
IMT School for Advanced Studies, Lucca

Lucca, Italy

Improving Service Quality in Cloud Computing:
from Definition to Deployment

PhD Program in Computer Science

XXX Cycle

By

Vincenzo Scoca

2017

http://www.imtlucca.it
mailto:vincenzo.scoca@imtlucca.it

Contents

List of Figures v

List of Tables vi

Declaration vii

Publications viii

1 Introduction 1

2 Quality of Service in Cloud Computing: Background 8
2.1 Cloud Computing . 9

2.2 Edge Computing . 12

2.3 Quality of Service in Cloud . 14

2.4 Service Life Cycle and Quality 16

2.5 Smart Contracts . 18

2.6 SLA Negotiation in Cloud . 19

2.7 Service Scheduling . 20

3 Dynamic Service Level Agreements for Cloud Computing 22
3.1 The SLAC Language . 23

3.1.1 Overview of the Syntax 24

3.1.2 Informal Semantics . 28

3.2 The SLAC Software Framework 30

3.3 Experiments . 32

3.3.1 Provider’s Benefits . 33

3.3.2 User’s Benefits . 39

iii

4 Smart Contract Negotiation 42
4.1 Modelling Smart Contracts . 43

4.1.1 Syntax . 44
4.1.2 Semantics . 44
4.1.3 An Example . 47

4.2 Autonomous Negotiation of Smart Contracts 49
4.2.1 Compatibility Verification 49
4.2.2 Incompatibility Analysis 51
4.2.3 Solution Evaluation . 52
4.2.4 Use Case Example . 53

4.3 Validation of our Approach . 54
4.3.1 Scenario . 54
4.3.2 Result Analysis . 55

5 Scheduling Latency-Sensitive Services in Edge Computing 58
5.1 Motivating Example . 59

5.2 A Scheduling Framework for Edge Computing 63
5.2.1 Virtual Machine Evaluation 65
5.2.2 Scheduling Approach 67

5.3 Validation of our Approach . 68
5.3.1 Experimental Setup . 68
5.3.2 Scenarios . 70
5.3.3 Experimental Results 74

6 Related Works 78
6.1 SLA Definition Languages . 78

6.2 SLA Negotiation . 83

6.3 Service Scheduling in Cloud 84

7 Conclusions 86
7.1 Research Findings . 88

7.2 Limitations of our Study . 89

7.3 Future Works . 90

References 92

iv

List of Figures

1 Example of a smart contract in the Cloud domain. 3
2 Example of SLA offer/request proposal using SLAC. 4
3 Stages of the service life cycle to which the thesis contributes. . 5

4 SLA and service life cycle. 17

5 Example of a dynamic SLA in the Cloud domain. 23
6 Overview of the main components of a SLA written in SLAC. . 24
7 The automaton for the running example. 30
8 SLAC Management Framework: evaluation process. 31
9 Components of the use case implementation. 34
10 Flow diagram of the service processing for the Static, Renegoti-

ation and dynamic approaches. 35
11 Performance analysis. 37
12 Experiment scenario used to measure the economic impact for

consumers. 40

13 Autonomous negotiation methodology. 49
14 Compatibility model of requests and offers in Fig. 2. 51
15 Negotiation results of the BN, CM and AN approaches. 57

16 Live video streaming workflow. 61
17 Edge-based platform for live video streaming services. 62
18 Cloud-based solution for live streaming services. 63
19 Delivery networks for streaming media contents. 64
20 Scheduling framework. 65
21 Performance analysis of Cloud, CDN and Edge scenarios. 75
22 Performance comparison of Cloud and Edge scheduling approaches. 76

v

List of Tables

1 Example of a SLAC SLA. 25
2 Semantics at work on our running example. 29
3 Fuzzy rules of the provider decision system. 36
4 Experimental results. 38
5 Average cost reduction of dynamic SLAs in comparison with

static ones. 41

6 Syntax. 45
7 Semantics. 46
8 Consumer’s SLA excerpt. 48

9 Virtual machines specifications. 74

10 Evaluation results of SLA languages 82

vi

Declaration

Most of the material in this thesis has already been published in scientific
venues.

More in details, the work presented in Chap. 3 is coauthored with Rafael
Brundo Uriarte, Rocco De Nicola and Francesco Tiezzi and is currently under
review for the Future Generation Computer System Journal and is based on the
already published works [70, 71] of Rafael Brundo Uriarte, Rocco De Nicola
and Francesco Tiezzi from IMT School for Advanced Studies, Lucca.

Chap. 4, instead, is based on [57], coauthored with Rafael Brundo Uriarte
and Rocco De Nicola.

Finally, the work in Chap. 5 is inspired by a collaboration with Atakan Aral
and Ivona Brandic (Technical University of Vienna) and is based on [56], coau-
thored with Atakan Aral, Ivona Brandic, Rocco De Nicola and Rafael Brundo
Uriarte.

vii

Publications

1. Rafael Brundo Uriarte, Rocco De Nicola, Vincenzo Scoca, and Francesco Tiezzi,
“Defining QoS in Dynamic Environments”, in Future generation computer sys-
tems. Under review

2. Vincenzo Scoca, Atakan Aral, Ivona Brandic, Rocco De Nicola, and Rafael Brundo
Uriarte, “Scheduling Latency-Sensitive Applications in Edge Computing”, in Pro-
ceedings of the 8th International Conference on Cloud Computing and Services,
pages 158-168, 2017

3. Vincenzo Scoca, Rafael Brundo Uriarte, and Rocco De Nicola,“Smart contract
negotiation in cloud computing”, in Cloud Computing (CLOUD), 2017 IEEE 10th
International Conference, pages 592-599, 2017

4. Michelangelo Diligenti, Marco Gori, and Vincenzo Scoca, “Learning efficiently in
semantic based regularization”, in Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, vol. 4, pages 33-46, 2016

viii

Abstract

Service quality is crucial in all stages of the Cloud service life cycle,
from service acquisition, where Cloud consumers and providers ne-
gotiate for a mutual agreement, to service execution, where service
management is driven by the agreed requirements.

Much work has been devoted to specification and enforcement of
service quality terms in the Cluster, Grid and Cloud domains. How-
ever, the dynamism present in Cloud services is ignored. We pro-
pose a theoretical and practical framework which addresses the first
phases of the service life cycle: (i) the definition of service provi-
sion; (ii) the negotiation of offers/requests expressed and (iii) the
service deployment, mainly focused on latency-sensitive applica-
tions.

We introduce SLAC, a specification language for the definition of
service requirements, the so-called service level agreements (SLAs),
which allows us to define conditions and actions that can automat-
ically modify those terms at runtime. Experimental results show
that the use of SLAC can drastically reduce the service violations
and penalties to the advantages of providers and consumers.

Then, we define a novel matchmaking and negotiation framework,
which evaluates the compatibility of SLAC requests/offers, and pro-
vides the modifications necessary to reach an agreement. Experi-
ments demonstrate the effectiveness of our proposal.

We also introduce a new scheduling algorithm for latency-sensitive
services, in a Cloud/Edge computing scenario, which takes into ac-
count not only the service requirements but also network latency,
bandwidth and computing capabilities. Again, experimental results
confirm the advantages of this new approach over existing solutions.

ix

Chapter 1

Introduction

Cloud computing is a paradigm that implements the concept of utility computing
and defines computing resources (hardware and software) as services that can be
delivered as traditional utilities, such as water and electricity [10].

In this context the service quality is expressed by a set of non-functional
properties, the so called Quality of Service (QoS) metrics, like availability, se-
curity and reliability, that specify the guarantees to be respected in terms of
performance, security and other non-functional aspects.

The impact of QoS on the service life cycle is crucial in all of its stages.
Indeed, at acquisition time, given a set of functionally equivalent services, a
consumer will select the one offering non-functional requirements, such as per-
formance, reliability and security, that mostly fits his/her needs. Besides, at ex-
ecution time service, configuration and resource management are driven by the
specified QoS terms. More precisely, service execution is continuously moni-
tored to assess the fulfilment of its quality terms, in order to apply the appropri-
ate corrective actions to avoid the violations of the agreed terms.

Therefore, given the relevance of the service quality in determining the suc-
cess of a Cloud service, a large body of work has already been carried out for the
specification and enforcement of service quality terms, as described in Sec. 6.
However, they do not consider one of the main aspects of Cloud: the dynamism
that characterizes cloud services, where users and providers’ requirements may
change at run time.

1

Cloud paradigm is inherently dynamic from both consumer and provider per-
spectives. From the provider’s standpoint, new resources are added and removed
on-the-fly, whilst service requests and prices vary over time as the pay-per-use
model is employed. From the consumer’s perspective, instead, the requirements
vary considerable as Cloud are used to, for example, outsource internal services
or to complement the computing capacity through a hybrid Cloud.

Consequently, such dynamism directly affects the service quality and then
suitable solutions are needed for the proper specification of the requirements.

Currently, consumers and providers define their service quality needs and
their offers by means of Service Level Agreements (SLAs) specifying (i) the
scope and the performance expectations of the service; (ii) the obligations for
both consumer and provider; (iii) the actions to be applied if the expectations
are not met; (iv) the bounding liabilities [7]. However, existing SLA languages,
allows the definition of only static agreements that remain valid for the whole
service execution, without any possibility of automatically changing the terms
of agreements when specific conditions are met.

In the light of these challenges, we defined SLAC (Service Level Agreements
for Clouds) a SLA definition language based on [40, 70, 71] specifically devised
for Cloud which encompasses a mechanism for the automatic modifications of
SLA terms. Essentially, SLAC allows the specification of actions which can
automatically change the set of both functional and non-functional requirements,
when specific conditions are met. Therefore, both consumers and providers can
specify dynamic requirements fixing the initial values of the terms as well as the
conditions to modify them and the related new term values. Our language offers,
then, the possibility to specify dynamic requirements to support the intrinsically
dynamic nature of Cloud services.

An example of a SLA defined using SLAC is reported Fig. 5. In this exam-
ple, the initial state of the contract is the “Base” quality, with 2 Virtual Machines
(VMs) and no requirement about Response Time (RT). During service execu-
tion, the consumer may request the upgrade to “Diamond” quality (more VMs
and the stipulation of the maximum RT). When in the “Diamond” state, the
provider might need to downgrade the service to “Ruby” (for example, in case
of overbooking of resources) and from “Ruby” back to “Diamond”.

However, the adoption of this new specification language does introduce a

2

Figure 1: Example of a smart contract in the Cloud domain.

valid support to cope with Cloud dynamism but carries with it new challenges
related to the negotiation of the SLAs specified with the new formalism and to
the service management.

Indeed, the adoption of traditional bilateral negotiation methods for negoti-
ating over dynamic contracts would require far too many interactions with pro-
posals and counter-proposals. Also the widely used matchmaking alternative
relying on brokers that selects the offers published by Cloud providers most
compatible with consumer’s requests, cannot be easily adapted to “dynamic”
contract since they need to consider an enormous number of alternatives and
nevertheless might not lead to exact matches. Of course, the absence of exact
matching between offers and requests does not necessarily mean that the parties
are not willing to give in something to reach an agreement. The example de-
scribed in Fig. 2 is possibly one of such cases. In this case, the only change not
covered by the provider’s offer is the possibility to increase the response time
(from “Gold” to “Silver”), which in most cases is beneficial for the provider.
Adding this possibility to the service offer would improve their compatibility.
Also other solutions could satisfy the involved parties, for example, finding a
compromise between the values requested and those offered (e.g., a state with 4
VMS and 25 ms) or removing the “Silver” state from the consumer’s request.

To deal with these issues, we have developed a novel negotiation framework
for SLAC contracts, responsible of matching offers and requests and of facilitat-
ing an agreement between the parties in case no immediate matching is possible.

3

Figure 2: Example of SLA offer/request proposal using SLAC.

Our solution provides a simple formal language for modelling the behaviour
of the contracts in terms of transitions and states allowing the representation of
these models as automata with labels associated to nodes and arcs, as shown in
Fig. 2. These automata are feed to our software negotiation framework which
assesses the compatibility of offer/request and suggests the changes necessary
for reaching an agreement.

Afterwards, while analysing scenarios characterized by high dynamism and
looking for a good case study for the application of dynamic SLA, we noticed
that there are still open gaps in the scheduling of latency sensitive services. We
focused then, on the development of a suitable approach for the initial deploy-
ment of service instances. We decided to address latency sensitive scenarios
because they are highly dynamic and because we could not find any work con-
sidering the scheduling problem in Edge platforms, that represent the most suit-
able deployment solution for this type of services.

The shift from Cloud to Edge computing has been determined by features
of the Edge platform from which latency-sensitive services can benefit. Indeed,
the currently adopted Cloud-based deployment solutions are not fully suitable
to deal with strict latency requirements while the Edge platform represents a
promising alternative, since it offers a set of enabling technologies that move
both computation and storage capabilities (i.e., micro cloud data centres) to the
edge of the network, and considerably reduces users’ end-to-end latency. More-
over, the Edge infrastructure can be seen as a natural a generalization of the
Cloud and, thus, it does not requires any change in the specification and ne-

4

Figure 3: Stages of the service life cycle to which the thesis contributes.

gotiation phases, only resource and service management techniques need to be
changed.

However, to effectively exploit the advantages of the Edge infrastructure,
service instances need to be scheduled on the node which better fits service re-
quirements, taking into account contextual knowledge, i.e., user, application and
network information [76]. Indeed, defining an optimal placement allows not
only to maximize user experience by reducing end-to-end latency, but it allows
also to optimize network traffic by reducing bandwidth consumption and related
costs, and improves energy efficiency by reducing the need to offload tasks to
the Cloud which requires more energy than micro data centers.

We propose then, a novel score-based scheduling framework specifically de-
signed for latency-sensitive services in Edge. The proposed technique is latency,
bandwidth, and resource aware. It schedules each service instance on the VM
type whose computing and network capabilities can optimize service response
time experienced by end users. First, eligibility of available VM types on edge
nodes for hosting given services is evaluated based on VM network and resource
capabilities, and then such services are scheduled in the most suitable VMs ac-
cording to eligibility scores, guaranteeing optimal service quality.

The different stages of a service life cycle in the context of service qual-
ity management in Cloud computing, to which this thesis is contributing, are

5

reported in Fig. 3. We devised a framework that considers the first phases of
services’ life cycle by (i) defining SLAC, a new specification language for the
definition of dynamic agreements (Chap. 3); (ii) developing a negotiation frame-
work suitable for the negotiation of the SLA defined with SLAC (Chap. 4) and
(iii) devising a novel scheduling framework for the initial deployment of ser-
vice instances in Edge that is specifically tailored for latency-sensitive services
(Chap. 5).

In the rest of this chapter, we present the main research questions that have
been considered in this thesis, and have been a guideline for our work.

Research Question 1
How to properly describe service quality terms in Cloud Computing?

The definition of service level agreements specifies the requirements to be
respected during the service provisioning. However, Cloud services are inher-
ently characterized by a dynamism which makes difficult to properly define these
requirements with current specification languages. This dynamism is related to
consumer and provider needs that continuously change during service execu-
tion. Defining static quality terms valid for the whole service life cycle is not the
most appropriate approach; a specification language is needed that allows the
autonomous modification of the defined requirements, when specific conditions
are met. We address this research question in Chap. 3.

Research Question 2
How to negotiate SLAs for Cloud Computing with the new dynamic language?

The adoption of a specification language that allows the definition of service
requirements that can change at run time without the need of renegotiation, in-
troduces new challenges in the negotiation of initial offer/request, since multiple
SLA configurations need to be considered. The challenges characterizing this
new specification language and an innovative framework for the negotiation of
contracts specified with this new formalism are addressed in Chap. 4.

6

Research Question 3
How to enhance specific service quality

in distributed environments?

Edge-based solutions have been proposed for dealing with highly dynamic
computational requirements of latency sensitive application, but they pose new
challenges for services and resources management. In this context, solutions
are missing for services scheduling; in Chap. 5 we introduce a new framework
for the initial deployment of latency-sensitive service instances in Edge-based
architectures.

7

Chapter 2

Quality of Service in Cloud
Computing: Background

In this chapter we provide an overview of the basic concepts related to the main
topics of the thesis. The overall contributions of this chapter are:

• A comprehensive description of the main features of Cloud and Edge
Computing, which represent the background domains of the topics ad-
dressed in this thesis.

• An overview of service quality in and its impact on the service life cy-
cle phases, which provides a general description of the scenario used to
illustrate the works presented in the other chapters.

• A preliminary analysis of smart contracts and of their applicability for
Service Level Agreements (SLAs) specification in Cloud. These topics
will be further developed in Chap. 3.

• A discussion of the approaches currently adopted for the autonomic nego-
tiation of SLAs and for service scheduling in Cloud. This discussion will
be instrumental to introduce the basic notion for the results of Chap. 4 and
Chap. 5.

8

2.1 Cloud Computing

In the last half century research in the Information and Communication Tech-
nology (ICT) area has guranteed significant advances, and nowadays there is an
increasingly perceived vision that computing will one day be the 5th utility, after
water, electricity, gas and telephony [10]. This vision of computing as utility
can be found in the advances achieved in the development of the Internet in-
frastructure that allowed a worldwide aggregation of computer networks giving
the user the perception of utilizing an endless amount of distributed computing
resources, without knowing where they are hosted and how they are delivered.

Several computing paradigms have been developed and adopted over the
years, with the aim to offer computing systems that accurately put this new vi-
sion at work: the most important ones being Grid and Cloud computing.

Grid Computing was developed in the mid 1990s to allow consumers to ob-
tain computing power on demand [30]. A more formal definition of Grids is
given in [10]:

A Grid is a type of parallel and distributed system that enables
the sharing, selection, and aggregation of geographically distributed
’autonomous’ resources dynamically at run time depending on their
availability, capability, performance, cost, and users’ quality-of-
service requirements.

On the other hand, in [45], Cloud has been defined as:

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

Cloud Computing refers mostly to a new operation model that leverages on
existing technologies, such as Grid Computing, Virtualization and Autonomic
Computing, to meet the technological and economic requirements of today’s
demand from IT companies [83]. The main reasons making Cloud paradigm
more and more attractive for business in the IT area are reported by Zahong et
al. in [83] and listed below:

9

No up-front investment. Cloud offers both hardware and software resources
using the pay-as-you-go model, allowing consumers to rent the needed
resources according to their needs, without a high initial investment.

Low operating costs. Providers allocate resources to consumers according to
their demand, without over-provisioning, which allows the providers to
grant the resources only when actually needed and then to reduce the op-
erating costs by taking advantage of the economy of scale (energy, hard-
ware, maintenance).

High scalability. Cloud provides two modalities of resource scaling: horizontal
and vertical. Horizontal scalability allows the addition or removal of re-
source instances (e.g., servers), whereas vertical scalability does not mod-
ifies the number of resources but changes the specification of existing ones
(e.g., increasing or decreasing the power offered by each server).

Reducing business risks and maintenance expenses. In the scenario where Cloud
consumers demand for hardware resources to a Cloud provider, they move
some of the business risks and maintenance process to the provider.

All the benefits listed above arise from the intrinsic features of the Cloud
computing paradigm. Indeed, in a Cloud environment, several services from
different consumers can be hosted in a single data-center (multi-tenancy) and
the performance and management issues are ruled by Service Level Agreements
(SLAs) subscribed by both the Cloud provider and the service consumers. To
support multi-tenancy, Cloud providers offer a pool of resources that can be
dynamically assigned to multiple resource consumers (shared resource pooling)
allowing service providers to acquire resources according to the current demand
(dynamic resource providing) based on a pay-per-use pricing model (uility-based
pricing).

Business models

In this context the term resource refers to both hardware and software compo-
nents that are provided to Cloud consumer as-services. Therefore, the adoption

10

of this service-driven operating model brought to the development of three dif-
ferent business model, as also reported in the NIST definition of Cloud Comput-
ing [45]:

Software as a Service (SaaS). Provider’s applications represent the service de-
livered to final users. In this context, users can directly use provider’s ap-
plication by accessing it with different type of devices, without any man-
agement responsibility. Indeed, only the provider is in charge of managing
and controlling the underlying infrastructure.

Platform as a Service (PaaS). Cloud providers offer complete software devel-
opment platforms (i.e., operating systems and application development
tools and frameworks), where consumers can deploy their own applica-
tions without any responsibility related to the management of the under-
lying software layers.

Infrastructure as a Service (IaaS). Processing, storage, network, and other fun-
damental computing resources are provided to consumers who can then
deploy and run any arbitrary software on the top of them. In this model,
consumers are responsible of the software infrastructure management, i.e.,
they are in charge of installing and configuring the requested resources
(e.g., VMs).

Deployment Models

Different deployment models can be adopted in Cloud. The main are:

Private Cloud. A single organization uses the whole Cloud infrastructure, that
is managed by the organization itself or by a third party. Although this
model offers the highest degree of control of the infrastructure, it is the
most similar to traditional server farms, limiting the benefits introduced
by the Cloud paradigm.

Public Cloud. A provider offers its resources as services to the general public.
The main advantages of this model are represented by no up-front costs on
infrastructure for the consumer and by the shift of risks to infrastructure
providers at the cost of reduced control.

11

Hybrid Cloud. This model combines the previous models and aims at address-
ing the limitations characterizing the previous two models.

2.2 Edge Computing

Recently, due to the advances of connectivity infrastructure and the proliferation
of Internet of Things (IoTs), new type of services have been introduced that are
characterized by very strict latency requirements and by high bandwidth demand
along with the need of high computing power for data processing tasks.

Therefore, even though Cloud-based deployment solution still represent the
optimal solution for the processing of large amount of data, the large geographi-
cal distribution of Cloud data-centers cannot guarantee the very strict end-to-end
latency required by these services.

Indeed, IoT services are usually related to the processing of data obtained
through sensors (e.g., camera,) for pattern matching and data analysis to take
timely decisions (i.e., on the order of very few milliseconds) [19]. Thus, the
network latency characterizing Cloud networks cannot cope with these strict re-
quirements and the high bandwidth consumption determined by the large amount
of data generated by the sensors may turn out to be a bottleneck.

Consequently, innovative distributed computing solutions have been devel-
oped allowing the computation tasks to be executed at the Edge of the network,
in close proximity of the end users.

This novel computing technology has been named Edge Computing. This
term is also often interchanged with Fog Computing, which is mainly related to
an actual architectural design of an Edge network [24, 76].

The main idea underneath this new paradigm is to move the Cloud tech-
nologies in close proximity of end users [14] for enabling ubiquitous access to
a shared network of computing resources and facilitate the deployment of dis-
tributed, latency-aware applications and services [34].

An edge node is essentially any type of computing resources and routing
devices in the network along the path from the data source and the Cloud data-
centers [61]. In the literature, this set of resources have been grouped in five
different types, namely servers, networking devices, cloudlets, base stations, ve-
hicles as reported in [43] and listed below:

12

Servers. Edge servers are usually micro data-centers or nano servers geograph-
ically distributed and deployed at highly frequented places (i.e., bus termi-
nals, shopping centres, etc.). Similarly to Cloud data-centers, edge servers
exploit virtualization technologies to provide storage, computing and net-
working facilities.

Networking devices. Networking devices, like gateway routers and switches,
provide not only networking functionalities but are also equipped with
some processing power and memory to be used for small data processing
tasks.

Cloudlets. Cloudlets are considered as micro-cloud, offering higher amount of
resources compared with other types of devices but acting as centralized
components. Therefore, even if they are deployed at the edge of the net-
work they might incur in the same limitations of Cloud Computing.

Base Stations. Traditional base stations are equipped with processing and stor-
ing capabilities. However, the main advantages offered by these devices is
the single-hop connection they can provide with the main network back-
bone.

Vehicles. The high number of vehicles currently present on the streets can be
used to offer a widely distributed and highly scalable Edge environment.
Indeed, vehicle are now equipped with exploitable processing and storing
capabilities.

Currently three different Edge architectures have been devised, namely Fog
computing, Cloudlet and Mobile Edge Computing (MEC)

In the fog architecture, the Edge part is composed of network devices (i.e.,
fog nodes) which complement a Cloud infrastructure making computation and
storage functionalities possible anywhere along the path from end users to the
Cloud data-centers [76]. This platform is most suitable for Internet of Things
use cases, because, thanks to the proximity of all fog devices involved, it can
guarantees the very strict latency requirements required by those services.

The cloudlet platform, instead, is characterized by a trusted cluster of com-
puters well connected to the internet with resources available for use by nearby

13

devices. Cloudlet resources are usually deployed at WiFi access points or net-
work base stations offered over a single-hop access with high bandwidth, guar-
anteeing then low latency for the deployed applications[24]. This architecture
is mostly used for the deployment of applications which requires not only strict
latency requirements, but also high processing power that cannot be provided by
the network devices present in the Fog platform.

The MEC architecture brings computational and storage capacities to the
edge of the network within the Radio Access Network to reduce the service end-
to-end latency and to improve context awareness [24]. MEC nodes are servers
that are usually co-located with Radio Network Controllers or with macro base-
stations. This solution has been mainly devised to allow the offloading of heavy
processing tasks, that had to be executed on mobile devices, on more powerful
resources, improving the life-time of the device battery. Indeed, user devices can
send task computation on a MEC node that either directly process it or forward
it to the remote data centers.

2.3 Quality of Service in Cloud

Both Cloud consumers and providers expect that applications and services de-
ployed on Cloud platforms guarantee high quality services that offer good level
of user experience. In fact, a good service appreciated by users increases also
providers’ trustworthiness and thus their revenues.

In this scenario we define service quality as the degree to which a set of
service characteristics meet the agreed requirements. Specifically, it is as a com-
bination of non-functional attributes describing service characteristics that are
considered relevant for the service-client interaction.

Moreover, these service quality characteristics can be aggregated in two
groups, namely Quality of Experience (QoE) of Quality of Service (QoS) [41].
The ones in the first group express a subjective definition of service quality
through subjective attributes such as usability, that allow users to express their
personal perception about the quality experienced. The ones in the second group,
instead, express service quality by means of objective measurable metrics like,
e.g., response time and availability. This set of QoS terms, also known as Ser-
vice Level Objects (SLOs), is then used for the formal description of the quality

14

requirements to be guaranteed during service provision, defining the so called
Service Level Agreements (SLAs)

Here we provide a description of the most common service quality attributes [7].

Availability. Represents the ability of an IT service to perform its agreed func-
tion when required. It can be expressed as:

Availability =
Agreed Service Time−Outage Downtime

Agreed Service Time
(2.1)

where the Agreed Service Time is the period during the measurement win-
dow that the system be running, whereas the Outage Downtime represent
the total time, still in the measurement window, where the system was not
available.

Latency. The latency indicator refers to the elapsed time between the sending
of a request and receipt of the reply. Usually it is measured as best thought
of as a statistical distribution rather than a single value that can crisply be
measured. It can be specified as a distribution requirements via two points
like the maximum acceptable latency at both the 90th percentile (slowest
1 in 10 transactions) and the 99.999th percentile (slowest 1 in 100,000
transactions)

Reliability. Given a logically, syntactically and semantically correct service re-
quest, service reliability requirements specify the probability to obtain the
correct response within the maximum acceptable service latency. Usu-
ally it is measured as the percentage of defective (or failed) operations per
million attempts, or DPM, that is:

99.9% service reliability = 1000 defective operations per million

Accessibility. This indicator is related to individual users and defines the proba-
bility than he/she can successfully acquire service on demand. The metric
used to measure service accessibility is maximum DPM,

Retainability. This metric is related to session-oriented applications and de-
notes the probability that an ongoing service session will continue to pro-
vide the service under certain conditions for a given time. For example,

15

it represents the probability that a streaming movie plays to the end with
no perceptible visual or audible impairments. Metric values may be quan-
tified as application sessions per million (DPM) that were prematurely
terminated or as experienced (unacceptable) service impairments.

Throughput. This requirement specifies the minimum number of transitions
successfully processed in a given unit of time.

2.4 Service Life Cycle and Quality

As described in Sec. 2.3 service consumers and providers specify the service
quality to be guaranteed throughout the whole service provision by means of a
set of non-functional attributes that are relevant for the service-client interaction.

These requirements, the so called SLOs, are then formalized in a contract,
the Service Level Agreement (SLA), that specifies the quality guarantees to be
respected and enforced during the service provision as well as the actions to be
taken when the guarantees are violated.

More in detail, a SLA is the contract legally binding service consumers and
providers and is concerned with:

• The parties involved in the agreements, specifying their roles and respon-
sibilities.

• The functional aspects of the provided service.

• The set of obligations and guarantees imposed on each party related to
the service provision.

• The service quality attributes (i.e., QoS terms) specifying the non-functional
requirements, focused on quality aspects (e.g., service response time) to
be guaranteed during the service provision.

• The timing and condition for the validity of the contract.

This contract is also characterized by a specific life cycle which is tightly
coupled with the service life cycle, as depicted in Fig. 4. Here we describe each
phase of the SLA life cycle and how it is related to the service one.

16

Figure 4: SLA and service life cycle.

The first phase of the SLA life cycle is the SLA discovery and negotiation,
which characterizes the service acquisition stage. Consumers and providers
define a SLA template where they specify the service requirements they re-
quest/offer. After the formulation is completed, Cloud providers publish their
offers in specific repositories, and, then, Cloud consumers can retrieve the offer
that best fits their requirements by means of brokers or discovery services. How-
ever, it is very unlikely that offer/request are already 100% compatible, therefore
a negotiation step between the parties is needed to reach a final agreement. In
case the outcome of this step is positive, a final SLA is produced and signed by
the parties which is then validated and deployed. It has to be said that agreement
negotiation is not always available. In many cases the provider is not willing to
negotiate and the consumer need to choose the proposal that mostly fit his needs.

The next phase of the SLA life cycle is the SLA deployment, which defines
the first step of the service execution. In this phase each SLA signatory party ex-
tract from the final agreement the appropriate configuration information needed
to define the proper role and duties. Therefore, they can configure the service
implementation accordingly.

As next step, the service is actually executed and the SLA is monitored. By
SLA monitoring we mean the assessment of the SLOs defined within the SLA,
by means of measurement techniques which allow to gather real-time informa-
tion about the service status to be compared with the SLOs defined.

This is a constant process and plays an essential role in the SLA life cycle
since all the violations that may occur during the service execution, need to be

17

forwarded to the party in charge for the billing and for penalty enforcement.
In this phase of the SLA life cycle the penalties defined in the SLA are en-

forced and corrective actions are executed by the service provider. If the vio-
lation is not critical, service management actions are carried out, otherwise the
provider can ask the consumer to renegotiate the SLA terms to reduce the risk
of violating the requirements again. Together with penalty enforcement also
billing activities are periodically executed. These activities determines whether
the SLA terms are met, the amount to be paid by the consumer and the overall
penalties to be paid by the provider.

The last phase of service and SLA life cycles is the termination phase where
service consumer and provider terminate service execution and the SLA is archived.

2.5 Smart Contracts

A first definition of smart contracts is provided by Nick Szabo in [65]:

A smart contract is a set of promises, specified in digital form, in-
cluding protocols within which the parties perform on these promises.

A more detailed one is given, instead, in the white paper issued by the Cham-
ber of Digital Commerce [2] which defines a smart contract as a set of contrac-
tual terms and/or rule-based operations, embedded as code within a software,
designed to carry out business logic. A protocol, in the form of an algorithm,
constitutes a set of rules for how each party should process data in relation to a
smart contract.

Essentially, this type of agreement represents the formalisation of an agree-
ment, whose terms, such as payment, confidentiality and quality, are automat-
ically enforced by relying on a previously agreed protocol without the need of
third-party trusted intermediaries.

Such contracts may specify not only the required service and its quality but
also the possible changes at run time of the terms of agreement through the
definition of conditions and actions.

Several application fields have been reported in [2], ranging from digital
identity to clinical trials but they are currently mostly used in the area of cryp-
tocurrencies (e.g., Ethereum and Bitcoin).

18

In the area of Cloud computing, with their automatised enforcement and with
solutions to deal with the dynamic nature of Cloud, the SLAs can be considered
equivalent to smart contracts. However, current SLA definition languages pro-
vide only the possibility to specify static agreements that cannot be automatically
changed at run time, In case adjustments are needed, a renegotiation process has
to take place.

Further motivations and details about the application of smart contracts in
Cloud and a possible use case scenario are provided in Chap. 3.

2.6 SLA Negotiation in Cloud

In the previous section we briefly discussed the advantages of smart contracts
for the SLA specification. However, the adoption of this new formalism intro-
duces also new challenges for the SLA negotiation process. Essentially, in this
process, consumer and provider negotiate over service requirements, guarantee
and obligations aiming at finding a definite mutual agreement.

Different types of negotiation can take place according to the number of
parties involved [6]

One-to-one. This is the most common scenario; a consumer and a provider
directly bargain for the acquisition of an item or a service.

One-to-many. In this context a consumer negotiates with several providers or
businesses.

Many-to-one. This is a less common scenario; different consumers negotiate
with single provider or company.

Many-to-many. Several consumers and providers are involved in the negotia-
tion process. A typical example is provided by the negotiation between
unions and employees where companies cooperate to reach an integrated
agreement that saves their interests and unions bargain to get the best ben-
efits from the employers they represent.

Moreover, each type of negotiation relies on three main components:

19

Negotiation objects. The negotiation objects are essentially the set of terms
subject of negotiation.

Protocol. The rules specifying the negotiation process (i,e.,number of partici-
pants and their roles), the interaction among the negotiators and the legal
actions that the participants can take depending on the state of the negoti-
ation, are the main components of a negotiation protocol.

Decision models. Each party establishes a decision model to elaborate the ne-
gotiation moves to achieve their objectives.

However, when considering smart contracts, some of the negotiation com-
ponents described before, namely objects and models, considerably change. In-
deed, negotiation objects are not fixed, and the conditions and the modification
actions specified by each negotiation party may change. Also, the dynamicity
of the objects considered in a smart contract requires changes of the negotiation
models, currently devised for bargaining over static terms.

A more detailed analysis of the limitations and of current negotiation solu-
tions for the negotiation of smart contracts is presented in Sec. 6, and a new
framework better suitable for this process is presented in Chap. 4.

2.7 Service Scheduling

Scheduling in Cloud Computing refers to the set of techniques and policies
adopted for the autonomous management of services and resources to achieve a
high performance computing and high system throughput [79].

More specifically, the scheduling process defines the order of servicing in-
coming services and the resources to be used for their execution, according to
QoS terms, costs, revenues for Cloud providers, and users experience.

The three main steps that characterizing scheduling, reported in [59], are
hereby described:

Resource discovering and filtering. A resource broker is in charge to discover
resource availability and status information.

20

Resource selection. According to the resource information retrieved by the bro-
ker, the selection step assigns the available resources to all the services to
be executed.

Task submission. Services are finally executed on the assigned resources.

Many approaches to resource scheduling have been followed. They range
from very simple heuristic-based approaches, such as the Minimum Execution
Time and Minimum Completion Time [46] to more advanced ones based on
genetic algorithms and simulated annealing [35, 60]. However, the application
of these solutions on higly distributed environments as those considered by the
Edge Computing paradigm is not straightforward.

Indeed, both resource discover and selection processes developed for the
scheduling algorithms currently used for Cloud, do not take into account infras-
tructural features and user-related information in their decision process.

In Sec. 6 we provide a more comprehensive analysis of the limitations of
current scheduling algorithms for Cloud in the Edge scenario while an innovative
framework for service scheduling in Edge is presented in Chap. 5.

21

Chapter 3

Dynamic Service Level
Agreements

In this chapter we introduce SLAC, a novel SLA specification language specif-
ically devised for Cloud which encompasses a mechanism for the definition of
dynamic modifications of the agreements. This new specification language ad-
dresses the dynamism of the service requirements allowing the specification of
modification actions that can automatically change the service terms, at runtime,
when specific conditions are met. Essentially, this formalism define SLAs as
smart contracts offering an enhanced specification of service requirements, pro-
viding a solution for the Research Question 1.

The main features introduced by the devised language are:

• A formally defined syntax and semantics to have non-ambiguous SLAs;

• A number of software tools to support services deployment;

• A novel mechanism to guarantee flexibility and elasticity to the involved
parties;

• A brokering mechanism that supports multi-party contracts.

The rest of the chapter is organised as follows. Sec. 3.1 gives a compre-
hensive overview on the SLAC language. Sec. 3.2 illustrates the SLAC software

22

Figure 5: Example of a dynamic SLA in the Cloud domain.

framework. Sec. 3.3 describes the experiments showing the advantages of SLAC
and dynamic SLAs.

3.1 The SLAC Language

The novelties introduced by the SLAC language enable the specification of dy-
namic SLAs that allow the parties signing the contract to specify not only the
service requirements and quality, but also the modifications that can be applied
at runtime to change the valid terms of the agreements.

Indeed, the parties can specify, in addition to the initial agreement, the con-
ditions and the actions that, at runtime, can change the enforced terms of the
contract; for example, a consumer can add virtual machines at any time paying
the market price plus 0.01 EUR. This allows the formalisation of the horizontal
and vertical scalability as well as changes in the service levels.

Therefore, this language, at specification level, is compatible with the con-
cept of smart contracts described in Chap. 2.5, since it enables the parties to de-
fine a set of modification actions which can be executed to automatically change
the SLA terms at runtime.

For this reason, throughout the whole thesis we will use the terms dynamic
SLAs and smart contracts interchangeably.

A further example of dynamic agreements is depicted in Fig. 5. The initial
valid terms of the SLA characterizes the “Base” service quality, with 2 Virtual
Machines (VMs) provided and no requirement about Response Time (RT). Dur-
ing service execution, the consumer may request the upgrade of the quality to

23

Figure 6: Overview of the main components of a SLA written in SLAC.

“Gold”, to get more VMs and the guarantee that RT does not exceed a given
threshold. Now, if the RT requirement is violated (due to, e.g., overbooking of
resources), the service quality is downgraded to the “Silver” level, where the RT
requirement is relaxed. The SLA terms are automatically upgraded again to the
“Gold” quality when the service workload goes back to a normal level.

For the sake of readability, we focus on an informal description of the lan-
guage components and their role in the SLA, by resorting to an illustrative ex-
ample. The formal definitions of the SLAC syntax and semantics, specified in
EBNF and denotational style, respectively, are available in an online technical
report [69].

3.1.1 Overview of the Syntax

The distinctive features that differentiate SLAC from other SLA languages can
be summarized by saying that SLAC is a domain specific formal language specif-
ically designed for Cloud services that supports the main Cloud deployment
models, enables the specification of multi-party agreements and permits dy-
namic changes of SLA according to pre-defined conditions.

Fig. 6 depicts the main components of a SLA defined using SLAC. We in-
formally present them via the SLA example, reported in Tab. 1, which refers to
the brokered provision of a IaaS service, assessed by an auditor.

SLA Description. This component defines the validity period (start and
expiration time) and the parties involved in the provision of the services. A
party is defined by its name and its roles. In the running example, the validity of

24

Table 1: Example of a SLAC SLA.

1 Effective From: 01/09/2017 36 replace S VM UNICAM with S VM IMT
2 Expiration Date: 01/09/2018 37 on IMT request:
3 Parties: 38 if L VM > 1:
4 IMT Roles: Broker, Provider 39 replace value of

L VM.Availability with 97%
5 UNICAM Roles: Provider 40 on IMT request:
6 Alice Roles: Consumer 41 replace value of

41 L VM.Availability with 99%
7 Bob Roles: Auditor 42 Invariants:
8 Term Groups: 43 L VM in [0,2]
9 S VM IMT: 44 Monitoring:
10 IMT→ Alice:cCpu 2 # 45 S VM IMT.Availability:
11 IMT→ Alice:RAM 4 GB 46 Frequency: 10 s
12 IMT→ Alice:Availability 99% 47 Window: 1 months
13 IMT→ Alice:Price 0.20 EUR 48 By: Bob
14 S VM UNICAM: 49 S VM UNICAM.Availability:
15 UNICAM→ Alice:cCpu 2 # 50 Frequency: 10 s
16 UNICAM→ Alice:RAM 4 GB 51 Window: 20 days
17 UNICAM→ Alice:Availability 98% 52 By: Bob
18 UNICAM→ IMT:Price 0.16 EUR 53 L VM.Availability:
19 IMT→ Alice:Price 0.20 EUR 54 Frequency: 6 s
20 L VM: 55 Window: 15 days
21 IMT→ Alice:cCpu 4 # 56 By: Bob
22 IMT→ Alice:RAM 8 GB 57 Guarantees:
23 IMT→ Alice:Availability 99% 58 on violation of any.Availability:
24 IMT→ Alice:Price 0.35 EUR 59 if Availability > 95%:
25 Terms: 60 IMT→ Alice: Bonus 1 EUR
26 1 of S VM IMT 61 else:
27 Dynamicity: 62 IMT→ Alice: Bonus 2 EUR
28 on Alice request: 63 on violation of any.Frequency:
29 replace S VM IMT with L VM or 64 Bob→ IMT,Alice: notify
30 replace S VM UNICAM with L VM 65 Billing:
31 on Alice request: 66 accounting: hourly
32 replace value of L VM with old+1 or 67 billing: monthly
33 replace value of L VM with old-1
34 on IMT request:
35 replace S VM IMT with S VM UNICAM or

25

the SLA (lines 1-2) is one year. The involved parties (lines 3-7) are instead four:
two providers (IMT and UNICAM), a consumer (Alice) and an auditor (Bob). The
IMT party has two roles; it acts also as a broker and, when necessary, it may
resort to UNICAM for offering the small VM service to Alice.

Service Description. This component specifies the details of the service and
its quality. It consists of two parts: groups of terms and instantiation of the valid
terms (lines 8-26 of the example). The terms of the agreement express the char-
acteristics of the service along with their expected values. Moreover, for each
term SLAC requires to specify the involved parties, i.e., the party responsible
for fulfilling the term (a single party) and the contractors of the service (one or
more). In our example, for instance, the term IMT→ Alice:Availability 99%

indicates that the party IMT provides to the party Alice the service (i.e., one or
more virtual machines) with an availability of (at least) 99%. The explicit defi-
nition of the involved parties contributes to supporting multi-party agreements,
reducing ambiguity and leveraging the role of the broker. Moreover, it improves
privacy and security of the agreement; only parties involved in the term have
access to it. For example, when the small VM service is provided by UNICAM,
the SLA specification (lines 18-19) indicates both the cost that IMT, as a broker,
has to pay to UNICAM, and the cost that Alice has to pay to IMT, which in fact
is the same she pays when the service is provided directly by IMT. However, the
former information is not accessible to the consumer, who is kept unaware of the
agreements between the broker and the providers.Notably, the language offers a
set of pre-defined metrics devised for IaaS. Yet, new metrics and their measure-
ment definition can be easily defined without affecting the general language. For
a detailed account on this extension procedure we refer to [40].

Another feature of the language is the use of groups to specify terms of
agreements with different granularities. A group of terms is identified by a name
(unique in the contract) and consists of one or more terms that are valid only
inside the group. In the example, we have three groups that represent differ-
ent types of virtual machines: small VMs provided by IMT (S VM IMT) and by
UNICAM (S VM UNICAM), and large VMs (L VM). Notably, to use a group in a SLA
definition, it is not sufficient to define it, but it is also necessary to instantiate
it by specifying the number of instances. For example, the code in lines 25-26
permits to actually deploy one instance of the S VM IMT group in the SLA.

26

Dynamic aspects. This component of the agreement is optional, but it is one
of the main novelties of SLAC. Thanks to this, the user can possible run time
changes of the enforceable terms of agreement, through the definition of Event-
Condition-Actions (ECA) rules. When an event occurs (e.g., a party makes an
explicit request), a condition (defined by an expression) is checked and the ex-
ecution of one or more actions is requested (e.g., the change of the value of a
given metric). These rules, for instance, permit agreeing on unilateral changes
from one of the parties; e.g., it can be agreed that a party can request changes in
the service that can be implemented without the authorisation of other parties.
In our example, the consumer can change the type of VM (lines 28-30) and add
or remove as many L VMs as necessary (lines 31-33). Instead, the broker can
freely change the provider of a small VM service (lines 34-36) and change the
availability of large VMs (lines 37-41), with the constraint that the reduction of
availability is allowed only in case more than one L VM is instantiated. Replace-
ment actions can use a reserved variable name old to refer to the current value
of the term metric or to the number of instances of a given group.

The Invariants section constrains the changes agreed in the Dynamicity

section, by fixing bounds for terms of the contract. When an event triggering
changes of the contract is detected, the corresponding changes are applied only
if they are compliant with the invariants terms. In our example, an invariant is
used to specify that the consumer cannot request more than 2 large VMs.

Monitoring. This SLA component specifies monitoring requirements to ob-
tain information for configuring the monitoring system and defining the audit-
ing agreement. In the example, the Availability metric is monitored by the
Auditor with different accuracy depending on the virtual machine type. For
example, the availability of the (more expensive) large VMs is checked by Bob

more frequently within a smaller time window.

Guarantees. This (optional) component is concerned with the enforcement
of the terms of agreement and specifies the actions to be taken in case of viola-
tions. Specifically, a guarantee is an ECA rule, where the event typically refers
to a term defined in the Terms section of the agreement. In our running example,
if the Availability of any (large or small) VM is violated, but it is still greater
than 95%, the broker needs to give a bonus of 1 EUR to the consumer, whilst if
it is less than or equal to 95% the penalty is doubled (lines 58-62). Moreover,

27

if a requirement about the monitoring frequency is violated (due to, e.g., main-
tenance activity of the provider), the auditor is required to notify the issue to
provider and consumer (lines 63-64).

Billing. Since SLAC enables modification of the valid terms at runtime, it
is necessary to define periods of accounting and the frequency of billing. In
our scenario we defined the accounting period in hours and the billing monthly.
Thus, if the consumer used a small VM for 48 hours and then requested a large
VM, after one month, the service will be accounted for 48 hours at the price 0.20
EUR/h, and at 0.35 EUR/h for the other days of the month.

3.1.2 Informal Semantics

Intuitively, the SLAC’s formal semantics associates a constraint to each Static
SLA. It is formulated as a Constraint Satisfaction Problem (CSP), which is eval-
uated, at design-time, to identify inconsistencies in the specification and, at run
time, to check compliance with the monitoring data collected from the Cloud
system. To support dynamic SLAs, extensions are needed to allow the use of
dynamic CSP [75]. Now, a dynamic SLA is represented as an automaton, whose
states, representing the SLA states, are labelled by constraints, and whose tran-
sitions are labelled by events that trigger the state changes.

At run time, data representing the status of the Cloud are collected by the
monitoring system and rendered as a CSP. Then, the CSPs of (the current state
of) the SLA and of the monitoring data are combined for evaluation. After such
an evaluation, the guarantees specified in the SLA are evaluated and, possibly,
the execution of some action is requested to the Cloud manager. Similarly, the
ECA rules of the Dynamicity section are evaluated; for each applicable rule,
the terms of the Invariants section are checked in order to apply only those
changes that are compliant with the invariants.

More formally, the semantics of a Static SLA, or of a single state of a dy-
namic SLA, is given by a function J·K that given the SLA terms returns a pair
composed of a set of group definitions and a constraint. This pair constitutes the
CSP associated to (a state of) the agreement, that will be solved by means of a
standard constraint solver as described in the next subsection. The automaton
representing the semantics of a dynamic SLA is generated as follows. The ini-

28

Table 2: Semantics at work on our running example.

SLA
Term Groups:

S VM IMT:
IMT→ Alice:cCpu 2 #

IMT→ Alice:RAM 4 GB

IMT→ Alice:Availability 99%

IMT→ Alice:Price 0.20 EUR

Terms:

1 of S VM IMT
Constraints:
#SLA Terms
1 ≤ S VM IMT ≤ 1
#Constraints in the S VM IMT Group
2 ≤ S VM IMT:IMT,Alice:cCpu:0 ≤ 2 ∧
4 ≤ S VM IMT:IMT,Alice:RAM:0 ≤ 4 ∧
99 ≤ S VM IMT:IMT,Alice:Availability:0 ≤ 100
20 ≤ S VM IMT:IMT,Alice:price:0 ≤ 20

tial state of the automaton is a CSP obtained by applying J·K to the terms of the
Term Groups and Terms sections of the SLA specification. Then, all possible
new states are created considering events, conditions and the triggered changes
to the SLA constraints specified in the Dynamicity section and their invariants.

Tab. 2 presents an excerpt of the contract defined in our example scenario
and the resulting constraints. Please notice that only terms and group terms of
the SLA are considered for constraints generation, while additional information,
such as monitoring frequency and monitoring window, are used only as param-
eters (not constraints) for the monitoring system.

Fig. 7 illustrates the automaton resulting from the interpretation of the dy-
namic aspects of our example. All transitions can be executed independently
of the authorisation of the other parties; for instance, the consumer can request
to replace a small VM with a large one and then she can add and remove large
VMs according to her needs. This behaviour is an example of how services scal-
ability can be handled and regulated. The provider, instead, can request to lower
the availability of large VMs, but only when there are two instances of them.

29

Figure 7: The automaton for the running example.

Notably, if the consumer reduces the number of large VMs to less than two, the
availability remains at 97%.

3.2 The SLAC Software Framework

To support the use of SLAC, we developed an open source software framework
that covers the whole SLA life cycle. The current prototypical version of the
framework1 works in a centralised fashion and its modules were developed using
the Python programming language. Fig. 8 illustrates the main modules of the
framework.

The SLAC Web Editor can be used by consumers and providers to define
SLAs, and to offer or request services. The editor performs auto-completion and
syntax verification and was developed using Xtext2, a framework supporting the
implementation of domain specific languages. If a final SLA is defined (e.g.,

1Available on http://sysma.imtlucca.it/tools/slac/
2https://eclipse.org/Xtext/

30

http://sysma.imtlucca.it/tools/slac/
https://eclipse.org/Xtext/

Figure 8: SLAC Management Framework: evaluation process.

due to a previous negotiation or in case of a fixed service), the negotiation phase
is skipped. Otherwise, providers and consumers send their offers/request to a
broker to match and negotiate services.

The Broker matches offers and requests of (dynamic) SLAs. Considering
the difficulties of analysing and matching such SLAs, in [57] we proposed and
implemented a brokering solution that autonomously matches the compatible
offers and defines the final SLA based on the policies and on the preferences of
the parties.

The Service Executor receives and processes the SLA created in the previous
phase and automatically deploys and executes the service; but before doing this
it asks the SLAC Evaluator to check SLA’s consistencies and also filters the
service specifications related to the deployment of the services. The Executor
uses a scheduler, based on machine learning solutions defined in [73], that we
have integrated within the Cloud management tool OpenNebula3.

The SLAC Evaluator accepts as input a SLA, parses it and generates a set
of constraints, corresponding to the specification along with the service defini-
tion, that are sent back to the Service Executor (also in case of changes in the
state of the SLA). After that, the Evaluator sets up the Monitoring System (in
our case, Panoptes [74]) to retrieve the data concerning the metrics related to
the SLA. Then, the SLA Evaluator receives the monitoring data and transforms
them into a set of constraints, whose satisfiability is verified together with SLA
constraints. In case of non-satisfiability, the SLA guarantees are evaluated and

3http://opennebula.org

31

http://opennebula.org

the due actions are activated. The Evaluator parses the SLA with the ANTLR44,
by relying on the language’s EBNF grammar. The constraints are handled by
the Evaluator using the Z3 solver [20]. It is worth noticing that not all monitor-
ing data are required when evaluating constraints; thus evaluation with partial
observations of systems is possible.

The Billing and Penalty Enforcement module calculates costs and penalties,
and bills the parties when scheduled or when traces and events (e.g., violations
or changes in the service) are received.

Our software framework supports and automates all phases of the new life
cycle proposed in Sec. 2.4:

Service Discovery. SLAC supports the definition of the needs of consumers and
available resources of the providers and integrates the solution provided
in [57] to verify the compatibility of offers and requests.

Negotiation. A brokering solution to support negotiation of dynamic SLAs is
proposed in Chap. 4 and integrated in our framework.

Deployment. The Service Executor is integrated with the OpenNebula toolkit
to enable the automatic deployment of services.

Monitoring. The monitoring system Panoptes is automatically configured to
monitor the terms of the SLA, while the Evaluator listens to events or
requests, processes the modifications, logs them, and requests the changes
of terms to the Service Executor.

Billing and Penalty Enforcement. A specific framework module is responsi-
ble for this phase of the life cycle.

Termination. The SLA termination is handled by the Billing and Penalty En-
forcement module.

3.3 Experiments

This section presents our experimentations to assess the benefits of the frame-
work for both providers and consumers.

4http://www.antlr.org/

32

http://www.antlr.org/

3.3.1 Provider’s Benefits

To illustrate the benefits of dynamic SLAs, we use a Cloud testbed with Cloud
services provided to multiple consumers. We compare three different approaches:
static SLAs (SLAs do not change during their lifetime), renegotiation (parties
can renegotiate the existing SLAs) and dynamic SLAs (terms of agreements can
be dynamically changed). For the comparison, we analyse the number of viola-
tions, the penalties and the total revenue of the provider. The obtained results,
discussed below, demonstrate the flexibility of SLAC and its capacity to reduce
the number of SLA violations and to improve the revenue of the involved parties.

Use Case Implementation

For implementing the use case, we have embedded the SLAC software frame-
work in a Cloud testbed. The resulting Cloud system has several components
(see Fig. 9). The SLAC Evaluator parses and evaluates SLAs for the service
specification and requirements, and sends the outcome to the Service Executor.
This component is specifically designed to guarantee the correct deployment
and execution of services, and to manage the Cloud infrastructure; it schedules
services using the approach presented in [72, 73]. The Panoptes Monitoring Sys-
tem provides the status of the system and services to the Violation Risk Analyser
and to the SLAC Evaluator, and is directly configured by the Service Execu-
tor. Specifically, the Violation Risk Analyser measures the risk of the running
services of not meeting the deadline specified in the SLA, and notifies the Rene-
gotiation Decision System. The violation risk analysis is performed using the
Supervised Random Forest technique [9], and is based on the monitoring in-
formation and on the SLA itself. Finally, the Renegotiation Decision System
creates proposals for modifying the SLA and decides whether to accept changes
in the services.

In the experiments, each service is processed according to the workflow de-
scription depicted in Fig. 10. It is evaluated only once during its execution life-
time, at time tr, a random time between the starting and the deadline of the
service. In case of static SLAs, the services are computed employing the SLA
defined at design time. When the service ends or the deadline is met, the system
verifies whether the SLA was violated and determines the price and the possible

33

Figure 9: Components of the use case implementation.

penalties. In the renegotiation approach, the violation risk is measured first. If
it is not higher or lower than given thresholds, the service is provided normally
according to the SLA defined at design time. When renegotiating, a party sends
a SLA proposal to the other party, who analyses it according to its priorities
using a Fuzzy Decision System (see below). If the new agreement is accepted,
the service continues and it is evaluated considering the new SLA, otherwise
the initially defined agreement remains valid till the end of the service. The dy-
namic approach is similar to the renegotiation one, the only difference is that
the involved parties do not have any active role. Indeed, in case of low or high
violation risk, the agreement is modified automatically since the changes are
pre-defined in the SLA. In both cases, to motivate or compensate a party for the
changes, a bonus is given to the other party when a change is performed dur-
ing the service execution. Although the bonus a priori is usually much smaller
than the bonus required for renegotiating the SLA during the execution, for the
sake of simplicity, we opt to use the same range of values of the renegotiation
approach.

Fuzzy Decision System

To decide whether to accept or refuse a new agreement, the renegotiation ap-
proach needs to know the difference between the original agreement and the
SLA proposed at renegotiation time. In our use case, to simulate this process,
which is typically carried out by a human or by an autonomous decision system,

34

Figure 10: Flow diagram of the service processing for the Static, Renegotiation and
dynamic approaches.

we designed a fuzzy logic decision support system inspired by the approach
presented in [22].

The decision system takes as input the rates of change for the considered
parameters, e.g., the increment in price and decides whether the new SLA is
beneficial, neutral or not beneficial to the party. In the case of consumers, the
system takes into account also their priorities. In our use case, the inputs are:
the deadline for the service (D), the price to be paid for the service (Pr) and the
penalty in case of violation (Pe). Tab. 3 exemplifies some rules that are used
by the provider’s fuzzy decision system. For a complete account of the fuzzy
rules and the framework used in the experiments, we refer to the SLAC project’s
website [68].

35

Table 3: Fuzzy rules of the provider decision system.

Rule Evaluation
Pe increases not beneficial

Pr or D increases beneficial
Pr and D increase very beneficial
Pe increase < 10% neutral

Evaluation

The experiments were conducted with a Cloud with 2 physical machines, pro-
viding 12 heterogeneous VMs, in which agents are used to execute services.

Services are generated taking into account the distribution of a trace of a
real-world Cloud environment, the Google’s Cloud dataset [55], and the same
services are executed using all three described approaches. Each service has an
associated SLA, which is created along with the service, according to an esti-
mation of the resources necessary to finish the service within the completion
time. The considered features are: CPU, RAM, requirements, disk space, com-
pletion time and network bandwidth. Different types of services are used in the
experiments, such as web crawling, word count, number generation and format
conversion, which are close to real-world applications [47]. Service’s penalties
and prices are generated along with the SLA and are based on the service execu-
tion time and on a randomly defined number. Penalties are always higher than
the price, since the price is paid even if a service is violated.

The training set for the SLA Risk assessment module is built for every ex-
periment round by executing 1000 services. Then, it is used to train the machine
learning algorithm to provide the probability of classifying a new service into
the violated and not violated classes. In each round, new services are gener-
ated (for creating the training set and for testing the approaches) and the same
services are executed for all approaches. The number of services ranges from
100 to 500 (with 50 services interval). We assume that the services’ arrival is a
Poisson process, i.e. the time between consecutive arrivals has an exponential
distribution and that a service arrives, on average, every 0.7 seconds.

The Fuzzy decision system accepts proposals which are beneficial to the
requested party. Therefore, the requester and the Renegotiation decision system

36

usually offer compensations for the requested party that fulfills the need of the
requester; for example, if the violation risk is high, the provider requests more
time to finish the service but offers a discount on the price and a higher penalty.
The definition of the exact parameters of the considered metrics of the SLA
modification proposal, which are used by the renegotiation and the dynamic
approaches are randomly generated within a predefined range. The results of

100 150 200 250 300 350 400 450 500

Number of Services

100

200

300

400

500

600

700

800

900

P
e
n

a
lt

y

Dynamic
Renegotiation
Static

100 150 200 250 300 350 400 450 500
Number of Services

0

500

1000

1500

2000

2500

3000

Re
ve

nu
e

Static
Renegotiation
Dynamic

100 150 200 250 300 350 400 450 500
Number of Services

10

20

30

40

50

60

70

Vi
ol

at
io

ns

Dynamic
Renegotiation
Static

100 150 200 250 300 350 400 450 500
Number of Services

0

20

40

60

80

100

120

M
od

ifi
ca

ti
on

s

Dynamic
Renegotiation
Requests (Renegotiation)

Figure 11: Performance analysis.

these experiments are illustrated in Fig. 11 where different numbers of services
are considered. Tab. 4 presents the overall results, relative to the renegotiation
and the dynamic approach, expressed as percentages: in the case of penalties and
revenue, the results correspond to a comparison with the static approach, whilst
for the other features they result from a comparison with the total number of
services. Considering the parameters defined for the renegotiation approach and
the benefit threshold used in the experiments, around 60% of the modification
requests were accepted and carried out. Using the dynamic approach, 21% of
the services were modified mainly due to high risk of violation (more than 19%).
The total number of modifications is relatively high due to the accuracy of the
machine learning algorithm, in which we prioritised the identification of high-
risk SLAs. Consequently, the number of false positives increased, i.e., some
SLAs that normally would not be classified as high-risk were considered so.
In the renegotiation and dynamic approaches, 14% and 19% of the SLAs are

37

classified as high-risk.

Table 4: Experimental results.

Renegotiation Dynamic
Modification Requests 24% 0%

Modifications 13% 21%
High Risk 11% 19%
Low Risk 0.1 % 0.2%

Violated High Risk 19% 14%
Violated Low Risk 0% 3%

Penalties -31% -64%
Revenue 13% 22%

Overall, the flexibility provided by the dynamic approach increased the rev-
enue by 22% and reduced the penalties by 64%, whilst these measures were only
13% and 31% for the renegotiation approach.

Experiments’ Discussion

In the experiments, the benefits of renegotiation and dynamicity heavily depend
on the accuracy of the violation risk analyses. The results show that, although the
penalties were reduced by 64%, the impact on the total revenue was an increase
of around 22%. The main reasons for this difference are: (i) the limited impact
of the penalties on the total revenue due to the average number of violations; (ii)
the compensation provided to the consumers when a modification is requested,
which lowers the price paid for that service and sets higher penalties in case of
violation; (iii) the number of modified SLAs which were violated since most of
the modification requests increase the penalty as a compensation for the higher
service completion time. This suggests that performing an analysis to define
the additional time required to avoid violations instead of generating a random
number could improve the total revenue.

The experiments were focused on avoiding SLA violations, and in few cases
dynamicity and renegotiation were used to improve the revenue of the parties
(only around 1.4% of the services were considered low-risk). In most scenarios,
these mechanisms can be more aggressively employed to improve the revenue,
exploiting improved accuracy of the risk analyser.

38

Also, the parameters defined in the SLA modification proposal may have a
considerable impact on the results. We adjusted these parameters to simulate a
real-world situation, where every party defends his interest.

We can conclude by saying that the results demonstrate that SLAC provides
flexibility for the parties and significantly optimises SLA management. And,
it can always be used together with the renegotiation approach in case not all
relevant modifications are included in the SLA.

3.3.2 User’s Benefits

The benefits of dynamic SLAs for consumers are manifold; here we focus on the
economic impact by discussing a scenario where we compare static and dynamic
SLAs. We do not cover the benefits of having guarantees for the dynamic part
of the service, since these benefits are difficult to measure.

In our scenario, we compare standard Cloud offers, using static SLAs, with
offers based on dynamic SLAs. The former provide a fixed amount of re-
sources for a fixed price during the duration of the SLA, while the latter provide
more flexible solutions. The dynamic approach is common in various domains;
e.g., telecommunication companies normally offer a mobile plan that provides
a bonus (more calls and messages) for the first six months and then the service
is changed. In the Cloud domain, there are similar offers but they are typically
defined in natural language and cannot be automatised.

In our scenario, an infrastructure provider offers one static service, where a
VM costs 0.36 EUR, has 2 GB of RAM and 1 CPU; and two dynamic services,
with the same initial characteristics. In the first dynamic offer, called Small, the
consumer must deploy a minimum number of VMs for the duration of the SLA
but has two advantages: the price, which is 0.32 EUR, and the capacity of the
VMs that, between 22:00 and 7:00, have 1 additional GB of RAM. The second
dynamic offer, called Big, requires at least twice the minimum number of VMs
of Small, but the price is 0.29 EUR and at night the active VMs have additional
2 GB of RAM.

The consumers in this scenario need an infrastructure to run their websites.
Thus, the performance of VMs can be also simplified to the maximum requests
per hour supported by each VM. All the offers during the day support 1200

39

Figure 12: Experiment scenario used to measure the economic impact for con-
sumers.

requests/hour, considering an average size of page in our dataset. At night, the
static offer supports the same number of requests per hour, i.e. 1200, while the
Small supports 1400 and the Big 1600. The change of the capacity at 22:00 and
at 7:00 is automated through the definition of dynamic SLAs, which describe
also the minimum VMs per hour.

To measure the impact on consumers, we use a dataset with the real traces of
all Wikipedia HTTP requests for 20 days of October 2007 [67]. Then, each time
the experiment is run, we select randomly 50 pages of the dataset, filter only the
request of this dataset and create a time-series of the total requests/hour from the
website. These filtered data are then treated as monitoring information and are
passed to the Load Prediction module together with the policy of the consumer
and the list of the aforementioned offers. For this module, we adopted the time-
series forecasting tool Prophet5, which is based on an additive regression model
that considers growth, seasonality and holidays. With this module, we predict
the number of requests for the next 100 hours and send this information to the
Decision module. The latter decides which of the offers suits better the needs
of the consumer, and, after signing the SLA of the selected offer, on every in-
teraction decides whether to scale up/down the number of VMs (respecting the
minimum VMs in the chosen offer). This scenario is executed 50 times for each
minimum number of VMs of the dynamic offers and we measure the reduction
of the total cost of the Small or Big, selected for the whole duration of the agree-
ment for each website, when compared to static offer. Fig. 12 illustrates this
scenario.

The results are the average of 50 runs with 50 random websites and are pre-
sented in Tab. 5. The reduction of the cost for the consumer depends heavily on

5https://facebookincubator.github.io/prophet/

40

Table 5: Average cost reduction of dynamic SLAs in comparison with static ones.

Small: Min VMs/h Big: Min VMs/h Cost Reduction
1 2 25.68%
2 4 21.94%
3 6 16.16%
4 8 8.15%

the type of website. Intuitively, sites with low traffic are penalised by the fact of
a minimum number of VMs and the discount in the price might not compensate
this disadvantage. In any case, the total reduction in cost for the consumers when
using dynamic SLAs is up to 25%, with 1 and 2 VMs as minimum, for Small
and Big offers respectively, and has 8% as lower bound, with 4 and 8 VMs.

41

Chapter 4

Smart Contract Negotiation

One of the main challenges introduced by the formalism presented in the previ-
ous chapter is the negotiation of offer/request formulated with this new language,
as stated in the Research Question 2. Indeed, matchmaking and bilateral nego-
tiation techniques mostly adopted for the negotiation of traditional contracts,
cannot deal with the dynamism introduced by this new type of smart contracts,
as previously described in Sec. 2.6.

In light of this challenge, we devised a novel framework for the automated
negotiation of smart contracts in Cloud, that is presented in this chapter. More
specifically, the main contributions of the framework are:

1. The definition of a simple formal language to specify interactions between
offers and requests modelled as SLAC expressions;

2. An open source framework for adaptation, consistency check, verification
of contracts properties and suggesting the changes necessary for reaching
an agreement;

3. A methodology for autonomous negotiation that, by relying on the util-
ity functions and on the level of flexibility of providers and consumers,
determines the costs of agreeing.

The rest of the chapter is organised as follows: in Sec. 4.1 we present a
formalism for the definition of smart contracts and for offers and requests of

42

Cloud’s providers and consumers. In Sec. 4.2 we discuss negotiation frame-
work, utility function and compatibility check, whilst in Sec. 4.3 we contrast the
performance of our approach with more classical ones.

4.1 Modelling Smart Contracts

For the negotiation of SLAs expressed with SLAC, or smart contracts in general,
it is needed to properly model the contract offer/request in a way suitable for the
tasks usually involved in the negotiation process, as compatibility analysis and
terms bargaining.

We have devised a formalism for modelling smart contracts suitable for these
tasks. Essentially, we model the behaviour of SLAC contracts in terms of tran-
sitions and states (i.e., transition system) defining a model which is also suitable
for contract negotiation and management tasks.

Before introducing our formalism, we will briefly describe the dynamic parts
of SLAC that are relevant for the negotiation process.

To define offers and requests in SLAC in addition to static part of the SLA,
i.e., the initial valid terms of the SLA, the parties involved in the negotiation
may define how the valid terms may change. Here, we focus on the dynamic
definition of the SLA (for details on the static part we refer to [71]). This def-
inition requires specifying: the type of action; the condition of the action; and
the modifications to be carried out in the SLA. The type of action defines either
the action that the party wants to include in the agreement (demands); or the
concession of an action in case the party demands it (grants). The condition
is an abstraction encompassing several types of events such as, term violation,
consumer or provider request (without need for authorisation) and request au-
thorisation. Three types of modifications can be applied once the conditions are
satisfied: a new term is introduced in the SLA (add term), or an existing term is
removed (delete term) or modified (replace value of).

To model this specification, we devised a formal model which allows us to
explicitly describe the behaviour of smart contracts in terms of state transforma-
tions, in a stepwise fashion. Contracts are described as pairs (P,σ) where P is a
term of a process description language that permits describing the actual actions
peers are willing to perform and σ represents the process data, i.e., the values of

43

specific attributes of processes in a given state. The transitions between states
are defined by means of a set of rules (Sec. 4.1.2).

4.1.1 Syntax

To specify the actual states of a process, we need to introduce the syntactic ele-
ments for denoting processes and their data. A process expression describes the
process components as a set of syntactic operators, whereas the process data is
expressed by a function which associates variables used by process with their
values. We have σ : X → D , where X denotes a set of variables and D a set
of values. To modify σ we use an update operation σ[v/x] which substitutes the
value associated to variable x with the value E(e)σ obtained by evaluating ex-
pression e after replacing its variables with their values in σ. Moreover, we will
use updates of the form z := e to assign the value resulting from the evaluation
of e grounded in σ to variable z. We shall call them upd and use upd to denote
sequences of updates.

A process expression is a term generated from the BNF-grammar reported
in Tab. 6. The term P denotes a process which can be identified by a process
constant K ∈ K ; the action prefixing operator µ(upd).P denotes a process that
executes the action µ(upd) and then behaves as the process P. The term µ ∈ L
represents an action label and upd denotes the sequence of updates performed
together with the action. The term P+P denotes the non-deterministic choice
expressing an alternative among possible behaviours; the parallel composition
operator, P | P, models the parallel execution of processes. The conditional
operator permits building a process whose behaviour depends on the value of a
boolean expression b ∈ B and on the values of the variables in σ.

4.1.2 Semantics

The semantics of this formalism are given by a set of inference rules of the form:

premises
conclusion

Both premises and conclusion are represented by triples of the form
(
P,σ
) µ−→(

P′,σ′
)

[21]. The term
(
P,σ
)

represents the state of the automata, where P is

44

Table 6: Syntax.

process names K
variables X

action labels L
boolean expression B

process P ::=

null process 0 |
process constant K ∈K K |

action prefixing µ(upd).P |
alternative choice P1 +P2 |

parallel composition P1 | P2 |
conditional if b then P else P

the process expression and σ is the function providing the current values of the
variables associated to that state. The transition

µ−→ between two states denotes
that

(
P,σ
)

evolves in
(
P′,σ′

)
after the execution of the action µ modifying both

the process and the data. Therefore, we defined a set of inference rules for
each operator described in Sec. 4.1.1 required to specify the behaviour of smart
contracts in Cloud and reported in Tab. 7.

This set of semantics rules can be conceptually divided in two subsets. The
set of rules which model the dynamic behaviour of a single contract and the
set of rules needed to model the synchronisation between two contracts. In the
remainder of this section we will provide a description of all the transition rules
defined.

The Definition rule states that if the process
(
P,σ
)

can execute the action µ
and evolve in (P′,σ′

)
then the process named as K, where K is a process constant

identifying the process (P,σ
)
, can perform the same transition (P,σ

) µ−→ (P′,σ′
)
.

The Update rule describes the data update action. Given a data expression
upd, as defined in Sec. 4.1.1, a process executes the action µ, parametrised by
upd, that updates the variable values contained in upd and then behaves like P.
Essentially, this rule can be used in order to describe the effect of a transition
from one state to another one in a smart contract, modelling the modification
applied to the term values.

45

Table 7: Semantics.

upd = {. . . ,xi := ei, . . .} σ′ = σ[. . . ,E(ei)σ)/xi, . . .](
µ(upd).P,σ

) µ−→
(
P,σ′

) (Update)

(
Q,σ

) µ−→
(
Q′,σ′

) (
P,σ
) α−→

(
P′,σ′

)
(
P,σ
)
|
(
Q,σ

) γ(α,µ)−−−→
(
P′,σ′

)
|
(
Q′,σ′

) (Sync)

(
P,σ
) µ−→

(
P′,σ′

)
(
P,σ
)
|
(
Q,σ

) −µ−→
(
P′,σ′

)
|
(
Q,σ′

) (Inter)

(
P,σ
) µ−→

(
P′,σ′

)(
P,σ
)
+
(
Q,σ

) µ−→
(
P′,σ′

) (Choice)

(
P,σ
) µ−→

(
P′,σ′

)
E(b)σ= true

if b then
(
P,σ
)

else
(
Q,σ

) µ−→
(
P′,σ′

) (If (true))

(
Q,σ

) µ−→
(
Q′,σ′

)
E(b)σ= false

if b then
(
P,σ
)

else
(
Q,σ

) µ−→
(
Q′,σ′

) (If (false))

(
P,σ
) µ−→

(
P′,σ′

)
K ,

(
P,σ
)

K
µ−→
(
P′,σ′

) (Definition)

46

We defined also the operators Choice modelling the non-deterministic com-
position of two processes, expressing the possible execution progresses deter-
mined by an external action µ.

The conditional rules If, instead, evaluates the boolean expression E(b)σ
over the values of the current process data σ and then evolves either in

(
P′,σ′

)
or in

(
Q′,σ′

)
according to the result of the evaluation.

The rules Inter and Sync describe, instead, how the synchronisation between
two processes evolves. These rules are not directly used for modelling a single
contract but they will be used in the next section to specify a more complex
model, based on the composition of the models representing the request and the
offer, useful for the negotiation process.

The rule Inter models the interleaving of the actions of the two processes,
while the the Sync operator, instead, models the synchronisation between two
processes whenever they are willing to execute complementary actions. The
function γ(α,µ) is fundamental to model compatibility between the planned ac-
tions of the two components.

4.1.3 An Example

We now show how to model a smart contract and a consumer service request,
depicted in Fig. 2, with the formalism we devised. Initially we do not consider
the synchronisation of offers and requests. The textual representation of the con-
tract is reported in Tab. 8. The Term section describes the initial valid terms of
the contract, whilst the Dynamism describes the set of dynamic actions. The
formal specification of this contract is the following:

(
P,σ0

)
=
(
D1+D2+G1,σ0

)
where

D1 = if σ(vm) == 2

then µ
(
vm := 4,rt := 20

)
.
(
P,σ
)

else 0
D2 = if σ(vm) == 4 and σ(rt) == 20

then µ
(
vm := 4,rt := 30

)
.
(
P,σ
)

else 0
G1 = if σ(vm) == 4 and σ(rt) == 30

then α
(
vm := 2

)
.
(
P,σ
)

else 0

The pair
(
P,σ0

)
specifies the process expression P and the process data σ0

47

that associates appropriate values to all process variables. In this example, the
process is expressed through the non-deterministic choice among three different
processes, each of them representing one action. Thus, considering the format
of the actions, we specify each action in our formalism using the conditional
operator defined in our language. For example let us consider the action D1 in
Tab. 8, where is defined a guard condition on the VM term that, if satisfied, al-
lows the consumer to replace the number of VMs and to add a new term in the
contract. Therefore, this action can be clearly specified through the conditional
operator described in Tab. 6, where the boolean expression E(b)σ0 describes
the guard condition evaluated on the value of a variable vm storing the current
value of the VM term and where the action µ models the action that updates the
current process data according to the modifications defined in D1. The remain-
ing processes D2 and G1 have the same structure as D1 and similar meaning.
Another difference is given by the action name used for the action G1 which
differs from the others actions in order to point out that the difference from the
granted to the demanded actions. Therefore, we can model a dSLA as a process
in our formalism, whose behavior is described by the LTS of Fig. 2 that can be
obtained by using the inference rules introduced in Tab. 7.

Table 8: Consumer’s SLA excerpt.

Terms:
VM:2

Dynamism:
On consumer request:

if VM==2
then replace value of VM with 4

and add term RT 20ms
if VM==4 and RT==20

then replace value of RT with 30ms

On provider request:
if VM==4 and RT==30

then replace value of VM with 2
and remove term RT

48

Figure 13: Autonomous negotiation methodology.

4.2 Autonomous Negotiation of Smart Contracts

In the previous section we defined a formal language for modelling the interac-
tion of offers and requests. However, precise matching offer/requests is rarely
possible because of the expressiveness of smart contracts and because it requires
compatibility at each single state and for each transition. A methodology thus
is needed for the autonomous negotiation of smart contracts. The main steps of
this methodology are reported in Fig. 13. It demands first (i) to evaluate com-
patibility of a request and an offer (Compatibility Verification - Sec. 4.2.1). In
case of incompatibility, (ii) it looks for the motivations and suggests changes to
obtain compatibility (Incompatibility Analysis - Sec. 4.2.2). Finally, based on a
utility functions and on a minimal thresholds for accepting the solution, (iii) the
methodology evaluates, according to the suggestions in the previous step, the
possible solutions and selects the best one according to the utility functions of
the involved parties (Solution Evaluation - Sec. 4.2.3).

4.2.1 Compatibility Verification

The compatibility verification has four main steps: generation of the automata
for the offer and for the request, consistency and property verification, closure
operations on the generated automata and development of a new model for veri-
fication of the compatibility between request and offer.

The first step generates two automata, one to model the offer and another
to model the request. The initial state of these automata is the same since we
assume that a negotiation over the initial terms of the contract has already taken
place.

49

The second step of the compatibility verification looks for errors in the spec-
ification of the smart contract, which may generate, for example, a subsets of
unreachable states (an undesired behaviour).

The third step performs a closure operation over the transitions of the au-
tomata. For each pair of nodes connected by a transition modelling a demanded
action, it is checked whether in the counterpart there exists a transition between
these nodes representing a granted actions. If such transition is not available,
it is checked whether there is a sequence of only granted actions between the
two nodes and from all possible intermediate nodes there is no outgoing arc de-
manding transitions by the counterpart. In case these conditions are satisfied we
add a transitions between these nodes, in the counter part automaton. The new
transition carries information to be used for checking compatibility of request
and offer process.

The last step, develops a compatibility model which detects the reasons of
incompatibility and produces a new automaton obtained as the parallel compo-
sition of the offer and request automata as specified by the Sync and the Inter
rules in Tab. 7.

Starting from the initial state, the γ function of the Sync operator checks the
compatibility of demanded and granted actions. If they are compatible the au-
tomaton evolves to a new state whose label is given by the output of γ and the
new set of possible actions is given according to the set of the possible negotia-
tors’ actions in the new state.

If they are not compatible (i.e., demanded but not granted) the Inter operator
defines the transition to a new state whose label denotes incompatibility and the
new set of actions is given by the possible negotiators’ actions in that state.

The obtained model is a new automaton containing all states and transitions
of the request and offer automata with new labels on the edges that contain the
information needed to check compatibility. Different labels are used to specify
if the transitions are matched: missing transitions, i.e., the actions demanded
but not granted, are denoted as −Y where Y is the action id; ∗X|Y represents
the matching of a demanded action X with the granted action Y; and +X|SAT
specifies that the action X is not directly provided by the counterpart, but it is
still compatible due to the transitivity closure, which denotes the availability of
the counterpart to accept this actions by adding a new edge (SAT).

50

Figure 14: Compatibility model of requests and offers in Fig. 2.

To better understand how this model is computed, let us consider the service
request and offer automata in Fig. 2. The resulting compatibility model, obtained
as the parallel composition of these two automata, is depicted in Fig. 14. No-
tably, between “Base” and “Gold” there is no immediate matching of demanded
and granted transition. Nevertheless, we can still define a transition matching
(+C|SAT) since we can apply the transitivity closure between these states in
the provider’s automaton, denoting his willngness to grant the transition even
though it was not initially exhibited. However, there is neither a direct nor an
alternative matching for the consumer’s demanded transition between “Gold”
and “Silver”. In the model we report this missing passage by relabelling the
transition as missing (-C). Notably, in the new automaton only the demanded
missing actions are included, whereas the granted missing actions are not (e.g.,
from “Silver” to “Base” in the consumer’s automaton). These actions indicate
only the party’s availability and do not affect the overall party’s compatibility
if the counterpart does not demand them, therefore, they are not included in the
final agreement.

4.2.2 Incompatibility Analysis

This step verifies the main causes of incompatibility and provides a set of sug-
gestions of modifications in the service request and offer to reach an agreement

51

suitable for both parties. The core component of this process is the compatibility
model generated in the previous section. All the missing paths in the automaton,
i.e., the set of transitions and states requested by a party but not provided by the
counter part, are detected. All the model transitions labelled as −Y are consid-
ered and modifications to be applied by either the consumer or the provider to
solve the compatibility issue for each missing path are proposed. The proposed
modifications are somehow straightforward, they consist in demanding to the
party requiring a given missing path to renounce to it or to the counterpart to add
it to its proposal.

4.2.3 Solution Evaluation

The set of all valid combinations of modifications, that are the outcome of the
incompatibility analysis, are the possible solutions for adapting requests and of-
fers in order to find an agreement between the parties. We evaluate each solution
according to the following procedure: we first adapt the compatibility model ac-
cording to the solution, then use the utility functions provided by each negotiator
to evaluate the quality of the new model and verify whether they are higher than
the threshold provided by the parties. After verifying all possibilities, we select
the best solution, considering both utility functions.

Although any kind function can be implemented by the parties, in Eq.4.1, we
propose an example utility function to be used in our experiments. This function
provides the overall score of a solution s measuring its quality by a preference
score u(s), penalized by an adaptation cost c(s).

U(s) = u(s)− c(s) (4.1)

The preference score u(s) measures the utility of the current solutions s for
the negotiators n proportionally to the number of transitions matched T s

m,n over
the number of the transitions requested T s

r,n as in Eq. 4.2. In other words, this
function measures the similarity of the initial offer or request with the proposed
solution.

un(s) =
|T s

m,n|
|T s

r,n|
(4.2)

The adaptation cost cn(s), instead, penalises the quality of a solution s for the

52

negotiator n as function of the ratio between the transitions T s
mod,n to be added

or removed in the original automaton over the total number of transitions T s
o,n

it contains. In this way we evaluate the cost of a solution, penalising the ones
which have a big impact on the original automaton.

cn(s) = f

(
|T s

mod,n|
|T s

o,n|

)
(4.3)

The definition of the cost function is crucial for the evaluation process and can
vary according to the negotiator’s strategy. For instance, the adoption of a cost
function that considerably penalises the modifications applied will yield a low
overall utility score for solutions providing a high preference score. Moreover,
each negotiator defines a preference threshold Wn ∈ [0,1] that specifies the over-
all quality that the new agreement, obtained after the application of s, should
satisfy to be accepted.

4.2.4 Use Case Example

To illustrate the devised negotiation process, we define a scenario where a broker
receives a consumer’s service request and attempts to find providers matching his
request. The request and offer are depicted in Fig. 2. Let us assume that the con-
sumer adopts a linear cost function in the utility function in Eq. 4.1 and defines
the preference score to be satisfied as Wc = 0.9. The first step is the compatibility
verification of the request and offer. The broker generates and analyses the com-
patibility model depicted in Fig. 14. The offer and request are incompatible due
to the missing transition (labelled−C) between “Gold” and “Silver”. Therefore,
the initial utility score for the consumer is Uc =

1
2 = 0.5 since only one demanded

transition is granted by the provider through the transitivity closure. Thus, the
incompatibility analysis process elaborates suggestions to solve this problem. In
this case, only two suggestions are formulated: either the consumer removes the
transition “Gold” to “Silver” or the provider includes this transition in the offer.
Then, the solution evaluator applies both solutions, iteratively, in the compati-
bility model and evaluates the utility score for the consumer. By removing the
missing transition from the consumer’s request, the utility score of the new pro-
posal is Uc =

1
1 −

1
3 = 0.66 . This solution maximises the preference score, since

53

after removing this transition from the original request we have a full matching
of the other ones. However, since we use a linear cost function to penalise the
modifications of the original request, the preference score is penalised in 0.33 (1
modified transition over the three initially defined). By applying the other solu-
tion, instead, the utility score for the provider is Uc =

2
2 −0 = 1. The preference

score is still maximized, since the provider adds the demanded transition and
moreover there is no penalisation cost because the solution is not affecting the
consumer’s request. Therefore, as the provider does not have specific require-
ments, we can consider the second solution as the optimal one since the utility
score satisfies the consumer’s preferences.

4.3 Validation of our Approach

In this section, we present the experiments, where we analyse the number of
matches between a dynamic request and 100 dynamic offers from different providers.
The experiments compare our approach with two additional ones in terms of
providers matches. The first one only matches providers, whose offer is 100%
compatible with consumer’s evolving needs. The second one, based on [28],
takes into account only the initial requirements of the consumer and matches
with providers that satisfy his requirements at the start without worrying about
future needs of the peers. With our experiments, we demonstrate that flexible
solutions for the negotiation of smart contracts are necessary and that matching
dynamic offers and requests is not only feasible but that, with the right level of
flexibility, we can get close to the number of matches of the second approach,
which is limited to static smart contracts negotiation.

4.3.1 Scenario

We set up a Cloud scenario where consumers send service requests to a broker,
who seeks among 100 providers those that can satisfy the consumer’s require-
ments. The service request and offer are formalized through a smart contract
composed of static and dynamic parts. In the static part we defined 3 negotiable
terms (price, response time and number of VMs) and assign, for each term in of
the negotiator n, a range of acceptable values [xn

i,min,x
n
i,max] together with a pref-

54

erence score wn
i representing the importance of the value i for the negotiator n.

In the dynamic section, instead, we defined what parties demand and grant to the
counter parties, as described in Sec. 4.1. It specifies the actions parties permit
and require in the agreement, including the conditions to change the valid terms
of the agreement. In this experiments, the condition and modification actions are
randomly generated. We analyse the provider matching rates of three different
negotiation approaches:

1. Bilateral negotiation (BN). Only the static part of the smart contracts is
considered in the negotiation. Of course, it is easier to find compatible
providers when only an agreement on the initial terms is needed. We in-
cluded this approach in the experiments to provide insights on the differ-
ences between negotiating static and dynamic smart contracts. We imple-
mented this solution based on [28], which defines a counteroffer genera-
tion mechanism allowing the negotiator’s party to modify the term values
at each negotiation round, adopting a time-dependent strategy, to max-
imise the overall utility of the agreement. We chose this approach since
it is commonly used as the baseline comparison for negotiation in Cloud,
for example, in [18, 85].

2. Smart contract matchmaking (CM). The broker verifies whether each providers’
offer is 100% compatible with the consumer’s requirements of the static
and dynamic sections. This approach is used to show that, without a flex-
ible solution, dynamic smart contracts are rarely compatible.

3. Smart contract autonomous negotiation (AN). The broker uses the pro-
posed approach to adapt the consumer’s requirements and the provider’s
offer (following the methodology defined in Sec. 4.2) to find a solution
which satisfies both negotiator preferences. We evaluated the performance
of this approach with respect to different negotiator preference thresholds
and different utility functions.

4.3.2 Result Analysis

We execute the previous scenario 100 times. For every execution, we randomly
generated both the consumer’s request and the 100 offers of the providers. Then,

55

we assessed the performance of the three aforementioned negotiation approaches
by evaluating the number of matched providers. We employed two different
versions of the AN approach, which differ on the cost function c(s). The first is
characterized by a linear function, which represents a hard cost function, and the
second by a quadratic cost function which is more flexible and weighs less the
impact of modifications. For each negotiator we specify a preference threshold,
as described in Sec. 4.2, representing the consumer’s and provider’s flexibility to
accept a request or offer. Then, we tested the performance of the AN approach
for different values of the threshold ranging between 0.1 to 1 with intervals of
0.1, which evaluates the impact of the parties’ flexibility in the results.

The results are reported in Fig. 15. Since they do not use a preference thresh-
old, the BN (grey line) and CM (red line) approaches are constant, whereas the
AN performance is affected by the adopted preference threshold and cost func-
tion. We observe that, for low threshold (flexible peers) the number of matched
providers is even larger than BN. This is explained by the fact that, although the
BN approach requires matching only the static part of the smart contract, with
our approach and with very flexible parties, few transitions must match. For
example, in the extreme case of 0.0 threshold, even if not a single transition is
equal to the original offer or request, we can obtain a matching. On the other
hand, with very high threshold the number of matched providers drastically de-
creases because the peers require most transitions demanded to be granted by
the counter-party, e.g., with threshold 1, no modification is accepted.

Regarding the two cost functions, we can observe that as the threshold values
increase the difference between the number of matched providers also increases.
This reflects a choice of behaviour from each party, which means that, even if
the parties use the same threshold, with different cost function they can still be
more or less prone to accept modifications on the offer/request. In our case, with
the linear cost function (brown line) negotiators are less prone to change their
requirements than negotiators using a quadratic cost function (blue line), since
the values are always between 0 and 1.

Overall, almost no offer is 100% compatible with the consumer’s require-
ments, as can be seen from the results of the CM approach, which calls for more
flexible solutions for the negotiation of dynamic smart contracts. Moreover, de-
spite the complexity faced with the introduction of dynamic smart contracts,

56

CM

BN

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Thresholds

A
vg

M
at

ch
ed

Pr
ov

id
er

s

AN (c(s))
quadratic
linear

Figure 15: Negotiation results of the BN, CM and AN approaches.

the average number of providers matched with our approach is relatively close
to providers matched by the BN approach, which only considers the static part
of the agreement. Therefore, we can conclude that these results emphasise the
effectiveness of our autonomic negotiation approach.

57

Chapter 5

Scheduling Latency-Sensitive
Services in Edge Computing

The lack of solutions for scheduling of latency sensitive applications, we noticed
during the study of possible scenarios suitable for the application of SLAC, mo-
tivated the work described in this chapter, also stated in third research question
of the introduction.

Essentially, the main factors that lead us to this work are two: we thought that
the dynamism characterizing latency-sensitive applications could make this type
of services a very good use case for putting SLAC at work; we could not find any
work on scheduling this kind of applications in a Edge scenario which represents
the most suitable deployment platform for latency-sensitive applications.

The main contributions of this chapter are:

1. A novel Edge scheduling framework for latency-sensitive services, that is
latency, bandwidth and resource aware.

2. The analysis of performance of different deployment solutions, namely
Cloud, CDN and Edge, for latency-sensitive services, which shows the
advantages of Edge computing in this context.

3. The evaluation of the proposed scheduling framework in comparison to a
solution for latency-sensitive services in Cloud, which shows the benefits
of using an algorithm specifically devised for this architecture.

58

Experimental results show that Edge-based deployment solutions actually
guarantee lower end-to-end latency compared with the alternatives Cloud and
CDN. However, we also proved that, to really exploit the advantages of Edge,
specific scheduling algorithms need to be adopted, which take into account spe-
cific infrastructure related characteristic such as latency, bandwidth and resource
availability.

The structure of this chapter is organised a follows. In the next section,
we present the related works; in Sec. 5.1 we provide a motivating example dis-
cussing the benefit of Edge-based deployment approach for latency sensitive
applications such as a live video streaming service; in Sec. 5.2 we present the
scheduling approach we devised; in Sec. 5.3 we describe the experimental setup
used for the evaluation of our approach together with the results we obtained.

5.1 Motivating Example

To better motivate the research question we are dealing with in this chapter, we
consider a simple scenario, based on live video streaming services, that will be
used also for the experimental analysis.

Live video streaming services allow to stream a video recorded by any de-
vice equipped with camera in nearly real-time to a large number of mobile or
desktop audience globally. Currently, due to the advances in networking tech-
nologies these services are becoming very popular and attracting the attention
of big companies such as Twitter, Facebook and Google who developed their
own live video streaming services. To better understand what are the challenges
underlying this kind of services, let us first quickly describe the live streaming
service workflow depicted in Fig. 16.

The first step is the encoding of input video in a high quality stream, using
either local camera encoder or an external one installed in remote server. Af-
terwards, the encoded video is given as an input to the transcoding operations
which create streams in different resolutions and bitrates on the fly. This pro-
cess is fundamental in order to reach a very broad audience. Indeed, creating
new streams at various bitrates and resolution allows an adaptive distribution of
the video content according to the device used to access the stream and band-
width condition, guaranteeing a high quality of experience for many users. The

59

multiple streams in output from the transcoding process are then processed by a
media server responsible of packaging the video streams, according to the spec-
ifications (e.g., chunk length, codecs and container) defined by the streaming
protocols (e.g., HLS, HDS, etc.) supported. The video chunks are then ready
to be directly delivered to end users according to their location, bandwidth and
streaming protocol implemented by the media player they use, or first dissemi-
nated on multiple servers closer to them.

Although the service workflow may look quite simple, all the steps described
are characterized by some critical issues that will affect the overall user engage-
ment to the video stream. Factors impacting user engagement, as reported in
[23], are the join time (i.e., the duration from the player initiates a connection to
a video server till the time the play starts), the buffering ratio (i.e., percentage
of the total streaming session time spent in buffering) and the video quality. All
these metrics are directly affected by the transcoding and distribution steps of
the streaming workflow, which strictly rely on the service deployment solution
adopted. Currently, streaming service providers adopt Cloud-based deployment
solutions in order to face the high and quickly changing processing resource and
bandwidth requirements. In the simplest Cloud-based architecture, as depicted
in Fig. 18, the incoming video stream is usually encoded in a high quality video
locally and then uploaded to a cloud server for transcoding and packaging oper-
ations.

In this way, exploiting the elasticity provided by the Cloud infrastructure,
it is possible to dynamically manage the resource needs according to the cur-
rent service load. However, this deployment solution is not the best approach
to maintain a low buffering ratio and a high video quality. Whereas extensive
computation required for the transcoding operations can be managed according
to the current needs, the best effort delivery of the packets from a cloud server
to final users can still incur downgraded video experience. Indeed, the path be-
tween users and the stream origin server in the Cloud usually involves multiple
hops and then the probability of experiencing link congestion along the route is
high. Congested links incur a low throughput and high packet loss and delay
jitter, introducing high network delay and discontinuous packet delivery rate,
causing a drop in the video quality.

To face these network issues, the most widely adopted solution currently is

60

Figure 16: Live video streaming workflow.

content delivery networks (CDNs) for the distribution of streaming contents. In
this scenario, as depicted in Fig. 19, all the transcoding and packaging opera-
tions are still executed on the Cloud, but the media contents are then distributed
over a network of cache servers located closer to end users. In this way, user
requests are automatically directed to the closest cache node, which forward to
the Cloud only the requests whose content is not already available on that node.
Therefore, an improved bandwidth consumption is provided and then the risk of
network congestion is lower, reducing the buffering ratio while increasing the
video quality experienced.

Nevertheless, CDNs have originally been designed for the distribution of
static contents and adopting them for the distribution of dynamic contents as
live video streams is not straightforward. The main issues arise from the volume
and requirements of live video streaming users. Indeed video content accounts
for 70% of whole Internet traffic [8], which is much higher compared to the traf-
fic generated by other web-applications. Moreover users demand high quality
video, instant start up times and low buffering ratio, requirements which bring
to high demand of bandwidth, whereas CDN aims to minimize costs and they
may not meet these high-demanding requirements. Finally, a CDN-based dis-
tribution can easily become too costly as the number of streams and viewers
increases, due to the high bandwidth costs.

61

Figure 17: Edge-based platform for live video streaming services.

To face the issues of the approaches described above, the set of innovative
technologies introduced by the Edge paradigm may provide the solution needed.
Indeed, Edge solutions can be used to tackle various challenges currently faced
by media and video streaming applications in order to improve the service qual-
ity experienced by end users. A possible Edge-based video streaming platform
is depicted in Fig. 17.

With Edge computing, incoming video is first encoded in high quality, either
with the camera encoder or with an encoder installed in the closest edge node,
and then distributed over a set of edge nodes responsible for both video transcod-
ing and content distribution. In this way, video will be encoded on the fly and
delivered to the viewer, removing all the delay introduced by fetching video
content from central Cloud. We also assume that there are different transcoder
configurations related to different device type (e.g., smartphone, tablet, IPTV,
etc.) that will transcode the input video in multiple streams suitable for a given
specific device. Therefore, even though edge nodes cannot provide the same
computing power of cloud nodes, distribution of individual encoders, each for a
specific type of device, makes computational requirements of transcoding oper-

62

ation suitable for edge nodes.
Overall, the main advantages of this approach are the reduction of end-to-

end latency and bandwidth consumption. Indeed, strict proximity of end users
to the nodes delivering video content reduces delay due to both a shorter physical
distance and a reduced probability to face network congestion, since the number
of links and hops along the route is smaller compared to the Cloud- and CDN-
based approaches. Moreover, bringing transcoding process to the Edge further
contribute to lower delay since video is processed and packaged on that node
without the need of fetching missing content from an origin server in a cloud
data-center.

5.2 A Scheduling Framework for Edge Computing

Before describing the scheduling framework we devised, we provide a general
overview of the system we considered, while reminding that, in the considered
scenario, the Edge infrastructure is essentially an extension of a Cloud infras-
tructure with a set of edge nodes deployed at the edge of the network.

Moreover, these edge nodes are geographically distributed according to the
model described in [33], in proximity of multi Radio Access Technology (RAT)
base stations (BSs), which provide access to the core network to both user equip-
ment and edge nodes. We assumed that each node is a micro data-center that,

Figure 18: Cloud-based solution for live streaming services.

63

Figure 19: Delivery networks for streaming media contents.

leveraging on virtualization technologies, grants access to its resources by means
of virtual machines (VMs). Therefore, each node defines a virtualized environ-
ment that allows the deployment of a service instance within an individual VM.
Since different services have different computing requirements, in this scenario
we assumed that a node can provide different type of VMs. To provide Edge
services, the application service provider (ASP) requests to a provider the in-
stantiation of a service in a VM compatible with the service requirements. Since
in our work we considered only latency-sensitive services, the main service re-
quirement the provider has to guarantee is the service response time, that is,
the time elapsed from a user sending a request and receiving a reply. In this
scenario, the network delay and the processing time are the main factors that
affect this metric. The former refers to time necessary to a user request from
the user device to reach the edge node of the service and it is determined by
user-node physical distance, queuing and processing delay of each hop in the
network route and the route’s available bandwidth. The request processing time
is strictly related to the VM and service specifications and refers to the time to
elaborate a request. In this context with different VM and service specifications,
further analysis of computing performance is needed to select a VM type that
can optimize this metric.

Therefore, for the scenario described above, we designed a scheduling frame-
work, summarized in Fig. 20, that takes into account network, bandwidth and
computing capabilities of the Edge infrastructure to maximize the service qual-

64

Figure 20: Scheduling framework.

ity experienced by end users of a latency-sensitive application.

5.2.1 Virtual Machine Evaluation

The first component of our scheduling framework performs the evaluation of the
available VMs in the edge network. Essentially, it evaluates both network and
computational capabilities of the available VM types for each incoming service
s, by computing a quality score used to determine the eligibility to host s. A
step-wise description of the devised algorithm is reported in Alg. 1 and more
details of the evaluation steps characterizing this process are provided in the rest
of this section.

Low-latency path detection

Predicting network delay between users and edge nodes provides useful insights
to understand if a given node can meet the network delay requirements of the
service to be scheduled, and at runtime to select the communication routes that
minimize the delay. Since several monitoring techniques are available for the
network latency estimation, for example, by sending probes between nodes and
then measuring the latency (i.e., active monitoring) or capturing information
about network paths directly from the network devices (i.e., passive monitoring)
[81], we assume that network delays between edge nodes can be measured and
we use them in our scheduling approach.

We model our edge network as a weighted graph were each node denotes a
edge data-center in the network, the link between two nodes represents the actual
connection between data-centers and the link weight describes the estimated

65

network latency between them. We assume, then, that each user connects to
the closest BS and we group together users connecting to the same BS (line
2). Therefore, for each user group g we detect the lowest latency path from g
to a every node n applying the Dijkstra algorithm on the graph modelling our
network, considering as source node the node representing the edge data-center
co-located with the BS of the group (line 5). This set of low latency paths will
be used for the VM evaluation process described in the next section.

Network and resource evaluation

To identify the most suitable VM to a given service, we defined an evaluation
process which computes, for each type of VM, a quality score qv combining
connectivity qn,l , bandwidth qn,bw and resource qv,res scores.

The connectivity score qn,l ∈ [0,1] assesses the quality of the connectivity of
a VM v by evaluating the quality of the network routes connecting user groups
to the node n running v. The input data for this process is the set of low-latency
paths computed in Sec. 5.2.1. Therefore, for each network path connecting a
given user group g to the n, we evaluate the delay according to the network delay
requirements by computing a quality score qn,l,g ∈ [0,1] using a utility function
previously defined by the provider (line 7). The output of this path-based eval-
uation process is a set of quality scores {qn,l,g1 ,qn,l,g2 , . . . ,qn,l,gn}, which will
be used to compute the connectivity final score ql,n as the mean value of these
scores weighted by the number of users belonging to each group (line 9).

The bandwidth score qn,bw ∈ [0,1] assesses the available bandwidth of the
node n running the given VM v. The available bandwidth on paths connecting
the users to n represents one of the main factors affecting the overall service
quality, as already motivated in Sec. 5.1, therefore information about the node
capacity can improve the service scheduling. We compute a per path bandwidth
score qn,bw,g ∈ [0,1], assessing the quality of the bandwidth of each low latency
route in input (line 8). Similarly to the latency evaluation process, we compute
the final bandwidth quality score qn,bw as the average of the single path quality
scores qn,bw,gi weighted by the number of users in each group (line 10).

The VM resource evaluation is carried out by measuring the service load that
a given VM type v can handle and the expected overall service load. Indeed, for
latency sensitive applications, underestimating the computational resource nec-

66

essary for executing the service may increase considerably the service process-
ing time and the overall end-to-end response time. Our approach, then, evaluates
the computational resources of a VM v computing a score qv,res ∈ [0,1] by means
of a utility function defined by the provider, comparing the number of user re-
quests that v can handle w̃ with the overall number of requests expected w (line
12).

Finally, the overall quality score of a given VM type qv ∈ [0,1] is calculated
as the harmonic mean of connectivity, bandwidth and resource quality scores
(line 13). Despite the fact that the harmonic mean behaves as the arithmetic
mean by giving equal weight to both scores when they are similar, it favours the
smaller value when the gap between them increases. This ensures that VMs with
a very high and a very low score are penalized, which emphasises the need of
sufficient network and computational resources. The evaluation output is the set
Q = {qv1 , . . . ,qvk} of VM type quality scores that will be used by the scheduler
for service deployment (line 14).

5.2.2 Scheduling Approach

The second component of the framework we devised is the scheduler, that is in
charge to select, for each service s ∈ S received as input, the VM type v ∈ V
which most likely will fulfil the established latency requirements.

We compute for each v a quality score qs,v using the approach described
in Sec. 5.2.1, which is based on the VM computing specifications and the net-
work capabilities of the node hosting that VM. Then, the service instances are
scheduled to maximize the overall quality of the selected VMs, guaranteeing an
enhanced service quality to end users.

We model the optimisation problem as a binary integer linear programming
problem as reported in formulation below. Binary variables xs,v model the place-
ment of a service s on the VM type v, and assume value 1 only when the service
is actually scheduled on that VM. The coefficients are the VM quality scores
computed by the VM evaluation process previously described, which measures
the suitability of the VM type v in hosting the service s. The cost function (I)
aims to maximize the quality of the final scheduling, assigning at each service s
the most suitable VM.

67

maximize
x̄ ∑

s∈S
∑

v∈V
qs,vxs,v (I)

s. to ∑
v∈V

xs,v = 1 ∀s (II)

∑
s∈S

xs,v ≤ kv ∀v ∈ Vn (III)

where

xs,v =

{
1 if s is scheduled on v
0 otherwise

Furthermore, we assume that each service has to be scheduled on a single
VM, as expressed in (II), and that the number of times a VM type is assigned to
new services cannot exceed the number kv of available VM instances, defined in
(III).

5.3 Validation of our Approach

In this section we present the experiments we carried out to analyse the effec-
tiveness of the proposed framework in terms of service quality experienced by
the end users.

5.3.1 Experimental Setup

The experiments evaluate how different deployment solutions affect the live
video streaming service time experienced by end users and analyse the impact
on its components, namely the network delay and the request processing time,
with different number of users joining the video stream in input. A compre-
hensive description of the different scenarios considered in our experiments is
provided in Sec. 5.3.2. We simulated these scenarios using the EdgeCloudSim
simulator [64]. This simulator extends the CloudSim toolkit [11] providing extra
functionalities granting the modelling of networking resources and edge nodes,
allowing a accurate simulation of real edge infrastructures. The results obtained,
not only show the benefit of the Edge platform in terms service time, but denote
the need of a Edge-specific scheduling solution to obtain optimal results.

68

Algorithm 1: Latency-Sensitive Scheduling
Data: Service s to be scheduled
Data: Latency constraint t requested by the service provider
Data: Users’ locations U = {u1,u2, . . . ,um}
Data: Nodes N = {n1,n2, . . . ,nk}
Data: Nodes’ location L = {l1, l2, . . . , lk}
Data: VM types V M = {vi,1,vi,2, . . . ,vi,q,∀i ∈ N}
Data: Array Q of quality scores for each VM v ∈V M
Result: The vms scheduled for s.

1 begin
2 Define a set of users’ groups G = {gi, |u j− li|< ε ∀u j ∈U,∀li ∈ L};
3 forall the n ∈ N do
4 forall the g ∈ G do
5 Estimate the network path pg,n with the lowest latency t̃g,n between g

and n;
6 Estimate the available bandwidth b̃wg,n between users in g and the

node n and the required bandwidth bwg on pg,n;
7 Compute the latency score qn,l,g = LatencyScore(t, t̃g,n);
8 Compute the bandwidth score

qn,bw,g = BandwidthScore(bwg, b̃wg,n);

9 qn,l =
∑

n
i=1 |gi|qn,l,gi
∑

n
i=1 |gi| ;

10 qn,bw =
∑

n
i=1 |gi|qn,bw,gi

∑
n
i=1 |gi| ;

11 forall the v ∈ n do
12 qv,res = ComputingScore(w, w̃v);
13 Compute the qv quality score Q[qv]= 3

1
qv,res

+ 1
qn,l

+ 1
qn,bw

14 vms = Scheduler(Q);
15 return vms;

69

5.3.2 Scenarios

We defined a set of simulation scenarios where we analysed the impact of dif-
ferent deployment solutions and scheduling policies on the service quality ex-
perienced by end users, in the context of live video streaming services. In the
remainder of this section we provide a detailed presentation of the different net-
work designs and scheduling approaches in each scenario devised.

Cloud. We consider a centralized deployment solution where both video pro-
cessing and content distribution processes are carried out on a cloud data center.
Essentially, given an incoming video to be streamed, all the encoding/transcoding
operations are executed on a cloud data center. User requests to access the live
stream are also directly forwarded to the cloud server responsible of stream dis-
tribution.

We modelled cloud resources as set of infinite VM instances whose specifi-
cations are taken from the Amazon m2.4xlarge and are reported in Tab. 9. The
users-data center connection has been defined as a single link, whose capacity
has been fixed at 1000 Mbps, representing the aggregation of single links con-
necting user access BSs to the cloud. We defined also a communication delay
δu,c = 0.09, which models the delay related to the queuing and processing op-
erations and the physical distance characterizing the network route between the
user u and the cloud data center c. This value has been estimated by averaging
latency of ICMP requests between hosts in Europe and the Amazon Web Service
instances in the same time zone.

Content delivery network (CDN). We defined a two-tier network architec-
ture, characterized by an origin server in a massive cloud data-center and 10 geo-
graphically distributed replica servers. In this scenario the encoding/transcoding
operations are executed in the cloud servers, while the content is distributed
among the replica nodes. Users are randomly distributed in proximity of all
replica nodes and the content distribution follows the schema designed in [51].
Therefore, a user request is first redirected to the closest replica server and then,
if the content is already cached there, it is directly returned. Otherwise, the
request is forwarded to the cloud server to fetch the content.

In this scenario origin and replica servers have different purposes and then
different hardware configurations. We assumed that CDN (replica) nodes are

70

Algorithm 2: FIXED provisioning algorithm
Data: Set of QoS requirements offered by the ASP: S = {QoS(x),x≥ 0}
Data: Estimated mean inter-arrival times: 1

λ

Data: Estimated mean requests durations: 1
µ

Result: Number of VMs to acquire: V
1 begin
2 calculate the smallest number of V such that λ

V µ ≤ 1;

3 t = min(QoS(x)),QoS(x) ∈ S;
4 P(w(ri)> t) = 1;
5 ρ = λ

V µ ;

6 while P(w(ri)> t)> p do
7 calculate ΠW =

(V ρ)V

V ! ((1−ρ)∑
V−1
n=0

(V ρ)n

n! +
(V ρ)V

V !)(−1);
8 calculate P(w(ri)> t) = ΠW e(−V µ(1−ρ))t

;
9 if P(w(ri)> t)> p then

10 V =V +1

11 return V

small data centers located only in strategic points, such as ISP point of pres-
ences (PoPs) or at internet exchange points (IXPs). CDN servers’ access band-
widths are distributed as a Pareto distribution with mean value µ = 500 and each
connection user-server is characterized by communication delay δv,s = 0.013s.
Similar to the Cloud scenario, δv,s measures the expected delay due to the phys-
ical characteristics (e.g., number of hops and distance) of the route between the
host and the closest CDN server. We modelled the connection between CDN
servers and the cloud origin server as a high capacity link with an average band-
width of µ = 750Mbps, since we assumed that they are directly connected to
the ISP backbone. We also defined a link communication delay as δe,c = 0.03s,
modelling the delay along the path from the CDN and the origin server based
on the number of hops and the physical distance between them. Moreover, since
the main purpose of CDN networks is to deliver content, the VM instances used
in this scenario are storage optimized. Therefore we used the Amazon i3.large
specifications, as reported in Tab. 9.

71

Edge. In this scenario, according to the Edge-based deployment solution de-
scribed in Sec. 5.1 the service is entirely deployed on the edge nodes. Therefore,
both encoding/transcoding and distribution operations are executed on the edge
nodes, whereas the Cloud has only management functionalities.

The designed network infrastructure is composed of 20 edge nodes, each co-
locate with a BS. The computing power of each node is rather limited. Each node
provides 2 types of VMs, namely the Amazon m1.large and m1.xlarge instance
types, but, due to limited physical resources, only 10 instances that can actually
instantiated on each node. The access bandwidth of each edge node has been
modelled instead as a Pareto distribution with average value µ = 375Mbps. In
this scenario we also assume that the distance between edge nodes is small, in the
order of 20km, allowing the deployment of high speed inter-node connections
through either dedicated links or single-hop connections. Thus, we modelled
the inter-node bandwidth whose capacity is distributed also as a Pareto distri-
bution with mean value µ = 400Mbps. The communication delay between the
nodes i and j has been modelled, instead, by mean of a uniform distribution
U[0.006,0.009].

In this scenario, we assume that users can access the stream video with 3
different type of devices, namely smartphone, laptop and tablet. Therefore, ac-
cording to the Edge-based service deployment described in Sec. 5.1, we assume
that 3 different and lightweight streaming engines (i.e., packages responsible of
encoding/transcoding operations and content distribution) have to be deployed,
each one for a specific device. Each instance is responsible for transcoding the
video input into multiple bit rates and resolutions suitable for a given device.
We used two different approaches for the scheduling of the instances, that is
Cloud-based and Edge-based, described below.

In the Edge-based scenario, we schedule the services using the approach pre-
sented in Sec. 5.2.2. For the VM evaluation process, described in Sec. 5.2.1, we
defined three utility functions as in Eq. 5.1, Eq. 5.2 and Eq. 5.3 for the evaluation
of the network delay, the available bandwidth and VM resource respectively.

uv,δ(δg,v, δ̃) = S
(

1−
δg,v

δ̃

)
(5.1)

72

uv,B(Bg,v, B̃) = S
(

Bg,v

B̃
−1
)

(5.2)

uv,RPS(RPSv,W̃) = S
(

RPSv

W̃
−1
)

(5.3)

For the evaluation of the network route delay between a user group g and a VM
v, we compute a utility score using a sigmoid function S, that takes in input
the route delay δg,v and the delay requirement δ̃ = 50ms. Therefore, the utility
function in Eq. 5.1 evaluates the margin between the actual delay δg,v and the
requirements δ̃ returning a score as close to 1 as the current delay is significantly
lower than the requirements. Otherwise, low values close to 0 are returned.
Bandwidth and resource evaluation follow the same approach defined for the
delay evaluation. Essentially, given the predicted available bandwidth Bg,v on
the network route from g to v the utility function returns a value as close to 1
as the value of Bg,v is higher then the needed bandwidth B̃ due to the number
of users in g. The resource evaluation is achieved, instead, by comparing the
computing capability of v expressed in terms of request per second RPS with the
expected number of requests W̃ generated by the expected workload. Finally,
the scheduling is defined by the scheduling approach in Sec. 5.2.2.

In the Cloud-based approach, instead, we adopted a Cloud scheduling ap-
proach [26] that estimates the number of streaming engines instances needed
to minimize the user waiting time. This approach aims to minimize the pro-
cessing time deploying a number of instances based on the expected workload.
The Alg. 2 shows the pseudo-code of their approach. They define a M/M/V5

queuing model to determine the number of VMs to be instantiated in advance
to guarantee a user waiting time compliant with the requirements. Three inputs
are required: (i) the estimated mean inter-arrival time of requests 1/λ, (ii) the
estimated mean duration of requests 1/µ and (iii) and the target probability p
that a request has to wait more than its QoS requirement. The first step of the
algorithm (line 2) computes the initial number of VMs V , such that the system
utilization is lower than one. Then, the smallest waiting time t to be guaranteed
by the service provider is determined (line 3). Afterwards, the algorithm updates
the number of VMs to be instantiated until the probability that a new service re-
quest w(ri) has to wait more than t (P(w(ri) > t)) is lower than the threshold
defined by p. Finally, for each streaming engine type the number of replica is

73

Table 9: Virtual machines specifications.

Specs m1.large m1.xlarge m2.4xlarge i3.large
CPUs 4 8 26 2
CPU MIPS 2400 4800 20000 2400
RAM(GB) 8 16 70 15
Storage(GB) 2x420 4x420 2x840 unlimited
Price (USD/h) 0.17 0.35 0.98 0.15

computed and then randomly distributed among the edge nodes.
Similarly to the CDN scenario, also in this scenario, users are randomly

spread in proximity of all edge nodes. Therefore, a user request is first sent
to the BS co-located to the closest edge node and then forwarded to the node
containing the VM which hosts the encoder related to the type of device user
adopted to access the video stream.

5.3.3 Experimental Results

The results in Fig. 21(a) show that deploying a service on the Edge allows to
achieve a considerable network delay reduction with respect to all the others de-
ployment solutions. Highest reduction is around 4.5-fold with respect to cloud,
and lowest is more than 2-fold with respect to CDN. Moreover, this network de-
lay reduction is not guaranteed by only the platform itself and a suitable service
scheduling algorithm is necessary as shown in Fig. 22 (a). Indeed, the adop-
tion of scheduling algorithms that do not take into account the joint information
of network conditions, user requirements and workload only partially exploit
the advantages introduced by the edge infrastructure, resulting in suboptimal
results. Additionally, processing time represents another critical factor for the
Edge platform, as depicted in Fig. 21 (b) and in Fig. 22 (b). The values plotted
represent the time spent by the streaming engines to package the video content to
be delivered. These results show how in the Edge scenario we obtain the highest
processing time due to the limited computational resources provided by the edge
nodes. Obviously the processing time on the Cloud scenario is the lowest among
the three due to the high computing power characterizing cloud resources. In the
CDN scenario, instead, we obtain smaller values then the Edge scenario, since

74

(a) (b)

(c)

Figure 21: Performance analysis of Cloud, CDN and Edge scenarios.

distributing the requests on the multiple replica server avoids the server over-
loading. Moreover, the limited edge node resources not only already provide the
highest processing time, but they may become the system bottleneck, as the load
increases. Edge results in Fig. 21 (b) and Fig. 22 (b) describing the process-
ing time obtained using our approach, denote this increasing trend according to
the growth of the number of input devices. Essentially, in our approach where
each streaming engine instance has to process all the incoming requests from
the associated user device, we experience a faster raise of the processing time.

75

(a) (b)

(c)

Figure 22: Performance comparison of Cloud and Edge scheduling approaches.

Therefore, to reduce this high processing time in the Edge scenario, provider can
horizontally/vertically scale the servers in the edge data centers or create new
edge data centers in the overloaded locations. Results in Fig. 22 (b) confirm this
assumption showing that predicting in advance, the number of VM instances for
each streaming engine enhances the performance, reducing the average process-
ing time needed to elaborate each user request. However, due to the significant
network delay reduction provided by the edge-based solution, higher process-

76

ing time does not affect the overall service time, if the processing capacity of
the servers is not saturated, as depicted in Fig. 21 (c) and in Fig. 22 (c). For
very high number of users, instead, higher processing time of Edge introduces
a system bottleneck that considerably affects the final service time experienced
by end users (Fig. 22 (c)). Nevertheless, results in Fig. 22 (c) confirm the need
for scheduling solutions that take Edge specific features into account and for an
infrastructure with processing capacity compatible with number of users in the
edge data centers to obtain good performance in Edge scenario.

77

Chapter 6

Related Works

In the area of Cloud Computing many works have already been carried out for
the development of frameworks for the management of service quality through-
out the whole service life-cycle [5, 6, 15, 17, 77]. However, they are mainly
focused on the definition of theoretical technical frameworks without providing
any real implementation of the methods actually responsible of SLA manage-
ment tasks.

Nonetheless, many studies have been accomplished for the development of
point wise solutions dealing with the challenges introduced by each stage in the
service life-cycle.

In the remainder of this section we provide a comprehensive overview of the
most relevant works related to SLA specification languages, negotiation and an
analysis of the solutions currently adopted for service scheduling in Cloud.

6.1 SLA Definition Languages

To provide an overview of the most important languages currently adopted, we
extend the study of [40] to cover additional languages and new aspects of the
already evaluated ones. Below we briefly describe the evaluation criteria. The
results of our evaluations are summarised in Tab. 10 and show the advantage
of SLAC over other formalisms. Important components of the Cloud domain
like dynamicity, multi-party agreements, and brokerage are supported only by

78

SLAC, and the supporting software framework allows an easy deployment of
SLAC SLAs in a wide-range of real-world scenarios.

For our assessment, we consider the following formalisms: WSLA [37],
WS-Agreement [3], WSOL [66], RBSLA [50], Linked USDL (LUA for short)
[52], SLALOM [16], SLAng [63], SLA* [38], CSLA[58] and, of course, SLAC.
We evaluate them by first considering General features of the languages and then
assessing their impact on the different phases of SLAs lifecycle. In the table, we
use yes for indicating that the feature is fully supported, X for indicating
that the feature is partially supported, and 7 for indicating that the feature is not
supported.

General considers the evaluation of different aspects that we list below:

• Cloud Domain considers whether a SLA language has been specifically
designed for Cloud;

• Service Models evaluates whether all service models (including specific
vocabularies) are directly supported or, in some cases, extensions are needed;

• Formalisation refers to the level of formality in the definition of syntax
and semantics of the language;

• Dynamicity considers the capacity to express possible changes of the terms
of agreement at runtime.

• Confidence or Fuzziness is the capacity to deal with QoS uncertainty, with
confidence defining the percentage of compliance of clauses, and fuzzi-
ness referring to an acceptable interval around the threshold of a metric;
Reusability refers to the possibility of reusing constructs defined in a tem-
plate or in a SLA across different SLAs;

• Composability is the ability to express composite SLAs;

• Extensibility evaluates whether the language terms and metrics can be ex-
tended;

• All parties considers whether it is possible to describe all parties involved
in the service provision and in all actions (monitoring, verification, provi-
sion, etc.);

79

• Price Model is the level of coverage of price schemes and of computation
model;

• Consistency check considers whether consistency of SLAs is verified; we
write X if only syntactic checks are offered, if also semantic aspects
are considered, and 7 if no check is performed.

Definition, Discovery and Negotiation considers the possibility of using:

• Editor for writing SLAs, they can be generic (X), domain-specific() or
absent (7);

• Broker may have different levels of support when taking decisions;

• Metric Definition refers to the possibility offered for defining quality met-
rics;

• Alternatives evaluates the ability to specify alternative levels of service;

• Soft Constraints is concerned with the use of soft-constraints to address
over-constrained requirements;

• Matchmaking Metric enables the specification of how to match equivalent
metrics or metric units;

• Negotiability is the ability to indicate how, and to which extent, quality
terms are negotiable.

Deployment and Monitoring considers the offering of:

• Metric Schedule indicates how often the terms of agreements are mea-
sured;

• Metric Provider indicates the possibility of specifying the party responsi-
ble for monitoring each term of agreement;

• Automatic Deployer refers to the provision of tools for automatic deploy-
ment of the service;

• Integrated Monitoring is concerned with the capacity to automatically
configure the monitoring system relying on the SLA specification.

80

Billing and Penalty Enforcement considers the presence of:

• Penalties and Rewards to be enforced under specified conditions. In this
case, stands for fine-grain support (at the level of service level objec-
tives), X for coarse-grain, and 7 for no support.

• Actions triggered by contracts violations;

• Conditions Evaluator refers to the possibility of specifying the party in
charge of auditing each term;

• Assessment Scheduler specifies when each term is assessed.

Termination considers the

• Automatic Undeployment of the used resources.

81

Ta
bl

e
10

:E
va

lu
at

io
n

re
su

lts
of

SL
A

la
ng

ua
ge

s
Ph

as
e

C
ri

te
ri

a
W

SL
A

W
S-

A
W

SO
L

R
B

SL
A

L
U

A
SL

A
L

O
M

SL
A

ng
SL

A
*

C
SL

A
SL

A
C

C
lo

ud
D

om
ai

n
7

7
7

7
7

7
7

Se
rv

ic
e

M
od

el
s

X
X

X
X

X
X

X
X

X

Fo
rm

al
is

at
io

n
7

7
7

X
X

X
X

D
yn

am
ic

ity
7

7
7

X
7

7
7

7
7

C
on

fid
en

ce
or

Fu
zz

in
es

s
7

7
7

7
7

7
7

7
7

R
eu

sa
bi

lit
y

7
7

7

C
om

po
sa

bi
lit

y
7

X
7

7
7

7
X

E
xt

en
si

bi
lit

y
7

7
7

7
7

A
ll

Pa
rt

ie
s

7
7

7
7

7
7

7
7

7

Pr
ic

e
M

od
el

7
7

7
7

7
X

X

General

C
on

si
st

en
cy

ch
ec

k
X

X
X

X
7

E
di

to
r

X
X

X
X

X
7

7

B
ro

ke
r

7
X

7
7

7
7

7
7

7

M
et

ri
c

D
efi

ni
tio

n
7

7
7

7
7

7

A
lte

rn
at

iv
es

X
X

X
X

7
7

7
7

7

So
ft

C
on

st
ra

in
ts

7
7

7
7

7
7

7
7

M
at

ch
m

ak
in

g
M

et
ri

c
7

7
7

7
7

7
7

7

Disc./Nego.
Definition

N
eg

ot
ia

bi
lit

y
7

X
7

7
7

7
7

7

M
et

ri
c

Sc
he

du
le

7
7

7

M
et

ri
c

Pr
ov

id
er

7
7

7
7

7

A
ut

om
at

ic
D

ep
lo

ye
r

7
7

7
7

X
7

Mon.
Deploy.

In
te

gr
at

e
M

on
ito

ri
ng

7
7

7
7

7

Pe
na

lti
es

7
X

X

R
ew

ar
ds

7
7

X
7

7
7

7

A
ct

io
ns

7
7

7
7

7

C
on

di
tio

n
E

va
lu

at
or

7
7

7
7

PenaltyEnfor.
Billingand

A
ss

es
sm

en
tS

ch
ed

ul
e

X
X

X
X

7
7

7

A
ut

om
at

ic
U

nd
ep

lo
ym

en
t

7
7

7
7

7
7

7
X

7

Ter.

82

6.2 SLA Negotiation

Still the in area of SLA management many works have been carried out for the
autonomic negotiation of SLAs. Many of them are mainly based on the approach
adopted for the negotiation of traditional contracts.

Indeed, they are mainly divided into: game theoretic models, heuristic and
argumentation-based methods [36]. Here, we focus on heuristic approaches
since, even for static contracts: (i) the game theoretic techniques assume that
negotiators have full knowledge of peers’ preferences [36], which is not suitable
for Cloud due to the large number of participants, SLA terms and strategies [48];
(ii) applying the argumentation-based approaches in automated negotiation for
cloud is challenging [32] and few works actually employ it [12].

Heuristic approaches define protocols and strategies to look for good solu-
tions, which do not necessarily correspond to the optimal one [36] or do satisfy
all the requirements of the involved parties. They are based on counter-offer
generation where each party decides, according to some heuristic, to accept-
reject the offer or to create counter-proposal. The core element of this approach
is the agents’ decision-making process which defines the offer’s evaluation and
the counteroffer generation. Two mechanism are usually adopted for decision-
making: trade-off and concession. Essentially, the trade-off mechanism (used
in [18, 25, 78, 85]) defines counterproposals similar to the offer in terms of
negotiator’s utility, where multiple negotiation terms are traded-off to fit bet-
ter the opponent’s requirements [27]. The concession approach (for example,
[13, 15, 27, 42, 80]) defines an offer generation mechanisms where, at each ne-
gotiation step, the negotiator is willing to decrease the overall utility score of
the agreement. This is done by decreasing the utility value of one or more terms
using different functions [48]: (i) time-dependent, which compute the next value
to be offered according the remaining negotiation time, (ii) resource-dependent,
which consider the available resource during the negotiation process as main pa-
rameter; and (iii) behaviour-dependent negotiation functions, which formulate
the new offer based on the previous opponent’s attitude [29].

Nevertheless, the trade-off and concession approaches cannot be used for
smart contracts, since applying them implies the execution of the counteroffer
generation mechanism in each possible state of the contract. Therefore, consid-

83

ering that both provider’s and consumer’s contract may have thousands of states,
it becomes quickly infeasible.

6.3 Service Scheduling in Cloud

Also in the area related to service management, many works have been devel-
oped which provide effective solutions for SLA-aware service deployment. An
example is given by scheduling approaches which aim to optmize specific met-
rics defined within the SLA.

For instance, many works have been developed for the scheduling of latency-
sensitive services, that are characterized by more strict requirements on the
service-user latency.

In the area of distributed Cloud Papagianni et al. [49], proposed a framework
for an efficient mapping of VM user requests on the aggregate set of connected
clouds. They modelled the mapping problem as mixed integer programming
aiming to minimize the mapping costs and the number of hops among the VMs.
Similarly, Aral et al. in [4] proposed a novel approach for the problem of map-
ping virtual networks defined by the set of interconnected VMs (i.e., service
replicas) on a real infrastructure in a distributed cloud. The solution devised is
relies on a topology based mapping approach and allocates the virtual network
defined by the connections among service components on a cloud subnet whose
topology is isomorphic to the virtual one. They aim to reduce the network la-
tency and optimize the bandwidth utilization. Still in the area of distributed
Cloud, in [39] the authors propose a novel approach to tackle the problem of
service allocation in a federated Cloud environment for horizontally scalable
services. They defined a method which allocates service component replicas
taking into account the maximum service requirements in terms of computing,
networking and storage resources, a set of affinity and anti-affinity rules for de-
ploying replica in the same node or subnet and the federated infrastructure costs.
The allocation problem is then formulated as Mixed-Integer Linear Program-
ming optimization problem and implemented, then, a heuristic solver that yields
to near-optimal solutions in very short time. Pittaras et al. [54], instead, devel-
oped an approach for efficient mapping of virtual networks onto a multi-domain
network substrate. They devised a semantic based approach for the mapping of

84

requests to real network subnets which minimizes the number of hops between
selected nodes.

In the context of single Cloud providers, authors in [53, 82] developed ser-
vice component placement methodologies that, similarly to the distributed sce-
nario described before, optimize the service placement among servers in a single
data center minimizing the transfer time between service components. There-
fore, also these approaches do not take into account users information which
would make their application suitable for service scheduling in Edge. Authors
in [26], however, integrated user information in the service allocation method-
ology they proposed. Indeed, they defined a provisioning algorithm based on
queuing theory to identify the number of VMs to be deployed in order to min-
imize the user waiting time. However, this approach, intended for IaaS Cloud,
only define the number of VMs needed to cope with the incoming load and is
still missing VM placement policies which would lead to sub-optimal results in
the case of Edge Computing.

In the area of Edge Computing, instead, no works are currently available,
to the best of our knowledge, for service scheduling on edge nodes. Works
as [31, 44, 84] face edge computation offloading problem, that is the decision
of scheduling a task on mobile device or local/internet Cloud. Nevertheless,
these works do not take into account the actual service scheduling between edge
nodes.

In the area of Fog Computing, in [62], authors defined a scheduling approach
for the placement of service modules on fog nodes, focusing only on the opti-
mization of response time among components, without taking into account the
end-to-end service time. Aazam et al. in [1], instead, defined a resource esti-
mation and pricing model for IoT, that estimates the amount of resources to be
allocated for a given service, again without providing an solution for the selec-
tion of a node where to allocate the service.

85

Chapter 7

Conclusions

Service quality in Cloud Computing has a considerable impact on the whole
service life cycle. For example, given a set of functionally equivalent services,
during the service acquisition phase, the consumer choice is mainly driven by the
quality guarantees and terms of agreements they offer. Moreover, the violation,
during the service execution, of previously agreed terms certainly affects the
trustworthiness of the consumers, that might ask the termination of the service
execution or decide to not renew the service provision once it is terminated.

Therefore, given the relevance of this area for the success of Cloud paradigm,
many works have already been developed in the context of service quality spec-
ification and management. However, in the devised solutions, the dynamism
characterizing cloud services is not properly taken into account, even though it
represents one of the distinguishing feature of these services.

We have proposed a framework which addresses service quality in the first
phases of the service life cycle, namely specification, negotiation and service
deployment.

Specifically, for the service acquisition phase we have defined (i) SLAC, a
novel specification language, that allows the definition of dynamic agreements
and (ii) a negotiation framework for the negotiation of the SLAs formulated with
the language we devised.

The SLAC language, presented in Chap. 3, introduces the definition of dy-
namic SLAs allowing the modification of the quality of service terms at run time

86

when specific conditions are met, guaranteeing the adaptation of service perfor-
mance. In this way, consumers and providers can associate service quality term
values to specific service conditions, that can trigger automatic modification of
those values when these conditions are reached. The presented experimental re-
sults show the advantages of the dynamism offered by SLAC by evidencing a
reduction of agreements violations and thus of penalties as well as an increase
of the revenue for the provider.

Nevertheless, the adoption of this new specification language introduces new
research challenges related to negotiation of the dynamic SLAs. Therefore, we
developed a novel framework (Chap. 4) for the negotiation of this new type of
agreements. It provides insights for the modification to be applied to service
offers and request to increase their compatibility and, consequently, to find a
final agreement between the parties.

To this aim, we proposed a formal framework for the specification of this
interaction and a framework for the autonomous negotiation of smart contracts.
The main steps of the solution we devised are checking of specification consis-
tency, analysing the compatibility between offers and requests and elaborating
the best possible agreement (if any). The outcome of the experimental evalua-
tion shows that if the parties are willing to accept modifications of their initial
proposals, the number of reached agreements improves considerably.

We also addressed the issues related to the scheduling of latency sensitive
applications by defining a novel scheduling algorithm aiming at guaranteeing
the latency requirements in a Edge scenario.

The main factors that lead us to address this last challenge were the facts that
latency-sensitive services are highly dynamic and thus a good test bed for the
application of our service specification and negotiation framework; and currently
there is no available solutions for addressing the scheduling problem in Edge
Computing, which represents the most suitable deployment solution for this type
of services.

Indeed, the latency characterizing Cloud platforms, cannot cope with the
latency requirements of these services, and thus the currently adopted cloud-
based deployment solutions for these services turn out to not fully suitable. The
Edge paradigm, instead, extends the cloud infrastructure by adding computing
resources in close proximity of end users and considerably reduces the end-to-

87

end latency. Moreover, the considered scenario represents a good use case for
the application of the solutions for service specification and negotiation; its high
dynamism can benefit from the specification of dynamic requirements.

In Chap. 5, we defined a two stages score-based algorithm that, given a set
of available Virtual Machines (VMs), first evaluates the eligibility of each VM
type to host a given service, assigning to each VM type a quality score, and then
schedules the services in order to maximize the total score of the chosen VMs,
while guaranteeing higher service quality for end users. To evaluate our ap-
proach we evaluated the impact of different deployment solution, namely Edge,
CDN, and Cloud. The obtained results suggest that Edge is the best solution
in this context. Moreover, to validate our framework, we compared average re-
sponse time, processing time and network delay experienced by the users of our
approach with similar work by other researchers and showed that our solution
offers much better performances.

7.1 Research Findings

Research Question 1
How to properly describe service quality terms in Cloud Computing?

The needs of both cloud computing consumers and providers are service-
driven, therefore when specific conditions are met, the service level objects need
to be adapted accordingly. We propose a novel framework that allows the speci-
fication of service level agreements that permits adapting the terms at run time,
according to the conditions defined. The results we obtained demonstrate the
advantages of this autonomous approach in reducing services violations, and in
guaranteeing enhanced quality of service for final user as well as higher revenues
for the service provider.

Research Question 2
How to negotiate SLAs for Cloud Computing with the new dynamic language?

One of the main challenges introduced by the use of dynamic SLAs is repre-
sented by the negotiation process of offer/requests. Therefore we devised a ne-

88

gotiation framework, which autonomously executes the compatibility analysis of
the parties’ proposals and seeks for modifications to be applied to both of them,
to increase the compatibility and to eventually sign a final agreement. Experi-
mental results show that with our approach, if parties are flexible in accepting
modifications of their original proposals, a valid agreement can be reached.

Research Question 3
How to enhance specific service quality

in distributed environments?

In this work we focused on Edge computing, a highly-distributed environ-
ment, to enhance the quality latency sensitive services. Specifically, we defined
an innovative scheduling algorithm that aims at maximizing service quality ex-
perienced by end users and considers in the scheduling process the Edge comput-
ing characteristics, such as, latency, bandwidth, and computational capabilities.
The experimental results show that Edge-based deployment solutions offer good
performance in terms of end-to-end latency. However, they also show that, for
effective exploitation, scheduling algorithms specifically devised for this plat-
form are needed.

7.2 Limitations of our Study

In this section we summarize the main limitations of the work presented in this
thesis:

• Our final goal was to provide a framework for service quality management
in Cloud Computing focusing on the improvement of service quality spec-
ification and on the development of novel techniques for service manage-
ment. However, while we provided a comprehensive framework for SLA
specification and negotiation, we addressed only partially the management
phase. Indeed, we developed a solution for the initial deployment of the
services in Edge that does not consider the possible dynamic requirements
expressed with SLAC in the decision process.

• The SLAC language we devised, defines a formalism for enhanced spec-

89

ifications, however it introduces new challenges in service discovery, ne-
gotiation, scheduling and management processes that are only partially
addressed in this thesis. We mainly focused on the discovery and negotia-
tion processes, whereas the analysis on how scheduling and management
tasks are affected by dynamic SLAs has not been carried out yet.

• The decision model devised in the negotiation framework does not allow
parties to define a customized policy to be used during the negotiation
process. Currently, the process is only based on the compatibility of SLA
states and transitions and it does not give the possibilities to the parties
to weight differently the states and the transitions during compatibility
analysis. Moreover, costs and revenues of states and transitions are not
considered in the decision model.

• The service scheduling solution we developed is only responsible for the
initial placement of service instances on edge nodes and does not provide a
run time support for the service management during the service provision.

7.3 Future Works

In the previous section we outlined some limitations of our work which auto-
matically suggest new challenges and further research topics:

• The scheduling approach we developed does not take into account dy-
namic requirements specified with SLAC. Therefore, to fully exploit the
advantages introduced by this new formalism, we plan to extend our solu-
tion considering also the dynamic requirements in the decision process.

• The information provided by the conditions and modifications expressed
with the dynamic agreements provide useful information that can be used
also for service and resource management processes. We plan also to
define innovative management processes that take into account dynamic
requirements in the decision tasks.

• The module for decision making of our scheduling component can be im-
proved for estimating also the number of service instances needed to han-
dle the expected workload. Currently we only considers one instance per

90

service to be deployed, and rely on the (limited) scaling capabilities of
edge nodes for the activation of new instances.

• Besides new research challenges, there are also technical aspects to be
improved. Indeed, the SLA verification module, defined in the negotiation
framework, is currently based on a brute force approach. We plan to study
alternative approaches based, e.g., on genetic algorithms.

91

References

[1] Mohammad Aazam and Eui-Nam Huh. Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot. In Advanced Information
Networking and Applications (AINA), 2015 IEEE 29th International Conference on,
pages 687–694. IEEE, 2015. 85

[2] Smart Contracts Alliance. Smart contracts: 12 use cases for business and beyond.
Chamber of Digital Commerce, page 56, 2016. 18

[3] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web
Services Agreement Specification (WS-Agreement). Technical report, Open Grid
Forum, 2007. 79

[4] Atakan Aral and Tolga Ovatman. Network-aware embedding of virtual machine
clusters onto federated cloud infrastructure. Journal of Systems and Software,
120:89–104, 2016. 84

[5] Elarbi Badidi. A framework for software-as-a-service selection and provisioning.
International Journal of Computer Networks & Communications, 5(3):189,
2013. 78

[6] Elarbi Badidi. A broker-based framework for integrated sla-aware saas provision-
ing. arXiv preprint arXiv:1605.02432, 2016. 19, 78

[7] Eric Bauer and Randee Adams. Service quality of cloud-based applications. John
Wiley, 2013. 2, 15

[8] Kashif Bilal and Aiman Erbad. Edge computing for interactive media and video
streaming. In Fog and Mobile Edge Computing (FMEC), 2017 Second International
Conference on, pages 68–73. IEEE, 2017. 61

[9] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. 33

92

[10] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009. 1, 9

[11] Rodrigo Calheiros, Rajiv Ranjan, Anton Beloglazov, César De Rose, and Rajkumar
Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1), 2011. 68

[12] Jen-Hsiang Chen, Fahmida Abedin, Kuo-Ming Chao, Nick Godwin, Yinsheng Li,
and Chen-Fang Tsai. A hybrid model for cloud providers and consumers to agree
on qos of cloud services. Future Generation Computer Systems, 50:38–48, 2015.
83

[13] Robert Coehoorn and Nicholas Jennings. Learning on opponent’s preferences to
make effective multi-issue negotiation trade-offs. In Proc. of the 6th Intl Conference
on Electronic commerce, pages 59–68. ACM, 2004. 83

[14] Fog Computing. The internet of things: Extend the cloud
to where the things are. Available on: http://www. cisco.
com/c/dam/en us/solutions/trends/iot/docs/computingoverview. pdf, 2015. 12

[15] Marco Comuzzi and Barbara Pernici. An architecture for flexible web service qos
negotiation. In Proc. of the 9th IEEE Intl Enterprise Computing Conference, pages
70–79. IEEE, 2005. 78, 83

[16] Anacleto Correia, Fernando Brito e Abreu, and Vasco Amaral. SLALOM: a lan-
guage for SLA specification and monitoring. CoRR, abs/1109.6740, 2011. 79

[17] Asit Dan, Doug Davis, Robert Kearney, Alexander Keller, Richard King, Dietmar
Kuebler, Heiko Ludwig, Mike Polan, Mike Spreitzer, and Alaa Youssef. Web
services on demand: Wsla-driven automated management. IBM systems journal,
43(1):136–158, 2004. 78

[18] Amir Vahid Dastjerdi and Rajkumar Buyya. An autonomous reliability-aware nego-
tiation strategy for cloud computing environments. In Proc. of the 12th IEEE/ACM
CCGrid, pages 284–291. IEEE, 2012. 55, 83

[19] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo Calheiros, Soumya Ghosh, and Ra-
jkumar Buyya. Fog computing: Principles, architectures, and applications. In In-
ternet of Things, pages 61–75. Elsevier, 2016. 12

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proc. of
TACAS, pages 337–340, 2008. 32

93

[21] Rocco De Nicola. Process algebras. In David A. Padua, editor, Encyclopedia of
Parallel Computing, pages 1624–1636. Springer, 2011. 44

[22] Sharaf Djemame. Enabling service-level agreement renegotiation through extend-
ing WS-Agreement specification. SOCA, pages 177–191, 2015. 35

[23] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. In ACM SIGCOMM Computer Communication Review, volume 41,
pages 362–373. ACM, 2011. 60

[24] Koustabh Dolui and Soumya Kanti Datta. Comparison of edge computing imple-
mentations: Fog computing, cloudlet and mobile edge computing. In Global Inter-
net of Things Summit (GIoTS), 2017, pages 1–6. IEEE, 2017. 12, 14

[25] Eric Dubois, Kyriakos Kritikos, and Sylvain Kubicki. An automatic requirements
negotiation approach for business services. In Proc. of the 9th IEEE ECOWS, pages
133–140. IEEE, 2011. 83

[26] Ta Nguyen Binh Duong, Xiaorong Li, Rick Siow Mong Goh, Xueyan Tang, and
Wentong Cai. Qos-aware revenue-cost optimization for latency-sensitive services
in iaas clouds. In Distributed Simulation and Real Time Applications (DS-RT), 2012
IEEE/ACM 16th International Symposium on, pages 11–18. IEEE, 2012. 73, 85

[27] Peyman Faratin, Carles Sierra, and Nicholas Jennings. Using similarity criteria to
make issue trade-offs in automated negotiations. artificial Intelligence, 142(2):205–
237, 2002. 83

[28] Peyman Faratin, Carles Sierra, and Nick Jennings. Negotiation decision functions
for autonomous agents. Robotics and Autonomous Systems, 24(3-4):159–182, 1998.
54, 55

[29] Peyman Faratin, Carlos Sierra, Nick Jennings, and Phil Buckle. Designing respon-
sive and deliberative automated negotiators. In Proc. of AAAI Workshop on Negoti-
ation: Settling Conflicts and Identifying Opportunities, 1999. 83

[30] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid
computing 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE’08, pages 1–10. IEEE, 2008. 9

[31] Xueying Guo, Rahul Singh, Tianchu Zhao, and Zhisheng Niu. An index based
task assignment policy for achieving optimal power-delay tradeoff in edge cloud
systems. In Communications (ICC), 2016 IEEE International Conference on, pages
1–7. IEEE, 2016. 85

94

[32] Stella Heras, Fernando de la Prieta, Sara Rodriguez, Javier Bajo, Vicente J Botti,
and Vicente Julián. The role of argumentation on the future internet: Reaching
agreements on clouds. In AT, pages 393–407, 2012. 83

[33] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mo-
bile edge computing—a key technology towards 5g. ETSI White Paper, 11(11):1–
16, 2015. 63

[34] Michaela Iorga, Larry Feldman, Robert Barton, Michael Martin, Nedim Goren, and
Charif Mahmoudi. Fog computing conceptual model. Technical report, NIST, 2018.
12

[35] Sung Ho Jang, Tae Young Kim, Jae Kwon Kim, and Jong Sik Lee. The study of
genetic algorithm-based task scheduling for cloud computing. International Journal
of Control and Automation, 5(4):157–162, 2012. 21

[36] Nicholas Jennings, Peyman Faratin, Alessio Lomuscio, Simon Parsons, Michael
Wooldridge, and Carles Sierra. Automated negotiation: prospects, methods and
challenges. Group Decision and Negotiation, 10:199–215, 2001. 83

[37] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Mon-
itoring Service Level Agreements for Web Services. JNSM, 11(1):57–81, 2003. 79

[38] Kearney Keven, Torelli Francesco, and Kotsokalis. Constantinos. SLA: An abstract
syntax for Service Level Agreements. GRID, 2010. 79

[39] Kleopatra Konstanteli, Tommaso Cucinotta, Konstantinos Psychas, and Theodora
Varvarigou. Elastic admission control for federated cloud services. IEEE Transac-
tions on Cloud Computing, 2(3):348–361, 2014. 84

[40] Kyriakos Kritikos and Rafael Brundo Uriarte. Semantic sla for clouds: Combining
slac and owl-q. In Proc. of CLOSER, pages 432–440. ScitePress, 2017. 2, 26, 78

[41] Kyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia Cappiello, Marco
Comuzzi, Salima Benrernou, Ivona Brandic, Attila Kertész, Michael Parkin, and
Manuel Carro. A survey on service quality description. ACM Computing Surveys
(CSUR), 46(1):1, 2013. 14

[42] Khaled Mahbub and George Spanoudakis. Proactive sla negotiation for service
based systems: Initial implementation and evaluation experience. In Proc. of the
8th IEEE Services Computing (SCC). IEEE, 2011. 83

[43] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog comput-
ing: A taxonomy, survey and future directions. In Internet of Everything, pages
103–130. Springer, 2018. 12

95

[44] Yuyi Mao, Jun Zhang, and Khaled Letaief. Dynamic computation offloading for
mobile-edge computing with energy harvesting devices. IEEE Journal on Selected
Areas in Communications, 34(12):3590–3605, 2016. 85

[45] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology, 53(6):50, 2009. 9, 11

[46] S Nagadevi, K Satyapriya, and D Malathy. A survey on economic cloud sched-
ulers for optimized task scheduling. International Journal of Advanced Engineering
Technology, 4(1):58–62, 2013. 21

[47] Radheshyam Nanduri, Nitesh Maheshwari, Reddyraja, and Vasudeva Varma. Job
Aware Scheduling Algorithm for MapReduce Framework. In Proc. of CloudCom,
pages 724–729, 2011. 36

[48] Aya Omezzine, Saı̈d Tazi, Narjes Bellamine, Ben Saoud, Khalil Drira, and Gene
Cooperman. Towards a dynamic multi-level negotiation framework in cloud com-
puting. In Proc. of 1st Cloud Technologies and Applications (CloudTech), pages
1–8. IEEE, 2015. 83

[49] Chrysa Papagianni, Aris Leivadeas, Symeon Papavassiliou, Vasilis Maglaris,
Cristina Cervello-Pastor, and Alvaro Monje. On the optimal allocation of vir-
tual resources in cloud computing networks. IEEE Transactions on Computers,
62(6):1060–1071, 2013. 84

[50] Adrian Paschke. RBSLA A declarative Rule-based Service Level Agreement Lan-
guage based on RuleML. Proc. of CIMCA-IAWTI, 2:308–314, 2005. 79

[51] Al-Mukaddim Khan Pathan and Rajkumar Buyya. A taxonomy and survey of con-
tent delivery networks. Grid Computing and Distributed Systems Laboratory, Uni-
versity of Melbourne, Technical Report, 4, 2007. 70

[52] Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. Linked USDL: A vocabulary
for web-scale service trading. In Proc. of ESWC, pages 68–82, May 2014. 79

[53] Jing Tai Piao and Jun Yan. A network-aware virtual machine placement and mi-
gration approach in cloud computing. In Grid and Cooperative Computing (GCC),
2010 9th International Conference on, pages 87–92. IEEE, 2010. 85

[54] Chariklis Pittaras, Chrysa Papagianni, Aris Leivadeas, Paola Grosso, Jeroen van der
Ham, and Symeon Papavassiliou. Resource discovery and allocation for federated
virtualized infrastructures. Future Generation Computer Systems, 42:55–63, 2015.
84

[55] Charles Reiss, John Wilkes, and Joseph Hellerstein. {Google} cluster-usage traces:
format + schema. Technical report, Google Inc., Mountain View, USA, nov 2011.
36

96

[56] Vincenzo Scoca, Atakan Aral, Ivona Brandic, Rocco De Nicola, and Rafael Brundo
Uriarte. Scheduling latency-sensitive applications in edge computing. In Proceed-
ings of the 8th International Conference on Cloud Computing and Services Science,
pages 158–168, 2018. vii

[57] Vincenzo Scoca, Rafael Brundo Uriarte, and Rocco De Nicola. Smart contract
negotiation in cloud computing. In Cloud Computing (CLOUD), 2017 IEEE 10th
International Conference on, pages 592–599. IEEE, 2017. vii, 31, 32

[58] Damián Serrano, Sara Bouchenak, Yousri Kouki, Frederico Alvares de Oliveira Jr,
Thomas Ledoux, Jonathan Lejeune, Julien Sopena, Luciana Arantes, and Pierre
Sens. Sla guarantees for cloud services. Future Generation Computer Systems,
54:233–246, 2016. 79

[59] Ram Kumar Sharma and Nagesh Sharma. A dynamic optimization algorithm for
task scheduling in cloud computing with resource utilization. International Journal
of Scientific Engineering and Technology, Volume, 2:1062–1068, 2013. 20

[60] Sudhir Shenai and Vijindra. Survey on scheduling issues in cloud computing. Pro-
cedia engineering, 38:2881–2888, 2012. 21

[61] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016. 12

[62] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. Towards
qos-aware fog service placement. In Fog and Edge Computing (ICFEC), 2017 IEEE
1st International Conference on, pages 89–96. IEEE, 2017. 85

[63] James Skene, Davide Lamanna, and Wolfgang Emmerich. Precise service level
agreements. In Proc. of ICSE, pages 179–188, 2004. 79

[64] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems. In Fog and Mobile
Edge Computing (FMEC), 2017 Second International Conference on, pages 39–44.
IEEE, 2017. 68

[65] Nick Szabo. Smart contracts: building blocks for digital markets. EXTROPY: The
Journal of Transhumanist Thought,(16), 1996. 18

[66] Vladimir Tosic, Bernard Pagurek, and Kruti Patel. WSOL - A Language for the
Formal Specification of Classes of Service for Web Services. In Proc. of ICWS,
2003. 79

[67] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Networks, 53(11):1830–
1845, July 2009. http://www.globule.org/publi/WWADH_comnet2009.html.
40

97

http://www.globule.org/publi/WWADH_comnet2009.html

[68] Rafael Brundo Uriarte. SLAC project website. 35

[69] Rafael Brundo Uriarte, Vncenzo Scoca, Francesco Tiezzi, and Rocco De Nicola.
SLAC: Formal Definitions. Technical report, IMT, 2017. http://sysma.
imtlucca.it/tools/slac/. 24

[70] Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola. Dynamic slas for
clouds. In Proc. of the 5th European Conference on Service-Oriented and Cloud
Computing (ESOCC), pages 34–49. Springer, 2016. vii, 2

[71] Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola. Slac: A formal
service-level-agreement language for cloud computing. In Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, pages
419–426. IEEE Computer Society, 2014. vii, 2, 43

[72] Rafael Brundo Uriarte, Sotirios Tsaftaris, and Francesco Tiezzi. Service clustering
for autonomic clouds using random forest. In Proc. of CCGrid, pages 515–524,
2015. 33

[73] Rafael Brundo Uriarte, Sotirios Tsaftaris, and Francesco Tiezzi. Supporting auto-
nomic management of clouds: Service clustering with random forest. TNSM, 2016.
31, 33

[74] Rafael Brundo Uriarte and Carlos Becker Westphall. Panoptes: A monitoring archi-
tecture and framework for supporting autonomic Clouds. In Proc. of NOMS, pages
1–5, Poland, 2014. IEEE. 31

[75] Gérard Verfaillie and Thomas Schiex. Solution reuse in dynamic constraint satis-
faction problems. In Proc. of AAAI, volume 94, pages 307–312, 1994. 28

[76] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang. A
survey on mobile edge networks: Convergence of computing, caching and commu-
nications. IEEE Access, 5:6757–6779, 2017. 5, 12, 13

[77] Philipp Wieder, Joe M Butler, Wolfgang Theilmann, and Ramin Yahyapour. Service
level agreements for cloud computing. Springer Science & Business Media,
2011. 78

[78] Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya, Chao Chen, and Steve Versteeg.
Automated sla negotiation framework for cloud computing. In Proc. of the 13th
IEEE/ACM CCGrid, pages 235–244. IEEE, 2013. 83

[79] Anagha Yadav and Suresh Rathod. Study of scheduling techniques in cloud com-
puting environment. International Journal of Computer Trends and Technology
(IJCTT), 2015. 20

98

http://sysma.imtlucca.it/tools/slac/
http://sysma.imtlucca.it/tools/slac/

[80] Edwin Yaqub, Ramin Yahyapour, Philipp Wieder, Constantinos Kotsokalis, Kuan
Lu, and Ali Imran Jehangiri. Optimal negotiation of service level agreements for
cloud-based services through autonomous agents. In Proc. of the 11th IEEE Ser-
vices Computing (SCC), pages 59–66. IEEE, 2014. 83

[81] Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu, Guofei Jiang, and Har-
sha V Madhyastha. Software-defined latency monitoring in data center networks.
In International Conference on Passive and Active Network Measurement, pages
360–372. Springer, 2015. 65

[82] Lingfang Zeng, Bharadwaj Veeravalli, and Qingsong Wei. Space4time: Optimiza-
tion latency-sensitive content service in cloud. Journal of Network and Computer
Applications, 41:358–368, 2014. 85

[83] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18, 2010.
9

[84] Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu. A coop-
erative scheduling scheme of local cloud and internet cloud for delay-aware mobile
cloud computing. In Globecom Workshops (GC Wkshps), 2015 IEEE, pages 1–6.
IEEE, 2015. 85

[85] Farhana Zulkernine and Patrick Martin. An adaptive and intelligent sla negotiation
system for web services. IEEE Transactions on Services Computing, 4(1):31–43,
2011. 55, 83

Unless otherwise expressly stated, all original material of whatever nature
created by Vincenzo Scoca and included in this thesis, is licensed under a
Creative Commons Attribution Noncommercial Share Alike 2.5 Italy Li-
cense.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal code of
the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:vincenzo.scoca@imtlucca.it

	List of Figures
	List of Tables
	Declaration
	Publications
	1 Introduction
	2 Quality of Service in Cloud Computing: Background
	2.1 Cloud Computing
	2.2 Edge Computing
	2.3 Quality of Service in Cloud
	2.4 Service Life Cycle and Quality
	2.5 Smart Contracts
	2.6 SLA Negotiation in Cloud
	2.7 Service Scheduling

	3 Dynamic Service Level Agreements for Cloud Computing
	3.1 The SLAC Language
	3.1.1 Overview of the Syntax
	3.1.2 Informal Semantics

	3.2 The SLAC Software Framework
	3.3 Experiments
	3.3.1 Provider's Benefits
	3.3.2 User's Benefits

	4 Smart Contract Negotiation
	4.1 Modelling Smart Contracts
	4.1.1 Syntax
	4.1.2 Semantics
	4.1.3 An Example

	4.2 Autonomous Negotiation of Smart Contracts
	4.2.1 Compatibility Verification
	4.2.2 Incompatibility Analysis
	4.2.3 Solution Evaluation
	4.2.4 Use Case Example

	4.3 Validation of our Approach
	4.3.1 Scenario
	4.3.2 Result Analysis

	5 Scheduling Latency-Sensitive Services in Edge Computing
	5.1 Motivating Example
	5.2 A Scheduling Framework for Edge Computing
	5.2.1 Virtual Machine Evaluation
	5.2.2 Scheduling Approach

	5.3 Validation of our Approach
	5.3.1 Experimental Setup
	5.3.2 Scenarios
	5.3.3 Experimental Results

	6 Related Works
	6.1 SLA Definition Languages
	6.2 SLA Negotiation
	6.3 Service Scheduling in Cloud

	7 Conclusions
	7.1 Research Findings
	7.2 Limitations of our Study
	7.3 Future Works

	References

