capture the network’s temporal properties and overcome
the instability, we use a modification of the Louvain modularity opti-
mization method for community detection. This modification, namely
the Stabilized Louvain Method, proposed by Aynaud and Guillaume
(AG10b), has been proved to achieve more stable results in tracing com-
munities over time. The Louvain method finds the community structure
with maximum modularity by looking for modularity gain through it-
erations (BGLL08). The modification, essentially, is to change the initial
partition of the network at time t to the detected partition at time t-1, thus
the initial partition is constrained to take into account the communities
found at the previous time steps, making it possible to identify the real
trends.

The algorithm implementation is based on the Python module using
NetworkX for community detection (Ayn09). We split up the database
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by the earliest priority year of patent family, and execute the algorithm
for each year, using the detected network partition as the initial partition
for the next year.

3.4.2 Central Nodes Identification

There are many different ways to define centrality within a community
and/or a network, from the classic definitions by degree, betweenness,
closeness, Eigenvector, PageRank, etc, to many customized concepts in
empirical and theoretical researches (Fre78; WF94; VCLC08). For exam-
ple, in our previous work (GZR17a) “Coreness” has been defined as a
measure of weighted centrality, based on the probability to be present in
the community and the intra-community centrality of each node. How-
ever, similar to community detection, centrality measures are not de-
signed for temporal evolving networks and the adoption of one metric
out of the others is usually an ad-hoc choice.

A more heuristic concept of cores, as defined by Seifi and colleagues,
is certain sets of nodes that different community detection algorithms
or multiple execution of a non-deterministic algorithm would agree on
(SJR+13). They summarized that for a static network, there are two types
of algorithms to identify such sets of nodes: by adding perturbations to
the network, and by changing the initial configuration. In the first type,
small perturbations such as removing a fraction of links and putting
them back on random pairs of nodes, are used to create slightly differ-
ent networks from the original and produce different partitioning results
for comparison and finding of the consensus communities. However,
for a network that changes over time, such perturbations naturally exist
in each time slice. In fact, they are the temporal changes to be discov-
ered. Therefore, the latter type is more appropriate. Wang and Fleury
experimented with the overlapping community technique in a series of
works (WF10b; Wan12; WF13). Our method is similar to the concept
of Wang and Fleury’s fuzzy detection method to identify modular over-
laps, which are groups of nodes or sub-communities shared by several
communities (Wan12), with a different implementation.
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We describe the overlapping community mapping algorithm and the
central nodes identification methods in a 4-step procedure:

I. Given the network partition P in the reference time slice t, identify a
community C (C ∈ P). C is the target community of interest to be mapped
to in the following time slices.

P is obtained using the Stabilized Louvain Method described in the
previous subsection. For a network with the total set of nodes E, P =
{C1,C2, ...Ck}, where:⋃

i

Ci = E, i 6= j ⇒ Ci ∩ Cj = 0

II. In the network with partition P’ of a following time slice t’, find the
community with the most nodes in C, and that is the mapped community
C’ of C. The change of C from t to t’ is considered the change between C
and C’. This step can be illustrated by the pseudo codes in Algorithm 1:

Algorithm 1 Pseudo-code of Community Mapping
1: C← Nodes of the community to be mapped in time slice t
2: P’← Partition of the network in time slice t’
3: C’i ← The ith community in P’
4: Ni ← C ∩ C’i
5: C’← N1

6: loop:
7: if Ni ≤ Ni+1 then
8: i← i+ 1.
9: C’← Ni+1.

10: goto loop.
11: close;

III. Based on the communities detected in the previous step, take any
node k, find the community C0 it belongs to in the initial year T0 in a
certain time window of n years, and use the mapping algorithm to track
C0 in the following years within the time window.
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VI. The more significant this node k is, the more likely it is to be found
in the mapped communities. Each node will have a number Wk (Wk≤n)
of how many times it is included in the mapped communities throughout
the time window. The group of nodes with the largest Wk will become
the central sets in this time window. Step III and VI can be illustrated by
the pseudo codes in Algorithm 2:

Algorithm 2 Pseudo-code of Central Nodes Identification
1: N← length of the time window started with the initial year T0

2: m← total number of nodes in the network
3: k ← 1
4: loop1:
5: if k ≤ m then
6: Ck0 ← the community containing the kth node in the initial year T0

7: Wk ← 1
8: loop2:
9: j ← 1

10: if j < N then
11: Ckj ← the community mapped to Ck0 in the following year Tj

12: if k ∈ Ckj then
13: Wk ←Wk+1
14: goto loop2.
15: goto loop1.
16: close;

This method uses the intrinsic temporal dynamics of the network
to find the central nodes. It is intuitive and heuristic, independent of
arbitrary ad-hoc choices of measures. The configuration of the initial
year and the length of time window could significantly affect the results.
Therefore, robustness checks using different lengths of rolling time win-
dows are necessary to verify stability.

3.4.3 Community Tracking Over Time

After sets of central nodes are identified, it is then possible to track the
community containing them through the years. The tracking method is
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the same as the mapping algorithm described above. Visualization helps
to show that the central nodes are the persistent “cores” of the commu-
nity under tracking whereas the “peripheral” nodes reflect the changes
over time.

3.5 Case Study

Using the 3-step method described above, we perform a case study us-
ing data of patent families with Germany as the applicant’s country. As
the largest economy of the EU, Germany also ranks top among all the
EU countries in terms of IP filings, including patent applications. Data
from the World Intellectual Property Organization (WIPO) (sd17) shows
that 176,693 patents have been filed to Germany’s patent office in 2016
from residents and abroad, more than twice of 71,276 from France, the
second place in EU. WIPO’s statistics also reports that the top 5 fields of
technology associated with patent applications are transport; electrical
machinery, apparatus; mechanical elements; engines, pumps, turbines;
and measurement.

Analysis Configuration

In our method, there are several adjustable parameters:

• Community Detection Resolution. In the first step, the Louvain method
allows for different resolution settings, an implementation of the
idea raised by Lambiotte and colleagues that time plays the role of
an intrinsic parameter to uncover community structures at differ-
ent resolutions (LDB08b). To test the influence of resolution, we
run community detection using different resolutions ranging from
0.5 to 2.

• Overlapping Community Reference. In the second step, there are two
ways to choose the reference year: For any year Tt of the non-initial
years in the time window, always refer to the initial year T0, or
refer to the previous year Tt−1. The latter would mediate the de-
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pendency of the initial year. We have applied both types of time
referencing and compared the results.

• Time Window Setting. As mentioned in the previous section, the ini-
tial year’s network partition is used as the reference for the follow-
ing years’ community mapping. The time window length is impor-
tant for two reasons: first, depending on the pace of technology de-
velopment and potential events driving the changes, the period of
time that the initial year would remain valid as the reference varies;
and second, longer time windows would require a node to be more
“central” to appear at all time or most of the time, and therefore
would result in smaller sets of central nodes than shorter time win-
dows. To address these concerns, we used different rolling window
settings, including 5 or 10-year time windows with the initial year
rolling from year to year (for example, 1980-1989, 1981-1990, . . . ),
and 5 or 10-year time windows with the initial year rolling 5 years
apart (for example, 1980-1989, 1985-1994, . . . ).

Results

Community detection - quantities and sizes: For community detec-
tion, we apply the stabilized Louvain method on the entire time range
from 1980 to 2013 because technological development is continuous through
all the years.

We first check the number of communities detected at different res-
olution levels. As each node represents a subclass in the IPC scheme,
not all of them would appear in every year’s patent applications. In ad-
dition, some patent families contain just a single subclass. Such cases
would result in “orphan communities”, communities that have only one
node without connection to any other nodes. There are also some very
small communities with 2 or 3 nodes. Figure 10 shows the community
structure of selected years with resolution set to 1.0, including all the
small communities and orphans with nodes layout using Fruchterman-
Reingold force-directed algorithm (HSSC08; FR91). Each sample year
has an average of 151 orphan nodes plus 7 nodes in small communities
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with no more than 5 nodes. So many isolated nodes and small communi-
ties will cause too much noise in the analysis. To focus on the meaning-
ful clusters, we have excluded all the communities with 5 nodes or less
from the detected partitions. Quantities of the remaining communities
are shown in Figure 3.

Contrary to the common wisdom that higher resolutions correspond
to finer, and therefore more partitions, the figure shows that after ex-
cluding the very small communities, the lowest resolution 0.5 has the
most communities in all the years, and resolutions 1.8 and 2.0 have the
fewest. Figure 3 also shows that the community numbers generally have
a decreasing trend over the years. This is due to the mechanism of the
stabilized algorithm where each year’s initial partition builds on the pre-
vious year. With the enhanced stability, it becomes easier to identify clus-
ters with time. It is noteworthy that the decrease of number of non-tiny
communities over time does not indicate the breakdown of weakly con-
nected communities, but rather community merging, including the situ-
ation where a community splits into 2 or more smaller parts which merge
into other large communities.

Likewise, one should be aware that the disappearance of a portion
of nodes in a community does not mean such nodes abruptly discon-
nect from the central nodes of the community. They are most likely still
connected, but have become more closely connected with another set of
central nodes, or are replaced by other nodes that are closer to the orig-
inal central nodes. The methodology of cluster identification involves
such “competition” at all times.

We also check the community sizes. Figure 4 shows the average num-
ber of nodes in community for all the years at different resolutions. Over-
all, the community size increases with resolution, and from the earlier
years to the more recent years.

The first-step results show that although the algorithm detects more,
finer communities under higher resolutions, a lot of them are very small
communities. As a result, at the higher resolutions the community size
distribution tends to be more polarized, with fewer but more aggregated
communities, and more tiny communities than at the lower resolutions.
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Central nodes - occurring rate: Similarly, different resolutions would
result in different sets of central nodes. We define an indicator named
“occurring rate” as the number of occurrence of each node in the mapped
communities, divided by the total number of years in the time window.
For a year-to-year rolling time window setting, the average occurring
rate of all the nodes over a certain time window is calculated as

Or =

∑34−N+1
t=1 (

∑m
i=1(

nir
N )

m )

34−N + 1
, r ∈ {0.2, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0},m ≤ 639

(3.1)
where m is the total number of nodes in year t after excluding those very
small communities with less than 5 nodes; nir is the occurrence of the ith
node at resolution r in each time window during the community map-
ping process including the initial year; and N is the length of the time
window.

We use the configuration of 10-year windows rolling from year to
year to demonstrate this result. When N is equal to 10 in Equation 1, the
calculated mean values and standard deviations of the occurring rates
at various resolutions are shown in Figure 5. Using both mapping algo-
rithms, the lowest average occurring rates are at resolution 1.0.

While there is no benchmark for the absolutely ground truth to de-
termine which resolution is the “best”, for our analysis purpose there
are some preferred qualities: lower average occurring rates are more de-
sirable because such community structures can better reflect the changes
over time: Figure 3 and 4 show that the higher resolutions generate fewer
and larger communities, which indicates that the community sizes tend
to polarize at higher resolutions, with fewer large communities and more
tiny communities, or even disconnected single-node communities.

At lower resolutions, the number of communities larger than five in-
creases, which might also bring more instability (the number of distinct
communities decreases from 13 to 8 at resolution 0.5). Therefore, we
choose resolution 1.0 as the setting for the next step, to identify com-
munities and track them over time.

The statistical behavior shown above under different resolutions is
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related to the problem known as “resolution limit” (FB07), that the mod-
ularity optimization method may fail to identify communities smaller
than a certain scale. Lambiotte and colleagues have also verified in their
framework that partitions beyond a certain resolution limit are obtained
at small time where the optimal partition is the finest (LDB08b).

Central nodes at resolution 1.0: Using the overlapping algorithm, at
resolution 1.0, we select different time window configurations to iden-
tify the central nodes, each with the two referencing methods described
above. Figure 6 shows the central nodes plotting under the 10-year time
window setting, rolling from year to year. The threshold of the central
nodes is set to be the length of the time windows (34 for the all-year set-
ting and 10 for the rolling windows). That is, only the most persistent
nodes with an occurring rate of one within the time window are colored
in the figure. So under the all-year setting there are fewer central nodes.
If a node is central using both referencing methods (colored green), it is
more likely that the initial community has not gone through significant
reshuffling. If it is only central when referring to the initial year (colored
red), then in at least one of the following years in the time window, the
initial community has probably experienced some changes that are not
in a consistent direction. For example, when merging and then splitting,
by referring to the previous year a node might be left out in the minority
part of the merged community. If a node is central only when referring
to the previous year, it is likely that it has just drift away from the initial
community during accumulated changes. For some nodes, they would
become red first, and then turn to green. This means the changes have
stabilized.

Figure 6 shows several noteworthy trends, highlighted as framed ar-
eas 1-4. However, at this moment it is too soon to relate these signals with
real-world facts since it is not yet clear how central nodes are grouped
into different communities. At this stage, the visualization provides a
guidance for the potential trends to take a closer look at. Overall, it also
shows the most persistent central nodes, such as IPC Class C07-C08 (or-
ganic chemistry and organic macromolecular compounds), and H03-H04
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(electric circuitry and electric communication technique).

Community tracking: At this step, any chosen community in the initial
year can be tracked to analyze its changes over time. We use two exam-
ples to illustrate our approach. Since the endogenous communities do
not have meaningful names, we refer to them by one of the representa-
tive central nodes they contain in year 1980’s partition: B01D, defined in
IPC as “separation in physical or chemical processes”; and B60R, “vehi-
cles, vehicle fittings, or vehicle parts” not provided for in other categories
under class B60, “vehicles in general”.

Figure 7 and 8 show the results of tracking the two communities
above, respectively. Both communities cover multiple IPC sections, as
discussed by Gao et al. (GZR17a). The two figures show that the con-
sistently overlapping parts of the two communities are different most
of the time. B01D’s community mainly consists of various physical or
chemical processes treating materials and tooling (classes B01-B06), ar-
tificial materials from glass to cement and ceramics (C02-C03), petrol
and gas industries (C10), and metallurgy and metal surface treatment
(C21-C23). Such a composition suggests the application of physical or
chemical processing techniques in the inventions of certain industries.
For B60R, its community covers the majority of Section B, E and classes
F01-F17, a combination of machinery, mechanical engineering, vehicles
and transportation, building and construction. Relating to Figure 6, the
central nodes of these two communities contribute to a majority of the
central nodes, including the framed areas 1 and 2. This is consistent with
the WIPO statistics about Germany’s top technology fields of patent ap-
plications (for the complete IPC definitions, please refer to WIPO’s IPC
Scheme (WIP16a)).

Next, we focus on the major differences between the two figures.
From 1990 to 1999, B21-B30 “moves” from Figure 8 to Figure 7. Those
subclasses focus on technologies related to metal working, machine tools,
and hand tools, which are likely to be applied in both communities. The
temporary “move” turns back after 1999. This is an example of marginal
clustering. Another similar case is the “move” of classes F22-F25 from
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Figure 7 to Figure 8 from 2000 to 2009. This part represents technolo-
gies related to combustion process, heating and refrigeration. After ro-
bustness check, the “moves” still exist. This indicates that instead of an
artifact due to time window configuration, the “moving” technologies
are closely connected to both communities and the network clustering
algorithm captures the changes in the relative connectivity. These two
“moving” parts also provide an explanation to the framed areas 1 and
3 in Figure 6: the temporary community switches may result in the rise
and fall of a set of central nodes in the following or preceding rolling
time windows.

In Figure 8, we should also notice the spread to Section G and H start-
ing from the 1990s. This is a consistent trend, getting stronger in the last
4 years. Compared to Figure 7 which also covers a part of Section G, the
community containing B60R incorporates more technologies in digital
computer (class G06), electric devices and power supply and distribu-
tion (class H01 and H02). This observation is in line with WIPO’s report
of electrical machinery as the second top technology field of patent ap-
plications (sd17).

Discussion

Technological change in Germany’s automotive industry: To make
sense of data analysis findings based on real-world technological trends
is always difficult. In most empirical analysis, reliable methods and do-
main knowledge in the industry are both essential.

In Figure 8, the technology community containing B60R takes up
more than half of Germany’s patent filing activities, with the most persis-
tent parts being IPC classes B60-B67, Section E, and F1-F16. These tech-
nologies can be considered as the mainstream of this community: vehi-
cles and transportation, building and construction, machine and engines
(for the details of these IPC schemes, please refer to Table 1 in Appendix).

Clear changing trends can also be observed. Aside from the marginal
“moves” like B21-B23 as discussed above, we focus on the more con-
sistent trends, such as the increasing involvement of Section G and H,
specifically, classes G01, G05, G06, H01 and H02, shown in the bottom
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framed area in Figure 8. These are the technologies related to measur-
ing and testing, controlling and regulating, computing, electric elements,
and electric power. This trend started from 2000, and became signifi-
cantly stronger since 2010 (for the relevant IPC schemes of the classes and
the subordinate central subclasses, please refer to Table 2 in Appendix).

Germany’s dominating industrial sectors include automotive, ma-
chinery and equipment, electrical and electronic, and chemical engineer-
ing. These sectors not only contribute to the national GDP, but also are
the focal points of innovation of this country. Among the top ten Ger-
man organizations filing the most PCT patents, at least 6 have automo-
tive as its major or one of the major operations, including vehicle man-
ufacturers like Continental Automotive GMBH and Audi AG, automo-
tive components and assembly suppliers like Robert Bosch Corporation
and Schaeffler Technologies AG & Co. KG, and research institutes like
the Fraunhofer Society (sd17). Germany Trade & Invest (GTAI), the eco-
nomic development agency of the Federal Republic of Germany reported
that internal combustion engine energy efficiency, alternative drive tech-
nologies (including electric, hybrid, and fuel cell cars), and adapting
lightweight materials and electronics are the current major market trends
(GTA17). From electronic technologies, software solutions to metallurgy,
chemical engineering, automation and drive technologies, innovation in
the automotive industry drives and benefits from a number of other sec-
tors.

In fact, these trends in the automotive sector are not limited to Ger-
many, but Germany’s case is more noticeable and representative given
its outstanding concentration of R&D, design, supply, manufacturing
and assembly facilities. The automotive industry does not just source
from other sectors for innovative technological support. When Enkel and
Gassmann examined 25 cases of cross-industry innovation, automotive
is observed as both the result and source of the original idea (EG10). The
interactive sectors range from the ones with a closer cognitive distance
like aviation and steel industry to the more distant ones like sports, med-
ical care and games. These cases all occurred between 2005 to 2009, and
indeed, the cross-industry technological interactions have become more
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dynamic starting from 2000, as the shuffles observed in Figure 6-8 of our
analysis. In 2009, Germany’s Federal Ministry for Environment, Nature
Conservation, Building and Nuclear Safety issued German Federal Gov-
ernments National Electromobility Development Plan (Bun09) specified
a serial action plan to promote electromobility in Germany, which de-
fines 2009 to 2011 for market preparation, 2011 to 2016 as market escala-
tion and 2017 to 2020 as mass market. The first stage focuses on research
and development. The Plan also identifies batteries as the weakness of
Germany’s automotive sector on the path to the leading position in elec-
tromobility. The increased activities in Section G and H starting from
2000 might be a reflection of this policy. However, this is up to validation
when more data covering the following years will become available.

Robustness check: For community tracking, we have performed the
analysis under 10-year and 5-year time window settings, and found the
results to be very close. The results presented in Figure 7 and 8 are
based on 5-year time windows. In addition, we have done robustness
checks using the other community mapping method and with time win-
dow shifts, shown in Figure 11 and 12 respectively using the example of
B60R’s community. In Figure 11, when referring to the initial year, the
colored blocks layout is the same as Figure 8 except for the colors used,
which is merely due to the difference in the definition in the mapping
methods. We find similar results in Figure 12: There is no difference from
Figure 8 except for the 1-year shift. We have performed such robustness
checks for other communities and obtained the similar results. This in-
dicates that the community mapping method is stable and consistent in
identifying central nodes and tracking communities.

Central nodes identification methods comparison: Alternative to the
community mapping and central nodes identification method, we try to
rank nodes by their betweenness centrality. Betweenness centrality is
one of the most widely used measures of vertex centrality in a network
(Bav48; Bea65; Fre77). Compared to other centrality measures using
degree or closeness, betweenness represents the connectivity of a node
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as a bridge connecting two other nodes along a shortest path. We use
it as an example to demonstrate the similarity and difference between
our method and the conventional network centrality measures. The be-
tweenness centrality of each node is calculated to find the nodes with the
highest centrality values. In order to avoid outstanding impact from a
single year, we use aggregated data from 3 consecutive years to form a
network, based on which the centrality is calculated for the first of the 3
years. We present here the results comparison for the same years from
1980 to 2004. As a major difference between the two algorithms, ours pro-
vides a set of central nodes all with the same occurring rate of 1, but the
betweenness centrality value of most nodes are different, ranking them
from high to low. So when using the betweenness centrality method, we
take the M nodes ranking highest by centrality values, with M being the
size of central nodes set in the same time period using our method. For
example, the central nodes set in the time windows starting with 1980
has 131 nodes, and the top 131 nodes with highest betweenness central-
ity rankings in the aggregated period of 1980-1982 are used for compar-
ison. The matching rates are shown in Table 3 in Appendix, averaging
at 32.45%. Figure 9 shows the distribution over IPC scheme using both
methods. The central nodes based on our algorithm are the ones shared
by both referring methods.

The two algorithms are different by definition, and offer different in-
formation as the comparison shows. It is difficult to verify the results
against ground truth, but we argue that our method has two important
advantages. First, there is no arbitrary control of the number of central
nodes. To study the interaction of technologies in cohesive families, to
have a set of central nodes rather than a given number of top central-
ity nodes is intuitively closer to the real-world situation. Second, our
method identifies the set of central nodes based on tracked communi-
ties over a time window, while the betweenness centrality calculated is
for a single time period (3 years in the demonstrated example) - addi-
tional efforts are needed to track communities over time in order to cal-
culate the centrality values for continuous time periods. It would only be
more inaccurate to simply aggregate data in a time window of 10 years
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and calculate the centrality. These issues stand true for all other central-
ity measure. Figure 9 also shows the central nodes identified using our
proposed method are more consistent and concentrated, while the top
betweenness centrality nodes are more spread out over the whole IPC
scheme.

Similarities between the two results also confirm the persistent and
changing trends shown in Figure 6: bio-technology in agriculture and
food (A01, A21, A23), chemical technology in medical science and phar-
maceutics (A61), material separation and other processing (B01), ma-
chine tools (B23), Vehicles and transport (B60-B65), organic chemistry
(C7-C9), biochemistry (C12), engine technology (F1-F16), physics mea-
suring, testing, computing and controlling (G01, G05 and G06) and elec-
tronic technology (H01-H04) are more persistent. And increasing cen-
trality is found with B21-B23, B60-B61,C12-C13, H03-H04.

Comparison with multislice community detection and tracking method:
To study networks that evolve over time, another methodology is to treat
the changing network as slices at different points in time based on qual-
ity functions. Mucha et al. (MRM+10) proposed a method to generalize
the problem of network community structure detection using interslice
coupling adjacency matrices consisting of coupling parameters between
nodes in different slices. The generalized algorithm offers flexible con-
figurations for both the resolution parameters as we used in the Louvain
modularity clustering algorithm, and the interslice coupling parameter
indicating connection among slices under Laplacian dynamics. This so-
lution is applicable to the multiplex community detection task we have.
To compare the results, we applied the algorithm proposed by Mucha
et al. in the same 5-year time windows as shown in Figure 8 and 9, with
the same resolution set to 1.0 and the coupling parameter as 1.0. and then
find the communities containing subclasses B01D and B60R, respectively.
The algorithm also obtains clusters based on modularity optimization,
and generates a considerable amount of very small communities. Same
for the orphan nodes. Therefore, communities with 5 nodes or less are
also excluded in the results for comparison, as shown in Figure 13 and
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14.
Comparing Figure 13 with Figure 7, and Figure 14 with Figure 8, ob-

vious similarities can be observed. The “move” of B21-B30 from 1990 to
1999 is not shown for B01D. But from 1995 to 1999, most nodes in this
section drop out for B06R, although they did not “move” to the commu-
nity containing B01D. It verifies the marginality of this section, that they
tend to have close connection to several different communities.

As mentioned before, it’s hard to determine the result of which al-
gorithm is closer to the truth. Each method has its unique properties.
The algorithm by Mucha et al. has the advantage of providing an over-
all picture of all the communities and their changes over time, but we
have found that as the continuous time period increases, the number of
clusters detected will decrease, which reduces the sensitivity to changes.
When applied on shorter time period, the 2 methods have 2 steps in com-
mon: communities identification and tracking. For the first step, we ar-
gue that our method has higher stability and consistency given the Sta-
bilized Louvain Method. Additionally, our method is capable to find the
central nodes of a community, which is meaningful in the situation of
this study.

Comparison with conventional patent metrics: Compared to the sim-
pler, more straightforward metric used in conventional patent data anal-
ysis, the network approach is more complicated and costs more com-
putational resources. However, we propose the network method for its
advantage in studying the structure of an inter-connected system. In
(GZR17a), the authors showed that ranking nodes by their connections
with a given “key” subclass produced different results than the network
clustering method, although largely similar. In the network perspective,
nodes are clustered based on their relative proximity instead of the ab-
solute counts or frequencies. Consider the situation where a node k is
connected to nodes in 2 clusters A and B, where A has more nodes than B
and therefore gives N more occurrence/connections. A simple measure
will put k as a key node in A, but the network algorithm might attribute k
to B if there are other nodes in A with even stronger connections to each
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other.
Secondly, some structural changes may be anticipated by economic

historians and policy makers as results from known actions or decisions,
but they don’t usually roll out as expected, with likely differences in tim-
ing or extent. As compared to traditional methods, our approach is better
suited to detect structural change and paradigmatic shifts in the techno-
logical landscape.

3.6 Conclusion

Through the three-step procedure, we demonstrated a way to improve
community detection for temporal evolving networks, and more impor-
tantly, to track the community changes over time. Using Germany as a
case study, we have verified this procedure by combining industry litera-
ture and robustness checks. Methodologically, our method contributes to
the literature of temporal networks analysis with a new approach. Com-
parisons with conventional methods have helped to prove its validity
and advantages. In terms of application, it is the first of such in patent
data analysis. Although the subject of interest here is technological evo-
lution, we expect the proposed approach to become a powerful tool for
studying similar systems.

3.7 Limitations and future Work

We focus our analysis on selected technological fields. Neither Figure 6
nor Figure 9 distinguishes the central nodes by communities. It is be-
cause the communities are not exogenously defined, and to track all the
communities requires selection of a node in each community in the ini-
tial year. In fact, none of the methods discussed can show how all the
communities change over time in one picture with satisfying accuracy,
sensitivity and stability. Our method is more efficient in showing which
nodes are the most central and investigating the evolution of the com-
munity containing certain technologies of interest.
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Given that the method utilizes the information embedded in the net-
work changes, it can be generalized for other temporal networks studies.
However, the result verification still requires more work due to the rea-
sons mentioned in the Discussion section. A next step in our research
is the application in other countries or regions to expose the method
to a more comprehensive check. This will also provide an opportunity
to study how various factors, including policy decisions, market trends,
economic growths, national or regional resources, human resources, gov-
ernment and business investment, would interact with technological ex-
ploration.

3.8 Appendix

44



Table 1: IPC Schemes of the Persistent Technologies in Community Con-
taining B60R

Section Class Scheme

B

B60 VEHICLES IN GENERAL

B61 RAILWAYS
B62 LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON

RAILS
B63 SHIPS OR OTHER WATERBORNE VESSELS; RELATED

EQUIPMENT

B64 AIRCRAFT; AVIATION; COSMONAUTICS
B65 CONVEYING; PACKING; STORING; HANDLING THIN OR

FILAMENTARY MATERIAL

B66 HOISTING; LIFTING; HAULING
B67 OPENING OR CLOSING BOTTLES, JARS OR SIMILAR CON-

TAINERS; LIQUID HANDLING

E

E01 CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
E02 HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL-

SHIFTING

E03 WATER SUPPLY; SEWERAGE

E04 BUILDING

E05 LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
E06 DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS, IN

GENERAL; LADDERS

E21 EARTH OR ROCK DRILLING; MINING
E99 SUBJECT MATTER NOT OTHERWISE PROVIDED FOR IN

THIS SECTION

F

F01 MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN
GENERAL; STEAM ENGINES

F02 COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-
PRODUCT ENGINE PLANTS

F03 MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR
WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR
A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PRO-
VIDED FOR

F04 POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS;
PUMPS FOR LIQUIDS OR ELASTIC FLUIDS

F15 FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEU-
MATICS IN GENERAL

F16 ENGINEERING ELEMENTS OR UNITS; GENERAL MEA-
SURES FOR PRODUCING AND MAINTAINING EFFECTIVE
FUNCTIONING OF MACHINES OR INSTALLATIONS; THER-
MAL INSULATION IN GENERAL

F17 STORING OR DISTRIBUTING GASES OR LIQUIDS
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Table 2: IPC Schemes of the Central Nodes in Section G and H in Commu-
nity Containing B60R

Code Scheme

G01 Measuring; Testing
G01F MEASURING VOLUME, VOLUME FLOW, MASS FLOW, OR LIQUID LEVEL; ME-

TERING BY VOLUME

G01G WEIGHING
G01H MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR

INFRASONIC WAVES
G01L MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, ME-

CHANICAL EFFICIENCY, OR FLUID PRESSURE
G01M TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES;

TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
G01P MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERA-

TION OR SHOCK; INDICATING PRESENCE OR ABSENCE OF MOVEMENT; IN-
DICATING DIRECTION OF MOVEMENT

G01W METEOROLOGY

G05 Controlling; Regulating
G05B CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELE-

MENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS
FOR SUCH SYSTEMS OR ELEMENTS

G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
G05G CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY ME-

CHANICAL FEATURES ONLY

G06 Computing; Calculating; Couting
G06M COUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PRO-

VIDED FOR

G08 Signalling

G08G TRAFFIC CONTROL SYSTEMS

G10 Musical instruments; Acoustics
G10K SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING

AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN
GENERAL

H01 Basic electric elements
H01H ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE

DEVICES

H02 Generation, conversion, or distribution of electric power
H02G INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL

AND ELECTRIC CABLES OR LINES

H02H EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS

H02K DYNAMO-ELECTRIC MACHINES
H02P CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS

OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, RE-
ACTORS OR CHOKE COILS
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Table 3: Matching Rates of Central Nodes by the Community Mapping
Method and the Betweenness Centrality Method

Year common different match (%)

1980 53 78 40.46

1981 38 56 40.43

1982 33 60 35.48

1983 33 60 35.48

1984 32 60 34.78

1985 30 65 31.58

1986 42 54 43.75

1987 39 56 41.05

1988 36 63 36.36

1989 45 63 41.67

1990 48 79 37.80

1991 34 58 36.96

1992 24 49 32.88

1993 21 52 28.77

1994 32 67 32.32

1995 31 63 32.98

1996 22 69 24.18

1997 27 63 30.00

1998 36 80 31.03

1999 39 87 30.95

2000 53 96 35.57

2001 22 74 22.92

2002 18 59 23.38

2003 5 34 12.82

2004 6 28 17.65
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Figure 3: Number of communities at different resolutions

The x-axis indicates years from 1980 to 2013, and the y-axis indicates number of
communities.
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Figure 4: Average community size at different resolutions

The x-axis indicates years from 1980 to 2013, and the y-axis indicates number of nodes in
the community.
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Figure 5: Occurring rate statistics at different resolutions

The mean value and standard deviation of the occurring rate over all the nodes, using the
10-year time window rolling from year to year, including 25 time windows with initial

years from 1980 to 2004. The x-axis indicates various resolution values, and the y-axis is
the scale of mean values. Results from two mapping methods are shown in this figure.
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Figure 6: Central nodes of 10-year time window rolling from year to year
X-axis indicates time windows from 1980-1989 to 2004-2013, except for the first column labeled “ALL”, which is the all-year condition. Y-axis

indicates the IPC subclasses ordered in IPC index. Colored blocks indicate central nodes in a time window using at least one referencing
method: Green represents central nodes both methods have in common, red for those central only by referring to the initial year, and yellow for

those central only by referring to the previous year.
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Figure 7: Tracking community B01D in consecutive 5-year time windows,
mapping to the previous year
X-axis indicates years from 1980 to 2013, y-axis indicates the IPC subclasses ordered in IPC index. The community mapping is based on

consecutive 5-year windows. In each time window, the initial year’s community containing the central node set represented by B01D is shown
in blue. In the 4 years following, colored nodes represent the mapping communities: red - the node does not exist in the reference community

(community of the previous year), purple - the overlapping part.
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Figure 8: Tracking community B60R in consecutive 5-year time windows,
mapping to the previous year
X-axis indicates years from 1980 to 2013, y-axis indicates the IPC subclasses ordered in IPC index. The community mapping is based on

consecutive 5-year windows. In each time window, the initial year’s community containing the central node set represented by B60R is shown in
blue. In the 4 years following, colored nodes represent the mapping communities: red - the node does not exist in the reference community

(community of the previous year), purple - the overlapping part.
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Figure 9: Central Nodes Distribution by Comparing the Community Map-
ping Method with the Betweenness Centrality Method
X-axis indicates years from 1980 to 2004, y-axis indicates the IPC subclasses ordered in IPC index. The community mapping is based on

consecutive 10-year windows. Betweenness centrality values are calculated on 3-year aggregation period started with the same labeled year as
the other method. Colored blocks indicate the central nodes in common and different between the two method.
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Figure 10: Community structures of the individual sample years based on
Louvain modularity optimization algorithm
Resolution is 1.0. Major communities with more than 5 nodes are in the center, with different colors indicating each unique community,

surrounded by small communities with 5 nodes or less in white color.
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Figure 11: Tracking community B60R in consecutive 5-year time windows,
mapping to the initial year

This figure differs from Figure 6 that the overlapping community mapping reference is the initial year of each time window, using the same
color coding definitions as Figure 6.
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Figure 12: Tracking community B60R in consecutive 5-year time windows,
starting from 1981, mapping to the previous year

This figure differs from Figure 6 that the all the time windows are shifted 1 year forward, using the same color coding definitions as Figure 6.
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Figure 13: Communities containing B01D in consecutive 5-year time win-
dows based on the multislice community detection method

Starting from 1980-1984. Nodes in blue color are in the same community with B01D in each year.
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Figure 14: Communities containing B60R in consecutive 5-year time win-
dows based on the multislice community detection method

Starting from 1980-1984. Nodes in blue color are in the same community with B60R in each year.
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Chapter 4

More Central in Export,
More Central in R&D: A
Network Approach to the
Pharmaceutical Industry

Abstract

Literature suggests that cross-national knowledge diffusion can boost
overall globalization of innovation. International R&D collaboration is
one of the ways of such diffusion. Researchers have found innovation
as a positive factor for firm and national exporting. This paper ana-
lyzes whether the positive relationship exists the other way around: from
export to innovation? I perform an analysis in the particularly R&D-
driven pharmaceuticals sector using a network approach to test whether
being an exporting center in the international pharmaceuticals market
could make the country become more central in international R&D col-
laboration. I construct a cross-national inventor collaboration network
based on pharmaceutical patent co-inventions, and use the World Input-
Output Database as the international trade network. Through commu-
nity detection and centrality calculation for both networks, I obtain a
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panel data set involving each country’s “Coreness” in the two networks
to perform regression analysis with other relevant variables. The results
show being a trading hub with a favored balance have positive effects
for the country to co-invent more patents with more foreign countries
in the following 5-6 years, but the effects of drug prices remain incon-
clusive. This analysis presents an opportunity to help decision makers
optimize trade strategies which may enhance domestic R&D impact and
contribute to globalized innovation.

4.1 Introduction

The globalization of innovation has been well recognized like the other
globalization notions in information, culture, merchandise and finance.
Indeed it is not a stand-alone movement, but in close conjunction with
the other globalization trends. Due to the increasing importance of knowl-
edge and information in the modern economic processes, governments,
firms and researchers have been interested to understand the interac-
tive relationships between innovation and the other factors in order to
achieve optimum resource planning strategies and high-efficiency re-
search and development (R&D) activities.

Compared to more result-oriented measures of innovation, such as
numbers of patent applications or publications, numbers of new com-
mercialized inventions launched to market, the position of a country
in the globalized innovation network has more implications in the long
term. The extent of cross-national R&D collaboration not only represents
the country’s domestic innovative capability, but also indicates its global
influences, exposure to knowledge diffusion, opportunities to exploit
new applications, and access to international markets and production re-
sources. Archibugi and Iammarino consider three components of techno-
logical innovation in their empirical study: the international exploitation
of nationally generated innovations through bilateral trade and overseas
production of innovative goods, international R&D activities and acqui-
sitions of or joint venture with existing foreign R&D entities by multina-
tional firms; and global techno-scientific collaborations mainly through
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joint scientific projects among research and academic institutes (AI02).

Throughout the literature, the relevant factors of innovation have
been discussed repeatedly. Among these an important one is interna-
tional trade. The recognized role of trade in facilitating technology flows
and knowledge spillover (Sag02) indicates that trade should promote in-
novation and narrow down global technology gaps. But it may be a
double-bladed sword depending on a country’s position in the global
market and technological development. As Grossman and Helpman ex-
plained, countries, especially the less developed ones, can benefit from
the spillovers of their trade partner countries’ accumulated knowledge,
but may also lose from the insufficient exploitation of their own research
investments (GH90). Agion et al. found evidence that the relationship
between product market competition and innovation follows an inverted-
U curve where competition encourages competitors in a close race but
discourages the laggard (ABB+05). The positive effect of innovation and
R&D investment in export performance has been widely proved from
country level to firm level (Gre90; GTW94; Wak98a; Wak98b; And99;
RL02) Meanwhile, empirical studies have found that import from low-
wage countries like China have stimulating effects on the importing coun-
tries’ innovation (BIS07; BSZ08; BDVR16). However, the impact of export
on innovation is less analyzed in empirical studies. Is it possible to mo-
tivate innovation or expand the global impact of domestic innovation
through trade policies and guiding strategies? This chapter will try to
answer this question.

In this paper I focuses on the pharmaceutical sector. As DiMasi and
colleagues found in a series of studies, the R&D process for new drugs
is very lengthy, often taking over a decade, and very costly (DHGL91).
As science progresses, the complexity of pharmaceutical R&D increases.
Since the mid-1990s, rising risks in successful development, decrease
of pharmaceutical R&D productivity and the increase of times and ex-
penditures needed for new drugs development have been reported in
many studies (DiM00; DiM01; RP07; DTZ09; Mun09; PMR11; DHG03;
DGH16; AB06). This provides further motivation for this analysis to
explore whether and how to improve global pharmaceutical innovation
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through trade strategies.
Classic and neo-classic studies on trade and innovation generally use

R&D investment and patenting activity to measure innovation and trade
volume, prices and revenue for trade indicators. In fact, today both trade
flows and technology diffusion work in the form of networks. More re-
cent studies began to adopt network approaches to study economic and
innovative relations and the dynamics in their transfer and propagation(SP07;
ZXT10; ACOTS12; FRZ16), but none has yet studied the relationship be-
tween the two networks. In fact, compared to companies in other tech-
nological fields, top R&D companies in pharmaceuticals and chemicals
have the largest inventor teams and the most countries involved in gen-
erating new technologies (DDD+17). Therefore it is more meaningful to
study pharmaceuticals using network measures. This chapter takes an
initiative to measure how well countries are centrally connected in the
innovation network and the trade network. This approach also positions
this analysis in the context of global innovation.

4.2 Network Construction

This analysis uses two main datasets for network construction. The inno-
vation collaboration networks or co-invention networks are developed
from the OECD patent database1 (OEC17a), and the trade networks are
from the World Input-Output Database (WIOD)2 (TDL+15).

4.2.1 Co-invention Network (CIN)

I use patents from the OECD Triadic database (DK04) to reduce home
bias due to geographic location and to focus on patents deemed to be
more valuable. According to the IPC concordance table3 developed by
the World Intellectual Property Organization (WIPO) (Sch08) which links
IPC codes to thirty-five technology fields, patents with at least one IPC

1Updated version of March, 2018. Data is available upon request at
http://www.oecd.org/sti/inno/intellectual-property-statistics-and-analysis.htm

22016 release, available at http://wiod.org/database/wiots16
3Updated version of February, 2016
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code in the pharmaceuticals field are selected to form a pharmaceuti-
cal patent dataset. The OECD REGPAT database (MDW+08a) is used
to cross-match with the dataset and provide inventors’ locations. From
1980 to 2014, 43 different inventor-hosting countries4 are found and used
as network nodes. Between any of the two countries, each unique co-
invented patent is defined as a connecting edge, undirected. Patents are
divided by their first-priority years to construct time-slice networks.

For the purpose of this research, inventor country is used instead of
applicant country. Consider the case where a patent is co-invented by
employees working at multiple overseas sites of the same organization,
while the applicant country is only where the headquarter location.

4.2.2 World Input-Output Network (WIOD)

Using input-output data to study cross-national trade is a well-recognized
practice in economic research. Literature shows that it goes back to at
least 1950s (Leo53) and remains active among recent studies (JN12; KWW14;
PRTZ17). The WIOD provides bilateral inter-country and inter-sector
input-output tables that reflect the domestic and international supply
and use of products in different sectors. The 2016 Release covers 56 sec-
tors classified following the International Standard Industrial Classifica-
tion revision 4 (ISIC Rev. 45) in 44 countries (including 28 EU countries
and 15 other major countries, and a residual Rest-of-World) over the pe-
riod from 2000 to 2014 (TLSdV16). For each year, a World Input-output
Table (WIOT) is readily prepared as a network matrix in which each sec-
tor of a country is a node and the input-output values between them are
the edges. For this research I only use the pharmaceutical products sec-
tor6 of each country’s supply and use data. The result is a 44×44 matrix
for each year, in which an element at the crossing of row i and column j

4Countries in the OECD patent database are provided as ISO 2 country codes
5The classification is published and maintained by the

United Nation Statistics Department (UNSD) and available at
https://unstats.un.org/unsd/publications/catalogue?selectID=396

6ISIC Rev. 4 code C21: Manufacture of basic pharmaceutical products and pharmaceu-
tical preparations
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represents the output of pharmaceutical products from country i to coun-
try j.

Between the 43 countries from the CIN and the 43 countries (ROW
excluded) from the WION, 32 countries are in common and will be used
for the relationship analysis afterwards. Table 7 in Appendix lists out the
32 common countries and those only in one of the 2 networks.

4.3 Network Analysis

In this section I introduce the methods used for network analysis. First I
will describe the two networks in 2D matrix, and then conduct commu-
nity detection and calculate the nodes’ centrality.

4.3.1 Network Matrix Description

Considering the lengthy times needed for pharmaceutical R&D and to
compensate for statistical instability due to co-invented patent quantity
variances in some countries from year to year7, for the CIN, data is ag-
gregated in 5-year windows. Figure 15 shows an example of the CIN
in the time window 1995-1999. The 43 countries are arranged by rows
and columns. The CIN is undirected, and the cells are normalized by
column considering the gaps in scale between developed countries with
major pharmaceutical multinational companies (MNC) and the less de-
veloped countries. So a cell of row i and column j represents the im-
portance of invention collaboration with country i for country j. A cell
with deeper color indicates the collaboration with i plays a bigger role for
the overall pharmaceutical patenting activities of j. Note that Qatar and
Uganda have no inventors contributing to any pharmaceutical patents in
this time period.

Unsurprisingly, for most of the countries, the majority of pharmaceu-
tical inventions happen within the border. But there are a few exceptions.
For example, Indonesia’s collaboration with Japan and the Netherlands

7In particular, less developed countries that mainly generate patents from subsidiaries
of large overseas companies
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generates more patents than its domestic collaboration. The Philippines
and Thailand are extreme examples of such case. Both countries barely
have any domestic innovation activities compared to overseas collabora-
tion: The Philippines with the U.S., the UK and Belgium, and Thailand
with Germany, the U.S. and the UK. It is noteworthy that both countries
have developed deeper-colored diagnosis cells in the following time pe-
riod. This intuitively supports the theory that R&D collboration facil-
itates technology transfer and thus helps the less developed countries
develop their own innovation resources.

Meanwhile, some countries are “popular” innovation partners uni-
versally, such as the United States, Germany and the UK. While over-
seas collaboration only counts for a small portion of their pharmaceuti-
cal inventions, joint innovation partnership with them contributes signif-
icantly to many other countries, especially the less developed ones like
China, Greece, the Phillippines, Thailand, Turkey and Ukraine.

Figure 19 in Appendix shows such rendering of CINs of the other
time periods. Obviously, with time more countries are participating in
the global pharmaceutical innovation and producing patents. The “pop-
ular” partners remain popular over time, but overall the dominance of
domestic invention has reduced, with the diagnosis becoming lighter-
colored.

Figure 16 shows an example of the WION in the aggregated time win-
dow 2000-2004. The trade volumes are also normalized by column. Sim-
ilarly, the namely Germany, the U.S. and the UK. In addition, the WION
shows other “popular” countries like Belgium, Switzerland and Ireland.
Note that the input and output links in the WION are directed, but the
trade volume values in the matrix does not differentiate between the two
directions. For example, Switzerland is largely importing and the United
States is mainly exporting. It takes further analysis to relate information
of the two networks.

Figure 20 in Appendix shows the WION rendering for the other time
periods. WIOD does not have pharmaceutical trade data for Russia and
Turkey. Overall, during the 15 years the WION does not show obvious
changes. It is noteworthy that the dominating significance of domestic
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Figure 15: 2D Rendering of Co-invention Network Aggregated from 2000
to 2004

trade is less universal compared to the CIN.

4.3.2 Community Identification

In the first two chapters (GZR17b; GZKRng), I have introduced two meth-
ods to identify naturally formed network clusters: the Lumped Markov
Chain method (Pic11) and the Stablized Louvain method (AG10a). The
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Figure 16: 2D Rendering of WIOD Network Aggregated from 2000 to 2004

former has been applied by Piccardi et al. in an analysis of the WIOD net-
work (PRTZ17). Indeed it is a preferred method in this analysis because
the input-output system can be modeled as a regular Markov chain. In
this system, the output, or supply side analysis can be viewed as a “sales-
man” randomly walking from one industry to the next to sell products
(MB09), while the input, or demand side can be modeled as a “purchas-
ing agent” visiting one industry to the next to buy products (Leo53).
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Since I’m using the WIOT with only one sector, and for the research in-
terest in this analysis, I do not customize the WION with a “salesman”
or “purchasing agent” perspective as Piccardi et al. did, but instead use
a country’s input-output ratio to tell whether the country has a favorable
or adverse balance of pharmaceutical trade.

To observe the community changes over time, I conduct community
detection for time slices they each covers. For the CIN, 5-year aggregate
rolling time windows are used and for the WION each time window
is simply a single year. This is because the CIN potentially has more
changes, and smaller numbers of patents for some countries in a sin-
gle year might lead to fluctuant noises. Rolling time windows of more
years’ aggregated data can enhance stability. Figure 17 and 18 show the
over time network partitioning of the two networks using the Lumped
Markov chain method. They share a common period of 2000 to 2014.
For comparison purpose, the persistence probability threshold is con-
figured so that it would be eight community in each time window for
either network. In each figure, the rows represent countries in the net-
work and are labeled with ISO 2 or 3 codes, and the columns are time
windows. Each color represents a unique community. A time window
is treated as a independent static time slice for network clustering, there-
fore the colors are not consistent across time windows. Only countries of
the same color in the same time window belong to the same community.
But for demonstration, I have adjusted the community IDs to enhance
visual consistency. Countries are indexed according to the region they
are located, according to the M49 standard published by the United Na-
tions8. Table 8 in Appendix provides details of the region codes and the
grouping of countries. The regional grouping is used as an exogenous
reference to the endogenous communities. In both networks, countries
that can’t be clustered to any community due to lack of data or very weak
connections are in black.

Comparing Figure 17 and Figure 18, it is obvious that the CIN shows
more dynamics over time, whereas the WION is more stable. Both net-

8The assignment of countries or areas to specific groupings, available at
https://unstats.un.org/unsd/methodology/m49/
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works have a “main” community containing the majority of the nodes,
colored as cyan, but the CIN’s “main” community is smaller. In the
WION, other smaller communities besides the “main” community are
very small and have more single-node communities than the CIN. This
remains true with varying persistence probability thresholds. Therefore,
the WION tends to be more balanced and more persistently integrated.

Although the two networks have only partial countries in common,
one community can still be observed in both figures: Japan and South
Korea (and Taiwan in the WION) at the end of the first decade of the cur-
rent century. More communities are identified in the CIN: Countries in
America plus China and Japan formed a community from mid-1980s to
early 1990s, from which the American countries broke away after 1994. A
possible relevant fact is the launch of North American Free Trade Agree-
ment (NAFTA) in 1994. The NAFTA might have strengthened the in-
novative cooperation among the U.S., Canada and Mexico with favored
trade terms, although the three countries are absorbed into the “main”
community for at least the next six years or more, before Canada forms
a small community with Brazil for a short period. A larger and more
persistent community among the North European countries is also cap-
tured, including mainly Denmark, Finland, Norway and Sweden, and
briefly Belgium. In the time window of 1955-1999 it even expands to in-
clude three South European countries, but most often it is Spain, Italy
and Portugal that are more closely connected. Besides, a small commu-
nity between India and Thailand can also be observed in the early 2000s.

Network clustering is inevitably sensitive to the threshold setting of
persistence probability, but the two examples provide proof that the ran-
dom walking method is capable to capture communities that coincide
with geographic grouping and potential trade cooperative relationship
which is often related to geographic proximity as well.
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Figure 17: 8-Community Structure of the Co-invention Networks Using
Lumped Markov Chain Method 71



Figure 18: 8-Community Structure of the WIOD Networks Using Lumped
Markov Chain Method 72



I have also performed community identification using the Stabilized
Louvain method. The results are a much larger number of small com-
munities. For the CIN, at resolution 1.0, the network of the first 5-year
time window is partitioned into 37 clusters out of 43 nodes. Even us-
ing the stabilizing algorithm to build the network partition of each time
slice considering the result partition from the previous time slice (AG10a;
GZKRng), the last time window still has 19 communities with an aver-
age community size of 2.26. For the WION, at the same resolution of 1.0,
the initial time window has 22 communities and the last has 16. Differ-
ent from the CIN where the maximum community size is 4, the largest
community in the WION has 21 nodes, which confirms the finding using
the Lumped Markov chain method. However, the rest of the communi-
ties mostly have only a single node. Changing the resolution setting can
reduce the number of partitions, but also increases the gap between com-
munity sizes. This method is not ideal for this analysis because it’s not
sensitive enough to the formation of smaller communities. Such a polar-
ized partitioning also leads to inaccurate calculation of centralness using
the community overlapping method (WF10a; GZKRng) because single-
node communities tend to be dropped and most likely only the largest
community can be used for mapping. Therefore, the following analysis
will be based on the Lumped Markov chain method.

4.3.3 “Coreness Calculation

I use the same method as in Chapter 1 (GZR17b) to calculate “Coreness”:
the within-community closeness of each node weighted by its commu-
nity’s persistence probability. To avoid influence due to different “Core-
ness” scales of the two networks, “Coreness” ranking is used instead
of the value. Considering sensitivity to threshold setting, an average
of ranking at different thresholds is used, as the number of communi-
ties increases from 4 to 12. Take a further average over time, the top 5
“core” countries in the CIN are: the U.S., Germany, the UK, Indonesia
and France, and for WION: Switzerland, Ireland, Germany, the UK and
Denmark. Table 9 in Appendix shows the complete ranking of the 32
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countries shared by the two networks.

4.4 Regression Analysis

I use linear regression models to examine the effects of trade on innova-
tion. Since I’m interested in how well a country is centrally connected
in global R&D collaboration, I define the dependent variable as “Core-
ness” of each node in the CIN, more specifically, “Coreness” ranking or-
der of each node in the CIN of each 5-year time window. I also construct
an additional analysis where the dependent variable is the forward cita-
tion number, which is well recognized as a patent quality measure, espe-
cially for patent technology importantce and potential economic values
(SDC13a). It is therefore used as an alternate dependent variable to re-
flect the impact of pharmaceutical innovation. When using trade as an
independing variable, I first check the more conventional and simpler
measures, trade volumes. National or firm-level input and/or output
volumes have been widely used by researchers to study the impact of
R&D on trade performance (GH90; And99; RL02; BDVR16), together
with other recognized indicators of patenting and R&D, including the
number of patent applications and investment in innovation. Then I use
the WION “Coreness” ranking in the similar way as CIN “Coreness”
ranking to check the network approach. In addition, since I’m partic-
ularly interested in the impact of export, a trade balance variable is in-
cluded in the model.

For the 29 common countries between the two networks9, they are re-
ranked for consistency while the relative original ranking orders in each
network are preserved. For example, nodes A, B and C are ranked 1, 2
and 3 in the CIN network10, and B is not in the WION nodes. Then A and
C will be re-ranked as 1 and 2 for their CIN “Coreness” in the common
nodes set. By doing this the “Coreness” ranking of the two networks are
on the same scale.

9Out of the 32 shared countries, Russia and Turkey are removed due to missing WION
data and Indonesia is removed due to lack of patent citation data.

10Smaller numbers represent larger “Coreness” values
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For any node i in the CIN of the 5-year aggregate time window start-
ing from yeart, its invert “Coreness” ranking order as CINit:

CINit = 29− CRit, (4.1)

where CRit represents node i’s CIN “Coreness” ranking in year t.
With the simple subtraction, larger CINit indicates a more persistently
central node in the patent co-invention network.

For WION, the invert “Coreness” ranking is defined similarly as WIONit,
and WIONit

’ is further weighted by the export trade balance:

WIONit = 29−WRit, (4.2)

WION
′

it = WIONit Eit, (4.3)

Eit =

∑
j Ojit∑

j Iijt +
∑

j Ojit
, (4.4)

where WRit represents node i’s WION “Coreness” ranking in year t, Eit is
the share of export in total input and output volumes, Ijit is the input from
country j to country i, and Oijt is the output from country i to country j.
Eit is a value between 0 and 1 that represents the extent of a country being
favorable balanced in its overall bi-lateral pharmaceutical trade. Larger
WIONit

’ value indicates a country being more persistently central in the
international pharmaceutical trade market with a favorable balance.

Other factors that could influence national innovation capability are
taken into consideration, including11:

1. Business Enterprise Expenditure on R&D (BERD) performed in the
pharmaceutical industry: in current PPP Millions $

2. Percentage of BERD performed in the pharmaceutical industry: in
percentage units

111 and 2 are obtained from OECD’s Main Science and Technol-
ogy Indicators (MSTI) dataset, release of 1 March 2018, available at
https://www.oecd-ilibrary.org/science-and-technology/data/
oecd-science-technology-and-r-d-statistics_strd-data-en. 3-6 are
obtained from the OECD patent database, and 7 is based on the composite ranking in a
2016 ITIF report
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3. Number of pharmaceutical patents filed, grouped according to the
first-priority year and patent applicant country12

4. Number of individual inventors listed in the pharmaceutical patents
filed, grouped according to the first-priority year and inventor coun-
try

5. The average number of outgoing citations from pharmaceutical patents
filed, grouped according to the citing patent’s first-priority year
and patent applicant country

6. The average number of incoming citations received by each phar-
maceutical patent filed, in 5 years after the patent publication, grouped
according to the cited patent’s first-priority year and patent appli-
cant country

7. National bio-pharmaceutical price control index (WE16), used for
control: 1 for high extent of control, 2 for moderate and 3 for low.

Among these variables, No. 6 is the forward citation number to be
used as an alternate dependent variable. No. 5, also known as back-
ward citation number, is an indicator of patent novelty and patentability
(SDC13a) and represents the extent of inventors reply on prior art. It is
used as an independent variable.

4.4.1 Results

Considering fixed effects of time and country, for the 30 countries in the
time range from 2000 to 201013, results of the linear regression models are
shown in Table 4 to Table 6. Analysis 1 uses CIN “Coreness” as depen-
dent variable and includes trade volumes as independent variabls. The
other two analyses use WION “Coreness” ranking as regressor: Analy-
sis 2 uses CIN “Coreness” as dependent variable, and Analysis 3 uses

12Pharmaceutical patents are those patents with at least one IPC classification as phar-
maceutical sector according to the IPC concordance table

13Note that for CIN, the time window starting 2010 covers 2010-2014
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average incoming citation quantities. Analysis 2 and 3 also include esti-
mations using national drug price control as a categorial variable14.

Table 4: Analysis 1: The Changes of CIN “Coreness” on Input and Output
Volumes

Dependent: CIN coreness
ranking

Base Including BERD variables

1a 2a 3a 4a

1 log of total input volume -0.1200* -0.2728* -0.2756* -0.2435
(0.0611) (0.1456) (0.1446) (0.1572)

2 log of total output volume 0.1954* 0.3016** 0.3198** 0.2942*
(0.1065) (0.1353) (0.1317) (0.1505)

3 log of average outgoing ci-
tation quantity

0.0528* 0.0324 0.0370 0.0368

(0.0309) (0.0357) (0.0368) (0.0355)

4 log of patent quantity 0.1568 0.2107 0.2167 0.2263
(0.1098) (0.1342) (0.1326) (0.1334)

5 log of inventor quantity 0.0116 -0.1422 -0.1456 -0.0716
(0.2006) (0.1982) (0.1960) (0.2195)

6 log of BERD in pharmaceu-
ticals

0.0049 -0.2270

(0.0887) (0.1947)

7 percentage of BERD per-
formed in pharmaceuticals

0.0838 0.2894

(0.1291) (0.2509)

8 Dummy variables: Year Included in all

Number of countries 29 20 20 20
Number of observations 289 195 195 195

* p<0.10, ** p<0.05,*** p<0.01
Note: Dependent variable is the CIN “Coreness”. All the models are estimated by panel
fixed-effect method. Estimations report coefficients and robust standard errors. 1a is the base
model in this analysis. Input and output volumes are in millions of dollars.

Analysis 1 shows negative coefficients of input volume and positive
coefficients of output volumes with medium-low significance levels. The
R-squared value of Model 4a is low (0.0357), smaller than that of Model
4b (0.1835). In Analysis 2, variable 9 is insignificant, but when weighted
by export trade ratio, variable 10 becomes consistently significant15. In

14High control countries: Australia, Spain, France, the UK, Norway. Moderate control
countries: Austria, Belgium, Canada, Czech Republic, Germany, Hungary, Italy, Japan,
Korea, Portugal, Romania, Slovenia. Low control countries: Switzerland, Mexico, the U.S.

15The export trade ratio is used as a weight but not a regressor due to lack of theoretical
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Table 5: Analysis 2: The Changes of CIN “Coreness” on WION “Coreness”

Dependent: CIN coreness
ranking

Base Including BERD variables Include price con-
trol level

1b0 1b 2b 3b 4b 5b 6b

9 log of WION coreness
ranking

-0.0414

(0.1287)

10 variable 9 weighted by
the share of output in to-
tal trade volume

0.2501** 0.4909*** 0.4973*** 0.4679**

(0.1107) (0.1653) (0.1637) (0.1699)

11 variable 10 X high price
control

0.2475 0.3515

(0.1571) (0.3779)

12 variable 10 X moderate
price control

0.2679* 0.5456**

(0.1446) (0.2112)

13 variable 10 X low price
control

-0.2804 -0.0516

(0.1983) (0.4396)

3 log of average outgoing
citation quantity

0.0288 0.0278 0.0313 0.0343 0.0348 0.0256 0.0309

(0.0307) (0.0314) (0.0459) (0.0473) (0.0452) (0.0315) (0.0472)

4 log of patent quantity 0.0852 0.1239 0.2526 0.2542 0.2692 0.1246 0.2751
(0.1245) (0.1359) (0.1590) (0.1570) (0.1587) (0.1395) (0.1635)

5 log of inventor quantity -0.0508 -0.0319 -0.0697 -0.0855 0.0096 -0.0275 -0.0012
(0.1737) (0.1740) (0.1461) (0.1536) (0.1656) (0.1721) (0.1786)

6 log of BERD in pharma-
ceuticals

-0.0493 -0.2636 -0.2164

(0.0892) (0.1538) (0.1963)

7 percentage of BERD per-
formed in pharmaceuti-
cals

0.0210 0.2653 0.2197

(0.1296) (0.2242) (0.2736)

8 Dummy variables: Year Included in all

Number of countries 29 29 20 20 20 20 20
Number of observations 273 273 190 190 190 273 190

* p<0.10, ** p<0.05,*** p<0.01
Note: Dependent variable is the CIN “Coreness”. All the models are estimated by panel fixed-effect method. Estimations
report coefficients and robust standard errors. Model 1b is the base model in this analysis, using weighted WION
“Coreness”. Model 5b and 6b include drug price control extent as a categorical control with 3 values from high to low.
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Table 6: Analysis 3: The Changes of Average Incoming Citation Quantity
on WION “Coreness”

Dependent: Log of average
incoming citation quantity

Base Including BERD variables Include price con-
trol level

1c0 1c 2c 3c 4c 5c 6c

9 log of WION coreness
ranking

-0.0089

(0.0711)

10 variable 9 weighted by
the share of output in to-
tal trade volume

0.1014 0.3129 0.3401 0.3383

(0.1606) (0.2188) (0.2235) (0.2185)

11 variable 10 X high price
control

0.5464* 0.2023

(0.3061) (0.5604)

12 variable 10 X moderate
price control

-0.0478 0.44

(0.1303) (0.2601)

13 variable 10 X low price
control

-0.103 -0.409

-0.1712 -0.2908

3 log of average outgoing
citation quantity

0.0414 0.0436 0.1877*** 0.1839*** 0.1842*** 0.0375 0.1831***

(0.0720) (0.0726) (0.0565) (0.0571) (0.0621) (0.0754) (0.0631)

4 log of patent quantity -0.0369 -0.0191 0.1087 0.0935 0.0947 -0.0513 0.1139
(0.1050) (0.1151) (0.0873) (0.0809) (0.0850) (0.1228) (0.0846)

5 log of inventor quantity -0.0527 -0.0422 0.0349 -0.0369 -0.0302 -0.0935 -0.0289
(0.1297) (0.1313) (0.2584) (0.2335) (0.2939) (0.1343) (0.3081)

6 log of BERD in pharma-
ceuticals

-0.1564 -0.0153 0.0022

(0.1037) (0.3096) (0.3074)

7 percentage of BERD per-
formed in pharmaceuti-
cals

-0.1859* -0.1722 -0.2104

(0.1045) (0.3147) (0.3111)

8 Dummy variables: Year Included in all

Number of countries 29 29 20 20 20 29 20
Number of observations 250 250 172 172 172 250 172

* p<0.10, ** p<0.05,*** p<0.01
Note: Dependent variable is the average incoming citation quantity within 5 years after the patent’s publication. All the
models are estimated by panel fixed-effect method. Estimations report coefficients and robust standard errors. Model 1c
is the base model in this analysis, using weighted WION “Coreness”. Model 5c and 6c include drug price control extent
as a categorical control with 3 values from high to low.
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Analysis 3, variable 3 has a positive significant impact on the average
number of incoming citations. The other factors are not statistically sig-
nificant, including BERD investment, patent application quantity and in-
ventor quantity.

4.5 Discussion

Although the statistical significance of weighted WION “Coreness” rank-
ing in Analysis 3 is weak, its coefficients are consistently positive. Anal-
ysis 2 and 3 indicate that being an central exporting country in the global
pharmaceutical market tends to promote patenting collaboration with
foreign countries and produce patents with higher technological and eco-
nomic values. Of course, as discussed earlier in literature review, the
positive coefficient might be viewed as reverse causality: Being central
in R&D collaboration promotes a country’s position in export. In my
analysis, the dependent variable CIN “Coreness” ranking is calculated
over a 5-year window, while the independent variables are of the first
year of the time window. I perform a further check with the independent
variables leading one year ahead of the dependent variable, i.e. WION
“Coreness” of year 2000 is used to model CIN “Coreness” of the aggre-
gate time window from 2001 to 2005. The results are shown in Table
10 in Appendix. For Model 1b and 4b, adding one year lag still shows
significant positive effects of variable 10.

This analysis is by no means a denial to the causality that innovation
can bring up export in trade. It is to explore the causality the other way
around. In the global market the causality in both directions can co-exist.
Through this analysis and future work, I hope to provide evidence for
countries and business to optimize trade strategy so that it could help
improve their status in R&D collaboration, enhance their R&D impacts,

support that trade balance directly influences co-invention centrality. I also found weak
correlation between Eit and log of WIONit (Pearson correlation coefficient is 0.1036 ), and
Eit and CINit (Pearson correlation coefficient is 0.0198). Further checks using a pooled linear
regression model including Eit, WIONit and their interaction term show that when holding
Eit as a constant at different values, the positive marginal change of CINit caused by one
unit change in WIONit increases. The collinearity between Eit and WIONit is low. Therefore
I include Eit as a weight on WIONit.
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increase opportunities to benefit from knowledge diffusion and interna-
tional resources, and promote globalized innovation.

Literature hold that stricter drug price controls could systematically
lower the prices of drugs sold in the country and inhibit market ac-
cess, and the decrease in profits could harm R&D incentives for pharma-
ceutical firms (DC00; GSV05; WE16). Magaret also suggests that firms
headquartered in countries with price controls reach fewer markets. But
she also points out that consequently, firms could avoid price-controlled
countries and limit market launches in additional countries (Kyl07). The
existence of parallel trade in the European market and the relevant legal-
ization and responding product launch strategies taken by pharmaceu-
tical firms are also changing the game. Drug price is therefore a factor
of interest in my analysis. However, due to difference in market access,
new drug launch procedures, medicine packing and distribution chan-
nels, comparing cross-national drug prices is complicated. Let alone the
relevant factors of national health care reimbursement policies. In this
analysis I use the composite price control extent index from the ITIF re-
port (WE16) as a categorical factor. The result of Model 5b, 6b and 5c,
6c also suffer from small sample sizes of each price control category and
are difficult to interpret. The results tend to indicate that in countries
with higher price controls, the positive effects of being central in export
are more robust. A possible explanation is lower domestic market val-
ues could encourage firms to export to high-valued foreign markets, and
consequently raise their chances of international R&D collaboration.

For the incoming citations received, the number of outgoing citations
is consistently significant. This echoes the knowledge spillover literature:
Stand on the shoulders of giants, and you can see further. It is also in-
tuitively reasonable that when the number of cross-national co-invented
patents increases, the total number of citations received will go up be-
cause co-inventors are motivated to cite their own prior inventions, and
because the IP protection coverage has expanded to more countries.
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4.6 Conclusion

This chapter attempts to answer the question ”how does a country’s po-
sition in the world trade network, export in particular, affect its position
in global innovation in the pharmaceutical industry?” Through network
community detection, I present descriptive analysis of how countries are
grouped together in the trade network and the co-invention network.
Further analysis using linear regression models shows that exporting
more pharmaceutical products to more different foreign markets helps a
country forge more co-invented pharmaceutical patents with other coun-
tries, and the resulting patents are more likely to be of higher quality
and values. Compared to simple trade volume measure, the network ap-
proach is more accurate in estimating changes of CIN “Coreness” rank-
ing.

The impact of drug prices and national price control policies is rather
inconclusive and presents continuous research potential. Inclusion of
reliable bi-lateral drug prices, reimbursement policies and market access
regulations will be important in future work.

This study adds to the literature of relationships between innovation
and trade. It also provides a new estimation approach using networks
measures. In the trending discussions about enhancing innovation effi-
ciency on national and firm levels theses days, the yet preliminary re-
sults of this analysis may be suggestive for decision makers in making
national trade policies and for pharmaceutical business owners in con-
sidering foreign market accessing strategies.

4.7 Appendix

16Inventor-hosting country in ISO 2 codes
17WIOD countries in ISO 3 codes
18Countries appearing in co-invention networks only
19Countries appearing in WIOD only
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Table 7: Co-invention countries and WIOD countries

Country CIN16 WION17 Country CIN18 Country WION19

Austria AU AUT Israel IL Croatia HRV

Belgium BE BEL New Zealand NZ Cyprus CYP

Brazil BR BRA Philippines PH Estonia EST

Canada CA CAN Qatar QA Latvia LVA

China CN CHN Saudi Arabia SA Lithuania LTU

Czech Rep. CZ CZE Singapore SG Luxembourg LUX

Denmark DK DNK South Africa ZA Malta MLT

Finland FI FIN Thailand TH Poland POL

France FR FRA Uganda UG Rest-of-World ROW

Germany DE DEU Ukraine UA Slovakia SVK
Greece GR GRC Taiwan TWN

Hungary HU HUN

India IN IND

Indonesia ID IDN

Ireland IE IRL

Italy IT ITA

Japan JP JPN

Mexico MX MEX

Netherlands NL NLD

Norway NO NOR

Portugal PT PRT

Romania RO ROU

Russia RU RUS

Slovenia SI SVN

South Korea KR KOR

Spain ES ESP

Sweden SE SWE

Switzerland CH CHE

Turkey TR TUR

UK GB GBR

USA US USA
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Table 8: Regions and Countries

Region Name WION CIN

AFRE Southeast Africa
UG

ZA

AMCS Central-south America

AR

BRA BR

MEX MX

AMRN North America
CAN CA

USA US

ASAE East Asia

CHN CN

JPN JP

KOR KR

TWN

ASAW West Asia

CYP

IL

QA

SA

TUR TR

ASSE Southeast Asia

IDN ID

IND IN

PH

SG

TH

EURE East Europe

BGR

CZE CZ

HUN HU

LTU

LVA

POL

ROU RO

RUS RU

SVK

UA

EURN Noth Europe

DNK DK

EST

FIN FI

GBR GB

IRL IE

NOR NO

SWE SE

EURS South Europe

ESP ES

GRC GR

HRV

ITA IT

MLT

PRT PT

SVN SI

EURW West Europe

AUT AU

BEL BE

CHE CH

DEU DE

FRA FR

LUX

NLD NL

OCEA Oceanic
AUS AT

NZ

ROW
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Table 9: Average “Coreness Ranking Over Time and Persistence Probability
Thresholds

CIN CIN ranking WION WION ranking

US 1.242424 CHE 1.081481

DE 3.818182 IRL 2.548148

GB 5.813131 DEU 3.962963

ID 8.247475 GBR 4.177778

FR 8.560607 DNK 6.274074

CH 10.26768 AUT 8.874074

KR 13.02222 NLD 10.33333

CA 16.14646 SWE 10.80741

JP 18.1404 BEL 11.01481

AU 18.43939 FRA 11.4963

BE 18.78788 ITA 12.02222

IE 18.82323 NOR 13.77037

GR 18.90088 USA 14.77778

ES 19.95834 CZE 15.54815

NL 20.63952 ESP 16.45926

SE 21.99495 HUN 16.64444

MX 24.22778 FIN 17.32593

RO 24.30357 ROU 23.14074

CZ 25.01389 CAN 23.23704

DK 25.33334 GRC 24.85926

AT 26.34443 PRT 27.76944

CN 27.74564 AUS 31.4418

IT 27.81881 CHN 32.52523

BR 28.00131 JPN 32.78214

NO 28.93723 KOR 32.812

IN 29.00292 MEX 32.88056

PT 29.16162 IDN 34.30324

FI 32.62067 SVN 35.55486

HU 33.80053 BRA 36.62247

SI 35.1996 IND 39
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Table 10: Regression with Increased Lag of One Year

Dependent: CIN coreness ranking 1-year
lag

1-year
lag

1b 1b+1 4b 4b+1

10 variable 9 weighted by the
share of output in total
trade volume

0.2501** 0.3675** 0.4679** 0.5658**

(0.1107) (0.1553) (0.1699) (0.2096)

3 Log of average outgoing ci-
tation quantity

0.0278 0.0019 0.0348 -0.0111

(0.0314) (0.0248) (0.0452) (0.0293)

4 Log of patent quantity 0.1239 0.2978** 0.2692 0.5459***
(0.1359) (0.1381) (0.1587) (0.1640)

5 Log of inventor quantity -0.0319 -0.0000 0.0096 0.0988
(0.1740) (0.2106) (0.1656) (0.2712)

6 Log of BERD in pharma-
ceuticals

-0.2636 -0.4011

(0.1538) (0.2541)

7 Percentage of BERD per-
formed in pharmaceuticals

0.2653 0.3040

(0.2242) (0.3048)

8 Dummy variables: Year 2000-2010 2000-2009 2000-2010 2000-2009

Number of countries 29 29 20 20
Number of observations 273.0000 248.0000 190.0000 172.0000
R-squared 0.0783 0.1098 0.1557 0.2265

* p<0.10, ** p<0.05,*** p<0.01
Note: Dependent variable is the CIN “Coreness”. All the models are estimated by panel fixed-effect
method. Estimations report coefficients and robust standard errors. By adding 1 year of lag, inde-
pendent variables of year t are used to predict the dependent variable of the aggregate time window
t+1-t+5.

86



Figure 19: Co-invention Networks Rendering of Multiple Time Periods

2D Rendering of Co-invention Networks in Four 5-year Time Windows
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Figure 20: WIOD Networks Rendering of Multiple Time Periods

2D Rendering of WIOD Networks in Two 5-year Time Windows

88



Chapter 5

Conclusion

5.1 Conclusion

The author of this thesis is interested in a series of issues in technological
innovation. Rather than the conventional indicators that measure only a
single dimension, this thesis focuses on the information contained in con-
nections, including the cohorting connections among different technolo-
gies, the citation connections among different technologies and coun-
tries, and the international collaboration connections among individual
co-inventors. Therefore, the author takes a network perspective through-
out the studies, develops and applies methodologies for appropriate re-
search purposes.

This research is driven by the needs to rethink about today’s tech-
nological innovation in a socio-economic context, in order to maintain
the motivation for continuous innovation while optimizing the output
of innovation investment. The first two chapters center around the issue
of technology cohort as an indication of how emerging technologies re-
shape the global innovation landscape. Referenced with literature and
results from conventional measures, the network approaches prove to be
consistent with the empirical baselines and are more efficient to capture
temporal changes, which is an interesting problem in networks studies.
This is demonstrated in particular in Chapter 2, where the author de-
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velops a systematic analysis based on some known good practices in
literature. In addition to the methodological contribution, our results
also suggest improvements to the authority-defined technology classifi-
cation platform to provide more updated, accurate and thorough infor-
mation for users with various purposes. The last chapter brings in more
economic intuition. While more literature investigate whether innova-
tion can empower production and increase profits, the author focuses
on how innovation can be benefited when considering trading strate-
gies in the pharmaceutical market. Although due to data limitation, the
causality can’t be solidly concluded, the analysis has found a consistent
positive relationship between centralities in the trade network and the
co-invention network.

Overall, this research reveals new ways to interpret patent data, to
understand technological evolution, knowledge diffusion and the rela-
tionships between innovation and economics, and hopefully, to help de-
cision makers optimize strategies in the globalization context.

This is a far-reaching goal and the relevant research field is vast. The
studies presented in this thesis represent only a small part of this field.
Further work remains abundant, including in-depth analysis of interest-
ing technology sectors or regions, inclusion of improved and extended
empirical data sets, and further studies of innovation in microeconomics.
The thesis ends here, but the pursuit will continue.
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