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Pisa.

16. C-semirings for Minimum Spanning Tree Problems, S. Bistarelli, F. Santini, 19th
International Workshop on Algebraic Development Techniques (WADT’08),
to appear in LNCS.

17. From Marriages to Coalitions: A Soft CSP Approach, S. Bistarelli, S. N. Foley, B.
O’Sullivan, F. Santini, to appear in ”Recent Advances in Constraints” 2008,
LNAI series, Springer.

xxi



Presentations

1. December 2006: Lecture at the Università G. d’Annunzio of Chieti-Pescara
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Abstract

The term “quality” as it is commonly understood in the context
of Quality of Service (QoS) is “something” by which a user of
the service (in a very large meaning) will judge how good
the service is. In this research project we mainly focus our
attention to three areas related with QoS: i) Networks, ii) Web
Services and iii) Trust Management (TM).

As defined in (CNRS98), QoS is “a set of service requirements
to be met by the network while transporting a flow”, where a
flow is “a packet stream from source to a destination (unicast
or multicast) with an associated Quality of Service (QoS)”.
To be implemented and subsequently satisfied, network re-
quirements have to be expressed in some measurable QoS
metrics: well-known metrics include bandwidth, hops, delay,
jitter, cost and loss probability. With Constraint-Based Routing
(CBR) (YF03) we refer to a class of routing algorithms that
base path selection decisions on a set of requirements or con-
straints, in addition to the destination. The main objectives are
to meet the QoS requirements of applications and to optimize
the global network resource usage.

Web Services (WS) are maturing as a technology that allows for
the integration of applications belonging to different adminis-
trative domains, enabling much faster and efficient business-
to-business arrangements. A Service Level Agreement (SLA) is
an agreement regarding the guarantees of a WS: it defines mu-
tual understandings and expectations of a service between the
service provider and service consumers, and clearly involves
many QoS indications and requests about the traded service
(LJJJP03).

xxiii



Trust and Reputation Systems represent a significant trend in de-
cision support for Internet mediated service provision (JIB07).
The basic idea is to let parties rate each other, for example after
the completion of a transaction, and use the aggregated ratings
about a given party to derive a trust or reputation score, which
can assist other parties in deciding whether or not to transact
with that party in the future. Trust describes how much the
reliability in the service is rated, and therefore we can easily
consider it as a QoS feature.

The aim of my PhD thesis is to provide expressive means (e.g.
languages) in order to model and solve these frameworks with
the help of Soft Constraints (Bis04), benefiting from Artificial In-
telligence background to tackle this kind of optimization prob-
lems. Soft constraints will represent the needs of the parties
on the traded resources and the consistency value of the store
represents a feedback on the current agreement. Using soft
constraints gives to the service provider and the clients more
flexibility in expressing their requests w.r.t. crisp constraints,
and therefore there are more chances to reach a shared agree-
ment. Moreover, the cost model is very adaptable to the spe-
cific problem, since it is parametric with the chosen semiring
(Bis04).
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Chapter 1

An Introduction to the
Problem

1.1 A General Definition of Quality of Service

The term “quality” as it is commonly understood in the context of Quality
of Service (QoS) is “something” by which a user of the service (in a very
large meaning) will judge how good the service is. And, that something
is expressed in the singular, making it synonymous with “excellence” or
“grade”, respectively depending on whether it is viewed as what ought
to be or actually is. However, “quality” in this context is very plural.
The factors that will determine how highly a user rates QoS are certainly
multidimensional, both with respect to the attributes of the service that
the user will value, and the perspectives on the service. In practical terms,
this means that effective measurement of QoS will necessarily involve a
collection of measures.

Surely, since QoS is quite a generic expression, there are lots of dif-
ferent definitions and considerations about it. In (Har01), for example,
are exposed three distinct notions of QoS that might come into play in
the evaluation when a generic customer weighs up the various factors
with the meaning to buy a service: the first one is intrinsic quality and
is closely relative to the expectations of the persons who design and op-
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erate the systems that deliver the service; for a generic system, it can be
achieved with a good technical design of the architecture of the system
and the correct provision of the needed resources. The second notion of
QoS is what might be called perceived quality of service, and is relative
to the expectations of the persons who use the service: at that moment,
the user experience and tests the effects of intrinsic quality with respect to
his/her needs and expectations. The third and last notion is represented
by assessed quality, and it includes the expectations of the persons who
must deal with the providers of the service on side matters as the billing,
ordering, correction of problems, etc. Some important considerations
concerning these three notions reported in (Har01) are that, i) measures
of intrinsic quality of service alone can be useless as a basis for predicting
user satisfaction and, ii) intrinsic quality makes a service attractive in the
first place, but perceived quality of service is what will determine whether
the user will retain the service or dump it at the first opportunity. The
first consideration simply suggests that a service, even if professionally
planned and thought, has always to face the reactions of the complex
(rather unpredictable) human behavior. For the second consideration,
even if the first requirement for good assessed quality of service is an
acceptable perception to the user community, however, there are other
factors that can result in an unsatisfactory evaluation. For example, if the
user experiences inefficiency during important moments of his/her job or
life (even if the quality of the service is usually high), or because of trou-
bles had with commercial or other services related with the core service of
the provider: e.g., inefficiency or rudeness of the customer service, errors
in the bill and so on.

In this chapter we introduce the main application fields where QoS
is used and requested. In Ch. 1.2 we will describe the application repre-
sented by networks and data transmission: today’s networks are used to
send different classes of data with particular temporal requirements, even
if the original IP protocol was poorly designed to do so. In Ch. 1.3 we
present the second main application where quality is requested, , i.e. the
Web Services. Chapter 1.4 outlines the third and last application field we
want to manage with our model, i.e. Trust and Reputation Systems.
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1.2 Quality of Service in Networks

Nowadays, networked applications, such as Enterprise Resource Plan-
ning (ERP), data mining, e-commerce, and multimedia-content distribu-
tion, are bandwidth hungry, time sensitive or need a certain timeliness
(i.e., some events occurring at a suitable or opportune time), and are also
mission critical. These applications need networks to accommodate the
business priorities decided by the business logic or the corporation goals.
Traditional networks cannot recognize priority data because they handle
network traffic in old-fashioned ways, such as the best effort, where the
network does not provide any guarantees that data is delivered or that
a user is assisted with a guaranteed quality of service level or a certain
priority; in a best effort network all users obtain the same treatment. Not
surprisingly, much of the unpredictable and undifferentiated packet loss
and jitter in today’s IP services is due to the manner in which traditional
routers cope with transient internal congestion. If a particular output
port becomes the focal point for two or more inbound aggregate traffic
streams, a traditional router simply uses first in, first out (FIFO) queuing
of packets destined for transmission on the associated outbound link. This
management of the queuing introduces latency (delay) and the potential
for packet loss if a queue overflows. When traffic patterns are “bursty”
(i.e. data that is transferred or transmitted in short, uneven spurts), the
latency induced by the queuing changes unpredictably from packet to
packet, therefore manifesting itself as jitter in the affected traffic streams.

For example, when application data enters a traditional network, the
network allocates as much bandwidth as the application needs, until the
network runs out of bandwidth. Mission critical applications and time-
sensitive applications can be drowned in the flood of less important net-
work traffic. Systems administrators end up facing network congestion,
slow response, and packet-dropping problems.

IP networks (enterprise, access, and backbone) are being called upon to
carry traffic belonging to a growing variety of customers with diverse re-
quirements, for example IP Telephony, IP virtual private networks (VPNs),
bulk data transfer, and mission-critical e-commerce. Each customer makes
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unique demands for some level of service predictability, even in the pres-
ence of transient congestion due to other traffic traversing the network.

Today’s Internet only provides best effort service. Traffic is processed
as quickly as possible, but there is no guarantee as to timeliness or actual
delivery. With the rapid transformation of the Internet into a commer-
cial infrastructure, demands for service quality have rapidly evolved It is
becoming apparent that several service classes will likely be demanded.
One class of service will provide predictable Internet services for compa-
nies that do business on the Web. Such companies will be willing to pay
a certain price to make their services reliable and to give their users a fast
feel of their Web sites. This class of service may contain a single service
or it may contain “Gold Service”, “Silver Service” and “Bronze Service”,
with decreasing quality. Another service class will provide low delay and
low jitter services to applications such as Internet Telephony and Video
Conferencing. Companies will be willing to pay a premium price to run a
high quality videoconference to save travel time and cost. Finally, the best
effort Service will remain for those customers who only need connectivity.

For the previous reasons, beginning from year 1994 to 1998, the Inter-
net Engineering Task Force (IETF) has proposed many service models and
mechanisms (XN99; ACH98) to meet the demand for QoS. Notably among
them are the Integrated Services/RSVP model (BZB+97) (IntServ), the Dif-
ferentiated Services (DiffServ) model (BBC+98), MPLS (RVC01), Traffic
Engineering (AMA+99) and QoS-Based Routing (CNRS98), or more gen-
erally, Constrained Based Routing (CBR) (YF03). As defined in (CNRS98),
Quality of Service (QoS) is “a set of service requirements to be met by the
network while transporting a flow”, where a flow is “a packet stream from
source to a destination (unicast or multicast) with an associated Quality
of Service(QoS)”.

Chapter 1.2.1 presents the two architectures elaborated by IETF for
the management of QoS in networks, listing also the main differences
between them. Chapter 1.2.2 describes a third technology (MPLS) that
deals with QoS, based on the tagging of the packets traversing the routers.
In Ch. 1.2.3 we describe the Constraint-Based Routing (CBR), with which
we refer to a class of routing algorithms that base path selection decisions
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on a set of requirements or constraints (e.g. bandwidth or delay), in
addition to the destination. Chapter 1.2.4 outlines the metrics that are
usually considered during the search of the optimal routing path, for
instance when our wishes regard the provision of a minimum bandwidth
or the reduction of the experienced delay during the packet transmission.
Traffic Engineering is the process of arranging how traffic flows through
the network so that congestion caused by uneven network utilization can
be avoided. Therefore, CBR and MPLS are two important tools for making
this readjustment-process automatic.

1.2.1 QoS Internet Architectures: IntServ and DiffServ

IETF has developed two architectures for the Internet, Integrated Services
(or IntServ) (BZB+97) and Differentiated Services (or DiffServ) (BBC+98),
which enable QoS based handling of data flows in IP networks.

Simply speaking, the basic idea of IntServ is that every router in the
system implements this architecture, and every application that requires
some kind of guarantees has to make an individual reservation for its
needs. To attain this, a Flow Spec is used to describe the features of the
reservation: then, a specific protocol allows the sender and the receiver
to specify the desired traffic class in terms of a flow specification, mainly
including bandwidth, delay, and loss characteristics. The Resource ReSer-
Vation Protocol (RSVP) is used as the underlying mechanism to signal it
across the network.

The main characteristics of the RSVP signalling protocols is that the
sender generating the data stream must send a PATH message to the
receiver specifying the characteristics of the traffic. Every intermediate
router along the path forwards the PATH message to the next hop de-
termined by the routing protocol. Upon receiving a PATH message, the
receiver responds with a RESV message to request resources for the flow.
Every intermediate router along the path can reject or accept the request
of the RESV message. If the request is rejected, the router will send an
error message to the receiver, and the signaling process will terminate.
If the request is accepted, link bandwidth and buffer space are allocated
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for the flow and the related flow state information will be installed in the
router. The principle drawback of IntServ is that the support on a per
flow-basis is assumed to show scalability problems with respect to large
number of flows and states to be kept in large backbone routers. The
per-flow granularity imposes overhead which may not be necessary for a
certain number of situations.

Due to these IntServ scalability and overhead problems in case of many
single flows, a different framework was developed in a second moment to
smooth this resource consumption. Instead of treating a single flow as the
entity of interest, the Differentiated Services Internet (DiffServ) handles traffic
basing on the notion of aggregated flows and fixed numbers of service
levels in terms of service profiles. DiffServ adopts the notion of domain,
which is defined by a fixed boundary consisting of ingress and egress
routers. However, traffic traversing such a DiffServ domain is required to
be marked. This marking happens on a per IP packet-basis at the ingress
routers and utilizes the DiffServ (DS) byte in an IP packet. The definition
of multiple per-hop behaviors (PHB) determines the service level with
which a packet will be treated (the forwarding strategy).

Since single end-to-end flows are bundled to aggregated flows with a
similar behavior within a DiffServ domain, the DiffServ approach requires
less overhead. However, the need to mark IP packets at the DiffServ
borders remains. The principal features of the two architectures, together
with those describing best effort paradigm, are summed up in Fig. 1: BB
stands for Bandwidth Broker, which substantially is a resource controller:
it can be a host, a router or a software process on an border router of a
domain. It is configured with the organizational policies and it manages
the resources of a domain.

The integration and combination of IntServ and DiffServ advantages
is possible, and here we provide a short description of a possible inte-
grated architecture. Local Area Networks (LAN) tend to show an over-
provisioning of bandwidth, which does not require a sophisticated re-
source management and signalling, if a certain topology and traffic con-
siderations are taken into account. The Access Network (the component of
the network on the border dedicated to the management of the flow admis-
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Best Effort IntServ DiffServ
QoS guarantees no per data stream aggregated
Configuration none per session long term

Zone entire network end-to-end domain oriented
State information none per data stream none

Protocols none signaling bit field

Figure 1: Comparison of IntServ, DiffServ and best effort.

sion), however, utilizes RSVP to signal flow requirements from senders to
the Core Network. Edge routers perform a mapping of these requirements
onto particular flow aggregation types available in the DiffServ core and
represented by a dedicated SLA. Since core routers purely perform traffic
forwarding based on PHBs, they are able to cope with many aggregated
flows. Only edge routers need to keep the state of flows from their local
domain.

1.2.2 Multi-Protocol Label Switching

A different approach to managing QoS of data through a network is Multi-
Protocol Label Switching (MPLS) (RVC01). Normally, under IP, packet head-
ers are examined at every transit point (e.g., router or switch) in a network,
which takes time and contributes to the overall data delay. A more effi-
cient approach would be to label the packets in such a way as to make it
unnecessary for each IP packet header to be analyzed at points intermedi-
ate between the source and destination. Multi-Protocol Label Switching
does this by appropriately labeling IP packets at the input of label edge
routers located at the entry points of an MPLS-enabled network. More in
detail, the first edge router that receives the packet, examines the incom-
ing packets and decides basing on the packets source address, destination
address, and priority level where to send it for its next hop through the
network. Consequently, it also attaches a 32-bit tag, known as an MPLS
label, to the packet. The MPLS label contains such information as whether
the packet should be treated as MPLS traffic or routed as an ordinary IP
packet, whether it conforms to IPv4 or IPv6, the “time to live” of the
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packet, and, of course, what its next hop should be. The edge router then
forwards the packet to the next router/hop of the path. That router, in turn,
examines the MPLS label and decides on the next hop for the packet. That
second router then creates a second MPLS label and the two labels are
swapped before the packet is forwarded to the second hop. The process is
repeated until the packet reaches its destination. This procedure has two
advantages over normal IP routing. First of all, the routers along the path
need not to read and analyze a packet complete-header information, just
the shorter MPLS label. Secondly, the swapping of labels leaves a trail in
the registry of the routers that other packets in the same session can follow.
Once the first packet establishes a path, decision-making at intermediate
points is eliminated to a great extent. Thus, these two features of MPLS
speeds up the transfer of data.

1.2.3 Constraint-Based Routing

With Constraint-Based Routing (CBR) (YF03; CNRS98) we refer to a class
of routing algorithms that base path selection decisions on a set of require-
ments or constraints, in addition to the destination. These constraints
may be imposed by administrative policies (by the network administra-
tor), or by QoS requirements, and so they can be classified in two classes
with different characteristics. The aim of CBR is to reduce the manual
configuration and intervention required for attaining traffic engineering
objectives (RVC01); for this reason, the final goal of CBR is to enable
a new routing paradigm with special properties, such as being resource
reservation-aware and demand-driven, to be merged with current routing
protocols (mainly variants of SPF).

The routing associated with administration decisions is referred to as
policy routing (or policy-based routing), and it is used to select paths that
conform to administrative rules and agreements on the service level(see
Ch. 1.3). In this way, routing decisions can be based not only on the
destination location, but also on factors such as applications and proto-
cols used, size of packets, or identity of both source and destination end
systems of the flow. Policy constraints improve the global security of
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network infrastructure: they can be used to guarantee adequate service
provisioning and safety from malicious users attempting to obtain ser-
vices that do not conform to their SLAs or profiles, without paying for
such services. The policy routing problem can be viewed as a resource
allocation problem that includes business decisions.

The second class of constraints is represented by QoS requirements,
such as bandwidth, delay, or loss, and for this reason they are defined as
QoS constraints, and the associated routing is referred to as QoS routing;
therefore, QoS routing attempts to simultaneously satisfy multiple QoS re-
quirements requested by real-time applications. Recent works emphasize
the need to identify paths that not only satisfy QoS requirements, but also
consider the global utilization of network resources (OS00). As explained
in Ch. 4.2.1, tractability is the primary challenge with QoS routing, so most
proposed techniques use simple heuristics to avoid intractability.

More rigorously, the CBR problem can be formulated as follows. A net-
work graph G is defined as G = (V,E), where V is the set of vertices/nodes
(routers or end systems), and E is the set of edges (links). Let n denote
the number of constraints and let C = (c1, . . . , cn) denote the ordered set
of constraints, where ci is the constraint on resource i. Constraints can be
either boolean or quantitative (path optimization). The CBR objective is to
find a path p between a source and a destination, such that the constraints
ci are all satisfied. The main objectives of QoS-based routing are:

To meet the QoS requirements of applications. QoS-based routing is sup-
posed to find a path from source to destination (or destinations, in
case of multicast) which can satisfy user requirements (bandwidth,
end-to-end delay, etc). Besides, this should be done dynamically,
instead of being configured statically by the network administra-
tor. In case there are several feasible paths available satisfying QoS
constraints, the best path selection can be based on some policy con-
straints: e.g., we can select the path which costs less money, or the
one via the designated service provider. Experienced QoS must re-
spect the SLA negotiated between end-users and service providers,
and thus this goal regards both of them.
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To optimize the global network resource usage. This is an objective only
from service providers point of view. In fact they wants to maximize
the utilization of their current network facilities, thus to maximize
its revenue. Besides, this is also a requirement from network en-
gineering’s perspective. QoS-based routing is expected to direct
network traffic in an efficient way that can maximize the total net-
work throughput. One common scheme is to always choose the
shortest path among the feasible candidates, because longer path
means using more network resources.

To gracefully degrade network performance. In the events of link fail-
ures or congestion, when network is in heavy load, QoS-based rout-
ing is expected to provide better performance (e.g., better through-
put) than best-effort routing, which may degrade the performance
dramatically.

CBR, and more specifically QoS routing, must also face challenges
concerning stability, robustness, and scalability.

1.2.4 Quality of Service Metrics in Networks

To be implemented and subsequently satisfied, service requirements have
to be expressed in some measurable QoS metrics. As we have previously
seen, well known metrics include bandwidth, hops, delay, jitter, cost and
loss probability. We can organize metrics in three different types, depend-
ing on how they are combined along a path: metrics can be additive,
multiplicative or concave (Che99). They are defined as follows: with
n1,n2,n3 . . . ,ni,n j representing network nodes, let m(n1,n2) be a metric
value for link(n1 , n2). For any path P = (n,n2, . . . ,ni,n j), the metric
corresponding is:

• Additive, if m(P) = m(n1,n2) + m(n2,n3) + ... + m(ni,n j) The additive
metric of a path is the sum of the metric for all the links constituting
the path. Examples are delay, jitter (the delay variation on a network
path), cost and hop-count: hop-count is frequently used by routing
algorithms to designate the shortest path (least cost path).
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• Multiplicative, if m(P) = m(n1,n2)×m(n2,n3) · · ·×m(ni,n j) Multiplica-
tive metric of a path consists in the multiplication of the metric
values for all the links constituting the path. Example is reliability,
in which case 0 < m(ni,n j) < 1. The same problem can be seen also
in the dual view: a value can represent the loss probability (or error
rate) of a given packet on that link.

• Concave, if m(P) = max /min{m(n1,n2),m(n2,n3), ...,m(ni,n j)}. The
concave metric of a path is the maximum or the minimum of the
metric values over all the links in the path. This metric is usually
dealt by pruning all the links that do not satisfy the constraints,
discarding them from the path selection process. This preprocess-
ing step is called topology filtering. Example is bandwidth, which
means that the bandwidth of a path is determined by the link with
the minimum available bandwidth, i.e., the bottleneck of the path.

Clearly, many other examples of metrics can be described and classified
in the three previous sets. One more very important instance of concave
metric is represented by availability; in this case, the global availability
of a distributed system could be defined by the minimum one among its
subcomponents.

QoS constraints can be classified into path constraints, tree constraints
and forest constraints. Path constraints need to be satisfied from the sender
to the receiver, while tree constraints need to be satisfied over the entire
multicast tree created by the multicast routing protocol, from the single
sender to multiple receivers. We may use forest constraint when the data
sources are more than one for the same flow. The computation complexity
to solve these constraints is primarily determined by the composition rules
of the QoS metrics.

1.3 Web Services and Quality of Service

The telecom market is evolving towards services. New services will be
proposed by the use of Internet capabilities, like multi media service, e-
hotel, e-commerce, data transfer, unified messaging, etc. These end-to-end
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services require cooperation and internetworking between multiple orga-
nizations, systems and entities. Even within a single enterprise, multiple
organizations (or geographically distributed sites) can maintain indepen-
dent management systems that need to share management information.
Cross-domain management is especially critical when outsourcing Infor-
mation Technology services or when extending business applications to
systems in other enterprises in order to form extended enterprises. A
Service Level Agreement (SLA) is an agreement regarding the guarantees
of a web service. It defines mutual understandings and expectations of a
service between the service provider and service consumers.

Web services are Internet based applications that communicate with
other applications to offer business data or functional services in a pro-
grammatic way. Businesses create web services by exposing specific busi-
ness functions through Internet protocols and standards. These services
are internally implemented by integrating legacy or mainframe based ap-
plications or by using the services provided by other web services, internal
or external to the organization. The development of web technologies and
standards such as HTTP, XML, Simple Object Access Protocol (SOAP) used
as a communication mechanism, Web Service Definition Language (WSDL),
and the Universal Description Discovery and Integration (UDDI) as the ser-
vice registry, enables pervasive adoption and deployment of web services.
Web Services provide the opportunity to dynamically bind to services at
runtime, i.e., to enter and dismiss a business relationship with a service
provider on a case-by-case basis, and on-demand.

Web Services are maturing as a technology that allows for the in-
tegration of applications belonging to different administrative domains,
enabling much faster and efficient business-to-business arrangements.
Grid Services have recently evolved from Web Services and high perfor-
mance grid technology and promise an unprecedented level of service
dynamism. In the grid vision, the relationship between suppliers and
consumers is very dynamic and the services are transient (i.e. have a
lifetime, sometimes very short).

In Ch. 1.3.1 we better describe the information that can be usually
found in SLA document, Ch. 1.3.2 presents the features of the frameworks
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used to manage SLAs (all the phases of negotiation, definition, auditing,
notification of violation and triggering of management actions), and in
Ch. 1.3.3 is highlighted the importance in the automation of SLA manage-
ment with respect to the business logic. At last, in Ch. 1.3.4 we list some
examples of metrics used for the description of Web Services.

1.3.1 Service Level Agreements

A Service Level Agreement (SLA) is an agreement regarding the guaran-
tees of a web service. It defines mutual understandings and expectations
of a service between the service provider and service consumers.

Thus, inside its specification, a SLA may have the following compo-
nents:

• Purpose - describing the reasons behind the creation of the SLA.

• Parties - describes the parties involved in the SLA and their respec-
tive roles. Service provider and service customer are the signatory
parties to the contract. They are ultimately responsible for all obli-
gations, mainly in the case of the service provider, and the ultimate
beneficiary of obligations. Signatory parties can sponsor third par-
ties to support the enactment of the contract. We can use the term
supporting parties for this group. Supporting parties are sponsored to
perform one or more of a particular set of roles. They can provide a
measurement service that implements a part or all of the measurement;
a condition evaluation service that implements the violation detection
and other state checking functionality that covers all or a part of the
guarantees of an SLA; a management service that implements some
actions triggered by events. Supporting parties can be sponsored
either by one or both of the signatory parties.

• Validity period - defines the period of time that the SLA will cover.
This is delimited by start time and end time of the term.

• Scope - defines the services covered in the agreement.
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• Restrictions - defines the necessary steps to be taken in order for
providing the requested service levels.

• Obligations - This component can be utterly divided in two sub-
classes: the first is represented by Service Level Objectives or SLOs,
which are the levels of service that both the users and the service
providers agree on, and usually include a set of service level indica-
tors, like availability, performance and reliability. Each aspect of the
service level, such as availability, will have a target level to achieve.
The second subclass is represented by Action guarantees, which ex-
presses a commitment to perform a particular activity if a given
precondition is met. This may include notifications of service level
objective violations or invocation of management operations. Any
party can be the obliged of this kind of guarantee: this particularly
includes also the supporting parties of the contract.

• Penalties - spells out what happens in case the service provider un-
derperforms and is unable to meet the objectives in the SLA. If the
agreement is with an external service provider, the option of termi-
nating the contract in light of unacceptable service levels should be
built in.

SLAs have been mostly designed and used for Web Services environ-
ment, but they are applicable as well to any other inter-domain manage-
ment scenario, such as business process and service management, or the
management of networks, systems and applications in general. For ex-
ample, the proposal in (FSP99) suggests to enhance bandwidth brokers
in Differentiated Services Architecture (see Ch. 1.2.1) by including more sig-
nificant information in SLAs such as the flows destination network and
pricing.

Since SLAs are simply contracts, they do not provide hard guarantees
per se. One must audit them to ensure that they hold. However, since
these applications typically belong to different entities, there may be no
implicit trust relationship between them. In particular, a consumer may
be suspicious of the providers audit findings and viceversa (see Ch. 1.4
on Trust Management).
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Two different languages for the definition of SLAs are respectively
proposed in (LSE03) and (LKD+03).

1.3.2 SLA Frameworks

A SLA framework is oriented at defining and monitoring SLAs for Web
Services, even if it is applicable as well to any other inter-domain manage-
ment scenario, such as business process and service management, or the
management of networks, systems and applications in general. A SLA
framework typically consists in a flexible and extensible language based
on XML Schema and a runtime architecture comprising several SLA mon-
itoring services, which may be outsourced to third parties to ensure a
maximum of objectivity.

In a very dynamic service environment, SLA management should be
an automatic and dynamic process. This process is composed of the
phases of SLA negotiation, definition, auditing, notification of violation
and triggering of management actions when SLA non-compliance is de-
tected.

The need to enable service customers and providers to unambigu-
ously define a wide variety of SLAs, specify the SLA parameters and the
way how they are measured, and tie them to managed resource instru-
mentations. Upon receipt of an SLA specification, the SLA monitoring
services are automatically configured to enforce the SLA, thus reducing
the need for costly, slow and error prone manual intervention to a mini-
mum. This becomes increasingly important for emerging Service Oriented
Architectures (SOAs), such as Web Services, but even for providing QoS
guarantees (bandwidth, delay, delay-jitter, probability of the packet loss,
etc) in Internet architectures as Integrated and Differentiated Services (in
Ch. 1.2.1).

In order to avoid the potential ambiguity of higher-level SLA parame-
ters, parties can define precisely how resource metrics are measured and
how composite metrics are computed. The concept of supporting par-
ties allows signatory parties to include third parties into the process of
measuring the SLA parameters and monitoring the obligations associated
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with them.
The Web Service Level Agreement (WSLA) framework (KL03) is ori-

ented at defining and monitoring SLAs for Web Services, even if it is
applicable as well to any other inter-domain management scenario, such
as business process and service management, or the management of net-
works, systems and applications in general. The WSLA framework con-
sists in a flexible and extensible language based on XML Schema and a
runtime architecture comprising several SLA monitoring services, which
may be outsourced to third parties to ensure a maximum of objectivity.
An IBM implementation of the WSLA framework, termed SLA Compliance
Monitor, offers SLA management for Web Services in the phases of SLA ne-
gotiation, monitoring and triggering of corrective actions by management
tools when an SLA violation is detected.

One more framework that proposes and outlines the various compo-
nents of a system, that together fulfill the difficult task of automating the
SLA management, is represented by the Federated architecture described
in (BSC01).

1.3.3 SLA Impact on Business

Web services are being designed so as to work over Internet, which is
inherently unreliable; even though it is alright for document retrieval or
dissemination, it poses a problem when real business has to be under-
taken on it. It is necessary to ensure that the consumer perceives that the
provider is adhering to its promised service level agreements. In other
words to provide Quality of Experience (or trust, see also Ch. 1.4) to the
end-consumer.

One more aspect that is specific to web services is that they are in-
herently multiparty: typical web service will use other web services to
perform its task. These web services will have service level agreements
with respect to each other. However, a consumer has an interfaces to only
one of the web service. The other web services work together to fulfill the
consumers order. Using the terminology proposed in (BSC01), a federated
system is defined to be a system composed of components within differ-
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ent administrative entities cooperating to provide a service. A service
is an application with a well defined interface and functionality. Feder-
ated service management is the management of services that span multiple
heterogeneous control domains, and which rely on correct functioning of
components across those domains. A control domain is defined to be an
administrative domain that is managed by a single administrative entity,
typically a business.

In a typical scenario, each web service interacts with many other web
services, switching between roles of being a provider in some interactions
and a consumer in others. Each of these interactions could potentially be
governed by an SLA. Considering the legal and monetary implications
in violating SLAs, providers need to design their SLAs only after under-
standing their capabilities. On the other hand, if there is too much gap in
the specification of SLAs, a web service may not be able to fully capitalize
on its capabilities. Thus it is important to design SLAs that are able to
balance between risk and benefit of all parties. This balance should be
based on a good understanding of impact of various service levels on
business processes in both the service provider and the customer.
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Figure 2: Multiple web services cooperating with each other to accomplish a
task.

In Fig. 2 is represented a simple scheme showing how the quality per-
ceived by the end-consumer of the service is implied by the composition
of multiple services and SLAs distributed among distinct entities.

Web Services are being designed to automate e-business on the web. To

17



reach this goal, only a little human intervention is desirable in functioning
of web services, and the same is valid for the monitoring of service level
agreements on these web services. However, SLA monitoring is difficult
to automate as it would need a precise and unambiguous definition of the
SLA as well as a customizable engine that understands the specification,
customizes instrumentation, collects the necessary data, models it in a
logical manner and evaluates the SLA at certain times or when certain
event happen.

1.3.4 Quality of Service Metrics for Web Services

The metrics for Web Services can be more general with respect to those
for network QoS presented in Ch. 1.2.4: this is due to the intrinsic nature
of a service available in Internet for everybody, since its application can
range over very different areas (from digital signature to document format
conversion, and many others). In the following we list some of the metric
classes for Web Services that are reported also in the QoS ontology pre-
sented in (MS04): this QoS ontology lets service agents match advertised
quality levels for its consumers with specific QoS preferences. Providers
express policies and consumers express preferences using the QoS ontol-
ogy, which also enables the consumers to configure service proxy agents
so that they have the necessary behaviors to monitor and record consumer
and service interactions. In this way, the ontology simplify and enforce
the automation of the QoS negotiation phase, in particular when multiple
services are composed together (Men04).

Availability is the probability that a service can respond to consumer
requests. Related metrics can be MTTR (i.e. Mean Time To Repair,
meaning the average time for restoring a failed service) and the Up-
Time (i.e. the duration for which the service has been operational
continuously without failure). Availability is mildly parallel to reli-
ability and typically mildly opposite to capacity.

Interoperability is the ease with which a consumer application, or an
agent, interoperates with a service. It defines, for instance, whether

18



the service is compliant with a specified standard or a specific ver-
sion of a standard (like WSDL).

Capacity is the limit on the number of requests a service can handle.
When a service is operated beyond its capacity, its availability and
reliability are negatively affected.

Economic captures the economic conditions of using the service: usage
cost is a key attribute.

Performance characterizes performance from the consumer perspective.
Examples may be Throughput (i.e., the rate of successful servicerequest
completion) and ResponseTime (i.e., the delay from the request to get-
ting a response from the service).

Reliability is the likelihood of successfully using a service. Typically, it is
parallel with availability, but its correlated metrics can also include
Fault Rate (i.e., the rate of invocation failure for the services methods),
MTBF (i.e., Mean Time Between Failures), Consistency (i.e., the failure
rate measuring the lack of variability), Recoverability (i.e., how well
the service recovers from failures), Failover (i.e., whether the service
employs failover resources, and how quickly), and finally Disaster
resilience (i.e., how well the service resists natural and human-made
disasters).

Robustness is resilience to badly formed input and incorrect invocation
sequences.

Scalability defines whether the service capacity can increase as needed.

Security captures the level and kind of security a service provides. Re-
lated metrics can be Auditability (i.e., the service maintains auditable
logs), Authentication (i.e., the service either requires user authenti-
cation or accepts anonymous users), Encryption (i.e., the type and
strength of encryption technology used for storage and messaging),
and NonRepudiation (i.e., whether consumers can deny having used
the service).
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Integrity is a measure of the services ability to prevent unauthorized
access and preserve its datas integrity.

Stability is the rate of change of the services attributes, such as its service
interface and method signatures.

1.4 Trust and Reputation Systems

Trust and Reputation Systems represent a significant trend in decision sup-
port for Internet mediated service provision (JIB07; GS00). The basic idea
is to let parties rate each other, for example after the completion of a trans-
action, and use the aggregated ratings about a given party to derive a trust
or reputation score, which can assist other parties in deciding whether or
not to transact with that party in the future. A natural side effect is that it
also provides an incentive for good behavior, and therefore tends to have
a positive effect on market quality. Reputation Systems can also be called
Collaborative Sanctioning Systems to reflect their collaborative nature, and
are related to Collaborative Filtering (CF) Systems: the assumptions behind
CF Systems is that different people have different tastes, and rate things
differently according to subjective taste. This can be used to find and help
in their decisions those neighbors sharing similar tastes. Reputation Sys-
tems are already being used in successful commercial online applications,
e.g. e-Bay and Amazon to cite the most famous.

The main differences between trust and reputation systems can be de-
scribed as follows: Trust Systems produce a score that reflects the relying
party’s subjective view of an entity’s trustworthiness, whereas reputa-
tion systems produce an entity’s (public, in this case) reputation score as
seen by the whole community. A second difference is that transitivity is
considered an explicit component in trust systems (see Fig. 3), whereas
reputation systems usually only take transitivity implicitly into account.
At last, trust systems usually take subjective and general measures of (reli-
ability) trust as input, whereas information or ratings about specific (and
objective) events, such as transactions, are used as input in reputation
systems. Of course, there can be Trust Systems that incorporate elements
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of Reputation Systems and vice versa.

BobAlice Claire

referral

derived trust

trust trust

Figure 3: An example of the trust transitivity principle.

Trust Management, introduced in (BFL96), is a unified approach for
specifying and interpreting security policies, credentials, and relation-
ships that allows direct authorization of security critical actions. Particu-
larly, a Trust Management System (TMS) combines the notion of specifying
security policy with the mechanism for specifying security credentials.
Credentials describe specific delegations of trust among public keys; un-
like traditional certificates, which bind keys to names, trust management
credentials bind keys directly to authorizations to perform specific tasks.
TMSs support delegation, and policy specification and refinement at the
different layers of a policy hierarchy, thus solving to a large degree the
consistency and scalability problems inherent in traditional Access Control
Lists. Furthermore, TMSs are by design extensible and can express poli-
cies for different types of applications. In a Trust Management scenario,
a requester submits a request, possibly supported by a set of credentials
issued (signed) by other parties, to an authorizer, who specifies access rules
governing access to the requested resources. The authorizer then decides
whether to authorize this request by stating if the access rules and cre-
dentials authorize this request. The digitally signed credentials document
authenticated attributes of entities: these attributes may be, for instance,
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group membership, membership in a role within an organization, or being
delegated of a permission or role. Access rules can specify what attributes
are required to access a resource and other access conditions, such as time
or auditing requirements.

According to the classification proposed in (JIB07) and (GS00), we can
distinguish between a set of different trust classes: i) Provision trust de-
scribes the relying party’s trust in a service or resource provider, ii) Access
trust describes trust in principals for the purpose of accessing resources
owned by or under the responsibility of the relying party, iii) Delegation
trust describes trust in an agent (the delegate) that acts and makes deci-
sion on behalf of the relying party, iv) Identity trust describes the belief that
an agent identity is as claimed, and, finally, v) Context trust describes the
extent to which the relying party believes that the necessary systems and
institutions are in place in order to support the transaction and provide a
safety net in case something should go wrong.

In the next two chapters, we respectively provide an introduction to
the metrics used in Trust models (see Ch. 1.4.1) and the strict relation
between Trust and Security (Ch. 1.4.2).

1.4.1 Trust Metrics

At its heart, a computational Trust model contains a Trust metric. Some
examples of metrics are described in (Lev03; ARH97; Jøs99; Mau96).

There are three inputs to this trust metric: a directed graph, a desig-
nated seed node indicating the root of trust, and a target node. We wish
to determine whether the target node is trustworthy (see an example in
Fig. 4). Each edge from s to t in the graph indicates that s believes that t
is trustworthy. The simplest possible trust metric evaluates whether t is
reachable from s. If not, there is no reason to believe that t is trustworthy,
given the data available. In a cryptographic implementation, each node
corresponds to a public key, and each edge from s to t corresponds to a
digitally signed certificate. In the usual terminology, s is the issuer, t is
the subject. The certificate itself is some string identifying t, along with a
digital signature of this string generated by s. The simplest trust metric is
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also the weakest. If an attacker is able to generate an edge from any node
reachable from the seed to a node under his control, then he can cause
arbitrary nodes to be accepted. As the size of the reachable subgraph
increases, the risk of any such attack increases as well. Thus, the primary
focus in the literature is to present stronger trust metrics that (hopefully)
resist attacks better, while still accepting most nodes that deserve trust.

Therefore, a trust metric operates over a certification graph that en-
codes the trust (certificate) relationships between keys, and returns a trust
value which represents how trustworthy the source deems the target
name-key binding to be. The problem is this: an attacker wishes to intro-
duce a false name-key binding (to impersonate another entity), known as
a forgery. The goal of the trust metric is to resist such attacks by rejecting
the forgery.

Trust metrics can be divided in two main classes: a metric is called local
if the values it computes are based on local estimates of trust in the graph.
Precisely, the trust value Ts,t computed by an ε-local trust metric M(G) on
G is altered by at most ε by the removal of a node not on a path from the
source s to the target t, in G. The general idea behind global metrics is
instead to compute the metric over the entire certification graph, to obtain
some global solution, rather than a number of local estimates.

To provide an example, the simplest form of computing reputation
scores (adopted, for instance, in the reputation forum of e-Bay) is simply
to sum the number of positive ratings and negative ratings separately,
and to keep a total score as the positive score minus the negative score.
Obviously, the advantage is that anyone can understand the principle
behind this reputation score, while the main disadvantage is that it is
primitive and consequently gives a poor picture of participants reputation.

1.4.2 Trust and Security

Trust and Reputation Systems are perfect examples of “soft” security
mechanisms, also called social control mechanisms in general. These mech-
anisms take the place of traditional security mechanisms which will typi-
cally protect resources from malicious users, by restricting access to only
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Figure 4: An example of trust inference from node A to node G.

authorized users. But in many situations we have to protect ourselves
from those who offer resources, and thus the problem is reversed: for
instance, service providers can act deceitfully by providing false or mis-
leading information, and traditional security mechanisms are unable to
protect against this kind of threat. The term “hard” security is instead
used for traditional mechanisms like authentication (i.e. the process of at-
tempting to verify the digital identity) and access control (i.e. the ability to
permit or deny the use of something by someone: it includes authentica-
tion, authorization and audit). The difference between these two distinct
approaches to security was described in (RJ96) for the first time. Authenti-
cation provides the so called identity trust, i.e. a measure of the correctness
of a claimed identity over a communication channel or in a distributed
system. It can be observed that identity trust is a condition for trusting a
party behind the identity with anything more than a baseline or default
provision trust that applies to all parties in a community. This does not
mean that the real world identity of the principal must be known. An
anonymous party, who can be recognized from interaction to interaction,
can also be trusted for the purpose of providing services.
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Another important concept regards the security assurance level, which
represents a measure of security. The assurance level (JKD05) can be
interpreted as a system strength to resist malicious attacks, and some
organizations require systems with high assurance levels for high risk or
highly sensitive applications. In an informal sense, the assurance level
expresses a level of public (reliability) trustworthiness of given system.

1.5 Objectives and Structure of the Thesis

The aim of this thesis is to provide expressive means, as languages, frame-
works and general aggregation schemes, in order to model and solve QoS
related problems with the help of soft constraints (see Ch. 2), benefiting
from Artificial Intelligence background to tackle this kind of optimization
problems. Soft constraints will represent the needs of the parties on the
traded resources and the consistency value of the store represents a feed-
back on the current agreement. Using soft constraints gives to the service
provider and the clients more flexibility in expressing their requests w.r.t.
crisp constraints, and therefore there are more chances to reach a shared
agreement, which is a complex task. In general, optimizing two or more
metrics (e.g. bandwidth and delay) in a network is an NP-Complete prob-
lem (see Ch. 4). In addition, when we have to deal with quality, many
related concepts are “smooth”; for this reason, soft constraints are better
than crisp constraints. Quality can be represented with intervals of “more
or less” acceptable values. Moreover, the cost model is very adaptable to
the specific problem, since it is parametric with the chosen semiring (see
Ch. 2.2), which is an algebraic structure that can model a particular QoS
feature, e.g. the availability of a service. The QoS related problems stud-
ied in this work correspond to the three areas presented in this chapter: i)
Networks, ii) Web Services and iii) Trust Management (TM).

This thesis is organized in this way: Chapter 1 has introduced the
notion of Quality of Service and its application to three important and
well known fields in Computer Science i.e. Networks, Web Services and
Trust Management.

In Ch. 2 we will summarize the background about soft constraints and
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related satisfaction problems (i.e. Soft Constraint Satisfaction Problems),
logic and formal languages (i.e. respectively Soft Constraint Logic Program-
ming and Soft Concurrent Constraint Programming). The chapter contains
the fundamental notions concerning the c-semiring algebraic structure as
well.

Then, Ch. 3 defines some general algebraic frameworks to solve the
Minimum Spanning Tree problem and based on c-semirings. We propose
general algorithms that can compute such trees by following different
cost criteria, which must be all specific instantiation of c-semirings. Our
algorithms are extensions of well known procedures, as Prim or Kruskal,
and show the expressivity of these algebraic structures.

In Ch. 4 we present a formal model to represent and solve the uni-
cast/multicast routing problem in networks with Quality of Service (QoS)
requirements. To attain this, first we translate the network adapting it to
a weighted graph (unicast) or and-or graph (multicast), where the weight
on a connector corresponds to the multidimensional cost of sending a
packet on the related network link: each component of the weights vector
represents a different QoS metric value (e.g. bandwidth). The second
step consists in writing this graph as a program in Soft Constraint Logic
Programming (SCLP): the engine of this framework is then able to find
the best paths/trees by optimizing their costs and solving the constraints
imposed on them (e.g. delay ≤ 40msec), thus finding a solution to QoS
routing problems. C-semiring structures are a convenient tool to model
QoS metrics. At last, we provide an implementation of the framework
over scale-free networks and we suggest how the performance can be
improved.

Chapter 5 extends the Soft Concurrent Constraint Programming lan-
guage in two orthogonal directions: i) we propose a timed and soft ex-
tension of Concurrent Constraint Programming. The time extension is
based on the hypothesis of bounded asynchrony: the computation takes a
bounded period of time and is measured by a discrete global clock. Action
prefixing is then considered as the syntactic marker which distinguishes
a time instant from the next one. Supported by soft constraints instead
of crisp ones, tell and ask agents are now equipped with a preference (or
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consistency) threshold which is used to determine their success or suspen-
sion. In the chapter we provide a language to describe the agents behavior,
together with its operational and denotational semantics, for which we
also prove the compositionality and correctness properties. Agents nego-
tiating Quality of Service can benefit from this new language, by coordi-
nating among themselves and mediating their preferences. Moreover, ii)
we present an extension of the Soft Concurrent Constraint language that
allows the nonmonotonic evolution of the constraint store. To accomplish
this, we introduce some new operations: the retract(c) reduces the current
store by c, the updateX(c) transactionally relaxes all the constraints of the
store that deal with the variables in the set X, and then adds a constraint
c; the nask(c) tests if c is not entailed by the store. We present this frame-
work as a possible solution to the management of resources (e.g. web
services and network resource allocation) that need a given Quality of
Service (QoS). The QoS requirements of all the parties should converge,
through a negotiation process, on a formal agreement defined as the Ser-
vice Level Agreement, which specifies the contract that must be enforced.
c-semirings are the algebraic structures that we use to model QoS metrics.

In Ch. 6 we present a variant of Datalog language (we call it DatalogW)
able to deal with weights on ground facts and to consequently compute
a feedback result for the goal satisfaction. The weights are chosen from
a proper c-semiring. In our context, our goal is to use this language as
a semantic foundation for languages for expressing trust relationships.
As a matter of fact, many of them have a semantics given in terms of
crisp constraints: our approach is to extend them to cover also the soft
case. Thus, we apply DatalogW as the basis to give a uniform semantics
to declarative RTW (Trust Management) language family. The approach is
rather generic and could be applied to other trust management languages
based on Datalog, as a semantic sublayer to represent trust management
languages where the trust level is relevant.

In Ch. 7 we propose soft constraint Logic Programming based on
semirings as a mean to easily represent and evaluate trust propagation
in small-world networks. To attain this, we model the trust network
adapting it to a weighted and-or graph, where the weight on a connector
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corresponds to the trust and confidence feedback values among the con-
nected nodes. Semirings are the parametric and flexible structures used
to appropriately represent trust metrics. Social (and not only) networks
present small-world properties: most nodes can be reached from every
other by a small number of hops. These features can be exploited to reduce
the computational complexity of the model. In the same model we also
introduce the concept of multitrust, which is aimed at computing trust by
collectively involving a group of trustees at the same time.

In Ch. 8 we represent the Optimal Stable Marriage problem as a Soft
Constraint Satisfaction Problem. In addition, we extend this problem from
couples of individuals to coalitions of generic agents, in order to define
new coalition formation principles and stability conditions. In the coali-
tion case, we suppose the preference value as a trust score, since trust
can describe the belief of a node in the capabilities of another node, its
honesty and reliability. Soft constraints represent a general and expres-
sive framework that is able to deal with distinct concepts of optimality by
only changing the related c-semiring structure, instead of using different
ad-hoc algorithms. At last, we propose an implementation of the classical
OSM problem by using Integer Linear Programming tools.

At last, Ch. 9 draws the final conclusions and introduces the future
work with which the thesis can be extended along several and distinct
directions.

Therefore, in order to link the title of this thesis (Soft Constraint Tools for
Quality Aspects: Languages, Frameworks and Aggregation Schemes) to its con-
tent, the “languages” are presented in Ch. 5 and Ch. 6, the “frameworks”
in Ch. 3 and Ch. 4 and the “aggregation schemes” in Ch. 7 and Ch. 8.
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Chapter 2

Background on Soft
Constraints

2.1 From Crisp to Soft Constraints

Constraint programming (Apt03) is an approach for solving problems (mostly
combinatorial) by stating constraints restricting the feasible combinations
among the problem variables (each variable takes its values from a spe-
cific domain). It represents a powerful paradigm for solving combinatorial
search problems that draws on a wide range of techniques from artificial
intelligence, computer science, databases, programming languages, and
operations research. Constraint programming is currently applied with
success to many domains, such as scheduling, planning, vehicle routing,
configuration, networks, and bioinformatics. The basic idea in constraint
programming is that the user states the constraints and a general purpose
constraint solver solves them. Constraints are just relations, and a Con-
straint Satisfaction Problem (CSP) states which relations should hold among
the given decision variables.

Constraint solvers take a real-world problem, represented in terms
of decision variables and constraints, and find an assignment of values
to all the variables that satisfies all the constraints. Constraint solvers
search the solution space either systematically, as with backtracking or
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branch and bound algorithms, or use forms of local search which may
be incomplete. Systematic methods often interleave search and inference,
where inference consists of propagating the information contained in one
constraint to the neighboring constraints. Such inference, usually called
constraint propagation, may reduce the parts of the search space that need
to be visited.

The initial ideas underlying the whole constraint programming re-
search area emerged in the ’70s with several pioneering papers on local
consistency, among which the 1974 paper by Ugo Montanari (Mon74),
where for the first time a form of constraint propagation, called path
consistency, was defined and studied in depth. Since then, the field has
evolved greatly, and theoretical study has been coupled with application
work, that has shown the need for several extensions of the classical con-
straint formalism. The introduction of semiring-based soft constraints
clearly lies within this evolution thread.

Usually, the constraints are assumed to be hard, i.e., the tuple of values
is either allowed or not. If there are many constraints imposed on problem
variables, it could be impossible to satisfy them all, such problems are
called over-constrained. In many other situations, we need to model
fuzziness, possibilities, preferences, probabilities, costs, etc. So, crisp
constraints are not enough to model and solve such problems. In the early
’90s, some attempts had been made to generalize the notion of constraint
to an object with more than the just two levels of satisfiability levels (i.e.
yes or no) of crisp constraints.

For example, fuzzy constraints (Rut94; DFP93a) allow for the whole
range of satisfiability levels between 0 and 1. Then, the quality of a solution
is the minimum level of satisfiability of the constraints for that solution.
The aim is then to find a solution whose quality is highest. Because fuzzy
constraints suffer from the so-called “drowning effect” (where the worst
level of satisfiability “drowns” all the others), lexicographic constraints
were introduced (DFP93b), to obtain a more discriminating ordering of
the solutions, where also solutions with the same worst level can be dis-
tinguished. Another extension to classical constraints are the so-called
probabilistic constraints (FL93), where, in the context of an uncertain mo-
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del of the real world, each constraint is associated to the probability of
being present in the real problem. Solutions are then associated to their
conjoint probability (assuming independence of the constraints), and the
aim is to find a solution with the highest probability. In weighted con-
straints, instead, each constraint is given a weight, and the aim is to find
a solution for which the sum of the weights of the satisfied constraints is
maximal. A very useful instance of weighted constraints are MaxCSPs,
where weights are just 0 or 1 (0 if the constraint is violated and 1 if it is
satisfied). In this case, we therefore want to satisfy as many constraints as
possible.

This line of reasoning called partial constraint satisfaction (FW92) leads to
the definition of the first general framework to extend classical constraints.
In partial CSPs, over-constrained problems are addressed by defining a
metric over constraint problems, and by trying to find a solution of a
problem which is as close as possible to the given one according to the
chosen metric. Therefore, soft constraints (BMR97c; Bis04; SB08) have
been proposed to model originally the over-constrained problems and
later the problems with fuzziness, uncertainty etc. Soft constraint can
be seen as a preferential constraint whose satisfaction is not required but
preferred.

To build such a framework the authors used the c-semiring1 (or sim-
ply, semiring) algebraic structure proposed in (BMR95; BMR97c; Bis04),
where the set of semiring specifies the preference associated to each tuple
of variable values. The two semiring operations (+ and ×) then model
constraint projection and combination respectively.

In Ch. 2.2 we start describing the c-semiring structure (BMR97c), at the
basis of the soft constraint definition. Chapter 2.3 proposes how to define
a problem with soft constraints, while Ch. 2.3.1 shows how to project
and combine together soft constraints. This is then useful for finding
the solutions of a Soft Constraint Satisfaction Problem (SCSP) (BMR97c)
in Ch. 2.3.2. Chapter 2.4 presents the Soft Constraint Logic Programming
framework (SCLP) (BMR97a; BR01) and Ch. 2.5 defines the main features
concerning the soft extension of Concurrent Constraint Programming (Sar93)

1“c” stands for “constraint”.
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called Soft Concurrent Constraint Programming (SCCP) (BMR06; BMR02a).

2.2 C-semirings

The following content is mainly reported from (Bis04; BMR97c). A semi-
ring is a tuple 〈A,+,×, 0, 1〉 such that:

1. A is a set and 0, 1 ∈ A;

2. + is commutative, associative and 0 is its unit element;

3. × is associative, distributes over +, 1 is its unit element and 0 is its
absorbing element.

A c-semiring is a semiring 〈A,+,×, 0, 1〉 such that + is idempotent, 1 is
its absorbing element and × is commutative. Let us consider the relation
≤S over A such that a ≤S b iff a + b = b. Then it is possible to prove that
(see (BMR97c)):

1. ≤S is a partial order;

2. + and × are monotone on ≤S;

3. × is intensive on ≤S: a × b ≤S a, b;

4. 0 is its minimum and 1 its maximum;

5. 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, + is the least upper
bound operator, that is, a + b = lub(a, b).

Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is
a complete distributive lattice and × its glb. The idempotency of the +
operation is needed in order to define a partial ordering ≤S over the set
A, which will enable us to compare different elements of the semiring.
Informally, the relation ≤S gives us a way to compare semiring values and
constraints. In fact, when we have a ≤S b, we will say that b is better than
a or, from another point of view, that, between a and b, the + operation
chooses b. In the following, when the semiring will be clear from the
context, a ≤S b will be often indicated by a ≤ b.
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The fact that 0 is the unit element of the additive operation implies
that 0 is the minimum element of the ordering. Thus, for any a ∈ A, we
have 0 ≤S a.

It is important to note that both the additive and the multiplicative
operations are monotone on such an ordering.

The commutativity of the × operation is desirable when such an oper-
ation is used to combine several constraints. In fact, were it not commu-
tative, it would mean that different orders of the constraints would give
different results.

Since 1 is also the absorbing element of the additive operation, then
a ≤S 1 for all a. Thus 1 is the maximum element of the partial ordering.
This implies that the × operation is intensive, that is, that a × b ≤S a. This
is important since it means that combining more constraints leads to a
worse (w.r.t. the ≤S ordering) result.

It is also possible to prove that 〈A,≤S〉 is a complete lattice. Notice that
when every subset has the lub, then also the empty set has the lub. Thus,
in partial orders with this property, there is always a global minimum of
the partial order (which is the lub of the empty set). Notice that the +
operation coincides with the lub of the lattice 〈A,≤S〉.

For the proofs of the previous properties and theorems, please refer
to (Bis04; BMR97b). Some possible instantiations of semirings are:

• A classical CSP problem (i.e. using crisp constraints) is just a set of
variables and constraints, where each constraint specifies the tuples
that are allowed for the involved variables. Assuming the presence
of a subset of distinguished variables, the solution of a CSP consists
of a set of tuples that represent the assignments of the distinguished
variables, which can be extended to total assignments (for all the val-
ues) while satisfying all the constraints. Since classical satisfaction
problems are crisp, that is, a tuple is either allowed or forbidden, it
can be modeled via a semiring domain with only two values, say 1
and 0: allowed tuples will have associated the value 1, and forbid-
den ones the value 0. Moreover, constraint combination is achieved
via a join operation. This can be modeled here by assuming the
multiplicative operation to be the logical and (and interpreting 1 as
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true and 0 as false). Therefore, a constraint satisfaction problem may
be recast to deal with soft constraints by considering the semiring

KCSP = 〈{0, 1},∨,∧, 0, 1〉

where the ordering reduces to 0 ≤ 1.

• Fuzzy CSPs (FCSPs) extend the standard notion by allowing non-
crispness features, that is, constraints which associate a preference
level with each tuple. Such level is always between 0 and 1, where 1
represents the best value (that is, the tuple is allowed) and 0 the worst
one (that is, the tuple is forbidden). The solution of a fuzzy CSP is
then defined as the set of constraints that have the maximal value.
The way they associate a value with a tuple is by minimizing the
values of all its sub-tuples (i.e., the set of less specified constraints).
The reason for such a max-min framework relies on the attempt to
maximize the value of the least preferred tuple. Then, fuzzy CSPs
can be modeled in our framework by the semiring

KFCSP = 〈{x | x ∈ [0, 1]},max,min, 0, 1〉

where the ordering reduces to the ≤ ordering on reals.

• Probabilistic CSPs (Prob-CSPs) were introduced to model those sit-
uations where each constraint c has a certain probability p(c), inde-
pendent from the probability of the their constraints, to be part of
the given problem (actually, the probability is not of the constraint,
but of the situation which corresponds to the constraint: saying that
c has probability p means that the situation corresponding to c has
probability p of occurring in the real-life problem).

This allows one to also reason about problems which are only par-
tially known. The probability levels on constraints then gives to each
instantiation of all the variables, a probability that it is a solution of
the real problem. This is done by first associating with each subset
of constraints the probability that it is in the real problem (by mul-
tiplying the probabilities of the involved constraints), and then by
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summing up all the probabilities of the subsets of constraints where
the considered instantiation is a solution. Alternatively, the proba-
bility associated with an n-tuple t can also be seen as the probability
that all constraints that t violates are indeed in the real problem.
This is just the product of all 1 − p(c) for all c violated by t. Finally,
the aim is to get those instantiations with the maximum probability.
As a result, the semiring corresponding to the Prob-CSP framework
is

KProb = 〈{x | x ∈ [0, 1]},max,×, 0, 1〉

and the associated ordering reduces to ≤ over reals.

• While fuzzy CSPs associate a level of preference, in weighted CSPs
(WCSPs) tuples come with an associated cost. This allows for mod-
elling optimization problems where the goal is to minimize the total
cost (time, space, number of resources, and so on) of the proposed
solution. Therefore, in WCSPs the cost function is defined by sum-
ming up the costs of all constraints (intended as the cost of the
chosen tuple for each constraint). Thus, the goal is to find the tuples
which minimize the total sum of the costs of their sub-tuples (one
for each constraint). According to the description of WCSPs above,
the associated semiring is

KWCSP = 〈R
+
∪ {∞},min, +̂,∞, 0〉

for +̂ the sum of reals, so that the associated ordering reduces to ≥
over reals. This means that a value is preferred to another one if it
is smaller.

• An interesting class of instances of the soft constraint framework
is based on set operations like union and intersection, using the
semiring

Kset = 〈℘(L),∪,∩, ∅,L〉

where L is any set. It is easy to see that the order ≤Kset reduces to set
inclusion, and therefore it is partial.
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In (BG06) the authors extended the semiring structure by adding the
notion of division, i.e. ÷, as a weak inverse operation of ×. An absorptive
semiring S is invertible if, for all the elements a, b ∈ A such that a ≤ b, there
exists an element c ∈ A such that b × c = a (BG06). If S is absorptive and
invertible, then, S is invertible by residuation if the set {x ∈ A | b × x = a}
admits a maximum for all elements a, b ∈ A such that a ≤ b (BG06).
Moreover, if S is absorptive, then it is residuated if the set {x ∈ A | b× x ≤ a}
admits a maximum for all elements a, b ∈ A, denoted a ÷ b. With an
abuse of notation, the maximal element among solutions is denoted a÷ b.
This choice is not ambiguous: if an absorptive semiring is invertible and
residuated, then it is also invertible by residuation, and the two definitions
yield the same value.

To use these properties, in (BG06) it is stated that if we have an absorp-
tive and complete semiring2, then it is residuated. For this reason, since
all classical soft constraint instances (i.e. Classical CSPs, Fuzzy CSPs, Prob-
abilistic CSPs and Weighted CSPs) are complete and consequently resid-
uated, the notion of semiring division can be applied to all of them.
Therefore, for all these semirings it is possible to use the ÷ operation
as a “particular” inverse of ×. In the following we show the ÷ operator
definitions for Classical (Eq. 2.1), Fuzzy (Eq. 2.2), Probabilistic (Eq. 2.3),
Weighted (Eq. 2.4) and Set-based (Eq. 2.5) semirings:

a ÷ b = max{x | b ∧ x ≤ a} = (b =⇒ a) (2.1)

a ÷ b = max{x | min{b, x} ≤ a} =

1 if b ≤ a
a if a < b

(2.2)

a ÷ b = lub{x | b × x) ≤ a} =

1 if a ≥ b,
a
b if a < b

(2.3)

a ÷ b = min{x | b+̂x ≥ a} =

0 if b ≥ a
a−̂b if a > b

(2.4)

a ÷ b =
⋃
{x | b ∩ x ⊆ a} = (A \ b) ∪ a (2.5)

2If S is an absorptive semiring, then S is complete if it is closed with respect to infinite
sums, and the distributivity law holds also for an infinite number of summands.
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where −̂ is the arithmetic difference and in Eq. 2.3 we use the arithmetic
division.

2.3 Soft Constraints and Satisfaction Problems

Now it is possible to define the notion of soft constraint system, soft
constraint, and soft constraint problem, which will be parametric w.r.t.
the notion of c-semiring just defined. Intuitively, a constraint system
specifies the c-semiring 〈A,+,×, 0, 1〉 to be used, the set of all variables
and their domain D. The following descriptions and proofs are taken
from (Bis04; BMR97c).

Definition 1 (Soft constraint system) A soft constraint system is defined as
a tuple CS = 〈S,D,V〉, where S is a c-semiring, D is a finite set, and V is an
ordered set of variables.

Now, a constraint over a given constraint system specifies the involved
variables and the “allowed” values for them. More precisely, for each tuple
of values (of D) for the involved variables, a corresponding element of A
is given. This element can be interpreted as the tuple’s weight, or cost, or
level of confidence, or other.

Definition 2 (Soft constraint) Given a constraint system CS = 〈S, D, V〉,
where S = 〈A, +, ×, 0, 1〉, a constraint over CS is a pair 〈de f , con〉, where

• con ⊆ V, it is called the type of the constraint;

• de f : Dk
→ A (where k is the cardinality of con) is called the value of the

constraint.

A constraint problem is then just a set of constraints over a given
constraint system, plus a selected set of variables (thus a type). These are
the variables of interest in the problem, i.e., the variables of which we want
to know the possible assignments’ compatibly with all the constraints.

Definition 3 (Soft constraint satisfaction problem) Consider any constraint
system CS = 〈S,D,V〉. A constraint problem P over CS (also written SCSP), is
a pair P = 〈C, con〉, where C is a set of constraints over CS and con ⊆ V. It is
assumed that 〈de f1, con′〉 ∈ C and 〈de f2, con′〉 ∈ C implies de f1 = de f2. In the
following we will write SCSP to refer to such constraint problems.
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When all variables are of interest, like in many approaches to classical
CSP, con contains all the variables involved in any of the constraints of the
given problem, say P. Such a set, called V(P), is a subset of V that can be
recovered by looking at the variables involved in each constraint. That is,
V(P) =

⋃
〈de f ,con′〉∈C con′.

Since the Cartesian product of two c-semirings is still a c-semiring, as
proved in (BMR97c), it is also possible to model multicriteria optimization
within this framework. For example we can model situations where we
want to maximize the minimum preference and also to minimize the sum
of the costs. To do this we just have to pair the fuzzy and the weighted
semiring.

As for classical constraint solving, SCSPs as defined above also can be
graphically represented via labeled hypergraphs where nodes are vari-
ables, hyperarcs are constraints, and each hyperarc label is the definition
of the corresponding constraint (which can be seen as a set of pairs 〈 tuple,
value 〉). In particular, Fig. 5 shows the graph representation of a fuzzy
CSP. Variables and constraints are represented respectively by nodes and
by undirected arcs (unary for c1 and c3 and binary for c2), and semiring
values are written to the right of the corresponding tuples. The variables
of interest (i.e. x in Fig. 5, that is the set con) are represented with a double
circle. Here it is assumed that the domain D of the variables contains only
elements a and b.

X Y

c1 c3

c2

<b>     0.1

<a>     0.9

<b>     0.5

<a>     0.9

<a,a>     0.8

<a,b>     0.2

<b,a>     0

<b,b>     0

Figure 5: A fuzzy CSP
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2.3.1 Combining and Projecting Soft Constraints

In the SCSP framework, the values specified for the tuples of each con-
straint are used to compute corresponding values for the tuples of values
of the variables in con, according to the semiring operations: the multi-
plicative operation is used to combine the values of the tuples of each
constraint to get the value of a tuple for all the variables, and the additive
operation is used to obtain the value of the tuples of the variables in the
type of the problem. Now the operations of combination (⊗) and projection
(⇓) over constraints are defined.

Definition 4 (Combination) Given a constraint system CS = 〈S,D,V〉, where
S = 〈A, +, ×, 0, 1〉, and two constraints c1 = 〈de f1, con1〉 and c2 = 〈de f2, con2〉

over CS, their combination, written c1 ⊗ c2, is the constraint c = 〈de f , con〉 with

con = con1 ∪ con2

and
de f (t) = de f1(t ↓con

con1
) × de f2(t ↓con

con2
).

Since × is both commutative and associative, so too is ⊗. Thus
this operation can be easily extended to more than two arguments, say
C = {c1, . . . , cn}, by performing c1 ⊗ c2 ⊗ . . . ⊗ cn, which will be sometimes
denoted by

⊗
C.In words, combining two constraints means building a

new constraint involving all the variables of the original ones, and which
associates to each tuple of domain values for such variables a semiring
element which is obtained by multiplying the elements associated by the
original constraints to the appropriate subtuples.

Definition 5 (Projection) Given a constraint system CS = 〈S,D,V〉, where
S = 〈A, +, ×, 0, 1〉, a constraint c = 〈de f , con〉 over CS, and a set I of variables
(I ⊆ V), the projection of c over I, written c ⇓I, is the constraint 〈de f ′, con′〉 over
CS with

con′ = I ∩ con

and
de f ′(t′) = Σ{t|t↓con

I∩con=t′}de f (t).
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Informally, projecting means eliminating some variables. This is done
by associating to each tuple over the remaining variables a semiring ele-
ment which is the sum of the elements associated by the original constraint
to all the extensions of this tuple over the eliminated variables. In short,
combination is performed via the multiplicative operation of the semiring,
and projection via the additive one.

Using the properties of× and+, it is easy to prove that: ⊗ is associative
and commutative; ⊗ is monotone over vS. Moreover, if × is idempotent ⊗
is idempotent.

2.3.2 Solutions for Soft Constraint Satisfaction Problems

Using the operations of combination and projection, it is now possible to
define the notion of solution of an SCSP. The solution of an SCSP problem
P = 〈C, con〉 is

Definition 6 (SCSP solution) Given a constraint problem P = 〈C, con〉 over
a constraint system CS, the solution of P is a constraint defined as Sol(P) =
(
⊗

C) ⇓con.

That is, all constraints can be combined, and then project over the
variables in con. In this way the constraint over con is obtained, which is
“induced” by the entire SCSP. Such constraint provides, for each tuple of
values of D for the variables in con, a corresponding value of A.

For example, the solution of the fuzzy CSP of Fig. 5 associates a se-
miring element to every domain value of variable x. Such an element is
obtained by first combining all the constraints together. For instance, for
the tuple 〈a, a〉 (that is, x = y = a), we have to compute the minimum be-
tween 0.9 (which is the value assigned to x = a in constraint c1), 0.8 (which
is the value assigned to 〈x = a, y = a〉 in c2) and 0.9 (which is the value for
y = a in c3). Hence, the resulting value for this tuple is 0.8. The same work
can be done for tuple 〈a, b〉 → 0.2, 〈b, a〉 → 0 and 〈b, b〉 → 0. The obtained
tuples are then projected over variable x, obtaining the solution 〈a〉 → 0.8
and 〈b〉 → 0.

Sometimes, it is enough to know just the best value associated with
such tuples. In our framework, this is still a constraint (over an empty
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set of variables), and will be called the best level of consistency of the
whole problem, where the meaning of “best” depends on the ordering ≤S

defined by the additive operation.

Definition 7 (Best level of consistency) Given an SCSP P = 〈C, con〉, the
blevel(P) ∈ S is defined such that 〈blevel(P), ∅〉 = (

⊗
C) ⇓∅. Moreover, P is

consistent if 0 <S blevel(P) (otherwise, P is inconsistent), and P is α-consistent
if blevel(P) = α.

Informally, the best level of consistency gives us an idea of how much
we can satisfy the constraints of the given problem. Note that blevel(P)
does not depend on the choice of the distinguished variables, due to the
associative property of the additive operation. Thus, since a constraint
problem is just a set of constraints plus a set of distinguished variables, we
can also apply function blevel to a set of constraints only. More precisely,
blevel(C) will mean blevel(〈C, con〉) for any con.

Note that blevel(P) can also be obtained by first computing the solution
and then projecting such a constraint over the empty set of variables, as
the following proposition shows.

Proposition 1 Given an SCSP P, we have that Sol(P) ⇓∅= 〈blevel(P), ∅〉.

The proof is: Sol(P) ⇓∅ coincides with ((
⊗

C) ⇓con) ⇓∅ by definition of
Sol(P). This coincides with (

⊗
C) ⇓∅ (Bis04; BMR97b), thus it is the same

as 〈blevel(P), ∅〉 by Def. 7.

2.4 Soft Constraint Logic Programming

Constraint logic programming (CLP) (JL87) languages extend logic pro-
gramming (LP) by replacing term equalities with constraints and unifi-
cation with constraint solving. Programming in CLP means choosing a
constraint system for a specific class of constraints (for example, linear
arithmetic constraints, or finite domain constraints) and embedding it
into a logic programming engine. This approach is very flexible since one
can choose among many constraint systems without changing the overall
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programming language, and has shown to be very successful in speci-
fying and solving complex problems in terms of constraints of various
kind (Wal96). It can, however, only handle classical constraint solving.
Thus, it is natural to try to extend the CLP formalism in order to also be
able to handle soft constraints. In fact, this new programming paradigm,
which is called SCLP (for Semiring-based CLP, or also Soft CLP), has the
advantage of treating in a uniform way, and with the same underlying
machinery, all constraints that can be seen as instances of the semiring-
based approach: from optimization to satisfaction problems, from fuzzy to
probabilistic, prioritised, or uncertain constraints, and also multi-criteria
problems, without losing the ability to treat and solve classical hard con-
straints. This leads to a high-level declarative programming formalism
where real-life problems involving constraints of all these kinds can be
easily modeled and solved.

In passing from CLP to soft CLP languages (i.e. SCLP), classical con-
straints will be replaced with the more general SCSP constraints. By doing
this, from a technical point of view, the notions of interpretation, model,
model intersection, and others must be modified, since we have to take
into account the semiring operations and not the usual CLP operations.
For example, while CLP interpretations associate a truth value (either true
or false) to each ground atom, in this case ground atoms must be given one
of the elements of the semiring. Furthermore, whereas in CLP the value
associated with an existentially quantified atom is the logical or among the
truth values associated to each of its instantiations, here the or must be
replaced with another operation that refers to one of the semiring opera-
tions. The following content comes from the works (BMR97a; BR01).

The SCLP framework is based on the notion of c-semiring introduced
in (BMR95; BMR97c; Bis04) and also described in Ch. 2.2. As usual, a
program is a set of clauses. Each clause is composed by a head and a body.
The head is just an atom and the body is either a collection of atoms, or a
value of the semiring, or a special symbol (�) to denote that it is empty.
Clauses where the body is empty or it is just a semiring element are called
facts and define predicates which represent constraints. When the body is
empty, it can be interpreted as having the best semiring element (that is,

42



1).
Atoms are n-ary predicate symbols followed by a tuple of n terms.

Each term is either a constant or a variable or an n-ary function symbol
followed by n terms. Ground terms are terms without variables. Finally, a
goal is a collection of atoms. The BNF for this syntax follows in Tab. 1.

P :: CL | CL,P
CL :: H : −B
H :: AT where AT is the category of atoms
LAT :: � | LAT′

LAT′ :: AT | AT,LAT′

B :: LAT | a where a ∈ A
G :: : −LAT

Table 1: BNF for the SCLP syntax.

In passing from CLP to SCLP languages, the authors of (BR01) replaced
classical constraints with the more general SCSP constraints where a level
of preference can be assigned to each instantiated constraint (i.e. a ground
atom). To do this, the authors also modified the notions of interpretation,
model, model intersection, and others, since the semiring operations must
be taken into account, and not the usual CLP operations. For example,
while CLP interpretations associate a truth value (either true or false) with
each ground atom, in SCLP ground atoms must be given one of the ele-
ments of the semiring. Also, while in CLP the value associated with an
existentially quantified atom is the logical or among the truth values asso-
ciated with each of its instantiations, here the authors had to replace the
or with another operation which refers to one of the semiring operations
(the +). The combination of atoms, which in CLP is modeled via logical
and, in SCLP is instead handled via the × operation of the semiring.

Besides the model-theoretic semantics based on models and interpre-
tations, SCLP programs come also with a fixpoint and an operational
semantics. These semantics are conservative extensions of the corre-
sponding ones for logic programming (LP), since by choosing a particular
semiring (the one with just two elements, true and false, and the logical
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and and or as the two semiring operations) it is possible to get exactly the
LP semantics.

The presence of a possibly partial order among the elements of the
semiring makes the operational semantics more complex to compute. In
fact, there could be several refutations for a goal which lead to different
semiring elements which are not comparable in the partial order. In this
case, these elements have to be combined in order to get the solution
corresponding to the given goal, and their combination could be not
reachable by any refutation path in the search tree.

The fact that several refutation paths must be combined when we have
a partial order (instead of a total one) can be fruitfully used when we have
any problem with a cost vector made of several incomparable costs. In
fact, in the case of a partial order, the solution of such a problem should
consists of all those solutions which are not “dominated” by others.

2.4.1 Some Theoretical Results

Three equivalent semantics for such SCLP languages are defined in (BR01):
model-theoretic, fix-point, and operational. These semantics are conser-
vative extensions of the corresponding ones for LP, since by choosing a
particular semiring (the one with just two elements, true and false, and
the logical and and or as the two semiring operations) we get exactly the
LP semantics. The extension is in some cases predictable but it possesses
some crucial new features. For example, the presence of a partial order
among the semiring elements (and not a total order like it is in the LP/CLP
case, where we just have two comparable elements) brings some concep-
tual complexity in some aspects of the semantics (BR01). In fact, in the
operational semantics, there could be two refutations for a goal leading to
different semiring elements that are not comparable in the partial order.
In this case, these elements have to be combined in order to get the solu-
tion corresponding to the given goal, and their combination could not be
reachable by any derivation path in the search tree. This means that any
constructive way to get such a solution by visiting the search tree would
have to follow all the incomparable paths before being able to find the cor-
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rect answer. In practice, however, classical branch and bound techniques
can be adapted to this framework to cut some useless branches (this is a
future work proposed in Ch. 9).

In order to describe the fix-point semantics (one of the possible three
semantics explained in (BR01)), in (BR01) the authors defined the operator
TP which extends the one used in logic programming (Llo87). An operator
can map interpretations into interpretations, that is, TP : ISP → ISP, where
ISP is the set of all interpretations for P.

Definition 8 (TP operator) Given an interpretation I and a ground atom A,
assume that program P contains k clauses defining the predicate in A. Clause i
is of the form A : −Bi

1, . . . ,B
i
ni

. Then

TP(I)(A) =
∑k

i=1(
∏ni

j=1 I(Bi
j)).

This function coincides with the usual immediate consequence oper-
ator of logic programming (see (Llo87)) when considering the semiring
SCSP.

Consider now an ordering� among interpretations which respects the
semiring ordering.

Definition 9 (Partial order of interpretations) Given a program P and the
set of all its interpretations ISP, in (BR01) the authors defined the structure
〈ISP,�〉, where for any I1, I2 ∈ ISP, I1 � I2 if I1(A) ≤S I2(A) for any ground atom
A.

It is easy to see that 〈ISP,�〉 is a complete partial order, whose greatest
lower bound coincides with the glb operation in the lattice A (suitably
extended to interpretations). It is also possible to prove that function TP

is monotone and continuous over the complete partial order 〈ISP,�〉.
By using these properties, classical results on partial orders (Tar55)

allow us to conclude the following:

• TP has a least fix-point, l f p(TP), which coincides with glb({I | TP(I) �
I});

• the least fix-point of TP can be obtained by computing TP ↑ ω. This
means starting the application of TP from the bottom of the partial
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order of interpretations, called I0, and then repeatedly applying TP

until a fix-point.

Additionally, by investigating the decidability of the semantics of SCLP
programs, it is possible to obtain an interesting semi-decidability result: if
a goal has a semiring value greater than, or greater than or equal to, a cer-
tain value in the semiring, then we can discover this in finite time (BR01).
Moreover, for SCLP programs without functions, the problem is com-
pletely decidable: the semantics of a goal can be computed in finite and
bounded time (BR01). In fact, in this case we can consider only a finite
number of finite and bounded-length refutations (BR01): infinite refuta-
tions do not bring more information due to the properties of the semiring
operations. Notice that the absence of functions is obviously a restriction,
however, not all sources of infiniteness are taken away, since nothing is
said about the semiring, which could still be infinite (BR01).

2.4.2 A Program Interpretation Example

A simple example of an SCLP program over the semiring 〈N,min,+,+∞, 0〉,
where N is the set of non-negative integers and D = {a, b, c}, is represented
in Tab. 2.

s(X) :- p(X,Y).

p(a,b) :- q(a).

p(a,c) :- r(a).

q(a) :- t(a).

t(a) :- 2.

r(a) :- 3.

Table 2: A simple example of an SCLP program

The choice of this semiring allows to represent constraint optimization
problems where the semiring elements are the costs for the instantiated
atoms. Note that the ordering ≤S in this semiring coincides with the ≥
ordering over integers. The intuitive meaning of a semiring value like
3 associated with the atom r(a) is that r(a) costs 3 units. Thus the set N
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Figure 6: The SCLP refutation tree for goal s(X).

contains all possible costs, and the choice of the two operations min and
+ implies that we intend to minimize the sum of the costs. This gives us
the possibility to select the atom instantiation which gives the minimum
cost overall.

Given a goal like s(x) to this program, the semantics collects both
a substitution for x (in this case, x = a) and also a semiring value (in
this case, 2) which represents the minimum cost among the costs for all
refutations for s(x). Figure 6 shows the tree structure representing the two
possible refutations for the goal s(x). Each node in the tree represents a
state of the computation, and the root represents the initial state. Each
computation state contains both the current goal and a semiring value. At
the beginning, the semiring value is the best one (0 in this example). Then,
at each step, one clause or fact is used, and this changes the current goal,
accumulates a substitution (written on the links of the tree), and combines
the current semiring value with a new value given by the used clause. If
a clause has no semiring value (like the first four clauses of the example),
the associated value is assumed to be the best one. The combination of
these two semiring values is achieved via the multiplicative operation
of the semiring, which in this example is the sum. All the semiring
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values obtained by the refutations of the same goal (and with the same
substitution) are then combined together via the additive operation of the
semiring, which in this example is the min operation. Therefore the two
refutations in Fig. 6 produce the semiring value min(2, 3) = 2. The formal
definition of the operational semantics of SCLP programs can be found
in (BR01).

2.5 Soft Concurrent Constraint Programming

In the following we give the fundamentals of the Concurrent Constraint
Programming (CCP) paradigm (Sar93), and its Soft extension (BMR06;
Bis04), the Soft Concurrent Constraint Programming (SCCP). Proofs and
definition are reported from (BMR06; BMR02a). The concurrent con-
straint (cc) paradigm (Sar93) is a very interesting computational frame-
work which merges together constraint solving and concurrency. The
main idea is to choose a constraint system and use constraints to model
communication and synchronization among concurrent agents. The clas-
sic CCP framework concerns the behavior of a set of concurrent agents
with a shared store, which is a conjunction of constraints. Each computa-
tion step possibly adds new constraints to the store, and thus information
is monotonically added to the store until all agents have evolved. The
final store is a refinement of the initial one and it is the result of the com-
putation. The concurrent agents do not communicate directly with each
other, but only through the shared store, by either checking if it entails
a given constraint (ask operation) or adding a new constraint to it (tell
operation). Now we describe the constraint system structure for CCP and
its soft extension and the language.

The Constraint System: The basic ingredients of a constraint system (de-
fined following the information systems idea (Sco82)) are a set D
of primitive constraints or tokens, each expressing some partial infor-
mation, and an entailment relation ` defined on ℘(D) × D (or its
extension defined on ℘(D) × ℘(D))3 where ℘(D) is the powerset of

3The extension is s.t. u ` v iff u ` P for every P ∈ v.
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D. The entailment relation satisfies:

• u ` P for all P ∈ u (reflexivity) and

• if u ` v and v ` z, then u ` z for all u, v, z ∈ ℘(D) (transitivity).

u ≈ v is defined if u ` v and v ` u.

As an example of entailment relation, consider D as the set of equa-
tions over the integers; then ` could include the pair 〈{x = 3, x =
y}, y = 3〉, which means that the constraint y = 3 is entailed by
the constraints x = 3 and x = y. Given X ∈ ℘(D), let X be the set
X closed under entailment. Then, a constraint in an information
system 〈℘(D), `〉 is simply an element of ℘(D).

As it is well known (SRP91), 〈℘(D),⊆〉 is a complete algebraic lattice,
the compactness of ` gives the algebraic structure for ℘(D), with
least element true = {P | ∅ ` P}, greatest element D (which will
mnemonically denote f alse), glbs (denoted byu) given by the closure
of the intersection and lubs (denoted byt) given by the closure of the
union. The lub of chains is, however, just the union of the members
in the chain. Then, a, b, c, d and e can be used to stand for elements
of ℘(D); c ⊇ d means c ` d.

In order to treat the hiding operator of the language (see Def. 16
for its soft version), a general notion of existential quantifier for
variables in constraints is introduced, which is formalized in terms
of cylindric algebras. This leads to the concept of cylindric constraint
system over an infinite set of variables V such that for each variable
x ∈ V, ∃x : ℘(D)→ ℘(D) is an operation satisfying:

1. u ` ∃xu;

2. u ` v implies (∃xu) ` (∃xv);

3. ∃x(u t ∃xv) ≈ (∃xu) t (∃xv);

4. ∃x∃yu ≈ ∃y∃xu.

In order to model parameter passing, diagonal elements are added to
the primitive constraints. It is assumed that, for x, y ranging in V,
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℘(D) contains a constraint dxy. If `models the equality theory, then
the elements dxy can be thought of as the formulas x = y. Such a
constraint satisfies the following axioms:

1. dxx = true,

2. if z , x, y then dxy = ∃z(dxz t dzy),

3. if x , y then dxy t ∃x(c t dxy) ` c.

Note that the in the previous definition it is assumed that the cardi-
nality of the domain for x, y and z greater than 1 (otherwise, axioms
2 and 3 would not make sense).

2.5.1 Concurrent Constraint Programming over Soft
Constraints

Given a semiring S = 〈A,+,×, 0, 1〉 and an ordered set of variables
V over a domain D, we will now show how soft constraints over S
with a suitable pair of operators form a semiring, and then, we high-
light the properties needed to map soft constraints over constraint
systems “a la Saraswat” (recalled in Ch. 2.5). We start by giving the
definition of the carrier set of the semiring.

Definition 10 (Functional constraints) C = (V → D) → A as the set
of all possible constraints that can be built starting from S = 〈A,+,×, 0, 1〉,
D and V.

A generic function describing the assignment of domain elements
to variables will be denoted in the following by η : V → D. Thus a
constraint is a function which, given an assignmentηof the variables,
returns a value of the semiring.

Note that in this functional formulation (which differers from the
one given in Ch. 2.3), each constraint is a function and not a pair
representing the variable involved and its definition. Such a function
involves all the variables in V, but it depends on the assignment of
only a finite subset of them. This subset is called the support (or
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scope) of the constraint. For computational reasons, it is required
that each support is finite.

Definition 11 (Constraint support) Consider a constraint c ∈ C. His
support is defined as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] , cη[v :=
d2]}, where

η[v := d]v′ =

d if v = v′,
ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the
association v := d1 (that is the operator [ ] has precedence over
application).

Definition 12 (Functional mapping) Given 〈de f , {v1, . . . , vn}〉 ∈ C (i.e.
any soft constraint), its corresponding function c ∈ C is defined s.t.
cη[v1 := d1] . . . [vn := dn] = de f (d1, . . . , dn). Clearly supp(c) ⊆ {v1, . . . , vn}.

Definition 13 (Combination and sum) Given the set C, the combina-
tion and sum functions are defined as ⊗,⊕ : C × C → C as follows:

(c1 ⊗ c2)η = c1η ×S c2η and (c1 ⊕ c2)η = c1η +S c2η.

Notice that function ⊗ has the same meaning of the already defined
⊗ operator, while function ⊕models a sort of disjunction.

Having defined the operation ÷ on semirings (see Ch. 2.2), the
constraint division function 	÷ : C × C → C is instead defined as
(c1 	÷ c2)η = c1η ÷ c2η (BG06). Informally, performing the ⊗ or the
	÷ between two constraints means building a new constraint whose
support involves all the variables of the original ones, and which
associates with each tuple of domain values for such variables a
semiring element which is obtained by multiplying or, respectively,
dividing the elements associated by the original constraints to the
appropriate sub-tuples.

By using the ⊕S operator, the partial order ≤S over C can be easily
extended by defining c1 vS c2 ⇐⇒ c1 ⊕S c2 = c2. In the following,
when the semiring will be clear from the context, we will use v.
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An unary operator will be useful to represent the unit elements of
the two operations ⊕ and ⊗. To define this operator, we need the
definition of constant functions over a given set of variables.

Definition 14 (Constant function) The function ā is defined as the func-
tion that returns the semiring value a for all assignments η, that is, āη = a.
We will usually write ā simply as a.

An example of constants that will be useful later are 0̄ and 1̄ that
represent respectively the constraint associating 0 and 1 to all the
assignment of domain values.

It is easy to verify that each constant has an empty support. More
generally:

Proposition 2 The support of a constraint c ⇓I is always a subset of I(that
is supp(c ⇓I) ⊆ I).

The proposition can be proved as follows: by definition of ⇓I, for
any variable x < I we have c ⇓I η[x = a] = c ⇓I η[x = b] for any a and
b. So, by definition of support x < supp(c ⇓I).

Theorem 2.5.1 (Higher-order semiring) SC = 〈C,⊕,⊗, 0̄, 1̄〉 where

• C : (V → D) → A is the set of all the possible constraints that can
be built starting from S, D and V as defined in Def. 10,

• ⊗ and ⊕ are the functions defined in Def. 13, and

• 0̄ and 1̄ are constant functions defined following Def. 14,

is a c-semiring.

To prove the theorem it is enough to check all the properties with
the fact that the same properties hold for semiring S. Only a hint is
given here, by showing the commutativity of the ⊗ operator:
(c1 ⊗ c2)η = (by definition of ⊗)
c1η × c2η = (by commutativity of ×)
c2η × c1η = (by definition of ⊗)
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(c2 ⊗ c1)η.
All the other properties can be proved similarly.

The next step is to look for a notion of token and of entailment
relation. The functional constraints in C are called tokens; more-
over, the relation ` is defined as an entailment relation when the
multiplicative operator of the semiring is idempotent.

Definition 15 (` relation) Consider the higher-order semiring carrier set
C and the partial order v. The relation `⊆ ℘(C)×C is defined s.t. for each
C ∈ ℘(C) and c ∈ C, we have C ` c ⇐⇒

⊗
C v c.

The next theorem shows that, when the multiplicative operator of
the semiring is idempotent, the ` relation satisfies all the properties
needed by an entailment.

Theorem 2.5.2 (` as an entailment relation) Consider the higher-order
semiring carrier setC and the partial orderv. Consider also the relation ` of
Def. 15. Then, if the multiplicative operation of the semiring is idempotent,
` is an entailment relation.

To prove the theorem, it is enough to check that for any c ∈ C, and
for any C1, C2 and C3 subsets of Cwe have

1. C ` c when c ∈ C: It must be shown that
⊗

C v c when c ∈ C.
This follows from the intensivity of ×.

2. if C1 ` C2 and C2 ` C3 then C1 ` C3: To prove this, the authors
of (BMR06) used the extended version of the relation ` able
to deal with subsets of C : ℘(C) × ℘(C) s.t. C1 ` C2 ⇐⇒

C1 `
⊗

C2. Note that when × is idempotent we have that,
∀c2 ∈ C2, C1 ` c2 ⇐⇒ C1 `

⊗
C2. In this case to prove the

item it must be proved that if
⊗

C1 v
⊗

C2 and
⊗

C2 v
⊗

C3,
then

⊗
C1 v

⊗
C3. This comes from the transitivity of v.

Note that in this setting the notion of token (constraint) and of set
of tokens (set of constraints) closed under entailment is used indif-
ferently. In fact, given a set of constraint functions C1, its closure
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w.r.t. entailment is a set C̄1 that contains all the constraints greater
than

⊗
C1. This set is univocally representable by the constraint

function
⊗

C1.

The definition of the entailment operator ` on top of the higher-order
semiring SC = 〈C,⊕,⊗, 0̄, 1̄〉 and of the v relation leads to the notion
of soft constraint system. It is also important to notice that in (Sar93)
it is claimed that a constraint system is a complete algebraic lattice.
Here we do not ask for the algebricity, since the algebraic nature of
the structure C strictly depends on the properties of the semiring.

Notice that the aim is not to compute the closure of the entailment
relation, but only to use the entailment relation to establish if a
constraint is entailed by the current store, and this can be established
even if the lattice is not algebraic.

If the constraint system is defined on top of a non-idempotent mul-
tiplicative operator, we cannot obtain a ` relation satisfying all the
properties of an entailment. Nevertheless, it is possible to give a
denotational semantics to the constraint store, as described in Ch. 2.5,
using the operations of the higher-order semiring.

To treat the hiding operator of the language, a general notion of
existential quantifier has to be introduced by using notions similar
to those used in cylindric algebras. Note however that cylindric
algebras are first of all boolean algebras. This could be possible in
our framework only when the × operator is idempotent.

Definition 16 (Hiding) Consider a set of variables V with domain D
and the corresponding soft constraint system C. For each x ∈ V its hiding
function is defined as (∃xc)η =

∑
di∈D cη[x := di].

To make the hiding operator computationally tractable, we require
that the number of domain elements in D having semiring value
different from 0 is finite. In this way, to compute the sum needed for
(∃xc)η in the above definition, we can consider just a finite number
of elements (those different from 0) since 0 is the unit element of the
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sum. The same result can also be achieved by imposing some other
restriction on the constraints.

Proposition 3 Consider a semiring S = 〈A,+,×, 0, 1〉, a domain of the
variables D, an ordered set of variables V, the corresponding structure C
and the class of hiding functions ∃x : C → C as defined in Def. 16. Then,
for any constraint c and any variable x ⊆ V, c ⇓V−x= ∃xc.

To prove this, it is enough to apply the definition of ⇓V−x and ∃x and
check that both are equal to

∑
di∈D cη[x := di].

Notice that by the previous theorem x does not belong to the support
of ∃xc. The so definedhiding function satisfies the properties of
cylindric algebras.

Theorem 2.5.3 Consider a semiring S = 〈A,+,×, 0, 1〉, a domain of the
variables D, an ordered set of variables V, the corresponding structure C
and the class of hiding functions ∃x : C → C as defined in Def. 16. Then
C is a cylindric algebra satisfying:

1. c ` ∃xc

2. c1 ` c2 implies ∃xc1 ` ∃xc2

3. ∃x(c1 ⊗ ∃xc2) ≈ ∃xc1 ⊗ ∃xc2,

4. ∃x∃yc ≈ ∃y∃xc

to prove the theorem, let us consider all the items:

1. It follows from the intensivity of +;

2. It follows from the monotonicity of +;

3. ∃x(c1 ⊗ ∃xc2) =
(c1 ⊗ ∃xc2) ⇓V−x=

(c1 ⊗ c2 ⇓V−x) ⇓V−x (since con(c2 ⇓V−x) = V− x, and V− x∩ x = ∅,
from Theorem 19 of (BMR97b) this is equivalent to)
c1 ⇓V−x ⊗c2 ⇓V−x=

∃xc1 ⊗ ∃xc2;

4. It follows from commutativity and associativity of +.
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To model parameter passing, diagonal elements must be defined.

Definition 17 (Diagonal elements) Consider an ordered set of vari-
ables V and the corresponding soft constraint system C. Let us define
for each x, y ∈ V a constraint dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b
and dxyη[x := a, y := b] = 0 if a , b. Notice that supp(dxy) = {x, y}.

It can be proved that the constraints just defined are diagonal ele-
ments (BMR06).

Theorem 2.5.4 Consider a semiring S = 〈A,+,×, 0, 1〉, a domain of the
variables D, an ordered set of variables V, and the corresponding structure
C. The constraints dxy defined in Def. 17 represent diagonal elements, that
is

1. dxx = 1,
2. if z , x, y then dxy = ∃z(dxz ⊗ dzy),
3. if x , y then dxy ⊗ ∃x(c ⊗ dxy) ` c.

1. It follows from the definition of the 1 constant and of the diag-
onal constraint;

2. The constraint dxz ⊗ dzy is equal to 1 when x = y = z, and is
equal to 0 in all the other cases. If we project this constraint
over z, we obtain the constraint ∃z(dxz ⊗ dzy) that is equal to 1
only when x = y;

3. The constraint (c ⊗ dxy)η has value 0 whenever η(x) , η(y)
and cη elsewhere. Now, (∃x(c ⊗ dxy))η is by definition equal
to cη[x := y]. Thus (dxy ⊗ ∃x(c ⊗ dxy))η is equal to cη when
η(x) = η(y) and 0 elsewhere. So, since for any c, 0 ` c and c ` c,
we easily have the claim of the theorem (BMR06).

2.5.2 Soft Concurrent Constraint Programming: The
Language

Given a soft constraint system 〈S,D,V〉, the corresponding structure
C, and any constraint φ ∈ C, the syntax of agents in soft concurrent
constraint programming is given in Tab. 3.
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P :: = F.A
F :: = p(X) :: A | F.F
A :: = success | f ail | tell(c)→φ A | tell(c)→a A | E | A‖A | ∃X.A | p(X)
E :: = ask(c)→φ A | ask(c)→a A | E + E

Table 3: scc syntax

The main difference with respect to the original CCP syntax is the
presence of a semiring element a and of a constraint φ to be checked
whenever an ask or tell operation is performed. More precisely, the
level a (resp., φ) will be used as a cut level to prune computations
that are not good enough.

n (BMR06; BMR02a) is given a structured operational semantics for
scc programs, in the SOS style, which consists of defining the seman-
tics of the programming language by specifying a set of configura-
tions Γ, which define the states during execution, a relation→⊆ Γ×Γ
which describes the transition relation between the configurations,
and a set T of terminal configurations. To give an operational se-
mantics to our language, In (BMR06) is described an appropriate
transition system.

Definition 18 (Transition system) A transition system is described by
the triple 〈Γ,T,→〉 where Γ is a set of possible configurations, T ⊆ Γ is the
set of terminal configurations and→⊆ Γ × Γ is a binary relation between
configurations.

The set of configurations represent the evolutions of the agents and
the modifications in the constraint store. The transition system of
SCCP can be defined as follows:

Definition 19 (Configurations) The set of configurations for a SCCP
system is the set Γ = {〈A, σ〉}}, where σ ∈ C. The set of terminal config-
urations is the set T = {〈success, σ〉} and the transition rule for the scc
language are defined in Tab. 4.
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(σ ⊗ c) ⇓∅≮ a

〈tell(c)→a A, σ〉 −→ 〈A, σ ⊗ c〉
(Valued-tell)

σ ⊗ c a φ

〈tell(c)→φ A, σ〉 −→ 〈A, σ ⊗ c〉
(Tell)

σ ` c, σ ⇓∅≮ a

〈ask(c)→a A, σ〉 −→ 〈A, σ〉
(Valued-ask)

σ ` c, σ a φ

〈ask(c)→φ A, σ〉 −→ 〈A, σ〉
(Ask)

〈A1, σ〉 −→ 〈A′1, σ
′
〉

〈A1‖A2, σ〉 −→ 〈A′1‖A2, σ′〉
〈A2‖A1, σ〉 −→ 〈A2‖A′1, σ

′
〉

〈A1, σ〉 −→ 〈success, σ′〉

〈A1‖A2, σ〉 −→ 〈A2, σ′〉
〈A2‖A1, σ〉 −→ 〈A2, σ′〉

(Parallelism)

〈E1, σ〉 −→ 〈A1, σ′〉

〈E1 + E2, σ〉 −→ 〈A1, σ′〉
〈E2 + E1, σ〉 −→ 〈A1, σ′〉

(Nondeterminism)

〈A[y/x], σ〉 −→ 〈A′, σ′〉

〈∃xA, σ〉 −→ 〈A′, σ′〉
with y fresh (Hidden variables)

〈p(y), σ〉 −→ 〈A[y/x], σ〉when p(x) :: A (Procedure call)

Table 4: Transition rules for SCCP.
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Here is a brief description of the transition rules:

Valued-tell: The valued-tell rule checks for the α-consistency of the
SCSP defined by the store σ ⊗ c. The rule can be applied only
if the store σ ⊗ c is b-consistent with b ≮ a4. In this case the
agent evolves to the new agent A over the store σ ⊗ c. Note
that different choices of the cut level a could possibly lead to
different computations.

Tell: The tell action is a finer check of the store. In this case, a
pointwise comparison between the store σ⊗c and the constraint
φ is performed. The idea is to perform an overall check of
the store and to continue the computation only if there is the
possibility to compute a solution not worse than φ. Notice that
this notion of tell could be also applied to the classical CCP
framework. In this case the tell operation would succeed when
the set of tuples satisfying constraint φ is a subset of the set of
tuples allowed by σ ∩ c.5

Valued-ask: The semantics of the valued-ask is extended in a way
similar to what has been done for the valued-tell action. This
means that, to apply the rule, we need to check if the store
σ entails the constraint c and also if the store is “consistent
enough” w.r.t. the threshold a set by the programmer.

Ask: Similar to the tell rule, here a finer (pointwise) threshold φ is
compared to the store σ. Notice that we need to check σ a φ
because previous tells could have a different threshold φ′ and
could not guarantee the consistency of the resulting store.

Nondeterminism and parallelism: The composition operators+and
‖ are not modified w.r.t. the classical ones: a parallel agent
will succeed if all the agents succeeds; a nondeterministic rule
chooses any agent whose guard succeeds.

4Notice that b ≮ a is used instead of b ≥ a because we can possibly deal with partial
orders. The same happens also in other transition rules with a instead of w.

5notice that the ⊗ operator in the crisp case reduces to set intersection.
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Hidden variables: The semantics of the existential quantifier is sim-
ilar to that described in (Sar93) by using the notion of freshness
of the new variable added to the store.

Procedure calls: The semantics of the procedure call is not modi-
fied with respect to the classical one: the notion of diagonal
constraints (as defined in (BMR06)) is used to model parameter
passing.

For a more complete explanation of SCCP, please look in (BMR06;
BMR02a).

2.5.3 Successful Computations and Failures

Given the transition system defined in Ch. 2.5.2, now it is possible to define
what we want to observe of the program behaviour, as described by the
transitions. To do this, for each agent A the following set of constraints
can be defined:

SA = {σ ⇓var(A)| 〈A, 1̄〉 →∗ 〈success, σ〉}

It collects the results of the successful computations that the agent can
perform. Notice that the computed store σ is projected over the variables
of the agent A to discard any fresh variable introduced in the store by the
∃ operator.

The transition system defined before considers only successful compu-
tations. If this could be a reasonable choice in a don’t know interpretation
of the language it will lead to an insufficient analysis of the behaviour in a
pessimistic interpretation of the indeterminism. To capture agents’ failure,
in (BMR06) the authors added the transition rules of Tab. 5 to those of
Tab. 4.

(Valued)tell1/ask1 The failing rule for ask and tell simply checks if the
added/checked constraint c is inconsistent with the store σ and in
this case stops the computation and gives fail as a result. Note
that since we use soft constraints, we enriched this operator with a
threshold (a orφ). This is used also to compute failure. If the level of
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σ ⊗ c @ φ

〈tell(c)→φ A, σ〉 −→ f ail
(Tell1)

(σ ⊗ c) ⇓∅< a

〈tell(c)→a A, σ〉 −→ f ail
(Valued-tell1)

σ @ φ

〈ask(c)→φ A, σ〉 −→ f ail
(Ask1)

σ ⇓∅< a

〈ask(c)→a A, σ〉 −→ f ail
(Valued-ask1)

〈E1, σ〉 −→ f ail

〈E1 + E2, σ〉 −→ 〈E2, σ〉
〈E2 + E1, σ〉 −→ 〈E2, σ〉

(Nondeterminism1)

〈A1, σ〉 −→ f ail

〈A1‖A2, σ〉 −→ f ail
〈A2‖A1, σ〉 −→ f ail

(Parallelism1)

Table 5: Failure in the scc language

consistency of the resulting store is lower than the threshold level,
then this is considered a failure.

Nondeterminism1 The computation fails only when all the branches fail.

Parallelism1 In this case the computation fails as soon as one of the
branches ails.

The observables of each agent can now be enlarged by using the func-
tion

FA = { f ail | 〈A, 1̄V〉 →
∗ f ail}

that computes a failure if at least a computation of agent A fails.
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2.6 Conclusions

The formal framework presented in this chapter was introduced in 1995
for the first time; the authors were Stefano Bistarelli, Ugo Montanari and
Francesca Rossi. In this Chapter we have briefly described only three
of the most important results developed in this area, together with the
background on c-semirings: SCSCP, SCLP and SCCP. Many other results
have been however presented in other directions (Bis04; SB08), such as
arc consistency, abstraction and propagation, interchangeability in SCSPs,
symmetry breaking, but also application (Bis04; SB08) to the security
field, as the analysis of protocol or cascade attacks, Datamining or even
the application to QoS, as proposed by this thesis.

The strong advantages of this framework consist in its generality and
flexibility, which strongly depends on the properties of c-semirings. Par-
ticular instances (e.g. Fuzzy, Probabilistic or Weighted) of this algebraic
structure can be replaced inside the framework without changing its prin-
ciples and behavior. For this reason, the future real challenge is to propose
general solving algorithms that perform well at the same time, while from
the modeling point of view, this framework further enhance the classical
expressivity of constraint programming.
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Chapter 3

C-semiring Frameworks for
Minimum Spanning Tree
Problems

3.1 Introduction

Classical Minimum Spanning Tree (MST) problems (CLR90; GH85) in a
weighted directed graph arise in various contexts. One of the most im-
mediate examples is related to the multicast communication scheme in
networks with Quality of Service (QoS) requirements (WH00). For exam-
ple, we could need to optimize the bandwidth, the delay or a generic cost
(for device/link management or to obtain the customer’s bill) of the distri-
bution towards several final receivers. Therefore, the aim is to minimize
the cost of the tree in order to satisfy the needs of several clients at the
same time. Other possible applications may concern other networks in
general, as social, electrical/power, pipeline or telecommunication (in a
broad sense) ones.

In our study we would like to define a general algebraic framework for
the MST problem based on the structure of c-semirings (Bis04; BMR97c),
that is, a constraint-based semiring. We want to give algorithms that work
with any semiring covered by our framework, where different semirings
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are used to model different QoS metrics. Classical MST problems can
be generalized to other weight sets, and to other operations. A general
algebraic framework for computing these problems has not been already
studied, even if a similar work has been already proposed for shortest
path problems (Moh02).

More precisely, the algebraic structure that provides the appropriate
framework for these problems is a semiring S = 〈A,+,×, 0, 1〉. This five-
tuple represents the set of preferences/costs (i.e. A), the operation to
compose and choose them (i.e. respectively × and +) and the best (i.e.
1) and worst (i.e. 0) preferences in A. Semirings consist in flexible and
parametric algebraic structure that can be simply instantiated to represent
different costs, or QoS metrics (e.g. bandwidth) as we mainly suppose in
this chapter.

Our goal is to provide a general algebraic framework similar to the
one created in (Moh02) for shortest-path algorithms, a work from which
we have sensibly taken inspiration for this work. Clearly, our intent is to
reach analogous results, but, in this case, for tree structures instead that
for plain paths.

The absence of a unifying framework for single-source shortest paths
problems was already solved in (Moh02), where the author defines general
algebraic frameworks for shortest-distance problems based on the struc-
ture of semirings. According to these semiring properties, the author
gives also a generic algorithm for finding single-source shortest distances
in a weighted directed graph. Moreover, the work in (Moh02) shows some
specific instances of this generic algorithm by examining different semir-
ings; the goal is to illustrate their use and compare them with existing
methods and algorithms. Notice that, while in (Moh02) the author uses
also semirings with a non-idempotent +, we would like to focus mainly
on c-semirings instead (i.e. even with an idempotent +). To further clarify
our intents, we would like to say that the ideas in this chapter are devel-
oped to show the expressivity of semirings, and not to enrich the field of
graph theory.

The multi-criteria MST problem has seldom received attention in net-
work optimization. The solution of this problem is a set of Pareto-
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optimal trees, but their computation is difficult since the problem is NP-
hard (ZG99). One solution, based on a genetic algorithm, has been given
in (ZG99); however, even this solution is not feasible, since a successive
work (KC02) proved that it is not guaranteed that each tree returned by
the algorithm in (ZG99) is Pareto optimal. Our goal is to describe this
problem from an algebraic point of view.

Chapter 3.2 highlights the motivations of this work, while Ch. 3.3
presents the first two well-known algorithms solving the MST problem
(Kruskal and Prim) and extends them with semirings. In Ch. 3.4 these al-
gorithms are extended in order to deal with partially-ordered costs instead
of totally-ordered ones; also some examples and correctness/complexity
considerations are provided. At last, Ch. 3.5 provides the final conclu-
sions and ideas for future work. The chapter reports the ideas presented
in (BS08a; BS08b).

3.2 Motivations and Objectives

“Multicast” consists in the delivery of information to a group of destina-
tion nodes simultaneously using the most efficient strategy to deliver the
messages over each link of the network only once, creating copies only
when the paths to the destinations split. An efficient distribution may con-
cern different QoS metrics. Traditionally, QoS metrics can be organized
into three distinct classes, depending on how they are combined along a
path/tree: they can be i) additive, ii) multiplicative or iii) concave (WC96), as
presented in Ch. 1.2.4. Respectively, the metric values are added, multi-
plied or chosen as the the maximum or the minimum of the metric costs
over all the links in the path/tree.

The semiring algebraic structure (see Ch. 2.2) proves to be an appro-
priate and very expressive cost model to represent QoS metrics. In the
following lists we present some possible semiring instantiation and some
of the possible costs they can represent:

• Weighted semirings 〈R+,min, +̂,∞, 0〉 (+̂ is the arithmetic sum). This
semiring can represent the additive metrics presented above. This
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instantiation can be used to find the best MST by optimizing, for
instance, the cost of the tree in terms of money, e.g. for link mainte-
nance or billing criteria in order to charge the final user. It could be
used also to minimize the number of used links.

• Fuzzy semirings 〈[0, 1],max,min, 0, 1〉. It can be used to represent
fuzzy preferences on links, e.g. low, medium or high traffic. More-
over, after normalizing the link bandwidth in the interval [0, 1], the
max−min operators can be used to maximize the bottleneck of the
spanning tree. This semiring can be used to represent the concave
metrics shown above.

• Probabilistic semirings 〈[0, 1],max, ×̂, 0, 1〉 (×̂ is the arithmetic multi-
plication). Multiplicative metrics can be modeled with this semiring.
As an example, the probabilistic semiring can optimize (i.e. maxi-
mize) the probability of successful delivery of packets on the whole
tree (due to errors).

• Set-Based semirings 〈P(A),∪,∩, ∅,A〉. Properties and features of the
links can be represented with this semiring in order, for example, to
represent related security rights or time slots.

• Classical semirings 〈{0, 1},∨,∧, 0, 1〉. The classical semiring can be
adopted to cast crisp constraints in the semiring-based framework
defined in (Bis04; BMR97c). Even this semiring can be used with
networks, for instance when the reachability of receivers has to be
tested.

The weight of a tree from a node p to a set of destination nodes D,
is obtained by “multiplying” the edge weights along that tree by using
the × semiring operator (see Ch. 2.2), and the cost of the min-weight tree
is the “sum” of the weights of all such trees, obtained by using the +
semiring operator. By varying the set A and the semantics of the + and
× operations, we can represent many different kinds of problems, having
features like fuzziness, probability, and optimization (Bis04). Since the
Cartesian product of two semirings is a semiring (Bis04), and this can be
fruitfully used to describe multi-criteria optimization problems.
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3.3 Algorithms for MST and Totally Ordered Semir-
ings

As a reminder, a MST can be defined as in Def. 20.

Definition 20 Given an undirected graph G ≡ (V,E), where each edge (u, v) ∈ E
has a weight w(u, v), the tree T ⊆ E that connects all the vertices V and minimizes
the sum w(t) =

∑
(u,c)∈T

w(u, v) is defined as the MST of G.

A first sketch of a possible algorithm for a MST problem over a graph
G(V,E) is given in Alg. 1. It is obtained by modifying the classical Kruskal
algorithm (CLR90) in order to use c-semiring values and operators which
are taken as input, i.e. 〈A,+,×, 0, 1〉. The algorithm (as Alg. 2) work only
with totally ordered edge costs.

In Alg. 1, b corresponds to the best edge in the current iteration of
the repeat command (line 2) and it is found (in line 3) by applying the ⊕
operator over all the remaining edges in the set P (i.e. the set of possible
edges), instantiated to E at the beginning (line 1); ⊕ : E→ P(E) is a new
operator that finds the edge b with the best cost in E, according to the
ordering defined by the + operator of the semiring. Then the (partial)
solution tree is updated with the ⊗ : P(E)×P(E)→ P(E) operator, which
adds the new edge and updates the cost of the tree according to the ×
operator of the semiring (line 5). At last, b is removed from P (line 7).

Algorithm 1 Kruskal with semiring structures
INPUT: G(V,E), 〈A,+,×, 0, 1〉

1: T = ∅,P = E
2: repeat
3: let b ∈ ⊕(P) \\ Best edge in P
4: if (endpoints of b are disconnected in T) then
5: T = T⊗{b} \\ Add the best edge to the solution
6: end if
7: P = P \ {b}
8: until P == ∅

OUTPUT: T ≡MST over G
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Theorem 3.3.1 To find a Minimum Spanning Tree T, the complexity of the
algorithm is O(|E| ln|E|) as in the original procedure (CLR90).

The proof follows the ideas in (CLR90). Having sorted the edges in
O(|E| ln|E|), the ⊕ operator runs in constant time. Consider that here the
sorting procedure takes also the + of the chosen semiring as a parameter,
in order to select the best values according to the partial ordering defined
by ≤S (see Ch. 2.2). By using disjoint-set data structures (CLR90), we can
check in O(ln|E|) time that each of the O(|E|) edge insertions in T does not
create a cycle (CLR90). This last step is identical to the last check in the
classical Kruskal algorithm, and it is used only to keep the structure of a
tree.

We can show also that the other best-known algorithm for solving the
MST problem can be generalized with semiring structures (see Alg. 2).
Step by step, the modified Prim’s algorithm (CLR90) adds an edge to the
(partial solution) tree T, instead of joining a forest of trees in a single con-
nected tree, as in Kruskal’s algorithm. However, even Prim’s procedure
proceeds in a greedy way by choosing the best-cost edge (i.e. (vi,u j) in
line 4) in order to add it to the solution (line 5) through the ⊗ operator.
The operator ⊕ is the same as the one defined for Alg. 1, even if in this
case it is applied only to those edges for which one of the endpoints has
not been already visited. This set of nodes, i.e. R, is initialized in line 1
with an arbitrary node, and updated at each step (line 5). The algorithm
ends when all the nodes of the graph have been visited, that is R == V.

Notice also that both Alg. 1 and Alg. 2 properly work only if the set of
costs is totally ordered, while they need to be modified for a multicriteria
optimization, since the costs of the edges can be partially ordered. In this
case, the semiring operators have to deal with multisets of solutions that
are Pareto-optimal: in Ch. 3.4 we modify the ⊕ operator in order to select
and manage a set of edges (and not only a singleton) with incomparable
costs within the same step.
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Algorithm 2 Prim with semiring structures
INPUT: G(V,E), 〈A,+,×, 0, 1〉

1: T = ∅, R = {vk}, vk is arbitrary
2: repeat
3: let P = {(vk,uz) ∈ E | (vk ∈ R) ∧ (uz < R)}
4: let (vi,u j) ∈ ⊕(P)
5: T = T⊗{(vi,u j)}
6: R = R ∪ u j
7: until R == V

OUTPUT: T ≡MST over G

3.4 Partially Ordered Extensions

As said in Ch. 3.3, Alg. 1 and Alg. 2 are not able to compute a solution for
the MST in case the costs of the edges are partially ordered. The reason is
that, since we have a partial order over the chosen semiring S, two costs
c1 and c2 may possibly be incomparable (i.e. c1 <> c2). According to this
view, the ⊕ operators presented in Alg. 1 and Alg. 2 must be extended
in order to choose a set of edges within the same step, instead of only a
single arc.

In the next paragraph we present the Kruskal algorithm extended to
manage partially ordered costs for the edges. Further on, we provide
the proof of correctness/soundness and the complexity analysis of its op-
erations (in the second paragraph of this section). Then, in the third
paragraph we show an alternative algorithm that incrementally deletes
the worst edges from the graph until it reaches the MST; the original
version is called Reverse-delete algorithm (KT05).

Kruskal extended with partial order. For a partially ordered set of costs
we can use Alg. 3. The most notable difference w.r.t. the totally ordered
version of the algorithm (see Alg. 1) is the definition of the ⊕ operator
(used in line 3 of Alg. 3):

Definition 21 The ⊕ : P(E) → P(E) operator takes a set W of edges and
returns a set W\U = X, such that ∀u ∈ U, x ∈ X.cost(u) <S cost(x), where >S
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Figure 7: In a) a set of partially ordered costs are represented, and in b) how
they are partitioned according to the ⊕ operator in Alg. 3.

(see Ch. 2.2) depends on the chosen semiring S and the cost function returns the
cost of an edge.

In words, the ⊕ operator chooses all the best edges (according to <S)
whose costs are incomparable with at least one other cost. To show an
example, we consider the Cartesian product of two weighted semirings, i.e.
S = 〈〈R+,R+〉, 〈min,min〉, 〈+̂, +̂〉, 〈∞,∞〉, 〈0, 0〉〉: given the set W of edges
whose costs are {〈3, 3〉, 〈2, 6〉, 〈6, 2〉, 〈5, 5〉, 〈6, 7〉, 〈7, 6〉}⊕(W) = X whose
costs are instead {〈3, 3〉, 〈2, 6〉, 〈6, 2〉, 〈5, 5〉}. The partially ordered costs of
the edges in W are graphically represented also in the plane of Fig. 7a.
Notice that the set X contains also edges whose costs totally dominate
the other costs of edges in the same set X: e.g. 〈3, 3〉 >S 〈5, 5〉. However,
〈5, 5〉 is still selected by ⊕ to be in X since it cannot be compared with
〈6, 2〉 (and also 〈2, 6〉): only 〈6, 7〉 and 〈7, 6〉 are not chosen, since they are
totally dominated by the other costs (they will be chosen by the algorithm
in the second step, as shown in Fig. 7b). In other words, the set X is
obtained from the Pareto optimal frontier, by adding all the edges with
incomparable costs.

The set X = ⊕(W) is then examined in line 4 − 7 of Alg. 3, in order to
find all its maximal cardinality and best cost subsets of edges (i.e. the R
in line 7) that can be added to the solution without introducing cycles. In
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Algorithm 3 Kruskal extended for partial ordering
INPUT: G(V,E), 〈A,+,×, 0, 1〉, A partially ordered

1: let T =
⋃

i
Ti where T0 = {∅},W = E

2: repeat
3: X = ⊕(W)
4: for all Ti ∈ T do
5: Xset = {X′|X′ ⊆ X,Ti ⊗X′ has not cycles} \\ No cycles
6: Rset = {X∗|X∗ ∈ Xset,∀X′ ∈ Xset, |X∗| >= |X′|} \\Max Card.
7: R = {R′|R′ ∈ Rset,∀R′′ ∈ Rset s.t. Ti⊗R′′ ≯S Ti⊗R′} \\ Best Cost
8: for all Ri ∈ R do
9: T′i = Ti⊗Ri \\ Updating each current partial solution Ti ∈ T

10: end for
11: end for
12: W =W\X
13: until W == ∅
OUTPUT: T ≡ the set of all MSTs over G

line 5, Xset collects all the sets of edges in X that do not form a cycle with
a partial solution Ti: in this way we enforce the connectivity condition
of a tree. Each Ti ∈ T represents a partial solution, and T collects them
all; T′i represents instead an updated Ti (see line 9). Among all these sets
in X, in line 6 we select those subsets with the maximal cardinality, i.e.
Rset. The reason is that (Lemma 3.4.1), in order to minimize the cost of
the spanning tree, it is better to connect its components by using as many
low cost edges (in X) as possible, having introduced the ⊕ operator (see
Def. 21).

Therefore, in line 7 we only take the R′ subsets in Rset that, composed
with the partial solutions Ti (i.e. Ti ⊗R′), are not completely dominated
by another R′′ ∈ Rset. In this way, the algorithm discards the completely
dominated partial solutions since they can lead only to a completely dom-
inated final solution (thus, not a MST), as explained in Lemma 3.4.1.

In lines 8− 10, each Ri ∈ R is added to the related partial solution Ti, in
order to remember all the possible partial solutions that can be obtained
within the same step, i.e. the set of all the T′i : they consist in all the best
(i.e. dominating) partial trees and need to be stored since they can lead to
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different MST with an incomparable cost.

At last, the set X of examined edges is removed from W (line 12). This
procedure is repeated until all the edges in W have been examined (at the
beginning, W = E, i.e. the set of edges in the graph). Considering the
costs in Fig. 7a, in Fig. 7b it is possible to see the W sets of edges that will
be selected at the first and second step of Alg. 3. At the last step, T collects
all the MSTs (i.e. Ti) that can be obtained over the graph G. A full example
of the algorithm execution is given is Ch. 3.4.1.

To give a particular example of a single iteration, we suppose that at
the first step the algorithm has added the edges (nk,nz) and (nu,nv) to the
solution T, as shown in Fig. 8; thus, the cost of the partial solution is 〈2, 3〉.
We still consider the Cartesian product of two weighted semirings. Then,
at the second step ⊕(W) = {(n j,nk), (ni,nv), (ni,nu), (n j,nz)} (represented
with dashed lines in Fig. 8), whose costs respectively are 〈3, 4〉, 〈4, 3〉,
〈1, 10〉 and 〈10, 1〉. Following line 5 of Alg. 3, at this step we can add either
(n j,nk) or (n j,nz) to the first component and either (ni,nu) or (ni,nv) to the
second one; otherwise, we would introduce a cycle in the solution. Notice
that all these edges are selected within the same step, since their costs are
partially ordered (see Def. 21).

Therefore, according to lines 5 and 6, Rset = {R1 = {(n j,nz), (ni,nv)},R2 =

{(n j,nz), (ni,nu)},R3 = {(n j,nk), (ni,nv)},R4 = {(n j,nk), (ni,nu)}}. The costs of
these four sets of edges are respectively 〈14, 4〉, 〈11, 11〉, 〈7, 7〉 and 〈4, 14〉.
The operation in line 7 of Alg. 3 discards R2 (whose cost is 〈11, 11〉),
since T⊗R2 <S T⊗R3: 〈13, 14〉 <S 〈9, 10〉. Therefore, we have that
R = {{(n j,nz), (ni,nv)} ,
{(n j,nk), (ni,nv)}, {(n j,nk), (ni,nu)}} (R is obtained at line 7). Then the par-
tial solution T (after the first step T = {{(nk,nz), (nu,nv)}}) becomes T =
{T⊗R1 = {(nk,nz), (nu,nv), (n j,nz), (ni,nv)}, T⊗R3 = {(nk,nz), (nu,nv) ,
(n j,nk), (ni,nv)},T⊗R4 = {(nk,nz), (nu,nv), (n j,nk), (ni,nu)}}.

One of the main features of using semirings is that different algorithms
become the same one when they are parameterized with an “abstract”
semiring. However, it can be noticed that Alg. 3 strongly differs from
Alg. 1 (i.e. from partially to totally ordered costs), and the reason is
that the sets of partially ordered edges needs to be added to the partial
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Figure 8: The graphical intuition of the mincost operation in Alg. 3.

solutions while maintaining some properties of MSTs, as max cardinality
(and consequently the best cost of the partial tree) within the same set of
edges and the absence of cycles.

Reverse-delete. In the original Reverse-delete algorithm (KT05), if the
graph is disconnected, this algorithm will find a MST for each connected
component of the graph. The set of these minimum spanning trees is
called a minimum spanning forest, which consists of every vertex in the
graph. The Reverse-Delete algorithm starts with the original graph and
deletes the worst edges from it, instead of adding solution edges to the
empty set, step by step as in Kruskal’s algorithm. If the graph is connected,
the algorithm is able to find the MST.

Considering Alg. 4, the 	 : P(E)→ P(E) operator in line 3 selects the
set X of the worst completely dominated edges in W, which is the set of
edges that still need to be checked; at the beginning W = E, and the only
one partial solution consists in all the edges in the graph, i.e. T = {E}.
Formally, 	(W) = {e ∈ W : @e′ ∈ W, cost(e) ≤S cost(e′)}, where S is the
chosen semiring and the cost function return the weight of an edge. Each
Ti ∈ T represents a partial solution, and T collects them all; T′i represents
instead an updated Ti (see line 9).

Then, like Alg. 3, in lines 5 − 6 the algorithm finds Rset, i.e. the
set of maximal cardinality subsets of X whose removal still keeps the
graph connected. Among all these subsets, in line 7 we select R, which
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is the set of subsets of Rset with the worst possible (incomparable) costs
according to the semiring partial order (i.e. <S): to do so we use the
	÷ : P(E) × P(E) → P(E) operator, which removes the second set of
edges from the first one and then updates the cost of the partial solution
according to the ÷ operator presented in Ch. 2.2 (i.e. the weak inverse
operator of ×). We can consider 	÷ as the inverse operator of ⊗ in Alg. 3.
All the edge sets in Rset can be removed from the partial solutions Ti (lines
8 − 10) by still using the 	÷ operator.

At last, the procedure updates W by removing the set X of checked
edges (line 12). These steps are repeated until all the edges in E have been
examined.

Algorithm 4 Rev.-del. Kruskal extended for partial ordering

INPUT: G(V,E), 〈A,+,×, 0, 1〉, A partially ordered
1: let T =

⋃
i

Ti where T0 = {E},W = E

2: repeat
3: X = 	(W)
4: for all Ti ∈ T do
5: Xset = {X′|X′ ⊆ X,Ti 	÷X′ is connected} \\ Connect.
6: Rset = {X∗|X∗ ∈ Xset,∀X′ ∈ Xset, |X∗| >= |X′|} \\Max Card.
7: R = {R′|R′ ∈ Rset,∀R′′ ∈ Rset s.t. Ti 	÷R′′ ≯S Ti 	÷R′}\\WorstCost
8: for all Ri ∈ R do
9: T′i = Ti 	÷Ri

10: end for
11: end for
12: W =W \ S
13: until W == ∅
OUTPUT: T ≡ the set of all MST over G

3.4.1 Examples

In this section we provide an example to better explain how Alg. 3 and
Alg. 4 work in a proper way.

74



Example on Alg. 3. Concerning Alg. 3 and a non-idempotent semiring,
as a reference we consider the graph G(V,E) represented in Fig. 9a, where
the edges in E are labeled with partially ordered costs taken from the
semiring S = 〈〈R+, [0, 1]〉, 〈+̂, ×̂〉, 〈min,max〉, 〈∞, 0〉, 〈0, 1〉〉. This semiring
is obtained through the Cartesian product of the weighted and probabilistic
semirings, and its vectorized × operator is non-idempotent since at least
one of the original × operators is non-idempotent (in this case, both the
operators are non-idempotent). Therefore, the costs are expressed in
terms of couples of values, i.e. 〈c, p〉, and the cost of a tree is obtained
by arithmetically summing all the money costs and multiplying all the
probability costs of the chosen edges. At the end of the computation,
Alg. 3 finds the two best MSTs (i.e. T1 and T2) by minimizing c and
maximizing p for the entire obtained tree, which are represented in Fig. 9b
and Fig. 9c. The first MST has a cost of 〈28, 0.6〉, while the second one,
〈29, 0.61〉: they are not comparable costs and thus they represent two
distinct optimal solutions.

Figure 10 reports the steps of the algorithm with the related X, XSet
and R sets, as obtained from Alg. 3. At step 1 in Fig. 10, the two edges
X = {(n4,n5), (n6,n7)} are selected since their costs totally dominate all the
other costs (i.e. 〈2, 0.96〉 and 〈1, 0.95〉) and are partially ordered w.r.t. each
other, since the first shows a better (i.e. higher) probability and the second
a better (lower) cost. Therefore, since they do not form any cycle, they are
both added to the solution, i.e. R = {(n4,n5)}, {(n6,n7)}}.

Step 2 works in the same way for the edge (n3,n4). At step 3, Alg. 3
chooses X = {(n2,n3), (n3,n5)} with costs 〈5, 0.93〉 and 〈4, 0.92〉, but only
(n2,n3) is added to the solution (i.e. R = {{(n2,n3)}}), since (n3,n5) would
create the cycle n3 − n4 − n5; for this reason, the operation in line 5 (see
Alg. 3) discards it from Xset.

At step 4, the ⊕ operator selects X = {(n1,n2), (n1,n3)}: in this case,
these two edges cannot be added at the same time to the solution, since it
would create a cycle among n1 − n2 − n3. Therefore, from this bifurcation
step, the algorithm remembers and updates two distinct partial solutions
T1 and T2 (see Alg. 3 at line 9), one given by adding {(n1,n2)}, and one
given by adding {(n1,n3)} (i.e. R = {{(n1,n2)}, {(n1,n3)}}). While steps 5
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Figure 9: A graph labeled with partially ordered costs (in a), and the best
MST trees (in b) obtained by using the Cartesian product of a Weighted and
Probabilistic semiring.

and 7 cannot respectively add (n1,n5) and (n5,n6) or (n1,n7) since it would
create a cycle, at step 6 only (n2,n7) can be added because (n5,n6) would
form a cycle as well.

Example on Alg. 4. Clearly, the two MST solutions in Fig. 9b and Fig. 9c
can be obtained also with Alg. 4 as well. The steps of the algorithm are
shown in Fig. 11; as a reminder, notice that the sets R of edges are now
removed from the set E of graph edges, in order to find a (minimum
cost) tree structure: the considered semiring is still S = 〈〈R+, [0, 1]〉, 〈+̂,
×̂〉, 〈min,max〉, 〈∞, 0〉, 〈0, 1〉〉. In the first step, we can safely remove two
edges, i.e. R = {{(n5,n6), (n1,n7)}}, while at step 2, Alg. 4 can only remove
(n1,n5) (i.e. R = {{(n1,n5)}}), otherwise the resulting graph would be
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Step X XSet R
1 {(n4,n5), (n6,n7)} {{(n4,n5), (n6,n7)}, {{(n4,n5), (n6,n7)}}

{(n4,n5)}, {(n6,n7)}}
2 {(n3,n4)} {{(n3,n4)}} {{(n3,n4)}}
3 {(n2,n3), (n3,n5)} {{(n2,n3)}} {{(n2,n3)}}
4 {(n1,n2), (n1,n3)} {{(n1,n2), (n1,n3)}, {{(n1,n2)}, {(n1,n3)}}

{(n1,n2)}, {(n1,n3)}}
5 {(n1,n4)} ∅ ∅

6 {(n2,n7), (n1,n5)} {{(n2,n7)}} {{(n2,n7)}}
7 {(n5,n6), (n1,n7)} ∅ ∅

Figure 10: The steps of Alg. 3 applied on the graph in Fig. 9a.

Step X XSet R
1 {(n5,n6), (n1,n7)} {{(n5,n6), (n1,n7)}, {{(n5,n6), (n1,n7)}}

{(n5,n6)}, {(n5,n6)}
2 {(n2,n7), (n1,n5)} {{(n1,n5)} {{(n1,n5)}
3 {(n1,n4)} {{(n1,n4)}} {{(n1,n4)}}
4 {(n1,n2), (n1,n3)} {{(n1,n2), (n1,n3)}, {{(n1,n2)}, {(n1,n3)}}

{(n1,n2)}, {(n1,n3)}}
5 {(n2,n3), (n3,n5)} {{(n3,n5)}} {{(n3,n5)}}
6 {(n3,n4)} ∅ ∅

7 {(n4,n5), (n6,n7)} ∅ ∅

Figure 11: The steps of Alg. 4 applied on the graph in Fig. 9a.

disconnected. At step 3, we can remove R = {{(n1,n4)}}, while at step
4 we can remove only one edge between (n1,n2) and (n1,n3) or graph
would be disconnected: from this step we store two different (partially
ordered) solutions T1 = E	÷{(n5,n6), (n1,n7), (n1,n5), (n1,n4), (n1,n2)} and
T2 = E	÷{(n5,n6), (n1,n7), (n1,n5), (n1,n4), (n1,n3)}.

The two solutions in Fig. 9b and Fig. 9c are then obtained at step 5,
which removes R = {{(n3,n5)}} (removing (n2,n3) would disconnect the
tree). Then the remaining edges are checked (step 6 − 7) but not removed
due to the connectivity property.
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3.4.2 Correctness Considerations

We can show the correctness of Algorithm 3 step-by-step. The following
property comes from the definition at line 5 in Alg. 3:

Proposition 4 Let X′ ∈ Xset. Adding even one edge in X′\X to X would
produce a cycle in the partial solution Ti (for this reason, at each iteration it is
possible to discard X from the edges to check, i.e. W =W\X in Alg. 3).

Therefore, line 5 maintains a tree structure and avoids cycles. The cost
of the R′ subsets in Alg. 3 can be obtained by using the × operator of the
considered semiring, and the best subset is the result of applying the +
operator in order to choose the best cost according to the ordering defined
by +, i.e. ≤S in Ch. 2.2. Therefore, referring to lines 5 − 6 in Alg. 3, we can
prove that:

Lemma 3.4.1 By adding the maximal cardinality subsets of partially ordered
edges X∗ ∈ Rset that do not form any cycle (i.e. X′ ∈ Xset), at each step we
connect the maximum number of forests possible. Since all the R′ ∈ R are the
subsets with the best (incomparable) costs, each Ti ⊗Ri forest is connected with
the best possible cost according to the + operator of the semiring.

As a reminder, a forest is an acyclic undirected graph, while a set of
connected forests corresponds to a tree (CLR90). Lemma 3.4.1 extends the
safety property explained for MST (CLR90). At each step i we obtain a
new forest made of distinct components, which are tree-shaped. For each
of these components, the edge that connects them is light (CLR90), in the
sense that it has the best cost (according to +); therefore, all the added
edges are safe. In words, Alg. 3 extends the classical Kruskal algorithm
by connecting more than two components within the same step. This
connection shows the best possible cost, since it is characterized by the
maximal cardinality (the reason is highlighted in Prop. 5) and the best
cost, according to the partial order defined by +, among those sets of best
cardinality.

We can prove that by replacing an edge chosen with ⊕ at one step of
Alg. 3 with an edge that will be selected at a successive step, we obtain a
worse spanning tree (according to the + operator):
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Proposition 5 Connecting the two same components with an edge (whose cost
is ck) chosen with ⊕ at the step i + n (with n > 0) instead of an edge selected at
step i (with cost c j) results in a completely dominated cost for the final solution.

The proof comes from the fact that c j >S ck according to the definition
of ⊕ (see Def. 21), and the × operator, used to compose the costs, is
monotone. Prop. 5 explains why we need to consider only those X∗ ∈ Xset
with the maximal cardinality: otherwise we will need to connect that
same component with a completely dominated edge, found at a successive
iteration.

Notice that we could have several maximal cardinality subsets R′ ∈
Rset that can be added to the same partial solution Ti, thus obtaining
different partially ordered solutions T′i = Ti ⊗Ri (see line 9 of Alg. 3).
These solutions represent the best possible forests that can be obtained
at a given step (defined by the ⊕ operator). However, some of them
can be safely deleted at the successive steps if they become completely
dominated by even only one other partial solution Ti, as explained for
Fig. 8:

Lemma 3.4.2 Given two sets of edges R′,R′′ ∈ Rset such that Ti ⊗R′ >S
Ti ⊗R′′, then R′′ is not added to R (line 7 of Alg. 3), and the partial solution
Ti ⊗R′′ is consequently discarded from the possible ones.

The proof of this Lemma comes from the fact that, if a partial solution
Ti ⊗R′′ is completely dominated (Ti ⊗R′) at a given step, it will inevitably
create a completely dominated tree at the end of the algorithm (thus, not
a MST). The reason is that the × operator of the semiring is monotone, i.e.
if a ≥S b then a × c ≥S b × c.

Theorem 3.4.1 Following the steps of Algorithm 3 over a graph G = (V,E), we
find all the Minimum Spanning Trees Ti ∈ T even if the costs of the edges, taken
from a semiring 〈A,+,×, 0, 1〉, are partially ordered.

The proof of Theo. 3.4.1 derives from Lemma 3.4.1 and Lemma 3.4.2.
Since Lemma 3.4.1 satisfies the safety property at each step, if the graph
G = (V,E) is connected, at the end we find a tree spanning all the ver-
tices and satisfying the safety property. The final tree spans all the nodes
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because we suppose that our graph G is connected, and as stated in
Lemma 3.4.1, we connect the maximum number of forests possible with-
out adding any cycles. Similar considerations can be proved for Algo-
rithm 4.

Theorem 3.4.2 Following the steps of Algorithm 4 over a graph G = (V,E), we
find all the Minimum Spanning Trees Ti ∈ T even if the costs of the edges, taken
from a semiring 〈A,+,×, 0, 1〉, are partially ordered.

3.4.3 Complexity Considerations

The complexity of Alg. 3 obviously resides in the operations performed
at line 5 − 7, that is in finding the R best-cost subsets among all the
possible ones of maximal cardinality. The other operations in Alg. 3
merely delete or add subsets of edges. We suppose the set E of edges
as already ordered by according to the cost: we suppose this step can
be performed in O(|E| ln|E|) and choosing the best edges (with the ⊕
operator) can be consequently accomplished in a constant time. Notice
that the computational complexity for ordering a poset is a little more
complicated than ordering a totally ordered set in O(|E| ln|E|) (please refer
to (DKM+09) for a complete evaluation), however we will soon show that
the global complexity of the algorithm is not nested in the ordering of
edges, which can be however accomplished in (a low) polynomial time.

Concerning the space/time complexity, the algorithm is, in the worst
case, exponential in the number of the edges with partially ordered costs,
since with lines 8 − 10 we have to store all the possible non-comparable
(best) partial solutions, i.e. the number of Ti sets in T can be exponential.
This is the case when all the edges in the graph G = (V,E) show incom-
parable costs, and the number of MSTs can correspond to the number
of all the possible spanning trees over G: |V||V|−2 following to Cayley’s
formula (Sho95). After having ordered the edges according to their cost,
the ⊕ operator (see Def. 21) partitions them into k disjoint sets Pi, as
represented in Fig. 7; when k = 1 all the edges in G are not comparable
(i.e. an exponential number of MSTs in the worst case) and when k = |E|
all the edge costs are totally ordered and the complexity corresponds to

80



Alg. 1 (i.e. O(|E| ln|E|)), as for the original Kruskal procedure.
The complexity of Alg. 3 is then O(|E| ln|E| + k d|d|−2)), where k is the

number Pi of the disjoint edge sets and d is the maximum number of
nodes which have an incident edge in the Pi set, among all the Pi: for
instance if P1 stores the edges incident in 4 nodes, P2 in 3 nodes and P3

in 2, then d = 4. When d << |V|, i.e. there are few incomparable edges
in each Pi, the complexity is linear (i.e. O(|E| ln|E|)). Consider that it is
possible to estimate the complexity of the algorithm after having ordered
the edges (in O(|E| ln|E|)), since after that step we know the number k and
the respective size of the Pi sets (consequently, we know d). Therefore, we
can easily know how the algorithm will perform before executing it.

Notice also that, with an idempotent × operator (e.g. min), Alg. 3
returns only a subset of the possible MSTs. To find all of them we should
keep all the possible spanning trees (deleting line 7 from Alg. 3) until
the last iteration, since the cost of the whole tree is flattened on the (not
comparable) costs found in the last step. In this case, the number of
solutions could not be limited step-by-step. Identical complexity and
×-idempotency considerations can be provided for Alg. 4.

3.5 Conclusions

We have shown that c-semirings are expressive and generic structures that
can be used inside slightly modified versions of classical MST algorithms
(as Kruskal, Prim and Reverse-delete Kruskal), in order to find the best
spanning trees according to different QoS metrics with different features
(but still representable with a semiring). Classical algorithms have been
extended to deal with semiring structures and partially ordered costs;
moreover, an analysis of correctness and complexity has been provided
for the extension Kruskal’s algorithm for partially ordered costs. This
chapter extends other works focused only on semirings and shortest path
algorithms (Moh02).

In the future, one ambition could be to merge these frameworks with
constraints concerning the considered QoS metrics (e.g. delay ≤ 40), since
Soft Constraint Satisfaction Problems based on c-semirings have been already
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successfully applied to this field (BMR02b; BMRS07; BS08d).
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Chapter 4

Constraint-based Routing
with Soft Constraint Logic
Programming

4.1 Introduction

Towards the second half of the nineties, Internet Engineering Task Force
(IETF) and the research community have proposed many service models
and mechanisms (XN99; PR02) to meet the demand for network Quality
of Service (QoS). The reason is that traditional networks cannot recog-
nize a priority associated with data, because they handle network traffic
with the best effort principles. According to this treatment, the network
does not provide any guarantees that data is delivered or that a user is
assisted with a guaranteed QoS level or a certain priority (due to con-
gestions). In best effort networks, all users obtain exactly the same treat-
ment. However nowadays, networked applications, such as Enterprise
Resource Planning (ERP), data mining, distance learning, resource discov-
ery, e-commerce, and distribution of multimedia-content, stock quotes,
and news, are bandwidth hungry, need a certain “timeliness” (i.e. events
occurring at a suitable and opportune time) and are also mission critical.

For all these reasons, the routing problem has naturally been ex-
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tended to include and to guarantee QoS requirements (YF03; XN99; PR02),
and consequently is usually abbreviated to QoS routing. As defined
in (CNRS98), QoS is “a set of service requirements to be met by the net-
work while transporting a flow”, where a flow is “a packet stream from
source to a destination (unicast or multicast) with an associated Quality
of Service (QoS)”. To be implemented and subsequently satisfied, service
requirements have to be expressed in some measurable QoS metrics, such
as bandwidth, number of hops, delay, jitter, cost and loss probability of
packets.

This chapter combines and extends the works (BMR02b; BMRS06;
BMRS07; BS08d), for instance by showing a practical implementation of
the model in ECLiPSe (AW07) (in Ch. 4.7.3) and by suggesting new semir-
ings that limit the Pareto frontier of the solutions (in Ch. 4.5.1); in (BMR02b)
the authors presented and solved only the unicast routing case, without
testing the performance of the framework. First, we detail the modelling
procedure to represent and solve plain Shortest Path (SP) (CLR90) prob-
lems with Soft Constraint Logic Programming (see Ch. 2.4). We consider
several versions of SP problems, from the classical one to the multi-criteria
case (i.e. many costs to be optimized), from partially-ordered problems to
those that are based on modalities associated to the use of the arcs (i.e.
modality-based), and we show how to model and solve them via SCLP
programs. The basic idea is that the paths represent network routes, edge
costs represent QoS metric values, and our aim is to guarantee the re-
quested QoS on the found unicast routes, by satisfying the QoS constraints
and optimizing the cost of the route at the same time. The different criteria
can be, for example, maximizing the global bandwidth and minimizing
the delay that can be experienced on a end-to-end communication.

Then, extending the unicast solution, we suggest a formal model to
represent and solve the multicast routing problem in multicast networks
(i.e. networks supporting the multicast delivery schema) that need QoS
support. To attain this, we draw the network adapting it to a weighted
and-or graph (MM78), where the weight on a connector corresponds to the
cost of sending a packet on the network link modelled by that connector.
Then, we translate the hypergraph in a SCLP program and we show how
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the semantic of this program computes the best tree in the correspond-
ing and-or graph. We apply this result to find, from a given source node
in the network, the multicast distribution tree having the minimum cost
and reaching all the destination nodes of the multicast communication.
The costs of the connectors can be described as vectors (multidimensional
costs), each component representing a different QoS metric value. We
show also how modalities can be added to multicast problems, and how
the computational complexity of this framework can be reduced. There-
fore, in this chapter we present a complete formal model to represent and
solve the unicast/multicast QoS routing problem.

SCLP programs are logic programs where each ground atom can be
seen as an instantiated soft constraint (BMR95; BMR97c) and it can be
associated with an element taken from a set. Formally, this set is a c-
semiring (Bis04) (or simply semiring in the following), that is, a set plus
two operations, + and ×, which basically say how to combine constraints
and how to compare them. The presence of these two operations allows
to replace the usual boolean algebra for logic programming with a more
general algebra where logical and and logical or are replaced by the two se-
miring operations. In this way, the underlying logic programming engine
provides a natural tool to specify and solve combinatorial problems, while
the soft constraint machinery provides greater expressivity and flexibility.

In SCLP, the fact that we have to combine several refutation paths when
we have a partial order among the elements of the semiring (instead of a
total one), can be fruitfully used in the context of this chapter when we
have an graph/hypergraph problems with incomparable costs associated
to the edges/connectors. In fact, in the case of a partial order, the solution
of the problem of finding the best path/tree should consist of all those
paths/trees whose cost is not “dominated” by others.

The most important features of the adopted framework are: first, is that
SCLP is a declarative programming environment and, thus, is relatively
easy to specify a lot of different problems, ranging from paths to trees.
The model can be used to easily specify the problem, which can be then
translated and solved with a fast solver; however, our goal is to improve
the performance also for our implementation. The second reason is that
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the semiring structure is a very flexible and parametric tool where to
represent several and different cost models, with respect to QoS metrics;
obviously, the same SCLP programming environment and operational
semantic engine can be used with all these different semirings. Finally,
since QoS routing problem can be in general NP-Complete, SCLP promises
to be suitable tool, due to its ability for solving combinatorial problems
(as shown in (GC98)).

The main objective of this chapter is to show the high expressivity of
a SCLP frameworks based on semirings. However, looking to the agenda
proposed in (MBYDP+06), the resulting framework can also help the study
of some open problems, since the framework is easily extendible: our
results could be used to study how different network topologies behave,
the type and number of metrics or their relative significance, and it can
also be used for the definition of new QoS routing algorithms where routes
are selected based on novel metrics (MBYDP+06).

4.1.1 Related Work

Concerning the related work, in (dNFM+03) and (HT05) the authors adopt
a hypergraph model in joint with semirings too, but the minimal path
between two nodes (thus, not over an entire tree) is computed via a hy-
pergraph rewriting system instead of SCLP. At the moment, all these
frameworks are not comparable from the computational performance
point of view, since they have not yet been implemented. Even the work
in (Mam04) presents some general algebraic operators in order to handle
QoS in networks, but without any practical results. We compare our work
only with other theoretical frameworks, since our study aims at repre-
senting general routing constraints in order to solve different problems:
due to the complexity of QoS routing, state-of-the-art practical solutions
(presented in Ch. 4.2.2 and Ch. 4.2.3) deal only with a subset of metrics
and constraints. On the other hand, a more general framework can help
to analyze the problem from a global point of view, not linked to specific
algorithms. With Declarative routing (LHSR05), a routing protocol is im-
plemented by writing a simple query in a declarative query language (like
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Datalog as in (LHSR05)), which is then executed in a distributed fashion
at some or all of the nodes. It is based on the observation that recursive
query languages are a natural-fit for expressing routing protocols. How-
ever, the authors of (LHSR05) did not go deep in modelling QoS features,
and we think that c-semirings represent a very good method to include
these metrics. In (FFH05) the authors present a very interesting work de-
scribing the off-line planning of bandwidth allocation to demands known
in advance; the problem is solved with an abstraction technique combined
with systematic search algorithms and crisp constraints.

To go further, aside the elegant formalization due to the SCLP frame-
work, we build a bridge to a real implementation of the model (Ch. 4.6.2)
and several ideas to improve the experienced performance. The final tool
can be used to quickly prototype and test different routing paths. There-
fore, this chapter vertically cover the problem: from theoretical to practical
aspects, without reaching the performance of existing routing algorithms
implemented inside the routers, but thoroughly and expressively facing
the problem. As far as we know, other formal representations completely
miss this practical implementation. The drawback of being so expressive
is clearly represented by resulting performance, which does not allow the
framework to be used in real-world routers. However, this is not our
goal since with our framework we want to deal with the off-line study of
a network. In this case our expressivity can be used to easily optimize
the sets of Qos metrics (and features) for which no algorithm has been
provided yet, especially for the less-studied multicast case (YF03) (only
delay and cost metrics are optimized).

4.1.2 Structure of the Chapter

The remainder of this chapter is organized as follows. In Ch. 4.2 we com-
plete the background by introducing the multicast/unicast QoS routing:
we show that the problem of defining a route that has to be optimized
and is subject to constraints concerning QoS metrics, is, in general, a
NP-Complete problem. Then, we report some of the solutions, mostly
through heuristics, given in the real world. Chapter 4.3 proposes how
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to model and solve the unicast QoS routing with SCLP, considering also
problems with multidimensional costs (i.e. multi-criteria problems) and
based on modalities of use associated with the links of the network: for
example, if we need to find a route by using only wireless, wired, or
encrypted links (i.e. modality-based problems). Chapter 4.4 outlines a
similar framework, based on hypergraph and SCLP, for the management
of the multicast QoS routing: we show how to translate a network in a
corresponding and-or graph and then we compute the best distribution
tree by using SCLP. Even in this case we extend the model to include prob-
lems with modalities. Chapter 4.5 gives some important considerations
about semirings that improve the model when the costs of the network
links are multidimensional and partially ordered: this is the common case,
since an effective measurement of QoS will necessarily involve a collec-
tion of measures. We show also how we can limit the number of partially
ordered solutions with ad-hoc semirings, which apply a total order on
the tuples of cost values by following a set of weights defined to satisfy
the user. Chapter 4.6 presents a practical implementation of the model
by solving the problem over scale-free (BA99) networks, which properly
model the topology of Internet. This implementation has been developed
to demonstrate that performance improvements are necessary. These im-
provements can be achieved with the mechanisms explained in Ch. 4.7, as
tabling and branch-and-bound (as our implementation in ECLiPSe (AW07)
shows). At last, Ch. 4.8 ends the chapter with the final conclusions and
ideas about future work.

4.2 QoS Routing

With Constraint-Based Routing (CBR) we refer to a class of routing al-
gorithms that base path selection decisions on a set of requirements or
constraints, in addition to destination criteria. These constraints may be
imposed by administrative policies (i.e. policy routing), or by QoS require-
ments (i.e. QoS routing, as already cited in Ch. 4.1), and so they can be
classified in two classes with different characteristics. The aim of CBR is to
reduce the manual configuration and intervention required for attaining
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traffic engineering objectives (RVC01); for this reason, CBR enhances the
classical routing paradigm with special properties, such as being resource
reservation-aware and demand-driven.

QoS routing attempts to simultaneously satisfy multiple QoS require-
ments requested by real-time applications: the requirements are usually
expressed using metrics as, e.g. delay and bandwidth. Policy routing
(or policy-based routing) is instead used to select paths that conform to
imposed administrative rules. In this way, routing decisions can be based
not only on the destination location, but also on factors such as used ap-
plications and protocols, size of packets, or identity of both source and
destination end systems of the flow. Policy constraints can improve the
global security of network infrastructure and are able to realize business
related decisions.

Traditionally, QoS metrics can be organized into three distinct classes
(as anticipated in Ch. 1.2.4), depending on how they are combined along
a path: they can be i) additive, ii) multiplicative or iii) concave (WC96).

Even if usually the metric classes are introduced for paths, most of
times they can be suitable also for trees: consider, for example, if we need
to find a global cost of the tree by summing up all the weights on the
tree edges (i.e. additive), or if we want to maximize the bandwidth of
bottleneck link (i.e. concave).

Given a node generating packets, we can classify network data de-
livery schemas into three main classes: i) unicast, when data is delivered
from one sender to one specific recipient, providing one-to-one delivery,
ii) broadcast, when data is instead delivered to all hosts, providing one-
to-all delivery, and finally, iii) multicast, when data is delivered to all the
selected hosts that have expressed interest; thus, this last method provides
one-to-many delivery. We will concentrate on i) and iii).

4.2.1 Two NP-Complete Problems

When we use multiple QoS metrics, a typical scenario involves resources
that are independent and allowed to take real or unbounded integer val-
ues (KA01). For example, it could be necessary to find a route with the
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objective of cost minimization (i.e. a quantitative constraint, optimizing a
metric) and subject to a path delay ≤ 40msec (i.e. a boolean constraint, say-
ing whether or not a route is feasible) at the same time, therefore we would
have the set of constraints C = (delay ≤ 40,min(cost)). In such scenarios,
satisfying two boolean constraints, or a boolean constraint and a quan-
titative (optimization) constraint is NP-Complete (YF03). If all resources
except one take bounded integer values, or if resources are dependent,
then the problems can be solved in polynomial time (CN98). Most of the
proposed algorithms in this area apply heuristics to reduce the complexity,
as we will see in Ch. 4.2.2 and Ch. 4.2.3.

Unicast and multicast QoS routing can be reduced to two well-known
and more general problems: Multi-Constrained Path (MCP) (KK01; PR02)
and Steiner Tree (ST) (Win87; PR02) problems.In MCP, the problem is to
find a path from node s to node t in a graph where each link is associated
with k non-negative additive weights, while satisfying a set of constraints
C on these weights.

There may be multiple different paths in the graph G = (V,E) that sat-
isfy the same set of constraints. Such paths are said to be feasible. How-
ever, often it might be desirable to retrieve an optimal path, according to
some criteria, and respecting also the bounds imposed by the constraints.
This more difficult problem is known as the Multi-Constrained Optimal Path
(MCOP) problem. Clearly, since the paths must be optimized according
to some costs criteria, MCOP intersects the Shortest Path problem.

The MCP problem is a NP-Complete problem. The authors of (GJ79)
were the first to list the MCP problem with a number of metrics m = 2 as
being NP-complete, but they did not provide a proof. Wang and Crowcroft
have provided this proof for m ≥ 2 in (WC96) and (Wan99), which basically
consisted of reducing the MCP problem for m = 2 to an instance of the
partition problem, a well-known NP-complete problem (GJ79). However,
simulations performed in (for example) (MNK01; KKKM04; YF03) show
that QoS routing may be practically tractable in some of the possible cases.

In the ST problem, given a set S of vertices in a graph G = (V,E), a
solution interconnects them by a graph of minimum weight, where the
weight is the sum of the weights of all edges. If S = V, the ST problem
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reduces to the Minimum Spanning Tree (MST) problem(CLR90). ST has
been extended to Constrained Steiner Tree (CST), to include constraints
concerning the weights of the links; for example, if we want that the sum
of the metric values for each path p from the source s to each leaf s ∈ S, is
less than a chosen limit∆. ST and CST are NP-Complete problems (Win87)
since the second can be reduced to the first one.

As can be seen, the problems related to multicast inherit both the diffi-
culty of multiple constrained metrics, and the difficulty to reach multiple
end-nodes at the same time.

4.2.2 Unicast Routing with QoS Extensions

In Fig. 12 we show an example of a unicast communication between the
source, generating data, and the only one receiver (i.e. the destination of
the communication): the thick oriented lines highlight the direction of the
packet flow, while dashed lines correspond to links not traversed.

Now we present some of the unicast QoS routing proposals, each of
them oriented at optimizing only a small subset of the possible QoS met-
rics or using heuristics, since, as presented in Ch. 4.2.1, the problem is
in general NP-Complete. For example, several solutions have been pro-
posed for bandwidth-bounded routing: an interesting approach proposed
in (MS97) exploits the dependencies among resources, e.g. available band-
width, delay, and buffer space, to simplify the problem; then, a modified
Bellman-Ford algorithm can be used to solve the problem. One approach
to satisfy both bandwidth and delay bounds is to first prune all links
not satisfying the bandwidth requirement. Dijkstras shortest path algo-
rithm is then applied to find a feasible path, if any, satisfying the delay
requirements (WC96). The problem of optimizing both the bandwidth
and the delay can be either solved as a widest shortest path problem or
a shortest widest path problem, depending if the algorithm gives higher
priority to selecting paths with minimum hop counts (i.e. widest shortest
path), or to selecting paths with maximum bandwidth (i.e. shortest widest
path) (WC96). The objective of multi-constrained routing is to simultane-
ously satisfy a set of constraints, as described in (MS97; KK01). In (KK01)
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Figure 12: An example of a unicast distribution between the source and the
receiver. Oriented arcs highlight the path, while dashed lines correspond to
links not traversed by the flow.

is proposed a heuristic approach for the multi-constrained optimal path
problem (defined a H MCOP), which optimizes a non-linear function (for
feasibility) and a primary function (for optimality).

There are also solutions for bandwidth and cost bounded routing,
which typically map the cost or the bandwidth to a bounded integer
value, and then solve the problem in polynomial time using an extended
version of Bellman-Ford or Dijkstra algorithms (CN98).

4.2.3 Multicast Routing with QoS extensions

Multicast is an important bandwidth-conserving technology that reduces
traffic by simultaneously delivering a single stream of information to
multiple receivers (as shown in Fig. 13). Therefore, while saving re-
sources, multicast is well suited to concurrently distribute contents on
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behalf of applications asking for a certain timeliness of delivery: thus,
also multicast routing has naturally been extended to guarantee QoS re-
quirements (WH00). In its simplest implementation, multicast can be
provided using multiple unicast transmissions (i.e. the source would be
in charge to open them), but with this solution, the same packet can tra-
verse the same link multiple times, thus increasing the network traffic. For
this reason, the network must provide this service natively, by creating
multicast (group) addresses and by letting the routers duplicate the packet
only when the distribution tree effectively forks. In this way, the source
node has to know only one global address for all the destinations, and
the network (i.e. the routers) can optimally “split” the flow towards the
receivers, knowing also how to optimize traffic: the source node cannot
have this information.

A multicast address is also called a multicast group address, with
which the routers can locate and send packets to all the members in the
group. A group member is a host that expresses interest in receiving
packets sent to a specific group address. A group member is also some-
times called a receiver or a listener. A multicast source is a host that sends
packets with the destination address set to a multicast group. To deliver
data only to interested parties, routers in the network build a multicast
(or distribution) tree (Fig. 13). Each subnetwork that contains at least one
interested listener is a leaf of the tree. Where the tree branches, routers
replicate the data and send a single packet down each branch. No link
ever carries a duplicate flow of packets, since packets are replicated in the
network only at the point where paths diverge, reducing the global traffic.

Multicast problem has been studied with several algorithms and vari-
ants, such as Shortest-Path Tree (SPT), MST, ST, CST and other miscella-
neous trees (WH00). Algorithms based on SPT (e.g. Dijkstra or Bellman-
Ford (CLR90)) aim to minimize the sum of the weights on the links from
the source to each receiver, and if all the link cost one unit, the resulting
tree is the least-hop one.

Multicast QoS routing is generally more complex than unicast QoS
routing, and for this reason less proposals have been elaborated in this
area (YF03; PR02). With respect to unicast, the additional complexity
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Figure 13: An example of a multicast tree built over a network: oriented arcs
highlight the tree (direction is down stream), while dashed lines correspond
to links not traversed by the flow.

stems from the need to support shared and heterogeneous reservation
styles (towards distinct group members) and global admission control of
the distribution flow. Some of the approaches use a Steiner tree formula-
tion (BKM79) or extend existing algorithm to optimize the delay (i.e. MO-
SPF (Moy98) is the multicast version of the classical OSPF), while the Delay
Variation Multicast Algorithm (DVMA) (RB97) computes a multicast tree
with both bounded delay and bounded jitter. Also, delay-bounded and
cost-optimized multicast routing can be formulated as a Steiner tree: an ex-
ample approach is QoS-aware Multicast Routing Protocol (CNS00) (QMRP).
Other multicast QoS routing algorithms and related problems (entailing
stability, robustness and scalability) are presented in (YF03).
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4.3 Finding Unicast QoS Routes with SCLP Pro-
grams

In the following we will show how to represent and solve unicast QoS
routing with SCLP. At the beginning the problem will be treated only from
the cost optimization view, i.e. as a SP problem, while in the last part we
propose an example on how to add constraints on the path (i.e. solving the
MCOP problem seen in Ch. 4.2.2). Chapter 4.3.1 translates SP problems
as SCLP programs, while in Ch. 4.3.2 the same model is extended for
multi-criteria optimizations, thus featuring vectors of costs on the edges,
and not a single value. Chapter 4.3.3 describes the case where each arc
also stores information about the modality to be used to traverse the arc.
At last, in Ch. 4.3.4 we add constraints on the QoS metrics, in order to
fully obtain a model for constrained paths.

4.3.1 From SP Problems to SCLP Programs

We suppose to work with a graph G = (N,E), where each oriented arc e ∈ E
from node p to node q (p, q ∈ N) has associated a label representing the cost
of the arc from p to q, as the example in Fig 14. This graph can be easily
used to represent a network, if nodes are associated to network devices
(routers and hosts) and arcs to network links. From any SP problem we
can build an SCLP program as follows.

For each arc we have two clauses: one describes the arc and the other
one its cost. More precisely, the head of the first clause represents the
starting node, and its body contains both the final node and a predicate,
say c, representing the cost of the arc. Then, the second clause is a fact
associating to predicate c its cost (which is a semiring element). Even if
in this chapter the concept of cost is quite general, we recall that with
this fact we represent the QoS metric values on the arc (see Ch. 4.2). For
example, if we consider the arc from p to q with cost 2, we have the clause
p :- cpq, q.

and the fact
cpq :- 2.

95



Finally, we must code that we want v to be the final node of the path. This
is done by adding a clause of the form v :- 0. Note also that any node
can be required to be the final one, not just those nodes without outgoing
arcs (like v is in this example). The whole program corresponding to the
SP problem in Fig. 14 can be seen in Tab. 6.
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Figure 14: An SP problem.

To represent the classical version of SP problems, we consider SCLP
programs over the semiring S = 〈N,min,+,+∞, 0〉, which is an appro-
priated framework to represent constraint problems where one wants to
minimize the sum of the costs of the solutions. For example, we can
imagine that the cost on the arcs represents to us the average delay expe-
rienced on the related link (measured in tens milli-seconds). To compute
a solution of the SP problem it is enough to perform a query in the SCLP
framework; for example, if we want to compute the cost of the path from
r to v we have to perform the query :- r. For this query, we obtain the
value 6, that represents the cost of the best path(s) from r to v, optimizing
in this way the total delay experienced on the route from r to v. Clearly,
different semirings can be chosen to represent the composition properties
of the different metrics, as we will see better in Ch. 4.3.2 by proposing
bandwidth as the second metric describing the link costs.

Notice that to represent classical SP problems in SCLP, we do not need
any variable. Thus the resulting program is propositional. However, this
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p :- cpq, q. cpq :- 2.

p :- cpr, r. cpr :- 3.

q :- cqs, s. cqs :- 3.

r :- crq, q. crq :- 7.

r :- crt, t. crt :- 1.

r :- cru, u. cru :- 3.

s :- csp, p. csp :- 1.

s :- csr, r. csr :- 2.

s :- csv, v. csv :- 2.

t :- cts, s. cts :- 3.

u :- cup, p. cup :- 3.

u :- cut, t. cut :- 2.

u :- cuv, v. cuv :- 3.

v :- 0.

Table 6: The SCLP program representing the SP problem in Fig. 14.

program, while giving us the cost of the shortest paths, does not give us
any information about the arcs which form such paths. This information
could be obtained by providing each predicate with an argument, which
represents the arc chosen at each step.

Figure 15 shows the same SP problem of Fig. 14 where the arcs outgoing
each node have been labeled with different labels to distinguish them.
Such labels can then be coded into the corresponding SCLP program
to “remember” the arcs traversed during the path corresponding to a
solution. For example, clause
p :- cpq, q.

would be rewritten as
p(a) :- cpq, q(X).

Here constant a represents one of the arcs going out of p: the one which
goes to q. If all clauses are rewritten similarly, then the answer to a goal like
:- r(X)will be both a semiring value (in our case 6) and a substitution for
X. This substitution will identify the first arc of a shortest path from r to
v. For example, if we have X = b, it means that the first arc is the one that
goes from r to t. To find a complete shortest path, we just need to compare
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Figure 15: An SP problem with labeled arcs.

the semiring values associated with each instantiated goal, starting from r
and following the path. For example, in our case (of the goal ∃X.r(X)) we
have that the answer to the goal will be X = c with semiring value 6. Thus
we know that a shortest path from r to v can start with the arc from r to u.
To find the following arc of this path, we compare the semiring values of
u(a), u(b), and u(c). The result is that u(c) has the smallest value, which is
3. Thus the second arc of the shortest path we are constructing is the one
from u to v. The path is now finished because we reached v which is our
final destination.

Notice that a shortest path could be found even if variables are not
allowed in the program, but more work is needed. In fact, instead of
comparing different instantiations of a predicate, we need to compare the
values associated with the predicates that represent nodes reachable by
alternative arcs starting from a certain node, and sum them to the cost of
such arcs. For example, instead of comparing the values of p(a) and p(b)
(Fig. 15), we have to compare the values of q + 2 and of r + 3 (Fig. 14).

A third alternative to compute a shortest path, and not only its cost, is
to use lists: by replacing each clause of the form
p :- cxy, q.

with the clause
p([a|T]) :- cxy, q(T).
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during the computation we also build the list containing all arcs which
constitute the corresponding path. Thus, by giving the goal :- p(L)., we
would get both the cost of a shortest path and also the shortest path itself,
represented by the list L.

An alternative representation, probably more familiar for CLP users,
of SP problems in SCLP is one where there are facts of the form
c(p,q) :- 2.
...

c(u,v) :- 3.

to model the graph, and the two clauses
path(X,Y) :- c(X,Y).

path(X,Y) :- c(X,Z), path(Z,Y).

to model paths of length one or more. In this representation the goal to
be given to find the cost of the shortest path from p to v is :- path(p,v).
This representation is obviously more compact than the one in Tab. 6, and
has equivalent results and properties. However, in next chapters we will
continue using the simpler representation, used in Tab. 6, where all the
clauses have at most one predicate in the body. The possibility of repre-
senting SP problems with SCLP programs containing only such a kind of
clauses is important, since it will allow us to use efficient algorithms to
compute the semantics of such programs (see (BMR02b) for more details).

4.3.2 Partially-Ordered SP Problems

Sometimes, the costs of the arcs are not elements of a totally ordered set. A
typical example is obtained when we consider multi-criteria SP problems.
Consider for example the multi-criteria SP problem shown in Fig. 16: each
arc has associated a pair that represent the weight of the arc in terms of
cost of use and average delay (i.e. two possible QoS metrics); thus, the
values are in the 〈cost, delay〉 form. Given any node p, we want to find a
path from p to v (if it exists) that minimizes both criteria. In this example,
there may be cases in which the labels of two arcs are not compatible, like
〈5, 20〉 and 〈7, 15〉, since the cost is better in the first pair, while the delay
is lower in the second one. In general, when we have a partially ordered
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Figure 16: A multi-criteria SP problem.

set of costs, it may be possible to have several paths, all of which are not
dominated by others, but which have different incomparable costs (see also
Ch. 4.5).

We can translate this SP problem in Fig. 16 into the corresponding
SCLP program in Tab. 7. This program works over the semiring

〈N2,min’,+′, 〈+∞,+∞〉, 〈0, 0〉〉,

where min′ and +′ are classical min and +, suitably extended to pairs. In
practice, this semiring is obtained by putting together, via the Cartesian
product, two instances of the semiring 〈N,min,+,+∞, 0〉 (we recall that
the Cartesian product of two c-semirings is a c-semiring as well (BMR97c)).
One of the two instances is used to deal with the cost criteria, the other
one is for the delay criteria. By working on the combined semiring, we
can deal with both criteria simultaneously: the partial order will tell us
when a 〈cost, delay〉 pair is preferable to another one, and also when they
are not comparable.

To give an idea of another practical application of partially-ordered SP
problems, just think of network routing problems where we need to op-
timize according to the following criteria: minimize the delay, minimize
the cost, minimize the number of arcs traversed, and maximize the band-
width. The first three criteria correspond to the same semiring, which is
〈N,min,+,+∞, 0〉, while the fourth criteria can be characterized by the se-
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p :- cpq, q. cpq :- < 2,4 >.

p :- cpr, r. cpr :- < 3,1 >.

q :- cqs, s. cqs :- < 3,3 >.

r :- crq, q. crq :- < 7,3 >.

r :- crt, t. crt :- < 1,3 >.

r :- cru, u. cru :- < 3,4 >.

s :- csp, p. csp :- < 1,1 >.

s :- csr, r. csr :- < 2,2 >.

s :- csv, v. csv :- < 2,1 >.

t :- cts, s. cts :- < 3,2 >.

u :- cup, p. cup :- < 3,3 >.

u :- cut, t. cut :- < 2,1 >.

u :- cuv, v. cuv :- < 3,4 >.

v :- < 0,0 >.

Table 7: The SCLP program representing the multi-criteria SP problem in
Fig. 16.

miring 〈B,max,min, 0,+∞〉, where B is the set of the possible bandwidth
values (in Ch. 4.4.1 we will better investigate these semirings). In this
example, we have to work on a semiring which is obtained by vectorizing
all these four semirings. Each of the semirings is totally ordered but the
resulting semiring, whose elements are four-tuples, is partially ordered.

4.3.3 Modality-based SP Problems

Until now we have considered situations in which an arc is labeled by
its cost, be it one element or a tuple of elements as in the multi-criteria
case. However, sometimes it may be useful to associate with each arc also
information about the modality to be used to traverse the arc.

For example, interpreting the arcs of a graph as links between cities,
we may want to model the fact that we can cover such an arc by car, or
by train, or by plane. Another example of a modality could be the time of
the day in which we cover the arc, like morning, afternoon, and night. One
more example, this time strictly related to topic of this chapter, could be
represented by the modalities associated with the network link, e.g. wired,
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wireless or VPN, if there is the opportunity to establish a Virtual Private
Network on it. Therefore the modalities can be used to manage policies for
the routing (i.e. for policy routing). In all these examples, the cost of an
arc may depend on its modality.

An important thing to notice is that a path could be made of arcs which
not necessarily are all covered with the same modality. For example, the
network connection between two distant buildings of the same company
can be made of many hops, some of which are covered with the wireless
modality and others with wired one. Moreover, it can be that different
arcs have different sets of modalities. For example, from node n0 to node
n1 we can use both the wired or wireless connection, and from node n1 to
node n2 we can use only a VPN. Thus modalities cannot be simply treated
by selecting a subset of arcs (all those with the same modality).

An example of an SP problem with three modalities representing a
network with cryptographic service on the links (c) (both wired or wire-
less), wired/no-crypt (w), and wireless/no-crypt (l) can be seen in Fig. 17.
Here the problem is to find a shortest path from any node to v (our final
destination), and to know both its delay and also the modalities of its
arcs. This SP problem can be modeled via the SCLP program in Tab. 8. In
this program, the variables represent the modalities. If we ask the query
:-p(c)., it means that we want to know the smallest delay for a route
from p to v using the links with the cryptographic service. The result of
this query in our example is p(c) = 8 (using the path p − r − u − v).

Notice that the formulation shown in Fig. 8 puts some possibly unde-
sired constraints on the shortest path to be found. In fact, by using the
same variable in all the predicates of a rule, we make sure that the same
modality (in our case the same transport mean) is used throughout the
whole path. If instead we want to allow different modalities in different
arcs of the path, then we just need to change the rules by putting a new
variable on the last predicate of each rule. For example, the rule in Tab. 8
p(X) :- cpq(X), q(X).

would become
p(X) :- cpq(X), q(Y).

Now we can use a modality for the arc from p to q, and another one for
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Figure 17: An SP problem with modalities.

the next arc. In this new program, asking the query :-p(c). means
that we want to know the smallest delay for a trip from p to v using the
cryptographic service in the first arc.

The same methods previously used to find a shortest path, or a non-
dominated path in the case of a partial order, can be used in this kind of
SCLP programs as well. Thus we can put additional variables in the pred-
icates to represents alternative arcs outgoing the corresponding nodes,
and we can shift to the semiring containing sets of costs to find a non-
dominated path. In particular, a clause like
p(X) :- cpq(X), q(Y).

would be rewritten as
p(X,a) :- cpq(X), q(Y,Z).

4.3.4 Adding Constraints to SP Problems

As seen in Ch. 4.2.1 a MCOP is much more difficult to solve than a SP
problem, that is NP-Complete. So far we considered only variants of SP
problems (partially-ordered or modality-based), but our aim is to provide
a complete model for the unicast QoS routing. Thus, besides achieving
cost optimization, we need also to consider constraints on the QoS metrics.

In our example we consider again the multi-criteria graph in Fig. 16:
each arc has associated a pair that can represent the weight of the arc in
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p(X) :- cpq(X), q(X). cpq(w) :- 2.

p(X) :- cpr(X), r(X). cpq(l) :- 3.

q(X) :- cqs(X), s(X). cpr(c) :- 3.

r(X) :- crq(X), q(X). cqs(l) :- 3.

r(X) :- crt(X), t(X). crq(c) :- 7.

r(X) :- cru(X), u(X). crt(w) :- 1.

s(X) :- csp(X), p(X). cru(c) :- 3.

s(X) :- csr(X), r(X). csp(c) :- 1.

s(X) :- csv(X), v(X). csp(w) :- 7.

t(X) :- cts(X), s(X). csr(w) :- 2.

u(X) :- cup(X), p(X). csv(w) :- 2.

u(X) :- cut(X), t(X). csv(c) :- 3.

u(X) :- cuv(X), v(X). cts(l) :- 3.

v(X) :- 0. cts(w) :- 3.

cup(c) :- 3.

cup(w) :- 1.

cut(w) :- 2.

cuv(w) :- 3.

cuv(c) :- 2.

Table 8: The SCLP program representing the SP problem with modalities in
Fig. 17.

terms of cost of use and average delay. However, in this case our goal is
to minimize the cost and to guarantee a final average delay less than or
equal to 8 (80msec), thus we want to add the boolean constraint delay ≤ 8.

We chose to represent constrained paths with a program in CIAO Pro-
log (BCC+97), a system that offers a complete Prolog system supporting
ISO-Prolog, but, at the same time its modular design allows both restrict-
ing and extending the basic language. CIAO Prolog has also a fuzzy
extension, but since it does not completely conform to the semantic of
SCLP defined in (BMR97a) (due to interpolation in the interval of the
fuzzy set), we decided to use the CIAO operators among constraints (as <
and ≤), and to model the × operator of the c-semiring with them. For this
reason, we inserted the cost of the edges in the head of the clauses, dif-
ferently from SCLP clauses which have the cost in the body of the clause.

104



:- module(path,_,_).
:- use_module(library(lists)).

times([C1,D1], [C2,D2], [C3,D3]) :-
  C3 = C1+C2,
  D3 = D1+D2.

edge(p, q, [2,4]). 
edge(p, r, [3,1]). 
edge(q, s, [3,3]). 
edge(r, q, [7,3]). 
edge(r, t, [1,3]). 
edge(r, u, [3,4]). 
edge(s, p, [1,1]). 
edge(s, r, [2,2]). 
edge(s, v, [2,1]). 
edge(t, s, [3,2]). 
edge(u, p, [3,3]). 
edge(u, t, [2,1]). 
edge(u, v, [3,4]).

path(X,Y,[X,Y],_,[C,D],L):-
  edge(X,Y,[C,D]),
  D =< L.

path(X,Y,[X|T],V,[C,D],L):-
  edge(X,Z,[C1,D1]),
  nocontainsx(V,Z),
  path(Z,Y,T,[Z|V],[C2,D2],L),
  times([C1,D1], [C2,D2], [C,D]),
  D =< L.
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Table 9: The CIAO program representing all the paths of Fig. 16, with delay ≤
8

Similar reification processes have been already accomplished also in other
works (RPBP00).

In Tab. 9 is shown the CIAO program that represents the graph in
Fig. 16: here the edges (i.e. all the Edges facts in Tab. 9) are in the form:

edge(Source Node,Destination Node, [Link Cost,Link Delay])

Moreover, we can see the two clauses that describe the structure of
paths: Rule 1 and Rule 2 respectively represent the base (or termination)
case, where a path is simply an edge, and the recursive case, needed to add
one edge to the path. To avoid infinite recursion, and thus the program
crashing, we need to deal with graph loops by considering the list of the
already visited nodes, in order to prevent the search from visiting them
twice. Moreover, we inserted a variable in the head of the path clauses
to remember, at the end, all the visited nodes of the path: this list will
store the nodes following the correct ordering of the visit. Finally, the last
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Ciao-Prolog 1.10 #5: Fri Aug 6 19:01:54 2004 
?- path(p,v,P,[p],[C,D],8).

C = 2+(3+2), D = 4+(3+1), P = [p,q,s,v] ? .

C = 3+(7+(3+2)), D = 1+(3+(3+1)), P = [p,r,q,s,v] ? .

C = 3+(1+(3+2)), D = 1+(3+(2+1)), P = [p,r,t,s,v] ? .

no 
?-

Figure 18: The CIAO output for the program in Tab. 9: three paths are found
with delay ≤ 8.

variable of the clause head is used to retrieve only the paths with a total
delay equal or less than the passed value. Thus, the path clause-heads are
in the form:

path(Source Node,Destination Node,Path Nodes,Already Visisted Nodes,

[Path Cost,Path Delay],Path Max Delay)

The times clause mimics the×operation of the semiring (i.e. + extended
to pairs, as in Ch. 4.3.2), and therefore it composes the global costs of the
edges together, edge costs with costs, and edge delays with delays.

All the paths with a delay ≤ 8, and the relative query path(p, v,P, [p], [C,
D], 8) are shown in Fig. 21. The p source node of the path, must be included
in the list of the visited nodes from the beginning. Figure 21 corresponds
to the output of the CIAO program in Tab. 9, and for each of the three
found paths it shows the variable P, which stores the sequence of the
nodes in the path, and the C - D pair, which corresponds to the total cost
of the path in terms of 〈cost, delay〉.

We remark the expressivity of the framework, since boolean con-
straints can be easily added to the query instead of being directly hard
coded in the program. For example, with a query like path(p, v,P, [p], [C,D]),
D < 8 returns all the paths with a delay value less than 8.
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4.4 Extending the Model to Deal with Multicast
QoS Routing

Now we extend the framework given in Ch. 4.3 in order to manage also
the multicast delivery schema. The first step is represented by the use of
hypergraphs instead of simple graphs, since we need a method to connect
one node to multiple destinations at the same time (i.e. when the same
packet must be routed on different links). Chapter 4.4.1 presents a possible
transformation procedure from networks to and-or graphs, showing also
how to find a cost for the hyperarcs and related semirings. In Ch. 4.4.2 we
describe the SCLP programs representing and solving the multicast QoS
routing. In Ch. 4.4.3 we associate modalities to hyperarcs, as we did in
Ch. 4.3.3 for paths.

4.4.1 From Networks to Hypergraphs

Now we explain a method to translate the representation of a multicast
network with QoS requirements (Fig. 20a) into a corresponding weighted
and-or graph (MM78) (Fig. 20b). This procedure can be split in three
distinct steps, respectively focusing on the representation of i) network
nodes, ii) network links and iii) link costs in terms of QoS metrics.

An and-or graph (MM78) is defined essentially as a hypergraph. Namely,
instead of arcs connecting pairs of nodes there are hyperarcs connecting
an n-tuple of nodes (n = 1, 2, 3, . . .). Hyperarcs are called connectors and
they must be considered as directed from their first node to all others.
Formally an and-or graph is a pair G = (N,C), where N is a set of nodes and
C is a set of connectors

C ⊆ N ×
k⋃

i=0

Ni.

Note that the definition allows 0-connectors, i.e. connectors with one
input and no output node. 0-connectors are represented as a line ending
with a square (Fig. 20b). In the following of the explanation we will also
use the concept of and tree (MM78): given an and-or graph G, an and tree
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H is a solution tree of G with start node nr, if there is a function g mapping
nodes of H into nodes of G such that:

• the root of H is mapped in nr.

• if (ni0 ,ni1 , . . . ,nik ) is a connector of H, then (g(ni0 ), g(ni1 ), . . . , g(nik )) is
a connector of G.

In words, a solution tree of an and-or graph is analogous to a path of
an ordinary graph: it can be obtained by selecting exactly one outgoing
connector for each node.

Each of the network nodes can be easily cast in the corresponding
and-or graphs as a single graph node: thus, each node in the graph can
represent an interconnecting device (e.g. a router), or a node acting as the
source of a multicast communication (injecting packets in the network), or,
finally, a receiver belonging to a multicast group and participating in the
communication. In Ch. 4.4.2, when we will look for the best tree solution,
the root of the best and tree will be mapped to the node representing the
source of the multicast communication; in the same way, receivers will
be modeled by the leaves of the resulting and tree. When we translate a
receiver, we add an outgoing 0-connector to model the end-point of the
communication, and whose cost will be explained below. Suppose that
{n0,n1, . . . ,n9} in Fig. 20a are the identifiers of the network nodes.

To model the links, we examine the forward star (f-star) of each node
in the network (i.e. the set of arcs outgoing from a node): we consider the
links as oriented, since the cost of sending packets from node ni to n j can
be different from the cost of sending from n j to ni (one non-oriented link
can be easily replaced by two oriented ones). Supposing that the f-star
of node ni includes the arcs (ni,n j), (ni,nk) and (ni,nz), we translate this
f-star by constructing one connector directed from ni to each of the subsets
of destination nodes { j, k, z} (Fig. 19), for a possible maximal number of
2|N|−1 subsets (where |N| is the cardinality of the set of node in the graph),
i.e. excluding the emptyset; in Ch. 4.7 we will see how to minimize this
exponential growth. Thus, all the resulting connectors with ni as the
input node are (ni,n j), (ni,nk), (ni,nz), (ni,nk,n j), (ni,nk,nz), (ni,n j,nz) and
(ni,n j,nk,nz). In the connectors tuple-ordering of the nodes, the input
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Figure 19: a) the f-star of ni network-node and b) its representation with
connectors.

node is at the first position and the output nodes (when more than one)
follow the orientation of the related arrow in Fig. 19.

To simplify Fig. 19b, the arcs linking directly two nodes represent
1-connectors (ni,n j), (ni,nk) and (ni,nz), while curved oriented lines rep-
resent n-connectors (with n > 1), where the set of their output nodes
corresponds to the output nodes of the traversed arcs. With respect to
ni, in Fig. 19 we have a curved line labeled with a that corresponds to
(ni,nk,n j,nz), b to (ni,nk,n j), c to (ni,n j,nz), and, at last, d to (ni,nk,nz). To
have a clear figure, the network links in Fig. 20a are oriented “towards”
the receivers, thus we put only the corresponding connectors in Fig. 20b.

In the example we propose here, we are interested in QoS link-state
information concerning only bandwidth and cost. Therefore, each link
of the network can be labeled with a 2-dimensional cost, for example the
pair 〈7, 3〉 tells us that the maximum bandwidth on that specific link is
70Mbps and the cost is 30e. In general, we could have a cost expressed
with a n-dimensional vector, where n is the number of metrics to be taken
in account while computing the best distribution tree. Since we want to
maintain this link state information even in the and-or graph, we label the
corresponding connector with the same tuple of values (Fig. 20).

In the case when a connector represent more than one network link
(i.e. a n-connector with n ≥ 2), its cost is decided by assembling the costs
of the these links with the composition operation ◦, which takes as many
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n-dimensional vectors as operands, as the number of links represented
by the connector. Naturally, we can instantiate this operation for the
particular types of costs adopted to express QoS: for the example given
in this chapter, the result of ◦ is the minimum bandwidth and the highest
cost (it could be also the sum of all the costs of the links), ergo, the worst
QoS metric values:

◦(〈b1, c1〉, 〈b2, c2〉, . . . , 〈bn, cn〉) −→ 〈min(b1, b2, . . . , bn),max(c1, c2, . . . , cn)〉

The cost of the connector (n1,n3,n4) in Fig. 20b will be 〈7, 3〉, since the costs
of connectors (n1,n3) and (n1,n4) are respectively 〈7, 2〉 and 〈10, 3〉:

◦(〈7, 2〉, 〈10, 3〉) = 〈7, 3〉

To simplify Fig. 20b, we inserted only the costs for the 1-connectors, but the
costs for the other connectors can be easily computed with the ◦ operation,
and are all reported in Tab. 16.

So far, we are able to translate an entire network with QoS requirements
in a corresponding and-or weighted graph, but still we need some algebraic
framework to model our preferences for the links to use in the best tree.
For this reason, we use the semiring structure (Ch. 2.2). An exhaustive
explanation of the semiring framework approach for shortest-distance
problems is presented in (Moh02; Tar79).

For example, if we are interested in maximizing the bandwidth of the
tree, we can use the semiring SBandwidth = 〈B ∪ {0,+∞},max,min, 0,+∞〉;
otherwise, we could be interested in minimizing the global bandwidth
with 〈B ∪ {0,+∞},max,min,+∞, 0〉, if our intention is to use an already
busy link in order to preserve other unloaded links for future use (i.e.
for traffic engineering purposes). We can use SMoney = 〈N,min,+,+∞, 0〉
for the money cost, if we need to minimize the total cost of the tree.
Elements of B (i.e. the set of bandwidth values) can be obtained by
collecting information about the network configuration, the current traffic
state and technical information about the links. Since the composition of
c-semirings is still a c-semiring (BMR97c),

SNetwork = 〈〈B ∪ {0,+∞},N〉,+′,×′, 〈0,+∞〉, 〈+∞, 0〉〉
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where +′ and ×′ correspond to the vectorization of the + and × operations
in the two c-semirings: given b1, b2 ∈ B ∪ {0,+∞} and c1, c2 ∈N,

〈b1, c1〉 +
′
〈b2, c2〉 = 〈max(b1, b2),min(c1, c2)〉

〈b1, c1〉 ×
′
〈b2, c2〉 = 〈min(b1, b2), c1 + c2〉

Clearly, the problem of finding best distribution tree is multi-criteria,
since both bandwidth and cost must be optimized. We consider the cri-
teria as independent among them, otherwise they can be rephrased to a
single criteria. Thus, the multidimensional costs of the connectors are not
elements of a totally ordered set, and it may be possible to obtain several
trees, all of which are not dominated by others, but which have different
incomparable costs.

For each receiver node, the cost of its outgoing 0-connector will be
always included in every tree reaching it. As a remind, a 0-connector has
only one input node but no destination nodes. If we consider a receiver as
a plain node, we can set the cost as the 1 element of the adopted c-semiring
(1 is the unit element for ×), since the cost to reach this node is already
completely described by the other connectors of the tree branch ending
in this node: practically, we associate the highest possible QoS values to
this 0-connector, in this case infinite bandwidth and null cost. Otherwise
we can imagine a receiver as a more complex subnetwork (as the node
n9 in Fig. 20), and thus we can set the cost of the 0-connector as the cost
needed to finally reach a node in that subnetwork (as the cost 〈2, 3〉 for the
0-connector after node n9 in Fig. 20b), in case we do not want, or cannot,
show the topology of the subnetwork, e.g. for security reasons.

4.4.2 And-or Graphs Using SCLP

Now our goal is to represent an and-or graph with a program in SCLP.
Using this framework, we can easily solve the multi-criteria example
concerning the multicast QoS network in Fig. 20b.

As already proposed in Ch. 4.3, to represent the connectors in SCLP
we can write clauses like c(ni, [n j,nk]) : −〈10, 3〉, stating that the graph has
connector from ni to nodes n j and nk with a bandwidth cost of 100Mbps
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Figure 20: A network example and the corresponding and-or graph repre-
sentation.

and a cost of 30e. Other SCLP clauses can properly describe the structure
of the tree we desire to search over the graph.

For the same reasons exposed in Ch. 4.3.4, we choose to represent an
and-or graph with a program in CIAO Prolog (BCC+97). As an example,
from the weighted and-or graph problem in Fig. 20b we can build the
corresponding CIAO program of Tab. 16 as follows. The set of network
edges (or 1-connectors) is highlighted as Edges in Tab. 16. Each fact has
the structure

edge(source node, [dest nodes], [bandwidth, cost])

e.g. the fact edge(n0, [n1], [10, 1]) represents the 1-connector of the graph
(n0,n1) with bandwidth equal to 100Mbps and cost 10e. The Rules 1
in Tab. 16 are used to compose the edges (i.e. the 1-connectors) to-
gether in order to find all the possible n-connectors with n ≥ 1, by
aggregating the costs of 1-connectors with the ◦ composition operator,
as described in Ch. 4.4.1 (the lowest of the bandwidths and the great-
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est of the costs of the composed 1-connectors). Therefore, with these
clauses (in Rules 1) we can automatically generate the set of all the con-
nectors outgoing from the considered node (in Tab. 16, nocontainsx and
insert last are CIAO predicates used to build a well-formed connector).
The Leaves in Tab. 16 represent the 0-connectors (a value of 1000 repre-
sents ∞ for bandwidth). The plus and times rules in Tab. 16 respectively
mimic the + and × operations of the semiring proposed in Ch. 4.4.1:
SNetwork = 〈〈B ∪ {0,+∞},N〉,+′,×′, 〈0,+∞〉, 〈+∞, 0〉〉, where +′ is equal to
〈max,min〉 and ×′ is equal to 〈min,+〉, as defined in Ch. 4.4.1. At last,
the rules 2-3-4-5 of Tab. 16 describe the structure of the routes we want to
find over the graph. Rule 2 represents a route made of only one leaf node,
Rule 3 outlines a route made of a connector plus a list of sub-routes with
root nodes in the list of the destination nodes of the connector, Rule 4 is
the termination for Rule 5, and Rule 4 is needed to manage the junction
of the disjoint sub-routes with roots in the list [X|Xs]; clearly, when the
list [X|Xs] of destination nodes contains more than one node, it means we
are looking for a multicast route. When we compose connectors or trees
(Rule 2 and Rule 5), we use the times rule to compose their costs together.
In Rule 5, append is a CIAO predicate used to join together the lists of
destination nodes, when the query asks for a multicast route. At last, the
route predicate in Ch. 4.4.1 collects all the results for the query and finally
returns the solution chosen with the help of the plus predicate.

Notice that the ◦ operator describes in Ch. 4.4.1 is modeled with Prolog
clauses inside Rule 5, when composing multiple 1-connectors connectors.

Notice also that the complexity of append predicates in Tab. 16 can
be reduced by using difference lists instead. However, see Ch. 4.7 for
complexity considerations.

To make the program in Tab. 16 as readable as possible, we omit-
ted two predicates: the sort predicate, needed to order the elements
inside the list of destination-nodes of connectors and trees (otherwise,
the query route(n0, [n6,n7,n8,n9], [B,C]) and route(n0, [n9,n7,n8,n6], [B,C])
would produce different results), and the intersection predicate to check
that multiple occurrences of the same node do not appear in the same list
of destination nodes, if reachable with different connectors (otherwise, for
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Ciao-Prolog 1.10 #5: Fri Aug 6 19:01:54 2004
?- route(n0,[n6,n7,n8,n9],[B,C]).

B = 2, 
C = 16 ? .

no ?-

Figure 21: The CIAO output for the program in Tab. 9. The best bandwidth
and delay values are found for the tree with n6,n7,n8,n9 destinations

example, the tree n0, [n7,n7,n8,n9] would be a valid result).
To solve the and-or graph problem it is enough to perform a query

in Prolog language: for example, if we want to compute the cost of
all the trees rooted at n0 and having as leaves the nodes represent-
ing all the receivers (i.e. {n6,n7,n8,n9}), we have to perform the query
route(n0, [n6,n7,n8,n9], [B,C]), where B and C variables will be instanti-
ated with the bandwidth and cost of the found trees. The output of the
CIAO program for this query corresponds to the cost of the tree in Fig. 22,
i.e. 〈2, 16〉. For this query, the output of the program in Tab. 16 is shown
in Fig. 21. The tree in Fig. 22 is a solution tree (see Ch. 4.4.1) for the graph
in Fig. 20b, with mapping function g : g(n′0) = n0, g(n′1) = n1, g(n′3) =
n3, g(n′4) = n4, g(n′5) = n5, g(n′6) = n6, g(n′7) = n7, g(n′8) = n8, g(n′9) = n9.

A global cost can be given to and trees: recursively, to every subtree of
H with root node ni0 , a cost ci0 is given as follows:

• If ni0 is a leaf, then its cost is the associated constant.

• If ni0 is the input node of a connector (ni0 ,ni1 , . . . ,nik ), then its cost is
ci0 = fr(ci1 , . . . , cik ) where fr is the function cost associated with the
connector, and ci1 , . . . , cik are the costs of the subtrees rooted at nodes
ni1 , . . . ,nik .

The final cost of the tree in Fig. 22 obtained with the CIAO program
is equivalent to the one that can be computed by using ×′ to define the fr
cost function. Starting from the n′0 source node and the connector (n′0,n

′

1)
with cost 〈10, 1〉, the total cost of the tree cn′0 is

cn′0 = fr(cn′1 ) = 〈10, 1〉 ×′ cn′1
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:- module(multicastnetwork,_,_). 
:- use_module(library(aggregates)). 
:- use_module(library(lists)).

max([X, Y], X) :- X >= Y. 
max([X, Y], Y) :- X < Y. 
min([X, Y], X) :- X < Y. 
min([X, Y], Y) :- X >= Y.

times([B1, C1], [B2, C2], [B, C]) :-
  min([B1, B2], B),
  C is (C1 + C2).

plus([], Best, Best).

plus([[B,C]|Rest], [B1,C1], Max):- 
  max([B,B1], BMax), 
  min([C,C1], DMin), 
  plus(Rest, [BMax,DMin], Max).

route(X, Y, BestQoS):-  
  findall([B,C], tree(X, Y, [B,C]), L1), 
  plus(L1, [0,100], BestQoS).

tree(X, [X], [B, C]):-
  leaf([X], [B, C]).

tree(X, Z, [B, C]):-
  connector(X, W, [B1, C1]),
  treeList(W, Z, [B2, C2]),
  times([B1, C1], [B2, C2], [B, C]).

treeList([], [], [100, 0]).

treeList([X|Xs], Z, [B, C]):-
  tree(X, Z1, [B1, C1]),
  append(Z1, Z2, Z),
  treeList(Xs, Z2, [B2, C2]),
  times([B1, C1], [B2, C2], [B, C]).

edge(n0, [n1], [10, 1]).
edge(n1, [n2], [3, 6]). 
edge(n1, [n3], [7, 2]). 
edge(n1, [n4], [10, 3]). 
edge(n2, [n4], [1, 5]).
edge(n3, [n5], [2, 9]). 
edge(n3, [n6], [3, 5]). 
edge(n4, [n5], [4, 2]). 
edge(n4, [n9], [5, 3]). 
edge(n5, [n7], [8, 1]). 
edge(n5, [n8], [7, 1]). 

leaf([n0], [100, 0]). 
leaf([n1], [100, 0]). 
leaf([n2], [100, 0]). 
leaf([n3], [100, 0]). 
leaf([n4], [100, 0]). 
leaf([n5], [100, 0]). 
leaf([n6], [100, 0]). 
leaf([n7], [100, 0]). 
leaf([n8], [100, 0]). 
leaf([n9], [2, 3]).
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connector(X, [Y], L, [B,C]):-
    edge(X, [Y], [B,C]),
    nocontainsx(L, Y).

connector(X, [Y|Ys], L, [B,C]):-
    edge(X, [Y], [B1,C2]),    
    nocontainsx(L,Y),     
    insert_last(L, Y, Z),
    connector(X, Ys, Z, [B2,C2]),
    min([B1,B2], B),
    max([C1,C2], C).

5)

ro
u

te

Table 10: The CIAO program representing the best result tree over the
weighted and-or graph problem in Fig. 20b.
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Figure 22: The best multicast distribution tree that can be found with the
program in Tab. 16.

The framework can be used to solve the unicast problem as well, if the
asked query include only one destination node, e.g. route(n0, [n6], [B,C]).

4.4.3 Modality-based Steiner Tree Problems

As we provide in Ch. 4.3.3 for plain paths, our aim is now to improve the
tree search by including the possibility of considering some modalities
associated with the use of the hyperarcs. Even in this case the justification
is easy, since sometimes it may be useful to associate with each hyperarc
also the information about the modality to be used to traverse that specific
hyperarc. We will show an example using only two of the three modalities
of Ch. 4.3.3: wired link with no encryption service (w), and wireless link
with no encryption service (l). Other classes could collect slices of day time
in which network links are preferred to be used (e.g. to better support the
peaks of traffic), or label special conditions of use, e.g. to support “night
back-up” or “black-out” events.
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In Fig. 23 we show an example on how to pass from a network to
a corresponding hypergraph with modalities (from Fig. 23a to Fig. 23b):
the modality associated with a connector is found by using the union
operator (i.e. ∪) on the sets of modalities associated with each of the links
represented by that connector. In the example of Fig. 23, 0-connectors
have emptyset as label, since in this case we do not need any further
information to finally reach a receiver; however, in general 0-connector
labels may contain the same modalities as the other n-connector labels,
e.g. when they represent the internal structure of a sub network, as (n9)
in Fig. 20b. For example, if the connection from n0 to n1 is wired, and
the connection from n0 to n2 is wireless, the connector (n0,n1,n2) will be
labeled with the {w, l} modality set. Thus, edges are now represented in
the following way:

edge(source node, [dest nodes], [bandwidth, cost], [list o f modalities])

The query for the tree search must now be performed by including
also the set of allowed modalities: if the set of modalities associated with
a connector is a subset of the modalities asked in the query, then that con-
nector can be used to build the tree. This can be practically accomplished
by using, for example, the CIAO difference predicate between the two lists
(sets) of modalities, or the sublist property.

For example (referring to Fig. 23), asking for route(n0, [n3,n4], [B,C], [w])
means that we are looking for paths made only with wired links (i.e. w).
The (n0,n1,n2) connector cannot be used because its label is {w, l} and we
do not want to use wireless links (we remind that l stands for wireless link
with no encryption service). To include also that specific connector in the
search, we have to ask the query route(n0, [n3,n4], [B,C], [w, l]). Clearly,
the final 0-connectors are always included in trees because they have an
emptyset label.
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Figure 23: a) A network with modalities associated to the links, and b) the
corresponding hypergraph.

4.5 A Last Refinement on Semirings for Partially-
Ordered Problems

As seen in Ch. 4.3.2 and Ch. 4.4.1, the costs on the connectors can be
represented by vectors of costs, representing the QoS metric values of the
network links. However, since we can have a partial order, two such pairs
may possibly be incomparable, and this may lead to a strange situation
while computing the semantics of a given goal. Considering the example
in Ch. 4.3.2 and the related program in Tab. 7, if we want to compute
the cost and delay of the best path from p to v, by giving the query :-
p., the answer in this case is the value 〈7, 7〉. While the semiring value
obtained in totally ordered SCLP programs represents the cost of one of
the shortest paths, here it is possible that there are no routes with this cost:
the obtained semiring value is in fact the greatest lower bound (w.r.t. both
cost and delay) of the costs of all the paths from p to v. This behavior
comes from the fact that, if different refutations for the same goal have
different semiring values, the SCLP framework combines them via the +
operator of the semiring (which, in the case of our example, is the min′
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operator of Ch. 4.3.2). If the semiring is partially ordered, it may be that
a + b is different from both a and b. On the contrary, if we have a total
order a + b is always either a or b.

This problem of course is not satisfactory, because usually one does
not want to find the greatest lower bound of the costs of all paths from
the given node to the destination node, but rather prefers to have one
of the non-dominated paths. To solve this problem, we can add vari-
ables to the SCLP program, as we previously did, and also change the
semiring. In fact, we now need a semiring which allows us to associate
with the source node the set of the costs of all non-dominated path from
there to the destination node. In other words, starting from the semi-
ring S = 〈A,+,×, 0, 1〉 (which, we recall, in the example of Ch. 4.3.2 is
〈N2,min′,+′, 〈+∞,+∞〉, 〈0, 0〉〉), we now have to work with the semiring
PH(S) = 〈PH(A),],×∗, ∅,A〉, where:

• PH(A) is the Hoare Power Domain (Smy78) of A, that is, PH(A) =
{S ⊆ A | x ∈ S, y ≤S x implies y ∈ S}. In words, PH(A) is the set of
all subsets of A which are downward closed under the ordering ≤S.
It is easy to show that such sets are isomorphic to those containing
just the non-dominated values. Thus in the following we will use
this more compact representation for efficiency purposes. In this
compact representation, each element of PH(A) will represent the
costs of all non-dominated paths from a node to the destination
node;

• the top element of the semiring is the set A (its compact form is {1},
which in our example is {〈0, 0〉});

• the bottom element is the empty set;

• the additive operation ] is the formal union (Smy78) that takes two
sets and obtains their union;

• the multiplicative operation ×∗ takes two sets and produces another
set obtained by multiplying (using the multiplicative operation ×
of the original semiring, in our case +’) each element of the first set
with each element of the second one;
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• the partial order of this semiring is as follows: a ≤PH(S) b iff a] b = b,
that is for each element of a, there is an element in b which dominates
it (in the partial order ≤S of the original semiring).

From the theoretical results in (Smy78), adapted to consider c-semirings,
we can prove that PH(S) and its more compact form are indeed isomor-
phic. Moreover, we can also prove that given a c-semiring S, the structure
PH(S) is a c-semiring as well (BMR02b).

Theorem 4.5.1 Given a c-semiring S = 〈A,+,×, 0, 1〉, the structure PH(S) =
〈PH(A),],×∗, ∅,A〉 obtained using the Power domain of Hoare operator is a
c-semiring.

The proof easily follows from the properties of the × operator in the
c-semiring S and from the properties (commutativity, associativity, and
idempotence) of the formal union ] in PH(S).

Note that in this theorem we do not need any assumption over the c-
semiring S. Thus the construction of PH(S) can be done for any c-semiring
S. Notice also that, if S is totally ordered, the c-semiring PH(S) does not
give any additional information w.r.t. S. In fact, if we consider as a single
element element the empty set (with the meaning that there are no paths)
and the set containing only the bottom of A (with the meaning that there
exists a path whose cost is ∞), it is possible to build an isomorphism
between S and PH(S) by mapping each element p (a set) of PH(A) onto the
element a of A such that a ∈ p and a dominates all elements in the set p.

The only change we need to make to the program with variables,
in order to work with this new semiring, is that costs now have to be
represented as singleton sets. For example, clause cpq :- < 2, 4 >. will
become cpq :- {< 2, 4 >}.

Still considering the example in Ch. 4.3.2, Let us now see what happens
in our example if we move to this new semiring. First we give a goal like
:- p(X). As the answer, we get a set of pairs, representing the costs of all
non-dominated paths from p to v. All these costs are non-comparable in
the partial order, thus the user is requested to make a choice. However,
this choice could identify a single cost or also a set of them. In this second
case, it means that the user does not want to commit to a single path

120



from the beginning and rather prefers to maintain some alternatives. The
choice of one cost of a specific non-dominated path will thus be delayed
until later. Other considerations on this semiring are given in (BMR02b).

Most classical methods to handle multi-criteria SP problems find the
shortest paths by considering each criteria separately, while our method
deals with all criteria at once. This allows to obtain optimal solutions
which are not generated by looking at each single criteria. In fact, some
optimal solutions could be non-optimal in each of the single criteria, but
still are incomparable in the overall ordering. Thus we offer the user a
greater set of non-comparable optimal solutions. For example, by using
a cost-delay multi-criteria scenario, the optimal solution w.r.t. cost could
be 10e (with a delay of 100msec), while the optimal solution w.r.t. de-
lay could be 10msec (with a cost of 100e). By considering both criteria
together, we could also obtain the solution with 20 euro and 20msec!

Note that the given considerations on partially-ordered problems clearly
state for the multicast tree example in Ch. 4.4.1 as well. In this case,
PH(S) = 〈PH(A),],×∗, ∅,A〉 uses the semiring for bandwidth-delay multi
criteria: SNetwork = 〈〈B ∪ {0,+∞},N〉,+′,×′, 〈0,+∞〉, 〈+∞, 0〉〉, where B is
the set of bandwidth values,+′ is 〈max,min〉 and×′ is 〈min,+〉. Therefore,
×
∗ uses 〈min,+〉 (×′) to compose two sets, and ] the ordering ≤S defined

by 〈max,min〉 (+′).
Finally, this method is applicable not only to the multi-criteria case,

but to any partial order, giving us a general way to find a non-dominated
path in a partially-ordered SP problem. It is important to notice here
the flexibility of the semiring approach, which allows us to use the same
syntax and computational engine, but on a different semiring, to compute
different objects.

4.5.1 Limiting the Number of Partially Ordered Solutions

As presented in Ch. 4.5, we can use the Hoare Power Domain operator to
retrieve the set of all the non-dominated paths (unicast) or trees (multicast)
when we suppose that our network links have multiple and incomparable
costs (e.g. bandwidth, cost and delay). This set of solutions is called the
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Pareto frontier and is guaranteed to contain all optimal solutions: all the
solutions in this set are equivalently feasible. In other words, the Pareto
frontier exactly captures the available trade-offs between the different QoS
objectives. However, the use of partially ordered structures leads to the
generation of a potentially exponential number of undominated solutions.
When several of different paths/trees exist between the source and the
receiver(s), it is therefore crucial to keep the number of configurations as
low as possible through some form of approximation. However, the Hoare
Power Domain operator can still be applied in case the sets of QoS costs
have few elements and we really do not know how to refine the search,
or if we know that few routes exist among nodes (these hypotheses limit
the number of solutions).

We do not want to completely deviate from the incomparability prop-
erty of the QoS metrics by adopting a total order, otherwise all the costs
could be rephrased as a single one for each link, making the problem
much more easier (e.g. the unicast problem can be solved in polynomial
time (CLR90)) and less interesting, as explained in Ch. 4.2.

The proposed solution consists in avoiding a pointwise comparison of
the single orderings representing the different criteria for the + operation
of the semiring: we instead adopt a function that composes all the criteria
in a single one and then chooses the best tuple of costs according to a
total ordering. Each of the QoS criteria is composed by using a different
importance value (i.e. a weight wi). Theorem 4.5.2 proves that such
function is still a valid + semiring operation for an Ordered Cartesian
product of Weighted semirings (Bis04; BMR97c), i.e. 〈R+,min, +̂,+∞, 0〉
(where +̂ is the arithmetic sum):

Theorem 4.5.2 Given two Weighted semirings S1 and S2 and a relative pref-
erence for their element sets, i.e. w1,w2 ∈ R+, we define the Ordered Cartesian
product of S1 and S2 ≡ S f = 〈〈R

+
× R+〉, f , 〈+̂, +̂〉, 〈+∞,+∞〉, 〈0, 0〉〉. Given

〈a1, b1〉, 〈a2, b2〉 ∈ 〈R+ ×R+〉, f (i.e. the + of the semiring) is defined as:

f (〈a1, b1〉, 〈a2, b2〉) =


〈a1, b1〉 if w1a1+̂w2b1 > w1a2+̂w2b2

〈min(a1, a2),min(b1, b2)〉 if w1a1+̂w2b1 = w1a2+̂w2b2

〈a2, b2〉 if w1a1+̂w2b1 < w1a2+̂w2b2

Then S f is a c-semiring.
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Since the only change w.r.t. a classical Cartesian product of Weighted
semirings is the + operator of S f , we only need to check the properties
of + given in Ch. 2.2. The function f is commutative, associative, closed,
idempotent, 〈+∞,+∞〉 is its unit element and 〈0, 0〉 its absorbing element:
these properties easily follows from the properties of min and arithmetic
sum and multiplication, which describe the f expression. We only prove
that × still distributes over + (ai, bi,wi ∈ R+):

〈a1, b1〉 × (〈a2, b2〉 + 〈a3, b3〉) =


〈(a1+̂a2), (b1+̂b2)〉 if cond1

〈(a1+̂min(a2, a3), (b1+̂min(b2, b3)〉 if cond2

〈(a1+̂a3), (b1+̂b3)〉 if cond3

(〈a1, b1〉 × 〈a2, b2〉) + (〈a1, b1〉 × 〈a3, b3〉) =
〈(a1+̂a2), (b1+̂b2)〉 if cond4

〈min(a1+̂a2, a1+̂a3),min(b1+̂b2, b1+̂b3)〉 if cond5

〈(a1+̂a3), (b1+̂b3)〉 if cond5

Where cond1 is w1a2+̂w2b2 > w1a3+̂w2b3 and cond4 is w1(a1+̂a2)+̂w2(b1+̂

b2) > w1(a1+̂a3)+̂w2(b1+̂b3); by simplifying both sides of cond4 we obtain
that cond1 ≡ cond2. In the same way we can prove that cond2 ≡ cond5 if
and cond3 ≡ cond6. Therefore, × distributes over +.

Notice that the proof can be easily extended for an Ordered Cartesian
product of n > 2 Weighted semirings. Notice also that we can assemble
an Ordered Cartesian product even for n Probabilistic semirings (Bis04;
BMR97c), and even for semirings in general, as claimed in Theo. 4.5.3:

Theorem 4.5.3 We consider two identical semirings S1,S2 = 〈A,+,×, 0, 1〉
where × is cancellative (BG06). We can define an Ordered Cartesian product
S f as 〈〈A × A〉, f , 〈×,×〉, 〈0, 0〉, 〈1, 1〉〉, where f is defined as:

f (〈a1, b1〉, 〈a2, b2〉) =


〈a1, b1〉 if a1 × b1 >S1,2 a2 × b2

〈a1 + a2, b1 + b2〉 if a1 × b1 =S1,2 a2 × b2

〈a2, b2〉 if a1 × b1 <S1,2 a2 × b2

Then S f is a c-semiring.
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Notice that we use the same + and × operators of S1,S2 also in the
definition of f , thus their properties still hold. For this reason, we can
easily prove that the + (as defined by f ) of the semiring is commutative,
associative, closed, idempotent, 〈0, 0〉 is its unit element and 〈1, 1〉 its
absorbing element. The cancellative property is needed to prove the that
× distributes over +:

〈a1, b1〉 × (〈a2, b2〉 + 〈a3, b3〉) =


〈(a1 × a2), (b1 × b2)〉 if cond1

〈(a1 × (a2 + a3), (b1 × (b2 + b3))〉 if cond2

〈(a1 × a3), (b1 × b3)〉 if cond3

(〈a1, b1〉 × 〈a2, b2〉) + (〈a1, b1〉 × 〈a3, b3〉) =
〈(a1 × a2), (b1 × b2)〉 if cond4

〈(a1 × a2) + (a1 × a3), (b1 × b2) + (b1 × b3)〉 if cond5

〈(a1 × a3), (b1 × b3)〉 if cond6

Where cond1 is a2 × b2 >S1,2 a3 × b3 and cond4 is (a1 × a2) × (b1 × b2) >S1,2

(a1 × a3) × (b1 × b3). Since × is cancellative, we can simplify both sides of
cond4 and we obtain that cond1 ≡ cond4. In the same way we can prove
that cond2 ≡ cond5 if and cond3 ≡ cond6. Therefore, × distributes over +.

With Theo. 4.5.2 and Theo. 4.5.3 we show that multiple semirings of
the same type (e.g. Weighted or Probabilistic) can be composed together
according to some expressed preferences. In this way, the resulting tuples
are totally ordered and the final solution consists in the most preferred
one. Ad-hoc compositions can be used also to merge different semirings
in a single one, e.g. Weighted and Probabilistic. However, according to the
definition of f in Theo. 4.5.3 (similar considerations hold for Theo. 4.5.2),
f (〈a1, b1〉, 〈a2, b2〉) = 〈a1+a2, b1+b2〉 if a1×b1 =S1,2 a2×b2, and thus f returns
the lowest upper bound of the two couples. As already said in Ch. 4.5,
this result does not represent a “real” solution. Nonetheless, this problem
can be overcome by collecting all the best equivalent couples in the same
set, i.e. applying the Hoare Power Domain operator (see Ch. 4.5).

Corollary 4.5.1 Given an Ordered Cartesian product S f = 〈〈A×A〉, f , 〈×,×〉,
〈0, 0〉, 〈1, 1〉〉 as described in Theo. 4.5.2 and the Hoare Power Domain operator
PH, then PH(S f ) is a semiring.
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Given the results in Theo. 4.5.1 (see Ch. 4.5), we can easily assemble
the Hoare Power Domain over the semiring proposed in Theo. 4.5.3, by
using the Hoare Power Domain operator (see Ch. 4.5).

A similar result can be proved for the semiring assembled in Theo. 4.5.2
(i.e. for the Weighted semirings), by applying to it the Hoare Power Domain
operator as well.

4.6 Solving the Problem in Practice

4.6.1 Scale-free Networks

Small-world networks may belong to three classes: single-scale, broad-
scale, or scale-free depending on their connectivity distribution P(k),
which is the probability that a randomly selected node has exactly k
edges. Scale-free networks follow a power law of the generic form
P(k) v k−γ (FFF99): in words, in these networks some nodes act as “highly
connected hubs” (with a high degree), although most nodes are of low
degree. Intuitively, the nodes that already have many links are more likely
to acquire even more links when new nodes join in the graph: this is the
so-called “rich gets richer” phenomenon. These hubs are the responsible
for the small world phenomenon. The consequences of this behavior are
that, compared to a random graph with the same size and the same aver-
age degree, the average path length of the scale-free model is somewhat
smaller, and the clustering coefficient of the network is higher, suggesting
that the graph is partitioned in sub-communities.

Several works as (FFF99; VPSV02) show that Internet topology can
be modeled with scale-free graphs: in (VPSV02) the authors distinguish
between the Autonomous System (AS) level, where each AS refers to one
single administrative domain of the Internet, and the Internet Router level
(IR). At the IR level, we have graphs with nodes representing the routers
and links representing the physical connections among them; at the AS
level graphs each node represents an AS and each link represents a peer
connection trough the use of the Border Gateway Protocol (BGP) protocol.
Each AS groups a generally large number of routers, and therefore the
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AS maps are in some sense a coarse-grained view of the IR maps. The
same authors of (VPSV02) confirm the scale-free property for both these
kinds of graphs with a γ = 2.1 ± 0.1, even if IR graphs have a power-law
behavior smoothed by an exponential cut-off: for large k the connectivity
distribution follows a faster decay, i.e. we have much less nodes with a
high degree. This truncation is probably due to the limited number of
physical router interfaces. In (CH03) the authors prove that scale free
networks with 2 < γ < 3 have a very small diameter, i.e. ln ln N, where N
is the number of nodes in the graph.

Therefore, we decided to test our QoS routing framework on this kind
of networks because they properly model both the AS and the IR levels.

4.6.2 Implementing the Framework

To develop and test a practical implementation of our model, we adopt
the Java Universal Network/Graph Framework (JUNG) (OFWB03), a software
library for the modeling, analysis, and visualization of a graph or net-
work. With this library it is also possible to generate scale-free networks
according to the preferential attachment proposed in (BA99): each time a
new vertex vn is added to the network G, the probability p of creating an
edge between an existing vertex v and vn is p = (degree(v) + 1)/(|E| + |V|),
where |E| and |V| are respectively the current number of edges and vertices
in G. Therefore, vertices with higher degree have a higher probability of
being selected for attachment. We generated the scale-free network in
Fig. 24 (the edges are undirected) and then we automatically produced
the corresponding program in CIAO (where the edges are directed), as
shown in Ch. 4.4.2. This translation can be easily achieved by writing a
text file (from the same Java program generating the network) with all the
clauses representing the edges. The clauses that find the best paths/trees
are instead always the same ones.

The statistics in Fig. 24 suggest the scale-free nature of our network:
a quite high clustering coefficient, a low average shortest path and a
high variability of vertex degrees (between average and max). These fea-
tures are evidences of the presence of few big hubs that can be used to

126



shortly reach the destinations. To generate the network in Fig. 24, we
used the JUNG constructor public BarabasiAlbertGenerator(int init vertices,
int numEdgesToAttach, boolean directed, boolean parallel, int seed) with pa-
rameters respectively instantiated to 100, 3, f alse, f alse, 1: init vertices rep-
resents the number of unconnected “seed” vertices that the graph should
start with, numEdgesToAttach is the number of edges that should be at-
tached from the new vertex to pre-existing vertices at each time step; the
following two instantiated parameters state that we want directed and
not parallel edges in the graph, while the last parameter is a random
number seed. Then, the public void evolveGraph(int numTimeSteps) Java
method instructs the algorithm to evolve the graph numTimeSteps time
steps (instantiated to 200) and returns the most current evolved state of
the graph.

Nodes Edges Clustering Avg. SP Min Deg Max Deg.
265 600 0.13 3.74 1 20

Avg. Deg Diameter
4.52 8

Figure 24: The test scale-free network and the related statistics.
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However, with the CIAO program representing the network in Fig. 24,
all the queries we tried to perform over that graph were explicitly stopped
after 5 minutes without discovering the best QoS route solution. There-
fore, a practical implementation definitely needs a strong performance
improvement: in Ch. 4.7 we show some possible solutions that could all
be used also together. In Ch. 4.7.3 we show an implementation of the
exactly same program in ECLiPSe (AW07): in addition, we use branch-
and-bound to prune the search and we claim that only this technique is
sufficient to experience a feasible response time for the queries.

4.7 Performance and Feasible Encodings

Although the framework we present in this chapter is conceived as a
declarative and expressive mean to represent the QoS routing problem,
some of the used encodings represent an obstacle towards a real use on
practical cases. Our study is clearly not aimed at a successful performance
comparison with dedicated algorithms running inside routers or network
devices: we instead desire to model many different routing constraints
(e.g. routing and policy constraints) all inside the same framework. The
power of this model is in the facility with which routing constraints and
network bounds in general can be expressed and added to pre-existing
rules. However, we need also a feasible implementation to obtain and
check a solution for real-case networks, even if not performing as well
as the algorithms reported in Ch. 4.2.2 and Ch. 4.2.3. All these works
are focused only on some metrics (e.g. DVMA (RB97) considers only
delay and jitter) or adopts ad-hoc heuristics to relax the problem. Since in
Ch. 4.6.2 we prove that a straightforward implementation is not feasible
in practice, we now provide some methods to lighten these encodings
and tackle down the performance problems. For the reason that we use
a general and open framework, we will suggest general strategies to
enhance the results. However, we think that more specific techniques
can be used as well.

Notice that the techniques we are going to present but not directly
implement in practice (as tabling in Ch. 4.7.2) for sake of brevity, have
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however a strong and accepted background concerning their efficiency.

4.7.1 Using a Cut Function to Reduce the Number of So-
lutions

In Ch. 4.5.1 we solve the (potentially) exponential space problem linked to
the Pareto optimal frontier of the multicriteria solutions: in that case, we
linearize the partial ordering by composing all the criteria together and
using a total ordering on the result.

However, reducing all the QoS costs to a single one is a coarse simpli-
fication that can be applied only in some cases: it is not always possible
to completely rank all the preferences among themselves (e.g. the “user”
could not have clear ideas, or it could not be possible to “mix” different
metrics together), and it could be often pleasing to show more results to
the final user. Moreover, as reported in literature, with a single metric the
problem becomes much less interesting: for example, the unicast problem
becomes solvable in polynomial time, instead of to be NP-Complete (see
Ch. 4.2.1).

For this reason, in Def. 22 we define a cut function that can be ap-
plied each time on the result of the formal union (i.e. ]) of the Hoare
Power Domain defined in Ch. 4.5. After the cut, the set contains only
the best tuples of costs, chosen with the criteria defined by the function.
Definition 22 is presented for the Weighted semirings, but other ad-hoc
cuts can be defined for other types of semirings, just in case the criteria
wanted to reduce the number of solutions cannot be represented with a
semiring-based structure (as in Theo. 4.5.2). In words, the costs of a tuple
t are composed in a single cost ct with the aid of a weight for each tuple
element: this weight can change in a predefined interval, thus different ct

can be obtained. Then, t is deleted from the set if, for each of its ct, there
always exists another tuple v in the set and a cost cv > ct.

Definition 22 We consider a set P of partially ordered n-tuples 〈a1, a2, . . . , an〉,
where ai ∈ R+ in 〈R+,min, +̂,+∞, 0〉 (i.e. a Weighted semiring); each ai is
associated with a weight wi in the interval [ki − εi, ki + εi] and ki, εi ∈ R+. A
cut function can be defined as cut(P) = Pcut ⊆ P, where Pcut = {〈b1, b2, . . . , bn〉 ∈
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P|@〈c1, c2, . . . , cn〉 ∈ P.(w1b1+̂w2b2+̂ . . . +̂wnbn) < (w1c1+̂w2c2+̂ . . . +̂wncn),∀wi ∈

[ki − εi, ki], i ∈ {1..n}}

Therefore, we reduce the number of solutions and we continue con-
sidering a partial order and not a total one (which is important for us, as
explained before), but we discard “bad” tuples of cost, where “bad” is
according to the expressed preferences. Notice that not all the different
criteria must have an associated weight, and the cut can be performed
only considering a subset of metrics.

Notice also that this cut function can be easily modeled with CIAO
Prolog clauses by considering the solutions as lists and by using the delete
predicate on the elements that do not satisfy the given conditions. Notice
also that the preference criteria are different from the ones described in
Theo. 4.5.2: i.e. it can be proved that the final set of solution obtained with
the Hoare Power Domain operator (see Theo. 4.5.1) is a subset of the set
found with the cut function in Def. 22.

4.7.2 Tabled Soft Constraint Logic Programming and Net-
work Decomposition

In logic programming, the basic idea behind tabling (or memoing) is that
the calls to tabled predicates are stored in a searchable structure together
with their proven instances: subsequent identical calls can use the stored
answers without repeating the computation.

Tabling improves the computability power of Prolog systems and for
this reason many programming frameworks have been extended in this
direction. Due to the power of this extension, many efforts have been
made to include it also in CLP, thus leading to the Tabled Constraint Logic
Programming (TCLP) framework. In (CW00) the authors present a TCLP
framework for constraint solvers written using attributed variables; how-
ever, when programming with attributed variables, the user have to take
care of of many implementation issues such as constraint store represen-
tation and scheduling strategies. A more recent work (SW04) explains
how to port Constraint Handling Rules (CHR) to XSB (acronym of eXtended
Stony Brook), and in particular its focus is on technical issues related to the
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integration of CHR with tabled resolution: as a result, a CHR library is
presently combined with tabling techniques within the XSB system. CHR
is a high-level natural formalism to specify constraint solvers and prop-
agation algorithms. This a further promising framework where to solve
QoS routing problems and improve the performance (for example, tabling
efficiency is shown in (RRS+95)), since soft constraints have already been
successfully ported to the CHR system (FM02). Hence, part of the soft
constraint solving can be performed once and reused many times.

AS1

AS2

AS3

Table 1 Table 2

Table 3

Call Return

Call Call ReturnReturn

Figure 25: A network subdivided in Autonomous Systems; each AS can store
in its border routers a table with the goals related to that specific AS.

One more consideration that can be taken into account while trying
to reduce the complexity, is that large networks, as Internet, are already
partitioned into different Autonomous System (AS) (Moy98), or however,
into subnetworks. An AS is a collection of networks and routers under the
control of one entity (or sometimes more) that presents a common routing
policy to the Internet. AS can be classified by observing the types of traffic
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traversing them. A multihomed AS maintains connections to more than one
other AS; however, it would not allow traffic from one AS to pass through
on its way to another AS. A stub AS is only connected to a single AS. A
transit AS provides connections through itself to the networks connected
to it. Considering Fig. 25, network AS1 can use the transit AS3 to connect
to network AS2. An AS number (or ASN) uniquely identifies each AS on
the internet (i.e. AS1, AS2 and AS3).

As shown in Fig. 25, in each AS (or subnetwork in general) we can find
a table with the QoS routing goals concerning the destinations (routers
and hosts) within its bounds, by using tabling techniques. At this point,
these tables helps to find the routes that span multiple ASs and the search
procedure is considerably speeded up: the routes internal to each AS can
be composed together by simply using the links connecting the border
routers. For example, consider when a sender in AS1 needs to start a
multicast communication towards some receivers in AS2 and AS3: the
routers inside AS1 can use Table 1 to find the routes from the source to the
border routers of AS1 (i.e. it can communicate with other ASs). Then, the
border routers in AS2 and AS3 respectively use Table 2 and Table 3 to find
the second and final part of the route towards the receivers inside their
AS. The procedure of finding such a goal table for a single AS is much less
time consuming than finding it for the whole not-partitioned network.
Clearly, the fundamental premise to obtain a substantial benefit from this
technique is to have strongly-connected subnetworks and few “bridges”
among them.

4.7.3 An Implementation in ECLiPSe

As shown in Ch. 4.4.1, the representation of the f-star of node in the mul-
ticast model can be composed by a total of O(2n) connectors, thus in the
worst case it is exponential in the number of graph nodes. This draw-
back, which is vigorously perceived in strongly connected networks, and
together with considering a real case network linking hundreds of nodes,
would heavily impact on the time-response performance during a practi-
cal application of our model. Therefore, it is necessary to elaborate some
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improvements to reduce the complexity of the tree search, for example
by visiting as few branches of the SCLP tree as possible (thus, restricting
the solution space to be explored). For this reason, we provide a further
implementation by using the ECLiPSe (AW07) system.

ECLiPSe is a software system for the development and deployment
of constraint programming applications, e.g. in the areas of planning,
scheduling, resource allocation, timetabling, transport and more. It con-
tains several constraint solver libraries, a high-level modelling and control
language, interfaces to third-party solvers, an integrated development en-
vironment and interfaces for embedding into host environments (AW07).
We decided to use ECLiPSe because of its extendibility and efficiency due
to its wide range of optimization libraries (e.g. on symmetry breaking). In
particular, we exploit the branch and bound library in order to reduce the
space of explored solutions and consequently improve the performance.
Branch-and-bound is a well-known technique for optimization problems,
which is used to immediately cut away not promising partial solutions,
by basing on a “cost” function.Unfortunately, as far as we know, ECLiPSe
does not support tabling techniques (introduced in Ch. 4.7.2) and therefore
it cannot be adopted to compose the benefits of both techniques.

In Fig. 26 we show a program in ECLiPSe that represents the unicast
QoS routing problem for the scale-free network in Fig. 24. We decided to
show only the unicast case for sakes of clarity, but feasible time responses
can be similarly obtained for the multicast case (i.e. searching for a tree
instead of a plain path) by working on the branch-and-bound interval
of explored costs, as we will better explain in the following. Clearly, in
Fig. 26 we report only some of the 600 edges of the network.

The code in Fig. 26 has been automatically generated with a Java pro-
gram using JUNG, as done for the CIAO program in Ch. 4.6.2: the corre-
sponding text file is 30Kbyte. The size can be halved by not printing the
reverse links and generating them with a specific clause, if each link and
its reverse one have the same cost.

The branch-and-bound optimization is achieved with minimize(+Goal,
?Cost) (importing the branch and bound library) in the searchpath bb clause
in Fig. 26, where the Goal is a nondeterministic search routine (the clauses
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:- lib(ic). 
:- lib(branch_and_bound). 
:- lib(lists).

edge(n0,[n192], [9, 2]). 
edge(n1,[n119], [4, 2]). 
edge(n2,[n183], [5, 9]). 
edge(n2,[n23], [7,7]). 
edge(n2,[n260], [2, 1]). 
edge(n2,[n115], [6, 9]). 
edge(n2,[n156], [9, 4]). 
edge(n2,[n4], [6, 5]).
          .
          .
          .
edge(n263,[n167], [2, 4]). 
edge(n263,[n191], [6, 9]). 
edge(n263,[n70], [5, 2]). 
edge(n263,[n108], [6, 4]). 
edge(n263,[n26], [5, 9]). 
edge(n263,[n46], [8, 5]). 
edge(n263,[n171], [6, 7]). 
edge(n263,[n35], [6, 3]). 
edge(n264,[n102], [6, 4]). 
edge(n264,[n189], [3, 1]).
edge(n264,[n68], [8, 6]). 
edge(n264,[n119], [5, 9]). 
edge(n264,[n156], [5, 1]).

path(X, [Y], C, D, L, [Y]):-   
    edge(X, [Y], [A, B]), 
    C #= A + B,  
    nonmember(Y, L),   
    D is 1.

path(X, [Y], C, D, L, N):-     
    C1 #>= 0, C2 #>=0,
    C1 #= A + B,
    C #= C1 + C2,     
    D #= 1 + D2,           
    edge(X, [Z], [A, B]),    
    nonmember(Z, L),    
    append(L, [Z], L2),       
    path(Z, [Y], C2, D2, L2, N2),
    append(N2, [Z], N).

searchpath_bb(X, Y, C, D, L, N):-  
    D #>= 1, D #=< 16, 
    C #>= 0, C #=< 160, 
    minimize(path(X, [Y], C, D, L, N2), C),  
    append(N2, [X], N).

searchpath_all(X, Y, C, D , K, L, N):- 
    findall(C, path(X, [Y], C, D, K, N2), L),   
    append(N2, [X], N).

Figure 26: The representation in ECLiPSe (with branch-and-bound optimiza-
tion) of the QoS routing problem for the network in Fig. 24; clearly, only some
of the 600 edges are shown.

that describe the path structure) that instantiates a Cost variable (i.e. the
QoS cost of the path) when a solution is found. Notice that for each of
the edges of the network we randomly generated two different QoS costs
by using the java.util.Random Class, each of them in the interval [1..10].
Therefore, the cost of a link is represented by a couple of values. In order
to model the semiring we propose in Theo. 4.5.2 and to consequently
limit the explosion of the Pareto-optimal solutions, the cost of the path
is computed by summing the two QoS features together (i.e. A and B
in Fig. 26): we compute w1A + w2B and we suppose w1 = w2 = 1, i.e.
the composed cost of a link is in the interval [2..20]. ECLiPSe natively
allows to apply a branch-and-bound procedure focused only on a single
cost variable, but ad-hoc techniques can be developed to consider also
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Figure 27: The query searchpath bb(n6,n261,C,D, [n6],L) in ECLiPSe and the
corresponding result for the program in Fig. 26.
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the cut function presented in Def. 22, in order to keep a real multicriteria
preference for the QoS features.

The two clauses searchpath bb and searchpath all represent the queries
that can be asked to the system: they respectively use and not use the
branch-and-bound optimization, i.e. searchpath all finds all the possible
paths in order to find the best one. In order to describe the structure of a
searchpath bb query (see Fig. 26), we take as example searchpath bb(n2,n262,
C,D, [n2],L): with this query we want to find the best path between the
nodes n2 and n262, C is the cost of the path (used also by the branch-and-
bound pruning), D is the number of hops, L (in Fig. 26) is the list of already
traversed nodes and N is a list used to collect the nodes of the path (in
reverse order). The result of this query is reported in Fig. 27, by showing
directly the ECLiPSe window: the best cost value (i.e. 20) was found after
0.33 seconds with a path of 4 hops, i.e. n2-n260-n125-n202-n262.

The corresponding query searchpath all(n6,n261,C,D,K, [n6],N) (K is
the list of solutions found by the findall predicate), which does not use the
branch-and-bound pruning (and constraints), was explicitly interrupted
after 10 minutes without finding an answer for the goal. Other queries
are satisfied in even less than one second, depending on the efficiency of
the pruning efficiency for the specific case.

To better describe and accelerate the search we added also some con-
straints, which are explained in Tab. 11. In Fig. 26 we also import the
hybrid integer/real interval arithmetic constraint solver of ECLiPSe to use
them, i.e. the ic library. Notice that the constraints depending on the
Diameter of the network (i.e. 8, as shown in Fig. 24) limit the search space
and provides a mild approximation at the same time: in scale-free net-
works, the average distance between two nodes can be ln ln N, where N
is the number of nodes (CH03) (see also Ch. 4.6.1). Therefore, considering
a max depth of the path as twice the diameter value (i.e. 16) still results
in a large number of alternative routes, since, for the scale-free network
in Fig. 24, this value is 4-5 times the average shortest path of the network
(i.e. 3.74 as shown in Fig. 24). Notice that, after the execution of the
program in Fig. 26, if no solution is found or we want to try if the obtained
solution is really the one with the best cost, it is possible to change the
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 C #>= 0,
C #=< 160

D #>= 1, 
D #=< 16   

D #= 1 + D2   

C1 #>= 0, C2 #>=0,
      C1 #= A + B,
     C #= C1 + C2

Used to limit the space of cost values: its reduction sensibly
improves the performance. It is possible to start the search with a
small threshold and then raise it if no solution is found. For the
example in Fig. 15 it was computed as the maximum possible
cost of a path: EdgeMaxCost x Diameter = 20 x 8 = 160. 

These two constraints are used to limit the depth (i.e. the number
of hops) of the path we want to find. For the example in Fig. 15 it
was computed as Diameter x 2 = 8 x 2 = 16. It is a good
overestimation since we are dealing with a scale-free network
(see Sec 7.1).

Used to compute the depth of the path.

Four constraints are used to compute the cost of the path: it is
the cost of an edge (i.e. C1 is obtained by summing the two QoS
features A and B) plus the cost of the remaining part of the path
(i.e. C2). Clearly, both C1 and C2 must be greater than 0.

Table 11: The description of the constraints used in Fig. 26.

constraints in Tab. 11 by trying disjoint intervals (e.g. C #> 160, C #<= 320
or D #> 16, D #<= 32), and then executing the program one more time
(since performance permit to do so). The bound values for these intervals
can be directly obtained form the statistics acquired during the network
generation (see Fig. 24).

In order to show the scalability property of our framework, in Tab. 12
we summarize the performance results of 50 queries executed on three
distinct scale-free networks with a different number of nodes: n = 50,
n = 265 (i.e. the network in Fig. 24) and n = 877. These statistics are
related to the Min/Max/Average Time needed to obtain a path, its Average
Cost and its Max/Average Depth. For each query, the source and destination
nodes have been randomly generated. We can see that Max Time sensibly
differs from the Average Time, and this is due to the poor efficiency of
the branch-and-bound pruning in some cases. However, this technique
performs very well in most of cases, as the low Average Time Tab. 12 shows
(even for n = 877). The performance results in Tab. 12 have been collected
on a Pentium M 1.7Ghz and 1Gb of memory.

Comparable performance results are achievable as well also for the
multicast case, by enforcing the structure of the tree with other ad-hoc
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Nodes Min Time Max Time Avg. Time Avg. Cost
50 ∼ 0s 0.45s 0.1s 17.54

265 0.02s 77.12s 4.08s 29.8
877 0.5s 40.05s 4.89s 37.72

Nodes Avg. Depth Max Depth
50 3.04 7
265 5.46 11
877 6.72 14

Table 12: Some performance statistics obtained with the ECLiPSe framework
(with branch-and-bound), collected on three different size networks (i.e. 50,
265 and 1000 nodes). On each network we performed 50 queries.

constraints: for example, by constraining the width of the searched tree
to the number of the multicast receivers in the query, since it is useless
to find wider trees. Moreover, the problem can be first over-constrained
and then relaxed step-by-step if no solution is found. For example, we
can start by searching a solution in the cost interval [0..35] and then, if the
best solution is not included in this interval, setting the interval to [36..70]
(and so on until the best solution is found). Notice that in this way we
strongly speed-up the search while preserving all the information, due
to the characteristics of the branch-and-bound technique. This behavior
can be easily reproduced in ECLiPSe, since the customizable options of
bb min(+Goal, ?Cost, ?Options) (i.e. another clause to express branch-and-
bound) include the [From..To] interval parameters.

Finally, we are confident that the ECLiPSe system can be used to fur-
ther improve the performance, since it is possible to change the parameters
of branch-and-bound, e.g. by changing the strategy after finding a solu-
tion (AW07): continue search with the newly found bound imposed on
Cost, restart or perform a dichotomic after finding a solution, by splitting
the remaining cost range and restart search to find a solution in the lower
sub-range. If it fails, the procedure assumes the upper sub-range as the
remaining cost range and splits again. Moreover, it is possible to add Local
Search to the tree search, and to program specific heuristics (AW07).
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Further Reducing the Dimension of n-connectors

One more enhancement that can be accomplished to reduce the size of a
node’s neighborhood (w.r.t. the given query) for the multicast distribu-
tion, is the inclusions of program facts that describe the topology of the
network (or part of it). In this way, like in classic network routing, we can
immediately remove from the search the not involved clusters or those
clusters we do not want to cross for policy reasons. For example, we can
add the list of reachable ASs directly in each connector: if a connector
allows us to reach {AS1,AS2,AS4} but not {AS3,AS5}, we can use the first
list as the additional routing information linked to that connector (Ai rep-
resent constant names). If the intersection between the ASs related to the
receivers in the query and the list of a given connector is empty, then we
can avoid considering that connector in the search since it will reach only
not interesting nodes. An graphical example of this behavior is given in
Fig. 28.

Clearly, other hierarchical partitions can be adopted instead of large
ASs: for example we can consider simple subnetworks if we have to deal
with a small departmental networks. Considering scale-free networks (see
Ch. 4.6.1), these improvements are strongly needed for hub nodes, i.e. the
backbone nodes of the network with a high degree: these nodes connect a
lot of separate networks together and thus we can avoid to explore those
branched not touched by the query. This kind of relaxation can be easily
programmed in Logic/Constraint languages (as CIAO or ECLiPSe), with
lists of terms (to represent the list of ASs reached by a 1-connector), union
predicate (to join the lists of 1-connectors) and difference predicate to check
that the AS lists of the query and the obtained n-connector have a non-
empty intersection (otherwise that connector is useless for the proposed
query).

4.8 Conclusions

We have described a method to represent and solve the unicast/multicast
QoS routing problem with the combination of graph/hypergraph and
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A1

A2

A4
A3

A5

AB

AS

A6

{ A1, A2 , A4 } { A3, A5 , A6 }

L1 L3

L2

Figure 28: Routing information can be added to the link clauses to avoid
parts of the network (e.g. the L1 link can be avoided if the destination is A6).

SCLP programming: i) the best path found in this way corresponds to the
best unicast route distributing (for example) multimedia content from the
source to the only receiver; ii) the same considerations are also valid for
the best tree found over an and-or graph, since it corresponds to the best
multicast distribution tree towards all the receivers. The best path/tree
optimizes objectives regarding QoS performance, e.g. minimizing the
global bandwidth consumption or reducing the delay, and can satisfy
constraints on these metric values at the same time. The structure of a
c-semiring defines the algebraic framework to model the costs of the links,
and the SCLP framework describes and solves the SCSP problem in a
declarative fashion. Since several distinct criteria must be all optimized
(the costs of the arcs may include multiple QoS metric values), the best
route problem belongs to the multi-criteria problem class, i.e. it can result
in a partially-ordered problem. Moreover we have seen also how to deal
with modality-based problems, relating them to preferences connected to
policy routing rules. Therefore, the model proposed in this chapter can be
used to reason upon (and solve!) CBR, that is, in general, a NP-Complete
problem. The main goals of the chapter are to both show the expressivity
of SCLP in the network field and to use the proposed framework to study
the QoS routing problem.

A further extension to our QoS framework could be the introduction of
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probabilistic metrics as the weight of the graph-links: we could consider
this value as the probability of packet loss on that connection, or the
probability of a connection existence between two nodes in the network.
In this case, the global probability of existence of a path between two
nodes p and v depends on the probability of all the possible different
paths connecting p and v in the graph. The problem is represented by the
composition of the different probabilities of these paths, which cannot be
easily modeled with a c-semiring.
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Chapter 5

Expressive Extensions for
Soft Concurrent Constraint
Programming

5.1 Introduction

Time is a particularly important aspect of cooperative environments. In
many “real-life” computer applications, the activities have a temporal du-
ration (that can be even interrupted) and the coordination of such activi-
ties has to take into consideration this timeliness property. The interacting
actors are mutually influenced by their actions, meaning that A reacts ac-
cordingly to the timeliness and “quality” of B’s behavior and vice versa.
In fact, these interactions can be often related to quantities to be measured
or minimized/maximized, in order to take actions depending from this
result: consider, for example, some generic communicating-agents that
need to negotiate a desired QoS. In this case, they both need to coordi-
nate through time-dependent decisions and to quantify and publish their
respective requirements. These agents can be instantiated to concrete in-
stances, such as web services, internet QoS architectures and mechanisms
that provide QoS, workflows and, in general, software agents.

Likewise, many real-life problems require computation mechanisms
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which are nonmonotonic in their nature. Consider for example an every-
day scenario where clients need to reserve some resources, and service
providers must allocate those resources providing also a desired QoS. Ne-
gotiation (JFL+01) is the process by which a group of agents communicate
among themselves and try to come to a mutually acceptable agreement
on some matter. The means for achieving this goal consist in offering
concessions and retracting proposals. When agents are autonomous and
cooperation/coordination is attempted at run-time, automated negotia-
tion represents a complex process (JFL+01). Notice that this process must
be dynamic because clients and providers can change their requirements
during their execution.

In (dBGM00) Timed Concurrent Constraint Programming (TCCP), a timed
extension of the pure formalism of Concurrent Constraint Programming
(CCP) (Sar93), is introduced. This extension is based on the hypothe-
sis of bounded asynchrony (as introduced in (SJG96)): computation takes
a bounded period of time rather than being instantaneous as in the
concurrent synchronous languages ESTEREL (BG92), LUSTRE (HCRP91),
SIGNAL (lGlBGlM91) and Statecharts (Har87). Time itself is measured
by a discrete global clock, i.e, the internal clock of the TCCP process.
In (dBGM00) they also introduced timed reactive sequences which describe
at each moment in time the reaction of a TCCP process to the input of the
external environment. Formally, such a reaction is a pair of constraints
〈c, d〉, where c is the input given by the environment and d is the constraint
produced by the process in response to c (due to the monotonicity of CCP
computations, c includes always the input).

Soft constraints (Bis04; BMR97b) extend classical constraints to rep-
resent multiple consistency levels, and thus provide a way to express
preferences, fuzziness, and uncertainty. The CCP framework has been ex-
tended to work with soft constraints (BMR06; BMR02a), and the resulting
framework is named Soft Concurrent Constraint Programming (SCCP, see
Ch. 2.5). With respect to CCP, in SCCP the tell and ask agents are equipped
with a preference (or consistency) threshold which is used to determine
their success, failure, or suspension, as well as to prune the search; these
preferences should preferably be satisfied but not necessarily (i.e. over-
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constrained problems). The first result that we present in this chapter is
a timed and soft extension of CCP that we call Timed Soft Concurrent Con-
straint Programming (TSCCP) (BGMS07; BGMS08), inheriting from both
TCCP and SCCP at the same time. In TCCP, action-prefixing is interpreted
as the next-time operator and the parallel execution of agents follows the
scheduling policy of maximal parallelism. Additionally, TCCP includes a
simple new primitive which allows to specify timing constraints.

We adopt soft constraints (and the related SCCP) instead of crisp ones,
since we are sure that classic constraints can show evident limitations
if applied to entities interactions, mainly because they do not appear to
be very flexible when trying to represent real-life scenarios, where the
knowledge is not completely available nor crisp. The introduced Timed
Soft Concurrent Constraint (TSCC) language, together with its semantics,
results in a formal framework where it is possible to solve QoS related
problems.

The agents use the centralized constraint store in order to ensure their
community acts in a coherent manner, where “coherence” refers to how
well a system of agents behaves as a unit. With TCCP, the agent coordi-
nation is enriched with both timed and quantitative/qualitative aspects at
the same time; this represents the most important expressivity improve-
ment w.r.t. related works (see Ch. 5.9). One of the most straightforward
applications is represented by the modelling of negotiation and manage-
ment of resources, since both time and preference are naturally part of
the problem. In Ch. 5.6 we show an example where we model an auction
process, which can be seen as a particular instance of negotiation.

To model and manage automated negotiation we propose also the Non-
monotonic Soft Concurrent Constraint (NMSCCP) language (BS08c), which
extends Soft Concurrent Constraint Programming (SCCP) (Bis04; BMR06;
BMR02a) in order to support the nonmonotonic evolution of the con-
straint store. This additional language provides the second result shown
in this chapter. In classical SCCP the tell and ask agents can be equipped
with a preference (or consistency) threshold which is used to determine
their success, failure, or suspension: the action is enabled only if the store
is “consistent enough” with respect to the threshold. Since constraints

144



can only be accumulated (via the tell operation), this consistency level
can only monotonically decrease starting from the initial empty store: the
function used to combine the constraints, i.e. the × of the semiring, is
intensive (BMR97b). To go further, we propose some new actions that
provide the user with explicit nonmonotonic operations which can be
used to retract constraints from the store (i.e. update and retract), and a
particular ask operation (i.e. nask), enabled only if the current store does
not entail a given constraint.

The NMSCCP language has two main difference with regard to the
classical SCCP: i) the consistency level of the store can be increased by
retracting constraints (i.e. it is not monotonic), and ii) some of the fail-
ures are transformed in suspension because of the nonmonotonicity of
the store. According to i), we have extended the semantics of the actions
to include also an upper bound on the store consistency (since it can be
increased by a retract, for example), in order to prune also “too good”
computations obtained at a given step. In this way, now we are able to
model intervals of acceptability, while in SCCP there is only a check on
“not good enough” computations, i.e. decreasing too much the consis-
tency w.r.t the lower threshold. This leads to ii): in SCCP an agent fails if
the resulting store is not consistent enough with respect to the threshold
(i.e. a given semiring value or soft constraint); in NMSCCP the same agent
simply suspends waiting for a possible consistency increase of the current
store, which enables the pending action.

We apply these extensions in order to model Service Level Agreements
(SLAs) (BSC01; KL03) and their negotiation: soft constraints represent the
needs of the agents on the traded resources and the consistency value
of the store represents a feedback on the current agreement. In other
words, how much all the requirements are consistent among themselves,
or how much the global satisfaction is being met. The thresholds on the
actions are used to check this interval of preference values, and having a
feedback value which is not a plain “yes or no” (i.e. true or false, as in
crisp constraints) is clearly more informative. Using soft constraints (e.g.
“at most around 10 Mbyte of bandwidth”) gives the service provider and
clients more flexibility in expressing their requests with respect to crisp
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constraints (e.g. “exactly 10 Mbyte”), and therefore there are more chances
to reach a shared agreement. Moreover, the cost model is very adaptable
to the specific problem, since it is parametric with the chosen semiring,
and its semantics is directly embedded in the requirement definition itself
(i.e. the constraint) and in the language modeling the agent (e.g. the
thresholds on the tell and retract actions).

The remainder of this chapter is organized as follows. In Ch. 5.2 we
sum up the most important background notions and frameworks from
which TSCCP and NMSCCP derive. In Ch. 5.3 the TSCC language is pre-
sented for the first time. Then, Ch. 5.3.1 and Ch. 5.3.2 respectively describe
the operational and denotational semantics of the TSCC agents. Chap-
ter 5.3.4 outlines the proof of the denotational model correctness with the
aid of connected reactive sequences. Chapter 5.4 then shows an application
example of the TSCC language. Afterwards, we start to present NMSCCP:
Chapter 5.5 features the nonmonotonic language, its operational seman-
tics and how the consistency intervals are managed. Chapter 5.6 shows
how the nmscc language can be used to represent preference-driven nego-
tiations. Chapter 5.7 shows how these languages can be used to enforce
system integrity and, in general, dependability aspects. At last, Ch. 5.8
shows related works for both the languages and Ch. 5.9 concludes by
discussing related work and indicating future research directions.

5.2 Background on Related CCP Languages

When querying the store for some information which is not present (yet),
a (S)CCP agent will simply suspend until the required information has
arrived. In timed applications however often one cannot wait indefinitely
for an event. Consider for example the case of a connection to a web
service providing some on-line banking facility. In case the connection
cannot be established, after a reasonable amount of time an appropriate
time-out message has to be communicated to the user. A timed language
should then allow us to specify that, in case a given time bound is exceeded
(i.e. a time-out occurs), the wait is interrupted and an alternative action is
taken.
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In order to be able to specify this kind of timing constraints, in (SJG96)
and (dBGM00) the authors introduced a different timed extension of CCP
(the differences between these two languages are explained in (dBGM00)).
In particular, the timed CCP (TCCP) language defined in (dBGM00) in-
troduces a discrete global clock and assumes that ask and tell actions take
one time-unit. Computation evolves in steps of one time-unit, so called
clock-cycles, which are syntactically separated by action prefixing. More-
over maximal parallelism is assumed, that is at each moment every enabled
agent of the system is activated (this implies that parallel processes are
executed on different processors). Finally in TCCP it is introduced a prim-
itive construct of the form now c then A else B which can be interpreted as
follows: if the constraint c is entailed by the store at the current time t then
the above agent behaves as A at time t, otherwise it behaves as B at time
t. By using the now construct one can express time-out, preemption and
other timed programming idioms. For example, the agent now c then A
else ask(true)→ (now c then A else B) waits at most two time unit for the
satisfaction of the guard c: if the guard is satisfied (in two time units) then
the agent behaves as A, otherwise as B. By using an inductive definition
it is easy to define in terms of the now the more general time-out agent
(Σn

i=1ask(ci) −→ Ai) timeout(m)B which allows to wait at most m time
units for the satisfaction of one of the guards (see (dBGM00)).

The inspiration for NMSCCP comes instead from (CR95; dBKPR93):
in (dBKPR93) the authors present a nonmonotonic framework for Concur-
rent Constraint Programming (CCP) (SRP91), together with its semantics.
Our nask and update operations (see Ch. 5.5) are the soft versions of those
described in (dBKPR93), while the atell, which adds a constraint only if
it is consistent with the store, can be trivially modelled with the classi-
cal (valued) tell of SCCP. A negative ask like our nask is described also
in (SJG95). The idea for a fine-grained removal of constraints (the retract
in Ch. 5.5) comes from (CR95), which describes a different nonmonoto-
nic framework for CCP. Its main purpose was not to add any additional
nondeterminism (besides the choice operator) by keeping track of the
dependencies among constraints in the same parallel computation, other-
wise the nonmonotonic evolution could yield different results if executed
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with different scheduling policies. However, in our NMSCCP language
we decided to allow this kind of nondeterminism, since we believe it is
more natural to experience this behavior during the negotiation interac-
tions in open systems. Other examples of nonmonotonic evolution of the
constraint store in CCP are presented in (FRS01), and their line of research
is usually called Linear Concurrent Constraint Programming.

5.3 Timed Soft Concurrent Constraint Program-
ming

Now we present the TSCC language, which originates from both TCCP
and SCCP. To obtain TSCC we extend the cc language by introducing con-
structs to handle the cut level and constructs to handle temporal aspects.
More precisely, we inherit from SCCP the tell and ask constructs enriched
by a threshold, which allows to specify when the agents have to succeed
or to suspend. Moreover we derive from TCCP the timing construct now
c then A else B previously mentioned. However, differently from the
case of TCCP, the now operator here is modified by using thresholds,
analogously to the case of tell and ask.

Definition 23 (tscc Language) Given a soft constraint system 〈S,D,V〉, the
corresponding structure C, any semiring value a and any constraint φ ∈ C, the
syntax of the TSCC language is given by the following grammar:

P ::= F.A
F ::= p(x) :: A
A ::= success | tell(c)→Φ A | tell(c)→a A | E | A ‖ A | ∃xA | p(x) |

Σn
i=1Ei | nowΦ c then A else B | nowa c then A else B

E ::= ask(c)→Φ A | ask(c)→a A

where, as usual, P is the class of processes, F is the class of sequences of procedure
declarations (or clauses), A is the class of agents. The c is supposed to be a soft
constraint in C. A TSCCP process P is then an object of the form F.A, where F
is a set of procedure declarations of the form p(x) :: A and A is an agent.

In the following, given an agent A, we denote by Fv(A) the set of
the free variables of A (namely, the variables which do not appear in the
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scope of the ∃ quantifier). As previously mentioned, differently from the
original cc syntax in TSCCP we have a semiring element a and constraintφ
to be checked whenever an ask or tell operation is performed. Intuitively
the level a (resp., φ) will be used as a cut level to prune computations
that are not good enough. These levels, with an analogous meaning, are
present also in the now c then A else B construct, differently from all
the previous cc like languages. The remaining of the syntax is standard:
Action prefixing is denoted by→, Σ denotes guarded choice, ‖ indicates
parallel composition and a notion of locality is introduced by the agent
∃xA which behaves like A with x considered local to A, thus hiding the
information on x provided by the external environment. In the following
we also assume guarded recursion, that is we assume that each procedure
call is in the scope of either an ask or a tell construct.

5.3.1 An Operational Semantics for TSCCP Agents

The operational model of TSCC agents can be formally described by a
transition system T = (Conf ,−→) where we assume that each transition
step takes exactly one time-unit. Configurations (in) Conf are pairs con-
sisting of a process and a constraint in C representing the common store.
The transition relation −→⊆ Conf ×Conf is the least relation satisfying the
rules R1-R17 in Fig. 29 and characterizes the (temporal) evolution of the
system. So, 〈A, γ〉 −→ 〈B, δ〉means that if at time t we have the process A
and the store γ then at time t + 1 we have the process B and the store δ.
Let us now briefly discuss the rules in Fig. 29.

Valued-tell The valued-tell rule checks for the a-consistency of the Soft
Constraint Satisfaction Problem (Bis04) (SCSP) defined by the store
σ ⊗ c. A SCSP P is a-consistent if blevel(P) = a, where blevel(P) =
Sol(P) ⇓∅, i.e. the best level of consistency of the problem P is a semiring
value representing the least upper bound among the values yielded
by the solutions. Rule R1 can be applied only if the store σ ⊗ c is
b-consistent with b ≮ a1. In this case the agent evolves to the new

1Notice that we use b ≮ a instead of b ≥ a because we can possibly deal with partial
orders. The same happens also in other transition rules with a instead of w.
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R1 (σ ⊗ c) ⇓∅≮ a
〈tell(c)→a A, σ〉 −→ 〈A, σ ⊗ c〉

V-tell

R2
σ ⊗ c a φ

〈tell(c)→φ A, σ〉 −→ 〈A, σ ⊗ c〉
Tell

R3 σ ` c σ ⇓∅≮ a
〈ask(c)→a A, σ〉 −→ 〈A, σ〉

V-ask

R4
σ ` c σ a φ

〈ask(c)→φ A, σ〉 −→ 〈A, σ〉
Ask

R5 〈A, σ〉 −→ 〈A′, σ ⊗ δ〉 〈B, σ〉 −→ 〈B′, σ ⊗ δ′〉
〈A ‖ B, σ〉 −→ 〈A′ ‖ B′, σ ⊗ δ ⊗ δ′〉

Parall1

R6 〈A, σ〉 −→ 〈A′, σ′〉 〈B, σ〉 6−→
〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉
〈B ‖ A, σ〉 −→ 〈B ‖ A′, σ′〉

Parall2

R7
〈E j, σ〉 −→ 〈A j, σ

′
〉 j ∈ [1,n]

〈Σn
i=1Ei, σ〉 −→ 〈A j, σ′〉

Nondet

R8 〈A, σ〉 −→ 〈A′, σ′〉 σ ` c σ ⇓∅≮ a
〈nowa c then A else B, σ〉 −→ 〈A′, σ′〉

V-now1

R9 〈A, σ〉 6−→ σ ` c σ ⇓∅≮ a
〈nowa c then A else B, σ〉 −→ 〈A, σ〉

V-now2

R10 〈B, σ〉 −→ 〈B′, σ′〉 (σ 6` c or σ ⇓∅< a)
〈nowa c then A else B, σ〉 −→ 〈B′, σ′〉

V-now3

R11 〈B, σ〉 6−→ (σ 6` c or σ ⇓∅< a)
〈nowa c then A else B, σ〉 −→ 〈B, σ〉

V-now4

R12
〈A, σ〉 −→ 〈A′, σ′〉 σ ` c σ a φ

〈nowφ c then A else B, σ〉 −→ 〈A′, σ′〉
Now1

R13
〈A, σ〉 6−→ σ ` c σ a φ

〈nowφ c then A else B, σ〉 −→ 〈A, σ〉
Now2

R14
〈B, σ〉 −→ 〈B′, σ′〉 (σ 6` c or σ @ φ)
〈nowφ c then A else B, σ〉 −→ 〈B′, σ′〉

Now3

R15
〈B, σ〉 6−→ (σ 6` c or σ @ φ)

〈nowφ c then A else B, σ〉 −→ 〈B, σ〉
Now4

R16
〈A[x/y], σ〉 −→ 〈B, σ′〉
〈∃xA, σ〉 −→ 〈B, σ′〉 Hide

R17 〈A, σ〉 −→ 〈B, σ′〉
〈p(x), σ〉 −→ 〈B, σ′〉 p(x) :: A ∈ F P-call

Figure 29: The transition system for TSCCP.
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agent A over the store σ⊗c. Note that different choices of the cut level
a could possibly lead to different computations. Finally note that the
updated store σ ⊗ c will be visible only starting from the next time
instant since each transition step involves exactly one time-unit.

Tell The tell action is a finer check of the store. In this case, a pointwise
comparison between the storeσ⊗c and the constraintφ is performed.
The idea is to perform an overall check of the store and to continue
the computation only if there is the possibility to compute a solution
not worse than φ. As for the valued tell, the updated store will be
visible from the next time instant.

Valued-ask The semantics of the valued-ask is extended in a way similar
to what we have done for the valued-tell action. This means that, to
apply the rule, we need to check if the store σ entails the constraint c
and also if the store is “consistent enough” w.r.t. the threshold a set
by the programmer.

Ask Similar to the tell rule, here a finer (pointwise) threshold φ is com-
pared to the store σ. Notice that we need to check σ a φ because
previous tells could have a different threshold φ′ and could not
guarantee the consistency of the resulting store.

Nondeterminism According to rule R7 the guarded choice operator gives
rise to global non-determinism: the external environment can affect
the choice since ask(c j) is enabled at time t (and A j is started at time
t + 1) if and only if the store σ entails c j (and is compatible with the
threshold), and σ can be modified by other agents.

Parallelism Rules R5 and R6 model the parallel composition operator
in terms of maximal parallelism: the agent A ‖ B executes in one
time-unit all the initial enabled actions of A and B. Considering
rule R5, notice that the ordering of the operands in σ ⊗ δ ⊗ δ′ is
not relevant, since ⊗ is commutative and associative. Moreover,
for the same two properties, if σ ⊗ δ = σ ⊗ γ and σ ⊗ δ′ = σ ⊗ γ′,
we have that σ ⊗ δ ⊗ δ′ = σ ⊗ γ ⊗ γ′. Therefore the resulting store
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σ⊗δ⊗δ′ is independent from the choice of the constraint δ such that
〈A, σ〉 −→ 〈A′, σ′〉 and σ′ = σ ⊗ δ (analogously for δ′).

Hidden variables The agent ∃xA behaves like A, with x considered local
to A. This is obtained by substituting the variable x for a variable
y which we assume to be new and not used by any other process
(standard renaming techniques can be used to ensure this); here
A[x/y] denotes the process obtained from A by replacing the variable
x for the variable y.

Procedure calls Rule R17 treats the case of a procedure call when the
actual parameter equals the formal parameter. We do not need
more rules since, for the sake of simplicity, here and in the following
we assume that the set F of procedure declarations is closed w.r.t.
parameter names: that is, for every procedure call p(y) appearing in
a process F.A we assume that if the original declaration for p in F is
p(x) :: A then F contains also the declaration p(y) :: ∃x(tell(dxy) ‖ A)2.
Moreover, we assume that if p(x) :: A ∈ F then Fv(A) ⊆ x.

Valued-Now The rules R8-R11 show that the agent nowa c then A else B
behaves as A if c is entailed by the store and the store is “consistent
enough” w.r.t. the threshold a, and behaves as B otherwise. Note
that, differently from the case of the ask here the evaluation of the
guard is instantaneous: if 〈A, σ〉 (〈B, σ〉) can make a transition at time
t and the condition on the store and the cut level are satisfied then
the agent now c then A else B can make the same transition at time t
(and analogously for B). Moreover observe that, due to rules R9 and
R11, in any case the control is passed either to A (if the conditions are
satisfied) or to B (if not), also if A and B cannot make any transition
at the current time instant.

Now The rules R12-R15 are similar to rules R8-R11 described before, with
the exception that here a finer (pointwise) threshold φ is compared
to the store σ, analogously to what happens with the Tell and Ask
agents.

2Here the (original) formal parameter is identified as a local alias of the actual parameter.
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Using the transition system described by (the rules in) Fig. 29 we can
now define our notion of observables, which considers for each TSCCP
process P = F.A, the results of successful terminating computations that
the agent A can perform.

Definition 24 (Observables) Let P = F.A be a TSCCP process. We define

Oio(P) = {γ ⇓Fv(A)| 〈A, 1̄〉 −→∗ 〈Success, γ〉},

where Success is any agent which contains only occurrences of the agent
success and of the operator ‖.

5.3.2 The Denotational Model for TSCCP

In the following we define a denotational characterization of the opera-
tional semantics obtained by following the construction in (dBGM00) and
using timed reactive sequences to represent TSCCP computations. These
sequences are similar to those used in the semantics of dataflow lan-
guages (Jon85), imperative languages (Bro93) and (timed) CCP (dBP91;
dBGM00).

The denotational model associates with a process a set of timed reactive
sequences of the form 〈σ1, γ1〉 · · · 〈σn, γn〉〈σ, σ〉 where a pair of constraints
〈σi, γi〉 represents a reaction of the given process at time i: intuitively,
the process transforms the global store from σi to γi or, in other words,
σi is the assumption on the external environment while γi is the contri-
bution of the process itself (which entails always the assumption). The
last pair denotes a “stuttering step” in which the agent Success has been
reached. Since the basic actions of TSCCP are monotonic and we can
also model a new input of the external environment by a correspond-
ing tell operation, it is natural to assume that reactive sequences are
monotonic. So in the following we will assume that each timed reactive
sequence 〈σ1, γ1〉 · · · 〈σn−1, γn−1〉〈σn, σn〉 satisfies the following condition:
γi ` σi and σ j ` γ j−1, for any i ∈ [1,n − 1] and j ∈ [2,n]. .

The set of all reactive sequences is denoted by S and its typical ele-
ments by s, s1 . . ., while sets of reactive sequences are denoted by S,S1 . . .

and ε indicates the empty reactive sequence. Furthermore, · denotes the
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operator that concatenates sequences. In the following, Process denotes
the set of TSCCP processes.

Formally the definition of the semantics is as follows.

Definition 25 (Processes Semantics) The semantics R ∈ Process → P(S)
is defined as the least fixed-point of the operator Φ ∈ (Process → P(S)) →
Process→ P(S) defined by

Φ(I)(F.A) = {〈σ, δ〉 · w ∈ S | 〈A, σ〉 → 〈B, δ〉 and w ∈ I(F.B)}
∪

{〈σ, σ〉 · w ∈ S | 〈A, σ〉9 and either A , Success,w ∈ I(F.A)
or A = Success and w ∈ I(F.A) ∪ {ε}}.

The ordering on Process → P(S) is that of (point-wise extended) set-
inclusion and since it is straightforward to check that Φ is continuous,
standard results ensure that the least fixpoint exists (and it is equal to
tn≥0Φ

n(⊥)).
Note that R(F.A) is the union of the set of all successful reactive se-

quences which start with a reaction of P and the set of all successful
reactive sequences which start with a stuttering step of P. In fact, when
an agent is blocked, i.e. it cannot react to the input of the environment, a
stuttering step is generated. After such a stuttering step the computation
can either continue with the further evaluation of A (possibly generat-
ing more stuttering steps) or it can terminate, if A is the Success agent.
Note also that, since the Success agent used in the transition system can-
not make any move, an arbitrary (finite) sequence of stuttering steps is
always appended to each reactive sequence.

5.3.3 Compositionality of the Denotational Semantics

In order to prove the compositionality of the denotational semantics we
now introduce a semantics [[F.A]](e) which is compositional by definition
and where, for technical reasons, we represent explicitly the environment e
which associates a denotation to each procedure identifier. More precisely,
assuming that Pvar denotes the set of procedure identifier, Env = Pvar→
P(S), with typical element e, is the set of environments. Given e ∈ Env,
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p ∈ Pvar and f ∈ P(S), we denote by e′ = e{ f/p} the new environment
such that e′(p) = f and e′(p′) = e(p′) for each procedure identifier p′ , p.

Given a process F.A, the denotational semantics [[F.A]] : Env→ P(S) is
defined by the equations in Fig. 30, whereµdenotes the least fixpoint w.r.t.
subset inclusion of elements of P(S). The semantic operators appearing
in Fig. 30 are formally defined as follows. Intuitively they reflect, in
terms of reactive sequences, the operational behavior of their syntactic
counterparts3.

We first need the following definition. Let σ, φ and c be constraints in
C and let a ∈ A. We say that

• σ→̃a c, if (σ ` c and σ ⇓∅≮ a) while σ→̃φ c, if (σ ` c and σ a φ).

Definition 26 (Semantic operators) Let S,Si be sets of reactive sequences, c, ci
be constraints and let →̃i be either of the form →̃ai or →̃φi . Then we define the
operators ˜tell,

∑̃
, ‖̃, ˜now and ∃̃x as follows:

The (valued) tell operator

˜tell
a
(c,S) = {s ∈ S | s = 〈σ, σ ⊗ c〉 · s′, σ ⊗ c ⇓∅≮ a and s′ ∈ S }.

˜tellφ(c,S) = {s ∈ S | s = 〈σ, σ ⊗ c〉 · s′, σ ⊗ c a φ and s′ ∈ S }.

The guarded choice∑̃n

i=1
ci→̃i Si = {s · s′ ∈ S | s = 〈σ1, σ1〉 · · · 〈σm, σm〉, σ j9̃i ci

for each j ∈ [1,m-1], i ∈ [1,n],
σm→̃h ch and s′ ∈ Sh for an h ∈ [1,n] }

The parallel composition Let ‖̃ ∈ S × S → S be the (commutative and
associative) partial operator defined as follows:

〈σ1, σ1 ⊗ γ1〉 · · · 〈σn, σn ⊗ γn〉〈σ, σ〉 ‖̃ 〈σ1, σ1 ⊗ δ1〉 · · · 〈σn, σn ⊗ δn〉〈σ, σ〉 =
〈σ1, σ1 ⊗ γ1 ⊗ δ1〉 · · · 〈σn, σn ⊗ γn ⊗ δn〉〈σ, σ〉.

We define S1‖̃S2 as the point-wise extension of the above operator to sets.
The (valued) now operator

˜nowa(c,S1,S2) = {s ∈ S | s = 〈σ, σ′〉 · s′ and either σ→̃ac and s ∈ S1
or σ→̃ac does not hold and s ∈ S2 }.

3In Fig. 30 the syntactic operator→i is either of the form→ai or→φi .
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˜nowφ(c,S1,S2) = {s ∈ S | s = 〈σ, σ′〉 · s′ and either σ→̃φ c and s ∈ S1
or σ→̃φ c does not hold and s ∈ S2 }.

The hiding operator The semantic hiding operator can be defined as follows:

∃̃xS = {s ∈ S | there exists s′ ∈ S such that s = s′[x/y] with y new }

where s′[x/y] denotes the sequence obtained from s′ by replacing the variable x
for the variable y that we assume to be new4.

A few explanations are in order here. The semantic (valued) tell oper-
ator reflects in the obvious way the operational behavior of the syntactic
(valued) tell. Concerning the semantic choice operator, a sequence in∑̃n

i=1ci→̃i Si consists of an initial period of waiting for a store which satis-
fies one of the guards. During this waiting period only the environment
is active by producing the constraints σ j while the process itself generates
the stuttering steps 〈σ j, σ j〉. When the store is strong enough to satisfy a
guard, that is to entail a ch and to satisfy the condition on the cut level
the resulting sequence is obtained by adding s′ ∈ Sh to the initial waiting
period. In the semantic parallel operator defined on sequences we require
that the two arguments of the operator agree at each point of time with re-
spect to the contribution of the environment (the σi’s) and that they have
the same length (in all other cases the parallel composition is assumed
being undefined).

If F.A is a closed process, that is if all the procedure names occurring in
A are defined in F, then [[F.A]](e) does not depend on e and will be indicated
as [[F.A]]. Environments in general allow us to define the semantics also
of processes which are not closed. The following result shows the corre-
spondence between the two semantics we have introduced and therefore
the compositionality of R(F.A).

Theorem 5.3.1 (Compositionality) If F.A is closed then R(F.A) = [[F.A]]
holds.

The proof of Theo. 5.3.1 is similar to the one proposed in (dBGM00)
for the compositionality property of the TCCP denotational semantics.

4To be more precise, we assume that each time that we consider a new applications of the
operator ∃̃we use a new, different y. As in the case of the operational semantics, this can be
ensured by a suitable renaming mechanism.
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E1 [[F.success]](e) = {〈σ1, σ1〉〈σ2, σ2〉 · · · 〈σn, σn〉 ∈ S | n ≥ 1}

E2 [[F.tell(c)→a A]](e) = ˜tell
a
(c, [[F.A]](e))

E3 [[F.tell(c)→φ A]](e) = ˜tellφ(c, [[F.A]](e))

E4 [[F.
∑n

i=1ask(ci)→i Ai]](e) =
∑̃n

i=1ci→̃i [[F.Ai]](e)

E5 [[F.nowa c then A else B]](e) = ˜nowa(c, [[F.A]](e), [[F.B]](e))

E6 [[F.nowφ c then A else B]](e) = ˜nowφ(c, [[F.A]](e), [[F.B]](e))

E7 [[F.A ‖ B]](e) = [[F.A]](e) ‖̃ [[G.B]](e)

E8 [[F.∃xA]](e) = ∃̃x[[F.A]](e)

E9 [[F.p(x)]](e) = µΨ whereΨ( f ) = [[F \ {p}.A]](e{ f/p}), p(x) :: A ∈ F

Figure 30: The semantics [[F.A]](e).

5.3.4 Correctness in TSCCP

The observables Oio(P) describing the input/output pairs of successful
computations can be obtained from R(P) by considering suitable sequences,
namely those sequences which do not perform assumptions on the store.
In fact, notice that some reactive sequences do not correspond to real
computations: Clearly, when considering a real computation no further
contribution from the environment is possible. This means that, at each
step, the assumption on the current store must be equal to the store pro-
duced by the previous step. In other words, for any two consecutive steps
〈σi, σ′i〉〈σi+1, σ′i+1〉we must have σ′i = σi+1. So we are led to the following.

Definition 27 (Connected sequences) Let s = 〈σ1, σ′1〉〈σ2, σ′2〉 · · · 〈σn, σn〉 be
a reactive sequence. We say that s is connected if σ1 = 1̄ and σi = σ′i−1 for each i,
2 ≤ i ≤ n.

According to the previous definition, a sequence is connected if all the
information assumed on the store is produced by the process itself, apart
from the initial input. To be defined as connected, a sequence must also
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have 1̄ as the initial constraint. A connected sequence represents a TSCCP
computation, as it will be proved by the following theorem.

Theorem 5.3.2 (Correctness) For any process P = F.A we have

Oio(P) = {σn ⇓Fv(A)| there exists a connected sequence s ∈ R(P) such that
s = 〈σ1, σ2〉〈σ2, σ3〉 · · · 〈σn, σn〉}.

The proof of Theo. 5.3.2 is similar to the one proposed in (dBGM00)
for the correctness property of the TCCP language.

5.4 Programming Idioms and an Auction Exam-
ple for TSCCP

We can consider the primitives in Fig. 29 to derive the soft version of
the programming idioms in (dBGM00), which are typical of reactive pro-
gramming.

Delay. The delay constructs tell(c) t
−→φ A or ask(c) t

−→φ A are used to
delay the execution of agent A after the execution of tell(c) or ask(c);
t is the number of the time-units of delay. Therefore, in addiction
to a constraint φ, in TSCCP the transition arrow can have also a
number of delay slots. This idiom can be defined by induction: the

base case is 0
−→φ A ≡−→φ A and the inductive step is n+1

−→φ A ≡−→φ
tell(1̄) n

−→φ A. The valued version can be defined in an analogous
way.

Timeout. The timed guarded choice agent (Σn
i=1ask(ci) −→i Ai) timeout(m) B

waits at most m time-units (m ≥ 0) for the satisfaction of one of the
guards; notice that all the ask actions have a “soft” transition arrow,
i.e. −→i is either of the form −→φi or −→ai , as in Fig. 29. Before this
time-out, the process behaves just like the guarded choice: as soon
as there exist enabled guards, one of them (and the corresponding
branch) is nondeterministically selected. After waiting for m time-
units, if no guard is enabled, the timed choice agent behaves as
B.
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Watchdog. Watchdogs are used to interrupt the activity of a process on a
signal from a specific event. The idiom do ( A ) watching(c) else ( B )
behaves as A, as long as c is not entailed by the store; when c is
entailed, the process A is immediately aborted. The reaction is
instantaneous, in the sense that A is aborted at the same time instant
of the detection of the entailment of c.

Both Timeout and Watchdogs constructs can be assembled through the
composition of several nowΦ c then A else B or nowa c then A else B prim-
itives, exactly as sketched in Ch. 5.2 and explained in detail in (dBGM00)
(in the soft version of the timeout, the else ask(true) in Ch. 5.2 must be re-
placed with else ask(1̄)). For example, do ( tell(c1) ) watching(c2) else B ≡
now c2 then B else tell(c1), where the now can be valued or not. Clearly,
in TSCCP all the constraints (e.g. c1 and c2) are soft. With this small
set of idioms, we have now enough expressiveness to describe complex
interactions.

In Fig. 31 we model the negotiation and the management of a generic
service offered with a sort of auction: auctions, as other forms of negotia-
tion, naturally need both timed and qualitative/quantitative means to de-
scribe the interactions among agents. The auctioneer (i.e. AUCTIONEER
in Fig. 31) begins by offering a service described with the soft constraint
cA1 . We suppose that the cost associated to the soft constraint is expressed
in terms of computational capabilities needed to support the execution:
c1 v c2 means that the service described by c1 needs more computational
resources than c2. By choosing the proper semiring, this load can be
expressed as a percentage of the CPU use, or in terms of money, for ex-
ample. We suppose that a constraint can be defined over three domains
of QoS features: availability, reliability and execution time. For instance,
cA1 could be availability > 95% ∧ reliability > 99% ∧ execution time < 3sec.
Clearly, providing a higher availability or reliability, and a lower execu-
tion time implies raising the computational resources, thus worsening the
preference of the store.

After the offer, the auctioneer gives time to the bidders (each of them
described with a possibly different BIDDERi agent in Fig. 31) to make
their offer, since the choice of the winner is delayed by tsell time-units (as
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AUCTIONEER ::
INIT A −→
tell(cA1 )

tsell
−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)

tell(cA2 )
tsell
−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)

tell(cA3 )
tsell
−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)
−→ success

CHECK ::
do ( (ask(service = end) −→ success) timeout(waitcheck) tell(service = interrupt) )

watching(ccheck) else (tell(service = interrupt) −→ STOPc)

BIDDERi ::
INIT Bi −→

do ( TASKi ) watching(cBi ) else ask(1̄)
tbuyi
−→ tell(bidderi = i) −→

( (ask(winner = i) −→ USEi) + (ask(winner , i) −→ success) )

USEi ::
do ( USE SERVICEi −→ tell(service = end) −→ success )

watching(service = interrupt) else (STOPi)

AUCTION&SUPERVISE :: AUCTIONEER || BIDER1 || BIDDER2 || . . . ||BIDDERn

Figure 31: An “auction/management” example for a generic service

in many real-world auction schemes). A level aA is used to effectively
check that the global consistency of the store is enough good, i.e. the
computational power would not be already consumed under the given
threshold. After the winner is nondeterministically chosen among all the
bidders asking for the service, the auctioneer becomes a supervisor of the
used resource by executing the CHECK agent. Otherwise, if no offer is
received within waitauct time-units, a timeout interrupts the wait and the
auctioneer improves the offered service by adding a new constraint: for
example, in tell(cA2 ), cA2 could be equivalent to execution time < 1sec, thus
reducing the latency of the service (from 3 to 1 seconds) and consequently
raising, at the same time, its computational cost (i.e. cA2⊗σ v σ, we worsen
the consistency level of the store). The same offer/wait process is repeated
three times in Fig. 31. Each of the bidders in Fig. 31 is executing its own
task (i.e. TASKi), but as soon as the offered resource meets its demand
of computational power (i.e. cBi is satisfied by the store: σ v cBi ), the
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bidder is interrupted and then asks to use the service. The time needed to
react and make an offer is modeled with tbuyi : fast bidders will have more
chances to win the auction, if their request arrives before the choice of the
auctioneer. If one bidder wins, then it becomes a user of the resource, by
executing USEi.

The USEi agent uses the service (with the USE SERVICEi agent, left
generic in Fig. 31), but it stops (STOPi agent, left generic in Fig. 31) as soon
as the service is interrupted, i.e. as the store satisfies service = interrupt.
On the other side, the CHECK agent waits for the use termination, but it
interrupts the user if the computation takes too long (more than waitcheck

time-units), or if the user absorbs the computational capabilities beyond a
given threshold, i.e. as soon as the ccheck becomes implied by the store (i.e.
σ v ccheck): in fact, USE SERVICEi could be allowed to ask for more power
by “telling” some more constraints to the store. To interrupt the service
use, the CHECK agent performs a tell(service = interrupt). All the INIT
agents, left generic in Fig. 31, can be used to initialize the computation.

In order to avoid a heavy notation in Fig. 31, we do not show the
preference associated to constraints and the consistency check label on
the transition arrows, when they are not significative for the example
description.

Many other real-life automated tasks can be modeled with the TSCC
language, for example a quality-driven composition of web services: the
agents that represent different web services can add to the store their func-
tionalities (represented by soft constraints) with tell actions; the final store
models their composition. The consistency level of the store sums up to a
value the (for example) total cost of the single obtained service, or a value
representing the consistency of the integrated functionalities: the reason
is that when we compose the services offered by different providers, we
could not be sure how much they are compatible. Then, a client wishing
to use the composed service can perform an ask with threshold that pre-
vents it from paying a high price or have an unreliable service. Softness
is useful also to model incomplete service specifications that may evolve
incrementally and, in general, non-functional aspects. Time sensitiveness
is clearly needed too: all the most important orchestration/choreography
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languages of today (e.g. BPEL4WS and WSCI) support timeouts, the rais-
ing of events and delay activities (Pel03).

5.5 Nonmonotonic Soft Concurrent Constraint
Programming

Now we present the nonmonotonic extension of the SCCP language, i.e.
the NMSCCP language introduced in Ch. 5.1. We will give the flavour of
the new operations and the reasons why we introduced them in this new
language. Then we will show the entire language together with its oper-
ational semantics and some simple examples to illustrate the evolution of
the agent computation.

The retract(c) operation is at the basis of our nonmonotonic extension
of the SCCP language, since it permits to remove the constraint c from the
current store σ. It is worth to notice that our retract can be considered as
a “relaxation” of the store, and not only as a strict removal of the token
representing the constraint, because in soft constraints we do not have the
concept of token. Thus if c (parameter of retract) satisfies σ v c then it can
be removed, even if c is different from any other constraints previously
added to σ.

To use a metaphor describing the sequence of actions, imagine to
pour a liquid into and out a bowl with a spoon. The content of the
bowl represents the store, and the liquid in the spoon represents the soft
constraint we want to add and retract from the store; as the two liquids are
mixed, we lose the identity of the added soft constraint, which can worsen
the condition of the store by raising the level of the liquid in the bowl.
When we want to relax the store, we remove some of the liquid with the
spoon, and that corresponds to the removed constraint: the consistency
is incremented because the level of the bowl is lowered. This “bowl
example” is appropriate when × is not idempotent, otherwise pouring
the same constraint multiple times would not increase the liquid level.

The updateX(c) primitive has been inspired by the work in (dBKPR93).
It consists in a sort of “assignment” operation, since it transactionally
relaxes all the constraints of the store that deal with variables in the set X,
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and then adds a constraint c (usually with support = X). This operation
is variable-grained with respect to our retract, and for many applications
(as ours, on SLA negotiation), it is very convenient to have a relaxation
operation that is focused on one (or some) variable: the reason is that it
could be required to completely renew the knowledge about a parameter
(e.g. the bandwidth of the example in Ch. 5.6).

The nask(c) operation (crisp examples are in (CR95; SJG95)) is enabled
only if the current store does not entail c; it is the negative version of ask,
since it detects absence of information. Note that, in general, ask(¬c) is
different from nask(c), so it is necessary to introduce a completely new
primitive. Consider for example the store {x ≤ 10}: while the action
nask(x < 5) succeeds, ask(x ≥ 5) would block the computation. Consider
also that the notion of ¬c (i.e. the negation of a constraint) is not always
meaningful with preferences based on semirings, except, for instance,
for the Boolean semiring (i.e. 〈{0, 1},∨,∧, 0, 1〉). It would be difficult to
define¬c when using Weighted semirings (Bis04; BMR97b). This operation
improves the expressivity of the language, since it allows to check facts
not yet derivable from the store (it can be valuable to add them), or no
longer derivable (to check if some constraints have been removed), or
facts that we do not want to be implied by the store.

Given a soft constraint system as defined in Ch. 2.5 and any related
constraint c, the syntax of agents in NMSCCP is given in Fig. 32. P is the
class of programs, F is the class of sequences of procedure declarations
(or clauses), A is the class of agents, c ranges over constraints, X is a set of
variables and Y is a tuple of variables.

In addition to the new operations, the other most important variation
with regard to SCCP is the action prefixing symbol� in the syntax no-
tation, which can be considered as a general “checked” transition of the
type→ϕ2

ϕ1
(e.g., referring to Fig. 32, we can write ask(c)→ϕ2

ϕ1
A), where ϕi is

a placeholder that can stand for either a semiring element ai or a constraint
φi, i.e. ϕi = ai/φi.

In the first case (i.e. ai), we need to summarize the consistency of the
store into a plain value and “compare” it with the ai semiring value, while
in the second case (i.e. φi), we need to make a pointwise comparison be-
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PF F.A
FF p(Y) :: A | F.F
AF success | tell(c)� A | retract(c)� A | updateX(c)� A | E | A‖A |

∃x.A | p(Y)
EF ask(c)� A | nask(c)� A | E + E

Figure 32: The syntax of the NMSCCP language.

tween the store and the φi constraint, i.e. a comparison between two con-
straints (BMR06; BMR02a). The way we compare these values/constraints
depends on their level in the transition symbol: a1 (or φ1) will be used as a
cut level to prune computations that at this point are not good enough (i.e.
a lower bound), while a2 (or φ2) to prune computations that are too good
(i.e. an upper bound). The four possible instantiation of � are given
in Fig. 33, i.e. →a2

a1
, →φ2

a1
, →a2

φ1
and →φ2

φ1
(the semantics of these checked

transitions will be better explained in Ch. 5.5.1). As in classical SCCP,
the semiring values a1 and a2 represent two cut levels that summarize the
consistency of the store into a plain value. On the other hand, the con-
straints φ1 and φ2 represent a finer check of the store, since a pointwise
comparison between the store and these constraints is performed.

Therefore, we can now model intervals of acceptability during the
computation, while in classical SCCP this is not possible: SCCP being
monotonic, since the consistency level of the store can only be decreased
during the executions of the agents, it is only meaningful to prune those
computations that decrease this level too much. On the other hand, in
NMSCCP there is the possibility to remove constraints from the store, and
thus the level can be increased again (this leads to the absence of a fail
agent). For this reason we claim the importance of checking also that the
consistency level of the store will not exceed a given threshold.

Having an interval of preferences, and not only a lower bound, is very
important in negotiation, since it allows to improve the expressivity of
requests and results. For instance, consider the preference as a cost for a
given resource: the lower threshold of the interval will prevent us from
paying that resource too much (i.e. a high cost means a low preference),
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while the upper threshold models a clause in the contract that forces us to
pay at least a minimum price.

The classical ask and tell operations in SCCP (where only the lower
bound is present) can be obtained also in NMSCCP: e.g. ask/tell(c)→1̄

φ A.

5.5.1 The Operational Semantics

To give an operational semantics to our language we need to describe
an appropriate transition system 〈Γ,T,→〉, where Γ is a set of possible
configurations, T ⊆ Γ is the set of terminal configurations and →⊆ Γ × Γ
is a binary relation between configurations. The set of configurations
is Γ = {〈A, σ〉}, where σ ∈ C while the set of terminal configurations is
instead T = {〈success, σ〉}. The transition rule for the NMSCCP language
are defined in Fig. 34.

The � is a generic checked transition used by several actions of the
language. Therefore, to simplify the rules in Fig. 34 we define a function
check� : σ → {true, f alse} (where σ ∈ C), that, parametrized with one of
the four possible instances of � (C1-C4 in Fig. 33), returns true if the
conditions defined by the specific instance of � are satisfied, or false
otherwise. The conditions between parentheses in Fig. 33 claim that the
lower threshold of the interval clearly cannot be “better” than the upper
one, otherwise the condition is intrinsically wrong.

Notice that in Fig. 33 we use ≮S a1 instead of ≥S a1 because we can
possibly deal with partial orders. Similar considerations can be done for
a instead of w.

Some of the intervals in Fig. 33 (C1, C2 and C3) are checked by con-
sidering the least upper bound among the values yielded by the solu-
tions of a Soft Constraint Satisfaction Problem (SCSP) (Bis04) defined as
P = 〈C, con〉 (C is the set of constraints and con ⊆ V, i.e. a subset the
problem variables). This is called the best level of consistency and it is
defined by blevel(P) = Sol(P) ⇓∅, where Sol(P) = (

⊗
C) ⇓con; notice that

supp(blevel(P)) = ∅. We also say that: P is α-consistent if blevel(P) = α; P is
consistent iff there exists α >S 0 such that P is α-consistent; P is inconsis-
tent if it is not consistent. In Fig. 33 C1 checks if the α-consistency of the
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C1: �=→a2
a1

check(σ)� = true if

σ ⇓∅≯S a2

σ ⇓∅≮S a1

(with a1 ≯ a2)

C2: �=→φ2
a1

check(σ)� = true if

σ b φ2

σ ⇓∅≮S a1

(with a1 ≯ φ2 ⇓∅)

C3: �=→a2
φ1

check(σ)� = true if

σ ⇓∅≯S a2

σ a φ1

(with φ1 ⇓∅≯ a2)

C4: �=→φ2

φ1
check(σ)� = true if

σ b φ2

σ a φ1

(with φ1 b φ2)

Otherwise, within the same conditions in parentheses, check(σ)� = f alse

Figure 33: Definition of the check function for each of the four checked
transitions.

problem is between a1 and a2.
In words, C1 states that we need at least a solution as good as a1

entailed by the current store, but no solution better than a2; therefore, we
are sure that some solutions satisfy our needs, and none of these solutions
is “too good”. The semantics of these checks can easily be changed in
order to model different requirements on the preference interval, e.g. to
guarantee that all the solutions in the store (and not at least one) have a
preference contained in the given interval.

Here is a description of the transition rules in Fig. 34. In the Tell rule
(R1), if the store σ ⊗ c satisfies the conditions of the specific� transition
of Fig. 33, then the agent evolves to the new agent A over the store σ ⊗ c.
Therefore the constraint c is added to the store σ. The conditions are
checked on the (possible) next-step store: i.e. check(σ′)�.

To apply the Ask rule (R2), we need to check if the current store σ
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R1 check(σ ⊗ c)�
〈tell(c)� A, σ〉 −→ 〈A, σ ⊗ c〉

Tell

R2 σ ` c check(σ)�
〈ask(c)� A, σ〉 −→ 〈A, σ〉

Ask

R3 〈A, σ〉 −→ 〈A′, σ′〉
〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉
〈B ‖ A, σ〉 −→ 〈B ‖ A′, σ′〉

Parall1

R4 〈A, σ〉 −→ 〈success, σ′〉
〈A ‖ B, σ〉 −→ 〈B, σ′〉
〈B ‖ A, σ〉 −→ 〈B, σ′〉

Parall2

R5
〈E j, σ〉 −→ 〈A j, σ

′
〉 j ∈ [1,n]

〈Σn
i=1Ei, σ〉 −→ 〈A j, σ′〉

Nondet

R6 σ 6` c check(σ)�
〈nask(c)� A, σ〉 −→ 〈A, σ〉 Nask

R7 σ v c σ′ = σ	÷ c check(σ′)�
〈retract(c)� A, σ〉 −→ 〈A, σ′〉 Retract

R8
σ′ = (σ ⇓(V\X)) ⊗ c check(σ′)�
〈updateX(c)� A, σ〉 −→ 〈A, σ′〉 Update

R9
〈A[x/y], σ〉 −→ 〈B, σ′〉
〈∃x.A, σ〉 −→ 〈B, σ′〉 with y fresh Hide

R10 〈A, σ〉 −→ 〈B, σ′〉
〈p(Y), σ〉 −→ 〈B, σ′〉 p(Y) :: A ∈ F P-call

Figure 34: The transition system for NMSCCP.

entails the constraint c and also if the current store is consistent with
respect to the lower and upper thresholds defined by the specific �
transition arrow: i.e. if check(σ)� is true.

Parallelism and nondeterminism: the composition operators + and
‖ respectively model nondeterminism and parallelism. A parallel agent
(rules R3 and R4) will succeed when both agents succeed. This operator
is modelled in terms of interleaving (as in the classical CCP): each time,
the agent A ‖ B can execute only one between the initial enabled actions
of A and B (R3); a parallel agent will succeed if all the composing agents
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succeed (R4). The nondeterministic rule R5 chooses one of the agents
whose guard succeeds, and clearly gives rise to global nondeterminism.

The Nask rule is needed to infer the absence of a statement whenever
it cannot be derived from the current state: the semantics in R6 shows
that the rule is enabled when the consistency interval satisfies the current
store (as for the ask), and c is not entailed by the store: i.e. σ @ c.

Retract: with R7 we are able to “remove” the constraint c from the store
σ, using the 	÷ constraint division function defined in Ch. 2. According
to R7, we require that the constraint c is entailed by the store, i.e. σ v c.
Notice that in (BG06) the division is instead always defined, but for the
NMSCCP language we decided to be able to remove a quantity c only if
the store is “big” enough to permit the removal of c, i.e. we want that a÷ b
is possible only if a ≤S b. For example, consider the c1, c2 and c3 weighted
constraints in Fig. 35: the domain of the variable x isN and the adopted
semiring is instead the classical Weighted semiring 〈R+,min,+,+∞, 0〉. It
is possible to perform c2 	÷ c1 because c2 v c1 (the c1 function is completely
dominated by c2 for every x ∈N, and thus c1 is better), but it is not possible
to perform c3 	÷ c1 because, for x = 1 (for instance), c3(x) = 2 is better than
c1(x) = 4: thus 2 ≤ 4 and the semiring division 2 ÷ 4 cannot consequently
be performed because of the R7 definition. Clearly, it is also possible to
completely remove a constraint as if using tokens:

Theorem 5.5.1 (Complete removal) Given a soft constraint system C, where
the semiring S is invertible by residuation and thus 	÷ can be defined, then the
NMSCCP agent 〈tell(ci) � retract(ci) � A, σk〉 is equivalent (i.e. the final
store is the same) to 〈A, σk〉, for every constraint ci, store σk and� (if enabled).

As a sketch of the proof, the agents’ equivalence comes from the prop-
erties explained in (BG06), i.e. a × b ÷ b = a always holds, given any two
elements a, b ∈ S. Since the constraint operations (⊗ and 	÷) are derived
from their related semiring operators (× and ÷), the same properties hold.

The semantics of Update rule (R8) (dBKPR93) resembles the assign-
ment operation in imperative programming languages: given an updateX(c),
for every x ∈ X it removes the influence over x of each constraint in which
x is involved, and finally a new constraint c is added to the store. To
remove the information concerning all x ∈ X, we project (see Ch. 2) the
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c1 : ({x} →N)→ R+ s.t. c1(x) = x + 3

c2 : ({x} →N)→ R+ s.t. c2(x) = 2x + 8

c3 : ({x} →N)→ R+ s.t. c3(x) = 2x

c4 : ({x} →N)→ R+ s.t. c4(x) = x + 5

c5 : ({x} →N)→ R+ s.t. c5(x) = 3̄

c6 : ({y} →N)→ R+ s.t. c6(y) = y + 1

Figure 35: Six weighted soft constraints (notice that c2 = c1 ⊗ c4).

current store on V\X, where V is the set of all the variables of the problem
and X is a parameter of the rule (projecting means eliminating some vari-
ables). If X = V, this operation finds the blevel of the problem defined by
the store, before adding c. At last, the levels of consistency are checked
on the obtained store, i.e. check(σ′)�. Notice that all the removals and the
constraint addition are transactional, since are executed in the same rule.
Moreover, notice that the removal semantics of the update is quite different
from that of the retract: the update operation can always be applied, while
the retract can be applied only when σ v c. In addition, performing an
update is different from sequentially performing one (or some) retract and
then a tell: the retract relaxes the store in a “clear” way, while the update
“releases” one (or more) variable x by choosing the best semiring value for
each constraint c supported by x (i.e. σ ⇓(V\{x})=

∑
di∈D cη[x := di], where D

is the domain of x). Therefore, if c is supported also by another variable y,
c is somewhat still constraining y after the update operation. As an exam-
ple of the different semantics between an update and a retract-tell sequence,
the agent 〈tell(c5) →0

∞ retract(c5) →0
∞ tell(c2), 0̄〉 (in the Weighted semiring

1 ≡ 0̄) results in the store c5 	÷ c5⊗c2 = c2, while 〈tell(c5)→0
∞ update{x}(c2), 0̄〉

results in the store 3̄ ⊗ c2 (i.e. c5 ⊗ c2), where 3̄ = c5 ⇓(V\{x}) (see Fig. 35).

Hidden variables: the semantics of the existential quantifier in R9 is
similar to that described in (SR90) by using the notion of freshness of the
new variable added to the store.

Procedure calls: the semantics of the procedure call (R10) has already
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been defined in (BMR06; BMR02a): the notion of diagonal constraints (as
defined in Ch. 2) is used to model parameter passing.

Given the transition system proposed in Fig. 34, we define for each
agent A the set of final stores that collects the results of successful compu-
tations that A can perform (i.e. the observables): SA = {σ ⇓var(A)| 〈A, 1̄〉 →∗

〈success, σ〉}.

No Failures. The NMSCCP agents computation can only be successful
or can suspend waiting for a change of the store in which it is possible to
execute the action on which an agent is suspended on. This represents a
further difference with respect to SCCP where, when trying to execute a
(valued or not) ask/tell, if the resulting level of the store consistency is lower
than the threshold labeled on the transition arrow, then this is considered a
failure (see (BMR06; BMR02a)): in SCCP the store consistency can only be
monotonically decreased, and therefore a better level can never be reached
during the successive steps. In NMSCCP, another agent in parallel can
instead perform a retract (or an update) and can consequently increase the
consistency level of the store, then enabling the idle action.

Preference Representation and Operations The representational and
computational issues are complex and would deserve a deep discus-
sion (CCJK06). However, some different considerations can be provided
whether or not the language adopted to represent the constraints prefer-
ence is finite.

As a practical example of (a specific subset of) soft constraints that have
a finite representation, consider the Weighted semiring and consider a class
of constraints whose soft preference (or cost) is represented by a polyno-
mial expression over the variables involved in the constraints. In this
case, adding a constraint to the store means to obtain a new polynomial
form that is the sum of the new preference and the polynomial repre-
senting the current store; retracting a constraint means just to subtract
the polynomial form from the store. Suppose we have three constraints
c1(x, y) = x2

− 3x + 4y, c2(x) = 3x + 2 and c3(y) = 3y − 2: if the initial store
contains c1(x, y), tell(c2) gives (c1 ⊗ c2) = x2

− 3x+ 4y+ 3x+ 2 = x2 + 4y+ 2,
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and then a retract(c3) would result in the store preference (c1 ⊗ c2 	÷ c3) =
x2 + 4y+ 2− (3y− 2) = x2 + y. To compute the result of an update{y}(c4) we
need to project over V\{y} (see Ch. 2) before adding c4: therefore, if the
store preference is x2 + y, we must find the minimum of this polynomial
by assigning y = 0 and finally obtaining x2

⊗ c4 = x2 + x + 5 as result (see
Fig. 35). Notice that in the Weighted semiring, to maximize the preference
means to minimize the polynomial.

Otherwise, if soft constraints have not a finite representation, we can
model the store as an ordered list of constraints and actions. For ex-
amples, if the agents have chronologically performed the actions tell(c1),
tell(c2) retract(c3) and updateX(c4), the store will be c1 ⊗ c2 	÷ c3 ⇓(V\X) ⊗ c4
(whose composition is left-associative). Therefore, at each step it is possi-
ble to compute the actual store in order to verify the entailments among
constraints and the consistency intervals. Thus, the actions ordering is
important:

Theorem 5.5.2 (Actions ordering) Given a soft constraint system C, where
the semiring S is invertible by residuation, changing the tell and retract actions
ordering inside an agent changes the final store.

In fact, if we suppose the × of S as idempotent, we have the NM-
SCCP agent 〈tell(ci) � retract(ci) � tell(ci) � A, σk〉 ≡ 〈A, ci ⊗ σk〉, and
by changing the ordering of actions it differs from 〈tell(ci) � tell(ci) �
retract(ci) � A, σk〉 ≡ 〈A, σk〉, for every constraint ci, store σk and � (if
enabled). To prove it, we consider that for every semiring element a ∈ S,
we have (a×a)÷a = 1 (since a×a = a, if × is idempotent), but (a÷a)×a = a.
This is due to idempotency of × and the properties of ÷ shown in (BG06).
Theorem 5.5.2 holds even if × is not idempotent: for example (see the
constraints in Fig. 35), 〈tell(c2)� retract(c4)� success, c1〉 successfully ter-
minates with the store c1 ⊗ c2 	÷ c4 ≡ 2x + 6, while 〈retract(c4)� tell(c2)�
success, c1〉 is suspended on the first retract, since the σ v c precondition of
R7 in Fig. 34 is false (here, c1 v c4 is false).

This representation (i.e. keeping also the sequence of operations) dif-
fers from the classical one given by Saraswat (SR90) or in (BM07), since in
these works a retract removes from the store only one instance of the token:
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〈tell(c1) → tell(c1) → retract(c1) → A, 1̄〉 ≡ 〈A, c1〉, even if × is idempotent.
Therefore, the ordering of the actions is useless and the store can be seen
only as a set of tokens.

5.6 The Negotiation of SLAs with NMSCCP

One of the most meaningful application of the NMSCCP language is to
model generic entities negotiating a formal agreement, i.e. a SLA (BSC01;
KL03). The main task consists in accomplishing the requests of all the
agents by satisfying their QoS needs. Considering the fuzzy negotiation
in Fig. 36 (Fuzzy semiring: 〈[0, 1],max,min, 0, 1〉) both a provider and a
client can add their request to the store σ (respectively tell(cp) and tell(cc)):
the thick line represents the consistency of σ after the composition (i.e.
min), and the blevel of this SCSP (see Ch. 5.5.1) is the max, where both
requests intersects (i.e. in 0.5).
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Figure 36: The graphical interpretation of a fuzzy agreement

We present four short examples to suggest possible negotiation sce-
narios. We suppose there are two distinct companies (e.g. providers P1

and P2) that want to merge their services in a sort of pipeline, in order
to offer to their clients a single structured service: e.g. P1 completes the
functionalities of P2. This example models the cross-domain management
of services proposed in (BSC01). The variable x represents the global
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number of failures they can sustain during the service provision, while
the preference models the number of hours (or a money cost in hundreds
of euro) needed to manage them and recover from them. The preference
interval on transition arrows models the fact that both P1 and P2 explic-
itly want to spend some time to manage the failures (the upper bound
in Fig. 33), but no so much time (lower bound in Fig. 33). We will use
the Weighted semiring and the soft constraints given in Fig. 35. Even if
the examples are based on a single criteria (i.e. the number of hours) for
sake of simplicity, they can be extended to the multicriteria case, where
the preference is expressed as a tuple of incomparable criteria.

Example 5.6.1 (Tell and negotiation) P1 and P2 both want to present their
policy (respectively represented by c4 and c3) to the other party and to find a
shared agreement on the service (i.e. a SLA). Their agent description is: P1 ≡

〈tell(c4) →0
∞ tell(sp2) →0

∞ ask(sp1) →2
10 success〉||〈tell(c3) →0

∞ tell(sp1) →0
∞

ask(sp2) →1
4 success〉 ≡ P2, executed in the store with empty support (i.e. 0̄).

Variables sp1 and sp2 are used only for synchronization and thus will be ignored
in the following considerations (e.g. replaced by the SYNCHROi agents in
Ex. 5.6.2). The final store (the merge of the two policies) isσ = (c4⊗c3) ≡ 2x+x+5,
and since σ ⇓∅= 5 is not included in the last preference interval of P2 (between
1 and 4), P2 does not succeed and a shared agreement cannot be found. The
practical reason is that the failure management systems of P1 need at least 5
hours (i.e. c4 = x + 5) even if no failures happen (i.e. x = 0). Notice that the last
interval of P2 requires that at least 1 hour is spent to check failures.

Example 5.6.2 (Retract) After some time (still considering Ex. 5.6.1), suppose
that P1 wants to relax the store, because its policy is changed: this change can
be performed from an interactive console or by embedding timing mechanisms
in the language as explained in (BGMS08). The removal is accomplished by
retracting c1, which means that P1 has improved its failure management systems.
Notice that c1 has not ever been added to the store before, so this retraction
behaves as a relaxation; partial removal, which cannot be performed with tokens
(see Ch. 5.8), is clearly important in a negotiation process. P1 ≡ 〈tell(c4) →0

∞

SYNCHROP1 →
2
10 retract(c1) →2

10 success〉||〈tell(c3) →0
∞ SYNCHROP2 →

1
4

success〉 ≡ P2 is executed in 0̄. The final store is σ = c4 ⊗ c3 	÷ c1 ≡ 2x + 2, and
since σ ⇓∅= 2, both P1 and P2 now succeed (it is included in both intervals).

Example 5.6.3 (Nask) In a negotiation scenario, the nask operation can be used
for several purposes. Since it checks the absence of information (see Ch. 5.5), for
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example it can be used to check if the own policy is still implied by the store or
if it has been relaxed too much: e.g. P1 ≡ 〈retract(c1) →0

∞ SYNCHROP1 →
0
∞

success〉||〈tell(c4)→0
∞ nask(c4)→0

∞ tell(c4)→0
∞ SYNCHROP2 →

0
∞ success〉 ≡

P2 (evaluated in 0̄). As soon as P2 adds its policy (i.e. c4), P1 can relax it (by
removing c1); P1 perceives this relaxation with the nask and adds again c4. The
reason is that P1 explicitly needs a global number of spent hours not better than
that one defined by c4, which then must be entailed by the store: e.g. its recovery
system works only with at least that time. Here the preference intervals of the
two agents are not significative, since equal to the whole R+.

Example 5.6.4 (Update) The update can be instead used for substantial changes
of the policy: for example, suppose that P1 ≡ 〈tell(c1) →0

∞ update{x}(c6) →0
∞

success, 0̄〉. This agent succeeds in the store 0̄⊗c1 ⇓(V\{x}) ⊗c6, where c1 ⇓(V\{x})= 3̄
and 3̄ ⊗ c6 ≡ y + 4 (i.e. the polynomial describing the final store). Therefore,
the first policy based on the number of failures (i.e. c1) is updated such that x is
“refreshed” and the new added policy (i.e. c6) depends only on the y number of
system reboots. The consistency level of the store (i.e. the number of hours) now
depends only on the y variable of the SCSP. Notice that the 3̄ component of the
final store derives from the “old” c1, meaning that some fixed management delays
are included also in this new policy.

5.7 Service Oriented Architectures and Depend-
ability Aspects

Service Oriented Architecture (SOA) can be defined as a group of ser-
vices, which communicate with each other (PG03; Pap03). The process
of communication involves either simple data passing or it could involve
two or more services coordinating some activity. Basic services, their
descriptions, and basic operations (publication, discovery, selection, and
binding) that produce or utilize such descriptions constitute the SOA
foundation. The main part of SOA is loose coupling of the components
for integration. Services are defined by their interface, describing both
functional and non-functional behaviour. Functional includes describing
data formats, pre and post conditions and the operation performed by
the service. Non-functional behaviour includes security and other QoS
parameters. The main four features of SOA consist in Coordination, Moni-
toring, Conformance and Quality of Service (QoS) composition (PG03).
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Services are self describing, open components that support rapid,
low-cost composition of distributed applications. Services are offered
by service providers, which are organizations that procure the service
implementations, supply their service descriptions, and provide related
technical and business support. Since services may be offered by different
enterprises and communicate over the Internet, they provide a distributed
computing infrastructure for both intra and cross-enterprise (BSC01) ap-
plication integration and collaboration. Service descriptions are used to
advertise the service capabilities, interface, behaviour, and quality. Pub-
lication of such information, about available services, provides the neces-
sary means for discovery, selection, binding, and composition of services.
Service clients (end-user organizations that use some service) and ser-
vice aggregators (organizations that consolidate multiple services into a
new, single service offering) utilize service descriptions to achieve their
objectives.

Dependability as applied to a computer system is defined by the
IFIP 10.4 Working Group on Dependable Computing and Fault Toler-
ance as (IFI98): “[..] the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers [..]”. Therefore, this
original stresses the need for justification of trust. An alternate definition,
that provides the criterion for deciding if the service is dependable, is:
“the dependability of a system is the ability to avoid service failures that are more
frequent and more severe than is acceptable” (ALRL04).

Some different measurements can be applied to a system to determine
its overall dependability. A generally agreed list of attributes (ALRL04) is:
i) Availability - the probability that a service is present and ready for use; ii)
Reliability - the capability of maintaining the service and service quality;
iii) Safety - the absence of catastrophic consequences; iv) Confidentiality -
information is accessible only to those authorized to use it; v) Integrity -
the absence of improper system alterations; and vi) Maintainability - to un-
dergo modifications and repairs. Some of these attributes are quantifiable
by direct measurements (i.e. they are rather objective scores), but others
are more subjective, e.g. safety.

Dependability is clearly strictly related to the concept of security. When
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addressing security, an additional attribute has great prominence, confi-
dentiality, i.e., the absence of unauthorized disclosure of information.
Security is a composite of the attributes of confidentiality, integrity and
availability. The “dependability and security” specification of a system must
include the requirements for the attributes in terms of the acceptable fre-
quency and severity of service failures for specified classes of faults and a
given use environment.

The semiring algebraic structures (see Ch. 2.2) proves to be an ap-
propriate and very expressive cost model to represent the dependability
metrics shown in this chapter. Therefore, soft constraint-based languages
(e.g. TSCCP and NMSCCP) can be used also in order to manage depend-
ability aspects; an example is given in Ch. 5.7.1.

5.7.1 Soft Constraints to Enforce System Integrity

We show that soft constraints can model the implementation of a service
described with a policy document (BSC01; KL03); this really happens
in practice by using the Web Services Description Language (WSDL) that
is an XML-based language that provides a model for describing web
services (KL03). Moreover, by using the projection operator (i.e. ⇓ in
Ch. 2.3.1) on this policy, which consists in the composition (i.e. ⊗ in
Ch. 2.3.1) of different soft constraints, we obtain the external interface of
the service that are used to match the requests. This view can be used
to check the integrity of the system, that is if a particular service ensures
the consistency of actions, values, methods, measures and principles; as
a remind, integrity is one of the dependability attributes. The results
presented here are inspired by the work in (BF03).

For the scenario example in Fig. 37, let us suppose to have a digital
photo editing service decomposed as a set of sub-services; the compres-
sion/decompression module (i.e. COMPF) is located on the client side,
while the other filter modules are located on the side of the editing com-
pany and can be reached through the network. The first module, i.e. BWF
turns the colors in grey scale and the REDF filter absorbs green and blue
and let only red become lighter. The client wants to compress (e.g. in a
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Federated System

BWF REDFCOMPF

BW Staff Red/Green/Blue

Staff

Figure 37: A federated photo editing system.

JPEG format) and send a remarkable number of photos (e.g. the client is a
photo shop) to be double filtered and returned by the provider company;
filters must be applied in a pipeline scheme, i.e. REDF goes after BWF.

The structure of the system represented in Fig. 37 corresponds to a
federated system. It is defined as a system composed of components within
different administrative entities cooperating to provide a service (BSC01);
this definition perfectly matches our idea of SOA.

As a first example we consider the Classical semiring presented in
Ch. 2.2, therefore, in practice we show a crisp constraint case. We suppose
to have four variables outcomp, incomp, bwbyte and redbyte, which re-
spectively represent the size in bytes of the photo at the beginning of the
process, after applying the black-and-white filter, the red filter and after
compressing the obtained black-and-white photo. Since the client has a
limited memory space, it wants that the memory occupied by the photo
does not increase after the filtering and compressing process:

Memory ≡ incomp ≤ outcomp

The following three constraints represent the policies compiled re-
spectively by the staff of the BWF module, the REDF module and COMPF
module. They state, following their order, that applying the BWF filter
reduces the size of the image, applying the REDF filter reduces the size of
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the received black-and-white image and, at last, compressing the image
reduces its size.

BWFilter ≡ bwbyte ≤ outcomp

REDFilter ≡ redbyte ≤ bwbyte

Compression ≡ incomp ≤ redbyte

The integration of the three policies (i.e. soft constraints) describes

Imp1 ≡ BWFilter ⊗ RedFilter ⊗ Compression

Integrity is ensured in this system since Imp1 ensures the high-level
requirement Memory.

Imp1⇓{incomp,outcomp} v Memory

We are unconcerned about the possible values of the ‘internal’ variables
bwbyte and redbyte and thus the constraint relation Imp1⇓{incomp,outcomp}

describes the constraints in Imp1 that exist between variables incomp and
outcomp}. By definition, the above equation defines that all of the possible
solutions of Imp1⇓{incomp,outcomp} are solutions of Memory, that is, for any
assignment η of variables then

Imp1⇓{incomp,outcomp} η ≤S Memory η

Definition 28 We say that the requirement S locally refines requirement R
through the interface described by the set of variables V iff S⇓V v R⇓V.

Continuing the example in Fig. 37, we assume that the application
system will behave reliably and uphold BWFilter and Compression. Let
us suppose instead that it is not reasonable to assume that REDF will
always act reliably, for example because the software of the red filter has
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a small bug when the size of the photo is 666Kbyte. In practice, REDF
could take on any behavior:

RedFilter ≡ (redbyte ≤ bwbyte ∨ redbyte > bwbyte) = true

Imp2 ≡ BWFilter ⊗ RedFilter ⊗ Compression

Imp2 is a more realistic representation of the actual filtering process. It
more accurately reflects the reliability of its infrastructure than the previ-
ous design Imp1. However, since redbyte is no longer constrained it can
take on any value, and therefore, incomp is unconstrained and we have

Imp2⇓{incomp,outcomp} @ Memory

that is, the implementation of the system is not sufficiently robust to be
able to deal with internal failures in a safe way and uphold the memory
probity requirement.

In (Fol98; Fol03) the author argues that this notion of dependability
may be viewed as a class of refinement whereby the nature of the reliability
of the system is explicitly specified.

Definition 29 (Dependability and Constraints (BF03)) If R gives requirements
for an enterprise and S is its proposed implementation, including details about
the nature of the reliability of its infrastructure, then S is as dependably safe as R
at interface that is described by the set of variables E if and only if S⇓E v R⇓E

Quantitative analysis. When a quantitative analysis of the system is
required, then it is necessary to represent these properties using soft con-
straints. This can be done by simply considering a different semiring,
while the same considerations provided for the previous example with
crisp constraints (by using the Classical semiring) still hold.

With a quantitative analysis, now consider that we aim not only to
have a correct implementation, but, if possible, to have the “best” pos-
sible implementation. We keep the photo editing example provided in
Fig. 37, but we now represent the fact that constraints describe the relia-
bility percentage, intended as the probability that a module will perform
its intended function. For example, the following Probabilistic soft con-
straint c1 : {outcomp,bwbyte} →N→ [0, 1] (see Ch. 5.7.1) shows how the
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c1(outcomp,bwbyte) =


1 if outcomp ≤ 1024Kb,
0 if outcomp > 4096Kb,

1 − outcomp
100 · bwbyte otherwise.

compression reliability performed in BWFilter is linked to the initial and
final number of bytes of the treated image:

c1 tells us that the compression does not work if the input image is more
than 4Mb, while is completely reliable if is less than 1Mb. Otherwise,
this probability depends on the compression efficiency: more that the
image size is reduced during the compression, more that it is possible to
experience some errors, and the reliability consequently decreases. For
example, considering the definition of c1, if the input image is 4096Kb
and compressed is 1024Kb, then the probability associated to this variable
instantiation is 0.96.

In the same way, we can define c2 and c3 that respectively shows the
reliability for the REDFilter and Compression modules. Their composition
Imp3 = c1 ⊗ c2 ⊗ c3 represents the global reliability of the system. If
MemoryProb is the soft constraint representing the minimum reliability
that the system must provide (e.g. MemoryProb is expressed by a client of
the photo editing system), then if

Memory v Imp3

we are sure that the reliability requirements are entailed by our sys-
tem. Moreover, by exploiting the notion of best level of consistency (see
the blevel in Ch. 2.3.2), we can find the best (i.e. the most reliable) imple-
mentation among those possible.

At last, notice also that the projection operator (i.e. the ⇓ operator) can
be used to model a sort of function declaration to the “outside world”:
soft constraints represent the internal implementation of the service, while
projecting over some variables leads to the interface of the service, that is
what is visible to the other software components.
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5.8 Related Work

Other timed extension of concurrent constraint programming have been
proposed in (NV02; PV01; SJG96), however these languages, differently
from TSCCP, do not take into account quantitative aspects; therefore, this
achievement represents a very important expressivity improvement w.r.t.
related works. These have been considered by Di Pierro and Wiklicky who
have extensively studied probabilistic CCP (see for example (PW98)). This
language provides a construct for probabilistic choice which allows one
to express randomness in a program, without assuming any additional
structure on the underlying constraint system. This approach is therefore
deeply different from ours. Recently stochastic CCP has been introduced
in (Bor06) to model biological systems. This language is obtained by
adding a stochastic duration to the ask and tell primitives, thus differs
from ours.

Nonmonotonicity has instead been extensively studied for crisp con-
straints in the so-called linear cc programming (SL92) and in following
works as (BdBP97; CR95; dBKPR93; SJG95). Regarding related SLA ne-
gotiation models, the process calculus introduced in (DFM+05) is focused
on controlling and coordinating distributed process interactions while re-
specting QoS parameters expressed as c-semiring values; however, the
model does not cover negotiation. In (BSC01) and (KL03) the authors de-
fine SLAs at a lower level of abstraction and their description is separated
from their negotiation (while soft constraint systems cover both cases).

The most direct comparison for NMSCCP, since the two languages
are both used for SLA negotiation, is with the work in (BM07), in which
soft constraints are combined with a name-passing calculus (even if all
the examples in the chapter are then developed using crisp constraints).
However, w.r.t our language there are some important differences: i)
in NMSCCP we do not have the concept of constraint token and it is
possible to remove every c that is entailed by the store (i.e. σ v c),
even if c is syntactically different from all the c previously added (as the
retraction of c1 in Ex. 5.6.2). For example, even the removal of the c1 ⊗ c2

composition from a store containing both c1 and c2 cannot be performed
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in (BM07), because it is a derived constraint. Therefore our retract is more
like a “relaxation” operation, and not a “physical” removal of a token as
in (BM07); this feature is in the nature of negotiation, when a step back
must be taken to reach a shared agreement.

Then, ii) with NMSCCP we can reach a final agreement among the par-
ties, knowing also “how consistently” (or “how expensively”) the claimed
needs are being satisfied. This is accomplished by checking the preference
level of the store and the consistency intervals conditioning the actions
(Fig. 33). In this way, each of the agents can specify its desired prefer-
ence for the final agreement. This is a relevant improvement with regard
to (BM07), where the final store collects all the consistent solutions with-
out any distinction, i.e. each solution that satisfies σ ⇓∅= αi, for every
αi >S 0.

At last, iii) we introduced the update operation (extending the semantics
of the crisp update in (dBKPR93)), which is a variable-grained relaxation,
and the nask (whose crisp version is in (dBKPR93)), that is very useful
to have in a nonmonotonic framework to check absence of information.
Notice that we do not need the check operation defined in (BM07) in order
to verify if a given constraint is consistent with the store (without adding
it). The reason is that we have the checked transitions of Fig. 33 to prevent
the store from becoming not consistent “enough”.

5.9 Conclusions

We have introduced the TSCC language in order to join together the ex-
pressive capabilities of soft constraints and timing mechanisms in a new
programming framework. The agents modeled with this language are
now able to deal with time and preference dependent decisions that can
often be found during complex interactions: an example can be repre-
sented by entities that need to negotiate a satisfying QoS and manage
generic resources. Mechanisms as timeout and interrupt can be very use-
ful when waiting for pending conditions or when triggering some new
necessary actions. All the TSCCP rules have been formally described by
a transition system and then also with a denotational characterization of
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the operational semantics obtained with the use of timed reactive sequences.
The resulting semantics has been proved to be compositional and correct.

A first improvement of TSCCP can be the inclusion of a fail agent in the
syntax given in Def. 23. The transition system we have defined considers
only successful computations. If this could be a reasonable choice in a
don’t know interpretation of the language it will lead to an insufficient
analysis of the behavior in a pessimistic interpretation of the indetermin-
ism. A second extension for this framework could be represented by
considering interleaving (as in the classical CCP) instead of maximal par-
allelism, which is the scheduling policy followed in this chapter when
observing the parallel execution of agents. According to this policy, at
each moment every enabled agent of the system is activated, while in the
first paradigm an agent could not be assigned to a “free” processor.

Clearly, since we have dynamic process creation, a maximal paral-
lelism approach has the disadvantage that in general it implies the ex-
istence of an unbound number of processes. On the other hand a naif
interleaving semantic could be problematic form the time viewpoint, as
in principle the time does not pass for enabled agent which are not sched-
uled. A possible solution, analogous to that one adopted in (dBGM04),
could be to assume that the parallel operator is interpreted in terms of
interleaving, as usual, however we must assume maximal parallelism
for actions depending on time. In other words, time passes for all the
parallel processes involved in a computation. To summarize, we could
adopt maximal parallelism for time elapsing (i.e. for evaluating a (valued)
now agent) and an interleaving model for basic computation steps (i.e.
(valued) ask and (valued) tell actions).

At last, we would like to consider other time management strategies (as
the one proposed in (Val03)) and to study how timing and non-monotonic
constructs (BS08c) can be integrated together.

Monotonicity is one the major drawbacks for practical use of concur-
rent constraint languages in reactive and open systems. In this chapter we
have proposed some new primitives (nask, update and retract) that allow
the nonmonotonic evolution of the store. We have chosen to extend SCCP
because soft constraints (Bis04; BMR97b) enhance the classical constraints
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in order to represent consistency levels, and to provide a way to express
preferences, fuzziness, and uncertainty. We think that having preference
values directly embedded in the language represents a valuable solution
to manage SLA negotiation, particularly when a given QoS is associated
with the resources. Soft constraints can be used to model different prob-
lems by only parameterizing the semiring structure.

We would like to merge this language with the timing mechanisms (e.g.
“timeout” and “interrupt”) explained in (BGMS08). These capabilities can
be useful during complex interactions, e.g. to interrupt a long wait for
pending conditions (or to interrupt a deadlock) or to trigger urgent actions.

Moreover, we would like to investigate the possibility of a distributed
store instead of the centralized one we have assumed in this chapter.
In distributed CSP (YDIK98), variables and constraints are distributed
among all the agents, thus the knowledge of the problem is not con-
centrated in a single agent only. This requirement is common in many
practical application, and surely for (SLA) negotiating entities, where each
agent has a private store collecting its resources (i.e. variables) and policies
(i.e. constraints).

At last, we plan to provide the language with other formal tools, such
as a denotational semantics, a study on agent equivalences in order to
prove when two providers offer the same service. Moreover, we want to
deepen the absence of failures in NMSCCP.
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Chapter 6

A Semantic Foundation for
Trust Management
Languages with Weights

6.1 Introduction

Trust (see Ch. 1.4) is a very interesting and relevant notion in modern per-
vasive computer systems. It lies at the heart of human interactions and
thus as soon as these interactions happen through (and among) digital de-
vices, such trust relationships must be represented, specified, analyzed,
negotiated and composed in those systems (JIB07). As a matter of fact,
when one wants to mechanize the reasoning in certain situations, a formal-
ization is necessary. If one wants also to achieve a common understand
and comparison among different trust management system, a semantic
mechanism would be extremely useful.

To make a concrete example, a Trust Management (TM) language is
required to have the expressivity power to represent the trust-related facts
of the considered dominion and a method to derive new assessments
and decision starting from these base facts. Current trust management
languages based on credentials (for both expressing facts and access policy
rules) uses several foundational approaches. However, facts and access
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rules are not so crisp in the real complex world. For example, each
piece of information could have a confidence value associated with it and
representing a reliability estimation, or a fuzzy preference level or a cost
to be taken in account. The feedback final value, obtained by aggregating
all the ground facts together, can be then used to improve the decision
support system by basing on this preference level instead of a plain “yes or
no” result (e.g, see (MP06; CR06; BDOS05)). In this scenario, a credential
could state that the referred entity is a “student” or a “bright student”
with a probability of 80% because her/his identity of student is based
on what an acquaintance asserts (thus, it is not as certain as declared in
IDs), or, in the second case, because the received marks need to be globally
evaluated. In literature there are many examples where trust or reputation
are computed by aggregating some values together (JIB07), for example
in PGP systems, or for generic trust propagation inside social networks.
We think that similar quantitative measurements are useful also for trust
languages, in order to have a more informative result.

Therefore, we describe a weighted version of Datalog (i.e. DatalogW)
where the rules are enhanced with values taken from a proper c-semiring
structure (Bis04; BMR97c), in order to model the preference/cost system;
then, we use it as the basis to give declarative semantics to a Role-based
Trust-management language according to the principles of RT0 (LMW02),
and called here RTW

0 : the statements of RTW
0 are “soft”, i.e. have a re-

lated c-semiring value. A similar improvement can be accomplished also
for RT1 (LMW02), i.e. RT0 extended with parameterized roles. Similar
variations for RTML family languages were defined and implemented
by using different formal tools in (MP06). There, an initial compari-
son (and integration) between rule-based trust management (RTML) and
reputation-based trust systems has been performed and a preliminary (ad-
hoc) implementation RTML weighted presented in (CMM+07) for GRID
systems. However, having a uniform semantics approach to model these
languages (as DatalogW) could be very useful to provide a common un-
derstanding as well as a basis for systematic comparison and uniform
implementation.

Indeed, there are good reasons to prefer a language that is declarative
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and has a formal foundation. In this sense, we are following a simi-
lar approach as done in (LM03) for RTML trust management languages,
where Datalog with constraints have been proposed as a formal seman-
tics for trust management languages. Since trust is not necessarily crisp,
DatalogW could be used to give formal semantics to this kind of languages
with “soft credentials”. In this Chapter we show an approach for RTML
that can be further extended to other Datalog-based languages. The main
contribution of this Chapter is thus to provide a formal semantics for such
languages that could also bring to a uniform implementation approach, as
well as to a comparison among these languages . Giving weights to facts
and rules contributes also towards bridging the gap between “rule-based”
trust management (i.e. hard security mechanisms) and “reputation based”
trust management (JIB07) (i.e. soft security mechanisms).

It is also worth noticing that c-semirings are a valuable mechanism to
model and solve optimization problems in several contexts. With our pro-
posal of mixing credential based languages with soft-constraints based on
c-semiring in a systematic way, we pave the way for linguistic mechanisms
for making optimization decision related to the trust domain. Indeed, this
domain could be also coupled with other parameters and thus creating a
much more complex (self) optimization mechanisms. For instance, one
could use a cost/preference parameter associated with the trust level. The
composition of the trust semiring and the preference one is yet amenable
of mechanization and this yet leads to a similar treatment we describe
here.

In this Chapter we show the ideas presented in (BMS08a; BMS08b) by
giving a weighted semantics to all the RT languages reported in (LMW02).
In Ch. 6.2 we describe the background notions about trust languages and
c-semirings. In Ch. 6.3 we present a weighted version of Datalog, i.e.
DatalogW , while Ch. 6.4 features the weighted RT language family based
on DatalogW , i.e. RTW

0 , RTW
1 , RTW

2 , RTWT and RTWD. At last, in 6.5 we
present the final conclusions.

187



6.2 Trust Languages

Datalog was originally developed as a query and rule language for de-
ductive databases and is syntactically equivalent to a subset of the Pro-
log language. Several TM languages are based on Datalog, e.g., Del-
egation Logic (LGF03), the RT (Role-based Trust-management) frame-
work (LMW02), SD3 (Secure Dynamically Distributed Datalog) (Jim01)
and Binder (Tre02). These are some of the languages that can benefit from
the semantic basis presented in this Chapter, even if we will focus only in
the RT language family.

The RT framework is a family of Role-based Trust-management lan-
guages (LMW02), whose most basic part is RT0 which has been then
extended to RT1 with parameterized roles: University.professorOf(student)
is a statement that can be used to name the professor of a student. An
entity (or principal, e.g. A or B) in RT is a uniquely identified individual or
process, which can issue credentials and make requests. RT assumes that
an entity that issued a particular credential or a request can be determined
through the use of public/private key pairs. A role in RT takes the form of
an entity followed by a role name (e.g. R with subscripts), separated by
a dot. A role defines a set of entities who are members of this role: each
entity A has the authority to define who are the members of each role of
the form A.R. Each statement defines one role to contain either an entity,
another role, or certain other expressions that evaluate to a set of entities.
More details will be given in Ch. 6.4.

An important extension that significantly enhances the expressivity of
this kind of languages is presented in (LM03). In that work, the authors
present Datalog extended with constraints (denoted by DatalogC) in order
to define access permissions over structured resources as trees.

Several approaches advocated the usage of trust levels w.r.t. attributes,
also stated directly in digital credentials. In addition to the works on the
extension of RTML with weights and its relationships with other trust
models as the Josang one already mentioned (MP06; CMM+07), there
is also the work on policy and reputation done in (BDOS05). Here the
PROTUNE policy language is extended to deal with trust and reputation
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levels. Also role based access control has been extended with trust levels
in (CR06). All these works use specific logics and approaches.

6.3 A Weighted Extension of Datalog

Datalog is a restricted form of logic programming with variables, predi-
cates, and constants, but without function symbols. Facts and rules are
represented as Horn clauses in the generic form R0 :- R1, . . . ,Rn. A Datalog
rule has the form R0(t0,1, . . . , t0,k0 ) : -R1(t1,1, . . . , t1,k1 ), . . . ,Rn(tn,1, . . . , tn,kn ),
where R0, . . . ,Rn are predicate (relation) symbols and each term ti, j is
either a constant or a variable (0 ≤ i ≤ n and 1 ≤ j ≤ ki). The for-
mula R0(t0,1, . . . , t0,k0 ) is called the head of the rule and the sequence
R1(t1,1, . . . , t1,k1 ), . . . ,Rn(tn,1, . . . , tn,kn ) the body. If n = 0, then the body is
empty and the rule is called a fact. Moreover, each program P in Datalog
(i.e. a finite set of rules) must satisfy two safety conditions: i) all variables
occurring in the head of a rule also have to appear in the body, and ii)
every fact in P must be a ground fact.

We can now define our Weighted Datalog, or DatalogW based on classical
Datalog. While rules have the same form as in classical Datalog, a fact
in DatalogW has the form: Ri(xi,1, . . . , xi,ki ) : - s. Therefore, the extension
is obtained by associating to ground facts a value s ∈ S taken from the
semiring 〈S,+,×, 0, 1〉. This value describes some properties of the fact,
depending on the chosen semiring: for example, we can add together
all these values by using the Weighted semiring 〈R+,min,+,∞, 0〉, trying to
minimize the overall sum at the same time. Otherwise, we can find the best
global preference level by using the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉
or we can retrieve the highest resulting probability when we compose all
the ground facts, by using the Probability semiring 〈[0, 1],max,×, 0, 1〉.

Table 13 shows an example of DatalogW program, for which we sup-
pose to use the Weighted semiring. The intuitive meaning of a semiring
value like 3 associated to the atom r(a) (in Tab. 13) is that r(a) costs 3 units.
Thus the set N contains all possible costs, and the choice of the two oper-
ations min and + implies that we intend to minimize the sum of the costs.
This gives us the possibility to select the atom instantiation which gives
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s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).

q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

Table 13: A simple DatalogW program.

the minimum cost overall. Given a goal like s(x) to this program, the oper-
ational semantics collects both a substitution for x (in this case, x = a) and
also a semiring value (in this case, 2) which represents the minimum cost
among the costs for all derivations for s(x). To find one of these solutions,
it starts from the goal and uses the clauses as usual in logic programming,
except that at each step two items are accumulated and combined with the
current state: a substitution and a semiring value (both provided by the
used clause). The combination of these two items with what is contained
in the current goal is done via the usual combination of substitutions (for
the substitution part) and via the multiplicative operation of the semiring
(for the semiring value part), which in this example is the arithmetic +.
Thus, in the example of goal s(X), we get two possible solutions, both with
substitution X = a but with two different semiring values: 2 and 3. Then,
the combination of such two solutions via the min operation give us the
semiring value 2.

To compute trust, in Ch. 6.4.1 we will use the path semiring (TB04):
Strust = 〈〈[0, 1], [0, 1]〉,+p,×p, 〈0, 0〉, 〈1, 1〉〉, where

〈ti, ci〉 +p 〈t j, c j〉 =


〈ti, ci〉 if ci > c j,

〈t j, c j〉 if ci < c j,

〈max(ti, t j), ci〉 if ci = c j.

〈ti, ci〉 ×p 〈t j, c j〉 = 〈tit j, cic j〉

In this case, trust information is represented by a couple of values 〈t, c〉:
the second component represents a trust value in the range [0, 1], while
the first component represents the accuracy of the trust value assignment
(i.e. a confidence value), and it is still in the range [0, 1]. This parameter
can be assumed as a quality of the opinion represented instead by the
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trust value; for example, a high confidence could mean that the trustor
has interacted with the target for a long time and then the correlated trust
value is estimated with precision.

Finite Computation Time Being the DatalogW language a subset of the
Soft Constraint Logic Programming language (BR01) with no functions,
we can can use the results in (BR01) to prove that, considering a fixed
DatalogW program, the time for computing the value of any goal for this
program is finite and bounded by a constant. The reason is that we just
have to consider a finite subclass of refutations (i.e. simple refutations) with
a bounded length. After having considered all these refutations up to that
bounded length, we have finished computing the semiring value of the
given goal. Given a refutation tree, a path from the root to a leaf is called
simple if all its nodes have different labels up to variable renaming. A
refutation is a simple refutation if all paths from the root to a leaf in its
refutation tree are simple. The proof of Theo. 6.3.1 is given in (BR01).

Theorem 6.3.1 (Finite Set of Simple Refutations) Given a DatalogW pro-
gram P and a goal C, consider the set SR(C) of simple refutations starting from
C and building the empty substitution. Then SR(C) is finite.

6.4 Extending the RT Family with DatalogW

We describe four kinds of credentials for defining roles in a TM language
family, here called RTW , which is based on DatalogW (see Ch. 6.3). This
family uniformly extends the classical RT family (LMW02) by associating
a weight, or better, a semiring value to the basic role definition. There-
fore, all the following credentials must be parameterized with a chosen
〈S,+,×, 0, 1〉 semiring in order represent preference/cost or fuzzy informa-
tion associated to the statements. For every following RTW

0 credential, we
describe how it can be translated in a corresponding DatalogW rule. Then
we will suggest how to extend RTW

0 with parameterized roles, obtaining
the RTW

1 language.

Rule 1 A.R←− 〈B, s〉 where A and B are (possibly the same) entities, and
R is a role name. This means that A defines B to be a member of A’s
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R role. This statement can be translated to DatalogW with the rule
r(A,B) :- s, where s is the semiring value associated with the related
ground fact, i.e. s ∈ S.

Rule 2 A.R ←− B.R1 This statement means that A defines its R role to
include (all members of) B’s R1 role. The corresponding DatalogW

rule is r(A, x) :-r1(B, x).

Rule 3 A.R←− A.R1.R2, where A.R1.R2 is defined as linked role (LMW02)
and it means that A defines its R role to include (the members of)
every role B.R2 in which B is a member of A.R1 role. The mapping
to DatalogW is r(A, x) :-r1(A, y), r2(y, x).

Rule 4 A.R ←− B1.R1 ∩ B2.R2 ∩ · · · ∩ Bn.Rn. In this way, A defines its R
role to include the intersection of the n roles. It can be translated to
DatalogW with r(A, x) :-r1(B1, x), r2(B2, x), . . . , rn(Bn, x).

The semantics of a program using these rules will find the best cre-
dential chain according to the + operator of the chosen semiring, which
defines a partial order ≤S. Notice that only the basic role definition state-
ment (i.e. Rule 1) is enhanced with the semiring value s ∈ S, since the
other three rules are used to include one role into another or to obtain the
intersection of different roles.

Notice that having a semiring value associated only with ground facts
does not prevent us from giving a weight also to rules. This can be accom-
plished by slightly changing the syntax of the credentials used to compose
the roles together (i.e. Rules 1-2-3), by associating a semiring value also
to them. Then, in the Datalog translation, a new ground fact can be added
in the body of the rule, whose weight models the use of that specific rule.
For example, Rule 2 becomes A.R ←− 〈B.R1, s〉 (where s is a value taken
from the same S semiring set), and its Datalog translation is r(A, x) :-
r1(B, x), rule weight, where rule weight :- s is the ground fact that gives a
weight to the rule. Clearly, nothing changes from the computational point
of view (see Sec 6.3).

It is easy to extend this language in order to enhance it with param-
eterized roles, thus obtaining a RTW

1 language following the hierarchy
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presented in (LMW02). This parametrization can be used to represent
relationships among entities, e.g. University.professorOf(student) to name
the professor of a student, but also to represent attributes that have fields,
e.g. the number of exams or the enrollment academic year and so on.
With respect to the previous four rules, in RTW

1 the head of a credential
has the form A.R(h1, . . . , hn), in which A is an entity, and R(h1, . . . , hn) is
a role name (R is a role identifier). For each i ∈ 1 . . . n, hi is a data term
having the type of the ith parameter of R. For example, Rule 1 can be
rewritten in RTW

1 as A.R(h1, . . . , hn)←− 〈B, s〉, and mapped to DatalogW as
r(A,B, h1, . . . , hn) :- s. Our intention is to extend the RTW family according
to the guidelines explained in (LMW02) (see Ch. 6.5).

Since Datalog is a subset of first-order logic, the semantics of a TM lan-
guage based on it is declarative and unambiguous. While The × operator
of the semiring is used to compose the preference/cost values associated to
the statements, the+ is used to let the framework select the best derivation
with more chances to authorize the requester (among all the credentials
revealed by her/him).

In the next theorem we claim that our weighted language family can
be used to represent also classical RT credentials (LMW02). In this sense,
the RTW languages can be considered as a foundation layer for all the
classical RT languages (RTW

2 will instead be presented in Ch. 6.4.2).

Theorem 6.4.1 (Language Family Inclusion) For each S set of statements in
the RT0, RT1 or RT2 language, we can find a corresponding SW set of statements
respectively represented in RTW

0 , RTW
1 or RTW

2 , and whose semantics is the same.
This can be accomplished by using DatalogW together with the Boolean semiring.

In Fig. 38 we show the result of Theo. 6.4.1, i.e. the vertical inclusions;
the horizontal ones are explained in (LMW02) (for RT) and in this Chapter
(for RTW). Theorem 6.4.1 can be proved by using the Boolean semiring
〈{0, 1},∨,∧, 0, 1〉 and by assigning a weight of 1 (i.e. the true value) to all
the ground facts. In this way we obtain a set of crisp statements and the
semantics returns all the possible derivations, as the corresponding RT set
of statements would do.

In Ch. 6.4.3 and Ch. 6.4.4 we respectively introduce other two RT-based
languages: RTWT and RTWD can be used, together or separately, with each
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Figure 38: A hierarchy of RTW languages, compared with the classical RT
one.

EPub.disct ←− EPub.preferred ∩ EPub.brightStudent.

EPub.preferred ←− EOrg.highBudget ∩ EOrg.oldCustomer.

EPub.brightStudent ←− EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.

ABU.accredited ←− 〈 StateU, 0.9 〉.

StateU.highMarks ←− 〈 Alice, 0.8 〉.

EOrg.highBudget ←− 〈 Alice, 0.6 〉.

EOrg.oldCustomer ←− 〈 Alice, 0.7 〉.

Table 14: An example in RTW
0 , with fuzzy values associated to the credentials.

of RTW
0 , RTW

1 , or RTW
2 . The resulting combinations are written as RTW

i ,
RTWT

i and RTWD
i for i = 0, 1, 2.

6.4.1 Some Examples with Levels of Trust

We can start by adding levels to the classical RT0 example presented in
many RT related papers (e.g. (LMW02)). To solve the example in Tab. 14,
we use a Fuzzy semiring 〈[0, 1],max,min, 0, 1〉, where the elements in [0, 1]
represents the truth degree connected to a credential and evaluated by the
entity which signs and issues it: for example, StateU.highMarks ←− 〈
Alice, 0.8 〉 in Tab. 14 certifies that Alice has obtained a good number of
high marks (since the value is 0.8) for the exams completed at the StateU
university (the credential is issued by StateU).

The example in Tab. 14 describes a fictitious Web publishing service,
EPub, which offers a discount to anyone who is both a preferred customer
and a bright student. EPub delegates the authority over the identification
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EPub.disct ←− EPub.preferred ∩ EPub.brightStudent.

EPub.disct ←− EOrg.famousProf.goodRecLetter.

EPub.preferred ←− EOrg.highBudget ∩ EOrg.oldCustomer.

EPub.brightStudent ←− EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.

EOrg.famousProf ←− 〈 ProfX, 〈 0.9, 0.9 〉〉.

ProfX.goodRecLetter←−〈Alice, 〈 0.9, 0.8 〉〉.

ABU.accredited ←− 〈 StateU, 〈 0.9, 0.8 〉〉.

StateU.highMarks ←− 〈 Alice, 〈 0.8, 0.9 〉〉.

EOrg.highBudget ←− 〈 Alice, 〈 0.6, 0.5 〉〉.

EOrg.oldCustomer ←− 〈 Alice, 〈 0.7, 0.7〉〉.

Table 15: An extension of the example in Tab. 14, using the path semiring.

of preferred customers to its parent organization, EOrg. In order to be
evaluated as a preferred customer, EOrg must issues two different types
of credentials stating that the customer is not new (i.e. EOrg.oldCustomer)
and has already spent some money in the past (i.e. EOrg.highBudget).
EOrg assigns a fuzzy value to both these two credentials to quantify its
evaluation. EPub delegates the authority over the identification of bright
students to the entities that are accredited universities. To identify such
universities, EPub accepts accrediting credentials issued by the fictitious
Accrediting Board for Universities (ABU). ABU evaluates a university with a
fuzzy score and each university evaluates its enrolled students. A student
is bright if she/he is both enrolled in a good university and has high marks.
The final fuzzy score, obtained by composing together all the values of
the used credentials, can be compared with a threshold to authorize the
discount: e.g. only entities whose set of credentials produced a score
greater than 0.7 are authorized. Otherwise, the final fuzzy result can be
used to derive a proportional discount amount: for example a score of
0.8 could authorize a discount that is twice the discount allowed with a
score of 0.4. The following credentials prove that Alice is eligible for the
discount with a score of 0.6, determined by the fact that she has not a
very high budget spent at EOrg (i.e. her EOrg.highBudget credential has a
value of 0.6).

In Tab. 15 we extend the example of Tab. 14 in order to represent also a
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case where the authorization can be accomplished by following different
derivations. For example, a customer could be allowed to have a discount
even if she/he presents a good recommendation letter written by a famous
professor (i.e. EPub.famousProf.goodRecLetter). In Tab. 15 we use the path
semiring presented in Ch. 6.3, thus a semiring value consists in a couple of
trust/confidence feedbacks. The best derivation corresponds to the criteria
defined by the +p (i.e. confidence is more important).

6.4.2 RTW
2 : Logical Rights

Trust languages can be used to grant some permissions, i.e. to represent
access modes over some specific objects. For this reason it useful to group
logically related objects (e.g. the files inside the same directory) and access
modes, and to give permissions about them in a correlated manner. As
proposed in (LMW02), we introduce in our language the notion of o-
sets, which are used to group together this kind of objects: o-sets names
are created by associating an o-set identifier to a tuple of data terms.
Moreover, an o-set identifier has a base type τ, and o-set names/o-sets
created by using an o-set identifier have the same base type as the o-set
identifier. Finally, the value of an o-set is a set of values in τ.

An o-set-definition credential is similar to the role definition creden-
tial that we have defined in Ch. 6.4 for RTW

1 : the difference is that the
members of o-sets are objects that are not entities. For example, the rule
Admin.Documents(read)←− 〈FileA, 0.9〉, for example, states that the ad-
ministration office grants to FileA the permission to be read only for the
90% of it; FileA and the Documents o-set id are associated with the file type.

O-set-definition credentials can be translated in Datalog exactly as
proposed for RTW

1 in Ch. 6.4: the head of a credential has the form
A.O(h1, . . . , hn), where O(h1, . . . , hn) is an o-set name of type τ, while the
body can be a value of base type τ , another o-set B.O1(s1, . . . , sm) of base
type τ, a linked o-set A.R1(t1, . . . , tl).O1(s1, . . . , sm), in which R1(t1, ..., tl) is
a role name and O1(s1, . . . , sm) is an o-set name of base type τ, or an inter-
section of k o-sets of the base type τ (see Ch. 6.4.3 for the intersection of
roles and o-sets).
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Therefore, a credential in RTW
2 is either a role-definition credential or

an o-set-definition credential. For more details on types and properties of
RTW

2 credentials (w.r.t. RTW
1 ), please refer to (LMW02).

Example 6.4.2 In this example, the AlphaCompany allows the members of a
project team to work on the documents of this project: each of the credentials
representing the documents, e.g. a f ileA file, are associated with a couple of
values, e.g. 〈0.9, 0.5〉, which grant a member of the project the right to read 90%
of the file and to modify 50% of it. This restriction on files can be explained by
copyright or Concurrent Versioning System limitations, or due to the different
position taken by employees. Even the credentials concerning the members of the
project (e.g. Bob) are weighted with the same percentages, in this case related
instead to the role of the entity (i.e. there are generic read/modify rights associated
to Bob): in this way, it possible to combine all these levels of rights together, and to
finally know how much a given entity can read and modify a given object. As we
presented in Ch. 6.2, the Cartesian product of two c-semirings is still a c-semiring
and, therefore, it is not a problem to have multiple weights (more details are given
in (BMR97c)); for this reason we use the vectorization of two Fuzzy semirings,
i.e. 〈〈[0, 1], [0, 1]〉, 〈max,max〉, 〈min,min〉, 〈0, 0〉, 〈1, 1〉〉, in order to maximize
(i.e. with 〈max,max〉) the composition of the values representing the rights, (i.e.
with 〈min,min〉): in practice, we use the Fuzzy semiring to find the maximum
read/modify percentages, obtained by keeping the worst value among all the com-
position percentages. The credentials to represent this scenario are the following
ones, from which we can obtain AlphaCompany.fileAc(read, modify, fileA)
←− Bob with a value of 〈0.8, 0.5〉:

AlphaCompany.fileAc(read, modify, AlphaCompany.documents(x)) ←−
AlphaCompany.team(x).

AlphaCompany.documents(proj) ←− 〈fileA, 〈0.9, 0.5〉〉.
AlphaCompany.team(proj1) ←− 〈Bob, 〈0.8, 0.7〉〉.

6.4.3 RTWT: Threshold and Separation-of-Duty Policies

Threshold structures are satisfied by the agreement of k out of a set of entities
that satisfy a specified condition, while separation of duty instead requires
that two or more different people be responsible for the completion of
a sensitive task, such deciding the result of an exam. With Rule 4 (see
Ch. 6.4) it is possible to implement simple threshold structures by using
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the intersection of roles; for example, the policy stating that a student
is considered bright (bS) by her/his university (Uni) only if two out of
three professors (P1, P2 and P3) say so, can be represented by the three
rules Uni.bS ←− P1.bS ∩ P2.bS, Uni.bS ←− P1.bS ∩ P3.bS and Uni.bS ←−
P2.bS ∩ P3.bS.

However, with this kind of intersections we are not able express com-
plex policies: for example if we need to represent the fact that A says that
an entity has attribute R if two different entities having attribute R1 says
so. For this reason we need to introduce the RTWT language, in order to
properly work with sets of entities. More specifically, RTWT adds to the
RTW languages the notion of manifold roles, which generalizes the notion
of roles (LMW02). A manifold role has a value that is a set of entity col-
lections. An entity collection is either an entity, which can be viewed as
a singleton set, or a set of two or more entities. Notice that, as the RTWD

language presented in Ch. 6.4.4, RTWT can be used together with each of
RTW

i languages (see Ch. 6.4). In RTWT we introduce two more types of
credentials w.r.t. Ch. 6.4:

Rule 5 A.R←− B1.R1 � · · · � Bk.Rk. As we introduced before with words,
the meaning of this credential is members(A.R) ⊇ members(B1.R1 �

· · · � Bk.Rk) = {s1 ∪ · · · ∪ sk|si ∈ members(Bi.Ri) for 1 ≤ i ≤ k}. Given
w1, . . .wk as the actual weights of the derivations respectively rooted
in B1.R1, . . .Bk.Rk, the global weight of this clause is then composed
as w1 × w2 × · · · × wk, where × depends on the chosen 〈S,+,×, 0, 1〉
semiring.

Rule 6 A.R←− B1.R1 ⊗ · · · ⊗ Bk.Rk. The formal meaning of this credential
is instead given by members(A.R) ⊇ members(B1.R1 ⊗ · · · ⊗ Bk.Rk) =
{s1 ∪ · · · ∪ sk|(si ∈ members(Bi.Ri) ∧ si ∩ s j = ∅) for 1 ≤ i , j ≤ k}.
Given w1, . . .wk as the actual weights of the derivations respectively
rooted in B1.R1, . . .Bk.Rk, the global weight of this clause is then
composed as w1 × w2 × · · · × wk, where × operator depends on the
chosen 〈S,+,×, 0, 1〉 semiring.

As usual, the Datalog engine will select the best derivation according
to the + operator of the semiring. Considering RTWT, the translation
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to Datalog rules for Rule 1, Rule 2 and Rule 4 is the same as the one
presented in Ch. 6.3. For Rule 3, Rule 5 and Rule 6 rules, the translation
is instead the following one:

Rule 3 A.R←− A.R1.R2 can be translated to r(A, x) :-r1(A, y), r2(y, x) when
size(r1) = 1, or can be translated to r(A, y) :-r1(A, x), r2(y, x1), . . . r2(y, xk),
setk(x, x1, . . . , xk) when size(r1) = k > 1. Each role identifier has no a
size: the size of a role limits the maximum size of each of its member
entity set (see (LMW02) for further details). The new setk predicate
takes k + 1 entity collections as arguments, and setk(s, s1, . . . , sk) is
true if and only if s = s1 ∪ · · · ∪ sk; if si is an entity, it is treated as a
single-set element.

Rule 5 A.R←− B1.R1 � · · · � Bk.Rk can be translated to r(A, x) :-r1(B1, x1),
r2(B2, x2), . . . , rk(Bk, xk), setk(x, x1, . . . xk).

Rule 6 A.R←− B1.R1 ⊗ · · · ⊗ Bk.Rk can be translated to r(A, x) :-r1(B1, x1),
r2(B2, x2), . . . , rk(Bk, xk),nsetk(x, x1, . . . xk). The nsetk predicate takes
k + 1 entity collections as arguments and it is true only when s =
s1 ∪ · · · ∪ sk and for any 1 ≤ i , j ≤ k, si ∩ s j = ∅

Example 6.4.3 Suppose that for a university office a student is “bright” (i.e.
Uni.bS) if one member of Uni.evalExtAdvisor (i.e. an external advisor) and
two different members of Uni.EvalPro f (i.e. a professor who teaches in that
university) all say so. This can be represented using the following credentials
(where A, B, C and D can be external advisors and/or professors):

Uni.bS ←− Uni.evaluators.bS.

Uni.evaluators ←− Uni.evalProfs � Uni.evalExtAdvisor.

Uni.evalProfs ←− Uni.evalProf ⊗ Uni.evalProf.

Uni.evalExtAdvisor ←− 〈A, 0.9〉. Uni.evalExtAdvisor ←− 〈B, 0.7〉.

Uni.evalProf ←− 〈A, 0.8〉. Uni.evalProf ←− 〈C, 0.8〉.

Uni.evalProf ←− 〈D, 0.6〉.

If we adopt the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉, the best autho-
rization corresponds to the set {A,C} with a value of 0.8 (i.e. the min
between 0.9 and 0.8): we remind that A is both a professor (i.e. A teaches
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at the university) and an external advisor (i.e. A can be a visiting pro-
fessor) and therefore only two entities can satisfy the request. Therefore,
with this program we retrieve the best combination of evaluators for a
student: the student is supposed to present her/his signed credentials and
to request how much she/he is considered bright: the evaluations of dif-
ferent evaluators are composed by selecting the worst score (with the min
operation of the semiring), but at the end the best derivation is selected
(by using the max operator).

6.4.4 RTWD: Delegation of Role Activations

The RTWD language is finally added to our weighted family in order
to handle delegation of the capacity to exercise role memberships. The
motivations are that, in many scenarios, an entity prefers not to exercise
all his rights. For example, a professor could want to log as a simple
university employee, thus not having the rights to insert or change the
student exam results, but only having the rights to check the number of
canteen tickets. With a weighted extension (i.e. RTWD) we are now able
to state “how much” the rights are delegated to another entity (e.g. a
session or a process). Therefore it is possible to quantify the “amount”
of delegated rights, e.g. to modify a document, but only for the 80% of
it, which is for example less than the rights held by the delegating entity

(e.g. 100%). The delegation takes the following form: B1
D as A.R
−−−−−−→ B2,

which means that B1 delegates to B2 the ability to act on behalf of D in D’s
capacity as a member of A.R.

For the definition of the RTWD rules we introduce the forRole predicate
as in (LMW02): f orRole(B,D,A.R) can be read as B is acting for “D as
A.R” and it means that B is acting for the role activation in which D
activates A.R. The delegation rules can be translated in the following

way: B1
D as A.R
−−−−−−→ B2 f orRole(B2,D,A.R) ←− f orRole(B1,D,A.R). This rule

means that B2 is acting for “D as A.R” if B1 is doing so. Other kind of
delegation rules that can be formulated are presented in (LMW02).

Clearly, even the other rules presented in Ch. 6.4 and Ch. 6.4.3 must
be modified according to the introduction of the forRole predicate. For
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example, A.R ←− 〈D, s〉 becomes f orRole(D,D,A.R) :- s and s ∈ S is the
associated weight taken from the 〈S,+,×, 0, 1〉 semiring. Therefore we
have presented only the Rule 1 translation and, for sake of brevity, we
omit all the other rules translation with the forRole predicate (from Rule
2 to Rule 6); however the translation is similar to the one proposed in
the RTD design in (LMW02). A request is translated in the same way
as a delegation credential; the request is replaced by the dummy entity

corresponding to it. For example, the B1
D as A.R
−−−−−−→ req request is translated

to f orRole(ReqID, D, A.R) ←− f orRole(B1, D, A.R), where ReqID is the
dummy entity for req.

Example 6.4.4 In this simple example we show how different delegation acts can
lead to different costs. We use the Weighted semiring, i.e. 〈R+,min,+,∞, 0〉,
since we suppose the authorizer wants to minimize the cost associated with the
credentials used for the authorization (the + of the semiring is instantiated to
min in the Weighted semiring): the costs are elements of R+ (i.e. the set of
positive real numbers) and are composed with the arithmetic + (i.e. the × of the
Weighted semiring). The total cost value can be considered, for example, as the
cost charged to the authorizer in order to satisfy the requester. For example, the
authorizer is represented by a university budget office, and the cost associated
with the credentials represents the money cost to manage them (i.e. phone calls,
faxes, travel expenses, etc). In the example, we have a university (i.e. Uni), where
any conference organization event has to be proposed and approved before it is
allowed to be practically organized. Any professor can propose such an event. A
member of the “approval commission” can instead approve an event. A member of
this commission is also a professor (i.e. the commission is made up of professors);
however, a professor cannot approve his own proposed event. Therefore, the aim
of the university budget office is to minimize the cost for the organization of the
events. This can be represented as follows:

Uni.organizeEvent ←− Uni.propose ⊗ Uni.approve.
Uni.propose ←− Uni.prof.

Uni.approve ←− Uni.appCommission.
Uni.prof ←− Uni.appCommission.

Suppose also that A and B professors are both in the approval commission
and the cost of these two credentials is the same (e.g. 1 euro is a basic cost to
manage a member of the approval commission): Uni.appCommission←− 〈A, 1〉
and Uni.appCommission←− 〈B, 1〉.
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Both of them wish to propose and clearly accept the same event (named
bigConf) and they present the following credentials. Moreover, we extend the
syntax of the delegation rules as already explained in Sec 6.4: now they can have
an associated semiring value (the cost) taken from R+.

A
A as Uni.appCommission
−−−−−−−−−−−−−−−−−−→ 〈event(bigConf), 6〉.

A
A as Uni.prof
−−−−−−−−−→ 〈event(bigConf), 5〉.

B
B as Uni.appCommission
−−−−−−−−−−−−−−−−−−→ 〈event(bigConf), 8〉.

B
B as Uni.prof
−−−−−−−−−→ 〈event(bigConf), 2〉.

Given the request f orRole(reqID, {A,B}, Uni.organizeEvent) (and reqID is
the dummy entity), the system will choose B as the proposer (with a cost of 2) and
A as the entity who approves the event (with a cost of 6), since it is the cheapest
solution to the problem. The total cost of all the credentials is 10 euro, obtained
by summing also 1 euro for each credential related to a professor. Notice that the
other possible solution, with A proposer and B approver of the event, costs 15
euro, i.e. 5 euro more.

6.5 Conclusions

We have proposed a weighted extension of Datalog (i.e. DatalogW) and
a trust language family based on it. These languages can be used to deal
with vague and imprecise security policies or credentials, and preference
or costs associated to each rule or fact. In practice, we can manage and
combine together different levels of truth, preference or costs associated
to the statements and finally have a single feedback value on which to
authorize a trust request. We have extended the RT family (LMW02) and
we we have shown that the classical RT0 and RT1 languages are respec-
tively included in our RTW

0 and RTW
1 languages. It is worthy to notice that

our extension is completely orthogonal w.r.t. the RT extension proposed
in (LM03), i.e. RTC, where the supporting DatalogC language allows
first-order formulas in tractable constraint domains. The constraints are
introduced to represent the access permissions over structured resources,
e.g., tree domains and range domains. Our aim is instead the representa-
tion of trust levels modelling cost/preference or fuzziness of credentials.
Our systematic approach to give weights to facts and rules, contributes
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also towards bridging the gap between “rule-based” trust management
(i.e. hard security mechanisms) and “reputation based” trust manage-
ment (JIB07) (i.e. soft security mechanisms).

On future improvement could be to leave to the programmer the op-
portunity to take more decisions inside the rules, for example based on
the current aggregated semiring value (the process is called reification of
the values, i.e. make them visible to the programmer); from its evaluation,
some rules could be enabled and others could be ignored, influencing the
derivation process and the final result. Therefore we want to extend the
language in this sense.

We plan to investigate the complexity of tractable soft constraints
classes (CCJK06) in order to cast them in a Datalog-based language. There-
fore, we want to extend also the RTC language (LM03) (based on Datalog
enhanced with crisp constraints) in its soft version.
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Chapter 7

Multitrust with Soft
Constraint Logic
Programming

7.1 Introduction

Decentralized trust management (JIB07) provides a different paradigm of
security in open and widely distributed systems where it is not possible to
rely solely on traditional security measures as cryptography. The reasons
usually are that the nodes appear and disappear from the community,
span multiple administrative domains, their direct interactions are lim-
ited to a small subset of the total number of nodes and, moreover, there
is no globally trusted third party that can supervise the relationships.
For this reason an expressive computational model is needed to derive a
trust value among the individuals of a community, represented as a trust
network, in the following abbreviated as TN.

Three main contributions are given in this chapter: first of all we
propose the concept of multitrust (BS08e), i.e. when the relationship of
trust concerns one trustor and multiple trustees in a correlated way (the
name recalls the multicast delivery scheme in networks). An example in
peer-to-peer networks is when we download a file from multiple sources at
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the same time, and we need a reliability feedback for the whole download
process. This result depends on the integrated characteristics of all the
sources.

Secondly, we outline a model to solve trust propagation: we represent
TNs (the same model applies also to related terms in literature as trust
graph, web of trust or social network (ZL05)) as and-or graphs (MM78) (i.e.
hypergraphs), mapping individuals to nodes and their relationships to di-
rected connectors. The and connectors (i.e. hyperarcs) represent the event
of simultaneously trusting a group of individuals at the same time. The
costs of the connectors symbolize how trustworthy the source estimates
the destination nodes, that is a trust value, and how accurate is this trust
opinion, i.e. a confidence value. Afterwards, we propose the Soft Constraint
Logic Programming (SCLP) framework (Bis04; BMR97a) as a convenient
declarative programming environment in which to solve the trust propa-
gation problem for multitrust. In SCLP programs, logic programming is
used in conjunction with soft constraints, that is, constraints which have a
preference level associated to them. In particular, we show how to trans-
late the and-or graph obtained in the first step into a SCLP program, and
how the semantics of such a program computes the best trust propagation
tree in the corresponding weighted and-or graph. SCLP is based on the
general structure of a c-semiring (Bis04) (or simply, semiring) with two
operations × and +. The × is used to combine the preferences, while the
partial order defined by + (see Ch. 2.2) is instead used to compare them.

Therefore, we can take advantage of the semiring structure to model
and compose different trust metrics. SCLP is also parametric w.r.t. the
chosen semiring: the same program deals with different metrics by only
choosing the proper semiring structure. In (BMRS07), a similar model has
been proposed for routing.

We practically solve the problem with CIAO Prolog (BCC+97) (mod-
elling SCLP), a system that offers a complete Prolog system supporting
ISO-Prolog , but, at the same time its modular design allows both re-
stricting and extending the basic language. Thus, it allows both to work
with subsets of Prolog and to work with programming extensions imple-
menting functions, higher-order (with predicate abstractions), constraints,

205



fuzzy sets, objects, concurrency, parallel and distributed computations,
sockets, interfaces to other programming languages (C, Java, Tcl/Tk) and
relational databases and many more.

The third and final contribution is represented by a practical imple-
mentation of the framework on a random small-world network (GSCJ03),
which has been generated with the Java Universal Network/Graph Framework
(JUNG) (OFWB03). The small-world phenomenon describes the tendency
for each entity in a large system to be separated from any other entity by
only a few hops. Moreover, these networks a high clustering coefficient,
which quantifies how close a vertex and its neighbors are from being a
clique (i.e. a high coefficient suggests a clique). As a result, the problem
can be divided in subproblems, each of them representing the topology
of a clique, and then trying to connect these group of nodes together.
The small number of hops allows to cut the solution search after a small
threshold, thus improving the search even in wide networks.

This chapter reports the works (BS08e; BS07), and it is organized as
follows: in Ch. 7.2 we present some background information about trust
metrics and the small-world phenomenon in social networks. Section 7.3
depicts how to represent a TN with an and-or graph, while in Ch. 7.4 we
describe the way to pass from and-or graphs to SCLP programs, showing
that the semantic of SCLP program is able to compute the best trust
propagation in the corresponding and-or graph. In Ch. 7.5 we describe the
practical implementation of the framework for a small-world network,
and we suggest how to improve the performance. At last, Section 7.6
draws the final conclusions and outlines intentions about future works.

7.2 Trust Metrics and Small-World Networks

No universal agreement on the definition of trust and reputation concepts
has been yet reached in the trust community (JIB07). However, we adopt
the following definitions: trust describes a nodes belief in another nodes
capabilities, honesty and reliability based on its own direct experiences,
while reputation is based on recommendations received also from other
nodes. Even if closely related, the main difference between trust and
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reputation is that trust systems produce a score that reflects the relying
party’s subjective view of an entity’s trustworthiness, whereas reputation
systems produce an entity’s (public) reputation score as seen by the whole
community.

Trust and reputation ranking metrics have primarily been used for
public key certification, rating and reputation systems part of online com-
munities, peer-to-peer networks, semantic web and also mobile comput-
ing fields (JIB07; TD03; ZL05). Each of these scenarios favors different
trust metrics. Trust metrics are used to predict trust scores of users by
exploiting the transitiveness property of relationships (thus, we are con-
sidering transitive trust chains): if two nodes, say node A and node C in
Fig. 39a, do not have a direct edge connecting them, the TN can be used
to generate an inferred trust rating. A TN represents all the direct trust
relationship in a community. An example of a classical TN is provided
in Fig. 39a, where we can see that trust is usually represented as a 1-to-1
relationship between only two individuals: the edges are directed from
the trustor to the trustee. If node A knows node B, and node B knows node
C, then A can use the path to compose the inferred rating for C: therefore,
we use transitive relationships. This process is called trust propagation by
concatenation, and it is a necessary requirement since in most settings a
user has a direct opinion only about a very small portion of nodes in the
TN. Therefore, trust needs to be granted also by basing on third-party rec-
ommendations: if A trusts B, she/he can use the recommendation about C
provided by B (JIB07). How to compose this information depends on the
trust metrics of the links, i.e. it specifically depends on the problem (JIB07)
(e.g. by multiplying together the trust scores of the links A-B and B-C).

We introduce the concept of multitrust (BS08e), which extends the
usual trust relationship from couples of individuals to one trustor and
multiple trustees in a correlated way: is the set of entities is denoted with
E, the multitrust relationship Rmt involves a trustor t ∈ E and a set of
trustees T ⊂ E. The correlation in Rmt can be defined in terms of time
(e.g. at the same time), modalities (e.g. with the same behavior) or col-
laboration among the trustees in T w.r.t. t. For example if we consider
time, the trustor could simultaneously trust multiple trustees, or, consid-
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ering instead a modality example, the trustor could contact the trustees
with the same communication device, e.g. by phone. Consequently,
this trust relation Rmt is 1-to-n (no more 1-to-1 as in all the classical trust
systems (ZL05)) and can be created by concurrently involving all the in-
terested parties in a shared purpose. A general application can be for
team effectiveness (CRT01): suppose we have a decentralized community
of open-source programmers and we want to know if a subset of them
can be reliably assigned to a new project.

A team of 3 programmers, for example, could significantly enhance
the software product since we suppose they will accurately collaborate
together by joining their skills and obtaining a better result w.r.t. 3 in-
dependent developers. Thus, the group will be more trustworthy than
the single individuals, and even the final trustees will benefit from this
group collaboration: they will be reached with an higher score during the
propagation of trust in the TN.

A social network, where nodes represent individuals and edges rep-
resent their relationships, exhibits the small-world phenomenon if any
two individuals in the network are likely to be connected through a short
sequence of intermediate acquaintances. In (WS98) the authors observe
that such graphs have a high clustering coefficient (like regular graphs)
and short paths between the nodes (like random graphs).

These networks are divided in sub-communities (i.e. in clusters) where
few individuals, called the pivots (Gra73), represent the bridges towards
different groups. These connections are termed weak ties in the sociology
literature (Gra73), as opposed to strong ties that connect a vertex to others
in its own sub-community. Weak ties are important because the individ-
uals inside other communities will bring in greater value due to different
knowledge and perspectives, while people in the same group would gen-
erally tend to have the same knowledge. An example of small-world
network is represented in Ch. 7.5.
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7.3 From Trust Networks to and-or Graph

An and-or graph (MM78) is defined as a special type of hypergraph.
Namely, instead of arcs connecting pairs of nodes there are hyperarcs
connecting an n-tuple of nodes (n = 1, 2, 3, . . .). The arcs are called con-
nectors and they must be considered as directed from their first node to
all the other nodes in the n-tuple. Formally an and-or graph is a pair
G = (N,C), where N is a set of nodes and C is a set of connectors defined
as C ⊆ N ×

⋃k
i=0 Ni.

When k > 1 we have an and connector since it reaches multiple desti-
nations at the same time; all the different connectors rooted in the same
ni node can be singly chosen, i.e. or connectors. Note that the definition
allows 0-connectors, i.e. connectors with one input and no output node.
In the following of the explanation we will also use the concept of and
tree (MM78): given an and-or graph G, an and tree H is a solution tree of G
with start node nr, if there is a function g mapping nodes of H into nodes
of G such that: i) the root of H is mapped in nr, and ii) if (ni0 ,ni1 , . . . ,nik ) is
a connector of H, then (g(ni0 ), g(ni1 ), . . . , . . . , g(nik )) is a connector of G.

Informally, a solution tree of an and-or graph is analogous to a path of
an ordinary graph: it can be obtained by selecting exactly one outgoing
connector for each node. If all the chosen connectors are 1-connectors,
then we obtain a plain path and not a tree.

In Fig. 39b we directly represent a TN for multitrust as a weighted
and-or graph, since for its characteristics, this translation is immediate.
Each of the individuals can be easily cast in a corresponding node of the
and-or graph. In Fig. 39b we represent our trustor as a black node (i.e. n1)
and the target trustees as two concentric circles (i.e. n4 and n5). Nodes n2

and n3 can be used to propagate trust.

To model the trust relationship between two nodes we use 1-connectors,
which correspond to usual TN arcs: the 1-connectors in Fig. 39b are (n1,n2),
(n1,n3), (n2,n3), (n2,n4), (n3,n4), (n3,n5), (n4,n5). We remind that the con-
nectors are directed, and thus, for example the connector (n4,n5) means
that the input node n4 trusts the individual represented by n5. Moreover,
since we are now dealing with multitrust, we need to represent the event
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Figure 39: a) a classical trust network, and b) an and-or graph representing
multitrust: the weights on the connectors represent trust and confidence
values (i.e. 〈t, c〉).

of trusting more individuals at the same time. To attain this, in Fig. 39b
we can see the three 2-connectors (n1,n2,n3), (n2,n3,n4) and (n3,n4,n5): for
example, the first of these hyperconnectors defines the possibility for n1

to trust both n2 and n3 in a correlated way. In Fig. 39b we draw these
n-connectors (with n > 1) as curved oriented arcs where the set of their
output nodes corresponds to the output nodes of the 1-connectors tra-
versed by the curved arc. Considering the ordering of the nodes in the
tuple describing the connector, the input node is at the first position and
the output nodes (when more than one) follow the orientation of the re-
lated arc in the graph (in Figure 39b this orientation is lexicographic).
Notice that in the example we decided to use connectors with dimension
at most equal to 2 (i.e. 2-connectors) for sake of simplicity. However it
is possible to represent whatever cardinality of trust relationship, that is
among a trustor and n trustees (i.e. with a n-connector).

So far, we are able to represent an entire TN with a weighted and-or
graph, but still we need some algebraic framework to model our prefer-
ences for the connectors, to use during trust propagation as explained in
the following. For this purpose we decided to use the semiring structure.
Each of the connectors in Fig. 39b is labeled with a couple of values 〈t, c〉:
the first component represents a trust value in the range [0, 1], while the
second component represents the accuracy of the trust value assignment
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(i.e. a confidence value), and it is still in the range [0, 1]. This parameter
can be assumed as a quality of the opinion represented instead by the
trust value; for example, a high confidence could mean that the trustor
has interacted with the target for a long time and then the correlated
trust value is estimated with precision. A trust value close to 1 indicates
that the output nodes of the connector have gained a good feedback in
terms of their past performance and thus are more trustworthy, whereas
a low trust value means the nodes showed relatively poor QoS in the past
and are rated with low score. In general, we could have trust expressed
with a k-dimensional vector representing k different metrics; in this ex-
ample we have 2-dimensional vectors. Therefore, the semiring we use
to propagate trust in the network is based on the path semiring (TB04):
Strust = 〈〈[0, 1], [0, 1]〉,+p,×p, 〈0, 0〉, 〈1, 1〉〉, where

〈ti, ci〉 +p 〈t j, c j〉 =


〈ti, ci〉 if ci > c j,

〈t j, c j〉 if ci < c j,

〈max(ti, t j), ci〉 if ci = c j.

〈ti, ci〉 ×p 〈t j, c j〉 = 〈tit j, cic j〉

Along the same path, the ×p computes the scalar product of both trust
and confidence values, and since the considered interval is [0, 1], they
both decrease when aggregated along a path. When paths are instead
compared, +p chooses the one with the highest confidence. If the two
opinions have equal confidences but different trust values,+p picks the one
with the highest trust value. In this way, the precision of the information
is more important than the information itself. If the k-dimensional costs
of the connectors are not elements of a totally ordered set (therefore, not
in our trust/confidence example), it may be possible to obtain several
Pareto-optimal solutions.

Notice that other semirings can be used to model other trust metrics:
for example, the Fuzzy Semiring 〈[0, 1],max,min, 0, 1〉 can be used if we
decide that the score of a trust chain corresponds to the weakest of its
links. Or we can select the Weighted Semiring, i.e. 〈R+,min,+,∞, 0〉, to
count negative referrals in reputation systems as in e-Bay (JIB07).
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Collecting the trust values to assign to the labels of the connectors
is out of the scope of this work, but they can be described in terms of
specificity/generality dimensions (if we relay on one or more aspects) and
subjective/objective dimensions (respectively personal, as e-Bay, or formal
criteria, as credit rating) (JIB07). However, for n-connectors with n ≥ 2,
we can suppose also the use of a composition operation ◦which takes n k-
dimensional trust metric vectors (e.g. tvalue1, . . . , tvaluen) as operands and
returns the estimated trust value for the considered n-connector (tvaluenc):
◦ (tvalue1, tvalue2, . . . , tvaluen) −→ tvaluenc.

This ◦ operation can be easily found for objective ratings, since they
are the result of applying formal aspects that have been clearly defined,
while automating the computation of subjective ratings is undoubtedly
more difficult. Notice also, as said before, that such a ◦ operation is not
only a plain “addition” of the single trust values, but it must take into
account also the “added value” (or “subtracted value”) derived from the
combination effect. For example, considering the connector (n3,n4,n5)
in Fig. 39b, its cost, i.e. 〈0.9, 0.93〉, significantly benefits from simultane-
ously trusting n4 and n5, since both the trust/confidence values of (n3,n4)
and (n3,n5) are sensibly lower (i.e. respectively 〈0.8, 0.8〉 and 〈0.7, 0.88〉).
The reason could be that n3 has observed many times the collaboration
between n4 and n5 (i.e. a high confidence value) and this collaboration
is fruitful. On the other hand, n2 does not consider n3 and n4 to be so
“collaborative” since the trust label of (n2,n3,n4), i.e. 〈0.8, 0.81〉, is worse
than the costs of (n2,n3) and (n2,n4) (i.e. 〈0.9, 0.94〉 and 〈0.8, 0.88〉). In the
example in Fig. 39b we supposed to use subjective ratings, and therefore
the trust values for 2-connectors do not follow any specific ◦ function. An
example of objective rating could be the average mean function for both
trust and confidence values of all the composing 1-connectors.

Notice that sometimes trust is computed by considering all the paths
between two individuals and then by applying a function in order to find a
single result (TD03) (e.g. the mean of the trust scores for all the paths). This
could be accomplished by using the expectation semiring (Eis01), where
the+ operation of the semiring is used to aggregate the trust values across
paths, as proposed in (TB04). We decide to keep + as a “preference”
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operator for distinct paths (as proposed for classical SCLP, see Ch. 2.4) in
order to choose the best one, since in Ch. 7.5.1 we suggest how to reduce
the complexity of the framework by visiting less paths as possible. Thus,
aggregating the trust values of the paths is not so meaningful when trying
to reduce the number of visited paths at the same time.

7.4 And-or graphs using SCLP

In the following we explain how to represent and-or graphs with a pro-
gram in SCLP. This decision is derived from two important features of this
programming framework: i) SCLP is a declarative programming environ-
ment and, thus, is relatively easy to specify a lot of different problems;
ii) the c-semiring structure is a very parametric tool where to represent
several and different trust metrics. As a translation example we consider
the and-or graph in Fig. 39b: by only changing the facts in the program, it
is possible to translate every other tree.

Using this framework, we can easily find the best trust propagation
over the hypergraph built in Ch. 7.3. In fact, our aim is to find the
best path/tree simultaneously reaching all the desired trustees, which is
only one of the possible choices when computing trust (TD03): according
to multipath propagation, when multiple propagation paths (in this case,
trees) exist between A and C (in this case, several trustees at the same
time), all their relative trust scores can be composed together in order to
have a single result balanced with every opportunity. To attain multipath
propagation we need to use the expectation semiring (Eis01) as explained
in Ch. 7.3.

In SCLP a clause like c(ni, [n j,nk]):- tvalue, means that the graph has
connector from ni to nodes n j and nk with tvalue cost. Then, other SCLP
clauses can describe the structure of the path/tree we desire to search
over the graph. Notice that possible cycles in the graph are automatically
avoided by SCLP, since the × of the semiring is a monotonic operation.

As introduced in Ch. 7.1, we use CIAO Prolog (BCC+97) as the system
to practically solve the problem. CIAO Prolog has also a fuzzy exten-
sion, but it does not completely conform to the semantic of SCLP defined
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in (BMR97a) (due to interpolation in the interval of the fuzzy set). For this
reason, we inserted the cost of the connector in the head of the clauses,
differently from SCLP clauses which have the cost in the body of the
clause.

From the and-or graph in Fig. 39b we can build the corresponding
CIAO program of Tab. 16 as follows. First, we describe the connectors of
the graph with facts like

connector(trustor, [trustees list], [trust value, condi f ence value])

e.g. the fact connector(n1, [n2,n3], [0.8, 0.79]) represents the connector of the
graph (n1,n2,n3) with a trust/confidence value of 〈0.8, 0.79〉 (ni represents
the name of the node). The set of connector facts is highlighted as Connec-
tors in Tab. 16, and represents all the trust relationships of the community.
The Leaves facts of Tab. 16 represent the terminations for the Prolog rules.
Their cost must not influence the final trust score, and then it is equal to the
unit element of the × operator of the Strust semiring presented in Ch. 7.3,
i.e. 〈1, 1〉. The times and plus clauses in Tab. 16 respectively mimic the
× and + operation of Strust = 〈〈[0, 1], [0, 1]〉,+p,×p, 〈0, 0〉, 〈1, 1〉〉 explained
in Ch. 7.3. The trust clause is used as the query to compute trust in the
network: it collects all the results for the given source and destinations,
and then finds the best trust/confidence couple by using the plus clauses.

At last, the rules 1-2-3-4 in Tab. 16 describe the structure of the rela-
tionships we want to find over the social network: with these rules it is
possible to found both 1-to-1 relationships (i.e. for classical trust propaga-
tion) or 1-to-n relationships (i.e. for multitrust propagation, described in
Ch. 7.2). Rule 1 represents a relationship made of only one leaf node, Rule 2
outlines a relationship made of a connector plus a list of sub-relationships
with root nodes in the list of the destination nodes of the connector, Rule 3
is the termination for Rule 4, and Rule 4 is needed to manage the junction
of the disjoint sub-relationships with roots in the list [X|Xs]. When we
compose connectors and tree-shaped relationships (Rule 2 and Rule 4), we
use the times clause to compose their trust/confidence values together.

To solve the search over the and-or graph problem it is enough to
perform a query in Prolog language: for example, if we want to compute
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s leaf([n1], [1,1]). 

leaf([n2], [1,1]). 
leaf([n3], [1,1]). 
leaf([n4], [1,1]). 
leaf([n5], [1,1]).

connector(n1,[n2], [0.9,0.9]). 
connector(n1,[n3], [0.5,0.4]). 
connector(n1,[n2,n3], [0.8,0.79]).
connector(n2,[n3], [0.9,0.94]). 
connector(n2,[n4], [0.8,0.88]). 
connector(n2,[n3,n4], [0.8,0.82]).
connector(n3,[n4], [0.8,0.8]). 
connector(n3,[n5], [0.7,0.88]). 
connector(n3,[n4,n5], [0.9,0.93]).
connector(n4,[n5], [0.2,0.98]).

1)
trustrel(X,[X], [T,C]):-
        leaf([X], [T,C]).

trustrel(X, Z, [T,C]):-
        connector(X,W, [T1,C1]),
        trustrelList(W, Z, [T2,C2]),
        times([T1,C1], [T2,C2], [T,C]).

trustrelList([],[], [1,1]).

trustrelList([X|Xs],Z, [T,C]):-
        trustrel(X, Z1, [T1,C1]),
        append(Z1, Z2, Z),
        trustrelList(Xs, Z2, [T2,C2]),
        times([T1,C1], [T2,C2], [T,C]).

:- module(trust,_,_). 
:- use_module(library(lists)). 
:- use_module(library(aggregates)). 
:- use_module(library(sort)).

times([T1, C1], [T2, C2], [T, C]) :-    
      T is (T1 * T2),       
      C is (C1 * C2).

plus([], MaxSoFar, MaxSoFar).

plus([[T,C]|Rest], [MT,MC], Max):-
      C > MC, plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
      C = MC, T > MT, 
      plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
      C < MC, 
      plus(Rest, [MT,MC], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
      C = MC, 
      T < MT, 
      plus(Rest, [MT,MC], Max).

trust(X, Y, Max):-  
      findall([T,C], trustrel(X, Y, [T,C]), L1), 
      plus(L1,[0,0],Max).

p
lu

s
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m
e
s
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u

s
t

Table 16: The CIAO program representing the and-or graph in Fig. 39b

the cost of the best relationship rooted at n1 (i.e. n1 is the starting trustor)
and having as leaves the nodes representing the trustees (i.e. n4 and n5),
we have to perform the query trust(n1, [n4,n5], [T,C]), where T and C will
be respectively instantiated with the trust and confidence values of the
found relationship. The output for this query corresponds to the cost
of the tree in Fig. 40, i.e. 〈0.72, 0.78〉. Otherwise, if we are interested in
knowing the best trust relationship between one trustor (e.g. n1) and only
one trustee (e.g. n4), as in classical trust propagation, we should perform
the query trust(n1, [n4], [T,C]).
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Figure 40: The best trust relationship that can be found with the query
trust(n1, [n4,n5], [T,C]) for the program in Tab. 16.

Notice that if the ratings of our trust relationships are objective (see
Ch. 7.3), it is possible to directly program in CIAO also the ◦ operator
explained in Ch. 7.3, and it would consequently be possible to build the
n-connectors with n > 1 in the program, by applying the ◦ operator on
the interested 1-connectors. In the program in Tab. 16 all the n-connectors
are instead directly expressed as facts, and not automatically built with
clauses.

7.5 An Implementation of the Model

To develop and test a practical implementation of our model, we adopt the
Java Universal Network/Graph Framework (OFWB03), a software library for
the modeling, analysis, and visualization of data that can be represented
as a graph or network. The WattsBetaSmallWorldGenerator included in the
library is a graph generator that produces a random small world network
using the beta-model as proposed in (Wat99). The basic ideas is to start
with a one-dimensional ring lattice in which each vertex has k-neighbors
and then randomly rewire the edges, with probability β, in such a way
that a small-world networks can be created for certain values of β and k
that exhibit low characteristic path lengths and high clustering coefficient.

We generated the small-world network in Fig. 41 (with undirected
edges) and then we automatically produced the corresponding program
in CIAO (considering the edges as directed), as in Ch. 7.4. The relative
statistics reported in Fig. 41 suggest the small-world nature of our test
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Nodes Edges Clustering Avg. SP Min Deg Max Deg.
150 450 0.44 4.26 4 8

N Avg. Deg Diameter
6 9

Figure 41: The test small-world network generated with JUNG and the
corresponding statistics.

network: a quite high clustering coefficient and a low average shortest
path.

With respect to the program in Tab. 16 we added the Trust Hops <
d2·Avg Shortest Pathe constraint: in this case, Trust Hops < 9, which is also
the diameter of the network (see Fig. 41). This constraint limits the search
space and provides a good approximation at the same time: in scale-free
networks, the average distance between two nodes is logarithmic in the
number of nodes (WS98), i.e. every two nodes are close to each other.
Therefore, this hop constraint can be successfully used also with large
networks, and limiting the depth to twice the average shortest path value
still results in a large number of alternative routes. We performed 50 tests
on the graph in Fig. 41, and in every case the propagation between two
nodes was computed within 5 minutes. Clearly, even if the results are
promising and the small-world nature allows them to be repeated also
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Figure 42: The small-world of sports.

on larger graph due to the logarithmic increase of average shortest path
statistics, we need some improvements to further relax the Trust Hops
constraint. These improvements are suggested in Ch. 7.5.1.

7.5.1 Complexity Considerations

The representation of TN given in Ch. 7.3 can lead to an exponential time
solution because of the degree of the nodes: for each of the individuals
we have a connector towards each of the subsets of individuals in their
social neighborhood, whose number is O(2d), where d is the out-degree
of the node. The complexity of the tree search can be reduced by using
Tabled Constraint Logic Programming (TCLP), i.e. with tabling (or memoing)
techniques (for example, tabling efficiency is shown in (RRS+95)). We pro-
pose the same technique also to improve the performance of the routing
problem presented in Ch. 4.

The calls to tabled predicates are stored in a searchable structure to-
gether with their proven instances, and subsequent identical calls can use
the stored answers without repeating the computation.

The procedure of finding such a goal table for each single sub-community
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is much less time consuming than finding it for a whole not-partitioned
social network. For this reason we can take advantage from the highly
clustered nature of small-worlds. In Fig. 42 it is represented the com-
munity of people practising sports; the community is clustered into three
sub-groups: Football, Basketball and Rugby. The individuals that repre-
sent the bridges among these groups are people practising two different
sports, and are called pivots; their very important relationships are instead
called weak ties (as we explained in Ch. 7.2), and can be used to widen
the knowledge from a sub-group towards the rest of the small-world. If
Alice (a pivot in the Basketball cluster) wants to retrieve a trust score about
Bob (a pivot in the Football cluster), she could ask to Charlie and Charlie
to Dave (pivots in the Rugby cluster). Therefore, the pivots should store
a “tabled vision” of their community to improve the performances for
intra-community relationships.

7.6 Conclusions

We have defined the concept of multitrust and we have described a
method to represent and solve the trust propagation problem with the
combination of and-or graph and SCLP programming. Our framework
can be fruitfully applied to have a quick and elegant formal-model where
to compute the results of different trust metrics; in this chapter we have
used trust and confidence, thus a precision estimation of the trust obser-
vation. We think that multitrust can be used in many real-world cases:
trusting a group of individuals at the same time can lead to different con-
clusions w.r.t. simply aggregating together the trust values of the single
individuals in the group. Then, we have provided a practical implemen-
tation of the model and we have tested it on a small-world social network,
where all the individuals are reachable among themselves within few
hops. The tests show that the framework can be used with small/medium
networks with few hundreds of nodes due to small-world properties, but
the performance need to be further improved. However, we provided
many suggestions on how to reduce the complexity, and we will address
these enhancements in future works.
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A first improvement could be the use of memoization/tabling tech-
niques, to filter out redundant computations. Then, we plan also to apply
branch-and-bound techniques as done for the routing problem in Ch. 4.7.3,
in order to immediately prune the not promising partial solutions. These
techniques can benefit from the small-world nature of the social networks,
since the community is always partitioned in sub-groups with pivot indi-
viduals: we can have many small tables of goals instead of a big one for
the whole network.

Our future goal is to find a structure able to aggregate distinct trust
paths in a single trust value, i.e. to compute multipath propagation (e.g.
an average cost of the independent paths). A solution could be repre-
sented by the expectation semiring (Eis01), which is however somehow in
contrast with pruning algorithms. At last, we would like to introduce the
notion of “distrust” in the model and to propagate it by using the inverse
of the semiring × operator (BG06).
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Chapter 8

From Marriages to (Trust)
Coalitions: A Soft
Constraint Satisfaction
Problem Approach

8.1 Introduction

The Stable Marriage (SM) problem (GI89; Knu97) and its many vari-
ants (IM08) have been widely studied in the literature, because of the
inherent appeal of the problem and its important practical applications.
A classical instance of the problem comprises a bipartite set of n men and
n women, and each person has a preference list in which they rank all
members of the opposite sex in a strict total order. Then, a match MT is
simply a bijection between men and women. A man mi and a woman w j

form a blocking pair for MT if mi prefers w j to his partner in MT and w j

prefers mi to her partner in MT. A matching that involves no blocking
pair is said to be stable, otherwise the matching is unstable. Even though
the SM problem has its roots as a combinatorial problem, it has also been
studied in game theory, economics and in operations research (GIM+01).

However, in this chapter we mainly concentrate on its optimization
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version, the Optimal Stable Marriage (OSM) problem (Knu97; IM08), which
tries to find a match that is not only stable, but also “good” according to
some criterion based on the preferences of all the individuals. Classical
solutions deal instead only with men-optimal (or women-optimal) mar-
riages, in which every man (woman), gets his (her) best possible partner.

We propose soft constraints as a very expressive framework where it is
possible to cast different kinds of optimization criteria by only modifying
the c-semiring (BMR97c; Bis04) structure on which the corresponding Soft
Constraint Satisfaction Problem (SCSP) (Bis04) is based. In this sense, soft
constraints prove to be a more general solving framework with respect
to the other ad-hoc algorithms presented in literature for each different
optimization problem (IM08). In fact, we can also deal with problem
extensions such as incomplete preference lists and ties in the same list.
Therefore, in this chapter we build a bridge between the OSM problems
and soft constraint satisfaction, as previously done between SM and classic
constraint satisfaction (GIM+01; UP05). Moreover, we use integer linear
programming (ILP) as a general method to solve these problems. Even if
in the other chapters of this thesis we have used Logic Programming as the
mean to solve soft constraints related problems, in this final chapter we
adopt ILP since it represents a novel tool for solving SCSPs. The classical
SM problem (thus, the non-optimal version of the problem) has been
already studied and solved by using crisp constraints in (GIM+01; UP05).
In (GIM+01) the authors present two different encodings of an instance
of SM as an instance of a constraint satisfaction problem (CSP). Moreover,
they show that arc consistency propagation achieves the same results as
the classical Extended Gale/Shapley (EGS) algorithm, thus easily deriving
the men/women-optimal solution (GIM+01).

The second main result provided in the chapter relates to extending
the stable marriage definition from pairs of individuals to coalitions of
agents. A coalition can be defined as a temporary alliance among agents,
during which they cooperate in joint action for a common task (HL04).
Moreover, we use trust scores instead of plain preferences in order to
evaluate the relationships among agents. Therefore, the notion of SM
stability is translated to coalitions, and the problem is still solved by
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exploiting the optimization point of view: the final set of coalitions is
stable and is the most trustworthy with respect to the used trust metric,
represented by a c-semiring (BS08e; BS07; TB04). Even for this coalition
extension we use soft constraints to naturally model the problem.

This chapter presents the results obtained in (BFOS08). In Ch. 8.2 we
summarize the background on the OSM problem, while in Ch. 8.3 we
represent the OSM problem with soft constraints and we solve it with ILP.
Chapter 8.4 extends the OSM problem to coalitions, still representing the
problem with soft constraints. Finally, Ch. 8.5 presents our conclusions
and directions for future work.

8.2 The Optimal Stable Marriage Problem

An instance of the classical stable marriage problem (SM) (GS62) com-
prises n men and n women, and each person has a preference list in which
all members of the opposite sex are ranked in a strict total order. All men
and women must be matched together in a couple such that no element
x of couple a prefers an element y of different couple b that also prefers x
(i.e. the stability condition of the pairing). If such an (x, y) exists in the
match, then it is defined as blocking; a match is stable if no blocking pairs
exist.

The problem was first studied by Gale and Shapley (GS62). They
showed that there always exists at least a stable matching in any in-
stance and they also proposed a O(n2)-time algorithm to find one, i.e. the
so-called Gale-Shapley (GS) algorithm. An extended version of the GS al-
gorithm, i.e. the EGS algorithm (GI89), avoids some unnecessary steps by
deleting from the preference lists certain (man, woman) pairs that cannot
belong to a stable matching. Notice that, in the man-oriented version
of the EGS algorithm, each man has the best partner (according to his
ranking) that he could obtain, whilst each woman has the worst partner
that she can accept. Similar considerations hold for the woman-oriented
version of EGS, where men have the worst possible partner.

For this reason, the classical problem has been extended (GS62) in order
to find a SM under a more equitable measure of optimality, thus obtaining
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an Optimal SM problem (Knu97; IM08; ILG87; Gus87). For example,
in (ILG87) the authors maximize the total satisfaction in a SM by simply
summing together the preferences of both men, pM(mi,w j), and women,
pW(mi,wi), in the SM given by MT = {(mi,w j), . . . , (mk,wz)}. This sum needs
to be minimized since pM(mi,w j) represents the rank of w j in mi’s list of
preferences, where a low rank position stands for a higher preference, i.e.
1 belongs to the most preferred partner; similar considerations hold for
the preferences of women, pW(mi,w j), which represents the rank of mi in
wi’s list of preferences. Therefore, we need to minimize this egalitarian
cost (ILG87):

min

 ∑
(mi,w j)∈MT

pM(mi,w j) +
∑

(mi,w j)∈MT

pW(mi,w j)

 (8.1)

This optimization problem was originally posed by Knuth (ILG87). Other
optimization criteria are represented by minimizing the regret cost (Gus87)
as in (2):

min max
(mi,w j)∈MT

max{pM(mi,w j), pW(mi,w j)} (8.2)

or by minimizing the sex-equalness cost (IMY07) as in (3):

min

∣∣∣∣∣∣∣∣
∑

(mi,w j)∈MT

pM(mi,wi) −
∑

(mi,w j)∈MT

pW(mi,w j)

∣∣∣∣∣∣∣∣ (8.3)

Even though the number of stable matchings for one instance grows
exponentially in general (IM08), (1) and (2) have been already solved in
polynomial time using ad-hoc algorithms such as (ILG87) and (Gus87),
respectively, by exploiting a lattice structure that condenses the informa-
tion about all matchings. On the contrary, (3) is an NP-hard problem for
which only approximation algorithms have been given (IMY07).

In the following, we consider preference as a more general weight,
taken from a semiring, instead of a position in the preference’s list of an
individual; thus, we suppose to have weighted preference lists (ILG87). A
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different but compatible, with respect to OSM, variant of the SM problem
allows incomplete preference’s lists, i.e. the SM with incomplete lists
(SMI), if a person can exclude a partner whom she/he does not want to be
matched with (IM08). Another extension is represented by preference lists
that allow ties, i.e. in which it is possible to express the same preference
for more than one possible partner: the problem is usually named as SM
with ties, i.e. SMT (IM08). In this case, three stability notions can be
proposed (IM08):

• Given any two couples (mi,w j) and (mk,wz), in a super stable match
a pair (mi,wz) is blocking iff pM(mi,wz) ≥ pM(mi,wi) ∧ pW(mi,wz) ≥
pW(mk,wz);

• In a strongly stable match a pair (mi,wz) is blocking iff pM(mi,wz) >
pM(mi,wi) ∧ pW(mi,wz) ≥ pW(mk,wz) or pM(mi,wz) ≥ pM(mi,wi) ∧
pW(mi,wz) > pW(mk,wz); and

• In a weakly stable match a pair (mi,wz) is blocking iff pM(mi,wz) >
pM(mi,wi) ∧ pW(mi,wz) > pW(mk,wz).

Hence, if a match is super stable then it is strongly stable, and if it is
strongly stable then it is weakly stable (IM08). Allowing ties in prefer-
ences means that objectives (1), (2) and (3) above become hard even to
approximate (IM08). By joining together these two extensions, we obtain
the SMTI problem: SM with Ties and Incomplete lists (IM08).

The preferences of men and women can be represented with two ma-
trices M and W, respectively, as in Fig. 44. A subset of these two matrices
(for sake of simplicity) is represented in Fig. 43 as a bipartite graph, where
only the preferences of m1, m2, w1 and w2 are shown. For instance, the
match {(m1,w2), (m2,w1)} is not stable since (m1,w1) is a blocking pair:
pM(m1,w1) < pM(m1,w2) ∧ pW(m1,w1) < pW(m2,w1), i.e. 1 < 4 ∧ 1 < 4 (here
we use < instead of > because lower values are preferred).

225



xxxx
xxxx
xxxx
xxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxxm1 w1

xxxx
xxxx
xxxx
xxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

m2 w2

1

4

3

1

1

4

3

5

Figure 43: An OSM problem represented as a bipartite graph.

8.3 Representing the OSM Problem with Soft
Constraints

In order to define an encoding of an OSM instance I as a SCSP instance
P (see Ch. 2.3), we introduce the set V of variables: m1,m2, . . . ,mn cor-
responding to men, and w1,w2, . . . ,wn corresponding to women. The
domain D of mi or w j is [1,n]. For each i, j (1 ≤ i, j ≤ n), then η : V → D (as
defined in Ch. 2.5.1) denotes the value of variable mi and w j respectively,
i.e., the partner associated with the match. For example, η(m1) = 3 means
that m1 is matched with w3.

We need three different set of soft constraints to describe an OSM
problem, according to each of the relationships we need to represent:

1. Preference constraints. These unary constraints represent the pref-
erences of men and women: for each of the values in the variable
domain, i.e. for each possible partner, they associate the relative
preference. For example, cmi (mi = j) = a represents the fact that the
man mi has a degree of preference value a for the woman w j (when
the variable mi is instantiated to j); on the other hand, cw j (w j = i) = b
means that the same woman (w j) has a preference for the same man
(mi) equal to b; a and b are elements of the chosen semiring set. We
need 2n unary constraints: one for each man and woman.
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2. Marriage constraints. This set constrains the marriage relationships:
if mi is married with w j (i.e. η(mi) = j), then w j must be married
with mi (i.e. η(w j) = i). Formally, it can be defined by cm(mi,w j) =
0 if η(mi) = h ∧ η(w j) = k ∧ (h , j ∨ k , i). We need n2 marriage
constraints, one for each possible man-woman couple.

3. Stability constraints. This set of 4-ary constraints avoids the presence
of blocking couples in the set of matches: cs(mi,mk,w j,wz) = 0 if mi

and w j are married (i.e. η(mi) = j and η(w j) = i) and if there exists
a different matched couple (mk,wz) (i.e. k , i, z , j and η(mk) = z
and η(wz) = k) such that cmi (mi = j) <S cmi (mi = z) ∧ cwz (wz = k) <S

cwz (wz = i), where S represents the chosen semiring (see Ch. 2.2).
In previous stability constraint definition we use <S because we are
looking for a weakly stable marriage (see Ch. 8.2). For super and
strong stabilities (see Ch. 8.2) we should instead define the stability
constraints by using ≤S. Therefore, we need n4 stability constraints
of this kind.

Given this encoding, the set of consistent solutions of P is equivalent
to the set of solutions of I (i.e. an OSM problem instance). Therefore,
unsatisfying the marriage or stability constraints makes P inconsistent
(see Ch. 2.3.2). By using this formalization it is now possible to easily
maximize the global satisfaction of all the couples, and thus finding a
solution for the OSM problem. In practice it is possible to obtain the best
possible solution of the SCSP problem being considered by exploiting the
properties of the chosen semiring operators, i.e. + and ×. For example,
we could consider the preference as a cost, and the cost of the complete
match could be obtained by summing together the costs of all the found
(non-blocking) pairs. In this case, and if we want to minimize the cost of
the n marriages, we can use the Weighted semiring (Bis04; BMR97c), i.e.
〈R+,min, +̂,+∞, 0〉 (+̂ is the arithmetic sum). Therefore, what we solve is
exactly Objective (1) in Ch. 8.2.

Otherwise, we could use the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉 (Bis04;
BMR97c) to maximize the “happiness” of the least sympathetic couple
overall: the fuzzy values in the interval [0, 1] represent an “happiness
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degree” of the marriage relationships and are aggregated with min, but
preferred with max. Again, what we solve with this semiring is exactly
Objective (2) in Ch. 8.2, if we consider the ordering of the preferences as
inverted (i.e. a high preference is better than a lower one); this is the
reason why we use max−min instead of min−max.

Finally, as an example on the expressiveness of our framework, we
can use the Probabilistic semiring 〈[0, 1],max, ×̂, 0, 1〉 (Bis04; BMR97c) (×̂ is
the arithmetic multiplication) in order to maximize the probability that
the obtained couples will not split. It is also possible to maximize the
“happiness” of a fixed man or woman by setting to 1 the other preferences.

Moreover, we can represent the SMI extension reported in Ch. 8.2 by
simply declaring a preference constraint with value corresponding to 0:
cmi (mi = j) = 0 if mi has not expressed a preference for w j. Further on, by
having the same value in the same preference list, i.e. cmi (mi = j) = a and
cmi (mi = z) = a, we can represent the SMT problem defined in Ch. 8.2. In
Ch. 8.3.1 we consider and solve the most general problem among those
presented in Ch. 8.2, i.e. the Optimal SMTI (OSMTI).

Notice that such semiring structures allows us to consider also the
preferences of men and women being partially ordered, which is clearly
more generic and expressive with respect to the total ordering of the
classical problem: Bob could love/like Alice and Chandra more than Drew,
but he could not relate the first two girls with each other.

8.3.1 Specifying and Instance of the OSM Problem

In this section we solve the soft constraint formalization of the OSMTI
problem given with preference, marriage and stability constraints. To
achieve this goal, we represent/solve it as an ILP by using AMPL (FGK02).
AMPL is a modeling language for mathematical programming with a very
general and expressive syntax. It covers a variety of types and operations
for the definition of indexing sets, as well as a range of logical expressions.
The solution can be obtained with different solvers which can interface
to AMPL; for our example we use CPLEX1. The soft constraints can be

1http://www.ilog.com/products/cplex/
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set MEN := m1 m2 m3 m4 m5 m6 ;

set WOMEN := w1 w2 w3 w4 w5 w6 ;

param M:           

          w1  w2  w3  w4  w5  w6 :=  

m1      1     4    Inf    5     5     3  

m2      3     4     6     1     5     2  

m3      1    Inf    4     2     3     5  

m4      6     1     3     4     2     1  

m5      3     1     2     4     5     6  

m6      3     3     1     6     5     4 ;

param W:           

          w1  w2  w3  w4  w5  w6 :=

m1      1     4     6     2    4     2  

m2      5     1     4     5    2     6  

m3      4     5     2     2   Inf    3  

m4      4     2     1     4    5     5  

m5      2     6     5    Inf    6     1  

m6      3    Inf    3     6    3     4 ;

Figure 44: The data file of our example in AMPL: the sets of MEN and
WOMEN and their respective preference lists (M and W).

represented with AMPL statements. The obtained SCSP can be clearly
solved also with other techniques as branch-and-bound (LG08), or branch-
and-bound and Symmetry Breaking via Dominance Detection (SBDD) (BO04);
however, the ILP solver represents a completely new approach with re-
spect to SCSP, and provides a bridge between the two fields.

We consider an instantiation of the (1) problem in Ch. 8.2, and therefore
the adopted semiring is 〈R+,min, +̂,+∞, 0〉, even if, as said before, we can
also solve other criteria by changing the semiring. The two matrices M
and W in Fig. 44 respectively represent the preference values of n = 6
men (MEN = {m1,m2,m3,m4,m5,m6}) and n = 6 women (WOMEN =

{w1,w2,w3,w4,w5,w6}) taken from the Weighted semiring set. Notice that
both M and W are displayed Fig. 44 with men on rows and women on
columns, in order to improve the readibility when comparing the two
matrices. The lists of preferences of men are represented by the rows of
M, and the preferences of women are instead the columns of W.

Since we want to deal with incomplete lists, the preference value cor-
responds to the bottom element of the semiring (in Weighted semiring, it
is ∞) if that preference has not been expressed; Inf in Fig. 44 is a short-
cut for a very large value that we can consider as the infinite value (e.g.
10000). For example, in Fig. 44 M[m1,w3] = ∞ means that m1 has no
preference for w3. Moreover, we can deal with ties at the same time, e.g.
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option solver cplex;

### PARAMETERS ### 
set MEN; 
set WOMEN; 
param M {i in MEN, j in WOMEN}; 
param W {k in MEN, z in WOMEN};

### VARIABLES ### 
var Marriage {i in MEN, j in WOMEN} binary;

### OBJECTIVE ### 
minimize EgalitarianCost:  sum {i in MEN, j in WOMEN} 
      (( Marriage[i,j] * M[i,j] ) + 
      ( Marriage[i,j] * W[i,j] )) ;
 
### CONSTRAINTS ### 
subject to MenMarriages {i in MEN}: 
      sum {j in WOMEN} Marriage[i,j] = 1 ; 
subject to WomenMarriages  {j in WOMEN}: 
      sum {i in MEN} Marriage[i,j] = 1 ;
subject to Stability {i in MEN, k in MEN, j in WOMEN, z in WOMEN:
      ( M[i,z] < M[i,j] ) and 
      ( W[i,z] < W[k,z] )}:
      Marriage[i,j] + Marriage[k,z] <= 1; 

Figure 45: The file storing the model for our example in AMPL.

M[m4,w2] =M[m4,w6] = 1 in Fig. 44.
Notice that this problem could have no solution in general due to the

fact that the preference lists are incomplete and we want to find a perfect
match (n pairs). Moreover, since we have ties and we require a weakly
stable matching, the problem is NP-hard (IM08).

8.3.2 A Formalization as an Integer Linear Program

With AMPL we need to create two files storing the data of the problem
(Fig. 44) and its model (Fig. 45). The Marriage variable in Fig. 45 corre-
sponds to the couples representing the best stable marriage, while the
EgalitarianCost is exactly computed as for Objective (1) in Ch. 8.2 and the
goal is to minimize it. Notice that by changing the mathematical operators
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Figure 46: The optimal stable match that can be obtained from the AMPL
program in Fig. 44 and Fig. 45.

of the OBJECTIVE in Fig. 45, it is possible to solve also Objectives (2) and
(3) of Ch. 8.2. The MenMarriages and WomenMarriages constraints state
that each man and each woman must have a partner, respectively, that
is we require a perfect match. At last, the Stability constraint prevents
blocking pairs.

The three marriages that can be obtained with this formalization are
respectively SM1 = {(m1,w1), (m2,w2), (m3,w4), (m4,w6), (m5,w5), (m6,w3)},
SM2 = {(m1,w1), (m2,w2), (m3,w4), (m4,w3), (m5,w6), (m6,w5)} and, at last,
SM3 = {(m1,w1), (m2,w2), (m3,w4), (m4,w5), (m5,w6), (m6,w3)}. The egali-
tarian costs for these three matches are respectively ec(SM1) = 32, ec(SM2) =
30 and ec(SM3) = 29, which is also the result of the program in Fig. 45 since
it corresponds to the lowest possible cost. The SM3 solution is also repre-
sented in Fig. 46 as a bipartite graph, where the man/woman preferences
within the same couple are added on the same edge, i.e. the cost of the
edge (m1,w1) is M[m1,w1] +W[m1,w2] = 2 (the values in the matrices of
Fig. 44).
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8.4 Multi-Agent Systems and the Stable Mar-
riage of Coalitions

Cooperating groups, referred to as coalitions, have been thoroughly in-
vestigated in artificial intelligence and game theory and have proved to
be useful in both real-world economic scenarios and multi-agent sys-
tems (HL04). Coalitions, in general, are task-directed and short-lived,
but last longer than team organization (HL04) (for example) and in some
cases they have a long lifetime once created (GL03). Given the population
of entities E, the problem of coalition formation consists in selecting the
appropriate partition of E, P = {C1, . . . ,Cn} (|P| = |A| if each entity forms a
coalition on its own), such that ∀Ci ∈ P, Ci ⊆ E and Ci ∩ C j = ∅, if i , j. P
maximizes the utility (utility against costs) that each coalition can achieve
in the environment. Therefore, agents group together because utility can
be gained by working in groups, but this growth is somewhat limited by
the costs associated with forming and maintaining such a structure.

Cooperation involves a degree of risk arising from the uncertainties
of interacting with autonomous self-interested agents. Trust (JIB07) de-
scribes a node’s belief in another node’s capabilities, honesty and relia-
bility based on its own direct experiences. Therefore trust metrics have
been already adopted to perceive this risk, by estimating how likely other
agents are to fulfill their cooperative commitments (GL03; BV02). Since
trust is usually associated with a specific scope (JIB07), we suppose that
this scope concerns the task that the coalition must face after its formation;
for example, in electronic marketplaces the agents in the same coalition
agree with a specific discount for each transaction executed (BV02; LS00).
Clearly, an entity can also trust itself in achieving the task, and can form
a singleton coalition.

8.4.1 Defining the Stable Marriage for Coalitions

In an individual-oriented approach an agent prefers to be in the same
coalition with the agent with whom it has the best relationship (BV02).
In socially-oriented classification the agent instead prefers the coalition
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Figure 47: A graphical intuition of two blocking coalitions.

in which it has most summative trust (BV02). In this Ch. we would like
to rephrase the classical notion of stability in SM problems (presented in
Ch. 8.2) as coalition formation criteria. Moreover, instead of a preference
(as in Ch. 8.2), we need to consider a trust relationship between two
entities, which, inherently expresses a preference in some sense. To do so,
in Def. 30 we formalize how to compute the trustworthiness of a whole
coalition:

Definition 30 (Trustworthiness of a Coalition) Given a coalition C of agents
defined by the set {x1, . . . , xn} and a trust function t defined on ordered pairs (i.e.
t(xi, xy) is the trust score that xi associates with x j), the trustworthiness of C (i.e.
T(C)) is defined as the composition (i.e. ◦) of the 1-to-1 trust relationships, i.e.
∀xi, x j ∈ C. ◦ t(xi, x j) (notice that i can be equal to j, modeling an agent’s trust in
itself).

The ◦ function has already been defined in (BS08e); it models the com-
position of the 1-to-1 trust relationships. It can be used to consider also
subjective ratings (JIB07) (i.e. personal points of view on the composition),
even if in this chapter we will consider objective ratings (JIB07) in order to
easily represent and compute trust with a mathematical operator. For in-
stance, some practical instantiations of the ◦ function can be the arithmetic
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mean or the max operator: ∀xi, x j ∈ C. avg t(xi, x j) or ∀xi, x j ∈ C.max t(xi, x j).
Notice that the ◦ operation is not only a plain “addition” of the single
trust values, but it must also take into account also the “added value” (or
“subtracted value”) derived from the combination effect.

As proposed in Ch. 8.3 for the classical problem, by changing the
semiring structure we can represent different trust metrics (BS08e; TB04).
Therefore, the optimization of the set of coalitions can follow different
principles, as, for example, minimizing a general cost of the aggregation or
maximizing the “consistency” evaluation of the included entities, i.e. how
much their interests are alike. In order to extend the stability condition of
the classical problem, blocking coalitions are defined in Def. 31:

Definition 31 (Blocking Coalitions) Two coalitions Cu and Cv are defined as
blocking if, an individual xk ∈ Cv exists such that, ∀xi ∈ Cu, x j ∈ Cv with j , k,
◦xi∈Cu t(xk, xi) > ◦x j∈Cv t(xk, x j) and T(Cu ∪ xk) > T(Cu) at the same time.

Clearly, a set {C1,C2, . . . ,Cn} of coalitions is stable if no blocking coali-
tions exist in the partitioning of the agents. An example of two blocking
coalitions is sketched in Fig. 47: if x4 prefers the coalition C1 (relation-
ship r1 in Fig. 47) to the elements in its coalitions C2 (r2 in Fig. 47), i.e.
◦(t(x4, x1), t(x4, x2), t(x4, x3)) > ◦(t(x4, x5), t(x4, x6), t(x4, x7)), and C1 increases
its trust value by having x4 inside itself, i.e. T(C1∪x4) > T(C1), then C1 and
C2 are two blocking coalitions and the partitioning {C1,C2} is not stable
and thus, it is not a feasible solution of our problem.

We therefore require the stability condition to be satisfied, but at the
same time want to optimize the trustworthiness of the partition given
by aggregating together all the trustworthiness scores of the obtained
coalitions.

8.4.2 A Formalization of the Problem

As accomplished in Ch. 8.3 for the classical problem, in this Ch. we define
the soft constraints needed to represent the coalition-extension problem.
As an example, we adopt the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉 in order
to maximize the minimum trustworthiness of all obtained coalitions (as
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proposed also in (BS08e; BS07)). The following definition takes the gen-
eral ◦ operator (presented in Ch. 8.4) as one of its parameters: it can be
considered in some sense as a “lower level” operator with respect to the
other two semiring operators (i.e. + and ×).

The variables V of this problem are represented by the maximum
number of possible coalitions: {co1, co2, . . . , con} if we have to partition a
set {x1, x2, . . . , xn} of n elements. The domain D for each of the variables is
the powerset of the element identifiers, i.e. P{1, 2, . . . ,n}; for instance, if
η(co1) = {1, 3, 5} it means the the coalition co1 groups the elements x1, x2, x5

together Clearly, η(coi) = ∅ if the framework finds less than n coalitions.

1. Trust constraints. As an example from this class of constraint, the soft
constraint ct(coi = {1, 3, 5}) = a quantifies the trustworthiness of the
coalition formed by {x1, x3, x5} into the semiring value represented
by a. According to Def. 30, this value is obtained by using the ◦
operator and composing all the 1-to-1 trust relationships within the
coalition. In this way we can find the best set of coalitions according
to the semiring operators. This kind of constraint resembles the
preference constraints given in Ch. 8.3.

2. Partition constraints. This set of constraints is similar to the Marriage
constraints proposed in Ch. 8.3. It is used to enforce that an element
belongs only to one single coalition. For this goal we can use a binary
crisp constraint between any two coalition, as cp(coi, co j) = 0 if η(coi)∩
η(co j) , ∅, and cp(coi, co j) = 1 otherwise (with i , j). Moreover, we
need to add one more crisp constraint in order to enforce that all the
elements are assigned to at least one coalition: cp(co1, co2, . . . , con) = 0
if |η(co1) ∪ η(co2) ∪ · · · ∪ η(con)| , n, and cp(co1, co2, . . . , con) = 1 if
|η(co1) ∪ η(co2) ∪ · · · ∪ η(con)| = n.

3. Stability constraints. These crisp constraints model the stability con-
dition extended to coalitions, as proposed in Def. 31. We have several
ternary constraints for this goal: cs(cov, cou, xk) = 0 if k ∈ η(cov) (i.e.
xk belongs to the cov coalition), ◦i∈η(cou)t(xk, xi) > ◦ j∈η(cov)t(xk, x j) and
ct(η(cou) ∪ k) > ct(cou). Otherwise, cs(cov, cou, xk) = 1.
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8.5 Conclusions

In this chapter we have presented a general soft constraint-based frame-
work to represent and solve the Optimal Stable Marriage (OSM) prob-
lem (ILG87) and its variants with incomplete preference lists or ties
amongst preferences. The optimization criterion depends on the chosen
semiring (e.g. Weighted or Fuzzy) which can be used to solved problems
already proposed in literature, such as minimizing the egalitarian cost (see
Ch. 8.2 and Ch. 8.3). Therefore, it is possible to solve all these different opti-
mization problems with the same general framework, and we do not need
an ad-hoc algorithm for each distinct case (e.g. (ILG87; Gus87; IMY07)).
One of the aims of this chapter was to relate the OSM and soft constraint
satisfaction as done also for the classical SM and classic constraint satis-
faction (GIM+01; UP05). Since many variants of the OSM problem are
NP-hard (IM08), representing and solving the problem as a SCSP can
be a valuable strategy (GIM+01). Integer linear programming, the tool
adopted to find a solution for the related soft constraint problem, was
applied here to this kind of problems for the first time.

Moreover, we have extended the OSM problem to achieve stable coali-
tions of agents/individuals by using trust metrics as a way to express
preferences. Thus, we extend the stability conditions from agent-to-agent
to agent-to-coalition (of agents); in this case the marriage is between an
agent and a group of agents. What we obtain is a partition of the set
of agents into trusted coalitions, such that no agent or coalition is inter-
ested in breaking the current relationships and consequently changing
the partition. As future work, we would like to also use ILP to solve
the problem extension to coalition formation, which has been modeled in
Ch. 8.4.2. Moreover, we would like to compare the performance of the ILP
framework with other classical SCSP solvers based on branch-and-bound
procedures (BO04; LG08).

It would be interesting try to extend these results by modeling the for-
mation and the consequent behaviour of other organizational paradigms
presented in (HL04), e.g. Holoarchies, Federations or Teams. To do so, we
need to represent the different grouping relationships among the entities
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with soft constraints. We would like also to further explore the strong
links between OSM and Games Theory, for example by developing even
more sophisticated notions of stability.
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Chapter 9

Conclusions and Future
Work

In this thesis we have proposed soft constraints (Bis04) as a very flexi-
ble and parametric tool where to solve many and different QoS-related
problems. These problems concern a lot of different research areas and
application in computer science: they usually have to deal with multi-
ple non-functional aspects linked to the service at the same time, as, for
example, reliability, availability and security.

The term “quality” as it is commonly understood in the context of QoS
is “something” by which a user of the service (in a very large meaning) will
judge how good the service is. Today, a lot of different services from many
distinct application areas ask for some side needs, sometimes preferable to
provide, but sometimes strictly connected to the service itself. Consider,
for example, a streaming video transmission on a network: surely it is
important that the data-packet with a given video-frame arrives at desti-
nation, but it is also important, at the same time, that the packet arrives
within precise time bounds, otherwise it would be useless to reproduce it.

For this reason, we reckon that the use of soft constraints as the fun-
damentals of our formal framework, could be promising a decision. As a
matter of fact, we think that the c-semiring is a general structure that can be
perfectly instantiated to represent and model the composition of most of
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the QoS metrics: c-semirings can be adopted to optimize quantitative and
qualitative aspects associated with a given service. This feature provide
to us all the expressiveness and the flexibility that a framework needs to
be adapted to many application fields, while classic crisp constraint could
show evident limitations.

Moreover, the negotiation of quality could be slightly over-constrained,
since the requests of the client/consumer could be not fully satisfiable (by
the service provider) at the present moment, because of other pending
requests; on the other hand, the best possible solution, that gets closer to
the consumer needs, can however be found, proposed and estimated by
the potential client.

In addition, as seen in Ch. 4, even satisfying only two constraints on
the route is an NP-complete problem. Therefore, solving the problem with
soft constraints represents a good mean to tackle its inherent complexity.

At last, when we have to deal with quality in a broad sense, many
related concepts are “smooth” and not completely defined or described:
quality is very vague and multi-faceted topic, and sometimes its outlines
cannot be rigorously delimited. According to the “transcendent” citing of
R. M. Pirsig in Zen and the Art of Motorcycle Maintenance:

Quality is neither mind nor matter, but a third entity independent of the two . . .
even through quality cannot be defined, you know what it is.

Quality can be represented with intervals of “more or less” acceptable
values, and therefore soft constraints prove to capture its essence at a
higher level, w.r.t. crisp constraints. To simplify these concepts with
some examples, think for example about a demand for voice delay of
at most 200msec during a VoIP call: maybe also 250msec can provide
an acceptable quality for the user. Therefore, quality can be represented
with intervals of “more or less” acceptable values, where acceptability
decreases from the best value (e.g. 200msec) towards the bounds of the
interval (e.g., 250msec).

Reasoning on these motivations, we have exploited the properties of
soft constraints in order to optimize and negotiate the non-functional
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aspects on which a generic service must be evaluated.

In this thesis we have investigated how c-semirings can be used inside
ad-hoc algorithms to find Minimum Spanning Trees structures over a net-
work (BS08a; BS08b) (see Ch. 3). The proposed algorithms can deal also
with partially-ordered costs and strongly recall well known algorithms as
Kruskal and Prim (CLR90).

We have suggested (see Ch. 4) a formal model to represent and solve
the multicast routing problem in multicast networks with QoS require-
ments (e.g. bandwidth and delay) (BMRS07; BMRS06; BS08d). In this
model we describe how to represent a network configuration in its corre-
sponding and-or graph, mapping network nodes to and-or graph nodes
and links to graph connectors. Afterwards, we propose the SCLP (see
Ch. 2) framework as a convenient declarative programming environment
in which to specify and solve such problem. In particular, we show how
to represent an and-or graph as an SCLP program, and how the semantics
of such a program computes the best tree in the corresponding weighted
and-or graph. This best tree can be used to shape the optimized multicast
tree that ensures QoS requirements on the corresponding network. Qos
features can be represented with c-semirings algebraic structures.

In addition, we have extend the SCC language (see Ch. 2) to allow
the non-monotonic evolution of the constraint store (BS08c). The novelty,
explained in Ch. 5, mainly consists in the possibility of removing soft
constraints from the store and to consequently deal with open and reactive
systems. To accomplish this, we will introduce some new operations (e.g.
a retract(c), where c is the constraint to remove). We present this framework
as a possible solution to the management of resources (e.g. web services
and network resource allocation) that need a given QoS, which for us is
related to all the possible non-functional characteristics associated to the
resource, e.g. availability, interoperability and execution time.

Moreover, we have also extended the SCC language in order to join
together the expressive capabilities of soft constraints and timing mech-
anisms (BGMS08; BGMS07) (see Ch. 5). The agents modeled with this
language will be able to deal with time and preference dependent deci-
sions that can often be found during complex interactions as, for example,
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auctions: the cost for a service or a good can be raised or lowered during
the auction process. Mechanisms as timeout and interrupt can be very
useful when waiting for pending conditions or when triggering some
new necessary actions. From the point of view of the service provider,
time awareness can be used at expiry time to force the release of the re-
sources dedicated to a client, or to alert the client if new resources are now
available.

Moreover, in Ch. 6 we have extended the Datalog language (we call
it DatalogW) in order to deal with weights on ground facts and to con-
sequently compute a feedback result for the goal satisfaction (BMS08a;
BMS08b). The weights are chosen from a proper c-semiring. As a second
step, we use DatalogW as the basis to give a uniform semantics to declar-
ative RTW (TM) language family, in order to represent trust levels based
on c-semirings. In this way it is possible to manage a score corresponding
to a preference or cost associated to the revealed credentials, instead of a
plain “yes or no” authorization result. The approach is rather generic and
could be applied to other trust management languages based on Datalog,
as a semantic sublayer to represent trust management languages where
the trust level is relevant.

We suggested the new concept of multitrust (BS08e; BS07) in Ch. 7:
multitrust extends the usual trust relationship from couples of individuals
to one trustor and multiple trustees in a correlated way. The correlation
can be expressed in terms of time (i.e. at the same time), modalities
(i.e. with the same behavior) or collaboration among the trustees. Some
everyday examples can be found when downloading a file from multiple
sources in peer-to-peer networks, or, in general, when a task must/can be
accomplished with the help of many individuals acting together and a
trust feedback must be found for the whole process. We have proposed
SCLP as a mean to quickly represent and evaluate trust propagation for
this scenario.

In Ch. 8 we have also presented a general soft-constraint based frame-
work where to represent and solve the Optimal Stable Marriage (OSM)
problem and its variants (BFOS08): with incomplete preference lists ad
also ties inside the same list. The optimization criteria depend on the
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chosen semiring (e.g. Weighted or Fuzzy) which can be used to solved
problems already proposed in literature, as, for example, to minimize the
egalitarian cost. Moreover, in Ch. 8 we have extended the OSM problem
to achieve stable coalitions of agents/individuals by using trust metrics as
way to express preferences. Thus, we extend the stability conditions from
agent-to-agent to agent-to-coalition (of agents); in this case the marriage
is between an agent and a group of agents. What we obtain is a partition
of the set of agents into trusted coalitions, such that no agent or coali-
tion is interested in breaking the current relationships and consequently
changing the partitioning.

9.1 Future Work

During the work accomplished for this thesis, we have found many other
directions in which this research topics can be extend to. In the following
we propose some ideas we plan to investigate in explored fields and also
in new ones. The next proposals complete the ideas for future works
presented at the end of each chapter.

In order to further study the theory behind soft constraints, we want
to move along different lines to enrich the framework and its properties.
First of all, we would like to investigate the complexity of soft constraints
in order to find tractable classes of soft constraints, in the sense that there
exists a polynomial time algorithm to determine whether or not any col-
lection of constraints from such a class can be simultaneously satisfied.
A good reference from which we could start from is (CCJK06), and we
could try to extend the concept of multimorphism (i.e. a new algebraic
operator) to our generic framework: briefly, every cost function has an
associated set of multimorphisms, and every multimorphism has an asso-
ciated set of cost functions. We could show that, for several different types
of multimorphism, the associated collection of soft constraints is a max-
imal tractable class. Studying the complexity of our generic framework
could impact also other related fields, as Constraint Databases (KR04).
Clearly, it is also strongly related to the implementation of a solver and it
would represent a very strong result on its own.
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We want also to prepare the background for a soft constraint solver,
since it represents a very important tool to test the satisfaction of the
proposed general problems. Moreover, such tool raises interest in the
constraint community and also outside it. To accomplish this task, we
could program it from the scratch or we could also extend an existent
solver as Gecode (STL06), which is an open, free, portable, accessible,
and efficient environment for developing constraint-based systems and
applications.

Further on, we plan to extend the solver engine with an interface in
order to execute SCC programs. It will also be possible to execute the SCC
actions (e.g. tell or ask) from a shell in an interactive way, and directly see
their result on the constraint store.

To accomplish these tasks, however we need to investigate many as-
pects, as i) the appropriate data structure for the constraint store, ii) a
solution for a distributed store and iii) algorithms for the solution of the
problem, for example a propagation algorithm to reach local consistency.
Constraint propagation works by reducing domains of variables, strength-
ening constraints, or creating new ones: this leads to a reduction of the
search space, making the problem easier to be solved by some algorithms.
Concerning ii), we want to investigate the feasibility of a distributed soft
constraint store, where variables and constraints are distributed among
all the agents, and thus the knowledge of the problem is not concentrated
in a single point only. This requirement is common in many practical
application, and surely for SLA negotiating entities. Distributed stores
have been already studied for crisp constraints (YDIK98), and it would
also interesting to spot the differences w.r.t a soft version.

Moreover, we plan to also include a tool for solving soft constraint logic
programs. To make SCLP (BR01) a practical programming paradigm, we
plan to investigate efficient techniques to implement their operational se-
mantics, so that an optimal solution can be found efficiently. This will
require considering variants of branch and bound methods, and devel-
oping intelligent ways to recognize and cut useless search branches. In
this respect, we plan to study the possible use of local consistency tech-
niques (BMR97b) for a better approximation of the semiring values to be
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associated to each value combination in order to obtain better bounds for
the search.

Trust and Reputation Systems represent a significant trend in decision
support for Internet mediated service provision (JIB07). The basic idea
is to let parties rate each other, for example after the completion of a
transaction, and use the aggregated ratings about a given party to derive
a trust or reputation score, which can assist other parties in deciding
whether or not to transact with that party in the future. Trust describes
how much the reliability in the service is rated, and therefore we can
easily consider it as a QoS feature. For example, we want to study the
abduction of the user/client subjective trust metrics and therefore derive
the preferences of clients by observing their required constraints. More in
detail, from the store we want to acquire the two plus and times semiring
operators that better approximate the tastes of clients.

For example, we want to study the abduction of the user/client sub-
jective trust metrics and therefore derive the preferences of clients by
observing their required constraints. More in detail, from the store we
want to acquire the two plus and times semiring operators that better
approximate the tastes of clients. One more goal is to use soft constraints
to partition a set of entities into coalitions and according to different trust
criteria (i.e. trust metrics). We suppose these entities as organized in
a social network. A coalition can be defined as a temporary alliance
among agents, during which they cooperate in joint action for a common
task (HL04); we use trust scores in order to evaluate the relationships
among these entities. The final set of coalitions is the most trustworthy
w.r.t. the used trust metrics, represented by semirings. Besides this opti-
mization, in the model we want to introduce also a condition of stability
between an entity and a coalition, which can be used as a more “local”
need of an entity and can be adopted to represent further complex interac-
tions. At last, we plan to model the composition of social/trust networks
and their analysis from a security point of view, e.g. by adding/removing
a link or by increasing/reducing the associated trust score, according to a
previous work (BFO04): we plan to use soft constraints for an automatic
reconfiguration of the composed network

244



Our wish is also to improve the analysis of integrity policies by using
soft constraints modeling, for example by using the SCC framework and
its non-monotonic extension presented in Ch. 5.

One more ambition is to use Game Theory as a tool for negotiating the
QoS guarantees between the service provider and the service consumer.
In our opinion, the equilibrium of the game representing the SCSP can be
seen as the optimal negotiation that satisfy all the participating parties.
For this reason, first we want to investigate the possible translations of
SCSP into a game formulation, and, possibly also the vice-versa, i.e. from
games to SCSPs. A game is a formal model of an interactive situation
and it typically involves several players; for us, these players play the role
of providers and consumers of a service. Since the negotiating parties
may need to collaborate among themselves, it will be important also to
study cooperative games and their translation to and from SCSPs: these
games (defined also as coalitional) are high-level descriptions, specifying
only what payoffs each potential group, or coalition, can obtain by the
cooperation of its members. In this case, the semiring operations can be
used to combine or compare the utilities of the strategies, to then find
the best one for each player. In this sense we would like to extend the
mapping in Apt-Rossi-Venable (ARV08) to other games.
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