
IMT School for Advanced Studies, Lucca

Lucca, Italy

Improving the efficiency of tuple spaces

PhD Program in Computer Science

XXX Cycle

By

Vitaly Buravlev

2018

http://www.imtlucca.it
mailto:vitaly.buravlev@imtlucca.it

The dissertation of Vitaly Buravlev is approved.

Program Coordinator: Prof. Mirco Tribastone, IMT Institute for Advanced
Studies, Lucca

Supervisor: Prof. Rocco De Nicola, IMT Institute for Advanced Studies,
Lucca

Supervisor: Dr. Claudio Antares Mezzina, IMT Institute for Advanced
Studies, Lucca

The dissertation of Vitaly Buravlev has been reviewed by:

eva Kühn, TU Wien, Vienna, Austria

Emilio Tuosto, University of Leicester, Leicester, United Kingdom

IMT School for Advanced Studies, Lucca

2018

http://www.imtlucca.it

To my friend

Contents

List of Figures ix

List of Tables xii

List of Listings xii

Acknowledgements xv

Declaration xvi

Vita and Publications xvii

Abstract xx

1 Introduction 1
1.1 Context and overview . 1
1.2 Background and motivations 4
1.3 Contribution and organization 7

2 Background on tuple spaces 10
2.1 The Linda model . 10
2.2 Data structures . 16
2.3 Implementations . 24
2.4 Replication . 31

3 A new implementation of KLAIM 36
3.1 KLAIM language . 36
3.2 Programming with KLAIM 40

vii

3.3 A new KLAIM’s implementation 48

4 Evaluating implementations 52
4.1 Methodology . 52
4.2 Old KLAIM vs new KLAIM 64
4.3 Assessing different implementations 66

5 Replicating for efficiency 83
5.1 Sharing abstractions . 83
5.2 Implementing replication 90
5.3 Evaluation of the implementation 97

6 Conclusion 107

References 110

viii

List of Figures

1 Interpr. communic. 2
2 Remote invocation . 2
3 Indirect communication . 2

4 An example of tuple space 15
5 Centralized tuple space . 16
6 Distribution of tuple spaces 16

7 Schema of the case study Password search 55
8 Schema of the case study Sorting 56
9 Schema of the case study Ocean model 58
10 Schema of the case study Matrix multiplication 59
11 Password search. Local writing time (1× 106 passwords) . 65
12 Password search. Local reading and withdrawing times

(1× 106 passwords) . 65
13 Sorting. Remote reading time (10× 106 elements) 66
14 Comparisons of two KLAIMs. Matrix multiplication. Re-

mote writing time (the matrix order is 100) 66
15 Comparisons of two KLAIMs. Matrix multiplication. Re-

mote reading time (the matrix order is 100) 67
16 Password search. Total time (1× 105 passwords) 67
17 Password search. Total time (1× 106 passwords) 67
18 Password search. Local writing time (1× 106 passwords) . 68

ix

19 Password search. Local reading and withdrawing times
(1× 106 passwords) . 68

20 Password search. Search time (1× 106 passwords) 69
21 Sorting. Total time (1× 106 elements) 70
22 Sorting. Total time (10× 106 elements) 70
23 Sorting. Remote reading time (10× 106 elements) 71
24 Sorting. Local writing time (10× 106 elements) 71
25 Ocean model. Number of visited nodes (the grid size is 1200) 72
26 Ocean model. Remote reading time (the grid size is 1200) . 73
27 Ocean model. Total time (the grid size is 600) 74
28 Ocean model. Total time (the grid size is 1200) 74
29 Matrix multiplication. Total time (the matrix order is 100) . 75
30 Matrix multiplication. Number of visited nodes (the matrix

order is 100) . 75
31 Matrix multiplication. Search time (the matrix order is 100) 76
32 Matrix multiplication. Remote reading time (the matrix

order is 100) . 76
33 Block-wise and row-wise matrix multiplications. Total time

(the matrix order is 100) . 78
34 Block-wise and row-wise multiplications. Remote reading

time (the matrix order is 100) 78

35 Smart home . 84
36 An example network . 86
37 The writing operation . 89
38 The withdrawing operation 90
39 The diagram of components 91
40 Algorithm. Connect to the network 92
41 The record of the routing table 92
42 Sensor network . 98
43 Writing time (scale-free graph) 101
44 Writing time (random graph) 101
45 Withdrawing time (scale-free graph) 102
46 Withdrawing time (random graph) 102

x

47 Reading time (scale-free graph) 103
48 Reading time (random graph) 103
49 Withdrawing time (controller, scale-free graph) 104
50 Withdrawing time (controller, random graph) 104
51 Reading time (controller, scale-free graph) 105
52 Reading time (controller, random graph) 105
53 Reading time of controller (smart home case study) 106

xi

List of Tables

1 Results of the comparison 30

2 Process syntax . 38
3 Tuple evaluation function 39
4 Pattern-matching predicates 39

5 Sorting (host machines, 10× 106 elements, 15 workers) . . 80
6 Matrix multiplication (host machines, the matrix order is

100, 15 workers) . 80

xii

List of Listings

3.1 Initialization of a tuple . 40
3.2 An example with methods getItem and setItem 40
3.3 Initialization of the template 41
3.4 Difinition of the network using server and client localities 42
3.5 Difinition of the network using a collection of localities . . 42
3.6 Signature of the method out 43
3.7 Performing a remote operation 43
3.8 Inserting a tuple into the tuple space 43
3.9 An example with the blocking operation in 44
3.10 An example with the non-blocking operation rd_nb 44
3.11 Signature of the method eval 45
3.12 An example of code mobility in KLAVA 45
3.13 Initialization of the tuple space 47
3.14 An example with the method addSettings 47
3.15 ITupleSpace interface . 47
3.16 An example with the operation outIfAbsent 51
4.1 Password search. Listing of master and worker processes . 55
4.2 Sorting. Listing of master and worker processes 56
4.3 Ocean model. Listing of master and worker processes . . . 58
4.4 Matrix multiplication. Listing of master and worker processes 60
4.5 Manual profiling . 63
4.6 Block-wise matrix multiplication. Listing of master and

worker processes . 77
5.1 Initialization of tuple spaces 85

xiii

5.2 Controller notifies alerts about an alert situation 87
5.3 Alert waits for an alert notification 87
5.4 A temperature sensor updates its data 87
5.5 An example with two replication profiles 95
5.6 Signatures of operations for the tuple space with sharing . 96
5.7 An example of the writing operation out 96
5.8 Initialization of a replication strategy 97
5.9 Methods of the IReplicationStrategy abstract class . . . 97

xiv

Acknowledgements

I thank my parents who always support and inspire me for all
my accomplishment.

Undoubtedly, I am very grateful to my supervisors, Prof.
Rocco De Nicola and Dr. Claudio Antares Mezzina, for pro-
viding me the opportunity of this work. Their continuous
support, knowledge, and ideas guide me from the very be-
ginning. It was always a pleasure to talk to them and discuss
during our joint meetings that I always enjoyed.

Part of the work has been done at the Technical University
of Denmark under the supervision of Prof. Alberto Lluch
Lafuente. His ideas and guidance helped me to accomplish
an important part of this work. Being a part of the Formal
Methods Group was great and they made my visiting period
unforgettable.

I highly appreciate the time and efforts of the reviewers, Prof.
eva Kühn and Prof. Emilio Tuosto. Their comments and
suggestions were very useful and undoubtedly has improved
the thesis.

I am thankful to the members of the SysMA group at IMT
School for their discussions and suggestions and the IMT ad-
ministration for their support and help.

xv

Declaration

Most of the material in this thesis has been published. In particular:
most of Chapter 2 and Chapter 4 are based on [1] and [2], coauthored with
Rocco De Nicola and Claudio Antares Mezzina, IMT School for Advanced
Studies, Lucca. Chapter 5 is inspired by collaboration with Alberto Lluch
Lafuente, Technical University of Denmark, Lyngby, and is based on [3],
coauthored with Rocco De Nicola, Alberto Lluch Lafuente and Claudio
Antares Mezzina.

xvi

Vita

March 12, 1988 Born, Moscow, Russia

2005-2011 Degree in Computer Science
Average grade: 4.96/5 with honors
Informatics and Control Systems,
BMSTU, Moscow, Russia

2014-2018 PhD in Computer Science
IMT School for Advances Studies, Lucca.

2017 Visiting Research Student
DTU Compute - Section for Formal Methods,
Technical University of Denmark.

xvii

Publications

1. V. Buravlev, R. De Nicola, C.A. Mezzina, “Tuple Spaces Implementations
and Their Efficiency” in COORDINATION 2016, pp. 51-66, 2016.

2. R. Barbi, V. Buravlev, C.A. Mezzina, V. Schiavoni “Block Placement Strate-
gies for Fault-Resilient Distributed Tuple Spaces: An Experimental Study -
(Practical Experience Report)” in DAIS 2017, pp. 67-82, 2017.

3. V. Buravlev, R. De Nicola, C.A. Mezzina, “Evaluating the efficiency of Linda
implementations” in Concurrency and Computation: Practice and Experience,
vol. 30, issue 8, 2018.

4. V. Buravlev, R. De Nicola, A.L. Lafuente, C.A. Mezzina, “Improving avail-
ability in distributed tuple spaces via sharing abstractions and replication
strategies” in PDP 2018, pp. 302-305, 2018.

xviii

Presentations

1. V. Buravlev, “Tuple space implementation and their efficiency” at COORDI-
NATION 2016, Heraklion, Greece, 2016.

2. V. Buravlev, “Improving availability in distributed tuple spaces via sharing
abstractions and replication strategies” at PDP 2018, Cambridge, United
Kingdom, 2018.

xix

Abstract

Linda provides high-level linguistic abstractions for concur-
rent programming with operations for synchronization and
exchange of values between different programs that share
information by accessing common repositories named tuple
spaces. Despite their expressive power and their simplicity,
there are several challenges in implementing tuple space sys-
tems, which prevent the Linda model to be widespread.

The goal of this work is to provide an efficient implementa-
tion of the Linda coordination model. As a starting point, we
take KLAIM and its Java implementation and we improve on
it after evaluating the performances of selected implementa-
tions of tuple spaces and discussing their different implemen-
tation choices concerned with data structures and querying
techniques. Our KLAIM implementation is also extended with
abstractions for data replication based on automatic data place-
ment strategies.

xx

Chapter 1

Introduction

1.1 Context and overview

Nowadays, people are surrounded by distributed systems: they use
them in their work by relying on clouds storages, by taking advantage of
online services, and when searching information on the Internet; they chat
with friends via Facebook, Telegram, and Skype; they use them on their
laptops and mobile devices. Distributed systems are also used for sharing
resources and for delivering services to high-performance computing.
Distributed systems work not only on the Internet but also in intranets:
banks use them to store and process money transactions, IT companies
create specialized clusters for Big data processing, etc.

A distributed system is a network that consists of autonomous com-
putational units: computers, servers, mobile devices. All its components
are connected using a middleware and can work over different networks.

When we talk about components of distributed systems, an important
problem arises: how to connect them in such a way they constitute a co-
herent ensemble? Communication and coordination of components play a
crucial role in distributed systems since they determine how components
of systems interact with each other, exchange data, and synchronize their
work. According to the classification in Chapter 2 of [4], three communi-
cation paradigms can be singled out: interprocess communication, remote

1

invocation, and indirect communication. The interprocess paradigm refers
to low-level techniques of direct and explicit communication. This means
that a process, in order to communicate with another one, has to know its
address (see Figure 1). Remote invocation is common in client-server inter-
actions and used when one of the two processes provides an operation or
a service and the other one accesses to it (see Figure 2). Indirect commu-
nication is based on the idea of the absence of space- and time- coupling
when senders and receivers do not know each other (see Figure 3).

Process A

Process B

sent message reply

Figure 1: Interpr. communic.

Process A Process B

operation call

reply returned

operation

processing

Figure 2: Remote invocation

Process A Process B

Intermediary

Figure 3: Indirect communication

Each of the above-mentioned communication paradigms has a differ-
ent level of abstraction. Usually, modeling communication via message
passing is more complicated than using primitives based on shared mem-
ory, see Chapter 4 of [5].

Indeed, describing and building a communication protocol between
two processes requires more efforts than relying on a common memory
which processes can asynchronously access.

One can single out two approaches on how to deal with shared mem-

2

ory: when it is maintained by one process and when it is split into parts
and each part is controlled by a different process, i.e. distributed shared
memory (DSM) is used. The first approach leads the process bearing the
memory to be a bottleneck since all the communications have to be medi-
ated through it. For DSM instead, the common problems are which data
consistency model to use and how to maintain it. The need to solve these
problems comes with an additional implementation complexity of the
middleware that constitutes and maintains the shared memory. Anyway,
the programmer trades the system efficiency with the flexibility and sim-
plicity of programming interactions between components based on DSM.
The situation is similar when we compare higher level languages with
assembly languages, where any overhead is usually outweighed by the
benefits of easier programming and portability.

In this work, we focus on tuple spaces, an associative shared memory
implementing the Linda coordination model. In this model, data are
retrieved not using their address but mentioning (part of) their content,
by relying on pattern matching. The processes of a system do interact by
accessing a common memory that might be centralized or distributed. The
Linda model provides a small set of operations to write, read, withdraw
data from the memory and to spawn a process. Since the paradigm
consists of just four operations, it can be easily added to any programming
language either as an external library or as an extension of the target
language. Being a high-level model of communication, tuple spaces
allow expressing in a neat and compact way some mechanisms which are
typical of modern distributed systems and used for load balancing, fault
tolerance, synchronization.

As we said, the simplicity of the tuple space model comes with the
price of efficiency. In this document, we focus on the problem of how
to make tuple spaces efficient. We start from surveying techniques used
for storing and querying data which are typically used in well-known
tuple space implementations. Then, we evaluate several implementations
of tuple spaces highlighting their pros and cons. Afterwards, by taking
advantage of this evaluation phase, we propose a new efficient imple-
mentation of KLAIM, a process algebra based languages that relies on the

3

Linda model and on a distributed shared memory. Finally, we extend
KLAIM with constructs for modeling data replication. The description of
the new constructs, as well as their implementation details, is accompa-
nied by the experimental evaluation of the proposed middleware.

1.2 Background and motivations

Tuple spaces have been considered in many works. Some of them
study how to adapt them to program context-aware applications [6, 7, 8]
or how to query tuple spaces via a SQL-like language [9]. In what follows,
we talk about the works that aim at offering efficient implementations
of tuple spaces. In particular, we discuss works devoted to the problem
of boosting pattern matching and of optimizing the distribution of tuple
spaces.

There are two approaches to make the Linda model efficient: to op-
timize tuple spaces management at compile-time and at run-time. The
former can be applied only on compiled languages, whereas the latter
does not have this restriction.

The compile-time optimization implies the use of a preprocessor to
reduce or eliminate run-time searching. Usually, this approach requires
two steps: code analysis and code generation. In the first phase, the
preprocessor analyzes a Linda program to determine patterns of how
tuples are used and how processes communicate [10, 11]. Then, in the
second phase, a new program code is generated that optimizes calls to
operations on tuple spaces. As examples, we can consider the following
cases considered in [12]:

• constant tuples that are used as semaphore-like signals can be sub-
stituted by variables-counters meaning that no search is required;

• hash tables can be used for tuples needed to store parameters (with
a key-value structure) providing a constant search time;

• a data update operation, that consists of a sequential call of with-
drawing and writing operations, can be substituted by a single op-
eration that reduces the number of interactions between processes.

4

However, it is not always possible to use techniques based on a compile-
time analysis. In fact, this approach does not appear to be that appealing
nowadays since there are no recent works on it.

The second approach is more widespread. There exist several tech-
niques used to boost pattern matching. Since sequential reading is rarely
required and linearly depends on the number of tuples in a tuple space,
an important problem is how to avoid the linear search time. A general
approach is to extract a specific information from tuples and then use this
information while performing the pattern matching. The most common
techniques rely on hash tables as a base data structures to store tuples
where the key can be computed using tuple content [13, 14, 15]. It is worth
to note that using hash tables is not a universal solution but a trade-off
between performance and expressiveness. On one hand, it provides a
constant search time when a tuple space is used as a key-value store. On
the other hand, it limits expressiveness of the paradigm since there are
restrictions on templates that can be correctly matched. This is why some
implementations, such as [14] and [15], restrict the key to a single field.

A good balance between performance and flexibility of using any
templates can be achieved when indexing techniques are used [9, 16].
Precomputed indexes provide more flexible search and acceptable per-
formances. The drawback is the necessity to maintain an index structure
which implies memory overhead.

Other techniques worth mentioning are partitioning, prefetching, and
concurrent data structures. Partitioning utilizes a specific information about
tuples to split a tuple space into several smaller ones. For example, in
[17] the specific information is the structure of tuples. The technique
called prefetching [17] allows processes to send an asynchronous request
for a tuple and to continue their work while the search is performed.
When the requested tuple is needed, if found, it is used without waiting.
Using parallel or concurrent data structures is another way to improve the
throughput of the tuple spaces since several operations can be performed
in parallel.

Replication is used in tuple spaces either to guarantee fault tolerance or
to increase data availability. According to the CAP theorem (Consistency-

5

Availability-Partition tolerance) [18], strong consistency of data, data
availability and partition tolerance cannot be guaranteed simultaneously,
but only any two out of the three. Usually, network partitioning has to
be tolerated meaning that either consistency or availability requirements
have to be softened. When talking about making data more available, we
mean that the average access time for these data should decrease. Fault
tolerance prevents data loss by keeping different copies of the data. Tuple
space systems that aim at fault tolerance take care of how to prevent data
loss and do not consider performance an important issue[19, 20, 21, 22] .

There are several approaches to improve the time of data reading and
data manipulation. One of them is to relax consistency requirements.
Among many consistency models [23], one can distinguish strong con-
sistency which is the strictest of all consistency models and other relaxed
memory models. By specifying a certain consistency model for certain
classes of data, we can manage the performance of reading and writing
operations. For instance, for data that simulate synchronization primi-
tives, such as barriers, which require atomic operations on them, it makes
sense to use strong consistency. While for data that do not require atomic
operations, weaker consistency models can be used.

Replica placement is another important part of replication mecha-
nisms. Placement algorithms can utilize different information: network
information [20, 24, 25], characteristics of the network or of its nodes [26],
the activity of network nodes based on Hot-Spot [27] or data popularity
[28]. Usually, fast placement computing and high precision of placement
cannot be achieved simultaneously and it is required to choose which
characteristic is preferable for the system. Replication is a standard tech-
nique [29] in Content Delivery Networks (CDN), however, for CDN the
speed of the algorithm for replica placement is not very important. For
real-time systems, it is acceptable to sacrifice high precision to be able to
work over bigger networks. Among techniques to decrease the complexity
of placement’s computing, it is worth mentioning the work in [30] where a
decentralized summary of recent accesses is used to achieve near-optimal
performance, and the work in [25] that applies a two-steps procedure of
choosing places where data have to be stored.

6

We believe that it is possible to enjoy the flexibility and the easiness
of programming with tuple spaces and, at the same time, be sure that
communication between components of the distributed system performs
efficiently. In our view, while designing distributed systems, it is difficult
to determine in advance where to place data and this problem should
be solved automatically by the middleware of tuple spaces. At the same
time, programmers of a distributed system know the types of data to be
transferred and their characteristics (allowed consistency and how they
can be stored). By dividing responsibility between programmers and the
middleware, distributed systems can gain better performances.

1.3 Contribution and organization

1.3.1 Contribution

In this work, we answer the following questions:

– what makes tuple space efficient?

– what is the appropriate abstraction for sharing data via tuple spaces?

Specifically, the contributions of our work are the following ones:

• an experimental evaluation of a number of tuple space implemen-
tations. Starting from the opinion that practical evaluation gives
more information about the way certain techniques and approaches
affect performances of tuple spaces and which of them are more
important than others, we perform experiments with several pre-
selected tuple spaces using case studies that test different aspects
of implementations, such as pattern matching, communication or
computation speed.

• an implementation of customizable tuple spaces in which program-
mers can choose the underlying data structure where each node will
store its tuples. In this way, it is possible to create a system such that
certain nodes offer fast data retrieval time while other, for example,
fast writing time.

7

• a programming abstraction for sharing data via tuple spaces. Shar-
ing primitives that can be used by the programmer to explicitly
specify the localities where data has to be replicated is beneficial
in static networks that do not change over time and when the pro-
grammer knows the characteristics of localities and network. When
using dynamic networks, it is more difficult to determine where
to put data. We propose to use a sharing abstraction where the
programmer instead of directly specifying the localities can specify
a “group” for which a particular tuple has to be replicated. A group
is a dynamic set of nodes, since at run-time a node may join or leave.
By using this approach, it is possible to optimize data placement
according to certain network characteristics.

1.3.2 Structure of the thesis

The rest of the work is organized as follows:

• Chapter 2 provides a deep and wide survey of the state of art of
tuple space’s implementations, replication and replica placement.
We start this by reviewing some of the main implementations of
general purposes tuple spaces. Then, we consider replication and
review tuple spaces that exploit it and describe techniques used for
replica placement.

• Chapter 3 is devoted to the programming language KLAIM and its
implementation in Java, named KLAVA. First, we formally define
KLAIM presenting its syntax and semantics. Then, we describe
the application interface (API) of KLAVA and show how to use
this framework to program distributed applications. Finally, we
report on the change that we did to have a more efficient KLAIM

implementation.

• Chapter 4 presents an experimental evaluation of different tuple
space’s implementations. Two series of experiments are performed.
First, the old implementation of KLAIM is compared with the new
one in order to show the obtained improvements. Then, the new

8

implementation of KLAIM is compared with other preselected im-
plementations.

• Chapter 5 presents a tuple space with programming abstraction for
data sharing with the purpose of increasing data availability. First,
we describe the sharing abstraction and how it is applied to KLAIM

providing details about consistency model and replication strategies.
Then, we report results of the experimental evaluation of this tuple
space.

• Chapter 6 summarizes the main results of the work and draws
possible directions for further research.

9

Chapter 2

Background on tuple spaces

A distributed system consists of different components located on dif-
ferent nodes and possibly in different networks all over the Internet.
Communication among its nodes is crucial for its functioning. Communi-
cation paradigms are groups of techniques that describe how processes
can communicate with each other to exchange data and to synchronize
their actions.

This chapter is mainly focused on the tuple space paradigm as a mean
of communication among components. In Section 2.1, we will overview
different communication paradigms and then we will focus on the Linda
model which is based on guaranteed a controlled access to the shared
memory. In Section 2.2, we discuss the main data structures and speed-
up techniques that can be used while building a tuple space. Section 2.3
reviews a number of current implementations of tuple spaces highlighting
their main features. Section 2.4 discusses replication mechanisms for tuple
spaces and reviews some of the implementations of tuple spaces which
make use of them.

2.1 The Linda model

In this section, we discuss communication paradigms focusing on
indirect communication and the Linda model. Then, we describe tuple

10

spaces stressing their weak and strong points.

2.1.1 Communication paradigms

There are three communication paradigms (cf. [4], Chapter 2) used
in programming parallel and distributed computing: interprocess commu-
nication, remote invocation and indirect communication. Communication
can occur between processes located either on the same machine or on
different ones.

Interprocess communication. Interprocess communication refers to tech-
niques that provide an intuitively simple abstraction of communication
between processes. It is represented by low-level socket programming,
e.g., network sockets [4] and Unix domain sockets [31], and more ad-
vanced message passing. Often, interprocess communication is used to
build higher level programming abstractions. For instance, message pass-
ing provides primitives for sending messages and receiving messages
from other processes. It requires programmers to specify the addresses of
senders and recipients, data and metadata to be sent. Message passing
is a popular technique that was proposed for the first time in the formal
language Communicating Sequential Processes [32] and has a number of
implementations such as Actor model [33] and Message Passing Interface
(MPI) [34]. Most recently, the language Go [35] defined at Google has
message passing as the basic communication primitive.

Remote invocation. Remote invocation is considered the most common
paradigm of communication used in distributed systems. It provides a
higher abstraction of communication that allows executing remote opera-
tions, methods or procedures in different address spaces. Procedure calls
are coded as they were local ones, hiding from the software developers the
details about the interaction with remote processes. Instances of remote
invocation paradigm are request-reply protocols, Remote Procedure call
(RPC) [36] and Remote Method Invocation (RMI) [37].

11

Indirect communication. Indirect communication is a high-level ab-
straction that refers to techniques where senders and receivers are time-
and space-decoupled and that is characterized by the presence of an inter-
mediary component placed between the communicating processes. The
paradigm is represented by techniques of group communication (the com-
munication is performed via a group abstraction and senders are unaware
of receivers), publish-subscribe systems, message queue systems, and
shared memory.

In our work, we focus on the approach of distributed shared memory
(DSM). This is a memory which is distributed over processes (or nodes
of the network) but from the access point of view is considered as a
centralized one. DSM allows programmers to access remote data as they
were stored locally. Since memory is distributed, an important issue is
how to preserve consistency of data while reading, writing and updating
them. Thus, each DSM’s implementation has to define a consistency
model. Most recognized types of DSM are shared objects, e.g. Orca [38] and
Shasta [39], and structured DSM, e.g., Linda model [40], Global Arrays [41]
and PastSet [42].

2.1.2 Linda model and tuple space

The Linda model [40], proposed by David Gelernter, is a coordination
model for parallel and distributed systems. The model is based on high-
level operations for synchronization and for exchange of information
among different processes sharing data via common repositories named
tuple spaces. In Linda, a programming model consists of two separate
parts: the computation model and the coordination model. The latter takes
on the role of a glue that binds separate activities into an ensemble [43] to
obtain a single computational unit.

The Linda model is based on the use of associative access to data
meaning that data are accessed not by their addresses but by their content.
This paradigm is appropriate for those applications based on a data driven
approach.

The Linda interaction model provides time and space decoupling [44],

12

since tuple producers and consumers do not need to know each other. It
is beneficial for many scenarios because processes can interact without
knowing their names and physical addresses. Indeed, avoiding explicit
or fixed names and addresses makes programming more flexible.

The simplicity of this coordination model makes it very intuitive and
easy to use. Some synchronization primitives, e.g. semaphores or barrier
synchronization, can be implemented easily in Linda (cf. [45], Chapter 3).
Because the model is based on shared memory paradigm where all data
are assumed and managed as a single data space, the model facilitates
implementing some techniques improving data security [46], e.g., access
to the tuple space and the monitoring of performed operations.

Nevertheless, there are several limitations that prevent tuple spaces
to be widespread as, for instance, message passing. Some of the limita-
tions, like security vulnerability and absence of the mechanism for fault
tolerance, are common to other paradigms and they are provided just
on implementations of tuple spaces that are focused on addressing these
particular issues. The scalability problem is a more fundamental one and
difficult to be solved [47, 48]. One of the main reasons is the atomicity
of Linda’s operations and, specifically, the presence of the operation that
removes data. This operation introduces a problem of data consistency
and prevents tuple spaces to be easily scalable.

Operation on tuple space. Linda model deals with data in forms of
tuples. A tuple is a finite ordered sequence of elements. The length of
tuples can vary and fields of tuples can be either formal (referred also as
wildcard) or actual. Actual fields contain values of different data types.
Formal fields are used to define patterns (patterns are sometimes called
templates) meaning that certain values of these fields are not specified. Tu-
ples to be inserted can in the tuple space have only actual fields, whereas
templates can contain both actual fields and formal fields. For instance,
the tuple 〈“lamp", “status", “on"〉 consists of three actual fields (strings);
the template 〈“lamp", “status", _〉 consists of three elements such that the
values of the first two of them are “lamp" and “status" respectively and
the third field can have any value.

13

The typical pattern matching algorithm matches tuples and templates
if:

1. both elements have the same number of fields;

2. the actual field in the template is equal to the values in the tuple;

3. the types of all formal fields equals the type of the proper values.

The operations provided by the Linda model are:

• out(tuple), inserts a tuple into the tuple space;

• in(template), withdraws from the tuple space a tuple matching the
given template while keeping note of the matched values. If there is
no matching tuple the process executing the operation blocks until
such a tuple is detected.

• rd(template), behaves like in but it does not remove the matched
tuple from the tuple space;

• eval(expression), spawns a new process to evaluate the expression
and inserts the result of the evaluation into the tuple space.

As mentioned above, in and rd are blocking operations meaning that they
keep waiting for the wanted tuple.

Figure 4 illustrates an example of a tuple space that contains different
structured values. The tuple 〈“lamp", “status", “on"〉 is produced by the
operation out(〈“lamp", “status", “on"〉), and it can be read with the op-
eration rd(〈“lamp", “status", x〉) after pattern-matching. In this case, the
reading process checks all tuples in the tuple space consisting of three
elements containing the strings “lamp” and “status” in the first two fields
and assigns the third value of one of the matching tuples to variable x. The
withdrawal operation in(〈“room", _, _〉) consumes (atomically retracts)
one of two tuples that has the string “room” as the first field and leaves
the other one in the tuple space. This in operation can consume either tu-
ple 〈“room", 1, “lamp"〉 or 〈“room", 2, “tv"〉 since both are matched by the
template. The choice of the tuple to be “consumed" is nondeterministic
and would depend on the specific implementation of pattern matching.

14

out(〈“lamp", “status", “on"〉)
in(〈“room", _, _〉)

eval(...) rd(〈“lamp", “status", x〉)

〈“lamp", “status", “on"〉
〈“room", 1, “lamp"〉

〈“room", 2, “tv"〉
〈“tv", “status", “off"〉

P1

P2

P3

P4

Figure 4: An example of tuple space

Some implementations extend the original set of operations on the
tuple space with non-blocking variants of querying operations rdp and
inp that are similar to the blocking operations rd and in but do not block
the executing process [45]. These operations look up a tuple in the tuple
space and, if the tuple is found, assign values to variables in the template
and return a positive result. If no tuples are found, these operations return
a negative result.

Distributed tuple spaces. From the application point of view, tuple
spaces can be either managed by a single process or split among differ-
ent processes [49]. The first case is when a centralized tuple space (see
Figure 5) is used that is when one process maintains a tuple space and
other processes make requests to it. The second case is when each node
maintains its own tuple space (see Figure 6).

In this last case, we distinguish between local and remote tuple spaces.
Regardless of the fact that processes run on a single or on different ma-
chines, we consider remote a tuple space that is instantiated/managed
by processes different from the one that performs operations (read, write,
withdraw) on it. We instead consider local a tuple space that is accessed
by the same process that instantiated it. As shown in Figure 6, for process

15

Process -server

Tuple space

Process -client Process -client Process -client

rd (template) out (tuple)

Figure 5: Centralized tuple space

A the tuple space A is local, whereas the tuple space B is remote.

Process C

Tuple space C

Process A

Tuple space A

Process B

Tuple space B

rd (template)

out (tuple)rd (template)

Figure 6: Distribution of tuple spaces

2.2 Data structures

The performance of tuple spaces depends on different aspects. One of
them is the design of a concrete instance of the tuple space that resides in a

16

process. In this section, we focus on data structures and techniques that are
used while designing tuple spaces and consider the way pattern matching
is implemented and the techniques used to improve the performance of
the tuple space when there are many concurrent processes.

2.2.1 Data structures

In what follows, we discuss the data structures and techniques that
have been used for implementing, manipulating and querying tuple
spaces. We pay particular attention to the computational complexity of
operations. We recall that O(−) represents a complexity upper bound,
Ω(−) a lower bound and Θ(−) a tight bound [50].

Vectors. A vector is a random access data structure similar to an array
with the difference that a vector can dynamically change its size. The
computational complexity for adding an element at the end of a vector and
accessing any element via its index is Θ(1). If an insertion is performed at
a specific position of the vector the time is O(n) where n is the number of
elements stored in the vector. The removal of any element of a vector costs
O(n). In order to find an element, it is necessary to check sequentially
all elements before the required one, hence searching an element takes
linear time O(n). Vectors have been used for the implementation of a
distributed variant of Linda, known as KLAIM [51].

A tuple space built on a vector has a very fast writing time Θ(1), and
a slow search time being it proportional to the number of the tuples. If
we suppose that all tuples in the tuple space have the same dimension m
(number of fields) the search time is O(nm).

Linked lists are sometimes used as variants of vectors. They are similar
to vectors but offer a constant time Θ(1) to remove an element, when its
position is known. This renders withdrawing slightly faster because we
can first search for an element in the tuple space and then delete it. It is
evident that using a vector-based tuple space in an application in which
writing operations are much more than reading ones has a positive impact
on performances.

17

Hash tables. A hash table is a data structure which implements an
associative array mapping keys to values. It performs very well on reading
operations when each element has a unique key; it requires O(1) time
for insertion and deletion and Θ(1) time for lookup in the best case,
but because of collisions (when different values share the same key) the
lookup time can grow to O(n).

The general idea of implementing tuple spaces via hash tables is the
following. For a write operation, we need to compute a hash value
of a tuple and place it in the appropriate slot. The time required for
this operation depends on the chosen hash function and on the data.
The hash function should have a wide range and map inputs as evenly
as possible (e.g., co-domain as big as the domain). To avoid collisions
separate chaining or open addressing can be used. The first method, separate
chaining, permits associating a collection of elements (e.g. vector, linked
list) with a single slot corresponding to a given key. The second method
states that whenever the slot of the hash table turns out to be used after
probing it is necessary to look for an unused one where to place the data.
The performance of two methods for collision resolution depends on the
data and on the chosen hash function.

Performances of hash-based tuple spaces are heavily affected by the
type of stored tuples. Hashing guarantees fast search time in most of the
cases but, if compared with vector-based implementations, it requires
more time for tuples insertion. Another drawback is that, to have the
fastest search time, by relying on efficient, ad-hoc, hash functions, it is
necessary to know a priori all the templates the application will use. In
fact, different templates, with different wildcards and values, can be used
to match the same tuple. This implies that when we add a tuple and
compute its hash value, we need to take into account all kind of templates
that could match that specific tuple.

Implementations such as LUATS [14] and TUPLEWARE [13] are based
on hash tables but only certain fields are used to calculate the hash value.
In LUATS all the tuples are augmented by a field, the first one, storing the
key of the slot to which they belong. This solution is similar to the idea of
partitioning of tuple space, that will be discussed later on. On the contrary,

18

TUPLEWARE uses the first two or three fields of each tuple, depending on
the number of its fields, to compute its hash value.

Trees. Self-balancing binary search trees are binary search trees that auto-
matically adjust their height after insertion and deletion operations, to be
as small as possible. The implementation can be based on such trees as
AVL trees or red black trees [50]. Insertion, deletion and search operations
take O(log n) in both the best and the worst cases. Querying a tree-based
implementation using different templates implies the same problem as in
the hash-based case, that we have discussed previously.

2.2.2 Speed-up techniques

Metadata can be built on top of existing tuple spaces in order to im-
prove their reading time. This is the case for indexing, a special data
structure that collects and maintains metadata about tuples and partition-
ing where “similar” tuples (usually similarity is at the level of their type)
are stored in the same data structure. Other speed-up techniques are con-
cerned with multiple pending blocking operations and with concurrent
accesses. Below, we discuss how these techniques can be implemented.

Indexing. In database theory an index is a data structure that improves
the speed of data retrieval but at the same time requires additional storage
space and additional computation and maintenance time, see, e.g., [52],
Chapter 14. When indexing is used, each tuple has to have a unique
identifier and the index is an associative array that associates to the fields
of a general pattern the actual values paired with the set of identifiers of
tuples containing that value in that field.

When modifying and querying indexing-based tuple spaces most of
the time is spent on processing indexes. Writing and reading times depend
on the number of indexes used: if k indexes are used, the writing time is
O(k) and the reading time varies from Ω(1) to O(k).

Indexing-based tuple spaces are similar to those based on hash tables
because the structure of each index looks like a hash table where data

19

with the same value are grouped in one slot. However, the former offers
a more general way of querying with the option of flexible searches that
allows one to use different templates on the same dataset. Obviously,
indexing could be implemented also with hash tables, but this would
require computing a hash value for each template. Indexing guarantees a
searching time that is as fast as the one offered by hash tables. In addition,
since for each tuple’s type, there is a certain set of indexes, it is possible to
partially parallelize querying. However, maintaining indexing structures
requires more time and space and, in utmost cases, the additional size can
be comparable with that of the data; e.g., when the data in all tuple fields
are different.

Indexing is exploited in GIGASPACES[16] and MOZARTSPACES[9]. Both
of them use objects to represent tuples and programmers can select the
fields of the tuple to be indexed by using annotations.

Partitioning. A technique used to reduce searching time in tuple spaces
containing a high number of tuples is to group them into smaller spaces
according to specific heuristics. A tuple space can be partitioned according
to the nature of a tuple: number of fields, tuple structure, fields type
and so on. An example of partitioning can be found in [17] where they
introduce the notion of homogenization of a tuple space and divide it into
several parts according to the type of tuple.

This technique has several advantages: a smaller number of tuples
per container (more balanced), less time for type comparison, better gran-
ularity (e.g. at the level of the partitions) of lock/synchronization for
parallel processing. The performance depends on data distribution and
chosen criteria of partitioning. When a tuple space has to store tuples
of many different types, partitioning decreases the search time that is
especially important for the tuple spaces based on data structures, like
vectors, which require non-constant search time. In this case, it is not
necessary to spend time for type verification because the type is verified
just once when the partition is chosen. Moreover, partitioning allows for
parallel processing of different partitions.

20

Speeding up blocking operations. A naive approach to deal with block-
ing rd and in operations is to require the whole tuple space to be searched
whenever a new tuple is inserted. However, such an approach may cause
spending the time to check whether previously existing (and ruled out)
tuples can be matched. A more efficient solution would require checking
only newly added tuples. In some implementation, each process waiting
for a matching tuple subscribes for updates and is notified whenever a
new tuple is added to the tuple space. Obviously, this technique turns out
to be very efficient only when tuples are not frequently added.

Parallel tuple space access. The use of concurrent data structures is
another technique to make a tuple space more suitable to a high number
of concurrent accesses. However, it is not immediate that allowing con-
current accesses to the data structure will boost the performance of the
application. Indeed, one crucial part is to define the right lock granularity
of the data structure in order to avoid a global lock leading to accesses
sequentialisation.

Another way to parallelize operations on tuple space is to analyze the
request to a tuple space and execute in parallel the operations that do
not modify the tuple space (e.g., rd operations) and perform the other
operations sequentially.

Considering the works on concurrent data structures and excluding
vector-like ones, it is worth to note that concurrent hash tables are used
more (see, e.g. [53], Chapter 47) than concurrent trees. Achieving a good
level of parallelization with trees is much more problematic because it is
difficult to avoid a global lock for operations that update the tree (insertion
and removal of a node). For example, relaxed red-black trees [54] do not use
tight coupling between updates and rebalancing in trees. Instead, they
postpone the rebalancing and perform urgent updates first. In [55] it is
reported that these trees guarantee a significant gain with respect to the
strictly balanced red-black trees and allow to exploit the benefits of the
trees even when they are not completely balanced.

21

DHT. DHT [56] is a decentralized distributed system for storing data
in the format of pairs (key, value). Usually, the lookup complexity in
DHTs is O(log n) where n is the number of nodes. DHTs have inbuilt
mechanisms of replication and guarantee properties such as autonomy,
decentralization, fault tolerance, and scalability. However, in spite of these
properties, there are limitations that prevent building tuple spaces on top
of DHTs. Similarly to ordinary hash tables, one of the main drawbacks
is that DHTs limit expressiveness of pattern matching described in the
Linda model and prevent preserving the original structure of data. Some
works, like, e.g., DTUPLES [15] and [57] adapt DHTs to the paradigm of
tuple spaces. DTUPLES uses the first field of the tuple to determine the
node of the network where data have to be placed. Thus, the pattern
matching is limited by matching the first field. In [57], the stored value
is not just a single data, but a container, a separate data space, while the
name of the container is used as a key. In this case, the container is an
ordinary tuple space that does not have any restriction on templates used
for data retrieval.

2.2.3 Discussion

Programmability. One of the challenges in implementing tuple spaces
with hash tables or trees is how to identify a tuple within the data structure.
For binary trees, it is the designation of non-root nodes as left or right
child. For hash tables, it is the computation of the key for each slot. This
requires the designer of the tuple space to choose how to adapt these data
structures in order to use them with the Linda model. Possible solutions
are:

• To limit the number of fields to be considered. In TUPLEWARE, the
initial n fields of a template never contain wildcards and provide in-
formation to find a required tuple. For TUPLEWARE, this is a design
choice since the aim of this tuple space is to improve performance
for applications that use array-based data.

• To specify the templates that will be used for querying. In the case
of hash tables, for each type of templates (templates with different

22

positions of wildcards) values of different fields are used for com-
puting the hashes. In the case of binary trees, for each predefined
type of templates, a separate tree has to be built.

Considering the tuple space with indexing, the latter can be applied either
to all fields or to some of them. In the first case, no additional work for
programmers is needed, whereas in the second case, it is necessary to
specify these fields (e.g., using field’s annotation as in GIGASPACES).

Comparison. Trees, indexing, and hash tables can provide nonlinear (to
the number of elements) search time. According to the computational
complexity of operations, tuple spaces based on hash tables do outperform
others. Comparing indexing and hash tables, indexing provides more
flexible control, especially, if the tuple space is actively used as a database
meaning that many different templates are used to query data.

The performance of blocking operations can be improved in several
ways: e.g. performing a repeat search only on newly added data or using
concurrent data structures. Both of them do not necessarily improve the
performance. So, the first one is beneficial when the tuple space does not
change much over time and is used mostly for data retrieval.

Partitioning and concurrent data structures can improve the perfor-
mance of tuple spaces allowing processes to access a tuple space in parallel.
Some concurrent data structures use partitioning in their internal imple-
mentation. For example, in Java JDK’s ConcurrentHashMap the number
of partitions that can be accessed concurrently is a parameter and can be
set while instantiating. However, concurrent data structures can perform
worse than the ordinary ones when they are misused and can slow down
the tuple space. Hash tables are well-studied data structures [58] and
there are many implementations that provide a good level of paralleliza-
tion, see e.g., Threading Building Blocks [59] and Folly, the Facebook Open
Source Library [60, 61].

23

2.3 Implementations

In this section, we review a number of implementations of tuple spaces
highlighting their main features. Then, we compare the different imple-
mentations. It is worth noting, that we decide to not consider implementa-
tions of tuple spaces that provide replication to increase data availability.
We postpone their description to Section 2.4, there we talk about replica-
tion.

While describing implementations of tuple spaces, we pay attention
to the following criteria which can be divided into two groups. The first
group contains criteria that we consider fundamental for any tuple space
system:

eval operation This criterion denotes whether the tuple space system has
implemented the eval operation and, therefore, offers the possibility
of code mobility. It is worth mentioning that the original eval
operation was about asynchronous evaluation and not code mobility,
but in the scope of a distributed tuple space, it makes programming
data manipulation more flexible.

Tuples clustering This criterion determines whether some tuples are
grouped by particular parameters that can be used to determine
where to store them in the network.

Absence of domain specificity Some implementations have been devel-
oped having a particular application domain in mind. On the one
hand, this implies that domain-specific implementations outper-
form the general purpose one, but on the other hand, this can be
considered as a limitation if one aims at generality.

Security This criterion specifies whether an implementation has features
to control access to tuples. For instance, a tuple space can require
authorizations and regulate the access to its tuples, limiting the
specific operations (e.g. only writes or read).

The second group of criteria gathers features which are desirable for
any fully distributed implementation that runs over a computer network,

24

does not rely on a single node of control or management and is scalable.
We did not consider fault tolerance as an evaluation criterion because we
think this a somewhat orthogonal issue.

Distributed tuple space This criterion denotes whether tuple spaces are
stored in one single node of the network or they are spread across
the network.

Decentralized management Distributed systems rely on a node that con-
trols the others or the control is shared among several nodes. Usu-
ally, systems with the centralized control have bottlenecks which
limit their performance.

2.3.1 Tuple space systems

Since the first publication on Linda, there have been a plenty of im-
plementations of its coordination model in different languages. Our
purpose is to review the most significant and recent ones, that are pos-
sibly still maintained, avoiding toy implementations or the one short
paper implementations. However, we do not consider tuple space based
middleware specifically devised for ad-hoc wireless networks [62] or
for agent-based programming [63]. Based on these considerations, we
have chosen: JAVASPACES [64] and TSPACES [65] which are two indus-
trial proposals of tuple spaces for Java; GIGASPACES [16] which is a
commercial implementation of tuple spaces; TUPLEWARE [13] featur-
ing an adaptive search mechanism based on communication history;
GRINDA [66], BLOSSOM [17], DTUPLES [15] featuring distributed tuple
spaces; LUATS [14] which mixes reactive models with tuple spaces; MOZARTSPACES [9]
and KLAIM [51] which are two academic implementations with a good
record of research papers based on them.

BLOSSOM. BLOSSOM [17] is a C++ implementation of Linda which was
developed to achieve high performance and correctness of program codes.
In BLOSSOM all tuple spaces are homogeneous with a predefined structure
that demands less time for type comparison during the tuple lookup.

25

BLOSSOM was designed as a distributed tuple space and can be considered
as a distributed hash table. To improve scalability each tuple can be
assigned to a particular place (a machine or a processor) on the basis of its
values. The choose the place where a certain tuple should be located the
following mechanism is used: every tuple is associated with the access
pattern that determines which fields have to contain values (also for
templates); based on the values of these fields it is possible to compute
an identifier of the tuple’s location. Conversely, using the data from the
template, the exact place where a required tuple is potentially stored can
be found. Prefetching allows a process to send an asynchronous (i.e. non-
blocking) request for a tuple and to continue its work while the search is
performed. When the requested tuple is needed, if found, it is received
without waiting.

TSPACES. TSPACES [65] is an implementation of the Linda model de-
veloped at the IBM Almaden Research Center. It combines asynchronous
messaging with database features. TSPACES provides a transactional
support and a mechanism of tuple aging. Moreover, the embedded mech-
anism for access control to tuple spaces is based on access permission.
It checks whether a client is able to perform specific operations in the
specific tuples space. Pattern matching is performed using either standard
equals method or compareTo method.

KLAIM. KLAIM [51] (A Kernel Language for Agents Interaction and
Mobility) is an extension of Linda supporting distribution and processes
mobility. Processes, like any other data, can be moved from one locality
to another and can be executed at any locality. Klava [67] is a Java im-
plementation of KLAIM that supports multiple tuple spaces and permits
operating with explicit localities where processes and tuples are allocated.
In this way, several tuples can be grouped and stored in one locality.
Moreover, all the operations on tuple spaces are parameterized with a
locality. The emphasis is put also on access control which is important
for mobile applications. For this reason, KLAIM introduces a type system
which allows checking whether a process is allowed to perform specific

26

operations at specific localities.

JAVASPACES. JAVASPACES [64] is one of the first implementations of
tuple spaces developed by Sun Microsystems. It is based on a num-
ber of Java technologies (e.g., Jini and RMI) and has been recently inte-
grated into the Apache River project. Like TSPACES, JAVASPACES sup-
ports transactions and a mechanism of tuple aging. A tuple, called entry
in JAVASPACES, is an instance of a Java class and its fields are the public
properties of the class. This means that tuples are restricted to contain
only objects and not primitive values. The tuple space is implemented
by using a simple Java collection. Pattern matching is performed on the
byte-level, and the byte-level comparison of data supports object-oriented
polymorphism.

GIGASPACES. GIGASPACES [16] is a contemporary commercial imple-
mentation of tuple spaces. Nowadays, the core of this system is GIGASPACES

XAP, a scale-out application server; user applications should interact with
the server to create and use their own tuple space. The main areas where
GIGASPACES is applied are those concerned with big data analytics. Its
main features are linear scalability, optimization of RAM usage, syn-
chronization with databases and several database-like features such as
complex queries, transactions, and replication.

LUATS. LUATS [14] is a reactive event-driven tuple space system writ-
ten in Lua. Its main features are the associative mechanism of tuple re-
trieving, fully asynchronous operations and the support of code mobility.
LUATS provides centralized management of the tuple space which can be
logically partitioned into several parts using indexing. LUATS combines
the Linda model with the event-driven programming paradigm. This
paradigm was chosen to simplify program development since it allows
avoiding the use of synchronization mechanisms for tuple retrieval and
makes more transparent programming and debugging of multi-thread
programs. Tuples can contain any data which can be serialized in Lua.
To obtain a more flexible and intelligent search of tuples, processes can

27

send to the server code that once executed returns the matched tuples.
The reactive tuple space is implemented as a hash table, in which data are
stored along with the information supporting the reactive nature of that
tuple space (templates, client addresses, callbacks and so on).

MOZARTSPACES. MOZARTSPACES [9] is a Java implementation of the
space-based approach [68]. The implementation was initially based on the
eXtensible Virtual Shared Memory (XVSM) technology, developed at the
Space Based Computing Group, Institute of Computer Languages, Vienna
University of Technology. The basic idea of XVSM is related to the concept
of coordinator: an object defining how tuples (called entries) are stored.
For the retrieval, each coordinator is associated with a selector, an object
that defines how entries can be fetched. There are several predefined
coordinators such as FIFO, LIFO, Label (each tuple is identified by a label,
which can be used to retrieve it), Linda (corresponding to the classic tuple
matching mechanism), Query (search can be performed via a query-like
language) and many others. Along with them, a programmer can define a
new coordinator or use a combination of different coordinators (e.g. FIFO
and Label). MOZARTSPACES provides also transactional support and a
role-based access control model [69].

DTUPLES. DTUPLES [15] is designed for peer-to-peer networks and
based on distributed hash tables (DHT), a scalable and efficient approach.
Key features of DHT are autonomy and decentralization. There is no cen-
tral server and each node of the DHT is in charge of storing a part of the
hash table and of keeping routing information about other nodes. As the
basis of the DTH’s implementation DTUPLES uses FreePastry1. DTUPLES

supports transactions and guarantees fault-tolerance via replication mech-
anisms. Moreover, it supports multi tuple spaces and allows for two kinds
of tuple space: public and subject. A public tuple space is shared among all
the processes and all of them can perform any operation on it. A subject
tuple space is a private space accessible only by the processes that are

1FreePastry is an open-source implementation of Pastry, a substrate for peer-to-peer
applications (http://www.freepastry.org/FreePastry/).

28

bound to it. Any subject space can be bound to several processes and can
be removed if no process is bound to it. Due to the nature of DHTs, the
expressiveness of the pattern matching is limited, since only the first field
of the tuple participates in matching. Value of the first field is used to
identify a node of the DHT where the tuple has to be stored.

GRINDA. GRINDA [66] is a distributed tuple space which was designed
for large scale infrastructures. It combines the Linda coordination mo-
del with grid architectures aiming at improving the performance of dis-
tributed tuple spaces, especially with a lot of tuples. To boost the search
of tuples, GRINDA utilizes spatial indexing schemes (X-Tree, Pyramid)
which are usually used in spatial databases and Geographical Information
Systems. Distribution of tuple spaces is based on the grid architecture
and implemented using structured P2P networks (based on Content Ad-
dressable Network and tree-based).

TUPLEWARE. TUPLEWARE [13] is specially designed for array-based
applications in which an array is decomposed into several parts each
of which can be processed in parallel. It aims at developing a scalable
distributed tuple space with good performances on a computing cluster
and provides simple programming facilities to deal with both distributed
and centralized tuple space. The tuple space is implemented as a hash
table, containing pairs consisting of a key and a vector of tuples. Since
synchronization lock on Java hash table is done at the level of the hash
element, it is possible to access concurrently to several elements of the
table. To speed up the search in the distributed tuple space, the system
uses an algorithm based on the history of communication. Its main aim
is to minimize the number of communications for tuples retrieval. The
algorithm uses success factor, a real number between 0 and 1, expressing
the likelihood of the fact that a node can find a tuple in the tuple space of
other nodes. Each instance of TUPLEWARE calculates success factor on the
basis of previous attempts and first searches tuples in nodes with greater
success factor.

29

2.3.2 Comparison

JSP TSP GSP TW GR BL DTP LTS KL MS

eval

operation X X

Tuple
clustering ? X X

No domain
specificity X X X X X X X X

Security X X X

Distributed
tuple space ? X X X X X X

Decentralized
manage-

ment
X X X X X X

Scalability X X X X

JAVASPACES (JSP), TSPACES (TSP), GIGASPACES (GSP), TUPLEWARE (TW),
GRINDA (GR), BLOSSOM (BL), DTUPLES (DTP), LUATS (LTS), KLAIM (KL),

MOZARTSPACES (MS)

Table 1: Results of the comparison

We evaluated described earlier tuple spaces using criteria listed at the
beginning of the section. Table 1 summarizes the result of our comparison:
X means that the implementation enjoys the property and ? means that
we were not able to provide an answer due to the lack of source code
and/or documentation.

After considering the results in Table 1, we are going to perform
detailed experiments that are presented in Chapter 4 with the following
tuple spaces:

• TUPLEWARE because it enjoys most of the wished features;

30

• KLAIM because it offers distribution and code mobility;

• MOZARTSPACES because it satisfies two important criteria of the
second group (fully distribution) and is one of the most recent
implementations.

• GIGASPACES because it is the most modern among the commercial
systems; we will use it as a yardstick to compare the performance of
the others.

We would like to add that DTUPLES has not been considered for the
more detailed comparison because we have not been able to obtain its
libraries or source code and that GRINDA has been dropped because
it seems to be the less maintained one. It is worth noticing that while
GIGASPACES and MOZARTSPACES are still maintained, the other imple-
mentations are not, and their code is based in the state-of-the-art technol-
ogy of their last release, which nowadays could result deprecated.

2.4 Replication

In this section, we discuss how replication is exploited to improve data
availability. In particular, we focus on applications of replication to tuple
spaces. First, we describe and discuss tuple spaces where replication is
applied. Then, we talk about approaches that are used to optimize replica
placement.

2.4.1 Tuple space’s implementations with replication

DEPSPACE. DEPSPACE [19] is a Byzantine fault tolerant coordination
service2 that provides a tuple space abstraction whose main emphasis is
fault tolerance and security. DEPSPACE uses different replication appro-
aches such as Byzantine fault tolerant state machine replication [19] and
Byzantine quorum systems [70]. Security is achieved by access control
mechanism and cryptography. Servers create a dependable tuple space

2Byzantine fault tolerance implies that the architecture with at least 3n+1 servers can
tolerate failures of n servers

31

enforcing reliability, availability, integrity and confidentiality of data, and
tolerating Byzantine faults [19]. The DEPSPACE project is still ongoing
and in a recent work [71] it has been enhanced with extensible coordi-
nation services, e.g., the possibility of adding custom operations to be
executed on the server side. These services are somehow similar to the
original eval primitive and aim at providing mechanisms to have tuples
close to data processing units to guarantee fast data access. However,
because of security and fault tolerance requirements, an extension has
to satisfy a number of constraints in order to be executed, whereas eval
operation has no specific limitations.

GSPACE. GSPACE [72] is an implementation of the distributed data
space that uses self-adaptation to increase data availability.

In [72] the self-adaptation is based on the analysis of the numbers of
reads and writes performed by a certain node and deals with potential
failures of nodes where application components reside. According to the
aforementioned metrics, a certain replication policy among the following
ones has to be automatically chosen: Full Replication, n-Fixed Replication
(tuples are replicated to a certain number of nodes), Dynamic Consumer
Replication (tuples are replicated to nodes that consume tuples of the same
type), Dynamic Producer Replication (tuples are replicated to nodes which
produce tuples of the same type).

Another version of GSPACE [73] focuses on replication and self-adaptation
that optimizes replica placement according to such parameters of the
nodes as their memory usage and bandwidth.

LIME. LIME [74] is a distributed tuple space for mobile ad hoc networks.
A version of LIME [75] with replication was designed to guarantee data
availability by relying on replication profiles, data that are stored in each
node and that specify what and how tuples should be replicated.

Applications use different replication profile to separate data of each
application from each other and decrease the size of data to be replicated.
Replication profiles tell applications what tuples to replicate: it contains
templates specifying tuples to be replicated and names of hosts from

32

which tuples should be replicated. The application replicates a tuple
when it receives a tuple with the same profile.

Another feature of LIME is how it deals with consistency. LIME distin-
guishes two types of tuples (the original copy and a replica) and allows
to specify replication mode and consistency mode. Replication mode spec-
ifies how tuples should be replicated: only from a master tuple or also
from its copies. Consistency mode guides how to update replicas (never,
only from the master, from any newer version). LIME delegates control
over replication to programmers letting them choose aforementioned
parameters of tuples and apply them in applications.

REPLIKLAIM. REPLIKLAIM [76] is a language based on KLAIM that
enriches it with primitives for replica-aware coordination. Two types of
consistency are considered in REPLIKLAIM: weak and strong. Replicating
tuples, programmers have to decide by themselves where to put data and
REPLIKLAIM is responsible for keeping a tuple space in a consistent state.

In REPLIKLAIM the typical tuple space operations have a different
meaning:

• operations outw(t) outs(t) are used to replicate a tuple t on the
localities specified as a further argument using weak and strong
consistencies correspondingly;

• operation inw(t) and ins(t) withdraw a tuple and removes all its
copies from the localities where it was replicated;

• the reading operation read(t) remains the same and is not indexed
by anyconsistency level;

• the mobility operation eval(P) is not considered in REPLIKLAIM.

Short discussion. Apart from the tuple spaces listed above, replica-
tion is exploited also in GIGASPACES, PEERSPACES [7], PLINDA [22],
FT-LINDA [21]. It is used for different purposes; some works (DEPSPACE,
PLINDA, FT-LINDA) use replication to guarantee a specific level of fault
tolerance, others works exploit it to increase data availability.

33

The use of operations with strong consistency prevents tuple spaces
to scale when the number of nodes grows. To improve scalability two
approaches are exploited: to relax consistency requirements and to limit
the number of nodes where data has to be stored.

The first one uses different consistency models to relax consistency
requirements: REPLIKLAIM offers the possibility of using weak (eventual)
consistency for withdrawing operations; LIME exploits predefined poli-
cies to determine how replicas should be created and updated. Another
option is to use replication but avoid operations of data removal that
require updating replicas. For instance, in PEERSPACES [7], to guaran-
tee availability, replication is allowed only for read-only data on which
withdrawing operations are not possible.

The second approach is to share certain information not with the whole
network but with only nodes that need it decreasing the overall amount
of information circulating in the network. So, LIME and GSPACE uses
techniques that tell nodes how and where replicate tuples. Similarly, in
TOTA [8], a tuple contains information that is enough to determine how
tuples should be cloned to nearby nodes and maintained.

At the same time, most of the tuple space systems delegate to the
programmer the management of replica creation and data placement. In
this way, a fine-grained control is possible by carefully choosing nodes
where to put data.

Strategies for replica placement Where to replicate data is another im-
portant problem because of its impacts on performance. There are two
issues that replica placement mechanisms have to consider: what infor-
mation to use for determining where to place replicas and how to do
it efficiently. The following data are frequently considered for replicas
placement:

• data popularity: applications collect information about how many
times a specific resource or file is requested. Then, resources with
higher popularity are replicated in more/better nodes of the net-
work to reduce the average access time [28].

34

• network information: different informations such as cluster-aware
placement, degree-aware placement, distance-aware placement [20,
24, 25], betweenness-centrality [77] placement, closeness-centrality [78]
placement, greedy algorithms [79] are exploited. This information
is useful to reduce the average data access time in the network.

• characteristics of nodes: their bandwidth, the available physical
memory, their computational power [26]. Nodes of the network that
have better characteristics are usually considered as better ones to
place replicas.

• the activity of network nodes: Data should be placed closer to the
nodes that need these data, see e.g., Hot-Spot [27]. .

The second issue is how to efficiently determine the locations where
to put data. This is the main requirement for large networks. Usually,
fast placement computing and high precision of placement cannot be
achieved simultaneously and it is required to choose which characteristic
is preferable for the system. Replication is a standard technique [29] in
CDN, however, for CDN the speed of the algorithm for replica placement
is not very important. For real-time systems, it is acceptable to sacrifice
high precision to be able to work over larger networks. Among techniques
to decrease the complexity of placementâĂŹs computing, it is worth
mentioning the following two works. The authors of [30] propose to use
a decentralized summary of recent accesses that decreases the amount of
information to be processed and guarantees near-optimal performance.
In [25] it is instead proposed a two-step approach that, using partial
information about latencies in the network, selects a network region
where replica should be placed and, then, determines the specific node.

35

Chapter 3

A new implementation of
KLAIM

In this chapter, we focus on the programming language KLAIM, which
has been already briefly described in Chapter 2. KLAIM is a coordination
language and a process calculus that extends the original Linda primitives
with explicit information about the location of the nodes where processes
and tuples are located.

The organization of this chapter is as follows. In Section 3.1, we present
KLAIM by describing its syntax and semantics. Section 3.2 describes how
KLAVA, a Java implementation of KLAIM, can be used to build distributed
applications exploiting the tuple space paradigm to connect and coordi-
nate their components. The description focuses mostly on the main classes
of the API aiming at showing how to use it by means of code snippets in
Java. In the last section (Sect. 3.3), we discuss the main changes that we
have introduced to make KLAVA more efficient.

3.1 KLAIM language

In this section, we talk about the syntax and the semantics of KLAIM.

36

3.1.1 Process syntax

The process syntax of KLAIM presented in Table 2 includes the de-
scription of processes, actions, and tuples (and templates). The following
syntactic categories are exploited:

• Loc (l) is a set of localities.

• V Loc (u) is a set of locality variables.

• V al (v) is a set of basic values.

• V ar (x) is a set of value variables.

• Exp (e) is the category of value expressions.

• Ψ (A) is a set of parameterized process identifiers.

• χ (X) is a set of process variables.

In KLAIM, processes are built of a set of operators that similar to the
ones in CCS [80]. The operators for building processes are the following:
nil stands for the inactive process (e.g., a process that cannot perform any
action), a.P is a process that first executes the action a and then proceeds
like P , P | P stands for the parallel composition of two processes, P + P

stands for the nondeterministic composition, X is a process variable and
A〈P̃ , ˜̀, ẽ〉 is a process invocation. Actions are ordinary operations on
tuple spaces: out, read, in, and eval. Tuples are the sequence of actual
and formal fields (with the prefix !).

The syntax of KLAIM specifies also a network of sites. This specifi-
cation differs from one described in [51] since our variant does not uses
the allocation environment that in the original work was used to define
a mapping from logical to physical localities. In our case, each node has
a single and unique address that can be used to identify it in the net-
work using its address. We shall use the names logical localities, physical
localities, and localities interchangeably.

Definition of tuples and templates in KLAIM is similar to the one of
original Linda model. Tuples are sequences of (only) actual fields that can

37

P ::= nil (null process)

| a.P (action prefixing)

| P | P (parallel composition)

| P + P (choice)

| X (process variable)

| A〈P̃ , ˜̀, ẽ〉 (process invocation)

a ::= out(t)@` | in(T)@`

| read(T)@` | eval(P)@` (actions)

t ::= e | P | ` | !x | !X | !u | t1, t2 (tuples and templates)

N ::= l :: P | N1 || N2 (network)

Table 2: Process syntax

be represented as expressions, processes and localities, whereas templates
can contain both actual and formal fields that are denoted by ′!v′ (where
v is a generic variable). The evaluation function for tuples T JtK is defined
in Table 3. This function is used to evaluate processes, location, tuples
and expressions (using an evaluation mechanism EJtK).

Pattern-matching is defined by the rules in Table 4.

3.1.2 Informal semantics

In what follows, we just give an informal semantics of KLAIM. The
interested reader is referred to [51] for the structural operational semantics
of all operators.

The network can be formed by composing localities or networks of
smaller size using the composition operator ||. This allows processes to be

38

T JtK = EJeK T Jt, t′K = T JtK, T Jt′K

T JP K = P T J!xK =!x

T JlK = l

Table 3: Tuple evaluation function

match(v, v) match(P, P)

match(l, l) match(!x, v)

match(et1, et2)

match(et2, et1)

match(et1, et2)match(et3, et4)

match((et1, et3), (et2, et4))

Table 4: Pattern-matching predicates

executed in an interleaving fashion. Each locality provides the ordinary
set of operations on the tuple space located there: adding a tuple (out),
reading (read) and withdrawing (in) a tuple using the template, and the
operation that allows the migration of KLAIM program from one locality
to another (eval).

Tuple and templates have to be evaluated before they are used to
alter or query the tuple space. While evaluating tuples and templates, all
expressions that are contained in tuple fields will be computed, except the
ones that contain localities and formal fields. Then, the evaluated tuples
can be added to the tuple space or used for pattern matching (according
to the matching rules). The rules for matching are similar to those of the
original Linda model (see Section 2.1).

Process variables supports higher order communication. This means
that a process can be moved and executed in other locality and process
variables can be bound to processes dynamically. For instance, a process
can be added to a tuple space and, when it is retrieved, process variables
will be bound to this process for later execution.

39

3.2 Programming with KLAIM

KLAVA is a Java implementation of KLAIM. The framework was orig-
inally developed by Lorenzo Bettini and presented in details in [81]. In
what follows, we will describe and show by means of examples how the
main ingredients of KLAIM (tuples, localities, code mobility and tuple
spaces) can be programmed in Java and used to build distributed systems.

It is worth noting that most of the KLAVA API was designed by
Lorenzo Bettini and here we show how to use it. Our main modifica-
tion of the API offers the possibility of choosing the class of the tuple
space to use. Other changes that we have done are related to the internal
implementation of KLAVA and described separately in Section 3.3.

Defining tuples and templates. A tuple is a finite ordered list of ele-
ments. To define a tuple it is required to pass an array of objects to the
constructor of the Tuple class. As shown in Listing 3.1, first, we create an
array that may contain values of different types and then pass use it to
initialize a tuple.

1 Object[] array = new Object[]{"array", 0, 10};
2 Tuple tuple = new Tuple(array);

Listing 3.1: Initialization of a tuple

To access a certain field of the tuple it is necessary to call the class
method getItem with the index of the field (indexes start from 0). This
method returns the current value of the field as an object of the Object

class. To change the value of the field it is necessary to call the class
method setItem passing the index of the field and a new value. An
example of how to use these methods is presented below, where, first, we
obtain the value of the counter and, then, increment it and set its update
value (see Listing 3.2).

1 Tuple tuple = new Tuple(new Object[]{"counter", 0});
2 Integer counter = (Integer) tuple.getItem(1);
3 tuple.setItem(1, ++counter);

Listing 3.2: An example with methods getItem and setItem

40

Templates are similar to tuples but their fields can be not only actual
but also formal. Because values of actual fields in tuples can have different
types we need to take into account this information. To indicate that a
certain field of the template is formal we assign a name of Java class to
this field. The class should correspond to the type of values we want this
field to be matched with. It means that KLAVA does not accept null values
as values of fields. As shown in Listing 3.3, a template is used where
the first field is actual and the second field is formal and contains only
information about its type.

1 Object[] array = new Object[]{"counter", int . class };
2 Tuple template = new Tuple(array);

Listing 3.3: Initialization of the template

It is also assumed that values of primitive types byte, short, int, long,
float, double, boolean and char are interchangeable with object of classes
Byte, Short, Integer, Long, Float, Double, Boolean correspondingly. It means
that for integer value it is possible to assign to a formal field either int.class
or Integer.class.

Tuples matching is implemented as follows. For primitive data types,
the equality operator “==” is used to check whether two objects are equal.
For reference types, we rely on method equals, the standard method for
the comparison of two objects. The method should be properly overridden
since by default it checks an equality of object references.

Localities and nodes. KLAIM operates with explicit localities. Localities
are the tools that processes can use for referring to nodes of the network.
As we described in Section 3.1, our version of KLAIM distinguishes only
physical localities. Physical localities are identifiers through which nodes
can be uniquely identified within a net. The distinct locality self is used
by processes to refer to local localities of their execution nodes.

A physical locality is defined by relying on the PhysicalLocality

class and its object is initialized with the explicit address of the node. The
communication part is based on message passing and implemented using
Java NIO [82]. KLAVA uses TCP/IP protocol and accepts IP addresses with

41

the format < IP >:< port >. TCP/IP protocol provides reliable, ordered,
and error-detected delivery of data over unreliable networks from the
sender to the receiver (cf. [83], Chapter 6).

The network of localities can be defined in two ways. In the first
way, we can use classes Net and ClientNode and, first, initialize a server
node and, then, using its locality’s address instantiate client nodes (see
Listing 3.4). When clients nodes are instantiated, addresses of client’s
physical localities will be assigned automatically.

1 PhysicalLocality serverLoc = new PhysicalLocality(ipAddress);
2 KlavaNode serverNode = new Net(serverLoc);
3 // define another node
4 KlavaNode clientNode = new ClientNode(serverLoc);

Listing 3.4: Difinition of the network using server and client localities

In the second way, we define all localities separately and, then, pass
them to the constructor of the Net class as shown in Listing 3.5.

1 Vector<PhysicalLocality> localities = new Vector<>();
2 localities .add(new PhysicalLocality(address1));
3 localities .add(new PhysicalLocality(address2));
4 ...
5 localities .add(new PhysicalLocality(addressN));
6 new Net(localities) ;

Listing 3.5: Difinition of the network using a collection of localities

Operations of data manipulation. The KlavaNode class wraps a tuple
space and allows to exploit it in networks. It provides all operation of
tuple spaces. The operations on tuple spaces follow the semantics of the
language:

• out(t)@l: adds the tuple t to the tuple space located at the location
l.

• in(tp)@l: tries to withdraw a tuple using the template tp from the
location l. If nothing is matched, the operation blocks the process
of execution and waits until a tuple that satisfies the template tp is
matched.

42

• read(tp)@l: the operation is similar to in(tp)@l with the difference
that it does not remove the matched tuple from the tuple space.

• in_nb(tp)@l: non-blocking variant of in(tp)@l: tries to withdraw
a tuple and if nothing is matched returns false. Otherwise, the op-
eration returns true and assigns values to variables in the template
tp.

• read_nb(tp)@l: the operation is similar to in_nb(tp)@l with the
difference that it does not remove the matched tuple from the tuple
space.

• eval(P)@l: spawns process P for execution at l.

To perform an operation on a tuple space, it is necessary to call a
correspondent method of the node object with necessary parameters. For
instance, the writing operation out has the method signature presented
in Listing 3.6.

1 void out(Tuple t , Locality l)

Listing 3.6: Signature of the method out

To access a tuple space located in a remote locality it is necessary
to know the address of this locality. As shown in Listing 3.7, first, we
instantiate an object related to the remote locality to be accessed (line 1).
Then, we send a tuple to this locality (line 3).

1 PhysicalLocality remoteLocality = new PhysicalLocality(address);
2 Tuple tuple = new Tuple(new Object[]{"counter", 1});
3 node.out(tuple, remoteLocality);

Listing 3.7: Performing a remote operation

If we do not specify the location, it is assumed that we perform an
operation on a local tuple space, a tuple space that resides in the node.
For instance, as shown in Listing 3.8, we insert a tuple 〈“counter", 1〉 in
the tuple space of the node, i.e. locally.

1 Tuple tuple = new Tuple(new Object[]{"counter", 1});
2 node.out(tuple)

43

Listing 3.8: Inserting a tuple into the tuple space

Blocking querying operations do not return anything because they
either succeed or throw an exception if an error occurs (e.g. exceptions
specific to the framework, such as KlavaConnectException, or general
Java exceptions, such as RuntimeException). To read or withdraw a tuple
it is necessary to define a template and call a correspondent method of the
node. These operations can also be performed either locally or remotely
(see Listing 3.9).

1 // withdraw a tuple locally
2 Tuple template = new Tuple(new Object[]{"counter", Integer.class }) ;
3 node.in(template);
4

5 // withdraw a tuple from a remote locality
6 PhysicalLocality remoteLocality = new PhysicalLocality(address);
7 template = new Tuple(new Object[]{"counter", Integer.class }) ;
8 node.in(template, remoteLocality);

Listing 3.9: An example with the blocking operation in

Non-blocking operations of data retrieval return boolean value: true
if a tuple is found (with the assignment of values to the fields of the
template) and false otherwise. An example is shown in Listing 3.10
where we read a current value of the counter. If the tuple space contains
a tuple matched with the template, its data can be used in a further
computation.

1 Tuple template = new Tuple(new Object[]{"counter", Integer.class }) ;
2 boolean res = node.rd_nb(template);
3 if (res)
4 compute(template.getItem(1));

Listing 3.10: An example with the non-blocking operation rd_nb

Code mobility. KLAVA supports code mobility meaning that a piece
of code can be sent to a certain node and be executed there. In the
destination locality, the node creates a new process for executing the

44

received code. The executing process can interact with the tuple space
of the destination locality. KLAVA supports weak mobility [84] that means
only a code with some parameters can be transferred but not the execution
state. In contrast, the full mobility allows moving a code along with the
state of the executing process. Also, KLAVA follows the approach when
the code and all necessary classes are delivered together [85].

To implement code mobility it is necessary to use the method eval of
the node (see Listing 3.11).

1 void eval(KlavaProcess p, Locality l)

Listing 3.11: Signature of the method eval

The parameters of this method are the process code p to be executed
and the locality l of the execution. The process code is an object of the
class that is inherited from the KlavaProcess class. In the inherited class
it is necessary to implement method executeProcess. This method will
be executed on a remote node when the object with the code is delivered
to it.

1 PhysicalLocality serverLoc = new PhysicalLocality("192.168.1.1:6001") ;
2 KlavaNode serverNode = new Net(serverLoc);
3 // define of a client
4 KlavaNode clientNode = new ClientNode(serverLoc);
5 KlavaProcess processCode = new KlavaProcess() {
6 // implement method executeProcess
7 @Override
8 public void executeProcess() throws KlavaException {
9 // do necessary work

10 Object compResult = doComputation();
11 // write results
12 Tuple tuple = new Tuple(new Object[]{"result", compResult});
13 this .out(tuple, this . self) ;
14 }
15 };
16 clientNode.eval(processCode, serverLoc);
17 // wait for results
18 Tuple template = new Tuple(new Object[]{"result", Object. class }) ;
19 clientNode.read(template, serverLoc);

Listing 3.12: An example of code mobility in KLAVA

45

To show how to use code mobility lets consider the following scenario.
We have two nodes: one is a server node and another is a client one. The
client node sends a code to be executed to the server node and waits for
the results. The server node executes the code that produces a tuple with
the result while its execution. The code of this scenario is presented in
Listing 3.12. First, we instantiate the server node and the client node
(lines 1-4). Then, we define a process to be executed (lines 5-15) by means
of the variable processCode that instantiates an anonymous class expres-
sion where we extend the abstract KlavaProcess class. The client node
sends the code of the process to the server node using operation eval

(line 16) and immediately after begins to wait for the result reading it
from the tuple space of the server node (lines 18-19). The defined process
does some computation (line 10) and then puts in the local tuple space of
the node where it is executed results of the computation (lines 12-13).

Initializing tuple space. The new KLAIM implementation (see more
details in Section 3.3) allows configuring tuple spaces based on specified
data structures. The implemented one are:

• TupleSpaceList;

• TupleSpaceHashtable;

• TupleSpaceTree;

• TupleSpaceConcurrentHashtable;

• IndexedTupleSpace.

Each of these classes represents a tuple space with different perfor-
mance characteristics. By default, the implementation based on linked
lists is used and to choose a certain implementation it is necessary to
specify a class of the implementation while initializing a node object. For
instance, as shown in Listing 3.13, we initialize a node with the tuple
space based on trees.

46

1 KlavaNode clientNode = new ClientNode(serverLoc, TupleSpaceTree.class);

Listing 3.13: Initialization of the tuple space

In some cases, a certain implementation of tuple space may require
some configuration. That is why the method addSettings is provided
that allows specifying configuration information for tuple spaces in the
form of a pair (key, value) where the key is an identifier of the parameter
and the value is a correspondent value. For instance, in Listing 3.14 we
report an example how to set parameters for tuple spaces based on hash
tables and trees. We assume that an application uses one type of tuples
consisting of three String fields (lines 1-2), that can be matched by two
different templates (lines 4-5): one has a formal field in the second element
of the tuple, the other in the third one. Then, we add these data as a setting
with the name ”template_rules” (lines 7-8). Considering a tuple space
based on hash tables, while the execution of this application for each
template, two hash values have to be computed and added as keys to the
hash table.

1 Object[] tupleType = new Object[]{String.class ,
2 String. class , String. class };
3 List<Boolean[]> templatePattern = new List<Boolean[]>();
4 templates.add(new Boolean[]{true, false, true}) ;
5 templates.add(new Boolean[]{true, true, false }) ;
6 // add settings to the tuple space
7 Pair templateData = new Pair(tupleType, templatePattern);
8 node.addSettings("template_rules", templateData);

Listing 3.14: An example with the method addSettings

Defining a custom tuple space. Programmers can define their own im-
plementation of tuple space. For instance, one can code such data struc-
tures as a queue or a stack and use them by means of ordinary operations
on the tuple space. To do so, it is required to implement methods of
the ITupleSpace interface. The main methods of this interface (see List-
ing 3.15) are operations on tuple spaces and several auxiliary methods.

1 public inteface ITupleSpace {

47

2 abstract void out(Tuple t) ;
3 abstract boolean read(Tuple t) ;
4 abstract boolean in(Tuple t) ;
5 abstract boolean read_nb(Tuple t);
6 abstract boolean in_nb(Tuple t);
7 abstract void addSettings(String key, Object settings) ;
8 abstract void removeAll();
9 abstract void stop() ;

10 }

Listing 3.15: ITupleSpace interface

Methods out, read, in, read_nb, in_nb stand for common operations
on the tuple space. Method removeAll is used to delete all tuples from the
tuple space and method stop is used to stop all processes that might be
used while the tuple space works. Method addSettings allows passing
to the tuple space additional information to configure it (see Listing 3.14).

3.3 A new KLAIM’s implementation

We improved the implementation of KLAIM by enhancing the com-
munication part and its pattern matching. Regarding the communication
part, we changed the module of KLAIM that is responsible for sending and
receiving tuples. Previously, it was based on Java IO, the package contain-
ing classes for the data transmission over the network. For the renewed
part, we have opted for Java NIO [82], non-blocking input/output (IO),
which is a modern version of IO and in some cases allows using resources
more efficiently. Java NIO is beneficial when used to program applications
dealing with many incoming connections. Moreover, for synchronization
purposes, we used a more recent package (java.util.concurrent) instead of
synchronization methods of the previous generation. Tuning parameters
of sockets makes possible to achieve faster transmission of large chunks
of data.

Additional work was done to improve pattern matching. KLAIM was
based on Java data structure Vector that provides a very fast insertion
with the complexity O(1) when it is performed at the end of the vector
and a slow lookup with the complexity O(n). This performance is in

48

contrast with the requirements of modern applications. As we mentioned
before, we implemented a number of tuple spaces based on other data
structures and techniques (hash tables, indexing, etc.) and provided the
possibility to choose one of them. The following Java classes represent
implemented tuple spaces:

• TupleSpaceList based on linked lists. We did not apply any tech-
niques to boost the throughput of the tuple space since it would not
improve substantially, given that linear search time will still apply.

• TupleSpaceHashtable based on hash tables. Since the reference
to a specific tuple can be stored in several hash tables, the imple-
mentation of the withdrawing operation in needs to remove all its
occurrences. To guarantee this, we add the attribute isRemoved to
each tuple. This attribute is an atomic variable (all operations on
it are atomic) of the Java class AtomicBoolean. When a process
checks whether a tuple is marked as removed it uses the method
CompareAndSet to check its value. If the value is false, it is set to
true and true is returned. Otherwise, false is returned and its ref-
erence is removed from the searched hash table. When withdrawing
a tuple, we remove the reference to it only from the part of the tuple
space where we performed the search and mark this tuple removed.
Other references will be removed when other querying operations
will be performed: if a process finds a tuple that is marked removed

it removes its reference and continues the search. For the tuple space
based on hash tables, we implemented separate chaining with linked
lists to store tuples that have the same hash value.

• TupleSpaceTree based on red-black trees. The implementation is
similar to the one based on ordinary hash tables. For each type of
used templates, a separate tree has to be added. For each tree, we
use a global lock meaning that only one operation on the tuple space
can be performed at the same time.

• IndexedTupleSpace based on indexing. The tuple space based on
indexing uses hash tables to store tuples and their unique identifiers.

49

Tuples with the same structure are collected in a separate hash table
and indexes are stored separately from tuples.

• TupleSpaceConcurrentHashtable based on a concurrent version
of hash tables ConcurrentHashMap from Java JDK. This collection
supports full concurrency of retrievals and adjustable expected con-
currency for updates [86]. The actual concurrent implementation
is similar to one based on ordinary hash tables but operations for
querying and modifying can be performed in parallel and, thus, it is
necessary to check also whether the tuple space has been previously
modified. For this check, we use the techniques for handling sub-
scriptions of processes for updates that were previously described
(see Section 2.2).

In our experiments, we have used KLAIM instantiated with tuple
spaces based on indexing since this option is the most versatile one and
does not require extra tuning. Tuple spaces based on hash tables and
trees could offer better performance but require a careful tuning that un-
equalizes the comparison and disallows the creation of automatic generic
tests.

Additional operations. Our implementation improves the previous one
by also adding group operations and an atomic operation. Group opera-
tions are presented in many works, see, e.g., Grinda [66], EgoSpace [87],
TuCSoN [88], and are offered to write clearer code reducing the number
of its lines; to reduce the time of data transmission and communication;
to make operations on tuple spaces faster. We used the following group
operations:

• outMany(tuples) to write a number o tuples;

• rdMany(template, maxNumber) to read several tuples at once;

• inMany(template, maxNumber) to retrieve several tuples at once.

For synchronization purpose, we implemented the atomic operation
outIfAbsent that can be seen as a combination of the non-blocking rd

50

operation followed by the out operation in case there is no tuple matching
the template of rd. The operation does not return any value but can
guarantee that a tuple will be not doubled. This operation is useful when
it is required to prevent the presence of multiple copies of a certain tuple.
For instance, when several identical processes have to set an initial data.
An example of how this operation can be used is presented in Listing 3.16
where a tuple that initializes a counter 〈“counter”, 0〉 will be inserted into
a tuple space only if this counter does not exist before.

1 Tuple template = new Tuple(Object[]{"counter", Integer. class }) ;
2 Tuple tuple = new Tuple(Object[]{"counter", 0}) ;
3 node.outIfAbsent(template, tuple);

Listing 3.16: An example with the operation outIfAbsent

51

Chapter 4

Evaluating
implementations

This chapter is devoted to the experimental evaluation of the imple-
mentations that we have selected in Section2.3: GIGASPACES, KLAIM,
MOZARTSPACES, and TUPLEWARE. First, we present the testing method-
ology that we use to evaluate tuple spaces, i.e., we describe the considered
case studies and how we conducted the experiments. Then, we consider
two sets of experiments. The first one aims at comparing the implemen-
tation of the new version of KLAIM described in Chapter 3 with the old
implementation. The second one compares the new KLAIM with the ex-
isting implementations of tuple spaces that we introduced and selected in
Section 2.3.

4.1 Methodology

In this section, we present the case studies that we will use to evaluate
the performance of different implementations of tuple spaces and describe
how we perform the experiments.

52

4.1.1 Case study

We consider four case studies: Password search, Sorting, Ocean model
and Matrix multiplication. We describe them below.

The first case study is of interest since it deals with a large number
of tuples and requires performing a huge number of write and read
operations. This helps us understand how efficiently an implementation
performs operations on local tuple spaces with a large number of tuples.

The second case study is computation intensive since each node
spends more time for sorting elements than on communicating with the
others. This case study has been considered because it needs structured
tuples that contain both basic values (with primitive type) and complex
data structures, and these impact on the speed of the inter-process com-
munication.

The third case has been chosen because it introduces particular de-
pendencies among nodes, which if exploited can improve the application
performances. Our aim was to check whether adapting a tuple space
system to the specific inter-process interaction pattern of a specific class
of applications could lead to significant performance improvements.

The last case study is a communication-intensive task and it requires
much reading on local and remote tuple spaces. It was chosen to assess
how the communication part of each implementation affects performances
of operation on remote tuple spaces.

All case studies are implemented using the master-worker paradigm [89]
because among other design patterns (e.g., Pipeline, SPMD, Fork-join) [90]
it fits well with all our case studies and allows us to implement them in a
uniform way. In the rest of this subsection, we briefly describe all the case
studies.

We would like to stress that, with our case studies, we aim at evaluat-
ing advantages and disadvantages of the chosen tuple space implementa-
tions. We do not aim at providing efficient solutions for them. Actually,
some of our solutions have intentional redundancy that slows down per-
formance but allows us to highlight the difference between the different
implementations. For instance, the code for the Ocean model and the one

53

for the Matrix multiplication problem can be easily improved by assigning
data or jobs to specific workers thus making data search unnecessary.

To highlight the key steps of the proposed algorithms, we present the
basic Linda code of the master and of the workers for each case study. The
full Java code used in the actual experiments has many additional lines
that render it less intuitive but allow us to run it on the different tuple
space implementations. It can be accessed at Github: www.github.com/
IMTAltiStudiLucca/Klava2.

Password search. The main aim of this application is to find a pass-
word using its hash value in a predefined “database” distributed among
processes. Such a database is a set of files containing pairs (password,
hash value). The application creates a master process and several worker
processes (Figure 7): the master keeps asking the workers for passwords
corresponding to specific hash values, by issuing tuples of the form:

〈“search_task", dd157c03313e452ae4a7a5b72407b3a9, “not_processed"〉

Each worker first loads its portion of the distributed database and then
obtains from the master a task to look for the password corresponding to
a hash value. Once it has found the password, it sends the result back to
the master, with a tuple of the form:

〈“found_password", dd157c03313e452ae4a7a5b72407b3a9, 7723567〉

For multiple tuple space implementations, it is necessary to start search-
ing in one local tuple space and then to check the tuple spaces of other
workers. The application terminates its execution when all the tasks have
been processed and the master has received all required results.

Listing 4.1 presents the code for Password Search. The master writes,
in its tuple space, n tasks with known hash values of passwords to be
found (lines 2-3), waits for the found passwords (lines 5-6) and informs
workers to terminate their work because all tasks have been accomplished
(lines 9-10). A worker loads predefined data (lines 15-16), takes a task to
perform (lines 18, 26), looks for a password locally, if needed looks for

54

www.github.com/IMTAltiStudiLucca/Klava2
www.github.com/IMTAltiStudiLucca/Klava2

WorkerN

Master

write tasks

Tuple space

takes results

takes a task

returns the found

password

table N

Worker 1 table 1

searches for

a password

Figure 7: Schema of the case study Password search

a password in tuple spaces of other workers (line 22-24) and returns the
found password to the master (line 25).

1 Master():
2 for i in range(n):
3 masterTS.out("search_task", hash[i], "not_processed")
4

5 for i in range(n):
6 masterTS.in("found_value", ?hashValue, ?password)
7

8 // poison tuples for all workers
9 for i in range(workerNumber):

10 masterTS.out("search_task", null , "finished")
11

12

13 Worker():
14 // loads passwords
15 for i in range(m):
16 localTS.out("hash_set", db[i]. hashValue, db[i].password)
17

18 masterTS.in("search_task", ?hashValue, ?status)
19 while status != "finished" :
20 if localTS.rdp("hash_set", hashValue, ?password) == false:
21 // search in other tuple spaces
22 for i in range(workerNumber):
23 if workerTS[i].rdp("hash_set", hashValue, ?password) == true:
24 break
25 masterTS.out("found_value", hashValue, password)
26 masterTS.in("search_task", ?hashValue, ?status)

Listing 4.1: Password search. Listing of master and worker processes

55

Sorting. This program sorts an array of integers. The master performs
the initial data loading and collects the sorted data; workers perform the
actual sorting. The master, after loading the data, splits them into many
parts, stores them in its own tuple space and then waits for the sorted
arrays from the workers. Once the master has collected all sorted sub-
arrays, it builds the whole sorted sequence. A worker looks for unsorted
data in the tuple space of the master and when it finds a tuple with
unsorted data, it sorts it, sends the result to the master and continues
looking for data to sort. An example of sorting is shown in Figure 8.

8 3 4 2 7 2 4 1

8 3 4 2 7 2 4 1

3 8 2 4 2 7 1 4

1 2 2 3 4 4 7 8

initial array

sorted array

Master merges all parts

Workers sort parts of the array

Master splits an array

Figure 8: Schema of the case study Sorting

Listing 4.2 presents the code for Sorting. The master splits an initial
array into nParts parts (in our tests nParts = 200), adds them to its tuple
space (lines 3-4) and begins to collect sorted parts (lines 6-9). When all
parts are collected (line 6), the master reconstructs the full sorted array
(line 11) and notifies all workers to terminate their work (lines 14-15). A
worker takes an unsorted array from the master (line 19), sorts it and
sends the sorted array to the master (lines 21-22).

1 Master():
2 unsortedParts = splitInitialArray (initialArray , nParts)
3 for i in range(unsortedParts.size):
4 masterTS.out("sort_array", unsortedParts[i], "unsorted")
5

6 while n != initialArray . size :
7 masterTS.in("sorted_part", sortedPart)
8 sortedParts.add(sortedPart)

56

9 n += sortedPart.size
10 // reconstruct a sorted array
11 sortedArray = reconstructArray(sortedParts)
12

13 // poison tuples for all workers
14 for i in range(workerNumber):
15 masterTS.out("sort_array", null , "finished")
16

17

18 Worker():
19 masterTS.in("sort_array", ?arrayPart, ?status)
20 while status != "finished" :
21 sortedArrayPart = sort(arrayPart)
22 masterTS.out("sorted_parts", sortedArrayPart)
23 masterTS.in("sort_array", ?arrayPart, ?status)

Listing 4.2: Sorting. Listing of master and worker processes

Ocean model. The ocean model is a simulation of the enclosed body of
water that was considered in [13]. The two-dimensional (2-D) surface of
the water in the model is represented as a 2-D grid and each cell of the grid
represents one point of the water. The parameters of the model are current
velocity and surface elevation which are based on a given wind velocity
and bathymetry. In order to parallelize the computation, the whole grid is
divided into vertical panels (Figure 9), and each worker owns one panel
and computes its parameters. The parts of the panels, which are located
on the border between them are colored. Since the surface of the water
is continuous, the state of each point depends on the states of the points
close to it. Thus, the information about bordering parts of panels should
be taken into account. The aim of the case study is to simulate the body of
water during several time-steps. At each time-step, a worker recomputes
the state (parameters) of its panel by exploiting parameters of the adjacent
panels.

The tasks of the master and workers are similar to the previous case
studies. In the application the master instantiates the whole grid, divides
it into parts and sends them to the workers. When all the iterations are
completed, it collects all parts of the grid. Each worker receives its share

57

Panel 1

Worker 1

Panel 2

Worker 2

Panel N

Worker N

...

Figure 9: Schema of the case study Ocean model

of the grid and at each iteration it communicates with workers which
have adjacent grid parts in order to update and recompute the parameters
of its model. When all the iterations are completed, each worker sends its
data to the master.

Listing 4.3 presents the code for Ocean model. The master generates
a model, splits it into a number of panels and distributes them among
workers (lines 2-4). Then it collects the processed panels (lines 6-8) and
reconstructs the model (line 9). A worker gets a panel from the master
(line 13) and passes it through a number of iterations (lines 16-26); at each
iteration, it shares a part of its data with other processes (line 18-19) and
gets data of adjacent panels (lines 21-24). In the end, the worker returns a
panel to the master (line 28).

1 Master():
2 panels = splitModel(oceanModel)
3 for i in range(workerNumber):
4 masterTS.out("oceanModel", "panel", panels[i])
5 // take back
6 for i in range(workerNumber):
7 masterTS.in("oceanModel", "ready_panel", ?panel)
8 processedPanels.add(panel)
9 oceanModel = reconstructModel(processedPanels)

10

11

12 Worker():

58

a1,1 b1,1 b1,2 a1,1*b1,1 a1,1*b1,2

a1,2

b2,1 b2,2

1

2

1

2

1 2 1 2 1 2

1 2 1 2 1 2

A B C

A B C

X =

step 1

step 2

a1,1*b1,1+a1,2*b2,1

a1,1*b1,2+a1,2*b2,2

Figure 10: Schema of the case study Matrix multiplication

13 masterTS.in("oceanModel", "panel", ?panel)
14

15 // do several iterations
16 while panel.iterationNumber < iterationMax:
17 // for each adjacent panel write required boundary data
18 for borderInfo in panel.borders:
19 localTS.out("oceanModel", "border", borderInfo.name,

borderInfo.data)
20

21 for borderInfo in panel.borders:
22 for i in range(workerNumber):
23 workerTS[i].inp("oceanModel", "border", borderInfo.name,

?borderData)
24 panel.borderData.add(borderData)
25 // update its state
26 panel.process()
27

28 masterTS.out("oceanModel", "ready_panel", panel)

Listing 4.3: Ocean model. Listing of master and worker processes

59

Matrix multiplication. The case study is designed to multiply two
square matrices of the same order. The algorithm of multiplication [91]
operates with rows of two matrices A and B and puts the result in matrix
C. The latter is obtained via subtasks where each row is computed in
parallel. At the j-th step of a task the i-th task, the element, aij , of A is
multiplied by all the elements of the j-th row of B; the obtained vector
is added to the current i-th row of C. The computation stops when all
subtasks terminate. Figure 10 shows how the first row of C is computed if
A and B are 2× 2 matrices. In the first step, the element a1,1 is multiplied
first by b1,1 then by b1,2, to obtain the first partial value of the first row. In
the second step, the same operation is performed with a1,2, b2,1 and b2,2
and the obtained vector is added to the first row of C thus obtaining its
final value.

Initially, the master distributes the matrices A and B among the work-
ers. In our case study, we have considered two alternatives: (i) the rows
of both A and B are spread uniformly, (ii) the rows of A are spread uni-
formly while B is entirely assigned to a single worker. This helped us in
understanding how the behavior of the tuple space and its performances
change when only the location of some tuples changes.

Listing 4.4 presents the code for Matrix multiplication. The master, first,
makes the matrices (A and B) to be multiplied available to workers, by
putting them into its tuple space (lines 2-4), then it collects the results
sent back by the workers (lines 6-8). Each worker, first, loads parts of A
and B (lines 13-23), then it computes rows of the matrix products that
correspond to the rows of A (lines 26-48). Using the received rows of
A, a worker looks for the necessary rows of B (lines 33-35) and stores
intermediate results locally (lines 39-48), finally it sends to the master the
computed rows of matrix product (line 46).

1 Master():
2 for i in range(matrixSize):
3 masterTS.out("matrixA", i, matrixA[i], matrixSize)
4 masterTS.out("matrixB", i , matrixB[i], matrixSize)
5

6 for i in range(matrixSize):
7 masterTS.take("matrixC", i, ?matrixCRow, matrixSize)

60

8 matrixC.add(i, matrixCRow)
9

10

11 Worker():
12 // rows per each worker
13 rowsPerWorker = matrixSize/workerNumber
14 if workerID < matrixSize % workerNumber:
15 rowsPerWorker++;
16

17 for i in range(rowsPerWorker):
18 masterTS.in("matrixB", ?rowID, ?rowData, ?counter)
19 localTS.out("matrixB", rowID, rowData, counter)
20

21 for i in range(rowsPerWorker):
22 masterTS.in("matrixA", ?rowID, ?rowData, ?counter)
23 tasks .add(rowID, rowData)
24

25 // look at each row lk tasks
26 for i in range(tasks.size ()) :
27 rowID = tasks[i]. id
28 rowFirstOperand = tasks[i].rowData
29

30 // check all rows of matrix B
31 for k in range(matrixSize):
32 // take k−row from matrix B
33 for w in range(workerNumber):
34 if workers[w].rdp("matrixB", i, ?rowB, ?counterB) == true:
35 break
36 rowMatrixC = rowB ∗ rowFirstOperand[k]
37

38 // check matrix C (existence of partial result)
39 if localTS.inp("matrixC", rowID, ?valC, ?counter) == false :
40 localTS.out("matrixC", rowID, rowMatrixC, 1)
41 else
42 rowMatrixC = rowMatrixC + valC
43 counter++
44

45 if counter == matrixSize:
46 masterTS.out("matrixC", rowID, rowMatrixC, counter)
47 else
48 localTS.out("matrixC", rowID, rowMatrixC, counter)

Listing 4.4: Matrix multiplication. Listing of master and worker processes

61

4.1.2 Experiment setup

Parameters of case studies. All the conducted experiments are paramet-
ric with respect to two values. The first one is the number of workers
w ∈ {1, 5, 10, 15}. This parameter is used to test the scalability of the
different implementations. The second parameter is application specific,
but it aims at testing the implementations when the workload increases.

• Password search: We vary the number of the entries in the database
(1× 104, 1× 105, 1× 106 passwords) where it is necessary to search
a password. This parameter directly affects the number of local
entries each worker has. Moreover, for this case study, the number
of passwords to search was fixed to 100.

• Sorting: We vary the size of the array to be sorted (1× 105, 1× 106,
1 × 107 elements). In this case, the number of elements does not
correspond to the number of tuples because parts of the array are
transferred also as arrays of smaller size.

• Ocean model: We vary the grid size (300, 600 and 1200) which is
related to the computational size of the initial task.

• Matrix multiplication: We vary the order of a square matrix (50, 100).

Remark 1 (Execution environment). Our tests were conducted on an Ubuntu
server (version 14.04.5 LTS) with 4 processors Intel Xeon E5-4607, each
with 6 cores, 12 M Cache, 2.20 GHz, and with hyper-threading, offering
in total 48 threads and 256 GB RAM. All case studies are implemented in
Java 8.

Measured metrics. For the measurement of metrics, we have created
a profiler which is similar to Clarkware Profiler1. However, Clarkware
Profiler calculates just the average time for the time series, while ours
also calculates other statistics (e.g., standard deviation). Moreover, our
profiler was designed also for analyzing tests carried out on more than

1The profiler was written by Mike Clark; the source code is available on
GitHub: https://github.com/akatkinson/Tupleware/tree/master/src/com/
clarkware/profiler.

62

https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/profiler
https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/profiler

one machine. For that reason, each process writes raw profiling data on
a specific file; all files are then collected and used by specific software to
calculate required metrics.

We use the manual method of profiling and insert methods begin(label)

and end(label) into the program code around the part of the code we
are interested in to start and stop counting time respectively. For each
metrics, a different label is used. An example of profiling is shown in
Listing 4.5 where the writing time is measured: the operation of the re-
mote writing is surrounded with profiling methods that are called with
the label ”writing_time”. At the end of the execution of each application,
all the data are stored on disk for subsequent analysis.

1 TupleLogger.begin("writing_time");
2 node.out(tuple, remoteLocality);
3 TupleLogger.end("writing_time");

Listing 4.5: Manual profiling

Each set of experiments has been conducted 10 times with a randomly
generated input and we have computed an average value and a stan-
dard deviation for each metrics. To extensively compare the different
implementations, we have collected the following measures:

• Local writing time: time required to write one tuple into a local tuple
space.

• Local reading time: time required to read one tuple from a local tuple
space using a template. This metrics checks also how fast pattern
matching works.

• Remote writing time: time required to communicate with a remote
tuple space and to perform one write operation on it.

• Remote reading time: time required to communicate with a remote
tuple space and to perform one read operation on it.

• Search time: time required to search a tuple in a set of remote tuple
spaces.

63

• Total time: total execution time. This time does not include an initial-
ization of tuple spaces.

• Number of visited nodes: number of visited tuple spaces before a
searched tuple was found.

Notice that all plots used in the paper report results of our experiments
on a logarithmic scale. When describing the outcome, we have only used
the plots which are more relevant to highlight the difference between the
performances of the different tuple space systems.

4.2 Old KLAIM vs new KLAIM

In this section, we compare performances of the improved version of
KLAIM with its older version. To do it, we use the Password search, Sorting
and Matrix multiplication case studies. The outcome of the Ocean model
case study is similar to the of Matrix multiplication and, thus, we do not
report them. In the rest of the section, by writing KLAIM we will indicate
the new version of the framework and will refer to its previous version
by calling it old KLAIM.

Password search. Adding an element at the end of an array takes less
time than adding an element in other data structures. This is the reason the
writing time of KLAIM based on indexing is lower than that of old KLAIM

(the tuple space of old KLAIM is vector-based). This fact is evidenced in
Figure 11.

Differently from the outcomes of the measures of writing time, the
tuple space based on indexing outperforms old KLAIM. As shown in
Figure 12, the local reading and withdrawing times are much lower for
KLAIM. In Figure 12, we also consider the execution times for the im-
plementation based on hash tables (KLAIM(H)), it shows that the latter
provides better results than the others.

Sorting. While improving the implementation, we noticed a problem
with inefficient data transmission in old KLAIM that slows down writing

64

1 5 10 15
Number of Workers

10−3

T
im

e,
m

s

KLAIM Old KLAIM

Figure 11: Password search. Local writing time (1× 106 passwords)

1 5 10 15
Number of Workers

10−1

100

101

102

T
im

e,
m

s

KLAIM(H), read

KLAIM(H), withdraw

KLAIM, read

KLAIM, withdraw

Old KLAIM, read

Old KLAIM, withdraw

Figure 12: Password search. Local reading and withdrawing times (1 ×
106 passwords)

and reading times especially when bigger portions of data are transmitted.
As shown in Figure 13, the remote reading time is much smaller for
KLAIM than for old KLAIM.

Matrix multiplication. Performance in the Matrix multiplication case
study depends on remote operations more than for other case studies.
Here, we report only the results for the case in which matrix B is uniformly
distributed among the workers; the other case leads to similar results. As
shown in Figure 14-15, the remote writing and reading times decrease
significantly when we compare KLAIM with old KLAIM. In Figure 15, the
remote reading time for the runs with one worker is not shown since, in
this case, only the local tuple space of the worker is used.

65

1 5 10 15
Number of Workers

101

102

103
T

im
e,

m
s

KLAIM Old KLAIM

Figure 13: Sorting. Remote reading time (10× 106 elements)

1 5 10 15
Number of Workers

10−1

100

101

102

T
im

e,
m

s

KLAIM Old KLAIM

Figure 14: Comparisons of two KLAIMs. Matrix multiplication. Remote
writing time (the matrix order is 100)

4.3 Assessing different implementations

In this section, we evaluate four implementations of the tuple space
that have been selected in Section2.3 (GIGASPACES, KLAIM, MOZARTSPACES,
and TUPLEWARE) using four case studies (Password search, Sorting,
Ocean model, and Matrix multiplication). In our experiments, we use
only the new version of KLAIM (that we call KLAIM). In addition to the re-
sults of experiments carried out on a single host machine, we also present
results of experiments that were conducted on several host machines.

Password search. In Figures 16-17, the trend of the total execution time
is reported as the number of workers and size of considered database
increase. In Figure 16 the size of the database is 1 × 105 entries, while
Figure 17 reports the case in which the database contains 1× 106 elements.
From the plot, it is evident that GIGASPACES and KLAIM exhibit better

66

1 5 10 15
Number of Workers

100

101

102
T

im
e,

m
s

KLAIM Old KLAIM

Figure 15: Comparisons of two KLAIMs. Matrix multiplication. Remote
reading time (the matrix order is 100)

performances than the other systems. In the diagrams below, in addition
to the results for four implementations, we will provide measures for a
different implementation of the case study with TUPLEWARE. We will
refer to the additional experiment by TUPLEWARE(H) and will describe it
in some details at the end of this paragraph.

1 5 10 15
Number of Workers

104

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Tupleware(H)

1 5 10 15
Number of Workers

104

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Tupleware(H)

Figure 16: Password search.
Total time (1× 105 passwords)

1 5 10 15
Number of Workers

104

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Tupleware(H)

1 5 10 15
Number of Workers

104

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Tupleware(H)

Figure 17: Password search.
Total time (1× 106 passwords)

Figure 18 depicts the local writing time for each implementation with
different numbers of workers. As we can see, by increasing the number of
workers (that implies reducing the amount of local data to consider), the
local writing time decreases. This is more evident for TUPLEWARE, that re-
ally suffers when a big number of tuples (e.g. 1× 106) is stored in a single
local tuple space. The writing times of KLAIM and GIGASPACES are the

67

1 5 10 15
Number of Workers

10−3

10−2

10−1
T

im
e,

m
s

GigaSpaces KLAIM MozartSpaces Tupleware Tupleware(H)

Figure 18: Password search. Local writing time (1× 106 passwords)

lowest among other systems and do not change significantly during any
variation in the experiments. The local writing time of MOZARTSPACES

remains almost the same when the number of workers increases. Nonethe-
less, its local time is bigger with respect to the other systems, especially
when the number of workers is equal or greater than 10.

1 5 10 15
Number of Workers

10−2

10−1

100

101

102

T
im

e,
m

s

GigaSpaces, read

GigaSpaces, withdraw

KLAIM, read

KLAIM, withdraw

MozartSpaces, read

MozartSpaces, withdraw

Tupleware(H), read

Tupleware(H), withdraw

Tupleware, read

Tupleware, withdraw

Figure 19: Password search. Local reading and withdrawing times (1 ×
106 passwords)

In our experiments, we did measure only the writing and reading
time which are the most frequently used in the considered case studies.
We ignored the withdraw operation; that can be seen as an atomic step
consisting of a read followed by a removal action. The latter requires syn-
chronization on (part of) the tuple space, and the way synchronization is
guaranteed highly impacts on performances. Thus, we only evaluated the
cost of withdrawing for the Passwords search case study by considering
local searches and allowing withdrawing, and not just reading, passwords.
The local reading and withdrawing times for the new program are shown

68

in Figure 19. As expected, withdrawing time is slightly greater than
reading time.

The reading times of GIGASPACES and MOZARTSPACES are always
similar, whereas the reading time of TUPLEWARE decreases when the
number of workers grows. KLAIM performs much better than others.
Since this case study requires little synchronization among workers, gen-
erally, performance improves when the level of parallelism (the number
of workers) increases.

1 5 10 15
Number of Workers

10−1

100

101

102

103

T
im

e,
m

s

GigaSpaces KLAIM MozartSpaces Tupleware Tupleware(H)

Figure 20: Password search. Search time (1× 106 passwords)

We would like now to comment on the behavior of TUPLEWARE whose
source code is publicly available2. TUPLEWARE exploits Hashtables as a
container for tuples but their efficient use relies on using specific kinds
of templates (the first fields should contain values, not variables). This
is not the case for our skeleton implementation and thus TUPLEWARE’s
potentials are not fully exploited. Thus, we considered an alternative
skeleton with tuples that meet TUPLEWARE requirements and noticed
that its performances greatly improved while those of the others re-
mained unchanged. In Figures 16 - 20 TUPLEWARE(H) refers to tests with
this adapted code. TUPLEWARE(H) exhibits a writing time close to the
best one of KLAIM (Figure 18) and the best reading time (Figure 19).
TUPLEWARE(H) is particularly efficient when databases of bigger size are
used.

In general, searching time is similar to local reading time but it needs

2Source code of TUPLEWARE is available on GitHubhttps://github.com/
akatkinson/Tupleware.

69

https://github.com/akatkinson/Tupleware
https://github.com/akatkinson/Tupleware

to take into account searching in remote tuple spaces. When considering
just one worker, the searching time is the same as the reading time in a
local tuple space, however, when the number of workers increases the
searching time of TUPLEWARE and KLAIM grows faster than the time of
GIGASPACES. Figure 20 shows that GIGASPACES and MOZARTSPACES

are more sensitive to the number of tuples than to the number of accesses
to the tuple space.

Summing up, we can remark that the local tuple spaces of the four
systems exhibit different performances depending on the operation on
them: KLAIM and GIGASPACES exhibit best writing time, while KLAIM

demonstrates also fast querying operations. However, some of the imple-
mentations do not exhibit their best performance without specific tuning.
For instance, without any change in the code of case study’s skeleton,
TUPLEWARE demonstrates mean performance, whereas, with the adapted
code that satisfies some requirements of TUPLEWARE, its performance
increases significantly.

Sorting. Figure 21 shows that GIGASPACES exhibits significantly better
execution time when the number of elements to sort is 1 million. As
shown in Figure 22 when 10 million elements are considered and several
workers are involved, TUPLEWARE, KLAIM and MOZARTSPACES exhibit
a more efficient parallelization and, thus, require less time.

1 5 10 15
Number of Workers

103

104

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

1 5 10 15
Number of Workers

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Figure 21: Sorting. Total time
(1× 106 elements)

1 5 10 15
Number of Workers

103

104

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

1 5 10 15
Number of Workers

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Figure 22: Sorting. Total time
(10× 106 elements)

70

This case study is a computation intensive one but requires also an
exchange of structured data. The benefits of the parallelization are more
evident for the tests with an array of 10 million elements where the
percentage of the time spent for data communication and transmission is
less than the time spent for sorting.

1 5 10 15
Number of Workers

100

101

102

T
im

e,
m

s

GigaSpaces KLAIM MozartSpaces Tupleware

Figure 23: Sorting. Remote reading time (10× 106 elements)

As shown in Figure 23, the remote reading time of TUPLEWARE is
always higher than that of other tuple spaces, and all those demonstrate
similar behavior. Figure 24 shows that, in all cases, increasing the number
of workers does not affect the local writing time. At the same time, by
comparing Figures 18 and 24, we see that all implementations of tuple
spaces except TUPLEWARE and KLAIM spend more time for writing. This
is especially evident for GIGASPACES.

1 5 10 15
Number of Workers

10−2

10−1

T
im

e,
m

s

GigaSpaces KLAIM MozartSpaces Tupleware

Figure 24: Sorting. Local writing time (10× 106 elements)

It is worth noting that, during our tests, we experienced some prob-
lems with MOZARTSPACES (the version of the library is mozartspaces-dist-

71

2.3-SNAPSHOT-r15239). The problems, related to data loss, occurred
when more than 10 workers were present. After analyzing our code, the
Vienna group pinpointed the bug and fixed it (the version of the library
is mozartspaces-dist-2.3-SNAPSHOT-r21c82ce88e5456). The experiments
presented here are based on the revised implementation.

Ocean model. This case study was chosen to examine the behavior of
tuple space systems when specific patterns of interactions come into play.
Out of the four considered systems, only TUPLEWARE has a method for
reducing the number of visited nodes during search operation which
helps in lowering search time. Figure 25 depicts the number of visited
nodes for different grid sizes and a different number of workers (for this
case study in all figures we consider only 5, 10, 15 workers because for
one worker generally tuple space is not used). The curve depends weakly
on the size of the grid for all systems and much more on the number
of workers. Indeed, from Figure 25 we can appreciate that TUPLEWARE

performs a smaller number of nodes visits and that when the number of
workers increases the difference is even more evident3.

1 5 10 15
Number of Workers

103

3× 102

4× 102

6× 102

N
u

m
b

er
of

N
o
d

es

GigaSpaces KLAIM MozartSpaces Tupleware

Figure 25: Ocean model. Number of visited nodes (the grid size is 1200)

The difference in the number of visited nodes does not affect signif-
icantly the total time of execution for different values of the grid size
(Figure 27-28) mostly because the case study requires many read opera-
tions from remote tuple spaces (Figure 26).

3In Figures 25, the curves for KLAIM and MOZARTSPACES are overlapping and green
wins over purple.

72

As shown in Figure 26 the time of remote operation varies for different
tuple space systems. For this case study, we can neglect the time of
the pattern matching and consider that this time is equal to the time of
communication. For TUPLEWARE, this time is significantly greater than
that of the others. GIGASPACES, that has a centralized implementation,
most likely does not use TCP for data exchange but relies on a more
efficient memory-based approach. The communication time of KLAIM

and MOZARTSPACES is in the middle (in the plot with logarithmic scale)
but close to GIGASPACES by its value: for GIGASPACES this time varies in
the range of 0.0188 to 0.0597 ms, for KLAIM and MOZARTSPACES in the
range of 2.0341 to 3.0108 ms, and for TUPLEWARE it exceeds 190 ms4.

1 5 10 15
Number of Workers

10−1

100

101

102

T
im

e,
m

s

GigaSpaces KLAIM MozartSpaces Tupleware

Figure 26: Ocean model. Remote reading time (the grid size is 1200)

The total execution time generally follows the remote reading time as
shown in Figures 27 and 28. Even with the reduced number of visited
nodes, because of the high remote reading time, TUPLEWARE falls behind
other tuple spaces.

Matrix multiplication. This case study consists mostly of searching
tuples in remote tuple spaces, and this implies that the number of remote
read operations is by far bigger than the other operations. Therefore,
GIGASPACES outperforms other tuple space systems total execution time
(Figure 29).

As discussed above, we consider two variants of this case study: one
in which matrix B is uniformly distributed among the workers (as the

4In Figures 26, the curves for KLAIM and MOZARTSPACES are overlapping.

73

1 5 10 15
Number of Workers

104

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

1 5 10 15
Number of Workers

104

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Figure 27: Ocean model. Total
time (the grid size is 600)

1 5 10 15
Number of Workers

104

105
T

im
e,

m
s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

1 5 10 15
Number of Workers

104

105

T
im

e,
m

s

GigaSpaces

KLAIM

MozartSpaces

Tupleware

Figure 28: Ocean model. Total
time (the grid size is 1200)

matrix A), and one in which the whole matrix is assigned to one worker.
In the following plots, solid lines correspond to the experiments with
uniform distribution and dashed lines correspond to ones with the second
type of distribution (names ending with B-1 are used to refer this kind of
distribution).

Figure 30 depicts the average number of the nodes that it is neces-
sary to visit in order to find a tuple for each worker. When considering
experiments with more than one worker all tuple space systems except
TUPLEWARE demonstrate similar behavior: the total time almost coincides
for both types of the distribution. However, for the uniform distribution
TUPLEWARE exhibits always greater values and for the second type of
distribution, the values are significantly lower. The second case reaffirms
the results of the previous case study because in this case all workers
know where to search the rows of the matrix B almost from the very
beginning that leads to the reduction of the amount of communication,
affects directly the search time (Figure 31) and, in addition, implicitly
leads to the lower remote reading time (Figure 32, the remote reading
time is not displayed for one worker because only the local tuple space of
the worker is used). In contrast, for the uniform distribution TUPLEWARE

performs worse because of the same mechanism which helps it in the pre-
vious case: when it needs to iterate over all the rows one by one it always
starts the checking from the tuple spaces which were already checked at

74

the previous time and which do not store required rows. Therefore, every
time it checks roughly all tuple spaces.

1 5 10 15
Number of Workers

103

104

105

106

T
im

e,
m

s

GigaSpaces

GigaSpaces B-1

KLAIM

KLAIM B-1

MozartSpaces

MozartSpaces B-1

Tupleware

Tupleware B-1

Figure 29: Matrix multiplication. Total time (the matrix order is 100)

1 5 10 15
Number of Workers

104

2× 103

3× 103

4× 103

6× 103

N
u

m
b

er
of

N
o
d

es

GigaSpaces

GigaSpaces B-1

KLAIM

KLAIM B-1

MozartSpaces

MozartSpaces B-1

Tupleware

Tupleware B-1

Figure 30: Matrix multiplication. Number of visited nodes (the matrix order
is 100)

The results of this case study are generally consistent with the previous
ones: remote operations of GIGASPACES, KLAIM and MOZARTSPACES

are much faster and better fits to the application with frequent inter-
process communication; TUPLEWARE continues to have an advantage in
the application with a specific pattern of communication. At the same
time, we noticed that in some cases this feature of TUPLEWARE had some
side-effects that negatively impacted on its performance.

Block-wise matrix multiplication. We now introduce a variant of the
matrix multiplication algorithm supporting a higher degree of paralleliza-
tion and relying on a different communication strategy. In the “row-wise”

75

1 5 10 15
Number of Workers

10−1

101

103

T
im

e,
m

s

GigaSpaces

GigaSpaces B-1

KLAIM

KLAIM B-1

MozartSpaces

MozartSpaces B-1

Tupleware

Tupleware B-1

Figure 31: Matrix multiplication. Search time (the matrix order is 100)

1 5 10 15
Number of Workers

10−2

10−1

100

101

102

T
im

e,
m

s

GigaSpaces

GigaSpaces B-1

KLAIM

KLAIM B-1

MozartSpaces

MozartSpaces B-1

Tupleware

Tupleware B-1

Figure 32: Matrix multiplication. Remote reading time (the matrix order is
100)

multiplication, each worker evenly gets parts of the initial matrices and
searches for required rows in tuple spaces of the other workers. In the
block-wise approach, instead, the master keeps all data and workers ac-
cess its space to get them. The block-wise algorithm of multiplication
operates with matrices of smaller size (called blocks) obtained by evenly
splitting the initial matrices.

Suppose that matrix A is split into blocks of q rows and n columns
and matrix B is split into blocks of n rows and r columns. Then each cell
ci,j of the resulting matrix C can be iteratively obtained using formula
ci,j = ci,j + ai,k ∗ bk,j where i ∈ {1, .., q}, j ∈ {1, .., r} and k ∈ {1, .., n}.

In Listing 4.6 we report the actual code for Block-wise matrix multipli-
cation. The master first initializes matrix C (line 2) and adds to its local
tuple space the blocks for matrices A, B, C (lines 3-7), then it assigns
tasks (lines 9-10). Finally, it collects the results sent by the workers (lines

76

12-14) and notifies termination to them (lines 17-18). Each worker per-
forms the assigned tasks (lines 26-30) and terminates its work (line 24-25).
After getting a task (line 23) a worker gets the two assigned matrix blocks
(lines 26-27) and adds their product to the intermediate result (lines 28-
30). Finally, it puts the result into the space of the master (line 31) and
continues its work.

1 Master():
2 initMatrix(matrixC)
3 for i in range(blockNumber):
4 for j in range(blockNumber):
5 masterTS.out("matrixA", i, j , matrixA.block(i, j))
6 masterTS.out("matrixB", i , j , matrixB.block(i, j))
7 masterTS.out("matrixC", i, j , 0, matrixC.block(i, j))
8

9 for k in range(blockNumber):
10 masterTS.out("task", i , j , k)
11

12 for k in range(blockNumber∗blockNumber):
13 masterTS.in("matrixC", ?i , ? j , blockNumber, ?blockC)
14 C.block(i , j) = blockC
15

16 // poison tuples for all workers
17 for i in range(workerNumber):
18 masterTS.out("task", −1, −1, −1)
19

20

21 Worker():
22 while true:
23 masterTS.in("task", ?i , ? j , ?k)
24 if i == −1:
25 break
26 masterTS.rd("matrixA", i, k, ?blockA)
27 masterTS.rd("matrixB", k, j , ?blockB)
28 tempBlock = blockA∗blockB
29 masterTS.in("matrixC", i , j , ?count, ?blockC)
30 blockC = blockC + tempBlock
31 masterTS.out("matrixC", i, j , count+1, blockC)

Listing 4.6: Block-wise matrix multiplication. Listing of master and worker
processes

We compared the performances of the two matrix multiplication algo-

77

rithms using GIGASPACES since this implementation exhibited the best
performances in the tests for the row-wise version. In our experiments,
we divided the matrices into square blocks (e.g., q = r = n) to consider
just one parameter that we call block size (we used block size ∈ {5, 10}).
As shown in Figure 33, depending on the size of blocks and the number
of workers the block-wise multiplication exhibits different times. When
blocks of bigger size are used, we have that row-wise multiplication is
constantly outperformed.

As shown in Figure 34, the remote reading time is much higher for the
block-wise implementation; in this case reading requests are directed to
master, whereas in the row-wise case they are directed to workers.

1 5 10 15
Number of Workers

103

T
im

e,
m

s

Block-wise(10) Block-wise(5) Row-wise

Figure 33: Block-wise and row-wise matrix multiplications. Total time (the
matrix order is 100)

1 5 10 15
Number of Workers

10−1

T
im

e,
m

s

Block-wise(10) Block-wise(5) Row-wise

Figure 34: Block-wise and row-wise multiplications. Remote reading time
(the matrix order is 100)

78

Experiments with several host machines. The results of the previous
experiments which were conducted using only one host machine provide
us evidence that GIGASPACES has a more efficient implementation of
communication and that is very beneficial when many operations on re-
mote tuple spaces are used. Since we do not have access to GIGASPACES’s
source code we conjecture that it uses an efficient inter-process communi-
cating mechanism and do not resort to socket communications as done by
the other implementations.

To check whether GIGASPACES remains efficient when running over
a network, we have used Docker5. This technology allowed us to create
a number of lightweight containers, similar to virtual machines, that
are isolated environments equipped with an operating system where a
minimal set of software components is installed that allows using fewer
resources. Each container has a network interface to communicate with
others. Masters and workers were launched in their own containers
and each set of experiments was conducted 10 times. We conducted
experiments over two case studies: Sorting and Matrix multiplication with
uniform distribution and we focused on remote reading time, the most
frequently used operation in all case studies.

To further explore the impact of GIGASPACES’s inter-machine com-
munication, we have also conducted experiments on a real network: 16

identical virtual machines (Oracle VM VirtualBox6) evenly placed in 3
real servers (see in Remark 2). Each virtual machine is equipped with 3
GB RAM and Linux Lubuntu 16.04.

When evaluating performances of Sorting we have that the remote
reading time of the networked version is smaller than the one of the single
host version (Table 5). This might be related to the amount of processed
data (much larger than those of other case studies) and to the way Java
Virtual Machine (JVM) works. In the networked version, each tuple space
is managed by an independent JVM, whereas in a single host version only
one JVM is used.

5Docker is a software technology providing containers, promoted by the company Docker
- www.docker.com

6Oracle VM VirtualBox is a free and open-source hypervisor for x86 computers from
Oracle Corporation (www.virtualbox.org).

79

www.docker.com
www.virtualbox.org

When evaluating Matrix multiplication, we have that the remote read-
ing time exceeds significantly the one for the single host version (Table 6).
In our view, this is an evidence of the fact that GIGASPACES does not use
network protocols when all processes run on a single machine.

Remote reading time Total time

Single host version 60.0817 25701

Docker version 12.4407 28773

Networked version 12.2382 11112

Table 5: Sorting (host machines, 10× 106 elements, 15 workers)

Remote reading time Total time

Single host version 0.0223 1577

Docker version 2.867 19641

Networked version 1.3340 13918

Table 6: Matrix multiplication (host machines, the matrix order is 100,
15 workers)

As shown in Tables 5 and 6, the Docker and the networked versions
lead to the similar results. Indeed, their remote reading times differ
very little for both case studies. The total execution time is lower for the
network-based tests only because more powerful machines were used.

Discussion. The presented results provide us information on what are
the critical aspects of a tuple space system that deserve specific attention to
obtain efficient implementations. The critical choices are concerned with
inter-process and inter-machine communication and local tuple space

80

management.

In our experiments, we have varied the workload by changing the
size of the input data; in this way, we have been able to track the different
performances of the different tuple space systems. In our opinion, the
results of our experiments are sufficient to provide a full account of all
tuple space systems and increasing the workload would not introduce
any significant difference.

The first aspect, concerned with communication, is related to data
exchange and is influenced by the choice of algorithms that reduce com-
munication. For instance, the commercial system GIGASPACES differs
from the other systems that we considered for the technique used for
data exchange, exploiting memory based inter-process communication,
that guarantees a considerably smaller access time to data. Therefore,
the use of this mechanism on a single machine does increase efficiency.
However, when working with networked machines, it is not possible
to use the same mechanism and we need to resort to other approaches
(e.g. the TUPLEWARE one) to reduce inter-machine communication and
to have more effective communications. To compare GIGASPACES with
the other tuple space systems under similar conditions and thus to check
whether it remains efficient also in the case of distributed computing, we
have carried out experiments using a network where workers and mas-
ters processes are executed in separate environments (Docker containers,
virtual machines). The results of these experiments show that, although
the remote operations are much slower, in this case, performances of
inter-process communication of GIGASPACES are similar those of KLAIM

and MOZARTSPACES.

The second aspect, concerned with the implementation of local tuple
spaces, is heavily influenced by the data structure chosen to represent
tuples and by the corresponding data matching algorithms and also by
the lock mechanisms used to prevent conflicts when accessing the tuple
space. In our experiments, the performance of different operations on
tuple spaces varies considerably. The performances of a tuple space
system would depend also on the chosen system architectures which
determine the kind of interaction between their components. Indeed, it is

81

evident that all the issues should be tackled together since they are closely
interdependent.

82

Chapter 5

Replicating for efficiency

In this chapter, we extend the tuple space paradigm with a sharing
abstraction to improve data availability. In Section 5.1, we describe the
sharing abstraction and how it is applied to tuple spaces. Section 5.2
sheds some lights on the impact of improving data availability on a tuple
space implementation. Finally, Section 5.3 is devoted to the evaluation of
our new implementation.

5.1 Sharing abstractions

In this section, we discuss how sharing abstractions can be added to
tuple spaces and, by means of an example, we provide some intuition on
how such abstraction can be beneficial when programming applications
for the Internet of Things (IoT). One of the main problems with data avail-
ability is data consistency; we will also discuss how data consistency in
presence of replication affects efficiency and correctness of the operations
on tuple spaces.

5.1.1 Motivating example

To show the benefit of sharing abstractions for tuple spaces we con-
sider a scenario borrowed from the IoT realm [92]. IoT can be seen as the

83

extension of the Internet to the world of physical devices. Usually, an IoT
system consists of a number of communicating devices that collect and
exchange data, and coordinate their work over a distributed environment.

Let us consider a system that controls the average temperature in a
house consisting of several rooms, each of them equipped with different
devices: temperature sensors, alerts, and controllers. When the average
temperature exceeds a certain threshold the system has to activate alerts
in the whole house.

Figure 35: Smart home

Our scenario is presented in Figure 35. Temperature sensors of each
room are situated at the four corners of the rooms and share information
about the measured temperature with the other devices inside the room. A
controller reads the information about temperature, computes the average
value and, if the average is greater than a threshold, notifies the dangerous
situation to the group of alert devices. We can distinguish two functional
groups: the group of devices located in the same room and the group of
alert devices and controllers. Only devices within the same group share
information. For instance, sensors of the first room do not share data with
the controller of the second room.

5.1.2 Description of the sharing abstraction

Appropriate abstractions are needed for programming distributed
systems when data are shared not among all nodes of the network but
only among specific groups. In our approach, when data have to be

84

shared among a group of nodes, we select a subset of them on which the
data is locally copied.

When implementing data sharing we distinguish three different levels:
a data-level where data consistency is defined; an operations-level where
operations on data are defined; and a location-level where data replicas
are determined. This separation of concerns makes it easier to modify
and tune an application by selecting the appropriate replication and
consistency strategies.

The nodes of a network can be divided into several groups according
to their communication pattern or functional meaning. It is assumed that
groups should be determined by programmers. For instance, in our moti-
vating example for the devices we have three “ROOM” groups, one for
each room (“ROOM1”, “ROOM2”, “ROOM3”) and an“ALERT_GROUP”.
An example of how several devices of the first room are initialized is
shown in Listing 5.1: the controller belongs to both of them (line 2),
whereas alerts and temperature sensors to just one group (lines 4, 6).

1 // for a controller
2 controllerNode.init(refAddress, {"ROOM1", "ALERT_GROUP"});
3 // for an alert
4 alertNode.init (refAddress, {"ALERT_GROUP"});
5 // for a temperature sensor
6 temperatureSensorNode.init(refAddress, {"ROOM1"});

Listing 5.1: Initialization of tuple spaces

From the programming point of view, using a single operation to
access and modify data of several nodes makes programming clear and
simple. Moreover, since our sharing mechanism relies on the use of
replication, we may improve performance while hiding the complexity of
its implementation.

When we consider data placement, our tuple space uses implicitly
replication to make data more available. For each group, a node can be
either a replica node which stores a tuple space for the group; or an ordinary
node which does not store data but can perform operations which will
be directed to a replica node. In Figure 36, an example of the network is
presented where replica nodes are marked in green and ordinary nodes

85

are marked in blue. The network consists of 6 nodes and 2 sharing groups
G1 and G2. Tuple spaces of each group are separated. However, every
node can be a part of several sharing groups and, depending on how data
are replicated, a node can be a replica node for one sharing group and an
ordinary node for another one. For instance, in our example, the node N3
is a replica node for the group G1 and an ordinary node for the group G2.

N1

N2

N3 N4

N5

N6

G1 G2

G1

G1

G2

G2

G2

Figure 36: An example network

5.1.3 Operations on data and their consistency

Data consistency. We consider consistency model and operations on
tuple spaces similar to the ones of RepliKlaim [76]. However, in our
approach, the consistency is defined not on the level of operations but on
the level of data which are used in applications. Thus, data consistency is
defined separately from operations on these data and the standard Linda
operations out, rd and in are not distinguished according to the data
consistency type (strong, weak, . . .) like in RepliKlaim. In our approach,
the consistency type is a property of tuples, and it determines how the
tuple space performs operations. We consider two types of consistency:
strong and eventual (weak) consistency.

Operations on data. Depending on the required consistency type, oper-
ations on a tuple space act differently. Operations with strong consistency
are atomic and guarantee that the states of all the replicas are consistent

86

immediately after the operation is performed. Operations with weak
consistency are less strict as a replica can reach a consistent state after a
certain operation is performed. Due to this difference, operations with
weak consistency perform usually faster.

To explain how operations on data can be used, we consider the case
of alert notification taken from the motivating example. Here, we provide
code snippets to better describe the sharing and give a more structured
description of how to use framework later. When the average temperature
exceeds a certain threshold, one of the controllers sends an alert by sharing
a tuple (Listing 5.2) with the group “ALERT_GROUP”, strong consistency
is required (line 1). Alerts are waiting for notification (Listing 5.3), with
the blocking read operation (line 2) and proceed when they see the tuple.

1 Tuple alertTuple = new Tuple("alert", true) ;
2 alertTuple .setConsType(eConsistencyType.STRONG);
3 controllerLoc.out(alertTuple, "ALERT_GROUP");

Listing 5.2: Controller notifies alerts about an alert situation

1 Tuple template = new Tuple("alert", true) ;
2 boolean result = alertLoc.read(template, "ALERT_GROUP");
3 notifyAboutDangerousSituation();

Listing 5.3: Alert waits for an alert notification

Listing 5.4 shows a snippet where a temperature sensor of the first
room updates its data about the current temperature. First, it tries to
remove the previous data if they were shared using the non-blocking
withdrawing operation in_nb (lines 2-3). Operation in_nb is a variant
of in and it either finds a matching tuple right away and returns true,
assigning values to variables in the template, or does not find it and
returns false without doing any assignments. Then, it shares a new value
of temperature using weak consistency (lines 5-7). In both cases, the
shared group is “ROOM1”.

1 // remove the previous data of the sensor if they exist
2 Tuple template = new Tuple("temperature", sensorID, Double.class);
3 boolean result = tempSensorLoc.in_nb(template, "ROOM1");
4 // write a current data of the sensor

87

5 Tuple tuple = new Tuple("temperature", sensorID, currentTemp);
6 tuple.setConsType(eConsistencyType.WEAK);
7 tempSensorLoc.out(tuple, "ROOM1");

Listing 5.4: A temperature sensor updates its data

The writing operation out(t)@G (where G is a group of locations shar-
ing data) with strong consistency terminates only when the tuple t is
added to all replica nodes. It is implemented as follows: the process
performing the writing operation sends a tuple t to the replica node it
is connected to, then, this replica node disseminates t to other replica
nodes and sends the notification to the process when the dissemination is
finished. In case of weak consistency, the replica node sends a notification
to the process immediately after putting t into its local tuple space and
only after it sends a copy of t to other replica nodes. In both cases, the
dissemination of the tuple and the waiting for the confirmation run in
parallel. An example of how the writing operation is defined and operates
is shown in Figure 37. Three levels are indicated: a data-level where a
tuple with weak consistency is defined, an operation-level where out oper-
ation is called and a location-level where the network overlay is defined.
On the location-level, the node writes to the replica R1 and immediately
receives a confirmation “conf” while the replica R1 distributes a copy of
the tuple to other replicas R2 and R3. Using dashed lines we demonstrate
the difference between tuples with weak and strong consistencies: writing
a tuple with weak consistency we do not need to wait until all actions
(dashed lines) are finished.

Withdrawing a tuple requires a mechanism that guarantees that only
one copy can be taken when several concurrent processes ask for it at
different replica nodes. For each sharing group, there is a primary replica
node. This node acts as a judge when two or more concurrent processes
try to withdraw the same tuple. The primary replica node is similar to the
owner of the tuple used in RepliKlaim. However, since we aim to work
with dynamic networks where nodes can enter and leave the network,
we cannot rely on a fixed node, since it might disappear. To this end,
the primary replica node may change over time: the only requirement
is that for each sharing group there should be only one primary replica

88

Define a tuple t with

the weak consistency

R2

R3

R1out(t, group)

Location - levelOperation - levelData - level

Node

conf

out

out

conf

conf

out

Figure 37: The writing operation

node. When one of the replicas wants to withdraw a tuple it asks the
primary replica node whether it is possible: one of the requests will be
accepted, whereas the others will be discarded and the issuing processes
have to search for another matching tuple. If the withdrawn tuple has
strong consistency, it is returned to the process only after all its copies
have been removed from the replica nodes they are stored in. In case of
weak consistency, the tuple is returned immediately and its copies are
removed asynchronously. An example of how withdrawing operations
do work is shown in Figure 38. First, a node asks the closest replica R1
to withdraw a certain tuple. When this node R1 finds a matching tuple,
it asks a primary replica node PR whether this tuple exists. Then, node
PR removes a copy of the tuple and sends requests to remove this tuple
from other replicas. In case of a tuple with strong consistency actions
denoted with dashed lines should be finished before the node PR sends a
confirmation to the node R1.

Reading operations do not change tuple spaces, so they behave the
same regardless of the consistency type: a process asks a replica and this
replica searches only in its own tuple space without involving the primary
replica. Hence, the reading time for a node depends on the location of the
closest replica.

89

conf R3

R1Node

tuple t

in
ask PR

conf

remove t

R2

PR

reply

remove t

Figure 38: The withdrawing operation

5.2 Implementing replication

In this section, we provide additional details about the actual imple-
mentation of the tuple space. In particular, we talk about a network
overlay, a routing table, and replication strategies. At the end, we provide
a short guide of how to use our new framework of tuple spaces with
sharing.

Figure 39 shows the main components of our framework and the way
they interact. The block of tuple spaces and their operation is responsible
for data storing and data manipulation. Replica placement strategies
specify rules for computing the set of locations where it is more beneficial
to store data. Network overlay is responsible for maintaining information
about replicas (routing table) and gathering data about the network.

Network overlay. The replication mechanism depends on the overlay
network designed to coordinate nodes that share data. The possible
operations are concerned with main operations that can be done on this
network and are summarized below:

• connecting to the network;

• leaving the network;

• determining the replica placement;

• adding or removing a replica.

90

Network overlay

For all nodes:

Network discovery

For the primary replica node:

Computing replica placement

For replica nodes:

Maintaining of a routing table

Operations on a tuple space

TCP

Tuple space

(for replica

nodes)

Replica nodes

Calls of

operations of

tuple spaces

Results of

operations

Replica placement strategies

Information about

the network
Replica nodes

Betweenness

centrality

Closeness

centrality
Hot-Spot

Processing

operations on

a tuple space

Program code

Definition of data with its consistency (weak,

strong), calls of operations, the selection of the

replica placement strategy

Figure 39: The diagram of components

A node joining the network has to declare to which sharing groups
it wants to belong. The procedure of finding replica nodes consists of
several steps. The pseudocode of this procedure is presented in Figure 40.
If a node uses several groups, it has to follow this procedure for each
of them. When a node connects to the existing network, first, it has
to obtain information about existing replica nodes (line 2) by getting
this information from any known node of the network. Then, for each
group, the new node chooses one replica node and notifies its choice by
connecting to it (lines 6-7). In our implementation, the node chooses the
closest replica. Since the chosen replica node is aware of a new node of
the network, the information about the node can be taken into account
while computing the optimal replica placement for the sharing group.
For each sharing group, every replica node knows all connected nodes
and according to the replication strategy can decide whether the replica
should be moved to another node or it is, instead, necessary to add or

91

remove a replica. If there are no replica nodes or it is not possible to
connect to any of them, the node becomes a replica node (line 4).

1: function FINDREPLICANODES(referenceAddress, group)
2: replicaList = GETREPLICANODES(referenceAddress, group)
3: if replicaList.empty() then
4: ESTABLISHREPLICANODE()
5: else
6: replicaAddress = CHOOSEREPLICA(replicaList)
7: CONNECTTOREPLICANODE(replicaAddress)
8: end if
9: end function

Figure 40: Algorithm. Connect to the network

Routing table. Each replica node maintains a routing table that con-
tains the list of records about each group with all necessary information.
As shown in Figure 41, the record of a group contains the following in-
formation: the addresses of replica nodes for the group, the address of
the primary replica, the time stamp indicating when it was last modi-
fied, a hash value of the group information that is used to check if this
information is changed.

group name

- replica addresses

- primary replica

- time stamp

- hash value of group’s content

Figure 41: The record of the routing table

Periodically replica nodes ask other nodes for an update of the routing
table. Each group has only one primary replica node that is assigned two
additional tasks. First, it is responsible for finding an optimal replica
placement for its group and has to notify the other nodes when the current
configuration of replica nodes changes. Second, it has to play the arbiter
role for withdrawing operations when several processes look for the same
tuple. Replica nodes and the primary replica node are selected using the

92

information about all nodes of the group and according to the chosen
replication strategy.

Replica placement and replica migration. Over time, network topol-
ogy and nodes features might change, hence, performances, such as the
network throughput, might worsen due to the fact that replica placement
may not be optimal anymore. Thus, it is necessary to periodically check
the configuration of replica nodes. This requires two independent ac-
tions, namely network discovery and replica placement computation.
For network discovery, every replica node collects information about the
connected nodes and shares it with the primary replica node. For instance,
to collect information about latencies in the network, a node can ask all
replicas to provide a set of nodes to examine, then the nodes measure
latencies of connections with them and return this information to the
replica. In large networks, it is difficult to examine latencies between all
pairs of nodes, so, often only a subset of them is considered.

To avoid conflicts between different versions of the routing table, only
the primary replica node is responsible for computing replica placements.
It asks replica nodes to provide available network information, computes
the replica nodes on the basis of available information of sharing nodes
and changes it if necessary. If a new replica placement is different to
the current one, it is necessary to introduce new or remove old replicas.
When a node becomes a replica node, it does receive a copy of the tuple
space and the updated routing table in order to be enabled to receive
and process operations on the tuple space. When a node stops being a
replica node, the coordination information stored on it are removed and it
has to choose a replica to connect. All ongoing requests which were sent
to it have to be redirected to other replica nodes. All nodes previously
connected to the "was" replica node have to choose a new closest replica.

Replication strategies. To determine the set of the nodes where replicas
should be placed, we introduce a replication strategy that is a function
S : N × Inf → N that receives as input a set of nodes and information
about them and returns a set of nodes where data should be placed.

93

Exact locations of the replicas determined by the replication strategy
are hidden to programmers. All nodes sharing the same data should
use the same strategy. In our implementation, the node (represented
by the KlavaNode class) has a parameter ’replication strategy’ that has
to be set during the initialization phase. A strategy can be any class
which implements a specific interface, whose main method returns a set
of replica nodes that is ordered by scores; the node with the highest score
becomes a primary replica node.

Replication strategies can exploit different information such as node
availability, computational performance, and so on. In this work, we con-
sider strategies for decreasing the average data access time by considering
information on latencies between nodes in the network. During their
work, all nodes collect the data about the latencies between nodes and
send them to the replica nodes. Replica nodes share this data with the
primary replica that calculates the optimal replica placement. We rely on
the following metrics and techniques:

• Betweenness centrality [77] that is based on the number of shortest
paths that pass through each vertex.

• Closeness centrality [78] that is based on the sum of the shortest paths
between the vertex and all other vertices in the graph.

• Hot-Spot [27] that aims at placing replicas close to the nodes that
generate the greatest load. In our case, the parameter of the load is
the total number of read/write operations of the node.

The default number of replicas equals dlg ne where n is the number of
nodes in the group. For betweenness and closeness centralities, the node
with the highest centrality value becomes the primary replica node. For
Hot-Spot, the primary replica node is the one that performs the highest
number of operations.

A short guide to using tuple spaces with data sharing. Although the
underneath implementation is quite different, the application interface
of our tuple space with sharing is pretty similar to one described in

94

Chapter 3. In what follows, we describe how the tuple space with sharing
can be used while highlighting changes in the application interface of the
framework.

To connect to the network, a new node has to specify (i) the sharing
groups, (ii) at least one address to connect to the sharing network, (iii) the
replication strategy for replica placement. Profiles of replication aggregate
this information and define how data are stored and distributed. Each
profile corresponds to a certain replication group and is identified by its
group name. Each node can have several profiles that have to be specified
while initializing the node.

The object of the ReplicationProfile class represents a replication
profile; it contains:

• a group name that is an identifier of the profile.

• a replication strategy that defines how data are distributed. An
object of any class that extends IReplicationStrategy abstract class
can be used. The strategy allows setting ‘the number of replicas.

• an implementation of tuple spaces that can be any class that imple-
ments ITupleSpace interface.

1 // define a locality and a node
2 Physical locality = new PhysicalLocality(address);
3 node = new KlavaNode(locality);
4 // defining replication strategies
5 BetweennessStrategy syncStrategy = new new BetweennessStrategy();
6 syncStrategy.setReplicaNumber(2);
7 BetweennessStrategy dataStrategy = new new BetweennessStrategy();
8 dataStrategy.setReplicaNumber(10);
9 // defining replication profiles

10 ReplicationProfile syncProfile = new ReplicationProfile("syncGroup",
11 syncStrategy, TupleSpaceHashtable.class);
12 ReplicationProfile dataProfile = new ReplicationProfile("dataGroup",
13 dataStrategy, IndexedTupleSpace.class);
14 node.init (refAddresses, Arrays.asList({ syncProfile , dataProfile })) ;

Listing 5.5: An example with two replication profiles

95

An example with two replication profiles is presented in Listing 5.5.
In the beginning, we define a physical address of the node (line 2), a
node itself (line 3), and two replication strategies (lines 5-8). The first
profile (lines 10-11) is associated with the group “syncGroup”, the sharing
group managing data for synchronization primitives, such as counters
and semaphores. The data used by these groups should have strong
consistency and possibly a small number of replicas to keep the data
access time low. The second profile (lines 12-13) is associated with the
group “dataGroup”, the group of nodes that shares some data that can
have weak consistency. In the end, profiles are used for the initialization
of the node (lines 14).

Operations on tuple spaces with sharing are the same as for ordinary
tuple spaces. The difference lies in how we define localities in program-
ming codes. Instead of localities we pass a string name of a group (see
Listing 5.6) that refers to a dynamically changeable collection of localities.

1 void out(Tuple tuple, String groupName);
2 void rd(Tuple template, String groupName);
3 void in(Tuple template, String groupName);
4 void rd_nb(Tuple template, String groupName);
5 void in_nb(Tuple template, String groupName);

Listing 5.6: Signatures of operations for the tuple space with sharing

Tuples are characterized by consistency level that has to be set when
tuples are emitted via out operation (see Listing5.7). Programmers can
choose to set either weak consistency (this is set by default) or strong
consistency. Consistency level is not specified for templates but it is taken
into account when matching tuples and managing copies of tuples.

1 Tuple tuple = new Tuple("counter", 10);
2 tuple.setConsType(eConsistencyType.STRONG);
3 node.out(tuple, "SYNC");

Listing 5.7: An example of the writing operation out

While initializing a node, it is possible to choose a replication strategy
among the following classes: BetweennessStrategy, ClosenessStrategy,
HotSpotStrategy. In Listing 5.8, an example of how to define a replica-
tion strategy is shown. Additionally, it is possible to set a maximum

96

number of the replicas for each group using method setReplicaNumber

(a default value is dlg ne where n is a number of nodes in a group). It is
worth noting, that the number of replicas should be set once and has to
be the same for all nodes of a group.

1 IReplicationStrategy strategy = new BetweennessStrategy();
2 strategy .setReplicaNumber(1);

Listing 5.8: Initialization of a replication strategy

To introduce a new replication strategy it is necessary to implement
methods of the IReplicationStrategy abstract class. As shown in List-
ing 5.9, the main methods are setData, getReplicaNodes, and getPrimaryNode.
Method setData loads data to be processed. Up to now, we have only
considered nodes that collect information about latencies between nodes
and, thus, our replication strategies are based only on this kind of infor-
mation. Method getReplicaNodes computes a number of replica nodes
and receives as parameter a subset of the nodes of the network. Method
getPrimaryNode determines a primary replica among replica nodes.

1 // set data to be processed
2 public abstract void setData(NetworkDiscoveryInfo data);
3 // get replica nodes
4 public abstract ArrayList<String> getReplicaNodes(Set<String> nodes);
5 // get primary replica
6 public abstract String getPrimaryNode(ArrayList<String> replicaNodes);
7 // set a custom number of replicas
8 public abstract void setReplicaNumber(int numberOfReplicas);

Listing 5.9: Methods of the IReplicationStrategy abstract class

5.3 Evaluation of the implementation

In this section, we assess the implementation of the tuple space with
sharing. We start by describing the IoT case study used to evaluate the
proposed tuple space. Then, we describe the experiments we conducted
listing the parameters we varied and the measured metrics. In the end,
we present the results of our experiments.

97

P

P

P

P

P

C

P

P

P

P

P

P

C

P

P

P

P

C

A A

A

Figure 42: Sensor network

5.3.1 Case study

To evaluate the performance of the proposed tuple space and compare
different replica placement strategies we use a generalization of the case
study presented in Section 5.1. This generalization allows us to be para-
metric with respect to the network topology. We consider the network of
mobile homogeneous sensors with two types of devices: producers (P)
that generate information in the network, controllers (C) that collect and
process the information generated by producers (Figure 42). The physical
network relies on a number of antennas A, spread across an area, that
transmit signals.

In the experiments, for each group, we consider one controller and
many producers. Periodically, producers generate information and the
controller performs most of the data retrieval operations. Therefore, the
number of querying operations that the controller performs becomes im-
portant. To evaluate its performance in our experiments we consider two
cases: (i) the controller just reads the information provided by producers
and (ii) it withdraws this information. For each run, the controller is
placed in a random node of the network.

5.3.2 Network topologies

To simulate networks we have chosen 2 representative classes of
graphs: scale-free [93] and random graphs, based on the Erdös-Rényi mo-

98

del [94]:

• Undirected scale-free graph, a graph with a power law degree dis-
tribution of nodes (parameters1 α = 0.49, β = 0.02, γ = 0.49). For our
experiments, it is important that scale-free graphs create hubs, i.e.,
nodes that have much more connections than others.

• Random graph with the probability of an edge to be present that
equals 2 ∗ lnn/n.

Scale-free graphs are well-suited for representing Internet topologies,
while the second ones are usually used to model complex networks. Each
graph has 50 vertices. We have chosen this number since it is close to
the maximum number of physical threads that the machine we used for
experiments can have. Experiments with bigger graphs lead to results
with a very high standard deviation, making their interpretations difficult.
The weight of each edge is randomly chosen in the range [15, 45]. The
weight represents a network latency between nodes in milliseconds. In
this way, each tuple space performs requests and replies with a delay
corresponding to the latency between nodes.

5.3.3 Assessment methodology

Execution environment. We conducted our test on an Ubuntu server
(version 14.04.5 LTS) with 4 processors Intel Xeon E5-4607, each with 6

cores, 12 M Cache, 2.20 GHz, and with hyper-threading, offering in total
48 threads and 256 GB RAM.

Measured metrics. For our evaluation, we collect the following mea-
sures:

• Writing time: the time required to write a tuple into a shared tuple
space.

1α and γ are probabilities for adding a new node connected to an existing node chosen
randomly according to the in-degree and out-degree distributions correspondingly; β is the
probability of adding an edge between two nodes.

99

• Reading time: the time required to read a tuple from a shared tuple
space using a template.

• Withdrawing time: the time required to withdraw a tuple from a
shared tuple space using a template.

Since the numbers of operations performed by a producer and a con-
troller differ significantly, we measure separately the reading and with-
drawing times for the producers and the controller. We conducted each
set of experiments 20 times and computed the average value and the
standard deviation for each metrics.

For the case study, we considered the following parameters:

• Number of replicas: r ∈ {1, 5, 10, 25, 50}. When we talk about the
number of replicas, we mean the number of data instances.

• Graph of the network: scale-free graph, random graph.

• Replication strategy: betweenness centrality, closeness centrality
and Hot-Spot algorithm, but also the random strategy that selects
replica nodes randomly for each run2.

The computation of the betweenness and the closeness centralities is
done by means of the JUNG library3.

5.3.4 Results

In all plots we use the following abbreviations for the replica place-
ment strategies: BC stands for betweenness centrality, CC stands for
closeness centrality, HS stands for the Hot-Stop strategy and RS stands
for the random strategy. The postfix -w stands for operations with weak
consistency and the postfix -s stands for operations with strong consis-
tency. The abbreviation LB stands for an ordinary location-based tuple

2Since we have only one node which performs most of the operations, we combined
Hot-Spot approach with the strategy based on the betweenness centrality and, thus, the
primary replica is always the node where the controller resides.

3JUNG - Java Universal Network/Graph Framework. The library is available from
www.jung.sourceforge.net.

100

www.jung.sourceforge.net

space (without sharing and based on explicit locations). Using this tuple
space, all processes write their data locally and look for other data by
visiting all other location one by one.

First, we consider the performance of operations performed by pro-
ducers and, then, we evaluate the performance of operations performed
by the controller.

Figures 43-44 show that with strong consistency and with strategies
based on betweenness and closeness centralities the writing time grows
monotonously with the number of replicas. With weak consistency, the
writing time is generally lower than with strong consistency for all strate-
gies and decreases as the number of replicas increases.

1 5 10 25 50
Number of Replicas

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

RS-s

RS-w

Figure 43: Writing time (scale-free graph)

1 5 10 25 50
Number of Replicas

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

RS-s

RS-w

Figure 44: Writing time (random graph)

It is worth noting that, when computing betweenness and closeness
centralities on our graphs, the sets of the nodes with the highest score

101

turns out to be similar. In all experiments, the node with the highest
score is the same one and this explains why these two strategies behave
identically when only one replica is considered.

1 5 10 25 50
Number of Replicas

102

2× 102

3× 102

4× 102

6× 102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

RS-s

RS-w

Figure 45: Withdrawing time (scale-free graph)

1 5 10 25 50
Number of Replicas

102

2× 102

3× 102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

RS-s

RS-w

Figure 46: Withdrawing time (random graph)

Figures 45-46 show that the reading time does not change much when
the number of replicas increases with any of the strategies. For the Hot-
Spot one, the reading time is similar to that of the random strategy because
a primary replica is placed where the controller process resides, and it
is chosen randomly. For the withdrawing operation, the location of the
primary replica is the one that determines mostly the time required to
perform it. Considering strong consistency, the withdrawing time mostly
grows for all the strategies except for the random one.

The reading operations for weak and strong consistencies are the same
and their duration depends only on where the closest replica is placed.

102

Figures 47-48 show that the biggest difference between the strategies is
when 1 and 5 replicas are considered. Indeed, the fewer replicas are used,
the more actual data locations affect the average access time. This is the
reason why strategies based on betweenness and closeness centralities
perform better. When the number of replicas is higher than 5, the differ-
ence between the strategies is less evident. When the number of replicas
increases we have that the probability to have a closer replica is higher
and thus the reading time decreases.

1 5 10 25 50
Number of Replicas

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

RS-s

RS-w

Figure 47: Reading time (scale-free graph)

1 5 10 25 50
Number of Replicas

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

RS-s

RS-w

Figure 48: Reading time (random graph)

Performances of the querying operations of the controller were mea-
sured separately. The results for the strategies based on betweenness
and closeness centralities and the random strategy are similar to those
exhibited by producers.

With the Hot-Spot strategy, the reading operation is local for the con-

103

troller because a replica is placed in its node; thus, the reading time is
very low. The withdrawing operation with weak consistency is very
fast because the replica in the node of the controller is a primary replica
(Figures 49-50). With strong consistency, the withdrawing time of the
Hot-Spot strategy is similar (Figure 49) or better (Figure 50) than the
one exhibited with the strategies based on betweenness and closeness
centralities.

1 5 10 25 50
Number of Replicas

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

LB

RS-s

RS-w

Figure 49: Withdrawing time (controller, scale-free graph)

1 5 10 25 50
Number of Replicas

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

LB

RS-s

RS-w

Figure 50: Withdrawing time (controller, random graph)

To evaluate the impact of the data sharing, we considered also the
implementation of the same case study by relying on a tuple space using
explicit locations but without data sharing. Each producer and controller
has its own tuple space. All writing operations are local and to search for
data it is necessary to use a specific address of the tuple space. Therefore,

104

1 5 10 25 50
Number of Replicas

10−1

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

LB

RS-s

RS-w

Figure 51: Reading time (controller, scale-free graph)

1 5 10 25 50
Number of Replicas

10−1

100

101

102

T
im

e,
m

s

BC-s

BC-w

CC-s

CC-w

HS-s

HS-w

LB

RS-s

RS-w

Figure 52: Reading time (controller, random graph)

to collect the information provided by producers, the controller has to
visit all their tuple spaces. Since data are not replicated, there is no
distinction between strong and weak consistencies and the number of
replicas is also not considered. From Figures 49-50 it is evident that it takes
more time to perform withdrawing operations with strong consistency
for tuple spaces with sharing than for the locations-based version when
the number of replicas exceeds a given threshold (5 for the scale-free
graph and 1 for the random graph). However, with weak consistency,
withdrawing operations take less time for all the strategies except the
random one. This is more evident when the scale-free graph is used. In
our experiments, the reading time is very similar to the withdrawing time.
And, hence, taking into account Figures 47-48, the reading time of the
locations-based version is higher than the reading time of tuple spaces

105

with data sharing (see Figures 51-52).

1 3
Number of Replicas

100

8× 10−1

9× 10−1

T
im

e,
m

s

Controller

Figure 53: Reading time of controller (smart home case study)

To validate the results of our experiments, we have also implemented
the smart home scenario described in Section 5.1 using several machines.
In the case study, we do not distinguish groups of rooms but have a single
group for all rooms. We deployed the application in this way: the code
of each room (i.e., the code of the devices) has been placed on a different
server, and the scenario consists of a cluster of three servers/rooms. For
the test, we considered 1 and 3 replicas (that corresponds to the number
of rooms) and the strategy based on the betweenness centrality. We
measured the reading time for the controller (see Figure 53) and the
results are in line with the ones of our simulations.

106

Chapter 6

Conclusion

Communication among the components is a crucial point when design-
ing a distributed system. The choice of tools and their implementations
can seriously impact the overall performance of the system. This work
has been devoted to the evaluation of tuple spaces, that can be seen as
an associative shared memory, as a suitable tool for building distributed
systems. As a representative of the indirect communication, the tuple
space model differs significantly from approaches of other communication
paradigms, such as interprocess communication. Programming simplicity,
time- and space- decoupling are the main features of tuple spaces that
greatly facilitate programming of interactions between components of
a distributed system. The price to pay for these features is in terms of
performances.

We assessed a number of tuple space’s implementations. First, we
preselected some of them on the base of their description and, then,
experimentally evaluated their performances and discussed how certain
techniques and approaches affect performances of tuple spaces and which
of them are more important than others. In particular, we focused on the
cost of pattern matching and communication.

We presented an improved implementation of tuple spaces as a mid-
dleware. The implementation of KLAIM, KLAVA, was taken as the starting
point. The main aim was to improve its pattern matching algorithm. The

107

previous version was obsolete and not suitable to be used for building
modern applications. The main concerns were related to the performances
of communication and pattern matching. Thus, we implemented several
tuple spaces based on different data structures and data querying tech-
niques that considerably improved the performances of data retrieving
operations on tuple spaces and their throughput. We added the possibil-
ity for programmers to choose which implementation of tuple spaces to
use. Such choice would depend on the data and the patterns used in the
specific applications. We improved also the parts related to interprocess
communication and added a number of new operations that aim at reduc-
ing the number of tuple space’s accesses. The new implementation was
shown to outperform the old one on several aspects; in particular, it exhib-
ited faster pattern matching and faster communication. We also compared
the performance of our new implementation with several others, namely
GIGASPACES, MOZARTSPACES, and TUPLEWARE.

Then, we have extended our implementation with data sharing ab-
straction. Sharing simplifies programming communication among several
processes: the programmer specifies only a group of nodes that share data
and do not care where data are actually stored. At the same time, the mid-
dleware guaranteeing the sharing makes it possible to optimize the actual
placement of data to improve average access time. The new implementa-
tion allows specifying how to distribute (via replication strategies) data,
how data have to be stored (by selecting the appropriate data structure)
and what consistency model to use for them. Each interaction among
nodes can be described in terms of sharing groups. Information about
each group is aggregated in replication profiles that programmers have to
define in the code. Moreover, programmers specify sharing groups and
at run-time the middleware optimizes the data placement adjusting it to
certain network characteristics. The description of the abstraction and
the implementation of the tuple space with sharing were accompanied
by experiments used to validate proposed techniques. The results of
the experiments, where we varied different replication strategies, con-
sistency models and the number of replicas, confirmed our expectations.
By choosing each of these parameters, it is possible to improve perfor-

108

mances by resorting to programming with sharing rather than ordinary
locality-based programming.

Directions for future works. We are considering several directions for
future work. They are concerned with the extension of the current im-
plementation, its improvement to meet the requirements of modern dis-
tributed systems, and with the development of methodologies that make
it easier for programmers to tune applications using our framework.

First, programming facilities make it easy to extend our framework
with new replication strategies, implementations of tuple spaces, and
different kinds of consistency. Providing richer tools to programmers
allows tuning applications more precisely. Talking about replication
strategies, one possibility we are considering is to add a fault tolerance
strategy that can cope with a predetermined (parametric) number of
failures. Similarly, new implementations of tuple spaces can be added, e.g.
the one that represents a queue or a stack, that can be naturally used in
applications that tend to emulate these data structures on top of canonical
tuple spaces.

Another direction is to implement additional features and require-
ments that modern distributed systems demand. The first one is data
security. In fact, access control and secure communication channels are
standard requirements of many distributed systems that work over the
Internet. The second one is scalability: the algorithm for choosing replicas
placement can become a bottleneck that prevents applications to be scal-
able. In the context of our work, it is necessary to find a balance between
the amount of network information to be analyzed and the quality of
replica placement.

The last (but not least) direction is to help programmers in their de-
cision on how to use the available set of techniques provided by the
framework. We believe that this process can be automated, according to
the specific application; the developer could be provided with the appro-
priate combination of tools which will optimize the overall performance
of his application.

109

References

[1] Vitaly Buravlev, Rocco De Nicola, and Claudio Antares Mezzina. Tuple
spaces implementations and their efficiency. In Coordination Models and Lan-
guages - 18th IFIP WG 6.1 International Conference, COORDINATION 2016,
Held as Part of the 11th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016,
Proceedings, pages 51–66, 2016. doi: 10.1007/978-3-319-39519-7_4. URL
https://doi.org/10.1007/978-3-319-39519-7_4. xvi

[2] Vitaly Buravlev, Rocco De Nicola, and Claudio Antares Mezzina. Evaluating
the efficiency of linda implementations. In Concurrency and Computation:
Practice and Experience 2017. John Wiley and Sons, 2017. doi: 10.1002/cpe.4381.
URL https://doi.org/10.1002/cpe.4381. xvi

[3] Vitaly Buravlev, Rocco De Nicola, Alberto Lluch Lafuente, and Clau-
dio Antares Mezzina. Improving availability in distributed tuple spaces
via sharing abstractions and replication strategies. In PDP 2018, 2018. xvi

[4] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems -
concepts and designs (5. ed.). International computer science series. Addison-
Wesley-Longman, 2012. ISBN 978-0-13-214301-1. 1, 11

[5] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007. ISBN 978-0-13-239227-3.
2

[6] Davide Balzarotti, Paolo Costa, and Gian Pietro Picco. The
lights tuple space framework and its customization for context-
aware applications. Web Intelligence and Agent Systems, 5(2):215–
231, 2007. URL http://content.iospress.com/articles/
web-intelligence-and-agent-systems-an-international-journal/
wia00114. 4

110

https://doi.org/10.1007/978-3-319-39519-7_4
https://doi.org/10.1002/cpe.4381
http://content.iospress.com/articles/web-intelligence-and-agent-systems-an-international-journal/wia00114
http://content.iospress.com/articles/web-intelligence-and-agent-systems-an-international-journal/wia00114
http://content.iospress.com/articles/web-intelligence-and-agent-systems-an-international-journal/wia00114

[7] Nadia Busi, Cristian Manfredini, Alberto Montresor, and Gianluigi Zavattaro.
Peerspaces: Data-driven coordination in peer-to-peer networks. In Proceed-
ings of the 2003 ACM Symposium on Applied Computing (SAC), March 9-12,
2003, Melbourne, FL, USA, pages 380–386, 2003. doi: 10.1145/952532.952608.
URL http://doi.acm.org/10.1145/952532.952608. 4, 33, 34

[8] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on the air:
A middleware for context-aware computing in dynamic networks. In 23rd
ICDCS Workshops, USA, pages 342–347, 2003. 4, 34

[9] Stefan Craß, eva Kühn, and Gernot Salzer. Algebraic foundation of a data
model for an extensible space-based collaboration protocol. In International
Database Engineering and Applications Symposium (IDEAS 2009), pages 301–306,
2009. 4, 5, 20, 25, 28

[10] N. Carriero and D. Gerlernter. Tuple analysis and partial evaluation strategies
in the linda precompiler. Languages and Compilers for Parallel Computing, pages
114–125, 1990. 4

[11] Antony I. T. Rowstron and Alan Wood. Bonita: A set of tuple space primitives
for distributed coordination. In 30th Annual Hawaii International Conference
on System Sciences (HICSS-30), 7-10 January 1997, Maui, Hawaii, USA, pages
379–388, 1997. doi: 10.1109/HICSS.1997.667285. URL https://doi.org/
10.1109/HICSS.1997.667285. 4

[12] Charles J. Fleckenstein, Helen Gill, David Hemmendinger, Carolyn Mc-
Creary, John D. McGregor, Roy P. Pargas, Arthur M. Riehl, and Virgil
Wallentine. Multiprocessing. Advances in Computers, 35:255–324, 1992.
doi: 10.1016/S0065-2458(08)60597-5. URL https://doi.org/10.1016/
S0065-2458(08)60597-5. 4

[13] A.K. Atkinson. Tupleware: A Distributed Tuple Space for the Development and
Execution of Array-based Applications in a Cluster Computing Environment. Uni-
versity of Tasmania School of Computing and Information Systems thesis.
University of Tasmania, 2010. 5, 18, 25, 29, 57

[14] Marcus Amorim Leal, Noemi Rodriguez, and Roberto Ierusalimschy. Luats
âĂŤ a reactive event-driven tuple space. Journal of Universal Computer Science,
9(8):730–744, 2003. 5, 18, 25, 27

[15] Yi Jiang, Zhaoqing Jia, Guangtao Xue, and Jinyuan You. Dtuples: A dis-
tributed hash table based tuple space service for distributed coordination.
Grid and Cooperative Computing, 2006. GCC 2006. Fifth International Conference,
pages 101–106, 2006. 5, 22, 25, 28

111

http://doi.acm.org/10.1145/952532.952608
https://doi.org/10.1109/HICSS.1997.667285
https://doi.org/10.1109/HICSS.1997.667285
https://doi.org/10.1016/S0065-2458(08)60597-5
https://doi.org/10.1016/S0065-2458(08)60597-5

[16] GigaSpaces. Concepts - XAP 9.0 Documentation - GigaSpaces Documen-
tation Wiki. http://wiki.gigaspaces.com/wiki/display/XAP9/
Concepts. [Online; accessed 15-September-2016]. 5, 20, 25, 27

[17] R.A. Van Der Goot. High Performance Linda Using a Class Library. PhD thesis.
Erasmus Universiteit Rotterdam, 2001. 5, 20, 25

[18] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):
51–59, 2002. doi: 10.1145/564585.564601. URL http://doi.acm.org/10.
1145/564585.564601. 6

[19] Alysson Neves Bessani, Eduardo Adílio Pelinson Alchieri, Miguel Correia,
and Joni da Silva Fraga. Depspace: a byzantine fault-tolerant coordination
service. In Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK,
April 1-4, 2008, pages 163–176, 2008. doi: 10.1145/1352592.1352610. URL
http://doi.acm.org/10.1145/1352592.1352610. 6, 31, 32

[20] Roberta Barbi, Vitaly Buravlev, Claudio Antares Mezzina, and Valerio Schi-
avoni. Block placement strategies for fault-resilient distributed tuple spaces:
An experimental study - (practical experience report). In DAIS 2017, volume
10320 of LNCS, pages 67–82. Springer, 2017. ISBN 978-3-319-59664-8. doi:
10.1007/978-3-319-59665-5_5. 6, 35

[21] David E. Bakken and Richard D. Schlichting. Supporting fault-tolerant
parallel programming in linda. IEEE Trans. Parallel Distrib. Syst., 6(3):287–
302, 1995. doi: 10.1109/71.372777. URL https://doi.org/10.1109/71.
372777. 6, 33

[22] Karpjoo Jeong and Dennis E. Shasha. Plinda 2.0: A transactional/check-
pointing approach to fault tolerant linda. In 13th Symposium on Reliable
Distributed Systems, SRDS 1994, Dana Point, California, USA, October 25-27,
1994, Proceedings, pages 96–105, 1994. doi: 10.1109/RELDIS.1994.336905.
URL https://doi.org/10.1109/RELDIS.1994.336905. 6, 33

[23] David Mosberger. Memory consistency models. Operating Systems Review, 27
(1):18–26, 1993. doi: 10.1145/160551.160553. URL http://doi.acm.org/
10.1145/160551.160553. 6

[24] Pavlin Radoslavov, Ramesh Govindan, and Deborah Estrin. Topology-
informed internet replica placement. Comp. Commun., 25(4):384–392, 2002. 6,
35

[25] Michal Szymaniak, Guillaume Pierre, and Maarten van Steen. Latency-driven
replica placement. In 2005 IEEE/IPSJ International Symposium on Applications
and the Internet (SAINT 2005), 31 January - 4 February 2005, Trento, Italy, pages

112

http://wiki.gigaspaces.com/wiki/display/XAP9/Concepts
http://wiki.gigaspaces.com/wiki/display/XAP9/Concepts
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1352592.1352610
https://doi.org/10.1109/71.372777
https://doi.org/10.1109/71.372777
https://doi.org/10.1109/RELDIS.1994.336905
http://doi.acm.org/10.1145/160551.160553
http://doi.acm.org/10.1145/160551.160553

399–405, 2005. doi: 10.1109/SAINT.2005.37. URL https://doi.org/10.
1109/SAINT.2005.37. 6, 35

[26] Pierre Matri, Alexandru Costan, Gabriel Antoniu, Jesús Montes, and María S.
Pérez. Towards efficient location and placement of dynamic replicas for geo-
distributed data stores. In Proceedings of the ACM 7th Workshop on Scientific
Cloud Computing, ScienceCloud@HPDC 2016, Kyoto, Japan, June 1, 2016, pages
3–9, 2016. doi: 10.1145/2913712.2913715. URL http://doi.acm.org/10.
1145/2913712.2913715. 6, 35

[27] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M. Voelker. On the place-
ment of web server replicas. In IEEE INFOCOM 2001, pages 1587–1596, 2001.
doi: 10.1109/INFCOM.2001.916655. 6, 35, 94

[28] Jussi Kangasharju, James W. Roberts, and Keith W. Ross. Object replication
strategies in content distribution networks. Computer Communications, 25(4):
376–383, 2002. doi: 10.1016/S0140-3664(01)00409-1. URL https://doi.
org/10.1016/S0140-3664(01)00409-1. 6, 34

[29] Jagruti Sahoo, Mohammad A. Salahuddin, Roch H. Glitho, Halima Elbiaze,
and Wessam Ajib. A survey on replica server placement algorithms for
content delivery networks. IEEE Communications Surveys and Tutorials, 19(2):
1002–1026, 2017. doi: 10.1109/COMST.2016.2626384. URL https://doi.
org/10.1109/COMST.2016.2626384. 6, 35

[30] Fan Ping, Xiaohu Li, Christopher McConnell, Rohini Vabbalareddy, and
Jeong-Hyon Hwang. Towards optimal data replication across data centers. In
31st IEEE International Conference on Distributed Computing Systems Workshops
(ICDCS 2011 Workshops), 20-24 June 2011, Minneapolis, Minnesota, USA, pages
66–71, 2011. doi: 10.1109/ICDCSW.2011.49. URL https://doi.org/10.
1109/ICDCSW.2011.49. 6, 35

[31] IBM. Unix domain sockets. www.ibm.com/support/
knowledgecenter/en/SSB23S_1.1.0.14/gtpc1/unixsock.html.
[Online; accessed 01-February-2018]. 11

[32] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):
666–677, 1978. doi: 10.1145/359576.359585. URL http://doi.acm.org/
10.1145/359576.359585. 11

[33] Russell R. Atkinson and Carl Hewitt. Parallelism and synchronization in
actor systems. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi,
editors, Conference Record of the Fourth ACM Symposium on Principles of Pro-
gramming Languages, USA, pages 267–280. ACM, 1977. 11

[34] Brandon Barker. Message Passing Interface (MPI). In Workshop: High Perfor-
mance Computing on Stampede, 2015. 11

113

https://doi.org/10.1109/SAINT.2005.37
https://doi.org/10.1109/SAINT.2005.37
http://doi.acm.org/10.1145/2913712.2913715
http://doi.acm.org/10.1145/2913712.2913715
https://doi.org/10.1016/S0140-3664(01)00409-1
https://doi.org/10.1016/S0140-3664(01)00409-1
https://doi.org/10.1109/COMST.2016.2626384
https://doi.org/10.1109/COMST.2016.2626384
https://doi.org/10.1109/ICDCSW.2011.49
https://doi.org/10.1109/ICDCSW.2011.49
www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtpc1/unixsock.html
www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtpc1/unixsock.html
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585

[35] Google LLC. The go programming language specification, 2018. URL https:
//golang.org/ref/spec. [Online; accessed 01-February-2018]. 11

[36] Andrew Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Trans. Comput. Syst., 2(1):39–59, 1984. doi: 10.1145/2080.357392. URL
http://doi.acm.org/10.1145/2080.357392. 11

[37] Esmond Pitt and Kathy McNiff. java.rmi: The Remote Method Invocation Guide.
Addison-Wesley Longman Publishing Co., Inc., USA, 2001. ISBN 0201700433.
11

[38] Henri E. Bal, Andrew S. Tanenbaum, and M. Frans Kaashoek. Orca: a lan-
guage for distributed programming. SIGPLAN Notices, 25(5):17–24, 1990. doi:
10.1145/382080.382082. URL http://doi.acm.org/10.1145/382080.
382082. 12

[39] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath.
Shasta: A low overhead, software-only approach for supporting fine-grain
shared memory. In ASPLOS-VII Proceedings - Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems,
Cambridge, Massachusetts, USA, October 1-5, 1996., pages 174–185, 1996. doi:
10.1145/237090.237179. 12

[40] David Gelernter. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985. 12

[41] Jarek Nieplocha and Robert J. Harrison. Shared memory programming in
metacomputing environments: The global array approach. The Journal of
Supercomputing, 11(2):119–136, 1997. doi: 10.1023/A:1007955822788. URL
https://doi.org/10.1023/A:1007955822788. 12

[42] Kei Simon Pedersen and Brian Vinter. Java pastset: a structured distributed
shared memory system. IEE Proceedings - Software, 150(2):147–153, 2003. doi:
10.1049/ip-sen:20030135. URL https://doi.org/10.1049/ip-sen:
20030135. 12

[43] David Gelernter and Nicholas Carriero. Coordination languages and their
significance. Commun. ACM, 35(2):96–107, 1992. doi: 10.1145/129630.376083.
URL http://doi.acm.org/10.1145/129630.376083. 12

[44] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Comput. Surv., 35(2):
114–131, 2003. doi: 10.1145/857076.857078. URL http://doi.acm.org/
10.1145/857076.857078. 12

114

https://golang.org/ref/spec
https://golang.org/ref/spec
http://doi.acm.org/10.1145/2080.357392
http://doi.acm.org/10.1145/382080.382082
http://doi.acm.org/10.1145/382080.382082
https://doi.org/10.1023/A:1007955822788
https://doi.org/10.1049/ip-sen:20030135
https://doi.org/10.1049/ip-sen:20030135
http://doi.acm.org/10.1145/129630.376083
http://doi.acm.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078

[45] Nicholas Carriero and David Gelernter. How to write parallel programs: A
guide to the perplexed. ACM Comput. Surv., 21(3):323–357, 1989. doi: 10.1145/
72551.72553. URL http://doi.acm.org/10.1145/72551.72553. 13,
15

[46] Andrea Omicini and Franco Zambonelli. Coordination for internet applica-
tion development. Autonomous Agents and Multi-Agent Systems, 2(3):251–269,
1999. doi: 10.1023/A:1010060322135. URL https://doi.org/10.1023/
A:1010060322135. 13

[47] Matteo Ceriotti, Amy L. Murphy, and Gian Pietro Picco. Data sharing vs.
message passing: synergy or incompatibility?: an implementation-driven
case study. In Proceedings of the 2008 ACM Symposium on Applied Computing
(SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, pages 100–107, 2008. doi: 10.
1145/1363686.1363714. URL http://doi.acm.org/10.1145/1363686.
1363714. 13

[48] Ronaldo Menezes and Robert Tolksdorf. A new approach to scalable linda-
systems based on swarms. In Proceedings of the 2003 ACM Symposium on
Applied Computing (SAC), March 9-12, 2003, Melbourne, FL, USA, pages 375–
379, 2003. doi: 10.1145/952532.952607. URL http://doi.acm.org/10.
1145/952532.952607. 13

[49] Robert Tolksdorf and Ronaldo Menezes. Using swarm intelligence in linda
systems. In Engineering Societies in the Agents World IV, 4th International
Workshop, ESAW 2003, London, UK, October 29-31, 2003, Revised Selected and
Invited Papers, pages 49–65, 2003. doi: 10.1007/978-3-540-25946-6_3. URL
https://doi.org/10.1007/978-3-540-25946-6_3. 15

[50] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.
ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/books/
introduction-algorithms. 17, 19

[51] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A
kernel language for agents interaction and mobility. IEEE Trans. Software
Eng., 24(5):315–330, 1998. doi: 10.1109/32.685256. URL http://doi.
ieeecomputersociety.org/10.1109/32.685256. 17, 25, 26, 37, 38

[52] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
systems - the complete book (2. ed.). Pearson Education, 2009. ISBN 978-0-13-
187325-4. 19

[53] Dinesh P. Mehta and Sartaj Sahni, editors. Handbook of Data Structures
and Applications. Chapman and Hall/CRC, 2004. ISBN 978-1-58488-435-
4. doi: 10.1201/9781420035179. URL https://doi.org/10.1201/
9781420035179. 21

115

http://doi.acm.org/10.1145/72551.72553
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1023/A:1010060322135
http://doi.acm.org/10.1145/1363686.1363714
http://doi.acm.org/10.1145/1363686.1363714
http://doi.acm.org/10.1145/952532.952607
http://doi.acm.org/10.1145/952532.952607
https://doi.org/10.1007/978-3-540-25946-6_3
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://doi.ieeecomputersociety.org/10.1109/32.685256
http://doi.ieeecomputersociety.org/10.1109/32.685256
https://doi.org/10.1201/9781420035179
https://doi.org/10.1201/9781420035179

[54] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for
balanced trees. In 19th Annual Symposium on Foundations of Computer Science,
Ann Arbor, Michigan, USA, 16-18 October 1978, pages 8–21, 1978. doi: 10.1109/
SFCS.1978.3. URL https://doi.org/10.1109/SFCS.1978.3. 21

[55] Sabine Hanke. The performance of concurrent red-black tree algorithms. In
Algorithm Engineering, 3rd International Workshop, WAE ’99, London, UK, July
19-21, 1999, Proceedings, pages 287–301, 1999. doi: 10.1007/3-540-48318-7_23.
URL https://doi.org/10.1007/3-540-48318-7_23. 21

[56] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. Lh* - A
scalable, distributed data structure. ACM Trans. Database Syst., 21(4):480–525,
1996. doi: 10.1145/236711.236713. URL http://doi.acm.org/10.1145/
236711.236713. 22

[57] Sandford Bessler, Alexander Fischer, eva Kühn, Richard Mordinyi, and Slo-
bodanka Tomic. Using tuple-spaces to manage the storage and dissem-
ination of spatial-temporal content. J. Comput. Syst. Sci., 77(2):322–331,
2011. doi: 10.1016/j.jcss.2010.01.010. URL https://doi.org/10.1016/
j.jcss.2010.01.010. 22

[58] Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables:
fast and general?(!). In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain,
March 12-16, 2016, pages 34:1–34:2, 2016. doi: 10.1145/2851141.2851188. URL
http://doi.acm.org/10.1145/2851141.2851188. 23

[59] Chuck Pheatt. Intel threading building blocks. J. Comput. Small Coll., 2008. 23

[60] FOLLY. Folly: Facebook open-source library. www.github.com/
facebook/folly. [Online; accessed 01-February-2018]. 23

[61] C Click. A lock-free wait-free hash table, 2007. URL http:
//www.stanford.edu/class/ee380/Abstracts/070221_
LockFreeHash.pdf. [Online; accessed 01-February-2018]. 23

[62] Christine Julien and Gruia-Catalin Roman. Active coordination in ad hoc
networks. In Rocco De Nicola, Gian Luigi Ferrari, and Greg Meredith,
editors, Coordination Models and Languages, COORDINATION 2004, volume
2949 of Lecture Notes in Computer Science, pages 199–215. Springer, 2004. ISBN
3-540-21044-X. 25

[63] Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model
for mobile information agents. In David G. Schwartz, Monica Divitini, and
Terje Brasethvik, editors, 1st International Workshop on Innovative Internet
Information Systems (IIIS’98), pages 177–187, Pisa, Italy, 8–9 June 1998. IDI –
NTNU, Trondheim (Norway). 25

116

https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1007/3-540-48318-7_23
http://doi.acm.org/10.1145/236711.236713
http://doi.acm.org/10.1145/236711.236713
https://doi.org/10.1016/j.jcss.2010.01.010
https://doi.org/10.1016/j.jcss.2010.01.010
http://doi.acm.org/10.1145/2851141.2851188
www.github.com/facebook/folly
www.github.com/facebook/folly
http://www.stanford.edu/ class/ee380/Abstracts/070221_LockFreeHash.pdf
http://www.stanford.edu/ class/ee380/Abstracts/070221_LockFreeHash.pdf
http://www.stanford.edu/ class/ee380/Abstracts/070221_LockFreeHash.pdf

[64] Sun Microsystems. JS - JavaSpaces Service Specification. https://river.
apache.org/doc/specs/html/js-spec.html. [Online; accessed 15-
September-2016]. 25, 27

[65] T.J. Lehman, S.W. McLaughry, and P. Wyckoff. Tspaces: The next wave.
In HICSS 1999: Proceedings of the Thirty-second Annual Hawaii International
Conference on System Sciences, volume 8. Springer Berlin Heidelberg, 1999. 25,
26

[66] S. Capizzi. A Tuple Space Implementation for Large-Scale Infrastructures. Depart-
ment of Computer Science Univ. Bologna thesis. University of Bologna, 2008.
25, 29, 50

[67] Lorenzo Bettini, Rocco De Nicola, and Michele Loreti. Implementing mobile
and distributed applications in X-Klaim. Scalable Computing: Practice and
Experience, 7(4), 2006. 26

[68] Richard Mordinyi, eva Kühn, and Alexander Schatten. Space-based archi-
tectures as abstraction layer for distributed business applications. In CISIS
2010, The Fourth International Conference on Complex, Intelligent and Software
Intensive Systems, pages 47–53. IEEE Computer Society, 2010. 28

[69] Stefan Craß, Tobias Dönz, Gerson Joskowicz, eva Kühn, and Alexander
Marek. Securing a space-based service architecture with coordination-driven
access control. JoWUA, 4(1):76–97, 2013. URL http://isyou.info/
jowua/papers/jowua-v4n1-4.pdf. 28

[70] Alysson Neves Bessani, Miguel Correia, Joni da Silva Fraga, and Lau Cheuk
Lung. An efficient byzantine-resilient tuple space. IEEE Trans. Computers, 58
(8):1080–1094, 2009. doi: 10.1109/TC.2009.71. URL http://dx.doi.org/
10.1109/TC.2009.71. 31

[71] Tobias Distler, Christopher Bahn, Alysson Neves Bessani, Frank Fischer, and
Flavio Junqueira. Extensible distributed coordination. In Proceedings of the
Tenth European Conference on Computer Systems, EuroSys 2015, Bordeaux, France,
April 21-24, 2015, pages 10:1–10:16, 2015. doi: 10.1145/2741948.2741954. URL
http://doi.acm.org/10.1145/2741948.2741954. 32

[72] Giovanni Russello, Michel R. V. Chaudron, Maarten van Steen, and Ibrahim
Bokharouss. An experimental evaluation of self-managing availability in
shared data spaces. Sci. Comput. Program., 64(2):246–262, 2007. 32

[73] Giovanni Russello, Michel R. V. Chaudron, and Maarten van Steen.
Exploiting differentiated tuple distribution in shared data spaces. In
Euro-Par 2004 Parallel Processing, 10th International Euro-Par Conference,
Pisa, Italy, August 31-September 3, 2004, Proceedings, pages 579–586, 2004.

117

https://river.apache.org/doc/specs/html/js-spec.html
https://river.apache.org/doc/specs/html/js-spec.html
http://isyou.info/jowua/papers/jowua-v4n1-4.pdf
http://isyou.info/jowua/papers/jowua-v4n1-4.pdf
http://dx.doi.org/10.1109/TC.2009.71
http://dx.doi.org/10.1109/TC.2009.71
http://doi.acm.org/10.1145/2741948.2741954

doi: 10.1007/978-3-540-27866-5_76. URL https://doi.org/10.1007/
978-3-540-27866-5_76. 32

[74] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. LIME: A
middleware for physical and logical mobility. In Proceedings of the 21st Inter-
national Conference on Distributed Computing Systems (ICDCS 2001), Phoenix,
Arizona, USA, April 16-19, 2001, pages 524–533, 2001. doi: 10.1109/ICDSC.
2001.918983. URL https://doi.org/10.1109/ICDSC.2001.918983.
32

[75] Amy L. Murphy and Gian Pietro Picco. Using lime to support replication for
availability in mobile ad hoc networks. In Coordination Models and Languages,
8th International Conference, COORDINATION 2006, Bologna, Italy, June 14-16,
2006, Proceedings, pages 194–211, 2006. doi: 10.1007/11767954_13. URL
https://doi.org/10.1007/11767954_13. 32

[76] Marina Andric, Rocco De Nicola, and Alberto Lluch-Lafuente. Replica-based
high-performance tuple space computing. In Tom Holvoet and Mirko Viroli,
editors, COORDINATION, volume 9037 of LNCS, pages 3–18. Springer, 2015.
33, 86

[77] L.C. Freeman. A set of measures of centrality based on betweenness. Sociom-
etry, 40:35âĂŞ41, 1977. 35, 94

[78] M.A. Beauchamp. An improved index of centrality. Behavioral Science, 10:
161âĂŞ163, 1965. 35, 94

[79] Samee Ullah Khan, Anthony A. Maciejewski, and Howard Jay Siegel. Robust
CDN replica placement techniques. In 23rd IEEE International Symposium
on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29,
2009, pages 1–8, 2009. doi: 10.1109/IPDPS.2009.5160908. URL https:
//doi.org/10.1109/IPDPS.2009.5160908. 35

[80] Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989. ISBN 978-0-13-115007-2. 37

[81] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. Klava: a java
package for distributed and mobile applications. Softw., Pract. Exper., 32
(14):1365–1394, 2002. doi: 10.1002/spe.486. URL https://doi.org/10.
1002/spe.486. 40

[82] Oracle. Package java.nio. https://docs.oracle.com/javase/7/
docs/api/java/nio/package-summary.html, . [Online; accessed 1-
December-2017]. 41, 48

[83] Andrew S. Tanenbaum. Computer networks, 4th Edition. Prentice Hall, 2002.
ISBN 978-0-13-038488-1. 42

118

https://doi.org/10.1007/978-3-540-27866-5_76
https://doi.org/10.1007/978-3-540-27866-5_76
https://doi.org/10.1109/ICDSC.2001.918983
https://doi.org/10.1007/11767954_13
https://doi.org/10.1109/IPDPS.2009.5160908
https://doi.org/10.1109/IPDPS.2009.5160908
https://doi.org/10.1002/spe.486
https://doi.org/10.1002/spe.486
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html

[84] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
code mobility. IEEE Trans. Software Eng., 24(5):342–361, 1998. doi: 10.1109/
32.685258. URL https://doi.org/10.1109/32.685258. 45

[85] Lorenzo Bettini, Rocco De Nicola, Daniele Falassi, Marc Lacoste, Luís
M. B. Lopes, Licínio Oliveira, Hervé Paulino, and Vasco Thudichum Vas-
concelos. A software framework for rapid prototyping of run-time sys-
tems for mobile calculi. In Global Computing, IST/FET International Work-
shop, GC 2004, Rovereto, Italy, March 9-12, 2004, Revised Selected Papers,
pages 179–207, 2004. doi: 10.1007/978-3-540-31794-4_10. URL https:
//doi.org/10.1007/978-3-540-31794-4_10. 45

[86] Oracle. ConcurrentHashMap. https://docs.oracle.com/javase/
8/docs/api/java/util/concurrent/ConcurrentHashMap.html, .
[Online; accessed 1-December-2017]. 50

[87] Christine Julien and Gruia-Catalin Roman. Egospaces: Facilitating rapid
development of context-aware mobile applications. IEEE Trans. Software Eng.,
32(5):281–298, 2006. doi: 10.1109/TSE.2006.47. URL https://doi.org/
10.1109/TSE.2006.47. 50

[88] Elena Nardini, Mirko Viroli, and Emanuele Panzavolta. Coordination in
open and dynamic environments with tucson semantic tuple centres. In
SAC 2010, volume III, pages 2037–2044. ACM, 2010. ISBN 978-1-60558-
638-0. doi: 10.1145/1774088.1774515. URL http://portal.acm.org/
citation.cfm?id=1774515. 50

[89] Nicholas Carriero and David Gelernter. How to write parallel programs - a first
course. MIT Press, 1990. 53

[90] T.G. Mattson, B.A. Sanders, and B.L. Massingill. Patterns for Parallel Pro-
gramming. The software patterns series. Addison-Wesley, 2005. ISBN
9780321228116. 53

[91] Michael Jay Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-
Hill Higher Education, 2004. 60

[92] Friedemann Mattern and Christian Floerkemeier. From the internet of com-
puters to the internet of things. In From Active Data Management to Event-Based
Systems and More - Papers in Honor of Alejandro Buchmann on the Occasion of
His 60th Birthday, pages 242–259, 2010. doi: 10.1007/978-3-642-17226-7_15.
URL https://doi.org/10.1007/978-3-642-17226-7_15. 83

[93] Béla Bollobás, Christian Borgs, Jennifer T. Chayes, and Oliver Riordan. Di-
rected scale-free graphs. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, USA, pages 132–139, 2003. 98

119

https://doi.org/10.1109/32.685258
https://doi.org/10.1007/978-3-540-31794-4_10
https://doi.org/10.1007/978-3-540-31794-4_10
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://doi.org/10.1109/TSE.2006.47
https://doi.org/10.1109/TSE.2006.47
http://portal.acm.org/citation.cfm?id=1774515
http://portal.acm.org/citation.cfm?id=1774515
https://doi.org/10.1007/978-3-642-17226-7_15

[94] P. Erdös and A. Rényi. On random graphs. In Publicationes Mathematicae
Debrecen, volume 6, pages 290–297, 1959. 99

Unless otherwise expressly stated, all original material of whatever
nature created by Vitaly Buravlev and included in this thesis, is
licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:vitaly.buravlev@imtlucca.it

	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Declaration
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Context and overview
	1.2 Background and motivations
	1.3 Contribution and organization

	2 Background on tuple spaces
	2.1 The Linda model
	2.2 Data structures
	2.3 Implementations
	2.4 Replication

	3 A new implementation of Klaim
	3.1 Klaim language
	3.2 Programming with Klaim
	3.3 A new Klaim's implementation

	4 Evaluating implementations
	4.1 Methodology
	4.2 Old Klaim vs new Klaim
	4.3 Assessing different implementations

	5 Replicating for efficiency
	5.1 Sharing abstractions
	5.2 Implementing replication
	5.3 Evaluation of the implementation

	6 Conclusion
	References

