
IMT School for Advanced Studies, Lucca

Lucca, Italy

Hierarchical Planning and Stochastic
Optimization Algorithms with Applications to

Self-driving Vehicles and Finance

PHD IN INSTITUTIONS, MARKETS AND
TECHNOLOGIES

Curriculum in Control Systems

XXX Cycle

By

Mogens Graf Plessen

2018

http://www.imtlucca.it
mailto:mogens.plessen@imtlucca.it

Dissertation of Mogens Graf Plessen

Program Coordinator: Prof. Pietro Pietrini, IMT Lucca

Supervisor: Prof. Alberto Bemporad, IMT Lucca

Committee:

Prof. Dario Piga, SUPSI Lugano

Prof. Sergio Savaresi, Politecnico di Milano

IMT School for Advanced Studies, Lucca

2018

http://www.imtlucca.it

Contents

Acknowledgements x

Abstract xi

Notation xii

1 Introduction 1
1.1 Four Basic Concepts for Decision Taking 1
1.2 The Individual and Societal Aspect

for the Automation of Transportation 5
1.3 Continuous- and Discrete-time

System Modeling . 6
1.4 Motivation of this Thesis . 9
1.5 Thesis Outline and List of Publications 9

2 Single and Multi-Vehicle Motion Planning 14
2.1 Single-Vehicle Motion Planning by MPC 15

2.1.1 LTI- or LTV-MPC formulation 16
2.1.2 Case Study: The Influence of Reference Trajectories 20
2.1.3 Time or Spatial Parametrization 27
2.1.4 Road Modeling in the Spatial Framework 32
2.1.5 Dynamic and Kinematic Vehicle Models 33
2.1.6 Sequential Programming 37
2.1.7 Time Scheduling in the Spatial Framework 39
2.1.8 Sampling Times in the Spatial Framework 42
2.1.9 Control Rate Constraints in the Spatial Framework 43

v

2.1.10 Vehicle Dimension Constraints in the
Spatial Framework 45

2.1.11 State Estimation and Environment Modeling 49
2.1.12 Road Navigation . 52
2.1.13 Zone Navigation . 58
2.1.14 Combinatorial Obstacle Avoidance and

Corridor Planning 60
2.1.15 Adaptive Cruise Control 65
2.1.16 Driving Mode Selection Heuristics 67
2.1.17 Hierarchical Controller Parametrization 73

2.2 Single-vehicle Motion Planning by
Neural Networks . 74
2.2.1 Introduction . 74
2.2.2 Problem Formulation 78
2.2.3 System Level . 79
2.2.4 Training Algorithm 87
2.2.5 Numerical Experiments 103
2.2.6 Hierarchical Controller Parametrization 115

2.3 Multi-vehicle Motion Planning 116
2.3.1 Introduction . 117
2.3.2 Cooperative Driving System 119
2.3.3 Numerical Simulations 130
2.3.4 Hierarchical Controller Parametrization 132

2.4 Discussion and Conclusion of Chapter 133

3 Vehicle Routing 138
3.1 Path Planning for Area Coverage 138

3.1.1 Introduction . 138
3.1.2 Algorithms . 139
3.1.3 Quantitative Example 171
3.1.4 Hierarchical Controller Parametrization 172

3.2 In-Field Navigation via an Android App 173
3.2.1 Background . 173
3.2.2 Summary . 174

vi

3.2.3 Web-service for Communication 174
3.2.4 Hierarchical Controller Parametrization 177

3.3 Partial Field Coverage Based on
Two Path Planning Patterns 178
3.3.1 Motivation . 178
3.3.2 Summary . 181

3.4 Shortest Path Computations under Trajectory Constraints
within Agricultural Fields 182
3.4.1 Introduction . 182
3.4.2 Navigation in Orchard-like Areas 183
3.4.3 Navigation in Agricultural Fields 189
3.4.4 Numerical Experiments 194
3.4.5 Conclusion . 195
3.4.6 Hierarchical Controller Parametrization 196

3.5 Coupling of Crop Assignment and Vehicle Routing for Har-
vest Planning in Agriculture 197
3.5.1 Introduction . 197
3.5.2 Problem Formulation and Notation 199
3.5.3 Problem approach 202
3.5.4 Problem Solution . 207
3.5.5 Extensions . 220
3.5.6 Numerical Simulations 222
3.5.7 Conclusion . 225
3.5.8 Hierarchical Controller Parametrization 226

3.6 Discussion of Chapter . 227

4 Quantitative Finance 228
4.1 Dynamic Option Hedging with

Transaction Costs: A SMPC approach 229
4.1.1 Introduction . 229
4.1.2 Dynamic Option Hedging 232
4.1.3 Transaction Costs . 235
4.1.4 SMPC Problem Formulations 237
4.1.5 Scenario Generation 248

vii

4.1.6 Hedging Results . 253
4.1.7 Conclusions . 264
4.1.8 Hierarchical Controller Parametrization 265

4.2 Parallel Investments in Multiple
Call and Put Options . 266
4.2.1 Introduction . 266
4.2.2 Call and Put Options 267
4.2.3 High-level Algorithm 270
4.2.4 Optimization Problem Formulation 274
4.2.5 Numerical Examples 278
4.2.6 Conclusion . 281
4.2.7 Hierarchical Controller Parametrization 282

4.3 Optimal Trading with Hindsight 283
4.3.1 Introduction . 283
4.3.2 One-stage Modeling of System Dynamics 285
4.3.3 Transition Dynamics 287
4.3.4 Multi-stage System Dynamics Optimization

Without Diversification Constraint 294
4.3.5 Multi-stage System Dynamics Optimization

With a Diversification Constraint 299
4.3.6 Numerical Examples 303
4.3.7 Conclusion . 314
4.3.8 Hierarchical Controller Parametrization 315

4.4 Single-Asset Stock Trading:
Stochastic Model Predictive or Genetic? 316
4.4.1 Introduction . 316
4.4.2 Transition Dynamics Modeling 317
4.4.3 Stochastic Model Predictive Stock Trading 320
4.4.4 Genetic Stock Trading 323
4.4.5 Simulation Experiments 327
4.4.6 Conclusion . 332
4.4.7 Hierarchical Controller Parametrization 332

4.5 Discussion of Chapter . 333

viii

5 Conclusion 335

References 337

ix

Acknowledgements

I thank Prof. Bemporad for the opportunity to participate in
the PhD program at IMT Lucca. I thank all co-authors for any
collaboration. Besides Alberto Bemporad, these are Pedro F.
Lima, Jonas Mårtensson, Bo Wahlberg, Tommaso Gabriellini,
Laura Puglia, Daniele Bernardini and Hasan Esen. Special
thanks to Prof. Wahlberg for enabling my visiting stay at
KTH Stockholm, Sweden, at the end of 2016, and Pedro F.
Lima for the collaboration during that period.

x

Abstract

This work discusses hierarchical planning and stochastic op-
timization algorithms with applications to self-driving vehi-
cles and quantitative finance. A diverse set of mathemati-
cal tools is considered, ranging from model predictive con-
trol (MPC), in both the deterministic and stochastic setting, to
various vehicle routing problems, and reinforcement learn-
ing using neural networks for function approximation. The
applications discussed include single- and multi-automated
vehicle motion planning, agricultural in- and out-field logis-
tics planning, as well as dynamic option hedging.

xi

Notation

The number of mathematical symbols which can be used for
variables and the like is limited. Therefore, basic notation is
here stated for only Section 2.1 which summarizes four pub-
lications comprehensively. In contrast, all other sections dis-
cuss one publication per section and therefore develop their
own notation. Thus, notation has to be interpreseted section-
wise. For example, T represents the transition graph in the
vehicle routing setting of Section 3.1, but also the option expi-
ration date in the dynamic hedging setting of Section 4.1.

Main Symbols for Section 2.1

z State vector
u Control vector
x x-coordinate
y y-coordinate
ψ Heading angle
t Time variable
s Space variable (distance along the road centerline)
ẋ Time derivative, dxdt
x′ Spatial derivative, dxds
k Subscript to indicate time discretization (e.g., in Ak)
j Subscript to indicate spatial discretization (e.g., in Aj)
Ts Sampling time
Ds Sampling space
v Velocity
δ Front-axle steering angle
ρs Radius of curvature
ψs Road centerline heading
ey Lateral displacement w.r.t. road centerline
eψ Heading angle w.r.t. road centerline
N Spatial prediction horizon (e.g., in j = 0, 1, . . . , N)

xii

Main Abbreviations for Section 2.1

MPC Model Predictive Control
CoG Center of Gravity
LTI Linear Time-Invariant
LTV Linear Time-Varying
LSV Linear Space-Varying
QP Quadratic Program
LP Linear Program
PWA Piecewise-Affine
SLP Sequential Linear Program
CPP Clothoid-based Path Planning
IP Integer Program
BILP Binary Integer Linear Program
NMPC Nonlinear Model Predictive Control

xiii

Chapter 1

Introduction

1.1 Four Basic Concepts for Decision Taking

In this thesis, any problem requiring decision taking is approached in form
of a closed-loop control system, see Figure 1. This section summarizes
four basic concepts relevant for closed-loop control system design.

1. Distinction between fast- and slow-sampling systems.

• According to our definition, a “control system” maps data to
decisions. In practice, this process is repeated. However, it
may be repeated often (e.g., in an automotive setting with fast
sampling times every 100ms), or less often (e.g., in logistics
with slow sampling times once per year or even less frequent).

2. Selection of a) multivariate data sources and b) decision variables.

• For example, in an automotive setting, cameras, lidars and
lasers are frequently used as data sources. Similarly, steering
angle and velocity are frequently employed as decision vari-
ables. In a financial setting, historical stock prices may serve
as the data source. In an agricultural logistics setting, deci-
sions may refer to the assignments of crops to fields.

1

Figure 1: Illustration of a closed-loop control system. A controller maps
data to decisions. Then, decisions are applied to a system, before data is
measured from the system and again fed to the controller. In practice, this
process is repeated. However, dependent on the application, it may be re-
peated at fast or slower sampling times. In the limit, when the sampling
time tends to infinity, the mapping occurs only once.

3. Distinction between a lumped and a hierarchical parametrization.

• A “lumped controller” implies processing of raw multivariate
data. Examples include end-to-end controllers mapping raw
camera images directly to steering angles.

• A “hierarchical controller” refers to sequential processing of
raw multivariate data. For example, camera images may first
be used to extract features such as object locations. Then, in a
second hierarchy, these features are processed.

• See Figure 2 for illustration.

4. Control layer parametrization.

• A “control layer” denotes the mapping between an input and
an output. For lumped controllers, multivariate data is mapped
directly to multivariate decision variables. For hierarchical
controllers, parametrizations are required for each separate
hierarchy. Parametrizations may vary for each hierarchy. In
our setting, a state estimator (such as a Kalman Filter) is also
interpreted as a potential control layer.

• Suitably, each control layer is optimized. Therefore, the output
of each control layer may result from the solution of an opti-
mization problem. A general mixed-integer nonlinear nonconvex

2

Figure 2: Distinction between (a) lumped and (b) hierarchical controller
parametrizations. See Figure 1 for the closed-loop control system.

optimization problem (OP) can be formulated as follows:

inf
zc,zd

J(zc, zd) (1.1a)

s.t. gi(z
c, zd) ≤ 0, i = 1, . . . ,m, (1.1b)

hi(z
c, zd) = 0, i = 1, . . . , p, (1.1c)

zc ∈ Rnzc , (1.1d)

zd ∈ Nnzd , (1.1e)

where zc and zd summarize continuous and discrete optimiza-
tion variables. Thus, R, N, Rn and Nn denote the set of real
numbers, the set of integer numbers, the set of real vectors
with n scalar elements, and the set of integer vectors with
n scalar elements, respectively. The objective function is J :

Rnzc ×Nnzd → R. Inequality and equality constraints are denoted
by gi : Rnzc × Nnzd → R and hi : Rnzc × Nnzd → R, respec-
tively. The infimum operator “inf” is introduced to generalize
for the case that a minimum is not attained. If the problem

3

is solvable and a minimum exists, inf can be replaced by the
minimum operator “min”. Note that (1.1) may be reduced to
quadratic or linear programs. Similarly, a neural network and
even an algebraic mapping or a look-up table may be fit. Fur-
thermore, stochastic and deterministic OPs may be formulated.

• Control layer parametrization comprises the following steps:

4a OP formulation. For example, a linear program (LP) may
be used for parametrization.

4b OP solution offline (explicit, or a priori). For example, a
LP may be solved offline as a parametric program. Then,
during online operation (see Step 4c below), a parametric
look-up table can be searched. Another example is the
offline computation of a Kalman Filter gain for the design
of state estimators. The formulated OP may also not be
solved offline at all.

4c OP solution online (implicit, or in real-time). For example,
a LP may be solved at every sampling time by a suitable
solution algorithm (a solver).

• OP formulations may be adapted to available solution meth-
ods or vice versa. For OP formulations, two concepts are of
particular relevance: a) exploiting problem structure for paral-
lelization, and b) preconditioning (problem transformations and
scalings) that alleviate OP solutions.

To summarize, in this thesis, problems that involve decision taking
are approached by the application of above four concepts. First, the
closed-loop control system sampling time is decided upon. Second, data
and decision variables are determined. Third, a control system architec-
ture with at least one control layer is selected. Finally, each control layer
is parameterized, whereby it must be decided on a) an OP formulation,
b) an OP solution offline (i.e., in form of a preparatory step), and c) an
OP solution online (i.e., for real-time operation).

4

1.2 The Individual and Societal Aspect
for the Automation of Transportation

Within the context of automated driving, it is distinguished between op-
timization of the individual benefit and the societal benefit.

The Individual Aspect

From an individual’s perspective, desirable transportation means are char-
acterized by being: safe, reliable, environmental friendly, fast and afford-
able. It can be distinguished between two hierarchical planning layers.
These are a) the high-level vehicle routing layer, and b) the low-level ve-
hicle motion layer. The former is for high-level route planning, the lat-
ter for low-level plan execution. Therefore, there are two technological
demands for a) a method for the motion control of an agile agent (the
self-driving vehicle) in its surrounding, and b) for a method that devises
routes (missions) for the agile agent under consideration of the present
surrounding in which it interacts.

The Societal Aspect

Rather than perceiving the surrounding as a given (uncontrollable) “con-
straint”, the individual benefit can be further improved when jointly also
optimizing the surrounding. In the transportation setting, the surround-
ing refers to a) other vehicles, and b) the infrastructure. As a conse-
quence, the following classification can be made:

1. Single- and multi-vehicle motion planning (local level).

2. Single- and multi-vehicle routing (global level).

3. Infrastructure control.

An example for multi-vehicle motion planning on a local level is the
control of multi-automated vehicles within a local road segment. In con-
trast, multi-vehicle routing implies mission planning within a larger area,
for example, within a city. Infrastructure control mainly refers to traffic

5

light control, at intersections or along highways. Finally, note that in all
cases, motion control of each agile agent remains the fundamental pre-
requiste. Each agent may be fully automated, semi-automated or manu-
ally controlled.

The topics covered in this thesis for the automation of transportation
are summarized as follows. In Chapter 2 full automation is targeted, and
methods for single and multi-vehicle motion planning are presented. In
contrast, in Chapter 3 methods for vehicle routing are discussed.

1.3 Continuous- and Discrete-time
System Modeling

All control methods presented in this thesis leverage mathematical sys-
tem models. Either for model-based control and optimization, or for model-
based training of control parametrizations in a reinforcement learning
setting. Because of their importance, basic system model representations
are discussed in the following.

Nonlinear Continuous-time Dynamic System Modeling

In this thesis, nonlinear continuous-time dynamic systems are modeled
as first-order ordinary differential equations (ODEs), ż(t) = f(z(t), u(t), t),
or abbreviated, ż = f(z, u, t), and further abbreviated,

ż = f(z, u), (1.2)

with t ∈ R indicating time, derivative ż = dz
dt , and where z ∈ Rnz and

u ∈ Rnu denote state and input (decision) vectors, respectively. Note that
a system such as z̃(n) + f̃(z̃, ˙̃z, ¨̃z, . . . , z̃(n−1), u) = 0 can be brought to the
form of (1.2) by the coordinate transformation z =

[
z̃ ˙̃z ¨̃z . . . z̃(n−1)

]
.

Nonlinear Discrete-time Dynamic System Modeling

There exist a variety of methods to discretize (1.2), see [71]. The simplest
one is the Euler forward scheme with

zk+1 = zk + hf(zk, uk) and tk+1 = tk + h, (1.3)

6

where h denotes the discretization step size and zk+1 approximates z(tk+1).
Typically, h is selected as the sampling time Ts such that h = Ts. An al-
ternative more accurate method is the fourth-order Runge-Kutta scheme

zk+1 = zk +
h

6
(c1 + 2c2 + 2c3 + c4), (1.4a)

c1 = f(zk, uk, tk), (1.4b)

c2 = f(zk + h
c1
2
, uk, tk +

h

2
), (1.4c)

c3 = f(zk + h
c2
2
, uk, tk +

h

2
), (1.4d)

c4 = f(zk + hc3, uk, tk + h), (1.4e)

with tk+1 = tk + h, and assuming u(t) = uk, ∀t ∈ [tk, tk+1].

Linear Time-Invariant Continuous-Time Dynamic System Modeling

Using a first-order Taylor approximation, the linearization of (1.2) is1

ż = f(zref, uref) +Ac(z − zref) +Bc(u− uref), (1.5)

withAc = ∂f(zref,uref)
∂z andBc = ∂f(zref,uref)

∂u denoting the partial derivatives
with respect to z and u, and evaluated at references zref and uref.

Linear Time-Invariant Discrete-Time Dynamic System Modeling

Under the assumption of u(t) = uk, and k ∈ N indexing steps over t ∈
[kTs, (k + 1)Ts] with sampling time TS , the exact discretization of (1.5) is
obtained as

zk+1 = eA
cTszk +

(∫ Ts

0

eA
cηdη

)(
Bc(uk − uref) + f(zref, uref)−Aczref

)
,

= Azk +Buk + g, (1.6)

where (integrated) matrix exponentials can be evaluated according to
[361], and where A, B and g summarize different contributions. Note

1For simplicity, equality-signs “=” instead of approximation-signs “≈” are used
throughout this section. This is to be considered when comparing (1.5) and (1.2).

7

that eA
cTs =

∑∞
m=0

(AcTs)
m

m! . Thus, (1.6) represents a linear time-invariant
(LTI) discrete-time dynamic system model.

Linear Time-Varying Continuous-Time Dynamic System Modeling

Rather than assuming time-invariant references zref and uref in (1.5), the
time-varying correspondent can be formulated as

ż = f(zref
k , u

ref
k)+Ack(z−zref

k)+Bck(u−uref
k), for t ∈ [kTs, (k+1)Ts], (1.7)

where zref
k and uref

k denote references constant over an interval t ∈ [kTs, (k+

1)Ts], but in general time-varying over different intervals indexed by
k ∈ N.

Linear Time-Varying Discrete-Time Dynamic System Modeling

For (1.7), the linear time-varying (LTV) discrete-time correspondent to (1.6)
is then derived as

zk+1 = Akzk +Bkuk + gk, (1.8)

with state transition matrix Ak as well as Bk constant over t ∈ [kTs, (k +

1)Ts], but varying over k ∈ N.

Integrating Logical Constraints

For the formulation of logistical optimization problems, three classes of
logical constraints are of particular interest. They are translated into in-
teger linear inequalities using [372], [40]. Let ε > 0 be a small number
(e.g., the machine precision), b, b1, b2, b3 ∈ {0, 1}, y ∈ R, and g(z) such
that g : Rnz → R is linear, nz the variable dimension, gmax = maxz∈Z g(z)

and gmin = minz∈Z g(z), and where Z is a given bounded set.

1. The statement “b = 1 if and only if g(z) ≤ 0 and b = 0 otherwise”
is equivalent to

g(z) ≤ gmax(1− b), g(z) ≥ ε+ (gmin − ε)b. (1.9)

8

2. The statement “b3 = 1 if and only if b1 = 1 and b2 = 1, and b3 = 0

otherwise” is equivalent to b3 = b1b2 and is equivalent to

b1 + b2 − b3 ≤ 1, b3 ≤ b1, b3 ≤ b2. (1.10)

3. The statement “y = g(z) if b = 1 and y = 0 otherwise” is equivalent
to y = bg(z) and is equivalent to

y ≤ gmaxb, y ≥ gminb, y ≤ g(x)− gmin(1− b),
y ≥ g(x)− gmax(1− b). (1.11)

1.4 Motivation of this Thesis

In general, two very complex and multi-faceted problem classes are self-
driving vehicles and quantitative finance. This motivated to select these as
testbeds for the application and development of hierarchical planning
and stochastic optimization algorithms. Both problem classes are ap-
proached using the aforementioned four basic concepts.

While special focus is on model predictive control (MPC) [269], [65] as
the general control concept (in both the deterministic and stochastic set-
ting), a variety of alternative techniques are also employed for the para-
metrization of at least some of hierarchical control layers. Therefore, a
second motivation for this thesis is an empirical analysis of the advan-
tages and the deficiencies of MPC in comparison to alternatives for the
two problem classes considered.

1.5 Thesis Outline and List of Publications

This section summarizes the contribution by listing publications devel-
oped between November 4, 2014 and December 4, 2017. The chapters in
which these publications are discussed are also indicated. The final ver-
sion of this thesis was completed on January 14, 2018.

9

CHAPTER 2:

VEHICLE MOTION PLANNING

1. M. Graf Plessen, “Automating vehicles by deep reinforcement learn-
ing using task separation with hill climbing,” arXiv preprint arXiv:
1711.10785, 2017. (Submitted).

2. M. Graf Plessen, “Trajectory planning of automated vehicles in
tube-like road segments,” in IEEE Conference on Intelligent Trans-
portation Systems, pp. 83-88, 2017.

3. M. Graf Plessen, P.F. Lima, J. Mårtensson, A. Bemporad, and B.
Wahlberg, “Trajectory planning under vehicle dimension constraints
using sequential linear programming,” in IEEE Conference on Intel-
ligent Transportation Systems, pp. 108-113, 2017.

4. M. Graf Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-
based predictive control and geometric corridor planning for adap-
tive cruise control coupled with obstacle avoidance,” IEEE Transac-
tions on Control Systems Technology, vol. 26(1), pp. 38-50, 2018.

5. M. Graf Plessen, and A. Bemporad, “Reference trajectory planning
under constraints and path tracking using linear time-varying mo-
del predictive control for agricultural machines,” Biosystems Engi-
neering, vol. 153, pp. 28-41, 2017.

6. M. Graf Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Multi-
automated vehicle coordination using decoupled prioritized path
planning for multi-lane one- and bi-directional traffic flow control,”
in IEEE Conference on Decision and Control, pp. 1582-1588, 2016.

10

CHAPTER 3:

VEHICLE ROUTING

1. M. Graf Plessen, “Path planning for area coverage,” WO Patent
App. PCT/EP2016/072966, June 8 2017.

2. M. Graf Plessen, “System and method for navigation guidance of a
vehicle in an agricultural field,” WO Patent App. PCT/EP2016/072968,
June 8 2017.

3. M. Graf Plessen, “Partial field coverage based on two path plan-
ning patterns,” draft at arXiv preprint arXiv: 1707.07649, 2017.

4. M. Graf Plessen, “Coupling of crop assignment and vehicle rout-
ing for harvest planning in agriculture,” arXiv preprint arXiv: 1703.08999,
2017. (Submitted).

5. M. Graf Plessen, “Coordination of harvesting and transport units
for area coverage,” PCT/IB2017/051899, June 4 2017.

6. M. Graf Plessen, and A. Bemporad, “Shortest path computations
under trajectory constraints for ground vehicles within agricultural
fields,” in IEEE Conference on Intelligent Transportation Systems, pp.
1733-1738, 2016.

11

CHAPTER 4:

DYNAMINC OPTION HEDGING AND STOCK TRADING

1. M. Graf Plessen, L. Puglia, T. Gabbriellini, and A. Bemporad, “Dy-
namic option hedging with transaction costs: A stochastic model
predictive control approach,” International Journal of Robust and Non-
linear Control, pp. 1-20, 2017.

2. M. Graf Plessen, and A. Bemporad, “Parallel investments in mul-
tiple call and put options for the tracking of desired profit profiles,”
in IEEE American Control Conference, pp. 1091-1096, 2017.

3. M. Graf Plessen, and A. Bemporad, “A posterior multi-stage opti-
mal trading under transaction costs and a diversification constraint,”
arXiv preprint arXiv: 1709.07527, 2017. (Submitted).

4. M. Graf Plessen, and A. Bemporad, “Stock trading via feedback
control: Stochastic model predictive or genetic?,” originally pre-
sented as a poster at XVIII Workshop on Quantitative Finance (QFW2017),
to appear upon invitation in Journal of Modern Accounting and Au-
diting, available at arXiv preprint arXiv: 1708.08857, 2017.

12

SYSTEM IDENTIFICATION

The following three contributions are also listed since their final ver-
sions in revised form were completed at the beginning of above men-
tioned time span. Since they are the result of the master’s thesis they are
otherwise not further discussed.

1. M. Graf Plessen, T.A. Wood, R.S. Smith, “Nuclear norm minimiza-
tion algorithms ofr subspace identification from non-uniformly spaced
frequency data,” in IEEE European Control Conference, pp. 2032-
2037, 2015.

2. M. Graf Plessen, V. Semeraro, T.A. Wood, R.S. Smith, “Optimiza-
tion algorithms for nuclear norm based subspace identification with
uniformly spaced frequency domain data,” in IEEE American Con-
trol Conference, pp. 1119-1124, 2015.

3. M. Graf Plessen, T.A. Wood, R.S. Smith, “Time-domain subspace
identification algorithms using nuclear norm minimisation,” in IFAC-
PapersOnLine, vol. 48, no. 28, pp. 903-908, 2015.

13

Chapter 2

Single and Multi-Vehicle
Motion Planning

Self-driving vehicles (terrestrial, aerial and marine) are perceived to be
the future of transportation and an enabling technology for the transfor-
mation of logistics. One promising application is the relief of humans
from operating in rough, repetitive or exhausting environments. Exam-
ples include mining, agriculture, urban robot-taxis, and the automation
of goods and freight transport through relentless 24/7/365 operation.

Automated vehicles can address various challenges. Fuel consump-
tion can be reduced by means of platooning [5], and anticipative driving
in car-2-car and car-2-infrastructure communicating environments [186],
[141]. Traffic safety may be increased by means of automated handling of
vehicles at their friction limits [268], [8], [120]. Congestion in cities can be
reduced by means of coordinated traffic flows [192]. We can distinguish
between longitudinal and steering-related vehicle control. The former is
much simpler when considered isolatedly and it is introduced commer-
cially [52]. Steering-applications are more complicated, since the exact
traveling trajectory is decisive for permissible traveling speeds within
friction limits, thereby affecting vehicle stability. In general, we can dis-
tinguish between high- and low-velocity driving scenarios. For the for-
mer, steering is relevant for obstacle avoidance and throughput maxi-

14

mization on highways with vehicles of different agility capabilities [154].
For the latter, steering is relevant for tight maneuvering.

In this chapter it is outlined how different aspects that are typical for
automated vehicle motion planning are addressed. Therefore, a) single-
vehicle motion planning by MPC, b) single-vehicle motion planning by
neural networks, and c) multi-vehicle motion planning are discussed.
Sometimes, the preferred solution out of two options or an emphasized
aspect are highlighted in a SUMMARY.

2.1 Single-Vehicle Motion Planning by MPC

This section summarizes the publications [148], [156], [155] and [152]:

• M. Graf Plessen, “Trajectory planning of automated vehicles in tube-
like road segments,” in IEEE Conference on Intelligent Transportation
Systems, pp. 83-88, 2017.

• M. Graf Plessen, P.F. Lima, J. Mårtensson, A. Bemporad, and B.
Wahlberg, “Trajectory planning under vehicle dimension constraints
using sequential linear programming,” in IEEE Conference on Intel-
ligent Transportation Systems, pp. 108-113, 2017.

• M. Graf Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-
based predictive control and geometric corridor planning for adap-
tive cruise control coupled with obstacle avoidance,” IEEE Transac-
tions on Control Systems Technology, vol. 26(1), pp. 38-50, 2018.

• M. Graf Plessen, and A. Bemporad, “Reference trajectory planning
under constraints and path tracking using linear time-varying mo-
del predictive control for agricultural machines,” Biosystems Engi-
neering, vol. 153, pp. 28-41, 2017.

This secion focuses on motion planning by MPC. For MPC, the con-
ventional and typical control layer parametrization is a quadratic program
(QP) or a linear program (LP). Here, this convention is followed. Thus, for
MPC, only QPs or LPs are considered as candidate parametrizations.

15

2.1.1 LTI- or LTV-MPC formulation

The first question to address is whether to use a linear time-invariant (LTI)
or linear time-varying (LTV) MPC formulation for motion planning of au-
tomated vehicles by MPC. Therefore, to answer this question, the simple
nonlinear kinematic bicycle model [317],

[
ẋ ẏ ψ̇

]T
=
[
v cos(ψ) v sin(ψ) v

l tan(δ)
]T
, (2.1)

is assumed as vehicle model. See Figure 3 for notation. Typically, the
center of gravity (CoG) is located at the rear axle and l denotes the wheel-
base. The front-axle steering angle δ and vehicle velocity v are used as
control variables. The following linearly constrained optimization prob-
lem with quadratic objective function (QP) is formulated:

min

K∑

k=1

αx(xk − xref
k)2 + αy(yk − yref

k)2 + αψ(ψk − ψref
k)2 (2.2a)

s.t. z0 = z(0), (2.2b)

zk+1 =

{
Azk +Buk + g, k = 0, . . . ,K − 1, LTI-MPC
Akzk +Bkuk + gk, k = 0, . . . ,K − 1, LTV-MPC

(2.2c)

umin ≤ uk ≤ umax, k = 0, . . . ,K − 1, (2.2d)

with optimization variables {uk}K−1
k=0 , u =

[
v δ

]T, optimization horizon
K, subscript k indexing sampling times over the optimization horizon,
z =

[
x y ψ

]T, z(0) the current state at the instant of planning, and
(2.2c) indicating the linearized and discretized vehicle dynamics of (2.1)
for LTI- and LTV-MPC according to Section 1.3, respectively. Rate con-
straints are omitted to fully focus on the effect of LTI- and LTV-formulation.
Two experiments are conducted, whereby a refence trajectory is tracked.
The reference path is generated with a spatial discretization of Ds =

0.5m. Remaining parameters are set as follows: Ts = 0.25s, umax =[
50/3.6 40 π

180

]
, umin =

[
5/3.6 −40 π

180

]
, uref

k =
[
Ds/Ts 0

]T
, ∀k, and

αx, αy, αψ = 1. All parameters are in SI-units. For LTI-MPC, z(0) and
uref

0 are used for linearization and discretization. The experimental re-
sults are visualized in Figures 4 and 5. Results are similar for a reduced

16

Figure 3: A bicycle model, including the representation of the curvilinear
(road-aligned) coordinate system, and vehicle dimensions.

sampling time of Ts = 0.1s. For all four experiments, (2.2) is solved once
for a vehicle start position located at the origin, i.e., without conducting
a receding horizon simulation. These four experiments are sufficient to
formulate the following fundamental observation:

SUMMARY 1. LTI-system modling is unsuitble for general motion planning
of self-driving vehicles. The nonholonomic nature of vehicles and the corre-
sponding system nonlinearities are not sufficiently well approximated by a LTI
system model.

As further outlined in Section 2.1.5, in this thesis it is distinguished
between kinematic and dynamic vehicle models. Since the latter models are
more complicated than the former through the inclusion of additional
tire models, Summary 1 also applies for dynamic vehicle models.

Summary 1 has important implications. Foremostly, the entire ma-
chinery for finite horizon linear MPC [65], mainly with regard of stabil-
ity, for example, via terminal state constraint sets invariant for terminal con-
trollers [270], cannot be applied [104]. Summary 1 also precludes the use
of explicit MPC [41] for general motion planning.

17

Figure 4: Example 1 of Section 2.1.1. Comparison of the solution of (2.2) for
the LTI (left) and (LTV) case when tracking the green reference, a 90◦-turn
(an ubiquitous driving scenario). Vehicle dimensions are displayed every
third discretization index. For both cases, K = 40.

Figure 5: Example 2 of Section 2.1.1. Comparison of the solution of (2.2)
for the LTI (left) and (LTV) case when tracking the green reference. Vehicle
dimensions are displayed every third discretization index. For both cases,
K = 56.

Extending Remarks

Remark 1. For nonlinear system model (2.1), exact discretization can be de-
rived analytically under the assumption of constant u(t) = uk,∀t ∈ [kTs, (k +
1)Ts] and k ∈ N.

Proof. For dynamics (2.1), the continuous-time state transition matrix af-
ter linearization is nilpotent. Therefore, the Taylor series representing the
matrix exponentials in (1.6) is analytical. See [152] for details.

18

Figure 6: Example 3 and 4 of of Section 2.1.1. Visualization of the solution of
(2.2) (solved once when planning at z(0) = [0 0 0]T) for the LTV-case when
tracking the green reference. Experimental setup is identical to the one for
Experiment 1 and 2, except that vmin and αψ are adjusted, respectively.

Remark 1 is relevant for an embedded LTV-MPC controller imple-
mentation. It encourages to design motion planners based on nonlinear
kinematic bicycle models since linearized and discretized dynamics can
be computed analytically and accordingly fast for online MPC.

Based on above findings, two further experiments are reported. The
focus is on the LTV-MPC formulation. The results are displayed in Fig-
ure 6. Several remarks can be made. First, while actuator absolute (and
in general also rate) constraints are physically prescribed, their artifi-
cial bounding can have a notable influence. As illustrated, decreasing
vmin = 5/3.6 to vmin = 0 has a significant effect on the smoothness of the
trajectory from the solution of (2.2). The resulting “optimized” control
signal vk is very small for part of the prediction horizon. Second, a mod-
ification of the objective function weight can significantly influence the
tracking result. Note that both examples are stated only to illustrate the
sensitivity of MPC results to MPC formulations. The steady state track-
ing error in Example 4 may, for example, be avoided by a state-space
extension for integral action.

SUMMARY 2. The solution trajectories output by MPC are often strongly af-
fected by the optimization problem formulation, which includes objective func-
tion as well as state and control constraints design.

19

2.1.2 Case Study: The Influence of Reference Trajectories

To further underline the importance and influence of reference trajecto-
ries, the case study from [152] is discussed. Therefore, offline reference
trajectory generation tailored for high- precision closed-loop tracking in
agricultural fields is considered.

It is assumed that an in-field logistical optimization step has deter-
mined an edgy field coverage path. Then, this section limits the discus-
sion of [152] to the smoothing of this edgy path under consideration of
various constraints such that the resulting reference trajectory admits
high-precision tracking by an autonomous ground vehicle using LTV-
MPC, see Figure 7.

Three Design Trajectories for Path Smoothing

Circle-segments, generalized elementary paths and bi-elementary paths are con-
sidered as design elements for path smoothing. A circle trajectory is
characterized by having an instantaneous centre of rotation (CoR) and
constant curvature C, i.e., C(s) = 1/R, where R is the circle radius and
s ∈ [0, L] with L the path length of the circle-segment. A generalized ele-
mentary path is presented as a tool for our application. The work of [121],
which uses two concatenated generalized elementary paths for emer-
gency lane change trajectories when operating autonomous passenger
vehicles at their friction limits, is summarized. The theoretical basis was
developed by [207] and [328]. Let there be two coordinates Pi = [xi, yi]

T,
i = 1, 2, which we wish to connect. We arbitrarily select the initial head-
ing direction of P1 as ψ1 = 0, see Figure 8. By translation and rotation
any other orientation can be achieved. Parameter λ ∈ [0, 1) determines
the arc fraction length. A circle-segment is described by λ→ 1. A purely
clothoid-based trajectory is implied by λ = 0. For 0 < λ < 1, a gener-
alized elementary path consists of entry clothoid, arc and exit clothoid.
Equations describing positions, x(s) and y(s), and heading, ψ(s), along

20

Figure 7: An illustrative real-world field. (a) Starting constellation: edgy
tractor lanes, nodes (blue circles) and entry/exit of field (red dot). An edgy
path plan for field coverage is described as a sequence of node visits that is
obtained from an in-field logistical optimization step [146]. (b) A smoothed
reference trajectory tailored for high-precision tracking by an autonomous
tractor-system. (c) Close-ups for detailed visualization.

path coordinate s ∈ [0, L] are derived as

d =
√

(x2 − x1)2 + (y2 − y1)2, (2.3a)

α = ψ2 − ψ1 = 2 tan−1

(
y2 − y1

x2 − x1

)
, (2.3b)

D = 2

∫ λ
2

0

cos

(
2α

1 + λ
η

)
dη + . . . , (2.3c)

+ 2

∫ 1
2

λ
2

cos

(
2α

1− λ2

(
−η2 + η − λ2

4

)
η

)
dη, (2.3d)

L =
d

D
, σ =

4α

L2(1− λ2)
, (2.3e)

ψ(s) =





ψ1(s) =
∫ s

0
σηdη, s ∈ [0, L1−λ

2]

ψ2(s) =
∫ s
L 1−λ

2
σL 1−λ

2 dη + ψ1(L 1−λ
η), s ∈ (L 1−λ

2 , L 1+λ
2)

ψ3(s) =
∫ s
L 1+λ

2
σ(L− η)dη + ψ2(L 1+λ

2), s ∈ [L 1+λ
2 , L]

(2.3f)

x(s) =

∫ s

0

cos(ψ(η))dη + x1, s ∈ [0, L], (2.3g)

y(s) =

∫ s

0

sin(ψ(η))dη + y1, s ∈ [0, L]. (2.3h)

21

Figure 8: (a) Influence of λ ∈ [0, 1) on the shape of a generalized elemen-
tary path. A circle-segment is given by λ → 1. (b) A 90◦-transition for
four different parameter selections. (c) Close-up for detailed visualization.
The close-up emphasizes the influence of parameter selections on start of
turning. While the case (R, λ) = (6, 0.99) exceeds y = 0 only beyond the
x = 6m-mark, the clothoid-based design (R, λ) = (8, 0) does so before the
5m-mark.

Analytical solutions to (2.3d) and part of (2.3f) do not exist. Therefore,
a simple midpoint rule for numerical integration is employed. A circle-
segment can be replaced with a generalized elementary path connecting
the two points, P1 andP2, while maintaining the same heading directions
at both P1 and P2.

Our third design trajectory is a bi-elementary path, which is a concate-
nation of two generalized elementary paths and parameterized by the
symmetric point fraction γ. For brevity of illustration, it is here not further
discussed. See [152] for details.

To summarize, to generate a smooth transition between two locations
(e.g., to model a 90◦ turn), it remains to choose one of the three design
trajectories and to select parameter λ, and potentially γ.

Remark 2. The path primitives straights, arcs and clothoids can also be con-
catenated for clothoid-based path planning (CPP). Interestingly, according to
[139], path planning methods for automated vehicles most applied in real im-
plementations by research groups worldwide are interpolation-based. Clothoids,
together with Bézier and polynomial curves, belong to that class. Corners of
safety margin-adjusted obstacles may serve as waypoints. See [156] for a de-
tailed discussion of an experiment and a comparison to MPC in a tight maneu-
vering space. The main benefit of MPC-based approaches over CPP methods

22

is that MPC more easily permits anticipative steering accounting for the entire
obstacle configuration. In contrast, CPP methods largely rely on the selection of
waypoints, which are then connected by path primitives.

Influence of System Constraints

The influence of system constraints on a smooth path trajectory is dis-
cussed; considering l, δmax, δ̇max, Ts, v̄ref and the selection of one of the
design trajectories. The maximum steering angle and rate of the vehicle
are δmax and δ̇max. The control system sampling time is Ts. Trajectories
(curves) are traversed at constant speed v̄ref. In the following, means for
determining lower bounds on turning radius R are described.

Considering the nominal model, (2.1), let time index k ∈ Z+ be as-
sociated with sampling time Ts such that all times of interest can be
described as kTs. Assuming constant input signals, we obtain by inte-
gration ψk+1 = v̄refTs

l tan(δk) + ψk, with the abbreviation ψk = ψ(kTs).
The constraints of interest are |δk| ≤ δmax and |δk+1 − δk| ≤ δ̇maxTs,∀t ∈
[k1Ts, k2Ts], whereby k1 and k2 define the time interval for curve traver-
sal. Thus,

δk = tan−1

(
(ψk+1 − ψk)

l

v̄refTs

)
, (2.4)

with k ∈ [k1, k2].
Firstly, focussing on circle trajectories. With sk+1 = sk + Tsv̄

ref and
(2.4), ψk+1 =

∫ sk+1

sk
1
Rdη + ψk = 1

R (sk+1 − sk) + ψk, and consequently
δk = tan−1

(
l
R

)
. Transitioning from a straight with δk1−1 = 0 to a curve at

time k1Ts (and analogously from a curve to a straight at time k2Ts), and
in view of the two aforementioned constraints on δk, theoretical lower
bounds on the turning radius are obtained as R(k) = l/ tan(δmax), for
k ∈ {k1, . . . , k2 − 1}, and R(k) = l/ tan(δ̇maxTs), for k ∈ {k1 − 1, k2}. For
l = 3m, δmax = 35◦, Ts = 0.1s and δ̇max = 25◦/s, we have R(k1 − 1) =

68.7m and R(k1) = 4.3m. Since the former bound is reached at only two
sampling instances, it is typically neglected in practice. Nevertheless, its
influence on achievable tracking errors in closed-loop is not obvious.

Analogously, and following (2.3f) and (2.4), a clothoid-segment can

23

Figure 9: Closed-loop tracking results. Note the correlation between track-
ing error and rate constraint violation of the reference (red dotted). The
constraint limits are indicated by the dashed gray horizontal lines.

be defined by

δk = tan−1

((
sk +

Tsv̄
ref

2

)
σl

)
, (2.5)

with k ∈ K = {k : sk is element of a clothoid path-segment} and σ com-
puted from (2.3a)-(2.3e). In contrast to the circle-case, the argument of
tan−1(·) in (2.5) is now linearly dependent on the covered path sk.

For (2.5), because of the missing analytical solution to (2.3d), an ana-
lytical correspondence to R(k) cannot be computed as for the circle-case.
Therefore, we turn to simulations and discuss the case of a 90◦-turn.

Nominal Closed-Loop Simulation Experiments for a 90-degree Turn

In the following, the nominal accuracy that can be achieved by a com-
bination of above reference trajectory designs and using LTV-MPC for
closed-loop reference tracking is analyzed. As will be shown, reference
trajectory design, and, in particular, references violating or not violating
steering rate constraints have a significant influence on achievable track-
ing error. For closed-loop experiments, the control commands returned
by LTV-MPC are applied to the original nonlinear model (2.1). Then, the

24

system is integrated forward using Matlab’s ode23tb. Nominal con-
ditions are assumed with noise-free and full state feedback. Different
prediction horizon lengths N were tested. For smaller N the tracking
accuracy decreases. For too large N the computational cost increases
while not yielding smaller tracking errors. For Ts = 0.1s and an aver-
age traveling speed of v = 10km/h, N = 20 was found to be a good
compromise. It implies a prediction horizon of Tsv(N + 1) = 5.8m,
a total number of Nnu = 40 optimisation variables, and 4Nnu = 160

inequality constraints. The absolute tracking error is defined as eabs
k =√

(xk − xref
k)2 + (yk − yref

k)2 and is reported in unit of centimetres.

Closed-loop results are summarised Figure 9. See [152] for the de-
tailed discussion. Several observations can be made. The smallest nom-
inal maximal tracking error, a remarkable 0.5cm, can be achieved for the
purely clothoid-based solution with (R, λ) = (8, 0), where the reference
path complies with steering reference rate constraints. Thus, the main
reason for the difference in tracking errors for the two examples in Fig-
ure 9 is the compliance or violation of reference trajectories w.r.t. steering
rate constraints.

In a MPC-setting, it is unavoidable to conduct interpolations such
that reference trajectories begin at a given current state. Given the refer-
ence position coordinates, the reference angles can be computed as

ψref
k = tan−1

(
(yref
k+1 − yref

k)/(xref
k+1 − xref

k)
)
.

Then, δref
k can be calculated from (2.4) by invoking another tan−1(·). This

quickly incurs jaggedness in the δref-trajectory. It is the reason why so-
lutions tuned to precisely meet steering rate constraints (not displayed,
see [152]) in general performed worst. This is since after aforementioned
interpolations steering rate limits are regularly violated by the reference
trajectory δref. Ultimately, eventhough circle-segment smoothing is guar-
anteed to always violate the δref-rate constraint, it does so only for a very
short period of time. Nevertheless, this short violation still has a notable
effect on tracking error as Figure 9(a) illustrates.

25

Comment

Finally, for comparison to above case study with smoothed reference
generation by means of circle- and clothoid paths fitted for a 90◦-turn,
reconsider also the examples in Figure 4 and 5 when tracking an edgy
unsmoothed 90◦-turn. In both cases, closed-loop tracking performances
are unsuitable for high-precision. In Figure 4, overshoots result. In Fig-
ure 5, a steady-state tracking error can be observed. These two examples
further illustrate the importance of “suitable” reference trajectories and the
notable effect they can have on overall control performance.

SUMMARY 3. When MPC is used for reference tracking, the overall closed-
loop tracking performance is often largely dependent on the underlying reference
trajectory design.

26

2.1.3 Time or Spatial Parametrization

Three System Representations: Two Time- and one Spatial-based

Based on the findings from Section 2.1.1, the remainder of Section 2.1
is focused on LTV-MPC and its formulations. First, however, the ques-
tion is addressed whether to use a time- or spatial-based system para-
metrization. This is motivated by the fact that motion planning of agile
vehicles is closely related to navigation within a spatially defined envi-
ronment.

Time-parameterized system dynamics in (1.2) can be transformed to
a spatial system representation. Time and spatial derivatives shall be de-
noted by ẋ = dx

dt and x′ = dx
ds , respectively. Then, the relation

x′ =
dx

ds
=
dx

dt

dt

ds
=
ẋ

ṡ

holds, where ṡ denotes the velocity along some reference path. Thus, s
denotes the distance along a reference path, e.g., along the road center-
line.

Therefore, the nonlinear kinematic bicycle model (2.1) can be repre-
sented equivalently in a road-aligned coordinate system. In accordance
with Figure 3, we obtain

[
ṡ ėy ėψ

]T
=
[
ρsv cos(eψ)
ρs−ey v sin(eψ) ψ̇ − ψ̇s

]T
, (2.6)

where ρs and ψ̇s denote the road radius of curvature and road centerline
heading rate, respectively. Then, in a second step, expressing e′ψ =

ėψ
ṡ

and e′y =
ėy
ṡ , the spatially parameterized equivalent of (2.6) is derived as

[
e′ψ e′y

]T
=
[

(ρs−ey) tan(δ)
ρsl cos(eψ) − ψ′s ρs−ey

ρs
tan(eψ)

]T
. (2.7)

Note that (2.7) is entirely independent of vehicle speed v. This is charac-
teristic for kinematic models, but not the case for dynamic vehicle models
as will be further discussed below.

To summarize, there are three system representations: (2.1), (2.6), and
(2.7) The latter two require a reference path, which is typically the road
centerline.

27

Figure 10: Example 1 of Section 2.1.3, see [148] for technical details. For in-
dication of a two-lane road, the separating strip is given by the black dashed
line. For clarity, it is omitted from the bottom plot. Top and bottom plot indi-
cate the tracking results of the solution of a LTV-MPC optimization problem.
Reference speeds are set as vref = 50km/h (top) and vref = 120km/h (bottom),
respectively. The reference path (LTV-ref.) can be tracked quasi-perfectly
only for the former example. Since the reference path and all other param-
eters are identical in both examples, the lane departure is caused solely by
the difference in reference speed.

The Disadvantages of a Time-based Parametrization: Two Examples

In the following, properties of the three system representations are il-
lustrated by means of examples. The first example is based on a time-
parameterized LTV-MPC formulation of (2.1). For more details (the op-
timization problem formulation is slightly more complicated than (2.2))
the reader is referred to the extended arXiv version of [148]. The key
results, which are relevant for the discussion of time and spatial para-
metrization, are summarized in Figure 10. Two remarks are made. First,

28

Figure 11: Example 2 of Section 2.1.3. A road corridor with an obstacle
(red rectangle) is displayed. The road corridor shall be bounded by ey ∈
[emin
y , emax

y]. The lateral obstacle width shall be denoted by ey ∈ [emin
y , eobst

y].

the importance of reference speed for time-based MPC is underlined. Even-
though a very suitable reference path is provided, namely, the obstacle-
free lane centerline, safe operation is still not guaranteed. Unsuitable
reference speeds can cause the vehicle to catastrophically depart from
within lane boundaries. A reference speed identical to the vehicle’s ini-
tial speed of 50km/h resulted in perfect reference tracking. In contrast,
for vref = 120km/h, the vehicle departed from the road. Note that such
a departure occured earliest already for vref = 94km/h. Second, for the
given example, the catastrophic lane departure can be avoided by formu-
lating a time parameterized LTV-MPC based on the road-aligned system
representation(2.6) and adding constraints

emin
y ≤ ey(s(t)) ≤ emax

y , ∀t, (2.8)

where emin
y and emax

y denote time-invariant lane-boundaries.
However, to illustrate that time-parameterized MPCs are still prob-

lematic even when using (2.6) and (2.8), a second example is given. It
is visualized in Figure 11. Here, the obstacle-free and spatially varying
driving corridor is described by

ey(s(t)) ≤ emax
y , ∀s(t) ≥ 0, (2.9)

ey(s(t)) ≥
{
emin
y , for s(t) ∈ [0, sa] ∧ [s(t) > sb),

eobst
y , for s(t) ∈ [sa, sb].

(2.10)

Suppose a linearized and discretized LTV-MPC formulation with a refer-
ence velocity such that for a time-index k̃ ∈ {0, . . . ,K − 1} the reference is

29

sref
k̃
> sb. Then, the corresponding corridor constraint reads

emin
y ≤ ey,k̃ ≤ emax

y . (2.11)

Now, suppose the actual state cannot track the reference accurately, such
that sk̃ ∈ [sa, sb] and ey,k̃ < eobst

y,k̃
results. Then, this state perfectly satisfies

constraint (2.11) according to the LTV-MPC formulation. However, it
actually indicates a crash with the obstacle.

Several remarks are made. First and to summarize the previous ex-
ample, because of the time parametrization, for the formulation of lin-
early constrained convex optimization problems, time-varying polyhe-
dral constraints have to be defined. For a system description in absolute
coordinates according to (2.1), an efficient logic for the design of such
constraints that is not too conservative (too small polyhedra), and at the
same time automated and sufficiently simple for applicability on arbi-
trarily curved road shapes is far from trivial. Second, for the road-aligned
but time-based system description (2.6), the simplest corresponding for-
mulation of polyhedral constraints reads: smin

k ≤ sk ≤ smax
k and emin

y,k ≤
ey,k ≤ emax

y,k , ∀k = 1, . . . ,K, with parameters smin
k , smax

k , emin
y,k and emax

y,k

defining the admissible road segment at each time-index k. Note, be-
cause of the time parametrization, the formulation is again strongly de-
pendent on suitable and potentially time-varying reference velocities,
that directly translate into the selection of aforementioned parameters.
Furthermore, if formulated as hard state constraints the corresponding
LTV-MPC optimization problem may be infeasible. Thus, polyhedral
constraints not only increase the number of inequality constraints but
also require more slack variables for the softening of state constraints.
Finally, a remark to reference velocity generation. In [360], it is dis-
tinguished between four piecewise-affine (PWA) design methods: con-
stant, linear, linear ramp and trapezoidal. A design logic is required to
select one, and to additionally determine suitable slope rates and veloc-
ity plateau levels that are dependent on the current vehicle state. Thus,
for time-based methods three tasks are required: reference path planning,
reference velocity planning and reference tracking. This is difficult and
results are highly heuristic and tuned.

30

The Benefits of a Spatial Parametrization

In contrast, within the spatial modeling framework (2.7) (where time is
eliminated as the dependent variable), the lateral admissible deviation
is defined at every road centerline coordinate, thereby forming a convex
driving corridor which, in general, is spatially varying along the road.
Importantly, in a static and quasi-static1 obstacle environment setting, cor-
ridor constraints hold time-invariantly. Thus, the lateral admissible devia-
tion is valid independently of when and at what speed a spatial coordinate
and the corresponding lateral driving space is passed.

In addition, note also that the number of states in (2.7) is reduced
when compared to (2.6). This naturally results from the coordinate trans-
formation, i.e., the division of all state dynamics by ṡ.

Therefore, for spatially parameterized system models, a linear space-
varying model predictive control (LSV-MPC) approach is taken. It is analo-
gous to linear time-varying MPC (LTV-MPC), except for the spatial para-
metrization. Accordingly, linearization and discretization schemes from
Section 1.3 are also adapted. To distinguish between a time and spatial
parametrization, subscripts “k” and “j” are employed, respectively.

Later within this section, four specific aspects for the spatial system
parametrization are discussed: a method to time schedule the reaching
of waypoints along a path and the time-optimal traversal of road seg-
ments, the relation between sampling time Ts and discretization space
Ds, control rate constraints in the spatial framework, and the handling
of vehicle dimensions in the spatial domain for tight maneuvering.

SUMMARY 4. For motion planning of self-driving vehicles by MPC, a spatial-
based LSV-MPC formulation is preferred over a more standard time-based LTV-
MPC formulation. The reason is that motion planning by time-parameterized
LTV-MPC can already easily fail in static and quasi-static obstacle environ-
ments.

1Here, “quasi-static” implies that a velocity offset (i.e., a simple coordinate transforma-
tion) permits to reduce the dynamic obstacle environment to a static one. It implies that
dynamic obstacles move uniformly.

31

2.1.4 Road Modeling in the Spatial Framework

We assume that a finite number of concatenated road coordinates is avail-
able, xs,i, ys,i for i = 0, 1, . . . , N road. Then, the corresponding distance
along the road is ds,i = ds,i−1 +

√
(xs,i − xs,i−1)2 + (ys,i − ys,i−1)2, ini-

tialized with some ds,0. In order to treat the distance along the road
as the dependent parameter s, we either set si = ds,i or interpolate
to any arbitrary grid (e.g., uniformly spaced). The radius of curvature
ρs(s) at position s along the road centerline is computed analytically as

ρs(s) =

(
(xs(s)′)

2
+(ys(s)′)

2
)3/2

(ys(s)′′xs(s)′−xs(s)′′ys(s)) . By forward finite differences we can ap-

proximate xs(s)′ ≈ xs(x+h)−xs(s)
h , xs(s)′′ ≈ xs(s+h)−2xs(s)+xs(s−h)

h2 , where

h is the step size. We further approximate ψs(s) ≈ arctan
(
ys(s+h)−ys(s)
xs(s+h)−xs(s)

)

and ψs(s)
′ ≈ ψs(s+h)−ψs(s)

h . Finally, for numerical stability we saturate
ρs(s) = 108 (this corresponds to a drift of 5mm on 1km straight road), if
ρs(s) ≥ 108, to account for straight roads where ρs(s)→∞.

32

2.1.5 Dynamic and Kinematic Vehicle Models

It can be distinguished between two major classes of vehicle models.
These are dynamic and kinematic vehicle models.

The former implies two core characteristics: a) reliance on a vehicle
tire model, and b) exhibiting a singularity at zero velocity. Therefore, an
additional second vehicle model for low-velocity operation is required
in order to handle the entire velocity range, see [155]. The second vehicle
model is typically a kinematic one.

Kinematic models do not exhibit aforementioned singularity at zero
velocity. Therefore, one kinematic vehicle model can handle the entire
velocity range. In order to still account for fricition and constraints on
the maximal admissible velocity within tire friction limits, two spatial
MPCs are solved in [148]. Therefore, the trajectory obtained from the
first MPC solution is used to algebraically compute an upper bound on
the maximal permissible velocity within tire friction limits. Therefore, a
friction circle model parameterized by friction coefficient µ and the path
curvature returned by the first spatial MPC solution are accounted for.

Exemplary Dynamic Vehicle Model

In [155], we consider a nonlinear vehicle model, the so-called “bicycle
model”, involving eight states2, zt = [x, y, ψ, vx, vy, ω, ωf , ωr]

T, and
four control inputs, ut = [ut, ub, uδ, ug]

T, whereby x and y indicate the
center of gravity (CoG) in the inertial frame, ψ denotes the yaw angle
(relative to the inertial frame), the longitudinal and lateral velocities are
given by vx and vy , and where ω, ωf and ωr are yaw rate, front and rear
wheel speed, respectively. The inputs ut and ub denote throttle and brake
pedal positions. The front steering input is uδ and the integer transmis-
sion gear control variable is denoted by ug ∈ {1, 2, 3, 4}. Thus, dropping
the arguments and dependencies for brevity, the time-dependent exem-

2The superscript “t” is here used to indicate time parametrization.

33

plary dynamic vehicle model used in [155] is:

ẋ = vx cos(ψ)− vy sin(ψ), (2.12a)

ẏ = vx sin(ψ) + vy cos(ψ), (2.12b)

ψ̇ = ω, (2.12c)

v̇x =
1

m

(
Ff,x cos(uδ) + Fr,x − Ff,y sin(uδ)− Fr

)
+ ωvy, (2.12d)

v̇y =
1

m
(Ff,x sin(uδ) + Ff,y cos(uδ) + Fr,y)− ωvx, (2.12e)

ω̇ =
1

Iz
(a(Ff,x sin(uδ) + Ff,y cos(uδ))− bFr,y) , (2.12f)

ω̇f =
1

Iω
(Td − Tb − rtFf,x) , (2.12g)

ω̇r =
1

Iω
(Td − Tb − rtFr,x) , (2.12h)

where Ff,x(vx, uδ, vy, ω, ωf) denotes the longitudinal force on the front
tire. It is a non-smooth nonlinear function, modeled here as a look-up
table calibrated experimentally. Fr,x(vx, ωr) is the force acting longitudi-
nally on the rear wheel, which is also modeled by a look-up table. The
lateral forces on the front and rear wheels are denoted byFf,y(uδ, vy, ω, vx)

and Fr,y(vx, vy, ω). The engine is modeled by a two-dimensional look-up
table, that maps engine speed and throttle input to engine torque. The
drive torque Td(ut, ωf , ug) is ultimately computed from engine torque
via an algebraic relation. The brake torque Tb(ub) is modeled as a lin-
ear function of the brake input signal. The vehicle mass, yaw and wheel
inertia are indicated by m, Iz and Iω , respectively. The quantities rt, a
and b denote the tire radius, distance of CoG from front and rear axle,
respectively. We compactly summarize the system model (2.12) as żt =

f t(zt, ut). It is further visualized in Figure 12.
In the LSV-MPC formulation of [155], to encourage stability we added

soft constraints on front and rear tire slip angles to not enter the (strongly)
nonlinear/unstable region of tire characteristics [106], [211]. For the pro-
vided vehicle model, lateral forces on front and rear tires, Ff,y(uδ, vy, ω, vx)

andFr,y(vx, vy, ω), are given as a linear function of slip anglesαf (ω, vy, vx)

and αr(ω, vy, vx) with subsequent saturations at maximal lateral forces.

34

Figure 12: The nonlinear dynamic bicycle model including the representa-
tion of the curvilinear coordinate system used in [155].

Note that in contrast to the aforementioned two references [106], [211],
linearization and discretization need to be carried out in space coordi-
nates when deriving LSV-MPC formulations as in our case.

Extension to the Whole Operating Range for Dynamic Vehicle Models

For the dynamic system description, a singularity for v =
√
v2
x + v2

y = 0

is characteristic. Let us now consider a kinematic vehicle model lack-
ing de/acceleration dynamics. The classic nonlinear kinematic bicycle
model [317] is stated in (2.1). As discussed in Section 2.1.3, the spatial
equivalent (2.7) is entirely independent of vehicle speed v. Thus, speed
and steering are naturally decoupled as a result of the spatial transfor-
mation. This is relevant since the whole operating range (speed) of au-
tomated vehicles can now be served. Kinematic time-dependent vehicle
models exhibit a linear dependency on velocity v. This dependency is
always eliminated through the transformation to a spatial-based coordi-
nate system. Consider the transformation d(·)

ds = d(·)
dt

1
ṡ and further that ṡ

35

is proportional to v for kinematic vehicle models. Thus, employing one
dynamic and one kinematic vehicle model for higher speeds and veloci-
ties close to 0, respectively, permits control design entirely spatial-based
with state-transitions being space- instead of time-varying.

The Role of Velocity and Friction for Kinematic Vehicle Models

The spatial transformation eliminates any velocity dependence of a kine-
matic vehicle model expressed in the road-aligned coordinate system. In
order for the trajectory planning method to still provide velocity infor-
mation, we employ the method from [120, Sect. 3] to determine spatially
varying upper bounds, vmax,fric(s), on admissible traveling speeds. Then,
in [156], [148] these speed limits are imposed as constraints on velocity
in a sequential iteration as discussed next. Besides the gravitational ac-
celeration constant, a friction coefficient µ must be assumed. Then, any
reference traveling speeds vref(s) ≤ vmax,fric(s) are consequently within
vehicle tire friction limits.

SUMMARY 5. The deployment of a dynamic or a kinematic vehicle model
for motion planning should be dependent on the application. However, for low
velocity operation a kinematic vehicle model must be employed since dynamic
vehicle models exhibit a singularity at zero velocity.

SUMMARY 6. Parameters such as the friction coefficient µ typically vary dur-
ing online operation for different road surfaces and weather conditions. There-
fore, there are two fundamental approaches. First, varying parameters can be
treated as external vehicle model disturbances and incorporated directly within
the MPC formulation. Secondly and alterantively, leveraging a mathematical
description of underlying physics, varying parameters can also be used to com-
pute, outside of MPC, a) state constraints or b) bounds on reference setpoints,
which can consequently be used for the MPC formulation. An example is to
compute a limit on maximal admissible velocity within tire friction limits as a
function of µ and the road curvature of the road segment ahead.

For MPC, Summary 6 is especially relevant for kinematic vehicle mod-
els. However, by suitable adaptation and filtering of setpoints on the
permissible traveling velocity, it also is especially relevant for the neu-
ral network control approach discussed in Section 2.2, which is based on
the idea of encoding motion primitives.

36

2.1.6 Sequential Programming

In the next Section 2.1.7, it is discussed how the LSV-MPC formulation
can incorporate velocity as a control variable also for kinematic vehicle
models. Therefore, two options were considered to also incorporate fric-
tion constraints. The first was motivated by [273], where a term penaliz-
ing lateral accelerations was added to the cost function in order for the
vehicle to automatically slow down in anticipation of tight turns. We ap-
proximated lateral acceleration as ay = vψ̇ = v2 tan(δ)

l [369], conducted a
linearization, and incorporated a minmax-type penalty in the cost func-
tion. This method has three (significant) disadvantages: a) references vref

j

and δref
j , ∀j = 0, . . . , N are required for computation, b) it is not obvious

how to weight said penalities, and c) the formulation does not guarantee
operation within friction limits. We therefore instead opt for a second
option, and thus conduct the following two-step algorithm for kinematic
vehicle models:

1. Solve a LSV-MPC problem to obtain at least {eψ,j}Nj=0, {ey,j}Nj=0,
{vj}N−1

j=0 , {δj}N−1
j=0 expressed along the spatial discretization grid

{sj}Nj=0, where sj is abbreviated for sτ+j when planning at time τ .

2. Use the trajectories of Step 1 as references for a second solution of
a LSV-MPC problem with additional constraints

vj ≤ vmax,fric
j , ∀j = 0, . . . , N − 1, (2.13)

where vmax,fric
j is computed according to [121, Sect. 3], assuming a

friction coefficient µ, and denoting the maximum admissible veloc-
ity permitting operation within vehicle tire friction limits.

The first step is to generate a suitable vehicle trajectory based on which
vmax,fric
j can be computed. The second step is to refine velocity control.

Therefore, by definition a sequential programming approach is proposed.
In [156] and [148], sequential linear programming (SLP) is proposed.

Note that the incorporation of friction constraints according to (2.13)
is foremostly relevant for kinematic vehicle models. In contrast, the appr-
oach for the LSV-MPC formulation for dynamic vehicle models is differ-
ent. In [155], stability is encouraged by adding soft constraints on front

37

Figure 13: Sketching the motivation for SP-iterations. Large deviations be-
tween the trajectory output from the LSV-MPC solution and the reference
trajectory can result in jaggedness (left). This undesired jaggedness can be
alleviated by solving LSV-MPC problems repeatedly causing optimization
and reference trajectory to converge iteratively (right).

and rear tire slip angles to not enter the (strongly) nonlinear/unstable
region of tire characteristics.

Nevertheless, the SLP-approach can offer advantages for both kine-
matic and dynamic vehicle models. For obstacle constellations requir-
ing larger steering maneuvers, transition dynamics and vehicle dimen-
sion constraints are strongly dependent on underlying reference trajec-
tories used for linearization and discretization. This is of particular rel-
evance for the first initialization of references, for which we reconstruct
{eref
ψ,j}Nj=0 and {eref

y,j}Nj=0 from a least-heading-varying PWA path avoid-
ing all obstacles. Therefore, we propose the sequential programming (SP)
approach. See also Figure 13 for visualization.

SUMMARY 7. For general motion planning of automated vehicles by LSV-
MPC, a sequential programming approach is proposed. For kinematic vehicle
models, this is motivated to introduce velocity bounds to keep within vehicle
tire friction limits. In general, for both dynamic and kinematic vehicle models,
this is motivated to iteratively let optimization output and reference, i.e., the
optimization output from the previous sequential iteration, converge.

SUMMARY 8. For simple road centerline tracking applications, a sequential
programming approach is not necessarily required. The road centerline curva-
ture of the road segment ahead can be used equivalently to compute velocity
bounds to keep operation within vehicle tire friction limits.

38

2.1.7 Time Scheduling in the Spatial Framework

The spatial parametrization permits to express time t as a function of
space coordinate s. Based on a kinematic bicycle model (the dynamic
case is discussed further below), we therefore relate t′ = 1

ṡ and obtain

t′ =
ρs − ey

ρsv cos(eψ)
. (2.14)

Throughout the following, it is assumed eψ ∈ (−π2 , π2), ρs > ey and v >

0. This is made to avoid poles at eψ = ±π2 in (2.7) and (2.14). Let the
linearization of (2.14) along the discretization grid be denoted by tj+1 =

tj + at,jzj + bt,juj + gt,j .

Property 1. For timely mission planning (scheduling) and the formulation
of convex optimization problems with linear constraints, we require tj+l >
tj , ∀l > 0.

Proposition 1. The linearized dynamics of (2.14), tj+1 = tj+at,jzj+bt,juj+
gt,j , violate Property 1.

Proof. We express tj+1 = tj +a
eψ
t,j(eψ,j− eref

ψ,j) +a
ey
t,j(ey,j− eref

y,j) + bvt,j(vj−
vref
j)+f ref

j with f ref
j = f(zref

j , u
ref
j). We have bvt,j = − ρref

j −eref
y,j

ρref
j (vref

j)2 cos(eref
ψ,j)

, which

always is negative. Then, f ref
j + bvt,j(vj − vref

j) =
ρref
s,j−eref

y,j

ρref
s,jv

ref
j cos(eref

ψ,j)
(2 − vj

vref
j

).

To prove the proposition, it suffices to find one counterexample violating
tj+1 > tj . Such can be constructed by eψ,j = eref

ψ,j , ey,j = eref
y,j and vj >

2vref
j , which concludes the proof.

Remark 3. Proposition 1 is also valid when simplifying (2.14) to t′ = 1/v cos(eψ)
under the assumption of ρs � ey . It is further also valid for a small eψ-angle

approximation with cos(eψ) ≈ 1 − e2ψ
2 . This is since counterexamples can be

constructed similarly to before.

Proposition 1 and Remark 3 have important implications. A mini-
mization problem with objective min{tN} can result in optimal solution
min{tN} < 0, thereby decoupling variable t from physical interpretation
and thus making it useless for time scheduling tasks.

39

Proposition 2. The coordinate transformation qj = 1
vj

and dynamics

tj+1 = tj +
(sj+1 − sj)(ρref

s,j − e
ref
y,j)

ρ
ref
s,j cos(e

ref
ψ,j)

qj , (2.15)

approximate the linearization of (2.14) for finite reference velocity and satisfy
Property 1.

Proof. Under the coordinate transformation and abbreviatingDs,j = sj+1−
sj , the discrete equation of (2.14) is tj+1 = tj +Ds,j

ρs,j−ey,j
ρs,j cos(eψ,j)

qj , and lin-
earized tj+1 = tj + a

eψ,q
t,j (eψ,j − eref

ψ,j) + a
ey,q
t,j (ey,j − eref

y,j) + bqt,jqj . Note
that aeψ,qt,j and a

ey,q
t,j are proportional to qref

j and can be positive- or neg-
ative. Thus, to guarantee tj+1 > tj , they must be eliminated from tj+1-
dynamics. This is achieved for qref

j → 0 (i.e., vref
j →∞) by proportionality.

The remainder yields (2.15), which is the exact linearization of (2.14) for
vref
j →∞, and approximate for finite reference velocities.

Importantly, the coordinate transformation does not affect the lin-
earized and discretized state dynamics for zj+1. This is since they are
independent of vj , and consequently also independent of qj .

So far, the discussion focused on kinematic vehicle models. Let us
extend the discussion to dynamic vehicle models [225], [155]. The equiv-
alent to (2.14) can be derived analogously, resulting in

t′ =
ρs − ey

ρs (vx cos(eψ)− vy sin(eψ))
, (2.16)

where vx and vy denote longitudinal and lateral velocities relative to the
inertial vehicle frame. Importantly, vx and vy are vehicle states and not
control variables anymore.

Proposition 3. The linearized dynamics of (2.16), of the form tj+1 = tj +
at,jzj + bt,juj + gt,j , violate Property 1.

Proof. Similar to the one of Proposition 1.

Additional complexity arises from state variable vy , that is absent in
the kinematic case. In practice, typically vy � vx.

40

Proposition 4. The coordinate transformation qvxj = 1
vx,j

and dynamics

tj+1 = tj +
(sj+1 − sj)(ρref

s,j − e
ref
y,j)

ρ
ref
s,j cos(e

ref
ψ,j)

qvxj , (2.17)

approximate the linearization of (2.14) and satisfy Property 1.

Proof. Similar to the one of Proposition 2.

The time dynamics (2.17) are characteristic for the dynamic vehicle
model case in the sense that state vy is omitted entirely from considera-
tion. This is done to comply with Property 1. Note that according to the
coordinate transformation, qvxj = 1

vx,j
, also all state equations (and con-

sequently linearization and discretization routines) need to be updated.
Based on (2.17), QPs and LPs for LSV-MPC can now be formulated.

Comment

Note that both dynamic and kinematic bicycle models are two represen-
tations of the same real-world vehicle. In this perspective, above men-
tioned variations and approximations characterize other different model
representations of the real-world vehicle. Note that any model variations
are legitimized as long as physical actuator absolute and rate constraints
are not modified and as long as resulting model variation can serve a
desired application.

SUMMARY 9. The spatial framework permits to express time as a function of
the dependent spatial coordinate s. This enables to formulate time scheduling
constraints (e.g., useful at intersections) and an objective functions for mini-
mum time traversal of road segments (e.g., useful for racing). It also enables
velocity control when using kinematic vehicle models for LSV-MPC. Recall that
for kinematic vehicle models, velocity is otherwise eliminated by the spatial co-
ordinate transformation. Time-scheduling, and thus the spatial framework, are
also considered to be particularly useful for the coordination of multi-automated
vehicle systems.

41

2.1.8 Sampling Times in the Spatial Framework

From a simple Euler forward discretization of (2.16) we can derive a re-
lation between sampling time Ts and discretization space Ds as follows

Ds = Ts
ρs,0(vx,0 cos(eψ,0)− vy,0 sin(eψ,0))

ρs,0 − ey,0
, (2.18)

where ρs,0, vx,0, eψ,0, vy,0 and ey,0 here denote corresponding estimated
or measured properties at the time of trajectory planning, i.e., when for-
mulating the current LSV-MPC problem. Then, Ds according to (2.18)
can be used to generate a uniformly spaced prediction horizon based
on which the LSV-MPC problem is formulated. Thus, (2.18) enables to
synchronize a fixed sampling time Ts with a spatial LSV-MPC problem
formulation. Note that for centerline tracking of straight roads, it holds
that ρs,0 →∞, eψ,0 → 0 and ey,0 → 0. Thus, we recover Ds = Tsvx,0.

42

2.1.9 Control Rate Constraints in the Spatial Framework

Continuous rate constraints for control variables v and δ are of the form

v̇min ≤ v̇ ≤ v̇max and δ̇min ≤ δ̇ ≤ δ̇max, (2.19)

whereby the bounds (v̇min, v̇max, δ̇min and δ̇max), in general, are nonlinear
functions of the vehicle’s operating point. They are time-varying param-
eters, for example, dependent on engine speed and torque. By apply-
ing the spatial coordinate transformation, a discretization, the change of
variables according to the previous section, and assuming the bounds to
remain constant for the duration of the planning horizon, we obtain

Ds,j v̇
min(ρs,j − ey,j)qj
ρs,j cos(eψ,j)

≤ 1

qj+1
− 1

qj
≤ Ds,j v̇

max(ρs,j − ey,j)qj
ρs,j cos(eψ,j)

, (2.20)

Ds,j δ̇
min(ρs,j − ey,j)qj
ρs,j cos(eψ,j)

≤ δj+1 − δj ≤
Ds,j δ̇

max(ρs,j − ey,j)qj
ρs,j cos(eψ,j)

, (2.21)

whereby we abbreviated Ds,j = sj+1 − sj for the general case. Thus, lin-
ear and control channel-separated rate constraints in (2.19) are rendered
not only nonlinear, but additionaly state-dependent, and also velocity-
dependent for steering control. This has two implications. First, to for-
mulate linearly constrained optimization problems, we require the lin-
earization of (2.20) and (2.21). Dependent on the quality of underly-
ing reference trajectories, this may incur significant distortions. Second,
while the discrete form of (2.19) can always be guaranteed to be feasible
(assuming a feasible initialization), for (2.20) and (2.21) this is not the case
anymore. Thus, slack variables are required. Let us consider two degrees
of simplification of (2.20) and (2.21). First, we assume large ρs,j and small
eψ,j , and consequently approximate (ρs,j−ey,j)

ρs,j cos(eψ,j)
≈ 1, thereby rendering

(2.20) and (2.21) state-independent, but maintaining velocity-dependent
bounds. Thus, steering rate constraints still depend on qj . Second, we
additionally eliminate this velocity-dependency and formulate

T̃j v̇
min ≤ 1

qj+1
− 1

qj
≤ T̃j v̇max, j = 0, . . . , N − 2, (2.22)

T̃j δ̇
min ≤ δj+1 − δj ≤ T̃j δ̇max, j = 0, . . . , N − 2, (2.23)

43

with
T̃j =

Ds,j

vmax
j

, (2.24)

where vmax
j denotes the maximal permissible velocity within spatial seg-

ment s ∈ [sj , sj+1]. The velocity limit may be given by road speed lim-
its and friction constraints. Then, (2.22) and (2.23) guarantee that time-
based rate constraints are also respected in the spatial domain. This is
since in the curvilinear coordinate system, the distance Ds,j = sj+1 − sj
cannot be covered faster than with velocity vmax

j .
Formulations (2.22) and (2.23) bear the advantage of separating con-

trol channels and are therefore our preferred form for spatial-based rate
constraints. We denote the linearization of (2.22) by

cmin
q,j ≤ bq,j+1qj+1 + bq,jqj ≤ cmax

q,j , j = 0, . . . , N − 2. (2.25)

SUMMARY 10. The transformation of time-dependent control rate constraints
(2.19) to the road-aligned coordinate frame is not trivial and to be considered as
the main disadvantage of a spatial-based system representation. We opted for
the “simple” control channel-seperating forms (2.23) and (2.25) in linearly con-
strained optimization problems, and discussed the role of T̃j as a transformation
parameter. A conservative T̃j is proposed in (2.24) that guarantees that time-
based rate constraints are guaranteed to also be respected in the spatial domain.

44

2.1.10 Vehicle Dimension Constraints in the
Spatial Framework

Two methods for the handling of vehicle dimensions are considered. These
are a) the inflation of obstacles or road bounds [155], [148], and b) a lineariza-
tion approach [156]. The latter is suitable for tight maneuvering but com-
putationally more expensive.

1. Iterative Linearization Approach

We model vehicles as rectangles. This is a simple and yet an accurate
vehicle representation. As illustrated in Figure 3, parameters a, b, and
w indicate distances between the center of gravity (CoG) and rear, front
and lateral vehicle sides, respectively. The four vehicle corners ci, i =

1, . . . , 4, can be expressed as

sci = s+ ξsci cos(eψ) + ζsci sin(eψ), (2.26)

ey,ci = ey + ξeyci cos(eψ) + ζeyci sin(eψ), (2.27)

with ξsci , ξ
ey
ci ∈ {b,−a,−a, b}, ζsci ∈ {−w,−w,w,w}, and further ζeyci ∈

{w,w,−w,−w} for ci, i = 1, . . . , 4, respectively.
Let us derive convex vehicle dimension constraints. At every sj ,

assuming forward motion, we can describe lateral vehicle boundaries
affine in s and nonlinear in eψ,j as

elower
y,j (s) = tan(eψ,j)(s− sj,c3) + ey,c3 , (2.28)

e
upper
y,j (s) = tan(eψ,j)(s− sj,c2) + ey,c2 , (2.29)

accounting for (2.26). We define the set

S̃j = {{sk}N−1
k=1 : sj −∆sj,min ≤ sk ≤ sj + ∆sj,max}

=: {sk̃1
, sk̃2

, . . . , sk̃Ñj
},

with
∆sj,min = min(sj,c2 , sj,c3),∆sj,max = max(sj,c1 , sj,c4),

and

Sj={sk̃1−1, sk̃1
, . . . , sk̃Ñj

, sk̃Ñj+1}=:{sk1 , . . . , skN̄j}, (2.30)

45

Figure 14: Illustration of vehicle dimension constraints. Indices (i) and (i−
1) indicate the corresponding SLP-iteration. The planning result at path
coordinate sj = 14m is displayed.

to also guarantee coverage of vehicle corners in between any two grid
points. The linearization of (2.28) and (2.29) yields

elower
y,lin,j(s) =

[
glower(s) 1

] [
eψ,j ey,j

]T
+ hlower

lin,j (s), (2.31)

e
upper
y,lin,j(s) =

[
gupper(s) 1

] [
eψ,j ey,j

]T
+ h

upper
lin,j (s), (2.32)

with glower(s), hlower
lin,j (s), gupper(s), and hupper

lin,j (s) parameterized by sj , eref
ψ,j ,

and eref
y,j . The main motivation of vehicle dimension constraints is to

ensure that the vehicle geometry is constrained to the interior of the
road corridor. By evaluating (2.31) and (2.32) at the discrete grid points
of (2.30), this can be expressed as the set of inequalities



elower
y,lin,j(sk1)

...
elower
y,lin,j(skN̄j)


 ≥



emin
y (sk1

)
...

emin
y (skN̄j)


 , (2.33)




e
upper
y,lin,j(sk1

)
...

e
upper
y,lin,j(skN̄j)


 ≤



emax
y (sk1

)
...

emax
y (skN̄j)


 . (2.34)

We summarize the left-hand sides of the inequality signs by Llower
sj and

Lupper
sj , respectively. For visualization, see Figure 14. Inequalities (2.33)

46

and (2.34) are linear in state zj at position sj and can be compactly sum-
marized as Qlower

j zj ≥ qlower
j , and Qupper

j zj ≤ q
upper
j , with Qlower

j , Q
upper
j ∈

RN̄j×2, qlower
j , q

upper
j ∈ RN̄j , and N̄j variable for each sj and dependent

on references eref
ψ,j and eref

y,j . Finally, note that instead of S̃j , as a least-
conservative variant, it could be differentiated between two grid segments
S̃lower
j and S̃

upper
j that are different for both lateral vehicle sides, instead

of having one S̃j common to both.

2. Obstacle and Road Boundary Inflation Approach

For the navigation of automated vehicles, especially in very constrained
environments, vehicle dimensions must be accounted for. This is particu-
larly relevant for large-sized vehicles such as heavy-duty trucks or buses.
In contrast to above method based on iterative linearization of nonlin-
ear vehicle dimension constraints, here a different approach is taken. A
velocity-dependent and computationally much less demanding heuristic
is proposed. We denote road corridor constraints as

emin
y,j + ∆ey,τ ≤ ey,j ≤ emax

y,j −∆ey,τ , j = 1, . . . , N, (2.35)

with corridor boundaries emin
y,j and emax

y,j , and margin ∆ey,τ ≥ 0 deter-
mined at time τ . For point mass trajectory planning without vehicle di-
mension constraints we have ∆ey,τ = 0.

Proposition 5. To guarantee safe vehicle operation within road boundaries ac-
cording to (2.35), assuming rectangular vehicle dimensions with w < b, and
assuming forward motion, we require ∆ey,τ = maxeψ∈E ∆ey,τ (eψ) with

∆ey,τ (eψ) = b sin(eψ) + w cos(eψ), (2.36)

and E = (−π/2, π/2).

Proof. From the definitions of b and w in Figure 3.

Remark 4. The selection of ∆ey,τ according to Proposition 5 is conservative.
Let us denote the associated angle by emax

ψ , whereby emax
ψ = tan−1(b/w) is de-

rived from the maximization. For w = 0.9 and b = 3.5 used in simulations,
we obtain emax

ψ = 75.6◦. Such a large deviation from the road heading is not
admissible at high speeds. By tighter constraining E , the level of conservative-
ness can be reduced. Note that we have w ≤ ∆ey,τ (eψ) ≤ ∆ey,τ (emax

ψ) for

47

eψ ∈ [0, emax
ψ], and that ∆ey,τ (eψ) is strictly monotonously increasing for that

heading range.

In the following, we derive a heuristic for the selection of ∆ey,τ . The
ideas are a) to relate to vehicle speed, and b) to obtain monotonously in-
creasing ∆ey,τ with increasing v. Let vmax denote the maximum highway
speed limit (e.g., vmax = 120km/h), and vτ the traveling velocity at time
τ . Let us first state the algorithm before discussing two variants:

1. Determine an angle evψ ∈ [0, emax
ψ].

2. Compute eψ = vτ
vmax e

v
ψ .

3. Compute ∆ey,τ = b sin(eψ)+w cos(eψ) and adapt corridors in (2.35).

Note that by design, both of the mentioned motivating ideas are ad-
dressed. Also, the level of conservativeness can be controlled by evψ . We
considered two options. First, evψ = emax

ψ . Second, we note that specific
vehicle velocities only admit a very limited deviation from the road head-
ing direction to take corrective steering action within a limited “reaction
time” Γ. Assuming a road boundary ẽmax

y > 0 and a vehicle position
ẽy < ẽmax

y , the front left vehicle corner reaching the road boundary ẽmax
y

within time Γ can be expressed as

ẽy + Γvτ sin(ẽψ) + b sin(ẽψ) + w cos(ẽψ) = ẽmax
y , (2.37)

where ẽψ ≥ 0 denotes the vehicle heading. Thus, for our second vari-
ant, we solve (2.37) analytically for ẽψ , and set evψ = ẽψ in Step 1). This
method is less conservative/generates smaller ∆ey,τ than the first vari-
ant with evψ = emax

ψ . This is since ẽψ < emax
ψ for typical parameter choices,

and since ∆ey,τ (eψ) is strictly monotonously increasing for eψ ∈ [0, emax
ψ].

Note that the front left vehicle corner was considered for derivation. This
is appropriate for our parameter choices of ẽy = |ey(sτ)| and ẽmax

y =

minj{min(emax
y,j , |emin

y,j |)}Nj=1, thereby accounting for both road boundaries.
For increased safety/larger ∆ey,τ , Γ must be further decreased.

SUMMARY 11. Two different methods were proposed to account for vehicle
dimensions. In practice, a hybrid is proposed. Thus, the inflation and lineariza-
tion approach are preferred for high and low-velocity applications, respectively.

48

2.1.11 State Estimation and Environment Modeling

We assume there exists an area surrounding the ego car, referred to as
“range field” R with length lR at front, and in which objects are de-
tectable, see Figure 15. Only for proof of concept it is modeled as rect-
angular. The range field may be time-varying. It is typically realized
through lidar systems [167], [337]. Additionally, car-2-car communication
can extend the visibility of otherwise shielded vehicles, and be employed
for higher-level services [93] and multi-vehicle coordination [154].

Extended Kalman Filter

We define as proprioceptive measurements (TV,E) all of a subset of the vehicle
state vector. As exteroceptive measurements (TX,E), we define any static or
mobile objects within the range field, denoting the information retrieved
about the objects at sampling time kTs by ηt,ik , ∀i = 1, . . . , Nobj, whereby
Nobj is the number of identified objects. We set

ηt,ik =
[
d

obj,i
k , e

obj,h,i
y,k , e

obj,l,i
y,k , l

obj,i
k , v

obj,i
x,k

]T
, (2.38)

fitting all objects as rectangles with particular length and width aligned
with the road at the road-projected object position, see Figure 15. This
environment modeling approach is tailored to our control design. Vector
ηt,ik represents the starting state from which the movement of the object
can be predicted over a spatial horizon. The object lateral displacements
w.r.t. road centerline, eobj,l,i

y,k and e
obj,h,i
y,k , and the object length lobj,i

k allow
to formulate constraints on ey . As the database information (TM,E), we
assume the following road information vector

ri = [xs,i, ys,i, ψs,i, ψ
′
s,i, ρs,i, v

road
x,i , e

road,max
y,i , eroad,min

y,i , si]

to be available along the road centerline at samples i = 0, 1, . . . , N road,
where vroad

x,i denotes the speed limits and eroad,max
y,i and eroad,min

y,i indicate
the lane width along the track.

Model-based recursive estimation techniques are required for sensor
fusion and reconstruction of system states in the presence of model un-

49

Figure 15: Top: measurement model (proprioceptive and exteroceptive).
Within a particular “range field” R surrounding the ego car, objects are as-
sumed to be detectable. Bottom: illustration of the exteroceptive measure-
ment model with five states. The green and gray areas denote the ego and a
leading car, respectively.

certainty and unmeasured states. A nonlinear recursive filtering appr-
oach is the Extended Kalman Filter (EKF), see [344], [9], [377]. It is often
suitable for approximately Gaussian, i.e., unimodal noise. Due to the
nonlinear vehicle dynamics, we employ a discrete EKF (dEKF) to com-
pute an estimate ẑtk of ztk. Note that for the estimator design we lin-
earize and discretize using the time-dynamics, see (2.12). This is in con-
trast to the control design, where the spatial-based system equivalent
is employed. For exteroceptive measurements, we similarly design one
Kalman Filter per object, i = 1, . . . , Nobj, to obtain η̂t,ik . To deal with situa-
tions in which detection of an object is temporarily lost, e.g., due to turn-
ing or shadow cones, we ensure that an object estimate is still returned
using now only the prior update of the Kalman Filter equations (not the
model-correcting measurement update). Only after a certain number of
consecutive steps without new measurement, the object is dismissed and
the Kalman filter reinitialized. In [155], dEKFs are always active. Thus,
they process any obtained measurements, even if these are noise-free.

50

Conversion from Time to Space Domain

The time-based state estimate ẑtk returned by the dEKF is converted to the
spatial-based ẑk and ŝk by using the road information. For the dynamic
vehicle model case from [155], all fixed-body estimates of vehicle states
vx,k, vy,k, ωk, ωf,k and ωr,k, are the same in both domains. For computa-
tion of êψ,k, êy,k, we first project the current ego car position to the road
centerline (projection of a point-mass to a piecewise-affine line). Then,

we determine êψ,k = ψ̂tk−ψ̂
proj
s and êy,k = c

√
(x̂tk − x̂

proj
s)2 + (ŷtk − ŷ

proj
s)2,

where x̂proj
s , ŷproj

s and ψ̂
proj
s indicate the position and orientation of the

road centerline at the vehicle’s projection point, and where the sign of

êy,k is specified by θ = tan−1(
ŷtk−ŷproj

s

x̂tk−x̂
proj
s

), and c = −1 if θ − ψ̂proj
s ∈ (0,−π],

or c = 1 otherwise.

51

2.1.12 Road Navigation

Two different approaches are considered for road navigation. For both
approaches, dynamic and kinematic vehicle models can be employed,
and a driving corridor as in (2.35) is assumed. Then, the two approaches
differ mainly in their objective function formulation.

The first approach from [155] involves the tracking error between
states and a reference trajectory, i.e., zj − zref

j , ∀j = 1, . . . , N . The refer-
ence may, for example, represent the road centerline trajectory (including
potential velocity and rate references). It may also represent a reference
computed from a reference generator, for example, when overtaking or
navigating among obstacles. Then, the objective function of the LSV-
MPC formulation assumes the form

min

N−1∑

j=1

‖zj − zref
j ‖2Qz + ‖zN − zref

N ‖2QzN + slack variables +

N−1∑

j=0

‖uj − uref
j ‖2Qu + ‖uj − uj−1‖2Q∆u

+ other terms, (2.39)

where, in general, also control reference tracking errors and control rates
are penalized, and the notation ‖z‖2Q , zTQz is here used for z ∈ Rn and
a positive definite matrixQ ∈ Sn++. Thus, this approach characteristically
requires to select hyperparameter matrices Qz , QzN , Qu and Q∆u.

The second approach [148] does not explicitly involve a tracking er-
ror. Instead, the LSV-MPC objective function formulation reads

min tN + max
{δj}N−1

j=0

|δj |+ max
{δj}N−2

j=0

|δj+1 − δj | + slack variables (2.40a)

s.t. tWP
j − σ ≤ tj ≤ tWP

j + σ, zj ∈ ZWP
j , ∀j ∈ JWP, (2.40b)

and other constraints,

where {δj}N−1
j=0 denote steering angles over the prediction horizon N .

The absolute value is denoted by |·|. The objective function (2.40a) trades-
off time optimality and a minmax-type objective resulting in minimized
steering actuation (smooth steering). Note that this objective results in a

52

Figure 16: Example from [156]. Comparison of the resulting trajectories in
the global and in the road-aligned plane, in which computations are con-
ducted. The obstacles (red) are inflated by a safety margin (light red). The
light gray lines (right plot) indicate road bounds emin

y (s) and emax
y (s). SLP:

sequential linear programming, SLPp: as SLP but with overtaking in paral-
lel (in the (s, ey)-frame) according to (2.41), and CPP: clothoid-based path
planning (concatenating clothoid segments).

Figure 17: Example from [156]. The maximum admissible traveling speed
within vehicle tire friction limits is overall significantly higher for SLP in
comparison to CPP and SLPp. For SLP, the lowest vmax,fric(η) along its trav-
eled path coordinate η is 121km/h. For CPP, the equivalent is 81km/h.
Thus, the road segment could in principle be traversed much faster for SLP
while still remaining in the safe vehicle tire friction domain.

53

linear program (LP) when reformulating the two minmax objectives af-
ter introduction of two nonnegative scalar slack variables. Spatiotempo-
ral constraints (2.40b) are used for time scheduling. They indicate the
times at which waypoints (WP) are meant to be traversed. We define
JWP = {j : sj = sWP

j , sWP
j ∈ SWP, j = 1, . . . , N}, where SWP is an

input set that may be provided, for example, by a higher-level mission
planning algorithm. In addition to SWP, such algorithm must provide
the corresponding scheduling times T WP = {tWP

j , ∀j ∈ JWP}. The states
in which the waypoints are reached is constrainted by ZWP

j . To summa-
rize, instead of an QP for reference tracking, in (2.40) a LP with minmax
objective is formulated. Therefore, velocity is controlled via the formu-
lation of spatiotemporal waypoints, and road navigation is achieved via
minimized steering actuation within the provided driving corridor.

Additional constraints can easily be added. To enforce the overtaking
of L obstacles in parallel (without specifying the lateral distance though),
we may add

eobs
ψ,l − σNeψ ≤ eψ,j ≤ eobs

ψ,l + σNeψ , ∀j ∈ J obs
l , (2.41)

for l = 1, . . . , L, with

J obs
l = {j : sobs,b

l ≤ sj ≤ sobs,e
l , j = 1, . . . , N},

and where eobs
ψ,l denotes the heading of the rectangle-envelope of obstacle

l, located between sobs,b
l and sobs,e

l . In [156], for constraint softening we
reused slack variable σNeψ ≥ 0 (from a terminal state constraint on eψ,N)
to not introduce a new decision variable.

Note that the LP-minmax approach increases safety. This is since min-
imized steering actuation implies lower path curvature, and thereby nat-
urally also a higher admissible vehicle velocity that still permits vehicle
operation within tire friction limits, see Figures 16 and 17.

For further clarification, the entire LP-minmax formulation labeled
TOSS (time-optimal smooth steering) from [148] is stated:

54

min tN + max
{δj}N−1

j=0

|δj |+ max
{δj}N−2

j=0

|δj+1 − δj |+Wσ

∑4

i=1
σi (2.42a)

s.t. z0 = z(sτ), t0 = τ, u−1 = u(sτ −Ds) (2.42b)

zj =
[
eψ,j ey,j

]T
, j = 0, . . . , N, (2.42c)

uj =
[
qj δj

]T
, j = 0, . . . , N − 1, (2.42d)

zj+1 = Ajzj +Bjuj + gj , j = 0, . . . , N − 1, (2.42e)

tj+1 = tj +
Ds,j(ρ

ref
s,j − eref

y,j)qj

ρref
s,j cos(eref

ψ,j)
, j = 0, . . . , N − 1, (2.42f)

eψ(sτ + S)− σ1 ≤ eψ,N ≤ eψ(sτ + S) + σ1, (2.42g)

ey(sτ + S)− σ2 ≤ ey,N ≤ ey(sτ + S) + σ2, (2.42h)

emin
y,j + ∆ey,τ − σ3 ≤ ey,j ≤ emax

y,j −∆ey,τ + σ3,

j = 1, . . . , N, (2.42i)

tWP
j − σ4 ≤ tj ≤ tWP

j + σ4, zj ∈ ZWP
j , ∀j ∈ JWP, (2.42j)

cmin
q,j ≤ bq,j+1qj+1 + bq,jqj ≤ cmax

q,j , j = 0, . . . , N − 2, (2.42k)

T̃ δ̇min ≤ δj+1 − δj ≤ T̃ δ̇max, j = 0, . . . , N − 2, (2.42l)
1

vmax ≤ qj ≤
1

vmin , j = 0, . . . , N − 1, (2.42m)

δmin ≤ δj ≤ δmax, j = 0, . . . , N − 1, (2.42n)

σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0, σ4 ≥ 0, (2.42o)

with decision variables {uj}N−1
j=0 , {σi}4i=1 and optimization horizon N .

The absolute value is denoted by | · |. Objective function (2.42a) trades-
off time-optimality and a minmax-type objective resulting in minimized
steering actuation (smooth steering). Note that Wσ penalizes slack vari-
ables, therefore typically selected large (e.g., 104), and represents the only
weight in (2.42a). Thus, in contrast to the QP-based approach from (2.39),
the preferred LP-minmax approach does not require to select any tun-
ing parameters. Hard constraints (2.42m) are derived from vmin ≤ vj ≤
vmax, j = 0, . . . , N−1, and from the coordinate transformation according
to Section 2.1.7, whereby vmax denotes the road speed limit and vmin the
minimum permissible velocity. Since (2.42e), (2.42f) and (2.42k) depend

55

on reference trajectories, (2.42) is solved twice according to Section 2.1.6.
For the first iteration, we initialize state reference trajectories along the
road centerline, i.e., eref

ψ,j = 0 and eref
y,j = 0, ∀j, and select qref

j = 1
vτ

and
δref
j = 0, ∀j. Finally, moving obstacles are accounted for by their velocity-

and trajectory-adjusted mappings to the road-aligned coordinate frame
according to the method of [155, Sect. III-E], which is also discussed in
Section 2.1.14.

An example is provided in Figure 18. The minimum-time traversal
of a curvy road segment with one obstacle is sought. Two scheduling
constraints are considered: SWP = {sobj, 170} and T WP = {10, 16}, where
sobj denotes the coordinate at which the obstacle is first encountered. For
both waypoints, we did not further constrain admissible lateral vehicle
position. Note that only for better visualization of presented concepts
both road lanes were admitted for maneuvering. In practice, the per-
missible road width can be controlled conveniently by spatially varying
bounds on ey . Several observations can be made. First, the spatiotempo-
ral waypoints are met accurately. See Figure 18 for the resulting optimal
velocity trajectory. Second, TOSS combines steering and velocity control.

SUMMARY 12. The preferred LSV-MPC formulation involves a LP-minmax
objective. Therefore, weighting matrices for explicit tracking of reference trajec-
tories, which are typical for QP-based MPC, are not required. The minimized
steering actuation objective in combination with lateral driving corridor con-
straints is likewise beneficial for increased safety. Minimized steering actuation
implies lower path curvature, and thereby naturally also a higher admissible
vehicle velocity that still permits vehicle operation within tire friction limits.

56

Figure 18: Example from [148]. State, time and control trajectories. The
obstacle is indicated in red. The two scheduling times and corresponding
spatial coordinates are visualized by two black asterisks. Control absolute
and rate constraints are indicated by black dashed lines. Velocity vmax,fric(s)
is displayed by the blue dotted line. Solutions of TOSS are indicated by blue
solid lines.

57

2.1.13 Zone Navigation

Road navigation can be considered as a constrained zone navigation task
when treating road boundaries as “obstacles”. The road centerline is nat-
urally provided by the road profile. For zone navigation tasks the road
centerline, which serves naturally as the reference during road following
tasks, is absent. Therefore, in order to create such a reference, a sequen-
tial convex optimization approach is considered as follows:

1. Dismissing the obstacles at first, connect the vehicle start and end
pose by a piecewise-affine (PWA) trajectory.

2. Use the PWA trajectory as a reference for a time-based LTV-MPC
tracking controller.

3. Use the LTV-MPC trajectory as the “road centerline” in a spatial-
based LSV-MPC framework, mapping obstacles, planning a corri-
dor (see Section 2.1.14), and accounting for vehicle dimensions in a
road-aligned coordinate frame (see Section 2.1.10).

Several remarks can be made. First, the heuristic for PWA trajectory
generation is largely shaping the overall result. For example, one may
alternatingly generate rays starting from the end and start vehicle pose,
avoiding intersections in start and end positions to encourage outreach-
ing steering behavior, and turning perpendicularly after, for example,
5m (or the minimum velocity-dependent turning radius) either always
counterclockwise (CCW) or always clockwise (CW) if no intersection is
yet reached. In Figure 19, the CW-solution is displayed. This heuris-
tic can be extended by intermediate locations when admitting changes of
velocity sign. Second, as demonstrated the method succesfully permits
tight maneuvering. In general, a LTV-MPC tracking controller based on
the nonlinear kinematic bicycle model [317] was found to be very ro-
bust even when tracking edgy paths, see also Figure 5. Since LTV-MPC
is time-parameterized and thus heavily dependent on reference veloc-
ity, constraint formulation for obstacle avoidance is problematic as dis-
cussed in Section 2.1.3. This is the reason for the subsequent spatial-based
LSV-MPC. Then, its trajectory output is used as reference for a second

58

Figure 19: A freeform navigation task with one obstacle. The example is at
the limits of what can be handled by iterative linearization in three steps. A
trajectory plan is sought connecting the two black indicators, avoiding the
red obstacle and accounting for vehicle dimensions. (Left) Dismissing the
obstacle, the heuristic PWA trajectory (blue dotted) and LTV-MPC tracking
result (green) are shown. (Right) The final trajectory after two iterations of
spatial-based MPC with linearized vehicle dynamics. A hybrid of [156] and
[148] is used with the time-optimal smooth-steering objective (2.42a). In
contrast to rectangle-envelopes aligned with the road-centerline in [156], ob-
stacle contours are mapped directly and without any margins. This enables
maximally tight maneuvering.

spatial-based LSV-MPC, which generates a further smoothed trajectory,
and permits to use friction constraints and also time-scheduling [148].
Despite tight obstacle avoidance for the example in Figure 19, several
limitations are obvious. First, there are small wiggles (including a de-
crease in output velocity) in the final trajectory resulting from the very
large deviations between LTV-MPC reference and final trajectory (after
linerization and accounting for obstacles). Second, the dependence on
reference trajectories is apparent. Third, the computational complexity
associated with three sequential MPCs is high.

59

2.1.14 Combinatorial Obstacle Avoidance and
Corridor Planning

An important task of the motion planning system is to ensure that the ego
car travels inside the lane boundaries while safely avoiding all obstacles
(corridor planning). The problem is non-convex due to the fact that over-
taking is possible on both sides of obstacles. It is further complicated be-
cause of a time-varying environment (with dynamically moving objects)
requiring possibly frequent recursive replanning of corridors. Therefore,
in [155], the combinatorial obstacle avoidance problem about the decision on
which side to overtake obstacles is handled by a variant of a label correct-
ing algorithm (LCA) [47] using the cumulatively least-heading-varying
path as optimization criterion. This method permits to formulate con-
vex driving corridors required for the formulation of QP- or LP-based
LSV-MPC problems.

At every sampling time along the corridor coordinate s, there needs
to be a velocity- and trajectory-adjusted mapping of all objects. This ad-
justement is achieved by solving for every object the equation s(t?) =

sobj(t?) for t? and s(t◦) = sobj(t◦) + lobj(t◦) for t◦, where s(t) is the ego
car CoG-position along the road centerline of the corridor at time t and
similarly for the object. The velocity-adjusted object positions are then lo-
cated between s(t?) and s(t◦). Including additional safety margins, they
are used for graph generation, see Algorithm 1. At the time instant of
corridor planning, we model the progress of the ego car and other ve-
hicles with constant velocities, namely the velocities at that time instant,
and thus obtain s(t) = ŝk + (t − kTs)v̂x,k, for t ≥ kTs, and similarly for
the objects. Then, we can derive

s(t?) = ŝk +

(
ŝ

obj
k − ŝk

v̂x,k − v̂obj
x,k

)
v̂x,k, (2.43)

s(t◦) = s(t?) +
l̂objv̂x,k

v̂x,k − v̂obj
x,k

. (2.44)

The lateral displacement w.r.t. road centerline can then be similarly eval-
uated as ey(t?) and ey(t◦).

60

Figure 20: Illustration of the geometric corridor planner according to [155].
The red rectangles denote solid obstacles and the lighter red areas include
safety margins. The green PWA line illustrates the cumulatively least-heading-
varying path determined on the graph. This corridor planning scheme is
summarized in Algorithm 2.

61

Algorithm 1: Graph creation for corridor planning

1 Preparation: given velocity- and trajectory-adjusted object positions
within the corridor, fill Plist ∈ R(1+2Nobj)×3 using the starting node
and both boundary positions of each object.

2 Initialize: tree T ∈ R(2+2Nobj)×(2+2Nobj) with Tjtjt ← 0 where
jt = (2 + 2Nobj) is the terminal node (s = lR but potentially
variable ey-positions), and list OPEN← {1}.

3 while list OPEN is not empty: do
4 Remove a node i from OPEN and determine the corresponding

si and ey,i from Plist.
5 if there exists a direct path from si to s = lR on ey = ey,i without

intersecting any other object then
6 Set Tijt ← 0.

7 else
8 Identify all objects ahead with s > si.
9 for each object in front do

10 Find corresponding two object boundary nodes j1 (‘left’
of object) and j2 (’right’ of object).

11 if transition from node i to j1 is not intersecting with any
other object then

12 Compute ∆θij1 , see (2.45).
13 if ∆θij1 < ∆θmax then
14 Tij1 ← ∆θij1 .

15 if sj1 + lj1 ≥ lR then
16 Tj1jt ← 0.

17 else
18 Add node j1 to OPEN if it is not already in

OPEN.

19 Do the same operations for the transition from node i to
j2 as for from i to j1.

20 Remove any nodes that were never reached from T and Plist.

62

Algorithm 2: Corridor planning
1 Input: corridor area, velocity- and safety margin-adjusted obstacle

locations, initial ego car position and heading.
2 Order objects according to increasing s-position along the corridor and

identify corresponding road bounds.
3 Dismiss objects significantly faster and in front or slower and behind the

ego car position.
4 Adjust road bounds if objects overlap longitudinally with ego car

CoG-position, or a neighboring lane is blocked.
5 if there still remain objects within the updated corridor: then
6 Build a transition graph T and store the corresponding node positions

in Plist using Algorithm 1.
7 Use the Label Correcting Algorithm (LCA) [47] to find the

cumulatively least-heading-varying path ēref
y .

8 Given ēref
y and the object locations, determine emin

y and emax
y . See Figure

20 for illustration.

9 else
10 Set emin

y and emax
y to the adjusted road bounds, set ēref

y to the ey-level of
a designated road lane .

We develop a path planner using graph theory for computational ef-
ficiency. To address the issue of trajectory feasibility, we follow the appr-
oach of heuristically augmenting objects by velocity-dependent safety
margins chosen according to closed-loop driving simulation over the ve-
locity range 30-130km/h. We select lateral safety margins as a linear
function of v̂x,k such that at v̂x,k = 130km/h a safety distance of at least
2m between the edge of the ego car and the boundary of another object
is maintained. Selections for front and rear longitudinal safety distances
are similarly linearly dependent on v̂x,k and v̂

obj
x,k. We further encourage

an early start of steering on sight of an obstacle, thereby avoiding large
incremental steering changes. Fundamental is the reachability of areas
lateral of obstacles free for trespassing. Following the projection point of
such areas ensures (geometrically) minimal heading variation. Possible
trajectories can conveniently be modeled as a transition graph, with the
absolute heading variations as edge weights. The trajectory that provides
cumulated minimal absolute heading variation and safe avoidance of all ob-

63

stacles can be considered for the adjustment of bounds on ey . The com-
plexity of the corridor planning problem increases with the number of
obstacles. Assuming Nobj objects longitudinally displaced along a corri-
dor, there are 2N

obj
possible combinations of overtaking. Our method nat-

urally also allows for longitudinally overlapping (but laterally displaced)
object constellations. It is outlined in Algorithm 2. For the creation of emin

y

and emax
y in Step 8 of Algorithm 2 there exist different methods such as

stairwise or smoothed adaptation. Our preferred method is indicated in
Figure 20 making use of the s-coordinates of all objects. In Algorithm 2,
the graph generation step is computationally and conceptually decisive.
Modeling objects as rectangles aligned with the road centerline allows
one to transition between nodes via two piecewise-affine (PWA) lines
(constant slope and constant ey-level). See Figure 20 for illustration. For
Nnodes different nodes, each node position i ∈ {1, . . . , Nnodes} is summa-
rized in Plist by Plist,i =

[
si li ey,i

]
, where si denotes the s-position

where the constant ey-level line-part begins, li the length of this part and
ey,i the corresponding ey-level. For node 1 and the terminal node we set
l = 0. Then, a transition matrix T ∈ RNnodes×Nnodes can be defined with

Tij =

{
∆θij , if ∃ a PWA transition i→ j

∞, otherwise,

∆θij =

∣∣∣∣c− tan−1

(
ey,j − ey,i
sj − (si + li)

)∣∣∣∣ (2.45)

where c = êψ,k for i = 1 and c = 0 for i ∈ {2, . . . , Nnodes}.
A characteristic behavior of the devised path planner is to start steer-

ing early, i.e., “on sight” of an obstacle. This is beneficial since it results
in minimal incremental steering changes, while still allowing for a quick
heading correction if required. Importantly, a timely OA-maneuver ini-
tiation provides an early (partial) insight into a neighboring lane and
thereby may allow for detection of previously shielded objects if there
is no car-2-car communication, or, in case of car-2-car communication,
visual confirmation of the communicating vehicles. The PWA reference
trajectories returned by the corridor planner are either directly fed to the
spatial-based predictive controller, or may first additionally be smoothed.

64

2.1.15 Adaptive Cruise Control

Besides obstacle avoidance and road tracking capability, adaptive cruise
control (ACC) capability is the third fundamental requirement for road
navigation. In [155], we introduce a simple discrete-time difference equa-
tion to model the longitudinal distance between the controlled vehicle
and a leading object, i.e.,

d
obj
l+1 = d

obj
l + Ts

(
v

obj
l − vx,l

)
, (2.46)

where vobj
l is the object velocity at time t = lTs, l > 0, and the sampling

time Ts is potentially dependent on velocity vx,l. The distance dynam-
ics (2.46) can be converted to the space domain by substitution such that

d
obj
j+1 = d

obj
j +

Ds(ρs,j − ey,j)
(
v

obj
j − vx,j

)

ρs,j(vx,j cos(eψ,j)− vy,j sin(eψ,j))
(2.47)

is obtained when assuming a uniform discretization spacing Ds. Notice
that, in contrast to the time domain, the dynamics of the longitudinal
distance in (2.47) are nonlinear in the space domain. Furthermore, for
a given a starting distance w.r.t. a leading object, we can write out the
recursion of (2.47) as just a function of the automated vehicle’s states
including ey,j , vx,j , eψ,j and vy,j . Then, the discretized model reads

d
obj
j+1 = d

obj
j + ad,jzj + gd,j ,

where dobj
j ∈ R, ad,j ∈ R1×nz , gd,j ∈ R and j ∈ N indexes steps over

distance s ∈ [jDs, (j + 1)Ds].

Then, for the ACC-driving mode, the LSV-MPC formulation can read

65

min

N−1∑

j=2

‖dj − dref
j ‖2qd + ‖dN − dref

N ‖2qdN + and other terms (2.48a)

s.t. d0 = d̂
obj,i∗

k , where i∗ ∈ {1, . . . , Nobj}, (2.48b)

dj+1 = dj + ad,jzj + gd,j , j = 0, . . . , N − 1, (2.48c)

dj ≥ dmin + cminvx,j − σd, j = 1, . . . , N, (2.48d)

σd ≥ 0, (2.48e)

and other constraints, (2.48f)

where the velocity-dependent reference distance is defined as

dref
j = pdrefv̂x,k + dmin, j = 2, . . . , N, (2.49)

where i? indicates the ACC-reference object (of Nobj many, including un-
suitable static ones) with initial (estimated or measured) distance d̂obj,i?

k ,
where dmin and cmin represent safety parameters, and where dmin and pdref

are calibrated. For example, dmin = 2m and pdref = (27 − dmin)/(50/3.6)

enforces a safety distance of 27m at 50km/h vehicle speed. This cor-
responds to the rule of thumb to keep a safety distance in meters of
“slightly more than half of the speedometer indication in km/h”. In or-
der to not neceessarily accelerate the ego car to achieve this distance, we
set dref

j = 0.95d̂
obj,i?

j +0.05dref
j if dref

j < d̂
obj,i?

j . This safety-oriented strategy
is appropriate for autonomous driving. In contrast, for cooperative driv-
ing (with enhanced predictability of neighboring communicating cars)
we may use (2.49) directly as is in order to very quickly achieve platoon-
ning [154].

Alternatively, and to maintain the preferred LP-form of (2.40), the ref-
erence tracking objective (2.48a) is dismissed and spatiotemporal way-

points are introduced instead. Therefore, tWP
j =

dref
j

vref
j

and sWP
j = dref

j may

be set in (2.40b) and continuously updated online, where vref
j denotes the

reference velocity (e.g., the minimum of road speed limit and lead obsta-
cle velocity).

66

2.1.16 Driving Mode Selection Heuristics

The objectives of adaptive cruise control (with distance-keeping capabil-
ities) and automated obstacle avoidance (approaching and overtaking of
a leading object) are by definition conflicting. Therefore, it must be dis-
tinguished between at least these two driving modes. In [155], it is dis-
tinguished between four driving modes: adaptive cruise control (ACC),
obstacle avoidance (OA), object-free road tracking (RT) and controlled
braking (Brake).

For ACC-mode activation, we make use of knowledge about the ego
car’s braking capabilities. We assume that, for an ego car with veloc-
ity vx,0 at position s0 and for a given road surface and profile, a max-
imal possible brake deceleration amax

b can be determined. In case of a
constant deceleration, the position of the car after a time interval t can
be computed as st = amax

b
t2

2 + vx,0t + s0. We further assume a lead-
ing object with constant velocity v

obj
0 and starting position s

obj
0 , so that

its position after time t is sobj
t = s

obj
0 + v

obj
0 t. For crash avoidance in the

interval [0, t], it has to hold st < s
obj
t − dmin, where dmin is a safety min-

imum distance. The time interval of interest is defined by N , the num-
ber of prediction steps N , i.e., t = NTs. Defining d

obj
0 = s

obj
0 − s0, we

can compute the crash-critical initial velocity of the ego car as vx,0 =
1

NTs
(d

obj
0 + v

obj
0 NTs − amax

b

2 (NTs)
2 − dmin), resulting in a final position

sNTs = s
obj
NTs
− dmin. Introducing an arbitrary safety factor c ∈ (0, 1)

to trigger steering at a lower velocity, the criterion for switching to OA-
mode is thus to check at time kTs if v̂x,k > v̂crit,i?

x,k holds, with v̂crit,i∗

x,k =

1
NTs

(
cd̂

obj,i∗

k + v̂
obj,i∗

x,k NTs − amax
b

2 (NTs)
2 − dmin

)
, where amax

b is a function
of v̂x,k and ŝk. The critical velocity can be refined by taking into account
detailed knowledge about braking dynamics, model-based probabilistic
predictions of leading vehicle trajectories or inter-vehicular communi-
cated braking trajectories. In all cases, v̂crit,i∗

x,k is determined from solving

sNTs = s
obj
NTs
− dmin.

A second consideration is to overtake a leading object whose velocity
is too far off the road reference velocity. Naturally, this is allowable only
in case of an available object-free neighboring lane permitting an obstacle

67

Algorithm 3: Driving mode selection (ACC, OA, RT, Brake)

1 Input: range fieldR, velocity- and safety margin-adjusted location
information of all Nobj obstacles inR.

2 Order objects according to increasing s-position along the corridor
and identify corresponding road bounds.

3 Dismiss objects significantly faster and in front or slower and
behind the ego car position.

4 Group objects longitudinally and laterally overlapping.
5 Find an object of interest i? ∈ {1, . . . , Nobj}with non-zero velocity

(usually the closest to the ego car) for ACC.
6 if there exists a neighboring lane which allows an obstacle avoidance

maneuver then
7 if (d̂

obj,i∗

k > dmin) && (v̂
obj,i∗

x,k ≤ vroad
x,k) && (v̂

obj,i∗

x,k > 0) &&

(v̂x,k < v̂crit,i∗
x,k) && (v̂

obj,i∗

x,k > v
obj,min
x,k) then

8 ACC;

9 else if there are objects withinR then
10 OA;

11 else if there are no objects left after Step 3 then
12 RT;

13 else
14 if (d̂

obj,i∗

k > dmin) && (v̂
obj,i∗

x,k ≤ vroad
x,k) && (v̂

obj,i∗

x,k > 0) &&
(v̂x,k < v̂crit,i∗

x,k) then
15 ACC;

16 else if there still are objects withinR then
17 Brake;

18 else if there are no objects left after Step 3 then
19 RT;

68

avoidance maneuver. A possible heuristic for the minimal object velocity

is vobj,min
x,k = vroad

x,k (0.4 + max(0,
vroad
x,k−30

130−30 0.5)).
A basic driving mode selection logic is described by Algorithm 3.

We remark that the ACC-mode may be active while simultaneously per-
forming obstacle avoidance of, e.g., static or very slow objects. A neigh-
boring lane may not only be occupied due to an advancing vehicle but
also because of a car approaching quickly from behind (a typical high-
way driving situation). Ultimately, an alternative triggering method may
be based on a slack variable exceeding the minimum distance constraint.
However, this is guaranteed to always trigger one sampling time later
than object detection since a MPC problem has to be solved first to ouput
the slack variable. In simulations this short delay could already render
a succesful OA-maneuver impossible, eventhough it was feasible using
the method described before (acting directly upon first object detection).

Simulation Experiments

In [155], simulation experiments are discussed that illustrate activations
of the different driving modes. Figure 21 and 22 visualize two simu-
lation experiments. For both, all four driving modes are activated for
resolving the given driving scenarios. The average computation times
are summarized in Table 1. Several remarks can be made. First, the ef-
fect of speed-dependent discretization spacing can be observed from the
different N . Second, the computational burden for dEKF and geometric
corridor planning is much less than for QP-building and solving. Third,
note that the computation time required for QP-building is not negli-
gible. Both building- and solve-time increase with increasing problem
complexity and increasing N .

69

Figure 21: Highway simulation from [155]. The velocities [km/h] of the ob-
jects (red) and the ego car (blue) are indicated next to them. The blue dots
indicate the reference trajectory of the ego car along the prediction horizon.
The green area shows the range-field in which objects can be detected. The
x- and y-axis indicate position coordinates in meters. (a–top frame) Due to a
fast vehicle advancing from behind, the controller prohibits a lange change
(‘blocks’ the left lane). Simultaneously, an object with slower velocity is
detected in front and the braking-mode is triggered. (b) The ego car has de-
celerated its velocity sufficiently, and is in ACC-mode, adjusting its velocity
to the leading vehicle. (c) The faster car has passed the ego car, the left
lane is free for overtaking, and an obstacle avoidance maneuver (OA-mode)
is initiated in order for the ego car to pursue its set reference velocity of
115km/h. (d) The ego car has overtaken the slower vehicle and is returning
to road-profile tracking (RT-mode).

70

Figure 22: Multiple obstacles simulation from [155].

71

Table 1: Average computation times τ̄ in milliseconds for the simulation
experiments in Figure 21 and 22. Time τ̄qp,build includes linearization, dis-
cretization and building of the quadratic program (via the elimination of
states). Computation times using MATLAB’s quadprog for the solution
of the QPs are denoted by τ̄quadprog. For the graph creation, see Algorithm
1, and for the subsequent finding of a cumulatively-least-heading varying
path on the tree via LCA [47], τ̄tree,build and τ̄LCA resulted. The state estimator
time is τ̄dEKF. The average (velocity-dependent) prediction horizon is N̄ .

Property Figure 21 Figure 22
τ̄dEKF 1.1 1.1
τ̄tree,build 0.7 1.0
τ̄LCA 0.2 0.2
τ̄qp,build 5.1 17.0
τ̄quadprog 14.5 85.0
N̄ 12 38

Figure 23: Hierarchical controller parametrization for single-vehicle motion
planning by MPC. Et (time-domain estimator): sensor fusion/model-based
state estimation, adaptive driver model and perception/surrounding mod-
eling. Bs (spatial-based builder): conversion from time- to space-domain,
corridor planning, reference signal and constraints generation as well as
driving mode selection. Cs (spatial-based controller): online LSV-MPC for-
mulation and QP-solver. Vt (time-based vehicle model): low-level con-
trollers and nonlinear vehicle dynamics. TM,E: maps and offline-generated
database. TX,E: exteroceptive measurements, i.e., surrounding perception.
TV,E: proprioceptive measurements. TE,B: perception and localization infor-
mation. TB,C: constraint, reference and mode selection information. TC,V:
high-level controls.

72

2.1.17 Hierarchical Controller Parametrization

For single-vehicle motion planning by MPC, the preferred control param-
terization consists of three hierarchies as visualized in Figure 23. The
three hierarchies are:

1. State estimation and environment modeling;

2. Corridor planning and reference trajectory design;

3. LSV-MPC optimization problem building and solution.

As illustrated in the simulation experiments from Section 2.1.16, the
computational burden is by far the largest for the LSV-MPC layer. This
layer includes a) the building and b) the solution of corresponding QPs
or LPs. In Section 2.1.1 it was motivated that a space-varying LSV-MPC
formulation (instead of a space-invariant LSI-MPC) is required for gen-
eral motion planning. Therefore, the online building and solving of QPs
or LPs cannot be avoided.

73

2.2 Single-vehicle Motion Planning by
Neural Networks

This section summarizes [142]:

• M. Graf Plessen, “Automating vehicles by deep reinforcement learn-
ing using task separation with hill climbing,” arXiv preprint arXiv:
1711.10785, 2017. (Submitted).

A model-based reinforcement learning (RL) method is proposed for
the training of feedforward controllers in the context of autonomous driv-
ing. Fundamental philosophy is to offline train on arbitrarily sophis-
ticated nonlinear models, while online cheaply evaluate a feedforward
controller, thereby avoiding the need for online optimization. The contri-
butions are, first, the discussion of two closed-loop control architectures,
and, second, the proposition of a simple gradient-free algorithm for deep
reinforcement learning using task separation with hill climbing (TSHC).
Therefore, a) simultaneous training on separate deterministic tasks with
the purpose of encoding motion primitives in a neural network, and b)
the employment of maximally sparse rewards in combinations with vir-
tual actuator constraints on velocity in setpoint proximity are advocated.
For feedforward controller parametrization, both fully connected (FC)
and recurrent neural networks (RNNs) are used.

2.2.1 Introduction

There exists a plethora of motion planning and control techniques for
self-driving vehicles [300]. The diversity is caused by a core difficulty:
the trade-off between model complexity and permitted online compu-
tation at short sampling times. In the following, three popular control
classes for automated vehicles and recent vision-based end-to-end solu-
tions are briefly summarized, before the proposed method is motivated.

74

Model-based Control Methods

In [208], a sampling-based anytime algorithm RRT∗ is discussed. Key no-
tion is to refine an initial suboptimal path while it is followed. As demon-
strated, this is feasible when driving towards a static goal in a static en-
vironment. However, it may be problematic in dynamic environments
requiring to constantly replan paths, and where an online sampled suit-
able trajectory may not be returned in time. Other problems of online
sampling-based methods are a limited model complexity and their ten-
dency to produce jagged controls that require a smoothing step, e.g., via
conjugate gradient [95].

In [273], a lattice-based method is discussed. Such methods, and sim-
ilarly also based on motion primitives [118], [331], [163], [255], are always
limited by the size of the look-up table that can be searched in real-time.
In [273], a GPU is used for search.

In [106], linear time-varying model predictive control (LTV-MPC) is dis-
cussed for autonomous vehicles. While appealing for its ability to incor-
porate constraints, MPC must trade-off model-complexity vs. computa-
tional burden from solving optimization problems online. Furthermore,
MPC is dependent on state and input reference trajectories, at least for
linearization of dynamics, but almost always also for providing a track-
ing reference. Therefore, a two-layered approach is often applied, with
motion planning and tracking as the two layers [300]. See Section 2.1.14
for a method using geometric corridor planning in the first layer for refer-
ence generation and for the combinatorial decision taking on which side
to overtake obstacles. As indicated in [106, Sect. V-A] and further em-
phasized in Section 2.1.3, the selection of reference velocities can become
problematic for time-based MPC and motivated to use spatial-based system
modeling. Vehicle dynamics can be incorporated by inflating obstacles
[163]. For tight maneuvering, the linearization approach from Section
2.1.10 is more accurate, however, computationally more expensive.

To summarize, two core observations are made. First, all methods
(from sampling-based to MPC) are derived from vehicle models. Second,
all of above methods suffer from the real-time requirement of short sam-

75

pling times. As a consequence, all methods make simplifications on the
employed model. These include, for example, omitting of dynamical ef-
fects, tire dynamics, vehicle dimensions, using inflated obstacles, prun-
ing search graphs, solving optimization problems iteratively, or offline
precomputing trajectories.

Vision-based Methods

In [308], a pioneering end-to-end trained neural network labeled ALVINN
was used for steering control of an autonomous vehicle. Video and range
measurements are fed to a fully connected (FC)-network with a single hid-
den layer with 29 hidden units, and an output layer with 45 direction out-
put units, i.e., discretized steering angles, plus one road intensity feedback
unit. ALVINN does not control velocity and is trained using supervised
learning based on road “snapshots”. Similarly, recent DAVE-2 [63] also
only controls steering and is trained supervisedly. However, it outputs
continuous steering action and is composed of a network including convo-
lutional neural networks (CNN) as well as FC-layers with a total of 250000
parameters. During testing (i.e., after training), steering commands are
generated from only a front-facing camera. Another end-to-end system
based on only camera vision is presented in [80]. First, a driving intention
(change to left lane, change to right lane, stay in lane and break) is de-
termined, before steering angle is output from a recurrent neural network
(RNN). Instead of mapping images to steering control, in [79] and [374],
affordance indicators (such as distance to cars in current and adjacent lanes
etc.) and feasible driving actions (such as straight, stop, left-turn, right-
turn) are output from neural networks, respectively. See also [306] and
their treatment of “option policies”. To summarize, it is distinguished
between a) vision-based end-to-end control, and b) perception-driven ap-
proaches that attempt to extract useful features from images. Note that
such features (e.g., obstacle positions) are implicitly required for all of
the aforementioned model-based control methods.

76

Motivation and Contribution

As noted in [360], correct localization relative to lane boundaries is more
important than with respect to GPS-coordinates. This indicates the im-
portance of lasers, lidars and cameras for automated driving. Second, ve-
hicles are man- and woman-made products for which there exist decade-
long experience in vehicle dynamics modeling [131],[317]. There is no
sensible reason to a priori entirely discard this knowledge (for manufac-
turers it is present even in form of construction plans). Thus, available
vehicle models should be leveraged for control design. Consider also
the position paper [132] for general limitations of end-to-end learning.
Third, a general purpose control setup is sought avoiding to switch be-
tween different vehicle models and algorithms for, e.g., highway driv-
ing and parking. There also exists only one real-world vehicle. In that
perspective, the most complex vehicle model encompassing all driving
scenarios is in general preferable for control design. Also, a model mis-
match on the planning and tracking layer can incur paths infeasible to
track [163]. Fourth, the most accident causes involving other mobile ve-
hicles are rear-end collisions [289], which most frequently are caused by
inattentiveness or too close following distances. In [155] it was found that
reaction delays of a single sampling time can already decide upon crash
avoidance or failure. Therefore, a control method that enables minimal
sampling times, such as feedforward control, can significantly increase
safety. Importantly, this is achieved deterministically. In contrast, envi-
ronment motion prediction (which also can increase safety) always re-
mains stochastic. Fifth, small sampling times are contradicting the pref-
erence for complex vehicle models. These considerations motivate to use
neural network controllers, which enable:

1. Offline training on arbitrarily sophisticated high-fidelity models in
arbitrarily complex simulation environments.

2. Online fast network feedforward evaluation.

Because of these two characteristics, neural network controllers have the
potential to eventually also be employed in nano-scale robots [234]. In

77

an automated vehicles settings, it implies that once trained, low-cost em-
bedded hardware can be used online with only a few matrix vector mul-
tiplications being evaluated forward.

2.2.2 Problem Formulation

Let vector zt = [xt, yt, ψt, vt] summarize four of the vehicle’s states.
Coordinates xt and yt describe the center of gravity (CoG) in the inertial
frame, ψt denotes the yaw angle relative to the inertial frame, and vt

indicates the vehicle’s speed at time t. Let zgoal = [xgoal, ygoal, ψgoal, vgoal]

denote a goal state. Then, the following problem can be formulated.

Problem 1. Given vector zt at time t, determine a general purpose control
method that enables closed-loop navigation from zt to zgoal, accounting for phys-
ical actuator constraints, and ensuring obstacle avoidance.

Thus, a general purpose control method that can serve the entire
range of driving operations is sought. These include road following (RF),
intersection control (IC), static and dynamic obstacle avoidance (OA),
adaptive cruise control (ACC) and parking applications. Four main classes
are distinguished:

• Zone navigation (no obstacles, no road bounds);

• Road navigation (static obstacles, road bounds);

• Adaptive cruise control (ACC) on top of road navigation;

• Dynamic obstacle avoidance on top of road navigation.

The choice of four-state zt is motivated by this distinction, since instances
of all four classes can be characterized by an associated zgoal and a devi-
ation measure relating zt to zgoal. In addition, zgoal can be reassigned
recursively such that it is rendered time-varying zgoal

t . This enables to en-
code IC as well as ACC applications.

78

Figure 24: Two candidates for the closed-loop control system architecture.

2.2.3 System Level

Closed-Loop Control System

Two candidate architectures are considered, see Figure 24. There are four
core components common to both. The first is a neural network acting
as the controller, abbreviated as “NETW” and subscripted by s̃ and sI ,
respectively. They differ by their input vector. Thus,

st =
{
zτ − zgoal

τ

}t
τ=t−Γ

, (2.50)

It = {Jτ}tτ=t−Γ , (2.51)

are defined, where hyperparameter Γ ≥ 0 denotes the number of past
states considered, and where Jτ is a pixel-related multi-dimensional ar-
ray. In the general case, zgoal

τ is time-varying. However, for e.g. park-
ing applications, it is static zgoal

τ = zgoal,∀τ . “Filter” denotes an alge-
braic mapping from (st, It) to s̃t. For example, in the simplest case,
s̃t = st. The block output of NETW is a control signal at. The entire

79

Section 2.2.4 is devoted to the design and training of NETW. The sec-
ond component in Figure 24 is “Navi” (navigation planner). It outputs
a high-level route plan. The third and fourth block component are la-
beled as “Preps’ and “PrepI” since they receive extero- and propriocep-
tive sensor measurements, process these, and prepare them (hence ab-
breviation “Prep”) such that st and It accordig to (2.50) and (2.51) can
be fed to the control network. Exteroceptive measurements are assumed
to include inter-vehicular communication (car-2-car) sensings as well as
the communication with a centralized or decentralized coordination ser-
vice such that, in general, multi-automated vehicle coordination is also
enabled [154].

Location, Heading and Velocity-related System Component

The choice of st in (2.50) is discussed. Nonlinear dynamic vehicle models
that include tire dynamics can be very complex with up to a double-digit
number of states [317]. For all kinematic and dynamic vehicle models,
and of varying complexity, the goal vehicle pose, within a time-varying
and a static setting, can be described well by only location, heading and
velocity, i.e., zgoal

τ = [x
goal
τ , y

goal
τ , ψ

goal
τ , v

goal
τ]. This entails the question of

what to provide as input to the network controller: a high-dimensional
state according to the vehicle model used for training, or only a four-
dimensional zτ = [xτ , yτ , ψτ , vτ]. It is opted for the latter option. This
is motivated as follows. Because of receiving reward measures as a func-
tion of zgoal

τ during training, the network controller naturally encodes
vehicle dynamics when mapping st and It (or s̃t) to at. It is not obvious
how providing a more detailed state (e.g., including various rate states)
as input to the network would improve this encoding since the goal pose
can already be described accurately by the only four-dimensional zgoal

τ .

Pixel-related System Component

This section discusses It in (2.51). It is proposed to map all exteroceptive
measurements to one sparse multi-channel image. One of these channels
describes all area prohibited from trespassing (obstacles) within a range-

80

Figure 25: (Top) Illustration of the range-view concept. Black indicates the
ego vehicle and green a detected obstacle. (Bottom) Illustration of Jt ∈
R2×Nξ with matrix entries normalized along the length (longer rectangle
edge) of the range-view. Colors are displayed for emphasis.

view in the proximity of the vehicle, see Figure 25. This permits general
purpose driving according to the four classes described in Section 2.2.2.
This approach also exploits the fact that vehicles operate ground-based.
Thus, for all obstacle avoidance tasks the area prohibited from trespass-
ing can be described accurately in the 2D plane. Image-sparsity nat-
urally results from the distinction between area permitted (pixel-value
zero) and area prohibited to drive in (pixel value greater than zero). It
also permits to distinguish between obstacles of different kind (static, dy-
namic, bicycles, vehicles etc.) by assigning different pixel values. Third, a
sparse multi-channel image is a well-suited input for training of location-
aware neural networks (such as fully connected ones). Fourth, it guar-
antees a fixed-size complexity of It (fixed pixel resolution) fed to the
neural network controller, while at the same time permitting an adapt-
able, e.g., velocity-dependent range-view size. Thus, complexity is al-
ways bounded by the number of pixels, Nη ×Nξ, employed to represent
the range-view.

81

In addition, a simplification of the sparse multi-channel image is con-
sidered. The first layer of the It-related part of the network controller
(NETW) receives an input vector of dimensionNI = (1+Γ)NcNξNη . De-
pendent on the image resolution and since typically Nη > Nξ, the num-
ber NI can be quite large. Therefore, an alternative It is proposed, where
each image-frame, J̃τ,c ∈ RNη×Nξ , is replaced by a reduced Jτ,c ∈ R2×Nξ

array. Thus, it is defined

Jτ,c,1,ξ = arg min
η

{
J̃τ,c,η,ξ > 0

}Nη
η=NCoG

ξ

−Kmax
ξ , (2.52a)

Jτ,c,0,ξ = −Kmin
ξ + arg max

η

{
J̃τ,c,η,ξ > 0

}NCoG
ξ

η=0
, (2.52b)

with Kmax
ξ = max(NCoG

ξ , Nveh,max
ξ) and Kmin

ξ = min(NCoG
ξ , Nveh,min

ξ) for
all τ = t − Γ, . . . , t, c = 1, . . . , Nc, ξ = 0, . . . Nξ − 1. Thus, the signed
minimum pixel distances between vehicle chassis, Nveh,max

ξ and Nveh,min
ξ ,

or CoG, NCoG
ξ , and closest obstacle in forward and backward facing di-

rections are represented, see Figure 25. The multi-channel description is
maintained, such that, one channel can describe distance, while another
the obstacle-type (static, dynamic, etc.) or road surface. It is further ar-
gued that network learning capability is not affected when enabling tem-
poral data processing (i.e., with memory). This can be seen when envi-
sioning how the network controller can learn to pass by obstacle corners.
Temporal perception processing enables to learn anticipative and, in par-
ticular, outreaching steering. This motivates that either a) multilayer per-
ceptrons (MLPs) with Γ > 0 are employed, or, b) and alternatively, recur-
rent neural networks (RNNs).

The sensor fusion of all exteroceptive measurements to obtain a uni-
fied It-array is the second main task besides design of a learning algo-
rithm to train the network. It includes a transformation step from various
physical measurement units to pixel-coordinates. See [258] for seman-
tic segmentation based on fully convolutional networks (FCN). Importantly,
note that a) sensor fusion to obtain It, and b) the training of the network
controller can be solved orthogonally. The former problem is of supervised
machine learning nature. In contrast, the latter represents a reinforcement

82

learning problem to which the entire Section 2.2.4 is devoted to.

Control Vector

The continuous control vector is here defined as

at = [vt, δt]. (2.53)

Both vt and δt are subject to physical actuator absolute and rate con-
straints. These are treated as part of the vehicle model on which the net-
work training is based on (see the next Section). Note that the minimum
velocity is negative. Hence, reverse driving is explicitly permitted. The
network output, which results from a tanh(·) activation function as will
be further specified below, is linearly scaled to be within absolute actu-
ator bounds, before it is fed to the low-level controllers that are further
limited by actuator rate constraints.

A remark with respect to gear selection can be made. Throughout
this section, electric vehicles (EVs) are assumed since they appear more
suitable to curb urban pollution. EVs do not require gearboxes. Nev-
ertheless, the network architecture can be extended to include discrete
gear as an additional decision variable. Suppose Ngears gears are avail-
able. Then, the output layer can be extended by Ngears channels, with
each channel output representing a normalized probability of gear selec-
tion as a function of st and It (or s̃t), that can be trained by means of a
softmax classifier.

In fact, the last discussion further underlines the potential of model-
based reinforcement learning using neural networks. Similarly, mixed-
integer decisions such as on which side to overtake an obstacle at what
speed can in principle be handled efficiently using the neural approach.

Exemplary System Model used for Learning

A fundamental motivation of proposed method is to leverage decade-
long experience in vehicle modeling [131], [317]. Since vehicles are man-
and woman-made products, there is no sensible reason to entirely a pri-
ori discard existing vehicle model equations and construction insights.

83

For reduced computational burden in this preliminary proof of concept,
a simple nonlinear bicycle model is employed for the experiments in Sec-
tion 4.4.5. Note, however, that in practice it is recommended to employ
a high-fidelity vehicle model. Physical actuator absolute and rate con-
straints are treated as part of the vehicle model on which the network
training is based on. The deterministic system model assumes

vt ≤ min(vt, vt−1 + v̇max,tTs, Ĩ
max
v,t−1vmax,t) (2.54a)

vt ≥ max(vt, vt−1 + v̇min,tTs, Ĩ
min
v,t−1vmax,t) (2.54b)

with Ĩmax
v,t−1 = 1 if vt−1 ≥ 0 and 0 otherwise, and Ĩmin

v,t−1 = 1 if vt−1 ≤ 0

and 0 otherwise. The two indicators are introduced to guarantee a zero-
crossing w.r.t. v-control to remain for at least one Ts at zero velocity. Fur-
thermore, there is δt ≤ min(δt, δt−1 + v̇max,tTs, δmax,t), δt ≥ max(δt, δt−1 +

δ̇min,tTs, δmax,t), and a simple Euler-discretized nonlinear kinematic bi-
cycle model with xt+1 = xt + Tsvt cos(ψt), yt+1 = yt + Tsvt sin(ψt),
ψt+1 = ψt + Ts

vt
b tan(δt), vt+1 = vt, modeled with b = 3.5m, and rectan-

gular vehicle dimenstions of 1.8× 4.3m.

General Purpose Method

At mission initialization, a navigation route is computed. Then, the fol-
lowing basic algorithm can be conducted:

1. Determine (zt, It) from a mapping of proprio- and exteroceptive
sensors to account for road boundaries, static and dynamic obsta-
cles, traffic lights and signs.

2. Determine fACC
t ∈ {0, 1}, a flag for ACC-possibility.

3. If fACC
t == 1, then apply conservative driving with

z
goal
t =





z
stop
t , if ∃ red traffic light/sign ahead,
zlead
t , if dt < dmin(vt, v

lead
t),

zhorizon
t , otherwise,

otherwise apply emergency obstacle avoidance with zgoal
t = zdistant

t

and relaxed permissible driving area.

84

4. Evaluate NETW as a function of st and It to obtain at.

5. Apply at and wait until the next sampling time.

Thus, three parameterized decisions need to be made. First, on the possi-
bility of ACC. This decision can typically be parameterized as a function
of current and leading vehicle state. The second decision is about a still
tolerable minimum safety distance dt < dmin(vt, v

lead
t) with respect to a

leading vehicle characterized by state zlead
t . See [155] for a simple heuris-

tical parameterization of both of the first two decisions. The third deci-
sion involves a selection of a suitable goal state in case of an emergency
obstacle avoidance scenario. Therefore, a vehicle state zdistant

t located dis-
tant away but along the reference path may heuristically be imposed.
This permits the control system to fully concentrate on immediate ob-
stacle avoidance rather than tracking of a reference state. Relaxation of
permissible driving area implies to also consider neighboring lanes for
a potential obstacle avoidance maneuver. In contrast to above heuristic
decisions, zstop

t with vstop
t = 0 is prescribed by traffic lights and stop sig-

nals. For road tracking, the goal state is set as zhorizon
t , i.e., the intersection

of the navigation route and the range-view.

Discussion and Comparison with Model Predictive Control

Before presenting the learning algorithm, main differences to MPC are
stressed. First, implicit MPC solves an optimization problem online. This
limits the complexity of the predictive models that can be used. In con-
trast, neural network controllers can be trained offline on the most so-
phisticated vehicle models, before being employed online in a computa-
tionally cheap feedforward evaluation. As a consequence, online solvers
for MPC are not required anymore.

Second, it is also mentioned explicit MPC [41], which reduces online
burden to search in a look-up table as a funcion of current state (MPC
problems are parameterized as a function of state and solved offline). Ex-
plicit MPC is limited to a) time-invariant models (and thus unsuited for
general navigation tasks), b) still requires an online search of the look-up
table storing the state-dependent controls, and c) only suitable for small

85

problems. For perspective, in [368] for problems with more than approx-
imately 5 states, 3 controls and 12 inequality constraints, explicit MPC
is considered to no longer be practically feasible. It may be interesting
to analyze that simple explicit (linear) MPC applications can be replaced
by neural network feedforward controllers, which are a) trained on more
complex (nonlinear) system models using reinforcement learning and b)
are still faster to evaluate online.

Third, spatial-based MPC can be superior to time-based MPC due to
its ability to easily constrain vehicle motion to a convex driving corridor
expressed along a spatially discretized road centerline. In proposed neu-
ral network setting, this driving corridor is represented by a pixel image.
Importantly and in contrast to MPC, convexity of permissible driving
area is not a prerequisite anymore. This, in general, liberates from the
convex corridor planning step preceding MPC, see [155] and the refer-
ences therein.

Fourth, while MPC optimizes over a predictive model, the nature of
neural network controllers appears of more reactive nature, eventhough
predictive capability is encoded in the network through training and re-
ceding zgoal-selection during online operation. The most frequent acci-
dent cause involving other mobile vehicles are rear-end collisions [289],
which most frequently result from inattentiveness or too close follow-
ing distances. In this perspective, another interesting topic is to argue to
what extend fast reaction times are more important in automated vehicles
than predictive capability.

Finally, in view of current (and further developing) hardware op-
portunities, expensive offline training clearly is appropriate. To stress
remarkable dimensions, in [327] training is distributed on 80 machines
and 1440 CPU cores. Even more remarkable, in [4] 1024 Tesla P100 GPUs
are used in parallel. For perspective, one Tesla P100 permits a double-
precision performance of 4.7 TeraFLOPs [296].

86

Figure 26: The two network structures of the control block candidates in
Figure 24. It is distinguished between a S (st/s̃t-related), I (It-related), C
(combined) and O (output layer) part of the neural network. Each of the
four parts can be composed of an arbitrary sequence of FCs and RNNs.

2.2.4 Training Algorithm

This section proposes a method to train neural network controllers.

Network Controller

Two network structure candidates are displayed in Figure 26. Alterna-
tive structures were also tested, but did not improve performance, or
only increased the total number of weights to be learnt (e.g., when de-
coupling controls and not sharing weights). Each of the four parts dis-
played in Figure 26 can be composed of an arbitrary sequence of FCs,
LSTM cells including peephole connections [129],[162], and GRUs [81].
Motivation for these choices are the simplicity of FCs and the temporal
processing ability of RNNs. All parameter weights to be learnt are ini-
tialized by Gaussian-distributed variables with zero mean and a small
variance σ2

init. Exceptions are adding a 1 to the LSTMs forget gate biases
for LSTM cells, as recommended in [201], which are thus initialized with
mean 1. In proposed setting, the affine part of all FC-layers is followed
by nonlinear tanh(·) activation functions acting elementwise. Because of
their bounded outputs, saturating nonlinearities are preferred over Re-
LUs, which are used for the hidden layers in other RL settings [253] but
can result in large unbounded layer output changes. Before entering the
first layers of the S- and I-block, st and It are normalized elementwise,
whereby for final experiments 30m, 2π, vmax − vmin and Nη are heuris-

87

Figure 27: The problematic of rich rewards. Three scenarios (a), (b) and (c)
indicating different start (black) and goal (red dashed) states (position and
heading). For (c), an obstacle is added.

Figure 28: Curriculum Learning. The difficulty of selecting “simple” exam-
ples. The original problem with start (black) and goal (red dashed) state is
denoted in (a). A “simpler” problem is given in (b). See Section 2.2.4 for
interpretation.

tically selected as normalization constants for distances xt and yt, angle
ψt, velocity vt and all elements of It, respectively. Their choice was not
found to be decisive for learning. The final FC-layer comprises a tanh(·)
activation function. It accordingly outputs two bounded continous val-
ues referred to as aNN

t , which are then affinely scaled to at as outlined in
the next section. Then, during training at is fed to the system model.

Reward Shaping

Reward shaping is crucial for the success of learning by reinforcement
signals [349]. However, it was found to be a highly delicate matter in
practical problems. Therefore, the preferred choice is motivated in detail.

In most practical control problems, a current state z0 is given at t = 0,
and a desired goal state zgoal is known. Not known, however, is the shape
of the best trajectory (w.r.t. a given criterion) and the control signals that
realize that trajectory. Thus, by nature these problems offer a sparse re-
ward signal, rT̃ (zgoal), received only upon reaching the desired goal state

88

at some time T̃ > 0. In the following, auxiliary rich reward signals and
curriculum learning [44] are first discussed.

A reward signal rt(zt, at), abbreviated by rt, is labeled as rich when
it is time-varying as a function of states or controls. Note that the design
of any such signal is heuristic and motivated by the hope for acceler-
ated learning through maximally frequent feedback. In the following,
the problematic of rich rewards is exposed. First, eψ,t = |ψt − ψgoal|,
ed,t =

√
(xt − xgoal)2 + (yt − ygoal)2, and ev,t = |vt − vgoal| are defined, as

well as the binary flag indicating whether the goal state is reached,

f
goal
t =

{
1, if (ed,t < εd) ∧ (eψ,t < εψ) ∧ (ev,t < εv),

0, otherwise,
(2.55)

where (εd, εψ, εv) are small tolerance hyperparameters. Then, suppose a
rich reward signal of the form rt = −(αed,t + eψ,t) is designed, which
characterizes a weighted linear combination of different measures. This
class of reward signals, trading-off various terms and providing feed-
back at every step, occurs frequently in the literature [318], [228], [253],
[178]. However, as will be shown, in an automotive setting, it may easily
lead to undesirable behavior. Suppose case (a) in Figure 27 and a maxi-
mum simulation time Tmax. Then, omitting a discount factor for brevity,

−Tmax π
2 > −∑T̃

t=0 αe
?
d,t + e?ψ,t, may be obtained for accumulated re-

wards. Thus, the no-movement solution may incur more accumulated
reward, namely −Tmax π

2 , in comparison to the true solution, which is
indicated on the right-hand side of the inequality sign.

Similarly, for specific (α, Tmax), the second scenario (b) in Figure 27
can return a no-movement solution since the initial angle is already coin-
ciding with the target angle. Hence, for a specific (α, Tmax)-combination,
the accumulated reward when not moving may exceed the value of the
actual solution.

The third scenario (c) in Figure 27 further illustrates that even if re-
ducting rich rewards to a single measure, e.g., rt = −ed,t, an undesired
standstill may result. This occurs especially in the presence of obstacles
(and maze-like situations in general).

To summarize, for finite Tmax, the design of auxiliary rich reward sig-

89

nals is not straightforward. It can easily result in solution trajectories
that may even be globally optimal w.r.t. accumulated reward, however,
prohibit to solve the original problem of determining a trajectory from
initial to target state.

In [44], curriculum learning (CL) is discussed as a method to speed
up learning by providing the learning agent first with simpler examples
before gradually increasing complexity. Analogies to humans and an-
imals are drawn. The same paper also acknowledges the difficulty of
determining “interesting” examples [44, Sect. 7] that optimize learning
progress. Indeed, CL entails the following issues. First, “simpler” tasks
need to be identified. This is not straightforward as discussed shortly.
Second, these tasks must first be solved before their result can serve as
initialization to more complex tasks. In contrast, without CL, the entire
solution time can be devoted to the complex tasks rather than being par-
titioned into easier and difficult tasks. In experiments, this was found
to be relevant. Third, the solution of an easier task does not necessarily
represent a better initialization to a harder problem in comparison to an
alternative random initialization. For example, consider the scenario in
Figure 28. The solution of the simpler task does not serve as a better ini-
tialization than a purely random initialization of weights. This is since
the final solution requires outreaching steering and possibly reversing of
the vehicle. The simpler task just requires forward driving and stopping.
This simple example illustrates the need for careful manual selection of
suitable easier tasks for CL.

In the course of this work, a plethora of reward shaping methods
were tested. These include, first, solving “simpler” tasks by first dis-
missing obstacles and target angles limited to 30◦-deviation from the ini-
tial heading. Second, ε-tolerances were initially relaxed before gradually
decreasing them. Third, it was tested to first solve a task for only the
εd-criterion, then both (εd, εψ), and only finally all of (εd, εψ, εv). Also
varying sequences (e.g., first εψ instead of εd) were tested. No consistent
improvement could be observed for neither of these methods. On the
contrary, solving allegedly simpler tasks reduced available solve time for
the original “hard” problems. Without CL the entire solution time can be

90

devoted to the complex tasks. Therefore, the preferred reward design is:

rt =

{
−∞, if f crash

t == 1,

−1, otherwise,
(2.56)

in combination with fgoal
t from (2.55), and

∆pt = −
√

(xt+1 − xt)2 + (yt+1 − yt)2, (2.57)

Fi =

{
1, if

∑t
τ=t−T goal+1 f

goal
τ == T goal,

0, otherwise,
(2.58)

where f crash
t is an indicator flag of a vehicle crash. Upon Fi = 1, the

reinforcemet learning problem is considered as solved. For generality,
an integral Fi is defined with problems such as the inverted pendulum
[10] in mind, which require stabilization and are only considered to be
solved after stabilization is demonstrated for sufficiently many consec-
utive T goal time steps. Note, however, that this is not required for an
automotive setting. Here, it must be T goal = 1. Only then learning with
vgoal 6= 0 is possible (see also the discussion of the main algorithm be-
low). Other criteria and trade-offs for ∆pt naturally are possible, espe-
cially, accumulated curvature of resulting paths, and a minmax objective
therefore. The negation is introduced for maximization (“hill climbing”
convention). Note that the preferred reward signal is maximal sparse, re-
turning a negative constant,−1, for all times up until reaching the target.
It represents a tabula rasa solution critizised in [318] for its maximal spar-
sity. Indeed, standalone it was not sufficient to facilitate learning when
also accounting for a velocity target vgoal. Therefore, virtual constraints
(VC) on velocity in target proximity are introduced. Thus,

vmt =

{
vm, if ed,t ≥ Rthresh

v ,

vgoal + (vm−vgoal)
Rthresh
v

ed,t, otherwise,
(2.59)

is defined, where m ∈ {max,min}, and Rthresh
v is a hyperparameter (e.g.,

the range-view length or a heuristic constant). Then, the neural network
output is scaled as

at =

[
vmax
t −vmin

t

2
δmax−δmin

2

]
� aNN

t +

[
vmax
t +vmin

t

2
δmax+δmin

2

]
(2.60)

91

where � here denotes the Hadamard product. Let us legitimize VCs.
Since speed is a decision variable it can always be artificially constrained.
This justifies the introduction of (2.59). Here, bounds are set to affinely
converge towards vgoal in the proximity of the goal location. This is a
heuristic choice. Note that the affine choice does not necessarily im-
ply constant accelerations. This is since (2.59) is spatially parameter-
ized. Note further that rate-constraints (2.54) still hold when (2.60) is
applied to the vehicle. For Rthresh

v = 0, VCs are dismissed. It was also
tested to constrain δt. However, this did not accelerate learning. The
final heading pose implies circles prohited from trespassing because of
the nonholonomic vehicle. It was also tested to add these as virtual ob-
stacles. However, this too did not improve. Finally, note that VCs on
velocity artificially introduce hard constraints, parameterized by Rthres

v ,
and thus shape the learning result w.r.t velocity, at least towards the end
of the trajectory. Two comments are made. First, in receding online op-
eration, with additional frequent resetting of targets, this shaping effect
is reduced since only the first control of a planned trajectory is applied.
Second, the influence of hyperparameter Rthres

v only becomes apparent
during parking when following the trajectory up until standstill. How-
ever, here no significant velocity changes are desired, such that theRthres

v -
choice is not decisive.

To summarize this section. It was illustrated that the design of rich re-
ward signals as well as curriculum learning can be problematic. Therefore,
maximal sparse rewards in combination with virtual constraints on velocity
were proposed.

The Role of Tolerances

Tolerances ε hold an important role. On one hand, nonzero ε-tolerances
result in deviations between actually learnt ẑgoal and originally desired
goal pose zgoal. On the other hand, very small ε (e.g., εd = 0.1m, εψ = 1◦

and εv = 1km/h) prolong learning time. Two scenarios apply.
First, for a network trained on a large-scale and dense grid of train-

ing tasks and for small ε, during online operation, suitable control com-
mands are naturally interpolated even for setpoints not seen during train-

92

ing. This applies especially when training and online operation are con-
ducted obstacle-free. Here, structured task design can be applied opti-
mally, gridding tasks over polar coordinates and velocity. The concept of
interpolation through encoded motion primitives within the network is the
core advantage over methods relying on look-up tables with stored tra-
jectories, and which require to solve time-critical search problems. For
example, in [273] exhaustive search of the entire lattice-graph is con-
ducted online on a GPU. In [255], a total of about 100 motion primitives
is considered. Then, online an integer program is solved by enumeration
using maximal progress along the centerline as criterion for selection of
the best motion primitive. In contrast, for neural feedforward control
this search is not required.

Second, the scenario is considered in which existing training hard-
ware does a) not permit large-scale encoding, and b) only permits to
use larger ε-tolerances to limit training time. Therefore, the following
method is devised. First, tuples (ẑgoal, zgoal) are stored for each train-
ing task. Then, during online operation, for any setpoint, zsetpoint, the
closest (according to a criterion) ẑgoal from the set of training tasks is
searched, before the corresponding zgoal is applied to the network con-
troller. Two comments are made. First, in order to reach ẑgoal (with
zero deviation), zgoal must be applied to the network. Therefore, tuples
need to be stored. Second, eventhough this method now also includes
a search, it still holds an important advantage over lattice-based meth-
ods. Namely, through the compression of the look-up table in the network
weights. Hence, only tuples need to be stored—not entire trajectories.
This is especially relevant in view of limited hardware memory. Thus,
through encoding, potetially many more motion primitives can be stored
in comparison to lattice-based methods.

In practice, the first scenario is obviously preferrable. It is also imple-
mentable for two reasons. First, recall aforementioned computational op-
portunities. Second, neural networks have in principle unlimited func-
tion approximation capability [340]. Hence, the implementation of the
first approach is purely a question of intelligent task setup, and compu-
tational power.

93

Algorithm 4: Task Separation with Hill Climbing (TSHC)
1 Input: system model, network structure, training tasks, and Nrestarts, Nmax

iter ,
n, Ntasks, Tmax, β, ε, σmin

pert, σmax
pert .

2 Initialize θ? ← ∅, N? ← 0, P ? ← −∞, J? ← 0.
3 for irestart = 1, . . . , Nrestarts do
4 Initialize θ randomly, and σpert ← σmax

pert , N
tasks,?
old ← 0.

5 for iiter = 1, . . . , Nmax
iter do

6 % RUN ASYNCHRONOUSLY:
7 for i = 1, . . . , n do
8 Perturb θi ← θ + σpertζ, with ζ ∼ N (0, I).
9 Initialize N tasks,?

i ← 0, Pi ← 0, Ji ← 0.
10 for itask = 1, . . . , Ntasks do
11 Initialize z0 (and LSTM and GRU cells).
12 for t = 0, . . . , Tmax − 1 do
13 Read (st, It) from itask-environment, at ← X (st, It, θi).
14 (rt,∆pt, f

goal
t)←R(st, It, at), zt+1 ← Z(zt, at).

15 Pi ← Pi + ∆pt, Ji ← Ji + rt, Fi according to (2.58).
16 if (Fi == 1) ∨ (rt == −∞) then
17 Break t-loop.

18 N tasks,?
i ← N tasks,?

i + Fi.

19 % DETERMINE i?:
20 if max

i
{N tasks,?

i }ni=1 == Ntasks then

21 i? = arg max
i

{
Pi | N tasks,?

i == Ntasks

}n
i=1

.

22 if Pi? > P ? then
23 (θ?, N?, P ?, J?)← (θi? , Ntasks, Pi? , Ji?).

24 else
25 i? = arg max

i
{Ji}ni=1.

26 if (Ji? > J?) ∧ (P ? == −∞) then
27 (θ?, N?, P ?, J?)← (θi? , N

tasks
i? , Pi? , Ji?).

28 N tasks,? ← N tasks,?
i? .

29 % UPDATE PARAMETERS:
30 if N tasks,? > N tasks,?

old then σpert ← max(1
β
σpert, σ

min
pert).

31 else if N tasks,? < N tasks,?
old then σpert ← min(βσpert, σ

max
pert).

32 θ ← θi? and N tasks,?
old ← N tasks,?.

33 % OPTIONAL:
34 if N tasks,?

i == Ntasks then Break iiter-loop. % no further refinement.

35 Output: (θ?, N?, P ?, J?).

94

Main Algorithm – TSHC

Algorithm 4 is proposed for simple gradient-free model-based reinforce-
ment learning. The name is derived from the fact of a) learning from sep-
arate training tasks, and b) a hill climbing update of parameters (greedy
local search).

Let us elaborate on definitions. Analysis is provided further below.
First, all network parameters are lumped into variable θ. Second, the
perturbation Step 8 in Algorithm 4 has to be intepreted accordingly. It
implies parameter-wise affine perturbations with zero-mean Gaussian
noise and spherical variance σ2

pert. Third, X (·), R(·) and Z(·) in Steps
13-14 denote functional mappings between properties defined in the pre-
ceding sections. Fourth, hyperparameters are stated in Step 1. While
Nrestarts, Nmax

iter , n, Ntasks and Tmax denote lengths of different iterations,
β > 1 is used for updating of σpert in Step 30 and 31. Fifth, for every
restart iteration, irestart, multiple parameter iterations are conducted, at
most Nmax

iter many. Sixth, in Steps 21 and 25 hill climbing is conducted,
when a) all tasks have been solved for current iiter, or b) not all tasks
have yet been solved, respectively. Seventh, there are two steps in which
an early termination of iteration may occur: Step 17 and 34. The former
is a must. Only then learning with vgoal 6= 0 is possible. The latter ter-
mination criterion in Step 34 is optional. If dismissed, a refinement step
is implied. Thus, eventhough all Ntasks tasks have been solved, parame-
ter iterations (up until Nmax

iter) are continued. Eight, note that a discount
hyperparameter γ, common to gradient-based RL methods [333], is not
required. This is since it is irrelevant in the maximally sparse reward
setting. Finally, options for parallelization are outlined. In principle,
nested parallelization is possible with an inner and outer parallelization
of Steps 10-18 and 7-18, respectively. The former refers toNtasks solutions
for a given parameter vector θi, whereas the latter parallelizes n param-
eter perturbations. For final experiments, Steps 7-18 were implemented
asynchronously.

95

Analysis

According to classifications in [119], TSHC is a gradient-free instance-
based simulation optimization method, generating new candiate solu-
tions based on only the current solution and random search in its neigh-
borhood. Because of its hill climbing (greedy) characteristic, it differs
from a) evolutionary (population-based) methods that construct solution
by combining others typically using weighted averaging [371], [327], and
b) from model-based methods that use probability distributions on the space
of solution candidates, see [119] for a survey. In its high-level structure,
Algorithm 4 can be related to the industrial strength COMPASS algo-
rithm [375]. Within a global stage, they identify several possible regions
with locally optimal solutions. Then, they find local optimal solutions
for each of the identified regions. In a third stage, they select the best so-
lution among all identified locally optimal solutions. In our setting, these
regions are enforced as the separate training tasks and the best solution
for all of these is selected.

An important role is held by σpert. In combination with sufficiently
large n, it must be large enough to permit sufficient exploration such that
a network parametrization solving all tasks can be found. In contrast,
the effect of decreasing σpert with an increasing number of solved tasks is
that, ideally, a speedup in learning progress results from the assignment
of more of solution candidates θi closer in variance to a promising para-
metrization θ, see Step 8. For final experiments, σmin

pert was dismissed to
not constrain σpert-adaptation.

Steps 25-27 are discussed. For the case that for a specific iiter-iteration
not all tasks have been solved, i? = arg max

i
{N tasks,?

i }ni=1 has been consid-

ered as an alternative criterion for Step 25. Several remarks can be made.
First, Step 25 and the alternative are not equal. This is because, in general,
different tasks are solved in a different number of time steps. However,
the criteria are approximately equivalent for sparse rewards (since Ji ac-
cumulates constants according to (2.56)), and especially for large Tmax.
The core advantage of employing Step 25 in TSHC is that it can, if de-
sired, also be used in combination with rich rewards to accelerate learnig

96

progress (if a suitable rich reward signal can be generated). In such a
scenario, i? according to Step 25 is updated towards most promisining
Ji? , then representing the accumulated rich reward. Thus, in contrast to
(2.56), a rich reward could be represented by a weighted sum of squared
errors between state zt ∈ Rnz and a reference zref

t ∈ Rnz ,

rt =

{
−∞, if f crash

t == 1,

−∑nz−1
l=0 αl(zt(l)− zref

t (l))2, otherwise,
(2.61)

where αl, are trade-off hyperparameters and scalar elements of vectors
are indexed by l in brackets. Another advantage of the design in Algo-
rithm 4 according to Step 25-27 is its anytime solution character. Even if
not allNtasks are solved, the solution returned for the tasks that are solved,
typically is of good quality and optimized according to Steps 25-27.

If for all Ntasks tasks there exists a feasible solution for a given system
model and a sufficiently expressive network structure parameterized by
θ, then Algorithm 4 can find such parametrization for sufficiently large
hyperparameters Nrestarts, Nmax

iter , n, Tmax and σmax
pert . The solution para-

metrization θ? is the result from the initialization Step 4 and parameter
perturbations according to Step 8, both nested within multiple iterations.
As noted in [187], for optimization via simulation, a global convergence
guarantee provides little practical meaning other than reassuring a solu-
tion will be found eventually when simulation effort goes to infinity. The
same reference states that a convergence property is most meaningful if
it can help in designing suitable stopping criteria. Here, there are two
conceptual levels of stopping criteria: first, the solution of all training
tasks, and second, the refinement of solutions.

Control design is implemented hierarchically in two steps. First, suit-
able training tasks (desired motion primitives) are defined. Then, these
are encoded in the network by the application of TSHC. This has practical
implications. First, it encourages to train on deterministic tasks. Further-
more, at every iiter, it is simultaneously trained on all of these separate
tasks. This has the benefit that the best parametrization, θ?, is clearly de-
fined in Step 21, maximizing the accumulated P -measure over all tasks.
Second, it enables to provide certificates on the learnt performance. The

97

certificates are given by provision of a) the employed vehicle model, and
b) the list of encoded tasks (motion primitives). Note that such certifi-
cates cannot be given for the class of stochastic continuous action RL al-
gorithms that are derived from the Stochastic Policy Gradient Theorem
[350]. This class includes all stochastic actor-critic algorithms, including
A3C [280] and PPO [333].

Discussion and Comparison with related RL Algorithms

A discussion of popular continuous control methods that use neural net-
work for function approximation is given, focusing on one stochastic
[333], one deterministic policy gradient method [253], and one evolution
strategy [327]. The methods are discussed in relative detail to underline
aspects of TSHC.

First, the stochastic policy gradient method PPO [333] is discussed. Sup-
pose that a stochastic continus control vector is sampled from a Gaussian
distribution parameterized3 by θ such that at ∼ π(at|st, θ). Then,

J(θ) = E
st,at

[g(st, at ∼ π(at|st, θ))] , (2.62)

is defined as the expected accumulated and time-discounted reward when
at state st drawing at, and following the stochastic policy for all subse-
quet times when acting in the simulation environment. Since function
g(st, at) is a priori not know, it is parameterized by θV,old and estimated.
Using RL-terminology, in the PPO-setting, g(st, at) represents the advan-
tage function. Then, using the “log-likelihood trick”, and subsequently
a first-order Taylor approximation of log(π(at|st, θ)) around some refer-
ence π(at|st, θold), the following parameterized cost function is obtained
as an approximation of (2.62),

J̃(θ) = E
st,at

[
ĝt(θV,old)

π(at|st, θ)
π(at|st, θold)

]
. (2.63)

3In this setting, mean and variance of the Gaussian distribution are the output of a neu-
ral network whose parameters are summarized by lumped θ.

98

Finally, (2.63) is modified to the final PPO-cost function [333]

Ĵ(θ) = E
st,at

[
min

(
ĝt(θV,old)

π(at|st, θ)
π(at|st, θold)

,

clip(
π(at|st, θ)
π(at|st, θold)

, 1− ε, 1 + ε)ĝt(θV,old)

)]
, (2.64)

whereby the advantage function is estimated by the policy parameter-
ized by (θV,old, θold), which is run for T consecutive time steps such that
for all t the tuples (st, at, rt, st+1, ĝt(θV,old) can be added to a replay buffer,
from which later minibatches are drawn. According to [333], the estimate
is ĝT−1(θV,old) = κT−1 with κT−1 = rT−1+γV (sT , θV,old)−V (sT−1, θV,old),
ĝT−2(θV,old) = κT−2 + γλĝT−1(θV,old) and so forth until ĝ0(θV,old), and
where V (s, θV,old) represents a second, the so-called critic neural network.
Then, using uniform randomly drawn minibatches of size M , parame-
ters (θV , θ) of both networks are updated according to
arg min

θV

1
M

∑M−1
i=0 (V (si, θV)− (ĝi(θV,old)− V (si, θV,old)))

2 and

arg max
θ

1
M

∑M−1
i=0 Gi(θ), with Gi(θ) denoting the argument of the expec-

tation in (2.64) evaluated at time-index i. This relatively detailed discus-
sion is given to underline following observations. With first the introduc-
tion of a parameterized estimator, then a first-order Taylor approxima-
tion, and then clipping, (2.64) is an arguably crude approximation of the
original problem (2.62). Second, the complexity with two actor and critic
networks is noted. Typically, both are of the same dimensions apart from
the output layers. Hence, when not sharing weights between the net-
works, approximately twice as many parameters are required. However,
when sharing any weights between actor and critic network, then opti-
mization function (2.64) must be extended accordingly, which introduces
another approximation step. Third, note that gradients of both networks
must be computed for backpropagation. Fourth, the dependence on rich
reward signals is stressed. As long as the current policy does not find a
solution candidate, in a sparse reward setting, all ri are uniform. Hence,
there is no information permitting to find a suitable parameter update di-
rection and all of the computational expensive gradient computations are

99

essentially not usable4. Thus, the network parameters are still updated
entirely at random. Moreover, even if a solution candidate trajectory was
found, it is easily averaged out through the random minibatch update.
This underlines the problematic of sparse rewards for PPO. Sixth, A3C
[280] and PPO [333] are by nature stochastic policies, which draw their
controls from a Gaussian distribution (for which mean and variance are
the output of a trained network with current state as its input). Hence,
exact repetition of any task (e.g., the navigation between two locations)
cannot be guaranteed. It can only be guaranteed if dismissing the vari-
ance component and consequently using solely the mean for determin-
istic control. This can be done in practice, however, represents another
approximation step.

Deterministic policy gradient method DDPG [253] is discussed. Sup-
pose a deterministic continuous control vector parameterized such that
at = µ(st, θ). Then, the following cost function is defined,

J(θ) = E
st,at

[g(st, at = µ(st, θ))] = E
st

[g(st, µ(st, θ))] .

Its gradient can now be computed by simply applying the chain-rule
for derivatives [341]. Introducing a parameterized estimate of g(st, at),
which here represents the Q-function or action value function (in contrast to
the advantage function in above stochastic setting), the final DDPG-cost
function [253] is

J(θ) = E
st

[ĝ(st, µ(st, θ), θQ)] .

Then, critic and actor network parameters (θQ, θ) are updated as
arg min

θQ

1
M

∑M−1
i=0 (ĝ(si, ai, θQ)−(ri + γQ(si+1, µ(si+1, θold), θQ,old)))2 and

arg min
θ

1
M

∑M−1
i=0 Q(si, µ(si, θ), θQ), where minibatches are used and with

slowly tracking target network parameters (θQ,old, θold). Several remarks
can be made. First, the Q-function is updated towards only its one-step
ahead target. It is obvious that rewards are therefore propagated very
slowly. For sparse rewards this is even more problematic than for rich

4It is mentioned that typically the first, for example, 50000 samples are collected without
parameter update. However, even then that threshold must be selected, and the funda-
mental problem still perseveres.

100

rewards, especially because of the additional danger of averaging out
important update directions though random minibatch sampling. Fur-
thermore, and analogous to the stochastic setting, for the sparse reward
setting, as long as no solution trajectory was found, all of the gradient
computations are not usable and all network parameters are still updated
entirely at random. DDPG is an off-policy algorithm. In [253], exploration
of the simulation environment is achieved according to the current pol-
icy plus additive noise following an Ornstein-Uhlenbeck process. This is a
mean-reverting linear stochastic differential equation [126]. A first-order
Euler approximation thereof can be expressed as the action exploration
rule at = µ(st, θ)(1 − POU

θ) + POU
σ ε, ε ∼ N (0, I), with hyperparame-

ters (POU
θ , POU

σ) = (0.15, 0.2) in [253]. This detail is provided to stress
a key difference between policy gradient methods (both stochastic and
deterministic), and methods such as [327] and TSHC. Namely, while the
former methods sample controls from the stochastic policy or accord-
ing to heuristic exploration noise before updating parameters using mini-
batches of incremental tuples (si, ai, ri, si+1) plus ĝi(θV,old) for PPO, the
latter directly work in the parameter space via local perturbations, see Step
8 of Algorithm 4. This approach appears particularly suitable when deal-
ing with sparse rewards. As outlined above, in such setting, parameter
updates according to policy gradient methods are also entirely at ran-
dom, however, with the computationally significant difference of first an
approximately four times as large parameter space and, second, the un-
necessary costly solution of non-convex optimization problems as long
as no solution trajectory has been found. A well-known issue in training
neural networks is the problem of vanishing or exploding gradients. It
is particularly relevant for networks with saturating nonlinearities and
can be addressed by recent batch [197] and layer normalization [15]. In
both normalization approaches, additional parameters are introduced to
the network which must be learnt (bias and gains). Said issue is not rel-
evant for the proposed gradient-free approach, in which also saturating
activation functions are used, see Section 2.2.4.

This work is originally inspired by and most closely related to [327].
The main differences are discussed. The latter evolutionary (population-

101

Figure 29: Experiment 1. 1000 training trajectories resulting from the ap-
plication DDPG (Left), PPO (Middle) and TSHC (Right), respectively. The
effect of virtual constraints on velocity is particularly visible for DDPG. For
the given hyperparameter setting ([333, Table 3] and Tmax = 100), the tra-
jectories for PPO have little spread and are favoring reverse driving. TSHC
has a much better exploration strategy resulting from noise perturbations in
the parameter space. The task is solved by TSHC according to Figure 30.

based) strategy updates parameters using a stochastic gradient estimate.
Thus, it updates θ ← θ + α 1

nσ

∑n
i=1Riζi, where hyperparameters α and

σ denote the learning rate and noise standard deviation, and where Ri
here indicates the stochastic scalar return provided by the simulation en-
vironment. This weighted averaging approach for the stochastic gradient
estimate is not suitable for our control design method when using sep-
arate deterministic training tasks in combination with maximally sparse
rewards. Here, hill climbing is more appropriate. This is since most of
the n trajectory candidates do not end up at zgoal and are therefore not
useful. Note also that only the introduction of virtual constraints on ve-
locity permitted us to quickly train with maximally sparse rewards. It
is well known that for gradient-based training, especially of RNNs, the
learning rate (α in [327]) is a critical hyperparameter choice. In the hill
climbing setting this issue does not occur. Likewise, fitness shaping [371],
also used in [327], is not required. Note that above σ has the same role as
σpert. Except, in our setting, it additionally is adaptive according to Steps
30 and 31 in Algorithm 4. As implemented, this is only possible when
training on multiple separate tasks. Other differences include the paral-
lelization method in [327], where random seeds shared among workers
permit each worker to only need to send and receive the scalar return of
an episode to and from each other worker. All perturbations and param-

102

Table 2: Experiment 1. Number of scalar parameters (weights) that need
to be identified for DDPG, PPO and TSHC, respectively. TSHC requires to
identify the least by a large margin. In general, roughly by a factor 4. The
fact that PPO here requires exactly four times the number of parameters of
TSHC is a special case for na = 2 (not generalizable for arbitrary na).

Table 3: Experiment 2a. Learning 5 tasks. Comparison of six architectures
A1-A6. Hyperparameters are selected as n = 2000, Tmax = 100, and ter-
minating upon the first solution found (no refinement step, no additional
restart). Results are average over 5 runs. The total number of parameters
to be identified, the number of iterations until the first solution solving all
tasks, the total accumulated pathlength and solve time for Algorithm 4 are
denoted by Nvar, N̄?

iter, P̄
? and T̄ ?, respectively.

eters are then reconstructed locally by each worker (for n workers there
are n reconstructions at each parameter-iteration step). This requires pre-
cise control of each worker and can in rare cases lead to differing CPU
utilizations among workers due to differing episode lengths. Therefore,
they use a capping strategy on maximal episode length. Our proposed
method is less sophisticated with one synchronized parameter update,
which is then sent to all workers.

2.2.5 Numerical Experiments

This section highlights different aspects of Algorithm 4. For all experi-
ments, both continuous steering and velocity control are required. Through-
out, tolerances are set as (εd, εψ, εv) = (1, 10π/180, 10/3.6).

In Experiment 1, for the implementation of the two policy gradient
methods, Tensorflow (without GPU-support) was used. All experiments
were conducted on a laptop running Ubuntu 16.04 equipped with an

103

Figure 30: Experiment 1. The network controller trained by the TSHC
method solves the task in only 2.1 seconds, when terminating upon the first
solution found (no refinement step, no additional restart). Rectangular ve-
hicle dimensions are displayed. Blue and red ball and indicators visualize
z0 and zgoal.

Intel Core i7 CPU @2.80GHz×8, 15.6GB of memory, and using Python
2.7. For the implementation of Algorithm 4, the only libraries employed
are Python’s numpy and multiprocessing.

Experiment 1: Comparison with Policy Gradient Methods

To underline conceptual differences between TSHC and the two policy
gradient methods DDPG [253] and PPO [333], a freeform navigation task
with z0 = [0, 0, 0, 0] and zgoal = [20, 0, π/4, 0] was considered. The same
network architecture from [333] is used: a fully-connected MLP with two
hidden layers of 64 units before the output layer. Eventhough this is the
basic setup, considerable differences between DDPG, PPO and TSHC are
implied. First, both DDPG and PPO are each composed of a total of four
networks: one actor, one critic, one actor target and one critic target net-
work. For DDPG, further parameters result from batch normalization
[197]. The number of parameters Nvar that need to be identified are in-
dicated in Table 2. To enable a fair comparison, all of DPPG, PPO and
TSHC are permitted to train on 1000 full rollouts according to their meth-
ods, whereby each rollout lasts at most Tmax = 100 timesteps. Thus, for
TSHC, Nrestarts = 1 and n = 1000 are set. For both PPO and DDPG,
this implies 1000 iterations. The results are summarized in Figure 29 and
30. The following observations can be made. First, in comparison to
TSHC, for both DDPG and PPO significantly more parameters need to
be identified. Second, DDPG and PPO do not solve the task based on
1000 training simulations. In contrast, as Figure 29 demonstrates, TSHC

104

Figure 31: Experiment 2a. Learning 5 tasks. (Left) Problem formulation
with start (blue) and end (red) positions as well as headings. Start and
desired end velocities are zero. (Right) LSTM-solution after less than 150s
training time. Vehicle dimensions are displayed.

has a much better exploration strategy resulting from noise perturbations
in parameter space and also solves the task in just 2.1s. Finally, note that
no σpert-iteration is conducted. It is not applicable since a single task is
solved with an initial σmax

pert = 10. Because of these findings (other target
poses were also tested with qualitatively equivalent results) and above
discussion about the handling of sparse rewards for related RL work and
the fact that DDPG and PPO have no useful gradient direction for their
parameter update or may average these out through random minibatch
sampling, the focus in the subsequent sections is on TSHC and its analy-
sis.

Experiment 2: Zone Navigation without Obstacles

Various zone navigation experiments without obstacles are conducted.
Therefore, to eliminate the influence of the I-network park, NETWsI and
NETWs̃ here conincide.

For Experiment 2a, six different architectures (A1-A6) are compared.
Results are summarized in Table 3 and Figure 31. For A1 and A2, the
same architecture from [333] is considered: a fully-connected MLP with
two hidden layers of 64 units before the output layer. A1 and A2 solely
differ by the absence and inclusion of adaptive σpert according to Algo-
rithm 4. For A3 and A4, a single GRU- and LSTM-cell before the output
layer are considered, respectively. For A5, a fully-connected MLP with

105

Figure 32: Experiment 2b. The results for A2 as a function of different n are
displayed. The problem setup is as in Figure 31. For each n, five restarts are
conducted. For each restart, the iiter-loop is terminated upon the first solu-
tion found (no refinement step). The solid red line indicates the interpolated
lower bound on solve times. The fine red dashed line denotes the minimum
accumulated pathlength (146.6m) after Niter = 100 with refinement step.

two hidden layers of 10 and 9 units before the output layer is used, such
that approximately the same number of parameters as for A4 are identi-
fied. For A6, a MLP with four hidden layers of 64 units before the output
layer is considered. Several observations can be made. First, as the com-
parison of A1-A2 solve times shows, adaptive σpert is useful in providing
speedup. Due to adaptive σpert, the A6-network which is almost 3-times
larger than A1, can encode the five tasks 23.6% faster than A1, which
does not adapt σpert. Second, single GRU- and LSTM-cells as well as a
smaller MLP (A5) with few parameters can encode the tasks, too.

For Experiment 2b, the effect of n is analyzed for A2, see Figure 32. As
expected, solve times clearly increase with increasing n. However, solu-
tion quality (measured by total accumulated pathlength) is not affected
in the same manner. Suboptimal solutions typically include an unneces-
sary pathlength-prolonging circular turn before reaching a goal position.
Importantly, large n do not automatically imply best results. Often a
large spread in T ? and P ? over different restarts could be observed. This
underlines the importance of multiple restarts and refinement steps for

106

Figure 33: Experiment 2c. Learning 4 tasks. Start (green) and end (red) po-
sitions as well as headings are displayed. The latter are distributed symmet-
rically along a circle of radius 30m. Start and desired end velocities are zero.
The LSTM-solution (A4-architecture with Nvar = 166) after 435.8s trainings
time and N?

iter = 16 is visualized. Note that one task (with xgoal = −30) is
solved by driving reverse for some part. This is enabled by system modeling
according to Section 2.2.3. Since not conducting any restarts and refinement
steps, overall suboptimal (non-minimum accumulated pathlength) trajecto-
ries result.

optimized solutions.
For Experiment 2c, A4 (a single LSTM-cell before the output layer) is

used for the learning of 4 tasks with goal positions distributed symmet-
rically on a circle, see Figure 33.

For Experiment 2d, see Figure 34. The importance of conducting mul-
tiple restarts is underlined. Not always all tasks could be solved for every
restart.

Experiment 3: Navigation with an Obstacle

The following problem is addressed: overtaking of an obstacle if it exists,
and straight road following if there is none. Therefore, two tasks are
formulated: one with and one without any obstacle. A relative velocity

107

Figure 34: Experiment 2d. Learning 11 tasks. Architecture A2 is employed.
One out of three restarts solved all tasks within Nmax

iter = 100 for each restart
and n = 100. No refinement steps are conducted, which explains the asym-
metry of trajectories. The total training time was 620.1s.

difference between an ego and a lead car of 30km/h is assumed, and
z0 = [0, 0, 0, 30/3.6] and zgoal = [45, 0, 0, 30/3.6] are set. A front range-
view of 20m is selected such that late obstacle detection is simulated. A
rear range-view of 10m is assumed. The obstacle is located at x = 22.
Thus, it is initially not seen. Pixel resolution is set to 0.5m/pixel: 60 and
20 pixels over the entire range view length of 30m and width of 10m,
respectively. See also Figure 25.

First, NETWsI according Figure 26 is trained using FC-layers with 64
units for each of S-, I- and C-part, and additionally Γ = 1. Thus, input
dimensions are ns(1 + Γ) = 8 and nI(1 + Γ) = 80, and Nvar = 14146. A
typical learning result is displayed in Figure 35(a). This result was not
expected. While the minimum accumulated pathlength criterion theo-
retically guarantees a global optimum (by nonnegativity of pathlength
and a single obstacle guaranteeing trajectory feasibility), it turned out to
be very difficult to escape local optima. The trajectory solving the more
complex OA-task automatically also solves the simpler task without ob-

108

Figure 35: Experiment 3. For better illustration, obstacle avoidance and
road following task are separated into two subplots. [Figure continued on
the next page].

109

Figure 36: Experiment 3. [Continued from previous page].

110

stacle. Qualitatively identical behavior was observed when replacing
FC-layers by LSTM-cells. Note that when replacing both S- and I-part
by LSTM-cells, 58154 parameters need to be identified.

Therefore, an alternative two-step method was tested:

1. Solve each task isolatedly by Algorithm 4 (with sparse rewards), and
store the resulting trajectories as zref,jtask

t , ∀t = 0, . . . , T jtask , ∀jtask =

1, . . . , Ntasks.

2. Solve another RL-problem by Algorithm 4, now simultaneously
treating all tasks and using rich rewards according to (2.61), with
zref,jtask
t from Step 1 serving as references to obtain
rjtask
t , ∀t = 0, . . . , T jtask , ∀jtask = 1, . . . , Ntasks.

Variants are a) to also include controls as references in the rich reward
signal, and b) to not terminate the t-iteration upon exceeding T jtask , but
instead maintaining zref,jtask

T jtask
(l) as reference, ∀t > T jtask . This two-step

method appears appealing because it permits to first optimize each task
isolatedly to a desired performance. However, it has two caveats. First, it
requires to solve (Ntasks +1) RL-problems, which is time-consuming. Sec-
ond, the time-reference tracking over different tasks is difficult. As Fig-
ure 35(b) illustrates, both tasks are learnt, however, the second task trajec-
tory (when not encountering any obstacle) exhibits suboptimal wiggles.
The third and most important caveat is that it requires to set hyperpa-
rameters αl, ∀l, to trade-off different units (meters, radians, and m/s)
within the state vector. These were found to be very influential. For the
result in Figure 35(b), αl = 1 for l = 0, 1 and αl = 0 for l = 2, 3 are
set, thereby only considering x, y-coordinates, both measured in meters.
This setting, however, turned out to not be sufficient to solve tasks with
major steering actuation as illustrated in Figure 33. Conducting various
experiments with above method further consolidated our preference for
sparse reward signals. This is since for maximally sparse rewards, differ-
ent units within the state vector are irrelevant.

For a third method, the original tasks are reformulated by recalibrat-
ing (z0, z

goal)-combinations for the case with and without obstacle, see
Figure 35(c). For the second task, x0 = −20 and zgoal = 0 are set in regard

111

of the front range-view of 20m. After the (z0, z
goal)-resetting, the same

training technique from method M1 was applied (with Nvar = 14146).
Now, both tasks are learned, and the original problem formulated at the
beginning of this section is solved by resetting (z0, z

goal)-combinations
upon first obstacle detection.

Fourth, the influence of road bounds on learning progress was ana-
lyzed. In addition, any exploration trajectory is dismissed as soon vt < 0

or xt < 0. Figure 36(d) visualizes the effect for n = 1000 after iiter = 5.
Note that because of different velocities, the pixel-discretization resolu-
tion, and discretization of obstacle edges crashes are detected irregularly.
Because of the many crashes and consequent discarding as potential can-
didates for the next training iteration, it may (and frequently did) happen
that none of the n candidates can be used for a parameter update for cur-
rent iiter. Hence, learning progress is significantly hindered.

Fifth, motivated by the last observations, NETWs̃ was revised for the
problem. In fact, the problem can be solved by a) sequentially conduct-
ing a lane change, overtaking the obstacle in parallel, before conducting
a second lane change if there exists an obstacle, and b) just maintaining
the current lane in case there is no obstacle. Therefore, 4 training tasks
can be defined. The front range view horizon of 20m is used as reference
for the lane change, implying a lane-change upon the first possible ob-
stacle detection. Figure 36(e) illustrates the learning results. Note that
in general only 3 task formulations, or even only two when permitting
control mirroring, can be sufficient for problem solution.

Inverted Pendulum

The discussion of tolerance levels in Section 2.2.4 motivated to consider
an alternative method for tasks requiring stabilization. An analogy to op-
timal control is drawn. In linear finite horizon MPC, closed-loop stability
can be guaranteed through a terminal state constraint set which is invari-
ant for a terminal controller, often a linear quadratic regulator (LQR), see
[270]. In a RL setting, the following procedure was considered. First,
design a LQR for stabilization. Second, compute the region of attraction
of the LQR controller [353, Sect. 3.1.1]. Third, this region of attraction

112

can now be used as stopping criterion, replacing the heuristic ε-tolerance
selection.

For evaluation, the inverted pendulum system equations and param-
eters from [10] were adopted (four states, one input). However, in con-
trast to [10], which assumes just two discrete actions (maximum and
minimum actuation force), here a continuous control variable is assumed
which is limited by the two bounds, respectively. There are two basic
problems: stabilization in the upright position with initial state in the
same position, as well as a swing-up from the hanging position plus
consequent stabilization in the upright position. For the application of
TSHC, (Nrestarts, N

max
iter , n, T

max, β, σmax
pert) = (3, 100, 100, 500, 2, 10) are set,

and the A2-architecture is used. The following remarks can be made.
First, the swing-up plus stabilization task was solved in T ? = 43.5s run-
time of TSHC (without refinement step) and using sparse rewards (only
obtained in the upright position ±12◦). For all three restarts a valid so-
lution was generated. Note that Tmax = 500 in combination with a sam-
pling time [10] of 0.02s corresponds to 10s simulation time. Stabilization
in the upright position was achieved from 2.9s on. Rich reward signals
were also tested, exploiting the deviation from current to goal angle as
measure. However, they did not accelerate learning.

In another experiment, the objective was to simultaneously encode the
following two tasks in the network: stabilization in the upright position
with initial state in the same position, and a swing-up from the hang-
ing position plus consequent stabilization in the upright position. The
runtime of TSHC (without refinement step) was T ? = 264.4s, with 2 of
3 restarts returning a valid solution and using sparse rewards. Instead
of learning both tasks simultaneously according to TSHC, it was also at-
tempted to learn them by selecting one of the two tasks at random at
every iiter, and consequently conducting Steps 6-34. Since the two tasks
are quite different, this procedure could not encode a solution for both
tasks. This is mentioned to exemplify the importance of training simul-
taneously on separate tasks, rather than training on a single tasks with
(z0, z

goal) combinatons varying over iiter.

Finally, for system parameters [10], it was observed that the contin-

113

uous control signal was mostly operating at saturated actuation bounds
(switching in-between). This is mentioned for two reasons. First, afore-
mentioned LQR-strategy could therefore never be applied since LQR as-
sumes absence of state and input constraints. Second, it exemplifies the
ease of RL-workflow. A combination of network parametrization, TSHC,
and a discretization scheme (Euler or Runge-Kutta) enables quick non-
linear control design, even without system insights.

Discussion of Experiments and Summary of Findings

First, for automotive applications our preferred network architecture clearly
is NETWs̃. Training the alternative NETWsI has several disadvantages:
a much larger network sizes due to the I-part, slow learning progress in
constrained environments and the difficulty in shaping desired learning
results. In contrast, NETWs̃ permits fast learning due to perturbations
in the parameter space in combination with obstacle-free freeform nav-
igation tasks, which for sufficiently large Tmax naturally guarantee fea-
sibility of solution trajectories. Then, for obstacle avoidance, receding
horizon setpoint setting becomes crucial, using It as a filter to reset zgoal,
for example, upon predicted obstacle crash to account for vehicle dimen-
sions or for adaptation of vgoal based on, e.g., detected road surface.

Second, the employment of sparse rewards for training in combination
with virtual constraints in setpoint-proximity has several advantages. It
naturally avoids the need to introduce trade-off hyperparameters for the
weighting of states in different units. And, it permits a solution trajectory
between z0 and zgoal to naturally evolve without biasing it by provision
of a rich reference to track.

Third, several guidelines for the four key hyperparameters n, β,Nrestarts

andNmax
iter) were identified. Foremostly, the importance of multiple restarts

is highlighted. Second, n is the most influential hyperparameter. It was
found that huge n do not automatically translate to optimal solutions,
but always significantly prolong learning duration. For both learning
time and solution quality, it is recommended to start with small n in
combination with a higher Nmax

iter to enable multiple iterations over pa-
rameters, and to only incrementally increase n when not all tasks could

114

be solved. By β > 1 it can be controlled how much σpert is adapted
between two parameter iterations (the smaller the more conservative).
Testing β = 2 and β = 1.3, it was found that the more aggressive β = 2

always outperformed. In general, adaptive σpert was found to clearly im-
prove learning speed. Note that our logic for σpert adaptation differs from
[371, Alg. 5 and 6], where also adaptive σpert is used, however, based on
a stochastic gradient estimate.

Fourth, the discussion on ε-levels is also related to the decision on
system modeling in either the absolute or road-aligned coordinate sys-
tem. In contrast to the spatial-based LSV-MPC method from Section 2.1,
for the neural approach for two reasons the absolute coordinate frame-
work is clearly favored. First, in contrast to an online-solving approach,
spatial parameterization is now not needed for the avoidance of refer-
ence velocity-related issues [148]. This is since training tasks are encoded
offline. Second, the road-aligned coordinate framework is always created
online during road-following. It is thus much more difficult to train of-
fline for varying road shapes, rather than to train on setpoints in an ab-
solute coordinate frame.

2.2.6 Hierarchical Controller Parametrization

For single-vehicle motion planning by neural network control, the pre-
ferred control parametrization consists of three hierarchies as visualized
in Figure 37.

Figure 37: Hierarchical controller parametrization for the neural network
approach to motion planning of automated vehicles.

115

2.3 Multi-vehicle Motion Planning

This section summarizes [154]:

• M. Graf Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Multi-
automated vehicle coordination using decoupled prioritized path
planning for multi-lane one- and bi-directional traffic flow control,”
in IEEE Conference on Decision and Control, pp. 1582-1588, 2016.

A method for the coordination of multiple automated vehicles us-
ing priority schemes for decoupled motion planning for multi-lane one-
and bi-directional traffic flow control is presented. The focus is on tube-
like roads and non-zero velocities (no complete standstill maneuvers).
We assume inter-vehicular communication (car-2-car) and a centralized
or decentralized coordination service. We distinguish between differ-
ent driving modes including adaptive cruise control (ACC) and obstacle
avoidance (OA) for the handling of dynamic driving situations. We fur-
ther assume that any controllable vehicle is equipped with propriocep-
tive and exteroceptive sensors for environment perception within a par-
ticular range field. In case of failure of the inter-vehicle communication
system, the controllable vehicles can act as autonomous vehicles. The
motivation is the control of a) one-directional multi-lane roads available
for automated as well as unautomated objects with potentially, but not
necessarily, varying reference speeds, and b) bi-directional traffic flow
control making use of all available lanes, allowing, in general, object-
and direction-wise variable reference speeds. For the one-directional
case, we discuss a suitable deterministic priority scheme for through-
put maximization and quickly reaching of a platooning state. For the
bi-directional scenario, we derive a binary integer linear program (BILP)
for the assignment of lanes to one of the two road traversal directions
that can be solved optimally via linear programming (LP). The approach
is evaluated on three numerical simulation scenarios.

116

2.3.1 Introduction

With the advent of autonomous driving, a natural extension is the co-
ordination of multiple automated vehicles. Indeed, car-2-car and car-2-
infrastructure communication and subsequent real-time coordination is
perceived to be the main enabling technology for maximized road safety,
lane throughput, and congestion avoidance due to its anticipative nature
and potential for deterministic traffic flow planning [338]. Fundamen-
tal for intelligent transportation systems (ITS) is inter-vehicle commu-
nication (IVC) [323]; for two surveys on the topic, see [250] and [339].
Car-2-car communication for coordinated driving bears multiple techno-
logical challenges, not the least to satisfy stringent real-time constraints
[66], [30]. For the remainder, we assume car-2-car communication to be
available in combination with a coordination service, see Figure 38.

For the coordination of multi-robot systems, there exist two main ap-
proaches, centralized and decoupled motion planning [302]. The time com-
plexity for centralized approaches is exponential in the dimension of the
combined configuration space of all individual robots [45]; thereby mak-
ing it, in general, unsuitable for real-time robot motion coordination.
In contrast, decoupled methods trade off optimality and completeness
(they may fail to find a solution even if one exists) for computational ef-
ficiency. Here, a prioritized and decoupled method is employed. This
comprises a priority sequence for the motion planning of the vehicle: the
path of vehicle i is computed taking motion information of the priori-
tized previous i−1 vehicles into account. The avoidance of one or multi-
ple obstacles results, in general, in a non-convex combinatorial optimiza-
tion problem, since the set of possible safe trajectories around an obstacle
is combinatorial (passing it from left or right). A rigorous, but currently
untractable approach for real-time feasibility in automotive applications
is the formulation of mixed integer quadratic or linear programs [330].
One approach to tackle the traffic congestion issue is platooning, i.e., the
(longitudinal) coordination of multiple vehicles with small inter-vehicle
gaps as an application of cooperative adaptive cruise control (CAAC)
[170], [338]. The other main intelligent vehicle (IV)-based traffic manage-

117

Figure 38: Illustration of car-2-car communication and coordination of au-
tomated vehicles via a service. The service receives state information of a
group of vehicles located within a particular range field or segment of a
road, computes a priority scheme and corresponding reference trajectories
for each vehicle, before broadcasting. The service-computation may be con-
ducted locally by one of the vehicles, e.g., by a leader as indicated by the red
vehicle in a (wireless) self-organising vehicular ad hoc network (VANET),
or, by an independent entity such as a web-service. For a detailed survey on
inter-vehicle communication (IVC) systems, see [339].

ment approach is founded on self-organization performing maneuvers
locally in a cooperative fashion [26]. In most countries traffic is organized
laterally within speed lanes for more predictable movements of other ve-
hicles. However, some countries, e.g., India, allow unorganized traffic
where vehicles may travel anywhere inside road boundaries at arbitrary
traveling speed, resulting in higher traffic bandwidth and significantly
more overtaking [203]. In [202], elastic strips are used for the planning
of autonomous vehicles in nonlane based one-directional unorganized
traffic with absent speed limitations.

The presented method is intended to cover both organized and un-
organized traffic in a natural manner, differing only by inputting a dif-
ferent reference velocity, e.g., for passenger cars, trucks, scooters or auto
rickshaws, potentially depending on road speed limits or ground con-
stitution. In addition to one-directional traffic flow control with the two
distinct objectives of first, quickly reaching a platooning state, and sec-
ond, throughput maximization allowing different vehicles to travel at
variable reference velocities, we also discuss a method for traffic orga-
nization for the multi-lane bi-directional case. To the best of the authors’
knowledge this is the first approach of this type.

118

2.3.2 Cooperative Driving System

We assume that within a particular range field, in addition to uncontrol-
lable static or dynamic obstacles, there are multiple automated vehicles,
each one equipped with proprioceptive and exteroceptive sensors, a path
planning module, a reference tracking controller and an inter-vehicle
communication system. Then, at every sampling instant Ts, Algorithm 5
is executed by the cooperative driving system.

Algorithm 5: Multi-automated vehicle coordination
1 Automated vehicles state estimation:

- proprioceptive and exteroceptive state estimation.

- implemented by sensor fusion of map databases, sensor
measurements and dynamic vehicle models.

2 Communication:

- state estimation information sent to a coordination service.

3 Coordination service:

- computation of a priority scheme Π.

- usage of a path planning module and driving mode selector for
computation of constraints and reference trajectories for each of the
automated vehicles within the given range field.

4 Broadcasting:

- reference trajectory and constraint assignments to automated vehicles.

5 Automated vehicles tracking:

- tracking of assigned reference trajectories under consideration of
assigned constraints.

For the realization of cooperative driving, besides inter-vehicular com-
munication, the control system onboard an automated vehicle must at
least offer capabilities for: a) adaptive cruise control (ACC), b) path plan-
ning for multi-obstacle avoidance (OA), c) curved road-profile tracking
(RT) and d) controlled braking (Brake). In [155] we presented such a con-
trol method. Note that the objectives of ACC with its distance keeping
capabilities and OA with its characteristic approaching and overtaking

119

of objects are by definition conflicting. This motivated to distinguish be-
tween different driving modes including ACC, OA, RT and braking. For
all of the following we assume:

Assumption 1. Every automated vehicle can act autonomously and is equipped
with capabilities for ACC, OA, RT and controlled braking.

Randomized vs. Deterministic Priority Schemes

In [45], a method was presented to optimize priority schemes for decou-
pled prioritized path planning of a team of very slowly moving robots
in mostly map-known indoor office-like environments using a random-
ized search with hill-climbing to minimize overall path length. This work
was extended in [46] to a priori discard some priority sequences leading
to infeasibility. Our automotive application with intermediate to high ve-
locity range (30-130km/h) and tube-like roads differs significantly from
the aforementioned scenarios. Slow and approximately constant veloci-
ties allow for good predictability. With increasing dynamic behavior tra-
jectory predictions become complex and computationally expensive. In
combination with stringent real-time requirements, this motivated us to
focus on the design of deterministic priority schemes for both one- and
bi-directional traffic flow control.

One-directional Traffic Flow

Let a tube-like road be characterized by variable s denoting the distance
along the road centerline and ey the lateral position with respect to the
road centerline, see Figure 38. Space-varying road boundaries can be
described by emax

y (s) = 0.5ewy (s) and emin
y (s) = −0.5ewy (s), where ewy (s)

is the road width at position s. A nonlane road is described by just its
road boundaries. Let a subset of all states of automated vehicles i =

1, . . . , Nobj be denoted by ξi(t) = [si(t), ey,i(t), vi(t)], where si(t), ey,i(t)
and vi(t) are the center of gravity (CoG)-position along the road center-
line, ey,i(t) the lateral displacement and vi(t) the projected vehicle ve-
locity along the road centerline at time t ≥ 0, respectively. We define

120

ξij(t) = ξi(t) − ξj(t), and abbreviate dij(t) = si(t) − sj(t), ∆ey,ij(t) =

ey,i(t)− ey,j(t) and ∆vij(t) = vi(t)− vj(t).

Definition 1. Let a priority scheme denote a sorted list of N obj automated ve-
hicles, Π ∈ ZN

obj

++ , with Πi ∈ {1, . . . , N obj} such that Πi 6= Πj , ∀i, j =

1, . . . , N obj. The list is sorted such that the first element, Π1, has the highest
and ΠN obj the lowest priority order. The priority sequence implies that vehicle
Πi takes for its corridor and trajectory planning the reference trajectories of the
prioritized vehicles Π1 until Πi−1 into account.

Objective 1. We define the maximization of throughput by

min

∫ T

0

N obj∑

i=1

qi(t)(vi(t)− vref
i (t))2dt,

with T a time horizon, vref
i (t) a reference velocity for vehicle i and qi(t) a weight.

Objective 2. We define the objective of quickly reaching a platooning state as

min T (2.65a)

s.t. |dΠiΠj (T)− dref
ΠiΠj
| < εd, (2.65b)

|∆ey,ΠiΠj (T)−∆e
ref
y,ΠiΠj

| < ε∆ey , (2.65c)

|∆vΠiΠj (T)| < εv, (2.65d)

j = i+ 1, i, j ∈ {1, . . . , N obj}, (2.65e)

Π ∈ ZN
obj

++ , Πi 6= Πj , ∀i, j = 1, . . . , N obj, (2.65f)

where dref
ΠiΠj

and ∆e
ref
y,ΠiΠj

are desired reference distances between vehicles Πi

and Πj , and εd, ε∆ey and εv are positive and small. A typical choice may be a
constant dref > 0 such that dref

ΠiΠj
= dref and ∆e

ref
y,ΠiΠj

= 0.

Property 2. Let dΠiΠj (t) > dmin
ΠiΠj

(t), for Π ∈ ZN
obj

++ according to Definition 1
with Πi 6= Πj , j = i+1, ∀i, j = 1, . . . , N obj and ∀t such that sΠi(t) > sΠj (t),
where dmin

ΠiΠj
(t) denotes the minimal distance that ensures collision-free braking

is always possible when operating all vehicles autonomously. Then, selecting
Π according to descending s-coordinates guarantees collision-free safety when
operating all vehicles coordinatedly.

121

Proof. The set of operating multiple automated vehicles by controlling
each one of them autonomously is included in the set of operating mul-
tiple automated vehicles coordinatedly, which proves the property.

A relaxation of Property 2 is to additionally allow for OA-maneuvers
to maintain safety. An implications of Property 2 is that coordination of
automated vehicles allows to lower longitudinal safety distances dmin

ΠiΠj
(t).

The minimal communication delay between two vehicles Πi and Πj is at
least Ts. Suppose vehicle trajectories for non-braking and braking oper-
ation are known such that

sΠi(t) =





fΠi(t), ∀t < tb,

f bΠi(t− tb), ∀t ≥ tb,
sΠi(t̄Πi), ∀t ≥ t̄Πi ≥ tb,

sΠj (t) =





fΠj (t), ∀t < tb + pTs,

f bΠj (t− tb − pTs), ∀t ≥ tb + pTs,

sΠj (t̄Πj), ∀t ≥ t̄Πj ≥ tb + pTs,

for p ∈ Z++, and where tb denotes the time when vehicle Πi initializes
braking, and t̄Πi and t̄Πj indicating the times when reaching standstills
by vehicles Πi and Πj , respectively. Then, given vehicle states at time
t and a communication delay pTs, we can determine a lower bound on
dmin

ΠiΠj
(t) from dΠiΠj (t) = sΠi(t) − sΠj (t) > dmin

ΠiΠj
(t), ∀t. This is relevant

for the realization of any platooning objectives.
The control system for an automated vehicle under Assumption 1 is

capable of, in general, suboptimally (since a decoupled method is em-
ployed) realizing both Objectives 1 and 2. The distinction is made on the
switching-rule level. For throughput maximization, we constantly en-
courage OA-maneuvers, as long as there exists a free neighbor-lane gap
permitting these. For the platooning application, we enforce the ACC-
state. In contrast, to conservative autonomous driving, we here allow
vehicles to temporarily accelerate. Once the platooning state is reached,
we additionally coordinate vehicles to follow varying ey-trajectories of
the leading vehicle (ey-reference tracking). In both cases, the cooperative
nature allows for small safety margins.

122

Remark 5. A desired ordering of vehicles i = 1, . . . , N obj within a platoon can
be achieved by the selection of reference velocities vref

i , ∀i = 1, . . . , N obj, and
the switching between one of the Objectives 1 and 2 over subsequent sampling
times. This is relevant for formation driving, not only on-road but also off-road
along virtual reference centerlines.

Algorithm 6: One-directional traffic flow, @every Ts do:

1 Within a road segment of interest including Nobj automated vehicles, select
temporary priority scheme Π′ according to descending s-coordinates.

2 for each vehicle i ∈ Π′ do
3 if there exists a deviation of priority of vehicle i from Π′ and Π (from the last

sampling time) with another automated vehicle j then
4 if |si − sj | > s

safety
OA then

5 Swap priorities of i and j within Π.

6 Tuning 1: select vref
i , ∀i = 1, . . . , Nobj.

7 Tuning 2: select one of the two objectives:
- throughput maximization,

- quickly reaching of a platooning state.

8 for each vehicle Πi, i = 1, . . . , N obj do
9 Take the already computed reference trajectories of vehicles

Π1, . . . ,Πi−1 in the following computations [155] into account:

- velocity-adjusted object mapping to the corridor,

- driving mode selection,

- corridor planning using the geometric path planner.

10 Obtain reference trajectories, constraints and weighting matrices for
vehicle Πi such that processable by the controller onboard the
vehicle.

Algorithm 6 summarizes the findings and is executed as Step 3 of Al-
gorithm 5 for one-directional traffic flow control. Value ssafety

OA (e.g., 30m)
represents an arbitrary safety parameter to change priorities only after
full completion of an OA-maneuver. Notice that for the one-directional
traffic flow case, we allow a nonlane road to maximally exploit varying
vehicle dimensions and agility capabilities.

Ultimately, note that for the realization of Objectives 1 and 2, in a

123

wireless VANET there is not necessarily a need for a coordinating entity.
The priority scheme according Algorithm 6 can be assigned in a fully dis-
tributed manner. Important is solely the passing of information within
the network. Since by Assumption 1 every vehicle Πi, ∀i = 1, . . . , Nobj,
can also act autonomously, it can check its priority by awareness of the
other Nobj − 1 automated vehicles and individually compute its cor-
ridor path considering the reference trajectories of prioritized vehicles
Π1, . . . ,Πi−1. However, if we additionally seek to reach a particular or-
dering of vehicles according to Remark 5, a coordinating entity becomes
necessary for the assignment of reference velocities and switching be-
tween throughput maximization and platooning objectives.

Bi-directional Traffic Flow

We refer to a tube-like road as bi-directional if its traversal is admissible
with heading direction towards positive as well as negative s. Let the two
traversal directions be denoted by h = 1 (facing s > 0) and h = 2 (facing
s < 0), respectively. Let the heading direction of vehicles i = 1, . . . , Nobj

be denoted by hi(t). We assume that vehicles maintain their traversal
direction, i.e., hi(t) = hi(0) = hi, 0 ≤ t ≤ T , where T denotes the time
horizon, and define the velocity sign as vi > 0 if hi = 1 and vi < 0

for h = 2. Let the set of vehicles within the road segment of interest
be denoted by N obj = {1, . . . , Nobj}. We further define N obj,1 = {i ∈
N : hi = 1} and N obj,2 = {i ∈ N : hi = 2}. Let priority schemes Π1

and Π2 correspond to i ∈ N obj,1 and i ∈ N obj,2. Let a bi-directional traffic
flow conflict be defined as a vehicle constellation in which a head-to-head
collision between at least two vehicles i ∈ N obj,1 and j ∈ N obj,2 becomes
unavoidable if not conducting an OA-maneuver for at least one of i and
j. We initialize t = 0 at the time of detection of a bi-directional traffic
flow conflict. Let the centerline of lanes m ∈ N lanes = {1, . . . , N lanes} be
denoted by emy (s) ∈ [−0.5ewy (s), 0.5ewy (s)]. For uniform lane-widths we

have emy (s) = −0.5ewy (s) + (0.5 + m − 1)
ewy (s)

N lanes . For the resolution of a
bi-directional traffic flow conflict we assume space-invariant centerline
levels and thus write emy (s) = emy .

124

Remark 6. Let there be N obj automated vehicles and N lanes lanes of uniform
width and |vi(t)| > 0, ∀t, ∀i ∈ N obj within a particular road segment. Suppose
Π1 and Π2 are determined separately for i ∈ N obj,1 and i ∈ N obj,2, respectively.
Then, collision-free bi-directional traffic flow can, in general, not be guaranteed
by solely concatenating Π1 and Π2 as Π = [Π1, Π2] or Π = [Π2, Π1]. This
can easily be seen from a counterexample. Suppose for N lanes ≤ N obj − 1 there
are vehicles i = 1, . . . , N lanes with hi = 1, si(t) = s(t), ey,i(t) = emy , m =

1, . . . , N lanes, ∀t and uniform vi(t) = v, such that because of the non-zero
velocity operation assumption a vehicle j ∈ N obj,2 cannot collision-free pass
unless at least one of the vehicles i = 1, . . . , N lanes makes space by performing
a braking- and/or OA-maneuver. Then, by Definition 1, setting Π = [Π1, Π2]
guarantess a head-to-head collision.

Remark 6 implies that for the resolution of a bi-directional traffic flow
conflict, a collision-free coordination can, in general, only be achieved by
either threading of vehicles from both directions, or, by the assignment of
lanes to each heading direction. For a threading-approach in the context
of quadrocopters using a sequential convex programming, see [14].

In contrast, we focus on the second solution approach and assume
there are N lanes of uniform width, ewy (s)

N lanes , that can be traversed by any
vehicle i = 1, . . . , Nobj. For the assignment of each lane to exactly one of
two heading directions, we formulate the following binary integer linear
program (BILP):

min
uhmn

2∑

h=1

N lanes∑

m=1

N lanes∑

n=1

chmnu
h
mn (2.66a)

s.t.
N lanes∑

n=1

uhmn = 1, ∀m = 1, . . . , N lanes, ∀h = 1, 2, (2.66b)

uhmn + uh̃mn = 1, ∀m,n = 1, . . . , N lanes,

∀h ∈ {1, 2}, h̃ ∈ {1, 2}\h, (2.66c)

uhmn ∈ {0, 1}, ∀m,n = 1, . . . , N lanes, ∀h ∈ {1, 2}, (2.66d)

where m,n ∈ {1, . . . , N lanes} denote a lane-number. Cost coefficients chmn
are discussed below. Integer variable uhmn = 1 signals automated vehi-
cles currently driving on lane m in direction h are assigned to change

125

lane to lane number n. Correspondingly, uhmn = 0 prohibits the same
lane change. Constraint (2.66b) indicates that all cars currently on lanem
with heading h will transfer to exactly one other lane n ∈ {1, . . . , N lanes}.
An alternative would be the admittance of each object individually trans-
fering to any other lane (threading). By (2.66b) there is at least one lane
assigned to each traversal direction. Constraints (2.66b) are further moti-
vated by the cooperative problem nature; the lane transition can be con-
ducted in parallel with all vehicles commencing the lane change simulta-
neously. Constraints (2.66c) are to assign every lane to exactly one of the
two traversal directions. Constraints (2.66d) ensure optimization vari-
ables uhmn to be binary.

Proposition 6. The solution of the LP-relaxation of BILP (2.66), formulated
for the assignment of any number of lanes, N lanes ∈ Z++, to exactly one of two
heading directions, h ∈ {1, 2}, is integer feasible, and thus solves (2.66) as well.

Proof. We can easily summarize (2.66) as min{cTx : Ax = 1, xl ∈ {0, 1},
∀l = 1, . . . , 2N lanesN lanes}. Its LP-relaxation reads min{cTx : Ax = 1, x ≥
0}. By [332], if Ã is totally unimodular, the LP min{c̃Tx̃ : Ãx̃ = b̃, x̃ ∈ Rn+}
has an integral optimal solution for all integer vectors b̃ for which it
has a finite optimal value. It thus remains to show that A associated
with the LP-relaxation of (2.66) is totally unimodular. By [180], a ma-
trix A is totally unimodular if: (i) each entry is 0, 1 or −1; (ii) each
column contains at most two non-zeros; (iii) the set N or row indices
of A can be partitioned into N1 ∪ N2 such that in each column l with
two non-zeros we have

∑
m1∈N1

am1l =
∑
m2∈N2

am2l. Condition (i) is
trivially true from (2.66b) and (2.66c). Regarding (ii), for every column
l = (m − 1)N lanes + n + (h − 1)N lanesN lanes, m, n ∈ N lanes, h ∈ {1, 2},
there is

∑N lanes

n=1 uhmn = 1 and uhmn + u
˜
h
mn = 1, which implies that per

column of A there are exactly two nonzero coefficients, which are here
equal to 1. For (iii), we partition as N1 = {1, . . . , 2N lanes} and N2 =
{2N lanes+1, . . . , 2N lanes+N lanesN lanes}. Then

∑
m1∈N1

am1l = 1 by (2.66b)
and

∑
m2∈N2

am2l = 1 by (2.66c) using the previous argument that per
column l there are exactly two nonzero coefficients, both equal to 1. This
concludes the proof.

By Proposition 6 it is thus possible to solve (2.66) efficiently as a LP
with 2N lanesN lanes variables and 2N lanes+N lanesN lanes equality constraints,

126

which makes the approach suitable for real-time implementation. Re-
maining is the discussion of chmn in (2.66a), the cost for transitioning from
lanem to nwith direction h. Denoting the number of automated vehicles
on lane m facing direction h by Nh

m, one option for the cost cefficients is
chmn = Nh

m · |n−m|, ∀m,n = 1, . . . , N lanes, ∀h = 1, 2, which assigns a cost
1 per object requiring a lane change and additionally employs the term
|n −m| to penalize multiple lane-skipping changes. A second option is
motivated as follows. We define sm,hi? = {si?(0) : i ∈ N obj,h, si?(0) =

max
i
{si(0)} if h = 1 and si?(0) = min

i
{si(0)} if h = 2, |ey,i(0) − emy | < ε}

with ε > 0 and small, and the corresponding velocity vm,hi? = vi?(0).
From setting sm,hi? + ∆thmnv

m,h
i? = sn,h̃j? + ∆thmnv

n,h̃
j? , we compute ∆thmn =

sn,h̃
j?
−sm,h

i?

vm,h
i?
−vn,h̃

j?

and set arbitrarily a high ∆thmn = 100 if there does not exist

any vehicle on one or both of lanes m and n. We do not set ∆thmn =∞ to
still distinguish between multi-lane skipping. Thus, a second option is

chmn =
1

min
ñ
{∆thmñ}

|n−m|, (2.67)

with ñ ∈ {m + 1, . . . , n} if n > m, and ñ ∈ {m − 1, . . . , n} if n < m.
The interpretation is that we penalize the inverse approximate time until
a crash frontal between the first car of originally lane m, facing direc-
tion h and now transfering to lane n, with the time-closest vehicle facing
the counterdirection h̃ on any of the lanes ñ between m and n. The time
is approximate since we assume an immediate lane change not model-
ing actual transient times for the lane change and variations in speed
throughout the lane change. Combining the two options, we define

chmn =


Nh

m + µ
1

min
ñ
{∆thmñ}


 · |n−m|, (2.68)

with trade-off parameter µ. Small µ encourage only very few objects to
change their lane but may situation-dependent invoke dangerous multi-
lane skipping. In contrast, a high µ is more safety-oriented but may re-
quire lane changes by a majority of vehicles. Algorithm 7 summarizes

127

Algorithm 7: Bi-directional traffic flow, @every Ts do:
1 Order the automated vehicles according traversal direction into two

groups,N obj,1 andN obj,2.
2 For each direction h ∈ {1, 2}, conduct Steps 1 to 5 of Algorithm 6 to obtain

Πh, whereby for h = 1 and h = 2 the sorting is conducted according to
descending and ascending s-coordinates, respectively.

3 Select chmn according (2.67).
4 Solve the LP-relaxation of (2.66) for the assignment of N lanes to exactly one

of two traveling directions, h ∈ {1, 2}.
5 for each h = 1, 2 do
6 for m = 1, . . . , N lanes do
7 find n? = {n ∈ N lanes : uhmn = 1}.
8 for all {i ∈ N obj,h : |ey,i(0)− emy | < ε} do
9 eref

y,i = en
?

y .

10 Concatenate the updated Π1 and Π2 to Π.
11 Conduct Steps 6 to 10 of Algorithm 6 using Π, whereby using the updated

references on eref
y,i, ∀i = 1, . . . , Nobj.

12 Store the solution as the current solution.
13 if maxIter > 1 then
14 initialize µ = 0.
15 for iter = 1, . . . ,maxIter do
16 Select chmn according (2.68) and conduct Steps 4:11.
17 Check resulting trajectories for feasibility:
18 If they are feasible, update this solution as the current solution and

exit. Otherwise, increase µ.

19 Return the current solution.

128

Table 4: Average computation times τ̄ in milliseconds. For bi-directional
traffic flow, the computation times for solving the LP-relaxation of (2.66) via
MATLAB’s linprog and, alternatively, for solving the BILP (2.66) directly
by enumeration are denoted by τ̄linprog and τ̄lp,enum, respectively. For com-
parison, we state τ̄corridor for the solution of the corridor planning problem.
Regarding the LSV-MPC problem, τ̄qp,build includes linearization, discretiza-
tion and building of the QPs. The average computation times using MAT-
LAB’s quadprog for the solution of the QPs are denoted by τ̄quadprog. The
platooning and throughput maximization objectives are abbreviated by (P)
and (TM), respectively. The average velocity-dependent spatial-based pre-
diction horizon is N̄ . Times τ̄corridor, τ̄qp,build, τ̄quadprog and N̄ are for each
experiment further averaged over all five automated vehicles.

Figure 39 (P) Figure 39 (TM) Figure 40
τ̄linprog - - 6.1
τ̄lp,enum - - 0.1
τ̄corridor 0.9 0.6 1.3
τ̄qp,build 17.1 13.7 15.5
τ̄quadprog 78.9 41.4 48.5
N̄ 38 33 36

the findings and is executed as Step 3 of Algorithm 5 for bi-directional
traffic flow control. Steps 13 until 18 are optional to better account for
the aforementioned trade-off. The design parameter maxIter ∈ Z+ de-
notes the maximum number of µ-iterations. A simple feasibility check is√
dij(t)2 + ∆ey,ij(t)2 > lmin, ∀i, j ∈ N obj, i 6= j, ∀t, ensuring a minimum

safety distance lmin between vehicles. Step 10 of Algorithm 7 makes the
assumption that all lane changes, as assigned by the solution of (2.66),
will be completed before the crossing of vehicles along the road centerline
coordinate. This makes the exact merging technique less of an issue and
our preferred method is thus concatenation.

Finally, we point out the suitability of the BILP-formulation in com-
bination with our controller described in [155]. By the assignment of
reference set points on state ey corresponding to any of the respective
lane centerlines, the optimized lane assignment from (2.66) can easily
be realized. This is because of the control design implemented entirely

129

spatial-based in a road-aligned coordinate system. In general, for the re-
alization of the lane changes multiple driving mode activations such as
braking, OA and ACC are required.

The solution of the LP-relaxation of (2.66) can be computed either lo-
cally by one of the vehicles (car with most computational power acting
as service) within the VANET, or by an independent entity, e.g., a web-
based coordination service.

2.3.3 Numerical Simulations

For all three numerical simulations we assumed a challenging inter-vehicle
communication range of only 100m. All automated vehicles are described
by a nonlinear dynamic bicycle model with throttle, brakepedal position
and steering as control inputs, see [155]. For the control of each auto-
mated vehicle, we use the framework from the aforementioned reference.
The coordination of multiple vehicles then follows Algorithms 5, 6 and 7.
Computation times are summarized in Table 4. For comparison, we also
state times for the solution of the corridor planning and the LSV-MPC
problem. All simulations are conducted on a laptop running Ubuntu
14.04 equipped with an Intel Core i7 CPU @2.80GHz×8, 15.6GB of mem-
ory, and using MATLAB 8.6 (R2015b). For visualization of the dynam-
ics, animated simulations of the experiments are available at http://
dysco.imtlucca.it/mogens/sim_coordinated_driving.htm.

One-directional Traffic Flow

Figure 39 illustrates the results of a one-directional traffic flow simula-
tion. We compare two scenarios. First, given the starting states of all
vehicles as indicated in Figure 39 we aim at quickly reaching a platoon
adapted in velocity to the vehicle most advanced along the road cen-
terline. In the second scenario, we seek throughput maximization by
allowing all vehicles to travel at their reference velocities and therefore
encourage overtaking in case of available free neighbor-lane gaps.

130

http://dysco.imtlucca.it/mogens/sim_coordinated_driving.htm
http://dysco.imtlucca.it/mogens/sim_coordinated_driving.htm

Figure 39: (a) Starting positions of five automated vehicles. The num-
bers close to the vehicle indicate their initial velocity in km/h. The color
is an identifier of each vehicle. (b) Platoon driving, or coordinated adaptive
cruise control–CAAC, from the perspective of the red vehicle at the last time
step. The light green area indicates the range field centered around the red
vehicle. The blue circles indicate the predicted reference trajectory of the
red vehicle. (c) Trajectories of all five automated vehicles for the reaching
of a platoon formation. The crosses indicate the starting and the circles the
ending positions after a simulation time of 30s. (d) Trajectories of all five
automated vehicles when the global objective is throughput maximization.
The final position coordinates of all cars are naturally more advanced along
the road centerline in comparison to the platoon driving scenario.

Bi-directional Traffic Flow

The results of an experiment for a bi-directional traffic flow conflict are
visualized in Figure 40. Without a vehicle coordination, a head-to-head
collision will become unavoidable on both of the two available lanes. Ta-
ble 4 indicates that, for the given two-lane case, solving (2.66) directly by
enumeration is more efficient than solving its LP-relaxation. Ultimately,
for cooperative driving in case of bi-directional traffic flow, a mapping
between two road-aligned coordinate systems for both heading direc-
tions is required.

131

Figure 40: (a) Starting position of three automated vehicles heading as in-
dicated by the arrow. The numbers close to the vehicle indicate their initial
velocity in km/h. (b) Starting positions of two other automated vehicles
heading in the opposite direction, as signaled by the arrow. (c) Trajecto-
ries of all of the five automated vehicles for the solution of the given bi-
directional traffic flow conflict. The crosses indicate the starting positions
and the circles denote the ending position after a simulation time of 30s. (d)
Display of the time instance shortly after all five vehicles have performed
the lane change as assigned by the coordination service. The blue circles
indicate the predicted reference trajectory of the green vehicle.

2.3.4 Hierarchical Controller Parametrization

The hierarchical controller parametrization for multi-vehicle motion plan-
ning is summarized by Figure 38 and Algorithm 5.

132

2.4 Discussion and Conclusion of Chapter

Summary

In this chapter, it was distinguished between two major topics: single-
and multi-vehicle motion planning. For the former topic, it was further
differentiated between motion planning by a) MPC and b) neural net-
works, respectively. For multi-vehicle motion planning, a method for
single-vehicle motion planning is a prerequisite, before a multi-vehicle
coordination layer is added.

For the MPC approach, findings can be summarized as follows.

1. For single-vehicle motion planning by MPC, a spatial system para-
metrization is preferred over a more standard time parametrization.
It was discussed how a spatial parametrization is ideal for naviga-
tion in static and quasi-static obstacle settings. In these scenarios, a
time-parameterized LTV-MPC formulation may already easily fail,
in particular, when reference velocities are not selected carefully.

2. For general motion planning, a LSV-MPC formulation is required
to sufficiently capture system nonlinearities. A space-invariant sys-
tem model is not sufficient. This has important implications. First,
theory for linear MPC can only limitedly be applied. Second, on-
line linearization and discretization become necessary. Then, es-
pecially for higher dimensional models (such as dynamic instead
of kinematic vehicle models), the corresponding online computa-
tional burden to “build” QPs or LPs is also not negligible, and adds
to the computiational burden to solve QPs or LPs online.

3. With regard of the fundametal MPC-formulation setup, the LP-
based approach in [148] is clearly preferable over the QP-based
approach of [155]. This is for two main reasons. First, the min-
max objective in the LP-formulation in combination with driving
corridor constraints naturally circumvents the need for objective
function tuning weights, which are characteristic and influential
for a more standard QP-based reference tracking MPC formulation.

133

Thus, for the LP-minmax approach, references are only needed for
linearization and discretization, but not for a reference tracking ob-
jective. Second, a minmax objective on absolute steering angles and
differences thereof naturally increases safety. This is since mini-
mized steering actuation implies lower path curvature, and thereby
naturally also a higher admissible vehicle velocity that still permits
vehicle operation within tire friction limits.

4. A sequential LP (SLP) approach is preferred. This is for two rea-
sons. For the spatial prediction horizon and as a function of path
curvature, the solution of the first LSV-MPC problem can be used
to compute maximum admissible velocities permitting operation
within vehicle tire friction limits (assuming a friction circle model
with coefficient µ). Then, these velocity bounds can be added as
maximum velocity constraints to the second LSV-MPC problem for
velocity control refinement. The second reason is that for maneu-
vering in tight spaces, where large steering actuation is required,
transition dynamics and vehicle dimension constraints are strongly
dependent on underlying references used for linearization and dis-
cretization. Here, sequential iterations can help to refine solutions.

The neural network approach can be summarized as follows. First,
within the context of automated vehicles, a method for the design of
model-based feedforward controllers parameterized by deep neural net-
works was presented. Second, for this method, a suitable closed-loop ar-
chitecture was identified, and a simple gradient-free reinforcement learn-
ing algorithm labeled TSHC was developed for the identification of net-
work parameters. The concept of a) training on separate tasks with the
purpose of encoding motion primitives within the network, and b) em-
ploying sparse rewards in combinations with virtual actuator constraints
on velocity in setpoint proximity were specifically advocated. Third, the
presented method is not limited to automated driving. Most real-world
learning applications for control systems, especially in robotics, are char-
acterized by a) sparse rewards, and b) the availability of high-fidelity
system models that can be leveraged for offline training.

134

More remarks on motion planning by MPC are made.

1. As stated at the beginning of Section 2.1, only QPs and LPs were
considered as candidate parametrizations for MPC. In this thesis,
QP- or LP-solvers were not discussed. This would be subject of next
work. Since LPs are preferred for motion planning by MPC, natural
starting points are a) the Simplex Method [290] and b) warmstarting.

2. While MPC is famous for its ability to incorporate system con-
straints in a systematic way, it has several disadvantages. These
include that linearization and discretization must be conducted on-
line and importantly space-varyingly over the prediction horizon.
As illustrated, this results in a) non-negligible computational bur-
den, and b) in an approximation of the original nonlinear dynam-
ics. While the linearization step is a linear mapping for each sam-
pling space, the discretization step is a linear mapping only for a
kinematic bicycle model. In contrast, for dynamic vehicle models it
requires the evaluation of matrix exponentials (for exact discretiza-
tion). Other disadvantages are the need to select hyperparameters,
in particular, to design the relation between system sampling time
Ts, prediction horizon N , and sampling space Ds, as well as state
constraints (in particular, on ey). These design steps also influ-
ence computational burden and the degree of approximations of
the original nonlinear system. In short, MPC design requires a sig-
nificant amount of trade-offs and approximations.

3. While a time-parameterized LTV-MPC formulation is problematic
because of its dependence on reference velocities, the preferred
space-parameterized LSV-MPC formulation is dependent on the
reference path. This is since all states and controls are expressed
uniquely along spatial coordinate s along the reference path (the
road centerline). Thus, for general motion planning with signifi-
cant steering, sequential programming (SP) iterations will always be
required (since there cannot exist, e.g., two ey,j for the same sj).
This holds for any NMPC solution method. Thus, even when solv-
ing the motion planning problem by another nonlinear programming

135

method (i.e., a method different from SLP), sequential iterations
will still be required to iterate over the reference path.

4. For simple road centerline tracking applications (e.g., on highways
or country roads), aforementioned sequential programming appr-
oach is not necessarily required. However, for tight maneuvering
it is. In this perspective, different control methods could be em-
ployed for different velocity ranges. This, however, is in general
undesirable, since it requires to design switching rules, and thereby
adds to aforementioned trade-offs and approximations for MPC.

5. A real-time optimization-approach such as MPC (or also RRTs [242])
is most suitable when planning over a large spatial horizon and
for scenarios that are difficult to pre-train offline. An example is
visualized in Figure 41, where anticipative steering accounts for
the entire and given scenario-specific multi-obstacle configuration
space. Another example is trajectory planning over multiple curves.
However, computational complexity increases with increasing op-
timization horizons. In addition, a dynamic environment with dy-
namic obstacles requires frequent resetting of setpoints in vehicle-
proximity and in general does not permit to plan over a large hori-
zon (e.g., over multiple curves or obstacles). Therefore, in dynamic
environments, the neural approach with encoded motion primi-
tives may be more suitable and also safer when a) trained offline
on a high-fidelity vehicle model, and b) employed online in combi-
nation with a suitable recursive setpoint selector.

Future Work

The last comment may be the starting point of future work based on
the TSHC-algorithm from [142]. Large-scale simulation experiments are
sought. Therefore, the next steps include a) vehicle model selection, b)
training task setup with motion primitives selection, and c) neural net-
work parametrization. Furthermore, it may be considered to extend the

136

Figure 41: Example from [156], when motion planning over a large spa-
tial horizon and for the entire (static) multi-obstacle configuration space.
According to the optimization problem formulation, obstacles are avoided
tightly. In practice, small safety margins may be added to obstacle contours.

state space with time t to permit time scheduling along waypoints simi-
lar to the method from [148].

Recursive setpoint selections must be conducted in real-time. There-
fore, an algorithm that recursively updates setpoints as a result of colli-
sion checks, obstacle corners, road centerline, obstacle free areas and the
like must be developed. An important testbed are parking applications,
which additionally involve the switching between forward and back-
ward motion. A future setpoint selection algorithm may be founded on
the graph-based geometric corridor planner from Section 2.1.14, which
is fast, can handle non-convex problems, offers an appropriate (for min-
imized steering) accumulated least-heading varying optimization crite-
rion, and permits to derive worst-case search complexities.

Future work on multi-vehicle motion coordination may address the
question of how to adapt priorities to quickly reach a specific desired
ordering or formation of a vehicle group. Formations may also include
lateral displacements between vehicles. The basic framework from [154]
using decoupled prioritized path planning can be maintained. Each au-
tomated vehicle may also be controlled by a neural network controller.

137

Chapter 3

Vehicle Routing

Agriculture is considerd as a logistics case study for vehicle routing. De-
veloped concepts are, with some modifications, transferable to, for ex-
ample, public transport routing or for robot taxi dispatch.

3.1 Path Planning for Area Coverage

This section summarizes [146]:

• M. Graf Plessen, “Path planning for area coverage,” WO Patent App.
PCT/EP2016/072966, June 8 2017.

A general framework and three specific algorithms for plath planning for
area coverage are developed.

3.1.1 Introduction

For the coverage of an agricultural field (or work area in general), paths
for various vehicles of different working widths and scope have to be de-
vised. By adequate selection of field coverage paths, efficiency with re-
spect to time, energy and utility of available area can be increased. Time
is important, in particular, during harvest due to changing weather con-
ditions and the subsequent availability of only a limited number of har-
vesting hours. Energy savings (usually Diesel) and likewise the reduc-

138

tion of operating hours and wear of the vehicle are of interest not only
for cost reduction, but also for environmental reasons and regulatory ex-
haust emission standards. Furthermore, by appropriate selection of field
coverage paths, the area repressed by the tractor lanes can be minimized
and thus reducing crop damage. This also implies the maximization of
area available for planting and subsequently monetary gain.

Throughout a work-cycle, a field may be ploughed, sowed or planted,
fertilized, sprayed and harvested. In general, operating widths vary.
However, some operations are conducted multiple times in a repetitive
manner and using the same operating width such as, e.g., 36m. This
implies the possibility of using a particular created path plan repeatedly.

In nature, field contours are often irregularly shaped and include
non-plantable islands prohibited from trespassing (trees, power line poles
or masts and the like). Especially then, it is not obvious how to efficiently
plan paths for complete field coverage. Working sequentially lane-by-
lane has the advantage of being intuitive, simple to implement and en-
abling to visually accurately detect and control the area already worked,
for example, during ploughing, and thus avoiding overlapping. More
efficient field coverage and path planning techniques can be developed,
that do not necessarily require sequential lane-by-lane operations. By
the advent of modern sensor and actuation technologies, these alterna-
tive more efficient field coverage path plans can be realized, and may
even be executed by an autonomous agricultural machinery.

3.1.2 Algorithms

Graph Theoretical Background

The presented methods make use of graph theory. For background, see
[64]. A graph is composed of a set of vertices (also called nodes) and a
set of edges. With every edge a nonnegative weight is associated. Here,
this weight may be represented by the path length of the edge. Graphs
are used to model transitions between particular location positions, also
called nodes, along predefined route segments, also called edges, and
here also referred to as lane-segments or simply lanes. Nodes are here

139

also referred to as cross-points and defined by connecting edges. For ex-
ample, we define lane-segment a-b as an edge or a direct path connecting
two cross-points or nodes a and b. The term transition graph is therefore
used. An undirected graph (in contrast to a directed graph) is composed of
bidirectional edges, i.e., of edges that may be traversed from either side.
A graph is connected if it contains a path between any pair of vertices,
where a path is defined as a sequence of edges, or, in other words, a se-
quence of pairwise adjacent vertices whose edges connect two vertices.
An undirected connected transition graph is here denoted by T . The de-
gree of a vertex v in T is the number of edges of T incident with v. For
illustration, see node F6 in Figure 42 which has degree 3, or, more gener-
ally speaking, odd-degree since there is an odd number of edges (here 3)
incident. In contrast, the start-node 0, see F8, is even-degree with 2 edges
incident. A tour of T is a closed walk that traverses each edge of T at least
once. A graph is Eulerian if there exists a closed traversal using all edges
exactly once. If a graph is undirected, necessary and sufficient conditions
for a graph being Eulerian are that the graph must be connected and all
vertices must be even degree, see [82]. A connected undirected graph T
can be made Eulerian by the augmentation of T , i.e., by replicating (also
called duplicating) some edges of T until the resulting T ∗ is an Eulerian
graph. A connected undirected graph T always has an even number
of odd-degree vertices, see [101]. Therefore, for a connected undirected
graph T the augmentation can be accomplished by solving a matching
problem, i.e., duplicating edges (and their corresponding weights) to link
odd-degree vertices. Usually, but not necessarily, the augmentation is
conducted in a least-cost manner, i.e., finding odd-degree vertex-pairings
such that the sum of the weights of the corresponding connecting edges
is minimal, see [82]. Assuming an Eulerian graph T ∗, an Eulerian cycle
(also called Eulerian tour) describes a tour which traverses each edge of
T ∗ exactly once. An Eulerian cycle in an undirected Eulerian graph T ∗

can be determined by, for example, the End-Pairing algorithm [101]. The
total path length of the Eulerian cycle is then the sum of all edges of T ∗.
In the following, for brevity, it is referred to closed areas around trees,
stones, pools, power line poles, masts or similar areas and obstacles not

140

suited for planting and prohibited from trespassing by agricultural ma-
chines as tree-islands or islands.

Within this description, the term 180◦-turn is repeatedly occurring.
Thereby is meant a cross-point sequence of a-b-a, where a and b are
neighboring or connected cross-points according to the underlying tran-
sition graph. It is here emphasized that the term 180◦-turn explicitly
refers to the direction of the vehicle or machinery movement. Thus, it
can, but does not necessarily have to, imply a turning maneuver of the
vehicle, but likewise may suggest a back-forth movement, i.e., driving
forward along edge a-b and reverse on b-a.

Here, “online” means that results of the method are used on the area,
i.e., with the agricultural machinery moving. “Offline” means that the
machinery is not moving and/or the method is performed outside of the
machinery and not yet interacting with the machinery.

A field or area contour is denoted by F1 in Figure 42. A geometri-
cally translated lane in the same shape of the field contour is referred to
as perimetric, outmost or headland lane, all expressions referring to the
same, see F3 for visualization. Tree-island area contours are indicated by
F2 in Figure 42. The geometrically translated lanes circling a tree-island
are denoted as island lanes or circling island lanes; see F4 for illustration.
Straight lanes F5 are designated interior lanes or straights. These lanes
connect two opposite nodes of the perimetric lane F3 or a node along the
perimetric lane F3 and along the island lane or circling island lane F4. In-
terior lanes do not necessarily have to be straight for the functionality of
the concepts underlying the presented algorithms. Instead, interior lanes
may in principle be of arbitrary shape, for example, curvedly aligned to a
particular part of the field contour. However, straight lanes are preferred.

General Procedure P

Figure 45 explains the general framework from preparatory work via of-
fline optimization to online tracking of the computed complete field cov-
erage path. The first step, i.e. the preparatory work, is marked in Figure
45 with reference number S1, wherein reference number 1 refers to a
step being part of this preparatory work. Step 1 involves the acquisition

141

Figure 42: An offline-computed path as result of an optimization according
to method M1 for an exemplary agricultural field including two interior
tree-islands prohibited from trespassing.

142

Figure 43: An offline-computed path as result of an optimization according
to method M2 for an exemplary agricultural field including two interior
tree-islands prohibited from trespassing.

143

Figure 44: An offline-computed path as result of an optimization according
to method M3 for an exemplary agricultural field including two interior
tree-islands prohibited from trespassing.

144

Figure 45: Flow of actions from field-specific data acquisition and user-
parameter choices to online tracking of a computed field coverage path in-
cluding optimization methods M1, M2 and M3.

145

of the position coordinates of the field contours of interest and, in case of
existence, of the contours of all tree-islands.

The mode of this acquisition can be manifold. In descending or-
der of accuracy, one method is to move along the field and tree-island
contours while measuring and recording at appropriate distance inter-
vals the positions by means of a location sensor. Alternatively, digital
maps incorporating aerial and satellite photographs (for better orienta-
tion) may be used that allow the determination of, for example, latitude,
longitude and altitude coordinates. Another option is the application of
image analysis tools to aerial photographs, field records cadastral regis-
ters and the likes in combination with at least two reference points whose
pixel- as well as GPS-coordinates are known, that allow an (approximate)
conversion between image pixel-positions and the corresponding GPS-
coordinates, e.g., expressed in the Universal Transversal Mercator (UTM)
coordinate system. The disadvantage of the last two methods is that, for
high-accuracy results, they require a free view on field and tree-island
contours. Due to natural conditions such as shielding trees and the like
this view may often be prohibited. Remedy can be provided by, instead
of identifying the contour lines, identifying the (on images) already ex-
isting perimetric lane locally parallel to the field contour and likewise
the tractor lanes locally parallel to the corresponding tree-islands, whose
view is usually available. Otherwise, estimation, approximation and in-
terpolation techniques can be employed. The disadvantage of the identi-
fication of the aforementioned already existing tractor lanes is that locally
they may not be parallel to the field contours and thus incurring ineffi-
ciencies with respect to the usage of the available field area. Furthermore,
photograph or image data may be outdated, blurred and noisy. For accu-
racy, the method described first, i.e., of recording positions while moving
along the contours, is to be preferred if available.

As shown in Figure 45, a second Step S2, which is a parameter selec-
tion step, is performed which includes a selection of the operating width
of the agricultural machine, denoted by dw > 0, which also determines
the distance between two parallel interior lanes, or the distance between
locally parallel lanes in case of curvedly shaped lanes. This selection is

146

marked in Figure 45 with reference number 3. Reference number 2 refers
to the step of selecting a distance between the field-contour and the lo-
cally parallel perimetric lane (and correspondingly for the tree-islands).
This distance is denoted by dd > 0 and is usually selected, for example,
as dd = dw/2. Reference number 4 refers to the step of selecting one of
three mathematical algorithms, hereafter also called methods: M1, M2 or
M3. These algorithms will be explained in more details later in this text.

The third Step S3 is conducted offline based on the data acquired
from the first Step S1 and the second Step S2, i.e., the parameter selection
step. First, the perimetric lane and circling islands lanes (if islands are ex-
istent) are computed by the application of a geometrical translation tech-
nique, so-called erosion (mathematical morphological operation). This is
shown in Figure 45 with reference number 5. A simple technique for
its implementation is treating the contour lines as piecewise-affine line-
fragments that can be geometrically translated by distance dd in parallel.
In a post-processing step, the resulting line is pruned to ensure keeping
of a distance at least dd to the field or island contours. Refinements of
this method include preliminary interpolations and/or averaging. Con-
sult also Figure 42 for visualization of the results, in particular, the field
contour F1, the corresponding locally parallel translated closed perimet-
ric lane F3, the tree- island contours F2 and their related locally parallel
translated closed lanes F4.

Taking the operating width selection performed in Step 3 into ac-
count, a lane grid is fitted as a function of the orientation of interior lanes
by intersecting the interior lanes with the eroded area contour. This step
is marked in Figure 45 with reference number 6. This lane-grid in combi-
nation with the designated operating width ensures the coverage of the
complete work area, i.e., the agriculturally used field. In the end, vehicles
will move along these lanes.

In a further Step 7, an orientation and its corresponding lane-grid is
selected. This step is a fundamentally important user-choice that usually
already involves an optimization step preceding the subsequent mini-
mization of the total coverage path length, in general, subject to con-
straints on the moving machinery. This is shown in Figure 45 with refer-

147

ence number 8. An orientation in Step 7 which may be chosen according
to, for example, the following list of criteria:

• Minimization of the sum of the path lengths of all interior lane
(usually straights) in between the perimetric lane and the closed is-
land lanes (if existent); this criterion is of particular interest since it
implies the minimization of repressed area which as a consequence
is then available for additional planting.

• Minimization of the total field coverage path length. In contrast to
minimizing the sum of the path lengths of only the interior lanes,
perimetric and tree-island lanes that (potentially) are traversed mul-
tiple times for complete field coverage according to paths which
have been optimized according to methods M1, M2 or M3, are now
considered, too. In general, the corresponding orientation may be
different for each of the three methods M1, M2, M3 and it may dif-
fer from the orientation associated with the minimization of only
the sum of the path lengths of all interior lanes.

• Minimization of the total number of turns at headland.

• The avoidance of voltes and sharp turns, which may exclude par-
ticular orientations of the lane-grid.

• The avoidance of roll angles of the vehicle above a certain threshold
resulting from field slopes in hilly terrain.

• The selection of a curved lane pattern aligned to a particular part
of the field contour.

• Considerations about connections to roads, harvesting organiza-
tion and logistics in general.

• Combinations and/or trade-offs of aforementioned criteria. For ex-
ample, the combination of minimizing the sum of the path lengths
of all interior lanes while simultaneously avoiding roll angles of the
vehicle above a certain threshold resulting from field slopes.

148

The selection of the lane-grid implies the locations of the cross-points,
i.e., positions where interior lanes and perimetric lane or circling tree-
island lanes intersect. See F6 in Figure 42 for the visualization of such a
cross-point. As illustrated by F7 in Figure 42, the cross-points are num-
bered. The starting and end position is assumed to be identical and is
denoted by 0, see F8.

In Step 8, based on the previously determined lane-grid, all cross-
points are concatenated efficiently minimizing the total field coverage
path length taking one of the three methods M1, M2 or M3 into account.
For an exemplary field with two tree-islands, F10, F11 and F12 illustrate
the concatenations of cross-points resulting from one of the optimization
methods M1, M2 and M3. Ultimately, by knowledge of the coordinate
locations of all cross-points and linking lanes, the complete field covering
path can be reconstructed, which completes the offline part visualized in
Figure 45. The machinery has just to reach each of these cross-points in
the order shown in F10, F11 and F12 in order to cover the area in the
cost-optimized and most efficient optimized way.

Step S4 comprises the online tracking of the offline-generated field
covering path computed in Step S3. This can be carried out by an au-
tonomous vehicle, semi-autonomously or manually.

A possible implementation of subtasks or Steps 5, 6, 7 and 8, as in-
dicated in Figure 45, is described below in procedure P, whereby details
about the three specific optimization methods M1, M2 and M3. All of
the three methods M1, M2 and M3 optimize the total area coverage path
length; however, the methods used by each method M1, M2, M3 are sub-
ject to different constraints or heuristics.

The objective of the first method M1 is to minimize the total path
length needed for the complete coverage of all edges associated with a
transition graph and starting and ending at the same point (cross-point
number 0, see Figure 42). Note that the connected undirected transition
graph associated with a particular field is, throughout this section, al-
ways denoted by Tfield. Eventhough heuristics are applied to avoid 180◦-
turns as often as possible, it is explicitly emphasized that the minimal
total coverage path length associated with method M1 is always main-

149

tained. Thus, the shortest overall path length is never meant to be com-
promised or prolonged. Thus, method M1 gives the shortest path, but
no guarantee on the avoidance of undesirable maneuvers such as, most
importantly, 180◦-turns. The complete avoidance of undesirable maneu-
vers such as 180◦-turns can be achieved by the introduction of additional
path-altering heuristics as done for the second and third optimization
method M2 and M3.

The motivation for the introduction of the second optimization method
M2 is to obtain a solution yielding a field coverage path length close to
the minimum achieved by the first method M1, while at the same time
always avoiding 180◦-turns. This task is achieved by the admittance of
particular heuristics that usually are to some very limited extent path
length compromising. Two heuristics are described later in this text. An-
other difference, occurring only in case of the existence of tree-islands,
refers to the particular method of making TM2 Eulerian by conducting a
graph-augmentation yielding T ∗M2, see Algorithm 10.

The procedure P for the implementation of Steps 5, 6, 7 and 8 accord-
ing to Figure 45 is described in Algorithm 8.

Three Methods: M1, M2 and M3

A particularity of both the first and the second method M1 and M2 is the
coverage of the perimetric lane-segments on-the-fly. This implies, that
the perimetric lane-segments do not have to be passed consecutively,
i.e., by just driving once along the perimetric lane, before then starting
to cover the straight lanes (interior lanes). Instead, lanes may be concate-
nated arbitrarily, in a total path length minimizing manner. In case there
exist tree-islands, the circling island lanes are covered on-the-fly only for
M1, whereas for M2 a heuristic is applied, see Algorithm 10.

A common guidance pattern employed at present by many agricul-
tural vehicle drivers is initially to once drive along the perimetric lane
before then working sequentially lane-by-lane in a typical A-B pattern
(or similarly, first working the interior lanes before then ultimately cir-
cling the complete perimetric lane). The method M3 is motivated by this
behavior. Thus, the heuristic of first always driving around the peri-

150

Algorithm 8: General Procedure P

1 Import location data of field and tree-islands contours.

2 Conversion to UTM-coordinates (to calculate in unit meters).

3 Parameter selection of dd and dw.

4 Determine perimetric and circling island lanes, see F3 and F4 in
Figure 42.

5 for a set of different lane-orientation angles do

6 Coordinate system transformation (rotation of all available
coordinates) to facilitate subsequent computations.

7 Computation of cross-points considering the dw-parameter.

8 Labeling of cross-points (the start and end point for the field
coverage path, i.e., the field entrance, is denoted by 0).

9 Establishing of lanes (edges) by connecting cross-point pairs.

10 Creation of a connected undirected transition graph Tfield.

11 Evaluation of an optimization criterion (e.g., minimization of
the sum of path lengths of all interior lanes between
perimetric lane and the closed island lanes subject to the
avoidance of roll angles of the vehicle above a certain
user-defined threshold and the avoidance of voltes and sharp
turns).

12 Selection of the optimal lane-orientation with respect to the chosen
optimization criterion and constraints.

13 Storage of relevant information: lane-orientation, transition graph,
as well as position coordinates of all cross-points and edges.

14 Computation of a field coverage path plan according to one or
several of the three methods: M1, M2 and M3.

151

metric lane and thereby covering all of its associated lanes is incorpo-
rated in M3. However, in contrast to then following an A-B pattern, the
third Algorithm M3 is used instead to plan the path minimizing the path
length associated with the coverage of the remaining not-yet serviced in-
terior lanes. See the highlighted cross-point sequence in F12 of Figure
44 for illustration of the initial circling of the perimetric lane. The third
Algorithm M3 is intentionally designed such that any 180◦-turns are al-
ways avoided. The heuristics described below are both used for the third
method M3 when altering the Eulerian cycle associated with transition
graph TM3∗ , see Algorithm M3. The two heuristics, i.e., the initial cir-
cling of the perimetric lane and the circling of tree-island lanes as soon as
any cross-point associated with the corresponding tree-island is reached
for the first time by the vehicle, naturally imply that for the coverage
of the remainder of the field, the not-yet serviced interior lanes (usually
straights) have to be concatenated efficiently in a least-cost manner by
connecting them via some of the perimetric or tree-island lanes.

Figures 42, 43 and 44 illustrate results when performing the three dif-
ferent optimization methods M1, M2 and M3 for an exemplary field with
two interior tree-islands. All of Steps S1, S2 and S3 mentioned above and
shown in Figure 42 were conducted. For this particular case, the orienta-
tion and the consequent lane grid in block of Step 7 were chosen accord-
ing to the criterion of minimizing the sum of the total path length of all
interior lane-segments. The resulting cross-point sequences for the three
methods of the three methods M1, M2 and M3 which define the pattern
or path plan to be covered by the machinery are shown in lists F10, F11
and F12 being part of the corresponding Figures 42, 43 and 44.

Methods M1, M2, M3 are summarized in Algorithms (9), (10) and
(12), respectively.

152

Algorithm 9: Method M1

1 Inputs: connected undirected transition graph Tfield, position
coordinates (spacing such that shape defining) of all edges of
Tfield, tilt angle of straight lanes, position coordinates of all
cross-points, cross-point numbering, differentiation between
perimetric and island-circling lanes.

2 Make Tfield Eulerian to obtain T ∗field.

3 Determine an Eulerian cycle on Eulerian graph T ∗field, e.g., via the
End-Pairing algorithm.

4 Apply heuristics to customize the Eulerian cycle:
- In general, for an Eulerian graph such as T ∗field, there does not exist

only one unique corresponding Eulerian cycle.

- The first heuristic applied is the replacement of cross-point
combinations such as a-b-a-m-n-b-c with a-b-n-m-a-b-c, which
avoids the 180◦-turn implied by the sequence a-b-a.

- The second heuristic applied as discussed below involving
starting node 0.

5 Computation of the complete field covering path (from
cross-points sequence to position coordinates associated with the
Eulerian cycle).

6 Retransformation from rotated to original coordinate system.

7 Return values: Complete field covering path (e.g.,
UTM-coordinates), position coordinates of all cross-points,
Complete field covering path expressed as a list of numbered
cross-points (see F10 in Figure 42 for an example), and the field
coverage path-length.

153

Algorithm 10: Method M2

1 Inputs: connected undirected transition graph Tfield, position
coordinates (spacing such that shape defining) of all edges of
Tfield, tilt angle of straight lanes, position coordinates of all
cross-points, cross-point numbering, differentiation between
perimetric and island-circling lanes.

2 Create undirected transition graph TM2:

- TM2 is created as a copy of Tfield after the dismissal of all circling
island lane-segments (in case there are tree-islands present).

- For illustration, with respect to Figure 43, the dismissed circling
bidirectional lane-segments comprise 37-38, 38-39, 39-40, 40-41,
41-42, 42-43, 43-44, 44-45, 45-46, 46-37, 47-48, 48-49, 49-50 and
50-47.

- Note that the resulting TM2 may not be connected: with respect to
Figure 43, straight-segments 50-38 and 49-39 are not connected to
the rest of TM2.

- If there are no tree-islands, TM2 is just a copy of Tfield.

3 Make TM2 Eulerian via a graph-augmentation yielding T ∗M2:

- Typically in the least-cost manner, however, under the explicit
constraint of always ensuring connectivity of T ∗M2.

- With respect to Figure 43, a graph-augmentation of TM2 may
include the pair-wise linking of odd-degree nodes 47-48, 50-49,
38-39, 40-41, 42-43, 44-45 and 46-37; however, this augmentation
would result in the closed chain 50-49-39-38-50 being disconnected
from the rest of the augmented graph, and is therefore prohibited.

- If there are no tree-islands, T ∗M2 is always equal to T ∗field.

4 [Continued...]

154

4 Determine an Eulerian cycle on Eulerian graph T ∗M2, e.g., via the
End-Pairing algorithm.

5 Apply heuristics to customize the Eulerian cycle:

- In general, for an Eulerian graph such as T ∗M2, there does not exist
only one unique corresponding Eulerian cycle.

- A first heuristic applied is the replacement of cross-point
combinations such as a-b-a-m-n-b-c with a-b-n-m-a-b-c, which
avoids the 180◦-turn implied by the sequence a-b-a.

- A second heuristic applied as discussed below involving starting
node 0.

- A third heuristic applied is motivated by avoiding 180◦-turning,
involving the utilization of auxiliary cross-points; this heuristic is
path length-altering.

6 Alteration of the Eulerian cycle associated with T ∗M2 by the
inclusion of circling island lanes:

- The result of this step is referred to as the altered Eulerian cycle
associated with T ∗M2; the original Eulerian cycle does not cover all
lanes associated with Tfield, however, the altered Eulerian cycle
now does; in particular, in a way that is meant to ensure avoidance
of any 180◦-turns.

7 Computation of the complete field covering path (from
cross-points sequence to position coordinates associated with the
altered Eulerian cycle).

8 Retransformation from rotated to original coordinate system.

9 Return values: Complete field covering path (e.g.,
UTM-coordinates), position coordinates of all cross-points,
Complete field covering path expressed as a list of numbered
cross-points (see F11 in Figure 43 for an example), and the field
coverage path-length.

155

Algorithm 11: Method M3

1 Inputs: connected undirected transition graph Tfield, position
coordinates (spacing such that shape defining) of all edges of
Tfield, tilt angle of straight lanes, position coordinates of all
cross-points, cross-point numbering, differentiation between
perimetric and island-circling lanes.

2 Create undirected transition graph TM3:

- TM3 is created as a copy of Tfield after the removal of all perimetric
lane-segments; likewise, in case there exist tree-islands, all circling
island lane-segments are dismissed from Tfield.

- Then, TM3 consists of only unconnected interior lanes (usually
straights).

3 Extend TM3 to a connected undirected graph TM3:

- To make TM3 connected, lane-segments are added to it.

- Added lane-segments are elements of only the perimetric lane or
the circling tree-island lanes.

- Lane-segments are added in a least-cost manner while
simultaneously avoiding the formation of any loops with the
lane-segments already chosen until the resulting graph TM3 is
connected (see [233] for mathematical background).

4 Make TM3 Eulerian via a graph-augmentation yielding T ∗M3:

- Typically conduct the graph-augmentation of TM3 in the least-cost
manner under explicit constraint of always ensuring connectivity
of the resulting T ∗M3.

5 [Continued...]

156

5 Determine an Eulerian cycle on Eulerian graph T ∗M3, e.g., via the
End-Pairing algorithm.

6 Apply heuristics to customize the Eulerian cycle (for Eulerian
graph T ∗M3 there does not exist a unique corresponding Eulerian
cycle).

7 Alteration of the Eulerian cycle associated with T ∗M3 by the
inclusion of circling island lane-segments and the initial
perimetric lane circling:

- The direction of the initial perimetric lane circling is selected such
that a smooth transition to the next cross-point on the path is
ensured avoiding any 180◦-turn; for illustration, see the
highlighted part of F12 in Figure 44 and its fluid progression
(avoiding any 180◦-turning) to the remainder of the field coverage
path.

- See the description for details about the inclusion of circling island
lane-segments.

- The result of this step is referred to as the altered Eulerian cycle
associated with T ∗M3; the original Eulerian cycle does not cover all
lanes associated with Tfield, however, the altered Eulerian cycle
now does; in particular, in a way that is meant to ensure avoidance
of any 180◦-turns.

8 Computation of the complete field covering path (from
cross-points sequence to position coordinates associated with the
altered Eulerian cycle).

9 Retransformation from rotated to original coordinate system.

10 Return values: Complete field covering path (e.g.,
UTM-coordinates), position coordinates of all cross-points,
Complete field covering path expressed as a list of numbered
cross-points (see F12 in Figure 44 for an example), and the field
coverage path-length.

157

Figure 46: A guidance pattern naturally occurring as a result of an opti-
mization according to either one of methods M1 and M2, wherein the field
coverage path is intentionally not aligned with straight lanes for better vi-
sualization of the underlying cross-points sequence logic and path plan.

158

Figure 47: An offline-computed path as result of an optimization accord-
ing to method M2 for an exemplary agricultural field without interior tree-
islands prohibited from trespassing.

159

A guidance pattern naturally occurring as a consequence of the first
and second optimization method M1 and M2 is sketched in Figure 46.
This circular driving framework is of particular interest since it not only
avoids 180◦-turns and is thus simple to drive, but more importantly pre-
scribes how to, in a minimum total path length-sense, optimally cover
also rectangular or, more generally, regularly shaped fields. Figures 47
and 48 emphasize the natural occurrence of this particular guidance pat-
tern as a result of method M2- in two real-world settings with naturally
shaped field contours. F13 and F14 illustrate the optimal concatenations
of cross-points according to method M2. The minimum total length field
coverage path 13 in Figure 46 is composed of passing through the head-
land indicated by reference points A, B and C before then working all
straight lanes, denoted by 14, in a specific circular manner (marked with
reference number 15 in Figure 46), always comprising two straight lanes,
until point D is reached. The specific sequence of cross-points for the cir-
cular pattern reads a-b-n-m-a-b-c. The reason for optimality of the con-
junction of headland path A-B-C and subsequent multiple circular guid-
ance patterns is the coverage of the bottom headland lane (or perimetric
lane) on-the-fly. For total path length-optimality, a key is the appropri-
ate pairing of cross-points such that the sum of all lane-parts covered
twice, such as a-b and m-n etc., is minimal. Ultimately, as a detail, due to
the particular artificial and consecutive numbering of cross-points illus-
trated, cross-point combinations a-b-c are usually (but not necessarily)
increasing, e.g., 15-16-17, 18-19-20 etc. as shown in F13 of Figure 47, or
decreasing, e.g., 18-17-16 or 16-15-14 etc. as displayed in F14 of Figure
48.

Note that the circular pattern sketched in Figure 46 may potentially
include circling of islands as well. Consider F14 in Figure 48 and its
highlighted cross-point sequence ...-8-7-41-44-43-42-41-44-34-33-43-42-8-
7-6-... which includes the particular circular guidance pattern 8-7-34-33-
8-7-6 interrupted by the circling of the tree-island 41-44-43-42-41. It is
emphasized that the given concatenation of cross-points is enforced by
the design of the algorithm, i.e., the tree-island is made Eulerian along
the straight lane-segments. This means that cross-points 41 with 44 and

160

42 with 43 are connected during the Eulerian-step of method M2. The
Eulerian-step of method M2 is always conducted such that it ensures
reachability of all cross-points and thus coverage of the complete field.
Suppose the two tree-islands in Figure 43 are made Eulerian by dupli-
cating cross-point pairings 47-48, 49-50, 38-39, 40-41, 42-43, 44-45, 46-
37 which for the given field under consideration would be path length-
optimal, the quadrilateral cycle 50-49-39-38-50 would then be created dis-
connected from all other cross-points after the Eulerian-step.

As mentioned in the Procedure P of the framework, auxiliary cross-
points (nodes) were introduced to ensure unique connections between
any two cross-points. With respect to Figure 49, such auxiliary inserted
cross-points are numbered 21, 22 and 23. Consider the case of cross-point
23. Without its existence, the connection between cross-points 18 and 19
would not be uniquely defined. These auxiliary cross-points are also of
particular interest for method M2. Suppose the edge 18-19 is element of
the list of pairings that make transition graph TM2 Eulerian. Then, the
edge 18-19 will be passed through twice. This fact, in combination with
cross-points 18 and 19 each having only one non-auxiliary cross-point
neighbor, implies the shortest path for coverage of the 18-19 edge to be
the cross-point sequence 18-19-18. As shown in Figure 49, see F15, this
sequence occurs naturally in the M1-solution. The disadvantage of this
sequence is, however, the 180◦-turn. For this practical reason, cross-point
sequences such as 18-19-18 are therefore in method M2 always replaced
by utilizing the neighboring cross-point. Thus, a sequence of 18-19-18 is
in the second method M2 replaced (in the heuristics step), see Algorithm
10, by the sequence 18-19-23-18, for illustration highlighted in F16 of Fig-
ure 49. This heuristic is also used for the method M3, for example, see
F12 in Figure 44, where the 180◦-turn implied by 24-25-24 is altered to
24-25-52-24.

Suppose the starting and end node (entrance and exit to the field),
always denoted as cross-point 0, lies on a lane-segment belonging to the
list of pairings that make a connected undirected transition graph T Eu-
lerian. For illustration, consider Figure 49, where the odd vertices 20 and
1 are paired via path 20-0-1 and belong to the list of pairings that make T

161

Figure 48: An offline-computed path as result of an optimization accord-
ing to method M2 for an exemplary agricultural field including one interior
tree-island prohibited from trespassing.

162

Eulerian. Then, for the Eulerian tour, the undirected edges 20-0 and 0-1
must each be passed twice. In such a case, by, for example, the applica-
tion of the End-Pairing algorithm described in [101], the last seven cross-
points of a valid Eulerian tour may be 1-16-17-20-0-1-0, which imply the
180◦-turn 0-1-0. To avoid this 180◦-turn, a heuristic is motivated which
always replaces sequences for the last cross-points of an Eulerian tour in
the general form of x-k-l-m-0-x-0 by x-0-m-l-k-x-0. This does not alter the
path length, but just the sequence of covered cross-points. This heuris-
tic is therefore not only applicable to method M2 but also to method M1.
With respect to Figure 49, by the application of the discussed heuristic, 1-
16-17-20-0-1-0 is transformed to 1-0-20-17-16-1-0 as indicated in F15 and
F16 for the corresponding first and second methods M1 and M2.

Another heuristic follows the concept of circling a tree-island as soon
as any cross-point associated with that tree-island is reached for the first
time. This heuristic is employed by both methods M2 and M3. For il-
lustration, consider Figure 43 and the cross-point sequence 0-36-35-42-43
which is part of an Eulerian cycle associated with T ∗M2. Cross-point 42
belongs to the circling tree-island lane described by cross-points {37, 38,
39, 40, 41, 42, 43, 44, 45, 46}. The strategy is then to incorporate these
cross-points into the Eulerian cycle associated with T ∗M2 and thus obtain
0-36-35-42-43-44-45-46-37-38-39-40-41-42-43-... as indicated in F11 of Fig-
ure 43. Note that the order of the added circling tree-island cross-point
sequence is always chosen such that a smooth transition to the next cross-
point on the path is ensured avoiding any 180◦-turn. Consider for visu-
alization the second tree-island in Figure 43 given by the cross-point set
{47, 48, 49, 50}. The cross-point sequence 19-18-17-47-50 is part of the
Eulerian cycle associated with T ∗M2 and the second tree-island is reached
for the first time at cross-point 47. Thus, according to the strategy and
since, according to the Eulerian cycle, the cross-point following 47 is 50,
we round the tree-island clock-wise and obtain the updated path 19-18-
17-47-50-49-48-47-50-... as indicated in F11 of Figure 43. Ultimately, it
is pointed out that the strategy described in this paragraph is explicitly
coordinated with the way how the undirected graph TM2 is created, see
Algorithm 10. The fundamental motivation is the purpose, of ensuring

163

Figure 49: The difference between the results obtained when applying op-
timization according to methods M1 and M2 to an exemplary agricultural
field not including any interior tree-islands prohibited from trespassing.

164

180◦-turns are avoided even if tree-islands are existent in the interior of
the work area.

Figure 49 compares the typical results of methods M1 and M2 for an
exemplary field not including any interior tree-islands prohibited from
trespassing. The cross-point sequence corresponding to method M1 is
shown in F15, and the result associated with method M2 in F16. The
differences between the two solutions are highlighted. In case of method
M2, the path is altered according to the logic described herein in order to
avoid the two 180◦-turns characteristic for the first method M1. Besides
this, there is no difference in path, which is conceptually always the case
if no tree-islands are existent in the interior of the work area.

Figure 50 is meant to further illustrate the suitability and characteris-
tics of a typical field coverage path, see F17, returned by method M2 for
an exemplary agricultural field including multiple interior tree-islands
prohibited from trespassing. See also Figure 51.

The turning trajectories and dynamics of the vehicle at headlands or
in general are not taken into account explicitly in the drawings, see, e.g.,
Figure 47. This is also due to the fact of the applicability of the present
method to a great variety of vehicles, scales and shapes of closed fields.
The omission of precise turning trajectories does not violate functionality
of the devised algorithms in any sense. An inclusion and description of
precise turning trajectories is to be considered as a more detailed mod-
eling of the lane-grid fitted to the particular field-shape and may be of
specific importance in Step 7 of Figure 45, when selecting the orientation
of the lane-grid, for example, according to the criterion of avoiding voltes
and sharp turns.

The methods for the computation of vehicle paths for complete field
coverage are also of interest in combination with variable rate applica-
tions for, e.g., spraying and fertilizing. The tracking of offline-computed
and thus known paths can be used as feedforward information for the
variable rate application controllers. Alternatively, this information can
also be used for vehicles not equipped with expensive automated vari-
able rate application apparati in the sense that in form of visual and au-
dio support the human vehicle driver can be signaled where and when to

165

Figure 50: An offline-computed path as result of an optimization according
to method M2 for an exemplary agricultural field including multiple inte-
rior tree-islands prohibited from trespassing.

166

Figure 51: Exemplary field. The blue line shows the optimized trajectory
according to the second method from [146], see Figure 50. Optimization
criteria are a) repressed area minimization, and b) consequent minimal path
length edge cover. Repressed area here refers to field areas repressed by
tractor tires. These areas are consequently not usable for plantation. The
original path (used by farmers) is indicated by the white background.

167

switch off, e.g., spraying and fertilizing machinery when covering a par-
ticular lane-segment, for example, for the second time. The switching-
information provided to the user can be further refined when taking dy-
namic mathematical models of vehicle, trailer and, e.g., spraying ma-
chinery into account, for example, for the modeling and prediction of
dynamical response times.

Figure 52 illustrates an efficient overlap-avoiding on/off switching
scheduling of fertilizer spreaders or spraying application machineries
that are mounted on a vehicle system and operating perpendicularly to
the vehicle direction of travel with a specific operating width. Specifi-
cally, the scheduling is tailored to the path planning methods for field
coverage presented above. The fundamental objective is the avoidance
of fertilizing or spraying overlap, i.e., the avoidance of additional appli-
cation of fertilizers, sprays or similar substances on areas already served,
when moving along a path plan for field coverage as, e.g., devised by
method M2 and as further illustrated in Figure 46. The operating width
of the agricultural machinery is marked with reference numbers 20 and
18, here referred to as field contour and headland application bound, respec-
tively. On and off switching of fertilizer spreaders or spraying applica-
tion machineries are indicated by circular and square markers, having
reference numbers 25 for “on” and 24 for “off”, respectively. It is distin-
guished between, first, path segments with switching on (application of
fertilizers or sprays) as illustrated by thickened line 19 or 23, and, second,
path segments with switching off (no application of fertilizers or sprays)
illustrated by thinner lines as in 21. It is further distinguished between,
first, switching decisions to be taken at intersections of interior lanes and
application bounds such as indicated by 17, 22, and, second, switching
decisions to be taken at positions 24 and 25, both located along headland
lanes. This distinction is required as a result of the devised path plan-
ning methods for field coverage, in particular according to method M2.
It is further different to existing sequential lane-by-lane operation where
efficient overlap avoidance is already achieved by switching at only the
intersections of interior lanes and application bounds (and not addition-
ally along headland path segments), however, at the cost of an increased

168

path length stemming from a continuous headland path coverage, typi-
cally before the coverage of any interior lanes, or, alternatively, after the
coverage of all interior lanes. In contrast, characteristic to method M2
is a shortened path length, however, at the cost of requiring two more
switching decisions per every two interior lanes, as visually exemplified
in Figure 52.

An efficient switching scheduling for overlap avoidance, as further
visualized in Figure 52, has to be applied anywhere in between the end
and the beginning of turning maneuvers of, first, traversing from an inte-
rior lane towards a headland lane as illustrated by reference number 26,
and, second, traversing from a headland lane towards an interior lane as
illustrated by 27, respectively. With respect to the traversal pattern from
Figure 46, i.e., a-b-n-m-c, as further visualized in Figure 52, the efficient
switching sequence for overlap avoidance is summarized as follows.

Algorithm 12: Switching Sequence for Overlap Avoidance

1 With regard of Figure 52, come from node a with switching on;
2 Switch off at node 28;
3 Continue driving (passing node b) until reaching the next inter-

section of application bound and interior lane where switch on;
4 Continue until the next intersection of application bound and

interior lane where switch off;
5 Continue driving (passing node n and m) until the next inter-

section of application bound and interior lane where switch on;
6 Continue driving, and switch off at the next intersection of

application bound and interior lane;
7 Continue driving (passing node a) until reaching of location 28

where switched on;
8 Continue to drive until node c while switched on.

Finally, the headland lane coverage in Figure 52 between node n and
m is cluded when initially, and typically for method M2, covering more
than half of the headland path with switching on. As illustrated in Figure
52, this occurs after the traversal from 16 until the first off-switching at
position 24.

169

Figure 52: An efficient on/off switching scheduling of a fertilizing or spray-
ing application machine mounted on a vehicle system moving along the
path plan according to Figure 46.

170

3.1.3 Quantitative Example

For the exemplary field visualized in Figures 50 and 51, quantiative sav-
ings are summarized in Table 5. Two comments are made. First, note
that results are reported for a single field coverage. For a complete crop-
related work-cycle, e.g., a yearly work-cycle for rapeseed or wheat in
Northern Germany, up to 10 field coverages may be required per work-
cycle. Second, results are reported for a single field. A large farm or col-
laboration of multiple smaller farms may have to service up to hundreds
of fields. The total saving potential has to be interpreted accordingly.

Table 5: Abbreviations ASPL and ATPL refer to accumulated straights path
length and accumulated total path length, respectively. A reduction in ASPL
implies that a more efficient field coverage path could increase plantable
area by reduction of unnecessarily repressed area through tractor tires.
Monetary loss due to unnecessarily repressed area by tractor traces can be
computed as the product of the total length of repressing tractor traces, the
tire width, and the normalized gain for the corresponding field crop. Results
are reported for the field in Figures 50 and 51. The current and optimized
field coverage path plans are compared, whereby method M2 is employed
for optimization. Savings are reported in [m] and [%].

Current Optimized M2 Saving [m] Saving [%]
ASPL 7950m 7672m -278m -3.5%
ATPL 14934m 13308m -1626m -10.9%

171

3.1.4 Hierarchical Controller Parametrization

Offline

For the offline planning of a field coverage path plan there are two main
layers. These are:

1. General procedure P: The selection of an optimal lane-orientation
and consequent fitting of a lane-grid to the field of interest.

2. One of methods M1, M2 or M3: The computation of a complete
field covering path based on the transition graph associated with
the fitted lane-grid from layer 1.

Online

For the online implementation of the field coverage path there is one main
layer. This is represented by a vehicle system moving along the path plan
(for example, automated according to the method from [152]), and simul-
taneously executing the switching method according to Algorithm 12 for
the actuation of fertilizing or spraying application machines mounted on
the vehicle system.

172

3.2 In-Field Navigation via an Android App

This section summarizes [147]:

• M. Graf Plessen, “System and method for navigation guidance of a
vehicle in an agricultural field,” WO Patent App. PCT/EP2016/072968,
June 8 2017.

In order to realize a navigation device for the method from Section
3.1, a simple data based Android App was written accessing smarth-
pone GPS-sensors. Thereby, it was found that low-cost GPS-sensors in
smartphones are too inaccurate and disctracting (due to “jumping” po-
sition indicators) for providing in-field navigation. Therefore, another
Android app was designed based solely on human feedback for localiza-
tion [147], see Figures 53 and 54.

3.2.1 Background

Currently, navigation guidance of agricultural machinery within agricul-
tural fields is served in combination with auto-steering systems based on
actuators, e.g., for controlling the steering angle and vehicle speed, the
corresponding control algorithms, and, specifically important, accurate
location sensors such as satellite-based positioning systems (e.g., GPS
receivers with differential correction). In alternative to these fully au-
tonomously operating systems, there exist semi-autonomously operat-
ing systems, where headland turns need to be conducted manually by
a human driver, before lining up the vehicle with the next lane to be
driven, and before engaging auto-drive for the traversal of the (typically
straight) lane ahead until the next headland turn, which is then again to
be conducted manually.

All semi-autonomous and fully autonomous steering systems require
high-precision location sensors with positioning accuracies in the low
centimeter range. Location sensors may return measurement failures.
This may be due to shielding trees, low-hanging branches which disable
satellite communication or similar environmental conditions, or other
hazards that might be harmful to the desired operation of the location

173

sensors. For safety reasons and by law, existing industrial auto-steering
systems as well as semi-autonomous steering systems require a human
operator to constantly supervise machine operations.

3.2.2 Summary

In [147] a system and method are described for enabling navigation guid-
ance of a manually driven vehicle in agricultural fields without the usage
of high-precision location sensors such as GPS receivers with differen-
tial correction. A human operator of the vehicle interacts at preplanned
waypoints recursively with a supporting mobile computing device (e.g.,
a handset), thereby obtaining navigation instructions for the following
of a predetermined path plan for field coverage or a similar path plan
for traversal within agricultural fields, see Figure 53. The predetermined
path plan for field coverage is stored in a database in form of geographic
location coordinates to which the mobile computing device has access.
Location is thus implemented by the human operator orienting himself
within the agricultural field by aid of a mobile computing device with
audio and visual support. Navigation is thus implemented by the recur-
sive interaction between the human operator and the supporting mobile
computing device via a user interface that is available to the operator.

3.2.3 Web-service for Communication

For the system and method for navigation guidance of a manually driven
vehicle in agricultural fields without the usage of artificial location sen-
sors as described above, a network interface and a location sensor are not
necessary. However, the device may be equipped with both a (limitedly
accurate) location sensor and a network interface. In this case, multi-
ple of mobile computing devices can communicate with each other via a
service, typically a web-service.

Figure 54(a) illustrates an example of a user interface that is displayed
to a human supervisor or coordinator of farm operations. A location sen-
sor enables the display of the coordinators geographic location within
a map, together with displays of, for example, agricultural field con-

174

Figure 53: Snapshots of navigation instructions returned by a simple An-
droid App according to [147].

175

Figure 54: Snapshots of (a) a user interface that is displayed to a human
supervisor or coordinator of farm operations, and (b) a user interface that is
displayed to an operator of a mobile agricultural machinery. Communica-
tion is enabled by a web-service [147].

176

tours of interest. A network interface enables to also inform about ge-
ographic location information of multiple supervised persons, for exam-
ple, multiple different operators of multiple different mobile agricultural
machines. One supervised person in Figure 54(a), labelled as Driver 1, is
therefore representative. A network interface allows for communication
between supervisor and supervised operators in form of, for example,
message exchanges as illustrated. This may be, for example, for the pur-
pose of abortion, rescheduling or alternation of field coverage path plans
due to unforeseen events or unpredicted and uncontrollable influences
such as, for example, sudden changes in weather conditions. Figure 54(b)
illustrates an equivalent example of a user interface that is displayed to
an operator being supervised, typically, the operator of a mobile agricul-
tural machinery.

The repeated and memory-aware tracking of received feedback from
the human operator about the last covered intersection points enables the
monitoring of progress in the realization of field coverage path plans or
similar path plans for traversals within agricultural fields. This progress
may be displayed in real-time to the operator of the vehicle system via
a device and a user interface. In addition, network access and repeated
and memory-aware tracking of received feedback from the human oper-
ator about the last covered intersection points, and its transmission via
a service, typically a web-service, to a supervising party, enabled by the
network interface, enables the supervisor or coordinator of field opera-
tions the monitoring of progress of mobile agricultural machines in the
realization of field coverage path plans or similar path plans for traver-
sals within agricultural fields.

3.2.4 Hierarchical Controller Parametrization

The control layer is represented by the Android App, which accesses
a) a database, and b) possibly a web-service.

177

3.3 Partial Field Coverage Based on
Two Path Planning Patterns

This section summarizes [145]:

• M. Graf Plessen, “Partial field coverage based on two path plan-
ning patterns,” draft at arXiv preprint arXiv: 1707.07649, 2017.

A method for partial area coverage is presented. Lighter machinery with
smaller storage tanks can alleviate soil compaction, but does not permit
to cover a given field area in a single run, for example, during a spray-
ing application. Instead, multiple returns to a mobile or stationary depot
located outside of the field are required for storage tank refilling. There-
fore, a suitable path planning method is suggested that accounts for the
limited turning radii of agricultural vehicles, satisfies repressed (com-
pacted) area minimization constraints, and aims at overall path length
minimization. An interesting finding, and ultimately also the motiva-
tion for [145], was that the paths returned from the method according to
[146] are a naturally, and often optimally, good fit for the partial planning
setting, too. This holds specifically for convexly shaped fields.

3.3.1 Motivation

According to [2] and [53], the agri-food supply chain can be decomposed
into four main functional areas: production, harvesting, storage and dis-
tribution. For improved supply chain efficiency, logistical optimisation
and route planning play an important role in all of the four functional ar-
eas. Regarding production, for example, by means of minimization of the
non-working distance travelled by machines operating in the headland
field [62], optimal route planning based on B-patterns [61], or route plan-
ning for the coordination of fleets of autonomous vehicles [83], [335]. See
also [90] for an overview of means for efficiency improvements, [54] for
the importance of satellite-based navigation systems in modern agricul-
ture, and [345] for a distinction between in-field, inter-field, inter-sector
and inter-regional logistics. The presented path planning method for

178

Figure 55: (Left plot) Visualization of real-world transitions between head-
land path and interior lanes. In the satellite image, the effects of a lim-
ited turning radius of the employed agricultural vehicle are visible. The
repressed areas are indicated by the bright tire traces. Note also the re-
pressed area due to the connection between field entrance and headland
path. (Right plot) Visualization of the repressed area minimization constraint.

partial field coverage relates to the first functional area of the agri-food
supply chain: production.

The last decades have witnessed a trend towards the employment of
larger and more powerful machines in agriculture. This trend is expected
to further continue in the near future, see [236] and [89]. Among the main
benefits are higher work rates. The drawbacks include increased soil
compaction due to machinery weights, see [319] and [171]. See also [12]
for the influence of tire sizes on soil compaction. Concurrently to this on-
going trend, there are alternative considerations about the replacement
of heavy machinery by teams of smaller and lighter autonomous robots
to mitigate soil compaction, see [51], [57], [58], [54], [140] and [335]. See
also [366] for a method for motion coordination of teams of autonomous
agricultural vehicles.

Motivated by the concept of smaller collaborating machines, a path
planning method for partial field coverage is presented, which is charac-
terized by a) minimization of traveled non-working path length, and b)
compliance with repressed area minimization constraints. The latter im-
plies driving along unique and established transitions between headland
path and interior lanes, thereby avoiding the creation of any additional
tire traces that result from vehicle traffic passing over crops and compact-
ing soil. Two different path planning patterns are discussed.

In contrast to route planning methods such as in [84] for the in-field

179

Figure 56: (Top plot) Illustration of the first path planning pattern. The red
bar indicates the area that cannot be reached by neither traversal of the path
planning pattern nor traversal of the headland segments in the directions
as indicated by the two arrows. (Bottom plot) Concatenation of two pattern
elements. The traversal along the “upper” and “lower” headland path is
emphasized in blue. Importantly, the area indicated by the red bar can still
not be reached.

operation of a fleet of vehicles, the presented method focuses on the in-
field operation of a single vehicle that is repeatedly returning to the field
entrance for refilling. This is primarily motivated by the targeted crops
(wheat, rapeseed and barley) and the costs of corresponding agricultural
vehicles. A support unit, acting as a mobile depot, is assumed to be
waiting at the field entrance for refilling. Two comments are made. First,
unlike during harvest, mobile units for refilling of spraying tanks cannot
come to any arbitrary position along the headland. Second, while not
prerequisite for the presented methods, a single field entrance is in line
with the objective of repressed area minimization. For aforementioned
targeted crops, any new field entrance would result in a new repressed
area for the connection of in-field headland path and out-field road net-
work, see Figure 55.

180

Figure 57: (Top plot) Illustration of the second path planning pattern el-
ement. The red bar indicates the area that cannot be reached by neither
traversal of the path planning pattern element nor traversal of the headland
segments in the directions of the two arrows. (Bottom plot) Concatenation
of two patterns. Importantly, the area indicated by the red bar in the top
plot can now be reached. See the green paths for emphasis of the traversal
along the “lower” headland path, and a transition via an interior lane to the
“upper” headland path.

3.3.2 Summary

The two path planning patterns under consideration are visualized in
Figure 56 and 57. Then, in [145] it is illustrated how the latter pattern
is more suitable for partial field coverage. Notice that this pattern also
naturally results from methods M1 and M2 from [146] for specific field
shapes, see also Figure 46.

181

3.4 Shortest Path Computations under Trajectory
Constraints within Agricultural Fields

This section summarizes [149]:

• M. Graf Plessen, and A. Bemporad, “Shortest path computations
under trajectory constraints for ground vehicles within agricultural
fields,” in IEEE Conference on Intelligent Transportation Systems, pp.
1733-1738, 2016.

A method is presented for finding the shortest path to a target point on
the boundary of an agricultural working area given a current position
and heading of a ground vehicle within that area. Constraints such as
admittance of turning on the spot, lane- and corridor-constraining mo-
tion, as well as repressed area minimization are taken into account.

3.4.1 Introduction

The agricultural sector is experiencing an increasing degree of automa-
tion in both the operation of agricultural machinery, e.g., autonomous
guidance of tractors [16], [247], the processing of information [345], and
the planning of logistical in-field and inter-field operations [199], [56],
[60]. Within this context, this work relates to in-field intelligent trans-
portation systems and logistical optimization. It is applicable both to
support a human driver by providing navigation guidance, as well as
for the high-level path planning task for a fully autonomous tractor.

We distinguish between two general types of plantable spaces, in the
following referred to as orchard-like areas and agricultural fields. The dif-
ference is that for the former, the crop grows on bushes, vines or trees,
whereby for the latter the crop is harvested on the ground and, specifi-
cally, there also exist headlands equally employed for crop growth. Ex-
amples for the former include orchards and vineyards, whereas the latter
comprises in particular wheat and rapeseed plantation. For agricultural
field operation we further focus on post-seeding operations such as fer-
tilizing and spraying. The distinction between orchard-like areas and

182

agricultural fields has implications for the operation of machinery, in
particular, the importance of minimizing repressed ground area or unim-
portance thereof.

Shortest path planning is a well known topic in operations research.
Popular approaches include dynamic programming (DP) and label cor-
recting algorithms (LCA) such as Dijkstra’s method, and A? as a label
correcting variation [47].

For existing literature about in-field shortest path planning we refer
the reader to [60] and [199]. They treat path planning of service units
(SU), e.g., transport wagons, while they are supporting primary units
(PU), e.g., harvesters, in the harvesting process. A two-stage optimiza-
tion method is employed in [60]. In contrast, [199] extends this work to
inter-field operation and reduces the optimization to one computational
stage. Its focus is on graph modeling with Euclidean distances used as
arc costs. For graph search, Dijkstra’s method is employed and it is re-
ferred to [85] for its implementation. Conceptually, within our work for
the navigation in orchard-like areas, the same graph generation appr-
oach is taken as in [199]. However, we additionally motivate a heuristic
based on a coordinate transformation that decreases the number of LCA-
iterations required to find a solution. Additionally, we give details about
our graph search algorithms customized to the given problem. The main
contribution is the second part about shortest path navigation in agri-
cultural fields, using only existing tractor-lane traces for minimization of
repressed ground area. To the best of the authors’ knowledge, both the
application and solution approach have not been treated before.

3.4.2 Navigation in Orchard-like Areas

Shortest path planning is of relevance in the coordination of SUs and
PUs, e.g., in the harvesting process. An alternative application is the
navigation in vineyards and orchards. Relevance arises because of lim-
ited hectare coverage and the need for a timely return to a depot or mo-
bile station for refilling. For general route planning in orchards, see [55].
See [284] for experiments of an autonomous multi-tractor system that

183

Figure 58: Modeling of the transition graph T with N = 16, and illustration
of the heuristic from Section 3.4.2 in a rotated coordinate (xθ, yθ)-frame.

performs mowing and spraying operations in a citrus orchard. An au-
tonomous navigation system using a 2D laser scanner for straight line
recognition of tree rows in an orchard application is presented in [21].

In the following, we distinguish between admitting for the ground
vehicle an instantaneous turn on the spot (e.g., plant inspection with a
small mobile unit) and vice versa the case of having vehicle motion con-
strained by small operation corridors or because of larger towed imple-
ments prohibiting an instantaneous 180◦-turn.

Let

ξi =
[
xi yi

]T
, i = 1, . . . , N

184

be the position of node i ∈ N = {1, . . . , N} in the Universal Transverse
Mercator (UTM)-coordinate system with xi and yi representing easting
and northing-position, respectively. The traverse of an orchard or vine-
yard can be modeled as a concatenation of transitions between multi-
ple nodes, see Figure 58. We further define interior lane-segments (e.g.,
13 → 4, 12 → 5, etc.) and perimetric lane-segments (e.g., 9 → 10, 10 → 11,
etc.). Auxiliary nodes (e.g., 15 and 14 in Figure 58) are introduced to en-
sure unique connections between any two nodes. A transition graph T

can then be defined as

Tij =

{
dij , if ∃ a direct admissible path i→ j

∞, otherwise,
(3.1)

where dij denotes the path length in meters from node i to j and i, j ∈ N .
Throughout, we label our current vehicle position (start) and target posi-
tion (exit) by node s and e (e.g., nodes 1 andN in Figure 58), respectively.
Ultimately, note that with respect to the definition, interior lane-segments
do not necessarily have to be straights. They may also be curved and
thereby shifted in parallel (freeform).

In case of straight interior lane-segments, let the admissible path-segments
and all nodes be described in a new coordinate system defined by

[
xθ,i yθ,i

]T
=

R(θ)
[
xi yi

]T, with R(θ) being a standard rotation matrix with rotation
angle θ. We select θ such that xθ,m = xθ,n for all m,n ∈ N representing
the end-nodes of all interior lane-segments, thereby generating a canon-
ical vertical lane grid, see Figure 58.

Let us define ∆xθ = |xθ,l − xθ,m|, as the operating width of the agricul-
tural machine, where nodes l and m represent end-points of two distinct
straight interior lane-segments that are both connected via a perimetric
lane-segment (i.e., Tlm 6= ∞). For freeform interior lane-segments, the
operating width is defined similarly in a curvilinear coordinate system.

For the case of straight interior lane-segments, we abbreviate “interior
lane end-point” by ilep, and further introduce variables xmax

θ = maxi∈N xθ,i,

185

Figure 59: Illustration of characteristic directed transition curves resulting
from natural smoothing by an agricultural machine with limited turning
radius.

xmin
θ = mini∈N xθ,i and

xlast,max
θ = max

i∈N
{xθ,i : xθ,i < max{xθ,s, xθ,e}, xθ,i ilep},

xlast,min
θ = min

i∈N
{xθ,i : xθ,i > min{xθ,s, xθ,e}, xθ,i ilep}.

Admittance of Turning on the Spot

For determining the shortest path between node s and e, we initialize
J0(i) = Tie, i ∈ S0 with S0 = {i ∈ N : Tie 6= ∞}, and define our
DP-iteration as

Jk(i) = min
j∈Sk−1

{Tij + Jk−1(j)}, i ∈ Sk, (3.2)

Sk = {i ∈ N : Tij 6=∞, j ∈ Sk−1}, (3.3)

which is terminated at a particular stage k on satisfaction of a criterion,
that is further discussed below. The shortest path length at DP-iteration
stage k from node i to the exit node e is denoted by Jk(i).

An alternative to DP is LCA [47]. Let dj denote the label of node j,
i.e., the path length from starting point s to node j. The general idea of all
LCAs is to progressively find shorter paths from the start to every other
node j and ultimately the target e. Characteristic is the test

di + Tij ≤ min{dj ,UPPER}, (3.4)

186

with UPPER = de. The satisfaction of (3.4) implies that a path from node
s to j with i immediately before j is shorter than the current path from
s to j and furthermore smaller than the currently shortest path from s

to e. Thus, it is a candidate for being part of a shortest path from s to
e. In case of satisfaction of (3.4), node j will be further examined at one
of the following LCA-iterations for being a candidate for possible inclu-
sion in the shortest path. Besides the sequence of analysis of candidate
nodes (breadth-first and depth-first search, Dijkstra’s method, etc.), the
adaptation of (3.4) by usage of heuristics (to constrain nodes added to
the candidate list) is the main driver for reduction in computation times
for the discovery of the shortest path.

In the following, we derive a simple heuristic for our application in
case of straight interior lane-segments. It can be generalized to freeform
interior lanes by transformation to a curvilinear coordinate system.

Proposition 7. Let the shortest path between current node s and target e be
denoted by a list C = [c1, c2, . . . , cl, cl+1, . . . , cl+L−2, cl+L−1] of nodes with
c1 = s and cl+L−1 = e. Then, it holds that

if xθ,s ≤ xθ,e :
{
fmin ≤ xθ,c ≤ fmax, ∀c ∈ C,
xθ,cl+1

≥ xθ,cl , ∀1 < l < l + L− 2,
(3.5)

if xθ,s > xθ,e :
{
fmin ≤ xθ,c ≤ fmax, ∀c ∈ C,
xθ,cl+1

≤ xθ,cl , ∀1 < l < l + L− 2
(3.6)

where fmin = max{xlast,min
θ −∆xθ, x

min
θ } and fmax = min{xlast,max

θ +∆xθ, x
max
θ }.

Proof. Let us consider the case xθ,s ≤ xθ,e. The proof is analogous for
xθ,s > xθ,e, and is by contradiction. By construction of the transition
graph, at every node i ∈ N with {j ∈ N : Tij 6= ∞, i ilep}, there exists
at least one j such that xθ,j ≥ xθ,i and another j such that xθ,j ≤ xθ,i.
Thus, a traverse along the nodes connecting interior lane-segments of the
transition graph in one of the two monotonous xθ-directions is always
possible. Assume now the shortest path is such that at stage l and node
cl we move to node cl+1 with xθ,cl+1

< xθ,cl . Then, to reach node xθ,e >
xθ,cl+1

, the shortest path must pass level xθ,cl at a stage l + h > l + 1 > l

187

with h > 1 because of the connectivity of the graph. By the fact that
all nodes {i ∈ N , i ilep} can be reached by traversing monotonously, we
have a contradiction with respect to above assumption about the shortest
path. The relation fmin ≤ xθ,c ≤ fmax, ∀c ∈ C is then by construction a
consequence considering additionally the auxiliary nodes.

Note that Proposition 7 does not explicitly address the transition di-
rections from and to the starting and exit node, respectively. In general,
no a priori rule can be applied since starting and exit nodes may also lie
in between two interior lane end-points, and, e.g., in indentations, bays
or along highly non-convex perimetric lane-segments.

Proposition 7 further implies that a shortest path from node s to e

does consequently not include any turning on the spot, except at most
one, at the very beginning at node s.

Proposition 7 can be employed as a heuristic for an efficient imple-
mentation of LCA. Thus, any node entering the candidate list must sat-
isfy not only (3.4), but additionally (3.5) in case of xθ,s ≤ xθ,e and (3.6) in
case of xθ,s > xθ,e.

For DP, iterations (3.2) and (3.3) may be terminated once all nodes
with xθ for which fmin ≤ xθ ≤ fmax holds have been covered. Alter-
natively, the DP-solutions for traversing from all nodes, except s, to the
target node e can be stored offline in a look-up table. Then, online the two
nodes neighboring the current position s are determined and the corre-
sponding shortest paths starting from both of these neighboring nodes
are looked up. The path lengths from the current position are added
respectively, and the shorter solution of the two is ultimately selected.

Vehicle Motion Constrained by Operation Corridors

Shortest path planning under consideration of the current heading direc-
tion of the ground vehicle, and not permitting any turning maneuvers on
the spot due to tight operation corridors, can easily be addressed by con-
straining the node immediately following after the starting node. Thus,
besides c1 = s and cl+L−1 = e, we additionally fix c2 within the short-
est path as the node towards the vehicle is invariably heading given the
current starting position and orientation.

188

3.4.3 Navigation in Agricultural Fields

Repressed Area Minimization Constraint

For the coverage of agricultural fields growing, e.g., wheat, rapeseed
and similar crops, the transition from an interior lane-segment (lane) to
the perimetric tractor-lane (headland path) is in practice smoothed by the
agricultural machinery, mostly due to its limited turning radius. For au-
tonomous tractor guidance, a corresponding trajectory design approach
is presented in [152]. Once a coverage path has been established, see Fig-
ure 59 for illustration, it is reasonable to always follow it at every work-
ing iteration on that specific field. The reason is repressed area minimiza-
tion. Consider Figure 59. Suppose instead of driving along the estab-
lished traces 31 → 12 → 11, the ground vehicles covers 31 → 12 → 13.
Then, at the interior lane-segment 31 → 12 a small new tractor trace
would be created, thereby repressing the crop at that location. While it
may appear negligible at first sight, it is avoidable and may become very
relevant in the sum for all lanes. This is since Lloss = 2 · lrepr · wt · ggain,
where Lloss [$], lrepr [m], wt [m] and ggain [$/m2] represent total monetary
loss due to area repression by tractor traces, the total length of repress-
ing tractor traces, the tire width, and the normalized gain for a particular
crop, respectively.

The finding of shortest paths under the repressed area minimization con-
straint may become necessary for the refilling of fertilizers and spraying
applications at a farm basis or a mobile depot located outside the agricul-
tural field boundary. In the following, we present a solution approach.

Solution Approach and Algorithm

Let the target node (field exit) be located somewhere along the perimetric
lane and the current tractor position anywhere along the tractor traces.
We create a transition graph as in (3.1). Additionally, we store all ad-
missible transitions composed of three nodes in a list U . For example,
regarding Figure 59, transitions 11→ 12→ 31, 14→ 13→ 12, etc. are al-
lowed, i.e., [11, 12, 31] ∈ U . In contrast, 13→ 12→ 31 and 31→ 12→ 13

are not. We further define η = [s, c2, e], where c2 represents the node to-

189

Figure 60: Illustration of the deadlocking principle resulting from the re-
pressed area minimization constraint.

wards which the vehicle is invariably heading given the current starting
position and orientation (analogously to the case of constrained vehicle
motion due to operation corridors as discussed in Section 3.4.2).

For our purpose we employ a modified LCA with breadth-first search,
to which we refer as “LCAmod” in the following. Suppose we are cur-
rently analyzing transition i → j for being element of the shortest path
from s to e. Then, in the basic LCA implementation test (3.4) is con-
ducted, and, in case of satisfaction, node j is added to the candidate
list for further analysis of transitions starting from j. In contrast, in
LCAmod, we add j to the candidate list only if (3.4) and [ik−1, i, j] ∈ U
both hold, whereby ik−1 denotes the current parent-node (predecessor
node) of i. We employ LCAmod as outlined in Algorithm 13, where “−”
denotes one or multiple unused return values of a function call.

Feasibility or existence of a path from s to e can always be guaranteed.
This is since there is always the solution of transitioning from s to the
perimetric tractor-lane and consequently following it until the reaching
of e. Noting further that T is created with nonnegative arc costs (here
path lengths), it is obvious that there exists a shortest path from s to
e. Nevertheless, the single application of LCAmod is not guaranteed
to find it. To see this, Figure 60 serves as illustration. The transition from
node b to a directly will always be shorter (straight line) than via node
i. Thus, the transition i → a will be discarded when subsequently an-
alyzed as a candidate. As a result, a deadlock is reached at node i and
no path is determined with segment i → a → “to e”, eventhough it ob-

190

viously exists and may even be optimal. To resolve these (and similar)
deadlocks, we propose a restart of LCAmod. Suppose the node removed
last from the candidate list is i with parent-node b. Then, instead of at-
tempting to solve η = [s, c2, e] by one LCAmod-call, we try solving two
LCAmod-calls with η(1) = [s, c2, b] and η(2) = [b, i, e]. A solution to η(1)

is guaranteed to be found by one LCAmod-call. In contrast, η(2) may
result in another second deadlock (which we resolve by another restart
of LCAmod). Nevertheless, the primary deadlock (transition i → a) is
guaranteed to be overcome. It remains to ensure that the node removed
last from the candidate admits together with its parent-node a transi-
tion along the perimetric path. (For the illustrating example in Figure
60, node a may also be the node removed last). To ensure this particular
transition, we therefore employ the heuristic, that, in case of a deadlock,
the node removed last must together with its parent represent a transi-
tion along a perimetric lane-segment. Note that more than one restart
may be required to find a path from s to e dependent on the complex-
ity of the perimetric contour. Imagine, for example, the case of highly
non-convex field shapes with multiple larger bays or indentations. Note
that, however, when employing specific heuristic field coverage patterns
repeatedly on regularly shaped fields, upper bounds on required restarts
can be given. Some heuristic field coverage patterns are much more suit-
able than others. A particularly suitable pattern is displayed in Figure
57. It is discussed in detail in [145].

As outlined above, LCAmod may not immediately in one iteration
find a solution to our shortest path problem. We therefore abbreviate the
input-output relation of one LCAmod-function call as

(UPPER, C, dẽ, i, ik−1) = f(s, c2, ẽ, T,U),

where i and ik−1 refer to the node removed last from the candidate list
and its parent when UPPER = ∞, respectively. The cost for the shortest
path transition from s to ẽ is denoted by dẽ. Usually we have ẽ = e. How-
ever, as described in Algorithm 13, we may also solve for subproblems
with different temporary target nodes. UPPER always refers to the cost
to the original target node e.

191

Algorithm 13: Shortest Paths in Agricultural Fields

1 Input: transition graph T , node numbers s, c2 and e, and all
lane-segment coordinates.

2 for every node n of Nn nodes adjacent to e do
3 Create a copy Tc of T , cut all connections to e except n→ e and

conduct all following operations on Tc.
4 Initialize UPPER =∞, d(n)

e = 0, C(n) = empty list.
Set s̃ = s and c̃2 = c2.

5 while UPPER==∞ do
6 (UPPER, C(n)

e(0) , d
(n)

e(0) , i, ik−1) = f(s̃, c̃2, e, Tc,U).
7 if UPPER ==∞ then
8 (−, Ce(1) , de(1) ,−,−) = f(s̃, c̃2, ik−1, Tc,U).
9 (UPPER, Ce(2) , de(2) ,−) = f(ik−1, i, e, Tc,U).

10 if UPPER ==∞ then
11 Concatenate Ce(1) to C(n).
12 Compute d(n)

e = d
(n)
e + de(1) .

13 Set s̃ = ik−1 and c̃2 = i.

14 else
15 Concatenate Ce(1) and Ce(2) to C(n).
16 Compute d(n)

e = d
(n)
e + de(1) + de(2) .

17 else
18 % Shortest path found in one iteration.
19 Set C(n) = C(n)

e(0) and d(n)
e = d

(n)

e(0) .

20 Among the Nn solutions, select the one with shortest total path
length de from s to e, and return the corresponding shortest
path-coordinates suitable for navigation-aid or a fully
autonomous tractor system application.

192

Proposition 8. The shortest path problem within agricultural fields under re-
pressed area minimization constraints can be solved optimally by Algorithm 13.

Proof. For our application the heading direction is important. We can
distinguish between two cases. If a transition is from an interior lane-
segment (interior-to-perimetric) then there always exists exactly one op-
tion to traverse to the perimetric lane. In contrast if a transition is from
the perimetric lane (perimetric-to-interior), there are either one or two op-
tions dependent on the immediately ahead available lane-to-interior trac-
tor trace transition: we can always follow the perimetric lane, and poten-
tially may turn towards an interior lane-segment.

Any interior lane-segment connects two parts along the perimetric
lane. Because of the breadth-first search for the removal of nodes from
the LCAmod-candidate list for further analysis, both of these parts along
the perimetric lane will be analyzed alternately after the first available
interior-to-perimetric transition. Following above reasoning, this first
interior-to-perimetric traversal initiates further a unique transition direc-
tion, clockwise (CW) or counter-clockwise (CCW), at two points, referred to
as ξ1 and ξ2, along the perimetric lane. We introduce the binary variable
γ(ξ) ∈ {0, 1} to indicate the transition direction as CW and CCW, respec-
tively, initiated at ξ. Thus, because of the aforementioned perimetric-to-
interior property, it is now possible to always follow the perimetric lane
starting from both ξ1 and ξ2. We can now further distinguish between
two scenarios: it may occur γ(ξ1) == γ(ξ2) or γ(ξ1) 6= γ(ξ2). In the for-
mer case, then it is easy to see that the target node is guaranteed to be
reached without having to restart LCAmod. However, no remark about
potential optimality can yet be made. In the latter case, a deadlock may
result, but does not necessarily have to. In case of a deadlock, it can be
resolved by restarting LCAmod as discussed above. By Bellman’s princi-
ple of optimality the shortest path between two general locations A and
C can in general not be described by the concatenation of, first, the short-
est path from A to another location B, and, then, the shortest path from
B to C. However, it is the case if a transition from A to C is not possible
without visitingB. Thus, w.r.t. Algorithm 13, the transition via the dead-
lock node, achieved by restarting, must be the only possibility to find a
path connecting s and e given Tc. This is the case since any other possible
transition would have been detected applying the breadth-first search in
combination with the perimetric-to-interior transitions.

It remains to be shown that only the iteration over various Tc, with
different unique transitions to destination e, yields the shortest path from

193

Figure 61: Resulting shortest paths for the two experiments with an
orchard-like area. (b) The ground vehicle is initially heading along the cur-
rent interior lane towards negative x- and y-direction. There are two ad-
missible exit points. In both cases (a) and (b), the exit node with smaller
y-coordinate resulted in a slightly shorter traveling distance starting from s.
The path lengths for the displayed shortest paths are (a) 108m and (b) 171m.

s to e. Suppose we use T directly. Then, a path from s to e may be found.
In such a case, all nodes that resulted in a deadlock will have been dis-
carded from the candidate list, eventhough these nodes may have lead
to an overall shorter path. This concludes the proof.

3.4.4 Numerical Experiments

Orchard-like Areas

We consider a real-world orchard in Northern Germany with an inter-
row space of 3.5m (operating width), see Figure 61. For the case of mul-
tiple target nodes, we solve the shortest path problem for all of them,
before determining the best solution. Algorithmic runtimes are given
in Table 6. The LCA-based methods use breadth-first search. We com-
pared breadth-first, depth-first and Dijkstra’s graph search method and
found breadth-first to be fastest. Eventhough the LCA-heuristic reduces
the number of iterations for the given example, it was slightly slower be-
cause of the overhead in additional condition checking. All simulations
are conducted on a laptop running Ubuntu 14.04 with an Intel Core i7
CPU @2.80GHz×8, 15.6GB of memory, and using MATLAB 8.6 (R2015b).

194

Figure 62: Resulting shortest paths for experiments within an agricultural
field under the repressed area minimization constraint. The initial heading
of the ground vehicle along the current interior lane towards positive and
negative x- and y-direction is indicated by ψ(+)

0 and ψ(−)
0 , respectively. The

total path length and number of restarts required are lp and Nrestart, respec-
tively. Three different scenarios are displayed.

Agricultural Fields

Simulation results for a real-world agricultural field in Northern Ger-
many with an operating width (inter-row space) of 24m are displayed in
Figure 62. Numerical results are given in Table 7. Interestingly, because
of the stringent repressed area minimization constraint check, very few
nodes were ultimately added to the candidate list resulting in very fast
computation times. For every immediate neighbor of e, a solution is an-
alyzed as outlined in Algorithm 13. The target node for the third exper-
iment in Figure 62(c) has three immediate neighbors. In contrast, for the
other two examples in Figure 62(a) and Figure 62(b), there are only two
nodes immediately neighboring the exit node. This is the reason for the
larger number of 215 required iterations in the third experiment. As in-
dicated in Figure 62(c), despite a local proximity of start and target node,
the shortest path between them under the repressed area minimization
constraint may be considerably longer and less intuitive.

3.4.5 Conclusion

We presented methods for shortest path finding for ground vehicle oper-
ation in agriculturally used areas. It was distinguished between interior

195

Table 6: Comparison of algorithms for the experiment with an orchard-like
area, see Figure 61. The number of required iterations and total computation
time [ms] is denoted by Niter and τ̄total, respectively. Results for both Figures
in 61 are given.

DP LCA-baseline LCA-heuristic
Figure 61(a) Niter/τ̄total 10/70.4 44/4.4 20/6.1
Figure 61(b) Niter/τ̄total 11/183.7 54/4.3 20/6.5

Table 7: Comparison of the LCAmod-results for the three experiments dis-
played in Figure 62. The total number of required LCAmod-iterations and
corresponding CPU-time [ms] is denoted by Niter and τ̄total, respectively.

Figure 62(a) Figure 62(b) Figure 62(c)
Niter/τ̄total 54/11.5 114/3.3 215/5.2

lanes and perimetric paths. Constraints such as admittance of an instan-
taneous turn of the vehicle and, the usage of only already existing tractor
traces for repressed area minimization were discussed. Corresponding
solution approaches based on dynamic programming and customized
label correcting algorithms were given.

3.4.6 Hierarchical Controller Parametrization

The control layer is parameterized by Algorithm 13, which is based on
the transition graph T .

196

3.5 Coupling of Crop Assignment and Vehicle
Routing for Harvest Planning in Agriculture

This section is based on [144]:

• M. Graf Plessen, “Coupling of crop assignment and vehicle routing
for harvest planning in agriculture,” arXiv preprint arXiv:
1703.08999, 2017. (Submitted).

A method for harvest planning based on the coupling of crop assign-
ment with vehicle routing is presented. Given multiple fields (up to
hundreds), a path network connecting fields, multiple depots at which
a number of harvesters are initially located, the main question addressed
is: Which crop out of a set of different crops to assign to each field?
It must be answered by every farm manager at the beginning of ev-
ery work-cycle starting with plant seeding and ending with harvesting.
Rather than solving a pure assigment problem, we also account for con-
nectivity between fields. In practice, fields are often located distant apart.
Traveling costs of machinery and limited harvesting windows demand
optimized route planning. The proposed method outputs crop assign-
ment to fields and simultaneously determines an optimized sequence in
which to service fields of the same crop during harvest. We derive integer
programming (IP) based exact algorithms. For a large numbers of fields
where exact algorithms are not tractable anymore, elements of clustering
and the solution of local Traveling Salesman Problems (TSP) are added that
render the method heuristic, but also large-scale applicable.

3.5.1 Introduction

Agriculture is a diverse field ranging from biotech to autonomous robots
and finance. At its core, it is related to logistics. According to [2], there
are four main functional areas for the agri-food supply chain: produc-
tion, harvesting, storage and distribution. This work focuses on model-
based production planning. In fact, in view of recent plunges of agricul-
tural commodity prices [113], that threaten the sustainability of not few

197

farmers, efficiency improvements in production are important to mini-
mize unnecessary costs. The decision on the assignment of crops to fields
is crucial in that it determines the complete work-cycle. In common prac-
tice today, crops are manually clustered according to geographical loca-
tion and often selected accounting for crop rotation [175] (for reducing
soil erosion and increasing soil fertility). The spatial clustering is done for
faster harvesting. A trend among farmers in Europe is to collaborate in
form of limited companies for sharing of machinery. Not seldomly con-
flicts arise about the sequence in which to harvest multiple fields of iden-
tical crops but various owners. This work is motivated by providing rem-
edy to both the currently as wide-spread and approximate as crucially
important practice of crop assignment and the aforementioned conflicts
between collaborating farmers by providing a structured methodology.

The basic multiple Traveling Salesman Problem (mTSP) describes the ob-
jective of finding total tour cost-minimizing routes for m salesmen that
all start and end at a single depot, and all vertices are visited once by
exactly one salesman, see [31]. Nonnegative edge cost can refer to, e.g.,
monetary, space or time units. When accounting for various demands at
each vertex and limiting the capacity of vehicles (salesmen), the problem
is referred to as the capacitated Vehicle Routing Problem (VRP). Variations
include the VRP with time windows, with backhauls and with pickup
and delivery, see [357]. The applications are manifold. For vehicle rout-
ing with real-time informations, see for example [219] and the references
therein. Recently, there has been increased interest in applying logisti-
cal optimization in agriculture for scheduling, routing and fleet manage-
ment [27], [111], [266], [83], [345]. Special focus was on the coordination
of machinery teams distinguishing between primary (harvester) and ser-
vice (transport) units referred to as PUs and SUs, see [56], [199], [335],
[299]. All of these references assume that fields with assigned crops are
given. To the author’s knowledge, the optimized assignment of crops to
fields and simultaneously accounting for vehicle routing and other con-
straints for optimized harvest planning has not been discussed in the
literature. We propose such strategic assignment to be conducted once at
the beginning of the work-cycle, thereby decisively affecting the complete

198

Figure 63: Visualization of three key components for planning: multiple
fields, a path network connecting the fields, and multiple depots. At each
depot, multiple harvesters may initially be based (fourth key component).

agricultural production-cycle. The second step involves coordinations of
PUs and SUs, exploiting all of the aforementioned references, and is to
be conducted at the end of the work-cylce during harvest.

3.5.2 Problem Formulation and Notation

Problem Formulation

For optimized harvest planning in agriculture, we consider four key in-
frastructural components illustrated in Figure 63. See also Figure 64 for
problem visualization. At the beginning of every seasonal work-cycle,
a crop has to be assigned to all available fields, and the following four
interrelated questions must be addressed:

1. Which crop to optimally assign to each field?

2. In what sequence to optimally service all fields during harvest?

3. How to optimally dispatch multiple harvesters that initially may be
located at multiple depots to the multiple fields?

4. Which fields should be serviced, and which leased instead, and at
what prices?

199

Figure 64: Problem visualization. Yellow markers indicate fields to be
served by collaborating farms. Overall, there are 85 fields. The satellite
image shows an area of 15.9 × 16.3km. The path network connecting the
fields is curvy and often along rural gravel roads only permitting slow trav-
eling speeds. The overall field coverage area is more than 1700ha. Traveling
distances between pairs of fields is between meters up to dozens of km.

The first question decides the complete seasonal work-cycle of the farm.
For optimized harvest planning, its answer must simultaneously account
for questions 2) to 4).

Optimization problems are derived that permit to input parameters
such as, e.g., yields per field and crop. The selection of these parameters
largely determines the output of the optimization, and should be based
on a modeling step involving historical data (experience). Then, at the
end of the work-cycle at harvest, deviations from initial modeling typi-
cally have occurred. For example, the actual amount of crop harvested

200

per field is different from the predicted one, and weather is influencing
potential harvesting-windows. Thus, at the end of every work-cycle, the
aforementioned second step becomes relevant, which then involves the
coordination of PUs and SUs [143]. Below, we focus on planning at the
beginning of the (yearly) work-cycle1.

Notation

Let us introduce notation mainly adopting [357]. We denote a complete
graph G = (V,A), where V = {0, . . . , D− 1, D, . . . ,D+L− 1} and A are
vertex and arc set, respectively. The cardinality of a set of vertices is de-
noted by | · |. Vertices i ∈ D = {0, . . . , D−1} and i ∈ L = {D, . . . ,D+L−
1} correspond to D depots and L fields. The corresponding geographi-
cal coordinates are denoted by Pl = (Xl, Yl) ∈ R2, ∀l ∈ L, and similarly
Pd, ∀d ∈ D. The K difference crops are indexed by K = {0, . . . ,K − 1}.
Let the number of harvesters located at a depot and suitable for a crop
be denoted by Nharv,k

d , ∀d ∈ D, ∀k ∈ K. Let the normalized traveling
cost per harvester and crop k between a depot d and a field j or between
two fields i and j be denoted by c̃kdj and c̃kij , respectively. Abbreviating
Nharv,k =

∑
d∈DN

harv,k
d , we define traveling costs as follows:

ckij = Nharv,k c̃kij , ∀i, j ∈ L, ∀k ∈ K, (3.7)

ckdj = Nharv,k c̃kdj , ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.8)

ck,kmin
dj =

∑

d̃∈D

Nharv,k
d̃

c̃k
d̃j
, ∀j ∈ L, ∀k ∈ K. (3.9)

Furthermore, we define ckjd and ck,kmax
jd similarly to (3.8) and (3.9), re-

spectively. Note that traveling costs along the same geographical paths
may vary for different k due to different crop-dependent operating ma-
chinery. The (expected) revenue from growing and marketing of crop
k ∈ K on field l ∈ L is denoted by rkl . We assume a fixed cost of γ is in-
curred for every additional crop. Maintenance cost per depot are given
by nd, ∀d ∈ D. All costs shall be in monetary units.

1In general, different crops may have different (not necessarily yearly) work-cycle dura-
tions. In Northern Germany and for the crops considered (barley, rapeseed and wheat), the
typical work-cycle duration (from preparation to harvesting) is assumed as one year.

201

Let us discuss decision variables. We distinguish between two major
classes: natural and auxiliary decision variables. The first class comprises
binary xkij ∈ {0, 1},∀i, j ∈ V,∀k ∈ K with xkij = 1 indicating arc (i, j)

to be element of the optimal route for crop k. Symmetries are exploited
whenever possible, i.e., xkji is dismissed whenever xkji = xkij . For the
symmetric case, we also assign xkdj ∈ {0, 1, 2},∀d ∈ D,∀j ∈ L, ∀k ∈ K,
thereby indicating a visit of only field j for route corresponding to crop
k. Further, there are binary δkl ∈ {0, 1},∀l ∈ L,∀K, with δkl = 1 indicating
that crop k is assigned to field l. Integer m is such that 1 ≤ m ≤ K

indicates the number of active crops in the optimal solution. As will
be shown, auxiliary decision variables result from incorporating logical
constraints into integer problems.

3.5.3 Problem approach

Framework and Approach

Assumption 2. Different crops have different non-overlapping harvesting times.

Assumption 3. Throughout the harvest of any crop, harvesters are usually
refueled and maintained on fields (i.e., there is no intermediate return to depots).

Based on Assumptions 2 and 3, we approach above problem for-
mulation using a mTSP-framework [31]. A route for each crop (crop-
tour) and the fields correspond to a traveling salesman route and cities
to be visited, respectively. Eventhough m routes (one for m crops) are
planned simultaneously, the sequential harvesting times ultimately per-
mit the framework. The mTSP-problem requires modifications to com-
bine with crop assignments and to account for more specialized con-
straints. To name just one example, a state space extension is required,
i.e., adding the crop-dimension k to obtain xkij instead of xij used in ba-
sic mTSP-formulations. We employ an integer programming (IP) frame-
work for its ability to incorporate various constraints.

Clustering

A useful tool for us is grouping or clustering of fields, e.g., via the k̃-
means algorithm [173]. As will be discussed below, it enables to upscale

202

the number of fields that can be handled in a structured manner coupling
crop assignment and route planning.

Pure Assignment Problems

The most basic IP for pure crop assignment to fields (without accounting
for routing) is:

min −
∑

l∈L

∑

k∈K
rkl δ

k
l (3.10a)

s.t.
∑

k∈K
δkl = 1, ∀l ∈ L, (3.10b)

δkl ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K. (3.10c)

Under additional assumptions rkl = rk, ∀l and rk 6= rj , ∀k 6= j, its
optimal solution always assigns the most profitable crop (with largest
rk) to all fields. Let us discuss types of constraints that can be added.

First, we mention hard equality constraints motivated, for example,
by crop rotation [175] or soil considerations (specific soils only admit spe-
cific crops),

δkl = 0, ∀(l, k) ∈ R, (3.11)

where R denotes a set of prohibited field/crop-combinations. Through-
out, we assume that R = {(l, k) :

∑
k∈K δ

k
l > 0, ∀l ∈ L}, i.e., for every

field there is at least one crop always admissible.
Second, we mention diversification inequality constraints

∑

l∈L
gkl δ

k
l ≤ Gk, ∀k = 0, . . . ,K − 2, (3.12)

with gkl ≥ 0 denoting weights (for example the hectares-coverage or re-
quired production means for field l and crop k) and Gk ≥ 0 the corre-
sponding crop-related bounds, thereby diversifying crop-growth. Note
that one crop k = K− 1 was left unconstrained for feasibility. In general,
when combining both aforementioned hard and inequality constraints
without additional precaution, feasibility of the resulting IP cannot be
guaranteed. Infeasibility results if these constraints enforce

∑
k∈K δ

k
l = 0,

thereby violating (3.10b).

203

When including both crop rotation and diversification constraints, re-
placing (3.10a) by the relaxation

∑
k∈K δ

k
l ≤ 1 always guarantees feasi-

bility of (3.10). This is since these constraints can always be satisfied by
δkl = 0.

Proposition 9. The solution of the LP-relaxation of IP (3.10), and also includ-
ing crop rotation constraints (3.11), is integer feasible, and thus solves these
problems as well.

Proof. We can easily summarize the IP as min{cTx : Ax = b, xl ∈ {0, 1},
∀l = 0, . . . ,KL−1}. Its LP-relaxation reads min{cTx : Ax = b, x ≥ 0}. By
[332], if Ã is totally unimodular, the LP min{c̃Tx̃ : Ãx̃ = b̃, x̃ ∈ Rn+} has an
integral optimal solution for all integer vectors b̃ for which it has a finite
optimal value. It thus remains to show that A associated with the LP-
relaxation of our IP is totally unimodular. By [180], a matrix A is totally
unimodular if: (i) each entry is 0, 1 or −1; (ii) each column contains at
most two non-zeros; (iii) the setN or row indices of A can be partitioned
into N1 ∪ N2 such that in each column l with two non-zeros we have∑
m1∈N1

am1l =
∑
m2∈N2

am2l. Condition (i) is trivially true from (3.10b)
and (3.11). Regarding (ii), (3.10b) implies exactly one nonzero coefficient
equal to 1 per column; to which, by (3.11), at most one more nonzero
coefficient equal to 1 is added. For (iii), we partition sets N1 and N2

according to constraints (3.10b) and (3.11). Then
∑
m1∈N1

am1l = 1 and∑
m2∈N2

am2l = 1 using the previous argument for (ii). This concludes
the proof.

The consequence of Proposition 9 is that very large instances (with
many fields and crops) of (3.10) with (3.11) can easily be solved. This
is since there exist very efficient linear programming solvers. As a re-
mark, the aforementioned inequality relaxation of (3.11) does not affect
the totally unimodular property. This is since slack variables sl can be
introduced such that

∑
k∈K δ

k
l + sl = 1, sl ∈ {0, 1}, ∀l ∈ L. They are not

affecting (3.12), and thus a similar corresponding proposition and proof
can be formulated. In contrast, adding diversification constraints (3.12),
in general, render the LP-relaxation to not be integer feasible anymore.

204

TSP with Different Start and End Node

A useful tool for us is the TSP with different start and end node. As will
be outlined below, it is employed for the routing within clusters of fields
planting the same crop. Therefore, dropping superscript k, the IP is:

min
∑

i<j

cijxij (3.13a)

s.t.

N−2∑

j=1

x0j = 1,

N−2∑

j=1

xjN−1 = 1, (3.13b)

∑

i<j

xil +
∑

l<j

xlj = 2, l = 1, . . . , N − 2, (3.13c)

∑

i<j;i,j∈S
xij ≤ |S| − 1, 3 ≤ |S| ≤ N − 3,

∀S ⊆ V\{0, N − 1}, (3.13d)

xij ∈ {0, 1}, 0 ≤ i < j, j = 1, . . . , N − 1, (3.13e)

whereby we here set node 0 and N − 1 as start and end node among
a cluster of N nodes. Constraints (3.13b) and (3.13c) indicate that start
and end node are incident to one edge, and all other nodes incident to
two, respectively. Under the assumption of symmetric edge weights, the
subtour elimination constraints (SECs) [239] are given by (3.13d).

A Remark to Incorporating SECs in Integer Programs

Formulation (3.13) as well as the IPs following in Section 3.5.4 include an
exponential number of SECs [239]. We approach SECs in form of separa-
tion algorithms [303], i.e., by adding SECs sequentially as they are needed.
With regard of (3.13), we start by solving it without (3.13d). If the result
does not return any subtour, we have found the optimal solution. Oth-
erwise, all detected subtours are added to (3.13) as SECs, and the IP is
solved again. This is repeated until a solution without subtours is found
(the optimal solution), or a maximal number of SEC-iterations is reached.

205

Harvesters Traveling as a Group

Remark 7. Assume that all of multiple harvesters are initially located at one
depot to which they must return after processing all fields associated with a crop.
An optimal policy is that all harvesters cover the fields together as a group, i.e.,
without distributing harvesters among different fields of the same crop.

Proof. Harvesters are not constrained by each other. They can always
work in parallel on each field. The asymmetric case with fields ripening
at different times already implies a unique optimal working sequence.
For the symmetric case, an optimal route includes exactly two edges in-
cident to the depot vertex. By symmetry it is thus always an optimal
solution that all harvesters travel as a group. Any other initial distri-
bution of harvesters to fields not connected to the depot vertex along
the two aforementioned edges is already suboptimal by nonnegativity of
traveling costs.

The concept of multiple harvesters traveling as a group according to
Remark 7 bears more advantages. In general, SUs must ideally be op-
erated such that PUs (harvesters) can operate continuously to avoid any
waiting times. The rate at which harvesters are filled is not perfectly
predictable due to varying crop returns, even within fields. Having con-
centrated all SUs to one field is beneficial for robustness in that multiple
harvesters can be served (instead of specific SU-PU couples) according to
short-term freed capacities. Another advantage is the facilitated super-
vision by the farm-manager.

Remark 7 has further implications for the general setting in which
multiple harvesters are initially distributed at multiple depots. Opti-
mization can be conducted depot-wise (instead of single harvester-wise).
Besides this, no general a priori remark about routing of harvester groups
(depot groups) can be made. One heuristic is that all harvesters assem-
ble at the first field of a crop-route and then proceed group-wise. Such
method is motivated by the fact that a timely agreement on harvest-start,
e.g., a day ahead, permit all depot-groups to plan the travel in time and
consequently start field and route coverage coordinatedly. In general,
though, a distributed assignment of depot groups to fields is optimal.
Consider depots distant apart with fields clustered around each depot.

206

Logical Constraints

The integration of logical constraint in optimization problems is discussed
in Section 1.3. Three classes of logical constraints are of particular inter-
est. As indicated, these can be translated into integer linear inequalities.

Priority Constraints

To account for a priori experience about different sequences in ripeness of
fields, priority constraints can be formulated. For example, relating to un-
certainties, the sequence in which fields of the same crop ripe may vary,
e.g., due to hillsides and varying soil. W.l.o.g., consider a statement such
as “if fields a, b, and c are among the ones assigned to crop k, then the
corresponding sequence for harvest shall be in order c, a and b”. This can
be modeled as xkca = δkc δ

k
a and xkab = δkaδ

k
b and can be translated to linear

integer inequalities by means of (1.10). Thus a sequential node-by-node
procedure (first vertices (c, a), then (a, b), etc.) is recommended. Note
that an asymmetric edge model has to be employed for all connections
between vertices for which priorities are defined. For above example,
we require xkca 6= xkac. Otherwise, there is no direction information.

3.5.4 Problem Solution

Integer Linear Programming

We propose eight integer linear programs, denoted by IP-n, n = 1, . . . , 8.
IP-n and IP-(n+ 4) for n = 1, . . . , 4 are identical except that for the latter
four, all K crops are enforced to be included in the solution, whereas the
former four are formulated to also permit only any subset of K crops.
This distinction has significant influence on computational complexity
and problem formulation as will be shown. Throughout this section, we
use indices according to d ∈ D, i, j, l ∈ L and k ∈ K. Because of Assump-
tion 2, we order crops in K such that a low index indicating an earlier
harvesting time. Throughout, for the procedure of solving IPs, the SECs
are handled as outlined in Section 3.5.3.

207

IP-1. Let there be one depot d ∈ D from which all harvesters start
and to which all harvesters return after each crop-route. According to
Remark 7, all harvesters are dispatched as a group. We therefore propose
the following IP:

min
∑

k∈K

∑

j∈L
ckdjx

k
dj +

∑

k∈K

∑

i<j

ckijx
k
ij −

∑

l∈L

∑

k∈K
rkl δ

k
l

+ γm+ ndηd (3.14a)

s.t. xkdl +
∑

i<l

xkil +
∑

l<j

xklj = 2δkl , ∀l ∈ L, ∀k ∈ K, (3.14b)

∑

k∈K
δkl = 1, ∀l ∈ L, (3.14c)

∑

k∈K

∑

j∈L
xkdj = 2m, (3.14d)

∑

i<j;i,j∈Sk
xkij ≤ |Sk| − 1, 3 ≤ |Sk| ≤ N − 1,

∀k ∈ K, Sk ⊆ V\{d}, (3.14e)

xkdj ∈ {0, 1, 2}, ∀j ∈ L, ∀k ∈ K, (3.14f)

xkij ∈ {0, 1}, 0 ≤ i < j, ∀k ∈ K, (3.14g)

δkl ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K, (3.14h)

1 ≤ m ≤ K, (3.14i)

with decision variables xkdj , x
k
ij , δ

k
l , m and assuming symmetric edge

costs. In case of asymmetry regarding the traversal to and from depot
vertices, we can replace

∑
d∈D x

k
dl and xkdl ∈ {0, 1, 2} with

∑
d∈D x

k
dl +∑

d∈D x
k
ld and xkdl, x

k
ld ∈ {0, 1}, and similarly adopt (3.14d). Diversifica-

tion, crop rotation and priority constraints discussed in Section 3.5.3 can
easily be added. Similarly, constraints on the total traveling cost per crop
can be formulated. For example, for constraints on traveling time we can
formulate

∑

d∈D

∑

j∈L
hkdjx

k
dj +

∑

i<j

hkijx
k
ij ≤ T kwin −

∑

l∈L
T harv,k
l δkl , ∀k ∈ K (3.15)

where, for generality, we assumed the multi-depot case, and where hkdj

208

and hkij denote travel time along corresponding edges, T kwin the harvest-
ing window for crop k (typically multiple days), and T harv,k

l the required
harvesting time (typically proportional to number of active harvesters)
per field l and crop k. For a large number of fields, (3.15) become cru-
cial because of limited harvesting time windows. In fact, in combination
with the partial service constraints outlined in Section 3.5.5 they are cen-
tral to limiting the maximum number of fields that should be serviced
to still add monetary value. Note that without additional precaution or
the relaxed service constraints to be discussed in Section 3.5.5, (3.15) may
invoke infeasible IPs. IP (3.14) has nz = KL+K

∑L−2
q=0 L−1−q+KL+1

integer decision variables. Term ndηd in (3.14a) is constant since one de-
pot is considered only. Constraints (3.14b) in combination with (3.14c)
indicate that every field l is assigned exactly one crop k, and every field
is incident to exactly two edges. Thus, these type of constraints couple
crop assignment with vehicle routing. Constraint (3.14d) enforces the de-
pot node to have exactlym edges incident, wherem is a decision variable
according to (3.14i). Under the assumption of symmetric edge weights,
the SECs are given by (3.14e). By construction, any subtour is associated
with exactly one crop k ∈ K.

IP-2. Harvesters start the first crop-route from multiple depots. After
each crop-route they must return to their original start depots. For IP-2,
and under the assumption of symmetric traveling costs, we model ckdj =

ck,kmin
dj , ∀k ∈ K. The remainder of IP-2 is identical to (3.14).

209

IP-3. Among a group of multiple available depots we seek the opti-
mal selection. We assume that after every crop-route all harvesters will
consequently start from and return to the optimal depot selection. The
following IP is therefore proposed:

min
∑

d∈D

∑

k∈K

∑

j∈L
ckdjx

k
dj +

∑

k∈K

∑

i<j

ckijx
k
ij

−
∑

l∈L

∑

k∈K
rkl δ

k
l + γm+

∑

d∈D
ndηd (3.16a)

s.t.
∑

d∈D
xkdl +

∑

i<l

xkil +
∑

l<j

xklj = 2δkl , ∀l ∈ L, ∀k ∈ K, (3.16b)

∑

k∈K
δkl = 1, ∀l ∈ L, (3.16c)

∑

k∈K

∑

j∈L
xkdj = 2pd, ∀d ∈ D, (3.16d)

∑

d∈D
ηd = 1, (3.16e)

ηd ≤ pd ≤ Kηd, ∀d ∈ D, (3.16f)

pd ≤ m− (1− ηd), ∀d ∈ D, (3.16g)

pd ≥ m−K(1− ηd), ∀d ∈ D, (3.16h)
∑

i<j;i,j∈Sk
xkij ≤ |Sk| − 1, 3 ≤ |Sk| ≤ N − 1,

∀k ∈ K, Sk ⊆ V\{d}, ∀d ∈ D, (3.16i)

xkdj ∈ {0, 1, 2}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.16j)

xkij ∈ {0, 1}, 0 ≤ i < j, ∀k ∈ K, (3.16k)

δkl ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K, (3.16l)

1 ≤ m ≤ K, (3.16m)

ηd ∈ {0, 1}, ∀d ∈ D, (3.16n)

pd ∈ {0, 1, . . . ,K}, ∀d ∈ D, (3.16o)

with decision variables xkdj , x
k
ij , δ

k
l , m, ηd and pd. IP (3.16) has Nz =

KL + K
∑L−2
q=0 L − 1 − q + KL + 1 + 2D integer decision variables. We

discuss the key distinction w.r.t. IP-1. Since D > 1 is assumed, we model

210

the decision to start from one of the depots as equality constraints
∑

k∈K

∑

j∈L
xkdj = 2mηd, ∀d ∈ D, (3.17)

with xkdj ∈ {0, 1, 2}, ηd ∈ {0, 1}, 1 ≤ m ≤ K and
∑
d∈D η

d = 1. Since
(3.17) is nonlinear, we introduce auxiliary variable pd = mηd, ∀d ∈ D.
By (1.11), this can be translated to linear inequality constraints (3.16f),
(3.16g) and (3.16h). The cost coefficients ckdj are according to (3.8).

IP-4. Harvesters start the first crop-route from multiple depots. Then,
they assemble at the first field for that route and consequently travel as
one group until the last field to be covered for the last crop-route. With
the exception of the last crop-route, all harvesters return to one depot
which is selected optimally among the group of available depots. After
the last field of the last crop-tour, all harvesters return to their original
start depots. We therefore propose:

min
∑

d∈D

∑

k∈K

∑

j∈L
ck,k

min

dj vkdj + ckdjx
k
dj − ckdjvkdj+

∑

d∈D

∑

k∈K

∑

j∈L
ck,k

max

jd wkjd + ckjdx
k
jd − ckjdwkjd

∑

k∈K

∑

i<j

ckijx
k
ij −

∑

l∈L

∑

k∈K
rkl δ

k
l + γm+

∑

d∈D
ndηd (3.18a)

s.t.
∑

d∈D
xkdl +

∑

i<l

xkil +
∑

l<j

xklj +
∑

d∈D
xkld = 2δkl ,

{
∀l ∈ L,
∀k ∈ K, (3.18b)

∑

k∈K
δkl = 1, ∀l ∈ L, (3.18c)

∑

k∈K

∑

j∈L
xkdj + xkjd = 2pd, ∀d ∈ D, (3.18d)

∑

d∈D
ηd = 1,

∑

k∈K
ãk = 1,

∑

k∈K
β̃k = 1, (3.18e)

α̃0 = α0, β̃K−1 = αK−1, (3.18f)
∑

d∈D

∑

j∈L

∑

k∈K
vkdj = 1,

∑

d∈D

∑

j∈L

∑

k∈K
wkjd = 1, (3.18g)

211

and continued

∑

j∈L
xkdj = ηd, ∀d ∈ D, ∀k ∈ K, (3.19a)

∑

j∈L
xkjd = ηd, ∀d ∈ D, ∀k ∈ K, (3.19b)

ηd ≤ pd ≤ K, ∀d ∈ D, (3.19c)

pd ≤ m− (1− ηd), ∀d ∈ D, (3.19d)

pd ≥ m−K(1− ηd), ∀d ∈ D, (3.19e)

1−
∑

l∈L
δkl ≤ 1− αk, ∀k ∈ K, (3.19f)

1−
∑

l∈L
δkl ≥ ε+ (−L+ 1− ε)αk, ∀k ∈ K, (3.19g)

αk + (1−
k−1∑

τ=0

α̃τ)− α̃k ≤ 1, ∀k = 1, . . . ,K − 1, (3.19h)

α̃k ≤ αk, α̃k ≤ 1−
k−1∑

τ=0

α̃τ , ∀k = 1, . . . ,K − 1. (3.19i)

αK−2−k + (1−
1+k∑

τ=1

β̃K−2−k+τ)− β̃K−2−k ≤ 1,

∀k = 0, . . . ,K − 2, (3.19j)

β̃K−2−k ≤ αK−2−k, ∀k = 0, . . . ,K − 2, (3.19k)

β̃K−2−k ≤ 1−
1+k∑

τ=1

β̃K−2−k+τ , ∀k = 0, . . . ,K − 2, (3.19l)

α̃k + xkdj − vkdj ≤ 1, vkdj ≤ α̃k, vkdj ≤ xkdj ,
∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.19m)

β̃k + xkjd − wkjd ≤ 1, wkjd ≤ β̃k, wkjd ≤ xkjd,
∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.19n)

∑

i<j;i,j∈Sk
xkij ≤ |Sk| − 1, 3 ≤ |Sk| ≤ N − 1,

∀k ∈ K, Sk ⊆ V\{d}, (3.19o)

212

with decision variables

xkdj ∈ {0, 1}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.20a)

xkij ∈ {0, 1}, 0 ≤ i < j, ∀k ∈ K, (3.20b)

δkl ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K, (3.20c)

1 ≤ m ≤ K, (3.20d)

ηd ∈ {0, 1}, ∀d ∈ D, (3.20e)

pd ∈ {0, 1, . . . ,K}, ∀d ∈ D, (3.20f)

αk, α̃k, β̃k ∈ {0, 1}, ∀k ∈ K, (3.20g)

vkdj , w
k
jd ∈ {0, 1}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.20h)

xkjd ∈ {0, 1}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K. (3.20i)

For the formulation of crop- and depot-dependent cost coefficients, the
minimum and maximum active crop-indices need to be identified. Let
therefore αk ∈ {0, 1} indicate if crop k is active in the sense of αk = 1 if∑
l∈L δ

k
l ≥ 1. By (1.9), this translates to (3.19f) and (3.19g). We introduced

auxiliary variables α̃k, β̃k ∈ {0, 1} indicating if crop k is the smallest- or
largest-indexed active crop, respectively (k = kmin and k = kmax). It holds
that

∑
k∈K α̃

k = 1 and
∑
k∈K β̃

k = 1. We then derive the nonlinear rela-
tions α̃0 = α0, α̃1 = α1(1 − α̃0), α̃2 = α2(1 − α̃1 − α̃0), . . . , which can be
translated to

α̃0 = α0, (3.21)

αk + (1−
k−1∑

τ=0

α̃τ)− α̃k ≤ 1, ∀k = 1, . . . ,K − 1, (3.22)

α̃k ≤ αk, α̃k ≤ 1−
k−1∑

τ=0

α̃τ , ∀k = 1, . . . ,K − 1. (3.23)

Similarly, starting the iteration from highest k = K − 1 with β̃K−1 =

αK−1, we can derive nonlinear relations for β̃k to ultimately obtain (3.19j),
(3.19k) and (3.19l). Suppose the path-dependent part of the cost function
taking the nonlinear form

∑
d∈D

∑
k∈K

∑
j∈L

(
ck,k

min

dj α̃k + ckdj(1− α̃k)
)
xkdj+

∑
d∈D

∑
k∈K

∑
j∈L

(
ck,k

max

jd β̃k + ckjd(1− β̃k)
)
xkjd with ck,k

min

dj ≥ 0 and

213

ck,k
max

jd ≥ 0 denoting cost-coefficients that are distinct for the first (i.e.,
k = kmin or α̃k = 1) and last (i.e., k = kmax or β̃k = 1) crop-route. Then,
auxiliary variables vkdj ∈ {0, 1} and wkjd ∈ {0, 1} need to be introduced
with

∑
d∈D

∑
j∈L

∑
k∈K v

k
dj = 1 and

∑
d∈D

∑
j∈L

∑
k∈K w

k
jd = 1. They

are related according vkdj = α̃kxkdj andwkjd = β̃kxkjd, ∀d ∈ D, j ∈ L, k ∈ K
and can be translated to integer linear inequalities according to (1.10).
The objective function part above can now be expressed linearly depen-
dent on decision variables, see (3.18a).

IP-5. We fix m = K. Thus, there is one decision variable less w.r.t.
IP-1. IP-5 is identical to (3.14) with few exceptions: γm in (3.14a) is
constant, (3.14i) can be omitted, and constraints (3.14d) are replaced by:∑
j∈L x

k
dj = 2, ∀k ∈ K.

IP-6. We can adopt IP-5 with the exception of modified cost coeffi-
cients according to ckdj = ck,kmin

dj , ∀k ∈ K.

IP-7. We fix m = K in IP-3. As a consequence, (3.17) is rendered
linear and (3.16) simplifies to

min
∑

d∈D

∑

k∈K

∑

j∈L
ckdjx

k
dj +

∑

k∈K

∑

i<j

ckijx
k
ij−

∑

l∈L

∑

k∈K
rkl δ

k
l + γK +

∑

d∈D
ndηd (3.24a)

s.t.
∑

d∈D
xkdl +

∑

i<l

xkil +
∑

l<j

xklj = 2δkl ,

{
∀l ∈ L,
∀k ∈ K, (3.24b)

∑

k∈K
δkl = 1, ∀l ∈ L, (3.24c)

∑

j∈L
xkdj = 2ηd, ∀d ∈ D, ∀k ∈ K, (3.24d)

∑

d∈D
ηd = 1, (3.24e)

∑

i<j;i,j∈Sk
xkij ≤ |Sk| − 1, 3 ≤ |Sk| ≤ N − 1,

∀k ∈ K, Sk ⊆ V\{d}, ∀d ∈ D, (3.24f)

214

with decision variables

xkdj ∈ {0, 1, 2}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.25a)

xkij ∈ {0, 1}, 0 ≤ i < j, ∀k ∈ K, (3.25b)

δkl ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K, (3.25c)

ηd ∈ {0, 1}, ∀d ∈ D. (3.25d)

IP-8. Constraining m = K significantly simplifies (3.18) to

min
∑

d∈D

∑

j∈L
c0,kmin
dj x0

dj + cK−1,kmax
jd xK−1

jd + γK +
∑

d∈D
ndηd

+
∑

d∈D

∑

k∈K̃

∑

j∈L
ckdjx

k
dj +

∑

k∈K

∑

i<j

ckijx
k
ij −

∑

l∈L

∑

k∈K
rkl δ

k
l (3.26a)

s.t.
∑

d∈D
xkdl +

∑

i<l

xkil +
∑

l<j

xklj +
∑

d∈D
xkld = 2δkl ,

{
∀l ∈ L,
∀k ∈ K, (3.26b)

∑

k∈K
δkl = 1, ∀l ∈ L, (3.26c)

∑

j∈L
xkdj + xkjd = 2ηd, ∀d ∈ D, ∀k ∈ K, (3.26d)

∑

j∈L
xkdj = ηd,

∑

j∈L
xkjd = ηd, ∀d ∈ D, ∀k ∈ K, (3.26e)

∑

d∈D
ηd = 1, (3.26f)

∑

i<j;i,j∈Sk
xkij ≤ |Sk| − 1, 3 ≤ |Sk| ≤ N − 1,

∀k ∈ K, Sk ⊆ V\{d}, ∀d ∈ D, (3.26g)

xkdj ∈ {0, 1}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.26h)

xkij ∈ {0, 1}, 0 ≤ i < j, ∀k ∈ K, (3.26i)

δkl ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K, (3.26j)

ηd ∈ {0, 1}, ∀d ∈ D, (3.26k)

xkjd ∈ {0, 1}, ∀d ∈ D, ∀j ∈ L, ∀k ∈ K, (3.26l)

with K̃ = K\{0,K − 1}.

215

Comparison of IP-formulations

Let us first compare above IP-formulations coupling crop assignment with
routing vs. a two-stage approach with the first stage the solution of an as-
signment problem and the second stage the solution of one TSP for each
crop. Any coupling approach is always at least as good as any two-stage
method. This is since the optimal solution of the latter is always a feasi-
ble solution of the former method. Without making further assumption,
no further general statements can be made. Under assumptions, simple
heuristic algorithms based on inequality checks can be developed and
applied to the two-stage solution to determine suboptimality w.r.t. the
coupling solution.

Let us denote the objective value of IP-2 and IP-3 by JIP−2 and JIP−3,
respectively.

Proposition 10. It always holds that JIP−3 ≤ JIP−2.

Proof. The proof is by contradiction. Let us assume JIP−2 < JIP−3. JIP−2

and JIP−3 differ by cost coefficients ckdj = ck,kmin
dj , ∀k ∈ K and ckdj in (3.8),

respectively. By linearity of JIP−2 and the definition of ck,kmin
dj according

to (3.9), and by nonnegativity of c̃k
d̃j

, JIP−2 can always be lowered by con-

centrating all harvesters,
∑
d̃∈DN

harv,k
d̃

, to the most cost-efficient depot.
This is the IP-3 solution and therefore contradicts our assumption. The
equality-part is because a special case of IP-2 is that none harvesters are
initially located at any of the depots except the optimal one according to
IP-3. This concludes the proof.

It always is JIP−3 ≤ JIP−1 since the latter single depot case is always
included in the former multiple depot case.

Generalizing statements regarding JIP−1 vs. JIP−2, and likewise for
JIP−3 vs. JIP−4 cannot be made. This is because it is always possible to
create counterexamples in favor of one or another solution.

It always is JIP−n ≤ JIP−(n+4), ∀n = 1, . . . , 4. This is because of the
greater freedom in not having to use all crops for the final solution for the
first four cases.

216

Figure 65: Illustration of Steps 1 to 4 (Plot 1 to 4 from left to right) of Algo-
rithm 14. (Plot 1) Three depots (D0, D1 and D2) and 50 fields are visualized
by the black and green balls, respectively. (Plot 2) The fields are assigned
to k̃ = 10 clusters (C0,. . . ,C9). All fields belonging to the same cluster are
colored correspondingly. The cross-signs indicate the k̃ centroids and are la-
beled accordingly. (Plot 3) Results of IP-7 applied to the k̃ centroids. (Plot 4)
Results of CApR-7. For visualization, the fields are colored according to the
clustering result. Labels k = 0, k = 1 and k = 2 indicate the first traversal of
each crop-tour, whereby a crop-tour denotes the harvesting routes associated
with a specific crop k.

Main Algorithm

The main algorithm is summarized in Algorithm 14. See Figure 65 for its
visualization. It is used for crop assignment plus routing (CApR). We de-
note the reversing of a list or sequence of elements by the flip(·)-operator.
Several remarks can be made.

First, Algorithm 14 is motivated to handle a large number of fields.
This is achieved by the proposed layered approach. It comes, however,
at the cost of returning, in general, a suboptimal solution. The exact and
global optimum solution is attained for k̃ = L. In practice, it is recom-
mended to increase the number of clusters as much as computational
power and available IP-solver permit, ideally, until k̃ = L such that Steps
4-13 can be omitted entirely.

Second, the relations between various JIP−n for all n = 1, . . . , 8, can
in general not be translated to the corresponding objective values of the
CApR-n solutions. This is because of the heuristic (layered) nature of
Algorithm 14. For instance, in general, it does not always hold that

217

Algorithm 14: CApR-n

1 Input: {Pl}L−1
l=0 , {Pd}D−1

d=0 , ckdj , c
k
ij , c

k,kmin
dj , ck,kmax

jd , ckjd, rkl , γ, {ηd}D−1
d=0 and k̃.

2 Clustering:

- cluster L fields spatially according to k̃-means [173].

- let the sets of fields associated with each cluster be denoted by
Lz,ξ ⊂ L, ∀ξ = 0, . . . , k̃ − 1.

- let the set of clusters be denoted by Lz with |Lz| = k̃.

- assign a coordinate Plz ∈ R2, ∀lz ∈ Lz , to each cluster (the centroids).

- compute ckdjz , ckizjz , ck,kmin
djz

, ck,kmax
jzd

, ckjzd, ∀iz, jz ∈ Lz .

- compute rklz =
∑
l∈Lz,ξ r

k
l , ∀lz ∈ Lz, ξ = 0, . . . , k̃ − 1.

3 Integer Programming (IP-n):

- solve IP-n from Section 3.5.4 for the clustering result of Step 2, replacing L
by Lz and cost coefficients accordingly.

- let the resulting set of active crops and optimal basis depot be denoted by
M? ⊆ K and d? ∈ D, respectively.

- let Ck denote the sequence of clusters ∀k ∈M?, whereby every sequence
starts and ends at d? ∈ D.

4 From Cluster- to Field-sequences: for k ∈M? do
5 - define Ck,1 = Ck and Ck,2 = flip

(
Ck
)
.

6 for i = 1, 2 do
7 for Ck,i do
8 - find closest fields between any pair of consecutive clusters

c(t), c(t+1) ∈ Ck,i within the Ck,i-tour, where t = 0, . . . , |Ck,i|.
9 - let the two fields associated with each cluster c(t) be denoted

by s(t) and e(t).
10 - for each cluster c(t), ∀t, solve a TSP connecting s(t) and e(t) to

obtain a corresponding field-sequence f (t) = {s(t), . . . , e(t)}.
11 - concatenate all field-sequences to crop-tour

Fk,i = {f (0), . . . , f (|Ck,i|)} and determine its path length dk,i.

12 if dk,1 < dk,2 then
13 Fk,? = Fk,1, else Fk,? = Fk,2.

14 Output:

- set of active cropsM? and basis depot selection d? ∈ D.

- crop assignment to every field, δk,?l , ∀l ∈ L,∀k ∈M?.

- crop-tour Fk,?, ∀k ∈M?.

218

Algorithm 15: Renting out and Taking Leases

1 Define all fields considered by L = Lown ∪ Lptl.
2 Define the set of fields of interest by L̃ = Lpro ∪ Lptl.
3 Modeling according farmer’s own production means.

- determine parameters of Step 1 of Algorithm 14, ∀l ∈ L.

4 Solve a relaxed CApR-n for any desired n = 1, . . . , 8.
5 Determine Lntl = {l ∈ Lptl : δkl = 0,∀k ∈ K}.

- not take a lease on any of these fields.

6 Determine Lro = {l ∈ Lpro : δkl = 0, ∀k ∈ K}.
- rent out all of these fields (any positive return is good).

7 Solve standard CApR-n for L1 = L\{Lntl ∪ Lro}.
- denote its objective value by JL1 .

8 Solve standard CApR-n for Lown.

- denote its objective value by JLown .

9 Take leases of fields Lptl\Lntl for the overall payment rate of at most
∆J = JL1 − JLown .

JCApR−3 ≤ JCApR−2.
Third, under the absence of priority constraints according to Sec-

tion 3.5.3, there exist two directions in which to traverse any crop-tour.
The traversal direction affects the closest fields between any pair of con-
secutive clusters. Consequently, the TSP-solution for each cluster, and
thereby ultimately the total path length of the crop-tour, is affected, too.
This motivated to test both cluster-sequences as indicated in Step 4. As
stated, Algorithm 14 does not account for priority constraints, i.e., for
a priori modeling of field ripeness sequences. Therefore, Step 2 and 4
require modification and clustering must be conducted according to an
objective accounting for ripeness level. As a consequence, the traversal
direction for Step 4 would also be fixed.

Fourth, the result of Algorithm 14 could in principle be further re-
fined by heuristic local searches such as, for example, the local exchange
of field-pairs within a crop-tour sequence if it improves the CApR-n ob-
jective function value. Naturally, at this stage, local field sequences can

219

also be exchanged manually by farm operators.

3.5.5 Extensions

Financial Considerations Regarding Leasing

The clustering step of Algorithm 14 does not necessarily have to be con-
ducted according to spatial proximity of fields. Fields can be clustered
arbitrarily. Also, single fields can be assigned to a single cluster for spe-
cial analysis. For leasing considerations, the partial service of a subset of
fields is of interest. Let subset L̃ ⊆ L denote all fields for which we do
not necessarily want to enforce field service but contemplate leasing op-
tions. Then, for IP-3, we maintain equality constraints (3.16b) and (3.16c)
only for L\L̃, and define relaxed inequalities

∑

d∈D
xkdl +

∑

i<l

xkil +
∑

l<j

xklj ≤ 2δkl ,∀l ∈ L̃,∀k ∈ K, (3.27)

∑

k∈K
δkl ≤ 1, ∀l ∈ L̃. (3.28)

We similarly relax corresponding constraints for all other IP-n. Any
CApR-n including such constraints, shall be denoted as relaxed CApR-n.
In constrast, the original problem according to Algorithm 14 is referred
to as standard CApR-n.

An important financial consideration for every farm is to decide upon
either servicing or renting out of one’s fields, and additionally the de-
cision upon taking of leases on additional fields for coverage. Let us
denote the sets of corresponding fields by Lown (farmer’s own fields),
Lpro ⊂ Lown (potential rent outs) and Lptl (potential fields for taking
leases upon), respectively. Then, Algorithm 15 provides guidelines for
decision making. Let us elaborate on Steps 4-6 of Algorithm 15. Suppose
a field does not improve the total financial return, typically, because of
too expensive production costs (consider, for example, fields very dis-
tant apart from depots) or constraints such as (3.15) for limited harvest-
ing windows. Then, renting out is profitable, in theory, already for any
positive return. In practice, the farmer is naturally advised to negotiate
renting out rates as favorably as possible.

220

Let us also discuss Step 9 of Algorithm 15. In contrast to pure as-
signment problems, the maximum leasing rate ∆J cannot easily be dis-
tributed among corresponding fields. This is because monetary profits
are nonlinearly related to crop returns because of the coupling with rout-
ing decisions. Importantly, the precise distribution of leasing rates of
individual fields is not relevant as long as it overall does not surpass ∆J .
Thus, ∆J provides the farmer with an upper bound on profitable leasing
rates. If ∆J cannot be attained in negotiations, different Lptl should be
decided and Algorithm 15 solved again. This is repeated until a cor-
responding upper bound can be satisfied, or, ultimately, Lown\Lro are
serviced.

The second financial consideration is motivated by the comparison
of objective values for CApR-n. It permits to determine “fair” prices for
leasing when sheltering machinery at the various depots. It is envisioned
that all collaborating farmers first involve in accurate system modeling
(cost coefficients), before then solving either all of CApR-n, ∀n = 1, . . . , 4,
or all of CApR-n, ∀n = 5, . . . , 8. Specifically, the difference in objective
values between CApR-2 (or CApR-7 for enforcement of allK crops in the
solution) and the remaining CApR-n then permits to determine an upper
bound on leasing rates for depot usage.

Application in Practice

For operations planning in practice, detailed modeling of the parameters
listed in Step 1 of Algorithm 14 is of paramount importance for opti-
mal results. Historical field and crop yield data must serve as basis. By
the selection of ckij , computational complexity can be reduced by prun-
ing specific undesired field connections from a path network, thereby
implicitly also influencing priority constraints. Large fields often have
multiple possible field entrance and exit points. This may significantly
affect travel distances between fields. In fact, field coverage patterns and
in-field navigation [199], [84], [149] can also be co-planned a priori to
account for crop-tours efficiently linking fields planting the same crops.
This is subject of ongoing work.

221

Table 8: Experiment 1. The percentage out of the 50 simulation experi-
ments for which an IP-n solution could be found in less than 200 SEC-
iterations is denoted by P IP−n

conv . The absolute average monetary objective
value is denoted by J̄CApR−n. The average number of decision variables,
SEC-iterations, number of equality constraints, inequality constraints when
first omitting SECs and for the final SEC-iteration (before convergence) are
denoted byN IP−n

z , N̄ IP−n
iterSEC,N ,IP−n

eq,NoSEC,N IP−n
ineq,NoSEC and N̄ IP−n

ineq,finalIP, respectively.
Average combined CPU-time for the solution of all SEC-iterations is T̄ IP−n

CPU .

Table 9: Normalized average monetary returns in Northern Germany.

3.5.6 Numerical Simulations

For the solution of integer programs, we employ the domain-specific lan-
guage CVXPY for optimization embedded in Python [92] with default
settings. All experiments were conducted on a laptop running Ubuntu
16.04 with Intel Core i7 CPU @2.80GHz×8 and 15.6GB of memory.

Problem data is generated randomly with realistic parameter settings
from farming in Northern Germany. For the first numerical simulation
experiments, we assume three depots, a maximal number of three crops
and 50 fields, i.e., D = 3, K = 3 and L = 50. Fields are clustered spa-
tially into sets according to Step 2 of Algorithm 14, whereby we selected
k̃ = 10. Field and depot locations are generated randomly according to
a Gaussian distribution centered at the origin with standard deviations
σd = 10km, ∀d ∈ D, and σl = 15km, ∀l ∈ L. To each depot, we randomly

222

assign a number of harvesters according Nharv,k
d = max(1, b5udc), ud ∼

U(0, 1), ∀d ∈ D, where U(0, 1) denotes the Uniform distribution with
zero mean and unit variance, and b·c denotes rounding to the next small-
est integer. Normalized traveling costs per harvester and km are set as
c̃ = 30 ekm . We assume a cost of γ = 1000e for every planted crop. Here,
maintenance costs are assumed to be identical for all depots. W.l.o.g.,
we therefore set nd = 0, ∀d ∈ D. Realistic normalized monetary returns
in e per ha and crop are determined as mean values from intermediate
soil qualities and crop yields in Northern Germany. They are summa-
rized in Table 9. Regarding the monetary return per field and crop, we
considered two settings. First, we generate field sizes in hectares accord-
ing to sl = max(20 + 10ud, 1), ud ∼ N (0, 1), ∀l ∈ L, where N (0, 1)

denotes the Gaussian distribution with zero mean and unit variance. In
combination with L = 50 this results approximately in a total coverage
size of 1000ha. According to survey [346], in all of Germany there are
299134 farming businesses of which only 1502 have a size of more than
1000ha. The field sizes are then multiplied with r̃k according to Table
9, to yield rkl = slr̃

k, ∀l ∈ L, k ∈ K. This method of data generation
is intuitive. Since normalized monetary return is considerably higher
for wheat than for barley and rapeseed, the application of Algorithm 14
typically assigns wheat to all fields, unless crop rotation constraints, or
diversification constraints, as in CApR-n for n = 5, . . . , 8, are included.
In the latter cases, the crop with smallest monetary return is assigned to
the cluster with smallest field area, and the crop with second-smallest
return to the second-smallest area and so forth. In a second setting, and
to add more variety, we therefore generated monetary returns per field
and crop according to

rkl = max(20 + 10ukl , 1)r̃k, ∀l ∈ L, k ∈ K, (3.29)

with ukl ∼ N (0, 1). To analyze computational aspects of the proposed al-
gorithm, we analyzed 50 random data sets, generated as outlined above.
The results are summarized in Table 8. Several observations can be made.
First, fixing the number of serviced crops, as for CApT-n for n = 5, . . . , 8,
significantly reduces CPU-time T̄CPU, by (on average) more than two or-

223

Figure 66: Visualization of an example for k̃ = 25 and L = 100 fields. The
results of CApR-7 are displayed. The inactive depots and the active depot
are denoted by the larger gray and yellow balls, respectively. The fields are
colored according to their clustering result. Labels k = 0, k = 1 and k = 2
indicate the first edge traversal of each crop-tour.

ders of magnitude. The main computational burden stems from an in-
creased number of SEC-iterations. For every additional SEC-iteration, an
additional IP with an increased number of SECs has to be solved. IP-2
had difficulties converging within 200 SEC-iterations in some cases.

We tested problem instances with up to 35 clusters and 700 fields.
For k̃ > 35, CVXPY started to fail to converge. Real-world practical
cases in Northern Germancy for the collaboration of larger farms may
involve around 100 fields and three depots. A corresponding simulation
experiment is visualized in Figure 66. For its solution with 1119 inte-
ger variables, 106 equality constraints and between 1119 (for the first IP-
solution without any SECs) to 1130 (for the last SEC-iteration) inequality
constraints, 8 SEC-iterations were required with a total CPU-time of 2.6s.

224

3.5.7 Conclusion

We presented a flexible framework for the coupling of crop assignment
with vehicle routing for harvest planning in agriculture. The discussed
problem is relevant since the decision upon crop assignment must be ad-
dressed by every farm manager at the beginning of every work-cycle. We
compared eight different IP formulations. We found the four cases with
enforced inclusion of any crop out of a set of crops to be computationally
most efficient. This enforcement is applicable in practice since the list of
eligible crops typically is very limited. For large-scale applications where
sole IP formulations are not tractable anymore, we proposed a heuristic
algorithm combining the IP-formulations with clustering of fields and
the solution of local TSPs. To summarize, for practical applications, we
thus recommend:

• For reasons of computational efficiency, focus on CApR-n for n =

5, . . . , 8.

• Increase the number of clusters k̃ as much as the available combi-
nation of computational hardware and IP-solver permits in order
to reduce the heuristic nature of Algorithm 14.

• Solve Algorithm 15 to determine rates for the renting out and tak-
ing of leases on fields.

• In case of a single depot, solve CApR-5.

• In case of multiple depots, always solve at least CApR-6, and ad-
ditionally at least one of CApR-7 and CApR-8 to determine leasing
rates for depot usage.

• Put emphasis on detailed parameter modeling according to Step 1
of Algorithm 14, and the inclusion of constraints on crop rotation
(3.11) and traveling time (3.15).

Future work will include the testing of alternative IP-solvers includ-
ing Numberjack [177] and [1], and reformulations of the SECs, for exam-
ple, in form of MTZ-SECs [277] which introduce additional continuous

225

variables for SECs and thereby render the problem of mixed integer na-
ture. It is also planned to test a Tabu search heuristic [127]. We stress that
limited harvesting time windows with limited harvester traveling speeds
naturally constrain the maximum number of fields that can be serviced
within a crop-tour. Thus, more efficient IP-solvers are not sought to in-
crease the maximum field number beyond 700, but to increase tractable k̃
and thereby reduce the heuristic nature of Algorithm 14. While this work
focused on the development of a framework for planning at the beginning
of the yearly work cycle, future work will also revise online coordination
of machinery at the end of the work-cycle during harvest.

3.5.8 Hierarchical Controller Parametrization

There are three hierarchical layers in Algorithm 14. These are:

1. Clustering of fields according to spatial proximity;

2. The solution of one out of eight proposed IPs;

3. The relation of field clusters to IP-solutions by means of local TSPs.

226

3.6 Discussion of Chapter

Summary

The two main contributions [146] and [144] are complementary. The for-
mer is concerned about edge coverage and in-field logistics. In contrast,
the latter is concerned about assignments and linking of nodes in the
vehicle routing framework, which can be classified as out-field logistics.
The former work is built from scratch and scales quite well because of
the particular graph structure for connected field lane-segments, which
can be exploited for the problem solution. In contrast, the latter work
incorporates an IP-solver for its solution. It was found that this greatly
limits scalability and was the reason for the introduction of the hierarchi-
cal implementation scheme. In particular, it necessitated the inclusion of
a clustering step.

Future Work

The last remark made is a starting point for possible future work. Namely,
the IP-solver must be replaced. Here, an algorithm optimizing via sim-
ulation may be a better choice. In fact, when using proposed integer
programs as parametrizations and adapting the parameter perturbation
Step 8, the TSHC-Algorithm 4 could be used for optimization via simu-
lation. This may be subject of future work.

227

Chapter 4

Quantitative Finance

Quantitative finance represents an ideal testbed for stochastic optimiza-
tion. This is for two reasons. First, a high degree of stochasticity and un-
predictability is involved, which is the result of the plethora of different
influencing factors. These include, on the one hand, “hard” influences
such as earning reports, and, on the other hand, “soft” influences caused
by emotions and the psychology of market participants. The latter phe-
nomenon is broadly summarized under the term behavioral finance [108].
Second, there are many different sources of data available, ranging from
historical price data and trading volume to news and social media. Here,
currencies, stocks and options were considered as financial contracts in
which investment positions can be taken.

228

4.1 Dynamic Option Hedging with
Transaction Costs: A SMPC approach

This section summarizes [157]:

• M. Graf Plessen, L. Puglia, T. Gabbriellini, and A. Bemporad, “Dy-
namic option hedging with transaction costs: A stochastic model
predictive control approach,” International Journal of Robust and Non-
linear Control, pp. 1-20, 2017.

Stochastic model predictive control (SMPC) is proposed as a tool for
hedging derivative contracts (such as plain vanilla and exotic options) in
the presence of transaction costs. The methodology combines stochastic
scenario generation for the prediction of asset prices at the next rebal-
ancing interval with the minimization of a stochastic measure of the pre-
dicted hedging error. We consider three different measures to minimize
in order to optimally rebalance the replicating portfolio: a trade-off be-
tween variance and expected value of hedging error, conditional value
at risk (CVaR), and the largest predicted hedging error. The resulting op-
timization problems require solving at each trading instant a quadratic
program (QP), a linear program (LP), and a (smaller scale) LP, respec-
tively. These can be combined with three different scenario-generation
schemes: the log-normal stock model with parameters recursively identi-
fied from data, an identification method based on support vector regres-
sion (SVR), and a simpler scheme based on perturbation noise. The hedg-
ing performance obtained by the proposed SMPC strategies is illustrated
on real-world data drawn from the NASDAQ-100 composite, evaluated
for a European call and a barrier option, and compared to delta-hedging.

4.1.1 Introduction

For a financial institution, hedging a derivative contract implies to dy-
namically rebalance a (self-financing) portfolio of underlying assets at
periodic intervals so that, at the expiration date of the contract, the value
of the portfolio is as close as possible to the payoff value to pay to the

229

customer. In contrast, static hedging strategies do not involve rebalanc-
ing; thus, a replicating portfolio is formed initially and simply let evolve
freely for the whole option life. For general background on options and
derivative contracts see for instance [191].

The most common derivative contracts are plain vanilla options: a Eu-
ropean call (put) option gives the holder the right to buy (sell) the under-
lying asset at a given expiration date and at a determined strike price. A
large number of other more complex derivative contracts, called exotic
options, are nowadays traded, especially in the over-the-counter (OTC)
market. An example of an exotic option is the barrier option, a special
kind of plain vanilla contract whose payoff drops to zero as soon as the
price of the underlying asset reaches a certain barrier value. See [150] for
optimization-based combinations of options.

The most common approach used in practice to dynamically rebal-
ancing the portfolio replicating the option is delta-hedging (∆-hedging),
which directly derives from the fundamental theory of [49]. In delta-
hedging, the replicating portfolio includes a cash position and a quantity
of stocks equal to the derivative of the option price with respect to the
price of the underlying stock. The guiding notion of ∆-hedging is to
make the portfolio insensitive to the stochastic evolution of the price of
the underlying asset. In control theoretical words, this is equivalent to
making the wealth of the portfolio tracking the option price while reject-
ing the disturbance induced by price fluctuations. Within Black-Scholes
theory, ∆-hedging makes the following (often unrealistic) assumptions:
the underlying price follows the log-normal stock model, continuous-time
hedging, static volatility, and the absence of transaction costs.

To handle transaction costs [110] and [138] proposed analytic meth-
ods based on stochastic optimization. In [110] the option price and the
optimal trading strategy are jointly determined to reduce the total risk
of writing the option. In [138] a trinomial process is used for generating
the scenarios required to setup a stochastic control problem, in which the
objective function is the expected value of a given performance index. To
cope with transaction costs, in [310] the hedging problem is formulated
as a linear quadratic regulation (LQR) problem penalizing transaction

230

costs in the objective function. As an alternative, a MPC approach is pro-
posed to solve a quadratic program over a specified horizon, exploiting
the LQR solution from the first approach in the cost function. In [314]
transaction costs are taken into account in a finite-horizon constrained
stochastic control problem formulation that is iteratively solved at each
trading date by employing a semi-definite programming algorithm. Re-
lated ideas proposing the use of MPC for replicating portfolios appeared
earlier in [96], [182].

For the case without transaction costs, stochastic model predictive
control (SMPC) approaches were proposed in [34], [35]. SMPC can be
seen as a suboptimal way of solving a stochastic multi-stage dynamic
programming problem: Rather than solving the problem for the entire
remaining time-span of the option life, a smaller problem is solved re-
peatedly from the current time-step t up to a certain number N of time
steps in the future, by suitably re-mapping the condition at the future
expiration date into a value at the predicted time step t + N . Formulat-
ing the stochastic optimization problem requires enumerating a certain
number of scenarios of future stock prices. A suitable stock-price model
is not known a priori and its parameters must be identified from data.

Here, we propose SMPC to solve dynamical option hedging problems
with transaction costs. We consider different performance measures (a
trade-off between variance and expected value of hedging error, condi-
tional value at risk (CVaR), and the largest predicted hedging error) and
show how the corresponding optimization problems can be easily solved
via either quadratic or linear programming. We largely extend [42] by
considering real-world data in our results, drawn from the NASDAQ-
100 composite, and by discussing various scenario-generation schemes
for both step-ahead stock and option prices to construct the stochastic
optimization problems.

Comments on the Risk-free Rate

We denote the effective annual risk-free rate by ra. Assuming Ttd = 252

trading days and a sampling step of Ts = 1day, we here compute the
(daily) risk-free rate r by solving (1 + r)Ttd = 1 + ra. In contrast, the

231

continuously compounded risk-free rate rc is computed from ercTtd = 1 + ra.
The option life T may be T = Ttd, but does not necessarily have to.

4.1.2 Dynamic Option Hedging

Consider the problem of hedging an optionO defined over n underlying
assets. We denote by Ts the time interval between two consecutive trad-
ing dates (the results below can be easily generalized to non-uniform
trading intervals Ts), by t the trading instants, t = 0, 1, . . . , T , and by
s(t) = [s1(t) . . . sn(t)]T ∈ Rn the vector of spot prices of the assets.

In general, the option price p(t) of O at a generic instant t is the dis-
counted expectation of the payoff P(m(T)) at expiration date in the risk-
neutral measure, given the market state m(t) at time t (m(t) = s(t) for
plain vanilla options). Denoting by T the maturity ofO in terms of num-
ber of sampling steps of duration Ts, the price of the hedged option at a
generic intermediate date tTs is p(t) = (1+r)t−TE [P(m(T))|m(t)], where
E[p(T)] is the expected value of the payoff in the risk-neutral measure.
For European call options the payoff is

P(m(T)) = p(T) = max(s(T)−K, 0), (4.1)

while for barrier options it is

p(T) =

{
max(s(T)−K, 0) if s(t) < su, ∀t ≤ T

0 otherwise

=

{
max(s(T)−K, 0) if s`(t) = 0

0 if s`(t) = 1,

(4.2)

where su define the upper barrier level, and s`(t) ∈ {0, 1} is a logic state
with dynamics s`(t + 1) = s`(t) OR [s(t) ≥ su], s`(0) = 0 (in this case
m(t) = {s(t), s`(t)}).

Assume that there are no transaction costs, and that the standard self-
financing condition holds, i.e., that the wealth w(t) of the portfolio repli-
cating option O is always totally reinvested. Then, the dynamics of the
wealth w(t) of the portfolio is

w(t+ 1) = (1 + r)w(t) +

n∑

i=1

bi(t)ui(t), (4.3)

232

where ui(t) is the quantity of asset i held at time t and bi(t) , si(t +

1) − (1 + r)si(t) is the excess return, i.e., how much the asset gains (or
loses) with respect to the risk-free rate. The initial condition w(0) is set
equal to the price paid by the customer to purchase option O, w(0) =

(1 + r)−TE[p(T)|m(0)].
Dynamic hedging aims at making the final wealth w(T) as close as

possible to p(T) for all possible market realizations. The hedging prob-
lem can be restated as a stochastic control problem. Using control sys-
tems jargon, the wealth w(t) ∈ R represents the “state” and the “regu-
lated output” of the controlled process, traded asset quantities u(t) ∈ Rn

are the “inputs”, the option price p(t) is the “reference” forw(t). By defin-
ing the “tracking error” e(t) , w(t) − p(t), the objective can be restated
as the one of minimizing e(t) for all possible asset price realizations.

As shown in [34], [35], in the absence of transaction costs and under
the lack of arbitrage, a way to achieve this is to minimize the variance of
the hedging error

J(e(T)) = E
[
(e(T)− E[e(T)])2

]
(4.4)

by solving the one-step ahead minimum-variance problem

min
{u(t)}

Varm(t+1) [w(t+ 1,m(t+ 1))− p(t+ 1,m(t+ 1))] (4.5a)

s.t. w(t+ 1,m(t+ 1)) = (1 + r)w(t) +
n∑

i=0

bi(t,m(t+ 1))ui(t) (4.5b)

with respect to the portfolio composition u(t) at each trading date tTs.
Note that expectations and variances are conditioned to the particular

market realization m(t) at time t; we omit here the conditional notation
for simplicity and use the notation w(t + 1) since now on as a shortcut
for the future wealth w(t+ 1,m(t+ 1)).

The formulation in (4.5) is equivalent to a stochastic model predictive
control formulation with prediction horizon N = 1, under the terminal
condition of perfect hedging between the prediction step t + N and ex-
piration step T . Problem (4.5) can be solved by enumerating a number

233

M of scenarios, each one corresponding to a different realization of a
certain sequence of prices, and optimize the resulting sample variance.
Each scenario j has probability πj of occurring, j = 1, . . . ,M , πj > 0,
πj ≤ 1,

∑M
k=1 πj = 1. Scenarios can be generated via Monte Carlo sim-

ulation [34], where πj = 1
M , or by discretizing a given probability den-

sity function that describes the disturbance process generating the asset
prices [35]. Note that, contrarily to multi-stage stochastic programming
approaches that typically limit the number M of considered scenarios to
only 2 or 3 to avoid the combinatorial explosion over the optimization
horizon N , here M can be quite large without incurring into prohibitive
computation efforts, as the prediction horizon is simply N = 1.

By optimizing the sample variance ofw(t+1)−p(t+1), in the absence
of transaction costs problem (4.5) can be rewritten as the following least
squares problem

min
u(t)

M∑

j=1

πj

(
wj(t+ 1)− pj(t+ 1)−

(
1

M

M∑

i=1

wi(t+ 1)− pi(t+ 1)

))2

,

(4.6)
where wj(t + 1) = (1 + r)w(t) +

∑n
i=0 b

j
i (t)ui(t) are the future values of

portfolio wealth for each scenario j = 1, . . . ,M , and πj is the correspond-
ing probability, πj ≥ 0,

∑M
i=1 π

j = 1. The resulting SMPC algorithm is
described by Algorithm 16.

Algorithm 16: SMPC algorithm for dynamic option hedging

1 Let t=current hedging date, w(t)= current wealth of portfolio,
m(t)=current market state;

2 Generate M scenarios of future market states m1(t+ 1), . . .,
mM (t+ 1), with corresponding probabilities π1, . . . , πM ;

3 Use a pricing engine to generate the corresponding future option
prices p1(t+ 1), . . ., pM (t+ 1);

4 Solve the least square problem (4.6) to minimize the sample
variance of w(t+ 1)− p(t+ 1);

5 Rebalance the portfolio according of the optimal solution u∗(t) of
problem (4.6);

234

An option-pricing engine is needed to compute the future option
prices p1(t + 1), . . ., pM (t + 1). This is the most time-consuming oper-
ation of the entire algorithm. In fact, numerical pricing engines must
be used, based on either Monte Carlo simulation, or on other approxi-
mate methods such as the method described by [259]. See [34], [35] for
a comparison of different pricing methods. In particular, [35] showed
that SMPC is superior to ∆-hedging when dealing with exotic options
and quite robust also to errors in the dynamical model of the market,
whereby all stock price data was generated artificially according to He-
ston’s model [183] and a log-normal stock model was used to generate
the future scenarios for SMPC.

4.1.3 Transaction Costs

When trading assets on the market, one often suffers the friction due to
transaction costs [99]. In mathematical terms, the investor pays a quan-
tity hi(t) of wealth to change the number of assets in the portfolio from
ui(t−1) at time t−1 to u(t) at time t, for each asset i. Such a wealth hi(t)
is taken away from the overall wealth w(t) of the portfolio, so that (4.3)
becomes (cf. [312])

w(t+ 1) = (1 + r)

(
w(t)−

n∑

i=1

hi(t)

)
+

n∑

i=1

bi(t)ui(t). (4.7)

In the simplest case, transaction costs hi(t) are proportional to the traded
quantity of stock |ui(t)− ui(t− 1)|,

hi(t) = εi|ui(t)− ui(t− 1)|si(t), (4.8)

where the fixed quantity εi depends on commissions on trading asset
i, i = 1, . . . , n (we assume that no costs are applied on transacting the
risk-free asset).

Proposition 11. The variance of the hedging error e(t) = w(t) − p(t) is not
affected by transaction costs.

Proof. Let ω(t) =
∑n
i=1 hi(t) be the total transaction cost paid at time

t, which is a function of u(t), u(t − 1), and s(t). As ω(t) clearly does not

235

depend on s(t + 1), the expected value of the hedging error e(t + 1) =

w(t+ 1)− p(t+ 1) taken with respect to s(t+ 1) is

E[w(t+ 1)− p(t+ 1)] = E[(1 + r)w(t) +
n∑

i=1

bi(t)ui(t)− p(t+ 1)− (1 + r)ω(t)]

= E[w0(t+ 1)− p(t+ 1)]− (1 + r)ω(t),

where w0(t + 1) is the wealth at time t + 1 in the absence of transaction
costs. Therefore, while the expectation E[e(t + 1)] of the hedging error
e(t+ 1) is affected by ω(t), its variance Var[e(t+ 1)] is clearly not, as

Var[e(t+ 1)] = E[(e(t+ 1)− E[e(t+ 1)])2] =

E[(w0(t+ 1)− p(t+ 1)− (1 + r)ω(t)

−E[w0(t+ 1)− p(t+ 1)] + (1 + r)ω(t))
2
]

= Var[w0(t+ 1)− p(t+ 1)].

�

Proposition 11 clearly shows that the minimum variance criterion (4.4)
is insensitive to transaction costs and therefore potentially inadequate to
handle them.

Constraints on how the quantities ui(t) are allocated can be addition-
ally imposed. The formulation of optimization problems based on only
(4.7) in general permits short-selling, i.e., ui(t) < 0. Short-selling con-
straints can be included as si(t)ui(t) ≥ −Sshort

i or
∑n
i=1 min(si(t)ui(t), 0) ≥

−Sshort for parameters Sshort
i and Sshort, respectively. Diversification con-

straints si(t)ui(t) ≤ Smax
i for some constant Smax

i , or si(t)ui(t) ≤ ρiw(t)

for some fractional ρi ∈ (0, 1] may be also imposed. Note that all of
these constraints are linear in the control variables ui(t), ∀i = 1, . . . , n, a
feature that is useful for the hedging formulations discussed in the next
sections. Constraints on the variance or the shortfall of risk ([257]) would
lead to convex constraints, although of second-order cone type.

236

4.1.4 SMPC Problem Formulations

For SMPC for dynamic option hedging with transaction costs we use
again Algorithm 16, with the only difference that in Step 4 an alternative
optimization problem to the least-squares problem is solved. We intro-
duce three possible SMPC formulations to account for transaction costs.

Minimization of Variance and Expectation (QP-Var)

Let x(t), y(t) ∈ Rn be two vectors whose i-th components are nonnega-
tive and defined as

xi(t)− yi(t) = ui(t)− ui(t− 1), (4.9)

xi(t) ≥ 0, yi(t) ≥ 0, ∀t = 0, . . . , T.

Accordingly, the proportional transaction cost hi(t) for trading a quantity
ui(t) − ui(t − 1) of the i-th asset is hi(t) = εi|ui(t) − ui(t − 1)|si(t) =

γi(t)(xi(t) + yi(t)), where γi(t) , εisi(t), i = 1, . . . , n. The quantities
xi(t) and yi(t) can be interpreted, respectively, as the amount of asset i
bought at time t and the amount of asset i sold at time t. We can therefore
introduce the new vector v(t) =

[
x(t)
y(t)

]
∈ R2n of decision variables and

replace u(t) ∈ Rn with

u(t) = u(t− 1) + x(t)− y(t). (4.10)

By letting

1I ,




1
...
1


 ∈ RM , γ(t) ,



γ1(t)

...
γn(t)


 ,

from (4.7) we can express the vector of future hedging errors e(t + 1) =

w(t+ 1)− p(t+ 1) on the M different scenarios as

237



e1(t+ 1)

...
eM (t+ 1)


 = B(t)u(t) +

(1 + r)
(
w(t)− γT(t)(x(t) + y(t))

)
1I−



p1(t+ 1)

...
pM (t+ 1)




= B(t)(u(t− 1) + x(t)− y(t))−
(1 + r) 1I γT(t)(x(t) + y(t)) +D(t)

= Av(t)v(t) +Bv(t)− 1IGv(t)v(t), (4.11)

where

B(t) ,



b11(t) . . . b1n(t)

...
...

bM1 (t) . . . bMn (t)


 , D(t) , (1 + r) 1Iw(t)−



p1(t+ 1)

...
pM (t+ 1)




Bv(t) , B(t)u(t− 1) +D(t), Av(t) ,
[
BT(t)

−BT(t)

]T
, Gv(t) , (1 + r)

[
γ(t)
γ(t)

]T
.

The hedging error e(t+1) = w(t+1)−p(t+1) has therefore the following
empirical expectation

E[e(t+ 1)] = πT(Av(t)v(t) +Bv(t)− 1IGv(t)v(t))

= −Gv(t)v(t) + πT(Av(t)v(t) +Bv(t)), (4.12)

where πT = [π1 . . . πM]T ∈ RM , πT 1I = 1. Note that by (4.12) we can
rewrite E[e(t + 1)] = K(t) − H(t), where K(t) = πT(B(t)(x(t) − y(t)) +

Bv(t)) and H(t) = (1 + r)γT(t)(x(t) + y(t)). Therefore, K(t) depends
on the quantity x(t) − y(t) (i.e., on the net increment u(t) − u(t − 1) of
the underlying assets hold in portfolio from time t − 1 to time t) and is
independent of Λ(t) = min(x(t), y(t)) and of the transaction costs, while
H(t) depends on the actual number of transactions executed to rebalance
the portfolio at time t, depends on Λ(t) and, via γ(t), on transaction costs.

By letting ij be the j-th vector of the canonical basis of RM , that is
ij = [0 . . . 0︸ ︷︷ ︸

j−1

1 0 . . . 0︸ ︷︷ ︸
M−j

]T, and omitting the dependence of t for ease of

238

notation, we get

E[e2(t+ 1)] =

M∑

j=1

πj

(
iTj (Avv +Bv − 1IGvv)

)2

= vTGT
vGvv +

(Avv +Bv)
T diag(π)(Avv +Bv)− 2πT(Avv +Bv)Gvv (4.13)

E2[e(t+ 1)] =




M∑

j=1

πji
T
j (Avv +Bv − 1IGvv)




2

=
(
πT(Avv +Bv)−Gvv

)2

= vTGT
vGvv + (Avv +Bv)

TππT(Avv +Bv)−
2πT(Avv +Bv)Gvv. (4.14)

Hence, the variance of e(t+ 1) is

Var[e(t+ 1)] = E[(e(t+ 1)− E[e(t+ 1)])2]

= E[e2(t+ 1)]− E2[e(t+ 1)] (4.15a)

= (Av(t)v(t) +Bv(t))
T(diag(π)− ππT)(Av(t)v(t) +Bv(t)). (4.15b)

Note that (4.15b) does not depend on γ(t), in accordance with Proposi-
tion 11, and that diag(π) − ππT is a positive semidefinite matrix1. Note
also that Var[e(t + 1)] does not depend on x(t) − y(t), and therefore on
Λ(t), that confirms what observed earlier about Λ(t) only affecting trans-
action costs, which are deterministic.

In order to minimize both the variance and the expected value of the
one-step ahead hedging error e(t+ 1) we solve

min
v(t)

Var[e(t+ 1)] + αE2[e(t+ 1)] (4.16)

s.t. v(t) ≥ 0,

1Matrix diag(π) − ππT is positive semidefinite by definition:

vT(diag(π) − ππT)v =
∑M
i=1 πiv

2
i −

(∑M
i=1 πivi

)(∑M
j=1 πjvj

)
=∑M

i=1 πi

(
v2i − 2vi

∑M
j=1 πjvj + vi

∑M
j=1 πjvj

)
=
(∑M

i=1 πi(v
2
i − 2vi

∑M
j=1 πjvj)

)
+(∑M

i=1 πivi

)(∑M
j=1 πjvj

)(∑M
i=1 πi

)
=
∑M
i=1 πi

(
vi −

∑M
j=1 πjvj

)2
≥ 0, ∀v ∈ RM ,

that is the sampled version of (4.15a).

239

where α is a fixed scalar, α ≥ 0. Problem (4.16) is a QP problem with 2n

variables subject to nonnegativity constraints.
The hedging strategy defined by (4.16) might lead to choosing op-

timal quantities xi(t) and yi(t) that are both positive, that is Λi(t) ,

min(xi(t), yi(t)) > 0. This amounts to allow the trader to simultane-
ously buy and sell the same quantity Λi(t) of asset i at the same trading
instant t (cf. [86, p. 290]) or, in alternative, to violate the self-financing
condition (4.3), by subtracting the wealth Λi(t)γi(t) from the total port-
folio wealth and rebalancing ui(t) = ui(t − 1) + x̄i(t) − ȳi(t), where
x̄i(t) = xi(t)−Λi(t), ȳi(t) = yi(t)−Λi(t), x̄i(t)− ȳi(t) = xi(t)− yi(t), and
either x̄i(t) = 0 or ȳi(t) = 0. Constraining Λi(t) = 0 would make (4.16)
a nonconvex problem, therefore more complicated to solve numerically;
however, leaving Λi(t) unconstrained does not lead to undesired effects
from a hedging viewpoint. In fact, having xi(t) and yi(t) both positive
(Λi(t) > 0) might be a good choice to avoid super-replication without
altering the variance of the hedging error. On the other hand, if at op-
timality E[e(t + 1)] ≤ 0, that is one is under-replicating the option price
at time t, then necessarily Λi(t) = 0, otherwise x̄i(t), ȳi(t) would be a
solution with the same variance and a lower E2[e(t+ 1)], thus providing
a lower value of the objective function in (4.16) than x(t) and y(t).

Note also that one could minimize Var[e(t + 1)] + αE[e(t + 1)] in-
stead of (4.16), therefore not penalizing super-replication. In this set-
ting, either xi(t) = 0 or yi(t) = 0 spontaneously at optimality (that is,
Λi(t) = 0 always holds at optimality) because, as observed earlier, a pos-
itive quantity Λi(t) would only increase the term H(t) due to transaction
costs without altering K(t) and Var[e(t+ 1)].

Remark 8. An alternative formulation based on mixed-integer quadratic pro-
gramming, related to the approach of [133] but based on the theory of hybrid
dynamical systems [36], that can handle more general transaction costs than
proportional costs, can be derived as follows. Piecewise-affine transaction costs
as in (4.8) can be also handled by introducing binary variables. Let xu(t) ,
u(t− 1) ∈ Rn be the composition of the portfolio immediately before trading at
time t and introduce auxiliary variables δi(t) ∈ {0, 1},

[δi(t) = 1]↔ [ui(t)− xui (t) ≥ 0] (4.17)

240

and qi(t) ∈ R

qi(t) =

{
ui(t)− xui (t) if δi(t) = 1
0 otherwise (4.18)

By using the so-called “big-M” technique (see cases 1 and 3 for integrating log-
ical constraints in Section 1.3), (4.17) can be translated into the mixed-integer
linear inequalities

ui(t)− xui (t) ≥ −Mi(1− δi(t)) (4.19a)
ui(t)− xui (t) ≤ Miδi(t)− ε (4.19b)

and (4.18) into

qi(t) ≤ ui(t)− xui (t) +Mi(1− δi(t)) (4.20a)
qi(t) ≥ ui(t)− xui (t)−Mi(1− δi(t)) (4.20b)
qi(t) ≤ Miδi(t) (4.20c)
qi(t) ≥ −Miδi(t) (4.20d)

where Mi is an upperbound on |ui(t) − xui (t)|, that is the maximum allowed
asset reallocation, and ε > 0 is a small scalar (e.g., the machine precision). Equa-
tion (4.7) can be therefore interpreted as the evolution of a hybrid dynamical
system, that is expressed in the following mixed logical dynamical (MLD)
form [36]

w(t+ 1) = (1 + r)

(
u0(t)−

n∑

i=1

qi(t)− 2(ui(t)− xui (t))

)
+

n∑

i=1

si(t+ 1)ui(t) (4.21a)

xu(t+ 1) = u(t) (4.21b)
s.t. (4.19), (4.20) (4.21c)

with states w(t), xu(t), input u(t), auxiliary vector δ(t) = [δ1(t) . . . δn(t)]T

∈ {0, 1}n of binary variables, and vector q(t) = [q1(t) . . . qn(t)]T ∈ Rn

of auxiliary continuous variables. Note that, from a system theoretical view-
point, transaction costs introduce a unit delay (4.21b) in the dynamics, due
to the additional state variable xu(t). By using the stochastic hybrid dynam-
ical model (4.21), problem (4.16) can be recast as a mixed-integer quadratic
programming (MIQP) problem (see [36] for details) to be minimized with re-
spect to vector u(t) ∈ Rn, for which very efficient solvers are available [194],

241

[168]. See also [133] for a related approach. For options involving a single
stock, the number n of assets is usually very small (n = 1 or n = 2), so
that the minimum variance problem with transaction costs can be solved also
by enumerating the possible 2n instances of vector δ(t) (i.e., in system theo-
retical terms, by transforming the MLD dynamics (4.21c) into an equivalent
piecewise-affine form [32] and enumerating the “modes” of the resulting PWA
dynamics) and by solving the corresponding quadratic programs (QP) (4.6)
subject to ui(t) ≥ xui (t) if the corresponding δi(t) = 1, or ui(t) ≤ xui (t) if
δi(t) = 0, for all i = 1, . . . , n. While the method of (4.16) with proportional
transaction cost is in general more efficient from a numerical viewpoint, in that
it completely avoids introducing integer variables, the MIQP method is more
general, for example it can be easily extended to handle transaction costs of the
form hi(ui(t)− ui(t− 1)) = min(c0, ε

isi(t)|ui(t)− ui(t− 1)|), where c0 is a
given minimum fixed cost to be paid in each transaction.

Before stating the second main SMPC formulation, we motivate (4.16)
differently. Starting from a minimum-variance objective, that alone is not
suitable to account for transaction costs according to Proposition 11, we
extend it by a probabilistic chance-constraint [78] as follows

min
v(t)≥0

Var[e(t+ 1)] (4.22a)

s.t. p(e(t+ 1) ≤ elow) ≤ η, (4.22b)

where we treat e(t + 1) as a random variable defined on some probabil-
ity space and parameterized by v(t), where p(et+1 ≤ elow) denotes the
probability of event et+1 ≤ elow, and where elow and η ∈ [0, 1] are two
parameters. Then, under the assumption that e(t + 1) is Gaussian dis-
tributed, e(t+ 1) ∼ N (µ(t+ 1), σ(t+ 1)), we obtain p(e(t+ 1) ≤ elow) =

N

(
elow−µ(t+1)√

σ(t+1)

)
, where N(·) denotes the cumulative distribution func-

tion (CDF) of the standard normal distribution. Distinguishing between
two cases, η ∈ [0.5, 1] and η ∈ [0, 0.5), we obtain for (4.22b), elow − µ(t +

1) ≤ N−1(η)
√
σ(t+ 1) and µ(t + 1) − elow ≥ N−1(1 − η)

√
σ(t+ 1), re-

242

spectively. Thus, for the first case we can formulate equivalently

min
v(t)≥0

Var[e(t+ 1)] (4.23a)

s.t. (elow − µ(t+ 1))2 ≤
(
N−1(η)

)2
σ(t+ 1), (4.23b)

(elow − µ(t+ 1)) ≥ 0, (4.23c)

and similarly for the second case. Here a remark needs to be made. Sup-
pose we parameterize e(t+1) according to (4.12) and make the additional
(simplistic) assumption that bi(t) = si(t+1)−(1+r)si(t) is Gaussian dis-
tributed, then e(t+1) is likewise Gaussian (by linearity of (4.12)) and thus
fits above framework. However, then (4.23) is in general not a quadrat-
ically constrained convex program. This is since the Hessian of (4.23b),
which is here considered as a second-order condition for convexity, is in
general not positive semidefinite. Instead, we consider the softened ver-
sion of (4.23) as minv(t)≥0{Var[e(t+ 1)]+...

λ
(

(elow − µ(t+ 1))2 ≤
(
N−1(η)

)2
σ(t+ 1)

)
+ξ(µ(t+1)−elow)}with La-

grangian multipliers λ, ξ ∈ R. This resembles (4.16) for elow = 0 and
ξ = 0. In fact, after a scaling step (not affecting the minimizer), it trans-
lates to

min
v(t)≥0

Var[e(t+ 1)] + λ
1−λ(N−1(η))2 E2[e(t+ 1)], (4.24)

with 0 ≤ λ < 1
(N−1(η))2 ∈ [1, 4] (derived from the equivalent α ≥ 0 in

(4.16)) for η ∈ [0.5, 1]. Similarly, the case for η ∈ [0, 0.5] can be obtained
with α ≥ 0 in (4.16) being represented by −λ

1+λ(N−1(1−η))2 , and thus 0 ≥
λ > − 1

(N−1(1−η))2 ∈ [−1,−4] to have α ≥ 0.
To summarize, we motivated (4.16) starting from a minimum-variance

objective and added chance constraint (4.22b) to account for transaction
costs. It is stressed that only under the assumption of e(t + 1) follow-
ing a Gaussian distribution and a relaxation of (4.22b), a (loose) relation
to (4.16) could be established. Note that the chance-constraint formula-
tion (4.22) permits to formulate general probabilistic constraints (without
making the assumption of a Gaussian distribution of e(t+ 1)). Then, fol-
lowing [292], convex approximations of general chance constraints (4.22b)

243

can be formulated by means of different generating functions that place
different penalties on how tight the original chance constraints are ap-
proximated.

Finally, let us also draw a relation between the β-VaR (Value at Risk)
and the corresponding chance-constraint optimization problem formu-
lation, as well as state the associated LP in our scenario-based SMPC
framework. Further below, the β-VaR is used to derive the β-CVaR (Con-
ditional Value at Risk) and defined by a minimization problem after the
definition of a loss function. For contrast, we here directly work with
e(t + 1) and consider a more intuitive maximization problem formula-
tion. We here define the β-VaR as elow being the solution of the chance-
constraint optimization problem as follows:

max
v(t)≥0,elow

elow (4.25a)

s.t. p(et+1 ≤ elow) ≤ 1− β, (4.25b)

where β is a parameter, typically β = 90%, 95% or 99%. For our scenario-
based approach of (4.11), we can approximate (4.25) as

max
v(t)≥0,elow

elow (4.26a)

s.t. ‖max(elow · 1−
[
e1(t+ 1), . . . , eM (t+ 1)

]
, ...

...0)‖0 ≤ (1− β)M, (4.26b)

where 0 indicates a vector of zeros, ‖ · ‖0 denotes the `0-norm and the
max-operator is acting element-wise. After convexifying constraint (4.26b)
by substituting the `0- with the `1-norm and exploiting the natural non-
negativity of the formulation permitting us to drop absolute values, we
obtain

max
v(t)≥0,elow

elow (4.27a)

s.t.
M∑

i=1

max(elow − ei(t+ 1), 0) ≤ (1− β)M. (4.27b)

244

Ultimately, from (4.27) we obtain the final LP-formulation:

max
v(t)≥0,elow,{yi}Mi=1

elow (4.28a)

s.t.
M∑

i=1

yi ≤ (1− β)M, (4.28b)

yi ≥ elow − ei(t+ 1), (4.28c)

yi ≥ 0. (4.28d)

As motivated by [324], the CVaR can be considered to be a more consis-
tent measure of risk than VaR. Therefore, in the evaluation Section 4.1.6,
we only consider the CVaR-based SMPC formulation introduced next
rather than (4.28).

For very recent work on chance-constraints with applications to port-
folio optimization, see also [348] and [334].

Minimization of Conditional Value at Risk (LP-CVaR)

A drawback of the QP formulation (4.16) is that it requires calibrating
the scalar α that achieves the best tradeoff between variance (=risk) and
expectation (=lack of hedging accuracy due to transaction costs). Con-
ditional Value at Risk (CVaR) can be used as an alternative performance
measure to penalize the hedging error e(t+ 1), and is defined as follows.

Let f(u, s) : Rn+k → R be a loss function associated with the decision
vector u ∈ Rn and with the random vector s ∈ Rk. In our case u = u(t),
s = m(t + 1), f(u, s) = |e(t + 1)| (in case super-replication of the option
price is not penalized, f(u, s) = −e(t + 1)). Let p(s) be the probability
density function of s. With respect to a given probability β, 0 ≤ β ≤ 1,
the β-VaR (Value at Risk) is defined as the lowest value `, such that, with
probability β, the loss will not exceed `. The number β is a fixed value,
typically β = 90%, 95%, or 99%. The main drawback of VaR is that the
amount of loss occurring with probability (1−β) is not taken into account
directly. To avoid this, β-CVaR was introduced, that is the conditional
expectation of the loss function above `, quantifying what the average loss

245

is when one loses more than `, with probability 1−β [324]. The probability
of f(u, s) not exceeding the threshold ` is

ψ(u, `) =

∫

f(u,s)≤`
p(s)ds.

The β-VaR and the β-CVaR are defined, respectively, as

`β(u) = min{` ∈ R : ψ(u, `) ≥ β}

and

φβ(u) =
1

1− β

∫

f(u,s)≥`β(u)

f(u, s)p(s)ds.

In [324] it is shown that the β-CVaR of the loss associated with any u can
be determined by the formula

φβ(u) = min
`∈R

Fβ(u, `),

where

Fβ(u, `) = `+
1

1− β

∫

s∈Rm
[f(u, s)− `]+p(s)ds (4.29)

and [·]+ denote the positive part of its argument, [f]+ = max(f, 0). The
integral in (4.29) can be approximated by sampling the distribution of
s, according to the density function p(s). If the sampling generates a
collection of M vectors s1, . . . , sM , each of which has probability πj of
occurring, j = 1, . . . ,M , then the corresponding approximation F̃β(u, `)

is

F̃β(u, `) = `+
1

1− β
M∑

j=1

πj [f(u, sj)− `]+.

Finally, we use the CVaR to formulate the SMPC problem for dynamic

246

hedging:

min
v(t),`(t),{zj(t)}Mj=1

`(t) +
1

1− β
M∑

j=1

πjzj(t) (4.30a)

s.t. zj(t) ≥ wj(t+ 1)− pj(t+ 1)− ` (4.30b)

zj(t) ≥ −wj(t+ 1) + pj(t+ 1)− ` (4.30c)

zj(t) ≥ 0 (4.30d)

j = 1, . . . ,M

v(t) ≥ 0 (4.30e)

for the given fixed value of β, where wj(t + 1) − pj(t + 1) is given by
(4.11). Problem (4.30) is a Linear Programming (LP) problem with M +

2n + 1 variables and 3M + 2n constraints. Note that by removing con-
straint (4.30b) one does not penalize super-replication of the option price,
as the loss function becomes max(−e(t+ 1), 0).

Minimization of Worst-case Error (LP-MinMax)

A simpler approach than CVaR is to penalize the worst-case loss over the
set ofM generated scenarios, that is the largest absolute value |e(t+1)| of
the hedging error. The resulting formulation is the following LP problem

min
v(t),`(t)

`(t) (4.31a)

s.t. `(t) ≥ wj(t+ 1)− pj(t+ 1) (4.31b)

`(t) ≥ −wj(t+ 1) + pj(t+ 1) (4.31c)

j = 1, . . . ,M

`(t) ≥ 0 (4.31d)

v(t) ≥ 0, (4.31e)

where wj(t + 1) − pj(t + 1) is given by (4.11). Note that the LP (4.31) is
simpler than (4.30) as it only involves 2n+ 1 variables and 2(M + n) + 1

247

constraints (they are identical for M = 1). In contrast, it is clear that
the minmax formulation (4.31) does not exploit the available information
about the probability distribution of the stochastic variables that affect
the evolution of the portfolio.

Finally, alternative performance measures to penalize the hedging er-
ror e(t + 1) are possible, such as the average of the maximum shortfall,
with shortfall for scenario j defined as max(−(wj(t + 1) − pj(t + 1)), 0).
In addition, terms penalizing transactions may be added to the objective
functions, and, e.g., transaction-rate constraints may be introduced.

4.1.5 Scenario Generation

The closed-loop performance of SMPC heavily depends on the way the
scenarios of both sj(t+ 1) and pj(t+ 1), j = 1, . . . ,M , are generated.

Stock Models

We propose three scenario generation methods for stock prices:

1. logn. The most widely used model to describe the dynamics of
stock prices is the log-normal (logn) model. Its discrete-time form
is

si(t+ 1) = si(t)e
(µi− 1

2σ
2
i)Ts+σi

√
Tsηi(t), (4.32)

with Ts the sampling interval (e.g., 1 day), ηi(t) ∼ N (0, 1), ∀i =

1, . . . , n. Parameters µi and σi must be estimated from data; typ-
ically as the maximum likelihood (ML) estimates from T + 1 past
stock prices using

{
ln
(
si(t−T+1)
si(t−T)

)
, . . . , ln

(
si(t)
si(t−1)

)}
and exploit-

ing the Gaussian distribution of ηi(t). We tested three methods.
First, after ML-identification on the training data, we maintained
estimates µi and σi constant throughout the option’s life. Second,
we recursively re-estimated them using ML on a time-shifted data
set (up until the current hedging date) of constant window length
T + 1. Third, after initialization at t = 0 using the ML-estimate,
we applied a discrete Extended Kalman Filter (dEKF) to adapt online.
While for artificially generated toy examples with underlying price

248

s(t) following a logn model, dEKF-estimates converged to the true
parameters, for real-world data it was not the case (real-world data
does not follow the log-normal stock model). An additional disad-
vantage of the dEKF-solution is the difficulty to select suitable tun-
ing parameters (trading-off model predictions and actual measure-
ments). The recursive ML-estimation performed overall best and
is our preferred method when using the logn method. After iden-
tification and given si(t), ∀i = 1, . . . , n, at current hedging date t,
the M scenarios are generated by drawing ηji (t) ∼ N (0, 1) before
evaluating (4.32) to obtain sji (t+ 1) and πji = 1

M , ∀j = 1, . . . ,M .

2. SVR. This second model for stock-price predictions is based on sup-
port vector regression (SVR) using Vapniks’s ε-insensitive loss func-
tion for one-dimensional outputs, see [342]. The guiding motiva-
tion is to derive a parametric nonlinear fit to past stock data, with
input signal being the time instances {t−TSVR, . . . , t}, and the out-
put signal the corresponding stock prices {si(t − TSVR), . . . , si(t)}.
SVR can generate excellent nonlinear fits to past stock data. This
motivated us to use the identified model for a one-step ahead pre-
diction. The prediction model has the form ŝi(t+1) = W Tϕ(t+1)+q

with parametersW ∈ Rnf×1, where nf denotes a high-dimensional
feature space dimension, q ∈ R and ϕ(·) : R→ Rnf×1. According to
Mercer’s Theorem, ϕ(t)Tϕ(t̃) = K(t, t̃) with symmetric and positive
definite kernel function, e.g., for the radial basis function (RBF) ker-
nel: K(t, t̃) = e(−‖t−t̃‖)/σ2

RBF . The tuning parameters of the method
are the positive scalars TSVR, σRBF, CSVR and εSVR. Then, the opti-
mization problem for SVR reads:

min
W,q,ξτ ,ξ∗τ
τ=0,...,TSVR

1

2
‖W‖22 + CSVR1Tξτ + CSVR1Tξ∗τ (4.33a)

s.t. given data: {t− τ, si(t− τ)}TSVR
τ=0 , (4.33b)

ξτ , ξ
∗
τ ≥ 0, (4.33c)

si(t− τ)−W Tϕ(t− τ)− q ≤ εSVR + ξτ , (4.33d)

− si(t− τ) +W Tϕ(t− τ) + q ≤ εSVR + ξ∗τ , (4.33e)

249

where 1 denotes a column-vector of ones. We solve Problem (4.33)
in the standard way by first formulating and solving its dual prob-
lem, which is a quadratic program (QP), and then determining
q ∈ R via the Karush-Kuhn-Tucker (KKT) conditions. Thus, for
the solution of (4.33), only a QP-solver is required. The step-ahead
stock price prediction is then conducted using the dual optimiza-
tion variables, training input data and applying Mercer’s Theorem.
We then generate the M scenarios from

sji (t+ 1) = ŝi(t+ 1) + 2δSVRη
j
i (t), η

j
i (t) ∼ N (0, 1), j = 1, . . . ,M

(4.34)
for all i = 1, . . . , n with δSVR = 1

TSVR

∑TSVR
τ=1 |si(0 + 1− τ)− s(0− τ)|,

i.e., identified from the offline training data set. The coefficient 2

in (4.34) was determined from closed-loop experiments. We found
that a relatively high value was required for improved robustness,
see also Section 4.1.6 for a related discussion.

3. pert. The proposed third model for stock price predictions takes the
current stock price as the mean estimate (Martingale process) and
generates scenarios by adding white perturbation noise, i.e.,

sji (t+ 1) = si(t) + σpertη
j
i (t), η

j
i (t) ∼ N (0, 1), j = 1, . . . ,M (4.35)

for all i = 1, . . . , n.

For final closed-loop simulations, we considered one year (252 trad-
ing days) of past real-world stock prices, which we partitioned into T =

125 days of training data for initialization of µ and σ estimates (logn

model). The coefficient σpert = 0.3 for the pert model was determined
experimentally from both artificially generated and real-world data in
closed-loop hedging experiments. We likewise determined σRBF = 100,
CSVR = 1 and εSVR = 0.01. For the SVR-model, an interesting finding
was that the very short time period TSVR = 10 in combination with
relatively large perturbation variance (2δSVR)2 yielded the best closed-
loop hedging results. Even if the presented SVR-scheme permits in prac-
tice arbitrarily accurate nonlinear fits to past stock price data, the cor-
respondingly identified model does not enable correct one-step ahead

250

16 BEMPORAD ET AL.

logn

65 70 75 80

100

105

110

115

120

t

st
oc

k
pr

ic
e

[$
]

SVR

65 70 75 80

t

pert

65 70 75 80

t

Figure 1. Comparison of the identified three scenario generation methods for the prediction of s(t+ 1). The

black line indicates the true stock price. The red lines indicate the scenarios sj(t+ 1), j = 1, . . . ,M = 100

at times t ∈ {65, 70, 75, 80}.

4.2. Option-pricing engine

An option-pricing engine is needed at Step 3 of Algorithm 1 to estimate future option prices

pj(t+ 1) = (1 + r)−(T−(t+1))E[pj(T)|sj(t+ 1)], ∀j = 1, . . . ,M . By employing Monte Carlo

(MC) simulations and the log-normal stock model, estimates for a European call option can be

computed from

sji,k(t+ l) = sji,k(t+ l − 1)e(µi−
σ2i
2)Ts+σi

√
Tsηi(t+l−1), (24)

E[pj(T)|sj(t+ 1)] =
1

Nsim

Nsim∑

k=1

max(sji,k(T)−K, 0), (25)

with i = 1, ηi(t+ l − 1) ∼ N (0, 1), l = 2, . . . , T − t, sji,k(t+ 1) = sji (t+ 1), ∀k = 1, . . . , Nsim.

Note that i = 1 since there is one stock underlying both an European call and a Barrier option.

Even for a replicating portfolio holding n− 1 other assets, the option underlying stock shall always

be identified with i = 1. Thus, starting from sj1(t+ 1), additional Nsim scenarios (e.g., 100) up until

expiration date T are generated. For the path-dependent Barrier option (25) is replaced according to

(2).

As an alternative, we tested the simpler following pricing scheme for European call option prices

pj(t+ 1) = (1 + r)−(T−(t+1)) max(sji (t+ 1)−K, 0), (26)

i = 1, j = 1, . . . ,M , and similarly for the barrier option. Thus, in comparison to the first method,

we implicitly assumed sj1,k(t+ l) = sj1,k(t+ 1), ∀l = 2, . . . , T − t, k = 1, . . . , Nsim.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 67: Comparison of the identified three scenario generation methods
for the prediction of s(t + 1). The black line indicates the true stock price.
The red lines indicate the scenarios sj(t + 1), j = 1, . . . ,M = 100 at times
t ∈ {65, 70, 75, 80}.

stock price predictions with the same accuracy (also not even by sign).
For the three methods, the average computation time for the generation
of all of sj(t + 1), j = 1, . . . ,M = 100 at each trading date was 0.14ms,
0.4ms (including the time for building and solving of the dual QP) and
0.018ms. As expected, the SVR solution requires by far the most compu-
tations. Figure 67 quantitatively visualizes the three final scenario gener-
ation methods for the prediction of s(t+ 1).

Option-pricing Engine

An option-pricing engine is needed at Step 3 of Algorithm 16 to estimate
future option prices pj(t+ 1) = (1 + r)−(T−(t+1))E[pj(T)|sj(t+ 1)], ∀j =

1, . . . ,M . By employing Monte Carlo (MC) simulations and the log-
normal stock model, estimates for a European call option can be com-
puted from

sji,k(t+ l) = sji,k(t+ l − 1)e(µi−
σ2
i
2)Ts+σi

√
Tsηi(t+l−1), (4.36)

E[pj(T)|sj(t+ 1)] =
1

Nsim

Nsim∑

k=1

max(sji,k(T)−K, 0), (4.37)

with i = 1, ηi(t + l − 1) ∼ N (0, 1), l = 2, . . . , T − t, sji,k(t + 1) =

sji (t + 1), ∀k = 1, . . . , Nsim. Note that i = 1 since there is one stock

251

DYNAMIC OPTION HEDGING WITH TRANSACTION COSTS: A SMPC APPROACH 17

0 20 40 60 80 100 120 140 160 180 200 220 240
−50

0

50

100

150

200

trading days

pe
rf

or
m

an
ce

[%
]

Figure 2. Normalized one-year evolution of the first 30 stocks (by symbol) held in the Nasdaq-index between

November 16, 2015, and November 11, 2016. The 252 trading days are partitioned by the black-dashed

vertical line into training and option evaluation data, respectively. Thus, t = 0 is initialized at trading day

125.

In fact, in addition to being much faster‡, the second pricing engine (26) yielded significantly

better and more consistent closed-loop hedging results. Intuitively, this has the following reason.

Real-world data do not follow a log-normal stock model. Thus, (24) can only very crudely predict

si(T). This is especially the case for a large difference between the current hedging date t and the

expiration date T .

5. HEDGING RESULTS

We test the three SMPC formulations for dynamic hedging defined, respectively, by (16), (18),

and (19) on a European plain vanilla call option and on a barrier option with scenario generations

of stock and option prices according to Section 4. For the QP-Var approach we select α = 0.25,

as it was calibrated in Bemporad et al. (2011) using simulations of a log-normal stock model and

‡The average computation time was 0.6s and 6.6e-5s, respectively, for the generation of pj(t+ 1), j = 1, . . . ,M = 100.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 68: Normalized one-year evolution of all 105 stocks held in
NASDAQ-100 between November 27, 2015, and November 25, 2016. The
252 trading days are partitioned by the black-dashed vertical line into train-
ing and option evaluation data, respectively. Thus, t = 0 is initialized at
trading day 125.

underlying both a European call and a Barrier option. Even for a repli-
cating portfolio holding n − 1 other assets, the option underlying stock
shall always be identified with i = 1. Thus, starting from sj1(t+ 1), addi-
tional Nsim scenarios (e.g., 100) up until expiration date T are generated.
For the path-dependent Barrier option (4.37) is replaced according to (4.2).

As an alternative, we tested the simpler following pricing scheme for
European call option prices

pj(t+ 1) = (1 + r)−(T−(t+1)) max(sji (t+ 1)−K, 0), (4.38)

i = 1, j = 1, . . . ,M , and similarly for the barrier option. Thus, in
comparison to the first method, we implicitly assumed sj1,k(t + l) =

sj1,k(t+ 1), ∀l = 2, . . . , T − t, k = 1, . . . , Nsim.
In fact, in addition to being much faster2, the second pricing engine

2The average computation time was 0.6s and 6.6e-5s, respectively, for the generation of

252

(4.38) yielded significantly better and more consistent closed-loop hedg-
ing results. Intuitively, this has the following reason. Real-world data do
not follow a log-normal stock model. Thus, (4.36) can only very crudely
predict si(T). This is especially the case for a large difference between
the current hedging date t and the expiration date T .

4.1.6 Hedging Results

We test the three SMPC formulations for dynamic hedging defined, re-
spectively, by (4.16), (4.30), and (4.31) on a European plain vanilla call
option and on a barrier option with scenarios of stock and option prices
generated according to Section 4.1.5. For the QP-Var approach we select
α = 0.25, as it was calibrated in [42] using simulations of a log-normal
stock model and assuming real market generating prices according to the
same model (idealized nominal case). For the LP-CVaR approach we use
β = 95% in (4.30).

For the solution of the QPs and LPs, we employ the domain-specific
language CVXPY for optimization embedded in Python, see [92]. For
completeness, QP- and LP-solution times are reported. Since they are
in the ms-range, the typical QP- and LP-complexities are not limiting
factors for daily rebalancing. For more frequent rebalancing, however,
they may become relevant. Note that the original ∆-hedging theory
([49]) is based on a continuous-time rebalancing assumption. Numerical
experiments were run in Python 2.7 on a laptop running Ubuntu 14.04
equipped with an Intel Core i7 CPU @2.80GHz×8, 15.6GB of memory.

In this section we present results for real-world price data of all 105
stocks held in the NASDAQ-100 between November 27, 2015, and Novem-
ber 25, 2016. Data were obtained from finance.yahoo.com3, see Fig-
ure 68 for visualization. We initialize t = 0 at trading day 125 (May
27, 2016). The option was simulated to expire after T = 127 rebalanc-
ing intervals (on November 25, 2016 with daily rebalancing). We assume

pj(t + 1), j = 1, . . . ,M = 100. Computation time is relevant since it permits to increase
the number of scenarios M .

3The stock split (ratio two for one) that took place on December 2, 2015 for Ctrip.com
International Ltd. was not accounted for in the retrieved data.

253

proportional transaction costs of 1% and an effective annual risk-free rate
ra = 1%. For each stock si(t), i = 1, . . . , 105, we assume a European call
option with strike price K = si(0) and initialize w(0) = 0.01si(0). For
the UP-AND-OUT option the barrier is set as su = 1.1si(0). In all cases
the replicating portfolio is composed by the underlying stock and a cash
position (a set-up similar to common ∆-hedging). We therefore drop
subscripts i in the following.

A standard option contract typically covers 100 shares. Thus, u(t) = 1

implies a portfolio such that at the end of the rebalancing interval 100
shares of the underlying asset are held. Throughout the plots of this
section, the average one-step ahead predicted option price is denoted
by p̄(t + 1) = 1

M

∑M
j=1 p

j(t + 1), the true option price by p?(t) = (1 +

r)−(T−t) max(s(T) − K, 0) for a European call option and similarly for
the path-dependent barrier option. For both options, we initializew(0) =

0.01s(0). This simplistic wealth initialization is used for the reason that it
permits good evaluation of tracking capabilities of the controllers. Since
the second option-pricing engine of Section 4.1.5 is our preferred choice,
we obtain p̄(0) = 0. This is because in experiments, as outlined above,
we initialize K = s(0). Since stock prices typically cost much less than
1000$, our w(0)-choice implies a small initial estimated hedging error
w(0)− p̄(0). Tracking capabilities of the controller can then be evaluated
when proceeding with t = 0, . . . , T . For visualization, see Figures 71
and 72 for small t. Note that we do not initialize w(0) (and accordingly
w(0) − p̄(0)) uniformly for all NASDAQ-100 stocks. This is not done as
a means of testing robustness. In practice, w(0) is initialized ideally as
the true option price (which is unknown in a causal setting at t = 0) plus
a premium. In general, it may be very difficult to select an appropriate
w(0), especially in the presence of transaction costs. Above presented
methods offer a practical tool to financial institutions to simulate the effect
of different initial prices w(0) and choose a proper one.

The objective of the reported simulations is to understand what is
the most suitable SMPC algorithm and scenario generation scheme, how
they perform in comparison to ∆-hedging, and how perfect one-step
ahead knowledge affect results. For the last issue, we will assume that at

254

Table 10: Results for a European call option without knowledge of the exact
stock price s(t+ 1) at time t. The CPU-time (ms) for building and solving of
the QP, LPs and for ∆-hedging is given by τ̄ . For LP-CVaR and M = 1000
no solution could be returned for some of the stocks considered.

Table 11: Results for a European call option in the noncausal case with per-
fect knowledge of exact stock price s(t+ 1) at time t. In accordance with the
scenario generation of (4.40), we set M = 100.

a given time twe know s(t+1) (but not s(t+2), s(t+3), . . .). Finally, we
want to assess in general whether SMPC can have significant practical
application for dynamic option-hedging with transaction costs.

European Call Option

We first test the SMPC algorithm on a European call option. Table 10
summarizes the expected and most negative final hedging error e(T) and
its variance for the considered stock data, see also Figure 69. A zero (or
even positive) min(e(T)) is desired, as it indicates the wealth shortfall at
expiration. For ∆-hedging we employed the analytical hedging formula

255

20 BEMPORAD ET AL.

0 50 100 150 200

0

50

s̃(T)

[$
]

0 50 100 150 200

s̃(T)

Figure 4. Results for an European call option in the causal case without knowledge of exact stock price

s(t+ 1) at time t. The normalized portfolio wealth w̃(T) = 100w(T)/K and associated s̃(T) = 100s(T)/K

for all 30 stocks (green dots) is compared to the normalized payoff p̃(T) = max(s̃(T)− 100, 0) (solid blue)

at expiration date T . (Left) Solution for LP-CVaR, M = 100 and pert, see second row from the top in Table

I. (Right) Solution for ∆-hedging, see last row from the top in Table I.

0 50 100 150 200

0

50

s̃(T)

[$
]

0 50 100 150 200

s̃(T)

Figure 5. Results for an European call option in the noncausal case with knowledge of exact stock price

s(t+ 1) at time t. The normalized portfolio wealth w̃(T) = 100w(T)/K and associated s̃(T) = 100s(T)/K

for all 30 stocks (green dots) is compared to the normalized payoff p̃(T) = max(s̃(T)− 100, 0) (solid blue)

at expiration date T . (Left) Solution for LP-CVaR,M = 100 and s+t+1, see second row from the top in Table

II. (Right) Solution for ∆-hedging, see last row from the top in Table II.

??. A zero (or even positive) min(e(T)) is desired, as it indicates the wealth shortfall at expiration.

For ∆-hedging we also tested the analytical hedging formula for u(t) from Black and Scholes (1973)

u(t) =
1√
2π

∫ d1

−∞
e−

ξ2

2 dξ (27)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 69: Results for a European call option in the causal case. The nor-
malized portfolio wealth w̃(T) = 100w(T)/K and corresponding s̃(T) =
100s(T)/K for all 105 stocks (green dots) is compared to the normalized
payoff p̃(T) = max(s̃(T) − 100, 0) (solid blue) at expiration date T . (Left)
Solution for LP-CVaR, M = 100 and pert, see the second row from the top
in Table 10. (Right) Solution for ∆-hedging, see the last row from the top in
Table 10.

20 BEMPORAD ET AL.

0 50 100 150 200

0

50

s̃(T)

[$
]

0 50 100 150 200

s̃(T)

Figure 4. Results for an European call option in the causal case without knowledge of exact stock price

s(t+ 1) at time t. The normalized portfolio wealth w̃(T) = 100w(T)/K and associated s̃(T) = 100s(T)/K

for all 30 stocks (green dots) is compared to the normalized payoff p̃(T) = max(s̃(T)− 100, 0) (solid blue)

at expiration date T . (Left) Solution for LP-CVaR, M = 100 and pert, see second row from the top in Table

I. (Right) Solution for ∆-hedging, see last row from the top in Table I.

0 50 100 150 200

0

50

s̃(T)

[$
]

0 50 100 150 200

s̃(T)

Figure 5. Results for an European call option in the noncausal case with knowledge of exact stock price

s(t+ 1) at time t. The normalized portfolio wealth w̃(T) = 100w(T)/K and associated s̃(T) = 100s(T)/K

for all 30 stocks (green dots) is compared to the normalized payoff p̃(T) = max(s̃(T)− 100, 0) (solid blue)

at expiration date T . (Left) Solution for LP-CVaR,M = 100 and s+t+1, see second row from the top in Table

II. (Right) Solution for ∆-hedging, see last row from the top in Table II.

??. A zero (or even positive) min(e(T)) is desired, as it indicates the wealth shortfall at expiration.

For ∆-hedging we also tested the analytical hedging formula for u(t) from Black and Scholes (1973)

u(t) =
1√
2π

∫ d1

−∞
e−

ξ2

2 dξ (27)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 70: Results for a European call option in the noncausal setting.
The normalized portfolio wealth w̃(T) = 100w(T)/K and corresponding
s̃(T) = 100s(T)/K for all 105 stocks (green dots) is compared to the nor-
malized payoff p̃(T) = max(s̃(T)− 100, 0) (solid blue) at expiration date T .
(Left) Solution for LP-CVaR, M = 100 and pert, see the second row from
the top in Table 11. (Right) Solution for ∆-hedging, see the last row from
the top in Table 11.

256

DYNAMIC OPTION HEDGING WITH TRANSACTION COSTS: A SMPC APPROACH 21

50

60

70

st
oc

k
pr

ic
e

[$
]

0

5

10

15

[$
]

p?(t)

w∆(t)

p̄pert(t)

wpert(t)

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

t

u
(t

)
[-

]

u∆(t)

upert(t)

Figure 6. Comparison of two stock price scenario generation methods (logn and pert). QP-Var is employed

as the SMPC algorithm. The underlying stock price (top frame) is of Apple Inc. (May 17, 2016 until

November 11, 2016).

21 Why SMPC for Dynamic Option Hedging with Transaction Costs?

..................90 .
100

.

110

.

120

.st
oc

k
pr

ic
e

[$
]

..

...............0 .

10

.

20

.

[$
]

.

. ..p⋆(t)

. ..p̄(t)

. ..w(t)

..

..
0
.

10
.

20
.

30
.

40
.

50
.

60
.

70
.

80
.

90
.

100
.

110
.

120
.0 .

0.5

.

1

.

t

.

u
(t

)
[-]

Figure 5: Hedging results for QP-Var and knowledge of one-step ahead stock
price s(t + 1) at every time t. The underlying stock price (top frame) is of
Apple Inc. (May 17, 2016 until November 11, 2016).

Figure 7. Hedging results for QP-Var and knowledge of one-step ahead stock price s(t+ 1) at every time t.

The underlying stock price (top frame) is of Apple Inc. (May 17, 2016 until November 11, 2016).

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 71: Causal setting. Comparison of ∆-hedging and LP-CVaR for a Eu-
ropean Call option. The underlying stock price (top frame) is of Microchip
Technology Inc. (May 27 until November 25, 2016).

DYNAMIC OPTION HEDGING WITH TRANSACTION COSTS: A SMPC APPROACH 21
DYNAMIC OPTION HEDGING WITH TRANSACTION COSTS: A SMPC APPROACH 21

50

60

70

st
oc

k
pr

ic
e

[$
]

0

5

10

15

[$
]

p?(t)

w∆(t)

p̄pert(t)

wpert(t)

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

t

u
(t

)
[-

]

u∆(t)

upert(t)

Figure 6. Comparison of two stock price scenario generation methods (logn and pert). QP-Var is employed

as the SMPC algorithm. The underlying stock price (top frame) is of Apple Inc. (May 17, 2016 until

November 11, 2016).

21 Why SMPC for Dynamic Option Hedging with Transaction Costs?

..................90 .
100

.

110

.

120

.st
oc

k
pr

ic
e

[$
]

..

...............0 .

10

.

20

.

[$
]

.

. ..p⋆(t)

. ..p̄(t)

. ..w(t)

..

..
0
.

10
.

20
.

30
.

40
.

50
.

60
.

70
.

80
.

90
.

100
.

110
.

120
.0 .

0.5

.

1

.

t

.

u
(t

)
[-]

Figure 5: Hedging results for QP-Var and knowledge of one-step ahead stock
price s(t + 1) at every time t. The underlying stock price (top frame) is of
Apple Inc. (May 17, 2016 until November 11, 2016).

Figure 7. Hedging results for QP-Var and knowledge of one-step ahead stock price s(t+ 1) at every time t.

The underlying stock price (top frame) is of Apple Inc. (May 17, 2016 until November 11, 2016).

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 6. Causal case. Comparison of ∆-hedging and LP-CVaR as the SMPC algorithm. The underlying

stock price (top frame) is of Microchip Technology Inc. (May 27, 2016 until November 25, 2016).

50

60

70

st
oc

k
pr

ic
e

[$
]

0

5

10

15

[$
]

p?(t)

w∆(t)

p̄pert(t)

wpert(t)

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

t

u
(t

)
[-

]

u∆(t)

upert(t)

Figure 7.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 72: Noncausal setting. Comparison of ∆-hedging and LP-CVaR for
a European Call option. The underlying stock price (top frame) is of Mi-
crochip Technology Inc. (May 27 until November 25, 2016).

257

for u(t) from [49],

u(t) =
1√
2π

∫ d1(t)

−∞
e−

ξ2

2 dξ = N (d1(t)) , (4.39)

with d1(t) =
(

ln
(
s(t)
K

)
+
(
rc + σ2

2

2)
(T − t)

)
/
(
σ
√
T − t

)
, and whereby

rc = ln(1+ra)
T is the continuously compounded interest rate (and ra the ef-

fective annual risk-free rate), and σ recursively estimated at each t as the
maximum likelihood as done for the logn-scenario generation method,
and where N(·) denotes the cumulative distribution function (CDF) of
the standard normal distribution. ∆-hedging results in Table 10 refer to
above method. We also tested the control law ut = p(t)−p(t−1)

s(t)−s(t−1) employing
only known price data at t by computing p(t) = (1 + r)−(T−t) max(s(t)−
K, 0) and similarly p(t−1). In addition, we tested generatingM scenarios
sj(t+1), ∀j, before computing an average and the derivative approxima-
tion to account for the step-ahead nature of ∂p(t+1)

∂s(t+1) . This, however, did not
yield improvements. Figure 71 illustrates typical rebalancing trajectories
for ∆-hedging and for a SMPC-based algorithm, here, using LP-CVaR

and pert for scenario generation. Characteristic for ∆-hedging is the re-
balancing at almost every sampling time until reaching saturation, see
(4.39). The control command associated with SMPC is much less jagged,
often of step-wise nature and displaying variations more sparsely. These
properties could be observed in multiple experiments.

Secondly, we tested the SMPC in a noncausal setting: at every time t
we assumed a perfect one-step ahead knowledge of price s(t + 1). Con-
sequently, we replaced the three stock price scenario generation schemes
from Section 4.1.5, and instead used

sj(t+ 1) = s(t+ 1) + σpertη
j(t), ηj(t) ∼ N (0, 1), j = 1, . . . ,M, (4.40)

which is identical to (4.35) except that s(t + 1) replaces s(t) as the mean.
The perturbation parameter σpert is set to 0.3 as for the causal setting.
The reason for maintaining perturbation noise is to robustify the SMPC
algorithm and is discussed in greater detail in the next section. For ∆-
hedging in the noncausal setting, we still employ (4.39), replace, how-

258

ever, d1(t) by d1(t + 1) to make use of s(t + 1) knowledge. Figure 72 il-
lustrates a typical dynamic hedging result. Notice that the final hedging
error e(T) is positive for SMPC whereas negative for ∆-hedging. This
behavior could be observed frequently, see Figure 70 and Table 11 for
the hedging results for all 105 stock prices considered. By the defini-
tion of (4.39), ∆-hedging always constrains u(t) to lie between 0 and 1.
For the SMPC formulation this is not the case. Shortselling and uncon-
strained (u(t) > 1) buying commands spontaneously result from solving
the SMPC optimization problems, see Figure 72 around t = 15 for an
illustration. Note that for a practical implementation of the SMPC al-
gorithm it is recommended to add constraints such as umin(t) ≤ u(t) ≤
umax(t), whereby the bounds have to be determined according to the re-
quirements of the party writing the option. In the simplest case, 0 ≤
u(t) ≤ 1, ∀t. As Table 11 indicates, when analyzing all 105 components
of the NASDAQ-100 composite and assuming perfect knowledge of the
one-step ahead underlying price s(t+ 1), a significant wealth shortfall of
min(e(T)) = −45.7 resulted for ∆-hedging, whereas min(e(T)) = −0.6

for LP-CVaR.
To summarize, when comparing the three stock-price scenario gener-

ation methods (logn, SVR and pert) we found the pert scheme to perform
best within our SMPC-setting. Moreover, the combination of perfect s(t+
1) information and a SMPC algorithm results in consistently excellent fi-
nal hedging errors and significantly outperforms common ∆-hedging.
This finding encourages the employment of the presented SMPC algo-
rithms and emphasizes the importance of accurately predict s(t + 1) at
time t, as one would expect.

Barrier Option

For the UP-AND-OUT option we assumed a low barrier of su = 1.1s(0).
This resulted in 62.9% of all stock trajectories that the barrier was reached
for at least one time instant before expiration date T . Simulation results
are summarized in Tables 12 and 13. See also Figures 73 and 74. As
for the European call option, the combination of perfect s(t+ 1) informa-
tion and a SMPC algorithm outperformed ∆-hedging. Most importantly,

259

DYNAMIC OPTION HEDGING WITH TRANSACTION COSTS: A SMPC APPROACH 27

50 100 150

−20

0

20

s̃(T)

[$
]

50 100 150

s̃(T)

Figure 12. Results for a path-dependent Barrier option in the causal case without knowledge of exact

stock price s(t+ 1) at time t. The normalized portfolio wealth w̃(T) = 100w(T)/K and associated s̃(T) =

100s(T)/K for all 30 stocks (green dots) is compared to the normalized payoff p̃(T) (solid blue) at expiration

date T . (Left) Solution for LP-CVaR, M = 100 and pert, see second row from the top in Table III. (Right)

Solution for ∆-hedging, see last row from the top in Table III.

at time of barrier reaching. Then, for both the causal and noncausal prediction case, this can be

achieved by adding small perturbation noise, i.e., by setting pj(t+ 1) = 0 + 0.1ηj(t), ηj(t) ∼

N (0, 1) for option price scenarios, where coefficient 0.1 was obtained from experiments. The

resulting control signal is more jagged and requiring shortselling. See Figure 10 for illustration. This

behavior displays the powerful tracking capabilities of the SMPC algorithm, which may not only be

exploited for dynamic hedging but also for index replication and target performance tracking.

The concluding experiment is to stress the necessity of stochasticity and a sufficiently large

number of generated scenariosM , even in case of perfect one-step ahead knowledge of stock prices.

We consider (28) for scenario generation of stock prices and vary bothM and the perturbation noise

parameter σpert. Simulation results are summarized in Table V. For visualization, see Figure 11. Note

the sensitivity of control trajectories for σpert = 0.01 and the resulting catastrophic tracking accuracy

despite perfect one-step ahead knowledge.

6. CONCLUSIONS

SMPC is a suitable trading strategy for dynamic option hedging in the presence of transaction costs.

The simple scenario generation method according to the pert scheme outperformed both the SVR-

based and logn-model. For the noncausal and theoretical case of perfect one-step ahead knowledge

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 73: Results for a path-dependent Barrier option in the causal case.
The normalized portfolio wealth w̃(T) = 100w(T)/K and corresponding
s̃(T) = 100s(T)/K for all 105 stocks (green dots) is compared to the nor-
malized payoff p̃(T) (solid blue) at expiration date T . (Left) Solution for
LP-CVaR, M = 100 and pert, see the second row from the top in Table 12.
(Right) Solution for ∆-hedging, see the last row from the top in Table 12.

28 BEMPORAD ET AL.

50 100 150

−20

0

20

s̃(T)

[$
]

50 100 150

s̃(T)

Figure 13. Results for a path-dependent Barrier option in the noncausal case with knowledge of exact

stock price s(t+ 1) at time t. The normalized portfolio wealth w̃(T) = 100w(T)/K and associated s̃(T) =

100s(T)/K for all 30 stocks (green dots) is compared to the normalized payoff p̃(T) (solid blue) at expiration

date T . (Left) Solution for LP-CVaR, M = 100 and s+t+1, see second row from the top in Table IV. (Right)

Solution for ∆-hedging, see last row from the top in Table IV.

of stock-price data, consistently excellent hedging performance could be observed for the LP-based

SMPC algorithms (LP-CVaR and LP-MinMax), significantly surpassing common ∆-hedging. These

findings encourage future effort on improved short-term stock price predictions. Within the SMPC

framework, we discussed the importance of scenario generation and perturbation noise, even in the

case of perfect one-step ahead knowledge of stock prices.

REFERENCES

Bemporad, A. (2004). Efficient conversion of mixed logical dynamical systems into an equivalent

piecewise affine form. IEEE Trans. Automatic Control 49(5), 832–838.

Bemporad, A., L. Bellucci, and T. Gabbriellini (2014). Dynamic option hedging via stochastic

model predictive control based on scenario simulation. Quantitative Finance 14(10), 1739–1751.

Bemporad, A., T. Gabbriellini, L. Puglia, and L. Bellucci (2010). Scenario-based stochastic model

predictive control for dynamic option hedging. In Proc. 49th IEEE Conf. on Decision and Control,

Atlanta, GA, USA, pp. 6089–6094.

Bemporad, A. and M. Morari (1999). Control of systems integrating logic, dynamics, and

constraints. Automatica 35(3), 407–427.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 74: Results for a path-dependent Barrier option in the noncausal
case. The normalized portfolio wealth w̃(T) = 100w(T)/K and correspond-
ing s̃(T) = 100s(T)/K for all 105 stocks (green dots) is compared to the
normalized payoff p̃(T) (solid blue) at expiration date T . (Left) Solution for
LP-CVaR, M = 100 and pert, see the second row from the top in Table 13.
(Right) Solution for ∆-hedging, see the last row from the top in Table 13.

260

Table 12: Results for a path-dependent Barrier option in the causal case
without knowledge of exact stock price s(t+ 1) at time t. For LP-CVaR and
M = 1000 no solution could be returned for some of the stocks considered.

Table 13: Results for a path-dependent Barrier option in the noncausal case
with perfect knowledge of exact stock price s(t+ 1) at time t. In accordance
with the scenario generation of (4.40), we set M = 100.

mainly positive final hedging errors could be recorded. As visualized by
Figure 74, when analyzing all 105 stocks, the percentage of positive fi-
nal hedging error was 90.5% and 62.9% for LP-CVaR and ∆-hedging, re-
spectively. The rebalancing policy for ∆-hedging follows (4.39) and sets
u(t+ τ) = 0, ∀τ ∈ [0, T − t] as soon as the underlying stock price reaches
the barrier at time t. Consequently, at time t all wealth is transfered to-
wards the risk-free asset.

Before concluding, we report two additional experiments. The first
is motivated by the nature of Barrier options. By definition, as soon as
the underlying stock exceeds the barrier limit the option value drops to

261

Table 14: Results for a European call option in the noncausal case with per-
fect knowledge of exact stock price s(t+1) at time t. The average results for
the entire NASDAQ-100 are reported. LP-MinMax is employed as SMPC al-
gorithm. For σpert < 0.06, no solution could be returned anymore for some
of the stocks considered (the solver failed to find a solution).

0. A corresponding wealth and control trajectory are displayed in Fig-
ure 75 with a characteristic w(T) > 0. Suppose for a theoretical rea-
son one may still want to decrease the final headging error e(T) close
to zero, and thereby frequently reducing excess wealth accumulated at
time of barrier reaching. Then, for both the causal and noncausal set-
ting, this can be achieved by adding perturbation noise, i.e., by setting
pj(t+ 1) = 0 + 0.3ηj(t), ηj(t) ∼ N (0, 1) for option price scenarios, where
coefficient 0.3 was chosen from experiments. As Figure 75 shows, the
resulting control signal upert,0(t) is very jagged and requires shortselling.
Nevertheless, it is capable of reaching e(T) = 0 even in a causal setting.
This behavior displays the powerful tracking capabilities of the SMPC al-
gorithm, which may not only be exploited for dynamic hedging but also
for index replication [29] and target performance tracking [123].

The concluding experiment is to stress the necessity of stochasticity
and a sufficiently large number of generated scenariosM , even in case of
perfect one-step ahead knowledge of stock prices. We consider (4.40) for
scenario generation of stock prices and vary bothM and the perturbation
noise parameter σpert. Simulation results are summarized in Table 14. For
visualization, see Figure 76. Note the sensitivity of control trajectories for
σpert = 0.01 and the resulting temporary catastrophic tracking accuracy
despite perfect one-step ahead knowledge.

Finally, we remark some success ratios reported in the literature for

262

22 BEMPORAD ET AL.

140

150

160

170

180

st
oc

k
pr

ic
e

[$
]

0

10

[$
]

p?(t)

p̄pert(t)

wpert(t)

wpert,0(t)

0 10 20 30 40 50 60 70 80 90 100 110 120

0

0.5

1

t

u
(t

)
[-

]

upert(t)

upert,0(t)

Figure 8. Comparison of LP-CVaR as SMPC algorithm and ∆-hedging assuming perfect knowledge of

one-step ahead stock price s(t+ 1) at every time t. The underlying stock price (top frame) is of Bed Bath &

Beyond Inc. (May 17, 2016 until November 11, 2016).
25 Why SMPC for Dynamic Option Hedging with Transaction Costs?

..................90 .
100

.

110

.

120

.st
oc

k
pr

ic
e

[$
]

..

...............−5 .

0

.

5

.

[$
]

.

. ..p⋆(t)

. ..p̄logn(t)

. ..wlogn(t)

. ..p̄s+
t
(t)

. ..ws+
t
(t)

..

..
0
.

10
.

20
.

30
.

40
.

50
.

60
.

70
.

80
.

90
.

100
.

110
.

120
.0 .

0.5

.

1

.

t

.

u
(t

)
[-]

.

. ..ulogn(t)

. ..us+
t
(t)

Figure 7: Barrier option. Comparison of two stock price scenario generation
methods (logn and s+

t). LP-MinMax is employed as the SMPC algorithm.
The underlying stock price (top frame) is of Apple Inc. (May 17, 2016 until
November 11, 2016).

5.2 Barrier option

For the up-and-out option we assumed a low barrier of su = 1.1s(0). This
resulted in 83% of all stock trajectories that the barrier was reached for at
least one time instant before expiration date T . Simulation results are sum-
marized in Tables 3 and 4. The SMPC algorithm for LP-CVaR and M = 100

performed best, particularly, yielding smaller min(e(T)) and Var[e(T)]. As for
the European call option, the combination of perfect s(t + 1) information and
a LP-based SMPC algorithm resulted in consistently excellent final hedging
errors and significantly outperformed common ∆-hedging. For the causal
case, Figure 7 illustrates typcial hedging results when applying LP-MinMax
as the SMPC algorithm and logn and s+

t for scenario generation. While
both scenario generation schemes result in a positive final e(T), the control
command associated with s+

t is much less jagged, of step-wise nature and
displaying variations more sparsely. These are desirable properties and could
be observed in multiple experiments.

Figure 9. Barrier option. Comparison of two stock price scenario generation methods (logn and pert). LP-

MinMax is employed as the SMPC algorithm. The underlying stock price (top frame) is of Apple Inc.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 75: Employing QP-Var as the SMPC algorithm for a path-dependent
Barrier option in the causal setting. See Section 4.1.6 for the reduction of the
final hedging error by means of perturbation noise. The underlying stock
price (top frame) is of Broadcom Ltd. (May 27 until November 25, 2016).

DYNAMIC OPTION HEDGING WITH TRANSACTION COSTS: A SMPC APPROACH 25

M. Graf Plessen, A. Bemporad, L. Puglia, T. Gabbriellini 26

..................90 .
100

.

110

.

120

.st
oc

k
pr

ic
e

[$
]

..

...............
0

.

5

.

[$
]

.

. ..p⋆(t)

. ..p̄s+
t
(t)

. ..ws+
t
(t)

. ..p̄s+
t+1

(t)
. ..ws+

t+1
(t)

..

..
0
.

10
.

20
.

30
.

40
.

50
.

60
.

70
.

80
.

90
.

100
.

110
.

120
.0 .

0.5

.

1

.

t

.

u
(t

)
[-]

.

. ..us+
t
(t)

. ..us+
t+1

(t)

Figure 8: Barrier option. Illustration of capability of the SMPC algorithm
to reduce final hedging error e(T) close to 0 for both the causal and non-
causal prediction case (denoted s+

t and s+
t+1) by addition of perturbation in

the scenario generation step, see Section 5.2. LP-MinMax is employed as the
SMPC algorithm. The underlying stock price (top frame) is of Apple Inc.
(May 17, 2016 until November 11, 2016).

Figure 10. Barrier option. Reduction of final hedging error for both the causal and noncausal prediction case

(pert and s+t+1) by means of perturbation noise, see Section 5.2. LP-MinMax is employed as the SMPC

algorithm.

28

30

32

st
oc

k
pr

ic
e

[$
]

−4

−2

0

2

[$
]

p?(t)

p̄(t)

w(t)

0 50 100
−100

0

100

t

u
(t

)
[-

]

28

30

32

st
oc

k
pr

ic
e

[$
]

0

1

2

3

[$
]

p?(t)

p̄(t)

w(t)

0 50 100

0

0.5

1

t

u
(t

)
[-

]

Figure 11. ...

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)

Prepared using rncauth.cls DOI: 10.1002/rnc

Figure 76: Noncausal case. Illustration of two different levels of perturba-
tion in (4.40): σpert = 0.01 (left frame) and σpert = 0.3 (right frame). LP-
MinMax is employed as the SMPC algorithm. The underlying stock price
(top frame) is of Cisco Systems Inc. (May 27 to November 25, 2016).

263

correct sign predictions of step-ahead price difference s(t + 1)s(t). They
are meant to underline the difficulty in generating continuously accu-
rate step-ahead predictions in practice. In [217], support vector machines
(SVM) in combination with twelve technical indicators (such as Williams
%R, stochastic %K, disparity, etc.) are used to predict the direction of
change in the daily Korea composite stock price index (KOSPI). For vali-
dation data and their best tuning parameter choices, they report a predic-
tion performance between 50.1% and 57.8%. The same author mentioned
similar results in earlier work [218].

4.1.7 Conclusions

SMPC is a suitable trading strategy for dynamic option hedging in the
presence of transaction costs. The simple scenario generation method
according to the pert scheme outperformed both the SVR-based and logn-
model. For the noncausal and theoretical case of perfect one-step ahead
knowledge of stock-price data, consistently excellent dynamic hedging
performance could be observed for the SMPC algorithms, especially the
LP-based LP-CVaR, significantly surpassing common ∆-hedging. These
findings encourage future efforts on improving short-term stock price
predictions. For a practical implementation, constraints on u(t) need to
be added, in the simplest case u(t) ∈ [0, 1]. SMPC can handle such in-
put constraints naturally. In fact, as the evaluations on real-world stock
prices of the NASDAQ-100 empirically show, accurate one-step ahead
predictions in combination with the presented SMPC framework are suf-
ficient to achieve quasi-perfect hedging. This is in stark contrast to ∆-
hedging, which is not able to benefit in the same manner from perfect
one-step ahead stock price predictions. The results importantly also im-
ply that not more than accurate one-step ahead (instead of multiple-step
ahead) predictions are required to achieve quasi-perfect hedging.

In this view, we reported hedging results based on real-world data
from the NASDAQ-100, first, in the realistic and causal setting, and, sec-
ond, in the the optimal setting with perfect one-step ahead stock price
knowledge. As success ratios reported in the literature show, contin-

264

uously good step-ahead predictions are extremely difficult or impossi-
ble to achieve. Nevertheless, the two discussed settings let one interpo-
late the potential of SMPC for different step-ahead stock price prediction
qualities that improve upon the discussed pert scheme.

An additional practical benefit of the SMPC-approach is its ability to
easily incorporate a variety of constraints in the optimization problem
formulations. Within the SMPC framework, we discussed the impor-
tance of scenario generation and perturbation noise, even in the case of
perfect one-step ahead knowledge of stock prices.

4.1.8 Hierarchical Controller Parametrization

For the presented SMPC method for dynamic option hedging with trans-
action costs, there are three hierarchical layers. These are:

1. The generation of M scenarios of future market states by one of the
three discussed methods: logn, SVR or pert;

2. A pricing engine the generate correspondingM future option prices
according to one of the two discussed methods in Section 4.1.5;

3. The solution of one out of three SMPC problems:
QP-Var, LP-CVaR or LP-MinMax.

265

4.2 Parallel Investments in Multiple
Call and Put Options

This section summarizes [150]:

• M. Graf Plessen, and A. Bemporad, “Parallel investments in multi-
ple call and put options for the tracking of desired profit profiles,”
in IEEE American Control Conference, pp. 1091-1096, 2017.

A hierarchical algorithm is presented for optimally and automati-
cally combining various option investments to cost-efficiently realize a
desired profit-vs.-underlying-price profile (profit profile). The algorithm
assumes that a user-defined reference shape is defined and a set of plain
vanilla options in which long and short investment positions can be taken
are given. Within the presented framework, the desired profit profile
can be of arbitrary piecewise-affine (PWA) shape. Depending on future
underlying price predictions, it typically represents a bearish or bullish
market outlook, or displays bi-modal shape for conditional market out-
looks. The method provides a tool for portfolio optimization that is flex-
ible enough to trade off different user-preferences such as exploiting on
conditional market outlooks, realizing leverage, and most notably guar-
anteeing predictable worst-case losses for risk-minimization.

4.2.1 Introduction

The focus of this work is to develop a method for how to cost-efficiently
take parallel investements in (potentially) multiple call and put options
for the tracking and realization of desired profit profiles. See [191] for
background on options, futures and other derivatives. The motivation
for this work is the usage of the proposed tool in portfolio optimization.
Standard Markowitz portfolio selection as in [265] trades-off the mean
and variance of the return. For the influence of linear and fixed trans-
action costs in the Markowitz framework, see [257], where additionally
shortfall risk constraints are discussed, preserving convexity of the portfo-
lio optimization problem, making, however, the assumption of a jointly
Gaussian distribution of asset returns, and not guaranteeing a bound on

266

the worst-case loss. In practice, observed returns frequently reveal “fat
tails”, i.e., higher probabilities for high price fluctuations. This motivates
to look at portfolio optimization in terms of desired profit profiles, most
notably guaranteeing predictable worst-case losses and profiting upon
various market evolutions. Here, we do not discuss wealth dynamics
that render a closed-loop control system and are characteristic for port-
folio optimization. Instead, we present a method to realize an investment
in a desired profit profile as an alternative to buying a specific stock or the
purchase of a single option type. To realize such investments, at every
portfolio rebalancing instant, static (i.e., independent between different
sampling times) optimization problems are solved exploiting a given set
of plain vanilla options.

While there exist well-known option strategies combining multiple
options (such as the bull call spread, the iron condor and the like), see [347],
[76], [88], [271], [272], [288], the novel contribution is to present a gen-
eral optimization-based method for the cost-efficient and automated real-
ization of an aritrarily-shaped PWA desired profit profile given a database
of available option investments. Within the context of portfolio optimiza-
tion, the presented tool allows one to concentrate on price predictions of
the underlying asset and the design of desired profit profiles.

4.2.2 Call and Put Options

Employing Options

In financial terms, securities refer to tradable financial assets such as stocks,
bonds and options. A derivative is a security where the value of the
derivative depends explicitly on the value of another so-called underlying
security. Here, the derivatives of interest are options whose underlying
can be bought or sold, such as, e.g., a stock. Derivatives are standard-
izedly traded on option exchanges, e.g., on the Chicago Board Options Ex-
change (CBOE), or over-the-counter (OTC) for tailored contracts between
investment parties.

There are two main types of vanilla options: a call/put option gives
the holder the right to buy/sell the underlying asset at a given expiration

267

date T in the future for a predetermined strike price. American-style or
simply American options allow to exercise (i.e., to buy/sell the underlying
asset) at any time before and including the expiration date. In contrast,
a European-style or simply European option allows the exercise right only
on the expiration date. More exercise styles exist. The party who agreed
to buy or sell an option is said to be long or short, respectively. We refer
to uncovered options if the seller of an option does not holds a position in
the underlying. The opposite are covered options.

Four General Option Investment Types

The profit equations of four general option investment types are

pBC
i (t) = max(s(t)−KBC

i , 0)− CBC
i , i = 1, . . . , NBC,

pBP
i (t) = max(KBP

i − s(t), 0)− CBP
i , i = 1, . . . , NBP,

pSC
i (t) = CSC

i −max(s(t)−KSC
i , 0), i = 1, . . . , NSC,

pSP
i (t) = CSP

i −max(KSP
i − s(t), 0), i = 1, . . . , NSP,

(4.41)

where the time index is indicated by t ∈ Z+, associated with sampling
time Ts such that time instances can be described as tTs, whereby Ts

may be, for example, a trading period of one day or one month. Su-
perscripts BC, BP, SC and SP denote “buy call option” (take a long po-
sition), “buy put”, “sell call” and “sell put”. For visualization of (4.41),
see Figure 77. Let yi ∈ {0, 1, 2, 3} denote one of the four types. Profit
from an investment is indicated by p(t), e.g., pBC

i (t) denotes the profit
at time t when holding a long position in the i-th of a set of NBC call
options for a specific underlying of price s(t). Strike prices and costs
of the option are defined by Ki > 0 and Ci > 0, respectively. We in-
terchangeably use s(t) and st when explicitly referring to time indices.
Holding multiple option positions simultaneously then results in overall

profit p(t) =
∑NBC

i=1 n
BC
i pBC

i +
∑NBP

i=1 n
BP
i p

BP
i +

∑NSC

i=1 n
SC
i p

SC
i +

∑NSP

i=1 n
SP
i p

SP
i ,

whereby nBC
i , nBP

i , n
SC
i , n

SP
i ∈ Z+ denote the integer-valued number of

options held and we omitted time-indices t for brevity.

268

(a) Illustration of four option investment types, see (4.41).

(b) Examples of option combinations: (i) bull call spread, (ii) iron condor, (iii) long
strangle, (iv) call backspread.

(c) Three market outlook scenarios: bearish, bi-modal and bullish. For each
scenario, two exemplary profit profiles are displayed (blue solid and dashed

lines). The (scaled) PMFs of expected underlying prices, which may be used as
guideline to design specific profit profiles, are displayed as green bars.

Figure 77: Illustration of various profit profiles.

269

Underlying Price Probability Mass Function

At time t − 1, predictions about the future underlying price st can be
made. We therefore describe st as a discrete random variable (DRV) with
a (discrete) probability mass function (PMF) fst(s) ≥ 0, ∀s ∈ Sst , which
may in general be multi-modal. Here, our focus is on uni- and bi-modal
distributions. The interest in uni-modal PMFs is natural due to bearish
or bullish market outlooks. For the interest in bi-modal PMFs, consider
the situation in which an investor is expecting a strong movement of the
underlying price dependent on an earning report to be announced soon,
but is uncertain about the movement direction. Predictions of the under-
lying price typically serve as prerequisite for the generation of a desired
reference profit profile. Note, however, that the proposed algorithm al-
lows tracking of arbitrary PWA profit profiles. Thus, estimated PMFs are
not limiting trackable profit profiles, but merely can help in the design
thereof. Assuming a uni-modal distribution, we may just consider the
expected underlying price, here abbreviated by µt =

∑
s∈Sst sfst(s). For

the bi-modal case, as an alternative to the complete PMF fst(s), we may
just consider the conditional PMF denoted by fst|zt(s|z) ≥ 0 with binary
variable z ∈ {0, 1} indicating one of two possible event outcomes, i.e.,
causing a decline (z = 0) or a rise (z = 1) in the underlying price. Nat-
urally, it holds fst(s) =

∑
z∈{0,1} fst|zt(s|z)fzt(z). We abbreviate µ(z)

t =∑
s∈Sst sfst|zt(s|z), ∀z ∈ {0, 1}.

4.2.3 High-level Algorithm

There exist option strategies, see e.g. [347], that combine (superimpose)
multiple options to generate profit profiles, see Figure 77 for illustration.
Depending on the market outlook, specific selections are preferable. Our
proposed high-level algorithm for profit profile generation and realiza-
tion is summarized in Algorithm 5. Let us discuss the first three substeps.
Step 4 is treated in all of Section 4.2.4.

270

Algorithm 17: Profit profile realization @t− 1

1 Input: underlying price st−1, and database D @t− 1.

2 Predict future underlying price: given past financial time-series until
t− 1, predict at least µt in case of a bearish, bullish or neutral market
outlook, or µ(0)

t and µ(1)
t for a conditional market outlook; ideally,

predict arbitrarily accurate the corresponding underlying price PMFs,
see Section 4.2.2.

3 Generate desired profit profile: design a desired PWA pref(s) according
to (4.43) by

- deciding upon a desired shape, e.g., according to Table 15.

- constructing pref(s) considering slope, plateau levels, and
kink points selections.

4 Solve optimization problem: solve (4.51) for n? ∈ ZNn×1
+ according to

Section 4.2.4.

5 Wait until next rebalancing time: initiate/terminate option investment
positions according to n?.

Step 1

A database of available option investment positions can be summarized
as

D =




{KBC
i }N

BC

i=1 {CBC
i }N

BC

i=1 {yBC
i }N

BC

i=1

{KBP
i }N

BP

i=1 {CBP
i }N

BP

i=1 {yBP
i }N

BP

i=1

{KSC
i }N

SC

i=1 {CSC
i }N

SC

i=1 {ySC
i }N

SC

i=1

{KSP
i }N

SP

i=1 {CSP
i }N

SP

i=1 {ySP
i }N

SP

i=1


 ∈ RNn×3

+ , (4.42)

with Nn = (NBC +NBP +NSC +NSP), whereby we abbreviate
D =

[
KD CD YD

]
, and where the last column indicates one of the

four types of options. Note that elements of database D must be syn-
chronized according to expiration dates, which becomes relevant when
mixing European and American exercise style options.

Step 2

The prediction of future underlying prices is crucial when taking any fi-
nancial investment decisions. Predictions may be based on financial ac-

271

countancy or technical chart analysis. For a method based on support
vector machines, see [217]. There exists a plethora of approaches for fi-
nancial times-series prediction. They are here not not our focus. We concen-
trate on profit profile designs and their optimization-based realizations
by means of option combinations.

Step 3

We denote a desired PWA reference profit profile by

pref(s) = ajs+ bj , s ∈ [Kj ,Kj+1], ∀Kj ∈ Kref, (4.43)

for all j = 0, 1, . . . , N ref, whereby the underlying price segments are de-
fined by the set Kref. Any arbitrary PWA function is admissible. The de-
sign can be regarded as engineering art and is subject to user-preferences,
see Figure 77. Various slope rates can be achieved by adjusting the num-
ber of options sold or bought.

Let us discuss a heuristic design of pref(s). For the realization of dif-
ferent market outlooks and risk/reward demands, we summarize typi-
cal p(s)-schemes in Table 15. We remark that some profiles exhibit plateau
levels, defined by constant p for consecutive s, and with min (p(s)) > −∞
and max (p(s)) < +∞. In case the designated p(s) profile is selected
to have limited downside risk, i.e., min (p(s)) > −∞, we scale pref(s)

such that min
(
pref(s)

)
= 0 and introduce an optimization slack variable

responsible for constant cost-efficient offset as later discussed in Section

4.2.4. For simplicity, we may assign dpref(s)
ds ∈ {0, 1}, i.e., permit only two

possible slope rates. Naturally, other slope rates are possible, too.
For uni-modal market outlooks (bullish, bearish or neutral), we de-

fine pref(s) ≥ p̃t, ∀s ∈ [αµt, µt + (1− α)µt] with parameters α ∈ (0, 1]

and mt ≥ 0 such that p̃t = mt(αµt − st−1). Figure 78 illustrates a corre-
sponding example in which we definemt = 1,Kref = {0,K1,K2,K3,K4} =

{0, αµt − p̃t, αµt, µt + (1− α)µt, µt + (1− α)µt + p̃t} and

pref(s) =





0, 0 ≤ s ≤ K1 and K4 ≤ s <∞,
s−K1, K1 ≤ s ≤ K2,

p̃t, K2 ≤ s ≤ K3,

p̃t − s+K3, K3 ≤ s ≤ K4.

272

Table 15: Library of typical shape designs for p(s) that may be used for
the realization of different market outlooks and risk/reward demands. For
a discussion of corresponding kink points, slopes and plateau levels selec-
tions, see Step 3 and Figure 78.

Figure 78: Illustration of heuristic methods for the PWA generation of pref(s)

including plateau level and kink points selections. We have ηt = α(1)µ
(1)
t −

(1 + α(0))µ(0)
t .

For conditional market outlooks, we select tuning parameters
α(0), α(1) ∈ (0, 1]. To give an example with respect to Figure 78, we define
Kref = {0,K1,K2} = {0, (1 + α(0))µ

(0)
t , α(1)µ

(1)
t } and

pref(s) =





K1 − s, 0 ≤ s ≤ K1,

0, K1 ≤ s ≤ K2,

s−K2, K2 ≤ s <∞.
(4.44)

It remains to discuss the selections of upper plateau levels for condi-
tional market outlooks and desired limited upside rewards (for overall
cost reduction). Saturating (4.44), we may, for example, select two dif-
ferent plateau levels p̃(0)

t = α(0)µ
(0)
t , ∀0 ≤ s ≤ µ

(0)
t and p̃

(1)
t = (1 −

α(1))µ
(1)
t , ∀s ≥ µ

(1)
t , thereby trading-off different likelihoods of upside

273

or downside market outlooks.

4.2.4 Optimization Problem Formulation

Preparation

Vector set Kref defines all kink points (st-coordinates at which pref(s) is
continuous but with discontinuous gradient) of pref(s). Likewise, KD de-
scribes a similar set, see Step 1 of Section 4.2.3. In a first step, we unite
and sort them according ascending st-coordinate, thereby creating the
vector set

K = sort
(
KD ∪ Kref

)
, (4.45)

where we denote the number of elements by NK. Then, all of options of
(4.41) (each PWA with one kink point) can be cast into general PWA form
with NK kink points then common to all, i.e.,

pi(s) =





(fi,0s+ gi,0 + ci)ni, s ∈ [0,K1],

(fi,1s+ gi,1 + ci)ni, s ∈ [K1,K2],
...
(fi,NKs+ gi,NK + ci)ni, s ∈ [KNK ,∞),

with ni ∈ Z+ the number of option i for all i = 1, 2, . . . , Nn. Combining
all options by superposition, we obtain

p(s) =





∑Nn
i=1(fi,0s+ gi,0 + ci)ni, s ∈ [0,K1],∑Nn
i=1(fi,1s+ gi,1 + ci)ni, s ∈ [K1,K2],

...∑Nn
i=1(fi,NKs+ gi,NK + ci)ni, s ∈ [KNK ,∞),

= (sfT
j + gT

j + cT)n, s ∈ [Kj ,Kj+1], ∀Kj ∈ K,

(4.46)

for all j = 0, 1, . . . , NK. Likewise, we cast pref(s) from (4.43) into general
PWA form with the same NK kink points, then denoted by

pbound(s) = abnd
j s+ bbnd

j , s ∈ [Kj ,Kj+1], ∀Kj ∈ K, (4.47)

for all j = 0, 1, . . . , NK, and further define

b̃j = abnd
j Kj + bbnd

j , ∀Kj ∈ K, ∀j = 0, 1, . . . , NK. (4.48)

274

Proposition 12. To ensure that (4.47) serve as a lower bound on the desired
profit profile p(s) described in (4.46), it suffices to just evaluate at the kink points
and constrain

(Kjf
T
j + gT

j + cT)n ≥ b̃j , (4.49)

fT
NKn ≥ abnd

NK , (4.50)

for all Kj ∈ K and j = 0, 1, . . . , NK.

Proof. Let us abbreviate zj = (Kjf
T
j + gT

j + cT)n for all Kj ∈ K and
j = 0, 1, . . . , NK. Because of all NK + 1 segments being PWA, w.l.o.g. we
can consider any of the segments. Then, we note that any z = p(s) for s ∈
[Kj ,Kj+1] can be described as a linear combination z = γzj +(1−γ)zj+1

for γ ∈ [0, 1]. Assume now zj ≥ b̃j , zj+1 ≥ b̃j+1 and Proposition 12 as
stated is wrong. The proof is then by contradiction. Similarly as above,
we can write b̃ = γb̃j + (1 − γ)b̃j+1. According to our assumption there
exists a γ ∈ [0, 1] such that γzj + (1 − γ)zj+1 < γb̃j + (1 − γ)b̃j+1. This
can be rewritten as γ(zj − b̃j) + (1 − γ)(zj+1 − b̃j+1) < 0, which is a
contradiction since all of the left-hand side is positive. Ultimately, as a
constraint on the slope, (4.50) is introduced as an alternative to account
for the kink point s→∞. This concludes the proof.

With respect to the discussion of Step 1 in Section 4.2.3, we remark
for the sign of costs (when options are purchased) or premiums (when
options are sold) that

ci =

{
+CDi , if i ∈ {1, 2, . . . , NBC +NBP},
−CDi , if i ∈ {NBC +NBP + 1, . . . , Nn}.

Thus, to summarize, we construct a vector set (i.e., a grid) K of kink
points according to (4.45), before organizing c ∈ RNn×1, fj ∈ RNn×1,
gj ∈ RNn×1, b̃j ∈ R according to (4.46) and (4.48) for all j = 0, 1, . . . , NK,
and abnd

NK
∈ R.

275

Formulation

For the cost-efficient realization of the desired profit profile, we propose
the following optimization problem:

max
n,l,σ

λ0c
Tn− λ1‖n‖1 + λ2l − λ3σ − λ4v

Tn (4.51a)

s.t.
(
Kjf

T
j + gT

j + cT
)
n ≥ b̃j − σ, (4.51b)

fT
NKn ≥ abnd

NK , (4.51c)
(
Kjf

T
j + gT

j + cT
)
n ≥ l, (4.51d)

n ≥ 0, l ≥ lmin, σ ≥ 0, (4.51e)

n ∈ ZNn×1
+ , l ∈ R+, σ ∈ R+, (4.51f)

∀Kj ∈ K, ∀j = 0, 1, . . . , NK, (4.51g)

where λ0, λ1, . . . , λ4 ∈ R+ denote penalty weights that can easily trade-
off or omit (by setting the corresponding λ = 0) different objectives.
The objective function (4.51a) is composed of five components. The first
component denotes the maximization of accumulated fixed costs/gains
for purchasing/selling of available options. The second component is
introduced to encourage sparsity in the integer-valued decision vector
n ∈ ZNn×1

+ . The third component results from the introduction of slack
variable l ∈ R+ to minimize the maximal profit profile loss (minmax prob-
lem). The fourth component penalizes another slack variable, σ ∈ R+, in-
troduced for softening the constraint on the lower bound on the desired
profit profile (soft constraint), see (4.51b). The fifth component indicates
costs incurred when having to cover the selling of options (e.g., purchase
and transaction costs for buying the underlying as a prerequisite for sell-
ing a covered call option). Additionally,

∑Nµ
i=1 λ4+i

(
Kµif

T
µi + gµi + cµi

)
n

with Kµi ∈ {Kj : Kj ∈ K, Kj = µi modal peaks} may be added as a
sixth component to maximize profit for expected underlying prices (that
possibly may be multi-modal). The first inequality (4.51b) describes the
aforementioned soft constraint on the lower bound on the desired profit
profile. It is introduced since a reasonbale hard lower bound on the profit
profile is a priori unknown since depending onD. The second constraint

276

Figure 79: Illustration of p(s) for all Nn = 260 option contracts available
at the CBOE on August 24, 2016, with underlying Alphabet Inc. Class C
(Nasdaq symbol GOOG), which then was quoted at 772.4$ as visualized by
the yellow ball.

(4.51c) stems from (4.50). The third constraint (4.51d) results from the
aforementioned introduction of slack variable l to minimize the maximal
profit profile loss. In (4.51e), lmin ∈ R+ is defined to enforce a potential
hard threshold on the maximal admissible profit profile loss. Dimensions
of all optimization variables are stated in (4.51f). The coverage of all of
the desired underlying price range segments is indicated by (4.51g). The
solution vector of (4.51) shall be denoted by n? and the corresponding
profit profile by p?(s).

Solution

For the solution of the mixed-integer optimization problem (4.51), we
employ the domain-specific language CVXPY for optimization embed-
ded in Python [92]. Note that when relaxing n ∈ ZNn×1

+ to be real-
valued, (4.51) is a convex problem; in fact, a linear program with an
additionally added `1-norm in the objective function. All numerical ex-
periments throughout this section were conducted on a laptop running
Ubuntu 14.04 equipped with an Intel Core i7 CPU @2.80GHz×8, 15.6GB
of memory, and using Python 2.7.

277

Figure 80: Results of Experiment 1 of Section 4.2.5. We selected µt = 800
and α = 0.5. The second subplot is a zoom-in of the first one. The third sub-
plot indicates the number ni and type (BC, SC, BP, SP) of options contracts
sold or bought.

4.2.5 Numerical Examples

We consider real-world option price data, drawn from the CBOE at
http://www.cboe.com/delayedquote/quotetable.aspx on August 24,
2016. As underlying, we selected Alphabet Inc. Class C (Nasdaq sym-
bol GOOG), which was quoted with a stock price of 772.4$ at the time of
the data retrieval. The expiration date was selected to be December 16,
2016. For that datum, we retrieved the maximum amount of option data
available, i.e., a total of 65 different strike prices, valued between 440$

and 1020$, for both call and put options. To give two examples for a call
and put option with strike price 440$, respectively: GOOG1616L440-E
and GOOG1616X440-E. For CBC

i and CBP
i , and for CSC

i and CSP
i , we con-

sidered the ask and bid prices of call and put options on time of data
retrieval, respectively. Thus, in total we retrieved Nn = 260 unique op-
tion investment opportunities as illustrated in Figure 79.

For all four experiments reported and according to (4.51), we set

278

(λ0, λ1, λ2, λ3, λ4) = (100, 1, 1000, 100000, 0), lmin = −∞ and mt = 3. The
experiments differ by the selection of α, µt (or µ(0)

t and µ
(1)
t for the con-

ditional case) and desired reference profit profiles pref(s). All results are
visualized in Figures 80, 81, 82 and 83, and quantitatively summarized
in Table 16. The fixed cost (if negative) or fixed premium (if positive) in-
curred at time t−1 is indicated by cTn?. We define percentage returns by
rstock(µt) = µt−st−1

st−1
100 for a stock investment, and, for the option invest-

ments, r(µt) = p(µt)
−cTn?

100 if cTn? < 0 (i.e., an initial expenditure was re-
quired) and r(µt) =∞ if cTn? ≥ 0, i.e., an initial premium was received.
All zero-crossings of p?(s) are indicated by sBE (break-even points). For
the conditional (bi-modal) case, if appropriate, two quantities are stated.
For simplicity, we here assumed permission to also conduct the selling
of uncovered options. This assumption is justified when assuming a suf-
ficient cash position to cover potential losses, but is to be revised when
trading recursively in the context of self-financing portfolio optimization
which is subject of ongoing work. With respect to database storage, we
ordered options according to ascending strike prices, i.e., option identi-
fier i = 0, 1, 2, 3 (see, e.g., the third subplot of Figure 80) correspond to
BC,SC,BP,SP for the lowest possible strike price of 440$.

Several observations can be made. First, the terms in (4.51a) associ-
ated with λ1 and λ3 are a must, i.e., for ensuring sparsity in the solution
vector and enabling sufficient freedom in appropriately offsetting the de-
sired reference profit profile, respectively.

With λ0 and λ2 fine-tuning can be achieved in accordance with Sec-
tion 4.2.4. Second, the smaller desired s-ranges for which p?(s) ≥ 0 are,
the smaller the worst case loss (i.e., the higher min (p?(s))). These ranges
can be controlled by selection of α. For example, selecting α = 0.98

(instead of α = 0.95) in the third experiment narrows the iron condor,
but results in min p?(s) = −8.7 and max p?(s) = 16.3, see Table 16 for
contrast. Thus, as accurate as possible predictions of underlying price
evolutions are (as expected) preferable for cost minimization. Third, us-
ing CVXPY [92], remarkable differences could be observed when solving
(4.51) as the original mixed-integer problem or a (real-valued) relaxed
version thereof admitting n ∈ RNn×1

+ before then rounding the solution

279

Figure 81: Results of Experiment 2 of Section 4.2.5. We selected µt = 740
and α = 1. Note that the desired shape is here realized optimally with two
put options (typical for a bear put spread) rather than with two call options
(bear call spread) which can result in the same shape, however, here at higher
initial expenditure costs.

Table 16: Summary of quantitative results of the experiments from Section
4.2.5. All quantities are reported in units $ with exception of r(µt) and
rstock(µt), and the computation time τcvxpy required for the solution of (4.51),
which is measured in milliseconds.

280

Figure 82: Results of Experiment 3 of Section 4.2.5. We selected µt = 767
and α = 0.95. Note that the optimal solution to (4.51) returned slightly
different loss levels in case of strongly positive and strongly negative market
evolutions (different plateau levels).

to the nearest integer. While the final results did only marginally (if at
all) differ, computation times frequently lasted more than 12minutes vs.
100ms. All results reported in Table 16 stem from the real-valued relax-
ation and consequent integer-rounding solution. Ultimately, to point out
a characteristic of the investment method via multiple options in parallel,
consider Experiment 1. While a stock purchase requires the initial expen-
diture of the stock price (plus transaction costs), an investment according
to Experiment 1 contrarily generates an initial income, here of cTn? = 8.8$

per option contract, which may immediately be used to undertake other
investments.

4.2.6 Conclusion

We proposed an optimization-based hierarchical algorithm for the cost-
efficient and automated realization of desired profit profiles given a data-
base of available option investments. Profit profiles can be designed arbi-

281

Figure 83: Results of Experiment 4 of Section 4.2.5. We selected µ(0)
t = 670,

µ
(1)
t = 860 and α = 0.999. For interest, we now additionally changed the

slope-rate from 1 to 2 in aim of stronger profit generation once the under-
lying price has passed the break-even points. The resulting profit profile is
slightly asymmetrical with respect to µ(0)

t and µ(1)
t .

trarily as piecewise-affine, typically influenced by underlying price pre-
dictions, a bullish, bearish or conditional market outlook, and accounting
for user-preferences such as a bound on maximum loss. Subject of ongo-
ing work is the incorporation of the presented framework in the context
of portfolio optimization and a receding horizon control scheme.

4.2.7 Hierarchical Controller Parametrization

There are two main hierarchical layers. These are:

1. The generation of a desired PWA profit profile;

2. Its realization by means of proposed optimization problem (4.51)
and a database of available option contracts.

282

4.3 Optimal Trading with Hindsight

This section summarizes [151]:

• M. Graf Plessen, and A. Bemporad, “A posterior multi-stage opti-
mal trading under transaction costs and a diversification constraint,”
arXiv preprint arXiv: 1709.07527, 2017. (Submitted).

A method for the evaluation of a posteriori (historical) multi-variate multi-
stage optimal trading under transaction costs and a diversification con-
straint is presented. Starting from a given amount of money in some
currency, we analyze the stage-wise optimal allocation over a time hori-
zon with potential investments in multiple currencies and various as-
sets, such as, for example, assets emulating stock indices. Variants are
discussed, such as unconstrained trading frequency, a fixed number of
total admissible trades, and the waiting of a specific time-period after
every executed trade until the next trade. Mathematical aspects are the
modeling of transition dynamics as a Markov Decision Process (MDP),
efficient graph generation and consequent graph search. The developed
strategies are evaluated on real-world data. This work is preparatory for
the labeling of data and a subsequent machine learning application.

4.3.1 Introduction

Algorithmic assistance to traders and portfolio managers is nowadays
ubiquitous. We can distinguish between algorithmic trading, i.e., fully
automated high- or low-frequency trading, and algorithmic screening or
semi-automated high- or low-frequency trading with computer programs
providing recommendations to the human trader. Both algorithmic trad-
ing and screening are fundamentally based on predictions of future de-
velopments. Predictions may be made based on, for example, financial
accountancy, technical chart analysis, global macroeconomic analysis,
news, sentiments and combinations thereof. There exists a plethora of
literature for financial times-series prediction. For methods based on sup-
port vector machines, see, for example, [351], [217] and [130]. In general,
influential factors on trading decisions are trading frequency, targeted

283

time horizons, performance expectations, asset choices, foreign exchange
rates, transaction costs and risk-management, for example, in the form of
investment diversification.

This work belongs to the class of technical chart analysis. The data
on which the analysis is based are daily adjusted closing-prices of vari-
ous currencies and assets emulating stock indices such as, e.g., the S&P
500. Short-selling, borrowing of money, and the trading of derivatives
are not treated, eventhough the presented methodologies can easily be
extended to include them. Starting from a given amount of money in
some currency, a posteriori multi-variate multi-stage optimal trading de-
cisions under transaction costs and a diversification constraint are recon-
structed. Optimality here refers to return (wealth) maximization for a
given time-period.

The following important real-world questions are addressed: what
quantitative influence do different levels of transaction costs have on op-
timality, in particular, with respect to optimal trading frequency? How
does a diversification constraint affect results? What about currency ef-
fects? Upon which increases of prices is it convenient to trade? What
observations can be made, specifically, on a global scale with various
currencies and markets of different volatility?

Acting in financial markets must be made by looking ahead. In con-
trast, this work is concerned only with past (real-world) data. It is meant
to be preparatory work that can be used, for example, for benchmark
generation in backtesting of trading strategies and labeling of data for
machine learning applications. In particular, it is expected that results
can be used favorably for the development and training of real-time al-
gorithmic trading and screening systems. For example, a hierarchical
closed-loop control architecture for automated trading is envisioned com-
prising particularly two stages: short term trajectory prediction and multi-
stage investment trajectory optimization. Then, the training of the sec-
ond stage is fundamentally based on one of the techniques below.

This work is related most closely4 to [67], where dynamic program-
ming is discussed for optimal investing in either one stock or one bond

4In fact, the author did not find other papers treating a posteriori optimal trading.

284

under consideration of unconstrained trading frequency, and a bound
on the admissible number of trades. In addition, a method for optimiza-
tion of Sterling and Sharpe ratio is presented. However, real-world price
data is not analyzed. Besides real-world data, additional differences in
our case are our discussion of a diversification constraint, the constraint
of introducing a waiting period after every executed trade until the next
trade, and a synchronous trading constraint. Furthermore, we intro-
duce a heuristic for each of the constrained optimal investment problems
(with a bound on the admissible number of trades and a waiting period
constraint), thereby reducing the computational complexity of the meth-
ods while not compromising optimality of the resulting solution. For an
overview of measures to reduce risk by the introduction of various con-
straints, for example, on the drawdown probability and shortselling, see
[257] where one-step ahead optimization is conducted, importantly, based
on estimates of one-step ahead returns and covariance matrices for a set
of risky assets. In contrast, this work is concerned about multi-stage opti-
mization and historical optimal trading with hindsight. The mathemati-
cal approaches therefore differ significantly (convex optimization vs. tree
search). Optimal trading based on stochastic models and consideration
of fixed and/or proportional transaction costs is treated, for example, in
[7], [256], [285] and [226]. This work is data-based without considera-
tion of any mathematical model explaining the generation of data. For a
discussion about the existence of trends in financial time series, see [114].

4.3.2 One-stage Modeling of System Dynamics

System States and Time-varying Parameters

Let time index t ∈ Z+ be associated with the trading period Ts, such that
trading instants are described as tTs, whereby Ts may typically be, for
example, one week, one day, one hour or less (for intraday trading). Let
us define the system state zt at time t as an eight-dimensional vector of
mixed integer and real-valued quantities,

zt =
[
it kt jt mct

t nt w0
t dt ct

]T
, (4.52)

285

where it ∈ I = (INc ∪ INa) denotes investment identification numbers
partitioned into Nc currencies and Na different risky non-currency as-
sets (such as stocks or funds emulating stock indices), such that INc =

{0, 1, . . . , Nc − 1} and INa = {Nc, . . . , Nc + Na − 1}. For ease of refer-
ence, in the following, we lump currencies and non-currency assets in
the term asset and only distinguish when context-necessary. The integer
number of conducted trades along an investment trajectory shall be de-
noted by kt ∈ Z, whereby an investment trajectory is here defined as
a sequence of states zt, t = 0, 1, . . . , Nt, where Nt is the time horizon
length. Let jt denote the investment identification number preceding
it at time t − 1 (parent node), i.e., jt = it−1. We define mct

t ∈ R+ as
the real-valued and positive cash position (liquidity) held in the currency
identified by ct ∈ INc . The number nt ∈ Z+ indicates the number of non-
currency assets held. The current wealth, composed of cash position and
non-currency asset, is denoted by w0

t and shall always be in monetary
units EUR. We consider Euro (EUR) as the reference currency. It shall
throughout this section be identified by it = 0. The integer number of
time samples since the last trade is defined by dt ∈ Z+.

Let us define a (unitless) foreign exchange (forex or fx) rate xc1,c2t for
two currencies c1 ∈ INc and c2 ∈ INc as xc1,c2t such that

mc2
t = mc1

t x
c1,c2
t .

For example, for a foreign exchange rate between Euro and US-Dollar of
EURUSD=1.1, and a conversion of 50EUR to USD, we have c1 = 0 and
c2 = 1 (where we identified EUR and USD by currency numbers 0 and 1),
xc1,c2t = 1.1 and mc1

t = 50 and mc2
t = mc1

t x
c1,c2
t = 55. We only point this

out to stress mc1
t and mc2

t being numerical values, however, with units
identified by c1 ∈ INc and c2 ∈ INc .

Let us denote non-currency asset prices by pct,at , whereby ct identifies
the price unit and a ∈ INa the asset. We treat foreign exchange rates and
asset prices as time-varying parameters obtained from data.

In the sequel, various sets of admissible system states are defined. For
brevity, we therefore use a shorthand notation. For example, we define a
set as Zt = {zt : it = 10}, meaning Zt = {zt : it = 10, and it associated

286

with zt according to (4.52)}.

Transaction Costs

For the modeling of transaction costs, we follow the notion of [257], mod-
eling transaction costs as non-convex with a fixed charge for any nonzero
trade (fixed transaction costs) and a linear term scaling with the quantity
traded (proportional transaction costs). Thus, for a foreign exchange at
time t− 1, we model

mct
t = m

ct−1

t−1 x
ct−1,ct
t−1 (1− εct−1,ct

fx)− βct−1,ct
fx ,

where εct−1,ct
fx and βct−1,ct

fx denote the linear term and the fixed charge, re-
spectively. Examples may be εct−1,ct

fx = 0.01 and β
ct−1,ct
fx = 50. Similarly,

transaction costs for transactions from currency to non-currency asset,
between assets of different currencies and the like can be defined. We
can further differentiate between linear terms for buying and selling. To
fully introduce notation for transaction costs (εitbuy, β

it
buy ≥ 0), we state the

transaction from a cash position towards an asset investment and vice
versa. For a transaction of buying nt−1 of asset it−1 at time t − 1, we
obtain

mct
t = m

ct−1

t−1 x
ct−1,ct
t−1 (1− εct−1,ct

fx)− βct−1,ct
fx − nt−1p

ct,it
t−1 (1 + εitbuy)− βitbuy.

For a transaction of selling nt−1 of asset it−1 and transforming to cur-
rency ct, we obtain

mct
t =

(
m
ct−1

t−1 + nt−1p
ct−1,it−1

t−1 (1− εit−1

sell)− βit−1

sell

)
x
ct−1,ct
t−1 (1− εct−1,ct

fx)

−βct−1,ct
fx .

Note that transaction costs may vary dependent on the assets in-
volved in the transformation from one to another. Further, note that we
here neglect unavoidable costs such as yearly fees to financial institutes
for depot keeping etc.

4.3.3 Transition Dynamics

Given our assumption of being able to invest in currencies and non-
currency assets, there are six general types of transitions dependent on

287

Figure 84: Abstract visualization of the transition dynamics modeled as a
Markov Decision Process (MDP). Abbreviations are “0” for no action, “fx”
for foreign exchange, “ba” for buying asset and “sa” for selling asset.

the investment at time t− 1, visualized abstractly in Figure 84. For an in-
troduction to Markov Decision Processes (MDP), see [315]. We initialize

z0 =
[
0 0 0 m0

0 0 m0
0 0 0

]T
, (4.53)

where, for example, we set m0
0 = 100000. Then, we define our transition

dynamics as

zt =





z
(1)
t , if {it : it = it−1, zt−1 with it−1 ∈ INc},
z

(2)
t , if {it : it ∈ INc\{it−1}, zt−1 with it−1 ∈ INc},
z

(3)
t , if {it : it ∈ INa , zt−1 with it−1 ∈ INc},
z

(4)
t , if {it : it = it−1, zt−1 with it−1 ∈ INa},
z

(5)
t , if {it : it ∈ INc , zt−1 with it−1 ∈ INa},
z

(6)
t , if {it : it ∈ INa\{it−1}, zt−1 with it−1 ∈ INa},

(4.54)

where z(j)
t , ∀j = 1, . . . , 6, are defined next and our control variable ut−1

is the targeted investment identified by variable it, i.e., ut−1 = it. We
have

[
z

(1)
t z

(2)
t z

(3)
t

]
=




it−1 it it
kt−1 kt−1 + 1 kt−1 + 1
jt−1 jt−1 jt−1

m
ct−1

t−1 ϕ(mct
t) m̃ct

t

0 0 ñt
w0
t−1 mct

t x
ct,0
t w̃0

t

d̃t d̃t d̃t
ct−1 it c(it)




. (4.55)

288

with c(it) denoting the currency of asset it and with

d̃t =

{
dt−1 + 1, if dt−1 < D − 1,

0 otherwise,

ϕ(mct
t) = m

ct−1

t−1 x
ct−1,ct
t−1 (1− εct−1,ct

fx)− βct−1,ct
fx ,

and where variable D determines an overflow in dt and will become rel-
evant when later discussing the constraint of waiting a specific amount
of time until the next admissible trade. Furthermore, m̃ct

t and ñt are ob-
tained from solving

max
m
ct
t ≥0

{
nt : nt =

m
ct−1

t−1 x
ct−1,ct
t−1 (1− εct−1,ct

fx)− βct−1,ct
fx − βitbuy −mct

t

pct,itt−1 (1 + εitbuy)
,

nt ∈ Z+

}
, (4.56)

with m̃ct
t denoting the optimizer and ñt the corresponding optimal ob-

jective function value. Thus, given m
ct−1

t−1 , we find the largest possible
positive integer number of assets we can purchase under the consider-
ation of transaction costs. The (small) cash residual is then m̃ct

t ≥ 0.
Therefore, for holding value at time t in currency EUR, we obtain

w̃0
t = (m̃ct

t + ñtp
ct,it
t)xct,0t . (4.57)

We have

[
z

(4)
t z

(5)
t z

(6)
t

]
=




it−1 it it
kt−1 kt−1 + 1 kt−1 + 1
jt−1 jt−1 jt−1

m
ct−1

t−1 φ(mct
t) m̄ct

t

nt−1 0 n̄t
w0
t−1 mct

t x
ct,0
t w̄0

t

d̃t d̃t d̃t
ct−1 it c(it)




, (4.58)

with

φ(mct
t) =

(
m
ct−1

t−1 + nt−1p
ct−1,it−1

t−1 (1− εit−1

sell)− βit−1

sell

)
x
ct−1,ct
t−1 (1− εct−1,ct

fx)

−βct−1,ct
fx ,

289

and where m̄ct
t and n̄t are obtained from solving

max
m
ct
t ≥0

{
nt : nt =

φ(mct
t)− βitbuy −mct

t

pct,itt−1 (1 + εitbuy)
, nt ∈ Z+

}
, (4.59)

with m̄ct
t denoting the optimizer and n̄t the corresponding optimal ob-

jective function value. For current holding value in EUR, we then obtain
w̄0
t = (m̄ct

t + n̄tp
ct,it
t)xct,0t .

The solution to (4.56) and (4.59) can be easily computed by setting
mct
t initially zero, then rounding the corresponding real-valued nt to the

largest smaller integer, before then computing the cash residuals, respec-
tively. The methodology of preserving the cash residual and enforcing
an integer valued number of shares in assets is done with the purpose of
realistic real-world modeling.

Remarks about Optimality and System Modeling

An investment trajectory was defined as a sequence of states zt, t =

0, 1, . . . , Nt. We wish to find an optimal (in the sense of wealth-maximizing)
investment trajectory. Several observations with respect to above prob-
lem formulation and system modeling can be made.

First, suppose all of the initial money m0
0 is fully allocated to the

optimal investment trajectory, then there is no diversification constraint
present. Then, the optimal investment trajectory never returns (with re-
turn here defined as rNt = (w0

Nt
−m0

0)/m0
0) less than 0%. This is since one

feasible investment trajectory is to remain invested in the initial reference
currency (EUR) for all t = 0, 1, . . . , Nt. This may be taken into account as
a heuristic when creating the transition graph.

Second, the above system dynamics modeling naturally results in
cash residuals whenever investing in a non-currency asset. According to
our modeling, the cash residuals are enforced to be in the currency of the
purchased asset. This may be suboptimal in very specific cases. We there-
fore want to further motivate our methodology in the following. Sup-
pose the non-currency asset in which we invest is extremely expensive.
Then, it may be worthwhile to invest the cash residual into another as-
set more profitable than the “enforced” residual currency. In the extreme

290

case, consider Berkshire Hethaway Inc. where one share costs approxi-
mately 196000 EUR. In such a case, the cash residual may be huge. Nev-
ertheless, assets with such prices are extremely rare. Consider, for exam-
ple, publicly traded shares of the Danish A.P. Moller–Maersk Group, in
the past frequently element of lists summarizing the ten most expensive
stocks in the world with a price of (currently) approximately 1100 EUR.
Consider further that the average price of a share in a company listed in
the DAX (German Stock Market Index) is currently 70 EUR, whereby the
most expensive share of the 30 stocks listed in the DAX costs approxi-
mately 180 EUR. For the vast majority of shares it is therefore not worth
to invest the cash residual differently than in the asset currency. All po-
tential gains are in the vast majority of cases used up by transaction costs,
in particular, by fixed transaction costs. Consider for example the case of
a minimal fixed transaction cost of 50 EUR in relation to the aforemen-
tioned average price of 70 EUR. This is one reason for the formulation of
transition dynamics as above. Another one is that in order to account for
freely investing of cash residuals, an extension of the state space (beyond
8 variables) is required. Whenever buying any non-currency asset, a resid-
ual results which consequently can be invested in any of the Nc +Na− 1

assets. Thus, Nc +Na− 1 additional branches are added in the transition
graph, which, in the most general case, can then be further branched at
subsequent stages, which considerably complicates the tracking of states.

Third, transition dynamics (4.54) indicate an all-or-nothing strategy,
i.e., at every t ≥ 0, the investment at that time is maintained or, alter-
natively, reallocated to exactly one–the most profitable–currency or asset,
whereby cash residuals are accounted for as described in the previous
paragraph.

Fourth, let us briefly discuss the effect of absence of transaction costs
on optimal trading frequency. For simplicity let us consider the case of
being able to invest in an asset of variable value (such as a stock) and
holding of a cash position in the currency in which the risky asset is
traded. Relevant discrete-time dynamics can then be written as

wt = mt + ntpt, and mt = mt−1 − ntpt−1, (4.60)

291

Figure 85: Visualization of the Markov decision process when trading only
a cash and an asset position in the absence of transaction costs. The optimal
trading strategy is to trade upon any change of ∆pt-sign, i.e., even if it is
minimally small (∆pt → 0).

with mt the cash position, nt the number of shares in the risky asset,
pt the price of the asset and wt the wealth at time t. At every time t a
decision about a reallocation of investments is made. For a final time
period t = 0, 1, . . . , Nt, we wish to maximize wNt − w0 which can be
expanded as

wNt − w0 =

Nt∑

t=1

wt − wt−1. (4.61)

To maximize (4.61), we thus have to maximize the increments. Combin-
ing (4.60), we write

wt − wt−1 = nt(pt − pt−1)− nt−1pt−1,

which therefore motivates the following optimal trading strategy, imple-
mented at every t−1: if pt > pt−1, maximize nt and set nt−1 = 0 (allocate
maximal ressources towards the asset), and if pt ≤ pt−1, set nt = 0 and
minimize nt−1 (i.e., sell the asset if held at t − 1 and allocate maximal
ressources towards the cash position). We profit on a price increase of
the asset, and maintain our wealth on a price decrease5. Thus, it is opti-
mal to trade upon every change of sign of ∆pt = pt−pt−1, see also Figure
85. If ∆pt > 0 at time t − 1, we buy the asset (if we do not already hold
it), and if ∆pt ≤ 0, we sell the asset (if we hold it). An immediate and
important observation is thus the following remark.

5We here assume a long-only strategy. By the use of derivative contracts, we could in-
crease wealth on an underlying asset price decrease as well.

292

Figure 86: Influence of transaction costs on the strategy of selling and re-
buying an asset instead of holding it only. Currency affects are already in-
corporated in asset price pt. Transaction cost levels are indicated by ε.

Remark 9. Under the absence of transaction costs, trading upon any change in
sign of ∆pt = pt − pt−1 is the optimal trading policy.

Thus, by Remark 9, for absent transaction costs, high-frequency trading
is always the optimal trading policy. Furthermore, ∆wt = wt − wt−1 ≥
0, ∀t = 1, 2, . . . , Nt. Thus, in absence of transaction costs, at every time
step there is at least no incremental decrease in wealth when employing
the optimal trading policy. Naturally, when including non-zero transac-
tion costs, this is in general not the case anymore, i.e., we may (at least
temporarily) have ∆wt < 0. In addition, optimal trading frequency will
be non-trivially affected. Quantitative examples for optimal trading fre-
quencies under transaction costs are given in Section 4.3.6.

Fifth, motivated by the previous paragraph and under the consider-
ation of transaction costs, a valid question to address is when to sell and
rebuy a non-currency asset given a long-term trend but temporary dip in
price. Selling and rebuying may optimize profit. The situation is illus-
trated in Figure 86 where we consider for simplicity four (in general non-
uniformly spaced) trading times. Suppose at time t = 0 a (non-currency)
asset is bought. Given the “reference” price evolution (here assumed
affine), the optimal investment trajectory is to hold the asset until t = 3.
In contrast, for a temporary decrease in pt the optimal profit maximizing
investment trajectory is to sell the asset at t = 1 and rebuy it at t = 2 as

293

Figure 87: Abstract visualization of a multi-stage transition graph with t =
0, 1, 2. Superscript “q” implies any of Q different transition graphs with
q = 0, 1, . . . , Q− 1.

soon as p2 drops below a threshold, here denoted by pthr
2 . The necessary

decrease can be quantified by variable γt,t+1 = 100pt+1−pt
pt

measured in
percent. We assume propotional costs (indicated in %) identical for buy-
ing and selling, i.e., ε = εbuy = εsell. For ε = 0, we also set β = 0. For all
other cases, we set β = 50. For the transition dynamics (4.54), threshold
values pthr

2 can be computed by iteration. Results are illustrated in Fig-
ure 86. As expected, the typical minimal decrease in p2 w.r.t. p1 required
for the strategy of selling and rebuying being optimal is approximately
twice the proportional transaction cost level. Twice because of selling and
rebuying. Approximately because cash residuals due to integer-valued
number of assets and fixed transaction costs are accounted for. Similarly,
pthr

3 can be computed as the threshold price such that for p3 < pthr
3 asset

rebuying is not optimal anymore.

4.3.4 Multi-stage System Dynamics Optimization
Without Diversification Constraint

Multi-Stage Optimization

Multi-stage system dynamics can be modeled in form of a transition
graph. We therefore assign a set Zt of admissible states to every time
stage t. For investment trajectory optimization without a diversification
constraint, we employ one transition graph. For investment trajectory
optimization with a diversification constraint, multiple transition graphs,
q = 0, 1, . . . , Q− 1, are introduced in Section 4.3.5. Here, we therefore al-

294

ready introduce notationZ(q)
t , see Figure 87. However, for the remainder

of this section, we drop the superscript “(q)” and focus on optimization
without a diversification constraint, i.e., q = 0. We define the initial set

Z0 =
{
z0 : z0 =

[
0 0 0 m0

0 0 m0
0 0 0

]T}
. (4.62)

Next, three constraints on transition graph generation are discussed.

Case 1: Unconstrained Trading Frequency

Remark 10. Suppose that following a particular investment trajectory, at time
τ an investment state zτ is reached, specifically, with a particular iτ , w0

τ and
jτ = iτ−1. Suppose further there exists another investment trajectory resulting
in the same asset, i.e., ĩτ = iτ , but in contrast with w̃0

τ > w0
τ and j̃τ 6= jτ .

Then, the former investment trajectory can be dismissed from being a possible
candidate segment for the optimal investment trajectory. This is because any
trajectory continuing the latter investment trajectory will always outperform a
continuation of the former investment trajectory for all t > τ .

Remark 10 motivates a simple but efficient graph generation method:

1. Branch from every state zt−1 ∈ Zt−1 to all possible states zt at time
t according transition dynamics (4.54), whereby we summarize the
set of states at time t− 1 from which zt can be reached as J ztt−1;

2. Select the optimal transitions and thus determine Zt according to

Zt =

{
zt : max

jt∈J ztt−1

{w0
t }, ∀it ∈ I

}
, (4.63)

recalling the definition jt = it−1, and thereby selecting the solu-
tions with highest value w0

t , ∀it ∈ I = {0, 1, . . . , Nc +Na − 1}.
The resulting transition graph holds a total of Nz(t) = 1 + (Nc + Na)t

states up to time t ≥ 0. For a time horizon Nt, the optimal investment
strategy (denoted by superscript “?”) can then be reconstructed by pro-
ceeding backwards as

z?Nt =

{
zNt : i?Nt = max

iNt
{w0

Nt}, iNt ∈ I
}
, (4.64a)

z?t−1 = {zt−1 : it−1 = j?t } , ∀t = Nt, Nt − 1, . . . , 1. (4.64b)

295

The resulting investment trajectory is optimal since by construction of
the transition graph as outlined, starting from z0, there exists exactly one
wealth maximizing trajectory to every investment it = 0, 1, . . . , Nc+Na−
1 for every time t = 0, 1, . . . , Nt. By iterating backwards the optimal
investment decisions at every time stage are determined.

Case 2: Bound on the Admissible Number of Trades

We constrain the investment trajectory to include at most K ∈ Z+ trades
for time horizon t = 0, 1, . . . , Nt, whereby we define a trade as a realloca-
tion of an investment incurring any kind of transaction costs according
to Figure 84 or any switching in the asset identification number it. A
transition according to it = it−1 is consequently not a trade. The set of
admissible states is thus generated as

Zt =

{
zt : max

jt∈J ztt−1

{w0
t }, ∀kt < K and unique, and ∀it ∈ I

}
. (4.65)

As a result, the resulting transition graph holds a total of Nz(t) = 1 +∑T
l=1(Nc + Na)min(l,K) states. The reconstruction of optimal invest-

ment decisions is similar to (4.64).
Note that the total number of states,Nz(t), quickly reaches large num-

bers. We therefore introduce a heuristic to reduce Nz(t) while not com-
promising optimality of the solution.

Proposition 13. While not compromising the finding of an optimal investment
trajectory, the set of admissible states Zt of (4.65) can be shrunken to Z̃t accord-
ing to the following Algorithm:

Algorithm 18: Bound on the admissible number of trades

1 Initialize: Z̃t = Zt.
2 for every it ∈ I such that the corresponding zt ∈ Zt of (4.65) do
3 Compute: kopt

t (it) ={
kt : w

0,opt
t (it) = max{w0

t } s.t. corresponding zt ∈ Zt of (4.65)
}

.

4 Shrink: Z̃t ← Z̃t\
{
zt : kt > k

opt
t (it)

}
.

296

Proof. W.l.o.g., suppose that for a given it = i ∈ I we have determined
k

opt
t (it). Let the associated state vector be denoted by z

opt
t (it). Then,

we can discard all zt with it = i and kt > k
opt
t (it), since w0,opt

t+τ (it) ≥
w0
t+τ , ∀τ ≥ 0, and the admissible set for state zopt

t (it) is thus larger by at
least the option of one additional trade, in comparison to the admissible
set corresponding to all zt ∈ Zt of (4.65) with it = i and kt > k

opt
t (it).

This concludes the proof.

Note that the total number of states, Nz(Nt), cannot be predicted
anymore precisely as before for Case 1. Instead, Nz(Nt) is now data-
dependent. Quantitative experiments are reported in Section 4.3.6.

Case 3: Waiting Period after every Trade until the Next Trade

We constrain the investment trajectory to waiting of at least a specific
time period D after every executed trade until the next trade. Thus,

Zt =

{
zt : max

jt∈J ztt−1

{w0
t }, ∀dt < D and unique, and ∀it =∈ I

}
. (4.66)

As a result, the resulting transition graph holds a total of Nz(t) = 1 +∑T
l=1 ((Nc +Na − 1)min(l,D) + 1 + min (max(0, l −D), D − 1)) states. The

reconstruction of optimal investment decisions is similar to (4.64).
Similarly to Case 2, the total number of states, Nz(t), quickly reaches

large numbers. We therefore also introduce a heuristic as follows.

Proposition 14. While not compromising the finding of an optimal investment
trajectory, the set of admissible states Zt of (4.66) can be shrunken to Z̄t accord-
ing to the following Algorithm:

Algorithm 19: Waiting period after every trade until next trade
1 Initialize: Z̄t = Zt.
2 for every it ∈ I such that the corresponding zt ∈ Zt of (4.66) do
3 Compute: dopt

t (it) ={
dt : w

0,opt
t (it) := max{w0

t } s.t. corresponding zt ∈ Zt of (4.66)
}

.

4 Shrink: Z̄t ← Z̄t\
{
zt : 0 < dt < d

opt
t (it)

}
.

297

Figure 88: Abstract overview over some analysis tools. In particular, a dis-
tinction is made between inclusion of a diversification constraint (“Q traj.”)
and three constraints affecting trading frequency: unconstrained trading
frequency (“unc.”), at most K-trades (“K”) along the investment trajectory
for the time-horizon of interest, and the waiting of period D after execution
of a trade until the next trade along every investment trajectory. Addition-
ally, we may diversify (“div.”) only at, e.g., t = 1. Or, we may also only
trade at the same times for all investment trajectories, i.e., the trading is or
is not enforced to be synchronized (“sync.” or “async”). Variants are also
possible, for example, implementing the diversification constraint only at a
set of specific times, see Section 4.3.5.

Proof. W.l.o.g., suppose for a given it = i ∈ I we have determined
d

opt
t (it). Let the associated state vector be denoted by zopt

t (it). Then, we
can discard all zt with it = i and 0 < dt < d

opt
t (it), since w0,opt

t+τ (it) ≥
w0
t+τ , ∀τ ≥ 0, and the admissible set for state zopt

t (it) is larger by being
closer to a potential next trade by at least one trading sampling time, in
comparison to the admissible set corresponding to all zt ∈ Zt of (4.65)
with it = i and 0 < dt < d

opt
t (it). This concludes the proof.

Similarly to Case 2, the total number of states, Nz(Nt), cannot be pre-
dicted anymore precisely as before for Case 1. It is now data-dependent
instead. Quantitative results are reported in Section 4.3.6. The heuristic
significantly reduces computational complexity.

298

4.3.5 Multi-stage System Dynamics Optimization
With a Diversification Constraint

In portfolio optimization, the introduction of a diversification constraint
is regarded as a measure to reduce drawdown risk. There exist multiple
variants of diversification constraints, see, for example, [257].

For our purpose of analysis of historical optimal trading, we first di-
vide our initial wealth m0 into Q parts of equal proportion. Then, we
impose constraints on each of the corresponding Q investment trajecto-
ries. In the unconstrained case, all Q trajectories would coincide. Includ-
ing a diversification constraint allows for different implementations, see
Figure 88. It is distinguished between, first, constraints referring to rela-
tions between multiple investment trajectories (diversification at only the
initial time, diversification for all times, asynchronous trading and syn-
chronous trading), and, second, constraints referring to relations along
any specific investment trajectory (unconstrained trading frequency, at
most K trades admitted along the investment trajectory, and the enforce-
ment of a waiting period after each executed trade).

We define a diversification constraint at a specific time t such that
each of the states of the Q-trajectories (at that time), zt ∈ Z(q)

t , ∀q =

0, . . . , Q − 1, must be invested differently. Thus, each asset identification
number i(q)t must be different ∀t = 0, 1, . . . , Nt, ∀q = 0, 1, . . . , Q− 1.

We define the sets of admissible states Z(q)
t , ∀t = 0, 1, . . . , Nt and

∀q = 0, 1, . . . , Q − 1, sequentially and ordered according to optimality.
Thus, Z(1)

t , ∀t = 0, 1, . . . , Nt is constructed accounting only for the opti-
mal investment trajectory associated with Z(0)

t , i.e., the set Z(0),?
t , ∀t =

0, . . . , Nt, whereas Z(q)
t is constructed accounting for all of the optimal

investment trajectories associated with Z(0),?
t , Z(1),?

t , . . . ,Z(q−1),?
t . Here,

Z(q),?
t , ∀q = 0, 1, . . . , Q− 1 denotes the set states at each time t resulting

from the reconstruction of optimal investment decisions along the opti-
mal investment trajectory according to (4.64). Thus, the general notion
underlying our methodology is to be maximally invested in the invest-
ment trajectories ordered according to optimality.

299

Q trajectories, Diversification for a Subset of Times
and Asynchronous Trading

Let us define a subset of trading sampling times as T (q) ⊆ {0, 1, . . . , Nt}.
A simple example is T (q) = {1}, ∀q = 0, 1, . . . , Q− 1.

For enforcement of diversification in form of Q trajectories, diversifi-
cation for any subset of trading times and asynchronous trading, the sets
of admissible states are initialized as

Z(q)
0 =

{
z0 : z0 =

[
0 0 0 m0,q

0 0 m0,q
0 0 0

]T}
, (4.67)

for all q = 0, . . . , Q− 1.
For unconstrained trading frequency along an investment trajectory

and t > 0, the sets of admissible states are consequently generated ac-
cording to

Z(q)
t =

{
zt : max

jt∈J ztt−1

{w0
t }, ∀it ∈ I if t /∈ T (q), or ...

∀it ∈ I\
(
∪
{
it : it = i

(r),?
t , z

(r),?
t ∈ Z(r),?

t

}q−1

r=0

)
if t ∈ T (q)

}
,

(4.68)
with q = 0, 1, . . . , Q − 1 and whereby z(r),?

t ∈ Z(r)
t denotes the optimal

state at time t associated with investment trajectory r.
For the case of at most K admissible trades along any investment tra-

jectory and t > 0, the sets of admissible states are consequently generated
according to

Z(q)
t =

{
zt : max

jt∈J ztt−1

{w0
t }, ∀kt < K and unique, and ∀it ∈ I if t /∈ T (q),

or ∀kt < K and unique, and

∀it ∈ I\
(
∪
{
it : it = i

(r),?
t , z

(r),?
t ∈ Z(r),?

t

}q−1

r=0

)
if t ∈ T (q)

}
,

(4.69)
with q = 0, 1, . . . , Q− 1

For the case of enforcing a waiting period after each executed trade
along any investment trajectory and t > 0, the sets of admissible states

300

are consequently generated according

Z(q)
t =

{
zt : max

jt∈J ztt−1

{w0
t }, ∀dt < D and unique, and ∀it ∈ I if t /∈ T (q),

or ∀dt < D and unique, and

∀it ∈ I\
(
∪
{
it : it = i

(r),?
t , z

(r),?
t ∈ Z(r),?

t

}q−1

r=0

)
if t ∈ T (q)

}
,

(4.70)
with q = 0, 1, . . . , Q− 1.

Q trajectories, Diversification for all Times and Synchronous Trading

Let us define a subset of trading sampling times as T ⊆ {0, 1, . . . , Nt}.
This subset may, for example, indicate the sampling time at which trades
were executed along the optimal investment trajectory associated with
Z(0),?
t :

T = {t : i
(0),?
t 6= j

(0),?
t , z

(0),?
t ∈ Z(0),?

t , ∀t = 1, . . . , Nt}.

The set of a admissible states is initialized as in (4.67). Then, for un-
constrained trading frequency along an investment trajectory and t > 0,
the sets of admissible states are consequently generated according

Z(q)
t =

{
zt :zt = zt−1 if t /∈ T , or zt s.t. . . .

max
jt∈J ztt−1

{w0
t }, ∀it ∈ I\

(
∪
{
it : it = i

(r),?
t , z

(r),?
t ∈ Z(r),?

t

}q−1

r=0

)
if t ∈ T

}
,

(4.71)
with q = 0, 1, . . . , Q− 1.

The case of at most K admissible trades along any investment trajec-
tory as well as the case of enforcing a waiting period after each executed
trade along any investment trajectory can then be defined analogously.

Remarks and Relevant Quantities for Interpretation

In general, a mean for increasing computational efficiency is to reduce
branches or nodes from the transition graph. This can be done based on

301

heuristics (branch and bound) that early discard investment trajectories
not having any potential to result in an optimal investment trajectory.

The presented framework can also be used to analyze alternative op-
timization criteria such as determining a worst-case investment trajec-
tory (pessimization) or the tracking of a target reference return trajectory.

Several quantities can be used to interpret results. We therefore first
define the total return (measured in percent) as

r
tot,(q)
Nt

= 100
w0
Nt
− w0

0

w0
0

, ∀q ∈ Q.

Similarly, we define the return at time t as rtot,(q)
t , ∀q ∈ Q. We further

report the total number of conducted trades as K tot
Nt

. The minimal time-
span between any two trades within time-frame t ∈ Nt = {0, 1, . . . , Nt}
shall be denoted by Dmin

Nt
.

In addition, the average, minimal and maximal percentage gain per
conducted non-currency asset-trade is of our interest. Stating the quanti-
ties with respect to our reference currency (EUR), we therefore first de-
fine the set

∆G(q) =

{
100

w0
τ − w0

η

w0
η

: with τ s.t. τ = t− 1, ī ∈ INa , it−1 6= ī, it = ī,

with η s.t. η = t, ī ∈ INa , it = ī, it+1 6= ī, and τ > η, zt ∈ Z(q),?
t ,

∀t ∈ Nt, ∀q ∈ Q
}
,

whereby ī identifies an asset of interest. The average, minimum and
maximum shall then be denoted by avg(∆G(q)), min(∆G(q)) and max(∆G(q)),
respectively. The associated trading times are summarized in

∆T (q) =

{
τ − η : with τ s.t. τ = t− 1, ī ∈ INa , it−1 6= ī, it = ī,

with η s.t. η = t, ī ∈ INa , it = ī, it+1 6= ī, and τ > η, zt ∈ Z(q),?
t ,

∀t ∈ Nt, ∀q ∈ Q
}
,

with corresponding avg(∆T (q)), min(∆T (q)) and max(∆T (q)) defined
accordingly.

302

Table 17: Example 1. Identification of currencies and assets under consider-
ation. Each currency is associated with a foreign exchange rate with respect
to EUR. The currency in which an asset i is traded is denoted by c(i). The
reference currency for the Nasdaq-100 is USD.

Then, we can partition quantities of interest into two groups: over-
all performance measures and, secondly, quantities associated with non-
currency asset holdings along an optimal q-trajectory. We therefore com-
pactly summarize results in evaluation vectors and evaluation matrices

e(q) =
[
r

tot,(q)
Nt

K
tot,(q)
Nt

D
min,(q)
Nt

]
, ∀q ∈ Q, (4.72)

E(q) =

[
avg(∆G(q)) min(∆G(q)) max(∆G(q))
avg(∆T (q)) min(∆T (q)) max(∆T (q))

]
, ∀q ∈ Q. (4.73)

4.3.6 Numerical Examples

To evaluate results, we consider three numerical examples. For all ex-
amples, a time horizon of one year is chosen. The sampling time is se-
lected as one day. The influence of different levels of transaction costs
on optimal trading decisions and quantitative performance measures are
of main interest. Adjusted closing prices (accounting for all corporate
actions such as stock splits and dividend payments) of both foreign ex-
change rates and stock indices are retrieved from finance.yahoo.com.
Yearly data could not be retrieved for all stock indices of interest. There-
fore, for some stock indices, we obtained data of an emulating ETF in-
stead. For Example 3, we directly used stock price data. For unifor-
mality, we then normalized all non-currency assets to value 100 in the

303

Figure 89: Example 1, the unconstrained trading case for proportional trans-
action costs of 1%. See also Table 18.

corresponding currency at time t = 0. See Tables 17 and 19 for details
and the currencies associated with the assets.

The first example treats optimal trading of EUR, USD and the Nasdaq-
100. This scenario is mainly selected to analyze currency effects. We here
do not employ a diversification constraint, i.e., we have Q = 1. The
second example treats optimal trading of 16 different currencies and 15
different non-currency assets. A diversification constraint is employed
with Q = 3. The third example compares achievable performances for
an exemplary downtrending and another uptrending stock when opti-
mally trading a posteriori.

304

Table 18: Results of Example 1, where e(0) and E(0) are stacked atop each
other for the different trading strategies; except for the Buy-and-Hold strat-
egy, where only e(0) is reported.

Example 1: EUR, USD and Nasdaq-100

The results of experiments for numerical Example 1 are summarized in
Table 18. We consider different levels of transaction costs with variable
proportional cost but constant fixed cost. The evaluation quantities e(0)

and E(0) are stacked atop each other for the different trading strategies;
except for the Buy-and-Hold strategy, where only e(0) is reported. We
assume proportional costs (indicated in %) to be the same for buying and
selling for both foreign exchange and asset trading, i.e., ε = εbuy = εsell.
For ε = 0, we also set β = 0. For all other cases, we set β = 50. Total
returns (rtot,(q)

Nt
) are printed bold for emphasis. The time-span of interest

is August 5, 2015 until August 3, 2016. It comprises 251 potential trading
days.

Several observations can be made with respect to the results of Table
18. First, eventhough only two currencies, EUR and USD, i.e., i ∈ INc =

{0, 1}, and one non-currency asset, i.e., i ∈ INa = {2}, are traded long-
only, remarkable profits can be earned when optimally trading a poste-
riori. Even in case of (high) transaction costs with a proportional rate of
2%, the profits significantly outperform a one-year Buy-and-Hold strat-

305

egy. Second, the influence of different levels of transaction costs is im-
pressive. Specifically for the unconstrained trading strategy with respect
to returns, trading frequency and percentage gains (average, minimum
and maximum) upon which the non-currency asset is traded. Third,
while the total return drops with increasing transaction cost levels, the
remaining evaluation quantities remain approximately constant for the
K-trades strategy (hereK = 12, i.e., 12 trades per year or one per month).
Fourth, the results associated with the percentage gains upon which the
non-currency asset is traded were unexpected. Intuitively, they were
thought to be higher. The same holds for optimal time periods between
any two trades. Results from Example 1 encourage frequent trading. For
example, for the case with a waiting constraint, trading is encouraged
upon percentage gains of on average slightly less than 10% for all four
levels of transaction costs.

Figure 89 exemplatorily visualizes results. In order to compactly dis-
play multiple foreign exchange rates, we normalize w.r.t. the initial value
at t = 0, see the subplot with label ∆xnorm

t . For reference currency
EUR, we set ∆xnorm

t = 0, ∀t = 0, 1, . . . , Nt. Analogously, we normalize
non-currency prices and additionally take currency effects into account
by first converting prices to currency EUR, see the subplot with label
∆pnorm

t,EUR. For a specific optimal investment trajectory, at every time t, an
investment in exactly one currency or non-currency asset is taken. Being
invested in a non-currency asset is indicated by red balls in aforemen-
tioned figures. Since non-currency assets are associated with a specific
currency we also label them correspondingly with red balls. In contrast,
an explicit investment in a currency is emphasized by blue balls.

It is striking that despite absence of clear trends in both the EURUSD-
foreign exchange rate and the Nasdaq-100 stock index, significant profits
can be made when optimally trading–even when employing a long-only
strategy. The largest increases in return rates in currency EUR are achie-
ved when the asset is increasing in value while the foreign exchange rate
with reference Euro is decreasing. Investments in USD are optimal when
the EURUSD-foreign exchange rate is trending down and the Nasdaq-
100 is decreasing likewise. Investments in EUR are in general optimal

306

when the EURUSD-foreign exchange rate is trending up and the Nasdaq-
100 is trending down.

Example 2: Global Investing and a Diversification Constraint

We distinguish two cases: synchronous and asynchronous trading. Quan-
titative results are summarized in Tables 20 and 21, respectively. The
results for all Q trajectories are reported. The “Summary”-sections in Ta-
bles 20 and 21 report the sum of returns of all Q trajectories. Results are
further visualized in Figure 90. The black-dashed horizontal line in the
corresponding top subplots denotesNc = 16 to distinguish currency and
non-currency asset investments.

For performance comparison, we consider a Buy-and-Hold strategy,
whereby an asset is bought initially and then held. The most performant
non-currency assets from Table 19 for the time frame of interest were,
in order, the IBOVESPA (BRA), the Dow Jones Russia GDR (RUS) and
the S&P 500 (USA). Associated returns are reported in Table 20 and 21,
where we attribute the IBOVESPA to q = 0 and the other two assets to
q = 1 and q = 2, respectively.

Interpretation of results is in line with Experiment 1. In particular, the
influence of transaction costs and the encouragement of frequent trading
upon relatively small percentage gains can be observed likewise.

A remark about computational complexity needs to be made. The to-
tal number of states, Nz(Nt), without consideration of any heuristics is
6139, 71611 and 59905 for the three cases (unconstrained, constraint of at
most K = 12 trades, and constraint of waiting at least D = 10 days be-
tween any two trades). These numbers can be computed according to the
formulas stated in Section 4.3.4. Then, applying the heuristics from Sec-
tion 4.3.4 to the given finance.yahoo-data trajectories, we measured
(to give one example) Nz(Nt) = 65238 and Nz(Nt) = 33161 for the latter
two cases, q = 0 and ε = 0. Similar results are obtained for the other
transaction cost levels and the other q-trajectories, resulting in overall
computation times (for all q = 0, 1, 2) in the tens of minutes. In contrast,
for the unconstrained case, overall computation times for the generation
of all Q = 3 transition graphs were on average only slightly more than

307

Table 19: Example 2. Identification of 16 currencies and 15 assets. Each
currency is associated with a foreign exchange rate with respect to EUR.
The currency in which an asset i is traded is denoted by c(i).

308

Table 20: Summary of quantitative results of Example 2 for the first case:
time-asynchronous trading with diversification for all times.

309

Table 21: Summary of quantitative results of Example 2 for the second case:
time-synchronized trading with diversification for all times.

310

Table 22: Summary of quantitative resultus of Example 3. Comparison of a
downtrending and uptrending stock for time period August 10, 2015 until
August 8, 2016. The exemplary downtrending stock is of Deutsche Bank
AG (finance.yahoo-symbol: DBK.DE). The exemplary uptrending stock
is of Adidas AG (finance.yahoo-symbol: ADS.DE).

10 seconds, thereby making the unconstrained case much more suitable
for fast analysis of sets of multiple assets and foreign exchange rate tra-
jectories. Secondly, the trajectories for q = 0 are identical for both time-
asynchronous and -synchronous trading. However, for the remaining
investment trajectories with q > 0, the number of states is much lower
for time-synchronous trading in comparison to the asynchronous case.
For time-synchronous trading, Q = 3 and a bound on the total admissi-
ble number of trades, the total number of states is 63803 for q = 0, but
39713 and 23549 for q = 1 and q = 2, respectively. All numerical ex-
periments throughout this section were conducted on a laptop running
Ubuntu 14.04 equipped with an Intel Core i7 CPU @ 2.80GHz×8, 15.6 GB
of memory, and using Python 2.7.

Example 3: A Downtrending and an Uptrending Stock

The final example compares achievable performances for an examplary
downtrending and an an uptrending stock. The exemplary downtrend-
ing stock is of Deutsche Bank AG (DKB.DE). The exemplary uptrending
stock is of Adidas AG (ADS.DE). Both stocks are listed in the German
stock index (DAX). The time-frame considered is August 10, 2015 un-
til August 8, 2016. There are 260 potential trading days. Both stocks
are traded in currency EUR. We thus find optimal investment trajecto-

311

August 7, 2016 Quantitative Finance paperV1

...

............0 .

10

.

20

.

30

.

i t

..

............−20 .

−10

.

0

.

10

.

20

.

30

.

40

.

∆
x

no
rm

t
[%

]

..

............−40 .

−30

.

−20

.

−10

.

0

.

10

.

20

.

∆
p

no
rm

t,
E

U
R

[%
]

..

..
0
.

20
.

40
.

60
.

80
.

100
.

120
.

140
.

160
.

180
.0 .

100

.

200

.

300

.

t [days]

.

rto
t

t
[%

]

Figure 13. Example 2. The results for q = 0, a waiting period of at least D = 10 days between two trades and
transaction cost level ϵ = 1. For q = 0, the results for asynchronous and synchronous trading are identical. See
Section 5.2 for interpretation.

22

Figure 90: Example 2. The results for q = 0, a waiting period of at least
D = 10 days between two trades and transaction cost level ε = 1. For q = 0,
the results for asynchronous and synchronous trading are identical.

312

Figure 91: The downtrending stock of Example 3 for the unconstrained trad-
ing case in case of proportional transaction costs of 1%. The exemplary
downtrending stock is of Deutsche Bank AG (finance.yahoo-symbol:
DKB.DE). See also Table 22.

ries when a) trading DKB.DE and EUR, and b) trading ADS.DE and EUR.
We assume propotional costs of 1% identical for buying and selling, i.e.,
ε = εbuy = εsell. We set β = 50. Results are summarized in Table 22 and
Figures 91 and 92.

Unexpectedly and remarkably, the optimal investment trajectory and
its associated yearly return for the downtrending stock is higher than for
the optimal investment trajectory corresponding to the uptrending trend:
382.8% vs. 249.2%. Note that the corresponding Buy-and-Hold returns
are−61.4% and 95.6%. While overall downtrending, the price of DKB.DE
indicates temporary steep price increases with occur mostly towards the
second half of the time-period of interest. This implies stronger return
growth due to already exponentially amplified available value hitherto
(instead of the initial m0). Naturally, without a posteriori knowledge of
price evolutions, an uptrending stock such as ADS.DE offers the advan-
tage that missing the right selling dates is less important. Interestingly,

313

Figure 92: The uptrending stock of Example 3 for the unconstrained trad-
ing case in case of proportional transaction costs of 1%. The exemplary
uptrending stock is of Adidas AG (finance.yahoo-symbol: ADS.DE). See
also Table 22.

both downtrending and uptrending are traded optimally upon similar
short-term average price increases: 7.5% and 7%. Similarly, the optimal
holding periods of the stocks are short, on average: 4.2 and 7.8 days,
respectively.

4.3.7 Conclusion

We developed a method for a posteriori (historical) multi-stage optimal
trading under transaction costs and a diversification constraint. Findings
were evaluated on real-world data recorded for one year. We found that
transaction cost levels are decisive for achievable performance and sig-
nificantly influence optimal trading frequency. Quantitative results fur-
ther indicated optimal trading upon occasion rather than on fixed trad-
ing intervals, and, dependent on transaction cost levels, upon single- to
low double-digit percentage gains in value (with respect to the reference
currency) exploiting short-term trends. Achievable returns for optimized

314

trading are overwhelming, and uncomparably outperforming Buy-and-
Hold strategies. Naturally, these returns are very difficult to achieve
without knowledge of future price and foreign exchange rate evolutions.
Nevertheless, they indicate the potential of optimal trading and can pro-
vide valuable insights for the development of algorithmic trading and
screening systems.

The developed methods can be used in multiple ways. First, for a set
of given asset price evolutions, the most suitable or best combinations of
technical indicators (such as, e.g., moving average crossovers, Williams
%R, etc.) and chart pattern analysis techniques (such as, e.g., head and
shoulders, wedge, etc.) can be determined that most closely replicate the
trading recommendations of optimal investment trajectories. The task of
the finding of combinations can also be posed as an optimization prob-
lem. Second, assuming multi-step predictions about future price or for-
eign exchange rate evolution can be made, the developed methods can
be used to optimally assign investments. Third, the developed methods
can be used in the design of an adaptive or self-learning trading recom-
mendation system. Therefore, additional prediction methods have to be
incorporated.

4.3.8 Hierarchical Controller Parametrization

There is one hierarchical layer. It is represented by any of the optimiza-
tion problems from Section 4.3.4 and 4.3.5.

315

4.4 Single-Asset Stock Trading:
Stochastic Model Predictive or Genetic?

This section summarizes [153]:

• M. Graf Plessen, and A. Bemporad, “Stock trading via feedback
control: Stochastic model predictive or genetic?,” originally pre-
sented as a poster at XVIII Workshop on Quantitative Finance
(QFW2017), to appear upon invitation in Journal of Modern Account-
ing and Auditing, available at arXiv preprint arXiv: 1708.08857, 2017.

A suitable feedback control structure for stock trading under propor-
tional transaction costs is sought. Suitability refers to robustness and per-
formance. Both are tested by considering different one-step ahead stock
price prediction qualities, including the ideal case, correct prediction of
the direction of change in daily stock prices and the worst-case. Feed-
back control structures are partitioned into two general classes: SMPC
and genetic algorithms. For the former class, three controllers are dis-
cussed, whereby it is distinguished between two Markowitz- and one
dynamic hedging-inspired SMPC formulation. For the latter class, five
trading algorithms are disucssed, whereby it is distinguished between
two different moving average (MA) based, two trading range (TR) based,
and one strategy based on historical optimal (HistOpt) trajectories. The
combinations of all of the eight controllers with five different one-step
ahead prediction methods are backtested for daily trading of the 30 com-
ponents of the DAX for the time period between November 27, 2015 and
November 25, 2016.

4.4.1 Introduction

Within the context of performance-related asset trading, we distinuish
between three general tasks: system identification (finding of cause and
effect relations), scenario generation (future asset price predictions) and
trade decision taking (control logic). This work focuses on the third task.
For low-level trading mechanics and feedback control thereof we refer
to [25]. For recent control theory-related research problems in finance

316

Figure 93: Visualization of the Markov decision process (MDP) when trad-
ing cash and a stock only.

associated with the control of order book dynamics, see [24]. This work
is founded on [265] and [42]. The motivation for this work is the inten-
tion to extend a SMPC approach to multi-asset portfolio optimization for
profit- and risk-related objectives. However, first, the suitability of SMPC
needs to be verified and compared to alternative control strategies. Such
a comparison is provided below. The main contribution of this work is
analysis to find the most suitable general feedback control structure for
stock trading out of two general and large classes: SMPC and genetic
algorithms. Here, we refer to a genetic algorithm as any customized
control method of arbitrary structure whose parameters are optimized
through simulation using real-world data. We compare eight different
stock trading algorithms that can be partitioned into the two aforemen-
tioned classes. For scenario generation, on which we rely all controllers,
we assume five different one-step ahead stock price prediction methods.
Their quality ranges from ideal (perfect price-ahead prediction) to to-
tally off (wrong price rate sign-prediction at all sampling intervals). It is
stressed that we explicitly do not consider multi-asset portfolio optimiza-
tion, but instead concentrate on the trading of separate single assets for
a given period of time. The used real-world data is drawn from the 30
components of the German stock market index DAX.

4.4.2 Transition Dynamics Modeling

Let time index t be associated with sampling time Ts such that all time
instances of interest can be described as tTs, whereby, throughout this

317

section, we have Ts = 1 day. Let us define the system state by

Z(t) =
[
I(t) M(t) N(t) W (t)

]T
, (4.74)

with I(t) ∈ {0, 1} indicating a cash- or stock-investment, respectively,
M(t) ∈ R+ the current cash position (measured in currency e), N(t) ∈
Z+ the number of shares held, and W (t) ∈ R+ the current portfolio
wealth. Thus, to analyze a suitable stock trading algorithm, we assume
that fractional investments are not possible, and that investments are there-
fore always made either entirely in cash or a stock. Transition dynam-
ics can then be modeled as a Markov decision process (MDP). Control
variable J(t) ∈ {0, 1} decides upon investment positions according to
Figure 93. In general, we model transaction costs as non-convex with a
fixed charge for any nonzero trade (fixed transaction costs) and a linear
term scaling with the quantity traded (proportional transaction costs).
Thus, at time t − 1, the purchase of N(t − 1) shares of an asset results in
M(t) = M(t − 1) − N(t − 1)s(t − 1)

(
1 + εbuy

)
− βbuy, with s(t) denot-

ing asset (closing) price at time t. Similarly, for the selling of N(t − 1)

assets we have M(t) = M(t− 1) +N(t− 1)s(t− 1) (1− εsell)− βsell. For
the remainder of this section we assume no fixed transaction costs, i.e.,
βsell = βbuy = 0. This simplification is done to directly adapt the convex
problem formulations from [265] and for the dynamic hedging-inspired
formulation proposed in Section 4.4.3. Fixed transaction costs, that ren-
der the problem non-convex, can be approached by iterative relaxation
methods [257] or hybrid system theory. For wealth dynamics, we have
W (t) ∈

{
W (t− 1),M(t), W̃ (t)

}
, whereby W̃ (t) = M̃(t) + Ñ(t)s(t) with

M̃(t) denoting the optimizer and Ñ(t) the optimal objective function
value of

max
M(t)≥0

{
N(t) ∈ Z+ : N(t) =

M(t− 1)− βbuy −M(t)

s(t− 1)
(
1 + εbuy

)
}
.

Thus, givenM(t−1), we find the largest possible positive integer number
of assets we can purchase under consideration of transaction costs. The
smallest possible cash residual is M̃(t) = 0.

318

Figure 94: Visualization of the dynamic hedging-inspired SMPC formula-
tion for stock trading. A noncausal setting with perfect s(t+ 1) knowledge
is assumed for illustration. Parameters for scenario generation and pertura-
tion noise are (M,σpert) = (100, 0.3). (Left) Dynamic hedging result. (Right)
Result of SMPC-DH. In both cases, (4.80) is solved. The difference is the
generation of references pj(t + 1), j = 1, . . . ,M . The average is denoted
by p̄(t) = 1

M

∑M
j=1 p

j(t). The underlying stock (top frame) is of Vonovia SE
(November 27, 2015 until November 25, 2016).

Within this work, the focus is on unconstrained trading frequency of
one asset, i.e., trading is permitted on any two consecutive trading days,
and confining cash and asset to be based on the same currency.

To summarize, at every trading interval t we conduct the following
algorithm:

1. Read current s(t) to update W (t) and thus Z(t).

2. Decide on J(t) ∈ {0, 1}.

3. Rebalance the portfolio according to J(t).

All of the following two sections are concerned about the decision on
J(t) ∈ {0, 1}with fundamental objective profit maximization.

319

4.4.3 Stochastic Model Predictive Stock Trading

Let us discuss a relation between portfolio optimization and dynamic
hedging using stochastic model predictive control (SMPC). For a finan-
cial institution, hedging a derivative contract implies to dynamically re-
balance a so-called replicating portfolio of underlying assets at periodic
intervals so that, at the expiration date of the contract, the value of the
portfolio is as close as possible to the payoff value to pay to the customer.
For the multiple asset replicating portfolio case, wealth dynamics w(t) of
the replicating portfolio can be defined as

w(t+ 1) = (1 + r)

(
w(t)−

n∑

i=1

hi(t)

)
+

n∑

i=1

bi(t)ui(t) (4.75)

where ui(t) is the fractional quantity of asset i held at time t, bi(t) = si(t+

1) − (1 + r)si(t) is the excess return, i.e., how much the asset gains (or
loses) with respect to the risk-free rate r over interval Ts, and transaction
costs hi(t) are assumed to be proportional to the traded quantity of stock,

hi(t) = εisi(t)|ui(t)− ui(t− 1)|, (4.76)

with fixed quantity εi ≥ 0 depending on commissions on trading asset
i, ∀i = 1, . . . , n (we assume no costs are applied on trasacting the risk-
free asset). A standard option contract typically covers 100 shares. Thus,
ui(t) = 1 implies a portfolio such that at the end of the rebalancing in-
terval, 100 shares of underlying asset i are held. For our setting, we here
assume one asset only and drop subscripts accordingly. Furthermore, we
set ε = εbuy and εsell = εbuy. For the formulation of convex optimization
problems, we introduce a virtual portfolio, constrain6 u(t) ∈ {0, 1}, and
then relate I(t) = u(t).

Two Markowitz-inspired SMPCs

With regard of portfolio optimization, Markowitz [265] trades-off the
mean (performance) and variance (risk) of the return. For our setting,

6The unconstrained case admitting u(t) < 0 would imply the possibility of shortselling.

320

Figure 95: Normalized two-year evolution of all 30 components held in the
DAX between November 28, 2014, and November 25, 2016. The data is
partitioned by the black-dashed vertical line into training and evaluation
data, respectively. Thus, t = 0 is initialized at trading day 261 (November
27, 2015).

this objective can be formulated as

max
u(t)∈{0,1}

E[w(t+ 1)]− α

2
Var[w(t+ 1)], (4.77)

where α denotes the trade-off parameter. The decision of selecting u(t)

is largely dependent on s(t + 1), which is unknown at time t. Employ-
ing a SMPC approach, we therefore generate M scenarios for possible
future prices sj(t+ 1) with corresponding probabilities πj , j = 1, . . . ,M .
Accordingly, we obtain wj(t + 1), E[w(t + 1)] =

∑M
j=1 π

jwj(t + 1) and
Var[w(t+ 1)] = E[w2(t+ 1)]− E2[w(t+ 1)]. We generate scenarios as

sj(t+ 1) = ŝ(t+ 1) + σpertη
j(t), ηj(t) ∼ N (0, 1), (4.78)

where ŝ(t + 1) denotes our mean estimate of s(t + 1) and σpert ≥ 0 is a
tuning parameter to add perturbation noise. For final experiments we as-
sume M = 100. Thus, our first SMPC-based controller solves (4.77) with
scenario generation according (4.78). It is referred to as SMPC-M100. For

321

the fractional case relevant for dynamic option hedging (and specific for
∆-hedging [49]), the corresponding to (4.77) can be cast into a quadratic
program (QP) by the introduction of two slack variables. For our case,
we just evaluate the objective function for both u(t) ∈ {0, 1} and there-
fore do not require a QP-solver.

In a second setting we assumeM = 1 which implies Var[w(t+1)] = 0.
In order to still maintain a possible knob to trade-off performance and
risk, we define

max
u(t)∈{0,1}

E[w(t+ 1)]− β

2
(u(t)− u(t− 1))2σ, (4.79)

where β is a tuning parameter and σ was introduced to relate to data.
Assuming the log-normal stock model, it is typically estimated as the
maximum likelihood (ML) from T +1 past stock prices using {ln(s(t−T+1)

s(t−T)),

. . . , ln(s(t)
s(t−1))}. The higher β, the less frequent u(t) is varied. Again, we

solve (4.79) by evaluating both u(t) ∈ {0, 1} instead of solving the more
general QP. We refer to the resulting controller as SMPC-E+, eventhough,
strictly it is not stochastic anymore since M = 1.

Dynamic Hedging-inspired SMPC

For option hedging, the objective is to typically minimize the so-called
hedging error e(T) = w(T)−p(T), where w(T) and p(T) denote replicat-
ing portfolio wealth and option price at expiration date T , respectively.
Guiding notion of dynamic option hedging is to minimize the “tracking
error”, e(t) = w(t) − p(t), ∀t = 0, . . . , T for all possible asset price re-
alization. In order to minimize under transaction costs, three different
stochastic measures of the predicted hedging error are discussed in [42].
We here focus on the LP-MinMax formulation, minimizing the maximal
hedging error resulting from scenario generation, i.e.,

min
u(t)∈{0,1}

max
j=1,...,M

|wj(t+ 1)− pj(t+ 1)|. (4.80)

Its benefit over the other two stochastic measures is independence from
any trade-off parameter. Let us discuss how the framework (4.80) can

322

serve for stock trading. First, for hedging of a European call option,
the analytical scheme to generate option price scenarios is pj(t + 1) =

(1 + r)−(T−(t+1)) max(sj(T) − Ks, 0), j = 1, . . . ,M . The option strike
price is denoted by Ks. For our stock trading objective, we modify these
“references”. For (4.80), we therefore propose

pj(t+ 1) = (1 + r)−(T−(t+1)) max(sj(t+ 1)− s(0), l(t)), (4.81)

with

l(t) =

{
max(w(t), 0), if w(t) > l(t),

l(t− 1), otherwise,

and initialize l(0) = 0. The corresponding dynamic hedging-inspired
controller shall be referred to as SMPC-DH. Both the difference with
respect to dynamic option hedging and the motivation for employing
(4.81) for stock trading are visualized in Figure 94. Using (4.81) in combi-
nation with (4.80) can be interpreted as a trailing stop-loss strategy. Finally,
we remark that the other two stochastic measures (QP-Var and LP-CVaR)
from [42] can be employed likewise using (4.81).

4.4.4 Genetic Stock Trading

We discuss five genetic stock trading methods.

Two Moving Average-based Controllers

Let us define the moving average (MA) of a stock price as sMA(t + 1) =
1
pMA

∑pMA−1
τ=0 s̃(t+ 1− τ), with s̃(t+ 1) = ŝ(t+ 1) and s̃(t+ 1− τ) = s(t+

1 − τ), ∀τ ≥ 1, and where pMA is the moving average length parameter.
The first MA-based controller, referred to as MA-Cross in the following,
triggers a buy-signal (J(t) = 1) in case of a short-term MA coming from
“below” (i.e., with a lower price one sampling time before) and crossing
a long-term MA. Similarly, a sell-signal (J(t) = 0) is generated in case of
the short-term MA crossing the long-term MA from “above” (i.e., with
a higher price one sampling time before). The two parameters defining
MA-lengths shall be denoted by pMA,s and pMA,l.

323

The second MA-based controller, below referred to as MA-Sign, takes
as input parameters pMA and TMA. It then computes ∆sMA(t − τ) =

sMA(t + 1 − τ) − sMA(t − τ), ∀τ = 0, 1, . . . , TMA − 2. A buy-signal is
generated if sign (∆sMA(t− τ)) > 0, ∀τ = 0, 1, . . . , TMA − 2, a sell-signal
otherwise, and where sign(·) denotes the sign-operator. The idea is to ex-
ploit price trends using constant-sign MA-slope rates for the past TMA−1

intervals. We refer to this second MA-based controller as MA-Sign.

Two Trading Range-based Controllers

Let us select a time window [t− Twin, t] and partition it such that

Twin = KpTR + δ, (4.82)

where pTR ∈ Z++ is a parameter, K ∈ Z++, and δ ≥ 0 a corresponding
residual of time-instances. We define interval-wise local maxima by

s
(k)
max = max

τ∈[t−Twin+(k−1)K,t−Twin+kK]
s(τ), (4.83)

and the corresponding time arguments by t
(k)
max, ∀k = 1, . . . ,K. Simi-

larly, we derive local minima s(k)
min and t

(k)
min. Local minima and maxima

are suitable to generate trading ranges (TR). We refer to our first TR-based
controller as TR-Inside. It triggers trading signals as follows:

J(t) =





0, if |ŝ(t+1)−ŷmax(t+1)|
ŷmax(t+1) < εTR,

1, if |ŝ(t+1)−ŷmin(t+1)|
ŷmin(t+1) < εTR,

J(t− 1), otherwise,

where ŷmax(t + 1) = (t + 1 − t
(K)
max)qmax(t + 1) + s

(K)
max, qmax(t + 1) =

(s
(K)
max−s(K−1)

max)/(t
(K)
max−t(K−1)

max), and analogously for ŷmin(t+1) and qmin(t+

1). Thus, buy(sell)-signals are triggered upon reaching the lower(upper)
trading range affinely constructed based upon the last two local min-
ima(maxima).

Our second TR-based controller is referred to as TR-Outside. It trig-

324

gers trading signals according to:

J(t) =





1, if ŝ(t+1)−ŷmax(t+1)
ŷmax(t+1) > εTR,

0, if ŝ(t+1)−ŷmin(t+1)
ŷmin(t+1) < −εTR,

J(t− 1), otherwise.

Thus, buy(sell)-signals are triggered upon outbraking the upper(lower)
trading corridor affinely constructed based upon the last two local max-
ima(minima).

Note that for the final trading rules of both TR-Inside and TR-Outside,
we only employ the last two local maxima and minima, eventhough
we derived s

(k)
max in (4.83) (and similarly t

(k)
max, s(k)

min and t
(k)
min) for all k =

1, . . . ,K. This has the reason that a partition according (4.82) can be con-
structed either with uniform spacings starting at at time t − Twin and
partitioning proceeding forward in time until t, or, alternatively, starting
at time t and partitioning going backward in time. Interestingly, when
testing both methods we found the former method to almost always per-
form better. We attribute this to the residual δ that typically enlarges the
final time-window for k = K.

Historical Optimal-based Causal Controller

Given past stock prices historical optimal (HistOpt) trading trajectory
can be reconstructed a posteriori with hindsight. This can be done effi-
ciently by graph generation and evaluation. A valid question is whether
such optimal trajectories generated up until time t + 1 with predicted
ŝ(t + 1) as final stock price can also be exploited for real-time (RT) stock
trading. Thus, trading signals are

J(t) =

{
J̃(t), if J̃(t− τ) = J̃(t), ∀τ = 1, . . . , THO − 1,

0, otherwise,
(4.84)

where J̃(t) denotes the historical optimal trading trajectory at time t.
Tuning parameter THO determines the number of past consecutive iden-
tical trading signals necessary to trigger a buy/sell signal. We refer to
this controller as HistOpt-RT.

325

Table 23: Overfitting illustrated by means of MA-Cross when optimizing
parameters on past data. The parameters are (pMA,l, pMA,s). They are opti-
mized on the training data (November 28, 2014 until November 26, 2015)
and then validated for November 27, 2015 until November 25, 2016. The
corresponding return performances in percent are denoted by ftrain,MA and
fval,MA, respectively. The 30 DAX components are ordered according to in-
creasing absolute performance for the 2-year time period. Buy-and-hold
performances fval,B&H are given for comparison. The final row indicates av-
erage returns (measured in percent).

326

Table 24: Parameter selections for final simulation experiments. See Table
25 for corresponding results.

Final Remark

All trading controllers discussed within this section were designed to
rely on an estimated step-ahead stock price ŝ(t+1). Naturally, price data
can arbitrarily be shifted by one sampling interval to the past, thereby
making the controllers independent of ŝ(t+1) while not prohibiting their
applicability. The formulation using ŝ(t + 1) admits for exploitation of
any potential good estimate of step-ahead stock prices. Furthermore, it
allows a better comparison with the SMPC-based methods, which are
fundamentally based on one-step ahead stock price estimates.

4.4.5 Simulation Experiments

Table 25 summarizes the results for the one-year trading period between
November 27, 2015 and November 25, 2016. The average total number
of trades per year is denoted by N̄tr. The minimum number of trading
days between any two trades is tmin. The average, minimum and max-
imum performance (all measured in %) are f̄ , fmin and fmax. The total
percentage of positive returns is Fpos.

For simulation experiments, we employ the stock prices of the 30
components of the German stock market index DAX between Novem-
ber 28, 2014 and November 25, 2016. For closed-loop trading we only

327

Table 25: Results for the one-year trading, see Section 4.4.5.

328

considered the past year and initialized t = 0 on November 27, 2015.
Nevertheless, previous price data was still relevant for the generation of
measures such as moving averages at t = 0. All data was drawn from
finance.yahoo.com, see Figure 95 for visualization.

Closed-loop Trading Results

Each stock is traded separately and the portfolio with transition dynam-
ics according to Section 4.4.2 is initialized with Z(0) =

[
0 M0 0 M0

]

where M0 = 100000e . We compare eight different controllers and five
different methods that we use for the prediction of ŝ(t + 1). In addition
we state the results for a buy-and-hold strategy (investing maximally into
the stock at t = 0 and consequently holding the investment throughout),
and for the global optimal trading result (trading with hindsight). We
assume proportional transaction costs ε = 0.01 identical for both buying
and selling of stocks. Performance is defined by f = W (T)−M0

M0
100 with

T the final trading date.
Regarding parameter selections for the genetic algorithms, we tested

three settings. First, we optimized parameters on training data (Novem-
ber 28, 2014 until November 26, 2015) and then validated for Novem-
ber 27, 2015 until November 25, 2016. Thus, for each stock and for each
controller individual parameters were selected. Second, we recursively
updated parameters. Thus, every 100 days (we also tested 20 and 50
days) we recomputed parameters optimized on past data of one year at
that time. Third, we arbitrarily chose a fixed parameter set for each con-
troller and used this for the trading of all 30 stocks. For both the first and
the second approach strong overfitting could be observed, see Table 23.
We therefore opted for fixed parameter selections for the trading of all
stocks. More conservative parameter selections, such as, e.g., larger MA-
windows pMA,l, performend on average better. For HistOpt-RT, we in-
tentionally chose THO = 1, which is the most aggressive but least robust
choice as outlined in the following. The parameter selections employed
for final simulation experiments are summarized in Table 24.

Closed-loop trading results are summarized in Table 25. Because of
the importance of step-ahead predictions and for robustness considera-

329

tions, we compare five different versions for ŝ(t+ 1). Ideally (but unreal-
istically in general), s(t+ 1) is estimated perfectly, i.e., ŝ(t+ 1) = s(t+ 1).
This case is noncausal. Nevertheless, it serves as an important bench-
mark. Case 4 and 5 (“correct” and “wrong sign prediction”) are likewise
noncausal since s(t+ 1) is not known at time t. Guiding notion for their
introduction was to analyze influence of correct trend prediction (up or
down) for the price one time-step ahead but without knowledge of exact
level of price rise or fall. We therefore add multiplicative time-varying
perturbation 10ξ(t) with ξ(t) ∼ U(0, 1) uniformly distributed. Case 2
(“indifferent”) uses the current stock price as the estimate for the ext
time-step ahead. Case 3 (“random”) randomly perturbs s(t) as the es-
timate for ŝ(t+ 1), whereby η(t) ∼ N (0, 1) normally distributed. Results
are discussed in the next section. Importantly, we remark that only 36.7%
of the 30 DAX components rose, i.e., s(T) > s(0), for the one-year trading
period considered between November 27, 2015 and November 25, 2016.

Discussion

Several observations can be made from Table 25. Let us first discuss
the results for SMPC-based stock trading and HistOpt-RT. For the ideal
case of perfect s(t + 1) knowledge, excellent results can be obtained.
Both for QP-E+ and HistOpt-RT. Performances are even in range with
the global optimum (HistOpt) despite only one-step ahead price knowl-
edge. By reduction of α from 10 to 1, quasi identical performance to QP-
E+ is achieved by SMPC-M100, i.e., (f̄ , fmin, fmax) = (139.4, 42.7, 533.7).
We selected α = 10 to illustrate its role in adding robustness. This
becomes apparent for the random ŝ(t + 1) prediction method (case 3):
while f̄ = −40.1% for QP-E+, it is f̄ = −15.6% for SMPC-M100, and
additionally yielding 26.7% positive returns overall. For the indifferent
prediction ŝ(t + 1) = s(t), QP-E+ and SMPC-M100 never enter a trade.
This was expected. Both optimization problem formulations essentially
rely on the mean difference between s(t) and ŝ(t+ 1). Characteristically
they do not consider any past data points except the current price s(t).
This is in contrast to HistOpt-RT where all available past data up until
t is searched for the optimal trading trajectory. SMPC-DH was found

330

to not be competitive with the other two SMPC-based controllers (QP-
E+ and SMPC-M100), neither with respect to performance nor robust-
ness. Nevertheless, its framework is favorable in that more (and bet-
ter) heuristics can easily be incorporated by adjusting reference scenarios
pj(t+ 1), j = 1, . . . ,M .

Of great relevance to SMPC-based trading strategies and HistOpt-RT
are the experiments for correct and wrong sign predictions (case 4 and 5).
Importantly, they indicate that perfect one-step ahead sign predictions of
price changes s(t+ 1)− s(t) are sufficient for excellent results. Thus, the
precise level of increase or decrease in stock prices is not necessarily re-
quired. For illustration, consider the average gain of 74.7% per stock for
QP-E+ despite the fact that only 36.7% of all 30 DAX components actu-
ally rose during the past year and moreover on average yielding -7.5%
(see the Buy-and-Hold strategy). Even more important are the results for
case 5, i.e., when at every trading instant wrongly predicting the direc-
tion of change in stock prices. For all SMPC-based trading methods and
HistOpt-RT, after just one year, at least 93.5% of all initial wealth is lost.

Finally, note that for the SMPC-based methods and HistOpt-RT the
minimum time-span between any two trades is always 1 day (except for
case 2 when there are no trades at all). Furthermore, the average num-
ber of trades per year, N̄tr, is considerably larger in comparison to the
genetic algorithms. Throughout experiments, more robust performance
could be observed for the genetic algorithms. For the given parameter
choices, MA-Cross appeared to be best suited to exploit potential knowl-
edge of future stock prices (case 1). Encouraging are the returns for MA-
Cross and TR-Inside for the causal prediction case, i.e., ŝ(t + 1) = s(t).
Despite the fact that only 36.7% of all 30 DAX components rose, the two
controllers yielded positive returns for 86.7% and 60%, respectively. For
random price-ahead predictions (case 3), the performance of all four MA-
and TR-based controllers was comparable to the Buy-and-Hold method,
with TR-Inside best on average and with respect to worst-case losses.

Before concluding, let us remark some realistic success ratios reported
in the literature for correct sign predictions of step-ahead price difference
s(t + 1) − s(t). In [217], support vector machines (SVM) in combination

331

with 12 technical indicators (such as Williams %R, stochastic %K, dispar-
ity, etc.) are used to predict the direction of change in the daily Korea
composite stock price index (KOSPI). For validation data and their best
tuning parameter choices, they report a prediction performance between
50.1% and 57.8%. The same author mentioned similar results in earlier
work [218].

4.4.6 Conclusion

For stock trading, the general class of genetic algorithms appears more
suitable than methods based on stochastic model predictive control. The
former class is signficantly more robust. A SMPC-approach is justifiable
only for consistently perfect prediction of direction of price changes. The
relations and differences between using SMPC for dynamic hedging and
stock trading were discussed.

Findings motivate the following:

1. A detailed analysis of scenarios when MA- and TR-based algo-
rithms fail and succeed, respectively.

2. An artificial and automated generation of genetic trading algorithms
to further improve performance and robustness [6].

3. The usage of options for their predictable worst-case loss [150].

Subject of future research may also be the application of genetic algo-
rithms to both multi-asset portfolio optimization and dynamic option
hedging.

4.4.7 Hierarchical Controller Parametrization

There are two hierarchical layers. These are:

1. A method to predict the step-ahead stock price;

2. Any of the eight trading methods from Sections 4.4.3 and 4.4.4.

332

4.5 Discussion of Chapter

Summary

Findings can be summarized as follows. First, SMPC is a good strategy
for both dynamic option hedging and single-asset trading when good
one-step-ahead stock price estimates are available. Consisently correct
step-ahead sign predictions are already sufficient to generate excellent
results. Second, however, for consistenly wrong step-ahead sign predic-
tions, catastrophic returns result. Thus, discussed SMPC methods are
heavily relying on the step-ahead prediction quality. Third, for dynamic
option hedging and in combination with SMPC, the simplest scenario
generation scheme, in which the current stock price is treated as the step-
ahead mean estimate, performed best. This simple scheme outperformed
both extrapolating a SVR- and a lognormal-fitted model, which both did
not well enough predict step-ahead stock prices. Fourth, for single-asset
stock trading and among the genetic algorithms tested, the “moving av-
erage crossing” algorithm performed best. Nevertheless, it is prone to
perform poorly when its parameters are tuned excessively on training
data. In fact, overfitting on training data is the problem for all parameter-
ized methods. These included the genetic algorithms, but also the SVR-
and the lognormal-based stock price prediction schemes. Therefore, for
robustness, a larger moving average horizon of, for example, 50 days is
recommended. Fifth, optimization of trading trajectories with hindsight
indicated the enormous potential of knowledgable financial decision tak-
ing. Dependent on transaction cost levels, for optimal performance and
under the assumption of perfect knowledge, short-term trends must be
exploited with active and frequent trading, typically upon single- or low
double-digit percentage gains for low or higher transaction costs, re-
spectively. Finally, a method was developed to automatically and cost-
efficiently combine a set of available vanilla options from a database to
approximate a desired profit profile. This method is beneficial for two
reasons. First, the combination step is deterministic. Second, the worst-
case loss and the scenario (i.e., the underlying stock price) in which this
worst-case is achieved is also deterministic.

333

Future Work

There are three main avenues for future work. First, quantitative finance
is centered critically around the ability to anticipate. This cannot be cir-
cumvented and holds for both dynamic option hedging and trading for
profit. Thus, in a first step, improved prediction methods must be fur-
ther analyzed. Here, possible success ratio of between 50% and at most
60% appear to be a limit. In [217], a correct prediction of the direction of
change in the daily Korea composite stock price index (KOSPI) ranged
between 50.1% to 57.8% for validation data and their best tuning pa-
rameters. For future work, reinforcement learning (RL) may be lever-
aged. First, a parametrization is needed. A good parametrization may
be based on RNNs that enable temporal data processing. Second, input
vectors must be defined. These may, for example, include sequences of
past prices and trading volumes. Third, training for the identification
of parameters can then be conducted by a RL method. For example, by
TSHC from [142]. Finally, one important aspect to address is the time
frame. It likely may be that predictions are easier to make for longer
time frames (less noise), rather than predictions for the day-ahead price.

The second topic is underlying-screening. All derivative contracts are
by definition dependent on an underlying (for example, a stock price).
Therefore, suitable underlyings must first be identified (“stock picking”).
Here, one approach is functional clustering. This also is related to pairs
trading. Another approach is to again make use of reinforcement learn-
ing. Softmax classifiers in the output layer may indicate investment grades
of various stocks, whereby one neural network is comprehensively mod-
eling a regional economy or sector class. Note that suitable stocks are
these which are best to anticipate according to above first remark.

Finally, in a hierarchical optimization scheme, the last layer involves
the realization of trading decisions. Here, methods based on SMPC and
derivative combination seem to be appropriate. SMPC is suitable for
its ability to incorporate various constraints. Derivative combinations
are suitable for their predictable worst-case scenarios (pessimization appr-
oach). In the latter perspective, also future contracts will be revised.

334

Chapter 5

Conclusion

Summary

Hierarchical planning and stochastic optimization algorithms with ap-
plications to self-driving vehicles and finance were discussed. A diverse
set of mathematical tools was employed. Special focus was on model
predictive control in both the deterministic and stochastic setting.

Unification of the different topics motion planning, vehicle routing
and quantitative finance was achieved by a layered optimization approach.
Methods differ in their parametrization of each layer, input (data) and
output (decision variables) to each layer, and sampling time (update fre-
quency). Different layer parametrizations discussed include QPs, LPs,
SLPs, stochastic MPC, Kalman Filters, SVRs, neural networks, BILPs, IPs
and various VRPs.

The two most natural hierarchical layers are high-level planning and
lower-level execution. For example, for self-driving vehicles this implies
high-level route planning and lower-level vehicle motion planning for
realization of the path plan.

In-depth conclusions on single- and multi-vehicle motion planning,
vehicle routing and quantitative finance were provided in Sections 2.4,
3.6 and 4.5, respectively.

335

Future Work

Next work would include the further exploration of a) neural networks for
the design of continuous controllers using reinforcement learning, and b)
optimization via simulation for the solution of large-scale integer programs
for logistics. Note that the presented TSHC-algorithm can be used as
a framework for both topics. The difference lies in the solution para-
metrization. For logistical applications, integer programs can be used as
parametrization. For control applications, neural networks can be used
as parametrization to enable continuous control. Attractive features of
this approach are scalability, the theoretically unlimited function approx-
imation capability of neural networks, simplicity, and further developing
hardware opportunities for large-scale simulations. For continuous con-
trol, the comparison between, on one hand, model-based offline encod-
ing of motion primitives in neural networks using high-fidelity system
models, and, on the other hand, model-based online optimization using
simplified system models may be one main topic of research.

Finally, c) the importance of the planning step with setpoint selections
is emphasized. It represents the first of the hierarchical optimization lay-
ers. Within the automated vehicles context, it corresponds to the setpoint
selection as a function of filtered extero- and proprioceptive measure-
ments. Importantly, this setpoint must always be selected in real-time. In
general, for the planning step, graph-based search methods (such as Algo-
rithms 1 and 2 in the automotive setting) seem to be appropriate. Graph-
based planning is fast (greedy search), can handle non-convex problems,
and permits to derive worst-case search complexities when limiting the
maximal graph-size for real-time operation. In the automated vehicles
context, setpoints may be selected as a function of camera and lidar mea-
surements, for example, as the center of permissible driving area. In the
financial setting, setpoints correspond to the selection of desired refer-
ence profit profiles. Once selected, these can be realized through the
combinations of derivative contracts. To summarize, part of future work
would focus on the mapping from various sources of measurements to
setpoints. This applies for both the self-driving and the financial domain.

336

References

[1] T. Achterberg, “SCIP: solving constraint integer programs,” Mathematical
Programming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[2] O. Ahumada and J. R. Villalobos, “Application of planning models in the
agri-food supply chain: A review,” European Journal of Operational Research,
vol. 196, no. 1, pp. 1–20, 2009.

[3] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro, “Probability distribution
of solution time in grasp: an experimental investigation,” 2003. [Online].
Available: www.MirraMarx.com/graspintime.html

[4] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch sgd: Train-
ing resnet-50 on imagenet in 15 minutes,” arXiv preprint arXiv:1711.04325,
2017.

[5] A. Al Alam, A. Gattami, and K. H. Johansson, “An experimental study
on the fuel reduction potential of heavy duty vehicle platooning,” in IEEE
ITSC, 2010, pp. 306–311.

[6] F. Allen and R. Karjalainen, “Using genetic algorithms to find technical
trading rules,” Journal of Financial Economics, vol. 51, no. 2, pp. 245–271,
1999.

[7] A. Altarovici, J. Muhle-Karbe, and H. M. Soner, “Asymptotics for fixed
transaction costs,” Finance and Stochastics, vol. 19, no. 2, pp. 363–414, 2015.

[8] F. Altché, P. Polack, and A. de La Fortelle, “High-speed trajectory plan-
ning for autonomous vehicles using a simple dynamic model,” arXiv:
1704.01003, 2017.

[9] B. D. Anderson and J. B. Moore, “Optimal filtering,” Englewood Cliffs, USA:
Prentice Hall, vol. 21, pp. 22–95, 1979.

[10] C. W. Anderson, “Learning to control an inverted pendulum using neural
networks,” IEEE Control Systems Magazine, vol. 9, no. 3, pp. 31–37, 1989.

337

www.MirraMarx.com/graspintime.html

[11] D. L. Antille, J. M. Bennett, and T. A. Jensen, “Soil compaction and con-
trolled traffic considerations in australian cotton-farming systems,” Crop
and Pasture Science, vol. 67, no. 1, pp. 1–28, 2016.

[12] D. Antille, D. Ansorge, M. Dresser, and R. Godwin, “Soil displacement
and soil bulk density changes as affected by tire size,” Transactions of the
ASABE, vol. 56, no. 5, pp. 1683–1693, 2013.

[13] B. Asadi and A. Vahidi, “Predictive cruise control: Utilizing upcoming traf-
fic signal information for improving fuel economy and reducing trip time,”
IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 707–714,
2011.

[14] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex program-
ming approach,” in IEEE/RSJ Conference on Intelligent Robots and Systems,
2012, pp. 1917–1922.

[15] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[16] J. Backman, T. Oksanen, and A. Visala, “Navigation system for agricul-
tural machines: nonlinear model predictive path tracking,” Computers and
Electronics in Agriculture, vol. 82, pp. 32–43, 2012.

[17] ——, “Path generation method with steering rate constraint,” in Proc. Inter-
national Conference on Precision Agriculture (ICPA), USA: Indianapolis, 2012.

[18] ——, “Applicability of the ISO 11783 network in a distributed combined
guidance system for agricultural machines,” Biosystems Engineering, vol.
114, no. 3, pp. 306–317, 2013.

[19] J. Backman, P. Piirainen, and T. Oksanen, “Smooth turning path generation
for agricultural vehicles in headlands,” Biosystems Engineering, vol. 139, pp.
76–86, 2015.

[20] V. L. Bageshwar, W. L. Garrard, and R. Rajamani, “Model predictive con-
trol of transitional maneuvers for adaptive cruise control vehicles,” IEEE
Transactions on Vehicular Technology, vol. 53, no. 5, pp. 1573–1585, 2004.

[21] O. C. Barawid, A. Mizushima, K. Ishii, and N. Noguchi, “Development of
an autonomous navigation system using a two-dimensional laser scanner
in an orchard application,” Biosystems Engineering, vol. 96, no. 2, pp. 139–
149, 2007.

338

[22] B. R. Barmish, “On stock market modeling and trading: New problems for
the control field,” in Proc. 47th IEEE Conf. on Decision and Control, 2008, pp.
13–14, CDC semi-plenary lecture.

[23] ——, “On trading of equities: A robust control paradigm,” in Proc. 17th
IFAC World Congress, 2008, pp. 1621–1626.

[24] B. R. Barmish, S. Condie, D. Materassi, J. A. Primbs, and S. Warnick, “On
nasdaq order book dynamics: New problems for the control field,” in
IEEE American Control Conference. American Automatic Control Council
(AACC), 2016, pp. 5671–5672.

[25] B. R. Barmish and J. A. Primbs, “Stock trading via feedback control,” Ency-
clopedia of Systems and Control, pp. 1357–1364, 2015.

[26] L. D. Baskar, B. De Schutter, J. Hellendoorn, and Z. Papp, “Traffic control
and intelligent vehicle highway systems: a survey,” Intelligent Transport
Systems, vol. 5, no. 1, pp. 38–52, 2011.

[27] C. Basnet, L. R. Foulds, and J. Wilson, “Scheduling contractors’ farm-to-
farm crop harvesting operations,” International Transactions in Operational
Research, vol. 13, no. 1, pp. 1–15, 2006.

[28] M. T. Batte and M. R. Ehsani, “The economics of precision guidance with
auto-boom control for farmer-owned agricultural sprayers,” Computers and
Electronics in Agriculture, vol. 53, no. 1, pp. 28–44, 2006.

[29] J. E. Beasley, N. Meade, and T.-J. Chang, “An evolutionary heuristic for the
index tracking problem,” European Journal of Operational Research, vol. 148,
no. 3, pp. 621–643, 2003.

[30] B. Becker and H. Giese, “On safe service-oriented real-time coordination
for autonomous vehicles,” in IEEE Symposium on Object Oriented Real-Time
Distributed Computing, 2008, pp. 203–210.

[31] T. Bektas, “The multiple traveling salesman problem: an overview of for-
mulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209–219,
2006.

[32] A. Bemporad, “Efficient conversion of mixed logical dynamical systems
into an equivalent piecewise affine form,” IEEE Trans. Automatic Control,
vol. 49, no. 5, pp. 832–838, 2004.

[33] ——, “Model-based predictive control design: New trends and tools,” in
Proc. 45th IEEE Conf. on Decision and Control, San Diego, CA, 2006, pp. 6678–
6683.

339

[34] A. Bemporad, L. Bellucci, and T. Gabbriellini, “Dynamic option hedg-
ing via stochastic model predictive control based on scenario simulation,”
Quantitative Finance, vol. 14, no. 10, pp. 1739–1751, 2014.

[35] A. Bemporad, T. Gabbriellini, L. Puglia, and L. Bellucci, “Scenario-based
stochastic model predictive control for dynamic option hedging,” in Proc.
49th IEEE Conf. on Decision and Control, Atlanta, GA, USA, 2010, pp. 6089–
6094.

[36] A. Bemporad and M. Morari, “Control of systems integrating logic, dy-
namics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999.

[37] ——, “Robust model predictive control: A survey,” in Robustness in Identi-
fication and Control, ser. Lecture Notes in Control and Information Sciences,
A. Garulli, A. Tesi, and A. Vicino, Eds. Springer-Verlag, 1999, no. 245, pp.
207–226.

[38] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[39] A. Bemporad, M. Morari, and N. Ricker, Model Predictive Control Tool-
box for Matlab – User’s Guide. The Mathworks, Inc., 2004, http://www.
mathworks.com/access/helpdesk/help/toolbox/mpc/.

[40] A. Bemporad and M. Morari, “Control of systems integrating logic, dy-
namics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999.

[41] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[42] A. Bemporad, L. Puglia, and T. Gabbriellini, “A stochastic model predictive
control approach to dynamic option hedging with transaction costs,” in
IEEE American Control Conference, San Francisco, CA, USA, 2011, pp. 3862–
3867.

[43] A. Bemporad and C. Rocchi, “Decentralized hybrid model predictive con-
trol of a formation of unmanned aerial vehicles,” in Proceedings of the 18th
IFAC World Congress, 2011, pp. 11 900–11 906.

[44] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in International Conference on Machine Learning. ACM, 2009, pp. 41–
48.

340

http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/
http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/

[45] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for prior-
itized path planning of multi-robot systems,” in IEEE Conference on Robotics
and Automation, vol. 1, 2001, pp. 271–276.

[46] ——, “Finding and optimizing solvable priority schemes for decoupled
path planning techniques for teams of mobile robots,” Robotics and au-
tonomous systems, vol. 41, no. 2, pp. 89–99, 2002.

[47] D. Bertsekas, Dynamic programming and optimal control. Athena Scientific
Belmont, MA, 1995, vol. 1, no. 2.

[48] D. Bertsimas, L. Kogan, and A. Lo, “Hedging derivative securities and in-
complete markets: an ε-arbitrage approach,” Operations Research, vol. 49,
no. 3, pp. 372–397, 2001.

[49] F. Black and M. Scholes, “Pricing of options and corporate liabilities,” Jour-
nal of Political Economy, vol. 81, no. 3, pp. 637–654, 1973.

[50] ——, “The pricing of options and corporate liabilities,” The Journal of Polit-
ical Economy, pp. 637–654, 1973.

[51] B. Blackmore, S. Fountas, T. Gemtos, and H. Griepentrog, “A specifica-
tion for an autonomous crop production mechanization system,” in Inter-
national Symposium on Application of Precision Agriculture for Fruits and Veg-
etables, USA: Orlando, 2008, pp. 201–216.

[52] BMW, “Traffic jam assistant,” http://www.bmw.com /com/
en/newvehicles/x/x5/2013/\showroom/driver assistance/
traffic jam assistant.html, 2013.

[53] D. Bochtis, “Machinery management in bio-production systems: planning
and scheduling aspects,” Agricultural Engineering International: CIGR Jour-
nal, vol. 12, no. 2, pp. 55–63, 2010.

[54] ——, “Satellite based technologies as key enablers for sustainable ict-based
agricultural production systems,” Procedia Technology, vol. 8, pp. 4–8, 2013.

[55] D. Bochtis, H. Griepentrog, S. Vougioukas, P. Busato, R. Berruto, and
K. Zhou, “Route planning for orchard operations,” Computers and Electron-
ics in Agriculture, vol. 113, pp. 51–60, 2015.

[56] D. Bochtis and C. Sørensen, “The vehicle routing problem in field logistics
part i,” Biosystems Engineering, vol. 104, no. 4, pp. 447–457, 2009.

[57] ——, “The vehicle routing problem in field logistics: Part ii,” Biosystems
Engineering, vol. 105, no. 2, pp. 180–188, 2010.

341

http://www.bmw.com
/com/en/newvehicles/x/x5/2013/\showroom/driver_
/com/en/newvehicles/x/x5/2013/\showroom/driver_
assistance/traffic_jam_assistant.html
assistance/traffic_jam_assistant.html

[58] D. Bochtis, C. Sørensen, and O. Green, “A DSS for planning of soil-sensitive
field operations,” Decision Support Systems, vol. 53, no. 1, pp. 66–75, 2012.

[59] D. Bochtis, C. Sørensen, O. Green, D. Moshou, and J. Olesen, “Effect of
controlled traffic on field efficiency,” Biosystems Engineering, vol. 106, no. 1,
pp. 14–25, 2010.

[60] D. Bochtis, C. Sørensen, and S. Vougioukas, “Path planning for in-field
navigation-aiding of service units,” Computers and Electronics in Agriculture,
vol. 74, no. 1, pp. 80–90, 2010.

[61] D. Bochtis, C. G. Sørensen, P. Busato, and R. Berruto, “Benefits from opti-
mal route planning based on b-patterns,” Biosystems Engineering, vol. 115,
no. 4, pp. 389–395, 2013.

[62] D. Bochtis and S. Vougioukas, “Minimising the non-working distance trav-
elled by machines operating in a headland field pattern,” Biosystems Engi-
neering, vol. 101, no. 1, pp. 1–12, 2008.

[63] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal et al., “End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[64] J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan
London, 1976, vol. 290.

[65] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and
hybrid systems. Cambridge University Press, 2017.

[66] M. Bouroche, B. Hughes, and V. Cahill, “Real-time coordination of au-
tonomous vehicles,” in IEEE Conference on Intelligent Transportation Systems,
2006, pp. 1232–1239.

[67] V. Boyarshinov and M. Magdon-Ismail, “Efficient computation of optimal
trading strategies,” arXiv preprint arXiv:1009.4683, 2010.

[68] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends R© in Machine Learning, vol. 3, no. 1, pp.
1–122, 2011.

[69] P. Boyle, “Options: A Monte Carlo approach,” Journal of Financial Eco-
nomics, vol. 4, no. 3, pp. 323–338, 1977.

[70] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes, “Safe driving envelopes for
path tracking in autonomous vehicles,” CEP, vol. 61, pp. 307–316, 2017.

342

[71] J. C. Butcher, Numerical methods for ordinary differential equations. John Wi-
ley & Sons, 2016.

[72] G. C. Calafiore, “Multi-period portfolio optimization with linear control
policies,” Automatica, vol. 44, pp. 2463–2473, 2008.

[73] P. Carr, Dynamic and Static Hedging of Exotic Equity Options, 1999. [Online].
Available: http://www.math.nyu.edu/research/carrp/papers

[74] A. Carvalho, Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “Predictive con-
trol of an autonomous ground vehicle using an iterative linearization appr-
oach,” in IEEE Conference on Intelligent Transportation Systems, 2013, pp.
2335–2340.

[75] A. Carvalho, S. Lefèvre, G. Schildbach, J. Kong, and F. Borrelli, “Automated
driving: The role of forecasts and uncertainty-a control perspective,” Euro-
pean Journal of Control, 2015.

[76] D. M. Chance and R. Brooks, Introduction to derivatives and risk management.
Cengage Learning, 2015.

[77] J. S. Chaput and L. H. Ederington, “Option spread and combination trad-
ing,” Available at SSRN 296036, 2002.

[78] A. Charnes and W. W. Cooper, “Chance-constrained programming,” Man-
agement science, vol. 6, no. 1, pp. 73–79, 1959.

[79] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affor-
dance for direct perception in autonomous driving,” in IEEE International
Conference on Computer Vision, 2015, pp. 2722–2730.

[80] S. Chen, S. Zhang, J. Shang, B. Chen, and N. Zheng, “Brain inspired
cognitive model with attention for self-driving cars,” arXiv preprint
arXiv:1702.05596, 2017.

[81] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[82] J. Clossey, G. Laporte, P. Soriano et al., “Solving arc routing problems with
turn penalties,” Journal of the Operational Research Society, vol. 52, no. 4, pp.
433–439, 2001.

[83] J. Conesa-Muñoz, J. M. Bengochea-Guevara, D. Andujar, and A. Ribeiro,
“Route planning for agricultural tasks: A general approach for fleets of au-
tonomous vehicles in site-specific herbicide applications,” Computers and
Electronics in Agriculture, vol. 127, pp. 204–220, 2016.

343

http://www.math.nyu.edu/research/carrp/papers

[84] J. Conesa-Muñoz, G. Pajares, and A. Ribeiro, “Mix-opt: A new route oper-
ator for optimal coverage path planning for a fleet in an agricultural envi-
ronment,” Expert Systems with Applications, vol. 54, pp. 364–378, 2016.

[85] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press Cambridge, 2001, vol. 6.

[86] G. Cornuejols and R. Tutuncu, Optimization Methods in Finance. New York,
USA: Cambridge University Press, 2007.

[87] J. C. Cox, J. E. Ingersoll, and S. A. Ross, “A theory of the term structure of
interest rates,” Econometrica: Journal of the Econometric Society, pp. 385–407,
1985.

[88] J. C. Cox and M. Rubinstein, Options markets. Prentice Hall, 1985.

[89] A. Dain-Owens, M. Kibblewhite, M. Hann, and R. Godwin, “The risk of
harm to archaeological artefacts in soil from dynamic subsurface pressures
generated by agricultural operations: Experimental studies,” Archaeometry,
vol. 55, no. 6, pp. 1175–1186, 2013.

[90] W. Day, “Engineering advances for input reduction and systems manage-
ment to meet the challenges of global food and farming futures,” The Jour-
nal of Agricultural Science, vol. 149, no. S1, pp. 55–61, 2011.

[91] S. Di Cairano, U. Kalabić, and K. Berntorp, “Vehicle tracking control on
piecewise-clothoidal trajectories by MPC with guaranteed error bounds,”
in IEEE CDC, 2016, pp. 709–714.

[92] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[93] M. D. Dikaiakos, A. Florides, T. Nadeem, and L. Iftode, “Location-aware
services over vehicular ad-hoc networks using car-to-car communication,”
IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1590–
1602, 2007.

[94] Q. T. Dinh and M. Diehl, “An application of sequential convex program-
ming to time optimal trajectory planning for a car motion,” in IEEE CDC,
December 2009, pp. 16–18.

[95] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” IJRR,
vol. 29, no. 5, pp. 485–501, 2010.

344

[96] V. V. Dombrovskii, D. V. Dombrovskii, and E. A. Lyashenko, “Predictive
control of random-parameter systems with multiplicative noise. Applica-
tion to investment portfolio optimization,” Automation and Remote Control,
vol. 66, no. 4, pp. 583–595, 2005.

[97] L. E. Dubins, “On curves of minimal length with a constraint on aver-
age curvature, and with prescribed initial and terminal positions and tan-
gents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[98] D. Duffie, Dynamic asset pricing theory. Princeton University Press Prince-
ton, NJ, 1996.

[99] C. Edirisinghe, V. Naik, and R. Uppal, “Optimal replication of options with
transactions costs and trading restrictions,” Journal of Financial and Quanti-
tative Analysis, vol. 28, no. 1, pp. 117–138, 1993.

[100] D. M. F. Edwards, P. A. Madden, and I. R. McDonald, “Parallel grasp with
path-relinking for job shop scheduling,” Mol. Phys., vol. 51, no. 5, pp. 1141–
1151, 1984.

[101] H. A. Eiselt, M. Gendreau, and G. Laporte, “Arc routing problems, part
i: The chinese postman problem,” Operations Research, vol. 43, no. 2, pp.
231–242, 1995.

[102] ——, “Arc routing problems, part ii: The rural postman problem,” Opera-
tions research, vol. 43, no. 3, pp. 399–414, 1995.

[103] R. Fahlenbrach and P. Sandås, “Does information drive trading in option
strategies?” Journal of Banking & Finance, vol. 34, no. 10, pp. 2370–2385,
2010.

[104] P. Falcone, F. Borrelli, H. Tseng, J. Asgari, and D. Hrovat, “Linear time-
varying model predictive control and its application to active steering sys-
tems: Stability analysis and experimental validation,” International Journal
of Robust and Nonlinear Control, vol. 18, no. 8, pp. 862–875, 2008.

[105] P. Falcone, M. Ali, and J. Sjöberg, “Predictive threat assessment via reach-
ability analysis and set invariance theory,” IEEE Transactions on Intelligent
Transportation Systems, vol. 12, no. 4, pp. 1352–1361, 2011.

[106] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” IEEE Transactions
on control systems technology, vol. 15, no. 3, pp. 566–580, 2007.

[107] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A linear time
varying model predictive control approach to the integrated vehicle dy-
namics control problem in autonomous systems,” in IEEE CDC, 2007, pp.
2980–2985.

345

[108] E. F. Fama, “Market efficiency, long-term returns, and behavioral finance,”
Journal of Financial Economics, vol. 49, no. 3, pp. 283–306, 1998.

[109] S. Fedotov, “Stochastic optimization approach to options pricing,” in Proc.
American Contr. Conf., Chicago, IL, Jun. 1999, pp. 1450–1453.

[110] S. Fedotov and S. Mikhailov, “Option pricing for incomplete markets via
stochastic optimization: transaction costs, adaptive control and forecast,”
International Journal of Theoretical and Applied Finance, vol. 4, no. 1, pp. 179–
195, 1999.

[111] J.-C. Ferrer, A. Mac Cawley, S. Maturana, S. Toloza, and J. Vera, “An op-
timization approach for scheduling wine grape harvest operations,” Inter-
national Journal of Production Economics, vol. 112, no. 2, pp. 985–999, 2008.

[112] C. Filippi, R. Mansini, and E. Stevanato, “Mixed integer linear program-
ming models for optimal crop selection,” Computers & Operations Research,
vol. 81, pp. 26–39, 2017.

[113] Financial Times, “Wheat price falls to lowest level in a decade,” https://
www.ft.com/content/75fdb856-6b0c-11e6-ae5b-a7cc5dd5a28c, Aug. 2016.

[114] M. Fliess and C. Join, “A mathematical proof of the existence of trends in
financial time series,” Systems Theory: Modelling, Analysis and Control, pp.
43–62, 2009.

[115] T. Fraichard and A. Scheuer, “From Reeds and Shepp’s to continuous-
curvature paths,” IEEE Transactions on Robotics, vol. 20, no. 6, pp. 1025–
1035, 2004.

[116] R. Franke, “Omuses, a tool for the optimization of multistage systems and
hqp, a solver for sparse nonlinear optimization,” 1998, technischer Bericht.
Institut für Automatisierungs-und Systemtechnik, Technische Universität
Ilmenau, Deutschland.

[117] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and
M. Diehl, “An auto-generated nonlinear MPC algorithm for real-time ob-
stacle avoidance of ground vehicles,” in IEEE ECC, 2013, pp. 4136–4141.

[118] E. Frazzoli, M. A. Dahleh, and E. Feron, “A hybrid control architecture for
aggressive maneuvering of autonomous helicopters,” in IEEE Conference
on Decision and Control, vol. 3, 1999, pp. 2471–2476.

[119] M. C. Fu, F. W. Glover, and J. April, “Simulation optimization: a review,
new developments, and applications,” in IEEE Winter Simulation Confer-
ence. IEEE, 2005, pp. 13–pp.

346

https://www.ft.com/content/75fdb856-6b0c-11e6-ae5b-a7cc5dd5a28c
https://www.ft.com/content/75fdb856-6b0c-11e6-ae5b-a7cc5dd5a28c

[120] J. Funke and J. C. Gerdes, “Simple clothoid lane change trajectories for
automated vehicles incorporating friction constraints,” Jrnl. of Dyn. Sys.,
Meas. and Ctrl., vol. 138, no. 2, pp. 021 002–021 002–9, 2016.

[121] ——, “Simple clothoid lane change trajectories for automated vehicles in-
corporating friction constraints,” Journal of Dynamic Systems, Measurement,
and Control, vol. 138, no. 2, p. 021002, 2016.

[122] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana, C. Gerdes,
D. Langer, M. Hernandez, B. Müller-Bessler, and B. Huhnke, “Up to the
limits: Autonomous audi tts,” in IEEE Intelligent Vehicles Symposium, 2012,
pp. 541–547.

[123] A. A. Gaivoronski, S. Krylov, and N. Van der Wijst, “Optimal portfolio se-
lection and dynamic benchmark tracking,” European Journal of Operational
Research, vol. 163, no. 1, pp. 115–131, 2005.

[124] Y. Gao, A. Gray, J. V. Frasch, T. Lin, E. Tseng, J. K. Hedrick, and F. Borrelli,
“Spatial predictive control for agile semi-autonomous ground vehicles,” in
Proceedings of the 11th International Symposium on Advanced Vehicle Control,
2012.

[125] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control of
autonomous ground vehicles with obstacle avoidance on slippery roads,”
in ASME Dynamic Systems and Control Conference. American Society of
Mechanical Engineers, 2010, pp. 265–272.

[126] H. Geering, G. Dondi, F. Herzog, and S. Keel, “Stochastic systems,” Course
script, 2011.

[127] M. Gendreau, A. Hertz, and G. Laporte, “A tabu search heuristic for the
vehicle routing problem,” Management Science, vol. 40, no. 10, pp. 1276–
1290, 1994.

[128] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the mo-
bile internet,” Computer Networks, vol. 55, no. 2, pp. 457–469, 2011.

[129] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise tim-
ing with lstm recurrent networks,” Journal of Machine Learning Research,
vol. 3, no. Aug, pp. 115–143, 2002.

[130] T. V. Gestel, J. Suykens, D. Baestaens, A. Lambrechts, G. Lanckriet, B. Van-
daele, B. D. Moor, and J. Vandewalle, “Financial time series prediction
using least squares support vector machines within the evidence frame-
work,” IEEE Transactions on Neural Networks, vol. 12, no. 4, pp. 809–821,
2001.

347

[131] T. D. Gillespie, “Vehicle dynamics,” Warren dale, 1997.

[132] T. Glasmachers, “Limits of end-to-end learning,” arXiv preprint
arXiv:1704.08305, 2017.

[133] J. J. Glen, “Mean-variance portfolio rebalancing with transaction costs and
funding changes,” Journal of the Operational Research Society, vol. 62, pp.
667–676, 2011.

[134] F. Glover and C. C. Ribeiro, “Multi-start and strategic oscillation methods
– principles to exploit adaptive memory,” in Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations
Research, 2nd ed., M. Laguna and J. L. Gonzáles-Velarde, Eds. Boston,
MA: Kluwer Academic, 2000, pp. 1–24.

[135] GM: Cadillac, “Introducing super cruise,” http://www.cadillac.com/
sedans/ct6-sedan.html, 2017.

[136] L. Gomes, “When will google’s self-driving car really be ready? it depends
on where you live and what you mean by” ready”[news],” IEEE Spectrum,
vol. 53, no. 5, pp. 13–14, 2016.

[137] R. E. Gomory and W. J. Baumol, “Integer programming and pricing,”
Econometrica: Journal of the Econometric Society, pp. 521–550, 1960.

[138] J. Gondzio, R. Kouwenbergb, and T. Vorst, “Hedging options under trans-
action costs and stochastic volatility,” Journal of Economic Dynamics & Con-
trol, vol. 27, pp. 1045–1068, 2003.

[139] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion
planning techniques for automated vehicles,” IEEE Transactions on Intelli-
gent Vehicles, vol. 17, no. 4, pp. 1135–1145, 2016.

[140] P. Gonzalez-de Santos, A. Ribeiro, C. Fernandez-Quintanilla, F. Lopez-
Granados, M. Brandstoetter, S. Tomic, S. Pedrazzi, A. Peruzzi, G. Pajares,
G. Kaplanis et al., “Fleets of robots for environmentally-safe pest control in
agriculture,” Precision Agriculture, pp. 1–41, 2016.

[141] J. Gozálvez, M. Sepulcre, and R. Bauza, “IEEE 802.11p vehicle to infras-
tructure communications in urban environments,” IEEE Commun. Mag.,
vol. 50, no. 5, 2012.

[142] M. Graf Plessen, “Automating vehicles by deep reinforcement learning
using task separation with hill climbing,” arXiv preprint arXiv:1711.10785,
2017, (Submitted).

348

http://www.cadillac.com/sedans/ct6-sedan.html
http://www.cadillac.com/sedans/ct6-sedan.html

[143] ——, “Coordination of harvesting and transport units for area coverage,”
Jun. 4 2017, pCT/IB2017/051899.

[144] ——, “Coupling of crop assignment and vehicle routing for harvest plan-
ning in agriculture,” arXiv preprint arXiv:1703.08999, 2017, (Submitted).

[145] ——, “Partial field coverage based on two path planning patterns,” arXiv
preprint arXiv:1707.07649, 2017, (Draft).

[146] ——, “Path planning for area coverage,” Jun. 8 2017, wO Patent App.
PCT/EP2016/072,966. [Online]. Available: https://encrypted.google.
com/patents/WO2017092904A1?cl=en

[147] ——, “System and method for navigation guidance of a vehicle in an agri-
cultural field,” Jun. 8 2017, wO Patent App. PCT/EP2016/072,968. [On-
line]. Available: https://www.google.com/patents/WO2017092905A1?
cl=en

[148] ——, “Trajectory planning of automated vehicles in tube-like road seg-
ments,” in IEEE Conference on Intelligent Transportation Systems, 2017, pp.
83–88.

[149] M. Graf Plessen and A. Bemporad, “Shortest path computations under tra-
jectory constraints for ground vehicles within agricultural fields,” in IEEE
Conference on Intelligent Transportation Systems, 2016, pp. 1733–1738.

[150] ——, “Parallel investments in multiple call and put options for the tracking
of desired profit profiles,” in IEEE American Control Conference, Seattle, WA,
2017, pp. 1091–1096.

[151] ——, “A posteriori multi-stage optimal trading under transaction costs
and a diversification constraint,” arXiv preprint arXiv:1709.07527, 2017,
(Submitted).

[152] ——, “Reference trajectory planning under constraints and path tracking
using linear time-varying model predictive control for agricultural ma-
chines,” Biosystems Engineering, vol. 153, pp. 28–41, 2017.

[153] ——, “Stock trading via feedback control: Stochastic model predictive or
genetic?” in XVIII Workshop on Quantitative Finance (QFW2017), Poster pre-
sentation, arXiv preprint arXiv:1708.08857, 2017.

[154] M. Graf Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Multi-
automated vehicle coordination using decoupled prioritized path plan-
ning for multi-lane one-and bi-directional traffic flow control,” in IEEE
Conference on Decision and Control, 2016, pp. 1582–1588.

349

https://encrypted.google.com/patents/WO2017092904A1?cl=en
https://encrypted.google.com/patents/WO2017092904A1?cl=en
https://www.google.com/patents/WO2017092905A1?cl=en
https://www.google.com/patents/WO2017092905A1?cl=en

[155] ——, “Spatial-based predictive control and geometric corridor planning
for adaptive cruise control coupled with obstacle avoidance,” IEEE Trans-
actions on Control Systems Technology, vol. 26, no. 1, pp. 38–50, 2018.

[156] M. Graf Plessen, P. Lima, J. Mårtensson, A. Bemporad, and B. Wahlberg,
“Trajectory planning under vehicle dimension constraints using sequen-
tial linear programming,” in IEEE Conference on Intelligent Transportation
Systems, 2017, pp. 108–113.

[157] M. Graf Plessen, L. Puglia, T. Gabbriellini, and A. Bemporad, “Dynamic
option hedging with transaction costs: A stochastic model predictive con-
trol approach,” International Journal of Robust and Nonlinear Control, pp. 1–
20, 2017.

[158] M. Graf Plessen, V. Semeraro, T. Wood, and R. Smith, “Optimization al-
gorithms for nuclear norm based subspace identification with uniformly
spaced frequency domain data,” in IEEE American Control Conference, 2015,
pp. 1119–1124.

[159] M. Graf Plessen, T. Wood, and R. Smith, “Nuclear norm minimization al-
gorithms for subspace identification from non-uniformly spaced frequency
data,” in IEEE European Control Conference, 2015, pp. 2032–2037.

[160] ——, “Time-domain subspace identification algorithms using nuclear
norm minimisation,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 903–908, 2015.

[161] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex pro-
gramming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[162] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with re-
current neural networks,” in International Conference on Machine Learning,
2014, pp. 1764–1772.

[163] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli, “Pre-
dictive control for agile semi-autonomous ground vehicles using motion
primitives,” in IEEE American Control Conference, 2012, pp. 4239–4244.

[164] A. Gray, M. Ali, Y. Gao, J. K. Hedrick, and F. Borrelli, “Semi-autonomous
vehicle control for road departure and obstacle avoidance,” IFAC Control of
Transportation Systems, pp. 1–6, 2012.

[165] T. Gu, J. Snider, J. M. Dolan, and J. Lee, “Focused trajectory planning for
autonomous on-road driving,” in IEEE IV, 2013, pp. 547–552.

[166] T. Gu, J. Snider, J. M. Dolan, and J.-w. Lee, “Focused trajectory planning for
autonomous on-road driving,” in IEEE IV, 2013, pp. 547–552.

350

http://cvxr.com/cvx

[167] E. Guizzo, “How googles self-driving car works,” IEEE Spectrum Online,
October, vol. 18, 2011.

[168] Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual, 2012.
[Online]. Available: http://www.gurobi.com

[169] B. Gutjahr, L. Gröll, and M. Werling, “Lateral vehicle trajectory optimiza-
tion using constrained linear time-varying MPC,” IEEE ITS, vol. 18, no. 6,
pp. 1586–1595, 2017.

[170] S. Hallé, J. Laumonier, and B. Chaib-Draa, “A decentralized approach to
collaborative driving coordination,” in IEEE Conference on Intelligent Trans-
portation Systems, 2004, pp. 453–458.

[171] M. Hamza and W. Anderson, “Soil compaction in cropping systems: a re-
view of the nature, causes and possible solutions,” Soil and Tillage Research,
vol. 82, no. 2, pp. 121–145, 2005.

[172] J. Harrison and D. Kreps, “Martingales and arbitrage in multiperiod secu-
rities markets,” Journal of Economic Theory, vol. 20, pp. 381–408, 1979.

[173] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[174] Y. Hattori, E. Ono, and S. Hosoe, “An optimum vehicle trajectory control
for obstacle avoidance with the shortest longitudinal traveling distance,”
in IEEE CMA, 2008, pp. 13–20.

[175] J. Havlin, D. Kissel, L. Maddux, M. Claassen, and J. Long, “Crop rotation
and tillage effects on soil organic carbon and nitrogen,” Soil Science Society
of America Journal, vol. 54, no. 2, pp. 448–452, 1990.

[176] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud services
in the iot environment,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1587–1595, 2014.

[177] E. Hebrard, E. OMahony, and B. OSullivan, “Constraint programming and
combinatorial optimisation in numberjack,” in Conference on Integration of
Artificial Intelligence and Operations Research Techniques in Constraint Pro-
gramming. Springer, 2010, pp. 181–185.

[178] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa et al., “Emer-
gence of locomotion behaviours in rich environments,” arXiv preprint
arXiv:1707.02286, 2017.

351

http://www.gurobi.com

[179] L. Heilig, R. R. Negenborn, and S. Voß, “Cloud-based intelligent trans-
portation systems using model predictive control,” in Computational Logis-
tics. Springer, 2015, pp. 464–477.

[180] I. Heller and C. Tompkins, “An extension of a theorem of Dantzigs,” Linear
Inequalities and Related Systems, vol. 38, pp. 247–254, 1956.

[181] F. Herzog, S. Keel, G. Dondi, L. M. Schumann, and H. P. Geering, “Model
predictive control for portfolio selection,” in Proc. American Contr. Conf.,
Minneapolis, MN, 2006, pp. 1252–1259.

[182] F. Herzog, G. Dondi, and H. P. Geering, “Stochastic model predictive con-
trol and portfolio optimization,” International Journal of Theoretical and Ap-
plied Finance, vol. 10, no. 02, pp. 203–233, 2007.

[183] S. L. Heston, “A closed-form solution for options with stochastic volatility
with applications to bond and currency options,” Review of Financial Stud-
ies, vol. 6, pp. 327–343, 1993.

[184] S. Heston and S. Nandi, “A closed-form GARCH option valuation model,”
The Review of Financial Studies, vol. 11, no. 3, pp. 585–625, 2000.

[185] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller
design, experimental validation and racing,” in IEEE ACC, 2007, pp. 2296–
2301.

[186] B. HomChaudhuri, A. Vahidi, and P. Pisu, “Fast model predictive control-
based fuel efficient control strategy for a group of connected vehicles in
urban road conditions,” IEEE CST, vol. 25, no. 2, pp. 760–767, 2017.

[187] L. J. Hong and B. L. Nelson, “A brief introduction to optimization via sim-
ulation,” in IEEE Winter Simulation Conference, 2009, pp. 75–85.

[188] B. Houska, H. J. Ferreau, and M. Diehl, “Acado toolkit–an open-source
framework for automatic control and dynamic optimization,” Optimal Con-
trol Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[189] ——, “An auto-generated real-time iteration algorithm for nonlinear MPC
in the microsecond range,” Automatica, vol. 47, no. 10, pp. 2279–2285, 2011.

[190] J. Hull and A. White, “The pricing of options on assets with stochastic
volatilities,” Journal of Finance, vol. 42, no. 2, pp. 281–300, 1987.

[191] J. Hull, Options, Futures, and Other Derivatives, 6th ed. Upper Saddle River,
NJ: Prentice Hall, 2006.

352

[192] R. Hult, G. R. Campos, E. Steinmetz, L. Hammarstrand, P. Falcone, and
H. Wymeersch, “Coordination of cooperative autonomous vehicles: To-
ward safer and more efficient road transportation,” IEEE Signal Process.
Mag., vol. 33, no. 6, pp. 74–84, 2016.

[193] R. Hussain, J. Son, H. Eun, S. Kim, and H. Oh, “Rethinking vehicular com-
munications: Merging vanet with cloud computing,” in IEEE Conference on
Cloud Computing Technology and Science, 2012, pp. 606–609.

[194] IBM, Inc., IBM ILOG CPLEX Optimization Studio 12.4 – User Manual, 2012.

[195] ILOG, Inc., CPLEX 11.0 User Manual, Gentilly Cedex, France, 2008.

[196] P. Ioannou, C.-C. Chien et al., “Autonomous intelligent cruise control,”
IEEE Transactions on Vehicular Technology, vol. 42, no. 4, pp. 657–672, 1993.

[197] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on
Machine Learning, 2015, pp. 448–456.

[198] M. Jensen, D. Bochtis, and C. Sørensen, “Coverage planning for capacitated
field operations, part ii: Optimisation,” Biosystems Engineering, vol. 139, pp.
149–164, 2015.

[199] M. Jensen, D. Bochtis, C. Sørensen, M. Blas, and K. Lykkegaard, “In-field
and inter-field path planning for agricultural transport units,” Computers
& Industrial Engineering, vol. 63, no. 4, pp. 1054–1061, 2012.

[200] M. H. Jørgensen, “Agricultural field machinery for the future–from an en-
gineering perspective,” Agronomy Research, vol. 10, no. Special Issue 1, pp.
109–113, 2012.

[201] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in International Conference on Machine
Learning, 2015, pp. 2342–2350.

[202] R. Kala and K. Warwick, “Planning autonomous vehicles in the absence
of speed lanes using an elastic strip,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 14, no. 4, pp. 1743–1752, 2013.

[203] ——, “Dynamic distributed lanes: motion planning for multiple au-
tonomous vehicles,” Applied intelligence, vol. 41, no. 1, pp. 260–281, 2014.

[204] J. Kalmari, J. Backman, and A. Visala, “A toolkit for nonlinear model pre-
dictive control using gradient projection and code generation,” Control En-
gineering Practice, vol. 39, pp. 56–66, 2015.

353

[205] M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “On board eco-
driving system for varying road-traffic environments using model predic-
tive control,” in IEEE CCA, 2010, pp. 1636–1641.

[206] Y. Kanayama and B. Hartman, “Smooth local path planning for au-
tonomous vehicles,” in IEEE ICRA, May 1989, pp. 1265–1270.

[207] Y. J. Kanayama and B. I. Hartman, “Smooth local-path planning for au-
tonomous vehicles1,” The International Journal of Robotics Research, vol. 16,
no. 3, pp. 263–284, 1997.

[208] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT,” in IEEE Conference on Robotics and Au-
tomation, 2011, pp. 1478–1483.

[209] J. Karlsson, N. Murgovski, and J. Sjöberg, “Temporal vs. spatial formula-
tion of autonomous overtaking algorithms,” in IEEE ITSC, 2016, pp. 1029–
1034.

[210] K. Kato, “Bubbles in japan’s stock markets: a macroeconomic analysis,”
1995, working Paper, Columbia University.

[211] A. Katriniok and D. Abel, “Ltv-mpc approach for lateral vehicle guidance
by front steering at the limits of vehicle dynamics,” in 2011 50th IEEE Con-
ference on Decision and Control and European Control Conference. IEEE, 2011,
pp. 6828–6833.

[212] E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Learning in centralized
nonlinear model predictive control: Application to an autonomous tractor-
trailer system,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 1, pp. 197–205, 2015.

[213] ——, “Towards agrobots: Identification of the yaw dynamics and trajec-
tory tracking of an autonomous tractor,” Computers and Electronics in Agri-
culture, vol. 115, pp. 78–87, 2015.

[214] F. Kehrle, J. V. Frasch, C. Kirches, and S. Sager, “Optimal control of formula
1 race cars in a vdrift based virtual environment,” in Proceedings of the 18th
IFAC World Congress, vol. 18, 2011, pp. 11 907–11 912.

[215] D. P. Kelly and R. S. Sharp, “Time-optimal control of the race car: a numer-
ical method to emulate the ideal driver,” Veh. Sys. Dyn., vol. 48, no. 12, pp.
1461–1474, 2010.

[216] H. Kern, “The resurgent japanese economy and a japan–united states free
trade agreement,” in 4th International Conference on the Restructuring of the
Economic and Political System in Japan and Europe. Singapore: World Scien-
tific, 21–25 May 1996 1997, pp. 147–156.

354

[217] K. Kim, “Financial time series forecasting using support vector machines,”
Neurocomputing, vol. 55, no. 1, pp. 307–319, 2003.

[218] K.-j. Kim and I. Han, “Genetic algorithms approach to feature discretiza-
tion in artificial neural networks for the prediction of stock price index,”
Expert Systems with Applications, vol. 19, no. 2, pp. 125–132, 2000.

[219] S. Kim, M. E. Lewis, and C. C. White, “Optimal vehicle routing with real-
time traffic information,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 6, no. 2, pp. 178–188, 2005.

[220] P. Klaassen, “Financial asset-pricing theory and stochastic programming
models for asset/liability management: A synthesis,” Management Science,
vol. 44, no. 1, pp. 31–48, 1998.

[221] R. C. Klemkosky and B. G. Resnick, “Put-call parity and market efficiency,”
The Journal of Finance, vol. 34, no. 5, pp. 1141–1155, 1979.

[222] D. Kogan and R. Murray, “Optimization-based navigation for the DARPA
grand challenge,” in IEEE CDC, 2006.

[223] I. Kolmanovsky, I. Siverguina, and B. Lygoe, “Optimization of powertrain
operating policy for feasibility assesment and calibration: stochastic dy-
namic programming approach,” in Proc. American Contr. Conf., 2002, pp.
1425–1430.

[224] K. Komoriya and K. Tanie, “Trajectory design and control of a wheel-type
mobile robot using B-spline curve,” in IEEE/RSJ Intern. Workshop on Intell.
Rob. and Sys., September 1989, pp. 398–405.

[225] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic
vehicle models for autonomous driving control design,” in IEEE IV, 2015,
pp. 1094–1099.

[226] R. Korn, “Portfolio optimisation with strictly positive transaction costs and
impulse control,” Finance and Stochastics, vol. 2, no. 2, pp. 85–114, 1998.

[227] K. Korosec, “Elon musk says tesla vehicles will drive themselves in two
years,” Fortune, December, vol. 21, 2015.

[228] J. Koutnı́k, J. Schmidhuber, and F. Gomez, “Online evolution of deep con-
volutional network for vision-based reinforcement learning,” in Interna-
tional Conference on Simulation of Adaptive Behavior. Springer, 2014, pp.
260–269.

[229] R. Kouwenberg and T. Vorst, “Dynamic portfolio insurance: A stochas-
tic programming approach,” Econometric Institute and Department of Fi-
nance, Erasmus University, Rotterdam, Tech. Rep. 9909, 1998.

355

[230] D. Kouzoupis, H. Ferreau, H. Peyrl, and M. Diehl, “First-order methods
in embedded nonlinear model predictive control,” in Proc. IEEE European
Control Conference (ECC), Austria: Linz, 2015, pp. 2617–2622.

[231] T. Kraus, H. J. Ferreau, E. Kayacan, H. Ramon, J. De Baerdemaeker,
M. Diehl, and W. Saeys, “Moving horizon estimation and nonlinear model
predictive control for autonomous agricultural vehicles,” Computers and
Electronics in Agriculture, vol. 98, pp. 25–33, 2013.

[232] K. Kritayakirana and J. Gerdes, “Autonomous vehicle control at the limits
of handling,” Intern. Jrnl. of Veh. Autonom. Sys., vol. 10, no. 4, pp. 271–296,
2012.

[233] J. B. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,” Proceedings of the American Mathematical Society,
vol. 7, no. 1, pp. 48–50, 1956.

[234] D. Kuchin, P. Lega, A. Orlov, V. Koledov, and A. Irzhak, “The smallest
and the fastest shape memory alloy actuator for micro-and nanorobotics,”
in IEEE Conference on Manipulation, Automation and Robotics at Small Scales,
2017, pp. 1–4.

[235] W. Kühn, Fundamentals of road design. WIT Press, 2013, vol. 20.

[236] H. D. Kutzbach, “Trends in power and machinery,” Journal of Agricultural
Engineering Research, vol. 76, no. 3, pp. 237–247, 2000.

[237] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, J. P. How et al., “Motion planning for
urban driving using RRT,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008, pp. 1681–1686.

[238] L. Lamport, “Efficient algorithms for layer assignment problems,” PhD
thesis, University of Princeton, NJ, 1996.

[239] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research, vol. 59,
no. 2, pp. 231–247, 1992.

[240] J. Larson, K.-Y. Liang, and K. H. Johansson, “A distributed framework for
coordinated heavy-duty vehicle platooning,” IEEE ITS, vol. 16, no. 1, pp.
419–429, 2015.

[241] J.-C. Latombe, Robot motion planning. Springer Science & Business Media,
2012, vol. 124.

[242] S. Lavalle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” 1998.

356

[243] J. Lee and B. Park, “Development and evaluation of a cooperative vehicle
intersection control algorithm under the connected vehicles environment,”
IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 81–
90, 2012.

[244] S. Lefèvre, A. Carvalho, and F. Borrelli, “Autonomous car following: A
learning-based approach,” in IEEE Intelligent Vehicles Symposium, 2015, pp.
920–926.

[245] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “Model predictive con-
trol for vehicle guidance in presence of sliding: application to farm vehi-
cles path tracking,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), Spain: Barcelona, 2005, pp. 885–890.

[246] ——, “High accuracy path tracking for vehicles in presence of sliding: Ap-
plication to farm vehicle automatic guidance for agricultural tasks,” Au-
tonomous Robots, vol. 21, no. 1, pp. 79–97, 2006.

[247] ——, “Adaptive and predictive path tracking control for off-road mobile
robots,” European Journal of Control, vol. 13, no. 4, pp. 419–439, 2007.

[248] Z. Leng and M. Minor, “A simple tractor-trailer backing control law for
path following,” in Proc. IEEE/RSJ Conference on Intelligent Robots and Sys-
tems, Taiwan: Taipei, 2010, pp. 5538–5542.

[249] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Kolter,
D. Langer, O. Pink, and V. Pratt, “Towards fully autonomous driving: Sys-
tems and algorithms,” in IEEE IV, June 2011, pp. 163–168.

[250] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE
Vehicular Technology Magazine, vol. 2, no. 2, pp. 12–22, 2007.

[251] P. Li, M. Wendt, and G. Wozny, “Robust model predictive control under
chance constraints,” Computers and Chemical Engineering, vol. 24, no. 2-7,
pp. 829–834, 2000.

[252] S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-objective ve-
hicular adaptive cruise control,” IEEE Transactions on Control Systems Tech-
nology, vol. 19, no. 3, pp. 556–566, 2011.

[253] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[254] P. F. Lima, M. Trincavelli, J. Martensson, and B. Wahlberg, “Clothoid-based
model predictive control for autonomous driving,” in IEEE European Con-
trol Conference, 2015, pp. 2983–2990.

357

[255] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications and
Methods, vol. 36, no. 5, pp. 628–647, 2015.

[256] A. Lo, H. Mamaysky, and J. Wang, “Asset prices and trading volume un-
der fixed transactions costs,” National Bureau of Economic Research, Tech.
Rep., 2001.

[257] M. S. Lobo, M. Fazel, and S. Boyd, “Portfolio optimization with linear and
fixed transaction costs,” Annals of Operations Research, vol. 152, no. 1, pp.
341–365, 2007.

[258] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3431–3440.

[259] F. A. Longstaff and E. S. Schwartz, “Valuing american options by simula-
tion: A simple least-squares approach,” Review of Financial Studies, vol. 114,
no. 1, pp. 113–147, 2001.

[260] R. Lot and F. Biral, “A curvilinear abscissa approach for the lap time opti-
mization of racing vehicles,” IFAC Proc. Vol., vol. 47, no. 3, pp. 7559–7565,
2014.

[261] T. Lozano-Perez, “Spatial planning: A configuration space approach,” in
Autonom. robot veh. Springer, 1990, pp. 259–271.

[262] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[263] J. Luck, S. Pitla, S. Shearer, T. Mueller, C. Dillon, J. Fulton, and S. Hig-
gins, “Potential for pesticide and nutrient savings via map-based auto-
matic boom section control of spray nozzles,” Computers and Electronics in
Agriculture, vol. 70, no. 1, pp. 19–26, 2010.

[264] A. Makhorin, GLPK (GNU Linear Programming Kit) User’s Guide, 2004.
[Online]. Available: http://www.gnu.org/software/glpk/glpk.html

[265] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp.
77–91, 1952.

[266] A. S. Marques, J. F. Audy, S. DAmours, and M. Rönnqvist, “Tactical and
operational harvest planning,” in The Management of Industrial Forest Plan-
tations. Springer, 2014, pp. 239–267.

358

http://www.gnu.org/software/glpk/glpk.html

[267] H. Marzbani, R. Jazar, and M. Fard, “Better road design using clothoids,”
in Sustainable Automotive Technologies 2014. Springer Intern. Publish., 2015,
pp. 25–40.

[268] C. M. Massera, M. H. Terra, and D. F. Wolf, “Guaranteed cost model predic-
tive control-based driver assistance system for vehicle stabilization under
tire parameters uncertainties,” in IEEE ITSC, 2016, pp. 322–327.

[269] D. Q. Mayne, J. Rawlings, C. Rao, and P. O. M. Scokaert, “Constrained mo-
del predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, Jun. 2000.

[270] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

[271] R. L. McDonald, Derivatives Markets. Pearson, 2013.

[272] L. G. McMillan, McMillan on options. John Wiley & Sons, 2011, vol. 229.

[273] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning
for autonomous driving with a conformal spatiotemporal lattice,” in IEEE
ICRA, 2011, pp. 4889–4895.

[274] P. Meindl and J. Primbs, “Dynamic hedging of single and multi-
dimensional options with transaction costs: A general utility maximization
approach,” Quantitative Finance, vol. 8, no. 3, pp. 299–312, Apr. 2008.

[275] P. Meindl, “Portfolio optimization and dynamic hedging with receding
horizon control, stochastic programming, and Monte Carlo simulation,”
Ph.D. dissertation, Dept. Management Science & Engineering, Stanford
University, 2006.

[276] R. Merton, “The theory of rational option pricing,” Bell Journal of Economics
and Management Science, vol. 4, pp. 141–183, 1973.

[277] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming for-
mulation of traveling salesman problems,” Journal of the ACM, vol. 7, no. 4,
pp. 326–329, 1960.

[278] C. W. Misner, Ed., Gravitation. San Francisco, CA: Freeman, 1973, ch.
Efficient algorithms for layer assignment problems.

[279] M. N. Mladenovic and M. Abbas, “Priority-based intersection control
framework for self-driving vehicles: Agent-based model development and
evaluation,” in International Conference on Connected Vehicles and Expo, 2014,
pp. 377–384.

359

[280] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in International Conference on Machine Learning, 2016, pp. 1928–
1937.

[281] R. Möbus, M. Baotic, and M. Morari, Multi-object adaptive cruise control.
Springer, 2003.

[282] M. Montemerlo et al., “Junior: The Stanford entry in the urban challenge,”
JFR, vol. 25, no. 9, pp. 569–597, 2008.

[283] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior: The stan-
ford entry in the urban challenge,” Journal of field Robotics, vol. 25, no. 9, pp.
569–597, 2008.

[284] S. J. Moorehead, C. K. Wellington, B. J. Gilmore, and C. Vallespi, “Automat-
ing orchards: A system of autonomous tractors for orchard maintenance,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems Work-
shop on Agricultural Robotics, Vilamoura, Portugal, 2012.

[285] A. J. Morton and S. R. Pliska, “Optimal portfolio management with fixed
transaction costs,” Mathematical Finance, vol. 5, no. 4, pp. 337–356, 1995.

[286] D. Muñoz de la Peña, A. Bemporad, and T. Alamo, “Stochastic program-
ming applied to model predictive control,” in Proc. 44th IEEE Conf. on De-
cision and Control and European Control Conf., Sevilla, Spain, 2005, pp. 1361–
1366.

[287] M. Nanao and T. Ohtsuka, “Vehicle dynamics control for collision avoid-
ance considering physical limitations,” in Proc. of Soc. of Instrum. and Ctrl
Eng. conf. IEEE, 2011, pp. 688–693.

[288] S. Natenberg, Option volatility and pricing: advanced trading strategies and
techniques. McGraw Hill Professional, 2014.

[289] National Highway Traffic Safety Administration, “Traffic safety facts, 2014:
a compilation of motor vehicle crash data from the fatality analysis report-
ing system and the general estimates system. dot hs 812261,” Department of
Transportation, Washington, DC, 2014.

[290] J. A. Nelder and R. Mead, “A simplex method for function minimization,”
The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[291] W. Nelson, “Continuous-curvature paths for autonomous vehicles,” in
IEEE ICRA, May 1989, pp. 1260–1264.

360

[292] A. Nemirovski and A. Shapiro, “Convex approximations of chance con-
strained programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–
996, 2006.

[293] M. Neumann, “Parallel grasp with path-relinking for job shop schedul-
ing,” Mol. Phys., vol. 50, no. 2, pp. 841–843, 1983.

[294] J. Nilsson and J. Sjoberg, “Strategic decision making for automated driv-
ing on two-lane, one way roads using model predictive control,” in IEEE
Intelligent Vehicles Symposium, 2013, pp. 1253–1258.

[295] J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding horizon maneu-
ver generation for automated highway driving,” CEP, vol. 41, pp. 124–133,
2015.

[296] Nvidia, “Tesla P100,” https://images.nvidia.com/content/tesla/pdf/
nvidia-tesla-p100-PCIe-datasheet.pdf, 2016.

[297] J. Oksanen, Timo; Backman, “Standardization proposal on implement
guidance for ISO 11783 compatible tractor-implement systems,” 2015.
[Online]. Available: http://urn.fi/URN:ISBN:978-952-60-6165-8

[298] T. Oksanen and A. Visala, “Optimal control of tractor-trailer system in
headlands,” in Proc. ASAE Conference on Automation Technology for Off-Road
Equipment (ATOE), Japan: Kyoto, 2004, pp. 255–263.

[299] A. Orfanou, P. Busato, D. Bochtis, G. Edwards, D. Pavlou, C. Sørensen, and
R. Berruto, “Scheduling for machinery fleets in biomass multiple-field op-
erations,” Computers and Electronics in Agriculture, vol. 94, pp. 12–19, 2013.

[300] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE T-IV, vol. 1, no. 1, pp. 33–55, 2016.

[301] R. Palmer, D. Wild, and K. Runtz, “Improving the efficiency of field opera-
tions,” Biosystems Engineering, vol. 84, no. 3, pp. 283–288, 2003.

[302] L. E. Parker, “Path planning and motion coordination in multiple mobile
robot teams,” Encyclopedia of complexity and system science, pp. 5783–5800,
2009.

[303] G. Pataki, “Teaching integer programming formulations using the travel-
ing salesman problem,” SIAM Review, vol. 45, no. 1, pp. 116–123, 2003.

[304] F. W. Patel, Title of Book, ser. Monographs on Technical Aspects. New York:
Dover, 2002, vol. II.

361

https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://urn.fi/URN:ISBN:978-952-60-6165-8

[305] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection al-
gorithm for embedded linear model predictive control,” IEEE Transactions
on Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[306] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining neural
networks and tree search for task and motion planning in challenging en-
vironments,” arXiv preprint arXiv:1703.07887, 2017.

[307] M. Pivtoraiko, R. Knepper, and A. Kelly, “Differentially constrained mobile
robot motion planning in state lattices,” JFR, vol. 26, no. 3, pp. 308–333,
2009.

[308] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” in Advances in Neural Information Processing Systems, 1989, pp. 305–
313.

[309] J. A. Primbs, “Stochastic receding horizon control of constrained linear sys-
tems with state and control multiplicative noise,” in Proc. American Contr.
Conf., New York, NY, 2007, pp. 4470–4475.

[310] ——, “LQR and receding horizon approaches to multi-dimensional option
hedging under transaction costs,” in Proc. American Contr. Conf., 2010, pp.
6891–6896.

[311] J. A. Primbs and C. H. Sung, “Stochastic receding horizon control of con-
strained linear systems with state and control multiplicative noise,” IEEE
Trans. Automatic Control, vol. 54, no. 2, pp. 221–230, 2009.

[312] J. A. Primbs and Y. Yamada, “A new computational tool for analyzing dy-
namic hedging under transaction costs,” Quantitative Finance, vol. 8, no. 4,
pp. 405–413, 2008.

[313] J. Primbs, “A soft constraint approach to stochastic receding horizon con-
trol,” in Proc. 46th IEEE Conf. on Decision and Control, 2007, pp. 4797–4802.

[314] J. A. Primbs, “Dynamic hedging of basket options under proportional
transaction costs using receding horizon control,” International Journal of
Control, vol. 82, no. 10, pp. 1841–1855, 2009.

[315] M. L. Puterman, Markov decision processes: discrete stochastic dynamic pro-
gramming, ser. Monographs on Technical Aspects. John Wiley & Sons,
2005.

[316] X. Qian, F. Altché, P. Bender, C. Stiller, and A. de La Fortelle, “Optimal
trajectory planning for autonomous driving integrating logical constraints:
An miqp perspective,” in IEEE ITSC, 2016, pp. 205–210.

362

[317] R. Rajamani, Vehicle Dynamics and Control, ser. Mechanical Engineering Se-
ries. Springer US, 2011.

[318] J. Randlov and P. Alstrom, “Learning to drive a bicycle using reinforce-
ment learning and shaping,” in International Conference on Machine Learn-
ing, 1998, pp. 463–471.

[319] R. Raper, “Agricultural traffic impacts on soil,” Journal of Terramechanics,
vol. 42, no. 3, pp. 259–280, 2005.

[320] J. Rawlings, “Tutorial overview of model predictive control,” IEEE Control
Systems Magazine, pp. 38–52, Jun. 2000.

[321] J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards
and backwards,” Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367–393,
1990.

[322] R. Reghelin and L. V. Arruda, “Optimizing coordinated motion planning
for multiple car-like robots on a segment of highway,” Robotica, pp. 1–17.

[323] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and W. Schulz,
“Cartalk 2000: Safe and comfortable driving based upon inter-vehicle-
communication,” in IEEE Intelligent Vehicle Symposium, vol. 2, 2002, pp.
545–550.

[324] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value at
risk,” Journal of Risk, vol. 2, pp. 21–42, 2000.

[325] D. Sabelhaus, F. Röben, L. P. M. zu Helligen, and P. S. Lammers, “Using
continuous-curvature paths to generate feasible headland turn manoeu-
vres,” Biosystems Engineering, vol. 116, no. 4, pp. 399–409, 2013.

[326] SAE, “Automated driving – levels of driving automation are defined in
new SAE international standard J3016,” https://techcrunch.com/2017/
08/03/ cadillacs-super-cruise-autopilot-is-ready-for- the-expressway/,
2014.

[327] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies as a scal-
able alternative to reinforcement learning,” arXiv preprint arXiv:1703.03864,
2017.

[328] A. Scheuer and T. Fraichard, “Planning continuous-curvature paths for car-
like robots,” in Proc. IEEE/RSJ Conference on Intelligent Robots and Systems,
Japan: Osaka, 1996, pp. 1304–1311.

[329] G. Schildbach, M. Soppert, and F. Borrelli, “A collision avoidance system
at intersections using robust model predictive control,” in IEEE IV, 2016,
pp. 233–238.

363

https://techcrunch.com/2017/08/03/
https://techcrunch.com/2017/08/03/
cadillacs-super-cruise-autopilot-is-ready-for-
the-expressway/

[330] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer pro-
gramming for multi-vehicle path planning,” in IEEE European Control Con-
ference, 2001, pp. 2603–2608.

[331] T. Schouwenaars, B. Mettler, E. Feron, and J. P. How, “Robust motion plan-
ning using a maneuver automation with built-in uncertainties,” in IEEE
American Control Conference, vol. 3, 2003, pp. 2211–2216.

[332] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons,
1998.

[333] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[334] R. N. Sengupta and R. Kumar, “Robust and reliable portfolio optimization
formulation of a chance constrained problem,” Foundations of Computing
and Decision Sciences, vol. 42, no. 1, pp. 83–117, 2017.

[335] H. Seyyedhasani and J. S. Dvorak, “Using the vehicle routing problem
to reduce field completion times with multiple machines,” Computers and
Electronics in Agriculture, vol. 134, pp. 142–150, 2017.

[336] A. Sharda, J. P. Fulton, T. P. McDonald, and C. J. Brodbeck, “Real-time noz-
zle flow uniformity when using automatic section control on agricultural
sprayers,” Computers and Electronics in Agriculture, vol. 79, no. 2, pp. 169–
179, 2011.

[337] N. Shchetko, “Laser eyes pose price hurdle for driverless cars,” The Wall
Street Journal, vol. 21, 2014.

[338] S. E. Shladover, “Cooperative (rather than autonomous) vehicle-highway
automation systems,” IEEE Intelligent Transportation Systems Magazine,
vol. 1, no. 1, pp. 10–19, 2009.

[339] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a sur-
vey,” IEEE Communications Surveys & Tutorials, vol. 10, no. 2, pp. 88–105,
2008.

[340] H. T. Siegelmann and E. D. Sontag, “Turing computability with neural
nets,” Applied Mathematics Letters, vol. 4, no. 6, pp. 77–80, 1991.

[341] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference on
Machine Learning, 2014, pp. 387–395.

[342] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

364

[343] R. Solea and U. Nunes, “Trajectory planning with velocity planner for
fully-automated passenger vehicles,” in IEEE ITSC, 2006, pp. 474–480.

[344] Y. Song and J. W. Grizzle, “The extended kalman filter as a local asymptotic
observer for nonlinear discrete-time systems,” in IEEE American Control
Conference. IEEE, 1992, pp. 3365–3369.

[345] C. Sørensen, S. Fountas, E. Nash, L. Pesonen, D. Bochtis, S. M. Pedersen,
B. Basso, and S. Blackmore, “Conceptual model of a future farm manage-
ment information system,” Computers and Electronics in Agriculture, vol. 72,
no. 1, pp. 37–47, 2010.

[346] Statistisches Bundesamt Deutschland, “Land- und Forstwirtschaft,”
https://www.destatis.de/DE/Publikationen/StatistischesJahrbuch/
LandForstwirtschaft.pdf? blob=publicationFile, Oct. 2016.

[347] H. R. Stoll and R. E. Whaley, Futures and options: theory and applications.
Southwestern Publishing, 1993.

[348] Y. Sun, G. Aw, R. Loxton, and K. L. Teo, “Chance-constrained optimiza-
tion for pension fund portfolios in the presence of default risk,” European
Journal of Operational Research, vol. 256, no. 1, pp. 205–214, 2017.

[349] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press Cambridge, 1998, vol. 1, no. 1.

[350] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, 2000, pp. 1057–1063.

[351] F. E. Tay and L. Cao, “Application of support vector machines in financial
time series forecasting,” Omega, vol. 29, no. 4, pp. 309–317, 2001.

[352] TechCrunch, “Cadillacs super cruise autopilot is ready for the express-
way,” https://techcrunch.com/2017/08/03/
cadillacs-super-cruise-autopilot-is-ready-for- the-expressway/, 2017.

[353] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-trees:
Feedback motion planning via sums-of-squares verification,” International
Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[354] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, C. Koelen,
C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Brad-
ski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stanley:
The robot that won the DARPA grand challenge,” JFR, vol. 23, no. 9, pp.
661–692, 2006.

365

https://www.destatis.de/DE/Publikationen/StatistischesJahrbuch/LandForstwirtschaft.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/StatistischesJahrbuch/LandForstwirtschaft.pdf?__blob=publicationFile
https://techcrunch.com/2017/08/03/
cadillacs-super-cruise-autopilot-is-ready-for-
the-expressway/

[355] B. Thuilot, C. Cariou, P. Martinet, and M. Berducat, “Automatic guidance
of a farm tractor relying on a single CP-DGPS,” Autonomous Robots, vol. 13,
no. 1, pp. 53–71, 2002.

[356] X. Tian, K. Benkrid, and X. Gu, “High performance Monte-Carlo based
option pricing on FPGAs,” Engineering Letters, vol. 16, no. 3, pp. 434–442,
2008.

[357] P. Toth and D. Vigo, Vehicle routing: problems, methods, and applications.
SIAM, 2014.

[358] Trafikanalys, “Automatiserad kolonnkörning – en lösning för framtiden?”
https://www.trafa.se/
globalassets/rapporter/2016/rapport-2016 22-
automatiserad-kolonnkorning---en-losning-for
-framtiden.pdf, 2016.

[359] S. Ulbrich and M. Maurer, “Towards tactical lane change behavior plan-
ning for automated vehicles,” in IEEE Conference on Intelligent Transporta-
tion Systems, 2015, pp. 989–995.

[360] C. Urmson et al., “Autonomous driving in urban environments: Boss and
the urban challenge,” JFR, vol. 25, no. 8, pp. 425–466, 2008.

[361] C. F. Van Loan, “Computing integrals involving the matrix exponential,”
IEEE Transactions on Automatic Control, vol. 23, no. 3, pp. 395–404, 1978.

[362] F. B. Veliz, J.-P. Watson, A. Weintraub, R. J.-B. Wets, and D. L. Woodruff,
“Stochastic optimization models in forest planning: a progressive hedging
solution approach,” Annals of Operations Research, vol. 232, no. 1, pp. 259–
274, 2015.

[363] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl,
“Time-optimal path tracking for robots: A convex optimization approach,”
IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2318–2327, 2009.

[364] R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch, and M. Diehl, “To-
wards time-optimal race car driving using nonlinear mpc in real-time,” in
IEEE CDC, 2014, pp. 2505–2510.

[365] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar, “Automatic
parallel parking with geometric continuous-curvature path planning,” in
IEEE IV, 2014, pp. 465–471.

[366] S. G. Vougioukas, “A distributed control framework for motion coordina-
tion of teams of autonomous agricultural vehicles,” Biosystems engineering,
vol. 113, no. 3, pp. 284–297, 2012.

366

https://www.trafa.se/
globalassets/rapporter/2016/rapport-2016_22-
automatiserad-kolonnkorning---en-losning-for
-framtiden.pdf

[367] W. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” in Proc. 17th IFAC World Congress, 2008, pp. 6974–6979.

[368] Y. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2,
pp. 267–278, 2010.

[369] M. Werling and D. Liccardo, “Automatic collision avoidance using model-
predictive online optimization,” in IEEE CDC, 2012, pp. 6309–6314.

[370] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory gen-
eration for dynamic street scenarios in a frenet frame,” in IEEE ICRA, 2010,
pp. 987–993.

[371] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmid-
huber, “Natural evolution strategies.” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 949–980, 2014.

[372] H. P. Williams, Model building in mathematical programming. John Wiley &
Sons, 2013.

[373] P. Wilmott, On Quantitative Finance, 2nd ed. West Sussex PO19 8SQ, Eng-
land: Wiley and Sons, 2006.

[374] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving models
from large-scale video datasets,” arXiv preprint arXiv:1612.01079, 2016.

[375] J. Xu, B. L. Nelson, and J. Hong, “Industrial strength compass: A com-
prehensive algorithm and software for optimization via simulation,” ACM
Transactions on Modeling and Computer Simulation, vol. 20, no. 1, p. 3, 2010.

[376] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion plan-
ner with trajectory optimization for autonomous vehicles,” in IEEE Inter-
national Conference on Robotics and Automation, 2012, pp. 2061–2067.

[377] P. C. Young, Recursive estimation and time-series analysis: an introduction.
Springer Science & Business Media, 2012.

[378] S. K. Zegeye, B. De Schutter, H. Hellendoorn, and E. Breunesse, “Reduction
of travel times and traffic emissions using model predictive control,” in
IEEE American Control Conference, 2009, pp. 5392–5397.

[379] K. Zhou, A. L. Jensen, D. D. Bochtis, and C. G. Sørensen, “Quantifying the
benefits of alternative fieldwork patterns in a potato cultivation system,”
Computers and Electronics in Agriculture, vol. 119, pp. 228–240, 2015.

[380] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
Bertha–A local, continuous method,” in IEEE Intelligent Vehicles Sympo-
sium, 2014, pp. 450–457.

Copyright c© 2018, by the author.
All rights reserved.

	Acknowledgements
	Abstract
	Notation
	1 Introduction
	1.1 Four Basic Concepts for Decision Taking
	1.2 The Individual and Societal Aspect for the Automation of Transportation
	1.3 Continuous- and Discrete-time System Modeling
	1.4 Motivation of this Thesis
	1.5 Thesis Outline and List of Publications

	2 Single and Multi-Vehicle Motion Planning
	2.1 Single-Vehicle Motion Planning by MPC
	2.1.1 LTI- or LTV-MPC formulation
	2.1.2 Case Study: The Influence of Reference Trajectories
	2.1.3 Time or Spatial Parametrization
	2.1.4 Road Modeling in the Spatial Framework
	2.1.5 Dynamic and Kinematic Vehicle Models
	2.1.6 Sequential Programming
	2.1.7 Time Scheduling in the Spatial Framework
	2.1.8 Sampling Times in the Spatial Framework
	2.1.9 Control Rate Constraints in the Spatial Framework
	2.1.10 Vehicle Dimension Constraints in the Spatial Framework
	2.1.11 State Estimation and Environment Modeling
	2.1.12 Road Navigation
	2.1.13 Zone Navigation
	2.1.14 Combinatorial Obstacle Avoidance and Corridor Planning
	2.1.15 Adaptive Cruise Control
	2.1.16 Driving Mode Selection Heuristics
	2.1.17 Hierarchical Controller Parametrization

	2.2 Single-vehicle Motion Planning by Neural Networks
	2.2.1 Introduction
	2.2.2 Problem Formulation
	2.2.3 System Level
	2.2.4 Training Algorithm
	2.2.5 Numerical Experiments
	2.2.6 Hierarchical Controller Parametrization

	2.3 Multi-vehicle Motion Planning
	2.3.1 Introduction
	2.3.2 Cooperative Driving System
	2.3.3 Numerical Simulations
	2.3.4 Hierarchical Controller Parametrization

	2.4 Discussion and Conclusion of Chapter

	3 Vehicle Routing
	3.1 Path Planning for Area Coverage
	3.1.1 Introduction
	3.1.2 Algorithms
	3.1.3 Quantitative Example
	3.1.4 Hierarchical Controller Parametrization

	3.2 In-Field Navigation via an Android App
	3.2.1 Background
	3.2.2 Summary
	3.2.3 Web-service for Communication
	3.2.4 Hierarchical Controller Parametrization

	3.3 Partial Field Coverage Based on Two Path Planning Patterns
	3.3.1 Motivation
	3.3.2 Summary

	3.4 Shortest Path Computations under Trajectory Constraints within Agricultural Fields
	3.4.1 Introduction
	3.4.2 Navigation in Orchard-like Areas
	3.4.3 Navigation in Agricultural Fields
	3.4.4 Numerical Experiments
	3.4.5 Conclusion
	3.4.6 Hierarchical Controller Parametrization

	3.5 Coupling of Crop Assignment and Vehicle Routing for Harvest Planning in Agriculture
	3.5.1 Introduction
	3.5.2 Problem Formulation and Notation
	3.5.3 Problem approach
	3.5.4 Problem Solution
	3.5.5 Extensions
	3.5.6 Numerical Simulations
	3.5.7 Conclusion
	3.5.8 Hierarchical Controller Parametrization

	3.6 Discussion of Chapter

	4 Quantitative Finance
	4.1 Dynamic Option Hedging with Transaction Costs: A SMPC approach
	4.1.1 Introduction
	4.1.2 Dynamic Option Hedging
	4.1.3 Transaction Costs
	4.1.4 SMPC Problem Formulations
	4.1.5 Scenario Generation
	4.1.6 Hedging Results
	4.1.7 Conclusions
	4.1.8 Hierarchical Controller Parametrization

	4.2 Parallel Investments in Multiple Call and Put Options
	4.2.1 Introduction
	4.2.2 Call and Put Options
	4.2.3 High-level Algorithm
	4.2.4 Optimization Problem Formulation
	4.2.5 Numerical Examples
	4.2.6 Conclusion
	4.2.7 Hierarchical Controller Parametrization

	4.3 Optimal Trading with Hindsight
	4.3.1 Introduction
	4.3.2 One-stage Modeling of System Dynamics
	4.3.3 Transition Dynamics
	4.3.4 Multi-stage System Dynamics Optimization Without Diversification Constraint
	4.3.5 Multi-stage System Dynamics Optimization With a Diversification Constraint
	4.3.6 Numerical Examples
	4.3.7 Conclusion
	4.3.8 Hierarchical Controller Parametrization

	4.4 Single-Asset Stock Trading: Stochastic Model Predictive or Genetic?
	4.4.1 Introduction
	4.4.2 Transition Dynamics Modeling
	4.4.3 Stochastic Model Predictive Stock Trading
	4.4.4 Genetic Stock Trading
	4.4.5 Simulation Experiments
	4.4.6 Conclusion
	4.4.7 Hierarchical Controller Parametrization

	4.5 Discussion of Chapter

	5 Conclusion
	References

