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Abstract

Modern economies are organised as webs of interconnected
agents. Among others, companies represent the principal ac-
tors.

In the recent decades, the emergence of supply networks, that
is the organisation of technical processes in production stages
involving specialised suppliers located in different countries,
brings about an increasing complexity in the worldwide eco-
nomic system.

Moreover, empirical studies from firm-level data provide evi-
dence of heterogeneous distribution in companies performance
also within industries, regions and countries. However, when
discussing policy-making in Europe this aspect is still neglected
by many, and the impact of regional or industrial policies is
evaluated at the macro level.

Recently, geo-coded information on where firms run their activ-
ities is becoming available to the researchers, offering a good
opportunity to improve the empirical design of specific research
questions.

xv



In this thesis, we investigate these aspects in detail, showing
the utility of adapting and implementing analytical tools from
Network Science and Machine Learning along with ad hoc
econometric techniques. Moreover, we contribute to the litera-
ture on international economics, industrial organisation and
economic geography.

With the first work, we propose an empirical tool, the Input
Rank, adapted from the notorious PageRank, which is originally
designed for social networks and search engines, and we test
its empirical validity for choices of vertical integration.

Then, we ambitiously test the effect of the EU Cohesion Policy
on an own-built dataset with firm-level total factor productivi-
ties of European manufacturing companies.

Finally, thanks to the implementation of the DBSCAN, a chal-
lenging density-based spatial clustering algorithm, we exploit
firms’ location information to identify industrial clusters and
examine the likelihood of firms’ survival according to their
location in industrial clusters or more isolated areas.
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Introduction

Over the past years, research in international trade, both theoretical and
empirical, has shifted its focus from industries and countries to firms
and products. Firms through their daily activity of investing, producing,
selling, and exporting, are the main drivers of the aggregate dynamics
in trade, innovation and competitiveness. Empirical studies on firm-level
data show how no ‘average’ firm within an industry, a region or a country
can represent the aggregates (among others, see for example (Mayer and
Ottaviano, 2008)). Therefore, we believe that understanding the firm-level
facts is essential for policy making.

In this thesis, we explore some unique features about the organisation of
production, the productivity and the localisation of firms, contributing to
the literature on international trade, industrial organisation and economic
geography. First, in the work presented in Chapter 2, we look at the or-
ganisation of production processes on a multi-dimensional scale. Adopting
a network perspective, we propose an empirical tool, the Input Rank, and
we test it on vertical integration choices. Second, in the work illustrated
in Chapter 3, we carefully investigate the heterogeneity of firms in the

1



CHAPTER 1

European Union by estimating their total factor productivity. Taking into
account the high dispersion, we assess the impact of some EU Cohesion
Policy tools on firms’ inefficiencies. Third, in the work in Chapter 4, we
explore the tendency of firms in some industries to cluster in space, even
though more often they run their activity in a global context. Hence, we
test the likelihood of firms’ survival according to their location in industrial
clusters or more isolated areas.

Overall, in the works collected in this thesis, we exploit in different
ways the potential of large firm-level datasets, especially when combined
with regional and industrial data. Besides, we show how adapting and im-
plementing tools from Network Science and Machine Learning is promising
in economics studies.

1.1 Production Networks

“The goods we buy are the end result of an elaborately chore-
ographed transnational odyssey. These objects are part of an
economy whose tendrils reach over further outward, linking,
integrating, and transforming both far-flung and nearby places.”

Kennedy and Florida (2004)

Production processes are more than ever spatially fragmented since a
process of unbundling has occurred globally, separating the production
of intermediates and final goods across national borders (Hummels et al.,
2001; Baldwin, 2006; Baldwin and Lopez-Gonzalez, 2015). In fact, from a
trade perspective, it is remarkable that the export of intermediate goods
and services has increased sharply relative to the export of final and cap-
ital goods and services.1 Lower trade barriers, lower transport costs, a
better organisation in logistic, progress in information and communication

1According to OECD (2013) more than half of the world’s manufacturing imports are
intermediate goods (primary goods, parts and components, and semi-finished products),
and more than 70% of the world’s services imports are intermediate services, such as
business services.

2



1.1. PRODUCTION NETWORKS

technologies have made slicing up the production process a competitive
alternative to the traditional mode of production. The typical ‘Made
in’ labels of manufacturing have become a symbol of an old era, and
nowadays it is more appropriate to label products as ‘Made in the World’
(Antràs, 2015). In this new scenario where firms distribute their produc-
tion stages around the globe, managers in charge have to face complex
decisions. Among other aspects, they have to take into account labour
costs, transportation costs, distances to potential markets, coordination
costs, productivity and all the external risks possibly causing disruption
and losses along the production process, like the recent past shows.

This new economic system involving firms’ interconnections through
buyer-seller relationships has been conceptualised in the early 2000s as
production networks (Dicken et al., 2001; Coe et al., 2008). The latter
notion captures the simple idea of firms or industries (nodes) trading
tasks and outsourcing stages of production (directed edges). However, the
international orientation and integration of firms lead to the emergence of
sophisticated global production networks, often driven by world-leading
companies (Coe et al., 2008) and also involving ‘non-firm’ actors.

In the next Section, we show how the network approach seeks to move
beyond the analytical limitations of the traditional supply chain notion.

1.1.1 From Supply Chains to Networks

“[. . . ] economic processes must be conceptualized in terms of a
complex circuitry with a multiplicity of linkages and feedback
loops rather than just ’simple’ circuits or, even worse, linear
flows”

Hudson (2004)

The literature on the determinants and consequences of the global supply
chains has studied the phenomenon of unbundling of production assuming
that an ordered and linear sequence exists, from the conception of a product

3



CHAPTER 1

to its distribution and final use.2 The engineering of the manufacturing
process, typical for each industry, dictates the way in which different stages
of production links (Baldwin and Venables, 2013). There are two extreme
simplified configurations commonly used to describe the supply chain: a
spider and a snake. A spider is a production process in which different
components come together to be assembled in the final output (Figure 1.1).
The snake structure requires the process to be a sequence of stages until
the final assembly (Figure 1.2). The latter relies on the predetermined
order in which operations are performed.

Figure 1.1: A spider global value chain

Source: Baldwin and Venables (2013).
Note: Each cell is a part, component or final product itself. Each arrow is the physical
movement of parts, components or the good itself. Movements can be within a plant in
a country, or between plants located in different countries.

Figure 1.2: A snake global value chain

Source: Baldwin and Venables (2013).
Note: Each cell is a production stage at which value is added to a product for final
consumption. Each arrow is the physical movement of parts, components or the good
itself. Movements can be within a plant in a country, or between plants located in
different countries.

2For example Antràs and Chor (2013) in their studies on the organization of global
value chains, collapse to the [0,1] range the world technological process of production,
where 0 indicates the beginning of the production line and 1 the proximity to the final
demand.
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It is understandable that the chain structure captures the sequential
transformation of inputs into outputs, emphasising the value added at
each stage of the production process of goods and services. However, all
production processes are better thought of as a combination of the snake
and spider structure.3

In fact, each stage of the production chain may be embedded in a
much wider set of non-linear/horizontal relationships (Coe et al., 2008).
Besides, the same input can be used at several stages of production, not
in linear progression, before reaching the final demand, and the sourcing
of an industry can assume different topological configurations. Therefore,
albeit an advancement with respect to the previous literature, where each
stage of production was considered separately, a linear organisation of
production is not realistic, and the network approach allows catching the
complexity of actual sourcing strategies.

More in general, production networks highlight the real-world connec-
tivity of modern economies among different firms, industries, and countries.
An important aspect that can be captured from this structure is the dif-
ferential power of relations and actors. In other words, one can investigate
who controls key resources (e.g., inputs of production) and possibly dis-
rupts the production network.4 Indeed, each producer plugged into a
production network must decide whether to make or buy each input of
production given the limited information on indirect transactions and
scarce time to outreach the intricate web of direct and indirect suppliers.

1.1.2 Firm Boundaries: Make or Buy?
Since the 1980s, many studies have attempted to model the choice of
make or buy an input of production (vertical integration) that leads to
the formation of firm boundaries, based on the degree of contractibility

3In Figure 2.1 of Chapter 2, we plot the production network for the U.S. economy
using data from U.S. BEA 2002 input-output tables, where each node corresponds an
industry and links represent industry-pair transactions.

4In the network science, most commonly, it is suggested that power in a network is a
function of positionality within the network (for example centrality). Several measures
of centrality, catching the absolute position of a node in the network, are well-defined
and implemented. See Katz (1953), Freeman et al. (1979), Brin and Page (1998) and
Kleinberg (1999) for the most used.
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of that input and on the institutional environment of the market where
companies operate.

The pioneering work of Coase (1937) helped to build a theory of
the firm. In fact, new approaches to understanding what determines a
firm’s boundaries borrow from the theoretical literature on incomplete
contracts (Williamson, 1971, 1975, 1979; Grossman and Hart, 1986) and
incorporate these frameworks in general equilibrium models. Acemoglu
et al. (2007) for the first time investigated how the degree of contractual
incompleteness and the extent of technological complementarities between
intermediate inputs affect the choice of technology by headquarters.5 More
recently, Harms et al. (2012) analysed the offshoring decision of firms whose
production process is characterized by a particular sequence of steps and
a non-monotonic variation of transportation costs. Costinot et al. (2012)
built a theory of global supply chains, in which the key feature is that
production is sequential and standardized in structure, and has offered
a first look at how vertical specialization shapes the interdependence of
countries. Then, Antràs and Chor (2013) developed a property-rights
model of firms’ boundaries choice along the value chain, and introduced
two measures of industry’s production line position, named DUse TUse and
DownMeasure.6 The main prediction that emerged from the model is that
the position of an input in the value chain is an important determinant of
the ownership structure decisions related to that input. Hence, according
to the model, final-good producers integrate production stages that are
relatively more downstream (upstream) when final demand is sufficiently
elastic (inelastic).

Production processes are sequential in nature, i.e. downstream
stages cannot commence until upstream stages are completed, therefore
the organizational decisions along what most assume a production
line relate to the contract setting more appropriate to secure each
stage input. Usually, firms operate in an environment of incomplete

5For a detailed review on trade and firms’ organization strategies of multinational
enterprises, see Antràs and Yeaple (2014).

6Several measures of positioning along supply chains have been proposed, see Fally
(2012), Antràs et al. (2012), Miller and Temurshoev (2017),Wang et al. (2017), Antràs
and Chor (2018), and for bilateral industry-pairs Alfaro et al. (2017).
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1.1. PRODUCTION NETWORKS

contracts and intermediate producers along with the final producer
bargain over the surplus associated with a particular stage. Owning
a supplier is a source of power for the firm because it enhances
its bargaining power through the residual control rights, but at the
same time, it reduces the incentive of suppliers to invest in the relationship.

In the framework of production networks and firm boundaries (following
Antràs and Chor (2013) theoretical model), in Chapter 2 we address the
following research questions:

• How to measure the local technological relevance of any input for
the completion of a network-like production process?

• Does the local technological relevance of any input in a network-like
production process have a role in the choice of vertical integration
of a firm?

7



CHAPTER 1

1.2 Firm Heterogeneity and EU Regional
Policy

Firms embedded in production networks are heterogeneous along many
dimensions, such as size, cost structure, profits, sales, productivity, etc..
Dispersion in firm size has been well documented. Empirically, the distri-
bution of firm size is very skewed and has been described by a power law
(Gabaix, 2009, 2016; Luttmer, 2010). Also, even within narrowly defined
industries, there is evidence of large dispersion in firm outcomes such as
revenue, employment, labour productivity and total factor productivity
(Syverson, 2011), reflecting misallocation of resources and market distor-
tions. In particular, the productivity7 distribution is asymmetric with
a large density of low-productive firms and few highly productive firms.
Although this empirical regularity applies to all countries and industries,
the shape of the distribution can differ across countries, reflecting their
structural characteristics.

In the recent years, as policy-makers refocus on growth, there has been
an increasing interest in assessing the competitiveness at different levels
of analysis.8 Firm-level productivity is an essential indicator of micro
competitiveness. Porter (1990) defined micro competitiveness as the ability
of a given firm to successfully compete in a particular business environment
through innovation, i.e. new technology and the new way of doing things.
Therefore, critical is the design of appropriate competitiveness-enhancing
policies.

When discussing policy-making in Europe, the tendency is to refer to
aggregate country-, region- or industry-level statistics as these are easier

7As an indicator of firm’s efficiency, productivity can be measured estimating total
factor productivity (TFP). In fact,TFP has been defined as the efficiency of a firm to
turn inputs of production such as capital, labour, and intermediate inputs into products
at the lowest possible cost. In other words, TFP is the portion of output not explained
by the amount of inputs used in production (Hulten, 2001; Katayama et al., 2009;
Van Beveren, 2012).

8In 2012, the President of the European Central Bank (ECB), Mario Draghi stated:
“A competitive economy, in essence, is one in which institutional and macroeconomic
conditions allow productive firms to thrive. In turn, the development of these firms
supports the expansion of employment, investment and trade.” (https://www.ecb.
europa.eu/press/key/date/2012/html/sp121130.en.html)

8

https://www.ecb.europa.eu/press/key/date/2012/html/sp121130.en.html
https://www.ecb.europa.eu/press/key/date/2012/html/sp121130.en.html


1.2. FIRM HETEROGENEITY AND EU REGIONAL POLICY

to calculate, understand, and finally communicate (Altomonte et al.,
2012). In general, the impact of regional or industrial policies is evaluated
at the macro-level. Actually, there are firms that from the bottom shape
the aggregate statistics through their daily activity of investing, producing,
selling and exporting. The last decade of empirical studies on firm-level
data shows how no ‘average’ firm within an industry, a region or a country
can represent the aggregates (among others, see for example Mayer and
Ottaviano (2008)). Therefore, thanks to the increasing availability of
micro-data at the firm-level, it is now possible to check whether the impact
of regional policies mandated at the EU level is heterogeneous within
country, region and industry, which is often as relevant as differences
across countries, regions and industries. In conclusion, as emphasised
in Altomonte et al. (2016), similar set of policies dictated ex-ante
may end up producing very different outcomes ex-post, because of the
heterogeneity of firm’s performance which nowadays cannot be disregarded.

Given the facts mentioned above emerging from adopting a firm-level
view, in Chapter 3 we ambitiously try to answer the following research
question:

• Does the provision of EU funds have an effect on the productivity of
firms?
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1.3 On the Geography of Firms
‘Where’ firms’ activity takes place is extremely important in understanding
their performance, dynamics of entry and exit from the market, and also
their involvement in global value chains and production networks.

Nowadays, a lot of firms are globally organised in some corporate
functions (e.g., finance, human resources, IT, procurement, legal, facilities
management) and production stages, however especially in the initial phase
of producing good and/or services their activity is highly localised in space
also in proximity to similar businesses. Whereas, final goods and services
are more global in their consumption.

Therefore, the idea of global production networks introduced in Section
1.1 should be understood as a spatial ensemble of different local and
regionally centred economic activities (Coe et al., 2008).

Recently, a larger amount of micro-geographic data is becoming avail-
able and usable, calling for a more accurate exploration of non-random
spatial patterns of firms.

1.3.1 The Use of Micro-Geographic Data

In the recent years, for researchers, it is becoming more common to get
access to data sets collecting spatial information of firms. Although, in
most official databases, spatial information is still only available in the
form of administrative divisions, either because only a specific territorial
level is recorded or because confidentiality rules forbid the dissemination
of precise location information, in some, mostly commercial databases it is
possible to retrieve exact localisation of firms from postal addresses. Then,
these postal addresses have to be translated to geographic coordinates,
i.e. latitude and longitude, through geocoding procedure which nowadays
allow the treatment of large datasets.9

Geo-coded data offers new room for empirical investigations: it is possi-
ble to get new insights invisible with aggregated data, and therefore answer
‘old’ and new research questions more accurately; the higher geographical

9For a review on the availability and usability of large datasets containing exact
firm’s location, see Lennert (2015).
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resolution can lead to econometric or other methodological improvements;
it is possible to overcome the scaling and regional’s boundary problem,
known as ‘Modifiable Areal Unit Problem’ as first described in Openshaw
(1984).

The microeconomic approach to spatial analysis is gaining impor-
tance over the traditional approach based on country or regional ag-
gregates. Many research questions have been already addressed using
micro-geographic data. Among others, Arbia (2001) proposed a prototype
spatial micro-economic model describing the birth, survival and growth of
firms on a continuous surface. Boix et al. (2015) identified and provided
stylized facts about clusters of creative industries (e.g., Printing, Publish-
ing, Design, etc.) in sixteen European countries. Ruffner and Spescha
(2018) investigated the impact of spatial clustering on firm innovation
for a sample of Swiss firms, combining information about the innovation
activities with the exact location of firms. This allows testing the effect of
agglomeration externalities at a much disaggregated geographic level.10

1.3.2 Agglomeration and Firm Survival

In the new global scenario, local proximity of firms producing similar,
competing and/or related products together with supporting institutions
still matter. Externalities that spatial agglomeration creates in the short
and in the long-run have an impact on firm’s productivity, innovation,
employment and location choice already investigated in many studies
(Duranton and Puga, 2004; Rosenthal and Strange, 2004; Beaudry and
Schiffauerova, 2009; Combes et al., 2012).

Only recently, the literature on firm survival has started to take into
account the geography of firms by investigating the potential costs and
benefits of being located in proximity. For instance, firms producing
similar products within the localised cluster may face higher competition,
and thus only the most productive firms are more likely to survive; or
firms located in highly specialised areas, such as industrial districts, may
be more vulnerable to idiosyncratic shocks (Basile et al., 2017). Also,

10See Blind et al. (2018) for a recent collection of papers on the use of micro-geographic
data in economic research.
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the related local variety (Jacobs, 1969), arising from the co-existence of
diverse industries sharing common or complementary knowledge, may
protect firms from idiosyncratic demand shocks and therefore increase the
survival probability. Finally, urban agglomeration captured by the overall
size of the economy may increase the likelihood of survival when firms
face higher local demand and supply of public services, and congestion
costs (e.g., land prices, crime rates) are negligible (Ciccone and Hall, 1996).

Exploiting micro-geographic data for a sample of Italian firms, in
Chapter 4 we empirically answer the following research questions:

• How to identify industrial clusters on continuous space from large
micro-geographic datasets?

• Where in space are industrial clusters located?

• Are firms located in industrial clusters more likely to survive than
firms operating in more isolated areas?

12
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1.4 Contributions
Here follows a detailed description of the contributions given by each
chapter of the thesis.

Chapter 2: Measuring the Input Rank in Global Supply Net-
works

In Chapter 2, we introduce a network dimension in the study of Global
Values Chains, proposing an empirical tool, the Input Rank adapted from
the notorious PageRank which has been originally designed for social
networks and search engines (Brin and Page, 1998) but it has rapidly
spread as a network tool in so many different domains, from genetics to
the engineering of road networks (see Gleich (2015)). We believe that the
intuitive Markov stochastic process that we imagined behind the Input
Rank is promising for other economic applications willing to study the
technological relevance of firms or sectors in a network-like economy. Hence,
in this work we contribute to the empirical literature on quantifying the
position of production stages in technological networks beyond the linear
technological sequence, i.e. the supply chain. Further, we also contribute
to the literature of vertical integration choices by positively testing that
the make or buy decision of a producer can be driven by the technological
centrality of an input in the specific production process.

Chapter 3: Heterogeneous Firms Meet EU Cohesion Policy

The contribution of the work presented in Chapter 3 is twofold. First, we
contribute to the existing literature by estimating the firm-level TFP for
EU manufacturing firms within each 2-digit of the NACE classification
for the period 2007-2015. In the end, we constructed a unique dataset of
542,876 firms which is already used in other papers in our research pipeline
and can be exploited for future works. Second, given our findings, we
believe that we may contribute to the debate of the next months, as the
negotiation for the next budget of the EU Cohesion Policy has just started,
where a revision of ERDF governance and its administrative procedures is
envisioned (EC, 2009). We support the idea that a better targeted policy
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design as in the case of research, technology, and development is preferable,
because it unambiguously promotes investments in innovation in products
and production processes, with an impact in the short run.

Chapter 4: Spatial Clustering and Survival: Evidence from
Firms in Umbria and Puglia

In Chapter 4, we show the utility of implementing a density-based spatial
clustering algorithm, the DBSCAN, from Machine Learning to identify
industrial clusters beyond the administrative boundaries. To date, few
works have considered the richness of geo-coded data for firms. Hence, we
make an effort to cover this gap by showing an application on a sample of
Italian firms, but which could be usefully extended to whatever country
or region. Moreover, we contribute to the literature on firm survival by
investigating the impact of spatial clustering on the likelihood of survival
and testing the effect of agglomeration variables along with other firm and
industry characteristics.

14
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Measuring the Input Rank
in Global Supply Networks

2.1 Introduction

Modern economies are organised as webs of specialised producers. Each
company can be plunged into a supply network that starts with the idea
of a product in engineering, design or research labs. After that, parts and
components are manufactured and assembled, then they reach producers
of final products who require the services of marketing, advertising and
distribution companies to get to the market.

In fact, the configuration of production processes can be much complex
and recursive in nature, when the same intermediate goods and services
are repeatedly needed along the supply network, at different stages of the
production process. Take logistics and distribution services, which are
crucial in the delivery of parts and components to other companies, as
well as in the case of final goods destined to consumers. Raw materials
are the basis of so many manufactured inputs and outputs. Innovation
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can require the services of R&D labs, engineering and design at various
stages during the production process.

Against this background, in recent decades, supply networks have been
increasingly fragmenting on a global scale since a process of unbundling
started due to the dramatic advances in transportation and communication
technologies that scattered production stages across different countries
(Baldwin, 2006).

Although fragmentation can originate either spider-like or snake-like
configurations, depending on the technological peculiarities of the produc-
tion processes (Baldwin and Venables, 2013), the international organisation
of production has been mainly studied after assuming a separation of pro-
duction stages along ordered and linear sequences. That is, complex
production networks have been proxied as snake-like processes running
from the conception of the product to its delivery for final usage (Costinot
et al., 2012; Fally, 2012; Antràs and Chor, 2013; Alfaro et al., 2017; Antràs
and de Gortari, 2017), therefore neglecting the spider-like nature of the or-
ganization of production for sake of simpler assumptions on theory and em-
pirics. Specialization patterns by country along global value chains (GVC)
and firm-level choices of vertical integration have been both envisaged
as partitions of ideally linear segments oriented on upstream-downstream
directions.

So far, empirical efforts have followed theory when proposing positioning
metrics, e.g., the upstreamness or downstreamness of a production stage,
which simulate a technological sequence constructed on input-output tables
(Fally, 2012; Antràs et al., 2012; Antràs and Chor, 2013; Alfaro et al.,
2017; Miller and Temurshoev, 2017; Wang et al., 2017; Antràs and Chor,
2018). Albeit an advancement for understanding the interdependence
among buyers and suppliers, linear circuits certainly underestimate the
relative central importance of some inputs, which can magnify or dampen
a shock in the presence of technological loops, kinks and corners.

Take the case of the U.S. economy, which we plot as a production
network in Figure 2.1. According to the U.S. BEA 2002 input-output tables,
the U.S. economy can be represented as a collection of 425 industries (i.e.,
nodes) linked by 51,768 transactions (i.e., edges). In Figure 2.1, we organise
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U.S. industries on a two-dimension space according to their reciprocal
connectivity, following a Fruchterman and Reingold (1991) layout, which
in our case posits more requested inputs at the centre stage. Interestingly,
services industries make the core of the U.S. production network because
they are used as direct inputs in many other manufacturing and services
industries. Primary industries, like agriculture and forestry, are rather
peripheral and mostly located in the north-west area of the graph. Among
services, let us pick the case of R&D (code 541700) and Wholesale Trade
(code 541800), which seem to be among the most connected industries. In
fact, wholesalers have a prominent role in professionally distributing many
intermediate inputs in different moments of the production process, whereas
R&D services are pivotal in fostering innovation across most U.S. sectors.
Let us consider now the case of two consumer goods industries: Electronic
Computer Manufacturing (code 334111) and Automobile Manufacturing
(code 336111). Although their products can be used as capital goods
in some other sectors, they appear to be at the periphery of the U.S.
production network, because their final usage prevails on the intermediate
usage.

In fact, at first glance, Figure 2.1 shows a rather compact network
with a relatively high density, i.e. the fraction of actual linkages out of
all potential linkages is 0.286. The average path length connecting any
two industries is just 1.7 links, pointing to a small-world nature of the
U.S. economy. Briefly, on average, any producer sources inputs from most
of the other industries, either directly or indirectly. Indeed, the network
of Figure 2.1 is not separable: it is self-contained in a unique connected
component, and it is always possible to run seamlessly from one node to
another, just following input linkages.

Once we compare the positions of selected industries in the production
network with their position on the downstreamness segment (Antràs and
Chor, 2013), in Figure 2.2, we curiously find that both R&D and Wholesale
Trade are in the middle of the ideally linear supply chain. This is in contrast
with the stylized chain we may have in mind, where a representative
business line would start with R&D services and ends with distributions
services. In fact, when we review computation methodologies, we find
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Figure 2.1: Input-Output network from U.S. BEA 2002 I-O tables, and
selected industries

Source: Own elaboration.
Note: Nodes represent 425 6-digit NAICS industries from the U.S. Bureau of Economic
Analysis 2002 Input-Output tables. Edges represent 51,768 industry-pair transactions.
The graph is visualised using a Fruchterman and Reingold (1991) layout in the GEPHI
software. More connected industries (weighted out-degree) at the centre of the graph.
Selected industries in evidence.

that downstreamness segments are essentially derived from the weighted
relative usage of the tasks, intermediate vis à vis final, in one or more
industries, therefore confounding the distance from the final demand and
the central role they may have across different production processes, when
the actual production network is collapsed on a segment.1

1More recently, Alfaro et al. (2017) compute a Relative upstreamness to consider
the heterogeneity of input positions oriented towards different outputs. However, also
in this case, the position of R&D services is on average located in the middle of the
output-specific technological sequences, i.e., the average upstreamness value is 3.044 for
an indicator that originally ranges approximately from 1 to 8.9.
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Figure 2.2: Downstreamness of selected industries from U.S. BEA 2002
I-O tables

Source: Own elaboration.
Note: Downstreamness (DUse Tuse) sourced from Antràs and Chor (2013). Frequency
indicates how many industries out of total 425 from U.S. input-output tables are found
in that position. Selected industries: Scientific Research and Development Services
(code 541700, value 0.504); Wholesale Trade (code 541800, value 0.666); Electronic
Computer Manufacturing (code 334111, value 0.959); Automobile Manufacturing (code
336111, value 0.999).

Instead, we argue that the mutually interactive and recursive nature
of production processes is better understood when we consider not only
how inputs enter in a different order (downstream vs upstream), but also
how central they are because they are required more than once along the
same production processes (as inputs of inputs).

In the end, a bird’s eye view of the U.S. production network represented
in Figure 2.1 returns an idea of a ‘global’ centrality for each industry, for
example rendering the crucial role of the R&D services for the entire U.S.
economy. However, what we are actually interested in is a measure of
the ‘local’ technological relevance of any (direct or indirect) input for the
completion of a specific target output.

In this respect, we introduce the Input Rank as a solution to a Markov
stochastic process that ranks direct and indirect inputs oriented towards
a target output, once assuming that producers have limited information
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on indirect transactions and scarce time to outreach the intricate web of
direct and indirect suppliers. For this, we get our inspiration from the
PageRank centrality, which is a measure originally used in social networks
and search engines to assess the relevant content of information (Brin and
Page, 1998). The tool has by now spread to many different domains2, from
biology and genetics to financial debts, bibliometrics and engineering of
road networks (Gleich, 2015).

In our perspective, the Input Rank can be seen as the result of a
Markov stochastic process started by a producer that is embedded in
a supply network made of direct and indirect suppliers. We can easily
assume that a representative producer does not know the details of indirect
transactions, further upstream, although they can be much relevant for
the completion of her output. Therefore, she starts navigating her web
of suppliers (e.g., making phone calls to her direct or indirect suppliers)
to collect information on the quantity and quality of these transactions.
In her random walks, she can encounter some resistance, for example,
due to a reduced contractibility of some indirect inputs, which means
that they are not quoted at any exchange nor are they referenced priced,
possibly tailored for the specific need of their buyers. When resistance
is encountered, because information is difficult to collect, then it is more
likely that the producer stops her exploration along that path, goes back
to headquarters and starts following a different trail. However, at the end
of each exploration, she can update her ranking, considering more relevant
the inputs that are encountered more often and that are required more.
The idea is straightforward:

• A (direct or indirect) input that is also relatively more requested to
produce other (direct or indirect) inputs must rank relatively higher;

• A (direct or indirect) input that is relatively more requested to
produce other highly-requested (direct or indirect) inputs is relatively

2For a previous adaptation of a PageRank centrality in the economics domain, see
the DebtRank by Battiston et al. (2012), where connectivity among financial institutions
and debt exposures are considered to determine the systemic importance of a node in a
financial network.
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more relevant than a (direct or indirect) input that links with less-
requested inputs.

In principle, our Input Rank can fit the analysis of complex webs of firm-
to-firm transactions, as well as the study of more aggregate buyer-supplier
linkages recorded in input-output tables. For the sake of comparison with
previous studies on the global organisation of production, we compute our
Input Rank exploiting U.S. input-output tables sourced from the Bureau
of Economic Analysis (BEA). After that, we test its empirical validity
as a determinant of vertical integration choices in the fashion of Antràs
and Chor (2013), Alfaro et al. (2017), and Del Prete and Rungi (2017),
on a sample of 20,489 U.S. parent companies controlling 154,836 affiliates
worldwide.

We find that a higher Input Rank is positively associated to higher
odds that a (direct or indirect) input is vertically integrated within
a firm boundary, relatively more when the demand faced by the root
producer is more elastic. With a general reference to the contract
theory of the firm, we argue that a choice of vertical integration is
a way for the parent company to prevent that a central (direct or
indirect) supplier reneges on her commitment, therefore endangering the
functioning of the entire supply network. Our findings are robust to
different sample compositions, to changes in parameters that measure
the ability to outreach by a producer on the complex network structure,
and to several empirical strategies. Interestingly, our findings are
also robust to the inclusion of downstreamness/upstreamness metrics,
which show some ambivalence in the case of midstream parents,
in line with what previously found in Del Prete and Rungi (2017).
Therefore, we discuss how the role of the elasticity of substitution is
not clear when a producer of intermediate inputs starts vertical integration.

The rest of the chapter is organized as follows. The next section
positions our contribution with respect to related literature. Section 2.3
introduces the Input Rank and its properties. In Section 2.4, we compute
the Input Rank on U.S. input-output tables and describe some preliminary
evidence. In Section 2.5, we test the role of the Input Rank in firm-level
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choices of vertical integration. Concluding remarks are offered in Section
2.6.

2.2 Related Literature

A flourishing literature is emerging to study how the network dimensions
in the organisation of production can contribute to explain the response
of aggregate fluctuations to microeconomic shocks (Acemoglu et al., 2012;
Carvalho, 2014; Acemoglu et al., 2016). On the other hand, the shape
of a production network is increasingly seen as the result of endogenous
collective choices by buyers and suppliers, who establish reciprocal in-
put linkages hence shaping both individual and aggregate productivities
(Oberfield, 2018).

Yet, the fragmentation of global value chains (GVC) is still modelled
and tested as on a linear sequence made of producers, who decide whether
to make or buy an input, even though the existence of spider-like vs
snake-like production has been acknowledged as depending on engineering
details (Baldwin and Venables, 2013). To date, few works have considered
the richness of buyer-supplier networks from an international perspective3,
and there is much to do for understanding the implications of network
structures on the global organisation of production. We make an effort
to cover this gap starting with the introduction of the Input Rank as
a measure of the technological relevance of an input, which takes into
account the recursive nature of real-world webs of suppliers and buyers.

Realistically, we assume that each producer is plunged into a production
network made of both direct and indirect suppliers, where inputs may be
recursively used at different production stages. Therefore, we assume that
a representative producer may have direct knowledge of the transactions
in which she is a contracting party, but she has only limited knowledge of
the transactions occurring among suppliers of suppliers. Nonetheless, what
happens in the upstream technological and contractual space has conse-
quences on her ability to deliver an output. Thus, she starts random walks

3For a first review of the first attempts made until now, see Bernard and Moxnes
(2018).
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(say, random phone calls) on her web of suppliers to acquire knowledge
about indirect input transactions. We represent such a process as a Markov
discrete chain in the spirit of the PageRank problem, which originally
ranks the consumption of information and regulates the workings of many
social networks (Brin and Page, 1998). More specifically, we get inspired
by the ‘personalised’ version of the PageRank proposed by Haveliwala
(2002) and White and Smyth (2003). In fact, the PageRank has become
a more general tool of the network theory and it is adapted to many
diverse scientific domains (Gleich, 2015), from biology and bibliometrics,
to neuroscience and engineering of road networks.

To show a practical empirical usage of the Input Rank, we test its role
for the firm-level choices of vertical integration. Since the 1980s, several
attempts have been made to model the make or buy decision based on
the relative degree of contractibility between a buyer and a supplier4.
Acemoglu et al. (2007) are the first to study a theoretical framework
where unique headquarters commit to contracts with multiple suppliers.
More recently, Harms et al. (2012) analyse the offshoring decision of firms
whose production process is characterised by a sequence of steps and a
non-monotonic variation of transportation costs. Costinot et al. (2012)
derive a sequential multi-country model in which mistakes can occur with
a given probability along a sequence. Hence, countries performing more
knowledge-intensive tasks are better situated relatively more upstream,
participating to a larger share in world income distribution. Interestingly,
Fally and Hillberry (2015) include Coasian transaction costs to explain
the length of a supply chain and the cross-country variation in gross
output-to-value added ratios.

In each of the previous works, the notion of a sequence assumes different
shades of meaning. More properly, we believe that Antràs and Chor (2013)
and Alfaro et al. (2017) model a supply chain as a technological sequence
made of production stages, from the start of a business line to the delivery
to final demand, where each downstream output depends on a set of

4For a detailed review since the seminal work by Grossman and Hart (1986), see
Aghion and Holden (2011). See also Antràs and Yeaple (2014) for a review on trade
and firm-level organization of multinational enterprises.
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upstream (direct or indirect) inputs. In this framework, all producers shall
rely on a surplus from the sale of the final output, and an economic and
contractual dependence is established along the supply chain, for how
that surplus is optimally generated by and allocated among producers.
Eventually, the main prediction by the authors is that final-good producers
integrate production stages that are relatively more downstream (upstream)
when final demand is sufficiently elastic (inelastic).

In this respect, we believe that the latter strand of research has a
potential to be extended to more complex production structures, while
leaving the technological sequence, i.e. the chain, as a corner solution of
real-world supply networks. In fact, more recently Antràs and de Gortari
(2017) succeed in extending a supposedly linear technological sequence with
the introduction of a notion of geographic centrality. In a multi-country
setting, the authors predict an optimal location for a production stage
to be dependent also on the geographical proximity to other stages. In
that framework, downstream stages are preferably located in more central
destinations, where centrality is to be interpreted in terms of geographic
proximity.

When it comes to firm-level empirics, both Del Prete and Rungi (2017)
and Alfaro et al. (2017) positively test the predictions by Antràs and Chor
(2013), assuming as from theory that integration starts from the end of the
supply chain. If final demand is sufficiently elastic (inelastic), producers
of final goods integrate production stages that are more proximate to
(far from) the consumers. However, in the case of midstream parents,
when integration starts from the middle of the supply chains, Del Prete
and Rungi (2017) find that the same theoretical predictions are no more
statistically significant. In either case, integrated production tasks tend
to be rather proximate to the parent on the downstreamness segment,
possibly due to some local unexplored technological complementarities.

In our empirical application of the Input Rank, we build on the latter
framework and test whether the make or buy decision can be driven by
the technological centrality of an input in the specific production process.
In fact, we find that a higher Input Rank is associated with higher odds
that the input is vertically integrated, even more, when the elasticity of
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demand faced by the parent is more elastic. In this context, our findings
seem to show that the network positioning of an input is at least as
important as its distance from final consumption, the latter proxied by
the downstreamness/upstreamness segments.

2.3 The Input Rank

2.3.1 A Producer in a Supply Network

Our aim is to catch the central position of each input, i.e. its technological
relevance for the completion of a network-like production process. We
start by representing the problem of a producer who plans the delivery of
her output based on the requirements of both direct and indirect inputs.
In other words, a producer is aware that the completion of her production
process requires the contribution of her direct transactions, for which she
has immediate knowledge, and of indirect transactions among suppliers of
suppliers, whose quantity and quality are not immediately known.

To clarify better the nature of the producer problem, let us consider a
stylized production network sketched in Figure 2.3, where we represent
an economy made of six producers and a final consumer. A producer i6
transacts with four suppliers in the set {i2, i3, i4, i5} to buy intermediate
goods and services. Besides direct transactions, what happens more
upstream is not directly disclosed to her. For example, there is a set
of suppliers {i2, i3, i5} who directly rely on purchases from i1. On the
other hand, suppliers in {i3, i4} reciprocally exchange part of their output
to be used as intermediate inputs in their production process, whereas
typically the supplier i4 employs a share of her output to be reinvested in
her production process as an intermediate input. Going further up in the
production network, the supplier i1 is also an indirect supplier of supplier
i4, through the production process made by i3, who eventually is both a
direct and an indirect supplier of our target producer i6. In a nutshell,
the stylized supply network of Figure 2.3 includes the main elements that
make the production process recursive in nature.

Against this background, the producer problem reduces to a ranking of
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Figure 2.3: A stylized production network made of six producers

Source: Own elaboration.

all direct and indirect suppliers considering their technological centrality
in the supply network. What happens if one of them does not deliver?
Who increases at most the risk of a disruption on the supply network?

Obviously, beyond the stylized network of Figure 2.3, real-life pro-
duction processes can see the engagement of an incredibly high number
of direct and indirect suppliers, active in many industries and in many
countries. For this reason, the representative producer can find it difficult
to collect information on upstream transactions, especially when global
production is more and more fragmented. Realistically, we can imagine
that the exploration process started by the producer can be proxied by
a Markov discrete chain on paths of suppliers, but with heterogeneous
abilities to outreach on the entire web of suppliers.

2.3.2 Random Walks on a Production Network

Let us start by considering an economy in the form of an oriented graph:

G(N,E, V,D) (2.1)

made of a set of producers,∀ i, j ∈ N , connected by a set of direct input-
output linkages, eij ∈ E. Each producer generates an amount of output,
vi ∈ V , that is distributed through linkages whose weights correspond
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to (normalized) input requirements, dij ∈ D, falling in a range [0, 1].
Each input requirement, dij , represents the amount of the ith direct input
necessary to produce a unit of the jth output.

From a producer’s perspective, her supply network is a sub-graph of
the entire economy that can be navigated through upstream paths in the
form:

P−ir = (r, il, ..., im) (2.2)

where the rth node represents headquarters, il and im are any direct and
indirect supplier, respectively. The negative sign on P−ir indicates the
orientation of the path5, from the root producer upstream, where at each
step there is the placement of a demand order for an input. The simpler
path is, of course, one that runs from the root producer until a direct
supplier. More sophisticated paths can run through production cycles, as
in the stylized network of Figure 2.3.

In this context, let us define a transitive closure, P−r , as a collection of
all technological paths, such that P−ir ∈ P−r . In other words, an oriented
transitive closure, P−r , represents a mapping that tells us whether and
how any supplier can be reached by a root producer, given the entire
technological network, G, that defines an economy. Please note how we
can find more than one demand path running between a root buyer and
any supplier6, possibly given by the recursive nature of the production
processes. Usefully, the introduction of a generic root buyer allows us
changing the reference point in the supply network for how many producers
we can find in the entire economy, hence spotting local properties that are

5For the sake of generality, we could also define a downstream relationship running
from suppliers to buyers based on input deliveries, i.e. a supply side on the production
network with positively oriented paths, P+

ir , which tell us whether a supplier can reach
a root buyer in a positive transitive closure P+

r . For a reference, see Gilles (2010).
6For example, in the simple network described by Figure 2.3, a (positive

or negative) transitive closure oriented on i6 includes a total of 18 paths of
variable length: four paths of length one, seven paths of length two, four
paths of length 3 and three paths of length 4. Among others, the in-
direct supplier i1 is connected to buyer i6 through seven paths of variable
length: (i1, i5, i6), (i1, i2, i6), (i1, i3, i6), (i1, i2, i5, i6), (i1, i3, i4, i6), (i1, i3, i4, i3, i6),
(i1, i3, i4, i4, i6). Please note how the presence of reciprocal supplies (i.e., cycles)
and in-house production requires the multiple accounting of some suppliers on the same
path.
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specific for each target producer and her production process.
In essence, any (supply or demand) path that is left outside a (positive

or negative) transitive closure oriented to the rth buyer does not participate
in the production process of the latter. Fixing an eye on a different root
buyer would imply the separation of a different sub-network from the
entire network economy.

Given the previous framework, we can finally solve the problem of
attributing a ranking to direct and indirect suppliers from the perspective
of the root buyer. The idea is rather simple:

• an input is more technologically relevant to the rth producer if it is
also relatively more requested to produce other (direct or indirect)
inputs;

• an input is more technologically relevant to the rth producer if it
is also relatively more requested to produce other highly-requested
(direct or indirect) inputs.

At this point, we can define a measure of the Input Rank as a stochastic
process7 started by the root producer, who needs travelling random walks
to collect information on the characteristics of all direct and indirect inputs
required to complete her production.

We assume that the root producer travels randomly, going from one
supplier to another, e.g., calling them by phone and asking on charac-
teristics of deliveries. At any step in the web of transactions, she has a
probability α to proceed in the exploration and a probability (1− α) to
fall back to headquarters. The parameter α proxies an information wedge
between the buyer and the supplier that prevents full disclosure of the
attributes of transactions.

At any time-step t, the root producer collects information on the direct
requirement, dij , of each transaction, and she updates her information

7To construct the Input Rank, we get our inspiration from the PageRank centrality
introduced by Brin and Page (1998) to organize web pages based on their connectivity
with the rest of the web. Nowadays, the PageRank centrality is considered a useful
tool from network theory and is used across different domains: bibliometrics, biology,
physics, etc. (Gleich, 2015). For a previous economic application, see Battiston et al.
(2012), who adopt a notion of Debt Rank for assessing financial systemic risk.
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following a Markov process as follows:

πrt = αDπr,t−1 + (1− α)hr (2.3)

where πrt and πr,t−1 are column vectors including rankings of any ith

input at time-steps t and t − 1, respectively. The transition matrix D
collects all (column-normalized) direct requirement coefficients, dij , of
transactions in the economy. The vector hr has all its elements equal to 0
except for the rth element, which is 1 for the selected root producer.8 In
our case, the vector hr uniquely identifies a (negative) transitive closure,
P−r , hence avoiding that the buyer falls outside her technology when back
from her random walks. More in general, the vector hr excludes that
the root producer lingers in other areas of the production network while
assuring her a safe journey back to headquarters.

The probability α falls in a range (0, 1). A value proximate to 0 implies
that the producer encounters a higher difficulty to travel upstream in the
production network. A value proximate to 1 implies that the producer
encounters almost no resistance in the exploration of her network. We shall
exclude that the parameter α is equal to either 0 or 1 because in either
case no exploration is needed or started at all. In the next paragraph, we
will discuss an attempt to better qualify this parameter from an economic
point of view, and we will discuss how sensitive results are at changing
thresholds of this parameter. More in general, a constant parameter α
can be seen as an information wedge between a producer and her web
of suppliers, such that inputs that are more closely related to the target
output are also more easily reached by the root producer starting from the
headquarters.

What we know from the Perron-Frobenius theorem is that a stationary
distribution, π∗r , of the Markov process in 2.3 can be found, it is unique,
and the sum of its single elements is such that

∑
i π
∗
ir = 1, because the

transition square matrix D is positive and column-stochastic, with all
positive single elements, dij ≥ 0. In the stationary status, the single
element π∗ir ∈ [0, 1] indicates the final rank of any ith supplier in the supply

8See Appendix A for a comparison between our Input Rank on supply networks and
the original PageRank on social networks and web engines.
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network of the root producer.
To understand the workings of the underlying Markov process, let us

consider the updated distance, πrk − π∗r , which is the distance the root
producer is from the true Input Rank solution after the kth exploration.
It satisfies the recursion:

π∗r − πrk = αD(π∗r − πr,k−1) (2.4)

Since matrix D has a spectral radius by construction smaller than 1, πrk
tends to π∗r when the number of time-steps becomes large enough, k →∞.

Let us assume that we start approximating π∗r with an initial value
πr0 = hr. That is, let us assume that a producer’s exploration starts from
scratch, with no information at all on any direct or indirect transaction,
when leaving headquarters represented by the unitary vector hr, while
going through the recursion of eq. 2.4 up to a sufficiently large number of
time-steps t.

For smaller networks, the Jacobi or the Power iterative methods for the
solution of a linear system of equations are sufficient (Gentle, 1998). For
bigger networks, the convergence of eq. 2.4 could be difficult to obtain and
some adaptive methods have been suggested (e.g., Kamvar et al. (2003)),
according to which single nodes whose centrality has converged are not
considered in following iterations, in this way introducing a degree of
approximation.9

In the simpler network represented by a relatively small input-output
table, as the one we will use from Section 2.4, the following solution of the
linear production system can be derived:

π∗r = (1− α)(I − αD)−1hr (2.5)

9For detailed references on the mathematical properties of PageRank tools, see
Langville and Meyer (2011), and Gleich (2015).
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2.3.3 Introducing Input-Specific Frictions

So far, the parameter α has been considered as an arbitrary constant that
represents a general information wedge that the root producer encounters
any time she must gather information on the characteristics of any trans-
action. From another perspective, this parameter discounts the ability of a
producer to reach on bigger and complex webs of suppliers, when the time
is scarce to navigate through all faraway transactions. The inclusion of
such a parameter is certainly useful along increasingly fragmented global
supply networks when producers shall navigate through many industries
and countries. Conversely, the generic parameter (1− α) brings back the
root producer to headquarters, possibly to start navigation on another
production path contained in the transitive closure, P−ir ∈ P−r .

In this section, we introduce the possibility that this parameter is a
proxy for an input-specific friction in a variant of the Input Rank. In
other words, we introduce a full vector α, whose single elements, αi,
is a (normalized) indicator of input contractibility (Rauch, 1999; Nunn,
2007; Nunn and Trefler, 2008), which assesses how much that input is
referenced priced and/or exchanged on thick markets. In other words,
a higher input contractibility implies that the root producer can more
easily gather the information on that transaction, for example because
there is some standard contract that has been signed between the parties.
If a single transaction is relatively more contractible, the root producer
proceeds more easily upstream to explore the supply network beyond that
transaction.

In this case, the Markov process can be expressed as:

πrt = αDπr,t−1 + (1−α)hr (2.6)

where 1 is a vector with all elements equal to one, and α is the normalized
contractibility vector. Main mathematical properties are kept, as from
Section 2.3.2, including convergence in bigger networks after a reasonably
big number of time steps, following iterative methods. In the following
analyses, we will employ both this variant and the one in Section 2.3.2 for
an empirical validation of the Input Rank on a smaller network generated
by input-output tables.
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2.4 An Application to U.S. Input-Output
Tables

In principle, the Input Rank can be computed for any producer plunged into
a supply network made of firm-to-firm transactions. In this contribution,
we pick more aggregate transactions sourced from the U.S. 2002 input-
output tables, compiled by the Bureau of Economic Analysis (BEA), which
we consider as a good training case for several reasons.

First, U.S. BEA tables represent a reasonably detailed picture of
a production networks established among 425 industries, in absence of
actual firm-to-firm transactions. Second, the same U.S. tables have been
extensively used in previous works to study both production networks
(Carvalho, 2014) and vertical integration choices (Acemoglu et al., 2009;
Alfaro et al., 2016). Third, the same data have been recently used to
compute upstreamness and downstreamness metrics10, as a proxy for the
technological distance on supposedly linear production sequences.

In fact, we already visualised in Figure 2.1 a solid and complex pro-
duction network generated by the U.S. input-output tables, which collects
51,768 linkages. After a closer look at it, we can also register a strong
heterogeneity of sourcing strategies developed among its 425 industries.
In Appendix B Figures B.2.1 and B.2.2, we report both the in-degree and
out-degree distributions by industry, i.e. the number of inputs received,
and the deliveries made by each node of the U.S. production network.
As expected, the industry with the highest number of input industries
(296) is the Retail Trade (code 4A0000), because retailers professionally
sell physical goods to consumers. Interestingly, the industry with the
highest number of purchasing industries (425) is the Wholesale Trade
(code 420000), because wholesalers professionally distribute intermediate
physical inputs to all industries. However, the ‘global’ centrality measured
by out-degrees in Figure 2.1 is of scarce interest for our scope. More

10The 2002 U.S. Input-Output tables have been used for the computation of absolute
downstreamness metrics in Antràs and Chor (2013), as an exercise based on previous
upstreamness metrics proposed in Antràs et al. (2012). Alfaro et al. (2017) more recently
proposed an alternative output-specific relative upstreamness computed on an older
1992 version of the U.S. Input-Output tables.
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properly, the Input Rank introduced in Section 2.3 shall return a measure
of ‘local’ eigenvector centrality, which better catches the technological
relevance of an input with respect to any root producer.

Figure 2.4: A visualization of the Input Rank computed on U.S. BEA 2002
I-O tables
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Note: Input Rank vectors are computed for each root output among 425 industries
classified at the 6-digit in the U.S. BEA 2002 tables after using the power iteration
method. Inputs on the y-axes and outputs on the x-axes by alphabetical order. A
darker cell implies that input is more technologically relevant for that output.

In Figure 2.4, we visualise the results of the computation after following
a power iteration method to derive the Input Rank as a vector of industry-
pair values with a MATLAB code that we cross-validate with a Python
code, assuming a stochastic process described as in eq. 2.3. Each 6-digit
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industry is an input when on the y-axis, and it is an output when on the
x-axis. A darker row implies that that industry is more technologically
relevant across most industries. Interestingly, in the upper part of the figure,
we find that services industries have a relatively more important role than
manufacturing industries used as inputs across either manufacturing or
services industries. Within manufacturing outputs, a crucial role is played
by inputs coming from more aggregate Primary Metal Manufacturing
(code 331) and Fabricated Metal Product Manufacturing (code 332). As
expected, Mining industries (code 21) are technologically relevant for
manufacturing producers.

Table 2.1: Top 20 inputs (all industries) by Input Rank (alpha = 0.5),
from U.S. BEA 2002 I-O tables

IO code Input name mean p50 sd min max
550000 Management of companies and enterprises 0.0323 0.0306 0.0143 0.0068 0.0936
420000 Wholesale trade 0.0277 0.0279 0.0124 0.0030 0.0949
531000 Real estate 0.0235 0.0170 0.0174 0.0066 0.1215
541800 Advertising and related services 0.0145 0.0125 0.0078 0.0042 0.0606
221100 Electric power generation, transmission,

and distribution
0.0116 0.0093 0.0079 0.0023 0.0749

52A000 Monetary authorities and depository credit
intermediation

0.0115 0.0092 0.0072 0.0041 0.0589

517000 Telecommunications 0.0093 0.0073 0.0062 0.0032 0.0666
484000 Truck transportation 0.0090 0.0079 0.0065 0.0011 0.0785
331110 Iron and steel mills and ferroalloy

manufacturing
0.0088 0.0022 0.0156 0.0003 0.1192

523000 Securities, commodity contracts,
investments, and related activities

0.0084 0.0064 0.0142 0.0026 0.2471

324110 Petroleum refineries 0.0083 0.0045 0.0141 0.0017 0.1307
561300 Employment services 0.0078 0.0053 0.0062 0.0028 0.0382
211000 Oil and gas extraction 0.0072 0.0040 0.0144 0.0012 0.1975
541100 Legal services 0.0071 0.0064 0.0029 0.0030 0.0246
533000 Lessors of nonfinancial intangible assets 0.0070 0.0059 0.0052 0.0017 0.0770
541610 Management, scientific, and technical

consulting services
0.0065 0.0049 0.0044 0.0018 0.0451

722000 Food services and drinking places 0.0061 0.0048 0.0040 0.0018 0.0250
230301 Nonresidential maintenance and repair 0.0054 0.0043 0.0056 0.0018 0.0790
522A00 Nondepository credit intermediation and

related activities
0.0054 0.0041 0.0065 0.0022 0.1042

In Tables 2.1 and 2.2, we report some moments of Input Rank distri-
bution: first for all the top 20 inputs, then for the top 20 manufacturing
inputs, excluding services. These are useful to look at some details of
the input usage. Here, as well, services industries are on average ranked
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Table 2.2: Top 20 inputs (manufacturing only) by Input Rank (alpha =
0.5), from U.S. BEA 2002 I-O tables

IO code Input name mean p50 sd min max
331110 Iron and steel mills and ferroalloy manufacturing 0.0088 0.0022 0.0156 0.0003 0.1192
324110 Petroleum refineries 0.0083 0.0045 0.0141 0.0017 0.1307
336300 Motor vehicle parts manufacturing 0.0052 0.0024 0.0143 0.0010 0.1686
325211 Plastics material and resin manufacturing 0.0052 0.0015 0.0139 0.0002 0.1584
325190 Other basic organic chemical manufacturing 0.0051 0.0019 0.0108 0.0003 0.0934
334413 Semiconductor and related device manufacturing 0.0041 0.0030 0.0061 0.0004 0.0792
322210 Paperboard container manufacturing 0.0039 0.0022 0.0051 0.0003 0.0418
32619A Other plastics product manufacturing 0.0039 0.0020 0.0044 0.0005 0.0299
334418 Printed circuit assembly (electronic assembly)

manufacturing
0.0035 0.0024 0.0047 0.0003 0.0400

321100 Sawmills and wood preservation 0.0030 0.0006 0.0109 0.0002 0.1318
323110 Printing 0.0030 0.0016 0.0057 0.0007 0.0704
322120 Paper mills 0.0028 0.0010 0.0086 0.0002 0.0863
326110 Plastics packaging materials and unlaminated film and

sheet manufacturing
0.0027 0.0010 0.0045 0.0001 0.0380

332710 Machine shops 0.0026 0.0019 0.0025 0.0002 0.0143
3259A0 All other chemical product and preparation

manufacturing
0.0023 0.0015 0.0026 0.0003 0.0207

322130 Paperboard mills 0.0021 0.0012 0.0051 0.0002 0.0627
33131A Alumina refining and primary aluminum production 0.0020 0.0003 0.0084 0.0001 0.1146
332800 Coating, engraving, heat treating and allied activities 0.0019 0.0018 0.0015 0.0001 0.0081
325220 Artificial and synthetic fibers and filaments

manufacturing
0.0019 0.0001 0.0105 0.0000 0.1271

higher than manufacturing industries. The first highly ranked input is
the Management of Companies and Enterprises (code 550000)11, which
unquestionably points to a general professional nature of the management
of U.S. companies. Some post-production services also rank relatively
high, as expected, as in the case of Wholesale Trade (code 420000) and
Advertising (code 541800). Immediately after, we spot Electric Power Gen-
eration (code 221100) and bank credit, as included in Monetary Authorities
and Depository Credit Intermediation (code 52A000). In Appendix B
Table B.2.1, we look at the rank of R&D input services (code 541700) and
discover that the latter are more relevant to the General Federal Defense
Government Services (code S00500) than to other life sciences industries
(In-vitro Diagnostic Substance Manufacturing, code 325413; Biological
Product Manufacturing, code 325413; Pharmaceutical Preparation Man-

11As from the original definition (BLS, 2018): This sector comprises: i) companies
that hold financial activities (securities or other equity interests) in other companies
for the purpose of a corporate control to influence management decisions; ii) companies
that professionally administer, oversee, and manage other companies through strategic
or organizational planning and decision making.
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ufacturing, code 325412; Medicinal and Botanical Manufacturing, code
325411).

The first manufacturing input encountered among the top 20 is the Iron
and Steel Mills and Ferroalloy Manufacturing (code 331110), which comes
only after Truck Transportation (code 484000). In general, we observe
a high variation of the Input Rank across root industries, as shown by
relatively high values of the standard deviations.12 In this case, it is more
useful to look from the perspective of selected root industries (Electronic
Computer Manufacturing, code 334111; Automobile Manufacturing, code
336111), in Appendix B Tables B.2.1 and B.2.2 we find that the Input Rank
is indeed specific to the technological nature of the production processes.

2.4.1 The Sensitivity to the Parameter α

In general, the parameter α can be interpreted as the probability to proceed
further in the exploration of a supply network, therefore its complement
to one is the probability to stop exploration and fall back to headquarters
at each time-step. In Section 2.3.3, we discussed how we can make use of
this parameter to introduce an input-specific friction: the contractibility
of an input. The latter would catch the thickness of the input market in
the fashion of Rauch (1999); Nunn (2007); Nunn and Trefler (2013). In
this case, we could assume that a root producer can more easily gather
information on the implicit characteristics of the transaction thanks, for
example, to the existence of a reference price or the signature of a standard
supply contract for that input. The alternative is to make reference to other
notable constants previously used in the use of some PageRank centralities.
For example, Brin and Page (1998) originally suggest a damping factor
α = 0.85. As neutral as possible, α = 0.5 implies an equal probability of
proceeding through exploration or stopping at each time-step. Indeed, the
latter is the reference value we use for main descriptive statistics and for

12Please note how in absence of actual firm-to-firm transactions, different aggregations
of the input-output industries may alter the Input Rank. We expect that a higher
aggregation of an input industry entails an overestimation of its Input Rank for any
other root industry. In this case, we shall rely on official statistics offices that separate
industries based on their technological relevance in modern economies, as is the scope
of periodic updates of input-output tables.
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Figure 2.5: Sensitivity of Input Rank to changing values of the parameter
alpha
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baseline regressions in this text. However, we will make sure in the next
paragraphs that our econometric results are robust to changing thresholds
of the parameter α.

In Figure 2.5, we plot the changing shapes of the (log) distributions of
the Input Rank, as computed on industry pairs from the U.S. 2002 input-
output tables, at different constant values of the parameter α. In Table
2.3, we report pairwise correlations among these distributions, including
also the case when αi is the (normalised) input specific contractibility.
Finally, in Appendix B Figure B.2.3, we compare the latter case with a
parameter α = 0.5. In general, we find that shapes can be very similar,
although shifting to the left at lower parameter values, because they
discount relatively less faraway input industries in the supply network. In
the end, the rankings of inputs are highly correlated at varying values of
the parameter, at least before approaching the unit value.

From Table 2.3, it is evident that when α = 0.99 the distribution
becomes very different. In fact, the stochastic process described in eq.
2.4 degenerates when α→∞. In Appendix B Figure B.2.3, we find that
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the distribution after the introduction of an input-specific friction, as in
the case of input contractibility, resembles the case of α = 0.5. When we
perform our econometric exercises in the next sections, we will consider
both α = 0.5 and input-specific αi as baseline metrics, while checking for
the robustness of our findings at different threshold values of the parameter
α. As we will see, the magnitudes can change considerably but statistical
significance will not. Therefore, one can choose which value to assign to
the parameter α as dependent on the nature of the frictions to proxy in
the supply network.

Table 2.3: Pairwise correlations. Input Rank computed at several values
of the alpha

Values of alpha =.01 =.25 =.50 =.75 =.85 =.99 = input
contractibility

=.01 1.00
=.25 0.99 1.00
=.50 0.98 0.99 1.00
=.75 0.92 0.94 0.97 1.00
=.85 0.80 0.83 0.88 0.97 1.00
=.99 0.08 0.11 0.18 0.39 0.61 1.00
= input
contractibility

0.78 0.79 0.80 0.78 0.72 0.18 1.00

2.5 The Role of the Input Rank in Choices
of Vertical Integration

The decision to make or buy an input is an example of a situation when
a producer needs gathering information on the technological relevance of
direct and indirect inputs. In this section, we test whether the Input Rank
can play a role as a determinant for the decision to integrate a production
stage within the firm boundary (i.e. vertical integration), as an alternative
to signing supply contracts with independent firms (i.e. outsourcing). For
our purpose, we will make use of a dataset of U.S. parent companies that
have integrated at least one production stage over time. Our empirical
strategy explicitly takes on the theoretical framework by Antràs and Chor
(2013), while augmenting the estimates by Del Prete and Rungi (2017) with
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the inclusion of the Input Rank, therefore assuming that a root producer
has an albeit reduced ability to collect information on her supply network.

2.5.1 A Sample of U.S. Parent Companies

Our firm-level data are sourced from the Orbis database, compiled by
the Bureau van Dijk, which gathers financial and ownership information
for companies on a global scale. For our scope, we collect information
on 20,489 U.S. parent companies controlling 154,836 subsidiaries in 210
countries at the end of the year 201513. The selection of U.S. parent
companies is coherent with the subsequent use of regressors that are based
on U.S. input-output tables and trade data. In Table 2.4, we provide some
descriptive statistics of the geographic coverage of the subsidiaries.

Both subsidiaries and parent companies can be active in any industry:
manufacturing (28.86%), services (69%), primary (0.29%), and extractive
(1.85%). About 81% of subsidiaries integrated by U.S. parents are domestic.
Not surprisingly, U.S. parent companies are involved mainly in global
supply networks that spread across other OECD economies, where 96% of
their subsidiaries are located. The member states of the European Union
host the largest number of foreign subsidiaries. Among them, Germany,
the United Kingdom, and the Netherlands attract a significant share of U.S.
foreign affiliates active in services industries. Not surprisingly, member
States of NAFTA, Canada and Mexico, mainly host manufacturing of final
and intermediate goods. However, a non-negligible share of subsidiaries is
present in Asia, Africa and the Middle East.

To validate our sample, we compare with official ‘Data on Activities of
Multinational Enterprises’ (BEA, 2018) and OECD Statistics on Measuring
Globalization (OECD, 2018). In 2015, BEA (2018) reports 6,880 billion
dollars of total sales by foreign affiliates and 12,628 billion dollars of total
sales by parent companies. The U.S. multinational enterprises present in

13To build our sample of parents and subsidiaries, we follow international standards
for complex ownership structures (OECD, 2005; UNCTAD, 2009, 2016), according to
which the unit of observation is the control link between a parent company and each
of its subsidiary after a concentration of voting rights is detected (> 50%). See Rungi
et al. (2017). Similar data structures were used in Alviarez et al. (2013), Cravino and
Levchenko (2017), Del Prete and Rungi (2017).
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our sample account for 94% and 92% of the BEA (2018) values, respectively.
The number of foreign affiliates in our sample corresponds to 88.6% on
the total of U.S. foreign subsidiaries reported in OECD (2018), although
the latter source only reports the latest value valid for the year 2014.

For the scope of our analysis, we map industry affiliations of both parent
companies and their subsidiaries, from the NAICS rev. 2012 classification
into the 2002 U.S. BEA input-output tables. The match by industry
affiliations allows us combining firm-level data with sector-level metrics,
like the Input Rank we computed in Section 2.4 and the upstreamness
segments sourced from Alfaro et al. (2017). In absence of actual data
on firm-to-firm transactions, such a mapping onto input-output tables14

allows us proxying the technological relevance of a (direct or indirect) input
with reference to a root output, in the case of the Input Rank, and the
relative technological distance of an input from the target output, in the
case of the upstreamness segment. Finally, we complement our data with
industry-level estimates of demand elasticity from Broda and Weinstein
(2006), and with a measure of input contractibility retrieved from Antràs
and Chor (2013) based on the methodology by Nunn (2007).

2.5.2 Baseline Results

We test a conditional logit model with parent-level fixed effects.15 The
fixed effects conditional logit is a natural empirical strategy for the multi-
nomial case of ex-ante alternatives. That is, we can test the determinants
of vertical integration choices controlling for the characteristics of the
production stages that were both vertically integrated and not integrated
by the parent company.

Let i = 1, 2, ..., N denote all the inputs, as from the input-output tables,
and let r = 1, 2, ..., R denote the root parent companies. The dependent

14For similar mappings of firm-level data into input-output tables by industry affili-
ations, see Alfaro and Charlton (2009), Acemoglu et al. (2010), Alfaro et al. (2016),
Del Prete and Rungi (2017).

15See McFadden (1974) and Chamberlain (1980) for more details. Present notation is
borrowed from Hamerle and Ronning (1995) and Hosmer et al. (2013). See also Head
et al. (1995) and Del Prete and Rungi (2017) for previous applications in international
economics, the latter with reference to firm-level vertical integration choices.
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Table 2.4: Sample geographic coverage by country of subsidiaries

Country of Final goods Intermediates Services All industries
subsidiaries N. % N. % N. % N. %
United States 20,571 16.3 24,590 19.5 80,729 64.1 125,890 100.0
European Union 1,934 11.5 2,084 12.3 12,872 76.2 16,890 100.0
of which:

Germany 273 13.2 306 14.8 1.494 72.1 2,073 100.0
France 171 11.0 213 13.7 1,167 75.2 1,551 100.0
United Kingdom 563 11.4 624 12.7 3,734 75.9 4,921 100.0
Italy 136 19.4 139 19.8 427 60.8 702 100.0
Netherlands 158 6.8 171 7.3 2,005 85.9 2,334 100.0

Canada 980 30.4 923 28.6 1,325 41.1 3,228 100.0
Russia 18 11.7 30 19.5 106 68.8 154 100.0
Asia 251 15.0 312 18.7 1.109 66.3 1,672 100.0
of which:

Japan 87 11.5 76 10.1 592 78.4 755 100.0
China 92 12.1 66 8.7 605 79.3 763 100.0
India 122 15.7 149 19.1 508 65.2 779 100.0

Africa 67 14.2 93 19.7 313 66.2 473 100.0
Middle East 82 18.2 80 17.8 288 64.0 450 100.0
Latin America 221 12.1 395 21.6 1,210 66.3 1,826 100.0
of which:

Argentina 24 8.1 70 23.6 203 68.4 297 100.0
Brazil 137 14.6 219 23.3 583 62.1 939 100.0
Mexico 98 23.3 154 36.6 169 40.1 421 100.0

Australia 123 14.2 157 18.1 586 67.7 866 100.0
Rest of the world 489 16.5 585 19.7 1,892 63.8 2,966 100.0
Total 24,834 16.0 29,403 19.0 100,599 65.0 154,836 100.0
Note: intermediate and final manufacturing categories based on industry affiliates and following the BEC
rev. 4 classification provided by the UN Statistics Division.

variable, yir, takes on a value of 1 when at least one subsidiary has been
integrated that produces the ith input, and 0 otherwise. Therefore, for
each rth parent company, we have a vector yr = (y1r, ..., yNr) made of 0s
and 1s when each input has been integrated or not, respectively.

We want to consider the probability that a generic parent chooses a
value of yr conditional on

∑N
i=1 yir:

Pr

(
yr|

N∑
i=1

yir

)
=

exp(
∑N
i=1 yirxirβ)∑

si∈Si
exp(

∑N
i=1 yirxirβ)

(2.7)

where the element sir of the vector si is equal to 1 when the ith input is
integrated, and 0 otherwise.
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For each input-parent pair, we can identify a vector of covariates, xir,
which includes: the Input Rank relative to the ith input with respect to the
output of the rth parent company; the interaction term of the Input Rank
with the binary variable Complements relative to the ith input; the Input
upstreamness sourced from Alfaro et al. (2017) measuring the technological
distance of the ith input to the rth target output; the interaction term of the
Input upstreamness with Complements; the input-specific Contractibility
derived as in Nunn (2007); the Direct requirement coefficient available
from the U.S. input-output tables that ranges in [0, 1]. In this context,
the variable Complements is equal to 1 when the elasticity of substitution
of the parent industry is above the median ρr > ρmed, and 0 otherwise
(ρr < ρmed). Errors are clustered by parent companies and variables are
standardized. Results from nested specifications are reported in Tables
2.5 and 2.6. In Table 2.5, we report findings when we assume there is an
equal probability that a producer proceeds exploring at each time-step
the supply network or she falls back to the headquarters. In Table 2.6, we
consider that the probability to proceed with the exploration is dependent
on the input-specific contractibility. In the latter case, we do not include
the input contractibility as a separate variable in the specifications.

The coefficient of immediate interest to us is the one on the Input
Rank, which indicates whether the odds of vertical integration change for
a more central input in the supply network. It is positive and significant
throughout our estimations. In the first columns, we consider all parent
companies whether active in a manufacturing or a service industry. We
find that one additional standard deviation of the Input Rank is correlated
with 1.35 higher odds of vertical integration. Please note that in further
columns, when we introduce subsequent controls, the sample reduces to
manufacturing parents only, because the elasticity of substitution by Broda
and Weinstein (2006) is estimated on U.S. imports of manufacturing only.
Our specification is complete in the fourth column of Table 2.5 and in the
third column of Table 2.6, where a standard deviation increase of the Input
Rank correlates with 1.16 and 1.08 higher odds of vertical integration,
respectively.

Our findings are robust after the inclusion of the Input upstreamness,
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INTEGRATION

Table 2.5: Baseline regressions I, parent-level fixed effects conditional logit

Dependent variable:
Input is integrated = 1

(1) (2) (3) (4) (5) (6)

Input Rank (alpha = 0.5) 0.318*** 0.196*** 0.197*** 0.149*** 0.189*** 0.085***
(0.001) (0.003) (0.003) (0.004) (0.005) (0.006)

Input Rank * Complements 0.090*** 0.014* 0.209***
(0.005) (0.008) (0.008)

Input upstreamness -0.595*** -0.583*** -0.782*** -0.443*** -1.166***
(0.023) (0.025) (0.031) (0.035) (0.068)

Input upstreamness * Complements -0.044* -0.037 0.336*** -0.177*** 0.955***
(0.025) (0.028) (0.039) (0.048) (0.078)

Contractibility -0.385*** -0.390*** -0.645*** -0.249***
(0.018) (0.017) (0.032) (0.025)

Direct requirement 0.063*** 0.049*** 0.025*** 0.015*** 0.010* 0.026***
(0.004) (0.003) (0.003) (0.005) (0.006) (0.004)

N. observations 8,564,068 1,437,785 1,151,908 1,151,908 595,218 542,872
N. parent companies 20,294 4,203 4,084 4,084 2,110 1,925
Pseudo R-squared 0.409 0.215 0.250 0.257 0.203 0.342
Log pseudolikelihood -96,831.2 -29,841.3 -22,779.5 -22,560.8 -12,739.4 -9,281.4
Clustered errors by parent Yes Yes Yes Yes Yes Yes
Activity of parent companies All Manu-

facturing
Manu-
facturing

Manu-
facturing

Final goods Intermediate
goods

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.

Table 2.6: Baseline regressions II, parent-level fixed effects conditional
logit

Dependent variable:
Input is integrated = 1

(1) (2) (3) (4) (5)

Input Rank (alpha = contractibility) 0.307*** 0.140*** 0.074*** 0.129*** 0.016**
(0.001) (0.003) (0.004) (0.006) (0.007)

Input Rank * Complements 0.118*** 0.034*** 0.181***
(0.008) (0.010) (0.011)

Input upstreamness -0.769*** -0.860*** -0.685*** -1.078***
(0.026) (0.028) (0.029) (0.063)

Input upstreamness * Complements -0.074** 0.080** -0.144*** 0.399***
(0.033) (0.033) (0.034) (0.040)

Direct requirement 0.122*** 0.076*** 0.073*** 0.084*** 0.065***
(0.004) (0.002) (0.003) (0.005) (0.003)

N. observations 8,564,068 1,437,785 1,437,785 745,554 675,473
N. parent companies 20,294 4,203 4,203 2,179 1,975
Pseudo R-squared 0.369 0.166 0.172 0.133 0.219
Log pseudolikelihood -103,307.9 -31,720.9 -31,485.0 -17,830.4 -13,396.9
Clustered errors by parent Yes Yes Yes Yes Yes
Activity of parent companies All Manu-

facturing
Manu-
facturing

Final goods Intermediate
goods

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.
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which should proxy the relative technological distance from an input and
its target output. In this case, more distant inputs are less likely integrated
by the parent company. The central tenet of the theoretical framework by
Antràs and Chor (2013) and Alfaro et al. (2017) is tested by the sign of
the interaction term between the Input upstreamness and Complements.
According to these authors, when final demand is sufficiently elastic (in-
elastic), parents integrate production stages that are more proximate to
(far from) final demand. This seems to be the case for producers of final
goods (penultimate columns in Tables 2.5 and 2.6, although a sign reversal
is observed in the case of midstream parents (last columns), i.e. when
considering integration choices by producers of intermediate goods, in line
with what tested by Del Prete and Rungi (2017).

In an effort to extend the role of the elasticity of substitution to the case
of supply networks, we include a similar interaction term of the variable
Complements with the Input Rank. In this case, when final demand is
sufficiently elastic, we find that the odds that a central input is integrated
within the boundary of the firm are proportionally higher.

Please note how, as expected, the Direct requirement and the input-
specific Contractibility have a positive and negative coefficient, respectively.
In the first case, a higher value of the transaction (if any) is trivially
correlated with higher odds of vertical integration. In the second case, a
more contractible input is less likely to be integrated because the agreement
between a producer and an independent supplier can be more easily
enforced by law, thus the incentives for vertical integration are lesser.

2.5.3 Robustness Checks

Our main findings are robust to several checks of robustness. First, in
Table 2.7, we check whether sample compositions can have an impact on
the sign and significance of coefficients.

In the first column, we exclude cases of inputs coming from the same 2-
digit industry of the parent companies. In the second column, we exclude
services inputs because some of them could uniquely lead to previous
results, as they are more central than manufacturing (see Figure 2.1) in
most production processes. In the third column, we modify our indicator of
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Table 2.7: Robustness on sample composition, parent-level fixed effects
conditional logit

Dependent variable:
Input is integrated = 1

No
horizontal

Only manuf
inputs

Input vs
output
elast

Top 100
inputs

Input Rank (alpha = 0.5) 0.749*** 0.152*** 0.171*** 0.134***
(0.151) (0.004) (0.004) (0.005)

Input Rank * Complements 0.306*** 0.091*** 0.064*** 0.118***
(0.076) (0.006) (0.005) (0.006)

Input upstreamness -0.892*** -0.768*** -0.649*** -0.611***
(0.035) (0.030) (0.026) (0.051)

Input upstreamness * Complements 0.286*** 0.313*** 0.137*** 0.748***
(0.046) (0.040) (0.038) (0.062)

Contractibility -0.505*** -0.289 -0.413*** -0.453***
(0.025) (0.016) (0.017) (0.023)

Direct requirement -0.028* -0.008 0.028*** 0.040***
(0.015) (0.005) (0.003) (0.003)

N. observations 741.066 905.64 1,151,908 156.705
N. parent companies 2.637 3.903 4.084 2.847
Pseudo R-squared 0.080 0.281 0.254 0.398
Log pseudolikelihood -19,399.7 -18,622.2 -22,653.3 -7,949.5
Clustered errors by parent Yes Yes Yes Yes
Activity of parent companies Manu-

facturing
Manu-
facturing

Manu-
facturing

Manu-
facturing

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.
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Complements, explicitly considering the difference between the elasticities
of the output and of the input (ρr − ρi), which more specifically provides
a reference point to understand how much elastic the demand of the root
producer is. In the fourth column, we reduce our sample to the top 100
(direct) inputs of the parent output, as from I-O tables, to check whether
the role of the Input Rank is exclusively driven by direct vs indirect inputs.
In all these cases, when an input is more technologically relevant in the
supply network, the odds are higher that the parent companies will make
rather than buy the input from an independent supplier.

In Appendix Tables B.2.4, B.2.5, B.2.6 and B.2.7, we further control
for: i) sample compositions when the Input Rank is built by considering
the input-specific contractibility at each time-step of the network explo-
ration (see Section 2.3.3); ii) sample compositions when we consider only
midstream manufacturing parents; iii) changing values of the constant
parameter α; iv) empirical specifications different from the fixed-effects
conditional logit. All main findings are similar in sign and significance with
baseline estimates, with the exception of a lack of statistical significance of
the coefficient of the Input Rank in Table B.2.5, when we exclude possibly
horizontal strategies in the 2-digit industries of the parent company.

2.6 Conclusions

In this contribution, we introduced the Input Rank as an eigenvector
centrality measure applicable to recursive production networks made of
transactions among many buyers and suppliers. It measures the technolog-
ical relevance of suppliers in the entire supply network of a root producer.
Adapted from previous metrics of information consumption in social net-
works and web engines, the Input Rank proxies a stochastic process that
is started by a root producer, who needs gathering information on the
technology of her entire supply network made of both direct and indirect
suppliers. After random walks throughout her supply network (e.g., ran-
dom phone calls), she comes at each time-step with a numerical value and
an updated ranking of how important is that (direct or indirect) input for
the completion of her production process. Given increasingly complex webs
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of suppliers and an increasing fragmentation of the production processes, it
is possible that a generic root producer is scarcely able to navigate faraway
areas of her supply network, therefore a dumping parameter is introduced
at each time-step to discount the difficulty in gathering information on
a specific transaction, e.g., due to its contractibility, and consequently
the probability that the root producer falls back home and starts a new
journey of exploration.

The Input Rank can be computed either on firm-to-firm transactions or
on input-output tables, keeping its simple mathematical properties. For the
sake of comparison with previous positioning metrics (e.g., downstreamness
and upstreamness segments) of GVCs, we compute it on U.S. 2002 BEA
input-output tables, and after that, we test firm-level choices of vertical
integration by U.S. parent companies. We find that a higher Input Rank
correlates with higher odds that input is vertically integrated, even more so
when the demand faced by the parent company is more elastic. We argue
that vertical integration allows reducing the possibility that otherwise
independent suppliers renege on commitments and disrupt the supply
network, generating more damage for the completion of the production
processes. Even more so when the margins on which the root producer
can rely are smaller. Our findings are robust to several checks on sample
compositions, parameter choices and empirical models.

More in general, we argue that the Input Rank better catches the
recursive and complex nature of real-world supply networks, which have
been so far represented as supposedly linear technological sequences in
studies for the international organisation of production. Certainly, both
empirics and theory need better considering the technological loops, kinks
and corners, which can magnify or dampen a shock in a supply network,
finally shaping the organisational response of the company.
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A. FROM THE PAGERANK TO THE INPUT RANK

A Appendix: From the PageRank
to the Input Rank

The intuition of the Input Rank is adapted from the ‘personalised’ version
of the PageRank centrality, first used in social networks and search engines
(Brin and Page, 1998) to present to users the most pertinent content. Some
variants of the PageRank have been used in many domains (bibliometrics,
biology, physics, engineering of infrastructures, financial exposure, etc.) as
an alternative to the Katz (1953) centrality (Gleich, 2015). The underlying
assumption is that more important nodes (in our case, inputs) are likely
to receive more links from other nodes (in our case, inputs of inputs),
and that proximity to central nodes implies, in turn, a relatively higher
centrality.

For our scope, the main limitation of the original formulation of the
PageRank is its ‘global’ outreach on a supposedly unique network, whereas
we are interested in a ‘local’ outreach of a specific root buyer in her oriented
supply network. Therefore, we needed a ‘personalisation’ of the PageRank,
in the spirit of Haveliwala (2002) and White and Smyth (2003), where
different rankings are possible for different root nodes, given an initial
prior knowledge of the stochastic process.

Starting from the original formulation of the PageRank, adopting
the notation proposed by (Gleich, 2015), the eigenvalue problem can be
represented by the following identity:

[(1− α)P + αveT ]x = x (A.2.1)

If one seek an eigenvector x with x ≥ 0 and eTx = 1, then the PageRank
formulation in A.2.1 is equivalent to the following linear system:

(I − αP )x = (1− α)v (A.2.2)

For our scope, we substitute each term with a corresponding in our Input
Rank, to take into account the peculiar economic process at stake:

• In the PageRank, a transition matrix P contains the probabilities
that an internet user clicks on one page following a web link present
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on the one she is visiting, column-normalized by the total number of
received links, i.e. its in-degree. In the Input Rank, we substitute the
matrix P with an input-output matrix D, whose single elements are
column-normalized buyer-supplier transactions, dij . Even though in
the present work we propose estimates of the Input Rank using input-
output tables (US BEA, 2002), our framework is open to applications
to firm-to-firm transactions. In the latter case, an element of the
matrixD would be a firm-to-firm actual shipment, always normalized
by column (i.e., expressed by receiving firm as a percentage of all
input shipments).

• A vector v is a critical tool that allows for the ‘personalisation’ of the
PageRank. In absence of ‘personalisation’, this vector contains just a
uniform distribution of probability across all web pages. Therefore,
personalised versions of the PageRank make it non-uniform, so
that a particular region of the internet is highlighted with a higher
probability. At the same time, the vector e is a vector of 1s that
algebraically extends the same (uniform or non-uniform) distribution
in v to all web users. In our Input Rank, we substitute v with a
root-specific unitary vector, hr made of all 0s except for the rth

element that is equal to 1. Together with the term α, the unitary
vector hr avoids that the rth buyer navigates outside her network of
suppliers while pointing at headquarters.

• The term α ∈ (0, 1) is a teleportation parameter in the PageRank,
otherwise called a damping factor. It indicates the probability that
a ‘web surfer’ interrupts a random navigation following page-to-page
links and falls elsewhere, on any other web page not directly linked
to the one she is visiting. By converse, (1−α) is the probability that
the user goes on randomly following her web path made of cross-link
citations. In our Input Rank, α must be read in connection to the
peculiarity of hr. In our case, α is the probability that the root
producer stops travelling in her production network and goes back
to the headquarters (i.e., the 1 in the unitary vector hr). Conversely,
(1 − α) is the probability that the producer goes on exploring her
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web of suppliers. Later on, in Section 2.3, we further personalize
introducing input-specific αi, which considers the contractual friction
that prevents a producer to collect, for example, the input degree of
contractibility (Rauch, 1999; Nunn, 2007; Nunn and Trefler, 2013).

• Finally, x is the solution to the eigenvalue problem in A.2.1, which
indicates the relevance of the web content in the case of the PageRank.
In our Input Rank, the root-specific solution π∗r in eq. 2.5 represents
the technological relevance resultant from the exploration of the
input-output linkages by the root producer.

B Appendix: Figures and Tables

Figure B.2.1: In-degree distribution of input-output network from U.S.
BEA 2002 I-O tables

Source: Own elaboration.
Note: Number of input industries by output ordered on the x-axis. Average: 122.
Minimum at the Logging industry (code 113300) is 45. Maximum at the Retail Trade
(code 4A0000) is 296.
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Figure B.2.2: Out-degree distribution of input-output network from U.S.
BEA 2002 I-O tables

Source: Own elaboration.
Note: Number of buying industries by output ordered on the x-axis. Average: 122.
Minimum at the Museums, Historical Sites, Zoos, and Parks (code 712000) is 0.
Maximum at the Wholesale Trade (code 420000) is 425.

Figure B.2.3: Distributions of the (logs of) Input Rank when alpha is 0.5
and alpha is input-specific contractibility
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Table B.2.1: Top 10 highest Input Rank values of the R&D services (code
541700) by output

IO code Output name R&D
Input rank
(alpha = 0.5)

S00500 General Federal defense government services 0.0384
325413 In-vitro diagnostic substance manufacturing 0.0317
325414 Biological product (except diagnostic)

manufacturing
0.0293

325412 Pharmaceutical preparation manufacturing 0.0247
325411 Medicinal and botanical manufacturing 0.0226
325320 Pesticide and other agricultural chemical

manufacturing
0.0211

3259A0 All other chemical product and preparation
manufacturing

0.0211

325620 Toilet preparation manufacturing 0.0193
325910 Printing ink manufacturing 0.0192
325610 Soap and cleaning compound manufacturing 0.0190
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Table B.2.2: Top 10 direct or indirect inputs by Input Rank for the
Automotive Manufacturing (code 336111)

IO code Input name R&D
Input rank
(alpha = 0.5)

336300 Motor vehicle parts manufacturing 0.1686
420000 Wholesale trade 0.0353
550000 Management of companies and enterprises 0.0302
331110 Iron and steel mills and ferroalloy manufacturing 0.0101
531000 Real estate 0.0087
541800 Advertising and related services 0.0078
334413 Semiconductor and related device manufacturing 0.0072
484000 Truck transportation 0.0071
32619A Other plastics product manufacturing 0.0057
221100 Electric power generation, transmission, and

distribution
0.0054

Table B.2.3: Top 10 direct or indirect inputs by Input Rank for the
Electronic Computer Manufacturing (code 334111)

IO code Input name Input rank
(alpha=0.5)

334112 Computer storage device manufacturing 0.0568
420000 Wholesale trade 0.0553
550000 Management of companies and enterprises 0.0467
334418 Printed circuit assembly (electronic assembly)

manufacturing
0.0400

334413 Semiconductor and related device manufacturing 0.0374
511200 Software publishers 0.0305
33411A Computer terminals and other computer peripheral

equipment manufacturing
0.0190

541800 Advertising and related services 0.0132
531000 Real estate 0.0121
541700 Scientific research and development services 0.0112
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Table B.2.4: Robustness to sample composition when alpha is input
contractibility, parent-level fixed effects conditional logit

Dependent variable:
Input is integrated = 1

No
horizontal

Only manuf
inputs

Input vs
output
elast

Top 100
inputs

Input Rank (alpha = contractibility) 0.614*** 0.067*** 0.114*** 0.080***
(0.050) (0.003) (0.004) (0.005)

Input Rank * Complements 0.808*** 0.126*** 0.109*** 0.136***
(0.060) (0.009) (0.007) (0.014)

Input upstreamness -0.842*** -0.889*** -0.882*** -0.695***
(0.032) (0.028) (0.026) (0.046)

Input upstreamness * Complements 0.220*** 0.025 0.091** 0.352***
(0.039) (0.037) (0.039) (0.054)

Direct requirement 0.017*** 0.039*** 0.064*** 0.080***
(0.005) (0.003) (0.003) (0.003)

N. observations 953.458 925.155 1,151,908 252.897
N. parent companies 2.796 3.903 4.084 3.02
Pseudo R-squared 0.094 0.202 0.210 0.201
Log pseudolikelihood -25,884.9 -20,793.8 -23,986.9 -14,925.6
Clustered errors by parent Yes Yes Yes Yes
Activity of parent companies Manufacturing Manufacturing Manufacturing Manufacturing

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.
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Table B.2.5: Robustness to sample composition considering midstream
parents only, parent-level fixed effects conditional logit

Dependent variable:
Input is integrated = 1

No
horizontal

Only manuf
inputs

Input vs
output
elast

Top 100
inputs

Input Rank (alpha = 0.5) 0.097 0.080*** 0.173*** 0.049***
(0.177) (0.006) (0.005) (0.007)

Input Rank * Complements 0.931*** 0.223*** 0.090*** 0.234***
(0.080) (0.008) (0.008) (0.009)

Input upstreamness -1.254*** -1.197*** -0.794*** -1.618***
(0.073) (0.065) (0.047) (0.116)

Input upstreamness * Complements 0.793*** 1.112*** 0.385*** 1.904***
(0.084) (0.078) (0.062) (0.132)

Contractibility -0.191*** -0.163*** -0.271*** -0.276***
(0.030) (0.024) (0.025) (0.029)

Direct requirement -0.016 0.012*** 0.033*** 0.011**
(0.017) (0.004) (0.003) (0.005)

N. observations 316.429 437.805 542.872 87.847
N. parent companies 1.126 1.887 1.925 1.591
Pseudo R-squared 0.096 0.363 0.313 0.460
Log pseudolikelihood -8,141.9 -8,063.6 -9,688.9 -3,848.8
Clustered errors by parent Yes Yes Yes Yes
Activity of parent companies Intermediate

goods
Intermediate
goods

Intermediate
goods

Intermediate
goods

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.
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Table B.2.6: Robustness to changing values of the parameter alpha, parent-
level fixed effects conditional logit

Dependent variable:
Input is integrated = 1

alpha =
0.01

alpha =
0.25

alpha =
0.50

alpha =
0.75

alpha =
0.85

alpha =
0.99

Input Rank 0.139*** 0.142*** 0.149*** 0.167*** 0.198*** 0.209***
(0.004) (0.004) (0.004) (0.005) (0.006) (0.013)

Input Rank * Complements 0.089*** 0.089*** 0.090*** 0.097*** 0.115*** 0.128***
(0.005) (0.005) (0.005) (0.006) (0.007) (0.015)

Input upstreamness -0.779*** -0.781*** -0.782*** -0.780*** -0.777*** -0.898***
(0.030) (0.031) (0.031) (0.031) (0.032) (0.030)

Input upstreamness * Complements 0.332*** 0.334*** 0.336*** 0.342*** 0.350*** -0.073*
(0.038) (0.039) (0.039) (0.039) (0.017) (0.039)

Contractibility -0.388*** -0.388*** -0.390*** -0.393*** -0.395*** -0.410***
(0.017) (0.017) (0.017) (0.017) (0.017) (0.018)

Direct requirement 0.036*** 0.026*** 0.015*** 0.001 -0.007 0.070***
(0.004) (0.004) (0.005) (0.005) (0.005) (0.002)

N. observations 1,151,908 1,151,908 1,151,908 1,151,908 1,151,908 1,151,908
N. parent companies 4.084 4.084 4.084 4.084 4.084 4.084
Pseudo R-squared 0.257 0.257 0.257 0.257 0.257 0.147
Log pseudolikelihood -22,569.0 -22,564.7 -22,560.8 -22,553.1 -22,548.5 -25,905.4
Clustered errors by parent Yes Yes Yes Yes Yes Yes
Activity of parent companies Manu-

facturing
Manu-
facturing

Manu-
facturing

Manu-
facturing

Manu-
facturing

Manu-
facturing

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.
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Table B.2.7: Robustness to changing empirical strategy

Dependent variable:
Input is integrated = 1

Linear
probability
model

Logit Probit

Input Rank (alpha = 0.5) 0.011*** 0.151*** 0.074***
(0.001) (0.005) (0.002)

Input Rank * Complements 0.024*** 0.242*** 0.117***
(0.001) (0.004) (0.002)

Input upstreamness -0.003*** -0.766*** -0.273***
(0.001) (0.025) (0.009)

Input upstreamness * Complements -0.001*** -0.415*** -0.160***
(0.001) (0.025) (0.009)

Contractibility -0.001*** -0.354*** -0.141***
(0.001) (0.017) (0.007)

Direct requirement -0.001*** 0.018*** 0.011***
(0.001) (0.004) (0.001)

Constant 0.005*** -5.894*** -2.789***
(0.001) (0.033) (0.012)

N. observations 1,257,668 1,257,668 1,257,668
N. parent companies 4.717 4.717 4.717
R-squared/Pseudo 0.124 0.209 0.215
Log pseudolikelihood -29,320.3 -29,098.1
Clustered errors by parent Yes Yes Yes
Activity of parent companies Manufacturing Manufacturing Manufacturing

Note: Errors clustered by parent in parentheses. ***, **, * stand for p-value<0.01,
p-value<0.05 and p-value<0.10, respectively.
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Heterogeneous Firms Meet
EU Cohesion Policy

3.1 Introduction

In parallel with the European integration, a Cohesion Policy has been
developed to offset the imbalances that could benefit some regions in the
core of the continent at the expense of regions at its periphery.1 In the
running financial period 2014-2020, regional policy spending amounts to
almost a third of the EU budget (EUR 351.8 billion out of a total EUR
1,082 billion) and is the second largest expenditure item after the Common
Agriculture Policy (CAP).

The Cohesion Policy aims to reduce regional economic disparities re-
sulting from geographic remoteness, as different levels of prosperity and
opportunity may exist both between and within the member states. In
broader terms, the overall goal is ‘economic, social and territorial cohe-

1For details on the core-periphery model and its consequences, see the seminal work
by Krugman (1991).
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sion’, which translates into boosting competitiveness and economic growth,
providing people with better services, job opportunities and better quality
of life, and connecting regions. EU regional policy is implemented through
a range of European Structural and Investment Funds (ESI) in a shared
management system, carried out by each Member State in partnership
with the European Commission. First, the Commission negotiates and
approves the National Strategic Reference Framework (NSRF), setting
out the main priorities for spending provided by the EU, and the Opera-
tional Programme (OP), establishing specific regions’ priorities, objectives,
and concrete actions to manage individual projects. Then, managing
authorities in each country and/or region select, monitor, and evaluate
individual projects submitted by firms, institutions or other entities. The
geographical coverage and allocation of transfers are usually based on the
level of GDP per capita in PPP compared to the EU average.

In this contribution, we focus on one of the main financial tools of the
EU regional policy, i.e. the European Regional Development Fund (ERDF).
The timing is crucial, as the European EC (2009) recently launched a pilot
action to assess how to improve the local governance of the ERDF, in
preparation for the new budget beyond 2020.

In particular, we restrict our attention to specific sources supporting
firms in their innovation strategies and competitiveness.2 In this case,
resources are allocated to regional operational programmes that have spec-
ified thematic priorities. For instance, the ERDF for Business Support
has been established to help firms or groups of firms, in particular, SMEs,
with services and investments in innovation and sustainable production.
Complementary to the latter, the ERDF for Research, Technology and
Development (RTD) stimulates research and innovation activities through
investments in research centres, promoting technology transfers and co-
operation between businesses and the scientific environment. Overall, we
argue that the ERDF has a dual role: first, it aims at improving the
environment of regions, and second, it is a direct financial income for the

2One of the priorities of the EU Cohesion Policy and a key component of the renewed
Lisbon Strategy Europe 2020 concern the support to firms (European Commission,
2010). Grants to firms across the Member States are mainly used to support private
investment to improve private capital stock (European Commission, 2017).
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recipient firms, potentially used as a source for investment.
The efficacy of regional policies is usually evaluated at aggregated

levels, by country or by region. There is no consensus regarding the
outcome of the Structural Fund Programme, and research still focuses on
aggregate statistics. In fact, increasing availability of firm-level financial
data allows us to estimate the benefits on their immediate recipients,
i.e. the firms, which usually show heterogeneous competitiveness with
power-law distributions.3 In this case, a policy that is originally designed
for the ‘representative firm’ in a region or in a country may eventually
reveal heterogeneous and unintended responses.

In our study, we test the impact of the ERDF tools on the perfor-
mance of 273,500 EU manufacturing firms, after estimating their total
factor productivities (TFPs) according to the most recent semi-parametric
econometric technique proposed by Ackerberg et al. (2015). Our purpose
is to assess the short-term impact of the ERDF in the period 2007-2015,
considering both the Business Support (BS) funding, and the Research,
Technology and Development (RTD) funding.

In the Single Market, increasing economic integration is thought to have
a positive impact on productivity due to stronger competitive pressure
coming from the elimination of national borders. Firms compete on an
EU-wide basis, and so we estimate the TFP of firms that are active across
all EU 28 members. The EU-wide approach allows for a comparison of
each firm with its peers within and across the national borders of the
integrated market. To account for a possible sample selection bias, due to
an unbalanced panel of data that tends to exclude smaller firms, we make
our results robust to a Heckman (1979) correction. Further, to account for
possible endogeneity between firm-level TFP and the regional allocation
of ERDF funding, we make our results robust with instrumental variable
panel techniques, on top of a possible sample selection bias, as in Semykina
and Wooldridge (2010). In this case, we instrument the regional provisions
of ERDF funding in a given region with the average ERDF funding in

3Firms’ size and productivity are often assumed to be distributed power law, e.g.,
following a Pareto or a Lognormal. Among others, see the review by Gabaix (2009).
For a discussion on the consequences for aggregate economic growth, see for example
Luttmer (2010).
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neighbouring regions, as the latter is not directly correlated with firms’
TFP growth in the given region, but proximate peripheral regions suffer
from the same geographical disadvantage and share the same needs of
ERDF funds.

We do find a positive and statistically significant association between
the Research, Technology and Development (RTD) vehicle by the ERDF4

and firms’ productivity growth in our period of analysis. In fact, the firms
that seem to benefit more from the RTD measures are the ones in the first
quartile of the productivity distribution, i.e., the least efficient in a region.
By contrast, the Business Support5 vehicle by the ERDF seems to be not
associated with any significant impact on the productivity growth at the
firm level, after accounting for possible endogeneity.

We argue that the aim of the RTD vehicle is on average reached thanks
to a definition of specific targets, as direct investments in R&D activities
can be directly associated to improving firms’ competitiveness, boosting
innovation of products and production processes. On the other hand, the
more general Business Support vehicle may not fundamentally change
the distribution of inefficiencies in the short run, for example because
non-competitive firms can spend the funding to get by and avoid a process
of market selection.

This Chapter is organised as follows. The next section collects the
state of the literature on the evaluation of Structural Funds Programme
and the total factor productivity estimation. Then, Section 3.3 provides
a thorough description of firm-level data and the TFP estimation, which

4The RTD’s priority themes for the period 2007-2013, laid down in Commission
Regulation (EC) No 1828/2006, were: 01. R&TD activities in research centres; 02.
R&TD infrastructure and centres of competence in a specific technology; 03. Technology
transfer and improvement of cooperation networks between small and medium-sized
businesses (SMEs), between these and other businesses and universities, post-secondary
education establishments of all kinds, regional authorities, research centres and scientific
and technological poles; 04. Assistance to R&TD, particularly in SMEs; 07. Investment
in firms directly linked to research and innovation; 09. Other measures to stimulate
research and innovation and entrepreneurship in SMEs.

5The Business Support’s priority themes for the period 2007-2013, laid down in
Commission Regulation (EC) No 1828/2006, were: 05. Advanced support services for
firms and groups of firms; 06. Assistance to SMEs for the promotion of environmentally-
friendly products and production processes; 08. Other investment in firms; 63. Design
and dissemination of innovative and more productive ways of organising work.
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then we match with regional policy data. Section 3.4 presents the empirical
strategy, and discusses the benchmark results and the robustness checks.
The last Section 3.5 offers the summary of key findings and concluding
remarks.

3.2 Related Literature

A large body of literature evaluates the regional and national effects of the
EU regional policies, motivated by the relevant size of the budget and the
supranational role of the European Commission in developing the policy
agenda. Among others, Boldrin and Canova (2001) found little evidence
that regional policies of the EU-15 were effective in terms of promoting
economic growth and fast convergence in per capita income during the
period until 1997. They concluded that transfers towards poorer regions
had mostly a redistribution purpose. On the same line, Dall’Erba and
Le Gallo (2008) found no significant effects of structural funds on the
convergence of 145 European regions over the period 1989-1999. Ederveen
et al. (2003) revealed that poorer regions caught up with richer regions;
however, the extent to which this was due to the Cohesion Policy is
ambiguous. They stated that cohesion support has a positive impact in
lagging member states if their economies are open. Conversely, Cappelen
et al. (2003) found a significant and positive impact of EU regional support
on the growth of the European regions after the major reform of structural
funds in 1988. Nevertheless, their results show that the effect of the funds
was stronger in regions with a favourable industrial structure and with
an emphasis put on R&D. Similarly, Leonardi (2006), using sigma- and
beta-convergence argues that as a result of the Cohesion Policy from 1989
on, the gap between core and peripheral areas in the EU shrank. Assessing
the impact of the Cohesion Policy is challenging because it addresses
different economic and social objectives. Thus, aggregate analysis can be
misleading when confounding the impacts of diverse policy fields.

A relatively meagre body of literature assesses the impact of this funding
system on firms’ outcomes. Bernini and Pellegrini (2011) considered
subsidies to Southern Italian regions over the period 1996-2004 and found
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a positive effect on output, employment and fixed assets in subsidised firms,
but slower growth in the TFP than in non-beneficiaries firms. Additionally,
Hartsenko and Sauga (2012) positively assess the effectiveness of different
types of grants on Estonian firms’ net sales. While these studies are
restricted to specific European regions, De Zwann and Merlevede (2013)
proposed a EU-wide investigation combining regional data with firm-level
data for the period 2000-2006. Preliminary results showed no evidence
of an average treatment effect on employment and productivity. In this
framework, we aim at filling the gap with an EU-wide study of the impact
of Cohesion Policy on the distribution of the firm’s outcomes.

In the regional economics literature, there are several empirical analysis
studying the impact of public subsidies on total factor productivity at the
firm level. Bergström (2000) examined the effects on TFP of public capital
subsidies to manufacturing firms in Sweden between 1987 and 1993. The
study showed that subsidisation could impact on growth in the first year
the support is granted, but after that TFP growth deteriorates. Harris and
Trainor (2005) used detailed micro panel data distinguishing firms that
receive assistance and those that did not for the manufacturing industry
in North Ireland. They found that public subsidies to firms throughout
the 1983-1998 period had a positive and significant impact on the level of
production, and capital transfers are more likely to affect TFP than other
forms of financial support positively.

Further, we also relate to the literature on the firm-level total factor
productivity (TFP) dispersion as a measure of heterogeneity. Syverson
(2011) surveyed recent empirical works and the common finding is that
productivity differences among firms within an industry are large and ro-
bust to alternative estimation methods. Using data from the 1977 Census
of Manufactures (CM), Syverson (2004b) found that establishments at
the 90th percentile of the within 4-digit-SIC productivity distribution are
nearly twice as productive as those at the 10th percentile. Also, Syverson
(2004a,b) showed that the productivity variation across industries and
geographic areas is persistent and it can be related to indicators of product
substitutability, market structure, and competition. Hsieh and Klenow
(2009) showed that under certain assumptions about technology and de-
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mand, dispersion in revenue productivity reflects market distortions. In
addition, using micro-data on manufacturing, they quantify the potential
extent of dispersion as an indicator of misallocation in China and India
versus the United States. Recently, Foster et al. (2016) explored the cur-
rent interpretations of firm-level dispersion in revenue-based productivity
measures. Their empirical evidence suggests, under iso-elastic demand,
that dispersion may indicate either distortions or variation in demand
shocks and/or technical efficiency.

The kinds of literature that we briefly reviewed above are lacking an
appropriate assessment of regional policies of the EU on the performance
of firms across the whole Single Market. Therefore, the contribution of
this paper is twofold. First, we contribute to the existing literature by
estimating the firm-level TFP in a EU-wide approach encompassing 28
countries using recent methodological techniques. Second, identifying
the location of firms within NUTS-2 regions, we assess the impact of
European Regional Development Funds (ERDF) tools on the growth of
firms’ TFP during the period 2007-2015. The results of the study may
provide insightful information and implications for policy-makers at the
EU-level and in general across the advanced economies.

3.3 Data

3.3.1 Firm-level Data

In the recent decades, the interconnected and complex global economy
has called for an in-depth analysis of micro-agents which from the bottom
shape the macro dynamics (Mayer and Ottaviano, 2008). Firm-level data
have become a valuable tool for structural analysis and empirical evidence
on several issues: assessing and comparing the productivity at different
levels of aggregation, investigating innovation and entrepreneurship, un-
derstanding the effects of globalisation, moreover, linking the financial and
employment decisions of firms to aggregate economic outcomes, among
others.

Firm-level data are usually sourced from national and/or local public
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agencies (e.g., business registers, production survey, tax returns), but their
public access is often restricted mostly because of the risk of disclosing
confidential information. As an alternative, commercial databases gather
firm-level information about firms located worldwide, when confidentiality
is handled. For the purpose of our analysis, the reliability of firm-level
balance sheet data is related to the coverage and the quality of information
for each firm. We use the Orbis database by Bureau Van Dijk (BvDEP),
which contains financial and ownership information on millions of mostly
private companies around the world, organised in a standard format after
integration and harmonisation.6

Because of its broad coverage regarding statistical units7 and time, and
international comparability, it is possible to investigate firm’s behaviour by
industry, size, country and region over time. Coverage of small firms and
balance sheet variables changes from country to country according to the
filing requirements by business registers in each country (Kalemli-Ozcan
et al., 2015), contributing to measurement errors, classification biases,
selection biases, etc..8 Hence, there is a trade-off between coverage (i.e.
the number of firms, variables and countries) and the accuracy of the
conducted analysis. For instance, the contemporaneous presence of some
balance sheet information, namely turnover, material cost, fixed assets
and employees, necessary to compute the total factor productivity reduces
the available initial sample significantly.9

6Orbis financial data have become a common source for productivity estimates. See
for example, Gopinath et al. (2017) and Gal (2013).

7Some shortcomings may arise when defining the unit of analysis: firms that operate
in more than one country have at least one unit counted in each country; only in some
countries the business register keeps track of organisational changes (i.e. mergers and
acquisitions) within and between firms, and also the definition of legal units may vary
across countries.

8It is well-known that limited liability companies, although they are required to reg-
ister their formation, may not report complete balance sheet information in compliance
with the national law which differs across countries. Moreover, official business surveys
have administrative thresholds (e.g. VAT), below which some businesses are excluded.
Therefore, concerns about possible sample selection by country and/or by size must be
carefully addressed. Besides, a wider coverage of countries implies the lack of certain
variables, i.e. value-added and intermediate inputs which are necessary to measure
TFP. Another weakness is the availability of employment information, which is not a
mandatory item in balance sheets but rather reported in a memorandum.

9Many researchers have experienced a large number of unique firm identifiers, but
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As a starting point, we briefly present the coverage and quality of
the sample we ended up to compute total factor productivity estimations.
Table 3.1 provides information about European firms operating in man-
ufacturing (sectors 10-33 in second revision Nomenclature générale des
activités économiques dans les Communautés européenes, NACE), for
which complete data are available over the period 2007-2015. We show the
coverage on the population of firms provided by the Structural Business
Statistics of Eurostat for each country and NACE rev.2 2-digit sector, as
total economy percentages for the year 2013.10

A noteworthy feature of the data is a high coverage of turnover for
some countries, although the percentage of operating firms in the year
2013 is much lower. For instance, for Bulgaria, since the percentage of
turnover and labour is very good, but the number of firms is lower than
the one reported by Eurostat, we can suggest that Orbis has information
on large firms. For Austria and some other countries, the coverage of
labour is lower than the one of turnover. One reason could be that firms
in Orbis are less labour-intensive than the ones in Eurostat. First evidence
suggests that for most countries there is an over-representation of medium
and large firms in our sample, compared to the majority of small and
medium-sized enterprises (SMEs) within the European Union.11 The latter
is confirmed in Table 3.2 where the size distribution regarding the number
of firms for each country is reported. For countries like Austria, Belgium,
Denmark, Netherlands and the United Kingdom, the highest number of
firms in Orbis is of medium size. However, the sample selection on the size
is less severe, in terms of representativeness of the sample, when looking

many missing values for financial values, as reported in Kalemli-Ozcan et al. (2015).
It appears that there is a reporting lag of about two years on average, so for instance
information about a firm in 2010 may fully appear in 2012.

10Structural business statistics (SBS) data is collected using statistical surveys,
business registers or from various administrative sources across the European Union
(EU). Starting in 1995, the SBS provides information on many key variables, such as
turnover, value-added, employment, the number of business units, etc., broken down by
industries and size for each country. Notice that changes in the specific purposes (e.g.,
tax collection, government policies, etc.) of the administrative sources may affect the
coverage, definition, thresholds, etc., of the data. The sample coverage for the other
years in the study is available upon request.

11The over-representation for the largest firms in the Orbis database is well understood.
See Ribeiro et al. (2010) and Kalemli-Ozcan et al. (2015) for more details.
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at the percentage of firms within each sector. Table 3.3 shows that there
is a good sector coverage for most countries. Some exceptions are less
labour-intensive sectors, such as NACE 13-15 and NACE 16-18, which are
overall under-represented.12

In following analyses, we will make our results robust to a possible
sample selection bias arising from a censoring by firm size.

Table 3.1: Sample coverage, year 2013.

Turnover N. of employees N. of firms
Country Sample Eurostat % Sample Eurostat % Sample Eurostat %

Austria 77,724 176,744 43.98 215,039 617,441 34.83 760 25,129 3.02
Belgium 224,957 267,274 84.17 297,804 514,258 57.91 2,732 33,468 8.16
Bulgaria 21,742 22,566 96.35 503,980 524,041 96.17 15,607 30,091 51.87
Croatia 13,793 16,044 85.97 181,939 260,534 69.83 7,724 20,673 37.36
Cyprus 693 2,585 26.80 4,312 25,583 16.85 95 4,947 1.92
Czech Rep. 137,125 139,840 98.06 989,866 1,160,215 85.32 14,702 167,688 8.77
Denmark 35,178 93,000 37.83 84,615 351,178 24.09 573 15,062 3.80
Estonia 583 11,142 5.24 80,228 104,565 76.73 3,871 6,381 60.66
Finland 58,559 113,213 51.72 182,904 330,472 55.35 6,369 21,581 29.51
France 471,945 870,241 54.23 1,278,008 2,993,901 42.69 27,953 226,369 12.35
Germany 689,905 1,975,826 34.92 1,830,210 7,220,296 25.35 13,134 202,823 6.48
Greece 23,131 56,478 40.96 134,025 289,187 46.35 4,417 57,736 7.65
Hungary 84,421 93,802 90.00 447,036 664,724 67.25 3,003 47,475 6.33
Italy 661,432 872,479 75.81 2,384,401 3,733,694 63.86 105,399 407,344 25.87
Latvia 5,945 7,517 79.09 98,116 120,761 81.25 5,525 9,535 57.94
Lithuania 7,301 13,508 54.05 90,917 195,701 46.46 1,286 16,120 7.98
Luxembourg 2,480 4,161 59.58 9,137 19,008 48.07 99 733 13.51
Malta 158 383 41.25 2,351 7,786 30.20 52 1,279 4.07
Netherlands 40,741 308,574 13.20 54,109 681,617 7.94 519 60,506 0.86
Poland 51,226 270,727 18.92 350,377 2,347,504 14.93 3,029 174,414 1.74
Portugal 73,470 79,429 92.50 536,092 637,427 84.10 26,797 66,423 40.34
Romania 61,854 65,677 94.18 1,053,333 1,166,313 90.31 30,125 46,761 64.42
Slovenia 18,745 23,848 78.60 124,064 176,175 70.42 6,285 18,148 34.63
Slovakia 58,357 61,104 95.50 357,157 437,796 81.58 6,863 63,185 10.86
Spain 322,576 447,415 72.10 1,115,379 1,736,651 64.23 56,018 168,935 33.16
Sweden 152,804 197,809 77.25 407,280 631,140 64.53 12,633 53,681 23.53
UK 399,185 576,651 69.22 1,278,672 2,368,775 53.98 9,524 127,943 7.44

Notes: This table reports variables aggregated at country-level when information by
industry is available in the Orbis and the Eurostat datasets. Turnover is expressed
in millions of euros. Firms with consolidated accounts are excluded when considering
coverage on turnover and number of employees. Data on Ireland are not available in
Eurostat database.

12Notice that the primary activity code attributed to each firm may differ in Orbis
and Eurostat. While in the latter the criterion of attributing the activity is based on
the initial classification of the firm at the time of its set up, Orbis classification is based
on the current production of the firm, therefore a more accurate information.
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Table 3.2: Size distribution number of firms in the sample and in Eurostat
(%), year 2013

TFP sample Eurostat

Country 0-9 10-19 20-49 50-249 250+ 0-9 10-19 20-49 50-249 250+

Austria 3.3 1.4 6.8 48.1 40.3 72.1 11.6 8.7 5.7 1.9
Belgium 10.7 11.2 30.8 36.0 11.3 81.7 7.6 6.1 3.6 1.0
Bulgaria 50.9 18.4 17.4 11.4 1.9 74.8 9.8 8.6 5.8 1.0
Croatia 66.0 14.4 10.2 7.5 1.8 83.7 7.6 4.8 3.1 0.8
Cyprus 17.5 12.4 39.2 25.8 5.2 90.0 5.9 2.7 1.2 0.1
Czech Rep. 41.0 17.0 18.4 18.1 5.5 92.7 2.7 2.3 1.8 0.5
Denmark 7.5 4.7 10.8 43.1 33.9 71.2 12.4 9.0 6.2 1.2
Estonia 65.9 13.0 11.8 8.1 1.1 74.7 9.3 8.7 6.4 0.9
Finland 55.0 15.9 14.4 11.0 3.7 83.8 6.5 5.3 3.5 0.9
France 58.6 14.4 13.5 10.1 3.4 86.8 5.6 4.4 2.6 0.7
Germany 13.3 13.5 20.3 34.8 18.0 61.4 20.4 8.1 8.1 2.1
Greece 35.0 25.4 23.7 12.9 3.0 95.1 2.0 1.6 1.0 0.2
Hungary 17.8 8.6 19.9 40.2 13.5 84.5 6.5 4.8 3.4 0.8
Ireland 17.8 7.9 17.5 36.7 20.0 n/a n/a n/a n/a n/a
Italy 52.2 23.8 15.4 7.3 1.4 83.0 9.9 4.8 2.1 0.3
Latvia 66.4 13.3 11.3 8.0 1.0 79.9 8.0 6.6 4.9 0.6
Lithuania 12.4 16.5 28.2 34.4 8.5 82.1 7.0 5.9 4.3 0.8
Luxembourg 3.0 3.0 11.0 43.0 40.0 62.6 12.2 12.6 9.7 3.0
Malta 14.8 6.6 19.7 42.6 16.4 91.1 6.2 0.0 2.7 0.0
Netherlands 7.1 3.5 11.4 48.7 29.3 85.8 5.8 4.5 3.3 0.6
Poland 28.4 2.3 27.2 29.1 12.9 86.9 4.6 4.2 3.5 0.9
Portugal 61.3 18.0 13.0 6.8 0.9 82.6 8.2 5.8 3.0 0.4
Romania 58.8 15.4 13.9 9.5 2.3 70.6 11.4 9.7 6.7 1.6
Slovenia 74.7 10.5 7.1 6.1 1.5 88.5 5.0 3.2 2.7 0.6
Slovakia 52.2 16.8 14.2 12.9 3.8 94.0 2.2 1.8 1.5 0.4
Spain 63.7 16.8 12.4 5.8 1.2 83.6 8.1 5.5 2.4 0.4
Sweden 57.3 18.1 13.3 8.7 2.7 87.8 5.3 3.9 2.4 0.6
UK 4.9 4.7 15.4 57.7 17.3 76.4 10.3 7.4 4.9 1.1

Notes: This table presents the distribution of firms according to their size in the TFP
sample and as reported in Eurostat database. It shows the percentages computed on the
total number of firms in each country. Each row sums up to 100% for the two samples.
Data on size distribution of firms about Ireland are not available in Eurostat database.
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3.3. DATA

3.3.2 Total Factor Productivity Estimation:
Preliminary Evidence

Exploiting a unique dataset of 542,876 manufacturing firms from EU-28
countries, for the period 2007-2015, we estimate firm-level total factor
productivities (TFP) from an industry-level production function.13 We
apply TFPs using the semi-parametric technique proposed by Ackerberg
et al. (2015) (ACF hereafter). See Appendix A for further details.

We calculate factor elasticities for each industry on a EU-wide scale to
assess the competitiveness of firms horizontally across national borders. In
the integrated framework of a Single Market, characterised by increasing
economic integration, competitive pressure is usually thought to have
a diverse impact on productivity as it is referred in the literature of
economic geography (Beaudry and Schiffauerova, 2009). For instance, for
the Italian firm “PARMALAT s.p.a.” the 2013 productivity computed
using elasticities at the country-industry level is quite close to the mean
of its industry, while using EU-wide estimations it is among the top
productive firms within industry NACE 10. This indicates that the Italian
manufacturers of food with very high productivity are in general more
competitive than other manufacturers in the Wider Europe. On the
contrary, the English firm “LUSH LTD.”, operating in industry NACE 20,
in 2013 is more productive than the average of its peers using country-
industry level elasticities, while using EU-wide industry elasticities it is
below the European average. This suggests that while this firm is a very
competitive producer of chemicals within England, it is not very highly
productive in the Wider Europe beside other competitors in the industry.
In this context, empirical evidence suggests that looking at firms across all
countries provides more insightful information on the position of a country
industry’s competitiveness (Altomonte et al., 2010), especially within a
Single Market such as the European Union.

Figure 3.1 shows the percentiles of the firm-level log TFP by country.
Heterogeneity in firm performance is widely spread across countries in the

13Please note that TFP is estimated for all firms in our sample, while the match
with following regional data is possible only for the regions that benefitted from ERDF
funding.
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sample, and it is linked to some extent to the heterogeneity in the size of
firms observed within industries (Bartelsman et al., 2013). Nevertheless,
there are some empirical regularities. For instance, the median value of
productivity is quite similar across countries, and the distance between the
25th and the 10th percentile is in most cases high, meaning that there are
few firms in each country with productivity close to zero which is in line
with the under-representation of micro firms in our sample. On the other
hand, if we look at the 90th percentile only Denmark and Netherlands
exhibit high firm-level productivity.

Figure 3.1: Percentiles (log of) TFP by country
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Notes: This Figure shows the firm-level total factor productivity percentiles for each country
in the sample. Countries are presented in ascending order according to the difference between
the 90th and the 10th percentile.
Source: Own elaboration.

Firms are heterogeneous along many dimensions and their distributions
have power-law right tails (Gabaix, 2009, 2016; Luttmer, 2010). The
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3.3. DATA

Figure 3.2: Total factor productivity distribution of EU manufacturing
firms
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European case is slightly more sophisticated. In Figure 3.2, we record how
the (log of) TFP of EU manufacturing firms shows up as an asymmetric
and bimodal distribution. In other words, there are two different sets of
firms. On the left side of Figure 3.2, there is a bunch of firms largely
inefficient, yet active on the market and far from going bankrupt. These
firms operate in the same markets together with more efficient firms, on the
right-hand side of Figure 3.2. The origins of such a polarisation in EU-wide
firm-level productivity is largely unexplained, and it is not the object of
the present study.14 However, in the context of our exercise, we note how
the design of the EU Cohesion Policy does not consider the existence of
such heterogeneity, and the average effect of an ERDF financial support
may have unexpected and unintended consequences.

14See Andrews et al. (2016) for a possible explanation in terms of technological
divergence.
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3.3.3 Regional Policy Data

We retrieve data on regional policy funding from the report ‘Geography
of Expenditure - Work Package 13’ prepared for the European Commis-
sion in 2015 (wiiw and ISMERI EUROPA, 2015). The report studies
the cumulative allocations to selected projects and the expenditures of
European Regional Development Funds (ERDF) and Cohesion Fund (CF)
over the programming period 2007-2013 for all 28 EU countries. Most of
the transfers are assigned at the NUTS-2 level.15 Overall, the Structural
funds Programme distinguishes transfers by objectives: Convergence (Ob-
jective 1), Regional competitiveness and employment (Objective 2), and
European territorial cooperation (Objective 3). We restrict our analysis
to the Objective 1 which aims at accelerating the economic development
of lagging EU regions and it accounts for more than two-thirds of the
programme’s total budget. The objective covers regions whose GDP per
capita in PPP is less than 75% of the EU average. In this work, we focus
on the ERDF established in 1975, in particular on two thematic areas
which may have a direct impact on firm’s productivity: Business Support,
and Research, Technology and Development (RTD).

Figure 3.3 provides insights on the distribution of payments across
NUTS-2 regions for the two priorities mentioned above. The total value of
projects subsidised over the whole programming period 2007-2013 by the
ERDF Business Support summed up to roughly EUR 21 billion, compared
to EUR 35 billion from the ERDF RTD. In a regional approach, the amount
of transfers for Business Support varied from EUR 53,987 in Schwaben
(Germany) to over EUR 842 million in Andalusia (Spain), with an average
of about EUR 82 million per region. Financial aid for research, technology
and development ranges from EUR 295,576 in South East England to more
than EUR 1.5 billion in the Warsaw region (Poland). On average, every
region received EUR 132 million for projects involved in innovation and

15NUTS is the acronym for Nomenclature des Unités Territoriales Statistiques and
it is a hierarchical system to for dividing the economic territory of the EU. The highest
level of aggregation (NUTS-1) corresponds to major socio-economic regions (e.g., the
United Kingdom’s regions of England/Scotland/Wales); NUTS-2 refers to basic regions
for the application of regional policies (e.g., Italian regions); and NUTS-3 identifies
small regions for specific diagnosis (e.g., Départements in France).
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development activity. In the populous and usually rich regions such as
those in England, Belgium, the Netherlands, parts of Germany, Austria and
Northern Italy, ERDF payments usually do not exceed 0.1% of the regional
GDP over the entire period of financing. The regions with the highest
ERDF payments as a share of regional GDP are Észak-Magyarország in
Hungary with 0.54% (ERDF Business Support) and Alentejo in Portugal
with 0.47% (ERDF RTD), respectively.

We match firm-level financial accounts with the regional policy data
on ERDF at the NUTS-2 regions, based on the postal address of each firm.
It is important to note that while the programme’s commitment is in the
period 2007-2013, the allocation of funds usually takes 1-2 years longer
ending in 2015 for some regions. Moreover, there are some overlaps of the
allocated funds from the previous programme in the period 2000-2006. Here
we mainly focus on the funds allocated in the program 2007-2013, although
our findings are robust to the inclusion of overlaps of the programs.
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Figure 3.3: Payments by NUTS-2 region from the European Regional
Development Fund
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Note: Values in EUR million.
Source: ‘Geography of Expenditure – Final Report, Work Package 13’, wiiw and ISMERI EUROPA, 2015,
own elaboration.
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3.4 Empirical Strategy
Our contribution aims at investigating the short-term impact of the ERDF
spending on the firm-level TFP growth in the period 2007-2015. First,
we make our results robust to the Heckman (1979) correction, accounting
for a possible sample selection by firm size, measured by firm sales, as
pointed out in the previous section. On top of sample selection, we may
want to control for the endogenous relationship between firm-level TFP
growth and the regional provision of ERDF funds. In fact, it is quite
possible that less (more) ERDF funding is allocated over time when the
firms in a region record increasing (decreasing) rates of productivity. The
empirical model by Semykina and Wooldridge (2010) suits our case, as it
combines instrumental variables in the presence of possible sample selection
with panel data.16 Eventually, we replicate our specification along TFP
quartiles, to verify whether a different impact can be found along the
heterogeneous and bimodal distribution of inefficiencies, as represented in
Figure 3.2.

3.4.1 Baseline Findings

Our outcome equation is:

∆(tfpijrt) = αi + β1BSr,t−1 + β2RTDr,t−1 + β3Xir,t−1

+ β4Zr,t−1 + δt + µirt
(3.1)

where the dependent variable ∆(tfpijrt) is the growth of total factor
productivity of firm i operating in industry j located in region r at
time t. On the right hand, we highlight our main variables of interest
lagged one period: i) BSr,t−1 is the ERDF funding for Business Support
spent in region r and time t − 1; ii) RTDr,t−1 is the ERDF funding for
Research, Technology and Development in region r at time t− 1. Under
Xir,t−1 we collect firm-level controls, and specifically, we include the TFP
level and the firm size, both at time t − 1, since we expect that bigger
and already more productive firms tend to grow relatively less in future

16For a previous use of the empirical model by Semykina and Wooldridge (2010), see
among others Kee et al. (2008) and Essaji (2008).
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periods. Then, we refine our specification with Zr,t−1, which contains
regional level controls to disentangle the impact of regional size, human
capital, agglomeration, industrial specialization, industrial diversification
and competition externalities on TFP. See Appendix C for more details
on all variables and their construction. A set of time fixed effects further
controls for overall time trends. We allow the specification to have a firm-
level unobserved time-invariant component αi that is possibly correlated
with other regressors, hence testing firm-level fixed effects.

The dependent variable ∆(tfpijrt) cannot always be observed, and
we may have a sample selection problem. As discussed with reference
to Table 3.1, our TFP sample underrepresents smaller firms due to the
different regulations of entries into national registries. This is a case of
unintentional censoring, due to measurement errors. Yet, smaller firms are
more likely to benefit from ERDF vehicles, as it is clearly in the original
design of the policy. Therefore, we introduce a sample selection process in
the form:

dit = θ0 + θ1sizeit + si + εit (3.2)

where dit is a binary variable equal to 1 when the TFP growth rate has
been computed for company i at time t, and 0 otherwise. We assume that
the selection process operates on the firm size, as we know that national
registries gathered by our database ask for detailed financial accounts only
after some thresholds of activity (see also Kalemli-Ozcan et al. (2015)).17

Further, we know that the relationship between TFP growth rates and
both the ERDF funding vehicles may be endogenous, because we cannot
rule out that decreasing (increasing) firms’ competitiveness do have a
reversal impact on an increasing (decreasing) allocation of either funds.
In fact, it is quite possible that when firms in regions at disadvantage
start to reap the benefits from the investments entailed by the ERDF
funding, the number of applications and the amount of funds allocated
in that region could decrease over time. Therefore, we need a set of
instruments, Wrt, such that the contemporaneous exogeneity assumption
holds, E(µirt|Wrt, si, αi) = 0, conditional on the firm-level unobserved

17See Table 3.2 in Section 3.3 for a detail of the sample selection by size at the
country level, comparing with census from Eurostat.
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selection and heterogeneity components. For this purpose, we instrument
the ERDF BS and RTD regional spending in the specification of eq. 3.1
by considering both the BS and RTD spending in the period before in
neighbouring regions, i.e. in the regions sharing a common border with
the target region r. We can comfortably assume that neighbouring regions
have both a BS and RTD funding that is correlated with funding in region
r, since they share a similar geographic disadvantage at the periphery of
the European Union. On the other hand, we have no reason to believe
that the funding in neighbouring regions should have a direct impact on
the productivity of firms that are active in the rth region. Please note
that by using the technique by Semykina and Wooldridge (2010), we
allow firm-level unobserved and time-invariant heterogeneity, αi and si,
to be correlated across both the sample selection process and the set of
instrumental variables. This is particularly useful in our case, as both the
absence of smaller firms in our sample and their exposure to ERDF funding
can be explained by some unobserved characteristics. Finally, to overcome
a possible aggregation bias resulting from an empirical specification that
mixes a firm-level outcome with region-level ERDF spending, we adopt a
two-way clustering of the standard errors by firm and by region (Cameron
et al., 2011).

In Table 3.4, we report estimates in a sequence. In column 1, we
report a simple firms’ panel fixed effects specification, and in column 2 we
challenge it with a Heckman (1979) correction. The complete empirical
model following Semykina and Wooldridge (2010) is augmented with
instrumental variables for ERDF funding and reported in column 3 of
Table 3.4.

Crucially, we find that the Business Support vehicle has a non-significant
association with the short-term productivity growth of the firms in our
sample, after controlling for endogeneity. We argue that negative coeffi-
cients observed in columns 1 and 2 for the BS vehicle are indeed explained
by the endogenous trends observed from our data: a generalized decrease
in ERDF funding is observed where the TFP levels have increased more,
for example in the New Members of the European Union.

On the other hand, a robust impact of the RTD vehicle on TFP growth
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Table 3.4: Baseline estimates

Dependent variable: TFP growth Firm FE Selection
& Firm FE

Endogeneity
& Selection
& Firm FE

ERDF Business Support -0.0018*** -0.0017*** 0.0020
(0.0004) (0.0004) (0.0018)

ERDF RTD 0.0011*** 0.0009** 0.0058***
(0.0005) (0.0004) (0.0014)

Regional GDP 0.2339*** 0.3046*** 0.3098***
(0.0173) (0.0176) (0.0176)

% Aged 25-64 (Education levels 3-4) 0.0062*** 0.0057*** 0.0045***
(0.0005) (0.0005) (0.0005)

% Aged 25-64 (Education levels 5-8) 0.0050*** 0.0052*** 0.0050***
(0.0006) (0.0007) 0.0007)

Agglomeration -0.0192*** -0.0153*** -0.0154***
(0.0716) (0.0038) (0.0040)

Specialization 0.2810** 0.4543*** 0.4989***
(0.1165) (0.1178) (0.1183)

Diversification -0.1882** -0.2110*** -0.2183***
(0.0816) (0.0720) (0.0722)

Competition 0.2344*** 0.2287*** 0.2313***
(0.0707) (0.0690) (0.0699)

tfp (t-1) -0.7822*** -0.7833*** -0.7834***
(0.0044) (0.0044) (0.0044)

Firm Size 0.0441*** -1.7175*** -1.7131***
(0.0054) (0.0721) (0.0723)

N. observations 1,506,240 1,499,673 1,497,580
NUTS 2 regions 273 273 273
Heckman correction No Yes Yes
Instrumental Variables No No Yes
R-squared (within) 0.406 0.410 0.410
Lambda (Heckman) - -71.73*** -71.73***
Year FE Yes Yes Yes
Firm FE Yes Yes Yes
Two-way clustered errors Yes Yes Yes

Note: Two-way clustered standard errors in parenthesis ***p<0.01, **p<0.05, *p<0.1.

rates is reported across all specifications in Table 3.4. The coefficient is
relatively higher after we control for possible endogeneity, in column 3.
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3.4.2 Robustness and Sensitivity Checks

We explore the robustness of our main findings along the quartiles of
the heterogeneous TFP distribution observed in Figure 3.2. We use the
same empirical specification from the baseline eq. 3.1 and eq. 3.2, after
considering instrumental variables in a panel dataset with sample selection
and endogeneity, as proposed by Semykina and Wooldridge (2010). Results
are reported in Table 3.5.

Table 3.5: Robustness of findings across the quantiles of the TFP distribu-
tion

Dependent variable: TFP growth 1st
Quartile

2nd
Quartile

3rd
Quartile

4th
Quartile

ERDF Business Support 0.0051 0.0005 -0.0013 -0.0027
(0.0030) (0.0007) (0.0008) (0.0016)

ERDF RTD 0.0157*** 0.0047*** 0.0039*** 0.0007
(0.0047) (0.0010) (0.0009) (0.0014)

Regional GDP 1.6786*** -0.1592*** -0.1431*** -0.0878***
(0.0555) (0.0114) (0.0124) (0.0172)

% Aged 25-64 (Education levels 3-4) 0.0071*** 0.0012*** 0.0032*** 0.0035***
(0.0019) (0.0004) (0.0003) (0.0005)

% Aged 25-64 (Education levels 5-8) -0.0011 0.0034*** 0.0040*** 0.0007
(0.0023) (0.0005) (0.0004) (0.0006)

Agglomeration 0.0001 -0.0068* -0.0066* -0.0085**
(0.0057) (0.0035) (0.0027) (0.0033)

Specialization 5.0035*** 0.9135*** -1.0708*** -0.5882***
(0.4102) (0.1580) (0.1287) (0.0732)

Diversification -2.1578*** -0.2701*** 0.3381*** 0.2414***
(0.2658) (0.0681) (0.0571) (0.0586)

Competition 1.2201*** -0.8665*** -0.0059 -0.0074
(0.1024) (0.0158) (0.0203) (0.0116)

tfp (t-1) -0.8215*** -0.9256*** -0.9126*** -0.8001***
(0.0045) (0.0032) (0.0031) (0.0052)

Firm Size 6.1880*** 3.9034*** 1.9665*** 2.0675***
(0.7385) (0.1014) (0.1204) (0.2652)

N. observations 381,964 374,863 379,502 367,998
NUTS 2 regions 273 273 273 113
Heckman correction Yes Yes Yes Yes
Instrumental Variables Yes Yes Yes Yes
R-squared (within) 0.4777 0.6642 0.6707 0.5523
Lambda -168.01*** -94.60*** -44.84*** -40.84***
Year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Two-way clustered errors Yes Yes Yes Yes

Note: Two-way clustered standard errors in parenthesis ***p<0.01, **p<0.05, *p<0.1.
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The ERDF Business Support vehicle has no significant statistical
association with TFP growth rates along the TFP distribution. Instead,
we record the strongest impact of the ERDF RTD funding for the firms
that had the lowest TFP levels in our period of analysis, in the first quartile
of the distribution. In fact, we find the strongest impact on the left tail of
Figure 3.2, around the first modal value along the asymmetric bimodal
distribution. Briefly, a regional increase in the RTD funding is associated
with a relatively higher growth rate of the TFP for firms that are less
productive, as it was the priority of the policy maker.

Nonetheless, results from Table 3.5 show also that more productive
firms may benefit from the EU Cohesion Policy, although the magnitude
of the coefficients is three times lower. We argue that firms in the second
and third quartiles of the TFP distribution can become more productive:
i) directly, because they apply and receive an RTD funding; ii) indirectly,
because they benefit from technological spillovers spreading within the
region from the original applicants. For example, it is quite possible that
after an investment is made by a company under RTD funding, other
firms in local markets start to imitate the innovations in products and
processes. Interestingly, the positive association of RTD funding with TFP
growth rates becomes smaller and smaller in magnitude at increasing levels
of TFP, until the correlation becomes statistically non-significant in the
fourth quartile, i.e. on the right tail previously observed in Figure 3.2.

Finally, we perform a sensitivity check for our findings taking alter-
native outcomes: the firm-level value added and the labour productivity.
Interestingly, neither ERDF measure is significantly associated with firm-
level value added or labour productivity. Indeed, in the first case, we did
not expect an impact of the Cohesion Policy on yet another proxy of firm
size. In the second case, labour productivity is a less reliable proxy of
firms’ competitiveness, because it is subject to changes in the combinations
of production factors. Among others, we would expect that following in-
vestments under RTD imply a relatively higher firm-level capital intensity,
hence an endogenous change in the marginal product of labour.
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3.5 Conclusions
In this contribution, we tested the impact of the EU Cohesion Policy on
firm-level TFP growth, as the latter is a useful indicator of firm-level
competitiveness. Specifically, we considered the funding by the ERDF
originally separated as two measures, one for Business Support and one
for Research, Technology and Development.

In general, the tendency is to refer to aggregate statistics at the country,
region or industry level to evaluate the impact of a regional or industrial
policy. The underlying reference is to a representative economic agent (e.g.,
a firm, or an individual), on which an average impact can be estimated
from the aggregate. Thanks to an increasing availability of micro-data at
the firm-level, it is possible to check whether the impact is heterogeneous
within the aggregated country, region and industry.

In fact, after we estimate total factor productivity (TFP) for firms in
the European Union, we already find that inefficiencies are distributed
asymmetrically, bimodal and with a long right tail. Therefore, heteroge-
neous responses may be predicted from the application of the EU Cohesion
Policy. We do find that the Business Support does not have any statistical
association with the evolution of firms’ competitiveness in our period of
analysis controlling for endogeneity bias. On the other hand, a more
targeted support for innovation in products and production processes,
under the RTD funding, is significantly associated with an increase in
TFP. The impact is relatively higher for the least productive firms, in the
first quartile of the TFP distribution, where a support seems to be most
needed.

We believe that our findings are important in the early hours of the
negotiations for the next budget of the EU Cohesion Policy, which calls for
a recalibration of the funding and a revision of the governance. We support
the idea that a revision of the EU Cohesion Policy should also consider
the heterogeneous distribution of inefficiencies within regions, which are
often as relevant as differences across regions.
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A. TOTAL FACTOR PRODUCTIVITY

A Appendix: Total Factor Productivity
(TFP)

A.1 Estimates of Total Factor Productivity

Seminal contributions of Tinbergen (1942) and Solow (1957) tie the ag-
gregate production function to productivity, defined as the proportion of
output not explained by some inputs used in production. As an indicator
of efficiency, the total factor productivity (TFP) tries to quantify the
difference in firms’ output obtained using the same level of capital, labour,
intermediate goods, etc.. With a single homogeneous output and a single
homogeneous input, productivity is a cardinal number, hence units of
output per unit of input (Bartelsman and Wolf, 2017). On the other hand,
when multiple inputs are used, alternatively, when inputs and outputs
are not strictly homogeneous across firms or over time, many econometric
issues arise in the estimation of factor elasticities.

We start reviewing the literature on estimations of production functions
with some preliminaries, so then we move on several approaches addressing
the main methodological issues.

Assuming a production function is in the Cobb-Douglas form:

Yijct = eβj0Kβk

ijctL
βl

ijctM
βm

ijcte
εijct (A.3.1)

where Y , K, L, and M are respectively units of output, capital, labour
and materials, observable for a firm i operating in industry j of country c
at time t. εijct captures unobservables to the researcher which may affect
the output (e.g., the weather, the management quality).

Taking the log of equation (A.3.1), the empirical problem reduces to
the estimation of the following equation:

yijct = βj0 + βkkijct + βllijct + βmmijct + ωijct + εijct (A.3.2)

we can think about εijct having two components, i.e. ωijct is predictable to
the firm when it makes its inputs decision, but unobserved by the researcher,
whereas the firm has no information about εijct. In the literature ωijct
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is called Hick’s neutral productivity shock. εijct may represent a non-
predictable productivity shock or a measurement error in the output
variable.

The major identification problem in estimating the production function
is that input choices made by the firms depend on ωijct which affects their
marginal products.18 Therefore, the correlation between kijct, lijct, mijct,
and ωijct generates an endogeneity problem, i.e. a simultaneity bias19,
which makes OLS estimates inconsistent, as for the first time noted in
Marschak and Andrews (1944).

Furthermore, if no allowance is made for entry and exit of firms over
the sample period, a selection bias emerges (Olley and Pakes, 1996). The
bias arises because a firm may decide to entry or exit the market according
to its observed level of productivity. This generates a negative correlation
between kijct and ωijct, conditional on being in the dataset (Ackerberg
et al., 2007). Intuitively, firms with higher capital level can survive with
lower productivity ωijct. Consequently, ignoring the entry and exit decision
of firms or using a balanced panel result in upward biased TFP estimations.

Another important issue emerging from empirical applications is the
omitted price bias. Usually, physical output and inputs are not observed.
In the literature, a common solution to eliminate the price effect has
been to deflate firm-level sales and input expenditures by an industry
producer price index. However, if the choice of inputs is correlated with
the unobserved firm-level price variation (pijct−pjct), a bias is generated in
the input coefficients.20 In particular, assuming that inputs are positively

18For instance, a firm operating in a perfectly competitive market where the cost of
capital, labour, materials is fixed as the output price, chooses the level of inputs that
maximises its profit. The first order conditions (FOCs) say that the optimal level of
k, l, m, depends on ωijct, where higher ωijct implies more use of those inputs. Hence,
we expect the inputs coefficients to be positive biased. Usually, there is a greater
bias on labour and materials. The intuition is that labour and materials tend to be
flexible inputs. Conversely capital is a stock that accumulates over time, therefore less
correlated with the productivity shock. Failure to correct for simultaneity bias leads to
a downward bias in the TFP estimation for firms using many factors of production.

19If the researcher has no knowledge of the time when input decisions are taken, a
simultaneity bias may arise because input quantities are determined during the period,
when productivity shocks occur, while the researcher observes the data at the end of
the period.

20Omitted price bias arises in the presence of imperfect competition, when firm-level
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correlated with the output and the latter is negatively correlated with prices
(as in standard demand-supply system), a negative correlation of inputs
with firm-level prices leads to an under-estimation of TFP (De Loecker,
2011). The same applies when there is output price variation across firms.21

Traditional solutions to the endogeneity of input choice include fixed
effects model (Hoch, 1955, 1962), (Mundlak, 1961, 1963), (Mundlak and
Hoch, 1965), instrumental variables (Griliches and Maitresse, 1998) and
first order conditions with respect to inputs (Klein, 1953),(Solow, 1957),
(Griliches and Ringstad, 1971), and (Hall, 1988).

Fixed effects approach overcomes simultaneity and selection bias, as-
suming that productivity shock is time-invariant, i.e. ωijct= ωijc, and
imposing strict exogeneity on εijct. Then, the unobservable is differenced
out by mean differencing

yijct − ȳijc = βk(kijct − k̄ijc) + βl(lijct − l̄ijc)
+ βm(mijct − m̄ijc) + (εijct − ε̄ijc)

(A.3.3)

alternatively, first differencing

yijct − yijc,t−1 = βk(kijct − kijc,t−1) + βl(lijct − lijc,t−1)
+ βm(mijct −mijc,t−1) + (εijct − εijc,t−1)

(A.3.4)

Although we can estimate these equations with OLS, the fixed effect
estimator has not performed well in practice (Griliches and Maitresse,

prices deviate from industry-price deflators, as suggested by Foster et al. (2008) in
the empirical results of the Colombian manufacturing sector. Because information on
actual firm prices is rare, several studies solve for firm-level prices after introducing
a demand for the output, as in Klette and Griliches (1996) and De Loecker (2011).
Similarly, some studies such as Eslava et al. (2004) and Ornaghi (2006) address the
omitted input price bias.

21Input and output price variation may interact in such a way that the output price
bias offsets the inputs price bias if the following assumptions hold true (Loecker and
Goldberg, 2014):

i. Monopolistic competition within the industry.
ii. Firms produce horizontally differentiated products and face the same constant

elasticity of substitution demand system.
iii. Constant return to scale.
iv. Input price variation (across firms and time) is input neutral.
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1998). A common finding is the low estimate of the capital coefficient and
returns to scale. Probably this is due to the strong fixed-effect assumption
or to problems with data (Ackerberg et al., 2015).

An alternative method is to find instruments that are correlated with
the endogenous inputs, but not with ωijct (and εijct), and do not directly
determine the output. Theoretically, there exist such instruments, for
instance, input and output prices, but their validity is restricted to strong
assumptions. Specifically, these prices affect firms’ optimal choices of
inputs, without directly determining the output. However, one key issue is
the form of competition in input and output markets. If the input market
is imperfectly competitive (i.e. a firm faces an upward sloping supply
curve), higher ωijct implies that the firm uses a higher level of inputs,
raising their price. If the output market is imperfectly competitive (i.e. a
firm faces a downward sloping demand curve), then higher ωijct implies
that the firm produces more, decreasing the price. In these circumstances,
the correlation between the productivity shock and prices invalidates the
exogeneity of these instruments. Moreover, imposing perfect competition
in both markets is misleading because of little variation in capital and
labour cost across firms. Many concerns also arise from the labour cost
variation which may represent unobserved labour quality. Blundell and
Bond (2000) offer an extended GMM estimator using as instruments the
lagged first differences of inputs and imposing an error component model,
which allows for firm-specific dynamics in productivity.

Another approach uses the information provided by the first order con-
ditions of optimising firms (i.e. cost minimization, or profit maximisation).
For instance, in the Cobb-Douglas framework, the output elasticities w.r.t.
an input must be equal to its share of revenue. Thus, they are the factor
coefficients of the production function. A caveat of this static first order
conditions is that it does not take into account that input choices may be
subject to dynamics, e.g., adjustment costs. If this is the case, we should
impose additional auxiliary assumptions on the firms’ environment.

More recent approaches have developed semi-parametric estimators to
overcome some of the methodological issues described above. The basic
idea underlying Olley and Pakes (1996) (OP hereafter) to eliminate the
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endogeneity problem is to find an equation that makes the production
shock, i.e. ωijct, ”observable”. They develop a dynamic model of firm
behaviour to solve for the simultaneity and sample selection bias. The
assumptions underlying the semi-parametric estimator are the following:

i. First-order Markov process. The productivity shock ωijct evolves
according to a stochastic process, as follows:

p(ωijct|Iijc,t−1) = p(ωijct|ωijc,t−1) (A.3.5)

where Iijct is the firm i’s information set of current and past produc-
tivity shocks.

ii. Timing and dynamics of input choices. Labor input lijct is non-
dynamic in the sense that its choice upon observing ωijct at time t
only affects current profits. Conversely, capital kijct is accumulated
according to a dynamic investment process, i.e. kijct = δkijc,t−1 +
iijc,t−1, where iijc,t−1 is the investment decision of the previous
period.

iii. Scalar unobservable. The dynamic investment function has the form:

iijct = ft(kijct, ωijct) (A.3.6)

iv. Strict monotonicity. ft(kijct, ωijct) is strictly increasing in ωijct.

Following from the latter assumption, one can invert the investment
function

ωijct = f−1
t (kijct, iijct) (A.3.7)

to obtain an expression for the productivity shock ωijct in terms of variables
observed by the econometrician. In the literature, iijct is called control or
proxy variable.

The OP algorithm consists of two steps which follow the substitution of
expression (A.3.7) in the log-linearised production function (A.3.2). Then,
the estimating function is the following:

yijct = βj0 + βkkijct + βllijct + βmmijct + f−1
t (kijct, iijct) + εijct

= βllijct + Φt(kijct, iijct) + εijct
(A.3.8)
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where we can use a polynomial approximation to Φt(kijct, iijct) in kijct

and iijct. In this way, the unobservable causing the endogeneity problem
is eliminated, and the result of this stage is a consistent estimate of the
labour and materials coefficients. We can obtain these coefficients running
OLS of yijct on lijct, or using GMM on the following moment condition:

E[εijct|Iijct] = E[yijct − βllijct + Φt(kijct, iijct)|Iijct] = 0 (A.3.9)

To estimate the coefficient on capital, a second stage is required. Here,
it is necessary to exploit information on firm dynamics. Following the
assumption that productivity shock is a Markov process, we can decompose
ωijct into its conditional expectation at time t − 1, and an innovation
component ξijct uncorrelated with productivity and capital

ωijct = E[ωijct|Iijc,t−1] + ξijct = E[ωijct|ωijc,t−1] + ξijct

= g(ωijc,t−1) + ξijct
(A.3.10)

Substituting (A.3.10) in the production function (A.3.2), we get:

yijct = βj0 + βkkijct + βllijct + βmmijct + g(ωijc,t−1) + ξijct + εijct

= βj0 + βkkijct + βllijct + g(Φijc,t−1(kijc,t−1, iijc,t−1)− βj0
− βkkijc,t−1) + ξijct + εijct

(A.3.11)
Given that E[ξijct|Iijc,t−1] = 0 and E[εijct|Iijct] = 0, we can substitute
the first stage estimates on labour and materials and use the following
moment condition to identify the capital coefficients:

E[(ξijct + εijct)|Iijc,t−1] = E[yijct − βj0 + βkkijct + βllijct

− g(Φijc,t−1(kijc,t−1, iijc,t−1)+
− βj0 − βkkijc,t−1)|Iijc,t−1] = 0

(A.3.12)

Wooldridge (2009) propose estimating both stages simultaneously in a
single GMM step, specifying lags of capital and inputs as instrumental
variables. This improves the two-step estimation in terms of efficiency
and robust standard errors are easy to obtain.22 A drawback is that the

22Because the OP estimation involves two stages, deriving analytic standard errors
is non trivial, so clustered (by firm) bootstrap is often used. Moreover, two steps
estimators ignore the possible error correlation across equations and heteroskedaticity.
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non-linear search over a large set of parameters is very demanding. OP
also faces the sample selection problem, considering that unproductive
firms may exit the market. Thus, It introduces survival probabilities, i.e.
Pijc,t−1, based on the following exit rule:

χit

{
1 if ωit ≥ ωit
0 otherwise

The probability is estimated by fitting a probit model23 of χijct on iijc,t−1

and kijc,t−1, as well as their squares and cross products. Then, the
predicted probability P̂ijc,t−1 enters the second stage of the algorithm.

Levinsohn and Petrin (2003) (LP hereafter) advocate that the assump-
tion of strict monotonicity of iijct in ωijct is a strong assumption, in the
sense that it is not always true that firms with the same kijct and iijct have
the same productivity level. In practice, investment activity is lumpy, and
iijct is often 0. Although, OP can be extended to allow weak monotonicity,
this implies discarding zero investment observations from the analysis. As
an alternative, LP propose to use a non-dynamic variable, i.e. intermediate
input, as a proxy for the unobservable.24 Similarly to the investment choice
in OP, the firm’s optimal choice of mijct is a function of kijct and ωijct,
i.e.

mijct = ft(kijct, ωijct), (A.3.13)

assuming strict monotonicity it can be inverted, as follows

ωijct = f−1
t (kijct,mijct), (A.3.14)

and substituted in the production function as in (A.3.8). First and second
stages follows from OP, though an additional moment condition is required

23The dependent variable is a survival dummy, i.e. equal to 1 if the firm does not
exit at period t. The left-hand side includes the same polynomial terms of the first
stage in capital and investment, plus the constant. Refer to Ackerberg et al. (2007) for
an exhaustive description.

24An important advantage of using intermediate inputs for the unobserved produc-
tivity is that it does not rule-out any firm-specific unobservables affecting investment
choices (e.g., the price of investment or capital adjustment costs). Nevertheless, both
OP and LP do not allow for serially correlated, unobserved firm-specific shocks to
intermediate inputs and labour prices.
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in the second step, i.e. E[(ξijct + εijct)|mijc,t−1] = 0.25

Ackerberg et al. (2015) extend the semi-parametric estimator of OP to
overcome some issues related to the identification of the labour coefficient
in the first stage. The critique arises from the fact that lijct may be
collinear to the non-parametric function in kijct and mijct.26 A solution
is not to identify the labour coefficient in the first stage, but do it in the
second stage, assuming a conditional intermediate inputs demand function.

mijct = ft(kijct, ωijct, lijct) (A.3.18)

Satisfying the Strict monotonicity assumption, equation (A.3.18) can be
inverted and substituted into the production function.27

De Loecker (2011) improve on OP algorithm correcting for the omitted
output price bias in the presence of imperfect competition when estimating
revenue productivity. The underlying idea is to explicitly define a demand
system and solve for firm-level prices.28 Then, by adding the industry
output as an additional regressor in the output deflated production func-
tion29, it is possible to proxy for unobserved firm-level prices, as shown in

25LP do not correct for the selection bias, because the empirical results provided by
OP are small when an unbalanced panel is used.

26The first LP stage can be written as:

yijct = βllijct + np(kijcT ,mijct) + εijct (A.3.15)

where np(kijc,mijct) is a non-parametric function. Then, a natural model for firms to
choose lijct can be

lijct = ht(kijct, ωijct). (A.3.16)
Replacing ωijct with (A.3.14), we have

lijct = ht(kiJCt, f
−1
t (kijct,mijct)) = h̃t(kijct,mijct) (A.3.17)

27Note that even if the first does not identify any parameter, it is still crucial to
separate ωijct from εijct.

28It is based on the fact that the industry price level is constructed as the weighted
average of all firm-level prices, where weights usually refer to turnover information.

29The output deflated production function is the following:

r̃ijct = pijct + yijct − p̄ijct

= βj0 + βkkijct + βllijct + βmmijct + (pijct − p̄ijct) + ωijct + εijct
(A.3.19)

where p̄ijct is the industry-level price deflator, i.e. p̄ijct = pjct and intermediate inputs
may be correlated with the unobserved price difference, i.e. E(xijct(pijct − p̄ijct)) 6= 0,
with xijct = (kijct, lijct,mijct).
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Van Beveren (2012) using a conditional Dixit-Stiglitz demand system.
Eventually, stochastic frontier techniques have become popular in the

estimation of firm-level productivity. The idea is to measure a firm’s
performance as a deviation from a frontier isoquant, as for the first time
addressed in Farrell (1957). Aigner et al. (1977) and Meeusen and van
Den Broeck (1977) decompose the residual into two components: the
unobserved productivity and the measurement error. The first component
is assumed to follow a one-side distribution (e.g., half-normal distribution),
while the latter is symmetrically distributed around the frontier (e.g.
normal distribution).30

In the contribution presented in this Chapter 3, we exploit the recent
semiparametric technique by Ackerberg et al. (2015), which solves the
simultaneity bias elaborating on the functional form and on the data
generating processes, originally present in seminal works by Olley and
Pakes (1996), and Levinsohn and Petrin (2003).

A.2 Deflation and International Comparability

To analyse and compare the TFP estimations over time, across countries
and industries, we deflate nominal values of variables necessary for the
computation and hence report all values in a common real currency-year.

First, we convert variables in Orbis from euros to local currencies at
the end of the year for countries outside the Eurozone in each period.31

Then, following Smarzynska Javorcik (2004), we separately deflate output,
intermediate inputs, and capital using 2-digit industry producer price
index (PPI) for each country-year, with the base year 2010. In particular,
the output which refers to turnover is deflated using the total PPI of the
focal industry from Eurostat and World Bank (WDI). Capital, that is
defined as the value of fixed assets at the beginning of the year, is deflated
by the simple average of the deflators for the following 2-digit NACE rev.
2 industries: 26, Manufacture of computer, electronic and optical products;

30See Van Biesebroeck (2007) for a comparison of several TFP estimation techniques
including stochastic frontiers.

31The values of the variables in Orbis are expressed in euro currency at market
exchange rate, at the end of the corresponding year.
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27, Manufacture of electrical equipment; 28, Manufacture of machinery
and equipment n.e.c.; 29, Manufacture of motor vehicles, trailers and
semi-trailers; 30, Manufacture of other transport equipment.

Intermediate inputs, corresponding to material costs, are deflated by
the intermediate inputs’ deflator that is calculated as the weighted average
of PPI of the supplying industries, with technical coefficients (expenditure
shares of input industries) as weights retrieved from the WIOD input-
output tables (2016 Release).32 In fact, these weights are representing the
proportion of inputs sourced from a given sector.

We deal with missing PPI in several ways, after checking the availability
in National Statistic Office tables: if the data are missing for the whole
industry, we use the more aggregated PPI on manufacturing; if the data is
missing for one or more years, we interpolate using the closest years; if
it is not possible to construct the deflator for material cost, we use the
aggregate PPI on intermediate goods; also, some adjustments for specific
industries’ aggregations are done to correspond to WIOD industry groups
(e.g., we use NACE 31-32 in WIOD for the aggregation 31-33 in PPI).

Finally, we convert back the deflated variables in the domestic currency
to euro, using the relevant exchange rate of the (base) year 2010. This
procedure ensures that the change in prices does not distort the level and
the growth of TFP.

32The extended World Input-Output Database (WIOD) covers 28 EU countries and
15 other major countries in the world for the period 2000-2014. All the details are
offered in Timmer et al. (2016). For the year 2015, which is part of our study, we use
the weights of 2014.
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B Appendix: Tables

Table B.3.1: Industry classification for manufacturing

Code 2-digit NACE rev.2

10 Manufacture of food products
11 Manufacture of beverages
12 Manufacture of tobacco products
13 Manufacture of textiles
14 Manufacture of wearing apparel
15 Manufacture of leather and related products
16 Manufacture of wood and of products of wood and cork, except furniture;

manufacture of articles of straw and plaiting materials
17 Manufacture of paper and paper products
18 Printing and reproduction of recorded media
19 Manufacture of coke and refined petroleum products
20 Manufacture of chemicals and chemical products
21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
22 Manufacture of rubber and plastic products
23 Manufacture of other non-metallic mineral products
24 Manufacture of basic metals
25 Manufacture of fabricated metal products, except machinery and equipment
26 Manufacture of computer, electronic and optical products
27 Manufacture of electrical equipment
28 Manufacture of machinery and equipment n.e.c.
29 Manufacture of motor vehicles, trailers and semi-trailers
30 Manufacture of other transport equipment
31 Manufacture of furniture
32 Other manufacturing
33 Repair and installation of machinery and equipment
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C Appendix: Construction of variables

ERDF Business Support: Data are sourced from the report ‘Geog-
raphy of Expenditure – Work Package 13’ prepared for the European
Commission in 2015 wiiw and ISMERI EUROPA (2015). Projects in this
category should help firms or groups of firms, in particular, SMEs, with
services and investments in innovation and sustainable production. We
use payments by NUTS-2 region for the programming period 2007-2013.
ERDF Research Technology Development: Data sourced from
the report ‘Geography of Expenditure - Work Package 13’ prepared for
the European Commission in 2015 wiiw and ISMERI EUROPA (2015).
Projects in this category should stimulate research and innovation activities
through investments in research centres, promoting technology transfers
and cooperation between businesses and the scientific environment.
We use payments by NUTS-2 region for the programming period 2007-2013.

Firm-level controls
Firm size: Computed from Orbis data. It is the (log of) firm-level
turnover.
TFP (t− 1): Total Factor productivity estimate from Orbis data, after
implementation of the semiparametric technique by Ackerberg et al. (2015).
Region-level controls
Human capital is controlled after including two variables at the NUTS-2
region level: i) the percentage of people aged 25-64 with upper secondary
and postsecondary education; ii) and the percentage of people aged 25-64
with tertiary education, following International standard classification of
education (ISCED) 2011. Data are sourced from Eurostat.
Agglomeration (or geographic concentration) is proxied using data from
the Structural Business Statistics (SBS) in Eurostat. It represents the
concentration at the regional level of the industry j in which the firm i
is active, and it is computed taking the ratio of the regional industrial
employment to the total regional area, following Henderson et al. (1995).

Agl = Ljrt
Areart

=
∑
i Lijrt

Areart
(C.3.1)
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where Ljrt is the total employment for industry j in the region r at time
t, and Areart is the area of the region r at time t in square kilometres.
Industrial specialisation is proxied using Structural Business Statistics
(SBS) data from Eurostat. It captures the concentration of production in
the industry j within region r at time t. It is measured using the ratio of
regional industrial employment to the total regional employment, following
Henderson et al. (1995).

S = Ljrt∑
j Ljrt

=
∑
i Lijrt∑

j

∑
i Lijrt

(C.3.2)

Industrial diversification is proxied using the Structural Business Statis-
tics (SBS) data from Eurostat. It shows the within-regional concentration
of industries (j′) other than the one under investigation (j), following
a Hirschman-Herfindahl Index, i.e., the sum of squares of the shares of
other industries’ employment (Lj′rt ) in the region relative to the total
employment in the region, except for the industry of the firm.

D =
∑
j′ 6=j

S2
j′rt =

∑
j′ 6=j

(
Lj′rt∑
j′ 6=j Lj′rt

)2

(C.3.3)

Competition is proxied using the Structural Business Statistics (SBS)
data from Eurostat. It captures the competition of firms within the local
industry according to the number of local units resulting in the inverse
average employment of the local firms.

C = njrt/Ljr (C.3.4)

where njrt is the number of local units (firms) in the region r at time t,
operating in industry j.
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Spatial Clustering and Survival:
Evidence from Firms in Umbria
and Puglia

4.1 Introduction

Despite the increasing breakdown of production by tasks at a global level
and the offshore of some manufacturing activities, especially toward de-
veloping countries, many local clusters of firms, and thereby industries,
manage to survive in the new global scenario.1 Competencies and special-

1The general reduction of transportation costs has led many analysts to claim the
“death of distance”, however as Storper (2013) suggests “distance is not dead; it is
not even sick”. Still, communication and coordination are not easy along geographical
distances and cultural borders. There are many examples on this line. For instance,
after an initial wave of offshoring service centres and data processing in the early 2000s
to countries such as India, many firms had decided to re-onshore part of their customer
service, because of reduction in quality standards. The Boing’s company experienced
four years delay in the production of the 787 Dreamliner aircraft, after the outsourcing
of production to about 50 suppliers around the world. Nevertheless, some firms, such
as Walmart and IKEA, source from global supply chains while others, such as Zara,
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isation in core activities of firms based in local districts co-evolve with
the needs and features of their global buyers and production partners
(De Marchi et al., 2017). In this respect, the organization of industrial
clusters is mainly based on subcontracting relationships within vertically
fragmented supply chains.

Traditional trade theory emphasizes the role of endowments, factor
prices, technologies and policy regimes in explaining the different patterns
of production across different locations. For instance, this can explain
why some manufacturing activities have moved from high-wage developed
countries to low-wage developing countries. However, this theory fails to
explain why a priori similar regions can develop very different production
structures and economic activity is unevenly distributed across space
(Ottaviano and Puga, 1998).

Another approach is provided by theories of economic geography that
look at the spatial agglomeration of economic activities, i.e. the physical
proximity of firms, workers and consumers. The first agglomeration theory
dates back to Marshall (1890) and explains the tendency of firms from the
same industry to concentrate in industrial clusters (e.g., Silicon Valley).
Marshall (1890) identifies three agglomeration’s mechanisms: labour pool-
ing, knowledge spillover, and input-output linkages, which are associated
with costs or benefits to firms. Clustering of firms and proximity effects
cannot be disregarded.

A broad literature on industrial clusters (or similarly industrial districts)
supporting and explaining the advantages related to local production
systems developed with the seminal contribution of Beccatini (1986), Piore
and Sabel (1984), Krugman (1991) and Porter (1986). Although alternative
theoretical and empirical studies emerged, policy-makers inspired by the
idea of industrial clustering Porter (1990) have used cluster-economy
development as a policy tool to promote local development.

Since the seminal contribution of Glaeser et al. (1992) many scholars
have attempted to understand the impact of agglomeration externalities2

has strong local clusters for some production stages, including design.
2In the contemporary literature, agglomeration externalities are often divided into

three types of economies of scale and scope: urbanisation externalities, localisation,
and diversification. Urbanization externalities reflect the effects of city size, irrespective
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(Duranton and Puga, 2004; Rosenthal and Strange, 2004; Beaudry and
Schiffauerova, 2009; Combes et al., 2012)), with a focus on the possible
impact that agglomeration has on firm’s productivity, innovation, real
wages, employment and location choice. By contrast, few studies have
investigated the role of agglomeration economies in business demography,
i.e. firm entry and exit (Cainelli et al., 2014; Ferragina and Mazzotta,
2015; Basile et al., 2017).

In particular, the literature on firm survival has paid much attention to
firm and industry characteristics 3, ignoring the geography and therefore
costs and benefits of firms being located in proximity. For instance,
firms producing similar products within the localised cluster may face
higher competition, and thus only the most productive firms are more
likely to survive; or firms located in highly specialised areas, such as
industrial districts, may be more vulnerable to idiosyncratic shocks (Basile
et al., 2017). Also, the related local variety (Jacobs, 1969), arising from
the co-existence of diverse industries sharing common or complementary
knowledge, may protect firms from idiosyncratic demand shocks and
therefore increase the survival probability. Finally, urban agglomeration
captured by the overall size of the economy may increase the likelihood of
survival when firms face higher local demand and supply of public services,
and congestion costs (e.g., land prices, crime rates) are negligible (Ciccone
and Hall, 1996). More details about state of the art in this research field
are offered in the next Section 4.2.

In this contribution, we aim at enriching the empirical literature on firm

of sectoral composition. Big cities often provide higher access to local market and
better infrastructure, but they are also plagued by congestion, resulting in pollution
and high factor costs, high real estate rents and other disamenities. Hence, urbanisation
externalities can just as well represent economies as diseconomies to local firms. Local-
ization externalities are intra-industry spillover benefits that firms derive from the local
presence of other firms belonging to the same industry (Marshall, 1890). Diversification
externalities capture inter-industry spillover benefits that arise from the presence of a
large variety of industries in the local area (Jacobs, 1969).

3Although it is not very widespread in externality studies, survival analysis has
been used intensively in the fields of industrial dynamics and business studies. Most of
these studies have looked at survival of firms or plants with respect to their size and
age (Disney et al., 2003), pre-entry experience (Thompson, 2005), the structure of the
market (Cantner et al., 2006; Buenstorf, 2007), the maturity of the industry (Agarwal
and Gort, 2002), or combinations of these dimensions (Klepper, 2002).
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survival testing the impact of agglomeration externalities in continuous
space arising from the spatial concentration of activity in the same industry
(localisation), while controlling for other firm- and industry-level character-
istics. Particular attention is given to asymmetric industry effects. More
generally, we separate the analysis of manufacturing and service sectors.
In fact, over the last decades, many manufacturing firms concentrated in
clusters have spread out because of an international market orientation
towards foreign demand. On the contrary, firms providing services tend to
be more oriented to local demand.

Our focus is on Italian firms, in particular, those located in the regions
of Umbria and Puglia operating in several industries.4 The Italian case is
worth studying because it has a long tradition in local clusters, or similarly
industrial districts5, of small and medium-enterprises (SMEs) interacting
in the same industry. Since the theoretical and empirical contribution
of Becattini (1979), many efforts have been done to detect industrial
districts along the peninsula. ISTAT currently identifies 141 industrial
districts by Local Market Areas (LMAs) and economic specialisation by
using the data on economic units from the 9th Industry and Services
Census. Although there has been a decline in the number of districts6,
Local systems represent about one-fourth of the Italian economic system,
and districts still characterise the Italian manufacturing industry. They
represent 64.1% of mainly manufacturing LMAs which employ 65.8% of

4We took two Italian regions, i.e. Umbria and Puglia, as case studies, although the
methodology implemented in this work can be applied to any other areas or countries.

5The National Statical Office, ISTAT, designs local labour market areas (LMAs,
’local labour systems’ - ’SSL’ in Italy) as functional geographic areas beyond the
administrative boundaries where the bulk of the labour force lives and works, and where
establishments can find the largest amount of the labour force necessary to occupy the
offered jobs. Then, it classifies LMAs as clusters if they satisfy three requirements: i) a
higher percentage of employees in manufacturing than in agriculture; ii) specialisation
in one particular industry, mainly within manufacturing; iii) a high concentration of
workers in firms with less than 250 employees, all compared to the national average.

6The structural changes of the Italian economy driven by process of tertiarisation
can explain the reduction in the number of districts. Besides, over the years there have
been changes in the ISTAT classification criteria. Eventually, the rise of international
competition in low labour cost countries, the stagnation of domestic and EU markets,
the increasing technological complexity and the organisation of production along global
value chains (GVCs) are reshaping the industrial districts Rabellotti and Giuliani
(2017).
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workers in manufacturing, as reported by ISTAT in 2011.
First, we introduce a data-driven approach to identify industrial clusters.

Specifically, after a careful process of geocoding to retrieve the geographical
coordinates (i.e. latitude and longitude) from the postal address of each
firm in our sample, we implemented a density-based spatial clustering
algorithm, namely the DBSCAN. Using this method we were able to
identify industrial clusters by NACE rev.2 2-digit in each region, beyond
existing administrative boundaries and to overcome the limitations of
the qualitative assessment of clusters, often based on specific sectors case
studies.

Second, we used the spatial information to group firms within and
outside an industrial cluster. In this way, using the Kaplan and Meier
(1958) estimator, we explored the survival rate of firms for the two groups.
Interestingly, we found that: i) for manufacturing firms, it is more likely
to survive outside an industrial cluster after about one year from establish-
ment; ii) for firms in services, it is more likely to survive in geographically
concentrated areas, i.e. inside a cluster, after three years and a half of
activity.

Third, we tested the impact of several variables on the survival prob-
ability of a cohort of firms established between 1st January 2008 and
31st December 2016 using the semiparametric Cox (1972) model with a
cluster-specific baseline hazard. Focusing on agglomeration externalities,
we found that: i) an increase in the concentration of firms operating in
different types of activities, captured by the unrelated variety (Frenken
et al., 2007), increases the survival rate of firms in the service sectors,
while we did not find any significant effect for the manufacturing; within
two-digit industry externalities, captured by related variety (Frenken et al.,
2007) has a negative impact on firms’ longevity in services, while the effect
on manufacturing firms is not significant; iii) the degree of urbanization,
measured by the population density has a significant non-linear effect on
firm’s survival. Finally, we also found a significant association of financial
variables with survival probabilities which are often neglected in the related
literature.

The rest of the chapter is organised as follows. The next Section 4.2
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positions our contribution with respect to literature. Section 4.3 presents
the framework of spatial clustering using micro-geographic data and the
DBSCAN algorithm implementation in our research. Section 4.4 describes
the empirical strategy and results. Concluding remarks are offered in
Section 4.5..

4.2 Related Literature

A significant number of empirical studies analyses the factors that impact
the survival probability of firms in the market. At the firm level, there
is a common agreement that the age and the size significantly affect the
firm survival as predicted by the model provided by Jovanovic (1982).
In particular, firms in the first few years of their life are expected to
survive less than the older cohorts also operating in the same market
Dunne et al. (1989); Mata and Portugal (1994); Segarra and Callejón
(2002). According to Jovanovic (1982)’s model, as new firms get some
experience by carrying out their activities, they adapt their output to
the ‘true’ efficiency level and reduce their risk of failure. Therefore, the
survival probability increases over the life cycle of a firm, although not
linearly. Besides, several studies argued that small firms, which are more
likely to operate below the minimum efficient scale and have less access
to capital markets, are less likely to survive Evans (1987); Hall (1987);
Agarwal and Audretsch (2001). Also, the ownership structure of a firm
has been empirically investigated, and findings are ambiguous. A group
of studies claimed that foreign-owned firms are less likely to survive than
domestic firms (among others, Colombo and Delmastro (2000) for Italy;
Gorg and Strobl (2003) for Ireland; Ferragina and Mazzotta (2015) for
Italy), while others found no differences in the chance of survival between
domestic and foreign firms (among others, Mata and Portugal (1994) for
Portugal; Blanchard et al. (2016) for Belgium).

At the industry level, market competition, usually proxied by the
concentration ratio, favours firms’ growth, although it is expected to have
an impact on firms’ survival. On the one hand, firms struggle to survive
in an environment with a high concentration in an industry. On the other
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hand, the market concentration may lead to higher price-cost margins in
the industry which increase the survival probability (Basile et al., 2017).
Also, the empirical evidence is quite ambiguous: some studies found that
a competitive environment threatens the survival probability of a firm
(Audretsch and Mahmood, 1995; Gorg and Strobl, 2003), while others
found a negative effect (Mata and Portugal, 1994; Strotmann, 2007). In
addition, it appears that firms live longer in growing industries than in
declining industries, thanks to better demand conditions (Audretsch and
Mahmood, 1995; Mata and Portugal, 1994; Strotmann, 2007; Ferragina
and Mazzotta, 2015; Basile et al., 2017).

The literature on firm survival has only recently started to consider the
possible effects of geographical proximity, including measures of spatial
concentration of a given industry within a specific area. Among others,
De Silva and McComb (2012) analysed the agglomeration effects on firm
survival in Texas (U.S.) using establishment data. They found evidence
that a higher concentration of firms in the same industry within small
geographic areas (1 mile) increases the mortality rate, whereas over a larger
geographic area the localisation effects reduce establishment mortality.
Additionally, Van Oort et al. (2012) using a multilevel analysis assessed the
extent to which variance in the survival and growth rates of firms in the
advanced producer service sector in the Netherlands can be attributed to
between-firm variance, between-area variance or between-sector variance.
They showed that localisation has a small, positive effect on new firm
survival. Neffke et al. (2012) examined the agglomeration effects on
manufacturing plant survival in Sweden during the period 1970-2004. They
found that diversification contributes to firm survival in the first 15 years
of existence, while localisation externalities have no impact. Interestingly,
they observed that the local presence of technologically related industries
increases the likelihood of firm survival. Further, Boschma and Wenting
(2007) illustrated the spatial evolution of the British automobile industry
between 1895 and 1968. They showed that the local presence of related
sectors, such as bicycles and coach making, had a significant and negative
impact on firm survival.

On this strand of literature, there are some empirical studies which
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focus on the behaviour of Italian firms. Italy represents an interesting case
study because since the 1980s the entire peninsula develops an industrial
growth model based on industrial districts. Remarkable is the spatial
agglomeration of small and medium-sized enterprises (SMEs), specialised in
different phases of the production process, which had achieved economies of
scale comparable to those obtained by large firms (Rabellotti and Giuliani,
2017).

However, empirical evidence on recent developments shows that many
firms have reorganised their production to compete in a global context
and to participate in global value chains. In this framework, Carree
et al. (2011) analysed a range of determinants of the exit rate for 12
different sectors in the Italian provinces for 11 years. They observed that
the presence of industrial districts reduces the likelihood of firm exit in
several industries, including the manufacturing sectors: Food, Clothing,
Commerce, and Transport. Then, Cainelli et al. (2014), using a large
panel dataset for the Italian economy at the industry-province level over 13
years, found that localisation significantly affects firm exit in the short-run,
especially for low-tech firms. Also, their results showed that the impact of
diversification is less clear, although negative and significant for low-tech
firms. More recently, Basile et al. (2017) assessed the impact of spatial
agglomeration externalities on Italian start-up firms’ survival between 2004
and 2010. Overall, their results suggested that agglomeration economies
exert a significant effect on firms’ survival. In particular, localisation
reduces the likelihood of firm’s exit but only in services. Then, the
diversity of technologically related activities (related variety) positively
affect manufacturing industries, while unrelated variety has a significant
effect on services. Eventually, urbanisation does not have any significant
effect on Italian start-up’s survival.

Finally, the effects of financial indicators have been largely neglected
in the literature of firm survival. According to the OECD (2009) report,
Italian SMEs strongly depend on banks and structural financial constraints,
and these financial aspects were particularly evident during the recent
crisis.7 Only a bunch of studies considered financial variables and found

7See ECB (2013) for a detailed review of the corporate finance structure within the
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a significant association with firms’ survival probabilities (Zingales, 1998;
Fotopoulod, 2000; Bunn and Redwood, 2003; Vartia, 2004).

4.3 Spatial Clustering using
Micro-Geographic Data

Recent contributions show that firms with different characteristics such
as size, technology and productivity coexist within industrial clusters and
productive systems (Rabellotti and Schmitz, 1999; Wang, 2015). A central
issue in this framework is how to identify this tendency of localisation and
to measure it properly.

Several discrete-based indexes have been suggested to measure the
spatial concentration of economic activities in spatial units. Among others,
there are the LQ (location quotient), the locational Gini coefficient, the
spatial Hirshman-Herfindahl Index, the Ellison and Glaeser (1997) concen-
tration index, etc. These indexes are widely used to identify the industrial
pattern and check whether there is a high concentration that could detect
specialisation in an area. They usually rely on Census employment data.

As a drawback, these measures fail to identify the spatial dimension
of a cluster. Results depend on the level of agglomeration chosen, e.g.,
cities, regions, states. In fact, outcomes may vary a lot according to the
select area under investigation (Briant et al., 2010; Burger et al., 2010).
Therefore, it is not reasonable to assume that economic structures follow
boundary lines, especially between regions located in the same countries.
This scaling and regional’s boundary problem is known as ‘Modifiable Areal
Unit Problem’ as first described in Openshaw (1984). Still, in the literature,
there is no agreement on a local threshold to detect the presence of clusters.
Another crucial neglected aspect is the form of the agglomeration patterns
since there could be a concentration of sectors in one spatial unit or a
concentration in several spatial units randomly distributed. We have to
take into account that location of economic activities is highly restricted
due to planning regulations, land peculiarities (e.g., mountains, lakes,

Euro area in turbulent times, such as the 2008 financial crisis, using firm-level data.
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swamps) or political system’s restrictions.
Distance-based methods have been used to overcome the limitations

mentioned above. They take into account the spatial concentration of a
sector relative to the overall location of firms in the area under investigation.
These agglomeration indices usually require micro-geographic data (Arbia,
2001), i.e. latitude and longitude. They consider firms as spatial units of
analysis and measure the density of economic activity along the link, i.e.
geographical distance, between pairs of firms.

Two micro-geographical distance-based approaches have been elabo-
rated in the literature. One method, using distance bands, counts geocoded
firms within a specific distance to evaluate localisation. Among others,
these works include Duranton and Overman (2005) which use K-density
functions, Marcon and Puech (2010) using M-functions and Arbia (2001),
which investigate Ripley’s K-function. None of these indexes aims at
detecting the spatial location of clusters. In fact, they allow for a test of
significant dispersion or concentration, but they do not provide information
where in space this concentration can be found (Scholl and Brenner, 2016).
Another method uses distance-decay functions and builds firm-specific
values of spatial concentration as a proxy of agglomeration. It cumulates
the inverted distances of one geocoded firm to all other firms in the same
industry (Scholl and Brenner, 2016). Various decay functions exist in
the literature, from simple linear (Audretsch et al., 2005), exponential
(Drucker and Feser, 2012), and log-logistic (De Vries et al., 2009), and
whereby results depend on the chosen distance function. For policy-makers,
it is of great interest to know the location of firm’s industrial clusters and
to identify the firms within them. This information, along with the het-
erogeneity of firms within a sector, can enrich the debate when preparing
industrial policies. Hence, new agglomeration indices should be developed.

There is no general agreement on the principles a measure should satisfy,
although Duranton and Overman (2005) propose five criteria for measuring
agglomeration in a meaningful way. According to them, an agglomeration
index should: i) be comparable across industries; ii) control for the overall
agglomeration of manufacturing; iii) control for industrial concentration;
iv) be unbiased to scale and agglomeration; v) and indicate the significance
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of the results. Additionally, Combes et al. (2008) identify some additional
properties: vi) be computable in closed form from accessible data; vii)
be justified by a suitable model; viii) and be comparable across spatial
scales. Eventually, a measurement of agglomeration must be able to
separate random from non-random clusters, to provide ways to measure
the exceptional concentration of economic activity.

4.3.1 Density-Based Spatial Clustering of
Applications with Noise (DBSCAN)
and Its Implementation

A challenging identification method of industrial clusters is the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN ) algorithm
(Ester et al., 1996).8 This data clustering algorithm identifies high con-
centration of points (e.g., firms) without relying on existing boundaries
definitions. The idea is to group density-connected points (e.g., firms),
i.e. points that are close in space and with many nearby neighbours while
leaving alone-points in low-density regions. Differently from other cluster-
ing algorithms: i) it does not require knowledge on the number of clusters
in advance; ii) it is a density-based approach; iii) it is designed to discover
clusters of arbitrary shape, size, and density; iv) it can unambiguously
detect noise points not belonging to any clusters; v) and it is efficient on
large databases.

Given a dataset D containing a set of points p ∈ D, DBSCAN estimates
the density around a point using the concept of ε-neighbourhood.

Definition 1. ε-Neighbourhood. The ε-neighbourhood of a point p,
Nε(p), is the set of points within a specified radius ε around the point p.
It is defined by

Nε(p) = {q|d(p, q) ≤ ε}

where d is some distance measure and ε ∈ R+.

8DBSCAN is one of the most common clustering algorithms in Machine Learning
and also the most cited in the scientific literature. In this respect, in 2014, DBSCAN
received an award at a leading data mining conference (KDD) because of the remarkable
attention given by the Scientific Community.
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In the ε-neighbourhood of p a minimum number of points (MinPts) is
required to identify a cluster. Each point of the dataset D is classified into
core, border, or noise point. A visual representation is offered in Figure
4.1.

Definition 2. Point Classification. A point p ∈ D is classified as:

- A core point if |Nε(p)| ≥ MinPts, i.e. Nε(p) has a high density,
where MinPts ∈ Z+ is a threshold parameter chosen by the user;

- A border point if p is not a core point, but p ∈ Nε(q), i.e. it is in
the ε-neighbourhood of a core point q ∈ D;

- A noise, otherwise.

Figure 4.1: Core, border and noise points

Source: Own elaboration.
Note: This figure shows an example of points’ classification. Red points are classified
as core points, because the area in an ε radius contains at least 5 points, assuming
MinPts=5. Green points are classified as border points, and the blue points are noise
points.

DBSCAN identifies contiguous dense regions from individual points
using the notions of density-reachable and density-connected, as formerly
defined in (Ester et al., 1996).
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Figure 4.2: Directly density-reachable, MinPts=5

Source: Own elaboration.

Definition 3. Directly density-reachable. A point q ∈ D is directly
density-reachable from a point p ∈ D with respect to ε and MinPts iff

1. q ∈ Nε(p), and

2. |Nε(p)| ≥MinPts (core point condition).

Directly density-reachability is symmetric for pairs of core points and
asymmetric if one core point and one border point are considered.

Figure 4.3: Density-reachable, MinPts=5

Source: Own elaboration.
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Definition 4. Density-reachable. A point p is density-reachable from
a point q if there is an ordered sequence of points (p1, p2, ..., pn) ∈ D, with
p1 = q and pn = p, such that pi+1 is directly density-reachable from pi,
∀i ∈ {1, 2, ..., n− 1}.

Figure 4.4: Density-connected, MinPts=5

Source: Own elaboration.

Definition 5. Density-connected. A point p ∈ D is density-connected
to a point q ∈ D if there is a point o ∈ D such that both p and q are
density-reachable from o.

The notions of density-connected and density-reachable are employed to
identify clusters.

Definition 6. Cluster. A cluster C is a non-empty subset of D satisfying
the following conditions:

1. (Maximality) ∀p, q: if p ∈ C and q is density-reachable from p, then
q ∈ C, and

2. (Connectivity) ∀p, q: p is density-connected to q.

In other words, a cluster is a set of density-connected points which is
maximal with respect to density-reachability.
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The algorithm starts with any arbitrary point p9 and gets its ε-
neighbourhood.10 If p is a core point, a new cluster is created and it
includes all points in its neighbourhood. Then, if an additional core point
is present in the neighbourhood, the search is expanded to include also
its neighbours. When no more points are classified as core points in the
enlarged neighbourhood, the cluster is complete and the remaining points
are investigated to possibly identify a core point to start a new cluster.
If p is a border point, so that no points are density-reachable from p, the
algorithm proceeds visiting the next point in the dataset D. Finally, the
set of points in D not belonging to any cluster Ci are classified as noise.

Two global input parameters, i.e. equal for all clusters, need to be
defined a priori: the maximum radius (ε) which defines the area of
the neighbourhood of a point p, and the minimum number of points
(MinPts) in it as density threshold. The choice of these input parameters is
heuristic and depends on the context in which the algorithm is implemented,
although a few ‘rules of thumb’ may help. For instance, the density
threshold can be set at least equal to the dimensions of the dataset plus
1. However, in case of large datasets, noisy data or presence of duplicates
points larger values would be more appropriate. For the choice of the
ε-parameter, Ester et al. (1996) propose plotting the kNN distances,
i.e. the distance to the kth nearest neighbour, for each point in the
dataset in descending order. The desired ε-parameter values are those in
correspondence of the ‘knee’ shown in the plot. Therefore, points inside
a cluster are those close to other points in the same cluster with a small
k-nearest neighbour distance, while remote noise points have larger kNN
distance.

9The ordering in which the points are investigated does not matter for the assignment
of core points to a cluster. However, DBSCAN is not entirely deterministic since border
points which are reachable from more than one cluster can be part of several clusters,
and the algorithm assigns them to the first cluster identified. Fortunately, the latter
situation is uncommon for most datasets, and it should have a little impact on the
algorithm’s results (Schubert et al., 2017).

10Most algorithm’s implementations, available in several software packages and
programming languages, use by default the Euclidean distance for the neighbourhood
computation, but any other distance function can be chosen.
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DBSCAN Implementation Using Firms Location

In our framework, the DBSCAN algorithm allowed us to compute local-
isation of firms within actual distances in kilometres and describe the
distribution of sample firms by distance and sector.11

We used micro-data coming from the commercial Orbis database,
compiled by the Bureau Van Dijk, for Italian firms based in Umbria and
Puglia, operating mostly in the manufacturing and the service sector.12

We exploited the maximum level territorial detail by using the postal
address of each firm, upon availability. This allowed translating the
postal addresses to geographical coordinates, i.e. latitude and longitude,
through geocoding13 which have been then used to provide insightful
spatial information.

We ended up with a dataset containing geocode information for 48,934
firms located in Umbria and 184,206 firms located in Puglia. Next, we
combined the latter information with the ’status’ (e.g., active, bankruptcy,
in liquidation, dissolved, etc.) of each firm reported in the financial
statement for the period 2008-2016, to assess the presence of the firms
in the market in the time span studied. Finally, we implemented the
DBSCAN algorithm14 to identify industrial clusters by industry-year for
each region using latitude and longitude data on active firms. As global
input parameters, we set MinPts = 10, i.e. an industrial cluster must
contain at least 10 firms, and ε = 5km. We chose these values heuristically
in our computation, after inspecting different values suitable to our firm-
level analysis.

11Similarly, the DBSCAN identification method has been used in BEIS (2017) to
investigate the geographical agglomeration of UK companies within three sectors, i.e.
Digital-Health, Financial-Services and Processing Industry.

12Further details about the sample of firms are provided in Section 4.4.1.
13To obtain geographic positioning of our sample of firms, we mainly used the open

source geocoding service OpenStreetMap (https://nominatim.openstreetmap.org/search.
Last Accessed: 31/03/2018.), and we complemented with the in-
formation retrieved from the commercial Google’s Geocoding API’s
(https://developers.google.com/maps/documentation/geocoding/start. Last Ac-
cessed: 31/03/2018.) service. For details about geocoding micro-data and usability of
spatial information, see (Lennert, 2015).

14All the computations using the DBSCAN clustering algorithm to our sample have
been run on MATLAB software.
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In Figure 4.5, we report the localisation of firms active in 2011, in
NACE rev. 2 sector 15 (Manufacture of leather and related products), and
we show the two industrial clusters as resulting from the implementation
of the DBSCAN. Interestingly, using this method we detected two
footwear districts in Puglia, one around Casarano and the other around
Barletta which have been investigated in the literature in the context of
globalisation in the recent years (Capestro et al., 2014; Amighini and
Rabellotti, 2006).

Figure 4.5: Firm localisation in NACE rev. 2 sector 15, year 2011

Source: Own elaboration.
Note: This figure shows the industrial clusters identified implementing the DBSCAN
algorithm to our sample of firm-level data. Each point represents an active firm in the
NUTS-3 Italian region Puglia.
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In Figure 4.6, we report the localisation of firms active in 2011, in
NACE rev. 2 sector 18 (Printing and reproduction of recorded media) in
Umbria. Also, in this case, two industrial clusters have been identified,
one in Città di Castello and the other around Perugia. In fact, in these
areas, it is well known that there are many firms with a long tradition in
the paper processing industry, graphics and printing (ISTAT, 2011).

Figure 4.6: Firm localisation in NACE rev. 2 sector 18, year 2011

Source: Own elaboration.
Note: This figure shows the industrial clusters identified implementing the DBSCAN
algorithm to our sample firm-level data. Each point represents an active firm in the
NUTS-3 Italian region Umbria.
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The DBSCAN approach for cluster identification is a good alternative
to the traditional methods described in Section 4.3. We built industrial
clusters from the bottom up from location data of firms. In this way, we
introduced flexibility of scale of analysis beyond existing administrative
boundary inside each region, and we employed analytical technique from
Machine Learning that allowed overcoming the limitations of the qualitative
assessment of clusters, often based on case studies. Furthermore, it has
been not necessary to know the number of clusters in advance and within
each industry, we could find one or more clusters or even none since the
DBSCAN has a robust approach to outliers. Also, the resulting clusters
have an arbitrary shape.

In the following sections, we show how the industrial clustering infor-
mation can be complemented with firm-level data to analyse the survival
probability of firms operating in different sectors, within and outside the
cluster environment.

4.4 Survival Analysis of Firms

4.4.1 Data

We used micro-data coming from the commercial Orbis database, com-
piled by the Bureau Van Dijk, for firms located in Umbria and Puglia,
mainly operating in the manufacturing and service sectors. We based our
study mostly on private firms’ financial information (turnover, number of
employees, assets, liabilities, etc.), economic activity (4-digit NACE rev.
2), and dates of entry and exit from the market. Also, we exploited the
maximum level territorial detail by using the postal address of each firm,
upon availability. Through geocoding, we translated the postal addresses
to geographical coordinates, i.e. latitude and longitude, as described in
Section 4.3.1.

In Table 4.1, we present the coverage of our sample on the actual
population of firms provided by ISTAT for each NUTS-3 (province) in the
Italian regions under study in 2015. As known, the highest number of
firms is recorded around the biggest urban agglomeration in the regions.
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Table 4.1: Sample coverage by NUTS-3 (province) in Umbria and Puglia,
year 2015

Umbria
ORBIS sample ISTAT

N. firms % N. firms %
Perugia 37,246 74.95% 50,677 76.26%
Terni 12,448 25.05% 15,778 23.74%

Total 49,694 100.00% 66,455 100.00%

Puglia
Foggia 31,958 15.52% 35,276 14.16%
Bari 66,848 32.46% 82,908 33.27%
Taranto 25,485 12.38% 29,406 11.80%
Brindisi 19,815 9.62% 22,616 9.08%
Lecce 43,592 21.17% 53,807 21.59%
Barletta-Andria-Trani 18,226 8.85% 25,183 10.11%

Total 205,924 100.00% 249,196 100.00%

Note: This table presents the number of active firms in the year 2015 in our sample
and as sourced from the ISTAT database, broken by province. The number of firms in
the Agriculture industry is not included in the computation.
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Table 4.2: Sample coverage by industry aggregates in Umbria and Puglia,
year 2015

Umbria Puglia
ORBIS sample ISTAT ORBIS sample ISTAT

NACE rev.2 aggregates N. firms % N. firms % N. firms % N. firms %
C: Manufacturing 4,927 11.71% 6,569 9.92% 17,814 10.41% 20,928 8.51%
E: Water supply; sewerage, waste
management and remediation ac-
tivities

114 0.27% 132 0.20% 636 0.37% 691 0.28%

F: Construction 7,311 17.38% 8,007 12.09% 28,872 16.87% 28,625 11.65%
G: Wholesale and retail trade; re-
pair of motor vehicle and motorcy-
cles

12,927 30.73% 16,856 25.46% 64,951 37.96% 81,954 33.34%

H: Transportation and storage 1,178 2.80% 1,722 2.60% 5,966 3.49% 6,584 2.68%
I: Accommodation and food ser-
vice activities

3,725 8.85% 4,959 7.49% 15,825 9.25% 18,583 7.56%

J: Information and commmunica-
tion

1,145 2.72% 1,320 1.99% 3,378 1.97% 3,418 1.39%

K: Financial and insurance activi-
ties

1,257 2.99% 1,553 2.35% 3,582 2.09% 4,513 1.84%

L: Real estate activities 2,418 5.75% 3,485 5.26% 4,261 2.49% 5,314 2.16%
M: Professional, scientific and tech-
nical activities

1,774 4.22% 10,960 16.55% 5,973 3.49% 39,366 16.02%

N: Administrative and support ser-
vice activities

1,648 3.92% 1,943 2.93% 5,529 3.23% 5,593 2.28%

P: Education 245 0.58% 433 0.65% 1,197 0.70% 1,396 0.57%
Q: Human health and social work
activities

408 0.97% 3,918 5.92% 2,389 1.40% 14,859 6.05%

R: Arts, entertainment and recre-
ation

689 1.64% 864 1.30% 1,115 0.65% 1,542 0.63%

S: Other service activities 2,303 5.47% 3,487 5.27% 9,619 5.62% 12,430 5.06%

Total 42,069 100.00% 66,208 100.00% 171,107 100% 245,796 100.00%

Note: This table presents the number of active firms in the year 2015 in our sample
and as sourced from the ISTAT database, broken by NACE rev. 2 aggregates.

In Table 4.2, we show the distribution of firms across industry aggre-
gates in our sample and in ISTAT, when a comparison was feasible. In
line with statistics at the national level, the highest number of firms is
involved in the service and trade sectors.

4.4.2 Empirical Strategy

We investigated the survival time of our sample of firms, together with
information that describes their individual characteristics, industry and
spatial patterns, focusing on agglomeration economies.

We restricted the study to a cohort of firms established between 1st

January 2008 and 31st December 2016 and examine their likelihood of
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surviving up to 31st December 2016.15

First, using the Kaplan and Meier (1958) estimator, we explored the
survival rate at different spell lengths by economic activity inside and
outside the industrial clusters.16 We considered as the year of firm’s entry
in the market, the incorporation date reported in the financial statement
which corresponds to the firm’s registration as a legal entity. Further,
we assumed that a firm exits from the market based on the information
contained in the variable ‘status’ (e.g., bankruptcy, liquidation, dissolved,
etc.) and ‘status date’, and we complemented by checking the financial
statement data. Second, we employed the semiparametric Cox (1972)
model testing the impact of several covariates on the survival probability
of firms.

Several issues were carefully addressed: a right censoring and the
discreteness of the dependent variable. As for the latter, although firms
exit the market in the continuous time, the database collects information
on a yearly basis, i.e. at the end of the fiscal year. Thus, for each firm,
we can observe the spell length from its birth year to the end of the
year t. This justifies the use of discrete-time hazard models. As for the
right censoring of the time variable, information about the firm may be
incomplete because the firm does not have an event (i.e. exit from the
market) during the time of the study. In fact, for some firms, we may
know that the survival is at least equal to time t, whereas for other firms
we know their exit time from the market. This happens when the study
does not span enough time to observe the event for all the units of analysis
in the sample, or firms drop out of the study for unrelated reasons, such
as lost to follow-up or withdraw from the analysis.17

Unlike standard regression models, survival analysis combines censored

15We reduced our initial sample to firms entering the market from 2008 because more
financial statement information was available in the Orbis database (Kalemli-Ozcan
et al., 2015).

16We used a dummy variable which indicates whether a firm in its entry year belongs
to an industrial cluster as identified by the DBSCAN algorithm and described in Section
4.3.1.

17Also, time to an event, often referred to as survival time is always positive and
has a skewed distribution. Therefore, standard regression techniques, such as linear
regression may be inadequate.
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and uncensored observations in estimating model parameters. Usually,
the dependent variable is composed of two parts: the time to the event
T (i.e., firm’s exit), and the event status, which records if the event T
has occurred for the kth firm. In this framework, we are interested in the
probability that the period of survival is of at least length t. Assuming
that intervals are of unit length (e.g., one year), the probability of survival
until the end of year at, i.e. St, is the product of non-experiencing the
event T in each of the year up to the tth. Hence, we have:

S(t) ≡ St = (1− h1)(1− h2)...(1− ht−1)(1− ht) =
t∏

j=1
(1− ht) (4.1)

with 0 ≤ S(t) ≤ 1, for t ∈ [0,∞)

where the discrete time survival function S(t) is written in terms of interval
hazard rates (ht). The latter represents the risk to the event T occurence,
hence ht = dj

nj
, where dj denotes the number of firms that exit and nj

denotes the number of firms remaining in the cohort. Conversely, the
probability of firm’s exit within the tth interval (at−1, at], i.e. the discrete-
time density function f(t), is the following:

f(t) = Pr(at−1 < T ≤ at)
= S(t− 1)− S(t)

= S(t)
1− ht

− S(t)

=
(

1
1− ht

− 1
)
S(t)

= ht
1− ht

t∏
k=1

(1− ht)

(4.2)

with 0 ≤ f(t) ≤ 1, and ≤ h(t) ≤ 1, for t ∈ [0,∞)

Hence, the discrete-time density function is the product of the proba-
bility of surviving up to the end of interval t− 1 and the probability of
firm’s exit the market in the tth interval.

If we assume that every firm follows the same survival function S(t),
i.e. we assume that there are non-individual differences S(t) as presented
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in Equation 4.1, can easily be estimated by using the non-parametric
Kaplan-Meier product-limit estimator (Kaplan and Meier, 1958).

On the contrary, to investigate the effect of several variables upon
the time firm’s exit takes place, the Cox proportional hazard model Cox
(1972) is employed. The method does not assume any form of the survival
function, but it is semi-parametric because the effects of the explanatory
variables are parametrized to multiplicatively shift the baseline hazard
function. Moreover, the results derive from a partial likelihood method of
estimation. The hazard rate for the kth firm in the data is:

hk = h0c(t)exp(β′Xi) (4.3)

where h0c(t) is the cluster-specific baseline hazard function18, which cor-
responds to the overall risk for firms when Xi = 0, and it represents the
non-parametric part of the model. Moreover, exp(β′Xi) is the relative
risk, i.e. a proportionate increase or reduction in risk associated with the
set of characteristics Xi. A value of βi greater (lower) than 0, indicates
that as the value of the ith covariate increases, the event hazard increases
(decreases), or equivalently the length of survival decreases (increases).
The logarithm expression of Equation 4.3 gives an additive linear model
for the log of the hazard:

log hk(t|Xi) = log h0c(t) + β′Xi (4.4)

As in all additive model, the effect of the explanatory variables Xi is
assumed to be the same at all times t.

We tested the effect of firm-specific variables19: size, measured by the
natural logarithm of turnover, and the square is also introduced to allow

18In our study, we assumed the baseline hazard to differ by firms in an industrial
cluster and outside it. Nevertheless, the coefficients are the same regardless of the
group.

19We did not control for firm age, although it is a common practice in the empirical
literature of firm survival since we considered a cohort of firms established between
2008 and 2016. Moreover, we were not able to test the effect of productivity measures
(e.g., labour productivity and TFP), also relevant to this type of analysis, because we
did not have enough information. It is well known that limited liability companies may
not report complete financial statement’s information in compliance with the national
law.
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for non-linearities; number of patents and number of trademarks, which are
the stock of granted patents and registered trademarks owned by a firm
and they are suitable proxies of firms’ innovativeness; financial indicators,
i.e. solvency ratio and current ratio, which measure the firms’ ability to pay
short-term and long-term obligations. Industry-specific conditions at the
2-digit NACE rev. 2 is captured by the Herfindahl-Hirschman Index (HHI),
taken in logarithm form, as an approximation of market competition. As
main variables of interest, capturing the geography-firm nexus, we included
agglomeration variables computed by NUTS-3 (province) using census
data for 2012 provided by ISTAT: diversification externality has been
decomposed into related variety capturing within industry relatedness
and unrelated variety measuring between industry externalities; finally,
urbanization externalities are proxied by the population density. See
Appendix B for more details on all variables and their construction.

4.4.3 Econometric Results

Survival Estimate Kaplan-Meier

In Figure 4.7 we compare the survival probability, estimated by the non-
parametric Kaplan and Meier (1958) estimator, for a cohort of firms in an
industrial cluster versus firms not belonging to any cluster, at each point
in time (days) for the nine years of study.

Crucially, we can see that there is a difference between the two survival
probabilities which is also statistically significant as confirmed in Table
4.3, by the tests (Log Rank, Breslow, Tarone-Ware) for equality between
the two functions. Considering all firms in our sample, we found that
after about nine years, 74% of firms remained active. In particular, in an
industrial cluster was still active the 69.30% of firms, while outside any
industrial agglomeration only the 63.20% was still operating on the market
altogether in Umbria e Puglia at the end of the year 2016. Hence, from
the third year firms in industrial clusters seem to have been less exposed
to exit from the market than firms outside-cluster.

However, as reported in Figure 4.8, exploring separately the survival
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Figure 4.7: Kaplan-Meier survival estimate outside versus inside industrial
clusters
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Table 4.3: Test for equality of survival functions

Log Rank Breslow Tarone-Ware
Outside versus inside industrial clusters 51.1 29.84 40.02

(0.0000) (0.0000) (0.0000)

Note: P-values in parenthesis.

probability for firms operating in the manufacturing and the service sectors,
we can provide different conclusions. For firms in the manufacturing, it
seems more likely to survive outside a manufacturing cluster than inside it
after about one year of activity.

These results are in line with the structural changes occurring at the
industrial districts or cluster level in Italy, following the challenges of
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Figure 4.8: Kaplan-Meier survival estimate outside versus inside industrial
clusters in manufacturing and services
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globalization and the information and communication technology (ICT)
revolution (Iuzzolino and Minucci, 2011). In the new scenario, some manu-
facturing clusters are experiencing deep crisis, while others are successfully
engaging in global value chains which involve global buyers and production
partners. Overall, many firms have been unable to survive in the highly
competitive global context.20 On the contrary, we see that service firms,
primarily oriented towards local demand, are more likely to survive if they
are geographically concentrated. By remaining close to other companies
operating in the same sector, service firms can benefit from the pool of
skills and skilled workers in the area, which encourages them to stay on
the market.

Cox Proportional Hazard Model Results

In Table 4.4, we check which variables could drive differences on firm’s
hazards, or similarly but with opposite sign, on the survival rate. The

20See De Marchi et al. (2017) for a collection of detailed studies investigating local
clusters in global value chains.
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Table 4.4: Estimation results

(1) (2) (3) (4) (5) (6)
Unrelated variety -0.088*** -0.079 -0.10***

(0.023) (0.067) (0.033)
Related variety 0.098*** 0.081 0.11***

(0.021) (0.065) (0.030)
Urbanisation -36.2*** -34.3*** -26.0* -23.4 -38.8*** -36.4***

(5.08) (5.03) (15.3) (15.2) (7.24) (7.19)
Urbanisation2 8.08*** 7.65*** 5.75* 5.18 8.69*** 8.17***

(1.14) (1.13) (3.42) (3.38) (1.62) (1.61)
Firm size 0.29*** 0.072** -0.024 -0.096 0.50*** 0.10*

(0.034) (0.034) (0.10) (0.10) (0.058) (0.058)
Firm size2 -0.0063*** -0.0064*** 0.0043 0.0043 -0.0090*** -0.0091***

(0.0020) (0.0020) (0.0059) (0.0059) (0.0034) (0.0034)
Number of trademarks -0.027 -0.029 -0.70 -0.70 0.17 0.16

(0.12) (0.12) (0.43) (0.43) (0.13) (0.13)
Number of patents 0.047 0.045 0.15*** 0.15*** -0.039 -0.042

(0.061) (0.062) (0.029) (0.029) (0.11) (0.11)
Solvency ratio -0.0087*** -0.0086*** -0.017*** -0.017*** -0.0081*** -0.0081***

(0.0012) (0.0012) (0.0038) (0.0038) (0.0015) (0.0015)
Current ratio -0.000071** -0.000072** -0.0046** -0.0045** -0.000032 -0.000032

(0.000029) (0.000029) (0.0022) (0.0022) (0.000024) (0.000024)
HHI -0.017 -0.018 -0.035 -0.036 -0.12*** -0.12***

(0.020) (0.020) (0.068) (0.068) (0.032) (0.032)
N. observations 31,969 31,969 4,019 4,019 14,592 14,592
Wald test 131.2 (10) 135.6 (10) 50.5 (10) 50.7 (10) 86.3 (10) 90.0 (10)
Log pseudolikelihood -13862.8 -13860.1 -1186.1 -1186.0 -6038.4 -6036.5
Two-way clustered errors Yes Yes Yes Yes Yes Yes
Activity of firms All All Manufacturing Manufacturing Services Services
Coefficient are reported. Errors clustered by firm and NUTS-3. Estimates are stratified by the dummy Cluster,
indicating if a firm belongs or not to an industrial cluster. ***, **, * stand for p-value < 0.01, p-value < 0.05 and
p-value < 0.10, respectively.
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coefficient and robust standard errors adjusted for clustering at the firm
and NUTS-3 level are reported. The first two column shows estimates for
the whole sample of firms, while the second and the third columns refer to
firms operating in the manufacturing sectors, and the last columns refer
to services.

In light of studying the geography-firm nexus, our focus is on spatial
agglomeration variables. We observe that Unrelated variety, capturing
diversification across industries at the province-level, increases the survival
rate, in particular for firms in the service sectors; while the variable’s coef-
ficient for manufacturing is not significant. The geographic concentration
of firms operating in different types of activities has been interpreted in
the literature as a portfolio strategy (Frenken et al., 2007) to protect the
regional environment against industry-specific shocks. Specifically, the
significant effect for firms in service sectors is in line with the local demand
orientation of those firms.

Related Variety, which captures the geographic concentration of firms
in complementary or related industries, has a negative effect on firms’
longevity in services; while the effect on manufacturing firms is not signifi-
cant. In the literature, the latter kind of variety has been associated to
Jacobs-types externalities arising from spillovers (e.g., sharing knowledge,
competencies, technology, etc.) between industries which should enhance
firm’s innovation and production processes. Firms in the service sectors
are usually more exposed to local competition since they provide their
service locally, therefore diversification within two-digit industries may
threaten their survival. Our results are in line with the findings in Basile
et al. (2017) and Ferragina and Mazzotta (2014).

As expected, the degree of urbanisation measure by the population
density shows that when the province population density increases, firms
are more likely to survive. Bigger cities usually can provide more incentives
and support to business activities, and local demand is higher than in
smaller ones. However, we also find a significant non-linear effect which
confirms the fact that diseconomies (e.g., congestion, pollution, high factor
costs, etc.) may decrease the survival rate in highly inhabited areas.

Focusing on firm-level control variables, we found that the firm size,

127



CHAPTER 4

measured by the turnover, has a significant and non-linear effect on the
survival of firms. It seems that for low increases in the firm size, the hazard
rate increases, then from a certain size threshold, it starts decreasing. A
possible explanation is the presence of mostly micro and small firms in
our sample (as also along the entire Italian peninsula) which are more
vulnerable. For instance, only after a certain dimension, they can start
operating at an efficient scale and have better access to the capital market.

Contrary to what expected, from our results an increase in the Number
of patents decreases the survival rate of manufacturing firms. However, the
uncertainty associated with innovation especially in high-tech activities ex
ante can be misleading. In fact, the commercial risk related to a ‘new-to-
the-world’ innovation, is high in the short-run, as discussed in Buddelmeyer
et al. (2009), but after a while, some innovations have a clear positive effect
on firm survival which is also positively reflected on financial, management
and economic capabilities.

The likelihood of firm survival is also affected by its financial situation.
Although financial constraints are not readily observable empirically, many
variables are commonly computed from the financial statement.21 From
our study, we find that the more firms can meet their long-term financial
obligations, as proxied by the Solvency ratio, the lower (higher) is the
hazard (survival) rate. Also, an increase in Current ratio, which translates
into reducing the financial uncertainty of a firm in the short-run, increases
the likelihood of firm survival.

Finally, at the industry level, a rise in the market concentration in ser-
vices significantly decreases the hazard rate, as captured by the Herfindahl-
Hirschman Index (HHI) coefficient.

4.5 Conclusions

In this contribution, we explored the geography-firm nexus using micro-
data. Specifically, we implemented a challenging density-based spatial

21See Ferrando et al. (2015) for an encompassing description of several indicators
elaborated on the financial statements of the European firms, collected in the financial
module of CompNet.
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clustering algorithm, the DBSCAN, to identify the spatial concentration
of firms operating in the same NACE rev. 2 2-digit sector. Starting
from the postal address of each active firm, and after a careful process of
geocoding which allowed retrieving geographical coordinates, i.e. latitude
and longitude, we could identify several industrial clusters in the Italian
regions, Umbria and Puglia. Without relying on existing administrative
boundaries, we have been able to locate in space industrial clusters and
to identify the firms within and outside them. We argue that nowadays,
using a data-driven approach to investigate the patterns of geographical
clustering of firms on continuous space is of utmost relevance also thanks
to the increasing availability of micro-data. Much richer and detailed
spatial information can be used to understand the economic performance
of firms and the actual drivers of regional economic development.

Then, our findings from the survival analysis of firms, show that
manufacturing activities are more likely to survive outside an industrial
cluster, while the contrary is true for firms in services. These results reflect
the current trajectory of some manufacturing companies at the cluster
level struggling to compete in the global scenario. Besides, we confirm the
fading of the ‘district effect’ (Di Giacinto et al., 2013), especially in Italy,
combined with the increasing heterogeneity of firms along many dimensions
(e.g., size, performance, productivity, etc.) within, between and outside
clusters (De Marchi et al., 2017). On the contrary, services activities seem
still to be able to capture value locally, also when in proximity to similar
businesses.

More in general, in this study we showed the importance of looking at
the geography of firms that have often been neglected in the literature, but
which provides additional information when combined with other specific
firm and industry characteristics. Finally, we argue that a more completed
picture of the local region using firm-level data can help policy-makers
when planning industrial policies.
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A. FIGURES

A Appendix: Figures

Figure A.4.1: Kaplan-Meier survival estimate outside versus inside indus-
trial clusters in Umbria and Puglia
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Figure A.4.2: Kaplan-Meier survival estimate by province in Umbria and
Puglia
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B Appendix: Construction of variables
Firm-specific variables
Firm size: Computed from ORBIS data. It is the (log of) firm-level
turnover.

Agglomeration variables
Urbanisation: It is proxied by the population density, i.e. the ratio
between the number of inhabitants and the area in km2 of each NUTS-3
(province), as provided by ISTAT. We computed this measure using data
for the year 2008, our starting period of investigation. However, there are
no significant differences in the following years.
Unrelated variety: Computed using employment data at the NUTS-3
(province) level from ISTAT for the year 2012. This diversification index,
proposed in Frenken et al. (2007), measures the extent to which an area is
diversified in very different types of activities. It is computed across two-
digit industries, based on the assumption that at this level of aggregation
they are unrelated to each other. Thus, it aims at capturing between
industry externalities.

UVr =
S∑
s=1

Ps,r log2

(
1
Ps,r

)
(B.4.1)

where Ps,r is the employment share of each two-digit sector, s = 1, .., S, in
a province r.
Related variety: Computed using employment data at the NUTS-3
(province) level from ISTAT for the year 2012. This diversification index,
proposed in Frenken et al. (2007), captures within industry externalities
(degree of relatedness). It is measured as the weighted sum of entropy at
disaggregated industry-level within each two-digit industry. The underlying
assumption is that industries within this level of aggregation are related
and can learn from each other (e.g., knowledge spillover).

RVr =
S∑
s=1

Ps,r

∑
i∈Sg

pi,r
Ps,r

log2

(
1

pi,r/Ps,r

) (B.4.2)
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where pi,r is the employment share of each five-digit sector i falling
exclusively under the two-digit sector Sg.

Industry-specific variables
Herfindahl-Hirschman Index (HHI): Computed from Orbis data. It
approximates the level of concentration within the industry.

HHIs =
N∑
i=1

m2
i (B.4.3)

where m is a proxy for the market share measured using firm i’s share
turnover within an industry s at NACE 2-digit level and N is the number
of firms in that industry. The higher the value, the higher the level of
industry concentration. Low values of the Herfindahl-Hirschman Index,
therefore, characterise a competitive setting.
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Conclusions

In this thesis, we shed light on some interesting firm-level features within
a global context, contributing to the literature on international trade,
industrial organisation and economic geography.

We started analysing network-like production processes and providing
new insights on vertical integration choices within the respective theoretical
framework. Then, stressing the fact that firms are heterogeneous along
many dimensions, we tested the impact of EU regional policy on their
productivity. Finally, we looked at the geography-firm nexus exploiting
fine-grained spatial information, enriching the empirical literature on firm
survival.

Here follows a summary of the main contributions and some considera-
tions on possible future works for each chapter of the thesis.

5.1 Summary
In Chapter 2, we introduced the Input Rank as a measure to study the
organisation of supply networks at the firm level. We assume that a
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Markov process of exploration may be started by a producer throughout
her web of direct and indirect suppliers, to assess the technological
relevance of each direct and indirect input, when her ability to outreach
in the supply network may be limited. Therefore, each producer ends up
with an input-output eigenvector centrality, which is higher when a direct
or indirect input is relatively more requested to produce other direct
or indirect inputs, and when that input is relatively more requested to
produce other highly-requested inputs. Finally, we computed the Input
Rank on U.S input-output tables and tested its empirical validity for
choices of vertical integration on a dataset made of 20,489 U.S. parent
companies controlling 154,836 affiliates worldwide. Results showed that
a higher Input Rank is positively associated with a higher probability
that the input is vertically integrated, relatively more when the demand
faced by the parent company is more elastic. We argue that a producer
reduces the risk of disruption in her supply network when a central
input is vertically integrated. In this framework, the Input Rank is at
least complementary to previous sequential metrics (e.g., upstreamness
or downstreamness), because it better catches the recursive nature of
real-world supply networks, whereas linear technological sequences may
be just corner solutions.

In Chapter 3, we empirically tested the effect of the EU Cohesion
Policy using a unique dataset of 273,500 European manufacturing firms,
combining regional policy data at NUTS-2 level with firm-level total
factor productivities (TFP). In a framework of heterogeneous firms
and different absorptive capacity by regions, we show that financing
by the European Regional Development Fund (ERDF) aimed at direct
investments in R&D is associated with improvement of firms’ productivity
in a region. The association is stronger in the first quartile of the TFP
distribution, i.e. for firms that are least efficient in a region. Conversely,
funding designed at overall Business Support is not significantly corre-
lated with any improvement in firm-level competitiveness. We finally
argue that considering the heterogeneous distribution of firms’ ineffi-
ciencies within a region is critical for a better design of the Cohesion Policy.
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5.2. FUTURE WORK

In Chapter 4, we presented a data-driven approach to identify industrial
clusters from micro-data. Specifically, we borrow from Machine Learning
a density-based spatial clustering algorithm, the DBSCAN, and show how
its implementation to firms’ location allows overcoming some limitations
of distance-based methods currently used in the literature to explore the
spatial concentration of economic activities. Investigating the survival
probability of a cohort of firms from the Italian regions Umbria and
Puglia, we found that hazard rate of firms inside an industrial cluster
is statistically significant different to the one of firms not belonging to
any cluster. Therefore, we argue that although firms compete in a global
scenario, it is still of utmost importance to look at the geography-firm
nexus to better catch their dynamics.

5.2 Future Work

Here follow some considerations on possible future work for each of the
topics covered in the thesis chapters.

In Chapter 2, we highlighted the importance of looking at the network
dimensions in the global organisation of production. In line with recent
theoretical and empirical works, we argue that the shape of production
networks is the outcome of endogenous collective choices by buyers
and suppliers, which through input linkages drive both individual and
aggregate dynamics. Further research should consider the recursive
and complex structure of real-world production networks also from a
theoretical perspective to better understand the implications of possible
shocks and their propagation, and likewise the organisational response
of firms. Then, in the framework of choices of vertical integration, we
believe that the proposed Input Rank can also be extended to include
the geographic dimension, either using firm-to-firm transactions (see,
for example, ongoing works in the review by Bernard et al. (2017)) or
multi-country input-output tables. The local technological centrality of an
input combined with the geographical proximity of production stages can
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provide insightful information on the determinants of vertical integration
choices, which until now have been considered neutral to country-level
factors. Finally, it would be interesting to empirically investigate the
evolution of production networks overtime by sector, at the heart of
technological progress. In fact, production networks are dynamic by nature
both organizationally and geographically. Adjustments are continuously
being made in responses to internal and external circumstances.

In Chapter 3, we showed that inefficiencies, as per TFP estimation, are
distributed asymmetrically, bimodal and with a long right tail. Therefore,
we may expect heterogeneous responses from the implementation of the
EU Cohesion Policy, also within regions. Future research should overcome
the policy data limitations at the firm-level. For the programming period
2014-2020, improvements in the administrative capacity and coordination
by public administration in member states and regions is expected.
Therefore, data on individual projects, such as expenditure, category,
and beneficiaries should be available in a more harmonised way across
European regions. Then, this detailed information could be integrated
with other firm-level characteristics to evaluate the impact of the Cohesion
Policy’s tools also on the productivity of individual firms.

The identification method of industrial clusters, i.e. the DBSCAN
algorithm, detailed in Chapter 4, offers opportunities for empirical explo-
ration of clusters in whatever country or region. Therefore, it would be
interesting to extend the research to the entire Italian peninsula. Further,
the DBSCAN algorithm requires two input parameters: the MinPts, i.e.
the minimum number of firms to form a cluster and ε the maximum radius
that defines the neighbouring area of a firm. In our implementation, we
follow the original formulation in Ester et al. (1996), setting global input
parameters, i.e. the same for all clusters, after heuristically inspecting
several alternatives. However, specific input parameters can be introduced
to account for different spatial scales of regions and thus obtain better
clustering results.
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Fontagné, Emanuele Forlani, Thierry Mayer, Filippo di Mauro, Philippe
Martin, Giorgio Navaretti, Gianmarco Ottaviano, Maddalena Ronchi, Gi-
anluca Santoni, and Elena Zaurini. Measuring Competitiveness in Europe:
Resource Allocation, Granularity and Trade. Bruegel Blueprint Series Volume
XVIV, 2016. 9

Vanessa Alviarez, Javier Cravino, and Andrei A. Levchenko. The Growth of
Multinational Firms in the Great Recession. Journal of Monetary Economics,
85:50–64, 2013. 39

Alessia Amighini and Roberta Rabellotti. How do Italian Footwear Industrial
Districts Face Globalization? European Planning Studies, 14(4):485–502, 2006.
115

Dan Andrews, Chiara Criscuolo, and Peter N. Gal. The Best versus the Rest.
The Global Productivity Slowdown, Divergence across Firms and the Role of
Public Policy. OECD Productivity Working Papers, No. 5, 2016. 73

140



BIBLIOGRAPHY
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Pol Antràs and Davin Chor. On the Measurement of Upstreamness and Down-
streamness in Global Value Chains. NBER Working Paper No. 24185, 2018.
6, 16
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