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Cd| ≤ ς . It provides an quantitative indication on the con-
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xxii



Vita

Jan. 25, 1990 Born, Florence, Italy

2014-2018 Ph.D., IMT School for Advanced Studies, Lucca
Dynamical Systems, Control and Optimization Re-
search Unit.
Advisors: Prof. Alberto Bemporad and Dr. Dario Piga

2017 Visiting scholar, University of Michigan - Aerospace En-
gineering Dept., Ann Arbor (MI).

2011-2014 M. Eng., University of Florence, Florence (IT).
Electrical and Automation Engineering degree.
Final Mark: 110/110 cum Laude.
Thesis title: Quadcopters advanced model design for au-
tonomous navigation.

2008-2011 B. Eng., University of Florence, Florence (IT).
Electronic and Telecommunication Engineering degree.
Final Mark: 110/110 cum Laude.
Thesis title: Adaptive control and the hypersonic aircraft
X-15-3.

xxiii



Publications

1. V. Breschi, D. Piga, A. Bemporad, “Jump model learning and filtering for
energy end-use disaggregation ”, SYSID 2018 (submitted)

2. A. Bemporad, V. Breschi, D. Piga, S. Boyd, “Fitting jump models”, submit-
ted, 2018

3. V. Breschi, I.V. Kolmanovsky, A. Bemporad, “Cloud-aided collaborative
estimation by ADMM-RLS algorithms for connected vehicle prognostics”,
American Control Conference 2018

4. V. Breschi, D.Piga, A. Bemporad, “Piecewise affine regression via recur-
sive multiple least squares and multicategory discrimination”, Automatica,
vol.73, pp. 155-162, Nov. 2016.

5. V. Breschi, D. Piga, A. Bemporad, “Learning hybrid models with logical
and continuous dynamics via multiclass linear separation”, in Proc. 55th
IEEE Conf. on Decision and Control, Las Vegas, NV, 2016, pp. 353-358.

6. V. Breschi, A. Bemporad, D. Piga, “Identification of hybrid and linear pa-
rameter varying models via recursive piecewise affine regression and dis-
crimination”, in Proc. European Control Conf., Aalborg, Denmark, 2016.

xxiv



Abstract

This thesis presents a collection of methods for learning mod-
els from data, looking at this problem from two perspectives:
learning multiple models from a single data source and how
to switch among them, and learning a single model from data
collected from multiple sources.
Regarding the first, to describe complex phenomena with sim-
ple but yet complete models, we propose a computationally
efficient method for Piecewise Affine (PWA) regression. This
approach relies on the combined use (i) multi-model Recur-
sive Least-Squares (RLS) and (ii) piecewise linear multi- cat-
egory discrimination, and shows good performances when
used for the identification of Piecewise Affine dynamical sys-
tems with eXogenous inputs (PWARX) and Linear Parameter
Varying (LPV) models. The technique for PWA regression is
then extended to handle the problem of black-box identifica-
tion of Discrete Hybrid Automata (DHA) from input/output
observations, with hidden operating modes. The method for
DHA identification is based on multi-model RLS and multi-
category discrimination and it can approximate both the con-
tinuous affine dynamics and the Finite State Machine (FSM)
governing the logical dynamics of the DHA. Two more ap-
proaches are presented to tackle the problem of learning mod-
els that jump over time. While the technique designed to
learn Rarely Jump Models (RJMs) from data relies on the com-
bined solution of a convex optimization problem and the use
of Dynamic Programming, the method proposed for Markov
Jump Models (MJMs) learning is based on the joint use of
clustering plus multi-model RLS and a probabilistic cluster-
ing technique. The results of the tests performed on the method
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for RJMs learning have motivated the design of two tech-
niques for Non-Intrusive Load Monitoring, i.e., to estimate
the power consumed by the appliances in an household from
aggregated measurements, which are also presented in the
thesis. In particular, methods based on (i) the optimization of
a least-square error cost function, modified to account for the
changes in the appliances operating regime, and relying on
(ii) multi-model Kalman filters are proposed.
Regarding the second perspective, we propose methods for
cloud-aided consensus-based parameter estimation over a mul-
titude of similar devices (such as a mass production). In par-
ticular, we focus on the design of RLS-based estimators, which
allow to handle (i) linear and (ii) nonlinear consensus con-
straints and (iii) multi-class estimation.
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Notations

Rn Set of real vectors of dimension n

N Set of natural numbers, including zero

Z+ Set of positive integer numbers, excluding zero

R+ Set of positive real numbers, excluding zero

{0, 1}n Set of n-dimensional vectors with Boolean-valued elements

|A| Cardinality of set A

Ă Complement of set A

ai ith entry of vector a, with a ∈ Rn

aR Sub-vector obtained collecting the entries ar with r∈R⊂Z+

a+ Vector with ith element equal to max{a, 0}

‖a‖2 Euclidean norm of a

max{a, b} Vector with ith component equal to max{ai, bi}, a, b∈Rn

A′ Transpose of matrix A, with A ∈ Rn×m

tr(A) Trace of matrix A

Ai ith row of matrix A

AR Sub-matrix of A collecting the rows Ar, with r ∈ R ⊂ Z+

AR,C Sub-matrix of A collecting Ar,c, r∈R⊂Z+ and c∈C⊂Z+

A⊗B Kroneker product of matrix A and B

In or In×n Identity matrix of dimension n

0n×n Zero matrix of dimension n

∝ Linear proportionality
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Chapter 1

Introduction

Over the years, the interest towards model-based solutions for a wide
variety of problems has been motivated by the reduction in the devel-
opment time and engineering costs that can be attained using mathe-
matical models for design. Among others, model-based methods are
used for control design (e.g., see [15, 49, 66]), state estimation (e.g., see
[19, 44, 63, 96]) and fault detection (e.g., see [37, 60, 79]). One of the
advantages of using model-based techniques is that the knowledge of a
model describing the considered physical system allows one to perform
extensive simulations and tests, thus reducing the experiments that have
to be performed on the real system. Even though a model for the process
of interest can be obtained from the physical laws describing the system,
the direct derivation of mathematical models might be a difficult and
time consuming task, especially when complex systems have to be mod-
elled. Thanks to the increasing computational power of commonly used
processing systems and the simplicity in handling large datasets, the in-
terest towards data-based model learning has grown. On the one hand,
data-based model estimation allows one to identify a model for a sys-
tem having limited or no information about the underlying real process.
On the other hand, collecting a large dataset accurately characterizing
the model might require to carefully plan an identification campaign, to
limit the costs related to model identification.
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In this thesis, the problem of model learning is considered from two
sides. First, the problem of identifying complex phenomena/systems
through hybrid models is considered. In this case the process of inter-
est is modeled through a collection of simpler local models, each one
representing an operating regime of the actual system. The problem of
estimating the power consumed by different appliances in an household
from aggregate power measurements, i.e., the disaggregation problem,
will be considered as a possible use of hybrid models learned from data
in a real-world application. Finally, assuming that data can be collected
from a multitude of similar systems (i.e., systems described by the same
model) and that information can be shared in a cloud infrastructure, the
problem of estimating the common parameters of the models is consid-
ered.

This chapter provides a review of the main contributions related to
the problems of learning hybrid models and collaborative estimation that
are presented in this thesis.

1.1 Learning hybrid models from data

Some physical phenomena and complex systems may not be accurately
described using a single model, motivating investigations towards dif-
ferent modeling frameworks. The choice of the proper model structure
might be a challenging problem. On the one hand, models that are too
simple might not be accurate enough to reproduce the behavior of the
underlying physical system. On the other hand, over-complicated mod-
els might overfit the data, leading to poor generalization on unseen data.

1.1.1 PWA regression

PWA models represent a good trade-off between model complexity and
flexibility, as they approximate nonlinear, and possibly discontinuous,
relationships using a set of affine sub-models defined over a polyhe-
dral partition of the regressor space. The PWA regression problem thus
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amounts to estimating both (i) the parameters of the affine sub-models
and (ii) the partition of the regressor space from the data. A review on
PWA regression techniques can be found in [51, 86].
Piecewise Affine (PWA) regression methods have been mainly studied
in the context of dynamical system identification. In [97] the PWA re-
gression problem is solved through mixed-integer programming. How-
ever, the number of integer variables increases with the dimension of the
training set, making the approach suited only for PWA regression over
small datasets. Instead of using mixed-integer programming, the appro-
aches proposed in [14, 45, 62, 78] relies on a two-stage structure. The first
step of all the methods is based on the simultaneous clustering of the
regressor vectors and the estimation of the parameters of the affine sub-
models, while the second stage is devoted to the computation of the poly-
hedral partition of the regressor space. The greedy approach presented
in [14] to partition infeasible sets of inequalities can be computationally
demanding when large training sets are used. Instead, the Expectation
Maximization (EM) algorithm proposed in [78] for statistical clustering
can be inefficient in estimating PWA maps with many parameters. The
method in [62] relies on the description of the parameters of the sub-
models through probability density functions, which are updated using
particle filters. However, this method might require a high number of
particles to accurately estimate the probability density functions. Differ-
ently from the approaches already introduced, the PWA regression tech-
nique presented in [45] can handle large training sets both in the cluster-
ing and in the parameter estimation phase. This method is based on clus-
tering the regressors through a K-means like algorithm and the estima-
tion of the sub-models parameters through weighted least squares. Nev-
ertheless, due to the chosen clustering criterion, the approach proposed
in [45] might perform poorly when the local models depend on redun-
dant regressors, i.e., when the local sub-models are over-parameterized.
All the introduced approaches suffer from computational complexity is-
sues. Furthermore, none of the methods presented in [14, 45, 62, 78, 97]
is suited for on-line use, when the PWA map has to be updated in real-
time when new data are acquired. The approach in [5] consists of a PWA
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regression method based on the iterative clustering of the regressors and
the identification of the sub-models parameters through Recursive Least-
Squares (RLS). Although this approach is suited for on-line learning, the
estimated polyhedral partition is given by the Voronoi diagram of the
clusters’ centroids. This structure is less flexible than general linear sep-
aration map and it might limit the regression capabilities of the method.
Chapter 2 describes a novel approach for the PWA approximation of
vector-valued functions. The method is designed to overcome the main
limitations of existing approaches, i.e., their computational complexity
and their applicability to batch estimation only. As the approaches pre-
sented in [14, 45, 62, 78], the proposed method is based on the execution
of two stages: (i) simultaneous clustering of the regressor vectors and
estimation of the model parameters; (ii) learning of the polyhedral parti-
tion from data. The first stage relies on the use of multi-model Recursive
Least-Squares and a clustering policy, that allows one to consider both
the modeling error and the spatial distribution of the data. Both param-
eter estimation and clustering can be performed iteratively, thus mak-
ing the first stage suited for on-line estimation. To compute the poly-
hedral partition we propose two efficient multi-class linear separation
methods. In particular, we use a batch Newton-like method and Averege
Stochastic Gradient Descent (ASGD) for the online and offline computa-
tion of Piecewise Linear Separators (PWL), respectively. The use of gen-
eral Piecewise Linear (PWL) separators, instead of the Voronoi diagram
obtained from the clusters’ centroids, increases the regression capabili-
ties of the proposed method with respect to the one introduced in [5].
Via extensive simulation results we show that the PWA regression algo-
rithm is computationally efficient, outperforming existing methods for
PWA regression. Furthermore, the approaches proposed to compute the
partition are proven to be more efficient than existing techniques to ad-
dress the same problem.
The PWA regression approach is further extended to tackle the prob-
lems of data-driven estimation of Piecewise affine AutoRegressive mod-
els with eXogenous inputs (PWARX) and Linear Parameter Varying (LPV)
systems. In the identification of LPV systems, the coefficients of the mo-
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del are approximated with PWA functions of the scheduling variable.
The main knob in LPV system identification is the selection of the num-
ber of pieces of the function. The presented LPV-PWA approach allows a
good trade-off between model complexity and data fitting. In particular,
it outperforms the method proposed in [6]. This result can be ascribed
to the greater flexibility of PWA maps, where the polyhedral partition is
learned from the data, with respect to the models used in [6, 89], where
the unknown coefficients are a priori parametrized through a linear com-
bination of given basis functions.

The results reported in chapter 2 are based on the publications [11,
24, 25]

• V. Breschi, D. Piga, and A. Bemporad. “Piecewise affine regression
via recursive multiple least squares and multicategory discrimina-
tion”, Automatica, vol. 73, pp.155–162, 2016.

• A. Bemporad, V. Breschi, D. Piga, “Piecewise Affine Regression via
Recursive Multiple Least Squares and Multicategory Discrimina-
tion”, Technical report TR-IMT-DYSCO-2016-01, 2016.

• V. Breschi, D. Piga, and A. Bemporad. “Identification of hybrid
and linear parameter varying models via recursive piecewise affine
regression and discrimination”, in Proc. European Control Conference
2016, pp. 2632–2637.

1.1.2 Discrete Hybrid Automata and jump model learn-
ing

Even though PWA models are effective in describing complex phenom-
ena, they do not provide any further insight on the mechanism leading
to a switch between different modes, other than the polyhedral parti-
tion. However, when describing the behavior of systems characterized
by the interaction between continuous and discrete dynamics, it might
be important to capture the laws driving the transition from one operat-
ing regime to the other. Therefore, we consider the framework of hybrid
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dynamical models, which are characterized by states assuming real and
discrete values. The real-valued states describe the continuous dynam-
ics of the system, which are usually driven by differential or difference
equations, and the discrete-valued states indicates which sub-model is
active at each time instant. Different hybrid models have been proposed
in the literature based on the model for the process governing the dis-
crete dynamics. Among them we mention: hybrid automata [57] and
Discrete Hybrid Automata (DHA) [110], where the discrete dynamics of
the system is modeled through a Finite State Machine (FSM); stochas-
tic hybrid automata [13] , which are extensions of DHA to the stochas-
tic case; Piecewise Deterministic Markov Processes; Switching Diffusion
Processes; Stochastic Hybrid Systems [90]; Markov Jump Models (MJMs)
[40], where the discrete state evolution is governed by a Markov Chain.
In the thesis, we will also refer to Rarely Jump Models (RJMs), only as-
suming that the mode of the system changes rarely over time. Model be-
longing to this class are typically used in time-series segmentation [64], to
divide an input time-series into a sequence of segments of finite length.
Even though the problem of identifying hybrid models from data has
been studied by both computer scientists and control theorists, the lit-
erature lacks a well established unified framework for the identification
of this class of systems. An overview of techniques for model identifi-
cation of discrete events systems is provided in [31]. However, most of
the works reviewed in [31] are devoted to the identification of the num-
bers of discrete states and the conditions leading to transitions between
two operating regimes, while the problem of estimating the continuous
dynamics is not addressed. The identification of both the continuous
and the discrete dynamics of a timed automata is addressed in [109],
through the use of a prefix tree and linear regression techniques. How-
ever, as the approach is limited to timed automata, only transitions trig-
gered by time can be estimated. As it concerns the identification of MJM,
research efforts have mainly been devoted to the design of Expectation
Maximization (EM) methods [80, 81, 92, 107]. However, this techniques
do not allow to process data sequentially and are, thus, not suited for
on-line applications. An approach for recursive identification of Markov
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Jump Linear Systems (MJLS), i.e., MJM with linear continuous dynamics,
is proposed in [38], where the sub-model parameters and the transition
probabilities are estimated from ensemble properties of the overall MJLS.
Another iterative method for MJLS is proposed in [36], which is based on
recursive clustering and parameter estimation.

Identification of Discrete Hybrid Automata

In chapter 3 the problem of black-box identification of Discrete Hybrid
Automata (DHA) is addressed. The proposed method for learning DHA
relies only on a set of input/output data, assuming that no informa-
tion on the discrete state of the system is available. Among the possible
DHA, we focus on systems where the transition between different oper-
ating conditions is driven by either the regressor or the output crossing
an (unknown) threshold. The ultimate objective is to retrieve both the
parameters modeling the continuous dynamics of the systems and the
law governing the transition between different models. The approach
presented in chapter 3 relies on a proper extension of the method pre-
sented in Chapter 2 and in [24, 25], and it allows us to account for the
information on the discrete dynamics that can be retrieved during the
initial clustering phase. The method is still performed in two-steps: (i)
simultaneous clustering and parameter estimation; (ii) computation of
the polyhedral partitions. We also introduce a modification in the first
stage of the method to handle modes sharing the same continuous dy-
namics. From both simulation and experimental tests, we show that the
methods provide accurate models, while sharing the same characteristics
of the methods proposed in Chapter 2 and in [24, 25] in terms of compu-
tational complexity.

The results in chapter 3 are based on the publication [28]

• V. Breschi, D. Piga, and A. Bemporad. “Learning hybrid models
with logical and continuous dynamics via multiclass linear sepa-
ration”, in Proc. Conference on Decision and Control (CDC) 2016, pp.
353–358.
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Learning jump models

Chapter 4 introduces two algorithms for learning Rarely Jump Models
(RJMs) and Markov Jump Models (MJMs) from data. While for RJMs
the mode is assumed to change rarely over time, for MJM the transitions
between different operating conditions are assumed to be driven by an
(unknown) Markov Chain. Not relying on measurements of the discrete
state, the proposed approaches allow to estimate both the parameters
characterizing the local models and the main features of the law driving
the switches between different sub-models.
Consistently with the hypothesis on the discrete dynamics, the method
tailored for RJMs learning is based on the minimization of a convex loss
function penalizing a regularized fitting error with respect to the param-
eters of the local models and the number of time variations of the dis-
crete state. This problem is solved through the sequential alternation of
convex optimization, used to estimate the sub-model parameters, and
dynamic programming, used to reconstruct the hidden sequence of dis-
crete state. Note that a similar cost function is considered in [82] for
model segmentation. However, in [82], the learning problem is solved
in one step via convex optimization, approximating the number of mode
variations in a fused Lasso-like fashion [109], i.e., accounting for the differ-
ence between the parameters of the local model active at time t and the
parameters of the local model active at time t− 1.
The algorithm tailored for MJMs learning is based on a proper extension
of the approach already presented in [24, 25]. In particular, instead of
computing the polyhedral partition, the clusters obtained at the first step
are refined with a probabilistic clustering method. This approach is de-
signed to account for the hypothesis made on the law driving the discrete
dynamics. The algorithm thus consists of two steps: (i) the simultaneous
estimation of the (hidden) discrete state and update of the sub-model
parameters via multi-model recursive least-squares; (ii) the refinement
of the discrete-state sequence estimate and the update of the mode tran-
sition matrix. Besides its computational efficiency, one of the main ad-
vantages of the proposed algorithm with respect to other MJM learning
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methods based on Expectation Maximization (e.g., [80, 92, 107]) is that it
processes the data sequentially, and thus it is suited for on-line learning.
Test performed on both simulation and experimental data show the ef-
fectiveness of the methods.

The results in this chapter have been extended in the paper [12]:

• A. Bemporad, V. Breschi, D. Piga, S. Boyd. “Fitting Jump Models”,
Submitted for publication, Available at https://arxiv.org/abs/
1711.09220.

1.2 Energy disaggregation problem

Among the possible applications of hybrid models, we will consider the
problem of energy disaggregation, which aims at estimating the con-
sumption of the single appliances in an household from aggregated power
measurements.
Providing users with information on their energy-use behavior is of key
importance in reducing energy consumptions and, thus, energy billings.
Particular relevance has the real-time supply of appliance-level informa-
tion [42], that can yield annual energy savings up to 12% of the total
energy consumed in an household. On the one hand, a possible strat-
egy to acquire information on the appliances is to use smart devices or
smart plugs. However, this requires multiple sensors to be deployed,
thus increasing installation and maintenance costs. On the other hand,
a single-point smart meter, measuring the overall household consump-
tion, can be used in combination with software techniques to retrieve
appliance-level information from aggregate data. This choice allows one
to lower costs and to reduce the amount of data to be processed.
Non-Intrusive Load Monitoring (NILM) techniques have been introduced
to handle the disaggregation problem, requiring minimum information
on the appliances behavior. A NILM approach for energy disaggregation
was studied from Hart in the early 90’s [54]. The method, based on five
stages matched to the appliances signatures, allows one to detect and
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track ON/OFF configurations of the single appliances but it poorly per-
forms in the presence of (i) multi-state and varying-load appliances and
when (ii) multiple ON/OFF events happen simultaneously. Following
the seminal work by Hart, various solutions for non-intrusive load mon-
itoring have been proposed in the literature. A review of existing disag-
gregation methods can be found in [117, 119]. NILM techniques usually
fall into two categories: (i) machine learning methods [61, 87, 99, 105]; (ii)
optimization-based strategies [32, 46, 106]. Among approaches based on
machine learning, [61, 65, 87] use Hidden Markov Models (HMM) to rep-
resent the behavior of the single appliance and then a Factorial Hidden
Markov Model (FHMM) to describe the overall household consumption
pattern. Instead, the methods proposed in [32, 106] are based on inte-
ger programming and the one in [46] employs sparse coding techniques.
All the aforementioned NILM methods have shown good performance
in estimating the fraction of energy consumed by each appliance. How-
ever, they (i) do not reproduce accurately the appliances’ consumption
patterns over time and (ii) provide low-quality estimates when multi-
ple appliances operate simultaneously. To overcome this limitations, an
optimization-based method and a machine learning approach have been
introduced in [88] and [39], respectively. While in [88] disaggregation
is treated as a least-squares error minimization problem, [39] proposes a
NILM method relying on the combined use of FHMM and Iterative Sub-
sequence Dynamic Time Warping (ISDTW). Both methods can handle (i)
the presence of multi-state appliances and (ii) multiple devices operating
at the same time.

Two approaches for Non-Intrusive Load Monitoring (NILM) are pre-
sented in chapter 5, both relying on the assumption that consumption
models for each appliance are available. In particular, the method pro-
posed in chapter 4 for Rarely Jump Models learning is used to retrieve
such models.
At first, disaggregation is addressed solving an optimization problem
with least-square cost function, also accounting for the history of the
appliances’ consumption. The second approach is based on the use of
multiple-model Kalman Filters [7, Chapter 11]. Consequently, energy
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disaggregation is treated as a state estimation problem. In their initial
formulation, both methods require to span all the tree of possible combi-
nations of appliances modes to estimate the appliance profiles from the
aggregate measurements. This might cause the proposed approaches to
be inefficient when the number of appliances increases. We propose dif-
ferent heuristics to reduce the computational complexity of the methods.
The results reported in chapter 5 show that the two NILM approaches
allow us to handle (i) appliances with multiple states (e.g., cloth dryer
and dishwasher), thus not limiting the approaches to the identification
of ON/OFF configurations, and to perform (ii) real-time power disag-
gregation, as all the strategies are based on the iterative processing of the
collected aggregated measurements.

The results presented in chapter 5 are based on:

• V. Breschi, D. Piga, A. Bemporad, “Online end-use energy disag-
gregation via jump linear models”, Working Paper.

• V. Breschi, D. Piga, A. Bemporad, “Jump model learning and filter-
ing for energy-use disaggregation”, Submitted to SYSID 2018 [29].

1.3 Collaborative estimation

In this thesis, we also consider the dual problem of estimating a single
model using data collected from multiple similar processes by means
of collaborative estimation. In this case, our goal is to estimate a set of
unknown parameters from observations collected from a multitude of
systems, referred to as agents and nodes, which are assumed to share the
same model, such as a set of devices produced in series that are usually
equal.

The increasing connectivity between consumer devices have stimu-
lated a growing interest towards distributed solution for a variety of
problems, e.g., in state estimation [83], control [50], machine learning
[47] and fault diagnosis [20]. The main motivations encouraging research
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on distributed strategies are (i) the reduction of the overall transmission
complexity and (ii) the robustness of these solutions to node failures, as
they are based only on communications between neighboring nodes.
Methods for parameter estimation over networks have been extensively
studied in the context of Wireless Sensors Networks (WSNs), where the
low computational power of the nodes demands for a reduction in the
complexity of both the operations and the transmissions that have to be
performed locally. The approaches proposed in the literature can be di-
vided into three groups: (i) incremental methods [73, 95, 100], (ii) dif-
fusion approaches [4, 21, 33, 34] and (iii) consensus-based distributed
strategies [35, 75, 77, 102, 103, 113, 118]. While incremental methods re-
quire a cycle in the network, the other approaches do not constrain the
network topology. Even though, in principle, diffusion and consensus
based methods allow one to reduce transmission complexity and multi-
hop communications, without constraining the network topology, differ-
ent groups of neighbor nodes are required to share information to reach
consensus over the whole network. Consensus-based estimators are usu-
ally designed through the solution of a convex optimization problem,
which is commonly solved through the Alternating Direction Method of
Multipliers (ADMM) [23].

In the last years research interest was mainly directed to the design
of distributed solutions for estimation over groups of agents. However,
recent advances in cloud-computing technologies [76] induce reconsid-
ering more centralized strategies. These techniques rely on the fact that
each node in the network can have on-demand access to shared resources,
ideally characterized by unlimited computational power and memory.
These resources can be acquired and released with minimum effort.
As a motivating example for possible applications of cloud-aided estima-
tion, consider a fleet of vehicles connected to the cloud (see Figure 1). In
this framework, suppose that a set of unknown parameters of interest for
fault detection and/or diagnosis must be estimated. The measurements
taken on-board of the vehicles can be used to compute local estimates of
the unknowns. On the cloud, the local estimates can be further refined,

12



Communication Layer

Collect information
Broadcast

Global Updates

Global Updates
CLOUD

Local Updates

· · · · · ·· · · · · ·

Figure 1: Cloud-connected vehicles.

accounting for the fleet behavior, and they can be fused, to identify pa-
rameters that might be common to all the vehicles.
Potential applications of cloud-aided consensus-based approaches are
the prognostics of automotive fuel pumps [108] and brake pads [58]. In
these cases, assuming that wear and fuel consumption models are known
a priori, the component wear-rate as a function of the workload (cumu-
lative fuel flow or energy dissipated in the brakes) can be considered as
a global parameter. Note that the use of cloud computing for automotive
applications has already been introduced in [84], for cloud-aided speed
trajectory optimization, and in [69, 70], where cloud computing based
solutions for route planning are proposed.

Chapter 6-7 present ADMM schemes for cloud-aided collaborative
parameter estimation. All the methods are designed under the hypothe-
sis that (i) the information exchanged between the cloud and the nodes
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is not corrupted by noise and that (ii) all the nodes are described by the
same model. Only one method relies on the hypothesis that all the pa-
rameters to be estimated are common to all the agents. The other appro-
aches address more general settings as: (i) estimation of both global and
purely local parameters with linear consensus constraints; (ii) identifica-
tion in presence of nonlinear consensus constraints; (iii) multi-class esti-
mation. The collaborative learning problem is always solved through a
two-step strategy. In particular: (i) each node recursively computes a lo-
cal estimate of the unknowns (through RLS), using the measurements ac-
quired by the local sensors, then (ii) global computations are performed
on the cloud to refine the local estimates and to update the estimates of
the global parameters.
As remarked in [75], the main disadvantage due to the use of ADMM
is the introduction of two time scales, with the local time-scale deter-
mined by the nodes’ clocks, and the cloud time-scale depending on the
resources available in the center of fusion and the selected stopping cri-
teria used to terminate the ADMM iterations. To overcome this problem,
collaborative estimation is addressed considering both Node-to-Cloud-
to-Node (N2C2N) communication schemes and Node-to-Cloud (N2C)
transmissions. The use of N2C transmission allows us to alleviate prob-
lems due to the communication latency between the agents and the cloud.
Thanks to the use of RLS, the approaches proposed (i) are suited for on-
line estimation and they can be (ii) easily integrated with preexisting
Recursive Least-Squares (RLS) estimators, already running on board of
the nodes.

The results in chapters 6 and 7 are based on the working paper [26]
and the technical report [27]:

• V. Breschi, I. Kolmanovsky, and A. Bemporad. “Cloud-aided col-
laborative estimation by ADMM-RLS algorithms for connected ve-
hicle prognostics”, Submitted to the American Control Conference
2018.

• V. Breschi, I. Kolmanovsky, and A. Bemporad. “Cloud-aided col-
laborative estimation by ADMM-RLS algorithms for connected ve-
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hicle prognostics”, Technical report, Available at https://arxiv.
org/abs/1709.07972, 2017.

15

https://arxiv.org/abs/1709.07972
https://arxiv.org/abs/1709.07972


Chapter 2

A novel approach to PWA
regression

A numerically efficient two-stage method for Piecewise Affine (PWA)
regression is presented in this Chapter. In particular, Section 2.1 is de-
voted to the formalization of the PWA regression problem, while Sec-
tion 2.2 presents the proposed PWA regression algorithm. The first stage
of the method, which relies on the combined use of clustering and multi-
model Recursive Least-Squares (RLS), is presented in Section 2.2.1. In
Section 2.2.2, two algorithms for piecewise linear multi-category discrim-
ination are introduced. Three case studies are then presented in Sec-
tion 2.3, to show the effectiveness of the approach. The proposed PWA
regression technique is then used in Section 2.4 for data-driven model-
ing of PWA autoRegressive dynamical systems with eXogenous inputs
(PWARX) and Linear Parameter Varying (LPV) systems. When the prob-
lem of LPV system identification is tackled with the PWA regression ap-
proach, the dependence of the model coefficients on the scheduling vari-
able is approximated through a PWA map.
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2.1 Problem statement

A vector-valued PWA function f : X → Rny is a collection of affine sub-
models, defined as

f(x) =



θ1

[
1

x

]
if x ∈ X1

...

θs

[
1

x

]
if x ∈ Xs

, (2.1)

where x ∈ X ⊆ Rnx , s ∈ N denotes the number of affine local models
defining f , θi ∈ Rny×(nx+1) are parameter matrices, and the sets {Xi}si=1

are polyhedrons, forming a complete partition of the domain X1. The
function f in (2.1) is not assumed to be continuous over the boundaries
of the polyhedra {Xi}si=1. Therefore, in the definition of the sets Xi,
i = 1, . . . , s, some inequalities can be replaced by strict inequalities, to
avoid ambiguities when evaluating f on the boundary between neigh-
boring polyhedra, namely to avoid that f might take multiple values at
the boundaries of {Xi}si=1.

The PWA regression problem addressed in this chapter aims at com-
puting a PWA map f fitting a given set of N regressor/output pairs
{x(k), y(k)}Nk=1, such that y(k) ≈ f(x(k)).

Estimating a PWA map f (see eq.(2.1)) from data requires:

(i) choosing the number of affine sub-models s;

(ii) estimating the parameter matrices {θi}si=1, that characterize the affine
local models of the map f ;

(iii) learning the polyhedral partition {Xi}si=1 of the domain X, where
the local models are defined.

1A complete polyhedral partition of space X is a collection of sub-spaces {Xi}si=1, such

that
⋃s
i=1 Xi = X and

◦
Xi ∩

◦
Xj = ∅, ∀i 6= j, with

◦
Xi denoting the interior of Xi.
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We assume that s is fixed by the user. The value of s can be chosen
through cross-validation based procedures, with a possible upper-bound
dictated by the maximum tolerable complexity of the estimated model.
When choosing s, one must take into account the trade-off between data
fit and model complexity to avoid overfitting the data, with consequent
poor generalization on unseen data. This is related to one of the most
crucial aspects in function learning, known as bias-variance trade-off [112].

2.2 PWA regression algorithm

We tackle the PWA regression problem in two stages: Stage S1, which al-
lows us to iterative cluster the data and estimate the parameters {θi}si=1;
Stage S2, where we compute the polyhedral partition of the domain X.

2.2.1 S1: recursive clustering and parameter estimation

Stage S1 is carried out as described in Algorithm 2, extending the com-
putationally efficient approach presented in [2] for solving RLS problems
using inverse QR decomposition to the case of multiple linear regres-
sions.

Algorithm 2 updates the clusters and the model parameters itera-
tively and thus it is also suitable for on-line applications, where data are
acquired in real time.

Step 2 initializes the inverse matrices T i,j needed by the RLS updates
(see Step 1 of Algorithm 1) at a (large) value δInx+1, where δ is a large
number, for all output components j = 1, . . . , ny and for all local lin-
ear models i = 1, . . . , s. After computing the estimation error ei(k) for
all models i at Step 3.1, Step 3.2 picks up the “best” sub-model i(k), to
which the current sample x(k) must be assigned to, based on a trade-off
between reducing the prediction error ei(k) and penalizing the weighted
distance between x(k) and the centroid ci. The chosen clustering rule
(see (S1.1)) is similar to the criterion used in [5] for on-line PWA regres-
sion. However, in [5] no guidance on how properly weight the prediction
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Algorithm 1 Multi-model RLS based on inverse QR decomposition

Input: Observations {x(k), y(k)}Nk=1, number s of affine sub-models,
sub-model to be updated {i(k)}Ni=1, forgetting factor κ, 0 < κ ≤ 1, inverse
matrix init parameter δ, δ � 1.

1. let T i,j(0)← δInx+1, j = 1, . . . , ny , i = 1, . . . , s;

2. for k = 1, . . . , N do

2.1. for j = 1, . . . , ny do

2.1.1. let u← 0nx+1, b← 1;
2.1.2. for ` = 1, . . . , nx + 1 do

2.1.2.1. a← 1√
κ

∑`
h=1[T i(k),j ]`,hxh(k);

2.1.2.2. b1 ← b; b←
√
b2 + a2;

2.1.2.3. σ ← a
b , ρ← b1

b ;
2.1.2.4. for t = 1, . . . , i do

d←[T i(k),j ]`,t; [T i(k),j ]`,t← 1√
κ
ρd−σut;

ut←ρut + 1√
κ
σd;

2.1.2.5. end for;
2.1.3. end for;
2.1.4. update [θi(k)]j,: ← [θi(k)]j,: +

ei(k)

b u′;

2.2. end for;

3. end for

Output: Estimated matrices {θi}si=1.
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Algorithm 2 Recursive clustering and parameter estimation algorithm

Input: Observations {x(k), y(k)}Nk=1, desired number s of affine sub-
models, noise covariance matrix Λe, forgetting factor κ, 0 < κ ≤ 1, in-
verse matrix init parameter δ, δ � 1; initial condition for matrices θi,
cluster centroids ci, and covariance matrices Ri, i = 1, . . . , s.

1. let Ci ← ∅, i = 1, . . . , s;

2. let T i,j(0)← δInx+1, j = 1, . . . , ny , i = 1, . . . , s;

3. for k = 1, . . . , N do

3.1. let ei(k)← y(k)− θi
[

1
x(k)

]
, i = 1, . . . , s;

3.2. let εi = x(k)− ci then

i(k)← arg min
i=1,...,s

ε′iR
−1
i εi + ei(k)′Λ−1

e ei(k); (S1.1)

3.3. let Ci(k) ← Ci(k) ∪ {x(k)};
3.4. update θi(k) with Algorithm 1;

3.5. let δci(k) ← 1

|Ci(k)| (x(k)− ci(k));

3.6. let ci(k) ← ci(k) + δci(k);

3.7. update the cluster covariance matrix Ri(k) for cluster Ci(k)

through the matrix inversion Lemma

Q← R−1
i(k) −

R−1
i(k)

(
x(k)− ci(k)

) (
x(k)− ci(k)

)′
R−1
i(k)

|Ci(k)| − 2 +
(
x(k)− ci(k)

)′
R−1
i(k)

(
x(k)− ci(k)

) ;

Ri(k) ←
∣∣Ci(k)

∣∣− 1∣∣Ci(k)

∣∣− 2

Q− Qδci(k)δ
′
ci(k)Q

|Ci(k)|−2

|Ci(k)|−1
+ δ′ci(k)Qδci(k)

 ;

4. end for;

5. end.

Output: Estimated matrices {θi}si=1, centroids {ci}si=1, clusters {Ci}si=1,
covariance matrices {Ri}si=1.
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error and the distance from the cluster centroids is provided.
At Step 3.4 only the parameter vector θi(k) associated to the selected sub-
model i(k) is updated, using the extension of the inverse QR factorization
algorithm of [2] presented in Algorithm 1. Steps 3.6 and 3.7 recursively
update the centroid ci(k) and the inverse of the covariance matrixRi(k) of
cluster Ci(k), respectively. The centroids and covariance matrices of the
remaining clusters, Cj , with j ∈ {1, . . . , s} and j 6= i(k), are not updated.

Algorithm 2 requires an initial guess for the parameter matrices θi,
the cluster centroids ci and the covariance matrices Ri, i = 1, . . . , s. Be-
cause of the greedy nature of Algorithm 2, the final estimate depends
on the selected initial conditions, and no fit criterion to minimize {y(k)−
f(x(k))‖22}Nk=1 is optimized. Zero matrices θi, randomly chosen centroids
ci, and identity covariance matrices Ri are a possible initialization. In
alternative, if Algorithm 2 can be executed in a batch mode, one can ini-
tialize the parameter matrices θ1, . . . , θs all equal to the best linear model

θi ≡ arg min
θ

N∑
k=1

∥∥∥∥y(k)− θ
[

1
x(k)

] ∥∥∥∥2

2

, ∀i = 1, . . . , s (2.2)

that fits all data. The regressors {x(k)}Nk=1 can be classified through K-
means and, based on the results of clustering, one can compute the cen-
troids

ci =
1

|Ci|
∑

x(k)∈Ci

x(k)

and the inverse of the covariance matrices

Ri =
1

|Ci| − 1

∑
x(k)∈Ci

(x(k)− ci) (x(k)− ci)′ .

When working in a batch mode, estimation quality may be improved ex-
ecuting Algorithm 2 multiple times, using its output as initial condition
for its following execution.

The chosen clustering policy (see (S1.1)) depends on the noise covari-
ance matrix Λe. However, a prior knowledge of the noise covariance
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matrix Λe is barely available in practice. A possible choice for Λe can be,
for instance, Λe = Iny . Alternatively, if Algorithm 2 is executed in a batch
mode and iteratively repeated, Λe can be approximated with the sample
covariance matrix computed at the end of each execution as

Λ̂e =
1

N

s∑
i=1

N∑
k=1

x(k)∈Ci

(
y(k)− θi

[
1

x(k)

])(
y(k)− θi

[
1

x(k)

])′
.

Cluster selection: a stochastic interpretation

Differently from what is done in [5], we provide a stochastic interpreta-
tion for the chosen clustering criteria (see (S1.1)). Based on (S1.1), vector
x(k) is assigned to a cluster Ci(k) by trading off between minimizing the
(weighted) regression error and the (weighted) distance between x(k)

and the clusters’ centroids.
Assume that the conditional probability density function px(x(k)|x(k) ∈ Ci)
is a Gaussian function centered at the centroid ci with covariance matrix
Ri, i.e.,

px(x(k)|x(k)∈Ci)∝exp

{
−1

2
(x(k)−ci)′R−1

i (x(k)−ci)
}
.

Furthermore, suppose that the residual ei(k) (see step 3.1) given that x(k)

belongs to cluster Ci follows a Gaussian distribution with zero mean and
covariance matrix Λe. Thus, the conditional probability density function
py(y(k)|x(k), x(k) ∈ Ci) is equal to

py

(
y(k)− θi

[
1

x(k)

])
∝exp

{
−1

2

(
y(k)−θi

[
1

x(k)

])′
Λ−1
e

(
y(k)−θi

[
1

x(k)

])}
.

The criterion in (S1.1) thus maximizes over i = 1, . . . , s the conditional pos-
terior probability pxy(x(k), y(k)|x(k) ∈ Ci). The conditional posterior prob-
ability density function, which is equal to the product of px(x(k)|x(k) ∈
Ci) and py(y(k)|x(k), x(k) ∈ Ci) and, thus, it is proportional to

pxy(x(k), y(k)|x(k) ∈ Ci) ∝ exp

{
−1

2
ei(k)′Λ−1

e ei(k)− 1

2
εi(k)′R−1

i εi(k)

}
.
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C3 C2

C1

Figure 2: Three clusters separable by PWA functions

2.2.2 S2. Partitioning space X

We propose a variation of the multi-category discrimination technique
of [17] to separate the clusters {Ci}si=1 that partition the domain X in a
much more efficient computational way, especially when dealing with a
large number N of data points. The linear multi-category discrimination
problem aims at computing a PWA separator function φ : Rnx → R,
discriminating between the clusters {Ci}si=1 (see Figure 2). The separator
φ is defined as the maximum of s affine functions {φi(x)}si=1, i.e.,

φ(x) = max
i=1,...,s

φi(x). (2.3)

Each affine function φi(x)si=1 is described by the parameters ωi ∈ Rnx
and γi ∈ R, namely:

φi(x) =
[
x′ −1

] [ωi
γi

]
. (2.4)

Denote with mi the cardinality of cluster Ci, i = 1, . . . , N , where {Ci}si=1

are the clusters learned from data at stage S1. For i = 1, . . . , s, let Mi be
a mi × nx dimensional matrix obtained by stacking the regressors x(k)′

belonging to Ci in its rows.
In case of piecewise linearly separable clusters, {φi}si=1 satisfy the in-
equality[

Mi −1mi
] [ωi
γi

]
>
[
Mi − 1mi

] [ωj
γj

]
, i, j = 1, . . . , s, i 6= j,
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or, equivalently,[
Mi − 1mi

] [ωi
γi

]
≥
[
Mi − 1mi

] [ωj
γj

]
+ 1mi , i, j = 1, . . . , s, i 6= j, (2.5)

with the constant vector 1mi on the right side of (2.5) used only for nor-
malization purposes.

The piecewise-affine separator φ thus satisfies the conditions:
φ(x) =

[
x′ −1

] [ωi
γi

]
, ∀x ∈ Ci, i = 1, . . . , s,

φ(x) ≥
[
x′ −1

] [ωj
γj

]
+ 1, ∀x ∈ Ci, i 6= j.

(2.6)

Based on the definition of φ (see (2.3)) each polyhedron Xi turns out to
be described by

Xi = {x ∈ X : φ(x) = φi(x)},

which can be further modified as

Xi=
{
x∈Rnx :

[
x′ −1

][ωi − ωj
γi − γj

]
≥1, j=1, . . . , s, j 6= i

}
,

accounting for the conditions in (2.6).
Rather than solving a linear program as in [17], the parameters {ωi, γi}si=1

are computed solving the convex unconstrained optimization problem

min
{ωi,γi}si=1

r({ωi, γi}si=1)+

s∑
i=1

s∑
j = 1
j 6= i

1

mi

∥∥∥∥∥
([
Mi −1mi

][ωj − ωi
γj − γi

]
+1mi

)
+

∥∥∥∥∥
2

2

,

(2.7)
where

r({ωi, γi}si=1) =
λ

2

s∑
i=1

(
‖ωi‖22 + (γi)2

)
, λ > 0

is an `2-regularization term introduced to better conditioning problem (2.7)
and to guarantee that (2.7) has a unique solution. Tuning the hyper-
parameter λ through cross-validation, the `2-regularization term may
lead to an improvement in the generalization performance of the final
separator φ.
Problem (2.7) generates a piecewise-affine function that minimizes the
(averaged) squared 2-norm of the violation of the inequalities (2.5).
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Multi-category discrimination: batch mode solution

Problem (2.7) is solved by using a regularized piecewise-smooth Newton
method with Armijo’s line search similar to the one proposed in [10] for
functions g : Rnξ → R of the form

g(ξ) =
λ

2
‖ξ‖22 +

ng∑
j=1

‖gj(ξ)+‖22, (2.8)

with gj : Rnξ → R convex and twice continuously differentiable func-
tions. In particular, we exploit the linearity of the functions gj ’s.
Solving (2.7), the optimization vector is ξ=[(ω1)′. . .(ωs)′γ1. . . γs]′, with
ξ ∈ Rnξ , nξ = s(nx + 1), and gj ’s are affine functions:

gj(ξ) = a′jξ − bj , j = 1, . . . , ng, (2.9)

where ng = N(s − 1) and aj ∈ Rnξ , bj ∈ R are obtained from (2.7) as a
function of matrices {Mi}si=1 and coefficients {mi}si=1.
Let

A = [a1 . . . ang]
′,

B = [b1 . . . bng ]′,
(2.10)

and, given ξ ∈ Rnξ , denote I(ξ) = {i ∈ {1, . . . , ng} : Aiξ − Bi > 0}. Then
the function to minimize, its gradient and its generalized Hessian at ξ are

g(ξ) =
λ

2
ξ′ξ +

∑
i∈I(ξ)

(Aiξ − Bi)2 (2.11a)

∇g(ξ) = λξ +A′I(ξ)(AI(ξ)ξ − BI(ξ)) (2.11b)

∇2g(ξ) = λI +A′I(ξ)AI(ξ) = λI +
∑
i∈I(ξ)

A′iAi (2.11c)

The proposed approach to solve (2.7), summarized in Algorithm 3, uses
the solution d of the linear system

(∇2g(ξ) + δ(ξ)I)d = −∇g(ξ) (2.12)

at the current ξ as a search direction, where δ(ξ)=ζ‖∇g(ξ)‖ and ζ∈(0, 1).
Thanks to the structure of∇2g in (2.11c), the linear system (2.12) is solved
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as the least squares problem

min
d

1

2

∥∥∥∥∥
[

AI(ξ)√
λ+ δ(ξ)Inξ

]
d+

[
AI(ξ)ξ − BI(ξ)

λ√
λ+δ(ξ)

ξ

]∥∥∥∥∥
2

2

(2.13)

using the QR factorization of
[

AI(ξ)√
λ+δ(ξ)Inξ

]
(steps 5.1–5.2). Since∇g(ξ) >

0 during the iterations, δ(ξ) is also positive. Therefore, R is full column
rank and the upper-triangular linear system in Step 5.2 is always solv-
able.
Algorithm 3 requires one to choose an initial guess for ξ and the values

of ζ and λ. An initial guess for ξ ∈ Rnξ can be obtained by running Algo-
rithm 3 first on decimated clusters. The computed solution can then be
used as the new initial condition for the full problem with N regressors.
Numerical experiments have shown that allowing a varying ζ, given by

ζ = ζ0
min{1, ‖∇g‖}
‖∇g‖

,

with 0 < ζ0 � 1, reduces the number of iterations and prevents excessive
regularization in (2.12) when ‖∇g‖ is large.
Concerning the `2 hyper-parameter λ, on the one hand, setting λ > 0

complicates the number of operations required by the algorithm at each
iteration (in particular to compute the solution of (S2.1)) and bias the
solution with respect to the PWA multi-category discrimination function
minimizing only the squared 2-norm of the violations of the inequalities
(2.6). On the other hand, the choice of λ > 0 leads to a smaller number k
of iterations, and overall to a reduced computation time.

On-line multi-category discrimination

Let us treat x ∈ X ⊆ Rnx as a random vector and let us assume that
there exists an “oracle” function i : Rnx → {1, . . . , s}, that assigns to any
x ∈ Rnx the corresponding mode i(x) ∈ {1, . . . , s}. By this definition, the
“oracle” function implicitly defines clusters in the space X. We further
suppose that

πi = Prob[i(x) = i] =

∫
Rnx

δ(i, i(x))p(x)dx
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Algorithm 3 Piecewise-smooth Newton method for multi-category dis-
crimination

Input: Regressors {x(k)}Nk=1, clusters Ci, i = 1, . . . , s; σ ∈ (0, 1/2), ζ ∈
(0, 1); `2-regularization hyper-parameter λ ≥ 0; initial guess ξ ∈ Rnξ ;
maximum number K of iterations; tolerances gtol > 0 and δtol > 0.

1. Initialize matrices Mi ∈ Rmi×nx , i = 1, . . . , s; nξ ← s(nx + 1),
ng ← N(s− 1); define A, B as in (2.9)–(2.10), j = 1, . . . , ng ;

2. k ← 0;

3. c← Aξ − B; I ← {i ∈ {1, . . . , ng} : ci ≥ 0};

4. g ← c′IcI + λ
2 ξ
′ξ;∇g ← A′IcI + λξ; δ ← ζ‖∇g‖;

5. while g > gtol and δ > δtol and k < K do

5.1. (Q,R)← QR factorization of
[ AI√

λ+δInξ

]
;

5.2. solve the upper-triangular linear system
R{1,...,nξ}d = −(Q{1,...,|I|},{1,...,nξ})

′cI+

− λ

λ+ δ
(Q{|I|+1,...,|I|+nξ},{1,...,nξ})

′ξ;
(S2.1)

5.3. α← 1; q ← Ad; ξα ← ξ + d;
5.4. Iα ← {i ∈ {1, . . . , ng} : c+ q ≥ 0};
5.5. gα ← (cIα + qIα)′(cIα + qIα) + λ

2 ξ
′
αξα;

5.6. while gα > g + ασ∇g′d do
5.6.1. α← 1

2α; ξα ← ξ + αd;
5.6.2. cα ← c+ αq;
5.6.3. Iα ← {i ∈ {1, . . . , ng} : cαi ≥ 0};
5.6.4. gα ← (cαIα)′cαIα + λ

2 ξ
′
αξα;

5.7. end while;
5.8. ξ ← ξα; g ← gα; I ← Iα; c← cα;
5.9. ∇g ← A′Iαc

α
Iα

+ λξ; δ ← ζ‖∇g‖;
5.10. k ← k + 1;

6. retrieve ωi, γi, i = 1, . . . , s, from the solution ξ;

7. end.

Output: Coefficients ωi, γi, i = 1, . . . , s defining the piecewise affine
separator φ in (2.3)–(2.4).
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are known for all i = 1, . . . , s, with

δ(i, j) =

{
1 if i = j

0 otherwise,
for i, j ∈ {1, . . . , s}.

Each value πi represents the relative “volume” of the i-th cluster where

s∑
i=1

πi =

∫
X

s∑
i=1

δ(i, i(x))p(x)dx =

∫
X
p(x)dx = 1.

Problem (2.7)–(2.8) can be generalized to the unconstrained convex stochas-
tic optimization problem given by

ξ∗ = min
ξ
Ex [`(x, ξ)] +

λ

2
‖ξ‖22

`(x, ξ) =

s∑
j = 1
j 6= i(x)

1

πi(x)

(
x′(ωj − ωi(x))− γj + γi(x) + 1

)2

+
,

(2.14)

with Ex[·] denoting the expected value with respect to x. Problem (2.14)
aims at finding ξ∗ so to violate the least, on average over x, the condi-
tions in (2.5) for i = i(x).
The solution of problem (2.14) provides the PWA multi-category discrim-
ination function satisfying (2.3)–(2.4). Problem (2.14) is solved using the
averaged stochastic gradient descent (ASGD) method of [98] as proposed
in [22] (cf. also [115]). The application of ASGD to the linear multi-
category discrimination problem (2.14) is described in Algorithm 4, and
it allows us to solve the problem of learning φ on-line, while the data-
points xk are acquired in real time, without the need of storing all past
data-points {x(j)}k−1

j=0 .
The regularization hyper-parameter λ is supposed to be positive, so that

the objective function in (2.14) is strongly convex2. Algorithm 4 requires
the initialization for ξ and the choice of λ. If a batch of data is available to
run Algorithm 3, the initial estimate ξ0 can be chosen either as the result

2A differentiable function f with domain D is strongly convex if

∀x, y ∈ D, ∃m > 0 : f(y) ≥ f(x) +∇f(x)>(y − x) +m‖x− y‖22.
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Algorithm 4 ASGD for linear multi-category discrimination.

Input: Regressor flow x(0), x(1), . . .; cluster assignment function i :
Rnx → {1, . . . , s}; `2-regularization hyper-parameter λ > 0; scalar ν0 ≥ 0;
initial guess ξ ∈ Rnξ ;

1. for k = 0, 1, . . . do:

1.1. compute∇ξ`(ξk, xk) as follows:

1.1.1. ϕj(k)← x(k)′(ωj(k)−ωi(x(k))(k))−γj(k)+γi(x(k))(k)+1;
1.1.2. I(k)← {j ∈ {1, . . . , s}, j 6= i(x(k)) : ϕj(k) ≥ 0};

1.1.3. ψj(k)←



∑
j∈I(k) ϕ

j(k)

[
−x(k)

1

]
if j = i(x(k))

ϕj(k)

[
x(k)

−1

]
if j 6= i(x(k)), j ∈ I(k)

0 otherwise
1.1.4. set

∂`(ξ(k), x(k))

∂
[
ωj

γj

] ← λ
[
ωj(k)

γj(k)

]
+

1

πi(x(k))
× ψj(k);

1.2. compute
ν(k)← ν0(1 + ν0λk)−

3
4 ;

µ(k)← 1/max{1, k − nx, k − nξ};
ξ(k + 1)← ξ(k)− ν(k)∇ξ`(ξ(k), x(k));

ξ̄(k + 1)← ξ̄(k) + µ(k)(ξ(k + 1)− ξ̄(k));

1.3. retrieve ωi(k), γi(k), i = 1, . . . , s, from ξ̄(k);

2. end.

Output: Coefficients {ωi(k), γi(k)}si=1, defining the separator φ in (2.3)–
(2.4) at each step k = 0, 1, . . ..

of the off-line execution of Algorithm 3 or as zero (or any value in Rnξ ).
Otherwise, it can be chosen as any value.
The coefficients πi used in step 1.1.4 can be estimated from off-line data,
namely πi = mi

N and they can be further updated while Algorithm 4
is running. However, numerical experiments have shown that constant
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and uniform coefficients π = 1
s work equally well.

Algorithm 4 can be used instead of Algorithm 3, when the computation
of the partition has to be computed on-line. Alternatively, Algorithm 4
can be employed in addition to Algorithm 3 to refine φ on-line, based on
streaming data.

2.3 Case studies

The approach for off-line PWA regression (the partition os computed us-
ing the Piecewise-smooth Newton approach summarized in Algorithm 3)
is tested against two simulation examples and an experimental dataset.
In the simulation examples, the output used for training is supposed to
be corrupted by an additive zero-mean white noise with Gaussian distri-
bution and the effect of the noise on the output is quantified through the
Signal-to-Noise Ratio (SNR), defined for the i-th channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo,i(k))

2∑N
k=1 e

2
o,i(k)

. (2.15)

Both in the simulation experiments and the experimental test, the esti-
mated PWA functions are validated on a sequence of data not used for
training. The quality of the identified model is assessed through the Best
Fit Rate (BFR) indicator

BFR =100 ·max

{
1− ‖yo − ŷ‖2
‖yo − ȳo‖2

, 0

}
%, (2.16)

with yo and ŷ denoting the vector stacking the measured and simulated
outputs, respectively, and ȳo representing the vector stacking the sample
mean of the measured output.

All computations are carried out on an i7 2.40-GHz Intel core proces-
sor with 4GB of RAM running MATLAB R2014b.
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2.3.1 Identification of a mono-dimensional PWA map

Define x̃ =
[
x 1

]′, with x ∈ R. Let the data used for training be gener-
ated by the following (unknown) PWA function

fo(x) =



[ 1 0.2 ] x̃ if x ∈ (−∞,−1)

[−1 2 ] x̃ if x ∈ [−1, 2)

[ 1 −1 ] x̃ if x ∈ [2, 4)

[ 0 2 ] x̃ if x ∈ [4, 6)

[ 2 −10 ] x̃ if x ∈ [6,+∞),

(2.17)

already proposed as an example for PWA regression in the Hybrid Iden-
tification Toolbox (HIT) [43]. The map (2.17) is characterized by so = 5

affine sub-models. The regressor x(k) ∈ R is a white noise sequence with
uniform distribution in the interval [−4, 8] and length N = 1000. The
white noise sequence additively corrupting the output, i.e.,

y(k) = fo(x(k)) + eo(k),

is eo(k) ∼ N (0, 0.01), corresponding to SNR equal to 27 dB.
We run Algorithm 2 with s = so = 5, Λe = 1, no forgetting factor (κ = 1)
and δ = 103. The parameters {θi}si=1 are initialized in (2.2), while the
initial guesses for the cluster centroids and covariance matrices are com-
puted by running an instance of Algorithm 2 without the first term in
(S1.1).
Algorithm 2 is then run again 5 times, with the full criterion (S1.1), ini-
tializing θi, ci and Ri with the output of the previous run. The clusters
are then separated solving problem (2.7) with the regularized Piecewise-
smooth Newton method (RPSN) summarized in Algorithm 3, with pa-
rameters: K = 300, σ = 0.4, λ = 10−5, ζ = 10−4, gtol = δtol = 10−6 and
ξ0 = 0.

The quality of the estimated PWA map is assessed with respect to a
noiseless validation dataset with NV = 200 samples. The obtained BFR
is 97.05 %, with only 1 misclassified point out of 200 samples, i.e., only
the 0.5% of points in the validation set are misclassified. The total CPU
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Table 1: Case study 1. True vs estimated θi, i = 1, . . . , 5

θ1 θ2 θ3 θ4 θ5
True 1 0.2 -1 2 1 -1 0 2 2 -10

Algo 2–3 1.01 0.22 -0.99 2.00 1.00 -1.00 0.00 2.01 2.00 -9.97
Algo [45] 1.03 0.28 -0.95 1.98 1.20 -1.72 -0.02 2.10 2.00 -10.00

runs

1 2 3 4 5 6 7 8 9 10

B
F
R

0.8

1

1.2

1.4
N=1000

N=10000

N=100000

Figure 3: Case study 1. BFR vs M

time for solving the regression problem is 0.137 s, of which 0.006 s are
taken to compute the polyhedral partition through Algorithm 3.

Comparison with the method presented in [45]

For comparison, the same regression problem is solved with the algo-
rithm proposed in [45]3, using a linear Support Vector Classifier (SVC) [112]
to compute the partition. The obtained BFR with the approach of [45] is
95.04 %, with the CPU time needed to solve the regression problem be-
ing around 63 s. The method of [45] has thus proven to be 459x slower
than our approach (required CPU time around 0.14 s). To provide an
additional element of comparison, in Table 1 we report the parameters
estimated with the proposed approach and the one of [45]. In the con-
sidered case, our method has proven to perform better than the one pre-
sented in [45] both in terms of CPU time and of accuracy in estimating
the parameters {θi}si=1.

Convergence properties

We expect that both the CPU time required to solve the regression prob-
lem and the accuracy of the estimated PWA map are influenced by the

3The Hybrid Identification Toolbox [43] has been used.
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number M of runs of Algorithm 2 and the dimension N of the training
set. The obtained BFR as a function of M is plotted in Figure 3 for differ-
ent lengths of the training set. Algorithm 2 converges after 2 runs.

On the performance of the multi-category discrimination algorithm

To assess the performance of the proposed approaches for linear multi-
category discrimination, four multi-category discrimination algorithms
are used to generate the polyhedral partition of the domain X :

1. robust linear programming (RLP) [17]4;

2. regularized piecewise-smooth Newton (RPSN) method (Algorithm 3),
using K = 300, σ = 0.4, λ = 10−5, ζ = 10−4, gtol = δtol = 10−6 and
ξ0 = 0.;

3. averaged stochastic gradient descent (ASGD) method (Algorithm 4).
The weights πi and ξ0 computed executing Algorithm 3 on the first
50 training samples. Then, the remaining data-points are processed
recursively, λ = 10−5 and ν0 = 0.01;

4. multi-category support vector machines (MSVM) with linear kernels
[68]5.

The CPU time required by the different methods to compute the polyhe-
dral partition is reported in Table 2. The performance of the MSVM ap-
proach is evaluated only in relation to the smaller training set, as larger
data sets take too long to be processed. It is worth noticing that, for
N=100000, Algorithms 3 and 4 are about 234x and 1126x faster, respec-
tively, than the robust linear programming method of [17].
Considering the accuracy of the PWA map obtained when the Voronoi

diagram induced by the clusters’ centroids is used as the final partition
of the space X, the BFRs for the different approaches are reported in Ta-
ble 3.

The results in Table 3 show that the use of robust linear program-
4The solver Gurobi has been used to compute the solution of the multi-category discrim-

ination problem.
5MSVM has been implemented using the MSVMpack 1.5 toolbox [67].
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Table 2: Case study 1. CPU time [s] vs N.

N= 103 N= 104 N= 105

RLP [17] 0.031 s 1.053 s 53.615 s
RPSN (Algorithm 3) 0.006 s 0.016 s 0.229 s
ASGD (Algorithm 4) 0.003 s 0.008 s 0.048 s
MSVM [68] 62.203 s – –

Table 3: Case study 1. BFR vs N.

N= 103 N=104 N=105

RLP [17] 97.05 % 99.59 % 99.83 %
RPSN (Algorithm 3) 97.05 % 99.01 % 99.38 %
ASGD (Algorithm 4) 94.91 % 99.07 % 99.65 %
MSVM [68] 54.46 % – –
Voronoi 95.74 % 86.27 % 95.62 %

ming (RLP), the piecewise-smooth Newton method (RPSN) and average
stochastic gradient descent (ASGD) lead to an accurate estimate of the
true function in terms of output prediction, with BFRs larger then 95 %.
Lower performance are achieved when MSVM is employed. Moreover,
the accuracy of the estimated models increases with the number N of
training samples when RPL, RPSN and ASGD are used. This is not true
when the Voronoi diagram induced by the clusters’ centroids is used as
a partition. As a matter of fact, the Voronoi diagram only depends on the
clusters’ centroids and it does not account for how the points are spread
around the centroids, thus causing the computed partition to be less ac-
curate.

2.3.2 Learning a static three-dimensional nonlinear func-
tion

Suppose that the data are generated by the (unknown) function

fo(x) =


h(x) if − 0.5 ≤ h(x) ≥ 0.5

0.5 if h(x) ≥ 0.5

−0.5 if h(x) ≤ −0.5

(2.18)

with h : R3 → R and h(x) = 0.6 sin
(
x1 + x2

2 − x3

)
. The regressor x(k) ∈

R3 is a white noise sequence with uniform distribution in the box [−1, 1]
3
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and length N = 1250. The output of the function fo is corrupted by an
additive zero-mean white noise eo(k), i.e.,

y(k) = fo(x(k)) + eo(k),

with eo ∈ R ∼ N (0, 0.022). This yields to a SNR of 25 dB.

To learn the PWA function approximating fo, Algorithm 2 is run choos-
ing the same parameters used in the case study presented in Section 2.3.1,
i.e., Λe = 1, κ = 1 and δ = 103. The parameters θi are initialized as
in (2.2) and the initial guesses for the centroids and the covariance ma-
trices are computed running a first instance of Algorithm 2, without the
first term in (S1.1). Algorithm 2 is run 25 times, initializing θi, ci and Ri

with the output of the previous iteration. Then, to compute the polyhe-
dral partition, problem (2.7) is solved via the Piecewise-smooth Newton
method described in Algorithm 3, with parameters K = 300, λ = 10−5,
gtol = δtol = 10−6, σ = 0.1, ζ = 10−5 and an initial guess ξ0 = 0.
Using a set of 250 samples neither used for training nor validation, we
have performed a sensitivity analysis with respect to the parameters σ
and ζ. As shown by the BFRs plotted in Figure 4 as functions of the
tuning parameters ζ and σ, the method summarized in Algorithm 3 is
basically insensitive to σ and ζ. An additional sensitivity analysis is per-
formed with respect to the `2 hyper-parameter λ, using the same 250
calibration data points. The obtained BFR as a function of λ is reported
in Figure 5, which shows that, for λ ≤ 0.1, the final estimate is fairly in-
sensitive to the choice of λ.
The number s is not known a priori and it is thus chosen by means of
cross validation. Specifically, using a calibration set of 250 samples not
used for training, a PWA function approximating fo is reconstructed for
different values of s. The number of affine sub-models is then chosen as
the one providing the highest BFR. This is achieved for s = 12.

The quality of the estimated PWA function is assessed w.r.t. a valida-
tion dataset of NV = 200 noiseless samples. The obtained BFR is 85.19 %
and the total CPU time for solving the regression problem is 3 s, of which
0.257 s are taken to compute the polyhedral partition.
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Figure 5: Case study 2. Algorithm 3: BFR vs λ

Comparison with the method presented in [45]

For the sake of comparison, the same regression problem is solved with
the regression method presented in [45]6. A Proximal Support Vector
Classifier (PSVC) [48] is used to compute the partition7. The obtained
BFR with [45] is 53.40 %, while BFR = 85.19% with the proposed ap-
proach. The CPU time needed to solve the regression problem with the
approach of [45] is around 149 s (i.e., 49x slower than the piecewise-
smooth Newton method). To provide another element of comparison
between the method proposed in this chapter and the one of [45], the
outputs of the functions estimated with the two methods are plotted in
Figure 6 against the true output yo, along with the absolute value of the
error yo(k) − ŷ(k). For a better visualization, only the samples in from
140 to 180 are reported.

Convergence properties

The quality of the estimated PWA map is also evaluated with respect
to the number M of iterations of Algorithm 2 and the dimension N of

6We have used the Hybrid Identification Toolbox [43]
7Among the available classifier in HIT, PSVC is the one providing the best results.
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Figure 6: Case study 2. True vs simulated output. Black: true, red: Algo 2+3,
green: Algo [45]+[48]
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Figure 7: Case study 2. BFR vs M and N. Blue: N=1250, red: N=12500,
black: N=125000

the training set. The obtained BFR as a function of the iterations M is
reported in Figure 7 for different lengths of the training set. The BFR
converges after 15 runs.

On the performance of the multi-category discrimination algorithm

To evaluate the performance of the proposed methods for linear multi-
category discrimination, i.e., the piecewise-smooth Newton method (see
Algorithm 3) and average stochastic gradient descent (see Algorithm 4),
we compute the polyhedral partition of space X with four methods: ro-
bust linear programming [17], RPSN, ASGD and MSVM [68]. The pa-
rameters used with RPSN are: K = 300, λ = 10−5, gtol = δtol = 10−6,
σ = 0.1, ζ = 10−5 and an initial guess ξ0 = 0.
When average stochastic gradient descent is tested, the weights πi and
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Figure 9: Case study 2. Algorithm 4: BFR vs λ.

the initial estimate ξ0 are computed executing the batch Algorithm 3 on
the first 50 samples, with the remaining training points processes recur-
sively. Furthermore, we perform a sensitivity analysis with respect to the
tunable parameters νo and λ, using a set of 250 samples neither used for
training nor validation. Figures 8-9 report the obtained BFR as a function
of the tunable parameters νo and λ, respectively. The performance of Al-
gorithm 4 deteriorates when νo increases, following the typical behavior
of stochastic gradient descend methods where convergence to the global
optimum improves as the parameter νo decreases, at the price of a lower
convergence speed. Instead, Algorithm 4 seems fairly insensitive to the
choice of λ, if λ ≤ 0.1. We thus choose λ = 10−5 and ν0 = 0.01.

The CPU time required to compute the partition using the four appro-
aches is given in Table 4. The performance of MSVM is evaluated only
for the small/medium size training sets, as large datasets take too long to
be processed. For a large training set (N = 125000), Algorithm 3 and Al-
gorithm 4 are about 454x and 65200x faster, respectively, than the robust
linear programming method of [17]. The obtained BFRs are reported in
Table 5, along with the BFR obtained when the Voronoi diagram induced
by the clusters’ centroids is used to compute the partition of spaceX. The
results in Table 5 show that RPSN and ASGD lead to an accurate estimate
of the true function in terms of output prediction, with BFRs larger than
80 % also in the case of small training set (N = 1250). This indicates
that the training samples are accurately clustered at Stage S1. Robust lin-
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Table 4: Case study 2. CPU time [s] vs N

N = 1250 N = 12500 N = 125000
RLP [17] 1.336 s 125 s 8541 s
RPSN (Algorithm 3) 0.257 s 1.762 s 18.8 s
ASGD (Algorithm 4) 0.0014 s 0.018 s 0.131 s
MSVM [68] 6.545 s 3870 s –

Table 5: Case study 2. BFR vs N

N = 1250 N = 12500 N = 125000
RLP [17] 86.56 % 87.41 % 93.88 %
RPSN (Algorithm 3) 85.19 % 86.47 % 91.86 %
ASGD (Algorithm 4) 84.78 % 82.30 % 92.99 %
MSVM [68] 80.91 % 80.02 % –
Voronoi 81.75 % 83.96 % 86.60 %

ear programming (RLP), the piecewise-smooth Newton method (RPSN)
and average stochastic gradient descent (ASGD) lead to BFRs larger than
90 % for a large training set (N = 125000), while the Voronoi diagram
does not achieve similar performance. This suggests that the Voronoi di-
agram is not flexible enough in partitioning the domain X. As already
remarked, the Voronoi diagram only depends on the clusters’ centroids,
and it does not take into account how the points are spread around the
centroids.

Monte Carlo simulation

A Monte Carlo simulation with 100 runs, with new realizations of both
the input u and the measurement noise eo is used at each run, is carried
out. Considering a training set of length N = 12500 and validating the
results on a set of NV = 200 noiseless samples, this test allows us to
assess the robustness of the estimation algorithm with respect to different
realizations of the training data. The mean and the standard deviation of
the BFR over the Monte Carlo simulations are reported in Table 6 for both
the off-line (see Algorithm 3) and the on-line (see Algorithm 4) proposed
to compute the multi-category linear separator.
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Table 6: Case study 2. Monte Carlo simulation, BFR (mean ± std).

RPSN (Algorithm 2) ASGD (Algorithm 3)
BFR (87.01± 3.07) % (86.88± 2.59) %

2.3.3 Modelling of concrete strength

Our approach for PWA regression is used to estimate from experimental
data a function modeling the concrete compressive strength as a function
of age, super-plasticizer, fine aggregate content and cement-to-water ra-
tio. The dataset used for this test is taken from the UCI machine learning
database repository [71] and it consists of 1030 records gathered from
laboratory tests (see [116] for details). After shuffling he 1030 available
data, of the 1030 available samples, 50 data-points are used to tune the
number of affine sub-models through cross-validation and 730 samples
are used for training. The remaining 250 samples are used for validation.
The regressor/output pairs are clustered through Algorithm 2 and the
polyhedral partition is computed using Algorithm 3, with K = 300,
λ = 10−5, gtol = δtol = 10−6, σ = 0.1, ζ = 10−5 and an initial guess
ξ0 = 0. The number of local models is chosen in cross-validation and it
is s = 9.
We compare the results obtained using Algorithm 2-3 with the model for
concrete compressive strength retrieved with a Neural Network (NN) with
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Figure 10: Case study 3. Black: true, blue: PWA regression, red: Neural
Network
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a single hidden layer of size 158. Hyperbolic tangent sigmoid activation
functions are used.
The actual concrete compressive strength is plotted in Fig. 10, along with
the output of the estimated PWA map and the neural network. For the
sake of visualization, only 30 out of 250 samples are plotted. The BFR
achieved in validation with the PWA function is 52.4 %, while a BFR
equal to 56.0 % is obtained with the NN. The resulting BFRs show that
the NN achieves a slightly better accuracy than the PWA function, but
this comes at the price of a more complex structure.

2.4 Identification of PWARX and LPV systems

In this Section, we show how the PWA regression approach presented
in Section 2.2 can be used to identify PWA dynamical systems (specifi-
cally, PWA systems with exogenous inputs in the autoregressive form)
and Linear Parameter Varying (LPV) systems. When PWA autoregres-
sive systems with exogenous inputs (PWARX) have to be identified, the
addressed problem can naturally be recast as a PWA regression problem.
Instead, LPV systems are identified approximating their p-dependent co-
efficients through PWA functions of the scheduling variable p estimated
from data.

Identification of PWARX systems

In discrete time, a Piecewise Autoregressive system with exogenous in-
puts (PWARX) is a Multi-Input Multi-Output (MIMO) dynamical sys-
tem. The output y(k) ∈ Rny of a PWARX system at sampling time k ∈ N

8The size of the hidden layer tuned through cross-validation.
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is given by the following PWA function

y(k) =



θ1

[
1

x(k)

]
if x(k) ∈ X1,

...

θs

[
1

x(k)

]
if x(k) ∈ Xs.

(2.19)

The regressor x(k) ∈ X ⊆ Rnx is a collection of the past input and output
observations, i.e.,

x(k)=
[
y′(k − 1) y′(k − 2) · · · y′(k − na) u′(k − 1) u′(k − 2) · · ·u′(k − nb)

]
,

(2.20)
with u(k) ∈ Rnu denoting the measured exogenous input at time k.

Identification of LPV systems

Linear Parameter Varying (LPV) systems can be seen as an extension of
Linear Time-Invariant (LTI) systems, as their dynamic input/output re-
lation is linear, but it changes over time accordingly to the measurable
time-varying signal p(t) ∈ Rnp , the so-called scheduling variable. LPV
models can thus accurately describe the dynamic behavior of a large class
of nonlinear and time-varying systems, while preserving a linear relation
between the input and the output signals. Practical use of LPV models is
stimulated by the fact that the theory of LPV control is well established,
mainly based on the extensions of the results of optimal and robust LTI
control theory [3, 85, 101] and its direct use in Model Predictive Con-
trol (MPC) [16]. Consider the following MIMO LPV-ARX, modeling the
input/output relation of the system to be identified:

y(k) = ā0(p(k)) +

na∑
j=1

āj(p(k))y(k − j) +

nb∑
j=1

āj+na(p(k))u(k − j), (2.21)

where p(k) ∈ P ⊆ Rnp is the value of the scheduling variable at time
k. The coefficients of the model (2.21), i.e., āj(p(k)), j = 0, . . . , na + nb,
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are unknown functions of p(k). We approximate the coefficients āj(p(k))

through the following PWA functions of p:

aj(p(k)) =


Aj1(p(k)) if p(k) ∈ P1,
...
Ajs(p(k)) if p(k) ∈ Ps,

(2.22)

where the dependence of each entry matrix Aji (p(k)) on p(k) is affine
and the scheduling variable space P is partitioned (instead of space X ).
The LPV identification problem thus reduces to reconstructing the PWA
mapping of the p-dependent coefficients āj(p(k)), which is defined over
a polyhedral partition {Pi}si=1 of P estimated from data. Specifically,
the N -length sequence of observations {x(k), y(k)}Nk=1 is used, with x(k)

given by

x(k)=
[
y′(k − 1) . . . y′(k − na) u′(k − 1) . . .u′(k − nb)

]′ ⊗ [1 p′(k)
]′
.

It is worth to further remark that the polyhedral partition {Pi}si=1 of the
scheduling variable space P is not fixed a priori. The underlying depen-
dencies of aj(p(k)) on the scheduling variable p(k) (see (2.22)) are thus
reconstructed from data. This represents one of the main advantages
with respect to widely used parametric LPV identification approaches
(see [6, 111]), which in turn require to parametrize aj(p(k)) as a linear
combination of some a-priori specified basis function (e.g., polynomial
or trigonometric functions). Indeed, the choice of the number and type
of basis functions is a critical issue in the identification procedure, as an
inaccurate selection of the set of basis functions could lead to a structural
bias. To capture the underlying dependence of the coefficients aj(p(k))

on p(k), a large set of basis function is often used, with consequent nu-
merical problems in the implementation of the identification schemes
and the increasing possibility of overfitting the training data.

Remark 1 If the entries of the sub-model matrices Aji (p(k)) (i = 1, . . . , s,
j = 0, . . . , na + nb) do not depend on p(k), i.e., aj(p(k)) are approximated
by piecewise constant functions, the LPV model becomes a switched linear mo-
del, where each sub-system is LTI and the switching behavior depends on the
scheduling signal p(k). �
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2.4.1 Identification of a MIMO PWARX system

Let the data be generated by the MIMO PWARX described by the differ-
ence equation[
y1(k)
y2(k)

]
=

[
−0.83 0.20
0.30 −0.52

][
y1(k − 1)
y2(k − 1)

]
+

[
−0.34 0.45
−0.30 0.24

][
u1(k − 1)
u2(k − 1)

]
+

[
0.20
0.15

]
+

+ max

{[
0.20 −0.90
0.10 −0.42

][
y1(k − 1)
y2(k − 1)

]
+

[
0.42 0.20
0.50 0.64

][
u1(k − 1)
u2(k − 1)

]
+

+

[
0.40
0.30

]
,

[
0
0

]}
+ eo(k) (2.23)

System (2.23) is characterized by s̄ = 4 operating modes, given by the
possible combinations of sign of the components of the first vector ar-
gument of the “max” operator. The excitation input u(k) is a white noise
sequence with uniform distribution in the box [−1.0, −0.4]×[−1.0, −0.4]

and length N = 4000. The output in (2.23) is supposed to be corrupted
by an additive noise sequence eo ∼ N (0,Λe), with Λe = [ 0.02 0.02

0.02 0.02 ] cor-
responding to SNRs equal to SNR1 = 8.7 dB and SNR2 = 6.9 dB on the
first and second output channels, respectively.

Algorithm 2 is run with s = s̄ = 4. Using a training set of length
N = 4000, the initial guess for the parameters θ1, . . . , θs is obtained as
in (2.2), while, as for the other case studies, the clusters’ centroids and
covariance matrices are initialized running an instance of Algorithm 2
without the first term in (S1.1).
Algorithm 2 is then run for a total of 15 times with the full criterion (S1.1)
and, finally, the clusters obtained running Algorithm 2 are separated us-
ing the approach for batch linear multi-category discrimination (see Al-
gorithm 3), with K = 300, σ = 0.4, λ = 10−5, ζ = 10−4, gtol = δtol = 10−6

and the parameters ξ0 set to zero.

The quality of the estimated PWA model is assessed with respect to a
validation dataset ofNV = 500 noiseless samples. The true and the open-
loop simulated output sequences are shown in Figure 11, along with the
simulation error yo−ŷ . For the sake of visualization, we show yo, ŷ and
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Figure 11: PWARX identification. True vs simulated output

yo−ŷ for a window of 100 samples. Accordingly to the simulated output
in Figure 11, the BFRs are 96.2% and 96.3%, for the first and the second
output channel, respectively. The estimated polyhedral partition of the
regressor space X is such that only 12 out of 500 samples (i.e., the 2.4%
of the whole validation set) are misclassified. The CPU time required to
identify the complete PWARX model is 0.76 s, of which 0.016 s are taken
to execute Algorithm 3.

Convergence properties

As already remarked, the accuracy of the estimated final model and the
total CPU time are influenced by the number of runs of Algorithm 2 and
the number of samples N available for training. The performance of the
used approach (Algorithm 3 is used to compute the partition) has been
tested increasing the number of runs M and the dimension of the training
set N. Figure 12 shows the obtained BFR as a function of M for different
values of N. Clearly, there is no improvement in BFR on the two output
channels after about 8 runs.
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Figure 12: PWARX identification. BFR vs M and N

On the performance of the multi-category discrimination algorithm

The regularized Piecewise-smooth Newton (RPSN) method summarized
in Algorithm 3, is compared with: robust linear programming (RLP)
[17], the method proposed for the on-line update of the partition (aver-
age stochastic gradient descent, see Algorithm 4). When the piecewise-
smooth Newton method is employed to compute the polyhedral parti-
tion of X, we choose K = 300, σ = 0.4, λ = 10−5, ζ = 10−4, gtol = δtol =

10−6 and the parameters ξ0 are set to zero. If average stochastic gradi-
ent descent (ASGD) is used, the weights πi and the initial estimate ξ0 are
computed by executing the batch Algorithm 3 on the first 3000 training
samples, λ = 10−5 and ν0 = 10−3. The remaining training samples are
processed recursively.
The estimated models are validated on a set of 500 samples not used for
training, equal to the dataset used to evaluate the performance of the ap-
proach and the convergence of Algorithm 2. The obtained BFRs on the
two outputs are shown in Table 7, while the percentages of misclassified
data points for each method and for different values of N are reported in
Table 8. Results in Tables 3–8 show that all the three discrimination algo-
rithms used to compute the polyhedral partition of X lead to an accurate
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Table 7: PWARX identification. BFR vs N

N = 4000 N = 20000 N = 100000

BF
R

1 RLP [17] 96.0 % 96.5 % 99.0 %
RPSN 96.2 % 96.4 % 98.9 %
ASGD 86.7 % 95.0 % 96.7 %

BF
R

2 RLP 96.2 % 96.9 % 99.0 %
RPSN 96.3 % 96.8 % 99.0 %
ASGD 87.4 % 95.2 % 96.4 %

Table 8: PWARX identification. Percentage of misclassified points

N = 4000 N = 20000 N = 100000

RLP [17] 1.6 % 1.0 % 0.2 %
RPSN 2.4 % 1.2 % 0.4 %
ASGD 5.4 % 2.0 % 1.4 %

Table 9: PWARX identification. CPU time vs N

N = 4000 N = 20000 N = 100000

RLP [17] 0.308 s 3.227 s 112.435 s
RPSN 0.016 s 0.086 s 0.365 s
ASGD 0.013 s 0.023 s 0.067 s

estimate of the underlying PWA system, both in terms of output predic-
tion (Table 3) and partition of the domain X. Specifically, we obtain BFRs
larger then 95 % and a percentage of misclassified points smaller than
2.5 % (except when N = 4000 and Algorithm 4 is used). As expected,
the accuracy of the models increases with the number of training sam-
ples. The CPU time required by the three discrimination algorithms is
reported in Table 9. It is worth noting that, for a large training set (i.e.,
N=100000), Algorithms 3 and 4 are about 300x and 1600x faster, respec-
tively, than the robust linear programming method presented in [17].

On-line learning of a PWARX model

The performance of the proposed approach for PWA regression is fur-
ther assessed when a PWARX model have to be reconstructed in real-
time, while the data are acquired. Consider a set of N= 100000 sam-
ples. Among the available data-points, 10000 samples are supposed to
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be generated by the PWARX system defined in (2.23), while the remain-
ing 90000 samples are assumed to be generated by the following PWARX
system:[

y1(k)
y2(k)

]
=

[
−0.8579 0.1672
0.2076 −0.4962

][
y1(k − 1)
y2(k − 1)

]
+

[
−0.2958 0.4612
−0.3085 0.2807

][
u1(k − 1)
u2(k − 1)

]
+

+

[
0.2102
0.1323

]
+max

{[
0.1884 −0.9455
0.0808 −0.3677

][
y1(k − 1)
y2(k − 1)

]
+

+

[
0.4486 0.1172
0.4093 0.5946

][
u1(k − 1)
u2(k − 1)

]
+

[
0.4272
0.2787

]
,

[
0
0

]}
+ eo(k). (2.24)

The identification of the PWARX system is performed processing the first
3000 samples, which are all generated by the PWARX in (2.23), in a batch
mode. Algorithm 3 is thus used to compute an initial estimate of the
polyhedral partition ofX. The remaining 97000 data points are processed
on-line, with the polyhedral partition of the regressor space X computed
through Algorithm 4.
To assess the performance of the approach we consider the true (noise-
free) output yo(k) and the one-step ahead prediction of the model output
ŷ(k). The Relative Mean Square Error (ReMSE) is used as performance
index, by providing the ratio between the mean square error and the
power of the actual output signal, i.e.,

ReMSEi =

∑N
k=1 (yo,i(k)− ŷi(k))

2∑N
k=1 y

2
o,i(k)

. (2.25)

The obtained values of ReMSE1 and ReMSE2 are 0.8 % and 0.1 %, respec-
tively.
Concerning the computational complexity of the method, the average
CPU time required to cluster the observed regressor and update the mo-
del parameters (Algorithm 2) at each time instant is around 324 µs, while
Algorithm 4 requires 34 µs (on average) to update the partition of space
X. Based on these results, the proposed method for PWA regression
seems to be suited for applications with sampling times down to the or-
der of milliseconds (e.g., adaptive control applications).
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2.4.2 Identification of a MIMO LPV system

Let the data-generating system be the following (unknown) MIMO Lin-
ear Parameter Varying (LPV) system:[
y1(k)
y2(k)

]
=

[
ā1,1(p(k)) ā1,2(p(k))
ā2,1(p(k)) ā2,2(p(k))

][
y1(k − 1)
y2(k − 1)

]
+

[
b̄1,1(p(k)) b̄1,2(p(k))
b̄2,1(p(k)) b̄2,2(p(k))

][
u1(k − 1)
u2(k − 1)

]
,

where

ā1,1(p(k)) =


−0.3 if 0.4 (p1(k) + p2(k)) ≤ −0.3

0.3 if 0.4 (p1(k) + p2(k)) ≥ 0.3

0.4 (p1(k) + p2(k)) otherwise

ā1,2(p(k)) =0.5 (|p1(k)|+ |p2(k)|) ,
ā2,1(p(k)) =p1(k)− p2(k),

ā2,2(p(k)) =


0.5 if p1(k) < 0

0 if p1(k) = 0

−0.5 if p1(k) > 0

b̄1,1(p(k)) =3p1(k) + p2(k),

b̄1,2(p(k)) =

{
0.5 if 2

(
p21(k) + p22(k)

)
≥ 0.5

2
(
p21(k) + p22(k)

)
otherwise

b̄2,1(p(k)) =2 sin {p1(k)− p2(k)} ,
b̄2,2(p(k)) =0

The input u(k) and the scheduling variable p(k) are independent white
noise sequences of length N = 11000 with uniform distribution in the
boxes [−0.5, 0.5] × [−0.5, 0.5] and P = [−1, 1] × [−1, 1], respectively,
with P indicating the scheduling variable space. The noise covariance
matrix of eo(k) ∈ R2 is Λe = [ 0.25 0

0 0.25 ], which yields to SNRs equal to
SNR1 = 4 dB and SNR2 = 7 dB on the first and the second output chan-
nel, respectively.

Choice of the number of modes

The number s of affine sub-models (i.e., the number of polyhedral re-
gions defining the partitions ofP) is chosen by means of cross validation.
The 11000-length training data set is split into two disjoint sets, where
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Figure 14: LPV identification. Polyhedral partition of the scheduling vari-
able space P with s = 10

the first 10000 samples are used for calibration purposes. Specifically, the
PWA regression problem is solved for different values of s in the range
5–30. For each value of s Algorithm 2 is iterated 10 times. The remaining
1000 samples are used to assess the quality of the identified LPV models.
Specifically, for each value of s, we compute the BFR on the two output
channels. The obtained BFRi (with i = 1, 2), as a function of s, along with
the aggregate BFR, i.e., BFRT = BFR1 + BFR2, are reported in Figure 13.
Among the identified LPV models, the one providing the largest aggre-
gated BFRT = BFR1 + BFR2 is selected, which corresponds to s = 10.
The computed polyhedral partition is plotted in Figure 149.

9The Hybrid Toolbox for MATLAB [9] is used to compute the partition.
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Figure 15: LPV identification. True vs estimated output

Model quality assessment

The quality of the estimated model is assessed with respect to a valida-
tion dataset, consisting of a sequence of NV = 2000 noiseless samples
not used for calibration nor training. For the sake of comparison, the
nonlinear coefficient functions āi,j(p(k)) and b̄i,j(p(k)) at k are also es-
timated through the parametric LPV identification approach in [6], ap-
proximating the nonlinear coefficients āi,j(p(k)) and b̄i,j(p(k)) as fourth-
order polynomials in the two-dimensional scheduling variable p(k). Fig-
ure 15 reports the true and the simulated sequence, along with the esti-
mation error obtained with both the approaches. For the sake of visu-
alization, only the samples in the interval [100, 200] are reported. The
proposed PWA regression method allows us to accurately reconstruct
the output. To provide an additional mean of comparison, the BFRs ob-
tained with the two considered approaches for LPV identification are re-
ported in Table 10. The obtained results show that the proposed PWA-
LPV identification approach, based on the PWA approximation of the
coefficient functions āi,j(p(k)) and b̄i,j(p(k)), outperforms the paramet-
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Table 10: LPV identification. BFR vs approach

BFR1 BFR2

PWA regression (Algo 2+3) 87 % 84 %
parametric LPV [6] 80 % 70 %

ric LPV identification approach in [6], with the method in [6] based on
the parametrization of the nonlinear functions āi,j(p(k)) and b̄i,j(p(k)).
This results from the flexibility of the PWA model, i.e., the fact that the
polyhedral partition is computed from data and not fixed a priori, while
the method presented in [6] is based on a priori specified polynomial
parametrization of the nonlinear functions āi,j(p(k)) and b̄i,j(p(k)).
Concerning the computational time required to evaluate the output of
the LPV model, given the current value of p and the past input/output
observations, is about 120 µs, 40 µs of which required to assign p to a
polyhedral region. Note that the assignment is performed computing
the maximum of the s = 10 affine functions {φi(p)}si=1 defining the PWA
separator φ(p) in (2.3).
The relatively “low” computational time required to reconstruct the out-
put is mainly due to structure of the estimated model, which can thus
be used in applications requiring a “fast” on-line determination of the
operating mode (e.g., gain scheduling or LPV Model Predictive Control).

On the performance of the multi-category discrimination algorithms

As in the previous case studies, the performance of different multi-category
discrimination method are assessed. In particular, robust linear pro-
gramming [17], the Newton-like approach (Algorithm 3) and the aver-
aged stochastic gradient descent method (Algorithm 4) are compared.
When computing the partition with Algorithm 3, the chosen parameters
are: K = 300, σ = 0.4, λ = 10−5, ζ = 10−4, gtol = δtol = 10−6, ini-
tial guess for ξo set to zero. In running Algorithm 4, λ and ν0 are set
to 10−5 and 10−3, respectively. The weights πi and the initial estimate
ξ0 for Algorithm 4 are computed by executing the batch Algorithm 3 on
the first 1000 training samples. The remaining 9000 training samples are
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processed recursively.

The CPU time required to compute the partition is reported in Fig-
ure 16, as a function of the number of modes s. Note that the CPU time re-
ported in Fig. 16 also includes the time required to initialize Algorithm 4.
In particular, for s = 10, the estimate of the LPV model is computed in
14 s, 0.4 s of which required to compute the partition, using algorithm 2
and Algorithm 3. On the other hand, the RLP method proposed in [17]
takes 4.2 s, i.e., it is almost 10x slower than the proposed extension of the
PWA regression method.
The performance are further assessed considering the aggregate BFR, re-
ported in Figure 17.

The results reported in Figure 16, 17 show that the CPU time required
to compute the partition of space P increase with s, independently from
the used method. This behavior can be explained considering that the
number of parameters ξ defining the PWA separator φ increases linearly
with s. Furthermore, the piecewise-smooth Newton method and average
stochastic gradient descent are faster (from 6x to 20x) than robust linear
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programming [17]. On the one hand, RLP and RPSN achieve similar
performance in term of BFR. See Figure 17. On the other hand, for s = 11,
s = 14 and s = 20, ASGD does not provide an accurate partition of the
scheduling variable space, leading to an aggregate BFR smaller than 1.1.
This means that, for s = 11, 14, 20, ASGD fails to converge to the batch
solution of the discrimination problem (2.7).
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Chapter 3

Learning Hybrid Models
Discrete Hybrid Automata

In this chapter the problem of black-box identification of Discrete Hybrid
Automata (DHA) is addressed. Discrete hybrid automata result from the
connection of a Finite State Machine (FSM) and a switched affine system,
that are used to describe the discrete and continuous dynamics of the
system, respectively. We present a two-stage approach for identification
of DHA, which is an extension of the method for Piecewise PWA regres-
sion introduced in chapter 2 and allows us to identify both the switched
affine system and the FSM.
The chapter is organized as follows. Discrete hybrid automata and the
addressed identification problem are introduced in Sections 3.1–3.2. The
two-stage method proposed for DHA identification from data is described
in Section 3.3 and, finally, two case studies are presented in Section 3.4 to
show the effectiveness of the developed identification method.

3.1 Description of Discrete Hybrid Automata

As a model class, Discrete Hybrid Automata (DHA) are quite general
and include, among others, Mixed Logical Dynamical (MLD) models
[15], PWA models [104] and max-min-plus-scaling models [56]. To frame
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the addressed identification problem, we describe each of the elements
composing a DHA, according to the definitions introduced in [110]. Fur-
thermore, we introduce the assumptions made on the DHA in designing
the identification method.

A schematic of the functional blocks constituting a DHA is shown in
Figure 18, where the information shared among different blocks is un-
derlined.

3.1.1 Switched Affine Systems

A Switched Affine System (SAS), S, is a collection of affine dynamical
systems [110]

[
z1(k)
w1(k)

]
=


[
A1xr(k) +B1u(k) + f1

C1xr(k) +D1u(k) + g1

]
if m(k) = 1,

0nx+ny otherwise

...[
zs(k)
ws(k)

]
=


[
Asxr(k) +Bsu(k) + fs

Csxr(k) +Dsu(k) + gs

]
if m(k) = s,

0nx+ny otherwise

xr(k + 1) =

s∑
i=1

zi(k),

y(k) =

s∑
i=1

wi(k).

where k ∈ N is the discrete time index, u ∈ Rnu is the exogenous con-
tinuous input vector and y ∈ Rny is the continuous output vector. The
indexm(k) ∈ {1, . . . , s} specifies the affine state update dynamics at time
k and it can only take a finite number of integer values, with s denoting
the number of local affine models.

Alternatively, using a state space representation, a SAS is given by{
xr(k + 1) = Am(k)xr(k) +Bm(k)u(k) + fm(k)

y(k) = Cm(k)xr(k) +Dm(k)u(k) + gm(k),
(3.1)

56



Switched Affine Systems S

S1
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Ss

Event Generator E
[δie = 1]↔ [Aiϕ(k) ≤ Bi]

δie = 1

δie = 0

Finite State Machine F

Mode SelectorMS
m(k) = fM (xb(k), δe(k))

m ∈ {1, . . . , s}

u(k)

m(k)

δe(k)

ϕ(k)

y(k)

δe(k)

xδe(k)

Figure 18: Discrete Hybrid Automata. Scheme of the functional blocks, with
y(k) either equal to y(k) or X(k).

For fixed model orders na and nb, a switched affine system S can also be
represented in the input/output form:

y(k) = θ′m(k)X̃(k), (3.2)

where θm(k), with m(k) = 1, . . . , s, are the parameter matrices describing
the affine dynamical sub-models and X̃(k) ∈ Rnx̃ is the extended regres-
sor vector defined as X̃(k) =

[
X(k) 1

]′, with X(k) ∈ X ⊆ Rnx being
the collection of past input and output measurements, i.e.,

X(k)=[y′(k−1) . . . y′(k−na) u′(k−1) . . . u′(k−nb)]
′
. (3.3)

We focus on switched affine systems represented in the autoregressive
input/output form.

3.1.2 Event Generator

An Event Generator (EG) E generates a Boolean vector δe(k)∈D⊆{0, 1}ne
according to the satisfaction of affine constraints. Instead of considering
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the general definition provided in [110], where the Event Generator is a
function of the continuous state xr(k), the input u(k) and the discrete-
time index k, we assume that the EG is characterized by the following
relationship

δe(k) = fH(ϕ(k)), (3.4)

where fH : Φ → D ⊆ {0, 1}ne is a vector of descriptive functions of a
linear hyperplane and ϕ(k) ∈ Φ ⊆ Rnϕ is either equal to the input y(k) ∈
Y ⊆ Rny or to the regressor X(k) ∈ X ⊆ Rnx . The number of possible
events described through the EG is equal to 2ne , which corresponds to
the values that can be taken by the Boolean vector δe(k).
Even though the event generator can be used to model both time events1

and threshold events, we only consider EG modelling this second class
of as we assume that transitions between different operating conditions
are due to the signal ϕ crossing a threshold. In particular, given matrix
A ∈ Rne×nϕ and vector B ∈ Rne , threshold events are represented as:
[δe,i(k) = 1] ↔ [Aiϕ(k) ≤ Bi], where ϕ(k) ∈ Φ ⊆ Rnϕ is equal either to
the output y(k) or the regressor X(k) and δe,i(k) is the i-th component of
δe(k).

3.1.3 Finite State Machine

A Finite State Machine (FSM)F is a discrete dynamic process that evolves
according to a logic state update function [110]

xb(k + 1) = fB(xb(k), ub(k), δe(k)),

where xb ∈ Xb⊆{0, 1}nxb is the discrete (or logic) state, ub ∈ Ub⊆{0, 1}nub
is an exogenous Boolean input, δe(k) is the endogenous input coming
from the event generator E , and fB : Xb × Ub × D → Xb is a determin-
istic logic function. Only synchronous FSM will be considered, so that
transitions may happen only at sampling instants. We assume that no
exogenous Boolean input ub(k) is present, i.e.,

xb(k + 1) = fB(xb(k), δe(k)), (3.5)
1A time event is modelled as: [δe,i(k) = 1] ↔ [kTs ≥ to], with Ts indicating the

sampling time, and where to is a given time and δe,i(k) is the i-th component of δe(k).
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Figure 19: Finite State Machine with 3 states and no exogenous Boolean
inputs ub(k).

namely the FSM is entirely driven by the output of the event generator
δe. An example of a finite state machine, with 3 states and that is driven
by the events δi, i = 1, 2, 3, is shown in Figure 19. The logic state update
function associated with the FSM in Figure 19 is

xb(k + 1) =


1 if ((xb(k) = 1) ∧ ¬δ2) ∨ ((xb(k) = 2) ∧ δ1)

2 if ((xb(k) = 1) ∧ δ2) ∨ ((xb(k) = 2) ∧ ¬δ1)

3 if ((xb(k) = 2) ∧ ¬δ3) ∨ ((xb(k) = 3) ∧ δ3),

where the following connectives are introduced: “∧” (and), “∨” (or) and
“¬‘ (not). Note that the conditions associated with the edges of the ori-
ented graph in Figure 19 are mutually exclusive, as (3.5) is a deterministic
function.

3.1.4 Mode Selector

The Mode Selector (MS)MS is a Boolean function fM :Xb×D→{1, . . . , s}:

m(k) = fM (xb(k), δe(k)), (3.6)

where m(k) is the selected dynamic sub-model of the SAS, called ac-
tive mode. We assume that the mode selector MS is only a function of
the current logic state xb(k). This means that one and only one mode
m(k) is associated to the logic state xb(k) and, as a consequence, that
the active mode m(k) is driven by the logic state update function fB in
(3.5). Because of this assumption, with some abuse of notation, the terms
logic/discrete state and active mode will be interchangeably used.
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3.2 Problem statement

Based on the definitions introduced in Section 3.1, the problem of black-
box identification of DHA can be formally stated as follows:

Problem 1 Discrete Hybrid Automaton identification
Consider an unknown data-generating Discrete Hybrid Automaton:

H = {S, E ,F ,MS}, (3.7)

where S is the correspondent SAS, E is the Event Generator, F is the as-
sociated FSM andMS is the Mode Selector.
Given a set of N input/output pairs {u(k), y(k)}Nk=1 generated by the
“true”system H in (3.7), the DHA identification problem aims at estimat-
ing a DHA model describing the input/output relationship between the
data {u(k), y(k)}Nk=1, under the hypothesis that the measured outputs
y(k) may be noisy and the sequence of active modes m(k) is not directly
observable. �

To solve problem 1 one is required to:

(i) choose the number of local affine sub-models s, i.e., the number of
different values of the logic state xb defining the FSM F . In the
design of the identification strategy, the value of s is assumed to
be fixed by the user. If the number of sub-models is not known
a priori, s can be chosen through cross-validation, with a possible
upper-bound dictated by the maximum tolerable complexity of the
estimated DHA model. It is worth remarking that the number of
possible logic states should be selected to trade-off between data
fitting and model complexity.

(ii) estimate the parameter matrices {θi}si=1 associated to each affine
dynamical system of S (see eq. (3.2));

(iii) identify, from the regressor/output pairs {X(k), y(k)}Nk=1, the tran-
sitions between the active modes (or equivalently, based on our
assumptions, between the discrete states xb) and derive the con-
ditions leading to such transitions.
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3.3 DHA identification algorithm

A two-step strategy is used to tackle the DHA identification problem.
Specifically, the algorithm consists of the following stages:

S1. Simultaneous clustering of the data {X(k), y(k)}Nk=1 and estimation
of the parameter matrices θ1, . . . , θs. This is performed recursively,
by processing the training samples {X(k), y(k)}Nk=1 sequentially.
In this stage we thus estimate the parameters {θi}si=1 and we asso-
ciate each data pair {X(k), y(k)} with a cluster Ci, i ∈ {1, . . . , s},
where Ci represents the set of points associated to the i-th logic
state of the system. Furthermore, the results of the clustering pro-
cedure allow us to reconstruct the sequence of active modes M =

{m(k)}Nk=1.

S2. Learning s different partitions {Φj}sj=1 of the space Φ. it is worth
remarking that Φ is the space where ϕ is defined, with ϕ(k) either
equal to y(k) (Φ = Y) or the regressor X(k) (Φ = X ). Each parti-
tion Φj implicitly defines the function fH(ϕ(k)) in equation (3.4),
describing the event generator E , and the logic state update rule
xb(k + 1) = fB(xb(k), δe(k)) given that the active mode m(k) at the
current time k is m(k) = j.
More specifically, after estimating the sequence of active modesM =

{m(k)}Nk=1 at stage S1, s different clusters {Ci+j }si+=1 are constructed,
one for each possible mode j = 1, . . . , s. Each cluster Ci+j contains
the samples {ϕ(k)}N−1

k=1 such that m(k) = j and m(k + 1) = i+.
The j-th partition Φj of the space Φ is thus obtained by separat-
ing the clusters {Ci+j }si+=1 through a multi-class linear separator,
computed using the Newton-like method presented in chapter 2,
Section 2.2.2.

As already remarked ϕ ∈ Φ is supposed to be either the measured output
or the regressor. In particular, among these two possibilities, the signal ϕ
driving the transition between different logic states can be selected either
through cross-validation or on the basis on prior knowledge on the true
system.
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Before providing any technical detail, it is worth remarking that the
introduced two-stage algorithm is based on a proper extension of the
method for PWA regression presented in chapter 2. The main difference
with respect to the method described in chapter 2 is that we account for
the time evolution of the logic states, through the construction of s dif-
ferent partitions {Φj}sj=1 of the space Φ.

Remark 2 The order in which the samples are collected plays an important role
in the estimation of the switching laws. As a consequence, the order of the data
must not be altered through permutations of the sequence {X(k), y(k)}Nk=1. �

3.3.1 S1. Iterative clustering and parameter estimation

The iterations of Stage S1 are summarized in Algorithm 5. To recursively
update the values of the parameters θi and to generate the clusters Ci,
we use an approach similar to the one presented in chapter 2 (see Algo-
rithm 2) for recursive clustering and parameter estimation. The methods
summarized in Algorithm 5 and Algorithm 2 are based on different clus-
tering polices. In particular, in Step 3.1 of Algorithm 5 we consider the
modelling error, while in Algorithm 2 we account for both the fitting er-
ror and the spatial distribution of the data.
The main idea of Algorithm 5 is to compute, at each time instant k, the
estimation error ei (i ∈ {1, . . . , s}) provided by all the s local affine sub-
models and select the one that “best fits” the current output observation
y(k) (Steps 3.1 and 3.2). Once the “best” sub-model is chosen, the se-
quence of active modes M is updated as in Step 3.4 and, at Step 3.5, the
parameter matrix θm(k) associated to the selected model is updated using
the recursive least-squares algorithm in [2], based on inverse QR decom-
position.

As pointed out in chapter 2, due to the greedy nature of Algorithm 5,
the estimates θi and the clusters Ci, with i = 1, . . . , s, will be influenced
by the initialization of the parameters θi. A possible choice for the initial
values of the matrices θi is to take θ1, . . . , θs all equal to the best linear
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Algorithm 5 Recursive clustering and parameter estimation algorithm

Input: Sequence of observations {X(k), y(k)}Nk=1, desired number s of
logic states, initial condition for the parameter matrices θi, i = 1, . . . , s.

1. letM← 0N×1;

2. let Ci ← ∅, i = 1, . . . , s;

3. for k = 1, . . . , N do

3.1. let ei(k)← y(k)− θ′iX̃(k), i = 1, . . . , s;

3.2. let
m(k)← arg min

i=1,...,s
e′i(k)ei(k); (3.8)

3.3. let Cm(k) ← Cm(k) ∪ {y(k), X(k)};
3.4. letM(k)← m(k);

3.5. update θm(k) using the recursive least-squares Algorithm [2];

4. end for;

5. end.

Output: Estimated matrices θ1, . . . , θs, clusters C1, . . . , Cs and sequence
of active modesM.
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model, i.e.,

θi ≡ arg min
θ

N∑
k=1

‖y(k)− θ′X(k)‖22, ∀i = 1, . . . , s. (3.9)

As suggested in Chapter 2, the accuracy of the estimates can be enhanced
reiterating Algorithm 5 multiple times, using its output as an initial con-
dition for the following iteration.

Dealing with logic states with equal continuous dynamics

Suppose that Algorithm 5 is used to identify a DHA system with two or
more logic states sharing the same continuous dynamics (3.1). In this set-
ting, it might be difficult to accurately reconstruct the discrete behavior
of the DHA, since data points originated from different logic states may
be associated with the same cluster.
Considering that s is fixed, due to errors in the clustering procedure
(Step 3.8) it might happen that a clusters C∅ is “almost empty”, i.e., the
points associated to C∅ are outliers. The remaining clusters might not be
linearly separable and, consequently, the function fH characterizing the
event generator E may not be correctly retrieved.

We introduce an heuristic to overcome this problem, extending Al-
gorithm 5 as summarized in Algorithm 6. It is worth underlining that
Algorithm 6 has to be run after Algorithm 5.

The number of modes s is supposed to be known a priori and, con-
sequently, none of the clusters obtained with Algorithm 5 should be
“empty”. At step 2 of Algorithm 6, we find the number c∅ of “almost
empty” clusters, with Ci ranked as “almost empty” if it contains less than
εN samples. The tunable parameter ε is used to select the minimum di-
mension of the cluster for it not to be classified as “almost empty”and it
allows us to account for the fact that outliers can be assigned to “empty”
clusters. When c∅ 6= 0, we assume that data points belonging to the
“almost empty” clusters have been erroneously assigned to other logic
states. As the clustering policy used in is Algorithm 5 is only based on
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Algorithm 6 Splitting clustering algorithm

Input: Sequence of training samples {X(k), y(k)}Nk=1, desired number
s of logic states; parameter matrices θi and clusters Ci (i = 1, . . . , s) pro-
vided by Algorithm 5; threshold ε ≥ 0.

1. let c∅ ← 0;

2. for i = 1, . . . , s do

2.1. if |Ci|N ≤ ε let c∅ ← c∅ + 1;

3. end for;

4. let s̄ = s− c∅;

5. compute new clusters C̄i and parameter matrices θi i = 1, . . . , s̄
through Algorithm 5;

6. compute the clusters’ sample covariance matrices Ri, i = 1, . . . , s̄;

7. let Σi ← tr(Ri), i = 1 : . . . , s̄;

8. let µ← s̄ and β ← s̄;

9. while µ < s do

9.1. let j? ← arg maxj∈{1,...,β}Σj;

9.2. let l? ← arg minl∈{1,...,s−µ+1}DB(l);

9.3. divide C̄j? into l? clusters through K-means [55];

9.4. associate the parameter vector θj? to the obtained clusters;

9.5. let β ← β − 1 and remove C̄j? from the set of clusters that can
be partitioned;

9.6. update µ← µ+ (l? − 1);

9.7. let Ci, i = 1, . . . , µ be the new collection of clusters and θi the
associated parameter matrices;

10. end while;

Output: Estimated parameters {θi}si=1, clusters {Ci}si=1 and updated
sequence of active modesM.
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the modeling error, we further suppose that the samples associated with
an “almost empty” cluster have been assigned to a mode characterized
by the same continuous dynamics of the “undetected” one. Based on
these considerations, Algorithm 5 is then run again with a reduced num-
ber of modes s̄ = s − c∅ (Steps 4-5) to improve the accuracy of the es-
timated the sub-models, i.e., the quality of the estimates θi, i = 1, . . . , s̄.
Nonetheless, as the number of logic states s is supposed to be known a
priori, also the parameter matrices associated with the discarded s − s̄
logic states have to be estimated. Steps 6-10 allow us to accomplish this
task. At Step 7, we calculate the trace Σi of the covariance matrix Ri

(computed at step 6) of the clusters C̄i, with i = 1, . . . , s̄. The quantities
{Σi}s̄i=1 are used to evaluate the dispersion of the clusters {Ci}s̄i=1. Start-
ing from the cluster with maximum dispersion C̄j? , K-means [55] is then
iteratively applied (step 9.3) until the s clusters are retrieved. In particu-
lar, at step 9, C̄j? is partitioned into l? sub-clusters, with l? (computed at
stage 9.2) set as the value corresponding to the clustering solution mini-
mizing the Davies-Bouldin index, i.e.,

l? = argmin
l∈{1...,s̄}

DB(l),

with the Davies-Bouldin index [41] defined as

DB(l) =
1

l

l∑
i=1

max
j 6=i

(
d̄i + d̄j
dij

)
. (3.10)

In equation (3.10), l is the number of sub-clusters, d̄i is the i-th cluster
within-cluster distance and dij is the distance between the centroids of
the i-th and the j-th cluster. Once C̄j? is partitioned, the parameter vector
θj? is associated with all the obtained sub-clusters (see Step 9.4) and C̄j?
is removed from the set of clusters that can further be divided (Step 9.5).
This procedure is repeated until the desired number s of cluster is re-
trieved.
Algorithm 6 allows us to retrieve the s clusters, the parameter matrices
{θi}si=1 and the resulting sequence of active modesM.
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(c) Result of Step 2.3. Linear separator
between C11 and C21

Figure 20: Learning the discrete dynamics of a DHA with 2 modes. Results
obtained performing Step 2 of Algorithm 7 for j = 1, based on C1 computed
at Stage S1.

3.3.2 Learning the discrete dynamics

Although Stage S1 does not provide a direct estimation of the law driv-
ing the discrete dynamics, the underlying FSM can be identified from the
estimated sequence of active modesM.
For each sample ϕ(k), with ϕ(k) supposed to be equal either to y(k) or
X(k), sequence M gives both the estimated active mode m(k) and the
one-step ahead logic state m(k + 1).
Algorithm 7 summarize the procedure used to reconstruct the logic state
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dynamics. Specifically, we compute s different polyhedral partitions {Φj}sj=1

of the space Φ, with each partition Φj computed independently from the
others. At step 2.1, s different clusters {Ci+j }si+=1 are constructed for each
j = 1, . . . , s. Each cluster Ci+j contains the samples {ϕ(k)}N−1

k=1 such that
m(k) = j and m(k + 1) = i+. The j-th partition Φj of space Φ is thus ob-
tained by separating the clusters {Ci+j }si+=1 through the multi-class lin-
ear separation method presented in Chapter 2 and summarized in Algo-
rithm 3 (step 2.3).
When applied to a DHA with 2 discrete states, the results obtained per-
forming Steps 2.1-2.3 of Algorithm 7 (for j = 1) are summarized in Fig-
ure 20.

Algorithm 7 Logic state dynamics identification algorithm

Input: Samples {ϕ(k)}Nk=1; identified sequence of logic states M =
{m(k)}Nk=1.

1. let Ci+j ← ∅, j, i+ = 1, . . . , s;

2. for j = 1, . . . , s do

2.1. for i+ = 1, . . . , s do

2.1.1. for k = 1, . . . , N − 1 do
2.1.1.1. if m(k) = j and m(k + 1) = i+

2.1.1.2. let Ci+j ← Ci
+

j ∪ {ϕ(k)};
2.1.1.3. end if;

2.1.2. end for;

2.2. end for;

2.3. for all j = 1, . . . , s, compute the polyhedral partition Φj of the
space Φ by separating the clusters Ci+j (with i+ = 1, . . . , s)
through the multi-class linear separation method in Algo-
rithm 3.

3. end for;

Output: Polyhedral partitions Φj , j = 1, . . . , s.
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3.4 Case studies

To show the effectiveness of the proposed identification technique, a sim-
ulation example and a simple experimental case study are considered. In
both the examples, it is assumed to be known a priori that ϕ = y and Al-
gorithm 5 is executed repeatedly until convergence.
The estimated models are validated over datasets not used for train-
ing, assuming that the initial logic state of the data-generating system
is known a priori. The quality of the learned DHA is evaluated compar-
ing the (open-loop) simulation output ŷ and the measured output y, with
the time evolution of the logic state is simulated through the polyhedral
partitions computed by Algorithm 7. To quantitatively assess the accu-
racy of the estimated models we use the the Best Fit Rate (BFR) indicator,
defined as:

BFR = max

{
1− ||ŷ − y||2
||y − ȳ||2

, 0

}
· 100% (3.11)

where ȳ is the sample mean of y.

All computations are carried out on a 2.8-GHz Intel Core i7 with 16

GB of RAM running MATLAB R2015a.

3.4.1 Simulation Example: Identification of a 4 modes DHA

Consider the DHA with 4 modes depicted in Figure 21, with continuous
dynamics given by the following SAS

y(k) =


0.9y(k − 1) + 6 if m(k) = 1

0.8y(k − 1) + 20 if m(k) = 2

0.9y(k − 1) + 6 if m(k) = 3

0.7y(k − 1) if m(k) = 4.

(3.12)

Each sub-system in (3.12) is described by a first-order difference equa-
tion, with no exogenous input signal and the local models S1 and S3,
i.e.,

S1 : y(k) = 0.9y(k − 1) + 6,

S3 : y(k) = 0.9y(k − 1) + 6,
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S1

S2

S3

S4

y(k) ≥ 50 y(k) ≥ 85

y(k) ≥ 70y(k) ≤ 10

Figure 21: Simulation Example. DHA to be identified.

sharing the same continuous dynamics. Note that, in this example, the
regressor X(k) is equal to the output y(k − 1) at step k − 1 and Φ = Y =

R. The system is estimated using a set of N = 5000 outputs, with y(k)

generated as

y(k) = θm(k),1y(k − 1) + θm(k),2 + eo(k),

and eo being a zero-mean white noise sequence with Gaussian distribu-
tion eo ∼ N (0, 0.04). The effect of the noise on the output is assessed
through the Signal-to-Noise Ratio (SNR)

SNR = 10 log

{∑N
k=1 (y(k)− eo(k))

2∑N
k=1 e

2
o(k)

}
= 34.9 dB.

To assess the performance of the heuristic summarized in Algorithm 6,
Stage S1 is performed using only Algorithm 5 and then running Algo-
rithms 5-6. Algorithm 5 is always run 10 times, with the number of
modes s = 4 known a priori. The threshold ε in Algorithm 6 is selected
through cross-validation on a set of 100 noisy samples not employed in
the training phase. The chosen threshold is ε = 0.05, meaning that “al-
most empty” clusters are the ones containing less than 250 = Nε sam-
ples. The tests performed using different values of ε have shown that the
data-generating system is not correctly identified if ε < 0.05 or ε > 0.2.
The estimated parameters are reported in Table 11, showing that only
Algorithm 6 allows us to retrieve an accurate estimates for θ1 and θ3.
On the other hand, θ3 is not correctly estimated when only Algorithm 5.
Based on the active mode sequenceM estimated with Algorithm 6, the
s = 4 partitions Φj (j = 1, . . . , 4) of space Φ are computed through Algo-
rithm 7. On average, the CPU time required to compute each partition
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Table 11: Simulation Example. θi vs θ̂i, i = 1, . . . , s.

S1 S2 S3 S4

θ1,1 θ1,2 θ2,1 θ2,2 θ3,1 θ3,2 θ4,1 θ4,2
true 0.9 6 0.8 20 0.9 6 0.7 0

Algorithm 5 0.90 5.96 0.79 20.64 -5.59 263.95 0.70 0.01
Algorithm 6 0.90 5.96 0.79 20.64 0.90 5.96 0.70 0.01

(a) m(k) = 1. Blue: m+(k) = 1,
red: m+(k) = 2.

(b) m(k) = 2. Blue: m+(k) = 2,
red: m+(k) = 3.

(c) m(k) = 3. Blue: m+(k) = 3,
red: m+(k) = 4.

(d) m(k) = 4. Blue: m+(k) = 4,
red: m+(k) = 1.

Figure 22: Simulation example. Partitions computed through Algorithm 7,
with m+(k) = m(k + 1).

Φj (j = 1, . . . , s) is 0.024 s, while the entire identification procedure takes
1.215 s to train the whole model.

The estimated partitions, reported in Figure 22, are all characterized
by two polytopes. We thus accurately model the underlying DHA, where
each logic state can be followed only by two other states (including it-
self). The computed linear separators allows us to retrieve estimates for
the switching conditions characterizing the logic dynamics of the con-
sidered data-generating system. To further assess the performance of the
approach, Figure 23 shows the oriented graphs on whose edges are re-
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y(k) ≥ 50 y(k) ≥ 85

y(k) ≥ 70y(k) ≤ 10

Ŝ1

Ŝ2

Ŝ3

Ŝ4

ŷ(k) ≥ 49.98 ŷ(k) ≥ 84.55

ŷ(k) ≥ 70.05ŷ(k) ≤ 9.99

Figure 23: Simulation example. True (left panel) vs estimates (right panel)
DHA.
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Figure 24: Simulation Example. Relative error |y−ŷ|
y

ported the actual and estimated switching conditions, respectively. As
we assume to have no prior knowledge on the aforementioned condi-
tions, the negligible difference between the true and estimated guards is
due to the observed data-points.
The identified model is further validated on a noiseless dataset of length
NV = 200. The obtained BFR is 99.51%, showing the effectiveness of
the proposed identification method, even in the challenging situation of
two modes sharing the same continuous dynamics. The relative error
between the actual and simulated output is shown in Figure 24, with the
maximum error obtained in correspondence of mode transitions.

3.4.2 Modelling of switching RC circuit

The proposed algorithm is also tested against an experimental dataset,
consisting on the output voltage of the RC circuit with switching load,
whose schematic is depicted in Figure 25. The oriented graph describing
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Figure 25: Schematic of the switching RC circuit.

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

Vout(k) ≤ 1 V Vout(k) ≥ 4 V

Vout(k) ≤ 2 V

Figure 26: Scheme of the discrete state dynamics of the system

the switching logic of the circuit is represented in Figure 26 where, as
in the previous example, only the conditions leading to a change in the
state are reported. If the conditions on the edge are not satisfied, the logic
state does not change.

A 10 µF capacitor C and three 10 kΩ resistors R1, R2 and R3 are
used. The ON/OFF switches are implemented using MOSFETs. An Ar-
duino UNO board is used for: (i) measuring the output voltage y(k) =

Vout(k); (ii) generating the input voltage u(k) = Vin(k) and (iii) driving
the switches according to the logic behavior, represented in Figure 26.
Two different piecewise-constant signals are applied as input voltage Vin
to generate the training and the validation datasets. Both the input sig-
nals V trainin (training) and V valin (validation) have length 2000. The output
voltage Vout(k) is measured, at a sampling time of Ts = 100 ms, with an
analog-to-digital (A/D) converter available on the Arduino board2.
The number of logic states is set to s = 3 and all the local models are

2The A/D converter used in the experiment has an input rage of 0-5 V and a resolution
of 10 bits.
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(a) Vout vs V̂out. Black: true (y), red: simulated
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(b) Vout vs V̂out. y − ŷ

Figure 27: True Vout vs estimated V̂out output voltage

described by a first-order linear difference equation, relating y(k) to the
regressor X(k) = [y(k − 1) u(k − 1)]

′. As the same parameters are re-
trieved using Algorithm 5 or Algorithms 5-6 (ε = 0.05), we perform
Stage S1 through Algorithm 5 (which is iterated 10 times). The overall
computational time required to identify a DHA model of the circuit is
0.078 s, of which 0.033 s are taken to compute the 3 partitions of space Φ.

To assess the quality of the estimated model, the (open-loop) sim-
ulated output ŷ of the estimated DHA model is plotted in Figure 27,
along with the actual output y. Note that the plots refer to the validation
dataset. As the estimated and actual output overlaps (see Figure 3.27(a)),
the simulation error y(k)− ŷ(k) is also shown for the sake of a better vi-
sualization of the performance (see Figure 3.27(b)). Only once the error
exceeds 0.4 V.
A BFR of 98.64% is achieved and the 0.4% of the data-points in the vali-
dation set are assigned to the wrong mode, i.e., only 8 times out of 2000

74



the mode is not correctly reconstructed. The error in the prediction of the
logic state depends on (unavoidable) mismatch between the true and the
estimated switching conditions. Nevertheless, this discrepancy vanishes
after few steps.
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Chapter 4

Learning Jump Models

This chapter is dedicated to the description of two algorithms designed
for learning Jump Models (JM). This class of models allows one to de-
scribe systems characterized by multiple operating conditions, like piece-
wise affine functions or Discrete Hybrid Automata (DHA), but it is more
general as concerns the mechanism regulating the transition between dif-
ferent modes. Piecewise affine functions (chapter 2) and Discrete Hybrid
Automata(chapter 3) can be seen particular instances of this class.
In this chapter we focus on the problem of identifying two specific JMs,
Rarely Jump Models (RJMs) and Markov Jump Models (MJMs). The
method presented to tackle these problems rely on the assumption that
neither the local models nor the laws governing the transitions between
different models are known a priori.
The chapter is organized as follows. Section 4.1 is devoted to the formu-
lation of the addressed learning problem. In Section 4.2 the algorithms
for learning Rarely Jump and Markov Jump Models are then described in
detail. The method proposed to learn MJMs from data is inspired by the
approaches for PWA regression and DHA proposed in chapter 2. A set
of case studies, two of which involving experimental data, are reported
in Section 4.3.

76



4.1 Problem formulation

Consider a dataset DT = {Xt, yt}Tt=1 of regressor/output pairs {Xt, yt},
generated by an unknown nonlinear function fo. The measured output
is supposed to be obtained as

yt = fo(Xt) + et. (4.1)

with et being an additive noise sequence and t ∈ N denoting the time
index. We aim at finding a function f that approximates the relation
between the regressor Xt and the output yt,

yt ≈ f (Xt) , (4.2)

The function f is parametrized as a collection of K local models, each of
them describing the behavior of the underlying data-generating function
fo at a given mode. To account for changes in the operating conditions,
we introduce the discrete state s(t) ∈ K = {1, . . . ,K} to indicate which
of the K models is active at time t. The model f to be learned from data
(see (4.2)) is then given by

f (Xt) = fs(t)(Xt, θs(t)). (4.3)

where fs(t) is the local model active at time t and θs(t) ∈ Rnθ is the asso-
ciated vector of unknown parameters to be estimated from data.

The problem of fittingK models is formulated as the minimization of
the cost function

J(Xt, yt,Θ,S) =
1

T

T∑
t=1

`(Xt, yt, θs(t)) + γ

K∑
k=1

r(θk) (4.4)

with respect to the parameters Θ = {θk}Kk=1 and the sequence S of dis-
crete states, i.e., {s(t)}Tt=1. The loss function ` in (4.4) accounts for the
fitting error, while r is a regularization term introduced to reduce mo-
del complexity, thus avoiding over fitting. The tuning hyper-parameter
γ ∈ R+ is used to balance the trade-off between data fitting and model
complexity.
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It is worth remarking that the sequence S of active modes is not directly
observable and must be retrieved from DT along with the model param-
eters Θ.

When the cost in (4.4) is minimized, the ordering imposed by the la-
bel t does not affect the accuracy of the estimated model. The order of
the data can thus be permuted. However, if the state s(t) evolves accord-
ingly to a certain time pattern the ordering of the data is relevant and
must be taken into account in estimating the model f . In this chapter we
consider two different modeling frameworks that allow us to exploit the
information provided by the temporal order of the data:

M1. Rarely Jump Model (RJM): the discrete state s(t) is supposed to change
rarely over time, so that s(t) = s(t− 1) for most of the time instants
t = 2, . . . , T ;

M2. Markov Jump Model (MJM): the transitions of the discrete state are
modelled through a discrete-time Markov Chain. The jumps thus
satisfy the Markov property

P{s(t) = σt| {s(τ) = στ}t−1
τ=1} = P{s(t) = σt|s(t− 1) = σt−1},

(4.5)
with σt ∈ K for t = 1, . . . , T , and P (E) indicating the probability
associated to the event E.
The probability of obtaining a certain sequence {σt}Tt=1 is equal to

P{s(1) = σ1, . . . , s(T ) = σT } =

T∏
t=2

πσt−1,σtP{s(1) = σ1},

where πσt−1,σt = P{s(t) = σt|s(t − 1) = σt−1} and P{s(1) = σ1}
is the probability associated with the initial discrete state σ1. The
transition matrix of the underlying Markov chain describing the
time evolution of the discrete state is denoted by Π and its (i, j)-
entry is πi,j , that is the transition probability from state s(t− 1) = i

to state s(t) = j.
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If the regressor Xt contains past values of input and output signals of
a dynamical system, that is

Xt =
[
y′t−1 . . . y

′
t−nau

′
t−1 . . . u

′
t−nb

]′
, (4.6)

and the sub-models are linear, the approximated models M1 and M2

have the form of a Jump Linear System (JLS) [40].

4.2 Learning algorithms

This section is devoted to the description of the algorithms developed
for Jump Model learning, focusing on the identification of Rarely Jump
and Markov Jump Models. Before providing further technical details, it
is worth underlining that we consider the general convex cost functions
J as in (4.4) when learning RJMs, while we limit to quadratic costs

J(X, y,Θ,S) =
1

T

T∑
t=1

‖yt − θ′s(t)Xt‖22︸ ︷︷ ︸
`(Xt,yt,θs(t))

+ γ

K∑
k=1

θ′kWkθk︸ ︷︷ ︸
r(θk)

, (4.7)

with Wk being a known positive-semidefinite weight matrix of proper
dimensions when identifying MJMs. Such a restriction on the cost func-
tions for Markov Jump Models identification allows us to develop a strat-
egy that can be applied both for batch (off-line) and recursive (on-line)
learning.

The numberK of local sub-models is not chosen by the algorithm, but
it must be selected by cross-validation, unless it is known a priori, with
an upper-bound on K dictated by the maximum tolerated complexity of
the model.

4.2.1 M1. Learning Rarely Jump Models

The problem of learning Rarely Jump Models is tackled through a two-
stage strategy, alternating minimization over the model parameters Θ

and over the sequence of discrete state S of the following modification of
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the cost (4.4):

1

T

[
T−1∑
t=1

(
`(Xt, yt, θs(t)) + λ1[s(t+1)6=s(t)]

)
+ `(xT , yT , θs(T ))

]
+ γ

K∑
k=1

r(θk).

(4.8)
The additional term

1[s(t+1) 6=s(t)] =

{
1 if s(t+ 1) 6= s(t)
0 otherwise ,

(4.9)

multiplied by the scalar weight λ ≥ 0, is introduced to penalize the
changes of discrete state according to the modeling hypothesis that the
discrete state rarely changes over time.

The cost in (4.8) is alternatively minimized with respect to the mo-
del parameters Θ (for a fixed state sequence S), and with respect to the
discrete-state sequence S (for fixed model parameters Θ).
On the one hand, if the state sequence S is fixed, the minimization of (4.8)
over the parameters Θ is a convex problem provided that ` and r are con-
vex functions. On the other hand, when the parameters Θ are fixed, the
minimization of (4.8) over the state sequence S is performed via dynamic
programming (DP), as described next.

Define L(i, t) , `(Xt, yt, θi) and R(i, j) = λ1[i 6=j], with i, j ∈ K. The
cost to be minimized over s(t) can be written in the compact form

T−1∑
t=1

[L(s(t), t) +R(s(t), s(t+ 1))] + L(s(T ), T ), (4.10)

which corresponds to the original cost function (4.8) without regulariza-
tion on θ.

Minimizing (4.10) over S amounts at finding the shortest path through
a graph G withKT vertexes. The edges connecting the vertexes (i, t) and
(j, t + 1) (with i, j ∈ K, t ∈ 1, . . . , T − 1) represent the time transition
from state i to state j. The cost to cross vertex (i, t), which weights the
condition s(t) = i, is given by L(i, t), while the cost associated to the
transition from state i to state j is given by R(i, j). In other words, the
weight associated to the edge connecting the vertexes (i, t) and (j, t+ 1)
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Figure 28: Vertexes corresponding to the consecutive instants t and t + 1

of the graph over which the shortest path S = {s(t)}Tt=1 is computed, for
K = 2.

is λ if i 6= j, 0 otherwise. The described graph is represented in Figure 28
for the case K = 2 and two consecutive time instants t and t+ 1.

The shortest path in the graph G is thus computed through dynamic
programming as follows. Define V (k, T ) = L(k, T ), k ∈ K, and

V (i, t) = L(i, t) + min
j∈K

(V (i, t+ 1) +R(i, j)), i = 1, . . . ,K,

t = T − 1, T, . . . , 1
(4.11)

with V (i, t) representing the cost to be at state i at time t, going backward
from time T by following the shortest path. The shortest path for the
whole graph is then given by

s(t) = argmin
k∈K

{V (k, t) +R(s(t− 1), k)} , t = 1, . . . , T. (4.12)

The computation of the state sequence S thus requires O(TK2) opera-
tions (see Eq. (4.11)), not counting the evaluation of L(k, t) at each instant
t = 1, . . . , T and for each k = 1, . . . ,K, which is likely to dominate the
computations.

The alternating minimization strategy described above is summa-
rized in Algorithm 8, where the computation of S via DP is carried out at
Steps 2- 4. The quality of the final estimates Θ and S may be improved by
repeating Algorithm 8 iteratively, using the previously computed state
sequence S as the initial condition for the following execution, until a
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maximum number of iterationsNmax is reached or when the solutions of
two consecutive runs remain the same.

Remark 3 Once the sub-model parameters in Θ have been estimated, if a new
set of data {Xt, yt}Tv

t=1 is available the underlying sequence of discrete states
{s(t)}Tv

t=1 can be retrieved by minimizing the following cost

Tv−1∑
t=1

[Ly(s(t), t) +R(s(t), s(t+ 1))] + Ly(s(Tv), Tv) (4.13)

via DP, with

Ly(k, t) = min
y∈Y

` (Xt, y, θk) , k = 1, . . . ,K, (4.14)

with y ∈ Y (e.g., in binary classificationY = {−1, 1}). Note that the minimizer
of Ly(k, t) provides the “best” output predictor of the k-th model. �

Algorithm 8 RJM learning algorithm

Input: Sequence of observations {Xt, yt}Tt=1, number of local sub-
models K, initial state sequence So = {s(t)}Tt=1.

1. find Θ = {θk}Kk=1 minimizing (4.8) given S;

2. let V (k, T )← L(k, T ), k = 1, . . . ,K;

3. for t = T, . . . , 2 do

3.1. for k = 1, . . . ,K do

3.1.1. V (i, t− 1)← L(i, t− 1) + min
j∈K

(V (j, t) +R(i, j));

4. for t = 1, . . . , T do

4.1. s(t)← argmin
k∈K

{V (k, t) +R(s(t− 1), k)};

5. end.

Output: Estimated parameters Θ and sequence S of active modes.
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4.2.2 M2. Learning Markov Jump Models

In this section, we tackle the problem of learning Markov Jump Models,
extending the approach developed in [25, 28] for piecewise-affine regres-
sion and identification of discrete hybrid automata. We propose to learn
MJMs in two steps:

S1. Each data pair (Xt, yt) is processed iteratively and assigned to the
local model that most likely has generated it. Simultaneously, the
parameters of the associated sub-model are updated via recursive
least-squares. The outputs of this step are (i) the sub-model param-
eters {θk}Kk=1, (ii) the initial estimates of the discrete-state sequence
S and (iii) an initial approximation for the transition matrix Π of
the Markov Chain driving discrete-state transitions. An approach
to identify Markov Jump Linear Systems relying on this scheme is
also presented in [36].

S2. The state sequence S is estimated again by exploiting the proba-
bilistic information on the state transition embedded in Π.

When working off-line, the hidden Markov Chain governing the mode
transitions is assumed to be homogeneous, i.e., the transition probabil-
ities are supposed to be constant over time. Nonetheless, by designing
the approach so that it can be used on-line, we can also account for time
varying transition probabilities.

Before providing a detailed description of steps S1 and S2, we remark
that both of them can be carried out either in a batch mode (off-line) or
recursively (on-line).

S1. Recursive sub-model assignment and parameter estimation

The first stage S1 of the proposed MJM learning algorithm is detailed in
Algorithm 9, which is based on the ideas presented in [28]. The rationale
behind Algorithm 9 is to process the data pairs (Xt, yt) iteratively and
compute, at each time instant t, the estimation error εk(t) (Step 1.1) for
all the possible models, k = 1, . . . ,K, using the parameters estimated at
the previous step t − 1. The current data pair (Xt, yt) is then assigned
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to the model that “best fits” the observation at time t (Step 1.2), thus up-
dating the estimated state sequence S. Then, only the parameter vector
θs(t) associated to the selected model is updated (Step 1.3) using the nu-
merically efficient recursive least-squares method based on inverse QR
factorization of [2], while the parameters of the other sub-models are not
modified. An approximation of the transition matrix Π is computed iter-
atively (Step 1.4), based on the empirical jumping frequencies.

Algorithm 9 Recursive clustering and parameter estimation algorithm

Input: Sequence of observations {Xt, yt}Tt=1, number of local sub-
models K, initial guess for the parameter vectors {θk}Kk=1.

1. for t = 1, . . . , T do

1.1. let εk(t)← yt − θ′kXt, k = 1, . . . ,K;

1.2. let s(t)← argmin
k∈K

ε′k(t)εk(t);

1.3. update θs(t) using recursive least-squares [2];

1.4. if t > 1 do

1.4.1. Ni(t)←
t∑

τ=1

1 (s(τ) = i), i = 1, . . . ,K;

1.4.2. Nij(t)←
t∑

τ=2

1 (s(τ − 1) = i, s(τ) = j), i, j = 1, . . . ,K;

1.4.3. πij(t)←
Nij(t)

Ni(t− 1)
, i, j = 1, . . . ,K;

2. Πij ← πij(T ), i, j = 1, . . . ,K;

3. end.

Output: Estimated parameter vectors Θ, sample transition matrix Π,
sequence of active modes S = {s(t)}Tt=1.

As the other algorithms for recursive clustering and parameter esti-
mation, Algorithm 9 requires an initial guess for the matrix Θ of model
parameters. Because of the greedy nature of the algorithm, the selected
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initial guess influences the final estimate of both Θ and the state sequence
S. If Algorithm 9 is executed on a batch of data, a reasonable initial guess
is given by solving the least squares problem

θk ≡ arg min
θ

T∑
t=1

‖yt − θ′Xt‖22, ∀k = 1, . . . ,K. (4.15)

As for RJM learning, the quality of the estimated MJM may be further
improved by executing Algorithm 9 multiple times, using its output as
initial condition for the next iteration.

S2. Refinement of the discrete-state sequence estimate

Algorithm 9 does not rely on the hypothesis that the discrete state s(t)
evolves according to a Markov chain. To exploit this information, at
stage S2, the discrete-state sequence {s(t)}Tt=1 is refined iteratively by
using the probabilistic information on the state transition embedded in
the sampled transition matrix Π obtained with Algorithm 9, as described
below.

Let It be the information vector containing the regressor/output pairs
until time t, and let {αk(t|t)}Kk=1 be the probability of being at state k at
time t given It, i.e.,

αk(t|t) = P (s(t) = k|It) k = 1, . . . ,K.

We have that

αk(t|t) =P (s(t) = k|It−1, Xt, yt) =
P
(
yt, s(t) = k|It−1, Xt

)
P (yt|It−1, Xt)

=

=
P
(
yt|s(t) = k, It−1, Xt

)
P
(
s(t) = k|It−1, Xt

)
P (yt|It−1, Xt)

. (4.16)

Let αk(t|t − 1) = P (s(t) = k|It−1, Xt) = p(s(t) = k|It−1) be the
probability of being at state k at time t, given the observations up to time
t− 1. By the total probability theorem we have that

αk(t|t−1) =

K∑
i=1

p(s(t) = k|s(t−1) = i, It−1)p(s(t−1) = i|It−1). (4.17)
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Note that p(s(t) = k|s(t− 1) = i, It−1) corresponds to the (i, k) entry
πi,k of the transition matrix Π.

Using equation (4.17), the probabilities in (4.16) can be rewritten as

αk(t|t) =
p(yt|s(t) = k, It−1, Xt)αk(t|t− 1)

c
, (4.18)

where

c = p(yt|It−1, Xt) =

K∑
j=1

p(yt|s(t) = k, It−1, Xt)αk(t|t− 1)

is a normalization constant.
Under the assumption that the noise et corrupting the output yt (see

equation (4.1)) is white, zero-mean and Gaussian, the likelihood function
of mode k at time t p(yt|s(t) = k, It−1, Xt), is given by:

p(yt|s(t) = k, It−1, Xt) =
1√

(2π)
ny det (Λ)

exp
{
−0.5‖yt − θ′kXt‖2Λ−1

}
(4.19)

where Λ is the covariance matrix of the error et. In case the refinement is
performed in a batch mode, a possible choice for Λ is the sample covari-
ance matrix obtained on the basis of the state sequence S and the model
parameters {θ}Kk=1 estimated in S1, i.e.,

Λ =
1

T − 1

T∑
t=1

(
yt − θ′s(t)Xt

)′ (
yt − θ′s(t)Xt

)
. (4.20)

When the proposed method is used for on-line learning, the inverse of
Λ is updated at each time step, using the iterative formulation for (4.20)
and the matrix inversion lemma

Q = Λ−1 −
Λ−1

(
yt − θ′s(t)Xt

)(
yt − θ′s(t)Xt

)′
Λ−1

t− 2 +
(
yt − θ′s(t)Xt

)′
Λ−1

(
yt − θ′s(t)Xt

)
Λ−1 =

t− 1

t− 2

(
Q− Qδeδ

′
eQ

t−2
t−1 + δ′eQδe

)
,
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Algorithm 10 Probabilistic clustering

Input: Sequence of observations {Xt, yt}Tt=1, number of local sub-
models K, parameters Θ = {θk}Kk=1, error covariance matrix Λ, initial
probabilities {αk(1|0)}Kk=1, sample transition matrix Π.

1. for t = 1, . . . , T do

1.1. compute p(yt|s(t) = k, It−1, Xt), k = 1, . . . ,K, as in (4.19);

1.2. compute αk(t|t), k = 1, . . . ,K, as in (4.18);

1.3. let s(t)← argmax
k=1,...,K

αk(t|t);

1.4. if t > 1 do

1.4.1. Ni(t)←
t∑

τ=1

1 (s(τ) = i), i = 1, . . . ,K;

1.4.2. Nij(t)←
t∑

τ=2

1 (s(τ − 1) = i, s(τ) = j), i, j = 1, . . . ,K;

1.4.3. πij(t)←
Nij(t)

Ni(t− 1)
, i, j = 1, . . . ,K;

1.5. update αk(t+ 1|t), k = 1, . . . ,K as in (4.17);

2. end.

Output: Estimated sequence of states S = {s(t)}Tt=1.

where, at time t, δe = 1
t

(
yt − θ′s(t)Xt

)
.

The iterative procedure to refine the estimated state sequence S is
summarized in Algorithm 10. Note that, it requires the initialization of
αk(1|0), k = 1, . . . ,K, which represent the probabilities of each possible
initial state s(1) (e.g., αk(1|0) = P (s(1) = k)). If no information on the

probability of the initial state is available, P (s(1) = k) is set to
1

K
for all

k ∈ K.

As Algorithm 10 is designed to estimate S, it can be also used to im-
prove the estimate of the sampled transition matrix Π.
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Figure 29: Two-state binary RJM classifier.

Remark 4 Once the transition matrix Π is estimated by Algorithm 9 and re-
fined by Algorithm 10, if a new set {Xt, yt}Tv

t=1 of data is given the computation
of the Maximum A Posteriori (MAP) estimate of the hidden discrete-state se-
quence

{s?(t)}Tv
t=1 = argmax

{σt∈K}Tv
t=1

P (s(1) = σ1, . . . , s(T ) = σTv
|ITv), (4.21)

reduces to a well-known problem in the Hidden Markov Model literature and it
can be solved via Viterbi algorithm [92, 93]. �

4.3 Examples

The effectiveness of the proposed learning algorithms in evaluated on a
set of examples, using both synthetic and experimental data. All com-
putations are carried out on an i7 2.80-GHz Intel core processor with 16

GB of RAM running MATLAB R2016b. The reported examples can be
replicated using the MATLAB source codes available in [30].

4.3.1 Learning Rarely Jump Models

Time-varying linear classifier

We start with a toy numerical example, in which a binary-label dataset
is generated by the two-state RJM depicted in Figure 29. The training
dataset consists of T = 400 two-dimensional samples and is plotted
in Figure 30.

The aim is to estimate a binary linear classifier. Figure 30 clearly
shows that the two classes are not linearly separable. However, as shown
in Figure 4.31(a), the first 262 data points are linearly separable, as well
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Figure 30: RJM Classifier: training dataset. Blue: yt = 1; red: yt = −1.
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(a) {Xt}262t=1
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(b) {Xt}400t=263

Figure 31: Rarely Jump Classifier: temporal pattern in the training dataset.
Label yt = 1 (blue); label yt = −1 (red).

as the remaining samples (see Figure 4.31(b)). Thus, if the samples are
properly split into K = 2 subsets, a linear classifier for each subset can
thus be computed. Moreover, it is apparent that jumps between the pos-
sible states are quite rare (a transition happens only once in the given
dataset), which motivates the use of the RJM modeling framework.

A Rarely Jump Model with K = 2 discrete states is estimated. Al-
though in this example the underlying discrete-state sequence {s(t)}Tt=1

generating the training set can be easily inferred by looking at the data
flow, this information is not provided as an input to Algorithm 8 but the
discrete-state sequence is estimated via DP (Steps 2-4 of Algorithm 8).

Due to the nature of the problem, we consider the following loss func-
tion

`(Xt, yt, θk) = max {0, 1− ytθ′kXt} , (4.22)
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with yt = ±1, along with the `2-regularization term

r(θk) = ‖θk‖2, k = 1, 2. (4.23)

Unlike the original cost in (4.8), time-varying weights λ(s(t)) on the state
transitions are considered, so that the term R(i, j) in (4.10) is equal to
λ(s(t))1[s(t+1)6=s(t)].

The optimization problems characterizing Step 1 of Algorithm 8 are
solved using the CV X package for MATLAB [52, 53].

As Algorithm 8 is iterated multiple times, the hyper-parameter λk is
set to a constant λo (for k = 1, 2) for the first nmin = 4 iterations and then
it is replaced with the empirical probability of permanence in the k-th
mode from time t to time t+1. The hyper-parameter γ and λo are chosen
through cross-validation, and they are set to 5 and 0.99, respectively.

Algorithm 8 is iterated until the sequence {s(t)}Tt=1 remains equal
over two consecutive runs or the maximum number of runs Nmax = 30

is reached. The state sequence is initialized by solving the K-model fit-
ting problem (i.e., λk = 0, k = 1, 2 in (4.8)) for different randomly gen-
erated sequences. Among the latter, the mode sequence achieving the
lowest cost is used as initial value of {s(t)}Tt=1. The K = 2 binary lin-
ear separators computed by Algorithm 8 are reported in Figure 32, while
Figure 4.32(a) and Figure 4.32(b) show the samples associated by Algo-
rithm 8 to the discrete state s(t) = 1 and s(t) = 2, respectively. The
obtained results show that we are able to obtain two linear classifiers
properly separating the two classes for both the operating modes.

The performance of the estimated RJM classifier is assessed on a vali-
dation dataset of Tv = 200 samples. The underlying sequence of discrete
states is retrieved by DP as outlined in Remark 3. Note the labels yt asso-
ciated to the data points are not available for learning and they are only
used to compare estimated and actual labels.

We use two indexes to evaluate the quality of the estimated classifier:

• Percentage of Mislabeled Points (PMP), representing the percentage
of misclassified points (points labeled as 1 when the actual label
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(a) Binary linear separator: points as-
sociated to the discrete state s(t) = 1.
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(b) Binary linear separator: points as-
sociated to the discrete state s(t) = 2.

Figure 32: RJM classifier: binary jumping linear separator trained through
Algorithm 8.

is −1, or viceversa). The obtained value of the PMP index is 1.5%
and it is equal to the PMP index achieved by a Support Vector Ma-
chine (SVM) classifier with quadratic kernels, trained using MAT-
LAB’s Statistic and Machine Learning Toolbox [59]. The quadratic
kernel is chosen as it is the one providing the least number of mis-
classified points in validation. Figure 4.33(a), Figure 4.33(b) and
Figure 4.33(c) show the actual labels of the points in the validation
dataset and the estimated labels with our approach and SVM, re-
spectively. Note that, even though the estimated RJM classifier and
the SVM classifier achieve the same performance in terms of PMP,
the SVM classifier cannot account for the temporal pattern of the
data.

• Percentage of Mismatched Modes (PMM), representing the percent-
age of points assigned to the wrong discrete state (points assigned
to mode s(t) = 1 when the actual generating state is s(t) = 2, or
viceversa). The obtained value of PMM is 2.5%. Figure 34 shows
the actual and estimated discrete states for each sample, highlight-
ing the capability of the approach to retrieve the hidden sequence
of active modes.

Figure 35 plots the minimum of the cost function in (4.8) as a func-
tion of the number of runs of Algorithm 8, showing that it practically
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(a) True labels: blue=yt = 1; red=
yt = −1.
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(b) Estimated labels (jumping
classifier): blue=yt = 1; red= yt = −1.
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(c) Estimated labels (SVM): blue=yt =
1; red= yt = −1.

Figure 33: Validation set: true vs estimated labels.
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(a) True mode: black=s(t) = 1,
magenta=s(t) = 2.
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Figure 34: Rarely Jump Classifier. Validation set: true vs estimated discrete-
state sequence {s(t)}Tv

t=1.
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Figure 35: Rarely Jump Classifier. Achieved minimum cost (4.8) vs runs of
Algorithm 8.
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Figure 36: Rarely Jump Classifier. CPU time required to estimate the classi-
fier vs length T of the training set.

converges after 4 iterations.
To analyze the computation complexity of the algorithm, training sets

of different lengths are used. The total CPU time required to estimate the
Rarely Jump Model, performing 15 iterations, is reported in Figure 36.
Note that, when T = 10000 instead of T = 400 is considered, the CPU
time required to train the classifier is 3.4 times bigger.

Finally, a Monte Carlo study with 100 runs, with new realizations of
the training dataset at each run, is performed to assess the robustness of
the learning method. Training sets of length T = 1000 are used, and the
performance of the estimated model is assessed on the validation dataset
already presented in Figure 4.33(a) and Figure 4.34(a). The performance
indexes PMP and PMM obtained in each simulation are reported in Fig-
ure 37, while their mean and standard deviations over the Monte Carlo
simulation are given in Table 12. The results in Figure 4.37(a) show that
in most of the considered cases less then 10 points (5% of the valida-
tion set) are mislabeled. However, in 7 simulations more then 40% of
the data are not correctly classified. In all these simulation (except one)
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Table 12: Rarely Jump Classifier. Monte Carlo study: Percentage of Misla-
beled Points (PMP) and Percentage of Mismatched Modes (PMM) (mean ±
std) %.

PMP (4.98± 12.39)%
PMM (3.97± 3.48)%
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(b) PMM index vs Monte Carlo runs.

Figure 37: Rarely Jump Classifier. Monte Carlo simulation.

more than 12% of the points are associated with the wrong discrete state
(see Figure 4.37(b)), showing the importance of accurately reconstruct-
ing the underlying state sequence. By changing the sequences of discrete
states used to initialize Algorithm 8, the PMP index for the 7 trials show-
ing more than 40% of misclassified points varies in the interval between
1% and 4%, while the PPM index is always less than 4%. This shows
that the performance of learning algorithm can be further improved by
initializing Algorithm 8 with different state sequences S.

Electric power consumption

Consider experimental data taken from the AMPDs dataset [74], which
consists of the electric power consumption readings of different appli-
ances taken every minute in a single house located in Canada from April
1st 2012 to March 31st 2013. In particular, among the available measures,
we consider power reading collected from the clothes dryer (CDE), the
dishwasher (DWE), the kitchen fridge (FGE), and the heat pump (HPE)1.

1The cloths dryer, dishwasher, kitchen fridge and heat pump are labeled as, i = 1, 2, 3, 4,
respectively.
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The goal is to train a RJM for each appliance i and then use the estimated
RJMs to figure out the appliance i that consumes electricity from mea-
surements of total power consumption.

The training set consists of one week of power consumption records
(T = 10080 samples) for each appliance. To have informative enough
data sets for each appliance, we consider different weeks: from day 74 to
day 80 form the training set for CDE, from day 170 to day 176 for DWE,
from day 23 to day 29 for FGE and HPE.

Looking at the available data, it can be noticed that the appliances
change their operating mode rarely over time, thus motivating the use
of RJM to model their consumption behavior. For each appliance, the
power consumption pattern is described by an RJM with Ki static sub-
models

yit = θisi(t) si(t) ∈ {1, . . . ,Ki}, (4.24)

with θik ∈ R, for i = 1, . . . , 4. Each parameter θisi(t) represents the power
consumed by the i-th appliance at the operating condition si(t). Cross-
validation is used to choose the number of modes Ki for each appliance,
that results in K1 = K2 = 3 (clothes dryer and dishwasher) and K3 =

K4 = 2 (fridge and heat pump).
In the cost function (4.8) minimized by Algorithm 8, the squared Eu-

clidean norm of the fitting error

`(yt, θk) = (yt − θk)
2 (4.25)

is used as a loss function and no regularization is considered. Time-
varying weights λ(s(t)) on the state transitions are used, leading to the
following cost

J =
1

T

(
T−1∑
t=1

(yt − θk)
2

+ λ(s(t))1[s(t+1) 6=s(t)] + (yT − θk)
2

)
. (4.26)

As in the example of Section 4.3.1, the hyper-parameter λk is set to a
constant λo = 0.9 (for k = 1, . . . ,Ki) for the first nmin = 4 iterations of
Algorithm 8, and then replaced with the empirical probability of perma-
nence in the k-th mode from time t to time t+ 1. The parameters {θik}

Ki
k=1
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Table 13: Rarely Jump Models learning: experimental example. Estimated
parameters for each appliance.

# Appliance θ1 θ2 θ3
1 CDE 251.8 0.4 4644.3
2 DWE 0.1 781.2 146.6
3 FGE 1.1 132.8 −
4 HPE 33.7 1822.1 −

are estimated by computing analytically the minimum of (4.26) for each
i = 1, 2, 3, 4. Algorithm 8 is iterated until the state sequence {si(t)}Tt=1 re-
mains equal over two consecutive runs or the maximum number of runs
Nmax = 30 is reached. The state sequence is initialized by solving the
K-model fitting problem (i.e., λk = 0, k = 1, 2 in (4.26)) for 10 different
randomly generated sequences. The mode sequence achieving the low-
est cost is used as the initial value of {si(t)}Tt=1.
The obtained values of θik for each appliance are reported in Table 13 and,
because of the chosen model structure (4.24), each parameter θik repre-
sents the estimated power consumption (in Watt) of the i-th appliance at
the operating mode k. The average CPU time required to train a three-
state model (cloth dryer, dishwasher) is 1.2 s, while the time to train the
two-state model (fridge, heat pump) is 1.1 s.

The performance of the four estimated Rarely Jump Models is as-
sessed on the following one-day (Tv = 1440 samples) validation sets:
V1 = day 170 for CDE, V2 = day 45 for DWE, V3=day 234 for FGE, and
V4=day 80 for HPE. The quality of the estimated models is quantified in
terms of the Best Fit Rate (BFR)

BFR =100 max

1−

√∑Tv

t=1 (yt − ŷt)2√∑Tv

t=1 (yt − ȳ)
2
, 0

%, (4.27)

with ȳ denoting the sample mean of the output and ŷt = θs(t) being the
output predicted by the model.

The outputs of the four estimated models are reported in Figure 38,
along with the actual output in the corresponding validation sets. Only
the results obtained for 240 samples are plotted to simplify visualization.
The reported estimated sequences {si(t)}Tv

t=1 of active modes show that
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Table 14: Rarely Jump Models learning: experimental example. Com-
puted BFR for the four estimated models of the appliances on the validation
datasets V1,V2,V3,V4.

Set
Model

CDE DWE FGE HPE

V1 95.48% 15.76% 2.20% 37.08%
V2 30.53% 98.04% 15.19% 0%
V3 0% 81.81% 91.44% 0%
V4 10.02% 40.06% 3.25% 91.28%

the behavior of each appliance is accurately described by the correspond-
ing estimated RJM.

The BFRs computed with respect to the validation datasets V1, V2,
V3, V4 are reported in Table 14. Observe that the BFRs reported in the
diagonal entries of the table are always higher than 90%, and they are
the highest one of the corresponding row. This means that the estimated
models can automatically detect which of the considered four appliances
has generated a given power consumption pattern. The BFR achieved
by the model of the dishwasher (DWE) is relatively high (81.8%) on the
validation set V3, which instead consists of the sequence of power con-
sumption readings of the fridge (FGE). This is mainly due to the fact that
the consumption patterns of the two appliances are quite similar, and
thus barely distinguishable from each other. This can be also deducted
looking at the estimated parameters θik for the DWE and the FGE model
(see Table 13).

A different validation procedure is carried out to further assess the
performance of the four estimated RJMs in discriminating power con-
sumption from concatenated sequences of readings of multiple appli-
ances. The new validation set V5 contains 5760 power consumption records
obtained by stacking sequentially the measurements of CDE at day 40

and of DWE, FGE and HPE at day 60. The validation set V5 is then split
into 96 non-overlapping windows of 60 samples. For each of the four es-
timated models and each windows the hidden sequence of the operating
condition is retrieved and the corresponding BFR computed.

Figure 39 shows which of the four appliances is actually consuming
at each time sample, along with the BFRs provided, for each time win-
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Figure 38: Rarely Jump Models learning: experimental example. Predicted
output (red) vs actual output (black) (left plots) and estimated state se-
quence (right plots).

dow, by the four estimated models. These results show that the model
associated to the device that is actually consuming provides the highest
BFR. The only exception is the 59th window (see Figure 39 between sam-
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ple 3481 and 3541), where the highest BFR is obtained with the model of
the dishwasher, while the fridge is actually consuming power. Such an
error is due to the fact that, as already pointed out θ2

1 ≈ θ3
1 and θ2

3 ≈ θ3
2 .

The models of the dishwasher and the fridge are thus similar, although
the DWE model is characterized by an additional mode, corresponding
to θ2

2 = 781.2 W, that is not present in the fridge (see Table 13). Look-
ing at Figure 40 and focusing on the samples in the 59th window, one
observes a spike (of about 700 W) in the power consumption readings.
This kind of spikes are seldom observed in the fridge consumption pat-
tern used for training, and thus they are not described by the associated
model. On the other hand, the model of the dishwasher recognizes this
spike as the power consumed in its third state, thus leading to a higher
BFR than the one obtained with the model of the fridge. During certain
time windows, the BFR is zero for all the estimated models. This corre-
sponds to the case in which all the devices are off (i.e., the power readings
are approximately zero over the whole time window), and hence the ac-
tive appliance is undetectable from power consumption measurements.

4.3.2 Learning Markov Jump Models

Markov jump linear system

We train a MJM from data generated by the Markov Jump Linear System
(MJLS)

yt =

 0.4yt−1 + 0.7ut−1 + et if s(t) = 1
−0.2yt−1 + 0.4ut−1 + et if s(t) = 2
0.7yt−1 + 0.5ut−1 + et if s(t) = 3,

(4.28)

where ut ∈ R is a white sequence of i.i.d. samples with standard normal
distribution and et is a white noise, with et ∼ N (0, 0.01). The effect
of noise on the training dataset is quantified by the Signal-to-Noise Ratio
(SNR)

SNR = 10 log

∑T
t=1 (yt − et)2∑T

t=1 e
2
t

. (4.29)
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Figure 39: Rarely Jump Models learning: experimental example. Validation
set V5: active appliance and computed BFRs.
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Figure 40: Rarely Jump Models learning: experimental example. Validation
set V5: 58-th, 59-th and 60-th windows.

The Markov Chain characterizing the changes in the discrete state is de-
scribed by the transition matrix

Πo =

 0.6 0.25 0.15
0.25 0.5 0.25
0.2 0.1 0.7

 , (4.30)

and is depicted in Figure 41. Observe that, because of the relatively large
off-diagonal terms in Πo, a RJM would not be an adequate model for the
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Figure 41: Markov chain governing the mode transitions of the MJLS, with
transition probabilities associated with each edge.

Table 15: Markov Jump Linear Models: estimated parameters.

θ1 θ2 θ3
true 0.40 0.70 -0.20 0.40 0.70 0.50
estimated 0.40 0.71 -0.20 0.39 0.71 0.49

considered system.
To learn the MJM model we generate numerically a training set of

T = 5000 samples with SNR= 16 dB. We assume that the number of
operating modes K = 3 and the order of the dynamical system na = 1

and nb = 1 used to construct the regressor Xt as in (4.6) are known a
priori. This assumption could be relaxed by selecting the parameters K,
na, nb via cross-validation.

Algorithm 9 is executed in batch mode by initializing the sub-model
parameter {θk}3k=1 with the best linear model as in (4.15), and iterat-
ing the algorithm 15 times, using its output as the initial condition for
the next iteration. The estimated sub-models parameters {θk}3k=1 are re-
ported in Table 15 and compared to the parameters of the true system
in (4.28). Finally, the transition matrix estimated with Algorithm 9 is

Π =

0.507 0.221 0.272
0.237 0.442 0.322
0.302 0.128 0.570

 .
To validate the quality of the identified Markov Jump Linear Model

we consider a new validation dataset {ut, yt}Tv
t=1, Tv = 200, whose out-

puts yt are corrupted by et. The sequence of active modes {s(t)}Tv
t=1 is
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Figure 42: Markov Jump Linear Models: output (left panel): black = true,
red = one-step ahead prediction; prediction error (right panel).

Table 16: Markov Jump Linear Models. Monte Carlo simulation, BFR (mean
± std) %.

BFR (90.37± 5.92)%

reconstructed, as described in Remark 4, from {ut, yt}Tv
t=1, the estimated

state transition Π and the estimated model parameters {θk}3k=1. This se-
quence is then used to estimate the one-step ahead predicted output ŷt.
The actual and predicted output, i.e., yt, ŷt are reported in Figure 42,
along with the prediction error yt − ŷt. Since the output samples yt are
available, predicting the output ŷt has no practical value beyond assess-
ing the quality of the identified model and of the estimated discrete-state
sequence {s(t)}Tv

t=1.
The BFR computed on the validation set is plotted in Figure 43 with

respect to the iterations of Algorithm 9 and it shows that Algorithm 9
convergences after 2 iterations. Figure 44 quantifies the total CPU time
required by the algorithm for training sets of different lengths. Note that
large training sets can be efficiently handled by the proposed MJM ap-
proach with a computation time smaller than the one obtained running
the RJM learning algorithm (see Figure 36).
The robustness of the developed learning method is assessed performing
a Monte Carlo simulation over 50 new realizations of length T = 5000 of
the training dataset. The resulting BFR is reported in Table 16, which
shows mean and standard deviation over the 50 runs. Robustness is also
analyzed w.r.t. the noise corrupting the data, by performing multiple ex-
periments with different variances of the output noise et. See Table 17
for a comparison of the BFRs obtained for different SNRs.
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Figure 44: Markov Jump Linear Models. CPU time required to identify the
MJLS in (4.28), with transition matrix as in (4.30), vs length T of the training
set.

Finally, we evaluate the on-line learning capabilities of the proposed
approach in tracking changes of both the sub-model parameters and the
transition matrix. We consider a training set of length T = 30000, in
which the first 6000 samples are generated by the MJLS in (4.28) with
transition matrix Π in (4.30), while the remaining 24000 data points are
generated by the Markov Jump Linear System

yt =

 0.8yt−1 + 0.4ut−1 + et if s(t) = 1
0.2yt−1 + 0.8ut−1 + et if s(t) = 2
−0.1yt−1 + 0.2ut−1 + et if s(t) = 3

(4.31)

with transition matrix

Πo =

0.8 0.2 0
0 0.9 0.1

0.3 0.2 0.5

 . (4.32)

The SNR on the training set is 16 dB.
The first 5500 samples are processed in batch mode to initialize the
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Table 17: Markov Jump Linear Models. BFR and Percentage of Mismatched
Modes (PMM) vs Signal-to-Noise Ratio (SNR).

SNR (dB) 30 22 16 13 8
BFR (%) 98.2 96.8 94.8 93.5 79.1
PMM (%) 4.5 10 15 16 28

parameters of the MJLM, while the other 24500 points are processed it-
eratively, to recursively update the estimated parameters and the tran-
sition probabilities. Considering a forgetting factor equal to 0.9975, the
time-evolution of the estimated parameters θ1−3 is plotted in Figure 45,
along with the true parameters. Note that the estimate of θ3 converges
to the actual value of the model parameters slower than the others, due
to the fact that mode #3 is activated less frequently than the other two
discrete states.

The transition matrix, obtained after processing the last sample, is0.6609 0.2648 0.0744
0.0610 0.8294 0.1096
0.3214 0.2571 0.4215

 . (4.33)

Electric power consumption

Algorithm 9 is run to learn a Markov Jump Model with static sub-models
from the experimental data already used in Section 4.3.1. Cross-validation
suggests taking K1 = K3 = K4 = 2 and K2 = 3, which do coincide
with the ones used for learning a Rarely Jump Models. The sub-model
parameters {θik}

Ki
k=1 are computed using the best static model as in equa-

tion (4.15) to initialize Algorithm 9, which is then run 10 times. The esti-
mates of θk for each appliance are reported in Table 18 and they represent
the power consumption of each appliance at each operating mode.
The average CPU time to train the three-state model (i.e., the dishwasher)
is 198 ms, while the time to train a two-state model (i.e., cloth dryer,
fridge, and heat pump) is 170 ms. The CPU time required to learn the
MJMs is thus 6x smaller than the one needed to train the Rarely Jump
Models, probably because of the lighter initialization procedure of the
MJM learning method.

104



1 1.5 2 2.5 3

10
4

0.2

0.4

0.6

0.8

1 1.5 2 2.5 3

10
4

-0.4

-0.2

0

0.2

0.4

1 1.5 2 2.5 3

10
4

-0.2

0

0.2

0.4

0.6

0.8

1 1.5 2 2.5 3

10
4

0.4

0.5

0.6

0.7

0.8

1 1.5 2 2.5 3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

1 1.5 2 2.5 3

10
4

0

0.2

0.4

0.6

Figure 45: Markov Jump Linear Models, online learning. True (black) vs
estimated (red) sub-model parameters θk (θ(i)j denotes the i-th component
of θj).

The same analysis as in Section 4.3.1 is repeated over the same one-
day validation sets V1, V2, V3, V4, to assess the quality of the learned
Markov Jump Models. The estimated and actual outputs, reported in
Figure 46, show that the behavior of each of the four appliances is well
captured by the corresponding estimated MJM. Unlike the RJM case, the
power consumption level of 200 W of the cloth dryer (see Figure 4.46(a),
around sample 1400) is not considered.
The BFRs of the 4 estimated MJMs over the four validation datasets and
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Table 18: Markov Jump Models learning: experimental example. Estimated
parameters for each for each appliance.

# Appliance θ1 θ2 θ3
1 CDE 2.5 4644.3 −
2 DWE 0.1 781.2 146.6
3 FGE 1.1 132.8 −
4 HPE 33.7 1822.1 −

Table 19: Markov Jump Models learning: experimental example. BFR %.

Set
Model

CDE DWE FGE HPE

V1 93.61 % 15.76 % 2.20% 37.08%
V2 0 % 98.04 % 15.19 % 0 %
V3 0 % 81.81 % 91.44 % 0 %
V4 0 % 40.06 % 3.25 % 91.28 %

reported in Table 19, showing that the BFRs in the diagonal entries of Ta-
ble 19 are always higher than 90%, and they are the highest ones in the
corresponding row also when Markov Jump Models are trained. Conse-
quently, it is possible to figure out which device has generated a given
consumption pattern from the obtained BFRs.

To this end, as in the Rarely Jump Models case, the performance of
the estimated models is assessed with respect the validation dataset V5,
to test the ability of the models to discriminate power consumption from
concatenated sequences of readings of multiple appliances. Figure 47
shows which of the four appliance is actually consuming at each sample,
along with the BFRs provided for each time window by the four esti-
mated Markov Jump Models. Results similar to the ones obtained for
the RJM case are achieved. In particular, the model associated to the ac-
tive device always provides the highest BFR, except for the 59th window.
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Figure 46: Markov Jump Models learning: experimental example. Pre-
dicted output (red) vs actual output (black) (left panels) and estimated state
sequence (right panels).
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Figure 47: Markov Jump Models learning: experimental example. Valida-
tion set V5, active appliance and computed BFRs.
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Chapter 5

Energy Disaggregation

Two methods for Non-Intrusive Load Monitoring (NILM) are presented
in this Chapter. Both the methods are designed assuming the behavior
of the appliances to be approximately known. In particular, the energy-
use behavior of the devices is modeled with an RJM, obtained with the
learning approach introduced in Chapter 4.
In Section 5.1 we formalize the problem of disaggregation and, in Sec-
tion 5.2, we briefly summarized the techniques used to model the be-
havior of the appliances. Section 5.2 is devoted to the description of the
proposed NILM method. The results obtained testing all the methods
against a benchmark on real world power consumption data [74] are re-
ported and discussed in Section 5.4.

Throughout the chapter 1[A] denotes the indicator function of condi-
tion A, i.e.,

1[A] =

{
1 if A is true
0 otherwise,

5.1 Problem formulation

Consider N different electrical appliances available in a house and con-
nected to the electric power line. Let yi(t), with i ∈ {1, . . . , N}, be the
power demand of the ith appliance at time t and y(t) be the household
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aggregate power reading, i.e.,

y(t) =

N∑
i=1

yi(t) + e(t), (5.1)

where e(t) is a modelling error, accounting for additional appliances con-
nected to the line and measurement noise on the aggregate power read-
ing.

Given a sequence {y(t)}Tt=1 of observations of the aggregate power
signal, energy disaggregation (also known as non-intrusive appliance
load monitoring) aims at estimating the power demand yi(t) of the single
appliances at each time sample t.

5.2 Modelling appliance behaviour

The power demand of the i-th appliance is described by Ki sub-models,
with Ki ∈ N, each one representing the consumption behaviour of the
appliance at a different operating condition (or mode). The power de-
mand of the i-th appliance at mode j (with j = 1, . . . ,Ki) is modelled
as:

Xi(t)θ
j
i + ei(t), (5.2)

where θji and Xi(t) are the model parameter and the feature vector, re-
spectively, characterizing the power demand at mode j, and ei(t) is an
intrinsic modelling error. Let si(t) ∈ {1, . . . ,Ki} be the active mode of
the i-th appliance at time t. From (5.2), the power consumption of the
i-th appliance is then given by:

yi(t) = Xi(t)θ
si(t)
i + ei(t). (5.3)

Typical consumption profiles of each device are assumed to be available.
This information is essential to model the consumption pattern of the ap-
pliances, namely, to estimate the parameter vectors Θi = (θ1

i , . . . , θ
Ki
i ),

i = 1, . . . , N . In practice, we assume that N distinct datasets Mi =

{yi(τ)}T̄τ=1, i = 1, . . . , N , are available. The dataset Mi consists of the
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power demand of the i-th appliance gathered over a short intrusive train-
ing period of length T̄ , where we suppose to have direct access to the
power consumption of the i-th appliance, for instance, by switching off
all the other appliances. The length T̄ of the training period should be as
short as possible to reduce intrusiveness and costs, and it should not be
necessarily the same for all devices.

Two different classes of sub-models (5.3) are used to describe the con-
sumption pattern of the appliances at a given operating mode: (i) static
models; (ii) dynamical models.

5.2.1 Learning static models

In case static models are used, the feature vector Xi(t) is set to Xi(t) = 1.
Therefore,the sub-model in (5.3) becomes

yi(t) = θ
si(t)
i . (5.4)

The parameter θji thus represents the power consumption of the i-th ap-
pliance at mode j, j = 1, . . . ,Ki.
Equation (5.4) shows that the estimation of the parameters Θi requires
also to reconstruct the sequence of active modes Si = {si(t)}T̄t=1. The
sub-model parameters Θi and the mode sequence Si are jointly estimated
through the jump model fitting approach in [12], based on the minimiza-
tion over Θi and Si of the loss function J(Θi, Si) already introduced in
chapter 4, which is equal to

T̄−1∑
t=1

(
` (yi(t), si(t),Θi)+λi(si(t))1[si(t+1) 6=si(t)]

)
+ `
(
yi(T̄ ), si(T̄ ),Θi

)
,

(5.5)
where ` (yi(t), si(t),Θi) is a fitting cost penalizing the mismatch between
the measured and the model output. Among possible fitting costs, we
choose the 2-norm of the fitting error

` (yi(t), si(t),Θi) =
1

T̄
‖yi(t)− θsi(t)i ‖22. (5.6)

The term λi(si(t))1[si(t+1) 6=si(t)] in (5.5) takes into account prior assump-
tions on the switch between different modes, penalizing by a factor λi ≥
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0 a temporal change of the operating condition. This reflects the hy-
pothesis that each device rarely changes its operating regime over time,
which is a reasonable assumption in energy disaggregation problems
with power readings taken at high-time resolution (e.g., 1 min). The
hyper-parameter λi is chosen as the empirical probability (with Laplace
smoothing) of remaining in the same mode for two consecutive time in-
stants, i.e.,

λi(j) =

∑T̄−1
t=1 1[si(t)=j,si(t+1)=j] + 1∑T̄−1

t=1 1[si(t)=j] +K2
i

, j = 1, . . . ,Ki. (5.7)

The cost J(Θi, Si) in (5.5) is minimized through Algorithm 11, a co-
ordinate descent approach, originally proposed in [12], that alternates
minimization with respect to the sub-model parameters Θi (Step 1.1)
and the mode sequence Si (Step 1.2). Since the fitting cost ` is chosen
as the quadratic function (5.6), Step 1.1 is solved analytically through
least squares, while Step 1.2 is solved by discrete dynamic programming
(DP). The initial mode sequences S0

i are chosen randomly, and the initial
values for the hyper-parameters λ0

i (j) are set to 0, and then updated in
Step 1.3. Technical details on the implementation of Algorithm 11 can be
found in [12].

5.2.2 Learning dynamic models

Since some appliances exhibit a transient behaviour, their power con-
sumption patterns can be more accurately described by dynamical sub-
models instead of static ones. For instance, a transient behaviour can be
clearly observed in the consumption patterns of the fridge and the heat
pump (see Figure 48), which show typical dynamics of second and first
order Linear Time-Invariant (LTI) systems, respectively.

Provided that the sequence of active modes Si in (5.3) is given, the LTI
dynamical sub-model associated to each mode can be estimated through
standard system identification techniques [72]. Specifically, the power
consumption yi(t) is modelled as (5.3), with regressor Xi(t) = [X̃i(t) 1],
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Algorithm 11 Learning static models

Input: Training data set Mi = {yi(t)}T̄t=1; number Ki of sub-models;
initial mode sequence S0

i = {s0
i (1), . . . , s0

i (T̄ )}; initial hyper-parameters
λ0
i (j), j = 1, . . . ,Ki.

1. iterate for h = 1, . . .

1.1. Θh
i ← argminΘi

∑T̄
t=1 `

(
yi(t), s

h−1
i (t),Θi

)
; (sub-model fitting)

1.2. Shi ← argminSi J(Θhi , Si); (mode sequence fitting)

1.3. λhi (j) =

∑T̄−1
t=1 1

[sh
i

(t)=j,sh
i

(t+1)=j]
+1∑T̄

t=1 1
[sh
i

(t)=j]
+K2

i

, j = 1, . . . ,Ki.

2. until Shi = Sh−1
i .

Output: Estimated model parameters Θ?
i = Θk

i and mode sequences
S?i = Ski .

where X̃i(t) consists of past output samples, i.e.,

X̃i(t) = [yi(t− 1) . . . yi(t− n)], (5.8)

with n ∈ N defining the dynamical order of the model. The parameters
Θi are estimated solving the simulation-error minimization problem

min
Θi

T̄∑
t=n+1

(yi(t)− ŷi(t,Θi, si(t)))
2
, (5.9)

where ŷi(t) is the simulated output given by

ŷi(t,Θi, si(t)) = [ŷi(t− 1,Θi, si(t− 1)) . . . ŷi(t− n,Θi, si(t− n)) 1]θ
si(t)
i .

(5.10)
Because of the nested dependence of ŷi(t,Θi, si(t)) on the model param-
eters Θi, the optimization problem in (5.9) is non convex and solved
through Particle Swarm Optimization [91]. Since the sequence of active
mode Si in (5.9) is actually not known, Algorithm 11 is first run to esti-
mate Si using static sub-models.
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Figure 48: Power consumption profiles: true (black), estimated with static
sub-models (blue), estimated with dynamic sub-models (red). Black and
red lines are almost overlapped.

The power consumption for the fridge and the heat pump estimated
using static and second-order dynamical models are plotted in Figure 48,
along with the actual consumption profiles. The reported results show
the capabilities of dynamical models to reconstruct the transient of the
considered appliances. Similar performance is obtained for other electri-
cal devices.

5.3 Disaggregation algorithms

Once the models of each appliance have been estimated, the energy dis-
aggregation problem requires to detect, from the aggregate reading y(t),
the active mode si(t) for each appliance and at each time instant. In this
section, we describe two different algorithms for energy disaggregation,
which process data iteratively and thus are suited for an online imple-
mentation when data are acquired in real time.

In the following, we refer to the joint active mode s(t) ∈ NN as the the vec-
tor stacking the appliances’ modes at time t, i.e., s(t) = [s1(t), . . . , sN (t)].
We denote with S the set of all possible combinations taken by s(t) and
|S| the cardinality of S, i.e., |S| =

∏N
i=1Ki.
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5.3.1 Dynamic-programming based disaggregation

The first algorithm for iterative energy disaggregation is based on the
minimization of the loss function:

J(t, s(t))=`(y(1), s(1)) +

[
t∑

τ=2

`(y(τ), s(τ))+λ(s(τ−1))1[s(τ) 6=s(τ−1)]

]
,

(5.11)
which penalizes, similarly to (5.5), the time switch of the joint mode, as
well as the fitting error `(y(t), s(t)) on the aggregate power measurement
y(t) defined as:

`(y(t), s(t)) =

(
y(t)−

N∑
i=1

ŷi(t,Θi, si(t))

)2

.

In penalizing transitions on the joint mode we have taken into account
the assumption, already used in Section 5.2, that the appliances rarely
change their operating mode over time. The hyper-parameter λ(d) in (5.11),
with d ∈ S , is proportional to the empirical probability of remaining at
mode d for two consecutive time instants. The value of λ(d) is computed
based on the empirical probabilities λi(j) (5.7), with i = 1, . . . , N and
j = 1, . . . ,Ki. Under the assumption that the appliances change their
modes independently from each other, λ(d) is chosen as

λ(d) ∝
N∏
i=1

λi(di). (5.12)

Unlike the minimization of (5.5), the cost (5.11) has not to be opti-
mized with respect to the model parameters Θi, but only with respect to
the active mode sequence {s(τ)}tτ=1. Since disaggregation should be per-
formed in real time, only the aggregate readings up to time t can be used
to reconstruct the active mode s(t). The minimization of the cost J(t, s(t))

in (5.11) is performed through dynamic programming, as described in
Algorithm 12. For each possible joint mode h ∈ S, the value of J(1, h) is
computed at Step 1, and the joint mode s(1) is selected as the one min-
imizing J(1, h) over h ∈ S (Step 2). At time t ≥ 2, the optimal costs
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Algorithm 12 Dynamic-programming based disaggregation

Input: Aggregate output readings flow y(1), y(2), . . .; model parameters
Θi, i = 1, . . . , N ; hyper-parameters λ(d), d ∈ S.

1. J∗(1, h)← `(y(1), h); h ∈ S;

2. s∗(1)← argminh∈S J
∗(1, h);

3. iterate for t = 2, . . .

3.1. J∗(t, h)←`(y(t), h) + mind∈S
(
J∗(t−1, d) + λ(d)1[h6=d]

)
, h ∈ S;

3.2. s∗(t)← argminh∈S J
∗(t, h);

Output: Estimated joint mode sequence s∗(t).

J∗(t, h), for h ∈ S, are updated based on the previously computed opti-
mal costs J∗(t− 1, d) and the current aggregate power measurement y(t)

(Step 3.1). The optimal joint mode s∗(t) is finally computed at Step 3.2.

It is worth remarking that, in case static models are used, the dynamic
programming approach in Algorithm 12 provides the optimal mode s∗(t)
minimizing the cost J(t, s(t)) in (5.11), given the information up to time
t. If dynamical models are used, the fitting cost `(y(t), h) is computed
approximating the single appliance consumptions with the previous es-
timates ŷi(t−1), . . . , ŷi(t−n) obtained at time t−1, . . . , t−n. This implies
that the history up to time t− 1 is embedded into ŷi(t− 1), . . . , ŷi(t− n),
thus leading to an approximation of the optimum of the objective func-
tion J(t, h).

The t-th iteration of Algorithm 12 is schematized in Figure 49. Note
that, the update of the cost J∗(t, h) at step 3.1 can be recursively com-
puted based on J∗(t − 1, d), d ∈ S and the new observation y(t), with-
out the need to store and reprocess past data. This makes Algorithm 12
suited for online disaggregation.

Note that, at each time sample t, Algorithm 12 computes the cost-to-
go J∗(t, h) at mode h for all possible values of h ∈ S, which requires
to evaluate the cost J∗(t− 1, d) + λ(d)1 (h 6= d) for all possible values of
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J∗(t−1, d)

Compute
J∗(t, h) ∀h∈S
as in Step 3.1

Store J∗(t, h), ∀h∈S

Select
s∗(t) = argminh∈S J

∗(t, h)

{y(t), X1(t), . . . , XN (t)}
Θ1, . . . ,ΘN

s∗(t)

Figure 49: Dynamic-programming based disaggregation: iteration at time
t.

d ∈ S (Step 3.1). Thus, the computational complexity of Algorithm 12
in detecting the joint mode s(t) is O(|S|2). Since the number |S| of pos-
sible combinations of the joint mode s(t) increases exponentially with
the number of appliances N and the number of operating conditions Ki,
i = 1, . . . , N , implementation of Algorithm 12 might not be practically
feasible in case of large N and Ki.

Complexity reduction

A possible solution to reduce the computational complexity of Algo-
rithm 12 from O(|S|2) to O(|S|) is to approximate Step 3.1 with

J∗(t, h)← `(y(t), h)+ J∗(t−1, s∗(t−1))+ λ(s∗(t−1))1[h6=s∗(t−1)], h ∈ S
(5.13)

where s∗(t−1) is the estimate of the joint mode at the previous time step
t− 1, given by

s∗(t− 1) = argmin
h∈S

J∗(t− 1, h). (5.14)

The idea behind approximation (5.13), schematized in Figure 50, is to
embed the information up to time t−1 into the estimated mode s∗(t−1).

To further reduce the complexity of Algorithm 12, the cost J∗(t, h) in
Step 3.1 is not computed for all possible modes h ∈ S , but only for those
satisfying at least one of the following conditions:
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s∗(t− 1)

Compute
J∗(t, h) ∀h∈S

as in (5.13)

Select
s∗(t) = argminh∈S J

∗(t, h)
Store s∗(t)

{y(t), X1(t), . . . , XN (t)}
Θ1, . . . ,ΘN

s∗(t)

Figure 50: Schematic of the approximation used to reduce complexity of
dynamic-programming based disaggregation from O(|S|2) to O(|S|). All
the past history up to time t− 1 is embedded in s∗(t− 1).

C1 at most one appliance changes its operating condition;

C2 all the appliances are in the operating condition corresponding to
their minimal consumption energy (namely, all of them are off);

C3 only one appliance is on.

These assumptions are realistic in energy disaggregation problems with
high-time resolution (e.g., 1 min) power readings. Although C2-C3 con-
sider the cases where at most one appliance is on, condition C1 allows
us to handle configurations where multiple appliances are consuming.
When two devices are switched on simultaneously at time t, the operat-
ing mode of one of the two appliances cannot be correctly detected, as
this configuration is not accounted for by C1-C3. Nevertheless, the actual
operating mode is expected to be retrieved at time t+ 1 thanks to condi-
tion C1. Since only the configurations satisfying C1, C2 or C3 are consid-
ered, the computational complexity of the approach is further reduced
fromO(|S|) toO

(
2 + 2

(∑N
i=1(Ki − 1)

))
. A schematic of the operations

performed at time t is shown in Figure 51.
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Compute H = {h ∈ S : OR(C1, C2, C3) = true}

s∗(t− 1)

Compute
J∗(t, h′) ∀h′∈H

as in (5.13)

Select
s∗(t) = argminh′∈H J

∗(t, h′)
Store s∗(t)

C1, C2, C3

{y(t), X1(t), . . . , XN (t)}
Θ1, . . . ,ΘN

s∗(t)

Figure 51: Schematic of the approximation used to further reduce com-
plexity of dynamic-programming based disaggregation from O(|S|) to

O
(

2 + 2
(∑N

i=1(Ki − 1)
))

. Only configurations described by condi-
tions C1, C2 or C3 are considered.

5.3.2 Disaggregation through Kalman Filtering

Alternatively to the dynamic-programming based method described in
Section 5.3.1, we propose another iterative approach based on a reformu-
lation of energy disaggregation as a state estimation problem for switch-
ing linear dynamical systems. This problem is then solved via multiple-
model Kalman filtering

A state-space representation of the switching linear model represent-
ing the household power consumption over time is given by:

x(t+ 1) = A[s(t)]x(t) +B[s(t)] + w[s(t)](t) (5.15a)

y(t) = C[s(t)]x(t) + v[s(t)](t), (5.15b)

where y(t) is the measured aggregate power, w[s(t)](t) and v[s(t)](t) are
the process and measurement noise, respectively, which are supposed to
be white and mutually independent. According to standard hypothesis
in Kalman filtering, w[s(t)](t) and v[s(t)](t) are assumed to be generated
by zero-mean Gaussian distributions with covariance matrices Q[s(t)]

and R[s(t)], i.e., w[s(t)](t) ∼ N (0, Q[s(t)]) and v[s(t)](t) ∼ N (0, R[s(t)]).
Similarly to Section 5.3.1, s(t) ∈ S represents the joint mode at time t.
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The continuous state x(t) and the matrices A[s(t)], B[s(t)], C[s(t)] are
properly defined based on the static/dynamic models of each device es-
timated as in Section 5.2. For example, in the case each appliance is de-
scribed by static sub-models (5.4), the state x(t) is the collection of the
single appliances’ consumptions x(t) = [ y1(t) ... yN (t) ]

′ and

A[s(t)] = 0N×N B[s(t)] =


θ
s1(t)
1

...
θ
sN (t)
N

 C[s(t)] = 1′N ,

with 1N indicating the column vector of ones.
The time evolution of the mode s(t) is described by a stationary Markov
Chain with transition probabilities

P (s(t) = h|s(t− 1) = d) with h, d ∈ S. (5.16)

These transitions probabilities are approximated from the results of the
training procedure described in Section 5.2.1, using the empirical proba-
bilities with Laplace smoothing:

P (si(t)=hi|si(t− 1)=di)=

∑T̄
t=2 1[si(t)=hi,si(t−1)=di]+1∑T̄
t=2 1[si(t−1)=di] +K2

i

, i=1, . . . , N.

(5.17)
Under the assumption that the appliances change their mode indepen-
dently from each other, the transition probabilities in (5.16) are thus com-
puted as

P (s(t) = h|s(t− 1) = d) =

N∏
i=1

P (si(t) = hi|si(t− 1) = di). (5.18)

Multiple-model Kalman filtering techniques can be used to simulta-
neously estimate both the joint mode s(t) and the continuous state x(t) of
the dynamical system in (5.15). The first-order generalized pseudo-Bayesian
(GPB1) algorithm is employed. The main ideas behind GPB1 are sum-
marized in the rest of this section. Heuristics to reduce the computa-
tional complexity in applying GPB1 to energy disaggregation problems
are then described in Section 5.3.2.
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Let It be the set of available data up to time t, i.e., It = {y(1), . . . , y(t)}.
At each time t, GPB1 approximates the state conditional probability den-
sity function p[x(t)|It] as:

p[x(t)|It] =

|S|∑
h=1

p[x(t)|s(t) = h, It]P (s(t) = h|It)

=

|S|∑
h=1

p[x(t)|s(t) = h, y(t), It−1]P (s(t) = h|It)

≈
|S|∑
h=1

p[x(t)|s(t)=h, y(t), x̂(t−1|t−1), Px(t−1|t−1)]P (s(t)=h|It). (5.19)

The idea behind this approximation is to embed the past information
It−1 on the system into the state estimate x̂(t− 1|t− 1) computed at time
t − 1 (using only information up to t − 1) and the associated covariance
matrix Px(t− 1|t− 1).

By assuming that the initial state x(0) is Gaussian distributed with
mean x̂(0|0) and covariance Px(0|0), the probability density function

p[x(t)|s(t) = h, y(t), x̂(t− 1|t− 1), Px(t− 1|t− 1)]

is Gaussian with mean x̂[h](t|t) and covariance Px[h](t|t), where x̂[h](t|t)
and Px[h](t|t) are the output of the Kalman filter associated with the lin-
ear sub-model (5.15) for s(t) = h.

Thus, p[x(t)|It] in (5.19) is a Gaussian mixture, with weights

α[h](t|t) = P (s(t) = h|It), (5.20)

where α[h](t|t) thus represents the probability of being at mode h at time
t, given the information up to time t. These weights can be equivalently
expressed as

α[h](t|t)=P (s(t)=h|y(t), It−1)=
p[y(t)|s(t)=h, It−1]P (s(t)=h|It−1)∑

j∈S
p[y(t)|s(t)=j, It−1]P (s(t)=j|It−1)

,

(5.21)
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where P (s(t) = h|It−1) is the probability of being at mode h at time t
given the measurements up to time t − 1, and it can be computed itera-
tively as

α[h](t|t−1)=P (s(t)=h|It−1)=
∑
d∈S

P (s(t)=h|s(t−1)=d)α[d](t−1|t−1),

(5.22)
with P (s(t) = h|s(t− 1) = d) given by (5.17) and (5.18).

As in (5.19), the past information It−1 is embedded into x̂(t − 1|t −
1) and Px(t − 1|t − 1). This allows us to approximate the conditional
likelihood p[y(t)|s(t) = h, It−1] of the aggregate output y(t) as

p[y(t)|s(t) = h, It−1] ≈ p[y(t)|s(t) = h, x̂(t−1|t−1), Px(t−1|t−1)]. (5.23)

Using the dynamical equations (5.15) and prior assumptions on the dis-
tributions of x(0),w[h](t) and v[h](t), the approximated likelihood in (5.23)
is Gaussian with meanC[h]x̂[h](t|t−1) and covarianceR[h]+C[h]Px[h](t|t−
1)C[h]T , where

x̂[h](t|t− 1) = A[h]x̂(t− 1|t− 1) +B[h]

Px[h](t|t− 1) = A[h]TPx(t− 1|t− 1)A[h] +Q[h].

Summarizing, the weights of the Gaussian mixture p[x(t)|It] in (5.19)
are calculated using (5.21) and (5.23). The state estimate x̂(t|t) and the
associated covariance Px(t|t) are then chosen as the expected value and
covariance matrix of the random variable x ∼ p[x|It], namely:

x̂(t|t) =
∑
h∈S

x̂[h](t|t)α[h](t), (5.24)

P (t|t) =
∑
h∈S

α[h](t|t) {P [h](t|t) + [x̂[h](t|t)− x̂(t|t)][x̂[h](t|t)− x̂(t|t)]′} .

(5.25)

The active mode at time t is finally selected as

s∗(t) = argmax
h∈S

α[h](t|t), (5.26)

and the final disaggregated power of each appliance is retrieved from the
estimated state x̂[h](t|t), for h = s∗(t).
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Algorithm 13 Kalman filter based disaggregation

Input: Aggregate output readings flow y(1), y(2), . . .; models
A[h], B[h], C[h] and noise covariance matrices Q[h], R[h], h ∈ S; prior on
the initial state x̂(0|0), Px(0|0), initial mode probabilities α[h](0|0), h ∈ S.

1. iterate for t = 1, 2, . . .

1.1. update x̂[h](t|t), Px[h](t|t), h ∈ S, using linear Kalman filter;

1.2. compute the likelihood p[y(t)|s(t) = h, It−1], h ∈ S, as
in (5.23);

1.3. update α[h](t|t), h ∈ S, as in (5.21);

1.4. s∗(t)← argmaxh∈S α[h](t|t), h ∈ S;

1.5. compute x̂(t|t) as in (5.24);

1.6. compute Px(t|t) as in (5.25);

Output: Estimated sequence of joint mode s∗(t) and optimal state
x̂[s∗(t)](t|t).

Algorithm 13 summarizes the iterations of the Kalman filter based
disaggregation approach. If no prior on the initial mode probabilities
α[h](0|0) = P (s(0) = h) is available, Algorithm 13 can be initialized by
setting α[h](0|0) = 1

|S| for all h ∈ S. This is equivalent to assume a
uniform probability distribution on the initial mode s(0).

The t-th step of Algorithm 13 is also schematized in Figure 52. Note
that, at each iteration t, the computations in Steps 1.1- 1.3 can be recur-
sively performed based on x̂(t− 1|t− 1), Px(t− 1|t− 1) and the new ob-
servation y(t), without the need to store and reprocess past data. Thus,
like Algorithm 12, also Algorithm 13 is suited for online disaggregation.

Since Steps 1.1-1.3 of Algorithm 13 should be performed for each
h ∈ S, its complexity isO(|S|). As the number |S| of possible joint modes
s(t) increases exponentially with the number of appliances N and the
number of corresponding operating conditions Ki, i = 1, . . . , N , the ap-
proach is limited to disaggregation problems with few devices and with
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Run Kalman Filter for (5.15) with s(t) = h, ∀h ∈ S

y(t), x̂(t− 1|t− 1), Px(t− 1|t− 1)

Select
s∗(t) = argmaxh∈S α[h](t|t)

State estimate and covariance combination

x̂(t|t) =
∑
h∈S

x̂[h](t|t)α[h](t|t)

Px(t|t) =
∑
h∈S

α[h](t|t) {Px[h](t|t) + [x̂[h](t|t)− x̂(t|t)][x̂[h](t|t)− x̂(t|t)]′}

{x̂[h](t|t), Px[h](t|t)}h∈S{α[h](t|t)}h∈S

{A[h], B[h], C[h], Q[h], R[h]}h∈S
{α[h](t− 1|t− 1)}h∈S

s∗(t)
x̂(t|t), Px(t|t)

Figure 52: Kalman filter based disaggregation approach: iteration at step t.

Compute H = {h ∈ S : OR(K1,K2)=true}

Compute α[h](t|t − 1), ∀h ∈ S as in (5.22)

{α[h](t− 1|t− 1)}h∈S

Run KFh′ , ∀h′ ∈ H

Select
s∗(t) = argmaxh′∈H α[h′](t|t)

State estimate and covariance combination

x̂(t|t) =
∑
h′∈H

x̂[h′](t|t)α[h′](t|t)

Px(t|t) =
∑
h′∈H

α[h′](t|t) {Px[h′](t|t) + [x̂[h′](t|t)− x̂(t|t)][x̂[h′](t|t)− x̂(t|t)]′}

K1,K2

y(t), x̂(t− 1|t− 1)
Px(t− 1|t− 1)

{x̂[h′](t|t), Px[h′](t|t)}h′∈H{α[h′](t|t)}h′∈H

{A[h′], B[h′], C[h′], Q[h′], R[h′]}h′∈H
{α[h′](t− 1|t− 1)}h′∈H

s∗(t)
x̂(t|t), Px(t|t)

Figure 53: Scheme of the reduced-complexity KF-based approach reporting
the operations performed at step t.

a small number of operating regimes for each appliance.

Complexity reduction

To reduce the computational complexity of Algorithm 13, Step 1.1 (which
requires to run |S| Kalman filters in parallel) is performed at time t only
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for the modes h′ in S satisfying the following conditions:

K1 The probability α[h′](t|t − 1) = P (s(t) = h′|It−1) is larger than a
threshold ε, i.e.,

α[h′](t|t− 1) ≥ ε.

A possible value for ε is 1/|S|;

K2 all the appliances are in the operating condition corresponding to
their minimal consumption energy (namely, all of them are off);

K3 only one appliance is on.

Conditions K2-K3 are equal to conditions C2-C3 already used in Sec-
tion 5.3.1 to reduce the computational complexity of the dynamic pro-
gramming based approach. Condition K1 allows us to discard the con-
figurations which are predicted to be “unlikely”.

5.4 Experimental tests

The proposed disaggregation algorithms are tested against the AMPds
dataset [74], which consists of the power readings of a house located
in Canada, and it comprises the consumption profiles of 19 appliances,
recorded over a year (from April 1, 2012 to March 31, 2013) at one-minute
time resolution. The goal of the test is to assess: (i) the capabilities of
the proposed disaggregation algorithms in reconstructing the end-use
power consumption from the aggregate readings; (ii) their computa-
tional complexity; (iii) their robustness against modelling errors. In run-
ning Algorithm 13 the covariance matrices Px(0|0), Q[h] and R[h] are
chosen as diagonal matrices with non-zero entries equal to 1000, 10 and
800, respectively. The initial parameter x̂(0|0) is a zero vector and the
initial probabilities α[h](0|0) are set to and 1

|S| , for h ∈ S. The threshold ε
characterizing condition K1 (Section 5.3.2)is equal to 1

|S| .

5.4.1 Learning appliance behaviour

Part of the AMPds dataset is used to construct the training sets Mi,
i = 1, . . . , N needed to estimate the models for the single devices. As
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discussed in Section 5.2, in the training phase we assume to have access
to the consumption patterns of the single appliances.

The following appliances are modelled: cloth dryer (CDE); dishwasher
(DWE); fridge (FGE); heat pump (HPE); basements plugs & lights (BME).

First, static models (5.4) for each of the considered device are esti-
mated. The following parameters θji are obtained:

CDE :
[
0.4 251.8 4644.3

]
,

DWE :
[
0.1 146.6 781.2

]
,

FGE :
[
1.1 132.8

]
,

HPE :
[
33.7 1822.1

]
,

BME :
[
5.7 330.5

]
.

As discussed in Section 5.2.1, these parameters represent the estimate of
the power consumption of the single appliances at different operating
regimes.

For the fridge and the heat pump, second-order dynamical models
are also estimated. Results regarding the quality of the estimated dy-
namical models have been already presented in Figure 48.

5.4.2 Performance metrics

Disaggregation is performed on a dataset DT of length T (disjoint from
the training setsMi, i = 1, . . . , N ) which consists only of the aggregate
power readings. The length T of the dataset DT is equal to 17280, which
corresponds to 12 consecutive days of observations. The available end-
use profiles are employed only as ground-truth data to assess the quality
of the disaggregated consumption patterns, which is measured with re-
spect to the following metrics:

1. the F -score (Fs) [8]

Fsi = 2
PCi ×RCi
PCi +RCi

, (5.27)
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where the indexesRCi and PCi in (5.27) are the so-called recall and
precision, respectively, and they are defined as

RCi =
TPi

TPi + FNi
, PCi =

TPi
TPi + FPi

,

where TPi, FPi and FNi are respectively: the number of events
correctly classified when the appliance is on (true positive); the
number of events classified as on when the appliance is actually off
(false positive); the number of events classified as off when the ap-
pliance is actually on (false negative). The score Fsi measures the
capability of the disaggregation method in correctly classifying the
on/off state of the i-th appliance. Since multiple-state appliances
are used, we set 10 W as a threshold to claim whether the appliance
is on or off. The threshold is set to 50 W for the heat pump, as its es-
timated low-level power consumption is 33.7 W (see Section 5.4.1);

2. the Estimated Energy Fraction Index (EEFI)

EEFIi =

∑T
t=1 ŷi(t,Θi, s

∗
i (t))∑N

i=1

∑T
t=1 ŷi(t,Θi, s∗i (t))

, (5.28)

which represents the fraction of energy assigned to the i-th appli-
ance. This index is compared with the Actual Energy Fraction Index
(AEFI)

AEFIi =

∑T
t=1 yi(t)∑N

i=1

∑T
t=1 yi(t)

, (5.29)

which indicates the actual fraction of energy consumed by the i-th
appliance. A similar value between EEFIi and AEFIi indicates that
the contribution of i-th on the total power consumption is correctly
estimated.

3. the Relative Square Error (RSE)

RSEi =

∑T
t=1(yi(t)− ŷi(t,Θi, s

∗
i (t)))

2∑T
t=1(yi(t))2

. (5.30)

The RSEi index provides a normalized measure of the mismatch
between the actual and the reconstructed consumption pattern for
the i-th appliance.
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Table 20: Achieved F -scores Fs.

Dynamic-programming Kalman-filtering
approach approach

complete reduced complete reduced
Clothes dryer 97.8 % 98.8 % 90.4 % 89.5 %
Dishwasher 95.6 % 97.4 % 90.7 % 89.6 %
Fridge 94.4 % 96.1 % 76.0 % 75.5 %
Heat Pump 99.9 % 99.9 % 81.5 % 80.6 %
Basement 96.4 % 97.7 % 98.2% 98.9 %

4. the R2 coefficient;

R2
i = 1−

∑T
t=1(yi(t)− ŷi(t,Θi, s

∗
i (t)))

2∑T
t=1(yi(t)− ȳi)2

(5.31)

with ȳi = 1
T

∑T
t=1 yi(t). Both R2

i and RSEi measure the match over
time between estimated and actual end-use power profiles.

These metrics provide increasing levels of information on the end-
use power consumptions. Indeed, the F -score only gives an indication
on the capabilities of the disaggregation approach in detecting whether a
device is on or off, while the EEFIi index provides the power consumed
by each appliance. This is more informative than the F -score to design
customized feedbacks and demand management strategies. Finally, the
RSEi and R2

i indexes measure the quality of the reconstructed single-
appliance power consumption trajectories over time, which is crucial to
retrieve information about consumptions during peak hours.

5.4.3 Numerical results

The aggregate power readings y(t) forming the validation datasetDT are
constructed by summing up the power consumptions of the 5 appliances
specified in Section 5.4.1. To assess the robustness of the developed dis-
aggregation approaches with respect to modelling errors, the obtained
signal y(t) is corrupted by a fictitious zero-mean Gaussian noise with
standard deviation 4 W. Furthermore, the unmodelled consumption pat-
terns of bedroom, garage and dining room are added on top of y(t).
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Table 21: Relative Square ErrorsRSE andR2 coefficients. Results of the dy-
namic programming (DP)-based algorithm and its simplified version with
reduced computational complexity.

DP DP with
algorithm reduced complexity

RSEi R2
i RSEi R2

i

Clothes dryer 15.7 % 84.1 % 12.8 % 87.0 %
Dishwasher 37.0 % 62.4 % 24.1 % 75.4 %
Fridge 42.5 % 39.6 % 33.6 % 52.2 %
Heat Pump 1.3 % 98.3 % 1.1 % 98.6 %
Basement 34.3 % 56.6 % 19.8 % 74.9 %

Table 22: Relative Square Errors RSE and R2 coefficients. Results of the
multiple-model Kalman-filtering (KF)-based algorithm and its simplified
version with reduced computational complexity.

KF KF with
algorithm reduced complexity

RSEi R2
i RSEi R2

i

Clothes dryer 3.5 % 96.5 % 14.6 % 85.2 %
Dishwasher 8.0 % 91.8 % 25.9 % 73.6 %
Fridge 31.6 % 55.1 % 33.1 % 52.9%
Heat Pump 0.6 % 99.2 % 3.5 % 95.5 %
Basement 14.4 % 81.7 % 6.7% 91.6 %

Estimated end-use profiles

The obtained values of the performance metrics are provided in Tables 20,
21 and 22, and in Figures 54-55, while the disaggregated signals are plot-
ted in Figures 56-65. For the sake of visualization, only a portion of the
disaggregated profiles is reported in the figures. The obtained results
show that both the dynamic-programming and the Kalman-filter-based
approach accurately estimate the fraction of energy consumed by each
appliance (see Figures 54-55, where the EEFI and the AEFI indexes are
compared). This good performance is mainly due to an accurate esti-
mate of the disaggregated trajectories over time (as shown in Figures 56-
65, and quantified in terms of the RSE and R2 indexes in Tables 21-22). It
is interesting to note in Tables 20 and 21 that the simplified version of the
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Figure 54: Dynamic-programming-based approach. Actual Energy Fraction
Index [%] (black); Estimated Energy Fraction Index (EEFI) [%] by complete
version (red) and simplified version (blue).

Table 23: Average CPU time, in milliseconds, required to disaggregate the
total power consumption at a given time instant.

Dynamic-programming Kalman-filtering
approach approach

complete reduced complete reduced
CPU time [ms] 0.25 0.25 1.10 0.24

DP-based approach might even outperform the complete version of the
algorithm. This is due to the fact that, because of conditions C1-C3 (see
Section 5.3.1), the simplified approach a-priori discards some configura-
tions which are unlikely to happen in practice.

Computational complexity

The tests were run on a MacBook Pro 2.8 GHz-Intel i7 in MATLAB R2016b.
The average CPU times required to compute the disaggregated signals
at each time instant are reported in Table 23. Both the complete and
the reduced-complexity DP-based approaches take 0.25 ms to perform
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Figure 55: Multiple-model Kalman-filtering-based approach. Actual En-
ergy Fraction Index [%] (black); Estimated Energy Fraction Index (EEFI) [%]
by complete version (red) and simplified version (blue).
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Figure 56: Cloths dryer: True (black) vs estimated (red) power demands.

a disaggregation step. Thus, in the considered application, the simpli-
fied method does not lead to any improvement in terms of CPU time,
because of the overhead time required to check conditions C1-C3. On the
other hand, the simplified KF-based approach is about 5× faster than the
complete version. These results show the potentiality of the proposed
algorithms for big-data processing.
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Figure 57: Dishwasher: True (black) vs estimated (red) power demands.
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Figure 58: Fridge: True (black) vs estimated (red) power demands.
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Figure 59: Heat Pump: True (black) vs estimated (red) power demands.
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Figure 60: Basement plugs & lights: True (black) vs estimated (red) power
demands.
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Figure 61: Cloths dryer: True (black) vs estimated (red) power demands.
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Figure 62: Dishwasher: True (black) vs estimated (red) power demands.
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Figure 63: Fridge: True (black) vs estimated (red) power demands.
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Figure 64: Heat Pump: True (black) vs estimated (red) power demands.
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Figure 65: Basement plugs & lights: True (black) vs estimated (red) power
demands.
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Chapter 6

Cloud-aided collaborative
estimation
The Linear case

This chapter presents methods for cloud-aided estimation, focusing on
approaches tailored to handle linear consensus constraints based on the
Alternating Direction Method of Multipliers (ADMM). Section 6.1 is thus
devoted to briefly summarize the Alternating Direction Method of Mul-
tipliers. In Section 6.2 the collaborative estimation problem is formal-
ized, while the solution for the case of full consensus is presented in Sec-
tion 6.3. Section 6.4 is devoted to the description of the method designed
to handle collaborative estimation problems with partial consensus. An
extension of this approach to tackle constrained estimation problems is
presented in Section 6.5. Simulation examples are considered to test all
the algorithms, thus showing their performance in different settings.
While the approaches proposed in Section 6.3-6.4 for unconstrained full
and partial consensus problems rely on Node-to-Cloud-to-Node (N2C2N)
communications only, both a strategy based on N2C2N transmissions
and a method relying on a Node-to-Cloud (N2C) communication scheme
are presented in Section 6.5.

Throughout the Chapter PA denotes the Euclidean projection onto the
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set A.

6.1 The Alternating Direction Method of Mul-
tipliers

The Alternating Direction Method of Multipliers (ADMM) [23] is an al-
gorithm tailored to solve problems in the form

minimize f(θ) + g(z)

subject to Aθ +Bz = c,
(6.1)

where θ ∈ Rnθ , z ∈ Rnz , f : Rnθ → R ∪ {+∞} and g : Rnz → R ∪ {+∞}
are closed, proper, convex functions and A ∈ Rp×nθ , B ∈ Rp×nz , c ∈ Rp.

The ADMM iterations to be performed to solve problem (6.1) are

θ(k+1) = argmin
θ
L(θ, z(k), δ(k)), (6.2)

z(k+1) = argmin
z
L(θ(k+1), z, δ(k)), (6.3)

δ(k+1) = δ(k) + ρ(Aθ(k+1) +Bz(k+1) − c), (6.4)

where k ∈ N indicates the ADMM iteration, L is the augmented La-
grangian associated to (6.1), i.e.,

L(θ, z, δ) = f(θ) + g(z) + δ′ (Aθ +Bz − c) +
ρ

2
‖Aθ +Bz − c‖22 , (6.5)

δ ∈ Rp is the Lagrange multiplier and ρ ∈ R+ is a tunable parameter
(see [23] for possible tuning strategies). Iterations (6.2)-(6.4) have to be
run until a stopping criteria is satisfied, e.g., the maximum number of
iterations is attained.

6.1.1 ADMM for constrained convex optimization

Suppose that the problem to be addressed is

min
θ

f(θ)

s.t. θ ∈ C,
(6.6)
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with θ ∈ Rnθ , f : Rnθ → R ∪ {+∞} being a closed, proper, convex func-
tion and C being a convex set.
As explained in [23], the problem in (6.6) can be recast as in (6.1) through
the introduction of the auxiliary variable z ∈ Rnθ and the indicator func-
tion of set C

g(z) =

{
0 if z ∈ C,
+∞ otherwise.

(6.7)

Problem (6.6) thus becomes

min
θ,z

f(θ) + g(z),

s.t. θ − z = 0,
(6.8)

and the ADMM scheme to solve (6.8) is

θ(k+1) = argmin
θ
L(θ, z(k), δ(k)), (6.9)

z(k+1) = PC(θ(k+1) + δ(k)), (6.10)

δ(k+1) = δ(k) + ρ(θ(k+1) − z(k+1)), (6.11)

with the augmented Lagrangian L equal to

L(θ, z, δ) = f(θ) + g(z) + δ′(θ − z) +
ρ

2
‖θ − z‖22

6.1.2 ADMM for consensus problems

Consider the optimization problem

min
θg

N∑
n=1

fn(θg), (6.12)

where θg ∈ Rnθ and each term fn of the objective function, fn : Rnθ →
R ∪ {+∞}, is a proper, closed, convex function.
If N processors are available to solve (6.12), ADMM [23] can be used to
reformulate this problem, so that each term of the cost function in (6.12)
is handled by its own.
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In particular, problem (6.12) is equivalent to

minimize
N∑
n=1

fn(θn)

subject to θn − θg = 0 n = 1, . . . , N,

(6.13)

Thanks to the introduction of the consensus constraints, the cost function
in (6.13) is separable.
The augmented Lagrangian corresponding to (6.13) is given by

L({θn}Nn=1, θ
g, {δn}Nn=1) =

N∑
n=1

Ln(θn, θ
g, δn),

Ln = fn(θn) + (δn)′(θn − θg) +
ρ

2
‖θn − θg‖22.

(6.14)

and the ADMM iterations to solve (6.13) are

θ(k+1)
n = argmin

θn

Ln(θn, δ
(k)
n , θg,(k)), n = 1, . . . , N (6.15)

θg,(k+1) =
1

N

N∑
n=1

(
θ(k+1)
n +

1

ρ
δ(k)
n

)
, (6.16)

δ(k+1)
n = δ(k)

n + ρ
(
θ(k+1)
n − θg,(k+1)

)
, n = 1, . . . , N. (6.17)

On the one hand (6.15) and (6.17) can be carried out independently by
each agent n ∈ {1, . . . , N}. On the other hand, equation (6.16) depends
on all the updated local estimates. The global estimate should thus be
updated in a fusion center, where all the local estimates are collected and
merged.

6.2 Collaborative estimation: problem statement

Assume that (i) the measurements acquired by N agents are available
and that (ii) the behavior of the N data-generating systems is described
by the same model, with parameters θn ∈ Rnθ , with n = 1, . . . , N . As the
agents share the same model, it is legitimate to assume that (iii) there ex-
ists a set of parameters θg ∈ Rng , with ng ≤ nθ, common to all the agents.
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We aim at (i) retrieving local estimates of {θn}Nn=1, employing infor-
mation available at the local level only, and (ii) identifying the global pa-
rameter θg at the cloud level, using the data collected from all the avail-
able sources. To accomplish these tasks (i) N local processors must be
available and (ii) all the agents have to be connected to the cloud, where
the data are merged are needed. The estimation problem to be solved
can be cast into the separable optimization problem

min
θn

N∑
n=1

fn(θn)

s.t. F (θn) = θg,

θn ∈ Cn, n = 1, . . . , N

(6.18)

with fn : Rnθ→R ∪ {+∞} being a closed, proper and convex function,
F : Rnθ→Rng is a nonlinear operator and Cn ⊂ Rnθ is a convex set rep-
resenting constraints on the local parameter values. Constraints on the
value of the global parameter can be enforced if Cn = C ∪ {Cn ∩ C̆}, with
θg ∈ C.

Assume that the available data are the output/regressor pairs col-
lected from each agent n ∈ {1, . . . , N} over an horizon of length T ∈ N,
i.e., {yn(t), Xn(t)}Tt=1. Relying on the hypothesis that the regressor/output
relationship is well modeled as

yn(t) = Xn(t)′θn + en(t), (6.19)

with en(t) ∈ Rny being a zero-mean additive noise independent of the
regressor Xn(t) ∈ Rnθ×ny , we focus on developing a recursive algorithm
to solve (6.18) with the local cost functions given by

fn(θn) =
1

2

T∑
t=1

λT−tn ‖yn(t)−Xn(t)′θn‖
2
2 , (6.20)

where the forgetting factors λn ∈ (0, 1], for n = 1, . . . , N , are introduced
to be able to estimate time-varying parameters. Different forgetting fac-
tors can be chosen for different agents.
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6.3 Case study 1. Full consensus

Suppose that the problem to be solved is

minimize
N∑
n=1

fn(θn)

subject to θn − θg = 0 n = 1, . . . , N.

i.e., we are aiming at achieving full consensus among N agents. The
consensus constraint in (6.18) has thus to be modified as

F (θn) = θg → θn = θg

and Cn = Rnθ . As we are focusing on the problem of collaborative least-
squares estimation, we are interested in the particular case in which the
local cost functions in (6.13) are equal to (6.20) .
The considered problem can be solved in a centralized fashion (C-RLS),
transmitting all the outputs and the regressors to the cloud. However,
our goal is to obtain estimates of the unknown parameters both (i) at a
local level and (ii) on the cloud. With the objective of distributing the
computation among the local processors and the cloud, we present an
ADMM scheme to address the problem in (6.13). A similar approach has
been used to develop a fully distributed scheme for consensus-based es-
timation over Wireless Sensor Networks (WSNs) in [75]. Our approach
differs from the one introduced in [75] as we aim at exploiting the cloud
to attain consensus and, at the same time, we want local estimates to be
computed by each node.

The ADMM iterations to be performed to solved (6.13) are exactly
equal to (6.14)-(6.17), i.e.,

θ̂n(T )(k+1) = argmin
θn

{
fn(θn) + (δ(k)

n )′(θn − θ̂g,(k)) +
ρ

2
‖θn − θ̂g,(k)‖22

}
,

θ̂g,(k+1) =
1

N

N∑
n=1

(
θ(k+1)
n +

1

ρ
δ(k)
n

)
,

δ(k+1)
n = δ(k)

n + ρ
(
θ̂(k+1)
n (T )− θ̂g,(k+1)

)
, n = 1, . . . , N
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with the cost functions fn defined as in (6.14). The dependence on T of
the local estimates is stressed to underline that only the updates of θ̂n are
directly influenced by the current measurements.

As equation (6.16)-(6.17) are independent from the specific choice of
fn(θn), we focus on the update of the local estimates (6.15), with the ul-
timate goal of finding recursive updates for θ̂n. Thanks to the character-
istics of the chosen local cost functions, the closed-form solution for the
problem in (6.15) is given by

θ̂(k+1)
n (T ) = φn(T )

(
Yn(T )− δ(k)

n + ρθ̂g,(k)
)
, (6.21)

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), t = 1, . . . , T, (6.22)

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′, t = 1, . . . , T, (6.23)

φn(t) = (Xn(t) + ρInθ )
−1
, t = 1, . . . , T. (6.24)

With the aim of obtaining recursive formulas to update θ̂n, we introduce
the local estimate obtained at T − 1, which is given by

θ̂n(T − 1) = φn(T − 1)
(
Yn(T − 1) + ρθ̂g(T − 1)− δn(T − 1)

)
, (6.25)

with δn(T − 1) and θ̂g(T − 1) denoting the Lagrange multiplier and the
global estimate computed at T − 1, respectively.
Consider the matrix φn(T ) defined in equation (6.24). The inverse of
matrix φn(T ) is given by

φn(T )−1 = Xn(T ) + ρInθ .

Based on (6.24), it can be proven that φn(T )−1 can be computed recur-
sively, as a function of φn(T − 1)−1. In particular:

φn(T )−1 = Xn(T ) + ρInθ =

= λnXn(T − 1) +Xn(T )(Xn(T ))′ + ρInθ =

= λnφn(T − 1)−1 +Xn(T )(Xn(T ))′ + (1− λn)ρInθ . (6.26)
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Introducing the extended regressor vector X̃n(T )

X̃n(T ) =
[
Xn(T )

√
(1− λn)ρInθ

]
∈ Rnθ×(ny+nθ), (6.27)

the inverse of φn(T ) in (6.26) can be further simplified as

φn(T )−1 = λnφn(T − 1)−1 + X̃n(T )(X̃n(T ))′.

Applying the matrix inversion lemma [114], the resulting recursive for-
mulas to update φn are

Rn(T ) = λnI(ny+nθ) + (X̃n(T ))′φn(T − 1)X̃n(T ), (6.28)

Kn(T ) = φn(T − 1)X̃n(T )(Rn(T ))−1, (6.29)

φn(T ) = λ−1
n

(
Inθ −Kn(T )(X̃n(T ))′

)
φn(T − 1), (6.30)

with the gainKn and matrix φn are updated as in standard RLS [72], sub-
stituting the regressor Xn with X̃n and increasing the dimension of the
identity matrix in (6.28). Only when λn = 1 the regressor Xn and X̃n are
equal.
Observe that (6.28)-(6.30) are independent from k and, consequently,
{Rn,Kn, φn}Nn=1 can be updated once per step t.

Adding and subtracting

λnφn(T )
[
ρθ̂g(T − 1)− δn(T − 1)

]
to (6.21), the solution of (6.15) is equal to

θ̂(k+1)
n (T ) = θ̂RLSn (T ) + θ̂ADMM,(k+1)

n (T ), (6.31)

with

θ̂RLSn (T ) = φn(T )
{
λn

(
Yn(T − 1) + ρθ̂g(T − 1)− δn(T − 1)

)}
+

+ φn(T )Xn(T )yn(T ), (6.32)

θ̂ADMM,(k+1)
n (T ) = φn(T )

[
ρ∆

(k+1)
g,λn

(T )−∆
(k+1)
λn

(T )
]
, (6.33)
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and

∆k+1
g,λn

(T ) = θ̂g,(k) − λnθ̂g(T − 1), (6.34)

∆
(k+1)
λn

(T ) = δ(k)
n − λnδn(T − 1). (6.35)

Observe that (6.33) is independent from the observations {yn(t), Xn(t)},
for t = 1, . . . , T , while (6.32) depends on Yn(T − 1). To obtain recursive
formulas to update θ̂n, the dependence of (6.32) on Yn(T − 1) should be
eliminated.
Exploiting (6.30) and (6.25), θ̂RLSn (T ) in (6.32) is given by

θ̂RLSn (T ) = θ̂n(T − 1) +Kn(T )(ỹn(T )− X̃n(T )′θ̂n(T − 1)), (6.36)

where we have introduced the extended measurement vector

ỹn(T ) =
[
(yn(T ))′ 01×ng

]′
.

and we have used the equality φn(T )X̃n(T ) = Kn(T ). Similarly to what
is done for standard RLS, this equality can be proven using the matrix
inversion lemma as follows

φn(T )X̃n(T ) = λ−1
n

(
Inθ −Kn(T )(X̃n(T ))′

)
φn(T − 1)X̃n(T ) =

= λ−1
n

(
Inθ − φn(T − 1)X̃n(T )(Rn(T ))−1(X̃n(T ))′

)
φn(T − 1)X̃n(T ) =

= φn(T − 1)X̃n(T )
(
λ−1
n Inθ − λ−1

n (Rn(T ))−1(X̃n(T ))′φn(T − 1)X̃n(T )
)

=

= φn(T − 1)X̃n(T )
(
λ−1
n Inθ − λ−1

n (Rn(T ))−1(X̃n(T ))′φn(T − 1)X̃n(T )
)

=

= φn(T − 1)X̃n(T )
(
λnInθ + (X̃n(T ))′φn(T − 1)X̃n(T )

)−1

= Kn(T ),

where the matrix inversion lemma [114] and (6.29)-(6.30) are used.
The update for θ̂ADMM

n (6.33) depends on both the values of the La-
grange multipliers and the global estimates, while θ̂RLSn in (6.36) is com-
puted only on the basis of the previous local estimate and the current
measurements. As θ̂g is updated using information collected from all the
agents, θ̂g,(k) should be computed on the cloud. Due to the dependence
of (6.17) on θ̂g,(k+1), also the Lagrange multipliers and θ̂ADMM

n should
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Figure 66: ADMM-RLS. Schematic of the information exchanges between
the agents and the cloud using an Node-to-Cloud-to-Node (N2C2N) com-
munication scheme.

be updated in the cloud to reduce the transmission complexity. Instead,
the partial estimates θ̂RLSn , n = 1, . . . , N , can be computed by the local
processors.

The presented method is summarized in Algorithm 14 and Figure 66,
and it allows us to obtain estimates both at the (i) agent and (ii) cloud
level. Thanks to the independence of (6.36) from k, θ̂RLSn can be updated
once per step t. Furthermore, looking at (6.28)-(6.30) and (6.36), it can
be noticed that θ̂RLSn is updated through standard RLS, with the excep-
tions that the update depends on the previous estimate θ̂n(t − 1) com-
puted on the cloud, instead of depending on θ̂RLSn (t − 1), and that the
output/regressor pair {yn(t), Xn(t)} is replaced with {ỹn(t), X̃n(t)}. The
proposed method can thus be easily integrated with pre-existing RLS es-
timators already available locally.

Algorithm 14 requires the initialization of the local and global esti-
mates. If some data are available to be processed in a batch mode, θ̂n(0)

can be chosen as the best linear model, i.e.,

θ̂n(0) = argmin
θn

τ∑
t=1

‖yn(t)−Xn(t)′θ‖22
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Algorithm 14 ADMM-RLS for full consensus (N2C2N)

Input: Data flow {Xn(1), yn(1)},{Xn(2), yn(2)}, . . ., initial matrices
φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables δn,o,
n = 1, . . . , N , initial global estimate θ̂go , parameter ρ ∈ R+.

1. for t = 1, 2, . . . do

Local

1.1. for n = 1, . . . , N do
1.1.1. compute X̃n(t) as in (6.27);
1.1.2. compute Kn(t) and φn(t) with (6.29) - (6.30);
1.1.3. compute θ̂RLSn (t) with (6.36);

1.2. end for;

Global

1.1. do
1.1.1. compute θ̂ADMM,(k+1)

n (t) with (6.33), n = 1, . . . , N ;
1.1.2. compute θ̂g,(k+1)(t) with (6.16);

1.1.3. compute δ(k+1)
n with (6.17), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g., maximum num-
ber of iterations attained);

2. end.

Output: Estimated global parameters θ̂g(t), estimated local parameters
θ̂n(t), n = 1, . . . , N .

and θ̂g(0) can be computed as the mean of {θ̂n(0)}Nn=1. Moreover, the
matrices φn, n = 1, . . . , N , can be initialized as φn(0) = γInθ , with γ > 0.

Remark 5 The chosen implementation requires θ̂RLSn and φn to be transmit-
ted from the local processors to the cloud at each step, while the cloud has to
communicate θ̂n to all the agents. �
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6.3.1 Example 1

Suppose that N data-generating systems are described by the following
model

yn(t) = 0.9yn(t− 1) + 0.4un(t− 1) + en(t), (6.37)

where yn(t) ∈ R, Xn(t) =
[
yn(t− 1) un(t− 1)

]′, un is a measured se-
quence of i.i.d. elements uniformly distributed in the interval [2, 3] and
en ∼ N (0, Rn) is a white noise sequence, with {Rn ∈ N}Nn=1 randomly
chosen in the interval [1, 3]. Evaluating the effect of the noise on the
output yn through the Signal-to-Noise Ratio SNRn

SNRn = 10 log

∑T
t=1 (yn(t)− en(t))

2∑T
t=1 en(t)2

dB (6.38)

the chosen covariance matrices yield SNRn in the interval [7.8 20.8] dB,
n = 1, . . . , N . Note that the model (6.37) can be equivalently written as

yn(t) = (Xn(t))′θg + en(t) with θg =
[
0.9 0.4

]′
.

We initialize φn as φn(0) = 0.1Inθ , while θ̂n(0) and θ̂go are sampled
from the distributions N (θ̂g, 2Inθ ) and N (θ̂g, Inθ ), respectively, {λn =

1}Nn=1 and ρ = 0.1. The performance of ADMM-RLS are assessed for
different values of N and T . Moreover, the retrieved estimates are com-
pared to the ones obtained in a fully centralized fashion (C-RLS).
The accuracy of the estimate θ̂g is assessed through the Root Mean Square
Error (RMSE), computed as

RMSEgi =

√√√√∑T
t=1

(
θgi − θ̂

g
i (t)

)2

T
, i = 1, . . . , ng. (6.39)

As it can be noticed from the RMSEs reported in Table 24, the estimates
tend to be more accurate if the number of local processors N and the es-
timation horizon T increase. This result can be expected as an increase
in N and/or T corresponds to an increase in the data available for es-
timation. In the specific case N = 100 and T = 1000, both the RMSEs
obtained solving the estimation problem in a fully centralized fashion

146



Table 24: Example 1: ADMM-RLS: ‖RMSEg‖2

N
T 10 102 103 104

2 1.07 0.33 0.16 0.10
10 0.55 0.22 0.09 0.03

102 0.39 0.11 0.03 0.01
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(b) θg2 vs θ̂g2

Figure 67: Example 1. Model parameters. True (black), centralized ap-
proach (red), ADMM-RLS (blue). The estimates obtained with C-RLS and
ADMM-RLS are barely distinguishable.

(C-RLS) and the one resulting from the use of ADMM-RLS are equal to
0.03. The estimates obtained with C-RLS and ADMM-RLS are further
compared in Figure 67. As expected, the estimates obtained with the
different methods are barely distinguishable for most of the estimation
horizon.

Non-informative agents

Assume that some of the available data sources are non-informative, i.e.,
some systems are not excited enough to be able to retrieve an accurate es-
timate of all the unknown parameters [72] locally. Null input sequences
and white noise sequences characterized by Rn = 10−8 are used to sim-
ulate the behavior of the Nni ≤ N non-informative agents.
Consider N = 100 systems and an estimation horizon of length T =

5000. The performance of ADMM-RLS are studied under the hypothesis
that an increasing number Nni of systems is non-informative. Table 25
reports the RMSEs obtained for different values of Nni. It can be noticed
that the quality of the estimate starts to deteriorates only when half of
the available systems are non-informative.
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Table 25: Example 1. ‖RMSEg‖2 vs Nni

Nni
1 10 20 50

‖RMSEg‖2 0.02 0.02 0.02 0.03

Table 26: Example 1. ADMM-RLS: ‖RMSEg‖2 vs Nf

Nf
1 10 20 50

‖RMSEg‖2 0.03 0.03 0.03 0.04

Agents failure

Consider a set of N = 100 agents and an estimation horizon T = 5000.
Suppose that, due to a change in the behavior of Nf local agents, the
parameters of their models suddenly assume different values with re-
spect to

[
0.9 0.4

]
. We study the performance of ADMM-RLS when the

parameters change at an (unknown) instant tn, randomly chosen in the
interval tn ∈ [1875, 3750]. For t ≥ tn, the parameters θn,1 and θn,2 are
sampled from the uniform distributions U[ 0.2 0.21 ] and U[ 1.4 1.43 ], respec-
tively. The forgetting factors λn, n = 1, . . . , N , are set to 0.99.
The performance of ADMM-RLS are initially assessed considering an in-
creasing number of systems subject to failure. From the RMSEs reported
in Table 26, it can be noticed that the failure of the agents seems not to in-
fluence the accuracy of the obtained global estimates if Nf 6= 50. The use
of ADMM-RLS thus allows to compute accurate global estimates even
when some of the agent experience a failure.
In Figure 68, the local estimate θ̂RLS94 is compared with the actual value of
θ94, with the 94th system being subject to failure. Observe that the local
estimates does not follow the change in the actual parameters, but they
tend to reproduce the behavior of the global estimates. This does not
allow to identify changes on the local parameters looking at θ̂RLSn . How-
ever, this is crucial when the algorithm is used for monitoring/diagnostic
purposes. Even if the change in the local parameters is not directly iden-
tifiable from θ̂RLSn , it can be detected looking at other indicators, e.g., the
condition number of φ94 (see Figure 69).
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Figure 68: Example 1. True vs estimated model parameters θ̂94. True (black),
θ̂RLS94 obtained with ADMM-RLS (blue).
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Figure 69: Example 1. Condition number of φn, with n = 94.

6.4 Case study 2. Partial consensus

Consider the more general hypothesis that there exists a parameter vec-
tor θg ∈ Rng , with ng ≤ nθ such that:

Pθn = θg ∀n ∈ {1, . . . , N}, (6.40)

where P ∈ Rng×nθ is a matrix assumed to be known a priori. The prob-
lem we want to solve is then given by

min
{θn}Nn=1

N∑
n=1

fn(θn)

s.t. Pθn = θg, n = 1, . . . , N,

(6.41)

with fn defined as in (6.20). Note that (6.41) corresponds to (6.18) with
the consensus constraint modified as

F (θn) = θg → Pθn = θg.

The considered consensus constraint allows us to enforce consensus over
a linear combination of the components of θn. Through proper choices of
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P , different settings can be considered, e.g., if P = Inθ then θn = θg and
thus (6.41) is equal to (6.12). We can also enforce consensus only over
some components of θn, so that some of the unknowns are assumed to
be global, while others assume different values for each agent.

The ADMM iterations to solve problem (6.41) are given by

θ̂(k+1)
n (T ) = argmin

θn

L(θn, θ̂
g,(k), δ(k)

n ), (6.42)

θ̂g,(k+1) = argmin
θg

L({θ̂(k+1)
n (T )}Nn=1, θ

g, {δ(k)
n }Nn=1), (6.43)

δ(k+1)
n = δ(k)

n + ρ(P θ̂(k+1)
n (T )− θ̂g,(k+1)), (6.44)

with k ∈ N indicating the ADMM iteration, ρ ∈ R+ being a tunable
parameter, δn ∈ Rng representing the Lagrange multiplier and the aug-
mented Lagrangian L given by

L =

N∑
n=1

{
fn(θn) + δ′n(Pθn − θg) +

ρ

2
‖Pθn − θg‖22

}
. (6.45)

Note that the dependence on T is explicitly indicated only for the local
estimates θ̂n, as they are the only quantities directly affected by the mea-
surement and the regressor at T .
Consider the update of the estimate θ̂g . The closed form solution for
(6.43) is

θ̂g,(k+1) =
1

N

N∑
n=1

(
P θ̂(k+1)

n (T ) +
1

ρ
δ(k)
n

)
. (6.46)

The estimate of the global parameter is thus updated through the combi-
nation of the mean of {δn}Nn=1 and the mean of {P θ̂(k+1)

n (T )}Nn=1.
Consider the update for the estimated of the local parameters. The close

150



form solution for (6.42) is given by:

θ̂(k+1)
n (T ) = φn(T )

{
Yn(T ) + P ′(ρθ̂g,(k) − δ(k)

n )
}
, (6.47)

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), t = 1, . . . , T,

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′, t = 1, . . . , T,

φn(t) = (Xn(t) + ρP ′P )
−1
, t = 1, . . . , T. (6.48)

Consider θ̂n(T − 1), defined as

θ̂n(T − 1) = φn(T − 1)
(
Yn(T − 1) + P ′(ρθ̂g(T − 1)− δn(T − 1))

)
,

(6.49)
where φn(T−1) is defined as in equation (6.48), and θ̂g(T−1) and δn(T−
1) are the global estimate and the Lagrange multiplier obtained at T − 1,
respectively.
Observe that the following equalities hold

φn(T ) =
(
λnφn(T − 1)−1 +Xn(T )Xn(T )′ + ρ(1− λn)P ′P

)−1
.

Introducing the extended regressor

X̃n(T ) =
[
Xn(T )

√
ρ(1− λn)P ′

]
∈ Rnθ×(ny+ng) (6.50)

and applying the matrix inversion lemma [114], it can be proven that φn
can be updated as

Rn(T ) = λnI(ny+ng) + (X̃n(T ))′φn(T − 1)X̃n(T ), (6.51)

Kn(T ) = φn(T − 1)X̃n(T ) (Rn(T ))
−1
, (6.52)

φn(T ) = λ−1
n (Inθ −Kn(T )(X̃n(T ))′)φn(T − 1). (6.53)

Note that the equations (6.51)-(6.53) are similar to (6.28)-(6.30), with dif-
ferences due to the new definition of the extended regressor.

Adding and subtracting

λnφn(T )P ′
(
ρθ̂g(T − 1)− δn(T − 1)

)
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to (6.47), it can be shown that θ̂(k+1)
n can be computed as

θ̂(k+1)
n (T ) = θ̂RLSn (T ) + θ̂ADMM,(k+1)

n (T ), (6.54)

with

θ̂RLSn (T ) = φn(T )λn

{
Yn(T − 1) + ρP ′θ̂(T − 1)− P ′δn(T − 1)

}
+

+ φn(T )X̃n(T )yn(T ), (6.55)

and

θ̂ADMM,(k+1)
n (T ) = φn(T )P ′

(
ρ∆

(k+1)
g,λn

(T )−∆
(k+1)
λn

)
,

∆k+1
g,λn

(T ) = θ̂g,(k) − λnθ̂g(T − 1),

∆
(k+1)
λn

(T ) = δ(k)
n − λnδn(T − 1).

(6.56)

Observe that, as for equations (6.16) and (6.46), the updates of the θ̂ADMM,(k)
n

in (6.56) differs from the one in (6.33) because of the presence of P .

Accounting for the definition of φn(T − 1), exploiting the equality
Kn(T ) = φn(T )X̃n(T ) and introducing the extended measurement vec-
tor

ỹn(T ) =
[
yn(T )′ O1×ng

]′
,

the local estimate θ̂RLSn in (6.56) can be updated as

θ̂RLSn (T ) = θ̂n(T − 1) +Kn(T )(ỹn(T )− (X̃n(T ))′θ̂n(T − 1)).

As for the method tailored to attain full consensus presented in Sec-
tion 6.3, both θ̂g and δn should be updated on the cloud. As a conse-
quence, also θ̂ADMM

n should be updated on the cloud, due to its depen-
dence on both θ̂g and δn. On the other hand, θ̂RLSn can be updated by
the local processors. Moreover, as equation (6.57) is independent from k,
θ̂RLSn can be updated once per time step t.

The approach is outlined in Algorithm 15 and the employed Node-
to-Cloud-to-Node transmissions is reported in Figure 66. Due to the
employed communication scheme, the observations made in Section 6.3
with respect to the information exchange between the nodes and the
cloud hold also in this case.
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Algorithm 15 ADMM-RLS algorithm for partial consensus

Input: Data flow {Xn(1), yn(1)},{Xn(2), yn(2)}, . . ., initial matrices
φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables δn,o,
forgetting factors λn, n = 1, . . . , N , initial global estimate θ̂go , parameter
ρ ∈ R+.

1. for t = 1, 2, . . . do

Local

1.1. for n = 1, . . . , N do
1.1.1. compute X̃n(t) with (6.50);
1.1.2. compute Kn(t) and φn(t) with (6.52) - (6.53);
1.1.3. compute θ̂RLSn (t) with (6.57);

1.2. end for;

Global

1.1. do
1.1.1. compute θ̂ADMM,(k+1)

n (t) with (6.56), n = 1, . . . , N ;

1.1.2. compute θ̂(k+1)
n (t) with (6.54), n = 1, . . . , N ;

1.1.3. compute θ̂g,(k+1) with (6.46);

1.1.4. compute δ(k+1)
n with (6.44), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g., maximum num-
ber of iterations attained);

2. end.

Output: Estimated global parameters θ̂g(t), estimated local parameters
θ̂n(t), n = 1, . . . , N .

6.4.1 Example 2

Consider N = 100 dynamical systems observed over an estimation hori-
zon of length T = 1000. Assume that the behavior of the N dynamical
systems is modeled as

yn(t) = θg1yn(t− 1) + θn,2yn(t− 2) + θg2un(t− 1) + en(t), (6.57)
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Figure 70: Example 2. θ̂g vs θg . True parameter (black), estimates obtained
with ADMM-RLS (blue).

where θg =
[
0.2, 0.8

]′ and θn,2 is sampled from a normal distribution
N (0.4, 0.0025), so that it is different for the N systems. The white noise
sequence en ∼ N (0, Rn), whereRn ∈ N and sampled in the interval [1 20]

yields SNR in [3.1, 14.6] dB (see (6.38)).
We choose the same initial parameters used in Section 6.31. Figure 70
shows that θ̂g obtained with ADMM-RLS converges to the actual value
of the global parameters. To further assess the performances of ADMM-
RLS, θn, θ̂n and θ̂RLSn obtained for the 5th system2, are compared in Fig-
ure 71. It can thus be seen that the difference between θ̂RLSn and θ̂n is
only noticeable at the beginning of the estimation horizon, but then θ̂RLSn

and θ̂n are barely distinguishable.

Non-informative agents

Suppose that, among the N = 100 systems described by the model in
(6.57), Nni = 20 randomly chosen agents are non-informative3.
As it can be observed from the estimates reported in Figure 72, {θ̂gi }2i=1

converge to the actual values of the global parameters even if 20% of the
systems provide non-informative data.
The local estimates θ̂n,2 for the 8th and 65th system (SNR65 ≈ 6 dB) are

reported in Figure 73. As the 8th system is among the ones with a non
exciting input, θ̂8,2 = θ̂8,2(0) over the estimation horizon. Instead, θ̂65,2

1The matricesφn(0) = 0.1Inθ , while θ̂n(0) and θ̂go are sampled from the distributions
N (θ̂g , 2Inθ ) andN (θ̂g , Inθ ), respectively, {λn = 1}Nn=1 and ρ = 0.1.

2SNR5 = 8.9 dB.
3Non-informative agents are characterized by null input sequences un andRn = 10−8.
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Figure 71: Example 2. Local parameter θ5,2. True (black), local estimate on
the cloud θ̂5 (blue), θ̂RLS5 (red). The two estimates are barely distinguish-
able.
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Figure 72: Example 2. θ̂g vs θg . True (black), estimates obtained with
ADMM-RLS (blue).

converges to the actual value of θ65,2. Even if the purely local parame-
ter is not retrieved from the data, note that θ8,1 and θ8,3 are accurately
estimated as it can be seen from Figure 74. We can thus conclude that
the proposed method “forces” the estimates of the global components
of θn to follow θ̂g , which is thus estimated automatically discarding the
contributions from the systems that lacked excitation.
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Figure 73: Example 2. Local parameters θn,2, n = 8, 65. True (black), esti-
mates obtained with ADMM-RLS (blue).
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Figure 74: Example 2. Local parameters θ8,i, i = 1, 3. True (black), θ̂RLS8,i

(blue), local estimates computed on the cloud θ̂8,i (red).

6.5 Case study 3. Constrained Partial consensus

Suppose that the values of the local parameters θn, n = 1, . . . , N , are con-
strained to the sets Cn. With the objective of reaching partial consensus
among the agents, the problem to be solved can be formulated as

minimize
N∑
n=1

fn(θn)

s.t. Pθn = θ, n = 1, . . . , N,

θn ∈ Cn, n = 1, . . . , N.

(6.58)

To use ADMM to solve (6.58), this problem is modified as

minimize
N∑
n=1

{fn(θn) + gn(zn)}

s.t. Pθn = θg n = 1, . . . , N

θn = zn, n = 1, . . . , N,

(6.59)
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where we introduce the indicator functions {gn}Nn=1 of the sets {Cn}Nn=1

(defined as in (6.7)) and the auxiliary variables {zn ∈ Rnθ}Nn=1. Given the
augmented Lagrangian associated with (6.59), i.e.,

L =

N∑
n=1

{fn(θn) + gn(zn) + δ′n,1(θn − zn) + δ′n,2(Pθn − θg)+

+
ρ1

2
‖θn − zn‖22 +

ρ2

2
‖Pθn − θg‖22}, (6.60)

the ADMM iterations that have to be performed to solve the addressed
problem are

θ̂(k+1)
n (T ) = argmin

θn

L(θn, θ̂
g,(k), z(k)

n , δ(k)
n ), (6.61)

z(k+1)
n = argmin

zn

L(θ̂n,(k+1)(T ), θ̂g,(k), zn, δ
(k)
n ), (6.62)

θ̂g,(k+1) = argmin
θg

L({θ̂(k+1)
n }Nn=1, θ

g, {z(k+1)
n , δ(k)

n }Nn=1), (6.63)

δ
(k+1)
n,1 = δ

(k)
n,1 + ρ1(θ̂(k+1)

n (T )− z(k+1)), (6.64)

δ
(k+1)
n,2 = δ

(k)
n,2 + ρ2(P θ̂(k+1)

n (T )− θ̂g,(k+1)). (6.65)

Note that two sets of Lagrangian multipliers, {δn,1}Nn=1 and {δn,2}Nn=1,
have been introduced, where δn,1 ∈ Rng is associated with the partial
consensus constraint and δn,2 ∈ Rnθ is related to the constraints on the
values of the local parameters.

Solving equations (6.62) and (6.63), the resulting updates for the aux-
iliary variables and the global estimate are

z(k+1)
n =PCn

(
θ̂(k+1)
n (T ) +

1

ρ1
δ

(k)
n,1

)
, n = 1, . . . , N, (6.66)

θ̂g,(k+1) =
1

N

N∑
n=1

(
P θ̂(k+1)

n (T ) +
1

ρ2
δ

(k)
n,2

)
. (6.67)

Observe that z-update is performed projecting a combination of the up-
dated local estimate and δ(k)

n,1 onto the set Cn , while θ̂g,(k+1) is computed
as in Section 6.4 (equation 6.44), with δn replaced by δn,2.
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Consider the close form solution of (6.61), which is given by

θ̂(k+1)
n (T ) = φn(T )

{
Yn(T )− δ(k)

n,1 − P ′δ
(k)
n,2 + ρ1z

(k)
n + ρ2P

′θ̂g,(k)
}
,

(6.68)
with

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), (6.69)

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′, (6.70)

φn(t) =

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ ρ1Inθ + ρ2P

′P

)−1

. (6.71)

for t = 1, . . . , T .

To obtain recursive formulas to compute θ̂(k+1)
n , we start proving that

φn(T ) can be computed as a function of φn(T −1). In particular, note that

φn(T )−1 = Xn(T ) + ρ1Inθ + ρ2P
′P =

= λnφn(T − 1)−1 +Xn(T )Xn(T )′ + (1− λn)ρ1 + (1− λn)ρ2P
′P.

Defining the extended regressor as

X̃n(T ) =
[
Xn(T )

√
(1− λn)ρ1Inθ

√
(1− λn)ρ2P

′
]
, (6.72)

with X̃n(T ) ∈ Rnθ×(nX̃) and nX̃ = ny +nθ +ng , and applying the matrix
inversion lemma [114], it can be easily proven that φn(T ) can then be
computed as:

Rn(T ) = λnI(ny+nθ+ng) + X̃n(T )′φn(T )X̃n(T ), (6.73)

Kn(T ) = φn(T − 1)X̃n(T )(Rn(T ))−1, (6.74)

φn(T ) = λ−1
n (Inθ −Kn(T )X̃n(T )′)φn(T − 1). (6.75)

The same observations relative to the update of φn made in Section 6.3-
6.4 holds also in the considered case.
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Method relying on N2C2N transmissions

Aiming at finding recursive formulas to update the estimates of the local
parameters, we introduce the nth local estimate obtained at T − 1, i.e.,

θ̂n(T − 1) = φn(T − 1) {Yn(T − 1)− δn,1(T − 1)− P ′δn,2(T − 1)+

+ρ1zn(T − 1) + ρ2P
′θ̂g(T − 1)

}
(6.76)

with δn,1(T − 1), δn,2(T − 1), zn(T − 1) and θ̂g(T − 1) being the Lagrange
multipliers, the n-th auxiliary variable and the global estimate obtained
at T − 1, respectively.
Adding and subtracting

λn

[
−δn,1(T − 1)− P ′δn,2(T − 1) + ρ1zn(T − 1) + ρ2P

′θ̂g(T − 1)
]

to (6.68) and using the definition of φn(T − 1) in (6.71), the local estimate
θ̂n can be updated as

θ̂(k+1)
n (T ) = θ̂RLSn (T ) + θ̂ADMM,(k+1)

n (T ), (6.77)

with

θ̂RLSn = φn(T )λn (Yn(T − 1)− δn,1(T − 1)− P ′δn,2(T − 1)+

+ρ1zn(T − 1) + ρ2P
′θ̂g(T − 1)

)
+ φn(T )Xn(T )yn(T ), (6.78)

and

θ̂ADMM,(k+1)
n (T ) = φn(T )

[
ρ1∆

(k+1)
z,λn

(T )−∆
(k+1)
1,λn

]
+

+ φn(T )P ′
[
ρ2∆

(k+1)
g,λn

(T )−∆
(k+1)
2,λn

]
, (6.79)

∆
(k+1)
z,λn

(T ) = z(k)
n − λnzn(T − 1),

∆
(k+1)
g,λn

(T ) = θ̂g,(k) − λnθ̂g(T − 1),

∆
(k+1)
1,λn

= δ
(k)
n,1 − λnδn,1(T − 1),

∆
(k+1)
2,λn

= δ
(k)
n,2 − λnδn,2(T − 1).

It can be noticed that (6.79) differs from (6.56) because of the introduction
of the additional terms ∆z,λn and ∆1,λn .
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Similarly to what is presented in Section 6.3, exploiting equation(6.75)
and the equality Kn(T ) = φn(T )X̃n(T ), the formula to update θ̂RLSn can
be further reduced to

θ̂RLSn = θ̂n(T − 1) +Kn(T )(ỹn(T )− (X̃n(T ))′θ̂n(T − 1)), (6.80)

with the extended measurement vector ỹn(T ) is defined as

ỹn(T ) =
[
yn(T )′ O1×nθ O1×nng

]′
.

It is worth remarking that θ̂RLSn can be updated (i) locally, (ii) recursively
and (iii) once per step t.

The proposed method, summarized in Algorithm 16, requires the
agents to transmit {θ̂RLSn , φn} to the cloud, while the cloud has to com-
municate θ̂n to each node once it has been computed.

Method relying on N2C transmissions

Using a N2C2N transmission scheme, the cloud has to communicate the
updated estimates θ̂n to the local processors, before they can update
again their local copies of the estimate θ̂RLSn . The nodes have thus to
wait for the resources on the cloud to complete their computation.
To overcome this limitation, consider the close form solution of problem
(6.60), i.e.,

θ̂(k+1)
n (T ) = φn(T )

{
Yn(T )− δ(k)

n,1 − P ′δ
(k)
n,2 + ρ1z

(k)
n + ρ2P

′θ̂g,(k)
}
,

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), t = 1, . . . , T

φn(t) =

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ ρ1Inθ + ρ2P

′P

)−1

, t = 1, . . . , T.

Instead of introducing θ̂n(T − 1), consider θ̂RLSn (T − 1), given by

θ̂RLSn (T − 1) = φn(T − 1)Yn(T − 1). (6.81)

Observe that the local estimate can thus be updated as

θ̂(k+1)
n (T ) = θ̂RLSn (T ) + θ̂ADMM,(k+1)

n (T ), (6.82)
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with

θ̂RLSn (T ) =
(
Inθ −Kn(T )(X̃n(T ))′

)
θ̂RLSn (T − 1) + φn(T )Xn(T )yn(T ),

θ̂ADMM,(k+1)
n (T ) = φn(T )

{
ρ1z

(k)
n + ρ2P

′θ̂g,(k) − δ(k)
n,1 − P ′δ

(k)
n,2

}
. (6.83)

By using the equality φn(T )X̃n(T ) = Kn(T ) and introducing the ex-
tended measurement vector

ỹn(T ) =
[
yn(T )′ 01×nθ 01×nng

]′
,

the local estimate θ̂RLSn can thus be updated as

θ̂RLSn (T ) = θ̂RLSn (T − 1) +Kn(T )
(
ỹn(T )− (X̃n(T ))′θ̂RLSn (T − 1)

)
.

(6.84)
On the one hand, θ̂g,(k+1), z(k+1)

n and δ
(k+1)
n,2 should be computed on the

cloud, as θ̂g is updated in (6.67) using the estimates collected from all the
N agents and equations (6.65)-(6.66) depend on the current global esti-
mate. On the other hand, δn,1 can be updated by the nth processor. How-
ever, under the hypothesis that the local computational power is limited
and aiming at exploiting N2C communications, also δ(k+1)

n,1 is computed
on the cloud.
The estimate θ̂RLSn can be updated (i) at the level of the local proces-
sors, (ii) recursively and (iii) independently from quantities computed
on the cloud. Moreover, equation (6.84) is independent from k. As a
consequence, the clock scheduling the operations performed on the local
processor is not influenced by the clock of the cloud.

Remark 6 The method, outlined in Algorithm 16, requires the local processors
to communicate θ̂RLSn and φn at the cloud. On the other hand, to perform the
local updates (6.74)-(6.75) and (6.84), the cloud does not have to transmit data
to the local processors. The transmission scheme is outlined inFigure 75. �

6.5.1 Example 3

Suppose that N = 100 systems are described by the ARX model already
introduced in Section 6.4 in equation (6.57), i.e.,

yn(t) = θg1yn(t− 1) + θn,2yn(t− 2) + θg2un(t− 1) + en(t),
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Figure 75: Cloud-aided estimation: scheme for the information exchange
with Node-to-Cloud (N2C) transmissions.

where θg =
[
0.2 0.8

]′ and {θn,2}Nn=1, for n = 1, . . . , N , are sampled
from the distribution N (0.4, 0.0025). The inputs un are generated as se-
quences of i.i.d. elements uniformly distributed in [2, 3]. The white noise
sequence is en ∼ N (0, Rn), with the covariance matrix being a natural
number Rn ∈ [1, 4]. This choice for Rn yield to SNRn in the interval
[6.4, 16.1] dB, n = 1, . . . , N .
Our goal is to estimate both the global and the local parameters using
the information collected over an estimation horizon of length T = 5000.
Observe that the quality of θ̂g is evaluated through the RMSE, as defined
in (6.39).
Assume that the a priori information constraints parameter estimates to
the following ranges:

`n,1 ≤ θ̂n,1 ≤ upn,1 `n,2 ≤ θ̂n,2 ≤ upn,2
`n,3 ≤ θ̂n,3 ≤ upn,3.

(6.85)

With λn = 1, φn(0) = 0.1Inθ , θ̂n(0) sampled from N (θn, 4Inθ ), n =

1, . . . , N , and θ̂g sampled from the distributionN (θ̂g, Ing ), while ρ1, ρ2 ∈
R+ are left to be tuned.

Method relying on N2C2N communications

To assess how the choice of ρ1 and ρ2 affects the satisfaction of the con-
ditions specified in (6.85), we consider the average number of steps at
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which (6.85) are violated, denoted as {N̄ b
i }3i=1. These indicators are com-

Algorithm 16 ADMM-RLS algorithm for constrained consensus

Input: Data flow {Xn(1), yn(1)}, {Xn(2), yn(2)}, . . ., initial matrices
φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables
δo
n,1 and δo

n,2, initial auxiliary variables ẑn,o, forgetting factors λn, n =

1, . . . , N , initial global estimate θ̂go , parameters ρ1, ρ2 ∈ R+.

1. for t = 1, 2, . . . do

Local

1.1. for n = 1, . . . , N do
1.1.1. compute X̃n(t) with (6.72);
1.1.2. compute Kn(t) and φn(t) with (6.74) - (6.75);
1.1.3. compute θ̂RLSn (t) with (6.80) (N2C2N) or (6.84) (N2C);

1.2. end for;

Global

1.1. do
1.1.1. compute θ̂

ADMM,(k+1)
n (t) with (6.79) (N2C2N) or

(6.83) (N2C), n = 1, . . . , N ;

1.1.2. compute θ̂(k+1)
n (t) with (6.77), n = 1, . . . , N ;

1.1.3. compute z(k+1)
n (t) with (6.66), n = 1, . . . , N ;

1.1.4. compute θ̂g,(k+1) with (6.67);

1.1.5. compute δ(k+1)
n,1 with (6.64), n = 1, . . . , N ;

1.1.6. compute δ(k+1)
n,2 with (6.65), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g., maximum num-
ber of iterations attained);

2. end.

Output: Estimated global parameters θ̂g(t), estimated local parameters
θ̂n(t), n = 1, . . . , N .
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Figure 76: Example 3. N̄b vs ρ1/ρ2. Average violation on the first compo-
nent of the local parameter vector N̄b

1 (black), second component N̄b
2 (red),

third component N̄b
3 (blue).

puted assuming that negligible4 violations of the constraints are allowed.
Consider the set of constraints

S2 = {`n = [ 0.19 θn,2−0.1 0.79 ] , upn = [ 0.21 θn,2+0.1 0.81 ]}.

Figure 76 shows the average of {N̄ b
i }3i=1, obtained fixing ρ2 = 0.1 and

choosing ρ1 = {10−5, 10−4, 10−3, 10−2.10−1, 1, 10, 20}. As expected, if
ρ1 dominates over ρ2 the number of violations tends to decrease, as the
constraints on the value of the parameters are weighted more than the
consensus constraint. However, if ρ1/ρ2 > 100, {N̄ b

i }3i=1 tend to slightly
increase. It is thus important to trade-off between the weights attributed
to the conditions in (6.85) and the consensus constraint. We also evaluate
how the stiffness of the constraints affects the choice of the parameters.
In particular, we consider three different sets of constraints

S1 = {`n = [ 0.195 θn,2−0.05 0.795 ] , upn = [ 0.205 θn,2+0.05 0.805 ]},
S2 = {`n = [ 0.19 θn,2−0.1 0.79 ] , upn = [ 0.21 θn,2+0.1 0.81 ]},
S3 = {`n = [ 0.15 θn,2−0.5 0.75 ] , upn = [ 0.25 θn,2+0.5 0.85 ]}.

The average number of violations {N̄ b
i }3i=1 computed imposing the dif-

ferent constraints on the value of the local parameters are reported in
Figure 77. It can be noticed that the higher the ratio ρ1/ρ2 is, the smaller
{N̄ b

i }3i=1 are. On the other hand, the constraint tends to be violated more
if ρ1/ρ2 > 100, thus leading to higher values of {N̄ b

i }3i=1.

4The constraint `n,i ≤ θ̂n,i ≤ upn,i is assumed to be violated if θ̂n,i /∈ Bn,i = [`n,i −
10−4, upn,i + 10−4], i = 1, 2, 3.
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Figure 77: Example 3. N̄b
i %, i = 1, 2, 3, vs ρ1/ρ2. First set of constraints S1

(black), second set of constraints S2 (red), third set of constraints S3 (blue).
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Figure 78: Example 3. θ̂g vs θg . True (black), estimates obtained with
ADMM-RLS (blue), bounds (red).

Consider the set of constraints S2, Figure 78 shows the global esti-
mates obtained with ρ1 = 10 and ρ2 = 0.1. Note that the estimates satisfy
(6.85), showing that the constraints on the global estimate are automati-
cally enforced imposing θn ∈ Cn.
The RMSEs obtained for the global estimates are equal to RMSEg1 = 0.001

and RMSEg2 = 0.006 for the first and the second component of θg , respec-
tively. Their relatively small values can be related to the introduction of
the constraints on the value of the local parameters, that allow us to limit
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Figure 79: Example 3. θn, n = 11. True (black), estimate obtained with
ADMM-RLS (blue), bounds (red).

the resulting estimation error.
Figure 79 shows the estimate θ̂n for n = 11 (SNR11 = 10.6 dB)., while
θ̂n and θ̂RLSn , with n = 11, are compared Figure 80. As it can be noticed,
while θ̂11 satisfies the constraints, the effect produced by the use of θ̂11 in
the update θ̂RLS11 (see (6.80)) is not strong enough to enfoce also the local
copies of the estimates to satisfy the contraints for the whole estimation
horizon.

Method relying on N2C transmissions

Consider the set of constraints S2, i.e.,

`n =
[
0.19 θn,2 − 0.1 0.79

]
,

upn =
[
0.21 θn,2 + 0.1 0.81

]
.

(6.86)

With ρ2 = 0.1, Figures 81 and 82 report ‖RMSEg‖2 and {N̄ b
i }3i=1 for differ-

ent ratios ρ1/ρ2, respectively. Observe that the more ρ1 dominates over
ρ2, the more {N̄ b

i }3i=1 are reduced, but the average number of violations
tends to slightly increase when ρ1/ρ2 > 100. Also ‖RMSEg‖2 increases
significantly when ρ1/ρ2 ≥ 100. Both these results are compliant with
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Figure 80: Example 3. θn, n = 11. True (black), θ̂RLS11 (blue), local estimate
computed on the cloud θ̂11 (blue), bounds (red). As θ̂RLS11,3 tends to satisfy the
constraints after the first 1000 samples, only the estimate of θ̂RLS11,3 is plotted
for the entire horizon.
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Figure 81: Example 3. ‖RMSEg‖2 vs ρ1/ρ2.
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the meaning of the parameters ρ1 and ρ2.and they imply the necessity to
find for a good trade-off between ρ1 and ρ2.
Choosing ρ1 = 1 and ρ2 = 0.1, the obtained estimates of θg are reported
in Figure 83. Observe that θ̂g tends to converge to the actual value of the
global parameter and that, enforcing (6.85)-(6.86), θ̂g satisfy the condition

0.19 ≤ θ̂g1 ≤ 0.21 0.79 ≤ θ̂g2 ≤ 0.81,

even if the constraints are not directly imposed on the values of the global
parameters.
On the one hand, the global estimates reported in Figure 83 are similar
to the ones obtained with the method based on N2C2N transmissions
plotted in Figure 78). On the other hand, θ̂11 obtained with N2C com-
munications tends to violate the conditions in (6.85) at the beginning
of the estimation horizon, while the corresponding estimate computed
with the method relying on N2C2N transmission always satisfy the con-
straints (see Figure 79). Observe that, choosing ρ1 = 10 and ρ2 = 0.1 as
in the case of N2C2N communications, θ̂11 tends to verify the constraint
over the considered estimation horizon. However, this choice yields to
less accurate global estimates as shown in Figure 81. This result can be
related to the differences in the updates of θ̂RLSn , updated as in (6.80) and
(6.84) considering N2C2N and N2C transmissions, respectively.
In Figure 85, the local estimates θ̂11 are further compared with θ̂RLS11 and
the estimate obtained applying standard RLS [72], θ̂RLS?11 . As expected,
the θ̂RLS11 and θ̂RLS?11 are slightly different and they do not satisfy the con-
ditions in (6.85), while θ̂11 generally satisfies the constraints.
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Figure 83: Example 3. θ̂g vs θg True (black), estimates obtained with
ADMM-RLS (blue), bounds (red).
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Figure 84: Example 3. θ11. True (black), estimates obtained with ADMM-
RLS (blue), bounds (red).
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Figure 85: Example 3. θ11. True (black), θ̂RLS?11 obtained with standard RLS
[72] (magenta), θ̂RLS11 (blue), local estimates on the cloud θ̂11 (cyan), bounds
(red).
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Chapter 7

Cloud-aided collaborative
estimation
The Nonlinear and Multi-class cases

In this chapter, schemes based on the Alternating Direction Method of
Multipliers (ADMM) similar to the ones introduced in chapter 6 are pro-
posed to tackle consensus-based estimation problem with (i) nonlinear
consensus constraints and (ii) multiple classes.

After a brief review of the general collaborative estimation problem,
Section 7.1 briefly reviews the ADMM scheme used to tackle the non-
linear collaborative estimation problem. Then, a first strategy to handle
nonlinear consensus is presented in Section 7.2. In Section 7.3, a method
for constrained cloud-aided estimation with nonlinear consensus is in-
troduced. Finally, a strategy to handle the multi-class estimation prob-
lem is described in Section 7.4.

Throughout the Chapter PA denotes the Euclidean projection onto the
set A.

Assume that (i) the measurements acquired by N agents are available
and that (ii) the behavior of the N data-generating systems is described
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by the same model with parameters θn ∈ Rnθ, n = 1, . . . , N . As already
pointed out in chapter 6, the agents are associated with the same mo-
del and thus it can be assumed that (iii) there exists a set of parameters
θg ∈ Rng , with ng ≤ nθ, common to all the agents. We aim at (i) com-
puting local estimates of the unknowns {θn}Nn=1, and (ii) identifying the
global parameters θg on the cloud, using the data collected from all the
available sources.
The addressed estimation problem can be cast into the following separa-
ble optimization problem

minimize
N∑
n=1

fn(θn)

s.t. F (θn) = θg,

θn ∈ Cn, n = 1, . . . , N,

(7.1)

where fn : Rnθ → R + {∞} is a closed, proper, convex function, F :

Rnθ → Rng is a nonlinear operator and Cn ⊂ Rnθ is a convex set. In
particular, we focus on the problem of estimating the unknowns in the
least-squares sense, i.e., the local cost functions are given by

fn(θn) =
1

2

T∑
t=1

λT−tn ‖yn(t)− (Xn(t))′θn‖
2
2 , (7.2)

for n = 1, . . . , N .

7.1 ADMM with nonlinear operator constraints

We briefly review the algorithm proposed in [18], that allows to solve op-
timization problems with nonlinear constraints in an ADMM-like fash-
ion.
Consider the optimization problem given by

minimize f(θ) + g(z)

s.t. H(θ, z) = c,
(7.3)

where f and g are proper, convex and lower semi-continuous functions,
c is a given function and H is a nonlinear operator [18]. Through the
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introduction of the nonlinear operator H , the constraints are nonlinear
with respect to θ and z.
As in standard ADMM [23], consider the augmented Lagrangian associ-
ated with the considered problem, given by

L(θ, z, ρ) = f(θ) + g(z) + δ′(H(θ, z)− c) +
ρ

2
‖H(θ, z)− c‖22, (7.4)

which depends on the nonlinear operatorH . Using the standard ADMM
scheme without further approximations, the iterations to be performed
require the solution of two nonlinear optimization problems when θ and
z are updated.
As presented in [18], problem (7.3) can be alternatively solved through
the simultaneous linearization of the nonlinear operator H and the so-
lution of the problem with an inexact ADMM scheme. Not to deal with
nonlinear sub-problems, H(θ, z) is replaced with its truncated Taylor ex-
pansion around the current estimates of θ and z, respectively. Defining
the Jacobians computed at each ADMM iteration as

F (k) = ∂θH(θ, z(k))
∣∣
θ=θ(k) , (7.5)

G(k) = ∂zH(θ(k+1), z)
∣∣
z=z(k) , (7.6)

H(θ, z) is approximated as

H(θ, z(k)) ≈ H(θ(k), z(k)) + F (k)(θ − θ(k)), (7.7)

H(θ(k+1), z) ≈ H(θ(k+1), z(k)) +G(k)(z − z(k)), (7.8)

when θ and z are updated, respectively.
The ADMM scheme handling nonlinear constraints proposed in [18] is
summarized by the following steps:

θ(k+1) = argmin
θ

{
f(θ) + (δ(k))′F (k)θ +

ρ

2
‖F (k)θ − c(k)

1 ‖22,
}

(7.9)

z(k+1) = argmin
z

{
g(z) + (δ(k))′G(k)z +

ρ

2
‖G(k)θ − c(k)

2 ‖22
}
, (7.10)

δ(k+1) = δ(k) + ρ
(
H(θ(k+1), z(k+1) − c)

)
, (7.11)
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with

c
(k)
1 = c+ F (k)θ(k) −H(θ(k), z(k))

c
(k)
2 = c+G(k)z(k) −H(θ(k+1), z(k)).

The approximation introduced to handle nonlinear constraints is the same
as the ones used in nonlinear Recursive Least-Squares
(NL-RLS) [1] and in the Extended Kalman Filter (EKF) [19].

7.2 Case study 1. Nonlinear consensus.

Assume that no constraint has to be imposed on the values of the un-
knowns {θn}Nn=1, so that the problem to be solved is given by

minimze
N∑
n=1

fn(θn)

s.t. F (θn) = θg, n = 1, . . . , N,

(7.12)

with the consensus constraint expressed as a nonlinear function of the
local parameters θn, n = 1, . . . , N , with F : Rnθ → Rng .
With the ultimate goal of obtaining recursive formulas to estimate both
θn, n = 1, . . . , N , and θg , we solve address problem (7.12) with the method
presented in [18] and briefly reviewed in Section 7.1.

Consider the augmented Lagrangian associated with the problem (7.12)

L =

N∑
n=1

Ln(θn, θ
g, δ),

Ln(θn, θ
g, δ) = fn(θ) + δ′n(F (θn)− θg) +

ρ

2
‖F (θn)− θg‖22 ,

(7.13)

with fn defined as in (7.2). The ADMM iterations to be performed are

θ̂(k+1)
n (T ) = argmin θnLn(θ, θ̂g,(k), δ(k)

n ), (7.14)

θ̂g,(k+1) =
1

N

N∑
n=1

(
F (θ̂(k+1)

n (T )) +
1

ρ
δ(k)
n

)
, (7.15)

δ(k+1)
n = δ(k)

n + ρ(F (θ̂(k+1)
n (T ))− θ̂g,(k+1)), (7.16)
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with the local Lagrangian defined as On the one hand, the updates of
the global parameters and the Lagrange multipliers in (7.15) and (7.16)
require only the computation of F (θ̂

(k+1)
n (T )). On the other hand, (7.14)

depends on the nonlinear function F (θn). Focusing on the update of the
local estimates, not to require each local processor to solve a nonlinear
optimization problem, at step t, F (θn) is approximated through its trun-
cated Taylor expansion around θ̂(k)

n (t), i.e.,

F (θn) ≈ F (θ̂(k)
n (t)) +A(k)

n (t)
(
θn − θ̂(k)(t)

n

)
(7.17)

with

A(k)
n (t) =

∂F (θn)

∂θn

∣∣∣∣
θn=θ̂

(k)
n (t)

. (7.18)

Once A(k)
n (t) is computed, the local parameters can be updated as:

θ̂(k+1)
n (T ) = φ(k+1)

n (T )
{
Yn(T )− (A(k)

n (t))′δ(k)
n − ρ(A(k)

n (t))′c(k)(t)
n

}
(7.19)

with

Yn(t) =

[
t∑

τ=1

λt−τn Xn(τ)yn(τ)

]
c(k)
n (t) =

[
F (θ̂(k)

n (t))−A(k)(t)
n θ̂(k)

n (t)− θ̂g,(k)
]

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′,

φ(k+1)
n (t) =

(
Xn(t) + ρ(A(k)

n (t))′A(k
n (t)

)−1

.

Note that φ(k+1)
n (T ) depends onA(k)

n (t) and, consequently, on the current
ADMM iteration k. The matrices {θn}Nn=1 cannot thus be updated once
per time step, but they must be computed at each ADMM iteration, re-
quiring additional synchronization between the cloud and the local pro-
cessors.
As we aim at obtaining recursive formulas to update θ̂n, we introduce
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the nth local estimate obtained at T − 1, given by

θ̂n(T − 1) = φn(T − 1)
{
Yn(T − 1)− (An(T − 1))′δ(k)

n +

−ρ(An(T − 1))′cn(T − 1)} , (7.20)

with An(T − 1) = A
(κ−1)
n (T − 1), cn(T − 1) = c

(κ−1)
n (T − 1) and κ is the

last ADMM iteration performed at step T − 1.
The matrix φ(κ)

n (T − 1) is given by

φ(κ)
n (T − 1) = {Xn(T − 1) + ρ(An(T − 1))′An(T − 1)}−1

. (7.21)

Exploiting the definition of φn(T ) in (7.21), it can be proven that matrix
φn can be updated as

R(k+1)
n (T ) = λnI + (X̃(k)

n (T ))′φn(T − 1)X̃(k)
n (T ), (7.22)

K(k+1)
n (T ) = φn(T − 1)X̃(k)

n (T )
(
R(k+1)
n (T )

)−1

, (7.23)

φ(k+1)
n (T ) = λ−1

n (Inθ −K(k+1)
n (T )(X̃(k)

n (T ))′)φn(T − 1), (7.24)

where we have introduced the extended regressor X̃(k)
n (T )

X̃(k)
n (T ) =

[
Xn(T )

√
ρ(A

(k+1)
n )′

√
ρλn(An(T − 1))′

]
∈ Rnθ×(ny+2ng),

(7.25)
and matrix

I =

 Iny 0ny×ng 0ny×ng
0ng×ny Ing 0ng
0ng×ny 0ng −Ing

 .
Equations (7.22)-(7.24) depend on the ADMM iteration k, due to the de-
pendence of φ(k+1)

n (T ) on A(k)
n (T ).

Adding and subtracting

−λnφ(k+1)
n (T )(An(T − 1))′ [δn(T − 1) + ρcn(T − 1)]

to (7.19), and exploiting the definition of θ̂n(T − 1) (see (7.21)) and the
recursive formula (7.24) derived to compute φ(k+1)

n (T ), θ̂(k+1)
n (T ) can be

computed as

θ̂(k+1)
n (T ) = θ̂RLS,(k+1)

n (T ) + θ̂ADMM,(k+1)
n (T ). (7.26)
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In particular, θ̂ADMM,(k+1)
n (T ) is obtained as

θ̂ADMM,(k+1)
n (T ) = φ(k+1)

n (T )
{
ρ∆

(k+1)
g,λn

+ ∆
(k+1)
λn

}
, (7.27)

∆
(k+1)
g,λn

= λn(An(T − 1))′cn(T − 1)− (A(k+1)
n )′c(k+1)

n

∆
(k+1)
λn

= λn(An(T − 1))′δn(T − 1)− (A(k+1)
n )′δ(k)

n .

The quantity ∆
(k+1)
g,λn

depends on the difference between the current global

estimate and the one obtained at the previous step as c(k+1)
n ∝ θ̂g,(k) and

cn(T − 1) ∝ θ̂g(T − 1).
By using the extended measurement vector ỹn

ỹn(T ) =
[
yn(T )′ 01×ng 01×ng

]′
and the extended regressor X̃n (see (7.25)), θ̂RLS,(k+1)

n is instead updated
as

θ̂RLS,(k+1)
n (T ) = θ̂n(T − 1) +K(k)

n (T )(ỹn(T )− X̃(k)
n (T )θ̂n(T − 1)), (7.28)

that is obtained exploiting the equalities

I ỹn(T ) = ỹn(T ),

φ(k+1)
n (T )X̃(k)

n (T ) = K(k+1)
n (T )I.

This last equality can be proven using the matrix inversion lemma[114]
and (7.23). Even though the formulas to update θ̂RLS,(k+1)

n are still re-
cursive, θ̂RLS,(k+1)

n depends on the ADMM iteration. Consequently, both
θ̂
RLS,(k+1)
n and θ̂ADMM,(k+1)

n have to be updated at each ADMM run. As
the equations (7.15), (7.16), (7.27) and (7.28) depend on the ADMM itera-
tion, the operations performed by the local processors and the ones per-
formed on the cloud have to be synchronized at each iteration k. How-
ever, this level of coordination between the nodes and the cloud might
be challenging to achieve in practice.
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7.3 Case study 2. Constrained nonlinear con-
sensus

Instead of considering the problem addressed in Section 7.2, where no
constraint is imposed on the values of the parameters θn, in this Section

Algorithm 17 ADMM-RLS for nonlinear consensus

Input: Data flow {Xn(1), yn(1)}, {Xn(2), yn(2)}, . . ., initial matrices
φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables δo

n,
forgetting factors λn, n = 1, . . . , N , initial global estimate θ̂go , parameter
ρ ∈ R+.

1. for t = 1, 2, . . . do

1.1. do

Local
1.1.1. for n = 1, . . . , N do

1.1.1. compute A(k)
n as (7.18);

1.1.2. compute X̃(k)
n (t) as in (7.25);

1.1.3. compute K(k)
n (t) and φ(k)

n (t) with (7.23) - (7.24);

1.1.4. compute θ̂RLS,(k+1)
n (t) with (7.28);

1.1.2. end for;
Global

1.1.1. compute θ̂ADMM,(k+1)
n (t) with (7.27), n = 1, . . . , N ;

1.1.2. compute θ̂(k+1)
n (t) as in (7.26), for n = 1, . . . , N ;

1.1.3. compute θ̂g,(k+1)(t) with (7.15);

1.1.4. compute δ(k+1)
n with (7.16), n = 1, . . . , N ;

2. until a stopping criteria is satisfied (e.g., the maximum number of
iterations is attained).

Output: Estimated global parameters θ̂g(t), estimated local parameters
θ̂n(t), n = 1, . . . , N .
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we design a solution to the following constrained problem:

minimize
N∑
n=1

{fn(θn)}

s.t. θn ∈ Cn, n = 1, . . . , N

F (θn) = θg, n = 1, . . . , N.

(7.29)

Through the introduction of the auxiliary variables zn ∈ Rnθ , for n =

1, . . . , N and the indicator functions

gn(zn) =

{
1 if zn ∈ Cn
+∞ otherwise,

the initial constrained problem can be reformulated as

minimize
N∑
n=1

{fn(θn) + gn(zn)}

s.t. θn = zn, n = 1, . . . , N

F (zn) = θg, n = 1, . . . , N.

(7.30)

The consensus constraint is not defined as a function of the unknown
parameter θn, but as a function of the auxiliary variable zn, with zn ∈
Rnθ , i.e.,

F (θn) = θg → F (zn) = θg. (7.31)

This “suboptimal” approximation, which is feasible thanks to the con-
straints on the value of the local parameters zn = θn, n = 1, . . . , N , al-
lows us to update θ̂RLSn independently from the ADMM iteration k. This
is not achievable maintaining the original formulation in (7.29), as the
considered setting would be similar to the one studied in Section 7.2.

Consider the augmented Lagrangian associated with problem (7.30),
which is given by

L =

N∑
n=1

Ln(θn, zn, θ
g, δn,1, δn,2),

Ln = fn(θn) + gn(zn) + (δn,1)′εn,1 + (δn,2)′εn,2 +
ρ1

2
‖εn,1‖22 +

ρ2

2
‖εn,2‖22,
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with fn(θn) is defined as in (7.2) and

εn,1 = θn − zn,
εn,2 = F (zn)− θg.

Due to the presence of two sets of constraints, two sets of dual variables,
{δn,1 ∈ Rnθ}Nn=1 and {δn,2 ∈ Rng}Nn=1, are introduced accordingly.
Based on the ADMM scheme presented in [18], the steps that have to be
performed are:

θ̂(k+1)
n (T ) = argmin

θn

{
Ln(θn, z

(k)
n , θ̂g,(k), δ

(k)
n,1, δ

(k)
n,2)
}
, (7.32)

z(k+1)
n = PCn

((
Γ(k+1)
n

)−1

γ(k+1)
n

)
, (7.33)

θ̂g,(k+1) =
1

N

N∑
n=1

[
F (z(k+1)

n ) +
1

ρ2
δ

(k)
n,2

]
, (7.34)

δ
(k+1)
n,1 = δ

(k)
n,1 + ρ1(θ̂(k+1)

n − z(k+1)
n ), (7.35)

δ
(k+1)
n,2 = δ

(k)
n,2 + ρ2(F (z(k+1)

n )− θ̂g,(k+1)), (7.36)

with

Γ(k+1)
n = ρ1Inθ + ρ2(A(k)

n )′A(k)
n

γ(k+1)
n = δn,1 + ρ1θ̂

(k+1)
n + ρ2(A(k)

n )′c(k)
n − (A(k)

n )′δ
(k)
n,2.

The z-update (see (7.33)) is obtained replacing F (zn) with its truncated
Taylor expansion

F (zn) ≈ F (z(k)
n ) +A(k)

n (zn − z(k)
n ),

A(k)
n = ∂znF (zn)

∣∣
zn=z

(k)
n
,

and
c(k)
n = A(k)

n z(k)
n + θ̂g,(k) − F (z(k)

n ).

The global parameter is updated in (7.34) combining the sample means
of {F (θn)}Nn=1, i.e., the value of the local copy of the global parameter,
and the average of the Lagrange multipliers {δn,1}Nn=1. Observe that, as
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expected, equation (7.34) corresponds to (7.15), with zn replacing θ̂n and
δn,2 substituting δn.
The chosen quadratic cost functions fn in (7.2) allows one to find a closed
for solution for the problem in (7.32). The local estimates can thus be
updated as

θ̂(k+1)
n = φn(T )

{
Yn(T )− δ(k)

n,1 + ρ1ẑ
(k)
n

}
(7.37)

with

φn(t) =

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ ρ1Inθ

)−1

(7.38)

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ). (7.39)

Thanks to the “suboptimal” choice made in defining the consensus con-
straints (see (7.31)), (7.37) is now independent from F .

Based on the definition of φn given in (7.38), it can be easily shown
that matrix φn(T ) can be recursively updated as

Rn(T ) = λnInX̃ + X̃n(T )′φn(T )X̃n(T ), (7.40)

Kn(T ) = φn(T − 1)X̃n(T )(Rn(T ))−1, (7.41)

φn(T ) = λ−1
n

(
Inθ −Kn(T )(X̃n(T ))′

)
φn(T − 1), (7.42)

with the extended regressor defined as

X̃n(t) =
[
Xn(t)

√
(1− λn)ρ1Inθ

]
∈ Rnθ×(ny+nθ). (7.43)

Solution based on N2C2N transmissions

As our goal is to retrieve recursive formulas to update θ̂n, we introduce
the n-th local estimate θ̂n(T − 1) at time T − 1, i.e.,

θ̂n(T − 1) = φn(T − 1) {Yn(T − 1)− δn,1(T − 1) + ρ1zn(T − 1)} , (7.44)

with zn(T − 1) and δn,1(T − 1) indicating the auxiliary variable and the
Lagrange multiplier obtained at step T-1.
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Adding and subtracting λn (ρ1ẑn(T − 1)− δn(T − 1)) to (7.37), the es-
timate of the local parameters θ̂(k+1)

n (T ) can be updated as

θ̂(k+1)
n (T ) = θ̂RLSn (T ) + θ̂ADMM,(k+1)

n (T ),

with

θ̂RLSn (T ) = θ̂n(T − 1) +Kn(T )(ỹn(T )− X̃n(T )′θ̂n(T − 1)) (7.45)

and

θ̂ADMM,(k+1)
n (T ) = φn(T )

{
ρ1∆

(k+1)
zn,λn

−∆
(k+1)
λn

}
, (7.46)

∆
(k+1)
λn

= δ
(k)
n,1 − λnδn,1(T − 1),

∆
(k+1)
zn,λn

= z(k)
n − λnzn(T − 1),

where the extended measurement vector ỹ is introduced for dimension
consistency and it is equal to

ỹn(T ) =
[
yn(T ) 01×nθ

]′
. (7.47)

On the one hand, θ̂g,(k+1), z(k+1)
n and δ

(k+1)
n,2 should be computed on

the cloud, as the global parameter is updated using the estimates col-
lected from all the N agents (see (7.32)) and the updates of the auxiliary
variables and the Lagrange multipliers (7.33) and (7.36), respectively, de-
pend on the current global estimate. On the other hand, δn,1 can be up-
dated by the nth processor. However, under the hypothesis that the local
computational power is limited, also δ(k+1)

n,1 should be computed on the
cloud. The local estimate θ̂RLSn can be updated (i) by each local proces-
sor, (ii) recursively and (iii) independently from quantities computed on
the cloud. In addition, observe that (7.45) is independent from k. As a
consequence, the clock scheduling the operations performed on the local
processor is not influenced by the clock of the cloud.

Remark 7 The method, summarized in Algorithm 18, requires the local pro-
cessors to transmit θ̂RLSn and φn to the cloud. On the other hand, the cloud has
to communicate θ̂n to the nth local processor, n = 1, . . . , N , once the chosen
stopping criteria for ADMM is satisfied. �
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Solution based on N2C transmissions

Instead of introducing θ̂n(T − 1), the estimates of the local parameter θ̂n
is updated considering

θ̂RLSn (T − 1) = φn(T − 1)Yn(T − 1),

with φn and Yn defined as in equations (7.38) and (7.39), respectively.
It can be easily shown that θ̂RLSn can be updated as in (7.26), with

θ̂ADMM,(k+1)
n (T ) = φn(T )

(
φ1z

(k)
n − δ(k)

nn,1

)
, (7.48)

and

θ̂RLSn (T ) = θ̂RLSn (T − 1) +Kn(T )(ỹn(T )− X̃n(T )′θ̂RLSn (T − 1)), (7.49)

with the extended regressor and the extended measurement vector de-
fined as in (7.43) and (7.47), respectively.
The choice of replacing θ̂n(T − 1) with θ̂RLSn (T − 1) allows θ̂RLSn to be
updated at a local level, without requiring the transmission of any addi-
tional information from the cloud. We thus use a Node-to-Cloud (N2C)
communications, as summarized in Figure 94.

7.3.1 Cloud-aided estimation over a fleet of vehicles

Suppose that we are interested in estimating the masses and drag coef-
ficients of N vehicles. Furthermore, assume that the considered vehicles
are of the same kind, so that we can hypothesize that the drag coefficients
are equal for all the N cars.
Consider the equation describing the longitudinal dynamics of a vehicle
[94], i.e.,

max = Fx − Fa −Rx −mg sin γ, (7.50)

with

Fa =
1

2
%CdAf (vx + vw)2, (7.51)

Rx = fmg, (7.52)
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Algorithm 18 ADMM-RLS for nonlinear consensus

Input: Data flow {Xn(1), yn(1)}, {Xn(2), yn(2)}, . . ., initial global esti-
mate θ̂go , φn(0) ∈ Rnθ×nθ , initial local estimates θ̂RLSn (0), Lagrange mul-
tipliers δo

n,1 and δo
n,2 and auxiliary variables zn,o, n = 1, . . . , N , {λn}Nn=1,

parameters ρ1, ρ2 ∈ R+.

1. for t = 1, 2, . . . do

Local

1.1. for n = 1, . . . , N do
1.1.1. compute X̃n(t) as in (7.43);
1.1.2. compute Kn(t) and φn(t) with (7.41) - (7.42);
1.1.3. compute θ̂RLSn (t) with (7.45) (N2C2N) or (7.49) (N2C);

1.2. end for;

Global

1.1. do

1.1.1. set A(k)
n ← ∂F (zn)

∂zn

∣∣∣∣
zn=z

(k)
n

, n = 1, . . . , N ;

1.1.2. compute θ̂
ADMM,(k+1)
n (t) with (7.46) (N2C2N) or

(7.48) (N2C), n = 1, . . . , N ;

1.1.3. compute θ̂(k+1)
n (t) with (7.49), n = 1, . . . , N ;

1.1.4. compute z(k+1)
n with (7.33), n = 1, . . . , N ;

1.1.5. compute θ̂g,(k+1) with (7.34);

1.1.6. compute δ(k+1)
n,1 with (7.35), n = 1, . . . , N ;

1.1.7. compute δ(k+1)
n,2 with (7.36), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g. the maximum
number of iterations is attained);

2. end.

Output: Local estimates θ̂RLSn (t), global refinement of the local esti-
mates θ̂n(t), n = 1, . . . , N , and global parameter’s estimate θ̂g(t).
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Table 27: Parameters charactering the longitudinal motion of the nth vehi-
cle.

name physical meaning and UoM value

mn mass (kg) 1500 + µn
µn ∼ N (0, 104)

% air density (kg/m3) 1.18
Cd drag coefficient 0.4
Af frontal area (m2) 3
f rolling resistant coefficient 0.015
g gravitational acceleration (m/s2) 9.81
γn road grade (deg) 0

and Fa N), Fx (N) and Rx (N) represent the aerodynamic drag force, the
longitudinal tire force and the force due to rolling resistance, respectively.
In equation (7.51), vx (m/s) and vw (m/s) are the vehicle and the wind
velocity, respectively.
The force Fx,n and the velocity vx,n for each vehicle of the fleet, with
n = 1, . . . , N , are supposed to be measured, while vw,n is assumed to be
zero for all the vehicles during the considered estimation horizon. The
values and physical meaning of the other parameters in (7.50)-(7.52) are
reported in Table 27.

Instead of considering the continuous-time model for the longitudi-
nal dynamics in (7.50), we introduce the corresponding discrete-time mo-
del

y̌n(t) = (Xn(t))′θt + en(t), (7.53)

with

y̌n(t) = yn(t)− TsRx,n,
Xn(t) = Ts

[
Fx,n(t− 1) −0.5%Afyn(t− 1)2

]′
,

θn =
[

1
mn

, Cd
mn

]′
. (7.54)

The measured output yn(t) is equal to vx,n(Tst) and the sampling time
is Ts = 0.1 s. The zero-mean, Gaussian distributed, additive noise se-
quence en ∼ N (0, 0.1) is also introduced.

Based on the definition of the parameter vector in (7.54), observe that
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the estimates of the masses can be retrieved as

m̂n = θ̂−1
n,1, n = 1, . . . , N,

while the drag coefficients can be identified introducing θg = Cd and
imposing the condition

θg = F (θn) = (θn,1)−1θn,2. (7.55)

To guarantee that F is always well defined, we should enforce θn,1 6= 0

but, due to the physical meaning of the unknowns, we impose θn ∈ Cn,
with Cn ⊂ R+ × R+.

In estimating the masses and drag coefficient of the N vehicles, the
performance of ADMM-RLS (N2C) is evaluated considering two slightly
different settings. In particular, we suppose that (i) all the vehicles are
moving except for few initial steps and then that (ii) some of the cars are
not used for part of the estimation horizon. With the second test, we are
able to study the effect of sudden changes in the agents’ behavior on the
accuracy of the estimates.
The quality of the global estimate is assessed through the RMSE, given
by

RMSECd =

√∑T
t=1(Ĉd(t)− Cd)2

T
. (7.56)

Independently from the setting, we have chosen λn = 1, φn(0) = 10−3Inθ ,
zn,o = θ̂n(0), with θ̂n(0) = θn + ϑn, ϑ ∼ N (0nθ×1,Θ) and

Θ =

[
104 0
0 10−4

]
.

The initial Lagrange multipliers and local parameters are chosen as: δo
n,1 =

δInθ , δo
n,2 = δIng , for n = 1, . . . , N , with δ = 10−8, nθ = 2 and ng = 1 and

θ̂go = θg + ϑg , with ϑg ∼ N (0, 10−2).

Setting 1

We consider fleets of vehicles of different dimensionN , withN = {2, 10, 50, 100},
where the agents are characterized by velocity profiles similar to the one
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Figure 86: Velocity profile of the nth vehicle, with n = 1.
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Figure 87: Estimated drag coefficient vs N . True Cd (black), estimated drag
coefficient withN = 1 (blue), estimated drag coefficient withN = 100 (red).

reported in Figure 86. A car belonging to a lower dimensional fleet al-
ways belongs also to the fleets composed by more agents.
Selecting ρ1 = 1 and ρ1 = 10−3, Figure 87 shows the the global estimate
Ĉd obtained using one vehicle1, i.e., N = 1, and the biggest fleet in size
(N = 100), among the ones considered in the example. Note that, us-
ing a fleet composed of N = 100 vehicles, the convergence of the global
estimate to the actual value of the Cd tends to be slightly faster. Further-
more, the estimation error over the entire estimation horizon is slightly
reduced, as

RMSECd =

{
0.03 if N = 1,

0.02 if N > 1.

Moreover, the drag coefficient estimated using the data collected from
more than one vehicle are less affected by the characteristics of the local
datasets. Note that the obtained estimate Ĉd in Figure 87 satisfy the con-
straint Cd ∈ R+.
The estimated mass m̂1 is compared with the actual mass of the 1st ve-

1The estimates are computed using standard RLS [72].
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Figure 88: m̂1 vs m1. True (black), estimated (blue).
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Figure 89: Velocity profiles of the 1st and 2nd available vehicles.
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Figure 90: RMSECd vs N .

hicle in Figure 88. We report the mass obtained for N = 1, i.e., applying
standard RLS, because the differences between the estimate reported in
Figure 88 and m̂1 computed using the consensus-based collaborative es-
timation scheme are negligible. This result is expected as the mass is a
purely local parameter and we are using an N2C transmission scheme.

Setting 2

Suppose that the measurements gathered from N ∈ {2, . . . , 20} cars are
available and that their velocity profiles are similar to the ones presented
in Figure 89. The velocity y1 of the 1st vehicle is zero for 200 (s), i.e., for
30% of the estimation horizon Υ = 670(s).

Figure 7.90(a) shows the RMSEs computed increasing the number of
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Table 28: N vs instant t at which the estimation error satisfies |Ĉd−Cd| ≤ ς .
It provides an quantitative indication on the convergence of the estimate Ĉd

N
1 2 20

ς = 0.005 & Υ 635.5 s 573.2 s -
ς = 0.005 & υ - 457.6 s 353.0 s
ς = 0.01 & Υ 555.8 s 466.9 s 523.5 s
ς = 0.01 & υ 451.0 s 302.9 s 286.3 s

agents composing the fleet and using all the data collected over Υ, with
ρ1 = 100 and ρ2 = 10−3. The RMSE does not decrease asN increases, dif-
ferently from what we would have expected. Nevertheless, when only
the data collected from to = 180 (s) are used, the RMSE actually de-
creases if N increases as reported in Figure 7.90(b). It thus seems that
the accuracy of the global estimate is enhanced if we start estimating the
unknowns when most of the vehicles in the fleet are moving. In par-
ticular, for N ≥ 3, the RMSE obtained considering the reduced horizon
υ = Υ − 180 s is smaller than the one obtained using the information
collected over the whole estimation horizon Υ = 670 (s). Furthermore,
observe that the RMSE obtained with N > 1 is generally smaller than
RMSECd obtained using one vehicle, if the reduced horizon υ is consid-
ered.
These results can be further validated looking at the estimates Ĉd ob-
tained for N equal to {1, 2, 20}, shown in Figure 91 and considering the
instants at which the error between the actual and estimated drag coef-
ficients are under a threshold ς , which are reported in Table 28. Using
all the data collected over Υ, the estimate obtained for N = 1 tends to
diverge from Cd when the vehicle start to move, probably because of
the sudden change in its velocity profile. The effect of such a change is
mitigated by the use of multiple cars. However, by increasing N the con-
vergence of Ĉd to the true value of the drag coefficient Cd is slower, as
consensus over multiple vehicles has to be attained. On the other hand, if
the data collected over υ = 490 (s) are considered, increasing the number
of vehicles in the fleet N enables to speed up convergence. The higher
N is, the less is the number of steps in which the estimate is saturated.
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Figure 91: Estimated drag coefficient vs N . True Cd (black), estimate ob-
tained with N = 1 (blue), estimate obtained with N = 2 (red), estimated
obtained with N = 20 (magenta).
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Figure 92: m̂1 vs m1.True (black), estimated (blue).

Moreover, observe that when Ĉd is negative only when for N = 1 and
standard RLS [72] is used to compute the estimates, as the constraints on
the value of the local parameters are not imposed.
As it concerns the estimate of the purely local parameters, i.e., the masses,
m̂1 obtained for N = 20 is reported in Figure 92 for both the cases when
the complete estimation horizon Υ and the reduced one υ are consid-
ered. When the data collected over Υ are used, the convergence of m̂1 to
the actual mass is faster then the one of the obtained considering the re-
duced horizon. However, as expected, this is generally not true. This can
be also noticed looking at the final errors in the mass estimates plotted in
Figure 93.

7.4 Case study 3. Multiple classes estimation

In many practical cases, θg is shared only by subsets of the N agents,
Mµ ⊂ {1, . . . , N}, with µ ∈ {1, . . . ,M}.As an example, consider the
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Figure 93: |m̂1−m1| at the end of the estimation horizon. Complete horizon
Υ (black), reduced horizon υ (blue).

problem of modeling the aging of a mechanical/electrical component.
Given N theoretically equal devices, their degradation might be differ-
ent due to multiple causes (e.g., environmental conditions and user be-
havior). It is thus necessary to retrieve different aging models.
Under the hypothesis that similar conditions of use lead to the same
degradation, it seems legitimate to retrieve M < N aging models, in-
stead of identifying one model for each of the N available devices.
To tackle this problem, the consensus constraint in (7.1) has thus to be

modified as

F (θn) = θg →
M∑
µ=1

1[mn(t)=µ](Pθn − θgµ) = 0, (7.57)

where {θgµ ∈ Rng}Mµ=1 indicates the global parameter vectors and P ∈
Rng×nθ is supposed to be known a priori. The quantity mn(t) represents
the class sequence associated with the nth agent at time t. Note that the
consensus constraint in (7.57) depends on time, as the class associated
with each agent might change over the estimation horizon T . The func-
tion 1[mn(t)=µ] is equal to

1[mn(t)=µ] =

{
1 if mn(t) = µ

0 otherwise,
(7.58)

with
∑M
µ=1 1[mn(t)=µ] = 1 implying that, at each step t, the nth agent can

be associated to one model class only.
If the sets Mµ, µ = 1, . . . ,M , are known a priori, M separate prob-

lems can be solved to estimate the unknown parameters. However, both
(i) the model parameters and (ii) the sets {Mµ}Mµ=1 are supposed to be
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unknown.

Instead, the number of model classes M is supposed to be known a
priori. If M is unknown, it can be chosen through cross-validation or
other tuning procedures.

Consider the general problem (7.1), with the consensus constraints
defined in (7.57). The unknowns that have to be estimated from data at
each step t ∈ {1, . . . , T} are:

1. the local parameters θn, n = 1, . . . , N ;

2. the global parameters {θgµ}Mµ=1;

3. the class sequences associated to the local agents {mn(t)}Tt=1, n =

1, . . . , N .

Aiming at using ADMM to solve the addressed multi-class problem in
(7.1) and constraints (7.57), we introduce the associated augmented La-
grangian given by

L =

N∑
n=1

gn(zn) + δ′n,1εn,1 +
ρ1

2
‖εn,1‖22+

+
T∑
t=1

[
fn(θn) + δn,2(t)′Vn(mn(t)) +

ρ2

2
‖Vn(mn(t))‖22

]
, (7.59)

with

εn,1 = θn − zn, (7.60)

Vn(mn(t)) =

M∑
µ=1

1[mn(t)=µ](Pθn − θgµ), (7.61)

and δn,1 and δn,2(t) indicating the Lagrange multipliers.

Equation (7.59) can be simplified if either the parameters or the class
sequences {mn(t)}Tt=1, for n = 1, . . . , N , are known. Based on this con-
sideration, we propose a two-stage approach to address problem (7.1)
with the consensus constraint given by equation (7.57). In particular, the
steps to be performed are
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PE: compute the estimates for {θgµ}Mµ=1 and {θn}Nn=1, with the class se-
quence {mn(t)}Tt=1, n = 1, . . . , N , fixed;

CE: estimate the class of each agent {mn(t)}Tt=1, n = 1, . . . , N with both
the global and the local parameters fixed.

The order in which the two steps are performed should not influence
the final result of the estimation procedure and it only depends on the
chosen initial condition. On the one hand, when no assumption is made
on m̂n(1), while θ̂n and {θ̂gµ}Mµ=1 are initialized, CE has to be run first. On
the other hand, PE is the first to be performed if an estimate for the class
of each agent at t = 1 is provided.

Based on how the description of the two steps, PE and CE should be
performed on a batch of data. Nonetheless, our objective is to update the
estimates recursively and thus PE and CE has to be slightly modified to
be performed in a recursive fashion.

7.4.1 Step PE: estimating the unknown parameters

Consider the augmented Lagrangian in (7.59). Assuming that the class
sequence is known, i.e., mn(t) = m̂n(t), for t = 1, . . . , T and n = 1, . . . , N ,
the augmented Lagrangian can be modified as

L =

N∑
n=1

{
Ln(θn, zn, δn,1, {θgm̂n(t), δn,2(t)}Tt=1)

}
, (7.62)

with

Ln = gn(zn) + δ′n,1(εn) +
ρ1

2
‖εn‖22+

+

T∑
t=1

[
fn(θn) + δn,2(t)′Vn(m̂n(t)) +

ρ2

2
‖Vn(m̂n(t))‖22

]
, (7.63)

Vn(m̂n(t)) = Pθn − θgm̂n(t). (7.64)
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Then, the ADMM iterations to be performed are

θ̂(k+1)
n (T ) = argmin

θn

{
Ln(θn, z

(k)
n , δ

(k)
n,1, {θ̂

g,(k)
m̂n(t), δ

(k)
n,2(t)}Tt=1)

}
, (7.65)

z(k+1)
n = PCn

(
θ̂(k+1)
n (T ) +

1

ρ1
δ

(k)
n,1

)
, (7.66)

θ̂g,(k+1)
µ = argmin

θgµ

{
Ln(θ̂(k+1)

n , z(k+1)
n , δ

(k)
n,1, θ̂

g
µ, {δ

(k)
n,2(t)}Tt=1)

}
, (7.67)

δ
(k+1)
n,1 = δ

(k)
n,1 + ρ1(θ̂(k+1)

n (T )− z(k+1)
n ), (7.68)

δ
(k+1)
n,2 (T ) = δ

(k)
n,2(T ) + ρ2(P θ̂(k+1)

n (T )− θ̂g,(k+1)
m̂n(t) ), (7.69)

with µ = 1, . . . ,M and

ε(k)
n = θn − z(k)

n , (7.70)

V̂ (k)
n (t) = Pθn − θ̂g,(k)

m̂n(t), (7.71)

V̂ g,(k+1)
n (t) =

(
P θ̂(k+1)

n (T ) − θgm̂n(t)

)
. (7.72)

The estimates of the global parameters for each class, {θ̂g,(k+1)
µ }Mµ=1, are

computed solving explicitly (7.67). In particular, θ̂gµ is the solution of
equation

N∑
n=1

T∑
t=1

[
1[m̂n(t)=µ]δ

(k)
n (t) + ρ1[m̂n(t)=µ]

(
M∑
η=1

1[m̂n(t)=η](P θ̂
(k+1)
n − θgη)

)]
= 0,

with respect to θ̂gµ. This equation can be further simplified as

T∑
t=1

∑
n:m̂n(t)=µ

[
−δ(k)

n (t)− ρ
(
P θ̂(k+1)

n (T )− θgµ
)]

= 0, (7.73)

exploiting the definition of the indicator function 1 in (7.58). This equal-
ity is satisfied at each step t if the following holds:∑

n:m̂n(t)=µ

[
−δ(k)

n (t)− ρ
(
P θ̂(k+1)

n (T )− θgµ
)]

= 0.

holds. Let Mµ(t) be the set of agents assigned to mode µ at time t, {n ∈
{1, . . . , N} : m̂n(t) = µ}. The global parameter θ̂g,(k+1)

µ can be computed
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as

θ̂g,(k+1)
µ =

1

|Mµ(t)|

∑
n∈Mµ(t)

[
P θ̂(k+1)

n (T ) +
1

ρ2
δ

(k)
n,2(t)

]
. (7.74)

As expected, instead of using the estimates acquired from all the avail-
able data sources, only a subset of agents is considered to update the µth
global parameter vector. Furthermore, using (7.73) to update the global
estimates, we do not account for the past estimates of θ̂gµ.

As it concerns the local estimates θ̂n, it can be proven that the close
form solution of equation (7.65) is

θ̂(k)
n (T ) = φn(T )

{
Yn(T ) + ξ(k)

n (T )
}
, (7.75)

ξ(k)
n (t) = ρ1z

(k)
n − δ(k)

n,1 +

t∑
τ=1

P ′
(
ρ2θ̂

g,k
m̂n(τ) − δ

(k)
n,2(τ)

)
,

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ),

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′,

φn(t) = (Xn(t) + tρ2P
′P + ρ1Inθ )

−1
.

With the final objective of finding a recursive solution for the consensus-
based multi class estimation problem relying on N2C2N transmissions,
we introduce θ̂n(T − 1) given by

θ̂n(T − 1) = φn(T − 1) {Yn(T ) + ξn(T − 1)} , (7.76)

with

ξn(T − 1) = ρ1zn(T − 1)− δn,1(T − 1) +

T−1∑
t=1

P ′(ρ2θ̂
g
m̂n(t)(T − 1)− δn,2(t))

and where zn(T −1), δn,1(T −1), δn,2(t) = δn,2(t|T −1) and θ̂gm̂n(t)(T −1),
for t = 1, . . . , T − 1, are the auxiliary variables, the Lagrange multipliers
and the global estimates obtained at step T − 1, respectively.
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Also in this case, it can be easily shown that matrix φn can be recursively
updated as

Rn(T ) = λnI + (X̃n(T ))′φn(T )X̃n(T ), (7.77)

Kn(T ) = φn(T − 1)X̃n(T )(Rn(T ))−1, (7.78)

φn(T ) = λ−1
n (Inθ −Kn(T )(X̃n(T )′))φn(T − 1), (7.79)

with the extended regressor X̃n ∈ RnX̃ defined as

X̃n(T ) = [Xn(T )
√

(T−(T−1)λn)ρ2P
′
√

(1−λn)ρ1Inθ ] , (7.80)

and nX̃ = ny + nθ + ng .

As in the others Sections (e.g., Section 7.3), it can be proven that the
local estimates can be updated as

θ̂(k+1)
n (T ) = θ̂RLSn (T ) + θ̂ADMM,(k+1)

n (T ),

where

θ̂ADMM,(k+1)
n (T ) = φn(T )ξn(T |T ), (7.81)

ξn(t|t) = P ′

[
T−1∑
t=1

(
ρ2∆

(k+1)
g,λn

(t)−∆
(k+1)
2,λn

(t)
)

+ ρ2θ̂
g,(k)
m̂n(T ) − δ

(k)
n,2(T )

]
+

−∆
(k+1)
1,λn

+ ρ1∆
(k+1)
zn,λn

, (7.82)

∆
(k+1)
zn,λn

= ẑ(k)
n − λnẑn(T − 1)

∆
(k+1)
1,λn

= δ
(k)
n,1 − λnδn,1(T − 1)

∆
(k+1)
g,λn

(t) = θ̂
g,(k)
m̂n(t) − λnθ̂

g
m̂n(t)(T − 1), t = 1, . . . , T − 1

∆
(k+1)
2,λn

(t) = (1− λn)δn,2(t), t = 1, . . . , T − 1,

and

θ̂RLSn (T ) = θ̂n(T − 1) +Kn(T )(ỹn(T )− X̃n(T )′θ̂n(T − 1), (7.83)

with
ỹn(T ) = [ yn(T )′ 01×(ng+nθ) ]

′
.

The update for θ̂ADMM
n is obtained assuming that, at time T , only δn,2(T |T )

is updated, while δn,2(t|T ) is equal to δn,2(t|t), for t < T .
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7.4.2 Step CE: estimating the class sequences

Consider again the augmented Lagrangian (7.59). With fixed parameters
{θgµ(t)}Mµ=1, for t = 1, . . . , T , the class sequence {mn(t)}Tt=1 for each agent
n ∈ {1, . . . , N} can then be identified minimizing (7.59) with respect to
{mn(t)}Tt=1, i.e., solving the optimization problem

min
{mn(t)}Tt=1

F ({mn}Nn=1) (7.84)

with

F ({mn}Nn=1) =

T∑
t=1

[
δn,2(t)′Vn(mn(t)) +

ρ2

2
‖Vn(mn(t))‖22

]
and

Vn(mn(t)) =

M∑
µ=1

1[mn(t)=µ](P θ̂n(t)− θ̂gµ(t)).

By introducing h(mn(t), t), which is equal to

h(mn(t), t) = δn,2(t)′(Vn(mn(t))) +
ρ2

2
‖Vn(mn(t))‖22. (7.85)

The original problem (7.84) can then be written as:

min
mn(T )

{h(mn(T ), T ) +H(T − 1)}

H(T − 1) = min
{mn(t)}T−1

t=1

T−1∑
t=1

h(mn(t), t)

and the mode estimate can be computed as

m̂n(T − 1) = argmin
mn(T−1)

H(T − 1).

To find recursive formulas for the estimation of the class sequences
{m̂n(t)}Tt=1, n = 1, . . . , N , we assume that mn(t − 1) is known at t, i.e.,
we perform the approximation mn(t − 1) ≈ m̂n(t − 1). Then, m̂n(t) is
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estimated minimizing h(µ, t) with respect to µ ∈ {1, . . . ,M}.
To compute m̂n(t), we evaluate

h(µ, t) = δn(t)′(P θ̂n(t)− θ̂gµ(t)) +
ρ2

2
‖P θ̂n(t)− θ̂gµ(t)‖22, (7.86)

for all the possible classes µ ∈ {1, . . . ,M} and then we select the class
associated with the least h(µ, t).

A tentative implementation scheme for the proposed method is pre-
sented in Algorithm 19. At Step 1.3 of the proposed implementation, the
class of each agent is predicted on the basis of the local estimates and the
Lagrange multipliers obtained at the current step.

Remark 8 Equation (7.84) depends on δ′nVn(mn(t)). To reduce its influence,
ρ2 has to be big enough for ‖Vn(mn(t))‖22 to dominate over δ′n,2Vn(mn(t))in
(7.84). A possible strategy to avoid δ′n,2Vn(mn(t)) > ρ2‖Vn(mn(t))‖22 is to
choose ρ2 � max({δo

n,2}Nn=1). It has to be pointed out that ρ2 in equation
(7.84) has a different meaning with respect to the same parameter in equation
(7.62). It is consequently advisable to consider different values for ρ2 in the
execution of step PE and CE. �

On the one hand, the global estimates have to be updated on the cloud
as the update in (7.74) depends on the “partial” estimates collected from
all the agents. Due to the dependence on {θ̂gµ}Mµ=1 of equations (7.69) and
(7.85), it is also advisable to compute δ(k)

n,2(t) and m̂n(t) on the cloud. On
the other hand, both zn and δn,1, n = 1, . . . , N , can be updated locally.
However, under the hypothesis that the local computational power and
memory are limited, we propose to perform the updates in equations
(7.66) and (7.68) on the cloud. See Algorithm 19.

Remark 9 As outlined in Algorithm 19 and in Figure 94, the local processors
have to communicate θ̂RLSn and φn to the cloud at each time step. The cloud has
to transmit θ̂n to the corresponding local processor. �
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θ̂N (t)θ̂1(t)

Figure 94: Scheme for the transmission characterizing Algorithm 19 at step
t.

7.4.3 Example 2

Suppose that the measurement collected from N dynamical systems are
available, with the behavior of the N agents characterized by the in-
put/output relationship

yn(t) = θgmn(t)yn(t− 1) + θn,2un(t− 1) + en(t), (7.87)

θgmn(t) =

{
0.8 if mn(t) = 1

0.5 if mn(t) = 2.

The local parameters θn,2 are realizations of a random variable with dis-
tribution N (0.4, 4 · 10−4). The input un is chosen as a sequence of i.i.d.
elements uniformly distributed in the interval [2, 3] and en ∼ N (0, Rn)

is a white noise sequence with Rn ∈ [1, 4], which yields to SNRn in the
interval [4.5, 14.3] dB.
The parameters θn,1 changes over time depending on the agent’s mode,
with the agents are suppose to change class at a randomly chosen step in
the interval [100 T ], with T = 5000.
We assume that the parameters’ estimates are constrained to the follow-
ing ranges:

0.45 ≤ θ̂n,1 ≤ 0.85 0.3 ≤ θ̂n,2 ≤ 0.5. (7.88)

We initialize φn(0) = 10Inθ , δo
n,1 = 10−3Inθ , δn,2(0) = 10−3Ing , for

n = 1, . . . , N , and θg,oµ = θgµ + ϑgµ, with ϑgµ ∼ N (0, 1) for µ = 1, 2. As
the class of the system is supposed not to be known a priori, {m̂n(1)}Nn=1

199



Table 29: {RMSEgµ}2µ=1 vs maximum number of iterations.

m
10 20 50 100

RMSEg1 0.023 0.023 0.017 0.017
RMSEg2 0.032 0.030 0.024 0.024

Table 30: {RMSEgµ}2µ=1 vs forgetting factor Λ.

Λ
0.975 0.995 1

RMSEg1 0.028 0.017 0.023
RMSEg2 0.022 0.024 0.088

are randomly chosen.
We have decided to terminate the ADMM iterations when the maximum
number of runs m is attained. The parameters m, ρ1, ρ2, ρ3 ∈ R+ and
the forgetting factors {λn}Nn=1 (see Algorithm 19) are left to be tuned.
The parameters ρ1 and ρ2 influence the computed estimates of the lo-
cal and global parameters, respectively, while ρ3 affects the prediction
of the model class. Imposing λn is equal to Λ, for all n = 1, . . . , N , the
performance of the consensus-based estimation approach are evaluated
changing the value of one of the aforementioned parameters, while the
others are fixed.
With Λ = 0.995, ρ1 = 10−2, ρ2 = 10−5 and ρ3 = 1, we evaluate the effect
of performing a different number of iterations m. As expected, RMSEgµ
slightly decrease when m increases as shown in Table 29. Looking at the
estimates reported in Figure 95, it can be noticed that the higher m is the
more the conditions in (7.88) are enforced on the local estimates, thus
causing the reduction in the RMSEs.
Table 30 reports the RMSEs obtained using different forgetting factors Λ,

with m= 50, ρ1 = 10−2, ρ2 = 10−5 and ρ3 = 1. The computed estimates
are less accurate if either Λ = 0.975 or Λ = 1, i.e., when the estimates are
computed relying mainly on the current measurements or if the time-
varying nature of θn,1 = θgmn(t) is neglected.
The resulting RMSEs can be explained looking at the estimated classes
m̂n, shown in Figure 96 that reports both m70(t) and m̂70(t), for t =

1, . . . , T . If Λ = 0.975 and Λ = 1, the class estimate is characterized
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(c) θ̂70,2 vs θ70,2: 20 iterations
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(d) θ̂70,2 vs θ70,2: 100 iterations

Figure 95: θ70 vs maximum number of iterations. True (black), estimated
(blue).

by multiple jumps, while m70 is accurately estimated when Λ = 0.995.
A similar result is obtained fixing m=50, Λ = 0.995, ρ1 = 10−2, ρ2 = 10−5

and changing the value of ρ3.
In particular, the choice of ρ3 ≤ 0.1 causes the class estimate to be not
accurate, as characterized by multiple switches, while ρ3 ≥ 1 allow us
to accurately estimate the class mn. See Figure 97. If ρ3 ≤ 0.1, the term
depending on δn,2 in equation (7.86) might be weighted more than the
error between the local and global estimate, thus causing the multiple
switches in the mode estimates. It is worth remarking that the character-
istics of the class estimates influence the resulting quality of {θ̂gµ}2µ=1, as
it can be seen in Table 31.
The parameters left to be tuned are ρ1 and ρ2, which are associated to the
conditions imposed on the values of the local estimates (see (7.88)) and
the consensus constraint, respectively. By fixingm= 50, Λ = 0.995, ρ3 = 1
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(c) Λ = 1

Figure 96: Class estimate vs Λ. True class m70 (black), estimated class m̂70

(blue).

and ρ2 = 10−5, Figure 98 shows the global estimates obtained for differ-
ent values of ρ1. The estimates seems to be biased for ρ1 = 10−1. This
result can be motivated considering that the choice of a relatively high ρ1

leads to the consensus condition to be neglected. The choice of ρ1 slightly
influences the estimated class, while the value of ρ2 strongly impact the
quality of m̂n

2 as it can be deduced looking at the class reported in Fig-
ure 99 for different choices of ρ2. A low-quality class estimate is obtained
if ρ1 = 1, while the number of switches of m̂70 tends to decrease as the
value of ρ2 is reduced. It can thus be deduced that the classes are not
distinguishable if the consensus condition is enforced too strongly.
The global estimates retrieved with the selected parameters, m= 50, Λ =

0.995, ρ1 = 10−2, ρ2 = 10−5 and ρ3 = 1, are reported in Figure 100.

2The other parameters are set at m= 50, Λ = 0.995, ρ3 = 1, ρ1 = 10−2.
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Figure 97: True vs estimated model class for n = 70. True m70 (black),
estimate m̂70 (blue).

Table 31: {RMSEg}2µ=1 vs ρ3.

ρ3
0.01 0.1 1 5

RMSEg1 0.029 0.018 0.017 0.017
RMSEg2 0.039 0.027 0.024 0.024
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Figure 98: {θgµ}2µ=1 vs ρ1. True parameter (black), estimated parameter with
ρ1 = 10−1 (magenta), ρ1 = 10−5 (blue) and ρ1 = 10−2 (red).
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Figure 99: Class estimate vs ρ2. True class m70 (black), estimated class m̂70

(blue).
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Figure 100: True vs estimated global parameters. True (black), estimated
(blue).
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Algorithm 19 ADMM-RLS for multiple classes estimation

Input: Data flow {Xn(1), yn(1)}, {Xn(2), yn(2)}, . . ., initial global esti-
mates {θ̂gµ,o}Mµ=1, φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), Lagrange
multipliers δo

n,1 and δn,2(0) and auxiliary variables zn,o, n = 1, . . . , N ,
{λn}Nn=1, parameters ρ1, ρ2, ρ3 ∈ R+.

1. for t = 1, 2, . . . do

Local

1.1. for n = 1, . . . , N do
1.1.1. compute X̃n(t) as in (7.80);
1.1.2. compute Kn(t) and φn(t) with (7.78) - (7.79);
1.1.3. compute θ̂RLSn (t) with (7.83);

1.2. end for;

Global

1.1. do
1.1.1. compute θ̂ADMM,(k+1)

n (t) with (7.81), n = 1, . . . , N ;

1.1.2. compute θ̂(k+1)
n (t) with (7.26), n = 1, . . . , N ;

1.1.3. compute ẑ(k+1)
n with (7.66), n = 1, . . . , N ;

1.1.4. for µ = 1, . . . ,M do
1.1. compute θ̂g,(k+1)

µ as in (7.74);
1.1.5. end for;
1.1.6. compute δ(k+1)

n,1 with (7.68), n = 1, . . . , N ;

1.1.7. compute δ(k+1)
n,2 (t) as in (7.69), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g., the maximum
number of iterations is attained);

1.3. predict m̂n(t+ 1) minimizing (7.86), n = 1, . . . , N , where
ρ2 = ρ3.

2. end.

Output: Local estimates {θ̂RLSn (t)}Tt=1, global refinement of the lo-
cal estimates {θ̂n(t)}Tt=1, n = 1, . . . , N , and global parameter’s estimate
{θ̂g(t)}Tt=1.
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Chapter 8

Conclusions and Future
Work

This thesis has addressed the problem of learning models from data con-
sidering two different settings, focusing on the identification of dynami-
cal models. On the one hand, we present a set of algorithms that can be
used for the identification of different classes of hybrid models, based on
the consideration that some complex phenomena might not be accurately
described using a single model. Two algorithms for energy disaggrega-
tion are then described to present a possible application of hybrid model
to real-world problems. On the other hand, we introduce approaches for
learning a single model given the observation gathered from multiple
sources of data, that are supposed to share the same model.

In chapter 2 we present a novel two-stage method for PWA regres-
sion. The strengths of the proposed approach are: (i) its ability to run
both in a batch and a recursive way, (ii) its computational efficiency and
(iii) the fit that can be achieved. Indeed, the results of extensive simula-
tions have shown that the methods proposed for the computation of lin-
ear multi-category separators outperform existing approaches in terms
of CPU time, while generally guaranteeing a low number of misclassi-
fied points. However, the proposed discrimination methods only allow
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one to find linear separators between the different clusters. Furthermore,
the quality of the resulting PWA function mainly depends on the clus-
ters obtained executing the first step of the method. Stage S1 is thus of
crucial importance and it is also critical to the quality of the final PWA
model. The proposed method relies on the hypothesis that the number
of sub-models characterizing the PWA function is known a priori. Con-
sequently, it does not allow to tune this parameter while the model is
learned. We rely only on cross validation procedure to select the number
of modes, thus requiring a batch of data to be processed off-line.
Through a proper reformulation of the original problems, it has been
shown that the method for PWA regression can be successfully used for
PWARX and LPV system identification. The computational efficiency of
the approach makes it suited for applications with sampling time that
can be down to the order of the milliseconds (e.g., adaptive control appli-
cations, gain scheduling and LPV Model Predictive Control).

In chapter 3, we present a method for black-box identification of Dis-
crete Hybrid Automata (DHA) extending the PWA regression method
described in chapter 2. The presented DHA identification approach thus
inherits the advantages of the PWA regression method and, in particular,
its low computational complexity. The approach for Discrete Hybrid Au-
tomata identification does not require any prior knowledge on the true
system, as we estimate models for both the continuous and discrete dy-
namics from data. However, it allows us only to model threshold events,
while it cannot be used when the transitions between different operating
conditions are regulated by time events.
The first stage of the approach is further extended to handle multiple dis-
crete states sharing the same continuous model. However, this requires
additional parameters to be tuned, whose choice heavily influences the
accuracy of the estimated DHA.

In chapter 4 we describe methods for the identification of two specific
jump models. At first, we propose a two-step approach to learn Rarely
Jump Models (RJMs) from data, which is based on the assumption that
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transitions between different modes seldom happen. Then, a two-stage
method for the identification of Markov Jump Models (MJMs) is intro-
duced. The method for RJM learning can be used to solve a broader
range of problems (e.g., binary classification), as confirmed by the results
presented in the chapter. However, it should be run multiple times and
it requires the solution of an optimization problem at each iteration, thus
making it suited only for off-line learning. Instead, the approach for MJM
identification is less general, as it is tailored for least-squares estimation,
but it can be used for on-line learning as proven by the simulation re-
sults presented in chapter 4. The quality of the model obtained with the
algorithm for Markov Jump Model learning strongly depends on the re-
sults of the first stage, thus making Stage S1 critical for the success of
the whole identification procedure. On the other hand, due to the multi-
ple refinements of both the model parameters and the state sequence, it
might be easier to correct errors made on one of the two stages when the
RJM learning method is used.

In chapter 5 we describe two methods for energy disaggregation,
that allow one to estimate the power consumed by each appliance in an
household relying only on the aggregate measures provided by a single
smart meter. Differently from most NILM algorithms proposed in the
literature, our approaches can be used for on-line disaggregation. The
methods allow us to reconstruct the consumption patterns of each appli-
ance an not only to detect ON/OFF events. Furthermore, the proposed
energy disaggregation algorithms have proven to be robust to unmod-
elled appliances and they can be used when multiple appliances con-
sume simultaneously, as it can be noticed from the results reported in
chapter 5. However, both the approaches rely on the prior knowledge
of a model for the consumption behavior of each appliance, thus requir-
ing an intrusive period of training. Furthermore, no strategy to integrate
disaggregation and learning of the appliances’ models is proposed. We
thus assume that the same consumption model always describe accu-
rately the consumption behavior of the appliances, which might be not
true in practice.
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Chapter 6 and chapter 7 are devoted to the presentation of cloud-
aided collaborative estimation methods that allow one to handle (i) lin-
ear consensus constraints, (ii) nonlinear consensus constraints and (iii)
multi-class estimation problems. We introduce methods based on the
Alternating Direction Method of Multipliers (ADMM) and relying on
the local iteration of Recursive Least-Squares (RLS). The approaches can
thus be easily integrated with pre-existing local least-squares estima-
tors. However, the use of ADMM impose to tune the hyper-parameters
characterizing the augmented Lagrangian. The choice of these parame-
ters strongly influences the results of the estimation procedure and it is
thus critical, as a wrong selection of these hyper-parameters negatively
affects the quality of the final estimates. Furthermore, as the ADMM
steps should be run multiple times, the use of the Alternating Direction
Method of Multipliers leads to the introduction of two time scales, as-
sociated with the local and the cloud clock, respectively. This might be
problematic when applications requiring fast computations are consid-
ered. As a preliminary solution to overcome this limitation, we have
proposed methods relying on Node-to-Cloud (N2C) transmissions, thus
reducing the exchange of information between the cloud and the local
processors.

8.1 Future Work

Future research activities will aim at enriching the current approaches
for hybrid models identification with techniques to estimate the num-
ber of sub-models in real-time, while the model is identified. Future
investigations will also include a formal study on the performance of
the multi-category discrimination algorithms with respect to the num-
ber of sub-models and the dimension of the regressor. In addition, we
will study the performance of all the proposed methods for hybrid sys-
tem identification in presence of correlated covariances and we will test
the approaches on challenging real-world applications. Further investi-
gations will be devoted to generalize the approach for PWA regression,
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DHA identification and MJM identification to piecewise-nonlinear mod-
els (such as piecewise polynomial).
Future research on disaggregation will be focused on the reduction of the
intrusiveness of the methods. As a consequence, further efforts will be
devoted to the integration of learning techniques to the presented disag-
gregation approaches, so to update the appliances models while energy
disaggregation is performed. To this extent, Variable Structure Multi-
ple Models will be considered as they might help representing possible
changes in the consumption behavior of the devices over time. We will
also investigate how the use of additional information affects the qual-
ity of the disaggregated patterns, with the ultimate goal of proposing a
completely automatic technique for energy disaggregation. We will then
focus on the application of the approaches to fields other than power dis-
aggregation.
By using the presented ADMM-based approach for cloud-aided collab-
orative estimation as a starting point, future investigations will be de-
voted to design alternative methods for collaborative estimation, e.g., ap-
proaches designed considering the problem from a probabilistic point of
view. Concerning the proposed methods, future research will also be
devoted to investigate methods for the automatic tuning of the hyper-
parameter characterizing the augmented Lagrangian. Furthermore, ef-
forts will be directed to the reduction of the transmission complexity, the
design of asynchronous solution based on the proposed approaches and
to the extension of the methods to address closed-loop estimation.
Finally, we will investigate the problem of learning multiple models from
multiple sources, to combine switching model regression and cloud-based
model estimation.
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