
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Novel approaches to in-network processing for
the reduction of energy consumption in wireless

sensor networks

PhD Program in Computer Science and Engineering

XXI Cycle

Massimo Vecchio

2009

http://www.imtlucca.it
mailto:m.vecchio@imtlucca.it

The dissertation of Massimo Vecchio is approved.

Program Coordinator: Prof. Ugo Montanari,
Computer Science Department, University of Pisa

Supervisor: Prof. Beatrice Lazzerini,
Department of Information Engineering, University of Pisa

Supervisor:
Prof. Francesco Marcelloni,
Department of Information Engineering, University of Pisa

Tutor: Prof. Beatrice Lazzerini,
Department of Information Engineering, University of Pisa

The dissertation of Massimo Vecchio has been reviewed by:

Prof. Silvia Giordano,
University of Applied Science - SUPSI - Switzerland

Dr. Aline Carneiro Viana ,
INRIA Saclay - Ile de France sud - France

IMT Institute for Advanced Studies, Lucca

2009

http://www.imtlucca.it

L’ovvio è quel che non si vede mai, finché qualcuno non lo esprime
con la massima semplicità.

(K. Gibran)

Contents

List of Figures x

List of Tables xiii

Vita and Publications xv

Abstract xvii

1 Introduction 1
1.1 Reducing energy consumption: a resume 3
1.2 Outline and contributions 4

2 Application, characteristics and metrics 6
2.1 Sensor network application classes 7

2.1.1 Environmental Data Collection 7
2.1.2 Surveillance applications 9
2.1.3 Node tracking scenarios 11
2.1.4 Hybrid networks . 12

2.2 Characteristics of WSNs: A Summary 12
2.3 Evaluation Metrics . 15

2.3.1 Lifetime . 15
2.3.2 Coverage . 16
2.3.3 Cost and ease of deployment 17
2.3.4 Response Time . 18
2.3.5 Temporal Accuracy 19
2.3.6 Security . 19

vii

2.3.7 Effective Sample Rate 20

3 State of the Art 22
3.1 Duty cycling schemes . 22
3.2 Data Aggregation . 24

3.2.1 Cluster-Based Approaches 27
3.2.2 Tree-Based Approaches 28

3.3 Data Compression . 29
3.3.1 Lossless Data Compression 30
3.3.2 Lossy Data Compression 32

4 Distributed Aggregation 36
4.1 Our Approach . 37

4.1.1 Overview . 37
4.1.2 The Aggregation Module 38
4.1.3 The Table of Estimates 40
4.1.4 The Decision Module 40
4.1.5 The Message Analyzer Module 43
4.1.6 Handling Estimate Staleness 44

4.2 Estimation of the node lifetime 45
4.3 Power Consumption: a Simulation 49
4.4 Power Consumption: a Real Example 55

5 A Lossless Compression Algorithm for WSNs 58
5.1 The LEC Algorithm . 60
5.2 Performance assessment results 65

5.2.1 Smooth signals . 65
5.2.2 A comparison with standard compression algorithms 81
5.2.3 Non-smooth signals 83

6 A loss-aware Compression Algorithm for WSNs 88
6.1 DPCM and Quantization Principles 91
6.2 Our lossy compression scheme 93
6.3 The Optimization Framework 96

6.3.1 The chromosome coding 97
6.3.2 Genetic operators . 99

viii

6.3.3 NSGA-II . 99
6.4 Performance assessment results 100

6.4.1 The optimization process 101
6.4.2 Selected Solutions and their validation 102
6.4.3 Comparison with LTC 107
6.4.4 Compression ratio and distortion 107
6.4.5 Complexity . 108

7 Conclusions 111
7.1 Open Issues . 113

7.1.1 Delay . 113
7.1.2 Data correlation . 113
7.1.3 Data gathering protocols 114

References 115

ix

List of Figures

1 Block diagram of the application deployed on each node . 39
2 Table of Estimates . 41
3 Structure of a generic message 43
4 A trace of the power consumption while sampling the chan-

nel on a Tmote Sky . 48
5 Sensor network topology . 49
6 Temperature profile used in the simulations 50
7 Radio models: (a) Fixed and (b) empirical 51
8 Trend of the maximum temperature estimate in a sensor

node placed in the sunny zone 53
9 Trend of the maximum temperature estimate in a sensor

node placed in the shadowy zone 54
10 The plant of the example flat 55
11 24 hours test . 56

12 Block diagram of the encoding/decoding schemes 61
13 Pseudo-code of the encode algorithm 63
14 Pseudo-code of the encode algorithm 64
15 Pseudo-code of the computeBinaryLog() function 64
16 Compression ratios obtained by the LTC algorithm for dif-

ferent error values on the four temperature datasets 72
17 Compression ratios obtained by the LTC algorithm for dif-

ferent error values on the four relative humidity datasets . 72

x

18 Root mean squared errors obtained by the LTC algorithm
for different error values on the four temperature datasets 73

19 Root mean squared errors obtained by the LTC algorithm
for different error values on the four relative humidity datasets 73

20 Comparison between the original and the reconstructed sam-
ples for the first block of the FN ID101 temperature dataset:
compression performed by the LTC algorithm with e = 30% 75

21 Comparison between the original and the reconstructed sam-
ples for the first block of the LU ID84 temperature dataset:
compression performed by the LTC algorithm with e = 10% 76

22 Comparison between the original and the reconstructed sam-
ples for the first block of the GSB ID10 temperature dataset:
compression performed by the LTC algorithm with e = 50% 76

23 Comparison between the original and the reconstructed sam-
ples for the first block of the LG ID20 temperature dataset:
compression performed by the LTC algorithm with e = 70% 77

24 Comparison between the original and the reconstructed sam-
ples for the first block of the FN ID101 relative humidity
dataset: compression performed by the LTC algorithm with
e = 40% . 77

25 Comparison between the original and the reconstructed sam-
ples for the first block of the LU ID84 relative humidity
dataset: compression performed by the LTC algorithm with
e = 20% . 78

26 Comparison between the original and the reconstructed sam-
ples for the first block of the GSB ID10 relative humidity
dataset: compression performed by the LTC algorithm with
e = 50% . 78

27 Comparison between the original and the reconstructed sam-
ples for the first block of the LG ID20 relative humidity
dataset: compression performed by the LTC algorithm with
e = 60% . 79

28 First 1500 samples of the solar radiation dataset 84
29 First 6000 samples of the seismic dataset 85

xi

30 First 3600 samples of the ECG dataset 85

31 Block diagram of the compressor 94
32 Block diagram of the uncompressor 95
33 Portions of the original and de-noised signals 97
34 Projection of the Pareto front approximation on the H −

MSEd plane . 102
35 Quantization rule for solution (A) 104
36 Quantization rule for solution (B) 105
37 Quantization rule for solution (C) 105
38 Compression ratios obtained by the LTC algorithm for dif-

ferent error values on the three datasets 108
39 Mean squared errors obtained by the LTC algorithm for

different error values on the three datasets. 109

xii

List of Tables

1 Time and Current Consumption in Tmote Sky 46
2 Sent and received messages during the 24 hours simulations 52
3 Sent and received messages during the 24 hours simula-

tions (Boulis et Al. approach) 54
4 Sent and received messages during the 24 hours test 57

5 The Huffman variable length codes used in the experiments 62
6 Main characteristics of the four datasets 66
7 Statistical characteristics of the four temperature datasets . 67
8 Statistical characteristics of the four relative humidity datasets 67
9 CRs obtained by the LEC algorithm on the four datasets . . 68
10 Number of packets needed to deliver the uncompressed

and compressed versions of the datasets 68
11 Comparison between different approaches to Huffman ta-

ble generation . 70
12 S-LZW parameters . 70
13 Compression ratios obtained by the S-LZW algorithm on

the four datasets . 71
14 Correspondences between LEC compression ratios and LTC

compression ratios and root mean squared errors for the
four temperature datasets 74

15 Correspondences between LEC compression ratios and LTC
compression ratios and root mean squared errors for the
four relative humidity datasets 74

xiii

16 Complexity of the three compression algorithms 80
17 Comparison between the standard packet compression ra-

tios (PCRs) and the ones obtained by transmitting the first
value in each packet (PCRs∗) 81

18 Compression ratios obtained by five classical compression
algorithms on the four datasets 82

19 Statistical characteristics of the three non-smooth datasets 86
20 Compression ratios obtained by LEC, S-LZW and five clas-

sical compression algorithms on three non-smooth datasets 87

21 Parameters of solutions (A), (B) and (C) 103
22 Codewords used in solutions (A), (B) and (C) 103
23 Results obtained by solutions (A), (B) and (C) on the three

datasets . 104
24 Compression ratios and packet compression ratios achie-

ved by the three solutions (A), (B) and (C) on GSB ID10
and LG ID20 datasets when applying the Huffman’s algo-
rithm to training sets extracted from the two datasets . . . 107

25 Correspondences between compression ratios achieved by
our algorithm, and compression ratios and mean squared
errors achieved by LTC on the three datasets 109

26 Complexity of our algorithm and LTC 110

xiv

Vita

January 23, 1979 Born, Cassino (FR), Italy

March 2005 Laurea Degree in Computer Science Engineering
Final mark: 110/110 Magna cum Laude
University of Pisa, Italy

During 2005 Collaborator at Department of
Information Engineering
University of Pisa, Italy

February 2006 PhD Admission at IMT Lucca, Italy

October 2008 5 months internship at
INRIA Saclay - Ile de France sud,
ASAP Research Group, France

Today Research Engineer at
INRIA Saclay - Ile de France sud,
ASAP Research Group, France

xv

Publications

1. M. Cococcioni, P. Ducange, B. Lazzerini, F. Marcelloni, and M. Vecchio,
“Identification of Mamdani fuzzy systems based on a multi-objective ge-
netic algorithm,” AI*IA ’05: Workshop on Evolutionary Computation, pp. 1–10,
2005.

2. G. Anastasi, S. Croce, M. Di Francesco, F. Marcelloni, E. Monaldi, and M. Vec-
chio, “Energy management in sensor networks for environmental monitor-
ing,” in SIRWEC ’06: XIII International Road Weather Conference, 2006.

3. B. Lazzerini, F. Marcelloni, M. Vecchio, S. Croce, and E. Monaldi, “A fuzzy
approach to data aggregation to reduce power consumption in wireless
sensor networks,” NAFIPS ’06: Proceedings of the Annual meeting of the North
American Fuzzy Information Processing Society, pp. 436–441, 2006.

4. S. Croce, F. Marcelloni, and M. Vecchio, “Reducing power consumption in
wireless sensor networks using a novel approach to data aggregation,” The
Computer Journal, vol. 51(2), pp. 1227–239, 2008.

5. F. Marcelloni and M. Vecchio, “A simple algorithm for data compression
in wireless sensor networks,” IEEE Communications Letters, vol. 12(6), pp.
411–413, 2008.

6. F. Marcelloni and M. Vecchio, “An efficient entropy data compression algo-
rithm for environmental monitoring wireless sensor networks,” The Com-
puter Journal, to appear, 2009.

xvi

Abstract

Wireless sensor networks (WSNs) are currently an active re-
search area mainly due to the potential of their applications.
However, the deployment of a large scale WSN still requires
solutions to a number of technical challenges that stem pri-
marily from the features of the sensor nodes such as limited
computational power, reduced communication bandwidth and
small storage capacity. Further, sensor nodes are typically
powered by batteries with limited capacity which do not guar-
antee an attractive nodes’ lifetime unless adequate power sav-
ing policies are undertaken.

Since the radio is the main cause of power consumption in
a sensor node, most of the energy conservation schemes pro-
posed in the literature have focused on minimizing the energy
consumption of the communication unit. To achieve this ob-
jective, two main approaches have been followed: power sav-
ing through duty cycling and in-network processing. Duty
cycling schemes define coordinated sleep/wakeup schedules
among nodes in the network. On the other hand, in-network
processing consists in reducing the amount of information to
be transmitted by means of aggregation and/or compression
techniques. This thesis focuses on the latter approach and pro-
poses a novel distributed method to data aggregation and two
algorithms to compress data locally on the sensor node.

The distributed data aggregation technique is based on fuzzy
numbers and weighted average operators to reduce data com-
munication in WSNs when we are interested in the estimation
of an aggregated value such as maximum or minimum tem-
perature measured in the network.

xvii

The first compression algorithm is a simple lossless entropy
compression algorithm which can be implemented in a few
lines of code, requires very low computational power, com-
presses data on the fly and uses a very small dictionary whose
size is determined by the resolution of the analog-to-digital
converter.

The second compression algorithm tackles the problem of noisy
sampling by performing lossy compression on single node
based on a differential pulse code modulation scheme with
quantization of the differences between consecutive samples.
Since different combinations of the quantization process pa-
rameters determine different trade-offs between compression
performance and information loss, we exploit a multi-objective
evolutionary algorithm to generate a set of combinations of
these parameters corresponding to different optimal trade-offs.
The user can therefore choose the combination with the most
suitable trade-off for the specific application.

xviii

Chapter 1

Introduction

Moore’s Law states that the number of transistors in an integrated circuit
increases exponentially over time, doubling every 18 months. Since its
introduction in 1965, Moore’s Law has taken on a much broader scope
and significance (Moo65). Almost all computing resources increase expo-
nentially in availability over time, including disk capacity, memory, and
network bandwidth. The increase in resources is not accompanied by a
corresponding increase in size: a 200GB hard drive in 2005 is the same
size as a 200MB hard drive in 1998.

On the one hand, Moore’s law means that the resources which can fit
in a form factor will grow over time. On the other hand, it also means
that existing resources can be made smaller. In the first case, the expo-
nential growth of resources has led existing classes of computing devices
to be more powerful. In the second case, shrinking size has led to the
appearance of new, smaller device classes. Minicomputers emerged in
the 1970s. Desktops became feasible in the 1980s. The 1990s saw lap-
tops become commonplace, and in the first few years of the 21st century,
cellphones are ubiquitous.

A new class of computing devices is nowadays a reality, though it is
in continuous evolution: embedded Wireless Sensor Networks (WSNs),
collections of small devices with integrated computing, sensing, and net-
working (TM03; ASSC02). Their small size allows unobtrusively deploy-

1

ing them in a wide range of environments, collecting data at a fidelity and
scale that was until now impossible.

The ability to embed sensors in large and uncontrolled environments
opens up tremendous possibilities for a wide range of disciplines. Biolo-
gists at University of California, Berkeley (UCB) have deployed WSNs in
redwood trees to gather real-time data so as to measuring how redwood
microclimates vary over space and time (Red). Civil engineers have de-
ployed networks on San Francisco’s Golden Gate Bridge, to measure how
winds and other meteorological conditions affect the bridge (SPC+07).
Fire departments are exploring how WSNs can help rescue trapped peo-
ple or aid in evacuation (Fir).

Furthermore, WSNs have greater potential than simple data collec-
tion. When connected to an actuator, a sensor node can actively control
its environment. Instead of a single thermostat per floor, homes can have
WSNs that monitor and control home climate on a per room basis or
smaller granularity. In precision agriculture, sensor nodes can measure
soil moisture and control irrigation at the granularity of tens of square
meters, rather than hectares (Cam). In fire rescue, a sensor network can
detect danger and direct people along safer paths to exits (Fir).

These many possibilities have accompanying challenges. Moore’s Law
means that wireless sensor nodes can - and will - be tiny, a few millimeters
on a side. Their energy sources, however, do not have the same governing
principles. Chemical energy density limits storage technologies such as
batteries or fuel cells, while ambient energy density limits renewable en-
ergy sources such as solar panels. A wireless sensor node’s energy source
determines its form factor: decrease node’s energy requirements, and you
can decrease its size.

As deploying sensor networks can be laborious and disruptive, the
longer a network lasts, the better it is. This conflict between node form
factor and network lifetime makes energy the defining resource of WSNs.
It influences software, which must incorporate aggressive energy conser-
vation policies. It also influences hardware, which must trade off in-
creased resources against their accompanying energy costs. While im-
proving technology can reduce the energy consumption of computation

2

or storage, networking has fundamental energy limits. Ultimately, wire-
less networking requires emitting energy into the environment. There
is a trade-off between the energy costs of transmitting and receiving: a
stronger transmit signal can require less processing effort on the receiver
side, while additional signal processing on the receiver side can reduce
power on the transmitter side.

1.1 Reducing energy consumption: a resume

Datasheets of commercial sensor nodes (Senc), together with several re-
search papers in the field of WSNs (dCdS06; BA06; KWFLS07) show that
data communication is very expensive in terms of energy consumption,
whereas data processing consumes significantly less: the energy cost of
receiving or transmitting a single bit of information is approximately the
same as that required by the processing unit for executing a thousand op-
erations . On the other hand, the energy consumption of the sensing unit
depends on the specific sensor type. In several cases, however, it is neg-
ligible with respect to the energy consumed by the communication unit
and sometimes also by the processing unit. Thus, to extend the lifetime
of a WSN, most of the energy conservation schemes proposed in the lit-
erature aim to minimize the energy consumption of the communication
unit. To achieve this objective, two main approaches have been followed:
power saving through duty cycling and in-network processing.

Duty cycling schemes define coordinated sleep/wakeup schedules
among nodes in the network. A detailed description of these techniques
applied to WSNs can be found in (ACDP07).

On the other hand, in-network processing consists in reducing the
amount of information to be transmitted by means of aggregation and/or
compression techniques.

In particular, aggregation techniques are aimed at reducing data as
they flow toward the sink and can be roughly classified into two cat-
egories: structure-based techniques, in which data aggregation is per-
formed based on a defined structural organization of the network and
structure-free techniques, in which data aggregation is performed with-

3

out explicit maintenance of a structure.
On the other hand compression techniques reduce the data size by

exploiting the structure of the data. Data compression algorithms fall
into two broad classes: lossless and lossy algorithms. Lossless algorithms
guarantee the integrity of data during the compression/decompression
process. On the contrary, lossy algorithms may generate a loss of infor-
mation, but generally ensure a higher compression ratio.

1.2 Outline and contributions

This thesis is organized in 7 chapters.
Chapter 2 presents WSNs, three key application scenarios and an

overview of the requirements for WSNs. It is intended to provide the
background necessary for a general understanding of the issues discussed
in the remaining chapters.

Chapter 3 provides a survey of works related to this thesis which have
focused on in-network processing in WSNs, as well as other activities
aimed at reducing their power consumption.

Chapter 4 discusses the critical design issues that must be addressed
to build a distributed aggregation framework in WSNs. It underscores the
shortcomings of traditional structure-based aggregation techniques and
presents an ad-hoc structure-free approach that addresses these issues.
The proposed scheme is based on a novel distributed approach relying
on fuzzy numbers and weighted average operators. Moreover, it shows
how the lifetime of the network can be estimated through the datasheet
of the sensor node and the number of received and transmitted messages.
Finally, it discusses and evaluates the application of our approach in both
simulated and real testbed scenarios.

Chapter 5 presents a simple and effective lossless entropy compres-
sion algorithm acting on single node, able to respond to the criticality
of some application domains demanding high accuracy for sensor mea-
sures. The effectiveness of the proposed algorithm is proven by com-
pressing four environmental datasets collected by real WSNs, in terms
of both compression ratios and complexity. Moreover, it shows that the

4

proposed algorithm can be successfully applied when dealing with non-
smooth signals, which theoretically should not favour its performances.

Chapter 6 proposes an approach to perform lossy compression on
single node based on a differential pulse code modulation scheme with
quantization of the differences between consecutive samples. A multi-
objective evolutionary algorithm is exploited in order to let the user choose
the most suitable trade-off between reconstruction error and compression
ratio for the specific application. Following the previous chapter’s wave,
our lossy compression approach is tested on three datasets collected by
real WSNs, showing that, though very simple, our approach can achieve
significant compression ratios despite negligible reconstruction errors.

Chapter 7 summarizes the thesis and concludes with some open is-
sues.

5

Chapter 2

WSNs: Application,
characteristics and metrics

The concept of WSNs is based on a simple equation:
Sensing + Processing + Communications = Thousands of potential applications.
As soon as people understand the capabilities of a WSN, hundreds of
applications spring to mind. It seems like a straightforward combination
of modern technology (Hil03).

However, combining sensors, radios, and CPU’s into an effective WSN
requires a detailed understanding of both capabilities and limitations of
each of the underlying hardware components, as well as a detailed un-
derstanding of modern networking technologies and distributed systems
theory. Indeed, the limited resources available in a sensor node do not
allow using the large amount of in-network algorithms proposed in the
last years for completely different applications and different machines
(desktop computers, laptops, PDAs, cellular phones), but demand the
development of specifically designed/adapted solutions. For example,
since sensor nodes are typically equipped with a few kilobytes of mem-
ory and a 4-8MHz microprocessor, embedding classical data compression
schemes in these tiny nodes is practically unfeasible (KL05; SM06; BA06).
Indeed, the proposed algorithms in the last years can achieve very high
compression ratios despite non negligible memory occupation and com-

6

putational effort requirements. For this reason, to make the WSN vision
a reality, existent algorithms should be adapted if we want to synthesize
the envisioned applications out of the underlying hardware capabilities.

To develop such ad-hoc algorithms, we have to start from understand-
ing the set of target applications, trying to group them in three macrogroups.
Then, we give some general characteristics of WSNs and the main differ-
ences between them and Mobile Ad-Hoc Networks (MANETs). Finally
we briefly review the main system and individual node evaluation met-
rics to be considered when dealing with WSNs.

2.1 Sensor network application classes

The three application classes we have selected are: environmental data
collection, surveillance applications, and sensor node tracking. We be-
lieve that the majority of WSN deployments will fall into one of these
class templates.

2.1.1 Environmental Data Collection

A typical environmental data collection application is one where a re-
search scientist wants to collect several sensor readings from a set of points
in an environment over a period of time in order to detect trends and in-
terdependencies. This scientist would like to collect data from hundreds
of points spread throughout the area and then analyze the data offline
(MFC+07; MCP+02). Further, the scientist would be interested in collect-
ing data over several months or years in order to look for long-term and
seasonal trends. For the data to be meaningful they would have to be
collected at regular intervals and the nodes to remain at known locations.

At the network level, the environmental data collection application is
characterized by having a large number of nodes continually sensing and
transmitting data to a set of base stations that store the data using tra-
ditional methods. These networks generally require very low data rates
and extremely long lifetimes. In a typical usage scenario, the nodes are
distributed over an outdoor environment in a way that the distance be-

7

tween adjacent nodes is rather short, though the distance across the entire
network could be significant. After deployment, the nodes should first
discover the topology of the network and then estimate advantageous
routing strategies, for example capturing link connectivity statistics so as
to achieve reliability (WTC03).

The routing strategy can then be used to route data to a central collec-
tion point. In environmental monitoring applications, it is not essential
that the nodes develop the routing strategies on their own. Instead, it
may be possible to calculate the advantageous routing topology outside
of the network and then communicate the necessary information to the
nodes as required.

Environmental data collection applications typically use tree-based
routing topologies where each routing tree is rooted at high-capability
nodes that sink data. Data is periodically transmitted from child node
to parent node up the tree-structure until it reaches the sink. With tree-
based data collection each node is responsible for forwarding the data of
all its descendants. Nodes with a large number of descendants transmit
significantly more data than leaf nodes. These nodes can quickly become
energy bottlenecks (XHE01; CE02).

Once the network is configured, each node periodically samples its
sensors and transmits its data up the routing tree and back to the base
station. For many scenarios, the interval between these transmissions can
be on the order of minutes. Typical reporting periods are expected to
be between 1 and 15 minutes; while it is possible for networks to have
significantly higher reporting rates. The typical environment parameters
being monitored, such as temperature, light intensity, and humidity, do
not change quickly enough to require higher reporting rates. In addition
to large sample intervals, environmental monitoring applications do not
have strict latency requirements. Data samples can be delayed inside the
network for moderate periods of time without significantly affecting ap-
plication performance. In general the data is collected for future analysis,
not for real-time operation.

In order to meet lifetime requirements, each communication event
must be precisely scheduled. The sensor nodes will remain dormant most

8

part of the time; they will only wake up to transmit or receive data. If the
precise schedule is not met, the communication events will fail. As the
network ages, it is expected that nodes will fail over time. Periodically
the network will have to reconfigure itself to handle node/link failure or
to redistribute network load. Additionally, as the scientists learn more
about the environment they study, they may want to go in and insert ad-
ditional sensing points. In both cases, the reconfigurations are relatively
infrequent and will not represent a significant amount of the overall sys-
tem energy usage.

The most important characteristics of the environmental monitoring
requirements are long lifetime, precise synchronization, low data rates
and relatively static topologies. Additionally it is not essential that the
data is transmitted in real-time back to the central collection point. The
data transmissions can be delayed inside the network as necessary in or-
der to improve network efficiency.

2.1.2 Surveillance applications

The second class of sensor network application is surveillance. Surveil-
lance networks are composed of nodes that are placed at fixed locations
throughout an environment and continually monitor one or more sensors
to detect an anomaly (NKC09; LHF08) . A key difference between surveil-
lance monitoring and environmental monitoring is that surveillance net-
works are not actually collecting any data. This has a significant impact
on the optimal network architecture. Each node has to frequently check
the status of its sensors but it only has to transmit a data report when
there is a security violation. The immediate and reliable communication
of alarm messages is the primary system requirement. These are “report
by exception” networks.

Additionally, it is essential that it is confirmed that each node is still
present and functioning. If a node was disabled or failed, it would repre-
sent a security violation that should be reported. For surveillance appli-
cations, the network must be configured so that nodes are responsible for
confirming the status of each other. One approach is to have each node

9

assigned to peer that will report if a node is not functioning. The optimal
topology of a surveillance network will look quite different from that of a
data collection network.

In a collection tree, each node must transmit the data of all of its de-
scendants. Thus, a short and wide tree would result to be optimal. On the
contrary, with a surveillance network the optimal configuration would be
to have a linear topology that forms a Hamiltonian cycle of the network.
The power consumption of each node is only proportional to the num-
ber of children it has. In a linear network, each node would have only
one child. This would evenly distribute the energy consumption of the
network.

The majority of the energy consumption in a surveillance network is
consumed i) to meet the strict latency requirements associated with sig-
naling the alarm when a security violation occurs, and ii) to maintain
the neighboring nodes ready to instantly forward alarm announcements.
Indeed, actual data transmission will consume a small fraction of the net-
work energy. Once detected, in fact, a security violation must be com-
municated to the base station immediately. The latency of the data com-
munication across the network to the base station has a critical impact on
application performance. Users demand that alarm situations be reported
within seconds of detection. This means that network nodes must be able
to respond quickly to requests from their neighbors to forward data.

In these networks, reducing the latency of an alarm transmission is
significantly more important than reducing the energy cost of the trans-
missions. This is because alarm events are expected to be rare. In a fire
surveillance system, alarms would almost never be signaled. In the event
that one does occur a significant amount of energy could be dedicated to
the transmission. Reducing the transmission latency leads to higher en-
ergy consumption because routing nodes must monitor the radio channel
more frequently.

10

2.1.3 Node tracking scenarios

A third usage scenario commonly discussed for sensor networks is the
tracking of a tagged object through a region of space monitored by a sen-
sor network (TCC07). There are many situations where one would like to
track the location of valuable assets or personnel. Current inventory con-
trol systems attempt to track objects by recording the last checkpoint that
an object passed through. However, with these systems it is not possible
to determine the current location of an object. For example, UPS tracks
every shipment by scanning it with a barcode whenever it passes through
a routing center. The system breaks down when objects do not flow from
checkpoint to checkpoint. In typical work environments it is impractical
to expect objects to be continually passed through checkpoints.

With WSNs, objects can be tracked by simply tagging them with a
small sensor node. The sensor node will be tracked as it moves through
a field of sensor nodes that are deployed in the environment at known
locations. Instead of sensing environmental data, these nodes will be de-
ployed to sense the RF messages of the nodes attached to various objects.
The nodes can be used as active tags that announce the presence of a de-
vice. A database can be used to record the location of tracked objects
relative to the set of nodes at known locations. With this system, it be-
comes possible to ask where an object is currently, not simply where it
was last scanned.

Unlike sensing or surveillance networks, node tracking applications
will continually have topology changes as nodes move through the net-
work. While the connectivity between the nodes at fixed locations will
remain relatively stable, the connectivity to mobile nodes will be contin-
ually changing. Additionally the set of nodes being tracked will contin-
ually change as objects enter and leave the system. It is essential that the
network be able to efficiently detect the presence of new nodes that enter
the network.

11

2.1.4 Hybrid networks

In general, complete application scenarios contain aspects of all three cat-
egories. For example, in a network designed to track vehicles that pass
through it, the network may switch between an alarm monitoring net-
work and a data collection network (MSW07). During the long periods of
inactivity when no vehicle is present, the network will simply perform an
alarm monitoring function. Each node will monitor its sensors waiting to
detect a vehicle. Once an alarm event is detected, all or part of the net-
work, will switch into a data collection network and periodically report
sensor readings up to a base station that track the vehicles progress.

2.2 Characteristics of WSNs: A Summary

WSNs are similar to MANETs as both of them are wireless networks and
involved in multi-hops wireless communications. However WSNs are
very different from traditional data networks including MANETs (Gad06).
The characteristics of WSNs are summarized in this section, together with
some comparisons with MANETs.

• WSNs are application-driven networks.

Different WSNs have different task-specific requirements. It is quite
different to traditional general-purpose networks. This means that
the protocols for WSNs can be totally new. It is not required to tai-
lor the protocol design for WSNs in order to achieve compatibility
to existing protocols of traditional general-purpose networks. For
example, unlike in MANETs, it is not required to build up an IP ad-
dress mechanism over WSNs. Also, the design of protocol stack is
not confined to traditional layering.

• WSNs are self-organized networks.

They are usually with large scale and high node density. The num-
ber of sensor nodes in a network might be several hundred or even
reach over a thousand. Such a large number of sensor nodes are

12

usually left unattended after they are deployed. This means that a
WSN should function in a completely autonomous manner.

• WSNs suffer from limited energy supply.

Protocols for WSNs should be energy-efficient. Sensor node is bat-
tery powered. Recharging a sensor node is expensive, if not im-
possible, which means that it is impractical to revive a sensor node
after its battery energy is drained. Energy efficiency must be a main
consideration of protocol design for WSNs.

• WSNs are instable.

First, low-cost implementation of a sensor node makes it easy to fail.
Also, due to limited energy resource, the power of a sensor node is
easily drained, which results in permanent disfunction of the sensor
node. Second, WSNs are usually working in bad or even hostile
environments. The wireless links between sensor nodes are fragile
and subject to failures. These two situations make a given wireless
communication path between two sensor nodes instable and even
easy to be permanently damaged. Therefore, protocols for WSNs
should adapt to such network instability.

• The mobility feature of WSNs is different from MANETs.

In MANETs, nodes are laptop computers and/or PDAs. Nodes are
therefore mobile. In WSNs, nodes are sensor devices. Usually they
are not mobile after deployment. But the locations of the interesting
phenomena might be mobile, e.g., when the network is tracking a
motor vehicle. Also, the sink of a WSN may be mobile. A sink may
be a hand-held device such as a PDA or a laptop computer. It may
be carried to the network area to collect the sensor data hourly, and
each time its location may be different.

• The network traffic feature of WSNs is different from MANETs.

In MANETs, network traffic is like the traditional wired networks.
It might usually be unicasting. Every node may require to commu-
nicate with all the others ones: traffic is usually in a peer-to-peer

13

manner. Broadcasting and multicasting traffic are also possible in
MANETs. However, in WSNs, usually network traffic is in a many-
to-one manner. Many nodes send data packets to a single node, i.e.,
the sink.

• A global-identity-based addressing mechanism which is required
by traditional data networks including MANETs may be unneces-
sary for WSNs.

The application of WSNs is mainly on collecting data of some phe-
nomena of interest. Depending on specific task requirement, it may
care where a particular phenomenon takes place or whether a par-
ticular phenomenon happens, rather than which particular node is
currently reporting data.

• In-network data processing may be required in WSNs.

WSNs are deployed to collect data of some phenomena of interest.
Usually, there would be many sensor nodes that collect the data of
a particular phenomenon and report the data to the sink. Naturally,
these data packets reported by each source sensor nodes could have
some redundancy. This redundancy can be further exploited by in-
network data processing approaches such as data aggregation or
data fusion.

• Finally, WSNs suffer stronger from computational constraints than
MANETs.

A sensor node has by far lower memory capacity than a node of
a MANET, and its computational speed is much slower due to its
low-cost design, small size and lower battery capacity. One cannot
expect to save large volume of data in a sensor node or program it
to execute complex algorithms.

These constraints are the main reasons why many network proto-
cols for traditional data networks including MANETs are not suit-
able for WSNs. We have to employ another family of network pro-
tocols for data communication and network organization in WSNs
which take into account the above network characteristics.

14

2.3 Evaluation Metrics

This chapter ends exploring, more in detail, some key network evalua-
tion metrics. To do this we keep in mind the high-level objectives of the
network deployment, the intended usage of the network, and the key ad-
vantages of WSNs over existing technologies.

One result is that many of these evaluation metrics are interrelated.
Often it may be necessary to decrease performance in one metric, such
as sample rate, in order to increase another, such as lifetime. Taken to-
gether, this set of metrics form a multidimensional space that can be used
to describe the capabilities of a WSN. The capabilities of a platform are
represented by a volume in this multidimensional space that contains all
of the valid operating points. In turn, a specific application deployment
is represented by a single point. A system platform can successfully per-
form the application if and only if the application requirements point lies
inside the capability hyperspace.

One goal of this chapter is to present an understanding of the trade-
offs that link each axis of this space and an understanding of current ca-
pabilities.

2.3.1 Lifetime

Critical to any WSN deployment is the expected lifetime. The goal of both
the environmental monitoring and surveillance application scenarios is
to have nodes placed out in the field, unattended, for months or years
(YQ05; NKL+07).

The primary limiting factor for the lifetime of a sensor network is the
energy supply. Each node must be designed to manage its local supply
of energy in order to maximize total network lifetime. In many deploy-
ments it is not the average node lifetime that is important, but rather the
minimum node lifetime. In the case of wireless surveillance systems, ev-
ery node must last for multiple years. A single node failure would create
a vulnerability in the surveillance systems.

In some situations it may be possible to exploit external power, per-
haps by tapping into building power with some or all nodes. However,

15

one of the major benefits to wireless systems is the ease of installation.
Requiring power to be supplied externally to all nodes considerably re-
duces this advantage. A compromise is to have a handful of special nodes
that are wired into the building’s power infrastructure.

In most application scenarios, a majority of the nodes will have to be
self-powered. They will either have to contain enough stored energy to
last for years, or they will have to be able to scavenge energy from the
environment through devices, such as solar cells or piezoelectric genera-
tors (KKPG98; RWR03). Both of these options demand that the average
energy consumption of the nodes be as low as possible.

The most significant factor in determining lifetime of a given energy
supply is radio power consumption. In a wireless sensor node the radio
consumes a vast majority of the system energy. This power consump-
tion can be reduced through decreasing the transmission output power,
through decreasing the radio duty cycle or through in-network process-
ing. The first two options involve sacrificing other system metrics, while
the third one could not affect any other system metric.

2.3.2 Coverage

Next to lifetime, coverage is the primary evaluation metric for a wireless
network (CTLW05; HT05). It is always advantageous to have the ability
to deploy a network over a larger physical area. This can significantly in-
crease the system’s value to the end user. It is important to keep in mind
that the coverage of the network is not equal to the range of the wire-
less communication links being used. Multi-hop communication tech-
niques can extend the coverage of the network well beyond the range of
the radio technology alone. In theory they have the ability to extend net-
work range indefinitely. However, for a given transmission range, multi-
hop networking protocols increase the power consumption of the nodes,
which may decrease the network lifetime. Additionally, they require a
minimal node density, which may increase the deployment cost.

Scalability is a key component of the WSN value proposition. A user
can deploy a small trial network at first and then can continually add

16

sense points to collect more and different information. A user must be
confident that the network technology being used is capable of scaling to
meet his eventual need. Increasing the number of nodes in the system
will impact either the lifetime or the effective sample rate. More sens-
ing points will cause more data to be transmitted which will increase the
power consumption of the network. This can be offset by sampling less
often.

2.3.3 Cost and ease of deployment

A key advantage of WSNs is their ease of deployment (TM03). Biolo-
gists and construction workers, for instance, installing networks cannot
be expected to understand the underlying networking and communica-
tion mechanisms at work inside the wireless network. For system deploy-
ments to be successful, the WSN must auto-configure itself. An unskilled
person should place the nodes throughout the environment and the WSN
should automatically work.

Ideally, the system should automatically configure itself for any pos-
sible physical node placement. However, real systems must place con-
straints on actual node placements - it is not possible to have nodes with
infinite range. The WSN must be capable of providing feedback as to
when these constraints are violated. The network should be able to as-
sess quality of the network deployment and indicate any potential prob-
lem. This translates to requiring that each device be capable of perform-
ing link discovery and determining link quality. In addition to an initial
configuration phase, the system must also adapt itself to changing envi-
ronmental conditions. Throughout the lifetime of a deployment, nodes
may be relocated or large physical objects may be placed so that they in-
terfere with the communication between two nodes. The network should
be able to automatically reconfigure on demand in order to tolerate these
occurrences.

The initial deployment and configuration is only the first step in the
network life-cycle. In the long term, the percentage of the maintenance
cost will be higher than the percentage of initial deployment cost with re-

17

spect to the total cost of ownership. The surveillance application scenario
in particular requires that the system be extremely robust. In addition to
extensive hardware and software testing prior to deployment, the sensor
system must be constructed so that it is capable of performing continu-
ous self-maintenance. When necessary, it should also be able to generate
requests when external maintenance is required.

In a real deployment, a fraction of the total energy budget must be
dedicated to system maintenance and verification. The generation of di-
agnostic and reconfiguration traffic reduces the network lifetime. It can
also decrease the effective sample rate.

2.3.4 Response Time

Particularly in alarm application scenarios, system response time is a crit-
ical performance metric (LHF08). An alarm must be signaled immedi-
ately when an intrusion is detected. Despite low power operation, nodes
must be capable of having immediate, high-priority messages communi-
cated across the network as quickly as possible. While these events will
be infrequent, they may occur at any time without notice. Response time
is also critical when environmental monitoring is used to control factory
machines and equipment. Many users envision WSNs as useful tools for
industrial process control. These systems would only be practical if re-
sponse time guarantees could be met.

The ability to have low response time conflicts with many of the tech-
niques used to increase network lifetime. Network lifetime can be in-
creased by having nodes only operate their radios for brief periods of
time. If a node only turns on its radio once per minute to transmit and
receive data, it would be impossible to meet the application requirements
for response time of a surveillance system.

Response time can be improved by including nodes that are powered
all the time. These nodes can listen for the alarm messages and forward
them down a routing backbone when necessary. This, however, reduces
the ease of deployment for the system.

18

2.3.5 Temporal Accuracy

In environmental and tracking applications, samples from multiple nodes
must be cross-correlated in time in order to determine the nature of phe-
nomenon being measured. The necessary accuracy of this correlation
mechanism will depend on the rate of propagation of the phenomenon
being measured. In the case of determining the average temperature of
a building, samples must only be correlated to within seconds (CMV08).
However, to determine how a building reacts to a seismic event, millisec-
ond accuracy is required.

To achieve temporal accuracy, a network must be capable of construct-
ing and maintaining a global time base that can be used to chronologically
order samples and events. In a distributed system, energy must be con-
sumed to maintain this distributed clock. Time synchronization informa-
tion must be continually communicated between nodes. The frequency
of the synchronization messages is dependent on the desired accuracy of
the time clock.

2.3.6 Security

Despite the seemingly harmless nature of simple temperature and light
information from an environmental monitoring application, keeping this
information secure can be extremely important. Significant patterns of
building use and activity can be easily extracted from a trace of temper-
ature and light activity in an office building. In the wrong hands, this
information can be exploited to plan a strategic or physical attack on a
company. WSNs must be capable of keeping the information they are
collecting private from eavesdropping (MWS08).

As we consider security oriented applications, data security becomes
even more significant. Not only must the system maintain privacy, it must
also be able to authenticate data communication. It should not be possible
to introduce a false alarm message or to replay an old alarm message as
a current one. A combination of privacy and authentication is required
to address the needs of all three scenarios. Additionally, it should not
be possible to prevent proper operation by interfering with transmitted

19

signals.
Use of encryption and cryptographic authentication costs both power

and network bandwidth (PST+02; Riv94). Extra computation must be
performed to encrypt and decrypt data and extra authentication bits must
be transmitted with each packet. This impacts application performance
by decreasing the number of samples than can be extracted from a given
network and the expected network lifetime.

2.3.7 Effective Sample Rate

In a data collection network, effective sample rate is a primary application
performance metric. We define the effective sample rate as the sample
rate that sensor data can be taken at each individual sensor and commu-
nicated to a collection point in a data collection network. Fortunately, en-
vironmental data collection applications typically only demand sampling
rates of 1-2 samples per minute. However, in addition to the sample rate
of a single sensor, we must also consider the impact of the multi-hop net-
working architectures on the node’s capability to effectively relay the data
of surrounding nodes (MFHH02).

In a data collection tree, a node must handle the data of all of its de-
scendants. If each child transmits a single sensor reading and a node has a
total of 60 descendants, then it will be forced to transmit 60 times as much
data. Additionally, it must be capable of receiving those 60 readings in a
single sample period. This multiplicative increase in data communica-
tion has a significant effect on system requirements. Network bit rates
combined with maximum network size end up impacting the effective
per-node sample rate of the complete system.

One mechanism for increasing the effective sample rate beyond the
raw communication capabilities of the network is to exploit in-network
processing. Various forms of spatial and temporal compression can be
used to reduce the communication bandwidth required while maintain-
ing the same effective sampling rate. Additionally local storage can be
used to collect and store data at a high sample rate for short periods of
time. In-network data processing can be used to determine when an “in-

20

teresting” event has occurred and automatically trigger data storage. The
data can then be downloaded over the multi-hop network as bandwidth
allows.

Triggering is the simplest form of in-network processing. It is com-
monly used in surveillance systems. Effectively, each individual sensor
is sampled continuously, processed, and only when a security breach has
occurred data is transmitted to the base station. If there were no local
computation, a continuous stream of redundant sensor readings would
have to be transmitted.

21

Chapter 3

Reducing energy
consumption in WSNs:
State of the Art

In WSNs, the communication cost is often several orders of magnitude
higher than the computational cost. Pottie and Kaiser (PK00) reported
that the energy consumption for executing 3000 instructions is equivalent
to sending a bit in a range of 100 meters by radio. Therefore data aggrega-
tion, data compression (from now on we will refer to them as in-network
processing) and duty cycling schemes are very important to extend the net-
work lifetime. Duty cycling schemes define coordinated sleep/wakeup
schedules among nodes in the network. On the other hand, in-network
processing consists in reducing the number of information to be transmit-
ted by means of compression or aggregation.

3.1 Duty cycling schemes

With current hardware technology, the most of the energy is spent by the
radio transceiver. Besides the energy spent during transmission and re-
ception of messages, also the energy consumption due to listening on the
channel waiting for incoming packets is relevant (idle listening). To limit

22

the energy consumption due to idle listening, the most effective solution
is to turn on and off the radio repetitively (duty cycling). This can be
done efficiently at the MAC level. Possible approaches are represented
by schedule-based and contention-based protocols. In schedule-based pro-
tocols (vHH04; KA06; LL04; vL03; LKR04) there is a common schedule
that reserves a period for transmission to each node. Thus, the receiver
knows when the radio must be turned on to receive possible incoming
data. In contention-based protocols (PHC04; ACMV06; BKK07) the node
periodically turns on the radio and checks for activity on the channel. If
the channel is found busy, the radio is kept in receive mode and data is
received, otherwise the node goes back into the sleep state. Both appro-
aches have pros and cons: schedule-based protocols are more complex
to be implemented and may suffer high latency, but at the same time
they provide some guarantees to nodes; contention-based protocols are
simpler, mainly because of the lack of a shared scheduling policy, and
more tolerant to the appearance and disappearance of nodes (e.g. due
to mobility), but they may lead to poor performance under high traffic
loads (ACMV06). Moreover, in some sensor network applications such
as surveillance, fire detection, and object-tracking system, networks are
idle most of the time, but a sudden event causes a large amount of pack-
ets to yield network congestion. In such circumstances, MAC protocols
which have a fixed duty cycle suffer from data loss because they are inap-
propriate to the heavy traffic load. MAC protocols with a small fixed duty
cycle can save energy with no events, but packets can be dropped due to
queue overflow whenever an event occurs. To reduce the packet drop,
the fixed duty cycle should be increased, but energy is largely wasted
for frequent listening whenever no events occur. Hence, it is desirable
to increase duty cycle to prevent packet drop under heavy traffic, and to
decrease duty cycle for nodes that are unaffected by the traffic or are un-
der the light traffic to save energy (BKK07). For this reason several MAC
protocols with adaptive duty cycle have been studied: B-MAC (PHC04)
and its improvements (ACMV06; BKK07) are but examples. For a com-
plete review of recent advances in this direction the reader can refer to
(ACDP07).

23

One of the most known and used MAC protocol is the B-MAC (Berke-
ley MAC) protocol, which has been developed at UCB and now is shipped
with the TinyOS operating system (HSW+00). B-MAC uses an asyn-
chronous sleep/wake scheme: nodes wake up periodically to check the
channel for activity using a low power listening (LPL). If the channel is
not active, they come back to sleep; otherwise, they maintain the radio on
to receive the packet. In B-MAC, packets are composed of a long pream-
ble and a payload. The preamble duration has to be longer than the check
interval so as to allow a node to detect ongoing transmissions during
its check interval. This approach avoids explicit synchronization mech-
anisms despite a longer packet. Of course, the B-MAC protocol allows
saving energy only if the number of packets transmitted by a node is not
too high. Thus, in order to achieve a conspicuous power consumption
reduction, duty cycling schemes should be accompanied by in-network
processing techniques.

3.2 Data Aggregation

In-network aggregation is a well known technique to achieve energy ef-
ficiency when propagating data from information sources (e.g., sensors)
to sink(s). The main idea behind in-network aggregation is that, rather
than sending individual data items from sensors to sinks, multiple data
items are aggregated as they are forwarded by the sensor network. Data
aggregation is application-dependent, i.e., depending on the target ap-
plication, the appropriate data aggregation operator, or aggregator, will
be employed. For example, suppose that in a controlled temperature en-
vironment, the average temperature needs to be monitored. As sensors
generate temperature readings periodically, internal nodes in the data col-
lection tree (rooted at the information sink and spanning relevant data
sources) average data received from downstream nodes and forward the
result toward the information sink. The effect is that, by transmitting a
lower number of data units, considerable energy savings can be achieved.
However, the quantity of saved energy depends on the type of aggregator
employed. For instance, in the running average scenario just depicted, a

24

number of packets containing temperature readings from individual sen-
sors are averaged and result in a single packet of the same size as the ones
that carry individual temperature readings. However, if the only possi-
ble aggregator is concatenation, i.e., multiple data items are concatenated
and transmitted as a single packet, then the sole source of energy savings
is a more efficient medium access.

From the information sink’s point of view, the benefits of in-network
aggregation are that in general i) it yields more manageable data streams
avoiding overwhelming sources with massive amounts of information,
and ii) performs some filtering and pre-processing on the data, making
the task of further processing the data less time and resource consuming.

Because of its well-known power efficiency properties, in-network ag-
gregation has been the focus of several research efforts on sensor net-
works over the last years. As a result, several data aggregation algo-
rithms targeting different sensor network scenarios have been proposed.
Directed diffusion (IGE+03), TAG (MFHH02), eScan (ZGE02), and Sen-
sor Protocols for Information via Negotiation (SPIN) (HKB99) represent
milestones in this direction.

Monitoring (including monitoring of continuous environmental con-
ditions like temperature, humidity, seismic activity, etc.) is a good exam-
ple of such applications. One of the constraints imposed by periodic data
generation on aggregation algorithms is timing. In other words, how long
should a node wait for receiving data from its children before forwarding
data it has already received? Note that the trade-off is between data ac-
curacy and freshness, i.e., the longer a node waits, the more readings it is
likely to receive and therefore, the more accurate the information it sends
out. On the other hand, waiting too long may result in stale data. Fur-
thermore, if a node waits too long, it may interfere with the next “data
wave”.

We successfully tackled the issue of enabling aggregation in WSNs
developing a novel distributed framework based on fuzzy numbers and
weighted average operators to reduce data communication when inter-
ested in the estimation of an aggregated value such as maximum or min-
imum temperature measured in the network. The basic point of our ap-

25

proach is that each node maintains an estimate of the aggregated value.
Based on this estimate, the node decides whether a new value measured
by the sensor on board the node or received through a message has to
be propagated along the network. We can note that the approach is com-
pletely distributed: there is no need to create and maintain a hierarchical
structure of the network.

To the best of our knowledge, only a few papers have discussed the
topic of structure-free data aggregation in WSNs (KWFLS07; BGS03). In-
deed, there are two main challenges in performing structure-free data ag-
gregation. First, as there is no pre-constructed structure, routing decisions
for efficient aggregation of packets need to be made on-the-fly. Second, as
nodes do not explicitly know their upstream nodes, they can not explic-
itly wait for data from any particular node before forwarding their own
data.

WSNs are typically used to monitor some parameters of a physical
process. By its nature, a WSN can only sample these processes and there-
fore generate an approximation of the parameters under observation.
Thus, all the algorithms in WSN have an inherent extra dimension: accu-
racy. This dimension can be exploited to propose energy-efficient algo-
rithms. Indeed, the less accuracy is required, the less network activity is
necessary and the more energy can be saved. Starting from this observa-
tion, Boulis et al. have proposed a distributed estimation algorithm that
explores the energy/accuracy subspace for the periodic aggregation do-
main (BGS03). The basic idea is that each node keeps and possibly trans-
mits an estimate (local estimate) of the global aggregate. In the case of
max or min aggregation functions, the estimate is represented by the pair
of scalars (value, confidence), where value and confidence correspond to,
respectively, the mean and the variance of the estimated max or min. Each
node accepts estimates from all its neighbors and thus can decide dynam-
ically whether its information is useful to other nodes in determining the
global aggregate and therefore whether this information should be broad-
cast. On the contrary, in periodic aggregation implemented by snapshot
aggregation, a node cannot change the rate at which it sends predictions
to its parents (MFHH05).

26

Authors in (KWFLS07) observed that packets need to be aggregated
early on their route to the sink for efficiency. Based on this observation
they proposed and modeled a MAC layer protocol for spatial conver-
gence called Data-Aware Anycast (DAA). Moreover, they observed that
if some nodes wait for other nodes to send data, it can lead to efficient
aggregation. With this observations in mind they studied the impact of
Randomized Waiting (RW) for improved data aggregation.

In contrast, the on-fashion trend is to enable a structured aggregation
to route packets toward the sink. Structured aggregation can be catego-
rized into two families: cluster-based and tree-based (KWFLS07).

3.2.1 Cluster-Based Approaches

In (HCB00), the authors propose the LEACH protocol to cluster sensor
nodes and let cluster-heads aggregate data and communicate with the
base-station directly using high transmission power. The cluster-heads
are randomly elected in each round to distribute energy consumption
among all nodes. LEACHC (CSH02) uses the base-station to broadcast
cluster-head assignment to further spreading out the cluster-heads through-
out the network. Based on LEACH, (ZHL04) refines the cluster-head elec-
tion algorithm that does not require the participation of the base-station
and scatters cluster-heads more evenly across the network. However it
requires every node to broadcast at its highest transmission power at the
setup stage of each round, which limits its ability to conserve energy.

Lindsey et al. propose PEGASIS (LR02) which organizes all nodes in
a chain and lets them play the role of heads in turn to conserve more en-
ergy. Since there is only one head node and there are not simultaneous
transmissions, latency is an issue in PEGASIS. To address this, two chain-
based PEGASIS enhancements are proposed in (LRS01) and (LRS02). In
(LRS01) the authors propose a binary hierarchical approach for CDMA-
capable sensor nodes, and in (LRS02) they propose a chain-based three
level approach that allows simultaneous transmission for non- CDMA-
capable sensor nodes. Based on LEACH and PEGASIS, Culpepper et
al. propose Hybrid Indirect Transmission (HIT) (CDM04). HIT still uses

27

LEACH-like clusters, but allows multi-hop routes between cluster-heads
and non-head nodes.

LEACH and PEGASIS based protocols assume that the base-station
can be reached by any node in one hop, which limits the size of the net-
work for which such protocols are applicable. In addition, in scenarios
where the data can not be perfectly aggregated, cluster-based protocols
do not necessarily have significant advantage since the cluster-head has
to send many packets to the base station using high transmission power.

3.2.2 Tree-Based Approaches

In (IEGH02) the authors propose Greedy Incremental Tree (GIT) to estab-
lish an energy-efficient path based on Directed Diffusion (IGE+03). Krish-
namachari et al. (KEW02) compare three data-centric routing schemes,
Center at Nearest Source (CNS), Shortest Path Tree (SPT) and a varia-
tion of (GIT) which establishes the route between the sink and the nearest
source to illustrate the advantage of data aggregation. They observe that
GIT guarantees the lowest average number of transmissions. In (MFHH02;
MRFC02) Madden et al. study the data aggregation issue in implement-
ing a real system and propose the Tiny AGgregation Service (TAG) frame-
work. TAG uses shortest path tree and proposes improvements like
snooping-based and hypothesis testing based optimizations, dynamic par-
ent switching, and use of child cache to estimate lost data.

TAG lets parents notify their children about the waiting time to gather
all data from children before transmitting, and the sleeping schedule can
be adjusted accordingly. Ding et al. use the shortest path tree with par-
ent energy-awareness in (DCX03), where the neighboring node with the
shortest distance to the sink among those with high residual energy is
chosen as the parent. All the above tree-based data aggregation routing
protocols need a lot of message exchanges to construct and maintain the
tree. Zhang and Cao propose Dynamic Convoy Tree-Based Collaboration
(DCTC) in (ZC04a). In (ZC04b), they further optimize the tree reconfigu-
ration schemes. Essentially, DCTC tries to balance the tree in the monitor-
ing region to reduce the energy consumption. But it assumes the knowl-

28

edge of the distance to the center of the event at sensor nodes, which may
not be feasible to compute with the sensed information in all tracking ap-
plications. In addition, DCTC involves heavy message exchanges which
are not desired when the data rate is high. Also, the performance of DCTC
highly depends on the accuracy of mobility prediction algorithms.

Another class of tree-based data-centric routing protocols considers
sensing information entropy in the routing metric (SS02; Sca03; CV03;
CBLV04; PKG08). However joint source coding or even its approxima-
tion is hard to deploy since the real distribution of collected data is hard
to predict; moreover, we will introduce the issues of single node entropy
compression in the next subsection. In (CV03; CBLV04), the authors study
explicit communication considering joint entropies among nodes into the
routing metric, and propose approximation algorithms such as Leaves
Deletion approximation and Balanced SPT/TSP tree. But these algorithms
are centralized. They assume the global knowledge of the information
entropy of each sensor node and the joint entropy of each pair, which
makes such approaches non-trivial to implement in practice. Pattern et al.
study the impact of spatial correlation on routing for some special cases
in (PKG08) and derive the optimal cluster size for these cases. Although
authors use cluster structure, the basic tree-based routing is maintained
instead of transmitting packets to the base-station in one hop.

3.3 Data Compression

Compression techniques reduce the data size by exploiting the structure
of the data, so they can be a valuable tool when we are interested in limit-
ing transmission/reception of data in WSNs. On the other hand, the lim-
ited resources available in a sensor node demand, as already highlighted,
the development of specifically designed compression algorithms.

Data compression algorithms fall into two broad classes: lossless and
lossy algorithms. Lossless algorithms guarantee the integrity of data dur-
ing the compression/decompression process. On the contrary, lossy algo-
rithms may generate a loss of information, but generally ensure a higher
compression ratio.

29

Obviously, the data compression approach (both lossless and lossy)
can be a valuable help in power saving only if the execution of compres-
sion algorithms does not require an amount of energy larger than the one
saved in reducing transmission. Indeed, after analyzing several families
of classic compression algorithms, Barr and Asanović conclude that com-
pression prior to transmission in wireless battery-powered devices may
actually cause an overall increase of power consumption, if no energy
awareness is introduced (BA06). On the other hand, standard compres-
sion algorithms are aimed at saving storage and not energy. Thus, appro-
priate strategies have to be adopted.

We successfully tackled both the aspects of deploying a lossless and a
lossy data compression algorithms.

3.3.1 Lossless Data Compression

The choice of the algorithm type depends on the specific application do-
main. In WSNs, data are collected by sensors which, due to noise, pro-
duce different readings even when they are sampling an unchanging phe-
nomenon. For this reason, sensor manufactures specify not only the sen-
sor operating range but also the sensor accuracy. Datasheets express accu-
racy by providing a margin of error, but typically do not include a prob-
ability distribution for this error. Thus, when a value is measured by a
sensor, we are confident that the actual value is within the error margin,
but cannot know with what probability that value is some distance from
the real value. In this context, lossy compression algorithms may convo-
lute the original error distribution when that distribution is not uniform
(SGO+04). On the other hand, the criticality of some application domains
demands sensors with high accuracy and cannot tolerate that measures
are corrupted by the compression process. In Body Area Networks, for in-
stance, sensor nodes permanently monitor and log vital signs: each small
variation of these signs have to be captured because it might provide
crucial information to make a diagnosis. Thus, we believe that lossless
compression algorithms suitable to WSNs have to be deeply investigated.
Since sensor nodes are typically equipped with a few kilobytes of mem-

30

ory and a 4-8MHz microprocessor, embedding classical data compression
schemes in these tiny nodes is practically impossible (KL05; SM06; BA06).
Indeed, lossless data compression algorithms proposed in the last years
can achieve very high compression ratios despite non negligible memory
occupation and computational effort requirements.

Nevertheless, some examples of existing lossless algorithms adapted
to sensor nodes exist in the literature and they refer typically to dictionary-
based compression. The most famous dictionary-based lossless compres-
sion algorithm is the Lempel-Ziv-Welch (LZW) algorithm. Actually, LZW
is the result of some modifications made in 1984 by Terry Welch (Wel84)
to already existent algorithms developed in 1977 and 1978 by Abraham
Lempel and Jacob Ziv, called respectively LZ77 (ZL77) and LZ78 (parts
of LZ78 were patent protected in the United States). LZW is surpris-
ingly simple. In a nutshell, it replaces strings of characters with single
codes. Since codes are generally smaller than strings, compression can be
achieved by replacing strings with codes in the original data. LZW per-
forms no analysis of the incoming text: for each new string, just a new
code is created. Codes are of any arbitrary length. When using eight
bit-coding for characters, the first 256 codes are by default assigned to
the standard character set. The other codes are generated when they are
needed. Since both the compressor and the decompressor have the initial
dictionary and all new dictionary entries are created based on existing
dictionary entries, the receiver can recreate the dictionary on the fly as
data are received. An analysis of the original versions of LZ77, LZ78 and
LZW (SM06; BA06) highlights that they are far away from being embed-
dable in sensor nodes, since their processing and memory requirements
are greater than the ones available in commercial sensor nodes. Thus,
”embedded” versions of these algorithms have been proposed. In (SM06)
and (LZO) the authors introduce S-LZW and miniLZO which are pur-
posely adapted versions of LZW and LZ77, respectively. Since S-LZW
outperforms miniLZO, as shown in (SM06), we describe only S-LZW in
detail and use it as comparison for our algorithm in Chapter 5.

S-LZW splits the uncompressed input bitstream into fixed size blocks
and then compresses separately each block. During the block compres-

31

sion, for each new string, that is, a string which is not already in the
dictionary, a new entry is added to the dictionary. For each new block,
the dictionary used in the compression is re-initialized by using the 256
codes which represent the standard character set. Due to the poor stor-
age resources of sensor nodes, the size of the dictionary has to be limited.
Thus, since each new string in the input bitstream produces a new entry
in the dictionary, the dictionary might become full. If this occurs, an ap-
propriate strategy has to be adopted. For instance, the dictionary can be
frozen and used as-is to compress the remainder of the data in the block
(in the worst case, by using the code of each character), or it can be reset
and started from scratch.

Nevertheless, the basic S-LZW algorithm does not take specific ad-
vantage of sensor data characteristics. Indeed, sensor data are generally
repetitive. Even data that change drastically over time tend to adhere to
this pattern since sampling intervals are taken very short so as to model
the drastic changes in the data. Thus, to take this repetitive behaviour
into account, a mini-cache is added to S-LZW: the mini-cache is a hash-
indexed dictionary of size N, where N is a power of 2, that stores recently
used and created dictionary entries. Further, the repetitive behaviour can
be used to pre-process the raw data so as to build appropriately struc-
tured datasets, which can perform better with the compression algorithm.
In (SM06), the authors show that the use of structured datasets and the
introduction of the mini-cache increase the compression ratios without
introducing appreciable computational overhead. It follows that S-LZW
has to balance four major inter-related parameters: the block size, the dic-
tionary size, the strategy to follow when the dictionary is full and the
mini-cache size. The values of these four parameters deeply influence
compression performances, so they have to be fine tuned before deploy-
ing S-LZW in sensor nodes.

3.3.2 Lossy Data Compression

When the application does not have to meet high-accuracy measurements
requirements cheap sensors should be used. Such sensors, due to noise,

32

produce different readings even when they are sampling an unchanging
phenomenon. Noise increases the entropy of the signal and therefore hin-
ders the lossless compression algorithm to achieve considerable compres-
sion ratios. The ideal solution would be to adopt on the sensor node a
lossy compression algorithm in which the loss of information would be
just the noise. Thus, we could achieve high compression ratios without
losing relevant information. To enable lossy compression in WSNs two
approaches have been followed in the literature:

• to distribute the computational cost on the overall network (JJRZQG06;
GBT+04; GEH03; GDV06; Cia06; TR04; WBD+06; CPOK06; PKR02;
XLC04; RM07);

• to enable compression acting at single node independently of the
others (SGO+04).

The first approach is natural in cooperative and dense WSNs. Here, nodes
can collaborate with each other so as to carry out tasks they could not
execute alone. Thanks to the particular topology of these WSNs, data
measured by neighboring nodes are correlated both in space and in time.

The simplest distributed approach in WSNs relies on fixing a model,
either stochastic or deterministic, of the phenomenon under monitoring
and estimating the parameters of that model. An overview of stochastic
methods can be found in (JJRZQG06). Here, the phenomenon is modeled
as a single scalar or a vector. Nodes quantize their noisy measurements, a
central data sink collects the measurements and estimates the scalar or the
vector. While the technique is able to accommodate a broad class of noise
models, the constant signal model is very restrictive and unable to rep-
resent arbitrarily smooth phenomena. A deterministic technique, which
allows managing more complicated signal models, has been proposed
in (GBT+04). Here, first a set of basis functions is used to locally fit the
phenomenon in various regions of the network. Then, the resulting ap-
proximations are tied together by kernel regression, implemented using
inter-sensor message exchange. Unfortunately, the reliability of the recon-
struction depends on the appropriate choice of the basis functions. Since
this choice is performed statically and the set of functions does not vary

33

dynamically, phenomena of arbitrary complexity cannot be adequately
modeled. For example, using a set of globally smooth functions, piece-
wise smooth phenomena separated by a jump discontinuity cannot be
reconstructed. Indeed, the basis representation will smooth out the dis-
continuity, arguably the most interesting feature of the signal (WDB06).

Distributed transform coding bridges this gap by allowing the data
itself to guide the representation rather than forcing it to fit a set of pre-
fixed models. This approach is based on theoretical principles of trans-
form analysis performed on the source bits in order to compact the signal
energy so as to achieve a better signal-to-noise ratio (SNR). Various kinds
of transforms such as Discrete Wavelet Transform (DWT) and Karhunen-
Loève Transform (KLT) (Goy01) have been proposed for different types
of applications. We recall that transforms are invertible functions which
merely change the representation of the signal without altering the infor-
mation contained in it. The motivating principle of such transform is that
a more effective simple coding can be achieved in the transform domain
than in the original signal space.

Distributed transform coding, however, requires inter-node commu-
nication: nodes need data from neighbors to compute the transform co-
efficients. Extra power is therefore consumed to transmit data to neigh-
bors and to receive data from neighbors. Further, since multiple nodes
may want to communicate to each other at the same time, a channel ac-
cess method for shared medium has to be adopted (TDMA scheduling or
FDMA scheduling, for example). Due to the popularity of dense sensor
networks, several works have been proposed for distributed transform
(GDV06; GEH03; Cia06; TR04; WBD+06; CPOK06).

Finally, to overcome the problem of inter-node communication, Dis-
tributed Source Coding (DSC) (PKR02; XLC04), also known as Slepian-
Wolf coding (in the lossless case) (SW73) and Wyner-Ziv coding (in the
lossy case) (WZ76), has been proposed. Here, the assumption is that sen-
sor nodes are densely deployed. Thus, the readings of one sensor are
highly correlated with those of its neighbors. DSC refers to the com-
pression of multiple correlated sensor outputs that do not communicate
with each other. These sensors send their compressed outputs to a cen-

34

tral point, e.g., the base station, for joint decoding the encoded streams.
DSC is the on-fashion trend in distributed data compression and a large
number of papers focus on this scheme: for the sake of brevity we in-
vite interested readers to refer to (RM07). We observe that DSC cannot be
used without proper synchronization among the nodes of the WSN, i.e.,
assumptions have to be made for the routing and scheduling algorithms
and their connection to the DSC scheme (RM07).

To the best of our knowledge, only one paper has discussed the sec-
ond approach: the Lightweight Temporal Compression (LTC) algorithm
(SGO+04). It is an efficient and simple lossy compression technique for
the context of habitat monitoring. LTC introduces a small amount of er-
ror into each reading bounded by a control knob: the larger the bound on
this error, the greater the saving by compression. Basically LTC is similar
to Run Length Encoding (RLE) in the sense that it attempts to represent a
long sequence of similar data with a single symbol (Sal07). The difference
with RLE is that while the latter searches for strings of a repeated symbol,
LTC search for linear trends.

Actually, to compress data locally and independently of the other nodes
has a non-negligible advantage with respect to the distributed transform
approach: nodes do not need to communicate with each other. Thus,
nodes save energy and do not compete for the shared medium. On the
other hand, in an attempt to decorrelate the information, each sensor can
use only its local information, thus vanishing the promising results ob-
tained by DSC. This can be problematic whether either the compression
ratios achieved by the compression algorithm executed independently on
the sensor node are too low (the amount of compressed data is still large),
or, though the compression ratios are high, these have been obtained by
executing a high number of instructions, with consequent large power
consumption.

35

Chapter 4

A Distributed Fuzzy
Aggregation Approach for
WSNs

In order to develop our distributed aggregation framework we were in-
spired by some good characteristics of the algorithm proposed by Boulis
et al. (BGS03). Here, whenever a node gets an estimate from a neigh-
boring node or acquires a local measurement from the sensor, it aggre-
gates the estimate or the local measurement with its local estimate. The
first aggregation (global fusion) is performed by using the covariance in-
tersection algorithm (CAM02). As regards the second aggregation (local
fusion), local measurements are represented by a pair of scalars (value,
confidence), where value and confidence are, respectively, the measured
value and the variance of the measurement noise. The aggregation is
computed as a weighted sum where weights depend on the reciprocal
positions of the measured value and of the value of the local estimate,
and on the two corresponding confidences. To decide whether the re-
sults of the global and local fusions have to be broadcast, each node con-
sults a local table, where the most recently received estimates from the
neighborhood are maintained: if the difference between the new gener-
ated estimate and at least one of the estimates in the table are higher than

36

a pre-fixed threshold, then the new estimate is broadcast. In contrast to
tree-based approaches that obtain the aggregates at a single (or a few) sink
node, the algorithm maintains the aggregate at each node and therefore
each node can interpret the role of sink. Further, the algorithm takes ad-
vantage of the broadcast nature of wireless transmission: all nodes within
the radio range can hear and receive the signal of a wireless transmission.
Finally, there is no need to create and maintain a hierarchical structure
of the network. In our approach we exploited these good features, but
adopting different techniques in managing measurement error, aggrega-
tion, decision and routing.

We will show how network lifetime can be computed. Then we will
discuss and evaluate the application of the algorithm to the monitoring
of the maximum temperature in a 100-node simulated WSN and a 12-
node real WSN. For the real WSN, we will use Tmote Sky motes from
Sentilla as nodes (Senc). We will discuss how our distributed algorithm
promptly reacts to changes of temperature, maintaining the total number
of messages exchanged among the nodes very low. We will show that, in
the worst case, the WSN lifetime is approximately 418 days with a battery
capacity of 2500mAh. This result is extremely interesting. Indeed, we
have to consider that applications which do not switch off the radio when
no message is sent or received, and do not try to reduce the number of
messages on the network, are characterized by a lifetime of a few days.
Finally, we will show that our algorithm performs favorably with respect
to the approach proposed in (BGS03).

4.1 Our Approach

4.1.1 Overview

The basic idea of our approach is that each node maintains an estimate E
of the global aggregated function. Thus, when the node receives a new
value from a neighbor or measures a new value from the sensor, it can
decide whether the new value has to be forwarded or not. To take the
measurement error into account, we represent the value measured by the

37

sensor as a symmetric triangular fuzzy number V = (v, vs), where v is
the central value and vs is the spread of the triangle. The spread is pro-
portional to the measurement error. It follows that estimate E is a fuzzy
number in turn and is represented as E = (e, es). For the sake of simplic-
ity, we chose to adopt triangular fuzzy numbers. Anyway, our approach
can be easily adapted to other types of membership functions.

Figure 1 shows the modules deployed on each generic node nk. The
module Fuzzifier is activated by each new value vk measured by the sen-
sor on board the node. The output of the module is the fuzzification of
vk as the symmetric triangular fuzzy number Vk = (vk, vsk). The mod-
ule Message Analyzer is activated whenever node nk receives a message
from a neighboring node, say ni. The Message Analyzer extracts the in-
formation from the message and decides whether this information has to
be sent either to the Table of Estimates, or to the Aggregation and Deci-
sion modules. The information is the estimateEi of the global aggregated
function maintained in node ni. The Table of Estimates has an entry i

for each neighboring node ni: the entry contains the last value received
from node ni. The Aggregation module aggregates either Vk or Ei with
Ek. The output of the module is a new estimate nEk, which replaces the
old estimate Ek and is input to the Decision module. Based on the Ta-
ble of Estimates, the Decision module decides whether nEk is relevant
and therefore has to be sent to the neighbors or not. In the case of max-
imum (minimum) estimation, if the new estimate is larger (lower) than
at least one entry in the table and the degree of uncertainty of this entry
is higher than the one of the new estimate, then the new estimate is sent
in broadcast; otherwise no communication occurs. If the variable we are
monitoring varies slowly, the number of exchanged messages is very low.
In the following, we analyze the single modules in detail.

4.1.2 The Aggregation Module

The Aggregation Module compares either Ei(ei, esi) or Vk(vk, vsk) to
Ek(ek, esk) and produces a new estimate nEk(nek, nesk). In the follow-
ing, we denote Ei(ei, esi) and Vk(vk, vsk) as I(i, is). The Aggregation

38

Figure 1: Block diagram of the application deployed on each node

Module behaves differently with respect to the following different cases:

1. I ∩ Ek = 0. The new value nEk depends on the type of aggregate
we are monitoring in the network:

(a) if the aggregate is the minimum, then nEk = min(I, Ek);

(b) if the aggregate is the maximum, then nEk = max(I, Ek);

2. I ∩ Ek 6= 0. The new value nEk is computed as follows:
nek = ek · wEi

+ i · wI

nesk = esk · wEi + is · wI = 2·esk·is
esk+is ,

wherewEi = is
esk+is andwi = esk

esk+is . Actually, nesk is the harmonic mean
of esk and is.

The aggregation is therefore performed only if the two input estimates
are comparable; otherwise the new value of the estimate depends on the
type of aggregate we are monitoring. The aggregation is implemented as
a weighted sum, where weights are inversely proportional to the spread
of the two fuzzy numbers. The rationale for this choice is that the less

39

uncertain fuzzy number has to be more relevant in the aggregation com-
putation.

4.1.3 The Table of Estimates

The Table of Estimates is shown in Figure 2. Each entry of the table col-
lects information about a neighboring node ni. The first column contains
the identifier of the neighboring node. The second column stores the last
estimate Ei which node nk has received from node ni. The third column
contains a timeout counter ci which is increased whenever node nk sends
a message. The counter is set to 0 whenever a new estimate Ei is received
from node ni. The fourth column stores bit bi which indicates if the entry
is valid or not. The bit is initialized to 1. When counter ci exceeds a value
α fixed by the user, bit bi is set to 0 (invalidation). The value of the counter
can exceed α when:

• node ni is dead (for instance, because battery is exhausted);

• node ni cannot (temporally or definitively) communicate directly
with node nk. The reason can be, for instance, the movement of
node ni which brings nk out of the radio range of ni.

The invalidation of an entry of the table is very important for allowing,
as explained in the next section, the Decision module to decide whether
the new estimate has to be sent or not.

The Table of Estimates is generated dynamically: at each message re-
ceived from a neighboring node ni, if identifier ni is not in the table, a
new entry is created. In the new entry, the Message Analyzer module
copies the identifier ni and the estimate Ei. Further, it sets counter ci to 0
and validity vi to 1.

4.1.4 The Decision Module

The role of the Decision module is to decide whether the new value nEk

computed by the Aggregation module has to be sent or not. To take this
decision, the Decision module uses the Table of Estimates. The behavior

40

Node Estimate Counter Validity
n1 (e1, es1) c1 b1
.
ni (ei, esi) ci bi
.
nNk (eNk, esNk) cNk bNk

Figure 2: Table of Estimates

of the Decision module depends on the type of aggregate, minimum or
maximum, we are interested in. In the following, we consider the two
cases separately.

• Minimum. The message is sent if, in the Table of Estimates,
∃j : (ej − nek) > σ1 and (nesk − esj) ≤ σ2;

• Maximum. The message is sent if, in the Table of Estimates,
∃j : (nek − ej) > σ1 and (nesk − esj) ≤ σ2,

where σ1 and σ2 are two real positive parameters chosen by the user,
and σ2 is smaller than or equal to the measurement error.

In other words, the message is sent only if the Decision module, based
on the Table of Estimates, considers that there exists some neighboring
node nj with an estimate that is not updated with respect to new esti-
mate nEk and if the spread of nEk is smaller than esj , or, in the case of the
spread of nEk is larger than esj , the difference between the two spreads is
at the most equal to the measurement error. In other words, we forward
nEk only if its degree of uncertainty is comparable to or smaller than the
one of esj . This approach avoids circulating within the network estimates
characterised by a high degree of uncertainty. The proper choice of σ1 is
very important because σ1 determines the level of accuracy on the esti-
mate of the maximum or of the minimum. The lower σ1 is, the higher the
level of accuracy is. On the other hand, the higher the level of accuracy
is, the higher the probability of sending messages is. Thus, the value of
has to be fixed by determining the right trade-off between accuracy and
energy consumption. Typically, this trade-off depends on the application.

41

If the value nEk has been computed as a consequence of the reception
of a message sent by node ni, then the fuzzy value Ei contained in the
message is used to update the corresponding entry in the Table of Esti-
mates. Note that the table is updated after taking the decision on sending
the message. This allows to send a message even if all the entries, ex-
cept for ni, are updated. The message is important because it serves as
acknowledgement for node ni.

The algorithm used by the Decision module causes the following prob-
lem. Let us assume that node nk has Nk neighboring nodes and nEk

results to be the most updated among all the values in the Table of Esti-
mates. Then, the module decides to send a message to update the neigh-
bors. When one of the neighbors replies, the received message triggers
the activation of the Aggregation module with the consequent generation
of a new estimate nEk, which is analyzed by the Decision module. Since
the entries in the Table of Estimates are not updated, the Decision module
decides to send another message with the same information as the previ-
ous sent message. This behavior would produce at leastN sent messages.
The problem is avoided by the Message Analyzer module. Before describ-
ing this module, let us examine the structure of a generic message sent by
node nk. Figure 3 shows this structure. The first field is the identifier of
the sender (actually, this field would not be necessary because the sender
is inserted automatically into the message at MAC level). The second and
third fields contain the central value and the spread of new estimate nEk.
The values of the fields id replyk and id aggk depend on the event that
has activated the Aggregation module and therefore produced the new
estimate nEk.

1. If the activation of the Aggregation module has been caused by the
reception of a message from a neighboring node, say ni, then the
values depend on the type of aggregate, minimum or maximum,
we are interested in:

• Minimum. If Ei < Ek, then id replyk = ni, id aggk = id aggi

and nagg = id aggi; otherwise, id replyk = nk and id aggk =
nagg ; we consider Ei > Ek if ei > ek.

42

• Maximum. If Ei > Ek, then id replyk = ni, id aggk = id aggi

and nagg = id aggi; otherwise, id replyk = nk and id aggk =
nagg ; we consider Ei < Ek if ei < ek.

2. If the activation of the Aggregation module has been caused by
measuring a new value vk from the sensor on board the node, then
id replyk = −1 by default and id aggk = nagg = nk.

nk nek nesk id replyk id aggk

Figure 3: Structure of a generic message

The role of field id replyk will be clear in the next section. Field id aggk

allows propagating the identifier of the node which has measured the
maximum (or minimum) value in the network. Since each node stores
the current value of id aggk, each node knows where maximum (or min-
imum) value has been measured. This allows satisfying our requirement
that each node can interpret the role of sink and, therefore, can provide
both the maximum (minimum) value and the identifier of the node where
this value has been measured. The knowledge of the node identifier can
be very important in, for instance, alarm detection applications, because
it allows localizing the exact area where the dangerous event occurred,
thus speeding up the problem solution.

4.1.5 The Message Analyzer Module

The Message Analyzer Module analyzes the message received by the
node and decides whether the information contained in the message has
to be forwarded to the Aggregation and Decision modules, or simply
stored in the Table of Estimates. Obviously, if the Aggregation and Deci-
sion modules do not receive the information as input, they are not acti-
vated and no transmission occurs. The decision is based on the analysis
of the field id reply. Let us assume that the message has been received
from node ni.

43

• If id replyi = nk, then the module updates the Table of Estimates
(we recall that the first field of the message contains the identifier
of the sender) without forwarding the value Ei to the Aggregation
module; in this case, node nk is receiving a message which is an ac-
knowledgment to a previous message sent by node nk itself. Thus,
no further estimate, which is not already known by the neighboring
nodes, has to be propagated.

• If id replyi 6= nk, then the module sends the value Ei to the Aggre-
gation module; in this case, the message is not a reply to a message
sent by node nk, but rather the communication that a new value is
being propagated through the network.

4.1.6 Handling Estimate Staleness

As described in Section 4.1.2, estimate Ek in a generic node nk is updated
when value Vk measured by the sensor on board nk or estimate Ei re-
ceived from a neighboring node ni intersect Ek or, otherwise, have the
central values larger (lower) than their central value ofEk if the estimated
aggregate is the maximum (minimum). If Vk and Ei do not intersect Ek

and the central values are lower (larger) than the central value ofEk, then
Ek is not updated and becomes stale with the passing of time. This occurs,
for instance, when we adopt a WSN for estimating the trend of the max-
imum temperature during a day (0-24). The temperature will increase
during the first hours of the day until to achieve the highest value in the
early afternoon. When the temperature will start to decrease, the value
of Ek will not be updated anymore, making this value staler and staler
with the passing of time and, therefore, more and more unreliable with
respect to the actual maximum value currently measured in the network.
To model staleness, we increase the uncertainty of fuzzy number Ek with
the passing of time. In the case of maximum (minimum) estimation, if
the fuzzification Vk of the value vk measured by the sensor does not in-
tersect Ek, and Vk is lower (higher) than Ek, then the central value ek of
Ek is preserved, but the spread esk is increased by a value δ fixed by the
user. In this way, the spread of the symmetric triangular fuzzy number

44

is increased at prefixed instants. By increasing the spread, we also en-
hance the probability that Ek intersects Vk (or Ei), thus performing the
aggregation and certainly generating a value nEk lower (higher) than Ek.
This allows following the possible decreasing (increasing) of the maxi-
mum (minimum) in the network. To the aim of allowing the transmission
of the new estimate, we extend the Decision module. Besides the mes-
sages sent by using the algorithm described in Section 4.1.4, the Decision
module also will send a new estimate nEk if:

• in the case of Minimum estimation, ∃j : (nek − ej) > χ in the Table
of Estimates,

• in the case of Maximum estimation, ∃j : (ej − nek) > χ in the Table
of Estimates.

Typically, values δ and χ are chosen so as to follow the decreasing (in-
creasing) of the maximum (minimum) temperature more slowly than the
increasing (decreasing). We observe that δ is the unique parameter affect-
ing the fuzzy numbers which the user can control. Indeed, the spread of
the triangular membership functions is fixed by the measurement error
which depends on the type of sensors. The choice of δ is application-
dependent: the largest the value of δ, the faster the adapting of the net-
work to decreasing (increasing) variations of the maximum (minimum).

4.2 Estimation of the node lifetime

In this section, we show how the WSN lifetime can be estimated. Our
approach relies on the B-MAC protocol with low power listening (LPL)
at the data link layer. Thus, we can adopt the model proposed by Polas-
tre et al. (PHC04). This model requires the knowledge of some values of
current consumption, which can be extracted from the datasheet of the
Tmote Sky. We have rearranged some equations to fit them to our appli-
cation.

Table 1 shows times and consumptions for completing primitive op-
erations of a Tmote Sky.

45

Table 1: Time and Current Consumption in Tmote Sky

Operation Time (ms) I (mA)
Initialize radio (b) tINIT 0.47 cINIT 14
Turn on radio (c) tON 1.42 cON 1

Switch to RX/TX (d) tSW 0.212 cSW 14
Time to sample radio (e) tSR 0.288 cSR 21
Evaluate radio sample (f) tEV 0.197 cEV 14

Receive 1 byte tRXB 0.032 cRXB 19.7
Transmit 1 byte tTXB 0.032 cTXB 17.4

The total energy E consumed by a node can be expressed as:

E = ES + ERX + ETX + ELISTEN + ESLEEP (4.1)

where ES , ERX , ETX , ELISTEN and ESLEEP are the amount of energy
consumed for sampling sensor, receiving and transmitting messages, lis-
tening the radio channel and sleeping. In the following, we consider the
computation of E for a time interval T = 24 hours = 86400 seconds.

Energy ES is calculated as

V · cDATA · tD (4.2)

where V = 3 Volt is the battery voltage, cDATA = 2.95 mA is the current
consumption to sample the temperature sensor and tD is the total time
spent to sample the sensor during 24 hours test. If we assume that the
sensor is sampled every 15 seconds, tD = T

15 · tDATA = 86400
15 · tDATA =

5760 · tDATA = 1152 s, where tDATA = 200 ms is the time needed for each
sampling. It follows that ES = 10195.2 mJ.

Energy ERX is expressed as:

ERX = V · cRXB · tRX (4.3)

where tRX = nRMSG · (LPACKET + LPREAMBLE) · tRXB is the total
time spent to receive nRMSG messages arrived during T , LPACKET +
LPREAMBLE is the length of the message (length of the packet plus length
of the preamble) expressed in bytes and tRXB is the time spent to re-
ceive one byte. Since we adopt the send and receive primitives of TinyOS,

46

LPACKET = 38 bytes. The value of LPREAMBLE depends on the B-MAC
protocol. The B-MAC protocol, as explained in Section 3.1, periodically
samples the channel for activity. To avoid losing messages, the sample
period tI has to be smaller than the duration of the preamble (PHC04).
Thus, LPREAMBLE ≥

⌈
tI

tRXB

⌉
.

The sampling of the channel adopts a low power listening (LPL) ap-
proach. Figure 4 shows the sequence of operations required to perform a
LPL using the CC2420 radio, which is the radio on board the Tmote Sky
nodes. Though the current profiles are slightly different from those of the
CC1000 radio used in (PHC04), we assume the same power consumption
ELPL = 17.3 J for each single LPL.

During interval T , the number nLISTEN of checks for channel activity
is nLISTEN =

⌈
T
tI

⌉
. It follows that energy ELISTEN ≤ ELPL · nLISTEN .

B-MAC protocol provides 8 different modes corresponding to 10, 20,
50, 100, 200, 400, 800 and 1600 ms for the check interval tI . We chose
tI = 100 ms in our experiments. Thus, ELISTEN ≤ 14947.2 mJ and
LPREAMBLE ≤ 3126.

Similar to ERX , energy ETX is computed as

ETX = V · cTXB · tTX (4.4)

where tTX = nSMSG · (LPREAMBLE +LPACKET) · tTXB is the total time
spent to transmit nSMSG messages during T .

When the node is not busy in sampling sensor, receiving and trans-
mitting messages, listening the radio channel, it can enter the sleep mode.
The time spent sleeping is tSLEEP = T − tD − tRX − tTX − tLISTEN . We
can deduce from Figure 4 that the time tLISTEN spent for performing one
LPL of the channel is

tLISTEN = tINIT + tON + tSW + tSR + tEV = 2.587ms. (4.5)

Energy ESLEEP = V · cSLEEP · tSLEEP , with cSLEEP = 0.021 mA (from
the Tmote Sky datasheet). Lifetime tl of the node can be computed as:

tl =
CBATT · V

E
(4.6)

47

Figure 4: A trace of the power consumption while sampling the channel on
a Tmote Sky

where CBATT is the battery capacity. To compute total energy E, and
therefore the network lifetime, we need to know the numbers nRMSG and
nSMSG of, respectively, received and sent messages. Both these numbers
are application-dependent. In the next sections, we will show two ex-
amples (one simulated and the other real) of WSNs and will compute an
estimate of the lifetime for both. In the examples, we set the sensor sam-
pling period to 15s. To take the measurement error into consideration we
fixed the spread of the triangular fuzzy number to 0.3. The two parame-
ters σ1 and σ2 used in the Decision Module to decide whether an estimate
has to be propagated were set to 1oC and 0.3oC, respectively. The thresh-
old α used to invalidate an entry in the Table of Estimates was fixed to
5. The step δ used to increase the spread of the estimate of the global ag-

48

gregate was fixed to 0.01. The parameter χ used in the Decision Module
for deciding whether an estimate has to be propagated during handling
estimate staleness was set to 1oC.

4.3 Power Consumption: a Simulation

As first example, we simulated a 100-node WSN on TOSSIM. TOSSIM is
a discrete event simulator for TinyOS sensor networks (Tos). The topol-
ogy of the network is shown in Figure 5. Each node is equipped with a
temperature sensor.

Figure 5: Sensor network topology

We aim to measure the maximum temperature in the network. Moni-
toring maximum temperature can be useful, for instance, to detect possi-
ble fires. In the simulation, we used the temperature profile measured by
a weather station, located in Siena (Italy), during a 24 hours interval be-
tween 14 and 15 May 2006. This profile is shown in Figure 6. To make the
simulation as close as possible to the reality, we considered that a num-
ber of sensor nodes were placed in a shadowy zone, whereas the others
were placed in a sunny zone. Thus, we associated the original temper-
ature profile with the sensor nodes in the sunny zone (white circles in

49

Figure 5) and the original temperature profile decreased by 2oC with the
sensor nodes in the shadowy zone. Obviously, a scenario with two differ-
ent temperature profiles increases the probability of message exchange,
especially in the shadowy zone which has to be reached by the maximum
temperature estimate. Thus, this scenario penalizes our approach with
respect to a scenario with all the sensor nodes with the same temperature
profiles. Actually, the latter can be considered as the best scenario for our
approach.

Figure 6: Temperature profile used in the simulations

We executed two different simulations, using respectively the fixed
and empirical radio models implemented in TOSSIM. In the fixed radio
model, a message sent by a node, say node A, is received only by the
four nodes closest to A with probability 1. In the empirical radio model,
a message sent by node A is received by its neighboring nodes with dif-
ferent probabilities. Figure 7 shows the fixed and empirical radio models
adopted in the simulations. Here, the numbers close to the nodes repre-
sent the probabilities of the nodes to receive a message sent by node A.
Table 2 shows the number of sent and received messages in average for
all the nodes and the number of sent and received messages for the worst
node during the time duration T = 24h = 86400s (corresponding to the
overall temperature profile shown in Figure 6). By setting nRMSG and
nSMSG to the values in Table 2 for the formulas introduced in Section 4.2,
we obtained E ≤ 40906.2 and E ≤ 51967.6 for, respectively, the fixed and

50

empirical radio models. Assuming that CBATT = 2500 mAh, then the
lifetimes of the worst sensor node for the two models are, respectively,
tl ≥ 660 and tl ≥ 519 days. For the sake of simplicity, we assume that
the lifetime of the worst sensor determines the lifetime of the WSN. Ob-
viously, this is not true in the presence of redundant nodes. Here, if a
node dies, the function of the node in the multi-hop routing model can be
replaced by other nodes. This is likely the case for the empirical model.

Figure 7: Radio models: (a) Fixed and (b) empirical

As expected, the WSN lifetime using the empirical radio model is
shorter than using the fixed radio model. This is due to two factors:
the number of neighboring nodes, which is higher in the empirical radio
model than in the fixed radio model, and the variability of the number
of neighboring nodes. This variability is a consequence of the different
probabilities of message reception. The variability increases the number

51

of messages. Indeed, when a node, say node A, disappears in the neigh-
boring of another node, say node B, B continues to send messages until
it does not receive a reply from A or the number of messages sent by B
becomes higher than threshold α.

Table 2: Sent and received messages during the 24 hours simulations

Fixed radio Empirical radio
model model

In average
Sent messages 330 559

Received messages 749 1359

Worst sensor node
Sent messages 586 1146

Received messages 1243 2599

To highlight how in our approach the maximum temperature is prop-
agated along the network, we randomly selected a node in the sunny
zone and a node in the shadowy zone. Figure 8 and Figure 9 show the
estimates of the maximum temperature stored in the two nodes when
adopting the empirical radio model. The estimate (continuous line) is
compared with the temperature profile (dashed line) used as input to the
sensors. We can observe that the estimate in Figure 9 is less precise than
the one in Figure 8. Obviously, the estimate in the sensor node placed in
the shadowy zone is affected both by the local measurement (2 Celsius
degrees less than the maximum temperature) and by the latency deter-
mined by the Decision module. Indeed, the Decision Module transmits
increases in temperature only if formula (4) holds. Since we set σ1 to
1oC, we can have differences in the range [0oC, 1oC] between the max-
imum temperature and the estimate in the nodes in the shadowy zone.
The maximum difference is however achieved only in very brief inter-
vals (see spikes in Figure 9). If we consider the energy saving obtained
by using our approach, we can conclude that the difference between the
estimated and real maximum temperature is more than acceptable.

To assess the goodness of the results achieved by our approach, we
executed the same simulations using the method proposed by Boulis et

52

Figure 8: Trend of the maximum temperature estimate in a sensor node
placed in the sunny zone

al. in (BGS03) and already discussed in the beginning of this chapter. We
set the parameters of the method so as to have comparable accuracy with
our approach. In particular, the method takes the decision to propagate a
new estimate based on the difference between the new generated estimate
and the old estimate. This difference is computed both for the means and
for the variances: if either the difference between the means is higher
than a pre-fixed threshold m, or the difference between the variances is
higher than a pre-fixed threshold v, the new estimate is broadcast. We
fixed thresholds m and v to 1oC and 0.3oC, respectively. These values are
equal to the ones used in our method for the two parameters σ1 and σ2,
which actually have approximately the same function. Table 3 shows the
number of sent and received messages in average for all the nodes and
the number of sent and received messages for the worst node during the
time duration T = 24h = 86400s.

By setting nRMSG and nSMSG to the values in Table 3 for the formu-
las introduced in Section 4.2, we obtained, E ≤ 41448.3 and E ≤ 63795.6
for, respectively, the fixed and empirical radio models. Assuming that
CBATT = 2500 mAh, then the lifetimes of the worst sensor node for the
two models are tl ≥ 651 and tl ≥ 423 days, respectively. The Boulis et
al. approach is comparable to our approach for the fixed radio model,
whereas it is considerably worse for the empirical radio model. This be-

53

Figure 9: Trend of the maximum temperature estimate in a sensor node
placed in the shadowy zone

Table 3: Sent and received messages during the 24 hours simulations (Boulis
et Al. approach)

Fixed radio Empirical radio
model model

In average Sent messages 490 793
Received messages 773 1452

Worst sensor node Sent messages 734 1490
Received messages 1203 4274

haviour is due to the different management of the overhead of passing
on redundant information. In our approach, we structured the message
so as to reduce the redundant information on the network. In their pa-
per, Boulis et al. discuss this problem and suggest to maintain informa-
tion about two-hop neighbors at every node as a possible solution. To
this aim, they recommend to adopt the protocol proposed in (MB01). The
protocol is executed at network boot-up phase and therefore assumes that
the network cannot be modified. Further, maintaining information about
two-hop neighbors can be useful only if the nodes involved in the com-
munication are boundary nodes, that is, nodes that have not to forward
data to other nodes.

54

4.4 Power Consumption: a Real Example

In order to apply the algorithm to a real example, we loaded the nesC
implementations of the modules described in the previous sections on a
network of twelve Tmote Sky nodes to monitor the maximum tempera-
ture in a 200m2 flat. Figure 10 shows the plant of the flat and the position
(black circles) of the nodes in the rooms. The nodes, which are connected
to one node through arrows, represent the neighborhood of this node.
Neighborhood is determined by the radio range. In our experiments, we
set a low radio power so as to allow multi-hop communication (−25 dBm).

Figure 10: The plant of the example flat

Figure 11 shows the trend of the maximum temperature measured in
the network during a 24 hours test during winter. We observe that the
maximum temperature decreases in the time interval [11 : 00 − 19 : 30]
because the heating system is turned off. At 19 : 30 the heating system is
turned on and the maximum temperature increases from 17oC to 20oC.
At 21 : 00, the heating system is turned off and the maximum temperature
decreases till 18.5oC. Suddenly, at 23 : 00 the temperature increases till
21oC. This increase is caused by one of the inhabitants of the flat who had
a shower, so increasing the temperature in the bathroom.

Table 4 shows the number of sent and received messages for each node

55

Figure 11: 24 hours test

in the network during the time duration T = 24h = 86400s of the test.
We can observe that the nodes (9, 10, 11 and 12), which have a wider
neighborhood, exchange a higher number of messages. This is a direct
consequence of our algorithm. Indeed, when a node sends a message,
it receives an acknowledgement from each neighbor. If the number of
neighbors is high, the number of received messages is high too. As an
example, we compute the lifetime tl of node 10. Note that this is the
node with the highest power consumption. By setting nRMSG and nSMSG

to the values in Table 4 for the formulas introduced in Section 4.2, we
obtain thatERX = 24282.1 mJ andETX = 9867.4 mJ for, respectively, 4058
received messages and 1867 sent messages. It follows thatE ≤ 64494.6. If
CBATT = 2500 mAh, then tl ≥ 418 days. Considering that, without using
the B-MAC protocol and our approach to data aggregation, the lifetime
would have been a few days, the value of tl appears very satisfactory for
the type of application.

56

Table 4: Sent and received messages during the 24 hours test

node-ID received messages sent messages
1 1180 484

2(sink) 2059 1129
3 1150 503
4 1583 674
5 2078 954
6 2041 902
7 1090 401
8 1260 611
9 3672 1650
10 4058 1867
11 3181 1493
12 3057 1359

57

Chapter 5

A Lossless Compression
Algorithm for WSNs

In order to enable lossless compression in WSNs we propose LEC (Loss-
less Entropy Compression), which exploits the natural correlation that
exists in data typically collected by WSN and the principles of entropy
compression. Its low complexity and the small amount of memory re-
quired for its execution make the algorithm particularly suited to be used
on available commercial sensor nodes. Further, the algorithm is able to
compute a compressed version of each value on the fly, thus reducing
storage occupation. Finally LEC exploits a very short fixed dictionary,
whose size depends on the precision of the analog-to-digital converter
(ADC). Thus, being the dictionary size fixed a-priori, LEC does not suf-
fer from the growing dictionary problem, which affects other approaches
specifically proposed in the literature for WSNs.

We will first test the LEC algorithm on four temperature and relative
humidity datasets collected by real WSNs and show that the LEC algo-
rithm, though very simple, can achieve compression ratios up to 70.81%
for temperature datasets and up to 62.14% for relative humidity datasets.

Second, we will compare our algorithm with a lossless compression
algorithm, namely S-LZW (SM06), and a lossy compression algorithm,
namely LTC (SGO+04), specifically designed to be embedded in sensor

58

nodes. We will show that on average LEC achieves compression ratios
about 30% higher than S-LZW using about 11 against 69.185 instructions
per saved bit. Further, LTC obtains the same compression ratios as LEC
only introducing RMSEs of the order of about 0.1 and 0.5 for tempera-
ture and relative humidity, respectively, and using 48.237 instructions per
saved bit.

Third, we will test the LEC algorithm on solar radiation, seismic and
ECG datasets. These datasets have been chosen because they represent
non-smooth signals, which theoretically should not favour the perfor-
mance of the LEC algorithm. Nevertheless, we will observe that the LEC
algorithm achieves compression ratios of the order of 70%.

Finally, we will compare the LEC algorithm with five well-known
compression algorithms, namely, gzip, bzip2, rar, classical Huffman en-
coding and classical arithmetic encoding, though as already shown in
(KL05; SM06; BA06), due to their hardware requirements and compu-
tational complexity, these five algorithms cannot be used in sensor nodes.
In the comparison, since we adopt a differential compression scheme, we
will use both the original signals and the differentiated signals as inputs
to the five compression algorithms. We will observe that the LEC algo-
rithm achieves compression ratios about 10% higher than the five algo-
rithms when the inputs are the original signals, whereas the five algo-
rithms obtain compression ratios about 15% higher than the LEC algo-
rithm when the inputs are the differentiated signals. On the one hand,
these results prove that the choice of adopting a differential-based com-
pression scheme is appropriate. On the other hand, since compression
ratios achieved by these algorithms can be considered as a sort of bench-
mark, a difference of about 15% when the inputs to the five algorithms
are the differentiated signals is certainly satisfactory, just considering the
simplicity of LEC and the practical impossibility to embed the five algo-
rithms in sensor nodes.

59

5.1 The LEC Algorithm

The LEC algorithm follows a scheme similar to the one used in the base-
line JPEG algorithm for compressing the so-called DC coefficients of a
digital image (PM92). Such coefficients are characterized by a high cor-
relation, very similar to that characterizing data collected by WSNs. LEC
exploits a modified version of the Exponential-Golomb code (Exp-Golomb)
of order 0 (Teu78), which is a type of universal code. The basic idea is
to divide the alphabet of numbers into groups whose sizes increase ex-
ponentially. Like in Golomb coding (Gol66) and Elias coding (Eli75), a
codeword is a hybrid of unary and binary codes: in particular, the unary
code (a variable-length code) specifies the group, while the binary code
(a fixed-length code) represents the index within the group.

In LEC, we maintain the approach of dividing the alphabet of num-
bers into groups whose sizes increase exponentially, but groups are en-
tropy coded, rather than unary coded. This modification introduces the
possibility of specifying prefix-free codes for the groups: this is a non-
negligible advantage since these codes can be re-calculated to best fit the
particular probability distribution of the inputs being compressed. More-
over, since the original version of Exp-Golomb manages only nonnega-
tive integers, a minor modification to the original scheme has been the
introduction of a bijection to map the actual values onto a nonnegative
domain.

In the sensing unit of a sensor node, each measure mi acquired by a
sensor is converted by an ADC to a binary representation ri on R bits,
where R is the resolution of the ADC, that is, the number (2R) of discrete
values the ADC can produce over the range of analog values. Figure 12
shows the block scheme of the LEC approach. For each new acquisition
mi, LEC computes the difference di = ri − ri−1, which is input to an
entropy encoder (in order to compute d0 we assume that r−1 is equal
to the central value among the 2R possible discrete values). The entropy
encoder performs compression losslessly by encoding differences di more
compactly based on their statistical characteristics. Each nonzero di value
is represented as a bit sequence bsi composed of two parts si|ai, where si

60

codifies the number ni of bits needed to represent di (that is, the group
to which di belongs) and ai is the representation of di (that is, the index
position in the group). When di is equal to 0, the corresponding group has
size equal to 1 and therefore there is no need to codify the index position
in the group: it follows that ai is not represented.

Figure 12: Block diagram of the encoding/decoding schemes

For any nonzero di, ni is trivially computed as dlog2 (|di|)e: at most
ni is equal to R. Thus, in order to encode ni a prefix-free table of R +
1 entries has to be specified. This table depends on the distribution of
the differences di: more frequent differences have to be associated with
shorter codes. In typical data collected by WSNs, we verified that the
most frequent differences are those close to 0. Thus, in order to avoid the
cost of computing frequencies on sensor nodes, we exploited the amount
of work already carried out on JPEG algorithm. We adopted Table 5 in
which the first 11 lines coincide with the table used in the baseline JPEG
algorithm for compressing the DC coefficients (PM92). On the other hand,
these coefficients have statistical characteristics similar to the measures

61

acquired by the sensing unit. Of course, whether the resolution of the
ADC is larger than 14 bits, the table has to be appropriately extended. On
the other hand, this extension will produce a higher memory occupation,
but will not affect perceptibly the compression ratios. Indeed, differences
corresponding to longer codes have a probability very close to 0, thus
letting practically unchanged the compression ratios obtainable using our
approach.

Table 5: The Huffman variable length codes used in the experiments

ni si di

0 00 0
1 010 -1,+1
2 011 -3,-2,+2,+3
3 100 -7,. . . ,-4,+4,. . . ,+7
4 101 -15,. . . ,-8,+8,. . . ,+15
5 110 -31,. . . ,-16,+16,. . . ,+31
6 1110 -63,. . . ,-32,+32,. . . ,+63
7 11110 -127,. . . ,-64,+64,. . . ,+127
8 111110 -255,. . . ,-128,+128,. . . ,+255
9 1111110 -511,. . . ,-256,+256,. . . ,+511
10 11111110 -1023,. . . ,-512,+512,. . . ,+1023
11 111111110 -2047,. . . ,-1024,+1024,. . . ,+2047
12 1111111110 -4095,. . . ,-2048,+2048,. . . ,+4095
13 11111111110 -8191,. . . ,-4096,+4096,. . . ,+8191
14 111111111110 -16383,. . . ,-8192,+8192,. . . ,+16383

In order to manage negative di, LEC maps the input differences onto
nonnegative indexes, using the following bijection:

index =
{
di di ≥ 0
2ni − 1− |di| di < 0 (5.1)

Finally, si is equal to the value at entry ni in the prefix-free table and ai

is the binary representation of index over ni bits. Since di is typically
represented in two’s complement notation, when di < 0, ai is equal to the
ni low-order bits of di − 1. The procedure used to generate ai guarantees
that all possible values have different codes. Using Table 5, we have, for
instance, that di = 0, di = +1, di = −1, di = +255 and di = −255
are encoded as 00, 010|1, 010|0, 111110|11111111 and 111110|00000000,

62

respectively. Once bsi is generated, it is appended to the bitstream which
forms the compressed version of the sequence of measures mi.

compress(ri, ri 1, stream)
// compute difference di
SET di TO ri - ri 1
// encode difference di
CALL encode() with di RETURNING bsi
// append bsi to stream
SET stream TO <<stream,bsi>>
RETURN stream

Figure 13: Pseudo-code of the encode algorithm

Figure 13 shows the pseudo-code of the compress() function based on
the LEC algorithm. We denote the concatenation of the bit sequences a
and b as << a, b >>. After computing the difference di between the
binary representations ri and ri−1 of the current and previous measure-
ments, respectively, the compress() function calls the encode() function pass-
ing di as parameter. The compress() function returns the bit sequence bsi

corresponding to the difference di. The sequence bsi is, therefore, con-
catenated to the bit sequence stream generated so far.

Figure 14 shows the pseudo-code of the encode() function. Here, first
the number ni of bits needed to encode the value of di is computed. Then,
the part si of the bit sequence bsi is generated by using the table which
contains the dictionary adopted by the entropy compressor. Finally, the
part ai of the bit sequence bsi is generated. In the pseudo-code, v|ni

de-
notes the ni low-order bits of v.

Binary logarithm is not in general provided in the instruction sets of
the microprocessors on-board commercial sensor nodes and, therefore,
dlog2 (|di|)e cannot be executed directly. To overcome this problem, we
can use function computeBinaryLog() shown in Figure 15. The function
returns the number ni of bits needed to encode the value of di using only
integer divisions.

We observe that the compression algorithm described above is very
simple (it can be implemented in a few lines of code) and requires only
to maintain the first two columns of Table 5 in memory. An evaluation

63

encode(di, Table)
IF di = 0 THEN
SET ni TO 0

ELSE
SET ni TO dlog2(|di|)e //compute category

ENDIF
SET si TO Table[ni] //extract si from Table
IF ni = 0 THEN //build bsi
SET bsi TO si //ai is not needed

ELSE
IF di > 0 THEN //build ai
SET ai TO (di)|ni

ELSE
SET ai TO (di− 1)|ni

ENDIF
SET bsi TO � si, ai� // build bsi

ENDIF
RETURN bsi

Figure 14: Pseudo-code of the encode algorithm

computeBinaryLog(di)
//dlog2 (|di|)e
SET ni TO 0
WHILE di > 0
SET di TO di/2
SET ni TO ni + 1

ENDWHILE
RETURN ni

Figure 15: Pseudo-code of the computeBinaryLog() function

64

of its complexity will be performed in the next section. Thus, it results
to be particularly attractive to reduce the amount of data generated by
the sensing units on-board sensor nodes and consequently to reduce the
number of packets to be transmitted, thus saving energy.

5.2 Performance assessment results

In order to show the effectiveness and validity of our compression algo-
rithm, we tested it against various real-world datasets. First, we consid-
ered smooth signals like temperature and relative humidity which the-
oretically are particularly suitable to our algorithm, as explained in the
previous sections. Then, we assessed the performance of our algorithm
against real non-smooth signals, like solar radiation, seismic and ECG
signals.

5.2.1 Smooth signals

We used temperature and relative humidity measurements from four Sen-
sorScope deployments (Senb): HES-SO FishNet Deployment, LUCE Deploy-
ment, Grand-St-Bernard Deployment and Le Génépi Deployment. We chose to
adopt public domain datasets rather than to generate data by ourselves
to make the comparison as fair as possible. The WSNs adopted in the de-
ployments employ a TinyNode node type (Tin), which uses a TI MSP430
microcontroller, a Xemics XE1205 radio and a Sensirion SHT75 sensor
module (Sena). This module is a single chip which includes a capacitive
polymer sensing element for relative humidity and a bandgap temper-
ature sensor. Both the sensors are seamlessly coupled to a 14-bit ADC
and a serial interface circuit on the same chip. The Sensirion SHT75 can
sense air temperature in the [−20oC, 60oC] range and relative humidity
in the [0%, 100%] range. The outputs raw t and raw h of the ADC for
temperature and relative humidity are represented with resolutions of 14
and 12 bits, respectively. The outputs raw t and raw h are converted into
measures t and h expressed, respectively, in Celsius degrees (C) and per-
centage (%) as described in (Sena). The datasets corresponding to the four

65

deployments store measures t and h. On the other hand, the LEC algo-
rithm works on raw t and raw h. Thus, before applying the algorithm,
we extracted raw t and raw h from t and h, respectively, by using the
inverted versions of the conversion functions in (Sena).

We built our datasets by extracting from the four SensorScope de-
ployment data bases the temperature and relative humidity measure-
ments for a randomly extracted sensor node within a specific time in-
terval. Table 6 summarises the main characteristics of the datasets. In
the following we will refer the mentioned datasets by using their sym-
bolic names. Table 7 and Table 8 show some statistical characteristics
of these datasets. In particular, we have computed the mean s̄ and the
standard deviation σs̄ of the samples, the mean d̄ and the standard devi-
ation σd̄ of the differences between consecutive samples, the information

entropy H = −
N∑

i=1

p(xi) · log2(p(xi)) of the original signal, where N is

the number of possible values xi (the output of the ADC) and p(xi) is
the probability mass function of xi, and the information entropy Hd =

−
N∑

i=1

p(di)·log2(p(di)) of the differentiated signal. We can observe that the

first two datasets are characterised by lower entropy values than the other
two datasets. We expect that performance of entropy compression algo-
rithms on the first two datasets are higher than on the other two datasets.

Table 6: Main characteristics of the four datasets

Deployment NODE Symbolic Number Time interval
Name ID Name of samples From day To day

HES-SO FishNet 101 FN ID101 12652 09/08/2007 31/08/2007
LUCE 84 LU ID84 64913 23/11/2006 17/12/2006

Grand-St-Bernard 10 GSB ID10 23813 15/09/2007 18/10/2007
Le Génépi 20 LG ID20 21523 04/09/2007 03/10/2007

66

Table 7: Statistical characteristics of the four temperature datasets

Dataset Temperature
s̄± σs̄ d̄± σd̄ H Hd

FN ID101 14.92± 3.88 3.02 · 10−4 ± 0.26 10.26 5.10
LU ID84 7.21± 3.16 −2.87 · 10−5 ± 0.05 10.07 4.05

GSB ID10 4.34± 3.95 −4.28 · 10−4 ± 0.21 10.29 6.15
LG ID20 4.09± 4.05 1.38 · 10−4 ± 0.33 10.25 6.82

Table 8: Statistical characteristics of the four relative humidity datasets

Dataset Relative Humidity
s̄± σs̄ d̄± σd̄ H Hd

FN ID101 83.94± 9.79 −1.60 · 10−3 ± 1.26 9.75 5.84
LU ID84 87.04± 8.04 1.12 · 10−4 ± 0.55 10.08 5.85

GSB ID10 68.17± 18.18 −3.28 · 10−4 ± 1.68 10.78 7.14
LG ID20 69.71± 19.43 −1.70 · 10−4 ± 2.77 10.84 7.67

Compression performance

The performance of a compression algorithm is usually computed by us-
ing the compression ratio (CR) defined as:

CR = 100 ·
(

1− encSize

origSize

)
, (5.2)

where encSize and origSize are, respectively, the sizes in bits of the com-
pressed and the uncompressed bitstreams. Considering that uncompressed
samples are normally byte-aligned, both temperature and relative humid-
ity samples are represented by 16-bit unsigned integers. Thus, from Ta-
ble 6, it is easy to compute origSize for the given datasets. Table 9 shows
the results obtained for the four datasets. For each dataset, we show
the sizes of the uncompressed and compressed bitstreams and the cor-
responding CRs. As expected, the LEC algorithm achieves higher com-
pression ratios on datasets characterised by a low entropy and, in gen-
eral, a low variability between consecutive samples (that is, low values of
the mean and standard deviation of the differences between consecutive
samples). Indeed, by comparing the results in Table 9 with the statisti-

67

cal descriptions of the datasets shown in Table 7 and Table 8, we observe
that the LU ID84 temperature dataset, being characterised by the lowest
entropies, the lowest mean and standard deviation of the differences be-
tween consecutive samples, achieves the highest compression ratio. On
the other hand, we have to point out that samples in LU ID84 datasets are
obtained by measuring temperature and relative humidity at intervals of
30 seconds unlike intervals of 2 minutes used in the other datasets.

Table 9: CRs obtained by the LEC algorithm on the four datasets

Dataset origSize Temperature Relative Humidity
encSize CR encSize CR

FN ID101 202432 70069 65.39 76635 62.14
LU ID84 1038608 303194 70.81 396442 61.83

GSB ID10 381008 156099 59.03 180192 52.71
LG ID20 344368 158994 53.83 178725 48.10

Let us assume that all samples have to be transmitted to the sink
by using the lowest number of messages so as to have power saving
(MCP+02). Supposing that each packet can contain at most 29 bytes of
payload (MV08), we can count the number of packets necessary to deliver
the uncompressed (origPkt) and the compressed (encPkt) bitstreams. Ta-
ble 10 summarizes the results obtained. In the table, PCR denotes the
packet compression ratio and is defined as:

PCR = 100 ·
(

1− encPkt

origPkt

)
, (5.3)

Table 10: Number of packets needed to deliver the uncompressed and com-
pressed versions of the datasets

Dataset origPkt Temperature Relative Humidity
encPkt PCR encPkt PCR

FN ID101 873 302 65.41 331 62.08
LU ID84 4477 1307 70.81 1709 61.83

GSB ID10 1643 673 59.04 777 52.71
LG ID20 1485 686 53.80 771 48.08

68

We can observe that compression allows reducing considerably the
number of transmitted packets, thus saving a lot of power. Since we adopt
the send and receive primitives of TinyOS, we transmit or receive fixed-
size packets with 29 bytes of payload. Thus, these compression ratios can
be achieved only when the payload of the packet is completely full. This
implies that in order to use LEC favorably we have to introduce a high
data latency. It follows that LEC cannot be used in applications which
require data in real time.

With the aim of maintaining our approach as simple as possible, we
have adopted the same Huffman table for all datasets. Actually, we would
improve our performance by adopting an appropriate Huffman table for
each different dataset, and possibly for each sampling rate. The table
would have to be derived by occurrence frequencies of the differences
between consecutive samples. This can be obtained by using two differ-
ent approaches. The first approach collects a set of samples sufficient to
perform reliable statistics and then compute the occurrence frequencies:
this approach is known in the literature as semi-adaptive Huffman cod-
ing (Sal07). The second approach generates the Huffman table on the fly
by considering at each sample how the occurrence frequencies vary. This
approach is called adaptive Huffman coding. The approach was origi-
nally developed by Faller (Fal73) and Gallager (Gal78) with substantial
improvements by Knuth (Knu85). Obviously, the use of adaptive Huff-
man coding provides a lot of flexibility despite an increase in complexity.
Table 11 shows the compression ratios obtained by the three approaches.
As expected, the semi-adaptive Huffman coding performs better than the
other two approaches. On the other hand, semi-adaptive Huffman cod-
ing has been generated by assuming to exactly know the occurrence fre-
quencies of the differences between consecutive samples. This assump-
tion is difficultly verified in real applications. We can note, however, that
the compression ratios obtained by using the same table for all datasets
are quite close to those obtained by the other two approaches. Thus, we
can avoid the increase of complexity introduced by the adaptive Huff-
man coding without affecting the compression ratios. On the other hand,
the semi-adaptive Huffman coding does not increase complexity, but re-

69

quires an analysis of occurrence frequency of the differences, which can
be performed only after collecting an appropriate number of samples.

Table 11: Comparison between different approaches to Huffman table gen-
eration

Dataset Temperature Relative Humidity
fixed semi adaptive adaptive fixed semi adaptive adaptive

FN ID101 65.39 67.18 67.13 62.14 62.29 62.18
LU ID84 70.81 73.54 73.49 61.83 62.51 62.45

GSB ID10 59.03 60.44 60.35 52.71 54.40 54.35
LG ID20 53.83 56.35 56.29 48.10 51.08 51

To assess the performance achieved by our approach, we first com-
pare the LEC algorithm to S-LZW and then to LTC. As already discussed
in Section 3.3.1 , S-LZW requires to set some parameters: the size of
the data block (BLOCK SIZE), the maximum number of dictionary entries
(MAX DICT ENTRIES), the strategy to follow when the dictionary is full
(DICTIONARY STRATEGY) and the number of mini-cache entries
(MINI-CACHE ENTRIES). Table 12 shows the parameters used in the experi-
ments. We adopted the values suggested in (SM06). Table 13 summarises
the results obtained by the S-LZW algorithm in terms of CR on the four
datasets. We observe that the LEC algorithm outperforms considerably
the CRs obtained by the S-LZW algorithm.

Table 12: S-LZW parameters

BLOCK SIZE 528 Bytes
MAX DICT ENTRIES 512

DICTIONARY STRATEGY Frozen
MINI-CACHE ENTRIES 32

As second comparison, we adopt the LTC algorithm. Since it is a lossy
compression algorithm, we have to introduce a measure to assess how
much the reconstructed data differ from the original data. We use the

70

Table 13: Compression ratios obtained by the S-LZW algorithm on the four
datasets

Dataset Temperature Relative Humidity
CR CR

FN ID101 30.35 36.27
LU ID84 48.99 31.24

GSB ID10 26.86 24.92
LG ID20 22.02 21.93

root mean squared error (RMSE), defined as:

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)
2 (5.4)

where yi is the original sample, ŷi is the reconstructed sample and N is
the number of samples of the signal. Obviously a lossless compression al-
gorithm will result in an RMSE = 0, since there is no difference between
yi and ŷi (the reconstructed signal is exactly equal to the original). The
LTC algorithm generates a set of line segments which form a piecewise
continuous function. This function approximates the original dataset in
such a way that no original sample is farther than a fixed error e from the
closest line segment. Thus, before executing the LTC algorithm, we have
to set error e. We choose e as a percentage of the Sensor Manufactured
Error (SME). From the Sensirion SHT75 sensor data sheet (Sena), we
have SME = ±0.3oC and SME = ±1.8% for temperature and relative
humidity, respectively. To analyse the trend of the CRs with respect to
increasing values of e, we varied e from 0% to 200% of the SME with step
10%.

Figure 16 and Figure 17 show, for all the four datasets, the resulting
trends of the CRs for temperature and relative humidity, respectively.
Due to the particular approach based on linear approximation used in
LTC, we observe that the lossless version of LTC (corresponding to e = 0)
generates a negative CR, that is, the size of the compressed data is larger
than the original data. Further, we note that interesting CRs are obtained
only with relevant compression errors. Figure 18 and Figure 19 show,

71

for all the four datasets, the trends of the RMSE for temperature and
relative humidity, respectively. As expected, the RMSE varies almost
linearly with error e.

Figure 16: Compression ratios obtained by the LTC algorithm for different
error values on the four temperature datasets

Figure 17: Compression ratios obtained by the LTC algorithm for different
error values on the four relative humidity datasets

By comparing Table 9, where we have shown the CRs obtained by the
LEC algorithm, with Figure 16-Figure 19, we can observe that the LTC
algorithm can achieve the same CRs as the LEC algorithm, but despite a
quite high RMSE. For instance, the LEC algorithm achieves a CR equal
to 65.39 for the FN ID101 temperature dataset. From Figure 16, we can

72

Figure 18: Root mean squared errors obtained by the LTC algorithm for dif-
ferent error values on the four temperature datasets

Figure 19: Root mean squared errors obtained by the LTC algorithm for dif-
ferent error values on the four relative humidity datasets

73

observe that, in order to achieve similar CRs, the LTC algorithm should
be executed with a value of e between 30% and 40% of the temperature
SME. From Figure 18, we can deduce that these values of e lead to have
anRMSE between 0.0538 and 0.0696. Table 14 and Table 15 are generated
from similar considerations.

Table 14: Correspondences between LEC compression ratios and LTC com-
pression ratios and root mean squared errors for the four temperature
datasets

Dataset LEC CR e LTC CR LTC RMSE
(Temperature) [min, max] [min, max] [min, max]

FN ID101 65.39 [30, 40] [63.09, 72.26] [0.0538, 0.0696]
LU ID84 70.81 [10, 20] [55.00, 77.53] [0.0190, 0.0348]

GSB ID10 59.03 [50, 60] [57.75, 65.54] [0.0863, 0.1025]
LG ID20 53.83 [70, 80] [50.54, 56.97] [0.1182, 0.1359]

Table 15: Correspondences between LEC compression ratios and LTC com-
pression ratios and root mean squared errors for the four relative humidity
datasets

Dataset LEC CR e LTC CR LTC RMSE
(Relative Humidity) [min, max] [min, max] [min, max]

FN ID101 62.14 [40, 50] [61.81, 67.67] [0.3461, 0.4390]
LU ID84 61.83 [20, 30] [55.97, 70.99] [0.1681, 0.2496]

GSB ID10 52.71 [50, 60] [52.44, 60.49] [0.4979, 0.5971]
LG ID20 48.10 [60, 70] [47.79, 54.69] [0.5733, 0.6674]

Note that e equal to 30%, 10%, 50% and 70% (the left extremes of the e
intervals in Table 14) correspond to tolerate a temperature error of 0.09oC,
0.03oC, 0.15oC, 0.21oC, respectively, for each reconstructed sample. Sim-
ilarly, e equal to 40%, 20%, 50% and 60% (the left extremes of the e inter-
vals in Table 15) correspond to tolerate a relative humidity error of 0.72%,
0.36%, 0.9%, and 1.08% respectively, for each reconstructed sample. Just
to give an idea of the effects of the errors on the original data, we compare
the first block (264 bytes) of the original samples to the corresponding re-
constructed samples for the all datasets. We executed the LTC algorithm
with values of error e equal to the left extremes of the e intervals shown

74

in Table 14 and Table 15. Figure 20-Figure 23 show the results of the com-
parison for temperature and for values of e equal to 30%, 10%, 50% and
70%, respectively. Figure 24-Figure 27 show the results of the comparison
for relative humidity and for values of e equal to 40%, 20%, 50% and 60%,
respectively. We observe that there exists a considerable difference be-
tween the original and reconstructed samples. Thus, to achieve the CRs
of the LEC algorithm, the LTC algorithm can only approximate the orig-
inal samples. Further, we have to consider that using the extreme values
of the e interval corresponds to execute the LTC algorithm in the most
favourable condition with respect to the LEC algorithm.

Figure 20: Comparison between the original and the reconstructed samples
for the first block of the FN ID101 temperature dataset: compression per-
formed by the LTC algorithm with e = 30%

Complexity

Compression ratio is only one of the factors which determine the choice
of a compression algorithm suited to WSNs. Another fundamental fac-
tor is complexity. To assess the complexity of our algorithm and of the
algorithms considered for comparison, we have performed a compara-
tive analysis on the number of instructions required by each algorithm
to compress data. To this aim, we have adopted the Sim-It Arm simula-

75

Figure 21: Comparison between the original and the reconstructed samples
for the first block of the LU ID84 temperature dataset: compression per-
formed by the LTC algorithm with e = 10%

Figure 22: Comparison between the original and the reconstructed samples
for the first block of the GSB ID10 temperature dataset: compression per-
formed by the LTC algorithm with e = 50%

76

Figure 23: Comparison between the original and the reconstructed samples
for the first block of the LG ID20 temperature dataset: compression per-
formed by the LTC algorithm with e = 70%

Figure 24: Comparison between the original and the reconstructed samples
for the first block of the FN ID101 relative humidity dataset: compression
performed by the LTC algorithm with e = 40%

77

Figure 25: Comparison between the original and the reconstructed samples
for the first block of the LU ID84 relative humidity dataset: compression
performed by the LTC algorithm with e = 20%

Figure 26: Comparison between the original and the reconstructed samples
for the first block of the GSB ID10 relative humidity dataset: compression
performed by the LTC algorithm with e = 50%

78

Figure 27: Comparison between the original and the reconstructed samples
for the first block of the LG ID20 relative humidity dataset: compression
performed by the LTC algorithm with e = 60%

tor (Sim), since there already existed a free available version of S-LZW
implemented for this simulator by the same authors of this compres-
sion algorithm. Sim-It Arm is an instruction-set simulator that runs both
system-level and user-level ARM programs. Since S-LZW compresses
each dataset block by block, we executed the three algorithms on Sim-It
Arm simulator to compress the first block of each dataset. A block con-
sists of 528 bytes (corresponding to 264 samples of 16 bits). S-LZW has
been executed by using the parameters in Table 12. For LTC, we have set
e to the left extremes of the e intervals in Table 14 and Table 15. Table 16
shows the average numbers of instructions required for compressing a
block, the average numbers of saved bits and the average numbers of in-
structions per saved bit for temperature and relative humidity datasets,
respectively.

We note that, though our algorithm achieves the highest compression
ratios among the considered algorithms, it requires the lowest number of
instructions. We observe that, in average, the LEC algorithm executes,
for instance, 11.35 instructions for each saved bit against 68.65 and 48.16
executed by S-LZW and LTC for compressing the first block of each tem-

79

Table 16: Complexity of the three compression algorithms

LEC S-LZW LTC
Temp. Rel.Hum. Temp. Rel.Hum. Temp. Rel.Hum.

Avg. number
of instructions 30549.25 26610.25 63207.00 63207.00 144149.75 150005.50
Avg. number
of saved bits 2762.75 2844.00 1598.00 1880.00 3088.00 2919.00
Avg. number
of instructions 11.35 10.58 68.65 184.55 48.16 237.38
per saved bit

perature dataset.

The problem of the first sample

LEC, as all the differential compression algorithms, suffer from the fol-
lowing problem. In order to reconstruct the original samples, the decoder
must know the value of the first sample: if the first sample has been lost
or corrupted, all the other samples are not correctly decoded. In our case,
the compressed bitstream is sent by a wireless communication to the col-
lector, which takes the decompression process in charge. Since the trans-
mission can be non-reliable, the first packet could be lost and thus also
the first value, making correct reconstruction of samples impossible.

To make a communication reliable a number of solutions have been
proposed. In general, these solutions involve protocols based on acknowl-
edgements which act at Transport layer. Obviously, these protocols re-
quire a higher number of message exchanges between nodes and this in-
creases the power consumption. A review of these algorithms is out of the
scope of this thesis. Anyway, a solution to this problem can be also pro-
vided at the application layer without modifying the protocols of the un-
derlying layers: when we insert the first sample into the payload of a new
packet, we do not insert the difference between the current and the pre-
vious sample, but rather the difference between the current sample and
a reference value known to the decoder (for instance, the central value
of the ADC). Thus, the decoding of each packet is independent of the re-

80

ception of the previous packets. In the following the packet compression
ratios obtained by using this expedient will be denoted by PCR∗. Ta-
ble 17 shows a comparison between PCRs and PCR∗: we can note that
the decrease of PCR is not high. Further, the PCR∗ are still higher than
those achieved by S-LZW. Thus, we can conclude that the LEC scheme
can be made more robust without significantly affecting its performance.

Table 17: Comparison between the standard packet compression ratios
(PCRs) and the ones obtained by transmitting the first value in each packet
(PCRs∗)

Dataset Temperature Relative Humidity
PCR PCR∗ PCR PCR∗

FN ID101 65.39 62.41 62.14 58.63
LU ID84 70.81 68.19 61.83 58.21

GSB ID10 59.03 55.49 52.71 48.43
LG ID20 53.83 49.88 48.10 43.48

5.2.2 A comparison with standard compression algorithms

In this section, we compare our approach with well-known compression
methods. We show the compression ratios obtained on both the original
signals and the differentiated signals, that is, the signals obtained by dif-
ferentiating pairs of consecutive samples. We also use the differentiated
signals to understand whether the choice of using a differential-based
compression scheme is correct. We consider five compression methods:
gzip, bzip2, rar, classical Huffman encoding and classical arithmetic en-
coding. Gzip, bzip2 and rar have a parameter which allows setting the
compression level. This parameter is between 1 and 9 (default 6) for gzip
and bzip2, and between 1 and 5 (default 3) for rar. We fixed this para-
mater to the maximum possible compression (9 for gzip and bzip2 and 5
for rar).

We point out that the algorithms discussed in this section, as already
shown in (KL05; SM06; BA06), cannot be executed in a sensor node, due
to memory requirements and computational power needed for their exe-
cution. Indeed, the executable codes are too large to be embedded in tiny

81

sensor nodes. Further, the compression ratios are obtained after collecting
all the samples and therefore all the samples have to be stored in memory.
This implies that large datasets cannot be managed. In addition, the com-
pression cannot be performed on the fly. Finally, during their execution,
these algorithms require a large memory to manage some step of the ex-
ecution. Thus, we used these algorithms only as benchmarks to validate
the compression ratios obtained by applying LEC. Table 18 shows the re-
sults obtained by these algorithms on the four temperature and relative
humidity datasets.

Table 18: Compression ratios obtained by five classical compression algo-
rithms on the four datasets

Dataset Algorithm Temperature Relative Humidity
ORIG DIFF ORIG DIFF

FN ID101

Gzip 34.76 74.48 41.29 70.96
Bzip2 55.20 78.16 56.22 74.99
Rar 63.59 79.75 59.12 68.66

Huffman 21.59 75.56 23.19 71.69
Arithmetic 22.06 68.72 23.34 67.39

LU ID84

Gzip 48.87 80.23 37.86 70.94
Bzip2 69.24 83.22 57.82 75.32
Rar 69.16 85.03 59.03 77.46

Huffman 23.98 79.64 23.79 72.61
Arithmetic 26.62 72.99 24.06 66.56

GSB ID10

Gzip 34.35 69.78 31.02 65.85
Bzip2 52.12 74.18 45.73 70.40
Rar 56.72 75.95 49.70 72.44

Huffman 22.32 72.12 18.97 68.45
Arithmetic 22.75 66.35 19.37 64.61

LG ID20

Gzip 31.38 65.95 27.61 63.46
Bzip2 46.84 70.99 42.56 67.72
Rar 51.56 72.79 45.26 69.83

Huffman 22.34 69.30 18.85 66.78
Arithmetic 22.65 64.19 19.30 63.65

We observe that our algorithm outperforms all the algorithms when
the input is the original signal. The other algorithms, however, outper-
form our algorithm when the input is the differentiated signal. On the one
hand, these results prove that the choice of adopting a differential-based
compression scheme is winning for this type of data. On the other hand,

82

the compression ratios shown in Table 18 are not so far from the ones
achieved by our approach. Further, we have to consider that these com-
pression ratios are obtained by applying the algorithms after collecting all
the samples, thus allowing the selection of the optimal codes. In addition,
these algorithms require the execution of a large number of instructions:
also if it was possible to embed these algorithms in a tiny sensor node,
the power consumption would result to be considerably larger than the
energy saved by reducing the number of bits. All in all, we think that,
considering the limited resource requirements of LEC, the compression
ratios achieved by LEC can be considered very significant with respect to
both the results shown in Table 18 and the compression ratios obtained
by the two algorithms purposely adapted to sensor networks described
in the previous sections.

5.2.3 Non-smooth signals

The datasets described in Section 5.2.1 are smooth over time and there-
fore are characterised by a strong correlation between consecutive sam-
ples. These signals are quite typical in WSNs because they are produced
by sensors dedicated to measure atmospheric (and therefore non rapidly
changing) phenomena.

To test our approach against non-smooth (and possibly high-rate) sig-
nals, we consider three further datasets:

1. the solar radiation dataset in FN ID101 deployment. Here, 12652
samples have been collected by a Davis Solar Radiation sensor (Dav).
Figure 28 shows a part of the dataset.

2. a seismic dataset consisting of a collection of 36000 seismic data
samples collected by the OhioSeis Digital Seismographic Station lo-
cated in Bowling Green, Ohio, covering measurements from 2:00
PM to 3:00 PM on September 21, 1999 (UT). Each measurement in
this dataset represents the vertical displacement of the spring in the
seismometer, measured in micrometers, acquired with a frequency
of 10 Hz (Sei). Figure 29 shows a part of the dataset.

83

3. a single-channel ambulatory ECG recording extracted from the 100.dat
file in the MIT-BIH Arrhythmia Database (ECG). Each recording
in this dataset represents the digitized measurement of the first-
channel performed with a frequency of 360 Hz (360 samples per
second) with 11-bit resolution over a 10 mV range. The recording
consists of a collection of 30000 data samples. Figure 30 shows a
part of the dataset.

Figure 28: First 1500 samples of the solar radiation dataset

We point out that only the first dataset has been collected by using
the sensor nodes considered in this thesis. The other datasets have been
employed because they are often used to compare different compression
techniques in the literature. Anyway, these datasets can be collected by
appropriately adapted sensor nodes.

Table 19 shows some statistical characteristics of these datasets. The
results obtained by LEC are summarized in Table 20, where comparisons
with S-LZW, gzip, bzip2, rar, classical Huffman encoding and classical
arithmetic encoding are also shown. We can observe that our algorithm
achieves considerable compression ratios also when applied to non-smooth
(and possibly high-rate) signals, thus confirming its validity and reliabil-
ity. Actually, we note that LEC achieves on average higher compression

84

Figure 29: First 6000 samples of the seismic dataset

Figure 30: First 3600 samples of the ECG dataset

85

ratios on the non-smooth signals than on the smooth signals. On the other
hand, by comparing Table 7 and Table 8 with Table 19 we can observe that
temperature and relative humidity datasets are characterized by higher
entropies than solar radiation, seismic and ECG datasets. Since LEC is
an entropy compression algorithm, independently of the smoothness of
the signals, its performance increases when the entropy decreases. This
difference between the entropies of smooth and non-smooth datasets can
be justified as follows: though temperature and relative humidity vary
slowly and smoothly, the number of possible values of differences be-
tween consecutive samples is on average larger than the number of possi-
ble values of differences between consecutive samples of solar radiation,
seismic and ECG signals. In other words, these signals are characterized
by possibly large differences between consecutive samples, but these dif-
ferences are quite repetitive. It follows that a larger number of symbols is
needed for encoding temperature and relative humidity signals than for
solar radiation, seismic and ECG signals.

Table 19: Statistical characteristics of the three non-smooth datasets

Dataset s̄± σs̄ d̄± σd̄ H Hd

Solar Radiation 10.36± 15.35 1.260 · 10−4 ± 7.83 5.34 4.24
Seismic −0.36± 26.96 −7.78 · 10−4 ± 3.65 6.79 3.91

ECG −0.33± 0.18 −4.83 · 10−6 ± 0.05 6.23 3.78

86

Table 20: Compression ratios obtained by LEC, S-LZW and five classical
compression algorithms on three non-smooth datasets

Dataset LEC S-LZW Algorithm ORIG DIFF

Solar Radiation 70.31 58.25

Gzip 60.53 78.41
Bzip2 71.34 80.82
Rar 68.38 82.73

Huffman 56.49 78.20
Arithmetic 51.15 71.45

Sismeic 69.72 43.33

Gzip 62.72 86.66
Bzip2 80.50 90.15
Rar 83.25 87.86

Huffman 44.50 79.39
Arithmetic 40.15 71.63

ECG 71.53 54.59

Gzip 72.02 81.88
Bzip2 74.17 86.08
Rar 72.02 81.39

Huffman 47.62 79.84
Arithmetic 43.33 73.44

87

Chapter 6

A loss-aware Compression
Algorithm for WSNs

In Chapter 5, we have tackled the problem to develop a lossless compres-
sion scheme suitable for sensor networks proposing a simple algorithm
based on a modified version of the exponential Golomb code. Moreover
in Section 3.3.1, we have introduced some concepts to justify the need of
enabling lossless data compression in sensor nodes. In few words, the
criticality of some application domains demand sensors with high accu-
racy, since these applications cannot tolerate that measures are corrupted
by the compression process.

On the other hand, when the application does not impose strong re-
quirements on accuracy (i.e., environmental monitoring), cheap and un-
reliable sensors should be employed in large scale. Due to noise, such sen-
sors will produce different readings even when they are sampling an un-
changing phenomenon. For this reason, sensor manufactures specify not
only the sensor operating range but also the sensor accuracy. Datasheets
express accuracy by providing a margin of error, but typically do not in-
clude a probability distribution for this error. Thus, when a value is mea-
sured by a sensor, we are confident that the actual value is within the
error margin, but cannot know with what probability that value is some
distance from the real value (SGO+04). Signals produced by these sensors

88

are generally “cleaned” by employing some de-noising technique.

A de-noising technique can be applied directly on the sensor node or
offline on the base station. In the first case, an energy-aware and low-
complexity de-noising technique is required (WDB06). Further, before
executing the de-noising process a quite large number of samples has to
be stored in the data memory, increasing the memory requirements of the
sensor node. In the second case, the sensor node simply acquires, com-
presses and stores noisy samples; when a packet payload is filled, the
sensor node sends the compressed packet to the base station, where data
are uncompressed and later de-noised. Obviously, this approach can be
adopted only if data have not to be transferred in real-time. In applica-
tions of environmental monitoring, for instance, this is the typical case.
In this scenario the use of a lossless compression algorithm lets us sim-
ply post-pone the de-noising process so as to perform it on a machine,
with generally no hard constraint on energy, computational power and
memory. We have to consider, however, that noise increases the entropy
of the signal and therefore hinders the lossless compression algorithm to
achieve considerable compression ratios. Indeed data which will be dis-
charged by the de-noising process at the base station are equally transmit-
ted by the sensor node affecting power consumption and consequently
the sensor node lifetime.

In this scenario, the ideal solution would be to adopt on the sensor
node a lossy compression algorithm in which the loss of information would
be just the noise. Thus, we could achieve high compression ratios without
losing relevant information.

To this aim, we exploit the observation that data typically collected
by WSNs are strongly correlated. Thus, differences between consecutive
samples should be regular and generally very small. If this does not oc-
cur, it is likely that samples are affected by noise. To de-noise and simul-
taneously compress the samples, we quantize the differences between
consecutive samples. Further, to reduce the number of bits required to
code these differences, we adopt a Differential Pulse Code Modulation
(DPCM) scheme (Cut52). Of course, different combinations of the quan-
tization process parameters determine different trade-offs between com-

89

pression performance and information loss. To generate a set of opti-
mal combinations of the quantization process parameters, we adopt one
of the most popular Multi-Objective Evolutionary Algorithms (MOEAs),
namely NSGA-II (DPAM02).

MOEAs generate a family of equally valid solutions, where each so-
lution tends to satisfy a criterion to a higher extent than another. Differ-
ent solutions are compared with each other by using the notion of Pareto
dominance. A solution x associated with a performance vector u domi-
nates a solution y associated with a performance vector v if and only if,
∀i ∈ {1, ..., I}, with I the number of criteria, ui performs better than vi, or
equal to, vi and ∃i ∈ {1, ..., I} such that ui performs better than vi, where
ui and vi are the i-th elements of vectors u and v, respectively. A solution
is said to be Pareto optimal if it is not dominated by any other possible
solution. The set of Pareto-optimal solutions is denoted as Pareto front.
Thus, the aim of an MOEA is to discover a family of solutions that are a
good approximation of the Pareto front.

To execute NSGA-II, we first collect a short sequence of samples from
the sensor node. Then, we apply a popular de-noising technique to this
sequence so as to obtain a sequence of de-noised samples. Each solu-
tion generated by NSGA-II is evaluated by quantizing the original sam-
ples and computing the information entropy of the quantized sequence
as first objective, the number of levels used in the quantization process as
second objective and the mean square error (MSE) between the quantized
samples and the de-noised samples as third objective. The entropy and
the number of levels provide an indirect measure of the possible obtain-
able compression ratios. The MSE quantifies the loss of information with
respect to the ideal (not affected by noise) signal. Each solution in the
Pareto front represents, therefore, a quantizer with an associated trade-
off among information entropy, number of quantization levels and MSE
between the original de-noised and the quantized sequences of samples.
We show that the lossy compression scheme obtained by using the quan-
tizers generated by the MOEAs in the DPCM framework is characterized
by low complexity and memory requirements for its execution. Further,
it is able to compute a compressed version of each value on the fly, thus

90

reducing storage occupation.
We will test our lossy compression approach on three datasets col-

lected by real WSNs. We will show that, though very simple, our ap-
proach can achieve significant compression ratios despite negligible re-
construction errors, that is, MSEs between the original de-noised and the
reconstructed signals. We will compare our approach again with LTC
(SGO+04), remembering that it was specifically designed to be embed-
ded in sensor nodes. We will show that our approach outperforms LTC
in terms of compression ratios (and consequently number of messages
sent by a generic sensor node to transmit measures to the sink), complex-
ity (average number of instructions required to compress a sample) and
reconstruction errors, thus representing a very interesting state-of-art so-
lution to the problem of compressing noisy data in WSNs.

6.1 DPCM and Quantization Principles

Our compression scheme is a purposely adapted version of the DPCM
scheme often used for digital audio signal compression. DPCM is a mem-
ber of the family of differential compression methods. These methods ex-
ploit the high correlation that typically exists between neighboring sam-
ples of smooth digitized signals, achieving compression by appropriately
encoding differences between these samples.

The simplest differential encoder calculates and encodes the differ-
ences di = si − si−1, between consecutive samples si. The first data
sample, s0, is either encoded separately or is written on the compressed
stream in raw format; in both the cases the decoder can reconstruct s0 ex-
actly. We will adopt the second solution. The decoder simply reverses the
encoding tasks, in a symmetric manner, that is, it decodes the differences
di and uses the decoded values to generate the reconstructed samples si

(si = si−1 + di).
In principle, any suitable method, lossy or lossless, can be used to

encode the differences. In practice, scalar quantization is often used, re-
sulting in lossy compression. The quantity encoded is therefore not the
difference di but its quantized version, denoted by d̂i. The difference

91

qi between di and d̂i is denoted as quantization error. The design of the
quantizer is a crucial point in the development of a DPCM compression
scheme.

Let S = {S1, ..., SL} be a set of cells Sl, with l ∈ [1..L], which form a
disjoint and exhaustive partition of the input domain D (difference do-
main in our case). Let C = {y1, . . . , yL} be a set of levels yl ∈ Sl, with
l ∈ [1..L]. The quantization process is performed by a quantization op-
erator Q : D → C such that Q(di) = yl ⇔ di ∈ Sl. Cells Sl are often
expressed in the form of intervals Sl = (al−1, al], where the bounds al are
called thresholds. The width of a cell is expressed by |al − al−1| (GN98).
The quantization rule can be expressed as Q(di) = g (bf(di)c), where
bf(·)c returns the index l of the cell Sl, which the difference di belongs
to, and g (·) returns the quantized output d̂i = yl.

A quantizer is said to be uniform if the levels yi are equispaced and
the thresholds are midway between adjacent levels. If an infinite number
of levels are allowed, then all cells Si will have equal width ∆. If only a
finite number of levels are allowed, then all but two cells will have width
∆ and the outermost cells will be semi-infinite. Given a uniform quan-
tizer with cell width ∆, the region of the input space within ∆/2 of some
quantizer level is called the granular region or simply the support and that
outside (where the quantizer error is unbounded) is called the overload or
saturation region (GN98).

When a good rate-distortion performance is requested to a quantizer,
the zero-cell width is usually treated individually, even if the quantizer is
uniform. Since each input within the zero-cell is quantized to 0, this cell
is often called dead zone: uniform quantizers with dead zone have been
successfully employed, for example, in many international standards for
image and video coding, such as JPEG and MPEG (T.01).

Unfortunately, the introduction of the quantization block in a DPCM
scheme introduces a new problem, namely, the accumulation of errors prob-
lem (Sal07). This problem is easy to understand by analyzing separately
the operations performed by the encoder and the decoder. The encoder
generates the exact differences di from the original data samples si and
si−1, while the decoder generates the reconstructed sample ŝi using only

92

the quantized differences d̂i. The decoder decodes the d̂i’s and uses them
to generate reconstructed samples ŝi (ŝi = ŝi−1 + d̂i) rather than the orig-
inal samples si’s. The generic n-th reconstructed sample ŝn at decoder
will contain the sum of the quantization errors accumulated during the
reconstruction of the previous n − 1 samples plus the quantization error
of the current sample:

ŝn = sn +
n∑

i=1

qi (6.1)

To overcome this problem, the encoder is modified so as to compute the
differences di = si − ŝi−1, that is, to calculate difference di by subtracting
the most recent reconstructed value ŝi−1 (which both encoder and de-
coder have) from the current original sample si. Thus, the decoder first
decodifies s0. Then, when it receives the first quantized difference d̂1, it
computes ŝ1 = s0 + d̂1 = s0 + d1 + q1 = s1 + q1. When it receives the
second quantized difference d̂2, it computes ŝ2 = ŝ1 + d̂2 = ŝ1 + d2 + q2 =
ŝ1 + s2 − ŝ1 + q2 = s2 + q2. The decoded value ŝ2 contains just the single
quantization error q2. In general, the decoded value ŝi is equal to si + qi,
thus it contains just the quantization error qi.

Typically, the DPCM scheme takes also advantage of the fact that the
current sample depends on several and not only one of its near neigh-
bors. Thus, to improve prediction, we can use K of the previously seen
neighbors to encode the current sample si by using a prediction function
in the form Φ (ŝi−1, . . . , ŝi−K). Methods which use such a predictor are
called differential pulse code modulations.

Usually the d̂i data sequence is further compressed by using any loss-
less compression algorithm which makes d̂i more compactly represented
by removing some redundancies. Typically run length encoding schemes,
entropy schemes and arithmetic schemes are adopted to achieve this data
compaction (Sal07).

6.2 Our lossy compression scheme

Figures 31 and 32 show the block diagrams of our purposely adapted
compressor and uncompressor, respectively. As regards the compressor,

93

Figure 31: Block diagram of the compressor

the generic difference di is calculated by subtracting only the most recent
reconstructed value ŝi−1, that is, there is only a delay block rather than
a prediction block. The introduction of a prediction block, in fact, would
have caused an overall increase in the complexity of the compression al-
gorithm, without a tangible increase of the compression performance (at
least for the type of data typically collected by WSNs). The bf(·)c block
returns the index li of the cell Sli which di belongs to. The index li is input
to the g (·) block, which computes the quantized difference d̂i, and to the
encoding block ENC, which generates the codeword ci (O’N76).

In the uncompressor, the codeword ci is analyzed by the decoding
block DEC which outputs the index li. This index is elaborated by the
block g (·) to produce d̂i, which is added to ŝi−1 to output ŝi.

As regards the block ENC, it is well-known in information theory
that, when the quantization indexes have unequal probabilities, assign-
ing equal numbers of bits to all quantization indexes is wasteful (Sha48).
Indeed, the number of bits produced by the quantizer will be reduced
if shorter binary codewords are assigned to more probable indexes. This
observation is used in the entropy encoders, which encode more probable
indexes with lower number of bits. Further, the set of binary codewords

94

Figure 32: Block diagram of the uncompressor

satisfies the prefix condition, that is, no member is a prefix of another
member, in order to ensure unambiguous decodability.

In our case, inputs di to the quantizer represent the general differences
between consecutive digitized environmental data samples si. In general,
environmental signals are quite smooth and therefore small differences
are more probable than large. Thus, we can use an entropy encoder in
order to further compress the integer-valued quantization indexes.

Any scalar quantization operator Q can be adopted. In deciding the
type of operator, we have to consider that a coarse quantization generates
a high data reduction, but also a high reconstruction error at the decoder.
Further, the operator cannot be computationally heavy, since it is exe-
cuted on a battery powered tiny device. Thus, a right trade-off among
compression, reconstruction error and complexity has to be found.

In the next section, we propose to use an MOEA to determine a set of
optimal operators with different trade-offs among information entropy
H , quantization complexity C and mean square error MSEd between the
quantized and the de-noised samples.

Information entropy H provides an indirect measure of the possible
obtainable compression ratios and is defined as:

H = −
L∑

l=1

pl · log2(pl) (6.2)

where pl is the probability mass function of quantization index l.

95

Quantization complexity C is computed as the number L of distinct
quantization levels (and consequently indexes) used in the quantizer:

C = L. (6.3)

A lower value of C implies a lower number of symbols needed to en-
code the quantization indexes and therefore a lower number of bits in the
binary codewords.

The MSEd quantifies the loss of information with respect to the ideal
(not affected by noise) signal and is defined as

MSEd =
1
N

N∑
i=1

(si − s∗i)2 (6.4)

where N is the number of samples, and si and s∗i are, respectively, the
original and the de-noised samples. To de-noise the samples, we have
adopted the wavelet shrinkage and thresholding method proposed in (DJ94).
We have used the Symmlet 8 wavelet, a level of decomposition equal to 5
and the soft universal thresholding rule for thresholding the detail coeffi-
cients at each level. The de-noising process has been performed by using
standard Matlab built-in functions. To provide a glimpse of the effective-
ness of the de-noising approach, Fig. 33 shows a real temperature dataset
collected by a sensor on board a node of a WSN before and after apply-
ing the de-noising process. We can observe how the noise is practically
completely removed.

6.3 The Optimization Framework

MOEAs have been investigated by several authors in recent years (ZDT00).
Some of the most popular among these algorithms are the Strength Pareto
Evolutionary Algorithm (SPEA) (ZT99) and its evolution (SPEA2) (ZLT02),
the Niched Pareto Genetic Algorithm (NPGA) (HNG94), the different ver-
sions of the Pareto Archived Evolution Strategy (KC00), and the Non-
dominated Sorting Genetic Algorithm (NSGA) (SD94) and its evolution
(NSGA-II) (DPAM02). Since NSGA-II is considered as one of the most ef-
fective MOEAs, we used NSGA-II in the experiments. On the other hand,

96

Figure 33: Portions of the original and de-noised signals

to compare the performance of different MOEAs is out of the scope of this
thesis: we only aim to show the effectiveness of an MOEA approach in de-
termining a set of quantizers which allow achieving different trade-offs
among information entropy, quantization complexity andMSEd. We use
the jMetal (DNL+06) implementation of NSGA-II for our optimization.

The choice of the solution with the best trade-off among H , C and
MSEd for the specific application can be made on the basis of the con-
straints which have to be satisfied at the moment.

In the following subsections, we describe the chromosome coding, the
genetic operators and the NSGA-II algorithm.

6.3.1 The chromosome coding

Each chromosome codifies a different quantizer. The choice of the pa-
rameters which identify the quantizers is based on the following consid-
erations. The signals collected by sensors on board nodes are affected by

97

noise: these sensors produce different readings even when they are sam-
pling an unchanging phenomenon. To reduce this problem, the quantizer
has to be characterized by a dead zone. Further, to guarantee a higher
flexibility than a uniform quantizer, but without complicating too much
the quantization rule, we split the granular region into two subregions.
Then, we partition both the subregions uniformly with appropriate dif-
ferent cell widths. It follows that each quantizer is determined by the
following five parameters:

1. width of the dead zone (DW)

2. width of the cell in the first granular subregion (FW)

3. number of cells in the first granular subregion (FN)

4. width of the cell in the second granular subregion (SW)

5. number of cells in the second granular subregion (SN)

Every general difference within the interval (−DW,DW) is quantized to
zero.
The first granular subregions (−DW−FN ·FW,−DW] and [DW,DW+FN ·FW)
are uniformly partitioned by FN cells of FW width.
The second granular subregions (−DW−FN ·FW−SF ·SW,−DW−FN ·FW]
and [DW+FN ·FW,DW+FN ·FW+SF ·SW) are uniformly partitioned
by SN cells of SW width.
The differences which fall in the two semi-infinite saturation regions
(−∞,−DW−FN ·FW−SF ·SW] and [DW+FN ·FW+SF ·SW,+∞) are quan-
tized to the midway of the adjacent cells of the second granular subre-
gions. It follows that equation (6.3) can be rewritten as:

C = 2 · (FN + SN) + 1 (6.5)

The choice of these parameters originates several different types of quan-
tizers. In the chromosome, each parameter is expressed as a positive in-
teger in the range [1,MAX] and is codified by a Gray binary code. The
value of MAX depends on the resolution of the ADC on board the sen-
sor node. On the other hand, to constrain the upper bound of the range

98

reduces the search space and allows a better exploration. In our experi-
ments we set MAX = 64: it follows that each chromosome is represented
by a string of 30 bits.

Each chromosome is associated with a vector of three elements, where
each element expresses the fulfillment degree of the three objectives (Equa-
tions (6.2), (6.5), (6.4)). To compute H , C and MSEd, we use a small set
(training set) of samples collected by the sensor on board the node.

6.3.2 Genetic operators

We apply classical one-point crossover operator and a gene mutation op-
erator (Mic94). The one-point crossover operator cuts two chromosomes
at some chosen common point and swaps the resulting sub-chromosomes.
The common point is chosen by extracting randomly a number in (1, 30).

In the mutation operator a point is randomly selected and its value is
swapped (0 becomes 1 and vice versa). The crossover operator is applied
with probability PX ; the mutation operator is applied with probability
PM . In the experiments, we adopted PX = 0.9 and PM = 0.02.

In order to select the mating operators and probability values, we per-
formed several experiments by comparing the different Pareto fronts ob-
tained by applying NSGA-II with different crossover and mutation op-
erators, and different probabilities. We verified that the selected mating
operators and probability values allow obtaining the widest Pareto fronts
and the best trade-offs among H , C and MSEd.

6.3.3 NSGA-II

The NSGA-II algorithm was introduced in (DPAM02) as an improved
version of the Non-dominated Sorting Genetic Algorithm (SD94). It is a
population-based genetic algorithm, which uses an ad-hoc density-estimation
metric and a non-dominance rank assignment. NSGA-II starts from an
initial random population P0 ofNpop individuals (100 in our experiments)
sorted based on the non-dominance. Each individual is associated with
a rank equal to its non-dominance level (1 for the best level, 2 for the
next-best level, and so on). To determine the non-dominance level (and

99

consequently the rank), two entities are computed for each individual p:
i) the number np of individuals that dominate p and ii) the set Sp of indi-
viduals dominated by p. All individuals with np = 0 belong to the best
non-dominance level associated with rank 1. Indeed, these individuals
are dominated by no other individual. To determine the individuals asso-
ciated with rank 2, for each solution p with rank 1, we visit each member
q of the set Sp and decrease nq by one. If nq becomes zero, then q be-
longs to the non-dominance level associated with rank 2. The procedure
is repeated for each solution with rank 2, rank 3 and so on until all fronts
are identified. At each iteration t, t = 0, . . . , Tmax, an offspring popula-
tion Qt of size Npop is generated by selecting mating individuals through
the binary tournament selection, and by applying the crossover and mu-
tation operators. Parent population Pt and offspring population Qt are
combined so as to generate a new population Pext = Pt ∪ Qt. Then, a
rank is assigned to each individual in Pext as explained above. Based on
these ranks, Pext is split into different non-dominated fronts, one for each
different rank. Within each front, a specific crowding measure, which
represents the sum of the distances to the closest individual along each
objective, is used to define an ordering among individuals: in order to
cover the overall objective space, individuals with large crowding dis-
tance are preferred to individuals with small crowding distance. The new
parent population Pt+1 is generated by selecting the best Npop individu-
als (considering first the ordering among the fronts and then among the
individuals) from Pext. The algorithm terminates when the number of
iterations achieves Tmax (10000 in our experiments).

6.4 Performance assessment results

In order to show the effectiveness and validity of our lossy compression
approach, we tested it against some real-world temperature datasets. In
particular, we used temperature measurements from three SensorScope
deployments (Senb), already introduced in Section 5.2.1: HES-SO FishNet
Deployment, Grand-St-Bernard Deployment and Le Génépi Deployment. For a
detailed description of these datasets the reader can refer to Section 5.2.1.

100

6.4.1 The optimization process

We used the first N = 5040 samples from FN ID101 temperature dataset
as training set. Since this dataset is a collection of temperature samples
collected with a frequency of 1 sample each 2 minutes, it is equivalent to
consider a 7-days training set. The extracted portion of the original signal
is first de-noised and then converted back to raw data (we recall that our
compression scheme works on raw data). Fig. 33 shows the portion of the
original signal used to build the training set and its de-noised version.

We applied NSGA-II to the training set. At the end of the optimization
process we obtained an archive of non-dominated solutions with respect
to the three objectives. In particular, the objective C (quantization com-
plexity) has allowed us to steer the search of the best solutions towards
the ones with the minimum number of cells. Thus, during the evolution,
the archive is populated preferably by quantizers which, having equal
entropy and MSEd, are characterized by a lower number of cells, thus
avoiding to consider quantizers with a high number of unused cells. This
allows simplifying the implementation of the quantizer and consequently
of the encoder. Indeed, if the number of indexes is low, the encoder can
use a small dictionary to encode the quantization indexes. This dictionary
can be generated by using the Huffman’s algorithm (Huf52) which pro-
vides a systematic method of designing binary codes with the smallest
possible average length for a given set of symbol occurrence frequencies.
Once the binary codeword representation of each quantization index has
been computed and stored in the sensor node, the encoding phase re-
duces to a look-up table consultation.

The only critic point of this approach is that the Huffman’s algorithm
requires to know the probability with which the source produces each
symbol in its alphabet. To determine an approximation of these probabil-
ities, we can exploit again the training set: for the specific quantizer, we
compute the probability with which each quantization index occurs when
quantizing the differences between consecutive samples of the training
set and build the optimal dictionary for that data source by applying the
Huffman’s algorithm.

101

Figure 34: Projection of the Pareto front approximation on the H −MSEd

plane

If we project the final archive on the MSEd − H plane (see Fig. 34),
we realize that actually almost all solutions maintain the non-dominance
property with respect to the H and MSEd objectives: only 12 out of 100
solutions result to be dominated by one or more solutions in the archive.
In the figure, dots and crosses represent, respectively, non-dominated and
dominated solutions with respect to the H and MSEd objectives. Non-
dominated solutions in the MSEd − H plane are actually the solutions
of interest. We can observe that the front is wide and the solutions are
characterized by a good trade-off between H and MSEd.

6.4.2 Selected Solutions and their validation

To perform an accurate analysis of some solution, we selected from the
front in Fig. 34 three significant quantizers: solutions (A) and (C) charac-
terized by, respectively, the highest H and MSEd, and solution (B) char-

102

Solution DZ FW FN SW SN
A 8 1 3 2 1

B 32 15 1 5 1

C 63 61 1 44 1

Table 21: Parameters of solutions (A), (B) and (C)

index Probability [A, B, C] Codeword [A, B, C]

−4 [0.1198,−,−] [101,−,−]
−3 [0.0163,−,−] [100011,−,−]
−2 [0.0200, 0.0052, 0] [100001, 1011, 1111]
−1 [0.0252, 0.0311, 0.0131] [10010, 11, 110]
0 [0.6309, 0.9258, 0.9730] [0, 0, 0]
1 [0.0023, 0.0311, 0.0139] [10011, 100, 10]
2 [0.0186, 0.0069, 0] [100010, 1010, 1110]
3 [0.0206,−,−] [100000,−,−]
4 [0.1258,−,−] [11,−,−]

Table 22: Codewords used in solutions (A), (B) and (C)

acterized by a good trade-off between H and MSEd. Table 21 shows the
values of the five parameters which characterize the three selected quan-
tizers.

Solutions (A), (B) and (C) correspond, respectively, to the quantiza-
tion rules represented in Fig. 35, Fig. 36 and Fig. 37, where the black dots
and the circles represent the differences di and quantized differences d̂i,
respectively. Table 22 shows the quantization indexes, their probabilities
and the codewords assigned by the Huffman’s algorithm when the se-
lected quantizers are used in the proposed scheme for compressing the
training set.

To assess the performances of the three compression algorithms gener-
ated by, respectively, the quantizers corresponding to (A), (B) and (C), we
use the compression ratio (CR) and the two different packet compression
ratios (PCR and PCR∗) defined in Chapter 5.

Table 23 shows the CR, PCR and PCR∗ obtained for the three tem-
perature datasets and the three selected quantizers. Further, the table
reports the MSE between the original noisy and the reconstructed sam-

103

Figure 35: Quantization rule for solution (A)

Dataset Solution CR PCR PCR∗ MSEn MSEd

TRAINING SET
A 87.8919 87.6437 87.0690 0.0120 0.0036
B 92.9253 92.8161 92.2414 0.0206 0.0076
C 93.4834 93.3908 93.1034 0.0785 0.0351

FN ID101
A 87.4679 87.3998 86.8270 0.0676 0.0431
B 92.8128 92.7835 92.3253 0.0305 0.0097
C 93.4264 93.3565 93.0126 0.0905 0.0384

GSB ID10
A 86.1882 86.1838 85.4534 0.0436 0.0071
B 91.7356 91.7225 91.2355 0.0250 0.0043
C 93.1495 93.1223 92.7572 0.0887 0.0275

LG ID20
A 85.2867 85.2525 84.4444 0.1200 0.0241
B 89.7784 89.7643 89.2256 0.0422 0.0032
C 92.4888 92.4579 92.0539 0.0882 0.0173

Table 23: Results obtained by solutions (A), (B) and (C) on the three datasets

104

Figure 36: Quantization rule for solution (B)

Figure 37: Quantization rule for solution (C)

105

ples, denoted as MSEn, and MSEd. We can observe that all solutions
achieve good trade-offs between compression ratios and MSE. Further,
there do not exist considerably differences between the results obtained in
the training set and the ones achieved in the overall FN ID101 dataset and
the other two datasets. This result could be considered enough surpris-
ing. Indeed, we highlight that both the optimization and the Huffman’s
algorithm were executed using only a portion of the FN ID101 dataset.
Thus, GSB ID10 and LG ID20 datasets are completely unknown to the
compression scheme. We are conscious that the procedure adopted for
FN ID101 could have been exhaustively applied also to the other datasets,
in order to find ad-hoc solutions for the particular deployment. On the
other hand, the three temperature datasets were collected, though in dif-
ferent places and times, by the same sensor nodes with the same type
of temperature sensor and the same sampling frequency: for this reason
it could be unnecessary to perform the optimization on each dataset. To
validate this assumption for each selected solution, we executed the Huff-
man’s algorithm on a portion of N = 5040 samples extracted respectively
from GSB ID10 and LG ID20 datasets and used the resulting dictionaries
to compress the corresponding datasets. Table 24 shows the CR, PCR
and PCR∗ obtained in this case. If we compare the results in Table 24
with those in Table 23, we can observe that the increases in CR, PCR and
PCR∗ are very small and almost negligible, thus confirming the possi-
bility of adopting the same encoding for similar applications of the same
sensor. Similar considerations (for the sake of brevity these results are not
shown) can be also made for the genetic optimization.

Solution (B) which was chosen on the knee of the Pareto front is char-
acterized by compression ratios comparable to those achieved by solution
(C) and by MSEd comparable to those obtained by solution (A). This so-
lution therefore represents a good trade-off between compression ratios
and MSEd. For this reason, we chose this solution to perform the com-
parisons discussed in the following subsections.

106

Dataset Solution CR PCR PCR∗

GSB ID10
A 86.1882 86.1838 85.4534
B 91.7797 91.7833 91.2355
C 93.1532 93.1223 92.7572

LG ID20
A 85.5332 85.5219 84.5792
B 90.2866 90.2357 89.697
C 92.4888 92.4579 92.0539

Table 24: Compression ratios and packet compression ratios achieved by the
three solutions (A), (B) and (C) on GSB ID10 and LG ID20 datasets when
applying the Huffman’s algorithm to training sets extracted from the two
datasets

6.4.3 Comparison with LTC

To assess the effectiveness of our approach, we adopt the LTC algorithm
proposed in (SGO+04), and already used as comparison in Chapter 5.
Again, to analyze the trend of LTC’s CRs with respect to increasing val-
ues of e, we varied e from 0% to 200% of the SME with step 10% (e and
SME are set as in Chapter 5).

6.4.4 Compression ratio and distortion

Fig. 38 shows, for all the three datasets, the resulting trends of the CRs
obtained by the LTC algorithm for different error values. Due to the par-
ticular approach based on linear approximation used in LTC, we observe
that the lossless version of LTC (corresponding to e = 0) generates a nega-
tive CR, that is, the size of the compressed data is larger than the original
data. Further, we note that interesting CRs are obtained only with rel-
evant compression errors. Fig. 39 shows, for all the three datasets, the
trends of the MSEn. By comparing Table 23, where we have shown the
CRs obtained by the our algorithm, with Figs. 38 and 39, we can ob-
serve that the LTC algorithm can achieve the same CRs as our algorithm,
but despite a quite high MSEn. For instance, our algorithm achieves a
CR equal to 92.81 for the FN ID101 temperature dataset. From Fig. 38,
we can observe that, in order to achieve similar CRs, the LTC algorithm
should be executed with a value of e between 120% and 130% of the SME.

107

Figure 38: Compression ratios obtained by the LTC algorithm for different
error values on the three datasets

From Fig. 39, we can deduce that these values of e lead to have an MSEn

between 0.039 and 0.045 against an MSEn = 0.030 for our algorithm.
Table 25 shows the correspondences between the CR achieved by our al-
gorithm, and the CR, MSEn and MSEd obtained by LTC on the three
datasets. By comparing Table 25 with Table 23, we can observe that our
algorithm obtains lower MSEs than LTC in correspondence to equal CRs.
For example, for the FN ID101 dataset and CR equal to 92.81, MSEd is
between 0.0972 and 0.0121 for LTC, whereas MSEd = 0.0097 for our al-
gorithm.

6.4.5 Complexity

Again, to assess the complexity of our algorithm and of LTC, we have per-
formed a comparative analysis on the number of instructions required
by each algorithm to compress data. To this aim, we have adopted the
Sim-It Arm simulator (Sim). For LTC, we have set e to the left extremes
of the e intervals in Table 25 (we recall that the left extremes are the

108

Figure 39: Mean squared errors obtained by the LTC algorithm for different
error values on the three datasets.

Dataset CR
e CR MSEn MSEd

[min, max] [min, max] [min, max] [min, max]

FN ID101 92.8128 [120, 130] [92.23, 92.98] [0.0390, 0.0450] [0.0972, 0.0121]

GSB ID10 91.7356 [150, 160] [90.90, 91.90] [0.0540, 0.0600] [0.0140, 0.0172]

LG ID20 89.7784 [200, 210] [88.65, 89.51] [0.0960, 0.1041] [0.0203, 0.0229]

Table 25: Correspondences between compression ratios achieved by our al-
gorithm, and compression ratios and mean squared errors achieved by LTC
on the three datasets

109

Dataset instr. saved bits instr/saved bits
our LTC our LTC our LTC

FN ID101 1065656 7440517 187868 186768 5.67 39.83

GSB ID10 2050525 13951039 349520 346442 5.86 40.26

LG ID20 1919529 12574212 309168 305296 6.20 41.18

average 1678570 11321923 282185 279502 5.92 40.43

Table 26: Complexity of our algorithm and LTC

most favourable cases for the LTC algorithm). Table 26 shows the num-
bers of instructions required for compressing each dataset, the number of
saved bits, the numbers of instructions per saved bit for each temperature
datasets and their average values. We note that, though our algorithm
achieves lower MSEs at the same bitrate as LTC, it requires lower number
of instructions. We observe that, on average, our algorithm executes 5.93
instructions for each saved bit against 40.43 executed by LTC.

110

Chapter 7

Conclusions and open
issues

The difficulties of in-processing strategies in WSNs mainly stem from the
constraints imposed by the simplicity of sensor devices: limited power,
limited communication bandwidth and processing capabilities, and small
storage capacity.

In this thesis, we first have focused on the study and design of a dis-
tributed aggregation framework: we have proposed a novel distributed
approach based on fuzzy numbers and weighted average operators to
perform energy efficient aggregation. We have shown that the algorithm
is able to reduce the number of received and sent messages without af-
fecting the quality of the aggregate estimation. We have applied our al-
gorithm to the monitoring of the maximum temperature in a 100-node
simulated WSN and a 12-node real WSN. In the hypothesis of using the
B-MAC protocol with LPL, we have computed the lifetimes of the two
WSNs for the simulated and real applications (exploiting the mathemati-
cal model proposed by B-MAC’s authors, adapted to our application). In
the worst case, the WSN lifetime is approximately 418 days with a bat-
tery capacity of 2500mAh. If we had maintained the radio on all the time,
the WSN lifetime would have been a few days. Thus, we have concluded
that the combination B-MAC protocol and proposed aggregation allows

111

considerably prolonging the WSN lifetime.

Then, we have concentrated our effort on the design of compression
algorithms for single node compression. In this context, we have intro-
duced LEC, a simple lossless compression algorithm particularly suited
to the reduced storage and computational resources of a WSN node. The
compression scheme exploits the high correlation that typically exists be-
tween consecutive samples collected by a sensor on-board a node. Thanks
to this characteristic and following the principles of entropy compression,
the algorithm is able to achieve considerable compression ratios and to
compute a compressed version of each value acquired from a sensor on
the fly. We have evaluated the LEC algorithm by compressing four tem-
perature and relative humidity datasets collected from SensorScope de-
ployments. We have obtained compression ratios up to 70.81% for tem-
perature datasets and up to 62.08% for relative humidity datasets, with-
out introducing any error in the reconstructed signals. Then, we have
compared LEC with S-LZW, a lossless compression algorithm specifically
designed for WSNs. We have shown that the LEC algorithm can achieve
higher compression ratios than S-LZW. Finally, we have discussed how
LTC, a lossy compression algorithm proposed for WSNs, has to tolerate
a considerable error in the reconstructed samples to achieve compression
ratios comparable to the LEC algorithm.

Finally, although, as already discussed in the thesis we believe that
lossless compression algorithms play an important role in WSNs, we are
conscious that, in general, WSNs are deployed with cheap sensors. In
this context, it is necessary to introduce lossy compression algorithm try-
ing to reduce the effect of noisy measurements as much as possible, so
as to affect as less as possible the quality of the reconstructed samples.
To this aim, we have introduced in the original LEC scheme, a quanti-
zation process before encoding, following the well-known scheme of the
Differential Pulse Code Modulation scheme. Here the general differences
between consecutive samples are quantized before being encoded. The
quantization process affects both the compression ratio and the informa-
tion loss. To generate different combinations of the quantization process
parameters corresponding to different optimal trade-offs between com-

112

pression performance and information loss, we have applied NSGA-II, a
popular multi-objective evolutionary algorithm, on a subset of samples
collected by the sensor. The user can therefore choose the combination
with the most suitable trade-off for the specific application. We tested our
lossy compression approach on three datasets collected by real WSNs,
obtaining compression ratios up to 93.48% with very low reconstruction
errors. In the comparative analisys, we have shown how our approach
outperforms LTC, in terms of both compression ratio and complexity.

7.1 Open Issues

7.1.1 Delay

The goal of the in-network algorithms proposed in this thesis was to max-
imize the node lifetime in habitat applications, by reducing the communi-
cation data flow toward the sink by means of aggregation and compres-
sion techniques. As highlighted, in-networks approaches can be adopted
only if data have not to be transferred in real-time. Some applications
(like monitoring of temperature, humidity, seismic activity, etc.) were
good scenarios for enabling these techniques. However, as we have dis-
cussed in Chapter 2, some critic real applications have a maximum toler-
able delay, above which data becomes useless. In these critic scenarios, a
performance measure that combines delay and throughput is needed.

open issue: How can we analyse the trade-off between the benefit of delaying
data communication and the threat of having stale information at sink?

7.1.2 Data correlation

Dense networks provide an enormous quantity of information about the
physical process being measured. This information is typically highly
correlated in time and space among sensors. This correlation can be ex-
ploited to overcome sensor network limitations by designing distributed
coding schemes that trade this redundancy. Actually this is the on-fashion
trend in the literature.

113

open issue: How could we enable a distributed framework in which the
computational overload can be leveraged among the nodes and a joint decoding
is performed using more expensive (in terms of computational requirements) and
more reliable lossless compression together with low-power lossy compression to
reconstruct the phenomenon under monitoring?

7.1.3 Data gathering protocols

In the proposed compression algorithms each node simply samples, com-
presses and stores measured samples. When a packet payload is full the
node forwards it to a data collection center, using generally node to node
- multi-hop data propagation. However, an emergent trend in the litera-
ture of habitat monitoring with WSNs is the data mule architecture. Here a
WSN consists of a number of static sensor nodes, placed in several differ-
ent pre-fixed points in an area under monitoring, and one or more data
collectors (data mules) come into contact with the static sensors at ap-
proximately regular intervals to collect values measured by them. This
model is characterised by a number of advantages in comparison with
the traditional approach based on multi-hop communication: the net-
work lifetime is longer (the number of exchanged packets decreases), the
packet loss probability decreases (the number of hops decreases), the net-
work capacity increases and node synchronization error decreases (the
number of hops is smaller than in the multi-hop approach). On the other
hand, the data latency and the costs of the network infrastructure might
increase (SKJ+06). Since the model with data mules is typically applied in
environmental monitoring applications, latency is not generally an issue.
Further, the additional cost for data mules can be maintained very low if
we exploit the mobility of external agents available in the environment.
In this framework, each static node could trade the power consumption,
the compression performances and the introduced error off by adapting
its compression parameters during the coding phase and by tuning its
radio duty-cycle.

open issue: How does a data mule architecture influence the compression
task in terms of compression performance, reconstructed error and latency?

114

References

[ACDP07] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. How to
prolong the lifetime of wireless sensor networks. In M. Denko and
L. Yang, editors, Mobile Ad Hoc and Pervasive Communications. Amer-
ican Scientific Publishers, Valencia, CA, USA, 2007. to be published.
3, 23

[ACMV06] M. Awenuti, P. Corsini, P. Masci, and A. Vecchio. Increasing the effi-
ciency of preamble sampling protocols for wireless sensor networks.
In MCWC ’06: Proceedings of the First International Conference on Mo-
bile Computing and Wireless Communication, pages 117–122, 2006. 23

[ASSC02] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci.
A survey on sensor networks. Communications Magazine, IEEE,
40(8):102–114, August 2002. 1

[BA06] K. C. Barr and K. Asanović. Energy-aware lossless data compression.
ACM Trans. Comput. Syst., 24(3):250–291, August 2006. 3, 6, 30, 31,
59, 81

[BGS03] A. Boulis, S. Ganeriwal, and M.B. Srivastava. Aggregation in sen-
sor networks: an energy-accuracy trade-off. Ad Hoc Networks, 1(2-
3):317–331, 2003. 26, 36, 37, 53

[BKK07] S. Bac, D. Kwak, and C. Kim. Traffic-aware MAC protocol using
adaptive duty cycle for wireless sensor networks. In ICOIN ’07: In-
ternational Conference on Information Networking. Towards Ubiquitous
Networking and Services, pages 142–150, 2007. 23

[Cam] Camalie Networks Wireless Sensing for Viticulture.
http://camalienetworks.com/index.htm. 2

[CAM02] L. Chen, P.O. Arambel, and R.K. Mehra. Estimation under unknown
correlation: Covariance intersection revisited. IEEE Trans. Autom.
Control, pages 1879–1882, 2002. 36

115

http://camalienetworks.com/index.htm

[CBLV04] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network corre-
lated data gathering. In INFOCOM ’04: Proceedings of the 23rd An-
nual Joint Conference of the IEEE Computer and Communications Soci-
eties, pages 2571–2582, 2004. 29

[CDM04] B. J. Culpepper, L. Dung, and M. Moh. Design and analysis of hybrid
indirect transmissions (hit) for data gathering in wireless micro sen-
sor networks. SIGMOBILE Mob. Comput. Commun. Rev., 8(1):61–83,
2004. 27

[CE02] J. Chhabra and B. Elliott. Real-world experiences with an interactive
ad hoc sensor network. In Proceedings of the International Conference
on Parallel Processing Workshops, page 143, 2002. 8

[Cia06] A. Ciancio. Distributed wavelet compression algorithms for wireless sen-
sor networks. PhD thesis, University of Southern California, 2006. 33,
34

[CMV08] S. Croce, F. Marcelloni, and M. Vecchio. Reducing power consump-
tion in wireless sensor networks using a novel approach to data ag-
gregation. The Computer Journal, 51(2):227–239, 2008. 19

[CPOK06] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari. Energy-
efficient data representation and routing for wireless sensor net-
works based on a distributed wavelet compression algorithm. In
IPSN ’06: Proceedings of the 5th International Conference on Information
Processing in Sensor Networks, pages 309–316, April 2006. 33, 34

[CSH02] A.P. Chandrakasan, A.C. Smith, and W.B. Heinzelman. An
application-specific protocol architecture for wireless microsensor
networks. IEEE Trans. Wireless Commun., 1:660–670, 2002. 27

[CTLW05] M. Cardei, M.T. Thai, Yingshu Li, and Weili Wu. Energy-efficient
target coverage in wireless sensor networks. In INFOCOM ’05: Pro-
ceedings of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 3, pages 1976–1984, March 2005.
16

[Cut52] C. C. Cutler. Differential quantization of communication signals.
Patent, July 1952. 2 605 361. 89

[CV03] R. Cristescu and M. Vetterli. Power efficient gathering of correlated
data: optimization, NP-completeness and heuristics. SIGMOBILE
Mob. Comput. Commun. Rev., 7(3):31–32, 2003. 29

116

[Dav] Davis Solar Radiation sensor Homepage.
http://www.davisnet.com/weather/products/weather_
product.asp?pnum=06450. 83

[dCdS06] A. B. da Cunha and D.C. Jr. da Silva. An approach for the reduction
of power consumption in sensor nodes of wireless sensor networks:
Case analysis of Mica2. In SAMOS, pages 132–141, 2006. 3

[DCX03] M. Ding, X. Cheng, and G. Xue. Aggregation tree construction in
sensor networks. In VTC ’03: IEEE 58th Vehicular Technology Confer-
ence, volume 4, pages 2168–2172, October 2003. 28

[DJ94] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by
wavelet shrinkage. Biometrika, 81(3):425–455, 1994. 96

[DNL+06] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. jMetal:
A java framework for developing multi-objective optimization meta-
heuristics. Technical Report ITI-2006-10, E.T.S.I. Informática, Cam-
pus de Teatinos, 2006. 97

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Com-
put., 6(2):182–197, April 2002. 90, 96, 99

[ECG] ECG dataset.
http://www.physionet.org/physiobank/database/mitdb/. 84

[Eli75] P. Elias. Universal codeword sets and representations of the integers.
IEEE Trans. Inf. Theory, 21(2):194–203, 1975. 60

[Fal73] N. Faller. An adaptive system for data compression. In Proceedings of
the 7th Asilomar Conference on Circuits, Systems, and Computers, pages
593–597, 1973. 69

[Fir] Fire: Fire information and rescue equipment.
http://fire.me.berkeley.edu/. 2

[Gad06] Y. Gadallah. A comparative study of routing strategies for wireless
sensor networks: Are MANET protocols good fit? In ADHOC-NOW
’06: Proceedings of the 5th International Conference on Ad-Hoc, Mobile,
and Wireless Networks, pages 5–18, 2006. 12

[Gal78] R. G. Gallager. Variations on a theme by Huffman. IEEE Trans. Inf.
Theory, 24(6):668–674, 1978. 69

117

http://www.davisnet.com/weather/products/weather_product.asp?pnum=06450
http://www.davisnet.com/weather/products/weather_product.asp?pnum=06450
http://fire.me.berkeley.edu/

[GBT+04] C. Guestrin, P. Bodik, R Thibaux, M. Paskin, and S. Madden. Dis-
tributed regression: an efficient framework for modeling sensor net-
work data. In IPSN ’04: Proceedings of the Third International Sym-
posium on Information processing in sensor networks, pages 1–10, 2004.
33

[GDV06] M. Gastpar, P. L. Dragotti, and M. Vetterli. The distributed
Karhunen-Loève Transform. IEEE Trans. Inf. Theory, 52(12):5177–
5196, December 2006. 33, 34

[GEH03] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: why do we
need a new data handling architecture for sensor networks? SIG-
COMM Comput. Commun. Rev., 33(1):143–148, 2003. 33, 34

[GN98] R.M. Gray and D.L. Neuhoff. Quantization. IEEE Trans. Inf. Theory,
44(6):2325–2383, October 1998. 92

[Gol66] S. W. Golomb. Run-length encodings. IEEE Trans. Inf. Theory,
12(3):399–401, 1966. 60

[Goy01] V. Goyal. Theoretical foundations of transform coding. IEEE Signal
Process. Mag., 18(5):9–21, September 2001. 34

[HCB00] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks.
In HICSS ’00: Proceedings of the 33rd Hawaii International Conference on
System Sciences-Volume 8, page 8020, 2000. 27

[Hil03] J. L. Hill. System Architecture for Wireless Sensor Networks. PhD thesis,
University of California, Berkeley, 2003. 6

[HKB99] W.R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive proto-
cols for information dissemination in wireless sensor networks. In
MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, pages 174–185, 1999.
25

[HNG94] J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto Genetic
Algorithm for Multiobjective Optimization. In Proceedings of the First
IEEE Conference on Evolutionary Computation, volume 1, pages 82–87,
1994. 96

[HSW+00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. Sys-
tem architecture directions for networked sensors. SIGPLAN Not.,
35(11):93–104, 2000. 24

118

[HT05] C.F. Huang and Y.C. Tseng. The coverage problem in a wireless sen-
sor network. Mob. Netw. Appl., 10(4):519–528, 2005. 16

[Huf52] D.A. Huffman. A method for the construction of minimum-
redundancy codes. in: Proceedings of the IRE, 40(9):1098–1101,
September 1952. 101

[IEGH02] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Im-
pact of network density on data aggregation in wireless sensor net-
works. In ICDCS ’02: Proceedings of the 22nd International Conference
on Distributed Computing Systems, page 457, 2002. 28

[IGE+03] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva. Directed diffusion for wireless sensor networking.
IEEE/ACM Trans. Netw., 11(1):2–16, 2003. 25, 28

[JJRZQG06] X. Jin-Jun, A. Ribeiro, L. Zhi-Quan, and G.B. Giannakis. Distributed
compression-estimation using wireless sensor networks. IEEE Signal
Process. Mag., 23(4):27–41, July 2006. 33

[KA06] S. Kulkarni and M. Arumugam. SS-TDMA: A self-stabilizing MAC
for sensor networks. In S. Phoha and T.C. La Porta, Griffin, editors,
Sensor Network Operations. Wiley-IEEE Press, 2006. 23

[KC00] J.D. Knowles and D.W. Corne. Approximating the nondominated
front using the Pareto Archived Evolution Strategy. IEEE Trans. Evol.
Comput., 8(2):149–172, 2000. 96

[KEW02] B. Krishnamachari, D. Estrin, and S. B. Wicker. The impact of data
aggregation in wireless sensor networks. In ICDCSW ’02: Proceedings
of the 22nd International Conference on Distributed Computing Systems,
pages 575–578, 2002. 28

[KKPG98] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld. Parasitic
power harvesting in shoes. In Second International Symposium on
Wearable Computers, pages 132–139, October 1998. 16

[KL05] N. Kimura and S. Latifi. A survey on data compression in wireless
sensor networks. In ITCC ’05: International Conference on Information
Technology: Coding and Computing, volume 2, pages 8–13, April 2005.
6, 31, 59, 81

[Knu85] D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–
180, 1985. 69

119

[KWFLS07] K.W. Kai-Wei Fan, S. Liu, and P. Sinha. Structure-free data aggrega-
tion in sensor networks. IEEE Trans. Mobile Comput., 6(8):929–942,
August 2007. 3, 26, 27

[LHF08] G. Li, J. He, and Y. Fu. A group-based intrusion detection scheme
in wireless sensor networks. In GPC-WORKSHOPS ’08: Proceedings
of the 2008 The 3rd International Conference on Grid and Pervasive Com-
puting - Workshops, pages 286–291, 2008. 9, 18

[LKR04] G. Lu, B. Krishnamachari, and C.S. Raghavendra. An adaptive
energy-efficient and low-latency MAC for data gathering in wireless
sensor networks. In WMAN ’04:Proceedings of the 18th International
Workshop on Algorithms for wireless, mobile, ad hoc and sensor networks,
2004. 23

[LL04] J Li and G.Y. Lazarou. A bit-map-assisted energy-efficient MAC
scheme for wireless sensor networks. In IPSN ’04: Proceedings of
the 3rd international symposium on Information processing in sensor net-
works, pages 55–60, 2004. 23

[LR02] S. Lindsey and C.S. Raghavendra. PEGASIS: Power-efficient gather-
ing in sensor information systems. In Proceedings of IEEE Aerospace
Conference, volume 3, pages 1125–1130, 2002. 27

[LRS01] S. Lindsey, C. Raghavendra, and K.M. Sivalingam. Data gathering
in sensor networks using the energy*delay metric. In IPDPS ’01:
Proceedings of the 15th International Parallel & Distributed Processing
Symposium, pages 924–935, 2001. 27

[LRS02] S. Lindsey, C. Raghavendra, and K.M. Sivalingam. Data gathering
algorithms in sensor networks using energy metrics. IEEE Trans.
Parallel Distrib. Syst., 13(9):924–935, September 2002. 27

[LZO] LZO Homepage.
http://www.oberhumer.com/opensource/lzo/. 31

[MB01] M. J. McGlynn and S.A. Borbash. Birthday protocols for low en-
ergy deployment and flexible neighbor discovery in ad hoc wireless
networks. In MobiHoc ’01: Proceedings of the 2nd ACM international
symposium on Mobile ad hoc networking & computing, pages 137–145,
2001. 54

[MCP+02] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Ander-
son. Wireless sensor networks for habitat monitoring. In WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, pages 88–97, 2002. 7, 68

120

http://www.oberhumer.com/opensource/lzo/

[MFC+07] G. Manes, R. Fantacci, F. Chiti, M. Ciabatti, G. Collodi, D. Palma,
and A. Manes. Enhanced system design solutions for wireless sen-
sor networks applied to distributed environmental monitoring. In
LCN ’07: Proceedings of the 32nd IEEE Conference on Local Computer
Networks, pages 807–814, 2007. 7

[MFHH02] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a
Tiny AGgregation service for ad-hoc sensor networks. SIGOPS Oper.
Syst. Rev., 36(SI):131–146, 2002. 20, 25, 28

[MFHH05] S.R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB:
an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005. 26

[Mic94] Z. Michalewicz. Genetic algorithms + data structures = evolution pro-
grams. Springer-Verlag New York, Inc., New York, NY, USA, second
edition, 1994. 99

[Moo65] G. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, 1965. 1

[MRFC02] S. Madden, Szewczyk R., M. J. Franklin, and D. Culler. Supporting
aggregate queries over ad-hoc wireless sensor networks. In WM-
CSA ’02: Proceedings of the Fourth IEEE Workshop on Mobile Computing
Systems and Applications, page 49, 2002. 28

[MSW07] J. Magott, P. Skrobanek, and M. Woda. Analysis of timing require-
ments for intrusion detection system. In DEPCOS-RELCOMEX ’07:
Proceedings of the 2nd International Conference on Dependability of Com-
puter Systems, pages 278–285, 2007. 12

[MV08] F. Marcelloni and M. Vecchio. A simple algorithm for data compres-
sion in wireless sensor networks. IEEE Commun. Lett., 12(6):411–413,
June 2008. 68

[MWS08] D.J. Malan, M. Welsh, and M.D. Smith. Implementing public-key
infrastructure for sensor networks. ACM Trans. Sen. Netw., 4(4):1–23,
2008. 19

[NKC09] K. Na, Y. Kim, and H. Cha. Acoustic sensor network-based parking
lot surveillance system. In EWSN ’09: Proceedings of the 6th European
Conference on Wireless Sensor Networks, pages 247–262, 2009. 9

[NKL+07] Y. Nam, T. Kwon, H. Lee, H. Jung, and Y. Choi. Guaranteeing the
network lifetime in wireless sensor networks: A mac layer approach.
Comput. Commun., 30(13):2532–2545, 2007. 15

121

[O’N76] J. O’Neal. Differential pulse-code modulation (PCM) with entropy
coding. IEEE Trans. Inf. Theory, 22(2):169–174, March 1976. 94

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
95–107, 2004. 23, 45, 47

[PK00] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors.
Commun. ACM, 43(5):51–58, 2000. 22

[PKG08] S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spa-
tial correlation on routing with compression in wireless sensor net-
works. ACM Trans. Sen. Netw., 4(4):1–33, 2008. 29

[PKR02] S.S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed com-
pression in a dense microsensor network. IEEE Signal Process. Mag.,
19(2):51–60, March 2002. 33, 34

[PM92] W.B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression
Standard. Kluwer Academic Publishers, Norwell, MA, USA, second
edition, 1992. 60, 61

[PST+02] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D.E. Culler. Spins:
security protocols for sensor networks. Wirel. Netw., 8(5):521–534,
2002. 20

[Red] CNN. Redwoods now part of wireless network.
http://www.cnn.com/2003/TECH/science/08/15/
coolsc.redwoods/. 2

[Riv94] R. L. Rivest. The RC5 encryption algorithm. In Proceedings of the
Second International Workshop on Fast Software Encryption, pages 86–
96. Springer-Verlag, 1994. 20

[RM07] D. Rebollo-Monedero. Quantization and transforms for distributed
source coding. PhD thesis, Stanford University, 2007. 33, 35

[RWR03] S. Roundy, P.K. Wright, and J. Rabaey. A study of low level vibrations
as a power source for wireless sensor nodes. Computer Communica-
tions, 26:1131–1144, 2003. 16

[Sal07] D. Salomon. Data Compression: The Complete Reference. Springer-Ver-
lag, London, UK, fourth edition, 2007. 35, 69, 92, 93

122

http://www.cnn.com/2003/TECH/science/08/15/coolsc.redwoods/
http://www.cnn.com/2003/TECH/science/08/15/coolsc.redwoods/

[Sca03] A. Scaglione. Routing and data compression in sensor networks:
stochastic models for sensor data that guarantee scalability. In Pro-
ceedings of the IEEE International Symposium on Information Theory,
page 174, July 2003. 29

[SD94] N. Srinivas and K. Deb. Multiobjective optimization using Non-
dominated Sorting in Genetic Algorithms. IEEE Trans. Evol. Comput.,
2(3):221–248, 1994. 96, 99

[Sei] Seismic dataset.
http://www-math.bgsu.edu/˜zirbel/wavelets/. 83

[Sena] Sensirion Homepage .
www.sensirion.com. 65, 66, 71

[Senb] SensorScope deployments Homepage.
http://sensorscope.epfl.ch. 65, 100

[Senc] Sentilla Homepage.
http://www.sentilla.com/. 3, 37

[SGO+04] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow, and
D. Estrin. Lightweight Temporal Compression of microclimate
datasets. In 29th Annual IEEE International Conference on Local Com-
puter Networks, pages 516–524, November 2004. 30, 33, 35, 58, 88, 91,
107

[Sha48] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379–423/623–656, July/October 1948. 94

[Sim] SimIt-ARM Homepage.
http://simit-arm.sourceforge.net/. 79, 108

[SKJ+06] A. A. Somasundara, A. Kansal, D. D. Jea, D. Estrin, and M. B. Srivas-
tava. Controllably mobile infrastructure for low energy embedded
networks. IEEE Trans. Mobile Comput., 5(8):958–973, August 2006.
114

[SM06] C. M. Sadler and M. Martonosi. Data compression algorithms for
energy-constrained devices in delay tolerant networks. In SenSys ’06:
Proceedings of the 4th International Conference on Embedded networked
sensor systems, pages 265–278, 2006. 6, 31, 32, 58, 59, 70, 81

[SPC+07] K. Sukun, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In IPSN ’07: 6th International Symposium on Infor-
mation Processing in Sensor Networks, pages 254–263, April 2007. 2

123

http://www-math.bgsu.edu/~zirbel/wavelets/
www.sensirion.com
http://sensorscope.epfl.ch
http://www.sentilla.com/
http://simit-arm.sourceforge.net/

[SS02] A. Scaglione and S. D. Servetto. On the interdependence of rout-
ing and data compression in multi-hop sensor networks. In Mobi-
Com ’02: Proceedings of the 8th annual international conference on Mobile
computing and networking, pages 140–147, 2002. 29

[SW73] D. Slepian and J. Wolf. Noiseless coding of correlated information
sources. IEEE Trans. Inf. Theory, 19(4):471–480, July 1973. 34

[T.01] Bo T. On optimal entropy-constrained deadzone quantization. IEEE
Trans. Circuits Syst. Video Technol., 11(4):560–563, April 2001. 92

[TCC07] H.W. Tsai, C.P. Chu, and T.S. Chen. Mobile object tracking in wireless
sensor networks. Comput. Commun., 30(8):1811–1825, 2007. 11

[Teu78] J. Teuhola. A compression method for clustered bit-vectors. Inf. Pro-
cess. Lett., 7(6):308–311, 1978. 60

[Tin] TinyNode Homepage.
http://www.tinynode.com. 65

[TM03] M. Tubaishat and S. Madria. Sensor networks: an overview. Poten-
tials, IEEE, 22(2):20–23, April-May 2003. 1, 17

[Tos] TOSSIM Homepage.
http://www.cs.berkeley.edu/˜pal/research/tossim.
html. 49

[TR04] C. Tang and C. S. Raghavendra. Compression techniques for wire-
less sensor networks. In Wireless sensor networks, pages 207–231.
Kluwer Academic Publishers, Norwell, MA, USA, 2004. 33, 34

[vHH04] L. van Hoesel and P. Havinga. A lightweight medium access proto-
col (LMAC) for wireless sensor networks. In INSS ’04: First Interna-
tional Workshop on Networked Sensing Systems, 2004. 23

[vL03] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems,
pages 171–180, 2003. 23

[WBD+06] R. S. Wagner, R. G. Baraniuk, S. Du, D. B. Johnson, and A. Cohen. An
architecture for distributed wavelet analysis and processing in sen-
sor networks. In IPSN ’06: Proceedings of the 5th international confer-
ence on Information processing in sensor networks, pages 243–250, 2006.
33, 34

124

http://www.cs.berkeley.edu/~pal/research/tossim.html
http://www.cs.berkeley.edu/~pal/research/tossim.html

[WDB06] R. Wagner, V. Delouille, and R. Baraniuk. Distributed wavelet de-
noising for sensor networks. In Proceedings of the 45th IEEE Conference
on Decision and Control, pages 373–379, December 2006. 34, 89

[Wel84] T.A. Welch. A technique for high-performance data compression.
IEEE Trans. Comput., 17(6):8–19, June 1984. 31

[WTC03] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In SenSys ’03: Pro-
ceedings of the 1st international conference on Embedded networked sensor
systems, pages 14–27, 2003. 8

[WZ76] A. Wyner and J. Ziv. The rate-distortion function for source coding
with side information at the decoder. IEEE Trans. Inf. Theory, 22(1):1–
10, January 1976. 34

[XHE01] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy
conservation for ad hoc routing. In MobiCom ’01: Proceedings of the
7th annual international conference on Mobile computing and networking,
pages 70–84, 2001. 8

[XLC04] Z. Xiong, A.D. Liveris, and S. Cheng. Distributed source coding for
sensor networks. IEEE Signal Process. Mag., 21(5):80–94, September
2004. 33, 34

[YQ05] C. Yunxia and Z. Qing. On the lifetime of wireless sensor networks.
IEEE Communications Letters, 9(11):976–978, Nov. 2005. 15

[ZC04a] W. Zhang and G. Cao. DCTC: dynamic convoy tree-based collab-
oration for target tracking in sensor networks. IEEE Trans. Wireless
Commun., 3(5):1689–1701, September 2004. 28

[ZC04b] W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile
target tracking in sensor networks. In INFOCOM ’04: 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies,
volume 4, pages 2434–2445, March 2004. 28

[ZDT00] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evo-
lutionary algorithms: Empirical results. IEEE Trans. Evol. Comput.,
8(2):173–195, 2000. 96

[ZGE02] J. Zhao, R. Govindan, and D. Estrin. Residual energy scans for mon-
itoring wireless sensor networks. In WCNC ’02: IEEE Wireless Com-
munications and Networking Conference, pages 17–21, 2002. 25

125

[ZHL04] L. Zhao, X. Hong, and Q. Liang. Energy-efficient self-organization
for wireless sensor networks: a fully distributed approach. In
GLOBECOM ’04: IEEE Global Telecommunications Conference, vol-
ume 5, pages 2728–2732, December 2004. 27

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Trans. Inf. Theory, 23:337–343, 1977. 31

[ZLT02] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength Pareto evolutionary algorithm for multiobjective optimiza-
tion. In K.C. Giannakoglou et al., editors, Evolutionary Methods for
Design, Optimisation and Control with Application to Industrial Prob-
lems, pages 95–100. International Center for Numerical Methods in
Engineering (CIMNE), Barcelona, Spain, 2002. 96

[ZT99] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput., 3(4):257–271, November 1999. 96

Unless otherwise expressly stated, all original material of whatever
nature created by Massimo Vecchio and included in this thesis, is li-
censed under a Creative Commons Attribution Noncommercial Share
Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:m.vecchio@imtlucca.it

	List of Figures
	List of Tables
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Reducing energy consumption: a resume
	1.2 Outline and contributions

	2 Application, characteristics and metrics
	2.1 Sensor network application classes
	2.1.1 Environmental Data Collection
	2.1.2 Surveillance applications
	2.1.3 Node tracking scenarios
	2.1.4 Hybrid networks

	2.2 Characteristics of WSNs: A Summary
	2.3 Evaluation Metrics
	2.3.1 Lifetime
	2.3.2 Coverage
	2.3.3 Cost and ease of deployment
	2.3.4 Response Time
	2.3.5 Temporal Accuracy
	2.3.6 Security
	2.3.7 Effective Sample Rate

	3 State of the Art
	3.1 Duty cycling schemes
	3.2 Data Aggregation
	3.2.1 Cluster-Based Approaches
	3.2.2 Tree-Based Approaches

	3.3 Data Compression
	3.3.1 Lossless Data Compression
	3.3.2 Lossy Data Compression

	4 Distributed Aggregation
	4.1 Our Approach
	4.1.1 Overview
	4.1.2 The Aggregation Module
	4.1.3 The Table of Estimates
	4.1.4 The Decision Module
	4.1.5 The Message Analyzer Module
	4.1.6 Handling Estimate Staleness

	4.2 Estimation of the node lifetime
	4.3 Power Consumption: a Simulation
	4.4 Power Consumption: a Real Example

	5 A Lossless Compression Algorithm for WSNs
	5.1 The LEC Algorithm
	5.2 Performance assessment results
	5.2.1 Smooth signals
	5.2.2 A comparison with standard compression algorithms
	5.2.3 Non-smooth signals

	6 A loss-aware Compression Algorithm for WSNs
	6.1 DPCM and Quantization Principles
	6.2 Our lossy compression scheme
	6.3 The Optimization Framework
	6.3.1 The chromosome coding
	6.3.2 Genetic operators
	6.3.3 NSGA-II

	6.4 Performance assessment results
	6.4.1 The optimization process
	6.4.2 Selected Solutions and their validation
	6.4.3 Comparison with LTC
	6.4.4 Compression ratio and distortion
	6.4.5 Complexity

	7 Conclusions
	7.1 Open Issues
	7.1.1 Delay
	7.1.2 Data correlation
	7.1.3 Data gathering protocols

	References

