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Abstrat
Today most of search engines’ profits come from advertising, and in
particular from sponsored search. In sponsored search, advertisement
slots next to search results are sold. When a query is made, besides
processing the query results themselves, the search engine selects ads
relevant to that query. Two of the main characteristics of this form of
advertising are that advertisers are billed only when a click on their ad
is made, and that prices are computed using an auction.
In this thesis we consider some generalizations of the sponsored search

auction model presented in the literature. In particular we account for
the fact that the search engines have a great control over the order in
which advertisers are ranked. In fact search engines assign quality
scores to each advertiser, and, prior to sorting, scale all bids by such
factors. We show how this changes the main properties of the equilibria
in these auctions, and that in particular, the efficiency directly depends
on how the search engine sets the quality scores. We then analyze some
strategic behaviors in this environment, showing how their properties
can differ from other classical auction models.
In a second part of this thesis we present some experimental results.

These were obtained with a large scale sponsored search simulator de-
veloped for this thesis. To realistically simulate such environments new
algorithms and techniques were developed that partially overcome the
lack of publicly available information, by effectively estimating many
hidden parameters, such as click through rates. The experimental re-
sults presented focus on the global effects on the market when a frac-
tion of the advertising agents engage in strategic behaviors. In particular
we focus on two cases. In the first agents start to optimize their set of
keywords using a custom build set of available synonyms. The second
behavior we consider is one in which an agent changes his bid, with the
objective of increasing costs for his opponents. Interestingly we show
that this technique is not always profitable.
The fact that, in sponsored search, agents might not have access to all

the necessary information to compute their optimal bids, marks a sig-
nificant departure from the theoretical models, that instead assume full
knowledge of the environment. The field that studies models in which
agents’ capabilities are limited is called bounded rationality. The final
chapters of this thesis are dedicated to work done by the author during
his visiting period at Northwestern University, Evanston U.S.A., under
the supervision of prof. Lance Fortnow. The focus is on bounded ratio-
nality, and two problem that directly expose the role of computational
limitations in game theory are analyzed.
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Introdution
This thesis is about online ad auctions, which are the mechanisms used
by most search engines to decide which sponsored links to display along
search results (see Figure 1). The number of available slots in which ads
can be displayed is usually limited, while the number of interested cus-
tomers can be very large. Search engines assign slots to bidders by
mean of an auction. The online ad auction problem is primarily con-
cerned with the design and analysis of such auctions. It is an example
of a new kind of problems, lying at the intersection between computer
science, game theory, and economic theory.
There are many other interesting problems at the border between these

disciplines, and this research area has appropriately been called algo-
rithmic game theory. Probably the key driving force behind the devel-
opment of this new area has been the emergence of new computational
artifacts, most notably the Internet. One of the main characteristics of
the Internet is that it is made up of and operated by a number of diverse
agents, each with different interests and objectives. The classical tools of
computer science are inadequate to analyze and fully understand these
new scenarios, and the computer science community turned to research
fields where the interaction of many agents with different interests is
central: game theory and economics.

This introduction gives a very brief outline of the main goals of game
theory and economic theory, and their applications in computer science,
followed by an overview of this thesis: from the related literature to the
results presented.

1



Figure 1: Example of search engine results page, with sponsored links
visible at the top and to the right of the search results.
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Game Theory
Game theory was founded by von Neumann and Morgenstern1 as a
general theory of interaction between decision-makers. In this sense a
game can be thought of as a description of strategic interaction. The
fundamental assumption of game theory is that all players are rational,
meaning they pursue some well-defined objectives, and that they all
reason strategically, that is they take into account their knowledge (or
expectations) of other players’ behavior.
There are many different kinds of games, intended in this broad sense.

One of the first and most basic models are the strategic games, or games
in normal form. In these games each participant is defined by the set of
possible actions he can take and by a preference relation over the set of
all possible actions by all other players.
A solution to a game is a systematic description of the outcomes that

may emerge depending on all of the players’ actions. The most widely
used and successful solution concept in game theory is the Nash equi-
librium. This notion captures the essence of stability in this context. As-
sume each player is assigned a strategy: this set of strategies constitutes
a Nash equilibrium if no player has an action yielding an outcome that
he prefers, given the actions assigned to all other players. Informally it
is the best each player can do unilaterally. In 1951 Nash2 proved that
if the set of actions for each player is convex and his preferences are
continuous and quasi-concave then a Nash equilibrium always exists.
An interesting case is when we allow players to choose one of their
strategies randomly. That is each player has his set of strategies and a
probability distribution over such a set, describing how likely it is that
he will play that particular strategy. The sets of strategies equipped with
a probability distribution are called mixed strategies. Given a finite set
of strategies, the corresponding set of mixed strategies is always convex,
and so it follows directly from Nash’s theorem that every finite strategic
game has a Nash equilibrium in the mixed strategies.
The extremely broad definition of strategic game and the compara-

tively weak assumptions needed, make Nash’s theorem a fundamental
result.

1J. von Neumann, O. Morgenstern Theory of Games and Economic Behavior, Princeton
University Press, 1944

2J.F. Nash, Non-Cooperative Games, Annals of Mathematics (54), 1951
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Miroeonomi Theory
In economic theory, and particularly in microeconomic theory, the cen-
tral topic is the study of the interactions between diverse agents whose
actions are determined by suitable economic incentives. The main dif-
ference with respect to game theory is the presence of prices, which can
be seen as an efficient and ingenious mean of decentralization.
An easy to describe of market is given by exchange economies, where

the production of goods is not considered. There are a number of agents,
each of which is in possession of a non-negative vector of goods: his ini-
tial endowment. Furthermore each agent has a utility function that,
given any two baskets of goods, assigns a higher value to the one pre-
ferred by the agent. It could very well be that two (or more) agents are
dissatisfied with their initial endowments, and would like to give some
goods away and receive others such as to obtain a higher utility.
When each good is assigned a price, the rational behavior for each

agent is to sell his initial endowment, and use the money he receives to
find a bundle of goods that maximizes his utility. The constraints to this
maximization problem are given through prices themselves, and state
that one cannot spend more than he initially holds (i.e. the value of his
initial endowment at current prices); these are the budget constraints.
Since we are not considering production we can obtain the total sup-

ply of goods in the market simply by summing up all the initial endow-
ments. The demand of the market, at any given prices, is the sum over
all agents of the bundles that solve each agent’s maximization problem.
In other words, having fixed prices, we let each agent choose an opti-
mal bundle of goods and then see what quantity of each good would be
needed to satisfy each and every agent.
As in game theory the concept of equilibrium is central. One of the

first definitions of equilibrium was given by Walras in 18743, and states
that a set of prices is an equilibrium for an exchange economy if the two
following properties are met

i) each agent maximizes his utility subject to his budget constraints

ii) the resulting demand equals the supply of the market.

Intuitively, at equilibrium, all the goods in the market are redistributed
in the best possible way for everybody, since no agent could unilaterally
gain a higher utility.

3L. Walras, Elements of Pure Economics, 1874
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In 1954 Nobel laureates Kenneth Arrow and Gerard Debreu4 proved
that under general assumptions such an equilibrium does exist. It is a
surprising result: for any kind of market satisfying some mild assump-
tions, there always exists a set of prices that will balance demand and
supply of goods.
The proof given by Arrow and Debreu relies on the one given by Nash

for the existence of a Nash equilibrium in strategic games. Specifi-
cally, starting from an exchange economy, Arrow and Debreu describe
a strategic game, and then show that the equilibria of that game are
precisely the Walrasian equilibria in the economy. The key point in
transforming the economy into a game is the introduction of an ex-
tra player, whose set of strategies is the set of all possible prices. This
gives some intuition on the main difference between games and mar-
kets; while in games the equilibrium is defined for each agent based on
all the other agents’ strategies, in markets the equilibrium is defined in
terms of prices. Given a set of equilibrium prices every agent needs to
know nothing more about the rest of the market: he will just solve his
optimization problem, and, since the prices are equilibrium prices, is
guaranteed that there will be enough goods to satisfy his requests.
Among the differences between markets and games, and the suitable

equilibria, one of particular interest is tied to the concept of social op-
timum. A different solution concept for a game would be to consider
a strategy for each player such that it is not possible for someone to be
better off without some other player being strictly worse off. Such a so-
lution, instead of considering each player individually, tries to optimize
some global quantity. In a similar way, we can define an allocation of
goods in a market such that each agent could not improve his situa-
tion without hurting someone else. These allocations are usually called
Pareto optimal, in honor of the Italian economist who first introduced
this concept.
It is a well known fact that Nash equilibria may not be Pareto optimal.

The most prominent example is the Prisoner’s Dilemma (see, e.g., Os-
borne and Rubinstein [1994]). In the Nash equilibria of this game both
players receive a certain payoff, while there is an outcome in which both
are strictly better off; unfortunately that solution is not itself a Nash
equilibrium. On the other hand equilibria in exchange economies pos-
sess the notable property of being always Pareto optimal. This result,
known as the First Fundamental Theorem of Welfare Economics (see
Mas-Colell et al. [1995]), is a key point in asserting the validity of the

4K. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica
(22), 1954
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definition of equilibrium.Mehanism Design
Mechanism design can be thought of as the “inverse” of game theory.
In game theory we are given a game and we wish to analyze it, for
example by characterizing its Nash equilibria. In mechanism design we
are given a set of outcomes and wish to design a game in such a way that
its outcomes, for instance its Nash equilibria, satisfy the initial requests.
This corresponds to the case in which there is a central planner who

can force participants to play the game but who cannot enforce the de-
sired outcome (usually because he lacks some necessary information).
In this view, the planner is interested in designing a game that, assum-
ing the players act rationally, will lead them to the desired goal.
One typical example of mechanism design is this: assume we have to

give an object to one of two players willing to pay for it. Ideally we
would like to give it to the person who values it the most, but unfortu-
nately we do not have such information. How can we design a game
such that, in the solution, the object will effectively be assigned to the
player valuing it the most? The game that accomplishes this is a partic-
ular kind of auction, which will be described in Section 1.1.1. Using this
specific auction we are assured (if the players act rationally) that we will
assign the object to the right person. In fact it is possible to prove that
the best a player can do when participating in this auction is to declare
his “true” valuation. So, by imposing certain rules, we have been able
to assure that we will achieve the desired goals.
In the above example a different solution concept is used, rather than

Nash equilibrium: the dominant strategy equilibrium. A dominant
strategy for a player is an action that is always best for him, no matter
what all the other players do. A set of strategies constitutes a dominant
strategy equilibrium if no player has an action yielding an outcome that
he prefers, given any other action by all other players. The difference
with a Nash equilibrium is that in the Nash equilibrium each agent
prefers the equilibrium outcome with respect to the strategies played by
others at equilibrium, while in the dominant strategy equilibrium every
player prefers the equilibrium outcome with respect to every possible
strategy by all the other players.
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Computational Issues
There are two complementary aspects when considering the interaction
of computer science, game theory and economic theory. On one side
there are the numerous applications of concepts from game theory and
economics to new problems in computer science, on the other there
are interesting algorithmic and theoretical issues in game theory and
economics.Computer Siene in Eonomis and Game Theory The most notable
algorithmic issue in both game theory and economics is tied to the core
concept of equilibrium in these fields. In both cases there is a convinc-
ing definition of equilibrium, strengthened by the remarkable existence
theorems due to Nash and Arrow and Debreu. Both these theorems rely
on Brouwer’s fixed point theorem and its extensions, which guarantee
the existence of fixed points for certain kinds of functions. The problem
with these theorems is that their proofs are highly non-constructive; that
is they prove that a fixed point exists but do so without showing how
to find one. Thus, although we are guaranteed an equilibrium exists in
certain markets and games, we have no way to compute it.
The computation of equilibria is a long standing problem; Walras him-

self proposed a method to find equilibrium prices in an exchange econ-
omy. There have been, starting from the 60’s, some interesting path-
following algorithms to find equilibria in a general setting (see Todd
[1976] for a survey). However, these algorithms are inherently ineffi-
cient, or converge only for a restricted class of markets.
The main contribution from computer science has been to frame the

equilibrium problems in a computational complexity setting, and sub-
sequently showing that a general and efficient algorithm for computing
equilibria is unlikely to exist. The first thing to notice is that the decision
version of the equilibrium problems are uninteresting, since we know an
equilibrium exists, and so NP-ompleteness is not an appropriate concept
of complexity. We have to turn to FP and FNP, complexity classes anal-
ogous to P and NP which deal with function problems: problems that
require an answer more complex than just yes/no. The guaranteed ex-
istence of an equilibrium makes the problem determining one a total
search problem; the class of total search problems is called TFNP, andTFNP⊆ FNP. The equilibrium problems lie in an important subclass ofTFNP, a class whose definition is based on the nature of the existence
proof that makes a certain problem total. This class is called PPAD5,

5For Polynomial Parity Argument Directed.
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and the totality of the problems in it relies on a simple combinatorial
lemma: the parity argument6. It has been shown that the market equi-
librium problem, and the Nash equilibrium problem, are both complete
for the class PPAD, meaning that all other problems in PPAD can be
reduced to them. The class PPAD contains many other problems for
which important lower bounds are known7, thus making the existence
of efficient algorithms highly unlikely.Eonomis and Game Theory in Computer Siene One of the first
applications of concepts and ideas from economics and game theory
have been to network problems. In 1997, Kelly Kelly [1997], addressed
the problem of congestion control through charging. In his setting each
user in the network is charged for the bandwidth consumed, and Kelly
defines an optimization problems that describe this situation. It turns
out that this model corresponds to a particular market, whose equilib-
ria are precisely the solutions of the optimization problems posed by
Kelly. After his work many efficient algorithms have been developed
for network and routing problems which are special cases of the market
equilibrium problem.
Another fruitful application of game theory has been the “price of an-

archy”. This notion relates the worst-case Nash equilibrium to the global
optimum (i.e. the maximum sum of payoffs achievable). It gives a mea-
sure of the inefficiency introduced in the system by allowing each agent
to behave selfishly, as opposed to having a centralized control. In the
context of large networks, it is often impossible to have a central author-
ity that manages bandwidth allocation as to maximize total satisfaction.
The price of anarchy is, in this case, a useful tool in analyzing the per-
formance of different routing protocols.Bounded Rationality
As we have seen, one of the core assumptions in game theory and mi-
croeconomic theory is that agents are fully rational. It can be seen how
this assumption implies that the agents are able to compute all the possi-
ble consequences of their actions, taking into account the objectives and
strategies of all their opponents. Intuitively this is sometimes an unreal-
istic assumption. For instance, from a game theoretic point of view, the
games of tic-tac-toe and chess are similarly uninteresting: players need

6The parity argument simply states: “any finite graph has an even number of nodes
with odd degree”.

7Such as the problem of finding a Brouwer fixedpoint.
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just to explore the tree of all possible moves and choose their optimal
strategy. However, in real life, there is a huge difference, since there is
no way for a human (nor, as of yet, for a computer algorithm) to effec-
tively explore the tree for the game of chess for more than a couple of
levels in depth.
It is fairly easy to construct examples in which the strong implications

of the full rationality assumption have a computational flavor. For ex-
ample consider the factoring game (see Fortnow and Santhanam [2010]).
This is a two player game in which Alice communicates to Bob an inte-
ger number. Bob wins the game if he can decompose it in prime factors,
otherwise Alice wins. Since every integer number can be decomposed
in prime factors, Bob always wins. However, FACTORING is believed to
be computationally hard, so that, in the real world, it is likely that Alice
would win.
The first computational approaches to bounded rationality have been

in the field of repeated games. The players’ boundedness was imposed
by limiting their strategies to finite automata of different sizes (see Kalai
[1987]). Only more recently has this problem been considered under a
more general computational complexity perspective (see Papadimitriou
and Yannakakis [1994], Halpern and Pass [2010], Fortnow and Whang
[1994]). However none of the models proposed has been a definitive an-
swer to the problem, which still has many fundamental and interesting
open questions.

9



Related Work
The literature on sponsored search auctions is huge. We give here a
brief overview focusing on the parts most related to this thesis. For a
general overview see, for instance, Lahaie et al. [2007] or Aggarwal and
Muthukrishnan [2008].
Edelman et al. [2007] and Varian [2007] study the theoretical model

behind the mechanisms in use by most search engines to sell advertise-
ments: the generalized second price auction. Both these papers inde-
pendently prove two important characteristics of the generalized second
price auction:

• when there are multiple slots, the generalized second price auction
is not truthful (i.e. bidding ones true value is not a dominant
strategy), however

• there always is an equilibrium in which the ranking and payments
are the same as in the much studied Vickrey-Clarke-Groves auc-
tion (which is known to be truthful).

Aggarwal et al. [2006] study a generalization of the model considered
in Varian [2007] and Edelman et al. [2007], and show how the Vickrey-
Clarke-Groves mechanism might not be truthful in this setting. They
then define and characterize the unique truthful mechanism for their
model. More recently Babaioff and Roughgarden [2010] showed that
the generalized second price mechanism is not the only one that admits
Vickrey-Clarke-Groves-like equilibria, however, among all these mecha-
nisms, it is, in a formal sense, the simplest one.
Another line of work has been concerned with studying other kinds

of equilibria in the generalized second price and their welfare guaran-
tees as compared to the optimal mechanisms, i.e. their price of anarchy.
Gomes and Sweeney [2009] study the Bayes-Nash equilibria of the gen-
eralized second price, and Leme and Tardos [2009] give the first bounds
on the price of anarchy.
Most of the precise details on the workings of these auctions are kept

secret by the search engines, probably in fear that they might be used
by malicious users or spammers to game the system. However some
experimental results carried out by search engines themselves or using
their data have been published. Ostrovsky and Schwarz [2010] conduce
a field experiment in which the auctions relative to a small percent-
age of keywords are carried out using optimal reserve prices.8 Varian

8In an auction with reserve price r, the item on sale won’t be allocated unless there is
a bid larger than r.
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[2007] complements his theoretical results by showing how they com-
pare to some actual bids taken from search engine logs. Kitts et al. [2005]
present some log data, focusing on conversion rates, price changes and
click frauds.
The Tradings Agent Competition9 is an annual event in which au-

tonomous agents compete in different simulated markets. Since 2009
(see Jordan and Wellman [2010]) also a sponsored search market is sim-
ulated. The focus of these simulations is on the agents’ strategies (see
Pardoe et al. [2010], Kitts and LeBlanc [2004]). On the other hand, there
has been comparatively little work on simulating a large scale sponsored
search market. Previous research on agent-based simulation of adwords
markets by Mizuta and Steiglitz [2000] was centered on studying the in-
teraction of different classes of players according to their bidding time
profiles, e.g. early vs late bidders. Kitts and LeBlanc [2004], along the
implementation of their trading agent, describe a simulator for ad auc-
tions used to test these agents. The main objective of the simulator is to
compare several bidding strategies, e.g. random bidding vs. bid to keep
relative position.Our Results
This thesis is divided into three main parts. In a first, theoretical, one,
we discuss a generalization of the classical sponsored search model. In
particular we account for the fact that search engines have an almost
total control over the ranking and payments of the agents. In fact, in-
coming bids are multiplied by “quality scores”, and ranked according
to this scaled order. We present an analysis of the equilibria of spon-
sored search markets in which the quality scores are not related to the
click through rates. The generalized second price auction has similar
properties in this setting; in particular it retains an efficient equilibrium.
However, a fundamental difference, is that that the efficient mechanism
in this setting (i.e. the Vickrey-Clarke-Groves auction) maximizes the so-
cial welfare with weights corresponding to the quality scores. Since we
are assuming these are not correlated with the click through rates and
they are unknown to the agents (which have no control over them), it
might be the case that, from an advertiser’s point of view, what is being
optimized is not the actual social welfare, but the search engine’s rep-
resentation of it. We also consider the effect of strategic behaviors. In
particular we focus on bidding rings: coalitions of bidders that act col-
lusively. This behavior is particularly hard to uncover, especially in this

9http://goo.gl/PLfg
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setting, where a user might himself create multiple accounts without the
seller (i.e. the search engine) never finding out. However we show that,
despite the apparent danger and ease of applicability, bidding rings are
not always profitable in sponsored search auction. Furthermore, their
profitability is strictly connected to the actual click through rates, so
that there is little agents (or the search engine) can do to make them
profitable (or limit them).
In a second part we present the details and experimental results ob-

tained with a large scale sponsored search auctions simulator that was
developed as a part of this thesis. The main focus of the simulator is
to analyze global effects on the market when a fraction of the agents
engages in different kinds of strategic behaviors. We focus mainly on
two such behaviors

• keyword spreading in which each agent optimizes his set of key-
words, essentially looking for a set of synonyms that will yield the
same number of clicks but at a smaller price,

• starvation in which agents increase their bids to augment their
opponents’ cost.

In the first case the experimental evidence points at the fact that key-
word spreading is beneficial for all the participants in the market. This
is due to an increased efficiency, and in fact most search engines already
suggest alternative keywords to their advertisers. A by-product of our
simulations in this setting is an automated and reliable procedure for
finding a good set of synonyms, so that agents could employ it without
using the suggestions made by the search engine.10

The simulations on the starvation behavior, on the other hand, show
that its effects are less dramatic than it might be initially suspected. One
of the deciding factors is that, for an agent, determining the highest
bid that will harm his opponents without hurting his own profits is
not an easy task. However these results should be taken with a grain
of salt: they depend heavily on the budget constraints, after all their
whole purpose is to deplete an opponent’s budget as fast as possible in
order to exclude him from the auction and gain his position. The role of
budget constraints in this kind of environment is not so clear-cut: most
search engines allow advertisers to change their budgets frequently, so
seeing them as hard constraints is a very rough approximation.

10Some knowledge from the search engine is however assumed: in particular we assume
the agents have access to somewhat reliable estimates of costs for each keyword they wish
to test.
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While implementing the simulator, one of the main challenges has
been the lack of publicly available data regarding sponsored search mar-
kets. This has partially been overcome by utilizing on-line tools that
search engines make available to their advertisers in order to optimize
and estimate their campaign costs. However these tools only give in-
formation related to search volumes and costs per click. Another fun-
damental quantity that needed to be reliably estimated was the click
through rate. To this end we implemented a set of tools and algorithms
that, using only publicly available data (and in particular the search
engines’s results pages) extracts reasonable estimates of click through
rate profiles.

Finally we present some results on bounded rationality. This work,
although related, is not directly connected to any of the previous topics.
It was carried out while the author was visiting prof. Lance Fortwow at
Northwestern Univeristy (Evanston, U.S.A.). The first results consider
the problem of recovering an agent’s preferences by observing only a set
of choices made by such agent. Classical microeconomic theory gives
conditions under which the observations are consistent with a rational
agent. However, when such conditions fail, could the observations be
the output of an agent that has limited computational power (and is
thus, according to classical definitions, not fully rational)? This work is
part of an ongoing research project.
The other results focus on the role of randomness in bounding ratio-

nality. In fact, most research on bounded rationality assumes that agents
have limited time and/or space resources. We instead consider a sce-
nario in which agents have access to limited randomness. The role of
randomness in computational complexity is central, and even in game
theory the ability to randomize is fundamental. We focus on a basic
zero-sum two player repeated game that has no pure Nash equilibria,
i.e. matching pennies. We show that, if players are computationally
unbounded, the n-stage game cannot have approximate equilibria when
one of the players has only a fraction of n random coins. We then con-
sider the case in which both players are limited to strategies that corre-
spond to algorithms that run in time polynomial in n. We show that, in
this case, ε-Nash equilibria that use only nδ random coins exist if and
only if one-way functions exist. We then consider a case in which one
agent has a limited (i.e. logarithmic) number of random coins while
to other player can only use strategies that are a fixed polynomial of
n. We show how, under reasonable assumptions, by employing the
Nisan-Wigderson complexity pseudorandom number generators, a ε-
Nash equilibrium can be sustained. Finally we also give some results
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for the infinitely repeated version of the game.Thesis Outline
This thesis is structured as follows. Part I is a general introduction to
mechanism design (Chapter 1) and in particular to the auctions used in
on-line advertising (Chapter 2).
Part II gives some theoretical results obtained in the context of spon-

sored search. In particular Chapter 3 considers a generalization of the
models found in the literature while Chapter 4 gives some insights on
how known strategic behaviors might affect these markets.
Part III outlines the development of a large scale simulator on ad auc-

tions, along the methodologies used to collect publicly available data
on sponsored search (Chapter 5). This simulator was successively used
to experimentally evaluate how different agents’ behaviors might affect
the market (Chapter 6).
Part IV presents work done by the author while visiting Northwest-

ern University. Chapter 7 introduces the problem, and first results, on
dealing with a non-rationalizable set of observations, while Chapter 8
presents the results on randomness in repeated games.
In the Appendix (Part V) we give some more details on the simulator’s

implementation (Chapters A and B).
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Part IBakground
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Chapter 1Mehanism Design
The goal of mechanism design is to achieve some predetermined social
objective by aggregating preferences in a strategic setting. Assume there
is a set of possible outcomes A, and that there are n agents, each char-
acterized by a preference relation on A. Let Σ be the set of all possible
preferences on A, then a social choice function is a function f : Σ→ A.
For instance, A might be a set of electoral candidates, and f might spec-
ify that the candidate preferred by the majority of the voters be chosen.
Since we are talking about social choice, and our goal is to aggregate

the preferences of different individuals in a single outcome, not all func-
tions f are reasonable candidates. For example, a social choice function
that simply picks a random outcome would not be considered “fair”.
Two of the most basic properties that it is reasonable to assume any
social choice function should satisfy are the following:

Pareto Optimality if all agents prefer outcome x to y, then f should not
choose y,

Strategy-Proof all agents must prefer the outcome of f when they de-
clare their true preference as opposed to f ’s outcome when they
lie.

The first property guarantees some fairness: if it is clear that y is not the
best choice, then f isn’t allowed to pick it. The second property ensures
that the outcome will actually reflect the agents’ true preferences, and
not some misrepresentation of them.
One of the central results in mechanism design is a negative one. Gib-

bard and Satterthwaite (Gibbard [1973], Satterthwaite [1975]) showed
that, if the domain of preferences is unrestricted, there are no useful
social choice functions that satisfy the above properties.
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Chapter 1. Mehanism Design
Theorem 1.1 (Gibbard-Satterthwaite). Let the domain of preferences be un-
restricted, |A| ≥ 3, and let f be a social choice function that satisfies Pareto
optimality and strategy-proofness. Then f is dictatorial.

In a dictatorial social choice function, there is an agent i such that, no
matter what the preference profile is, f always outputs i’s top choice.
Such functions are of little, if no, use, since preferences for other agents
are simply ignored. Thus, any social choice function must either be
dictatorial or fail on at least one of the two fundamental properties of
Pareto optimality and strategy proofness.
The process implicitly described above, however, looks rather simpli-

fied: agents announce their preferences and an action is chosen by a
central authority based on f . Could it be that, by allowing the agents
more complex strategies, the model would be different (and maybe neg-
ative results would not apply there)? It turns out that, in equilibrium,
nothing is gained by allowing agents to adopt complex strategies. This
important result is knows as the revelation principle. We briefly outline
it here.

Assume that each agents’ preferences are characterized by a type ti,
which defines all the private information agent i has, and let Ti be the
set of allowable types for agent i. An agent also has a set of possible
strategies Si, which represent all the ways in which he might decide
to interact with the central authority. A mechanism M is defined as
an outcome function g : S1 × S2 × · · · × Sn → A. Once agents learn
their type, they pick a strategy and communicate it to the mechanism,
which will then use g to determine the corresponding outcome. In the
scenario discussed in the previous paragraphs, the agents’ strategy sets
are limited to their type, i.e. Si = Ti, and all an agent can do is report a
representation of his preference. These mechanisms are called direct.
A mechanismM induces a game in which Si is the strategy set of agent

i, �i his preference relation and g describes the payoffs. We say that a
mechanismM implements a social choice function f if there is an equi-
librium strategy profile (s1(t1), · · · , sn(tn)) such that g(s1(t1), · · · , sn(tn))
= f (t1, · · · , tn). A mechanismM truthfully implements a social choice
function f , if there is such an equilibrium with the extra requirement
that si(ti) = ti for all i, i.e. each agent’s strategy is simply to reveal his
actual private information. Such mechanisms are also called incentive
compatible.1

1The notion of incentive compatibility is equivalent to the notion of strategy proofness
introduced earlier.
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Chapter 1. Mehanism Design
Notice that the notion of implementation crucially relies on the defi-

nition of equilibrium. There are many notions of equilibrium in game
theory, but we will focus on one of the strongest ones: dominant strat-
egy equilibrium.2 We adopt the conventional game theoretic notation,
in which s−i = (s1, · · · , si−1, si+1, · · · sn) represents the strategies of all
players besides i. Now, the set of all strategies can be expressed (from
i’s point of view) as s = (si, s−i). A strategy si is a dominant strategy
for player i if

g(si(ti), s−i(t−i)) �i g(s
′
i(ti), s−i(t−i)) ∀s′i , s−i.

In words, player i’s utility is maximized when playing si, no matter what
the other agents’ actions are. A strategy profile is a dominant strategy
equilibrium if every strategy is a dominant one for the corresponding
player. We can now state the revelation principle.

Theorem 1.2 (Revelation Principle). Let f be a social choice function. If f
can be implemented in dominant strategies by a mechanismM, then there is a
direct mechanismM′ that truthfully implements f in dominant strategies.

Proof. Let (s1(t1), · · · , sn(tn)) be the dominant strategy equilibrium in
M. The direct mechanismM′ works as follows. Let (t′1, · · · , t′n) be the
types that M′ receives as input; M′ will simulate M and play si(t

′
i)

for agent i. Now, the fact that si was a dominant strategy implies that
declaring their true type ti must be a dominant strategy in M′. Since
M implemented f , so doesM′. For more details on the proof see Nisan
[2007], Mas-Colell et al. [1995], Vohra [2011].

The revelation principles implies that we loose nothing in generality
by restricting ourselves to direct and truthful mechanisms: the Gibbard-
Satterthwaite result extends to indirect mechanisms as well.
Thus, if we wish to implement non-dictatorial social choice functions

by truthful mechanisms, we must either restrict agents’ preferences or
look for weaker form of equilibrium in the definition of implementation.
Auction theory considers the former approach, focusing on quasi-linear
preferences.

2Since the definition of incentive compatible depends on the type of equilibrium used,
the precise naming would be “truthfully implementable in dominant strategies” or “dom-
inant strategy incentive compatible”. However, since we will focus only on this notion of
equilibrium, we will omit the “dominant strategy” portion.
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1.1 Quasi-linear Preferenes Chapter 1. Mehanism Design1.1 Quasi-linear Preferenes
Formally quasi-linear functions are functions that are linear in at least
one of their arguments, i.e. functions that can be written as f (x1, · · · , xl ,m)
= g(x1, · · · , xl) +m. Economists usually interpret the good m as money.
Mechanisms with quasi-linear preferences are often referred to as auc-
tions.
In this setting, we can view the possible outcomes as a set A, de-

scribing the possible allocation of goods that are not m, and a set of
non-negative real values from R

n
+ specifying the associated monetary

transfers. Each agent is still characterized by a type ti ∈ Ti that defines
his preferences. Without loss of generality, we will identify agents’ type
with their valuation (or utility) function. Thus, each agent can equiva-
lently be characterized by a valuation function vi : A → R.
We can now think of the mechanism as composed of two parts

i) the allocation rule f : V1 × · · · ×Vn → A

ii) the payment rules (p1, · · · , pn), where each pi specifies the pay-
ment to player i; pi : V1 × · · · ×Vn → R.

Given valuations (v1, · · · , vn), the utility of agent i will be

ui(v1, · · · , vn) = vi( f (v1, · · · , vn))− pi(v1, · · · , vn). (1.1)

In what follows we are always going to restrict our attention to a par-
ticular class of payment rules, in which agents that don’t get allocated
any object or service pay nothing. The corresponding class of auctions
are sometimes referred to as normalized.1.1.1 Vikrey Autions
Consider an auction of a single item among n agents, and assume the
social function we want to implement is “give the item to the agent with
the highest value”.
The set of possible outcomes is A = [1..n], with outcome j meaning

that the object was allocated to agent j. Furthermore assume that each
agents’ valuation can be characterized by a single value wi (this is called
a single-parameter setting). Agent i’s valuation function is

vi(a) =

{

wi if a = i, i.e. i wins the auction

0 otherwise.
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1.1 Quasi-linear Preferenes Chapter 1. Mehanism Design
Since we are considering only direct-revelation mechanisms, the agents
will submit a single value, a bid, to the auctioneer.
Probably the most obvious auction is the first price auction, in which

the winner pays exactly what he bid. It is easy to see that in this kind
of auction an agent i is tempted to bid less than his valuation vi. In fact
if he wins by bidding bi = wi he will receive a 0 payoff, while if he bids
less than wi and is still the highest bidder he will have a positive payoff.
On the other hand, if having lowered his bid puts him in an inferior
position, he will attain a 0 payoff; in both cases his payoff is greater or
equal to 0, while before it was 0. Thus, the first price auction is not
incentive compatible.
The mechanism that truthfully implements our social choice function

in this setting was first discovered by W. Vickrey (in Vickrey [1961]). The
auction is easily described

i) allocation rule: give the item to the highest bidder,

ii) payment rule: only the winning agent pays, and his payment is
equal to the next-highest bid.

This auction is commonly known as second-price auction, since the win-
ner pays the second bid. Let bi be the bid from player i, and let b∗i be the
i-th highest bid (so that b∗1 > b∗2 > · · · > b∗n). Now bidder’s i utility is

ui(a) =

{

wi − b∗2 if a = i, i.e. b∗1 = bi
0 otherwise.

We now give the proof that bidding ones true valuation (i.e. bi = wi) is
a dominant strategy in Vickrey’s auction.

Theorem 1.3. In a second price auction, for every agent i with valuation vi
and every bi, let ui be i’s utility if he bids vi and u′i his utility if he bids bi.
Then ui ≥ u′i, independently of other players’ actions.

Proof. Pick any agent i, and assume he stated his true valuation, i.e.
bi = vi. We can distinguish two cases:

i won the auction thus i got the object at the second highest declared
price, p = b∗2 . This gives a payoff of bi − b∗2 ≥ 0 (since bi = b∗1 ≥
b∗2 ). As long as i states a bid greater than b∗2 the final price, and
thus his payoff, does not change. If he states a bid lower than b∗2
he will loose the auction (since the highest bid will then be b∗2 ) and
receive a 0 payoff.
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1.1 Quasi-linear Preferenes Chapter 1. Mehanism Design
i did not win the auction and so i receives a payoff of 0. As long as i

bids less than b∗1 (the winning bid) his payoff will remain 0. The
only way in which i could change his payoff would be by bidding
b′i > b∗1 . In this case he would win the object, receiving a payoff
ui ≤ vi − b∗1 (since he is the winner and he bid more than b∗1 the
second highest bid is now at least as large as b∗1 ). As b∗1 ≥ bi = vi
it follows that ui ≤ 0.

So, in any case, if i reports less (or more) than his true value he will
receive a payoff that is surely not greater than the one he receives if the
bids vi, independently of other players’ actions.

The key fact that makes the above theorem valid is that, in a second
price auction, the price paid by the winner is not determined by his own
bid.

Corollary 1.4. The second price auction truthfully implements the social choice
function that assigns the object to the agent with the highest valuation.

Proof. By Theorem 1.3 there is a dominant strategy equilibrium in which
bidders bid their true value, and by the allocation rule used, in this
equilibrium the bidder with the highest value gets the object.1.1.2 The Vikrey-Clarke-Groves Aution
The major limitation of the Vickrey auction is that it applies to single-
parameter single-object settings. There is a generalization of the idea
underlying Vickrey’s auction to much more general scenarios, known
as the Vickrey-Clarke-Groves mechanism, or VCG, accredited jointly to
Vickrey [1961], Clarke [1971], and Groves [1979].
The VCG mechanism can be applied when there are m heterogeneous

goods for sale and agents have arbitrarily complex preferences, repre-
sented by valuation functions vi(·). The social choice function being
implemented is the one maximizing social welfare. Thus each agent
reports a valuation function bi(·) to the auctioneer, which chooses an
assignment a ∈ A such that

a ∈ argmax
a′∈A

n

∑
i=1

bi(a
′).

Let OPT(b) = OPT(b1, · · · , bn) denote the value of this assignment (i.e.
the optimal social welfare) and, for notational convenience, let

• OPT−i(b) = OPT(b)− bi(a),
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1.1 Quasi-linear Preferenes Chapter 1. Mehanism Design
• OPT(b−i) = OPT(b1, · · · , bi−1, bi+1, · · · , bn).

Intuitively OPT−i represents the value of the optimal surplus without i’s
contribution, while OPT(b−i) is the maximum social welfare that could
have been obtained had i not participated in the auction. Notice that,
most importantly, both terms do not depend on i’s valuation.
The crux of the mechanism lies in the payments, which are defined as

pi = OPT(b−i)−OPT−i(b).
In essence each agent is paying an amount equivalent to all the other

bidders’ losses due to his presence. Economists call this negative exter-
nalities. One of the main properties of the VCG mechanism is that it is
incentive compatible.

Theorem 1.5. Truthful reporting is a dominant strategy in VCG.

Proof. Pick any bidder i, and any fixed profile of valuations for the other
bidders {bj}j 6=i. Let a be the allocation when bidder i reports truthfully
and a the allocation when i reports a valuation function that is not vi.
Notice that in both cases, the payment for i is the same (since the other
agents’ reports are fixed). When i does not report truthfully, his utility
is

ui(a) = vi(a)− pi = vi(a)−OPT(b−i) +OPT−i(b)
≤ vi(a) +OPT−i(b)−OPT(b−i)
= vi(a)− pi = ui(a),

where the inequality follows since, by definition, vi(a) + OPT−i(b) =OPT(b) is the value of the allocation that maximizes social welfare.
Thus, in particular, it must be the case that OPT(b) ≥ vi(a) +OPT−i(b).
The VCG mechanism (and the proof of Theorem 1.5) do not impose

any restriction on the format of bidder’s preferences (of course, they
have to be quasi-linear). Thus it is always possible to truthfully imple-
ment the social choice function that maximizes social welfare.
One might ask which other social choice functions can be implemented.

We first give an answer to this question in the single-parameter setting,
and then extend it to the more general cases.Inentive ompatible Charaterization in Single Parameter Settings
It turns out that, in single parameter domains, it is possible to fully char-
acterize incentive compatible mechanisms. The class of social choice
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1.1 Quasi-linear Preferenes Chapter 1. Mehanism Design
functions that can be implemented is fairly large: the only condition is
a monotonicity one. Recall that, in single parameter settings, A = [1..n].
A social choice function f is called monotone if, for all i, having fixed
v−i, if f (vi, v−i) = i then it must also be the case that f (v′i, v−i) = i for
all v′i ≥ vi. In words: if the valuation of a winning agent increases, all
other values being fixed, he must still win the auction. Since the agents
only value “winning”, the social choice function from i’s viewpoint is a
step function (see Figure 1.1). We call ci bidder’s i critical value, and

Figure 1.1: A monotone social choice function in a single parameter set-
ting, for fixed v−i.

identify it with the minimum value i can have and still win the object.
Formally ci(v−i) = supvi| f (vi,v−i) 6=i vi. We first show that, in single pa-
rameter incentive compatible mechanisms, all winning agents must pay
the same value.

Lemma 1.6. In an incentive compatible mechanismM = ( f , p1, · · · , pn) in
a single parameter setting, all winning bids pay the same amount p.

Proof. Assume not. Then there is a winning bidder that would prefer
changing his bid to that of another winning bidder that is paying less.
This contradicts the incentive compatible assumption.

We now give the full characterization of incentive compatible mecha-
nisms in single parameter domains.

Theorem 1.7. A normalized mechanism M = ( f , p1, · · · , pn) in a single
parameter setting is incentive compatible if and only if
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1.1 Quasi-linear Preferenes Chapter 1. Mehanism Design
i) f is monotone

ii) for all i, pi = ci (i.e. each bidder pays his critical value).

Proof. (If part) This part is similar to the proof of Theorem 1.3 [page 20]
(notice that in a single item auction, the second highest bid is the critical
value). For any bidder i, and fixed v, his utility is vi − ci(v−i) if he wins,
and 0 if he looses. By monotonicity of f , and assuming i is winning, he is
better off bidding vi, since if he bids less he might loose the auction and
decrease his utility (if he bids more his utility does not change). On the
other hand, if i is loosing, he is still better off announcing vi, since if he
announced more he might win (decreasing his utility), while if he bids
less nothing changes (again, this holds because since f is monotone).
(Only if part) First we show that, ifM is incentive compatible, then f

is monotone. Assume not. Then there must be an i and v′i > vi such
that f (vi, v−i) = i and f (v′i, v−i) 6= i (i.e. by increasing his declared
value i ceased being served). Since we assumed the mechanism was
incentive compatible, we know that i is better off bidding vi than v′i, so
that he prefers winning to loosing, i.e. vi − pi(v−i) ≥ 0. Now assume
i’s true value was v′i; then he would prefer loosing to winning, i.e. v′i −
pi(v−i) ≤ 0 (notice that since we changed only i, his payments are the
same). Thus it must be the case that vi = v′i, a contradiction.
Now we show that agents must pay their critical values. Assume, by

way of contradiction, that a winning agent i is paying p > ci(v−i). By
Lemma 1.6 we know that all winning agents are paying p. So, an agent
with value v′i such that ci(v−i) < v′i < p would be better off declaring
a lower value, which contradicts the incentive compatible assumption.
The other direction (i.e. when p < ci(v−i)) is similar.Inentive ompatible Charaterization in General
When we impose no restriction on the domain of preferences, it can be
shown that, in a sense, very little besides the VCG is incentive compatible.
We just state these theorems here, referring to Vohra [2011], Nisan [2007]
for more details.
A social choice function f satisfies (weak) monotonicity if, for all i

and v−i we have that f (vi, v−i) = a 6= b = f (v′i, v−i) implies that vi(a)−
vi(b) ≥ v′i(a)− v′i(b). In words: if the allocation changes solely because
i changed his valuation, it must be the case that i changed the relative
value of the new choice.

Theorem 1.8. If a mechanismM = ( f , p1, · · · , pn) is incentive compatible,
then f satisfies weak monotonicity. If all domains of preferences Vi are convex
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sets, then for every social choice function f that satisfies weak monotonicity,
there exist payment rules (p1, · · · , pn) that makes the mechanism incentive
compatible.

There is also another characterization given by Roberts (in Roberts
[1979]). In Roberts’ theorem it is easy to verify that the only incentive
compatible mechanisms in general settings are weighted versions of
VCG. The weighted VCG mechanism assigns weights wi to each agent,
and the objective is to maximize the weighted social welfare. It is not
difficult to see that the following payment rule (along choosing the op-
timal allocation) makes the mechanism incentive compatible:

pi =
1
wi

(OPT(v′−i)−OPT−i(v′)) , (1.2)

where, if a is the optimal weighted allocation, OPT(v′) = ∑j∈a wjv
′
j(a).

Such functions are called affine maximizers. More formally, f is an
affine maximizer if, for some player weights wi and outcome weights
ca, we have that f (v1, · · · , vn) = argmaxa∈A′(ca + ∑j wjvj(a)). Roberts’
theorem shows that being an affine maximizer is a necessary condition
for being incentive compatible.

Theorem 1.9 (Roberts’ Theorem). If |A| ≥ 3, f is onto, Vi = R
A for all i

and f is incentive compatible, then f is an affine maximizer.1.1.3 Some drawbaks of VCG
As the characterization in the previous section shows, VCG plays a cen-
tral role in theoretical mechanism design, however it is not often used in
practice. There are many reasons for this, Ausubel and Milgrom [2006]
list several of these. We will focus on just two of them that have a com-
putational flavor, and for ease of exposition we will restrict attention to
the setting of combinatorial auctions. In this scenario, a set of goods m
is on auction, and there are n interested agents.
First assume bidders are single-minded, i.e. they have interest for

one particular subset of items: bidder i has value vi for receiving items
Si ⊆ [1..m] and value 0 otherwise. There is just one copy of each item,
so we can’t allocate their desired sets to bidders i and j unless Si ∩
Sj = ∅. To simplify even further assume that all players receive the
same utility from getting their allocation (i.e. vi = vj = 1∀ i, j). If
we needed to find an incentive compatible mechanism that maximizes
social welfare for this setting the answer would be easy: just use VCG.
Furthermore, since this is a single parameter setting, we just need to
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find the allocation that maximizes ∑i vi and the payments are simply
the critical values. However, the problem of computing the optimal
allocation can be rewritten as follows:

given a collection S1, · · · , Sn of finite subsets of [1..m], find
the maximum number of mutually disjoint sets.

This is the optimization version of the set packing problem, which is
known to be NP-omplete (see Garey and Johnson [1979]). Thus, al-
though we have a mechanism that is guaranteed to implement our so-
cial choice functions, and also a formula for the payments, it might be
computationally infeasible to determine who gets which objects.
Another computational problem arises if we slightly generalize the

above setting and allow agents to have more complicated preferences.
Assume for instance that each agent has a value for every subset of
[1..m]. The VCG mechanism can still be used, however its implementa-
tion requires that agents report their complete preferences to the central
authority. This involves, in the worst case, an exponential amount of
communication.
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Chapter 2On-line Advertising2.1 Autions in On-line Advertising
The history of advertising on the Web starts with a model related to the
physical world: an advertiser pays a certain website to display his ad. To
adapt the payment to the size of the audience, the advertiser is charged
a small amount each time the ad is viewed (pay-per-impression). This,
as in the physical world, is detrimental for small advertisers in niche
markets, who are in competition for ad space with big companies. In the
real world a niche advertiser could partially overcome such a problem
by placing ads only in certain locations, e.g. in specialized journals.
This same idea can be ported to the Web, but in a much more general
setting. Without negotiating deals with every website or portal related
to his product, there is a one stop solution for every advertiser: the
search engine.
When a user enters a web query, from an advertiser’s point of view, he

is expressing interest for that particular product or service. So the re-
sults page seems an obvious place to display ads regarding that particu-
lar keyword: this is the basic concept behind keyword based advertising.
This idea was so successful, for both search engines and advertisers, that
it is today a 15$ billion per year business, and it is the primary source
of income for most search engine companies.1

Another turning point in the online advertising business has been the
switch in payment modes; from pay-per-impression to pay-per-click. In
the Web, the intentions of a user, a potential customer, can be further

1See https://seure.wikimedia.org/wikipedia/en/wiki/Searh_engine_marketing.
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verified; we know someone is interested in our product when his web
search contains certain keywords, but we are virtually sure he is inter-
ested when he actually clicks on our ad. Sponsored search today relies
on this model, and an advertiser is charged only when someone clicks
on his ad (pay-per-click). At first sight this could seem a less profitable
design for the search engine; after all an ad is very often displayed with-
out being clicked. It turns out that, being able to pay to advertise only
to very plausible customers has a huge value to companies, driving the
price of each click to high values (tens of dollars in certain cases). This
model was so successful that today it is adopted by all the major search
engine companies.
If in the pay-per-impression model the prices were fixed, in the pay-

per-click model they are determined dynamically. This happens because
it would be unreasonable for the search engine to come up with a set of
prices for each possible search query, and furthermore the prices should
reflect the actual competition for a given keyword at any time. Further-
more the entities being sold, i.e. clicks, have an unclear nature, and it
is not obvious how they should be priced. The determination of a price
for a good of unknown (or unclear) value is a well known problem in
economics, and can often be solved by a simple mechanism: an auc-
tion. This is the solution adopted by most search engines today, and the
resulting systems have been called ad auctions.2

When the advertisers subscribe to the service they specify a number of
keywords in which they are interested, and for each of these they declare
a how much they are willing to pay for each click. Advertisers are also
requested to specify a maximum daily budget. If there were a single
slot in which to display ads, this setting would resemble a single-item
auction; upon the arrival of a certain query, the search engine selects
the interested bidders, and displays the ad of the one with the highest
bid. This advertising model is generally referred to as keyword based
advertising.2.2 A Model for Position Autions
We consider a fixed search engine query, i.e. a single auction. Let there
be k available slots and n advertisers. We will usually assume that n > k:
this can be done without loss of generality, since if there were n ≤ k
bidders we could define an equivalent auction with n′ = k+ 1− n ghost

2These auctions go under a number of different names. Economists often refer to them
as position auctions, while in computer science the term sponsored search auctions is
often used.
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2.2 A Model for Position Autions Chapter 2. On-line Advertising
bidders whose valuation and bids are all 0. Each agent is assigned to
a slot and, assuming agent i is in slot j, each agent/slot combination
is characterized by its click through rate, which we denote as CTRi,j.
This value can be interpreted as the expected number of clicks the ad
receives in a fixed amount of time (an hour, a day, a month). These
values can be estimated by the search engine from historical data. A
usual assumption is that CTRi,j> CTRi,j+1 for any i, j. This means that,
for any agent, higher slots give more clicks. An immediate implication
of this assumption is that all agents’ interests are aligned: everybody
has the same preference ordering on slots.
Consider a simplified version of the online advertising problem in

which there is just one slot available for displaying ads. Since we are
considering a single keyword, this situation resembles the single item
sealed bid auction described in Section 1.1.1 [page 19]. In fact, although
there are multiple clicks for sale, only one bidder can get allocated to
the only slot: he then will receive all the clicks. Thus agents can be
characterized by a single parameter, namely their value vi for receiving
a click. Each bidder submits a bid bi as a representation of his private
information to the search engine.
In our simplified scenario once an ad is displayed it will receive a

number of clicks, according to the known value of the click through
rate α. The search engine sorts the bidders according to their bid value
and displays the ad of the first bidder. Then, by some mechanism, a
price p for each click is established. The winning agent will pay for
each click, and so the revenue R at price p for the search engine is

R(p) = αp.

On the other hand each click is valued vi by the winning bidder i, so the
bidders’ utilities at the current price are now

ui(p) =

{

0 if i is not displayed
α(vi − p) if i is in the only slot.A Note on Weights and lik through rates In the most general model,

each agent i is assigned a weight wi, and agents are sorted in decreasing
order of the product wibi. The weights wi allow the search engine to
control the ranking. In the literature two possible settings for these
weights have been considered

i) wi = 1 for all i, so that agents are ranked by bid,

ii) wi = CTR1,i.
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in the second alternative, also known as rank-by-revenue, the search
engine assigns higher weights to agents that, intuitively, generate more
clicks. The fact that most of the research has focused on these two
settings is mainly due to historical reasons. In fact, one of the first
companies to implement sponsored search, Overture,3 simply ranked
advertisers by bid, i.e. setting wi = 1 for all i. Subsequently, when
Google entered the market, their auctions were run with the revenue
maximizing weights, wi = CTR1,i.
Before studying the auctions in use by search engine a further clarifica-

tion must be made on click through rates. A common assumption is that
click through rates can be decomposed into a slot specific and advertiser
specific components, i.e. there are non-negative numbers α1, · · · , αk and
β1, · · · , βn such that CTRi,j= αiβ j. If this is possible, the click through
rates are called separable. Furthermore, if all βi = 1, then the click
through rate of a slot does not depend on the actual ad currently dis-
played in that slot. In this case we call click through rates bidder inde-
pendent, and label them simply α1, · · · , αk.
Notice that, when click through rates are separable, we assume that

the search engine ranks bidders according to the product βb, so as to
generate the highest number of clicks. In this setting, the case case in
which wi = CTR1,i is equivalent to the case in which wi = 1. In fact, in
the first case the agents are sorted according to wibi, i.e. i is above j if
and only if

wibi ≥ wjbj.

Rewriting wi as CTR1,i = α1βi we obtain

α1βibi ≥ α1β jbj,

so that we can equivalently sort by βibi, ignoring weights.
In what follows we will outline the model as originally studied by

Edelman et al. [2007] and Varian [2007], and let wi = 1 for all i. A
generalization of this model will be considered in Chapter 3 [page 57].

3Formerly GoTo.com, Overture was acquired by Yahoo! in 2003.
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We now consider the general case, in which there are k available slots,
with bidder independent click through rates. For convenience we as-
sume that there is an extra slot k+ 1 whose click through rate is 0, so
that α1 ≥ · · · ≥ αk ≥ αk+1 = 0. We will denote the valuations, bids,
prices and agents sorted by decreasing bid order as v∗, b∗, p∗ and a∗

respectively. So, for example, if bidder i receives the third slot, i = a∗3 ,
his valuation is vi = v∗3 , his bid bi = b∗3 and the price he will pay for
every click p∗3 .
Vickrey’s second price auctions can be generalized in different ways to

deal with multiple objects. The most natural way will be described in
Section 2.4 [page 39], while now we introduce a different generalization,
widely adopted in the context of online advertising; the generalized sec-
ond price auction, or GSP. In this mechanism each agent that is awarded
a slot will pay a price corresponding to the next highest bid. Since we
assume that n > k, the bidder in the last slot will pay the bid of the first
excluded bidder. Notice that, in the case in which there are more slots
than agents and we add in the model fictitious bidders with 0 bids, the
last displayed ad will pay a 0 price.4

Example 2.3.1. Assume there are 2 advertising slots (1 and
2) and 3 interested agents (a, b and c). The slots have a click
through rate of 200 and 100 clicks per hour, respectively (α1 =
100, α2 = 200). The tree advertiser value each click va = 5$,
vb = 4$ and vc = 2$ respectively.

Slots Agents
Position CTR

1 200
2 100
- 0

Agent Value per click
a va = 5$
b vb = 4$
c vc = 2$

Assume they all bid their true valuation vi, then a and b will
have their ads displayed, paying 800$ and 200$ per hour, re-
spectively.

Position Agent Bid Price per click Revenue
1 a b∗1 = ba = 5$ p∗1 = b∗2 = 4$ 5$ · 200− 4$ · 200 = 200$
2 b b∗2 = bb = 4$ p∗2 = b∗3 = 2$ 4$ · 100− 2$ · 100 = 200$
- c b∗3 = bc = 2$ p∗3 = 0$ 0$

4In reality search engines will charge a positive amount in this case.

31



2.3 Generalized Seond Prie Autions Chapter 2. On-line Advertising
Since a values 5$ each click received, he will earn 200 · 5$ −
800$ = 200$. The bidder in the second slot, b, will earn (4−
2)100$ = 200$. �

The GSP and the second price auction are tightly connected: in fact
they coincide if there is just one available slot. This similarity could
suggest that also the incentive compatibility of the second price auction
(see Corollary 1.3 [page 20]) is carried over to the GSP. Unfortunately
this is not the case, as shown by a slight modification of the above ex-
ample.

Example 2.3.2. Player a, having bid 5$ will win the top slot,
and, as shown above, will earn 200$ (receiving 200 clicks that he
values 5$ each and paying 4$ for each of them). What would
happen if player a decided not to bid his true valuation va?
Suppose he bids ba = 3$ < va. This implies he will not be
in the top slot anymore, receiving half the number of clicks.
Nonetheless he will earn 500$ (receiving 100 clicks which he
still values 5$ each).

Position Agent Bid Price per click Revenue
1 b b∗1 = bb = 4$ p∗1 = b2 = 3$ 4$ · 200− 3$ · 200 = 200$
2 a b∗2 = ba = 3$ p∗2 = b3 = 2$ 5$ · 100− 2$ · 100 = 300$
- c b∗c = vc = 2$ p∗3 = 0$ 0$

The payments will instead be 200$, since the next highest bid
is 2$. Thus player a’s revenue is 300$, showing that he is better
off not reporting his true valuation. �2.3.1 Equilibria

Although the GSP auctions do not have the strong properties of Vick-
rey’s original mechanism, they still do have some attractive characteris-
tics. One of them is that they can be thoroughly analyzed. To this end
we will define a game based on the GSP mechanism. We will assume it
is a game with complete information, that is we assume that each agent
knows the valuations of all other bidders. This assumption is needed
to make the analysis feasible, but it is actually not as unrealistic as it
first sounds: in fact the ad auctions are repeated numerous times, with
mostly the same agents, so we can suppose that, after some amount of
time, each bidder has a (more or less) correct view of the others’ valua-
tions.
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We are then interested in describing the equilibria of such games. For

a game to be in Nash equilibrium, each player should prefer his current
strategy, given the strategies of all other players. In the GSP scenario, if
we fix the strategies for all other players, we are actually fixing the bids
for each slot. So the equilibrium conditions should capture the fact that
no agent is willing to modify his bid in order to obtain a different slot.

Definition 2.3. A Nash Equilibrium set of prices (NE) satisfies

(v∗j − p∗j )αj ≥ (v∗j − p∗k)αk for k > j (2.1)

(v∗j − p∗j )αj ≥ (v∗j − p∗k−1)αk for k < j (2.2)

for each slot j = 1, . . . ,m, where p∗j is determined by the GSP mechanism, i.e.

p∗j = b∗j+1.

We need two different conditions in view of the way the GSP mecha-
nism works. Consider the examples above; if bidder a wants to move
downwards he has to bid lower than the price the agent below him (b)
is currently paying. While if agent b wants to move upwards he has
to beat the bid of the agent above him (a). So the first condition is re-
lated to slots lower than the agent’s current one; it ensures that, even at
the current price of these slots he would not prefer them. The second
condition can be rewritten as

(v∗j − p∗j )αj ≥ (v∗j − b∗k )αt for k < j,

since by the GSP mechanism p∗k−1 = b∗k . It ensures that, if i were to
overbid that agent (thus paying bk) he would not prefer the payoff in
that position. Another way to view this asymmetry is this: if an agent
wants to move downward he can do so without altering the current
prices (he will simply swap positions with the agent below him and end
up paying what that agent was paying). On the other hand, if an agent
wants to move upward, the prices of the slots above him will change: in
fact, he will have to overbid the agent above him, and that is precisely
the bid he will end up paying (since the overbid agent will become the
next highest bid).
There is an interesting subset of (NE) that has some notable properties:

the equilibrium bids and prices can be recursively bounded.

Definition 2.4. A symmetric Nash equilibrium set of prices (SNE) satisfies

(v∗j − p∗j )αj ≥ (v∗j − p∗k)αk for all k

for all positions j, where p∗k = b∗k+1.
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This is precisely the condition that holds in a (NE) for prices below the

current position. Clearly any (SNE) is a (NE), since p∗k−1 = b∗k ≥ b∗k+1 =
p∗k . In a (SNE) each bidder prefers his current position to any other
position at current prices; in particular he prefers his position to the
positions above him even if he could obtain them without overbidding
the current occupier (i.e. at the same price). This property is also often
called envy-freeness, since no agent would choose to change places.
Following Varian [2007] we enumerate some properties of (SNE).

Fact 2.5. In a (SNE) each bidder pays no more than what he values each click,
that is

v∗j ≥ p∗j .

Proof. By definition the click through rate of any slot s such that s > m
is5 0. Since the inequality characterizing the (SNE) holds for all j we can
write

(v∗j − p∗j )αj ≥ (v∗j − p∗m+1)αm+1 = 0,

hence v∗j ≥ p∗j .

Fact 2.6. In a (SNE) bidders are sorted in decreasing valuation order,

v∗j−1 ≥ v∗j for all i.

Proof. The (SNE) condition can be rewritten as

v∗j (αj − αk) ≥ p∗j αj − p∗kαk.

Consider the (SNE) inequalities for two different positions k and j:

v∗j (αj − αk) ≥ p∗j αj − p∗kαk (2.3)

v∗k(αk − αj) ≥ p∗kαk − p∗j αj. (2.4)

Adding up the two inequalities (2.3) and (2.4), we obtain

(αj − αk)(v
∗
j − v∗k ) ≥ 0

showing that the values of α and v∗ should be ordered in the same way
(and we assume that click through rates are in decreasing order).

Fact 2.7. In a (SNE), p∗j−1αj−1 > p∗j αj and p∗j−1 ≥ p∗j for all j. If v∗j > p∗j
then p∗j−1 > p∗j .

5Recall that there are only m slots, so αs = 0 for s > m simply states that there will be
no clicks on slots that do not exist.
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Proof. The definition of (SNE) implies that

(v∗j − p∗j )αj ≥ (v∗j − p∗j−1)αj−1

which can be rewritten as

p∗j−1αj−1 ≥ p∗j αj + v∗j (αj−1 − αj),

and assuming αj−1 > αj this implies

p∗j−1αj−1 > p∗j αj.

To prove that p∗j−1 ≥ p∗j consider

p∗j−1αj−1 ≥ p∗j αj + v∗j (αj−1 − αj) ≥ p∗j αj + p∗j (αj−1 − αj) = p∗j αj−1,

in which we used v∗j ≥ p∗j (Fact 2.5 [page 34]). Dividing the above by
αj−1 we obtain p∗j−1 ≥ p∗j . If the second inequality is strict (v∗j > p∗j )
then p∗j−1 > p∗j .

The next fact is probably the most interesting one. It asserts that it is
only necessary to verify the (SNE) inequalities for one position above or
below the one considered to show that the inequalities hold for all the
slots. This condition is also referred to as local envy freeness.

Fact 2.8. If a set of bids satisfies the (SNE) conditions for i+ 1 and i− 1 then
it satisfies the (SNE) conditions for all i.

Proof. Assume there are 3 available slots, and the (SNE) inequality holds
between slots 1 and 2 and between slots 2 and 3. Should it hold for slots
1 and 3 we would have given an example (easily extensible to the general
case). Let’s write the inequalities we know are holding:

v∗1(α1 − α2) ≥ p∗1α1 − p∗2α2 (2.5)

v∗2(α2 − α3) ≥ p∗2α2 − p∗3α3 (2.6)

By Fact 2.6 [page 34] we know that v∗1 ≥ v∗2 , hence (2.6) becomes

v∗1(α2 − α3) ≥ p∗2α2 − p∗3α3

Adding this with (2.5) we obtain

v∗1(α1 − α3) ≥ p∗1α1 − p∗3α3

which is precisely the (SNE) condition for slots 1 and 3.
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Given all of the above facts we can characterize the prices at equilib-

rium. We know that bidder in slot j will not want to move down one
slot, while bidder in slot j+ 1 will not want to move up, so

(v∗j − p∗j )αj ≥ (v∗j − p∗j+1)αj+1

(v∗j+1− p∗j+1)αj+1 ≥ (v∗j+1− p∗j )αj.

Combining these two inequalities we obtain

v∗j (αj − αj+1) + p∗j+1αj+1 ≥ p∗j αj ≥ v∗j+1(αj − αj+1) + p∗j+1αj+1.

Substituting bids for prices according to the GSP mechanism we obtain

v∗j−1(αj−1− αj) + b∗j+1αj ≥ b∗j αj−1 ≥ v∗j (αj−1− αj) + b∗j+1αj. (2.7)

This last inequality bounds the bids in any (SNE), with respect to the
bids of agents directly above and below him. Considering just the lower
bound on the bids we can write

b∗j αj−1 = v∗j (αj−1− αj) + b∗j+1αj.

Since there are only k slots and we assume αk+1 = 0 we can solve the
recursion, obtaining

b∗j αj−1 = ∑
k≥j

v∗k(αk−1 − αk). (2.8)

We have now a complete characterization of bids (and thus prices) that
yield a symmetric Nash equilibrium.

Example 2.3.9. Consider the situation in Example 2.1 [page 31],
in which agents bid their true valuations. In this case these bids
do not lead to (SNE) prices, since bidder a would prefer the
second slot (at current prices), as this would give him a payoff
of 300$: 100$ more than he is making in the top slot. This fact
was exploited in Example 2.2 [page 32], where it was shown
that, by changing his bid, a could actually increase his profit.

We could now ask when does truthful bidding lead to a (SNE)
in the GSP mechanism. The bounds derived above can give
some insight. If bidders are truthful, the upper bound of Equa-
tion (2.7) becomes

v∗j αj−1 ≤ v∗j−1(αj−1− αj) + v∗j+1αj.
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Rearranging terms we get

αj(v
∗
j+1− v∗j−1) + αj−1(v

∗
j−1− v∗j ) ≥ 0.

If we consider the case of Example 2.1 [page 31] for j = 2 we
obtain

100(2$− 5$) + 200(5$− 4$) < 0,

which shows that in this case bidding their true valuation does
not lead agents to a (SNE). But Equation (2.7) also gives lower
bounds, that when bidders are truthful become

v∗j αj−1 ≥ v∗j (αj−1 − αj) + v∗j+1αj.

As above, rearranging terms, we get

αj(v
∗
j+1− v∗j ) ≤ 0.

By definition αj ≥ 0, and by Fact 2.6 [page 34] (v∗j+1 − v∗j ) ≤ 0
in a (SNE). So the lower bounds at (SNE) are always respected
by truthful bids. This implies that, if truthful bidding is not
a (SNE), then any (SNE) will have bids strictly lower than the
players’ valuations. �2.3.2 Generalizations

When we consider separable click through rates (as opposed to bid-
der independent click through rates as in the previous paragraphs), the
model and equilibrium properties remain unchanged.
Consider first the case in which merchants are ranked by bid, so that

payment for slot j is simply bj+1. The equilibrium conditions (2.1) for
player i currently in slot i:

αiβi(vi − bi+1) ≥ αjβi(vi − bj+1). (2.9)

which is exactly (2.1).
A similar argument holds when bidders are ranked by revenue, i.e.

by decreasing order of βibi. In this case the auction can’t simply charge
bidder i in slot i the next highest bid bi+1, since it could very well be that
bi+1 > bi. In this setting payments are usually defined as “the minimum
bid necessary for i to retain his position”, so that

pi =
βi+1bi+1

βi
.
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By using these payments, bidder’s i utility when in position i

ui = αiβi

(

vi −
βi+1bi+1

βi

)

= αi(βivi − βi+1bi+1).

Thus, this setting is equivalent to a model with bidder independent click
through rates (as discussed in previous paragraphs) in which we scale
all bids and valuations by β.
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Let’s consider again the simple case where there is only one object for
sale. Of course this is just a special case of the multi object auction,
but we know (see Theorem 1.3 [page 20]) that the Vickrey second price
mechanism will enforce every player to bid truthfully.

Example 2.4.10. Consider the situation in Example 2.1 [page 31],
but assume there is just 1 advertising slot available.

Slots Agents
Position CTR

1 200
- 0

Agent Value per click
a va = 5$
b vb = 4$
c vc = 2$

Assume all players bid their true valuation vi; then, applying
the Vickrey second price auction, a will have its ad displayed,
paying b’s bid. That is a will pay 200 · 4$ while earning 200 · 5$,
which is a payoff of 200$. Now consider the same situation,
only without buyer a. In this case b would win the auction,
paying c’s bid, receiving 800$ worth of clicks. So, since b earns
0 if a is there, we can say that merely a’s presence harms b pre-
cisely 800$. But that is exactly what a pays. As Theorem 2.22
[page 51] states a is charged according to his negative external-
ities. �

The GSP mechanism was derived from the second price auction, but
it did not retain its most useful property. The Vickrey Clarke Gables
(VCG) mechanism (introduced in Section 1.1.2 [page 21]) generalizes
the Vickrey second price auction in a different way, as illustrated by the
Example 2.11. Each bidder is charged according to the negative effect
he has on other participants.

Example 2.4.11. Consider once again the scenario in example
2.1 [page 31].

Slots Agents
Position CTR

1 200
2 100
- 0

Agent Value per click
a va = 5$
b vb = 4$
c vc = 2$
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And assume all bidders bid their true valuation (i.e. bi = vi).
This time we will apply the VCGmechanism instead of the GSP.
The two slots will still be won by a and b, the only difference
being what they will be charged for that. As a first step note
that, for bidders above bidder i in the ranking, it makes no
difference in their payoffs whether i is or is not there. Thus,
when computing the negative effect of the presence of a bidder,
we must just consider such effect on agents ranked lower than
him.

Consider agent b. Had he not been there agent c would have
earned the second slot, which would have earned him 100 · 2$ =
200$. So b will get charged exactly 200$, while earning 200 · 4$,
for a payoff of 600$.

Agent a’s absence would have benefited both b and c. As above,
cwould have won the last slot, which is worth 200$ to him. And
b would have gone from the second to the first. In the slot he’s
in when a participates he earns 100 · 4$, while in the first slot
he could make 200 · 4$. So the loss he has because of player
a is (200− 100) · 4$ = 400$. This means that agent a will get
charged 200$+ 400$ = 600$, while earning 200 · 5$, which gives
a payoff of 400$.

Position Agent Bid Price paid Revenue
1 a ba = va = 5$ p1 = 600$ 5$ · 200− 600$ = 400$
2 b bb = vb = 4$ p2 = 200$ 4$ · 100− 200$ = 200$
- c bc = vc = 2$ p3 = 0$ 0$

�

We can now write an explicit formula for the payment pVj of slot j

under the VCG mechanism:

pVj = ∑
k>j

v∗k (αk−1 − αk), (2.10)

assuming as usual that αs = 0 for s > k where k is the number of slots.
Notice that pVj represents the overall payment for bidder j: for ease of

exposition we will denote by qVj his per click payment so that

qVj = pVj /αj.

There are a few interesting facts about the VCG auction mechanism,
which we report in the proposition below.
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Proposition 2.12.

i) no agent can benefit from misreporting his true valuation: truthful bid-
ding is a dominant strategy (as in the Vickrey second price auction),

ii) VCG prices are non-increasing

iii) the payments computed by the VCG correspond to the buyer optimal
minimum equilibrium prices,

iv) there is a GSP equilibrium outcome in which the allocations and prices
are the same as in the corresponding VCG outcome,

v) bidder’s payments in the GSP are always at least as large as the payments
in the corresponding VCG.

vi) VCG prices satisfies local indifference, i.e. for every bidder i ∈ [2..k+ 1]

αi(vi − qVi ) = αi+1(vi − qVi+1).

vii) VCG prices are envy-free, i.e. for every i, j ∈ [1..k+ 1]

αj(vj − qVj ) ≥ αi(vj − qVi ).

Proof. Property i) is Theorem 1.5 [page 22].
For ii), consider first that (2.10) can be expressed recursively as

qVi =
1
αi
vi+1(αi − αi+1) +

1
αi

∑
j>i+1

vj(αj−1− αj)

= vi+1(1−
αj+1

αi
) +

αi+1

αi
qVi+1. (2.11)

Since truth telling is a dominant strategy for VCG, it must be the case
that qVi ≤ vi (since otherwise the strategy of declaring vi would be
dominated by simply bidding 0 and receiving a 0 payoff). Substituting
for vi+1 we get qVi ≥ qVi+1, which also implies pVi ≥ pVi+1, since we
assume that αi ≥ αi+1.
The proof of iii) will be outlined in Section 2.6.
To see iv), consider an (SNE) equilibrium for GSP, which satisfies the

lower bound (2.8) which we rewrite here:

b∗j αj−1 = ∑
k≥j

v∗k−1(αk−1 − αk).

41



2.4 Vikrey-Clarke-Groves Autions Chapter 2. On-line Advertising
Since in the GSP (to which the formula above refers) p∗j = b∗j+1, this
becomes

p∗j−1αj−1 = ∑
k≥j

v∗k−1(αk−1 − αk).

Comparing this with (2.10) we see that the price in the GSP mechanism
is

p∗j =
pVj

αj
= qVj .

This implies that, at the lowest bids in a symmetric Nash equilibrium,
the payments are the same as in the VCG.
The proof of v) is presented below, in Theorem 2.13.
Point vi) follows by simply rearranging (2.11).
Finally to prove part vii) we need to verify the inequalities for slots

above and below j. Consider first slots below j’s current position, i.e.
i > j. In this case we know that, by lowering his bid, j could get them
precisely at price qVi : the envy freeness inequality αj(vj − qVj ) ≥ αi(vj −
qVi ) is a consequence of the fact that bidding vi is a dominant strategy
in VCG. Now consider slots above j, i.e. i < j. By the fact that prices
satisfy local indifference, i.e. point vi), for every slot h ≤ j we know
that αh(vh − qVh ) = αh−1(vh−1− qVh−1). Since αl−1 ≥ αl and vl ≥ vj, this
implies that αh(vj− qVh ) = αh−1(vj− qVh−1). Since this holds for all h ≤ i,
it holds also for i and j, so that αj(vj − qVj ) ≥ αi(vj − qVi ).

As a last result we prove what is a very interesting fact in the eyes of
the search engine companies selling ad slots: their revenue is always at
least as large in the GSP as it is in the VCG (assuming the bidders bid the
same amounts). This partially motivates the use of the GSP mechanism,
despite the fact that it is prone to strategic manipulations.

Theorem 2.13. If all bidders were to bid the same amounts under the GSP
and VCG mechanisms, then each advertiser’s payment would be at least as
large under GSP as under VCG.

Proof. Assume there are more bidders than available slots. Equation
(2.10) can be expressed recursively as

pVj = (αj − αj+1)b
∗
j+1 + pVj+1,

and considering the difference between the prices payed by j and j+ 1

pVj − pVj+1 = (αj − αj+1)b
∗
j+1.
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Since b∗j+1 ≥ b∗j+2 we can write

(αj − αj+1)b
∗
j+1 ≤ αjb

∗
j+1 − αj+1b

∗
j+2,

but the right hand side of the above inequality is precisely the difference
of payments from position j to position j+ 1 in the GSP mechanism (call
them pGj and pGj+1), so we finally have

pVj − pVj+1 ≤ pGj − pGj+1.2.4.1 Generalizations
As in Section 2.3.2 [page 37] we can consider variations of the above
mechanism for when click through rates are not bidder independent.
When click through rates are separable, it is possible to use the weighted

version of the VCG auction (see Section 1.1.2 [page 24]) to obtain an in-
centive compatible mechanism in this setting. As noted on page 29,
when click through rates are separable, adding bidder specific weights
wi adds nothing to the model, so we will consider all weights set to 1.
Total payments can be expressed as

pwVi =
k+1

∑
j>i

β j

βi
vj
(

αj−1 − αj

)

, (2.12)

so that the per click cost is

qwVi =
1
αi

pwVi . (2.13)

As in the GSP case, we can see that this is equivalent to scaling all bids
and values by the corresponding β, since agent i’s utility is now

ui = αiβi(vi − qwVi ) = αi

(

βivi −
1
αi

∑
j>i

β jvj(αj−1− αj)

)

. (2.14)

On the other hand, if we are given external weights {wi}ni=1, and want
the agents to be sorted in decreasing order of wibi, we can set the VCG
weights to be wi

βi
and get an incentive compatible mechanism.

However when click through rates are not separable there might be
rankings (i.e. sets of weights {wi}ni=1) such that there are no correspond-
ing VCG weights that give an incentive compatible mechanism while
maintaining the same bidders order. Aggarwal et al. [2006] give a simple
example.
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Example 2.4.14. Consider a non separable click through rates ex-
ample in which there are only two slots and two advertisers: a
and b. Assume both have a click through rate of 0.4 when in
the first slot, while, when displayed in the second slot, a will
still receive 0.4 clicks, while b only 0.2. Let ωa,ωb > 0 be the
weights assigned to a and b respectively by a weighted VCG
mechanism. Since, by definition, such a mechanism maximizes
social welfare, we can see when it will rank a above b or vice
versa. Let ba, bb denote a and b’s bids respectively. Then b will
be ranked above a whenever

0.4ωbbb + 0.4ωaba > 0.4ωaba + 0.2ωbbb,

which is true for all bb > 0. Thus, for any setting of weights,
the VCG mechanism will rank b above a. �

The previous example shows that, when click through rates are not
separable, the weighted VCG mechanism might not be incentive com-
patible. Ashlagi et al. [2009] introduce the laddered auction and show
that, in this setting, it is the only incentive compatible mechanism.
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As we have seen in Chapter 1, most of the economics theoretical liter-
ature in mechanism design has focused on the development and char-
acterization of truthful mechanism. Why then, one might wonder, in a
multi billion dollar application of auctions, have people chosen a non in-
centive compatible compatible mechanism (GSP), even though a truthful
one (VCG) was available?
One of the reasons behind the adoption of GSP auctions lies certainly

in the characteristics of its equilibria. In fact, although truthful bid-
ding is not an equilibrium strategy in GSP, there are “good” equilibria,
that resemble the VCG outcome. In fact, as already noted, the lower
symmetric Nash equilibrium bids (2.8) yield exactly the VCG payments
(scaled by the click through rate values). Furthermore, by Fact 2.6, the
equilibrium allocation is the same as in the VCG case: social welfare is
maximized (this fact is often referred to as efficiency). One might ask if
this property is a characteristics of the GSP mechanism or if it is shared
by other auctions.
Recently Babaioff and Roughgarden [2010] gave a characterization of

GSP-like mechanisms in sponsored search, which we briefly outline
here. We restrict our attention to a class of mechanisms that are

• anonymous: the price an agent pays depend only on the bids (and
not on his name),

• upper-triangular: the price of bidder in position j depends only
on bids strictly below j.

Definition 2.15 (Efficient Mechanisms). A position auction mechanism is
efficient if, for every valuation profile v, there exist a full information Nash
equilibrium profile of bids b such that

i) slots are assigned in order of decreasing valuations (i.e. the efficient allo-
cation in this setting) and

ii) the equilibrium prices are the VCG prices.

Given click through rates α, let P(α) denote the set of all possible VCG
prices, i.e. P(α) =

{

1
αj

∑j>i bj
(

αj−1 − αj

)

| v is a feasible valuation profile
}

.

Let VCG(v) denote the VCG prices when the valuations are v. A final
ingredient for the characterization is a monotonicity condition.

Definition 2.16 (Local Monotonicity). An anonymous and upper-triangular
mechanism is locally monotone if its payment rule p is such that, for all valua-
tions v there exist a profile of bids b such that
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i) p(b) = VCG(v) (i.e. the prices are the efficient ones),
ii) pj−1(bj, bj+1, · · · , bk+1) ≤ pj−1(bj−1, bj+1, · · · , bk+1) for all j ∈ [2..k+

1].

We now give the characterization; the proofs can be found in the orig-
inal paper.

Theorem 2.17. Fix a click through rate profile α. An anonymous upper-
triangular mechanism is efficient only if it is locally monotone and for every
valuation profile there is a non-negative non-decreasing bid vector such that
p(b) = VCG(v).
The sufficient conditions rely on a different monotonicity condition.

Theorem 2.18. Fix a click through rateprofile α. An anonymous upper-
triangular mechanism is efficient if

• for any slot j, pj(b
′) ≥ pj(b) whenever b

′
i ≥ bi for all i > j,

• for every valuation profile there is a non-negative non-decreasing bid vec-
tor such that p(b) = VCG(v).

Besides having efficient equilibrium outcomes, the GSP has another
characteristic that has often been cited when explaining why it has been
chosen over the more sound VCG: simplicity. In fact, in the sponsored
search setting, the focus is on creating a simple platform and attract even
people that would not usually consider advertising. The VCG payment
rule can look daunting, and in any case the GSP is easier to describe
(even in the general case): a bidder will pay the minimum amount re-
quired to maintain his position.
It can be shown (again, see Babaioff and Roughgarden [2010]) that the

GSP minimizes the number of bids the payment depends on. For sim-
plicity we focus on comparing GSP to mechanisms with linear payment
rules, i.e. such that pi has the form pi = ∑j>i λijbj. We now define a
function that counts the number of dependencies in the payment rule
of a mechanismM: χ(M) = χMi,j . The value of χMi,j is 1 if payment pi
depends on bid bj and 0 otherwise.

Theorem 2.19. For every linear payment rule p, χ(p) ≥ χ(GSP).

It must also be noted that, although GSP auctions have the guarantee
that there is an efficient equilibrium, this is not the only one. In fact the
inequalities in (2.7) give a whole range of bids that form symmetric Nash
equilibria. Could it be that there are other, highly inefficient equilibrium
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outcomes? This question is is usually framed in the context of the price
of anarchy, i.e. the ratio between the lowest social welfare in a Nash
equilibrium and the global optimum. Notice that, in the sponsored
search case, we already know the value of the optimal social welfare,
since it is the one obtained by the VCG mechanism. Leme and Tardos
[2009] show that, for full information Nash equilibria, the worst possible
bound is ≃ 1.61, meaning that even the “worst” equilibrium outcome of
GSP is still not far from the optimum.6

6Their result holds under the weak assumption that agents do not bid more than their
valuation (which can be easily seen to be a dominated strategy).
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There is a strong connection between multi object auctions and the as-
signment game first described by Shapley and Shubik in 1972 (Shapley
and Shubik [1971]). We will briefly describe this matching problem and
then outline its connections to the ad auction problem.
Given a set of agents Q and a set of indivisible objects P let γij repre-

sent the potential gains from the trade between i ∈ Q and j ∈ P (that is
if buyer i gets object j). We are interested in determining an assignment
of objects to buyers that maximizes the total value. The following linear
program captures this optimal assignment,

max ∑
i,j

γijxij

s.t. ∑
i∈Q

xij ≤ 1 (P)

∑
j∈P

xij ≤ 1

xij ≥ 0 for all i ∈ Q, j ∈ P.

Where xij = 1 if object j is assigned to buyer i. The constraint matrix is
totally unimodular, and this guarantees that there is an integral solution
to this linear program.
We could interpret the γij’s as the true valuation of bidder i with re-

spect to object j. In this case, the program (P) could be seen as maxi-
mizing social welfare.
A feasible assignment is a matrix X = (xij) ∈ {0, 1} that satisfies

the above conditions, and corresponds to a bipartite matching in which
xij = 1 if object j is assigned to i. Given that xij ∈ {0, 1} the constraints
to (P) simply state that there is at most one object for each buyer and
vice versa.
An assignment X is optimal if for every other feasible assignment X′,

∑i,j γijxij ≥ ∑i,j γijx
′
ij.

We can assign a payoff to each buyer and each seller. The vectors u ∈
R

n and w ∈ R
m are a feasible payoff if there exist a feasible assignment

X such that
∑
i∈Q

ui + ∑
j∈P

wj = ∑
i,j

γijxij.

Given a feasible payoff and a corresponding feasible assignment we ob-
tain a feasible outcome, which assigns objects to buyers and gives each
a payoff. But the payoffs given might not be enough for someone: it
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could be the case that a buyer could receive a higher payoff by being
assigned to another object (an unstable matching). A stable outcome is
an outcome in which this is not possible, formally an outcome is stable
if

i) ui ≥ 0, wi ≥ 0,

ii) ui + wj ≥ γij for all (i, j).

The first conditions ensures that nobody is receiving a negative payoff
(in which case he would obviously be better off simply not participat-
ing). The second condition assures that no pair blocks the assignment
X. Assume that this condition is not satisfied for i and j, then they both
would be better off breaking their current partnership and forming one
together (that would be worth γij).

We now consider the dual of (P):

min ∑
i

ui +∑
j

wj

s.t. ui +wj ≥ γij for all i, j (D)

ui ≥ 0,wj ≥ 0

Where ui are the dual variables relative to the first set of constraints
of (P) and wj are relative to the other set of constraints. Since (P) has
an optimal solution, also (D) must have one, and, by the strong duality
theorem, we obtain

∑
i

ui + ∑
j

wj = ∑
i,j

xijγij.

Thus (u,w) is a feasible payoff for the matching X (and so ((u,w),X)
is a feasible outcome). The outcome is also stable, since the conditions
for (D) are precisely the definition of a stable payoff. It can be shown
(see Shapley and Shubik [1971]) that the set of stable outcomes coincides
with the core of the assignment game, and that the core itself is just the
set of solutions of (D).
An interesting result, shows that there are matchings that are preferred

just by one side of the market. Furthermore if in an assignment every
agent on one side gets the maximum payoff then every player on the
other side will receive the minimum payoff.
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Theorem 2.20. There is a buyer-optimal stable payoff (ū, w̄) with the property
that for any other stable payoff (u,w)

ū ≥ u

w̄ ≤ w.

This holds symmetrically for the sellers (objects) side.2.6.1 Pries
If we consider the two sets P and Q as bidders and objects, we can
better describe the situation by introducing prices. The γij’s can now
be interpreted as the value of object j to bidder i. If we assign a non-
negative price pj to each object jwe can define agent’s i payoff as γij− pj.
The demand set of bidder i at prices p is the set of objects he is most
interested in

Di(p) =

{

j ∈ P
∣

∣

∣
γij − pj = max

k∈P
{γik − pk}

}

.

A price vector p is said quasi-competitive if there is a matching X that
matches each agent with an object in his demand set. When p is quasi
competitive and µ is the corresponding matching, if pj = 0 for all j /∈ µ,
then the pair (p, µ) is called a competitive equilibrium. In a competitive
equilibrium not only does every agent receive an object he is most in-
terested in (i.e. in his demand set) but any unmatched objects have a 0
price.
If (p, µ) is a competitive equilibrium we can write the payoffs to agents

and sellers as

ui = γij − pj

wj = pj.

It is easy to verify that these definitions give a stable payoff. The ex-
istence of a matching that is optimal for the buyers (see Theorem 2.20
[page 49]) corresponds to the existence of a vector of equilibrium prices
that is at least as small in every component as any other equilibrium
price vector: the minimum equilibrium price.2.6.2 Connetions with the GSP
The assignment model is deeply connected with the GSP mechanism,
and in general with all auctions of multiple items (see Bikhcandani and
Ostroy [2006]).
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In the assignment model, by the definition of equilibrium price and

demand set, it follows that if p is an equilibrium price then each agent
prefers the object assigned to him over any other object:

γij − pj ≥ γik − pk for all k.

In the ad auction problem the utility of an agent i (γij− pj in the assign-
ment model) being assigned to a particular slot j is just the click through
rate αj times the valuation per click of that agent. Substituting such a
utility in the above condition we obtain

viαj − pjαj ≥ viαk − pkαk,

which are precisely the inequalities characterizing the symmetric Nash
equilibria. Thus the (SNE) of the ad auction problem with GSP mech-
anism described above are just the competitive equilibria of a particu-
lar matching game. In Edelman et al. [2007] the following theorem is
proved.

Theorem 2.21. If there are more advertisers than slots, the outcome of a GSP
auction is a symmetric Nash equilibrium if and only if it is a stable assignment
in the corresponding matching game.

Proof. See Edelman et al. [2007], pp.21-22.2.6.3 Connetions with VCG
The following theorem gives a strong connection between the VCG
mechanism and stable assignments.

Theorem 2.22. Let (û, v̂) be the buyer-optimal stable payoff. Then, for all
buyers i

ûi = v(P,Q)− v(P \ {i},Q)

where v is a function that, given one set of buyers and one set of objects, gives
the maximum possible value attainable, that is

v(S, R) = max ∑
(i,j)∈S×R

αijxij.

Proof. See Roth and Sotomayor [1990], pp. 212-213.

Intuitively this states that, in the buyers’ optimal payoff, each buyer’s
utility is the difference between the value of the auction with or without
him. In particular the term

−v(P \ {i},Q)
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is the “harm” buyer i causes to the other participants; what they could
have earned if player i were absent. These values correspond to the VCG
prices (see 1.1.2 [page 21]), and Theorem 2.22 is a proof of Proposition
2.12, part ii).
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The cases considered so far deal with a single auction of multiple goods.
In the ad auctions scenario this corresponds to the search engine user
entering one query, and the ads relevant to that query being displayed
alongside the search results in a number of slots.
This modeling is correct, although the situation is more complex. In

fact multiple identical queries arrive in a given time period (e.g. a day),
so the auctions described above will take place many times. Bidders
in ad auctions are usually required to enter a daily budget, the maxi-
mum amount of money they are willing to spend in a day. As a query
arrives, the search engine assigns the slots according to bid value, and
considering only agents with a positive budget.
We introduce a simple model in which there are multiple bidders in-

terested in multiple keywords, each agent has a budget constraint and
there is a single slot. To simplify the exposition we will assume that,
counter to practice, each bidder is charged his own bid, rather than us-
ing the GSP or VCG mechanism. Let mi be the budget of bidder i, and
consider the maximization problem faced by the search engine during a
day.

max ∑
i,j

bijxij

s.t. ∑
i∈Q

xij ≤ rj (S)

∑
j∈P

bijxij ≤ mi

xij ≥ 0 for all i ∈ Q, j ∈ P.

This corresponds to finding an allocation X = (xij) that maximizes
revenue (recall that in the current model each agent pays his bid, so
∑i,j bijxij is the revenue of allocation X). The first set of constraints limit
the amounts of possible clicks on each keyword, so we can think of rj
as an accurate estimate of the total number of clicks word j will re-
ceive. The other constraints are the budget constraints of each agent.
The constraint matrix is not unimodular in this case, and so we are not
guaranteed that there is an integral solution to (S).
Since the values of rj are not readily available, (S) is best thought as an

offline version of the ad auction problem: given the searches of a whole
day, what could have been the maximum revenue by the search engine?
On the other hand we could consider an online procedure that assigns
queries to bidders (while respecting budget constraints) and maximizes
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the total revenue. The most obvious solution would be a greed pro-
cedure, that simply assigns the slot to the highest bidder with non-
negative budget. This approach can yield very poor results, as the next
example shows.

Example 2.7.23. There are 2 bidders, a and b, each of whom has
a budget of 2$. Assume there are 2 queries and only one avail-
able slot, and that both agents are interested in both queries:

Keywords

1 2

A
ge

n
ts a 2$ (2− ε)$

b 2$ ε$

Assume that query 1 arrives, followed by query 2. The greedy
algorithm will assign query 1 to bidder a, and query 2 to bidder
b. Note that the budget constraints are preserved. The total
revenue for the seller is thus

(2+ ε)$.

The optimal solution, instead, would assign query 1 to bidder
b and query 2 to bidder a, obtaining a total revenue of

2$+ (2− ε)$

almost twice as much as our greedy algorithm. �

The authors in Kalyanasundaram and Pruhs [2000] give an interesting
procedure for the problem of online b-matching. This is a simplified
version of the problem we are considering, in which each agent has a
budget of m but is limited only to 0/1 bids. They define an algorithm
that assigns each query to the interested bidder with the highest unspent
budget. They then prove that, by using this procedure, the ratio between
their final revenue and the optimal value (the competitive ratio) is7 (1−
1
e ) ≈ 0.63.
The authors in Mehta et al. [2007] generalize the results in Kalyana-

sundaram and Pruhs [2000] to arbitrary bids. The key idea is the same:
when assigning the slots keep into account not only bids but also the

7Actually the competitive ratio tends to (1− 1/e) as m→ ∞.
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fractions of spent budgets. In a surprising way they determine the fol-
lowing tradeoff function

φ(x) = 1− e−(1−x). (2.15)

Let mi be agent i’s initial budget, and si the amount already spent by

i when a query j arrives; the quantity φ
(

si
mi

)

is computed for every

agent, and the algorithm assigns the query to the agent maximizing the
product

bijφ

(

si
mi

)

.

The competitive ratio of this procedure turns out to be (1− 1
e ).Budget Constraints In the linear program (S), we are seeking an op-

timal allocation subject to the budget constraint ∑j∈P bijxij ≥ mi. The
role of budget constraints in this setting is not so clear-cut. In fact, most
advertisers would certainly prefer receiving many more clicks for an ε-
increase in their budget, and this scenario is not captured by the above
inequalities. Furthermore, in real world ad auctions, agents can change
their budgets. Thus the characterization in (S) might be valid only for a
time period in which no agent changes his budget.
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Chapter 3Quality Sores1
Although the definition of the sponsored search general model (see 2.2
[page 29]) includes the possibility for the search engines to define the
ranking by specifying arbitrary weights wi to be assigned to merchants,
usually only two possibilities have been considered:

i) wi = 1 for all i, so that agents are ranked by bid,

ii) wi = CTR1,i.

This is mainly due to historical reasons, since the first companies in
sponsored search used these weight settings (see also Section 2.2 [page 28]).
When arbitrary weights have been taken into account (such as in Ag-
garwal et al. [2006]) the focus has been defining the incentive compat-
ible mechanism in that setting, since VCG might fail to to be incen-
tive compatible for the desired bidders’ sorting (see also Section 2.4.1
[page 43]).
The goal of this chapter is to study how equilibrium properties of the

GSP auction change when we allow the search engine to arbitrarily
specify a ranking.

In the classical sponsored search problem we assume each slot j has a
click through rate αj, and that click through rates decrease with slot
position (i.e. α1 ≥ · · · ≥ αk ≥ αk+1 = 0). When click through rates are
separable, each advertiser i is assigned a merchant specific click through
rate, βi. When agent i appears in position i the overall CTR will beCTRi,j = αiβ j.

1The work presented in this chapter has already been published as a technical report,
see Budinich [2011].
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It turns out that, for the two settings of weights considered in the liter-
ature, the equilibrium properties are the same as for the simple bidder
independent click through rate case, in which slot i gets αi clicks irre-
spective of the ad currently being displayed in that position (see Sections
2.3.2 [page 37] and 2.4.1 [page 43]).3.1 CTR Independent Quality Sores
Although the cases in which wi = 1 or wi = CTR1,i are central, in the
actual position auctions used by search engines quality scores assigned
to bidders are slightly more general. Although they do reflect the ad-
specific click through rate, there is also a component to these values
that has nothing to do with the number of clicks received2. These com-
ponents could be used by the search engine to have some control over
which ads are displayed, since the overall reputation of the sponsored
search market is of paramount importance. Consider for example an ad
that has a very misleading text (such as a well crafted spam message)
and receives lots of clicks. Once the search engine has verified the illicit
or dubious nature of the advertisement, it might wish to drive it away
from the results page before cheated users stop clicking on ads. Thus
we can imagine that weights wi are the product of a bidder specific click
through rate βi and a value δi that is not related to the ad’s click through
rate and is arbitrarily determined by the search engine.

We wish to study the effects of these δ components of the quality
scores. For simplicity we will not consider the click through rate com-
ponents of the quality scores β, since even in our model, their introduc-
tion will be simply equivalent to a rescaling of bids and valuations.
In what follows, unless otherwise noted, with the term “quality scores”

we intend just the non-CTR based components, which we call δj for
advertiser j. Advertisers are sorted by decreasing δb. Again, without
loss of generality, we assume that the advertisers are named according
to this order, so that advertiser i gets slot i. Payments are, as in Section
2.3.2 [page 37], given by the lowest bid necessary to retain the position,
so that

pi =
δi+1bi+1

δi
. (3.1)

However utilities are now different, since the quality scores δ do not

2See, for instance, http://goo.gl/nRfxi.
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affect the CTR:

ui = αi (vi − pi)

= αi

(

vi −
δi+1bi+1

δi

)

. (3.2)

This utility cannot be considered just as a scaled version of the classical
model, and, to the best of our knowledge, it has not been studied in the
scientific literature.3.2 Equilibrium
We present some properties of the full information Nash equilibria of
this auction, following the presentation in Section 2.3 [page 31]. The
results are similar to the ones presented by Varian for the next-price
auction, however the quality scores δ play a central role.
As in the usual next-price auction, the equilibrium conditions are dif-

ferent if we consider the player’s utility when moving to higher or lower
slots. Namely, when a player moves to a slot above him, he has to over-
bid the agent currently in that slot. If bidder i increases his bid to move
up to slot j < i his payment will be

pi,j =
δjbj

δi
.

However, when he moves to a lower slot, he can bid much less that the
current occupier’s bid: he needs to bid higher than that agent’s current
price. So, if i lowers his bid to end in slot k > i, he will end up paying

pi,k =
δk+1bk+1

δi
.

Definition 3.1 (Nash Equilibrium). A Nash equilibrium (NE) set of bids
satisfies, for all i,

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δjbj

δi

)

for all j < i, (3.3)

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δj+1bj+1

δi

)

for all j > i. (3.4)
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Note that we can rewrite (3.3) and (3.4), respectively, as

αi (vi − pi) ≥ αj

(

vi − pj−1
δj−1

δi

)

for all j < i, (3.5)

αi (vi − pi) ≥ αj

(

vi − pj
δj

δi

)

for all j > i. (3.6)

As for the next-price auction setting we consider a particular subset of
these equilibria.

Definition 3.2 (Symmetric Nash Equilibrium). A symmetric Nash equilib-
rium (SNE) set of bids satisfies, for all i,

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δj+1bj+1

δi

)

for all j. (3.7)

Again, (3.7) can be stated in terms of prices as

αi (vi − pi) ≥ αj

(

vi −
δj

δi
pj

)

for all j. (3.8)

As in the classical case, each agent has a non-negative surplus in a SNE.

Fact 3.3. In a SNE, vi ≥ pi for all i.

Proof. Consider the first non-visible slot, K+ 1, for which we know that
αK+1 = 0. By (3.8)

αi (vi − pi) ≥ αK+1

(

vi −
δK+1

δi
pK+1

)

= 0,

and since αi ≥ 0 this implies vi ≥ pi.

Now we consider the equilibrium prices, and show that, when scaled
by δ, they are monotonically decreasing.

Fact 3.4. In a SNE, for all i, αi−1δi−1pi−1 ≥ αiδipi. Furthermore δi−1pi−1 ≥
δipi, and if vi−1 > vi then δi−1pi−1 > αiδipi.

Proof. Applying (3.8) to slots i and i− 1 we get

αi (vi − pi) ≥ αi−1

(

vi −
δi−1

δi
pi−1

)

,

which can be rewritten as

αi−1δi−1pi−1 ≥ δi (αipi + vi(αi−1− αi)) (3.9)

≥ αiδipi,
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where the second inequality follows from the fact that vi(αi−1− αi) ≥ 0.
From Fact 3.3 we know that vi ≥ pi, so that (3.9) implies

αi−1δi−1pi−1 ≥ δi (αipi + pi(αi−1− αi))

≥ αiδipi + δipi(αi−1− αi)

= αi−1δipi,

which completes the proof.

We can now verify that, indeed, every SNE is a NE.

Fact 3.5 (SNE ⊂ NE). A SNE set of prices is also a NE set of prices.

Proof. Since, by Fact 3.4, δj−1pj−1 ≥ δjpj,

αj

(

vi −
δj

δi
pj

)

≥ αj

(

vi −
δj−1

δi
pj−1

)

.

Substituting pj−1 with (3.1) the right hand side term becomes

αj

(

vi −
δjbj

δi

)

.

By the SNE condition and the above inequalities we get that, in SNE,

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δj+1bj+1

δi

)

= αj

(

vi −
δj

δi
pj

)

≥ αj

(

vi −
δjbj

δi

)

,

which gives exactly (3.3).

Next we show that, in SNE, the values δ× v are in decreasing order.

Fact 3.6. In SNE, δivi ≥ δjvj if and only if i < j.

Proof. Consider the SNE conditions (3.8) for agent i moving to slot j and
agent j moving to slot i:

i to j αi(vi − pi) ≥ αj(vi −
δj

δi
pj)

j to i αj(vj − pj) ≥ αi(vj −
δi
δj
pi).

They can be rewritten as

i to j δivi(αi − αj) ≥ αiδipi − αjδjpj

j to i δjvj(αj − αi) ≥ αjδjpj − αiδipi.

61
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Summing these two we get

(αi − αj)(δivi − δjvj) ≥ 0,

which shows that δivi and δjvj must be sorted in the same way as αi and
αj. By our assumptions on CTRs this completes the proof.

Finally we show that an important property of the classical setting
holds here as well: it is sufficient to verify the SNE conditions for one
slot above and one below to ensure they hold for all slots. For ease
of notation we show this in a setting with 3 slots; we verify that if the
conditions are met for slots 1 and 2 and slots 2 and 3, then they are also
met for slots 1 and 3.

Fact 3.7. If a set of bids satisfies (3.8) for i+ 1 and i− 1, then it satisfies them
for all j.

Proof. The SNE conditions for slots 1 and 2 and slots 2 and 3 are:

1 to 2 α1(v1 − p1) ≥ α2(v1 −
δ2
δ1

p2)

2 to 3 α2(v2 − p2) ≥ α3(v2 −
δ3
δ2

p3),

which we can rewrite as

1 to 2 δ1v1(α1 − α2) ≥ α1δ1p1 − α2δ2p2 (3.10)

2 to 3 δ2v2(α2 − α3) ≥ α2δ2p2 − α3δ3p3. (3.11)

By Fact 3.6 and our assumptions on CTRs we know that δ1v1 ≥ δ2v2, so
that (3.11) implies

δ1v1(α2 − α3) ≥ α2δ2p2 − α3δ3p3. (3.12)

Summing (3.10) and (3.12) we get

α1 (v1 − p1) ≥ α3

(

v1 −
δ3
δ1

p3

)

,

which is exactly the SNE condition for slot 1 and 3. The other direction
is similar.

Using these facts it is possible to give a characterization of SNE bids.
Since, in SNE, agent in position i does not want to move to slot i+ 1

αi(vi − pi) ≥ αi+1

(

vi − pi+1
δi+1

δi

)

.
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Similarly agent in slot i+ 1 wouldn’t prefer slot i, so

αi+1(vi+1− pi+1) ≥ αi

(

vi+1− pi
δi

δi+1

)

.

By combining these two inequalities, we obtain that

δivi (αi − αi+1)+ αi+1δi+1pi+1 ≥ αiδipi ≥ δi+1vi+1 (αi − αi+1)+ αi+1δi+1pi+1.

Switching from prices to bids, and considering slots i − 1 and i, the
above becomes

δi−1vi−1 (αi−1 − αi)+ αiδi+1bi+1 ≥ αi−1δi−1bi ≥ δivi (αi−1− αi)+ αiδi+1pi+1.
(3.13)

Given that αK+1 = 0 we can solve for the lower bound recursion, and
see that the minimum equilibrium bids are

bi =
1

αi−1δi−1

K+1

∑
j≥i

δjvj
(

αj−1− αj

)

. (3.14)3.2.1 E�ieny
One of the important theoretical characteristics of GSP auctions is that,
although it is easy to see that they are not truthful (see Example 2.2
[page 32]) , they always admit a full information Nash equilibrium in
which the payments are the same as in the VCG auction (see Section 2.5
[page 45]).
The VCG prices and allocation for this setting were discussed in Sec-

tion 2.4.1 [page 43]. In particular, when quality scores are δ, the VCG
mechanism will optimize the weighted social welfare ∑i δivi, and the
overall payments will be given by (2.12), which we report here for con-
venience:

pδV
i =

k+1

∑
j>i

δj

δi
bj
(

αj−1− αj

)

,

along the corresponding per click costs qδV
i = 1

αi
pvWi . However the

overall utility for agent i will be different, since he is only receiving αi

clicks and not αiδi. In particular

ui = αi

(

vi − qδV
i

)

= αi

(

vi −
1
αi

k+1

∑
j>i

δj

δi
bj
(

αj−1 − αj

)

)

.

As in the non-weighted case we can prove the following result.
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Theorem 3.8. The GSP auction with arbitrary click through rates admits a
full information Nash equilibrium in which the allocation and payments are the
same as in the corresponding VCG outcome.

Proof. Consider the prices associated to the lower bound equations for
the SNE, (3.8):

pi =
1

αiδi
∑
j>i

δjvj
(

αj−1 − αj

)

.

These are exactly the per click VCG prices qδV
i . The VCG allocation is the

one that maximizes the weighted social welfare ∑i δivi: this corresponds
to assigning higher slots to agents with higher weighted value δv. By
Fact 3.6 this is precisely what the GSP does.

Thus most properties of the GSP are preserved in this more general
setting. Assuming the search engines choose appropriate values for δi,
the GSP mechanism will potentially have an efficient outcome. However
this poses new questions about the model. Although it is reasonable
enough to assume that the click through rates are common knowledge
among bidders (see also Section 6.3 [page 108]), this is not so clear for
the quality scores δ.
In fact, it is sensible to assume that the bidder independent compo-

nents of click through rates are in a sense constant: they depend only
on the behavior of users. Thus, given enough time, an agent might
be able to get an estimate for the click through rates. On the other
hand, the click through rate independent quality scores δ are possibly
changed very often,3 making it impossible to estimate them.
Thus, even if core properties of the model are essentially unchanged,

the introduction of these quality scores undermines the credibility of the
model itself.3.2.2 An Example
To give an idea of how the search engine might use δ’s to affect the rank-
ing consider the following example, in which there is a bidder (which
we call 3) that has an very high value, i.e. is willing to make large bids.
However, for the sake of this example, we assume he is a spammer, and
that the search engine has assigned him a low quality score. Table 3.1
describes the scenario (note that the bidders are named in decreasing δv
product). We can compute the minimum SNE bids (using (3.14)), having
fixed some CTR values. Table 3.2 shows the bids and CTRs used. The

3Again, see http://goo.gl/nRfxi.
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i vi δi δivi

1 4 1 4
2 1 3 3
3 400 0.02 2
4 2 0.5 1

Table 3.1: Values used in our example.

slot αi bi pi

1 500 > 0.76 2.3
2 250 0.76 0.53
3 100 320 200
4 0 2 0

Table 3.2: Equilibrium bids and payments when using quality scores δ.

expected revenue to the search engine in this case is 21283.3.
Given the same bidders and valuations, let’s consider now a setting in

which all δ’s are set to 1, i.e. the classical next-price sponsored search
auction. We also compute the SNE lower bound bids for this case (us-
ing the same CTRs). Values are reported in Table 3.3. Computing the

i vi bi pi

3 400 > 2.8 2.8
1 4 2.8 1.6
4 2 1.6 1
2 1 1

Table 3.3: Equilibrium bids and payments for the same bidders in a clas-
sical GSP setting.

revenue in this case gives 1900.
Finally we can analyze how the revenue changes as the quality score

for the spammer, δ3, changes. The plot in Figure 3.1 compares the rev-
enue as δ3 increases, keeping all other parameters in the model fixed.
As comparison we also show the GSP revenue and total value in the
system (i.e. upper bound to the maximum revenue attainable).
The “jumps” in the revenue as δ3 increases are due to the fact that

bidder 3 moves to upper slots as this happens. It is interesting to note
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Figure 3.1: SE revenue as the quality score for bidder 3 increases.

that, in Figure 3.1, the maximum revenue is obtained when δ3 is just
enough to put 3 in the first slot. Since all other values are fixed we
know that, among other agents, 2 has the highest ranking. We can thus
compute the value of δ3 that maximizes the revenue as the value that
solves this equation:

δ3b3 = δ2b2.

Note that, in this case, bidder 3 will pay exactly his bid.
Furthermore, if we fix bids, the maximum revenue the search engine

can obtain is by setting δ’s so that δibi = δjbj∀i, j. This implies that
every bidder is going to pay his bid (which is the maximum possible
payment, since the auction rules guarantee that a bidder will never be
charged more than his bid).
However this requires that the bids are fixed, or that the quality scores

are dynamically computed once the bids arrive. If we assume this is the
case, then, to the bidders, this type of auction will be indistinguishable
from a first price auction (assuming the search engine breaks ties by
giving higher slots to higher bids).
In other words, if we assume that search engines dynamically compute

the quality scores (or just update them regularly enough), the whole
model collapses, since the payment rule is undefined.
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Chapter 4Strategi Behaviors
The main objective in mechanism design is to devise a set of rules such
that, when utility maximizing agents interact following such rules, in
equilibrium, the outcome will be the same as the one of a predetermined
social choice function. Furthermore, the revelation principle (Theorem
1.2 [page 18]) says that it is sufficient to study “simple” mechanisms, in
which all an agent can do is announce a representation of his private
information to the auctioneer.
Among all direct mechanism it is possible to characterize all the truth-

ful ones: in this case, in an equilibrium outcome, all an agent has to
do is report his actual private information. This greatly simplifies the
search for a mechanism (by restricting the class of mechanisms we are
looking at), and it has the added benefit that, once we found our mech-
anism, we are assured that agents will obtain their goal (i.e. maximize
their utility) simply by “telling the truth”. Thus it would appear that
there is little if no space for strategic behaviors, where we loosely define
a strategic behavior as the possibility that an agents might benefit by
acting differently from what prescribed by the theory.
However strategic behaviors are often observed in real world scenar-

ios and, although very little information is available, also in sponsored
search auctions. The main reason behind this is that the models used
to study real world auctions are usually (and necessarily) limited. Thus
the models for which we can theoretically guarantee strong properties
are far from the real world, and for the models that accurately describe
the real world it is difficult (if not impossible) to get similar theoretical
results.
Another crucial fact in the sponsored search case, is that, even the

simplified theoretical model in use by search engines is not incentive
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compatible, so that agents might be better off not declaring their true
value.4.1 Bidding Rings
A bidding ring is an agreement among a set of bidders prior to the
auction itself. In its most classical setting, only one of the bidders will
actually participate in the auction. Due to the decreased competition he
is likely to pay a lower price; by splitting part of these savings among
the other ring participants, the coalition can ensure that every member
is better off by participating in the ring. We show that, in sponsored
search, bidding rings are not always profitable, and show how quality
scores affect these behaviors.
To give an intuition of how bidding rings we consider probably the

simplest incentive compatible mechanism: the single item second price
auction. We have seen that Vickrey second price auctions and the VCG
mechanism are strategy proof when we consider individual bidders,
nonetheless they are vulnerable to this kind of manipulation by coali-
tions.

Example 4.1.1. Consider 5 bidders a, b, c, d, e, whose valuations
are

Agent Value

a 10$
b 8$
c 6$
d 4$
e 1$

In this setting a would win the auction, paying 8$ and thus
having a payoff of 2$. Now assume a, b and c decide to form a
bidding ring. To this end they decide to submit just 1 bid1, the
highest one. We can represent them as a new bidder r, whose
valuation is the same as a’s. The situation is now

1We can think that they conduce a second price auction between them, in which the
good to be sold is the possibility to participate in the original auction.
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Agent Value

r 10$
d 4$
e 1$

The winner will now be r, that will pay a price of 4$, thus
earning 6$. For d and e, who do not participate in the ring,
nothing has changed. But all the participants in the ring are
strictly better off in this scenario. Assuming that a will get to
keep the object, she can devolve 3$ to b and c. So the payoffs in
the ring are (compared to the payoffs in the case where there is
no ring)

Agent Payoff with Ring Payoff without Ring

a 3$ 2$
b 1.5$ 0$
c 1.5$ 0$
d 0$ 0$
e 0$ 0$

�

Clearly there can be many other ways to divide the earnings among
the ring participants. The above example just shows that, in general,
bidding rings are profitable for participants, and indifferent for outside
players. The only negatively affected part is the seller: in the example
above his earnings drop from 8$ to 4$.
In real world auctions bidding rings are almost always illegal, but can

be very difficult to detect. The ad auction setting poses some new prob-
lems in this sense, since identities are a vague concept on the Internet.
On the other hand, the actual monetary value of a click to a bidder is
not clear; it questionable whether a bidder would like to give up his slot
in favor of a pecuniary compensation.
In sponsored search auctions it is conceivable that bidding rings might

be very easy to form: consider for instance a company that is in charge
of advertising for many firms (Ashlagi et al. [2009] consider such pos-
sibility, albeit without side payments), or an advertiser that ensures
prominent advertising space on his landing page for the other ring par-
ticipants.
For a ring to be profitable it must be the case that the increased util-

ity for the bidder that will actually make the bid (call him a) must be
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more than the loss by the bidders that do not participate anymore in
the auction. When this happens, a will be able to pay the other ring
participants.
For simplicity, throughout the rest of this section, we consider a 3-slot

4-bidders setting.4.1.1 Bidder Independent Clik Through Rates
We show how, in the sponsored search setting, bidding rings might not
be profitable. We first consider the classical setting, in which all weights
are set to 1.

Fact 4.2. There exist settings of click through rates and values that make bid-
ding rings not profitable using the GSP mechanism.

Proof. We give an example where, for simplicity, we consider a setting
with three slots and four bidders. Assume bidder 1 wants to form a ring
with bidder 2. Currently bidder 2’s utility is

u2 = α2(v2 − p2)

= α2(v2 − b3)

= α2

(

v2 −
v3(α2 − α3) + v4α3

α2

)

, (4.1)

where the last inequality follows from (3.14) with δi = 1. Similarly,
bidder 1’s utility is

u1 = α1

(

v1 −
v2(α1 − α2) + v3(α2 − α3) + v4α3

α1

)

. (4.2)

After the ring has formed, bidder 2 will get paid not to participate, and
the new scenario is described in Table 4.1. Since 2 is not participating

slot CTR bidder i bi

1 α1 1 b′1
2 α2 3 b′3
3 α3 4 b′4
4 α4 = 0 - -

Table 4.1: The auction after bidders 1 and 2 formed a ring. Notice that
bidder 2 is absent.
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his utility from the auction will be 0, while we can compute the new
SNE and see that 1’s utility will now be

u′1 = α1(v1 − p′2)

= α1(v1 − b′3)

= α1

(

v1 −
v3(α1 − α2) + v4(α2 − α3)

α1

)

. (4.3)

Since v2 ≥ v3 ≥ v4 and α3v4 ≥ 0, 1 will profit from the non-participation
of 2, i.e. u′1 ≥ u1. However, is this increased profit enough to pay 2?
Formally, is u′1 − u1 ≥ u2? By substituting and simplifying, we can
rewrite u′1 − u1 − u2 as

α1(v2 − v3)− α2(2v2 − 3v3 + v4)− α3(2v3 + 3v4).

First notice that this quantity might be negative, i.e. the ring might not
be profitable. Fix any v1 and v2, and let v3 ≃ v4 ≃ v2, so that the above
becomes

≃ 0− 0− 5v2α3 ≤ 0.

To see that, on the other hand, in some cases the ring might be profitable,
just set α1 = 4, α2 = 2, α3 = 1, so that the above becomes simply v4 ≥
0.

An interesting aside is that, in our examples of profitable vs. non-
profitable ring, both conditions hold for any v1, v2 ≥ 0. So that, for the
two bidders participating in the ring, the profitability of their collusion
depends on the external environment (i.e. the values of other bidders
and the click through rates).
Finally we note that the same reasoning (with the same conclusions),

can be carried out for the case in which bidder 2 is proposing the ring. In
this case, the condition for the ring to be profitable will be that u′2− u2 ≥
u1.4.1.2 Arbitrary Quality Sores
We now consider the model with bidder independent click through
rates and arbitrary rankings (as discussed in Chapter 3 [page 57]). Even
in this setting, as in the one described in the previous section, it is not
always true that bidding rings are profitable. To see this just notice that
the previous model is a special case of the weighted one. Despite there
being no apparent difference with what described above, there is an in-
teresting scenario that could greatly increase the possible revenue of a
bidding ring.
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Assume there is a bidder H with a very high quality score (i.e. weight)

but a low budget, while another merchant S (which we might think of
as a spammer) with a low quality score but huge budget. In the case
these two decide to from a ring, it is conceivable that they could decide
to use H’s account (and text ad), thus utilizing his quality score, and S’s
bid and budget, potentially gaining much more as compared to the case
in which they have the same weight.
To do this H’s ad must simply redirect to S’s page. Now S might

decide to pay H for this service, or even to have H’s ad prominently
displayed on S’s page. In this case H, although receiving many less
clicks, would get them at zero cost. Even if this scenario poses some
issues, and surely there are times in which the above methodology won’t
be applicable (for instance merchants highly connected to their brand
names)2 it is nonetheless an interesting possibility.
This idea could be further exploited, and becomes indeed more plau-

sible, by agents who participate in the market with the only aim of
accumulating a high quality score, thereafter selling the account (and
the connected quality score) to other merchants.
However the amount by which this scheme might be profitable de-

pends strictly on the actual values of the weights, bids and click through
rates. To give an idea of this possibility we consider the numerical val-
ues in Section 3.2.2: In this case, the ring between bidders 2 and 3 (where

i vi δi δivi

1 4 1 4
2 1 3 3
3 400 0.02 2
4 2 0.5 1

3 represent a possible spammer) is always profitable. By the preceding
discussion they will appear as a bidder 3′, with value v3′ = v3 = 400
and quality score δ3′ = δ2 = 3. Keeping all other parameters fixed, as
the quality score of bidder 3, i.e. δ3, changes we can see how this affects
the profitability (i.e. the excess revenue u′3 − u3 − u2) (see Figure 4.1).
Notice that the new bidder 3′ will appear in different slots, according to
the value of δ3.

2As an example, Nike might not want to display Adidas’ ads on their home page.
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Another strategic behavior that might be profitable in ad auctions is
based on the fact that each auction is repeated many times. Thus,
although each single iteration can be theoretical made strategy proof
(coalitions aside), there are profitable deviations for individual agents
from truthful behaviors in the long run.

Example 4.2.3. Again, for simplicity, consider only one slot
and a Vickrey second price mechanism. This time there are just
2 bidders a and b with valuations

Agent Value

a 10$
b 2$

As long as a’s budget is not finished there is no chance for b to
win the slot. But, assuming there are no more competitors, b
can accelerate this process by bidding more than his true valu-
ation. In this way he increases the amount a has to pay for each
click, and a’s budget will get rapidly exhausted. In fact b, by a
simple trial and error process, can bid just below a’s bid (and,
being this a second price auction this coincides with a’s valu-
ation). Once a’s budget is over then b will immediately lower
his increased bid to his true valuation, and will then obtain the
slot. �

It is interesting to note that, in some cases, also the seller can bene-
fit from this type of behavior, since a’s payments will be higher. This
strategic behavior is inherently connected to the dynamic model of the
sponsored search setting (see Section 2.7 [page 53]), and we are currently
working on framing it theoretically. However we have investigated it ex-
perimentally, and results are described in Section 6.2 [page 105], which
show that it is not so obviously profitable as the above example might
have one believe.

One of the unrealistic points of this strategy is that it relies heavily
on budgets. As already described in Section 2.7 [page 53], their role in
position auctions is ambiguous. Although it is indeed true that bidders
can specify a spending limit, the fact that they can increase (or decrease)
their budget very often, makes this limit less of a strict bound. Therefore
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strategies and ranking functions based on hard budgets seem to have
less connections to real world sponsored search auctions.
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Chapter 5A Sponsored SearhSimulator
As we have seen, today most of the on-line advertising is controlled by
search engines and, in particular, sold and delivered using sponsored
search auctions (see Chapter 2 [page 27]). There are huge economical
interests in these markets both from the sellers (i.e. search engines) and
from the advertisers. One of the ways in which search engines try
to protect these interest is by hiding many details regarding the inner
working of these auctions.
To gain more insight on the workings of these markets, we developed

a large scale simulator of sponsored search auctions. The main focus
of this simulator is to study and understand the large scale phenomena
that occur in these markets, and how the behaviors of groups of agents
(i.e. advertisers) affect it. One of the overall design principles has been
to keep the environment as simple as possible, in order to be able to
focus on the effects of specific behaviors, i.e. maximizing the likelihood
that the observed responses were a consequences of the changes made
in the system.
Thus, as opposed to other simulations1, in which most of the focus is

on the implementation of “smart” and complex agents, our approach
was to have very simple agents. Another important characteristic is that
we focus on a comparatively short time frame: most of the simulations
run for less than five million queries. Again this is to minimize com-
plexity, focusing on precise events and their effects on the market.

1Such as the Trading Agent Competition, in which different agents compete in a simu-
lated market to see who gets the highest revenue. See http://goo.gl/PLfg.
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5.1 Data Colletion Chapter 5. A Sponsored Searh Simulator
In this chapter we present the working principles of our simulator and

of its implementation. We also outline the algorithms and methodolo-
gies used to harvest the limited available data in order to obtain reason-
able estimates for most of the simulators parameters.
Up to now, the models presented have been a reasonable theoretical

representation of the actual auctions in use by all major search engines.
At this point, however, we will restrict our attention to a search en-
gine in particular: Google. Although our simulation results and tech-
niques apply to other search engines’ markets, when collecting the data
we focused on Google’s search engine. The main reason for this choice
was the presence of some convenient tools that Google developed for its
sponsored search program and that allowed us to collect valuable data.5.1 Data Colletion
The starting point in designing the simulator was the collection of some
publicly available data on ad auctions. We found some precious re-
sources, which allowed us to collect the following information:

• a reasonable set of words,

• an estimate of the cost of each word,

• an estimate of the number of clicks received by each word.5.1.1 The Word List
The simulator uses a finite set of words; these words represent all the
possible queries that a user can submit to the search engine and also all
the possible keywords an advertiser can bid on. The core of the word
list has been taken from the SCOWL2 project (an open source project
that maintains a set of word lists for use by spell checkers), and consists
of 35867 entries. In a successive development phase we expanded the
word list con contain multi term queries and keywords, the details are
presented in Section 6.3.3 [page 111].5.1.2 The Tra� Estimator
Google has an on-line tool (the AdWords Traffic Estimator Sandbox,3)
developed to aid advertisers in their campaigns. The Traffic Estimator,

2http://wordlist.soureforge.net/
3https://adwords.google.om/selet/TraffiEstimatorSandbox
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given a keyword, displays its estimated cost per click (CPC) and the
estimated number of clicks per day (Figure 5.1). The simulator uses this

Figure 5.1: A screenshot of the website hosting the Traffic Estimator,
from which data regarding queries was collected.

data to estimate some quantities that would otherwise be difficult to
generate realistically. Although, as Google itself warns, the data is to be
considered only as a guideline, it is of great help for our purposes.
The estimated CPC is used in the simulator (averaging the two values

given by the Traffic Estimator) as a basis to assign a “real” value to each
keyword. The simulator successively employs these values as parame-
ters to generate the agents’ bids and valuations. Clearly the estimated
CPC of a term is different from its “real” value. If we were to measure
the estimated CPCs in the simulator at the end of a run they would
certainly be different from the ones supplied by the Traffic Estimator.
Nonetheless their distributions and main features would be similar, and
that is enough for the use we make of it.
The other values which are central to the simulator are the estimated

number of clicks per day. Since the simulation considers only the queries
that give rise to a click, we can simply consider the estimated number
of clicks per day as the distribution of the queries in the simulator.

We collected such data for each of the 35867 entries in our dictionary,
building a small database that constitutes our initial data set.
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5.2 Analysis of the Data Set Chapter 5. A Sponsored Searh Simulator5.2 Analysis of the Data Set
In an initial phase of development, the data set has been analyzed. Table
5.1 summarizes its the main characteristics. For the sake of complete-

Number of words 35867
Max. clicks per day 349216
Min. clicks per day 1

Max. CPC $23.6
Min. CPC $0.05

Table 5.1: Some figures from the data set.

ness, we plotted the data collected from Google’s Traffic Estimator. Fig-
ure 5.2a is the distribution of the estimated clicks per day, while Figure

(a) estimated number of clicks (b) estimated CPC

Figure 5.2: Data gathered from Google’s Traffic Estimator, in log-log
scale.

5.2b shows how estimated average costs per click are distributed.5.2.1 Correlation in the Data Set
Starting from a list of words, we have expanded it with information on
prices and number of clicks. It seems now a natural question to ask
if there is any correlation between these quantities. As a first guess it
might seem reasonable to expect at least some correlation. That is, we
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might expect that some “popular” words receive many clicks and have
a high price.
Somewhat surprisingly, a superficial analysis gives a negative result.

At a first glance the data set exhibits virtually no correlation between
the different values.
Figure 5.3 ranks words by estimated number of clicks, and shows these

values along the CPCs (both normalized). It looks like there is no order
in the CPC values; they appear as if uniformly distributed. To quan-

Figure 5.3: Data ranked according to estimated number of clicks while
both this value and the estimated cost per click are shown (in
log-scale).

tify this observation we also measured the Kendall τ rank correlation
coefficient, which is 0.1285. Further analysis should be carried out to
confirm these impressions, keeping in mind that these datasets should
be considered only as rough estimates of the quantities they describe.5.3 The Simulator
The simulator has a very simple structure (see Figure 5.4). It keeps the
agents and the words stored in two dynamic arrays. Each word contains
a pointer to a balanced binary search tree that contains the bids on that
keyword. Along the bids, each node of the tree stores a pointer to the
agent that placed that bid.
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Figure 5.4: Outline of the simulator’s data structures.5.3.1 Experimental Details
All the simulations described in this document were carried out using
the same set of agents. To this end, the set of agents was generated once
and for all and saved in a file. Its main characteristics are presented in
Table 5.2. In what follows we will refer to this fixed set of agents and
words as our data set.

Nr. of agents 2 · 106
Max. interested agents in a single word 21446
Min. interested agents in a single word 21
Max. nr. of for an agent 3000
Min. nr. of keywords for an agent 3
Budget Range [$1− $100]
Bid Range [$0.01− $200]
Nr. of slots 4
Click through probabilities 0.6, 0.25, 0.10, 0.05

Table 5.2: Some figures from the generated agents (gathered using a
sample run with 2× 106 agents).
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5.3 The Simulator Chapter 5. A Sponsored Searh SimulatorAgents Each agent bids on a number of different keywords. The num-
ber of different keywords he is going to bid on is randomly drawn from
a power law distribution. Once this value has been fixed, keywords are
randomly chosen until the required amount is reached. If we consider
all the agents, the number of keywords per agent is distributed as a
power law, whose parameters are based on the number of agents, such
as to keep a fixed maximum and minimum (to avoid cases in which an
agent bids on all of the words, or cases in which there are agents that
haven’t bid on any word at all). Figure 5.5a plots these values for the
data set. Another quantity characterizing agents is their budget. In this

(a) words per agent (b) agents per word

Figure 5.5: Agents per word and words per agent (in log-log scale).

case a uniform distribution has been chosen, and the budgets are all in
the [$1− $100] range.Words Having fixed the number of words an agent will bid on, the
next step is to select them from the dictionary. The simulator does so,
and the resulting values (i.e. the number of agents interested in every
word) is again distributed as a (different) power law. The parameters
controlling such distribution are chosen as to avoid unrealistic scenarios.
Figure 5.5b shows the number of interested agents per word in our data
set.
As described in Section 5.1 each word is assigned a “real” value based

on the data gathered from the Traffic Estimator. Based on this reference
value, each agent i will then compute its personal valuation vi for the
keyword. The distribution of the valuations for each agent is a normal
distribution whose mean is precisely the “real” value of the word. To
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increase the variety among agents, each agent has a different variance
associated to this normal distribution. Figure 5.6 shows the the distri-
bution of valuations for different agents interested in the same keyword
(i.e. “reviews”).

Figure 5.6: The bids and valuations for a single word (i.e. “review”),
whose actual value is 1.045.

As a final step each agent i must generate a bid bi. Bids are generated
according to the agent’s valuation vi. Only bids such that bi < vi are
considered, and they are generated so that the differences vi − bi are
distributed according to a power law. Figure 5.7 shows the resulting
plot for the keyword “reviews”.

Keyword “reviews”
“Real” value $1.045

Estimated nr. of clicks 12029
Nr. of interested agents 11023

Max. bid $3.064
Min. bid $0.010

Max. difference vi − bi 12.5% of vi

Table 5.3: Details about a sample keyword and all the agents interested
in it.
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Figure 5.7: Difference between valuations and bids for word “reviews”.

Except for the maximum number of interested agents per word, all
the other characteristics described are parameters to the simulator. The
number of interested agent per word is indirectly controlled by setting
the maximum and minimum number of words a single agent can bid
on.45.4 First Experimental Evaluations
All simulations described were carried out on a standard PC, running
Xubuntu (Linux Kernel 2.6.28). The CPU is an Intel Core 2 Duo @2.2GHz,
and the system in equipped with 4GB DDR2 667MHz main memory.
Some sample running times are reported in Table 5.4. The simulations
where performed with the default data set, for a total of 3 · 106 queries.
The simulator’s greatest bottleneck was the memory usage, which for
this scenario was around 2GB.
The simulator implements both the GSP and VCG mechanism, so one

of the first objectives was to verify its behavior in known conditions.
Thus we compared the revenues with the same agents (and the same
bids) under the two mechanisms (see Theorem 2.13).

4More detailed parameters regarding the distribution of keywords to agents can be
easily set.
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Simulation Type Running Timea

GSP, with agent generation 1m16s
GSP, agents read from file 1m5s
VCG, agents read from file 1m4s

aAs reported by the GNU time utility, considering only the user time.

Table 5.4: Running times of a simulation in standard conditions.

Below (Figure 5.8) is the data gathered in a single run. Each plot dis-
plays the data for two repetitions of an identical simulation, one using
the GSP mechanism and the other one using the VCG mechanism. The
graphs refer to the data recorded by the simulator. Figures 5.8a and 5.8b
show the total revenue accrued by the search engine and the agents, re-
spectively.

(a) search engine’s revenue (b) agents’ revenue

Figure 5.8: A sample run with the standard data set and for a total of
3× 106 queries using the GSP and the VCG mechanism.

As predicted by Theorem 2.13 [page 42], the revenue for the search
engine is higher using the GSP mechanism. In turn the revenue for the
agents is lower under the GSP.5.4.1 Best-Response Bidding
Cary et al. [2008] present an adaptive bidding strategy and show that, if
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all bidders employ it, it leads to a VCG like equilibrium in a GSP auc-
tion (as in Section 2.5 [page 45]). During the first experimental runs of
the simulator we also implemented this bidding strategy and compared
its revenue with the one in which bids are distributed as described in
Section 5.3.1. For the sake of completeness we briefly outline the bal-
anced bidding strategy and its properties (for more details and proofs
see Cary et al. [2008]).
The balanced bidding strategy is defined as follows. At each round

player i, given as input the other bids b−i, will compute

i) the optimal slot s∗ at the current prices, i.e.

s∗i = arg max
s∈slots

{

αs(vi − pj(s)
}

,

where pi(s) is the price i would pay if he bid as to win position s,
and

ii) his bid for the next round b, setting it so that

αk (vi − pk(i)) = αk−1 (vi − b) ,

where k is i’s optimal target slot, i.e. k = s∗i . Thus

b =
αk (vi − pk(i))− αk−1vi

αk−1
.

If s∗i = 1 then the above is undefined, so we arbitrarily set b =
vi+p1(i)

2 .

This strategy is targeting the slot that will maximize i’s utility, and pick-
ing a bid b such that i is indifferent between getting the optimal slot
and being forced to the slot above that (this could happen by the bid-
der above i lowering his bid). It can be shown that if all bidders follow
the balanced bidding strategy, the system has a unique fixed point that
corresponds to the VCG-like equilibrium of GSP.
It can also be shown that the balanced bidding strategy converges,

however only in the case in which bidders update their bids one at a
time (i.e. asynchronously). However, by employing a slightly different
strategy, we can get convergence even in the synchronous case. This
strategy is called restricted balanced bidding, and is essentially a ver-
sion of balanced bidding in which agent i is restricted to picking the
optimal slot below his current position.
We implemented and tested both the restricted and non-restricted ver-

sion of balanced bidding. Figure 5.9 shows the convergence of the bal-
anced bidding strategy for a single keyword, namely “jobs”. In partic-
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Figure 5.9: Distance from the equilibrium bids when using the balanced
bidding update rule.

ular it shows the average bid distance from the computed equilibrium
bids as successive queries, and thus bid updates, are performed. As
already verified by Cary et al. [2008], convergence is achieved in very
few iterations. We also ran some experiments (see Figure 5.10) in which
every agent updates his bid using the balanced bidding strategy. Figure
5.10 compares this setup with a VCG and GSP one in which, instead,
bidders hold their bids fixed. To highlight the changes when agents start
implementing this adaptive bidding strategy, the first 20% of queries are
always made with fixed bids.
Given the extremely fast convergence (see Figure 5.9), the global ef-

fects when considering millions of queries is small. For this reason, also
considering that updating bids at each query affects the simulator’s per-
formance, in what follows we will always consider fixed bids.
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(a) search engine’s revenue (b) agents’ revenue

Figure 5.10: We compare the revenue of the GSP mechanism in which
all agents use the balanced bidding strategy (after an ini-
tial portion of plain queries) to the VCG and GSP auction
without this adaptive behavior.
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Chapter 6Experimental Results
In this chapter we present some experimental results obtained using the
simulator described in Chapter 5 [page 77]. The main objective of the
simulator is to analyze what happens in these large markets when dif-
ferent fractions of agents engage in new behaviors. We will first see
what happens when agents decide to optimize the set of keywords they
are currently bidding on. Successively we will investigate the starva-
tion strategic behavior introduced in Section 4.2 [page 74]. Finally we
will deal with the problem of data collection, outlining a procedure to
estimate an ad’s click through rate using only publicly available data.6.1 Keyword Spreading1
A central problem in AdWord markets from the point of view of a seller
of goods and services is the generation of keywords. Advertisers typ-
ically prefer to bid for keywords that have high search volumes; how-
ever they may be very expensive, so that it might be reasonable to bid
instead for several related and low volume, inexpensive terms that gen-
erate roughly the same amount of traffic altogether. Some preliminary
work exploring this idea has been done in Abhishek and Hosanagar
[2007], where however, the emphasis is on the algorithmic aspects of
keyword generation, not on the global market phenomena as in the
present work. A problem related to keyword spreading is that of keyword
selection (see Rusmevichientong and Williamson [2006]), where the eco-
nomic players try to select at fixed rounds the subset of keywords that

1The work presented in this section has already appeared in publication, see Budinich
et al. [2010a].
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maximize revenues while trying to learn basic parameters (such as key-
word click-through rates) during the repeated bidding processes. Note
that here the viewpoint is that of a single player and that the the market,
as seen by the seller, is modeled via (known or unknown) time varying
probability distributions. In contrast, in our simulations keywords are
selected by the agents off-line. We simulate directly the market and the
auctions by using a large number of atomic agents each performing sim-
ple actions. Previous research on agent-based simulation of AdWords
markets by Mizuta and Steiglitz [2000] was centered on studying the
interaction of different classes of players according to their bidding time
profiles, e.g. early vs late bidders. Kitts and LeBlanc [2004] describe
a large scale simulator for AdWords markets to investigate several bid-
ding strategies, e.g. random bidding vs. bid to keep relative position,
which however do not involve keyword spreading. To the best of our
knowledge this is the first large-scale agent-based simulation of the mar-
ket effects of keyword spreading.

Ad auctions are a peculiar type of auction, since the buyers are not
directly interested in the product being sold (i.e. the clicks). Clearly it’s
not important, from an advertiser’s point of view, “where” the clicks
come from. What matters is that a large number of potential customers
will reach his website, and hopefully decide to buy something.
Thus, if an advertiser could choose between two different keywords he

would surely choose the one bringing him the more clicks while costing
him the least. The rationale behind this basic idea is that some words
have a large number of interested agents; this tends to increase the cost
of each click. From the viewpoint of a “new” advertiser, he would surely
be interested in looking for similar terms that have less competition. The
search engines already make some suggestions on alternative keywords,
or enable the advertiser to bid only for queries arriving from specific
locations.
Nonetheless the advertisers would probably be interested in using a

mechanism that would suggest them a set of alternative keywords. To
formalize this concept we can think of an agent that wishes to change
a certain word w. Let’s call αw the estimated number of clicks on w (as
given by the Traffic Estimator, for instance), and cpcw the estimated cost
for each click. Let vw be the agent’s valuation for w. The average cost of
bidding on this keyword is thus

costw = αwcpcw,
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and the agent’s average revenue on this term is

uw = αw(v− cpcw).

The objective of the agent is to find a subset of related words (that we
will generically call synonyms), that have a higher estimated value while
costing him no more than the original word. This binary knapsack prob-
lem can be written as

maxS ∑
i∈S

αivi

s.t. ∑
i∈S

costi ≤ costw (K)

S ⊆ {synonymsw}.

If the valuation of the subset S is greater than the valuation of the origi-
nal word αwcw,

∑
i∈S

αivi ≥ αwvw,

S is the desired subset, since then

∑
i∈S

αivi − ∑
i inS

αicpci ≥ αwvw − αwcpcw,

or equivalently ui∈S = ∑i∈S αi(vi − cpci) > uw.6.1.1 Synonyms
One of the aims of the simulator was to investigate the behavior of ad
auction mechanism in the presence of agents who make use of keyword
spreading. To model such behaviors we need a set of synonyms for each
word.
We explore two alternative ways of performing keyword spreading.

One uses the well known Wordnet ontology, the second is based on
clustering web pages related to a query as found by a generalist search
engine (in our case Google). The two resulting word distributions are
different but the measured trends are consistent for both data sets, thus
giving high confidence in the robustness of the experimental bench-
mark.Wordnet The most important project for ontologies of words is Word-
Net (see Miller et al. [1990]). Originally proposed by the Cognitive Sci-
ence Laboratory at Princeton University only for the English language,
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WordNet has become a reference for the whole information retrieval
community, and similar projects are now available in many other lan-
guages. WordNet is a handmade semantic lexicon that groups words
into sets of synonyms called synsets. Intuitively one can replace a word
in a text with another from the same synset without changing its seman-
tics. A word can appear in more than one synset if it has more than one
meaning. Synsets are arranged as nodes in a graph such that there is an
edge to connect two nodes if there is a relation between the two synsets.
There are different types of possible relations, an exhaustive list of them
can be found in the WordNet web site.2 Given two synsets X and Y, the
most common types of relations in WordNet are: hypernym if every X is
a “kind of” Y, hyponym if Y is a “kind of” X, holonym if X is a part of Y
and meronym if Y is a part of X. In our experiments we took into account
only hypernym.Clustering Google Data Given a query word, our goal is to find a
set of semantically related words whose cost is lower than those of the
query. We are not only interested to paradigmatic similarity, i.e., when
two words may be mutually exchanged without effects on the seman-
tics of the text, but also to syntagmatic similarity, i.e., when two words
significantly co-occur in the same context. To achieve this goal we ap-
proach the problem as a word clustering (see Dhillon et al. [2002] and
Li and Abe [1998]) task. Given a set of objects, clustering attempts to
create a partition such that the objects in a cluster are related among
them, while objects in different clusters are unrelated. Word cluster-
ing requires a corpus of documents related to the query word. To set
up such a corpus we redirect the query to Google and download pages
related to the first 100 results. Each page is later parsed and split to
extract a set of sentences. Under the well established hypothesis that
co-related words are more likely to stand in the same sentence, all the
sentences not containing the query are discarded. We remove from each
sentence over-represented words (stop words) that are often “syntactic
sugar” and their removal does not affect the semantic content of the
sentence. We added to the standard stop word list, a set of words that
normally can not be considered stop words, but in the Web environ-
ment are considered generic (e.g. “download"). Once filtered, all the
sentences are arranged in a term-document matrix whose rows corre-
spond to sentences and whose columns to terms of the corpus. We
tested different weighting schemes for terms, and we found that for our
purpose a simple binary weighting scheme suffice. For clustering we

2http://wordnet.prineton.edu/
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employed a fast implementation of the FPF clustering algorithm Gon-
zalez [1985]. As distance between pairs of words, i.e., columns of the
term-document matrix, we used the well known cosine similarity. FPF
is an iterative algorithm. It makes a new cluster at each iteration and
populates it by extracting from the other clusters all the elements that
are more related to the new cluster. The procedure stops when a given
number k of clusters is reached. In our case it is impossible to predict a
good value for k. Thus, instead of feeding k in advance, we make FPF
check at each iteration the number of elements in the cluster contain-
ing the query word. When this number gets below a certain threshold
(10 in our case) the algorithm stops and returns the list of the words in
the cluster containing the query. This procedure ensures that we find a
coherent cluster of words even if the query is not central in that cluster.
Table 6.1 gives some basic figures on the two resulting data sets, while

Figure 6.1a and Figure 6.1b show the distribution of the number of syn-
onyms per word and the distribution of the number of terms a word is
synonym of.

clustering Wordnet

Nr. of words with synonyms 18660 12271
Max. nr. of synonyms for a word 13 441
Max. nr. of terms a word is synonym of 668 146

Table 6.1: Some figures from the synonyms databases used.

There is a big difference in the boundary values of the databases: for
example, there is a term for which Wordnet gives 441 synonyms. On the
other hand, due to limitations in the computational resources, the clus-
tering imposed a hard limit of 13 on the maximum number of synonyms
per word. Nonetheless, as shown clearly by Figure 6.1a, the majority of
the words have more synonyms in the clustering database than in the
Wordnet one. Overall we can consider the databases comparable for our
purposes.6.1.2 Keyword Spreading
The simulator implements a basic version of keyword spreading. It
allows certain agents, given a keyword w, to search for a subset of its
synonyms that solves problem (K) (page 92) and has a greater value for
the agent.
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(a) number of synonyms per word (b) number of words a term is synonym
of

Figure 6.1: Comparison of the two synonyms databases used (in log-
scale).

In the real world scenario, assuming each agent knows his private
valuation for w vw, the other parameters can be considered as given (for
example by a tool like Google’s Traffic Estimator). In our simulation we
cannot directly use Google’s data, since we already used it to initialize
the word list. So, to have an estimate of the price of a keyword, the
simulator maintains a slot-independent average of the cost of a click for
each word: our estimated average CPC. This data can then be assumed
to be an analogous to the one supplied by the Traffic Estimator.
The spreading starts only after a certain amount of queries has been

performed (40% in the default settings). This happens to allow the sim-
ulator’s estimated CPC for each keyword to stabilize.
When the simulation requires keyword spreading, one parameter de-

termines the percentage of agents that will be allowed to apply this tech-
nique. When a query is made, it will be selected for keyword spreading
only if

i) the prescribed amount of plain queries has already been made

ii) the current query has, among its interested agents, at least one
that is allowed to swap words.

The simulator actually applies keyword spreading, only on a certain
percentage of the queries that satisfy both these conditions. This is be-
cause we consider it as a rare event. When all these criteria are met,
the simulator selects, uniformly at random, a single agent, among all
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the word’s keyword spreading agents, and allows him to swap out the
current query for a subset of its synonyms.
A further parameter that can be specified, is the percentage of words

an agent is allowed to apply keyword spreading to. This is to rule out
cases in which an agent would change all of his keywords, or would try
to change back a synonym he had previously chose. The default value
here is 8%. At this point, the query and the agent are considered valid,
and the agent finally looks for a “good” subset of synonyms (if it exists).

Figure 6.2 compares the difference of the above simulation (whose
logs are plotted in Figure 5.8) with an identical one in which we allow
20% of the agents to apply keyword spreading (using both the Wordnet
database and our clustering techniques).

Figure 6.2: Comparison of the search engine’s revenue when we allow
some agents to change their keywords with synonyms pro-
vided by Wordnet database or by our co-clustering.

In figure 6.3, instead, we see the effect of keyword spreading for the
agents that are allowed to change words, while figure 6.4 compares the
revenue per query of agents that are not allowed to change words in the
different scenarios.
The simulations point out that the use of keyword spreading is benefi-

cial for all the involved parties: the search engine, the agents that apply
the keyword spreading and also the agents who do not. Nonetheless
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Figure 6.3: Comparison of revenue per query for agents that can change
words, using both the Wordnet and co-clustering synonyms
databases.

the agents that change some keywords are also the ones who increase
their profit the most.Failures
When an agent is given the possibility to change one of his keywords for
similar words, not always is he able to find a set of synonyms that makes
him better-off. Actually only a small percentage of the possible changes
are successful (meaning that the agent leaves the original keyword for a
set of its synonyms). When a keyword spreading substitution fails, two
can be the causes:

i) the key has no synonyms,

ii) there is no subset of synonyms that satisfies the required proper-
ties.

The occurrence of case i) can be explained by looking at Table 6.1, since
not all of the words have synonyms. The simulator records these oc-
currences, and for the above simulations they are reported in Table 6.2.
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Figure 6.4: Comparison of revenue per query for agents that cannot
change words, using both the Wordnet and co-clustering syn-
onyms databases.6.1.3 GSP and VCG

The above simulations were all run considering the GSP mechanism, we
now would like to compare it to the VCG (as done in Figure 5.8).
There is basically no difference in the search engine’s revenue under

the two mechanisms (Figure 6.5). On the other hand, the GSP greatly
increases the revenue for the changing agents (Figure 6.6), and also for
the “normal” agents, although to a lesser extent (Figure 6.7).
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clustering Wordnet

Nr. of tried word changes 208495 214201
Nr. of unique agents that changed words 42580 50473
Nr. of failed changes (% of total) 79.1% 74.7%
Changes failed due to lack of synonyms (% of
failed)

51.4% 74.9%

Changes failed due to lack of good subsets (% of
failed)

48.6% 25.1%

Table 6.2: Details on keyword spreading.

(a) Wordnet (b) clustering

Figure 6.5: Google’s revenue under the VCG and GSP mechanism, when
20% of the agents engage in keyword spreading.
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(a) Wordnet (b) clustering

Figure 6.6: Changing agents’ revenue under the VCG and GSP mecha-
nism, when 20% of the agents engage in keyword spreading.

(a) Wordnet (b) clustering

Figure 6.7: Normal agents’ revenue under the VCG and GSP mecha-
nism, when 20% of the agents engage in keyword spreading.
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6.1 Keyword Spreading Chapter 6. Experimental Results6.1.4 Changing the Number of Strategi Agents
Another interesting analysis is to compare how the ad auction mecha-
nisms react as the percentage of agents that are allowed to apply key-
word spreading changes.
In the following simulations we gradually increase the percentage of

agents that are allowed to use keyword spreading and see how this
affects the results. Having fixed the percentage of agents, we perform
3 separate runs: one is the reference run,3 and the other two are the
runs performing keyword spreading, using the Wordnet or clustering
databases.
Figures 6.8, 6.9, 6.10 show the changes in revenues for the search en-

gine, the “normal” agents and the changing agents respectively.

Figure 6.8: Search engine’s revenue as the fraction of agents that engage
in keyword spreading increases, using both the Wordnet and
co-clustering synonyms databases.

Figures 6.12a, 6.12b show the percentage of fails due to either reason,
while 6.11 shows the percentage of successful changes. All of the
above figures refer to simulations performed using the GSP mechanism.
The results obtained using the VCG mechanism have the same global

3The reference run is always performed; in this run agents are marked “changing”,
but are not allowed actually to perform keyword spreading. In this way, we can analyze
separately the revenue of different kinds of agents.
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Figure 6.9: Agents’ revenue for “normal” agents, as the fraction of
agents that engage in keyword spreading increases, using
both the Wordnet and co-clustering synonyms databases.

properties, although the differences from the reference run are usually
smaller.
We can consider the revenue for the search engine and for the “nor-

mal” agents basically constant (Figures 6.8 and 6.9), while the keyword
spreading agents’ revenue is greatly affected by the percentage of “com-
petition” (see Figure 6.10). An interesting detail is that the number of
successful changes decreases slightly (Figure 6.11), as the number of
failures to find synonyms for a key increases (Figure 6.12a). This is
probably due to the fact that more words are looked up as the number
of agents that can change words increases, and this highlights the fact
that both databases have synonyms just for a part of the entire wordlist.
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Figure 6.10: Agents’ revenue for keyword-spreading agents, as the
fraction of agents that engage in keyword spreading in-
creases, using both the Wordnet and co-clustering syn-
onyms databases.
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Figure 6.11: Percentage of successful changes, as the fraction of agents
that engage in keyword spreading increases, using both the
Wordnet and co-clustering synonyms databases.

(a) no synonyms found (b) “bad” synonyms

Figure 6.12: Percentage of failures, i.e. agents that did not find a suitable
set of synonyms, as the fraction of agents that engage in
keyword spreading increases, using both the Wordnet and
co-clustering synonyms databases.
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The simulator also implements other strategic behaviors. Specifically it
implements the “starvation” strategy, described in Section 4.2 [page 74].
This strategy is implemented on a per-word basis: a certain percentage

of keywords is assumed to have one (or more) strategic agents. This
approach is in contrast with the one chosen for the keyword spreading,
in which we select a percentage of agents to have the keyword spreading
ability. The rationale behind this is that the strategic effect of agents is
meaningful only if they are visible (i.e. appear in the slots). On the
other hand, keyword spreading is beneficial even for agents that do not
appear in the slots: they may swap that word out, and bid on different
ones and still gain an advantage. So, to avoid having “useless” strategic
agents, we chose a per-word implementation.
When a word is selected as having strategic agents, the last visible

bidder is chosen as a strategist. In this way we maximize the effect of
strategies, since he will be able to increase his bid and rapidly consume
his opponent’s4 budget. The fact that we choose the last visible agent
as the strategic agent for the word corresponds to a worst case scenario,
since this is the agent that can potentially gain the most from starving
his opponents.
The main objective of a strategic agent in our scenario is to bid just

below the agent above him: in this way the attacked agent will spend
his budget quicker, since each click will cost him more. There are two
approaches in implementing this behavior. A “realistic” one, in which
the agent increases his bid based on his actual position: until he is be-
low his opponent he increases the bid, and as soon as he appears above
his opponent he decreases it slightly. On the other hand, we can assume
that the attacking agents simply knows the bid of the attacked agent,
and can thus immediately set his bid just ε away from that. Clearly this
second case is unrealistic, but again the idea behind it is to have a worst
case scenario.

The first experiments (using the default data-set), compare the results
of a normal run, with one in which 20% of the words have one (and only
one) strategic agent. We use both the realistic and the unfair strategy
implementations.
Figure 6.13 shows the percentage change in the search engine’s rev-

enue. Figure 6.14a shows the percentage change in the agents’ revenue,
only for the agents that actually apply strategies, while Figure 6.14b

4The bidder appearing immediately above him.
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Figure 6.13: Difference in search engine’s revenue, when 20% of the
agents engage in the starvation strategy, using both the re-
alistic and unrealistic bid discovery behaviors.

regards the revenue of non-strategic agents.
While the search engine’s revenue is always (albeit slightly) increased,

since the payments are always higher, it is interesting to see that, even
using the unrealistic behaviors, strategic agents basically have no bene-
fit (Figure 6.14a). Furthermore, if we consider the realistic behavior, the
strategic agents are actually harmed. This happens mainly due to the
fact that the clicks they might receive when they are above their oppo-
nent (trying to empirically determine his bid), have a negative revenue
for them. The experiments show that this negative effect is greater then
the benefit they obtain once their opponent is out of the competition.
On the other hand, if we consider non-strategic agents (Figure 6.14b),
we can see that they are surely harmed by the introduction of strategic
agents, especially if these use the unrealistic behavior, however their loss
is always under 1%.
Probably the effect of strategies could be emphasized by doing more

queries, or increasing the number of strategic agents per-word. However
one has also to consider the mild role of budgets in ad auctions. In fact
agents can change their budget during the day, and so a strategic agent
is not assured that he will eventually win the slot above him. This
further decreases the effectiveness of this kind of strategies.
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(a) strategic agents (b) non-strategic agents

Figure 6.14: Difference in agents’ revenue, when 20% of the agents en-
gage in the starvation strategy, using both the realistic and
unrealistic bid discovery behaviors.Clik Fraud Another phenomenon, based on the starvation principle

we just described, is called click fraud.5 In this case a bidder, instead of
trying to raise his competitors’ prices by increasing his bid, will simply
generate a lot of clicks on their ads. This is apparently a much smarter
strategy, since the attacker can directly control the cost of the attack,
as opposed to the previous strategy in which it might happen that the
attacker incurs in greater costs due to overbidding his opponent.
However, probably the most widespread use of click fraud has been in

another context. In other advertising programs ads appear on external
web pages, and not only the search engine’s results page.6 In this case,
the owner of the external web page, will get a part of the revenue every
time an ad gets clicked. In this setting, it would be in the web page
owner’s interest to click on ads on his page: each click costs him nothing
(besides the time spent clicking), and generates revenue.
We did not investigate these kind of strategic behaviors since, in our

experimental framework, they would have uninteresting consequences.
The main research area in this topic is finding and implementing meth-
ods that can effectively tell a fraudulent click from a real one.

5http://goo.gl/AyyI
6See, for instance, the Google AdSense program http://goo.gl/gHBVA
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The click through rate is probably the most fundamental parameter in
sponsored search, both from a practical point of view as well as from a
theoretical standpoint.
From the point of view of an advertiser, the click through rates deter-

mine both the cost and the effectiveness of his campaign. Furthermore,
in the theoretical auction model (see Chapter 2 [page 27]) it is assumed
that click through rates are common knowledge, i.e. not only that ev-
ery advertiser knows them, but also that he knows that everybody else
knows them, and that everybody knows that everybody knows them,
and so on. Most of the literature points out that, given enough time
and money, agents would be able to learn click through rates. For in-
stance, an agent might change his bid in order to appear in each slot,
and for every slot gather enough information as to get an estimate for
the corresponding click through rate. However, as the results in 6.2 sug-
gest, this might be very costly for an agent, since, assuming we start
from an equilibrium condition, the cost of the clicks he receives when
investigating the click through rate for slots above him, would exceed
his valuation. This would be amplified by the fact that, to get reliable
values, an advertiser would have to receive quite a number of clicks and
average them.
Considering our simulator, the way in which click through rates were

used, was probably its weakest point. We thus developed a simple and
reliable external algorithm that allows to roughly estimate click through
rates for a given keyword. We successively ran this algorithm for all
the keywords in our dataset and included these estimated click through
rates in the simulations.6.3.1 Previous work: CTR Estimation
The Click Through Rate (CTR) can be defined for any type of displayed
search result (such as news, non-sponsored search results, and spon-
sored search results) and several methodologies have been proposed for
the estimation problem on these data. Here we concentrate just on CTR
for sponsored search results (aka ads) since this problem has somewhat
special requirements not shared by the other types of displayed items.
More generally, one can view CTR as just one particular indicator a SE
can extract form user-logs and view CTR estimation as a special case

7The work presented in this section has already appeared in publication, see Budinich
et al. [2011].
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of a more general problem of modeling advertiser-specific long term
user-behavior Archak et al. [2010].
The Click Through Rate (CTR) of a sponsored advertisement is one of

the key quantities that influence revenue for the search engine, thus, in
selecting the ads to be displayed among those bidding for a keyword,
considerations based on CTR are paramount. For ads with a long time
series of display/click events the search engine can use frequencies to
approximate probabilities. However even a search engine faces a chal-
lenge when trying to evaluate/approximate a rare ad, or a new ad, or
an ad for which new keywords are associated. In these cases historical
data is missing or too scant, or unreliable. Regleson and Fain Regel-
son and Fain [2006] propose a method based on the idea of clustering
both rare and frequent ads by similarity of the set of associated bidding
keywords so that the CTR of rare ads can be inferred from the CTR
of the frequent ads in the same cluster. Richardson et al. Richardson
et al. [2007] use a logistic regression model based on a collection of 1M
ads as well as many associated search engine measurements taken form
the Microsoft search engine. A monotone regression methodology is
proposed in Gluhovsky [2010].
Actually, the CTR is influenced by two rather different factors. The

first factor is the display position of the sponsored search result on the
screen, as it is often assumed that a display in top slots leads to higher
CTR (caeteris paribus). Joachims et al. Joachims et al. [2007] describe a
user-study with eye-tracking devices so to correlate user attention and
user actions and model the effect of positional bias in user preferences.
Several models of positional bias in user click-logs are compared in
Craswell et al. [2008]. A Markovian model for predicting click-position
correlation is proposed in Aggarwal et al. [2008]. In our analysis we do
not model position, and we deal instead with the second factor that is
the intrinsic relevance of the ad to the presumed specific need of the
user as expressed in the query. It is a common assumption that relevant
high quality ads get more clicks than irrelevant or low quality ads8.
Among the several methods that address the ad relevance factor we

mention Agarwal et al. [2007], Dembczynski et al. [2008], Ciaramita
et al. [2008], Shaparenko et al. [2009], Hillard et al. [2010]. All these
methods for CTR estimation and a few the others we encounter in liter-
ature make use of search engine historical data in direct or indirect form
and of measurements that only a search engine can make, thus we can
collectively term these methods as “internal". In the spirit of Impres-

8For sake of precision we should note that in some cases this is not true, since the
bidder may aim for non-specific, general needs of human beings, such as sex, love, loosing
weight, etc.. In our analysis we neglect these “non-specific” advertising strategies.
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sionrank Bar-Yossef and Gurevich [2009] we estimate the CTR by using
an “external" approach, that uses only information routinely made pub-
lic by the search engine. This is important since CTR estimation is a
key parameter also for other key players, besides search engine, such
as advertisers that need CTR estimates to optimize their ad campaign
strategies. At the best of our knowledge, our external approach to CTR
estimation has not been proposed in literature so far.
Since both the ad textual representation and the query tend to be rather

short, thus limiting the power of machine learning-based methods, we
use a form of query augmentation Broder et al. [2008], Broder et al.
[2009]: we use the search results returned by the search engine in re-
sponse to a query as its semantic expansion in applying ML tools.6.3.2 Learning CTRs
Our algorithm is driven by the intuitive idea that a user is more likely
to click on an ad if she/he finds its content interesting according to the
query. Following this intuition, for an ad, the higher its correlation with
the query, the higher its click through rate. A simple way to evaluate
the correlation between the ad and the query is to measure the degree
of membership of the ad to the class defined by the snippets returned
by the search engine as result of the query. The main advantage of this
approach is that the correlation between the query and the search results
is guaranteed by search engines. A key point is to select a classifier: it
must be reliable even with few (in the order of a hundred) positive
training samples, its output should not be a binary value, but a real
number in a bounded domain, which we can interpret as a probability.
The second point is essential, since if we were to use a classifier with
binary output we would have no way of distinguishing among ads with
the same classification. We chose a Bayesian classifier. The outcome of
this kind of classifier is a real number in the range [0, 1] that could be
interpreted as the probability of the ad to belong to the class (i.e being
relevant according to the query).
A key point in our approach is that we use a different classifier for each

query. This is because we are not interested in trying to estimate the
best page for an ad, but only how well the ad fits in that particular page.
Each of these classifiers is trained using as examples the textual snippets
of the search results. To increase the number of examples we constrained
the search engine to return the maximum number of results per page
(namely 100 snippets), moreover to improve the significance of each
training sample, stop words, symbols and numbers are removed. After
the training is completed, each ad appearing on that page is given as an
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Algorithm 1

1: procedure EstimateCTR(dict)
2: for each keyword q ∈ dict do
3: B ← new Bayesian classifier
4: for every search result r for q do
5: B.train(r) ⊲ Only r’s text snippet is used
6: end for
7: for every ad a of q do
8: CTR[q℄[position(a)℄ = B.predit(a)
9: end for
10: end for
11: return CTR[q℄ ∀q
12: end procedure

input to the classifier which returns its relevance to the query. Again we
consider only the textual fields of the ad, with a similar preprocessing
as for the training samples. Once the probabilities have been estimated
for all ads on the page, we normalize them to sum to one and store
the profile along the query. The pseudo code in Algorithm 1 gives an
outline of how the algorithm works.6.3.3 Extending the Word List
As described in Section 6.3.2, our algorithm’s input is a search engine’s
results page. For this reason, the first step in getting click through ra-
teestimates for all our keywords was to download the results pages for
all the entries in our wordlist (see Section 5.1.1 [page 78]). Interestingly
Google displayed side ads for less than 9K of them. One possible rea-
son for this low percentage of pages carrying ads is that the SCOWL
word list contained only one term queries. Given the generality of such
queries, it is likely that very few advertisers bid on them, also consid-
ering the fact that the search engine strongly encourages the users to
choose more specific keywords (the experimental results on keyword
spreading in Section 6.1 quantified why this might be a good choice for
both the search engine and advertisers).
To increase the size of our dataset, we considered expanding our dic-

tionary to multi word queries. However, any reasonable idea on how
to combine the words in our original word list in multi term queries re-
sults in a combinatorial blow up. This is a problem, since search engines
impose strict limits on the number of queries that can be made from a
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given IP address (or range of IP addresses).
To overcome this issue we used, once again, data available from the

search engine itself. In particular, for each of the 8K terms that we
knew displayed ads, we used Google’s Autocomplete feature to get 4
more suggestions, which we hoped would contain ads themselves, being
intuitively “popular” searches. After having downloaded the search
results for these multi term queries and having merged it with the search
results for the SCOWL list, we ended up with a word list of 19K results
pages that displayed ads (see Table 6.3).

Wordlist Entries With ads
SCOWL 35867 8282 (23%)

Google’s Autocomplete 31325 10947 (35%)

Table 6.3: The word list data.

A characteristic of sponsored search is that the number of slots and the
ads displayed change over time. To quantify this observation we mea-
sured, during the course of roughly two weeks, the number of slots dis-
played by Google for three fixed queries (namely “loans”, “lawyers” and
“flights”), by repeating them every two hours. The results are shown in
Figure 6.15. Very often also the ads themselves change over time. To
mitigate the effect of these facts on our simulations, we downloaded
another copy of the same dataset. For each keyword we then set the
number of slots to be the minimum of the two observed values. We
chose the minimum, instead of, say, the average, since this allows us
to always have the final click through rate of a slot be an average of
two values. To lighten the exposition, from now on, when we refer to
the number of slots or CTR in the dataset, we actually mean the value
obtained by combining the two datasets.
Next we collected specific data on the 19K keywords, using the Traffic

Estimator website9, as described in Section 5.1.2 [page 78]. The dataset’s
main characteristics are described in Table 6.4. A first analysis of the
dataset, shown in Figure 6.16, shows the distribution of the number of
slots per page (the expected cost per click and estimated search volume
are very similar to the graphs for the original dataset, shown in Figure
5.2 [page 80]).
Finally we used our algorithm to estimate the CTRs of all the 19K

search results pages downloaded on both datasets. We then averaged

9http://goo.gl/G5e1
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Figure 6.15: The number of slots for 3 queries over a period of roughly
two weeks in spring 2009.

Number of entries 19229
Search Volume range [151× 106 - 1]
Cost per click range [$139.31 - $0.01]

Number of slots range [1-8]

Table 6.4: The dataset used.
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Figure 6.16: Histogram representing the number of slots on each of the
19K pages in the dataset (in log scale).

the values, obtaining 19K different CTR profiles. Since, during our sim-
ulations, we are only interested in queries that give rise to a click, we
normalized the click through rate values so that the sum of CTRs on any
page is 1. Figure 6.17 shows the distribution of average click through
rates as the number of slots on the page changes.Correlation As already discussed in Section 5.2.1 [page 80], we mea-
sured the Kendall τ rank correlation coefficient for the number of slots
dataset against the estimated volume and estimated cost per click dataset.

Search volume vs. slots 0.1244
CPC vs. slots 0.1493

Again these values show that the correlation between these quantities
is low: it is not generally true that words with high search volume (or
cost) have more slots.6.3.4 Inluding CTRs in the Simulator
The simulator used up to this point uses a fixed number of slots and
a fixed CTR for each slot. We now describe how we included in the
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Figure 6.17: Click through rate for the single slots, as the number of total
slots increases.

simulation the new data on click through rates and number of slots,
and we present the outcomes of the related experiments.
The number of slots is used directly; when the simulator extracts a

query, it looks it up in the database and displays exactly the same num-
ber of slots as in the results page that was downloaded.
When considering click through rates estimates, there are at least a

couple of ways in which they might be used. A straightforward ap-
proach would be to use, for each keyword, the estimated click through
rates found in the dataset. However, we believe, this is of limited in-
terest. In fact the quality and type of ads displayed for any fixed query
varies widely. For instance it often happens that entering the same query
twice consecutively gives results pages with different ads. Furthermore,
the number of slots itself changes over time (see Figure 6.15). Although,
as described in Section 6.3.3, we already considered averaged CTR, this
approach would yield results too dependent on the actual text of the
ads that were displayed at the moment we downloaded our dataset.
To partially overcome this bias we implemented a different approach,

in which we use CTRs to model agents’ behavior. We first categorize
all the results pages in our dataset by the number of slots they exhibit.
We now have, for each number of slots j, a collection of mj different
profiles, where mj is the number of pages in our dataset that have j slots
(the values of mj are shown in Figure 6.16 panel c). We now interpret
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Figure 6.18: Google’s and agents’ revenue change (in percentage) com-
paring extreme profiles in which users always click on the
first/last slot to the actual profiles in the dataset.

this data as different profiles characterizing agent behavior. In particular,
when the simulator picks a query q, it first checks how many slots query
q has in the actual dataset, say j, and then it picks a random profile
among the mj ones available, and generates a click according to that
probability distribution.6.3.5 Experimental Results
Without access to search engine query logs, it is difficult to evaluate the
quality of our CTRs. To give an idea of the changes in revenue when
using different profiles we compare the profiles we gathered from our
dataset with two “extreme” profiles: one in which users always click on
the first slot, and one in which agents always click on the last slot.
Notice that when there is only one slot, there is no difference between

any of the above profiles (given that our algorithm normalizes the CTR),
which will all produce a click on the only ad displayed. For this reason,
in the current simulations, we consider only pages displaying two or
more ads.
The graphs in Figure 6.18 show the percentage change in revenue for

the search engine (panel a) and the agents (panel b) when using the
two extreme profiles, compared to the same measures when using the
dataset profiles.10 It is interesting to notice that, in this simple but im-

10All simulations start with 2× 106 agents, and run for 5× 106 queries.
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portant measure (i.e. revenue), there is little change between these ex-
treme profiles. However, although the percentage change is small, it
must be remembered that, given the huge number of queries performed
each day, these are actually big differences in monetary terms.
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Chapter 7Revealed Preferene1
In the classical microeconomic setting there is a set of goods X and each
agent is described by a utility function u and a budget b. Given a set of
prices p, the objective of each agent is to find an affordable bundle that
maximizes his utility, i.e. to solve the following optimization problem

max
x∈X u(x) (7.1)

p · x ≤ b.

We can now associate, to each price-budget couple (p, b) the set of bun-
dles that solve (7.1). This rule is usually denoted as x(p, b) and called
Walrasian demand correspondence.
We will throughout assume that the preference relation� underlying u

is locally non-satiated, i.e. that for every bundle x there is an arbitrarily
close bundle y such that y ≻ x. This property directly implies that, if
x∗ is a feasible and optimal solution to (7.1), then p · x∗ = b, i.e. the
consumer spent his whole budget. To see why assume that is not the
case: we can now use the unspent portion of the budget to buy a bundle
that is better than our optimal solution (since by local non-satiation such
a bundle must exist and we can pick it close enough to be affordable),
contradicting the fact that it was an optimal solution.
Assume now that we are able to arbitrarily set m different price vectors

(p1, p2, · · · , pm). At each different price we will observe a different de-
mand: call xi the demand at prices i, i.e. xi = x(pi, b). For simplicity we
assume that the budget is the same at all m price points. The observed
price-consumption points

{(

(pi, xi
)}m

i=1 satisfy the generalized axiom

1The work presented in this chapter is an ongoing research project, see Budinich et al.
[2010b].
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of revealed preference. The axiom states that, for any list

{(

(pi, xi
)}n

i=1
with the property that

pj · x j+1 ≤ pj · x j for all j ≤ n− 1 (7.2)

it must be the case that pn · x1 ≥ pn · xn. Equation (7.2) can be in-
terpreted as follows: since x j was the optimal bundle at prices pj, if
pj · x j+1 ≤ pj · x j then also x j+1 was an affordable bundle at prices x j.
This implies that the consumer, by choosing x j, revealed that he prefers
it to x j+1 (since otherwise he could have picked that): u(x j) ≥ u(x j+1).
By transitivity, a chain of these inequalities implies that u(x1) ≥ u(xn).
Now if the condition required in the axiom weren’t true, i.e. pn · x1 <

pn · xn, this would imply that u(xn) > u(x1), a contradiction. This in-
formal argument shows that, any sequence of observations arising as
solutions to (7.1) must satisfy this axiom.
If we form a graph G whose vertices are the observation points, the

generalized axiom of revealed preference has a simple graph theoretic
interpretation. Assign weight aij to edge e = (i, j), where

aij = pj
(

x j+1 − x j
)

.

Now (7.2) is simply aij ≤ 0, and the generalized axiom of revealed
preference can be restated as

every negative length cycle in G has at least an edge with
positive weight.

Up to now we have seen what necessary conditions must be satis-
fied by data arising from a utility maximizing consumer. However the
inverse problem, of determining if a given data is consistent with a ra-
tional agent maximizing his utility, is also fundamental.
In 1967 Afriat (see Afriat [1967]) showed that the generalized axiom of

revealed preference is also a sufficient condition for a set of observations
to be the output of an agent solving problem (7.1). Furthermore the
proof is constructive, exhibiting a monotone and concave function that
rationalizes the data. We can state Afriat’s theorem as follows.

Theorem 7.1 (Afriat’s Theorem). Given a set of observations
{(

(pi, xi
)}m

i=1
the following conditions are equivalent

i) the data satisfies the generalized axiom of revealed preference,

ii) there exist positive values ω1, · · · ,ωm and λ1, · · · , λm such that

ω j ≤ ωi + λipi(x j − xi), (7.3)
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7.1 Non Rationalizable Observations Chapter 7. Revealed Preferene
iii) there exist a non-satiated, concave, strictly monotone and continuous

utility function that rationalizes the data.

The equivalence between ii) and iii) is easy to see. Simply define

u(x) = min
{

ω1 + λ1p1(x− x1), · · · ,ωm + λmpm(x− xm)
}

.

The function u(·) is a pointwise minimum of a collection of increasing
linear functions, and is thus itself concave, strictly monotone and con-
tinuous. Furthermore it rationalizes the data, since

i) at x j, u(x j) = ω j (by (7.3) and the definition of u(·)),
ii) if pj · x ≤ pj · x j, then u(x) ≤ u(x j). To see this notice that u(x) ≤

ω j + λjpj(x− x j) ≤ ω j = u(x j).

For the rest of the proof we refer to Afriat [1967], Varian [1982], Piaw
and Vohra [2003], Fostel et al. [2004].7.1 Non Rationalizable Observations
Data gathered from experiments and field based observations are some-
times inconsistent with the generalized axiom of revealed preference,
and thus cannot be the output of an agent maximizing his utility. As-
suming agents are instead maximizing their utility, this discrepancy be-
tween the theoretical results and the real world could be explained by
hard-wired biases (such as those towards the status quo) or decision mak-
ing errors.
However, if the relevant set of inequalities (i.e. (7.2)) is violated, ex-

isting theorems give no information on the nature of the underlying
preferences. If the violations are small in an appropriate sense, it seems
plausible that the underlying preferences should be approximately con-
sistent with maximizing a concave utility function.
The first problem in this approach is that, in the classical models, an

agent is described by his preference relation. It is unclear what an ap-
proximation to such a preference relation might be. Switching to utility
functions is of little help. In fact, the function u(·) represents prefer-
ences � if u(a) ≥ u(b) ⇐⇒ a � b. Now pick any monotone function
f : f (u(·)) still represents �. To overcome this limitation we restrict
the class of preferences to the ones that admit a linear utility function
representation. In this case we can guarantee, if the coefficients are
normalized, that, if a preference relation can be represented by such a
function, the representation is unique.
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7.2 Approximate Rationalizability Chapter 7. Revealed Preferene
The problem of dealing with non-rationalizable observations has al-

ready been considered. One approach (see Houtman and Maks [1985])
discards a set of observations so that the remaining ones satisfy the gen-
eralized axiom of revealed preference. Using this approach the main
problem becomes determining which observations to discard. Afriat
himself (see Afriat [1972]) had considered his problem, by defining a
critical cost index that, by relaxing the budget constraints, would allow
one to make the observations rationalizable. In the next section we de-
scribe our approach, and present some preliminary results that relate it
to Afriat’s proposed solution.7.2 Approximate Rationalizability
Let G be a finite set of distinct goods and b the budget of the agent.
Let p ∈ ℜ|G| be a non-negative price vector and x ∈ ℜ|G| be a non-
negative demand vector. Suppose a collection of price-demand obser-
vations: {pj, x j}nj=1. We would like to know if there is a non-negative

vector v ∈ ℜ|G| such that

x j ∈ argmax{∑
i∈G

vixi : ∑
i∈G

p
j
ixi ≤ b, 0 ≤ xj ≤ 1 ∀i ∈ G} ∀j.

It is straightforward to see that the observations {pj, x j}nj=1 can be ratio-
nalized by a suitable collection of non-zero and non-negative vj’s if the
following system has a feasible solution:

∑
n
i=1 vix

j
i

b
≥ vk

p
j
k

∀j, k (7.4)

∑
i

vi = 1 (7.5)

vi ≥ 0 ∀i (7.6)

If the system (7.4-7.6) is infeasible, then the observations {pj, x j}nj=1 can-
not be rationalized assuming that the agent is maximizing a linear util-
ity function. What if the system is ‘close to feasible’? Is there a sense in
which the observations are the result of behavior that is approximately
rational?
To explore this possibility we consider a relaxed version of the system

(7.4-7.6) above:

∑
n
i=1 vix

j
i

b
≥ r

vk

p
j
k

∀j, k (7.7)
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∑
i

vi = 1 (7.8)

vi ≥ 0 ∀i (7.9)

Here r ∈ [0, 1] is a parameter that quantifies how much system (7.4-7.6)
must be relaxed to ensure feasibility. Straightforward binary search will
determine the largest value of r for which system (7.7-7.9) is feasible.
Fix a value of r for which system (7.7-7.9) is feasible and v∗ any feasible

solution.

Theorem 7.2. Let yj ∈ argmax{∑i∈G v∗i xi : ∑i∈G p
j
ixi ≤ b, 0 ≤ xi ≤

1 ∀i ∈ G} ∀j. Then,
∑i∈G v∗i x

j
i

∑i∈G v∗i y
j
i

≥ r.

Proof. Observe that

∑
i∈G

v∗i y
j
i = bmax

i∈G
(
v∗i
p
j
i

) ≤ br−1
∑i∈G v∗i x

j
i

b
= r−1 ∑

i∈G
v∗i x

j
i .

In words, the observations {pj, x j}nj=1 can be rationalized by assum-
ing that the agent has selected an approximately optimal bundle at
each price. Notice that we measure approximate optimality in a rela-
tive sense. Such a measure is sensitive to the choice of utility function.
For example, if utilities were affine rather than just linear, one would
make a nonsense of the ratio in Theorem 1.
Afriat [1972] also considered the question of how to handle a set of

observations that is not rationalizable. He proposed a critical cost ef-
ficiency index that measures how much one must relax each budget
constraint (in the set of observations) in order for the observations to
be rationalizable. We imitate Varian’s (see Varian [1994]) description of
how the index is computed.
Choose a number e ∈ [0, 1] and set up a directed graph D̂(e) with one

vertex for each observation. An edge is directed from observation i to
j, denoted (i, j), if epi · xi ≥ pi · x j. In words, in observation i, when xi

was chosen, x j was not only a feasible choice but cheaper by a factor of
e. Thus, xi is revealed to be directly preferred to x j. Denote by D(e)
the transitive closure of D̂(e). D(e) records both the direct and indirect
preferences.
The graph D(e) satisfies the generalized axiom of revealed preference

(GARP) if for all directed edges (i, j) in D(e), pj · xi ≥ epj · x j. The
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7.2 Approximate Rationalizability Chapter 7. Revealed Preferene
Afriat critical cost index is the largest number e∗ such that D(e∗) satisfies
GARP. It is interpreted to mean that at each observation we allow the
agent to sub-optimize to the extent that they ‘burn’ a fraction (1− e∗) of
their budget.

Theorem 7.3. Let r∗ be the largest number for which system (7.7-7.9) is fea-
sible and v∗ any feasible solution. Then, e∗ ≥ r∗.

Proof. It suffices to show that D(r∗) satisfies GARP. Let 1→ 2→ . . .→ k
be a directed path in D̂(r∗). Since (j, j + 1) ∈ D̂(r∗) it follows that
r∗pj · x j ≥ pj · x j+1 for j ≤ k− 1. We claim that this implies that v∗ · x j ≥
v∗x j+1. In particular, v∗ · x1 ≥ v∗ · xk. Suppose not.
Let yj ∈ argmax{v∗ · x : s.t. pj · x ≤ b} for all j. Observe that

r∗yj ∈ argmax{v∗ · x : s.t. pj · x ≤ r∗b}.

Since r∗b ≥ r∗pj · x j ≥ pj · x j+1, it follows that x j+1 is a feasible solution
to the problem max{v∗ · x : s.t. pj · x ≤ r∗b}. Hence,

v∗ · x j+1 ≤ v∗ · ryj ≤ v∗ · x j

which contradicts the assumption that v∗ · x j < v∗x j+1.
Since 1 → 2 → . . . → k is a directed path in D̂(r∗), the edge (1, k)

will be in D(r∗). To prove that D(r∗) satisfies GARP we must show that
pk · x1 ≥ r∗pk · xk. Suppose not, i.e., pk · x1 < r∗pk · xk. This means x1 is
a feasible solution to max{v∗ · x : pk · x ≤ r∗b}. Hence v∗ · r∗yk > v∗ · x1.
Strict inequality follows from the supposition that pk · x1 < r∗pk · xk ≤
r∗b.
However, v∗ · xk ≥ r∗v∗ · yk. Therefore,

v∗ · xk ≥ v∗ · x1 ≥ r∗v∗ · yk > v∗ · x1 ≥ v∗ · xk

a contradiction.

We give an example showing r∗ 6= e∗. Specifically, r∗ <
1
k e
∗ for any

k > 1. Choose a value of r such that (7.7-7.9) is feasible. We derive
some general bounds on r for the simple case consisting of just two
observations: {p(1), x(1)} and {p(2), x(2)}. Assuming they arise from
an agent maximizing a linear utility, we can suppose they lie on the
boundary of the budget set

x(1) = (x
(1)
1 , 0), x(2) = (0, x(2)2 ).
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We also assume that the agent’s budget is the same in both observations,

p
(1)
1 · x

(1)
1 = p

(2)
2 · x

(2)
2 = b. For this simple example we can list all

inequalities in (7.7):

vx
(1)
1
b

≥ r v

p
(1)
1

j = 1, k = 1

vx
(1)
1
b

≥ r 1−v
p
(1)
2

j = 1, k = 2

(1− v)x
(2)
2

b
≥ r v

p
(2)
1

j = 2, k = 1

(1− v)x
(2)
2

b
≥ r 1−v

p
(2)
2

j = 2, k = 2.

Substituting for b, we see that the first and last inequalities are always
satisfied, while the other two become

v

1− v
≥ r

p
(1)
1

p
(1)
2

(7.10)

v

1− v
≤ 1

r
p
(2)
1

p
(2)
2

. (7.11)

Thus (7.7-7.9) will be feasible when

r2 ≤ p
(2)
1

p
(2)
2

p
(1)
2

p
(1)
1

. (7.12)

Notice that, if we set r = 1 in (7.10-7.11) we obtain the conditions under

which there is a solution to system (7.4-7.6), namely
p
(2)
1

p
(2)
2

p
(1)
2

p
(1)
1

≥ 1.

It is now straightforward to find a set of observations for which r ≤
1/k. For example, consider

p(1) = (k2, k2) x(1) = (1, 0)

p(2) = (1, k2) x(2) = (0, 1),

where k > 1. The budget is b = p(1) · x(1) = p(2) · x(2) = k2. Since
p
(2)
1

p
(2)
2

p
(1)
1

p
(1)
2

= 1
k2

< 1, system (7.4-7.6) has no feasible solution. Now (7.12)
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gives r ≤ 1

k . To complete the example, we show that the observations
violate GARP, since

p(1) · x(2) = k2 ≤ b

p(2) · x(1) = 1 ≤ b.

Clearly, for any e < 1 the observations D(e) satisfy GARP, since then
p(1) · x(2) = k2 > eb = ek2. Thus e∗ is arbitrarily close to 1, while r∗ is at
most 1

k for any k > 1.
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Chapter 8Bounded Rationality inMathing Pennies1
In the classical setting of Game Theory, one of the core assumptions is
that all participating agents are “fully rational”. This amounts not only
to the fact that an agent must be able to make optimal decisions, given
the other players’ actions, but also to the fact that he must understand
how these actions will affect the behavior of all other participants. If
this is the case, a Nash equilibrium can be viewed as a set of strategies
in which each agent is simply computing his best response given his
opponents’ actions. However, in real world strategic interactions, people
often behave in manners that are not fully rational. There are many
reasons behind non-rational behavior, we focus on two: limitations on
computation and limitations on randomness.
Since the work of Simon [1955], much research has focused on defining

models that take computational issues into account. In recent years, the
idea that the full rationality assumption is often unrealistic has been
formalized using tools and ideas from computational complexity. It is
in fact easy to come up with settings, as in Fortnow and Santhanam
[2010], in which simply computing a best response strategy involves
solving a computationally hard problem. Furthermore there is strong
evidence that, in general, the problem of finding a Nash equilibrium
is computationally difficult for matrix games (Daskalakis et al. [2009],
Chen and Deng [2006]).
Traditionally bounded rationality has focused on two computational

1The work presented in this chapter has already appeared in publication, see Budinich
and Fortnow [2011].
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Chapter 8. Bounded Rationality in M. P.
resources: time and space. In this work we focus on another fundamen-
tal resource: randomness.
It is a basic fact that games in which agents are not allowed to ran-

domize might have no Nash equilibrium. In this sense, randomness is
essential in game theory. We focus on a simple two player zero-sum
game that captures this: Matching Pennies (Figure 8.1). Specifically, we

Figure 8.1: The payoff bimatrix for the Matching Pennies game.

consider the repeated version of Matching Pennies, played for n rounds.
In this game, the unique Nash equilibrium is the one in which, at every
round, both players choose one of their two strategies uniformly at ran-
dom. The algorithm that implements this strategy requires n random
coins, one for each round. The main question we address in this chapter
is: can there be Nash equilibria if the amount of randomness available
to both players is less than n?
First we show that, in general, the game cannot have a Nash equilib-

rium in which both players have only a fraction of n random coins. In
particular, when we give both players n(1− γ) random coins, we can
only achieve a γ-Nash equilibrium. This turns out to be tight, in the
sense that we can show that any game with a γ-Nash equilibrium both
players must have at least n(1− γ) coins.
The proof of this fact, however, relies on the players’ ability to im-

plement a strategy that runs in exponential time. We then consider
games in which the players’ strategies are polynomially-bounded. Us-
ing ideas developed in cryptography and computational complexity we
show that, in this setting, ε-Nash equilibria that use only nδ coins exist
if and only if one-way functions exist.
We also show that the amount of randomness can be “traded” for time.

If we allow one of the players to run in arbitrary polynomial time, but
use only O(log n) bits, we can still achieve a ε-Nash equilibrium if we
restrict his opponent to run in time nk for some fixed k > 0, while giving
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Chapter 8. Bounded Rationality in M. P.
him nδ random bits.
Finally we consider an infinitely repeated game with time discounted

utilities. In this case, in general, for any discount factor δ and approxi-
mation ε, we can always achieve a ε-Nash equilibrium with only n ran-
dom coins, if n is large enough. When we limit players’ strategies to
polynomial size circuits, we can reduce the amount of randomness to
nδ, for any δ > 0.Related Work
There are many recent approaches to bounded rationality using a com-
putational complexity perspective. For instance Halpern and Pass [2010]
study games in which players’ strategies are Turing machines. The idea
of considering randomness as a costly resource in game theory has re-
ceived only limited attention. Kalyanaraman and Umans [2007] study
zero-sum games, and give both an efficient deterministic algorithm for
finding ε-Nash equilibria, as well as a weaker, but more general, result
in the spirit of our Lemma 8.11, giving a randomness-efficient adaptive
on-line algorithm for playing repeated zero-sum games. Hu [2010] also
considers a similar setting but he is concerned with computability rather
than complexity. He considers infinitely repeated plays of 2 player zero-
sum games that have no pure strategy Nash equilibrium, and in which
players have a set of feasible actions, which represents both the strate-
gies they can play and the strategies they can predict. In this setting
Hu gives necessary and sufficient conditions for the existence of Nash
equilibria. Finally Gossner and Tomala [2008], give entropy bounds on
Bayesian learning in a game theoretic setting, in a more general frame-
work then this chapter. Their results applied to Matching Pennies do
not achieve the tight bounds we get in Lemma 8.11.

The rest of this chapter is organized as follows. In Section 8.1 we in-
troduce the notation and known results used. Section 8.2 presents an
information theoretic impossibility result. Section 8.3 considers players
whose strategies are limited to polynomial sized Boolean circuit fam-
ilies, while Sections 8.4 and 8.5 give extensions of the main results to
complexity pseudorandom number generators and infinitely repeated
versions of the game.
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8.1 Bakground and De�nitions Chapter 8. Bounded Rationality in M. P.8.1 Bakground and De�nitions8.1.1 Game Theory Notation
Throughout this chapter we consider a repeated game of Matching Pen-
nies. We focus on this game because it captures one of the fundamental
aspects of randomness in game theory. Studying such a simple game
also allows us to get tight bounds. However, variations of our results
extend to other similar 2 person zero-sum repeated games.
The payoffs at each round are shown in Figure 8.1. Let h : {H,T} ×
{H,T} → {−1, 1}, be the payoff to Player 1 (P1), and −h the payoff
for P2. When we allow the players to randomize, we denote as Si a
randomized strategy on ∆{H, T} for player i. P1’s expected payoff in
one round is

E [h(S1, S2)] = ∑
s1,s2∈{H,T}

Pr (S1 = s1)Pr (S2 = s2) h(s1, s2).

Let u : {H,T}n×{H,T}n → {−n, · · · , n} be P1’s cumulative payoff when
the game is played for n rounds. In the repeated game, mixed strategies
can be viewed as distribution over sequences of length n. Let Ri =
(r1i , · · · , rni ) ∈ ∆{H,T}n denote a randomized strategies for player i. P1’s
expected cumulative payoff is

E [u(R1, R2)] =
n

∑
t=1

E
[

h(rt1, r
t
2)
]

.

Finally we define the expected average payoff to P1 for the n-round
game as

E [U(R1, R2)] =
E [u(R1, R2)]

n
,

and consequently P2’s expected payoff is −E [U(R1, R2)]. To denote
player’s i payoff we will sometimes use the standard notation E [U(Ri, R−i)],
where Ri is player’s i mixed strategy and R−i is his opponent’s mixed
strategy.

Definition 8.1 (Nash equilibrium). A pair of mixed strategies (R1, R2) is a
Nash equilibrium for the n-stage Matching Pennies game if, for i = 1, 2:

E [U(Ri, R−i)] ≥ E
[

U(R′i, R−i)
]

for all R′i ∈ ∆{H,T}n.

In some cases we will consider a relaxed notion of equilibrium, namely
ε-Nash equilibrium.
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Definition 8.2 (ε-Nash equilibrium). A pair of mixed strategies (R1, R2) is
a ε-Nash equilibrium for the n-stage Matching Pennies game if, for i = 1, 2:

E [U(Ri, R−i)] ≥ E
[

U(R′i, R−i)
]

− ε for all R′i ∈ ∆{H,T}n.8.1.2 Complexity and Pseudorandomness
We give a brief description of the pseudorandomness tools we need for
this chapter. For more details we recommend the textbooks of Arora
and Barak [2009] and Goldreich [2007].
The model of computation used throughout most of the chapter is

based on Boolean Circuits. We consider circuits with AND, OR and NOT
gates, and denote by Cn a circuit with n input nodes. A circuit family
{Ci}i∈N is an infinite collection of circuits, intuitively one for each input
length.
The size of a circuit |Cn| is the number of gates. A circuit family is

polynomial sized if there is a k > 0 such that, for all n, |Cn| ≤ nk. The
class of languages recognizable by families of polynomial sized circuits
is called P/Poly. Any language that can be decided in polynomial time
by a deterministic or randomized Turing machine is also in P/Poly. For-
mally P ⊆ BPP ⊆ P/Poly.
A function is one-way if it is easy to compute and hard to invert.

Definition 8.3 (One-way Function). A one-way function is a polynomial-
time computable function f : {0, 1}n → {0, 1} such that, for all polynomial
size circuits D and y = f (x) (where x is chosen uniformly at random on
{0, 1}n), Pr( f (D(y)) = f (x)) < n−c for all c > 0 and sufficiently large n.

Informally, two objects are indistinguishable if no polynomial sized
circuit family can tell them apart with noticeable probability.

Definition 8.4 (Indistinguishability). Let X,Y be two random variables on
{0, 1}n. We say that X and Y are computationally indistinguishable if for every
family of polynomial size circuits {Ci}i∈N

, every c > 0 and for sufficiently
large n

∣

∣

∣
Pr (Cn (X) = 1)− Pr (Cn (Y) = 1)

∣

∣

∣
<

1
nc

.

A cryptographic pseudorandom number generator (PRNG) is a deter-
ministic algorithm whose output is computationally indistinguishable
from the uniform distribution, provided that it’s input is truly ran-
dom. We will denote by Uk a random variable uniformly distributed
on {0, 1}k.
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Definition 8.5 (Cryptographic PRNG). A cryptographic pseudorandom num-

ber generator is a deterministic polynomial time algorithm G : {0, 1}l(n) →
{0, 1}n, where l(n) < n is a polynomial time computable function, such that
G(Ul(n)) and Un are computationally indistinguishable.

There are two basic properties about pseudorandom number genera-
tors that we will use. One relates the notion of pseudorandomness to
the notion of predictability.

Definition 8.6 (Unpredictable). Let G : {0, 1}l(n) → {0, 1}n be a polyno-
mial time algorithm, and G(x) = (y1, · · · , yn). We call G unpredictable if for
every family of polynomial size circuits {Di}i∈N

, all c > 0 and for sufficiently
large n

Pr (Di (y1, . . . , yi−1) = yi) ≤
1
2
+

1
nc

.

Intuitively a pseudorandom number generator must be unpredictable,
otherwise we could easily build a test for it by using the predictor cir-
cuits. In 1982 Yao (see Yao [1982]) proved the opposite implication, thus
establishing the following theorem.

Theorem 8.7 (Yao’s Theorem). A polynomial time algorithm G : {0, 1}l(n)→
{0, 1}n is unpredictable if and only if G is a pseudorandom number generator.

Håstad, Impagliazzo, Luby and Levin in 1999 (see Hastad et al. [1999])
showed how to construct pseudorandom number generators with poly-
nomial expansion based on one-way functions.

Theorem 8.8 (PRNG’s from one-way functions). One way functions exist
if and only if for every δ > 0 there is a pseudorandom number generator with
l(n) = nδ.

Cryptographic pseudorandom number generators’ main power lies in
the ability to fool any polynomial sized adversary, while running in
polynomial time. However, in other areas of complexity, such as deran-
domization, the crucial issue is having a smaller seed.

Definition 8.9 (Complexity PRNG). A complexity pseudorandom number

generator is a 2l(n) time computable function G : {0, 1}l(n) → {0, 1}n, such
that for any circuit C of size n

∣

∣

∣
Pr
(

C
(

Ul(n)

)

= 1
)

− Pr (C (G (Un)) = 1)
∣

∣

∣
< n−1.
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The essential difference with cryptographic pseudorandom number

generators is the order of quantifiers. A cryptographic pseudorandom
number generator fools circuits of an arbitrary polynomial size. The
complexity pseudorandom number generator fools circuits only of a
fixed polynomial size but under the right assumptions requires far fewer
random bits.
Impagliazzo and Wigderson [2001] building on a series of papers start-

ing with Nisan and Wigderson [1994] characterize when complexity
pseudorandom number generators exist.

Theorem 8.10. There exists L ∈ DTIME(2O(l(n))) and ε > 0 such that no cir-
cuit of size at most 2εl(n) can compute L if and only if there exists a complexity
pseudorandom number generator with l(n) = C log n for some C > 0.8.2 Information Theoreti Bounds
In this section we make no computational assumptions on the players,
and show that there can be no Nash equilibrium if we limit the amount
of randomness available to both players.

Lemma 8.11. For any γ ∈ [0, 1], if P2 has less than n(1− γ) random bits,
then P1 has a randomized strategy A that achieves an expected average payoff
of at least γ.

Proof. We will give a strategy A = (a1, · · · , an) for P1 that achieves a
high payoff against any strategy B = (b1, · · · , bn) from P2.
Player 1 will enumerate all of P2’s possible coin flips, and will obtain

a set of 2n(1−γ) possible strategies, one of which is the one being used
by P2. After each play by P2, P1 can eliminate all the strategies that do
not play that action at that round. Let St be the set of strategies that
are consistent with P2’s plays up to round t. Initially the set S1 contains
2n(1−γ) strategies, and, for all t, |St+1| ≤ |St|.
The strategy A for P1 is straightforward: at round t, P1 will play based

on the most likely event: he will consider all strategies in St and play H
if the majority of strategies in St use H at round t and play T otherwise.
Let pt be the exact fraction of strategies that are the majority at round t,

pt =
max{|{bt | bt = H}|, |{bt | bt = T}|}

|St| , (8.1)

so that pt ∈ [1/2, 1]. P1’s expected payoff at round t is:

E
[

h(at, bt)
]

= pt − (1− pt) = 2pt− 1 ≥ 0.
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Thus P1’s average expected payoff is at least 0. To show that P1 can
actually achieve an average expected payoff of γ we need to consider the
amount of information P1 gains at each round. We define the following
potential function φ : {1, . . . , n} → R:

φ(t) =
t−1
∑
k=1

h(ak, bk)− log |St|,

which considers both the accumulated payoff for P1 and the log-size of
the set of consistent strategies. At time t = 1 there are 2n(1−γ) possible
strategies for P2, so φ(1) = −n(1− γ). We will now lower bound the
expected increase in φ at each round. We can express this as

E [φ(t+ 1)− φ(t)] =

(

E

[

t

∑
k=1

h(ak, bk)

]

− E

[

t−1
∑
k=1

h(ak, bk)

])

−
(

E
[

log |St+1|
]

− E
[

log |St|
]

)

= E
[

h(at, bt)
]

−
(

E
[

log |St+1| − log |St|
])

= 2pt − 1−
(

E
[

log |St+1| − log |St|
])

.

Now consider E
[

log |St+1|
]

. When P1 looses he can eliminate a pt frac-
tion of strategies, thus the new set St+1 will contain a (1− pt) fraction
of the strategies in St. On the other hand, when P1 wins, |St+1| = pt|St|.
To complete the analysis we have to consider two cases, since if pt = 1
then E

[

log |St+1|
]

is not well defined.
First assume pt = 1. This happens when all feasible strategies for P2

have the same action at round t. In this case P1 will win with probability
1, and the size of the set of feasible strategies will stay the same. So,
overall, the increase in φ will be 1.
Now assume pt ∈ [1/2, 1). Then, the expected size of the set St+1 is:

E
[

log |St+1|
]

=
(

(1− pt) log(1− pt)|St|+ pt log pt|St|
)

. (8.2)

The expected change in log |St| does not depend on St, but only on pt,
since

E
[

log |St+1| − log |St|
]

=
[

(1− pt) log(1− pt)|St|
+pt log pt|St|

]

− log |St|
= (1− pt) log(1− pt) + pt log pt.
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So that the overall change in potential when pt < 1 is

E [φ(t+ 1)− φ(t)] ≥ 2pt − 1− (1− pt) log(1− pt)− pt log pt,

which is always at least 1 for pt ≥ 1/2.
So, for all pt ∈ [1/2, 1], at each step the potential function ϕ increases

by at least 1. Thus, after n rounds we have that

E [φ(n)] ≥ φ(1) +min
t
{nE [φ(t+ 1)− φ(t)]}

≥ −n(1− γ) + n = nγ.

Since P1’s expected payoff is at least E [φ(n)], this completes the proof.

This result immediately implies that, without any computational as-
sumption, there can be no equilibrium with less than n random coins.

Corollary 8.12. For all γ1, γ2 ∈ [0, 1] such that γ1 + γ2 > 0, if P1 and P2
have, respectively, n(1− γ1) and n(1− γ2) random coins, then there can be
no Nash equilibrium in the n-stage Matching Pennies repeated game.

Proof. Assume, by contradiction, that (S1, S2) is such a Nash equilib-
rium. By Lemma 8.11, P1’s expected payoff must be E [U(S1, S2)] ≥ γ2
and P2’s payoff −E [U(S1, S2)] ≥ γ1, otherwise they would be better off
by using the majority strategy in the proof of Lemma 8.11. Summing the
two inequalities we get γ1 + γ2 ≤ 0, a contradiction, since we assume
γ1 + γ2 > 0.

However, if we limit the amount of randomness available to both play-
ers, we are still able to achieve an ε-Nash equilibrium. Furthermore, if
the game has a ε-Nash equilibrium, then both players must have at least
(1− ε)n random coins.

Theorem 8.13. Let γ ∈ [0, 1]. The game has a γ-Nash equilibrium if and only
if both players have n(1− γ) random coins.

Proof. To show the “only-if” implication, consider, by way of contra-
diction, a game that has a γ-Nash equilibrium (S1, S2) but in which
both players have less than n(1− γ) random bits. Thus there must be a
γ′ > γ such that they have exactly n(1− γ′) random bits. Since (S1, S2)
is a γ-Nash equilibrium, it must be the case that, for any strategy S′1 for
P1

E [U(S1, S2)] ≥ E
[

U(S′1, S2)
]

− γ.

135



8.2 E�ient Players Chapter 8. Bounded Rationality in M. P.
By Lemma 8.11 we know that both players have a strategy that achieves
a payoff of at least γ′ > γ, so that the above implies E [U(S1, S2)] >

0. Applying the same argument to P2, we get −E [U(S1, S2)] > 0, a
contradiction.
The “if” part follows from Lemma 8.14 below.

Lemma 8.14. Let γ ∈ [0, 1]. If both players have n(1− γ) random coins, then
the game has a γ-Nash equilibrium.

For simplicity we assume γn is even.

Proof. Consider the following strategies: both player use their random
coins to play uniformly at random for the first n(1− γ) rounds. There-
after P1 will always play H, while P2 will alternate between H and T,
playing H, T, . . . . We claim that this is a γ-Nash equilibrium.
First notice that no player can improve his payoff in the first n(1− γ)

rounds, given his opponent’s strategy. Let’s consider the remaining nγ
rounds. P1 could improve his payoff by playing H, T,H, T . . . , however
this only increases his payoff by γ. This holds also for P2, that could
play T, T, . . . , however gaining only γ.8.3 Computationally E�ient Players
The proof of Lemma 8.11 in the previous section relies heavily the fact
that we make no computational assumptions. In particular, to imple-
ment the majority strategy and compute pt in (8.1) requires solving #P
hard problems. If we restrict the players to run in time polynomial in n
this particular strategy likely becomes unfeasible. In this setting, under
reasonable complexity assumptions, it is possible to greatly reduce the
amount of randomness and, at the same time, achieve a ε-Nash equilib-
rium.
We consider players’ whose actions are polynomial size Boolean cir-

cuits. A strategy is thus a circuit family {Ci}i∈N, such that circuit Cl(n)

takes as input l(n) random coins and outputs the n actions to be played.
Notice that this definition implies that each agent can simulate any of
his opponent’s strategies.
We consider equilibria that use nδ random coins for any δ > 0. Theo-

rem 8.15 shows that such ε-Nash equilibria exist if and only if one-way
functions exist.

Theorem 8.15. For all ε, δ > 0 and sufficiently large n, ε-Nash equilibria that
use only nδ random coins exist, where ε = n−k for all k > 0 and sufficiently
large n’s, if and only if one-way functions exist.
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Proof. The if part is Lemma 8.17, while the only-if part is Lemma 8.18.

As a preliminary result we show that, in our setting, the expected
utility when at least one player uses a pseudorandom number generator
can’t be too far from the expected utility when playing uniformly at
random.

Lemma 8.16. Assume one-way functions exist, and let G be the strategy corre-
sponding to the output of a pseudorandom number generator. For any strategy
S, for all k > 0 and sufficiently large n,

∣

∣

∣
E [U(G, S)]

∣

∣

∣
≤ n−k and

∣

∣

∣
E [U(S,G)]

∣

∣

∣
≤ n−k.

Proof. We prove only the first inequality, the proof for the second one
being symmetric.

Proof by contradiction. Assuming there is a k > 0 such that
∣

∣

∣
E [U(G, S)]

∣

∣

∣
>

n−k for infinitely many n’s, we will construct a test T for G, and show
that

∣

∣

∣
Pr
(

T
(

G
(

Ul(n)

))

= 1
)

− Pr (T (Un) = 1)
∣

∣

∣
> n−c (8.3)

for some c > 0 and infinitely many n’s, thus contradicting the assump-
tion that G is a pseudorandom number generator.
First consider the n random variables (A1(C1,C2), . . . , An(C1,C2)),

where Ai(C1,C2) is simply P1’s payoff. Since ∑
n
i=1 Ai(G, S) = nU(G, S),

n

∑
i=1

E [Ai(G, S)] > n1−k.

This implies that there must be an i such that E [Ai(G, S)] > n−k. Fix
that i.
The test T takes as input an n-bit sequence x and generates a sequence

of plays s according to strategy S. Now T simulates an n-stage repeated
Matching Pennies game with strategies (x, s). If P1 wins the i-th round
then it will output 1, otherwise the output will be 0. In other words, T
outputs 1 if and only if Ai(x, s) = 1.
When x is drawn from the uniform distribution, P1 will win with prob-

ability 1/2, or Pr (T(Un) = 1) = 1/2.

Now notice, that since Ai ∈ {−1, 1}, Pr (Ai = 1) = E[Ai]+1
2 . This im-

plies that

Pr
(

T(G(Ul(n))) = 1
)

=
E [Ai] + 1

2
>

1
2nk

+
1
2
.
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Thus

∣

∣

∣
Pr
(

T
(

G1

(

Ul(n)

))

= 1
)

− Pr (T (Un) = 1)
∣

∣

∣
>

1
2nk

,

which proves the lemma.

Lemma 8.17. If one-way functions exist, then for every δ, k > 0 and for
sufficiently large n, the n-stage has an n−k-Nash equilibrium in which each
player uses at most nδ random bits and runs in time polynomial in n.

Proof. Assume, by contradiction, that one-way functions exist but there
are values δ > 0 and k > 0 such that the game has no n−k-Nash equilib-
rium in which players use at most nδ random coins.
Since we assume one-way functions exist, by Theorem 8.8 there exist

pseudorandom number generators that use nδ coins. Assume both play-
ers use the output of such pseudorandom number generators as their
strategies (which we call, respectively, G1 and G2). Since we are assum-
ing that this is not a n−k-Nash equilibrium, one of the players, say Player
1, must have a strategy A such that

E [U (A,G2)] > E [U (G1,G2)] + n−k. (8.4)

By Lemma 8.16 we can choose a k′ > 0 such that

E [U (A,G2)] > −n−k
′
+ n−k. (8.5)

Pick c = k′ = k+ 1, so that E [U (A,G2)] > n−c for n > 2. This contra-
dicts Lemma 8.16, proving the claim.

We now prove the opposite direction, that is that the existence of Nash
equilibria that use few random bits implies the existence of one-way
functions.

Lemma 8.18. If for every δ > 0 there is a Nash equilibrium in which each
player uses nδ random bits and runs in polynomial time, then one-way func-
tions exist.

Proof. Let (A, B) be such a Nash equilibrium and assume, by contradic-
tion, that one-way functions don’t exist. This implies that pseudoran-
dom number generators can’t exist ( Goldreich [2007]), and so, A and
B can’t be sequences that are computationally indistinguishable from
uniform.
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Thus, by Yao’s theorem (Theorem 8.7), we know that there are polyno-

mial size circuit families {Ci}i∈N
and {Di}i∈N

such that

Pr (Ci(y1, . . . , yi) = yi+1) > 1/2+ δ1

Pr (Di(z1, . . . , zi) = zi+1) > 1/2+ δ2,

for some δ1, δ2 > 0, where A(x1, . . . , xl1(n)) = (y1, y2, . . . , yn) and B(x1, . . . ,
xl2(n)) = (z1, z2, . . . , zn).
To get a contradiction it is sufficient to show that players are better off

by using the predictor circuits C and D. Consider Player 1: using D, at
each round he can guess, given the previous history, the opponent’s next
move with probability 1

2 + δ1. Thus his expected payoff at any round t
is

E
[

h(dt, bt)
]

>
1
2
+ δ1 −

1
2
+ δ1 = 2δ1,

where the expectation is over the internal coin tosses of the predictor
circuit D. The overall expected payoff is

E [U(D, B)] >
1
n

n

∑
t=1

2δ = 2δ1.

Now, let w = E [U(A, B)] be the value of the expected payoff when
players play (A, B). Consider the following cases:

i) w ≤ 0: this implies that Player 1 could gain 2δ1 by using strategy
D,

ii) w > 0: by definition Player 2’s expected payoff is −E [U(A, B)] <
0, so Player 2 can achieve a higher payoff by using his predictor
circuit C,

In both cases we see that (A, B) can’t be a Nash equilibrium, a contra-
diction.8.4 Exhanging Time for Randomness
In this section we determine conditions under which a ε-Nash equi-
librium can arise, given that one of the players has only a logarithmic
amount of randomness and his opponent must run in time nk for some
fixed k. This shows how we can trade off randomness for time; the
player with O(log n) random bits runs in time polynomial in n, while
the player with more random bits runs in fixed polynomial time.
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Theorem 8.19. Assume there exists f ∈ DTIME(2O(l(n))) and ε > 0 such

that no circuit of size at most 2εl(n) can compute f and that one-way functions
exist. Let Player 1’s strategies be circuits of size at most nk that use at most
nδ random bits for some k > 2+ cδ, where c ≥ 1 is a constant related to the
implementation of a cryptographic pseudorandom number generator. Assume
Player 2 has access to only M log n random bits. As long as M > Ck, where
C is the constant in Theorem 8.10, then for all ε > 0 and sufficiently large n
there is a ε-Nash equilibrium.

Proof. Let G1 be the cryptographic pseudorandom number generator
available to Player 1 and G2 be the complexity pseudorandom number
generator used by player 2. Furthermore let S1 be the set of all possible
strategies for P1 (for all δ > 0 circuits of size at most nk that use nδ

random bits), and S2 the set of strategies available to P2 (polynomial
size circuit families and M log n random coins). We will show that for
all ε > 0 and sufficiently large n, (G1,G2) is a ε-Nash equilibrium with
the required properties.
First we argue that, for all γ > 0 and sufficiently large n, |E [U(G1,G2)] | <

γ. The proof of this fact is similar to the proof of Lemma 8.16, showing
by way of contradiction, that if |E [U(G1,G2)] | ≥ γ then we can build a
test for the cryptographic pseudorandom number generator G1.
Now we show that, for the appropriate setting of parameters, G1 fools
S2 and G2 fools S1. For any k, Player 2 can fool circuits of size nk by
using C log nk = Ck log n random bits. So, for M > Ck, G2 fools S1.
Notice also that since Player 2 runs in time O(nCk), the cryptographic
pseudorandom number generator G1 fools S2. Let h be the one-way
permutation used by the pseudorandom number generator G1, and as-
sume h us computable in time nc for some c > 0. Given h, G1 is defined

as follows: let x, y ∈ {0, 1} nδ

2 , and let (x, y) be G1’s seed (notice that
|(x, y)| = nδ), then

G1(x, y) =
(

f n(x)⊙ y, f n−1(x)⊙ y, . . . , f (x)⊙ y
)

,

where x⊙ y = ∑i xiyi mod 2. There are O(n2) applications of h, so G1
runs in time O(n2+cδ). So, for k ≥ 2+ cδ, G1 fools S2.
At this point we’re almost done. As in Lemma 8.17 assume, by con-

tradiction, that the assumptions in the theorem hold but (G1,G2) is not
a ε-Nash equilibrium for some ε > 0. This implies that at least one
of the two players can improve his expected payoff by more than ε by
switching to some other strategy. First consider P2, and assume there is
a strategy S2 ∈ S2 such that

E [U(G1, S2)] > E [U(G1,G2)] + ε.
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As in Lemma 8.17 this implies that S2 would be a test for the crypto-
graphic pseudorandom number generator G1, contradicting the fact that
G1 fools S2. Similarly, assume P1 has a strategy S1 ∈ S1 such that

E [U(S1,G2)] > E [U(G1,G2)] + ε.

Again, S1 can easily be made into a test for G2, contradicting the fact
that G2 fools S1.8.5 In�nite Play
We now consider an infinitely repeated game of Matching Pennies, and
show that, if utilities are time discounted, we can always achieve a ε-
Nash equilibria using a large enough (but finite) amount of random
coins. First we determine the least amount of randomness required
to achieve a ε-Nash equilibrium in the general, i.e. computationally
unbounded, case.

Lemma 8.20. For all discount factors δ ∈ (0, 1) and all ε > 0, there is an
ε-Nash equilibrium in which the players use only n random bits, for n >

log ε(1−δ)
log δ .

Proof. Given δ, ε > 0 consider the following strategies: both players play
the Nash equilibrium strategy for the first n rounds. After this P1 will
always play H, while P2 will play H and T alternatively. The over-
all expected payoff is 0. However, after round n, both players could
switch to a strategy that always wins, achieving a total expected payoff
of 0+ ∑

∞
t=n δt = δn

1−δ . To ensure that our strategies are indeed a ε-Nash
equilibrium we just need to make sure that

0 >
δn

1− δ
− ε.

Rearranging and taking logarithms we get n >
log ε(1−δ)

log δ .

Now we consider players’ whose strategies are families of polynomial
size Boolean circuits (as in Section 8.3), and assume one-way functions
exist. We first give a version of Lemma 8.16 for time discounted utilities
on a finite number of rounds.

Lemma 8.21. Assume one-way functions exist, and let G = (g1, . . . , gn)
be the strategy corresponding to the output of a cryptographic pseudorandom
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number generator. Let S = (s1, . . . , sn) be any strategy. For all δ ∈ (0, 1),
k > 0 and for sufficiently large n

∣

∣

∣
E

[

n

∑
t=1

δth(gt, st)

]

∣

∣

∣
≤ n−k and

∣

∣

∣
E

[

n

∑
t=1

δth(st, gt)

]

∣

∣

∣
≤ n−k.

Proof. Again we give the proof only for the first inequality. Assume,
by contradiction, that |E

[

∑
n
t=1 δth(gt, st)

]

| > n−k for some δ, k and in-
finitely many n’s. Consider the random variables A1(c

1
1, c

1
2), . . . , An(cn1 , c

n
2),

defined as At(ct1, c
t
2) = 1 if P1 wins round t when playing according

to (C1,C2) and 0 otherwise. Let A(C1,C2) = ∑t δtAt(ct1, c
t
2), so that

E [A(G, S)] ≥ |E
[

∑
n
t=1 δth(gt, st)

]

| > n−k. This implies that there is a t

such that δtE
[

At(gt, st)
]

> n−k−1, which implies E
[

At(gt, st)
]

> n−k−1.
Fix that t. As in Lemma 8.16, consider the test T that, given a sequence
of plays x, generates a play s from S and outputs 1 if P1 wins round t
and outputs 0 otherwise.
When x is drawn uniformly at random, Pr (T(Un) = 1) = 1/2. On the

other hand, when x is G’s output,

Pr
(

T(G(Ul(n))) = 1
)

= E [At] > n−k−1.

Now
∣

∣

∣
Pr
(

T(G(Ul(n))) = 1
)

− Pr (T(Un) = 1)
∣

∣

∣
>

1
2
− 1

nk+1
=

1
nc

,

for c > − log(1/2−n−1−k)
log n ≥ 0, contradicting the assumption that G is a

pseudorandom number generator.

Using the above Lemma we can show that, for all discount factors, we
can greatly reduce the amount of random coins needed to get an ε-Nash
equilibrium.

Lemma 8.22. For all discount factors δ ∈ (0, 1), all ε > 0 and all ξ > 0,
there is a n−k-Nash equilibrium in which players use only nξ random coins,
for sufficiently large n’s.

Proof. As in the proof of Lemma 8.20 we consider the following strategy
for both players: for the first n rounds play the output of a cryptographic
pseudorandom number generator G, with seed length nξ . Thereafter P1
will always play H, while P2 will alternate between H and T. Pick any
k > 0, we now show that this is a n−k-Nash equilibrium. By Lemma
8.21 we can pick k′ = k/2 such that the expected utility in the first n
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rounds lies in the interval [−n−k′ , n−k′ ]. To ensure that this is a n−k-
Nash equilibrium we just need to show that

−n−k′ > n−k
′
+

δn

(1− δ)
− n−k,

or

−2n−k′ + n−2k
′
>

δn

(1− δ)
.

Now, for any c > 0, if we set k′ =
log((

√
c+1−1)/c)
log n , then the left hand

side of the above inequality is c, so that it always holds for sufficiently
large n’s.

Thus, given any n that satisfies the conditions in Lemma 8.20, there
can be a n−k-Nash equilibrium using nδ coins, for any δ > 0. To see
this, consider an m sufficiently large so that Lemma 8.22 holds and pick

ξ = δ
log n
logm .8.6 Conlusions

We have shown how, in a simple setting, reducing the amount of ran-
domness available to players affects Nash equilibria. In particular, if we
make no computational assumptions on the players, there is a direct
tradeoff between the amount of randomness and the approximation to
a Nash equilibrium we can achieve. If, instead, players are bound to run
in polynomial time, we can get very close to a Nash equilibrium with
only nδ random coins, for any δ > 0.
Some directions for future research include:

• Is it possible to extend Lemma 8.11 to m player games, for m > 2?
Notice that the strategy used in that proof does not generalize to
this setting.

• Under what circumstances is it possible to further reduce the amount
of randomness available (say to O(logn) for both players)?

• Is it possible to extend these results to general zero-sum games or
even non zero-sum games?
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Appendix AImplementation Details
Agents and words are represented by simple data structures, and are
stored in memory in plain arrays.

The bids, which are potentially as many as mn (where m is the number
of bidders and n the number of words), are stored in a different data
structure, called agentPointer.
This basically contains the bid itself (among an originalBid) and a
pointer (actually an int corresponding to the correct array entry) that
connects the bid with the agent that made it. Each word has a pointer
to an AVL tree, in which it stores all the agentPointers related to it. In
this way, when a query is made, we simply retrieve the first elements of
the tree, and can directly access the relative agents.
Each tree basically contains a list of the agents interested in it. The

simulator, through a compile-time setting, gives the possibility to store

145



A.1 The Con�guration File Chapter A. Implementation Details
also the reverse information. In this case each agent stores a pointer
to a list of all the words he is interested in. This clearly increases the
memory usage, and is potentially worse than storing the full mn entries
(the worst case is the one in which every agent bids on every keyword;
in this case the implementation just described would store 2mn entries).
Nonetheless, the data is very sparse, and so usually storing both lists is
still better than storing the whole matrix. Even though this kind of im-
plementation occupies nearly twice the memory, it greatly improves the
speed in certain routines. The proposed solutions seem an acceptable
tradeoff: if we are interested in keeping memory usage to a minimum,
we can do so by storing just the AVL trees (and this is the minimum
possible amount of memory). On the other hand, if we are interested in
performance, we store both lists.Dependenies The simulator, aside from the standard C libraries, has
the following dependenciesGNU libavl

available on-line,1 is heavily used, since each tree stores the corre-
sponding agentPointers in a pavl_table, which is an AVL tree
with parent pointers. The library has been slightly modified (filessr/lib/m_pavl. and sr/lib/m_pavl.h in the source tree), and
is now included in the source of the simulator (so it is not an actual
dependency).zlib
available on-line,2 used just when compressing (and decompress-
ing) the saved files. Usually installed in most systems.GNU GSL
the GNU scientific library, available on-line,3 is used primarily for
sensible pseudo random number generation. It is usually not in-
stalled by default, anyways available in most package repositories,
and can also very easily be compiled directly from source.A.1 The Con�guration File

The simulator, after having parsed the command line parameters, reads
some parameters from a given configuration file (Config.fg by de-

1http://www.stanford.edu/~blp/avl/
2http://www.zlib.net/
3http://www.gnu.org/software/gsl/
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fault). The most important variables that can be set are

word-list the name of the word list file

budgets the maximum and minimum values can be set

bids hard limits on maximum/minimum bids

words per agent the maximum number of words each agent can bid on

keyword spreading many parameters can be set here, such as the per-
centage of agents that are allowed to do keyword spreading, the
number of queries after which keyword spreading can start, the
probability with which possible word changes are performed, and
a hard limit on the number of words a single agent can change.
Finally synonyms database can be chosen (for the moment just the
one created by clustering and the one derived from Wordnet)

strategies various parameters regarding strategic agents, mainly the
number of strategic agents and the type of strategy to be used

Many other options can be set, and the default file contains more details
on the variables and possible values.A.2 Command Line Parameters
The simulator accepts a number of command line parameters. The re-
quired ones are-a, �agents NUM

the number of agents to generate-q, �queries NUM
the number of queries.

These arguments are not both mandatory when we are reading/saving
data to a file-r, �read FILE

agents will be read from file FILE. If this option is specified the-a NUM option need not be specified (and if it is it is overridden by
the number of agents saved in the file).-w, �write FILE
agents will be saved to the given file. If this option is specified the-q NUM option is not needed (in case we simply want to generate
and save the agents).
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There are then a number of optional flags-s, �sort {b,f}

controls how agents are sorted in the AVL trees. The default option
is to sort them by bid (b), while f uses tradeoff functions for the
sort.-p, �payment {v,g,f}
the auction mechanism used. The default is v, corresponding to
the VCG auction, while g uses the GSP mechanism, and f is a
simple first price auction.-, �hange
keyword spreading will be performed-t, �strategies
strategies will be performed.-o, �output FILE
the name of the log file (placed in the runs/ subdirecotory). The
default value is graph.txt.�onfig FILE
the name of the configuration file. The default value is Config.fg.

There are other parameters that control features yet to be implemented
(or checked).A.3 Notable Funtionsmain() The main function simply parses the configuration file (see

A.1) and then calls the init() function, which in turn initializes (in
the correct order!) all the necessary data structures.init() This function that initializes most of the data structures used
by the program. The order in which it calls the specific initialization
functions is important. Usually there are two initializations per compo-
nent: in the first pass we simply check some parameters and possibly
seed the pseudo random number generators, while in the second pass
we actually allocate the data structures and initialize their components.
Based on the command line parameters, it decides if agents will be gen-
erated or read from a file.
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A.4 Keyword Spreading Chapter A. Implementation DetailsgenerateBidders() When agents are not read from a file, they are
generated on the spot. This procedure basically allocates the agents’
array, and cycles through each one of them. It initializes the agent’s
budget and decides how many keywords he will bid on (according
to a Pareto distribution whose parameters change with the number of
agents). Then, until he has not reached this number of bids, a random
value (according to a different Pareto distribution) is chosen, and if the
agent has not yet bid on this word, a bid is generated (according to the
word’s true value and some agent-specific parameters) and the agent is
inserted in the word’s AVL tree.A.3.1 The Query Cyledo_a_run() This function is called directly by the main() , and pri-
marily deals with doing all the queries and gathering the log data. Its
principal component is a simple loop on the number of queries that,
after calling the function that actually does the query, updates the log
file and the feedback to the user.doQuery() The first step is to decide which keyword this query cor-
responds to. To do so, the file containing the word list is scanned, and
the key is selected according to the distribution of the estimated search
volumes. Then, if there are still agents with a positive budget inter-
ested in this word, a click on a particular slot is generated (according
to the probabilities defined in the configuration file), and the winner is
selected from the word’s AVL tree.make_him_pay() Given the winning agent, this function computes
(and returns) the payment due by the agent. First it uses an external
function, that based on the mechanism chosen (i.e. VCG or GSP), com-
putes the correct payment. Then it updates the agent itself (decrement-
ing his budget and possibly removing him from the simulation if his
budget is negative after this payment). As a last step this function up-
dates some global variables, keeping track of the revenues, the number
of alive agents and other details.A.4 Keyword Spreading
When keyword spreading is enabled two most important changes occur:
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i) during agent creation (or when agents are read from a saved file),

a certain percentage of them (according to parameters in the con-
figuration file) are allowed to be “changing” agents,

ii) at the end of each query (in the doQuery() function), the control
is passed to the keyword spreading functions. These will deter-
mine if the change can be applied and, if that is the case, will
manage all necessary calculations and updates.

It is important to note that the keyword spreading property is a charac-
teristic of the single agents.will_hange_words() This is called after each agent is generated (or
read from a file) and determines, according to the parameters given in
the configuration file, if this agent will be allowed to change keywords
for their synonyms.should_hange_words() This is the function that established whether
keyword spreading should be applied in this query. Primarily it checks
if a sufficient number of queries has already been done, and if there are
any agents in the query’s AVL tree that are allowed to change words.
Even when these two conditions are met, keyword spreading is applied
with a given probability, trying to reflect the fact that it is not a task that
is performed very frequently in the real world. When all the conditions
are met, the function then chooses (uniformly at random) a “changing”
agent.hange_words() If there is a set of synonyms that satisfies the re-
quirements, this function performs the actual change. It removes the
given agent from the original keyword’s AVL tree and inserts him in all
the AVL trees for the new words.best_knapsak() A standard dynamic programming algorithm for
the weighted knapsack problem. Since the number of synonyms for
each word is rather small (see Table 6.1 and Figure 6.1a), the pseudo
polynomial running time does not appear a big issue. As described
in Section A.4 the maximum weight is the estimated cost of the word
being considered for removal, while the value of each synonym is given
by the estimated revenue this agent could obtain from it. Since an agent
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(initially) has a private valuation only for the words he bid on, this
procedure must generate private valuations for the synonyms.
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Appendix BUsage and Notes
The simulator, to compile and run correctly, expects a particular di-
rectory structure, and the presence of some auxiliary files. The most
important ones are reported in Table B.1.

Directories sr/ contains all the source code filessr/lib/ contains some librariesbuild/ temporary object filesruns/ where the log-files are saved

Fileswordlist_augmented_utf8.txt the default word-list filewordnet_synonyms.txt synonyms from the Wordnet databaselustering_synonyms.txt synonyms from clusteringConfig.fg default configuration fileMakefile the compiling directions for the make
program

Table B.1: Directory structure assumed by the simulator.B.1 A Sample Run
This section documents a run of the simulator. Having compiled and
linked the program, we can now call it. This will start a run with 105
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agents and 106 queries. The agents will be generated on the fly, and the
mechanism used will be the VCG one (the default).$ ./sim -a1e5 -q1e6
The simulator now reports that it has read the configuration file, read
the word database and is now generating the agents. It also informs us
that it is using the SPEED define, which means that each agent stores a
list of the words he’s interested in (see Section A).$ ./sim -a1e5 -q1e6Read Configuration from: Config.fg[using SPEED define℄initialized 35867 words...generating 1.0E+05 agents:[===== ℄ \ 17% [17005℄
Having finished generating the agents the simulator prints out some
details of the parameters that have been set (or considered as default),
and starts reporting on the queries already completed.$ ./sim -a1e5 -q1e6Read Configuration from: Config.fg[using SPEED define℄initialized 35867 words...generating 1.0E+05 agents:<finished agents>initialized google:aution type : VCGsorting method : by bid value1.0E+06 total queriesqueries done (on 1.0E+06):[============= ℄ / 36% [360004℄
Having completed the queries, the simulator simply reports the number
of queries actually performed, and the number of agents that still had
some budget left over at the end of the run.$ ./sim -a1e5 -q1e6Read Configuration from: Config.fg[using SPEED define℄initialized 35867 words...
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B.2 File Formats Chapter B. Usage and Notesgenerating 1.0E+05 agents:<finished agents>initialized google:aution type : VCGsorting method : by bid value1.0E+06 total queriesqueries done (on 1.0E+06):<finished queries>Exiting [done 5.95E+05 queries, 9.43E+04 still alive℄.B.2 File FormatsThe Con�guration File
The file is self-documented, and a sample file is included as a com-
ment in the source file sr/readConfig.. The parser function, also insr/readConfig., is readFile() .The Word List
The word-list contains information on the word itself, the estimated
number of clicks and the estimated cost per click (as gathered from
the Traffic Estimator, see Section 5.1.2). There is a dummy-column (for
no specific reason), and the columns are separated by tabs and white
spaces. Below are a few sample lines.hotels 116097 -1.0000 2.8500travel 100647 -1.0000 2.3850heap 94174 -1.0000 2.8600flights 92417 -1.0000 1.8650
The parser for the word list is the function init_words_from_file() ,
located in sr/global..The Synonyms File
Both synonyms file have the same structure, and are simply a comma
separated list of words in which the first entry is the term and the suc-
cessive ones are its synonyms. Spaces are not allowed. Again, a few
sample lines follow
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B.2 File Formats Chapter B. Usage and Notesabroad,study,italian,eu,universityeggs,white,shell,protein,yolk,albumenaspire,dream,aspiration,ambition,wannabe
The parser for both of the synonyms files is the function parse_lustering() ,
located in sr/synonyms..
A partial solution to this problem (adopted in the simulator) is to pro-

hibit that an agent changes the same word multiple times. In this way
we kind of “fix” the agent’s valuations, since if the first time he re-
jects the swap, he will never be allowed to consider it again. The only
problem left now is the terms that are synonyms of different queries (as
illustrated in the example above), which receive two different valuations
by the same agent.
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Conlusions and FutureResearh
The sponsored search problem is still an area of active research, with
numerous open problems waiting for a solution. We give here a brief
outline of the most interesting ones, and their relation to the work pre-
sented in this thesis.Repeated Autions From the theoretical perspective, the models that
have been studied are still an approximation to what happens in the
real world. For instance, the repeated nature of the auctions is a crucial
characteristics in the real world, and has received comparatively little
attention in the scientific literature. Beyond the models presented in
Section 2.7 [page 53], not much has been done, and there is certainly
a need for more realistic dynamic models that capture the long-term
notions of equilibria.Information Asymmetry Another characteristic that has received little
attention in the classical models is the role of information. Most authors
assume that many parameters, such as click through rates and bids, are
common knowledge, or, in the Bayesian setting, that detailed distribu-
tional information is available. Although this information certainly is
present, most of the time the only participant in the market to have ac-
curate estimates is the search engine. The justification that is often given
when making the assumption that this information is available also to
agents is that, given enough time, they should be able to learn it. How-
ever, as illustrated by the experimental results in Section 6.2 [page 105],
it might be very costly for an agent to explore the environment by chang-
ing his bid, since the clicks he receives while doing so might be more
expensive. Furthermore the auctions are repeated numerous times, and
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the number of participating agents, bids, click through rates and qual-
ity scores change constantly over time, making the assumption that an
agent might learn these quantities less realistic.Common Knowledge Even if we assume some agents are able to col-
lect information on the main parameters in the auction, the assumption
of common knowledge implies that they also must be sure that all their
opponents have the same information, and that these opponents know
that they themselves have it, and so on. This is a particularly strong
assumption. In particular it would be interesting to see how the proper-
ties of the sponsored search markets change when one agent has higher
quality information, or is sure some of his opponents have wrong esti-
mates for some parameters.Bounded Rationality The size, complexity and dynamic nature of these
markets make them a prime candidate for the application of bounded
rationality. As we have seen in Section 6.1 [page 90], simply improving
his set of keywords can yield important gains to an agent.Mediators Another interesting point is the role of mediators (see Feld-
man et al. [2010], Ashlagi et al. [2009]). Mediators have a central role
in sponsored search markets: there are many companies that admin-
ister on-line advertising for different clients. From a mediator’s point
of view, the market is rather different. For instance a mediator might
be seen as an organizer of a bidding ring (see Section 4.1 [page 68]).
Thus, besides the interaction of the mediator with the market, there is
the internal optimization strategy for the mediator.Simulations Even from the experimental point of view there is still a
lot of work to do. This could potentially benefit both the search engines
and the advertisers. Moreover, most of the models hinted at in the pre-
vious paragraphs are probably too complex to frame theoretically. In
these cases, focused simulation results could point the theoretical re-
search in the right direction. However the biggest problem, as already
widely discussed, is the lack of publicly available information. Thus an-
other interesting (and maybe even profitable) research area is the study
and development of algorithms that reliably collect and estimate the pa-
rameters needed to run simulations, or to directly optimize advertising
campaigns.
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There are also many other interesting problems in the on-line adver-
tising markets. For instance, search engines such as Google, also sell
advertising space on blogs and many other websites. The advertisers
buys virtual advertising space on pages related to a certain subject or
keywords, and the search engine decides on which pages to display
the ads. The owner of the site where the ads are displayed receives a
payment either on pay-per-click or on a pay-per-impression basis. This
context poses many new problems, from the machine learning problem
of matching a specific page to a category or keyword (i.e. to decide if a
given page is appropriate for displaying a given ad), to the economics
of determining the prices of clicks or impressions. In fact this setting
is more complex than the sponsored search one, since there is no fixed
number of slots, and the quality of the pages on which ads are displayed
might change dramatically, so that clicks might be worth much less, or
more, on certain sites.
Another emerging way to sell advertisements on-line are ad Exchanges

(see Muthukrishnan [2009]). These are two-sided markets in which
search engines (or other content managers) sell advertising space on
web pages. As with auctions for sponsored search, the idea is to effi-
ciently set the prices for the space (or clicks), by taking into account the
amount of supply and demand.
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