
IMT School for Advanced Studies Lucca

Lucca, Italy

Mixed-Integer Quadratic Programming
Algorithms for Embedded Control and

Estimation

PhD Program in Control Systems

XXX Cycle

By

Vihangkumar Vinaykumar Naik

2018

http://www.imtlucca.it
mailto:vihangkumar.naik@imtlucca.it

The dissertation of Vihangkumar Vinaykumar Naik is
approved.

Program Coordinator: Prof. Alberto Bemporad,
IMT School for Advanced Studies Lucca, Italy

Supervisor: Prof. Alberto Bemporad,
IMT School for Advanced Studies Lucca, Italy

The dissertation of Vihangkumar Vinaykumar Naik has been reviewed
by:

Assoc. Prof. Michal Kvasnica,
Slovak University of Technology in Bratislava, Slovakia

Assoc. Prof. Daniel Axehill,
Linköping University, Sweden

IMT School for Advanced Studies Lucca

2018

http://www.imtlucca.it

To my family,
Madhuben, Dolatrai, Urvashi, Vinay, Kajal, Jay and Dhyey

Contents

List of Figures xi

List of Tables xiv

Acknowledgements xvi

Vita xviii

Publications xix

Abstract xxi

1 Introduction 1
1.1 Mixed-Integer Quadratic Programming 2
1.2 Mixed-Integer Programming for Control of Hybrid Dy-

namical Systems . 4
1.2.1 Mixed Logical Dynamical Systems 5
1.2.2 Hybrid Model Predictive Control 5

1.3 Mixed-Integer Programming for Estimation 7
1.4 MIQP problem solving techniques 9

1.4.1 Optimal solution methods for MIQP 11
1.4.2 Suboptimal solution methods for MIQP 12

1.5 Branch and Bound Method 12
1.5.1 Branching . 13
1.5.2 Tree exploration/Node selection 14
1.5.3 Pruning Rules . 16

vii

1.6 Notation . 18
1.7 Contributions and thesis outline 18

2 Embedded Mixed-Integer Quadratic Optimization using Accel-
erated Dual Gradient Projection 23
2.1 Introduction . 23

2.1.1 Motivation . 24
2.1.2 Contributions . 24
2.1.3 Outline . 25

2.2 Accelerated dual gradient projection 26
2.2.1 Stopping criteria . 28
2.2.2 Preconditioning . 28
2.2.3 Restart . 28
2.2.4 Infeasibility detection 29
2.2.5 Early stopping criterion for the objective function . 30

2.3 Branch and Bound MIQP Algorithm 31
2.3.1 Exploiting the fixed structure of dual QP relaxations 32
2.3.2 Warm-starting the QP subproblems 33

2.4 Heuristic methods for suboptimal binary-feasible MIQP
solutions . 34
2.4.1 Heuristic approach without using B&B 35
2.4.2 Mid-way Heuristic approach 36

2.5 ADMM based MIQP solver 37
2.5.1 OSQP-based MIQP solver 40

2.6 Numerical results . 42
2.6.1 Heuristic approach-Hybrid vehicle example 42
2.6.2 Branch and Bound-random MIQPs 44
2.6.3 Branch and Bound-PieceWise Affine (PWA) regres-

sion . 47
2.6.4 Mid-way heuristic approach-random MIQPs 48
2.6.5 ARX model segmentation - Heuristic, Mid-way

heuristic approach 48
2.7 Conclusion . 56

viii

3 A Numerically Robust Mixed-Integer Quadratic Programming
Solver based on Nonnegative Least Squares 58
3.1 Introduction . 58

3.1.1 Motivation . 59
3.1.2 Contributions . 60
3.1.3 Outline . 60

3.2 Problem formulation . 61
3.3 Solution of QP relaxations 62

3.3.1 Outer proximal-point iterations 63
3.3.2 Inner active-set solver 63
3.3.3 Warm-starting . 66
3.3.4 Parameter selection and scaling 67
3.3.5 Stopping criteria and optimality 68

3.4 MIQP solver . 68
3.5 Warm-starting binary variables 70

3.5.1 Using mid-way approach to warm-start binary
variables . 75

3.6 Numerical results . 77
3.6.1 Hybrid MPC problem 77

3.7 Conclusions . 77

4 Regularized moving-horizon PWA regression using mixed-
integer quadratic programming 79
4.1 Introduction . 79

4.1.1 Motivation . 80
4.1.2 Contribution . 81
4.1.3 Outline . 82

4.2 Problem Formulation . 82
4.3 PWA Regression Algorithm 83

4.3.1 Recursive clustering and parameter estimation . . . 84
4.3.2 Construction of the state partition 91
4.3.3 Regularized Moving-Horizon PWA Regression for

LPV System Identification 93
4.4 Simulation Examples . 94

4.4.1 Identification of SISO PWARX system 94

ix

4.4.2 Identification of MIMO PWARX system 96
4.4.3 Identification of SISO LPV system 97

4.5 Conclusion . 100

5 Energy Disaggregation using Embedded Binary Quadratic Pro-
gramming 101
5.1 Introduction . 101

5.1.1 Motivation . 102
5.1.2 Contribution . 104
5.1.3 Outline . 105

5.2 Problem setting . 105
5.2.1 Single appliance modelling 105
5.2.2 Energy disaggregation problem 106

5.3 Disaggregation Algorithms 107
5.3.1 Approach A1: Binary Quadratic Programming . . . 107
5.3.2 Approach A2: Regularized Binary Quadratic Pro-

gramming . 108
5.3.3 Approach A3: Binary Quadratic Programming

with S-AR models 109
5.4 Solving BQP problems using GPAD-based Branch and

Bound . 110
5.4.1 Solving relaxed QP problems 112
5.4.2 Branch and Bound for BQP problems 115

5.5 Experimental case study . 118
5.5.1 Performance Evaluation measures 119
5.5.2 Numerical Results 120

5.6 Conclusion . 124

6 Conclusions and outlook 129
6.1 Conclusions . 129
6.2 Outlook of possible future directions 131

A Proof of Theorem 1 133

References 136

x

List of Figures

1 Typical flow of solving QP relaxation of MIQP problem at
the root node. 14

2 Branching operation at the root node. 15

3 Upon solving the relaxed QP subproblem (other than root-
node), checking for infeasibility and integer feasibility re-
spectively. 17

4 Additional bounding criteria when (finite) upper bound
on cost is available. 17

5 Conditions for the binary variables Āiz∗R w.r.t ε¯̀ and εū for
i = 1, . . . , p. Only ε¯̀ < Āiz

∗
R < εū are considered to be

solved with B&B, while the others are set to equality as
shown. 36

6 Battery energy, battery power, engine power and engine
on/off signals versus time: GUROBI (solid blue line),
miqpGPAD-H (dash-dotted red line), and miqpADMM-H
(dashed black line). 44

7 Number of binary variables and error plots for MIQP
problems with 60 vars, 60 ineq. constraints, 8 equality con-
straints, 50 binary constraints. 49

8 Number of binary variables and error plots for MIQP
problems with 90 vars, 80 ineq. constraints, 8 equality con-
straints, 70 binary constraints. 50

xi

9 Performance comparison for ARX model segmentation
problem iddemo6m.mat : true value, segment,

GUROBI. 54

10 Performance comparison for ARX model segmentation
problem iddemo6m.mat with γ = 0.7 : true value,

segment, miqpGPAD-H. 55

11 Performance comparison for ARX model segmentation
problem iddemo6m.mat with γ = 0.7, ε = 0.2 : true
value, segment, miqpGPAD-mH. 56

12 Illustration example with 3 binary variables and (1, 0, ?)

as a binary warm-start. The numbers indicate the order in
which the QP relaxations are solved, dashed nodes corres-
pond to QP subproblems that are ignored. 73

13 Illustration example with 3 binary variables and (0, 0, ?)

as a binary warm-start. The numbers denote the order in
which the QP relaxations are solved, dashed nodes corres-
pond to QP subproblems that are ignored. 74

14 Illustration example with 3 binary variables and z∗H =

(0, 0, 1) as solution of heuristic approach, considered as
a binary warm-start, the best know integer feasible solu-
tion so far V0 is initialized as V0 ← V ∗H , K¯̀ = ∅, Kū =

{3}, H = {1, 2}. The numbers denote the order in which
the QP relaxations are solved, dashed nodes correspond
to QP subproblems that are ignored. 76

15 BFR vs Np : nq = 1, nq = 2, nq = 3. 96

16 Validation results for identification of MIMO-PWARX sys-
tem, Output channel-1. 97

17 Validation results for identification of MIMO-PWARX sys-
tem, Output channel-2. 98

xii

18 Trends of disaggregated cloth dryer power with Approach
A2 for 2-modes (top panel), 3-modes (middle panel), and
A3 (bottom panel), where estimated values are calculated
using bqpGPAD. 125

19 Trends of disaggregated fridge power with Approach A2
for 2-modes (top panel)), 3-modes (middle panel), and A3
(bottom panel), where estimated values are calculated us-
ing bqpGPAD. 126

20 Trends of disaggregated dish washer power with Ap-
proach A2 for 2-modes (top panel)), 3-modes (middle
panel), and A3 (bottom panel), where estimated values are
calculated using bqpGPAD. 127

21 Trends of disaggregated heat pump power with Approach
A2 for 2-modes (top panel)), 3-modes (middle panel), and
A3 (bottom panel), where estimated values are calculated
using bqpGPAD. 128

xiii

List of Tables

1 Performance comparison with different values of εV , εG
for miqpGPAD-H. 43

2 Average CPU time (ms) on random MIQP problems over
50 instances for each combination of n, m, p, q. 45

3 Average CPU time (ms) on random MIQP problems over
50 instances for each combination of n, m, p, q. 45

4 Average CPU time (ms) on random MIQP problems over
10 instances for each combination of n, m, p. 46

5 Average CPU time for training sample N=1000. 48
6 Performance comparison for ARX model segmentation

problem using heuristic approach without using B&B. . . . 54
7 Performance comparison for ARX model segmentation

problem using the “mid-way” heuristic approach, repor-
ted timings are for heuristic and B&B stages respectively. . 55

8 Hybrid MPC problem: CPU time (ms) per sampling step
for different prediction horizons N 78

9 Best Fit Rate on the validation dataset for SISO PWARX
system. 95

10 Best Fit Rates on the validation dataset for MIMO PWARX
system (4.21). 98

11 Average CPU time for training samples N=1000. 99

12 Power rating levels used in Approaches A1 and A2. 119

xiv

13 Actual Energy Fraction Indices hi and Estimated Energy
Fraction Indices ĥi obtained by Approach A1 and A2 us-
ing 2-mode models. 121

14 Actual Energy Fraction Indices hi and Estimated Energy
Fraction Indices ĥi obtained by Approach A1, A2, and A3
using 3-mode models, LASSO approach is from Piga et al.
(2016). 121

15 RSEi andR2
i coefficients obtained by Approach A1 and A2

using 2-mode models. 123
16 RSEi and R2

i coefficients obtained by Approach A1,
A2 and A3 using 3-mode models, LASSO approach is
from Piga et al. (2016). 123

17 Average and maximum CPU time (in milliseconds) taken
to solve the disaggregation problem for a given window
size T . 123

xv

Acknowledgements

I would first like to express my sincere gratitude to my ad-
visor, Prof. Alberto Bemporad, for giving me this opportun-
ity to be a part of his research group. This thesis would not
have been possible without his guidance, motivation and en-
couragement. His passion for research, vast knowledge and
research experience has been an inspiration to me and has
helped me to grow personally and intellectually. I am in-
debted to him for his constant support, keen interest in my
work and for providing learning opportunities throughout.
It is an honour and a privilege to work closely with him. I
am also extremely grateful to Dr. Dario Piga for his help and
guidance. I cannot thank him enough for his support.

I am thankful to Prof. Panagiotis Patrinos for hosting me at
KU Leuven. Working with him has been a great learning ex-
perience and a true pleasure for me. I thank Andreas for host-
ing me at his apartment in Leuven and for many brainstorm-
ing discussions. I also thank Puya, Giovanna, Domagoj and
Pantelis for a wonderful time in Leuven. I would like to thank
Prof. Miroslav Fikar and Assoc. Prof. Michal Kvasnica for
hosting me and giving me an opportunity to collaborate with
Deepak at the Slovak University of Technology in Bratislava,
Slovakia. I am grateful to Shrutika for the warm hospitality
in Bratislava. I want to thank Bartolomeo for our interest-
ing collaboration and a wonderful company during his visit
to Lucca. I would like to thank the review committee mem-
bers for taking out their time to review my thesis and for their
constructive feedback.

Many thanks to my friends who became family members
Manas, Soumali, Armando, Elena, Valentina, Anita, Vitaly,

xvi

Lucia, Paolo, Valerio C, Valerio G, Vigneswaran, Xu, Aless-
andro, Mika, Vincenzo, Daria, Ajay, Ilkay, Davide, Yehia,
Laurence, Emi, Marina, Arthur, Abhishek, Pakhee, Nilay,
Niraj, Surya, Sampath, Laura, Rosaria, Mirko, Evgenia for
such wonderful memories at IMT. I am grateful to Divyesh,
Suchakra, Tanushri, Kalyani, Dr. Sonawane and Prof. Phadke
for their encouragement and support.

Finally and most importantly, I would like to thank my
grandparents Madhuben and Dolatrai for their blessings,
my parents Urvashi and Vinay, my sister-in-law Kajal, my
brother Jay and my nephew Dhyey for their constant love,
care and encouragement, and for standing by me at all times.

xvii

Vita

Dec. 06, 1987 Born, Bilimora, India

2005 – 2009 B.E. in Instrumentation & Control
Final mark: First Class with Distinction
Sarvajanik College of Engineering & Technology
Veer Narmad South Gujarat University
Surat, Gujarat, India

2010 – 2012 M. Tech in Instrumentation & Control (Process Instru.)
Final mark: CGPA 8.94/10 1st Rank
College of Engineering, Pune
University of Pune, Maharashtra, India

2012 – 2013 Assistant Project Engineer
Virtual Lab Project
College of Engineering, Pune, Maharashtra, India

2013 – 2015 Engineer
Embedded Systems Center of Excellence
Eaton Technologies Private Limited
Pune, Maharashtra, India

2015 – 2018 PhD in Control Systems
IMT School for Advanced Studies Lucca, Italy

08/2017 – 10/2017 Visiting student
ESAT – Department of Electrical Engineering
KU Leuven, Belgium

xviii

Publications

1. V. V. Naik, M. Mejari, D. Piga, and A. Bemporad. Energy disaggregation
using embedded binary quadratic programming. Submitted for publica-
tion, 2018.

2. V. V. Naik and A. Bemporad. Mixed-integer quadratic optimization based
on accelerated dual gradient projection for embedded applications. Tech-
nical report, 2018.

3. M. Mejari, V. V. Naik, D. Piga, and A. Bemporad. Energy disaggregation
using piecewise affine regression and binary quadratic programming. In
Proc. 57th IEEE Conference on Decision and Control, Miami Beach, FL, USA,
2018a.

4. A. Bemporad and V. V. Naik. A numerically robust mixed-integer
quadratic programming solver for embedded hybrid model predict-
ive control. In Proc. 6th IFAC Conference on Nonlinear Model Pre-
dictive Control, pages 412–417, Madison, Wisconsin, USA, 2018. DOI:
10.1016/j.ifacol.2018.11.068

5. B. Stellato, V. V. Naik, A. Bemporad, P. Goulart, and S. Boyd. Embed-
ded mixed-integer quadratic optimization using the OSQP solver. In
Proc. European Control Conference, pages 1536–1541, Limassol, Cyprus, 2018.
DOI: 10.23919/ECC.2018.8550136

6. M. Mejari, V. V. Naik, D. Piga, and A. Bemporad. Regularized moving-
horizon PWA regression for LPV system identification. In Proc. 18th IFAC
Symposium on System Identification, pages 1092–1097, Stockholm, Sweden,
2018b. DOI: 10.1016/j.ifacol.2018.09.048

7. V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic op-
timization using accelerated dual gradient projection. In Proc. 20th
IFAC World Congress, pages 10723–10728, Toulouse, France, 2017. DOI:
10.1016/j.ifacol.2017.08.2235

8. V. V. Naik, M. Mejari, D. Piga, and A. Bemporad. Regularized
moving-horizon piecewise affine regression using mixed-integer
quadratic programming. In Proc. 25th Mediterranean Conference on
Control and Automation, pages 1349–1354, Valletta, Malta, 2017. DOI:
10.1109/MED.2017.7984306

xix

https://doi.org/10.1016/j.ifacol.2018.11.068
https://doi.org/10.1016/j.ifacol.2018.11.068
https://doi.org/10.23919/ECC.2018.8550136
https://doi.org/10.1016/j.ifacol.2018.09.048
https://doi.org/10.1016/j.ifacol.2017.08.2235
https://doi.org/10.1016/j.ifacol.2017.08.2235
https://doi.org/10.1109/MED.2017.7984306
https://doi.org/10.1109/MED.2017.7984306

9. V. V. Naik, D. N. Sonawane, D. D. Ingole, and D. Ginoya. Model predictive
control of DC servomotor using active set method. In Proc. IEEE Interna-
tional Conference on Control Applications, pages 820–825, Aug 2013b. DOI:
10.1109/CCA.2013.6662851

10. V. V. Naik, D. Sonawane, D. D. Ingole, D. L. Ginoya, and V. V. Patki. Design
and implementation of proportional integral observer based linear model
predictive controller. International Journal on Control System and Instrument-
ation, 4(1):23–30, 2013a. https://tinyurl.com/ijcsi13-pio-mpc

11. D. D. Ingole, D. N. Sonawane, V. V. Naik, D. L. Ginoya, and V. V. Patki.
Linear model predictive controller for closed-loop control of intravenous
anesthesia with time delay. International Journal on Control System and In-
strumentation, 4(1):8–15, 2013b. https://tinyurl.com/ijcsi13-bis-td

12. V. V. Naik, D. N. Sonawane, D. D. Ingole, D. L. Ginoya, and N. S. Girme.
Design and implementation of interior-point method based linear mo-
del predictive controller. In Mobile Communication and Power Engineering,
pages 255–261, Berlin, Heidelberg, 2013c. Springer Berlin Heidelberg. DOI:
10.1007/978-3-642-35864-7 36 (Best paper award)

13. D. D. Ingole, D. N. Sonawane, V. V. Naik, D. L. Ginoya, and V. Patki. Im-
plementation of model predictive control for closed loop control of an-
esthesia. In Mobile Communication and Power Engineering, pages 242–248,
Berlin, Heidelberg, 2013a. Springer Berlin Heidelberg DOI: 10.1007/978-3-
642-35864-7 34

Presentations

14. V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic optim-
ization using first-order methods. In Proc. 4th European Conference on Com-
putational Optimization, Leuven, Belgium, 2016.

xx

https://doi.org/10.1109/CCA.2013.6662851
https://doi.org/10.1109/CCA.2013.6662851
https://tinyurl.com/ijcsi13-pio-mpc
https://tinyurl.com/ijcsi13-bis-td
https://doi.org/10.1007/978-3-642-35864-7_36
https://doi.org/10.1007/978-3-642-35864-7_36
https://doi.org/10.1007/978-3-642-35864-7_34
https://doi.org/10.1007/978-3-642-35864-7_34

Abstract

The class of optimization problems involving both continu-
ous and discrete variables is known as mixed-integer pro-
gramming (MIP), which emerges in many fields of applic-
ations. Due to their inherent combinatorial nature, solving
such a class of problems in real-time poses a major challenge,
especially in embedded applications where computational
and memory resources are limited. This thesis mainly focuses
on novel solution methods tailored to small-scale Mixed-
Integer Quadratic Programming (MIQP) problems, such as
those that typically arise in embedded hybrid Model Predict-
ive Control (MPC) and estimation problems. With an em-
phasis on algorithm simplicity, efficient solution techniques
to solve MIQP problems are developed in the thesis based
on first-order methods, specialized to find both exact and ap-
proximate solutions. In addition, a numerically robust al-
gorithm is proposed in order to tackle MIQP problem with
positive semidefinite Hessian matrices, often encountered in
hybrid MPC formulations. The proposed techniques, be-
ing library-free and relatively simple to code, are specific-
ally tailored to real-time embedded applications. Such tech-
niques are also employed in a novel algorithm for the MIP-
based PieceWise Affine (PWA) regression, as well as in new
approaches for energy disaggregation using binary quadratic
programming that are particularly suitable for smart energy
meters.

xxi

Chapter 1

Introduction

Making the best/optimal choice from a set of possible decisions using a
mathematical formulation is referred to as solving an optimization prob-
lem. Particularly, the optimal decision is made by taking into consider-
ation the constraints which represent specified limits on the possible de-
cisions that can be taken, deriving from the process or system that is op-
timized. In particular, for an efficient operation of any given system, the
optimal decision making mechanism is at the core of it. An optimization
problem containing integer decision variables is called integer program-
ming problem. When some decision variables can take integer values
and the others can take real values, the problem is referred to as Mixed-
Integer Programming (MIP) problem.

A wide range of practical applications utilize optimization-based de-
cision making mechanisms by employing iterative algorithms in order
to compute the solution of the optimization problem in real-time. Solv-
ing optimization problems periodically at every time instance poses the
challenge of requiring efficient solution methods as well as a powerful
computing platform which can handle the computational burden im-
posed upon. Consequently, one often employs optimization algorithms
on desktop computers running software packages, or uses optimization
only in tasks which allow sufficiently long computation time. However,
over the past few years, with considerable advancements in the field

1

of optimization as well as embedded computing systems, a significant
paradigm of embedded optimization has attracted a lot of attention both
from the academic community and industries. This progress widens
the spectrum of the optimization methods beyond “desktop” computers,
and makes it possible to apply optimization algorithms to applications
such as automotive, aerospace, robotics, and power electronics. Optim-
ization solvers used for embedded applications are generally imposed
with restrictions on factors such as memory, computational resources
and/or execution time. Due to such restrictions the solver is desired
to be library free and simple to implement, and numerically robust for
implementation using reduced precision arithmetic.

A large number of solution approaches for solving Quadratic Program-
ming (QP) problems have been recently proposed for embedded applic-
ations. QP is a specific type of optimization problem with quadratic ob-
jective function and linear constraints having continuous decision vari-
ables. However, for problems arising in control and identification of hy-
brid dynamical systems simple QP solutions do not suffice, and MIP is
required instead. The MIP problems belong to the class of NP-hard prob-
lems, and hence it poses even greater challenges for solving the problem
in an embedded application.

In this thesis we deal with Mixed-Integer Quadratic Programming
(MIQP) problems, which is a special case of mixed-integer nonlinear
programming. Specifically, we mainly focus on novel solution methods
tailored to small-scale MIQP problems, such as those that arise in em-
bedded hybrid Model Predictive Control (MPC) and hybrid estimation
problems.

1.1 Mixed-Integer Quadratic Programming

Mixed-Integer Quadratic Programming (MIQP) is a class of optimiza-
tion problem involving both continuous and discrete decision variables,
having a quadratic objective function subject to linear constraints (Balas,
1969; Lazimy, 1985; Fletcher and Leyffer, 1998; Axehill and Hansson,

2

2006). We consider the MIQP problem of the general form

min
z

V (z) ,
1

2
z′Qz + c′z (1.1a)

s.t. ` ≤ Az ≤ u (1.1b)

Gz = g (1.1c)

Āiz ∈ {¯̀i, ūi}, i = 1, . . . , p (1.1d)

where z ∈ Rn is the vector of decision variables, Q ∈ Rn×n is the sym-
metric positive definite Hessian matrix, c ∈ Rn, A ∈ Rm×n, `, u ∈ Rm,
` ≤ u, represents linear inequality constraints, G ∈ Rq×n, g ∈ Rq de-
scribes linear equality constraints and the integrality constraints are de-
scribed by Ā ∈ Rp×n, ¯̀, ū ∈ Rp, ¯̀ ≤ ū, and p ≤ m. The usual binary
constraints zi ∈ {0, 1} are a special case of (1.1d) having ¯̀

i = 0, ūi = 1,
and Āi the i-th row of the identity matrix (such problem is also referred
to as a mixed-binary quadratic programming (MBQP) problem).

When the integrality constraint (1.1d) is relaxed as

¯̀
i ≤ Āiz ≤ ūi, i = 1, . . . , p (1.2)

the following QP problem

min
z

V (z) ,
1

2
z′Qz + c′z (1.3a)

s.t. ` ≤ Az ≤ u (1.3b)

Gz = g (1.3c)
¯̀≤ Āz ≤ ū (1.3d)

is termed as “QP relaxation” of the MIQP problem (1.1). This general
form of MIQP problem (1.1) with strictly convex QP relaxations is built
upon extensively throughout this thesis.

MIQP problems arise in diverse application areas including hy-
brid model predictive control (Bemporad and Morari, 1999a), moving-
horizon estimation (Bemporad et al., 1999a; Ferrari-Trecate et al., 2002),
piecewise affine regression (Bemporad et al., 2001; Roll et al., 2004), tra-
jectory generation (Mellinger et al., 2012), economic dispatch (Papageor-
giou and Fraga, 2007), planning and design (Propato and Uber, 2004;

3

Yang et al., 2007), scheduling (Catalão et al., 2010), network topology
identification (Tian et al., 2016). In MIQP problems the worst-case com-
putational complexity grows exponentially with the number of binary
(or integer) decision variables. This inherent characteristic restricts solv-
ing large-scale problems using “desktop” computers, for which efficient
commercial software packages (IBM, Inc., 2014; Gurobi Optimization,
Inc., 2014; Fair Isaac Corporation, 2015; MOSEK ApS, 2015) are available.

However, the possibility of solving small-scale MIQP problems on an
embedded platform has attracted considerable attention from the sci-
entific community in recent years, as motivated in the next section.

1.2 Mixed-Integer Programming for Control of
Hybrid Dynamical Systems

A wide class of practical systems has interactions between continuous
dynamics and discrete components, which are known as hybrid systems.
One of the initial papers on hybrid systems dates back to the late 1960s
by Witsenhausen (1966), thereafter several modelling frameworks have
been proposed (Antsaklis, 2000; Cassandras et al., 2001; Goebel et al.,
2009). As compared to the continuous-time hybrid systems (Lincoln and
Rantzer, 2001; Xu and Antsaklis, 2003; Borrelli et al., 2005), the optimal
control of discrete-time hybrid systems are easy to formulate and to solve
numerically. We focus on discrete-time hybrid systems hereafter.

Since its introduction almost two decades ago by Bemporad and Mor-
ari (1999a), hybrid Model Predictive Control (MPC) has attracted a lot of
attention both from academia and industry. The reason for such popular-
ity is mainly due to the fact that hybrid systems can model a very large
spectrum of real-world systems where physical processes with switch-
ing dynamics, discrete actuators, logic rules, and constraints on system
variables coexist, and that MPC provides an optimal way of controlling
them.

4

1.2.1 Mixed Logical Dynamical Systems

Hybrid systems can efficiently be modeled using the following Mixed
Logical Dynamical (MLD) framework (Bemporad and Morari, 1999a),

xk+1 = Axk + B1vk + B2δk + B3ζk + B5 (1.4a)

yk = Cxk + D1vk + D2δk + D3ζk + D5 (1.4b)

E2δk + E3ζk ≤ E1vk + E4xk + E5, (1.4c)

where k ∈ N is the time index, xk is the state vector, yk is the output vec-
tor, vk is the input vector, ζk and δk are the vectors of auxiliary variables
which are real-valued and binary respectively. The vectors xk, vk, yk can
have both real and binary components, A, Bi, C, Di and Ei are the con-
stant matrices describing the behavior of the hybrid dynamical system.
The tool HYSDEL (hybrid systems description language) (Torrisi and Be-
mporad, 2004) allows one to describe a hybrid dynamical model and get
the equivalent MLD transformation (1.4).

Under certain assumptions, MLD systems are equivalent to other
classes of hybrid systems, such as Piecewise Affine (PWA) and linear com-
plementarity systems (Heemels et al., 2001; Bemporad et al., 2000; Herceg
et al., 2013), and the MLD representation allows to systematically formu-
late control/estimation objective into an optimization problem.

1.2.2 Hybrid Model Predictive Control

Model Predictive Control (MPC) is an advanced control technique which
is very popular in the process industry. MPC is a feedback, optimal
control strategy based on numerical optimization. At each sampling in-
stance, MPC solves an optimization problem online, and computes the
sequence of optimal current and future control inputs by minimizing the
difference between set-points and future outputs predicted by a given
plant model over a finite time horizon in forward time. Then, only the
current optimal input is applied to the plant. The updated plant informa-
tion is used to formulate and solve a new optimal control problem at the
next sampling instance. This procedure is repeated at every sampling

5

instance, hence called as receding horizon control (RHC). Model predict-
ive control has received attention largely due to its ability to handle hard
constraints (Wright, 1997; Rao et al., 1998; Bemporad and Morari, 1999b;
Mayne et al., 2000). However, the need to solve an optimization prob-
lem at every sampling instance, typically via iterative optimization al-
gorithms, imposes a large computational load.

Receding horizon control of mixed logical dynamical (MLD) systems,
also referred to as hybrid model predictive control (hybrid MPC) (Bem-
porad and Morari, 1999a) has enticed notable attention from researchers
in various fields. Based on the MLD model (1.4), a possible hybrid MPC
problem formulation is the following

min
{vk,δk,ζk}N−1

k=0

N−1∑
k=0

‖Lx(xk − rxk)‖22 + ‖Lv(vk − rvk)‖22 + (1.5a)

‖Lδ(δk − rδk)‖22 + ‖Lζ(ζk − rζk)‖22
s.t. MLD model (1.4) (1.5b)

x0 = x(t).

where N is the length of horizon, and objective (1.5a) minimizes the
(weighted squared) norm of the difference between set-points and de-
cision variables. Problem (1.5) can be recast as an MIQP problem of the
form (1.1) by defining the n-dimensional optimization vector

z = [v′0 ... v
′
N−1 δ

′
0 ... δ

′
N−1 ζ

′
0 ... ζ

′
N−1]

′
.

On-line implementation of hybrid model predictive control (MPC) re-
quires the solution of a Mixed-Integer Quadratic Programming (MIQP)
problem at every sampling instance (Bemporad and Morari, 1999a).
The only exceptional cases are hybrid MPC problems for small systems
having few binary variables that can be solved off line using multi-
parametric programming (Bemporad et al., 2002; Borrelli et al., 2005;
Alessio and Bemporad, 2009; Bemporad, 2015a). Mature software tools
for multi-parametric programming are available (Bemporad, 2003; Kvas-
nica et al., 2004; Löfberg, 2004; Herceg et al., 2013) to facilitate a develop-
ment environment for modeling, analysis, and control.

6

Implementation of hybrid MPC on personal computers are in prac-
tice thanks to the mature software tools such as HYSDEL (Torrisi and Be-
mporad, 2004) for designing MLD models; Hybrid Toolbox (Bemporad,
2003) for modelling, analysis and controller design for hybrid systems;
MPT toolbox (Kvasnica et al., 2004; Herceg et al., 2013) for modeling,
control, analysis, and deployment of constrained optimal controllers;
YALMIP (Löfberg, 2004) for prototyping and solver interface; mixed-
integer optimization commercial solvers CPLEX (IBM, Inc., 2014), GUR-
OBI (Gurobi Optimization, Inc., 2014), FICO Xpress (Fair Isaac Corpor-
ation, 2015) and, MOSEK (MOSEK ApS, 2015). However, such existing
MIQP solvers are not tailored to be implemented on resource constrained
embedded platforms. This limits the applicability of hybrid MPC and
possesses major challenge in the area of real-time hybrid MPC imple-
mentation for fast dynamic systems.

Motivated by this fact, in this thesis solution approaches for solving
MIQP problems in an embedded control setting have been investigated.
While “desktop” applications utilize a numerical package to solve (some-
times large-scale) MIQPs with large memory and computing resources
available and no stringent limits on execution time, in embedded applic-
ations, severe restrictions on CPU/memory/time resources are imposed,
the number of variables (especially binary variables) should be small, the
code must be simple and library-free, the algorithm must be numeric-
ally robust, and shall render a solution within specified tolerance limits
also when executed in reduced precision arithmetic. The MIQP solution
methods described in this thesis are driven by such requirements.

1.3 Mixed-Integer Programming for Estimation

The availability of a system model is essential for control and analysis
of hybrid dynamical systems. In some cases, deriving a mathematical
model of the system from first-principle laws can be a costly and time
consuming task. In these cases, model parameters need to be estimated
using experimental data. Such a data-driven modelling approach is gen-
erally referred to as system identification.

7

Among various approaches available in the literature for the identi-
fication of hybrid and switching systems (see the survey papers (Garulli
et al., 2012; Paoletti et al., 2007)), we focus particularly on PieceWise Affine
(PWA) regression algorithms using mixed-integer programming. PWA
models are simple and flexible model structures having universal ap-
proximation properties such that any nonlinear function can be mod-
elled with arbitrary accuracy by a PWA map (Breiman, 1993). Due to the
equivalence between PWA models and several classes of hybrid mod-
els (Heemels et al., 2001; Bemporad, 2004), available tools for control and
analysis of hybrid systems are also applicable for PWA systems (Bem-
porad and Morari, 1999a; Bemporad et al., 2000).

Mixed-integer programming was proposed to solve PWA regression
problems in the identification of hybrid systems in (Roll et al., 2004; Be-
mporad et al., 2001). In these approaches, the estimation of hinging-
hyperplane ARX models and piecewise affine Wiener models is formu-
lated as a mixed-integer linear or quadratic programming problem, and
then solved through a branch and bound algorithm. The computation
complexity of such problems grows proportional with the number of lin-
ear sub-models (or “modes”) defining the PWA models and with the size
of the training dataset, as the number of integer variables directly de-
pends on both these parameters. Hence, these approaches are limited to
problems with a moderate number of integer variables, for example cases
in which comparatively fewer number of data points are available (e.g.,
when it is very costly to obtain data). Although computationally expens-
ive, these approaches give a global optimal solution. In this thesis, we
propose novel MIQP based algorithm for the PWA regression problems.

Furthermore, in this thesis we employ MIQP and hybrid system iden-
tification for an estimation problem from the energy sector. Specifically,
we consider an estimation problem of non-intrusive load monitoring
(NILM) also known as Energy Disaggregation or non-intrusive appliance
load monitoring (NIALM). The NILM approach calculates the estimates
of energy consumption of the individual appliance based only on the ag-
gregate/total energy consumption measured at a single point in a whole
building/premise (Hart, 1992).

8

We focus particularly on the NILM techniques based on integer pro-
gramming. An integer programming based approach is presented in (Su-
zuki et al., 2008) for small-scale problems, and for the cases where some
appliance has multiple modes. One of the challenges for such appro-
aches is to distinguish between appliances with similar or overlapping
load signature. The aided linear integer programming (ALIP) based ap-
proach presented in (Bhotto et al., 2017) is with correction based on a
state diagram, median filtering, and linear-programming-based refine-
ment. The mixed-integer linear programming (MILP) based NILM ap-
proach presented in (Wittmann et al., 2018) introduces a new set of in-
teger linear constraints.

As discussed in Section 1.2.2, similar to control approaches, the estim-
ation methods based on integer and mixed-integer programming avail-
able in literature rely on the desktop computer packages, and the em-
bedded implementation of such approaches is still a very recent research
area.

1.4 MIQP problem solving techniques

A large variety of approaches have been proposed over the last few dec-
ades for solving mixed-integer programming problems including Gener-
alized Benders decomposition method (Geoffrion, 1972; Lazimy, 1985),
cutting plane methods (Gomory, 1958, 1963), branch and bound (Land
and Doig, 1960; Gupta and Ravindran, 1985), branch and cut (Bien-
stock, 1996; Stubbs and Mehrotra, 1999) and outer approximation al-
gorithms (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994). Re-
view of methods for solving mixed-integer programming problems can
be found in (Schrijver, 1986; Sherali and Driscoll, 2000; Grossmann, 2002).
Among these methods, the branch and bound (B&B) algorithm is the
most widely adapted method (Fletcher and Leyffer, 1998; Linderoth and
Savelsbergh, 1999; Bemporad and Morari, 1999a; Axehill and Hansson,
2006; Morrison et al., 2016) for finding the global solution.

In 1960, Land and Doig (1960) pioneered the branch and bound
algorithm for solving mixed-integer linear programs, which has been

9

widely adapted for general integer programming problems. Dakin
(1965) proposed a branching dichotomy and the elaborations to B&B
were proposed by Beale and Small (1965); Little et al. (1963). A thor-
ough treatment of B&B technique can be found in survey papers (Lawler
and Wood, 1966; Linderoth and Savelsbergh, 1999; Morrison et al., 2016).
Over almost last five decades with significant improvements in com-
puting platforms, mathematical algorithms and efficient software imple-
mentation, led to the evolution of integer programming which has been
summarized in (Bixby, 2010; Jünger et al., 2010).

A combinatorial problem can be in principle solved by enumerating
all possible combinations of the integer variables, and finding the com-
bination which makes the objective function the smallest. This procedure
is known as “exhaustive enumeration” or “exhaustive search”. How-
ever, this technique becomes impractical as the number of integer vari-
ables grow, due to the exponential growth of the potential problems to
be solved. The branch and bound algorithm provides a structured meth-
odology to possibly avoid such an exhaustive search. This algorithm in a
basic form relies on sequentially partitioning the integer feasible solution
space into small subsets or subregions, which is proceeded by construct-
ing a tree structure to search the space of all feasible solutions. An op-
timization problem is required to be solved corresponding to each sub-
region. By using the bounds on the optimal value available so far, the
algorithm avoids exhaustive search by possibly eliminating certain sec-
tions of the tree. Overall, the relative efficiency of the B&B algorithm
primarily relies on possibly eliminating large subsets of the solution
space, and on an efficient solution of the corresponding optimization
problems. Employing a branch and bound algorithm for mixed-integer
quadratic programming (MIQP) problems relies on efficient solution of
the quadratic programming (QP) problems obtained from relaxation of
integer constraints.

A number of embedded optimization solution techniques for solv-
ing QP problems have been presented including the active-set method
qpOASES (Ferreau et al., 2014), nonnegative least squares (NNLS) (Be-
mporad, 2016, 2018); the interior-point method CVXGEN (Mattingley

10

and Boyd, 2012), FORCES (Domahidi et al., 2012); the first order
method FiOrdOs (Ullmann, 2011), accelerated dual gradient projection
(GPAD) (Patrinos and Bemporad, 2014), operator splitting quadratic
program (OSQP) (Stellato et al., 2017); commercial solvers FORCES
PRO (Domahidi and Jerez, 2014), ODYS QP (Cimini et al., 2017). For a de-
tailed summary see the survey paper on embedded optimization meth-
ods (Ferreau et al., 2017). However, the challenge still remains open for
MIQP solvers tailored to embedded applications, which are described in
the following section.

1.4.1 Optimal solution methods for MIQP

For finding the optimal solution of MIQP problems, various approaches
have been presented using the well-known branch and bound (B&B) al-
gorithm (Floudas, 1995), which rely on the solution of QP relaxations of
the form (1.3). A B&B based approach to solve MIQPs tailored for MPC
is proposed by Axehill and Hansson (2006). The method uses a dual QP
formulation and employs warm-starting. However, this implementation
does not exploit dual lower bounds on the optimal cost, that is very use-
ful to terminate the relaxed QP solver prematurely (Fletcher and Leyffer,
1998; Axehill and Hansson, 2008).

Recently Bemporad (2015b) and Frick et al. (2015) have developed
new algorithms for solving MIQPs which are tailored for embedded sys-
tems. In (Frick et al., 2015) an embedded interior-point based convex
programming solver is extended and is combined with a B&B setting.
The authors investigated relaxations of MPC problems with long hori-
zons, and provided the trade-off computation time against closed-loop
performance. They solved hybrid MPC problems with a significant num-
ber of binary variables in acceptable time frames for implementation on
embedded systems. Bemporad (2015b) proposed an approach combin-
ing B&B with an active-set method based on nonnegative least squares
(NNLS) to solve QP relaxations (Bemporad, 2016). This approach was
particularly tailored to solving small-scale MIQPs such as those typically
arising in embedded hybrid MPC applications.

11

1.4.2 Suboptimal solution methods for MIQP

Due to its combinatorial nature, solving an MIQP to optimality may be
impractical in fast applications. For this reason, efforts have been made
recently for solving MIQPs approximately in a very quick manner. Heur-
istic methods were proposed which lead to a suboptimal solution of the
MIQP while taking considerably less computation time than finding the
optimal solution. Fischetti et al. (2005) proposed a heuristic method
for finding a feasible solution of a generic MIP, known as the feasibil-
ity pump (FP). Bertacco et al. (2007) extended this approach for binary
and general-integer variables and the subsequent extension is shown in
(Achterberg and Berthold, 2007). Recently, Takapoui et al. (2016) presen-
ted a heuristic with alternating direction method of multipliers (ADMM)
to find an approximate solution of MIQP problem, within very short
time. An approach based on operator splitting method for finding sub-
optimal solution, with guaranteed local convergence results under cer-
tain assumptions was presented in (Frick et al., 2016).

1.5 Branch and Bound Method

The B&B algorithm proceeds as a tree search, where each node of the tree
represents a unique relaxed QP subproblem. The tree is initialized by re-
laxing all the integrality constraints (1.1d) into the form (1.2), by allowing
the binary expressions Āiz to take any continuous value in the interval[
¯̀
i, ūi

]
. Therefore, the relaxed QP problem (1.3) is represented by the root

node of the tree, which is a unique origin node. The tree evolves by the
branching operation where two children candidate nodes are created from
each parent or ancestor node. Specifically, branching picks one relaxed
integer variable (of form ¯̀

i ≤ Āiz ≤ ūi) from the parent problem and
creates two children problems by fixing the selected integer variable to
either bounds, Āiz = ¯̀

i and Āiz = ūi. Nodes with all the integers fixed
either to ¯̀

i or ūi, or in other words nodes with no children, are called leaf
nodes or leaves of the tree.

A typical flow of solving QP relaxations is shown in Figure 1 (Bem-

12

porad, 2015b). If at the root node, the QP relaxation (1.3) is found infeas-
ible, then the given MIQP problem (1.1) is declared infeasible. If the QP
relaxation is feasible, this is followed by checking for integer feasibility.
Specifically, this checks if the integrality constraint (1.1d) is satisfied, i.e.,
if all i = {1, . . . , p} integer variables Āiz are either equal to ¯̀

i or ūi then
the corresponding solution is considered to be an integer feasible solution.
If the QP relaxation at the root node is integer feasible then the MIQP
problem (1.1) is solved. If any of the integer variables Āiz has fractional
value, then the tree further evolves by the branching operation.

1.5.1 Branching

The branching operation picks a variable Āiz (with an index i) having
fractional value between ¯̀

i and ūi, and transforms the corresponding
relaxed inequality ¯̀

i ≤ Āiz ≤ ūi into two equalities Āiz = ¯̀
i and Āiz =

ūi, thus creating two children nodes (i.e., two new subproblems). This
operation is graphically represented in Figure 2. This is continued until
all the integer variables Āiz, with i = {1, . . . , p}, are branched upon in
same fashion.

Thus during the branching process, an integer variable needs to be se-
lected for branching. This is done by the branching rule which selects the
next variable to be branched upon. Some of the commonly used branch-
ing rules are,

• Maximum fractional part: picks up index i such that Āiz is closest
to ¯̀

i+ūi
2

• First free variable: selects the variable with smallest index i from
the set of relaxed integer variables

This operation results in two new children QP subproblems QP1 and QP2

from the root node QP0, as shown in Figure 2. The indices corresponding
to these two children subproblems are stored on a list or a stack, which
holds the indices of the remaining/pending nodes to be explored.

13

QP0

min
z

V (z) ,
1

2
z′Qz + c′z

s.t. ` ≤ Az ≤ u
Gz = g
¯̀≤ Āz ≤ ū

QP relaxation (1.3)

QP
infeasible

?

MIQP infeasible
stop

integer
feasible

?

Āiz ∈ {¯̀i, ūi}
∀i = 1, . . . , p

MIQP solved
stop

start
branching

(typical case)

yes

no

yes

no

Figure 1: Typical flow of solving QP relaxation of MIQP problem at the root
node.

1.5.2 Tree exploration/Node selection

Once the branching variable is selected and two subproblems are stored
on the stack, the order of solving the relaxed QP subproblems is determ-
ined using the tree exploration rule or node selection rule. The tree ex-
ploration strategies used in practice are,

• Breadth first search: this is a first-in, first-out (FIFO) strategy, ex-

14

QP0

min
z

V (z) ,
1

2
z′Qz + c′z

s.t. ` ≤ Az ≤ u
Gz = g
¯̀≤ Āz ≤ ū

QP relaxation

QP1

min
z

V (z) ,
1

2
z′Qz + c′z

s.t. ` ≤ Az ≤ u
Gz = g

Āiz = ¯̀
i

¯̀
j ≤ Ājz ≤ ūj , j 6= i

QP2

min
z

V (z) ,
1

2
z′Qz + c′z

s.t. ` ≤ Az ≤ u
Gz = g

Āiz = ūi
¯̀
j ≤ Ājz ≤ ūj , j 6= i

Figure 2: Branching operation at the root node.

pands a binary tree horizontally by prioritizing the nodes at the
same level (starting from the root, the row of nodes till leaves is
called a levels and they are characterized by the cardinality of the
set of the integers).

• Depth first search: this is a last-in, first-out (LIFO) strategy, ex-
pands a binary tree vertically by selecting one of the children
nodes.

• Best first search/ best bound search: this selects the node with low-
est bound.

Thus, one of two nodes are selected using one of these strategies and
the corresponding relaxed subproblem is solved. Each of these rule res-
ults in a different enumeration of the binary tree, and consequently af-

15

fects the number of nodes explored, computation time of the overall B&B
algorithm. The overall idea of the B&B scheme is to continue the tree
search until each leaf is explored.

1.5.3 Pruning Rules

A set of checks are used to possibly avoid the complete enumeration,
which are the key element of efficient B&B implementation. Bounding
rules are employed which enables to fathom or prune a node i.e., a section
of a tree that can be eliminated from the exploration process. Pruning
rules are employed such as pruning by

• infeasibility: if a subproblem is infeasible;

• integer feasibility: if a subproblem returns an integer feasible solu-
tion;

• optimality/bound: if the optimal cost of a subproblem is worse
than the best known integer feasible solution found so far.

Figure 3 describes the flow of these checks for nodes other than the root
node, where V0 denotes the best known integer feasible solution found
so far (also known as an incumbent).

The best known integer feasible solution V0 is initialized with infinity
and updated as soon the solution of a subproblem is integer feasible, as
shown in Figure 3.

Note that the latter pruning rule avoids further branching, as chil-
dren subproblems would provide higher costs only, see Figure 4. Hence,
a good initial integer feasible solution helps to possibly prune subsec-
tions of a tree, which is essential for an efficient execution of the B&B
algorithm.

The tree search/exploration process continues until no pending
nodes (problems) remain to be explored.

We build upon this general idea of B&B in Chapter 2 and Chapter 3.

16

QPk k > 0

QP
infeasible

?

stop branching
on subtree

integer
feasible

?

Āiz ∈ {¯̀i, ūi}
∀i = 1, . . . , p

keep
branching

update
upper bound
V0 ≥ V ∗
on MIQP
solution

yes

no

no

yes

Figure 3: Upon solving the relaxed QP subproblem (other than root-node),
checking for infeasibility and integer feasibility respectively.

QPk k > 0

V ∗≥V0

?

keep
branching

stop branching !
(adding further
equality constraints
can only increase
the optimal cost)

upper bound
V0 on MIQP
is available

no

yes

Figure 4: Additional bounding criteria when (finite) upper bound on cost is
available.

17

1.6 Notation

The following notation will be used throughout the thesis. Let Rn de-
note the set of real vector of dimension n; Rm×n is the set of real matrices
with m rows and n columns, N is the set of natural integers, and {0, 1}p
is p-tuples of binary variables. For a vector a ∈ Rn, ai denotes the i-th
component of a, the condition a > 0 is equivalent to ai > 0, ∀i = 1, . . . , n

(and similarly for ≥, ≤, <). A square diagonal matrix in Rn×n formed
with the components of a vector a ∈ Rn on the main diagonal is de-
noted by diag(a). For a matrix A ∈ Rm×n, Ai denotes its i-th row, A′

its transpose, λmax(A) its maximum eigenvalue, and its Frobenius norm
by ‖A‖F . For a square matrix A ∈ Rn×n, its inverse is denoted by A−1

(if it exists). Matrix A# ∈ Rm×n denotes the pseudoinverse matrix of
A, A# , (A′A)−1A′ if A is full column rank. A � 0 denotes that A is
positive definite, and similarly�,≺, and� denote positive semidefinite-
ness, negative definiteness, and negative semidefiniteness, respectively.
Let I ⊂ N be a finite subset, we denote by aI the subvector obtained by
collecting all the components ai for all i ∈ I, and similarly the submat-
rix AI is obtained by collecting all the rows Ai. The number of elements
(cardinality) of a discrete set I is denoted by card(I). The Euclidean
norm of a is denoted by ‖a‖2, the 1-norm of a by ‖a‖1 =

∑n
i=1 |ai|, and

its infinite-norm by ‖a‖∞. Matrix In denotes the n × n identity matrix,
1n and 0n represents vector of ones and zeros, respectively, with n ele-
ments. Dimension subscript n is dropped whenever it is clear from the
context. The symbol � denotes the element-wise multiplication between
two matrices, and ⊗ the Kronecker product.

1.7 Contributions and thesis outline

Chapter 2 : Embedded Mixed-Integer Quadratic Optimiz-
ation using Accelerated Dual Gradient Projection

The Mixed-Integer Quadratic Programing (MIQP) problem is a combin-
atorial problem. It poses a major challenge to solve such a class of prob-
lems on resource and memory constrained computing environments. To

18

address this issue, with an emphasis on algorithmic simplicity, in this
chapter we propose Accelerated Dual Gradient Projection (GPAD) based
approaches tailored to solve small-scale MIQP problems such as those
that typically arise in embedded applications.

In particular, an existing GPAD algorithm is devised with additional
specializations for the efficient solution of Quadratic Programming (QP)
relaxations that arise during Branch and Bound (B&B) while solving the
MIQP to optimality. Moreover, in order to find an integer feasible com-
bination of the binary variables, two heuristic approaches are presen-
ted: (i) without using B&B, and (ii) using B&B with significantly reduced
number of QP relaxations referred to as “mid-way” heuristic approach.
In addition, the proposed idea of keeping a fixed QP matrix structure
throughout the execution of B&B is extended to MIQP solving appro-
aches using the Alternating Direction Method of Multipliers (ADMM)
algorithm and the Operator Splitting Quadratic Program (OSQP) solver.
The presented algorithms are very simple to code and require only basic
arithmetic operations to be performed online, which makes them well
suited for an embedded implementation.

The work presented in this chapter led to the following contributions:

• V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic
optimization using accelerated dual gradient projection. In Proc.
20th IFAC World Congress, pages 10723–10728, Toulouse, France,
2017.

• V. V. Naik and A. Bemporad. Mixed-integer quadratic optimiza-
tion based on accelerated dual gradient projection for embedded
applications. Technical report, 2018.

• B. Stellato, V. V. Naik, A. Bemporad, P. Goulart, and S. Boyd.
Embedded mixed-integer quadratic optimization using the OSQP
solver. In Proc. European Control Conference, pages 1536–1541, Li-
massol, Cyprus, 2018.

19

Presentation

• V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic
optimization using first-order methods. In Proc. 4th European Con-
ference on Computational Optimization, Leuven, Belgium, 2016.

Chapter 3 : A Numerically Robust Mixed-Integer Quad-
ratic Programming Solver based on Nonnegative Least
Squares

The deployment of hybrid Model Predictive Control (MPC) in practical
applications requires primarily an efficient and robust on-line Mixed-
Integer Quadratic Programming (MIQP) solver that runs in real-time.
However, hybrid MPC formulations often result in positive semidefin-
ite Hessian matrices, due to some variables having zero weight in the
MPC cost function. The MIQP solution approach using Accelerated Dual
Gradient Projection (GPAD) and Alternating Direction Method of Multi-
pliers (ADMM) presented in Chapter 2 requires a strictly convex object-
ive function, and numerical performance of the such solvers deteriorates
with the condition number of the Hessian matrices. While regularizing
the cost function would improve numerical robustness, it would bias the
solution from optimality.

A new approach is proposed in this chapter to tackle such problems
which uses a numerically robust QP solver based on an active-set method
for solving nonnegative least squares (NNLS) and proximal-point itera-
tions combined with branch and bound (B&B), which handles positive
semidefinite Hessian matrices. The B&B algorithm is further equipped
with a generic framework to warm-start the binary variables, which
provides a way to exploit the knowledge of the system/process/problem
under consideration. It is especially useful in the case of hybrid MPC
and moving-horizon estimation where a good initial guess for the binary
variables is available by shifting the optimal solution computed at the
previous sample step. This idea is further utilized for the PieceWise Af-
fine (PWA) regression algorithm proposed in the following chapter. The
“mid-way” heuristic approach presented in Chapter 2 is also demon-

20

strated as a special case of the proposed binary warm-starting frame-
work.

The work presented in this chapter resulted in the following publica-
tion:

• A. Bemporad and V. V. Naik. A numerically robust mixed-integer
quadratic programming solver for embedded hybrid model pre-
dictive control. In Proc. 6th IFAC Conference on Nonlinear Model Pre-
dictive Control, pages 412–417, Madison, Wisconsin, USA, 2018.

Chapter 4 : Regularized moving-horizon PWA regression
using mixed-integer quadratic programming

In this chapter, we present a novel regularized moving-horizon al-
gorithm for PieceWise Affine (PWA) regression. At each iteration, an
MIQP problem is formulated (and solved utilizing the GPAD-based
MIQP solver presented in Chapter 2) to find the model parameters and
active linear sub-model, which best match the training data within a re-
latively short time window in the past. The training samples are pro-
cessed iteratively. The presented framework is properly adapted for the
identification of Linear Parameter-Varying (LPV) systems. In addition,
we exploit the binary warm-starting framework presented in Chapter 3
for efficient solution of the formulated MIQP problems.

The work presented in this chapter appears in the following publica-
tions:

• V. V. Naik, M. Mejari, D. Piga, and A. Bemporad. Regularized
moving-horizon piecewise affine regression using mixed-integer
quadratic programming. In Proc. 25th Mediterranean Conference on
Control and Automation, pages 1349–1354, Valletta, Malta, 2017.

• M. Mejari, V. V. Naik, D. Piga, and A. Bemporad. Regularized
moving-horizon PWA regression for LPV system identification. In
Proc. 18th IFAC Symposium on System Identification, pages 1092–1097,
Stockholm, Sweden, 2018b.

21

Chapter 5 : Energy Disaggregation using Embedded Bin-
ary Quadratic Programming

In this chapter, we consider an estimation problem commonly referred in
the literature as energy disaggregation problem or non-intrusive load monit-
oring (NILM), which amounts to estimating the power consumption pro-
files of individual household appliances using only aggregated power
measurements, essential to devise energy saving strategies.

Specifically, this chapter presents novel NILM methods using Bin-
ary Quadratic Programming (BQP) tailored for embedded implement-
ation inside commercial smart energy meters, for a typical household
where the number of appliances are moderate. The BQP solver used
in this work is a special case of the Accelerated Dual Gradient Pro-
jection (GPAD) based branch and bound (B&B) approach presented in
Chapter 2. Furthermore, we employ the regularized moving-horizon
PieceWise Affine (PWA) regression algorithm proposed in Chapter 4 in
order to identify the dynamic model for each appliance. The perform-
ance of the proposed approaches has been demonstrated using a house-
hold energy consumption benchmark dataset available in the literature.

The work described in this chapter led to the following contributions:

• V. V. Naik, M. Mejari, D. Piga, and A. Bemporad. Energy disaggreg-
ation using embedded binary quadratic programming. Submitted
for publication, 2018.

• M. Mejari, V. V. Naik, D. Piga, and A. Bemporad. Energy disag-
gregation using piecewise affine regression and binary quadratic
programming. In Proc. 57th IEEE Conference on Decision and Control,
Miami Beach, FL, USA, 2018a.

The concluding remarks and an outline of possible future directions
are contained in Chapter 6.

22

Chapter 2

Embedded Mixed-Integer
Quadratic Optimization
using Accelerated Dual
Gradient Projection

2.1 Introduction

Solving an NP-hard problem like Mixed-Integer Quadratic Program-
ming (MIQP) problem on an embedded platform poses a major challenge
due to limited number of memory and computation resources. To ad-
dress this issue, we propose to use branch and bound (B&B) algorithm
combined with first-order methods to solve the relaxed Quadratic Pro-
gramming (QP) subproblems. In this chapter we also introduce the ap-
proaches to find a suboptimal integer feasible solution of the MIQP prob-
lem: (i) without using B&B, and (ii) using B&B with significantly reduced
number of QP relaxations. The suggested approaches need only basic
arithmetic operations which makes them particularly well suited for em-
bedded implementation.

23

2.1.1 Motivation

Nesterov’s fast gradient method (Nesterov, 1983, 2004) has recently re-
ceived great attention among the QP solving methods utilized for em-
bedded applications by the embedded control community (Richter et al.,
2011; Kögel and Findeisen, 2011; Patrinos and Bemporad, 2014; Gisels-
son, 2014). The primary reasons for this are its simplicity, relatively good
performance, and good bounds on the worst-case number of iterations.
These characteristics make the method favorable for real-time embedded
applications. Jerez et al. (2013) demonstrated Field-Programmable Gate
Array (FPGA) implementation of fast gradient method for embedded
Model Predictive Control (MPC). FPGA implementation of Nesterov’s
fast gradient method and of the Alternating Direction Method of Mul-
tipliers (ADMM) for embedded MPC, and an analysis for reduced pre-
cision fixed-point arithmetic was provided in (Jerez et al., 2014). Patri-
nos and Bemporad (2014) presented an accelerated gradient projection
method applied to solve the dual QP problem (Accelerated Dual Gradi-
ent Projection, GPAD). An analysis of dual gradient projection algorithm
for fixed-point implementation (Patrinos et al., 2013) and FPGA imple-
mentation was presented in (Rubagotti et al., 2016). Thus, these methods
have been demonstrated to be suitable for embedded implementation.

2.1.2 Contributions

This chapter introduces three new approaches for solving embedded
MIQPs using the Accelerated Dual Gradient Projection (GPAD) method: (i)
using branch and bound (B&B) to find the optimal solution, (ii) without
B&B to find a suboptimal integer feasible solution, (iii) combining heur-
istic and B&B to find a suboptimal integer feasible solution. The first
approach exploits the fact that the same matrix structure is used in all
QP relaxations, so that preconditioning and factorization is only required
at the root node; subsequent QP relaxations require simply the removal
of sign restrictions on some of the dual variables. In addition, the basic
GPAD algorithm of Patrinos and Bemporad (2014) is extended to include
restart, infeasibility detection, and early termination based on dual cost

24

to enhance the overall performance of the proposed scheme.

Furthermore, two heuristic approaches are presented with an object-
ive of initializing the B&B algorithm with an upper bound on the op-
timal cost. The first heuristic is a simple modification in the GPAD
algorithm which avoids using the branch and bound algorithm. The
second method exploits the possibility of heuristic approach to pick the
binary variables to be solved using branch and bound by fixing the re-
maining binaries to either of the bounds. Though there is no guarantee
of convergence for the heuristic methods, in practice when it converges
turns out to be quite effective in solving MIQPs approximately, in most
cases very close to the optimal solution. In addition, the ideas presented
for combining GPAD with B&B algorithm are extended for MIQP solv-
ing approaches using Alternating Direction Method of Multipliers (ADMM)
algorithm (Boyd et al., 2011) and ADMM based on the Operator Splitting
Quadratic Program (OSQP) solver (Stellato et al., 2017). The advantage of
OSQP based MIQP solver is, it does not require strict convexity of the
objective function. The effectiveness of the proposed approaches have
been demonstrated using the numerical examples.

2.1.3 Outline

The organization of this chapter is as follows. In Section 2.2, the basic
GPAD algorithm of Patrinos and Bemporad (2014) is extended to include
some specific features to complement the requirements of QP subprob-
lems arising within the B&B framework, which is presented in the sub-
sequent Section 2.3. The two heuristic approaches to find suboptimal
integer feasible solution are introduced in Section 2.4. Specifically, Sec-
tion 2.4.1 describes the heuristic approach without B&B, and the “mid-
way” approach combining the heuristic approach with B&B is described
in Section 2.4.2. MIQP solving approaches based on ADMM are presen-
ted in Section 2.5. The numerical results of the proposed approaches are
reported in Section 2.6. Finally, the concluding remarks are given in Sec-
tion 2.7.

25

2.2 Accelerated dual gradient projection

We recall the Mixed-Integer Quadratic Programming (MIQP) problem
introduced in Chapter 1, which is

min
z

V (z) ,
1

2
z′Qz + c′z (2.1a)

s.t. ` ≤ Az ≤ u (2.1b)

Gz = g (2.1c)

Āiz ∈ {¯̀i, ūi}, i = 1, . . . , p, (2.1d)

where Q ∈ Rn×n is the Hessian matrix, Q = Q′ � 0, z ∈ Rn is the
optimization vector, c ∈ Rn, A ∈ Rm×n, Ā ∈ Rp×n and G ∈ Rq×n, `, u ∈
Rm, ¯̀, ū ∈ Rp and g ∈ Rq , ` ≤ u, ¯̀≤ ū, and p ≤ m. Binary constraints zi ∈
{0, 1} are a special case of (2.1d) in which Āi is the i-th row of the identity
matrix and the corresponding `, u values are ¯̀

i = 0 and ūi = 1. The
QP relaxation of problem (2.1) is obtained by replacing the integrality
constraint (2.1d) with

¯̀
i ≤ Āiz ≤ ūi, i = 1, . . . , p. (2.2)

which leads to the following relaxed QP problem

min
z

V (z) ,
1

2
z′Qz + c′z (2.3a)

s.t. ` ≤ Az ≤ u (2.3b)

Gz = g (2.3c)
¯̀≤ Āz ≤ ū (2.3d)

which is termed as QP relaxation of the MIQP problem (2.1). The dual
QP of problem (2.3) is also convex and has the form

max
λ,ν

Ψ(λ, ν) , −1

2
[λν]
′AQ−1A′ [λν]− d′ [λν]− 1

2
c′Q−1c

s.t. λ ≥ 0, ν free (2.4a)

where

A =

 A
−A
Ā
−Ā
G

 , B =

[u
−`
ū
−¯̀
g

]
, d =

 dud`dū
d¯̀

f

 = B +AQ−1c (2.4b)

26

and λ =

[
λu
λ`
λū
λ¯̀

]
, λu, λ`, du, d` ∈ Rm, λū, λ¯̀, dū, d¯̀ ∈ Rp, ν, f ∈ Rq .

Algorithm 1 extends the formulation of Nesterov’s fast gradient
method proposed by Patrinos and Bemporad (2014) on the dual QP prob-
lem of the form (2.4) in order to solve QP problem (2.3).

Algorithm 1 Accelerated dual gradient projection method to solve QP
problem of the form (2.3)

Input: matrices Q, A, G, Ā, and vectors c, `, u, g, ¯̀, ū;
1: H ← AQ−1A′, L← ‖H‖F or L← λmax(H),
AL ← 1

LA, BL ← 1
LB;

2: λ0, λ−1 ← 0, ν ← 0;
3: k ← 0;
4: repeat
5: βk ← max

{
k−1
k+2 , 0

}
;

6: [
wk
weq,k]←

[
λk
νk

]
+ βk

([
λk
νk

]
−
[
λk−1
νk−1

])
;

7: zk ← −Q−1A′ [wk
weq,k]−Q−1c;

8: [
sk
seq,k]← (ALzk − BL) ;

9: λk+1 ← max{wk + sk, 0};
10: νk+1 ← weq,k + seq,k;
11: until convergence;
12: z∗ ← zk, λ∗ ← wk, ν∗ ← weq,k;
13: a∗ ← A′

[
λ∗

ν∗
]
, V ∗ ← − 1

2 (a∗)′Q−1a∗−B′
[
λ∗

ν∗
]
−(Q−1c)′(a∗+ 1

2c) = Ψ∗.

Output Primal solution z∗, optimal cost V ∗, dual solution (λ∗, ν∗).

Note that the only difference between inequality constraints (Step 9)
and equality constraints (Step 10) in Algorithm 1 is simply the sign re-
striction of the corresponding dual variables. This simple observation
will be exploited in the B&B approach described in Section 2.3 when fix-
ing binary constraints during branching.

27

2.2.1 Stopping criteria

The iterations of Algorithm 1 are stopped when the primal feasibility
criterion

sjk ≤
1

L
εG, ∀j = 1, . . . , 2(m+ p)

|sjeq,k| ≤
1

L
εG, ∀j = 1, . . . , q (2.5)

and the optimality criterion

− [
wk
weq,k]

′
[
sk
seq,k] ≤ 1

L
εV (2.6)

are satisfied, where εG > 0 is the feasibility tolerance and εV ≥ 0 the
optimality tolerance (Patrinos and Bemporad, 2014). Condition (2.6) de-
rives from the duality gap calculation V (zk)−V ∗ ≤ V (zk)−Ψ([

wk
weq,k]) =

− [
wk
weq,k]

′
[
sk
seq,k] ≤ 1

LεV .

2.2.2 Preconditioning

It is well known that in first-order optimization methods the number
of iterations strongly depends on how the problem matrices are scaled.
Preconditioning the problem by appropriate scaling is usually adopted
for (often largely) improving performance. In this work we adopt the
Jacobi diagonal scaling (Bertsekas, 2009) of the dual Hessian matrix H =

AQ−1A′:

θj ,
1√

AjQ−1A′j
(2.7a)

Aj ← θjAj , Bj ← θjBj (2.7b)

j = 1, . . . , 2(m+ p) + q.

2.2.3 Restart

Accelerated gradient methods do not guarantee that the objective func-
tion decreases monotonically during iterations, and indeed ripples in the

28

sequence of function values are often observed. Restarting the sequence
of scalars βk in Step 5 of Algorithm 1 can largely improve the conver-
gence property of the method. We use the gradient-based adaptive re-
start idea of (O’ Donoghue and Candès, 2015; Giselsson and Boyd, 2014)
for the dual problem (2.4) by checking the following condition

−∇Ψ ([
wk
weq,k])

′ ([λk+1
νk+1

]
−
[
λk
νk

])
> 0. (2.8)

Thus, whenever condition (2.8) is satisfied, the value of scalar k be-
comes k ← 0, this in turn resets the momentum term βk to zero. The
advantage of the gradient-based restart condition (2.8) is that it can be
immediately computed by available quantities.

2.2.4 Infeasibility detection

Infeasibility detection of first-order methods was investigated in
(Raghunathan and Di Cairano, 2014; O’ Donoghue et al., 2016). The QP
problem (2.3) may be infeasible, a case that frequently occurs during a
B&B procedure. In this case the dual cost Ψ(λk, νk) tends to +∞. The fol-
lowing Lemma 1 characterizes the asymptotic behavior of Algorithm 1
in case of QP infeasibility.

Lemma 1 Let the QP problem (2.3) be infeasible. Then
limk→∞A′ [wk

weq,k] /‖ [
wk
weq,k] ‖∞ = 0.

Proof. Let ηk = [
wk
weq,k]. Since H = AQ−1A′ � 0, for Ψ(wk, weq,k) →

+∞ it must occur that d′ηk → −∞, and therefore some compon-
ents ηk,i must tend to +∞ for corresponding negative entries in vec-
tor d. Assume now by contradiction that the quantity A′ ηk

‖ηk‖∞ does
not go to zero for k → ∞. In this case there would exist a sub-
sequence ηr such that ‖A′ ηr

‖ηr‖∞ ‖2 ≥ ε for some ε > 0. In this case,
Ψ(λr, νr) = − 1

2η
′
rAQ−1A′ηr − d′ηr ≤ − 1

2λmax(Q)‖A′ηr‖22 + ‖d‖2‖ηr‖2 ≤
− ε2

2λmax(Q)‖ηr‖2∞ + ‖d‖2
√

2(m+ p) + q‖ηr‖∞, where λmax(Q) is the
largest eigenvalue of Q. Since some components of ηr diverge, ‖ηr‖∞
diverges as well, and therefore Ψ(wr, weq,r) ≤ 0 for r sufficiently large.
This contradicts the fact that Ψ(wk, weq,k)→ +∞, and therefore A′ ηk

‖ηk‖∞
must go to zero asymptotically if the QP is infeasible.

29

Motivated by Lemma 1, we propose the infeasibility detection criterion
summarized in Algorithm 2, where εI > 0 is a given infeasibility detec-
tion tolerance. By letting µk = wk

‖ηk‖∞ , πk =
weq,k
‖ηk‖∞ , µk ∈ R2(m+p), πk ∈ Rq

the criterion in Step 2 of Algorithm 2 amounts to verify the following
condition

A′ [µkπk] ≈ 0

B′ [µkπk] < 0

µk ≥ 0.

(2.9)

According to Farkas Lemma (Rockafellar, 1970, p. 201), condition (2.9) is
equivalent to an indication of the infeasibility of the QP (2.3). Moreover
when A′ [µkπk] = 0, the condition B′ [µkπk] < 0 can be equivalently replaced
by d′ [µkπk] < 0.

Algorithm 2 Infeasibility detection

1: αk ← ‖ [
wk
weq,k] ‖∞;

2: if ‖A′ [wk
weq,k] ‖∞ ≤ εIαk and d′ [wk

weq,k] < −εIαk then
3: stop (problem is infeasible)
4: end if

2.2.5 Early stopping criterion for the objective function

Assume that we want to stop the QP algorithm if we are not interested
in getting a solution whose objective is greater than a given value V0. In
this case, since V (zk) ≥ Ψ(λk, νk) ≥ V0, Algorithm 1 can be stopped if

Ψ(λk, νk) ≥ V0. (2.10)

This condition is particularly advantageous in a B&B setting to pre-
maturely terminate the execution of the QP algorithm solving the relaxa-
tion, where V0 is the best known cost associated with an integer-feasible
solution.

30

Algorithm 3 MIQP solver based on GPAD

Input: MIQP problem matrices Q = Q′ � 0, A, Ā, G and vectors `, u, g,
¯̀, ū; feasibility tolerance ε ≥ 0.

1. set V0 ← +∞; ζ∗ ← ∅; I¯̀ ← ∅; Iū ← ∅; J ← {1, . . . , p}; T ←
{I¯̀, Iū}; S ← {T };

2. while S 6= ∅ do:

2.1. {I¯̀, Iū} ← last element T of S; S ← S \ {T };
2.2. execute Algorithm 1 to solve (2.1a)–(2.1c), (2.11) under condi-

tion (2.10);

2.3. if the solution z∗, V ∗ is returned then

2.3.1. if I¯̀∪ Iū = {1, . . . , p} or ti , Āiz
∗ ∈ {¯̀i, ūi}, ∀i ∈ J then

V0 ← V ∗, ζ∗ ← z∗; otherwise

2.2.3.1. j ← arg min
i∈J

∣∣∣ti − ¯̀
i+ūi

2

∣∣∣;
2.2.3.2. T0 ← {I¯̀∪ {j}, Iū}; T1 ← {I¯̀, Iū ∪ {j}};
2.2.3.3. if tj ≤ ¯̀

i+ūi
2 then append {T1, T0} to S otherwise ap-

pend {T0, T1} to S;

3. if V0 = +∞ then (2.1) infeasible otherwise V∗ ← V0;

4. end.

Output: Solution ζ∗ of the MIQP problem (2.1), optimal cost V∗, or
infeasibility status.

2.3 Branch and Bound MIQP Algorithm

Algorithm 3 describes a B&B solver for the MIQP problem (2.1) that
is based on the QP solver described by Algorithm 1 and its extensions
presented in Section 2.2.

The sets I¯̀, Iū, J denote a partition of the set of indices i ∈ {1, . . . , p}
(Iū ∩ I¯̀ = ∅, J = {1, . . . , p} \ (Iū ∪ I¯̀)) such that the integrality con-

31

straints (2.1d) are changed to

ĀIūz = ūIū (2.11a)

ĀI¯̀z = ¯̀I¯̀ (2.11b)
¯̀J ≤ ĀJ z ≤ ūJ (2.11c)

in a given QP relaxation.
At Step 1, all integrality constraints (2.1d) are relaxed to (2.2), that is

I¯̀ = Iū = ∅. The tuple T = {I¯̀, Iū} uniquely identifies a QP relaxation.
The set S of tuples denotes the set of pending relaxations to be solved by
Algorithm 1.

At Step 2.1, the element T = {I¯̀, Iū} is popped from the stack S and
the corresponding QP relaxation (2.1a)–(2.1c), (2.11) is solved at Step 2.2,
under the additional stopping criterion (2.10), where V0 cost of the best
integer-feasible solution found so far.

Step 2.3.1 is only executed if the QP relaxation was feasible and did
not halt because the condition V ∗ > V0 was verified by (2.10). In this
case, Step 2.3.1 checks whether all integrality constraints are satisfied and
eventually updates the best known integer-feasible solution ζ∗ and its
corresponding cost V0 to the value V ∗. Otherwise, branching is executed
at Steps 2.2.3.1–2.2.3.3 by picking up the index j corresponding to the
quantity ti = Āiz that is most distant from ¯̀

i, ūi (Step 2.2.3.1). Such a
constraint is moved from the set of inequality constraints to the set of
equality constraints and two new QP relaxations T0, T1 are formed at
Step 2.2.3.2. Step 2.2.3.3 push the new problems T0, T1 to the stack S so
that the problem with the least fractional part will be solved first.

Once no more QP relaxations are left, Step 3 checks if the value of V0

is still +∞, and in this case the MIQP problem (2.1) is reported infeasible.

2.3.1 Exploiting the fixed structure of dual QP relaxations

During the execution of the B&B algorithm, from one QP relaxation to
another only the relaxed constraints (2.11) change. These simply map to
the modified constraints

λū,Iū = wū,Iū + sū,Iū , λ¯̀,Iū = 0 (2.12a)

32

λ¯̀,I¯̀
= w¯̀,I¯̀

+ s¯̀,I¯̀
, λū,I¯̀ = 0 (2.12b)

λū,J ≥ 0, λ¯̀,J ≥ 0 (2.12c)

in the dual QP problem, which determines a minor change in Step 9 of
Algorithm 1: the max with 0 is not taken for the components of λk+1 cor-
responding to λ¯̀,I¯̀

, λū,Iū , and the components corresponding to λ¯̀,Iū ,
λū,I¯̀ are zeroed, therefore avoiding updating the corresponding quant-
ities in wk, sk during the execution of Algorithm 1.

This is a very attractive feature due to the use of a dual QP solver, as
the same QP structure (matrices and preconditioning) can be computed
just once for initial relaxation at the root node and maintained unaltered
during further branching.

2.3.2 Warm-starting the QP subproblems

When the binary tree is explored, at each node only one binary variable is
fixed to either ¯̀

i or ūi with respect to the corresponding parent problem.
The warm-start can be useful to recycle information from the solution of
the parent problem. One approach is to use the solution of the parent
problem to warm-start the child problems.

For the second approach, let the solution of the parent problem be z∗.
We denote the set indices of the active constraints at the solution by Ia

then

AIaz
∗ = BIa

and the remaining inactive constraints are satisfied with strict inequality.
The branching results in two children problems, specifically two

problems with j-th variable fixed to ¯̀
j and ūj , which is done by adding

constraints Ājz = ūj and Ājz = ¯̀
j at Step 2.2.3.2 of Algorithm 3. With a

slight abuse of the notation, the general form Aiz = Bi is used to repres-
ent the index of either Ājz = ūj or Ājz = ¯̀

j constraint.
Using this notation, the j-th constraint Aiz∗ < Bi in the parent prob-

lem is

−AiQ−1A′
[
λ∗

ν∗
]
< Bi +AQ−1c

33

Now the child problem enforces the equality constraint

ri = Bi +AQ−1c+AiQ−1A′
[
λ∗

ν∗
]

= 0

This can be done by

λ0 = λ∗ with λ0i = λ∗i − αri

where λ∗ denotes the optimal dual vector of the parent problem, λ0 de-
notes dual guess for the child problem, α is defined as

α = max
k:rk>0

(
λ∗k
rk

)
with r = B −Az∗.

2.4 Heuristic methods for suboptimal binary-
feasible MIQP solutions

In this section we propose two heuristic approaches which explore the
possibility to obtain suboptimal integer feasible solution of the MIQP
problem (2.1), first without using B&B, and second by selecting a few
variables to be solved using B&B. These approaches aid the B&B al-
gorithm by providing an upper bound on the cost of the MIQP problem
upfront. Therefore these can be considered as presolvers.

Thus, the suboptimal integer feasible solution of the heuristic ap-
proach which is denoted by V ∗H can play an important role. First, it can be
used as upper bound on the optimal cost V0 in B&B, so the QP relaxations
in which the cost goes above V ∗H can be terminated prematurely by check-
ing the condition (2.10), and the corresponding node being fathomed.
Second, if the B&B fails to find better integer feasible solution within the
specified time limit, then V ∗H can be used as a local solution of the prob-
lem.

The proposed heuristic methods are based on the adopted dual gradi-
ent projection framework and is similar to the one described in (Takapoui
et al., 2016) for the alternating direction method of multipliers (ADMM).

34

2.4.1 Heuristic approach without using B&B

Let z∗H denote the solution of presented heuristic approach, then since
either Āiz∗H = ¯̀

i or Āiz∗H = ūi must hold to satisfy the integrality
constraint (2.1d), the corresponding dual variables are such that either
λ∗ūiH = 0 and λ∗¯̀

iH
unconstrained/unrestricted in sign, or vice versa for

all i = 1, . . . , p. In other words, the vector
[
λ∗ūH
λ∗¯̀H

]
must belong to the non-

convex set given by the union of the orthogonal real axes. We propose the
heuristic described in Algorithm 4 to defining the values of λ¯̀, λū during
the execution of Algorithm 1 to impose such a nonconvex constraint.

Algorithm 4 Heuristic approach for suboptimal binary feasible MIQP
solution

1:
[
λuk+1

λ`k+1

]
← max

{[
wuk+suk
w`k+s`k

]
, 0
}

;
2: for all i = 1, . . . , p do
3: if Āizk ≥ l̄i+ūi

2 then
4: λūik+1

← wūik + sūik ;
5: λ¯̀

ik+1
← 0;

6: else
7: λūik+1

← 0;
8: λ¯̀

ik+1
← w¯̀

ik
+ s¯̀

ik
;

9: end if
10: end for

Assuming that the Algorithm 4 converges, this forces the quantity
Āiz
∗
H to satisfy the integrality constraints (2.1d). We propose to apply the

quantization described in Algorithm 4 only after the QP relaxation (2.3)
is solved by Algorithm 1 to optimality and the problem is found feas-
ible but not integer feasible. In this case, Algorithm 1 is executed again
from Step 4 where now Step 9 is replaced by Algorithm 4, until stop-
ping criteria (2.5) and (2.6) are satisfied. We replace − [

wk
weq,k]

′
[
sk
seq,k] with

| − [
wk
weq,k]

′
[
sk
seq,k] | in condition (2.6) when executing Algorithm 1.

35

2.4.2 Mid-way Heuristic approach

As the name suggests, the “mid-way” heuristic approach is a combina-
tion between solving MIQPs for exact solutions using B&B and finding
approximate solutions using heuristic without B&B. The idea here is to
explore the possibility to fix a number of binary variables Āiz to either ¯̀

i

or ūi using a heuristic and, pick the rest of them to be solved using B&B
by exploiting the information on offer by the solution of QP relaxation.

ℓ̄i ūi

Āiz
∗
R ≥ ǫū ⇒ Āiz = ūi

ǫℓ̄ < Āiz
∗
R < ǫū

Āiz
∗
R ≤ ǫℓ̄ ⇒ Āiz = ℓ̄i

ǫℓ̄ ǫūĀiz
∗
R

⇒ Āiz ∈ {ℓ̄i, ūi}
Figure 5: Conditions for the binary variables Āiz∗R w.r.t ε¯̀ and εū for i =
1, . . . , p. Only ε¯̀ < Āiz

∗
R < εū are considered to be solved with B&B, while

the others are set to equality as shown.

The overall idea is sketched in Figure 5. We denote the solution of QP
relaxation (2.3) as z∗R. If z∗R is found to be feasible but not integer feasible,
then the value of relaxed binary variables Āiz∗R for each i = 1, . . . , p and
[¯̀i, ūi] is observed with respect to the tolerances ε¯̀, εū as reference points,
where ¯̀

i ≤ ε¯̀ <
¯̀
i+ūi

2 and ¯̀
i+ūi

2 < εū ≤ ūi. Then sets K¯̀,Kū and H are
formed which corresponds to the binary variables satisfying Āiz∗R ≤ ε¯̀,
Āiz
∗
R ≥ εū and ε¯̀ < Āiz

∗
R < εū conditions respectively, where Kū ∩ K¯̀∩

H = ∅, Kū ∪ K¯̀∪H = {1, . . . , p}. Then, the binary variables in the setH
are considered to be solved using branch and bound while considering
the binary variables in sets K¯̀,Kū as fixed equalities.

The order of execution of this approach is as follows:

- the QP relaxation (2.3) is solved by Algorithm 1 to optimality and
the problem is found feasible but not integer feasible.

36

Algorithm 5 mid-way heuristic

K¯̀,Kū,H ← ∅
K¯̀← {i` ∈ {1, . . . , p}|Āi`z∗R ≤ ε¯̀}
Kū ← {iu ∈ {1, . . . , p}|Āiuz∗R ≥ εū}
H ← {1, . . . , p} \ {K¯̀∪ Kū}
z∗R ← zk, λ

∗
R ← λk, ν

∗
R ← νk (solution of relaxed QP)

- In this case, Algorithm 5 is executed for the extraction of the in-
dices, and optimal vectors representing solution of the relaxed
problem.

- This is followed by execution of the heuristic approach as described
in section 2.4.1.

If the heuristic approach gives a suboptimal integer feasible solution
denoted by V ∗H then the upper bound on the cost as in Step 1 of B&B
Algorithm 3 can be initialized with V0 ← V ∗H . The binary variables be-
longing to the sets K¯̀,Kū are fixed to Āiz = ¯̀

i, Āiz = ūi respectively.
Only the variables ε¯̀ < Āiz

∗
R < εū ∈ H are considered to be solved us-

ing B&B Algorithm 3. We remark that the values z∗R, λ
∗
R, ν

∗
R are same as

solution of the root node of the branch and bound. Hence, we start the
branch and bound Algorithm 3 directly from step 2.2.3.1.

In some time and/or resource constrained applications, the B&B al-
gorithm can be leveraged but only for limiting number of binary vari-
ables. In such cases, if the problem to be solved consists of large number
of binary variables, then the proposed approach can provide a heuristic
tool to select possibly a few to be solved using B&B. The effectiveness of
this approach is demonstrated in the numerical results section.

2.5 ADMM based MIQP solver

In this section we employ Alternating Direction Method of Multipliers
(ADMM) in order to solve the relaxed QP subproblem within the B&B
framework, exploiting the ideas presented in Section 2.3.

37

First, we adapt the ADMM algorithm from Boyd et al. (2011) for
solving QP problems with a quadratic objective (2.3a), subject to con-
straints (2.11), is described in Algorithm 6 where ρ > 0 is the step-size,
see (Boyd et al., 2011) for further details.

Algorithm 6 ADMM algorithm to solve QP problem quadratic object-
ive (2.3a), subject to constraints (2.11)

Input: initial values z0, x0, w0; Q, c, A, `, u, Ā, ¯̀, ū, ρ;
1: repeat
2: zk+1 ← −(Q+ ρ

[
A
Ā

]′ [A
Ā

]
)−1(ρ

[
A
Ā

]′ [wk−xk
w̄k−x̄k

]
+ c)

3:
[xk+1

x̄k+1,J

]
← min

{
max

{[
A
ĀJ

]
zk+1 +

[wk
w̄k,J

]
,
[
`

¯̀J

]}
, [u
ūJ]
}

4: (x̄k+1)i ←
{

¯̀
i if i ∈ I¯̀

ūi if i ∈ Iū
5:

[wk+1

w̄k+1

]
← [wkw̄k] +

[
A
Ā

]
zk+1 −

[xk+1

x̄k+1

]
6: until convergence;

Output Primal solution z∗, optimal cost V ∗.

Stopping criteria

We employ the stopping criteria of (Boyd et al., 2011, Sec. 3.3), which is
based on values of primal and dual residuals computed at every iteration
given by

rpri
k = Azk − xk

rdual
k = ρA′(xk − xk−1).

Algorithm 6 is stopped when the residual values are small, quantified by
the conditions

‖rpri
k ‖2 ≤ εpri

‖rdual
k ‖2 ≤ εdual

are satisfied, where the tolerances εpri > 0 and εdual > 0 are for the primal
and dual feasibility respectively.

38

Infeasibility detection

While combining ADMM algorithm to solve the QP subproblems within
the B&B framework, infeasibility detection is essential as some of the in-
teger combinations explored during B&B tree search might be infeasible.
We use the infeasibility criteria proposed in (Raghunathan and Di Cair-
ano, 2014), by checking the following set of conditions

max(ρ ‖xk − xk−1‖ , ‖wk − wk−1‖) > εo (2.13a)
max(ρ ‖zk − zk−1‖ , ‖xk − xk−1‖)
max(ρ ‖xk − xk−1‖ , ‖wk − wk−1‖)

≤ εr (2.13b)

w′k(xk − zk)

‖wk‖ ‖xk − zk‖
≥ 1− εa (2.13c)

wk ◦ (xk − zk) ≥ 0 (2.13d)

where the tolerance values 0 ≤ εo, εr, εa � 1, the operator ◦ denotes
component-wise multiplication. The condition (2.13d) checks that each
component of wk and (xk − zk) have the same sign, see (Raghunathan
and Di Cairano, 2014) for the further details.

We utilize the B&B setup described in Algorithm 3, where at Step 2.2
we employ ADMM Algorithm 6, while ignoring the condition (2.10)
which is not applicable in this case. We utilize preconditioning and
warm-starting as described in the previous sections.

Exploiting the fixed structure of QP relaxations

An idea similar to the fixed structure for GPAD algorithm presented in
Section 2.3.1 is adapted here for ADMM algorithm. Specifically, during
the execution of B&B, the change in constraints (2.11) is handled by chan-
ging the corresponding updates of x̄ as described in Step 3 and Step 4 of
Algorithm 6. This is a very attractive feature that allows to use the same
QP structure (matrices, preconditioning and factorization), and can be
computed just once for initial relaxation at the root node and maintained
unaltered during further branching. Thus, online solution of MIQP prob-
lem requires only basic arithmetic operations. Note that the approaches

39

proposed with GPAD, heuristic approach in Section 2.4.1 (a slightly dif-
ferent approach than Takapoui et al. (2016)) and a mid-way heuristic ap-
proach presented in Section 2.4.2 are readily adaptable for ADMM al-
gorithm presented in this section.

2.5.1 OSQP-based MIQP solver

Next, we consider a new efficient solver based on the ADMM (Boyd et al.,
2011), Operator Splitting Quadratic Program (OSQP) solver, which is re-
cently developed by Stellato et al. (2017). The OSQP solver is coupled
with the B&B algorithm for the solution to relaxed QP subproblems. For
brevity, Algorithm 7 describes the OSQP solver to solve the relaxed QP
subproblem of form (2.1a)–(2.1b) i.e., only with inequality constraints,
and can handle equality constraints similar to described in Algorithm 6.

Algorithm 7 OSQP solver to solve QP problem of form (2.3a)–(2.3b)
Input: initial values z0, x0, w0; Q, c, A, `, u, ρ, σ, α;
1: repeat

2: solve
[
Q+ σI A′

A − 1
ρI

] [
ẑk+1

νk+1

]
=

[
σzk − c
xk − 1

ρwk

]
3: x̂k+1 ← xk + 1

ρ (νk+1 − wk)

4: zk+1 ← αẑk+1 + (1− α)zk

5: xk+1 ← Π
(
αx̂k+1 + (1− α)xk + 1

ρwk

)
6: wk+1 ← wk + ρ (αx̂k+1 + (1− α)xk − xk+1)
7: until convergence;

Output Primal solution z∗, optimal cost V ∗.

Scalars ρ, σ > 0 are the step-size parameters and α ∈ (0, 2) is the
relaxation-parameter. The operator Π denotes projection onto the set
[`, u] with the closed-form solution Π(x) = max (min (x, u) , `).

40

Stopping criteria

At each iteration, the algorithm produces iterates (zk, xk, wk) whose
primal and dual residuals are defined as

rprim
k = Azk − xk
rdual
k = Qzk + c+A′wk.

If problem (2.3a)–(2.3b) is solvable, the residuals converge to zero as k →
∞ (Boyd et al., 2011). The algorithm stops when the Euclidean norm
of the residuals is below predefined tolerances εprim > 0 and εdual > 0.
Note that εprim, εdual are often chosen relative to the scaling of problem
iterates, see (Boyd et al., 2011, Sec. 3.3).

Infeasibility detection

If the problem is primal infeasible, the algorithm produces a vector v ∈
Rm serving as a certificate of infeasibility,

A′v = 0, u′v+ + `′v− < 0,

where v+ = max(v, 0) > 0 and v− = min(v, 0) < 0. On the other hand,
if the problem is dual infeasible, the algorithm generates a vector s ∈ Rn

certifying dual infeasibility,

Qs = 0, c′s < 0, (As)i =

0 `i, ui ∈ R
≥ 0 ui = +∞, `i ∈ R
≤ 0 `i = −∞, ui ∈ R

.

For more details we refer the reader to (Banjac et al., 2017).
Solving linear system at Step 2 of Algorithm 7 imparts a major com-

putations load, which is handled using sparse LDL′ factorization (Davis,
2006) followed by forward and backward substitution. Since the coeffi-
cient matrix in this linear system is quasi-definite, it always has a well-
defined LDL′ factorization, with L being a lower triangular matrix with
unit diagonal elements, and D a diagonal matrix with nonzero diagonal
elements (Vanderbei, 1995).

41

Exploiting the fixed structure of QP relaxations

An idea similar to the fixed structure presented in Section 2.3.1 and Sec-
tion 2.5, is utilized here which keeps the matrix constant throughout the
execution of B&B algorithm, as it does not change with the changes in
c, `, u. Hence, the factorization is performed once at the root node and
utilized throughout the execution of B&B. The other algorithm steps are
computationally much cheaper and involve only scalar-vector multiplic-
ations, vector additions and element-wise projections (clipping).

2.6 Numerical results

Numerical experiments were carried out on a desktop computer with
Intel Core i7-4700MQ CPU with 2.40 GHz and 8 GB of RAM, running
MATLAB R2015a.

2.6.1 Heuristic approach-Hybrid vehicle example

First we consider the hybrid vehicle example described in (Takapoui
et al., 2016), that consists of the combination of a battery, an electric mo-
tor/generator, and an engine. For a given power demand P dest at time
t = 0, . . . , T − 1, the objective is to plan the battery power P battt and en-
gine power P engt for the given time interval, such that P battt + P engt ≥
P dest . Let Et be the energy of the battery at time t, Et+1 = Et − τP battt ,
where τ is the sample time and 0 ≤ Et ≤ Emax. The fuel cost is given by
f(P engt , zt) where f(P, z) = αP 2 + βP + γz and the constraint on power
is 0 ≤ P engt ≤ Pmaxzt. The hybrid vehicle control problem is

min η(ET − Emax)2 +

T−1∑
t=0

f(P engt , zt) + δ(zt − zt−1)+

s.t. Et+1 = Et − τP battt

P battt + P engt ≥ P dest

zt ∈ {0, 1}, t = 0, . . . , T − 1

42

where P battt , P engt , zt (engine on/off) and Et are the optimization vari-
ables. The term δ(zt − zt−1)+ penalizes the engine going from the off to
the on state, where δ ≥ 0 for all t. By choosing T = 72 steps, the resulting
MIQP problem has n = 862 optimization variables, p = 72 binary vari-
ables, m = 503 inequality constraints, and q = 575 equality constraints.

The solver GUROBI (Gurobi Optimization, Inc., 2014) computes the
optimal cost V ∗ = 135.9 in 21.05 s with default options. The cost calcu-
lated by the ADMM-based heuristic approach of Takapoui et al. (2016),
denoted as miqpADMM-H, is 138.11 and is obtained in 0.40 s for precon-
ditioning + 3.55 s for solving the problem.

The performance of Algorithm 1+4+2 implemented in interpreted
MATLAB code, denoted as miqpGPAD-H, is reported in Table 1 for dif-
ferent values of the feasibility tolerance εG and optimality tolerance εV .
Whenever condition (2.8) is satisfied at a given iteration k, rather than
restarting the values of βk we just assign wk ← λk, weq,k ← νk in Step 6
of Algorithm 1 for that iteration. We also introduce the regularization
term 10−3I in the primal Hessian matrix Q to make it positive definite.
The tolerance value used in Algorithm 2 is εI = 10−2.

Table 1: Performance comparison with different values of εV , εG for
miqpGPAD-H.

εV , εG Cost Precond., Solving Constr. violation

10−2, 10−2 131.5 1.19 s, 3.81 s 3.62 · 10−1

10−2, 10−3 135.9 1.12 s, 8.62 s 8.09 · 10−3

10−3, 10−3 135.9 1.07 s, 8.67 s 7.98 · 10−3

10−3, 10−4 136.0 1.14 s, 13.37 s 2.59 · 10−3

10−4, 10−3 136.1 1.10 s, 15.87 s 1.08 · 10−3

Figure 6 shows the trajectories obtained with miqpGPAD-H for εV =

10−2, εG = 10−3 and compare them with the ones obtained by GUROBI
and miqpADMM-H. It is apparent that the proposed heuristic approach

1https://github.com/cvxgrp/miqp_admm/tree/master/matlab/vehicle.
m

43

https://github.com/cvxgrp/miqp_admm/tree/master/matlab/vehicle.m
https://github.com/cvxgrp/miqp_admm/tree/master/matlab/vehicle.m

is computationally faster and very simple to implement in an embedded
control platform, and keeps the quality of the solution over a sufficient
level for the practical application at hand.

0 10 20 30 40 50 60 70
0

20

40

E
t

0 10 20 30 40 50 60 70
−2

0

2

P
b
a
tt

t

0 10 20 30 40 50 60 70

0

0.5

1

P
e
n
g

t

0 10 20 30 40 50 60 70

0

0.5

1

t

z t

Figure 6: Battery energy, battery power, engine power and engine on/off
signals versus time: GUROBI (solid blue line), miqpGPAD-H (dash-dotted
red line), and miqpADMM-H (dashed black line).

2.6.2 Branch and Bound-random MIQPs

Next, we test the B&B method, denoted as miqpGPAD for Algorithm 3,
and as miqpADMM for Algorithm 6, on randomly generated MIQP prob-
lems with n variables, m inequality constraints, p binary constraints, q
equality constraints, and condition number κ = 10 of the primal Hes-
sian Q2. Algorithm 3 is implemented in interpreted MATLAB code and

2The entries of matrix A are generated from the normal distribution N (0, 0.0025), `, u
from the uniform distribution U(0, 100), c fromN (0, 1); matrixQ = UΣV ′, whereU, V are
orthogonal matrices generated by QR decomposition of random n × n matrices, and Σ is
diagonal with nonzero entries having logarithms equally spaced between± log(κ)/4 Bier-

44

Algorithms 1, 2, 4, 6 are implemented in Embedded MATLAB and com-
plied. The tolerance values used in Algorithm 1 are εV , εG = 10−5, in

Table 2: Average CPU time (ms) on random MIQP problems over 50 in-
stances for each combination of n, m, p, q.

n m p q miqpGPAD GUROBI

10 100 2 2 15.6 6.56
50 25 5 3 3.44 8.74
50 150 10 5 63.22 46.25

100 50 2 5 6.22 26.24
100 200 15 5 164.06 188.42
150 100 5 5 31.26 88.13
150 200 20 5 258.80 274.06
200 50 15 6 35.08 144.38

Algorithm 2 εI = 10−2. The CPU time reported for solving feasible
MIQP problems, averaged over 50 executions with n variables, m in-
equality constraints, p binary constraints, q equality constraints are listed
in Table 2.

Table 3: Average CPU time (ms) on random MIQP problems over 50 in-
stances for each combination of n, m, p, q.

n m p q miqpGPAD miqpADMM GUROBI

10 100 2 2 6.98 4.10 3.05
50 25 5 3 5.24 5.00 9.37
50 200 10 5 46.92 30.20 37.81

100 50 2 0 3.42 3.12 14.51
100 200 15 5 63.46 61.84 121.33
150 100 5 5 11.26 11.84 64.00
150 300 20 0 250.42 271.46 298.27
200 50 15 6 18.24 21.74 108.36

In order to compare the performance of miqpGPAD against
miqpADMM, the experiment is carried out with tolerance values for miqp-
GPAD εV , εA = 10−3, εI = 10−2, and for miqpADMM are ρ = 0.9, εpri =

laire et al. (1991).

45

εdual = 10−4. The observed numerical results are noted in Table 3, are the
average computation time over 50 different problem instances.

Table 4: Average CPU time (ms) on random MIQP problems over 10 in-
stances for each combination of n, m, p.

n m p miOSQP GUROBI

10 5 2 1.40 1.80
10 100 2 2.20 9.51
50 25 5 4.10 15.62
50 200 10 54.24 81.35

100 50 2 5.61 40.32
100 200 15 105.88 211.22
150 100 5 37.42 198.34
150 300 20 343.05 682.78

Table 4 describes the results of OSQP based MIQP solver named as
miOSQP, utilized for solving randomly generated MIQP problems with
varying dimensions n,m and number of integer variables p3. The solver
miOSQP has been implemented in Python and interfaced to the OSQP
compiled binaries from (Stellato and Banjac, 2017). Timing benchmarks
are compared to GUROBI with the default options running Python 3.5.
In addition, both algorithms are executed single-threaded for fairness4.
Depending on the problem size, the Python overhead can be significant.
For example, when (n,m, p) = (10, 5, 2) OSQP takes only 4.6 % of the
total computation time and GUROBI turns out to be faster. This suggests
that further speedups could be obtained by using a low-level branch and
bound implementation.

The results show that the proposed scheme performs well as com-
pared to the commercial GUROBI solver, but has the advantage of a very
simple coding, therefore making it very suitable for embedded control

3 for randomly generated problems, the entries of Q are computed as Q = MM ′ where
M ∈ Rn×n is generated from the uniform distribution U(0, 1) with 70% nonzero elements
and the linear part of the cost q with the normal distribution N (0, 1). The constraints are
generated as A ∼ U(0, 1), l ∼ U(0, 1)− 2 and l ∼ U(0, 1) + 2.

4The code and all benchmark examples are available at https://github.com/
oxfordcontrol/miosqp

46

https://github.com/oxfordcontrol/miosqp
https://github.com/oxfordcontrol/miosqp

applications.

2.6.3 Branch and Bound-PieceWise Affine (PWA) regres-
sion

Next, we consider the identification of Linear Parameter Varying (LPV)
models as a PieceWise Affine (PWA) regression problem. The approach
in (Mejari et al., 2018b) requires to solve an MIQP problem at every
sampling instance in receding horizon fashion. We consider single-input
and single-output (SISO)-LPV ARX data generating system:

y(k) = ao
1(p(k))y(k − 1) + ao

2(p(k))y(k − 2) + bo1(p(k))u(k − 1) + e(k).

The p-dependent coefficients ao
1(p(k)), ao

2(p(k) and bo1(p(k)) are described
by the nonlinear functions:

ao
1(p(k)) =

−0.5, if p(k) > 0.5

−p(k), if − 0.5 ≤ p(k) ≤ 0.5

0.5, if p(k) < −0.5

ao
2(p(k)) = p3(k), bo1(p(k)) = sin(πp(k)).

A training data and a validation dataset of length N = 1000 and Nval =

2000, respectively, are generated. The training input u and the schedul-
ing signal p are considered as independent white-noise processes with
uniform distribution U(−1, 1). The standard deviation of the noise e is
0.05, which corresponds to SNR of 20 dB. A PWA model with s = 6

modes is considered with prediction horizon T = 6. Each MIQP sub-
problem, solved with GPAD-B&B, contains 36 binary and 72 continuous
variables, 144 inequality and 6 equality constraints. In the second stage,
off-line multicategory discrimination algorithm is executed for partition-
ing the scheduling space, and the estimated model parameters are re-
fined based on the computed partition, using simple least-squares for
each sub-model.

The Best fit rate calculated is 95% and the average time to solve the
MIQP problem are shown in Table 5.

47

Table 5: Average CPU time for training sample N=1000.

Solver Time (ms)
GUROBI 259.38
miqpGPAD 125.06

2.6.4 Mid-way heuristic approach-random MIQPs

We test the mid-way heuristic approach using randomly generated
MIQP problems. Two separate experiments for MIQP problem are car-
ried out, first with n = 60 variables, m = 60 inequality constraints, q = 8

equality constraints and p = 50 binary variables; and second with n = 90

variables, m = 80 inequality, q = 8 equality constraints and p = 70 bin-
ary variables. The tolerance values used in Algorithm 4 are ε¯̀ = 0.01

and εū = 0.99, and the results are shown in Figure 7 and 8. In both the
cases it is observed that the rounded mean value over 50 runs of the ac-
tual number of binary variables solved using B&B are 19 and 25 which
is approximately 37% of the original number of binary variables 50 and
70 respectively for the given set of problems. The results shows this ap-
proach renders solution very close to the global solution.

2.6.5 ARX model segmentation - Heuristic, Mid-way
heuristic approach

In this Section, we present the application of the proposed heuristic ap-
proaches to the problems arising in the field of system identification.
More specifically, we consider the Auto-Regressive eXogenous (ARX) mo-
del segmentation problem which can be solved using sparse optimiza-
tion with `0 norm.

Mixed-Integer Quadratic Programming approach for exact solution of
the `0 norm

The problem of finding the sparsest solution satisfying a system of linear
equationsAθ = bwith more unknowns than equalities can be formulated

48

No. of executions
0 5 10 15 20 25 30 35 40 45 50

B
in
a
ry

V
a
ri
a
b
le
s

0

10

20

30

40

50

Comparision of number of binary variables over 50 executions

With heuristics

Mean over n runs

Actual Binary Variables

No. of executions
0 5 10 15 20 25 30 35 40 45 50

E
rr
o
r

×10-4

0

1

2

3

4
Heuristic approach vs branch & bound

Figure 7: Number of binary variables and error plots for MIQP problems
with 60 vars, 60 ineq. constraints, 8 equality constraints, 50 binary con-
straints.

as
min
θ
‖θ‖0 s.t. Aθ = b, (2.14)

where A ∈ Rm×n with m < n, b ∈ Rm, θ ∈ Rn and ‖ · ‖0 denotes the
`0-seminorm, which gives the number of nonzero components of its ar-
gument. In case the entries of the matrix A or the components of the
vector b are affected by noise, the equality constraint Aθ = b can be re-
laxed and an error tolerance ε can be allowed in the equation Aθ = b.

49

No. of executions
0 5 10 15 20 25 30 35 40 45 50

B
in
a
ry

V
a
ri
a
b
le
s

0

20

40

60

Comparision of number of binary variables over 50 executions

With heuristics

Mean over n runs

Actual Binary Variables

No. of executions
0 5 10 15 20 25 30 35 40 45 50

E
rr
o
r

×10-4

0

0.5

1

1.5

2
Heuristic approach vs branch & bound

Figure 8: Number of binary variables and error plots for MIQP problems
with 90 vars, 80 ineq. constraints, 8 equality constraints, 70 binary con-
straints.

This leads to the following variation of Problem (2.14):

min
θ
‖θ‖0 s.t. ‖Aθ − b‖22 ≤ ε, (2.15)

Problem (2.15) is often considered in system identification (Piga and
Tóth, 2013).

Problem (2.15) can be also written in the Lagrangian form:

min
θ

‖Aθ − b‖22 + γ‖θ‖0 (2.16)

50

with γ > 0 is a tunning parameter. This means for a given value of ε,
there exists a value of γ such that the minima of (2.15) and (2.16) are
equal.

Unfortunately, Problems (2.14), (2.15) and (2.16) are NP-hard as well
as non-convex and they are difficult to solve in practice for large values
of n. One common approach is to compute the approximate solution by
replacing the `0 norm with `1 norm, which leads to solving a convex op-
timization problem. However, exact solution may not be achieved with
such relaxations.

To overcome this drawback and to obtain an exact solution of the non-
convex Problem (2.16), we formulate it as an MIQP problem as follows:

minθ,ω ‖Aθ − b‖22 + γ
∑n
i=1 ωi (2.17a)

s.t. mωi ≤ θi ≤Mωi i = 1, . . . , n. (2.17b)

where, we have introduced binary variables ωi ∈ {0, 1} for i =

1, . . . , n, M and m are user-specified tuning parameters which are used
to define upper and lower bounds on the components θi. It can be easily
shown that the Problem 2.16 and Problem 2.17 are equivalent5.

We consider the optimization problem (2.14) from (Piga and Tóth,
2013) with :

A =

[
2 −1 21 3

10/3 3.33 44.17 2.5
−4/3 4.67 −26.67 −4

]
; b =

[
6
10
−4

]
The global minimizer θ∗ of the original nonconvex problem (2.14) is
equal to [3 0 0 0]

′, whereas with `1-norm
[

0
22
99

22
99 −

22
99

]′ (Piga and Tóth,
2013). The heuristic approach miqpGPAD-H with εV , εG = 10−5, εI =

10−5, regularization term 10−3I to make the Hessian positive definite,
for solving (2.17) with γ = 0.2, M = 4 gives, [3 0 0 0]

′.

5In the MIQP formulation, ‖θ‖0 is replaced by a sum of binary variables
∑n
i=1 ωi, and

the optimum {θ∗, ω∗} is equal to that of Problem 2.16.

51

ARX Model Segmentation

The idea of using MIQP for sparse optimization using `0 norm can be
applied to the ARX model segmentation problem.

The ARX models

y(t) + a1y(t− 1) + . . .+ anay(t− na) =

b1u(t− nk − 1) + . . .+ bnbu(t− nk − nb) + e(t), (2.18)

can be represented in a linear regression form

y(t) = ϕ′(t)θ + e(t) (2.19)

with,
ϕ(t) = [−y(t− 1) · · · − y(t− na) u(t− nk − 1) · · · u(t− nk − nb)] is a

regressor vector and θ = [a1 · · · ana b1 · · · bnb]
′ ∈ Rn is the vector of un-

known parameters. A time-varying system (model) can be equivalently
represented as

y(t) = ϕ′(t)θ(t)

In the ARX model segmentation problem, a time-varying system
parameters θ(t) are to be estimated from a given noise-corrupted N−
length dataset {y(t), u(t)}Nt=1. When the system parameter are piecewise
constants for a given time interval i.e.,

θ(t) = θk, tk < t ≤ tk+1

it is known as model or signal segmentation.
We consider the example from iddemo6m.mat in the System Identi-

fication Toolbox (Ljung, 1988; Ohlsson and Ljung, 2013), which consists
of the system

y(t) + 0.9y(t− 1) = u(t− nk) + e(t) (2.20)

The values input u are ±1 Pseudo-Random Binary Sequence, e(t) has
variance 0.1. The value of transport delay nk changes from 2 to 1 at
t = 20. This demo uses segmentmethod (Ljung, 1988) to estimate model
parameters.

52

The following ARX model

y(t) = −ay(t− 1) + b1u(t− 1) + b2u(t− 2)

= ϕ(t)′θ(t)

is used to estimate θ(t) = [a b1 b2]′, which equivalently represents the
system (2.20).

The estimation problem is formulated as the following sparse-
optimization problem with `0 norm.

min
θ(t)

N∑
t=1

(y(t)− ϕ(t)′θ(t))2 + γ

N∑
t=2

‖θ(t)− θ(t− 1)‖0 (2.21)

Here, we have added the regularization term ‖θ(t)−θ(t−1)‖0 to pen-
alize model parameter change over time. The hyper-parameter γ can be
tuned to achieve a trade-off between model fit and time variation of the
model parameters. The problem (2.21) can be formulated as an equival-
ent MIQP problem (2.17).

The formulated MIQP problem consists of n = 240 variables out of
which p = 120 are the binary variables, q = 240 inequality constraints,
and value M = −m = 1 is considered. This problem is solved using
the heuristic miqpGPAD-H, “mid-way” heuristic miqpGPAD-mH appro-
aches. GUROBI with presolver enabled, thread count fixed to 1 (for fair
comparison) is used to compare performance of the presented appro-
aches. For both approaches, a regularization term 10−2I is added to the
Hessian to make it positive definite.

The results using miqpGPAD-H are summarized in Table 6, and the
tolerance values used are εV = 10−5, εG = 10−1, εI = 10−5.

For miqpGPAD-mH, experiments are carried out with varying values
of ε¯̀ = 1− εū = ε. The results are shown in Table 7, where this approach
gives only p binary variables to be solved using B&B from the total of 120

for the same problem. The tolerance for the B&B algorithm miqpGPAD
are εV , εG = 10−5, εI = 10−2.

The estimated parameter values a, b1 and b2 are compared with the
true values and segment are shown in the Figure 9, 10 and 11 for GUR-
OBI, miqpGPAD-H and miqpGPAD-mH respectively.

53

Table 6: Performance comparison for ARX model segmentation problem
using heuristic approach without using B&B.

Solver γ Cost Time (s)
GUROBI 0.5 46.17 1.78
miqpGPAD-H 47.15 0.41
GUROBI 0.7 46.97 0.39
miqpGPAD-H 47.95 0.78

0 5 10 15 20 25 30 35 40

−1

−0.5

0

a

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

1
1.5

b 1

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

1
1.5

t

b 2

Figure 9: Performance comparison for ARX model segmentation problem
iddemo6m.mat : true value, segment, GUROBI.

These results demonstrate the effectiveness of proposed approaches.
The heuristic approach gives a suboptimal integer feasible solution
which is close to the optimal solution, within comparable computation
time as compared to state-of-the-art commercial solver. Further, these
results are shown to be improved by using the “mid-way” heuristic ap-
proach, which chooses significantly reduced number of binary variables

54

0 5 10 15 20 25 30 35 40

−1

−0.5

0
a

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

1
1.5

b 1

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

1
1.5

t

b 2

Figure 10: Performance comparison for ARX model segmentation prob-
lem iddemo6m.mat with γ = 0.7 : true value, segment,

miqpGPAD-H.

Table 7: Performance comparison for ARX model segmentation problem
using the “mid-way” heuristic approach, reported timings are for heuristic
and B&B stages respectively.

Solver γ ε p Cost Time (s)
GUROBI 0.5 - 120 46.17 1.83
miqpGPAD-mH 0.3 5 46.39 0.41, 0.89

0.2 8 46.17 0.41, 1.33
0.1 12 46.17 0.41, 2.11

GUROBI 0.7 - 120 46.97 0.41
miqpGPAD-mH 0.3 5 47.19 0.78, 0.94

0.2 7 46.97 0.78, 1.17
0.1 10 46.97 0.78, 1.97

55

0 5 10 15 20 25 30 35 40

−1

−0.5

0
a

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

1
1.5

b 1

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

1
1.5

t

b 2

Figure 11: Performance comparison for ARX model segmentation problem
iddemo6m.mat with γ = 0.7, ε = 0.2 : true value, segment,

miqpGPAD-mH.

to be solved using B&B, approximately 7% of total number in this case,
and yet render a solution which is close to the optimal solution within
the specified tolerance values.

2.7 Conclusion

In this chapter we have presented an exact and two heuristic approaches
to solve MIQPs based on Accelerated Dual Gradient Projection (GPAD)
method applied on the dual QP relaxations. Moreover, B&B based MIQP
solving approaches with ADMM and OSQP have been presented, where
OSQP based solver is robust and does not require the Hessian to be
positive definite. Whereas, the GPAD based approach has an advant-
age of employing dual cost based pruning for premature termination of

56

QP solver. In spite of their simplicity of code, the proposed approaches
turn out to be quite effective. In particular, the heuristic method can of-
ten provide solutions close to optimality with much reduced coding and
computation efforts, which can further be used to provide upper bound
on the cost. The performance of the proposed approaches is comparable
with the state-of-the-art MIQP solvers for small-scale problems, such as
those that arise in embedded applications.

57

Chapter 3

A Numerically Robust
Mixed-Integer Quadratic
Programming Solver based
on Nonnegative Least
Squares

3.1 Introduction

The algorithms for solving Mixed-Integer Quadratic Programming
(MIQP) problems presented in Chapter 2 are very simple to code, and
are demonstrated to be quite effective for small-scale problems. How-
ever, the Accelerated Dual Gradient Projection (GPAD) and Alternating
Direction Method of Multipliers (ADMM) based MIQP solvers require
a strictly convex objective function, with their numerical performance
deteriorating with the condition number of the Hessian matrix. While
regularizing the cost function would improve numerical robustness, it
would bias the solution away from optimality.

In this chapter we propose a new algorithm for solving MIQP prob-
lems which is particularly tailored to solve small-scale MIQPs, such as

58

those that arise in embedded hybrid MPC applications. The algorithm
couples a branch and bound (B&B) scheme with a recently proposed nu-
merically robust Quadratic Programming (QP) solver based on an active-
set method for solving nonnegative least squares (NNLS) problems com-
bined with proximal-point iterations. The resulting MIQP solver sup-
ports positive semidefinite Hessian matrices, often appearing in hybrid
MPC formulations, and warm-starts with respect to both binary and real
variables.

3.1.1 Motivation

Since hybrid Model Predictive Control (MPC) was introduced almost
two decades ago (Bemporad and Morari, 1999a), it has attracted a lot
of attention in both academia and industry. The widespread popular-
ity of hybrid systems is mainly due to their ability of modeling a very
large spectrum of practical systems where physical processes coexist
with switching dynamics, discrete actuators, logic rules, and constraints
on system variables. MPC based on hybrid models provides an optim-
ized way of controlling such systems. However, the real-time imple-
mentation of hybrid MPC on embedded platforms is still a challenge,
as it requires solving an MIQP problem at every sample time in a numer-
ically efficient and robust manner.

For this reason, several solution approaches to solve MIQP problems
in an embedded control setting have been investigated, which have been
reviewed in Section 1.4.1 and 1.4.2. In “desktop” applications the numer-
ical package is used to solve (sometimes large-scale) MIQPs with large
memory and computing resources available and no stringent limits on
execution time. Conversely, in embedded applications, severe restric-
tions on CPU/memory/time resources pose considerable differences:
the number of variables (especially binary variables) should be small, the
code must be simple and library-free, the algorithm must be numerically
robust also when executed in single precision arithmetic.

59

3.1.2 Contributions

In this chapter, we propose an MIQP algorithm based on B&B and the nu-
merically robust solver for positive semidefinite QPs recently introduced
in Bemporad (2018). The QP solver is based on an active-set method
for solving nonnegative least-squares (NNLS) problems, but differently
from (Bemporad, 2016) it uses proximal-point iterations, that greatly im-
prove robustness without worsening execution time. Compared to the
MIQP approach in (Bemporad, 2015b), the numerical robustness of the
resulting MIQP solver is largely improved and can handle positive semi-
definite Hessian matrices. Moreover, it handles equality constraints, sup-
ports warm-starting of QP relaxations from parent nodes in the search
tree, and more general bilateral inequality constraints.

In addition, we include a warm-start strategy for binary variables
within the B&B setup, which allows prioritizing the exploration of a
specific section of the binary tree. This is especially useful in hy-
brid MPC (Bemporad and Morari, 1999a) and moving-horizon estima-
tion (Bemporad et al., 1999a; Ferrari-Trecate et al., 2002) where a good
initial guess for the binary variables is available by shifting the optimal
solution computed at the previous sample step. Moreover, the heuristic
approach proposed in Section 2.4.2 of Chapter 2 is also combined with
the warm-start framework for binary variable as a special case.

We will show in numerical experiments that the resulting approaches
gives quite comparable results against well-known commercial solvers
when tested on small-scale MIQPs, such as those arising in embedded
hybrid MPC applications.

3.1.3 Outline

This chapter is organized as follows. The problem formulation is presen-
ted in Section 3.2. A robust QP solver based on NNLS and proximal-
point iterations described in Section 3.3. The branch and bound (B&B)
algorithm is presented in Section 3.4. In addition, a generic framework
to warm-start binary variables is proposed in Section 3.5, which is em-
ployed in combination with the B&B presented in the previous section.

60

Section 3.6 reports the numerical results of the proposed approach ap-
plied to a hybrid model predictive control (MPC) problem. The chapter
is concluded with final remarks in Section 3.7.

3.2 Problem formulation

We recall the Mixed-Integer Quadratic Programming (MIQP) problem in
the general form, which is

min
z

V (z) ,
1

2
z′Qz + c′z (3.1a)

s.t. ` ≤ Az ≤ u (3.1b)

Gz = g (3.1c)

Āiz ∈ {¯̀i, ūi}, i = 1, . . . , p (3.1d)

where z ∈ Rn is the vector of optimization variables, Q ∈ Rn×n is the
positive semidefinite Hessian matrix, Q � 0, c ∈ Rn, A ∈ Rm×n and
`, u ∈ Rm describe the linear inequality constraints, ` ≤ u, andG ∈ Rq×n,
g ∈ Rq the linear equality constraints. The QP relaxation of problem (3.1)
is obtained by replacing the integrality constraint (3.1d) with the follow-
ing linear inequality constraint of the form (3.1b) as

¯̀
i ≤ Āiz ≤ ūi, i = 1, . . . , p. (3.2)

MIQP problems as in (3.1) arise in hybrid MPC. In the remainder of this
section, we briefly recall the modelling and control of hybrid dynamical
systems from Section 1.2.

Hybrid systems can efficiently be modeled using the following Mixed
Logical Dynamical (MLD) framework (Bemporad and Morari, 1999a)

xk+1 = Axk + B1vk + B2δk + B3ζk + B5 (3.3a)

yk = Cxk +D1vk +D2δk +D3ζk +D5 (3.3b)

E2δk + E3ζk ≤ E1vk + E4xk + E5, (3.3c)

where k ∈ N is the time index, xk is the state vector, yk is the output vec-
tor, vk is the input vector, ζk and δk are the vectors of auxiliary variables

61

which are real-valued and binary respectively. The vectors xk, vk, yk can
have both real and binary components, A, Bi, C, Di and Ei are the con-
stant matrices describing the behavior of hybrid dynamical systems. The
tool HYSDEL (Torrisi and Bemporad, 2004) allows one to describe a hy-
brid dynamical model and get the equivalent MLD transformation (3.3).

Based on the MLD model (3.3), a possible hybrid MPC problem for-
mulation is the following

min
{vk,δk,ζk}N−1

k=0

N−1∑
k=0

‖Lx(xk − rxk)‖22 + ‖Lv(vk − rvk)‖22 + (3.4a)

‖Lδ(δk − rδk)‖22 + ‖Lζ(ζk − rζk)‖22
s.t. MLD model (3.3) (3.4b)

x0 = x(t).

Problem (3.4) can be recast as an MIQP problem of the form (3.1) by de-
fining the n-dimensional optimization vector

z = [v′0 ... v
′
N−1 δ

′
0 ... δ

′
N−1 ζ

′
0 ... ζ

′
N−1]

′
.

Very often the MIQP problem (3.1) derived from the hybrid MPC for-
mulation (3.4) has a positive semidefinite Hessian matrix Q, depending
on the weight matrices Lx, Lv , Lδ , Lζ . The MIQP solution approach
described in this chapter does not require regularizing Q to make the
problem strictly convex.

3.3 Solution of QP relaxations

Solving problem (3.1a)–(3.1d) using B&B requires solving QP relaxations,
in which constraints (3.1d) are either relaxed to inequality constraints
¯̀
i ≤ Āiz ≤ ūi or to equality constraints Aiz = ¯̀

i or Aiz = ūi.
To solve QP relaxations of the form (3.1a)–(3.1c), we slightly extend

the solver in (Bemporad, 2018) to handle bilateral constraints of the
form (3.1b), as summarized in Algorithm 8. It is based on the idea of
solving proximal-point iterations, where each iteration consists of solv-
ing a regularized QP. The latter that is recast as a least distance problem

62

(LDP) and solved using a nonnegative least squares (NNLS) algorithm.
We describe the steps of Algorithm 8 in the following sections.

3.3.1 Outer proximal-point iterations

Let Q = Q′ � 0 in (3.1a)–(3.1c). For any ε > 0, the sequence {zk} of
solutions to the following strictly convex quadratic programs

zk+1 = arg minz
1
2z
′Qz + c′z + ε

2‖z − zk‖22
s.t. ` ≤ Az ≤ u

Gz = g
(3.5)

converges to a solution z∗ of the QP relaxation (3.1a)–(3.1c) as k tends to
infinity (Bemporad, 2018, Corollary 1).

3.3.2 Inner active-set solver

The dual of the QP problem (3.5) is the following convex QP

min
λ`,λu,µ

1

2

[
λ`
λu
µ

]′ [−A
A
G

]
(Q+ εI)−1

[−A
A
G

]′ [λ`
λu
µ

]
+

[
dk`
dku
fk

]′ [
λ`
λu
µ

]
(3.6a)

s.t. λ`, λu ≥ 0, µ free, (3.6b)

where λ`, λu ∈ Rm, µ ∈ Rq , and dk` , d
k
u ∈ Rm, fk ∈ Rq are defined as

follows: [
dk`
dku
fk

]
,
[−`
u
g

]
+
[−A
A
G

]
(Q+ εI)−1(c− εzk). (3.6c)

The following theorem shows how the QP problem (3.5) is equivalent to
a least-squares problem in which some of the variables are constrained to
be nonnegative, extending (Bemporad, 2016, Th. 1) to the case of equal-
ity constraints, bilateral inequalities as in (Bemporad, 2015b) and sub-
sequently to scaling of dk` , dku, fk for improved numerical robustness as
in (Bemporad, 2018).

Theorem 1 Consider the QP (3.5) and letQ � 0, ε > 0. Let L′L be a Cholesky
factorization of Q + εI and define M , AL−1, N , GL−1. Let γ, β be any

63

positive scalars. Consider the Partially Nonnegative Least Squares (PNNLS)
problem

min
y`,yu,ν

1

2

∥∥∥∥[−M ′β(dk`)′

]
y`+

[
M ′

β(dku)′

]
yu+

[
N ′

β(fk)′

]
ν+

[
0
βγ

]∥∥∥∥2

2

(3.7a)

s.t. y`, yu ≥ 0, ν free (3.7b)

with y`, yu ∈ Rm, ν ∈ Rq , and let

δ∗ , β(γ + (dk`)′y∗` + (dku)′y∗u + (fk)′ν∗) (3.8a)

r∗ ,

[
M ′(y∗` − y∗u)−N ′ν∗

−δ∗
]

(3.8b)

where r∗ ∈ Rn+1 is the residual obtained at the optimal solution (y∗` , y
∗
u, ν
∗)

of (3.7), where y∗` , y
∗
u ∈ Rm, ν∗ ∈ Rq . The following statements hold:

i) If r∗ = 0 then QP (3.1a)–(3.1c) is infeasible;

ii) If r∗ 6= 0 then

z∗ , −(Q+ εI)−1

(
c− εzk +

A′(y∗u − y∗`) +G′ν∗

βδ∗

)
(3.9)

and
λ∗` ,

1

βδ∗
y∗` , λ

∗
u ,

1

βδ∗
y∗u, µ

∗ ,
1

βδ∗
ν∗

solve QP (3.5) and its dual (3.6), respectively.

Proof. See Appendix A.
A robust QP solver based on NNLS and proximal-point iterations is

described in Algorithm 8. Steps 1–4 performs initialization, followed by
active-set iterations starting at Step 5. The active sets Pu,P` change for
every iteration while solving problem (3.7) at a given proximal-point it-
eration k; this is done via rank-one updates of LDL′ factorization (Bem-
porad, 2018, Section III. C). Feasible values as in (3.10) are computed at
Steps 7, 8. Steps 9, 10 check for infeasibility. The inner active-set itera-
tions continue from Step 5 until w is feasible (within tolerance) at Step 11
or if all inequality constraints have entered the active set, which is fol-
lowed by computation of solution zk at Steps 14, 15. Step 16 continues
executing proximal-point iterations until the criteria (3.12) is satisfied fol-
lowed by computing the optimal solution at Step 17.

64

Algorithm 8 Robust QP solver based on NNLS and proximal-point iter-
ations

Input: QP matrices Q, c, A, G, vectors u, `, g, regularization term ε > 0, feasib-
ility tolerance σ > 0, stop tolerance η > 0, initial guess z0.

1. Compute inverse Cholesky factor L−1, L′L = (Q+ εI);

2. M ← AL−1, N ← GL−1; P`,Pu ← ∅;
3. Factorize NN ′ as LDL′ = NN ′;

4. k, h← 0;

5. vk ← L−T (c − εzk); WP ←
[
−MP`
MPu
N

]
; dk` ← −(` + Mvk); dku ← u + Mvk;

θkP ←

[
dk`P`
dkuPu
g+Nvk

]
; γ ← ‖θkP‖1; β ← 1

γ
;

6. [L,D]← rankone(L,D, 1, βθkP);

7. (y`, yu, ν,P`,Pu, γ, β)← get feasible(P`,Pu); h← h+ 1;

8. δ ← β(γ + (θkP)′
[y`P`
yuPu
ν

]
), a←W ′P

[y`P`
yuPu
ν

]
,

[w`wu]←Ma
[−I
I

]
+ βδ

[
dk`
dku

]
;

9. ρ← a′a+ δ2;

10. if ρ = 0 then QP problem (3.1) is infeasible; go to Step 18;

11. if min{w`i , wui} ≥ −βδσ, ∀i ∈ {1, . . . ,m}, or P` ∪ Pu = {1, . . . ,m} then
go to Step 14;

12. i` ← arg mini∈{1,...,m}\P` w`i,
iu ← arg mini∈{1,...,m}\Pu wui,
if w`i` ≤ wuiu then P` ← P` ∪ {i`}; γ ← γ + |d`i` |;
otherwise Pu ← Pu ∪ {iu}; γ ← γ + |duiu |;
β̄ = β, β = 1

γ
;

13. update LDL′ factorization go to Step 7;

14. k ← k + 1;

15.
[
λ`k
λuk
µk

]
← 1

δ

[
y`
yu
ν

]
; uk ← 1

δ
a; zk ← L−1(uk − vk);

16. if ‖zk − zk−1‖ > η then [L,D]← rankone(L,D,−1, βdkP); go to Step 5;

17. z∗ ← zk, λ∗` ← λ`k , λ∗u ← λuk , µ∗ ← µk, P∗` ← P`, P∗u ← Pu;

18. end.

65

19. procedure (y`, yu, ν,P`,Pu, γ, β)←get feasible(P`,Pu)

19.1. solve the LS problem[s`P`
suPu
sν

]
← arg minz

∥∥∥[W ′P
β(θkP)′

]
z +

[
0n
βγ

]∥∥∥2

2
; s`{1,...,m}\P` ←

0, su{1,...,m}\Pu ← 0;

19.2. if s`P` , suPu ≥ 0 then
[
y`
yu
ν

]
←
[s`
su
sν

]
and go to Step 19.8;

19.3. j` ← arg minh∈P`: s`h≤0

{
y`h

y`h−s`h

}
,

ju ← arg minh∈Pu: suh≤0

{
yuh

yuh−suh

}
;

19.4.
[
y`
yu
ν

]
←
[
y`
yu
ν

]
+ min{j`, ju} ·

([s`
su
sν

]
−
[
y`
yu
ν

])
;

19.5. F` ← {h ∈ P` : y`h = 0},P` ← P` \ F`;
γ ← γ − ‖d`F`‖1;
Fu ← {h ∈ Pu : yuh = 0};Pu ← Pu \ Fu;
γ ← γ − ‖duFu‖1; β̄ = β, β = 1

γ
;

19.6. update LDL′ factorization

19.7. go to Step 19.1;

19.8. end procedure.

Output: Primal solution z∗ solving (3.1a)–(3.1c), (3.2) dual solution (λ∗` , λ
∗
u, µ
∗),

optimal active sets P∗` , P∗u or infeasibility status.

3.3.3 Warm-starting

At each proximal-point iteration, as well as when starting to solve a new
QP relaxation after a solution is available from the parent node in the
B&B search tree, the QP problem (3.5) can be warm-started from an ini-
tial guess zk and the corresponding problem (3.7) from sets of active con-
straints Pu,P` ⊆ {1, . . . ,m}, Pu ∩ P` = ∅, along with the initial guess
y` ≥ 0, yu ≥ 0, w`, wu ∈ Rm and ν ∈ Rq which satisfies the following
conditions:

w` = −M(M ′(yu − y`) +N ′ν) + βδdk` (3.10a)

wu = M(M ′(yu − y`) +N ′ν) + βδdku (3.10b)

y′`w` = y′uwu = 0 (3.10c)

66

y`i ≥ 0, w`i = 0, ∀i ∈ P` (3.10d)

yui ≥ 0, wui = 0, ∀i ∈ Pu (3.10e)

y`i = 0, ∀i ∈ {1, . . . ,m} \ P` (3.10f)

yui = 0, ∀i ∈ {1, . . . ,m} \ Pu (3.10g)

ν = −
[

N ′

β(fk)′

]# [
M ′(yu−y`)

δ

]
(3.10h)

where # denotes pseudoinverse, and

δ = β(γ + (dk`)′y` + (dku)′yu + (fk)′ν). (3.10i)

The terms (3.10a)–(3.10g), (3.10i) are derived from the Karush-Kuhn-
Tucker (KKT) conditions of problem (3.7). See the proof of Theorem 1
in Appendix A for a justification of conditions (3.10).

3.3.4 Parameter selection and scaling

The parameters β, γ > 0 are selected as in (Bemporad, 2018)

γ = 1 + ‖fk‖1 + ‖dk`P`‖1 + ‖dkuPu‖1, β =
1

γ
,

which are known to provide good numerical conditioning.
In order to ensure better numerical robustness of the overall MIQP

solver, one may scale the constraints of type (3.1b), (3.1c) as

M̂i ,
1

‖Mi‖2
, N̂i ,

1

‖Ni‖2
M̂i`i ≤ M̂iAiz ≤ M̂iui

N̂iGiz = N̂igi.

Unlike first-order methods which are well-known to be very sensitive
to scaling, our numerical experiments suggest that this algorithm is less
sensitive to the scaling.

67

3.3.5 Stopping criteria and optimality

At Step 16 the iterates of Algorithm 8 stop when

‖zk − zk−1‖ ≤ η.

This condition corresponds to satisfying the optimality condition

‖Qzk + c+A′(λuk − λ`k) +G′µk‖ ≤ εη (3.12)

of the QP problem of the form (3.1a)–(3.1c). In fact, from (3.9), we have

(Q+ εI)zk = −c+ εzk−1 −A′(λuk − λ`k)−G′µk
ε(zk − zk−1) = −Qzk − c−A′(λuk − λ`k)−G′µk

and hence ‖zk − zk−1‖ ≤ η implies (3.12).

3.4 MIQP solver

Algorithm 9 describes a standard B&B method to solve the MIQP prob-
lem (3.1), which is adapted from Chapter 2 and is essential for utiliz-
ing the warm-starting binary variables framework proposed in the sub-
sequent section. It uses Algorithm 8 for solving the QP relaxations of
type (3.1a)-(3.1c).

The B&B algorithm consists of three basic sets J , I¯̀, Iū that store the
indices of the i = 1, . . . , p binary constraints throughout the tree explor-
ation within B&B. The set J contains the indices of the relaxed binary
constraints of the form (3.2), `i ≤ Āiz ≤ ui. The sets I¯̀, Iū corres-
pond to the indices of the binary constraints fixed as either Āiz = ¯̀

i

or Āiz = ūi, respectively. The interdependency of these sets is given by
J = {1, . . . , p} \ (I¯̀ ∪ Iū), I¯̀ ∩ Iū = ∅. The tuple T holds the sets I¯̀,
Iū for each relaxed QP subproblem. The stack S holds these tuples with
the order of remaining QP subproblems to be solved. The best cost as-
sociated with an integer feasible solution is denoted by V0, z∗ denotes
the optimal value of the MIQP problem. Vector zk is the initial value
of the optimization vector, which is initialized with an arbitrary initial

68

Algorithm 9 MIQP solver based on NNLS

Input: MIQP problem matrices Q = Q′ � 0, c, A, Ā, G and vectors `, u,
g, ¯̀, ū, initial value z0; feasibility tolerance ε ≥ 0.

1. set V0 ← +∞; z∗ ← ∅; J ← {1, . . . , p}; I¯̀ ← ∅; Iū ← ∅; zk ← z0;
T ← {I¯̀, Iū, zk}; S ← {T };

2. while S 6= ∅ do:

2.1. {I¯̀, Iū, zk} ← last element T of S; S ← S \ {T };
2.2. execute Algorithm 8 to solve QP problem for z∗,V ∗;

2.3. if the QP problem is feasible within tolerance εand V ∗ ≤ V0

then

2.3.1. if Āiz∗ ∈ {¯̀i, ūi}, ∀i ∈ J or I¯̀ ∪ Iū = {1, . . . , p} then
V0 ← V ∗, ξ∗ ← z∗; otherwise

2.2.3.1. j ← arg min
i∈J

∣∣∣Āiz∗ − ¯̀
i+ūi

2

∣∣∣;
2.2.3.2. J ← J \ j, T0 ← {I¯̀ ∪ {j}, Iū, z∗}; T1 ← {I¯̀, Iū ∪

{j}, z∗};
2.2.3.3. if Ājz∗ ≤

¯̀
j+ūj

2 then append {T1, T0} to S otherwise
append {T0, T1} to S;

3. if V0 = +∞ then (3.1) infeasible otherwise V∗ ← V0;

4. end.

Output: Solution ξ∗ of the MIQP problem (3.1), optimal cost V∗, or
infeasibility status.

guess z0. At Step 1, the set J is initialized with all p binary constraints
{1, . . . , p}, which is same as (3.2), where all constraints (3.1d) are relaxed.
This denotes the root-node of the B&B tree.

At Step 2.1, the last tuple T is popped from the stack S which corres-
ponds to the relaxed QP subproblem to be solved. Step 2.2 solves this QP
relaxation using Algorithm 8.

Step 2.3 checks if the solution of the QP problem at the previous step

69

is feasible and the solution V ∗ ≤ V0. Step 2.3.1 checks if all the bin-
ary constraints are satisfied and updates the best known integer feas-
ible solution V0 with the optimal value V ∗. The binary constraint to be
branched upon j is picked from the set J having the largest fractional
part at Step 2.2.3.1. At Step 2.2.3.1, the index j is removed from the set J ,
and two tuples T0, T1 are created corresponding to the two subproblems
with j-th binary constraint equal to ¯̀

j and ūj respectively. In case of bin-
ary constraints that derive from imposing binary variables zj ∈ {0, 1}, z∗j
is replaced by either 0 or 1 in Step 2.2.3.1 for warm-start. Step 2.2.3.3 de-
cides the priority among the two subproblems T0, T1 based on the value
of Ājz∗ of the relaxed solution.

Once all QP problems are solved, the value of V0 is checked at Step
3. If V0 is still having +∞ then (3.1) is infeasible, in the other case the
optimal cost V∗ and the optimal solution ξ∗ is returned.

3.5 Warm-starting binary variables

For simplicity we focus on the case of constraints (3.1d) having the form
zi ∈ {0, 1} for some indices i ∈ G, G ⊆ {1, . . . , n}, with card (G) = p.
We want to introduce a strategy in the MIQP solver that exploits warm-
starts on (all or some of) the binary variables zi. The strategy can be
immediately extended to more general constraints of the form (3.1d).

Let Ĩ¯̀, Ĩū ⊆ G be the sets containing the indices of warm-started bin-
ary variables set equal to 0 or 1 respectively, Ĩ¯̀ ∩ Ĩū = ∅, Ĩ¯̀ ∪ Ĩū 6= ∅.
After solving the relaxed problem (3.1a)-(3.1c), (3.2) at the root node to
compute the optimal solution z∗ (steps up to Step 2.2 of Algorithm 9),
and assuming that z∗i 6∈ {0, 1} for some i ∈ G, Steps 2.2.3.1-2.2.3.3 of
Algorithm 9 are replaced by Algorithm 10, which is described below.

As we are just below the root node in the tree, at Step 1 of Algorithm
10 with J = {1, . . . , p}, if the any of the warm-started binary variables
have fractional value then Steps 1.1–1.3 are executed. In this case, the
priority for branching is first given to these warm-started variables at
Step 1.1. Specifically at Step 1.1, the variable with smallest index j which
is either contained in Ĩ¯̀ or Ĩū is selected for branching. The selected j is

70

removed from set J , and two new subproblems are created at Step 1.2.
These subproblems are pushed on S with the order defined in Step 1.31,
which induces solving first the relaxations in which the binary values are
assigned as specified by warm-start. At this step, card(J) = p − 1, and
hence Step 2 below will be executed.

At Step 2.1, all the warm-started values are removed from set J . Step
2.2 picks up the binary variable j for branching having the largest frac-
tional part (zj will be a variable that is not warm-started). At Step 2.3,
two new subproblems are created with the j-th variable set either to 0 or
1, along with the binary variables belonging to sets Ĩ¯̀ or Ĩū fixed equal
to 0 or 1, respectively, which now lead to a specific section of the tree.
These two subproblems are pushed on the top of S as in Step 2.4. Note
that the procedure described above from Step 2.1 to Step 2.4 if executed,
then for only once, due to the condition in Step 2.

According to a last-in-first-out strategy, these two problems are
solved before exploring nodes below the root node which were formerly
pushed on S. This step will force the tree exploration from these two
new subproblems, and further branching will be done only if necessary,
until leaf nodes are reached. Specifically, if further branching is needed,
due to the fact that at Step 2.1, J ← {1, . . . , p} \ (Ĩ¯̀ ∪ Ĩū), this is done
by following the Steps 1.4–1.6, until leaf nodes are reached as per warm-
start provided. Note that the binary variables zj ∈ {0, 1}, z∗j is replaced
by either 0 or 1 in Steps 1.2, 1.5 and 2.3 for warm-start. If the resulting
leaves are feasible then the value of V0 (the best known integer-feasible
solution) is updated appropriately with V ∗. In this case, finite value of V0

upfront can reduce the number of QP subproblems solved in the course
of finding the global solution of MIQP problem using the proposed B&B
algorithm.

This step is followed by convention of popping one of the QP sub-
problems which was pushed on the stack after solving the relaxation
at root node 1, and corresponding QP subproblem is solved. Here, the
branching on the binary variables below the root node is carried out us-

1 Having solved the relaxation at the root node, the two problems are pushed on stack
S. This is done before warm-starting the binary variables.

71

Algorithm 10 warm-start for binary variables

Input: Sets Ĩ¯̀, Ĩū containing the values corresponding to the warm-
start, J , I¯̀, Iū; Optimal solution z∗ of the QP problem;

1. if J ∩ (Ĩ¯̀∪ Ĩū) 6= ∅ then (first branch on the warm-started binary
variables)

1.1. j ← inf(J ∩ (Ĩ¯̀∪ Ĩū));

1.2. J ← J \ j, T0 ← {I¯̀∪ {j}, Iū, z∗}; T1 ← {I¯̀, Iū ∪ {j}, z∗};
1.3. if j ∈ Ĩ¯̀ then append {T1, T0} to S otherwise append {T0, T1}

to S;

otherwise

1.4. j ← arg min
i∈J

∣∣z∗i − 1
2

∣∣;
1.5. J ← J \ j, T0 ← {I¯̀∪ {j}, Iū, z∗}; T1 ← {I¯̀, Iū ∪ {j}, z∗};
1.6. if z∗j ≤ 1

2 then append {T1, T0} to S otherwise append {T0, T1}
to S;

2. if card(J) = p− 1 then (just once below the root node)

2.1. set J ← {1, . . . , p} \ (Ĩ¯̀∪ Ĩū);

2.2. j ← arg min
i∈J

∣∣z∗i − 1
2

∣∣;
2.3. J ← J \ j, T0 ← {Ĩ¯̀∪ {j}, Ĩū, z∗}; T1 ← {Ĩ¯̀, Ĩū ∪ {j}, z∗};
2.4. if z∗j ≤ 1

2 then append {T1, T0} to S otherwise append {T0, T1}
to S; (pushed at the top of S with the highest priority)

Output: Two subproblems T1, T0 (in appropriate order) are pushed at
the top of the stack S.

ing Step 1 of Algorithm 10, until all the nodes of the tree are explored. We
ensure not to solve the nodes leading to the leaves already solved while
exploring the tree now from beneath the root node.

We illustrate the flow of Algorithm 9+10 with an example with 3 bin-
ary variables, warm-started using the sequence (1, 0, ?), that is the warm-

72

start z1 = 1, z2 = 0. The flow of B&B is shown in Figure 12, where the
number inside the node denotes the order in which the QP relaxation
is executed. By following Algorithm 9+10, first the root node is solved
and then two problems are pushed on the stack with high priority to the
(1, ?, ?) node.

Then, the leaf problem (1, 0, 0) is solved first (QP #2), and (1, 0, 1) im-
mediately after (QP #3). Once these two leaves have been solved, prob-
lem (1, ?, ?) is popped from the stack (due to the last-in-first-out method),
but not solved (depicted as a dashed circle in Figure 12), because we
have already explored the children nodes of (1, 0, ?). Indeed, problems
(1, 0, 0) and (1, 0, 1) are ignored when popped again from stack herein.
Therefore, problem (1, 1, ?) is popped from the stack and solved (QP #4).

1

7

2 3

4

5 6

???

0??

00?

000 001

01?

010 011

1??

10?

100 101

11?

110 111

Figure 12: Illustration example with 3 binary variables and (1, 0, ?) as a bin-
ary warm-start. The numbers indicate the order in which the QP relaxations
are solved, dashed nodes correspond to QP subproblems that are ignored.

We remark that we have saved solving 2 QP relaxations without com-
promising the optimality of the MIQP solution. In general, using this
approach at least p − 1 QP relaxations can be saved, even a few more if
different branching rules are used. Consider the example shown in Fig-
ure 13, in which the binary variable to branch is selected according to the
maximum fractional part, and the binary warm-start is (0, 0, ?). In this
case, as shown in Figure 13, we save 4 QP subproblems.

73

1

3 4

5

6 7 2

???

??0

?00

000 100

?10

010 110

??1

?01

001 101

?11

010 111

Figure 13: Illustration example with 3 binary variables and (0, 0, ?) as a bin-
ary warm-start. The numbers denote the order in which the QP relaxations
are solved, dashed nodes correspond to QP subproblems that are ignored.

When solving hybrid MPC in receding horizon fashion, at every
sampling instance a sequence z is optimized over the whole horizon of
length N , the first computed value of the input is applied to the sys-
tem, then the horizon window is shifted by one sample time and the
procedure repeated. Let z∗ = (v∗0|t, δ

∗
0|t, ζ

∗
0|t, . . . , v

∗
N−1|t, δ

∗
N−1|t, ζ

∗
N−1|t) be

the optimal solution computed at time t, where vk, ζk, δk are the vec-
tors of inputs, real-valued and binary auxiliary variables respectively,
corresponding to the optimal trajectory of the MLD model used by hy-
brid MPC (Bemporad and Morari, 1999a). We can exploit the shifted
binary values optimized at the previous step as the binary warm-start, in
particular δ0|t+1 = δ∗1|t, . . . , δN−2|t+1 = δ∗N−1|t (and similarly for binary
inputs, if any), and use Algorithm 9 with Steps 2.2.3.1–2.2.3.3 replaced
by Algorithm 10. A similar warm-start can be also used to solve MIQP
problems arising in moving-horizon estimation and piecewise affine re-
gression, which will be exploited in the following chapter.

74

3.5.1 Using mid-way approach to warm-start binary vari-
ables

The warm-starting for binary variables presented in Section 3.5 is a gen-
eric scheme. Due to its flexibility to adapt warm-starting any specified
binary variables, the “mid-way” heuristic approach proposed in Sec-
tion 2.4.2 of Chapter 2, can be considered as a special case of the same
framework for solving MIQP to optimality. This can be done by exploit-
ing the information on offer by the “mid-way” heuristic approach.

Specifically, this is done by initializing the sets in Algorithm 10 with
the quantities from Algorithm 5 as

Ĩ¯̀← K¯̀, Ĩū ← Kū, J ← H, (3.13a)

and similarly initializing B&B Algorithm 3 as

V0 ← V ∗H , (3.13b)

λ0, λ−1 ← λ∗R, ν ← ν∗R. (3.13c)

Here, we warm-start the binary variables with the indices comprised
in the sets K¯̀ and Kū. Moreover, if the suboptimal integer feasible solu-
tion V ∗H is found then it is assigned as the best known integer feasible
solution V0 upon initialization, this helps in pruning the nodes while
branching on the variables contained in the set H. In this case, we
also utilize the values z∗R, λ

∗
R, ν

∗
R and start Algorithm 3 directly from

step 2.2.3.1.
We illustrate the flow with an example with 3 binary variables z∗H =

(0, 0, 1) is solution of mid-way heuristic approach, H = {1, 2}, K¯̀ = ∅,
Kū = {3} that is the warm-start z3 = 1. The flow of B&B is shown in Fig-
ure 14, where the number inside the node denotes the order in which the
QP relaxation is executed. First, the best known integer feasible solution
V0 is initialized by V ∗H . As z∗R is available which is equivalent to solution
of the root node (?, ?, ?) (hence the root node is not solved), two problems
are pushed on the stack with high priority to the (?, ?, 1) node.

75

5

1

2

3 4

???

z∗H

z∗R V0 ← V ∗H

??0

?00

000 100

?10

010 110

??1

?01

001 101

?11

010 111

Figure 14: Illustration example with 3 binary variables and z∗H = (0, 0, 1) as
solution of heuristic approach, considered as a binary warm-start, the best
know integer feasible solution so far V0 is initialized as V0 ← V ∗H , K¯̀ =
∅, Kū = {3}, H = {1, 2}. The numbers denote the order in which the QP
relaxations are solved, dashed nodes correspond to QP subproblems that
are ignored.

Then, as warm-start z3 = 1 provided, two problems are pushed on
the stack with high priority to the (?, 0, 1) node, which then is popped
from the stack (due to the last-in-first-out method), but not solved (de-
picted as a dashed circle in Fig. 14), because we have already explored a
children node of (?, 0, 1). Similarly, we have the solution z∗H = (0, 0, 1),
hence it is popped but not solved. Therefore, leaf problem (1, 0, 1) is
popped from the stack and solved (QP #1). Then problem (?, 1, 1) is
popped from the stack and solved (QP #2). Indeed, problems (?, 0, 1),
(0, 0, 1) and (?, ?, 1) are ignored when popped from stack herein.

Similarly, we remark that while using the solution heuristic approach
(Section 2.4.1) as upper bound on the cost in B&B setup V0 ← V ∗H , the
values z∗R, λ

∗
R, ν

∗
R are also utilized and Algorithm 3 starts directly from

step 2.2.3.1 in this case.

76

3.6 Numerical results

We report numerical experiments carried out on a desktop computer
with Intel Core i7-4700MQ CPU 2.40 GHz and 8 GB RAM, using MAT-
LAB R2015a. Algorithms 9, 10 are implemented in interpreted MATLAB
code and Algorithm 8 in compiled Embedded MATLAB code.

3.6.1 Hybrid MPC problem

We consider the hybrid MPC problem from (Bemporad and Morari,
1999a, Example 5.1), with the default settings as in bm99sim.m which
is a part of the Hybrid Toolbox for MATLAB (Bemporad, 2003). This
demo considers unit weight on the output of the system and all the other
weights are zero. This hybrid MPC problem has been tested for the pre-
diction horizon N from 2 to 15. The performance of Algorithm 8 is com-
pared against commercial solvers GUROBI (Gurobi Optimization, Inc.,
2014) and CPLEX IBM, Inc. (2014) with presolvers enabled. The max-
imum norm of the error in the input trajectories is less than 10−4.

Table 8 report the CPU time taken by the different solvers, where
the columns NNLS and NNLS∗ denote Algorithm 8+9 without warm-
starting binary variables and Algorithm 8+9+10 with warm-start of bin-
ary variables, respectively. For N = 10, the MIQP problem has n = 40,
p = 10 (i.e., 30 continuous variables and 10 binary variables), and
m = 160 linear inequalities.

3.7 Conclusions

Motivated by embedded hybrid MPC applications, this chapter has pro-
posed a new MIQP solver based on branch and bound that is able to
exploit warm-start on binary variables. A numerically efficient and ro-
bust QP solver based on an active-set method to solve nonnegative least
squares combined with proximal-point iterations is used for solving the
QP relaxations, which does not require the Hessian matrix to be posit-
ive definite; this is particularly useful in hybrid MPC problems based

77

Table 8: Hybrid MPC problem: CPU time (ms) per sampling step for differ-
ent prediction horizons N .

N NNLS NNLS∗ GUROBI CPLEX

avg max avg max avg max avg max
2 2.0 2.6 2.0 2.6 1.6 2.0 3.1 6.0
3 3.1 5.1 2.5 4.8 2.7 3.0 6.3 11.5
4 5.3 8.8 3.1 6.9 3.1 3.9 8.9 15.7
5 8.1 16.4 3.9 13.0 3.9 4.8 10.8 15.7
6 13.6 25.5 5.1 18.3 4.7 7.3 11.1 17.1
7 21.7 46.2 6.4 30.2 5.6 9.5 17.5 80.4
8 29.7 71.0 8.1 43.4 7.2 13.2 15.5 80.2
9 49.5 115.9 11.1 69.8 8.8 15.3 22.8 110.6

10 76.2 146.1 14.4 103.2 11.1 17.6 35.1 95.3
11 121.3 254.6 20.6 179.1 13.0 23.9 37.3 102.5
12 155.8 410.8 26.9 263.4 14.9 31.2 61.7 103.7
13 247.6 607.9 35.5 384.9 17.5 36.6 47.3 119.5
14 304.9 893.7 46.3 562.4 21.4 67.4 81.6 150.6
15 484.2 1242.3 61.7 766.9 25.9 109.8 89.9 181.1

on quadratic costs where the quadratic cost is only positive semidefinite
due to some variables having zero weight in the MPC cost function. The
reported numerical results demonstrate that presented framework for
warm-starting binary variables for hybrid MPC problems using the same
QP solution algorithm provides better performance in terms of both av-
erage and maximum computation time. Moreover, the “mid-way” heur-
istic approach proposed in Section 2.4.2 of Chapter 2 is demonstrated as
a special case of the proposed warm-starting framework. We will util-
ize the binary warm-start framework presented in this Chapter for the
PieceWise Affine (PWA) regression algorithm proposed in the following
Chapter.

78

Chapter 4

Regularized
moving-horizon PWA
regression using
mixed-integer quadratic
programming

4.1 Introduction

This chapter presents a novel two-stage regularized moving-horizon al-
gorithm for PieceWise Affine (PWA) regression. At the first stage, the
training samples are processed iteratively, and a Mixed-Integer Quadratic-
Programming (MIQP) problem is solved to find the sequence of active
modes and the model parameters which best match the training data,
within a relatively short time window in the past. According to a
moving-horizon strategy, only the last element of the optimal sequence
of active modes is kept, and the next sample is processed by shifting
forward the estimation horizon. A regularization term on the model
parameters is included in the cost of the formulated MIQP problem, to
partly take into account also the past training data outside the considered

79

time horizon. Accelerated Dual Gradient Projection (GPAD) based MIQP
solver proposed in Chapter 2 is employed to solve the resulting MIQP
problem. At the second stage, linear multi-category discrimination tech-
niques are used to compute a polyhedral partition of the regressor space
based on the estimated sequence of active modes.

The proposed PWA regression algorithm is properly adapted for the
identification of Linear Parameter-Varying (LPV) models. In addition,
the binary warm-starting framework proposed in Chapter 3 is employed
for efficient solution of the formulated MIQP problem.

4.1.1 Motivation

PWA systems are heterogeneous systems which exhibit both continu-
ous and discrete dynamics. PWA models are simple and flexible model
structures and thanks to their universal approximation properties, any
nonlinear function can be modeled with arbitrary accuracy by a PWA
map (Breiman, 1993). Furthermore, due to the equivalence between PWA
models and several classes of hybrid models (Heemels et al., 2001), avail-
able tools for modelling, analysis and control of hybrid systems can be
also applied to PWA systems (Bemporad and Morari, 1999a; Bemporad
et al., 2000).

PWA regression is an NP-hard problem (Lauer, 2015), where both the
regressor space partition and the submodel parameters have to be es-
timated from a set of training data. Several algorithms/heuristics for
PWA regression and for the identification of hybrid systems, have been
proposed in the last two decades (see the survey papers (Paoletti et al.,
2007; Garulli et al., 2012)). Among these algorithms, we mention the set-
membership approaches (Bemporad et al., 2005; Ozay et al., 2015), the
sparse-optimization based approaches (Bako, 2011; Ohlsson and Ljung,
2013) and the mixed-integer programming method (Roll et al., 2004). In
the latter approach, the estimation of hinging-hyperplane ARX models
and piecewise affine Wiener models is formulated as a mixed-integer
linear or quadratic programming problem, and then solved through a
branch and bound algorithm. As the number of integer variables is pro-

80

portional to the number of modes and the number of training samples,
the approach in (Roll et al., 2004) is limited to medium-scale problems.
A study of various mixed-integer programming formulations for piece-
wise linear functions is carried out in (Vielma et al., 2010). The contri-
butions (Bemporad et al., 2005; Nakada et al., 2005; Juloski et al., 2005;
Ferrari-Trecate et al., 2003; Bako et al., 2011; Breschi et al., 2016b,a) fall in
the class of cluster-based two-stage methods. At the first stage, the train-
ing samples are clustered by assigning each datapoint to a submodel ac-
cording to a certain criterion and, at the same time, the parameters of
the affine submodels are estimated. In the second stage, the polyhedral
partition of the regressor space is computed by linear separation tech-
niques. Unlike the mixed-integer programming approach (Roll et al.,
2004), which can be solved for the global optimum, suboptimal solutions
are obtained by the aforementioned two-stage methods.

4.1.2 Contribution

In this chapter, we propose a regularized moving-horizon PWA re-
gression algorithm, which can be seen as a mix between the mixed-
integer programming approach (Roll et al., 2004) and the cluster-based
algorithm (Breschi et al., 2016b). At the first stage, a Mixed-Integer
Quadratic-Programming (MIQP) problem is formulated to compute both
the optimal sequence of active modes within the considered horizon and
the parameters of the affine submodels. Moreover, a regularization term
is included in the cost of the formulated MIQP problem, to exploit the
information from the past training samples outside the considered time
window. Thus, the length Np of the horizon acts as a knob to com-
bine the advantages of the two-stage algorithm (Breschi et al., 2016b)
(namely, computational efficiency and iterative processing of the train-
ing samples) and the advantages of the mixed-integer programming ap-
proach (Roll et al., 2004) (namely, non-decoupled optimization over the
active modes and the submodel parameters). According to a moving-
horizon strategy, only the active mode at current sampling time is ex-
tracted from the computed optimal sequence of active modes, and the

81

next training sample is processed by shifting forward the estimation
horizon. At the second stage, the regressor space is partitioned us-
ing computationally efficient multi-class linear separation methods pro-
posed in (Breschi et al., 2016b).

4.1.3 Outline

The organization of this chapter is as follows. Section 4.2 describes the
formulation of the PWA regression problem. Section 4.3 contains the pro-
posed identification algorithm. A proper adaptation of the proposed
PWA regression algorithm for the identification of Linear Parameter-
Varying (LPV) systems is briefly described in Section 4.3.3. The simula-
tion examples on the identification of PieceWise Affine autoRegressive with
eXogenous inputs (PWARX) dynamical systems and a LPV system are re-
ported in Section 4.4 to show the effectiveness of the proposed approach.
The final remarks are given in Section 4.5.

4.2 Problem Formulation

Let us consider a data-generating system in the form

y(k) = fo(x(k)) + eo(k), (4.1)

where k ∈ N is the time index, y(k) ∈ Rny is the measured output at time
k, eo(k) ∈ Rny is an additive random noise, x(k) ∈ Rnx is the regressor
vector which is assumed to take values in a set X ⊂ Rnx , and fo : X →
Rny is an unknown and possible discontinuous function.

In this chapter, we address a PWA regression problem, which
amounts at computing a PWA function f : X → Rny approximating
the regression function fo based on a set of N observations of the re-
gressor/output pairs {x(k), y(k)}Nk=1. The PWA vector-valued function
f is described as:

f(x) =

Θ1 [1

x] if x ∈ X1,
...
Θs [1

x] if x ∈ Xs,
(4.2)

82

where s ∈ N denotes the number of modes, Θi ∈ Rny×(nx+1) are para-
meter matrices, and Xi, with i = 1, . . . , s, are polyhedra (Hix ≤ Di) that
form a complete polyhedral partition1 of the regressor space X.

Estimation of the PWA function f in (4.2) thus requires: (i) selecting
the number of modes s; (ii) estimating the parameter matrices Θi; and
(iii) finding the polyhedra Xi (i.e., the matrices Hi and Di) defining the
partition of the regressor space X . Tradeoff between data fitting and mo-
del complexity should be taken into account while choosing the number
of modes s. If the number of modes s is small, then the PWA map f may
not be flexible enough to capture the shape of the underlying nonlinear
data-generating function fo (4.1). On the contrary, considering the high
number of modes results in a more accurate description of the PWA map
f with more degrees of freedom. However, this may cause overfitting
and poor generalization to unseen data (not used in the training phase)
as the final estimate is sensitive to the noise corrupting the observations,
besides increasing the complexity of the estimation procedure and of the
resulting PWA model. In the rest of the chapter, we assume that s is fixed
by the user, and chosen via cross-calibration. This is done by evaluating
the performance of the estimated model for different values of s, on a
fresh dataset which is different from the training dataset.

4.3 PWA Regression Algorithm

The developed algorithm for PWA regression consists of the following
two stages:

S1. Recursive estimation of the model parameters Θi and simultaneous
clustering of the regressors {x(k)}Nk=1.

S2. Computation of a polyhedral partition of the regressor space X using
computationally efficient multi-category linear separation methods
already available in the literature. This can be computed either off-
line or online (recursively) and is executed after S1.

1A collection {Xi}si=1 is a complete partition of the regressor domainX if
⋃s
i=1 Xi = X

and
◦
Xi ∩

◦
Xj = ∅, ∀i 6= j, with

◦
Xi denoting the interior of Xi.

83

4.3.1 Recursive clustering and parameter estimation

Stage S1 is carried out through a regularized moving-horizon identifica-
tion algorithm. The training regressor/output pairs {x(k), y(k)} are pro-
cessed iteratively. At each time sample k, a moving-horizon window of
lengthNp containing regressor/output pairs from time k−Np+1 to time
k is considered. The model parameters Θi and the active mode σ(k) at
time k are estimated simultaneously by solving the mixed-integer pro-
gramming problem:

min
{Θi}si=1

{δi(k−t)}s,Np−1
i=1,t=0

s∑
i=1

Np−1∑
t=0

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2
(4.3a)

+

k−Np∑
t=1

∥∥y(t)−Θσ(t)

[
1
x(t)

]∥∥2
(4.3b)

s.t. δi(k−t)∈{0, 1},
s∑
i=1

δi(k−t)=1, t=0, . . . , Np−1. (4.3c)

The active mode σ(k) ∈ {1, . . . , s} represents the cluster that the re-
gressor x(k) is assigned to, and it is extracted from the optimizer of prob-
lem (4.3), i.e.,

σ(k) = i∗, with i∗ : δi∗(k) = 1. (4.4)

According to a moving-horizon estimation strategy, only the active mode
σ(k) at time k is kept, and the Np-length time window is shifted forward
to process the next pair {x(k + 1), y(k + 1)}.

Problem (4.3) aims at searching for the optimal sequence of active
modes within the considered time window and the model parameters
Θi which best match the available observations up to time k. Note that
the term (4.3a) aims at finding both the model parameters and the se-
quence of active modes {σ(t)}kt=k−Np+1 which best match the observa-
tions within the Np-step time horizon. The term (4.3b) acts as a regu-
larization term on the parameters Θi and it takes into account the time
history of the observations outside the considered time window. More

84

specifically, in (4.3b), the sequence of active modes is not optimized from
time 1 to time k−Np, but it is fixed to the estimates {σ(t)}k−Npt=1 obtained
from the previous iterations of the moving-horizon estimation algorithm.
In-turn, the sequence of active modes is optimized only within the con-
sidered time horizon in (4.3a).

Increasing Np increases the information used to cluster the regressor
x(k) and to estimate the model parameters Θi. On the one hand, increas-
ingNp increases the number of binary decision variables δi in (4.3). Thus,
the length Np of the horizon provides a trade off between complexity of
the optimization problem (4.3), and accuracy in estimating the model
parameters Θi and in clustering the regressor x(k).

Recursive update of the objective function

Note that, at a first glance, the regularization cost (4.3b) requires to use,
and thus to store, the whole time-history of observations up to time k −
Np (i.e., the sequence of regressor/output pairs {x(k), y(k)}k−Npk=1). Nev-
ertheless, once a new observation is available at time k, the term (4.3b)
can be recursively updated, as described in the following.

Let us rewrite the regularization term (4.3b) as

k−Np∑
t=1

tr
((
y(t)−Θσ(t)

[
1
x(t)

]) (
y(t)−Θσ(t)

[
1
x(t)

])′)
=

tr

k−Np∑
t=1

Θσ(t)

[
1
x(t)

] [
1
x(t)

]′
Θ′σ(t)

−
2tr

k−Np∑
t=1

Θσ(t)

[
1
x(t)

]
y(t)′

+tr

k−Np∑
t=1

y(t)y(t)′

 , (4.5)

with tr(·) denoting the matrix trace. Let us now define the matrices

Hi(k −Np) =

k−Np∑
t=1

[
1
x(t)

] [
1
x(t)

]′
hi(t), (4.6a)

Fi(k −Np) =

k−Np∑
t=1

[
1
x(t)

]
y(t)′hi(t), (4.6b)

85

with hi(t) = 1, if σ(t) = i or hi(t) = 0, otherwise. Substituting (4.6) into
the cost (4.5), we can represent (4.3b) as

k−Np∑
t=1

∥∥y(t)−Θσ(t)

[
1
x(t)

]∥∥2
= tr

(
s∑
i=1

ΘiHi(k −Np)Θ′i

)

− 2tr

(
s∑
i=1

ΘiFi(k −Np)
)

+ tr

k−Np∑
t=1

y(t)y(t)′

 . (4.7)

Note that the matrices Hi(k − Np) and Fi(k − Np) can be recursively
computed as

Hi(k −Np) =Hi(k −Np − 1)+[1
x(k−Np)

] [1
x(k−Np)

]′
hi(k −Np), (4.8a)

Fi(k −Np) =Fi(k −Np − 1)+[1
x(k−Np)

]
y(k −Np)′hi(k −Np). (4.8b)

Thus, processing the observation {x(k), y(k)} just requires to update the
matrices Hi(k −Np − 1) and Fi(k −Np − 1) through (4.8), with no need
to store the time history of observations {x(k), y(k)}k−Np−1

t=1 .

MIQP formulation

To reformulate (4.3) as an MIQP problem, let us define the vector zi(k) ∈
Rny with δi(k)∈{0, 1} as

zi(k) =
(
y(k)−Θi

[
1

x(k)

])
δi(k). (4.9a)

Note that:

zi(k) =

{
y(k)−Θi

[
1

x(k)

]
if δi(k) = 1

0 if δi(k) = 0
(4.9b)

Let M and m be an arbitrary large (resp. small) upper (resp. lower)
bound of the elements of the vector y(k)−Θi

[
1

x(k)

]
,

m ≤ y(k)−Θi

[
1

x(k)

]
≤M. (4.9c)

86

Based on conditions (4.7) and (4.9), problem (4.3) can be equivalently
written as the MIQP problem

min
{Θi}si=1

{δi(k − t)}s,Np−1
i=1,t=0

{zi(k − t)}s,Np−1
i=1,t=0

Np−1∑
t=0

s∑
i=1

z2
i (k − t)+ (4.10a)

tr

(
s∑
i=1

ΘiHi(k−Np)Θ′i

)
−2tr

(
s∑
i=1

ΘiFi(k−Np)
)
, (4.10b)

s.t. zi(k − t) ≤Mδi(k − t), (4.10c)

zi(k − t) ≥ mδi(k − t), (4.10d)

zi(k−t)≤ y(k−t)−Θi

[
1

x(k−t)
]
−m(1− δi(k−t)), (4.10e)

zi(k−t)≥ y(k−t)−Θi

[
1

x(k−t)
]
−M(1− δi(k−t)), (4.10f)

s∑
i=1

δi(k − t) = 1, t = 0, . . . , Np − 1, (4.10g)

δi(k − t) ∈ {0, 1}, i = 1, . . . , s, (4.10h)

Based on the constructed problem (4.10), different MIQP solvers can be
chosen to solve (4.10). For small-scale problems, GPAD-B&B approach
introduced in Chapter 2 can be used. The GPAD algorithm (Patrinos and
Bemporad, 2014) is very simple as it only needs basic arithmetic compu-
tations, which is specialized to solve the Quadratic Programming (QP)
relaxations arising in B&B. GUROBI solver can be used to solve medium
and large-scale problems.

Summary and iterative refinement

The steps described so far for recursive clustering of the regressors
{x(k)}Nk=1 and for model parameters Θi estimation are summarized in
Algorithm 11. At the beginning of Algorithm 11, a mini-batch identi-
fication problem is solved to estimate the sequence of active modes σ(t)

from time 1 up to time Np and to assign the regressor {x(t)}Npt=1 to the
cluster {Cσ(t)}Npt=1 (stages 2-6). Then, the observations {x(k), y(k)} are

87

processed iteratively. Besides updating the model parameters Θi at each
time k (stage 7.3), the active mode σ(k) is estimated (stages 7.4-7.6) and
the regressor x(k) is consequently assigned to cluster Cσ(k) (stage 7.7).

It is worth pointing out that, at the first iterations of Algorithm 11 (i.e.,
for k̄ � N), the observations {x(t), y(t)}k̄t=1 may be wrongly classified,
as the learning phase is based on a “small” set of observations. An error
in the classification of the pairs {x(t), y(t)}k̄t=1 (i.e., an incorrect estim-
ate of the mode sequence {σ(t)}k̄t=1) also influences the estimate of the
active modes and of the model parameters Θi at the next time samples
k > k̄, as the regularization cost (4.3b) depends on the estimated se-
quence {σ(t)}k̄t=1. When working in a batch mode, the effect of the initial
classification error may be reduced by running Algorithm 11 multiple
times, including in the regularization term (4.3b) also the sequences of
active modes estimated at the previous runs. More specifically, at the nq-
th run of Algorithm 11, the following cost is considered instead of (4.3a)-
(4.3b):

s∑
i=1

Np−1∑
t=0

γ1

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2
+ (4.11a)

γ2

k−Np∑
t=1

∥∥y(t)−Θσ(t,nq)

[
1
x(t)

]∥∥2
+ (4.11b)

nq−1∑
q=1

λnq−q−1

N−Np∑
t=1

∥∥y(t)−Θσ(t,q)

[
1
x(t)

]∥∥2
, (4.11c)

with σ(t, q) (q = 1, . . . , nq) being the estimate of the active mode at time
t obtained at the q-th run of Algorithm 11. Note that (4.11c) is a reg-
ularization term based on the past runs of Algorithm 11, while (4.11b)
plays the same role of (4.3b), as it regularizes the parameters Θi based on
the estimate {σ(t)}k−Npt=1 obtained at the current run of Algorithm 11. A
forgetting factor λ ∈ R : 0 < λ ≤ 1 is also included in (4.11c) to expo-
nentially downweight the estimates {σ(t, q)}Nt=1 obtained at past runs of
Algorithm 11. The regularization parameters γ1, γ2 ∈ R are introduced
in (4.11a) and (4.11b), respectively.

Similar to the original regularization term (4.3b), the cost (4.11)

88

Algorithm 11 Recursive clustering of the regressors and model paramet-
ers estimation

Input: Observations sequence {x(k), y(k)}Nk=1; number of modes s; ho-
rizon Np.

1. let Hi(0)← 0, Fi(0)← 0, Ci ← ∅, i = 1, . . . , s;

2. let k ← Np;

3. solve the MIQP problem (4.10);

4. let {δ∗i (t)}s,Npi=1,t=1 be the optimal parameters minimizing (4.10);

5. for t = 1, . . . , Np do

5.1. let i∗(t) be the index such that δ∗i∗(t) = 1;

5.2. let σ(t)← i∗(t);

5.3. let Cσ(t) ← Cσ(t) ∪ {x(t)};

6. end for

7. for k = Np + 1, . . . , N do

7.1. update the matrices Hi(k −Np) and Fi(k −Np) through (4.8);

7.2. solve the MIQP problem (4.10);

7.3. let Θ∗i (k) be the optimal parameters minimizing (4.10), i =
1, . . . , s;

7.4. let {δ∗i (k − t)}Np−1
t=0 be the optimal parameters minimiz-

ing (4.10), i = 1, . . . , s;

7.5. let i∗ be the index such that δ∗i∗(k) = 1;

7.6. let σ(k)← i∗;

7.7. let Cσ(k) ← Cσ(k) ∪ x(k);

8. end for;

Output: Estimated parameters Θ∗1(N), . . . ,Θ∗s(N); clusters C1, . . . , Cs;
sequence of active modes {σ(k)}Nk=1.

89

can be also recursively updated as a new sample {x(k), y(k)} is pro-
cessed, without the need to store the whole time history of estimates
{σ(k, q)}N,nq−1

k=1,q=1 obtained at the previous runs of Algorithm 11. As a mat-
ter of fact, the cost (4.11) can be written as

s∑
i=1

Np−1∑
t=0

γ1

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2
+ (4.12a)

γ2

{
tr

(
s∑
i=1

ΘiHi(k −Np, nq)Θ′i

)
− (4.12b)

2tr

(
s∑
i=1

ΘiFi(k −Np, nq)
)

+ (4.12c)

tr

k−Np∑
t=1

y(t)y(t)′

+ (4.12d)

nq−1∑
q=1

tr

(
s∑
i=1

Θiλ
nq−q−1Hi(N −Np, q)Θ′i

)
− (4.12e)

2

nq−1∑
q=1

tr

(
s∑
i=1

Θiλ
nq−q−1Fi(N −Np, q)

)
+ (4.12f)

nq−1∑
q=1

tr

λnq−q−1

N−Np∑
t=1

y(t)y(t)′

 , (4.12g)

where Hi(N − Np, q) and Fi(N − Np, q) (q = 1, . . . , nq) are defined sim-
ilarly to (4.6) and computed based on the estimates σ(t, q) computed at
the q-th run of Algorithm 11. Specifically:

Hi(N −Np, q) =

N−Np∑
t=1

[
1
x(t)

] [
1
x(t)

]′
hi(t, q),

Fi(N −Np, q) =

N−Np∑
t=1

[
1
x(t)

]
y(t)′hi(t, q),

with hi(t, q) = 0, if σ(t, q) = i or hi(t, q) = 1, otherwise.
When the pair {x(k), y(k)} is processed, the matrices Hi(k −

Np, nq) and Fi(k − Np, nq) in (4.12b)-(4.12c) can be recursively updated

90

through (4.8), while only the matrices Hi(N − Np, q) and Fi(N − Np, q)
(with q = 1, . . . , nq − 1) are needed to construct the terms (4.12e)-(4.12f).

4.3.2 Construction of the state partition

The partition {Xi}si=1 of the regressor space X can be found along with
the estimation of the model parameters {Θi}si=1 and the sequence of act-
ive modes {σ(k)}Nk=1. This is done by separating the computed clusters
{Ci}si=1 using linear multicategory discrimination.

In the following subsection, we briefly describe the algorithms re-
cently presented in (Breschi et al., 2016b), which are suited both for off-
line and online (i.e., recursive) computation of the state partition.

Linear multicategory discrimination: problem formulation

According to the formulation introduced in (Bennett and Mangasarian,
1994), the linear multicategory discrimination problem is tackled by
searching for a convex piecewise affine separator function φ : Rnx → R
discriminating between the clusters C1, . . . , Cs. The separator function φ
is defined as

φ(x) = max
i=1,...,s

(
[x′ −1]

[
ωi

γi

])
, (4.14)

where ωi ∈ Rnx and γi ∈ R are the parameters to be computed. Let
mi denote the cardinality of the cluster Ci and let Mi ∈ Rmi×nx , for i =

1, . . . , s, which is obtained by stacking the regressors x(k)′ belonging to
Ci in its rows.

If the clusters {Ci}si=1 are linearly separable, then the separator func-
tion φ satisfies the following conditions:

[
Mi −1mi

] [
ωi

γi

]
≥
[
Mi −1mi

] [
ωj

γj

]
+ 1mi , (4.15)

i, j = 1, . . . , s, i 6= j,

where 1mi is an mi-dimensional vector of ones.

91

The piecewise-affine separator φ thus satisfies the conditions:
φ(x) = [x′ − 1]

[
ωi

γi

]
, ∀x ∈ Ci, i = 1, . . . , s

φ(x) ≥ [x′ − 1]
[
ωj

γj

]
+ 1, ∀x ∈ Ci, i 6= j

(4.16)

From (4.16), the polyhedra {Xi}si=1 are defined as

Xi=
{
x∈Rnx : [x′ −1]

[
ωi−ωj
γi−γj

]
≥1, j=1, . . . , s, j 6= i

}
.

Off-line multicategory discrimination

The parameters {ωi, γi}si=1 are calculated by solving the optimization
problem (Breschi et al., 2016b) (instead of solving a robust linear program-
ming (RLP) problem as in (Bennett and Mangasarian, 1994)),

min
ξ

κ

2

s∑
i=1

(
‖ωi‖22 + (γi)2

)
+

s∑
i=1

s∑
j = 1
j 6= i

1

mi

∥∥∥∥([Mi −1mi]
[
ωj−ωi
γj−γi

]
+ 1mi

)
+

∥∥∥∥2

2

, (4.17)

with ξ = [(ω1)′ ... (ωs)′ γ1 ... γs]
′. Problem (4.17) minimizes the averaged

squared 2-norm of the violation of the inequalities in (4.15). The regu-
larization parameter κ > 0 guarantees that the objective function (4.17)
is strongly convex. Problem (4.17) is then solved through the Regular-
ized Piecewise-Smooth Newton (RPSN) method explained in (Breschi et al.,
2016b) and originally proposed in (Bemporad et al., 2015).

Recursive multicategory discrimination

An online approach can be used, either in place of the off-line approach
or to refine the partition φ online based on streaming data. A recursive
approach using on-line convex programming can be used to solve (4.17).

Considering the data-points x ∈ Rnx as random vectors and let us
assume that there exists an oracle function i : Rnx :→ {1, . . . , s} that
assigns the corresponding mode i(x) ∈ {1, . . . , s} to a given x ∈ Rnx . By

92

definition, function i describes the clusters in the data-point space Rnx .
Let us also assume that the following probabilities

πi = Prob[i(x) = i] =

∫
Rnx

δ(i, i(x))p(x)dx,

are known for all i = 1, . . . , s, where δ(i, j) = 1 if i = j, zero otherwise.
Problem (4.17) can be the generalized as the following convex regular-
ized stochastic optimization problem

ξ∗ = min
ξ
Ex∈Rnx [`(x, ξ)] +

κ

2
‖ξ‖22 (4.18)

`(x, ξ) =

s∑
j = 1
j 6= i(x)

1

πi(x)

(
x′(ωj − ωi(x))− γj + γi(x) + 1

)2

+
,

where Ex [·] denotes the expected value w.r.t. x. Problem (4.18) aims at
violating the least, on average over x, the condition in (4.15) for i = i(x).
The coefficients πi can be estimated offline from a data subset, specific-
ally πi = mi

N , and can be updated iteratively. Nevertheless, numerical
experiments have shown that uniform coefficients π = 1

s work equally
well. Problem (4.18) can be solved online using convex optimization al-
gorithm, Averaged Stochastic Gradient Descent (ASGD) method described
in (Breschi et al., 2016b).

4.3.3 Regularized Moving-Horizon PWA Regression for
LPV System Identification

The proposed regularized moving-horizon PieceWise Affine (PWA) re-
gression algorithm is employed for the identification of Linear Parameter-
Varying (LPV) models. Specifically, the scheduling-variable space is par-
titioned into polyhedral regions, where each region is assigned to a PWA
function describing the local affine dependence of the LPV model coeffi-
cients on the scheduling variable. Both the local affine functions and the
partition of the scheduling variable domain are directly estimated from
data, by properly adapting the regularized moving-horizon algorithm
for PWA regression proposed in the former section. See (Mejari et al.,
2018b) for further details.

93

4.4 Simulation Examples

The performance of the proposed PWA regression algorithm is shown
via identification of PieceWise Affine autoRegressive with eXogenous input
(PWARX) systems in this section. The output sequence used for training
is corrupted by a zero mean white Gaussian noise process eo. The Signal-
to-Noise Ratio (SNR) index

SNR = 10 log

∑N
t=1(y(t)− eo(t))2∑N

t=1(eo(t))2
, (4.19)

quantifies the effect of the measurement noise on the output. The quality
of the identified models is assessed on a noiseless validation dataset (not
used for training) through the Best Fit Rate (BFR) index

BFR = max

1−

√√√√∑Nval

k=1 (y(k)− ŷ(k))
2∑Nval

k=1 (y(k)− ȳ)
2
, 0

 , (4.20)

withNval being the length of the validation set and ŷ being the estimated
model output and ȳ the sample mean of the output signal. All the simu-
lations are carried out using a desktop computer with MATLAB R2015a,
Intel Core i7-4700MQ CPU with 2.40 GHz and 8 GB of RAM.

4.4.1 Identification of SISO PWARX system

As a first example, we consider a single-input single-output (SISO) PWARX
system for the data generation, described by the difference equation

y(k) =0.8y(k−1) + 0.4u(k−1)− 0.1 + max {−0.3y(k−1)

+0.6u(k−1) + 0.3, 0}+ eo(k),

with s̄ = 2 modes, based on the possible combinations generated by the
sign of the “max” operator. To gather the data, the system is excited by an
input u(k) which is chosen to be white noise with uniform distribution
U(−1, 1) and length N = 1000, eo(k) ∈ R is a zero-mean white Gaussian
noise with variance σ2

e = 6.25 · 10−4. This corresponds to a SNR on the
output channel equal to 20 dB.

94

Table 9: Best Fit Rate on the validation dataset for SISO PWARX system.

runs(nq) GUROBI miqpGPAD
1 0.86 0.86
2 0.90 0.89
3 0.92 0.90

For identification, Algorithm 11 is run for 3 iterations (i.e., nq = 3)
with s = s̄ = 2 and with prediction horizon Np = 5, forgetting factor
λ = 0.01, γ1 = 10, γ2 = 1. The resultant MIQP problem (4.10) consists
of 26 variables out of which 10 are binary, 40 inequality and 5 equality
constraints. The MIQP problem is solved with the GPAD-B&B algorithm
proposed in Chapter 2, denoted by miqpGPAD and the performance is
compared with the commercial solver GUROBI. In the second stage, off-
line multicategory discrimination algorithm (section 4.3.2) is executed
for the partitioning of the regressor space, with parameter κ = 10−5.
The BFR on the noise-free validation dataset of length Nval = 300 are
summarized in Table (9). The mean time taken to process a single
training sample by miqpGPAD is 0.13 sec with the feasibility tolerance
εG = 10−3, optimality tolerance εV = 10−3, infeasibility detection toler-
ance εI = 10−3, whereas GUROBI with default settings takes 0.09 sec.
The method miqpGPAD makes a trade off between the execution time
and quality of solution, by selecting appropriate tolerance values. It is
simple library-free solver, yet rendered comparable performance with
respect to the commercial solver for the given problem.

The effect of increasing the prediction horizon Np on the BFR is
shown in Figure 15, for nq = 1, 2 and 3 runs respectively.

95

2 4 6 8 10 12 14 16 18 20 22 24
0.80

0.85

0.90

0.95

1.00

Np

BF
R

Figure 15: BFR vs Np : nq = 1, nq = 2, nq = 3.

4.4.2 Identification of MIMO PWARX system

The second example is a Multiple-Input Multiple-Output (MIMO)
PWARX data generating system (Breschi et al., 2016a), given by[

y1(k)
y2(k)

]
=

[
−0.83 0.20
0.30 −0.52

] [
y1(k−1)
y2(k−1)

]
+

[
−0.34 0.45
−0.30 0.24

] [
u1(k−1)
u2(k−1)

]
+

[
0.20
0.15

]
+ max

{[
0.20 −0.90
0.10 −0.42

] [
y1(k−1)
y2(k−1)

]
+

[
0.42 0.20
0.50 0.64

] [
u1(k−1)
u2(k−1)

]
+

[
0.40
0.30

]
,

[
0
0

]}
+ eo(k), (4.21)

which is described by s̄ = 4 modes, based on the possible combinations
generated by the sign of the max operator. The data is gathered by ap-
plying an input sequence u(k) of length N = 3000, which is a white
noise process with uniform distribution in the range [−2 2]× [−2 2]. The
noise signal eo ∈ R2 is a white Gaussian noise with covariance matrix
Λe =

[
2.5 · 10−3 0

0 2.5 · 10−3

]
. This corresponds to the SNR of 27 dB for the

first output channel and 26 db for the second.
For the identification of system (4.21), Algorithm 11 is run with a pre-

diction horizon Np = 10, s = s̄ = 4 and with nq = 1 i.e., for one iteration.
This if followed by the off-line multicategory discrimination algorithm
for partitioning of the regressor space, where algorithm (reported in sec-
tion 4.3.2) is run with parameter κ = 10−5. The obtained identification

96

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

time (samples)

y 0
,ŷ

(a) true (black) vs estimated (red)

0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

time (samples)

y 0
−
ŷ

(b) Simulation error

Figure 16: Validation results for identification of MIMO-PWARX system,
Output channel-1.

results in terms of BFR are reported in Table (10), achieved by using a
noise-free validation dataset of length Nval = 500. The actual validation
output yo generated by the system, the simulated output ŷ and the error
yo− ŷ for the output channels 1 and 2 are shown in Figure 16, 17 respect-
ively. The results show a good match between the actual output and the
output simulated by the estimated model.

4.4.3 Identification of SISO LPV system

Next, we consider the identification of Linear Parameter Varying (LPV)
models as a PieceWise Affine (PWA) regression problem. We consider a

97

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

4

time (samples)

y 0
,ŷ

(a) true (black) vs estimated (red)

0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

time (samples)

y 0
−
ŷ

(b) Output channel-2: Simulation error

Figure 17: Validation results for identification of MIMO-PWARX system,
Output channel-2.

Table 10: Best Fit Rates on the validation dataset for MIMO PWARX sys-
tem (4.21).

Output channel BFR
BFR1 0.95
BFR2 0.94

single-input and single-output (SISO)-LPV ARX data generating system:

y(k)=ao
1(p(k))y(k−1)+ao

2(p(k))y(k−2)+bo1(p(k))u(k−1)+e(k).

98

The p-dependent coefficients ao
1(p(k)), ao

2(p(k) and bo1(p(k)) are described
by the nonlinear functions:

ao
1(p(k)) =

−0.5, if p(k) > 0.5

−p(k), if − 0.5 ≤ p(k) ≤ 0.5

0.5, if p(k) < −0.5

ao
2(p(k)) = p3(k), bo1(p(k)) = sin(πp(k)).

A training data and a validation dataset of length N = 1000 and Nval =
2000, respectively, are generated. The training input u and the schedul-
ing signal p are considered as independent white-noise processes with
uniform distribution U(−1, 1). The standard deviation of the noise e is
0.05, which corresponds to SNR of 20 dB. A PWA model with s = 6
modes is considered with prediction horizon T = 6. Each MIQP sub-
problem, solved with GPAD-B&B, contains 36 binary and 72 continuous
variables, 144 inequality and 6 equality constraints. In the second stage,
off-line multicategory discrimination algorithm is executed for partition-
ing the scheduling space, and the estimated model parameters are re-
fined based on the computed partition, using simple least-squares for
each sub-model.

Let (z∗0|t, . . . , z
∗
T−1|t) be the optimal solution computed for the binary

variables at time t, with T as horizon length. We can exploit the shifted
binary values optimized at the previous step as the binary warm-start,
in particular z0|t+1 = z∗1|t, . . . , zT−2|t+1 = z∗T−1|t by exploiting the frame-
work proposed Section 3.5 of Chapter 3.

The Best fit rate calculated is 95% and the average time to solve
the MIQP problem are shown in Table 11, where miqpGPAD refers
to Algorithm 3 (from Chapter 2), miqpGPAD* refers to Algorithms 3
(from Chapter 2) properly coupled with Algorithm 10 (form Chapter 3).
The results demonstrate the effectiveness of the warm-start approach,

Table 11: Average CPU time for training samples N=1000.

Solver Time (ms)
GUROBI 259.38
miqpGPAD 125.06
miqpGPAD* 82.35

rendering better performance using the same QP solving algorithm.

99

4.5 Conclusion

A novel moving-horizon algorithm for PieceWise Affine regression has
been described in this chapter. The proposed method combines the fol-
lowing advantages: (i) simultaneous choice of the model parameters and
of the optimal sequence of active modes within a relatively short time
horizon, and (ii) computational efficiency and iterative processing of the
training samples. These features make the proposed approach partic-
ularly suitable for online applications, where a model needs to be up-
dated once new data becomes available, without the need of storing past
data history. The proposed algorithm is also employed for the identific-
ation of Linear Parameter-Varying (LPV) models. The binary warm-start
framework proposed in Chapter 3 is exploited for efficient solution of
the formulated MIQP problem, by properly adapting it for the GPAD-
based MIQP solver presented in Chapter 2. The numerical results clearly
demonstrate the utility of the proposed framework.

100

Chapter 5

Energy Disaggregation
using Embedded Binary
Quadratic Programming

5.1 Introduction

Extracting the power consumption profiles of individual household elec-
tric appliances from aggregated power measurements, commonly re-
ferred in the literature as non-intrusive load monitoring or energy disaggreg-
ation, is essential for consumers to become more aware of their energy
usage habits, and for utilities and policy makers to design customized
energy demand management strategies.

This chapter proposes new approaches for energy disaggregation
using integer programming that are particularly suitable for embed-
ded implementation on smart energy meters for a typical household
where the number of appliances are moderate, exploiting the combin-
atorial solver proposed in Chapter 2. Moreover, the regularized moving-
horizon PWA regression algorithm proposed in Chapter 4 is utilized in
order to identify the dynamic model for each appliance.

Specifically, the problem of energy disaggregation is formulated in
terms of three different binary quadratic programming (BQP) problems,
derived from switching models describing the behaviour of the single
appliances. The solution of the formulated BQP problems is com-

101

puted through a customized solver using branch and bound combined
with accelerated dual gradient projection algorithm for solving quadratic
programming (QP) relaxations. The proposed solver is library-free,
the main computationally-intensive operations can be performed offline
only once, while only basic arithmetic operations are performed online,
as soon as new aggregate data become available. This makes the pro-
posed energy disaggregation algorithms particularly suitable for real-
time embedded implementation directly on commercial smart meters,
due to its limited memory and CPU requirements.

5.1.1 Motivation

Retrieving residential power consumption at the single-appliance level
is a valuable source of information for (i) consumers to make them
more aware of their energy usage habits, receive automated feedback
and personalized recommendations for energy savings, detect malfunc-
tioning or the presence of energy-inefficient devices, as well as for (ii)
utilities and policy makers to segment the market, facilitate forecasting,
design and assess the impact of customized energy demand manage-
ment strategies (Armel et al., 2013).

Energy monitoring or appliance load monitoring (ALM) methods are
employed to gauge the energy consumption of the individual appli-
ance/device of whole building/premise. Two possible approaches can
be followed to acquire information on end-use energy consumption:

• Intrusive load monitoring (ILM). This is a hardware strategy, which
consists in using smart appliances connected to a home network or
attaching a measurement device to each appliance in the house.

• Non-intrusive load monitoring (NILM). This is a software strategy,
which consists in using data-processing algorithms (commonly re-
ferred in the literature as energy disaggregation methods) to de-
compose the aggregate power demand gathered from a single-
point smart meter into the individual contribution of each appli-
ance.

The advantages of the NILM approach with respect to ILM are clearly
the reduction of intrusiveness into consumers’ houses and lower costs for
installation, maintenance and replacement of the monitoring system.

Since the pioneering work by Hart on NILM (Hart, 1992), several al-
gorithms for energy disaggregation have been developed in the last dec-

102

ades (see the survey papers (Zeifman and Roth, 2011; Zoha et al., 2012;
Faustine et al., 2017) for a literature overview). State-of-the-art NILM
methods can be classified into two main categories: pattern recogni-
tion (Baranski and Voss, 2004; Srinivasan et al., 2006; Ducange et al., 2014;
Tabatabaei et al., 2017; Cominola et al., 2017; Gillis and Morsi, 2017; Sing-
hal et al., 2018) and optimization-based approaches (Suzuki et al., 2008;
Figueiredo et al., 2013; Piga et al., 2016; Rahimpour et al., 2017; Bhotto
et al., 2017; Wittmann et al., 2018). Algorithms belonging to the first class
try to extract features (e.g., active and reactive power, harmonics, high-
frequency wavelets, etc.) from the aggregate consumption, and then
classify events based on the extracted features. Algorithms belonging
to the second class formulate energy disaggregation as an optimization
problem and find the set of devices (and their configuration) that best
fits the measured aggregate power. As simply looking for the best fit of
the aggregate power might lead to poor results in the case of appliances
with similar power rating levels, data pre-processing and additional con-
straints are typically needed.

We focus particularly on the NILM techniques based on integer pro-
gramming. An integer programming based approach is presented in (Su-
zuki et al., 2008) for small-scale problems, and for the cases where some
appliance has multiple modes. One of the challenge for such appro-
aches is to distinguish between appliances with similar or overlapping
load signature. Aided linear integer programming (ALIP) based ap-
proach presented in (Bhotto et al., 2017) is with correction based on a
state diagram, median filtering, and linear-programming-based refine-
ment. Mixed-integer linear programming (MILP) based NILM approach
presented in (Wittmann et al., 2018) introduces a new set of integer
linear constraints. However, these integer programming based appro-
aches for energy disaggregation available in literature (Suzuki et al.,
2008; Bhotto et al., 2017; Wittmann et al., 2018) are implemented using
“desktop” computers running software packages like CPLEX (IBM, Inc.,
2014), MOSEK (MOSEK ApS, 2015), and GUROBI (Gurobi Optimization,
Inc., 2014). Consequently, these algorithms are not tailored to a real-
time embedded implementation, characterized by restrictions on avail-
able memory, computing power, and time.

Recently, embedded control community have been doing notable ef-
forts to tailor mixed-integer quadratic programming (MIQP) solvers for
embedded applications. Several solution methods have been presen-
ted using the Branch and Bound (B&B) algorithm (Floudas, 1995) com-
bined with QP solving algorithms including interior-point method (Frick

103

et al., 2015), active-set for solving nonnegative least square (NNLS) (Be-
mporad, 2015b), accelerated dual gradient projection (GPAD) presen-
ted in Chapter 2, Alternating Direction Method of Multipliers (ADMM)
algorithm and the operator splitting quadratic program (OSQP) solver
presented in Chapter 2, and active-set for solving NNLS with proximal-
point iterations presented in Chapter 3.

5.1.2 Contribution

This chapter presents novel optimization-based approaches tailored for
embedded implementation such as smart energy meters, for a typical
household where the number of devices are moderate. We provide ap-
proaches to overcome the problem of distinguishing between different
devices with similar operating modes (or combinations of them). Spe-
cifically, the contribution is twofold: First, we present three algorithms
for energy disaggregation based on binary quadratic programming (BQP).
The first two algorithms only require to have a prior knowledge on the
power rating levels of each appliance at each operating mode, while
the third approach employs switching dynamical models to describe the
typical power consumption profiles of each appliance. These models
can be estimated from disaggregated data gathered over a short intrus-
ive period, using techniques for identification of hybrid dynamical sys-
tems, such as moving-horizon methods (Ferrari-Trecate et al., 2002) or
clustering-based approaches (Ferrari-Trecate et al., 2003; Breschi et al.,
2016b). Particularly, we employ the moving-horizon algorithm proposed
in Chapter 4.

Secondly, we propose a customized solver for the formulated BQP
energy disaggregation problems. This solver, named bqpGPAD, com-
bines branch and bound (B&B) with Accelerated Dual Gradient Projection1

(GPAD), which is a special case of the Mixed-Integer Quadratic Program-
ming (MIQP) solver presented in Chapter 2. In the proposed BQP formu-
lations, the main computationally intensive operations, such as matrix
factorizations and preconditioning, can be performed offline only once,
while only basic arithmetic operations are performed online, as soon as a
new data become available. As a result, the proposed energy disaggreg-
ation algorithms are particularly suitable for real-time embedded imple-
mentation in commercial smart meters.

1Accelerated dual gradient projection, originally introduced in (Patrinos and Bemporad,
2014) for embedded model predictive control, is the Nesterov’s accelerated method (Nes-
terov, 1983) applied to dual quadratic programming problems.

104

Finally, the proposed disaggregation algorithms are tested against the
AMPds benchmark dataset (Makonin et al., 2013), which contains energy
consumption recorded over a year in a single house located in Canada at
one-minute time resolution. For a comparative analysis, two types of en-
ergy disaggregation problems are considered specifically for appliances
with two operating modes, and further with multiple operating modes.
The numerical results are compared with convex optimization-based ap-
proach presented in (Piga et al., 2016). A comparison in terms of CPU
time between the developed bqpGPAD solver and the commercial soft-
ware package for mixed-integer optimization GUROBI (Gurobi Optim-
ization, Inc., 2014) and CPLEX (IBM, Inc., 2014) is provided.

5.1.3 Outline

The outline of this chapter is as follows. The formulation of energy dis-
aggregation problem is presented in Section 5.2. The proposed disag-
gregation approaches are described in Section 5.3. This is followed by a
customized BQP solver using GPAD-based Branch and Bound presented
in Section 5.4. The proposed algorithms are validated against a standard
benchmark dataset and the numerical results are reported in Section 5.5.
The conclusion and final remarks are given in Section 5.6.

5.2 Problem setting

5.2.1 Single appliance modelling

Consider a household with n different electric appliances which draw
power from the main electric line. Under the modelling assumption that
each appliance has s ∈ N operating modes2, we denote with P

(j)
i the

power rating (in Watts) of the i-th appliance at the j-th operating mode.
Let us introduce the binary variable δ(j)

i (t) ∈ {0, 1} associated to the j-th
operating mode of the i-th appliance at time t. Specifically, δ(j)

i (t) = 1 if
the i-th appliance is at mode j at time t; δ(j)

i (t) = 0 otherwise. Hence, the

2The disaggregation approach discussed in the chapter can be applied to appliances
with different number of operating modes. However, we consider the case where all the
appliances have the same number s of operating modes just for simplicity of notation.

105

power consumed by the i-th appliance at time t can be represented as

yi(t) =
[
P

(1)
i (t) · · · P

(s)
i (t)

]
δ

(1)
i (t)

...
δ

(s)
i (t)

+ ei(t), (5.1a)

δ
(j)
i (t) ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , s, (5.1b)

s∑
j=1

δ
(j)
i (t) = 1, i = 1, . . . , n, (5.1c)

where ei(t) represents an intrinsic modeling error, and the con-
straint (5.1c) is due the fact that each device can operate in one and only
one mode at each time t. Note that P (j)

i can be time varying to take into
account transient behaviour.

Let mode j = 1 represent the OFF state for each device, with associ-
ated power rate P (1)

i = 0 W. It can be easily shown that as P (1)
i = 0, the

power consumption model (5.1) can be equivalently represented as

yi(t) =
[
P

(2)
i (t) · · · P

(s)
i (t)

]
δ

(2)
i (t)

...
δ

(s)
i (t)

+ ei(t), (5.2a)

δ
(j)
i (t) ∈ {0, 1}, i = 1, . . . , n, j = 2, . . . , s, (5.2b)

s∑
j=2

δ
(j)
i (t) ≤ 1, i = 1, . . . , n. (5.2c)

This allows us to reduce the number of binary variables in the optimiza-
tion problems formulated in the following sections.

5.2.2 Energy disaggregation problem

Given the aggregated power y(t):

y(t) =

n∑
i=1

yi(t) + e(t), (5.3)

106

the objective of energy disaggregation is to extract the power consump-
tion profiles yi(t) of each appliance. In (5.3), e(t) takes into account un-
modelled devices and measurement noise on the aggregated power read-
ing.

5.3 Disaggregation Algorithms

In this section, we present three approaches for energy disaggregation
based on Binary Quadratic Programming (BQP). The first two approaches
make use of switching static models to describe the power consumption
profiles of each appliance, while the third one is based on switching lin-
ear autoregressive models.

5.3.1 Approach A1: Binary Quadratic Programming

A simple approach to reconstruct the power demand yi(t) of each ap-
pliance from the aggregated power readings y(t) over a timing win-
dow of length T ∈ N is to compute the time-varying model paramet-
ers δ(2)

i (t), . . . , δ
(s)
i (t) (with i = 1, . . . , n and t = 1, . . . , T) by solving the

binary least-square problem

min
{δ(2)
i (t), . . . , δ

(s)
i (t)}n,Ti,t=1

T∑
t=1

(
y(t)−

n∑
i=1

ŷi(t, δi(t))

)2

(5.4a)

s.t.

s∑
j=2

δ
(j)
i (t) ≤ 1, i = 1, . . . , n (5.4b)

δ
(j)
i (t) ∈ {0, 1}, i = 1, . . . , n, j = 2, . . . , s, (5.4c)

with

δi(t) = [δ
(2)
i (t) · · · δ(s)

i (t)], (5.4d)

and

ŷi(t, δi(t)) =
[
P

(2)
i · · · P (s)

i

]
δ

(2)
i (t)

...
δ

(s)
i (t)

 . (5.4e)

107

A rough knowledge of the terms P (j)
i (i.e., the steady-state power

demand of each appliance at each operating mode) is supposed to be
available. For instance, P (j)

i can be evaluated from “snapshots” of energy
use patters through k-means clustering (Likas et al., 2003) or by simple
visual inspection.

The main limitation in problem (5.4) is that appliances with similar
power ratings (or similar combinations of them3) may not be distin-
guished, leading to poor disaggregation results. In order to overcome
this limitation, in the following paragraph we propose a modification
of problem (5.4) by exploiting the time-domain information that electric
appliances rarely change their operating mode over time.

5.3.2 Approach A2: Regularized Binary Quadratic Pro-
gramming

In order to overcome the problem due to the presence of different devices
with similar operating modes (or combinations of them), a regularization
term can be added to (5.4) to penalize the change of the binary state δi(t)
over time. This leads to

min
{δ(2)
i (t), . . . , δ

(s)
i (t)}n,Ti,t=1

T∑
t=1

(
y(t)−

n∑
i=1

ŷi(t, δi)

)2

+ (5.5a)

+

n∑
i=1

T∑
t=1

∥∥∥∥∥∥∥
 γ

(2)
i...
γ

(s)
i

�
 δ(2)

i (t)−δ(2)
i (t−1)...

δ
(s)
i (t)−δ(s)

i (t−1)

∥∥∥∥∥∥∥

2

2

(5.5b)

s.t.

s∑
j=2

δ
(j)
i (t) ≤ 1, i = 1, . . . , n, (5.5c)

δ
(j)
i (t) ∈ {0, 1}, i = 1, . . . , n, j = 2, . . . , s, (5.5d)

where δ(j)
i (0) is a guess of an the initial state, and γ

(j)
i ∈ R are positive

weighting parameters chosen through cross-validation and penalizing
the time variation of the binary variables δ(j)

i . Note that, since the para-
meters γ(j)

i depend on the index i, appliances which rarely changes their

3Suppose that the appliances A, B and C consume 600 W, 400 W and 210 W, respectively,
in one of their operating points. Then, the behaviour of appliance A can be confused with
the combination of appliances B and C.

108

operating modes over time should be associated to high-value penaliza-
tion parameters γ(j)

i . Penalizing the norm of the difference between two
consecutive parameters δ(j)

i (t−1) and δ(j)
i (t) enforces the binary δ(j)

i to be
piecewise constant over time. This is a reasonable assumption for many
electric devices, provided that data are observed at small sampling time
(say, less than 1 minute).

5.3.3 Approach A3: Binary Quadratic Programming with
S-AR models

Both methods described in the previous paragraph are based on (switch-
ing) static models, and thus only information on the steady-state beha-
viour is exploited. An alternative approach to accurately distinguish
appliances with similar consumption ratings consists in exploiting in-
formation coming from transient behaviour. This requires to describe the
power consumption patterns of individual appliances in terms of switch-
ing dynamical models, instead of static one.

The approach described in this paragraph employs Switching Auto-
Regressive (S-AR) models to describe the power consumption profile yi(t)
of the single appliance. More specifically, yi(t) is given by

yi(t) =

Θ
′

i,1

[
1

xi(t)

]
if δ(1)

i (t) = 1,
...

Θ
′

i,s

[
1

xi(t)

]
if δ(s)

i (t) = 1,

(5.6a)

where xi(t) denotes the regressor vector containing the past values of the
outputs, i.e.,

xi(t) = [yi(t− 1), . . . , yi(t− na)]
′
, (5.6b)

and Θi,j is a set of parameters describing the behavior of the i-th ap-
pliance at the j-th operating mode. Using disaggregated training data
collected over a short intrusive period, the parameters Θi,j can be estim-
ated using available algorithms for identification of hybrid dynamical
systems. In this work, moving-horizon approach proposed in Chapter 4
will be used.

Once the model parameters Θi,j are estimated, the energy disaggreg-
ation problem can be tackled by solving iteratively and at each time t, the

109

binary quadratic program:

min
{δ(j)
i (t)}n,si,j=1

∥∥∥∥∥∥y(t)−
n∑
i=1

s∑
j=1

Θ
′

i,j

[
1

x̂i(t)

]
δ

(j)
i (t)

∥∥∥∥∥∥
2

2

, (5.7a)

s.t. δ(j)
i (t)∈{0, 1},

s∑
j=1

δ
(j)
i (t) = 1. (5.7b)

x̂i(t) is the estimated regressor vector4 defined as

x̂i(t) = [ŷi(t− 1), . . . , ŷi(t− na)]
′
,

and ŷi(t) is the estimate of the disaggregated power for the i-th appliance
given by

ŷi(t) = Θ
′

i,j∗
[

1
x̂i(t)

]
, (5.8)

where j∗ is extracted from the solution of problem (5.7) and it represents
the active operative mode of the i-th appliance at time t, i.e.,

j∗ : δ
(j∗)
i (t) = 1.

The estimated disaggregated power ŷi(t) is then used at time t + 1 to
construct the regressor x̂i(t + 1). Because of the iterative nature of this
third disaggregation approach, including a term in (5.7) penalizing the
time variation of the binary state δi(t) is not straightforward.

5.4 Solving BQP problems using GPAD-based
Branch and Bound

In this section, we describe a customized GPAD-based branch and bound
algorithm (named bqpGPAD) to solve the BQP energy disaggregation
problems formulated in the previous section. This solver is a special case
of the approach proposed in Chapter 2 for embedded mixed-integer quad-
ratic programming. For brevity, we describe the numerical algorithm fo-
cusing only on problem (5.4). The same algorithm can be easily adapted
to problems (5.5) and (5.7).

4The true regressor xi(t) in (5.6b) can not be constructed as it depends on disaggregated
power consumption yi. This information is not available at the disaggregation stage.

110

In order to rewrite problem (5.4) in terms of standard BQP formula-
tion, let us introduce the binary state vector δ(t) ∈ {0, 1}(s−1)·n by con-
catenating the state vectors δi(t) (for i = 1, . . . , n) defined in (5.4d) and
characterizing the operating mode of the i-the device at time t, i.e.,

δ(t) = [δ′1(t) · · · δ′n(t)]′. (5.9)

Let δ̄ denote the binary vector constructed by stacking δ(t) for t =
1, . . . , T , i.e.,

δ̄ = [δ
′
(1) · · · δ′(T)]

′
,

with δ̄ ∈ {0, 1}p, where p = (s− 1) · n · T .
Problem (5.4) can be then rewritten as a standard BQP problem

min
δ̄

V (δ̄) ,
1

2
δ̄
′
Qδ̄ + c

′
δ̄ (5.10a)

s.t. Aδ̄ ≤ u (5.10b)
δ̄i ∈ {¯̀i, ūi}, i = 1, . . . , p (5.10c)

where the Hessian Q ∈ Rp×p and the vector c ∈ Rp are properly defined
based on the quadratic cost (5.4a), ¯̀

i = 0, ūi = 1, u = 1T , and A ∈ RT×p
is given by

Aδ̄ = diag(δ̄′)

=

δ(1) · · · 0
...

. . .
...

0 · · · δ(T)

= (IT ⊗ 1′(s−1)·n︸ ︷︷ ︸

A

) · δ̄.

In the following sections, we show how to solve the BQP prob-
lem (5.10) through the GPAD-based B&B numerical solver bqpGPAD. For
completeness, we recall the framework presented in Chapter 2: First, in
Section 5.4.1, we refer the GPAD algorithm from Section 2.2 for solving
the relaxed QP problems arising in branch and bound. Then, in Sec-
tion 5.4.2, we describe how to employ GPAD in the B&B framework,
based on the ideas presented in Section 2.3.

111

5.4.1 Solving relaxed QP problems

In order to relax the BQP problem (5.10), binary constraints (5.10c) are
replaced by

¯̀
i ≤ δ̄i ≤ ūi, i = 1, . . . , p, (5.11)

leading to the following relaxed QP problem

min
δ̄

V (δ̄) ,
1

2
δ̄
′
Qδ̄ + c

′
δ̄ (5.12a)

s.t. Aδ̄ ≤ u, (5.12b)
¯̀≤ δ̄ ≤ ū, (5.12c)

with ¯̀= 0p and ū = 1p.
The solution of the QP problem (5.12) is computed through the GPAD

method outlined in Algorithm 12. The main idea behind the GPAD al-
gorithm, originally proposed in (Patrinos and Bemporad, 2014), is to ex-
tend the formulation of Nesterov’s fast gradient method (Nesterov, 1983)
on the dual QP problem:

max
λ

Ψ(λ) , −1

2
λ′AQ−1A′λ− d′λ− 1

2
c′Q−1c

s.t. λ ≥ 0 (5.13a)

where
A =

[
I
−I
A

]
, B =

[
ū
−¯̀
u

]
, d = B +AQ−1c, (5.13b)

and λ ∈ R2p+T is the dual vector, which is decomposed as

λ =

[
λū
λ¯̀

λu

]
, λū, λ¯̀ ∈ Rp, λu ∈ RT . (5.13c)

At Step 2 of Algorithm 12, the dual vector λ is first initialized. At each
iteration k, the extrapolation factor β(k) is computed (Step 5) and used in
Step 6, where Nesterov’s acceleration is applied to the dual vector λ. Fi-
nally, λ is updated through projected gradient (Steps 7 - 9). The algorithm
is iterated until the primal feasibility criterion

s̄
(k)
j ≤ 1

L
εG, ∀j = 1, . . . , 2p+ T (5.14a)

and the optimality criterion

− w̄(k)′ s̄(k) ≤ 1

L
εV (5.14b)

112

are satisfied simultaneously, where εG > 0 is a feasibility tolerance, and
εV ≥ 0 is an optimality tolerance. Condition (5.14b) is derived from the
relation of duality gap V (δ̄(k))− V ∗ ≤ V (δ̄(k))−Ψ(w̄(k)) = −w̄(k)′ s̄(k) ≤
1
LεV (see (Patrinos and Bemporad, 2014) for details).

The algorithm returns the optimal dual vector λ∗ and the retrieved
primal solution δ̄∗ and the optimal cost V ∗.

Algorithm 12 Accelerated dual gradient projection method to solve re-
laxed QP problem (5.12).
Input: matrices Q, A; vectors c, B;
1: H ← AQ−1A′, L← λmax(H), AL ← 1

LA, BL ← 1
LB;

2: λ0, λ−1 ← 0;
3: k ← 0;
4: repeat
5: β(k) ← max

{
k−1
k+2 , 0

}
;

6: w̄(k) ← λ(k) + β(k)
(
λ(k) − λ(k−1)

)
;

7: δ̄(k) ← −Q−1A′w̄(k) −Q−1c;
8: s̄(k) ←

(
ALδ̄(k) − BL

)
;

9: λ(k+1) ← max{w̄(k) + s̄(k), 0};
10: k ← k + 1;
11: until convergence;
12: λ∗ ← w̄(k), δ̄∗ ← δ̄(k), V ∗ ← V (δ̄∗);
Output: dual solution λ∗, primal solution δ̄∗, optimal cost V ∗.

Preconditioning
It is well known that performance of the first-order optimization

methods is sensitive to the problem of conditioning. In order to address
this issue and to better conditioning the QP problem (5.12), we adopt the
following Jacobi diagonal scaling (Bertsekas, 2009)

Aj ←MjAj , Bj ←MjBj , j = 1, . . . , 2p+ T, (5.15)

with Mj , 1√
AjQ−1A′j

.

Restart
Accelerated gradient methods exhibit non-monotonic behavior dur-

ing iterations, and ripples in the sequence of cost function are often ob-
served during numerical iterations. Convergence of the method can be

113

improved by using restarting heuristics. In this work, we apply the
gradient-based adaptive restart ideas of (O’ Donoghue and Candès, 2015;
Giselsson and Boyd, 2014) to the dual problem (5.13). Specifically, the
sequence of scalars βk in Step 5 of Algorithm 12 is restarted from 0
whenever the following condition

− Ls̄(k)′
(
λ(k+1) − λ(k)

)
> 0, (5.16)

is satisfied. Note that evaluating condition (5.16) is computationally
inexpensive as it depends on already computed quantities.

Infeasibility detection
During the execution of B&B (discussed in Section 5.4.2), QP relaxa-

tion with some of the integer combination may be infeasible, a frequently
occurring case for B&B. In this case, the dual cost Ψ(λ(k)) tends to +∞.

The criteria to detect infeasibility are reported in Algorithm 13, which
applies Farkas Lemma (Rockafellar, 1970, p. 201) to detect infeasibility
of QP problem (5.12), within a tolerance εI > 0 (see Lemma 1 in
Section 2.2.4).

Algorithm 13 Infeasibility detection

1: αk ← ‖w̄(k)‖∞;
2: if ‖A′w̄(k)‖∞ ≤ εIαk and d′w̄(k) < −εIαk then
3: stop (primal problem is infeasible)
4: end if

Early stopping criterion
Termination criteria based on dual cost is particularly useful for QP

solving algorithms within the B&B setting. Let V0 be the best known
integer-feasible cost, which acts as an upper bound for the optimal cost
V ∗. Since V (δ̄(k)) ≥ Ψ(λ(k)), the GPAD Algorithm 12 can be stopped
prematurely if the condition

Ψ(λ(k)) ≥ V0, (5.17)

is satisfied. Indeed, if condition (5.17) holds, we can prune that par-
ticular branch of the binary tree, without the need to further iterate
Algorithm 12 until convergence. This part is also discussed in the
following section describing the B&B algorithm.

114

5.4.2 Branch and Bound for BQP problems

This section summarizes the B&B algorithm (equipped with the GPAD
method described in Section 5.4.1) used to solve the BQP problem (5.10).

The B&B algorithm proceeds in a binary tree fashion, where each
node of the tree represent a relaxed QP problem. The root node (origin
of a tree) is represented by the relaxed QP problem (5.12), where all the
{1, . . . , p} integrality constraints in (5.10c) are replaced by (5.11). The tree
evolves by branching operations, that pick a variable δ̄i and change the
corresponding relaxed inequality ¯̀

i ≤ δ̄i ≤ ūi into two equalities δ̄i = ¯̀
i

and δ̄i = ūi, thus creating two children nodes. This is continued till all
binary variables δ̄i, with i = {1, . . . , p}, are branched upon in the same
fashion.

Hence, execution of B&B relies on the solution of a relaxed QP sub-
problem at each node, where the integrality constraints (5.10c) are re-
laxed by

δ̄Iū = ūIū , (5.18a)
δ̄I¯̀ = ¯̀I¯̀, (5.18b)
¯̀J ≤ δ̄J ≤ ūJ , (5.18c)

with Iū, I¯̀ and J being disjoint sets of integers (i.e., Iū ∩ I¯̀ ∩ J = ∅)
such that Iū ∪ I¯̀ ∪ J = {1, . . . , p}. The sets Iū, I¯̀ and J are uniquely
defined during the branching operations. Thus, the following general
QP problem should be solved at each node of the binary tree:

min
δ̄

V (δ̄) ,
1

2
δ̄
′
Qδ̄ + c

′
δ̄ (5.19a)

s.t. Aδ̄ ≤ u (5.19b)
¯̀J ≤ δ̄J ≤ ūJ , (5.19c)
δ̄Iū = ūIū , δ̄I¯̀ = ¯̀I¯̀. (5.19d)

Algorithm 14 outlines the B&B solver for the BQP problem (5.10) in
which the relaxed QP subproblems (5.19) are solved using the GPAD al-
gorithm discussed in Section 5.4.1.

At Step 1, the root node is created by relaxing all integrality con-
straints (5.10c) into (5.11), that is equivalent to I¯̀ = Iū = ∅, and
J = {1, . . . , p} in (5.18). The tuple T holds the sets of indices I¯̀, Iū
which uniquely identify the QP subproblems of form (5.19). The set S
stacks the tuples T in a specific order of pending relaxations to be solved

115

Algorithm 14 BQP solver based on GPAD to solve (5.10)

Input: BQP problem matrices/vectors Q, A, u, ¯̀, ū; feasibility tolerance
ε ≥ 0.

1. set J ← {1, . . . , p}; I¯̀ ← ∅; Iū ← ∅; T ← {I¯̀, Iū}; S ← {T };
V0 ← +∞;

2. while S 6= ∅ do:

2.1. {I¯̀, Iū} ← last element T of S ; S ← S \ {T };
2.2. solve (5.19) using Algorithm 12, under early stopping cri-

terion (5.17);

2.3. if the outputs δ̄∗ and V ∗ are returned by Algorithm 12, then

2.3.1. if I¯̀∪ Iū = {1, . . . , p} or δ̄∗i ∈ {¯̀i, ūi}, ∀i ∈ J then V0 ←
V ∗, ζ∗ ← δ̄∗; otherwise

2.2.3.1. j ← arg min
i∈J

∣∣∣δ̄∗i − ¯̀
i+ūi

2

∣∣∣;
2.2.3.2. J ← J \ j;
2.2.3.3. T0 ← {I¯̀∪ {j}, Iū}; T1 ← {I¯̀, Iū ∪ {j}};
2.2.3.4. if δ̄∗j ≤

¯̀
i+ūi

2 then append {T1, T0} to S otherwise ap-
pend {T0, T1} to S;

3. if V0 = +∞ then (5.10) is infeasible, otherwise V∗ ← V0;

4. end.

Output: Solution ζ∗ of the BQP problem (5.10), optimal cost V∗, or
infeasibility status.

by Algorithm 12. The quantity V0 is the best known integer-feasible
cost, which acts as an upper bound of the optimal cost of the BQP prob-
lem (5.10). The algorithm is iterated until the stack S of pending relaxa-
tions is empty.

At Step 2.1, the tuple T from the top of the stack S is popped and
the corresponding relaxed QP problem (5.19) is solved at Step 2.2, un-
der the additional early stopping criterion (5.17). If a feasible solution if
found, then Step 2.3.1 checks whether all integrality constraints are sat-
isfied and accordingly updates the best known integer-feasible cost V0

116

and corresponding optimizer ζ∗. Conversely, branching is executed at
Steps 2.2.3.1–2.2.3.4. Specifically, the index j is picked from the set of re-
laxed constraints J by considering the relaxed variable δ̄∗j with largest
fractional part. The selected constraint j is moved from the set of relaxed
inequality constraints J to the set of equality constraints I¯̀, Iū, thus cre-
ating two new relaxed QP subproblems identified by T0 and T1. These
two new problems represented by T0 and T1 are pushed onto the stack S,
with priority given based on the distance between the relaxed solution
δ̄∗j and the bounds ¯̀

j and ūj .
Once stack S becomes empty (namely, no further QP relaxations

are remaining to be solved) then, Step 3 checks if V0 is still +∞, and in
this case the BQP problem (5.10) is reported infeasible. Otherwise, the
optimizer ζ∗ and its corresponding optimal solution V∗ is returned.

Exploiting the fixed structure of dual QP relaxations
As described in Algorithm 14, B&B progresses by picking a binary

variables from the set J of relaxed constraints in (5.18c), and moving
them to the sets Iū and I¯̀ of equality constraints as in (5.18a) and (5.18b),
respectively. This change from one QP relaxation to another only affects
the constraints (5.18a)-(5.18c), which simply map to the following modi-
fied constraints in the dual QP problem (5.13):

λū,Iū = w̄ū,Iū + s̄ū,Iū , λ¯̀,Iū = 0, (5.20a)

λ¯̀,I¯̀
= w̄¯̀,I¯̀

+ s̄¯̀,I¯̀
, λū,I¯̀ = 0, (5.20b)

λū,J ≥ 0, λ¯̀,J ≥ 0, (5.20c)

with λū and λ¯̀ represent the decomposition of the dual vector λ
in (5.13c). Similarly, w̄ū and w̄¯̀ (resp., s̄ū and s̄¯̀) represent the decom-
position of the vector w̄ in Algorithm 12, Step 6 (resp., s̄ in Algorithm 12,
Step 8). This leads to a minor change in Algorithm 12. Specifically, in
the update of dual vector λ at Step 9, the components of the vectors λū
and λ¯̀ with indexes in the sets Iū and I¯̀ are updated as in (5.20a) -
(5.20b). This is a very attractive feature of the GPAD-based B&B solver
bqpGPAD, as the same QP structure (matrices and preconditioning) can
be computed just once for the initial relaxation at the root node and
maintained unaltered throughout the execution of the B&B Algorithm 14.

Computation complexity
Since the binary state vector δ(t) belongs to {0, 1}(s−1)n, the complex-

ity of the BQP problem (5.10) (in terms of possible combinations of the

117

binary optimization variables) is 2p = 2T (s−1)n. However, at a given time
t, each device can operate in one and only one mode (including the OFF
state). This is characterized by (5.4b), which reduces the complexity of
the BQP problem to sTn.

It is worth emphasising that, for a fixed length T of timing window
where disaggregation is performed, the matrix Q (and its inverse), the
Hessian AQ−1A′ and the constraint matrices A and b in problem (5.13)
can be computed offline only once, as they do not depend on the cur-
rent measurement y(t). Thus, preconditioning (5.15) can be performed
offline only once, and the remaining online operations in Algorithm 12
require only very basic arithmetic operations. This significantly reduces
the online computational burden.

5.5 Experimental case study

The effectiveness of the three energy disaggregation algorithms presen-
ted in this chapter is demonstrated against the AMPds benchmark data-
set (Makonin et al., 2013), which contains energy consumption records
for individual appliances available in a household located in Vancouver,
Canada. Measurements are taken at one-minute time interval for an en-
tire year (from April 1, 2012 to March 31, 2013).

For this experimental study, we consider the aggregate consumption
given by the sum of the power consumption readings of the following
devices: clothes dryer (CDE), fridge (FGE), dish washer (DWE), heat
pump (HPE). Moreover, in order to test the robustness of the disaggrega-
tion approaches, a fictitious white noise error e(t), with zero-mean Gaus-
sian distribution and standard deviation 4 W, is added to the aggregate
power y(t).

The S-AR models (5.6) used in Approach A3 to describe the con-
sumption pattern of each appliance are estimated from training data
gathered over 500-min intrusive period. Specifically, measurements at
day 19 (April 19, 2012) are used to build models for fridge, dish washer,
and heat pump, while the behaviour of the clothes dryer is modelled
based on data taken at day 38 (May 8, 2012). Switching-AutoRegressive
models (5.6) with s = 3 modes and dynamical model order na = 2 are
estimated using the moving-horizon identification algorithm proposed
in Chapter 45. Once the S-AR model parameters Θi,j are estimated, the

5An horizon length Np = 5 is used.

118

Table 12: Power rating levels used in Approaches A1 and A2.

Device 2-modes 3-modes
clothes dryer [0 4700] W [0 260 4700] W
fridge [0 128] W [0 128 200] W
dish washer [0 800] W [0 120 800] W
heat pump [0 1900] W [0 39 1900] W

disaggregation problem (5.7) is formulated.
As far as Approach A1 and A2 is concerned, the power rating levels

P
(j)
i (eq. (5.1a)) are chosen via simple visual inspection, based on the

same dataset used to estimate the S-AR models in A3. 2-mode and 3-
mode static models are considered. The corresponding power ratings
are reported in Table 12. The γ(j)

i hyper-parameters employed in the
regularized Approach A2 (see problem (5.5)) are chosen through cross
validation, based on the same disaggregated data gathered during the
intrusive period.

5.5.1 Performance Evaluation measures

Disaggregation results are validated based on data measured from June
1 to June 30. The available individual power consumption readings are
utilized only as ground-truth data to assess the quality of the results,
which is quantified in terms of the following metrics (Piga et al., 2016).

In order to measure the quantity of energy consumed by the i-th ap-
pliance as a fraction of the total energy consumption, we define the En-
ergy Fraction Indices for both the estimated energy; and true or actual en-
ergy. For the estimated energy, the Estimated Energy Fraction Index (EEFI)
is defined as,

ĥi =

∑T
t=1 ŷi(t)∑N

i=1

∑T
t=1 ŷi(t)

.

An equivalent index for the true or actual energy consumed is,

hi =

∑T
t=1 yi(t)∑N

i=1

∑T
t=1 yi(t)

,

which is denoted by the Actual Energy Fraction Index (AEFI).

119

The normalized error between the true and the estimated power con-
sumption of the i-th appliance is given by the Relative Square Error (RSE),

RSEi =

∑T
t=1 (yi(t)− ŷi(t))2∑T

t=1 y
2
i (t)

.

The R2 coefficient, defined for the i-th appliance as,

R2
i = 1−

∑T
t=1 (yi(t)− ŷi(t))2∑T
t=1 (yi(t)− ȳi)2

,

where ȳi = 1
T

∑T
t=1 yi(t). The RSE and R2 coefficient gives a measure

of the accuracy of the estimated power trends with reference to the ac-
tual power trends over specified time interval. Low value of RSE or high
value ofR2 coefficient is desired for any disaggregation technique, which
will provide better quality estimates of the device specific trends or the
EEFI ĥi to the consumer. This in turn provides vital information for po-
tential reduction in usage of some appliances during the off-peak hours.

5.5.2 Numerical Results

All the numerical experiments are carried out on a desktop computer
with Intel Core i7-4700MQ CPU with 2.40 GHz and 8 GB of RAM, using
MATLAB R2015a. Algorithm 14 is implemented in interpreted MATLAB
code, while Algorithms 12 and 13 are implemented in Embedded MATLAB
code and compiled.

For all approaches A1, A2, and A3, the tolerance values used in the
termination criteria (5.14) for Algorithm 12 are set to εG = 10−6 and εV =
10−6, while the tolerance value εI used in Algorithm 13 for infeasibility
detection is 10−2. Furthermore, a regularization term 10−3I is added to
the Hessian of the formulated BQP problems in order to guarantee its
strictly positive definiteness.

In order to reduce the computational complexity in solving the regu-
larized BQP (5.5), the available dataset is split into disjoint sets of length
T = 2 samples. Problem BQP (5.5) is then solved for each subset, by set-
ting δ(j)

i (0) equal to the estimate δ̂(j)
i (T) achieved by processing the pre-

vious subset. Note that such a splitting introduces suboptimality with re-
spect to using the entire dataset. Similarly, since the estimated regressor
x̂i(t) should be constructed iteratively at every sampling time t, prob-
lem (5.7) is solved at each time t for a timing-window of length T = 1.

120

Table 13: Actual Energy Fraction Indices hi and Estimated Energy Fraction
Indices ĥi obtained by Approach A1 and A2 using 2-mode models.

Device Approach A1 Approach A2 True values
ĥi ĥi ĥi

CDE 35.4 35.6 31.3
FGE 23.0 23.3 21.3
DWE 7.7 6.6 5.1
HPE 33.9 34.5 42.3

Table 14: Actual Energy Fraction Indices hi and Estimated Energy Fraction
Indices ĥi obtained by Approach A1, A2, and A3 using 3-mode models,
LASSO approach is from Piga et al. (2016).

Device Approach A1 Approach A2 Approach A3 LASSO True values
ĥi ĥi ĥi ĥi hi

CDE 31.7 31.9 31.9 30.7 31.3
FGE 14.8 19.3 19.7 22.0 21.3
DWE 11.5 6.3 6.9 4.0 5.1
HPE 42.0 42.5 41.5 43.3 42.3

The EEFIs ĥi obtained by the proposed disaggregation algorithms are
reported in Table 13 and 14. More specifically, Table 13 provides the
EEFIs ĥi obtained by Approach A1 and A2, when the appliances are
described using 2-mode static models (namely, only ON/OFF modes).
Table 14 gives the EEFIs obtained using 3-mode models, both static (in
Approach A1 and A2) and dynamic (in Approach A3). The RSE and
the R2 coefficients are provided in Table 15 and 16.The results obtained
by the LASSO-based algorithm (Piga et al., 2016) are also reported in
the same tables for comparison. For the sake of visual representation of
the experimental results, Figure 18, 20, 19, and 21 show a portion of the
disaggregated power consumption profiles obtained using Approach A2
and A3, respectively. The true disaggregated profiles are also plotted to

121

assess the quality of the obtained results.
A comparison between the results obtained with 2-mode and 3-mode

models (namely, Table 13 vs 14, and similarly Table 15 vs 16) shows that
increasing the complexity of the models of the single appliances provides
a better estimate of the disaggregated consumptions, at the price of in-
creasing the computational load. However, it is interesting to note that
when the BQP formulation is employed (i.e., Approach A1), models
with 2 modes leads to more accurate results (lower RSE and higher
R2 coefficients) than models with 3 modes. This can be explained since,
when 3-mode models are used, the power consumption levels for fridge
and dishwasher are [0 128 200] W and [0 120 800] W, respectively (see
Table 12). Thus, these two appliances behave similarly when they oper-
ate in the second mode, making them difficult to be distinguished. This is
reflected in an underestimate of the energy fraction index ĥi for the fridge
and in an overestimate of the energy fraction index for the dishwasher
(see Table 14). It is to be noted that the problem formulation from 2-
modes towards 3-modes increases the number of binary variables in the
BQP problem, resulting in increased computation complexity and com-
putation time. Hence, the number of modes s acts as knob for a trade-off
between modelling accuracy and computation load.

It can be also observed that, as expected, adding regularization pen-
alizing the mode transition w.r.t. time (i.e., Approach A2) or exploit-
ing transient information on appliances’ consumption profiles (i.e., Ap-
proach A3) outperforms the Binary Quadratic Programming formulation
(i.e., Approach A1). Furthermore, more accurate results than the LASSO-
based approach Piga et al. (2016) are achieved. We highlight that static
model Approach A2 with 3-modes gives comparable results as A3 with
dynamic models as observed from Table 14 and 16, as well as from Fig-
ure 18, 20, 19, and 21.

Moreover, we remark that for Approach A2, increasing the length T
of the timing windows where disaggregation is performed also increases
the accuracy of the disaggregated results, at the cost of larger computa-
tion load. In contrast, as Approach A1 does not consider any regulariza-
tion term, the length T of the timing window has no effect on the accur-
acy of results (i.e., independent disaggregation problems can be solved
at each time t setting T = 1).

The average and maximum CPU times required to solve the formu-
lated BQP problems (5.4), (5.5) and (5.7) for a fixed window size T are
reported in Table 17, where it can be observed that, in the worst case,

122

Table 15: RSEi and R2
i coefficients obtained by Approach A1 and A2 using

2-mode models.

Device Approach A1 Approach A2
RSEi R2

i RSEi R2
i

CDE 0.3 99.7 0.3 99.7
FGE 19.2 71.0 16.4 75.2
DWE 33.3 62.2 11.6 88.2
HPE 2.8 97.0 2.4 97.3

Table 16: RSEi and R2
i coefficients obtained by Approach A1, A2 and A3

using 3-mode models, LASSO approach is from Piga et al. (2016).

Device Approach A1 Approach A2 Approach A3 LASSO
RSEi R2

i RSEi R2
i RSEi R2

i RSEi R2
i

CDE 0.3 99.7 0.2 99.8 0.1 99.9 0.8 99.2
FGE 36.6 44.7 14.7 77.7 15.2 76.5 24.2 63.3
DWE 38.0 61.1 19.2 80.4 12.4 87.0 28.2 71.4
HPE 4.0 95.6 3.5 96.2 0.5 99.4 2.7 97.1

Table 17: Average and maximum CPU time (in milliseconds) taken to solve
the disaggregation problem for a given window size T .

Approach T p bqpGPAD GUROBI CPLEX

avg max avg max avg max
A1 (2-modes) 2 8 11.0 47.0 2.5 31.0 4.2 47.0
A1 (3-modes) 2 16 31.4 203.0 4.1 31.0 7.4 172.0
A2 (2-modes) 2 8 6.0 46.0 2.8 32.0 3.9 47.0
A2 (3-modes) 2 16 16.0 375.0 3.3 32.0 6.7 141.0
A3 (3-modes) 1 12 41.4 188.0 2.9 32.0 13.2 110.0

123

the disaggregation problem is solved in an order of magnitude of hun-
dreds of milliseconds. For the sake of comparison, the CPU time required
by commercial software packages GUROBI (Gurobi Optimization, Inc.,
2014) and CPLEX (IBM, Inc., 2014) is also reported. Although GUR-
OBI and CPLEX provide better performance in terms of average and
maximum CPU time, we remark that the developed bqpGPAD solver,
specifically tailored for the formulated BQP energy disaggregation prob-
lems, is library-free and only very basic arithmetic operations should be
performed online. These features make it suitable for real-time embed-
ded implementation on smart meters.

5.6 Conclusion

Three algorithms for energy disaggregation based on Binary Quadratic
Programming (BQP) have been presented. The first algorithm employs
switching static models to describe the typical consumption profiles of
individual appliances. However, it might not properly handle situations
in which appliances have similar power rating levels. This limitation is
overcome by the second and the third approach. Specifically, the second
disaggregation algorithm exploits the additional information that each
electric appliance rarely changes its operating mode over time, and trans-
lates this information into the BQP formulation as a penalty in the mode
transitions. Instead, the third disaggregation algorithm exploits transient
information on the appliances’ consumption profiles by using switching
dynamical models.

The formulated BQP problems are solved through a customized
solver that uses branch and bound coupled with Accelerated Dual Gradi-
ent Projection (GPAD). The proposed BQP formulations enable to perform
computationally intensive operations (preconditioning and matrix fac-
torization) offline, while only very basic arithmetic operations are per-
formed online. This makes the proposed disaggregation approaches ap-
pealing for embedded implementation, characterized by high-frequency
(> 1 Hz) data acquisition in real-time, and by limited memory availabil-
ity, directly on smart meters. Only compressed information on end-use
consumptions (such as alerts for possible faults, statistics on daily con-
sumption) can be thus transmitted at a lower frequency (e.g, daily), thus
avoiding network constraints.

124

Time (min)
×104

2.664 2.666 2.668 2.67 2.672 2.674 2.676 2.678

P
ow

er
(W

)

0

2000

4000

6000

8000
Cloth dryer power consumption

True

Estimated

Time (min)
×104

2.664 2.666 2.668 2.67 2.672 2.674 2.676 2.678

P
ow

er
(W

)

0

2000

4000

6000

8000
Cloth dryer power consumption

True

Estimated

Time (min)
×104

2.664 2.666 2.668 2.67 2.672 2.674 2.676 2.678

P
ow

er
(W

)

0

2000

4000

6000

8000
Cloth dryer power consumption

True

Estimated

Figure 18: Trends of disaggregated cloth dryer power with Approach A2
for 2-modes (top panel), 3-modes (middle panel), and A3 (bottom panel),
where estimated values are calculated using bqpGPAD.

125

Time (min)
×104

1.622 1.624 1.626 1.628 1.63 1.632 1.634

P
ow

er
(W

)

0

200

400

600
Fridge power consumption

True

Estimated

Time (min)
×104

1.622 1.624 1.626 1.628 1.63 1.632 1.634

P
ow

er
(W

)

0

200

400

600
Fridge power consumption

True

Estimated

Time (min)
×104

1.622 1.624 1.626 1.628 1.63 1.632 1.634

P
ow

er
(W

)

0

200

400

600
Fridge power consumption

True

Estimated

Figure 19: Trends of disaggregated fridge power with Approach A2 for 2-
modes (top panel)), 3-modes (middle panel), and A3 (bottom panel), where
estimated values are calculated using bqpGPAD.

126

Time (min)
×104

3.295 3.3 3.305 3.31 3.315 3.32

P
ow

er
(W

)

0

500

1000

1500
Dish washer power consumption

True

Estimated

Time (min)
×104

3.295 3.3 3.305 3.31 3.315 3.32

P
ow

er
(W

)

0

500

1000

1500
Dish washer power consumption

True

Estimated

Time (min)
×104

3.295 3.3 3.305 3.31 3.315 3.32

P
ow

er
(W

)

0

500

1000

1500
Dish washer power consumption

True

Estimated

Figure 20: Trends of disaggregated dish washer power with Approach A2
for 2-modes (top panel)), 3-modes (middle panel), and A3 (bottom panel),
where estimated values are calculated using bqpGPAD.

127

Time (min)
×104

1.905 1.91 1.915 1.92 1.925 1.93 1.935 1.94 1.945

P
ow

er
(W

)

0

1000

2000

3000
Heat pump power consumption

True

Estimated

Time (min)
×104

1.905 1.91 1.915 1.92 1.925 1.93 1.935 1.94 1.945

P
ow

er
(W

)

0

1000

2000

3000
Heat pump power consumption

True

Estimated

Time (min)
×104

1.905 1.91 1.915 1.92 1.925 1.93 1.935 1.94 1.945

P
ow

er
(W

)

0

1000

2000

3000
Heat pump power consumption

True

Estimated

Figure 21: Trends of disaggregated heat pump power with Approach A2
for 2-modes (top panel)), 3-modes (middle panel), and A3 (bottom panel),
where estimated values are calculated using bqpGPAD.

128

Chapter 6

Conclusions and outlook

6.1 Conclusions

In this thesis we introduced new algorithms for Mixed-Integer Quadratic
Programming (MIQP) problems tailored to solving small-scale prob-
lems such as those that typically arise in embedded applications. The
algorithmic simplicity and suitability of embedded implementation is
exploited by proposing the Accelerated Dual Gradient Projection (GPAD)
method combined with Branch and Bound (B&B) in order to solve the
MIQP problem to optimality in Chapter 2. Particularly, an existing GPAD
algorithm is specialized to complement the requirements of solving QP
subproblems arising within the B&B framework. In addition, the GPAD
algorithm is used for exploring the possibility to find an integer feasible
solution using two different heuristic methods. Further, the idea pro-
posed for using fixed QP matrix structures is employed for the Alternat-
ing Direction Method of Multipliers (ADMM) algorithm (Boyd et al., 2011)
and ADMM based on the Operator Splitting Quadratic Program (OSQP)
solver (Stellato et al., 2017). Such a fixed structure approach is a very
attractive feature utilized in the B&B setup, as the same QP structure
including matrices and preconditioning can be computed just once for
initial relaxation at the root node and maintained unaltered throughout
the B&B algorithm. Hence, the subsequent QP relaxations requires only
very basic arithmetic operations to be performed online. An advantage
of the MIQP solver based on OSQP solver is that it can handle positive
semidefinite Hessian matrix. Whereas, the GPAD based approach has an

129

advantage of employing dual cost based pruning for premature termin-
ation of QP solver.

In spite of their simple coding, the proposed approaches turn out to
be quite effective. In particular, the heuristic method can often provide
solutions close to optimality with limited computation effort, which can
further be used to provide an upper bound on the optimal cost when
solving the MIQP to optimality. The performance of the proposed appro-
aches is comparable with state-of-the-art MIQP solvers for small-scale
problems, such as those that arise in embedded applications. It is well-
known that the performance of first-order methods is highly dependent
on the problem conditioning. However, the main motivation to special-
ize them for solving MIQP problems is to have a simple code requiring
only basic arithmetic operations, that makes it suitable for real-time em-
bedded implementation and for ease of compliance with standard pro-
duction certification tools.

The MIQP solvers based on GPAD and ADMM algorithms presented
in Chapter 2 are very simple to code, but they are limited to solving prob-
lems with positive definite Hessian matrix. Typically, hybrid Model Pre-
dictive Control (MPC) problems based on quadratic costs result in pos-
itive semidefinite Hessian matrix. While regularizing the cost function
would improve numerical robustness, it would bias the solution away
from optimality. In addition to the OSQP based MIQP solver presented
in Chapter 2, this limitation is addressed in Chapter 3, where a numeric-
ally efficient and robust QP solver based on an active-set method to solve
Nonnegative Least Squares (NNLS) combined with proximal-point iter-
ations is proposed, which does not require the Hessian matrix to be pos-
itive definite. A generic framework proposed to warm-start binary vari-
ables is especially useful in hybrid MPC and moving-horizon estimation,
where a good initial guess for the binary variables is available by shifting
the optimal solution computed at the previous sample step. Moreover,
the “mid-way” heuristic approach proposed in Section 2.4.2 of Chapter 2
is demonstrated as a special case of the warm-start framework proposed
for binary variables. The reported numerical results demonstrate that
the presented framework for warm-starting binary variables for hybrid
MPC problems using the same QP solution algorithm provides better
performance in terms of both average and maximum computation time.
The same framework was utilized subsequently in Chapter 4.

Chapter 4 and Chapter 5 described novel solution algorithms for es-
timation problems. Specifically, Chapter 4 proposed a new PieceWise Af-
fine (PWA) regression algorithm with the following advantages: (i) sim-

130

ultaneous choice of the model parameters and of the optimal sequence
of active modes within a relatively short time horizon and (ii) computa-
tional efficiency and iterative processing of the training samples, making
it suitable for recursive (online) application, where a model should be up-
dated when a new data sample becomes available, without the need to
store all past data history. The proposed algorithm is also properly adap-
ted for the identification of Linear Parameter-Varying (LPV) models. The
binary warm-start proposed in Chapter 3 is combined with GPAD-based
MIQP solver presented in Chapter 2, and demonstrated to be effective
which renders better solver performance for the formulated MIQP prob-
lem using moving-horizon PWA regression algorithm.

Chapter 5 proposed novel Binary Quadratic Programming (BQP)
based approaches for energy disaggregation tailored for smart energy
meters in a typical household with moderate number of electrical appli-
ances. To address the issue of appliances with similar load signatures,
we used an additional regularization term which penalizes the change
of appliance state over time. Furthermore, we considered a supervised
approach which characterizes the consumption profiles of individual ap-
pliance by Switched Affine AutoRegressive (S-AR) models identified by
using regularized moving-horizon PWA regression algorithm proposed
in Chapter 4. The formulated BQP problems are solved using a cus-
tom BQP solver based on GPAD, which is a special case of the MIQP
solver introduced in Chapter 2. The proposed energy disaggregation al-
gorithms were tested against a benchmark dataset. A detailed comparat-
ive study for appliances with minimal or multiple operating modes, its
effects on the problem complexity, computation time and accuracy of the
results were presented. This analysis provides a useful means to select
appropriate method for online disaggregation, e.g., for selecting number
of modes per appliance, static/dynamic models. The approach used to
solve the formulated combinatorial problems is library-free, very simple
to code, which makes it particularly suitable for embedded implement-
ation on smart meters, with comparable results to state-of-the-art com-
mercial solvers.

6.2 Outlook of possible future directions

An outlook of possible future directions from the contributions described
throughout this thesis is as follows.

Hardware implementation of MIQP solving approaches presented

131

in Chapter 2 and Chapter 3 can be done using low-cost embedded plat-
forms or field programmable gate arrays (FPGA) which enables to solve
the QP subproblems in parallel. Furthermore, the solvers can be imple-
mented using universal numbers (UNUM) (Gustafson, 2015), in order to
potentially reduce memory requirements for a given problem as com-
pared to the IEEE-754 floating point numbers, which can be particularly
beneficial for embedded applications.

QP solution algorithms GPAD, ADMM and NNLS are implemented
in Embedded MATLAB code and compiled. Moreover, the branch and
bound (B&B) algorithm is implemented in interpreted MATLAB code
(for GPAD, ADMM and NNLS) and in Python (for OSQP). Implement-
ation of QP solving algorithms and a B&B algorithm in C can further
improve the computation time.

The heuristic approaches introduced in Chapter 2 can be analyzed
further in order to guarantee convergence. The warm-start strategy for
binary variables introduced in Chapter 3 can be combined with tech-
niques such as “outside-first” tree exploration (Bemporad et al., 1999b),
special-ordered sets (SOS) (Beale and Tomlin, 1970), for efficient solu-
tion of mixed-integer problems encountered in control and estimation
of hybrid systems. The performance of the proposed MIQP approaches
in Chapter 2 and Chapter 3 can be tested on optimal control problems
for hybrid systems, formulated using techniques such as disjunctive pro-
gramming. Adaptability of other techniques such as branch and bound
with cutting planes, or branch and cut for MIQP solvers tailored to em-
bedded platforms can be explored. Another research direction can be to
explore combination of machine learning based techniques with branch
and bound (B&B) for the solution of MIQP problems, see recent survey
paper (Lodi and Zarpellon, 2017).

The PWA regression algorithm presented in Chapter 4 can be exten-
ded to solve the MIQP problem as well as to compute the partition of
the polyhedral regions online. Moreover, an area that can be explored
is, extensions of the proposed method to other PWA structures such as
output-error PWA and Box-Jenkins PWA models. The energy disaggreg-
ation approaches in Chapter 5 can be extended to incorporate informa-
tion on user behavior, and on appliance operating cycle to enhance the
disaggregation performance, and extensive validation of the approaches
on embedded hardware can be carried out.

132

Appendix A

Proof of Theorem 1

This proof extends the proof reported in (Bemporad, 2018) to the case of
bilateral inequality constraints. First, by defining

u , Lz + L−T (c− εzk) (A.1)

we complete the squares in (3.1a) by substituting z = L−1u − (Q +
εI)−1(c− εzk) and recast (3.1) into the equivalent constrained Least Dis-
tance Problem (LDP)

min
u

1

2
‖u‖2 (A.2a)

s.t. Mu ≤ dk (A.2b)

Nu = fk (A.2c)

whereM ,
[−M
M

]
, dk ,

[
dk`
dku

]
.

i) Assume the optimal residual r∗ = 0 in (3.8b). Let ν∗+ , max{ν∗, 0},
ν∗− , max{−ν∗, 0} be the positive and negative parts of ν∗, ν∗ = ν∗+−ν∗−,
ν∗+, ν

∗
− ≥ 0. Then, by (3.8b) we get

M′y∗ +N ′ν∗+ −N ′ν∗− = 0
(dk)′y∗ + (fk)′ν∗+ − (fk)′ν∗− = −γ

y∗, ν∗+, ν
∗
− ≥ 0

(A.3)

133

where y∗ ,
[
y∗`
y∗u

]
. By Farkas’s Lemma (Rockafellar, 1970, p. 201), for any

γ > 0 (A.3) is equivalent to infeasibility of

Mu ≤ d
Nu ≤ f

−Nu ≤ −f
(A.4)

which is obviously equivalent to (A.2b)–(A.2c). Therefore the LDP prob-
lem (A.2) does not admit a solution, and consequently (3.1).

ii) Consider the KKT conditions for problem (3.7)

−
[
M βdk

N βfk

] [
−M′y∗−N ′ν∗

−β((dk)′y∗+(fk)′ν∗+γ)

]
− [I0]w∗ = 0 (A.5a)

(y∗)′w∗ = 0 (A.5b)
ν∗ free, w∗ ≥ 0, y∗ ≥ 0 (A.5c)

where w∗ ,
[
w∗`
w∗u

]
is the optimal dual variable for problem (3.7).

From (A.5a) we get

−
[
M βdk

]
r∗ − w∗ = 0 (A.6a)

−
[
N βfk

]
r∗ = 0 (A.6b)

and hence the condition r∗ 6= 0, (A.5a)–(A.5b) and (A.6) imply that

0 < (r∗)′r∗ = (r∗)′
[
−M′
−β(dk)′

]
y∗ + (r∗)′

[
N ′

β(fk)′

]
ν∗ − γβr∗n+1

= (w∗)′y∗ − γβr∗n+1 = −γβr∗n+1,

i.e., r∗n+1 = −β((dk)′y∗ + (fk)′ν∗ + γ) < 0. By letting

u∗ , − 1

βr∗n+1

r∗{1,...,n} = − M′y∗ +N ′ν∗

β2(γ + (dk)′y∗ + (fk)′ν∗)
, (A.7)

from (A.5c) and (A.6a) we obtain

0 ≤ w∗ = −
[
M βdk

]
r∗ = −r∗n+1

[
βM βdk

] [r∗{1,...,n}
βr∗n+1

1

]

and hence−Mu∗+ dk ≥ 0, or equivalently u∗ satisfies (A.2b). Moreover,

Nu∗ − f = −N M′y∗ +N ′ν∗

β2(γ + (dk)′y∗ + (fk)′ν∗)
− fk = 0

134

iff 0 = NM′y∗ + NN ′ν∗ + β2(γfk + fk(dk)′y∗ + fk(fk)′ν∗) = (NN ′ +
β2fk(fk)′)ν∗ + (NM′ + β2fk(dk)′)y∗ + β2γf , or equivalently iff

ν∗ = −
[

N ′

β(fk)′

]#([M′
β(dk)′

]
y∗ +

[
0
βγ

])
. (A.8)

Since by (Bemporad, 2015a, Lemma 1) condition (A.8) is always satisfied
at optimality of (3.7), we have proved that u∗ also satisfies (A.2c) and
therefore is a feasible candidate to solve (A.2). It remains to prove that
u∗ is also optimal for (A.2). To this end, consider the remaining KKT
conditions of optimality for problem (A.2)

u∗ +M′λ∗ +N ′µ∗ = 0 (A.9a)
(λ∗)′(Mu∗ − dk) = 0 (A.9b)
λ∗ ≥ 0, ν∗ free. (A.9c)

Let
λ∗ ,

[
λ∗`
λ∗u

]
= − 1

βr∗n+1

y∗, µ∗ , − 1

βr∗n+1

ν∗. (A.10)

By negativity of r∗n+1 and nonnegativity of y∗ we get λ∗ ≥ 0. Moreover,
by recalling (A.7), we get

u∗ =
1

βr∗n+1

(M′y∗ +N ′ν∗) = −M′λ∗ −N ′ν∗

so that also (A.9a) is satisfied. To prove (A.9b) we observe
that (λ∗)′(Mu∗ − dk) = − 1

βr∗n+1
(λ∗)′(Mr∗{1,...,n} + βdkr∗n+1) =

1
β2(r∗n+1)2 (y∗)′

[
M βdk

]
r∗ = − 1

β2(r∗n+1)2 (y∗)′w∗ = 0 because of (A.6a)
and (A.5b). In conclusion, u∗ is the optimal solution of problem (A.2),
and hence the vector z∗ defined in (3.9) solves (3.1a)–(3.1c). As prob-
lems (A.2) and (3.5) only differ for the transformation (A.1) of primal
variables, by (A.9) (λ∗, µ∗) is also the optimal dual pair for (3.5). This
can be also directly inspected by substituting u∗ = Lz∗ + L−T (c − εzk)
in (A.9a) and left-multiplying by L′, and in (A.9b).

135

References

T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimiz-
ation, 4(1):77–86, 2007. 12

A. Alessio and A. Bemporad. A survey on explicit model predictive control. In
D. R. L. Magni, F. Allgower, editor, Nonlinear Model Predictive Control: Towards
New Challenging Applications, volume 384 of Lecture Notes in Control and Inform-
ation Sciences, pages 345–369, Berlin Heidelberg, 2009. Springer-Verlag. ISBN
978-3-642-01093-4. 6

P. J. Antsaklis. Special issue on hybrid systems: theory and applications a brief
introduction to the theory and applications of hybrid systems. Proceedings of
the IEEE, 88(7):879–887, July 2000. 4

K. C. Armel, A. Gupta, G. Shrimali, and A. Albert. Is disaggregation the holy
grail of energy efficiency? The case of electricity. Energy Policy, 52:213–234,
2013. 102

D. Axehill and A. Hansson. A mixed integer dual quadratic programming al-
gorithm tailored for MPC. In Proc. 45th IEEE Conference on Decision and Control,
pages 5693–5698, San Diego, CA, USA, 2006. 2, 9, 11

D. Axehill and A. Hansson. A dual gradient projection quadratic program-
ming algorithm tailored for mixed integer predictive control. Technical Report
LiTH-ISY-R-2833, Department of Electrical Engineering, Linköping University,
Sweden, 2008. 11

L. Bako. Identification of switched linear systems via sparse optimization. Auto-
matica, 47(4):668–677, 2011. 80

L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche. A recursive identific-
ation algorithm for switched linear/affine models. Nonlinear Analysis: Hybrid
Systems, 5(2):242–253, 2011. 81

136

E. Balas. Duality in discrete programming: II. The quadratic case. Management
Science, 16(1):14–32, 1969. 2

G. Banjac, P. Goulart, B. Stellato, and S. Boyd. Infeasibility detection in
the alternating direction method of multipliers for convex optimization.
optimization-online.org, 2017. URL http://www.optimization-online.
org/DB_HTML/2017/06/6058.html. 41

M. Baranski and J. Voss. Genetic algorithm for pattern detection in nialm systems.
In Proc. IEEE International Conference on Systems, Man and Cybernetics, volume 4,
pages 3462–3468, The Hague, Netherlands, Oct 2004. 103

E. Beale and R. Small. Mixed integer programming by a branch and bound tech-
nique. In Proceedings of the IFIP Congress, volume 2, pages 450–451, 1965. 10

E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables. In
Proc.Fifth International Conference on Operational Research, pages 447–454, 1970.
132

A. Bemporad. Hybrid Toolbox – User’s Guide. Dec. 2003. http://cse.lab.
imtlucca.it/˜bemporad/hybrid/toolbox. 6, 7, 77

A. Bemporad. Efficient conversion of mixed logical dynamical systems into an
equivalent piecewise affine form. IEEE Transactions on Automatic Control, 49(5):
832–838, May 2004. 8

A. Bemporad. A multiparametric quadratic programming algorithm with poly-
hedral computations based on nonnegative least squares. IEEE Trans. Auto-
matic Control, 60(11):2892–2903, 2015a. 6, 135

A. Bemporad. Solving mixed-integer quadratic programs via nonnegative least
squares. In Proc. 5th IFAC Conference on Nonlinear Model Predictive Control,
pages 73–79, Seville, Spain, 2015b. 11, 12, 60, 63, 104

A. Bemporad. A quadratic programming algorithm based on nonnegative least
squares with applications to embedded model predictive control. IEEE Trans.
Automatic Control, 61(4):1111–1116, April 2016. 10, 11, 60, 63

A. Bemporad. A numerically stable solver for positive semidefinite quadratic
programs based on nonnegative least squares. IEEE Trans. Automatic Control,
63(2):525–531, Feb 2018. 10, 60, 62, 63, 64, 67, 133

A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427, 1999a. 3, 4, 5, 6, 8, 9, 59, 60, 61, 74,
77, 80

137

http://www.optimization-online.org/DB_HTML/2017/06/6058.html
http://www.optimization-online.org/DB_HTML/2017/06/6058.html
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox

A. Bemporad and M. Morari. Robust model predictive control: A survey. In
A. Garulli and A. Tesi, editors, Robustness in identification and control, pages
207–226, London, 1999b. Springer London. 6

A. Bemporad and V. V. Naik. A numerically robust mixed-integer quadratic pro-
gramming solver for embedded hybrid model predictive control. In Proc. 6th
IFAC Conference on Nonlinear Model Predictive Control, pages 412–417, Madison,
Wisconsin, USA, 2018.

A. Bemporad, D. Mignone, and M. Morari. Moving horizon estimation for hybrid
systems and fault detection. In Proc. American Control Conference, pages 2471–
2475, Chicago, IL, June 1999a. 3, 60

A. Bemporad, D. Mignone, and M. Morari. An efficient branch and bound al-
gorithm for state estimation and control of hybrid systems. In Proc. European
Control Conference (ECC), pages 557–562, Aug 1999b. 132

A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllab-
ility of piecewise affine and hybrid systems. IEEE transactions on automatic
control, 45(10):1864–1876, 2000. 5, 8, 80

A. Bemporad, J. Roll, and L. Ljung. Identification of hybrid systems via mixed-
integer programming. In Proc. 40th IEEE Conference on Decision and Control,
volume 1, pages 786–792, Dec 2001. 3, 8

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002. 6

A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error approach to
piecewise affine system identification. IEEE Transactions on Automatic Control,
50(10):1567–1580, 2005. 80, 81

A. Bemporad, D. Bernardini, and P. Patrinos. A convex feasibility approach to
anytime model predictive control. Technical report, IMT Institute for Ad-
vanced Studies, Lucca, Feb. 2015. http://arxiv.org/abs/1502.07974.
92

K. Bennett and O. Mangasarian. Multicategory discrimination via linear pro-
gramming. Optimization Methods and Software, 3:27–39, 1994. 91, 92

L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, 4(1):63–76, 2007. 12

D. Bertsekas. Convex Optimization Theory. Athena Scientific, 2009. 28, 113

138

http://arxiv.org/abs/1502.07974

M. Z. A. Bhotto, S. Makonin, and I. V. Baji. Load disaggregation based
on aided linear integer programming. IEEE Transactions on Circuits and
Systems II: Express Briefs, 64(7):792–796, July 2017. ISSN 1549-7747. ht-
tps://doi.org/10.1109/TCSII.2016.2603479. 9, 103

D. Bienstock. Computational study of a family of mixed-integer quadratic pro-
gramming problems. Mathematical Programming, 74(2):121–140, Aug 1996. 9

M. Bierlaire, P. Toint, and D. Tuyttens. On iterative algorithms for linear ls prob-
lems with bound constraints. Linear Algebra and Its Applications, 143:111–143,
1991. 44

R. E. Bixby. A brief history of linear and mixed-integer programming computa-
tion. Documenta Mathematica, pages 107–121, 2010. 10

F. Borrelli, M. Baotić, A. Bemporad, and M. Morari. Dynamic programming for
constrained optimal control of discrete-time linear hybrid systems. Automatica,
41(10):1709–1721, Oct. 2005. 4, 6

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011. 25, 38, 40, 41, 129

L. Breiman. Hinging hyperplanes for regression, classification, and function ap-
proximation. IEEE Transactions on Information Theory, 39(3):999–1013, 1993. 8,
80

V. Breschi, A. Bemporad, and D. Piga. Identification of hybrid and linear para-
meter varying models via recursive piecewise affine regression and discrimin-
ation. In Proc. European Control Conference, pages 2632–2637, 2016a. 81, 96

V. Breschi, D. Piga, and A. Bemporad. Piecewise affine regression via recursive
multiple least squares and multicategory discrimination. Automatica, 73:155–
162, 2016b. 81, 82, 91, 92, 93, 104

C. G. Cassandras, D. L. Pepyne, and Y. Wardi. Optimal control of a class of hybrid
systems. IEEE Trans. Automatic Control, 46(3):398–415, March 2001. 4

J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes. Scheduling of head-
dependent cascaded hydro systems: Mixed-integer quadratic programming
approach. Energy Conversion and Management, 51(3):524–530, 2010. 4

G. Cimini, A. Bemporad, and D. Bernardini. ODYS QP Solver. ODYS S.r.l.
(https://odys.it/qp), Sept 2017. 11

A. Cominola, M. Giuliani, D. Piga, A. Castelletti, and A. E. Rizzoli. A hy-
brid signature-based iterative disaggregation algorithm for non-intrusive load
monitoring. Applied energy, 185:331–344, 2017. 103

139

https://odys.it/qp

R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3):250–255, 1965. 10

T. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial and Ap-
plied Mathematics, 2006. https://doi.org/10.1137/1.9780898718881. 41

A. Domahidi and J. Jerez. FORCES Professional. embotech GmbH (http://
embotech.com/FORCES-Pro), July 2014. 11

A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones. Ef-
ficient interior point methods for multistage problems arising in receding ho-
rizon control. In Proc. 51st IEEE Conference on Decision and Control, pages 668–
674, Dec 2012. 11

P. Ducange, F. Marcelloni, and M. Antonelli. A novel approach based on finite-
state machines with fuzzy transitions for nonintrusive home appliance monit-
oring. IEEE Transactions on Industrial Informatics, 10(2):1185–1197, 2014. 103

M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class
of mixed-integer nonlinear programs. Mathematical Programming, 36(3):307–
339, Oct 1986. 9

Fair Isaac Corporation. FICO Xpress Optimization Suite, 2015.
http://www.fico.com/. 4, 7

A. Faustine, N. H. Mvungi, S. Kaijage, and K. Michael. A survey on non-intrusive
load monitoring methodies and techniques for energy disaggregation prob-
lem. arXiv preprint arXiv:1703.00785, 2017. 103

G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving horizon estimation for
hybrid systems. IEEE Trans. Automatic Control, 47(10):1663–1676, 2002. 3, 60,
104

G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique
for the identification of piecewise affine systems. Automatica, 39(2):205–217,
2003. 81, 104

H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl. qpOASES: A para-
metric active-set algorithm for quadratic programming. Mathematical Program-
ming Computation, 6(4):327–363, 2014. 10

H. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick, A. Domahidi, J. Jerez,
G. Stathopoulos, and C. Jones. Embedded optimization methods for indus-
trial automatic control. In Proc. 20th IFAC World Congress, pages 13194–13209,
Toulouse, France, 2017. 11

140

http://embotech.com/FORCES-Pro
http://embotech.com/FORCES-Pro

M. Figueiredo, B. Ribeiro, and A. de Almeida. On the regularization parameter
selection for sparse code learning in electrical source separation. In Adaptive
and Natural Computing Algorithms, pages 277–286. Springer, 2013. 103

M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-
ming, 104(1):91–104, 2005. 12

R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer
approximation. Mathematical Programming, 66(1):327–349, Aug 1994. 9

R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP
branch-and-bound. SIAM J. Optim., 8(2):604–616, May 1998. 2, 9, 11

C. A. Floudas. Nonlinear and Mixed-Integer Optimization. Oxford University Press,
1995. 11, 103

D. Frick, A. Domahidi, and M. Morari. Embedded optimization for mixed logical
dynamical systems. Computers & Chemical Engineering, 72:21–33, 2015. 11, 103

D. Frick, J. L. Jerez, A. Domahidi, A. Georghiou, and M. Morari. Low-complexity
iterative method for hybrid MPC. ArXiv e-prints, 2016. 12

A. Garulli, S. Paoletti, and A. Vicino. A survey on switched and piecewise affine
system identification. In Proc. 16th IFAC Symposium on System Identification,
pages 344–355, Brussels, Belgium, 2012. 8, 80

A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization
Theory and Applications, 10(4):237–260, Oct 1972. 9

J. M. Gillis and W. G. Morsi. Non-intrusive load monitoring using semi-
supervised machine learning and wavelet design. IEEE Transactions on Smart
Grid, 8(6):2648–2655, 2017. 103

P. Giselsson. Improved fast dual gradient methods for embedded model predict-
ive control. In Proc. 19th IFAC World Congress, pages 2303–2309, 2014. 24

P. Giselsson and S. Boyd. Monotonicity and restart in fast gradient methods. In
Proc. 53rd IEEE Conference on Decision and Control, pages 5058–5063, Dec 2014.
29, 114

R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE
Control Systems Magazine, 29(2):28–93, April 2009. 4

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bull. Amer. Math. Soc., 64(5):275–278, 09 1958. 9

R. E. Gomory. An algorithm for integer solutions to linear programs. Recent
advances in mathematical programming, 64:269–302, 1963. 9

141

I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive program-
ming techniques. Optimization and Engineering, 3(3):227–252, Sep 2002. 9

O. K. Gupta and A. Ravindran. Branch and bound experiments in convex non-
linear integer programming. Manage. Sci., 31(12):1533–1546, Dec. 1985. 9

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2014. URL http:
//www.gurobi.com. 4, 7, 43, 77, 103, 105, 124

J. L. Gustafson. The End of Error: Unum Computing. CRC Press, 2015. 132

G. W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80
(12):1870–1891, 1992. 8, 102

W. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynamical
models. Automatica, 37(7):1085–1091, 2001. 5, 8, 80

M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-parametric toolbox
3.0. In Proc. European Control Conference, pages 502–510, July 2013. 5, 6, 7

IBM, Inc. IBM ILOG CPLEX Optimization Studio 12.6 – User Manual, 2014. 4, 7, 77,
103, 105, 124

D. D. Ingole, D. N. Sonawane, V. V. Naik, D. L. Ginoya, and V. Patki. Implement-
ation of model predictive control for closed loop control of anesthesia. In Mo-
bile Communication and Power Engineering, pages 242–248, Berlin, Heidelberg,
2013a. Springer Berlin Heidelberg.

D. D. Ingole, D. N. Sonawane, V. V. Naik, D. L. Ginoya, and V. V. Patki. Linear
model predictive controller for closed-loop control of intravenous anesthesia
with time delay. International Journal on Control System and Instrumentation, 4
(1):8–15, 2013b.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and
M. Morari. Embedded predictive control on an FPGA using the fast gradient
method. In Proc. European Control Conference, pages 3614–3620, 2013. 24

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and
M. Morari. Embedded online optimization for model predictive control at
megahertz rates. IEEE Transactions on Automatic Control, 59(12):3238–3251, Dec
2014. 24

A. L. Juloski, S. Weiland, and W. Heemels. A Bayesian approach to identification
of hybrid systems. IEEE Transactions on Automatic Control, 50(10):1520–1533,
2005. 81

142

http://www.gurobi.com
http://www.gurobi.com

M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,
G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors. 50 Years of Integer Programming
1958-2008: From the Early Years to the State-of-the-Art. Springer, Heidelberg,
2010. 10

M. Kögel and R. Findeisen. A fast gradient method for embedded linear predict-
ive control. In Proc. 18th IFAC World Congress, pages 1362–1367, 2011. 24

M. Kvasnica, P. Grieder, M. Baotić, and M. Morari. Multi-parametric toolbox
(MPT). In Proc. International Workshop on Hybrid Systems: Computation and Con-
trol, pages 448–462, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. 6,
7

A. H. Land and A. G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):497–520, 1960. 9

F. Lauer. On the complexity of piecewise affine system identification. Automatica,
62:148–153, 2015. 80

E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699–719, 1966. 10

R. Lazimy. Improved algorithm for mixed-integer quadratic programs and a
computational study. Mathematical Programming, 32(1):100–113, May 1985. 2, 9

A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm.
Pattern recognition, 36(2):451–461, 2003. 108

B. Lincoln and A. Rantzer. Optimizing linear system switching. In Proc. 40th
IEEE Conference on Decision and Control, volume 3, pages 2063–2068, Dec 2001.
4

J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search
strategies for mixed integer programming. INFORMS Journal on Computing,
11(2):173–187, Feb. 1999. 9, 10

J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the
traveling salesman problem. Operations research, 11(6):972–989, 1963. 10

L. Ljung. System identification toolbox. The Matlab users guide, 1988. 52

A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP, 25(2):
207–236, Jul 2017. 132

J. Löfberg. YALMIP : a toolbox for modeling and optimization in MATLAB. In
Proc. IEEE International Conference on Robotics and Automation, pages 284–289,
Sept 2004. 6, 7

143

S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. Bajic. AMPds: a public
dataset for load disaggregation and eco-feedback research. In Proc. Electrical
Power and Energy Conference, pages 1–6, 2013. 105, 118

J. Mattingley and S. Boyd. Cvxgen: a code generator for embedded convex op-
timization. Optimization and Engineering, 13(1):1–27, Mar 2012. 10

D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–814, 2000. 6

M. Mejari, V. V. Naik, D. Piga, and A. Bemporad. Energy disaggregation using
piecewise affine regression and binary quadratic programming. In Proc. 57th
IEEE Conference on Decision and Control, Miami Beach, FL, USA, 2018a.

M. Mejari, V. V. Naik, D. Piga, and A. Bemporad. Regularized moving-horizon
PWA regression for LPV system identification. In Proc. 18th IFAC Symposium
on System Identification, pages 1092–1097, Stockholm, Sweden, 2018b. 47, 93

D. Mellinger, A. Kushleyev, and V. Kumar. Mixed-integer quadratic program
trajectory generation for heterogeneous quadrotor teams. In Proc. IEEE Inter-
national Conference on Robotics and Automation, pages 477–483, Saint Paul, MN,
USA, 2012. 3

D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning.
Discrete Optimization, 19:79–102, 2016. 9, 10

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version
7.1 (Revision 28), 2015. http://docs.mosek.com/7.1/toolbox/index.
html. 4, 7, 103

V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic optimization
using first-order methods. In Proc. 4th European Conference on Computational
Optimization, Leuven, Belgium, 2016.

V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic optimization
using accelerated dual gradient projection. In Proc. 20th IFAC World Congress,
pages 10723–10728, Toulouse, France, 2017.

V. V. Naik and A. Bemporad. Mixed-integer quadratic optimization based on
accelerated dual gradient projection for embedded applications. Technical re-
port, 2018.

V. V. Naik, D. Sonawane, D. D. Ingole, D. L. Ginoya, and V. V. Patki. Design and
implementation of proportional integral observer based linear model predict-
ive controller. International Journal on Control System and Instrumentation, 4(1):
23–30, 2013a.

144

http://docs.mosek.com/7.1/toolbox/index.html
http://docs.mosek.com/7.1/toolbox/index.html

V. V. Naik, D. N. Sonawane, D. D. Ingole, and D. Ginoya. Model predictive
control of DC servomotor using active set method. In Proc. IEEE International
Conference on Control Applications, pages 820–825, Aug 2013b.

V. V. Naik, D. N. Sonawane, D. D. Ingole, D. L. Ginoya, and N. S. Girme. Design
and implementation of interior-point method based linear model predictive
controller. In Mobile Communication and Power Engineering, pages 255–261, Ber-
lin, Heidelberg, 2013c. Springer Berlin Heidelberg.

V. V. Naik, M. Mejari, D. Piga, and A. Bemporad. Regularized moving-horizon
piecewise affine regression using mixed-integer quadratic programming. In
Proc. 25th Mediterranean Conference on Control and Automation, pages 1349–1354,
Valletta, Malta, 2017.

V. V. Naik, M. Mejari, D. Piga, and A. Bemporad. Energy disaggregation using
embedded binary quadratic programming. Submitted for publication, 2018.

H. Nakada, K. Takaba, and T. Katayama. Identification of piecewise affine sys-
tems based on statistical clustering technique. Automatica, 41(5):905–913, 2005.
81

Y. Nesterov. A method of solving a convex programming problem with conver-
gence rate O(1/k2). Sov. Math. Doklady, 27(2):372–376, 1983. 24, 104, 112

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,
volume 87. Springer, 2004. 24

B. O’ Donoghue and E. Candès. Adaptive restart for accelerated gradient
schemes. Foundations of Computational Mathematics, 15(3):715–732, 2015. 29,
114

B. O’ Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. J. Optim. Theory Appl., 169
(3):1042–1068, June 2016. ISSN 0022-3239. 29

H. Ohlsson and L. Ljung. Identification of switched linear regression models
using sum-of-norms regularization. Automatica, 49(4):1045–1050, 2013. 52, 80

N. Ozay, C. Lagoa, and M. Sznaier. Set membership identification of switched
linear systems with known number of subsystems. Automatica, 51:180–191,
2015. 80

S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal. Identification of hybrid
systems a tutorial. European journal of control, 13(2):242–260, 2007. 8, 80

L. G. Papageorgiou and E. S. Fraga. A mixed integer quadratic programming
formulation for the economic dispatch of generators with prohibited operating
zones. Electric Power Systems Research, 77(10):1292–1296, 2007. 3

145

P. Patrinos and A. Bemporad. An accelerated dual gradient-projection algorithm
for embedded linear model predictive control. IEEE Trans. Automatic Control,
59(1):18–33, 2014. 11, 24, 25, 27, 28, 87, 104, 112, 113

P. Patrinos, A. Guiggiani, and A. Bemporad. Fixed-point dual gradient projection
for embedded model predictive control. In Proc. European Control Conference,
pages 3602–3607, Zurich, Switzerland, 2013. 24

D. Piga and R. Tóth. An SDP approach for `0-minimization: Application to ARX
model segmentation. Automatica, 49(12):3646–3653, 2013. 50, 51

D. Piga, A. Cominola, M. Giuliani, A. Castelletti, and A. E. Rizzoli. Sparse op-
timization for automated energy end use disaggregation. IEEE Transactions on
Control Systems Technology, 24(3):1044–1051, 2016. xv, 103, 105, 119, 121, 122,
123

M. Propato and J. G. Uber. Booster system design using mixed-integer quadratic
programming. Journal of Water Resources Planning and Management, 130(4):348–
352, 2004. 3

A. Raghunathan and S. Di Cairano. Infeasibility detection in alternating direc-
tion method of multipliers for convex quadratic programs. In Proc. 53rd IEEE
Conference on Decision and Control, pages 5819–5824, Dec 2014. 29, 39

A. Rahimpour, H. Qi, D. Fugate, and T. Kuruganti. Non-intrusive energy dis-
aggregation using non-negative matrix factorization with sum-to-k constraint.
IEEE Transactions on Power Systems, 32(6):4430–4441, 2017. 103

C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-point methods
to model predictive control. Journal of optimization theory and applications, 99(3):
723–757, 1998. 6

S. Richter, M. Morari, and C. N. Jones. Towards computational complexity certi-
fication for constrained mpc based on lagrange relaxation and the fast gradient
method. In Proc. 50th IEEE Conference on Decision and Control and European Con-
trol Conference, pages 5223–5229, Dec 2011. 24

R. Rockafellar. Convex Analysis. Princeton University Press, 1970. 30, 114, 134

J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine systems via
mixed-integer programming. Automatica, 40(1):37–50, 2004. 3, 8, 80, 81

M. Rubagotti, P. Patrinos, A. Guiggiani, and A. Bemporad. Real-time model
predictive control based on dual gradient projection: Theory and fixed-point
FPGA implementation. International Journal of Robust and Nonlinear Control, 26
(15):3292–3310, 2016. 24

146

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986. 9

H. D. Sherali and P. J. Driscoll. Evolution and state-of-the-art in integer program-
ming. Journal of Computational and Applied Mathematics, 124(1):319–340, 2000.
9

V. Singhal, J. Maggu, and A. Majumdar. Simultaneous detection of multiple ap-
pliances from smart-meter measurements via multi-label consistent deep dic-
tionary learning and deep transform learning. IEEE Transactions on Smart Grid,
2018. 103

D. Srinivasan, W. Ng, and A. Liew. Neural-network-based signature recognition
for harmonic source identification. IEEE Transactions on Power Delivery, 21(1):
398–405, 2006. 103

B. Stellato and G. Banjac. OSQP: An operator splitting solver for quadratic pro-
grams. GitHub, 2017. URL https://github.com/oxfordcontrol/osqp.
46

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An operator
splitting solver for quadratic programs. ArXiv e-prints, Nov. 2017. 11, 25, 40,
129

B. Stellato, V. V. Naik, A. Bemporad, P. Goulart, and S. Boyd. Embedded mixed-
integer quadratic optimization using the OSQP solver. In Proc. European Con-
trol Conference, pages 1536–1541, Limassol, Cyprus, 2018.

R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex
programming. Mathematical Programming, 86(3):515–532, Dec 1999. 9

K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura, and K. Ito. Nonintrusive appli-
ance load monitoring based on integer programming. In Proc. SICE Annual
Conference, pages 2742–2747, Japan, 2008. 9, 103

S. M. Tabatabaei, S. Dick, and W. Xu. Toward non-intrusive load monitoring via
multi-label classification. IEEE Transactions on Smart Grid, 8(1):26–40, 2017. 103

R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad. A simple effective heur-
istic for embedded mixed-integer quadratic programming. In Proc. American
Control Conference, pages 5619–5625, Boston, MA, USA, 2016. 12, 34, 40, 42, 43

Z. Tian, W. Wu, and B. Zhang. A mixed integer quadratic programming model
for topology identification in distribution network. IEEE Trans. Power Systems,
31(1):823–824, 2016. 4

147

https://github.com/oxfordcontrol/osqp

F. Torrisi and A. Bemporad. HYSDEL — A tool for generating computational hy-
brid models. IEEE Trans. Control Systems Technology, 12(2):235–249, Mar. 2004.
5, 7, 62

F. Ullmann. FiOrdOs: A Matlab Toolbox for C-Code Generation for First Order
Methods. Master’s thesis, ETH Zurich, Switzerland, July 2011. 11

R. Vanderbei. Symmetric quasi-definite matrices. SIAM Journal on Optimization,
5(1):100–113, 1995. https://doi.org/10.1137/0805005. 41

J. P. Vielma, S. Ahmed, and G. L. Nemhauser. Mixed-integer models for non-
separable piecewise-linear optimization: Unifying framework and extensions.
Operations Research, 58:303–315, 2010. 81

H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems.
IEEE Trans. Automatic Control, 11(2):161–167, April 1966. 4

F. M. Wittmann, J. C. Lpez, and M. J. Rider. Nonintrusive load monitoring al-
gorithm using mixed-integer linear programming. IEEE Transactions on Con-
sumer Electronics, 64(2):180–187, May 2018. 9, 103

S. J. Wright. Applying new optimization algorithms to model predictive control.
In AIChE Symposium Series, pages 147–155. Citeseer, 1997. 6

X. Xu and P. J. Antsaklis. Results and perspectives on computational methods
for optimal control of switched systems. In O. Maler and A. Pnueli, editors,
Hybrid Systems: Computation and Control, pages 540–555, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. 4

G. Y. Yang, G. Hovland, R. Majumder, and Z. Y. Dong. TCSC allocation based on
line flow based equations via mixed-integer programming. IEEE Trans. Power
Systems, 22(4):2262–2269, 2007. 4

M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and
outlook. IEEE Transactions on Consumer Electronics, 57(1):76–84, 2011. 103

A. Zoha, A. Gluhak, M. Imran, and S. Rajasegarar. Non-intrusive load monitor-
ing approaches for disaggregated energy sensing: A survey. Sensors, 12(12):
16838–16866, 2012. 103

Unless otherwise expressly stated, all original material of whatever
nature created by Vihangkumar Vinaykumar Naik and included in
this thesis, is licensed under a Creative Commons Attribution Non-
commercial Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:vihangkumar.naik@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Publications
	Abstract
	1 Introduction
	1.1 Mixed-Integer Quadratic Programming
	1.2 Mixed-Integer Programming for Control of Hybrid Dynamical Systems
	1.2.1 Mixed Logical Dynamical Systems
	1.2.2 Hybrid Model Predictive Control

	1.3 Mixed-Integer Programming for Estimation
	1.4 MIQP problem solving techniques
	1.4.1 Optimal solution methods for MIQP
	1.4.2 Suboptimal solution methods for MIQP

	1.5 Branch and Bound Method
	1.5.1 Branching
	1.5.2 Tree exploration/Node selection
	1.5.3 Pruning Rules

	1.6 Notation
	1.7 Contributions and thesis outline

	2 Embedded Mixed-Integer Quadratic Optimization using Accelerated Dual Gradient Projection
	2.1 Introduction
	2.1.1 Motivation
	2.1.2 Contributions
	2.1.3 Outline

	2.2 Accelerated dual gradient projection
	2.2.1 Stopping criteria
	2.2.2 Preconditioning
	2.2.3 Restart
	2.2.4 Infeasibility detection
	2.2.5 Early stopping criterion for the objective function

	2.3 Branch and Bound MIQP Algorithm
	2.3.1 Exploiting the fixed structure of dual QP relaxations
	2.3.2 Warm-starting the QP subproblems

	2.4 Heuristic methods for suboptimal binary-feasible MIQP solutions
	2.4.1 Heuristic approach without using B&B
	2.4.2 Mid-way Heuristic approach

	2.5 ADMM based MIQP solver
	2.5.1 OSQP-based MIQP solver

	2.6 Numerical results
	2.6.1 Heuristic approach-Hybrid vehicle example
	2.6.2 Branch and Bound-random MIQPs
	2.6.3 Branch and Bound-PieceWise Affine (PWA) regression
	2.6.4 Mid-way heuristic approach-random MIQPs
	2.6.5 ARX model segmentation - Heuristic, Mid-way heuristic approach

	2.7 Conclusion

	3 A Numerically Robust Mixed-Integer Quadratic Programming Solver based on Nonnegative Least Squares
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Contributions
	3.1.3 Outline

	3.2 Problem formulation
	3.3 Solution of QP relaxations
	3.3.1 Outer proximal-point iterations
	3.3.2 Inner active-set solver
	3.3.3 Warm-starting
	3.3.4 Parameter selection and scaling
	3.3.5 Stopping criteria and optimality

	3.4 MIQP solver
	3.5 Warm-starting binary variables
	3.5.1 Using mid-way approach to warm-start binary variables

	3.6 Numerical results
	3.6.1 Hybrid MPC problem

	3.7 Conclusions

	4 Regularized moving-horizon PWA regression using mixed-integer quadratic programming
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Contribution
	4.1.3 Outline

	4.2 Problem Formulation
	4.3 PWA Regression Algorithm
	4.3.1 Recursive clustering and parameter estimation
	4.3.2 Construction of the state partition
	4.3.3 Regularized Moving-Horizon PWA Regression for LPV System Identification

	4.4 Simulation Examples
	4.4.1 Identification of SISO PWARX system
	4.4.2 Identification of MIMO PWARX system
	4.4.3 Identification of SISO LPV system

	4.5 Conclusion

	5 Energy Disaggregation using Embedded Binary Quadratic Programming
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Contribution
	5.1.3 Outline

	5.2 Problem setting
	5.2.1 Single appliance modelling
	5.2.2 Energy disaggregation problem

	5.3 Disaggregation Algorithms
	5.3.1 Approach A1: Binary Quadratic Programming
	5.3.2 Approach A2: Regularized Binary Quadratic Programming
	5.3.3 Approach A3: Binary Quadratic Programming with S-AR models

	5.4 Solving BQP problems using GPAD-based Branch and Bound
	5.4.1 Solving relaxed QP problems
	5.4.2 Branch and Bound for BQP problems

	5.5 Experimental case study
	5.5.1 Performance Evaluation measures
	5.5.2 Numerical Results

	5.6 Conclusion

	6 Conclusions and outlook
	6.1 Conclusions
	6.2 Outlook of possible future directions

	A Proof of Theorem 1
	References

